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Abstract

Recent progress in micro-scale three-dimensional (3D) characterization

techniques such as focused ion beam–scanning electron microscopy (FIB-

SEM) and X-ray nanotomography has brought unprecedented opportuni-

ties in linking material microstructure to performance and properties. The

link between average electrode microstructure and average performance in

research-grade solid oxide fuel cells (SOFCs) can be established using effec-

tive medium theory, or continuum modeling, where effective performance pa-

rameters are calculated based on effective microstructural properties. How-

ever, microstructural degradation and failure in commercial-grade SOFCs

have not been adequately captured using mean parameters from effective

medium theory. This work aims to quantify distributions of electrochem-

ical parameters throughout the microstructure in heterogeneous electrodes

to establish links between microstructure and degradation, failure, and per-

formance.

In the initial stages of this work, a novel high-throughput computational

methodology was developed and implemented, on which the remaining goals

could be carried out. Using an open-source finite element framework (MOOSE,

Idaho National Laboratory) on high performance computing platforms (Joule,

National Energy Technology Laboratory, and Bridges, Pittsburgh Super-

computing Center), a numerical transport-and-reaction model was constructed

and applied to morphology-preserving microstructural meshes. The model

computes local distributions of electrochemical parameters that are coupled
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to morphological features such as interfaces and triple phase boundaries.

Using a scriptable commercial meshing software (Simpleware ScanIP), the

microstructural meshes were obtained from the plasma-sourced FIB-SEM

characterization of a commercial SOFC electrode, as well as synthetic mi-

crostructures generated using DREAM.3D that model specific types of het-

erogeneities known to exist within SOFC commercial cathodes. Results using

the commercial microstructure are shown and discussed, which demonstrate

the capabilities of the computational workflow and remove elements of in-

feasibilty for the future work.

A series of computational investigations, on both physical and synthetic

microstructures, are described to correlate local microstructural features to

local electrochemical performance distributions. Comparisons to conven-

tional modeling approaches (effective medium theory, or continuum mod-

eling) bring forth additional insight/observation capabilities unique to the

novel methodology of this work. Furthermore, a synthetic infiltration al-

gorithm was developed to model how nanoscale catalysts dispersed on the

internal pore walls affect performance, to model a well-known experimental

practice. The results shed light into the design and fabrication of optimal

electrodes in fuel cells.

By combining physical and synthetic microstructures in simulations, spe-

cific microstructrual traits can be examined for the distributions in nano-,

micro-, and meso-scale performance characteristics, providing a new frame-

work to include in degradation model and enable more comprehensive sta-

tistical analyses/evaluations for the future work.
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1
Introduction

1.1 Solid Oxide Fuel Cell Fundamentals

1.1.1 Basic Electrochemistry

Fuel cells are electrochemical devices that directly convert the chemical en-
ergy of a reaction (using fuel as the reactant) to electrical energy [91, 99]. In
the simplest case, pure hydrogen can be used as the fuel, and pure oxygen
the oxidant, resulting in

H2 + 1
2 O2 H2O (1.1)

as the net reaction. This overall reaction is simply the hydrogen combus-
tion reaction. But fuel cells do not involve direct combustion. Instead, the
overall reaction is separated into two electrochemical half reactions: oxida-
tion and reduction. To achieve this, the fuel and the oxidant are physically
separated, as shown in Fig. 1.1.1, and the reaction energy is directly con-
verted into electrical energy. This is an important distinction from direct
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combustion. When direct combustion is used in conventional power genera-
tion, multiple conversion steps lead to indirect chemical-to-electrical energy
conversion, such as a chemical-to-thermal energy conversion (e.g., combust-
ing coal to boil water) followed by mechanical to electrical energy conversion
(e.g., driving a turbine with steam). The chemical-to-electrical “shortcut” in
fuel cells not only allows for high efficiency in the overall use of fuel supplies,
but also reduces emission of carbon dioxide and toxic by-products that are
more abundant from coal and oil combustion. Efficiency and environmental
friendliness are a common driver to research and development on fuel cells.

Figure 1.1.1: Schematic of a simple SOFC operation at the macroscopic scale. Ar-
rows indicate general flux direction of the annotated species. Adapted from Fuel Cell
Handbook [116].

All fuel cells consist of three primary components: anodes, cathodes, and
electrolytes. There are many different types of fuel cells, the names of which
are based on the electrolyte component and the ionic species that transports
through the electrolyte. A solid oxide fuel cell (SOFC) consists of ceramic
oxide components and conducts oxide ions through the solid electrolyte (see
Fig. 1.1.1). SOFCs are of interest in distributed electrical power generation,
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including chemical-to-electrical conversion, as well as combined chemical-to-
electrical and chemical-to-thermal (e.g., for hot water supply) conversion.
All electrochemical reactions and transport in this work will be discussed in
the context of SOFCs.

At the anode, fuel is oxidized to yield electrons. Using pure hydrogen as
the fuel, the hydrogen oxidation reaction (HOR) at the macroscopic scale is

H2 + O2– H2O + 2 e–. (1.2)

One distinctive advantage of SOFCs is fuel flexibility. A variety of hydro-
carbon fuels such as natural gas, diesel reformate, and biogas can be utilized
for power generation [99, 131]. In such cases, the anode electrochemistry is
more complex but is beyond the scope of this work.

At the cathode, oxygen is reduced to yield oxygen ions. Macroscopically,
the oxygen reduction reaction (ORR) is

1
2 O2 + 2 e– O2–. (1.3)

The ORR is currently a focus of this work and will be thoroughly discussed
with more details.

Within the electrolyte, electromigration of oxygen ions (or oxygen va-
cancies) takes place. SOFCs utilize an oxide material with a high oxygen
conductivity (related to high oxygen vacancy concentrations) for the elec-
trolyte component. The electrolyte also serves to separate electrically the
anode and the cathode; as such, electrolytes have negligible electronic con-
ductivity, forcing electrons to flow through an external circuit. Note that the
electrolyte is designed to be dense and non-porous, which maintains physical
separation of the fuel and oxidant, avoiding direct combustion.

The aforementioned HOR and ORR are only appropriate for describing
the cell electrochemistry at the macroscopic scale. At the microscopic scale,
the HOR and ORR may be broken down into multiple more elementary
sub-reaction and transport steps.

3



1.1.2 Electrode Composition and Microstructure

Recall both the HOR and ORR involve a gas species, oxygen ions, and
electrons. This suggests the electrochemistry at the electrodes (i.e., anode
and cathode) is inherently complex. For optimal performance,1 three rules
apply to an electrode. An electrode needs to

• allow facile transport rate of gas molecules, ions, and electrons concur-
rently,

• allow sufficient, direct percolation of all three species from supply sites
to reaction sites,

• and maximize the number of reaction sites within the electrode volume.

As such, a typical electrode contains multiple highly interconnected phases
with fine morphological features at the micro-scale. This characteristic is
related to two aspects of the electrodes: composition and microstructure.

The chemical composition of an electrode is important for a cell’s baseline
performance. For example, electronic transport requires the presence of a
metallic conductor. Without a proper composition, an electrode may not
conduct gas, ions, or electrons at all. An electrode may consist of three or
two phases for species transport. In a three-phase electrode, the phases are
the gas conducting phase (GCP), the ion conducting phase (ICP), and the
electron conducting phase (ECP). In a two-phase electrode, the phases are
the GCP and the mixed-ionic-and-electronic-conductor (MIEC) phase. Note
that the best GCP is essentially a void space, or a pore. Table 1.1.1 lists
some of the state-of-the-art materials for typical SOFC components in the
context of a three-phase electrode.23

1Here, performance may refer to, macroscopically, a cell’s capability to output electrical
current/voltage at a given voltage/current state. In other words, at a constant voltage,
higher current is considered better performance. Conversely, at a constant current, higher
voltage is considered better performance.

2LSM: Strontium-doped Lanthanum Manganite, or La1–xSrxMnO3–δ. LSCF: Lan-
thanum Strontium Cobalt Ferrite, or La1–xSrxCo1–yFeyO3–δ. YSZ: Yttria-stabilized Zirco-
nia, or Zr1–yYyO2–y/2. GDC: Gadolinium-doped Ceria, or Ce1–xGdxO2–δ.

3Under certain conditions, some cathode materials (especially LSCF) exhibit observable
ionic and electronic conductivities and may be considered as MIECs.
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Table 1.1.1: Notable state-of-the-art materials for SOFC components

Cathode Electrolyte Anode
ECP LSM, LSCF - Ni
ICP YSZ, GDC, LSCF YSZ, GDC YSZ
GCP Pore - Pore

An electrode’s microstructure is equally important to, if not more than,
its chemical composition. The term microstructure here refers to the phys-
ical morphology of an electrode at the micro-scale. While an electrode’s
composition governs baseline transport rate, its microstructure governs the
effect of morphology on transport rate and reaction kinetics. For example, a
large, straight pore channel would allow for faster oxygen gas diffusion and
any associated reaction kinetics than a thin, tortuous pore channel would.
For a three-phase electrode, designing the microstructure for fast ionic, elec-
tronic, and gas conduction while maintaining a high number of reaction sites
becomes non-trivial. As previously mentioned, typical electrode microstruc-
tures are complex, containing highly interconnected phases and dense, fine
morphological features across the micro-scale. This complexity is illustrated
in Fig. 1.1.2 (from Fig. 3 of the work by Epting et al. [26]),4 which shows
three-dimensional microstructures of a commercially manufactured SOFC.
Many of the technical terms mentioned in the caption will be introduced in
later sections. For now, the figure serves to demonstrate the complexity of
SOFC microstructures. This complexity largely impacts the local electro-
chemistry (i.e., performance) [2].

1.2 SOFC Microstructure

1.2.1 Three-dimensional Characterization Techniques

Understanding the complexity of the electrode microstructures is key to un-
derstanding the local electrochemistry within the electrodes. Characterizing
and quantifying the electrode microstructures is currently an active research

4The microstructures shown here are one example of the characterized SOFC mi-
crostructures in the literature. Other works will be mentioned in a later section.
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Figure 1.1.2: Three-dimensional rendering of segmented SOFC microstructures char-
acterized by X-ray nanotomography (from the work by Epting et al. [26]). Volume
dimensions are shown in µm. CAL denotes cathode active layer. AAL denotes anode
active layer. The cut-out volumes show spatial distribution of triple phase boundaries.
For the CAL, red is LSM and cyan is YSZ. For the AAL, green is nickel and blue is
YSZ. The pore phase is transparent. Many of the technical terms mentioned here will
be introduced in later sections.

field. Recent progress in micro-scale three-dimensional (3D) characterization
techniques, such as focused ion beam–scanning electron microscopy (FIB-
SEM) and X-ray nanotomography, has allowed new opportunities in study-
ing material properties and performance with respect to the 3D microstruc-
ture.5 Such techniques are especially useful for the study of SOFCs, whose
electrode microstructures are necessarily complex, as discussed earlier. In
fact, key microstructural features of three-phase electrodes (discussed in a
later section) are only clearly manifested through 3D characterization with
nano-scale resolution. As such, the 3D electrode microstructure serves as the
foundation for understanding SOFC electrochemistry and transport kinetics
at the micro-scale.

The 3D characterization techniques discussed here refer to imaging meth-
ods that aim to capture intensity-based phase (chemical composition) con-

5Works involving gallium FIB serial sectioning include, but are not limited to [16, 22,
23, 37, 51, 54, 56, 57, 61, 63, 87–89, 95, 96, 106, 110, 118, 123, 124]. Works involving X-ray
nanotomgraphy include, but are not limited to [13, 18, 26, 38, 41, 60, 69, 77, 81, 95, 109,
110, 117].

6



trast. The result of the characterizations is a 3D reconstruction of image
data, which consists of voxels of grayscale intensity. A voxel is essentially
a volumetric pixel. Each voxel holds a physical dimension and an inten-
sity value that corresponds to the signal intensity from the detector of the
imaging instrument. The variation of the grayscale intensity in the voxels
represents phase contrast. For example, dark gray may represent a pore in
an SEM micrograph, light gray an LSM phase, and white a YSZ phase.

The image data, in grayscale form, is segmented to produce a spatial
distribution of different phases. Segmentation refers to image processing
techniques that partition the grayscale intensity distribution into phase dis-
tributions. This process assigns each voxel of the reconstructed image to
a phase/composition. As such, a segmented 3D reconstruction consists of
voxels that hold a physical dimension and phase value. Most of the mi-
crostructure properties that are discussed in the literature are quantified
from segmented reconstructions.

1.2.2 3D Microstructure Properties

Some of the commonly reported SOFC microstructure properties are intro-
duced below. The word parameter is used interchangeably with the word
property. Note that these properties are discussed in the context of 3D char-
acterizations. In other words, they are quantified from voxelized, segmented
reconstruction data.

The volume fraction is simply the volume of a constituent phase divided
by the total volume of a multi-phased microstructure. The value of a volume
fraction ranges from 0 to 1. It is one of the most common and straightforward
quantities measured from an SOFC microstructure. The volume fraction
of a given phase needs to exceed a percolation threshold to ensure species
percolation through a microstructure volume. For example, a 3D simple
cubic lattice with six-connectivity (six nearest neighbors) has a percolation
threshold of about 0.31 [120].

The triple phase boundary (TPB) is the intersection of all the three phases
(GCP, ECP, and ICP) in a three-phase electrode. Geometrically, the TPBs
are curved lines in a 3D volume. Given a characterized microstructural vol-
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ume, the TPB density is often defined as the measured TPB line length
divided by the total volume, expressed in the unit of µm/µm3. The im-
portance of the TPBs can be explained with a simple example; given a
three-phase electrode, where the GCP, ECP, and ICP only conduct oxygen
gas, electrons, and oxygen ions, respectively, the ORR can only take place
at the TPBs, where the three reaction species come into close contact with
one another. Thus, the TPB density is a measure of the potential electro-
chemical activity of a given microstructure. Fig. 1.2.1 illustrates examples
of TPBs in a two-dimensional (2D) image of a three-phase microstructure.
Note that the TPBs appear to be points in the 2D image, but are lines
in 3D space. As discussed later, the TPBs may not be the only reaction
sites for the HOR/ORR, especially if the cathode contains an MIEC phase
[50, 75, 105].

Figure 1.2.1: Image of an example of a three-phase electrode microstructure con-
taining TPBs. The TPBs are circled in the magnified region on the right.

The surface area is usually referenced with respect to the interfacial area
between two specific phases (e.g., GCP and ECP) or sometimes to the total
interfacial area bounding an individual phase. Surfaces adjacent to the TPB
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in a three-phase electrode may be important to specific sub-steps in the
overall reaction, but are sometimes ignored. In an electrode containing an
MIEC, the GCP/MIEC surface area represents an important reaction site for
the ORR because all three reactants are present. In a three-phase electrode
with an MIEC, the TPB and 2PB reactions contribute in parallel to the
ORR. In a two-phase electrode with an MIEC, the presence of TPBs is
largely absent (except at the MIEC/electrolyte interface6), and the 2PB
surfaces are the the primary reaction sites. Surface areas are usually reported
as the surface area per unit volume of electrode.

The particle size usually refers to the diameter of particles (or grains) of
a specific phase in a given microstructure. The qualitative definition of the
particle size is built upon the understanding that the electrodes are fabri-
cated by sintering ceramic or composite powders of specific initial particle
sizes. The particle size is often used to normalize the size of a characterized
volume for comparisons to other microstructural data having different par-
ticle sizes. For example, a cubic microstructure volume may have an edge
length of L = 9.7d, where d denotes the particle size.

The tortuosity (as well as the tortuosity factor) generally describes how
tortuous a pathway is for a species to transport between two locations in the
microstructure. This pathway generally refers to the path between the start-
ing location (typically a source/supply site) and the destination (typically
a reaction site). While the tortuosity may be defined with only geometric
considerations, the definition of the tortuosity factor is related to effective
transport coefficients (diffusivity and conductivity) that pertain to physical
transport in porous media [24]. A higher tortuosity suggests a longer path-
way for a species to travel from the source site to the reaction site, leading to
slow kinetics. As such, low tortuosity is favored for electrochemistry. There
is little consensus in the literature on both the qualitative and the quanti-
tative definitions of the tortuosity. For example, four different quantitative
methods of measuring the tortuosities (or tortuosity factors) are described
in [37, 51, 123].

6The intersection of pore, MIEC, and electrolyte may be considered as TPBs.
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1.3 Modeling SOFC Electrochemistry

Simulating SOFC electrochemistry based on the 3D microstructures can
help us understand the link between cell performance and microstructure.
Much of the current foundation has been built using effective medium the-
ory (EMT) approximations of the electrode microstructures for continuum
modeling [1, 10, 12, 15, 21, 100, 113, 114], which appears to capture the av-
erage electrochemical property with reasonable accuracy. Using simulations
of electrochemistry directly on the specific microstructure, we can avoid the
potentially incorrect assumptions of electrode homogeneity built into EMT
models. Such simulations, which are the focus of this work, not only can
provide an improved understanding of the local mean properties (and the vol-
umes required to achieve it), but also yield full distributions of relevant elec-
trochemical parameters both within specific simulation volumes and across
many different simulation volumes. To address degradation modes away
from the mean performance, generating such distributions in performance
metrics is essential.

1.3.1 Effective Medium Models

In effective medium models, the complex microstructure of an electrode is
homogenized, i.e., the microstructure morphology is lost, and there is no
distinct spatial phase separation. All quantitative formulations of electro-
chemical processes (e.g., transport and reaction mechanisms) are defined in
this homogenized domain. Depending on the model assumptions and the
geometry of the problem, an analytical solution may be obtained. The do-
main may also be subject to numerical discretization and approximation
techniques such as finite element (FE) and finite volume (FV) methods. In
such cases, a numerical solution is obtained to give relevant electrochemical
parameters. Note that most of the inputs for effective medium modeling are
effective/averaged properties (introduced earlier) quantified from a subvol-
ume of a measured microstructure. The solutions from the effective medium
models are also effective quantities. Here the word effective is synonymous
with the word averaged. These average performance parameters, e.g., oper-
ation voltage and current density, of SOFCs have been related to the model
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inputs, e.g., phase volume fractions, tortuosity, etc., determined over an
appropriate microstructural domain.

1.3.2 Meshed Microstructure Models

Contrary to the effective medium models, the approach adopted by this work
spatially preserves morphologies of volume, surface, and linear features in the
SOFC microstructure. Several authors have carried out similar approaches,
with voxel-based meshes used in finite volume methods [6, 7, 63, 65, 93, 104,
108, 134], voxel-based lattices used in Lattice-Boltzmann methods (LBMs)
[38, 51, 55, 61, 89, 111], and smoothed unstructured meshes used in finite
element methods [4, 8, 9, 42, 81, 105]. Quantitative formulations of elec-
trochemical processes may be defined only in certain phase volumes and
surfaces. Due to the complex geometry of the microstructural mesh, it is es-
sentially impossible to obtain a closed-form solution. Therefore, a numerical
solution has to be computed. The numerical solution consists of spatial dis-
tributions of electrochemical quantities in the computational domain. Since
the microstructure is not homogenized, local electrochemistry, coupled with
local morphological features, can be visualized and analyzed.

Note that the meshed microstructure models do not use the effective mi-
crostructure properties. Instead, the model directly operates on the meshed
microstructure, which inherently contains information regarding volume frac-
tion, surface area, tortuosity, etc., all of which are not explicitly computed.

1.4 Thesis Objective

1.4.1 Durability, Reliability, and Degradation

The advantages of SOFCs include high fuel flexibility, no moving parts, ca-
pability to recycle high temperature waste heat, and no use of precious metal
catalyst [91, 99]. All these features indicate that SOFCs are suitable for long
term, large scale stationary power plant applications. However, widespread
commercialization of SOFCs is still limited by several challenges, of which
the notable ones are low durability and poor reliability [116]. Durability
refers to a cell’s useful performance lifetime before eventual degradation and
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failure, whereas reliability refers to cell-to-cell performance variation and
any associated degradation rate. Both durability and reliability are tied to
degradation in performance. It is suggested that well over 40,000 hours, or
over four to five years, of operation is needed for SOFCs to be a viable, eco-
nomical option to compete with the current conventional power generation
industry [54, 132]. Yet this requirement is rarely met by cost-competitive
commercial SOFCs due to unacceptable degradation over a much shorter
time scale. This work aims to lay a foundation towards engineering SOFCs
exhibiting decreased degradation. Since most degradation mechanisms in
fuel cell electrodes have been found to be closely correlated to physiochemical
reactions and transport phenomena in the microstructure (e.g., chromium
poisoning in the cathode or nickel coarsening in the anode) [2, 66, 132],
this work is concerned with how microstructural distributions influence lo-
cal property distributions. As an initial step towards this end, we develop
herein a high-throughput simulation approach to capture distributions of
performance properties within fully resolved 3D electrode microstructures,
and then use it to model/understand heterogeneous electrodes.

1.4.2 Microstructural Heterogeneity

Commercially fabricated cells suffer from unacceptably low durability and
poor reproducibility, both of which can be related to the electrode mi-
crostructures and are likely due to their cost-constrained, large-scale manu-
facturing. Inconsistency is also seen in the electrode microstructures, where
local variation of the physical features are expected over a wide range of
length scales (from microns to hundreds of microns) [26, 83]. We define the
extent of this local variation as microstructural heterogeneity.

There is no real consensus on a quantitative definition of microstructural
heterogeneity. Heterogeneity refers to a state of being composed of dissim-
ilar elements, which electrodes must be because they contain two or three
phases. Thus, statistical metrics are obvious quantitative descriptors for
heterogeneity, such as the distributions of specific microstructural features,
including as particle size and volume fraction, in given local volumes. This
work considers the distribution width (e.g., standard deviation) of relevant
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microstructural properties and simulated performance metrics as the pri-
mary indicator of heterogeneity (from the mean value, or expected value of a
homogeneous medium). In [48], the distribution standard deviations of local
TPB densities and volume fractions across subvolumes were measured and
used to adequately distinguish heterogeneous microstructures from uniform
ones. However, there lacks a comprehensive (and quantitative) mapping of
local phase distributions (and variations) to a detailed view of performance
(or even degradation) in the literature.

Microstructural heterogeneity has not been extensively discussed in the
literature. Currently, most fundamental research on SOFC microstructures
is based on homogeneous research-grade cells that are fabricated in-house
with highly optimized, small-scale methods. For homogeneous cells, the
microstructure properties and electrochemical activity are fairly uniform and
can be described with good statistical accuracy over a length scale of 5–15
µm, or about ten times the average particle size [16, 43, 44, 51, 57, 90, 125].
Such a scale is often referred to as the representative volume element (RVE),
or the minimum volume scale that can statistically describe an effective
(i.e., averaged) property (with user-defined tolerance). As mentioned earlier,
effective medium modeling has been used to describe in-house cells’ effective
performance parameters with reasonable accuracy.

Commercial cells, however, have not been widely studied under effective
medium modeling. Considering their heterogeneous microstructures, the
electrochemistry may not be appropriately described by using effective prop-
erties. This statement is supported by the fact that degradation or failure
events have been observed to occur locally and non-uniformly in the mi-
crostructure [80, 121]. More specifically, degradation sites tend to be highly
localized at certain regions or morphological features (surfaces, TPBs), which
the effective medium modeling approach does not capture due to domain
homogenization. As such, we may expect substantial variation in local elec-
trochemistry. Since effective medium modeling only outputs effective per-
formance using effective microstructure properties, we place an emphasis on
computing spatially-resolved electrochemistry from morphology-preserving
meshes. Since the electrochemistry is resolved spatially, local variation of
electrochemistry may be captured and analyzed.
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1.4.3 Hypothesis

In summary, recent advances in 3D characterization techniques and effective
medium modeling demonstrate that there is a reasonably accurate descrip-
tion of average performance using microstructure-based effective properties
from relatively homogeneous cells. However, effective medium modeling has
not adequately addressed microstructural degradation, which is one of the
current challenges to widespread SOFC commercialization. First, commer-
cial cells and their heterogeneities are not actively discussed. Second, mi-
crostructural degradation persists in commercial- and research-grade cells.
Based on the observation that degradation is non-uniform and highly local-
ized throughout microstructure, there is likely a substantial variation in local
electrochemistry in commercial cells. To this end, we propose the following
main hypothesis regarding local electrochemistry in SOFCs:

• Distributions of local electrochemical values can be quantified using
simulations based on microstructural morphology-preserving meshes,
which can be described by the average, standard deviation, and tails
of such distributions.7

This hypothesis is further specified with respect to the computational method
used in this work. Here the term electrochemistry is used interchangeably
with performance. Thus, local electrochemistry means localized electrochem-
ical activity, or simply localized performance metrics (often the electrical
current density) in a certain region of interest. Thus, the hypothesis states
that given a subvolume (region) of heterogeneous microstructure, meshed
microstructure modeling is more likely to accurately compute local elec-
trochemistry than continuum modeling can. And this statement is largely
dependent on microstructural heterogeneity. Finally, part of the thesis ob-
jective is to quantify the extent of heterogeneity with which data analysis is
consistent with the hypothesis.

7It is believed that degradation can be related to these distributions, but will not be
tested herein.
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1.4.4 Testing the Hypothesis

The necessary work to test the aforementioned hypothesis may be broken
down into numerous separate studies, each of which may roughly corre-
spond to an academic journal publication with a self-contained testable sub-
hypothesis, an experiment (computational) design, and supporting results.
Details regarding these studies are laid out at the end of the third chapter.
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2
Methodology

2.1 Workflow Overview

A computational workflow is presented with an emphasis on the development
of a microstructure-based electrochemical simulation framework suitable for
high performance computing (HPC) resources. The key steps of the workflow
are to acquire, process, mesh, and simulate solid oxide fuel cell (SOFC)
cathode microstructures in a high-throughput fashion. The advantages of
the workflow are:

• High-resolution, large-scale microstructure acquisition

• Straightforward image-based volumetric meshing that conforms to com-
plex, multi-phased microstructures

• Computation of local electrochemical fields in morphology-resolved mi-
crostructures at considerable length scales

• Modular nature of user-defined physics; addition or modification of
physics requires minimal programming effort
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• Implementation on HPC platforms, leading to fast, high-throughput
computations

The overall workflow—which is mostly computational, with only one ex-
perimental step: PFIB characterization—consists of the following general
sequential steps:

• Segmented Microstructure Acquisition

• TPB Phase Labeling

• Pre-Mesh Processing

• Volumetric Meshing

• HPC Simulation

Fig. 2.1.1 presents a flowchart for the workflow. Each step may be broken
down into multiple sub-steps, and their details will be described in later
sections. The last step of the workflow, HPC Simulation, will be emphasized
and separately detailed in a comprehensive manner. There may be additional
details (e.g. toy mesh) in later sections that are not directly related to the
steps in Fig. 2.1.1.

2.2 Microstructure Acquisition

2.2.1 Commercial SOFC Sample Overview

Part of this work focuses on commercial-grade SOFCs. Currently, the elec-
trode microstructure studied here originated from 25 mm anode supported
SOFC button cells supplied by a commercial manufacturer (Materials and
Systems Research, Inc., Salt Lake City, UT), which will be referred to as
MSRI. The MSRI cells consist of five component layers, which are described
below from the cathode end to the anode end:

• Cathode current collector (CCC): Designed to be macro-porous for
facile gas transport towards the cathode active layer. The CCC also
contains LSM for fast electronic transport.
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Figure 2.1.1: General flowchart of the computational workflow (except the PFIB
characterization, which is an experimental method). Use of multiple arrows in par-
allel represent the flow of multiple subvolumes of microstructures data processed in
parallel.
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• Cathode active layer (CAL): Micro-porous, where most of the electro-
chemical activity (oxygen reduction) takes place.

• Electrolyte (EL): Non-porous layer through which the oxide ions trans-
port to the anode side.

• Anode active layer (AAL): Micro-porous, where most of the electro-
chemical activity (fuel oxidation) takes place.

• Anode support layer (ASL): Designed to be macro-porous for facile gas
and electronic transport and is the mechanical support of the entire
cell – it is the thickest layer.

The compositions and layer thicknesses of the MSRI cells are summarized in
Table 2.2.1. The scope of this work is restricted to studying the active layers
(CAL and AAL). Our numerical model developed thus far only addresses
the ORR at the cathode. Therefore, future sections only focus on CAL
microstructure and electrochemistry.

MSRI Cell Composition Layer Thickness
CCC LSM/pore 45 µm
CAL LSM/YSZ/pore 10-15 µm
EL YSZ 10 µm

AAL Ni/YSZ/pore 10-15 µm
ASL Ni/YSZ/pore >700 µm

Table 2.2.1: MSRI cell composition by layers

2.2.2 FIB-SEM Characterization

The characterization workflow is implemented with the Helios PFIB Du-
alBeam (plasma FIB, or PFIB) and the 3D acquisition package AutoSlice
and View (FEI Company, Hillsboro, OR). Details of PFIB characterization
are described elsewhere [83]. The typical scale for PFIB characterization is
about 150–200 µm, which is roughly an order of magnitude larger than that
of gallium FIB-SEM and X-ray nanotomography (10–30 µm).1 Large-scale

1While X-ray nanotomography may be able to capture with about 60 µm of field of view,
the light intensity generated from lab-based power source does not penetrate more than
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tomography techniques (e.g., synchrotron computed tomography) developed
thus far typically have limited resolution and therefore cannot capture the
fine morphological features in electrode microstructures. Fig. 2.2.1 shows the
MSRI microstructures characterized by the PFIB. The figure is part of our
publication on meso-scale characterization of heterogeneous microstructures
[48].

The scale of the microstructures from PFIB characterization is substantial,
with small voxels on the order of 50 nm spanning across a (lateral) domain
of 150–200 µm. Processing an entire volume from a PFIB scan at once can
be time-consuming and intractable. Therefore, we typically divide an entire
microstructure into multiple subvolumes for further work. The initial PFIB
microstructural characterization methods were developed by me, with help
from Noel Nuhfer, and were then passed to Rubayyat Mahbub. All of the
data presented here were collected by me or myself in collaboration with
Rubayyat Mahbub.

2.2.3 Synthetic Microstructure

In addition to physical microstrucures reconstructed using PFIB-SEM, syn-
thetic microstructures are also used in this work. The construction of the
synthetic microstructures are grain-based, and have been carried out. The
3D microstructrure software Dream.3D (BlueQuartz Software, Springboro,
OH) constructs polycrystalline microstructures with user-defined grain size
distributions and phase volume fractions (among other input conditions less
relevant to this work). Details regarding the construction algorithm are de-
scribed in [39]. In this work, microstructural heterogeneity based on different
grain size distributions is considered. Depending on the standard deviation
of the distribution, a series of microstructures with varying heterogeneity
can be generated. To generate larger volumes, simulated annealing methods
were used to stitch subvolumes together [48]. Two examples of the synthetic
microstructures are shown in Fig. 2.2.2, which is also part of our publication
[48]. Note that despite the microstructure generation is based on grains, the

about 45 µm of typical SOFC ceramic materials. Further post-scan processing reduces the
size of the captured microstructure.
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Figure 2.2.1: MSRI microstructures characterized by the PFIB. (a) Grayscale cath-
ode. (b) Segmented cathode. (c) Segmented anode. The yellow boxes provide a mea-
sure of scale for a subvolume size of t3 µm3 (left) (t represents the thickness of an
electrode) and of 53 µm3 (right). Colors in segmented microstructures represent dif-
ferent phases. The pore phase is not shown here (transparent). The voxel dimension
is 55 x 55 x 50 nm3.
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Figure 2.2.2: Synthetic three-phase microstructures generated by Dream.3D. The
two microstructures shown here have different standard deviations as input for the
grain size distribution. (a) corresponds to a standard deviation of 0.15 µm, whereas
(b) corresponds to 0.6 µm. Colors represent different phases. The pore phase is not
shown here (transparent). The voxel dimension is 125 x 125 x 125 nm3.

colors in the figure indicate different phases. It can be seen that a higher
standard deviation in grain size distribution results in higher heterogeneity.

The purpose of using synthetic microstructures is to test the effects of
specific variations on local electrochemical performance quantities. In par-
ticular, we may establish when assumptions in effective medium theories
for microstructural homogeneities diverge from actual microstructural fea-
tures, and their effects on local properties. Comparison of the synthetic
microstructures given in Fig. 2.2.2 with experimental PFIB microstructure
given in Fig. 2.2.1 are discussed in [48]. It should be noted that the work
on synthetic microstructure generation is done by a collaborator, William
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K. Epting, who is affiliated with the National Energy Technology Labora-
tory (Pittsburgh, PA). He is currently developing more heterogeneous mi-
crostructures that capture mesoscale heterogeneity found in experimental
microstructures and these may be included in future work as necessary.

2.3 Mesh Generation

Once an appropriate segmented 3D microstructure is available, the next step
is to mesh the microstructure such that:

• it preserves the microstructural morphology,

• is appropriate for the physics to be simulated,

• can be used in our computational framework,

• and can be carried out in a high-throughput fashion (hundreds of
meshed microstructures can be experimented upon).

To develop the discretized computational method, we used two types of
meshes: (1) a basic mesh with simplified geometries that model specific fea-
tures in a microstructure, and (2) a microstructural mesh based on physical
and synthetic electrode microstructures. The basic mesh, which will be re-
ferred to as the toy mesh, is constructed from scratch by user design. The
microstructural mesh is based on a pre-existing microstructural data. For
both types, there are three material phases (since the MSRI active cathode
is a three-phase electrode) and a quasi-material phase at the TPBs. The
details of the quasi-material phase, or the TPB phase, will be discussed in a
later section, but was generated to simplify the computation of TPB physics.

2.3.1 Toy Mesh

An open-source FE mesh generator, Gmsh [35], is used to create the toy
meshes. Using either Gmsh’s graphical user interface or its own scripting
language, meshes with simple geometries may be created with basic shapes.
The toy meshes serve testing and debugging purposes during the develop-
ment of our numerical model. Due to the simplicity of their geometry, the
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toy meshes help to visually validate the physical correctness of the model
during development. Fig. 2.3.1 illustrates a simple cylindrical toy mesh that
has been used frequently for model testing and benchmarking. The TPB
phase is located along the center axis of the cylinder and is at the intersec-
tion of the outer three material phases (which hold equal volumes). Note
that the TPB phase has been converted from an ideal lineal morpholog-
ical feature to a volumetric feature with a small cross-sectional area and
a very long axial dimension (an effective lineal feature). The justification
for defining the TPBs as a volumetric morphological feature is explained in
Sec. 2.4. Since the toy meshes can be customized, they may also be used
to provide well-controlled parametric studies that model geometry-specific
electrochemistries.

2.3.2 Microstructural Mesh

The microstructural mesh provides the computational domain for simulating
SOFC operation coupled with the microstructural morphologies. Using this
approach, we may quantify the effect of the microstructure on the local
electrochemistry.

It is important to note that the microstructural meshes are based on pre-
existing microstructural data. As discussed earlier, this work focuses on ex-
perimental and synthetic microstructures that have three-phase electrodes.
Prior to meshing, the three-phase microstructures are converted to a four-
phase microstructures, where the TPBs are converted from lineal features
to a volumetric quasi-phase (the fourth phase). The TPB quasi-phase gen-
eration is carried out using an in-house relabeling algorithm that operates
on segmented image data. Recall that segmented image data is represented
as 3D image with each voxel labeled as one of the three material phases.
The algorithm relabels the four voxels at the intersection of the three phases
as a new TPB phase, the fourth phase. Fig. 2.3.2 illustrates how the al-
gorithm relabels the microstructure data, where the four voxels adjacent to
the intersection of the pore (blue phase), LSM (orange phase), and YSZ
(green phase), are relabeled as the TPB (yellow) phase. A 2D slice image
from the MSRI cathode microstructure is shown in Fig. 2.3.3, both with and
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Figure 2.3.1: Visualization of the toy mesh used for testing purposes. This toy mesh
has a cylindrical geometry. The entire mesh is visualized with (a) surface and edge
rendering and (b) wireframe rendering. The tetrahedral elements can be seen in (a)
and the thin TPB phase elements (in red color) can be seen in (b). The colorbar de-
notes phase ID numnber. Four colors (phases) are shown in the meshes. Additionally,
(c) and (d) visualize the TPB elements in greater detail, with the same rendering
mode as (a). The three material phases are transparent in (d).
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Figure 2.3.2: 2D Schematic for the TPB labeling algorithm. There are three phases
in the original image (a). The voxels adjacent to the the three-phase intersection are
relabeled as the TPB phase (b).

Figure 2.3.3: 2D image from the segmented MSRI cathode microstructure before (a)
and after (b) TPB labeling.

without the TPB voxels. For most of the 3D datasets used in this work—
whose voxel size is about 25–30 nm—the TPB voxels typically occupy about
0.5–4 % of the total volume. The voxel size can be changed by re-sampling
the original microstructure data matrix. The simplest way of re-sampling
without requiring any interpolation in order to reduce the voxel size (and
therefore the TPB width) is to double (or triple) the resolution of the data
matrix. For instance, an original voxel size of 50 nm becomes 25 nm after
matrix doubling. All the 3D datasets used in this work have an original
voxel size ranging from 50 to 65 nm (and 25–30 nm after matrix doubling
or tripling). This size of the TPB volume is deemed acceptable to represent
the 3D microstructure because the numerical result of our model is reason-
ably comparable to that of a well-established continuum model, as will be
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discussed in the third chapter.
It should be noted that the TPB relabeling algorithm takes place at the

end of a series of processes applied to the microstructure image data. These
processes condition the microstructures for later numerical modelling. The
processes are listed below:

• Artifact Removal: Sequential Dilation of Phases

• Isolated Phase Removal: Relabel Voxels

• Append Layers: Attach Electrolyte to Bottom2

Artifact Removal refers to the process of removing very small isolated
features (phases) that are one-to-two voxels wide. These may be artifacts in
the experimental data sets from imaging/processing, or outlier small grains
in the synthetic data sets. These features should not impact performance
but complicate the numerical stiffness. Sequential dilation refers to a series
of morphological dilation operations that expand phases in a specific order
using a structuring element. Similar to morphological opening and closing, it
has the effect of removing very small isolated phases with sizes on the order
of the structuring element. Details regarding the effect of sequential dilation
was also described in [26]. The sequential dilation was typically carried out
using a spherical structuring element with a two-voxel radius.

Isolated Phase Removal refers to the process of relabeling isolated phases,
or those phases that are not connected (defined by nearest-neighbor connec-
tivity) to the simulation boundaries. These isolated phases arise either by
real isolation or by dividing the microstructure to a finite volume. In the
current instantiation of ERMINE, these isolated phases cause non-physical
solutions. Thus, a voxel labeled as GCP or ECP that has no connection
to the top plane of the cathode is re-labeled as an inert phase that has no
involvement in the SOFC electrochemistry. Similarly, an ICP voxel that has
no connection to the bottom plane of the cathode is re-labeled as an inert
phase. Relabeling the isolated phases also results in removal of isolated TPB
lineal features (often called inactive TPBs).

2The bottom of the microstructure refers to the electrolyte side of the domain, whereas
the top refers to the cathode side of the domain. Note that the entire domain is in a
half-cell configuration (since we only model ORR).
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Append Layers refers to the process of appending other cell components,
such as an electrolyte, an anode, current collectors, etc. The current instan-
tiation of ERMINE is coded for ORR electrochemistry in the cathode and
the electrolyte; a cathode layer, an electrolyte layer, and an ideal counter
electrode plane are considered for the entire computational domain. Thus,
a thin electrolyte layer was appended to the bottom of the cathode by sim-
ply attaching artificial voxels all labeled as the ICP. The presence of the
thin electrolyte layer also helps better satisfy the boundary condition at the
counter electrode (bottom of electrolyte) by smoothing local gradients at the
cathode/electrolyte interface. Finally, the appended electrolyte represents
the physical SOFC better.

The aforementioned pre-meshing processes are relatively fast compared to
the actual meshing procedure and therefore is not a limiting step for the
overall high-throughput workflow. For example, 700 subvolumes, each of
which is 5 x 5 x 5 µm3 in size, can be processed within a day.

We use a commercial mesh generation software (Simpleware ScanIP+FE
7.0, license acquired in 08/2016, Synopsys, Inc., Mountain View, CA) and
apply its proprietary meshing algorithms [133] to the four-phase microstruc-
ture. The outcome is an unstructured mesh consisting of tetrahedral ele-
ments representing the microstructure. Fig. 2.3.4 shows how the morpholo-
gies are well preserved after meshing the original microstructure. Some mi-
crostructural properties of the meshed microstructure in Fig. 2.3.4b, which
can be directly measured by ScanIP, are similar to that of the original vox-
elized microstructure in Fig. 2.3.4a (measured by using in-house Matlab
codes described elsewhere [26]). For example, the TPB line length can be
measured by summing the lengths of the mesh element edges located at the
triple junctions in a three-phase domain (TPB phase not yet labeled). It
may not be possible to measure the TPB length of a meshed four-phase
microstructure in ScanIP because the TPB is no longer a line entity.

Fig. 2.3.5 visualizes an example of an actual computational domain, which
is a four-phase microstructural mesh of an individual subvolume. The cath-
ode size is approximately 10 x 10 x 7 µm3, to which a 10 x 10 x 3 µm3

electrolyte was appended. Note that the mean particle size of the cathode
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Figure 2.3.4: Visualization of Simpleware ScanIP Meshing. A cathode microstruc-
ture subvolume from the PFIB characterization is shown (a) before and (b) after the
meshing algorithm. It can be seen that surfaces are well preserved after the meshing.
The colors indicate phase contrast.

is 0.46 µm. The phases shown are pores (gray), LSM (blue), YSZ (green),
and the TPBs (orange) (which are the GCP, ECP, ICP, and TPB, respec-
tively). Isolated phases are transparent (readily observed as craters on the
edges). (a) highlights the whole domain, without rendering of the mesh el-
ement edges: note that the meshed TPBs are difficult to discern owing to
their size. (b) shows only the TPB phase, throughout the whole volume.
(c) highlights the mesh elements near the top front corner of the cathode,
where the TPBs are also more readily seen. (d) highlights how the TPBs
are distributed on the ICP in 3D.

Since ScanIP allows Python scripting for interfacing with the software
codes, an automatic batch meshing workflow has been implemented. In other
words, a user may submit multiple subvolumes of microstructure data into a
queue for meshing with customized parameters. Each meshing procedure is
a parallel process using multiple CPU cores, and the queue may be processed
serially or in parallel.3 Currently, the software is installed on a workstation

3Processing the queue is not automatic, but manually by the user. For example, when
meshing small subvolumes that do not require substantial CPU resources, a queue of 100
subvolumes may be broken down into two queues, each with 50 subvolumes, by utilizing
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Figure 2.3.5: Rendered images of the unstructured tetrahedral mesh based mi-
crostructures derived from a subvolume of a commercial cell cathode from PFIB serial
sectioning. (a) All four phases are visualized in this edge rendered image, without
mesh elements. The phases shown are pores (gray), LSM (blue), YSZ (green), and
the TPBs (orange). Isolated phases are transparent (readily observed as craters on
the edges). (b) TPB phase visualized as a surface rendered image. A magnified re-
gion of (a) is shown in (c), with the mesh elements rendered. (d) A magnified surface
and edge rendered image highlighting the TPB mesh on the YSZ mesh. In this par-
ticular subvolume, the numbers of tetrahedral elements for the pore, LSM, YSZ, and
TPB phases are respectively 10.8, 8.9, 6.4, and 3.3 million, which are typical numbers
for the subvolume scale in the figure.
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with 32 cores, which can accommodate up to two or three meshing procedures
simultaneously. Typically, the meshing runtimes are about 10 minutes, 20
minutes, 40 minutes, and 1-2 hours for cubic microstructure volumes with
edge lengths of 5, 7.5, 10, and 12.5 µm, respectively. However, the runtime
may vary significantly depending on the microstructure morphology. The
scripts (written in Python) for batch meshing, along with the meshing pa-
rameters, are available at https://github.com/tim-hsu/scanip-scripts.

2.4 Numerical Model

2.4.1 Model Overview

Very broadly, our numerical model is a reaction-and-transport model that
simulates electrochemistry in SOFC electrode microstructures at operating
conditions. The operating conditions are states that deviate from the ther-
modynamic equilibrium state, or the reversible state. We define both global
and local deviations from the reversible state. These deviations exist over
different length scales. We are particularly interested in understanding how
local deviations (at the microscopic scale) are manifest across a microstruc-
ture given a specific global deviation (at the macroscopic scale).

Deviations from global equilibrium are associated with effective, exper-
imentally measured parameters that relate to an electrode’s (or a cell’s)
overall performance (e.g., a cell’s voltage and current). Specifically, we de-
fine the global reversible equilibrium point to be the open circuit (OC) state:
a state in which no global net current is measurable. The reversible cell volt-
age (Emodel) is defined as the open circuit voltage (OCV), which is fixed by
the oxygen partial pressures at OC on either side of the cathode-electrolyte
domain. The oxygen partial pressures at OCV are model parameters that
govern boundary conditions. The global deviation from OCV during cell
operation is defined to be the cell overpotential (ηmodel). In potentiostatic
operation of an SOFC, the global driving force is the cell overpotential, which
is also a model parameter that affects boundary conditions. The mathemat-
ical description of the boundary conditions will be discussed later.

two ScanIP sessions on the workstation.
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The deviations from local equilibrium, on the other hand, are related to
the driving forces that dictate local reaction/transport rates at the micro-
scopic scale. The local driving forces are formulated mathematically over the
entire mesh, and are related to the global driving forces, the microstructural
network, materials parameters, and transport/reaction models implemented.
They obviously vary locally within the microstructure. We impose formu-
lations regarding local driving forces that, in turn, dictate how the model
computes the electrochemical steady state. The resultant electrochemical
steady state is represented by numerical values (or other mathematical ex-
pressions based on the numerical values) of relevant field variables computed
throughout the microstructural mesh.

In summary, we introduce a global driving force to the model as boundary
conditions and, based on specific rules formulated with respect to the local
driving forces (reaction and transport), the model outputs an electrochemical
steady state represented by local numerical field variables.

This work focuses on the cathode side of the fuel cell for several reasons:
(1) In general, the cathode ORR is more sluggish than the anode HOR
(assuming hydrogen gas as fuel for the anode side). (2) For the commercial
cell microstructures observed, the cathode appears a lot more heterogeneous
than the anode. (3) The development time for the work only allows detailed
implementation on one side of the fuel cell.

The model assumes a mesh domain consisted of three volumetric mate-
rial phases and one volumetric quasi-material phase. The three material
phase are the GCP, the ECP, and the ICP. The quasi-material phase is
the TPB phase. For the MSRI cathode, the ECP is lanthanum strontium
manganite (LSM), or (La1–xSrx)1–ϵMn1–ϵO3–δ, where x, ϵ, and δ denote the
strontium substitution level, the cation vacancy level (assuming equivalent
Sr and Mn vacancy populations), and the oxygen vacancy level, respec-
tively. We assume the cation vacancy levels to be close to zero, i.e, ϵ = 0.
We use the following reference state for LSM (which establishes a refer-
ence for individual species thermodynamic activity): the reference forumla
unit is La 3+

La Mn 3+
Mn(O 2–

O )3(e –1
vb )1(h 0

cb)1, where the subscripts vb and cb denote
valence band and conduction band. The oxygen ion conducting phase is
yttria-stabilized zirconia (YSZ), or Zr1–yYyO2–y/2, where y denotes the yt-
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trium substitution level. The reference formula unit for YSZ is Zr 4+
Zr (O 2–

O )2.
The TPB quasi-material phase, located at the intersection of pores, LSM,
and YSZ, is rendered as a network of thin strings. The TPB volume contains
all field variables defined for each of the three material phases.

Since we aim to model reaction and transport as driven by local driving
forces at the micro-scale (from submicrons to tens of microns), only mi-
croscopic driving forces are considered in the domain. Both atomistic and
large scale driving forces are disregarded. With proper consideration of the
relative magnitudes of the possible driving forces, we make the following
simplifying assumptions:

• The solids phases (LSM and YSZ) are considered as rigid bodies (non-
deforming), thus containing no pressure/stress gradients.

• Inside pores, diatomic oxygen gas transport is governed by Fickian
diffusion (driven by concentration gradients). Pressure gradients are
disregarded due to the small length scale over which oxygen gas travels
in the domain.

• Inside LSM, oxide ion transport is governed by Fickian diffusion. Po-
tential gradients are disregarded due to the relatively high electronic
conductivity of LSM. In other words, a constant potential is assumed
in LSM. (Future instantiations may lift this assumption, but requires
a further inclusion of the Poisson equation and other materials param-
eters in LSM).

• Inside YSZ, oxide ion transport is governed by drift, or driven by
electrical potential gradients. Concentration gradients are disregarded
due to the relatively high concentration of oxide vacancies and high
mobility of the oxide ions in YSZ. In other words, a constant oxide
ion/vacancy concentration is assumed in YSZ.

2.4.2 Global Equilibrium and Deviation

The global parameters with respect to the global equilibrium and deviation
are explained in further details here. Using the mesh from Fig. 2.3.5, we
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Figure 2.4.1: Schematic of the global parameters of the numerical model with re-
spect to the computational domain geometry. (a) represents the actual mesh domain
with microscopic details. (b) shows the global parameters in the macroscopic perspec-
tive.

may view the mesh domain in macroscopic perspective and introduce the
global parameters, as shown in Fig. 2.4.1.

At OCV (i.e., no global net current), there exists a reversible potential
drop, Emodel, from the top of the domain to the bottom of the domain.
This is determined from the oxygen partial pressures at either side of the
cathode-electrolyte domain, according to

Emodel = −RT

4F
ln

pO2,CE

pO2,C
, (2.1)

where pO2,CE is the oxygen partial pressure at the counter electrode and
pO2,C the oxygen partial pressure at the top of the cathode. The present
model is potentiostatic: we provide a global overpotential, ηmodel, as the
global driving force enabling current flow, and the global current density,
jmodel, at the bottom of the domain is determined as an output. Specifically,
jmodel is an averaged quantity from the distribution of the local current
density measured at the counter electrode (bottom plane of the domain).
The cell voltage, written as ϕLSM − ϕCE , is the voltage difference between
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the LSM potential and the counter electrode potential.4

When the cell is at global equilibrium, there is no net driving force, making
ηmodel = 0 and jmodel = 0, and the cell voltage is simply

ϕLSM − ϕCE = Emodel. (2.2)

When the cell is at a state where ηmodel ̸= 0 , the cell voltage then becomes

ϕLSM − ϕCE = Emodel − ηmodel. (2.3)

For simplicity, ϕCE is defined to be zero, thus the LSM potential is deter-
mined by

ϕLSM = Emodel − ηmodel. (2.4)

2.4.3 ORR Pathways

The present model simulates ORR in a cathode microstructure occurring
via two parallel pathways – the TPB pathway and the MIEC (or 2PB)
pathway. We consider the reactions involved in both pathways to be local in
the microstructure. It is important to reinforce that ηmodel (together with
Emodel) dictates the overall driving force to the global domain, but local
equilibrium dictates local reaction rate throughout the domain.

In the MIEC pathway, the ORR occurs via two interfacial reactions se-
quentially. Oxygen gas is first reduced and incorporated into LSM as oxide
ions via the surface exchange (se) reaction at the pore/LSM interface, writ-
ten as

O2(g),p + 2 VO,L + 4 e x
vb,L 2 O x

O,L + 4 hvb,L (2.5)

in (a modified) Kröger–Vink notation. The subscripts p and L (pore and
LSM, respectively) denote the phase at which the species is defined. The
MIEC pathway is completed when oxide ions in LSM are then transferred
into YSZ via the charge transfer (ct) reaction occurring at the LSM/YSZ

4Since the potential drop in LSM is assumed to be neglibible, the LSM potential is
equivalent to the cathode potential (specifically at the top of the cathode).
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interface:

VO,Y + O x
O,L VO,L + O x

O,Y, (2.6)

where the phase subscript Y denotes YSZ. Both of these interfacial reactions
are modeled as reaction fluxes across the aforementioned interfaces, coupling
the separate phases.

In the TPB pathway, the ORR occurs in a single step in the TPB quasi-
material volume. The TPB reaction is

O2(g),p + 2 VO,Y + 4 e x
vb,L 2 O x

O,Y + 4 hvb,L, (2.7)

where oxygen transfers from pores to YSZ, and electrons transfer from LSM
to YSZ (on oxide ions). It is important to mention that the TPB ORR, or
simply the TPB reaction, is modelled as a volumetric reaction rate. Numer-
ically, this volumetric rate acts as a source/sink term defined over the TPB
mesh elements. Geometrically, the TPBs in electrode microstructures may
be viewed as lineal morphological features. However, it is not straightfor-
ward to define a reaction over one-dimensional lines that do not occupy any
physical volume. Therefore, we define the TPB reaction to occur in small
finite volumes along the TPBs. This definition necessitates labeling the TPB
voxels and generating the TPB mesh elements, as described in Sec. 2.3.

Fig. 2.4.2 is a visual representation of the ORR pathways in the MSRI
three-phase cathode composition. Note that only the oxygen species is
shown, along with the involvement of electrons. As mentioned before, oxide
ion transport is equivalent to oxide vacancy transport.

2.4.4 Local Equilibrium and Deviation – Bulk Transport

For all the aforementioned reactions (Eq. 2.5, 2.6, and 2.7) involved in the
ORR pathways, the reaction kinetics depend on bulk transport of reactants
to the reaction sites. Here we address the formalism for the bulk transport
in each phase.

We begin with the perspective of irreversible thermodynamics. Given
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Figure 2.4.2: Schematic of the ORR pathways in MSRI three-phase composition.
Arrows indicate general directions of oxygen fluxes via the pathways.

a species transport (or a reaction), when near equilibrium conditions are
assumed, the net driving force is close to zero, and a linear relationship
between the rate/flux and its driving force may be considered [84]:

J = βX, (2.8)

where J is the transport/reaction rate, β is the linear coefficient, and X is
the general net driving force. In the case of chemical reaction, the reaction
rate is linearly proportional to the chemical affinity,

Jr = βrA ∝ −∆rG = −∆rG
0 −RT ln(Qr). (2.9)

In the case of transport, ∆rG
0 = 0, and the transport rate may be expressed

as
Jt = βt(−∇µ̃) = −βt∇µ− βtzF∇ϕ, (2.10)

which, depending on the condition, can be further reduced to diffusion or
drift. For example, in the absence of electrical potential gradient, the ex-

38



pression for the transport rate is simplified to Fick’s law,

Jt = −βt∇µ = −βt∇(µ0 +RT ln
c

c0
) = −βtRT

c
∇c = −D∇c. (2.11)

Note that a dilute or ideal solution is assumed for the expression above.
Since D = βtRT/c, one can easily convert between concentration gradient
and chemical potential gradient, as shown in

Jt = −D∇c = −Dc

RT
∇u. (2.12)

On the other hand, in the absence of chemical potential gradient, the ex-
pression for the transport rate is simplified to Ohm’s law,

Jt = −βtzF∇ϕ = − σ

zF
∇ϕ. (2.13)

We can see that βt is in both Fick’s law and Ohm’s law described above,
and the diffusivity can be related to the conductivity by

σ =
c(zF )2D

RT
. (2.14)

In this document, the capital letter J stands for molecular flux/reaction
rate (mol/s cm2), and the small letter j stands for electric flux/reaction rate
(A/cm2). For electrochemical reactions involving charge transfer, molecular
flux can be converted to electric flux by

j = zFJ. (2.15)

For bulk transport phenomena such as oxygen diffusion and ionic drift, we
consider empirical linear flux-force relationships, which are commonly ac-
cepted and extensively used. Specifically, the oxygen gas diffusion flux in
pores is described by

JO2 = −DO2∇cO2 , (2.16)

where the oxygen gas diffusivity, DO2 , is a calculated model parameter, and
cO2 is oxygen concentration in pores. The equation above is further converted
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into
JO2 = −DO2

RT
∇pO2 (2.17)

by the ideal gas law. pO2 , or the oxygen partial pressure in pores, is a field
variable in pores and the TPB phase to be solved numerically.

We calculate DO2 as a combined diffusivity from the molecular binary
diffusivity, Dij , and Knudsen diffusivity, DiK

1

DO2

=
1

Dij
+

1

DiK
. (2.18)

From the Chapman-Enskog theory, the binary diffusivity of oxygen in nitro-
gen is estimated as [45]

Dij =
0.0018583T

3
2

Ptotalσ
2
ijΩ

(
1

Mi
+

1

Mj

) 1
2

, (2.19)

where Dij is the binary diffusivity (cm2/s), T is the temperature (K), Ptotal

is the total pressure (atm), σij is the collision diameter of the two species
(Å), Ω is the dimensionless collision integral based on the interaction of the
two species, and M is the molecular weight (g/mol). Details regarding σij

and Ω can be found in [5, 20]. The Knudsen diffusivity is estimated as [19]

DiK =
dP
3

√
8RT

πMi
= 4580dp

√
T

Mi
, (2.20)

where dp is the mean pore diameter (cm), T is the temperature (K), and M

is the molecular weight (g/mol).

In LSM, the oxide ion transport flux is also described by Fickian diffusion,

JO = −DO∇cO, (2.21)

where the oxide ion diffusivity, DO, is a referenced parameter, and cO is
the concentration of the oxide ions in LSM. We may express cO in terms of
vacancy site fraction, as shown in

cO =
3− [VO ]

a3NA
. (2.22)
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Here we assume the LSM crystal structure is cubic with a lattice constant of
a, and there is one formula unit per unit cell. NA is the Avogadro’s number.
The oxide ion diffusion flux can then be rewritten as

JO =
DO

a3NA
∇[VO ]. (2.23)

Here [VO ], or the oxide vacancy site fraction, is a field variable in LSM and
the TPB phase to be solved numerically.

In YSZ, the oxide ionic current flux is described as

ji = −σi∇ϕY SZ , (2.24)

where the oxide ionic conductivity, σi, is a referenced parameter, and ϕY SZ ,
or the YSZ potential, is a field variable in YSZ and the TPB phase to be
solved numerically.

2.4.5 Local Equilibrium and Deviation – Reaction Rates

For local reaction rates occurring at certain morphological features, we con-
sider the possibility that the local driving forces are farther from equilibrium,
where the reaction rate may no longer be linearly proportional to the driving
force. Given a general reaction expressed by

R∑
r=1

vrSr

P∑
p=1

vpSp, (2.25)

where r, p represent reactants and products, respectively, and vr,p represent
molar coefficients of chemical (or quasi-chemical) species Sr,p. The reaction
rate is assumed to follow the laws of chemical kinetics and consists of forward
(f) and backward (b) reaction rates

J = kf

R∏
r=1

[Sr]
vr − kb

P∏
p=1

[Sp]
vp , (2.26)

where kf and kb are forward and backward reaction rate coefficients, respec-
tively, and [Si] is the concentration of the ith species. These rate coefficients
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are, according to the transition state theory, exponentially proportional to
an activation energy:

kf = k′f exp

(
−
∆G†

f

RT

)
, (2.27)

kb = k′b exp

(
−
∆G†

b

RT

)
, (2.28)

where k′f and k′b are constants and ∆G†
f,b are the (positive definite) free

energy barriers under the given thermodynamic state. The dagger symbol
(†) denotes involvement of the transition states. For heterogeneous electro-
chemical reactions that involve local potential differences, we consider the
activation energy as influenced by the local electrical potential difference
(denoted by the tilde overhead), as well as the symmetry factor, α, of the
activation energy profile, as shown in

∆̃G†
f = ∆G†

f − αzF∆ϕ, (2.29)

∆̃G†
b = ∆G†

b + (1− α)zF∆ϕ, (2.30)

where ∆ϕ is the local potential difference. The rate coefficients can then be
rewritten as

kf = k′f exp

(
−
∆G†

f

RT

)
exp

(
αzF∆ϕ

RT

)
, (2.31)

kb = k′b exp

(
−
∆G†

b

RT

)
exp

(
−(1− α)zF∆ϕ

RT

)
. (2.32)

The expression above may be further reduced to

kf = k′′f exp

(
αzF∆ϕ

RT

)
, (2.33)

kb = k′′b exp

(
−(1− α)zF∆ϕ

RT

)
. (2.34)
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At equilibrium, ∆ϕ becomes the reversible potential, ∆ϕrev, and the forward
reaction rate is equal to the backward reaction rate

k′′f exp

(
αzF∆ϕrev

RT

) R∏
r=1

[Sr]
vr
0 = k′′b exp

(
−(1− α)zF∆ϕrev

RT

) P∏
p=1

[Sp]
vp
0 ,

(2.35)
where the subscript 0 denotes a reference equilibrium state. Rearranging the
expression above leads to

∆ϕrev =
RT

zF
ln

(
k′′b
k′′f

∏P
p=1[Sp]

vp
0∏R

r=1[Sr]
vr
0

)
. (2.36)

At non-equilibirum, we define the overpotential, η, to be the difference be-
tween the actual potential and the reversible potential, as shown in

η = ∆ϕ−∆ϕrev. (2.37)

Thus, the reaction rate may now be expressed as

J = k′′f

R∏
r=1

[Sr]
vr exp

(
αzF (η +∆ϕrev)

RT

)
−k′′b

P∏
p=1

[Sp]
vp exp

(
−(1− α)zF (η +∆ϕrev)

RT

)
.

(2.38)
After factoring out ∆ϕrev and some algebraic manipulation, we may rewrite
the reaction rate in the form of the Butler-Volmer equation

j = j0

{∏P
r=1[Sr]

vr∏R
r=1[Sr]

vr
0

exp

(
αzFη

RT

)
−
∏P

p=1[Sp]
vp∏R

p=1[Sp]
vp
0

exp

(
−(1− α)zFη

RT

)}
,

(2.39)
where j0 is the exchange current density.

For the surface exchange reaction, since the interaction between the oxy-
gen gas and the LSM surface does not involve charge transfer across the
pore/LSM interface, there is no associated potential difference. Thus, the
reaction rate may be expressed as

J = r0

{∏P
r=1[Sr]

vr∏R
r=1[Sr]

vr
0

−
∏P

p=1[Sp]
vp∏R

p=1[Sp]
vp
0

}
, (2.40)
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where r0 is the exchange rate. We can treat the reaction rate as linearly de-
pendent on the oxygen concentration deviation from an effective, equilibrium
concentration at the LSM surface.

J ≈ r0

(
cO,eq − cO

cO,eq

)
. (2.41)

Alternatively, one can derive the expression above using linear irreversible
thermodynamics. We first go back to

J = kf

R∏
r=1

[Sr]
vr − kb

P∏
p=1

[Sp]
vp . (2.42)

At equilibrium, J = 0, and the forward reaction rate is equal to the backward
reaction rate:

kf

R∏
r=1

[Sr]
vr = kb

P∏
p=1

[Sp]
vp , (2.43)

and the equilibrium constant is simply

K =
kf
kb

=

∏P
p=1[Sp]

vp∏R
r=1[Sr]vr

. (2.44)

Under non-equilibrium conditions, the reaction rate can be expressed as

J = kf

R∏
r=1

[Sr]
vr

{
1− kb

kf

∏P
p=1[Sp]

vp∏R
r=1[Sr]vr

}
= kf

R∏
r=1

[Sr]
vr

{
1− Q

K

}
, (2.45)

where Q is the reaction quotient. Since the overall Gibbs free energy change
of the reaction is

∆rG = RT ln
Q

K
, (2.46)

the reaction rate then becomes

J = kf

R∏
r=1

[Sr]
vr

{
1− exp

∆rG

RT

}
. (2.47)

If the reaction is near equilibrium or |∆rG| ≪ RT , linearization exp(x) ≈
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1 + x applies, and the reaction rate is linearly proportional to the chemical
affinity:

J = −kf

R∏
r=1

[Sr]
vr ∆rG

RT
= −kb

P∏
p=1

[Sp]
vp ∆rG

RT
=

r0
RT

A = − r0
RT

∆rG, (2.48)

where r0 is the exchange rate and A is the chemical affinity. We consider such
condition for the surface exchange reaction, whose rate is linearly driven by
the difference in the free energy. Recall that the surface exchange reaction
is

1
2 O2(g),p + VO,L + 2 e x

vb,L O x
O,L + 2 hvb,L (2.49)

We describe the change in Gibbs free energy with simplified notation that
only addresses the material phase for each electrochemical potential:

∆rG = µ̃L
O + 2µ̃L

h − 1/2µ̃p
O2

− µ̃L
VO

− 2µ̃L
e . (2.50)

Since the overall reaction is not dependent on the potential, only the chemical
potential terms remain:

∆rG = µL
O + 2µL

h − 1/2µp
O2

− µL
VO

− 2µL
e . (2.51)

At local equilibrium, we have

µL
O + 2µL

h = 1/2µp
O2

+ µL
VO

+ 2µL
e . (2.52)

we can convert the oxygen gas chemical potential into the effective, equilib-
rium oxygen ion, µL

O,eq, in LSM (as determined by µp
O2

in pores):

µL
O,eq = 1/2µp

O2
+ µL

VO
+ 2µL

e − 2µL
h , (2.53)

and the change in the free energy becomes

∆rG = µL
O − µL

O,eq. (2.54)
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Assuming dilute case or ideal species (no self-interaction), the reaction rate
can be expressed in terms of concentrations:

J = − r0
RT

(µL
O − µL

O,eq) = − r0
RT

RT ln

(
cO
cO,eq

)
. (2.55)

When cO is close to cO,eq, linearization ln(x) = 1 − x applies, and the rate
is now

J ≈ −r0

(
cO,eq − cO

cO,eq

)
. (2.56)

The expression above also matches the common empirical form for oxygen
surface exchange:

Jse = −kse(cO,eq − cO), (2.57)

where kse is the exchange coefficient, cO,eq is the equilibrium oxygen ion
concentration in LSM, and cO is the oxygen ion concentration in LSM. Using
Eq. 2.22, the equation above is expressed in terms of the oxygen vacancy
site fractions:

Jse =
k

a3NA
([VO ]L − [VO ]p) , (2.58)

where [VO ]L is the oxygen vacancy site fraction in LSM and [VO ]p is the
effective oxygen vacancy site fraction as determined by oxygen concentration
in pores. Note that [VO ]L is the field variable coupled with Eq. 2.23. We
refer to Poulsen’s work [103] for determining the value of [VO ]p at a given
pO2 in the atmosphere. Poulsen modelled the LSM defect chemistry based on
several assumed defect generation mechanisms. Various defect populations
were computed as a function of pO2 , as shown in Fig. 2.4.3 (figure directly
cropped from the referenced work). A linear function for [VO ]p is roughly
estimated in the range of −15 < log(pO2) < 0 with the naked eye. This
function serves to compute [VO ]p at a given pO2 , or vice versa.

For the charge transfer reaction, we resume to Eq. 2.39 as the starting
point. Concentration changes may affect the reaction rate by altering the
pre-exponential concentration terms ([Sr,p]) and the overpotential (η) in Eq.
2.39. We assume the pre-exponential concentration terms have negligible
effect relative to the overpotential such that, effectively, the chemical con-
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Figure 2.4.3: Figure 6 of the referenced work by Poulsen [103]. Various defect popu-
lations in (La0.9Sr0.1)0.95MnO3±δ were computed as a function of pO2 .

centrations are close to equilibrium (Q ≈ K), as shown in∏P
r=1[Sr]

vr∏R
r=1[Sr]

vr
0

≈ 1, (2.59)∏P
p=1[Sp]

vp∏R
p=1[Sp]

vp
0

≈ 1. (2.60)

When this assumption is included into Eq. 2.39, the output is the Butler-
Volmer equation for non-elementary equations. Thus, the current density of
the charge transfer reaction at a given overpotential is

jct = j0,ct

{
exp

(
αzFηct
RT

)
− exp

(
−(1− α)zFηct

RT

)}
, (2.61)

where the overpotential is

ηct = Ect,rev − (ϕLSM − ϕY SZ). (2.62)
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The reversible potential, Ect,rev, is dictated by local equilibrium at the
LSM/YSZ interface. The expression for the reversible potential is

Ect,rev = −RT

4F
ln

pO2,CE

pO2,LSM
, (2.63)

where pO2,LSM is the effective pO2 in LSM based on the local value of [VO ]

(in LSM). pO2,LSM is calculated using the linear function based on Poulsen’s
work mentioned earlier.

The TPB phase, located at the intersection of the pores, LSM, and YSZ,
consists of small mesh elements and appear to be an entanglement of thin
strings throughout the cathode microstructure. All 3 field variables (pO2 , [VO ], ϕY SZ)
are defined in the TPB phase. Numerically, the TPB volume contains the
source term that describes local ORR at the TPBs. Similar to our treat-
ment of the charge transfer reaction, we again consider the Butler-Volmer
equation with the assumption of negligible variation for the pre-exponential
concentration terms to describe the reaction rate at the TPB volume:

stpb = s0,tpb

{
exp

(
αzFηtpb
RT

)
− exp

(
−(1− α)zFηtpb

RT

)}
, (2.64)

where the overpotential is

ηtpb = Etpb,rev − (ϕLSM − ϕY SZ). (2.65)

Note that the reaction rate here is volumetric (A/cm3). The exchange rate,
s0,tpb, can be derived from a measured lineal exchange current density, j0,tpb
(A/cm). Miyoshi et al. [93] proposed an empirical formula for j0,tpb that
specifically targets ORR at the TPB. Thus, the volumetric exchange rate is
derived by writing

s0,tpb[A/cm
3] = j0,tpb[A/cm]

Ltpb[cm]

Vtotal[cm
3]

Vtotal[cm
3]

Vtpb[cm
3]

, (2.66)

where Ltpb is the TPB lineal length, Vtotal is the total volume, and Vtpb is
the volume occupied by TPB voxels (after TPB relabelling algorithm). The
corresponding units are include in square brackets. Similar to the previous
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discussion on the charge transfer reaction, the reversible potential of the
TPB reaction is

Etpb,rev = −RT

4F
ln

pO2,CE

pO2,pore
, (2.67)

where pO2,pore is the field variable that describes pO2 in pores.

2.4.6 Summary of System of Differential Equations

In summary, we first present the formalism for the bulk transport fluxes,
whose expressions are

JO2 = −DO2

RT
∇pO2 , (2.68)

JO =
DO

a3NA
∇[VO ], (2.69)

ji = −σi∇ϕY SZ . (2.70)

We then introduce the formalism for the local reactions, whose rates are

Jse =
k

a3NA
([VO ]L − [VO ]p) , (2.71)

jct = j0,ct

{
exp

(
αzFηct
RT

)
− exp

(
−(1− α)zFηct

RT

)}
, (2.72)

stpb = s0,tpb

{
exp

(
αzFηtpb
RT

)
− exp

(
−(1− α)zFηtpb

RT

)}
. (2.73)

The expressions above are combined in the form of the continuity equations
for mass (and charge) conservation. The local conservation for pore, LSM,
and YSZ are written as

∇ · JO2 = −
stpb
4F

, (2.74)

∇ · JO = 0, (2.75)

∇ · Ji = −stpb, (2.76)

respectively. Jse and jct are not explicitly shown above. Since they are
defined over 2D interfaces, they act as interface conditions (boundary con-
ditions that couple separate mesh domains) for the numerical problem. It
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is also important to point out that each transport/reaction rate is region-
specific (phase-specific). For example, oxygen ionic flux in YSZ is not defined
in pores and LSM. The term stpb is not defined (and hence zero) anywhere
outside the TPB mesh elements.

2.4.7 Model Parameters

A detailed list of the model parameters are tabulated here. Note that in
each simulation run, the electrochemical steady state under a range of model
overpotential (ηmodel) is simulated.

Table 2.4.1: List of the model parameters and corresponding references.

Notation Description Value Unit Reference
T Temperature 1073 K -

ηmodel Model (global) overpotential varies (input) V -
pO2,c Oxygen partial pressure at top of cathode 0.21 atm -
pO2,CE Oxygen partial pressure at counter electrode 1e-20 atm -
Emodel Reversible cell potential (or OCV) 1.028 V -
ϕCE Potential at counter electrode 0 V -
DO2

Oxygen gas diffusivity (at 1073 K) 0.64 cm2/s -
DO Oxygen diffusivity in LSM 7.5e-7 cm2/s [3]
σi YSZ ionic conductivity 4e-2 S/cm [52]
kse Chemical surface exchange coefficient 6.14e-6 cm/s [127]
j0,ct Charge transfer exchange current density 0.193 A/cm2 [36]
j0,tpb Lineal TPB reaction exchange current density 1e-7 A/cm3 [93]
z Number of electrons for TPB and charge transfer reaction 4 - -
α Symmetry factor TPB and charge transfer reaction 0.5 - -

2.5 HPC Simulation

2.5.1 MOOSE and ERMINE

The model is numerically solved by the FE method based on microstructural
meshes. The integration of the model formulation, boundary conditions,
finite element discretization, and mesh information yields a nonlinear system
of equations to be solved. One expects the numerical model to be relatively
stiff for two main reasons:
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• Large differences in the relative magnitude of transport/reaction coeffi-
cients exist between the phases. For example, the oxygen gas diffusivity
is much larger than the YSZ ionic conductivity.

• A mesh built upon a highly interconnected network of pore, LSM, YSZ,
and TPB phases requires a large number of elements that vary greatly
in size. For example, the TPB volume mesh requires a large number
of small elements, while the other volumes have similar numbers of
generally larger elements.

A useful simulation tool should utilize massively parallel programming
(MPP) techniques and be implemented on a high-performance computing
(HPC) environment, to overcome the inherent challenge in the targeted sim-
ulations, and it should allow for high-throughput computations over many
domains or many operational conditions, or both. Further, since many mod-
els of electrode performance include parallel and multi-step reaction-and-
transport models, a useful simulation tool should allow for rapid inclusion
of new physics.

We use an open-source FE framework (MOOSE, Idaho National Labora-
tory, Idaho Falls, ID) to instantiate and solve the numerical model. MOOSE
is a C++ FE framework capable of MPP on HPC platforms, and it has been
used to solve very complex models [34, 102] in neutronics and geophysics.
It readily accepts user defined physics discussed earlier in a modular na-
ture (user can toggle a certain physics, e.g, the surface exchange reaction,
on and off), as well as the mesh types discussed in Sec. 2.3. The MOOSE
framework is built upon the libMesh and PETSc libraries that enable au-
tomatic parallel computation through the Message Passing Interface (MPI)
and multithreading. In other words, MOOSE provides MPP with minimal
programming effort. The modular nature of the framework allows users to
specify options such as solver type, preconditioning, the number of parallel
cores used to solve the model, etc. Details for MOOSE can be found in [33]
and http://mooseframework.org, and there is a substantial user network
in the field of phase field modeling, neutronics and nuclear materials, and
geophysics.

We developed an application (i.e., an extension of MOOSE for specific pur-
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poses) from the MOOSE framework specifically for simulating SOFC elec-
trochemistry in microstructural meshes. The application is named ERMINE,
which loosely stands for Electrochemical Reactions in Microstructural Networks.
Therefore, the meshed microstructure model developed for this work may
simply be referred to as ERMINE in later sections. The ERMINE source
codes are available at https://github.com/tim-hsu/ermine and in Ap-
pendix A.

2.5.2 Mesh Splitting

To our knowledge, in general, a normal FE simulation run in MOOSE may
be carried out by multiple cores in parallel. However, each core would still
hold an amount of memory roughly equal to the memory usage of the mesh
(plus the amount for model computation). In this scenario, a 200-core simu-
lation applied to a 1GB mesh may require beyond 200 GB of memory usage.
Mesh splitting refers to dividing the microstructural mesh into multiple parts
and is a way to distribute the memory usage of a mesh to multiple cores such
that each core only holds a fraction of the memory of the mesh. This pro-
cess can be simply implemented by a built-in executable binary file within
the MOOSE framework and has been observed to be essential for memory-
limited cluster nodes (under 64 GB). We have carried out simulations that
theoretically access up to 1.5 TB of node memory, though a more robust
benchmark of the actual memory usage has not been done.

2.5.3 Quasi-static Stepping Scheme

It should be noted that since ERMINE aims to solve a system of highly
nonlinear equations at steady state, a good initial condition is critical to
computation convergence. The easiest initial condition is the global equilib-
rium, where the net current output is zero and the values of the field variables
are known everywhere in the domain. However, due to the nonlinearities,
an incremental change in the model overpotential (especially beyond 0.1 -
0.2 V) can lead to drastic changes in the solution (from global equilibrium).
Therefore, with an initial condition that is global equilibrium, solving for a
steady state solution at an overpotential of 0.1 V or higher can be challeng-
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ing. To this end, we have implemented a quasi-static stepping scheme to
address the challenge.

With the quasi-static stepping scheme, ERMINE computes a series of
steady state solutions along a range of overpotential. First, ERMINE com-
putes a steady state solution at a low overpotential, and saves the solution
as the initial condition. This initial condition is then used for another com-
putation at a slightly higher overpotential. The process repeats as the over-
potential increments to a high enough value. Using the quasi-static scheme,
we are able to obtain a solution at ηmodel = 0.4V , which is relatively large
compared to typical operating conditions (about 0.2 V). An added benefit
for using this scheme is that for each simulation run, ERMINE can efficiently
generate a current-voltage curve (from 0 to 0.4 V of overpotential), which is
one of the most common types of data regarding SOFC performance.

2.5.4 Joule and Bridges

We implemented the ERMINE application on laptops and workstations for
the testing and debugging stages. Two supercomputers were used for the
production stage: Joule (National Energy Technology Laboratory, Morgan-
town, WV) and Bridges (Pittsburgh Supercomputing Center, Pittsburgh,
PA). Typically, for domains of 10 x 10 x 10 µm3 (exactly the size of the
subvolume in Fig. 2.3.5 with a mean particle size of 0.46 µm), a suitable
number of cores is about 256. So far, increasing the domain size has not
led to a substantial increase in simulation runtime (due to the increase in
the number of cores used). The typical runtime for a such subvolume may
range from ten minutes to 1–-2 hours, making the high-throughput workflow
(simulating tens or hundreds of subvolumes from a queue) a reality.

2.5.5 Simulation output and visualization

Fig. 2.5.1 shows several different aspects of the simulation output based
on the microstructure subvolume shown in Fig. 2.3.5. The simulation was
run on Joule using 256 cores, with the model parameters and the boundary
conditions listed in Table 2.4.1. The runtime was about 30 minutes. The
output consists of fields of local variables (pO2 , [VO ]L, and ϕY SZ) that are
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discretized and evaluated at the nodes of the microstructure mesh elements.
Fig. 2.5.1a,b,c,d show ji in YSZ, ηtpb at TPBs, pO2 in pores, and ϕY SZ in
YSZ, respectively. Quantities such as pO2 and ϕY SZ were directly solved dur-
ing the simulation, while ji and ηtpb were computed during post-processing
using Paraview (Kitware Inc., Clifton Park, NY and Sandia National Labo-
ratories, Albuquerque, NM).

Figure 2.5.1: Simulation output as evaluated at the mesh element nodes when
ηmodel = 0.2, rendered in Paraview. The individual mesh elements are not visible
here due to the rendering mode. (a) local current density in YSZ. (b) local activa-
tion overpotential at the TPB phase. (c) oxygen partial pressure in pores. (d) Local
potential in YSZ. Color indicates magnitude of the shown quantities.

For effective medium models, since the computational domain (in what-
ever dimensions) is not coupled to local microstructural phase distribution-
s/morphologies and is instead assumed to be a homogenized continuum,
smooth gradients of performance metrics are expected in the simulation
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output. However, for ERMINE, due to the discrete nature of the compu-
tational domain, significant local variations (fluctuations) of performance
metrics are expected. For instance, in the case of observing local activa-
tion overpotentials at TPBs (ηTPB), an effective medium model outputs a
smooth-transitioned distribution of ηTPB along the electrode thickness (re-
gardless of 1D, 2D, or 3D simulations). In contrary, ERMINE’s simulation
output of ηTPB is spatially coupled to only the TPBs. This example is il-
lustrated in Fig. 2.5.2, where the expected simulation output on ηTPB (its
value is represented by the color) are shown for an effective medium the-
ory (EMT) model (the EMT model output is schematic; it is not based on
real simulation data) and for ERMINE (based on actual simulation data ).
The EMT model output would contain a smooth-transitioned ηTPB distri-
bution, but the ERMINE simulation output retains as much spatial/locality
information as possible by computing ηTPB only at the relevant microstruc-
tural features (i.e., the TPBs). The ERMINE simulation output contains
significant vertical and lateral variations in ηTPB, which will be discussed in
Sec. 4.4.3. These local variations are expected to impact local variations in
performance and degradation, such as chromium poisoning.

Figure 2.5.2: Example difference in simulations outputs of EMT model vs. ERMINE
for the case of ηTPB . The color denotes value of ηTPB .

Although ERMINE computes fields of local electrochemical quantities,
effective performance metrics can be quantified. For instance, we can cal-

55



culate the current density flux through the bottom plane of the electrolyte
(i.e., overall current exiting the computational domain) by integrating the
local fluxes of ji over the plane area. This quantity, jmodel, varies with
the model overpotential, ηmodel. Therefore we can plot the effective per-
formance (current output vs. applied overpotential, or j-V) of the cathode
microstructure. The j-V curve is one of the most common descriptor for a
cell’s performance. The j-V curves, along with other more in-depth analysis,
of various microtructures will be shown in later chapters.

2.5.6 Convergence and Heterogeneity

Large-scale heterogeneities in the commercial cell cathode microstructures
(can be seen in Fig. 2.2.1b) have been found to cause numerical convergence
issues. Such heterogeneities, in a small-to-medium subvolume, become ex-
treme cases of over-abundance of only one phase (e.g., very large LSM or
YSZ boulder). Since during simulations, the convergence criterion pertains
to the residual error for species transport equations corresponding to all three
phases (plus the TPB phase), the large-scale heterogeneities is likely to mis-
represent the balance of proportions of the three phases and contribute to
unbalanced residual error for the convergence criterion. Subsequently, only
the regions of the cathode microstructure without the large-scale hetero-
geneities typically result in converged simulations. This presents some level
of bias in the simulation data for the cathode microstructure, because the
large-scale heterogeneities are excluded in later analyses. While future inves-
tigations should tackle this issue, the converged simulations present unique
insight into local performance and highlights differences between commercial
cell heterogeneities and synthetic microstructure heterogenetities.
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3
Preliminary Results and Model Validation

3.1 Simulations using Toy Models

Initial testing of the simulations was carried out using toy model meshes,
one of which is described in Sec. 2.3.1. These simulations were used to
ensure that the different physics were properly encoded and were successfully
converging, producing expected results. We describe two types of toy models
below. The first is based on a cylindrical mesh containing an axial TPB
that intersects the upper and lower bounds of the domain in a perpendicular
fashion (see Fig. 2.3.1). The axial TPB toy model is exercised using TPB,
MIEC, and combined TPB and MIEC pathways. Simulations were carried
out in each case to qualitatively demonstrate the simulations worked as
expected. For the second toy model type, simulations only involve an isolated
phase (pore, LSM, or YSZ can be isolated from percolation). The isolated
phases and their effects on the simulations were investigated.
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3.1.1 Axial TPB Model

The mesh used here was discussed in Sec. 2.3.1. The values used in the model
were designed to test the simulations, not to compare directly to SOFCs. The
model parameters correspond to Table 2.4.1. The simulations were run on
a laptop using four cores, and converged very quickly (approximately five
minutes) due to the simplicity of the toy mesh.

Four scenarios were simulated based on the axial TPB mesh. In the first
scenario, only the TPB pathway is enabled. In the second, only the MIEC
pathway is enabled. In the third, both pathways are enabled. Finally, in
the fourth, only the MIEC pathway is enabled, but three model parameters,
which are DO (oxygen diffusivity in LSM), j0,ct (charge transfer exchange
current density), and kse (chemical surface exchange coefficient), are in-
creased by three orders of magnitude (1000 times the values shown in Table
2.4.1). These three parameters are all involved in the MIEC pathway. Thus
increasing the three parameters would lead to faster transport and reaction
rates through the MIEC pathway.

The model outputs are visualized in Fig. 3.1.1, which shows the YSZ
potential distribution at ηmodel = 0.4V . It can be seen that for simulations
involving the TPB pathway, most of the potential gradient radiates from the
central TPB. This potential gradient is less obvious for simulations involving
only the MIEC pathway, in which case the potential gradient has both lateral
and vertical components. As it turns out, the current density output from
the MIEC pathway is negligible relative to the TPB pathway. This would
make sense because LSM is not known to be an excellent MIEC. In addition,
the surface areas in the TPB axial model are fairly minimal and certainly
not conducive to MIEC pathway. Table 3.1.1 shows the average current
density (through the YSZ phase at the bottom plane) in each scenario at
ηmodel = 0.4V .

Table 3.1.1: Average current density over YSZ bottom plane at ηmodel = 0.4V in
each scenario of the axial TPB model.

TPB TPB + MIEC MIEC fast MIEC (1000 X)
Current Density (A/cm2) 0.63 0.63 9.2e-6 8.8e-3
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Increasing MIEC pathway-related rate coefficients leads to a faster overall
performance. This demonstrates the flexibility of ERMINE. We may inves-
tigate cases when the MIEC pathway (or both TPB and MIEC) is dominant
by simply adjusting the model parameters. The same can be done when in-
vestigating different materials that relate to different rate coefficients (e.g.,
LSCF, which has a much faster oxygen diffusivity than that of LSM).

To further demonstrate that the axial TPB model produces results within
our expectation, the potential gradient vectors are visualized based on the
TPB and the MIEC scenarios, as shown in Fig. 3.1.2. The potential gradient
vectors, or effectively, the oxygen ion flux vectors, are represented by the
arrows in the figure. It can be seen that for the TPB pathway, the flux
originates from the TPB and converges down towards the electrolyte/bottom
of the domain. For the MIEC pathway, the flux originates from the left
side of the YSZ phase (the LSM/YSZ interface), and converges towards the
electrolyte. The figure demonstrates the physical correctness of ERMINE
manifest in the axial TPB mesh with a simple geometry.

3.1.2 Isolated Phases

Isolated phases, those that are not connected to the boundary conditions,
pose a challenge to the convergence of the simulations. To demonstrate this,
we used another toy model where a spherical isolated phase existed within
the volume of a connected phase. The mesh used in this simulation is shown
in Fig. 3.1.3. The rate coefficients used in the simulations correspond to
Table 2.4.1. Note that both the TPB and the MIEC pathways are enabled.
The simulations were run with different initial conditions and boundary con-
ditions to explore the impact of isolated phases on numerical convergence.
The general conclusions that will be made are: for many initial/boundary
conditions, isolated phases have an effect of stalling the simulation conver-
gence to an appropriate steady state, and their exclusion does not pose a
major issue to the final expected solution.

A few details are mentioned here regarding the aforementioned conclu-
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Figure 3.1.1: Visualization of axial TPB model output. Color indicates the YSZ po-
tential (V) distribution at ηmodel = 0.4V . Only the YSZ phase is shown. The sim-
ulations are run with parameters shown in Table 2.4.1, except for (d), where MIEC
pathway-related rate coefficients are increased (see section above). Four scenarios are
simulated depending on what pathways are enabled. These scenarios are (a) TPB, (b)
TPB and MIEC, (c) MIEC, and (d) fast MIEC pathways enabled.
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Figure 3.1.2: Visualization of oxygen ion flux from the TPB and the MIEC scenarios
of the axial TPB model output. Color indicates the YSZ potential (V) distribution at
ηmodel = 0.4V . Only the YSZ phase is shown with a degree of transparency. The
potential gradient vectors, or effectively, the oxygen ion flux vectors, are represented
by the arrows. Two scenarios from the axial TPB model are presented, which are (a)
the TPB and (b) the MIEC pathways. The arrows only represent flux directions, not
magnitudes (they are not to scale).

Figure 3.1.3: Visualization of species flux in a matrix phase surrounding an isolated
phase. Two cases are shown here, which are (a) an isolated pore surrounded by LSM
and (b) an isolated LSM surrounded by YSZ. The color indicates (a) the effective
oxygen partial pressure (atm) in LSM and (b) the YSZ potential. The arrows repre-
sent directions of (a) oxygen flux in LSM and (b) oxygen flux in YSZ. The lengths of
the arrows are scaled to the local flux magnitudes.
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sions. Fig. 3.1.3 show two cases when the appropriate steady state is
achieved with proper initial/boundary conditions. The two cases are (a)
an isolated pore surrounded by LSM and (b) an isolated LSM surrounded
by YSZ. The color indicates (a) the effective oxygen partial pressure (atm)
in LSM and (b) the YSZ potential. The arrows represent directions of (a)
oxygen flux in LSM and (b) oxygen flux in YSZ. Note that the lengths of
the arrows are scaled to the local flux magnitudes. It can be seen that at
steady state, no observable flux flows through the isolated phase for either
case. Thus, the isolated phases are not a favorable pathway. Similar ob-
servations were made for several other cases (e.g., isolated pore in YSZ).
For many initial/boundary conditions tested during the simulations, an ap-
propriate steady state could not be achieved. This is best explained by a
specific example, such as an isolated pore inside LSM, which is also shown in
Fig. 3.1.3(a). It was observed that the surface exchange across pore/LSM is
an extremely slow process compared to the bulk transports. When the ini-
tial/boundary conditions produce a state far from equilibrium such that the
isolated pore needs to be equilibrated to the surrounding LSM, the surface
exchange is not fast enough to allow this equilibration within any reasonable
runtime. However, we already know the outcome at steady state, where the
flux across the pore/LSM interface is negligible. Therefore, we may simply
discard the isolated pore for future simulations. The same decision was made
regarding the isolated LSM and YSZ phases.

3.2 Initial Simulations using 3D Reconstructions of Phys-
ical Microstructures

In the first series of experiments to demonstrate the applicability of our
computational method to simulate electrochemistry using 3D reconstruc-
tions of physical microstructures, we investigated three small sub-volumes
of the MSRI cathode from the PFIB data (Fig. 2.2.1(b)). After demon-
strating convergence, we made an initial comparison between a continuum
model and our meshed model for the three different subvolumes. We found
a discrepancy between the two model outputs with respect to the order of
relative performances, indicating the subvolumes do no conform to assump-
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tions of effective medium theory, even though they should according to their
particle sizes. Put another way, the order of performances from the three
microstructures based on the continuum model is different from that based
on the ERMINE model. A qualitative observation is made to explain this
discrepancy, supporting the breakdown of assumptions built into the con-
tinuum model.

3.2.1 Methods

Three 5 x 5 x 5 µm3 subvolumes with different TPB densities were extracted
from the MSRI cathode microstructure shown in Fig. 2.2.1b. The TPB den-
sities are significantly different based on the TPB density histogram shown
in Fig. 3.2.1, which comes from 700 5 x 5 x 5 µm3 subvolumes of the cathode
microstructure data. The TPB densities, measured in volumetric densities
(µm/µm3), were computed using an in-house algorithm described elsewhere
[26]. The TPB density is one of the most important parameters as a mea-
sure of electrochemical activity. Similarly, for the continuum model that we
chose, the TPB density is one of the most influential parameters in determin-
ing the electrode performance. The continuum model used here is called the
modified Tanner-Fung-Virkar (m-TFV) model, which yields area specific po-
larization resistance based on effective properties such as TPB density, YSZ
tortuosity, and YSZ volume fraction. Details of the original TFV model and
the m-TFV model can be found elsewhere [13, 18, 48, 115, 118, 126]. The
result of the m-TFV model based on the selected subvolumes was provided
by Rubayyat Mahbub, a doctoral researcher within the same department at
Carnegie Mellon University (CMU).

The segmented microstructures were conditioned and meshed, as described
in Sec. 2.3.2. These steps took about 15 minutes per subvolume. Simulations
were run for each meshed microstructure, using parameters described in
Table 2.4.1. As mentioned in Sec. 2.5.3, the simulations began from a small
overpotential. Steady state solutions were obtained as the overpotential
increments to 0.4 V. The average current density across the bottom-plane of
the electrolyte was calculated at every simulation step, using a postprocesser
readily available from MOOSE. Based on these simulations, j-V (current
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Figure 3.2.1: TPB density histogram based on 5 x 5 x 5 µm3 subvolumes cropped
from MSRI cathode shown in Fig. 2.2.1b. Three subvolumes were selected for an
initial study. The arrows correspond to the TPB densities of the three subvolumes.

density vs. cell voltage) curves were generated. This process resulted in
carrying out 10-15 simulations per subvolume, or overall 30-45 simulations.
Simulations were run on a workstation at CMU, using 32 cores in parallel
mode. Individual simulations generally converged in approximately 10 - 15
minutes and the entire set of simulations was run in an hour. These numbers
are promising for running high-throughput automated simulations on large
volumes of experimental microstructures.

3.2.2 Result and Discussion

The j-V results of this initial study are shown in Fig. 3.2.2, where the lines
denote the interpolated result of the actual data, given in open symbols (as
denoted in the caption). The results of the m-TFV model are given in closed
symbols at 1 A/cm2, and are linear (from the OCV value). Note that there
is a significant difference between the voltages from the two models at the
same current density, but this is not unexpected. This can be attributed
to the two models not having exactly the same operating conditions or as-
sumptions. For example, the electrolyte layer is involved in ERMINE, but
not in the m-TFV model. Rather than focusing on this absolute difference,
the attention here should be placed on the order of performances from each
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Figure 3.2.2: Current-voltage (I-V) curves from the m-TFV model and the meshed
model based on the three subvolumes with sigficantly varied TPB densities. The
meshed model result is shown in open markers (unfilled), and the m-TFV model in
closed markers (filled). The m-TFV model result was evaluated only at a current den-
sity of 1 A/cm2, whereas in ERMINE the local electrochemistry was evaluated from
0 to 0.4 V of overpotential. Legend indicates relative TPB density magnitude, which
can also be indicated by colors. Blue, green, and red are high, medium, and low TPB
densities, respectively.

model. One generally expects higher performance from subvolumes with
higher TPB densities, as is the case for the m-TFV model. For the ER-
MINE model, the subvolume with the highest TPB density does have the
highest performance. However, the subvolume with the medium TPB den-
sity has the lowest performance, while the subvolume with the lowest TPB
density has an intermediate performance. This discrepancy indicates that
the subvolume microstructures do not conform to the assumptions of the ef-
fective medium theory (m-TFV model) and can be explained by examining
the subvolume microstructures.

The microstructures of the three subvolumes are shown in Fig. 3.2.3, where
only the YSZ phase is shown and the color indicates the YSZ potential, lo-
cally. Darker blue regions are operating at higher overpotentials, generally
indicating a poor local performance. It can be seen that the subvolume with
the high TPB density has the most uniform phase distribution of YSZ, of
the three volumes. It also has the smallest volume of dark blue YSZ, located
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at the back top corner. On the other hand, the subvolume with the lowest
TPB density has the most heterogeneous YSZ phase distribution, with a
large absence of YSZ at the cathode (top back) and some at the electrolyte
(bottom front). There is a large volume of blue YSZ in the front corner,
running from the top of the cathode to at least half the thickness. This
explains the lower performance of this subvolume from the prior one. How-
ever, the lowest performance comes from the subvolume with the medium
TPB density. While this subvolume has a higher degree of microstructural
uniformity in the YSZ phase distribution than does the previous subvolume,
there is a substantial gap of YSZ in the active cathode at the interface of
the electrode and electrolyte. This results in the poorest YSZ connectivity
to the electrolyte (least amount of interfacial area between cathode YSZ and
electrolyte YSZ). As such, there is a large volume of blue YSZ that domi-
nates the volume of this region (all oxide ions have to go through a small
interfacial area that is not readily accessed in this volume). This supports
the result that it has the lowest performance of all three subvolumes. This
also supports that the experimental microstructures do not conform to as-
sumptions of effective medium theory models, at least not within a volume
of 5.0 x 5.0 x 10.0 µm3 (the cathode size is 5.0 x 5.0 x 5.0 µm3).

By examining the microstructures, we have shown that ERMINE takes
into account the effect of morphologies (in this case the YSZ connectivity) on
electrochemistry, whereas the m-TFV model, an instance of continuum mod-
els based on effective medium theory, neglects to account for the specifics of
YSZ connectivity. The meshed model takes a more comprehensive approach
in computing electrochemistry than the continuum modeling (where only a
finite number of effective properties are extracted from the microstructure)
does. In conclusion, the qualitative observation in this initial study supports
the hypothesis that the meshed model may be more suitable to describe local
electrochemistry in SOFCs, especially when the microstructural heterogen-
ity can significantly impact the local electrochemistry. And, importantly,
there are significant levels of microstructural heterogeneities in the MSRI
cells that impact electrochemistry over the 5 µm length scale.

As will be shown in a later chapter, ERMINE is also compared to another
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Figure 3.2.3: Meshed microstructural domains based on the selected subvolumes for
the first study. The TPB densities, given in µm/µm3 and shown at the top left corner
of each microstructural domain, are (a) high, (b) low, and (c) medium in the figure.
Only the YSZ phase is visualized. Colorbar indicates electric potential in YSZ. All
three domains have the same dimensions, which are 5.0 x 5.0 x 10.0 µm3.
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effective medium model that has been validated and published [85, 86]. This
comparison further supports the validation of ERMINE to produce reason-
ably accurate electrochemical fields accounting for morphological complexi-
ties. See further details in Chapter 4.

3.3 Russian Doll (Nested Subvolumes) Simulations

While the initial simulations presented in the last section clearly show promise
for high-throughput simulations of large volumes of SOFC electrodes, it also
showed that 5.0 x 5.0 x 10.0 µm3 volumes do not conform to effective medium
theory models. Furthermore, it is not clear that 5.0 x 5.0 x 10.0 µm3 volumes
are appropriate as representative volume elements to describe local electro-
chemistry. Therefore, the effect of the length scale of the computational
domain on the simulated electrochemistry is further investigated in this sec-
ond study. While the last study considered three microstructures and 40
simulations in total, the current study looks into 150 meshed microstruc-
tures, with a goal to run for 10 - 15 simulations on each, individually. To
carry out this study, we implemented a high-throughput workflow using
scripted ScanIP+FE meshing on a workstation at CMU and automatically
queued simulations on the Joule supercomputer at NETL, demonstrating
the feasibility of such large scale computational experiments in reasonable
time frames. We call this study the Russian Doll study because we consider
three nested subvolumes within a larger subvolume, like the famous Russian
dolls. We consider nested sub-volumes of different length scales, which are
about 5, 7.5, and 10 µm on an edge length. The result suggests indicate
clearly that 5 µm is not appropriate for describing the local electrochemistry
and suggest 10 µm or above is necessary in the physical microstructures.

3.3.1 Method

The simulations are based on the same cathode microstructure as the first
study (the PFIB cathode data from Figure 2.2.1(b)). 50 non-overlapping
subvolumes, which are about 12.5 x 12.5 x 12.5 µm3 in size, were extracted
from the microstructure. Each of the subvolumes is further broken down
into a set of cubic subvolumes of varying sizes in a similar fashion to a
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Russian doll set. This process is illustrated in Fig. 3.3.1, where smaller
subvolumes of three different sizes are extracted from the larger subvolume,
and only the 10, 7.5, and 5 µm boxes from the larger 12.5 µm cube are
shown (because that is all that will be discussed here).1 In other words,
each Russian doll set consists of three cubic subvolumes, whose edge lengths
are 10, 7.5, and 5 µm, respectively. Note that for each Russian doll set, the
center of the bottom plane (or the cathode/electrolyte interface) stays at
the same location (which is the central 5 x 5 µm2 area of the original 12.5
µm3 volume). One can describe the Russian doll set as shrinking the largest
subvolume from the top and the sides, but not the bottom.2

There are a total of 150 subvolumes for these simulations. Each sub-
volume was conditioned (sequential dilation, append electrolyte layer, label
and discard isolated phases, label TPB voxels) as described in Sec. 2.3.2.
Again, as described in Sec. 2.3.2, these processes took fairly minimal time
relative to meshing and simulations. The conditioning can be done within
five minutes per subvolume.

Each of the 150 subvolumes was then meshed using high-throughput script-
ing with ScanIP+FE meshing on a workstation at CMU. Meshing for the 5,
7.5, and 10 µm subvolumes took approximately 10, 20, and 40 minutes, re-
spectively, per subvolume. Thus the complete meshing time for the 150 sub-
volumes took about 58 hours (or 2.4 days), and was fully automated. Typical
meshing durations and the numbers of mesh elements for these meshes are
given in Table 3.3.1.3 Note that these numbers may vary greatly depending
on the microstructural heterogeneity.

The meshes were used as domain inputs to ERMINE, which runs in
MOOSE and is implemented on Joule. The number of parallel cores re-
quested for the 5, 7.5, and 10 µm subvolumes were 16, 32, and 64, respec-
tively. Simulations were run using parameters described in Table 2.4.1.

1The exact edge lengths for the cubic subvolumes are 9.9, 7.4, and 4.8 µm.
2The bottom side refers to the side closet to the electrolyte, and the top side refers to

the side furthest from the electrolyte.
3In fact, 12.5 µm volumes were meshed and submitted for simulations, as well. However,

the mesh files from 12.5 µm volumes are so large such that the memory requirement for
the simulations exceeded 64 GB, which is the limit for Joule.
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Table 3.3.1: Meshing durations and numbers of elements for the meshes in the Rus-
sian doll study.

Domain Size (µm) Number of Elements (millions) Duration (minutes)
pore LSM YSZ TPB

5 0.4 0.3 0.4 0.2 10
7.5 1.3 1.1 1.1 0.6 20
10 2.8 2.3 2.3 1.2 40

12.5 5.8 4.6 4.2 2.4 80

As mentioned in Sec. 2.5.3, each simulation run results in a j-V (current
density vs. cell voltage) curve from 0 to 0.4 V of overpotential. This process
would carry out 10-15 steady state simulations per subvolume, and there are
a total of 150 subvolumes. Therefore, if all simulation runs converged, there
would be over 1500 steady state computations. When simulations converged,
the runtimes of individual simulation runs (computing from 0 to 0.4 V of
overpotential) for 5, 7.5, and 10 µm subvolumes were approximately 5-15,
20-30 , and 45-60 minutes, respectively. The simulations were submitted to
a queue and were automatically instantiated in Joule.

3.3.2 Results and Discussions

Simulations were attempted for all 150 meshed subvolumes, but only 130 con-
verged successfully. The success ratios (number of successful convergences
to number of attempted simulations) for the 5, 7.5, and 10 µm subvolumes
were 44/50, 45/50, and 41/50, respectively. Overall, 33 Russian doll subvol-
ume sets yielded converged simulations at all three domain sizes. Note that
the entire study, with the 130 sub-volumes each having 10 - 15 individual
simulations, and including the conditioning and meshing of the microstruc-
tures, took only about two weeks to perform. Here we consider only the 33
russian doll sets that converged for all three subvolume sizes. The j-V curves
for these are plotted, for each subvolume size, in Fig. 3.3.2.

It can be seen that for each subvolume size, there is a range of j-V curves
among the 33 subvolumes. Also, as the size increases, the range narrows.
This result is consistent with expectations based on the concept of a rep-
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Figure 3.3.1: Schematic of Russian doll subvolumes extraction process. Multiple
non-overlapping subvolumes are first extracted from a microstructure data. Analogous
to a Russian doll set, smaller subvolumes are extracted from each larger subvolume.
The subvolumes are cubic and their edge lengths are about 10, 7.5, and 5 µm.
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Figure 3.3.2: Current density-voltage curves for the second study. For each subvol-
ume size, the I-V curves of the 33 simulations are plotted together. The cathode sizes
are about (a) 5, (b) 7.5, and (c) 10 µm.
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resentative volume element; larger subvolumes should lead to statistically
more similar properties. The average current density, as well as the standard
deviation among the current densities were evaluated at the overpotential
of 0.2 V, which is a typical SOFC operating voltage. The standard devi-
ations, calculated as percentages of the average current densities, decrease
with increasing size but still remain substantial (10 %) at 10 µm. The aver-
age current density increases substantially with increasing subvolume size.
This raises the question of whether 5 or even 10 µm is enough to describe
local electrochemistry. To address this question, a number of qualitative
observations regarding the microstructures were made.

One Russian doll set was chosen to illustrate the effect of subvolume size
on the computed performance. This set of subvolumes, with the added
electrolyte layers for the simulations, are visualized in Fig. 3.3.3. Again,
only the YSZ phase is shown and the color represents the local potential
(similar to Figure 3.2.3). Starting with the largest subvolume size (10 µm),
the distribution of YSZ in the microstructure appears to be uniform, and
the YSZ potential has a smooth gradient from top to bottom. As the size
decreases, the YSZ phase distribution becomes less uniform and the YSZ
potential drop becomes more discontinuous, or less smooth. At 5 µm, the
YSZ potential drop is clearly abrupt over certain regions of the micrstructure.
In fact, a closer examination of the 5 µm subvolume, as shown in (d), reveals
that there is only a single thin YSZ channel (circled in red) connecting all
the YSZ phase from top (the YSZ phase roughly in blue) to bottom (the
YSZ phase roughly in red). In other words, all of the oxide ions generated
from the ORR at the top region of the electrode have to transport through
the thin channel to reach the electrolyte. However, this is not the case when
viewing the microstructures in the larger subvolumes; there appear to be
more alternative connections for ionic transport between top and bottom,
resulting in smoother potential drop and improved performance.

This observation suggests that 5 µm is not an appropriate subvolume size
for computing the local electrochemsitry. Based on the figure, 7.5 and 10 µm
subvolumes appear to be more appropriate. However, there is still a wider
distribution for the YSZ potential on the top surface of the 7.5 µm subvolume
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Figure 3.3.3: Visualization of the microstructures and the simulated YSZ potential
from a set of Russian doll subvolumes. The subvolume sizes, excluding the 5 µm elec-
trolyte layer, are (a) 10, (b) 7.5, and (c) 5 µm, respectively. Only the YSZ phase is
visualized. The colorbar indicates YSZ potential. (d) is the same as (c) but viewed
with a different angle, focusing on the thin channel of YSZ circled in red. This single
YSZ channel connects all YSZ from top (the YSZ phase roughly in blue) to bottom
(the YSZ phase roughly in red).
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Figure 3.3.4: Visualization of two heterogeneous subvolumes from the Russian doll
simulations. The two subvolumes did not result in converged simulations. The sub-
volume sizes are about (a) 10 and (b) 7.5 µm. Only the TPB phase is shown. The
microstructures are rendered with mesh elements in the YSZ phase.

than for the 10 µm subvolume, indicating that the 10 µm subvolume is best.
This explains the substantial increase in the average current density from
5 to 10 µm subvolumes. Further analysis and more quantitative results
are necessary to determine the appropriate subvolume size to statistically
describe local electrochemistry.

Finally, keep in mind that only 33 out of the 50 subvolumes result in
converged simulations at all sizes. A significant portion of the unconverged
simulations come from highly heterogeneous subvolumes. These subvolumes
are likely to contribute to outlier performances and add to the standard
deviations. Fig. 3.3.4 shows two examples of such subvolumes. There is a
large absence of YSZ in both subvolumes. In such a case, the performance is
likely to be extremely poor. Further work is necessary to investigate whether
simulations on these subvolumes can reach a reasonably converged state.
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3.4 Large-scale Subvolume Simulation

To further determine the appropriate size for a microstructure subvolume,
a very basic Russian doll set of MSRI cathode subvolumes was simulated.
Only two sizes were used: 10× 10× 7 µm3 and 30× 30× 7 µm3. Table 3.4.1
lists the computational difficulty (hardware resource and time) for the two
simulations. It can be seen that a 9-fold increase in subvolume size can lead
to a much more increase in overall time required for meshing and simula-
tion. Nonetheless, such a large-scale subvolume can be meshed, split, and
simulated within about a week.

Table 3.4.1: Relative computational difficulty for a large-scale subvolume

Size (µm3) # mesh elements Mesh time Mesh split time # cores used Run time
10× 10× 7 30 M 1 day 1 hr 36 mins 252 45 mins
30× 30× 7 130 M 5 days 19 hrs 28 mins 560 5 hrs 40 mins

With model parameters being the same, the two simulation results (j-V
curves) are shown in Fig. 3.4.1. In terms of effective performance output,
there is very little difference between the two. This suggests that the scale of
the domain beyond 10 µm may have diminishing impact on the effective per-
formance output, and that 10 µm may be large enough to describe the overall
performance. However, a more robust investigation is necessary in order to
better understand the impact of the domain scale on local electrochemical
quantities.

3.5 Basic Scaling Test

In this section, a basic scaling test was performed to validate the necessity
of HPC resources and the scaling capacity of ERMINE. A sample MSRI
microstructure cathode subvolume mesh was used for the scaling test. Its
physical size is 10× 10× 10 µm3 (including 3 µm electrolyte thickness), and
its number of mesh elements is roughly 25–30 millions. The simulations were
run on Bridges’ regular compute nodes.

In parallel computing, the runtime of a (parallel) algorithm is the time
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Figure 3.4.1: Comparison of the effective performance outputs (overpotential vs.
current density) between the large-scale subvolume and the “regular ” 10 × 10 × 7
µm3 subvolume. Note that the legend accounts for an appended electrolyte thickness
of 3 µm, making the overall thickness 10 µm.

elapsed between the start of the (parallel) process and its termination. Fig. 3.5.1a
shows the runtime as a function of the number of cores used (p). It is clear
that the use of parallel cores can drastically reduce the runtime. In fact,
the simulation could not be run serially (using only one core) or with small
p; at p = 4, the simulation appeared to hang (convergence computation at
extremely slow rate), the runtime exceeded the maximum allowed duration
on Bridges’ regular nodes (48 hours), and the simulation was subsequently
forced to terminate. At high p, the runtime appears to converge to almost
0 hours, suggesting that this basic scaling test has not fully explored ER-
MINE’s scaling capacity; a larger simulation domain size, with more complex
geometries/physics may be simulated without much further difficulty.

A common measure of how parallelism may help faster execution is the
Speedup, which can be defined as the ratio of the serial run time to the
parallel run time

Speedup = Ts/Tp, (3.1)

where Ts is the serial runtime, and Tp is the parallel runtime using p cores.
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Figure 3.5.1: Runtime, speedup, and efficiency of a sample parallel simulation as
functions of number of processes (p).

Since a truly serial runtime could not be acquired, a naive assumption was
made such that the serial runtime is Ts = 48 hours (the maximum allowed
duration per compute session). Even with such an assumption, the speedup
can reach up to 70 times the assumed serial speed. Further, the speed does
not seem to quite plateau yet at p = 252, suggesting again that ERMINE’s
scaling capacity has not been fully strained.

Finally, the Efficiency is a measure of how each core is efficiently utilized
during the parallel computation. Its definition may be

Efficiency = Ts/(pTp) (3.2)

and ranges from 0 (no useful core utilization) to 1 (perfect per-core effi-
ciency). The maximum efficiency is roughly located at p = 10 − 50, with a
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sharp dip inside the range. Without further monitoring more factors such as
real-time memory usage, core load for shared nodes, etc., it is difficult to ex-
plain the dip. At p = 252, the efficiency reaches 0.25 but has not dropped to
0. This suggests that a higher p can be used before depleting the efficiency.

Overall, Fig. 3.5.1 demonstrates that HPC resources are essential for con-
ducting non-linear electrochemistry simulations in complex microstructure
domains. However, it appears this basic scaling test has not fully strained
ERMINE’s compute performance on Bridges; the test reveals some promise
for ERMINE to incorporate a larger domain size or higher model complexity
before depleting core efficiency.

3.6 Conclusions

In conclusion, to address microstructural heterogeneties in commercial SOFCs
and the associated large variations of local electrochemistry throughout the
microstructure, we have developed ERMINE that would fulfill the goal dis-
cussed in the first chapter. This goal is, briefly, to construct a numerical
model capable of computing morphology-coupled electrochemistry and its
distribution throughout the microstructure.

A major highlight of this work is that we have adopted the MOOSE frame-
work, a numerical FE framework designed and tested for high performance
computing platforms. We have successfully developed an SOFC-specific ap-
plication from MOOSE—ERMINE. Using the advantages of MOOSE, ER-
MINE is capable of simulating ORR within cathode microstructures in a
high-throughput, highly parallel fashion. As a result, an individual simula-
tion can converge within a short amount of time.

In addition to ERMINE modeling, every step in the workflow is auto-
mated, i.e., without significant user supervision. Thus far, we have shown
that our ERMINE model can output results comparable to effective medium
theory in a high-throughput fashion. The preliminary results show that a
study of substantial size (close to 1500 steady state simulations, each us-
ing 16, 32, 64 or more cores) can be done within two weeks. Thus the
high-throughput workflow, backed by the hardware and software resources
at CMU and NETL, has been proven to contain no elements of infeasibility.
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The main scientific contribution of this work, built off of the foundations
built up in this chapter, will be detailed in the following chapters—each of
those corresponds to a self-contained publishable work.
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4
High Performance Computation of Local

Electrochemistry in Heterogeneous
Microstructures of Solid Oxide Fuel Cells

This chapter is the first self-contained part of the thesis planned for aca-
demic journal publication. The following sections correspond to a standard
journal structure (e.g., abstract, introduction, methods, results and discus-
sion, conclusions), with an additional section for the supplementary material.
Therefore, the chapter can be treated as a stand-alone paper.

4.1 Abstract

A high-throughput, high-performance computational approach is presented
to simulate local electrochemistry in three-dimensions over large volumes of
solid oxide fuel cell electrodes. Simulations are carried out on 47 three-phase
cathodes, whose lateral {vertical} dimensions are 22 {15} times their average
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particle size (0.46 µm). The 47 microstructures are spread across four dis-
tinct groups having different standard deviations in their particle size and/or
local volume fraction distributions. While the average performance simu-
lated compares favorably to two accepted effective medium theory (EMT)
models, the largest discrepancy between the locally-resolved simulations and
the EMT models arises from the Ohmic transport terms. This is borne out
further by considering local electrochemical values, specifically quantifying
regions of extremely high current densities or distributions of local acti-
vation overpotentials at specific distances from the electrolyte: values often
connected with degradation. The impact of particle size and volume fraction
distributions on the distribution of performance values (within and between
microstructural groups) is highlighted throughout. Results from this study
indicate that high-performance simulations in a high-throughput, large-data
workflow can elucidate performance characteristics which are not captured
by continuum level models utilizing EMT. Understanding of these detailed
performance characteristics can be used to develop more durable and reliable
electrochemical cells.

4.2 Introduction

Fuel cells are electrochemical devices capable of converting fuel energy di-
rectly into electrical energy, with advantages over conventional fossil fuel-
based power generation methods (high efficiency, low byproduct emission,
etc.) [91, 99]. Solid oxide fuel cells (SOFCs) are excellent candidates for
stationary power generation; they have fuel flexibility, high power densities,
and the ability to recycle waste heat for combined heat and power appli-
cations [99]. Widespread commercialization of SOFCs is limited by per-
formance factors—including durability and reliability—that are related to
the microstructure of electrodes and that fundamentally impact the cost of
power [2, 17, 23, 31, 54, 88, 91, 96, 101, 109, 126]. Durability refers to a cell’s
performance over time and reliability refers to the cell-to-cell performance
variation. Both are related to degradation. The most challenging degrada-
tion mechanisms to overcome in SOFCs (e.g., chromium poisoning, nickel
coarsening, interphase reactions, phase decomposition) are correlated to lo-
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calized reactions and transport phenomena linked directly to the electrode
microstructures [2, 23, 54, 68, 88, 96, 121, 126, 132]. Therefore, quantifying
the local microstructure and its influence on local electrochemistry is key to
understanding SOFC durability and reliability.

Over the past decade, methods to quantify the electrode microstructure
in three-dimensional (3D) space have matured greatly; Ga focused ion beam
(Ga-FIB) coupled with scanning electron microscopy (SEM) [16, 22, 23, 37,
51, 54, 57, 58, 61, 63, 87–89, 95, 96, 106, 110, 118, 123, 124] or nanoscale
X-ray computed tomography (nano-CT) [13, 18, 25, 26, 38, 40, 60, 69, 81, 95,
109, 110, 117] have become the standard for incorporating 3D microstruc-
tural parameters into models of electrochemical performance. They have
appropriate resolution to differentiate phases having characteristic lengths
scales of a = 0.5–1.0 µm over volumes whose edge lengths are L = 10–30
µm. It is believed that volumes with L∗ = L/ a = 10–30 accurately capture
the local electrochemical performance and—if the microstructure is uniform
beyond this length scale—the overall properties of the electrode [43]. Herein,
we aim to quantify variations in otherwise identical volumes over the length
scale of L∗ ≈ 22. Recently, a Xe-plasma FIB (PFIB) coupled with SEM en-
abled reconstructions of electrodes over much larger volumes, with in-plane
edge lengths over L = 100–200 µm [48, 83]. In the commercial cells investi-
gated [48, 83], variations existed in microstructural parameters well beyond
the length scale of L ≈ 15 µm or L∗ ≈ 30 [26, 48, 83]. These local structural
variations contribute to local electrochemical variations [26, 48, 83], which
in turn must affect durability and reliability, but in ways that are not well
understood. Herein, we compare the variability of simulated performance
parameters for a number (14) of large volumes (L∗ ≈ 22) of the commercial
cell and compare them to volumes from synthetic homogeneous electrodes
[48].

The most widely used methods to quantify electrochemical properties from
3D microstructural data are effective medium theory (EMT) models. EMT
models approximate the electrode microstructure as a homogeneous body
(often reduced to 1D or 2D) [1] and incorporate effective microstructural
properties quantified from 2D or 3D data. Several EMT models have been
shown to capture the average performance (such as current-voltage behav-
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ior) of complex electrodes with reasonable accuracy [13, 18, 63, 85, 97, 118,
124, 130]. The strengths of EMT models are computational simplicity and
relative accuracy for computing average values. For degradation events that
may be related to local transport or electrochemical (e.g., current density
and overpotential) values away from the mean, EMT is not well suited.

Numerical models that retain spatially resolved 3D microstructural in-
formation have also been explored, including finite element (FE) [4, 8, 9,
81, 105], finite volume (FV) [6, 7, 64, 65, 93, 104, 108, 134], and Lattice-
Boltzmann [38, 55, 61, 89, 111] methods. Such simulations capture both
the average performance values and the local distributions of electrochem-
ical quantities, and are better suited to inform local degradation models.
However, spatially resolved numerical models require a significant increase
in computational resources; this often limits the scope of the included elec-
trochemical reactions and transport pathways, the volume of individual mi-
crostructures, and the overall number of microstructures. Only a few studies
have analyzed simulated local performance metrics (e.g., current density and
overpotential) from a statistical perspective or across different microstruc-
tural types [4, 47, 104]. Bertei et al. [4] recently reported distributions of
local current densities within four distinct 3D microstructural subvolumes,
providing insight into non-uniformities of local current flow in SOFC elec-
trodes as related to microstructural parameters. The volume of those 4
simulations (one for each type of anode microstructure) had edge lengths
on the order of L∗ = 10–16, which are on the larger end of any volumes
reported previously using such 3D simulations. We have developed a high-
performance FE code [47] that enables a significant increase in the volume
of individual microstructures simulated, allows a large number of volumes to
be simulated simultaneously in a reasonable time-frame, and includes several
different types of electrochemical reaction/transport paths. This is particu-
larly important relative to commercial cathodes that have significant stan-
dard deviations in both particle sizes and local volume fractions [26, 48, 83],
and have both two phase boundary (2PB) and three phase boundary (TPB,
or 3PB) electrochemical reaction-and-transport paths [30].

Here, we present a high-performance computational (HPC) workflow ca-
pable of processing PFIB-scale datasets of 3D cathode microstructures and
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simulating morphology-resolved, local electrochemical values at considerable
length scales (L∗ ≈ 22) in a high-throughput fashion (47 such volumes). Fur-
ther, the computations consider both 2PB and TPB electrochemical path-
ways. Parallel simulations were implemented using the open-source MOOSE
framework [33] and carried out—each using 256 cores—on two supercom-
puters: Joule (National Energy Technology Laboratory, Morgantown, WV)
and Bridges [98] (Pittsburgh Supercomputing Center, Pittsburgh, PA). The
47 microstructures are spread across four distinct groups having different
standard deviations in their particle size and/or local volume fraction dis-
tributions. Both commercial SOFC and synthetic datasets (described else-
where [48]) are included. We investigated both intra-group and inter-group
distributions of electrochemical quantities, especially focusing on local elec-
trochemical property values. These HPC simulations produced significant
amounts of data, allowing a data-driven statistical approach to understand-
ing SOFC durability and reliability.

4.3 Methods

A computational workflow was developed to mesh and simulate reconstructed
SOFC cathode microstructures in a high-throughput fashion. An experi-
mentally captured commercial SOFC cathode microstructure (named COM-
0.48) and three synthetically generated microstructures (named SYN-0.34,
SYN-0.40, and SYN-0.50, respectively) were used for this work. The acqui-
sition and the properties of these microstructures were detailed elsewhere
[48, 83]. The properties relevant to this work are tabulated in Table 4.3.1.

Table 4.3.1: Summary of the microstructures used for electrochemical modeling

Name Origin σa/ a ρTPB [µm−2] τYSZ Subvolume size [µm] # of subvolumes
SYN-0.34 Synthetic 0.34 7.8 1.27 10 ×10× 7 13 (15)
SYN-0.40 Synthetic 0.40 6.3 1.30 10 ×10× 7 12 (15)
COM-0.48 PFIB 0.48 4.8 1.38 10 ×10× 7 14 (15)
SYN-0.50 Synthetic 0.50 4.2 1.31 10 ×10× 7 8 (9)

The microstructure names include letters and numbers. The letters indi-
cate the type of microstructure; SYN for synthetically generated microstruc-
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tures [48] and COM for a commercial cathode (supplied by Materials and
Systems Research, Inc., Salt Lake City, UT) characterized using PFIB [48].
The numbers in the names indicate the mean-normalized standard deviation
of the particle size (σa/ a).

The mean particle size (a) of the three synthetic microstructures were
scaled (by scaling voxel size) to match that of the commercial cathode (0.46
µm). These mean values are based on number-weighted distributions and
their measurement details were reported in [48]. σa/ a is the primary mi-
crostructural variable that differs across the synthetic microstructures [48],
which affects other microstructural parameters, including the mean triple
phase boundary (TPB) density (ρTPB) and the mean yttria-stabilized zir-
conia (YSZ) tortuosity factor (τYSZ). The TPB density was measured by
summing the mesh element perimeters at the intersection of three phases in
a meshed three-phase microstructure. The tortuosity factor is the square of
the geometric tortuosity [48], which is based on geometric distances. The
local volume fraction for each synthetic microstructure is consistent and
quickly converges with increasing length scale, but the local volume fraction
of COM-0.48 was reported to vary more significantly [26, 48]. Table 4.6.1
(in Supplementary Material, Sec. 4.6) includes microstructural parameters
quantified for each subvolume that resulted in a converged simulation. The
importance of σa/ a, ρTPB, and τYSZ to the electrochemical performance is
discussed in the results section.

After scaling, each reconstructed microstructure was divided into multiple
subvolumes of the same size—10×10×7 µm3—resulting in each volume hav-
ing the dimensions of L∗ = 21.7×21.7×15.2. A 3 µm thick electrolyte layer
was appended to each subvolume, making all simulation domains 10×10×10

µm3. These domains were subjected to the workflow that converts the TPB
lines into volumes (described as a fourth phase) and then meshes the vol-
umetric phases. Figure 4.3.1 visualizes one of the COM-0.48 subvolumes,
where (a) represents the component layers, (b) shows the meshed morphol-
ogy of the overall microstructure in the whole computational domain, and
(c) shows a higher resolution rendering of a small region of the cathode to
emphasize the meshed TPB elements (the red phase). In Figure 4.3.1b and
4.3.1c, the pores (gas permeable phase) are transparent, the ion-conducting
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phase (YSZ) is green, and the electron conducting phase (LSM) is blue.
A total of 54 subvolumes, as indicated by the numbers in the parentheses
in Table 4.3.1, were subjected to the workflow, with 47 yielding numerical
convergence at the simulation stage (87 % yield rate).

Figure 4.3.1: Visualization of a meshed microstructure subvolume. This subvolume
belongs to COM-0.48. (a) Simplified representation of the component layers with
length scales. (b) Rendering of the meshed suvolume with unstructured, tetrahedral
elements. The number of total mesh elements is 29.4 millions. (c) Magnified region
of (b) showing TPB mesh elements. The pores are transparent. The blue phase is
lanthanum strontium manganite (LSM). The green phase is yttria-stabilized zirconia
(YSZ). The red phase is TPB.

The electrochemical model (herein named ERMINE, for Electrochemical
Reactions in MIcrostructural NEtworks) is a reaction-and-transport model
that simulates two oxygen reduction reaction (ORR) pathways in a three-
phase cathode microstructure. Implementation-wise, the simulation operates
on four-phase microstructural meshes, with the fourth phase being the vol-
umetric TPB mesh elements, which act as volumetric source/sink terms for
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the reaction species. Two ORR pathways are included in the current version
of ERMINE, as listed below.

• TPB pathway: oxygen gas and electrons transport from the top of
the cathode through the pores and LSM, respectively, react to pro-
duce oxygen ions within the TPB elements, and oxygen ions transport
through YSZ to the bottom of the electrolyte.

• MIEC (mixed ionic-electronic conductivity) pathway: oxygen gas and
electrons transport from the top of the cathode through the pores
and LSM, respectively, oxygen in the pores react with electrons at
pore/LSM interfaces to produce oxygen ions in LSM (i.e., surface ex-
change), oxygen ions transport through LSM and transfer to YSZ at
an LSM/YSZ interface, and the oxygen ions transport through YSZ
to the bottom of the electrode.

In the pore/LSM/YSZ cathode, the ORR has fast kinetics for the TPB path-
way and much slower kinetics for the MIEC pathway. Though all simulations
carried out incorporated both pathways, using the material parameters given
in Table 4.6.2, the TPB pathway typically accounts for more than 99 % of
the overall ionic current.

ERMINE is an application developed within the MOOSE framework, an
open-source finite element environment designed for massively parallel mul-
tiphysics simulations [33]. Two supercomputers were used for simulations:
Joule (National Energy Technology Laboratory, Morgantown, WV) and
Bridges [98] (Pittsburgh Supercomputing Center, Pittsburgh, PA). Their
hardware specifications can be found at https://hpc.netl.doe.gov and
https://www.psc.edu/bridges. Each simulation (subvolume) took typ-
ically 30 minutes to 2 hours of runtime using 256 state-of-the-art cores.
ERMINE outputs scalar fields of simulated electrochemical properties (e.g.,
the potential in YSZ, the oxygen gas partial pressure in pores) evaluated at
the mesh element nodes. Vector quantities such as the local current densities
are calculated in post-simulation processing using the open-source scientific
visualization software Paraview (Kitware Inc., Clifton Park, NY and Sandia
National Laboratories, Albuquerque, NM). Effective performance metrics
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can also be calculated from the electrochemical fields. Specifically, the ef-
fective current density is calculated by averaging the local current densities
exiting the bottom of the electrolyte.

The ERMINE outputs were compared with two different EMT models:
the TFV model [18, 115] and the DREAM SOFC model [85, 100]. Volume
fractions, mean particle sizes, TPB densities, and tortuosity factors were
taken as input into TFV and DREAM SOFC to produce effective perfor-
mance metrics. The model parameters used for TFV, along with the model
implementation details, were described in [48]. The DREAM SOFC model
was used as described in [85], but with the same parameters as those used
by ERMINE (Table 4.6.2). For DREAM SOFC, the Butler-Volmer expres-
sion was derived considering 1

2 O2 + 2 e– O2– [85]: only 2 electrons were
considered in the reaction. However, the formulation of the Butler-Volmer
expression for ERMINE considers a reaction similar to O2 + 4 e– 2 O2–:
4 electrons were considered in the reaction. The current DREAM SOFC
simulations involved only the cathode half-cell, as described in [86], to corre-
spond to the cathode half-cell setting of ERMINE. Both TFV and DREAM
SOFC only consider the TPB pathway as the mechanism of ORR. While
ERMINE simulates both TPB and MIEC pathways, the MIEC pathway is
negligible. Thus, all three models are mechanistically similar to each other.

4.4 Results and Discussion

4.4.1 ERMINE simulations and microstructural heterogeneities

Table 4.3.1 shows that ρTPB decreases as σa/ a increases for a fixed aver-
age particle size (0.46 µm); this is supported by observations in [62]. The
relationship is essentially linear, as illustrated in Figure 4.4.1a. The val-
ues of ρTPB and σa/ a from the COM-0.48 cathode agree well with the
linear relationship determined from the synthetic cathodes. The effective
current densities (j) computed using ERMINE for all 47 subvolumes are
plotted across a range of overpotentials (η) in Figure 4.4.1b. For the syn-
thetic cathodes, the current density at any specific overpotential increases
with increasing ρTPB (decreasing σa/ a). However, the η-j curves of COM-
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0.48 do not lie between the curves of SYN-0.40 and SYN-0.50, even though
the average TPB density of COM-0.48 is between that of SYN-0.40 and
SYN-0.50. The COM-0.48 subvolumes generally exhibit lower j values than
SYN-0.50, even though they have higher TPB densities (clearly evident in
the inset of Figure 4.4.1b). Note that based on Figure 4.4.1b, the computed
performance indicates primarily activation behavior/losses with some Ohmic
contribution.

Figure 4.4.1: Comparison of the microstructure types based on effective performance
output by ERMINE. (a) shows a near-linear relationship between σa/ a and ρTPB

for all of the microstructures. The dashed line is the linear fit of the data points. (b)
Effective current densities (j) of the 47 subvolumes across a range of overpotentials
(η). Note that η is applied across the cathode and the electrolyte layers. The inset
is a magnified region focusing on 0.2 V of overpotential, which the dashed blue line
indicates. (c) Values of j at η = 0.2 V from (b) plotted against subvolume-specific
TPB densities (ρTPB). The dashed line is a linear fit of the synthetic microstructures,
excluding COM-0.48. (d) Barplot of mean-normalized standard deviations of x, where
x represents either ρTPB or j (at η = 0.2).

The values of j at η = 0.2 V are plotted against subvolume-specific TPB
densities (ρTPB) in Figure 4.4.1c. The dashed line represents the linear fit
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to the synthetic cathodes data, indicating that j (of the synthetic cathodes)
scales almost linearly with ρTPB (and therefore σa/ a for a fixed particle
size). However, these values do vary around the average, and the mean-
normalized standard deviations of ρTPB and j (at η = 0.2) are plotted in
Figure 4.4.1d. For the synthetic microstructures, the distribution width (or
the standard deviation) of j generally corresponds to that of ρTPB, and the
mean-normalized standard deviation of both increases with increasing σa/ a.
The values of j (at η = 0.2) for the COM-0.48 subvolumes in Figure 4.4.1c
are considerably below the linear fit from the synthetic data, indicating that
the COM-0.48 subvolumes are underperforming relative to their ρTPB values.
The COM-0.48 subvolumes also exhibit a wider distribution of ρTPB and j

relative to their mean values (Figure 4.4.1d), and the distribution width of
j is a bit wider, relative to the distribution width of ρTPB, than is observed
in the synthetic cathodes.

The results presented in Table 4.3.1 and Figure 4.4.1 indicate that the
primary microstructural effect of a broader particle size distribution (σa/ a),
at a given particle size, is a linear variation in ρTPB and a linear variation
in j (at η = 0.2). The mean-normalized standard deviations of these values
also increase with σa/ a, from 1.5 to 2.5 % for ρTPB and from 2 to 3.5 % for
j, even though each group is built from statistically similar microstructural
targets and have L∗ ≈ 22. Further, the properties of the commercial cathode
indicate that they contain another level of microstructural heterogeneity not
present in the synthetics electrodes. While this heterogeneity did not impact
the average value of ρTPB versus σa/ a, it leads to an underperformance
of j (at η = 0.2), and a wider distribution in mean-normalized standard
deviation for its σa/ a: 4% for ρTPB and 6.5 % for j. This agrees with
the original report [48], which demonstrated that the commercial cathode
had significant local variations of volume fraction and TPB density over the
mesoscale. The electrochemical simulations run in ERMINE quantify the
impact of these microstructural variations; the simulations indicate that the
impact is not exclusively tied to the local ρTPB values, but also to other local
microstructural features internal to subvolumes of L∗ ≈ 22.
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4.4.2 Comparison of ERMINE and EMT models

In Table 4.3.1, there is a small but quantifiable difference in the mean tor-
tuoisty factor of the YSZ phase (τYSZ), a value that increases in a similar
fashion to the variability in mean-normalized standard deviation of ρTPB

and j (at η = 0.2) discussed in Section 4.4.1. The YSZ tortuosity factor
represents an effective transport path distance for ionic transport in YSZ
and is typically incorporated into EMT models. Thus, comparison to EMT
models will be informative in estimating the impact of ionic transport versus
TPB reactivity.

As shown in Figure 4.4.2, the ηc-j performance curves from ERMINE are
compared to the two EMT models. Note that ηc is the overpotential across
only the cathode layer. The ηc-j performance curves of TFV are linear, while
the curves of ERMINE and DREAM SOFC are combinations of logarithmic
(activation or Tafel) and linear (Ohmic) parts. Relative to the other two
models, the TFV model overpredicts the performance at low overpotentials
and underpredicts at high overpotentials, with a crossover near ηc ≈ 0.15 V.
ERMINE and DREAM SOFC are in reasonable qualitative agreement across
the entire overpotential range, which verifies that ERMINE and DREAM
SOFC are modeling the reaction/transport of the TPB pathway in a compa-
rable way. Quantitatively, however, the ERMINE curves have consistently
lower j values at any given ηc than the DREAM SOFC curves, which we
explore more deeply below.

In general, the three models are quite similar in values near ηc ≈ 0.15 V,
which supports the utility of EMT models to capturing average performance
at typical cathodic overpotentials [13, 18, 63, 85, 97, 118, 124, 130]. Visually,
the spread among the performance curves for the synthetic microstructutres
is narrow compared to the commercial cathode. Based on the assumption
that the ηc-j curves of ERMINE and DREAM SOFC consist of activation
and Ohmic contributions, more fundamental performance descriptors—the
effective exchange current density (j0), which is sensitive to TPB density
[11], and the effective Ohmic resistance (Rohm), which is sensitive to YSZ
tortuosity [125]—were extracted by fitting them with a nonlinear function
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Figure 4.4.2: Effective performance outputs from ERMINE, DREAM SOFC, and
TFV for all subvolumes grouped by the microstructure type. ηc is the model overpo-
tential across the cathode layer, and j is the effective current density. Subfigure title
indicates the microstructure type.

consisting of a Tafel term and an Ohmic term. The Tafel term describes the
activation overpotential as:

ηact =
RT

αzF
[ln(j)− ln(j0)], (4.1)

where R is the gas constant, T is the temperature, α is the symmetry factor
(α=0.5), and F is the Faraday constant. The Ohmic term describes the
Ohmic overpotential as:

ηohm = jRohm. (4.2)

The nonlinear function, which expresses the total overpotential (over cath-
ode), is therefore:

ηc = ηact + ηohm =
RT

αzF
[ln(j)− ln(j0)] + jRohm. (4.3)
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Equation 4.3 was used to fit the ηc-j curves from the ERMINE and DREAM
SOFC models. Figure 4.6.1 illustrates the ηc-j data and the fitted curves for
one subvolume of each microstructure type. Very good fits were obtained
for all subvolumes for both models.

The effective j0 values extracted from the DREAM SOFC and ERMINE
ηc-j curves are plotted versus ρTPB in Figures 4.4.3a and 4.4.3b, respec-
tively. The EMT model directly links activation current with ρTPB, and a
nearly linear trend is observed in Figure 4.4.3a between j0 and ρTPB. The
COM-0.48 data agrees well with the values for the synthetics, with the j0

values being slightly lower than expected for their ρTPB. The values of j0

from ERMINE (Figure 4.4.3b) are uniformly lower than those from DREAM
SOFC (Figure 4.4.3a), though the local TPB reaction rates were identical in
both models. This indicates that the details of transport from local TPBs,
as modeled by ERMINE, effectively reduces the exchange current compared
to DREAM SOFC. Also, because the slope of the line fitted to the synthetic
data in Figure 4.4.3b (0.0033) is lower than that of Figure 4.4.3a (0.0045),
this effect is more significant at higher ρTPB. Nevertheless, the data in Fig-
ure 4.4.3b approximate a linear trend, but with significantly higher scatter
of j0 values at a given ρTPB (vertical scatter) than the data from DREAM
SOFC (Figure 4.4.3a). This also indicates that details of the local trans-
port from TPBs effectively increase the spread in the values of j0. Again,
the COM-0.48 values are in similar agreement with the synthetic values,
but they are a little more depressed from the line for ERMINE than for
DREAM SOFC: some values for COM-0.48 are lower than the lowest value
for SYN-0.50 in the ERMINE data, but not in the DREAM SOFC data.

The values of Rohm extracted from the DREAM SOFC and ERMINE
ηc-j curves are plotted versus τYSZ/θYSZ (YSZ tortuosity factor divided by
YSZ volume fraction) in Figures 4.4.3c and 4.4.3d, respectively. In DREAM
SOFC, the effective YSZ ionic conductivity (γYSZ,e) is estimated using a
Bruggeman type model:

γYSZ,e = γYSZ

θYSZ

τYSZ

, (4.4)
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Figure 4.4.3: Exchange current densities (j0) and Ohmic resistances (Rohm) plot-
ted against ρTPB and θYSZ/τYSZ (YSZ volume fraction divided by YSZ tortuosity
factor) respectively for all subvolumes. The legend in each subfigure indicates the
microstructure type and the mean value of j0 or Rohm. Subfigure titles indicate the
model name. The dashed lines are linear fits applied to the synthetic microstructures,
excluding COM-0.48.

where γYSZ is the YSZ conductivity value. Since resistance is inversely pro-
portional to conductivity (R ∝ 1/γ), the linear relationship of γYSZ,e with
respect to θYSZ/τYSZ corresponds to an inverse relationship of Rohm with re-
spect to θYSZ/τYSZ; equivalently, Rohm is linear with respect to τYSZ/θYSZ.
A nearly linear relationship is observed in Figure 4.4.3c, as expected from
DREAM SOFC, with a relatively shallow slope. Considering the synthetic
data only, each type of microstructure exhibits a linear relationship between
Rohm and τYSZ/θYSZ with a shallow slope. As the σa/ a increases, the Rohm

values (lines) increase very slightly, the average τYSZ/θYSZ values increase,
and the spread of τYSZ/θYSZ values increases significantly. The COM-0.48
data is significant in that the average value of τYSZ/θYSZ is considerably
higher than for all of the synthetics, and the spread is similar to the SYN-
0.50 data. This indicates that the increased heterogeneity in the COM-0.48
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microstructure impacts the tortuosity significantly (as opposed to ρTPB),
which also increases Rohm significantly.

Figure 4.4.3d shows that the values of Rohm from ERMINE are uniformly
higher than those from DREAM SOFC (Figure 4.4.3c). The linear correla-
tion is less obvious, if applicable, because there is considerably more variation
in the data around an expected shallow slope. As σa/ a increases for the
synthetic data sets, (the average of) Rohm also increases more significantly
in the ERMINE data than in the DREAM SOFC data, though the scatter
around the average is similar for all (again highlighting a near zero slope for
each). The values of Rohm from ERMINE for the COM-0.48 data are even
more scattered and distributed towards higher values than expected from
the synthetics. This indicates that the local volume fraction heterogeneity
manifests itself strongly in the local ionic transport and impacts the effective
local Ohmic resistance.

Overall, Figure 4.4.3 demonstrates a distinctive difference between ER-
MINE and DREAM SOFC outputs. While the EMT approximations of
DREAM SOFC are reasonable and generate qualitative agreements between
the two models, the full-scale locally resolved ERMINE simulations deviate
from the EMT model in a manner that suggests the differences arise in the
treatment of local ionic transport. ERMINE indicates that the local ionic
transport paths suppress the effective exchange current from the ensemble
of TPBs more than accounted for in DREAM SOFC, while the linear re-
lationship between j0 and ρTPB is preserved. ERMINE also indicates that
the local ionic transport paths increase the effective Ohmic resistance of the
cathode more than accounted for in DREAM SOFC. Because the correlation
of Rohm with τYSZ/θYSZ is shallow in the DREAM SOFC data, the signifi-
cantly increased scatter in Rohm found in the ERMINE data suggests that
the difference between ERMINE and DREAM SOFC is primarily related to
the treatment of the local ionic transport.
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4.4.3 Activation overpotential distribution and binning analy-
sis

Thus far, effective electrochemical quantities based on subvolume ensembles
have been analyzed. Here, the local overpotential at active TPBs (ηTPB) is
examined, which is expected to influence degradation mechanisms (such as
chromium poisoning [68, 93, 121]). The 3D distribution of local activation
overpotential at active TPBs (ηTPB) of a COM-0.48 subvolume is shown in
Figure 4.4.4a, for which the global overpotential (η) was 0.2 V across the
domain. In Figure 4.4.4a, the TPB elements are rendered and the value
of ηTPB is denoted by the color. It can be seen that the activation over-
potential varies along the vertical (Z) axis, with high values (approaching
the global overpotential) towards the bottom (Z = 0 µm) and low values
(0.10 V) near the top (Z = 7 µm). At any given TPB location, the acti-
vation overpotential and the Ohmic overpotential, as defined in this study,
must sum up to the global overpotential (0.2 V). Thus, as the Ohmic over-
potential increases, the activation overpotential decreases. In other words,
TPB elements with activation overpotentials near 0.2 V {0.1 V} require lit-
tle {significant} Ohmic overpotential to drive the generated current from
TPBs, through the YSZ, to the electrolyte. The overpotentials are therefore
a function of the specific local current pathways in YSZ and the local current
densities in those pathways. Similar distributions of ηTPB are observed in all
subvolumes, though lateral and vertical variations differ within and between
microstructural types.

To better visualize and quantify the variations, the data shown in Fig-
ure 4.4.4a were binned into 1× 1× 1 µm3 volumes, and the median value in
each bin was determined. Figure 4.4.4b-d visualizes the lateral (X-Y plane)
variation of the binned ηTPB values extracted from Figure 4.4.4a, with (b),
(c), and (d) corresponding to a Z-range of 0–1, 1–2, and 2–3 µm, respec-
tively. Significant variations of ηTPB are observed, with regions of relatively
low values being adjacent to regions of relatively high values, both laterally
in an image and across images in the same X-Y location. Such variations
can occur because of significant differences in the local transport path (the
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Figure 4.4.4: 3D distribution of local activation overpotential at TPBs (ηTPB) of
a COM-0.48 subvolume at η = 0.2 V. (a) Original data representing ηTPB at the
TPB elements. Only the TPB elements are rendered. (b-d) Binned medians of ηTPB

according to 1 × 1 × 1 µm3 bins. Subfigure title indicates bin location along the
vertical (Z) axis. Z = 0 corresponds to the cathode/electrolyte interface. Only up to
three bin widths along Z are shown. Lack of color (white) indicates absence of TPBs.

local tortuosity from the TPB to the electrolyte), the local value of the ionic
current to which an element contributes (the local ρTPB and/or local con-
strictions in ionic current paths), or combinations of those. The variations
observed within a specific Z-layer (≈ 10 % at a given Z value) and between
adjacent Z-layers (regions of TPBs in the second layer are more active than
regions of TPBs in the first layer, etc.) are both significant.
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The binning process described above was applied to all 47 subvolumes,
resulting in 32900 (47× 10× 10× 7) binned median values of ηTPB from all
subvolumes. These values were further grouped by microstructural type and
Z location, and new median values were computed (e.g., the median values
from COM-0.48 at Z=0–1 µm are condensed to a single median value). The
new median values are plotted against the distance to the electrolyte (Z),
as shown in Figure 4.4.5a. A similar analysis was performed based on the
DREAM SOFC data, as shown in Figure 4.4.5b. For plotting purposes, the
midpoints of the bin widths are used to represent Z-ranges. The decrease
of ηTPB with increasing Z resembles an exponential curve. As Z approaches
0, ηTPB reaches the maximum value, indicating the TPBs at the electrolyte
interface contribute the most to the overall performance. As Z approaches
7, ηTPB does not drop below 0.10 V, indicating that the TPB reaction (ac-
tivation) 7 µm away from the electrolyte still has a higher contribution to
the global overpotential than the Ohmic overpotential does. This is likely
due to the relatively thin cathode and electrolyte thicknesses (7 and 3 µm,
respectively).

Two major differences between the model outputs can be observed in Fig-
ure 4.4.5. First, ERMINE simulations result in overall lower values of ηTPB,
particularly at Z > 0, as compared to DREAM SOFC. Second, the COM-
0.48 curve has a functionally different form relative to the synthetics in the
ERMINE simulations, while it is similar to the synthetics in DREAM SOFC.
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Figure 4.4.5: Local activation overpotentials at TPBs (ηTPB) versus distance to the
electrolyte (Z) for all subvolumes at global overpotential of 0.2 V. ηTPB was com-
puted from (a) ERMINE and (b) DREAM SOFC, as indicated by the subfigure title.
The markers’ X coordinates are at the midpoints of the bin widths along Z.

Although ERMINE simulations result in overall lower ηTPB, there is little
difference in ηTPB between the two models at Z ≈ 0, likely because the local
ionic current generated at TPBs near Z = 0 does not travel any significant
distance through the cathode. The value of ηTPB near the electrolyte is
primarily determined by the current density through the uniform electrolyte,
which is dominated by the average ρTPB. As the current density through
the electrolyte increases with ρTPB, the Ohmic {activation} overpotential
increases {decreases}. For the DREAM SOFC data, this trend is observed
at all Z values: the value of ηTPB from lowest to highest corresponds to SYN-
0.34, SYN-0.40, COM-048, and SYN-0.50, which corresponds to the order
of ρTPB. At Z > 0 for ERMINE, geometric details of the ionic transport
pathways through the microstructure from TPBs and the associated current
density magnitudes in the pathways combine to effectively suppress {raise}
the local activation {Ohmic} overpotentials as compared to DREAM SOFC.

In Figure 4.4.5a, the local ionic transport (Ohmic overpotential) for COM-
0.48 begins in the mid-range of the four groups at Z ≈ 0, but gradually
becomes worse than the others (steeper descent), and is the worst beyond
Z = 2. The behavior of the COM-0.48 data in DREAM SOFC shown in
Figure 4.4.5b does not indicate such a steep decrease, though the values seem
suppressed from the similar SYN-0.50 data. The unique steep decrease of
the COM-0.48 curve in ERMINE suggests that the COM-0.48 microstructure
and performances are fundamentally different from the synthetic electrodes;
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its distinctive level of heterogeneity results in worse local ionic transport, a
likely cause for COM-0.48’s significantly depressed effective current densities
than expected for its TPB density values (Figure 4.4.1c).

The activation (and Ohmic) overpotential is a function of the specific local
current pathways in YSZ and the local current densities in those pathways.
Factors related to local current pathways include the tortuosity factor, and
factors related to local current density include TPB density and pathway
constrictions (discussed in Section 4.4.4). The impact of changing tortuosity
factors (by a factor of 3) and TPB densities (by a factor of 1.6) in DREAM
SOFC on ηTPB and j are quantified in Figure 4.6.2. It can be seen that both
τYSZ and ρTPB significantly impact the performance metrics (ηTPB and j).
Figure 4.6.2a and c indicate that an increase in τYSZ effectively suppresses
the values of ηTPB and j. Therefore, significantly increasing the tortuosity
factor (or τ/θ) in DREAM SOFC brings its output closer to that of ERMINE
(in terms of ηTPB and j). However, the output does not match perfectly:
attempting to match the ηTPB-Z curves (Figure 4.6.2a) requires τ/θ = 10–
12, which overly suppresses j in the ηc-j curves. Similarly, attempting to
match the ηc-j curves requires τ/θ = 8, which results in overly high values of
ηTPB in the ηTPB-Z curves. It should be noted that, τ/θ = 8–12 corresponds
to an increase in the YSZ tortuosity factor by 2 to 3, which is much too
large to be an error in the measurement or method to describe the effective
tortuosity, and indicates that local tortuosity from TPBs is important.

Figure 4.6.2b and d indicate that an increase in ρTPB effectively suppresses
ηTPB, similar to above, but it also raises j. This indicates that an increased
current density (from increased TPB density) indeed suppresses ηTPB, but
not at the expense of overall current density that occurs on increasing τYSZ.
Since the average current density is strongly connected to the average ρTPB,
an increased average current density is not likely the difference between
ERMINE and DREAM SOFC. However, increased local current densities,
e.g., high current densities at constrictions (see Section 4.4.4), may cause a
suppression in ηTPB without an increase in the average j.

This analysis suggests that the difference between ERMINE and DREAM
SOFC may be accounted for by a combination of (1) high local tortuos-
ity from TPB sites relative to the average/effective tortuosity, and (2) in-
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creased local current density, such as in constrictions. It is interesting to
note that modifying the effective tortuosity value in DREAM SOFC can
better capture the output generated by ERMINE without needing a priori
geometrical arguments. This manual match indicates that improved EMT
models can be generated using microstructurally resolved 3D simulations,
such as ERMINE, that directly simulate the microstructural effects without
assumptions. More work is needed to assess the utility and accuracy of such
combined models.

The variation of local TPB overpotential/activity quantities as affected
by local pathway-dependent factors in heterogeneous electrodes was also
reported by [59, 94]. Further, other factors associated with local current
pathways, such as constrictivity [46, 59, 77], are known to contribute to local
activation/Ohmic overpotentials. Thus, it appears that ERMINE captures
these features effectively, but more work is needed to fully model or quantify
them. Finally, because the overall difference between the synthetic data sets
in ERMINE and DREAM SOFC have been correlated to local differences
in ionic transport, it can be further concluded that the unique shape of the
COM-0.48 data arises from significantly different ionic transport paths, as
compared to the synthetics. This difference is likely correlated to the unique
volume fraction variation/heterogeneity within the subvolumes of the COM-
0.48 data.

4.4.4 Local current density distributions and hotspot analysis

In prior sections, it was concluded that local ionic transport in YSZ signif-
icantly influenced the overall performance and the local TPB performance;
furthermore, its impact on either was a function of standard deviations in
the particle sizes and local volume fractions within subvolumes of L∗ ≈ 20.
In Section 4.4.3, it was shown that a combination of increased local tortu-
osity and increased local current densities are likely origins of the difference
in ERMINE and DREAM SOFC. Thus, the local current density within the
YSZ phase (jYSZ) is investigated here for all microstructural types.

A rendering of jYSZ for a single COM-0.48 subvolume is given in Fig-
ure 4.4.6a. Only the YSZ phase is rendered, and the color indicates the
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magnitude of jYSZ at η = 0.2 V. It can be seen readily that high current
density regions (red), herein called hotspots, exist non-uniformly throughout
the YSZ phase. While the average current density is 1.2 Acm−2, the cur-
rent densities in hotspots can be greater than than 10 Acm−2 (more than
an eight-fold increase). (Note, the colorbar range was manually set for ease
of visualization but does not contain the full value range.) An example of
increased local current density at a constricted YSZ channel is shown in Fig-
ure 4.4.6b. In the narrowest region of the channel, the current density is more
than 10 Acm−2. Such hotspots represent the upper tail of the jYSZ distri-
bution and are related to local constrictions or bottlenecks in the transport
paths, resulting in a high local flux (Figure 4.4.6b). Constrictions (or the
constrictivity of the transport network) are known to impact electrode per-
formance [46, 59], though they are less widely included in EMT models than
tortuosity. It is reasonable to consider that these constrictions contribute to
the differences found above for transport from local TPBs (Section 4.4.3),
and to potential degradation mechanisms related to high or nonuniform local
current densities, as discussed by Bertei et al. [4].

To isolate the hotspots for further analysis, they were extracted from the
microstructures as follows. First, the element node-sampled distribution
(plotted in Figure 4.4.6a) of jYSZ was converted to an element volume-
sampled distribution, and the volume of each element was used to create
a volume-weighted distribution, for which the mean (jYSZ) and standard
deviation (σjYSZ

) were determined. The scalar field of jYSZ magnitude was
then thresholded when the local value was greater than jYSZ+βσjYSZ

, where
β is a multiplier and was set as β = 5. For all subvolumes, jTPB + 5σjYSZ

corresponds to roughly the same total volume of the volume-sampled jYSZ

(see Table 4.6.4).

After thresholding, the DBSCAN algorithm [27] (in the sklearn Python
library) was applied to spatially cluster the mesh element volume-sampled
field of jYSZ into individual hotspots, defined as a clustered group of mesh
elements (holding extremely high values of jYSZ) that are adjacent or very
close to each other in space. A 3D spatial plot of the hotspots extracted
from the data shown in Figure 4.4.6a is given in Figure 4.4.6c (and Fig-
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Figure 4.4.6: Visualization of local current density in YSZ (jYSZ) and regions of
high jYSZ (hotspots) for a COM-0.48 subvolume. (a) Rendering of jYSZ in the YSZ
phase. (b) A hotspot located at a bottleneck, or constriction zone, in the YSZ phase.
Color indicates magnitude of jYSZ. The colorbar range was manually set for ease of
visualization and does not contain the full value range. (c) Extracted hotspots after
thresholding and clustering the field of jYSZ shown in (a). Color indicates separate-
ness of the hotspots. (d) 2D projection of the local hotspots shown in (c). Marker
size indicates relative hotspot volume.

ure 4.6.3 shows the same for one of each of the synthetic microstructures).
The hotspots/clusters are colored to distinguish distinct clusters. An X-Z
plane projection of the spatial distribution of the hotspots is shown in Fig-
ure 4.4.6d, where each hotspot’s X and Z coordinates were calculated (by
averaging the coordinates of the hotspot’s constituent elements) and plotted
into a scatter plot. The marker size indicates relative hotspot volume, which
was calculated by summing the hotspot’s constituent element volumes. It is
immediately evident in Figure 4.4.6d that there is a variation in the hotspot
sizes and locations. In general, there is a high concentration of hotspots—as
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well as large hotspots—near the cathode/electrolyte interface (Z = 0). Also,
the spatial distribution in the X direction appears somewhat heterogeneous.
Similar observations were made for all subvolumes when analyzed in this
fashion (as illustrated in Figure 4.6.4).

The above hotspot analysis was applied to all subvolumes. The number
of hotspots for each subvolume is plotted in Figure 4.4.7a as a function of
ρTPB. Interestingly, this plot is reminiscent of the jη=0.2V -ρTPB data plotted
in Figure 4.4.1c. For the synthetic microstructures, the number of hotspots
is roughly linear with ρTPB, with a significant variation in the number of
hotspots per microstructural type (vertical distribution). The COM-0.48
subvolumes have significantly lower numbers of hotspots than the synthetics
would at that value of ρTPB, and essentially lower numbers than the SYN-
0.50, which has lower ρTPBvalues.

The distribution of hotspot volumes from all subvolumes were grouped
by microstructural type (σa/ a) and plotted as standard boxplots in Fig-
ure 4.4.7b, with the mean (µ) and standard deviation (σ) of the volumes
listed. For the synthetic electrodes, the mean value increases slowly from
0.003 to 0.005, while the standard deviation increases from 0.006 to 0.014.
The COM-0.48 data has a larger mean (0.008) and standard deviation (0.020)
than any of the synthetics. Further, the outliers (black circles) for all distri-
butions skew to larger volumes and their maximum values follow the same
trend: the volume of outliers increases with σa/ a for the synthetics, and
the COM-0.48 data contains a longer tail of outliers, indicating more larger
hotspots. Here the outliers are values greater than Q3 + 1.5IQR, where Q3

is the upper quartile and IQR is the interquartile range.
If one only considers hotspots above a certain volume such as 0.5Vs, where

Vs is the volume of a spherical particle of the mean particle size (0.46 µm),
observations similar to Figure 4.4.7b can be made. The number of large
volume hotspots (> 0.5Vs) for each microstructure is plotted versus ρTPB

in Figure 4.4.7c. The trends observed in Figure 4.4.7a are reversed in Fig-
ure 4.4.7c: the number of large volume hotspots decreases with ρTPB for
the synthetics, and there are more large hotspots for the COM-0.48 cath-
odes than expected for their ρTPB values. The outliers in Figure 4.4.7b were
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Figure 4.4.7: Comparison of hotspot distributions based on all 47 subvolumes. (a,c)
Number of hotspots plotted against ρTPB for all subvolumes. The dotted-lines are lin-
ear fits applied to the synthetic microstructures, excluding COM-0.48. (c) only shows
hotspots larger than 0.5 Vs, where Vs is the volume of a spherical particle with the
mean particle size (0.46 µm). (b,d) Boxplot of hotspot volumes from all subvolumes
grouped by the microstructure type, with the average (µ) and the standard deviation
(σ) annotated for each microstructure. Outliers are shown as black circles. (d) is a
boxplot for the outliers shown in (b).

extracted and re-plotted as boxplots in Figure 4.4.7d, again grouped by mi-
crostructural type (σa/ a), with the mean (µ) and standard deviation (σ) of
the volumes listed. For the synthetics, the mean value increases from 0.014
to 0.027, while the standard deviation increases from 0.011 to 0.028. Again,
the COM-0.48 has a larger mean (0.045) and standard deviation (0.036) than
any of the synthetics. Further, the outliers (black circles) for all distributions
are similar to that reported for Figure 4.4.7b.

This analysis indicates that the number and the volume of hotspots are a
function of σa/ a: the number decreases with σa/ a and the volume increases
with σa/ a. Furthermore, the distributions of the hotspot size/volume in
COM-0.48 cathodes are functionally different from those of the synthetic
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microstructures; the hotspot number {size} distribution of COM-0.48 is dis-
tinctively weighted to smaller {larger} values. The distinctive heterogeneity
of the commercial cell cathode, being an increased standard deviation in
the local volume fraction within the subvolumes themselves [48], results in
a functionally different distribution of local YSZ current density throughout
the microstructure. The ERMINE output clearly shows widespread con-
strictions in the microstructures and their impact on local current density
distribution is significant. This finding supports the idea that constrictivity
is important for local ionic transport and helps explain the differences in
ionic transport discussed in Section 4.4.3. More work is needed to quantify
the relative importance of constrictions in current flow and differences in
local tortuosity values from TPBs.

In Section 4.4.3, the DREAM SOFC model was adjusted manually by
increasing the effective tortuosity term to bring its output closer into agree-
ment with that from the ERMINE model. Similar outcomes may arise from
including constrictivity terms in EMT models. This work demonstrates that
high-throughput 3D simulations locally resolved over the 3D microstructure
(such as ERMINE) can be used to develop improved EMT models that in-
clude local tortuosity and constrictivity relationships. Beyond improving
models of average/effective properties, local hotspots can also be correlated
to degradation events linked to local current density, such as Ohmic heat-
ing where the local heat generation rate is j2r, where r is the resistivity of
YSZ. In other words, variation in local current density leads to even more
variation (squared) in local heat generation, and high thermal gradients may
likely cause degradation related to thermal stresses. Overall, the analyses in
Section 4.4.3 and 4.4.4 show the potential for using ERMINE to inform mod-
els of different degradation modes, including local overpotenial and current
density hotspots.

4.4.5 Summary

47 subvolumes of complex, three-phase electrode microstructures, each hav-
ing dimensions of 10×10×7 µm3, or L∗ = 21.7 {15.2} in the horizontal {ver-
tical} directions, were subjected to a high-throughput workflow to simulate
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electrochemistry and transport in SOFC cathodes using HPC platforms. All
but the mesh generation software are open-source packages, including the
MOOSE framework that runs ERMINE; the codes, microstructures, and
data are available as indicated in the Supplementary Material (Sec. 4.6).
The size of each subvolume and the total number of subvolumes simulated
are large relative to those investigated in prior computational works [4, 6–
9, 38, 55, 61, 64, 65, 81, 89, 93, 105, 108, 111, 134]. The size is larger than
needed to fully represent local electrochemistry, and the number of subvol-
umes, spread across 4 distinct microstrutural types, yields initial understand-
ing of statistical variations on local values within a microstructural class. The
overall time required for meshing and simulating all 47 sub-volumes was ≈
10 days. The inclusion of both two and three phase reaction pathways in
ERMINE did not significantly increase the clock time for simulations (from
an earlier instantiation [47]), and only the TPB pathway contributes signif-
icantly for the specific materials properties investigated. These observations
indicate that there is a significant room for growth in HPC simulations for
SOFCs, including overall volumes, increased complexity in physics, full cell
simulations, etc. The yield on convergence of simulations was 87 %, which
is high but can also be improved in the future.

ERMINE was used to compare four different types of microstructures re-
ported previously [48]: three synthetics having controlled variations in the
standard deviation of their particle size distribution and a commercial cell
that had both a specific standard deviation in the particle size and a vari-
ation in the local volume fractions over the length scales considered herein.
The ρTPB values are linearly correlated to the mean normalized standard
deviation in particle size σa/ a (for a constant mean particle size), for both
the synthetics and commercial cells. However, the commercial cells have a
significant simulated underperformance, or depressed effective current den-
sity output, and a substantially higher variability in effective performance.
Throughout the work, the effect of the internal volume fraction variations
that exist within the COM-0.48 cathode differentiates it from the synthetic
cathodes.

Comparison of the average ERMINE output with two EMT models in-
dicates that the heterogeneity is strongly tied to specifics of the local ionic
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transport in YSZ. The two EMT models do not capture this variation pre-
cisely, though average values near typical operating conditions are all similar.
Extracting effective exchange current densities and Ohmic resistances indi-
cate that the primary difference between the results from the EMT models
and ERMINE, as well as between the commercial and synthetic microstruc-
ture results, came from the ionic transport path through the electrode. Be-
cause ERMINE is a high-throughput method on HPC platforms, it can be
used to develop improved EMT models that capture local microstructural
impacts more precisely.

The importance of the ionic transport path is borne out further when
considering local properties extracted from the locally resolved ERMINE
simulations, such as local overpotential at the TPBs and local current den-
sity in YSZ. The commercial cathode suffers from poor local ionic transport
as compared to the synthetic electrodes, resulting in increased Ohmic (de-
creased activation) overpotentials at TPBs, and an increase in the number
of large volume hotspots (constrictions) in the YSZ transport network, and
significantly wider variations on those values. ERMINE captures the local
pathway-dependent parameters, including tortuosity, constrictivity, and lo-
cal current density, which are all seen to affect the cathode performance.
Access to local values of overpotential and current density will inform more
accurate local degradation models, including chromium poisoning and local
heating related issues.

4.5 Conclusions

A high-throughput, high-performance computational approach was presented
to simulate local electrochemistry in three dimensions resolved over mi-
crostructural features of solid oxide fuel cell electrodes. The model retains
full details of the microstructure as complex finite element meshes and it
models local reaction-transport of relevant electrochemical species. Simula-
tions were carried out on 47 meshed three-phase cathode volumes, whose lat-
eral {vertical} dimensions are each approximately 22 {15} times the average
particle size (0.46 µm for all). The 47 microstructures are spread across four
distinct groups—one commercial cell cathode and three synthetic cathodes—
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having different standard deviations of the particle size and/or the local vol-
ume fraction distributions. The simulation output from the locally-resolved
model was compared to those of two accepted EMT models. Analysis of
the data generated from these models results in the following findings and
conclusions.

• The average performance simulated from the locally-resolved model
compares favorably to the EMT models, indicating the local physics
are accurately captured.

• The largest discrepancy between the locally-resolved simulations and
the EMT models arises from the local ionic (Ohmic) transport in the
YSZ phase of the active cathode. Analysis of local activation overpo-
tential at TPB sites and local current density in YSZ reinforce this.

• Constriction of local current density was shown by the locally-resolved
simulations to be widespread in all microstructures, but this is not
accounted for by either EMT model. Thus, high-throughput locally-
resolved simulations offer a path to informing/improving the accuracy
of EMT models.

• The ability of the locally-resolved model to compute fields of activation
overpotentials and current density hotspots demonstrates the potential
for using locally-resolved simulations to better inform models of local
degradation mechanisms.

• The distinctive heterogeneity of the commercial cathode, previously
captured as variations in local volume fractions, clearly impacts the
electrochemical properties simulated by the locally-resolved models;
the commercial microstructure results in distinctive distributions of
(1) effective voltage-current performance output, (2) local activation
overpotentials at TPB sites, and (3) local current densities in YSZ.

• The distinctive distributions of local electrochemical quantities con-
tribute unfavorably to the ionic transport terms, resulting in the com-
mercial microstructure having the worst overall performance relative
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to the synthetic microstructures, despite not having the lowest values
of TPB density.

• Many of these findings can be attributed to the high-performance,
high-throughput nature of the presented computational approach, al-
lowing locally-resolved simulations of many microstructural volumes,
with each having large enough size to compute accurate local proper-
ties. Such methods offer a large-data, statistical approach to under-
standing fuel cell performance characteristics, which will underpin the
development of high-durability, high-reliability electrochemical cells.

4.6 Supplementary Material

4.6.1 Microstructural properties for all subvolumes

The four microstructure datasets used in this work were scaled and cropped
into 54 subvolumes, 47 of which resulted in converged ERMINE simulations.
Here the microstructural properties relevant to the TFV and DREAM SOFC
models are tabulated for all of the 47 subvolumes, as shown in Table 4.6.1.
The first row denotes the parameter, where θ is the volume fraction, τ is the
tortuosity factor, a is the volume-weighted mean particle size [µm], ρTPB is
the TPB density [µm−2], and Ai is the interfacial surface area per unit vol-
ume [µm−1]. The second row denotes the phase, where 1, 2, and 3 correspond
to pores, LSM, and YSZ, respectively. Details regarding the measurements
of these parameters (except for the TPB density) were described in [26, 48].
The TPB density was measured by summing the mesh element perimeters
that are at the intersection of three phases after meshing the three-phase
microstructures.

It can be seen that the volume-weighted particle sizes in Table 4.6.1 do not
precisely match the number-weighted mean particle size (0.46 µm) mentioned
in the main text, especially for SYN-0.34 and SYN-0.40 subvolumes. This
is because the scaling of the microstructures (before subvolume cropping)
was based on the number-weighted mean particle sizes reported in [48], and
the subvolume-specific particle sizes (after cropping) were calculated based
on volume-weighted distributions of particle sizes. Both definitions of the
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mean particle size are fundamentally different and thus result in different
values [48]. However, the values listed in Table 4.6.1 are not significantly
far from 0.46 µm. Furthermore, the difference in the particle size (e.g., from
0.30 to 0.46 µm) have been found to have negligible influence on TFV and
DREAM SOFC output. Finally, the measurements of the other parameters
were independent of the particle size.
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Table 4.6.1: Relevant microstructural properties for all subvolumes

θ τ a ρTPB Ai

1 2 3 1 2 3 1 2 3 1/2 1/3 2/3

SYN-0.34 0.34 0.28 0.38 1.32 1.51 1.27 0.30 0.28 0.34 7.74 1.48 1.82 1.51
0.34 0.28 0.38 1.33 1.54 1.27 0.31 0.28 0.34 7.65 1.48 1.80 1.47
0.34 0.28 0.37 1.33 1.46 1.30 0.32 0.28 0.35 7.64 1.46 1.77 1.47
0.34 0.28 0.38 1.32 1.51 1.28 0.31 0.28 0.34 7.68 1.47 1.81 1.46
0.34 0.28 0.38 1.33 1.47 1.28 0.31 0.28 0.34 7.63 1.47 1.80 1.47
0.34 0.28 0.38 1.32 1.49 1.27 0.30 0.28 0.34 7.77 1.49 1.83 1.49
0.33 0.28 0.39 1.35 1.49 1.26 0.31 0.28 0.35 7.62 1.43 1.80 1.51
0.34 0.28 0.38 1.32 1.49 1.28 0.31 0.27 0.33 8.06 1.52 1.81 1.52
0.34 0.28 0.38 1.34 1.52 1.26 0.30 0.28 0.34 7.81 1.47 1.84 1.48
0.34 0.28 0.38 1.33 1.52 1.27 0.31 0.28 0.34 7.74 1.46 1.80 1.50
0.34 0.28 0.38 1.32 1.49 1.27 0.30 0.27 0.34 7.79 1.48 1.83 1.50
0.34 0.28 0.38 1.32 1.50 1.27 0.31 0.28 0.34 7.79 1.47 1.80 1.49
0.34 0.28 0.39 1.34 1.56 1.27 0.30 0.27 0.34 7.76 1.46 1.81 1.55

SYN-0.40 0.35 0.28 0.37 1.34 1.51 1.29 0.37 0.33 0.39 6.11 1.29 1.60 1.31
0.35 0.28 0.37 1.31 1.52 1.30 0.39 0.34 0.41 6.04 1.27 1.56 1.27
0.35 0.28 0.37 1.33 1.50 1.31 0.38 0.34 0.40 6.17 1.31 1.57 1.29
0.34 0.29 0.37 1.33 1.47 1.28 0.37 0.33 0.39 6.40 1.33 1.57 1.34
0.35 0.28 0.37 1.33 1.44 1.30 0.38 0.34 0.39 6.19 1.29 1.57 1.30
0.33 0.30 0.37 1.35 1.42 1.31 0.36 0.34 0.39 6.38 1.34 1.54 1.37
0.35 0.29 0.36 1.33 1.47 1.32 0.39 0.33 0.39 6.60 1.37 1.55 1.32
0.34 0.30 0.36 1.34 1.44 1.32 0.37 0.33 0.39 6.42 1.38 1.53 1.33
0.34 0.30 0.36 1.33 1.45 1.31 0.37 0.33 0.39 6.34 1.35 1.56 1.32
0.34 0.29 0.37 1.34 1.48 1.29 0.37 0.34 0.39 6.35 1.32 1.55 1.34
0.34 0.29 0.37 1.34 1.45 1.30 0.38 0.33 0.40 6.26 1.32 1.55 1.31
0.32 0.29 0.38 1.37 1.44 1.27 0.36 0.33 0.40 6.30 1.32 1.54 1.38

COM-0.48 0.35 0.29 0.35 1.27 1.64 1.31 0.42 0.52 0.46 4.80 1.38 1.90 1.39
0.36 0.31 0.33 1.27 1.53 1.35 0.44 0.52 0.40 5.05 1.43 1.81 1.46
0.37 0.32 0.31 1.28 1.45 1.41 0.51 0.56 0.49 4.52 1.50 1.56 1.32
0.37 0.33 0.30 1.27 1.43 1.40 0.49 0.56 0.41 4.59 1.47 1.62 1.36
0.36 0.32 0.32 1.29 1.49 1.36 0.46 0.59 0.39 4.96 1.45 1.78 1.36
0.39 0.32 0.29 1.25 1.44 1.40 0.54 0.56 0.38 4.64 1.45 1.61 1.37
0.37 0.31 0.32 1.27 1.48 1.36 0.45 0.54 0.39 4.87 1.49 1.80 1.39
0.36 0.31 0.33 1.27 1.56 1.36 0.45 0.54 0.42 4.66 1.45 1.79 1.35
0.37 0.31 0.32 1.25 1.54 1.38 0.46 0.53 0.41 4.76 1.45 1.81 1.33
0.38 0.30 0.32 1.24 1.64 1.34 0.47 0.56 0.40 4.38 1.40 1.85 1.27
0.37 0.34 0.29 1.25 1.48 1.39 0.48 0.62 0.39 4.44 1.50 1.61 1.31
0.37 0.32 0.31 1.26 1.44 1.37 0.45 0.53 0.40 5.00 1.51 1.75 1.41
0.36 0.32 0.32 1.26 1.56 1.35 0.42 0.54 0.39 4.97 1.46 1.89 1.40
0.37 0.30 0.34 1.26 1.62 1.37 0.46 0.52 0.41 4.81 1.40 1.84 1.38

SYN-0.50 0.33 0.31 0.36 1.37 1.43 1.31 0.47 0.45 0.49 4.11 1.10 1.27 1.11
0.35 0.31 0.34 1.33 1.45 1.31 0.52 0.46 0.50 4.22 1.09 1.24 1.07
0.34 0.29 0.37 1.35 1.51 1.29 0.51 0.42 0.52 4.07 1.07 1.29 1.07
0.34 0.31 0.35 1.37 1.52 1.32 0.49 0.46 0.48 4.23 1.10 1.25 1.12
0.31 0.30 0.38 1.39 1.49 1.30 0.49 0.45 0.54 4.06 1.01 1.23 1.14
0.34 0.31 0.35 1.38 1.49 1.33 0.50 0.43 0.50 4.32 1.10 1.26 1.11
0.32 0.31 0.37 1.46 1.50 1.28 0.49 0.46 0.51 4.12 1.06 1.23 1.16
0.33 0.28 0.39 1.39 1.56 1.26 0.49 0.42 0.52 4.21 1.03 1.31 1.14
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4.6.2 ERMINE model parameters

The model parameters for ERMINE are listed in Table 4.6.2. Note that for
each subvolume, ERMINE operates in the potentialstatic mode and com-
putes the local electrochemistry, including local current density, across a
range of the global overpotential (ηmodel) from 0 to 0.4 V. Boundary condi-
tion values are denoted as BC.

Table 4.6.2: List of model parameters

Notation Description Value Unit Reference
T Temperature 1073 K -
pO2,C

[BC] Oxygen partial pressure at top of cathode 0.21 atm -
pO2,CE Oxygen partial pressure at counter electrode 1× 10−20 atm -
Emodel Reversible half-cell potential 1.028 V -
ϕYSZ,CE [BC] YSZ potential at counter electrode 0 V -
ηmodel Model (global) overpotential 0 - 0.4 V -
DO2

Oxygen gas diffusivity 0.64 cm2/s -
DO,LSM Oxygen diffusivity in LSM 7.5× 10−7 cm2/s [3]
γYSZ YSZ ionic conductivity 4× 10−2 S/cm [52]
kSE Chemical surface exchange coefficent 6.14× 10−6 cm/s [127]
j0,CT Charge transfer exchange current density 0.193 A/cm2 [36]
j0,TPB Lineal TPB reaction exchange current density 1× 10−7 A/cm [93]
z Number of electrons for TPB and charge transfer reaction 4 - -
α Symmetry factor for TPB and charge transfer reaction 0.5 - -
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4.6.3 Supercomputer usage

It is important to emphasize that each supercomputer/cluster is highly
unique in its software environment, hardware specification, resource allo-
cation, etc. As a result, there are many factors that can influence simulation
convergence behavior and runtime. Nevertheless, for this work, ERMINE
was implemented successfully in two different supercomputers (Joule and
Bridges) and the simulations converged in similar time frames with essen-
tially identical outputs. More specifically, all subvolumes were simulated
in Joule, and some of the subvolumes were simulated in Bridges for verifi-
cation. Table 4.6.3 shows the effective current density (j) output by Joule
and Bridges across a range of model overpotential (ηmodel) input based on
a COM-0.48 subvolume. The simulation in Joule was run using 256 cores
distributed across 16 nodes, where each node consists of 16 cores. The sim-
ulation in Bridges was run using 252 cores distributed across 9 nodes, where
each node consists of 28 cores. Apart from the difference in the core distribu-
tions, as well as the fundamental difference between the two systems, both
simulations were run with exactly the same parameters. It can be seen that
the effective current density outputs are essentially identical, with negligible
differences in the high decimal places. Both simulations converged roughly
within an hour.

Based on Table 4.6.3, we are confident that ERMINE can be implemented
across multiple different HPC platforms with relative ease; given enough
hardware resources, the choice of the supercomputer should not pose diffi-
culty or impact to numerical convergence behavior, simulation runtime, and
output precision.

At the time of this work, the CPUs used are 8-core 2.6 GHz Intel Sandy
Bridge CPUs from Joule and 14-core 2.3-3.3GHz Intel Haswell CPUs from
Bridges. Further public details of Joule and Bridges can be found at https:
//hpc.netl.doe.gov and https://www.psc.edu/bridges.
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Table 4.6.3: Effective current density output by Joule and Bridges based on a COM-
0.48 subvolume

ηmodel [V] j (Joule) [A/cm−2] j (Bridges) [A/cm−2]
0.004 0.005931836 0.005931685
0.0116 0.016171945 0.016171486
0.0260 0.036753762 0.036754306
0.04 0.059180984 0.059180739
0.08 0.149686208 0.149685157
0.12 0.30578202 0.305778968
0.16 0.562107554 0.562106973
0.2 0.957201468 0.957194729
0.24 1.540196415 1.540198332
0.288 2.574214565 2.574215171
0.3456 4.436694497 4.436694228
0.4 6.904549637 6.904553065

116



4.6.4 Statistics of thresholding local current density for all
subvolumes

In each subvolume, the volume-weighted distribution of local current density
in YSZ (jYSZ) was determined. The mean (jYSZ) and the standard deviation
(σjYSZ

) were then calculated for the threshold value of jYSZ+5σjYSZ
. Values

of jYSZ higher than the threshold are kept and defined to be part of the
hotspots, or regions of high local current density, while values lower than
the threshold are discarded. Since jYSZ is volume-sampled, each value of
jYSZ has an associated volume (of a mesh element). The sum of the element
volumes that are thresholded, or Vt, is also calculated for each subvolume,
as shown in Table 4.6.4. The unit for jYSZ and σjYSZ

is A/cm−2. Vt is
normalized by dividing by the cathode volume and is shown as a percentage
of the cathode volume in Table 4.6.4.

It can be seen that the threshold scheme used in this work effectively re-
sults in extracting roughly the same amount of volume of the local jYSZ field
from each subvolume; Vt is about 0.4 to 0.5 % for all subvolumes. Although
the values of Vt appear small relative to the cathode volume, the thresholded
hotspots nevertheless appear quite dense throughout the cathode space, as
shown in Section 4.6.7, indicating that the hotspot distribution is still likely
to impact local and effective performance. In addition, since the threshold
scheme extracts roughly the same total volume of hotspots from each sub-
volume, a change in the number of hotspots corresponds to a change in the
overall hotspot volumes, e.g., more hotspots means each hotspot is smaller
on average.
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Table 4.6.4: Statistics of thresholding local current density (jYSZ) for all subvolumes

jYSZ σjYSZ
jYSZ + 5σjYSZ

Vt [%]

SYN-0.34 1.58 1.31 8.15 0.42
1.60 1.28 7.98 0.41
1.55 1.30 8.06 0.46
1.60 1.28 8.02 0.41
1.57 1.31 8.12 0.43
1.57 1.32 8.16 0.44
1.61 1.27 7.94 0.42
1.62 1.33 8.25 0.41
1.64 1.27 7.98 0.40
1.59 1.29 8.04 0.42
1.59 1.31 8.12 0.43
1.65 1.26 7.95 0.38
1.63 1.27 7.96 0.42

SYN-0.40 1.40 1.19 7.35 0.43
1.42 1.16 7.22 0.40
1.38 1.22 7.48 0.47
1.41 1.25 7.66 0.46
1.42 1.21 7.47 0.41
1.38 1.24 7.57 0.44
1.42 1.25 7.70 0.41
1.34 1.27 7.67 0.46
1.41 1.22 7.51 0.43
1.43 1.23 7.55 0.44
1.35 1.26 7.65 0.47
1.40 1.22 7.50 0.44

COM-0.48 1.20 1.13 6.87 0.51
1.25 1.19 7.19 0.45
1.12 1.18 7.04 0.48
1.06 1.25 7.29 0.52
1.18 1.21 7.22 0.53
1.17 1.19 7.10 0.50
1.21 1.16 6.99 0.46
1.17 1.13 6.82 0.46
1.14 1.21 7.17 0.52
1.09 1.19 7.01 0.48
1.11 1.20 7.11 0.47
1.16 1.24 7.38 0.48
1.15 1.21 7.22 0.49
1.22 1.12 6.85 0.46

SYN-0.50 1.16 1.01 6.19 0.42
1.12 1.07 6.48 0.44
1.15 0.98 6.06 0.45
1.14 1.06 6.43 0.44
1.13 0.98 6.02 0.44
1.10 1.12 6.72 0.53
1.19 0.95 5.96 0.36
1.17 0.99 6.11 0.41

118



4.6.5 Nonlinear fitting to effective performance curves

For each subvolume, the effective performance curve of cathode overpotential
(ηc) versus current density (j) was fitted with the nonlinear function to
extract the effective exchange current density (j0) and the Ohmic resistance
(Rohm). Figure 4.6.1 shows the performance curve and the fitted curve
from one subvolume of each microstructure type, for ERMINE and DREAM
SOFC. It can be seen that the performance curves were well fitted by the
nonlinear function, with the r-squared value of the fitting being 0.97 for the
ERMINE data and 0.99 for the DREAM SOFC data. The fitted values of
j0 and Rohm are also shown in each subfigure.
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Figure 4.6.1: Effective performance curves and fitted curves for one subvolume of
each microstructure type for both ERMINE and DREAM SOFC. Subfigure title indi-
cates the model name, the microstructure type, and the r-squared value for the fit-
ting.
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4.6.6 The effect of tortuosity and TPB density on DREAM
SOFC output

Figure 4.6.2 shows the impact of changing the YSZ tortuosity factor (τYSZ)
and the TPB density (ρTPB) in DREAM SOFC simulations on two output
performance metrics: the local activation overpotential at the TPBs (ηTPB)
and the effective current density (j). ηYSZ is plotted versus the distance to
the electrolyte (Z), while j is plotted across a range of global overpotential
over the cathode (ηc). Each subfigure is based on performing DREAM SOFC
simulations on the same COM-0.48 subvolume with manual changes in the
values of τYSZ and ρTPB. Both τYSZ and ρTPB have significant impact on
the performance metrics. Figure 4.6.2a and c indicate that an increase in
τYSZ effectively suppresses the values of ηTPB and j. On the other hand,
Figure 4.6.2b and d indicate that an increase in ρTPB effectively suppresses
ηTPB but raises j. As described in the main text, simply modifying the
tortuosity factors cannot bring both into agreement. Combining increased
local tortuosity with increased local current density in constrictions is argued
in the main text, using these figures, to explain discrepancies in the output
of the two models.
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Figure 4.6.2: Impact of the YSZ tortuosity (τYSZ) and the TPB density (ρTPB) on
the local activation overpotential at TPBs (ηTPB) and the effective current density
output (j) based on DREAM SOFC simulations applied to one COM-0.48 subvolume.
In (a) and (b), ηTPB is plotted versus the distance to the electrolyte (Z). In (c) and
(d), j is plotted across a range of global overpotential applied across the cathode
(ηc). In (a) and (c), τYSZ is altered such that the ratio of the YSZ tortuosity over the
YSZ volume fraction (τ/θ) ranges from 4 to 12. In (b) and (d), ρTPB is altered such
that its value ranges from 5 to 8 µm−2. In each figure legend, τ/θ = 4, or ρTPB = 5,
corresponds to the unaltered (original) data. Simulation output based on ERMINE is
also plotted for comparison to DREAM SOFC.
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4.6.7 Hotspot distribution visualization

After thresholding and clustering, the extracted hotspots from one subvol-
ume of each synthetic microstructure type are shown in Figure 4.6.3. In
each subfigure, the hotspots appear quite dense throughout the cathode vol-
ume and mostly concentrated towards the bottom of the cathode (or the
cathode/electrolyte interface). The hotspots of the SYN-0.50 subvolume are
noticeably fewer and larger than that of the other two subvolumes. This is
further illustrated by Figure 4.6.4, which shows X-Z plane projection of the
hotspot coordinates. The relative volume of each hotspot is indicated by the
marker size. It can be seen that the hotspot distribution of the SYN-0.50
subvolume is less dense and significantly nonuniform along the X axis.

Figure 4.6.3: Extracted hotspots of local current density from one subvolume of
each synthetic microstructure type. Subfigure title indicates microstructure type.

Figure 4.6.4: 2D projection of the local hotspots shown in Figure 4.6.3. Subfigure
title indicates microstructure type. Marker size indicates relative hotspot volume.
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5
High Performance Finite Element

Simulations of Infiltrated SOFC Cathode
Microstructures

This chapter is the second self-contained part of the thesis planned for aca-
demic journal publication. The following sections correspond to a standard
journal structure (e.g., abstract, introduction, methods, results and discus-
sion, conclusions), with an additional section for the supplementary material.
Therefore, the chapter can be treated as a stand-alone paper.

5.1 Abstract

High-throughput, high-performance finite element simulations are presented
that model electrochemistry and transport within dozens of solid oxide fuel
cell cathodes containing synthetically generated nanoscale infiltrates. The
computational approach retains the complex microstructural morphologies
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of cathodes, including those of the three backbone phases (gas, ion, and elec-
tron conductors) and the infiltrates (an electron conductor), in meshed do-
mains and computes distributions of local electrochemical quantities within
the domains. Simulations were implemented on a supercomputer (each at
140 cores) and carried out on 48 distinct microstructural subvolumes, with
varying backbone heterogeneities and infiltrate loadings, to investigate the
impact of the infiltration on the electrochemical performance metrics of dif-
ferent cathodes. Analyzing both the ensemble (averaged over subvolumes)
and the local (evaluated within subvolumes) performance metrics indicate
that infiltration of an electron conductor significantly improves the electro-
chemical performance of each backbone, and does not modify the essential
ionic transport properties of that backbone. These results shed light into
the design and fabrication of optimal electrodes in fuel cells.

5.2 Introduction

Infiltration of solid oxide fuel cell (SOFC) electrodes, which is the process of
introducing a nanoscale electrocatalyst phase to a pre-fabricated electrode
backbone, has been reported to significantly improve their electrochemical
performance [14, 53, 70–74, 78, 79, 107, 112, 119]. Infiltration thus modifies
the local electrode morphology/microstructure, which in turn modifies lo-
cal electrochemical activities and/or transport, resulting in improved overall
(cell-level) performance. Additionally, some infiltration has been shown to
reduce long-term degradation [28, 29]. The combination of increased electro-
chemical performance and decreased degradation are important targets for
commercialization of SOFCs, and infiltration offers a potential cost-effective
path to such electrode engineering. However, the effects infiltration has on
microstructure-based local electrochemistry, and their implications for per-
formance stability, are not well understood. To gain insight into such funda-
mental structure-performance relationships, methods to probe or simulate
local electrochemical fields within an infiltrated electrode, in a spatially-
resolved manner, are necessary.

Currently, it is intractable to experimentally determine local electrochem-
ical quantities inside an electrode microstructure. It is possible to develop
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numerical models that can be used to compute microstructural evolution,
species transport, and local electrochemistry within a microstructural do-
main [13, 18, 63, 85, 97, 118, 124, 128], and the average output of such
models compare favorably to average metrics of electrodes. Recently, we
developed our own open-source simulation code, ERMINE, capable of high-
throughput simulations on high-performance computing environments and
used it to highlight statistical variations expected in SOFC electrodes, both
between average values of different sub-volumes and between local values
within all sub-volumes [49]. Less work has targeted understanding the effect
of infiltration on microstructures. Liang et al. [76] used phase field mod-
eling to study morphological evolution of infiltrated electrodes undergoing
thermally-driven grain/particle coarsening. Yang et al. [128, 129] used con-
tinuum multiphysics modeling to simulate surface/bulk pathways of oxygen
reduction reaction (ORR), simulating the effects of infiltration by changing
effective rate constants or average microstructural properties to correspond
expected values in infiltrated electrodes. There have not been reports that
model infiltrated electrodes over spatially-resolved, meshed microstructural
domains. In our experience, such a model requires significant computational
resources, which have not been widely applied to SOFC electrode engineering
research, but are becoming more readily available.

In this work, we use ERMINE, a spatially-resolved, morphology-preserving
meshed model [49], to simulate electrochemistry and transport for both ex-
perimentally reconstructed and synthetically generated microstructures that
were subsequently synthetically infiltrated with nanoscale particles using an
in-house algorithm. All of the backbones considered here are composed
of three phases—YSZ (yttria-stabilized zirconia, an ion conductor), LSM
(lanthanum strontium manganite, an electron conductor), and air in pores
(oxygen gas conductor)—and were simulated in our previous paper [49]. The
infiltration algorithm introduces electron conducting LSM nanoparticles to
the solid-pore surfaces within the cathode backbone, by reassigning a certain
fraction of pore voxels at the solid-pore interfaces to be LSM seeds, followed
by some dilation and smoothing functions. All simulations were implemented
in parallel using high-performance computing (HPC) resources. Over 50
volumes were simulated, whose lineal dimensions were ≈ 20 times their av-
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erage particle dimension and were spread across four distinct groups, each
having a different standard deviation in particle size and/or local volume
fraction distributions. Distributions of electrochemical quantities of infil-
trated electrodes—within and across simulated domains—were investigated
and compared against the values from the uninfiltrated backbones. This
work represents a novel approach to understanding the effect of infiltration
on microstructure-based local electrochemistry and provides opportunities
for using simulation to engineer optimal SOFC electrode microstructures
via infiltration.

5.3 Methods

The microstructures studied in this work, including their acquisition and
analysis, were detailed in our previous works [48, 49, 82]. Briefly summa-
rized, these microstructures include an experimentally captured commercial
SOFC cathode microstructure (named COM-0.48) and three synthetically
generated microstructures (named SYN-0.34, SYN-0.40, and SYN-0.50, re-
spectively). COM indicates commercial microstructure of an SOFC pur-
chased from MSRI (Salt Lake City, UT) and SYN indicates synthetic mi-
crostructures [48] generated using Dream.3D (BlueQuartz Software, Spring-
boro, OH). The numbers in the names indicate the mean-normalized stan-
dard deviation of the particle size (σa/ a); it indicates the distribution width
of the particle size and was used as a primary input for the generation of the
synthetic microstructures. In our previous works [48, 49], it was reported
that COM-0.48 exhibits distinctively large variations in the distributions of
both microstructural properties and simulated effective performances. Fur-
ther, COM-0.48 resulted in the lowest overall performance, even though it
did not have the lowest TPB density nor did it have the highest σa/ a. Thus,
COM-0.48 is considered a more heterogeneous microstructure relative to the
synthetic ones having only particle size distributions incorporated.

All four microstructure types from [48, 49] were studied for this paper.
From each microstructure type, five subvolumes of 10 × 10 × 7 µm3 were
chosen from random locations within the large volume. For subvolumes
of COM-0.48 and SYN-0.50, which are the most heterogeneous and have
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the lowest performance [49], three different levels of infiltrate loading were
performed, where infiltrate particles were artificially generated using an in-
house algorithm that operates on the backbone microstructures in voxelated
form, as shown in Figure 5.3.1. This work considers the backbone synthetic
microstructures to be composed of pore-LSM-YSZ phases (i.e., the same as
the commercially made COM-0.48 cathode), and the infiltrate phase to be
the (perfect) electronic conductor LSM. The lack of any voltage drop within
the constricted nanoparticle conducting pathway will serve to describe an
upper bound on the performance enhancement from infiltration of electronic
conductors. First in the infiltration algorithm, a fraction f of the pore voxels
that are in contact with LSM/YSZ surfaces were randomly selected to in-
stantiate seeds; those voxels were converted from pore to LSM, as indicated
in Figure 5.3.1a and b. Without a clearer understanding of the true spatial
distributions of nanoparticles on the solid phases, which may be controlled
using processing methods, a random process was chosen to assess the impact
of such an infiltration. Next, the seeds were dilated using a morphological
dilation operation with a spherical kernel with a two voxel radius (which
translates to a sphere with a five voxel diameter), as shown in Figure 5.3.1c.
Finally, regions of original LSM/YSZ surfaces that were affected by the dila-
tion were restored, roughly halving the dilated spherical particles. The result
is a backbone microstructure populated with small hemispheres of particles,
five-voxels-wide, randomly deposited on the solid surfaces, as shown in Fig-
ure 5.3.1d. As the voxel size of the microstructural domains is ≈ 20–30 nm
[49], the in-plane width (out-of-plane height) of the infiltrate particles is on
the order of 100–150 (60–90) nm.

The three different levels of infiltrate loading used were f = 0.02, 0.04, 0.06.
3D renderings of a COM-0.48 microstructure subvolume infiltrated at dif-
ferent values of f are shown in Figure 5.3.2. Although the values of f are
small, the infiltrate distributions are dense on the LSM/YSZ surfaces, ow-
ing to the dilation step. The infiltration loading was determined from the
resulting microstructures as fractional pore volume converted to LSM and
fractional solid weight (assuming an LSM density of 6.5 g cm−3), which are
shown in Figure 5.6.1 (Supplementary Material, Sec. 5.6). It can be seen
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Figure 5.3.1: Diagram of infiltration algorithm. (a) Original LSM/YSZ surface in
voxelated form. (b) A seed placed at a random pore voxel on the LSM/YSZ surface.
(c) The seed is dilated using a spherical kernel. (d) Original LSM/YSZ surfaces are
returned.

that the decrease in pore volume and the increase in solid weight are clearly
impacted as f ranges from 0 to 0.06 (approximately in linear fashion). For
the maximum loading of f = 0.06, the pore volume was reduced by roughly
8 % for COM-0.48 and 10 % for SYN-0.50, and the weight is increased by
roughly 4–6 % for both. This level of infiltration is reasonable compared to
literature values [32, 72, 74].

Infiltration of the three phase backbone with LSM is expected to modify
directly the local electrochemically active sites, increasing the surface area of
LSM when the infiltrate is on LSM and increasing the triple-phase boundary
(TPB) density when LSM infiltrates on YSZ have connectivity with the LSM
backbone. A schematic of this is shown in Figure 5.3.3, where the original
TPB is morphologically modified owing to an isolated infiltrate straddling
an original TPB. New TPB is formed around the infiltrate in contact with
YSZ and the overall TPB segment is lengthened, contributing to an increase
in TPB density. For the current set of the materials parameters used for
ERMINE, the ORR occurs mostly through the three-phase boundary path-
way (or TPB pathway) rather than the two-phase boundary pathway [47, 49]
due to slow oxygen ion/vacancy transport in LSM and slow surface exchange
at pore/LSM interface. The contribution of the former is many orders of
magnitude greater than the latter. Therefore, the increase in TPB density
contributes much more significantly to overall performance than the increase
in LSM surface area does. In other words, even though a two-fold increase
in LSM surface area may result in a two-fold increase in two-phase pathway
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Figure 5.3.2: 3D rendering of a COM-0.48 subvolume infiltrated at different loading
levels (or f). The pores are transparent. The LSM phase is blue. The YSZ phase is
green. The infiltrate phase is cyan. (a) f = 0.00. (b) f = 0.02. (c) f = 0.04. (d)
f = 0.06.

current contribution, such improvement in performance is negligible relative
to the TPB pathway current output. This work therefore focuses on the
increase in TPB density upon infiltration and the corresponding change in
electrochemical performance.

Figure 5.3.4 shows the TPB densities (ρTPB) of the backbone microstruc-
tures (5 subvolumes each for COM-0.48 and SYN-0.50) as a function of
infiltration seed fraction f . ρTPB increases substantially with increasing f ;
at f = 0.06, ρTPB is almost doubled for these microstructures. Note that
only active TPBs are considered in this work, which are defined as the in-
tersection of percolated pore, LSM, and YSZ phases. Details regarding the
TPB density measurement were described in our previous work [49].
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Figure 5.3.3: (a) 3D rendering of a TPB line at the pore-LSM-YSZ junction. Note
that the pore phase is transparent. (b) 3D rendering of an infiltrate particle deposited
at the TPB. Considering the infiltrate phase is LSM, the original TPB is effectively
lengthened due to the formation of the new TPB formed around the infiltrate.

Figure 5.3.4: TPB density (ρTPB) as a function of f value for COM-0.48 and SYN-
0.50 subvolumes.

Once infiltrated (or not), the microstructures were subjected to process-
ing, meshing, and HPC simulations. Table 5.3.1 summarizes the ratio of
the number of converged simulations to the number of attempted simula-
tions with respect to the f value and the microstructure type. A total of
50 subvolumes—both backbone and infiltrated microstructures—were sub-
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jected to meshing and simulation, and 48 resulted in numerical convergence.
Note that the infiltrated microstructures originated from the backbones and
thus are almost identical to the backbones (except at the infiltrate loca-
tions). Each simulation was run on the Bridges supercomputer [98] (Pitts-
burgh Supercomputing Center, Pittsburgh, PA) with 140 regular-memory
cores over typically 2–5 hours. The hardware specifications can be found at
https://www.psc.edu/bridges. The electrochemical simulation, as described
in our previous work [49], is a reaction-and-transport model that simulates
ORR pathways in a three-phase cathode microstructure. The simulation
outputs scalar fields of electrochemical quantities (e.g., YSZ potential, ac-
tivation overpotential at TPBs, etc.) throughout the microstructure. En-
semble (or effective) performance metrics can be extracted from the local
electrochemical fields. Further details of the workflow encompassing mesh-
ing process, model implementation, and post processing were described in
[49]. This work used the same model parameters as our previous work [49].

Table 5.3.1: Simulation convergence yield

Microstructure type f = 0.00 f = 0.02 f = 0.04 f = 0.06

COM-0.48 5/5 5/5 5/5 4/5
SYN-0.34 5/5 - - -
SYN-0.40 5/5 - - -
SYN-0.50 5/5 5/5 5/5 4/5

5.4 Results and Discussion

The analyses of the simulation outputs largely follow those in our previous
work [49]. Various electrochemical quantities were analyzed to gain insight
into the effect of infiltration on cell performance. Some quantities are effec-
tive performance metrics, or those averaged over the whole subvolume, and
some are direct performance metrics, which are local values of reaction and
transport terms spatially distributed within the subvolume. Both quantities
are discussed to elucidate the impact of nanoscale infiltration on performance
of SOFC cathodes.
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5.4.1 TPB density and Effective Performance

Two of the more general effective performance metrics, the global overpo-
tential (η) and the global effective current density (j), were extracted from
each of the 48 converged simulations. The η-j curves are shown in Fig-
ure 5.6.2, for all sub-volumes. As discussed above, infiltration of LSM into
the LSM/YSZ/pore backbone is expected to increased the TPB density. The
values of j at a fixed overpotential (η = 0.20) are plotted against the TPB
density (ρTPB) in Figure 5.4.1. The values for the un-inflitrated backbones
are given as closed circles of different colors, and are consistent with values
reported previously from these sub-volumes (they were processed, meshed,
and simulated again here for consistency of comparison with the infiltrated
subvolumes). The dashed line represents the average performance of syn-
thetic microstructures as a function of ρTPB, and the spread in individual
sub-volumes around the average value is consistent with prior reports [49].
In this work, we focused infiltration on the two lower performing microstruc-
tures, SYN-0.50 (blue symbols) and COM-0.48 (black symbols). Note the
un-infiltrated COM-0.48 data points sit below the average performance line
of the synthetics, and perform worse (lower j at η = 0.20) than the SYN-0.50
that have lower TPB densities.

In Figure 5.6.2, it can be seen that increased infiltration values increase
the current density output at a fixed overpotential, for the ten distinct sub-
volumes subjected to infiltration. It is clear in Figure 5.4.1 that ρTPB in-
creases directly with infiltration, and this leads to a direct increase in j

at η = 0.20. The average ρTPB values for SYN-0.50 are 5.0, 6.1, and 7.6
µm/µm3 (which are increases of 16, 42, and 77 %) when f is 0.02, 0.04,
and 0.06, respectively. For SYN-0.50, this improvement in j at η = 0.20 is
approximately linear in ρTPB, with a slope similar to, but slightly shallower
than, the slope of the average value for the synthetic backbones. The relative
increase drops a bit between f = 0.04 and f = 0.06, perhaps indicating a
diminishing return on increased TPB density with infiltration loading. Nev-
ertheless, at f = 0.06, the ρTPB values are just slightly below those of the
SYN-0.34 backbones, which are the most uniform and best performing of
the electrode backbone microstructures. Note that the distribution of values
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for the infiltrated microstructures does not narrow significantly on infiltra-
tion, instead each backbone increases with TPB density but also reflects the
original location of the backbone in the distribution.

These observations are largely reinforced by the COM-0.48 simulations.
The average ρTPB values for COM-0.48 are 5.6, 6.8, and 8.6 µm/µm3 (which
are increases of 14, 39, and 76 %) when f is 0.02, 0.04, and 0.06, respec-
tively. Again, the improvement in j at η = 0.20 is approximately linear
in ρTPB, with a slope shallower than the slope of the average value for the
synthetic backbones, as well as of the SYN-0.50 infiltrated microstructures.
Likewise, the relative increase drops a bit between f = 0.04 and f = 0.06,
again indicating a diminishing return on increased TPB density with infil-
tration loading. Because of these observations, the relative location of an
individual sub-volume does not move significantly within the distribution
at the different infiltration values. Furthermore, the underperformance of
the COM-0.48 microstructures, relative to the synthetic ones, worsens at a
given ρTPB value (owing to the shallower slope), despite the increased TPB
densities and increased performance relative to themselves. This is most
notable at f = 0.06, because the ρTPB values for the COM-0.48 microstruc-
tures exceed all the synthetic microstructures, infiltrated or not. Yet, the
j at η = 0.20 of COM-0.48 remain highly scattered and are significantly
below the SYN-0.34 backbone performance values. These collected observa-
tions indicate that infiltration of LSM into LSM/YSZ/pore backbones is an
effective method to increase ρTPB and j at η = 0.20 (or any overpotential
value), but a signature of the original backbone remains for both the syn-
thetic microstructures, having only particle size distribution in-built, and
for the commercial microstructures, having both particle size and volume
fraction distributions present [48].

5.4.2 Activation and ohmic contributions

The electrochemical model was simulated over an overpotential-current range
(for these materials and microstructures) which results in two primary con-
tributions to overpotentials: activation (Tafel) and Ohmic. The effective
exchange current density (j0), which quantifies the average activation con-
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Figure 5.4.1: Values of j at η = 0.2 plotted against the subvolume-specific TPB
densities. Note that each data point is based on one parallel simulation implemented
on a supercomputer. The dashed line is a linear fit applied to the synthetic backbone
microstructures.

tribution, and the effective Ohmic resistance (Rohm), which captures the
average Ohmic contribution, were extracted from individual η-j curves (as
described in [49]). The effect of infiltration on these two values is quantified
in Figure 5.4.2a,b, which plots the change in the values of j0 (left axis, red
circles) and Rohm (right axis, blue x’s), relative to the backbone only values
(f = 0), as a function of f . Upon infiltration, j0 increases significantly, on
average for COM-0.48 (SYN-0.50) by 11.6, 30.4, and 56.7 % (12.6, 34.2, and
62.5 %), respectively for f = 0.02, 0.04, and 0.06. At the same time, Rohm

decreases with f , but only slightly: the average values for COM-0.48 (SYN-
0.50) changed by 0.7, -0.4, and -3.6 % (0.4, -3.0, and -7.5 %), respectively
for f = 0.02, 0.04, and 0.06. While both a j0 increase and an Rohm decrease
contribute to improved overall performance, as indicated by Figure 5.4.1,
the change in j0 is more significant. This is consistent with a somewhat lin-
ear trend in j at η = 0.20 with ρTPB, since the activation term is primarily
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associated with the TPB reaction, and the effective value linked to the total
TPB density.

As observed for the backbones from a given microstructure type, there is
a significant variation in performance metrics (See Figure 5.4.1 and [49])
owing to internal heterogeneities between subvolumes. Because the infil-
tration algorithm acts stochastically, one might envision variability in the
effect of infiltration. One notes that the range of the relative change in
either metric in Figure 5.4.2a,b appears to increase (it spreads out) with
increasing f . The mean-normalized standard deviation of j0 and Rohm at
each f value are plotted in Figure 5.4.2c,d. For both COM-0.48 (c) and
SYN-0.50 (d), the mean-normalized standard deviations steadily increase,
though the magnitude of these increases is on the order of 10–30 % (COM-
0.48) and 20–60 % (SYN-0.50) of the variation in the original microstructure.
Note the exception for the SYN-0.50 microstructures infiltrated at f = 0.06,
which is attributed to the small number of observations—five subvolumes at
each value of f , except four for f = 0.06—and the stochastic variability in
infiltration.

Overall, the observations in Figure 5.4.1 agree with those of Figure 5.4.2a-
b from the last section. Infiltration of LSM into LSM/YSZ/pore backbones
generally improves the performance of the existing backbone, primarily by
decreasing activation overpotentials or by increasing the effective exchange
current densities through increased TPB densities (an increased number of
electrochemically active sites). While the effective Ohmic transport improves
slightly, i.e., Rohm decreases slightly, a significant signature of the original
backbone remains in the infiltrated microstructures. It was shown that the
Ohmic contribution is largely dependent on local ionic transport in the YSZ
phase [49], and this was a significant source of variability in the backbones
themselves. It is likely that local ionic transport was not significantly altered
by the infiltration, which is to be expected for infiltration by an electronic
conductor if the additional TPB increase adds ionic current uniformly to
pre-existing transport paths instead of opening up previously dead or under-
utilized paths. For the most part, it appears that additional TPB density
is spread out somewhat uniformly, but with some variability around the
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Figure 5.4.2: (a-b) Changes in the effective performance descriptors, j0 and Rohm,
for COM-0.48 and SYN-0.50 upon infiltration. (c-d) Mean-normalized standard devia-
tion of j0 and Rohm for COM-0.48 and SYN-0.50 upon infiltration.

exact values owing to the stochastic nature of infiltration and the internal
variability of backbones. Importantly, infiltration does not lead to converged
overall performances across different subvolumes, which one might expect if
the original TPB density was poorly distributed with respect to the ionic
transport paths.

5.4.3 Local activation overpotentials at TPBs

Thus far, only effective electrochemical quantities have been discussed. Here,
at an global overpotential of η = 0.2 V, the values of local overpotentials at
active TPBs (ηTPB) are investigated. For ease of visualizing and quantify-
ing local variations of ηTPB, 3D fields of ηTPB were binned into a uniform
grid of 1 × 1 × 1 µm3 cubic spacing. In each bin, the median value was
determined, resulting in a 3D grid of the medians, with the Z axis being
the through-thickness direction. Figure 5.4.3 shows the average of these me-
dian values at different Z ranges for (a) COM-0.48 and (b) SYN-0.50. The
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electrolyte–cathode interface is at Z = 0. It can be seen that ηTPB is the
highest at the electrolyte–cathode interface and decreases with increasing
Z. Further, upon infiltration, local values of ηTPB decrease with increasing
f . The general shape of the ηTPB curves and their magnitudes were pre-
viously discussed in [49]. Note that any TPB location, the local activation
overpotential and the local ohmic overpotential must sum up to the global
overpotential (0.2 V). Thus, an increased ohmic overpotential will suppress
the activation overpotential, and vice versa.

Figure 5.4.3: Average of median values of ηTPB along the cathode thickness for (a)
COM-0.48 and (b) SYN-0.50. Note that these values are based on a global overpo-
tential of 0.2 V across the simulation domain.

It was already shown in our previous work [49] that an increase in ρTPB

effectively suppresses ηTPB at all Z values, primarily because of the increased
j values at all Z, which require more Ohmic overpotential to drive the in-
creased current. This is supported by Figure 5.4.3. It can be interpreted
that the infiltration increases the TPB density, which increases local cur-
rent densities and, therefore, the associated local ohmic overpotential at a
given TPB. The result is a suppressed distribution of ηTPB due to an in-
creased ohmic overpotential. In Figure 5.4.2a-b one sees that the effective
(overall) ohmic resistance is mostly unaffected (or slightly decreased) upon
infiltration. There it was argued that the decrease may arise from decreased
transport paths (on average) for the ionic current. This is consistent with
Figure 5.4.3 where, after infiltration and under a fixed global overpotential
(0.2 V), the more dense TPB network needs less driving force to deliver in-
creased current values. This continues to build a consistent interpretation of
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infiltration in these backbones: that infiltration of LSM increases TPB den-
sities, increases the TPB current density through the cathode, and the ionic
current through the same transport pathways that were important prior to
infiltration.

5.4.4 Local current density hotspot distributions

In our previous simulation work on these cathode backbones [49], one of the
more significant differences in ionic transport between the different types of
cathode microstructures was the number density and local volume of current
constrictions or hotspots: regions of very high values of local current density
in YSZ (jYSZ). To investigate the effect of infiltration on the local hotspots,
their distributions were investigated using an identical approach to that in
the previous work [49], focusing on the overall number and the number of
large volume hotspots. Figure 5.6.3 shows spatial distributions of the local
hotspots within a COM-0.48 subvolume as a function of infiltration values f .
In any image, the color of a hotspot serves to separate individual hotspots.
A cursory visual comparison of the plots at different f values indicates there
are very few changes of the hotspot distributions upon infiltration. More
careful inspection reveals that, at f = 0.06, a few additional small hotspots
were formed, although this is not immediately obvious. The same set of
observations can be made for SYN-0.50. Figure 5.4.4 shows the number of
hotspots for each subvolume (backbone or otherwise infiltrated) as a function
of ρTPB. Figure 5.4.4a plots the number of all hotspots, or all regions whose
jYSZ value is more than five standard deviations above the mean value, and
Figure 5.4.4b only includes those hotspots whose volumes are bigger than
0.5Vs, where Vs is the volume of a spherical particle of the mean particle size
(0.46 µm). For the backbones themselves, increased homogeneity leads to
increased TPB densities and increased (decreased) numbers of total (large)
hotspots. It can be seen, however, that the number of total or number of
large hotspots were not impacted by the infiltration, despite increased TPB
density. Figure 5.6.4 shows the volume distribution of the hotspots in a
standard boxplot; the local hotspots were also not impacted with respect to
the volume distribution.

140



Figure 5.4.4: Number of hotspots plotted against ρTPB for all subvolumes. The
dotted lines are linear fits applied to synthetic backbone microstructures only, (a)
Number of all hotspots plotted. (b) Number of larger hotspots (> 0.5Vs) plotted.

Since the formation of hotspots is due to local constrictions and local
ionic current transport, Figure 5.4.4 suggests that the hotspot distributions,
or equivalently the distributions of local ionic current transport, were not
influenced by the infiltration. In other words, the ionic current transport
remain largely unchanged. This supports the idea that the infiltration pri-
marily influences the activation contribution rather the Ohmic contribution,
and that the local distributions of ηTPB were more likely to be affected by
relative decrease in local electrochemical activities.

5.4.5 Summary Discussion

In this work, we investigated the effects of various loading amounts of elec-
tronically conducting infiltrates into LSM/YSZ/pore cathodes, and com-
pared these values to baseline un-infiltrated cells. 50 subvolumes were in-
vestigated for statistical and comparison purposes, and 48 led to readily
converged solutions to the numerical models simulated. Two major obser-
vations were made. First, the primary improvement in performance comes
from increased TPB density, lowering the overall activation overpotential
owing to the increased number of active sites. Second, the ionic transport
paths remain largely unchanged from the backbone, leading to a significant
impact of the original microstructure on the performance of the infiltrated
microstructures.

Because infiltration increases the TPB density almost by a factor of two,
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for f = 0.06, it may be a cost-effective method to fabricating a high-
performing electrode from a low TPB density electrode backbone, such as
the COM-0.48 or SYN-0.50. The question comes down to: is it cheaper
to synthesize a highly uniform, monodisperse microstructure, such as SYN-
0.34, or to fabricate an infiltrated system upon a heterogeneous backbone,
such as SYN-0.50? If one only considers TPB density, the answer to this
should be readily determined.

However, a significant signature of the ionic phase in the backbone per-
sists in the infiltrated cathodes, indicating that infiltration does not erase
entirely heterogeneities in the microstructure, which may be good or bad for
performance. Both the COM-0.48 and SYN-0.50 remain heterogeneous after
infiltration, as suggested by the increased standard deviations and constant
number of hotspots. This is most clearly seen in the underperformance of
the infiltrated COM-0.48 from the average synthetic performance: the infil-
tration studied here does not render the heterogeneous cathode performance
equal to that of the homogeneous synthetic ones, even if the TPB densities
approach one another.

Nevertheless, changes do occur within the cathode. Overall the current
density increases, indicating larger currents flowing through the microstruc-
ture, but generally through the same paths. The increased current density,
from increased site populations, requires TPBs to operate at lower activa-
tion overpotentials (increased Ohmic overpotentials) to drive the higher to-
tal local current density through the cathode YSZ channels. This reduction
in local activation overpotential could influence positively local degradation
modes, such as chromium poisoning, that are related to local activation over-
potentials [67, 92, 122]. Unfortunately, we cannot currently make a one-to-
one assignment between microstructure, electrochemistry, and degradation:
this work is a step in the direction of achieving this goal.

Finally, the collective discussions thus far provide a key insight into the ef-
fect of infiltration on local electrochemistry, and more importantly, microstructure-
based cell reliability and durability. The infiltration process clearly improves
the overall performance without any significant or negative impacts on lo-
cal electrochemistry. In fact, the lowered local activities may contribute to
a more stable electrochemical load inside the microstructures, and subse-
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quently a more durable/reliable performance.

5.5 Conclusions

In this work, a high-throughput, high-performance finite element computa-
tion approach was used to simulate electrochemcial performance of SOFC
electrodes as a function of microstructural features, focusing on the impact
of synthetically generated nano-scale infiltrates of an electron conductor.
The simulations retain 3D microstructural morphologies and local materi-
als parameters whilst computing local reaction-transport fluxes of relevant
electrochemical species. A total of 48 microstructure subvolumes—the size
of each is 10 × 10 × 10 µm (the average particle size is 0.46 µm)—were
successfully simulated using 140 cores each on a supercomputer. The 48
subvolumes consist of both experimentally collected and synthetically gen-
erated microstructures with a varying degree of microstructural heterogene-
ity. Analysis of the simulated performance metrics from the model—both
on the ensemble level (averaged over subvolumes) and the local level (locally
evaluated within subvolumes)–results in the following conclusions.

• For all microstructures, infiltration significantly increases TPB density
and improves current density output at a fixed global overpotential.

• Infiltration mainly impacts the activation contribution of the overall
performance, through the increased TPB density, and has limited im-
pact on the Ohmic and concentration overpotentials.

• Importantly, the ionic transport paths in the infiltrated cathodes re-
main nearly identical to those of the initial backbone, indicating that
new paths are not opened up via infiltration, but higher current den-
sities flow through the same channels. Thus, underperforming cath-
odes improve by infiltration, but remain underperforming relative to
microstructures having similar TPB density and improved ion flow
through YSZ.

• A higher infiltration load is observed to lead to increased scatter in
effective performance metrics, suggesting that the stochastic nature of
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infiltration adds to the inherent scatter within backbones, and demon-
strating that this type of infiltration does not have the effect of con-
verging effective performance of different microstructures.

• The local current density hotspots, which are largely dependent on
local ionic current constriction and transport, are unaffected by the
infiltration. This supports the idea that the infiltration mostly impacts
the activation contribution and not ionic transport.

• Within the microstructure subvolumes, the increased net current den-
sities owing to infiltration lead to higher local Ohmic overpotentials
and lower effective activation overpotentials, despite leading to higher
overall performance. This observation provides a valuable insight into
how the infiltration may alleviate local electrochemical degradation
modes while increasing net performance.

5.6 Supplementary Materials

5.6.1 Degree of infiltration loading

As described before, three different levels of infiltrate loading were applied
to two sets of microstructures: COM-0.48 and SYN-0.50. The infiltration
algorithm takes the value of f (a measure of infiltrate density) as the input
and outputs a microstructure volume with synthetically generated nanoscale
particles on the solid surfaces. Here the value of f is converted to two phys-
ical measures that better represent the extent of the infiltration: decrease in
pore volume and increase in solid weight. The change in pore volume was
computed simply by accounting for the number of voxels that became the
infiltrate phase, while the change in solid weight was computed by assuming
an LSM density of 6.5 g cm−3. Figure 5.6.1 shows these values as a function
of f .

For the COM-0.48 microstructures, the average decrease (increase) in pore
volume (solid weight) from the uninfiltrated microstructures was 3.2 , 6.1,
and 8.5 % (2.3, 4.0, and 4.7 %) for f = 0.02, 0.04, and 0.06, respectively.
For the COM-0.50 microstructures, the average decrease (increase) in pore
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volume (solid weight) from the uninfiltrated microstructures was 3.8, 7.5, and
10.1 % (2.4, 3.9, and 4.8 %) for f = 0.02, 0.04, and 0.06, respectively. Note
that the values for the solid weight changes are similar, since this reflects the
infiltrate weight. The pore volume changes slightly less for the COM-0.48,
because the original pore volume is larger. Also, as the infiltration value f

increases, the slope begins to decrease for both values (but more-so for the
solid weight increase). This arises as an outcome of nuclei overlapping in the
synthetic infiltration algorithm.

Figure 5.6.1: Degree of infiltration loading as represented by the decrease in pore
volume (red curves) and increase in solid weight (blue curves) for (a) COM-0.48 and
(b) SYN-0.50.
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5.6.2 Effective overpotential-current density plots

For each of the 48 converged simulations, the global (effective) current den-
sity (j) is plotted across the input range of overpotential (η = 0–0.4 V), as
shown in Figure 5.6.2. (a) only contains un-infiltrated microstructures plot-
ted as thin lines, (b) only contains COM-0.48 data, and (c) only contains
SYN-0.50 data. The markers represent the infiltrated subvolumes. Color
indicates microstructure type. The curves of the original, un-infiltrated sub-
volumes are consistent with the results of our previous study [49] (these were
all simulated again, for consistency sake). Note that the shape of these curves
indicate the overpotentials consist primarily of activation and Ohmic contri-
butions, without a significant concentration contribution (which is verified
through the observation that the local concentrations do not vary signifi-
cantly from the input values). Overall, improved performance curves are
observed for the infiltrated subvolumes.
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Figure 5.6.2: Effective η-j curve plots for all 48 converged subvolumes. For ease of
visualization, (a) only contains un-infiltrated mirostructures, (b) only contains COM-
0.48 data, and (c) only contains SYN-0.50 data. Thin lines represent original, un-
infiltrated microstructures, while markers represent infiltrated ones. Color indicates
microstructure type.
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5.6.3 Spatial distributions of local hotspots

Figure 5.6.3 shows the spatial distributions of local hotspots for one COM-
0.48 at different infiltration loads. Color indicates invidual hotspots, and is
arbitrarily assigned. The primary observation to be made is that there are
very little differences in the hotspot shapes and spatial distributions with in-
filtration, besides the difference in color (owing to the arbitary assignments).
With more careful inspection, it can be seen that high values of f result in
additional smaller hotspots, hotspots similar to the small hotspots observed
in the highly active backbones.

Figure 5.6.3: Spatial distributions of local hotspots for one COM-0.48 subvolume
that is (a) un-infiltrated, and infiltrated at f = 0.02, 0.04, 0.06 for (b), (c), and (d),
respectively. Color indicates individual hotspots.
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5.6.4 Hotspot volume distributions

Combining all the hotspots for the COM-0.48 and SYN-0.50 subvolumes,
the volume distributions of the hotspots are plotted against the value of f
in the standard boxplot, as shown in Figure 5.6.4. Note that the y axis is
in log scale, and any small changes in the log scale are much smaller in the
absolute scale. Infiltration does not lead to significant changes on hotspot
volumes in terms of the mean, the interquartile range (IQR), or the outlier
distributions, for either backbone.

Figure 5.6.4: Standard boxplots of the hotspot volume distributions plotted against
the value of f . The box represents the interquartile range (IQR), and the outliers are
circle markers whose values are greater than Q3 + 1.5IQR or less than Q3 − 1.5IQR,
where Q1 is the first quartile, and Q3 is the third quartile.
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6
Overall Conclusions and Future Work

This thesis embodies a comprehensive methodology for an end-to-end, sample-
to-simulation workflow that characterizes, reconstructs, processes, meshes,
and finally simulates electrochemistry (reaction and transport) within solid
oxide fuel cell (SOFC) electrode microstructures. An emphasis is placed
on reconstructing high-definition, locally-resolved complex microstructures
over large scales and applying high-performance, high-throughput simula-
tions to extract a large amount of performance data that reflects statistical
trends and/or significance. The long-term goal relative to SOFCs is to de-
velop an understanding between local microstructure and performance that
will inform future investigations of cell reliability and durability, and will aid
process engineers improve such performance measures. The scope of the cur-
rent work first demonstrates the plausibility of carrying out such work, and
then uses preliminary analysis techniques and findings to gain insight into
how microstructural heterogeneities directly impact both local and global
performance.

The main motivation for emphasizing large-scale reconstructions and high
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performance computing (HPC) platforms is to move forward from current
conventional computational approaches, which are overly limited with re-
spect to total volume and complexity of physics for relevant SOFC simu-
lations. Many of the works in the literature have not utilized large-scale
characterization or high performance computations. Further, many such
works have only considered effective medium theory (EMT) models that
compute the ensemble/effective performance metrics averaged over a given
microstructure subvolume. In doing so, valuable information regarding local
performance quantities is lost. These quantities (e.g., local current density
constrictions) have been shown to significantly influence the ensemble perfor-
mance. Thus, to understand cell durability and reliability on a higher level,
one must consider that the microstructure dictates local performance/degra-
dation, which in turn dictates ensemble performance/degradation. Natu-
rally, capturing distributions of local performance quantities over large-scale
microstructure volumes (for statistical significance) necessitates high perfor-
mance resources.

The model/workflow developed herein has the following characteristics:

• High-resolution, large-scale microstructure acquisition

• Straightforward image-based volumetric meshing that conforms to com-
plex, multi-phased microstructures

• Computation of local electrochemical fields in morphology-resolved mi-
crostructures at considerable length scales

• Modular nature of user-defined physics; addition or modification of
physics requires minimal programming effort

• Implementation on HPC platforms, leading to fast, high-throughput
computations

Such characteristics allow for flexible modification or addition of physics
codes, portability between different HPC platforms (for larger scaling), and
opportunities to generalize and simulate other microstructurally complex
energy device materials. There are many possibilities for the future work.
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For example, one can apply or append degradation models into the cur-
rent model architecture to correlate microstructure with local degradation.
Adding thermal conduction to investigate thermally-driven microstructural
evolution/failure is also another promising future direction.

In the first publishable study of this work, ERMINE (the name of the
model developed in this work) was used to explore the effect of microstruc-
tural heterogeneity on local and global performance metrics. This work was
novel because of the computational power and the amount of datasets uti-
lized relative to the current literature. A total of 47 subvolumes of meshed
three-phase cathode microstructures were simulated. Each subvolume is at
considerable length scale and was computed with > 100 cores on a supercom-
puter. Additionally, both experimentally characterized and synthetically
generated microstructures were used that consist of a range of heterogene-
ity. The conclusions from the study are as follows:

• The average performance simulated from the locally-resolved model
compares favorably to the EMT models, indicating the local physics
are accurately captured.

• The largest discrepancy between the locally-resolved simulations and
the EMT models arises from the local ionic (Ohmic) transport in the
YSZ phase of the active cathode. Analysis of local activation overpo-
tential at TPB sites and local current density in YSZ reinforce this.

• Constriction of local current density was shown by the locally-resolved
simulations to be widespread in all microstructures, but this is not
accounted for by either EMT model. Thus, high-throughput locally-
resolved simulations offer a path to informing/improving the accuracy
of EMT models.

• The ability of the locally-resolved model to compute fields of activation
overpotentials and current density hotspots demonstrates the potential
for using locally-resolved simulations to better inform models of local
degradation mechanisms.

• The distinctive heterogeneity of the commercial cathode, previously
captured as variations in local volume fractions, clearly impacts the
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electrochemical properties simulated by the locally-resolved models;
the commercial microstructure results in distinctive distributions of
(1) effective voltage-current performance output, (2) local activation
overpotentials at TPB sites, and (3) local current densities in YSZ.

• The distinctive distributions of local electrochemical quantities con-
tribute unfavorably to the ionic transport terms, resulting in the com-
mercial microstructure having the worst overall performance relative
to the synthetic microstructures, despite not having the lowest values
of TPB density.

• Many of these findings can be attributed to the high-performance,
high-throughput nature of the presented computational approach, al-
lowing locally-resolved simulations of many microstructural volumes,
with each having large enough size to compute accurate local proper-
ties. Such methods offer a large-data, statistical approach to under-
standing fuel cell performance characteristics, which will underpin the
development of high-durability, high-reliability electrochemical cells.

As a final demonstration and exploration of SOFC microstructure-performance
relationship, the effects of infiltration on local/global performance metrics
were investigated using ERMINE. This was the first time local electrochem-
istry of synthetically generated nanoscale infiltration was modeled in a com-
plex microstructure. Similar to the previous study, a combination of exper-
imentally captured and synthetic microstructures was used to constitute of
range of heterogeneity. A total of 47 subvolumes—infiltrated or not—were
simulated for meaningful statistical observation. These subvolumes origi-
nated from the converged sets in the study described above. The conclusions
from the work are as follows:

• For all microstructures, infiltration significantly increases TPB density
and improves current density output at a fixed global overpotential.

• Infiltration mainly impacts the activation contribution of the overall
performance, through the increased TPB density, and has limited im-
pact on the Ohmic and concentration overpotentials.
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• Importantly, the ionic transport paths in the infiltrated cathodes re-
main nearly identical to those of the initial backbone, indicating that
new paths are not opened up via infiltration, but higher current den-
sities flow through the same channels. Thus, underperforming cath-
odes improve by infiltration, but remain underperforming relative to
microstructures having similar TPB density and improved ion flow
through YSZ.

• A higher infiltration load is observed to lead to increased scatter in
effective performance metrics, suggesting that the stochastic nature of
infiltration adds to the inherent scatter within backbones, and demon-
strating that this type of infiltration does not have the effect of con-
verging effective performance of different microstructures.

• The local current density hotspots, which are largely dependent on
local ionic current constriction and transport, are unaffected by the
infiltration. This supports the idea that the infiltration mostly impacts
the activation contribution and not ionic transport.

• Within the microstructure subvolumes, the increased net current den-
sities owing to infiltration lead to higher local Ohmic overpotentials
and lower effective activation overpotentials, despite leading to higher
overall performance. This observation provides a valuable insight into
how the infiltration may alleviate local electrochemical degradation
modes while increasing net performance.

Together, these studies demonstrate that ERMINE shows great promise
for providing insight and observations that are not possible in current effec-
tive medium theory approaches, which are limited in accounting for locally
varying electrochemical quantities. The findings of both aforementioned
studies are mainly attributed to the high-performance computational ap-
proach that enables a robust statistical inspection of the simulation data.
However, this work has not fully explored some of the more statistically
advanced and rigorous models that can potentially benefit greatly from the
massive amounts of data that can be generated from this work. Methodolog-
ically, ERMINE is only the beginning for how future SOFC studies should
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conduct investigations into microstructure-driven performance/failure met-
rics. To further the understanding of cell durability and reliability with
respect to electrode microstructures, ERMINE offers many possibilities for
future work due to the flexible and automated nature of the established
workflow. One may introduce degradation physics into the current existing
model, convert material properties for an entirely different cathode com-
position, or even scale up current simulation production for massive data
generation and advanced statistical analysis.
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A
ERMINE Source Codes

A.1 The Input File

The input files, which can be found under /inputs of the ERMINE direc-
tory, control all necessary simulation options on the highest level. These
options include the path of the mesh file, the physics to be simulated, model
parameters, the type of the numerical solver, output format, etc. The input
file itself is passed as an option for the command that runs parallel processes
using ERMINE’s compiled executable. For example, the following command
instantiates an MPI parallel process with input_file.i on 32 cores:

1 mpiexec --n 32 ./executable -i input_file.i

Below is an example of an input file that instantiates the ERMINE model:
1 [Mesh]
2 file = meshes/micro/russiandoll/s4/MSRI_CAT_box10_shrink4.inp
3 []
4

5 [MeshModifiers]
6 [./meshScale]

157



7 type = Transform
8 transform = SCALE
9 vector_value = '1e-4 1e-4 1e-4' # from um to cm

10 [../]
11

12 [./phase_12_interface]
13 type = SideSetsBetweenSubdomains
14 depends_on = meshScale
15 master_block = 'PT_MASK_1_TET4 '
16 paired_block = 'PT_MASK_2_TET4 '
17 new_boundary = 'interface_12 '
18 [../]
19 [./phase_21_interface]
20 type = SideSetsBetweenSubdomains
21 depends_on = meshScale
22 master_block = 'PT_MASK_2_TET4 '
23 paired_block = 'PT_MASK_1_TET4 '
24 new_boundary = 'interface_21 '
25 [../]
26

27 [./phase_23_interface]
28 type = SideSetsBetweenSubdomains
29 depends_on = meshScale
30 master_block = 'PT_MASK_2_TET4 '
31 paired_block = 'PT_MASK_3_TET4 '
32 new_boundary = 'interface_23 '
33 [../]
34

35 [./phase_32_interface]
36 type = SideSetsBetweenSubdomains
37 depends_on = meshScale
38 master_block = 'PT_MASK_3_TET4 '
39 paired_block = 'PT_MASK_2_TET4 '
40 new_boundary = 'interface_32 '
41 [../]
42 []
43

44 #============================================================#
45

46 [GlobalParams]
47 # E_rev = 1.028 # (V)
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48 # phi_LSM = 0.928 # (V)
49 pO2_CE = 1e-20 # (atm)
50 [../]
51

52 [Functions]
53 [./funcPotentialLSM]
54 type = ParsedFunction
55 value = 'E_rev - eta*t'
56 vars = 'E_rev eta'
57 vals = '1.028 0.4'
58 [../]
59 []
60

61 [Materials]
62 # PT_MASK_1_TET4 = pore
63 # PT_MASK_2_TET4 = LSM
64 # PT_MASK_3_TET4 = YSZ
65 # PT_MASK_4_TET4 = TPB
66 [./gasDiffFluxCoefficient]
67 type = ParsedMaterial
68 block = 'PT_MASK_1_TET4 PT_MASK_4_TET4 '
69 f_name = 'gasDiffFluxCoef '
70 constant_names = 'D_O2 R T' # (cm^2/s)

, (J/K/mol), (K)
71 constant_expressions = '0.64 8.3144598 1073.0'
72 function = 'D_O2/R/T*101325'
73 [../]
74

75 [./vacancyDiffFluxCoefficient]
76 type = ParsedMaterial
77 block = 'PT_MASK_2_TET4 PT_MASK_4_TET4 '
78 f_name = 'vacDiffFluxCoef '
79 constant_names = 'D_O a NA' # (cm^2/s)

, (cm), (1/mol), .
80 constant_expressions = '7.5e-7 3.893e-8 6.022e23'
81 function = 'D_O/(a^3)/NA*1e6'
82 [../]
83

84 [./vacancyDriftFluxCoefficient]
85 type = GenericConstantMaterial
86 block = 'PT_MASK_3_TET4 PT_MASK_4_TET4 '
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87 prop_names = 'sigma_YSZ ' # (S/cm)
88 prop_values = '4e-2'
89 [../]
90 []
91

92 #============================================================#
93

94 [Variables]
95 [./p_O2]
96 block = 'PT_MASK_1_TET4 PT_MASK_4_TET4 '
97 initial_condition = 0.21 # (atm)
98 scaling = 1e5
99 [../]

100

101 [./V_O]
102 block = 'PT_MASK_2_TET4 PT_MASK_4_TET4 '
103 initial_condition = 2.580947226225166e-08 # (.) pO2 = 0.21 atm
104 scaling = 1e8
105 [../]
106

107 [./phi_YSZ]
108 block = 'PT_MASK_3_TET4 PT_MASK_4_TET4 '
109 initial_condition = -0.00000 # (V)
110 scaling = 1e7
111 [../]
112 []
113

114 #============================================================#
115

116 [Kernels]
117 [./gasDiffusion]
118 type = DiffMatKernel
119 block = 'PT_MASK_1_TET4 PT_MASK_4_TET4 '
120 variable = p_O2
121 diff_coef = 'gasDiffFluxCoef '
122 [../]
123

124 [./vacancyDiffusion]
125 type = DiffMatKernel
126 block = 'PT_MASK_2_TET4 PT_MASK_4_TET4 '
127 variable = V_O
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128 diff_coef = 'vacDiffFluxCoef '
129 [../]
130

131 [./vacancyIonicDrift]
132 type = DiffMatKernel
133 block = 'PT_MASK_3_TET4 PT_MASK_4_TET4 '
134 variable = phi_YSZ
135 diff_coef = 'sigma_YSZ '
136 [../]
137

138 [./tpbReactionOxygenPore]
139 type = CoupledTPBOxygenPressurePoreQS
140 block = 'PT_MASK_4_TET4 '
141 variable = p_O2
142 phi_YSZ = phi_YSZ
143 s0 = 136 # (A/cm^3) (6.8 * 20)
144 function_phi_LSM = 'funcPotentialLSM '
145 [../]
146

147 [./tpbReactionPotentialYSZ]
148 type = CoupledTPBPotentialYSZQS
149 block = 'PT_MASK_4_TET4 '
150 variable = phi_YSZ
151 p_O2 = p_O2
152 s0 = 136 # (A/cm^3) (6.8 * 20)
153 function_phi_LSM = 'funcPotentialLSM '
154 [../]
155 []
156

157 #============================================================#
158

159 [InterfaceKernels]
160 [./interfaceSurfaceExchangeFullyCoupled]
161 type = InterfaceSurfExchangeFullyCoupled
162 variable = p_O2
163 neighbor_var = V_O
164 boundary = 'interface_12 '
165 k = 6.14e-6 # (cm/s)
166 [../]
167

168 [./interfaceChargeTransferFullyCoupled]
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169 type = InterfaceChargeTransferFullyCoupledQS
170 variable = V_O
171 neighbor_var = phi_YSZ
172 boundary = 'interface_23 '
173 j0 = 0.193 # (A/cm^2)
174 function_phi_LSM = 'funcPotentialLSM '
175 [../]
176 []
177

178 #============================================================#
179

180 [BCs]
181 [./oxygenPartialPressure_top]
182 type = DirichletBC
183 variable = p_O2
184 boundary = 'SF_MASK_1_WITH_ZMIN '
185 value = 0.21 # (atm)
186 [../]
187

188 [./potentialYSZ_bottom]
189 type = DirichletBC
190 variable = phi_YSZ
191 boundary = 'SF_MASK_3_WITH_ZMAX '
192 value = 0.00000 # (V)
193 [../]
194 []
195

196 #============================================================#
197

198 [AuxVariables]
199 [./aux_pO2_LSM]
200 block = 'PT_MASK_2_TET4 PT_MASK_4_TET4 '
201 [../]
202

203 [./aux_Erev_LSM]
204 block = 'PT_MASK_2_TET4 PT_MASK_4_TET4 '
205 [../]
206

207 #[./aux_phi_YSZ_gradNorm]
208 # block = 'PT_MASK_4_TET4 '
209 # order = CONSTANT
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210 # family = MONOMIAL
211 #[../]
212 []
213

214 [AuxKernels]
215 [./pO2_LSM]
216 type = ParsedAux
217 variable = aux_pO2_LSM
218 block = 'PT_MASK_2_TET4 PT_MASK_4_TET4 '
219 function = '10^(-2.173913*log10(V_O) - 17.173913)'
220 args = 'V_O'
221 [../]
222

223 [./Erev_LSM]
224 type = ParsedAux
225 variable = aux_Erev_LSM
226 block = 'PT_MASK_2_TET4 PT_MASK_4_TET4 '
227 function = '-R*T/4/F * log(1e-20 / aux_pO2_LSM)'
228 constant_names = 'R T F'
229 constant_expressions = '8.3144598 1073 96485.33289' # (J/K/mol

), (K), (C/mol)
230 args = 'aux_pO2_LSM '
231 [../]
232

233 #[./phi_YSZ_gradNorm]
234 # type = VariableGradientNorm
235 # block = 'PT_MASK_4_TET4 '
236 # variable = aux_phi_YSZ_gradNorm
237 # gradient_variable = 'phi_YSZ'
238 #[../]
239 []
240

241 #============================================================#
242

243 [Postprocessors]
244 [./I_YSZ_bottom]
245 type = SideFluxIntegral
246 variable = phi_YSZ
247 diffusivity = 'sigma_YSZ '
248 boundary = 'SF_MASK_3_WITH_ZMAX '
249 outputs = 'console csv'
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250 [../]
251

252 [./j_YSZ_bottom]
253 type = SideFluxAverage
254 variable = phi_YSZ
255 diffusivity = 'sigma_YSZ '
256 boundary = 'SF_MASK_3_WITH_ZMAX '
257 outputs = 'console csv'
258 [../]
259

260 [./phi_LSM]
261 type = FunctionValuePostprocessor
262 function = 'funcPotentialLSM '
263 outputs = 'console csv'
264 [../]
265 []
266

267 #============================================================#
268

269 [Preconditioning]
270 [./smp]
271 type = SMP
272 full = true
273 petsc_options = '-snes_converged_reason -ksp_converged_reason '
274 [../]
275 []
276

277 #============================================================#
278

279 [Executioner]
280 type = Transient
281 start_time = 0.0
282 end_time = 1.0
283 dtmin = 1e-4
284 nl_rel_tol = 1e-7
285 nl_abs_tol = 1e-10
286 l_tol = 1e-04
287 l_max_its = 2000
288 [./TimeStepper]
289 type = FunctionDT
290 time_t = '0.0 0.1 0.5 1.0'
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291 time_dt = '0.01 0.1 0.1 0.2'
292 [../]
293 solve_type = 'NEWTON'
294 #petsc_options_iname = '-pc_type -pc_hypre_type '
295 #petsc_options_value = 'hypre boomeramg '
296 petsc_options_iname = '-ksp_gmres_restart -pc_type'
297 petsc_options_value = '100 bjacobi'
298 []
299

300 #============================================================#
301

302 [Outputs]
303 exodus = true
304 csv = true
305 file_base = outputs/micro/russiandoll/s4/MSRI_CAT_box10_shrink4
306 append_date = true
307 append_date_format = '%Y-%m-%d'
308 #print_perf_log = true
309 []
310

311 [Debug]
312 show_var_residual_norms = true
313 []
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A.2 The Kernels

In the MOOSE framework, a kernel generally refers to a mathematical term,
or an operator, that operates on variables in a partial differential equation
(PDE). In other words, a kernel may be considered as a piece of physics. In
some cases, it may be favorable to use a kernel to represent multiple operators
or terms in a PDE. Since MOOSE is an objected-orientated environment,
all kernels (as well as all other objects) are written as C++ classes that
inherit from parent classes already defined within the framework. In other
words, users who wish to add their own physics may simply create custom
kernels to construct the PDEs; but they need to follow a set of rules inherited
from parent classes in order to interface with MOOSE and the core libraries
(PETSc and libMesh).

The source codes for the physics discussed in the second chapter, partic-
ularly the surface exchange, the charge transfer, and the TPB reaction, are
shown here. No custom kernels were necessary for the bulk transports, since
they all follow a common diffusion-type operator, as shown in

∇ · (D∇u), (A.1)

that one would expect from a continuity equation. This diffusion-type oper-
ator is readily available in the MOOSE framework.

A.2.1 The Surface Exchange Kernel

1 #include "InterfaceSurfExchangeFullyCoupled.h"
2 #include <cmath>
3

4 template <>
5 InputParameters validParams <InterfaceSurfExchangeFullyCoupled >()
6 {
7 InputParameters params = validParams <InterfaceKernel >();
8 params.addClassDescription("InterfaceKernel that sets the flux

of u as J = k * (neighbor_value_inf - neighbor_value)");
9 params.addRequiredParam <Real>("k","Exchange coefficient (cm/s)")

;
10 params.addParam <Real>("R", 8.3144598, "Gas constant (J/K/mol)");
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11 params.addParam <Real>("T", 1073.0, "Temperature (T)");
12 return params;
13 }
14

15 InterfaceSurfExchangeFullyCoupled::
InterfaceSurfExchangeFullyCoupled(const InputParameters &
parameters) :

16 InterfaceKernel(parameters),
17 _k(getParam<Real>("k")),
18 _R(getParam<Real>("R")),
19 _T(getParam<Real>("T"))
20 {
21 if (!parameters.isParamValid("boundary"))
22 {
23 mooseError("In order to use the InterfaceSurfExchange dgkernel

, you must specify a boundary where it will live.");
24 }
25 }
26

27 Real
28 InterfaceSurfExchangeFullyCoupled::computeQpResidual(Moose::

DGResidualType type)
29 {
30 Real a = 3.893e-8; // LSM unit cell edge lenth (cm)
31 Real NA = 6.022e23; // Avogadro number (1/mol)
32 Real logP = log10(_u[_qp]);
33 Real logV = -0.46*logP - 7.9;
34 Real V_p = pow(10.0,logV);
35

36 Real res = 1e6 / pow(a,3.0) / NA * _k * (_neighbor_value[_qp] -
V_p);

37

38 switch (type)
39 {
40 case Moose::Element:
41 res *= 0.5 * _test[_i][_qp]; // flux outwards of

phase1
42 break;
43

44 case Moose::Neighbor:
45 res *= _test_neighbor[_i][_qp]; // flux inwards into
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phase2
46 break;
47 }
48

49 return res;
50 }
51

52 Real
53 InterfaceSurfExchangeFullyCoupled::computeQpJacobian(Moose::

DGJacobianType type)
54 {
55 Real a = 3.893e-8; // LSM unit cell edge lenth (cm)
56 Real NA = 6.022e23; // Avogadro number (1/mol)
57 Real logP = log10(_u[_qp]);
58 Real logV = -0.46*logP - 7.9;
59

60 Real logV_prime = -0.46;
61

62 Real jac = 0.0;
63

64 switch (type)
65 {
66 case Moose::ElementElement:
67 jac = -1e6 / pow(a,3.0) / NA * _k * pow(10,logV) *

logV_prime / _u[_qp]
68 * 0.5 * _test[_i][_qp] * _phi[_j][_qp];
69

70 case Moose::ElementNeighbor:
71 jac = 1e6 / pow(a,3.0) / NA * _k
72 * 0.5 * _test[_i][_qp] * _phi_neighbor[_j][_qp];
73 break;
74

75 case Moose::NeighborNeighbor:
76 jac = 1e6 / pow(a,3.0) / NA * _k
77 * _test_neighbor[_i][_qp] * _phi_neighbor[_j][_qp];
78 break;
79

80 case Moose::NeighborElement:
81 jac = -1e6 / pow(a,3.0) / NA * _k * pow(10,logV) *

logV_prime / _u[_qp]
82 * _test_neighbor[_i][_qp] * _phi[_j][_qp];
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83 break;
84 }
85

86 return jac;
87 }
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A.2.2 The Charge Transfer Kernel

1 #include "InterfaceChargeTransferFullyCoupledQS.h"
2 #include "Function.h"
3 #include <cmath>
4

5 template <>
6 InputParameters validParams <InterfaceChargeTransferFullyCoupledQS

>()
7 {
8 InputParameters params = validParams <InterfaceKernel >();
9 params.addClassDescription("InterfaceKernel that sets the charge

transfer flux as j = 2 * j0 * sinh(0.5 * beta * eta_ct).
Master block is phase2 (LSM)");

10 params.addRequiredParam <Real>("j0", "Charge transfer exchange
current density (A/cm^2)");

11 params.addParam <Real>("z", 4.0, "electron number (num of
electrons transferred)");

12 params.addParam <Real>("F", 96485.33289, "Faraday constant (C/mol
)");

13 params.addParam <Real>("R", 8.3144598, "Gas constant (J/K/mol)");
14 params.addParam <Real>("T", 1073.0, "Temperature (T)");
15 params.addRequiredParam <FunctionName >("function_phi_LSM", "

Function for the LSM potential");
16 params.addRequiredParam <Real>("pO2_CE", "Oxygen Partial Pressure

at the Counter Electrode (atm)");
17 return params;
18 }
19

20 InterfaceChargeTransferFullyCoupledQS::
InterfaceChargeTransferFullyCoupledQS(const InputParameters &
parameters) :

21 InterfaceKernel(parameters),
22 _j0(getParam <Real>("j0")),
23 _z(getParam<Real>("z")),
24 _F(getParam<Real>("F")),
25 _R(getParam<Real>("R")),
26 _T(getParam<Real>("T")),
27 _func_phi_LSM(getFunction("function_phi_LSM")),
28 _pO2_CE(getParam <Real>("pO2_CE"))
29 {
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30 if (!parameters.isParamValid("boundary"))
31 {
32 mooseError("In order to use the InterfaceChargeTransfer

dgkernel , you must specify a boundary where it will live.");
33 }
34 }
35

36 Real
37 InterfaceChargeTransferFullyCoupledQS::computeQpResidual(Moose::

DGResidualType type)
38 {
39 Real b = _z * _F / _R / _T;
40 Real logV = log10(_u[_qp]);
41 Real logP = -2.173913*logV - 17.173913;
42 Real pO2 = pow(10.0,logP);
43 Real E_conc = - _R * _T / _z / _F * log(_pO2_CE / pO2);
44 Real phi_LSM = _func_phi_LSM.value(_t, _q_point[_qp]);
45 Real eta_ct = E_conc - (phi_LSM - _neighbor_value[_qp]);
46

47 Real res = 2.0 * _j0 * sinh(0.5*b*eta_ct);
48

49 switch (type)
50 {
51 case Moose::Element:
52 res *= -1e6 / _z / _F * _test[_i][_qp]; // vacancy flux

inwards of phase2 (master)
53 break;
54

55 case Moose::Neighbor:
56 res *= _test_neighbor[_i][_qp]; // electric flux

outwards of phase3 (paired)
57 break;
58 }
59

60 return res;
61 }
62

63 Real
64 InterfaceChargeTransferFullyCoupledQS::computeQpJacobian(Moose::

DGJacobianType type)
65 {
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66 Real b = _z * _F / _R / _T;
67 Real logV = log10(_u[_qp]);
68 Real logP = -2.173913*logV - 17.173913;
69 Real pO2 = pow(10.0,logP);
70 Real E_conc = - _R * _T / _z / _F * log(_pO2_CE / pO2);
71 Real phi_LSM = _func_phi_LSM.value(_t, _q_point[_qp]);
72 Real eta_ct = E_conc - (phi_LSM - _neighbor_value[_qp]);
73

74 Real logP_prime = -2.173913;
75

76 Real jac = 0.0;
77

78 switch (type)
79 {
80 case Moose::ElementElement:
81 jac = _j0 * cosh(0.5*b*eta_ct) * logP_prime / _u[_qp]
82 * -1e6 / _z / _F * _phi[_j][_qp] * _test[_i][_qp];
83 break;
84

85 case Moose::ElementNeighbor:
86 jac = b * _j0 * cosh(0.5*b*eta_ct)
87 * -1e6 / _z / _F * _phi_neighbor[_j][_qp] * _test[_i][

_qp];
88 break;
89

90 case Moose::NeighborNeighbor:
91 jac = b * _j0 * cosh(0.5*b*eta_ct)
92 * _phi_neighbor[_j][_qp] * _test_neighbor[_i][_qp];
93 break;
94

95 case Moose::NeighborElement:
96 jac = _j0 * cosh(0.5*b*eta_ct) * logP_prime / _u[_qp]
97 * _phi[_j][_qp] * _test_neighbor[_i][_qp];
98 break;
99 }

100

101 return jac;
102 }
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A.2.3 The TPB Reaction Kernel

1 #include "CoupledTPBOxygenPressurePoreQS.h"
2 #include "Function.h"
3 #include <cmath>
4

5

6 template <>
7 InputParameters validParams <CoupledTPBOxygenPressurePoreQS >()
8 {
9 InputParameters params = validParams <Kernel >();

10 params.addClassDescription("Fully Coupled TPB reaction source
kernel in sinh() form for oxygen concentration in pore. j = 2 *
j0 * sinh(coef * eta)");

11 params.addRequiredParam <Real>("s0", "Exchange volumetric current
density rate (A/cm^3)");

12 params.addParam <Real>("z", 4.0, "electron number (num of
electrons transferred)");

13 params.addParam <Real>("F", 96485.33289, "Faraday constant (C/mol
)");

14 params.addParam <Real>("R", 8.3144598, "Gas constant (J/K/mol)");
15 params.addParam <Real>("T", 1073.0, "Temperature (T)");
16 params.addRequiredParam <FunctionName >("function_phi_LSM", "

Function for the LSM potential");
17 params.addRequiredParam <Real>("pO2_CE", "Oxygen partial pressure

at the counter electrode (atm)");
18 params.addRequiredCoupledVar("phi_YSZ", "The coupled potential

variable in eta = potential_rev - (phi_LSM - phi_YSZ)");
19 return params;
20 }
21

22 CoupledTPBOxygenPressurePoreQS::CoupledTPBOxygenPressurePoreQS(
const InputParameters & parameters) :

23 Kernel(parameters),
24 _s0(getParam <Real>("s0")),
25 _z(getParam<Real>("z")),
26 _F(getParam<Real>("F")),
27 _R(getParam<Real>("R")),
28 _T(getParam<Real>("T")),
29 _func_phi_LSM(getFunction("function_phi_LSM")),
30 _pO2_CE(getParam<Real>("pO2_CE")),
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31 _num_phi_YSZ(coupled("phi_YSZ")),
32 _phi_YSZ(coupledValue("phi_YSZ"))
33 {
34 }
35

36 Real
37 CoupledTPBOxygenPressurePoreQS::computeQpResidual()
38 {
39 Real b = _z * _F / _R / _T;
40 Real E_conc = - _R * _T / _z / _F * log(_pO2_CE / _u[_qp]);
41 Real phi_LSM = _func_phi_LSM.value(_t, _q_point[_qp]);
42 Real eta = E_conc - (phi_LSM - _phi_YSZ[_qp]);
43

44 Real res = 1e6 / _z / _F * 2 * _s0 * sinh(0.5 * b * eta);
45

46 return res * _test[_i][_qp];
47 }
48

49 Real
50 CoupledTPBOxygenPressurePoreQS::computeQpJacobian()
51 {
52 Real b = _z * _F / _R / _T;
53 Real E_conc = - _R * _T / _z / _F * log(_pO2_CE / _u[_qp]);
54 Real phi_LSM = _func_phi_LSM.value(_t, _q_point[_qp]);
55 Real eta = E_conc - (phi_LSM - _phi_YSZ[_qp]);
56

57 Real jac = 1e6 / _z / _F * _s0 * cosh(0.5 * b * eta) / _u[_qp];
58

59 return jac * _test[_i][_qp] * _phi[_j][_qp];
60 }
61

62 Real
63 CoupledTPBOxygenPressurePoreQS::computeQpOffDiagJacobian(unsigned

int jvar)
64 {
65 Real b = _z * _F / _R / _T;
66 Real E_conc = - _R * _T / _z / _F * log(_pO2_CE / _u[_qp]);
67 Real phi_LSM = _func_phi_LSM.value(_t, _q_point[_qp]);
68 Real eta = E_conc - (phi_LSM - _phi_YSZ[_qp]);
69

70 Real jac = 1e6 / _z / _F * b * _s0 * cosh(0.5 * b * eta);
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71

72 if (jvar == _num_phi_YSZ)
73 return jac * _test[_i][_qp] * _phi[_j][_qp];
74 else return 0.0;
75 }
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