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Abstract


This doctoral dissertation presents contributions advancing the state-of-the-art of secure two-
party computation (S2PC) — a cryptographic primitive that allows two mutually distrustful
parties, with respective private inputs, to evaluate a function of their combined input,
while ensuring privacy of inputs and outputs and integrity of the computation, externally
indistinguishable from an interaction mediated by a trusted party. The dissertation shows that
S2PC can be made more practical by means of innovative cryptographic techniques, namely
by engineered use of commitment schemes with special properties, enabling more efficient
protocols, with provable security and applicable to make systems more dependable. This is one
further step toward establishing S2PC as a practical tool for privacy-preserving applications.


The main technical contribution is a new protocol for S2PC of Boolean circuits, based
on an innovative technique called forge-and-lose.11 Building on top of a traditional cut-and-
choose of garbled circuits (cryptographic versions of Boolean circuits), the protocol improves
efficiency by reducing by a factor of approximately 3 the needed number of garbled circuits.
This significantly reduces a major communication component of S2PC with malicious parties,
for circuits of practical size. The protocol achieves simulatable S2PC-with-commitments,
producing random commitments of the circuit input and output bits of both parties. The
commitments also enable direct linkage of several S2PCs in a malicious adversarial setting.


As second result, the dissertation describes an improvement to the efficiency of one of
the needed sub-protocols: simulatable two-party coin-flipping.11 The sub-protocol is based
on a new universally composable commitment scheme that for bit-strings of increasing size
can achieve an asymptotic communication-complexity rate arbitrarily close to 1.


The dissertation then discusses how S2PC-with-commitments can enable in brokered
identification systems a difficult-to-achieve privacy property — a kind of unlinkability.11 This
mitigates a vector of potential mass surveillance by an online central entity (a hub), which is
otherwise empowered in systems being developed at nation scale for authentication of citizens.
When the hub mediates between identity providers and service providers the authentication of
users, an adequate S2PC (e.g., of a block-cipher) can prevent the hub from learning user pseudo-
nyms that would allow linking transactions of the same user across different services providers.


Keywords: cryptography, secure two-party computation (S2PC), forge-and-lose technique,
extractable and equivocable commitment schemes, brokered identification and authentication.
1 Parts of these contributions were previously presented at ASIACRYPT 2013, PETS 2015 and PKC 2016.
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Resumo (Summary in Portuguese)


Esta dissertação apresenta contribuições22 para o avanço do estado da arte da “computação


segura entre dois agentes” (secure two-party computation, S2PC) — uma primitiva crip-


tográfica que permite a dois agentes mutuamente desconfiados, cada um com o seu próprio


input privado, avaliar corretamente uma função da combinação dos seus inputs, garantindo


privacidade do input e output de cada agente. Um protocolo de S2PC num mundo real não


depende de uma entidade terceira, mas emula um protocolo que teria lugar num mundo ideal


em que uma entidade terceira atuaria como mediadora confiável, recebendo os inputs privados


dos dois agentes, computando localmente a função desejada e retornando o(s) output(s) ao(s)


agentes. Mais genericamente, os protocolos de S2PC são simuláveis, i.e., a sua segurança


é definida e provada matematicamente no paradigma ideal/real de simulação, garantindo


que o que é permissível no mundo real também seria possível no mundo ideal, mesmo que


os agentes se comportem arbitrariamente e com malícia.


Embora os protocolos de S2PC sejam conhecidos e tenham melhorado ao longo das últimas


três décadas, o seu elevado custo computacional e de comunicação ainda dificulta que a S2PC


seja considerada como um bloco construtivo em sistemas reais. Esta dissertação mostra que


a “computação segura entre dois agentes” pode tornar-se mais prática por meio de técnicas


criptográficas inovadoras, nomeadamente através da utilização engenhosa de “esquemas de


comprometimento” (commitment schemes) com propriedades especiais, permitindo protocolos


mais eficientes, com segurança demonstrável, e aplicáveis a tornar os sistemas mais fidedignos.


As contribuições apresentadas são mais um passo no sentido de tornar a S2PC uma ferramenta


prática bem estabelecida para aplicações preservadoras de privacidade.


S2PC-com-compromissos e a técnica forjar-e-perder. A principal contribuição téc-


nica descrita nesta dissertação é um novo protocolo para S2PC de circuitos Booleanos,


baseado numa utilização inovadora de “compromissos de bits” (bit commitments) e numa


nova técnica denominada “forjar-e-perder” (forge-and-lose). O protocolo induz uma melhoria


sobre a técnica tradicional de “cortar-e-escolher” (cut-and-choose) associada a “circuitos


2Parcialmente apresentadas nas conferências ASIACRYPT 2013, PETS 2015 e PKC 2016.
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baralhados” (garbled circuits), para contextos em que os agentes possam estar corrompidos


maliciosamente. Concretamente, o novo protocolo reduz por um fator de aproximadamente 3


o número necessário de circuitos baralhados, que constituem uma componente principal da


complexidade de comunicação associada a S2PC de circuitos de tamanho prático.


Na abordagem cortar-e-escolher, o conjunto dos circuitos baralhados gerados pelo agente


construtor é dividido pelo agente avaliador em dois sub-conjuntos: um para avaliação e outro


para verificação. Nas técnicas tradicionais, o critério de sucesso requer, no caso dos circuitos


verificados serem todos corretos, que do conjunto de circuitos avaliados uma maioria seja


correta. Essas técnicas requerem assim pelo menos 123 circuitos, dos quais 74 para verificação


e 49 para avaliação, para garantir uma segurança estatística de 40 bits (uma probabilidade


de erro de cerca que 1 em cada milhão de milhão de tentativas — um padrão de referência


comum nesta área). Em contraste, na técnica forjar-e-perder basta que um dos circuitos


avaliados seja correto. O diferente critério de sucesso induz uma melhoria estatística, sendo


então suficiente usar 40 circuitos para obter os 40 bits de segurança estatística.


Na prática, a comunicação de circuitos de verificação pode ser trocada por elementos


muito pequenos, tornando a complexidade de comunicação dependente sobretudo do número


de circuitos de avaliação, que pode reduzir-se em troca de um aumento (maior) do número


de circuitos de verificação. Por exemplo, para um total de 123 circuitos, na técnica forjar-


e-perder o número de circuitos avaliados pode ser limitado a um máximo de 8, para o mesmo


objetivo de 40 bits de segurança estatística, i.e., uma redução de aproximadamente 6 vezes


em comparação aos 49 necessários em técnicas tradicionais.


O novo protocolo também realiza S2PC-com-compromissos, produzindo, para ambos os


agentes, compromissos aleatórios dos bits de input e de output dos circuitos. Num esquema


de comprometimento, uma fase inicial de comprometimento permite a vinculação de um


agente transmissor, perante um agente recetor, a um valor (e.g., uma sequência de bits)


escolhido pelo transmissor, ao mesmo tempo garantindo a ocultação desse valor perante o


recetor. Numa fase de abertura o transmissor consegue revelar o valor escolhido de forma


convincente, i.e., sem que possa mudar o valor comprometido. Os compromissos obtidos


no protocolo de S2PC-com-compromissos permitem diretamente que várias S2PC sejam


encadeadas de forma segura num contexto malicioso.
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Esquemas de comprometimento simuláveis. Para que o protocolo de S2PC-com-
compromissos seja simulável, i.e., seguro no modelo ideal/real de simulação, também tem
de ser simulável um subprotocolo de “moedas ao ar entre dois agentes” (two-party coin-


flipping) utilizado para randomizar os compromissos. Neste contexto, a dissertação descreve,
como segunda contribuição principal, uma nova técnica que melhora a eficiência de coin-
flipping simulável. A melhoria é obtida através de um novo esquema de comprometimento
“componível universalmente” (universally composable) que permite, separadamente para o
comprometimento e a abertura de sequências-de-bits de comprimento progressivamente maior
(comprimento alvo), uma taxa de complexidade de comunicação assintoticamente próxima
de um fator que pode ser escolhido arbitrariamente próximo de 1. Ou seja, o número de bits
comunicados em cada fase não é maior do que o produto do comprimento alvo por esse fator.


Para que o esquema de comprometimento seja simulável, tem de ser extraível (extractable)
e equivocável (equivocable). Em aparente oposição à ocultação, ser extraível significa que,
na fase de comprometimento, um simulador no papel de recetor é capaz de extrair o valor
comprometido pelo transmissor. Em aparente oposição à vinculação, ser equivocável significa
que, na fase de abertura, um simulador no papel de transmissor é capaz de revelar convin-
centemente qualquer valor à escolha. As propriedades de simulação são compatíveis com as
propriedades definitórias (ocultação e vinculação) porque, comparativamente a transmissor
ou recetor reais, o simulador tem poder adicional, e.g., derivado de informação secreta obtida
numa configuração inicial que apenas o simulador pode adulterar. É fácil obter isoladamente
cada uma das propriedades, mas difícil obtê-las conjuntamente com eficiência.


Nesta dissertação, a nova abordadem — denominada “expandir-mascarar-sintetizar”
(expand-mask-hash) — utiliza um “gerador de pseudo aleatoriedade” (pseudo-randomness


generator) e uma função de “síntese resistente a colisões” (collision-resistant hash) para
combinar de forma eficiente compromissos extraíveis e compromissos equivocáveis, associados
a sequências curtas de bits, obtendo uma propriedade unificada do tipo extraível-e-equivocável
amplificada até um comprimento alvo arbitrariamente maior, amortizando o custo dos
compromissos base. A abordagem pode ser instanciada com um protocolo não interativo em
cada fase do esquema de comprometimento, i.e., tanto o comprometimento como a abertura
podem ser executados pelo envio de uma única mensagem.
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Identificação mediada. Como aplicação prática, a dissertação discute como a S2PC-com-
compromissos pode permitir uma propriedade de privacidade difícil de obter em sistemas de
“identificação mediada” (brokered identification). Em jogo está a autenticação de “utilizadores”
(cidadãos de um país) em muitos “fornecedores de serviço” (service providers) online, com
base na identidade de utilizador atestada por “fornecedores de identidade” (identity providers,
IDP) online. Alguns sistemas em desenvolvimento à escala nacional em diversos países
requerem que uma entidade central online (um “hub”) medeie a autenticação de utilizadores,
prevenindo que os IDP saibam quais fornecedores de serviço estão a ser acedidos por cada
utilizador em cada transação de identificação/autenticação. Contudo, numa implementação
direta desses protocolos, o hub (controlado pelo governo do respetivo país) ganha uma ampla
capacidade de rastreio da atividade dos utilizadores, i.e., um potencial vetor de vigilância em
massa, por ser capaz de ver os pseudónimos-de-utilizador definidos pelo IDP. Esta dissertação
descreve como uma S2PC adequada (e.g., de uma cifra de bloco) pode ser usada para esconder
estes pseudónimos, prevenindo assim o hub de correlacionar transações do mesmo utilizador
em vários fornecedores de serviço.


A propriedade pretendida — denominada “não-correlação fraca (weak unlinkability), pelo
hub, de pseudónimos-de-utilizador entre fornecedores de serviço” — deve ser conseguida
sem impedir o hub de transformar o pseudónimo-de-utilizador em trânsito entre o IDP e o
fornecedor de serviço. A transformação tem de ser reproduzível, para que cada utilizador
consiga retornar à sua conta em cada fornecedor de serviço, e por questões de privacidade o seu
resultado não pode ser calculável pelo IDP nem correlacionável entre diferentes fornecedores
de serviço. Para conciliar os requisitos, a transformação de pseudónimos pode ser efetuada
através de uma S2PC, em que o pseudónimo-de-utilizador definido pelo IDP é usado como
input de uma cifra de bloco, e a chave da cifra é um identificador privado escolhido pelo hub
para representar o fornecedor de serviço. Assim, o hub não aprende o pseudónimo-de-utilizador
definido pelo IDP, e o IDP não aprende o pseudónimo-de-utilizador transformado. A utilização
de S2PC-com-compromissos permite ainda que o hub e o IDP possam enviar um ao outro uma
assinatura eletrónica (criptográfica, não repudiável), que permite a cada um comprovar mais
tarde, numa eventual ação de auditoria, quais valores foram utilizados ou obtidos em interação
real com a outra parte, sem no entanto terem de conhecer todos os pseudónimos envolvidos.


Palavras-chave: criptografia, computação segura entre dois agentes (S2PC), técnica forjar-
e-perder, esquemas de comprometimento extraíveis e equivocáveis, identificação mediada.
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Notation


Technical abbreviations and acronyms


• 1/2 OT1/2 OT: 1-out-of-2 oblivious transfer
• 2/1 OT2/1 OT: 2-out-of-1 oblivious transfer
• AESAES: advanced encryption standard
• BIBI: Blum integer
• BitComBitCom: bit commitment
• C&CC&C: cut-and-choose
• ComCom: commitment
• commun.commun.: communication
• CRCR: collision resistant
• CRSCRS: common reference string
• DDHDDH: decisional Diffie-Hellman
• DLDL: discrete logarithm (abbr. discrete log)
• DLCDLC: discrete-logarithm cryptography
• DQRDQR: decisional quadratic-residuosity
• ECCECC: elliptic-curve cryptography
• EquivEquiv: equivocable
• ElGElG: ElGamal (BitCom or BitCom scheme)
• evaleval: evaluation (type of challenge)
• ExtExt: extractable
• FFCFFC: finite-field cryptography
• F&LF&L: forge-and-lose
• GBIGBI: good Blum integer
• GCGC: garbled circuit


• GCRSGCRS: global CRSCRS
• GEBGEB: good ElGamal BitCom
• GMGM: Goldwasser-Micali (BitCom scheme)
• GPKIGPKI: global PKIPKI
• hom.hom.: homomorphic or homomorphism
• HVHV: honest-verifier (used in HVZK)
• IDAIDA: information dispersal algorithm
• IDPIDP: identity provider
• IFCIFC: integer-factorization cryptography
• kBkB: kilo Bytes (thousands of bit octets)
• LHTLHT: linear homomorphic transformation
• maxmax, minmin: maximum, minimum
• modmod: modulo (remainder upon integer division)


• msgmsg: message (committed value)
• NINI: non-interactive (used in NIZK and NIZKPoK)


• NMNM: non-malleable or non-malleability
• NPRONPRO: non-programmable random oracle
• OTOT: oblivious transfer
• PedPed: Pedersen (BitCom scheme)
• PKIPKI: public-key infrastructure
• PRGPRG: pseudo-randomness generator
• RandLHTRandLHT: Randomized LHTLHT
• RepRep: (Pedersen) representation
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• RPRP: relying party (as a service provider)
• RSCRSC: random seed checking
• S2PCS2PC: secure two-party computation
• SHASHA: secure hash algorithm
• TTPTTP: trusted third party
• Type-CType-C: type commit
• Type-RCType-RC: type reveal-for-check


• Type-REType-RE: type reveal-for-evaluation
• VerVer: Verify (predicate verification)
• XORXOR: (bit-wise) Boolean eXclusive OR
• ZKZK: zero knowledge
• ZKPZKP: ZK proof (or ZK argument (ZKA))
• ZKPoKZKPoK: ZKP of knowledge (or ZKA of knowledge)


Technical symbols


One or two interpuncts (⋅⋅ and ⋅⋅⋅⋅) are used to de-
note arbitrary symbols; an ellipsis (⋅ ⋅ ⋅⋅ ⋅ ⋅) is used to
denote an implicitly defined sequence of elements.


Sets


• ⋅∈∈⋅⋅ (element ⋅⋅ belongsbelongs to set ⋅⋅⋅⋅, or rangesranges over
all elements of set ⋅⋅⋅⋅)


• [s][s] (set {1, ..., s})
• ⊘⊘ (empty set)
• #(⋅)#(⋅), # ⋅# ⋅ (size of set ⋅, number of ⋅)
• ⋅ ∪ ⋅⋅⋅ ∪ ⋅⋅ (union of sets ⋅ and ⋅⋅)
• ⋅ ∩ ⋅⋅⋅ ∩ ⋅⋅ (intersection of sets ⋅ and ⋅⋅)
• ⋅/ ⋅ ⋅⋅/ ⋅ ⋅ (set ⋅ except the elements contained in ⋅⋅)
• FF (family of indexed functions)
• NN (set of positive integers)
• SS (family of indexed sets)


Arithmetic, logic, relations


• Binary
● ++, −−, ××, // (sum, subtract, multiply, divide)
● ==, ≈≈ (equal, approximately equal)
● =?=? (equality verification — true or false)
● ≡≡ (equivalent, or equal by definition)
● <<, >> (less than, greater than)


● ≤≤, ≥≥ (less or equal, greater or equal)
● ⪆⪆ (greater or approximately equal)
● ⊕⊕ (bitwise XOR operation)
● ∨∨, ∧∧ (logical OR, logical AND)


• ∑ ⋅∈⋅⋅∑ ⋅∈⋅⋅, Π⋅∈⋅⋅Π⋅∈⋅⋅ (sum and product when variable ⋅
ranges over set ⋅⋅)


• ⌊⋅⌋⌊⋅⌋ (floor, i.e., highest integer less than ⋅)
• ⌈⋅⌉⌈⋅⌉ (ceiling, i.e., lowest integer greater than ⋅)
• ∣ ⋅ ∣∣ ⋅ ∣ (length of ⋅, i.e., number of bits of ⋅)
• ¬⋅¬⋅ (logical negation of the Boolean value ⋅)
• 2⋅2⋅ (two (integer) to the power of ⋅ (integer))
• %% (percent, i.e., 1/100)
• ∞∞ (infinite or infinity)


Entities in protocols


• AA (the real-world adversary, playing in the
real world or in a simulation created by SS)


• FF (an ideal functionality — a TTPTTP in the ideal
world, or in a hybrid model)


• P1P1, P2P2 (1st, 2nd party to learn the coin-flip)
• PAPA (GCGC constructor, a.k.a. Alice)
• PBPB (GCGC evaluator, a.k.a. Bob)
• PRPR, PSPS (receiver, sender of a commitment)
• PP, VV (prover, verifier in a ZKPZKP or ZKPoKZKPoK)
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• pp, p̄̄p (p is the index of a party, e.g., p ∈ {A,B},
or p ∈ {R,S}, or p ∈ {1,2}; p̄ is the index of
the complementary party, e.g., B if p is A)


• SS (simulator — the ideal-world adversary)
• ZZ (the environment — entity that tries to


distinguish whether executions happen in the
real world or the ideal world)


• ⋅∗⋅∗ (corrupted/malicious version of party ⋅)
• ⋅̂̂⋅ (counterpart, in ideal world, of real party ⋅)


Protocol notation


• ↓↓⋅ (output ⋅, i.e., return ⋅ to the upper level that
requested execution of the current function)


• ←$←$⋅ (uniform random sampling from domain ⋅


or using probabilistic procedure ⋅)
• �� (undefined, e.g.: ⋅ = �⋅ = � declares symbol ⋅ with-


out assigning it a value; ⋅ ≠ �⋅ ≠ � tests whether ⋅
has been assigned a concrete value; ↓ �↓ � termi-
nates a function or thread without output)


• Pp ∶ ⋅Pp ∶ ⋅ (Pp knows value ⋅ or makes computation ⋅)


• Pp → Pp̄ ∶ ⋅Pp → Pp̄ ∶ ⋅ (Pp sends message ⋅ to Pp̄)
• Pp ↔ Pp̄ ∶ ⋅Pp ↔ Pp̄ ∶ ⋅ (Pp and Pp̄ interact to obtain ⋅)
• 1κ1κ (cryptographic security parameter, also as


κκ (number of bits))
• 1σ1σ (statistical security parameter, also as σσ


(number of bits) — not the group element σσ)
• ⋅ ∈ poly(⋅⋅)⋅ ∈ poly(⋅⋅) (⋅ is asymptotically lower than a


particular polynomial function of ⋅⋅)


C&C challenges


• ss (total number of C&C challenges)
• ee, vv (number of evaluation, check challenges)
• bb (number of indices with bad instances)
• jj (index of challenge, e.g., of each instanceeach instance


with a GC and connectors in a S2PC, or of


each instanceeach instance with a seed and hash commit-
ments in Ext-and-Equiv-Com protocol)


• JEJE (subset of indices selected for evaluation)
• JVJV (subset of indices selected for check)
• JIgnoreJIgnore (subset of indices ignored once detected


as incorrect in the evaluation stage)


RSC technique


• λjλj (PRG seed to generate an instance (with
index j) in the cut-and-choose structure)


• ΛΛ (global hash)
• ΛΛ (RSC Equiv-Com of Λ)
• ΛΛ (randomness used to commit Λ)


Boolean circuits and garbled Circuits


• bb (bit value)


• cc (bit index; e.g., underlying bit of key k[c]k[c],
bit encoded by group element µ(c), position
of commitment k̄⟨c⟩ in a pair, bit associated
with a multiplier β(0)


j,i,c class 0 of a wire of PB)


• cj,icj,i (permuted input bitbit of PA, if j ∈ IA; ten-
tative output bitbit in wire i of GC j, possibly
permuted (if j ∈ OA), correct if PA was honest)


• CC or FCFC (Boolean circuit)


• C ′C ′ (adjusted Boolean circuit — has extra
input wires of PA (i ∈ IA’IA’, for bit-masks for
the private output of PA), and adjusts the
set (OABOAB) of common output wires into two
disjoint sets (OA’OA’, OB’OB’), one per party)


• εε(⋅) (function that reveals the bit underlying
a circuit output wire key)


• GCEvalGCEval (algorithm to evaluate a GCGC)


• ii (index of wire)


• IAIA, IBIB (set of indices of original circuit input
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wires of PAPA and PBPB, respectively)


• IA’IA’ (set of indices of extra input wires of PA,
for bit-masks for private output bits of PA)


• InKeysInKeys, InKeysInKeys (sequence of garbled input
keys, and respective commitments, possibly
indexed (in subscript) per party and per gar-
bled circuit, and (in superscript) containing
oneone or twotwo keys per wire)


• kk (wire key of input or output of a GCGC, in-
dexed per garbled circuit (jj), per wire (ii) and
per bit value (cc))


• k⟨c⟩k⟨c⟩ (key in position cc (0 or 1) in a pair of keys)


• k[c]k[c] (key with underlying bit c)


• `A`A, `B`B, `′A`′A, `′B`′B (number of bits of input of PA,
input of PB, output of PA, output of PB)


• OABOAB (set of original indices of output wires
common to PA and PB)


• OpOp (set of original indices of output wires of
Pp, e.g., OAOA, OBOB — with private (OppOpp) and
common wires (OpOp), possibly intersecting Op̄)


• OppOpp (set of original indices of only the private
output wires of Pp)


• Op’Op’ (set of adjusted indices of output wires
of Pp, e.g., OA’OA’ or OB’OB’, disjoint from all wire
indices of Pp̄)


• OutKeysOutKeys (same as InKeysInKeys, but referring only
to output keys)


• ππ (permutation bit or bit-string, used to per-
mute input bits of PA)


• ξξ (wire keywire key (in permuted position) of input
bit of PA; or wire keywire key of input bit of PB; or
tentative wire keywire key of output)


• xpxp (bit-string input of Pp, e.g., xAxA, xBxB)


• ypyp (bit-string output of Pp, e.g., yAyA, yByB)


Groups


• GG (group set)
• ∗∗, ∗′∗′ (group operations, in multiplicative nota-


tion — when useful to distinguish, ∗′ may be
used in the space of commitments, and ∗ in
the space of “randomness” of commitments)


• +
∗
+
∗ (group addition or multiplication, in the
space of “randomness” of a commitment,
respectively with additive or multiplicative
notation, e.g., respectively for ElGamal or
GM BitComs)


• +
∗(π)+
∗(π), ∗′(π)∗′(π) (pseudo XOR-homomorphic opera-
tions explicitly dependent on bit or bit-string
π, respectively adjusted from +


∗
+
∗ and ∗′∗′)


• (⋅)
2


(⋅)
2 (modular square of group element ⋅)


• gg (generator of some multiplicative group)
• ⟨g⟩⟨g⟩ (group generated by (powers of) g)
• hh (group homomorphism onto XOR)
• h−1(b)h−1(b) (subgroup of elements whose homo-


morphic image is b)
• invinv (inverse of group operation in the space of


randomness of a scheme, e.g., multiplicative
inverse for Blum and GM BitComs, additive
inverse for ElGamal and Pedersen BitComs)


• JN(c)JN(c) (subset of integers, modulo N , with
Jacobi Symbol c)


• JSN(⋅)JSN(⋅) (Jacobi Symbol modulo N of integer
⋅; value in {−1,1} if ⋅ is in Z∗N , 0 otherwise)


• NN (a concrete Blum integer)
• NTSqrt1NNTSqrt1N (non-trivial square-root of 1, mod-


ulo a Blum integer N , i.e., Sqrt(1)N (1))
• QRNQRN (set of quadratic residues modulo N)
• Sqrt(b)N (⋅)Sqrt(b)N (⋅) (square root class b of ⋅, modulo N)
• PseudoSqrt[N, t](w; c)PseudoSqrt[N, t](w; c) (square-root class c,


modulo N , of either w or its additive inverse,
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computed with the help of trapdoor t)
• tt (trapdoor of Com scheme identified in sub-


script, e.g., tAtA, tBtB, tCRStCRS, tFLtFL, tNtN , tOTtOT, tptp)
• ZqZq (set of residues of the additive group of in-


tegers modulo q, i.e., all non-negative integers
smaller than q)


• Z∗NZ
∗
N (set of residues of the multiplicative group


of integers modulo N , i.e., all positive integers
co-prime with N and smaller than N)


Commitments


• CC , OO (commit and open operations, possi-
bly interactiveinteractive and possibly probabilisticprobabilistic; C is
also used generically to denote a Com scheme)


• BABA, BBBB (BitCom schemes for outer BitComs
of bits of PA and PB)


• BConABConA (BitCom scheme for intermediate Bit-
Coms of input bits of PA)


• BFLABFLA, BFLBBFLB (dual BitComs schemes used to
support the forge-and-lose technique, resp. for
input bits of PA and output bits of PB)


• BOTBOT (BitCom scheme for intermediate Bit-
Coms of input bits of PB, supportive of OTsOTs)


• C Equiv
RSCC Equiv
RSC (Equiv-commitment scheme used to


commit a RSC hash)
• CInKeyCInKey (commitment scheme used to commit


wire-keys of input of PA)
• EE (hom. encryption related to 1-out-of-2 OT)
• kk (commitment of a wire key)
• kk (randomness used to open a wire key Com)
• α′α′, β′β′, φ′φ′, γ′γ′, µ′µ′, ν′ν′, ρ′ρ′, σ′σ′, ς ′ς ′ (hom.hom. commit-


ments produced using the respective “random-
nesses” αα, ββ, φφ, γγ, µµ, νν, ρρ, σσ, ςς)


• In protocol for Ext&Equiv Com: AuthAuth


(authenticator function, indexed by nonce zz),


ajaj (authenticator (output) of m′
jm
′
j)), αjαj (ten-


tative authenticator output), `a`a (length of
authenticator output), `z`z (length of nonce), mm
(committed message), µµ or µjµj (tentative mes-
sage), m′


jm
′
j (message fragment), µ′jµ′j (tentative


fragment), sjsj (seed), s′js′j (mask), ς ′jς ′j (tentative
mask), hjhj (hash of mask), ηjηj (tentative hash
of mask), tjtj (masking — XOR of message (or
fragment) and mask), tt (threshold of erasure
code), zz (nonce).


Randomness sampling


• Gen⋅Gen⋅ (random sampling of elements of type ⋅,
e.g., Gen$ForComGen$ForCom, GenSeedGenSeed, GenPairOpeningsGenPairOpenings)


• PRGen⋅PRGen⋅ (pseudo-random sampling of element
of type ⋅, e.g., PRGenAuxiSeedPRGenAuxiSeed, PRGenBitStringPRGenBitString,
PRGenExpPRGenExp, PRGen$ForComPRGen$ForCom, PRGen$ForLHTPRGen$ForLHT,
PRGenGCPRGenGC, PRGenInKeyPRGenInKey)


Randomness of hom.hom. commitments


• αα (multiplier, encoding of permutation bit π,
used for connectors of input wires of PA)


• ββ (multiplier, encoding of 0, used for connec-
tors of input and output wires of PB)


• φφ (randomness of a BitCom of input of PA,
produced by the intermediate BitCom scheme
BFLA; may be the same as σ when BFLA=BA,
and/or the same as µ when BFLA=BConA)


• γγ (random encoding of 0, obtained via coin-
flipping, used to permute an initial encoding
σ into a final random encoding ρ)


• µµ (intermediate encodings used to interface be-
tween outer encodings and connectors; related
to BConA, BOT and BFLB)


• νν (inner encoding used in connectors; related
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to BConA, BOT and BFLB)
• uu, vv (tentative values for µµ and νν, respectively,


correct if PA was honest)
• ρρ (final encoding of input or output bit, using


BA or BB, after final random permutation)
• σσ (initial encoding of input bits (before the


S2PC), or adjusted encoding of output bits
(after the S2PC), before the final random per-
mutation; related to BA and BB)


• ςς (initial encoding of random preparatory bits,
helpful to encode the final output bits; related
to BA and BB)


Other notation


Institutional or conventional acronyms


• CMUCMU-ECEECE: Carnegie Mellon University, Elec-
trical & Computer Engineering (Department)


• DOIDOI: Digital Object Identifier


• FCCXFCCX: Federal Cloud Credential Exchange


• FCULFCUL-DIDI: Faculdade de Ciências da Universi-
dade de Lisboa, Departamento de Informática


• IACRIACR: International Association for Cryptol-
ogy Research


• IAPIAP: Identity Assurance Principles (in the UK)


• ICTIICTI: Information and Communication Tech-
nologies Institute


• NISTNIST: National Institute of Standards and
Technology


• NSTICNSTIC: National Strategy for Trusted Iden-
tities in Cyberspace (in the USUS)


• UKUK: United Kingdom


• USUS: United States (of America)


Language abbreviations


• abbr.abbr.: abbreviated or abbreviation
• a.k.a.a.k.a.: also known as
• Dr.Dr., Prof.Prof.: Doctor, Professor (academic titles)
• e.g.e.g.: exempli gratia (Latin), a.k.a. for example
• eds.eds.: editors (of a bibliographic item)
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Chapter 1


Introduction


1.1 Secure two-party computation


Secure two-party computation is a general cryptographic functionality that allows two parties
to interact as if intermediated by a trusted third party [Gol04Gol04]. A canonical example is the
millionaire’s problem [Yao82Yao82], where two parties find whether or not the first party is richer
than the second, without any party revealing to the other any additional information about
their amounts. One can envision applications of secure computation in cases where mutually
distrustful parties can benefit from learning something from their combined data, without
sharing their inputs [Kol09Kol09]. For example, two parties may evaluate in a privacy-preserving
manner a data mining algorithm over their combined databases [LP02LP02]. As a different
example, one party with a private message may obtain an enciphering of the message,
calculated with a secret key from another party (i.e., blind enciphering) [PSSW09PSSW09]. One
general solution to this type of problems is secure two-party evaluation of Boolean circuits,
hereinafter denoted “S2PC” [Yao86Yao86]. The function to be computed is first encoded as a
Boolean circuit, and the respective private inputs are encoded as bit-strings. Then, as a
result of the S2PC, each party learns only the output of the respective circuit evaluated over
both private inputs. Naturally, the term “private output” refers to privacy beyond what each
party can infer from the learned output and the known input.


S2PC enables interactions with high security assurance, enhancing privacy and providing a
fine-grained control of the information that parties leak when interacting toward an established
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goal. For example: Why should a millionaire disclose her wealth, if it is enough to just
verify the predicate of whether or not it is larger than the wealth of someone else? Why
should two hospitals share private data of their patients, if all they need is to learn a certain
statistic of the combined data? Why should a central authority learn a cryptographic key and
a plaintext block from two respective parties, if the underlying application just requires that
the second party learns the respective enciphering of the plaintext? Even if a trusted third
party (TTP) may be hypothetically available to mediate these interactions, in practice it may
be undesirable. For example: a budget restriction may disallow payments for services by a
TTP; corruption may be a concern, e.g., one malicious party may try to coerce or bribe the
TTP, or even stealthily affect an honest TTP, undetected by the other honest party; some
interactions may require secrecy by design (e.g., by law), thus precluding any solutions that
involve sharing of private inputs with any external party.


S2PC bypasses the problems inherent to a TTP by directly avoiding the TTP. This may
also reduce the “attack surface” of the overall system, by reducing the number of parties that
may be subject to external attacks. This is extremely important in the face of persistent
threats where an external stealthy attacker may attempt to undetectably intrude one of the
parties [BB12BB12], to break some security goal, such as confidentiality, integrity or availability.
In other words, even in the paradigm of intrusion-tolerant systems [VNC03VNC03], S2PC naturally
fits as a technique for improving resilience of a system.


While S2PC may avoid trusted parties in certain interactions, the ability to trust a party
(i.e., to assume the absence of certain types of adversarial behavior) may nonetheless be desir-
able, e.g., if it enables more efficient and simple interactions toward a desired goal. Naturally,
the meaning of desirable trust is intended within a context of matching trustworthiness of
the system upon which trust is placed. Rather than imposing that trust be a binary property
(trusted vs. distrusted), it may be useful to consider a range of shades of trust. In this regard,
S2PC may enable secure interactions based on (a controlled level of) trust, where otherwise it
would not be advisable to “fully” trust the participants. In other words, S2PC can also serve
as a trust-enabling tool, by reducing trustworthiness requirements to a level where it becomes
appropriate to trust the parties involved in an interaction. For example, it may be appropriate
to assume that certain subsets of parties will not maliciously collude, while also realizing that
there is an incentive for certain individual parties to misbehave. If, in such a system, S2PC can
be used to create resilience against individual malicious behavior, then it becomes appropriate
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to base the security of the system on the trust that undesired collusions will not occur. As
a concrete example, this dissertation considers brokered identification systems, where S2PC
can be used to allow the presence of a central broker (a mediator) of authentications between
other parties, but without letting security depend on full trust about said broker.


Despite the envisioned usefulness of S2PC, and theoretical protocols being known for
about three decades [Yao86Yao86], widespread secure computation is still an elusive reality. There
are indeed associated difficulties at different levels: (i) a direct implementation of general
solutions often leads to prohibitive time and computational cost, due to large circuits; (ii)
being a somewhat counter-intuitive concept (a possible rhetorical question being: how can one
compute a function over distributed inputs without sharing data?), even security practitioners
may remain oblivious to the benefits of secure computation, when reasoning about security
goals; and (iii) it may be conceptually challenging to cope with technical subtleties associated
with the goal of achieving provable security.


In the framework of secure computation, security is considered in the ideal/real simulation
paradigm [Can00Can00, Can01Can01]. The intended functionality (e.g., S2PC) is defined in an ideal
world, where a TTP mediates the communication and computation between the other two
parties. By definition, anything possible in the ideal world is considered permissible (i.e., not
a security violation), even when one of the parties (i.e., except the TTP) is corrupted by
an adversary. The ideal world is an artifact that serves as reference to the design of a real
protocol between two parties, in the real world where the TTP does not exist. The security of
the real protocol is then assessed by comparing the external effects of its execution in the real
world vs. the external effect of executions of the ideal protocol in the ideal world. Specifically,
a protocol is deemed secure, i.e., simulatable, if it can be proven that any external observer
(called environment) is not able to distinguish in which of the two worlds an execution has
taken place. If this is the case, then the real protocol is said to emulate the ideal protocol.


The simulation paradigm is useful in allowing a separation of the process of designing a
real protocol from the process of defining desirable security properties. Actually, simulata-
bility becomes the notion of security that incorporates all aspects of security (e.g., privacy,
correctness, independence, non-transferability) that could be optionally enumerated from an
analysis of the ideal functionality. It also provides composability guarantees that are useful
for the modular design of large protocols. Specifically, it allows the security of a protocol to
be proven while replacing its internal components by respective ideal functionalities.
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Proving security may be particularly challenging in the malicious model, where one party
may maliciously deviate from the protocol specification in an arbitrary and computationally
bounded way. The security model may be also characterized by cryptographic assumptions,
such as computational infeasibility to solve some mathematical problems with a reasonable
amount of time and computational resources. Throughout this dissertation, security is
considered in a static, active and computational model; i.e., at most one party is corrupted
at the onset of the protocol execution, the corrupted party may deviate from the protocol
specification, and both parties are limited to probabilistic polynomial time computations.


A successful approach for S2PC, initiated by Yao’s protocol [Yao86Yao86, LP09LP09], is based on
garbled circuits — cryptographic versions of the Boolean circuit that computes the intended
function. By replacing bits by random bit-string keys, garbled circuits enable oblivious
evaluation of the Boolean circuit; i.e., an evaluation where nothing about the intermediate
bits is learned, but the output bits are obtained. The typical hiding properties of garbled
circuits allow a malicious constructor (PA) to build an incorrect circuit without the evaluator
(PB) detecting it. A cut-and-choose approach can solve this problem: PA builds several garbled
circuits, and then PB verifies some for correctness and evaluates the remaining to obtain the
information necessary to decide a correct output from a consistent portion of the evaluated
circuits. This is a somewhat efficient approach for S2PC protocols with a constant number of
communication rounds (i.e., independent of the number of gates or the depth of the circuit)
[KSS12KSS12, FN13FN13]. Developing more efficient S2PC protocols thus deals with investigating new
designs, which may allow efficient executions and lend themselves to provable security, possibly
through innovation in the way in which to integrate some of its sub-protocols and primitives.


Of particular relevance to S2PC is the integration of commitment schemes — protocols
that allow one party (the sender) to become bound to a choice but without revealing it to
the other party (the receiver), and later to reveal it in a convincing way. An integration
of S2PC and commitments may increase the usability of the input and output of S2PC
in a broader protocol, e.g., allowing efficient linkage of several S2PCs, ensuring that the
inputs and outputs of different executions are linked in a proper way. Commitments are also
useful in enabling two-party coin-flipping (letting two mutually distrustful parties decide
a random string) and zero-knowledge sub-protocols useful in proving correct constructions
and/or proving knowledge of hidden elements.
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1.2 Vision, thesis, goals and contributions


Vision and thesis. This dissertation and the underlying research was guided by the vision
that S2PC has a great potential as a tool to resolve certain conflicts between the need for privacy
and the utility of sharing information, with consequential societal benefits. The envisioned
applicability can extend from personal applications (e.g., two persons engaging in personally-
customized secure computations) to applications within critical information infrastructures
impacting a significant portion of society (e.g., nation-scale privacy-preserving brokered-
identification systems for high-assurance authentication of citizens in myriad services). This
vision is accompanied with the perception that the current state-of-the-art in S2PC still does
not provide practical solutions to many theoretically solvable problems. Such observation
motivated academic research with a focus on improving efficiency and applicability of S2PC.
As a result, this dissertation presents the following thesis:


S2PC can be made more practical by means of innovative cryptographic techniques, namely
by engineered use of commitment schemes with special properties, enabling more efficient
protocols, with provable security and applicable to make systems more dependable.


Goals. To validate the thesis, this dissertation presents contributions toward more practical
S2PC. The document was designed to meet three main goals.


As a first goal, it contains a complete description of a protocol for S2PC-with-commitments,
i.e., apart from certain primitives that are considered as “black boxes” (e.g., garbled circuits, a
collision-resistant hash function, a pseudo-randomness generator). The exposition (including
techniques that improve the efficiency of S2PC, such as the forge-and-lose technique) may be
useful for researchers non-expert in S2PC and that may want to attempt a computational
implementation. It includes published results as well as new extensions and a revised analysis,
enabling diversity across types of trusted setup (e.g., public-key infrastructure and common-
reference string), intractability assumptions (e.g., “integer-factorization cryptography” and
“discrete-log cryptography”) and simulatability (e.g., with and without rewinding).


As a second goal, the dissertation evinces that the practicality of S2PC may improve as a
result of research in cryptographic primitives in adjacent areas of independent interest. This
is substantiated by a separate discussion with contributions on two-party coin-flipping and
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commitment schemes with special properties (simultaneously extractable and equivocable).


As a third goal, the discussion conveys that S2PC is also useful at a conceptual level, as a
tool to reason about the privacy and security of a system in ways that might otherwise be
ignored. S2PC is a useful element to have in the conceptual toolbox of security practitioners,
namely as a possibly counter-intuitive concept that clarifies the ability of a party to compute
a function without needing to know the full input. The usefulness of S2PC is evidenced in
this dissertation by exploring its distinctive applicability in a practical application example of
contemporary interest (brokered identification). Concretely, even if S2PC of Boolean circuits
might not be the most efficient solution to solve the problem at stake, it allowed considering
a solution at the level of requirements design, i.e., not forfeiting a privacy goal in detriment
of an operational goal. By facilitating the initial discovery of a conceptual solution to a
problem of brokered identification subject to certain design constraints, S2PC opens the door
for further research that may look for possibly more efficient solutions.


Contributions. The technical contributions are organized along three main topics.


First, the dissertation introduces a new S2PC protocol [Bra13Bra13], using bit commitments in an
innovative way. It enables efficiency improvements in comparison to traditional cut-and-choose
of garbled-circuit approaches, most notably reducing by a factor of approximately three the
number of garbled circuits needed to achieve a target level of statistical security in a malicious
setting. The underlying technique, called forge-and-lose, also increases the deterrence against
certain types of malicious behavior, i.e., beyond simple detection, by leading the malicious
party to lose the privacy of her input. The protocol achieves S2PC-with-Coms, i.e., also
produces commitments (Coms) of the private circuit input and output of each party, thus
enabling applicability improvements, e.g., linked executions of S2PCs in a malicious setting.


Then, the dissertation introduces a new construction [Bra16Bra16] that improves the efficiency
of instantiating a primitive needed by the original proposal of the S2PC-with-Coms protocol,
namely simulatable two-party coin-flipping. More specifically, it describes a universally
composable commitment scheme for large bit-strings, obtained by a novel combination
of weaker extractable commitments and equivocable commitments associated with short
bit-strings, and achieving communication complexity asymptotically close to the optimal rate.


Finally, the dissertation considers the use of S2PC-with-Coms as a tool capable of
enhancing privacy in two security-related systems currently being developed for nation-scale
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use. The problem at stake is that of hub-based brokered identification of citizens, where a
centralized online party (a “hub”) mediates the communication between several entities in
order to facilitate authentication at service providers. If the hub were allowed to learn certain
persistent user-pseudonyms (as is the case in contemporary governmental proposals in some
countries), it would be able to track users across their accesses to service providers, which
could be abused as a vector of mass surveillance. This dissertation describes [BCDA15BCDA15] how
S2PC of a block-cipher can be used to promote privacy, by preventing the hub from learning
those pseudonyms across diverse authentications, while nonetheless allowing a tradeoff with
properties needed for foreseen auditability and selective forensic investigations. While S2PC
is still not a mainstream technique used in real systems, the study of this application is on
its own useful by exemplifying the potential of S2PC as a privacy enhancer.


The next three subsections provide an overview of the results.


Out of scope approaches. The S2PC protocol revised in this dissertation is based on a
cut-and-choose of garbled circuits approach, allowing a constant number of communication
rounds and compatible with very efficient garbling schemes. Outside the scope of this
dissertation there exist other promising S2PC approaches (some are briefly mentionedmentioned in
the next Chapter), some of which allow different tradeoffs, sometimes asymptotically more
efficient but sometimes impractical under common parametrization ranges.


Depending on the application context, the output learned from one or several S2PC
interactions may pose a threat to privacy when combined with external information. Thus,
an important complementary aspect to the design of S2PC protocols relates to deciding
whether or not a function (or probabilistic functionality) is “safe” to compute, from a privacy-
preserving perspective. These considerations are more closely related to the area of differential
privacy [Dwo06Dwo06], not discussed in this dissertation.


Another complementary aspect of secure computation is that of hiding from (at least)
one party the function being computed [AF90AF90]. This is commonly called private function
evaluation and can be achieved directly via S2PC of a universal circuit [Val76Val76, KS08cKS08c, KS16KS16],
where the actual evaluated circuit is specified as part of the private input of the universal
circuit, or more specialized techniques [MSS14MSS14].
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1.3 S2PC-with-Coms and the forge-and-lose technique


Traditional cut-and-choose of garbled circuits. The two parties in the interaction are
denoted PA (Alice) and PB (Bob). In a traditional cut-and-choose of garbled circuits (e.g.,
[Pin03Pin03]), PA builds several garbled circuits and then PB (based on auxiliary information
provided by PA) checks the correctness of a random subset of them. If all checked circuits are
correct, then PB proceeds (based on other auxiliary information provided by PA) to evaluate
the remaining circuits to decide the circuit output from a consistent majority of the results.
The majority criterion is needed because PA cannot complain even if it detects inconsistencies
(e.g., different outputs) — such complaint would jeopardize the privacy of PB, because PA


could have prepared a few circuits for selective failure (e.g., error only if the first bit of PA is
0). Thus, a successful cheating requires that PA builds enough bad circuits (i.e., at least half
of the number of circuits selected for evaluation) and be lucky that all of them are selected
for evaluation. Specifically, the multitude of circuits induces a negligible probability with
which a malicious PA can make an honest PB accept an incorrect output. In this protocol
structure, an optimal cut-and-choose partition should have a fixed proportion of challenge
types, of about three fifths for check and two-fifths for evaluation [SS11SS11]. Concretely, at least
123 circuits [Bra13Bra13] (with 74 for check and 49 for evaluation) are needed to reduce to less
than 2−40 the probability of successful cheating by means of building incorrect circuits, i.e.,
to obtain the typical benchmark of 40 bits of statistical security.


A new success criterion — improving efficiency. The traditional cut-and-choose
was a reference point to improve the efficiency of S2PC. This dissertation describes the
forge-and-lose technique, introduced in [Bra13Bra13], which enables reducing by an approximate
multiplicative factor of three the number of circuits, which represents the main communication
cost of cut-and-choose based S2PC protocols, for circuits of practical size. For example, 40
bits of statistical security can now be achieved with between 40 and 44 garbled circuits. This
is achieved with a new criterion for successful evaluation, only requiring that at least one
evaluation circuit is correct, instead of a majority. Thus, a successful cheating would now
require PA to guess the exact cut-and-choose partition in advance. As a result, each circuit
provides an additive contribution of about one bit of statistical security.
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Illustration 1.1: Forge-and-lose. Evaluation path followed by PB (the evaluator), if two
different garbled circuits (e.g., GCj , GCj′) built by a malicious PA and selected by PB for evaluation
lead to valid encodings of different bits in a same wire index (i).


The forge-and-lose construction. If PA maliciously builds several incorrect garbled
circuits, it may happen with a noticeable probability that all selected for check are correct
but some selected for evaluation are inconsistent. Specifically, an evaluated circuit that in
the view of PB is seemingly correct in isolation may actually be bad, in the sense of leading to
an output that is inconsistent to what would be obtained with a good circuit. Each such bad
circuit, a.k.a. (bad but well-)forged circuit, will have at least one output wire index (i) whose
output may differ from the output in the same wire index of a good circuit. The forge-and-lose
technique leverages these inconsistencies to the benefit of the honest PB, making any such
pair equivalent to a trapdoor that is able to decrypt the input of PA (which is verifiably
encrypted as part of the protocol). In summary, if PA forges some elements then it risks losing
the privacy of her inputs — thus the name “forge-and-lose”. The technique is illustrated at
high level in Illustration 1.11.1, showing the path whereby two inconsistent outputs allow PB to
obtain the input of PA and then use it to evaluate the intended Boolean circuit. The loss
of privacy by PA is not a violation of security, but rather a disincentive against malicious
behavior. In the new structure, for PA to succeed with a malicious forging it must guess in
advance the exact cut-and-choose partition, in order to induce that all circuits selected for
check are good and all selected for evaluation are bad.


BitCom approach. At the heart of the devised protocol is the use of bit commitments
(BitComs) with trapdoor and other special properties. In a BitCom scheme, a party is able to
become bound (i.e., committed) to a bit that is nonetheless hidden from the other party; the
committed party also learns additional information (a.k.a. the “randomness” or “encoding”)
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that in a later open phase (if so desired) allows revealing the committed bit, in a convincing
way, to the other party. A trapdoor is a secret that, under special circumstances and depending
on the type of BitCom, may be disclosed to allow extraction, i.e., finding in advance what is
the committed bit, without an open phase, and/or equivocation, i.e., opening any intended bit
from a BitCom in the open phase. For the purpose of the forge-and-lose technique, PA builds
extractable (Ext) BitComs for her input bits, as well as equivocable (Equiv) BitComs for the
output bits of PB. Then, in each evaluated garbled circuit, each output wire key leads PB to
learn an encoding of a bit-opening of the Equiv-BitCom associated with the respective wire
index. If a bad circuit is well forged then it will have at least one output wire key leading to
a valid bit-encoding different from the one obtained from a good circuit. In special types of
trapdoor Equiv-BitComs, different bit-encodings corresponding to the same BitCom can be
combined into a trapdoor of another Ext-BitCom scheme. In the forge-and-lose technique the
BitComs schemes are defined in a way that the trapdoor can be used as a key to decrypt the
input of PA from the respective Ext-BitComs. Overall, the use of BitComs in the protocol
extends beyond the forge-and-lose technique. For each type of wire (input of PA, input of PB,
output of PB), the BitCom approach integrates in the cut-and-choose approach a statistically
verifiable connection between BitComs and wire-keys, using a construction denoted connector.
The connectors leverage certain homomorphic properties of the underlying commitments,
namely the ability to produce and verify a BitCom of the XOR (i.e., sum modulo 2) of the
bits committed by other BitComs.


S2PC-with-Coms — improving applicability. The new protocol achieves S2PC-with-
Coms, as depicted in Illustration 1.21.2. Besides the output of a regular S2PC of a Boolean
circuit, each party also receive commitments (Coms), possibly BitComs, of the private input
and output of both parties, and the private randomness needed to open the Coms of her own
input and output. The applicability goes beyond that of a S2PC of the underlying Boolean
circuit, as it also allows parties to use the Coms as part of a larger protocol. For example,
S2PC-with-BitComs enables a natural solution to linkage of several S2PCs, efficiently ensuring
that the input used in a S2PC satisfies intended relations with the input and output of other
S2PCs. As another example, this dissertation also discusses the usefulness of S2PC-with-Coms
in an application (brokered identification) where Coms are externally useful.
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Illustration 1.2: Secure Two-Party Computation with commitments. Legend: PA
and PB (the names of the two parties); xp, yp and Cp (the private circuit input, the private circuit
output and the public circuit specification of party Pp, respectively, with p being A or B); (commit-
ment of the variable inscribed inside the dashed square); (randomness needed to open the respective
commitment). Colors red, blue and purple are related with PA, PB and both parties, respectively.


Contemporary results. In respect to the three-fold reduction of number of garbled circuits,
a comparable result was also achieved by other authors in independent contemporary research,
by also just requiring that at least one evaluation garbled circuit is correct [Lin13Lin13, HKE13HKE13].
They follow different approaches, use different concrete primitives, do not consider the aspect
of linkage and do not allow the same tradeoffs. For example: [Lin13Lin13] is inherently interactive
after the first evaluation stage, whereas in [Bra13Bra13] the recovery path does not require further
interaction upon being able to evaluate garbled circuits. [HKE13HKE13] requires use of a verifiable
secret sharing scheme and both parties executing in parallel the same number of garbled
circuits, and the recovery mechanism does not lead the malicious party to lose her privacy.


1.4 Simulatable coin-flipping and commitment schemes


Coin-flipping and commiments. To emulate an ideal random selection of BitComs in
the new S2PC-with-BitComs protocol, the two parties need to execute, as a sub-protocol,
a simulatable two-party coin-flipping. This is a probabilistic functionality that allows two
mutually distrustful parties to agree on a common random bit-string of a certain target
length. A protocol for two-party coin-flipping (“by telephone”) was early proposed by Blum
[Blu81Blu81]. It allows both parties to provide and combine independent contributions so that the
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output bit-string of an honest party is indistinguishable from a random bit-string, even if the
other party is malicious. The protocol uses the fundamental notion of commitment scheme
(Com-scheme), allowing one party (P1) to commit her own contribution before knowing
anything about the contribution of the other party (P2), but hiding it until the contribution
of P2 is revealed, and binding P1 to only being able to open the committed value. The
solution, in the form of a coin-flipping into a well (where one party learns the result before
the other), sets the basis for what is hereafter denoted as the traditional template:


• Step 1. (Commit phase) P1 commits to a contribution, but hiding it from P2.
• Step 2. P2 selects and sends his random contribution to P1.
• Step 3. (Open phase) P1 reveals her contribution to P2 in a convincing way.
• Step 4. Each party outputs a combination of both contributions.


Simulatability. The simulatability of a coin-flipping protocol within the traditional tem-
plate depends on the number of coins flipped in parallel, i.e., the length of the contributions,
and on the type of Com-scheme. When flipping a single coin, any hiding and binding Com-
scheme is enough if rewinding is allowed in the simulation [Gol04Gol04, §7.4.3.1]. Conversely, when
doing parallel flipping of coins in number at least linear in the security parameter, or when
considering a setting without rewinding, simulatability is facilitated by using Com-schemes
with special simulatability properties, namely extractability (Ext) and equivocability (Equiv).
In an extractable commitment (Ext-Com) scheme [SDCP00SDCP00], a simulator is able to extract a
contribution that has been committed by another party, in apparent conflict with the hiding
property. In an equivocable commitment (Equiv-Com) scheme [Bea96aBea96a], a simulator is able
to equivocate the opening to any contribution, namely to a value different from what had been
committed, in apparent conflict with the binding property. The conflict is only apparent, as
in comparison with a real party the simulator has extra power, such as capability to rewind
the other party in the simulated execution, or knowledge of secret information (a trapdoor)
obtained from some specially selected setup.


A main technical challenge is to obtain, in an efficient way, the combination of extractability
(Ext) and equivocability (Equiv), as needed by the simulator to anticipate and control the
outcome of a coin-flipping and/or commitment opening. In the initial description of the S2PC-
with-Coms protocol [Bra13Bra13], an initial suggestion of simulatable sub-protocol for coin-flipping
required a number of exponentiations linear in the number of input and output bits of both
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Illustration 1.3: Initial intuition for an efficient Ext&Equiv-Com scheme. Legend:
Ext = extractable; Equiv = equivocable; PRG = Pseudo-randomness generator; CR-Hash = colli-
sion-resistant hash function. (Ext-Com — like a vault with a single door); (Equiv-Com — like
a vault with several openings). The construction on the right side does not work, because opening
the Ext-Com prevents equivocability, but it hints at how to achieve isolated extractability based on
an Ext-Com of a short seed, and isolated equivocability based on an Equiv-Com of a short hash.


parties, and a linear communication complexity with a relatively large constant multiplicative
factor (in respect to the target length). In comparison, further research [Bra16Bra16] presented
in this dissertation improves efficiency (lower asymptotic communication complexity and a
number of exponentiations independent of the target length) even without rewinding.


Simulatable two-party coin-flipping is also a problem of independent interest. A technical
motivation relates to the design of larger cryptographic protocols, e.g., where it may allow
the joint decision of a large common reference string needed as setup condition of follow-up
sub-protocols [CR03CR03]. It can also be useful for protocols whose probabilistic output needs to
directly depend on random bit-strings, as exemplified with S2PC-with-Coms.


Contribution. An initial intuition for efficiency (depicted in Illustration 1.31.3) comes from
two observations: (i) the extractability of a large string can be reduced to the extractability
of one short seed, which can be expanded with a pseudo-randomness generator (PRG) into a
long mask (a bit-string indistinguishable from random) that is then used to mask (encrypt
with a one-time-pad) the large string being committed; (ii) the equivocability of a large string
can be reduced to the equivocability of a short collision-resistant hash (CR-Hash) of whatever
large string (e.g., the mask) the simulator wants to equivocate. Given the high efficiency of
standardized PRGs [BK15BK15] (e.g., based on block or stream ciphers) and CR-Hash functions
[Nat15Nat15], the mentioned constructions would also be highly efficient. However, a simple triplet
composed of a masked bit-string, an Ext-but-not-Equiv-Com of the seed of the mask, and an
Equiv-but-not-Ext-Com of a hash of the mask does not result in an Ext&Equiv-Com of the
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(unmasked) bit-string. For example, opening the Ext-Com would disallow equivocability.


Out of two newly developed protocols (in different simulatability settings) [Bra16Bra16], this
dissertation describes the new universally-composable commitment scheme — Ext&Equiv in
a simulatability setting that does not allow rewinding. It efficiently and securely combines
the two separate Ext and Equiv properties, associated with a few commitments of short seeds
and hashes (in number independent of the target length), into a unified property extensible to
a much larger string, thus amortizing the cost of the base commitments. The protocol can be
parametrized to achieve asymptotic communication rate arbitrarily close to 1, i.e., in order to
commit or open a bit-string of asymptotically increasing length, the number of bits exchanged
is larger than the bit-string by a multiplication factor that can be made arbitrarily close
to 1. Computationally, the protocol requires collision-resistant hashing, pseudo-randomness
generation and erasure encoding of a string of size linear in the target length.


The separate Ext and Equiv commitments for short strings can also be instantiated with
a full-fledged Ext&Equiv-Com. In this case the construction represents a UC commitment
extension, where a few (commit and open) calls to an Ext&Equiv-Com scheme for short
bit-strings enable an Ext&Equiv-Com (commit and open) of a polynomially larger size.


Contemporary results. Other recent works [GIKW14GIKW14, DDGN14DDGN14, CDD+15CDD+15] also focus on
universally composable commitment schemes with communication complexity asymptotically
amortized to rate 1. They explicitly use oblivious transfer as an ideal functionality in a
hybrid model. In contrast, the distinct design described in this dissertation avoids explicit
use of oblivious transfer, and instead uses base Ext-Com and Equiv-Com schemes (besides a
PRG and CR-Hash function), thus enabling different tradeoffs in practical instantiations. At
the cost of more interactivity, the Equiv-Com scheme can be based on an Ext-Com scheme.
Based on other assumptions (common reference string and non-programmable random oracle)
the protocol can be made non-interactive.


1.5 Privacy-preserving brokered identification


S2PC has the potential to solve apparent conflicts between privacy and the utility of sharing
information. As a concrete example, this dissertation shows that S2PC-with-commitments can
be applied to a practical and contemporary problem: enabling privacy-preserving nation-scale
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brokered identification [BCDA15BCDA15]. This constitutes an application example within a complex
system with more than two parties, exhibiting the potential societal impact of the presented
theoretical contributions. Here, S2PC can be used to enhance the privacy guarantees of
citizens, notably creating resilience against a possible vector of mass surveillance.


Brokered identification. The main goal is to allow a user to authenticate to myriad
service providers, without the user having to directly establish credentials with each service
provider. This can be achieved by leveraging a pre-established relation between the user
and an identity provider that can vouch for the user identity. In privacy-preserving brokered
identification, the complementary goal is to prevent the intervening parties (such as identity
providers) from tracking the activity of users across successive accesses to service providers.


A possible type of brokered identification involves an online central entity, called a hub,
brokering the interaction between users, service providers and identity providers. Such
centralized mediation is the basis of two concrete and contemporary systems being developed
for nation-scale use: the Federal Cloud Credential Exchange [Uni13Uni13] (FCCX, recently re-
branded as Connect.Gov) in the United States (US), and Gov.UK Verify [Ide13Ide13] in the United
Kingdom (UK). As a broker, the role of the hub is to ensure interoperable identification and
authentication, while seemingly offering desirable privacy and security guarantees, such as
hiding from the identity provider the user activities across service providers. However, in the
two analyzed systems, the hub has a wide-tracking capability, on top of other problems such
as attribute visibility and capability of impersonation. The identified privacy and security
problems are in sharp opposition to the guidelines, requirements and/or principles that the
systems should be aligned with, given the underlying strategies that they are meant to follow,
namely: the National Strategy for Trusted Identities in Cyberspace (NSTIC) [The11The11] in the
US, and the Identity Assurance Principles (IAP) [Pri14Pri14] in the UK.


In respect to brokered identification, the results reported in this dissertation are focused
on a specific privacy property, here called “weak pseudonym-unlinkability by the hub.” This
aspect of unlinkability considers the inability of the hub to infer whether two identification
transactions, by the same user but at different service providers, were performed by the
same user or by different users, even if no other private identifiable information is known
about the user(s). While an identification transaction is composed of many identifiers and
metadata, the essence of the problem discussed herein is related only to user-pseudonyms,
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i.e., identifiers that in isolation do not reveal any personal data about a user, but which
may constitute “relationship data” when linked across several events. It is shown that S2PC
with commitments can be used to enable such unlinkability property while at the same time
still enabling the overall system to operate “in a secure and auditable manner.” Following
standard notation, service providers are hereafter denoted as relying parties (RPs), since they
will rely on identity assertions provided by someone else (the hub) about the user.


Pseudonym unlinkability. The problem and solution are illustrated in Illustration 1.41.4.


Illustration 1.4a1.4a shows that in the current systems (FCCX and Gov.UK Verify) the user
pseudonym (u) defined by the identity provider (IDP) is first sent to the hub and only then
transformed into a user pseudonym (vi) to be sent to a respective RP. The transformation
is left implicit, as it is different in Gov.UK Verify (where another entity is involved) and
FCCX. The later user pseudonym is persistent and different for each RP. In other words:
across several transactions of the same user (u) trying to authenticate to the same RPi,
the hub will always send the same user pseudonym (vi) to RPi, so that RPi can find the
same local user account; each RP receives a different user pseudonym. This pseudonym
transformation prevents RPs from learning a global persistent identifier (u) of the user. If
assuming that the user pseudonym for each RP is pseudo-random (or randomly selected the
first time and then memorized), then it follows that it does not reveal identifiable information
about the user, and it does not allow a set of colluding RPs to link user transactions based
on these pseudonyms. However, an essential problem remains — the hub always sees the user
pseudonym (u) defined by the IDP, which is the same whenever the same user authenticates
via the same IDP. This poses a privacy shortcoming, in the sense that the hub gains a wide
ability to link all identification transactions associated with each user.


It could seem at first glance that the described linkability is a “necessary evil” in order
to allow an adequate transformation of the user pseudonym (u) received from the IDP into
a new user pseudonym (vi) to send to each RPi, without letting the IDP know which RP
is involved. However, S2PC enables an alternative elegant solution, allowing the needed
pseudonym transformation, while hiding the initial user pseudonym (u) from the hub. In the
right side, Illustration 1.4b1.4b shows how this can be achieved based on a S2PC of a block-cipher.
Specifically, the user-pseudonym vi to be sent to RPi is obtained as a ciphertext resulting
from using the user pseudonym u defined by the IDP as a key to encipher the RP pseudonym
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Hub RPiIDPIDP u, σI(u) vi, σH(vi)


σH(⋅) σRi(⋅)


(a) In FCCX and Gov.UK Verify


S2PC-with-commitments
of a block-cipher


u


vi, σH(vi)


C ≡ (C (u,u),C (ri, ri),C (vi, vi))


σH(C)
σI(C)


ri


vi= Cipheru(ri)


IDP Hub
RPi


C, u
vi, C,
ri, vi


σRi(⋅)


(b) New proposal


Illustration 1.4: Linkability vs. weak-unlinkability of user-pseudonyms by the
hub. Legend: u (user pseudonym determined by IDP); ri (pseudonym of RPi, determined by
Hub); vi (user pseudonym to send to RPi); C (⋅, ⋅) (commitment of ⋅, using randomness ⋅); u, ri, vi
(randomnesses associated with commitments of u, ri, vi); σH (signature by Hub); σI (signature by
IDP); σRi (signature by RPi). Several metadata elements (e.g., session identifiers) are left implicit.


ri defined by the hub. By definition a block cipher has a pseudo-random output when its key
(in this case the user-pseudonym u defined by the IDP) is also pseudo-random. Since the
computation is made via a S2PC, the hub does not get to learn a common user pseudonym
across two executions of the same user across different RPs.


Auditability. The design of a complex privacy-preserving brokered identification system is
also subject to auditability considerations. For example, it may be required that the hub be
able to prove, in certain audit actions, that the user pseudonym vi sent to RPi in a given
transaction was indeed obtained upon interaction with an IDP, namely by showing a related
cryptographic signature by the respective IDP. Similarly, the IDP must be able to prove that
it only signed said material as a result of an interaction with the hub. In order to enable these
auditability properties, a more intricate solution is required (still depicted in Illustration 1.4b1.4b).
Besides the already described block-cipher output received by the hub, both the IDP and the
hub also receive commitments of the inputs and outputs. The commitment hides the inputs
and outputs of each party from the complementary party, but allows each party to open (or
prove something about the values committed by) the commitments respective to her private
input and output. By having each party send a signature of the commitments to the other
party, each party is later able to prove the needed relations during an audit action. This can
be based on the already mentioned S2PC-with-BitComs protocol described in the dissertation,
but a complementary solution is also described, built on top of any black-box S2PC protocol.
The different solution slightly augments the circuit that needs to be evaluated, but otherwise
leaves the computation of cryptographic commitments outside of the actual S2PC module.
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A complete solution for privacy-preserving brokered identification, resilient to a com-
promised hub, requires integrating other properties, e.g., a stronger form of pseudonym
unlinkability (with the hub not learning any persistent user-pseudonym, not even the one
needed by the RP), as well as attribute privacy and authenticity against (i.e., not allowing
user-impersonation by) a malicious hub. Nonetheless, the example of weak pseudonym-
unlinkability across RPs already highlights the applicability of S2PC, demonstrating that two
apparently conflicting requirements may actually be satisfied simultaneously, while allowing
a desirable level of auditability. Even if more efficient solutions may exist, S2PC as an ideal
functionality is useful to show conceptual feasibility and thus can stand as a starting point
for research of more specialized solutions (e.g., other than S2PC of a Boolean circuit).


1.6 Organization


The remainder of this dissertation is organized as follows. Chapter 22 introduces the necessary
background notions, namely some cryptographic assumptions, the ideal/real simulation
paradigm, commitment schemes, the cut-and-choose of garbled circuits approach for S2PC,
and some oblivious transfer protocols. Chapter 33 describes the protocol for S2PC-with-
Coms, including the forge-and-lose technique, with a revised analysis and improvements
in comparison with the original paper. Chapter 44 presents a new efficient universally
composable commitment scheme (usable for two-party coin-flipping). Chapter 55 analyzes
two brokered identification systems, showing that S2PC can play the role of privacy enabler.
Chapter 66 concludes with a review of the goals proposed in this dissertation and enumerates
open problems. Appendix AA contains details about zero knowledge (ZK) sub-protocols.
Appendix BB provides a low-level description of the S2PC-with-Coms protocol. Appendix CC
describes further details about simulatable commitments and two party coin-flipping.
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Chapter 2


Background


This chapter discusses background material useful for the understanding and instantiation of
the contributions presented in this dissertation. The goal is to convey the needed intuition
about used primitives and concepts, serving as a technical introduction, helping to define the
scope of contributions and initiating a comparison with related work. It does not intend to
be a tutorial of cryptography nor to discuss aspects in full formality.


Section 2.12.1 reviews background material about standard cryptographic assumptions and
primitives, namely associated with integer-factorization cryptography (IFC) and discrete-
log cryptography (DLC). Section 2.22.2 overviews the ideal/real simulation paradigm, used to
prove security (a.k.a. simulatability) of protocols. Section 2.32.3 reviews basic notions about
commitment schemes, including BitCom schemes, homomorphic and pseudo-homomorphic
properties, extractable and equivocable instantiations. Section 2.42.4 describes at high level
the basic building blocks of the traditional cut-and-choose of garbled-circuits approach,
including nuances on how to decide the cut-and-choose partition, and the application of the
random-seed checking technique. Section 2.52.5 describes two BitCom-based constructions of
oblivious transfer useful for S2PC. Zero knowledge sub-protocols are discussed in Appendix AA.


2.1 Cryptographic assumptions and primitives


Within the standard model of cryptography, some mathematical problems are assumed to
be computationally intractable, i.e., infeasible to solve in a practical amount of time with a
practical amount of computational resources. The assumptions herein are taken at the light
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of current state-of-the-art computability, not in the sense of conjectures.


Informally, the computational security parameter κ, specified in number of bits, denotes
a value whose respective exponentiation over a base 2 represents a prohibitive number of
computational operations. Similarly, the number of bits σ of statistical security is the additive
inverse of the logarithm base 2 of the maximum error probability, i.e., for which a malicious
party can break some security property in a single execution (e.g., make the other party
accept an incorrect output) and/or the maximum advantage in a game of distinguishing real
protocol execution transcripts from transcripts of an ideal execution.


This section starts by briefly mentioning base cryptographic primitives that are available
based on highly-efficient standardized constructions and are directly assumed to be secure: a
pseudo-randomness generator (PRG) based on block-ciphers, and a collision-resistant compres-
sive hash function (CR-Hash) (§2.1.12.1.1). Then it describes number-theoretical assumptions and
instantiations, suggestively labeled as being of integer-factorization cryptography (IFC) type
or discrete-log cryptography (DLC) type. The IFC case is considered here with a concrete
instantiation based on Blum integers (§2.1.22.1.2). The DLC case is itself sub-instantiable by
regular multiplicative groups modulo a large prime number, a.k.a. finite-field cryptography
(FFC), and by elliptic curves over finite fields, a.k.a. elliptic-curve cryptography (ECC)
(§2.1.32.1.3). (The acronyms IFC, FFC and ECC are for example used in [Bar16Bar16].)


2.1.1 Concrete cryptographic primitives


A negligible function is a positive function approaching zero faster than the inverse of any
positive polynomial, asymptotically as its real pre-image approaches infinity [Bel02Bel02]. Negligible
probability denotes a probability that is a negligible function of an implicit security parameter.
Overwhelming probability denotes a probability whose distance to certainty is negligible in
the implicit security parameter. Noticeable probability denotes a probability higher than the
inverse of some positive polynomial, asymptotically as the security parameter increases, i.e.,
such that any polynomial number of repetitions yields an overwhelming probability.


The usefulness of polynomial-based complexity for defining certain properties stems from
the closure properties of polynomials. For example, if an event has a negligible probability of
occurrence (e.g., a randomly selected element having a certain property), then it follows that
the probability of occurrence remains negligible even after a polynomial number of repetitions.
Asymptotic-based definitions are useful for security reductions, but do not hint at concrete
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parameters to use. In order to estimate the concrete complexity of possible implementations of
protocols this dissertation assumes some practical choices based on standardized parameters.


PRG. A pseudo-randomness generator receives a fixed-length input seed, assumed to be
random (or pseudo-random) and is then able to pseudo-randomly generate (PRG) an arbitrary
number of elements from a specified set, e.g., bit-strings of a certain length. The input length
is assumed to be proportional to the computational security parameter, and in practice is
always used as twice its size. For example, for 128 bits of security, AES-256 is used as the
base cipher for generation of pseudo-random elements, guaranteeing a birthday bound of
about 128 bits of security in respect to the probability of ever repeating the same random
seed. A PRNG is secure if any probabilistically polynomially time bound adversary has a
negligible advantage in a game of distinguishing PRG outputs from actual random outputs.


CR-Hash. A collision-resistant hash function (CR-Hash) maps the domain of arbitrary-
length bit-strings into the set of bit-strings of some fixed length, and satisfies the property of
being computationally infeasible to find collisions, i.e., two inputs with the same hash. The
CR-Hash must have output length at least twice of the computational security parameter,
lest its collision resistance would break under a generic birthday attack (i.e., generating many
pairs of random pre-images and respective hashes until finding two distinct pre-images with
the same hash). Whenever mentioning CR-Hashes it will remain implicit that one-wayness is
also intended, namely that upon receiving the hash of an input selected uniformly at random,
from the set of bit-strings of sufficiently large length, it is infeasible to find a respective
pre-image. In practice, it is assumed that SHA-256 delivers the intended properties of collision
resistance and one-wayness (roughly) up to 128 bits of security.


A formal definition of collision resistance and one-wayness usually considers a family
of hash functions, parametrized by a security parameter, such that asymptotically as the
security parameter grows it is computationally infeasible to obtain collisions. However, the
use of CR-Hashes in this dissertation is very concrete and fixed at setup. As opposed to
asymptotic-based security, concrete security measures the concrete computational resources
(e.g., number of calls to a certain primitive) needed to break a cryptographic assumption
based on the ability to break a security property. Given the compressive nature of the
CR-Hash (e.g., outputs with 256 bits), theoretical collisions certainly exist (e.g., pairs of
values with the same CR-Hash), but for a concrete hash function (such as currently for
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SHA-256) they are assumed to be unknown and infeasible to compute. In an eventual future
where a single collision is disclosed, or where theoretical advances shed reasonable suspicion
that the practical security of the hash may be breakable, the CR-Hash function must change
to adapt to the respective state-of-the-art. Whenever explicitly mentioned, SHA-256 may
also be used as a cryptographic hash assumed to have a type of pseudo-random property and
some correlation intractable properties. For example, it may be assumed that the output is
pseudo-random whenever the input is unpredictable, e.g., whenever prefixing to the input a
bit-string (a salt) with a large enough known number of bits selected uniformly at random.


Ideal primitives. Several instantiations of protocols are described in a hybrid model with
access to ideal functionalities, as better discussed in Section 2.22.2 when reviewing at high level
the ideal/real simulation paradigm. For example, a protocol implementing a commitment
scheme with special properties (extractability and equivocability), and designed for the
domain of large bit-strings, may be defined and proven secure based on the use of a few ideal
commitments for shorter bit-strings. The ideal functionalities may then be instantiated based
on other ideal functionalities, e.g., a common reference string and/or a (non-programmable)
random oracle, and/or additional real concrete primitives. The relevance of definitions based
on ideal functionalities is arguable when there exist no concrete instantiations to realize them,
or when there exist no provably secure instantiations based on standard assumptions [Dam07Dam07].
A special case is the programmable random oracle functionality [FS87FS87, BR93BR93], for which it is
proven that any replacement by a concrete function fails to provide all properties of the oracle
[CGH04CGH04, Nie02Nie02]. It is thus relevant to consider which properties of the ideal functionality are
required to prove security, to understand if there may exist a real cryptographic primitive
adequate as a concrete replacement.


Non-programmable random oracle (NPRO). A NPRO may be understood as a black-
box providing access to the evaluation of a single random function, which no party (or
simulator) has access to program [Nie02Nie02]. It is a function decided once and for all, before any
protocol execution, and whose output can only be determined upon providing the respective
input to the black-box. A NPRO may be suitable to support a soundness property that
depends on the inability to compute in advance a value (a pre-image) that is related in a
particular way with an unpredictable value (the respective NPRO image). For example,
it can be used, with care, to enable non-interactive versions of typical Σ-protocols, e.g.,
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zero-knowledge proofs of knowledge (ZKPoKs) with a commit-challenge-response structure
and having a special soundness property (see §A.1.2A.1.2 in Appendix). The transformation for
non-interactivity consists on defining the Σ-challenge element to be the NPRO image of an
equivocable commitment of a tuple of elements that define the problem context and include the
Σ-commit element [Lin15Lin15]. The intuition for soundness is that the NPRO guarantees that at
the time of selecting a new Σ-commit element the corresponding Σ-challenge is unpredictable
(i.e., assuming that the protocol parameters are being used for a first time), which makes
it similar to being decided at random. Naturally, if the cardinality of the challenge space
is within the reach of a brute-force attack (e.g., if the statistical security parameter is too
small to be suitable as a computational security parameter) then the transformation is
unsuitable to support soundness. The above reasoning is able to isolate soundness from other
security properties because, in the mentioned example, the NPRO properties are really only
required to prove soundness, whereas other properties such as zero-knowledge (including
non-transferability) depend on the use of an (equivocable) commitment scheme to prepare
the pre-image of the NPRO, which for example semantically hides the respective input.


Cryptographic hash vs. NPRO. In comparison with certain uses of a full-fledged (pro-
grammable) random oracle, the use of a NPRO in certain protocols leaves open the possibility
of replacing the oracle by a concrete function with certain correlation-intractability properties
sufficient to prove security of the protocol. In the example of ensuring soundness of a
non-interactive version of a concrete Σ-protocol, an appropriate replacement of the NPRO by
a concrete cryptographic hash function must be such that it does not increase the advantage
of non-interactively producing a valid commit-challenge-response triplet. Once replacing the
NPRO by a concrete hash function, the problem of finding a valid commit-challenge-response
triplet can be reduced to that of finding, for a particular function that depends on the hash
function and the protocol at stake, an input-output pair that is correlated in a specific
way that also depends on the protocol. Specifically, in the non-interactive transformations
considered in this dissertation it is assumed that there is a concrete cryptographic hash
function (e.g., SHA-256) that is not only collision resistant, one-way and pseudo-random
(whenever the input is unpredictable) but also correlation intractable in a specific way related
to the protocol that uses it.


From a definitional standpoint, the arguable problem of the mentioned NPRO replacement
is that the requirement of a specific correlation intractability per protocol is somewhat circular,
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in the sense that the proof of security of the protocol depends on the hash function being
assumed to satisfy some specific properties whose definition is based on the protocol itself.
While it remains an open problem to prove that a concrete cryptographic hash (e.g., SHA256)
may securely replace a NPRO in the concrete applications considered herein, at the light of
current state-of-the-art this is an arguably acceptable tradeoff, as it allows a modularization of
security concerns and allows understanding how a protocol may fail (i.e., by breaking explicit
assumptions). It would indeed be very surprising to show that a standardized particular
cryptographic hash function (e.g., SHA-256) could introduce, in the particular considered
protocols, a flaw not existent when using instead a NPRO — any such example would
represent finding a new undesirable property of the concrete standardized cryptographic hash.


It is worth emphasizing that the above reasoning is applied for particular protocols
that allow specifying a concrete intractability assumption about the function replacing the
NPRO. The reasoning would provably fail for cases where security relies on the ability to
program the output of a random oracle. Particularly, properties like deniability (a.k.a. non-
transferability, an aspect of zero-knowledge), which (in non-rewinding simulations) require a
kind of programmability, are in this dissertation supported based on other ideal functionalities
(weaker than a programmable random oracle), such as equivocable commitments (for which
it is possible to program, i.e., equivocate, the committed value), e.g., which can on its turn
be based on a (programmable) common reference string.


The NPRO is used to enable non-interactive sub-protocols but can be avoided in interactive
versions thereof. More considerations are elaborated in §A.1.4A.1.4 in Appendix.


2.1.2 Integer-factorization cryptography (IFC)


A Blum integer [Blu81Blu81] is a positive integer composed only of the product of two prime
powers, where each prime is congruent with 3 modulo 4 and each power has an odd exponent.
Within the use cases of this dissertation, it is enough to consider a Blum integer as equal to
the product of two primes. Blum integers can thus be produced by selecting two random
primes congruent to 3 modulo 4 and then multiplying them. Once the number of bits (a.k.a.
the size) of a prime is decided, selecting a respective random prime can be done somewhat
efficiently. First, because the probability that a random integer of a given size is prime is
approximately inversely proportional to the size of the prime. Second, because checking
primality can be done with a number of modular exponentiations linear in the statistical
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Table 2.1: Concrete sizes for IFC, FFC and ECC parameters


A B C D E


Security
parameter (κ)


Type of
elements IFC


DLC 1


FFC ECC 2


256
Group elements 15,424 15,424 512 3


Pre-images 15,424 512 512 4


128
Group elements 3,248 3,248 256 5


Pre-images 3,248 256 256 6


96
Group elements 1,776 1,776 192 7


Pre-images 1,776 192 192 8


The case κ = 96 is not intended for long term security, but may be useful when a security property
only needs to hold in the short-term, e.g., binding of a commitment produced and opened within a
brief protocol execution (e.g., see §B.4.1.3B.4.1.3). In IFC the pre-images are square-roots; in DLC they
are integer exponents. Future progress in theory, algorithms and computer technology may change
the adequate lengths (and, hypothetically, even invalidate some intractability assumptions).


security parameter, e.g., based on the Miller-Rabin probabilistic primality test [Rab80Rab80].


Integer-factorization (IF) intractability assumption. Given a large enough Blum
integer selected uniformly at random, restricted to be the product of two primes of equal
size, it is here assumed to be computationally infeasible to find its prime factors.


Decisional quadratic-residuosity (DQR) intractability assumption. Given a large
enough Blum integer with unknown factorization, it is here assumed to be infeasible to
distinguish with noticeable advantage whether an element was selected as a random square
or as the additive inverse of a random square.


Parameters. Table 2.12.1 (based on [SBC+12SBC+12, Table 7.2]) suggests Blum-integer sizes for
diverse security parameters. For example, for 128 and 256 bits of (symmetric) security, it is
here assumed that it is enough to use Blum integers selected with 3,248-bits and 15,424 bits,
with the primes being randomly selected subject to having the respective half length.


Correctness of Blum integers. It is an interesting open problem whether or not there
exists an efficient procedure to decide whether a large random integer (equal to 1 mod 4, not


Page 25 of 376







Section 2.1. Cryptographic assumptions and primitives (2016-Dec-27)


a square and not a prime power) is a Blum integer or not. Not knowing such a procedure,
certain uses of Blum integers in this dissertation require that a party that knows its prime
factors proves to another party that the integer is correct and/or that it knows its factors, but
without revealing anything else. This is done via a zero knowledge proof (ZKP) of correctness.
Actually, even in a context where a Blum integer is selected by a trusted setup, subtle security
reasons (simulatability) require that a party knowing the Blum integer trapdoor (its prime
factors) provides a zero-knowledge proof of knowledge (ZKPoK) of correct factorization
(e.g., [vdGP88vdGP88]). Appendix A.2A.2 describes problems in case of using a non-Blum integer and
analyzes suitable ZK sub-protocols.


2.1.2.1 Other properties of Blum integers


Given the use of Blum integers in the original forge-and-lose technique, and also its special
properties that enable a 2-out-of-1 oblivious transfer for the input wires of PB, it is useful
to review here a few background properties. A more in depth analysis of these and other
number theoretical properties can be found in the literature (e.g., [NZM91NZM91]).


Class of a group element. The set of non-negative integers which are co-prime to and
lower than the Blum integer, together with the operation of multiplication modulo the Blum
integer (simply denoted multiplication or group multiplication), forms a multiplicative group.
The group elements are also denoted as residues. For a fixed Blum integer, the Jacobi Symbol
is a completely multiplicative function that maps any group element into 1 or −1. It can
be computed efficiently without knowing the factorization of the Blum integer. Since the
Jacobi Symbol is multiplicative (over {−1,1}), but S2PC is more focused on bits (0 and 1), it
is easier to consider the class of an element as the respective homomorphism to XOR (i.e.,
additive over {0,1}) — class 0 means Jacobi Symbol 1, and class 1 means Jacobi Symbol −1.


Blum integers have interesting properties that distinguish them from other integers. In
particular, they are the only moduli that simultaneously satisfy the following 2 properties:


• Each quadratic residue has exactly 4 distinct square-roots, two of which for each possible
Jacobi Symbol (−1 and 1), i.e., for each class (0 and 1).


• The residue −1 is non-quadratic and has Jacobi Symbol 1 (i.e., class 0).
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Proper elements. From the above properties, it follows that the additive inverse of any
residue is a different residue with the same square and the same class. Two group elements
trivially correlated in this manner have different least significant bit, i.e., one is even and the
other is odd (when represented as a non-negative integer lower than the modulus). When
dealing with square roots it is useful to define a proper square root of a given class, out of
the two possible with the same square and same class. For example, it may be assumed that
a proper element is the minimum between itself and the modular additive inverse. Other
options could be to choose the odd one, or the one whose least significant bit is equal to its
class. It is trivial to adjust group multiplication to only operate on proper elements.


The knowledge of the prime factorization of a Blum integer is computationally equivalent
to the knowledge of a non-trivial square-root of 1 (i.e., with class 1, i.e., Jacobi symbol −1)
in the respective multiplicative group. Any residue multiplied by this value is converted into
a new residue with different class but same square.


If a party knowing the factorization of a Blum integer is able to assume that for the other
party it is infeasible to find the factorization and to decide quadratic residuosity of random
residues, then the modulus can be used as an instantiation basis for several components of
the S2PC-with-Coms protocol defined in this dissertation.


It is useful to notice three other properties related to square-roots: (i) the knowledge of
two square-roots of different class enables an efficient discovery of the prime factorization
of the Blum integer (upon a simple computation of a modular sum and the computation of
a greatest common divisor, e.g., using the Euclidean algorithm); (ii) the knowledge of the
prime factorization enables efficient discovery of all four square roots of any quadratic residue;
(iii) for each quadratic residue there is only one square-root that is itself a quadratic residue
— this is called the principal square-root.


2.1.3 Discrete-logarithm cryptography (DLC)


Another type of cryptographic instantiation considered in this dissertation relates to cyclic
groups, i.e., groups that can be generated from a single element (a generator), by repeated
application of the group operation. In multiplicative notation the group set is defined as the
set of powers of the generator. Correspondingly, the discrete logarithm of any group element
is the least non-negative integer exponent that produces said group element as a result of
exponentiating the generator. The number of elements in the group is denoted the group order.
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Discrete logarithm (DL) intractability assumption. For certain group representa-
tions, i.e., once fixed a base generator and specifying the group operation (multiplication), it
is here assumed to be infeasible to compute the discrete logs of random group elements.


The group representation is relevant because for any cyclic group there is a group
representation for which the assumption does not hold. For example, any finite cyclic group
is isomorphic to the additive group of integers modulo the group order. Here, in additive
notation, modular multiplicative inverses — the analogous of discrete logs in multiplicative
notation — can be computed efficiently, e.g., based on the extended euclidean algorithm.


Decisional Diffie Hellman (DDH) intractability assumption. Given a reference
triplet composed of the generator and two respective random powers (i.e., with unknown
random exponents), it is hard to distinguish another random group element (i.e., with
unknown random exponent) from a group element whose discrete log is the product of the
exponents of the reference triple.


The DDH assumption is strictly stronger than the DL assumption, in the sense that an
algorithm for computing discrete logarithms can be converted to one that solves the DDH
problem, whereas the converse is not known to be true for several groups of interest. The
two assumptions are assumed to be true for two types of (properly instantiated) groups:


• FFC (finite field cryptography). Cyclic subgroups over finite-fields represented over
the integers modulo a large prime number, e.g., after selecting a large random prime equal
to one plus the double of another prime, selecting the group generated by any quadratic
residue different than one. In order to allow shorter exponents (e.g., with 256 bits), the
prime can be selected as one plus the double of a product of two odd primes, where one of
the primes is of the desired length (e.g., 256 bits) The group is then defined as an element
with verifiable prime order of the given size.


• ECC (elliptic curve cryptography). Cyclic subgroups of elliptic curves over finite
fields. While the theory of ECC is out of the scope of this dissertation, their high level
properties with respect to DLC assumptions (DL and DDH) are identical to FFC, and the
treatment of the set of exponents is similar (i.e., non-negative integers less than the group
order). It is thus enough to mention here that, for the same security parameter and same
DLC assumptions, ECC has the advantage of allowing shorter representations, with each
group element and exponent having up to twice the size of the security parameter.
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Parameters. Suggested group-element sizes and key-sizes (e.g., [SBC+12SBC+12, Table 7.2]) can
be found for diverse values of security parameter. For appropriate ECC curves the size of the
group elements and pre-images (exponents) are the double of the security parameter (i.e., 256
and 512 bits), respectively for 128 and 256 bits of (symmetric) security. For FFC the sizes of
group-elements are as for Blum integers (i.e., 3,248 and 15,424 bits), but the size of exponents
is as in ECC. Instantiations based on FFC are thus likely to induce higher communication
complexity than instantiations based on ECC. For 128 bits of security, the size of group
elements is between 12 and 13 times larger, and for 256 bits the factor is about 30. However,
when certain protocols can be adjusted to have most of the communication burden associated
with exponents, instead of based group elements, then FFC may require approximately the
same communication as ECC. Since FFC has (arguably) a simpler description and theory in
comparison with ECC, in practice there are uses for which it may be adequate to use FFC,
namely if/when it is the only DLC instantiation supported in a certain system.


Conversely, ECC may be preferable when there is an available implementation. For
example, Curve25519 (over the prime field with a modulus 2255 − 19) is regarded as a choice
allowing secure and highly fast implementations [Ber06Ber06]. The order of the group has size
equal to 252 bits, thus allowing the space of exponents to encode bit strings with up to
252 bits. Other curves could be selected to allow committing strings up to 256 bits, but
a practical tradeoff between efficiency (existing implementations) and test-of-time based
security may, at implementation time, lead to different decisions. For example, if an available
ECC implementation allows only committing bit-strings up to 252 bits, then an application
that requires committing a CR-Hash, where the hash would typically have 256-bits, may
consider truncating the hash to 252 bits, still assuming it is collision resistant. Conversely,
if a 256-bit input to a circuit needs to be committed in an extractable way (e.g., using an
ElGamal commitment), then the 256 bits need to be preserved. In this case a larger group is
required, e.g., either via a different curve (with just a slight increase in representation size,
e.g., 264 instead of 256 bits), or by using the same curve twice, committing the 256 bits into
a vector with two commitments, each committing to 128 bits.


Remark 2.1 (Parameters may change with time). The adequate lengths to propose
for IFC and DLC may change based on progress in future developments in theory, algorithms
and concrete results in benchmarking challenges. For example, integer factorization of 768-bit
integers is already within the reach of “academic effort” [KAF+10KAF+10], and 1024-bit integers are
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no longer recommended as secure [Bar16Bar16]. Hypothetically, some intractability assumptions
may also be falsified if/when new algorithms are discovered or other computation paradigms
(e.g., quantum computers) are implemented with the ability to solve in feasible time the
underlying mathematical problems.


2.2 Ideal functionalities


This section reviews at high-level the ideal/real simulation paradigm (§2.2.12.2.1), describes types
of global and local trusted setup (common reference string and public-key infrastructure)
(§2.2.22.2.2), and defines ideal functionalities for commitments (§2.2.32.2.3) (including properties and
notation) and S2PC-with-Coms (§2.2.52.2.5).


2.2.1 The ideal/real simulation paradigm


In the ideal/real simulation paradigm [Can00Can00, Can01Can01], a real protocol Π is considered secure,
a.k.a. simulatable, if it emulates a respectively intended ideal functionality F . The ideal
functionality defines the behavior (rules of interaction) of a trusted third party (TTP) that
in an ideal world mediates the communication and computation between the two regular
parties. For example, in an ideal S2PC, where the TTP mediates all communication and
computation, it is intuitive that the following properties are satisfied: privacy of inputs and
output of each party; correctness of the computation; independence of inputs decided during
a computation i.e., except for apriori externally determined correlations; non-transferability
(a.k.a. deniability), i.e., inability of a party to externally prove that her output was obtained
from an actual computation with another party, except what may be proven directly from
the private input and private output. Thus, if it is proven that a real S2PC protocol emulates
an ideal S2PC functionality, it follows that it satisfies all above-mentioned properties.


Adversarial model. Proving that a real protocol is secure against a class of adversaries
amounts to show that for any allowed adversary in the real world, denoted real adversary A,
there is a respective allowed adversary in the ideal world, denoted simulator S, that induces
in the ideal world a distribution of outputs that is indistinguishable from the respective
distribution in the real world. This dissertation considers static and computational active
(a.k.a. malicious) adversaries — the adversary must choose in the start of the execution which
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party to corrupt, and then it controls said party to deviate from the protocol specification, in
an arbitrary way but computationally bounded to probabilistic polynomial time.


In the setting of multi-party computation, an adversary (in the real or ideal world) is
defined as a separate entity that corrupts a regular party, taking control of the actions and
internal states of said corrupted party. In the setting of two-party computation with static
corruptions, when considering the case where at most one party is corrupted at the onset of
the protocol execution, it is possible and simpler to equate the adversary to the corrupted
party. Thus, hereafter the expression malicious party is used to denote the combination of
the corrupted party and the corrupting adversary. A malicious party may behave arbitrarily,
possibly attempting to disrupt the joint output distribution of an interaction. In particular,
while the output of an honest party is as prescribed by the protocol, the output of the
malicious party may include her complete view of the execution, including her internal states
of memory, as well as any efficiently computable transformation thereof.


In any of the two worlds (ideal and real), an external entity denoted environment (Z)
interacts with the regular parties. It activates the execution of the protocol by defining
possibly-correlated inputs of the parties, observing their final outputs and possibly interacting
with the adversary during the protocol execution. However, Z does not have direct access to
the ideal functionality F in the ideal world. In the ideal/real simulation paradigm, security
(i.e., simulatability) is expressed as the condition that Z is not able to distinguish whether (i)
it is interacting with parties and the real adversary A in a real world protocol execution, or
(ii) interacting with the parties and the simulator S in the ideal world. This is proven by
showing that there is a simulator S that, when given black-box access to A, is able to induce
in the ideal world an output distribution indistinguishable from the distribution of a real
world execution with A. S achieves this by performing a controlled internal simulation of the
real world protocol execution, to learn how the real adversary would behave.


Illustration 2.12.1 depicts the relation between the ideal world, where an internal simulation
takes place, and the real world, for the case of corruption of P̂A. Any message sent from Z
to S in the ideal world is relayed to A in the simulation. Correspondingly, any message sent
from A to Z (which in the simulation is impersonated by S) is relayed by S to Z. In the
simulation, S also impersonates the non-corrupted parties, such that A believes to be in the
real world, i.e., not able to distinguish the simulated execution from a real (not simulated)
one. The ability of S to setup the simulation gives S some extra power in comparison with a
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Illustration 2.1: Ideal/real simulation example with statically corrupted PA. In
the ideal world (right side), the simulator is denoted as S. It may also be represented as SA∗ to
denote that it has black-box access to the real-world adversary A. In the ideal world, any messages
sent from the environment Z to S are relayed to the black-box adversary A of the real world (left side)
in an internal simulated execution. If A corrupts P∗A in the simulated execution, then S corrupts the
ideal P̂∗A. In the ideal world, the ideal-and-honest PB has the ability to privately communicate with
Z. The communications between Z and P̂A are intersected and managed by the adversary. S does
not have direct access to the input (xB) of the ideal P̂B, so it simulates an arbitrary (yet hidden)
input for the impersonated PB (simulated as honest). In the simulated execution, S impersonating
PB extracts the input of the corrupted P∗A, and then uses the extracted input as the input of the
ideal-and-corrupted P̂∗A in the ideal execution. SA∗ is able to control the timing of message delivery,
but in the simulatability setting in this dissertation is not allowed to rewind the adversary. The
goal of S is to ensure that the probability distribution of the view (IDEAL) of the environment
in the ideal world is indistinguishable from the distribution of the view (REAL) in the real world,
for any pair of inputs (and for any interaction between Z and the adversary during the execution).


regular party, which may be essential to enable an indistinguishable execution.


In the case of S2PC the simulator impersonating an honest party in a simulated execution
needs to be able to extract the circuit input of the malicious party in the simulated execution
(xA in the Illustration), so that it can send it to the ideal functionality FS2PC in the ideal
world. Then, upon receiving a circuit output from FS2PC in the ideal world, the simulator
plays the remainder of the simulated execution in a way that induces the malicious party to
receive said output. Based on what S learns about how A would behave in the real world
(including if it aborts), S decides how to behave in the ideal world, in order to induce in
the ideal world a global output (i.e., the joint output of all the parties) with a probabilistic
distribution indistinguishable (by Z) from the one that A would induce in the real world.


Achieving simulatability is useful for the modular design of larger protocols, as it guarantees
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security under some type of composition operation, e.g., non-concurrent sequential composition
[Can00Can00] (a.k.a. the stand-alone setting) or universal composability [Can01Can01], depending on the
type of achievable simulation — with-rewinding or one-pass, respectively. In a standalone
setting, Z interacts with the parties and the adversary only in the beginning and in the
end of the protocol, by means of delivering their input and receiving their output. In the
universal composability framework, Z is also able to interact with the adversary throughout
the protocol execution. Further details about composability are left outside of the scope
of this dissertation, except for noticing that it allows a simpler analysis of the security of
larger protocols. Essentially, proving the security of a large protocol made of several modular
components can be proven by: (i) proving the security (simulatability) of the modular
components; and then (ii) proving the security of the larger protocol when instead of its
components it uses respective ideal functionalities.


A note on rewinding. A traditional simulation technique in the standalone setting
involves rewinding, denoting the ability of the simulator S to rewind the state of the real
adversary A in a simulated execution, without the adversary “understanding” that it has been
rewound. The notion is intuitive when considering adversaries that can be virtualized as a
computer algorithm execution, accessible in a black-box manner, with recoverable past states
(e.g., by taking snapshots of the state of the party across state transitions), and interacting
with the external environment Z only at the beginning and end of a protocol execution. Upon
rewinding, S can change the execution path, and thus learn how A would react to different
contexts. In contrast, in settings (such as in the UC framework) where the environment Z
may interact with the adversary at arbitrary moments of the protocol execution (e.g., during
concurrent protocol executions), rewinding of A would be detectable by Z and is thus not
allowed in a simulation. In this case, one-pass simulatability is required and the power of S
must come from elsewhere. In the UC framework, the extra power is often obtained in the
scope of a hybrid world, where some primitives or sub-protocols are replaced by respective
ideal (sub-)functionalities, which S is able to impersonate to gain the needed extra power. A
usual choice is the “common reference string” (CRS) ideal functionality, allowing each party
to access the same string assuming that it is randomly decided from some distribution and
associated to a particular S2PC execution. (The notion of CRS was used prior to the UC
framework, e.g., to allow simulatability of non-interactive zero-knowledge proofs [BFM88BFM88],
where the non-interactive nature of the protocol also makes rewinding useless.
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This dissertation is focused on one-pass simulatability, i.e., simulatability without rewind-
ing. Still, since the definition of protocols and the proof of security identifies the crucial
aspects where S needs special power (e.g., extractability of committed values and/or equivo-
cability of opened values, respectively), it is easy to simplify some sub-protocols in settings
where it may be possible to assume that rewinding is possible and undetected by Z.


Syntactical considerations. There are many technical subtleties associated with the
universal composability framework, which was devised to tackle a wide generality of settings
for cryptographic protocols, e.g., concurrent executions, unbounded number of parties,
adaptive corruptions, synchronous vs. asynchronous models. This complexity is recognized in
the literature, and over time several refinements have been made to the model to deal with
respective technicalities. For more restricted settings (e.g., with a fixed number of parties and
with known identities, and considering static corruptions), several simplifications are possible
without compromising compositional guarantees [CCL15CCL15, Wik16Wik16]. Such simplifications are
used implicitly throughout this dissertation, which is focused on the two party setting
and a static corruption model. For example, all communication is assumed to be ideally
authenticated, without explicitly mentioning every time that this would occur in a setting
with ideally authenticated channels (which could otherwise be modeled in a hybrid setting
with access to a respective ideal functionality).


Messages sent between each party and the ideal functionality are composed of a public
header and an optional private content (e.g., notation as in [CLOS02CLOS02]). The public header is
composed of: a message-type identifier, e.g., a text-string suggestive of the role of the message
in the protocol; a session identifier sid, so that in concurrent executions each party knows
to which session the message refers to; a sub-session identifier (e.g., cid for commitment
identifier), so that in a modular construction an ideal functionality can be called several times
(e.g., for multiple commitments) within the same session, instead of requiring a different
copy of the functionality for each call (e.g., see [CR03CR03]); identifiers of the parties associated
with the message (e.g., sender and receiver), so that the message can be properly forwarded
and processed; additional contextual information that does not need to be private, e.g., the
length of a bit-string being committed, or the Boolean circuit being evaluated by a S2PC.
The private content can include for example the actual private value being committed or the
private circuit input of a S2PC.


The communication model allows the adversary to read the public content of every message
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exchanged between the regular parties and the ideal functionality, and to delay or block
messages, but does neither allow changing message content nor reading private content. For
example, [CCL15CCL15] considers a communication model with a star configuration, with a router
at the center that informs the adversary of every message, and allowing a decision to block
or delay, but not revealing the private content nor allowing content modifications.


2.2.2 Types of trusted setup


Simulatable S2PC and commitment schemes cannot be realized in the plain model [CF01CF01]
(i.e., without assuming some kind of trusted setup) when simulation does not allow rewinding,
namely in the universal composability framework. However, by making available an extra
ideal functionality that provides a trusted setup it is possible to enable simulatability.


Local trusted-setups. A popular trusted setup is a local “common reference string”
(CRS), made available by a respective ideal functionality FCRS that, within the local context
of a protocol execution, gives both parties access to the same reference string, obtained
randomly from some probabilistic distribution. The parties (e.g., PA and PB) involved
in a computation are able to call the ideal functionality FCRS by sending her the context
of the execution, e.g., the session (and subsession) identifiers sid and the identity of the
intervening parties, and then receiving back the CRS, e.g., defining the public parameters of
a commitment scheme.


If the trusted setup functionality FCRS is indeed only available within the local scope
of an execution session (namely not accessible by the external environment Z), then it is
susceptible to impersonation by the simulator S in a simulation. This impersonation allows
S, in a simulated execution, to provide as CRS a random looking string to the real world
adversary (A), but with the string actually being selected in a special manner, e.g., with
an associated secret trapdoor value known only to S. For example, if the parties then use
the CRS to define the public parameters of a commitment scheme used within the protocol
execution, S may be able to use the extra knowledge (the trapdoor) to extract committed
values or equivocate their opening, whereas a regular party would not be able to do so.


As another example, a local “public key infrastructure” (PKI) ideal functionality FPKI


could provide to each party a respective secret parameter and make available to all parties
the public parameters of all parties. In this case, a simulator S impersonating the local PKI
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would be able to decide the PKI parameters such that it would know the secret parameters
of every party. (The protocol described in this dissertation does not make use of a local PKI,
but may take advantage of a global PKI — considered ahead).


Even if a local setup might be somewhat impractical to instantiate, it allows defining a
protocol with security reducible to the trustworthiness of said setup, thus allowing future
considerations on how to replace it by another setup. For example, a protocol whose
simulatability depends on a trusted local CRS can still be securely used, within a larger
protocol, after replacing the local CRS ideal functionality by a respective simulatable coin-
flipping protocol that jointly decides the CRS.


Global trusted-setups. In contrast to local trusted setups, a global trusted setup may
correspond to a more readily available setting, e.g., a public-key infrastructure that is pre-
existent and remains constant across executions of different protocols. Since the parameters
of a global setup (e.g., global CRS or global PKI) are explicitly accessible by the environment,
the simulator S needs to use said parameters in a simulation, lest it would directly induce
a distinguishable outcome (i.e., break simulatability). This means that the simulator does
not have in advance the knowledge of useful trapdoors associated with the global setup
(i.e., beyond what an honest party would), and thus the setup does not provide a needed
super power to the simulator [CDPW07CDPW07]. In summary, simply replacing a local setup by a
corresponding global setup could lead the simulator to lose its ability to properly simulate a
protocol execution. As a corresponding example, by making public the value of a local CRS,
a zero-knowledge proof (i.e., its transcript) based on said CRS could become transferable to
anyone that would “believe” the CRS was properly selected without interference from the
simulator [Pas03Pas03]. In fact, a global-CRS setup alone is not sufficient to realize the S2PC
functionality [CDPW07CDPW07].


Even when a global setup does not endow S with the needed extra power for a simulation,
a protocol execution (possibly aided by another setup) may still allow the simulator to access
some secret information made available to the parties. For example, if upon receiving a
trapdoor from a global PKI the respective party gives a zero-knowledge proof of knowledge
(ZKPoK) of said secret trapdoor, then it follows (by definition of ZKPoK) that the simulator
is able to extract said trapdoor. On its turn, the extraction from the ZKPoK must necessarily
be empowered by some other local setup (if rewinding is not allowed), e.g., a local CRS setup
that during the ZKPoK gives an edge to the simulator.
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Considered trusted-setups. As mentioned, there are pros-and-cons of an entirely global
setup, e.g., practicality of setup instantiation vs. loss of non-transferability. Considering this
contrast, this dissertation proceeds with a design decision of specifying its main protocol
(S2PC-with-Coms) based on a setup composed of a global part and a local part. Specifically,
the global setup is used to define the parameters of commitment schemes (also so that they
are externally meaningful, e.g., for linked executions in multi-party settings), whereas a local
setup is considered to allow the simulatability of needed sub-protocols, e.g., non-interactive
(NI) ZKPs, NI ZKPoKs and coin-flipping.


The following two main types of setup will be considered:


• Global PKI (GPKI) with Local CRS (FCRS). The parties have access to a global
PKI (GPKI) and a local CRS. A global PKI associates with each party identity Pp a pair
composed of a public parameter and a secret parameter. For an IFC instantiation, the
public parameter may be a Blum integer Np and the secret parameter — the trapdoor tp
— be the respective integer factorization. For a DLC instantiation, the public parameter
associated with each party Pp may be a pair of generators (g0, gp), for simplicity assuming
that the first (g0) is equal for everyone, and with the secret parameter being the discrete
log of the second generator (gp) base the first generator. As part of a protocol execution
in the real world, each party is able able to access the ideal global-PKI functionality GPKI


to retrieve her own public-secret pair and obtain the public parameters of other parties. A
different PKI setup could keep the trapdoors hidden even from each respective party, but
for concreteness it is hereafter assumed that each party learns a respective trapdoor — for
example, in the IFC case this will enable more efficient ZKPoKs (e.g., a single ZKPoK of
trapdoor instead of one ZKPoK of opening of each BitCom). In order to empower the
simulator S, an ideal local-CRS functionality FCRS is also made available, which S can
impersonate when in the ideal world creating a simulation of the real world.


• Global CRS (GCRS) with Local CRS (FCRS). The parties have access to a global
CRS (GCRS) and a local CRS. The global-CRS functionality (GCRS) provides a common
reference string available to everyone, useful to determine the parameters of a commitment
scheme that every party uses when outputting commitments to Z. A global CRS could
also be used to define different parameters for each party, e.g., based on the CRS and the
(independent) identity of the parties, but for concreteness it is hereafter assumed that
whenever there is a global trusted CRS the (outer) commitment schemes of both parties
are the same. For an IFC instantiation, the public parameter may be a Blum integer of
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unknown factorization. Since it is an open problem how to verify correctness of a Blum
integer without knowing its factorization (i.e., or without a non-interactive transferable
proof generated by someone that would have known the factorization), the correctness of
the Blum integer depends on the trustworthiness of the trusted setup functionality. For
a DLC instantiation the public parameter may for example be a pair of generators with
unknown discrete log vis-a-vis each other. The local-CRS defines other parameters useful
to empower the simulator in a simulation.


Alternatives to a global setup. The global setup provides an intuitive characterization
that enables avoiding concerns about maliciously selected commitment scheme parameters.
Still, in the main (S2PC-with-Coms) protocol defined later in the dissertation the environment
directly provides to the parties the commitment scheme parameters. Such description can be
perceived as a sub-protocol of a larger protocol where the parties would fetch the parameters
from the trusted setup and would then (in the role of environment) provide those parameters
to the sub-protocol. The advantage of such description is that it enables more generalized
cases, e.g., where the parameters can also be defined by different secure protocols at a
higher level. As a possible disadvantage, it assumes that the parameters of both schemes are
immediately known to the initiating party, whereas in practice a protocol with a minimal
number of rounds can be initiated without knowledge of the non-initiating party.


The case of the environment providing malicious parameters can also be considered, and
in some cases be mitigated. For example, in respect to consistency of parameters across the
two parties, the ideal functionality and the parties can explicitly confirm that they agree
with the parameters of each other, respectively in the ideal and in the real world. In respect
to correctness, in a GPKI setting with known trapdoors the parties can verify correctness of
their own parameters and prove it to the other party, whereas in the ideal world they would
send the trapdoor to the ideal functionality who could also verify correctness. In a DLC-based
global-CRS it may be possible (depending on the group structure and representation) for
each party and the ideal functionality to directly verify that the parameters are correct.
Conversely, in case of an IFC-based global-CRS containing a Blum integer, a malicious Z
could instead potentially provide a non-Blum integer (computationally) indistinguishable
from a Blum integer. This could lead the parties to compute insecure commitments. In
all cases, Z may possibly know the trapdoor of the used commitment schemes, e.g., if the
parameters were based on a CRS decided by Z.
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Another alternative to a DLC-based global CRS setup (assuming non-interactive verifia-
bility of generators) is to let concrete public parameters be defined as nothing-up-my-sleeves
parameters [BCC+15BCC+15] inherent to the protocol specification, i.e., hard-coded in the specifica-
tion of the real protocol and the ideal functionality, e.g., based on Curve25519. The security
of the protocol (for each security parameter value) would thus be reducible to the infeasibility
of finding a concrete discrete-log. Yet another alternative is mentioned in Remark 2.82.8, in the
context of a concrete application. The above-mentioned alternatives are not further analyzed
in this dissertation, and instead the global trusted setup is considered. An interesting problem
discussed by Nielsen and Strefler may occur with a pathological correlation between the
parameters of a global setup and the definition of a protocol [NS14NS14]. This is ignored in this
dissertation, by letting the protocol definition be independent of the public parameter values.


2.2.3 Ideal commitments


A commitment scheme is a protocol with two parties, denoted sender (or committer) and
receiver, and two phases, denoted commit and open. In the commit phase, the sender becomes
bound to a value that is hidden from the receiver — correspondingly, the scheme is said to
have binding and hiding properties. In the open phase, the sender reveals the committed
value, in a convincing way, to the receiver. Real commitment schemes can be instantiated as
concrete protocols (e.g., [Blu81Blu81, Nao91Nao91]), with the hiding and binding properties explicitly
defined in respect to the capabilities of an adversary. In contrast, an idealized definition of a
commitment scheme allows a greater level of abstraction, from which the hiding and binding
properties can be derived, and helping to conceptualize other properties.


2.2.3.1 Ideal functionality


Ideal simple multi-Coms (FMCom). Ideal functionalities for commitments have been
defined in prior work, e.g., see [CF01CF01, Fig. 3] and [CLOS02CLOS02, Fig. 4] for multiple BitComs
and [DN02DN02, §4.2] for multiple commitments with a multi-valued domain with more than
two elements. Essentially, once the ideal functionality FMCom receives a request to commit
a value, it sends a receipt to the receiver, without disclosing the committed value. Then,
when receiving an open request, the ideal functionality reveals the value that had previously
been committed. All messages within an execution contain a message identifier (e.g., commit,
receipt, or open), and the execution context composed of the session and sub-session
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identifiers and the identity of the sender and receiver. Some messages also contain a private
component (e.g., the actual value being committed). The sub-session identifiers cid allow
distinguishing multiple commitment executions via the same ideal functionality initialized
with a certain session identifier sid. Duplication of commitments via replay attack is assumed
infeasible by means of an implicit mechanism that ensures uniqueness of identifiers, e.g.,
based on time and/or cache and/or stateful counters, but the details of such mechanism is
left outside the scope of the protocol definition and is assumed to be ensured at a higher level.


Herein, the ideal simple multi-Coms functionality FMCom is defined as a special case of
the generalized multi-Coms functionality FGMComFGMCom defined ahead, when requiring the opened
value to be the same as the respective committed value, i.e., after applying an identity
function. The functionality explicitly handles the possibility of early abort, and also allows
specification of a family of commitable domains, as in the generalized case.


Ideal generalized multi-Coms (FGMComFGMCom). In this dissertation it is useful to consider a
generalized version of commitments, allowing the sender to ask for the opening of the result
of applying a function f to the committed value, where the function can be selected from an
implicitly specified family of functions. This is usable in a corresponding generalized version
of coin-flipping into-a-well, useful for S2PC-with-Coms, e.g., where one party commits to
(the knowledge of) a vector of square-roots but in the open phase only reveals a respective
vector of modular squares, or where it commits to (the knowledge of) an exponent but in the
open phase only reveals a respective modular power. Even if the function f to be applied is
publicly known at commit phase, a simulator corrupting the sender is still able to extract the
pre-image of the value that may later be opened to the receiver. Thus, from a simulatability
standpoint, using the generalized commitment functionality FGMComFGMCom to commit to a pre-image
and then open the image is in general different from committing directly the f -image using a
simple commitment functionality FMCom (that might not allow extraction of the pre-image).
In the ideal world, the parties do not need to execute any kind of computation, as in essence
the commit and open phases are intermediated by the ideal functionality FMCom, fully trusted
to store a value transmitted by the sender (PS), and later, when allowed by PS, to reveal a
function thereof to the receiver (PR).


The ideal general multi-Coms functionality FGMComFGMCom in Figure 2.12.1 is also parametrizable
by a specification G of a family of committable domains G`. This allows committing each
time to elements from different sets (e.g., bit-strings of specifiable length `, or residues from
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Ideal functionality FGMCom


Implicit parameters. Let S denote a specification of a family ≡ {S` ∶ ` ∈ N} of finite sets S`,
with each such set being indexed by an integer `, and containing only elements representable
in size polynomial in `, and with membership in each set being efficiently decidable without
auxiliary information. (Each set S` is a possible domain of committable values.) Let F denote
a specification of a family {F`,f ∶ (`, f) ∈ N2} of functions F`,f , with each such function being
indexed by a pair (`, f) of integers, being efficiently computable (i.e., in time polynomial
in the size of its indices ` and f), and having domain containing S`. Let κ ≡ 1κ denote a
computational security parameter.
Procedure. FGMCom activated with session identifier sid, and (possibly implicitly) parametrized
by S, F and κ, proceeds as follows when running with parties P1, ..., Pn and adversary S:
• Phase 1 — Commit phase. Upon receiving a message (commit, ctx, `, m) from PS


(the sender): if ctx ≡ (sid, cid, PS, PR), where sid is the session identifier with which
FS2PC was activated, and PS,PR ∈ {P1, ..., Pn}, if ` ∈poly(κ), and if m ∈ S`, and if a tuple
(commit, ctx, ...) has not yet been stored, then store the tuple (commit, ctx, `, m) and
send the message (receipt, ctx, `) to PR (the receiver) and S; otherwise ignore it. (Note:
an alternative definition could allow more than one receiving party.)


• Phase 2 — Open phase. Upon receiving a message (open-ask, ctx, f) from PS: if for
some pair (`, m) a tuple (commit, ctx, `, m) has been stored, if ` ∈ poly(κ) and if a tuple
(ignore, ctx) has not been stored, then store the tuple (ignore, ctx) and send the message
(open-send, ctx, f , F`,f(m)) to PR and S; otherwise ignore it. (Note: an alternative
definition could allow further open requests, by not storing the tuple (ignore, ctx).)


• Abort. Upon receiving a message (abort, ctx) from PS: if a tuple (ignore, ctx) has not
been stored, then store the tuple and send the message (abort, ctx) to PR and S.


Figure 2.1: Ideal functionality — generalized multi-Coms. The family S of commit-
table domains may for example be the family of sets of bit-strings of length equal to the
set index `. The family may, if so intended, be composed of some empty sets, meaning that
a commit call with any such index would result in the message being ignored, because any
value m specified for commitment would not be contained in the respective (empty) set. In
other words, the set of meaningfull indices can be a subset of the natural integers.


a multiplicative set defined of integers modulo some composite integer).


The functionality considered herein also takes in explicit consideration the case of abort
by the sender. For each execution context the sender is given the possibility to abort before
completing the open phase, but not after the open phase. In other words, this allows the
sender to ask the ideal functionality to send an explicit abort message to the receiver. In
practice, this makes it more natural to allow the receiver in a real protocol to abort in case
of detecting malicious behavior by a sender, instead of ignoring the malicious behavior and
continuing to accept attempts associated with the same execution context.
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Simplifications. If all indices have associated the same non-empty committable domain,
then the index can be omitted from the commit call and instead the single committable
domain becomes an implicit parameter of the activation of the functionality. A more strict
definition could require that PS would immediately define the function f in the commit
phase. If all functions from the function family F are equal, then the parameter can also
be avoided. If all functions are equal to the identity function, then the ideal functionality is
instead denoted as simple multi-Coms FMCom (in contrast to generalized multi-Coms). The
generalized version shall be considered only when explicitly mentioned; otherwise the simple
version is considered, and the function index is omitted from the notation.


Remark 2.2 (Different nuances of generalized commitments). Other generalized
commitment functionalities have been defined in the literature. For example, [CLOS02CLOS02,
Fig. 8] defines a “commit and prove” functionality, parametrized by a non-deterministic
polynomial relation, replacing the typical open phase by a “prove phase” that allows the
committer to ask for the opening of a specific value satisfying said relation in respect to the
list of elements committed thus far. This could be used to request opening of a function of a
committed value, e.g., by specifying the relation as being true whenever the value requested
for opening is a tuple containing the position of the committed element, a specification of the
function, and the f -image of the respective committed value. As a technical difference, in
the commit phase the sender has to retain state of the committed value (or of something
that allows determining its f -image). Complementary, [DN02DN02, §4.2] also specifies a “prove
phase” (besides a regular open phase), allowing the proof of an adaptively chosen relation
about previously committed values. In practice this could also be used to open a function f
of a committed value, e.g., by committing the f -image of a previously committed value, then
requesting the opening of that f -image and then requesting confirmation of the respective
relation between the two committed values (the pre-image and the image). The generalized
commitment functionality FGMComFGMCom herein does not consider (but could be generalized to
consider) the case of an opening related to several committed values, which could be useful
for reactive functionalities.


Other variations. A different functionality could require the function f to be specified in
the commit phase. More generalized cases could include P2 also specifying a function, and P1


specifying one function in the commit phase and another in the open phase, and the opened
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value be obtained as a composition of these functions applied to the committed value.


2.2.3.2 Properties


Hiding and binding. The hiding and binding properties derive directly from the defined
ideal functionality. Since in the commit phase the receipt sent by FGMComFGMCom only reveals the
message domain (e.g., length of a bit-string), the receiver does not learn anything else about
the message. Since in the open phase the value sent by FGMComFGMCom is (a function of) the value
that had been stored in memory (along with the function specification), the sender has no
ability to change the value, i.e., it is bound to a function of the pre-image that it previously
committed. In the real world these properties are ensured via concrete primitives, with at
least one of the properties depending on computational assumptions. The complementary
property might be guaranteed unconditionally, but it may also be computational.


Interactivity. A commitment scheme is called interactive if any of the two phases requires
at least one message from the receiver (PR) to the sender (PS), and non-interactive if the
communication in each phase consists only on sending a message from the sender to the
receiver. This dissertation is focused on non-interactive commitments, as a way to reduce the
number of communication rounds required by the main protocol — S2PC-with-Coms.


Extractability (Ext) and equivocability (Equiv). While the hiding and binding prop-
erties directly reflect inabilities of the parties, there are more subtle properties related to the
simulation paradigm of security. A commitment scheme is called equivocable (Equiv) if the
simulator in the role of sender is able to open any commitment into any value in the domain
of allowed committed values [Bea96aBea96a]. A commitment scheme is called extractable (Ext) if
the simulator in the role of receiver is able to extract the value that has been committed by
an honest sender [SDCP00SDCP00]. Naturally, a real party in a commitment scheme must not be
able to extract or equivocate, as those capabilities would respectively contradict hiding and
binding. However, in a simulation the simulator is endowed with extra power in comparison
with a regular party, e.g., knowledge of a trapdoor.


Not all real commitment schemes are Ext or Equiv, but those properties are required
of a simulatable scheme, i.e., one that emulates the ideal commitment functionality. For
example, the properties may be needed when simulating an hybrid protocol with access to
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an ideal commitment. In the simulation, S impersonates the ideal commitment and takes
advantage of the trust that the other parties place in it. In particular: extractability in the
commit phase derives from P∗


S sending the message in clear to FMCom or FGMComFGMCom, which
means that S playing against a possibly malicious PS is able to directly receive the committed
value, i.e., extract it; equivocability in the open phase derives from the acceptance by PR of
any (well formed) message received from FMCom or FGMComFGMCom, which means that S playing
against a possibly malicious P∗


R is able to lie about the committed value (i.e., equivocate
it). Consequently, to emulate an ideal commitment scheme, e.g., when used as an auxiliary
sub-routine in a larger protocol, a real commitment scheme must also be Ext-and-Equiv.


Remark 2.3 (Nuances of equivocability in case of generalized commitments). In
practice, in the real world it is often left implicit that PR makes the adequate syntactical
verifications of the received value. For the generalized functionality FGMComFGMCom the notion of
equivocability is by default meant in respect to the allowed set of images of the domain of
committable values. More fine-grained nuances could be defined in case the membership in
the f -image of the domain cannot be decided efficiently, i.e., if even a disallowed value could
not be detected as false by the receiver.


Remark 2.4 (Ext-and-Equiv implies binding-and-hiding). It is interesting to notice
that equivocability in the open phase implies that the commit phase is hiding (or otherwise
the receiver could reject an equivocated opened value) and the opening phase is revealing;
correspondingly, extractability of the commit phase implies that the commitment is binding
(or otherwise the value to extract would be ill-defined). In other words, the combination
of Ext-and-Equiv implies that the scheme is indeed a commitment scheme (hiding and
binding). This means that the combination of extractability and equivocability can be seen
as a generalization of the combination of hiding and binding.


Remark 2.5 (A language note on “equivocal” vs. “equivocable”). It is arguable
whether “equivocal” or “equivocable” is the best word to describe the property at hand. Some
authors prefer “equivocal” (e.g., [CLOS02CLOS02, footnote 17]), possibly as a more well-estalished
dictionary word, whereas others use the term “equivocable” (e.g., [Bea96cBea96c]). Assuming
that “equivocal” denotes an ambiguity about possible values, this dissertation uses the term
“equivocable” to denote the property that a simulator is able to act upon an underlying
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equivocality, to induce the meaning that it intends. Hence, without danger of equivocation,
commitments are herein called as “equivocable,” whenever the property applies.


Non-malleability. Complementary to the mentioned properties, another relevant aspect
of commitment schemes relates to the independence between several commitments. In the
ideal world, the commit request requires explicit specification of the value being committed
by the committer. This prevents a situation where one party would be able to commit a value
somehow related to the value committed by another party, while not knowing which value it
is. While this property can be derived from the ideal functionality, it is not directly implied
by the hiding property of a real commitment scheme. Absent an ideal world, non-malleability
could be defined based on a game where an adversary tries committing to a value somehow
related to the value committed by another commitment, trying to have a noticeable advantage
in comparison to a case where the initial commitment was not available.


The concept of non-malleability was studied by Dolev et al. [DDN00DDN00]. They defined the
concept more broadly, associated also with zero-knowledge proofs of knowledge (ZKPoK) and
public-key encryption. In fact, non-malleable ZKPoKs can play an important role in ensuring
non-malleability of real commitment schemes, for example allowing a direct augmentation of
a regular commitment scheme, enabling each party to prove possession of the information
that enables a successful open phase. Non-malleable commitments can be achieved with both
interactive and non-interactive protocols [DCIO98DCIO98, DCKOS01DCKOS01].


Non-malleability can be considered in strong and weak nuances [FF09FF09]. In a weak version,
non-malleability with respect to opening implies that if during or after the commitment
generated by an honest party an adversary is able to generate a commitment somehow related
(i.e., with an added advantage) to the value committed by the honest party, then the second
commitment cannot be opened, even during or after the opening of the first commitment.
For example, this property is not satisfied by a commitment scheme where a receiver would
accept from a second sender a commitment simply copied from a commitment previously
sent by another first sender. In a strong version, non-malleability with respect to commitment
directly implies that an adversary is not even able to produce a commitment to a related
value (i.e., regardless of begin able or unable to open it). This applies even for the equality
relation, where the commitment of one party should not allow another party to commit to the
same value, i.e., before seeing the opening of the first commitment. As already mentioned, the
strong notion can be obtained based on a non-malleable ZKPoK of knowledge. The weaker
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version can be achieved without the ZKPoK in the commit phase, and instead augmenting
the open phase — instead of revealing the randomness used to produce a commitment, PS


can reveal the committed value and then provide a non-malleable zero-knowledge proof
(argument) that it was indeed the committed value. The weak notion might be preferred
when it is sufficient for a particular application and if it allows a more efficient instantiation.


Interestingly, extraction and equivocation can also be achieved from a regular commitment
scheme by respectively augmenting the commit and open phases with a ZKPoK of the
committed value and a ZKP that the opened value is correct. Nonetheless, Ext and Equiv
remain complementary to non-malleability.


Absence of properties. While a simulatable commitment scheme is simultaneously Ext,
Equiv and non-malleable, real commitment schemes may in practice be useful even when
having only some but not all of those properties. Correspondingly, the constructions in this
dissertation make use of diverse commitment schemes, with varying properties. For example,
the construction of a new Ext&Equiv-Com scheme in Chapter 44 is achieved by means of using
separate ideal Ext Coms and Equiv Coms for short strings. For example, in the construction
of the S2PC-with-Coms protocol in Chapter 33, the commitments outputted by the protocol
are extractable, but some other commitments used in the internal protocol (e.g., to commit
the input keys of PA, the garbled circuit constructor) need not be extractable or equivocable.


Another relevant and useful property of some commitment schemes has to do with
homomorphic operations (see §2.3.22.3.2). While an homomorphism is by definition a case of
malleability, it is not incompatible with the intended non-malleability. In fact, non-malleability
of a commitment scheme is intended in respect to commitments (or other primitives) computed
by other parties and/or in different sessions. In contrast, it may be useful for the same party
to be able produce and open a commitment that is related to previous commitments, in a
verifiable way, without having to open the original commitment. For example, this is useful
in this dissertation to enable efficient ZKPs.


2.2.4 Ideal S2PC (without Coms)


Before defining an ideal functionality of S2PC-with-Coms, it is instructive to analyze the
more basic case of an ideal S2PC (without commitments), also serving as a basis to consider
possible variations. An ideal functionality FS2PCFS2PC is described in Figure 2.22.2. Before any
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computation, the functionality needs to receive initializing messages from both parties, with
a consistent execution context (identifiers and parties), namely defining who should be the
first receiver (PB) and second receiver (PA), and defining the respective 2-output function to
evaluate. The ideal functionality then locally computes the output and sends it first to PB,
then waits for an acceptance message from PB and only then sends the result to PA. The
functionality also explicitly embeds the ability to handle requests to abort the execution.


Hidden outputs. In the defined ideal S2PC the output value sent to each party is not sent
to the simulator S. Thus, S only learns a private output if it corrupts the respective party.
This is in contrast to the case of the ideal commitment functionality FGMComFGMCom, where the value
opened to P2 is also visible to S. It is conceivable an alternative ideal S2PC functionality
that in the second output message (out-2) would reveal to the simulator some component of
the output that would be common across the two parties (in a real protocol the first party to
learn it would then reveal in the clear that part of the output, e.g., the common output bits
in case the function is a circuit).


Unilateral initiative for a S2PC evaluation. The ideal functionality requires both
parties to have initiating messages agreeing in the function to compute and in the remaining
consistent parameters (e.g., complementary message identifiers and same sub-session identifier).
This is not opposed to an application scenario where the “initiative” to perform a S2PC, and
the decision of which function to compute, originates from a single party (hereafter called
the initiator), and only then agreed by the second party. This can be implemented with
the described functionality, as follows. The initiator (PA or PB) proposes the parameters
of an execution, including the role of each party as first or second receiver (encoded in the
message identifier — in-1 or in-2, respectively). As a result, the other party receives the
execution parameters from the ideal functionality and relays them to the environment (i.e.,
to some upper level routine that interprets the message). If the environment agrees with
the execution, then it activates the second party with the needed parameters for the S2PC,
which includes the same S2PC public parameters, a complementary message identifier (in-2


or in-1, respectively) complementary to the identifier used by the initiator, and also the
private input of the second party, which the party then relays to the ideal functionality. If
within a particular context it is clear that the initiation does not need to be concurrent and is
always initiated by a party in a particular role, e.g., always PB (the first receiver of output),


Page 47 of 376







Section 2.2. Ideal functionalities (2016-Dec-27)


Ideal functionality FS2PC


Implicit parameters. Let F denote a specification of a family {(Ff ,Df) ∶ f ∈ N} of pairs,
with each pair being of size polynomial in the size of the integer index f , being reconstructable,
in polynomial time, from the family specification F and the index f , and being composed of
a specification Ff of a two-output ternary function (i.e., Ff(⋅, ⋅, ⋅) ≡ (fB(⋅, ⋅, ⋅), fA(⋅, ⋅, ⋅)) with
three input parameters and with an output encoded as a pair) computable in polynomial time,
and a specification Df of the respective triplet (Df,1,Df,2,Df,3) of domains (the first two are
for the private inputs of the parties, the third is for needed randomness) with membership
decidable in polynomial time. Let κ ≡ 1κ denote a computational security parameter.
Procedure. FS2PC activated with session identifier sid, parametrized by κ and F, and running
with parties P1, ..., Pn and adversary S, proceeds as follows:


• Receive inputs. Upon receiving a message (in-i, ctx, f , xp) from Pp: if ctx ≡


(sid, cid,PA,PB) has the session identifier sid with which FS2PC was activated, if PA,PB ∈


{P1, ..., Pn}, if i ∈ {1,2} and Pp = ⟨PB,PA⟩i, if f ∈ poly(κ) and xp ∈ Df,i, and if neither a
tuple (in-i, ctx, ...) nor a tuple (ignore, ctx) have been stored, then store the tuple (in-i,
ctx, f , xp), and send the message (got-i, ctx, f) to Pp̄ = ⟨PA,PB⟩i and S; otherwise ignore it.


• Validate pair of inputs and send first output. Upon storing a pair of initializing
tuples ((in-1, ctx, f , xB) and (in-2, ctx, f , xA)) with complementary message identifiers
(in-1 and in-2) and same context ctx: if the function index f is not the same in the
two messages, then store the tuple (ignore, ctx) and send (abort, ctx) to the two parties;
otherwise proceed to select an eventually needed randomness r from the respective domain
Df,3, then compute the indicated pair (yA, yB) = Ff(xA, xB, r) of outputs, then store the
tuple (outputs, ctx, (yA, yB)) and then send (out-1, ctx, yB) to PB and (out-1, ctx) to S.


• Second output. Upon receiving a message (OK, ctx) from PB: if a tuple (outputs, ctx,
...) has been stored and if a tuple (ignore, ctx) has not been stored, then store the tuple
(ignore, ctx) and send (out-2, ctx, yA) to PA and (out-2, ctx) to S; otherwise ignore it.


• Abort case. Upon receiving a message (abort, ctx) from PA or PB: if a tuple (in-i,
ctx, ...) has been stored and if a tuple (ignore, ctx) has not been stored, then store the
tuple (ignore, ctx) and send the message (abort, ctx) to the other party (i.e., to PB or
PA, respectively); otherwise ignore it.


Figure 2.2: Ideal S2PC. The choice of PB and PA respectively denoting the first and second
party stems from a real protocol definition where Alice (PA) was a garbled circuit constructor and
Bob (PB) was the evaluator that initially learns the output. The choice is of course arbitrary and
PA and PB could be consistently swapped everywhere.


then the syntax of the second initiating message (from PA) can be changed to not require
repeating the specification of the function.


Family of functions. Considering the garbled circuit approach considered in this disserta-
tion, in practice it is intended that the function family F represents a family of specifications
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of Boolean circuits, and respective indices of input and output bits of both parties. The
family of functions may also be interpreted as a single function with an extra input parameter
(the index f) that is public instead of private.


Variations. The ideal functionality can be adjusted to define different ways of choosing
the functions to evaluate. For example, it could be defined that each party could select the
function whose output would be privately learned, upon agreement by the other party. As
another example, an initiating message could represent a commitment of input xB, indicating
a subset of parties to whom to send a respective receipt of commitment, so that each recipient
party Pj could then send (one time or several times) to the ideal functionality a complementary
input xj and function fj, whose output would be sent to the initiating party PB.


2.2.5 Ideal S2PC-with-Coms


This subsection defines the ideal FS2PCwCFS2PCwC functionality of S2PC-with-commitments (S2PC-
with-Coms), used in an ideal world to intermediate between two parties, P̂A and P̂B, the
evaluation of a Boolean circuit and the commitment of each circuit input and circuit output of
each party. The simple S2PC ideal functionality could in theory be used to generate random
commitments, so the new definition of S2PC-with-Coms can be interpreted as a practical
specialized recasting of the S2PC definition, when the function specification corresponds to
the specification of a Boolean circuit and commitment scheme parameters, and the output
of each party includes her respective circuit output as well as the commitments of the
input and output of both parties and the randomness of her own commitments. The new
definition is useful by explicitly separating the Coms and the Boolean circuit, allowing an
easier modularization of concerns. For example, the parameters of the Com schemes may be
defined based on a global PKI or CRS, whereas the Boolean circuits may be more inherently
dependent on the functional goals of the application.


2.2.5.1 Ideal functionality


The ideal S2PC-with-Coms functionality FS2PCwCFS2PCwC is specified in Figure 2.32.3. The design
accommodates some flexibility of parameters in order to enable different types of setup (e.g.,
CRS and PKI) and instantiations (e.g., IFC and DLC) of commitment schemes. In comparison
with the ideal S2PC functionality FS2PCFS2PC, the activation of the new ideal S2PC-with-Coms
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functionality FS2PCwCFS2PCwC is parametrized by an additional Boolean flag that determines whether
or not the Com scheme parameters must be verified for correctness based on an optional
trapdoor that each party may provide for her own Com scheme parameters.


Each party directly specifies the public Com schemes of both parties, as a way to facilitate
concurrent initialization by any party (but see Remark 2.72.7). If a valid trapdoor tp is provided
and the protocol is parametrized with the respective Boolean flag ver set to true, then
FS2PCwCFS2PCwC locally verifies the correctness of the public Com scheme parameters Cp proposed by
the respective party Pp (using an implicit verification procedure VerParams), and then informs
the other party Pp̄ of the verification result (false or true, via the message identifier bad-i
or got-i), and of the proposed Com scheme parameters and circuit specification. If the
verification fails, then FS2PCwCFS2PCwC further decides to ignore any subsequent messages with the
respective execution context.


After storing a pair of inputs with the same context and complementary message identifiers
(in-1, in-2) of initializing messages, if the messages are not consistent in the proposed pair
of commitment scheme parameters or the circuits specification, then FS2PCwCFS2PCwC sends an
abort message to both parties. If instead the pair of initiating messages is complementary
consistent, then FS2PCwCFS2PCwC locally computes the circuit outputs, and respective commitments
and randomnesses, and sends them first to PB and only then, if allowed by PB, to PA.


If at any point during an ideal protocol execution (i.e., before privately outputting) the
functionality receives an abort message from one party, then it sends a similar abort message
to the other party and ignores further messages within the context of the execution.


Information available to S. Along an execution, FS2PCwCFS2PCwC only explicitly sends to S the
public component of each message, which does not include the private circuit input and
trapdoor in the in-i messages, nor the circuit outputs and randomnesses of commitments
in the out-i messages. However, an asymmetry is present in respect to the commitments,
which are not sent to S in the out-1 message, but are sent in the out-2 message. This
design choice is motivated by the actual real protocol described in this dissertation, where the
commitments and randomnesses are decided via a two-party coin-flipping, and thus remain
hidden (from PA, and any eventual observer such as S) until PB sends the last message of
the coin-flipping. For an alternative ideal functionality where the commitments would remain
hidden from an eavesdropper, a corresponding real protocol would have to use encrypt them.
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Ideal functionality FS2PCwC


Implicit parameters. Let F denote a specification of a family {FC ∶ C ∈ N} of Boolean circuits, each
of size polynomial in the integer index C of the element in the family. Let κ ≡ 1κ be a computational
security parameter. Let ver be a Boolean flag (i.e., with value true or false), denoting whether or not
the ideal functionality must check the correctness of the Com scheme parameters based on a trapdoor.


Procedure. FS2PCwC activated with session identifier sid, and parametrized with κ, F and ver, running
with parties P1, ..., Pn and adversary S, proceeds as follows:
• Receive inputs. Upon receiving a message of the form (in-i, ctx, (CB,CA,C), (tp, xp)) from


Pp: if ctx ≡ (sid, cid,PB,PA) has the session identifier sid with which FS2PCwC was activated, if
PB,PA ∈ {P1, ..., Pn}, if i ∈ {1,2} and Pp = ⟨PB,PA⟩i, if C ∈ poly(κ), with FC ∶ {0,1}`A × {0,1}`B →
{0,1}`′A × {0,1}`′B specifying the numbers (`A, `B, `′A, `′B) of private input bits of each party and
output bits of each party, if xp ∈ {0,1}`p (i.e., with `p = ⟨`B, `A⟩i) and if neither a tuple (in-i, ctx, ...)
nor a tuple (ignore, ctx) have been stored, then proceed to the next bullet; otherwise ignore it.


• Check isolated Com scheme parameters. If (¬¬ver) ∨ (ver ∧VerParams(Cp, tp)), then store
the tuple (in-i, ctx, (CB,CA,C), xp) and send (got-i, ctx, (CB,CA,C)) to Pp̄= ⟨PA,PB⟩i and S;
otherwise store the tuple (ignore, ctx) and send (bad-i, ctx, (CA,CB,C)) to Pp̄.


• Validate pair of inputs and send first output. Upon storing a pair of initializing tuples
((in-1, ctx, (CB,CA,C), xB) and (in-2, ctx, (CB,CA,C), xA)) with complementary message identi-
fiers (in-1, in-2) and same context ctx : if the circuit specification C and the pair (CA, CB) of Com
scheme public-parameters are not the same across the two tuples, then store the tuple (ignore,
ctx) and send (abort, ctx) to the two parties; otherwise proceed to compute the circuit output
(yA, yB) = FC(xA, xB), then use the Com schemes to generate randomnesses rands = (xA, xB, yA, yB)


and commitments coms = (xA, xB, yA, yB) of the respective input and outputs ((xp, xp)←$Cp[xp]
and (yp, yp)←


$ Cp[yp], for p ∈ {A,B}), and store the tuple (outputs, ctx, rands, coms, (yA, yB)) and
send (out-1, ctx, (xA, (xB, xB), yA, (yB, yB, yB))) to PB and (out-1, ctx) to S.


• Second output. Upon receiving a message (OK, ctx) from PB: if a tuple (outputs, ctx, ...) has
been stored and if a tuple (ignore, ctx) has not been stored, then store the tuple (ignore, ctx)
and send (out-2, ctx, (xA, xA), xB, (yA, yA, yA), yB) to PA and (out-2, ctx, coms) to S.


• Abort case. Upon receiving a message (abort, ctx) from PB or PA: if a tuple (in-i, ctx, ...), with
i respectively equal to 1 or 2, has been stored and if a tuple (ignore, ctx) has not been stored, then
store the tuple (ignore, ctx) and send (abort, ctx) to the other party (i.e., PB or PA, respectively);
otherwise ignore it.


Figure 2.3: Ideal S2PC-with-Coms. For simplicity, F is directly specified as a family of
specifications of Boolean circuits, with each such circuit directly specifying for each input parameter
(xA, xB) a fixed length (`A, `B) defining the respective domain as the set of bit-strings of said length.
A more generalized definition (but not needed here) could use the function family specification
described in the ideal S2PC functionality FS2PC. The protocol flow is described with succinct
notation in Appendix (Figure B.4B.4 in §B.2.1B.2.1)


2.2.5.2 Properties and considerations


Simulatability of a S2PC-with-Coms protocol implies that S in a simulated execution is able
to induce the party corrupted by the black-box real adversary to accept the commitments and
randomnesses (proposed by the ideal functionality in the ideal world). This may be achieved
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in the real world with a protocol based on generalized two-party coin-flipping, where two
parties learn a random commitment but only one learns the respective randomness. This can
be made specially efficient when the Com schemes have certain homomorphic properties, such
as in the concrete (IFC and DLC based) cases analyzed in this dissertation. The coin-flipping
requires that S, while impersonating one party in a simulated execution, is able to extract
from the other party the randomness of her outer commitments. This can be achieved via
some NIZKPoKs, either of a trapdoor (that subsequently allows extracting randomness, e.g.,
in IFC based Coms) and/or directly via NIZKPoKs of openings of Coms (e.g., if the Com
scheme is defined by a CRS and thus the trapdoor is not known, or for DLC based Coms where
the trapdoor is not enough to extract randomness). Since the S2PC-with-Coms protocol does
not include opening of outer Coms, the property of equivocability is not meaningful. Yet,
if as part of a larger protocol it is useful that the opening of a commitment is equivocable,
then the opening must not reveal the respective randomness.


Remark 2.6 (On the use of real commitment schemes). A different ideal S2PC-with-
Coms could be defined by combining features from both an ideal functionality for S2PC and
an ideal functionality for commitments. However, the definition herein is instead of the form
of a S2PC-looking functionality directly computing real commitments. This makes explicit
that commitments must be random, which may be relevant for extensions to larger protocols
with many parties, where otherwise a non-random commitment could potentially be used as a
side-channel to transmit information. While this allows using commitment schemes that are
not fully simulatable, in practice a simulatable S2PC-with-Coms protocol in the real world
(see Chapter 33) ensures the property of extractability and the property of non-malleability in
respect to commitment by requiring a respective (non-malleable) ZKPoK of the opening of
those outer commitments. As mentioned, equivocability is not meaningful within the protocol
execution, because the protocol does not consider the opening of any commitment.


Remark 2.7 (On knowing the public parameters of the Com scheme of the other
party). It is conceivable an application where the party that takes the initiative to perform
a S2PC-with-Coms does not know in advance the Com scheme parameters of the other party,
and so would not be able to specify it in the initial message. Thus, a conceivable variation of
the ideal functionality could allow the initiating party to only specify her own Com scheme.
Still, for simplicity of integrated analysis across different types of Com schemes, the ideal
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functionality herein assumes that the Com scheme parameters of both parties are already
known in advance. For example, this allows a real protocol with minimal number of rounds
even if the protocol requires the initiating party to use the Com scheme of the other party,
e.g., to sustain a 2-out-of-1 oblivious transfer, as described ahead in §2.5.12.5.1. This is applicable
in a scenario where a global PKI is in place, from which each party is able to obtain the public
parameters of any other party, without initial interaction between parties. Alternatively, it
can be assumed that the initiating party of the S2PC-with-Coms learns the Com scheme
parameters of the other party via an external protocol, e.g., with a single message where the
non-initiating party informs her Com scheme parameters to the initiating party, along with a
NIZKP of correctness. This matter is also trivial in case the public parameters of the Com
schemes are equal for both parties, e.g., in case they are directly defined by a CRS setup.


Remark 2.8 (On coin-flipping new commitment scheme parameters). The defined
functionality uses Com scheme parameters that are externally defined in its entirety. An
alternative ideal functionality could decide herself some random parameters of the Com
schemes (though still partially parametrized by a type of Com scheme and at least a security
parameter), and then send them along with the output of each party, after which each party
would also output to the environment the Com scheme parameters. Correspondingly, in the
real world the protocol would incur a respective cost, to allow the parties to interactively
decide the random parameters, e.g., based on a simulatable coin-flipping. In the analogous of
a CRS, the parties would be able to agree on correct random parameters, but without any
isolated party knowing a respective trapdoor (factorization, discrete log). In the analogous of
a PKI, each party could learn the trapdoor of her random Com scheme parameters, but the
other party would only learn the public parameters. This would be particularly costly for
IFC based Com schemes, if requiring the parties to coin-flip a Blum integer with unknown
factorization by each individual party.


2.3 Real commitment schemes


This section reviews background notions related to real commitment (Com) schemes, namely
bit-commitment (BitCom) schemes (§2.3.12.3.1), starting with the basic mandatory properties of
hiding and biding. It also defines the useful (optional) property of XOR homomorphism, and
a weaker notion called pseudo-homomorphism (§2.3.22.3.2). Notions of extractability (§2.3.32.3.3) and
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equivocability (§2.3.42.3.4) are discussed in separate. The focus here is on properties associated
with stand-alone secure Com schemes. A more thorough discussion about simultaneously
extractable (Ext) and equivocable (Equiv) Com schemes, needed for (two-side) simulatability,
is given in Chapter 44. A summary of properties of four different concrete BitCom schemes
(§2.3.52.3.5) is given in Table 2.32.3, to facilitate comparing different instantiations used in the S2PC-
with-Coms protocol described later in the dissertation. While aspects of non-malleability are
mostly left implicit, they can be ensured based on auxiliary non-malleable ZKPs or ZKPoKs
performed in the main protocol, in relation to the respective standalone secure commitments.
Throughout the dissertation, different uses of commitment schemes are described with varying
notation (related to the commitment, the randomness, the committed value, the opening) —
a table describing these uses is included in Section B.1.1B.1.1 in Appendix.


2.3.1 Bit Commitments


Several techniques in this dissertation are based on properties of (some) BitCom schemes,
reviewed hereafter. A BitCom scheme [Blu81Blu81, BCC88BCC88] is a two-party protocol for committing
and revealing individual bits. In a commit phase, it allows a sender to commit to a bit value,
by producing and sending a BitCom value to the receiver. The BitCom binds the sender to
the chosen bit and, initially, hides the bit value from the receiver. Then, in an open phase,
the sender discloses (possibly in an interactive manner) information that allows the receiver
to learn the committed bit and verify its correctness. The term opening can be used either
to denote the information that the sender reveals during the open phase, or the interactive
process by which the open phase takes place. In a non-interactive open phase, the opening
information may also be called decommitment or bit-encoding.


Unconditionally hiding. A BitCom scheme is unconditionally hiding if before the open
phase a receiver with unbounded computational power cannot learn anything about the
committed bit. A practical instantiation was used by Blum for coin flipping [Blu81Blu81]. In
essence, unconditionally hiding follows from the property that any BitCom has openings for
both bits, while at the same time the sender in unable to compute any pair of such openings
(for the same BitCom). This infeasibility — a kind of collision resistance — is also known in
the literature as a “claw-free” property [GMR84GMR84, Dam88aDam88a].
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Unconditionally binding. A BitCom scheme is unconditionally binding if for every com-
mitment there is a single bit value that a sender with unbounded computational power is able
to make the receiver accept as successful result of the open phase. A practical instantiation
can be based on public-key probabilistic encryption, e.g., the Goldwasser-Micali encryption
scheme [GM84GM84], if the encryption key is unknown to the receiver.


Remark 2.9 (Unconditional vs. statistical characterization of hiding and bind-
ing). The characterization of hiding and binding as unconditional assumes a correct setup
of commitment scheme parameters. If the setup phase is prone to a negligible yet non-null
statistical chance of error, then the mentioned properties may in rigor be characterized as
statistical, instead of unconditional, when referring to the commitment scheme.


Trapdoors. A trapdoor is an element whose knowledge allows computations that are
infeasible without the knowledge of the trapdoor. In an unconditionally hiding commitment
scheme with trapdoor there is a trapdoor that enables opening any bit from any BitCom. If
the sender learns the trapdoor then it breaks the binding property of the commitment scheme,
becoming able to equivocate the opening of any BitCom. The knowledge of the trapdoor
by a receiver does not break the hiding property of commitments, as it does not reveal any
information about which bit the sender might have committed to (i.e., which opening the
sender might know or be able to perform). In an unconditionally binding commitment scheme
with trapdoor there is a trapdoor that can be used to efficiently extract (i.e., decrypt) the
committed bit from any BitCom. If the receiver learns the trapdoor then it breaks the hiding
property of the commitment scheme. Equivocation and extraction are possible even for some
commitment schemes that are only computational hiding and binding, respectively. They
are also possible as capabilities of a simulator, even if not possible to any real participant
(sender or receiver). They might possibly not be based on a trapdoor but rather on some
other super power of the simulator (e.g., capability to rewind the adversary, or access to an
ideal functionality in a hybrid world).


A useful combination of commitment schemes with trapdoor. The basis of the
forge-and-lose technique (originally described based on the unconditionally binding and
unconditionally hiding BitCom schemes with trapdoor [Bra13Bra13]) described in this dissertation
(§3.1.33.1.3) is a combination of extractable BitComs and equivocable BitComs with trapdoor,
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with the sender in the extractable scheme being the receiver in the equivocable scheme,
and knowing a common trapdoor for both schemes. For example, for an IFC instantiation
based on Blum integers, assuming intractability (without a trapdoor) of deciding quadratic
residuosity, this means using the same Blum integer in both schemes, with its factorization
as trapdoor. The remaining description in the dissertation is more well focused on distinctive
concepts of extractability and equivocability.


2.3.2 Homomorphisms and pseudo-homomorphisms


Homomorphisms. A commitment scheme is called additively homomorphic (for some
additive group operation, e.g., modular sum, in the space of committable values), if any
pair of commitments can be combined into a new commitment of the value resulting from
applying the group addition to the two originally committed values. Correspondingly, the
“randomness” needed to open the new commitment can be obtained by homomorphically
combining the two original randomnesses.


Specifically, a BitCom scheme is called XOR-homomorphic if any pair of BitComs can be
homomorphically combined (under some group operation) into a new BitCom that commits
the XOR (i.e., the sum modulo 2) of the two initial committed bits, and if the same can
be done with the respective randomnesses. For example this is the case of Blum BitComsBlum BitComs
and GM BitComsGM BitComs, defined ahead. For modular additive groups over the integers, with
modulus larger than 2, a commitment scheme is called additively homomorphic if the same
properties hold in respect to modular addition of the committed values. This is the case of
Pedersen CommitmentsPedersen Commitments and ElGamal CommitmentsElGamal Commitments defined ahead.


For the purpose of the S2PC-with-Coms protocol (defined in Chapter 33), a XOR-homom-
orphism (i.e., homomorphism of sum modulo 2) is very useful in several constructions. For
example, it is the basis for the connectors of input of PA, i.e., making a connection between
BitComs and wire keys; it enables efficient ZKPs and ZKPoKs related with committed bits,
and efficient coin-flipping of random randomness and respective commitments (emulating
an ideal functionality that would select random commitments). The property is also useful
for linking several S2PC executions, via ZKPs about relations between the input bits of one
execution and the input and output bits of previous executions.
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Pseudo-homomorphisms. While XOR operations are very useful, some commitment
schemes are additively homomorphic over an additive set of integers modulo a group order
larger than two. Even though said Com schemes can be used to commit isolated bits, i.e.,
values 0 or 1, the respective additive homomorphism does not correspond to a XOR operation.
For example, the additive-homomorphic combination of two commitments of value 1 would
lead to a new commitment of value 2, which is not a bit (0 or 1). A solution for XOR
homomorphic operations is nonetheless possible in a restricted yet useful context, without
requiring a full-fledged XOR-homomorphism. Specifically, this is possible in applications
(e.g., for connectors of input of PA) where the party performing the operation knows the
opening of one auxiliary BitCom. In this case, the “homomorphic” XOR can be computed
using modular additive operations (addition and subtraction), based on one known value, as
follows: XORing (an auxiliary bit) 1 to an unknown original bit is equivalent to subtracting
the original bit from 1; XORing (an auxiliary bit) 0 to an unknown original bit is equal to
summing the original bit to 0. This operation, i.e., when performed at the level of respective
BitComs and randomnesses, is hereafter called a “pseudo XOR-homomorphism.” In this way,
ElGamal and Pedersen commitments become usable, including (upon proper adaptation) for
bit-wise XOR operations over strings. Specifically, this is useful when the receiver party (in
respect to whom the original bit and the auxiliary bit are secret at start), after receiving the
BitCom resulting from the pseudo-homomorphic transformation either: (i) sees the opening
of the new BitCom, but does not see the auxiliary BitCom (and thus cannot tell which
homomorphic operation took place); or (ii) sees the opening of the auxiliary BitCom, but not
the opening of the resulting BitCom.


A more detailed description of additive homomorphisms and pseudo-homomorphisms,
including succinct notation, is given in §B.1.2B.1.2 in Appendix BB.


2.3.3 Extractable commitment schemes


Definition 1 (extractability). An extractable commitment (Ext-Com) scheme is one
whose commit phase in a simulated execution allows S in the role of receiver, and indistin-
guishable from an honest receiver in the view of a possibly malicious sender, to extract (i.e.,
learn) the committed value, with probability equal to or larger than a value negligibly-close to
the maximum probability with which the sender is able to successfully open said value.


There is a natural resemblance between the concept of an encryption scheme and that
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of Ext-Com scheme. An encryption scheme is supposed to be decryptable by a receiver; an
Ext-Com scheme is supposed to be extractable by the simulator in the role of receiver in a
simulated execution, even if there is no key (a trapdoor) to decrypt a commitment.


It follows that any public-key encryption scheme can be used as a basis of an Ext-Com
scheme, if augmented with a way for the simulator to obtain the respective key (the trapdoor)
and assuming that the receiver of the commitment (who is supposed to remain blind to the
committed value) does not know the trapdoor. In contrast, in settings of simulation with
rewinding, extraction may happen by means of repeated challenge-response stages (without
the rewindable sender noticing said repetition), even if there is no decryption key.


2.3.3.1 GM BitComs


The Goldwasser-Micali probabilistic encryption scheme [GM84GM84] is based on the decisional quaddecisional quad-
ratic-residuosityratic-residuosity intractability (DQR) assumption in the multiplicative group of residues
coprime with a Blum integer. This can be used directly to define an Ext-BitCom scheme,
hereinafter denoted as the GM BitCom scheme, as follows.


• Setup. There is a Blum integer modulus N whose respective integer factorization (the
trapdoor) is assumed infeasible to find by the receiver (PR), and for which it is assumed
infeasible to decide quadratic residuosity of residues with Jacobi Symbol 1. However, by
some implicit mechanism the simulator is able find the trapdoor.


• Commit. The commit phase corresponds to encrypting and sending the respective
ciphertext. Specifically, to commit a bit 1 or 0, PS selects a random group element r
and sends its modular square r2 or the modular additive inverse −r2 of the square. (The
additive inverse of a square is necessarily a non-quadratic residue with Jacobi Symbol 1,
modulo a Blum integer, because the modular additive inverse of 1 has the same property;
i.e., a pair of elements with Jacobi Symbol 1 and which are additively inverse vis-a-vis
each other is a pair of commitments to different bits.)


• Open type 1. To open a bit 1 or 0, PS reveals the bit and the used random group element
r, letting PR verify that the square or additive-inverse of the group element, respectively,
is equal to the BitCom value.


• Open type 2. Alternatively, the sender may keep the randomness r hidden, and instead
just reveal the bit b and send a NIZKP that the commitment is indeed a commitment to
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the revealed bit, 0 or 1, i.e., that it is a quadratic or non-quadratic residue, respectively.


Analysis.


• Extraction. The simulator in the role of receiver in a simulated execution can decide
quadratic-residuosity by using the trapdoor in the GM decryption algorithm.


• (Non-)malleability with respect to opening. The open phase of type 2 is particularly
useful to prevent malleability with respect to opening. This is relevant for some BitComs
(the outer BitComs) used in the S2PC-with-BitComs protocol defined in this dissertation,
where it may be preferable to not reveal the randomness of the private input or output
bits in the context of larger protocols. For example, a malicious party could replicate in
another protocol execution a commitment of a private bit of another honest party. When
the honest party would later reveal the randomness (in an open phase of type 1), the
malicious party would thus become able to also open the commitment.


• (Non-)malleability with respect to commitment. For non-malleability with respect
to commitment, a GM BitCom must not be replayable by a different party. This type
of non-malleability can be achieved by adding to the setup or the commit phases a (non-
malleable) ZKPoK of the ability to open the committed values. If the Blum integer is
selected by the sender (PS), then in the setup stage the sender may send the modulus to
the receiver along with a ZKPoK of the trapdoor. This is also possible in a global-PKI
setup where the integer and the factorization is available to the sender and no one else.
The ability to provide such ZKPoK is equivalent to the compute pseudo-square-roots of
any GM BitCom, i.e., to open the commitments. This allows non-malleability with respect
to commitment because it prevents another party (not knowing the trapdoor) from being
able to replicate a commitment, as it would not be able to produce said ZKPoK. If the
Blum integer is instead provided by a trusted setup (e.g., CRS) that hides the trapdoor
from the sender, then a ZKPoK of trapdoor is not possible. In this case it can be replaced
by a ZKPoK of the opening, which must take place in the commit phase.


2.3.3.2 ElGamal Commitments and BitComs


Let g0 be an arbitrary generator, denoted global generator, of a group, with finite order q,
where the Decisional Diffie-HellmanDecisional Diffie-Hellman (DDH) intractability assumption holds. Let discrete
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logs, in multiplicative notation, be considered with respect to the global generator.


ElGamal encryption scheme (multiplicatively-homomorphic). The ElGamal en-
cryption scheme [ElG85ElG85] (for encryption of group elements) is as follows:


• Key-generation. Select, uniformly at random, a non-negative integer x less than the
group order q (i.e., x ∈ Zq), and define a new generator g1 as being the exponentiation
g0x of the global generator g0 to the power of the random element x. The pair (g0, g1) of
generators constitutes the public key of an ElGamal encryption scheme. The secret key is
the random integer x — the discrete log of the second generator base the first generator.


• Encryption. To encrypt a group element γ ∈ G, produce a pair (c1, c2) of group elements,
as follows: the first element is a random exponentiation g0r of the global generator g0,
i.e., the global generator to the power of a random exponent r; the second element is the
group-product of the respective exponentiation g1r (i.e., with the same random exponent)
of the other generator g1 by the value γ being encrypted.


• Decryption. To decrypt a ciphertext (c1, c2), raise the first element c1 to the power of
the secret key x, and use the result c1x as divisor to divide the second element c2, thus
obtaining the plaintext m.


• Multiplicative homomorphism. Given two ciphertexts ((c1, c2) and (c′1, c
′
2)), each


being a pair of group elements, the group-product per component, i.e., resulting in a
new pair of group elements, each being the result (c′′i ) of a product of the original group
elements (ci, c′i) in the respective position, is a new ciphertext (c′′1 , c


′′
2) whose decryption


result is the same as the product of the two original plaintexts.


ElGamal commitment scheme for integers (additively-homomorphic, but not ex-
tractable). A commitment scheme for non-negative integers less than the group order (i.e.,
in Zq) can be defined straightforwardly based on the ElGamal encryption scheme, as follows.


• Setup. The pair (g0, g1) of generators is defined in a way that guarantees that the receiver
(PR) does not know the discrete log x of the second generator g1. It is irrelevant whether
or not the sender (PS) knows the discrete log, so the parameters may be selected by PS.


• Commit phase. To commit to an integer m ∈ Zq, PS raises the global generator g0 to
the power of the integer m being committed, then encrypts the result g0m with ElGamal
encryption and sends the resulting ciphertext to PR.


• Open phase (type 1). To open a commitment, PS sends to PR the committed value m
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and also the randomness r of the ElGamal encryption. To verify correctness, the receiver
confirms that the received pair would lead to the previously received ciphertext.


• Open phase (type 2). Alternatively, the sender may keep the randomness r hidden,
and instead send the committed value m along with a NIZKP that m was indeed the
committed value. In practice, after an auxiliary exponentiation and division, the NIZKP
can be computationally reduced to a NIZKP of an ElGamal commitment of 0 (§A.3.5A.3.5).


• Additive homomorphism. Given two ElGamal commitments (c1, c2) and (c′1, c
′
2) of


respective values m and m′, computed using respective randomness r and r′, the respective
group-product (per component) of the two commitments results in a new commitment of
the modular sum (modulo the group order q) of the two original committed values, with
respective randomness equal to the modular sum of the original randomnesses.


Even though a simulator with the knowledge of the secret discrete log x is able to decrypt
an ElGamal ciphertext to obtain the respective encrypted value, the above described ElGamal
commitment scheme is not extractable. In fact, in the scope of the Com scheme the plaintext
of the encryption scheme is the result of exponentiating the base-generator to the power of the
committed value. Thus, extracting the committed value from the commitment alone (with
the help of the decryption key) would still require computing a discrete logarithm, which is
assumed to be infeasible. The scheme could become extractable by augmenting the commit
phase with a ZKPoK of the committed value. However, if wanting to reduce the number of
rounds, a respective NIZKPoK (e.g., §A.3.3A.3.3) could increase the communication complexity.


ElGamal BitCom scheme (extractable and XOR pseudo-homomorphic). The
above scheme can be converted into an Ext-BitCom scheme by restricting the message space
to the set {0,1} of possible bits and assuming that the simulator has obtained the decryption
trapdoor in a setup phase. This allows the simulator to decrypt the ciphertext and extract
bit 0 or 1 according to whether the decrypted value is respectively the group identity element
1(= g00) or the base generator g0(= g01). The restriction to a BitCom scheme breaks the
additive homomorphism, but preserves an additive pseudo-homomorphism — in this case a
XOR pseudo-homomorphism.


If PS is required (e.g., for simulatability purposes) to use a correct BitCom, the commit
phase needs to be augmented with a ZKP that the committed value is indeed a 0 or a 1
(§A.3.2A.3.2), i.e., that either the pair (c1, c2) of components of the ciphertext, OR the pair
(c1, c2/g0) obtained upon having the second component divided by the first generator g0, is a
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pair of elements with same discrete log taken base the pair of two generators (g0, g1).


Even if this ZKP (that an ElGamal encryption is an ElGamal BitCom) is not a ZKPoK
of the discrete log between the two base generators, it may still allow extractability of the
committed bit (though not necessarily of the used randomness) if it allows the simulator to
check which element is encrypted (i.e., 1 or g0). This type of extraction may be useful, e.g.,
in the S2PC-with-BitComs protocol, when associated to BitComs schemes whose parameters
are selected by a trusted setup that does not share the trapdoor with the sender. In other
settings, the actual extraction of the trapdoor (the discrete log) can be made via a ZKPoK
of a discrete log (§A.3.3A.3.3), if known by PS, or by having the second generator be defined via a
trusted setup, which the simulator can influence in an actual simulation.


2.3.4 Equivocable commitment schemes


Definition 2 (equivocability). An equivocable commitment (Equiv-Com) scheme is one
whose open phase in a simulated execution allows S in the role of sender, and indistinguishable
from an honest sender in the view of a possibly malicious receiver, to equivocate the opening
to any intended value, in the domain of committable values and possibly externally decided
only after the commit phase.


2.3.4.1 Blum BitCom scheme


A concrete equivocable BitCom scheme is possible based on the multiplicative group of integers
modulo a Blum integer with factorization unknown by the sender. In the original description
by Blum [Blu81Blu81], bits 0 and 1 are encoded as group-elements with Jacobi Symbol 1 or −1,
respectively. This encoding is a XOR homomorphism, i.e., into the additive group of integers
modulo Z2, with the multiplication modulo the Blum integer being correspondingly mapped
into sum modulo 2. The commit phase is then obtained by squaring a random encoding of
the bit, and the opening is achieved by sending the known square-root and letting the receiver
decode it based on the Jacobi Symbol. The scheme is equivocable, as the knowledge of the
integer factorization allows computing all the square-roots of any square, thus enabling the
opening of any intended bit. For an efficiency reason, the commitment scheme is hereafter
slightly adjusted, being described with the help of an auxiliary pre-computed element z
(possibly the smallest one) with Jacobi symbol −1, and its respective modular square z′.
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Table 2.2: Blum-BitCom scheme and adaptations
A B C D E F G H


Commitment
scheme


Public
params


Commit-
able


domain


Commit-
ment


domain


Commit phase Open phase (type 1) 1


Randomness
selection


BitCom
calculation Message Verification 2


Original
[Blu81Blu81] N b ∈ Z2 QRNQRN


r ←$


JSN(1 − 2b)
y = r2 (b, r) JSN(r) =? 2b − 1


∧ r2 =? y
3


Alternative (N,z) b ∈ Z2 QRNQRN r ←$ Z∗NZ
∗
N y = r4 ∗ z′b (b, r) r4 ∗ z′b =? y 4


Generalized (N,z, k) m ∈ Z2k QRNQRN r ←$ Z∗NZ
∗
N y = r(2k+1) ∗ z′m (m,r) r(2k+1) ∗ z′m =? y 5


Legend: b (committed bit); k (maximum length of committable values, implicitly 1 in BitComs);
m (committed bit-string); r (randomness used to commit); z (auxiliary short element with Jacobi
Symbol −1); z′ (modular square of z); ∗ (multiplication modulo N).


Procedure. A description with succinct notation is presented in row 44 of Table 2.22.2.


• Commit. The sender selects a random group element r, computes its fourth power and
then only if the bit being committed is 1 it further multiplies it by the auxiliary square
z′. (Special care is required against timing attacks, to prevent an adversarial receiver
from distinguishing the time taken to compute a BitCom of 0 from a BitCom of 1, which
respectively require two and three modular multiplications.)


• Open type 1. To open, the sender reveals the randomness r and the committed bit b,
and then the receiver verifies that it leads to the previously obtained commitment.


• Open type 2. To open without revealing the randomness, the sender: (i) reveals the
committed bit; then (ii) computes the quotient between the commitment and the auxiliary
square z′ raised to the power of the bit; and then (iii) sends a NIZKPoK of a respective
fourth-root (or of a square-root with Jacobi symbol 1).


In this “alternative” description, the BitCom is still a square for which the sender knows
a square-root of only one class. The difference, in comparison with the original description
by Blum (row 33, from [Blu81Blu81]) is that both the commit and the open (type 1) procedure
explicitly induce the generation and verification of the correct class of the square-root, based
only on three multiplications instead of a more costly Jacobi symbol computation. This also
makes more symmetric the commit and verification phases, with the latter just requiring
evaluation of the commitment “function,” based on the randomness r and the revealed bit b,
followed by an equality comparison. This also fits better as a special case of a generalization
to BitString commitments, succinctly mentioned in row 55 of Table 2.22.2, and explained in more
detail in §B.4.1.2B.4.1.2 in Appendix.
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Remark 2.10 (On the representation of square-roots). For convenience (ahead in
§2.5.12.5.1, when defining a 2-to-1 square scheme2-to-1 square scheme and a 2-out-of-1 oblivious transfer2-out-of-1 oblivious transfer), in the
context of Blum BitComs (but not for GM BitComs) it is here considered that the two
elements in each pair of trivially correlated square-roots (i.e., each square-root and its modular
additive inverse) are in fact two representations of the same properproper element. Whenever useful
to have a single representation, it is stipulated that it is the smaller one, i.e., the minimum
between the element and its modular additive inverse. The same interpretation applies in the
BitCom space, thus leading each element with Jacobi Symbol 1 to always be a square (even if
it is not in terms of the regular multiplicative group interpretation), because there are always
two proper square-roots either for the value or for its additive inverse. This interpretation
is sometimes left implicit, apart for referring to proper elements. The importance of this
consideration is for example avoiding a selective failure attack, where the sending of a
non-square with Jacobi Symbol 1 could otherwise lead the receiver (knowledgeable of the
trapdoor) to an error, which would signal to the sender that the element was not a square. A
more costly alternative would be to require the sender to always provide a NIZKP that the
BitCom is indeed a square. These considerations are not applicable to GM BitComs, where
taking the additive inverse of a BitCom would represent changing the committed bit.


2.3.4.2 Pedersen Commitments and BitComs


Pedersen devised an additively-homomorphic (unconditionally hiding) commitment scheme
[Ped92Ped92] for integers. Consider a cyclic group (in multiplicative notation) and a respective pair
of generators for which the sender does not know the discrete log between the two generator.
(It is irrelevant whether or not the receiver knows the discrete log). To commit a value m,
the sender reveals the product of two factors, with the first being the first generator raised
to the power of the committed value m and the second being the second generator raised
to a random exponent r. The ordered pair (m,r) of exponents is called a representation of
the commitment c. To open a value from c, the sender reveals the known representation
(m,r) and then the verifier accepts its first component as the correct committed value if
the received pair is indeed a correct representation. The scheme is additively homomorphic,
for sum modulo the order of the group. The scheme is equivocable, as the knowledge of
the secret discrete log allows computations of several representations of the same group
element. Correspondingly, any pair of different representations of the same commitment
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allows computation of the discrete log between the two generators.


Pedersen BitComs. The scheme can be restricted to BitComs, by restricting the set of
committed values to 0 and 1. A proof of correctness can then be achieved by a NIZKP of an
OR relation, combining the committed value is either 0 OR a 1. This can be reduced to a
NIZKP of knowledge of a discrete log (base the second generator) of either the commitment
OR of the commitment divided by the first generator (see §A.1.6A.1.6 and Section A.3A.3). The
scheme is pseudo XOR-homomorphic, based on its additive homomorphism.


Remark 2.11 (BitComs as commitments of a parity). XOR-homomorphic BitComs
could be defined from the bit-string Coms by letting a BitCom to a bit b be a bit-string Com
of a random string with the respective parity b [BD90BD90]. This allows a XOR-homomorphism
as long as the respective additive sum of the committed elements does not overflow the (odd)
group order, e.g., by ensuring that value committed by the Pedersen Com is exponentially
large but also exponentially smaller than the group order. In fact, the same idea could also
be used with ElGamal BitComs. However, this dissertation will use the pseudo-homomorphic
version, because it is enough and easier to enable an optimization based on bit-string Coms,
compacting several bits within a single Com.


2.3.5 Summary of concrete BitCom scheme instantiations.


Table 2.32.3 comprises in a concise view a summary of properties of four BitCom schemes that
can be useful in instantiations of the S2PC-with-BitComs protocol described later.


In all exemplified BitCom schemes, the knowledge of the trapdoor (column KK) by the
party mentioned in column JJ is optional, i.e., not needed to commit or open a value. However,
if in an IFC instantiation the Blum integer is selected by a non-trusted party, e.g., PS (for
GM) or PR (for Blum), then a ZKP of correctness of the Blum integer should be given.


Remark 2.12 (On the need for a ZKP of correctness). A ZKP of correctness of a
Blum BitCom (cell F2F2) may be avoided for certain applications where the interpretation of
group elements considers only proper elements. For example, in an insecure application, a
sender could try to use a trapdoor-knowledgeable receiver as an oracle for deciding quadratic
residuosity of an element (presumed produced as a BitCom but instead possibly obtained
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Table 2.3: Summary of properties of concrete BitCom Schemes


A B C D E F G H


BitCom
scheme
name


Base
reference


BitCom
set (group)


Randomness
selection


BitCom
sent to PR


Need NIZKP
of good
BitCom?


Open
message


Verify
opening 1


Blum [Blu81Blu81] QRNQRN r ←$ Z∗
NZ∗
N y = r4 ∗ z2b Possibly (b, r) r4 ∗ z2b =? y 2


Pedersen [Ped92Ped92] G = ⟨g0⟩ = ⟨g1⟩ y = r ←$ G g0bg1r Possibly (b, r) g0bg1r =? y 3


GM [GM84GM84] JN(1)JN(1) y = r ←$ Z∗
NZ∗
N (−1)br2 No (b, r) (−1)br2 =? y 4


ElGamal [ElG85ElG85] ⟨g0⟩ = ⟨g1⟩ y = r ←$ G (c1, c2) ≡
(g0r, g0bg1r)


Yes (b, r) g0r =? c1 ∧
g0bg1r =? c2


5


I J K L M N


BitCom
scheme
name


Who can
known
trapdoor


Trapdoor
Uncond-
itional
property


Simulatability
operation 6


Blum PR t = SqrtN(±z ∗NTSqrt1NNTSqrt1N) Hiding Equiv b r′ = r ∗ t1−2c 7


Pedersen PR t = DLg0(g1) Hiding Equiv b r′ = (2c − 1)t−1 + r(mod q) 8


GM PS t = NTSqrt1N Binding Ext b If Ver[t](y ∈ QRNQRN),
then b = 0, else b = 1 9


ElGamal PS t = DLg0(g1) Binding Ext b
If (z ≡ c2/c1t) =? 1, then b = 0
Else if z =? g0, then b = 1


Else ERROR
10


Legend: PR (receiver); PS (sender); b (committed bit); c (equivocated bit — used in rows 77 and
88); r (randomness used to commit); z (auxiliary short element with Jacobi Symbol −1 — used in
rows 22 and 77); ∗ (integer multiplication modulo N). NTSqrt1 (non-trivially correlated square-root
of 1, modulo N, i.e., a modular square-root with Jacobi symbol −1). In column FF, the ZKP refers
to proving that the BitCom y is well formed, whenever correctness is a requirement (see further
notes in Remark 2.122.12). As previously mentioned, the description of the Blum BitCom was adjusted
from its original, in order to allow as randomness any group element, instead of having to select
elements from a pre-determined class (i.e., with a pre-determined Jacobi Symbol). Depending on
the application, the BitCom set for Blum BitComs (cell CC22) may be generalized to JN(1)/properproper.


without knowing a respective opening), if the application would require the to abort in case
it could not extract a square-root. A ZKP of correctness of a Pedersen BitCom (cell F3F3) is
not needed assuming that it is feasible to check non-interactively that the BitCom element
(a group element) is indeed in the space of BitComs, namely when g0 and g1 are generators
of the same cyclic group and simultaneously group membership decidability is feasible. A
ZKP of correctness of a GM BitCom (cell F4F4) is not needed because group membership can
be verified efficiently. A ZKP of correctness of an ElGamal BitCom (cell F5F5) is necessary
whenever the application requires (e.g., due to desired simulatability properties) proving that
indeed the value presented as commitment is a BitCom, namely that it commits to a bit
instead of some other value (§2.3.3.22.3.3.2).
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Definition 3 (Dual BitCom schemes with trapdoor). Two BitCom schemes are said
to be dual (with respect to one another) if one has an extraction trapdoor and the other has an
equivocation trapdoor and the trapdoors are the same (or feasibly derivable from one another).
For example, the Blum (Equiv-)BitCom scheme and the GM (Ext-)BitCom schemes, when
instantiated with the same Blum integer as modulus, are dual with respect to one another.
As another example, the Pedersen (Equiv-)BitCom scheme and the ElGamal (Ext-)BitCom
scheme, when instantiated with the same public parameters (two generators) are dual with
respect to one another. (It is interesting to notice that a BitCom scheme can be dual of
itself, if it is simultaneously extractable and equivocable and the same trapdoor allows both
properties — this would only be useful as a commitment scheme if neither sender nor receiver
would know the trapdoor, but the simulator could know it.) Naturally, the binding and
hiding properties are assumed to hold only based on the assumption that the respective
sender and receiver do not know the equivocation and extraction trapdoor, respectively.


Remark 2.13 (Types of equivocability). The stated definition of equivocability (Def-
inition 22) is in respect to an ability of a simulator impersonating an honest sender, i.e., a
simulator that was able to choose the way in which the commitment was generated. A stronger
notion of equivocability could require a simulator impersonating a receiver to be able to
calculate from the commitment alone the possible openings for any possible committed value.
This property was considered by Brassard, Chaum and Crépeau in what they called chameleon
commitments [BCC88BCC88]. Indeed, they also present an IFC based BitCom very similar to Blum
BitComs, but not requiring Blum integers, and a DLC based BitCom precursor of Pedersen
BitComs. They explain why their described IFC Coms are chameleon — the trapdoor allows
computation of any opening from any BitComs — and why the DLC ones are not — even
with the trapdoor it is not possible to compute discrete logs. In this dissertation, some
components of the protocol do require the ability to extract an opening from a commitment,
as a chameleon Com would allow, but this is actually applied to extractable BitComs, e.g.,
ElGamal BitCom, and achieved via an ad-hoc ZKPoK of the openings. Beaver [Bea96cBea96c]
defined an even more stringent equivocability property, requiring that the openings must
be extractable even by a simulator that does not corrupt sender and receiver — while such
property is useful for adaptive corruption scenarios, it is not considered herein.
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2.4 S2PC via cut-and-choose of garbled circuits


This section reviews background notions of S2PC solutions based on a cut-and-choose (C&C)
of garbled circuits (§2.4.12.4.1), including application of a random seed checking technique (§2.4.22.4.2).
It also mentions independent works on reducing the number of garbled circuits (§2.4.3.12.4.3.1),
and briefly comments on other S2PC approaches (§2.4.3.22.4.3.2).


2.4.1 C&C-GCs-based S2PC


Basic garbled-circuit approach. The theoretical feasibility of S2PC, for functions ef-
ficiently representable by Boolean circuits, was initially shown by Yao [Yao86Yao86] (e.g., see
[BHR12BHR12, §1] for a brief historical account of the origin of the garbled-circuit approach
[GMW87aGMW87a, BMR90BMR90, NPS99NPS99].) In the semi-honest model (where parties behave correctly
during the protocol) simplified to the 1-output setting, only one of the parties (PB) intends to
learn the output of an agreed Boolean circuit that computes the desired function. The basic
GC approach starts with the other party (PA) building a GC — a cryptographic version of
the Boolean circuit, which evaluates keys (e.g., random bit-strings) instead of clear bits. The
GC is a directed acyclic graph of garbled gates, each receiving keys as input and outputting
new keys. Each gate output key has a corresponding underlying bit (the result of applying
the Boolean gate operation to the bits underlying the corresponding input keys), but the bit
correspondence is hidden from PB. PA sends the GC and one circuit input key per each input
wire to PB. Then, PB obliviously evaluates the GC, learning only one key per intermediate
wire but not the respective underlying bit. Finally, each circuit output bit is revealed by a
special association with the key learned for the respective circuit output wire. By letting the
parties hold additional random bits as part of their private inputs, S2PC can be performed
for probabilistic functionalities, i.e., with probabilistic outputs. Lindell and Pinkas [LP09LP09]
prove the security of a version of Yao’s protocol (valid for a 2-output setting).


Garbling schemes can be implemented in diverse ways [BHR12BHR12]. This dissertation abstracts
from specific constructions, except for making the typical assumptions that: (i) with two
valid keys per circuit input wire (and possibly some additional randomness used to generate
the GC), PB can verify the correctness of the GC, in association with the intended Boolean
circuit, and determine the bit underlying each input and output key; and (ii) with a single
key per circuit input wire, PB can evaluate the GC, learning the bits corresponding to the
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obtained circuit output keys, but not learn additional information about the bit underlying
the single key obtained for each input wire of PA and for each intermediate wire.


Oblivious transfer (OT). An essential step of the basic GC-based protocol requires, for
each circuit input wire of PB (the GC-evaluator), that PA (the GC-constructor) sends to PB


the key corresponding to the respective input bit of PB, but without PA learning what is the
bit value. This is typically achieved with 1-out-of-2 OTs (e.g., see explanation in Section 2.52.5).
Some protocols use enhanced variations, e.g., committing OT [CGT95CGT95], committed OT
[KS06KS06], cut-and-choose OT [LP11LP11], authenticated OT [NNOB12NNOB12], string-selection OT [KK12KK12].
In practice, the computational cost of OTs is often significant in the overall complexity
of protocols, though asymptotically the cost can be amortized with techniques that allow
extending a few OT to a large number of them [Bea96bBea96b, IKNP03IKNP03, NNOB12NNOB12].


The S2PC-with-BitComs protocol presented in this dissertation uses OTs at the level
of BitComs. For each circuit input bit of PB, PB produces a respective BitCom, as the first
message of an OT. Then, the protocol proceeds depending on the type of BitCom scheme. If
the BitCom scheme has been decided (e.g., in a setup phase) as an Equiv-BitCom scheme with
equivocation trapdoor known by PA and such that the trapdoor allows determining exactly
two openings from any BitCom, then PA is immediately able to determine two values from
which PA knows only one — a 2-out-of-1 OT, where PB chooses one value and leads PA to
learn two values. The method contrasts with a typical 1-out-of-2 OT (commonly used directly
at the level of wire keys), where PA chooses two keys and leads PB to learn one of them.


If, instead, the BitCom scheme is an additive homomorphic commitment scheme with
extraction trapdoor known by PB (i.e., and encryption scheme), then PA is able to homomor-
phically re-encrypt one of two chosen values, without knowing which one PB will be able to
decrypt — i.e., a 1-out-of-2 OT.


Cut-and-choose approach. Yao’s protocol is insecure in the malicious model. For exam-
ple, a malicious PA could construct an undetectably incorrect GC, by changing the Boolean
operations underlying the garbled gates, but maintaining the correct graph topology of gates
and wires. To solve this, Pinkas [Pin03Pin03] proposed a C&C approach, achieving 2-output S2PC
via a single-path approach where only PB evaluates GCs. A simplified high level description
follows. PA constructs a set of GCs. PB cuts the set into two complementary subsets and
chooses one to verify the correctness of the respective GCs. If no problem is found, PB
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evaluates the remaining GCs to obtain, from a consistent majority, its own output bits and a
masked version of the output of PA. PB sends to PA a modified version of the masked output
of PA, without revealing from which GC it was obtained. Finally, PA unmasks her final
output bits. This approach has two main inherent challenges: (1) how to ensure that input
wire keys are consistent across GCs, such that equivalent input wires receive keys associated
with the same input bits (in at least a majority of evaluated GCs); (2) how to guarantee
that the modified masked-output of PA is correct and does not leak private information of PB.
Progressive solutions proposed across recent years have solved subtle security issues, e.g., the
selective-failure-attack [MF06MF06, KS06KS06], and improved the practical efficiency of C&C-GC-based
methods [LP07LP07, Woo07Woo07, KS08aKS08a, NO09NO09, PSSW09PSSW09, LP11LP11, SS11SS11]. As a third challenge, the
number of GCs still remains a primary source of inefficiency, in these solutions that require a
correct majority of GCs selected for evaluation. For example, achieving 40 bits of statistical
security requires at least 123 GCs (74 of which are for verification). Asymptotically, the
optimal C&C partition (three fifths of verification GCs) leads to about 0.322 bits of statistical
security per GC [SS11SS11].


The BitCom approach in this dissertation deals with all these challenges. First, taking
advantage of XOR-homomorphic BitComs, the verification of consistency of input wire keys
of both parties is embedded in the C&C, without an ad-hoc ZKP of consistency of keys
across different GCs. Second, PB can directly learn, from the GC evaluation, openings of
BitComs of one-time-padded (i.e., masked) output bits of PA, and then simply send these
openings to PA. Privacy is preserved because the openings do not vary with the GC index.
Correctness is ensured because the openings are verifiable (i.e., authenticated) against the
respective BitComs. Third, the BitCom approach enables the forge-and-lose technique, which
reduces the correctness requirement to only having at least one correct evaluation GC, thus
increasing the statistical security to about 1 bit per GC (see details in §3.1.43.1.4).


A 2-output S2PC protocol (e.g., with different outputs for each party) can also be achieved
with each party playing once as GC evaluator of only her own intended circuit, i.e., with the
circuits evaluated by each party only computing her respective output. Dual path approaches
have been previously conceptualized at high level (e.g., [Kir08Kir08, §6.6] and [SS11SS11, §1.2]). The
BitCom approach herein also makes it trivial to ensure the same input (or transformations
thereof) across the two executions.


Since the garbling scheme is abstracted, the protocol is also compatible with many garbling
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optimizations, e.g., point and permute [NPS99NPS99], XOR for free [KS08bKS08b], garbled row reduction
[PSSW09PSSW09], dual-key cipher [BHR12BHR12], two halves make a whole [ZRE15ZRE15].


Dual execution approaches for covert adversaries. Other dual-path approaches have
been proposed using a single GC per party (i.e., not C&C-based), but with potential leakage
of one bit of information [MF06MF06, HKE12HKE12]. Subsequent improvements have been achieved
by Kolesnikok et al., [KMRR15KMRR15], allowing a range of tradeoffs between different levels of
probability of leakage and reducing the amount of leakage in case of successful malicious
behavior. This dissertation is focused on fully malicious security, i.e., requiring a negligible
probability of malicious leakage in spite of a single evaluator of garbled circuits.


2.4.2 Selecting the cut-and-choose partition


A crucial aspect of a cut-and-choose protocol is the selection of the cut-and-choose partition
challenge, and its integration with the commit and response stages. Intuitively, a malicious
garbled circuit constructor (PA) must not learn the cut-and-choose partition before it is
bound to concrete garbled circuits, or otherwise it could construct good circuits for all the
check instances and bad circuits for all the evaluation circuits. Conversely, a simulator (in
the role of PA in a simulated execution) needs to be able to induce any circuit output (the
one decided by the ideal S2PC functionality in the ideal world), and so it needs to find which
circuits to construct correctly (for the check operation) and which ones incorrectly (for the
evaluation operation). There are several ways by which to enable the simulator to find or
induce the cut-and-choose challenge it needs. If interactivity is not a problem, then the
challenge could be decided in its own separate stage, via a simulatable coin-flipping protocol,
i.e., where a simulator is able to induce the final outcome. However, for a reduced interaction,
namely not requiring any new communication step, better methods are possible based on
commitment schemes, as described in the next paragraphs. The next paragraphs describe two
methods — one based on an equivocable commitment, the other on extractable commitments.


The equivocable method, combined with a NPRO. One approach to enable simu-
latability is to have PA use an equivocable commitment scheme to commit to the garbled
circuits and related elements, then have PB decide the cut-and-choose challenge, and only then
have PA open the garbled circuits and respective related elements (for check or evaluation).
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In this method the simulator would be able to equivocate the garbled circuits. This technique
can be traced back to a similar use by Damgård in the context of Σ protocols (3-round
protocols of the form commit-challenge-response [Dam00Dam00]) for zero-knowledge proofs. After
seeing a Σ-challenge decided by the verifier, the simulator (in the role of prover in a simulated
execution) is able to produce a random pair of Σ-commit and Σ-response messages that
are consistent with the Σ-challenge, still in time to convince the verifier that the Σ-commit
message is the one that had been committed. Adapting the technique to a S2PC based
on cut-and-choose, in the response stage the simulator is able to respond correct garbled
circuits for the check instances and fake garbled circuits for the evaluation instances, the
later designed in a way that their circuit output is always the one decided by the ideal
functionality in the ideal world. In practice, the Equiv-Com only has to be applied to a short
collision-resistant hash of the sequence of elements being committed.


In order to reduce interaction, it may instead be PA to decide the challenge, as a (non-
programmable) random oracle (NPRO) image of the Equiv-Com [Lin15Lin15], where the NPRO
outputs a pseudo-random string whenever the input is used for the first time. As a new attack
a malicious PA becomes able to brute-force many trial-and-error attempts of different NPRO
pre-images, trying to obtain an NPRO output that encodes a cut-and-choose partition whose
all check indexes correspond to good instances and all evaluation instances correspond to bad
instances. To prevent this, the statistical security parameter needs to be transformed into
a new (larger) computational security parameter, to account for the computational power
of PA. Specifically, the new parameter must be such that the respective cut-and-choose
parameters are so large that PA does not have enough computational power to make enough
trials, in feasible time, till finding one pre-image whose output challenge is consistent with the
bad instances produced by PA. Several techniques may mitigate the increase in the security
parameter, enabling consideration of a short-term computational security parameter specific
for the use of the NPRO. For example, if the protocol is designed to have a short duration
deadline, e.g., PB would accept a reply from PA only if it is received after less than one
minute of time has passed since the S2PC execution started, then it must only be guaranteed
that PA is not able to brute-force the NPRO output in said duration. The techniques may be
based on the analogous of a “salt” and “iteration count” used to mitigate brute-force attacks
in password-based key derivation schemes [TBBC10TBBC10]. For example, the protocol may be
designed to require that the NPRO pre-image includes the execution context (e.g., including
the session and subsession identifiers) and some unpredictable nonce proposed by PB for
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each execution, thus limiting the capability of trial-and-error attempts by PA, before the
beginning of the protocol execution (i.e., before knowing the "salt"). Additionally, as a design
decision the NPRO (or some function that in practice is replacing it) may be designed to
require at least a certain amount of time to compute, not enough to significantly affect the
overall protocol execution time, but enough to reduce by several orders of magnitude the
number of trial-and-error attempts by PA.


The extractable method, combined with OTs. Another approach is for PB to initially
commit the cut-and-choose challenge, using an Ext-Com, even before PA builds the garbled
circuits. This allows the simulator (impersonating PA interacting with a black-box possibly
malicious PB) to extract the challenge partition and know exactly which instances will be
selected for check and which ones for evaluation. A straightforward technique would require
an extra communication round where PB would open the committed challenge after PA would
have committed to the circuits. However, this communication round can be avoided, as PA


does not really need to know the partition, as long as it is able to provide correct replies
to each instance. This is exactly the kind of role that an oblivious transfer may provide,
i.e., letting PA send two types of answers but with PB only receiving one kind. Without
attempting a reduction of communication steps, this type of technique was used in a prior
S2PC protocol by Lindell and Pinkas [LP11LP11], letting PB receive two keys per wire for check
circuits and one key per wire for evaluation circuits, but without disclosing to PA which
instances were of each type (check or evaluation). More recently, the technique was used
directly to achieve non-interactive S2PC (i.e., one message to each side) [AMPR14AMPR14]. The
advantage in comparison with the equivocable methodequivocable method is that it does not require equating
the statistical parameter up to the computational parameter, because PA will not get to learn
the cut-and-choose partition. This extractable method was not considered in the original
forge-and-lose paper, but it can be incorporated into the protocol as an option to remove the
interaction between the commit and the response stages of the cut-and-choose (as done in
[AMPR14AMPR14]). Combined with the forge-and-lose technique, which also allows non-interactive
recovery of the input of PA, the statistical security is thus equal to the interactive case.


The random seed checking (RSC) technique.


As pointed out by Goyal et al. [GMS08GMS08], the communication complexity associated with
the transmission of garbled circuits within a C&C approach can be significantly improved by
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avoiding communication of the check circuits. The technique can be derived from two simple
observations. First, the sending of garbled circuits in the CommitCommit stage can be deferred to
the RespondRespond stage, as long as PA commits to them during the CommitCommit stage. Second, since
in a typical cut-and-choose the VerifyVerify stage only requires PB to know elements that do not
depend on the private inputs of PA and PB, those elements can be pseudo-randomly generated
from a short random seed and other public information. Based on these observations, the
technique is implemented as follows. In the CommitCommit stage, PA pseudo-randomly generates,
for each challenge index (of unknown type), the necessary elements, based only on a small
random seed, and then computes a respective short (compressive) commitment (at least
computationally binding) of the generated elements. Henceforth, these are denoted as RSC
commitments, as differentiation from other commitments used within the protocol. Then, in
the RespondRespond stage: for each check instance, PA only sends the respective small random seed,
thus allowing PB to make all respective verifications; for each evaluation challenge, PA simply
sends the generated elements (but not the random seed) and the respective responses for
evaluation. The optimization in communication is clear: ignoring the size of the short RSC
commitments and random seeds, the communication associated with verification challenges
is eliminated, while the one associated with evaluation challenges remains the same.


Remark 2.14 (Hiding the CR-hashes of the RSC technique). While [GMS08GMS08] pro-
posed to use a CR-Hash to bind PA to the circuits, in rigor a simple CR-Hash of a circuit
does not guarantee hiding a CR-Hash does . Thus, in general a hiding commitment must be
used, if the protocol is interactive with respect to letting PB observe the hash before selecting
the cut-and-choose partition, and if simulation is considered in a setting without rewinding.
Instead of relying on a random oracle to argue about the hiding properties of the CR-Hash,
the hash can be committed by PA, using “randomness” also generated by the random seed,
and then have the commitment be sent instead of the hash.


Transmitting the RSC commitments and seeds. In the cut-and-choose selection
method based on Equiv-Coms and a NPROEquiv-Coms and a NPRO the RSC commitments of CR-hashes can be
replaced by a single RSC Equiv-Com, with independent randomness. Then, PA only has to
open the seeds of the check instances and the elements (garbled circuits and other auxiliary
element) of evaluation instances, and the randomness of the equivocable commitment, thus
letting PB verify that they are consistent with the Equiv RSC commitment.
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In the cut-and-choose selection method based on Ext-Coms and OTsExt-Coms and OTs the use of the RSC
technique is more difficult because PA does not get to learn the cut-and-choose partition
and thus does not know for which instances to send seeds and for which to send the actual
circuits and other elements. A work-around suggested in [AMPR14AMPR14] involves an erasure code,
applicable if the cut-and-choose partition uses a fixed number e of evaluation challenges
and number v of check challenges. Since PA does not learn the cut-and-choose partition, it
instead sends e erasure-code shares in clear, and then sends the remaining v seeds via OT,
from which PB can reconstruct v circuits using a PRG, and use them as additional shares, to
reconstruct enough good circuit by erasure decoding.


2.4.3 Other related work on S2PC


(Note: some work subsequent to the original forge-and-lose paper is compared in §3.6.23.6.2.)


2.4.3.1 Two other optimal C&C-GCs


Two recently proposed C&C-GCs-based protocols [Lin13Lin13, HKE13HKE13] also minimize the number
of GCs, requiring only that at least one evaluation GC is correct.


Lindell [Lin13Lin13] enhances a typical C&C-GCs-based protocol by introducing a second
C&C-GCs, dubbed secure-evaluation-of-cheating (SEOC), where PB recovers the input of PA


in case PB can provide two different garbled output values from the first C&C-GCs. The
concept of input-recovery resembles the forge-and-lose technique, but the methods are quite
different. For example, the SEOC phase requires interaction between the parties after the
first GC evaluation phase, whereas in the forge-and-lose the input-recovery occurs offline.


Huang, Katz and Evans [HKE13HKE13] propose a method that combines the C&C-GCs approach
with a verifiable secret sharing scheme (VSSS). The parties play different roles in two
symmetric C&C-GCs, and then securely compare their outputs. This requires the double
of GCs, but in parallel across the two parties. By requiring a predetermined number of
verification challenges, the necessary number of GCs is only logarithmically higher than the
optimal that is achieved with an independent selection of challenges. In their method, the
deterrent against optimal malicious GCs construction does not involve the GC constructor
party having her input revealed to the GC evaluator.


In the SEOC and VSSS descriptions, the method of ensuring input consistency across
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different GCs is supported on DLC assumptions. The descriptions do not consider general
linkage of S2PC executions related with output bits, but their input bits are also committed
using XOR-homomorphic BitComs. In contrast, the original S2PC-with-BitComs with forge-
and-lose was based on IFC supported on Blum integers and required a lower number of
exponentiations, though with each exponentiation being more expensive due to the larger size
of group elements and group order, for the same cryptographic security parameter. The current
dissertation generalized the previous instantiations to also allow DLC-based BitCom schemes.


2.4.3.2 Other approaches


Jarecki and Shmatikov [JS07JS07] described a S2PC protocol with committed inputs, using a
single verifiably-correct GC, but with the required number of exponentiations being linear
in the number of gates. In comparison, this dissertation is focused on garbling schemes
based on symmetric primitives (e.g., block-ciphers, whose greater efficiency over-compensates
the cost of multiple GCs in the C&C), and the required number of exponentiations to be
linear in the number of circuit input and output bits and in the statistical parameter. Even
a size-efficient garbled circuit can be proven correct via a size-efficient (“succinct”) zero
knowledge proof (i.e., “argument”) [Gro10Gro10], but with known methods this would significantly
hinder the efficiency of communication, again requiring at least one expensive group operation
(e.g., an exponentiation) per gate, much more expensively than repeating the generation and
evaluation of several garbled circuits within a cut-and-choose approach.


Nielsen and Orlandi proposed LEGO [NO09NO09], and more recently Frederiksen et al. proposed
Mini-Lego [FJN+13FJN+13], a fault-tolerant circuit design that computes correctly even if some
garbled gates are incorrect. Their protocol, which uses a cut-and-choose at the garbled-gate
level (instead of at the GC level) to ensure that most garbled gates used for evaluation are
correct, requires a single GC but of larger dimension. It would be interesting to explore how
to integrate a forge-and-lose technique into their cut-and-chose at the gate level.


Kolesnikov and Kumaresan [KK12KK12] described a S2PC slice-evaluation protocol, based
on information theoretic GCs, allowing the input of one GC to directly use the output of a
previous GC. Their improvements are valid if the linked GCs are shallow, and if one party is
semi-honest and the other is covert. In contrast, the S2PC-with-BitComs protocol in this
dissertation allows any circuit depth and any party being malicious.


Another approach for S2PC is to interactively evaluate each multiplicative gate, based
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on oblivious transfers [GMW87aGMW87a]. This approach would inherently require a number of
rounds linear in the multiplicative depth of the circuit being obliviously evaluated, but it may
nonetheless be instantiated with competing computational complexity, e.g., as developed by
Nielsen et al. [NNOB12NNOB12]. However, the approach may become unsuitable when network delay
is an issue and simultaneously the circuit depth is very large — conversely, the approach in
this dissertation is focused on constant-round protocols.


Mohassel and Riva [MR13MR13] devised a protocol that does not require exponentiations (in
the online phase), and instead only requires symmetric-key operations in number linear in the
product of the circuit size and the statistical parameter, namely avoiding exponentiations. (In
the offline phase it still requires exponentiations in number linear in the statistical parameter,
to bootstrap the OT extension technique.) They achieve this by using garbled circuits to
check the consistency of inputs and outputs of other garbled circuits. In contrast, the protocol
in this dissertation uses public-key operations that are useful to provide a connection with
public-key commitments that are externally meaningful (e.g., in a multi-party PKI setting).


In the garbled circuit approach, the size of the circuit may grow very large in comparison
with the time that it would take to (non-securely) evaluate a program with access to random
access memory. Since the memory access pattern may be unknown before the computation
(i.e., depend on the private input), the circuit circuit requires a linear number of gates for
each isolated memory access. The use of oblivious RAM [GO96GO96, GGH+13GGH+13] may mitigate this
problem, by enabling a polylogarithmic communication-complexity for each memory access,
asymptotically more efficient than the linear complexity required by a garbled circuit. Still,
actual implementations may be impractical for reasonable sized parameters and it applicability
is not useful for all kinds of functions. In a complementary perspective, S2PC based on garbled
circuits may also be useful as a building block for constructions of general oblivious RAM.


One technical limitation of the garbled circuit approach it its communication complexity.
The approach requires communicating a (garbled version of a) completely unrolled circuit
that computes, in a straight-line manner, the function whose oblivious evaluation is intended.
Conversely, S2PC is possible with communication sub-linear in the circuit size, a.k.a. succinct
S2PC, based on stronger primitives, such as fully homomorphic encryption [Gen09Gen09], and
reusable garbled circuits [GKP+13GKP+13] (based on functional encryption). A very recent work
by Boyle et. al also breaks the barrier of the circuit size, using DDH assumptions to allow
communication sub-linear in the size of the unrolled circuit [BGI16BGI16]. Even though the
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mentioned techniques allow asymptotically better communication complexity, the state-of-
the-art constructions are not (yet) practical from a computational complexity perspective.


2.5 BitCom-based oblivious transfer


Oblivious transfer (OT) is an important cryptographic primitive for S2PC. An early version
was devised by Rabin [Rab81Rab81], with PA “sending” one chosen value, and then PB “receiving”
it only with probability 1/2. A different functionality was thereafter formalized as 1-out-of-2
OT [EGL85EGL85], with PA choosing and “sending” two values, and then PB only learning one in
the position of its choice. Both OT flavors are equivalent [Cré88Cré88], in the sense that one can be
achieved from the other. Yet, 1-out-of-2 OT is directly more useful in garbled-circuit based
protocols, allowing the evaluator party (PB) to learn only one key out of two keys chosen by
the constructor party (PA) for each input wire of PB in each garbled circuit. It is possible to
efficiently implement 1-out-of-2 OT [NP01NP01], including with a single-round protocol resilient
to malicious parties [PVW08PVW08]. In the setting of this dissertation it is useful to consider OT
functionalities that also provide to PA a BitCom of the bit position chosen by PB.


More generally, by abstracting which party initially “chooses” a value (i.e., apart from
the private bit of PB), and focusing only on the output, a (2,1)-OT can be defined as a
functionality that allows PA to output two values (x0, x1) and PB to output one position bit
b and one value xb from the respective position in the pair of values known by PA, without
PA knowing which value is learned by PB, and without PA knowing the other value.


In contrast to a 1-out-of-2 OT (1/2 OT1/2 OT), a 2-out-of-1 OT (2/1 OT2/1 OT) — denomination from
[Bra13Bra13] — is a (2,1)-OT where PB “chooses” one value and then lets PA learn two values, one
of which being the one chosen by PB. Upon a setup assumption defining a public key for PA,
such an OT can be performed with a single message from PB to PA, as many times as desired.


From an output perspective (and assuming that the private input values are also part of
the output), 1-out-of-2 OT may be considered equivalent to 2-out-of-1 OT, in the sense that
one can be transformed in the other at the expense of a single extra message. Yet, intuitively,
in a S2PC protocol they may be used with different application perspectives: 1-out-of-2 OT
is intuitively associated with exchange of input keys of garbled circuits; 2-out-of-1 OT is
used in the S2PC-with-BitComs in this dissertation for exchange of openings of BitComs
(independently of the number of garbled circuits). Also, in a non-interactive 2-out-of-1 OT


Page 78 of 376







Ph.D. dissertation: The forge-and-lose technique and other contributions to S2PC-with-Coms (2016-Dec-27)


there must be a computational relation between the two values learned by PA (e.g., two
non-trivially correlated square-roots of the same square), whereas in a 1-out-of-2 the two
values can typically be an arbitrary pair of values of the same set. Notwithstanding, the
transcript of a 1-out-of-2 protocol in the view of PB might also be non-unconditionally hiding
(i.e., only computationally hiding) of a transformation between the two values.


An OT construction is described below for each of the two approaches (1-out-of-2 and
2-out-of-1). Their distinctive concrete application is described only later (§3.3.23.3.2), when
explaining the connectors for the input of PB in the S2PC-with-BitComs protocol.


2.5.1 2-out-of-1 OT based on Blum BitComs


Before specifying a concrete 2-out-of-1 OT construction, it is useful to define a supporting
structure, inspired by the Blum BitCom scheme.


Definition 4 (2-to-1 square scheme). For a suitably-defined efficient function f of the
randomness and the committed bit, a BitCom scheme is called a 2-to-1 square scheme under
f if it satisfies the following three useful properties:


1. (Proper openings.) All BitCom openings (i.e., the values obtained during an open
phase) of a bit from a specific BitCom have the same f-image, different across the two
possible bits. In other words, each BitCom has exactly two possible f -images of openings.


2. (From trapdoor to openings.) There is a trapdoor which allows extracting the pair of
f -images of openings of any BitCom (a non-trivially correlated pair of square-roots).


3. (From openings to trapdoor.) Any non-trivially correlated pair of f -images of open-
ings is a trapdoor. (thus, a non-trivially correlated pair of openings is also a trapdoor)


Under an appropriate representation of (properproper) group elements (see Remark 2.102.10), e.g., if
any group element is considered equivalent to its modular additive inverse, the Blum BitCom
scheme (both the originaloriginal and the alternativealternative descriptions) satisfies the enumerated properties:


1. In the original description (row 33 in Table 2.22.2), a BitCom is the square of a randomness
of class equal to the committed bit. Each BitCom has four square-roots, two per bit (i.e.,
per classclass), but it is possible to define a single properproper square-root per bit. Specifically, the
scheme is a 2-to-1 square scheme under the reduction (the f function) to properproper elements
(i.e., from any randomness output the mininum between itself and its additive inverse).
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In the alternative description (row 44 in Table 2.22.2), adopted herein, a Blum BitCom is
the fourth power of the randomness r, further multiplied by the square of an auxiliary
element z of classclass 1 only if the committed bit is 1. The scheme is a 2-to-1- square scheme
under the function defined by taking the square of the randomness and multiplying by
the auxiliary element z of class 1 if and only if the committed bit is 1. The f -image of
any opening is thus a square-root of class equal to the committed bit. Furthermore, the
f -image of an opening of 0 is a principalprincipal square-root, and the f -image of an opening of 1
is a principalprincipal square-root multiplied by the auxiliary element.


2. The needed trapdoor is the factorization of the Blum integer, i.e., the knowledge of the
factorization allows feasible computation of the two proper square-roots of any BitCom.
A modular square-root of a BitCom can be computed modulo each prime and then the
square-root modulo the Blum integer follows from application of the Chinese Remainder
Theorem. In the original description (row 44), a non-trivial correlated square-root can
then be obtained by simply multiplying the non-trivial square-root of 1. The expression
non-trivially correlated pair means that the two elements (proper square-roots) are related
but cannot be simultaneously found (except with the help of a trapdoor). In the alternative
description (row 33), the pair of proper square-roots can be obtained by calculating a
principal square-root of the BitCom and then dividing the auxiliary element z. In this
case the two proper square-roots are trivially correlated (because the auxiliary element z
is public), but nonetheless the actual openings of a BitCom are non-trivially correlated.


3. The knowledge of any two (non-trivially correlated) proper-square roots allows an efficient
computation of the prime factors of the Blum integer. In the original description, it is
enough to compute the greatest common divisor between the Blum integer and the sum
of the two proper square-roots. In the alternative description, it is the greatest common
divisor between the proper square-root corresponding to 0 and the result of multiplying
the auxiliary element z by the proper square-root corresponding to 1.


A 2-out-of-1 OT from the second property. Let there be a 2-to-1 square scheme with
public parameters known by PA and PB, and with trapdoor known only by PA. Let PB be
initialized with a private input bit b. PB samples randomness suitable for a BitCom of its
input bit, and then sends the respective BitCom to PA. PA then uses its trapdoor to extract
the respective two proper (f -image) square-roots.
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Forge-and-lose from the third property. The third property (also shared by the
Pedersen BitCom scheme) is useful for the forge-and-lose technique, as the discovery (by PB)
of a pair of openings (i.e., a trapdoor of PA), in case PA acted maliciously, is the condition that
allows PB to decrypt the input bits of PA. In Blum BitComs, the integer factorization can
be found from any pair of proper square-roots of the same square. In Pedersen commitments,
any two distinct representationsrepresentations of the same value can be used to find the discrete log between
the two generators.


Remark 2.15 (A difference between Blum and Pedersen BitComs). Both Blum
and Pedersen BitCom schemes are unconditionally hiding, XOR pseudo-homomorphic and
satisfy the first and third properties of a 2-to-1 square scheme. However, the Pedersen scheme
does not satisfy the second property, because the trapdoor does not allow computing an
opening if one is not already known. While it is conceivable a 1-out-of-2 OT where PB outputs
one representation and PA outputs two representations of the same Pedersen BitCom, it is
not clear how this could be achieved with a sngle message (from PB to PA).


Remark 2.16 (ZKPoK to avoid selective failure attack). A ZKPoK of a valid opening
of a BitCom (also serving as ZKP of correctness) may be required to avoid selective failure
attacks. For example, while Blum BitComs are supposed to be squares in a given group, the
decisional quadratic-residuosity (DQR) is also assumed to be intractable to the sender of the
BitCom. If the actions of a receiver, knowledgeable of the trapdoor, is distinguishable between
being able vs. being unable to extract a square-root (i.e., between the BitCom being valid or
invalid), then a malicious sender could potentially use the receiver as an oracle to solve the
DQR problem. For example, if the receiver would abort if and only if detecting a non-square,
then the malicious sender would learn that the sent element was indeed a non-square. In
some circumstances the ZKPoK can be avoided, e.g., if making a reduction to using only
proper elementsproper elements, i.e., making sure that the receiver will treat squares and non-squares (with
Jacobi symbol 1) in the same way, namely extracting pseudo-square-roots and not disclosing
information about them.
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2.5.2 1-out-of-2 OT based on ElGamal BitComs


In 1-out-of-2 OT, PA “chooses” a pair of values and PB chooses the position of the value that
it wants to learn. As output, PB learns only the value in the selected position and PA does
not learn anything about said position. 1-out-of-2 OT can also be achieved non-interactively
after a public key setup [BM90BM90]. It can also be achieved somewhat efficiently, securely against
malicious adversaries, with a single-round (i.e., 2 messages) of communication [PVW08PVW08].
Considering the application of the OT in the context of the cut-and-choose structure of the
S2PC-with-Coms protocol in this dissertation, the protocol only needs to be simulatable
against a malicious PB, and so a simpler protocol is possible. More specifically, the cut-and-
choose structure already thwarts the case of a malicious sender, because the sender reveals
the randomness used for check instances, and because the OT is performed (for both check
and evaluation instances) before the sender knows the cut-and-choose partition of challenges.


The simpler OT, i.e., designed for an honest-sender, is as follows. As first message, the
receiver (PB) sends to the sender (PA) an additively homomorphic commitment of a 0 or a 1,
and a NIZKP that it is indeed a BitCom (i.e., that it commits to a bit). If need-be, it also
sends a ZK proof that enables a simulator to extract the committed bits. A ZKPoK of the
committed bit may be avoided if a ZKPoK of the trapdoor has already taken place (e.g., in a
PKI setting). In a CRS setting, the ZKPoK can be reduced to a NIZKP of same committed
bits in respect to other BitComs (outer-Coms in the S2PC-with-Coms protocol) whose
knowledge of opening would anyway have to be proven with a (NI)ZKPoK. As second and
final message, the sender homomorphically encrypts a linear combination of two exponents
(and also randomizes the ciphertext to ensure semantic hiding of the exponents), and sends it
to the receiver. The decryption by PB then yields the exponent that in the linear combination
was the coefficient with respective degree (0 or 1). In summary, this involves each party
sending one ElGamal encryption to the other, and the receiver (PB) also sending a NIZKP
that the first encryption is an ElGamal BitCom.


The application of this 1-out-of-2 OT in the S2PC-with-Coms protocol is described at
high level in §3.3.2.23.3.2.2. For each input bit of PB, the first message is required only once, and
the second message is repeated once for each evaluation instance. The protocol is specified in
more detail in §B.4.2.1B.4.2.1 in Appendix BB.
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Chapter 3


S2PC-with-Coms and the forge-and-lose technique


This chapter describes and analyzes the protocol for S2PC-with-commitments. It covers
results published in the paper [Bra13Bra13] that introduced the forge-and-lose technique for S2PC,
as well as subsequent improvements. It contains a revised protocol description and analysis,
now with a better focus on reducing the interaction between parties, and suitable to a
wider set of cryptographic instantiations (IFC and DLC), trusted setups (GPKI, GCRS)
and type of BitCom schemes (Ext and Equiv), including bit-string commitments (additively
pseudo-homomorphic). It also contains an updated communication-complexity benchmark
and a revised proof of security, based on simulation without rewinding.


In regard to S2PC, the protocol uses a cut-and-choose approach over garbled circuits,
with significant advantages in comparison with traditional protocols that require a majority
of the evaluated garbled circuits to be correct. By augmenting the cut-and-choose with
a forge-and-lose technique [Bra13Bra13], the protocol only requires that at least one evaluated
garbled circuit is correct. This reduces the number of garbled circuits to approximately one
third, for the same statistical security goal. The technique is accomplished based on BitComs
with trapdoor. The output of the protocol also includes reusable XOR-homomorphic (or
pseudo-homomorphic) BitComs of all input and output circuit bits (but not of bits in the
internal gates), thereby enabling efficient linkage of several S2PCs in a reactive manner. The
analysis allows the parameters of the commitment schemes to be derived from different types
of setup, e.g., a global public-key infrastructure (PKI) or a global common-reference string
(CRS) (the later also possibly defined as a fixed protocol parameter). The protocol may also
use a local-CRS for simulatability of NIZKs, NIZKPoKs and some internal commitments; the
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setup is avoidable if allowing more interactivity and rewinding in the simulation.


The outer BitComs are connected to the input and output wire keys of the garbled
circuits via structures that at a high level of abstraction are here called connectors. Different
instantiations are possible, e.g., based on integer-factorization cryptography (IFC) (with a
decisional quadratic-residuosity intractability assumption) or discrete-log cryptography (DLC)
(with a decisional Diffie-Hellman intractability assumption). The outer bits can instead be
committed with bit-string commitments with additive properties, more compactly than with
one BitCom per bit, thus reducing the size of the final output state of each party. The
outer commitments are randomized with the help of permutations decided via a simulatable
coin-flipping, itself based on an extractable-and-equivocable commitment scheme.


The coin-flipping is asymmetric, as for each type of wire one party only learns the
permutations, whereas the other party also learns the randomness used to produce them.
Simulatability of this coin-flipping involves one party also committing to a non-interactive
zero knowledge proof of knowledge of the randomness. Oblivious transfers (OTs) for the
input bits of the circuit evaluator are described at the level of BitComs, instead of at the level
of input wire keys of garbled circuits, and with implementations possible based on 2-out-of-1
OTs and 1-out-of-2 OTs. Based on a random oracle (which may be non-programmable), the
protocol can be implemented in three communication steps, or two for simple S2PC (i.e.,
without commitments in the output) with only one party learning an output.


Organization. Section 1.31.3 has provided an introduction and Chapter 22 reviewed some
background and related work. This Chapter includes remaining material. Section 3.13.1
identifies the protocol stages associated with the cut-and-choose structure and with the
BitCom approach, introduces the idea of connectors, explains the forge-and-lose technique
and analyzes the improvement in statistical security and/or reduction of number of garbled
circuits. Section 3.23.2 gives a high level description of the new S2PC-with-Coms protocol,
describing each logical stage. Section 3.33.3 explains the connectors that sustain the BitCom
approach, based on XOR-homomorphic properties, showing how BitComs or BitStringComs
can be connected to circuit input and output wire keys, to ensure the consistency of the
keys across different garbled circuits. Section 3.43.4 analyzes the complexity of the protocol
under several instantiations of primitives and cut-and-choose configurations. Section 3.53.5
initiates the security analysis of the protocol and mentions the possibility of linking several
S2PC executions. Section forgelose:sec:more-related-work comments on developments to
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the forge-and-lose technique, comparing the original technique vs. the improvements in
this dissertation and other related work. Appendix AA specifies the needed NIZKPs and
NIZKPoKs. Appendix BB describes the S2PC-with-BitComs protocol in low level, including
some optimizations, and complements the security analysis of the protocol.


3.1 Overview of the protocol


This section overviews the main elements of the S2PC-with-Coms protocol. First, it describes
a logical modularization of the protocol stages (§3.1.13.1.1), based on a cut-and-choose approach,
and integrating BitComs and a coin-flipping stage. Then it introduces the notion of connectors,
combining a BitCom setting (where there is a BitCom for each circuit input and output
bit) and the cut-and-choose structure (where there are several garbled circuits, each with
two keys for each input and output wire) (§3.1.23.1.2). The forge-and-lose technique is then
described, using properties of different BitCom schemes to enable a new criterion of successful
evaluation (§3.1.33.1.3). This motivates a comparison of error probabilities (Table 3.13.1) between
the cut-and-choose with forge-and-lose vs. that of a cut-and-choose requiring a majority of
correct evaluation garbled circuits, and a calculation of number of garbled circuits (Table 3.23.2)
needed to achieve certain levels of statistical security (§3.1.43.1.4).


3.1.1 Protocol stages


The S2PC-with-BitComs protocol described in this dissertation is built on top of a C&C ap-
proach with a CommitCommit-ChallengeChallenge-RespondRespond-VerifyVerify-EvaluateEvaluate logical structure. Given
the goal of outputting commitments of the input and output, the logical structure also includes:
stages (Produce initial BitComs of PAProduce initial BitComs of PA and Produce initial BitComs of PBProduce initial BitComs of PB) where
the parties produce commitments of their circuit input bits and prepare other commitments
(e.g., of bit-masks and bit-offsets) that will help with the commitment of the output bits.
These initial commitments happen before the stages associated with the cut-and-choose
structure. In the end, in a Permute Outer ComsPermute Outer Coms stage the initial (outer) commitments
are permuted into final random outer commitments. The actual random permutations are
decided in a two-party Coin-flip Permutations stage, with three communication steps
that can be interleaved and merged across the other stages. Enclosing the protocol, there
is an initial SetupSetup stage, where the needed BitCom scheme parameters are defined, and
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PA PB


5. VerifyVerify


0. SetupSetup


1.1. Produce initial BitComs of PBProduce initial BitComs of PB


2. CommitCommit (global hash)


3. ChallengeChallenge (C&C)
CF. Coin-flip
Permutations


6. EvaluateEvaluate


9. Final OutputFinal Output


8. Permute Outer ComsPermute Outer Coms


4. RespondRespond (seeds, GCs, connectors)


PA PB


CF.1CF.1 (part 1 of 3)


CF.2CF.2 (part 2 of 3)


CF.3CF.3 (part 3 of 3)


7. Transmit Circuit Output of PATransmit Circuit Output of PA


1.2. Produce initial BitComs of PAProduce initial BitComs of PA


Illustration 3.1: Logical Stages of the S2PC-with-BitComs protocol. Legend:
(message from PA to PB); (message from PB to PA); (interaction between PA and PB, possibly
with just one message in a single direction, possibly with messages in both directions); ● (local activity
at the respective party); (explicit interleaving of the coin-flip stage across different stages of the
cut-and-choose structure); (possible definition of the lower stage based on information exchanged
in the upper stage); C&C (cut-and-choose partition); GCs (garbled circuits). The Coin-flip
Permutations stage (CF), is interleaved between stage 1.1 (Produce initial BitComs of PBProduce initial BitComs of PB)
and stage 8 (Permute Outer ComsPermute Outer Coms). The actual message exchange may merge several stages,
e.g., to reduce the number of communication rounds (see Remark 3.13.1).


a Final OutputFinal Output stage where each party structures the respective final private output.
Illustration 3.13.1 depicts the sequence of logical stages, and then follows a high level description.


Stages related to the cut-and-choose structure.


In the CommitCommit stage, PA commits to several instances (some of which will later be selected
for check and the remaining for evaluation). Each instance is composed of one garbled circuit
and complementary elements (dubbed connectors) related with BitComs and with the circuit
input and output wire keys of garbled circuits. Based on a random seed checkingrandom seed checking (RSC)
technique, all “randomness” needed for each instance is actually pseudo-randomly generated
from a short random seed. After computing the elements for all instances, PA aggregates all
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elements and computes a respective collision-resistant hash, denoted global hash, and sends
to PB a respective short Equiv-Com of the hash (denoted RSC commitment).


The ChallengeChallenge stage determines a partition of the set of instances into two subsets:
check and evaluation. Possibly, the subsets may be conditioned to a predefined restriction
about their sizes (e.g., a fixed proportion of check vs. evaluation instances, or not letting
the number of evaluation instances exceed some proportion. The partition must not be
known to PA before the end of the CommitCommit stage. Apart from that, the decision can be
performed in several distinctive structural ways (see §2.4.22.4.2). It may be decided after the
CommitCommit stage, (i) arbitrarily by PB and sent to PA; or (ii) interactively via a coin-flipping
between PB and PA; or (iii) by PA based on a non-programmable random oracle (assuming
an appropriate adjustment to statistical security) and sent along with the communication of
stages 2 (CommitCommit) and 4 (RespondRespond). It may also be decided sooner, committed by PB in
stage 1.1 (Produce initial BitComs of PBProduce initial BitComs of PB), and never revealed to PA, but nonetheless
allowing PB to provide (via oblivious transfer) a respective response in stage 4 (RespondRespond).


In the subsequent RespondRespond stage, PA sends to PB the elements that allow PB to fully
verify the correctness of the check garbled circuits and connectors, and to partially verify
the evaluation connectors, and to evaluate the evaluation garbled circuits (and respective
connectors). Specifically: for each check instance, PA sends only the respective RSC seeds;
for each evaluation instance, PA does not send the seed, but sends several of the respective
derivable elements; also, PB opens the global hash from the RSC commitment.


In the VerifyVerify stage, PB uses the received elements to generate a candidate pre-image
of the global hash and verify that it is consistent with the hash value opened from the
RSC commitment. PB also verifies that some additional elements received for evaluation
instances satisfy some homomorphic properties. If any verification step fails, then PB aborts
the protocol execution; otherwise, PB establishes that there is an overwhelming probability
that at least one evaluation garbled circuit (and respective connectors) is correct.


Finally, PB proceeds to an EvaluateEvaluate stage, evaluating the evaluation GCs and respective
connectors, and using their results to determine the final circuit output bits and respective
openings of output BitComs. It is worth noticing that between the VerifyVerify and EvaluateEvaluate
stages there is no further response stage that could let PA misbehave, i.e., the two stages are
locally and consecutively executed by PB, without further interaction with PA. (This is a
fundamental difference in comparison with [Lin13Lin13], where the “secure evaluation of cheating”


Page 87 of 376







Section 3.1. Overview of the protocol (2016-Dec-27)


stage requires an interaction after the initial evaluation stage.)


Stages related to the BitCom approach.


Complementary to the C&C structure, the S2PC-with-Coms protocol also considers
the integration of commitments and BitComs as part of the final output. While in theory
the Boolean Circuit could directly compute also include BitComs, in practice that would
introduce an unacceptable overhead in the protocol, so the commitments are instead computed
in a different layer. In a SetupSetup stage, the needed BitCom schemes are defined, some of
which may have an associated bit-string Com scheme. The parameters of some schemes
may be established as part of a trusted setup (e.g., public-key infrastructure or common
reference string) and others may be selected by each party and sent and proved correct to
the other party. Some NIZKPs are used to ensure correctness and some NIZKPoKs more
generally to promote simulatability. In initial stages (Produce initial BitComs of PAProduce initial BitComs of PA


and Produce initial BitComs of PBProduce initial BitComs of PB) the parties commit their own input bits, and
prepare BitComs of offset bits for the output. Some Coms are denoted as outer, as they are
directly related to the output of the S2PC-with-Coms protocol. Other Coms and BitComs are
denoted as intermediate, as they are used to support the connectors that create a verifiable
connection with the garbled circuit wire keys, but are not part of the final output of a protocol
execution. The outer Coms produced in this stage are denoted as initial, because they will
later need to be randomized, into final outer Coms, so that the protocol emulates an ideal
S2PC-with-Coms functionality FS2PCwCFS2PCwC that would produce random BitComs.


The randomization of the outer Coms is achieved by homomorphically permuting the
initial outer-Coms into final outer-Coms. The random permutations for wires of PA are
decided directly by PB, and committed (using an Ext-and-Equiv Com scheme) even before PA


produces her outer-Coms. The random permutations for wires of PB are instead defined via a
(two-side-)simulatable two-party coin-flipping protocol, because they can only be decided after
PB has already defined the initial outer-Coms. For simulatability reasons, the permutations
are decided in a way that, for each type of wire only the “owner” of the wire learns the
outer-randomness permutation, whereas the other party only learns the respective outer-Com
permutation. Also for simulatability reasons, the contribution of outer-Com permutations
proposed by each party needs to be accompanied by a respective NIZKPoK of opening. For
the wires of PA this is merged into the already needed NIZKPoK of outer-Coms, but for
the wires of PB the NIZKPoK transcript needs to be initially committed along with the
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contribution of PB. Actually, depending on the instantiation (e.g., for GM BitComs, but not
for ElGamal BitComs), the NIZKPoK may be avoided if extraction is already enabled via
an extracted trapdoor obtained after a NIZKPoK of trapdoor. If the NIZKPoK of openings
is explicitly required, then PB commits to it along with his permutations contribution,
within the coin-flipping protocol. PB also sends a NIZKP that his contributions to the
outer-com permutations correspond indeed to commitments to all-zeros bit-strings. In the
end of the protocol, in a Permute Outer ComsPermute Outer Coms stage, the parties use the permutations to
homomorphically calculate the final outer Coms and respective randomnesses.


Assuming that the coin-flipping is implemented with the traditional templatetraditional template structure,
then the first step (PB committing to a contribution) can be performed early in the protocol,
when PB produces his initial BitComs; the second step (PA sending a random contribution)
can be performed along with the RespondRespond stage, where PA sends the evaluation garbled
circuits to PB. In the final message of the coin-flipping, PB opens his contribution so that
PA also learns the coin-flipping outcome. The outer Coms and respective coin-flipping of
permutations may be ignored if considering only a simple S2PC protocol that does not intend
to produce commitments as part of the output.


Remark 3.1 (On merging and interleaving logical stages). As mentioned in the
legend of Illustration 3.13.1, several logical stages may be merged and/or interleaved. Any
interleaving of the coin-flipping needs to ensure that each party is not able to affect a final
honest output, namely the final random value of outer Coms. The communication needed to
define the parameters of the BitCom and Com schemes of PB in stage 0 (SetupSetup) may be
performed along with stage 1.1 (Produce initial BitComs of PBProduce initial BitComs of PB), when committing the
circuit input bits of PB and preparing the oblivious transfer technique. The communication
of stage 1.2 (Produce initial BitComs of PAProduce initial BitComs of PA), associated with committing the circuit
input bits of PA and producing other BitComs that support the forge-and-lose technique,
may be combined with the communication of stage 2 (CommitCommit). Stage 3 (ChallengeChallenge)
can be performed in different ways: either after stage 2 and revealed to PA, or in stage 1.1
(Produce initial BitComs of PBProduce initial BitComs of PB) but not revealed to PA, at least till it finishes stage 4
(RespondRespond). The stages CF (Coin-flip Permutations) and 8 (Permute Outer ComsPermute Outer Coms)
can be ignored in a simple S2PC that does not contain Coms as part of the output.
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Illustration 3.2: Interface between outer BitComs, connectors and wire keys. The
outer BitCom schemes (BA, BB) are used to produce the BitComs that are part of the final output
of the S2PC-with-Coms. The intermediate BitCom scheme BOT related to input bits of PB (used
for oblivious transfers) is depicted with purple color because its trapdoor might be known either
by PA or by PB, depending on the instantiation. The intermediate BitCom scheme BFLB related
to output bits of PB (used to sustain the forge-and-lose technique) is depicted in red because its
trapdoor is selected by PA. Out of the two intermediate BitCom schemes related to input bits of
PA, one (BConA) is related to the connectors, whereas the other (BFLA, dualdual of BFLB) is used to
sustain the forge-and-lose technique.


3.1.2 Connectors


In the new protocol, the integration between outer Coms and the C&C structure is
sustained by structures called connectors. First, for each type of connector, the pre-
condition is that an intermediate BitCom has already been produced for the respective
(input or output) wire index (this is done in the Produce initial BitComs of PAProduce initial BitComs of PA or
Produce initial BitComs of PBProduce initial BitComs of PB stage), independently of the number of GCs. The
intermediate BitCom is the interface between the outer BitCom (related to the final BitComs
that each party will output as part of S2PC-with-BitComs) and the internal part of the
connector. All connectors associated with the same wire index (i.e., across all garbled circuits)
have the same intermediate BitCom, but the internal part of each connector is connected to
a wire of a different garbled circuit. Illustration 3.23.2 depicts this relation at high level, also
showing that each connector is also composed of internal BitComs (called multipliers and
inner BitComs) within the interface with the keys of the respective wire of the respective
garbled circuit.


Connectors provide a (statistically verifiable) connection between the pair of keys of the
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respective wire and the openings of the respective intermediate BitComs. In this approach,
based on XOR-homomorphism of BitComs, the consistency of input and output wire keys
across different GCs is statistically ensured within the C&C, rather than using a ZKP of
consistency. (The overall protocol still includes other (efficient) ZKPs and ZKPoKs related
with BitComs, but they are not about the consistency of wire keys across different GCs.)


Connectors are used in a way somewhat similar to a commitment scheme, i.e., with commit
and open phases, but different by taking advantage of the C&C substrate when committing
to several elements that will be opened in different ways. Each connector (and also the GC)
is committed in the C&C CommitCommit stage, hiding the respective two wire keys, but binding
PA to them and to their relation with the (also hidden) encodings of the respective outer
BitCom. Then, after the C&C partition is determined, all garbled circuits are revealed,
and all connectors are partially revealed during the C&C RespondRespond stage, in one of two
possible complementary modes: a reveal for check, related with check instances; or a reveal
for evaluation, related with evaluation instances. All verifications associated with these two
reveal modes are performed in the C&C VerifyVerify stage, when PB can still, immune to selective
failure attacks, complain and abort in case it finds something wrong. PA never executes
simultaneously the two reveal modes for the same challenge index, because such action would
reveal the input bits of PA, as well as (as explained ahead) two encodings of intermediate
BitComs of the output of PB (constituting the trapdoor of PA in the forge-and-lose technique).


Even though each connector is only partially revealed, the commitment to the connector
still binds PA to the answers that it can give in each type of reveal phase. Thus, an incorrect
connector can pass undetectably at most through one type of reveal mode. This means that,
within the C&C approach, there is a negligible probability that PA builds bad connectors for
all evaluation instances and goes by undetected. The internal functioning of connectors varies
with the type of wire they refer to (input of PA, input of PB, output of PB), as illustrated
still at high level in Illustration 3.33.3.


Types of elements associated with connectors and the C&C structure. For con-
ceptual simplicity, the involved elements are distinguished in three types:


• Type-C (“commit”). Those that commit to the function being securely computed (i.e.,
the GC) and to connector elements.


• Type-RC (“reveal for check”). Those that allow verification of the Type-C elements,
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Illustration 3.3: Connectors. Legend: PA (GC constructor); PB (GC evaluator); Equiv
(equivocable); in-A, in-B, out-B (input of PA, input of PB, output of PB). c (group-element
encoding bit c); key[c] (wire key with underlying bit c). The example here given for the connector
of input of PB is based on a 2-out-of-1 OT (as in the original paper), but this chapter also discusses
later a construction based on a 1-out-of-2 OT. For simplicity, all BitCom schemes may be assumed
to be XOR-homomorphic and with trapdoor (even though some specialized variations may exist).


but do not allow determination of the final output of PB. All of these can (for each
challenge index) be derived from a random short seed.


• Type-RE (“reveal for evaluation”). Those (not derivable from a random seed) that,
in complement to the Type-C elements, finalize a verifiable connection between the BitCom
openings and the wire keys, allowing PB to obtain one key per input wire and one bit and
BitCom opening per output wire.


Without a RSCRSC technique, the disclosure of Type-C, Type-RC and Type-RE elements
would be respectively done in the CommitCommit stage, the reveal-for-check part of the RespondRespond
stage, and the reveal-for-check part of the RespondRespond stage. Instead, the use of RSC eliminates
the need to communicate Type-RE elements, and reduces the number of Type-C elements to
just those related to evaluation instances. In the CommitCommit stage, PB only receives a short
RSC commitment, instead of the actual Type-C elements. Later, in the RespondRespond stage, the
Type-C elements are provided to PB either by PA sending the respective short RSC seed
(for check indices), or by PA directly revealing the elements (for evaluation indices). The
Type-RC elements are also pseudo-randomly derivable from the short seed obtained in the
reveal for check — in fact, they are intermediate values required to generate the Type-C
elements. The Type-RE elements are directly revealed (along with Type-C elements) in the
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reveal for evaluation, only for evaluation instances.


3.1.3 The forge-and-lose technique


The new protocol brings a statistical improvement over the typical C&C-GCs-based approach,
by using the BitCom approach to provide a new path for successful computation of final
circuit output. The essence is a new technique called “forge-and-lose” — a name designed to
rhyme with “cut-and-choose” and suggestively indicating that an attempt by a malicious PA


(the garbled circuit constructor) to forge elements in the cut-and-choose will lead PA to lose
her privacy. More precisely, if in the EvaluateEvaluate stage there is at least one garbled circuit
and respective connectors leading to a correct output (i.e., valid openings of the BitComs,
for the correct circuit output bits), and if a malicious P∗


A successfully forges some output
associated with another garbled circuit and connectors (i.e., valid openings of the BitComs,
for incorrect circuit output bits), then P∗


A loses the privacy of her input bits to PB, allowing
PB to directly use a Boolean circuit to compute the intended output. This loss of privacy is
not a violation of security, but rather a disincentive against malicious behavior by P∗


A.


The forge-and-lose technique is illustrated at high level in Illustration 1.11.1. It can be
logically considered in two parts: in regard to input bits, it involves an Ext-Com of the input
of PA, which can be extracted with an appropriate trapdoor kept secret from PB; in regard to
output bits, it involves an evaluation path that, in case of PA forging some elements selected
for evaluation, allows PB to discover the secret trapdoor. The next two paragraphs give a
brief description, still at high level.


Encrypt input of PA. As part of the BitCom approach, PA encrypts/commits her own
input bits. This is done with an Ext-Commit scheme with key/trapdoor equal to the trapdoor
(known by PA) of the Equiv-BitCom scheme used (by PA) to prepare BitComs of the output
bits of PB. The Equiv-Com scheme is such that the knowledge of a pair of openings (i.e., for
two different bits) of any BitCom is equivalent to the knowledge of the trapdoor. For example,
in a proposed instantiation based on Blum integers, the trapdoor is the integer factorization
of a Blum integer, each input bit of PA is committed with a GM BitComGM BitCom (Ext), and each
output bit of PB is committed with a Blum BitComBlum BitCom (Equiv). For a DLC instantiation, the
schemes can be based on ElGamal BitComsElGamal BitComs and Pedersen BitComsPedersen BitComs, respectively.
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Forge-and-lose evaluation. In the EvaluateEvaluate stage, if a connector leads an output wire
key to an invalid opening, then PB ignores the respective instance. If in all evaluation
instances for which all connectors lead to valid BitCom openings those openings are consistent
across all such instances, i.e., if for each output wire index the same valid BitCom opening is
obtained across all evaluated garbled circuits, then PB accepts them as correct. However,
if PA acted maliciously, there may exist a forged garbled circuit and connector leading to
a valid BitCom opening that is different from the BitCom opening obtained from another
correct garbled circuit and connector, for the same output wire index. If PB obtains any such
pair of openings, i.e., a non-trivially correlated pair of openings, then PB gets the trapdoor
with which PA encrypted her input. Then, PB uses the trapdoor to decrypt the input bits of
PA and uses them directly to evaluate the intended Boolean circuit.


Remark 3.2 (Similarity with double spending). It is interesting to notice a conceptual
similarity between the forge-and-lose technique with respect to S2PC and the double-spending
prevention mechanism devised by Chaum, Fiat and Naor with respect to electronic cash
[CFN90CFN90]. In the later, the technique provides a deterrent against PA illegitimately reusing
cash — the reuse of the same electronic coin in two different payments implies that her
identity can be found from the combined information of the two respective transactions
(eventually received by a central authority — a bank), where otherwise the identity would
remain private. In the forge-and-lose application the goal is not to enable identification of
the malicious party across different executions of a protocol, but rather to enable a successful
computation in case of attempted malicious behavior. Actually, a respectively identified
malicious behavior remains non-complainable by the honest party PB, lest it would break the
privacy of his input in case of a selective failure attack by PA.


Remark 3.3 (Alternatives without trapdoor commitments). The forge-and-lose was
defined (and is used hereafter) based on an explicit trapdoor that allows extraction of any
previously committed bits. There are conceivable alternatives to the building blocks of the
forge-and-lose approach, namely without using trapdoor commitments, and still retaining
the non-interactive flavor (i.e., not requiring an additional phase after evaluation of garbled
circuits). Indeed, the main idea is that any pair of valid-in-isolation but pairwise-inconsistent
outputs, i.e., from the same wire index across two different garbled circuits, allows PB to
recover the input of PB. For example, the combination of correct output wire keys for two
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different bits, associated with the same output wire index, could conceivably lead PB to
directly learn the randomness used to initially commit the bits of PA, even though without
any trapdoor existing for the BitCom schemes. An actual approach without trapdoor
commitments, and involving an augmentation of the underlying Boolean circuit computed by
the S2PC, was devised by Frederiksen et al. [FJN14aFJN14a] (see further comment in §3.6.23.6.2). In
this dissertation, the use of Equiv-BitComs is not only compact in terms of communication
size (at least in an ECC instantiation), but also related with the broader goal of achieving
S2PC-with-Coms, instead of simple S2PC.


3.1.4 Better statistical security and/or fewer garbled circuits


This subsection considers the soundness error probability and the number of garbled circuits for
diverse statistical security goals and diverse cut-and-choose configurations. The calculations
assume that a malicious PA uses the optimal adversarial strategy to lead PB to accept an
incorrect output. The calculated probabilities are valid for C&C protocols (such as the
one in this dissertation, and many others in ZK protocols) where a bad index (i.e., one in
which PA has cheated in the CommitCommit stage) is detected if selected for check. Thus, for
soundness to be broken, all the v instances selected for check must be good. Also, within the
remaining e evaluation instances, the number b of bad instances must be enough to lead PB


to an incorrect result. This number depends on the C&C partitioning method (e.g., fixed
vs. variable number of check instances) and the soundness requirement in terms of number
of good evaluation indices (e.g., a majority in traditional protocols, vs. at least one in the
forge-and-lose paradigm).


The error probability is considered in Table 3.13.1. The formula for error probability follows
a simple counting argument. The total number of possible C&C choices is equal to the
number of check subsets possible from within the set of all indices. Of these, the choices
that lead to error are those for which all the bad elements are not selected for check and for
which there are enough bad indices to induce error. The number of these choices is equal to
the number of possible check subsets that can be selected from a set of good indices. The
error probability is given by the quotient of the later quantity over the former quantity.
Table 3.13.1 shows the error probabilities associated with different C&C methods, including (see
column BB) fixed and variable number of check and evaluation instances.
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Table 3.1: Soundness error probability
A B C D E F G


Correctness
requirement


C&C partition method
b


(# bad
indices)


Error probability (Pr)
σ ∶ Bits of statistical
security (− log2Pr)
(approximate)


1


Mode Restriction Exact Stirling’s
approximation 2


A majority
of evaluation
indices is good


Fixed


⟨v, e⟩
⌈e/2⌉
(fixed)


Bin(s−b,v)
Bin(s,v) =


(s−b)!e!
(e−b)!s! ... ... 3


v ≈ s/2 ≈
(3s/4)!(s/2)!


(s/4)!s! 2−(1+3s)/2 ⋅ 3(2+3s)/4 0.311s − 0.292 4


v ≈ 3s/5 ≈
(4s/5)!(2s/5)!


(s/5)!s! 23/2 ⋅ 5−1/2 ⋅ (5/4)−s 0.322s − 0.339 5


At least one
evaluation


index is good
(e.g., with


forge-and-lose)


Fixed
⟨v, e⟩ ≈ ⟨αs, βs⟩ e


(fixed)
e!v!/s!


√
2παβs(ααββ)s c1s − (log2 s)/2 − c0 6


v = ⌈s/2⌉ ⌊s/2⌋! ⌈s/2⌉!/s! 2−s
√
π ⋅ s/2 s − (log2 s)/2 − 0.326 7


Variable


0 ≤ v < s
e


(variable)


1/(2s − 1) ≈ 2−s ≈ s 8


0 < e ≤ v < s ≤ 1/(2s−1 − 1) ≈ 2−(s−1) ⪆ s − 1 9


emin ≤ e ≤ emax 1/ (∑i=emin,...,emax(i!(s − i!)/s!)) log2 (∑
emax
i=emin


s!
i!(s−i)!) 10


Legend: # (number of), v (# check indices), e (# evaluation indices), s (= v + e, # challenge
indices), b (# bad indices); γ (auxiliary parameter defining a limitation on the number of evaluation
instances in relation to the number of bits of statistical security). By definition, s = v + e and
α + β = 1, with α,β > 0. Bin(⋅, ⋅) denotes the binomial coefficient, with Bin(n,m) = n!/(m!(n −m)!).
Stirling’s first order approximation establishes n! ≈


√
2πn(n/E)n, as n approaches infinite, where


E ≈ 2.7828 is Euler’s constant (the basis of the natural logarithm), and π ≈ 3.1416 is the quotient
between the circumference and the diameter of a circle. c1 = log2(α


−αβ−β); c0 = (log2(2παβ))/2.
Remark: The error probability in cell E7E7 would remain the same if in cell C7C7 the number of check
instances would change from v = ⌊s/2⌋ to v = ⌈s/2⌉. Conversely, when s is odd the error probability
in cell E4E4 between the cases v = ⌈s/2⌉ and v = ⌊s/2⌋ (cell C4C4), depending on the value s(mod 4).
For s(mod 4) = 3, v = ⌈s/2⌉ is better by 1 bit of statistical security, i.e., it yields half of the error
probability. For s(mod 4) = 1, v = ⌊s/2⌋ can be better up to about 0.5 bits of statistical security.


Traditional cut-and-choose. In traditional cut-and-choose methods, where a majority
of evaluation instances is required to be correct, an error may occur when the number b of
bad circuits is at least half of the evaluation instances (cell D3D3–55). If the number of types
of challenges is fixed in advance, then the probability of error is defined as a quotient that
considers the number of bad challenges to be exactly the smallest integer greater than half
of the number of evaluation instances, and measures the probability that all of them are
indeed selected for evaluation (cell E3E3–55). If fixing the number of challenges to be half of
each type, then the cut-and-choose achieves about 0.31 bits of statistical security (cell G4G4).
However, the maximum statistical security per GC (about 0.32 bits [SS11SS11]) is achieved with
proportions of about three fifths of challenged selected for check and two fifths for evaluation
(row 55). For 40 bits of statistical security, the concrete minimal number of garbled circuits
is 123 [Bra13Bra13], with 74 for check and 49 for evaluation (see row 44 in Table 3.23.2), whereas
previously proposed configurations suggested 125 GCs [SS11SS11].
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Table 3.2: Number of garbled circuits to achieve statistical security
A B C D E F G H


Correctness
requirement


C&C partition method Security goal
(σ) 40 80 96 128 1


Mode Restriction Configuration


Majority of
evaluation
indices
is good


Fixed


v = ⌈s/2⌉
(half-half)


(s, v, e) (129, 64, 65) (257, 128, 129) (309, 154, 155) (410, 205, 205) 2


Bits security 40.542 80.390 96.577 128.123 3


Minimize s, then
minimize e
(e ≈ 2s/5)


(s, v, e) (123, 74, 49) (247, 150, 97) (297, 178, 119) (396, 239, 157) 4


Bits security 40.257 80.174 96.271 128.144 5


At least
one


evaluation
index
is good


(e.g., with
forge-and-


lose)


Var-
iable


0 < e < s
(independent)


(s, v, e) (40, s − e, 40) (80, s − e, 80) (96, s − e, 96) (128, s − e,128) 6


Bits security 40.000 80.000 96.000 128.000 7


0 < e ≤ s/2
(more v than e)


(s, vmin, emax) (41, 21, 20) (81, 41, 40) (97, 49, 48) (129, 65, 64) 8


Bits security 40.000 80.000 96.000 128.000 9


Fixed


e = ⌊s/2⌋
(minimize s, then
maximize σ)


(s, v, e) (44, 22, 22) (84, 42, 42) (100, 50, 50) (132, 66, 66) 10


Bits security 40.936 80.474 96.349 128.149 11


e = ⌊s/2⌋
(minimize s, then


minimize e)


(s, v, e) (44, 25, 19) (84, 45, 39) (100, 53, 47) (132, 68, 64) 12


Bits security 40.358 80.168 96.091 128.063 13


Var-
iable


0 < e ≤ emax ∧
emax ≤ σ/4


(s, vmin, emax) (76, 66, 10) (142, 122, 20) (168, 144, 24) (220, 188, 32) 14


Bits security 40.024 80.145 96.147 128.186 15


Fixed e = ⌊σ/4⌋
(s, v, e) (77, 67, 10) (143, 123, 20) (169, 145, 24) (221, 189, 32) 16


Bits security 39.997 80.110 96.110 128.146 17


Var-
iable


0 < e ≤ emax ∧
emax ≤ σ/5


(s, vmin, emax) (123, 115, 8) (225, 209, 16) (272, 253, 19) (365, 340, 25) 18


Bits security 40.008 80.096 96.090 128.009 19


0 < e ≤ emax ∧
emax ≤ σ/6


(s, vmin, emax) (306, 300, 6) (409, 396, 13) (442, 426, 16) (603, 582, 21) 20


Bits security 40.010 80.021 96.015 128.031 21


0 < e ≤ emax ∧
emax ≤ σ/8


(s, vmin, emax) (668, 663, 5) (1163, 1153, 10) (1359, 1347, 12) (1748, 1732, 16) 22


Bits security 40.001 80.002 96.007 128.008 23


Legend: # (number of), s = e + v (# garbled circuits, i.e., size of cut-and-choose set), v (# check
instances), e (# evaluation instances), The parameters in the even rows correspond to configurations
that minimize s, conditioned to satisfying the statistical security goal (row 11) and the indicated
restriction on e (column CC).


Cut-and-choose with forge-and-lose. The forge-and-lose path reduces the probabilistic
gap available for malicious behavior by PA that might lead PB to accept an incorrect output.
The technique provides up to 1 bit of statistical security per GC, which is an improvement
factor of about 3.1 (either in reduction of number of GCs or in increase of number of bits of
statistical security) in comparison with C&C-GCs that require a majority of correct evaluation
GCs. If the number of challenges of each type is fixed in advance (rows 66 and 77), then
the error probability is now defined by a simpler quotient, equal to the inverse of the total
number of partitions with said numbers of challenge types (cell E6E6). For example, if each
challenge type is fixed to be about half of the number s of instances, then the number of bits
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of statistical security (σ) is already almost equal to the number of garbled circuits, except for
a logarithmic offset (cell G9G9).


In the forge-and-lose setting, the optimal C&C partition in terms of reducing the overall
number of instances corresponds to an independent selection of check and evaluation challenges,
which allows achieving 1 bit of statistical security for each garbled circuit cell G8G8. (An
independent selection of challenges was also used in the contemporary “secure evaluation of
cheating” method of Lindell [Lin13Lin13].) Still, for some efficiency tradeoffs it may be preferable
to impose some restrictions (rows 99–1010). For example, by requiring that there are fewer
evaluation instances than check instances (cell B9B9), while still allowing them to be variable,
only one extra GC is needed in comparison with the case of a uniform random selection. The
added benefit is that when applying a RSC technique the communication associated with
GCs is thus limited to half of the overall number of GCs, for the same error probability and
statistical security. A side-by-side comparison of the number of garbled circuits needed to
achieve diverse goals of statistical security is given in Table 3.23.2 — e.g., compare row 66 vs. row 88.


More generally, the probability of error (and respective statistical security) can be
calculated for any allowed variation of the number of evaluation circuits (row 1010). For
example, if useful to further reduce the number of evaluation instances (e.g., when using
the RSC technique), even though at the cost of increasing the overall number of garbled
circuits, it is possible to decide a restriction as a maximum proportion of number of evaluation
instances in respect to the number of bits of statistical security. Table 3.23.2 exemplifies
concrete configurations for a progressive reduction of the number of evaluation instances,
namely one-fourth (rows 1414–1717), one-fifth (rows 1818–1919), one-sixth (rows 2020–2121) and one-eight
(rows 2222–2323) of the number of bits of statistical security. Using a fixed number of evaluation
instances may require a larger overall number of garbled circuits, but only by a very small
amount, e.g., 3, or 1, respectively for the half-half and one-fourth configurations (compare
row 88 vs. row 1010, and row 1414 vs. row 1616).


A more refined cost model of the cut-and-choose approach is considered in [ZHKS16ZHKS16],
considering equilibrium strategies that take into account the relative costs of each type of chal-
lenge (check vs. evaluation), including its dependence with the implementation configuration
and the circuit being evaluated.
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3.2 High-level description of protocol


This subsection gives a high level description of the new protocol for S2PC-with-Coms, based
on a cut-and-choose of garbled circuits and using a forge-and-lose technique. The description
follows the sequence of logical stages already depicted in Illustration 3.13.1 and mentioned in
§3.1.13.1.1. (Instantiations of ZKPs and ZKPoKs related to BitComs and BitCom schemes are
specified in Appendix AA. The actual low level protocol specification is given in Appendix BB.)


Stage 0. SetupSetup. The parties agree on a Boolean circuit specification, identifying the sets
of input and output bits of each party, including a differentiation between the set of private
output wires of each party and the set of common output wires. (Some of these sets might be
empty.) The circuit is implicitly adapted so that the output bits bits of PA are XOR-masked
with mask-bits that are provided by PA as additional random input bits.


The parties agree on: the security parameters; the cut-and-choose partitioning mode and
parameters; the needed cryptographic primitives (e.g., PRG, CR-Hash, garbling scheme).
The parties also agree on XOR pseudo-homomorphic BitCom schemes (defined via a global
trusted setup) for the outer BitComs and Coms of the bits of each party, and also for the
intermediate BitComs that sustain the connectors of the respective types of wires, as follows:


• BitCom schemes (BA, BB) for the outer BitComs of the two parties (PA, PB), and a
respective generalization for BitStringCom schemes (CA, CB).


• A BitCom scheme (BConA) to sustain the connectors of the input of PA, (including for
committing a bit-mask for each output bit of PA).


• A BitCom scheme (BOT) to sustain the oblivious transfer needed for the connectors of
the input of PB. Depending on the type of OT, the BitCom scheme may either have
an equivocation trapdoor explicitly known by PA (in the case of 2-out-of-1 OT), or an
extraction trapdoor explicitly known by PB (in the case of 1-out-of-2 OT).


• A pair of dualdual BitCom schemes (BFLA, BFLB) to sustain the BitCom-based forge-and-lose
technique, both of which with the same trapdoor explicitly known by PB. Specifically, an
Ext-BitCom scheme (BFLA) is used by PA to commit the input bits of PA (and the bits
that will mask the output bits of PA), and an Equiv-BitCom scheme (BFLB) is used also by
PA to initially prepare intermediate BitComs for output bits of PB and for masked output
bits of PA. The trapdoor of the BitCom scheme (BFLA) that sustains the forge-and-lose
technique in respect to the input bits of PA is derivable from any pair of openings of
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Table 3.3: Examples of BitCom scheme instantiations


A B C D E F


BitCom schemes


Trusted Setup GPKI GCRS 1


IFC DLC IFC DLC 2


Outer BA (Ext)


GMA ElGA
GM0 ElG0


3


Intermediate
BConA (Ext or Equiv) 4


BFLA (Ext) GMA ElGA 5


Outer BB (Ext) GMB ElGB
GM0 ElG0 6


Intermediate
BOT (Ext or Equiv)


BlumA BlumA
ElGB 7


BFLB (Equiv) PedA PedA 8


Legend: GPKI (global public-key infrastructure); GCRS (global common-reference string); IFC
(integer-factorization cryptography); DLC (discrete-log cryptography); GM, ElG (Goldwasser-Micali
and ElGamal extractable BitCom schemes); Blum, Ped (Blum and Pedersen equivocable BitCom
schemes). A, B, 0 (indices denoting who knows the respective trapdoor, respectively: PA, PB, no
one). BFLA (row 55) and BFLB (row 88) are dual, i.e., have the same trapdoor and are respectively
Ext and Equiv. Different instantiations are possible, e.g., BConA in row 44 could be different from
both BA and BFLA (e.g., see an optimization in §B.4.1.3B.4.1.3 where BConA must be unconditionally
hiding). As mentioned in §2.2.22.2.2, each global trusted setup used to determine the parameters of the
outer BitCom schemes is accompanied with a local trusted setup to enable proper simulations.


different bits associated with a same BitCom produced with the BitCom scheme (BFLB)
that sustains the forge-and-lose technique in respect to the output bits of PB.


Some of the mentioned BitCom schemes may be the same and/or have the same public
parameters, depending on the type of trusted setup, and on some implementation choices
and possible optimizations. Example instantiations of BitCom schemes are presented in
Table 3.33.3, across types of Trusted Setup and type of intractability assumption. For example,
if assuming a global-PKI trusted setup, then the parties are automatically endowed with
BitCom schemes with explicit private trapdoors, and all the mentioned BitCom schemes can
be based thereon. If instead there is, for example, a global-CRS trusted-assumption, then
both parties can have the same outer BitComs scheme, with unknown trapdoor, and in that
case the parties need to bootstrap some of the other BitCom schemes with explicitly known
trapdoor, e.g., for the forge-and-lose and the oblivious transfer techniques.


In case of a GPKIGPKI setup, each party gives a ZKPoK of the respective trapdoor, in order
to allow the simulator in the role of the other party in a simulated execution to extract the
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trapdoor so that it can subsequently, more easily, extract the committed bits and (in case of
IFC) the respective randomness. This ZPKoK does not apply in the case of a GCRSGCRS setup
because then there is no explicitly known trapdoor.


Remark 3.4 (On the need of ZKPs and ZKPoKs). The protocol needs some ZKPs
and ZKPoKs in regard to the chosen BitCom schemes and/or the committed bits and/or
the randomness used in commitments. Some ZKPs may be needed to ensure correctness, for
example to guarantee that newly selected BitCom schemes have correct parameters (e.g.,
correct Blum integers) and/or to guarantee that BitComs are correct (actual elements from
the space of possible BitComs) and/or to guarantee that BitComs supposed to be committing
to the same bits are indeed committing to the same bits. The need for these ZKPs may
change with the type of BitCom scheme. For example: a ZKP of correctness of BitComs may
be avoidable for BitComs for which it is possible without the trapdoor to verify correctness in
isolation (e.g., GM BitComs); a ZKP of correctness of BitCom schemes may also be avoidable
if the schemes are verifiable without the trapdoor (e.g., in case of some ElGamal BitCom
scheme parameters, that an element is a group generator). Avoiding ZKPoKs requires a
more subtle argument. In spite of correctness, some ZKPoKs may still be needed to ensure
simulatability, e.g., to give the simulator the ability to extract a trapdoor and therefrom be
able to extract committed bits and/or private openings used by the corrupted party in the
simulation. (See also Remark 2.162.16.)


The need for some ZKPs or ZKPoK sub-protocols may change with the type of trusted
setup, the chosen BitCom schemes and their use in the protocol (e.g., the correctness of
intermediate output BitComs is verified via the cut-and-choose approach and homomorphic
properties), the simulatability restrictions (e.g., with rewinding vs. without rewinding) and/or
the type of acceptable interactivity (e.g., interactive vs. non-interactive proofs). Given the
significant variation with the concrete parameters that may be decided at implementation
time, the needed ZKP and ZKPoK requirements are sometimes left somewhat implicit in the
remainder of this section. The set of needed ZKPs and ZKPoKs is identified in Table 3.63.6 in
§3.4.13.4.1, and is more explicitly considered in the low-level protocol-description in Section B.2B.2.


Stage 1.1 — Produce initial BitComs of PBProduce initial BitComs of PB.


• 1.1.1. Outer BitComs of input bits of PBOuter BitComs of input bits of PB. Using the outer BitCom scheme (BB)
of PB, PB produces an initial (outer) BitCom of each of his own input bits, and sends the
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BitCom to PA. If need be (e.g., for ElGamal BitComs, but not for GM BitComs), PB also
sends a NIZKP of correctness of these BitComs to PA.


• 1.1.2. Outer BitComs of output offsets of PBOuter BitComs of output offsets of PB. PB uses his outer BitCom
scheme (BB) to produce a BitCom of a random offset bit for each (future) private
output bit of PB. These BitComs will later be permuted to new BitComs that commit to
the actual private circuit output bits of PB to be computed by the S2PC. If need be (e.g.,
for ElGamal BitComs, but not for GM BitComs), PB sends a NIZKP of correctness of
these BitComs.


• 1.1.3. Intermediate OT BitComs of input of PBIntermediate OT BitComs of input of PB. If the BitCom scheme (BOT)
used to support oblivious transfers is different (e.g., for 2-out-of-1 OT) from the outer
BitCom scheme of PB, then PB builds respective additional BitComs of his input bits to
support the needed OT, and sends them to PA, along with a NIZKP of same committed
bits across the two BitCom schemes.


• 1.1.4. Parse Outer BitComs of PBParse Outer BitComs of PB. Locally, both PA and PB parse the outer
BitComs of each type of wire (input and output) of PB into respective BitStringBitComs.
If a compact BitStringCom extension is not directly available or considered, then the
parsing may be a simple vectorization of the BitComs (e.g., a vector of GM BitComs, in
an IFC instantiation). However, if the underlying BitCom scheme (BB) can be naturally
extended to a BitStringCom scheme (CB) where the commitment of a string is as large as
a single BitCom (e.g., if using ElGamal Coms), then this yields a significant reduction in
the final output size of outer Coms, i.e., of the state to retain as final output in the end
of the execution). This also reduces the size of the later coin-flipping needed to permute
the randomness of the outer Coms. If the trapdoor of the outer Ext-Com scheme is not
available (in GCRS), or if it is insufficient (e.g., for ElGamal, in GPKI) for extraction
of the “randomness” of the respective commitment, then PB provides a ZKPoK of said
randomness (e.g., §A.3.3A.3.3 for a NIZKPoK of a discrete log, in a DLC instantiation).


Stage CF.1 — Coin-flip Permutations (Start)Coin-flip Permutations (Start). For input and output wire sets of
PA, PB sends an Ext-and-Equiv Com of random outer-randomness permutations. For input
and output wire sets of PB, PB initiates a generalized coin-flipping (type 1) of outer-Com
permutations. (PB will receive outer-randomnesses, but PA will only learn the respective
outer-Coms). In a hybrid model with access to an ideal commitment FMComFMCom and a generalized
coin-flipping (type-1) FGMCF-1FGMCF-1, PB simply sends respective commit and coin-flipping requests
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to the ideal functionalities, and then the functionalities sends to PB a receipt that something
of a given length has been committed and than a coin-flipping request has been sent.


Stage 1.2 — Produce initial BitComs of PAProduce initial BitComs of PA.


• 1.2.1. Outer BitComs of input bits of PAOuter BitComs of input bits of PA. PA uses her outer BitCom scheme
(BA) to produce an initial (outer) BitCom of each of her circuit input bits, and sends the
BitComs to PB. If need be (e.g., for ElGamal BitComs, but not for GM BitComs), PA


also sends a NIZKP of correctness of these BitComs to PB.
• 1.2.2. Outer BitComs of output offsets of PAOuter BitComs of output offsets of PA. Out of all circuit output bits to


be learned by PA, it matters to distinguish between common output bits (i.e., to be learned
by both parties) and private output bits of PA (i.e., which the S2PC is supposed to hide
from PB). If the (intermediate) BitCom scheme (BConA) used for connectors of input of PA


is different from the outer BitCom scheme (BA), then PA uses the intermediate BitCom
scheme to commit again to all her input bits and to all random offset bits corresponding
to private output wires. PA then sends a NIZKP that the committed bits are the same
across the two BitCom schemes.


• 1.2.3. Intermediate connector BitComs of input of PAIntermediate connector BitComs of input of PA. If the BitCom scheme
(BConA) for connectors of input of PA is different from the outer Com scheme of PA, then
PA builds respective additional BitComs of her input bits to support the connectors, and
sends a respective ZKP of same committed bits across the two BitCom schemes. This
applies both to the input bits of PA and to the private offset output bits of PA.


• 1.2.4. Parse Outer BitComs of PAParse Outer BitComs of PA. Similarly to the parsing of BitComs of initial
outer bits of PB, both parties locally combine the initial outer BitComs of PA (of private
input bits and of private offset-output bits) into BitStringComs. PA also computes the
respective combination of randomness. Furthermore, for the set of common output bits of
PA, PA uses her outer Com scheme (CA) to commit to a string of all zeros, and sends to
PB a respective NIZKP that the committed string is all zeros. Locally, each party may
also homomorphically combine this Com of common output bits with the Com of private
output bits of PA.


• 1.2.5. F&L-related Coms of input bits of PA. If the Ext-BitCom scheme (BFLA)
used to support the forge-and-lose (F&L) technique in respect to wires of PA is different
from any of the previous two BitCom schemes (BA, BConA) associated with bits of PA,
then PA produces a respective additional commitment of all her input and output bits
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(possibly directly using a BitStringCom scheme). In this case PA also gives a ZKP of same
committed bits, i.e., in respect to the bits committed by the outer Com scheme.


• 1.2.6. F&L-related BitComs for output bits. For each (future) output bit of PA and
PB, PA uses the Equiv-BitCom scheme (BFLB) that supports the forge-and-lose technique
in respect to output connectors, to prepare one Equiv-BitCom, knowing two openings
(“randomnesses”), one for bit 0 and another for bit 1. PA sends the BitComs to PB, but
not the respective pairs of openings. Instead, the openings will be encoded within the
respective connectors, so that later PB learns only one opening per output bit.


Stage 2 — CommitCommit. For each index of the cut-and-choose (C&C) (i.e., for each instance
to be selected for check or evaluation), PA uniformly samples a short random string (denoted
RSC seed) and uses it as a seed to generate a pseudo-random garbled circuit, and respective
connectors for each input and output wire of the garbled circuit (as later described in
Section 3.33.3). PA computes a collision-resistant hash (denoted global hash) of all the garbled
circuits and of all commitments associated with the respective connectors, and sends to PB


only a respective equivocable commitment (denoted RSC commitment).


Remark 3.5 (On using Ext-Coms and Equiv-Coms). A different technique that may
improve the complexity of simulations is to send to PB an Ext-Com of the seed and an
Equiv-Com of the hash, both using “randomness” pseudo-randomly generated from the seed.
However, since the technique is not required here to enable simulatability, it is omitted to
simplify the overall description. The exact same technique is explicitly described in §C.1.4C.1.4 in
Appendix, within the scope of a non-interactive transformation of an Ext-and-Equiv Com.


Stage 3 — ChallengeChallenge. If the cut-and-choose selection style is interactive, then PB


decides and sends to PA a random C&C partition, conditioned to the agreed parameters (e.g.,
the number of evaluation challenges being limited within an interval). If the style is instead
non-interactive with decision by PA, then PA calculates the partition via a non-programmable
oracle, using as input the execution context and the RSC Equiv Com (and in this case the
statistical security parameter must equate the computational security parameter). (The
protocol could be easily adapted to also allow the alternative of non-interactive decision by
PB, in an earlier stage, but this possibility is left implicit (see §2.4.22.4.2)).
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Stage CF.2 — Coin-flip Permutations (Continue)Coin-flip Permutations (Continue). PB informs the ideal general-
ized coin-flipping (type-1) FGMCF-1FGMCF-1 that it may proceed with the coin-flipping of outer-Com
permutations for wire sets of PB (started in stage CF.1CF.1). In the real world this is instantiated
by having PA send a coin-flipping contribution to PB, thus allowing PB to calculate the
final outer-randomness permutations. For wire sets of PA there is no need for an explicit
coin-flipping contribution from PA because said contribution is already implicitly embedded
in the random initial outer-Coms of PA.


If in the previous ChallengeChallenge stage the cut-and-choose partition is decided by PA


(based on a NPRO), then a single message from PA to PB is sufficient to take care of the
communication between the previous Produce initial BitComs of PAProduce initial BitComs of PA stage (stage 1.2)
and the following RespondRespond stage (stage 4).


Stage 4 — RespondRespond. PA opens to PB the global hash value from the RSC commitment.
Then, for each C&C challenge index, of type check or evaluation, PA sends to PB the elements
that constitute either the reveal for check or the reveal for evaluation, respectively, as needed
for the subsequent stages (and as further specified in Section 3.33.3, including Tables 3.43.4 and
Table 3.53.5). Specifically: for each check index, PA simply reveals the respective RSC seed,
which allows PB to reconstruct the Type-CType-C and Type-RCType-RC elements; for each evaluation index,
PA reveals the Type-CType-C and Type-REType-RE elements, which include one wire key for each input
wire of PA, and a multiplier for input and output wire of PB. This allows PB to partially
verify the correctness of the connectors, and to evaluate the GCs and respective connectors.


Stage 5 — VerifyVerify. For each check index, PB uses the RSC seed to regenerate the Type-CType-C
elements, namely the GC, the inner BitComs of all connectors and the pseudo-randomly
permuted pairs of commitments of input wire keys of PA. (This involves intermediately
regenerating the Type-RCType-RC elements, which are otherwise not needed.) For each evaluation
index, PB verifies that the key opening for input wires of PA are correct, and (using XOR-
homomorphic properties of the BitComs) that the permutation encoding for input wires
of PA and the multipliers for wires of PB are correct. Using the regenerated and received
elements of connectors and GCs, for both types of challenges, PB checks that the hash of
their concatenation is equal to the global hash that was opened by PA in the previous step.
If some verification fails, then PB aborts the execution and privately outputs abort.
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Stage 6 — EvaluateEvaluate. For each evaluation index, PB determines one key per input wire
of PA and PB and evaluates the GC, obtaining one key per output wire of PB and then
using the respective part of the revealed connector (specifically one of the two received
multipliers) to obtain an opening (bit encoding) of the respective intermediate output BitCom
associated with the forge-and-lose technique. For adequate C&C configurations, there is an
overwhelming probability that there is at least one evaluation GC whose connectors lead
to valid openings in all output wires, conditioned to the event that all check instances were
verified as correct. If all obtained valid openings are consistent across all evaluation instances,
then PB accepts them as correct. Otherwise, PB proceeds into the forge-and-lose path as
follows: if it finds two different openings of the same output BitCom (i.e., a non-trivially
correlated pair of openings), for some wire index across two different garbled circuits, then it
uses them as a trapdoor of the Ext-BitCom scheme (BFLA) of the forge-and-lose technique
(which was used to commit the input bits of PA and the bit-masks for the private output
bits of PA); PB uses this trapdoor to extract the Ext-committed bits of PA, and then uses
the input bits of both parties to directly evaluate the Boolean circuit and thus obtain the
final circuit output; finally, from within the output BitCom openings already obtained in the
initial part of this stage, PB finds those that are consistent with the circuit output bits, and
accepts them as the correct ones.


Stage 7 — Transmit Circuit Output of PATransmit Circuit Output of PA.


• For private output wires of PA, PB sends to PA the circuit output bits of PA, which are
masked, and then proves that these are indeed the bits that it obtained in the garbled
circuit evaluation. Depending on the type of instantiation, the proof might be more
or less simple. In general it can be a NIZKPoK of the known openings, but in specific
circumstances (including the PKI instantiations considered herein) it does not need to be
ZK and thus PB may simply send an encryption (decryptable by PA) of the CR-Hash of
the known openings. Since PA already knows all openings, it can recompute the hash of
the openings corresponding to the informed masked bits, to verify correctness, and then
decide the circuit output as the respective unmasking.


• For common output wires, PB sends to PA an encryption of the obtained bits, such that
PA can decrypt them, and then sends a NIZKP that those are indeed the obtained bits. In
practice the encryption can be based on a public-key Ext-BitCom scheme, with private-key
(trapdoor) explicitly known by PA (e.g., the one used with the forge-and-lose technique).
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The encryption is required to handle the case of a passive adversary (eavesdropper) that
(per the defined ideal functionality) is not supposed to learn the circuit output.


Naturally, this stage can be avoided all-together in the case of S2PC of a Boolean circuit
without output wires for PA.


Stage CF.3 — Coin-flip Permutations (Finish)Coin-flip Permutations (Finish). The coin-flipping sub-protocol is
finalized with PB opening his previously committed contribution of permutations of outer-
randomness for wire sets of PA, and letting the ideal generalized coin-flipping functionality
FGMCF-1 sending to PA the outer-Com permutations for wire sets of PB in practice this stage
may involve an additional NIZKP of correctness of the respective outer-Com permutations.


Stage 8 — Permute Outer ComsPermute Outer Coms.


• Adjust initial outer BitComs of output bits of PB. PB sends to PA the masked-
output bits that are needed to correct the initial random committed bits (associated with
outer encodings of output bits), unknown to PA, into the actually obtained circuit output
bits of PB, also unknown to PA. Then, PB also sends a NIZKP that these masked-bits are
correct, i.e., that their XOR with the initial random bits is equal to the bits for which
PB learned a valid opening as a result of the S2PC. This can be reduced to a NIZKP of
same committed bits across two BitCom schemes (BB, BFLB). Based on the disclosed
offset bits and the homomorphic properties of the outer BitCom scheme (BB), each party
locally adjusts the outer BitComs, and PB correspondingly adjusts the respective outer
openings. The adjusted BitComs and openings are still denoted as initial.


• Adjust initial outer BitComs of output bits of PA. PB sends to PA the learned
masked-bits of output of PA, along with a proof of knowledge of the respective openings of
the BitCom scheme BFLB of connectors of output. The resulting BitComs and openings,
upon the described adjustment, are denoted as initial.


• Apply random BitCom permutations. Each party applies the previously decided
(coin-flipped) permutations to the initial outer randomnesses (eventually already adjusted
in case of output bits) associated with the respective circuit input and output bits, and
applies the BitComs associated with the coin-flipped randomnesses as permutations to
the respective BitComs of the circuit input and output bits of both parties. Given the
XOR-homomorphism of the outer BitCom schemes, the initial and the final BitComs
commit to the same bits. Since the simulator is able to extract the openings from the
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initial Coms (e.g., upon the ZKPoKs of trapdoor and/or of opening of respective BitComs),
it is also able to homomorphically compute the opening of the respective final outer Coms.


Remark 3.6 (On the outer BitCom scheme used for output bits of PB). In the
original forge-and-lose paper [Bra13Bra13], the final outer BitComs of the output of PB were based
on an unconditionally-hiding BitCom scheme with trapdoor explicitly known by PA. For
that reason, there the intermediate BitCom scheme (BFLB) supporting the forge-and-lose
technique could be the same. There PB did not need to commit to random offset bits as a
preparation for adjusting the final BitComs of the output of PB. Yet, since a coin-flipping
was still required to randomize the final BitComs, the minimal possible number of rounds
was the same (three). The stylistic variation in this dissertation, with the outer BitComs
of PB being instead based on a BitCom scheme (BB) whose trapdoor is not known by PA


(and which might or might not be known by PB, e.g., respectively for PKI or CRS trusted
setups), extends its suitability to the case of outer BitCom schemes being defined by a CRS
setup. It also allows, in a PKI setting, that the BitComs associated with each party are
always associated with the public parameters of said party, which may be useful in larger
multi-party protocols where BitComs may be transferred across several parties.


Stage 9 — Final OutputFinal Output. Each party privately outputs her circuit input and output
bits and the respective final encodings, and also outputs the (commonly known) final outer
BitComs of the circuit input and output bits of both parties.


Remark 3.7 (The use of forge-and-lose path should not be disclosed). Even if
there are no output circuit wires for PA, care is needed to prevent PB from disclosing whether
the output was learned via the regular path or the forge-and-lose path. In particular, to
prevent a timing attack that could be used as a successful selection failure attack, the time
that takes PB to disclose to PA the finish of the S2PC computation should not vary depending
on whether or not the forge-and-lose path was used.


3.3 Connectors


This section explains how the “randomness” (i.e., the “encoding” needed for opening) of outer
BitComs (of input and output bits) are connected to the respective input and output wire
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keys of GCs. The construction varies with the type of wire: input of PA (§3.3.13.3.1), input of
PB (§3.3.23.3.2) and output of PB (§3.3.33.3.3). A final note is also given on allowing any wire keys
needed by the GC generating mechanism (§3.3.43.3.4).


Connectors are used within the C&C approach, statistically ensuring the consistency of
the input bits used and the output bits obtained across garbled circuits, but without ever
revealing the actual private bits. Since connectors are only needed for input and output
wires, their overall cost does not depend on the number of internal circuit wires and gates in
the circuit. Specifically, the overall construction requires communication of group elements
(multipliers and inner encodings) in number proportional to the number of input and output
wires, and also proportional to the number of evaluation challenges, but independent of the
number of internal wires in the circuit. Some optimizations are described in Appendix B.4B.4.


Connectors are used in a context somewhat similar to a commitment scheme that has
commit and open phases. The starting point of the connector construction assumes that one
initial XOR-homomorphic intermediate BitCom has been produced for each respective wire,
independently of the number of GCs. Then, for each input and output wire in each GC, a
connector is built to provide a (statistically verifiable) connection between the pair of keys of
the respective wire and the openings of the respective outer BitComs.


A high-level depiction of connectors has already been given in Illustration 3.23.2 and
Illustration 3.33.3. This section describes the connectors in detail. In the CommitCommit stage of the
overall protocol, PA commits to the connector elements, thus becoming bound to a connection
between the BitCom openings and the respective wire keys. Then, in the RespondRespond stage,
PA provides responses to either a reveal for check or a reveal for evaluation mode. PB then
proceeds to the VerifyVerify stage to verify all connectors, for the respectively selected reveal
modes (check and evaluation). Only if all verifications are successful does PB continue to the
EvaluateEvaluate stage, where it uses the connector elements received in the reveal for evaluation
mode (for evaluation instances) to obtain one BitCom opening for each output BitCom.


It is worth noticing that connectors are logically separated from the initial outer Bit-
Coms — the ones that need to be randomly permuted in the Permute Outer ComsPermute Outer Coms stage.
Nonetheless, for some instantiations the BitCom scheme (e.g., BA) used for certain outer
BitComs (e.g., for the input bits of PA), can be the same as the BitCom scheme (e.g., BConA)
used for the respective connectors. Several such examples can be deduced from Table 3.33.3.
When the outer BitCom scheme is different from the intermediate BitCom scheme, then the
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Table 3.4: Notation related to connectors


A B C


Denomination Symbols Description 1


Outer bit b
Private bit of an input or output wire of the
circuit, as committed by the respective party. 2


Challenge indices j, (JV , JE)
Index of instance in the cut-and-choose set; subsets of
check and evaluation indices of instances, respectively. 3


Wire indices i, (IA, IB,OB)
Index of input or output wire; sets of wire indices of
input of PA, input of PB, output of PB, respectively. 4


Intermediate encoding µµ
Encoding of the respective outer bit,


being an opening of the respective BitCom. 5


Inner encoding νν
Known opening of a BitCom used inside a
connector, used to help with the connection. 6


Encoded bit ⋅(c)
(indication that a certain group element ⋅ is


in class c, i.e., is an encoding of bit c. 7


Multiplier αα, ββ
Encodings that connect an outer encoding into an inner encoding


(or vice-versa): α is for wires of PA; β is for wires of PB. 8


BitComs α′α′, β′β′, µ′µ′, ν′ν′ BitComs associated with the respective encodings α, β, µ, ν,
i.e., BitComs of the respective underlying bits. 9


Wire key k or ξ
Key of input or output wire (k for keys computed by PA;
ξ for (tentative) keys transmitted to or obtained by PB).


10


Value, position
and permutation ⋅[b], π, ⋅<c>


Bit value underlying the key ⋅; permutation bit;
position of key ⋅ within a permuted pair of keys (⟨c⟩ ≡ [c⊕ π]). 11


Key commitment
and its randomness


(Only for input of PA)
k, k Bit-string commitment of key k; randomness


needed to generate and/or open k from k. 12


consistency across respective BitComs must be guaranteed, e.g., by means of zero-knowledge
proofs (still independent of the number of garbled circuits).


At high level, the notion of “connector” intends to encapsulate the complexity involved
in making a connection between BitComs and circuit wire keys, as well as the specificity
associated with each type of wire. Nonetheless, the nomenclature used to describe their
internal elements (e.g., “multipliers” and “inner encodings” and respective BitComs) is
common across the types of connectors. Table 3.43.4 shows notation related to connectors.


The connectors are also integrated into a RSC technique. In the CommitCommit stage, PB


only receives a short RSC Equiv-Com Λ of a CR-Hash (global hash) of all Type-CType-C elements
(GCs and commitments of the elements that compose the connectors). Later, PA opens
the global hash in the RespondRespond stage. For each check index j ∈ JV , PA then sends, in the
RespondRespond stage, only the respective seed λj, allowing PB to use an appropriate PRG to first
recompute intermediate Type-RCType-RC (reveal for check) elements and then the Type-CType-C elements.
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Table 3.5: Types of communicated elements related to connectors
A B C D E F G H I J


Wire
index


Type of
element Type-RC Type-C Type-RE Related


description 1


i ∈ IA


Key openings ((k
[0]
j,i , k


[0]
j,i ) , (k


[1]
j,i , k


[1]
j,i )) — — — — (k


[bi]
j,i , k


[bi]
j,i )


Illust. 3.43.4 (§3.3.13.3.1)


2


Key commitments — — (k
⟨0⟩
j,i , k


⟨1⟩
j,i ) — k


[1⊕bi]
j,i — 3


Group elements or scalars αj,i
(πj,i) — ν′j,i — — ν


(bi⊕πj,i)
j,i 4


i ∈ IB
Group
elements
or scalars


if 2/1 OT (ν
(0)
j,i,0, ν


(1)
j,i,1) — (ν′j,i,0, ν


′
j,i,1) — — (β


(0)
j,i,0, β


(0)
j,i,1) Illust. 3.5a3.5a (§3.3.2.13.3.2.1) 5


if 1/2 OT (βj,i,0, βj,i,1) — — ν′j,i — — Illust. 3.5b3.5b (§3.3.2.23.3.2.2) 6


i ∈ OB Group elements or scalars (ν
(0)
j,i,0, ν


(1)
j,i,1) — (ν′j,i,0, ν


′
j,i,1) — — (β


(0)
j,i,0, β


(0)
j,i,1) Illust. 3.63.6 (§3.3.33.3.3) 7


— Others — λjλj — GCj — — — 8


Sent for
which


instances


if using RSC


if not using RSC


— j ∈ JV — j ∈ JE — 9


j ∈ JV j ∈ [s] — JE — 10


Legend: notation from Table 3.43.4 applies; GC (garbled circuit); λj (PRG seed used to generate
GCj and the connector elements of instance j); 1/2 OT (1-out-of-2 OT); 2/1 OT (2-out-of-1 OT);
RSC (random seed checking technique).
Type of OT. Rows 55 and 66 are alternative, i.e., either the 1/2 OT or the 2/1 OT is used. The
element in cell G6G6 is directly decipherable by PB, contrarily to the commitments in column FF.
RSC vs. non-RSC technique. If using RSC (row 99), the RSC seed λj (in cell E8E8) is enough to
generate all respective Type-C elements in columns FF–GG, and all respective Type-RC elements. If
not using RSC (row 1010), λj is simply the randomness needed to prove correctness of the GCs of
check instances. The key commitment in cell H3H3 is redundant with one of the two commitments in
cell F3F3, but only one of the cells matters for communication (HH33 if using RSC; FF33 otherwise).


PB is thus able to verify correctness, by checking that the Type-CType-C elements of the check
instances contribute to a correct pre-image of the committed global hash. For evaluation
indices j ∈ JE, and still in the RespondRespond stage, PA does not send the RSC seed λj, but
sends the Type-REType-RE (reveal for evaluation) elements that allow a verifiably correct connection
between input wire keys (different across evaluation GCs) and input BitComs (independent
of the number of GCs), and between output wire keys and output BitComs. It also sends
some complementary Type-CType-C elements necessary for circuit evaluation (e.g., the GCs), for
verification of the global hash (e.g., complementary key commitments, for the input keys of
PA) and possibly to determine input keys of PB(if using the 1-out-of-2 OT method).


In order to better differentiate types of elements and to promote a comparative bench-
marking, the Table also considers the case of non-use of RSC (row 1010).


The next subsections describe in detail how the connector for each type of wire (input
of PA, input of PB, output of PB) is integrated within the cut-and-choose and the RSC
technique. Table 3.53.5 summarizes types of elements (Type-CType-C, Type-RCType-RC, Type-REType-RE), per type
of wire (input of PA, input of PB, output of PB).
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3.3.1 Connectors for input of PA


For each evaluation instance j ∈ JE, the main challenge for each input wire i ∈ IA of PA is to
simultaneously ensure: (i) the hiding of the bit bi underlying the single wire key k[bi]


j,i opened
by PA (cell I2I2 in Table 3.53.5); and (ii) the consistency between the underlying bit bi and the
bit committed by the respective intermediate BitCom µ′i (i.e., that they are the same).


The hiding of the bit bi underlying the opened key k
[bi]
j,i is achieved by associating it


with the position ⟨⋅⟩ of the opened key k⟨bi⊕πj,i⟩
j,i in respect to a respective pair (k


⟨0⟩
j,i , k


⟨1⟩
j,i )


of randomly permuted key commitments (cell F3F3). The applied permutation bit πj,i is not
revealed, but the permuted position bit bi ⊕ πj,i is thus learned (where [c] ≡ ⟨c⊕ πj,i⟩).


The consistency between the committed input bit and the bit underlying the opened key
is statistically “proven” with the help of check instances (j ∈ JV ). After the RSC seed is
revealed, PB is able to learn the permuted pair of keys (k


⟨0⟩
j,i , k


⟨1⟩
j,i ) (cell D2D2), along with the


permutation bit πj,i (but not the permuted bit bi ⊕ πj,i), thus being able to check that the
committed permutation is correct. This verification is possible because the permutation bit is
itself committed with a XOR-homomorphic BitCom α′j,i, with its opening being a multiplier
αj,i ≡ α


(πj,i)
j,i that can be verified as the randomness of the permutation bit in respect to the


respective inner BitCom α′j,i. Some elements of the connector construction are depicted in
Illustration 3.43.4 and mentioned in Table 3.53.5, as a complement to the following description.


The BitComs for intermediate, multipler and inner BitComs can be based on XOR-
homomorphic Goldwasser-Micali encryptions (Ext), or Blum BitComs (Equiv), or on pseudo
XOR-homomorphic Pedersen BitComs (Equiv) or Elgamal BitComs (Ext). A significant
optimization based on bit-string Coms is explained in Appendix B.4B.4.


3.3.1.1 Construction based on a XOR-homomorphism


Pre-condition. In the Produce initial BitComs of PAProduce initial BitComs of PA stage, PA uses a XOR homo-
morphic BitCom scheme (BConA) to select one random encoding µ(bi)


i of her input bit bi and
then sends the respective BitCom µ′i to PB. The randomness and the BitCom are qualified as
intermediate, as they stand between the outer BitComs (from BA) and the connectors. This
is contrast with inner components that are part of the connectors and have some relation
with the input keys k[c]


j,i of garbled circuits. For simplicity of description it may be assumed
that the intermediate BitComs and respective randomnesses are the exact same as the outer
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Independent of # GCs Per GC (j)


Per
input
wire i
of PA


bi


Known
by PA


Input
bit


Outer
randomness Multiplier


Inner
randomness


Input keys


BitCom
µ′i


Randomness
of BitCom µ′i of
input bit of PA
(e.g., bi = 1). PA
knows it and
never reveals it


µ
(bi)
i α


(πj,i)
j,i


+
∗(πj,i)
+
∗(πj,i)⋅


Randomness
of BitCom α′j,i
of random perm-
utation bit (e.g.,
πj,i = 1). PB


learns it if j ∈ JV


ν
(bi⊕πj,i)
j,i


Randomness
of BitCom ν′j,i
of permuted bit


(e.g., bi ⊕ πj,1 = 0).
PA knows it,
PB learns it
if j ∈ JE


Defines position
of key opened
for evaluation


k
⟨0⟩
j,i = k


[πj,i]
j,i


k
⟨1⟩
j,i = k


[1⊕πj,i]
j,i


PA knows both,
PB learns one (JE)


or two (JV )


Input
wire i
of PA


GCj


(The GC
constructor)


Illustration 3.4: Connection for input wires of PA. Notation from Table 3.43.4 applies. The
multiplier α is the randomness used to commit the permutation bit π, whereas ν is the randomness
used to commit the permuted bit (b ⊕ π). If the BitCom scheme is unconditionally hiding with
trapdoor, then PB might (if it knows the trapdoor) know two openings of each BitCom but it
will not know which one PA knows. In the construction, PA will reveal the inner randomness
(for evaluation challenges) or the multiplier (for check challenges), but never both at the same
time, and never the outer randomness µ(bi)


i . In case of a regular XOR-homomorphism, the group
operation +


∗(πj,i) at the level of randomnesses can be (in multiplicative notation) a simple group
multiplication, independent of πj,i; in case of a pseudo XOR-homomorphism, the operation +∗(πj,i) is
a group addition or subtraction (in additive notation) (by the second argument µ(bi)


i ), when πj,i is
respectively 0 or 1. See §B.4.1B.4.1 for a generalization to bit-string Coms.


ones. However, some optimizations are possible when using different schemes and adding a
NIZK that the BitComs across different schemes committ to the same bits.


Commit. In the CommitCommit stage, PA selects, for each GC index j ∈ [s], a random seed
λj (just one across all wire types, including for wires of PB), to be used in the subsequent
generation of elements. For each pair of GC index j ∈ [s] and input wire index i ∈ IA, PA


generates a pseudo-random permutation bit πj,i and a respective pseudo-random “randomness”
αj,i ≡ α


(πj,i)
j,i — a group-element dubbed multiplier — using the same BitCom scheme used


to commit the respective input bit bi of PA. Then, PA uses the XOR-homomorphic group
operation to obtain a new randomness νj,i ≡ νbi⊕πj,ij,i , dubbed inner randomness, for committing
the permuted version bi ⊕ πj,i of her input bit. In other words, the inner randomness is
obtained by an appropriate group product between the outer randomness and the multiplier.
Then, using some bit-string commitment scheme CInKey, PA builds one commitment k[c]


j,i of
each of the two input wire keys k[c] (one for bit 0 and the other for bit 1, i.e., for c ∈ {0,1}),
and then prepares them into a respectively permuted pair (k


⟨0⟩
j,i , k


⟨1⟩
j,i ). Instead of directly


sending the inner BitCom ν′j,i and the pair of committed wire keys to PB, PA adds them to
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the tuple of elements whose CR-Hash will be computed into a global hash, in order to then
be committed into a single short RSC Equiv-Com.


Reveal for check. In the RespondRespond stage, PA opens to PB the RSC seed λj (one across
all wires of PA and PB) associated with each check index j ∈ JV . This allows PB, using the
adequate PRG procedures, to recompute, for each check instance j and each input wire i ∈ IA
of PA, the pair (k


[0]
j,i , k


[1]
j,i ) of wire input keys and the respective permutation bit πj,i and verify


that they are correct, i.e., that the respective key commitments and permutation randomness
contribute to a correct pre-image of the global hash opened by PA.


Reveal for evaluation. Also in the RespondRespond stage, PA opens to PB, for each pair of
evaluation index j ∈ JE and input wire index i ∈ IA of PA, the input key k[bi]


j,i (corresponding
to her input bit bi), and the permuted input bit bi ⊕ πj,i (by revealing the respective inner
randomness ν(πj,i)


j,i ). This allows PB to verify that the opened key k
[bi]
j,i = k


⟨bi+πj,i⟩
j,i is in a


position consistent with the permuted bit. Since this position is independent of the real input
bit bi, nothing is revealed about the bit underlying the opened key. If PA would instead
reveal the other key, PB would detect the inconsistency and be able to complain.


The connectors maintain all their properties if the XOR-homomorphic BitCom scheme is
replaced by an additively-homomorphic commitment scheme (e.g., ElGamal or Pedersen),
replacing the homomorphic operation with a pseudo-XOR homomorphic operation §2.3.22.3.2.
The Appendix (§B.4.1.1B.4.1.1) describes a further optimization based on bit-string commitments.


3.3.2 Connectors for input of PB


For each pair (j, i) of evaluation instance j ∈ JE and input wire index i ∈ IB of PB, the
challenging aspect is that PB must only learn one wire input key k[bi]


j,i , corresponding to his
respective input bit bi, and PA must simultaneously not know which one was learned. Also,
PA must not be able to perform a selective failure attack (e.g., produce elements for which
the evaluation by PB is successful if a certain bit of PB is 0, but unsuccessful if the bit is 1).
Furthermore, this should be integrated with the BitCom approach, such that PB learns the
keys corresponding to the committed input bits. The bit bi underlying each input key k[bi]


j,i


learned by PB does not need to be hidden from PB, because PB knows his own private input
bits. Thus, the random bit permutation πj,i previously consideredpreviously considered for input wires of PA does
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(a) Based on 2-out-of-1 OT. Both multipliers (β) are encodings of 0, XOR-homomorphic under
∗, ensuring that each outer encoding (µ) (of which PB only knows one) encodes the same bit as the
respective inner encoding (ν).
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Illustration 3.5: Connection for input wires of PB. Notation from Table 3.43.4 applies.


not need to be considered for the input wires of PB.


Two connector constructions are described for the input bits of PB: one based on a
2-out-of-1 OT at the level of BitComs (i.e., one OT for each input bit of PB, independently
of the number of garbled circuits) (§3.3.2.13.3.2.1), suited to an IFC instantiation based on Blum
BitComs; another based on 1-out-of-2 OT at the level of wire keys of the garbled circuits
(§3.3.2.23.3.2.2), suited to a DLC instantiation based on ElGamal BitComs.


3.3.2.1 Construction based on a 2-out-of-1 OT


The connection is depicted in Illustration 3.5a3.5a.


Pre-condition. In the Produce initial BitComs of PBProduce initial BitComs of PB stage, PB uses a XOR-homo-
morphic 2-to-1 square scheme (which in particular is an Equiv BitCom scheme) to select one
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random encoding µ(bi)
i for each of his input bits bi and then sends the respective BitCom


µ′i to PA. Using the trapdoor of the 2-to-1 square scheme, PA executes a non-interactive
2-out-of-1 oblivious transfer, i.e., it extracts the two possible encodings (µ(0)


i , µ
(1)
i ), dubbed


outer encodings, from the BitCom value. Since the two possible outer encodings (i.e., two
non-trivially correlated proper square-roots of the BitCom) computed by PA constitute a
trapdoor of PA, they cannot be used directly as input wire keys, or otherwise PB would learn
the trapdoor once learning all the keys of check GCs. Instead, the idea described below is to
deal with two independent inner encodings (ν


(0)
j,i,0, ν


(1)
j,i,1) that PB may learn for check instances.


Given the XOR-homomorphic properties of BitComs, the consistency between inner and
outer encodings will be verifiable (even for evaluation instances) based only on the respective
BitComs.


Commit. In the CommitCommit stage, PA uses, for each GC index j ∈ [s], the respective random
seed λj to generate, for each input wire i ∈ IB of PB, a pair of independent inner randomnesses
(ν(0)
j,i,0, ν


(1)
j,i,1), one for each bit (cell D5D5 in Table 3.53.5). PA computes the respective inner BitComs


(ν′j,i,0, ν′j,i,1) (cell F5F5) and then uses an adequate PRG procedure (PRGenInKey) to generate
from each inner randomness ν(c)


j,i,c a respective pseudo-random input key k[c]
j,i for the garbled


circuit. The BitComs (along with the GCs and other elements across different wire types)
are then used to compute the global hash, whose (RSC) Equiv-Com is sent to PB.


Reveal for check. In the RespondRespond stage, PA opens to PB the RSC seed λj (the same
across all wires of PA and PB) for each check index j ∈ JV . This will allow PB to recompute
the inner BitComs, along with the GCs and the output wires of PB, to recompute the global
hash, and thus verify the correctness of the response of PA.


Reveal for evaluation. Also in the RespondRespond stage, PA reveals, for each evaluation index
j ∈ JE, the two multipliers (β


(0)
j,i,0, β


(0)
j,i,1) (cell I5I5 in Table 3.53.5) — associated to bit 0, leading the


two possible outer encodings (µ(c)
i ) into the respective inner encodings ν(c)


j,i,c. Even though PB


only knows one outer encoding µ(bi)
i , it can use the homomorphic property to verify that both


multipliers are correct, namely that the respective multiplier BitComs β′j,i,c lead the outer
BitCom µ′i into the respective inner BitComs ν′j,i,c. Since are associated with bit 0, it follows
from the XOR-homomorphism that each inner encoding ν(c)


j,i,c encodes the same bit c as the
respective outer encoding µ(c)


i . Thus, PB can safely use the multiplier β(0)
j,i,bi


corresponding to
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the known outer encoding µ(bi)
i to determine a single inner encoding ν(bi)


j,i,bi
, assured that it


corresponds to the intended bit bi, and then use the PRG procedure to generate the respective
input key k[bi]


j,i . This procedure is resilient to selective failure attack because both multipliers
are verified for correctness, and because the generated input key is statistically correct, i.e.,
it would be detected as incorrect if this instance had instead been selected for check.


3.3.2.2 Construction based on a 1-out-of-2 OT


The connection is depicted in Illustration 3.5b3.5b. The 1-out-of-2 OT is described in low-level
in Appendix BB (§B.4.2.1B.4.2.1).


Pre-condition. In the Produce initial BitComs of PBProduce initial BitComs of PB stage, PA commits to each of
his input bits using an XOR pseudo-homomorphic BitCom scheme with extraction trapdoor
known by PB, supported on a multiplicative homomorphic encryption scheme, i.e., PB encrypts
(E ) each of his input bits.


• Select parameters. For example, using an ElGamal BitCom scheme (see §2.3.3.22.3.3.2) the
procedure is as follows. PB selects the parameters of the commitment scheme: a first public
generator g0 may have been previously fixed; a second public generator gB is computed by
raising the first generator to the power of a random secret exponent x.


• Produce BitComs. Then, PB produces and sends to PA an ElGamal BitCom µ′i for
each input bit i ∈ IB of PB. PB also sends a corresponding NIZKP that all pairs are indeed
ElGamal BitComs (i.e., commitments to 0 or 1) (see §A.3.2A.3.2).


• Allow extraction of committed bits. In settings where the simulator is able to known
the trapdoor, e.g., in a PKI setting if a ZKPoK of trapdoor has already been provided,
then no additional ZKPoK is necessary. However, in a global CRS setting, where the
simulator is not able to learn the trapdoor, a ZKPoK of the committed bit is necessary.
In simulations do not allow rewinding, the ZKPoK can be achieved by producing new
BitComs with parameters for which the simulator knows a trapdoor, and then sending a
ZKP of same committed bits. If rewinding is allowed (and thus not in a UC setting) a
simple Schnorr protocol (see §A.3.1A.3.1) would be enough.


Commit. In the CommitCommit stage, for each pair (j, i) of challenge index j ∈ [s] and input
wire index i ∈ IB of PB, PA uses the BitCom µ′i of each input bit bi of PB to compute the
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final message of a two-move honest-sender 1-out-of-2 oblivious transfer, which essentially is a
randomized linear homomorphic transformation (LHT) of the initial commitment µ′i of PB,
as follows. Initially, PA selects a pair (βj,i,0, βj,i,1) of random exponents (called multipliers)
(cell D6D6 in Table 3.53.5), and uses them to produce a LHT of the original commitment µ′i, i.e.,
to homomorphically compute the ElGamal commitment ν′j,i (not BitCom) of the multiplier
βj,i,bi with position index bi equal to the bit committed by PB, but without learning said bit.
Then, to ensure semantic hiding from PA, PB also selects a new random exponent and uses it
to randomize the ElGamal Com into a new ElGamal Com ν′j,i that semantically hides the
previous two exponents used by PB. This last step corresponds to an homomorphic sum of
0, i.e., combining a new encryption of 0. The resulting element is an ElGamal ciphertext,
which can be decrypted by PB to yield the result of raising the global generator g0 to the
mentioned multiplier value βj,i,bi .


The new commitment ν′j,i produced by PA is denoted as an inner commitment (or inner
ciphertext), in contrast to the outer BitCom µ′ of the input bit of PB. It is used as a Type-C
element (cell G6G6), part of the pre-image of the global hash Λ of the RSC technique.


Reveal for check. In the RespondRespond stage, PA opens to PB the RSC seed λj (the same
across all wires of PA and PB) for each check index j ∈ JV . PB uses the seed to recompute both
pseudo-random multipliers (βj,i,0, βj,i,1), and uses them to homomorphically recompute the
commitment value ν′j,i and verify that it contributes to a valid pre-image of the global hash.


Reveal for evaluation. Also in the RespondRespond stage, PB reveals, for each evaluation index
j ∈ JE, the ciphertext value ν′j,i (cell I6I6), allowing PB to decrypt (E −1) a respective inner
plaintext νj,i,bi , (the result of raising the global generator g0 to the power of a multiplier βj,i,bi),
and use it as a seed to pseudo-randomly generate the respective input wire key k[bi]


j,i . PB also
checks that the evaluation ciphertexts contribute to a valid pre-image of the global hash.


3.3.3 Connectors for output of PB


The connection between output wire keys and openings of output BitComs is somewhat
similar to a reversed version of the construction for input wires of PB in the method of
2-out-of-1 OT. However, the underlying Equiv BitCom with trapdoor does not need to be a
full-fledged 2-to-1 square scheme, because the construction does not involve OTs and it is
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Illustration 3.6: Connection for output wires of PB. Notation from Table 3.43.4 applies.


PA who initially decides the BitComs. In other words, for connectors of output of PB, PA is
able to compute pairs of openings at the same time as it decides the respective BitCom. In
contrast, in the 2-out-of-1 OT for a connector of an input bit of PB the two openings must
be computed by PA from BitComs decided by PB. Still, in order to enable the forge-and-lose
technique, the BitCom scheme must satisfy the property that two openings (for two different
bits) associated with the same BitCom are equivalent to a trapdoor that allows opening the
BitComs of the input bits of PA. This is satisfied not only by Blum BitComs (IFC) but also
by Pedersen BitComs (DLC), where any two representations of the same BitCom enable the
feasible computation of the discrete log between two generators, which can for example be
the trapdoor of the ElGamal BitComs used to commit the input of PA.


At high level, the connector construction is as follows: for each output bit of PB, PA


sends to PB an Equiv-BitCom for which PA knows two possible openings; then, PA helps
PB connect the output keys of evaluated garbled circuits to the respective openings of the
Equiv BitComs; an important requirement is avoiding selective failure attack, i.e., prevent
PA from inducing a situation where the success vs. failure of the evaluation depends on some
particular output bit of PB. For simplicity, it is assumed that the output keys of the garbled
circuits exceptionally disclose the respective underlying bit, e.g., by making the respective
GC generation procedure PRGenGC generate output keys whose least significant bit (ε(⋅)) is
the respective underlying bit of the key.


Pre-condition. In the Produce F&L-related Coms stage (stage 1.2.61.2.6), PA prepares
Equiv BitComs µ′i for the output bits of PA, even without any party yet knowing the respective
circuit output bit. PA, knowing a trapdoor of the BitCom scheme, is able to determine two
respective openings µ(c)


i of each such BitCom, one for each possible bit value c. PB does not
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initially know any opening — it will learn only one (µ(bi)
i ) during the EvaluateEvaluate stage, or


two if PA misbehaves (and in that case it will be able to activate the forge-and-lose path).


Commit. In the CommitCommit stage, PA uses, for each GC index j ∈ [s], the respective random
seed λj to pseudo-randomly generate a garbled circuit, also obtaining two respective keys
k
[c]
j,i for each output wire i ∈ OB. PA uses a PRG procedure PRGen$ForCom to compute from


each such key a respective inner encoding ν(c)
j,i,c for a respective BitCom ν′j,i,c of the output


bit of PB. (In order to improve the collision resistance of the inner encoding, i.e., in respect
to a database of external pre-computed pRG expansions, the PRG method actually also
uses as complementary auxiliary seed a pseudo-randomly generated bit-string λ(auxi)


j of 256
bits, equal across all wires but equal within a circuit index.) The inner BitComs (cell F7F7
in Table 3.53.5), along with all GCs and other elements from other wires, contribute to the
pre-image of the global hash, used to create the RSC commitment sent to PB. Since the
VerifyVerify stage will allow PB to learn the two keys per output wire, the respective inner
encodings, must not link directly to the outer encodings (i.e., to the two randomnesses of the
outer BitCom) — otherwise PB would be able to open any bit from the output BitComs, and
also any pair of such encodings constitutes a trapdoor that allows PB to extract the private
input bits of PA.


Reveal for check. In the RespondRespond stage, the RSC seed λj opened for each check index
j ∈ JE allows PB to reconstruct the GCs, and respective inner BitComs, which can be used
to construct the pre-image of the global hash also opened by PA and verify its correctness.


Reveal for evaluation. Also in the RespondRespond stage, PA reveals the two multipliers
(β


(0)
j,i,0, β


(0)
j,i,1) (both being randomness for committing bit 0) that lead the respective inner


(independent) encodings ν(c)
j,i,c into the two possible outer (non-trivially correlated) encodings


µ
(c)
i . Since PB only learns one key (k[bi]


j,i ) per output wire, which enables computation of the
respective inner encoding (ν(bi)


j,i,bi
), it can only use one multiplier (β(0)


j,i,bi
) to obtain a respective


outer encoding (µ(bi)
i ). Nonetheless, PB is able to use the XOR-homomorphic properties of


the BitCom scheme to verify the correctness of both multipliers, namely by checking that
they are both encodings of 0 and that their respective BitComs lead the respective inner
BitComs into the outer BitCom (µ′i).
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3.3.4 A remark on key selection


For simplicity, the garbled circuit generation mechanism (PRGenGC) was assumed to accept
as input any list of pairs (k


[0]
j,i , k


[1]
j,i ) of input wire keys that the garbled circuit should have,


namely a list of pairs of pseudo-random keys. This allows that, for the connectors of input of
PB, keys can be pseudo-randomly generated from group elements ν(c)


j,i . However, for certain
optimized techniques (e.g., “free-XOR” [KS08bKS08b] and “two-halves make a whole” [ZRE15ZRE15])
the input keys may have to be somehow correlated, e.g., such that the two keys of each input
wire differ by a global offset common across all wires of a garbled circuit. For the sake of
generality, it is here noted that any such correlation between input keys can be incorporated
within the garbled circuit generation mechanism (PRGenGC) at the expense of at most only
one extra unary garbled-gate (for Boolean function EQUAL) per input wire. (In the original
forge-and-lose paper [Bra13Bra13], this mechanism had been explicitly described outside of the
gabled-circuit generation, using elements called “widgtets”). Essentially, each input wire in
each GC can start with an EQUAL garbled gate that converts each random outer input-key
(e.g., the PRG expansion of a group element) to a new inner input-key correlated as needed
(e.g., satisfying a global offset with the complementary inner input-key). Such garbled gate
can be simply composed of only two cipher-texts, each of them being an enciphering of the
needed inner key value, using as key the outer input-key. For this reason, when benchmarking
the communication complexity associated with garbled circuits the size explicitly accounts
for two extra cipher-texts per input wire of PB. This is not needed for connectors of input
wires of PA because there the connectors allow PA to commit to any pair of input keys
(in a randomly permuted order). For the output wires of PB the EQUAL gate trick could
also be used, in order to ensure that the circuit output keys must exceptionally reveal their
underlying bit. However, since most garbling mechanisms already trivially allow ensuring
this property (e.g., by including in each internal wire key an indicator bit that informs how
to use thekey in subsequent gates), the protocol description directly assumes that there is a
predicate ε that extracts the underlying bit from each output wire, and the communication
benchmark does not consider an overhead for output wires of PB.
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3.4 Complexity analysis


This section analyzes the complexity of the S2PC-with-Coms protocol, under different
types of cryptographic instantiations and parametrizations. §3.4.13.4.1 describes IFC and DLC
instantiations for BitCom schemes and NIZK sub-protocols. §3.4.23.4.2 analyzes the concrete
communication complexity of different components of the protocol, for S2PC-with-Coms
of an AES-128 circuit and also for a SHA-256 circuit. §3.4.33.4.3 analyzes the computational
complexity, with a focus on group operations (multiplications and exponentiations).


3.4.1 Instantiations of BitCom Schemes, NIZKPs and NIZKPoKs


Table 3.63.6 exemplifies instantiations of outer BitCom schemes (BA, BB), intermediate BitCom
schemes (BConA, BFLA, BFLB, BOT) and respective associated NIZKPs and NIZKPoKs.
The schemes are considered across two main types of instantiation: integer-factorization
cryptography (IFC) and discrete-log cryptography (DLC) (row 11). They correspond to
respective different types of cryptographic-intractability assumption: decisional quadratic-
residuosity (DQR), including integer factorization; and decisional Diffie-Hellman (DDH),
including discrete-log computation. Associated with each intractability assumption there is a
respective type of group. The IFC instantiation is based on multiplicative groups over the
integers modulo a Blum integer, and with the trapdoor being the Blum-integer factorization.
The DLC instantiation, itself sub-instantiable by regular multiplicative groups modulo a large
prime number, a.k.a. finite-field cryptography (FFC), and by elliptic curves over finite fields,
a.k.a. elliptic-curve cryptography (ECC), has as trapdoor the discrete log between two base
generators. The acronyms IFC, FFC and ECC were suggested in [Bar16Bar16].


The IFC instantiation considered in the original paper [Bra13Bra13] is here reviewed with the
new protocol structure (e.g., Ext-Coms in the output) and updated constructions (e.g., more
efficient Equiv-Com); the DLC case takes advantage of the more generalized description of
connectors that has been considered in this dissertation. The side-by-side comparison of IFC
and DLC instantiations facilitates the highlighting of tradeoffs between communication and
computation, while also illustrating different concrete constructions of connectors.


The exemplified instantiations are based on four BitCom schemes: BlumBlum and PedersenPedersen as
unconditionally hiding and equivocable, respectively for IFC and DLC; GMGM and ElGamalElGamal
as unconditionally binding and extractable BitCom schemes, respectively for IFC and DLC.
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Table 3.6: ZK sub-protocols per (IFC and DLC) example instantiations of BitComs
A B C D E


Type of instantiation / assumption / group elements IFC / DQR / Blum integers DLC / DDH / FFC or ECC 1


For p ∈ {A,B}:
BitCom scheme
(Bp) for outer
BitComs of Pp
(Pp as sender;
Pp̄ as receiver)


Type of BitComs (not opened) GM (Ext) ElGamal (Ext) 2


NIZKP of good BitComs Not needed NIZKPGoodElGBitComsNIZKPGoodElGBitComs(Bp) 3


Parsing of outer BitComs into a single
BitString Com per wire type Vector of GM BitComs (Bp)


Homomorphic combination into
a single ElGamal Com (Cp)


4


NIZKPoK of opening (bits
and respective randomness)
of outer BitStringComs


If GCRS NIZKPoKPseudoSqrts(Bp)
NIZKPoKElGOpeningNIZKPoKElGOpening(Cp)


5


If GPKI NIZKPoKBI-trapdoorNIZKPoKBI-trapdoor(Bp)
(a single time) 6


For outer-Com
permutations


NIZKP of Coms to 0 Any setup NIZKPGM-All-0sNIZKPGM-All-0s(Bp) NIZKPElG-All-0sNIZKPElG-All-0s(Cp) 7


NIZKPoK of randomness
If GCRS NIZKPoKPseudoSqrts(Bp) NIZKPoKElGOpeningNIZKPoKElGOpening(Cp)


8


If GPKI Not needed (cell DD66 is enough) 9


BitCom scheme
(BFLA) for


intermediate
F&L BitComs
of input of PA


(i ∈ IA)


Type of BitComs GM (Ext) ElGamal (Ext) 10


Knowledge of trapdoor (tFL) Known to PA 11


Ensure good pair of
dualdual BitCom schemes


(BFLA, BFLB)


Any setup
(It is assumed that the public parameters of BFLB can be derived


from those of BFLA, and vice-versa; thus, either a NIZKP
of good BFLA or a NIZKP of good BFLB is enough, if needed)


12


If GCRS (BFLA ≠ BA:)
NIZKPGoodBlumIntNIZKPGoodBlumInt(BFLA)


Not needed (assuming
that DLC parameters do not
require ZKP of correctness)


13


If GPKI (BFLA = BA:) Not needed 14


ZKP of consistency
across BitComs


If GCRS (BFLA ≠ BA:) NIZKPSameComBits[BA,BFLA] 15


If GPKI (BFLA = BA:) Not needed 16


BitCom scheme
(BConA) for
connectors of
input of PA
(i ∈ IA)


If BConA ≡ BA Nothing else required (row 33 is enough) 17


If ShortBitCom
optimization,


with BConA ≠ BA
(§B.4.1.3B.4.1.3)


Type of BitComs


Prove good scheme


Prove consistent BitComs


Blum Pedersen 18


NIZKPGoodBlumIntNIZKPGoodBlumInt(BConA) Not needed (argument as in D13D13–1414) 19


NIZKPSameComBits[BA,BConA] NIZKPSameComBits[BA,BConA] 20


If BA ≠ BConA ∧BA ≠ BFLA ∧BConA ≠ BFLA NIZKPSameComBits[BA,BConA,BFLA] instead of the ZKPs in rows 2020 and 1515 21


BitCom scheme
(BOT) for


intermediate
BitComs of
input of PB
(i ∈ IB), to
sustain OT


Type of oblivious transfer 2-out-of-1 OT (§3.3.2.13.3.2.1) 1-out-of-2 OT (§3.3.2.23.3.2.2) 22


Type of BitComs Blum (Equiv) ElGamal (Ext) 23


Knowledge of trapdoor tOT Known to PA Known to PB 24


Prove good
BitCom scheme


If GCRS (BOT=BFLB is dual of BFLA ≠ BA:)
Cell D13D13 is enough (assuming D12D12)


(BOT ∉ {BB,BFLB}:)
Not needed (argument as in E13E13) 25


If GPKI
(BOT=BFLB is dual of BA=BFLA:)
Not needed (implied by trusted setup,


assuming D12D12)


(BOT=BB:) Not needed
(argument as in E14E14 26


Prove
consistent BitComs


(BOT vs. BB)


If GCRS (BOT ≠ BB:)
NIZKPSameComBits[BOT,BB]


(BOT ≠ BB:)
NIZKPSameComBits[BOT,BB]


27


If GPKI (BOT = BB:) Not needed 28


BitCom scheme
(BFLB) for


intermediate
BitComs of
output of PB
(i ∈ OB), to
sustain F&L


Type of BitComs Blum (Equiv) Pedersen (Equiv) 29


Relation to other BitCom schemes Same as BOT, dual of BFLA Different from BOT, dual of BFLA 30


Prove correct and
consistent BitComs
(BFLB vs. BB)


By PA:
Not needed


(verified via cut-and-choose and homomorphic properties of multipliers) 31


By PB: NIZKPSameComBits[BB,BFLB] (see (597597)) 32


Note: given the correctness of outer BitComs (row 33), the several NIZKPSameComBits are assumed to also
prove correctness of the involved intermediate BitComs (i.e., those that would otherwise require such a proof)
— this is relevant in cells E15E15, E20E20, E21E21. The transcript produced by PB for any of the NIZKPoKs in rows 88
and 99 is committed (using an Ext-and-Equiv Com) as part of the coin-flipping of outer-Com permutations.
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The trusted setup (§2.2.22.2.2) can have one of two possible types: global-PKI with local-CRS,
and global-CRS with local-CRS, respectively labeled simply as GPKI and GCRS. The global
setup defines the outer commitment scheme parameters. The underlying NIZKPs, NIZKPoKs
and Ext-and-Equiv Com scheme are defined in Appendix based on an ideal Ext-Com, an
ideal Equiv-Com and a global NPRO, which enable the respective simulatability.


3.4.1.1 Outer BitComs for input and output bits


The outer BitCom schemes (BA, BB) are defined as extractable, being instantiable via
GM BitComsGM BitComs and ElGamal BitComsElGamal BitComs, respectively for IFC and DLC (row 22). While these
schemes are unconditionally binding, when using their base definition, in practice the open
phase is not being used for the outer BitComs. Thus, in practice, externally to the S2PC-with-
Coms protocol the BitComs can have an open phase different from a simple disclosure of its
“randomness” and of the committed value. For example, the external open phases may instead
be performed by disclosing the committed bit and then giving a (non-malleable) ZK argument
that the disclosed value is the correct one — in this case the schemes become equivocable and
no longer unconditionally binding. This alternative opening is useful to ensure, if desirable,
composability when considering external protocols and concurrent executions.


The initial outer BitComs produced by each party may require a NIZKP of correctness,
depending on the instantiation (row 33). ElGamal BitComs require such a NIZKP, because
then cannot be directly verified as correct — a commitment to a non-bit is (per DDH
assumption) computationally indistinguishable from a BitCom


GM BitComs can be determined as correct by simply checking group membership in the
respective multiplicative group, which can be done without knowing the trapdoor.


The initial outer BitComs σ′i are parsed (stringizedstringized) into a single BitString commitment
σ′set, for each wire type (set ∈ {IA, IB,OB}) (row 44). In the IFC instantiation based on
GM BitComs this is just a logical parsing, as the BitString Com is simply a vector of
the original BitComs. (A conceivable improvement based on Paillier encryption is not
described herein.) However, in the DLC instantiation all the ElGamal BitComs (per wire
type) are homomorphically combined into a single ElGamal BitSring commitment, thus
reducing the overall size of the outer commitment. The parsing is described in the stages
Parse Outer BitComs of PBParse Outer BitComs of PB and Parse Outer BitComs of PAParse Outer BitComs of PA of the protocol. The
randomness σset associated with each BitString Com is also parsed by the respective party,
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from the respective randomness σi of BitComs (with i ∈ set).


For the purpose of simulatability of S2PC-with-Coms, the simulator needs to extract
the committed bits and the “randomnesses” used to produce the initial outer commitments.
In the global-CRS model, the simulator does not have any trapdoor so it needs to obtain
the bits and randomness directly from respective NIZKPoKs (row 55). In the IFC case this
corresponds to a NIZKPoK of pseudo-square-roots of the GM BitComs that constitute the
vector of BitComs. The DLC instantiation can be resolved with a NIZKPoK of an ElGamal
opening, which allows the simulator to extract the randomness and the committed value,
even without the prover knowing the respective trapdoor.


In the global-PKI model, for IFC it is enough to send a single NIZKPoK of Blum
integer trapdoor §A.2.3A.2.3, from which the simulator gains the ability to subsequently extract
pseudo-square-roots from any square and decrypt GM BitComs. For DLC the committer
party sends along a NIZKPoK of ElGamal opening (§A.3.4A.3.4) for each initial outer-Com. If
for a particular instantiation the NIZKPoK does not get cheaper when the prover knows
the trapdoor, then the scheme is the same regardless of CRS or PKI setting. (row 66). It is
worth noticing that in DLC the trapdoor does not allow extraction of the “randomness” of
commitments, because a discrete-log computation would still be required from the simulator.


Outer-Com permutations. The coin-flipping that determines outer-Com permutations
is asymmetric in the view of each party. The contribution that each party gives to decide the
permutation is an outer-Com of zeros for her own wires, and is an outer-randomness for the
wires of the other party. For this reason, each party also gives, in respect to her own wires, a
NIZKP of commitments to an all-zeros bit-string (row 77). Furthermore, for the purpose of
simulatbaility (since the simulator needs to know the final outer randomness), each party also
gives a NIZKPoK of outer-randomness associated with the contribution to the permutation
of her own wires. In a GCRS model this is explicitly required for each outer-com (row 88),
whereas in a GPKI the requirement is reduced if a NIZKPoK of trapdoor has already been
provided. Specifically, in IFC the new NIZKPoK is avoidable, because the trapdoor suffices
to extract square-roots, whereas in DLC it is enough to do a new NIZKPoK of DL of the
first component of the ElGamal bit-string Com for each wire type (row 99).
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3.4.1.2 Intermediate BitComs of PA


Intermediate BitCom scheme for forge-and-lose. The forge-and-lose technique is
sustained on a BitCom scheme (BFLA) used to commit the input bits of PA, with a trapdoor
that may be disclosed to PB if PA misbehaves in respect to the output of PB. The scheme is
thus required to be extractable (Ext) (row 1010), and with an extraction-trapdoor explicitly
known by PA (row 1111) (but see Remark 3.33.3).


The forge-and-lose technique is actually sustained by a pair (BFLA, BFLB) of dual BitCom
schemes, because it also involves Equiv-Coms of the output bits of PB. Thus, some of the
ZK sub-protocols related to the scheme used for input bits of PA also serve to the scheme
used for output bits of PB. Specifically, it is assumed that the parameters of the later scheme
can be derived deterministically from the parameters of the former (row 1212).


If the outer BitCom scheme BA is defined by a GCRS (and thus with trapdoor unknown
to any party) then the intermediate BitCom scheme BFLA with trapdoor known to PA is
necessarily different from the one used for outer BitComs. The correctness of the new scheme
is verified by PB, e.g., either via a NIZKP of correctness of the parameters (e.g., correct Blum
integer in IFC), or if possible by a local verification without trapdoor (e.g., in DLC, verifying
that the proposed generators are in the expected group) (row 1313).


In the case of a GPKI setup defining the parameters of the outer BitCom scheme BA


with trapdoor of PA, the schemes can (but do not need to) be the same, thus avoiding an
extra NIZKP of correct intermediate BitCom scheme (BFLA) (row 1414).


If the schemes are different (e.g., necessarily in GCRS), then a NIZKP is required to
prove that the bits committed by the two schemes are the same (row 1515). If the schemes are
the same, and since there is no duplication of BitComs, said NIZKP is not needed (row 1616).


While homomorphic properties are not inherently essential to support the forge-and-lose
technique, they may facilitate the efficiency of the NIZKP of consistency of committed bits.


Intermediate BitCom scheme for connectors of input of PA. In comparison, the
BitCom scheme BConA used to support the connectors of input of PA requires the homomor-
phism, but it is irrelevant whether or not a trapdoor is available. The scheme can be the same
or different — the use of a different BitCom scheme may be motivated by communication effi-
ciency. For example, the (optional) support for an optimization based on “short-term binding”
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commitments (described in §B.4.1.3B.4.1.3) requires a different scheme, with shorter parameters,
necessarily unconditionally hiding (row 1818). Since the binding of the intermediate BitComs
used for connectors of input of PA only needs to be ensured during the protocol execution, it
is possible to improve communication by using an unconditionally hiding BitCom scheme
with shorter security parameter (e.g., for 96 bits of cryptographic security) that during the
protocol execution ensures the binding of PA to the respective connectors. The gain must be
weighed against the cost of the additional BitComs and NIZKPs.


If the scheme (BConA) for connectors is different from the outer scheme BA, then the
correctness of the new scheme needs to be validated, e.g., by means of a NIZKP in the IFC
case or by local verification in the DLC case (row 1919). Also, if the scheme is different the
consistency of the BitComs across different schemes also needs to be proven via a respective
NIZKP (row 2020). If, instead, the two schemes (BA, BConA) are the same (row 1717), then no
new NIZKP or NIZKPoK is required in regard to the connectors of input of PA.


If all three schemes (BA, BFLA, BConA) associated with input bits of PA are different,
then the NIZKP of consistent committed bits can be done only once across the three schemes,
instead of two times (once for each intermediate scheme) (row 2121).


3.4.1.3 Intermediate BitComs of input of PB


For input bits of PB, IFC uses a 2-out-of-1 OT, whereas DLC uses a 1-out-of-2-OT (row 2222).
The former depends on an Equiv BitCom scheme with trapdoor known by PA, whereas the
first uses an Ext BitCom scheme with trapdoor known by PB (rows 2323 and 2424).


In the GCRS case, where the trapdoor of outer commitments is not known by any party,
the OT BitCom scheme needs to be different (row 2525). In the IFC instantiation this may
hinder the reduction of number of rounds of the protocol, because the parameters of the OT
BitCom scheme need to be provided by PA, along with a respective NIZKP of correctness.
Conversely, in the DLC case the parameters supporting the 1-out-of-2 OT are instead decided
by PB, and so do not require an extra communication round. Furthermore, they also do not
require a NIZKP of correctness, if group membership can be decided without the trapdoor.


In the GPKI model each party already knows and trusts the public parameters of the
other party are correct (row 2626). Thus, even in the IFC case the public parameters associated
with PA can be directly used by PB to produce BitComs for the 2-out-of-1 OT. With DLC
parameters, the definition of the OT BitCom scheme (BOT) also does not require prior
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interaction with PA, because PB uses his own commitment scheme defined by the GPKI.


If the intermediate BitCom scheme BOT is different from the outer BitCom scheme BB,
then a NIZKP is needed to prove consistency of the bits committed by the different BitCom
schemes. This is necessarily the case for a GCRS setup (row 2727). With a GPKI model this
is only needed for an IFC instantiation (using a 2-out-of-1 OT), being avoided in the DLC
instantiation (using a 1-out-of-2 OT) (row 2828).


3.4.1.4 Intermediate BitComs of output of PB


The intermediate BitCom scheme BFLB used for output wires of PB, simultaneously supporting
the connectors and the forge-and-lose technique, is equivocable in both IFC and DLC
instantiations (row 2929). It is the dual of the BitCom scheme BFLA used to support the
forge-and-lose technique in regard to the input bits of PA (row 3030). In the IFC instantiation
it can be the same as the OT BitCom scheme BOT used for intermediate BitComs of input
of PB, but for DLC it is different.


The intermediate BitComs for the output wires of PB do not require a NIZKP of correctness,
because of the cut-and-choose approach (that allows checking correctness of inner BitComs
of check instances) and the homomorphic properties (that allow checking correctness of a
correct relation between inner and intermediate BitComs) (row 3131). Since for output bits of
PB the outer BitCom scheme BB and the intermediate BitCom scheme BFLB are different, a
NIZKP is still required for PB to prove consistency of the bits committed by the final outer
BitComs and the obtained intermediate BitComs (row 3232).


3.4.2 Communication complexity


This subsection estimates the communication complexity of S2PC-with-Coms of two different
circuits, assuming a global PKI setup and 128 bits of cryptographic security. The reported
values are based on instantiations with: group elements with 3,248-bits for IFC and FFC
and 264 bits for ECC; with pre-images with 3,248 bits (square-roots) for IFC and 256 bits
(exponents) for FFC and ECC; with CR-hashes, PRG seeds and garbled gates with 256 bits.


The first circuit implements AES-128 (the advanced encryption standard blockcipher,
with key and plaintext with 128-bits each), using 6,800 multiplicative gates [Bri13Bri13] and 128
wires for the input of each party, and 128 wires of output of PB to hold the enciphering
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of the input of PB using as key the input of PA, which uses optimized components with
state-of-the-art circuit optimization [BMP13BMP13]. The second circuit implements SHA-256 (the
secure hash algorithm, with 512-bit input), using 90,825 multiplicative gates [Bri13Bri13] and 256
wires for the private input of each party and 256 wires of output of PB to hold the (SHA-256)
hash of the concatenated inputs.


Comparing configurations. The concrete estimated communication values are summa-
rized in Table 3.73.7, in total and aggregated per type of protocol component. It shows,
side-by-side, IFC and DLC (FFC and ECC) instantiations (row 11), several levels of statistical
security (σ ∈ {40,96,128}) (row 22), and different cut-and-choose configurations (rows 33–66).
The case of 40 bits of statistical security (columns DD–II) is a common benchmark, large enough
for practical purposes where the cut-and-choose partition is defined by the receiver (PB)
after the sender has committed to the protocol elements. If the cut-and-choose partition is
decided non-interactively by PA, e.g., as a NPRO hash of an Equiv-Com, as a way to reduce
the number of communication rounds, then the statistical security parameter should be
increased up to an equivalent cryptographic security parameter. The cases of 96 and 128 bits
of statistical security (columns JJ–KK) are considered for short and long durations of protocol
execution, where the former can be considered if the Equiv-Com includes in its pre-image a
fresh nonce that was learned only in the protocol. Each level of statistical security can be
achieved with different numbers of garbled circuits (row 44) and conditions on the number of
check and evaluation instances (rows 55 and 66).


Total communication. To securely evaluate the exemplified AES 128 circuit, with 128
bits of cryptographic security, 40 bits of statistical security and using 41 GCs out of which at
most 20 are evaluated, the protocol requires about 11, 8 and 5 Mega bytes, for IFC, FFC
and ECC instantiations, respectively (row 1313). The corresponding communication for the
SHA-256 circuit is about 70, 66 and 60 Mega bytes (row 2222). By tweaking the cut-and-choose
parameters, the same security can be obtained without exceeding 8 evaluation circuits, but
now with up to 115 check circuits (in this example, the overall 123 circuits equates the minimal
number of circuits that would be needed without the forge-and-lose technique). ECC yields
the best results, requiring about 2.2 and 24 Mega bytes, respectively for S2PC-with-Coms of
AES-128 and SHA-256 (column II).
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Table 3.7: Communication of S2PC-with-Coms of AES-128 and SHA-256
A B C D E F G H I J K


Pa
ra
m
et
riz


at
io
n


Type of cryptographic instantiation IFC FFC ECC IFC FFC ECC ECC 1


Bits of Statistical security (σ) 40 40 96 128 2


C&C
param-
eters


Condition on # eval instances 1 ≤ e ≤ σ/2 1 ≤ e ≤ σ/5 1 ≤ e ≤ σ/5 3


s ≡ # GCs 41 123 272 365 4


(vmin; vmax) (# check circuits) (21; 40) (115; 122) (253; 271) (340; 364) 5


(emin; emax) (# eval circuits) (1;20) (1;8) (1;19) (1;25) 6


A
ES


-1
28


ci
rc
ui
t


Set initial outer BitComs (kB)
(including needed NIZKPs and (NI)ZKPoKs) 582 1,171 169 582 1,171 169 169 7


Set intermediate BitComs (kB)
(including needed NIZKs) 274 52 4.2 274 52 4.2 4.2 8


C&C
of


GCs


Connectors (kB) 4,289 2,366 457 1,716 947 183 434 571 9


Communicated GCs (kB) 4,434 1,774 4,212 5,542 10


Communicated RSC seeds and
RSC Equiv Com and opening (kB) 1.5 1.1 0.77 4.5 4.2 3.8 8.2 11 11


Coin-flip and permutation of outer Coms (kB) 1,128 240 56 1,128 240 56 56 56 12


Total communication (kB) 10,709 8,265 5,120 5,479 4,188 2,189 4,883 6,353 13


(Not GCs) / Total 59% 46% 13% 68% 58% 19% 14% 13% 14


Total commun. if local-PKI and simple S2PC 8,984 7,734 5,012 3,753 3,657 2,081 4,775 6,245 15


SH
A
-2
56


ci
rc
ui
t


Set initial outer BitComs (kB)
(including needed NIZKPs and (NI)ZKPoKs) 738 2,156 294 738 2,156 294 294 16


Set intermediate BitComs (kB)
(including needed NIZKs) 430 104 8.5 430 104 8.5 8.5 17


C&C
of


GCs


Connectors (kB) 8,569 4,732 913 3,428 1,893 365 867 1,140 18


Communicated GCs (kB) 58,292 23,317 55,377 72,865 19


Communicated RSC seeds and
RSC Equiv Com and opening (kB) 1.5 1.1 0.77 4.5 4.2 3.8 8.2 11 20


Coin-flip and permutations of outer Coms (kB) 1,856 240 56 1,856 240 56 56 56 21


Total communication (kB) 69,887 65,525 59,563 29,773 27,714 24,044 56,611 74,375 22


(Not GCs) / Total 17% 11% 2.1% 22% 16% 3.0% 2.2% 2.0% 23


Total if local-PKI and simple S2PC (kB) 67,382 64,890 59,447 27,269 27,079 23,928 56,494 74,259 24


Group parameters: See a finer-grained analysis in Tables B.4B.4 and B.5B.5. IFC and FFC use 3,248-
bit group elements, whereas ECC uses 256-bit elements; IFC uses 3,248-bit pre-images (modular
square-roots), whereas FFC and ECC use 256-bit pre-images (exponents). Circuit parameters:
AES-128 and SHA-256 use respectively 6,800 and 90,825 non-linear Boolean gates; AES-128 has
128 wires for the input of each party and for the output of PB, whereas SHA-256 has 256 wires
for the input of each party and 256 wires for the output of PB. Legend: kB (Kilo bytes, i.e., a
thousand of bit octets); “Not GCs” (all elements that do not arise from sending evaluation GCs,
e.g., BitComs, NIZKPs, (NI)ZKPoKs, connectors, coin-flipping, RSC seeds and Equiv-Com).


Connectors. Across the three types of instantiation (IFC, FFC, ECC), IFC is the one
with most expensive connectors, namely because of the connectors of input and output of PB,
for which it communicates a quadratic number of group-elements (squares or square-roots),
i.e., proportional to the product of the statistical security and the number of evaluation
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instances. The FFC instantiation is the second largest, with the main contribution coming
from connectors of input wires of PB (with communication of large group elements), but
much shorter communication for other connectors, which involve communication of shorter
pre-images. The ECC instantiation has short connectors for all wire types.


Outer commitments. Interestingly, the communication needed for setting the outer
commitments (rows 77 and 1616) is larger for FFC than for IFC. This is due to the larger
communication complexity in FFC associated with producing the needed NIZKPoKs of
ElGamal openings and NIZKPs of correct ElGamal BitComs.


Overhead from “not GCs”. A comparison of values across the two circuits exemplifies
how the proportional overhead from “not GC” elements (row 1414 for AES-128 and row 2323 for
SHA-256) reduces with the increase of the proportion of number of garbled gates over the
number of outer wires. For example, in regard to the configuration with only 8 evaluation
circuits (columns GG–II), in the AES-128 circuit the number (384) of outer wires divided by
the number (6,800) of garbled gates is about 5.6%, whereas for the SHA-256 circuit it is
about 0.85%. Correspondingly, in the IFC instantiation in column GG the overhead from
non-GC elements decreases from about 68% to 22%; similarly, in the ECC instantiation in
column II the reduction is from 19% to 3.0%. In spite of the relatively large contribution of
NIZK sub-protocols and connectors, in all except one of the cases shown in the Table the
communication proportion due to the non-GC elements is less than two thirds. When the
number of evaluation circuits decreases (e.g., columns GG–II in comparison with columns DD–FF),
the proportion increases (rows 1414 and 2323) but the concrete communication decreases — this
is because the communication due to GCs decreases at a faster rate.


Overhead from “GCs”. The significance of the communication contribution of GCs is
unavoidable as the underlying circuit size increases, as specially noticeable with the SHA-256
estimation (row 2222). Still, the RSC technique also allows a very significant reduction in
communication, by virtue of reducing the number of communicated garbled circuits. This
is at the computational expense of over-increasing the number of check instances. When
the overall number of garbled circuits is minimal (columns DD–FF), a simple S2PC based on
a traditional cut-and-choose, i.e., without the forge-and-lose technique, would require at
least the triplet of the garbled circuits, besides overheads from other elements. For tradeoffs
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that reduce the number of evaluation circuits, the comparison is even more favorable. For
example, without the forge-and-lose the use of 123 circuits (columns GG–II) for 40 bits of
statistical security require at least 49 evaluation circuits, i.e., more than six times more than
the sufficient eight circuits when using the forge-and-lose.


For the applications of oblivious cipher or hash evaluation, the communication complexity
can conceivably improve greatly by changing the underlying cipher of hash function. For ex-
ample, Albrecht et. al [ARS+15ARS+15] propose a family (“LowMC”) of low multiplicative-complexity
ciphers, including examples for 128 and 256 bits of security (and key-size and block-size),
respectively requiring more than eight times fewer and three times fewer multiplicative gates
than AES-128. A cryptographic hash could also be based of some of those ciphers, thus with
much less multiplicative complexity than SHA-256. Within the cut-and-choose of garbled
circuits approach, another conceivable improvement may be derived by devising new protocols
with better statistical guarantees that enable further reduction of the overall number of
garbled circuits or garbled gates, e.g., via linked executions as hinted in §6.3.16.3.1.


Total if simpler S2PC. Rows 1515 and 2424 show the total communication that would be
required in case of a simple S2PC without interest for the outer commitments, and (in case
of IFC) if allowing a local PKI that would avoid the need for NIZKPoK of trapdoors and/or
of openings, or similarly in case of global PKI where the NIZKPoK of trapdoor would already
have occurred external to the protocol. For example, the differential for the IFC instantiation
would be of more than 1.7 Mega bytes, whereas for ECC would be of just about 0.11 Mega
bytes. (Note: the actual differential could be made smaller for IFC if using larger cut-and-
choose parameters for the Ext-and-Equiv-Com, allowing a smaller communication rate.)


Further analysis. Appendix B.5B.5 contains a more detailed analysis of communication com-
plexity, including concrete parameter sizes for 128 bits of cryptographic security (Table B.1B.1),
the size of each NIZK sub-protocol (Table B.2B.2), the directional communication associated
with connectors (Table B.3B.3), and a finer-grained analysis of the concrete communication
of S2PC-with-Coms of the AES-128 and SHA-256 circuits (Tables B.4B.4 and B.5B.5). A better
insight about the major contributions of overhead (i.e., besides garbled circuits) motivates
pursuing further improvements, some of which are suggested in Section 6.36.3.
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3.4.3 Computational complexity


The time duration of an S2PC execution is of practical interest for its applicability in the
real world. In the lack of a concrete implementation of the protocol described herein, a good
related metric is the computational complexity, as a measure of the required number of certain
primitive operations in relation to the parameters that define the problem specification,
(e.g., the circuit being obliviously evaluated and the type of commitments) and the security
parameters. The time of an execution is then a function of the available computational power
(number of operations per unity of time) per processing unit, of the number of simultaneously
available processing units, of the parallelizability of needed operations, and of the time taken
for communications.


This subsection makes an estimation of the asymptotic number of main group operations
(i.e., associated with BitCom schemes) required for the defined S2PC-with-commitments
protocol. The estimate is made as a function of the parameters of interest: the number ` of
outer wires (i.e., of input and output) of each circuit; the statistical security parameter σ
or the related number s of circuits used in the cut-and-choose; the cryptographic security
parameter κ. The terms “unitary,” “linear” and “quadratic,” with respect to number of some
type of operation, are expressed with the meaning that the actual number of operations is
upper bounded by a constant function, a linear function and a quadratic function, respectively,
of one (or of a linear combination) of the mentioned parameters.


Of significance is the measure of operations (multiplications) required in quadratic number
(e.g., number of outer wires times number of circuits) or those (exponentiations) required
in linear number (e.g., linear in the number of wires, and/or in number of circuits) but
nonetheless expensive. The original IFC-based S2PC-with-BitComs protocol [Bra13Bra13] was
designed to not exceed a linear number of exponentiations. This was in contrast with other
DLC protocols whose required number of exponentiations by both parties is proportional
to the number of circuits multiplied by the number of input wires (e.g., [LP11LP11]), though in
compensation those exponentiations are supported in groups with smaller moduli length
and sub-groups of smaller order. The linear number of exponentiations is retained in this
dissertation, even though more BitCom schemes and NIZKs are involved. The new DLC
instantiation requires a quadratic number of exponentiations, but with possible improvements
for certain types of wire.


In summary: the IFC instantiation requires a number of exponentiations linear in the
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number of input bits of PA and in the statistical security parameter, and a number of
multiplications and multiplicative-inversions proportional to the product of the number of
outer wires (input and output) and the statistical security parameter; the DLC instantiation
requires a quadratic number of exponentiations (but improvable with certain optimizations).


Connectors of input of PA. In IFC, the connectors of input of PA based on BitComs
require a unitary number of multiplications for each connector. In DLC, the bit-string-Com
construction requires one exponentiation for each circuit, with each such exponentiation
accounting at once for all input bits of PA.


Connectors if input of PB. The IFC-based 2-out-of-1 OT requires PA to compute one
square-root per input bit of PB, which is approximately computationally equivalent to one
exponentiation modulo each prime factor. The number is independent of the number of
garbled circuits and is amortizable across multiple executions that use the same input. The
number of multiplications is quadratic, i.e., unitary per input wire of each circuit.


For DLC the described 1-out-of-2 OT requires a unitary number of exponentiations
for each connector, i.e., overall quadratic (linear in the number of input bits of PB times
the number of circuits). The use of OT extension may greatly improve the computational
complexity associated with connectors of input bits of PB, with the number of exponentiations
becoming linear in the statistical parameter (and amortizable across multiple executions),
but its use requires an initial interactive phase between the two parties. This is justifiable
whenever the initial rounds of interaction are not a problem and/or when a multiplicity of
executions between the same parties requires a very large number of OTs.


Connectors of output of PB. In IFC, generating the connectors involves generating two
BitComs per output wire of each circuit, i.e., overall a quadratic number of multiplications.
Furthermore, in the respond stage it requires computing two multiplicative inverses for each
output wire of PB, for each evaluation circuit (548548). The verification (for check instances)
and evaluation (for evaluation instances), does not require multiplicative inverses but also
requires a quadratic number of multiplications. If following the forge-and-lose path (in
case of malicious behavior by PA), PB needs to determine the class of one group element
(i.e., decrypting a GM BitCom) per input bit of PA. Since in this case PB would know the
respective trapdoor, the computation essentially amounts to computing one Legendre symbol
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modulo each prime, for each of the input bits of PA.


In DLC, the complexity of the described procedure requires PA to produce a quadratic
number of Pedersen BitComs (520520), i.e., a unitary number of exponentiations per output
wires of PB of each circuit. However, the verification of BitComs performed in the evaluation
stage can be easily modified into a statistical verification that only requires a linear number
of exponentiations. If the forge-and-lose path is followed, then the decryption of all input bits
of PA can be achieved with a single exponentiation followed by a division, i.e., an ElGamal
decryption (of the single ElGamal BitStringCom obtained from an homomorphic combination
of the ElGamal BitComs of the input of PA).


Both in IFC and DLC, since PB must not disclose whether or not the forge-and-lose path
was followed, the actual time of even an honest computation should be as high as the one
when the forge-and-lose path is followed.


Equiv Coms and Ext Coms. Both in IFC and DLC, each Equiv-Com and each Ext-Com
used in the RSC technique and/or in the underlying NZIKPs and NIZKPoKs can be performed
with a unitary number of exponentiations. Also, a simulatable coin-flipping (Figure C.1C.1)
based on an Ext&Equiv Com scheme can be implemented with Equiv-Coms (commit and
open) in unitary number and with Ext-Coms (commit and open) in number linear in the
statistical parameter, independently of the length of the bit-string being committed. Thus,
the number of exponentiations is not more than linear for the coin-flipping used to produce
permutations for the outer BitComs, and the one used for the NIZKPoK of Blum integer
trapdoor (Section A.2A.2).


NIZKPoKs of trapdoor. In IFC, the NIZKPoK of Blum integer trapdoorNIZKPoK of Blum integer trapdoor (Figure A.2A.2)
requires the prover to compute square-roots and Jacobi Symbols in number linear in statistical
security parameter. An eventual additional NIZKP of correct Blum integer (Figure A.1A.1). In
DLC, each NIZKPoK of ElGamal openings requires also a number of exponentiations linear
in the security parameter.


NIZKP of same committed bits. Both in IFC and DLC, any NIZKP of same committed
bits (i.e., at once for all input bits or all output bits of a party) requires producing BitComs in
number linear in the statistical parameter, and homomorphically combine a quadratic number
of BitComs (linear in the statistical parameter times the number of BitComs). Overall, in


Page 135 of 376







Section 3.5. Security analysis (2016-Dec-27)


IFC this represents a quadratic number of multiplications and no exponentiation. In DLC it
represent a quadratic number of multiplications and a linear number of exponentiations.


Garbled circuits and RSC Equiv-Com. The garbling of each circuit requires a number
of block-cipher executions (e.g., AES) linear in the number of garbled gates. This can be
done extremely fast with current technology, e.g., hardware-acceleration enabling several
million garbled gates per second. However, the implementation of the RSC technique, whose
goal is to reduce communication, may reduce the overall throughput, as it also requires
hashing all circuits. The real cost of the RSC technique may be better clarified with concrete
implementations, pipelining the garbled circuit generation and hashing. Concrete results may
help deciding the optimal cut-and-choose parameters that simultaneously improve time and
reduce communication complexity, for a given statistical security goal.


3.5 Security analysis


This section analyzes the security of the S2PC-with-Coms protocol, within the ideal/real
simulation paradigm. §3.5.13.5.1 establishes the simulatability statement. §3.5.23.5.2 discusses practical
variations of the setting in which security could be proven. §3.5.33.5.3 gives a proof sketch, with a
high-level intuition for how to construct simulators. §3.5.43.5.4 discusses several clarifying remarks
about definitional aspects that otherwise remain implicit. The actual proof of security is
deferred to Section B.3B.3 in Appendix, specifying simulators and showing that they lead the
executions in the ideal world to be indistinguishable from those in the real world.


3.5.1 Security statement


Security is stated in the hybrid model with access to an ideal extractable multi-commitment
(Ext-MCom) functionality FX, an ideal equivocable multi-commitment (Equiv-MCom) func-
tionality FQ, and a (global) non-programmable random oracle (NPRO), and with the pa-
rameters of the outer commitment schemes (used to produce the commitments that are part
of the protocol output) being defined by a (global) trusted setup. The NPRO is required
only to enable non-interactive versions of the underlying sub-protocols, namely an Ext-and-
Equiv-Com with non-interactive phases, and NIZKPs and NIZKPoKs, and could otherwise be
avoided. While the ideal Ext-MCom and Equiv-MCom functionalities can be directly instan-
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tiated based on a local CRS, the security statement based on these ideal multi-commitment
functionalities makes it more obvious that all sub-protocols can be instantiated based on
the same short CRS, instead of having to require an independent CRS for each sub-protocol
and/or without requiring more interaction to stretch an initial CRS [CR03CR03].


Theorem 1 (UC security of the S2PC-with-Coms protocol, in the (FX, FQ,
NPRO)-hybrid model).


(i) Let the parameters of the cut-and-choose of garbled circuits be defined by a minimal emin


and a maximal emax number of evaluation instances and an overall polynomial number s
of garbled circuits satisfying the statistical security goal σ (see row 1010 in Table 3.13.1).


(ii) Let the ideal FMComFMCom (used to commit outer-randomness permutations for wires of PA) the
ideal FGMCF-1FGMCF-1 (used to coin-flip outer-Com permutations for wires of PB), the NIZKPs
and the NIZKPoKs be instantiated with simulatable protocols, with statistical security
negligibly small in the computational security parameter κ, based on ideal functionalities
FX for an Ext-MCom scheme, FQ for an Equiv-MCom scheme, and a global NPRO H.


(iii) Let the parameters of the outer Ext-Com schemes be defined by a global trusted setup.
(iv) Let all needed cryptographic primitives (PRG, CR-Hash, garbling scheme) be secure in


respect to the computational security parameter κ.


Then: the protocol described in Section B.2B.2, and at high level in Section 3.13.1, securely
emulates the ideal functionality FS2PCwCFS2PCwC of S2PC-with-Coms, in the presence of static and
computationally active adversaries, with error probability negligibly close, in the computational
parameter κ, to a value negligibly small in the statistical parameter σ.


3.5.2 Practical variations


Variation 1. The theorem preamble asks (in item iiii) that the statistical security of the
underlying sub-protocols equates the cryptographic security (e.g., 128 bits). This is so that
the underlying sub-protocols may be implemented in their non-interactive versions, i.e., so
that each phase of the Ext-and-Equiv Com scheme, and each NIZKP and NIZKPoK requires
a single message (from sender/prover to receiver/verifier). At the cost of more interaction,
the NPRO may be avoided and the statistical security of the underlying sub-protocols can
be made as small as the intended statistical security of the main protocol (e.g., 40 bits).
Conversely, in order to avoid interaction for the decision of the cut-and-choose partition, and
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thus achieve a protocol with only three communication steps, the partition may be decided by
the garbled circuit constructor with the help of the NPRO, if the overall statistical security
parameter of the protocol is made as high as the computational security parameter (e.g.,
128 bits). (See Remark 2.4.22.4.2 for yet another alternative, with non-interactive decision of the
partition and retaining an independent statistical security parameter.)


Variation 2. In a standalone setting, if rewinding is deemed possible in the simulation,
then the ideal Ext-MCom and Equiv-MCom functionalities can be removed, and the whole
protocol be implemented in the plain model. As mentioned in §2.2.22.2.2, in the CRS setting the
global setup that defines the Com-scheme parameters can be replaced by a fixed protocol
parameter. Instead, at the cost of more interaction it could be decided by a coin-flipping
protocol, with efficient instantiations for DLC but unreasonably costly for IFC. The PKI
setting can also be avoided by having each party select her own outer commitment scheme
parameters, and then informing it to the other party. In the 2-out-of-1 setting this would
necessarily require an extra communication message where PA informs PB of the scheme to
be used for oblivious transfer.


Variation 3. By removing the outer-Com schemes from the output, and consequently being
able to remove the coin-flipping components of the protocol, and avoiding the final permutation
of outer-Coms, the adjusted protocol securely emulates the regular S2PC functionality, in
the presence of static and computationally active adversaries. In this case all intermediate
BitCom schemes may be defined per protocol execution.


Remark 3.8 (On the hiding of bits of PB). It the original paper, the protocol for
S2PC-with-Coms, simulatable with rewinding, used Blum BitComs for the outer bits, thus
allowing the underlying S2PC to be unconditionally hiding of the circuit input bits and
circuit output bits of PB. This is not the case in the description in this dissertation, in
a setting of simulation without rewinding, because of the choice of using computationally
hiding extractable commitments for the outer bits.
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3.5.3 Proof sketch


In the static corruption model, in the two-party setting, the simulator S can (as a
simplificationsimplification) be considered as the corrupted party in the ideal world (see §2.2.12.2.1), be-
ing activated to start a protocol execution of an ideal S2PC-with-Coms functionality FS2PCwCFS2PCwC,
as defined in §2.2.52.2.5 (Figure B.4B.4 and Figure 2.32.3). In a simulated execution, S takes advantage
of the ZKPoKs to extract the circuit inputs bits and the randomness of the initial outer
commitments of the malicious party in the simulated execution. If the malicious party in
the simulated execution aborts before the step where the other party would have learned
the output, then S emulates an abort in the ideal world. Otherwise S sends the extracted
circuit input bits to the ideal FS2PCwCFS2PCwC in the ideal world. As a result, FS2PCwCFS2PCwC locally
evaluates the Boolean circuit and produces commitments of all input bits and output bits,
and then replies back with the circuit output bits of S (i.e., the malicious party in the ideal
world) and the respective commitments and randomnesses, as well as the commitments of
the input and output of the other ideal party. Then, again in the simulated execution, the
simulator takes advantage of the simulatable coin-flipping of permutations for wires of PB,
the simulatable Ext-and-Equiv Com of permutations for wire sets of PA, and the extractable
initial outer-Coms of wire sets of PA, to induce the needed permutations that will permute
the initial outer Coms into the final outer Coms decided by the ideal functionality.


To induce the circuit output bits, S in the role of PA in the simulated execution learns
the cut-and-choose partition and then equivocates the evaluation garbled circuits to output
exactly the circuit output that was decided by the ideal functionality. Conversely, S in the
role of PB in the simulated execution sends to PA the needed final offset bits of the private
output of PA, and give a fake ZKP that they are the obtained circuit output bits.


Then, the simulator outputs in the ideal world whatever the malicious party (i.e., the real
adversary) outputs in the simulated execution. Actually, in the UC framework where the
environment (Z) is allowed to interact with the adversary at arbitrary moments in time, the
simulator always leaves open a channel to relay the messages between Z and the black-box
adversary in the simulated execution.


Related to the order of received outputs, there is a main difference across the simulators
for different parties. If P̂∗


B is the corrupted party in the ideal world (i.e., controlled by S),
then the ideal functionality sends the output to S in the ideal world before it sends it to the
ideal P̂A. Thus, S in the simulated execution still needs to determine whether the malicious
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P∗
B in the simulated execution (controlled by te real adversary A) allows the other party (the


honest PA impersonated by S) to compute a proper final output. If it allows, then S in the
role of ideal P̂B sends an OK message to the ideal functionality (383383). Otherwise it sends an
abort message (384384), which will make the ideal P̂A also finish with an abort. Conversely,
in the case of a malicious P∗


A, whenever the simulator S receives the output from the ideal
functionality it follows that the ideal P̂B has already outputted in the ideal world. S is then
left to induce the malicious PA in the simulated execution to obtain the needed output.


In the case of a malicious P∗
A, the challenging part of the proof is proving soundness,


i.e., that a malicious PA cannot prevent an honest PB from learning a correct output if the
simulator in the role of honest PB can learn it when using an arbitrary input in the simulaton.
Specifically, since the simulator simulates an honest PB with arbitrary input (because it
does not have access to the actual input used by PB in the ideal world), it follows that the
soundness error probability must not depend (i.e., up to a negligible value in the security
parameters) on the combined inputs of PA and PB, which for a generic Boolean circuit also
means not depending on the final circuit outputs.


3.5.4 Several remarks


Remark 3.9 (On the properties of outer-Com schemes). The defined ideal func-
tionality FS2PCwCFS2PCwC allows non-UC Com schemes as outer-Com schemes, as long as they are
hiding and binding. Indeed the functionality was defined with an explicit construction
of real commitment schemes (see Remark 2.62.6), as a way to ensure that the output Coms
are random without control by any of the parties. Nonetheless, since a NIZKPoK of the
openings is explicitly required by the protocol, the augmented use in the protocol makes the
commitments extractable (both the committed value and the used “randomness”). Actually,
if the outer-Com scheme parameters were provided by a local setup (impersonatable by the
simulator), some BitComs could be directly extractable even without the ZKPoKs, e.g., GM
BitComs (for both the committed bits and the used “randomness”) and ElGamal BitComs
(for the commited bits, but not for the “randomness”). Similarly, non-malleability with
respect to commitment is implied by non-malleability of the underlying NIZKPoK. On the
other hand, equivocability of the commitments is not an explicit requirement, as it is not
meaningful, because the commitments are not opened within the context of an execution.
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Remark 3.10 (On obtaining the public parameters of the outer Com schemes).
For simplicity, in the proof it is assumed that the queries to and the replies from the ideal
global setup functionality FSetupComs are not visible by Z. This means that the simulator
can, without implying distinguishability between the ideal and real worlds, obtain the public
parameters of both parties, independently of the malicious party in the simulated world
also making such queries. This assumption could be avoided with a slight change in the
SetupSetup stage. It could instead be defined that the initial input of both parties would include
authenticated public parameters of both parties (i.e., authenticated by the global setup based
on a public key that is a fixed parameter of the protocol), and that in the ideal world the
parties would send the parameters to the ideal functionality FS2PCwC, who would check they
are consistent across the two parties. The parties could then still query the global setup to
obtain their private parameters (i.e., in case of a PKI setup), needed for the useful ZKPoK
of trapdoor. These queries could be visible by Z, as long as the secret parameters included
in the replies were ideally encrypted (i.e., part of the private component of messages), to
prevent them from being learned by Z.


Remark 3.11 (A single CRS per protocol execution). The use of the ideal/real
simulation paradigm enables simulatability when replacing each internal ideal functionality
by a respective simulatable concrete sub-protocol instantiation. While each such sub-protocol
is proven simulatable based on a local setup, it is useful to consider how to instantiate all of
them based on a single call to the same setup (e.g., a CRS), with respective state shared
by all sub-routines (see [CR03CR03]). This can be achieved in this protocol by reducing all ideal
sub-functionalities to the same kind of sub-functionality and then consider a functionality
that essentially implements multiple independent copies of said sub-functionality. Particularly,
the simulatability of each NIZKP, NIZKPoKs and Ext-and-Equiv Com can be reduced to
using separate Ext-MComs and Equiv-MComs, which allow multiple calls.


Then, by using a pair of Dual Com schemes (e.g., Pedersen and ElGamal; or Blum and
GM), i.e., with same extraction-trapdoor and equivocation-trapdoor, but with the respective
public parameters being defined by a local CRS (i.e., the trapdoor being unknown to any real
party), it follows that the same short CRS is enough to implement all underlying Ext MComs
and Equiv MComs, and thus enough to enable simulatability of the overall S2PC-with-Coms
execution. This means that the NIZKP and NIZKPoK transcripts inside each S2PC-with-
Coms execution will be validated based of the same setup parameters (e.g., a local CRS).
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Remark 3.12 (Uniqueness of session identifier). The claims of simulatability are
supported on the assumption that the session identifier is unique. In other words, the
indistinguishability game only allows Z to request one protocol execution per each contextual
tuple, even though it may run external concurrent executions with different identifiers.
Indeed, the ideal functionality FS2PCwCFS2PCwC is defined to ignore subsequent calls based on the
same contextual information, namely the same pair (sid, ssid, PA, PB). If Z were able to
make multiple calls with the same context, then a lack of the non-repetition property in the
real world would allow Z to distinguish between the two worlds — the real world would be the
only one where two executions with the same context would successfully return a non-abort
output. Without the non-repetition of ssid rule, the real world would require an additional
mechanism to ensure non-repetition of identifiers (e.g., based on timestamps, counters and/or
statefull cache, and/or involving an interactive coin-flipping phase for determining an unique
identifier suffix composed of randomness from both parties). The problem with an additional
interactive phase is that it would make the protocol inherently more interactive. Another
approach, perhaps more promising, is to redefine the ideal S2PC functionality to incorporate
a mechanism where the two parties augment the session identifier across the sequence
of messages, and in the end return the augmented identifier. Correspondingly, the ideal
functionality would manage the dynamic update of the identifiers across the messages. In
this way, several executions activated by the Z using the same (session and sub-session)
identifiers would nonetheless lead to an execution where the ideal functionality FS2PCwC


would see different (augmented) identifiers and thus would no longer imply distinguishability
with the real world. These possible variants are not further discussed in the dissertation.


3.5.5 Linked executions


The outer-Coms outputted by the S2PC-with-Coms protocol may be useful to enable general
linkage of S2PC executions. On a follow-up S2PC-with-Coms, the outer-Coms obtained by
each party in a previous execution can be reused in the next execution, without need for
additional ZKPs or ZKPoKs. For example, for protocols defined as a sequence of small S2PC
sub-protocols in the semi-honest model (e.g., [LP02LP02]), security can be enhanced to resist also
the malicious model, by naturally using the input and output of previous executions (or
transformations thereof) as the input of the subsequent executions.


Another simple example is a dual-path execution, where the parties play two executions
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with exchanged roles, with each party using the same input in both executions, but each
party evaluating circuits with only her own output. While the protocol in this dissertation
described a two-output solution based on a single-path approach (i.e., only PB evaluated
the garbled circuits), there may be applications where a dual-path execution allows better
tradeoffs, e.g., more balanced communication in each direction.


It is also possible to prove, outside of the garbled circuits, arbitrary transformations and
relations that involve only the bits of one party. A party may commit new bits for a subsequent
S2PC and prove that they satisfy certain non-probabilistic polynomial verifiable relations
with the private input and output bits of previous S2PCs. These proofs can take advantage of
the homomorphic properties of outer-Coms. For example, for XOR homomorphic outer-Coms,
linear Boolean gates (e.g., XOR and NOT) can be implemented by a simple group operation,
not requiring any additional ZKP. Verification of multiplicative operations can be reduced
to ZKPs that out of a number of BitComs there are a certain minimal number of BitComs
committing to a 1 or a 0. For example, proving that a certain BitCom commits to the AND
of the bits committed by two other BitComs can be reduced to a simple ZKP that there
are at least two zeros committed in a triplet of BitComs, with the triplet being built from a
XOR-homomorphic combination of the original three BitComs. (The first bit is the AND of
the two last if and only if there are at least two zeros in the triplet composed of the first bit
and of the XOR of the first bit with each of the other two bits [Bra06Bra06]. A different method
can be found in [BDP00BDP00].) Besides Boolean relations, the use of additively-homomorphic
bit-string Coms may also allow more efficient transformations based on arithmetic operations,
e.g., modular sums and multiplications.


If in a sequence of executions the output bits of some intermediate execution bits are not
relevant for the final output, then the coin-flipping for randomization of outer-Coms does not
have to apply to those bits. A PKI setting allows further simplifications in regard to the input
bits of PB — if in a 2-out-of-1 OT instantiation the OT BitCom scheme BOT is the same as
the forge-and-lose BitCom scheme BFLB used for output bits, then those intermediate output
BitComs can be reused for the next 2-out-of-1 OT, without exponentiations.
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3.6 Developments to the forge-and-lose technique


3.6.1 Improvements in this dissertation


The protocol described in this dissertation is based on the protocol presented in the original
paper that introduced the forge-and-lose technique for S2PC [Bra13Bra13], but contains substantial
improvements and technical modifications, as follows:


• RSC technique and no rewinding in proof. The protocol is now directly described
with a random seed checking (RSC) technique, instead of referring to it as an ad-hoc
optimization. Instead of regular commitments (one commitment per challenge index) and
simulation with rewinding, the protocol now explicitly uses a (single) RSC Equiv-Com,
thus enabling equivocation of garbled circuits without having to use rewinding. Hence, the
cut-and-choose challenge no longer needs to be defined via a two-party coin-flipping, but
can rather be simply decided by PB. It was also mentioned that the reduction in number
of communicated garbled circuits allowed by the RSC technique (and complementary by
the forge-and-lose technique) is possible even with a non-interactive cut-and-choose, by
using an erasure code at the level of garbled-circuits (idea from [AMPR14AMPR14]) and without
PA learning the cut-and-choose partition.


• Coin-flipping sub-protocol. Due to simulatability reasons, the two-party coin flipping
used to decide random permutations of the outer BitComs is now based on a generalized
coin-flipping (into a well) where one party learns a pre-image (a randomness to a commit-
ment of 0) and the other learns the image under a one-way function (the commitment to 0).
In the original paper it was sufficient to use a simpler coin-flipping, with symmetric output,
because there the outer Coms of each party were based on parameters with trapdoor
known by the other party and because with IFC the trapdoor was sufficient to extract the
randomness. In the IFC instantiation, the coin flipping is now based on a new and more
efficient Ext-and-Equiv Com (described in the next chapter [Bra16Bra16]), instead of using a
sub-protocol instantiation requiring a linear number of exponentiations and communication
expansion rate (asymptotically) greater than one for committing the contribution of PA.
In the new DLC instantiation, where the outer-Coms are compacted using bit-string
commitments, a specialized protocol takes advantage of additively homomorphic properties.
The new sub-protocols are now also suited to simulatability without rewinding.


• BitCom schemes. The new notation for BitComs (B) allows better separability between
the BitCom schemes and trapdoors across different wire types, and distinguishing between
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outer BitComs (part of the output) and intermediate BitComs (the outside part of connec-
tors). The previous requirement of unconditionally hiding BitComs and unconditionally
binding BitComs with trapdoor was now generalized to extractable (Ext) BitComs and
equivocable (Equiv) BitComs. The description of all BitComs and connectors was adapted
to allow integer-factorization cryptography (IFC) and discrete-log based cryptographic
(DLC) primitives, instead of just the former one.


• BitCom variations for input of PA. The connectors for input bits of PA were previ-
ously described based on an unconditionally hiding XOR-homomorphic BitCom scheme;
now the description accepts any (e.g., Ext or Equiv) XOR-homomorphic, or even XOR
pseudo-homomorphic (see §2.3.22.3.2), BitCom scheme. PA can now directly use the same
Ext-BitCom scheme (with trapdoor) that enables the forge-and-lose technique, whereas
previously an unconditionally hiding scheme was used for connectors and an uncondition-
ally binding scheme was used for the forge-and-lose technique, augmented by a ZKP of
equivalence of committed bits. In the suggested DLC instantiation, the communication
associated with connectors can be further reduced, by using bit-string commitments that
commit to permutation strings at once, instead of one BitCom per permutation bit.


• BitCom variations for input of PB. For connectors for input bits of PB, the original
paper only considered the IFC setting, where a 2-out-of-1 OT method was used at the
level of BitComs. The new description of connectors now also considers the possibility
of 1-out-of-2 OT (as in traditional S2PC protocols), namely with a DLC instantiation.


• ZKPs and ZKPoKs without rewinding and without interaction. The analysis of
ZKPs and ZKPoKs is deferred to Appendix AA. All ZK sub-protocols were adjusted to not
require rewinding in the respective simulation, and to be instantiable in a non-interactive
setting (i.e., NIZKPs and NIZKPoKs). For example, this includes NIZKPoK of Blum
integer trapdoor and of DL, NIZKP of good Blum integer, NIZKP of same committed
bits and NIZKP of good ElGamal Com.


• Communication complexity. The tables benchmarking the communication and com-
putational complexity have been updated, now considering the RSC technique with single
global hash, different types of instantiation (including IFC and DLC), and more efficient
sub-protocols, e.g., coin-flipping and different (and non-interactive) ZKPs and ZKPoKs,
as well as recent improvements (from related work) on garbled circuit constructions.


• Simulatability. The analysis of simulatability has been revised to the new protocol
structure, now removing all explicit rewinding. Two possibilities are now considered
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in terms of trusted setup: a global-PKI (GPKI) or a global-CRS, directly defining the
parameters of the outer BitCom schemes. Additionally, a local CRS is considered to
aid with simulatability, namely to help instantiate the needed NIZKPoKs, coin-flipping
and/or the RSC Equiv-Com. The final outer BitComs of each party are now associated
with an Ext BitCom scheme for which the respective party knows the trapdoor, whereas
before (when using unconditionally hiding BitComs with trapdoor) this was inverted. In
a simulation setting that allows rewinding the local CRS can be avoided. (As before, the
S2PC protocol can be simplified and the global setup can be avoided in a simple S2PC
setting, i.e., if outer commitments are not required.)


3.6.2 Subsequent work


Subsequently to the original forge-and-lose paper [Bra13Bra13], other works have also used the
paradigm of non-interactively recovering the input of PA, in case of malicious behavior by
PB, to also allow reducing the communication complexity of S2PC based on garbled circuits.


Forge-and-lose based on DLC. A forge-and-lose type of technique was used by Afshar
et al. [AMPR14AMPR14] for non-interactive (i.e., with two messages) S2PC based on cut-and-choose.
They devised a DLC-based technique (to which they call “cheating recovery”), whereas the
original forge-and-lose paper had only considered an IFC construction (requiring only a linear
number of exponentiations). The revised description in this dissertation, which generalizes the
constructions to work with more generic Ext-BitComs and Equiv-BitComs, considers a new
DLC instantiation, with several improvements in complexity. For example: for input wires of
PA, they require one ElGamal commitment per wire per circuit, whereas in this dissertation
the wire keys are instead random bit-strings (decided by the underlying garbling mechanism),
which are connected to the outer commitments via connectors that only require one BitCom
per bit (without repetition per circuit) and one BitStringCom per circuit (without repetition
across wires); for output wires, they use two distinct group elements (exponentiations) per
wire per circuit, whereas in this dissertation the connection only communicates one Pedersen
commitment per output bit (without repetition across circuits) and then two pre-images (expo-
nents) per connector (i.e., per output wire per circuit). This dissertation additionally integrates
a description of the 2-output case (where PA also learns a circuit output), and the augmented
case of S2PC-with-Coms, where both parties receive Coms of all circuit input and output wires,
and each party receives the randomness needed to open her respective inputs and outputs.
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Number of garbled circuits in a non-interactive setting. While the original IFC-
based forge-and-lose technique [Bra13Bra13] is inherently non-interactive with respect to the
recovery of the input of PA in the evaluation stage, its integration into the cut-and-choose
approach did not focus on a non-interactive decision of the cut-and-choose challenge. The
obvious approach of using a random oracle (or, with more sophistication, using a NPROusing a NPRO)
to let PA decide the cut-and-choose partition would require increasing the the statistical
security parameter (e.g., 40 bits) up to equating a short-term or long-term computational
security parameter (e.g., to 96 or 128 bit, respectively for short term or long term durations
of execution), and/or consider other tradeoffs (e.g., a purposely slow NPRO). In contrast,
Afshar et al. [AMPR14AMPR14] suggested a different method to decide and enforce the cut-and-
choose partition, based on a more involved combination of oblivious transferoblivious transfer and erasure codeerasure code,
preventing an increase of the number of garbled circuits in a non-interactive setting. In
their technique, PA does not get to learn the cut-and-choose partition, because the decided
type of each instance (check vs. evaluation) is hidden within an oblivious transfer. It is
nonetheless worth emphasizing that, by allowing interaction (two more messages) to decide the
cut-and-choose partition challenge, the original forge-and-lose method, as well as the “secure
evaluation of cheating” (with additional interaction in the evaluation stage) method of Lindell
[Lin13Lin13], already achieved 40 bits of statistical security with 40 circuits (if letting the number of
evaluation instances be completely variable), or 41 circuits if limiting the number of evaluation
instances to at most 20, without requiring additional OTs for the cut-and-choose nor an erasure
encoding and decoding of garbled circuits. For real-time online protocols, the additional
messages might already even be required to establish a reliable communication protocol.


Forge-and-lose in mini-crypt. As mentioned in Remark 3.33.3, Frederiksen et al. used
the forge-and-lose approach in a manner that intentionally avoided the use of trapdoor
commitments [FJN14aFJN14a, Fre15Fre15], and for that matter all number theoretic assumptions, and
using only “lightweight primitives” (though still requiring OT and coin-flipping). Their
technique is based on an erasure code (with decoding based on polynomial interpolation)
performed at the level of circuit output wires, and also requires hashing the original circuit
output inside the garbled circuit and output them as output wires, as a way to expand
the number of inconsistent output wires. The use of Equiv-Coms in the protocol in this
dissertation does not require augmenting the underlying Boolean circuit, and is abstract
to the garbling scheme, and is within an overall S2PC-with-Coms protocol (i.e., beyond


Page 147 of 376







Section 3.6. Developments to the forge-and-lose technique (2016-Dec-27)


simple S2PC of Boolean circuits). It is not clear how the communication and computational
complexity of the two protocols may compare for different parameter sizes (input and output
lengths) and concrete computational implementations.


Interactive recovery from cheating. In the line of dual execution approaches, Kolesnikov
et. al [KMRR15KMRR15] devised a protocol where the number of garbled circuits evaluated by each
party is equal to the number of bits of statistical security (e.g., as in [HKE13HKE13]), and additionally
reducing the leakage to a single bit even in the statistically negligible case of adversarial
success. As in [Lin13Lin13], the protocol requires an interactive recovery phase after the main
bulk of evaluation of garbled circuits. In contrast, the forge-and-lose technique allows a
non-interactive recovery phase and requires evaluation of circuits by only one party, though in
case of adversarial success (negligible in the statistical security parameter) the honest party
is induced to learn a completely incorrect output, and thus possibly leak more than one bit.


Cut-and-choose at the level of gates. Improving over prior Lego techniques [NO09NO09,
FJN+13FJN+13], a more recent technique called Tiny Lego, by Frederiksen et. al [FJNT15FJNT15], also
performing a cut-and-choose at the level of garbled gates within a single circuit, reduced
further the overall number of garbled gates in comparison with a cut-and-choose of garbled
circuits, by introducing an authenticator mechanism in each wire, which changes the criterion
of correctness of each bucket of gates to have a single correct gate, instead of a majority.


Implementations Benchmarks. Very recent works implement a combination of state-
of-the-art techniques to reduce the amount of time it takes to perform S2PC evaluations,
with myriad tradeoffs, e.g., between offline and online phases, and comparing multi-execution
settings vs. single executions. This is the case of implementations by Lindell and Riva [LR15LR15],
Rindal and Rosulek [RR16RR16], Wang, Malozemoff and Katz [WMK16WMK16], and Nielsen, Schneider
and Trifiletti [NST16NST16]. While those works have not been analyzed in this dissertation, it
is worth mentioning that they report impressive time performances, e.g., less than 100
milliseconds per execution, and (when considering tradeoffs between offline and online stages),
with an online throughput below 1 millisecond per execution (not counting network latency).
The dissertation focused more on a detailed estimation of communication complexity.
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Chapter 4


Simulatable commitments and coin-flipping


This chapter describes research results with applicability to two-party coin-flipping and useful
within the S2PC-with-Coms protocol. The original paper [Bra16Bra16] had considered two different
simulatability settings: with rewinding and without rewinding. The later setting, necessary
for universal composability, is the only one considered here. The essential construction is an
efficient extractable-and-equivocable commitment scheme, in the static and computational
malicious model. One meaningful improvement in this dissertation is the distinction between
different types of extractability, namely with respect to aborting actions by a malicious sender.


The protocol can be parametrized to achieve asymptotic communication-rate arbitrarily
close to 1 in each phase, i.e., the number of bits exchanged when committing or opening a large
(i.e., asymptotically increasing) bit-string is larger than the bit-string at most by a multipli-
cation factor that can be defined arbitrarily close to 1. The length of collision-resistant (CR)
hashing input and of pseudo-random generation (PRG) output can also be reduced asymptot-
ically to a rate arbitrarily close to 1. The approach, denoted expand-mask-hash, uses the PRG
and the CR-Hash function to combine separate extractable commitments and equivocable
commitments (associated with short bit-strings) into a unified extractable-and-equivocable
property amplified to a larger target length, amortizing the cost of base commitments.


The scheme has communication complexity comparable to recent state-of-the-art construc-
tions, while following a distinct design approach. Notably it does not require explicit use of
oblivious transfer (thus allowing tradeoffs with less interactivity) and instead uses a cut-and-
choose method, which can be instantiated non-interactively with a non-programmable random
oracle. The scheme also uses an erasure encoding (instead of stronger error correction codes)
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combined with the cut-and-choose structure, thus allowing the size of each instance to be re-
duced proportionally to the number of instances. The protocol and proof is defined in a hybrid
model with access to ideal schemes for an Ext-Com (not necessarily Equiv) and an Equiv-Com
(not necessarily Ext). In other words, for each type of base commitment scheme (Ext or Equiv)
the simulator is not required to use the complementary property (Equiv or Ext, respectively).


Organization. An introduction has been given in Section 1.41.4. Section 4.14.1 reviews related
work. Section 4.24.2 describes the initial intuition for a new construction based on a cut-and-
choose approach, sufficient to devise a communication-inefficient scheme. It also highlights
the distinction between different types of extractability, motivating possible variations in
the protocol. Section 4.34.3 explains optimizations based on an authenticator and an erasure
code, which together enable an Ext-and-Equiv scheme with asymptotic communication rate
arbitrarily close to 1. Section 4.44.4 briefly discusses some coin-flipping applications useful to
the S2PC-with-Coms protocol. Several details and protocol specifications are deferred to
Sections C.1C.1 and C.2C.2 in Appendix.


4.1 Related work


4.1.1 Basic primitives


One-way permutations or functions are enough in theory to achieve many useful cryptographic
primitives, such as PRGs [HILL99HILL99, VZ12VZ12], one-way hash functions [NY89NY89, Rom90Rom90], some
types of commitment schemes [Nao91Nao91, DCO99DCO99] and ZK proofs of knowledge (ZKPoK) [FS90bFS90b].
CR-Hash functions can also be built from other primitives [Sim98Sim98], such as claw-free sets
of permutations [Dam88bDam88b] or pseudo-permutations [Rus95Rus95]. Based on such primitives, coin-
flipping can be achieved in different ways, e.g., based solely on one-way functions [Lin03Lin03,
PW09PW09] (with rewinding). In several simulatability settings, coin-flipping can be more directly
based on higher level primitives, such as bit or multi-bit Ext&Equiv-Com schemes (e.g., [CF01CF01,
DN02DN02, DC03DC03]) and even from coin-flipping protocols with weaker properties [HMQU06HMQU06, LN11LN11].
In the computational model (considered herein), there are known theoretical feasibility results
about coin-flipping, covering the stand-alone and the UC security settings. For example, in
the UC setting it is possible to achieve coin-flipping extension, i.e., coin-flip a large bit-string
when having as basis a single invocation of an ideal functionality realizing coin-flipping of a
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shorter length [HMQU06HMQU06]. This dissertation shares the concern of achieving properties in
large strings based on functionalities associated with short strings, but focuses on a base
of a few short commitments (not needing to be simultaneously Ext and Equiv) and has
a motivation of improving efficiency. Implications between different primitives (e.g., see
[DNO10DNO10] for relations between OT and commitments) are not analyzed herein.


Only in very recent research works (including this one) have UC commitment schemes
been devised with an amortized communication cost, with asymptotic communication rate
close to 1. The new UC-Com scheme is directly applicable to coin-flipping, allowing an
asymptotic amortized communication of three bits per flipped coin (see Remark 4.54.5 for
approaches with two bits per flipped coin).


In spite of very efficient realizations of OT-extension [ALSZ15ALSZ15] and free-XOR techniques
[KS08bKS08b] for garbled circuits, a coin-flipping based on a direct (generic) approach of S2PC of
bit-wise-XOR would still induce, in communication and computation, a multiplicative cost
proportional to the security parameter, by requiring one minicrypt block operation (e.g.,
block-cipher evaluation) per flipped coin. In contrast, in the approach herein each block of
bits (e.g., equal to the security parameter) requires a unitary number of minicrypt block
operations (e.g., close to 1 block-cipher for the PRG and 1 CR-Hash).


The idea of combining commitments with a CR-Hash (hash then commit) and commitments
with a PRG for efficiency reasons is not new. The former resembles the hash then sign
paradigm, and it also has applications to non-malleable commitments [DCKOS01DCKOS01]. The later
resembles hybrid encryption, where a symmetric key (the analogous to the PRG seed) would
be encrypted with a public key system (the analogous to the commitment) and then the
message would be encrypted with a symmetric scheme (the analogous to the one-time-pad
masking using the PRG expansion). The work herein explores ways of combining both
techniques, aimed at achieving simulatability in coin-flipping and UC commitment schemes.


4.1.2 UC commitment schemes


When simulations-with-rewinding are not possible, the simulatability of flipping even a
single coin using the traditional templatetraditional template requires simultaneous Ext and Equiv properties
of the underlying commitment scheme [CR03CR03]. Canetti and Fischlin [CF01CF01] developed non-
interactive UC commitments, requiring a unitary number of asymmetric operations per
committed bit. The construction assumes a CRS setup and is based on the equivocable bit-
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commitment from Di Crescenzo, Ishai and Ostrovsky [DCIO98DCIO98]. Canetti, Lindell, Ostrovsky,
and Sahai [CLOS02CLOS02] proposed other non-interactive schemes from general primitives, with
adaptive security without erasures. Damgård and Nielsen [DN02DN02] then improved with a
construction denoted mixed commitment scheme, that is able to commit a linear number of
bits using only a unitary number of asymmetric operations, and using a linear number of
communicated bits. For some keys they are unconditionally-hiding and equivocable, whereas
for other keys they are unconditionally-binding and extractable. Di Crescenzo [DC03DC03] devised
two non-interactive Ext&Equiv-Com schemes for individual bits, in the public random string
model (suitable to UC). One construction is based on Equiv-Com schemes and NIZKs, the
other is based on one Ext-Com and one Equiv-Com schemes. Damgård and Lunemann
[DL09DL09] consider UC in a quantum setting and solve the problem of flipping a single bit, based
on UC-Coms from [CF01CF01]. Lunemann and Nielsen [LN11LN11] consider also the quantum setting
and achieve secure flipping of a bit-string based on mixed commitments from [DN02DN02]. They
consider how to amplify security from weaker security notions of coin-flipping (uncontrollable,
random) up to full simulatable (enforceable). The use of Ext-Com and Equiv-Com schemes,
together with a cut-and-choose and encoding scheme has been previously considered by
Damgård and Orlandi [DO10DO10] to enable efficient constructions. They combine these techniques
to enhance security from the passive to the active model for secure computation of arithmetic
circuits, in a model where a trusted dealer is able to generate correlated triplets. While they
achieve efficient constructions for multiparty computation (also including more than two
parties), the efficiency is not amortized to communication rate 1.


Efficient non-interactive UC Coms have been previously devised in the random oracle
model [HMQ04HMQ04], requiring the ability of the simulator to program the output of th random
oracle in order to enable equivocation. Any instantiation of the programmable random oracle
by a concrete cryptographic hash function would break equivocability therein, e.g., breaking
deniability in some applications. In a different work, constant rate commitments have been
achieved in the more ambitious setting of generalized UC (with a globally available setup)
[DSW08DSW08], using an augmented CRS setup and a non-programmable random oracle (NPRO).


In the UC setting, more efficient commitment schemes have been proposed for short
strings, based on specific assumptions such as DDH intractability, e.g., [Lin11Lin11, FLM11FLM11,
BCPV13BCPV13, Fuj14Fuj14], achieving a low (but greater than one) constant number of group elements
of communication and of exponentiations to commit to a group element. Still, the trivial
extension of these protocols for larger strings would imply a linear increase in said number of
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asymmetric operations (modular exponentiations), without amortization. Some of the above
schemes achieve adaptive security, whereas this dissertation considers only static security.


Recent works with comparable communication efficiency. More aligned with the
efficiency goal in this dissertation, recent independent works also achieve asymptotic commu-
nication rate 1 or arbitrarily close to 1. [GIKW14GIKW14] additionally considers selective openings;
[DDGN14DDGN14, CDD+15CDD+15] additionally consider homomorphic properties and verification of linear
relations between committed values; [CDD+15CDD+15] achieves, comparably to the method herein,
linear computational complexity. These protocols are based on a hybrid model with access
to an ideal oblivious transfer (OT) functionality. In contrast to OT, the cut-and-choose
mechanism described in this dissertation does not hide from the sender the partition of (check
and eval) instances in the commit phase.


Also, [GIKW14GIKW14, DDGN14DDGN14] rely on secret sharing schemes with error-correction or veri-
fiability requirements ([CDD+15CDD+15] works with any linear code), whereas the construction in
this dissertation uses a simpler erasure code (enough to allow the simulator to recover the
committed message from correct extracted fragments), with corresponding communication
benefits. In contrast to the requirement of full fledged error-correction codes in other con-
structions, erasure codes suffice in the construction described herein, due to an authenticator
mechanism (which can be based on a CR-Hash) that enables the simulator to anticipate
(before the actual open phase) whether an extracted fragment is correct or not, thus simply
ignoring erroneous fragments when reconstructing a message. While such property would
be somewhat trivial in an isolated context of Ext-Com schemes, the difficulty overcome
here is in simultaneously allowing the fragments to be equivocable, even though the base
commitments are not simultaneously Ext&Equiv. This is achieved by combining equivocable
pseudo-random masks that are applied in a one-time-pad fashion to mask the fragments.


Also, the authenticator mechanism allows a cut-and-choose with fewers instances than
what an error correction code would imply (e.g., see Table C.1C.1). A more recent result
[FJNT16FJNT16] improves the complexity of the OT-based protocols (also for additively homomorphic
commitments), using an additional consistency check mechanism to also allow a simpler
erasure code. Still, any OT instantiation in the CRS model would require interaction (at
least in a setup phase), whereas the protocol herein can be directly instantiated in a CRS
model without interaction if using a non-programmable random oracle, and using a basis of
non-interactive Ext Coms and non-interactive Equiv-Coms.
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The work herein requires computation time linear in the size of the string being committed,
if assuming an underlying linear time computable PRG and CR-Hash and erasure code, and
with the last one being considered after fixing a communication rate of the commit phase
that determines the minimal cut-and-choose and erasure code parameters. In practice the
computational cost of the erasure code may be of practical significance and this is left to
evaluate. A more in depth exploration of linear time primitives was explored in [CDD+16CDD+16],
including in regard to erasure codes, there achieving asymptotic rate-1 and linear time
regardless of the erasure code parameters.


A concrete comparison between different methods — qualitative (e.g., implications be-
tween primitives) and quantitative (actual instantiations and implementations) — is left for
future work. For example, for OT base methods there is a cost associated with the initial OT
setup phase (e.g., 640 exponentiations in [GIKW14GIKW14]). In this work a concrete instantiation
of Ext or Equiv commitments is not explored in depth, but the complexity is naturally
upper bounded by that of full-fledged UC-Coms for short strings, e.g., requiring fewer than a
dozen group elements per base commitment [BCPV13BCPV13]. The overall number of commitments
of short strings will depend on the erasure code parameters, defined to meet the goals of
statistical security and communication rate.


In summary, this work is focused on the design of protocols that explore the duality
between Ext and Equiv commitments, without considering OT as a primitive. About OT only
two notes are mentioned here from other work: it is known that UC-OT implies UC-Coms in
myriad setup models [DNO10DNO10, Fig. 1], e.g., in the uniform, the chosen and the any common
reference string models (U/C/A-CRS), and in the chosen and any key registration authority
models (C/A-KRA), whereas the reverse implication is proven only in a narrower set of models
(e.g., U/A-CRS, A-KRA) [DNO10DNO10, Table 1]; while [GIKW14GIKW14] shows that “the existence of
a semi-honest OT protocol is necessary (and sufficient) for UC-Com length extension,” the
UC scheme in this dissertation does not make explicit use of OT and can also be seen as
a UC-Com length extension (if replacing the Ext-Com and Equiv-Com schemes with an
Ext&Equiv-Com scheme) — these two results do not superpose, since [GIKW14GIKW14] only allows
a single call to the ideal Com-scheme, whereas the extension herein requires several calls.
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4.2 Intuition for combined Ext and Equiv


This section describes and analyzes at high level a simple but inefficient Ext-and-Equiv Com
scheme for large strings (§4.2.14.2.1), based on a few commitments of short strings. The analysis
then motivates the discussion of different types of extractability (§4.2.24.2.2), and considers
variations in protocol structure (§4.2.34.2.3), serving as a warmup for the description of a more
efficient scheme in the subsequent section.


4.2.1 Cut-and-choose warmup


The commitment scheme, between a sender PS and a receiver PR, is based on a cut-and-choose
approach. After PS sends several (n) instances (in number equal to the statistical parameter σ)
of pairs of short commitments to PR, PR checks the correctness of some (the check) instances
to gain some confidence that some of the others (the evaluation instances) are correct.


For simplicity, the procedural description considers simultaneously two cases (A and B),
depending on whether the Equiv-Coms applied to short hashes are also extractable or not. In
summary, the use of Ext&Equiv-Coms will improve statistical security and also the type of
extractability of the overall scheme, as will be detailed when making the simulation analysis.


Procedure. A sketch of the scheme is depicted in Illustration 4.14.1.


• Initialization. The parties are activated to play a commitment scheme, with an agreed
goal of number of bits (σ = n) of statistical security, with a domain of committable values,
and with PS knowing as private input a target string m to commit.


• Commit phase. For each instance index (j), PS samples a random seed sj and uses it
to calculate a pseudo-random string (mask s′j) with the target length (∣m∣). Then, PS


sends to PR an Ext-Com sj of the seed and either a (non-extractable) Equiv-Com (case 1)
or an Ext&Equiv-Com hj (case 2) of the CR-Hash hj of the mask s′j. Upon receiving all
instances PR cuts the set of instances (each instance being a pair of commitments), into
two random complementary subsets, and chooses one (JV ) for a check operation and the
other (JE) for an eval operation. Then, PS opens the check seeds and check hashes from
the respective commitments, and uses each eval mask to produce a XOR-masking tj (i.e.,
via a one-time pad) of the target string m, and sends the respective maskings to PR. PR


checks that each opened check hash hj is indeed the CR-Hash ηj of the PRG expansion s′j
of each opened check seed sj. Otherwise PR rejects the commit phase, outputting abort.
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Illustration 4.1: Procedure sketch of inefficient Ext&Equiv Com scheme. Legend:
C&C (cut-and-choose); CRH (collision-resistant hash); eval (evaluation); (seed sj); (Ext-Com
sj — like a vault with a single opening); (seed expansion s′j — like a tree growing from a
seed); (hash — like a smashed paper); (Equiv-Com — like a vault with several openings);


(Ext&Equiv-Com hj — simultaneously extractable and equivocable); (message m being
committed — like a text file); (message masking tj — like a masked text file); FExt (ideal
extractable-commitment); FEquiv (ideal equivocable-commitment); C and O (commit and open
phases of a commitment scheme); msg (committed string); PR (receiver); PS (sender); PRG
(pseudo-randomness generator).


• Open phase. PS reveals the committed string m and opens the commitments hj of the
eval hashes. PR computes all tentative eval masks s′j, one for each eval instance, namely
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the XOR of the revealed string m with each respective masking ηj. Then, PR accepts the
revealed string m if and only if the (tentative) hashes ηj of the tentative masks are equal
to the hashes hj opened by PS. Otherwise it rejects the opening, outputting abort.


Analysis of regular properties.


• Hiding. In the commit phase, the string is hidden from PR by one-time-pad maskings.
• Binding. In the open phase, PS is bound to a single string, by collision resistance of


the committed CR-Hash of the masks. Any successful opening, if possible, must open
the string that for each evaluation instance is equal to the XOR of the respective hash
pre-image known by PS and the respective masking.


Analysis of simulatability properties. In spite of high communication complexity —
approximately the product of the target length ∣m∣ by the number e of eval instances — the
scheme has useful simulatability properties (Ext and Equiv), as hinted in Illustration 4.24.2.


• Equivocation. In the open phase, the equivocator-simulator (SR∗
Equiv), impersonating an


honest PS in a simulated execution with a malicious black-box PR, can open any desired
fake string (i.e., not previously committed), by revealing the string and then equivocat-
ing the opening of the hashes of the needed masks, without revealing the inconsistent
evaluation seeds.


• Extraction (case A). (If the Equiv-Coms of the hashes are non-extractable.)
– Procedure. In the commit phase, the extractor-simulator S (SS∗Ext), impersonating an


honest PR in a simulated execution with a black-box possibly-malicious PS, extracts all
committed eval seeds. The cut-and-choose and the reception and verification of check
seeds is done as in the real protocol and does not further interfere with the extraction
procedure, except if the cut-and-choose leads to a direct abort, because of detecting bad
check instances. Then, for each eval instance, S calculates a tentative mask ς ′j as the
PRG-expansion of the extracted seed sj, and uses them to unmask the eval maskings,
thus obtaining a tentative string µj. Finally, S searches for a tentative string m that
is consistent (i.e., the same) in a majority of the evaluation instances. If a consistent
majority exists, then the extraction procedure outputs such string as the decided
extracted message. Otherwise, if a majority does not exist, then the extraction procedure
outputs a delayed abort signal; this means that PS will with overwhelming probability fail
to successfully open any value in the open phase; still, S does not abort the simulation,
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Illustration 4.2: Simulation sketch of inefficient Ext&Equiv Com scheme. Legend
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∗
x [y] (simulator with goal x (Ext of Equiv), impersonating entity


y (PR or PS, resp.) in a simulation with access to a black-box malicious Pp (PS or PR, resp.)).
(fake message to equivocate); (fake mask); (hash of fake mask); ↓m = ⋅ (end of the extraction
procedure, outputting m = ⋅, useful for S to decide what to do in the ideal world).
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because an honest PR would also not abort at this point — in the ideal world S proceeds
by committing (via the ideal commitment functionality) to an arbitrary string.


– Statistical security. The simulation may fail only if, with negligible probability in the
overall number of instances, the majority value accepted by S is in fact different from
a value that PS is able to later successfully open. However, this circumstance would
happen only if PS would have built enough bad instances and be “lucky” that none of
them were selected for check. The probabilities are similar to the case of S2PC protocols
based on cut-and-choose approaches that require a majority of correct garbled circuits.
For example, 123 instances would be the minimum (with 74 selected for check) for
40 bits of statistical security, i.e., so that the error probability would be less that 2−40.


• Extraction (case B). (If hashes were committed with Ext&Equiv Coms.)


– Procedure. The procedure starts similar to case 1, but S additionally extracts the
hash of each evaluation instance. Then, for each seed it computes the respective
tentative mask and from there it computes a respective tentative hash. Then, for each
eval instance, S calculates a tentative mask ς ′j as the PRG-expansion of the extracted
seed sj and computes the respective tentative hash ηj. If the tentative hash ηj is equal
to the extracted hash hj of the respective instance j, then this is assumed as a good
instance and the For loop (i.e., the procedure iterating across all eval instances) does
not need to continue. Then, for this assumed-good instance k = j, S uses the calculated
mask s′k to unmask the respective masking tk and thus obtain a candidate string µ,
which is guaranteed to be the only one (if any) that may be successfully opened in the
subsequent open phase. However, it might still be that PS has maliciously acted in a
way that it is not technically able to open the string, namely if the masking tj and the
committed hash hj of other eval instances are inconsistent with the currently candidate
string µ. Thus, S proceeds to verify if there exists consistency, as follows. For each
eval instance j other than the candidate one (even instances for which the previous
consistency check, in step 1.b, might have failed), PS computes, via an XOR, what is the
tentative mask ς ′j consistent with the respective masking tj and the candidate string µ;
then, S computes as tentative hash ηj the CR-Hash of the tentative mask ς ′j and checks
whether or not it is consistent with the respective extracted hash hj . If any verification
fails in this step, then S knows that a future successful opening is impossible, i.e., that
PS will at most be able to “prove” that it cannot technically open any string. Still, S
does not abort the execution, because an honest PR would also not abort at this point,
and instead assumes that this is the case of delayed abort (i.e., it may in the ideal world
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commit to an arbitrary string). If all verifications succeed, then S is assured that the
candidate string µ is indeed the string m that was correctly committed.


– Statistical security. Extraction of an incorrect value may happen only with negligible
probability in the statistical security parameter (the number of instances), only if a
malicious PS constructs bad instances in number equal to the eval instances, such
that the committed seed is inconsistent with the respective committed hash, and
simultaneously all bad instances are selected for evaluation and all good instances are
selected for check. This may prevent the simulator from even guessing a single candidate
correct string. The statistical analysis for failed executions — number of instances vs.
statistical security — is similar to the case of cut-and-choose of garbled circuits with
forge-and-lose technique (Table 3.23.2). For example, with 41 instances and limiting the
number of evaluation instances to be at most 20, the error probability is less than 2−40.


Remark 4.1 (Decision of the cut-and-choose partition). The cut-and-choose parti-
tion does not need to be decided via a simulatable coin-flipping because equivocation is
directly based on the equivocability of the Equiv-Coms of the hashes, which directly allow
equivocation of the masks of all evaluation instances. Thus, to P∗


R the actions of SR∗
Equiv[PS]


“appear” as correct independently of the cut-and-choose partition.


4.2.2 Nuances of extractability


The scheme just described has extractable and equivocable properties, while still allowing a
malicious sender PS to commit, with noticeable probability, to (what may be called) a delayed
abort. The delayed abort is a state in the end of the commit phase, induced by a malicious
sender P∗


S, whereby the corresponding open phase will with overwhelming probability lead
an honest PR to an abort, for any malicious behavior of P∗


S in a played open phase (i.e.,
except when P∗


S does not play the open phase). In other informal words, even if P∗
S would


“regret” his past malicious behavior, after a successful delayed abort in the commit phase,
P∗
S would no longer be able to successfully open a committable value (except with negligible


probability). The delayed abort state is undetectable to PR during the commit phase (or
otherwise PR could immediately abort, making it a regular abort), and PS is later able to
“prove” an incapability to open the Com.


Cases A and B have different flavors of extractability, because of the respective non-
extractability vs. extractability of the Equiv-Coms of the hashes. First, when in case A the
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simulator extracts an actual message, it may still be the case that PS has committed to a
delayed abort. Specifically, even if the seeds and hashes were properly committed, PS may
still decide after a successful cut-and-choose to produce one or a few incorrect maskings.
Such delayed abort would be undetected to S in case A, but would be detected in case B.
Second, for the same number of instances, case B also guarantees better statistical security.


The possibility of delayed abort motivates a distinction between several nuances of real
Com schemes, depending on how delayed aborts may (or may not) affect extractability:


A. Except-if-abort extractability (ExtExcIfAb). The simulator SS∗Ext[PR] (S, impersonat-
ing PR playing with a black-box malicious P∗


S) is guaranteed overwhelming probability of
correct extraction if P∗


S has not sabotaged the commit phase with a delayed abort. However,
P∗
S is able with noticeable probability (possibly with overwhelming probability) to induce S


to extract a committable value (and believe that P∗
S might still be able to successfully open


it) when in fact P∗
S is “committing” to a delayed abort, i.e., a commitment that technically


guarantees (with overwhelming probability) that a respective open phase cannot lead PR


to accept a committable value.
B. Post-verifiable extractability (ExtPost). S is able with overwhelming probability to


detect a delayed abort and in the remainder cases extract the committed value. Since PR


does not detect a delayed abort during the commit phase, S does not abort in the commit
phase whenever it detects a delayed abort, as it would otherwise break simulatability.


C. Pre-verifiable extractability (ExtPre). Delayed aborts are technically prevented (ex-
cept with negligible probability), because PR detects with overwhelming probability any
such attempt and thus directly aborts in the commit phase. For example, this is what is
achieved in commit phases that contain a ZKPoK of a valid opening of a Com scheme
with non-interactive open phase.


The cases A and B of the cut-and-choose warmup scheme described in §4.2.14.2.1 have ex-
tractability of the respective except-if-abort and post-veriable kinds. This suffices for two-party
commitments (i.e., with single receiver) in the static corruption model. If a malicious PS


performs delayed abort, S may nonetheless commit to an arbitrary string during the commit
phase in the ideal world. Then, in the open phase when PS reveals a delayed abort (if it does),
then S in the ideal world also requests an abort to the ideal functionality. The worlds are
indistinguishable because the real protocol instructs an honest real receiver to not distinguish
between a common abort (e.g., by sending invalid messages in the open phase) vs. a delayed
abort. The case of pre-verifiable extractability is considered in §C.1.3C.1.3.
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4.2.3 Postponing the verification of check instances


Both cases (ExtExcIfAbExtExcIfAb and ExtPostExtPost) of the described protocol can be adjusted by postponing
the verification of check instances to the open phase. This also allows reducing the number
of commitments (Equiv or Ext&Equiv) of hashes, down to a single commitment of a global
hash, i.e., of a hash of the concatenation of all masks, instead of one Equiv-Com per hash
of each mask. This is possible because in the open phase the receiver is indeed supposed
to learn all masks (even though it can only confirm correctness of the check instances with
respect to the seeds). Conditioned to a future successful open phase, the adjusted scheme
still enables, in the commit phase, an extraction procedure.


In the ExtExcIfAbExtExcIfAb case the simulator can still find a consistent majority of tentative strings
obtained from unmasking the eval maskings, based on the masks obtained as PRG expansion
of the extracted seeds. In comparison with the advanced verification of check seeds, the
delayed verification is different with respect to the effect of inconsistent check seeds, because
it only leads to an abort in the open phase. Still, this difference is not relevant when focusing
on ExtExcIfAb, because a malicious sender may in any case induce a delayed abort even if
all check instances are correct and after knowing the cut-and-choose partition, by sending
incorrect maskings for the eval instances. In other words, the predicat (yes or no) of ability
to do delayed abort does not change; what changes is the set of ways in which to do it.


In the initial ExtPost case, the adjustment of delaying till the open phase implies a slightly
more complex extraction procedure. The simulator can still extract seeds and hashes and
verify in advance whether or not they are consistent — any such inconsistency will denote
correspond to a delayed abort. However, for the eval instances an inconsistency might not
imply a delayed abort, because the respective seeds will not be opened. Thus, to ensure
correct extraction in spite of the possibility that some eval masks might be inconsistent
with the respective eval seeds, S may have to verify the tentative global hash induced (in
the simulation) by every possible eval tentative string. In comparison with the extraction
procedure described in Illust. 4.24.2, the adjusted procedure would require computational
complexity larger by up to (in the worst case scenario) a multiplicative factor equal to the
number of evaluation instances (which is nonetheless acceptable).


Remark 4.2 (Corrective remark about ability to do a delayed abort). The original
extended abstract [Bra16Bra16, §5.4.1] contained a remark distinguishing the except-if-abort
(ExtExcIfAbExtExcIfAb) and the post-verifiable (ExtPostExtPost) nuances of extractability. After describing an
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ExtExcIfAbExtExcIfAb protocol using a global hash, it remarked the possibility of improving extractability
via an increase of Equiv-Coms (one per instance). However, the remark overlooked that a
malicious PS that builds correct instances of Ext-Coms of seeds and Equiv-Coms of hashes
(thus ensuring that the cut-and-choose check stage is validated), is still able, after learning the
cut-and-choose partition, to sending incorrect maskings to PR, thus effectively committing to
a delayed abort, if the Equiv-Coms of the hashes are not themselves extractable.


4.3 Improving communication complexity


This section improves the commitment scheme (both cases A and B) of the previous section
to achieve asymptotic communication rate arbitrarily close 1. Besides the PRG, the CR-Hash
and the cut-and-choose involving Ext-Coms and Equiv-Coms (or Ext&Equiv-Coms) of short
strings, the new protocol embeds two main ingredients:


• authenticators: allow the simulator to anticipate whether individual tentative eval masks
(obtained as the PRG expansion of extracted seeds) are consistent with the respective
maskings, thus gaining assurance about correct extraction. This is relevant for the previous
ExtExcIfAbExtExcIfAb&Equiv scheme (case A), or for the global hash version (i.e., where there is a
single committed hash) of the ExtPostExtPost&Equiv scheme (case B).


• an information dispersal algorithm (IDA): (based on a threshold erasure code) allows
splitting the target string into smaller fragments, and allows recovery of the original string
from a sufficient portion of those fragments; based on the IDA the size of each instance of
the cut-and-choose can be reduced proportionally to the number of instances.


4.3.1 Authenticator aid


In comparison with the ExtExcIfAb&Equiv-Com protocol described in the previous section
(§4.2.24.2.2), based on non-extractable Equiv-Coms of hashes and Ext-Coms of seeds, statistical
security can be increased by improving the ability of the simulator SS∗Ext to decide whether
isolated evaluation instances are good or bad. Specifically, the technique hereafter, based on
authenticators, allows SS∗Ext to decide whether a mask calculated as the PRG expansion of
an extracted seed of an evaluation instance is incorrect or is the only one that might enable
a future successful opening of the overall commitment. (Deciding that a mask is correct
still does not prevent a delayed abort, because the hash committed with a non-extractable
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Equiv-Com may still be incorrect and that can only be verified in the open phase.)


With the authenticator capability, still to describe, SS∗Ext will extract an incorrect string
(for now ignoring the case of delayed abort) only if all check instances are good and all
evaluation instances are bad, i.e., only if a malicious P∗


S anticipates the exact cut-and-choose
partition. The new rationale about probabilities is similar to that in recent techniques that
also changed the criterion of correctness regarding the number of correct garbled circuits
needed in a general cut-and-choose based S2PC protocols, e.g., the “forge-and-lose” [Bra13Bra13],
and other “cheating recovery” techniques [Lin13Lin13, HKE13HKE13]. Essentially, the success criterion
changes from “at least a majority of correct evaluation instances” to “at least one correct
evaluation instance.” For example, 40 bits of statistical security can now be obtained with
41 or 123 instances, by respectively limiting evaluation instances to be at most 20 or 8. Since
only evaluation instances are (asymptotically) relevant in terms of communication, with 123
instances this corresponds to a 6-fold reduction in communication.


The intended verifiability of each evaluation instance is achieved by using a short au-
thenticator that allows SS∗Ext to verify whether or not each extracted seed is consistent with
each respective anticipated tentative string. Specifically, when SS∗Ext extracts a seed and
uses its seed-expansion to unmask the respective masking received from PS, only two things
may happen: either (i) SS∗Ext gets a correctly authenticated string, which must be the only
one that PS can later successfully open, i.e., this is a good instance; or (ii) SS∗Ext gets an
incorrectly authenticated string, implying that a successful opening by a malicious P∗


S will
reveal a mask different from the seed-expansion, i.e., this is a bad instance. Also, in order to
allow equivocation by SR∗


Equiv[PS] (when impersonating PS playing against a black-box PR),
the authenticator is masked by an equivocable mask.


The authenticator for each instance cannot simply be a CR-Hash of the string or of its
masking, lest P∗


S would be able to compute in advance the offset between the authenticator of
a bait string (for the simulator) and the authenticator of a target string intended for actual
opening in case of luck. This offset would allow P∗


S to build an instance that would lead
the simulator to unmask an authenticated bait string even though P∗


S would be able for that
instance to later open a different mask that would lead PR to the different authenticated target
string. While this would still lead to an overall incorrect extraction with negligible probability
in the number of instances (because it would require a majority of bad evaluation instances),
it would not be improving over the scheme already described without authenticators.


The authenticator can be achieved with the help of a universal hash family, such that the
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authenticator (in this case an unpredictable hash of the string) of each instance is unpredictable
until the hash of the mask (or a global hash of the concatenation of masks) is committed. The
goal is to ensure that PS cannot produce a masking for which different authenticated strings
can be obtained after two different unmaskings: (i) the unmasking using the PRG-expansion
of the committed seed; and (ii) the unmasking using any other arbitrary mask selected by
PS before the authenticator was known. This property can be enforced by introducing a
random unpredictable value (a nonce) that PR discloses to P∗


S only after P∗
S becomes bound


(i.e., after committing) to the seeds and hashes. This nonce acts like an identifier of the hash
from the universal hash family, i.e., the authenticator becomes implemented as a non-trivial
function that cannot be predicted before the input is fixed, thus making it infeasible for P∗


S


to produce a masking for which two different unmaskings yield authenticated strings.


Concretely, the authenticator can for example be an algebraic field-multiplication between
the nonce and a CR-hash of the string. If the image space of the CR-Hash is the set of
bit-strings of some fixed length (e.g., 256 bits), the nonce can be uniformly selected from the
non-null elements of a Galois field with characteristic 2, modulo an irreducible polynomial
of degree equal to the hash length. This ensures that the authenticators of any two known
strings (which by assumption would necessarily have different CR-Hash) would have an
unpredictable offset. A successful forgery by P∗


S would require guessing this offset, in order
to make the real committed mask have such (bit-wise XOR) offset with the PRG-expansion
of the committed seed. (The full version of the paper discusses authenticators in more
detail, including variations of assumptions — here it suffices to say that in a strict mode
of implementation, where PS also produces an Equiv-Com of the string, the security of the
authenticator can be based solely of collision resistance of a CR-Hash function, or in some
optimized procedures be based on other practical correlation-robust type of assumptions).


If assuming the availability of a NPRO, then the authenticator can be defined as a
sufficiently large NPRO image (e.g., a 256-bit string) when using as input the concatenation
of the CR-Hash of the string and the nonce. In fact, the NPRO can be further used (with
the help of an additional commitment) to make the commit phase non-interactive altogether,
letting PS also decide the cut-and-choose partition based on the previous commitments of
seeds and hash, and on the authenticator of each instance.
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4.3.2 IDA support


Communication can be drastically reduced by using a threshold information dispersal algo-
rithm (IDA) [Rab89Rab89]. The IDA enables splitting (i.e., dispersing) the original long string m
into a number e of shorter fragments, such that the original string m can be reconstructed
from any subset with at least a threshold number t of good fragments, each with a reduced
length. Thus, the instances of the cut-and-choose can correspond to maskings of authenticated
fragments, instead of several maskings of the authenticated full string. As the string length
∣m∣ increases, the asymptotic communication complexity rate is thus proportional to the
number e of evaluation instances divided by the recovery threshold t — this quotient can be
made as close to one as desired.


Isolated fragments of the IDA do not need to semantically hide the original string, as
would a full-fledged secret-sharing scheme [Sha79Sha79, Kra94Kra94], because in the commit phase each
evaluation instance of the cut-and-choose only contains a masked version of the respective
authenticated fragment. The IDA also does not need to support error-correction of semantic
errors [RS60RS60], because the authenticator mechanism gives SS∗Ext (in the role of PR) the ability
to detect errors and thus simply discard bad fragments. More simply, a threshold erasure
code (t-out-of-e) can be used, so that SS∗Ext recovers the string m from any subset with a
threshold t number of good fragments. The encoding can be based on XOR operations, with
linear time complexity. The decoding only needs to be somewhat efficient, because only the
simulator needs to decode; the real parties (PS and PR) only need to encode. A rateless
code would also be possible, with appropriate probabilistic considerations — there are very
efficient instantiations (e.g., [Lub02Lub02, Sho06Sho06]).


The statistical security changes again, with the new criterion for successful extraction
requiring a number of good evaluation instances at least as high as the recovery threshold.
The fragmentation also reduces the overall sum of lengths of all pseudo-randomly generated
masks, i.e., of PRG outputs and CR-Hash inputs. Concrete parameters are given in Table C.1C.1.


4.3.3 Description of protocol


For further intuition, Illustration 4.34.3 gives a pictorial sketch of the commit and open proce-
dures, and Illustration 4.44.4 shows a sketch of the extraction and equivocation procedures.


Section C.1C.1 in Appendix describes in detail (§C.1.1C.1.1) the interactive version of the protocol,
in the hybrid model with access to ideal Ext-Com and ideal Equiv-Com (or Ext-and-Equiv,
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Illustration 4.3: Procedure sketch of rate-e/t Ext&Equiv Com scheme. Legends of
Figures 4.14.1 and 4.24.2 also apply. (message fragment m′


j — can be combined with other fragments
to recover the initial message); (authenticator value aj — vouches for the correctness of the
respective message fragment); (masking tj of an authenticated fragment — the chess pattern
denotes something masked); z (nonce for authenticator); αz (authenticator function, Auth).


in case B) functionalities applied only to short seeds and hashes, respectively. The simulation
analysis (extractability and equivocability) is described in §C.1.2C.1.2.


Remark 4.3 (An interactive version without explicit Equiv-Coms). The use of an
Equiv-Com scheme with PS as sender and PR as receiver can be replaced by an Ext-Com
scheme with PR as sender and PS as receiver, and a regular Com scheme (i.e., possibly neither


Page 167 of 376







Section 4.3. Improving communication complexity (2016-Dec-27)


E
X
T
R
A
C
T


Case


A


1.c. Decode string


SS
∗


Ext


1.b. Get good instances1.a. Extract seeds, get masks


FC
Ext


sj


sj


PRG


ς ′j
sj


For j ∈ JE For j ∈ JE


If
Check instances and C&C
(As in real commitcommit phase)


SS
∗


Ext


µ′j ∣∣αj
tjς ′j


?


µj
aj


Authz


=?


IDARecover


⋮


m


m′
j=µj


(j ∈
JGood)


SS
∗


Ext


, then JGood
Add to
←Ð j ↓m =


?


?


?
ajαj


E
X
T
R
A
C
T


Case


B


PS → S
S∗
Ext [PR]


FC
Ext


sj


sj


For j ∈ JE


FC
Ext&Equiv


hj


Check instances and C&C
(As in real commitcommit phase)


sj


hj


hj


1.a. Extract seeds & hashes 1.b. Find enough good fragments


PRG


ς ′j
sj


?


If ?
ηj


If #(JGood) =? t, then Break (out of For loop)


s′j = ς
′
j


Tentative good
fragment


SS
∗


Ext


CRH


If k < t, then ↓m = DelayedAbort


For j ∈ JE(k = 0)


hj


tj m′
j


ηj


=?


IDASplit


⋮
m


m′
j


(j ∈
JGood)


(j ∈ JE)


IDARecover


⋮


m′
j


m′
j


tj
ς ′j


?
CRH ηj


If ?
ηj hj


≠ then ↓m = DelayedAbort


SS
∗


Ext


For j ∈ JE/JGood


1.c. Recover and verify string


{JGood
Add to
←Ð j, then


}


↓m =


??


SS
∗


Ext


E
Q
U
I
V
O
C
A
T
E


2.c Equivocate needed hashes


SR
∗


Equiv[PS]→ PR


2.b Calculate needed masks2.a Reveal string and get fragments


SR
∗


Equiv[PS]→ PR


m


FOEquiv
hj hj


For j ∈ JE


⋮


m′
j


(j ∈ JE)


m′
j ∣∣aj


For j ∈ JE


tj
s′j


s′j hjCRH
m′
j aj


Authz


SR
∗


Equiv SR
∗


Equiv


SR
∗


Equiv
IDASplit


Illustration 4.4: Simulation sketch of rate-e/t Ext&Equiv Com scheme. Legends of
Figures 4.14.1, 4.24.2 and 4.34.3 also apply. In the extract 2 case, where the hashes were committed with an
Ext&Equiv Com scheme, the authenticators are irrelevant and so are ignored.
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Ext nor Equiv) with PS as sender and PR as receiver and further interaction (see a concrete
construction in [Bra16Bra16, Section D.4]).


Remark 4.4 (Non-interactive commit and open phases). A protocol with two non-
interactive phases can also be achieved, letting the cut-and-choose partition and the nonce
value be computed by PS non-interactively, based on a NPRO and an Equiv-Com scheme,
similarly to how it is used for transforming interactive zero knowledge proofs into non-
interactive ones §A.1.4A.1.4. There, the NPRO uses as part of its input the actual commitments,
which are valued once using real commitment schemes. This makes any eventual interactivity
of the commitment scheme (in the commit and/or open phase) become implicit in the
instantiations of the base commitment schemes (Ext and Equiv). The cut-and-choose and
IDA (erasure code) parameters may have to increase, letting the statistical security parameter
equate the cryptographic security parameter, to mitigate the new possibility that PS could
computationally try a brute-force trial-and-error attempt to exploit the probability of error
that is negligible only in the statistical parameter. A respective protocol description is given
in §C.1.4C.1.4, based on a CRS.


4.3.4 Concrete configurations


The cut-and-choose and IDA threshold parameters are defined in order to match the statistical
security goal and an asymptotic communication rate. Statistically, the optimal attack is to
build the minimal number of bad instances that may prevent correct extraction. The attack
is successful if all bad instances are selected for evaluation, and the number of remaining good
instances is less than the required recovery threshold. This probability is the quotient between
the number of partitions that induce error and the number of all cut-and-choose partitions.


Table 4.14.1 shows optimal parameters for 40, 96 and 128 bits of statistical security, and
several goals of asymptotic communication rate. Asymptotically as ` increases, it is possible
to configure the parameters to yield arbitrary high levels of statistical security and at the
same time reduce the expansion-rate to values arbitrarily close to 1. For example, with
(n; e; t) = (119; 46; 23), the scheme achieves 40 bits of statistical security and an asymptotic
communication expansion-rate r = 2 in the commit phase (the open phase always has an
asymptotic rate 1). With (n; e; t) = (775; 275; 250), the rate becomes r = 1.1, with the
computed PRG output and the hash input being r′ = 3.1 times the string length. Both r and
r′ can be brought arbitrarily close to 1. In appendix, Table C.1C.1 makes a comparison with the
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Table 4.1: UC commitment scheme parameters


A B C D


σmin
rmax 40 bits 96 bits 128 bits 1


∞∞


n = 44
v = 25
e = 19
t = 1
r′ = 44
r = 19


σ ≈ 40.36


n = 100
v = 53
e = 47
t = 1


r′ = 100
r = 47


σ ≈ 96.09


n = 132
v = 68
e = 64
t = 1


r′ = 132
r = 64


σ ≈ 128.06


2


8


n = 53
v = 30
e = 23
t = 3


r′ ≈ 17.7
r = 7.67
σ ≈ 40.19


n = 130
v = 74
e = 56
t = 7


r′ ≈ 18.6
r = 8


σ ≈ 96.21


n = 175
v = 103
e = 72
t = 9


r′ ≈ 19.4
r = 8


σ ≈ 128.30


3


4


n = 69
v = 41
e = 28
t = 7


r′ ≈ 9.86
r = 4


σ ≈ 40.51


n = 169
v = 101
e = 68
t = 17
r′ ≈ 9.94
r = 4


σ ≈ 96.20


n = 226
v = 134
e = 92
t = 23
r′ ≈ 9.83
r = 4


σ ≈ 128.02


4


E F G H


σmin
rmax 40 bits 96 bits 128 bits 1


2


n = 119
v = 73
e = 46
t = 23
r′ ≈ 5.17
r = 2


σ ≈ 40.00


n = 294
v = 186
e = 108
t = 54
r′ ≈ 5.44
r = 2


σ ≈ 96.09


n = 393
v = 245
e = 148
t = 74
r′ ≈ 5.31
r = 2


σ ≈ 128.03


2


3/2


n = 193
v = 121
e = 72
t = 48
r′ ≈ 4.02
r = 1.50
σ ≈ 40.06


n = 474
v = 297
e = 177
t = 118
r′ ≈ 4.02
r = 1.50
σ ≈ 96.03


n = 635
v = 401
e = 234
t = 156
r′ ≈ 4.07
r = 1.50
σ ≈ 128.04


3


11/10


n = 775
v = 500
e = 275
t = 250
r′ = 3.10
r = 1.10
σ ≈ 40.01


n = 1902
v = 1198
e = 704
t = 640
r′ = 2.97
r = 1.10
σ ≈ 96.00


n = 2546
v = 1611
e = 935
t = 850
r′ = 3.00
r = 1.10
σ ≈ 128.01


4


Each parametrization goal is defined by a maximum allowed asymptotic communication expansion
rate rmax of the commit phase, and a minimum statistical security σmin (in number of bits). The
remaining parametrization, devised to achieve an actual statistical security σ = log2(Bin(n, e)) −
log2(Bin(n− b, e− b)) not lower than σmin, and an asymptotic communication expansion rate r = e/t
(in the commit phase) not higher than rmax, tries first to minimize the overall number of instances
n in the cut-and-choose, and then minimize the number e of evaluation instances. From these
parameters follows the optimal (and minimal) number b = e − t + 1 of bad instances needed to allow
(though with negligible probability) an extraction error. The communication rate r is considered
in asymptotic terms, with increasing length of the message being committed, thus amortizing the
communication associated with the base short commitments. The rate r′ = n/t of the length of
input and output of PRG and CR-Hashing performed by PS is also considered asymptotically.


parameters of [GIKW14GIKW14] and possible optimizations.


Remark 4.5 (Simulatable coin-flipping with two bits of communication per
flipped coin). In a setting without rewinding, a simulatable commitment scheme ap-
plied to an arbitrary string requires communication rate at least one in each phase. Thus,
a direct application in the traditional templatetraditional template of coin-flipping leads to communicating at
least 3 bits per flipped coin. It is nonetheless possible to achieve coin-flipping with two
bits per flipped coin (i.e., in an asymptotic amortized sense, as the target length increases).
In a rewinding setting, this could be done with a simple protocol where one party uses an
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Equiv-Com with short commitment and long opening and the other party uses an Ext-Com
with long commitment and short opening [Bra16Bra16]. In a non-rewinding setting, this can be
achieved with a generalized commitment, letting PS commit (in an extractable way) to a
random PRG seed and then verifiably open only the respective PRG expansion. For example,
this could be achieved with a commit phase composed of an Ext-Com of a seed, and an
open phase composed of revealing the PRG-expansion of the seed and giving a succinct zero
knowledge argument [Gro10Gro10, GGPR13GGPR13] that it is the correct PRG expansion. A different
approach, based on linear-time linear-hashing and coding allows the same type of opening
without a ZKP, but instead based on oblivious transfer [CDD+16CDD+16].


4.4 Coin-flipping protocols


This section analyzes different ways in which to achieve simulatable coin-flipping as needed
by the S2PC-with-Coms protocol. Essentially, a simulatable coin-flipping is required to allow
both parties to obtain a random final outer-Com associated with each set of input and output
wires of each party, while letting each party learn the respective outer-randomness associated
with each set of input and output wires of the party. For a particular instantiation with a
minimal round coin-flipping, the requirements change depending on which party (the first or
the second) should learn the outer-randomness. Different protocols are devised for different
instantiations (IFC vs. DLC).


4.4.1 Simple coin-flipping for the S2PC-with-Coms protocol


For the wire sets of PA, the coin-flipping is merged with the decision of initial outer-Coms of
PA. Since PB is the first party to learn the final output, it must hide his contribution to the
permutation at least until PA reveals her contribution. However, since the contribution of PA


would be needed at the same time as producing the initial outer-Coms, the later (which are
already random if selected by an honest PA) may directly be considered as incorporating the
former. In other words, for these wire sets (input and output of PA) it is enough that PB


decides the permutation between initial and final outer-Coms, if it commits to it before seeing
the initial outer-Coms of PA. The commitment has to be extractable and equivocable (as the
one defined in Sections 4.34.3 and C.1C.1), in order to allow simulatability of the final outer-Coms.
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4.4.2 Generalized coin-flipping for the S2PC-with-Coms protocol


For the wire sets of PB, the permutation between initial and final outer-coms needs indeed
to be decided as a combination of contributions from both parties, assuming the initial
outer-Coms of PB are revealed in the first message. The simple coin-flipping is not enough,
because, for simulatability reasons, PB must learn an outer-randomness permutation, whereas
PA may only learn the respective outer-Com. This scenario is more suited to a generalized
coin-flipping functionality, where a party can define a function to be applied to the coin-
flipping outcome of the other party (see Section C.2.1C.2.1). The intended functionality is thus
one where the coin-flipping determines a random randomness, but then the output of PA is
the result of applying the Com of zeros as a function of the randomness. Different protocols
are possible depending on IFC vs. DLC instantiation. (e.g., see Figure C.4C.4).


In DLC, PB learns two random exponents, whereas PA learns two respective ElGamal
Coms of 0. A specialized protocol is possible using as underlying commitment also the
ElGamal Com scheme. Specifically, PB uses ElGamal to commit the contribution of PB,
which is itself an exponent (randomness) of an ElGamal Com of 0. Here, it is possible to send
the NIZKPoK in the clear, about the value committed by the ElGamal Commitment, i.e.,
without having to include the NIZKPoK inside another commitment, because the NIZKPoK
does not reveal nothing about the committed randomness. In the last stage of the coin-
flipping, the ElGamal Com is opened in an equivocable way (i.e., allowing equivocability
to the simulator), by revealing the intended value and then forging a NIZKP that it is the
correct value. The protocol is described in Figure C.6C.6 in §C.2.3C.2.3.


In IFC, PB learns a vector of random square-roots, whereas PA learns the respective
squares. For the needed coin-flipping, PB may commit to a vector of squares and to a
NIZKPoK of the respective square-roots. Then PA sends a random vector of square-roots,
and finally PB opens the commitment and also sends a NIZKP of correctness of the squares.
Both parties can then combine the respective needed elements: square-roots for PB and
squares for PA. This allows S impersonating PB to equivocate the final opening and thus
induce any desired final vector of squares, even if not knowing respective square-roots, because
it can forge the NIZKPoK and NIKP. Correspondingly, S impersonating PA is able to extract
from the initial commitment the vector of squares and from the underlying NIZKPoK also
the respective vector of square-roots — it is thus also able to induce any desired vector of
square-roots. The protocol is described in Figure C.7C.7 in §C.2.4C.2.4.
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Chapter 5


Privacy-preserving brokered identification


This chapter shows that S2PC with commitments can be used as a tool to resolve an apparent
conflict between privacy of users and the operational utility of having a central broker
mediating authentication of many users across identity providers and service providers. This
serves as a complement to the technical S2PC techniques described in previous chapters, by
exemplifying how secure computation may be pertinent in the design of real applications.


The chapter contains results of an analysis [BCDA15BCDA15] of privacy and security problems
of two nation-scale brokered identification system proposals: the Federal Cloud Credential
Exchange (FCCX) in the United States and GOV.UK Verify in the United Kingdom, which
altogether aim at serving more than a hundred million citizens. Considering the increasing
importance of authenticating to online public/governmental services, the nation-scale brokered
identification/authentication systems being proposed intend to reduce the burden of credential
management by citizens, while seemingly offering desirable privacy benefits. For example,
requirements derived from NSTIC [NST13NST13, Req. 5] ask that “organizations shall minimize
data aggregation and linkages across transactions” and call for “privacy-enhancing technology
that ... minimizes the ability to link credential use among multiple service providers.” Also,
IAP ask that “No relationships between parties or records should be established without the
consent of the Service User” (Principle 7.5), and that “My interactions only use the minimum
data necessary to meet my needs” (Principle 4) explicitly referring to data processed at
identity providers and service providers to fulfill requests “in a secure and auditable manner.”
This refers not only to “personal data,” but also to “relationship data” that allows inferring
relationship between the user and other providers.
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Both systems propose an architecture where an online central hub mediates user au-
thentications between identity providers and service providers. However, the initial analysis
has shown that both FCCX and GOV.UK Verify suffer from serious privacy and security
shortcomings, fail to comply with privacy-preserving guidelines they are meant to follow, and
may actually degrade user privacy. Notably, the hub can link interactions of the same user
across different service providers and has visibility over private identifiable information of
citizens. In case of malicious compromise it is also able to undetectably impersonate users.
Yet, within the structural design constraints placed on these systems there are technical
solutions to the identified privacy and security issues.


Considering the great importance of technically preventing the hub from being able to
track users across different service providers, this chapter is focused on showing that S2PC
can be used to allow unlinkability, by the central authentication broker (the hub), of user
pseudonyms across authentications at different service providers. This prevents the hub
from building, inherently to the authentication protocol, the capability to track users across
authentications. This is a relevant example of the importance of having S2PC within the
conceptual toolbox of security practitioners. Other privacy and security problems related to
a compromised hub are just briefly mentioned (e.g., attribute visibility, user impersonation
and linkability of same-user transactions at the same service provider).


Remark 5.1 (A first step). The research on brokered identification described in this
dissertation does not include a formal analysis of the proposed solutions. Instead, it is
positioned as a first step in a process that should require further formalization toward a
better system. Suggested future work includes using the ideal/real simulation paradigm,
which will promote a more thorough reflection about privacy and security requirements,
including tradeoffs between privacy and forensic abilities. Nonetheless, in the perspective
of the privacy-preserving guidelines of underlying strategies, the proposed solutions already
induce privacy properties that are strictly better than the current system that enables a mass
surveillance capability.


Organization. An introduction has been given in Section 1.51.5. The remainder of this
Chapter is organized as follows: Section 5.15.1 defines the brokered identification problem,
the intervening parties and the kind of identification transactions proposed by FCCX and
GOV.UK Verify. Section 5.25.2 infers aims and features of FCCX and GOV.UK Verify and
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enumerates additional desirable system properties. Section 5.35.3 shows how to achieve weak
unlinkability, including via an alternative protocol for S2PC-with-commitments. Several
concluding remarks are elaborated in the next chapter (Section 6.26.2).


5.1 Background


This section describes the entities involved in hub-based brokered identification (§5.1.15.1.1), the
role of pseudonyms and attributes in the envisioned identification transaction use-case (§5.1.25.1.2),
and the approach followed by FCCX and GOV.UK Verify (§5.1.35.1.3).


5.1.1 The identity ecosystem


The problem of credential management arises in the context of an identity ecosystem composed
of entities with different roles. Some of the wording below is borrowed from NSTIC and the
FCCX documents [The11The11, Uni13Uni13].


• A user, also known as individual, citizen, or customer, is a “person engaged in online
transactions;” the term subject can also be used to include non-person entities.


• A relying party (RP) “makes transaction decisions based upon ... acceptance of a subject’s
authenticated credentials and attributes.” The term can be used to denote “individualized
federal agency systems and applications,” e.g., online government tax services, but its use
can also be extended to private-sector service providers.


• An identity provider (IDP) is “responsible for establishing, maintaining and securing the
digital identity associated with” a subject. It can be a “non-federal credential provider”
approved by an accreditation authority to provide authentication assertions up to a certain
level of assurance (LOA). Increasing LOA values (1, 2, 3, 4) increase the “level of confidence
that the applicant’s claimed identity is their real identity” — requisites vary with the
country (e.g., US [FF11FF11] and UK [CES14CES14]).


• An attribute provider (ATP) is “responsible for ... establishing ... identity attributes,”
such as“legal name, current address, date of birth, social security number, email address.”
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5.1.2 Identification transactions


The identification transactions in consideration are those where a relying party (RP) identifies
and authenticates a user based on the ability of the user to authenticate to an identity
provider (IDP). For the RP, the goal of identification is to learn: (i) a persistent anonymous
identifier (notation found in [Cyb11Cyb11, Joh12Joh12, USP14USP14]) of the user, hereafter simply denoted as
user pseudonym, which is always the same when the user connects to this RP after brokered
identification involving the same account at the IDP; and/or (ii) some personal attributes
of the user, validated by the IDP, e.g., name, birth date, address. For the RP, the goal of
authentication is to (i) gain confidence that the learned values are valid for the user with
whom a session is established; and (ii) receive a certified assertion to that effect.


Link to a user account at the RP. A user may want to create or reconnect into a
personal account at some RP. However, the user only knows her own username (e.g., an
email address) at an IDP, and how to authenticate to the IDP (e.g., using a password).
Internally, the IDP is able to associate that username with other identifiers of the same user.
In particular, for each brokered identification scheme the IDP derives a new user pseudonym
for external use with the respective hub. Since it seems that in practice a single hub is being
developed for each of FCCX and GOV.UK Verify, the same symbol u can be used without
ambiguity to denote the user pseudonym defined by the IDP for interaction with the hub. In
both systems, this pseudonym is supposed to be pseudo-random and remain the same for all
transactions with the same user.


Then, the RP learns from the hub a different user pseudonym v, persistently associated
with the RP and with the user pseudonym u at the IDP, but without learning anything about
the user pseudonym u at the IDP. The RP can then internally associate the received user
pseudonym v to a local user account, which may contain further user information. The type
of transformation and the (in)visibility of these pseudonyms is essential in determining the
privacy of the scheme, namely the possible types of (un)linkability that can be inferred from
user pseudonyms.


Attribute integration. As part of identity proofing, it may be necessary to transmit
and/or verify attributes within a transaction, e.g., confirm minimal age before letting a user
create an account. In the simplest case, the initial IDP (with whom the user authenticates) is
able to validate the necessary attributes. In more complex interactions, attribute integration
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IDP RP
u v


Hub


ATPs MS


user


(user pseudonym for
external use with Hub)


(username at IDP) uID


(local identifier at IDP) uLI


vID (username at RP)


vLR (local identifier at RP)


(user pseudonym
obtained from Hub)


Illustration 5.1: Relation between user identifiers at IDP and RP. The new solution
to prevent linkability by the hub is concerned with the transformation between u and v. For
weak-unlinkability the hub should not learn anything about µ. For strong unlinkability the
hub should also not learn anything about v. The other identifiers (uLI, uID, vLR, vID) are
abstractions that remain implicit in the reminder of the analysis.


might have to involve attribute enrichment, i.e., attributes from different attribute providers
(ATPs). For instance, a user logging into a hospital system would use the IDP to prove
their identity, but could need an ATP to show proof of insurance. For simplicity, the case
of additional ATPs is here ignored — this is not yet fully defined or developed in FCCX or
GOV.UK Verify ([Gen14Gen14, Q&A],[Ide13Ide13, Step 9]).


5.1.3 Brokered identification


Hub and Matching Services. FCCX and GOV.UK Verify propose using a brokered
identification scheme, where an online central hub actively mediates the communication
and ensures interoperability between service providers (denoted as relying parties, RPs) and
private-sector identity providers (IDPs), and possibly also involving additional attribute
providers (ATPs). The high-level architecture is illustrated in Illustration 5.25.2. As a result of
an identification transaction (links 1–10 in the figure), the RP identifies and authenticates
the user. In GOV.UK Verify a matching service (MS) also helps validate assertions from
IDPs. Both systems are based on arguable structural constraints, such as restricting the
user-agent (a web browser) to a mostly passive role, except for selecting and authenticating
to the IDP and relaying messages between other parties.


Upon receiving an authentication request from the RP (link 22) the hub helps the user
choose an IDP (link 33) and then redirects the user (and the request) to the chosen IDP
(link 44). Then, as a result of the user authenticating to the IDP (link 55), the IDP sends to the
hub a signed assertion conveying a user pseudonym and attributes (link 66). In both systems,
the hub (and in GOV.UK Verify also the MS) sees the pseudonym and the attributes in the
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(a) Interaction flow


4. SignHub(request)
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3. Select IDP5. Authenticate to IDP 1. Request resource


(7, 8) Possibly also
other parties


via user-agent)
(redirection


persistent and anonymous)
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Bday = 1/2/1993, SSN = 1234}
atts = {name = Jane Doe, address = Street X,


6. SignIDP(u , atts) 9. SignHub(v,atts)


2. SignRP(request)


UserUser


(b) Transmission of pseudonyms and attributes


Illustration 5.2: Simplified identification transaction in FCCX and Gov.UK Ver-
ify. Legend: u (user pseudonym determined by the IDP); v (user pseudonym determined by
the hub for the specific RP); atts (attributes); Signx(⋅) (signature of content ⋅ by entity x).
Metadata is left implicit (e.g., session and message identifiers).


clear. However, the systems differ in how they transform the user pseudonym between the
IDP and the RP, and how they recertify the authentication assertion:


• In FCCX, the hub transforms the user pseudonym u received from IDP into a new user
pseudonym v for the RP, varying with RP. The hub removes the signature of the IDP
(and other metadata), re-signs the assertion, and sends it to the RP (link 99).


• In GOV.UK Verify, the hub relays the assertion from the IDP to the matching service
(MS) indicated by the RP (link 88). The MS validates the signature of the IDP and derives
a new (locally generated) user pseudonym v that is equal for all RPs that choose this MS.
The MS also verifies that the locally-generated user pseudonym and attributes match to a
local user account. Finally, the MS re-signs a new assertion and sends it to the hub (still
(link 88)), who then re-signs the assertion and sends it to the RP (link 99).


A more detailed description of the two systems is given in the original paper [BCDA15BCDA15].
Despite certain differences (namely the MS only existing in Gov.UK Verify), the two systems
share striking resemblances. Indeed, it has been acknowledged that “identity services ...
will need to align internationally over time” [Wre12Wre12]. The analysis herein abstracts from
the differences and only takes in consideration the steps in Illustration 5.2b5.2b that take place
between the IDP (steps 4 and 6) and hub and between the RP and hub (steps 2 and 9).


User limitation. A main design constraint in FCCX and GOV.UK Verify is that the
role of the user-agent (a web browser) in the protocol is substantially passive. The active
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participation of the user is limited to requesting a resource from the RP, selecting an IDP
(from a list) and authenticating to the IDP. Communications between the RP and the hub,
and between the IDP and the hub, are passively redirected through the user. The relayed
authentication requests and assertions are signed by the originator and encrypted for the
intended recipient. Overall, it is assumed that these mechanisms prevent network observers
and the user from viewing the exchanged user pseudonyms and attributes, and/or otherwise
trivial message manipulation attacks.


Types of transactions. While the exemplified identification transaction includes at-
tributes and pseudonyms, NSTIC envisions identity solutions that enable a diversity of
types of transactions, in respect to the type of anonymity/pseudonimity (and in a secure
and auditable way). For example, in a transaction of type anonymous with validated at-
tributes, the RP would not receive any persistent user-pseudonym, and would just obtain
validation of certain attributes (e.g., an age range). In a transaction of type pseudonymous
without attributes, the RP would only learn a persistent pseudonym, but would learn no
user attributes. The solution for pseudonym unlinkability discussed in this chapter makes
sense even for transactions that intend full identification (e.g., persistent pseudonym and
identifiable attributes, including name and other personally identifiable information), because
it is directed at preventing the hub from learning a user pseudonym defined at the IDP.


Out-of-scope alternatives. Privacy aside, linking to a user account at the RP could be
achieved by a direct connection between RPs and IDPs (i.e., intermediated by a passive
user), as accomplished with OpenID Connect [OpeOpe]. However, this would not hide the IDP
and RP from one another, which is a main explicit goal in the FCCX and GOV.UK Verify
context. Alternatively, using group signatures and anonymous credentials [ISO13ISO13] would
allow IDPs to sign assertions that RPs could validate as signed by an entity from within
a specified group, but without knowing who. However, on its own, this approach would
not provide a privacy-preserving way to transform user pseudonyms between the IDP and
the RP and, without an external broker, would require more user involvement to mediate
the communication between the IDP and RP. A group-signature based approach would also
require group membership management and/or a mechanism for detection and isolation of
compromised IDPs that could otherwise taint the trust in the system.


More interesting solutions would be possible if the user could actively aid the brokering
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between IDP and RP, e.g., using cryptographic protocols based on privacy-enhancing tech-
nologies. It could take advantage of a trusted setup, e.g., tamper-resistant trusted hardware
and/or open-source software authenticated by a party trusted by the user (as already happens
when choosing a web browser). In spite of promising alternatives to the designs imposed by
FCCX and GOV.UK Verify, the goal herein is to analyze the privacy and security problems
of FCCX and GOV.UK Verify and propose repairs within their own design constraints.


5.2 System properties


The available FCCX and GOV.UK Verify documentation is incomplete in several aspects.
The FCCX solicitation partially describes certain desirable privacy and security properties,
but does not specify the transaction protocol. The GOV.UK Verify specification defines
protocol steps in more detail, but a well-defined (formal) list of desired properties has not
been found during the analysis described herein. Therefore, the set of properties that they
seemingly intend to achieve (§5.2.15.2.1) is here inferred from their public descriptions.


The privacy and security of FCCX and GOV.UK Verify rely on a fully honest and
uncompromisable hub. In contrast, a good solution should be resilient even against a
corrupted hub, e.g., that is curious (about what it sees) and/or is malicious (about the
actions it takes). For example, documentation related to Gov.UK Verify asserts that “it is
important to understand the impacts that would result should the service be compromised”
[CES12CES12]. For this reason, the analysis hereafter considers two types of corrupted parties:
honest-but-curious (i.e., acting honestly during transactions, but curious to derive information
from the observed communications) and malicious (capable of deviating from the protocol
specification). This gives rise to a number of additional desirable properties beyond those
inferred from the two analyzed systems (§5.2.25.2.2).


A good protocol should also be resilient against malicious collusion, e.g., between RPs, or
between RP(s) and the hub. Yet, to satisfy forensic requirements, certain special cases of
collusions (e.g., collusion between the hub and an IDP, or between the hub, an IDP and an RP)
may be legitimately allowed to reverse certain privacy properties, e.g., unlinkability, under
very well-defined circumstances such as a specific court order targeting a given individual.
Regrettably, in both FCCX and GOV.UK Verify the forensic capabilities of the individual hub
could be abused and enable undetected mass surveillance, without knowledge or compelled
collaboration from any IDP or RP.
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This chapter focuses on unlinkability, though a complete solution should integrate other
important properties, such as privacy of attributes, authenticity (i.e., resilience to imper-
sonation), one-to-one traceability (of logs) and selective forensic disclosure. The aspects of
“unlinkability” here discussed are related to user pseudonyms, ignoring linkability related
to side-channel information, such as timestamps and Internet Protocol addresses. The mit-
igation of side-channels can be addressed in a lower-level specification and/or by prudent
implementation guidelines and/or techniques outside of the scope of the protocol (see §5.4.55.4.5),
but should nonetheless be explicitly considered.


5.2.1 Inferred properties


Authenticity. Upon completion of a transaction, the relying party (RP) should be assured
that it has established a session with the user from whom it holds a fresh claim, and that
the claims are valid (namely the user pseudonym v and attributes). A “session” can mean,
for instance, an authenticated and encrypted tunnel. The root of trust for authenticity rests
with the identify providers (IDPs) and with the hub or matching service (MS). Specifically,
the hub/MSs trusts the authentication assertions received from IDPs and ATPs; the RP
trusts the authentication assertions received by the hub/MS. In GOV.UK Verify the RP
chooses which MS to trust, whereas in FCCX there is a single hub in which to rely. However,
in both systems the authenticity can be broken by a malicious hub.


Edge unlinkability within a transaction. A key idea behind (privacy-preserving)
brokered identification is to shield the “edges” of the authentication system (i.e., IDPs and
RPs) from knowing about each other. The system is said to have edge unlinkability within a
transaction if: (i) the IDP does not learn about who is the RP and MS; (ii) the RP does not
learn about which IDP authenticated the user; and (iii, iv) the IDP and RP do not learn
about the user pseudonyms at the other party.


Traceability. If an auditor challenges the legitimacy of an action taken by a party, with
respect to a transaction, then the party should be able to justify it based on a verifiable
preceding action. Specifically, for each authentication request sent from the hub to the IDP,
the hub must have a respective request signed by the RP; for each authentication assertion
sent from the IDP to the hub, the IDP must have a respective request signed by the hub; for
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each assertion sent from the hub to the RP, the hub must have a respective assertion signed
by the IDP; and for each user login at an RP, the RP must have a respective assertion signed
by the hub. The intention of traceability (not explicitly discussed in the design documents)
is inferred from the use of signatures in the proposed FCCX and GOV.UK Verify systems.
Traceability is useful toward allowing auditability of the behavior of each isolated party.
However, it is possible to achieve traceability more meaningfully than in FCCX and GOV.UK
Verify, namely to promote better accountability. Specifically, one-to-one traceability would
mean that, if the hub justifies one authentication request or assertion on the basis of another
authentication request or assertion, then such justification is the only one possible [BCDA15BCDA15].


5.2.2 Additional desirable properties


Table 5.15.1 shows several complementary properties of unlinkability and how they are or are not
achieved in the analyzed systems. Section 5.35.3 describes one solution for weak unlinkability
across RPs; Section 5.45.4 hints at approaches to achieve complementary unlinkability.


Unlinkability by the hub. The hub should not be able to link the same user across
different transactions. Since the hub is part of the brokered identification system, this
unlinkability property is required to satisfy the notion intended by NIST: “unlinkability
assures that two or more related events in an information-processing system cannot be
related to each other” [BSBC13BSBC13]. NSTIC also asks that “organizations shall minimize data
aggregation and linkages across transactions” [NST13NST13, Req. 5], and IDAP principles says that
“no relationships between parties or records should be established without the consent of the
Service User.” [Pri14Pri14, Principle 7.5]. Two weak nuances and a strong notion are considered:


• Weak unlinkability across RPs: the hub cannot link transactions of the same user (as
defined by an account at an IDP) across different RPs. Since a user account at the IDP can
be used to access many RPs, the user pseudonym defined by the IDP can be considered
a global persistent identifier and thus should not be learned by the hub. Neither FCCX
nor GOV.UK Verify satisfy this. In the UK, allowing global persistent identifiers conflicts
with the political sensitivities that arguably lead to the rejection of identity cards [BD11BD11].
In the US, NSTIC specifically calls for “privacy-enhancing technology that ... minimizes
the ability to link credential use among multiple RPs” [NST13NST13, Req. 5].


• Weak unlinkability across IDPs: the hub or MS cannot link different transactions facilitated
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Table 5.1: Unlinkability properties across systems
A B C D E F G


Properties


Systems Direct
connect


FCCX
GOV.UK
Verify Achievable 1


Edge
unlinkability
within a


transaction


RP identity is hidden from IDP NO YES YES 2


IDP identity is hidden from RP NO YES YES 3


Unlinkability
across


same-user
transactions


Weak


hub/MS cannot link
user across RPs — NO YES (§5.35.3) 4


hub/MS cannot link
user across IDPs — Y/N∗ NO YES (§5.4.35.4.3) 5


Strong hub cannot link
user across transactions — NO YES (§5.4.15.4.1) 6


Change of RP is
hidden from IDP NO YES YES 7


Edge Change of IDP is
hidden from RP NO N/Y∗ NO YES 8


Colluding RPs cannot
link pseudonyms YES† YES NO‡ YES 9


Selective forensic disclosure# — NO YES (§5.4.75.4.7) 10


Legend: “YES” is good for privacy; the two alternatives in cell E5E5 (Y=Yes or N∗=No) are entangled
with the complementary alternatives in cell E8E8 (N or Y∗) — the second alternative (∗) results from
an optional account linking functionality [Uni13Uni13]; cell D9D9 (†) assumes that the IDP sends different
user pseudonyms to different RPs; cell F9F9 (‡) considers RPs that have chosen the same MS; in
row 1010 (#), the property is meant in opposition to total disclosure by default.


by different user accounts at one or more IDPs leading to the same user account at a given
RP. In GOV.UK Verify such linkage is performed by default by the MS (chosen by the
RP), based on the user attributes. The user thus does not control who has the ability to
link, nor when to allow linking — a clear privacy deficiency. FCCX offers, via an optional
account linking feature, a tradeoff: endow the hub with the capability of linkability across
IDPs, in exchange for allowing authentication to each RP from different accounts at IDPs.
This tradeoff can nonetheless be avoided [BCDA15BCDA15].


• Strong unlinkability: the hub cannot link transactions where the same user account at
an IDP is used to access the same user account at an RP. Neither FCCX nor GOV.UK
Verify satisfy this property.
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Edge unlinkability across transactions. Edge unlinkability has been discussed in the
context of a transaction; the notion can be extended across transactions as follows:


• Across two transactions with the same user account at an IDP: the IDP does not learn
whether the accessed RP has changed or not. This property can be inferred from the
FCCX and GOV.UK Verify designs.


• Across two transactions with the same user account at a RP: the RP does not learn
whether the assisting IDP has changed or not. This property is achieved in FCCX when
using an “account linking” option, but with a privacy tradeoff that could be avoided in a
more sophisticated solution [BCDA15BCDA15].


• Across transactions with the same user account at an IDP but different RPs: (i) several
colluding RPs cannot link the user based on their lists of user pseudonyms; (ii) if several
RPs colluding together know, from an external source, that respective user pseudonyms
correspond to the same user, they are still not able to predict anything about the user
pseudonym at another RP. This is satisfied in FCCX, but not in GOV.UK Verify where
different RPs (that have chosen the same MS) receive the same user pseudonym.


Attribute privacy. The visibility of personal identifiable information, namely attributes,
should be reduced to the bare minimum necessary for the purpose of each party and as
consented by the user. For example, RPs should learn nothing more than “necessary” and
requested (e.g., an age predicate, instead of a date of birth). Thus, there should exist
capability to deal with predicates of attributes, but the actual definition of what is “necessary”
is outside the system model considered in this analysis. Since the role of the hub is to help
the interoperability of transactions, supposedly without interest about user information, it
should not have visibility into the attributes being exchanged or verified. This is required
by the FCCX procurement, but is not achieved [Gen14Gen14, Q&A 2.3]. The GOV.UK Verify
specification simply defines a protocol where the hub and MS have visibility of attributes. In
GOV.UK Verify the MS explicitly uses attributes to help link the user into a local account.


Resilience against impersonation. In spite of the trust placed in the hub to broker a
transaction, a maliciously compromised hub should not be able to break authenticity. It
should not be able to gain access to a (honest) user account at a (honest) RP. However, in
FCCX and GOV.UK Verify a compromised hub is able to impersonate users.
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Selective forensic disclosure. NSTIC [NST13NST13, Req. 22] and IDAP [Pri14Pri14, Princ. 9]
contain provisions about forensic capabilities and exceptional circumstances. They consider
“forensic capabilities to ... permit attribution” and possible “exemption from ...[other]
Principles that [the exemption] relates to the processing of personal data” if “necessary and
justifiable in terms of” foreseen exceptions to the “Right to respect for private and family life”
[Eur10Eur10]. With this in mind, a desirable property might be to have the ability to do a limited
reversal of weak or strong unlinkability (or attribute privacy) in special cases where a subset
of entities are compelled to aid in an adequate investigation, e.g., following a subpoena.


Assume the hub pinpoints a transaction related to a certain triplet (IDP, u, RP1), where
“user” is an agent with user-pseudonym u not known by the hub. Two types of selective
forensic disclosure are envisaged below:


• Coarse-grained. Compelled collaboration of the IDP may allow the hub to gain full
linkability of past (logged) transactions of the selected user with any RP (i.e., pinpoint all
such transactions), but without affecting the unlinkability of other users.


• Fine-grained. Compelled collaboration of the IDP and some RP2 with the hub may
allow the hub to pinpoint past (logged) transactions of the same user with this RP2, but
(i) without IDP learning who is RP1 and RP2, (ii) without the hub learning about any
other transactions of the user with any RP other than RP2, and (iii) without breaking
unlinkability of other users. In other words, edge unlinkability is preserved and weak
unlinkability is selectively broken to investigate a user in connection to one or several
selected RPs, without leakage about interactions with other RPs. If RP1 is RP2, then the
IDP does not need to collaborate.


In sharp contrast, in FCCX and GOV.UK Verify both types of leakage happen by default
and without any need for collaboration. This is a serious vulnerability, and could open the
way to undetected mass surveillance.


5.3 Achieving weak unlinkability across RPs


In FCCX and GOV.UK Verify, the hub has full visibility of the user pseudonym (u) defined
by the IDP. Thus, the hub — and whoever can gain control over it, legitimately or not
— can link transactions of the same user, as defined by a user account at an IDP, across
different RPs. This gives the hub excessive visibility into the activities of all users. It also
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violates the selective forensic disclosureselective forensic disclosure property, by allowing linkability without the help of
the respective IDPs or RPs. Even if there are provisions about not storing some data (e.g.,
in GOV.UK Verify), a system should be at least secure in an honest-but-curious adversarial
model, where seeing is equivalent to storing. In FCCX, the hub is supposed to log activities
related to all transaction steps for at least one year online and 7.5 years offline [Uni13Uni13]. In
any case, clear and specific information should be made public about existing security-related
logging.


This section proposes a solution for weak unlinkability (by the hub) across RPs, involving
interaction between IDP and the hub. The solution is directly applicable to FCCX, but
not to GOV.UK Verify where the user pseudonym is transformed by the MS. Anyway, the
proposal in the original paper [BCDA15BCDA15] is that the GOV.UK Verify structure be changed
to integrate this solution, since it is also shown that the MS does not ensure authenticity
against a malicious hub, and poses additional threats against unlinkability.


The subsequent analysis assumes for simplicity a transaction without attributes. In fact,
a privacy preserving solution should also hide the attributes from the hub, and this may be
considered as a complementary problem.


5.3.1 Initial intuition


Linkability by the hub of user pseudonyms across RPs can be avoided by hiding u from the
hub, and with the hub learning v (the user pseudonym to send to RP) as a pseudo-random
value. The pseudonym v is persistent for each pair (u, r) composed of the user-pseudonym at
IDP and of an identifier r of the RP, defined by the hub for interactions with the IDP. Also,
the IDP must not learn anything about r and v. This is an instance of a secure-two-party
computation (S2PC), where the hub learns a function of combined inputs but neither hub nor
IDP learn the input or output of the other. The IDP provides u as input; the hub provides r
as input and receives v as output.


The function can be a block cipher, with the key being the user pseudonym u held by
the IDP, and with the plaintext being the RP identifier r held by the hub. By definition,
the output v of a secure block cipher is indistinguishable from random, if the key (u) is
random. The RP identifier r must be unpredictable by the IDP so that the output v is also
unpredictable by the IDP.


For example, (Yao-protocol-based) S2PC of the AES-128 block-cipher is a de facto
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standard benchmark in S2PC research [DLT14DLT14]. The respective circuit requires 6,800 garbed
gates [Bri13Bri13], which is about 13 times less than for a SHA256 circuit. While a S2PC-AES
execution is slower than a simple exchange of signatures, available benchmarks show that
its computation can be achieved under a second [FJN14bFJN14b]. Furthermore, after the user
authenticates to the IDP, the IDP and the hub can execute the S2PC “behind the scenes,”
without user intervention, i.e., unlikely to add a usability burden.


If user pseudonyms are 256 bits strings, then a single AES-128 cipher evaluation is not
enough and actually other block-ciphers may have circuit designs that enable even more
efficient S2PC implementations. For example, one of the “LowMC” ciphers proposed by
Albrecht et. al [ARS+15ARS+15, Table 1, case 15] for 256 bits of security, with block-size and key-size
of 256 bits, requires only 1374 AND gates. Using these parameters in a DLC instantiation
based on ECC would enable reducing communication to about 1 Mega Byte, for an oblivious
evaluation of the block-cipher, with each party (the IDP and the hub) also receiving ElGamal
Coms of inputs and outputs, if assuming a statistical security of 30 bits, with a cut-and-choose
with 98 instances and limiting the number of evaluation instances to at most 6. While the
mentioned cipher is not standardized and needs more security analysis (as mentioned by the
authors) [ARS+15ARS+15], it does at least highlight the potential for communication improvement
based on the design of the cipher.


Recent techniques allow a further amortization of the computational complexity of S2PC
in a multiple execution setting, i.e., when evaluating many times the same circuit, and
allowing various tradeoffs between offline and online phases [HKK+14HKK+14, LR14LR14]; this applies
here as the hub and each IDP are involved in many transactions.


Even if S2PC of a block-cipher encoded in a Boolean circuit is not the perfect solution to
achieve weak unlinkability across RPs, it is a proof-of-possibility demonstrating that weak
unlinkability is achievable within the imposed constraints and thus ought to be required in
privacy-preserving brokered identification systems.


5.3.2 Adding traceability


To achieve traceability, the IDP should also sign an assertion that allows the hub to justify
subsequent actions related to v in this transaction. While theoretically this could be achieved
by embedding a signature calculation within the generic S2PC module, it would prohibitively
increase the cost of the computation. To avoid this, signatures can be computed outside of
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the S2PC module, as follows. Each party signs and receives a signature of commitments that
hide and bind the parties to the respective inputs used and the outputs obtained in the S2PC.
For example, given the secrecy constraints, the IDP does not sign the unknown pseudonym v,
but rather a commitment efficiently obtained in the S2PC. The commitment hides v from
the IDP, but binds the hub to the value, preventing association with any other value. The
process is also applied to the inputs of both parties, to commit the hub to a RP identifier
(r), and to commit the IDP to the user pseudonym (u). These commitments need not be
opened, except in an eventual audit that so requires.


The needed commitments can be obtained by a specialized S2PC protocol that directly
provides commitments of the inputs and outputs of both parties, which is exactly the case of
the S2PC-with-Coms protocol defined in this dissertation. (The original paper [BCDA15BCDA15] also
proposes an alternative (non-simulatable) protocol for S2PC with commitments, applicable
to any generic black-box S2PC protocol of Boolean circuits, and any type of commitments.
The mechanism therein uses external commitments as complementary input to a S2PC of a
block-cipher circuit augmented with some embedded universal-hashing operation. There, a
party may still use in the S2PC inputs different from those committed, but traceability is
not affected because an audit would detect an inconsistency with overwhelming probability.)


5.3.3 Analysis


Security properties. Unlinkability follows directly from the hiding properties of the
commitments and of the block cipher. By the S2PC properties, the IDP learns nothing about
v or r. By the pseudo-randomness of a block-cipher with a random secret key, the hub learns
nothing about u. Traceability for each party follows from the signature by the other party,
containing values that the party can prove being unequivocally associated with only one
particular input and/or output. Specifically, in a later audit phase, a party could verifiably
open a commitment of her input used and/or output received in the S2PC.


Basic audit example. Consider an authentication assertion sent from the hub to the RP
(link 99) in Illustration 5.2b5.2b, containing a pseudonym v and a session identifier n. (Attributes
are ignored, as their transmission is complementary to the problem of transformation of
pseudonyms). If an auditor challenges the hub about this transaction, the hub can prove
correctness of behavior as follows. First, it shows the respective assertion signed by the IDP
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(link 66), which (among other elements) should contain a different session ID n′, and the
commitments of inputs of both parties and commitments of output of the hub. Second, the
hub proves a correct relation between the two session IDs and that the IDP is the expected
one, e.g., based on a traceability solution that ensures that the IDP and the RP see different
session identifiers, but which allows the hub to prove that the identifieres are related to
the same transaction and the correct entities — see [BCDA15BCDA15]). Third, the hub opens the
commitments of his input and output, allowing the auditor to verify that the output is indeed
the user pseudonym at the RP, that the input is a valid identifier of the RP, and that the
respective commitments have been signed by the IDP.


Privacy-preserving audit actions. The above described basic audit action is not exactly
privacy-preserving, as it requires the hub to reveal the identifier it used for the RP. This
would allow a malicious auditor to later correlate this information with other audits. An
alternative could be for example for the hub to simply prove that his committed input is a
collision-resistant hash whose pre-image starts with a prefix equal to the RP public identifier
(and then followed by an unpredictable string never revealed).


As another example, it is conceivable an audit action that asks the IDP to prove that
in certain two transactions the user pseudonym u is the same (or different), but without
actually revealing the user pseudonym(s). This would be efficient with commitments based
on group operations (e.g., ElGamal commitments). Nonetheless, it would still be possible
even for commitments based on symmetric primitives, using efficient zero knowledge proofs
based on garbled circuits [JKO13JKO13]). The wide range of possible considerations corroborates
that it would be useful to have available a specification of envisioned auditability use-cases,
in order to better ponder possible alternatives of commitment schemes.


Formalizing a solution. The discussed weak-unlinkability solution is more privacy-
preserving than what is proposed by FCCX, but it does not yet reach an adequate level of
formalization for implementation. First, a proper solution should include an integration with
other properties, as those discussed in the next section, and should be validated by a proof of
security. Second, the kind of adversarial scenarios one may want to protect against should
be further considered. In a motivating use-case scenario, two different user-pseudonyms (v1


and v2) at an RP may be leaked to public information, perhaps due to some unintended
data breach related to an audit. Then, the IDP can easily find to which users (i.e., to which
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user-pseudonyms at the IDP) they correspond, using the following simple procedure. For
each leaked user pseudonym at an RP, the IDP builds a list of tentative RP identifiers (r),
by inverting the block-cipher with each known user pseudonym u at IDP. Then, comparing
the two lists, IDP finds the unique common element, which is the RP identifier used by the
hub (and which should be unpredictable to IDP), and learn the respective user pseudonyms
(u1, u2) at IDP (i.e., of the users affected by the data breach). Furthermore, this alone also
lets the IDP predict any other user-pseudonym at the same RP. This particular issue does
not affect the previously defined properties (Section 5.25.2), but it does not allow a gracious
failure when there is a leakage of user pseudonyms at an RP. While this particular problem
can be resolved by changing the block-cipher application, e.g., using as key an XOR of the
two inputs, or using a blockcipher-based cryptographic hash function [PGV94PGV94, BRSS10BRSS10], the
example conveys the benefit that would arise from further formalization.


5.4 Other aspects of unlinkability


5.4.1 Strong unlinkability across RPs


In the above proposal for weak unlinkability across RPs, the hub still knows the user
pseudonym (v) sent to the RP. This allows the hub to link the same user across different
transactions associated with the same RP. In a more privacy-preserving solution, the hub
would never receive a persistent user pseudonym. As an initial approach, this can be solved
based on an ephemeral, secret and random key or mask m, shared between the IDP and RP
and hidden from the hub (see §5.4.45.4.4). It is ephemeral in that it is generated for a one-time use,
i.e., once for each transaction. Its secrecy can be derived from an appropriate key-exchange
protocol. Its randomness can be enforced by the hub, via efficient two-party coin-flipping.
Then, the hub and IDP implement a S2PC-based solution, similar in spirit to what was
described for weak unlinkability, but with the following differences (here leaving implicit
needed augmentations for traceability): the IDP also inputs the shared key into the S2PC;
the hub inputs into the S2PC an authenticated enciphering of the RP identifier, as received
from RP — calculated by the RP using the shared key; the S2PC deciphers the RP identifier,
if and only if the shared key inputted by the IDP is the same as the one used by the RP — if
the internal verification fails, then the S2PC outputs an error bit and nothing else; the hub
then learns a masked and authenticated version of the user pseudonym for the RP, instead of
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the value in clear. Then, the hub sends the output to the RP, who can verifiably open the
persistent user pseudonym.


In the above-mentioned approach the ephemeral encryption key is common between the
IDP and RP and so can be used to link the user accounts at IDP and RP if an honest-but-
curious IDP and RP collude offline sometime after a transaction. This kind of linkability
might be considered secondary in comparison with linkability by the hub, first because it
requires collusion between the IDP and the RP outside of the protocol, and second because
such linkability may already be facilitated by other identifiers, e.g., the timestamps at the
IDP and RP are already very closely related, assuming the full transaction is performed in
real time. Yet, it is possible to augment the mentioned approach to prevent the ephemeral
key from being common at the IDP and RP. The hub may actively mediate the key-exchange
and subsequent communication as a “blind” but active man-in-the-middle, such that the IDP
and the RP learn different keys with certain homomorphic properties and the hub learns a
kind of “homomorphic offset” that enables homomorphic re-encryption of messages between
the IDP and RP, and vice-versa, but without learning any of the keys of the IDP and RP,
nor being able to decrypt any message. Then, the S2PC module would receive from the
IDP the user pseudonym and the local ephemeral key of the IDP, and receive from the hub
the homomorphic offset and an authenticated-enciphering of the RP identifier encrypted
with the ephemeral local key of the RP. As a result, the S2PC would return to the hub an
authenticated enciphering of the user-pseudonym for the RP, using as key the key of the RP.


5.4.2 Unlinkability against colluding RPs


In FCCX, each RP receives from the hub a different and uncorrelated user pseudonym v.
However, in GOV.UK Verify such user pseudonym depends only on the MS and on the user
pseudonym at the IDP. In other words, v does not change with the RP (assuming the same
MS). Thus, two externally colluding RPs (with the same MS) can trivially link the same
user in different transactions across the two RPs. This can be avoided by letting v vary
pseudo-randomly with the RP. If the MS were to know the RP, which would be detrimental
to weak unlinkability, a trivial solution would be to calculate v as a value varying with RP. If
the MS does not know the RP, then the user pseudonym could be changed at the hub (e.g.,
as proposed in Section 5.35.3, also achieving traceability). In GOV.UK Verify, the protocol is
geared towards unequivocal identification, not selective disclosure, as it assumes a matching
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dataset (MDS) of attributes. Thus, this solution in isolation (i.e., varying the user pseudonym
with the RP) would not make linkability impossible, but only not easier than what is already
possible without brokered identification.


5.4.3 Weak unlinkability across IDPs


Full unlinkability requires solving also the case of authentications across IDPs.


Multiple options for connection. It may be desirable to let a user access the same
user account at RP via different accounts at IDPs. This can be achieved after a matching
registration process at each RP, as follows: (i) first, the user connects using a certain user
account at an IDP (i.e., a regular transaction); (ii) then, without disconnecting, the user and
the RP proceed to a new transaction, with the user reconnecting but through a different
account at the same or a different IDP (the same user may have different accounts at the
same IDP); (iii) depending on the requisites of the user account at RP, the RP may perform
a matching of user-attributes to guarantee, with the adequate level of assurance, that the
different connections correspond to the same user; (iv) if the matching is successful, the
RP links the two different user pseudonyms into the same local identifier. Thereafter, a
transaction through any of the accounts at IDPs leads to the same account at RP. However,
this procedure breaks edge unlinkability in regard to changing IDPs, i.e., the RP knows when
the user is changing IDPs.


As an alternative, in FCCX an “account linking” option is provided for a user to link
different user accounts at IDPs into a single local account at the hub. It is based on the
above registration procedure, but replacing the RP by the hub. The change of IDPs is thus
automatically hidden from all RPs, because the user pseudonym that the RP receives from the
hub does not vary with the IDP. However, this solution breaks weak unlinkability across IDPsweak unlinkability across IDPs
and it is further incompatible with weak unlinkability across RPsweak unlinkability across RPs, as it explicitly allows the
hub to link the user to a unique identifier. In other words, in FCCX the feature of allowing
the user to connect to the same account at RP via several different accounts at IDPs comes
at the cost of disallowing weak unlinkability.


In GOV.UK Verify, the MS has the task of matching into a local account the user
pseudonym (u) and user-attributes (atts) received from the IDP. Thus, by default the MSs
also break weak unlinkability across IDPs, besides breaking edge unlinkability in regard to


Page 192 of 376







Ph.D. dissertation: The forge-and-lose technique and other contributions to S2PC-with-Coms (2016-Dec-27)


RPs that choose the same MS. Even though the MS is instructed to only save a hash version
of each u, all are linked to a local identifier. This is compulsory, without choice by the user.


A privacy-preserving solution. The above mentioned tradeoffs can be avoided with a
different solution that avoids linkability across different IDPs and at the same time allows the
user to connect through multiple user-accounts at IDPs. Informally, the best of both worlds
is possible — enabling a user to authenticate to the same RP through different accounts at
IDPs, such that: (i) the hub cannot link the same user across different transactions; (ii) the
RP does not know whether the same or a different IDP is being used; (iii) a single matching
registration is enough to determine the default behavior for all RPs, but the user can avoid
the feature on a per-connection basis; (iv) the user chooses which party to trust with the
matching operation, instead of being imposed the hub (in FCCX) or (unknown) MSs chosen
by RPs (in GOV.UK Verify). A solution outline is given in the original paper [BCDA15BCDA15],
based on an identity integrator service, which may be logically separated from the remaining
actions but in practice may be offered by a kind of IDP.


5.4.4 Attribute privacy


If the role of the hub is simply to facilitate the identification transaction, supposedly without
interest about private information of the user, then it should not see user attributes flowing
between the IDP and the RP. However, this is not the case in the inferred authentication
protocol depicted in Illustration 5.25.2. A solution approach to this problem can be based on
encrypting the attributes in a way that the hub cannot decrypt but the RP can. Intuitively,
one solution could be based on (the well known) Diffie-Hellman key exchange (DHKE),
which would provide a secret key between two parties, without any passive eavesdropper
being able to learn it. However, there are some difficulties. First, a good solution should be
resilient to a man-in-the-middle attack by a possibly malicious hub. This kind or problem
is typically thwarted with an authenticated DHKE, where both parties authenticate the
exchanged messages. However, this direct approach is not possible because the IDP and RP
do not know the public key of one another, lest it would break their pairwise anonymity.
Instead, an auxiliary-channel DHKE can be performed, with the user transmitting a short
string (e.g., 8 alphanumeric characters, renewed ) between the RP and IDP, such that an
active man-in-the-middle attack can only succeed and remain undetected if the hub guesses
in advance the string of the ongoing session.
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While the described solution is not directly related to generic S2PC, its actual imple-
mentation should consider an integration with the S2PC-based solution for the pseudonym
unlinkability problem. For example, an ephemeral secret key exchanged between IDP and
RP constitutes on itself an identifier of the transaction, which a colluding pair IDP+RP
could hypothetically use to correlate the steps of the identification transaction. Whether or
not such linkability is relevant is another matter. In fact, it is likely that a collusion of RP
and IDP would already allow a correlation by timestamp of the transaction. Nonetheless, a
more complex solution may allow the hub to actively intermediate the key-exchange protocol
in a way that it effectively guarantees that the RP is able to decrypt a message using a key
that is not correlatable with the key that the IDP as used to encrypt it.


5.4.5 Unlinkability of other identifiers


Side-channels or covert channels can be used with or without intention to leak identifiers that
allow some types of linkability.


Pseudonym unlinkability vs. user-agent identifiers. Even with an inherent weak
and strong pseudonym-unlinkability solution with respect to the authentication protocol, the
hub may achieve via side-channel information the ability to link users across transactions.
For example, on a typical usage a user may keep invariant her own Internet Protocol address
and/or other information leaked about the user-agent (e.g., identifiers of the web-browser and
plugins). The techniques to reduce such side-channel information are outside of the scope of
the solutions described herein (e.g., connecting through an anonymized network, and using
software that shields the amount of leaked information). Nonetheless, it is clear that it would
be useful to have such concerns be made explicit, e.g., by specifying the records kept by the
hub, and requiring that the users be informed of the respective potential for linkability.


Edge unlinkability vs. attributes. Several side-channels also exist between the IDP
and RP, e.g., in the encoding of attributes and contextual records. Thus, it would be useful
to devise explicit requirements about normalization, or active sanitization by the hub or MS,
to avoid such side (or even covert) channels. They can for example be avoided by enforcing
secure comparison of attributes, instead of direct transmission. If the RP already knows
the candidate attribute values then the hub can mediate a secure comparison, by comparing
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randomized hiding commitments of the attributes, as submitted separately by IDP and RP.


Edge unlinkability vs. session ID. SAML specifies that the authentication request ID
n must be unique [OAS05OAS05, §1.3.4], but does not specify that it cannot be linkable to the
issuer. Thus, if it is an invariant across a transaction, i.e., the same at RP and IDP (as
required in GOV.UK Verify), then it can be trivially used to leak to the IDP who the RP is,
thus breaking edge unlinkabilityedge unlinkability. This could happen even in compliant implementations, e.g.,
if it is a counter (likely to be different across RPs and thus acting as a pseudonym), or even
a concatenation of the RP identifier and a counter. A malicious RP could further define n as
an enciphering of a randomized version of its own public identifier, thus revealing itself to
an IDP possessing the appropriate key; no auditing by the hub (oblivious to the key) would
distinguish this request ID from a genuinely random one. One solution against this is to use
an efficient coin-flipping protocol between the hub and RP, to enforce a random session ID.
Alternatively, and additionally avoiding linkage through session IDs even if comparing the
databases of the IDP and RP, the hub may use with IDP an authentication request ID (n’)
different from the one (n) received from RP. Care is needed in this case to ensure traceability.


5.4.6 Traceability


The signatures exchanged between parties in FCCX and GOV.UK Verify provide some level
of traceability if the hub is honest. If questioned by an auditor about a certain authentication
assertion or request, the hub can show a related assertion or request (assuming respective
logs are recorded). However, for the same request from RP or same assertion from IDP, a
malicious hub may produce several requests and assertions. For example: (i) in GOV.UK
Verify, the hub could undetectably send the assertion to two different MSs, to illegitimately
obtain two user identifiers; (ii) in FCCX, the hub could undetectably produce assertions for
two different RPs; (iii) in FCCX and GOV.UK Verify the hub could collude with a rogue
IDP, to obtain a respective assertion, besides the legitimate one. Later, in a limited audit the
malicious hub could use the most convenient justification, while hiding the legitimate and/or
other illegitimate ones. This can be improved with a property of one-to-one traceability. The
intuition is that each party commits to the details of the next action, before receiving the
“justification” (i.e., the signed material) referring to the previous action. The commitments
need not be opened during the transaction, but only in case of auditing. §5.3.25.3.2 has a sketch
on how to achieve this in connection with weak unlinkability, with respect to pseudonyms.
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5.4.7 Selective forensic disclosure


The coarse-grained nuance is trivially possible by the proposed solution for weak and strong
unlinkability. For that, a compelled IDP just needs to let the hub know of all transactions
associated with the same user account at IDP. While this breaks weak unlinkability for the
user, it preserves the privacy of other users and so it is already strictly better in comparison
with FCCX and GOV.UK Verify, where selectiveness of forensic disclosure is not possible
(as linkable identifiers are leaked to the hub by default in all transactions). The fine-grained
nuance is possible via a different procedure, based on a transaction flagged as a forensic
investigation. Given a pinpointed transaction with (IDP, user, RP1), and a targeted RP2,
the hub initiates a forensic transaction between RP2 and IDP. This is a regular transaction
but with two main differences. First, since the IDP is collaborative, it interacts with the
hub as if the actual user (defined by u) had authenticated — as a result (and assuming the
solution for strong unlinkability) the RP learns (but the hub does not) the respective user
pseudonym at the RP. Second, the RP receives information that this is a forensic transaction
— the information is signaled through the IDP, independently of the hub, in order to prevent
a malicious hub from actually impersonating the user. This allows RP to control whether or
not (depending on the subpoena) to give the hub access to the internal user account. Then,
a collaborative RP may inform the hub about the past transactions (i.e., their session IDs)
involving the same user account.


Authenticity against malicious hub. A maliciously compromised hub is capable of
impersonating users in order to access their accounts at RPs. For example: the RP is not
ensured that the final user is the agent that initiated the protocol; since the hub learns
the user pseudonyms needed by RPs, it can reproduce assertions that would be accepted
by them; for each user authentication with an IDP, the hub can concurrently continue the
transaction with several RPs. Intuitively, the problems can be solved with techniques that:
allow the RP to verify that the initial and final users are the same; and which prevent the
hub from predicting the user pseudonyms; Some of these properties can be achieved based on
an integration of the previously mentioned techniques, e.g., PINs (so that the authentication
at the IDP is related to the selected RP); for strong unlinkability (so that the hub never gets
to see which pseudonyms to impersonate).
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Chapter 6


Conclusions


Secure two-party computation (S2PC) is a beautiful concept, possibly counter-intuitive at
first encounter. Its exploration enables a distinctive reasoning about privacy and security
problems, namely by virtue of the underlying ideal/real simulation paradigm. This dissertation
described a new protocol for S2PC with commitments, with innovative components that
improve efficiency and applicability, and resting with a clear vision that further improvements
are possible. While the main contributions of the dissertation are technical, S2PC has a wide
potential applicability in the area of privacy, deserving a reflection on matters that go beyond
mathematics, informatics and cryptography.


The ability to achieve S2PC brings about pertinent questions concerning trust. On one
hand, S2PC enables to a great extent avoiding the need for trusted third parties, i.e., those
that are usually used to mediate interactions between two parties, but which otherwise would
not have a personal interest in the private information involved in such interaction. On the
other hand, there are arguable reasons (including sociological ones) why one might, in certain
contexts, prefer a setting where trusted parties exist, possibly even if not initially backed
up by corresponding trustworthiness. For example, in certain social settings there may be
a founded belief that trust itself may promote an increase of trustworthiness, by making
people rise to the occasion, i.e., becoming trustworthy up to the level of trust placed on
them. Naturally, the opposite may and does also occur — malicious and unaccountable abuse
of trust settings, namely in informatics systems not properly secured and audited. Beliefs
aside, if S2PC can remove the need for trusted parties, it can also allow a secure interaction
involving parties that would otherwise not be trusted for some roles.
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Limiting the applicability of S2PC to the avoidance of trusted third parties could lead
to a narrow perspective, promoting an unduly emphasis of negative use cases. It would
thus be short-sighted to simply present S2PC as tool related to “hiding” information and
about getting rid of trusted parties. It is pertinent to state a more positive and constructive
note: S2PC is a tool with the potential to empower users, and society as a whole, to elevate
privacy to a dimension that is not focused on “having something to hide” but is rather more
aligned with “having something to protect” — individuality and diversity, the freedom to
choose and select what to share and express, including the capability to define the correlations
of private-information that are allowed to external parties. S2PC promotes this empowerment
by allowing each party in an interaction to have a fine-grained control of what about its
private input (in a computational context) is leaked when interacting with another party
toward an established functional goal (learning a function of the combined inputs).


In a world with increasing tension between the right for privacy and the need to ensure
security for the masses, S2PC (and more generally secure computation) may enable a useful
compromise between privacy and an utility of combining private information from different
parties. For example, it may enable verification of needed predicates about personal attributes
(e.g., fit within an age range, healthy), without requiring disclosure of specific semantic values
(e.g., birth date, list of diseases), thus voiding some otherwise arguable justifications for privacy
violation. However, as S2PC overcomes technical challenges and becomes more practical, the
progress in its adoption in broader use-cases depends also, to a large extent, on the progress
to be made in expanding awareness about privacy, at individual and collective levels, as a
shared concept, as a respected right, and exercised in a responsible manner, considerate of its
dynamic and contextual nature. The study of S2PC provides knowledge and skills that may
dissipate sometimes-illusory contradictions between privacy and sharing of information. Yet,
these should be complemented with a strategy of education for privacy, promoting critical
thinking and attitudes about privacy ... but that is a matter for other dissertations.


Organization. The remaining sections in this chapter give concluding remarks about the
goals and contributions of this dissertation. Section 6.16.1 comments on the designed S2PC-
with-Coms protocol and some of its components (e.g., simulatable commitment schemes),
and highlights the diversity of instantiation possibilities and the flexibility for tradeoffs and
engineering decisions. Section 6.26.2 reflects on the need for further research toward privacy-
preserving brokered identification, exemplifying that S2PC can act as privacy-enhancer,
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particularly mitigating a vector of mass surveillance (linkability) that is present in the analyzed
brokered identification systems. Section 6.36.3 mentions envisioned technical improvements
toward more practical S2PC-with-Coms.


6.1 A protocol for S2PC-with-Coms


As a main goal, this dissertation presented a complete protocol for S2PC with commitments
(S2PC-with-Coms), combining an outer layer of commitments with an inner layer of S2PC
based on a cut-and-choose of garbled-circuits. The contributions herein are an increment to
the state-of-the-art in an area that has developed throughout a long line of research for more
than three decades with contributions from many researchers in cryptography.


The protocol design, attentive to simulatability requirements and with an intention of
improving efficiency and applicability, required the combination of many components, e.g.,
non-interactive zero knowledge proofs (NIZKPs) and proofs of knowledge (NIZKPoKs),
oblivious transfers, coin-flipping, and extractable-and-equivocable commitments and BitCom
schemes with trapdoor, while leaving flexible the possibilities of instantiation, and interfacing
with black-box components, such as garbled circuits, PRGs and CR-Hash functions.


In comparison with the original S2PC-with-BitComs protocol that introduced the forge-
and-lose technique [Bra13Bra13], the revised description in this dissertation generalized several
aspects, with corresponding challenges. It was now described within the UC framework
(namely simulatable without rewinding) and minimizing the interaction between parties. As a
result, certain NIZKPoKs became more complex and the protocol requires setup assumptions.
The new description allows several cryptographic instantiations, namely based on integer-
factorization cryptography (IFC) and discrete-log cryptography (DLC). All ZKPs and ZKPoKs
were revised, now being described in a non-interactive setting, based on separate Ext-Coms
and Equiv-Coms, all of which can for example be based on the same short common reference
string. Several engineering decisions are left open to implementation phase. For example,
there are different requirements across types of trusted setup (GCRS vs. GPKI) and types of
cryptographic instantiation (IFC vs. DLC), several computational vs. communication tradeoffs
associated with parameters and selection method of the cut-and-choose partition, namely
in non-interactive vs. interactive settings. An actual implementation requires awareness of
what security parameters to use and where to include NIZKPs and/or NIZKPoKs, where to
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generalize BitComs to BitStringComs, and ensuring that interaction timing does not disclose
whether or not the forge-and-lose path was used.


S2PC-with-Coms is an augmentation of simple S2PC of Boolean circuits, in the sense
that both parties also learn random commitments of all circuit input and output bits, and
each party receives the randomness associated with the commitments of her own bits (with
said commitments and randomnesses not being computed by the garbled circuit). Within
the overall construction, several components stand-out as innovative, e.g., the forge-and-lose
technique (already subsequently used in other works), a 2-out-of-1 oblivious transfer at the
level of BitComs for an IFC-based instantiation of S2PC, a new simulatable commitment
scheme (using the expand-mask-hash approach) instantiable in a non-interactive setting and
with asymptotic rate arbitrarily close to 1 in each phase, a revised version of a NIZKPoK of
Blum integer trapdoor, the abstraction of connectors (connecting commitments to garbled
wire keys) that are statistically verified within the cut-and-choose approach.


The combined description of both types of instantiation highlights diverse contrasts.
The research herein did not involve an actual computational implementation, but includes
a detailed estimation of communication complexity components, which may be helpful to
support engineering decisions during an implementation. While most S2PC protocols in the
literature use DLC to somehow support the oblivious transfers and to ensure consistency of
circuit input bits used within the cut-and-choose, this dissertation also considers the use of
Blum integers, which allows different tradeoffs. For example, the trapdoor of (IFC-based)
GM BitComs allows the simulator to directly extract bits and randomness from any BitCom,
but the trapdoor of (DLC-based) ElGamal BitComs only allows direct extraction of bits,
not the commitment randomness (this would require computing a discrete log). This means
that the DLC instantiation requires several NIZKPoKs of discrete log, whereas in IFC a
single NIZKPoK of Blum integer trapdoor is sufficient in a PKI setup. While extraction
of committed bits would be enough in a simple S2PC (to let the simulator learn the input
to use in the ideal world), such extraction is not enough for S2PC-with-Coms, where a
real protocol needs to emulate a randomization of commitments. As a result, even though
the described IFC instantiation requires more communication per commitment, there are
components of the protocol where DLC primitives nonetheless incur a larger cost (e.g., in
number of exponentiations).


Optimal tradeoffs remain to be decided depending on application contexts and implemen-
tation choices. For example, in regard to input bits of PB (the circuit evaluator), the use of a
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2-out-of-1 OT in an IFC instantiation makes it trivial to link sequential executions, without
requiring more exponentiations. Conversely, in a DLC instantiation the straightforward link-
age would either require more exponentiations (the second message of a two-step 1-out-of-2
OT) or an initial interaction associated with OT extension.


Achieving simulatability of random commitments turned out to contribute with a sig-
nificant communication complexity to the overall protocol. Particularly, the decision of
random outer-Coms permutations was achieved via a simulatable two-party coin-flipping,
which requires an Ext-and-Equiv commitment. For a single-time S2PC without interest in
commitments, several communication components can be ignored. For example, using elliptic
curve cryptography, an estimated communication complexity for a S2PC of AES-128 circuit
(without outer commitments) is about 2MB, whereas it is 3MB for S2PC-with-Coms.


Forge-and-lose. Since its inception, the forge-and-lose approach, i.e., an evaluation path
allowing PB to recover the input of a malicious PA without further interaction upon evaluation
of garbled circuits, has already been utilized with variations in different works (§3.6.23.6.2). For
example: it was meanwhile used in a minimal-round protocol for S2PC [AMPR14AMPR14], there
with a construction based on DLC; another work [FJN14aFJN14a] used a construction that does not
rely on number-theoretic assumptions, namely without trapdoor commitments, but requiring
internal changes to the underlying Boolean circuit. The original forge-and-lose technique was
described based on Blum BitComs (which were also used to enable the 2-out-of-1 OT), but
the description herein uses more generic Ext-BitComs and Equiv-Coms, thus also becoming
instantiable in DLC based on Pedersen BitComs. It is foreseeable that the forge-and-lose
approach (i.e., including variations to the described forge-and-lose technique) will continue
finding applicability within protocols based on cut-and-choose. Specifically, the approach
very generally allows an improvement of statistical security of cut-and-chooses implemented
in contexts where selective failure attacks would otherwise require a majority of correct
instances selected for evaluation.


Coin-flipping. Coin-flipping is one of the sub-protocols required in S2PC-with-Coms, to
enforce the randomization of commitments. The lack of communication efficiency of older
UC commitment schemes (a fundamental primitive for UC coin-flipping) motivated research
toward more efficient coin-flipping. This lead to the development of a new UC commitment
scheme, simultaneously extractable and equivocable, with both phases having asymptotic
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rate arbitrarily close to 1 and being instantiable as non-interactive (i.e., requiring a single
message) based on a non-programmable random oracle. Prior and contemporary constructions
with similar communication rate require an initial interactive phase of oblivious transfers
[GIKW14GIKW14, DDGN14DDGN14, CDD+15CDD+15, FJNT16FJNT16, CDD+16CDD+16].


6.2 Toward privacy-preserving brokered identification


The analysis of the FCCX and GOV.UK Verify brokered identification systems evidenced
severe privacy and security problems, raising concerns about mass surveillance and overreach
to private information. In the analyzed systems, the hub is able to profile all users in respect
to their authentications across different service providers. If compromised, the hub can even
actively impersonate users to gain access to their accounts (and the associated private data)
at service providers. This represents a serious danger to the privacy of citizens and, more
generally, to civil liberties. The described vulnerabilities are exploitable and could lead to
undetected mass surveillance, in sharp contrast with the views of the research community
[IAC14IAC14] whose scientific advances enable privacy-preserving and secure solutions.


Based on the research findings [BCDA15BCDA15], it is clear that in the interest of privacy and
security the systems should be adjusted to address plausible threats and achieve resilience
against a compromised hub. This dissertation discussed a solution based on S2PC-with-Coms,
to address a main problem of linkability across authentications. Besides promoting privacy-
preserving solutions for a real contemporary system, the application of S2PC as a privacy
enhancer also motivates further research in the area.


A comprehensive solution for brokered identification still requires greater formalization.
One would need a design specification and proper requirements, followed by a fully specified
and unambiguous protocol, accompanied by a proof of security. As a first step, a formal
framework for brokered authentication could perhaps be devised based on the ideal/real
simulation paradigm. The framework would integrate all the security, privacy, auditability
and forensic properties at stake, while considering an adversarial model in which any party,
including the hub, may be compromised and/or collude with other parties.


The research did not only consider exposing privacy problems, but also the challenge
of proposing a privacy-preserving alternative. The systems under analysis are subject to
certain (arguable) design constraints that preclude certain cryptographic solutions (existing
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in the literature) that would otherwise fit as a solution for privacy-preserving authentication.
Nonetheless, the S2PC-based solution described herein shows that those design constraints
should not be an excuse to forfeit desirable security properties, such as unlinkability by a
central authority. Conceptually, once understanding that secure computation enables the
realization of a counter-intuitive functionality (computing over inputs distributed across
several parties, without sharing them), it becomes clear that certain operational goals (e.g.,
mediation of authentication transactions) do not need to overshadow privacy goals (e.g.,
unlinkability of same-user transactions across different service providers).


The clearer reasoning made possible by the ideal/real simulation paradigm also reveals
the fallacy of the structural design of the analyzed systems: in order to avoid a problematic
linkability by identity providers, the introduced online central entity gains an even wider
linkability power. It is as if the ideal/real design paradigm was used in a thwarted manner,
simply projecting into the real world the trusted party of the ideal world. This reasoning leads
to a very pertinent question: if the design of S2PC protocols is about getting rid of the “trusted
party” artifact conceptualized for a protocol in an ideal world, then why should the hub even
exist in the real world? An attempt to answer the above question induces an explicit reasoning
about the role of the hub. Besides enabling a mediation between identity providers and service
providers, and users, while enforcing a mutual blinding between the two types of providers,
is there any additional role for the hub? Perhaps it may be intended as facilitator of certain
auditability and/or certain selective forensic actions. Even if some aspects of this role may
be arguable, it is extremely important to make those intentions explicit and public, to allow a
design and review that considers an informed balance between privacy, security, auditability
and forensics. In this regard, the research presented herein exposes that the inferred protocols
are exploitable to allow undetected and unaccountable surveillance of all users.


If the role of the hub is not to allow mass surveillance (and based on NSTIC and IDAP it
is here assumed that the brokered identification projects should indeed be about providing
a privacy-preserving solution to citizens, as well as be transparent about auditability and
forensic capabilities), then its role should be made more explicit. Several possibilities of
selective forensic analysis and auditability have been very briefly mentioned in this dissertation,
in a context differentiated from mass surveillance. For example, the hub could be made
able to perform forensic investigations, selectively per user and/or per the user accesses at
particular service providers, but only when aided by other entities (e.g., identity providers
and/or service providers) that may be independently incentivized to prevent abuse by a
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compromised hub. At the same time, in regard to logged authentication transactions, the
actions of identity providers and service providers may be made auditable. It is here suggested
that envisioned use cases of auditability and forensic analysis should be formalized within the
ideal/real paradigm. Particularly, if the hub has a place in the real world, being susceptible
to adversarial corruption, then it ought to also have a corresponding role in the ideal world,
but not as the ideal world “trusted party” (which by definition never gets compromised).


After the publication of the mentioned research results [BCDA15BCDA15], a governmental institute
in the US has published a draft white-paper [GLM15GLM15] calling out for development of more
secure and privacy enhancing solutions that may address some, but not all, of the identified
problems. A followup “public comment” [BCD16BCD16] has been submitted, based on the initial
research [BCDA15BCDA15], as a contribute to the revision of the white paper, in order to promote a
more thorough and integrated solution to the identified problems.


Besides needed technical developments with respect to privacy and other properties, the
expanding immersion of brokered identification in society also motivates a thorougher reflec-
tion about matters of identity vs. identification and authentication. For example, when should
an identity attribute be forced a valuation for the purpose of identification? Of particular sig-
nificance is the role of “identity providers” — which could, perhaps more accurately, be called
“identification/authentication facilitators”. While they may help users identify and authenti-
cate to certain service providers, an excessive reliance on them may foreseeably have a degrad-
ing effect on the value of identity self-assertions. In an extreme case where authentication would
become mandatory and exclusive via brokered identification systems, could the presence of an in-
dividual become insufficient to prove its existence? This too is a matter for other dissertations.


6.3 Further research on S2PC-with-Coms


6.3.1 Technical improvements


Overall, the described S2PC-with-Coms protocol leaves open a considerable number of
opportunities to pursue complexity improvements, which deserve further analysis. Several
technical improvements do not require changing the protocol structure and can focus on
individual components; others may be derived from different approaches.
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1. Better NIZKPoKs. The NIZKPoK of Blum integer trapdoorNIZKPoK of Blum integer trapdoor described in a non-
interactive and non-rewinding setting, based on a short common reference string reusable by
all other NIZKPs and NIZKPoKs in the S2PC-with-Coms protocol, requires communication
of group elements in number linear with the statistical parameter, and computation of a linear
number of extractable commitments and a unitary number (two) of equivocable commit-
ments and non-programmable random oracle (NPRO) calls. Similarly, the NIZKPoK of DLNIZKPoK of DL
requires communication of a linear number of group elements, which is much more expensive
than the traditional Schnorr protocol possible in an interactive setting and if rewinding is
allowed. It is thus natural to pursue solutions that would allow the needed NIZKPoKs with
reduced communication, e.g., up to a unitary number of group elements, without significantly
increasing computation.


2. Better extractability of discrete log (DL). In regard to the outer-Coms, the proto-
col requires extractability not only of the committed bits but also of the “randomness” used
to produce the commitments. This is easy in the IFC instantiation, where a single ZKPoK of
trapdoor enables the simulator to extract square-roots (i.e., the randomness used in BitComs)
from subsequent BitComs. However, in DLC instantiations the simulator is not able to extract
discrete logs, even if it knows the trapdoor of ElGamal commitments. For this reason, an added
NIZKPoK of DL is produced for each outer ElGamal commitment, and also for the coin-flipping
of outer-Com permutations for wire sets of PB. An avenue of improvement of the overall proto-
col efficiency would be to devise a new and efficient commitment scheme that directly allows ex-
traction of discrete logs from a trapdoor, and which retains the useful homomorphic properties.


3. Better bit-string Ext-Coms in IFC. In some components of the S2PC-with-Coms
protocol, the use of DLC allowed compacting a vector of BitComs into a single bit-string
commitment of size equal to a single BitCom, reducing the communication complexity with
respect to some connectors and to the coin-flipping of permutations, and reducing the size of
the final state of each party. For IFC, while Blum Equiv-BitComs can be easily generalized to
a compact bit-string Com with homomorphic properties (see §B.4.1.2B.4.1.2), the described parsing
of GM bit-string Ext-Coms was only logical, not compressing their overall size. An efficiency
improvement can conceivably be obtained by also compacting them into a bit-string Ext-Com
with additive properties. This case was not explored herein, but an IFC-based additively
homomorphic encryption scheme can be used to produce additively homomorphic Ext-Coms.
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An envisioned starting point is the Paillier encryption scheme [Pai99Pai99], which can be based on
Blum integers and requires twice the size of the Blum integer to commit to a bit-string. As
another example, there is the encryption scheme of Benhamouda et al. [JL13JL13], with shorter
ciphertext expansion for a single committed short bit-string (e.g., requiring a single group
element of the size of the modulus to commit up to 128 bits), but requiring a modulus
obtained as the products of two primes where one prime has remainder 1 upon division by a
power of 2. Both examples are based on assumptions similar to the intractability of deciding
the residuosity degree (e.g., quadratic or higher) of certain group elements.


4. Better oblivious transfers (OTs) for connectors of input of PB. It would be
interesting to find a way to reduce the communication associated with the connectors of
input of PB, with an impact similar to the one obtained for connectors of input of PA, where
the number of communicated group elements was reduced by using bit-string commitments
instead of BitComs. This may perhaps be achievable based on a generalization of the several
2-out-of-1 OTs (in IFC) or the 1-out-of-2 OTs (in DLC) into a respective 2n-out-of-n OT
(in IFC) or n-out-of-2n OT (in DLC), without incurring a linear increase in number of
communicated group elements, and such that a single group-element (e.g., a commitment to
n bits) would allow deriving the needed n garbled keys.


On a different perspective, the protocol can become computationally more efficient by
directly improving the 1-out-of-2 OTs or 2-out-of-1 OTs. An obvious approach is to use OT
extension techniques [KK13KK13, KOS15KOS15, ALSZ15ALSZ15] for 1-out-of-2 OTs, extending a small base of
less-efficient OTs into many very-efficient OTs. As a disadvantage, bootstrapping the OT
extension requires an initial interactive phase to implement the initial OTs. Nonetheless,
there are applications where the slight increase of number of communication rounds is not
problematic. It is left as an open problem how to devise an OT-extension technique applicable
to the IFC-based 2-out-of-1 OT (namely with number of exponentiations independent of the
number of OTs). This would mean allowing one party, knowing square-roots of many squares,
but now knowing the integer factorization of the modulus, to help another party, knowledgeable
of the factorization, to compute all square-roots with a sub-linear number of exponentiations.


5. Reducing complexity of connectors of PA. The technique described for connectors
of input of PA allows that, for each challenge instance, all permutation bits (i.e., across
all input wire indices) are compacted into a single BitString Com. However, the overall
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construction (based on a pseudo-homomorphism) is still dependent on the initial generation
of BitComs (one per input bit of PA), to handle the conversion of an additive sum in a group
of large characteristic into a sum (XOR) in a group of characteristic two and large order
(bit-strings). The additional BitComs could be avoided if the bit-string Com was directly
XOR-homomorphic. Recent UC Com schemes can be instantiated as homomorphic in an
extension of a field of characteristic two, thus being potentially applicable [CDD+16CDD+16], even
though requiring a setup of oblivious transfers. However, it is less clear how to make those
commitments more meaningful in a multi-party execution, where the PKI-based commitments
from one party should be meaningful for other parties not directly involved in a S2PC, i.e.,
which did not participate in the setup OT of the respective Coms. Since they are based
on an initial base of oblivious transfers, they also require a setup interaction. Thus, an
interesting avenue of research is developing more efficient non-interactive commitments
allowing homomorphic XOR of bit-strings.


6. More efficient non-interactive transformations. The described NIZKPs and
NIZKPoKs (Appendix AA) as well as the non-interactive transformation used in the Ext&Equiv-
Com scheme (Appendix CC) were all based on a NPRO transformation, whereby the prover
decides a cut-and-choose challenge as a NPRO image of an equivocable commitment. For
sub-protocols (e.g., a cut-and-choose of garbled circuits) built as a parallelization of binary
challenges in number proportional to the statistical parameter, the respective transformation
for the non-interactive setting requires increasing the number of binary challenges up to the
number of bits of computational security (e.g., 96 bits for short-term protocol durations,
128 bits for longer term), even if the context of the overall protocol only requires a shorter
statistical security parameter (e.g., 40 bits). It is here noticed that some of those NIZKPs and
NIZKPoKs can actually take advantage of the interaction of the embracing S2PC-with-Coms
protocol, to reduce complexity without increasing the overall number of rounds. This can be
done with a technique where the challenges are previously committed via an oblivious transfer,
as can be used for the cut-and-choose of the SP2C (see §2.4.22.4.2, describing the suggestion from
[AMPR14AMPR14]). The sequence of binary challenges of NIZKPs and NIZKPoKs produced by PA


can be committed as part of the initial message of PB, letting PA then reply with two answers
such that PB only receives the one selected via the OT. The same applies to the NIZKPs and
NIZKPoKs in the second message of PB, if PA also initiates respective OTs in her previous
message. However, the technique is not directly applicable to the NIZKPs and NIZKPoKs
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contained in the first message of PB. Still, it is conceivable that an improvement is possible
based on a PKI setting, taking advantage of the public parameter of PA already possessed
by PB. Also, when considering a multi-execution setting, where a pair of parties intends to
perform many S2PC executions, an initial preparation of OTs can be used for subsequent
NIZKPs and NIZKPoKs, i.e., useful even for the first message of PB in each subsequent execu-
tion. Ignoring the cost of the additional OTs, this may represent a communication reduction
of a factor between about 2.4 and 3.2 for the cost of NIZKPs and NIZKPoKs, when comparing
40 bits of statistical security vs. 96 bits (short term) or 128 bits (long term) of computational
security, and a computational increase due to the additional erasure encoding and decoding.


7. Forge-and-lose and/or linkage at different levels. The forge-and-lose technique
allowed a significant reduction of number of instances within a cut-and-choose. The original
technique was developed at the level of garbled circuits. Conceptually, it is intuitive that
this may be applied at different levels, internal to a circuit. As suggested in the original
paper, an integration with the Lego approach may be promising, as there the cut-and-choose
approach already enables a better statistical security for the same number of gates. As a
different example, in a multi-execution setting, where the same circuit needs to be executed
multiple times, the cut-and-choose can be applied across many circuits in advance, and
thus the requirements for each execution in separate take advantage of a better statistical
security [HKK+14HKK+14, LR14LR14]. Considering the linkage application suggested by the availability
of outer Coms or BitComs of a S2PC-with-Coms, a different related approach that seems
to be very promising is the case of linking together several identical sub-components of a
circuit. This approach may be advantageous when considering a large circuit that can be
described as a sequential iteration of very similar sub-circuits. For example, this may be
applicable to block-ciphers and hash functions that are designed as a multi-round execution
of a smaller circuit. The idea is to start by building a slightly larger sub-circuit that accounts
for all differences between sub-circuits [KKW16KKW16], i.e., that can replace any sub-circuit, in
order to be in a setting where each S2PC is indeed a sequence of many equal sub-circuits.
Then, by linking them all together, with appropriate connectors, the initial cut-and-choose
statistics will be based on the number of sub-circuits, and the likelihood that across different
circuits always the same sub-circuit is incorrect. Given the large numbers of sub-circuits, a
better statistical security can then be achieved with fewer circuits. This would also have
to account for the cost of connectors between each pair of sequential sub-circuits, but at
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least asymptotically (with increasing size of sub-circuits for the same number of input and
output bits) it would yield better results. Taking this reasoning to the limit, the linkage could
happen at the level of each individual gate, thus enabling a maximum number of (very small)
instances in the cut-and-choose. Here the cost of connectors would become the bottleneck,
but further improvements in instantiations of connectors may make this a feasible approach.


6.3.2 Applicability considerations


1. Linkage through commitments. S2PC-with-Coms provides an easy way to link
several executions (§3.5.53.5.5). Since the randomness of outer Coms is never revealed, the same
outer-Coms can be used directly in subsequent execution. The linkage occurs at a layer
abstract to the garbled circuits, and its support on public-key commitments (e.g., based on
a global CRS or PKI, where everyone knows the public parameters of every party) makes
it applicable to multi-party settings. Conversely, the output wires of check circuits are not
directly reusable across different executions. It is nonetheless conceivable that linkage may be
achievable based on symmetric-key cryptographic primitives, possibly leveraging the garbled
values (wire keys) used in garbled circuits. Since the protocol described in this dissertation
defines connectors as abstract structures that connect public-key commitments to garbled
keys and vice-versa, it is likely that there are possible synergies between linkage at the level of
commitments and linkage at the level of wire keys. A recent formalization of reactive linkage
at the level of garbled circuits appears in [NR16NR16]. It is certainly worth exploring concrete
applications where linkage of several small circuits may provide a benefit in comparison with
a single evaluation of a much larger circuit (e.g., for S2PC of an optimal decision tree from a
database partitioned across two parties [LP02LP02]). It is likely that more efficient additively-
homomorphic commitments may enable more efficient constructions, namely protocols that
directly enable bit-wise XOR homomorphism for bit-strings, such as the scheme devised by
Cascudo et al. [CDD+16CDD+16] (in spite of its initial interactive phase for bootstrapping OTs).


2. Two-output with fairness. The ideal functionality described herein did not consider
fairness, whereby either both parties would learn their respective circuit output or both
parties would learn nothing about it. Interestingly, the described IFC instantiation is already
explicitly based on Blum integers, which are naturally suited to known fairness solutions
based on gradual release [GMPY06GMPY06] (inherently interactive, after the whole evaluation of
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garbled circuits). Essentially, the protocol would be augmented to have the circuit output bits
of each party be XORed with a private random bit-mask of the other party. Each of the mask
bits is then committed in a particular way, with an auxiliary Blum integer trapdoor known
by the other party. Finally, the parties play a gradual release protocol for the trapdoors of
the auxiliary Blum integers (one for each party), which once learned allows each party to
automatically decrypt all circuit output bits. The fairness extension is trivial as described for
the circuit outputs, but would be more intricate to implement if designed to also encompass
the outer-Coms and respective openings. More efficient solutions are possible in the presence
of a trusted arbitrer [KM16KM16], which only needs to intervene in case one of the regular parties
performs early abort.


3. Multiple executions. The estimation of communication complexitycommunication complexity in this dissertation
considered cut-and-choose configurations for an individual execution. However, in a multi-
execution setting, where the same Boolean circuit is executed many times in several S2PCs,
it is possible to benefit from statistical improvements of the cut-and-choose [HKK+14HKK+14, LR14LR14].
Essentially, this is due to the ability of making a single cut-and-choose with many more
circuits, checking some of them for correctness and then dividing the remaining ones into
several smaller subsets of evaluation circuits, one for each subsequent S2PC execution. As a
result, the same statistical security can be obtained with fewer evaluation circuits per each
execution. An interesting example of a multiple execution setting is that of nation-scale
privacy-preserving brokered identification. For example, the initial solicitation of the FCCX
brokered identification [Uni13Uni13] system requested that an actual implementation should be
able to sustain up to one million transactions per hour. If supporting each authentication
transaction with a S2PC of a block-cipher (Section 5.35.3) or some envisioned S2PC-based
variation thereof [BCDA15BCDA15], then the efficiency of each execution could greatly benefit from
the statistical optimization related to the multi-execution setting. For example, the actual
generation of millions of circuits, and respective check of a proportion of them, could take
place several hours in advance from the actual subsequent evaluations, then allowing 40 bits
of statistical security with just two evaluation garbled circuits of communication for each
authentication transaction.
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6.3.3 Definitional aspects


1. (Non-)transferability vs. transferability. A significant portion of the complexity
associated with ZK sub-protocols is due to the techniques used to ensure non-transferability
of proofs, a.k.a. deniability, which is also required by the ideal S2PC-with-Coms functionality.
However, in some real applications transferability might be a non-problem, and might even
be useful. For example, in the proposed application for brokered identification (Section 5.35.3),
the outputted commitments are signed by both parties, exactly so that each party can later
prove involvement of the other party. It is likely possible to obtain better efficiency when
foregoing non-transferability, but a formal analysis requires changing the ideal functionality
(e.g., see [CSV16CSV16] in the context of signatures and key-exchange). If non-transferability can
be forfeited, then the local CRS used to bootstrap extractable commitments and equivocable
commitments could be replaced by a CRS derived instead from a globally known string, e.g.,
broadcast by a trusted randomness beacon.


2. Bootstrapping the initial NIZKPoKs. It would be interesting to explore, for
concrete applications, the simulatability consequences of using an initial ZKPoK simulatable
with rewinding (in the plain model, i.e., without additional trusted setup) but not without
rewinding, how to implement it in practice (e.g., how to prevent the “environment” from
interacting with the parties) and under which circumstances it could possibly break non-
transferability (but not other desirable properties). After bootstrapping the initial NIZKPoKs
of trapdoor, the equivocability and extractability properties required by subsequent NIZKPs
and other NIZKPoKs may take advantage of the global PKI setting. Equiv-Coms and
Ext-Coms become simulatable (i.e., extractable or equivocable, respectively) based on the
trapdoors, instead of requiring a local CRS or other setup. However, in a multi-party setting,
the deniability would only be partial, e.g., a NIZKP built in this way would instead be
perceived by a third party as the non-deniable logical disjunction (or) of the validity of the
assertion or of the knowledge of the trapdoor. In other words, such NIZKP transcript could
have only been produced either by a prover knowing a secret that validates the assertion,
or by a malicious verifier knowing the trapdoor of the Equiv-Com scheme used in the proof
transcript, but not by any third party oblivious to the trapdoor.


A clear efficiency improvement would also be possible in a simulatability setting with
rewinding, e.g., evident when comparing Schnorr protocol [Sch91Sch91], which only requires a
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constant number of exponentiations and communicated group elements to prove knowledge
of a DL in a setting of simulation of rewinding, vs. the NIZKPoK of DL proposed in this
dissertation (§A.3.3A.3.3), which required a linear number of exponentiations and communicated
group elements to enable extractability without rewinding. In other words, even if not
devising a better NIZKPoK of DL without rewinding, efficiency may be improved if a certain
application allows security based on simulation with rewinding.


3. Ideal vs. real commitments. The use of real commitment schemes in the ideal
S2PC-with-Coms functionality (§2.2.52.2.5) was a design choice that enabled explicitly requiring
random values for the outer commitments outputted by the parties. If the ideal functionality
would instead embed ideal commitments, the real world would have a corresponding use
of simulatable Com schemes, but the simulation game would not have to require inducing
random commitment values (i.e., because now the ideal functionality does not compute actual
commitment values). While this simplification of the ideal world could potentially enable
better efficiency, it would give each party a certain control of the actual value of commitments.
In a multi-party and multi-execution setting, this could potentially constitute a side-channel
for transmission of information. Once again, a careful analysis of these aspects, in connection
with an intended application, may clarify what changes of ideal functionality are deemed
possible and/or appropriate, with corresponding possible efficiency improvements.


4. Adaptive adversaries. The adversarial model considered in this dissertation focused
on static adversaries, which corrupt a party before the protocol execution. A natural extension
to the work in this dissertation is to consider the adaptive setting and determine which
changes may be necessary to ensure simulatability. Here, the adversary may decide which
party(ies) to corrupt after observing part of the protocol execution.
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Appendix A


Non-interactive zero-knowledge sub-protocols


This chapter describes several non-interactive (NI) zero-knowledge (ZK) sub-protocols useful
throughout the dissertation. Section A.1A.1 starts with an overview of basic notions and general
techniques, including transformations from interactive to non-interactive ZK sub-protocols.
Section A.2A.2, specific for IFC, discusses several security problems that may arise from the
use of an incorrect Blum integer (i.e., if a ZKP of correctness is not performed) and then
describes a respective NIZKP of correctness and a NIZKPoK of trapdoor. Section A.3A.3 deals
with NIZK sub-protocols for DLC, including a NIZKPoK of DL, a NIZK of of same DL and
a NIZK of correct ElGamal BitComs. Section A.4A.4 describes a NIZKP of same committed
bits across different commitment schemes, based on XOR homomorphic properties.


A.1 Overview of types of ZK sub-protocols


This section reviews notions about zero-knowledge protocols, namely ZK proofs of membership
(ZKPs) vs. ZK proofs of Knowledge (ZKPoKs), proofs vs. arguments (though then continuing
to use “proof” as an umbrella term), Sigma (Σ) and honest-verifier (HV) ZK sub-protocols,
transformations for non-interactive NIZKPs and NIZKPoK, and OR proofs.


A.1.1 Proofs and arguments of membership and of knowledge


Zero-knowledge proofs (of language membership). Zero-knowledge proofs (ZKPs) (of
language membership) [GMR85GMR85] allow a Prover (P) to convince a Verifier (V) of the correctness
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of an assertion (e.g., that a public element belongs to a certain language), but without revealing
anything that would allow V to produce an element distinguishable from anything that it
could have produced before the interaction. This kind of proof is possible for all statements
in the non-deterministic polynomial time (NP) class, i.e., decidable in polynomial time when
possessing the adequate auxiliary information [BC87BC87, GMW87bGMW87b, GMW91GMW91]. The original ZKP
definition assumed provers with unbounded computational power, but variants are possible,
e.g., unbounded verifiers and polynomially constrained provers [Cha87Cha87].


Needed properties. The needed properties of a ZKP are completeness, soundness and
zero-knowledge. Completeness guarantees that if both parties are honest then V accepts
the proof. The second and third properties deal with the cases where P (but not V) and V
(but not P) are dishonest, respectively. More specifically: soundness ensures that, except
with negligible probability, V only accepts the proof if the assertion is correct (i.e., if the
public element belongs to the language), even if P maliciously deviates from the protocol
execution; zero-knowledge ensures that the transcript made available to V (i.e., the view of
the execution, including the internal states of V), when interacting with an honest P, has a
distribution indistinguishable from one that V could produce by herself alone. The notion
of indistinguishability is used here in the liberal computational sense (i.e., what a party
restricted to probabilistic polynomial time is able to distinguish with noticeable probability),
but more restricted notions of indistinguishability exist, namely statistical and perfect.


Arguments vs. proofs. In ZKPs the soundness property is statistical, i.e., except with
negligible probability an unbounded prover is not able to cheat in the protocol. In contrast, ZK
arguments only require computational soundness [BCC88BCC88], i.e., an unconditionally bounded
prover may be successful even when the statement is false or when the claimed knowledge
does not exist. For simplicity, “proof” is used in this dissertation as an umbrella term
encompassing the argument and the (original) proof nuances, and always assuming that both
prover and verifier are computationally bounded to probabilistic polynomial time.


Zero knowledge proofs of knowledge. In contrast to ZKPs of language membership,
ZK proofs of knowledge (ZKPoK) allow a prover to prove knowledge of a secret. Here
the soundness property guarantees that only a prover with the actual valid secret is able
to make V accept the proof (except with negligible probability). By definition, a ZKPoK


Page 230 of 376







Ph.D. dissertation: The forge-and-lose technique and other contributions to S2PC-with-Coms (2016-Dec-27)


requires that a simulator (a.k.a. knowledge extractor) impersonating V while playing against
a black-box P is able to extract the secret knowledge of P, with a probability at least as
large as (a value negligible close to) the probability of the prover succeeding in the proof
[FFS88FFS88, FS90aFS90a, BG93BG93]. For example, in the case of NP-languages a ZKPoK may be used to
prove knowledge of a respective witness. In case of one-way functions, it may be used to prove
knowledge of a pre-image of a public element, e.g., knowledge of a representation of a discrete
log of a certain group element. Even in cases where V already know witness(es), ZKPoKs
may make sense, e.g., to ensure non-malleability, and/or as a ZKP of correct behavior.


Specific protocols may combine a ZKPoK and a ZKP, e.g., a ZKPoK of a Blum integer
trapdoor may simultaneously be a ZKP of the correctness of the Blum integer. Conversely, a
NIZKP of correctness of a Blum integer does not necessarily have to allow extraction of the
trapdoor, and a ZKPoK may become more efficient if correctness is already assumed.


A.1.2 Sigma and HVZK protocols


Sigma and HVZK protocols. The term “Sigma” (Σ) protocol (introduced in [Cra96Cra96])
denotes a three move protocol [Dam10Dam10], for proving language membership in a certain
language, with the following structure and properties: in a first Σ-commit message, P sends
a value that binds him to some value, e.g., by sending the image of some random value
upon application of a one-way function (not necessarily hiding the pre-image in a semantic
way); in a second message, V sends a Σ-challenge to P, uniformly selected from some known
distribution; in a third message, P sends a Σ-response, whose value depends on the challenge,
the initial commitment and the assertion being proven (and can be calculated based on an
implicit secret witness of P); it ensures completeness (V always accepts if both parties are
honest), special soundness (a pair of valid transcripts with same Σ-commit but different
Σ-challenge and Σ-response allows extraction of the secret) and special honest-verifier zero
knowledge (special HVZK) (transcripts of interactions by an honest V are simulatable, i.e.,
can be generated with an indistinguishable distribution even without knowing the secret of
P, including when conditioning the Σ-challenge to be a specific value). This structure has
been extensively used in ZK protocols, e.g., in Schnorr protocol [Sch91Sch91] and is itself similar
to the usual cut-and-choose structure in diverse S2PC protocols.


Page 231 of 376







Section A.1. Overview of types of ZK sub-protocols (2016-Dec-27)


A.1.3 Transformations from HVZK to interactive ZK


The HVZK property of Σ protocols does not guarantee ZK against a malicious V. The
canonical example is V choosing the Σ-challenge as a one-way hash function of the public
input and the Σ-commit message. Specifically, this breaks the non-transferability aspect of
ZK — after a successful real protocol execution, V would be able to “convince” an external
party that the Σ-challenge was selected after the Σ-commit message, which means that the
subsequent valid Σ-response must have been produced by an actual P that knew a valid
secret input. Nonetheless, a transformation from special HVZK to full ZK can be obtained.
In an interactive setting, this can be based on commitment schemes, as exemplified hereafter.


In one approach, V may use an Ext-Com scheme to initially commit to the Σ-challenge,
and open it only after receiving the Σ-commit message P. A simulator S impersonating P is
able to extract the Σ-challenge built by the black-box V, before S decides on behalf of P the
Σ-commit element. By the HVZK property, S is then able to produce respective Σ-commit
and Σ-response elements that are consistent with the Σ-challenge, and using them in the
respective subsequent parts of the protocol execution.


On a different approach [Dam00Dam00], P may start by using an Equiv-Com to commit to
the Σ-commit element, then receive the Σ-challenge from V and only then open the Σ-
commit element from the Equiv-Com and reveal the needed Σ-response. In a simulated
execution, after learning the Σ-challenge the simulator is still able to produce a consistent of
Σ-commit and Σ-response elements and then equivocate the calculated Σ-commit element,
thus continuing a successful execution.


On a very related approach, the Σ-challenge could be obtained via a coin-flipping sim-
ulatable against a malicious V (e.g., P sends an Equiv-Com of a contribution, P sends a
random contribution, P opens her contribution and both parties calculate the Σ-challenge as
the XOR of both contributions). In this case the simulator starts by simulating a transcript
with the three Σ elements (commit, challenge, response), then sends the Σ-commit and then
induces the coin-flipping to yield the intended Σ-challenge element.


A.1.4 Transformations from HVZK to NIZK


Toward enabling non-interactive ZKPs, the Σ-challenge may be calculated non-interactively
by P. However, to ensure soundness it must not be possible for P to learn the Σ-challenge
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before it is bound to a Σ-commit element. There are several approaches in the literature.


Based on a CRS. Non-interactive zero-knowledge was originally introduced with a tech-
nique [BFM88BFM88] based on one-time-use common reference string (CRS) and specific number
theoretical assumptions. Subsequent developments showed how to use a single CRS in
multiple protocol executions and under general assumptions [FLS90FLS90]. Non-interactiveness
can also be achieved for ZKPoKs [SP92SP92], as non-malleability can also be achieved for both
NIZKPs and NIZKPoKs [Sah99Sah99, DSDCO+01DSDCO+01].


Based on a local programmable random-oracle. For a more efficient transformation,
the Fiat-Shamir approach [FS87FS87] generates a random Σ-challenge as the image of a random
hash function applied to the concatenation of the public element (i.e., the instance being
proven) and the Σ-commit element. In the simulation, after selecting a Σ-commit element
the simulator impersonating P is able to “program” the random hash function to output the
single Σ-challenge for which it can produce a valid Σ-response. The notion of random hash
function was subsequently formalized as the Random Oracle model [BR93BR93], though therein
with a ZKP example where only the Σ-commit elements would be hashed. Subsequent work
[BPW12BPW12] explored differences between hashing only the Σ-commit element vs. hashing also
the public element, and showed that in general the later is preferable, to preclude some
malleability attacks. If the random oracle is local (i.e., only accessible to P and V), then
its programmability ensures ZK. However, if it is public/global then the procedure breaks
the non-transferability of ZK [Pas03Pas03]. In fact, NIKZ cannot be obtained solely based on a
non-programmable random oracle (NPRO) [Wee09Wee09], but this dissertation also considers the
further use of a CRS and additional unique identifiers defining each execution context.


Based on a global non-programmable random-oracle (NPRO). Combining the
CRS and NPRO ingredients it is possible to improve efficiency and applicability. Essentially,
the techniques from Damgård [Dam00Dam00] and Fiat and Shamir [FS87FS87] can be combined so that
a simulator impersonating P is able to equivocate the Σ-commit message after determining
the Σ-challenge obtained as a random hash of the Equiv-Com of the Σ-commit and the
public element. This transformation has been proposed by Lindell [Lin15Lin15] showing that a
non-programmable random oracle (NPRO) can be used [Nie02Nie02], because the ZK property no
longer depends on the NPRO randomness, but instead on the equivocability of the Σ-commit
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message. Since only soundness depends on the NPRO, the NPRO can be globally defined.
The NIZKPs in this dissertation will use this Equiv-Com and NPRO-Hash combination.


It is worth emphasizing that simulatability based on a global NPRO is much more
meaningful than one based on a programmable random oracle. In the later both the ZK
and soundness properties are based on the random oracle, and there the ZK dependency
directly implies that the random oracle cannot be replaced by any concrete hash function,
lest it would break the non-transferability property. Any external party with access to
a valid NIZK protocol transcript would be able to recompute hashes and verify that the
inherent Σ-challenge was indeed obtained via the random oracle. There are other examples
of applications where the replacement of a random oracle by any specific function (or one
randomly selected from a set of efficiently computable functions) does not retain security
[CGH04CGH04] (therein with some “unnatural” examples) and in fact a clear separation has been
shown between the programmable and non-programmable uses of random oracles [Nie02Nie02].
For the use of a NPRO in this dissertation, where it only aids soundness (i.e., preventing the
ability to cheat in a proof), there might be a cryptographic hash function replacement that
enables simulatability for concrete NIZK protocols. While it remains an open problem proving
the sufficiency of a general set of properties that could be required from a concrete function
(or function family) in order to allow NIZKP, the converse (breaking soundness when using a
concrete cryptographic hash function) would intuitively break some expected property of a
cryptographic hash, e.g., indifferentiability [MRH04MRH04] or correlation intractability [CGH04CGH04]
with respect to a particular type of transformation between Σ-commit and Σ-challenge
elements, namely when also feeding to the hash pre-image an unpredictable component
defined per session. This remains an open problem and so the proofs are given in the NPRO
model.


A.1.5 Non-interactive ZKPoKs


If simulation with rewinding is allowed, the special soundness of Σ-protocols enables extraction
of the witness whose knowledge is being proven. However, extraction is not possible in general
without rewinding, and the same applies for its described transformations into NIZKPs.


Omega (Ω) protocols. A possible augmentation of Σ-protocols into ZKPoKs that allow
extraction without rewinding involves a CRS with the public parameters of a public-key
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encryption scheme. In an Ω-protocol [GMY06GMY06], besides a regular Σ-protocol the prover also
sends to the verifier an encryption of the secret witness and a ZKP that the encrypted
element is indeed the witness related to the Σ-protocol. Since soundness is guaranteed by the
Σ-protocols, a simulator is then able to extract the witness from the ciphertext, by decryption
using the secret-key associated with the CRS public-key.


Cut-and-choose leveraging of special soundness. The two main NIZKPoKs described
in this chapter, namely a NIZKPoK of Blum integer trapdoor (§A.2.3A.2.3), and NIZKPoK of
discrete log (§A.3.3A.3.3), use a related but different idea, which leverages the special soundness
property of Σ-protocols. A CRS is also used to enable extraction (and equivocation), but the
extraction is instead based on a cut-and-choose approach that enforces statistical soundness.
Essentially, the CRS is used to describe the public parameters of an Ext-Com scheme and
an Equiv-Com scheme (possibly both based on the same trapdoor). Then, for the same
random Σ-commit message, P uses the Ext-Com to commit several Σ-responses, one of which
is equal to the one obtained by the NPRO-hash application on top of the Equiv-Com. P then
composes the NIZKPoK transcript as the concatenation of the Σ-commit, the Ext-Coms of
the non-selected Σ-responses and the opening of the selected Σ-responses. In comparison with
an Ω-protocol approach, this avoids a direct NIZKP of consistency between an encrypted
value and the secret witness, which could require a protocol tailored to the structure of
the encryption scheme, and instead enables any abstract Ext-Com and Equiv-Com; as a
disadvantage, in terms of computation complexity the cut-and-choose approach requires
committing elements in number proportional to the statistical parameter.


A.1.6 OR proof


If Σ-HVZK protocols exist for two types of assertions (A and B), then it is possible to
construct a Σ-HVZK protocol for a respective disjunction, i.e., for an assertion of type “A
OR B.” A concrete application is proving that an ElGamal BitCom is correct (§A.3.2A.3.2), i.e.,
that it commits to a 0 OR 1. The essential trick for such a “OR proof” [CDS94CDS94] is to let P
choose the Σ-challenges in a correlated way, such that in practice it can fully determine one
of the Σ-challenges — the one associated with the assertion that it does not know how to
prove — but not control the other Σ-challenge. For example, this can be determined by V
sending a random string and then giving flexibility for P to choose any two Σ-challenges (one
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for each assertion) whose XOR is equal to the random string determined by V. The same
applies in case of a transformation for NIZK, e.g., with the “random” string being instead
defined as the NPRO-hash of an Equiv-Com of all the pair of assertions and the respective
pair of Σ-commit elements. The, playing the two Σ-protocols in parallel, P simulates one,
and executes the other as an honest P would, only having to additionally inform V about
one of the Σ-challenges. Thus, this requires communication approximately equal to what two
independent proofs would require (and an extra Σ-challenge in the non-interactive case).


A.2 NIZK sub-protocols for IFC


This section considers the problem of ensuring correctness of Blum integers, proving knowledge
of its factors, and another proof about GM BitComs, when having access to a short trusted
CRS and a global NPRO, in a simulation setting without rewinding, but with the simulator
being having access to define the CRS. §A.2.1A.2.1 discusses potential security problems of using
moduli that are not Blum integers. §A.2.2A.2.2 describes a NIZKP of Blum integer correctness,
which is sound but does not allowing extraction of the trapdoor. §A.2.3A.2.3 describes a NIZKPoK
of Blum integer trapdoor of independent interest. For completeness, §A.2.3A.2.3 briefly mentions
the intuition for the NIZKP of GM BitComs of 0, derived directly from prior work.


A.2.1 Problems with non Blum integers


An IFC-based S2PC-with-Coms execution would be insecure if the used modulus was not
a Blum integer. Since verification is trivial when knowing the factorization, the following
paragraphs analyze the problem that may arise if a party in the role of selecting a Blum
integer would be able to induce another party to use a non-Blum integer.


A Blum integer is congruent with 1 modulo 4 (and this ensures that −1 has class 0).
Since this can be verified non-interactively, without knowing the factorization, the attention
can be restricted to integers of this form. These are all odd integers that have an even
number of (including none) prime factors congruent with 3 modulo 4 exponentiated to an
odd exponent. In other words, −1 remains class 0 regardless of the number of prime factors
that are congruent with 1 modulo 4, and of the prime powers that have an even exponent.
The use of non-Blum integers of this form would raise security problems.
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For example, things could go wrong with a modulus with exactly 3 prime factors, with at
least one of them being congruent with 3 modulo 4 and such that the highest power of such
a prime that would still divide the modulus would have an odd exponent. As toy examples,
the integers 105 (= 3 × 5 × 7) and 1755 (= 33 × 5 × 13) have these properties. In the respective
multiplicative groups, each quadratic residue has exactly eight square-roots, four of which
in each possible class. Since the additive inverse of a square-root is also a square-root in
the same class, the four square-roots in a certain class can be grouped into two pairs, each
pair being a trivially correlated pair of square-roots. Any two square-roots not in the same
pair are non-trivially correlated, i.e., the pair cannot be obtained except by being able to
find some non-trivial factor of the modulus. This would raise at least two problems in the
S2PC-with-Coms protocol:


• The 2-out-of-1 OT is not possible (though a 4-out-of-1 OT is), since for each square there
are now 4 possible proper square-roots, 2 for each class.


• Assume that connectors of input wires of PB would be correctly constructed, i.e., would be
validated if selected for a check challenge. If they were selected for evaluation, a malicious
PA could still respond by disclosing multipliers with correct homomorphic properties that
would nonetheless lead the known input BitComs into group-elements different from those
that were used to derive the circuit input keys. The problem is that the squaring operation
is no longer a permutation from the domain of proper square-roots in a certain class onto
the set of squares, but rather a non-injective function.


Another problematic case is that of a modulus that once divided by the highest square
factor does not retain any prime factor that is congruent with 3 modulo 4. Toy examples
are integers 325 (= 52 × 13) and 585 (= 5 × 32 × 13). In the respective multiplicative groups,
each quadratic residue either has all square-roots with class 0 or all square-roots with class 1.
This means that the respective 2-to-1 square BitCom scheme would become unconditionally
binding, and a receiver knowing the factorization would be able (i.e., PA), with the trapdoor,
to decrypt the underlying bits — this would be a privacy problem.


Remark A.1 (General vs. specific Blum integers). From the point of view of correct-
ness of a Blum integer, it does not matter which odd exponents are applied to each of the
two prime factors. However, in terms of hiding the trapdoor, it is to the best interest of the
party selecting the modulus that it makes the integer as hardest to factor as possible. Thus,
it is preferable to construct it as a simple product of two primes (congruent with 3 modulo 4),


Page 237 of 376







Section A.2. NIZK sub-protocols for IFC (2016-Dec-27)


rather than having any prime power with exponent higher than 2. This makes more difficult
the factorization of the integer by methods whose complexity increases with the size of the
smallest factor. In other words, a proof for general Blum integers is sufficient and adequate,
even though there are known proofs (more costly) to show that a certain integer is a Blum
integer composed simply as the product of two primes [TLL03TLL03].


A.2.2 NIZKP of Blum integer correctness


If the factorization of a Blum integer modulus is known, then it is trivial to verify that it
is a Blum integer. The challenge is in letting a prover (P), knowing the factorization of a
modulus, convince a verifier (V) that the proposed modulus is a Blum integer, but without
disclosing anything, i.e., in a zero-knowledge fashion. A ZKP of Blum integer correctness
was devised by van de Graaf and Peralta [vdGP88vdGP88], based on the observation that a modulus
is a Blum integer if and only if it is not a square, not the power of a prime, is congruent with
1 modulo 4, and every residue in classclass 0 (i.e., with Jacobi Symbol 1) has a square-root or a
pseudo square-root of each class. (A pseudo square-root of an integer is intended to mean
a square-root of the additive inverse of the integer.) The protocol is also a ZKPoK of the
trapdoor if the simulator is able to impersonate the trusted source of randomness, when also
impersonating V playing with a black-box malicious P.


In the original description [vdGP88vdGP88], a “trusted source of randomness” provides a random
vector of group elements in classclass 0 and a corresponding vector of challenge bits, i.e., the
equivalent to Σ-commit and Σ-challenge elements. However, this dissertation gives preference
for a setting where, even if there is a trusted source of randomness (e.g., a local CRS), it
should be reusable across several sub-protocols. While a larger random string could be
obtained via a simulatable two-party coin-flipping, this would require additional interaction,
which is also undesirable. The protocol in Figure A.1A.1 considers a different adaptation, for
the purpose of a NIZKP of Blum integer correctness (it is no longer a NIZKPoK of the Blum
integer trapdoor). A different adaptation into a NIZKPoK of trapdoor is included in A.2.3A.2.3.


Intuition. The vector of random group elements that would be provided by a trusted
source of randomness is instead obtained via an internally simulated two-party coin-flipping,
with the help of a NPRO and an Equiv-Com scheme. The challenge bits that would also be
provided by the trusted source of randomness are instead also obtained via the same NPRO
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hashing, in time for P to equivocate the coin-flipping result to a vector of group elements for
which it can provide the vector of challenged pseudo-square roots.


Setup.


• Common input. The generation and verification of proofs make sense in a context
where the prover (P) and verifier (V) have a common input. Specifically, the proof of
knowledge (of a trapdoor) is in respect to a known integer modulus (the Blum integer)
(11). The actual prime factors and exponents are not known by V. The integer modulus
defines a respective group operation, which is modular multiplication (22), and a respective
Jacobi-Symbol-based XOR homomorphism (33). Each proof is performed in respect to
a statistical security (soundness) parameter (44), and in a shared context composed of
a session identifier, a sub-session identifier, and the identity of prover and verifier (55).
The parties also have access to the same CRS, which must be local in order to ensure
non-transferability of the proof (66). By definition, the extended context of the execution
is obtained by concatenating to the original context the CRS, the Blum integer and the
statistical security parameter (77).


• Private inputs. As private input, P knows the trapdoor of the Blum integer, defined as
a non-trivially correlated square-root of 1 (88). In practice, the trapdoor is a knowledge
equivalent of the integer factorization of the modulus, i.e., two primes with remainder 3
upon division by 4, and respective odd exponents. In respect to simulations, a simulator
S impersonating a prover against a malicious V is able to define the CRS in a way that it
knows a respective trapdoor tCRS that will be used as an equivocation trapdoor for an
Equiv-Com scheme (99)


Proof generation. The prover invokes an algorithm GenProofGBI, where “GBI” stands
for “good Blum Integer,” using as input the extended context ctx’ , and the trapdoor tN of
the Blum integer N . The algorithm executes as follows:


• Simulated coin-flipping.
P selects an auxiliary random group element z with class 1 (1010). Actually, this could also
be pre-computed as the shortest such element, if it can be obtained after a linear number
of trials (e.g., 40) (e.g., trying consecutive numbers and computing its class) and later
sent as part of the proof transcript. It cannot however be an element that would give any
knowledge to V, e.g., it cannot be the non-trivially square-root of 1.
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Common input
N (the Blum integer) (11)
∗ (multiplication modulo N) (22)
h ∶ (∀x ∈ Z∗NZ


∗
N ∶ h(x) = (1 − JSJSN(x))/2) (33)


s ≡ 1s (statistical security parameter) (44)
ctx = (sid, ssid, P, V) (execution context) (55)
CRS (common reference string) (66)
ctx’ ≡ (ctx,CRS,N, s) (extended context) (77)


Private inputs
P ∶ tN = NTSqrt1N ∶ h(t) = 1 ∧ t2 = 1 (88)


((p1, a1), (p2, a2)) ∶ N = pa1
1 p


a2
2 ∧ p1 ≠ p2


∧ p1, p2 ∈ Primes ∧ p1 ≡ p2 ≡ 3(mod 4)
∧ a1 ≡ a2 ≡ 1(mod 2)


S ∶ tCRS (trapdoor of CRS) (99)


Produce proof
P: GenProofGBI[ctx’] (tN) = {


(Simulated coin-flipping)


z ←$ h−1
N (1) (auxiliary element in class 1) (1010)


ui ←
$ Z∗NZ


∗
N ∶ i ∈ [s] (1111)


H = CR-Hash (ctx’, z, ⟨ui ∶ i ∈ [s]⟩) (1212)


H ←$ Gen$ForCom [C
(CRS)
Equiv ] (H) (1313)


H = C
(CRS)
Equiv (H;H) (1414)


⟨vi ∶ i ∈ [s]⟩ = NPRO [CRS, (H,1)] (Z∗NZ∗N
s
) (1515)


xi = ui ∗ vi ∶ i ∈ [s] (1616)
di = h(xi) ∶ i ∈ [s] (1717)
w′
i = z


di ∗ xi ∶ i ∈ [s] (1818)


(Pseudo square-roots and response)
⟨ei ∶ i ∈ [s]⟩ = NPRO [CRS, (H,2)] (Z2


s
) (1919)


wi = PseudoSqrt [N, tN ] (w′
i; ei) ∶ i ∈ [s] (2020)


↓↓π = ((z,H) , ⟨(ui, di,wi) ∶ i ∈ [s]⟩) } (2121)


Verify proof
V: VerProofGBI[ctx’] (π) = {


(Initial checks)
If N ≠ 1(mod 4), then ↓ false (2222)


If
√
N ∈ Integers, then ↓ false (2323)


If N ∈ PrimePowers, then ↓ false (2424)
If h(z) ≠ 1, then ↓ false (2525)


(Recompute coin-flipping)
H = CR-Hash (ctx’, z, ⟨ui ∶ i ∈ [s]⟩) (as (1212)) (2626)


H = C
(CRS)
Equiv (H;H) (as (1414)) (2727)


→v = NPRO [CRS, (H,1)] (Z∗NZ∗N
s
) (as (1515)) (2828)


w′
i = ui ∗ vi ∗ z


di ∶ i ∈ [s] (2929)


(Check pseudo-square-roots)
If (wi)2


≠
?
±w′


i, then ↓ false ∶ i ∈ [s] (3030)
→e = NPRO [CRS, (H,2)] (Z2


s
) (as (1919)) (3131)


If h(wi) ≠? ei, then ↓ false ∶ i ∈ [s] (3232)
↓ true } (3333)


Simulate transcript
S: SimProofGBI[ctx’] (tCRS,H) = {


→v = NPRO [CRS, (H,1)] (Z∗NZ∗N
s
) (as (1515)) (3434)


→e = NPRO [CRS, (H,2)] (Z2
s
) (as (1919)) (3535)


z ←$ h−1
N (1) (as (1010)) (3636)


ri ←
$ Z∗NZ


∗
N ∶ i ∈ [s] (3737)


(ci, di)←
$
{0,1}2


∶ i ∈ [s] (3838)
wi = ri


2
∗ zei ∶ i ∈ [s] (3939)


ui = wi
2
∗ (vi ∗ z


di)
−1
∗ (−1)ci ∶ i ∈ [s] (4040)


H = CR-Hash(ctx’, z, ⟨ui ∶ i ∈ [s]⟩) (as (1212)) (4141)


H = Equiv [C
(CRS)
Equiv , tCRS] (H,H) (4242)


↓ π = ((z,H) , ⟨(ui, di,wi) ∶ i ∈ [s]⟩) } (as (2121)) (4343)


Figure A.1: NIZKP of Blum integer correctness (NIZKPGBI).


P selects random group elements ui (hereafter called offset elements) (1111) in number
equal to the statistical parameter. Then, P computes a CR-Hash H (denoted global hash)
of the concatenation of the extended context ctx’, the auxiliary element z and the vector of
offsets ui (1212). P selects randomness H necessary for an Equiv-Com of the hash (1313), and
produces a respective commitment H (1414). The public parameters of the Equiv-Com are
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suitably based on the CRS, which defines a public parameter of the commitment scheme,
whose respective equivocation-trapdoor can be influenced by the simulator.


P then uses the global NPRO, using as input the extended context ctx and the Equiv-
Com of the hash, along with a suffix “1” (to distinguish from a subsequent use), to produce
a new vector of complementary group elements vi (1515). For each position of the vector,
P multiplies the initial offset element ui with the complementary group element vi (1616),
calculates the class di of the resulting product xi (1717), and if necessary applies a correction
to obtain an element in class 0, by multiplying the auxiliary element z of class 1 (1818). This
procedure completes the internal coin-flipping simulation of group elements wi of class 0.


• Pseudo square-roots and response P reuses the global NPRO, using as input the
extended context ctx and the Equiv-Com of the hash, along with a new suffix “2” (to
distinguish from the previous use), to produce a vector of challenge bits ei (1919). For each
of the coin-flipped group elements w′


i, P computes a pseudo-square root with class equal
to the respective obtained challenge bit ei (2020).


As output, the proof transcript π (its version stripped away from contextual information)
contains a pair composed of the auxiliary element z of class 1, the randomness H needed to
reproduce the Equiv-Com H of the global hash H, and contains a vector of triplets, with
each triplet containing an initial offset element ui, the class di of the respective element
obtained before corrections (this bit is not essential, but is helpful for V), and the pseudo
square-root wi of the respective final coin-flipped element w′


i (2121).


Remark A.2 (On the use of a malleable Equiv-Com scheme). It is not a problem
using a malleable Com-scheme, because the overall non-malleability of the NIZKP is already
ensured by the NPRO input containing the extended context, and because the non-interactive
nature of the NIZKP ensures that the Equiv-Com is fully disclosed (commitment, and opening)
at once in the transcript, i.e., without any interleaved commitment or protocol taking place
that could take advantage of the commitment before knowing the opening.


Remark A.3 (On more general notation for the Equiv-Com). For simplicity, the
description assumes that the opening of the Equiv-Com scheme can be performed by simply
revealing the committed element and the original randomness used to produce the commitment.
This is applicable for example to Pederesen Coms and Blum BitComs, without jeopardizing
the Equiv property, and allows the proof transcript to only have the randomness H as added
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element in comparison with the remaining relevant group element. More generally, there
may be Equiv schemes whose opening is performed in a different manner, namely sending
the committed value H and then a probabilistic element H (e.g., a NIZKP that it was the
correct committed element) that is different from the original randomness H used to produce
the commitment H, and which cannot on its own be used to reproduce the commitment
value. In that case the notation would change to additionally include in the transcript also
the commitment value H.


Proof verification.


• Initial checks. As initial checks, V directly checks the received modulus, namely that it
is 1 modulo 4 (2222), that it is not a square (2323), and that it is not the power of a prime
(2424). V also checks that the received auxiliary element z has class 1 (2525). If any of the
previous checks fails, then V immediately rejects the transcript, outputting false.


• Recompute coin-flipping.
Then, using the remaining information received in the proof transcript, V recomputes the
global hash (2626), recomputes the Equiv-Com c produced by P (2727), uses the NPRO to
obtain the vector of complementary group elements vi (2828), and uses them to calculate the
final vector w′


i of coin-flipped elements w′
i with class 0 (2929). Since the auxiliary element z


has been verified as having class 1, it is sufficient to recompute the coin-flipped elements
w′
i directly trusting the auxiliary bits di informed in the proof transcript — if one such bit


was incorrect, then the resulting coin-flipped group element would have class 1 and would
necessarily not have any pseudo-square-root, and thus the next step of the verification
would necessarily fail.


• Recompute coin-flipping. V checks that the vector of random group elements is
consistent with the received vector of pseudo-square-roots wi, i.e., they the square of each
received pseudo-square-root is equal to the random group element wi or to its additive
inverse (3030). Then, V uses the NPRO to recompute the vector of challenge bits ei (3131),
and uses them to check whether they correspond to the respective classes of the received
vector of pseudo square-roots. (3232). If any check fails, then V rejects the proof, outputting
false; otherwise it accepts the proof, outputting true (3333).


Proof simulation. A simulator can produce a proof transcript associated with any NPRO
input, i.e., any pre-image that V would propose as PRNG seed in case this would be an
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interactive Σ-protocol. Simulator starts by recomputing the vector of complementary group
elements (i.e., the second contribution to the simulated coin-flipping) (3434), and also the vector
of challenge bit classes (3535).


Then, S computes a random auxiliary element z (3636), as a regular prover would. Then,
S selects a vector of auxiliary random group elements ri (3737) and two vectors of random
bits, one related to random classes di, the other related to random additive inverses ci (3838).
Then, S uses the random auxiliary elements ri and the fixed auxiliary element z to generate
simulated random pseudo-square-roots wi of the respective challenged classes ei (3939). From
these elements, S can then calculate what need to be the respective offset elements ui (4040).
Essentially, they are elements that once multiplied with the complementary group-elements
vi obtained from the NPRO, and eventually correcting with the auxiliary group element z,
result in either the square or the additive inverse (depending on the randomly chose bit ci) of
the previously computed square root wi. Then, S computes the Hash of the vector of offset
group elements, also using as input prefix the extended context and the auxiliary element
z (4141). Finally, S uses its equivocation power, based on a trapdoor trapCRS associated with
the Equiv-Com scheme whose public parameters are defined by the CRS, to generate an
equivocated randomness H that when used in the Equiv-Com scheme to commit the global
hash H would produce the commitment H that the simulator has as input of the simulation
procedure (4242). Finally, S outputs the transcript, based on the elements it calculated (4343).


Analysis.


• Security. Completeness follows from the ability to produce pseudo-square-roots of
any group element class 0 (modulo a Blum integer), when knowing the trapdoor (2020).
Soundness follows from P having to produce pseudo-square-roots of “random” class ei for a
sufficient large number s of “random” group elements. ZK follows from the equivocability
of the Com scheme used to commit the global hash, which allows the simulator to induce
any random-group elements and classes, and thus produce a proof transcript even if not
knowing the trapdoor of the Blum integer, as detailed in the proof simulation procedure.
Essentially, the simulator would equivocate each offset element ui


• Communication complexity. See cell EE66 in Table B.2B.2. The transcript requires only
two group elements (one square, and one square-root) and one bit (class) for each bit of
statistical security, one auxiliary group element z, one “randomness” used to produce an
equivocable commitment. For example, for Blum integers with 3,248 bits and for 96 bits
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of statistical security (a short-term computational parameter in case the proof transcript
is built during a protocol execution, after a new unpredictable extended context is known),
the proof transcript would require about 79 KB, whereas for 128 bits of statistical security
this would be adjusted to about 104 KB.


• Computational complexity. The most relevant group operations are: in GenProofGBI,
1 Equiv-Com (equivalent to one exponentiation), s square-roots (each roughly equivalent to
one exponentiation modulo each prime factor); about s+2 Jacobi symbols (and about 1.5s
multiplications); in VerProofGBI, 1 Equiv-Com (corresponding to one exponentiation),
s + 1 Jacobi symbols (and about 2.5s multiplications, besides checking that N is not a
square and not a prime power).


A.2.3 NIZKPoK of Blum integer trapdoor


This subsection describes a new NIZKPoK of Blum integer trapdoor, i.e., non-interactive
and not requiring rewinding to allow the simulator extract the trapdoor from an accepted
transcript produced by a possibly malicious P. The main intuition is that, besides proving
that an integer is correct, all that is required for extraction is to allow the simulator to learn
two non-trivially correlated square-roots. Intuitively, this can be achieved by producing
several squares, then using an Ext-Com scheme to commit individually one square-root
of each class for each square, and then use a NPRO to choose which square-root to open.
Based on the extractable properties, the simulator is able to open the pairs and then obtain
the trapdoor from any pair of non-trivially correlated square-roots. Instead of appending
this procedure to a NIZKP of correctness, it is more efficient to integrate both in the same
protocol. In comparison with the previously described NIZKP-GBI, the main difference of
the new NIZKPoK-BI-trapdoor is the computation of both square-roots of each square and
making the respective Ext-Coms, and then making the challenge bits depend also on the
Ext-Coms. The description is given in Figure A.2A.2 and in the text below.


Setup. The setup and inputs are similar to the NIZKP of Blum integer correctness (4444).


Proof generation.


• Simulate coin-flipping. P internally simulates a coin-flipping of a vector of random
group elements in class 0, in number equal to the number σ of bits of intended statistical
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Context and inputs


As in Fig. A.1A.1 (steps 11–88) (4444)


Produce proof
P: GenPokBItrap [ctx’] (tN) = {


(Simulated coin-flipping)


z ←$ h−1
N (1) (auxiliary element in class 1) (4545)


ui ←
$ Z∗NZ


∗
N ∶ i ∈ [s] (4646)


H1 = CR-Hash (ctx’, z, ⟨ui ∶ i ∈ [s]⟩) (4747)


H1 ←
$ Gen$ForCom [C


(CRS)
Equiv ] (H1) (4848)


H1 = C
(CRS)
Equiv (H1;H1) (4949)


⟨vi ∶ i ∈ [s]⟩ = NPRO [CRS,H1] (Z∗NZ
∗
N
s
) (5050)


xi = ui ∗ vi ∶ i ∈ [s] (5151)
di = h(xi) ∶ i ∈ [s] (5252)
w′
i = z


di ∗ xi ∶ i ∈ [s] (5353)


(Ext-Coms of pseudo-square-roots)
wi,0 = PseudoSqrt [N, tN ] (w′


i; 0) ∶ i ∈ [s] (5454)
wi,1 = wi,0 ∗ tN ∶ i ∈ [s] (5555)


wi,b = Gen$ForCom[C
(CRS)
Ext ](wi,b) ∶ i ∈ [s], b ∈ Z2 (5656)


wi,b = C
(CRS)
Ext (wi,b; wi,b) ∶ i ∈ [s], b ∈ Z2 (5757)


→
w= ⟨(wi,0,wi,1) ∶ i ∈ [s]⟩ (5858)


(Bit-challenges and replies)


H2 = CR-Hash(H1,
→
w) (5959)


H2 ←
$ Gen$ForCom[C


(CRS)
Equiv ](H2) (6060)


H2 = C
(CRS)
Equiv (H2;H2) (6161)


→e ≡ ⟨ei ∶ i ∈ [s]⟩ = NPRO [CRS,H2] (Z2
s
) (6262)


→www= ⟨(wi,ei ,wi,ei ,wi,1−ei) ∶ i ∈ [s]⟩ (6363)
↓ π = ((z,H1,H2) , ⟨ui ∶ i ∈ [s]⟩ ,→e , →www) } (6464)


Verify proof
V: VerPokBItrap [ctx’] (π) = {


(Initial checks)
If N ≠ 1(mod 4), then ↓ false (6565)


If
√
N ∈ Integers, then ↓ false (6666)


If N ∈ PrimePowers, then ↓ false (6767)
If h(z) ≠ 1, then ↓ false (6868)


(Recompute coin-flipping)
H1 = CR-Hash (ctx’, z, ⟨ui ∶ i ∈ [s]⟩) (as (4747)) (6969)


H1 = C
(CRS)
Equiv (H1;H1) (as (4949)) (7070)


⟨vi ∶ i ∈ [s]⟩ = NPRO[CRS,H1](Z∗NZ
∗
N
s
) (as (5050)) (7171)


w′
i = ui ∗ vi ∗ z


di ∶ i ∈ [s] (7272)


(Recompute and check challenge bits)


wi,ei = C
(CRS)
Ext (wi,ei ,wi,ei) ∶ i ∈ [s] (7373)


→
w= ⟨wi,b ∶ i ∈ [s], b ∈ {0,1}⟩ (7474)


H2 = CR-Hash (H1,
→
w) (as (5959)) (7575)


H2 = C
(CRS)
Equiv (H2;H2) (as (6161)) (7676)


If →e ≠ NPRO[CRS,H2](Z2
s
), then ↓ false (7777)


(Check pseudo-square-roots)
If (wi,ei)


2
≠ ±w′


i, then ↓ false ∶ i ∈ [s] (7878)
If h(wi,ei) ≠ ei, then ↓ false ∶ i ∈ [s] (7979)
↓ true } (8080)


Simulate transcript
S: SimPokBItrap[ctx’] (tCRS,H1,H2) = {


(Offsets and $ for 1st Equiv-Com)
→v = NPRO [CRS,H1] (Z∗NZ


∗
N
s
) (as (5050)) (8181)


→e = NPRO [CRS,H2] (Z2
s
) (as (6262)) (8282)


z ←$ h−1
N (1) (as (4545)) (8383)


ri ←
$ Z∗NZ


∗
N ∶ i ∈ [s] (8484)


(ci, di)←
$
{0,1}2


∶ i ∈ [s] (8585)
wi ≡ wi,0 = wi,1 = ri


2
∗ zei ∶ i ∈ [s] (8686)


ui = wi
2
∗ (vi ∗ z


di)
−1
∗ (−1)ci ∶ i ∈ [s] (8787)


H1 = CR-Hash(ctx’, z, ⟨ui ∶ i ∈ [s]⟩) (as (4747)) (8888)


H1 = Equiv [C
(CRS)
Equiv , tCRS] (H1,H1) (8989)


(Ext-Coms and $ for 2nd Equiv-Com)


wi,b = Gen$ForCom[C
(CRS)
Ext ](wi,b) ∶ i ∈ [s], b ∈ Z2 (9090)


wi,b = C
(CRS)
Ext (wi,b; wi,b) ∶ i ∈ [s], b ∈ Z2 (9191)


→
w= ⟨(wi,0,wi,1) ∶ i ∈ [s]⟩ (9292)


H2 = CR-Hash(H1,
→
w) (9393)


H2 = Equiv [C
(CRS)
Equiv , tCRS] (H2,H2) (9494)


↓ π = ((z,H1,H2) ,
→u ,→e , →www) } (as (6464)) (9595)


Figure A.2: NIZKPoK of Blum integer trapdoor (NIZKPoKBI-trap).


Page 245 of 376







Section A.2. NIZK sub-protocols for IFC (2016-Dec-27)


security, as follows: P samples a random auxiliary element z in class 1 (4545), then samples
a random vector of random group elements ui in class 0 (hereafter denotes offsets) (4646),
then computes a collision resistant hash H1 of the concatenation of the extended context
ctx’, the auxiliary element z, and the vector of random offset elements ui (4747). P samples
randomness H1 suitable to produce an Equiv-Com (4848) and then uses it to produce a
respective commitment H1 of the hash (4949). Then, using as input the CRS and the Equiv-
Com H1, P uses the NPRO to generate a vector of random complementary group element
vi (the second contribution to the coin-flipping) (5050). P calculates the component-wise
multiplication of the two vectors of group elements, thus obtaining in each component a
new group element xi (5151). P computes the class di of each resulting elements (5252), and if
the class is 1 then it further multiplies it by the auxiliary group element z of class 1 (5353),
thus obtaining a new element of class 0, here denoted as a coin-flipped group element,
being a square or the additive inverse of a square.


• Ext-Coms of pseudo square-roots. For each coin-flipped group element, P computes
a pseudo-square-root wi,0 of class 0 (5454). Then, P multiplies the result by the trapdoor (a
non-trivial square-root of 1) to obtain a pseudo square-root wi,1 of class 1 (5555). For each
pseudo square-root wi,b, P samples randomness wi,b suitable for an Ext-Com scheme CExt


(5656), and then uses it to produce a Ext-Com wi,b of the square-root (5757). The Ext-Coms
can thus be organized in a vector →w of pairs of Ext-Coms (5858).


• Bit-challenges and replies. P computes a collision-resistant hash H2 of the concatena-
tion of the initial CR hash H1 and the vector →w of pairs of Ext-Coms (5959), then samples
randomness H2 suitable to produce an Equiv-Com of the hash (6060) and then uses it to
indeed produce a respective Equiv-Com H2 of the hash (6161). P makes another call to
the NPRO, using as input the CRS and the Equiv-Com of the hash, to obtain a vector
of bit challenges ei (6262). As reply to the challenges, P produces a vector →www that
contains, for each index of the challenge (i.e., for each bit of statistical security), the
pseudo-square-root wi,ei and respective randomness wi,ei associated with the challenged
bit ei, and the Ext-Com wi,1−ei associated with the complementary bit (6363).


Finally, the procedure outputs the proof transcript π, as a tuple containing: the
auxiliary element z of class 1, the two randomnesses (H1,H2) used as input in the NPROs,
the vector →u of offset elements, the vector →e of challenge bits, and the vector →www of
triplets that containing one Ext-Com and one opening for each challenge index. (6464).
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Proof verification.


• Initial NI checks by V. As initial checks, V checks that the integer N is equal to 1
modulo 4 (6565), that it is not a square (6666), that it is not a power of a prime (6767), and
that the auxiliary element z is indeed of class 1 (6868).


• Recompute coin-flipping. V uses the received elements to reproduce the first collision-
resistant hash H1 (6969). Then, using the received randomness H1, V recomputes the same
Equiv-Com H1 of the hash (7070). V then uses the NPRO, using as input the CRS and
the Equiv-Com of the hash, to recompute the vector of complementary group elements vi
(7171), by directly multiplying the offset elements ui contained in the proof transcript π, the
complementary elements vi obtained from the NPRO, and the class correction by means
of multiplying by the auxiliary element z whenever the informed class di of the previous
product was 1 (7272).


• Recompute and check challenge bits. V uses the receive coin-flipped elements wi,ei
(just one per challenge index) and respective randomnesses wi,ei of Ext-Coms to recompute
the respective Ext-Coms wi,ei (7373). At this point, V is able to reconstruct the vector →w
of pairs of Ext-Coms of pseudo-square-roots of the coin-flipped group-elements (7474). V
uses said vector to recompute the second collision-resistant hash H2, using as prefix of the
pre-image also the previous CR hash H1 (7575). Using the respective received randomness
H2, V then recomputes the respective Equiv-Com H2 of the second hash (7676). V then
verifies that the received vector →ei of bit challenges ei is equal to the one that would be
obtained from the NPRO applied to the concatenation of the CRS and the Equiv-Com of
the second hash (7777).


• Check pseudo square-roots. For each challenge bit ei, V checks that the square of the
respective tentative square-root wi,ei is equal to the respective coin-flipped element w′


i or
its additive square (7878), and checks that its class is equal to the challenge bit (7979). If some
verification fails, then the procedure returns false, otherwise it outputs true (8080).


Proof simulation. A simulator can produce a proof transcript associated with any NPRO
inputs, i.e., any pair of pre-images (Equiv-Coms) that V would propose as PRNG seed in
case this would be an interactive Σ-protocol.


• Offsets and randomness for first Equiv-Com. The first part of the simulation is
very similar to the simulation of the NIZKP of Blum integer correctness (steps (3434–4242)).


From the first Equiv-Com H1, S uses the NPRO to regenerate the vector of comple-
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mentary group-elements vi (8181). From the second Equiv-Com H2, S regenerates the vector
of challenge bits ei (8282). (In the NIZKP-GBI there was instead a single Equiv-Com, and
the differentiation in the input of the NPRO was made via a character suffix.)
S the samples a random auxiliary element z of class 1 (8383), then samples a vector of


random auxiliary group elements ri (8484), as well as a vector of random class bits di and
sign bits ci (8585). Then, as in the NIZKP, S uses the sampled randomness to produce
in advance the needed pseudo-square roots wi (8686) However, as an augmentation to the
NIZKP casae, in this NZKPoK simulation the value calculated for each challenge index is
duplicated to fill the variable associated with each possible bit challenge wi,b. (Actually,
any syntactically valid value could be used for the non-selected class.) Then, the calculated
pseudo suqare-root for each challenge index is used to calculate the respective offset group
element ui that is needed for the coin-flipping to induce the needed group elements w′


i


(8787). S computes the CR-Hash H1 of the concatenation of the extended context ctx’ with
the auxiliary element z class 1 and the vector →u of offset group elements (8888) Finally, S
uses the trapdoor tCRS of the CRS to calculate the randomness H1 needed to equivocate
the first Equiv-Com H1 to open to the calculated Hash H1 (8989).


• Ext-Coms and randomness for second Equiv-Com. The second part of the simu-
lation, specific to this NIZKPoK, concerns the regeneration of the Ext-Coms of pseudo
square-roots. For each (of two) coin-flipped elements wi,b associated with each challenge
index, S generates randomness wi,b suitable for an Ex-Com (9090) and then uses it to
produce a respective Ext-Com wi,b (9191). S produces a vector →w of pairs of Ext-Coms
(9292). Then, S concatenates the CRS and the vector and calculates its CR-Hash (denoted
the second hash H2) (9393). Finally, S uses the trapdoor tCRS of the CRS to calculate the
randomness H2 needed to produce from the second hash the second Equiv-Com H2 used
as input of the simulation algorithm. (9494). The algorithm then outputs as simulated proof
transcript π the appropriate tuple of elements that have been calculated (9595), with the
same structure as in an honest proof.


Analysis.


• Security. Completeness follows again from the ability to produce pseudo square-roots
of any class from any group element class 0 (modulo a Blum integer), when knowing the
trapdoor. Knowledge-extraction follows from the extractability of the pairs of Ext-Coms
of pseudo-square roots of different class, with the respective statistical soundness being as
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in the NIZKP. Computational zero-knowledge is reducible to the hiding property of the
Ext-Coms (i.e., the ones that would actually not be committing to a pseudo-square-root)
— all the rest is reducible to the equivocability of the Equiv-Coms that enable a simulator
to induce the needed result of the coin-flipping of group elements.


• Communication complexity. See cell EE22 in Table B.2B.2. The transcript is composed on
an initial triplet composed of one auxiliary group element and two randomnesses of an
Equiv-Com, followed by a vector of group elements, a vector of bit challenges and a vector
of triplets, where each triplet has one group element, one randomness for an Ext-Com and
one Ext-Com. If using the defined Blum-based BitString Equiv-Com scheme (§B.4.1.2B.4.1.2),
each respective randomness requires one group element (a 2256-th root) (see row 1010 of
Table B.1B.1). If using OAEP-RSA as Ext-Com scheme, each respective randomness requires
256 bits, and each Ext-Com of a group element requires two group elements (see row 99
of Table B.1B.1). Overall, for 3,248-bit Blum integers and statistical security of 96 bits the
NIZKPoK transcript requires about 160 KB, whereas for a statistical security of 128 bits
it requires about 212 KB.


• Computational complexity. The most relevant group operations are: in GenPokBItrap,
s square-roots, 2 Equiv-Coms (each costing 1 exponentiation), 2s Ext-Coms (each costing 1
exponentiation), s+2 Jacobi Symbols (and about 2.5s multiplications); in VerPokBItrap, 2
Equiv-Coms, s Ext-Coms and s+ 1 Jacobi symbols (and about 2.5 multiplications, besides
checking that N is not a square and not a prime power).


A.2.4 NIZKP of GM BitComs of 0


Informal description. Proving that a vector of BitComs is a vector of commitments
to 0 corresponds to proving in ZK that it is a vector of squares (i.e., quadratic residues).
Here it is sufficient to consider a NIZK-transformation of the original Feige-Fiat-Shamir
ZKPoK (with rewinding) of a vector of square-roots [FFS88FFS88], along with a minor adaptation
concerning additive inverses. The protocol takes advantage of the homomorphic properties
of GM BitComs, allowing a statistical verification of square-roots of products of random
subsets of the squares (and masked with an additional random square factor). The NIZKP is
produced as follows: P produces new random auxiliary GM BitComs of 0, in number equal
to the intended number of bits of statistical security; then, P calculates the CR-Hash of the
concatenation of the triplet composed of the extended execution context, the original vector
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of BitComs and the auxiliary vector of BitComs, and uses it as input of a NPRO to generate
for each auxiliary square a pseudo-random subset of positions of the original vector; then,
P calculates the products of the respective subsets of known square-roots, multiplying also
the square-root of the respective auxiliary BitCom of 0; the proof transcript is the triplet
composed of the vector of auxiliary BitComs of 0, the randomness of the Equiv-Com of the
hash (but not the hash), and the vector of square-roots of masked products of random subsets.
If there is at least one original BitCom for which P does not know a respective square-root
(or one square-root does not exist), then it will fail to provide a square-root with probability
overwhelming in the number of auxiliary challenges.


Communication. As described, the protocol requires group elements in number twice the
statistical parameter, and one randomness of an Equiv-Com (e.g., also one group element, if
using the generalized Blum BitString Com scheme).


A.3 NIZK sub-protocols for DLC


This section describes DLC-related NIZKPs and NIZKPoKs. For initial intuition, §A.3.1A.3.1
describes the classic (interactive) HVZKPoK of discrete log (DL), of same DL, of Pedersen
representation (Rep) and of same Rep. §A.3.2A.3.2 describes a NIZKP for proving correctness of
an ElGamal BitCom, which is essentially an OR of “same DL” NIZKP. §A.3.3A.3.3 describes a
full-fledged NIZKPoK of DL (simulatale without rewinding). §A.3.4A.3.4 describes a NIZKPoK of
ElGamal opening. §A.3.5A.3.5 describes a NIZKP of vectors of ElGamal Coms of 0.


Initial definitions. The protocols in this section relate to proofs about elements from
a cyclic-group (G,∗) represented in multiplicative notation, with non-interactively and
efficiently computable order q = #(G), where the DDH assumption holds, and for which
two random generators (g0, g1) (i.e., such that ⟨g0⟩ = ⟨g1⟩ = G) can be encoded in a common
reference string (CRS) provided by a trusted setup, such that no party knows the discrete
log of one generator base the other.


For ΣHVZK protocols (§A.3.1A.3.1, §A.3.2A.3.2), a standalone setting is considered, e.g., without
concern for session and subsession identifiers. Then, when considering transformations
of Σ-protocols to a non-interactive and possibly concurrent execution setting §A.3.3A.3.3, the
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determination of the Σ-challenge makes use of the context ctx information and the common
reference string (CRS), in order to ensure non-malleability.


A.3.1 Sigma HVZKPoKs (DL, same DL, Rep, same Rep)


A classical problem in the area of ZK protocols is that of proving knowledge of a discrete log
α of an element g1 base some fixed generator g0, in a cyclic group of prime order q. This has
traditionally been considered in a setting of simulation with rewinding. An early protocol
based on a cut-and-choose approach [CEvdGP87CEvdGP87] was devised by Chaum et al. There, the
parties engage in several Sigma-type interactions, possibly in parallel, with each challenge
being binary, thus achieving soundness overwhelming in the number of challenges, namely
exponentially small error probability. A much more efficient protocol, also of Sigma type,
was later devised by Schnorr [Sch91Sch91]. There, a single Sigma-challenge (a random exponent) is
sufficient to ensure overwhelming soundness, and so the needed communication (in the HVZK
version) is reduced to a single group element (for the Sigma-commit) and two exponents (one
for Sigma-challenge and one for Sigma-response).


Several (stand-alone) Sigma HV-ZKPoK protocols are described with succinct notation in
Figure A.3A.3, for proving knowledge of a DL and several generalizations. In Schnorr protocol
(Figure A.3aA.3a), the proof relates to a principal element A that can be obtained by raising
the base generator g to the power of a secret exponent α (9696). The base generator and the
principal value are public, i.e., known by both P and V (9797), but the secret exponent is
known only by P (9898). The protocol starts with a Σ-commit phase, where the prover selects
a random exponent k (9999), and uses it to send to V a respective random exponentiation K
of the base generator g (100100). Then, V selects a random challenge c (in the exponent space)
and sends it to P (101101). P then applies a linear transformation to the secret exponent α,
using the challenge c and the random exponent k as coefficients of first and zeroth order,
respectively, and sending the result z to V (102102). Finally, V accepts the proof as correct if
and only if it successfully verifies that the Σ-commit value K multiplied by the principal
value A raised to the power of the challenge c is equal to the base generator g raised to the
power of the response value z (103103).


Generalizations to Schnorr protocol can be obtained for example for: proving knowledge of
a same DL α of two principal values (A1,A2) with respect to two respective base generators
(g1, g2) (Figure A.3bA.3b); proving knowledge of a representation (α0, α1) of a principal value
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Elements relation: A = gα (9696)
Initial input:


P,V ∶ (g,A) (common input) (9797)
P ∶ α = DLg(A) (private) (9898)


Sigma interaction:


P ∶ k ←$ Zq (rand for Σ-commit) (9999)
P→V ∶K = gk (Σ-commit) (100100)
V→ P ∶ c←$ Zq (Σ-challenge) (101101)
P→ V ∶ z = α ⋅ c + k (mod q) (Σ-response) (102102)
V ∶ Ac ∗K =


? gz (Σ-verify) (103103)


(a) Sigma-HVZKPoK of DL (Schnorr [Sch91Sch91])


Elements relation: A1 = g1
α
∧A2 = g2


α (104)
Initial input:


P,V ∶ (g1,A1), (g2,A2) (common input) (105)
P ∶ α = DLg1(A1) = DLg2(A2) (private) (106)


Sigma interaction:


P ∶ k ←$
[q] (rand for Σ-commit) (107)


P→ V ∶ (K1,K2) = (g1
k, g2


k
) (Σ-commit) (108)


V→ P ∶ c←$
[q] (Σ-challenge) (109)


P→ V ∶ z = α ⋅ c + k(mod q) (Σ-response) (110)
V ∶ ∧i∈{1,2}A


c
i ∗Ki =


? gi
z (Σ-verify) (111)


(b) Sigma-HVZKPoK of same DL ([CP92CP92])


Elements relation: A = gα0
0 gα1


1 (112)
Initial input:


P,V ∶ (g0, g1),A (common input) (113)
P ∶ (α0, α1) (∈ Repg0,g1(A)) (private input) (114)


Sigma interaction:


P ∶ k0, k1 ←
$ Zq (rand for Σ-commit) (115)


P→ V ∶K = g0
k0g1


k1 (Σ-commit) (116)
V→ P ∶ c←$ Zq (Σ-challenge) (117)
P ∶ z0 = α0 ⋅ c + k0 (mod q) (118)
P ∶ z1 = α1 ⋅ c + k1 (mod q) (119)
P→ V ∶ (z0, z1) (Σ-response) (120)
V ∶ Ac ∗K =


? g0
z0g1


z1 (Σ-verify) (121)


(c) Sigma-HVZKPoK of Representation ([Oka93Oka93])


Elements relation: Ai = gi,0α0gi,1
α1 (122)


Initial input:
P,V ∶ ((gi,0, gi,1),Ai ∶ i ∈ {1,2}) (common) (123)
P ∶ (α0, α1) (∈ Repgi,0,gi,1(Ai),∀i ∈ {1,2} ) (124)


Sigma interaction:


P ∶ k0, k1 ←
$
[q] (rand for Σ-commit) (125)


P→ V ∶ (Ki ≡ gi,0
k0gi,1


k1 ∶ i ∈ {1,2}) (126)


V→ P ∶ c←$
[q] (Σ-challenge) (127)


P→ V ∶ z0 = α0 ⋅ c + k0(mod q) (128)
P→ V ∶ z1 = α1 ⋅ c + k1(mod q) (129)
P→ V ∶ (z0, z1) (Σ-response) (130)
V ∶ ∧i∈{1,2}Ai


c ∗Ki =
? gi,0


z0gi,1
z1 (Σ-verify) (131)


(d) Sigma-HVZKPok of same Representation


Figure A.3: Several Sigma-HVZKPoKs (DL, same DL, Rep, same Rep). Each
protocol allows extraction if rewinding is allowed in the simulation, but not otherwise.


A, with respect to two base generators (g0, g1) (Figure A.3cA.3c); proving knowledge of a
same representation (α0, α1) of two principal values (A1,A2) with respect to two pairs
((g1,0, g1,1), (g2,0, g2,1)) of base generators (Figure A.3dA.3d). A unified analysis of this type of
ZKPoKs of a preimage of a group homomorphism can be found for example in [Mau09Mau09].


In a setting of simulation-with-rewinding the protocols are indeed ZKPoKs, as the
simulator is able to use rewinding to obtain two valid Σ-responses (z, z′) to two different
Σ-challenges (c, c′) for the same Σ-commit message K and from there extract the secret
discrete logarithms. If rewinding is not allowed, a more sophisticated protocol is required for
extraction (e.g., see §A.3.3A.3.3 for a (NI)ZKPoK of DL).
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A.3.2 NIZKP of good ElGamal BitCom


This subsection describes a NIZKP of good ElGamal BitCom (NIZKPGEB) (i.e., of correctly
constructed BitCom), based on the OR-proof technique (§A.1.6A.1.6) applied to a HVZKP of Same
DL [CP92CP92], and using a transformation into NIZKP based on an Equiv-Com and a NPRO.
Per DDH assumption, an ElGamal Com semantically hides the committed value, to anyone
not knowing the DL between the two generators. Thus, the goal of the NIZKP is to prove that
the committed value is either a 0 or a 1. The prover (P) may (but does not need to) know the
secret DL (between the two generators) because the commitment is unconditionally binding
(i.e., considering an opening phase corresponding to reveal the randomness). The NIZKP
procedures are described with succinct notation in Figure A.4A.4. A textual description follows.


Common input.


• Proof instance. As common input, both parties know two generators (gA, gB) (132132) of
the same group of known order q (133133). The NIZKP instance is in respect to a known
ElGamal Com C, which is a pair (GA,GB,0) of group elements (134134). The first component
is the first generator gA raised to the power of a secret “randomness” r, and the second
element is a multi-exponentiation composed of the product of two powers, the first being
the first generator gA raised to the power of the committed value b, and the other being
the second generator gB raised to the power of the “randomness” r. From the original
BitCom it is possible to produce an adjusted pair composed of the original first group
element GA and an adjusted second group element GB,1 obtained after dividing the second
original component GB,0 by the first generator gA (135135). The assertion that the original
pair is an ElGamal BitCom is equivalent to the assertion that either the original pair is
a BitCom of 0 OR the adjusted pair is a BitCom of 0. Since a BitCom of 0 is a pair of
powers with the same exponent, base the respective pair of generators, the overall NIZKP
is reducible to an OR disjunction of assertions of same DL.


• Context and auxiliary input. The NIZKP is contextualized by session and sub-session
identifiers, and a specific prover and verifier (136136) (i.e., when intending non-malleability).
The parties have access to a common reference string (CRS), assumed to be local when
intending non-transferability of proofs (137137). The extended context is defined as a tuple
containing the session context ctx , the CRS and the proof instance, i.e., the pair (gA, gB)


of generators and the triplet of principal group elements (GA,GB,0,GB,1) (138138).
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Common input
(Proof instance)
(gA, gB) (pair of generators) (132132)
q = #(⟨gA⟩) = #(⟨gB⟩) (group order) (133133)
C = (GA,GB,0) (ElGamal BitCom) (134134)


(A = gA
r,GB,0 = gA


bgB
r
)


GB,1 ≡ GB,0/gA (135135)


Context and auxiliary input
ctx = (sid, ssid, P, V) (context) (136136)
CRS (common reference string) (137137)
ctx’ ≡ (ctx,CRS, (gA, gB),C) (138138)


Private inputs
P ∶ x = DLgA(GA) (139139)
P ∶ b ∈ {0,1} ∶ r = DLgB(GB,b) (140140)
S ∶ tCRS (trapdoor of CRS) (141141)


Produce proof
P: GenProofGEB [ctx’] (x, b) = {


(Simulate incorrect case (b′ ≡ 1 − b))
cb′ ←


$ ZqZq (Σ-challenge-b′) (142142)
zb′ ←


$ ZqZq (Σ-response-b′) (143143)
For j ∈ {A,B} ∶ (Σ-commit-b′)
Kb′,j = Gj,b′


−cb′ ∗ gj
zb′ (144144)


(Prepare correct case (b))


kb ←
$ ZqZq (rand for Σ-commit-b) (145145)


Kb,j = g
kb
j ∶ j ∈ {A,B} (Σ-commit-b) (146146)


(Challenges)
→
K≡ ((K0,A,K0,B), (K1,A,K1,B)) (147147)


H = CR-Hash(ctx’,→K) (148148)


H ←$ Gen$ForCom [C
(CRS)
Equiv ] (H) (149149)


H = C
(CRS)
Equiv (H;H) (150150)


c = NPRO[CRS,H](Zq) (151151)
cb = c − cb′ (mod q) (Σ-challenge-b) (152152)


(Responses)
zb = r ⋅ cb + kb (mod q) (Σ-response–b) (153153)


π = (H,
→
K,c0, (z0, z1)) } (154154)


Verify proof
P: VerProofGEB [ctx’] (π) = {


H = CR-Hash(ctx’,→K) (155155)


H = C
(CRS)
Equiv (H;H) (156156)


c = NPRO[CRS,H](Zq) (157157)
c1 = c − c0 (mod q) (158158)
If ∨i∈{0,1},j∈{A,B}Ki,j ∗GB,i


ci ≠ gj
zi , (159159)


then ↓ false, else true } (160160)


Simulate proof
P: SimProofGEB [ctx’] (tCRS,H) = {


(Simulate both cases)
c = NPRO[CRS,H](Zq) (161161)
c0 ←


$ ZqZq (Σ-challenge-0) (162162)
c1 = c − c0 (mod q) (Σ-challenge-1) (163163)
zb ←


$ ZqZq ∶ b ∈ Z2 (Σ-response-b) (164164)
For b ∈ Z2, j ∈ {A,B} ∶ (Σ-commit)
Kb,j = Bb


−cb ∗ gj
zb ∶ b ∈ Z2 (165165)


(Equivocate randomness)
→
K≡ ((K0,A,K0,B), (K1,A,K1,B)) (166166)


H = CR-Hash(ctx’,→K) (167167)


H = Equiv [C
(CRS)
Equiv , tCRS] (H,H) (168168)


π = (H,
→
K,c0, (z0, z1)) } (169169)


Figure A.4: NIZKP of Good ElGamal BitCom (NIZKPGEB). It is a NIZKP of the
inclusive disjunction (OR) of two “Same DL” assertions sharing the first component. The construction
derives from the HVZKP of same DL [CP92CP92], the OR proof technique [CDS94CDS94] and the transformation
to NIZK based on an Equiv-Com and random oracle [Dam00Dam00, FS87FS87, Lin15Lin15].
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Private inputs. As private input, P knows the “randomness” x (i.e., the DL) of the first
ElGamal component GA (139139), and knows which second component (the original GB,0 or the
adjusted GB,1) has the same DL base the second generator gB (140140). A proof simulator has
access to the CRS trapdoor, so that it is able to equivocate the opening of Equiv-Coms (141141).


Proof generation. The proof generation algorithm uses as input the extended context
ctx’ and the private DL α and bit b known by P.


• Simulate incorrect case (b′ = 1 − b). The protocol starts with P locally simulating
the three elements of a “Σ-HVZKP of same DL” transcript, in respect to the incorrect
instance of the disjunction. The transcript is simulated by selecting a random Σ-challenge
cb′ (142142) and a random Σ-response zb′ (143143) and then using them to solve the HVZKPoK
verification equation to yield the consistent pair (KA,b′ ,KB,b′) of Σ-commit values (144144).
(The elements of an actual honestly generated transcript would be generated in different
order, starting with the Σ-commit value).


• Prepare correct case (b). Then, for the correct instance the algorithm proceeds as in a
regular Σ-protocol, sampling a random exponent kb (145145) and then producing a respective
pair (Kb,A,Kb,B) of Σ-commit elements as the result of raising each generator to the power
of the random exponent (146146).


• Challenges. At this point, the four Σ-commit elements (two for each instance of the
disjunction) are organized into a respective vector →k (147147). P calculates the CR-Hash
H of the tuple composed of the extended context ctx’ and the vector →K of Σ-commit
elements (148148). Then, P samples randomness H suitable to produce an Equiv-Com of the
hash (149149) and uses it to produce a respective Equiv-Com H (150150). The Σ-challenge c
(what in an interactive HVZKP would be decided by V) is obtained as the NPRO output
when using as input the CRS and the Equiv-Com H (151151). Since this is an OR proof, P
uses the received challenge as the offset between the two needed Σ-challenges (one for
each instance of the OR disjunction). Since this is an OR proof, the Σ-challenge cb for
the correct instance is defined as the difference between the global challenge c and the
challenge cb′ already fixed for the incorrect instance (152152).


• Responses. P calculates the Σ-response for the correct instance as it would for a
HVZKPoK of same DL, namely as a linear function of the private randomness exponent
x, using the Σ-challenge cb and the Σ-commit pre-image kb as first and zero-th order
coefficients, respectively (153153). Finally, the algorithm outputs the proof transcript as


Page 255 of 376







Section A.3. NIZK sub-protocols for DLC (2016-Dec-27)


the tuple π containing the randomness H of the Equiv-Com of the hash (but not the
hash), the vector →K of Σ-commit elements the σ-challenge c0 of the first (but not of the
second) instance (regardless of whether it was the correct or the incorrect one), and the
pair (z0, z1) of Σ-responses (154154).


Proof verification. V recomputes the CR-Hash H of the extended context ctx’ followed
by the vector →K of Σ-commit elements (155155). Then, using the randomness element H present
in the proof transcript π, V recomputes the respective Equiv-Com H of the hash (156156). V
recomputes the global challenge c, when using as input the CRS and the Equiv-Com H of
the hash (157157). Based on the Σ-challenge c0 present in the proof transcript π, V recomputes
the Σ-challenge c1 of the second instance (158158). Finally, V executes for both instances the Σ
verification procedure of the HVZKP of Same DL, i.e., for each instance it checks whether
each generator gj raised to the power of the Σ-response element zi associated with each
instance equals the respective Σ-commit element Kj,i multiplied by second group element Gj,i


of the instance raised to the power of the respective Σ-challenge ci (159159) If any verification
fails, then the algorithm outputs false; otherwise it outputs true (160160).


Proof simulation. A simulator S knowing the CRS trapdoor tCRS is able to simulate proof
transcripts for any Equiv-Com H that would be used as NPRO seed by V in an eventual
interactive version of the protocol.


• Simulate both cases. S starts by generating the global challenge c as the NPRO output
when using as input the CRS and the Equiv-Com of the hash (161161). Then, S samples a
random Σ-challenge c0 for the first instance (162162) and then calculates the corresponding
Σ-challenge c1 for the second instance, as the difference between the global challenge c and
the first challenge c0 (163163). Then, for both instances, S samples a random Σ-response zb
(164164) and then calculates the corresponding Σ-commit pair Kb,j of group elements (165165).


• Equivocate randomness. S organizes the two pairs of Σ-commit values into a respective
vector →K (166166), then computes the CR-Hash of tuple composed of the extended context ctx’
and the vector →K of Σ-commit elements (167167), and then uses the CRS trapdoor to calculate
the randomness H suitable for opening the computed hash H from the Equiv-Com present
in the input of the simulation procedure (168168). Finally, the algorithm outputs as proof
transcript the tuple composed of the calculated randomness H, the vector →K of Σ-commit
elements, the Σ-challenge c0 of the first instance, and the pair (z0, z1) of Σ-responses (169169).
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Analysis.


• Security. Completeness follows from the ability of an honest prover (i.e., knowing a
consistent opening of the ElGamal BitCom) to simulate the incorrect case and to answer
any challenge for the correct case. Soundness follows directly from the soundness of
the HVZKP of Same DL and of the OR technique — a malicious prover not knowing a
suitable DL is able to construct a valid Σ-response for at most one instance, but not for
both. Zero knowledge follows from the ability of a simulator, knowledgeable of the CRS
trapdoor, to produce false transcripts indistinguishable from correct ones, by equivocating
the Equiv-Com used as pre-image of the NPRO (168168).


• Communication complexity. See cell EE88 in Table B.2B.2. The transcript contains 1
Equiv-Com randomness, 4 group elements and 3 exponents. For 128 bits of computational
security, using an exponent domain with 256 bits, and group elements with 264 bits in
ECC and 3,248 bits in FFC, the transcript is about 0.26 kBkB in ECC and 1.75 kBkB in FFC.


• Computational complexity. In terms of multiplicative operations, it requires: 1 multi-
plication in the exponent space, and 6 exponentiations and 2 group-multiplication of group
elements from P; 8 exponentiations and 4 group-multiplications of group elements from V.


A.3.3 NIZKPoK of discrete log


Intuition. A direct transformation of the Σ-challenge of Schnorr protocol into a non-
interactive protocol would remove the ability of extraction without rewinding. Also the
described idea of leveraging the special soundness with a cut-and-chooseleveraging the special soundness with a cut-and-choose does not apply di-
rectly to the Schnorr Σ-challenge because of exponential size of challenges. Instead, the
description below uses a cut-and-choose approach suited to binary challenges, related to the
ability of extracting a DL from any two distinct Pedersen representations of the same group
element. The NIZKPoK procedures are defined in Figure A.5A.5. A textual description follows.


Common input. The generation and verification of proofs make sense in a context where
the prover (P) and verifier (V) share some common input. The NIZKPoK of a DL is in
respect to a pair (g0, g1) of generators of the same cyclic group (170170). The group order q is
assumed known and verifiable (171171). There is a computational security parameter 1κ (172172)
used in respect to PRNGs, and a statistical security parameter σ that defines the soundness
goal of each proof (173173). There are cut-and-choose parameters (c&c) defining a minimum
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and maximum number of challenges of type evaluation and of type check (174174), consistent
with the statistical security goal, in respect to the probability of guessing in advance an
exact cut-and-choose partition selected at random (see Table 3.13.1 and Table 3.23.2). These
numbers define the overall number s of challenges (175175), as well as the set Π of all possible
partitions of challenge indices (176176). Each proof is generated and verified within the scope
of an execution context, composed of a session identifier, a sub-session identifier, and the
identity of prover and verifier (177177). It is also based on a CRS, which must be local in order
to ensure non-transferability of the proof (178178). By definition, the extended context of the
execution is the tuple that includes the original context, the CRS, the pair of generators, the
specification of the set of possible partitions, and the security parameters (179179).


Private inputs. As private input, P knows the discrete log of the second generator g1 base
the first generator g0 (here denoted the global generator) (180180). In respect to simulations, a
simulator S is able to define the CRS in a way that it knows a respective trapdoor tCRS (181181).
When impersonating a prover playing against a malicious V, the trapdoor allows equivocaing
the opening of Equiv-Coms. When impersonating a verifier playing against a malicious P,
the trapdoor allows extraction from Ext-Coms.


Proof generation. The prover invokes an algorithm GenPokDL, using as input the ex-
tended context ctx’ and the trapdoor t. The algorithm executes as follows:


• Group elements and Ext-Coms. For each challenge index j ∈ [n], P selects a random
PRNG seed λj (e.g., 256 bits) (182182), then uses it to pseudo-randomly generate an exponent
uj (183183), then calculated a group element u′j by raising the second generator g1 (whose
knowledge of DL base the global generator g0 is being proven) to the power of exponent
uj (184184). Then, P uses the random seed λj to pseudo-randomly generate “randomness” u′j
suitable for an Ext-Com of the exponent (185185), and then uses it to produce a respective
Ext-Com u′j (186186). P defines the complementary exponent vj to be the modular sum (in
the space of exponents) of the pseudo-random exponent uj and the secret DL t (187187).


• Challenges and replies. P organizes the group elements u′j into a respective vector
→
u′ and the Ext-Coms uj into a respective vector →u (188188). P calculates a CR-Hash of
the triplet composed of the extended context ctx’ and the two vectors (189189). Then, P
generates random randomness H suitable for an Equiv-Com of the hash (190190), and then
produces a respective Equiv-Com H (191191). P then determines the cut-and-choose partition


Page 258 of 376







Ph.D. dissertation: The forge-and-lose technique and other contributions to S2PC-with-Coms (2016-Dec-27)


Common input
g0, g1 (two generators) (170170)
q = #(⟨g0⟩) = #(⟨g1⟩) (group order) (171171)
κ ≡ 1κ (computational security parameter)


(172172)
σ ≡ 1σ (statistical security parameter) (173173)
c&c = ((vmin, vmax), (emin, emax)) (174174)
s ≡ vmin + emax = emin + vmax (175175)


(∑j∈{emin,emax}(s!/(j!(s − j)!)) ≥ 2s)


Π ≡ PARTITIONS[c&c]([s]) (176176)
ctx = (sid, ssid, P, V) (context) (177177)
CRS (common reference string) (178178)
ctx’ ≡ (ctx,CRS, (g0, g1),c&c, (1σ,1κ)) (179179)


Private inputs
P ∶ t =DLg0(g1) ∶ g1 = g0


t (180180)
S ∶ tCRS (trapdoor of CRS) (181181)


Produce proof
P: GenPokDL [ctx’] (t) = {


(Group elements and Ext-Coms)
For j ∈ [s] ∶


λj ←
$ GenSeed(1κ) (182182)


uj = PRGenExp[λj](ZqZq) (183183)
u′j = g1


uj (184184)


uj = PRGen$ForCom[λj] (C
(CRS)
Ext , uj) (185185)


uj = C
(CRS)
Ext (uj ;uj) (186186)


vj = uj + t (mod q) (187187)


(Challenges and replies)
→
u′ = ⟨u′j ∶ j ∈ [s]⟩ ; →u = ⟨uj ∶ j ∈ [s]⟩ (188188)


H = CR-Hash(ctx’,
→
u′,
→
u) (189189)


H ←$ Gen$ForCom [C
(CRS)
Equiv ] (H) (190190)


H = C
(CRS)
Equiv (H;H) (191191)


(JV , JE) = NPRO [CRS,H] (Π) (192192)
RV = ⟨λj ∶ j ∈ JV ⟩ (193193)
RE = ⟨(vj , uj) ∶ j ∈ JE⟩ (194194)
↓ π = (H, (JV , JE), (RV ,RE)) } (195195)


Verify proof
V: VerPokDL [ctx’] (π) = {


(Group elements and Ext-Coms)
For j ∈ JV ∶


uj = PRGenExp[λj](Zq) (196196)
u′j = g1


uj (197197)


uj = PRGen$ForCom[λj] (C
(CRS)
Ext , uj) (198198)


uj = C
(CRS)
Ext (uj ;uj) (199199)


For j ∈ JE ∶ u′j = g0
vj (200200)


(Challenges)
→
u′ = ⟨u′j ∶ j ∈ [s]⟩ ; →u = ⟨uj ∶ j ∈ [s]⟩ (201201)


H = CR-Hash(ctx’,
→
u′,
→
u) (202202)


H = C
(CRS)
Equiv (H;H) (203203)


If (JV , JE) ≠ NPRO [CRS,H] (Π) , (204204)
then ↓ false, else ↓ true } (205205)


Figure A.5: NIZKPoK of discrete logarithm (NIZKPoKDL). (Simulator in Fig. A.6A.6)


(JV , JE) (subsets of check and evaluation challenges) as the NPRO output, when having
as input seed the CRS and the Equiv-Com of the global hash and requesting generation
of a random possible partition (192192). For the subset JV (also interpreted as a vector)
of check challenges, P prepares the vector RV of respective seeds (193193). For the subset
JE (also interpreted as a vector) of evaluation challenges, P prepares a respective vector
RE of pairs, each composed of the complementary exponent vj and the Ext-Com uj of
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the pseudo-random exponent uj (194194). As proof transcript, P outputs the Equiv-Com
H of the hash, the pair (JV , JE) of vectors of challenge indices and the respective pair
(RV ,RE) of vectors with responses (195195).


Proof verification.


• Group elements and Ext-Coms. Upon receiving a proof transcript π, V invokes the
algorithm VerPokDL, using as input the extended context ctx’ and the proof transcript.
Several obvious syntactical checks are left implicit (e.g., that the cut-and-choose partition
has the correct parameters, that elements are in the expected domains). Based on the
vector JV of check indices and the respective vector RV of replies, V pseudo-randomly
recomputes the respective elements as in the proof-generation mechanism, namely: it uses
the PRNG seed λj to regenerate an exponent uj (196196), then calculates the respective
group elements u′j , by raising the second generator g1 to the power of the exponents (197197),
then pseudo-randomly generates randomness uj suitable for an Ext-Com of the exponent
(198198), and recalculates the respective Ext-Com uj (199199).


Based on the vector JE of evaluation indices and the respective vector RE of replies, V
computes the respective group elements u′j by raising the global generator g0 to the power
of the complementary exponent vj (200200).


• Challenges. V organizes the group elements u′j and Ext-Coms uj into respective vectors
(→u′ and →u ) (201201). V then computes the CR-Hash of the triplet composed of the extended
context ctx’ and the two vectors (202202), similarly to how P had done in the proof generation.
V then uses the Equiv-Com randomness H received in the proof transcript to produce
a respective Equiv-Com H of the hash (203203). Finally, V checks that the partition of
challenges described in the proof transcript is equal to the one that can be obtained by
the NPRO applied to the CRS and the Equiv-Com of the hash. If the check fails, then
the algorithm outputs false (204204); otherwise it outputs true (205205).


Proof simulation. A simulator knowing the CRS trapdoor is able to generate an unde-
tectably fake transcript for any Equiv-Com H value that in an interactive version of the
protocol a possibly malicious verifier could send as a PRNG seed of the vector of challenges.
The simulator is described with succinct notation in Figure A.6A.6.


S invokes the algorithm SimPokDL, which starts by using the NPRO to compute the
cut-and-choose partition (JV , JE) of challenges (206206).
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Simulate transcript
S: SimPokDL[ctx’] (tCRS,H) = {


(JV , JE) = NPRO [CRS,H] (Π) (206206)


(Group elements and Ext-Coms)
For j ∈ JV ∶


λj ←
$ GenSeed(12κ


) (207207)
uj = PRGenExp[λj](Zq) (208208)
u′j = g1


uj (209209)


uj = PRGen$ForCom[λj] (C
(CRS)
Ext , uj) (210210)


uj = C
(CRS)
Ext (uj ;uj) (211211)


vj ←
$ ZqZq ∶ i ∈ JE (212212)


u′j = g0
vj ∶ j ∈ JE (213213)


uj = Gen$ForCom (C
(CRS)
Ext ,0) ∶ j ∈ JE (214214)


uj = C
(CRS)
Ext (0;uj) ∶ j ∈ JE (215215)


(Challenges and replies)
→
u′= ⟨u′j ∶ j ∈ [s]⟩ ; →u= ⟨uj ∶ j ∈ [s]⟩ (216216)


H = CR-Hash(ctx’,
→
u′,
→
u) (217217)


H = Equiv [C
(CRS)
Equiv , tCRS] (H,H) (218218)


RV = ⟨λj ∶ j ∈ JV ⟩ (219219)
RE = ⟨(vj , uj) ∶ j ∈ JE⟩ (220220)
↓ π = (H, (JV , JE), (RV ,RE)) } (221221)


Figure A.6: Simulator of NIZKPoKDL transcripts. (Compare with Fig. A.5A.5)


• Challenges and replies. For each check index j ∈ JV , S builds elements as an honest
prover would, namely generates a random seed λj (207207), then uses it to pseudo-randomly
generate an exponent uj (208208), and compute a respective group element u′j by raising the
second generator g1 to the power of the pseudo-random exponent uj (209209), then uses again
the random seed λj to pseudo-randomly generate “randomness” uj suitable to produce
an Ext-Com of the exponent (210210) and then produces the respective Ext-Com uj (211211).
For each evaluation index j ∈ JE, S randomly generates a complementary exponent vj
(212212), and calculates a respective group element u′j by raising the global generator g0 to
the power of the exponent (213213). S samples “randomness” vj suitable for a respective
Ext-Com of zero (214214) and then produces a respective Ext-Com vj (215215).


• Cut-and-choose challenges. S organizes all group elements u′j and all Ext-Coms uj
into respective vectors (→u′ and →u ) (216216). S computes the CR-Hash of the triplet composed
of the extended context ctx’ and the two vectors (217217). Finally, S makes use of the CRS
trapdoor tCRS to calculate the randomness H needed to equivocate the opening of the
Equiv-Com H into the hash H just calculated (218218). S produces the vector RV of check
instances as a vector with the random seeds λj of check instances (219219), and organizes the
vector RE of evaluation instances as a vector with pairs composed of the complementary
exponent vj and the Ext-Com uj of zero of each evaluation reply (220220). The algorithm
outputs as proof transcript π the triplet composed of the randomness H of the Equiv-Com,
the cut-and-choose partition and the respective two vectors of replies (221221).
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Analysis.


• Security. Completeness follows from the ability to answer to any type of challenge, for
each instance, when knowing the secret DL t. Specifically, this is equivalent to producing
different Pedersen representations of the same group element (2020). Soundness follows
from the inability, when not knowing the secret DL t, to answer to different challenges for
the same produced group element u′j. Thus, a successful cheating would involve guessing
the exact cut-and-choose partition in advance. Knowledge extraction follows from the
ability of a simulator, knowing the CRS extraction trapdoor, to extract the committed
pairs of exponents of each challenge index, and thus with overwhelming probability (same
as soundness argument) obtaining at least one good pair of distinct representations of
the same group element, which enables extracting the secret DL. ZK follows from: (i)
the semantic hiding of the Ext-Coms, which prevents an observer from distinguishing
the correct Ext-Coms of a real proof from the unopened Ext-Coms of 0 in the simulated
transcript; and the (ii) equivocability of the Equiv-Com, which prevents distinguishing an
equivocated randomness from a real randomness of the global hash.


• Communication complexity. See cell EE44 in Table B.2B.2. The transcript is composed of
one randomness of an Equiv-Com, a cut-and-choose partition, a vector of random seeds,
and a vector of pairs, each composed of a random exponent and an Ext-Com of an exponent.
Assuming the random seed (e.g., 256 bits) is smaller then the pair of exponent and Ext-
Com of exponent, it follows that the communication is maximum when the number e of
evaluation instances is maximal and the number v of check instances is minimal. Consider
Pedersen Equiv-Coms with randomness of 256 bits. Consider hybrid Ext-Coms based on
ElGamal encryption, with each Ext-Com requiring two group elements plus the size of the
committed elements. Consider FFC with 3,248-bit group elements, and ECC based on
264-bit group elements, both with 256-bit exponents. For 128 bits of statistical security,
with (s, emin, emax) = (129,1,64), the proof transcript requires about 58.2 kBkB for FFC
and 10.5 kBkB for ECC. At the cost of more computation, the communication can decrease
by appropriately increasing vmin and decreasing emax, e.g., (s, vmin, emax) = (220,189,32)
would lead to NIZKPoK transcript sizes of 34.1 kBkB for FFC and 10.3 kBkB ECC.


• Computational complexity. In terms of computational complexity, the most rele-
vant group operations are: in GenPokDL, s exponentiations, s Ext-Coms (each roughly
equivalent to two exponentiations); 1 Equiv-Com (equivalent to two exponentiations), in
VerPokDL, s exponentiations v Ext-Coms; 1 Equiv-Com.
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Common input
Same as in Fig. A.5A.5 (steps (170170–179179)) (222)
C ≡ (C1,C2) (ElGamal Com) (223)


Private inputs
P ∶ (α0, α1) ∶ C = (g0


α0 , g0
α1g1


α0) (224)
S ∶ tCRS (trapdoor of CRS) (225)


Produce proof
P: GenPokElgOpen [ctx’] (t) = {


(Group elements and Ext-Coms)
For j ∈ [s] ∶


λj ←
$ GenSeed(12κ


) (226)
uj ≡ (uj,0, uj,1) = PRGenExp[λj](ZqZq2


) (227)
u′j = (C1g0


u0 ,C2g0
u1g1


u0) (228)


uj = PRGen$ForCom[λj] (C
(CRS)
Ext , uj) (229)


uj = C
(CRS)
Ext (uj ;uj) (230)


vj = (α0 + uj,0, α1 + uj,1) (mod q) (231)
vj ≡ (vj,0, vj,1) (232)


(Challenges and replies)
Steps (188188–195195) (233)


Verify proof
V: VerPokElgOpen [ctx’] (π) = {


(Group elements and Ext-Coms)
For j ∈ JV ∶ Steps (227227–232232) (234)
For j ∈ JE ∶ u′j = (g0


vj,0 , g0
vj,1g1


vj,0) (235)


(Challenges and replies)
Steps (201201–205205) (236)


Figure A.7: NIZKPoK of ElGamal opening (NIZKPoKElgOpen).


A.3.4 NIZKPoK of ElGamal opening


A NIZKPoK of an ElGamal opening needs to allow extraction of both exponents — the
“randomness” and the “committed value” — while ensuring that the extracted randomness
is indeed used in both sides (i.e., it is not enough to perform a NIZKPoK of Pedersen
representation of the second component). A protocol is described in Figure A.7A.7. Given the
similarity and same high-level structure, the description of the NIZKPoK of ElGamal opening
makes reference to blocks of steps of the NIZKPoK of DL. The overall communication is less
that the double of the NIZKPoK of DL; the number of exponentiations is triples.


Analysis.


• Security. The analysis is similar to the case of the NIZKPoK of DL, except that now
there are two exponents, instead of just one, being committed with an Ext-Com. For
any correctly generated evaluation instance, the knowledge-extractor simulator extracts
the committed pair uj of exponents and combines it with the complementary pair vj of
exponents and obtains the secret exponents. The ZK simulator is able to generate fake
transcripts due to its ability to equivocate the opening of the Equiv-Com that served as
pre-image to determine the challenges.
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• Communication complexity. See cell EE55 in Table B.2B.2. The transcript is composed of
one randomness of an Equiv-Com (e.g., 256 bits using Pedersen Coms), a cut-and-choose
partition (e.g., s bits), a vector with about v PRNG seeds (e.g., vmin times 256 bits), and a
vector with e pairs (e.g., emax), each composed of a pair of random exponents (e.g., 512 bits
per pair) and an Ext-Com of a pair of exponents (e.g., 2 × ∣GE∣ + 512 per pair, with |GE|
equal to 3,248 bits for FFC and 264 for ECC). For 128 bits of statistical security, using
cut-and-choose parameters (s, emin, emax) equal to (129,65,64) this yields at most about
62,3 kBkB for FFC and 14.5 kBkB for ECC. In summary, in comparison with the NIZKPoK of
DL, the communication less than doubled.


• Computational complexity. In terms of computational complexity, the most relevant
group operations are: in GenPokElgOpen, 3s exponentiations, s Ext-Coms (each roughly
equivalent to two exponentiations); 1 Equiv-Com (equivalent to two exponentiations),
in VerPokElgOpen, 3s exponentiations v Ext-Coms; 1 Equiv-Com. In summary, in
comparison with the NIZKPoK of DL, the number of exponentiations tripled.


A.3.5 NIZKP of vector of ElGamal BitComs of 0


This subsection considers how to produce a NIZK that a vector of ElGamal commitments is a
vector of BitComs of 0. The prover is assumed to know the ElGamal openings. Interestingly,
the proof can be statistically parallelized into the size of the NIZKP of a single ElGamal
BitCom of 0, involving communication of only a unitary number of group elements.


The protocol is described with succinct notation in Figure A.8A.8. An ElGamal BitCom Ci


of 0 is a pair of group elements (GA,i,GB,i) with the same DL ri, base the respective pair
(gA, gB) of generators that parametrizes the ElGamal Com scheme.


Intuition. A NIZKP protocol for the Same DL language can be directly defined by a
NI transformation of the HVZKPoK (with rewinding) of same DL [CP92CP92]. An efficient
parallelization can take advantage of the additive homomorphic properties of the scheme.
The key observation is that the inner product of a vector of zeros with any vector of arbitrary
coefficients is zero, whereas the probability that the inner product of any non-zero vector
with a random vector of random coefficients is negligible small if the space of coefficients is
exponentially large. In the Com space, the analogous observation is that the component-wise
multiplication of two ElGamal BitComs of 0 is still a BitCom of 0. Upon defining the
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Common input
(Proof instance)
(gA, gB) (pair of generators) (237)
q = #(⟨gA⟩) = #(⟨gB⟩) (group order) (238)
→
C ≡ ⟨Ci ∶ i ∈ [n]⟩ (ElGamal Coms of 0) (239)
Ci,1 ≡ GA,i(= gA


ri) ∶ i ∈ [n] (240)
Ci,2 ≡ GB,i(= gB


ri) ∶ i ∈ [n] (241)


Context and auxiliary input
ctx = (sid, ssid, P, V) (context) (242)
CRS (common reference string) (243)


ctx’ ≡ (ctx,CRS, (gA, gB),
→
C) (244)


Private inputs
P ∶→r ≡ ⟨ri ∶ i ∈ [n]⟩ ∶ (gA, gB)


→r
=
→
C (245)


S ∶ tCRS (trapdoor of CRS) (246)


Produce proof
P: GenProofGEB [ctx’] (→r ) = {


(Prepare Σ-commit)


k ←$ ZqZq (rand for Σ-commit) (247)
Kj = gA


k
∶ j ∈ {A,B} (Σ-commit) (248)


(Challenges)
H = CR-Hash(ctx’, (KA,KB)) (249)


H ←$ Gen$ForCom [C
(CRS)
Equiv ] (H) (250)


H = C
(CRS)
Equiv (H;H) (251)


(→α, c) = NPRO[CRS,H](Zqn ×Zq) (252)


(Responses)
r0 =∑i∈[n]ri ⋅ αi (mod q) (253)


z = r0 ⋅ c + k (mod q) (Σ-response) (254)
π = (H, (KA,KB), c, z) } (255)


Verify proof
P: VerProofGEB [ctx’] (π) = {


H = CR-Hash(ctx’, (KA,KB)) (256)


H = C
(CRS)
Equiv (H;H) (257)


(→α, c) = NPRO[CRS,H](Zq) (258)
Gj,0 =∏i∈[n]Gj,i


αi (259)


If ∨j∈{A,B}Kj ∗Gj,0c ≠ gjz, (260)
then ↓ false, else true } (261)


Simulate proof
P: SimProofGEB [ctx’] (tCRS,H) = {


(Simulate two instances)
(→α, c) = NPRO[CRS,H](Zq) (262)
c←$ ZqZq (Σ-challenge) (263)
z ←$ ZqZq (Σ-response) (264)
For j ∈ {A,B} ∶


Gj,0 =∏i∈[n]Gj,
αi (265)


Kj = Gj,0
−c
∗ gA


z (Σ-commit) (266)


(Equivocate randomness)
H = CR-Hash(ctx’, (KA,KB)) (267)


H = Equiv [C
(CRS)
Equiv , tCRS] (H,H) (268)


π = (H, (KA,KB), c, z) } (269)


Figure A.8: NIZKP of vector of ElGamal BitComs of 0 (NIZKPEG-All-0s).


coefficients of such vector via a NPRO, the corresponding homomorphic operation between
Coms corresponds to computing in the exponent space the weighed sum of exponents, getting
the same exponent in both sides if all initial Coms were also pairs of elements with the same
DL, or otherwise only with negligible probability if the coefficients were a solution to a linear
equation.
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Concrete complexity. The communication complexity is: one randomness for an Equiv-
Com (e.g., one exponent), one ElGamal Com of 0 (i.e., two group elements) and two exponents.


A.4 NIZK sub-protocols for XOR-homomorphic BitComs


A.4.1 NIZKP of same committed bits across XOR-hom. BitCom schemes


A NIZKP of same committed bits across vectors of BitComs from different XOR-homomorphic
schemes is described in Figure A.9A.9. It may be useful for example when PB uses a 2-out-of-1
OT scheme, where it needs to prove that his intermediate OT BitComs (using BOT), based
on a Blum BitCom scheme with trapdoor known by PA, are committing to the same bits
as the outer BitComs (using BB), based on a GM BitCom scheme. The protocol is neither
(and does not intend to be) a NIZKPoK of the randomness, nor of the committed bits (i.e.,
when rewinding is not allowed).


Setup.


• BitComs. The common input is composed of: a vector with public parameters of n
XOR-homomorphic BitCom schemes (270270), each defining a commitment function Bk, and
a group group operation ∗k (multiplicative notation). For simplicity all group operations
are denoted with the same symbol (∗), but in practice the operation may vary across
schemes. Also for simplicity, the same symbol is used for the operation in randomness
space. As common input, the proof is performed in respect to m vectors, each with `


BitComs x′k,j, which can be overall organized in a matrix X ′ of BitComs (271271). The
BitCom scheme may change across vectors, but in each vector all BitComs are based on
the same BitCom scheme (the homomorphisms will be performed within each vector).


• Other parameters. Each NIZKP is produced in respect to a statistical security parameter
σ (272272). The proof has an underlying cut-and-choose structure defined by parameters that
define the minimum and maximum number of check and evaluation instances (273273). The
overall number s of challenges is equal to the sum of the number v check and number e of
evaluation instances (274274). The parameters are assumed consistent with the statistical
security goal, and they define the set Π of possible cut-and-choose partitions (275275). Each
NIZP transcript is also produced for a particular execution context, considering a session
identifier, a sub-session identifier, and the identity of the prover and verifier (276276), and
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Common input
(Parameters of m BitCom schemes)
→
B = ⟨(Bk,∗


(k)
≡ ∗) ∶ k ∈ [m]⟩ (270270)


(m vectors of ` BitComs)
X ′


= ⟨x′k,i = Bk(bi;xk,i) ∶ i ∈ [`], k ∈ [m]⟩ (271271)


(Other parameters)
σ = 1σ (statistical security parameter) (272272)
c&c = ((vmin, vmax), (emin, emax)) (273273)
s ≡ vmin + emax = emin + vmax (274274)


(∑j∈{emin,emax}(s!/(j!(s − j)!)) ≥ 2s)


Π ≡ PARTITIONS[c&c]([s]) (275275)
ctx = (sid, ssid, P, V) (context) (276276)
CRS (common reference string) (277277)


ctx’ ≡ (ctx,CRS,
→
B,
→x’) (278278)


Private inputs
P ∶
→
b ≡ ⟨bi ∈ {0,1} ∶ i ∈ [`]⟩ (bits) (279279)


P ∶X ≡ ⟨xk,i ∶ i ∈ [`], k ∈ [m]⟩ (rands) (280280)
S ∶ tCRS (trapdoor of CRS) (281281)


Produce proof
P: GenProofSameComBits[ctx’] (


→
b ,X) = {


(Commit bit-masks)
For j ∈ [s] ∶


λj ←
$ GenSeed(1κ) (282282)


dj = PRGenBitString[λj](s) (mask) (283283)
For j ∈ [s], k ∈ [m] ∶


yk,j = PRGen$ForCom[λj](Bk, dj) (284284)
y′k,j = Bk[dj , yk,j] (285285)


Y ′
= ⟨y′k,j ∶ k ∈ [m], j ∈ [s]⟩ (286286)


(Challenges)
H = CR-Hash (ctx’, Y ′) (287287)


H ←$ Gen$ForCom [C
(CRS)
Equiv ] (H) (288288)


H = C
(CRS)
Equiv (H;H) (289289)


(λ0, (JV , JE)) =


NPRO[CRS,H] ({0,1}κPRG ,Π) (290290)


(Evaluation responses)
For j ∈ JE ∶


→aj = PRGenBitString[λ0][j] (Z2
`) (291291)


ej = dj ⊕ (⊕i∈[`]bi ⋅ aj,i) (292292)
zk,j = yj ∗ (∗i∈[`]xi


aj,i) ∶ k ∈ [m] (293293)
→zj = ⟨zj,k ∶ k ∈ [m]⟩ (294294)


(Check responses)
RV = ⟨λj ∶ j ∈ JV ⟩ (295295)
RE = ⟨(ej ,


→zj ) ∶ j ∈ JE⟩ (296296)
↓ π = (H,λ0, (JV , JE), (RV ,RE)) } (297297)


Verify proof
P: VerProofSameComBits [ctx’] (π) = {


For j ∈ JV ∶


dj = PRGenBitString[λj](s) (mask) (298298)
For j ∈ JV , k ∈ [m] ∶


yk,j = PRGen$ForCom[λj](Bk, dj) (299299)
y′k,j = Bk[dj , yk,j] (300300)


For j ∈ JE ∶


z′k,j = Bk(ej ; zk,j) ∶ k ∈ [m] (301301)
→aj = PRGenBitString[λ0][j](`) (302302)


y′k,j = z
′
k,j ∗ (∗i∈[`]x


′
i
aj,i)


−1
∶ k ∈ [m] (303303)


(Recompute challenges)
Y ′


= ⟨y′k,j ∶ k ∈ [m], j ∈ [s]⟩ (304304)
H = CR-Hash (ctx’, Y ′) (305305)


H = C
(CRS)
Equiv (H;H) (306306)


If (λ0, (JV , JE)) ≠


NPRO[CRS,H] ({0,1}κPRG ,Π) (307307)
then ↓ false, else ↓ true } (308308)


Figure A.9: NIZKP of same committed bits across XOR-hom. BitCom schemes.


Page 267 of 376







Section A.4. NIZK sub-protocols for XOR-homomorphic BitComs (2016-Dec-27)


the parties have access to a common reference string (CRS) (277277). The extended context
of the execution is defined to be the tuple composed of the context, the CRS, the vector
of BitCom scheme parameters and the matrix of BitComs (278278).


Private inputs. As private input, P knows the vector of committed bits bi (equal across all
vectors of BitComs) (279279) and the randomnesses xk,i needed to open them from the BitComs
x′k,i presented as common input (280280). It is irrelevant whether or not the verifier (V) knows a
trapdoor of one or several schemes. A simulator of transcripts has access to the CRS trapdoor
tCRS, which allows equivocation of a respective Equiv-Com (281281).


Proof generation. P invokes algorithms GenProofSameComBits, using as input the ex-
tended context, the vector of committed bits and the matrix of randomnesses associated with
the matrix of BitComs.


• Commit bit-masks. For each instance, P selects a random PRNG seed λj (282282), then
uses it to generate a random bit-mask dj (283283), to pseudo-randomly generate randomness
suitable to commit the bit with each BitCom scheme (284284), and then uses each randomness
to produce each respective BitCom y′k,j of the bit mask (285285). All the BitComs of bit-masks
can now be organized into a matrix Y’ of new BitComs (286286), where the dimension of
the number of BitComs in each original vector as now been replaced for the number of
instances in the cut-and-choose.


• Calculate challenges. P computes the CR-Hash H of the pair composed of the extended
context ctx’ and the matrix Y ′ of bitmask BitComs (287287). Then, prover generates
randomness H suitable for an Equiv-Com of the hash (288288) and then uses it to produce the
Equiv-Com (289289). With the CRS and the Equiv-Com of the hash as input, P obtains from
the NPRO a new pseudo-random seed λ0 and a pseudo-random cut-and-choose partition
(JV , JE) (290290).


• Evaluation responses. For each evaluation instance, P uses the new random seed λ0


(invariant across evaluation instances) to compute a random bit-string →aj that defines
a pseudo-random subset of positions of components to combine in the original vectors
of BitComs (291291). Then, P computes the result ej of XORing together the subset of
committed bits, and then also XORing the bit mask di (292292). Correspondingly, for each
BitCom scheme, P performs in the randomness space the corresponding homomorphic
group operations, obtaining a new randomness zk,j as the product of the subset of selected
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randomnesses and then multiplies by the randomness yk,j associated with the bit mask
(293293) Each instance j has thus a corresponding vector →zj of randomnesses, with one
component per BitCom scheme Bk (294294).


• Check responses. P organizes the check responses as a vector RV of the initial random
seeds λj of check instances (295295). It organizes the evaluation responses as a vector of pairs,
each composed of the masked bit and the vector of masked randomnesses (296296). Finally,
the algorithm outputs a proof transcript π as a tuple containing the randomness of the
Equiv-Com of the hash, the PRNG seed λ0 and the cut-and-choose partition (JV , JE)


determined by the NPRO, and the vector RV of check responses and the vector RE of
evaluation responses (297297).


Proof verification.


• Check instances. For each check instance (j ∈ JV ), V uses the random seed λj to pseudo-
randomly regenerate the check instances (298298), then uses it again to pseudo-randomly
regenerate the “randomness” suitable to create a BitCom for each BitCom scheme (299299),
and then computes the respective BitComs (300300).


• Evaluation instances. For each evaluation instance (j ∈ JE), V uses the received group
element zk,j (combined randomness) to generate a respective response BitCom z′k,j (301301).
Then, V uses the auxiliary seed λ0 received in the proof transcript (invariant across
instances), to pseudo-randomly regenerate the sub-set aj of elements that should be
combined in each vector (302302). V uses the subset to recompute what should have been
the masking BitComs y′k,j (303303), basically by dividing each response BitCom z′k,j by the
respective subset product of original BitComs.


• Recompute challenges. V organizes all known BitComs of subset combinations into
a matrix Y ′ (304304). Then, V recomputes the CR-hash H of the pair composed of the
extended context and the matrix of BitCom maskings (305305). V uses the randomness H
received in the proof transcript π to produce the same Equiv-Com of hash that an honest
P would have generated (306306).
Finally, V calls the NPRO, using as input the CRS and the Equiv-Com of the hash, and
checks whether or not the output is the expected one, namely a pair composed of the same
auxiliary PRG seed λ0 and the same cut-and-choose partition (JV , JE) as included in the
proof transcript (307307). If the check fails, then the algorithm outputs false; otherwise it
outputs true (308308).
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Analysis.


• Security. Completeness follows directly from the ability of P to open any original BitCom,
and from all BitComs committing to the same bit. Soundness follows from the cut-and-
choose approach — if there is at least one BitCom that V cannot open, or at least on
vector position for which P only knows different openings for two BitComs, then P cannot
generate a correct transcript, except if it “guesses” in advance the cut-and-choose partition
and the random subsets. Zero knowledge follows from the ability of generating fake
transcripts when possessing the CRS trapdoor. S is able to learn the cut-and-choose
partition and the subsets still in time to equivocate the BitComs of maskings. Thus, for
check instances it simply produces correct elements (which do not require knowing any
randomness of the original BitComs), for evaluation instances it produces as incorrect
auxiliary BitCom y′k,j in a way that it enables providing a respective well formed answer
zk,j. (Note: extractability of the committed bits is trivial if at least one of the BitCom
schemes is extractable — in such case this NIZKP becomes also a NIZKPoK of the
committed bits.)


• Communication complexity and optimizations. The NIZKP transcript is a tuple
composed of one randomness of an Equiv-Com, v + 1 PRNG seeds, one cut-and-choose
partition, e bits, m × e randomnesses of BitComs. For GM BitComs with randomnesses
(square-roots) with 3,248 bits each, the transcript requires about 54 kBkB for 128 bits of
statistical security using (s, emin, emax) = (129,1,64), and about 40.6 kBkB for 96 bits of
statistical security, using (s, emin, emax) = (97, 1, 48). Due to the statistical verification, the
communication complexity does not depend of the number ` of BitComs in each vector.
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Appendix B


Low-level description of S2PC-with-Coms


This appendix provides a more low level description of the S2PC-with-Coms protocol. Sec-
tion B.1B.1 describes notation for Com schemes, for homomorphisms and for the parameters
of the protocol. Section B.2B.2 recalls the ideal protocol execution (using succinct notation)
and gives a lower-level specification of the real protocol. Section B.3B.3 describes the respective
simulators, and analyzes how they induce in the ideal world a joint output distribution
indistinguishable from the one in real executions. Section B.4B.4 describes optimizations to
connectors. Section B.5B.5 provides further details about communication complexity.


B.1 Notation for protocol descriptions


The section starts with a description in Figure B.1B.1 of notation useful to describe real
Com schemes (§B.1.1B.1.1). Then it describes in Figure B.2B.2 the notation used for additive
homomorphisms and pseudo-homomorphisms in the space of committed values and the space
of randomness (§B.1.2B.1.2). Finally, it describes in Figure B.3B.3 the implicit primitives and some
symbols (e.g., labels of Com schemes) used in the overall S2PC-with-Coms protocol (§B.1.3B.1.3).


B.1.1 Notation of commitment schemes


Given the diverse use of commitment schemes throughout the dissertation, Table B.1B.1 describes
notation for the commit and open phases of real commitment schemes, for different types of
interactivity and with variations suited to different properties, but leaving implicit the aspects
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Commit phase:


PS↔PR ∶


C [PS(x)←
$
(xS, xS);PR ←


$
(xR, xR)] (309309)


Open phase:


PS ↔ PR ∶


O [PS (x,xS, xS) ;PR(xR, xR)←
$
(x,x)] (310310)


(a) Interactive Com scheme


Commit phase:


PS ∶ (x,x)←
$ C [x] (311311)


PS → PR ∶ x (312312)


Open phase:


PS → PR ∶ x←$
O(x,x, x) (313313)


PR ∶ x← Ver&Ext[C ](x,x) (314314)


(b) Non-interactive Com scheme


Commit phase:


PS ∶ x←
$ Gen$ForCom[C ](x) (315315)


PS → PR ∶ x = C (x;x) (316316)


Open phase (type 1):


PS → PR ∶ (x,x) (317317)
PR ∶ C (x;x) =? x (318318)


Open phase (type 2):


PS → PR ∶ x (319319)
PR ∶ x← Ver&Ext[C ](x;x) (320320)


(c) Simpler NI Com scheme


Figure B.1: Diverse notation for real Com Schemes.


of non-malleability (which often require use of identifiers of the intervening entities and of
the execution session). For example, sometimes the opening may correspond to sending the
original randomness selected by the sender, but other times the receiver should not learn it.
In some cases it is enough to reveal the randomness (e.g., an encryption key) and the receiver
uses it to extract the committed value. In other cases the opening needs to explicitly contain
the committed value.


Interactive case (Figure B.1aB.1a). While this dissertation is mostly focused on non-
interactive commitment schemes, it remains implicit that the commitment schemes may in
most cases be replaced by interactive versions. Thus, for the sake of generality a notation for
interactive commitments is also described. (An application in §C.1.4C.1.4 exceptionally requires
a non-interactive open phase, in order to be able to commit in advance to the randomness
needed to open another commitment.)


• Interactive commit phase. PS and PR interact (309309), with PS having as private input
the value x that it wants to commit. As a result of the probabilistic interaction, PR obtains
the “commitment” xR and PS obtains the “randomness” (a.k.a. “encoding”) xS needed to
later open the committed value x, as well as a “commitment” value xS. PR also learns a
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commitment value xR, which typically is the same as that learned by PS, but in general
it need not be so, and for that reason the respective symbols values may have distinct
subscripts. In an interactive protocol, PR may also need to retain private randomness
xR, which may be useful for the later open phase. The hiding property ensures that in
the commit phase the output of (even a malicious) PR does not reveal anything (in a
computational complexity sense) about the committed value.


• Interactive open phase. Later, the parties interact in an open phase (310310). PS uses
as input the committed value x, the respective private randomness xS and the (possibly
private) commitment value xS known to her. PR uses as input his (possibly private)
randomness xR and the commitment value xR known to him. As a result of the interaction,
PR learns the value x that had been previously committed by PS, and possibly some
additional randomness x (in some cases it may be equal to the initial private randomness of
PS), e.g., possibly allowing transferability of the predicate verification that the committed
value x and the initially received commitment xR are consistent). The binding property
ensures that PR obtains the correct committed value x (or it aborts if it detects malicious
behavior from PS), except perhaps with at most a negligible probability in the security
parameter(s).


• Application example. In the example alluded in Remark 4.34.3 an Equiv-Com from PS


to PR is based on an inherently interactive protocol, where PR builds in the commit
phase an Ext-Com whose randomness is only revealed to PS in the open phase. Also, the
randomness used by PS in the commit phase is not all revealed to PR in the open phase,
lest it would compromise the equivocability property.


Non-interactive case (Figure B.1bB.1b). In a non-interactive scheme the notation can be
changed to enable a clear distinction between local computations and communications.


• Non-interactive commit phase. The commit phase starts with a local probabilistic
computation by PS, who alone computes a pair composed of the public commitment x
and the private “randomness” x needed to later open it (311311). Then, PS simply sends
the commitment to PR (312312). In this non-interactive setting there is no longer a need to
distinguish the commitment values (xS, xR).


• Non-interactive open phase. In the open phase, PS computes (possibly probabilisti-
cally) an element x that enables verification and extraction of the committed value, and
sends it to PR (313313). Depending on the scheme, this might be the initial randomness


Page 273 of 376







Section B.1. Notation for protocol descriptions (2016-Dec-27)


x, or the randomness and the committed value, or something different (e.g., a NIZKP
transcript) that reveals the committed value but hides the original randomness. Then, PR


uses an appropriate procedure to extract the committed value x and verify its correctness
with respect to the commitment x (314314).


• Application example. This notation fits a scheme whose open phase corresponds to
sending the committed value x and a NIZKP x that it is the value that had been committed,
without revealing the original randomness x. In another example considered in §C.1.4C.1.4,
the actual commitment contains several sub-commitments, of which some but not all are
opened (either in the commit or the overall open phase), thus implying that not all original
randomness x is not revealed to PR.


Simpler non-interactive case (Figure B.1cB.1c).


• Simpler non-interactive commit phase. In a more simplified (and usual) case, the
“randomness” in the commit phase is obtained as a first step (315315) and then the commitment
is obtained by simply applying a commitment “function” (C ) to the value to commit and
to the prior obtained “randomness” (316316).


• Simpler non-interactive open phase. In a simple open phase, PS sends the committed
value and the respective randomness (317317), letting PR simply check that the commitment
“function” applied to the received value and randomness yields the previously obtained
“commitment value” (318318).


• Alternative opening. As an alternative, typically considered for extractable commitment
schemes based on hybrid encryption schemes (i.e., encrypt a random value and uses its
pseudo-random expansion as a one-time pad to more efficiently encrypt the committed
value), the message of the open phase may correspond to simply sending the randomness
(319319); then, V verifies that the randomness is consistent with the commitment and then
uses it to extract the committed value (320320).


Adaptive notation. Throughout the dissertation, the use of notation for the simpler
non-interactive case is preferred, leaving implicit that an interactive scheme could also be
used with a corresponding notational adjustment. The notation may be augmented with
more information about the commitment scheme properties. Specifically, a subscript may be
used to denote an intended simulatability property (e.g., Ext or Equiv), indicating that the
respective action (e.g., Ext or Equiv) is achievable by a simulator in the respective commit
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χi = C (bi; ri) ∶ i ∈ {1,2} (321321)
χ3 = χ2∗


′∗′χ1 (322322)
b3 = b2 + b1(mod #(G)) (323323)
r3 = r2+∗+∗r1 (324324)
C (b3; r3) = χ3 (325325)


(a) Regular additive-homomorphism


χi = C (bi; r1) ∶ i ∈ {1,2} (326326)
χ4 = χ2∗


′
(b2)∗′(b2)χ1 ≡ χ2 ∗ χ1


(1−2b2) (327327)


b4 = b2 ⊕ b1 (328328)
r4 = r2+∗+∗(b2)r1 ≡ r2+∗+∗inv(r1)


b+
∗
+
∗r1


1−b (329329)
C (b4; r4) = χ4 (330330)


(b) Pseudo XOR-homomorphism


Figure B.2: From an additive homomorphism to a pseudo XOR-homomorphism.
ri denotes the randomness used to commit to bit i. +∗+∗ denotes the group operation in the
space of randomness, which is either ∗ in multiplicative notation or + in additive notation.
∗′(b2) and +


∗
+
∗(b2) depend on b2 (the bit associated with the left element of the sum), being ∗′


and +
∗
+
∗, respectively, if b2 = 0, or being the inverse of ∗′ and +


∗
+
∗, respectively, if b2 = 1.


or open phase. When explicitly ensuring non-malleability, a superscript may be added with
some of the additional context (e.g., session and sub-session identifiers, names of the parties)
used by the commitment and/or opening algorithms. A common reference string may also be
used in the superscript, whenever intended that the parameters are defined by the CRS, with
a trapdoor known to the simulator.


B.1.2 Notation for homomorphisms and pseudo-homomorphisms


The homomorphic and pseudo-homomorphic operations are described in Figure B.2B.2.


Homomorphisms. A commitment scheme is additively homomorphic (for some additive
group operation +, e.g., modular sum, in the space of committable values) if any pair (χ1, χ2)


of commitments, of a respective pair (b1, b2) of values (321321), can be combined into a new
commitment χ3 (322322) of the value resulting from applying a group addition to the two originally
committed values (323323), and if the same can be done with the respective randomnesses (324324),
such that the new commitment χ3 is what would be obtained from directly committing
the resulting bit b3 using the respective homomorphically obtained randomness (325325). The
operations in the space of commitments and in the space of randomnesses are also appropriate
group operations (∗′,+∗). The commitment space is here always considered with multiplicative
notation, whereas the randomness space may vary depending on the instantiation.
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Pseudo-homomorphisms. In a baseline scenario, PA knows a pair (χ1, χ2) of commit-
ments an a respective pair (r1, r2) of randomnesses used to commit two a respective pair
(b1, b2) of bits (326326), and from which it “somewhat-homomorphically” computes a new
commitment χ4 (327327), of the XOR (instead of a regular addition +) of the two underlying
bits (b1, b2) (328328). The randomness r4 needed for opening can also be obtained “somewhat-
homomorphically” from the two initial randomnesses (329329), such that the new commitment
χ4 is what would be obtained from committing the resulting bit b4 using the respective
“somewhat-homomorphically” obtained randomness (330330).


In the intended context, the other party (PB) will initially know only the first and third
commitments (χ1, χ4), but not the respective randomnesses. Then, it will be asked to make
one (and only one) of the following two conditional verifications: if it receives the opening
(b2, r2) of the second commitment, then it verifies that said opening can be used to produce
a commitment χ2 whose respective “somewhat-homomorphic” combination with χ1 would
indeed be the third commitment χ4; if it receives the opening (b4, χ4) of the third commitment
χ4, then it verifies that it is indeed a consistent opening.


The crucial observation is that the needed properties can be achieved if the “somewhat-
homomorphic” operations (∗′(b2) and ∗(b2), respectively in the space of commitments and
randomness) depend explicitly on the value of the second committed value b2, as follows
(in multiplicative notation): if b2 = 0, then they respectively are ∗′ and ∗ (i.e., regular
group-multiplication); if b2 = 1, then they respectively are the inverse of ∗′ and ∗ (i.e.,
multiplication by the multiplicative inverse of the second argument, a.k.a. group division),
respectively, if b2 = 1. (Where ∗′ and ∗ are respectively the operations of the original additively
homomorphic Com scheme.) It is assumed that multiplicative inverses are easy to compute
in the commitment and randomness spaces.


B.1.3 Symbols and implicit primitives


The protocol specification depends on several primitives (e.g., PRGs), sub-protocols (e.g., com-
mitment schemes), and conventionalized notation (e.g., Boolean circuit specification), whose
specification is mostly left implicit, without prejudice of some of them being parametrized by
security parameters. Other primitives may require more explicit parametrization (e.g., type
of BitCom scheme) and be configured per execution. Some of these symbols and primitives
are explained hereafter.
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Parties, Boolean circuit and wires.


• Parties. The distinct roles of constructor (PA) and evaluator (PB) of garbled circuits,
with the later being the first to learn the S2PC-with-Coms output, namely the circuit
output and the final outer commitments and randomnesses (331331).


• Original Boolean circuit. A Boolean circuit C specification, which will be specified as
part of the input of an execution (332332).


• Original wire indices. The Boolean circuit specification implicitly defines the outer
wires, defining the sets of indices of input wires of each party (IA, IB), the sets of private
output wires of each party (OAA,OBB), and the set of common output wires OAB (333333).
The set Op of all output wires of each party Pp can thus contain private wires and common
wires (334334). Correspondingly, the set Opp of private output wires of each party Pp can
be obtained from the set of output wires of the party after removing the common output
wires (335335) The set of common output wires is the intersection of the sets of output wires
of the two parties (336336).


• Adjusted Boolean circuit. Whenever there are private output wires of PA, they need
to be masked for the purpose of evaluation by PB. Thus, the actual evaluated circuit is
an adjusted circuit C ′ (337337), which for every original private output wire of PA XORs
an extra auxiliary random input bit of PA, inputted via an additional input wire (i ∈IA’)
(338338). In other words, for each private output wire (i ∈ OAA) of PA there is a corresponding
new input wire (θAθA(i) ∈ IA’) of PA, and vice-versa (339339).


• Adjusted indices of common output wires. While the previously mentioned adjust-
ment is needed for privacy, another adjustment is required for the purpose of indexing
the final outer-coms and final outer randomnesses of the output of a S2PC-with-Coms
execution. Specifically, even though for each common output wire both parties will learn
the same final output bit, each party will learn two different respective outer Coms, and
each party will learn only one of the respective randomnesses. The set OAB of original
common output wire indices is thus mapped into two distinct sets (OAA’, OBB’) of common
output wires, one for each party (340340). This means that each party will now be considered
“owner” of new output wire indices in number equal to the number of common output
wires (341341). Thus, the actual adjusted set Op’ of indices of final output wires of each party
is equal to the union of the set Opp of original private output wires and the set Opp’ of
newly mapped output wire indices (one for each common output wire) (342342). This means
that the initial set Op of output wires of a party (including private and common wires) is
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Symbols and implicit primitivesSymbols and implicit primitives
Parties, Boolean circuit and wires.


Parties: PA (constructor);PB (evaluator) (331331)


Original Boolean circuit (to obliviously evaluate): C (332332)


Original wire indices.
(IA, IB,OAA,OBB,OAB) ≡ OuterWires(C) (333333)
Op ≡ Opp ∪OAB ∶ p ∈ {A,B} (all output wires of Pp) (334334)
Opp ≡ Op/OAB ∶ p ∈ {A,B} (private output wires of Pp) (335335)
OAB ≡ OA ∩OB (output wires common to both parties) (336336)


Adjusted Boolean circuit (to mask private output of PA).
C′ =MaskOutA(C) (337337)
(IA, IA’, IB,OAA,OBB,OAB) ≡ OuterWires(C′) (338338)
θA ∶ IA’ → OAA (bijection, with #(IA’) = #(OAA)) (339339)


Adjusted indices of common output wires.
(to index Coms and Rands of different parties)
θp′ ∶ OAB → Opp’ ∶ p ∈ {A,B} (340340)


#(OAB) = #(Opp’) ∶ p ∈ {A,B} (341341)
Op’ = Opp ∪Opp’ ∶ p ∈ {A,B} (342342)
θp′ ∶ Op → Op’ ∶ p ∈ {A,B} (343343)


Security parameters.


Security parameters. 1κ,1σ (344344)
C&C selection style. C&C-style ∈ {NI-A, Int-B} (345345)
C&C parameters. (vmin, vmax), (emin, emax), s (346346)


(1 ≤ emin ≤ emax, vmin ≤ vmax < s
vmin + emax = vmax + emin = s,
∑emax
e=emin


Bin(s, e) >∼ 2s )


Randomness and symmetric primitives.


RSC related. GenSeed,CR-Hash,CRSC ≡ C Equiv
RSC (347347)


Garbled-circuit related. PRGenGC,GCEval (348348)
Garbled-keys related. PRGenInKey, ε,CInKey (349349)
Other randomness-related primitives.


Gen$ForCom,PRGen$ForCom (350350)
PRGenBitString,PRGenAuxiSeed,PRGen$ForLHT (351351)


Outer BitCom schemes.
Related to outer BitComs. For p ∈ {A,B} ∶


Bp (BitCom scheme for outer BitComs of Pp) (352352)


zp ≡ PRGen$ForCom[Bp](1) (353353)
(fixed “randomness” to commit bit 1)


z′p ≡ Bp(1; zp) (fixed BitCom of bit 1 — not private) (354354)
Homomorphic operations.


∗′ (homomorphic group operation for BitComs) (355355)
∗ or + (homomorphic group operation for encodings) (356356)


Extension from BitComs to BitStringComs. For p ∈ {A,B} ∶
Cp (extension of Bp to BitStringCom scheme) (357357)
posset ∶ set→ [#(set)] (bijection) (358358)


Stringize ∶ Bp
#(set) → Cp (359359)


If #(committable space of BB) = 2, then CB ≡→BB and ∶
Stringize (⟨σ′i ∶ i ∈ set⟩) ≡ σ′set = ⟨σ′i ∶ i ∈ set⟩ (360360)
Stringize (⟨σi ∶ i ∈ set⟩) ≡ σset = ⟨σi ∶ i ∈ set⟩ (361361)


If (#(committable space of BB) ≥ 2∣set∣) (e.g., ElG-Com) ∧


(CB is additively-pseudo-hom.), then CB ≡ BB and ∶


Stringize (⟨σ′i ∶ i ∈ set⟩) ≡ σ′set = ˚
′
i∈setσ


′
i
2posset(i) (362362)


Stringize (⟨σ′i ∶ i ∈ set⟩) ≡ σset =∑i∈setσi2
posset(i) (363363)


Intermediate BitCom schemes.
Related to input bits of PA


BConA (BitCom scheme for connectors of input PA) (364364)
BFLA (Ext-BitCom scheme for F&L) (365365)
ExtractBit (extractor of bits committed by BFLA) (366366)


Related to connectors of input of PB


OTLevel ∈ {BitComs,GC-InWires} (367367)
OTType ∈ {1/2,2/1} (368368)


If OTType =? 2/1 ∶ (i.e., for 2-out-of-1-OT)
BOT (a 2-to-1-square-scheme) (369369)
h (XOR-homomorphism, class of an encoding) (370370)
ExtractPairOpenings (Sqrt extraction) (371371)


If OTType =? 1/2 (i.e., for 1-out-of-2-OT)
BOT ≡ COT (additively-homomorphic Com-scheme) (372372)
(E , f) ∶ COT(⋅) = E ○ f(⋅) (encryption of f -image) (373373)
RandLHTRandLHT (Randomized LHTLHT over COT) (374374)


Related to connectors of output of PB.
BFLB ∈ DUAL(BFLA) (Equiv-BitCom scheme for F&L) (375375)
GenPairOpenings (to generate openings for BFLB) (376376)
ExtractTrapdoor (to extract trapdoor of BFLA) (377377)


Figure B.3: Symbols and implicit primitives for S2PC-with-Coms protocol. (Proto-
col definition starts in Figure B.5B.5.) Legend in §NotationNotation.


mapped (with a bijection) into an adjusted set Op’ of output wires that has no intersection
with the corresponding set Op̄’ of the other party (343343).


Security parameters.


• Security parameters. A (long-term) cryptographic security parameter κ and a statis-
tical security parameter s′, with which the protocol execution must conform (344344). An
optimization based on an additional (and smaller) “short-term binding” security parameter
is given in §B.4.1.3B.4.1.3.
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• Cut-and-choose selection style. A cut-and-choose selection style (C&C-style), either
defined as interactive with decision by PB (Int-B), or as non-interactive with decision by
PA (NI-A) (345345). In the later case the statistical security parameter must at least equate
the computational security (possibly a short-term binding parameter).


• Cut-and-choose parameters. C&C partitioning parameters (emin, emax, vmin, vmax, s),
consistent with the statistical security parameter (346346). For example, for a fixed mode,
the number of evaluation and check instances may be defined in advance, i.e., the minimum
values (emin, vmin) being equal to the respective maximum values (emax,vmax), though not
yet deciding which challenge type will be attributed to each index. In a variable mode
the number of check and evaluation indices is not defined in advance but is still bound to
some restrictions, namely that their sum still needs to be the total number s of garbled
circuits. In any case, the parameters must be consistent with the respective statistical
security parameter, namely such that the error probability of a protocol execution (in the
worst adversarial scenario with a malicious PA and an honest PB) must at most be less
than a value negligibly close to one half raised to the power of the number s′ of intended
bits of statistical security (notwithstanding possible deviations negligible in the security
parameter κ). For example, for a fixed mode see (cell EE66 in Table 3.13.1. For a variable
mode see for example rows 88 to 1010). For example, if the parameters require that there
must be at least as many check (v) as evaluation (e) instances, then the minimum number
emin of evaluation instances is the largest integer not greater than half of the number of
garbled circuits. If the number s′ of desired bits of statistical security is integer, then
the total number s of challenges is defined as the smallest integer larger than s′ (e.g.,
see rows 88–99 in Table 3.23.2), and the values v and e remain undetermined until the later
ChallengeChallenge stage of the protocol.


Randomness and symmetric primitives.


• RSC related primitives (347347). A mechanism GenSeed to sample PRG seeds, i.e., to
be used in diverse PRG generation primitives, and a collision-resistant hash function
CR-Hash. An equivocable commitment scheme C Equiv


RSC specifically used to create a single
equivocable RSC commitment of the global hash value calculated in the RSC technique.


• Garbled-circuit related primitives (348348). A primitive PRGenGC for pseudo-random
generation of GCs; and a primitive GCEval for evaluation of GCs. There is no need for a
specialized GC-verification algorithm, as the verification is made by reconstructing the GC
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from a respective seed and then checking that it integrates well with a proper pre-image of
the global hash. For simplicity of description, the garbling scheme is assumed to allow the
circuit input keys to be specified prior to the construction of GCs. This is consistent with
typical garbling scheme proposals, but it is nonetheless simple to avoid the assumption,
using a technique described in §3.3.43.3.4.


• Garbled-keys related (349349). A primitive PRGenInKey for pseudo-random generation of
input keys; a regular commitment scheme (i.e., not necessarily equivocable or extractable)
used to commit GC input keys of PA. Also for simplicity, it is assumed that the circuit
output keys (and not others) exceptionally reveal the underlying bit, via some efficiently
computable predicate ε, e.g., their least significant bit. This simplifies a later step (567567)
in the EvaluateEvaluate stage.


• Other randomness-related primitives. The protocol requires further generation of
randomness or pseudo-randomness. A procedure Gen$ForCom is defined for the random
sampling of the “randomness” needed to produce commitments and to verify the cor-
rectness of an opened value (350350). In order to be usable for different commitment
schemes, this procedure requires as input the specification of the commitment scheme,
and for generality also the value to be committed. This procedure will be used to pro-
duce outer and intermediate BitCcoms in the Produce initial BitComs of PAProduce initial BitComs of PA and
Produce initial BitComs of PBProduce initial BitComs of PB stages, as well as the equivocable commitment of the
RSC global hash in the CommitCommit stage. Analogously, a procedure PRGen$ForCom is also
defined for pseudo-random generation of “randomness” needed to produce a commitment
(C ) or BitCom (B) and verify the correctness of an opened value. As extra input this
procedure will also require a random or pseudo-random seed (e.g., 256 random bits).
Other PRG primitives are included, such as a primitive PRGenBitString for pseudo-random
generation of bit-strings of specified length, e.g., used to generate “random” permutation
bits related to the connectors of input of PA, and to For notational convenience, another
PRG primitive PRGenAuxiSeed is considered for generating a new pseudo-random auxiliary
seed to be used in other PRG procedures. An additional primitive PRGen$ForLHT is also
included to generate randomness for linear homomorphic transformations of ElGamal
commitments. (351351)
Some notes about the implementation of the PRGs are given in Remark B.6B.6. For simplicity,
the security parameter is implicit in the notation used for PRG procedures.
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Outer BitCom schemes. There is a set of outer and intermediate BitCom schemes. The
outer BitCom schemes (BA, BB) are used to commit the input bits of PA and PB in the
format that should be retained after the protocol evaluation. The intermediate BitCom
schemes are related to connectors and/or to the auxiliary forge-and-lose (BFLA, BFLB) and
oblivious-transfer (BOT) techniques. Their actual specification is later described as part
of the protocol setup. The parameter of the outer schemes are defined by a global trusted
setup; the parameters of intermediate scheme may either be derived from outer schemes or
be selected independently by each party and proved informed during the protocol execution.


• Related to outer BitComs. An Ext-BitCom scheme Bp for outer BitComs (of the
input and output bits) of party Pp (352352). The two BitCom schemes may possibly be
the same, e.g., in case it is defined from a CRS trusted setup. The BitCom scheme
is assumed extractable with trapdoor (e.g., GM and ElGamal BitCom schemes), i.e.,
whenever the trapdoor is available (e.g., after a ZKPoK of trapdoor in a PKI setting).
For each BitCom scheme Bp devised for the outer BitComs of a party, the parties also
establish by convention a fixed encoding zp of bit 1, e.g., obtained pseudo-randomly from
BitCom scheme specification (353353), and/or some other arbitrary rule. Correspondingly,
the BitCom z′p of bit 1 (not intended as private) obtained from such encoding is also
considered common knowledge (354354). The fixed encoding and BitCom will later be useful
for adjusting the output BitComs of each party, based on random offset bits.


• Homomorphisms. Each BitCom scheme is XOR pseudo-homomorphicpseudo-homomorphic (possibly XOR
homomorphic), with the respective group operation in the BitCom space being denoted
with a multiplicative notation (∗′) (355355). The respective group operation in the space
of encodings (pre-images) is either denoted with multiplicative notation (∗, e.g., for
multiplication of square-roots, when using Blum or GM BitComs) or additive notation (+,
e.g., for sum of exponents, when using ElGamal or Pedersen BitComs) (356356).


• BitCom to BitStringCom extension.
For each outer BitCom scheme (Bp), a respective extension is considered to a BitStingCom
scheme Cp, with additively pseudo-homomorphicpseudo-homomorphic properties (357357).
Given the extension to bit-strings, it is useful to consider a function that for any fixed
set of wire indices maps the set into a corresponding set of indices of a vector (i.e., with
positions between 1 and the numebr of elements) (358358). Then, an operation suggestively
denoted “stringize” denotes the tranformation of a vector of BitComs into a respective
single BitStringCom (359359). The actual operation varies with the type of underlying
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BitCom scheme.
If the committable space is two (e.g., GM BitComs), then the extension is just an identity
vectorization, i.e., a vector of BitComs is logically tranSformed into a single BitStringCom
that in practice is the original vector of BitComs (360360). The exact same logic is applied in
the space of randomnesses (361361).
If the BitCom scheme is supported in a scheme that in practice allows larger elements
to be committed, and if the underlying scheme is additively pseudo-homomorphic over
the integers modulo the group order (e.g., ElGamal Com scheme), then the stringize
operation is an homomorphic operation that compacts the vector of BitComs into a single
BitStringCom of the size of a single BitCom. The operation is valid if the committable
space is at least as large as two to the power of the number of BitComs being combined.
Essentially, in the space of commitments, each BitCom is raised to the power of two
to the power of its position, so that it becomes a bitstring commitment of the integer
equal to two to the power of the position. Then, all such commitments are multiplied, to
form a commitment of the string of respective bits (362362). In the space of randomnesses,
and assuming an additive notation, the randomnesses are stringized by computing each
randomness multiplied by a coefficient equal to two to the power of the position of the
bit, and then adding all such factors, thus obtaining a single “randomness” element (363363).
Given the homomorphic properties, the commitment of a bitstring using as randomness
the stringized randomness of respective BitComs, is equal to the direct stringizing of the
vector of BitComs.


Intermediate BitCom schemes.


• Related to input bits of PA. A BitCom scheme BConA for the connectors of the input
bits of PA, namely to commit permutation bits in the respective connectors (364364). An
Ext-BitCom scheme BFLA with trapdoor to commit input bits of PA in connection with
the forge-and-lose technique (365365). The trapdoor (tFL) must be initially known to PA


and unknown to PB. However, if the trapdoor is even learned by PB (e.g., in a well
defined circumstance of misbehavior by PA — the forge-and-lose case), it allows PB, using
ExtractBit, to extract the input bits committed by PA (366366).


• Related to connectors of input of PB. The connection for input bits of PB is based
on some type of oblivious transfer (OT) — two methods are described herein, depending
on the level at which OTs are performed (BitComs vs. GC-InWires) (367367) and the type of
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OT (2-out-of-1 vs. 1-out-of-2) (368368).
– If 2-out-of-1 OT. If the OT is of type 2-out-of-1, then the associated BitCom scheme


BOT is a 2-to-1 square scheme (see §2.5.12.5.1) (369369). In this case it is also useful to consider
explicitly the homomorphism between sets — an efficient function h that maps each
encoding (i.e., the randomness used to create a BitCom) into the respective classclass, i.e.,
into the underlying encoded bit (370370). There is also an associated extractor function
ExtractPairOpenings that, when with access to a trapdoor (secret of PA), is able to extract
the two openings (a.k.a. square-roots) from any BitCom (371371).


– If 1-out-of-2 OT. If the OT is of type 1-out-of-2, then the considered OT is based
on a XOR pseudo-homomorphic BitCom scheme BOT supported on an additively
homomorphic commitment scheme COT (372372). In practice, the considered scheme (e.g.,
ElGamal) can be seen as an encryption scheme E composed with a 1-to-1 function f
(which can be one-way) (373373). Based on the homomorphic properties, it is possible to
consider a randomized linear homomorphic transformation (RLHT) of the committed
values (374374), which allows a straightforward 1-out-of-2 OT procedure.


• Related to connectors of output of PB. An equivocable BitCom scheme BFLB used
to commit the output bits of PB associated with connectors of output of PB (375375). The
scheme has a trapdoor known by PA, allowing generation of a random BitCom and
respective pairs of openings (i.e., openings of different bits), by means of a well defined
procedure GenPairOpenings (376376). Also, the scheme also has an associated well defined
procedure ExtractTrapdoor that allows extracting the trapdoor from any two openings (i.e.,
to different bits) of the same BitCom (377377). Since the scheme has an equivocation-trapdoor
equal to the extraction-trapdoor of BFLA, the two schemes are said to be dual with respect
to one another.


B.2 Protocol description


This section gives a detailed description of the new S2PC-with-Coms protocol. The protocol
implements a probabilistic 2-output functionality, since besides the circuit output of each
party, both parties output random Coms of the input and output wires of both parties, and
each party also outputs the randomness associated with the openings of her Coms.


§B.2.1B.2.1 recalls the ideal S2PC-with-Coms functionality FS2PCwCFS2PCwC that the protocol will
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emulate, describing its internal procedure. Then, §B.2.2B.2.2 gives the low-level description of the
real S2PC-with-Coms protocol, using succinct notation between Figures B.3B.3, and B.11B.11.


For simplicity of description, some aspects related with obvious syntactic or semantic
verifications are left implicit; e.g., that received elements are within the expected domains or
interpreted under an appropriate representation (e.g., modular reductions or reduction to
proper elementsproper elements in the context of Blum BitComs), that received NIZKPs and NIZKPoKs are
verified for validity, that the opening of commitments is also verified by the receiver. Also,
the contextual elements (e.g., session, sub-session and message identifiers) are ignored in the
communication between PA and PB, but would have to be present in an actual implementation,
namely when envisioning concurrent executions. A textual description is given below.


B.2.1 Procedure of an ideal functionality


Figure B.4B.4 describes how the ideal FS2PCwCFS2PCwC handles incoming messages in the ideal world.
In the respective S2PC-with-Coms protocol in the ideal world, the ideal parties (P̂A and
P̂B) simply relay to the ideal functionality and to their environment what they respectively
receive from the environment and from the ideal functionality.


Implicit parametrization. The ideal functionality is parametrized by a computational
security parameter κ, a specification F of a family of Boolean circuits, from which the parties
will choose one to evaluate, and a Boolean flag ver that specifies whether or not the Com
scheme parameters require verification of correctness based on a trapdoor (378378). It is assumed
that the parties (i.e., their upper environment when activating the parties with an input) are
aware of those parameters. The initial activation of FS2PCwCFS2PCwC initializes as empty the internal
memory (tables) used to memorize inputs, outputs and contexts-to-ignore (379379).


Each execution context defined by the environment and to be sent to each party for each
new execution is defined by: a session identifier (sid) of the execution environment where
the ideal functionality is embedded, a sub-session identifier (cid) that identifies a particular
execution of a secure computation protocol via this ideal functionality, and the parties
participating in the execution (380380) (also defining the order of first and second receiver).


Message receiving loop. After initialization, the ideal functionality handles any received
message (381381), expecting to receive three types of well-formed messages: messages with
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Implicit parametrization.
F ≡ FS2PCwCFS2PCwC[κ,F, ver] (378378)
Init[F , sid] = {F ≡ Fsid ∶ Ignore = �, In = �,Out = �} (379379)
Z ∶ ctx ≡ (sid, cid,PB,PA) (380380)


Message receiving loop.
If P̂p → F ∶ msg ≡ (mid, ctx[, ...]) (381381)


If mid =? in-i, then InitThread[ValInput,msg,Pp] (382382)
If mid =? OK, then InitThread[SecondOut,msg,Pp] (383383)
If mid =? abort, then InitThread[Ab,msg,Pp] (384384)


Input validation.
ValInput [(in-i, ctx, (CB,CA,C), (tB, xB)) ,Pp] = { (385385)


If Ignore[ctx] = 1 ∨ In[ctx, i] ≠ �, then ↓ � (386386)
bool = [¬¬ver ∨ (ver ∧Ver(CB, tB))] (387387)
If ¬¬bool, then { (388388)


Ignore[ctx] = 1 (389389)
F → P̂p̄ ∶ (bad − 1, ctx, (CB,CA,C)) (390390)
↓ � } (391391)


In[ctx, i] = (CB,CA,C, xp) (392392)
F → P̂p̄ ∶ (got-i, ctx, (CB,CA,C)) (393393)
If In[ctx,3 − i] ≠ �, then FirstOut[ctx] } (394394)


First output.
FirstOut[ctx] = { (395395)


(yA, yB) = FC(xA, xB) (396396)
xp ←


$ Gen$ForCom[Cp](xp) ∶ p ∈ {A,B} (397397)
xp = Cp(xp;xp) ∶ p ∈ {A,B} (398398)
yp ←


$ Gen$ForCom[Cp](yp) ∶ p ∈ {A,B} (399399)
yp = Cp(yp; yp) ∶ p ∈ {A,B} (400400)
resB = (xA, (xB, xB) , yA, (yB, yB, yB)) (401401)
resA = ((xA, xA) , xB, (yA, yA, yA) , yB) (402402)
Out[ctx] = resA (403403)
F → P̂B ∶ (out-1, ctx, resB) } (404404)


Second output.
SecondOut[(OK, ctx) ,Pp] = { (405405)


If Pp ≠ PB, then ↓ � (406406)
If Ignore[ctx] = 1 ∨Out[ctx] = �, then ↓ � (407407)
Ignore[ctx] = 1 (408408)
F → P̂A ∶ (out-2, ctx,Out[ctx]) } (409409)


Handle abort requests.
Ab[(abort, ctx), Pp] = { (410410)


If Ignore[ctx] = 1, then ↓ � (411411)
If ∧i∈{1,2}In[ctx, i] = �, then ↓ � (412412)
If Out[ctx] ≠ � ∧Pp = PA, then ↓ � (413413)
Ignore[ctx] = 1 (414414)
F → P̂p̄ ∶ (abort, ctx) (415415)


Figure B.4: Flow of S2PC-with-Coms execution in the ideal-world. Legend: P̂p
(party in the ideal world, with p ∈ {A,B}); C (Boolean circuit specification, implicitly defining
the domain of circuit-inputs and circuit-outputs of both parties); xp and yp (circuit input and
circuit output, respectively, of party P̂p); Cp (commitment scheme used to commit the input and
output of P̂p. ⋅̄ (commitment of ⋅); ⋅ (randomness used to commit ⋅); ←$ ⋅ (random sampling using
probabilistic procedure ⋅). For simplicity, some checks by FS2PCwCFS2PCwC are left implicit, e.g., that the
circuit is of size polynomial in κ, and that the sender of a message is mentioned in the context ctx
in the expected position. The communication between FS2PCwCFS2PCwC and S is omitted. The implicit
parameters (κ,F, ver) are known by all parties. For simplicity, some concurrency checks (e.g., use
of locks) are omitted within the ideal functionality — it may be assumed that in respect to the
local actions of F the blocks of actions in each thread are atomic (386386–404404), (394394–409409) (411411–415415).


identifier in-i (for some i ∈ {1,2}), committing the input of each party (382382); messages where
the first receiving party authorizes the output to be sent to the second receiver (383383); and
messages requesting an abort of an execution (384384). Any well-formed message is handled
concurrently in a new thread.


Input validation. The thread for input validation receives a message with an identifier
in-i that identifies the ordering of the party in terms of output receiving, and with further
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components that specify the execution context ctx, the public parameters (CB, CA) of the
two Com schemes (possibly the same) of the two parties, the specification C of the circuit to
evaluate, an optional trapdoor tp of her own Com scheme Cp and the private circuit input xp.
(385385) (some checks are left implicit).


If FS2PCwCFS2PCwC is already ignoring messages for this context, or if for this context and with
this ordering it already received a valid input message from this party (386386) (the case of the
same party being in both sides is also possible, but trivial).


FS2PCwC determines whether or not (bool) to accept the proposed Com scheme of the
party that sent the message, in case the protocol is parametrized (with ver = true) for a
respective verification (387387). If the verification is necessary, it is performed with an implicit
procedure (Ver) that uses the trapdoor of the scheme. If the Com scheme parameter is
rejected (388388), then the ideal functionality ignore further messages with the same execution
context (389389), sends to the other party Pp̄ a message of type bad-i, thus informing that the
proposed parameters were rejected, and also informing the public parameters of the pair of
proposed Com schemes and the circuit specification (390390), and then exits the thread (391391).


If instead the Com scheme is accepted, then FS2PCwC stores the received input (392392) (the
trapdoor is not necessary), and sends a message to the other party Pp̄, similar to the case
of bad parameters but replacing the message identifier to got-i (393393). If a consistent input
message has also been stored from the other party, then FS2PCwC proceeds to compute the
output (394394) and then exits the thread. If the second output has not been received, then the
ideal functionality simply exits the thread.


First output. Once two complementary inputs have been stored for the same context
(395395), FS2PCwC computes the needed outputs, by evaluating the Boolean circuit (396396), then
generating randomness xp suitable for committing each input xp (397397) and then using it to
produce a respective commitment xp (398398), then doing the same with the circuit outputs
(399399–400400), and preparing the tuple of outputs for each party (401401–402402), which contain the
circuit output, all the commitments and only the randomnesses respect to the input and
output of the party. FS2PCwC stores (in a global variable) the output of the second receiver
(PA) (403403) and then sends to the first receiver PB a contextualized message of type out-1


with his output (404404). (Note: as defined in (407407), after this point any abort request from PA


is ignored, so that an honest PB outputs correctly even if PA is malicious.)
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Second output. Upon receiving a contextualized OK message, FS2PCwC initiates a respective
thread (405405), checking that the requesting party is in the role of first receiver (PB) (406406),
that the context is not yet being ignored or that the output has already been computed (407407).
If the validations pass, then FS2PCwC decides to ignore any subsequent messages with the
same context (408408) and then sends to the second receiver (PA) a contextualized message of
type out-2 with her output (409409), and then exits the thread.


Handle abort requests. Requests for early abort must also be handled by FS2PCwC (410410).
Abort requests are ignored, i.e., the thread exits immediately, if the context is already being
ignored (411411), if no input has yet been stored in respect to the indicated context (412412) and in
case the request is made by the second receiver after the final output has already been stored
(413413). If the request is accepted, then FS2PCwC decides to ignore any subsequent messages
with the same context (414414) and then sends to the other party Pp̄ a respective contextualized
abort message (415415), and terminates this thread with internally outputs true in this thread.


B.2.2 Stages of a real protocol execution


Summary. This subsection describes the S2PC-with-Coms protocol across several Fig-
ures, as follows. Figure B.5B.5 describes the SetupSetup stage. Figure B.6B.6 describes the stage
(Produce initial BitComs of PBProduce initial BitComs of PB) where PB produces his initial BitComs, and the fist
part of the coin-flipping stage (Coin-flip Permutations (Start)Coin-flip Permutations (Start)) where PB initiates the
coin-flipping protocol. If all underlying commitments have non-interactive commit phase, and
all ZK sub-protocols are non-interactive, then these components only include communication
from PB to PA. Figure B.7B.7 describes the stage (Produce initial BitComs of PAProduce initial BitComs of PA) where
PA produces her initial BitComs, including those supporting the forge-and-lose technique. Fig-
ure B.8B.8 describes the CommitCommit stage of the cut-and-choose structure (using a RSC technique),
where PA commits to the connectors and the garbled circuits, using a single RSC short Equiv-
commitment. Figure B.9B.9 describes the decision of the cut-and-choose partition, the second
part of the coin-flipping of permutations (Coin-flip Permutations (Continue)Coin-flip Permutations (Continue)), and the
RespondRespond and VerifyVerify stages. Figure B.10B.10 describes the EvaluateEvaluate stage. Figure B.11B.11 de-
scribes the Transmit Circuit Output of PATransmit Circuit Output of PA, the Coin-flip Permutations (Finish)Coin-flip Permutations (Finish),
the Permute Outer ComsPermute Outer Coms and the Final OutputFinal Output stages.
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Stage 0 — SetupSetup. In a setup phase, both parties are initiated with concrete private and
common parameters. In actual implementations, some of the common parameters (including
the Boolean circuit) may instead be unilaterally proposed by one of the parties.


• Implicit parametrization. The protocol can be considered in two modes in respect to
the need to perform trapdoor-based verification of Com scheme parameters. A Boolean
flag ver determines whether or not each party has to use the trapdoor to prove correctness
of the scheme (and in some instantiations this may as a side benefit facilitate simulatability
of commitments) (416416). The protocol is also parametrized by a computational security
parameter κ (417417) (and all primitives dependent solely on it, e.g., PRGs and CR-Hash)
and a family of Boolean circuits F (418418). These are the three parameters (besides the
Com schemes) needed to parametrize the ideal functionality that is being emulated (419419).
There is also a set of BitComs scheme parameters from which it is assumed that a uniform
selection is made by a trusted setup (420420).


• Trusted setup initialization. For each of the two parties, the environment queries an
ideal functionality for setup of Com-scheme parameters. (421421). By default the trapdoor
of the Com scheme will be empty (422422), but if the protocol requires trapdoor-based
verification then the ideal setup selects for each party a pair of public and private Com
scheme parameters (423423). If the scheme does not require trapdoor-based verification, then
the ideal setup simply selects random public Com scheme parameters (424424). The ideal
setup sends to the environment the parameters of the Com scheme of each party (425425).


• Activation of parties. The environment defines the circuit inputs for each party (426426),
the execution context containing the session and sub-session identifiers and the pair (PB,
PA) of identities of the two parties (in the ordering in which the parties will learn their
output) (427427). It is assumed that the context tuple never repeats (in practice this can be
implemented via timestamps, counters, cache and/or coin-flipping at the higher level of
the calling environment). The environment activates each party with a initiating identifier
in-i, the execution context, the Com scheme parameters, the circuit specification, the
trapdoor of the Com scheme (or an empty symbol if it does not exist) and the private
circuit input (428428–429429).
Each party within the execution requests to a local setup functionality (not accessible to
the environment) for a CRS (unique to the execution context) that can be used as a basis
for the Ext and Equiv Coms needed throughout the protoco, namely within NIZKPs and
NIZKPoKs (430430). The local CRS answers a random CRS for each new tuple of execution


Page 288 of 376







Ph.D. dissertation: The forge-and-lose technique and other contributions to S2PC-with-Coms (2016-Dec-27)


Stage 0. SetupSetup.


Implicit parametrization.


ver ∈ {true,false} (trapdoor-based verification?) (416416)
κ (computational security parameter) (417417)
F ≡ {FC ∶ C ∈ N} (family of Boolean circuits) (418418)
F ≡ FS2PCwCFS2PCwC[κ,F, ver] (ideal functionality) (419419)
Set-BITCOMS ≡ XOR-PseudoHom-Ext-BITCOMS (420420)


Trusted setup of Com scheme parameters.


For p ∈ {A,B} ∶
Z → FSetupComs ∶ ((sid,Pp), (κ, ver)) (421421)
FSetupComs ∶ tp = � (422422)


If ver ∶ FSetupComs ∶ (Cp, tp)←$ Set-BITCOMS(κ) (423423)


else FSetupComs ∶ Cp ←$ Set-BITCOMS(κ) (424424)
FSetupComs → Z ∶ ((sid,Pp), (Cp, tp), ver) (425425)


Activation of parties.


Z ∶ (xA, xB) ≡ (⟨bi ∶ i ∈ IA⟩ , ⟨bi ∶ i ∈ IB⟩) (426426)
Z ∶ ctx = (sid, cid, (PB,PA)) (427427)
Z → PB ∶ (in-1, ctx, (CB,CA,C), (tB, xB)) (428428)


Z → PA ∶ (in-2, ctx, (CB,CA,C), (tA, xA)) (429429)
For p ∈ {A,B} ∶


Pp → FCRS ∶ (value, ctx) (430430)
FCRS ∶ If Pp ∉ {PA,PB} , then ignore request (431431)
Else FCRS → Pp ∶ (value, ctx,CRS) (432432)


Define outer BitComs.
Bp = Restrict(Cp,{0,1}) ∶ p ∈ {A,B} (433433)


Define intermediate BitComs.
(BitCom scheme for connectors of PA.)
PA,PB ∶ BConA ≡ BA (see alternatives in §B.4.1B.4.1) (434434)


If ver: (i.e., if GPKI setup with trapdoors)


(BitCom schemes and trapdoor for F&L.)
PA,PB ∶ BFLA ≡ BA; BFLB = Dual(BFLA) (435435)


PA ∶ tFL ≡ t(Ext)
FLA ≡ t(Equiv)


FLB ≡ tA (436436)
(BitCom scheme and trapdoor for OT).
If OTType=2/1 ∶


PB,PA ∶ BOT = Dual(BA)) (437437)


PA ∶ tOT ≡ t(Equiv)
OT = tA (438438)


((BOT, tOT) ∈ 2-to-1-SQUARE-SCHEMES) (439439)
If OTType=1/2 ∶


PB,PA ∶ BOT ≡ BB (440440)


PB ∶ tOT ≡ t(Ext)
OT ≡ tB (441441)


If ¬¬ver: (e.g., for GCRS-based Com-scheme params)


(BitCom schemes for F&L.)


PA ∶ (BFLA, t
(Ext)
FLA )←$ Set-BITCOMS (442442)


PA ∶ zA = NIZKPoKGoodScheme(BFLA) (443443)
PA ∶ BFLB = DUAL (BFLA) (444444)


PA ∶ tFL ≡ t(Equiv)
FLB ≡ t(Ext)


FLA (445445)


(BitCom scheme for OT.)
If OTType=2/1:


PA ∶ BOT = BFLB (2-to-1-Square scheme) (446446)
PA ∶ tOT = tFLB (447447)
PA → PB ∶ (BC-scheme-OT, ctx, (BOT, zA)) (448448)
PB ∶ BFLB ≡ BOT; BFLA = Dual(BFLB) (449449)


If OTType=1/2:


PB ∶ (BOT ≡ COT, t
(Ext)
OT )←$ Set-BitComs (450450)


PB ∶ zB = NIZKPoKtrapdoor(BOT) (451451)
PB → PA ∶ (BC-scheme-OT, ctx, (BOT, zB)) (452452)


(Further communication of parameters)
If OTType=1/2:


defer PA → PB ∶ (BC-scheme-OT, ctx, (BOT, zA)) (453453)
(merge with communication in stage 1.21.2 (Fig. B.7B.7)


Figure B.5: Protocol S2PC-with-Coms (stage 0). (See symbols and primitives in Figure B.3B.3.
See continuation in Figure B.6B.6.) Legend in §NotationNotation.


context, only once to each party identified in the execution context (431431–432432).
• Define Outer BitComs. Based on the commitment schemes for bit/strings, the parties


locally know ho to apply them solely as BitCom schemes (433433). (Basically it is useful here
to use different notation between the cases of BitComs and bit/string Coms.)


• Define Intermediate BitComs.
– Connectors of PA. For simplicity, the BitCom scheme BConA for connetors of PA is


defined to be the same as the outer BitCom scheme BA of PA(434434).
– If the outer schemes have known trapdoor (i.e., if ver).


∗ BitComs for the forge-and-lose technique. The BitCom scheme BFLA for the
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forge-and-lose (F&L) in respect to the input bits of PA is the same as outer BitCom
scheme BA, which has an explicitly known trapdoor; its dual is the BitCom scheme
BFLB for the F&L technique in respect to the output bits is the Dual (435435) The
trapdoor of both F&L bitcom schemes is the same and is known to PA (436436).


∗ BitCom scheme for oblivious transfers.


· 2/1-OT. If the protocol is parametrized for a 2-out-of-1 type of OT, the Equiv-
BitCom scheme BOT for OT is the dual of the outer BitCom scheme BA of PA


(437437), with trapdoor known by PA (438438). For this type of OT the BitCom scheme
must be a 2-to-1-square-scheme (439439).


· 1/2-OT. If the protocol is parametrized for a 1-out-of-2 type of OT, the BitCom
scheme BOT for OT is the same as the outer Ext-BitCom scheme of PB(440440), and
in this case PB knows the respective trapdoor (441441).


(The OT BitCom scheme could also be selected independently of any of the outer
BitCom schemes, as happens when the trapdoor of the outer scheme is not known.)


– If the outer schemes do not have known trapdoor (i.e., if ¬¬ver). If the parties
do not know the trapdoor of their outer BitCom schemes (e.g., if they were provided
by a global CRS, or by a key registration authority that does not provide the secret
keys), then the intermediate BitCom schemes for F&L and OT need to be defined by
the parties.


∗ BitComs for the forge-and-lose technique. PA selects by herself a new Ext-
BitCom scheme BFLA with trapdoor, to commit her input bits for the purpose of the
F&L technique (442442). If need-be, PA also generates a NIZKP of correct parameters
(443443) (e.g., needed for a GM BitCom scheme but not for an ElGamal BitCom scheme).
(The sending of the parameters and the NIZKP can be deferred if it helps reducing
the number of rounds of interaction.) The dual of the scheme is an Equiv BitCom
scheme BFLB used to commit the output bits of PB (444444). By definition, since the
schemes are dual their trapdoor is the same (445445).


∗ BitCom scheme for oblivious transfers.


· 2/1-OT. If the OT is of type 2-out-of-1, then the BitCom scheme BOT is a
2-to-1-square scheme with trapdoor known by PA, which for simplicity can be a
dual of the F&L BitCom scheme BFLA defined for the input bits of PA, and thus
can be the same as the F&L scheme BFLB used for the circuit output bits (446446).
Again, the trapdoor remains private knowledge of PA (447447). Since PB needs, in
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Stage 1.1. Produce initial BitComs of PBProduce initial BitComs of PB.


1.1.1. Outer BitComs of input bits of PBOuter BitComs of input bits of PB.


PB ∶ σi ≡ σ(bi)
i ←$ Gen$ForCom[BB](bi) ∶ i ∈ IB (454454)


PB → PA ∶ σ′i = BB(bi;σi) ∶ i ∈ IB (455455)
If BitComs from BB need ZKP of correctness:


PB → PA ∶ ZKPGoodBitComs[BB] (⟨σ′i ∶ i ∈ IB⟩) (456456)


1.1.2. Outer BitComs of output offsets of PBOuter BitComs of output offsets of PB. (see (335335))


PB ∶ di ←$ {0,1} ∶ i ∈ OBB (random offset bits) (457457)


PB ∶ ςi ←$ Gen$ForCom[BB](di) ∶ i ∈ OBB (458458)
PB → PA ∶ ς′i = BB(di; ςi) ∶ i ∈ OBB (459459)
If BitComs from BB need ZKP of correctness:


PB → PA ∶ ZKPGoodBitComs[BB] (⟨ς′i ∶ i ∈ OBB⟩) (460460)


1.1.3. Intermediate OT BitComs of input of PBIntermediate OT BitComs of input of PB.


If BOT =? BB, then (µ′i, µi) ≡ (σ′i, σi) ∶ i ∈ IB (461461)
Else if BOT ≠ BB ∶ (e.g., if OTType=2/1 or if GCRS)


PB ∶ µi ≡ µ(bi)
i ←$ Gen$ForCom[BOT](bi) ∶ i ∈ IB (462462)


PB → PA ∶ µ′i = BOT(bi;µi) ∶ i ∈ IB (463463)
PB → PA ∶ NIZKPSameComBits[BB,BOT] (⟨(σ′i, µ′i) ∶ i ∈ IB⟩) (464464)


If OTType =? 2/1, then, for i ∈ IB ∶


PA ∶ (µ(0)
i , µ


(1)
i ) = ExtractPairOpenings [BOT, tOT] (µ′i) (465465)


1.1.4. Parse Outer BitComs of PBParse Outer BitComs of PB. For set ∈ {IB,OBB}:


PB ∶ σset ≡ StringizeStringize (⟨σi ∶ i ∈ set⟩) (466466)
PA,PB ∶ σ′set ≡ StringizeStringize (⟨σ′i ∶ i ∈ set⟩) (467467)
PB(σset)→ PA ∶ ZKPoKComOpening(σ′set) (e.g., §A.3.4A.3.4) (468468)


(A single ZKPoK of trapdoor might be sufficient, e.g.,
for GM BitComs, but not for ElGamal BitComs)


Stage CF.1. Coin-flip Permutations (Start)Coin-flip Permutations (Start).
(Initiate coin-flipping into a well — see Chapter 44)


Wire sets of PB.
PA,PB ∶ f1 ≡ CB(0; ⋅); f2 ≡ Identity (469469)


PB → FGMCF-1FGMCF-1 ∶ (in-1, ctxcf, (D(f1))2, f1) (470470)


FGMCF-1FGMCF-1 → PA ∶ (req-1, ctxcf, (D(f1))2, f1) (471471)
Wire sets of PA.


PB ∶ γset ←$ Gen$ForCom[Cp] (0#(set)) ∶ set ∈ {IA,OA} (472472)


PB → FMComFMCom ∶ (commit, ctxcom1, (γIA , γOA)) (473473)
FMComFMCom → PA ∶ (receipt, ctxcom1, ∣(γIA , γOA)∣) (474474)


Figure B.6: Protocol S2PC-with-Coms (stage 1.1 and CF.1). (See preceding in Fig-
ure B.5B.5 and continuation in Figure B.7B.7.) Legend in §NotationNotation. The NIZKPGoodBitComs is for
example needed for ElGamal BitComs (e.g., §A.3.2A.3.2 but not for GM BitComs).


the 2-out-of-1 OT case, to use the OT BitCom scheme to commit his input bits,
PA needs to send the Com scheme parameters, possibly along with a NIZKP of
correctness (the same as already produced for the F&L BitCom scheme) 448448),
which in practice is assumed to also define the parameters of the two F&L schemes
(one is equal, the other is dual) (449449).


· 1/2-OT. If the OT is of type 1-out-of-2, then the BitCom scheme BOT is defined
directly by PB as an Ext scheme with trapdoor (450450). PB generates a NIZKP of
correctness (451451) (if need be, e.g., for GM BitComs, but not needed for ElGamal
BitComs) and sends it along with the public BitCom scheme parameter to PA(452452).


∗ Further communication of parameters. If the OT is of type 1-out-of-2, then PA


has not yet sent to PB the parameters of the F&L Com schemes (and an eventually
needed NIZKPof correctness). These parameters need to be sent (i.e., if the outer
BitCom scheme of PA does not have trapdoor known by PA), but such communication
can be deferred to the time when PA commits her input bits and produces the F&L
BitComs of output (453453).


Stage 1.1 — Produce initial BitComs of PBProduce initial BitComs of PB.
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• 1.1.1. Outer BitComs of input bits of PBOuter BitComs of input bits of PB. For each input wire of PB (i ∈ IB), PB


selects randomness (σ(bi)
i ) to commit his input bit bi (454454) and then uses the BitCom


scheme BB for outer BitComs to compute and send a respective BitCom σ′i to PA (455455).
If the BitComs need a ZKP of correctness, then PB sends a respective NIZK to PA (456456).
For example, if using the ElGamal BitCom scheme, then PB would give a ZKP of correct
(a.k.a. good) ElGamal BitComs (e.g., as in §A.3.2A.3.2).


• 1.1.2. Outer BitComs of output offsets of PBOuter BitComs of output offsets of PB.
The circuit specification defines what is the set OBB of indices of private output wires of
PB, i.e., the output wires of PB that are not also part of the output of PA (see (333333)).
For each of these private output wires of PB (i ∈ OBB), PB selects a random offset bit di
(457457), then selects randomness ςOB to commit to the respective bitstring dOB (458458), and
produces the respective BitStringCom ς ′OB


(459459). If the outer Com scheme requires a ZKP
of correctness, then PB sends a respective NIZK to PA (460460).


• 1.1.3. Intermediate OT BitComs of input of PBIntermediate OT BitComs of input of PB.


– If BB ≠ BOT. If the outer BitCom scheme BB (i.e., including its parameters) is the
same as the BitCom scheme BOT used for OT, then the respective OT BitComs µ′i
and respective randomnesses are simply defined to be the same across the two BitCom
schemes (461461).


– If BB ≠ BOT. If the OT BitCom scheme BOT is different from the outer BitCom
scheme BB, then PB produces new BitComs, by first selecting the needed randomness
νi (462462) and then using it to compute the respective BitCom µ′i (463463) for each input bit
bi of PB. Then, PB gives a ZKP that the BitComs (µ′i, σ′i) produced by the two BitCom
schemes commit to the same bits (464464), with this ZKP sub-protocol also proving the
correctness of the BitComs. Since the outer BitCom scheme BB (defined in the SetupSetup
stage) used for initial BitComs of PB is extractable (i.e., the simulator at this point
would already be able to extract the input bits of PB), the mentioned ZKP for the OT
BitCom scheme BOT does not need to (but it may) allow extraction of the committed
bits.


– If 2-out-of-1 OT. If the OT is of type 2-out-of-1, then the BitComs for the OT were
produced with a 2-to-1-square- scheme, of which PA necessarily knows the trapdoor
tOT. In this case, PA implements the 2-out-of-1 OT, by using the trapdoor to extract
from the BitCom two openings (µ′(0)i , µ′


(1)
i ), out of which it is ensured that PB knows


at least one (465465).
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• 1.1.4. Parse Outer BitComs of PBParse Outer BitComs of PB.
PB alone (i.e., not PA) stringizes the two vectors of outer-randomnesses (i.e., one associated
with private input bits and the other with random offset bits of output) (466466) Then, both
parties stringize the two vectors of outer-BitComs of PB, (467467).
Then, if the trapdoor of the BitStringCom scheme does not allow extraction of the
“randomness” of commitments, then PB sends a NIZKPoK of the opening to PA (468468). In
a DLC this may be a NIZKPoK of ElGamal openings §A.3.4A.3.4.


Stage CF.1 — Coin-flip Permutations (Start)Coin-flip Permutations (Start). PB initiates the protocol for coin-
flipping of random permutations of outer-Coms and outer-randomnesses.


• Wires sets of PB. In respect to wire sets of PB, the goal is to initiate a coin-flipping that
in the end yields random outer-randomnesses to PB and respective outer Coms of 0 to PA.
For the wire sets of PB, PB sends a request for a generalized coin-flipping of type 1, with
the respective function being the commitment to a 0, when having as input a respective
randomness (469469). The request is made considering a domain for two such commitments
(i.e., for IB and OB) (470470). As a result, the ideal functionality FGMCF-1FGMCF-1 informs PA of the
request for such coin-flipping (471471). Specialized simulatable protocols for GMCF type-1
are described in Section C.1.1C.1.1, for both DLC (§C.2.3C.2.3) and IFC (§C.2.4C.2.4) instantiations.


• Wires sets of PA. In respect to wire sets of PA the goal is vice-versa to the goal for
wires of PB. However, since PA will still commit her initial random outer-Coms, only
PB needs to contribute (i.e., decide) the respective permutation. For each set of wires of
PA, PB selects a random randomness γ(B)


set for committing 0 (472472), and then commits to
it, using an Ext&Equiv Com. Using an ideal functionality, this corresponds to sending
the randomnesses to the functionality (473473), after which the functionality sends a receipt
to PA, which simply reveals the length of the committed message (474474). An efficient
simulatable protocol for Ext&Equiv Com is described in Section C.1C.1.


Stage 1.2 — Produce initial BitComs of PAProduce initial BitComs of PA.


• 1.2.1. Outer BitComs of input bits of PAOuter BitComs of input bits of PA. For each input wire of PA (i ∈ IA), PA


uses her outer BitCom scheme BA to commit her own input bits, by first selecting random
encodings σi (475475) and then computing the respective BitComs σ′i (476476).
If need be (depending on the BitCom scheme), PA also sends a NIZKP of correct BitComs
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Stage 1.2. Produce initial BitComs of PAProduce initial BitComs of PA.


1.2.1. Outer BitComs of input bits of PAOuter BitComs of input bits of PA.


PA ∶ σi ←$ Gen$ForCom[BA](bi) ∶ i ∈ IA (475475)
PA → PB ∶ σ′i = BA(bi;σi) ∶ i ∈ IA (476476)
If BitComs from BA need ZKP of correctness:


ZKPGoodBitComs[BA] (⟨σ′i ∶ i ∈ IA⟩) (477477)


1.2.2. Outer BitComs of output offsets of PAOuter BitComs of output offsets of PA. (see (335335))


PA ∶ di ←$ {0,1} ∶ i ∈ OAA (random bit-masks) (478478)


PA ∶ ςi ←$ Gen$ForCom[BA](di) ∶ i ∈ OAA (479479)
PA → PB ∶ ς′i = BA(di; ςi) ∶ i ∈ OAA (480480)
If BitComs from BA need ZKP of correctness:


PA → PB ∶ ZKPGoodBitComs[BA] (⟨ς′i ∶ i ∈ OAA⟩) (481481)


1.2.3. Intermediate connector BitComs of input of PAIntermediate connector BitComs of input of PA.


PA ∶ bi ≡ dθAθA(i) ∶ i ∈ IA’ (see (338338 and 339339)) (482482)


If BConA =? BA, then:
(µi, µ′i) ≡ (σi, σ′i) ∶ i ∈ IA (483483)
(µi, µ′i) ≡ (ςθAθA(i), ς


′
θAθA(i)) ∶ i ∈ IA’ (see (339339)) (484484)


Else if BConA ≠ BA, then:


PA ∶ µi ←$ Gen$ForCom[BConA](bi) ∶ i ∈ IA ∪ IA’ (485485)
PA → PB ∶ µ′i = BConA(bi;µi) ∶ i ∈ IA ∪ IA’ (486486)


If (BConA ≠ BA) ∧ (BFLA ∈ {BA,BConA}), then ∶
PA → PB ∶ NIZKPSameComBits[BA,BConA]


(⟨(σ′i, µ′i) ∶ i ∈ IA ∪ IA’⟩) (487487)


If (BConA ≠ BA) ∧ (BFLA ∉ {BA,BConA}), then:
Defer ZKP to step (496496)


1.2.4. Parse Outer BitComs of PAParse Outer BitComs of PA. For set ∈ {IA, IA’}:


PA ∶ σset ≡ StringizeStringize (⟨σi ∶ i ∈ set⟩) (488488)
PA,PB ∶ σ′set ≡ StringizeStringize (⟨σ′i ∶ i ∈ set⟩) (489489)
PA(σset)→ PB ∶ ZKPoKComOpening(σ′set) (490490)


(A single ZKPoK of trapdoor suffices for GM BitComs)


1.2.5. F&L-related Coms of input bits of PA.


If BFLA ≡ BA, then: (φi, φ′i) ≡ (σi, σ′i) ∶ i ∈ IA ∪ IA’ (491491)
Else if BFLA ≡ BConA, then:


(φi, φ′i) ≡ (µi, µ′i) ∶ i ∈ IA ∪ IA’ (492492)
Else if BFLA ∉ {BA,BFLA} , then:


PA ∶ φi ←$ GetRandForBitCom[BFLA](bi) ∶ i ∈ IA ∪ IA’ (493493)
PA → PB ∶ φ′i = BFLA(bi;φi) ∶ i ∈ IA ∪ IA’ (494494)


If (BFLA ≠ BA = BConA), then PA → PB ∶
NIZKPSameComBits[BA,BFLA] (⟨(σ′i, φ′i) ∶ i ∈ IA ∪ IA’⟩) (495495)


If BFLA ∉ {BA,BFLA}) ∧ (BA ≠ BFLA), then PA → PB ∶
NIZKPSameComBits[BA,BConA,BFLA]


(⟨(σ′i, µ′i, φ′i) ∶ i ∈ IA ∪ IA’⟩) (e.g., §A.4.1A.4.1) (496496)


1.2.6. F&L-related BitComs for output bits.


For i ∈ OAA ∪OB ∶ PA ∶ ((µ(0)
i , µ


(1)
i ) , µ′i)←$


GenPairOpenings [BFLB, tFLB] (497497)
PA → PB ∶ µ′i ∶ i ∈ OAA ∪OB (498498)


Figure B.7: Protocol S2PC-with-Coms (stages 1.2 and 1.3). (See preceding in Figure B.6B.6
and continuation in Figure B.8B.8.) Legend in §NotationNotation. The BitComs produced by PA with BFLB
(498498) do not require a ZKP of correctness, because they will later be verified as part of the cut-
and-choose structure and the homomorphic relations with the elements in connectors (namely the
multipliers) (see Remark B.1B.1).


(477477). The ZKP is not needed if the BitCom scheme (e.g., GM) is such that BitComs are
directly verifiable as correct even without knowing the trapdoor.


• 1.2.2. Outer BitComs of output offsets of PAOuter BitComs of output offsets of PA. Both parties know, from the
circuit specification, what is the set OAA of indices of private output wires of PA, i.e., the
output wires of PA that are not also part of the output of PB (see (333333)). For each of
these wires, PA selects a random offset bit di (478478), then select randomness ςi to commit
to it (479479) and uses it to produce a respective outer BitCom (480480). Then, if need be, PA


also sends a NIZKP that the BitComs are correct (481481).
• 1.2.3. Intermediate connector BitComs of input of PAIntermediate connector BitComs of input of PA.


Since the private output bit-masks di of PA were defined in association with the wire
indices associated with her private output wires, PA uses the appropriate mapping θAθA
of wire indices (from the set of indices (i ∈ IA’) of her auxiliary input bits into the set
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(i ∈ OAA) of respective indices of her private output wires) to define that the output bit
masks can also be considered as auxiliary input bits bi associated with the adjusted set of
input wires of PA (482482).
– If BConA ≡ BA. If the BitCom scheme (BConA) for connectors of input of PA is the


same as the outer BitCom scheme (BA), then both parties assume that the notation is
superposed and accept the BitComs (µ′i) for the connectors to be simply be the ones
already defined outer BitComs and similarly for the respective encodings (µi). This is
considered both for input bits of PA (483483), as well as for the private-output offset bits
of PA (484484).


– New coms if BConA ≠ BA. If the outer Com scheme is different from the one used
for connectors, then PA selects respective new random encodings µi (for BConA) for the
input bits and the private-output offset bits (485485) and then computes and sends the
respective BitComs µ′i to PB (486486).


– New NIZKPs if BConA ≠ BA. If the intermediate BitCom scheme (BConA) is different
from the outer Com scheme (BA), and the later BitCom scheme (BFLA) to support
the forge and lose is equal to any of the previous two, then PA sends to PB a NIZKP
proving that the BitComs for connectors commit to the same bits as the outer BitComs
(487487). If instead all three BitCom schemes are different, then the ZKP is deferred to
after the third set of Coms is produced (using BFLA).


• 1.2.4. Parse Outer BitComs of PAParse Outer BitComs of PA. Similarly to what was done with the BitComs
(and respective randomness) of outer bits of PB, now the BitComs σ′i of bits of PA are
also parsed into a single BitsStringCom σ′IA


(488488–489489).
Then, PA also sends a NIZKPoK of the openings (490490). If the randomness is extractable
with the trapdoor, then a single ZKPoK of trapdoor might be sufficient (e.g., for GM).
For ElGamal commitments the ZKPoK can be reduced to a single ZKPoK of DL per
BitStringCom (i.e., besides the ZKPoK of trapdoor and the ZKPs of good initial BitComs).


1.2.5. F&L-related Coms of input bits of PA.


• New BitComs. If the Ext-BitCom scheme (BFLA) used to support the forge-and-lose
technique with respect to the input of PA is the same as the outer BitCom scheme BA of
PA, then both parties assume that the notation is superposed and accept the BitComs
(µ′i) and respective randomnesses to be the same (491491). If otherwise it is equal to the Com
scheme BConA used for connectors, then the parties also accept a respective superposition
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of notation (492492). If the forge-and-lose BitCom scheme is different from the previous two,
then PA selects new randomness for BitComs of the input bits and of the output-offset bits
(493493). Then, PA produces respective BitComs for the input bits of PA and all output-offset
output bits of PA (494494).


• ZKPs of same committed bits. If the outer-BitCom scheme of PA is equal to the
one used for connectors but is different from the FLA-BitCom scheme, then PA sends a
NIZK of same committed bits between the BitComs produced across the two different
schemes (495495). If all three BitComs schemes are different, then PA sends a NIZKP that
the BitComs across the three schemes commit to the same bits (496496).


1.2.6. F&L-related BitComs for output bits. For each output wire, both of PB(i ∈ OB)
and PA (i ∈ OA), PA uses the trapdoor tFLB of the respective intermediate BitCom scheme
BFLB (used for the forge-and-lose technique) to produce one random (equivocable) BitCom
µ′i and respective possible pairs of encodings (µ


(0)
i , µ


(1)
i ), i.e., for bit 0 and 1 (497497), and then


sends only the BitCom µ′i to PB (498498). This is performed before the respective output bits
are computed, but the protocol will later ensure that (in a successful execution) PB receives
one corresponding opening per output wire.


Remark B.1 (Intermediary BitComs of output bit of PB for forge-and-lose do
not need ZKP of correctness). After PA defines the intermediate BitComs for the
output bits of PB (498498), a ZKP of correct BitComs is not needed because the BitComs will
later be verified as part of the cut-and-choose structure and the homomorphic relations with
the elements in connectors (namely the multipliers). This is not a general statement, but
applies to Blum and Pedersen BitComs, for which it is possible to assume that the correctness
of a BitCom can be directly verified without knowledge of the trapdoor (i.e., assuming that
the Blum integer has already been proven correct, and that in the Pedersen scheme the
group order can be computed). For Blum integers this assumes a reduction to proper group
elements, such that all group elements (even actual non-quadratic residues in the regular
group representation) can be considered as pseudo-squares and thus having two non-trivially
correlatable square-roots.


Stage 2 — CommitCommit.


For each of the s challenge indices j ∈ [s], PA randomly selects an appropriate random seed
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λj (499499) to be used as input in the secure pseudo-randomness generators (PRGs) associated
with the RSC technique that follows. Also, PA pseudo-randomly generates an auxiliary seed
(λ(auxi)


j ) using as seed the initial random RSC seed (500500).


• Connectors of Input PA.
– Group elements. For each input wire of PA (i ∈ IA): PA generates a pseudo-random


permutation bit πj,i (501501). Then, using the BitCom scheme BConA for the connectors of
PA it selects a pseudo-random encoding αj,i (a group element, dubbed multiplier) (502502)
of the permutation bit and then computes the respective BitCom α′j,i (503503). Then, PA


combines the multiplier BitCom (α′j,i) and the outer BitCom (µ′i) of the connectors,
in either a XOR-homomorphicXOR-homomorphic or a pseudo XOR-homomorphic mannerpseudo XOR-homomorphic manner, (depending
on the type of homomorphism allowed by the BitCom scheme), in order to obtain
an inner Bitcom (ν′j,i) that serves as BitCom of the XOR-permuted bit (504504), (i.e., it
commits to the XOR-combination of the permutation bit πj,i with the input bit bi of PB).
(Figure B.8B.8 describes the pseudo-homomorphic version (∗′(π)∗′(π)) that applies to both cases.)


– Circuit Keys and their commitments. For each input wire of PA, PA also generates
two pseudo-random circuit input keys (k[c]


j,i ∶ c ∈ {0,1}) (506506). PA pseudo-randomly
generates the “randomness” k[c]


j,i needed for their respective commitments (505505), and
then computes the respective two commitments k[c]


j,i (507507); finally, PA reorders the
commitments in each pair (508508), based on the generated permutation bit (πj,i), and
then aggregates all such ordered pairs of commitments in a vector (509509).


• Connectors of Input PB.
For each input wire of PB (i ∈ IB):
– If OTs are at the BitCom level (and are of 2-out-of-1 type). (I.e., if the


respective BitCom scheme BOT is a 2-to-1-square scheme, from which PA has already
extracted two square-roots from each BitCom of PB,) PA generates two pseudo-random
independent group elements (νj,i,c), dubbed inner encodings, respectively encoding bits 0
and 1 (510510). Then, PA uses each inner encoding as “randomness” to generate respective
inner BitComs (511511).


– If OTs are at the GC-InWires level (and are of 1-out-of-2 type). PA starts by
producing a triplet composed of two random coefficients (βj,i,0, βj,i,1) for a linear homo-
morphic transformation and an additional randomizer element rj,i for a randomization
of a commitment (512512). Then, PA uses the triplet as input of a respective randomized
linear homomorphic transformation operation, to produce a new commitment ν′j,i, de-
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Stage 2. CommitCommit. PA:


2.1. Select RSC and auxiliary seeds. PA:


λj ←$ GenSeed(κPRG) ∶ j ∈ [s] (499499)


λ
(auxi)
j = PRGenAuxiSeed[λj][0] ∶ j ∈ [s] (500500)


2.2. Connectors input PA. PA:


(Permutation bits.)
⟨πj,i ∶ i ∈ IA ∪ IA’⟩ =


PRGenBitString[λj][1](`A + `′A) ∶ j ∈ [s] (501501)


(Group elements.)
For j ∈ [s], i ∈ IA ∪ IA’ ∶
αj,i = PRGen$ForCom[λj][2; i](BConA, πj,i) (502502)
α′j,i = BConA(πj,i;αj,i) (503503)
ν′j,i = α′j,i ∗′(πj,i) µ


′
i (504504)


(Input-keys and commitments.)
For j ∈ [s] ∶ (see Remark B.7B.7 in §B.5.1B.5.1)
kj = PRGen$ForCom[λj][3; i](CInKey) (505505)


For j ∈ [s], i ∈ IA ∪ IA’, c ∈ {0,1} ∶


k
[c]
j,i = PRGenInKey[λj][4; i](c) (506506)


k
[c]
j,i = CInKey (k[c]j,i ;kj) (507507)


⟨c⟩ ≡ [c⊕ πj,i] (508508)


InKeys(2)
A,j = ⟨(i, k̄⟨0⟩j,i , k̄


⟨1⟩
j,i ) ∶ i ∈ IA ∪ IA’⟩ ∶ j ∈ [s] (509509)


2.3. Connectors input PB. PA:


If (OTLevel,OTType) = (BitComs, 2/1) ∶
For j ∈ [s], i ∈ IB, c ∈ {0,1} ∶
νj,i,c = PRGen$ForCom[λj][5; i](BOT, c) (510510)


(νj,i,c ≡ ν(c)j,i,c)


ν′j,i,c = BOT (c; νj,i,c) (511511)


If (OTLevel,OTType) = (GC-InWires,1/2) ∶
For j ∈ [s], i ∈ IB ∶


(βj,i,0, βj,i,1, rj,i) =
PRGen$ForLHT[λj][6; i](COT) (512512)


ν′j,i = RandLHTRandLHT [βj,i,0, βj,i,1, rj,i] (µ′i) (513513)


νj,i,c ≡ ν(c)j,i,c = f(βj,i,c) (≡ E −1(ν′j,i)) ∶ c ∈ {0,1} (514514)


For j ∈ [s], i ∈ IB, c ∈ {0,1} ∶


k
[c]
j,i = PRGenInKey [λ(auxi)j ] [ν(c)j,i,c] (c) (515515)


2.4. Garbled circuits (GCs). PA:


For j ∈ [s] ∶


InKeys(2)
j ≡ ⟨(i, c, k[c]j,i ) , i ∈ IA ∪ IA’ ∪ IB, c ∈ {0,1}⟩ (516516)


⟨GCj ,OutKeys(2)
j ⟩ =


PRGenGC [λj] [7] (C, InKeys(2)
j ) (517517)


⟨(i, c, k[c]j,i ) ∶ i ∈ OA ∪OB, c ∈ {0,1}⟩ ≡ OutKeys(2)
j (518518)


2.5. Connectors Output PB. PA:


For i ∈ OB ∪OA and c ∈ {0,1} ∶


ν
(c)
j,i,c = PRGen$ForCom [λ(auxi)j ] [k[c]j,i ] (BFLB, c) (519519)


ν′j,i,c = BFLB(c; νj,i,c) (520520)


2.6. Global hash and RSC commitment.


PA ∶ For j ∈ [s] ∶
N ′


InA,j = ⟨(i, ν′j,i) ∶ i ∈ IA ∪ IA’⟩ (521521)


N ′
InB,j = ⟨(i, c, ν′j,i,c) ∶ i ∈ IB, c ∈ {0,1}⟩ (522522)


N ′
OutB,j = ⟨(i, c, ν′j,i,c) ∶ i ∈ OA ∪OB, c ∈ {0,1}⟩ (523523)


N ′
j = (N ′


InA,j ,N
′
InB,j ,N


′
OutB,j) (524524)


Rj = (GCj , InKeys(2)
A,j ,N


′
j , λ


(auxi)
j ) (525525)


PA ∶ Λ = CR-Hash (⟨Rj ∶ j ∈ [s]⟩) (526526)


PA ∶ Λ←$ Gen$ForCom[C Equiv
RSC ](Λ) (527527)


PA → PB ∶ Λ = C Equiv
RSC (Λ; Λ) (528528)


Figure B.8: Protocol S2PC-with-Coms (stage 2). (See preceding in Figure B.7B.7 and
continuation in Figure B.9B.9.) Legend in §NotationNotation.


noted inner commitment, of the linear coefficient βj,i,bi with (third) index equal to the
bit bi committed by the initial BitCom µi of PB (513513). It is worth noticing that this is
no longer a BitCom, but rather a commitment of an element from a larger set. The
commitment scheme BOT used herein for (1-out-of-2) OTs is the composition of an
encryption scheme E and a 1-to-1 function f (with the decryption key being known by
PB and not by PA). Thus, the commitment can also be seen as an encryption of the
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f -image of the coefficient βj,i,bi . In the case of ElGamal encryption this is the encryption
of the base generator g0 (of the ElGamal scheme) raised to the power of the coefficient
βj,i,bi . Then, PA computes the two possible values that may be encrypted, denoted
inner encodings, i.e., the f -images of the two coefficients (514514).


– For any OT type. Regardless of the OT type, PA uses the auxiliary seed (λ(auxi)
j )


and each inner encoding νj,i,c as a seed to pseudo-randomly generate a respective circuit
input key k[c]


j,i (515515).
• Garbled circuits. PA combines a sequence of all generated pairs of circuit input keys


(516516) and uses them to generate a GC which accepts those keys in the respective input
wires (517517). As part of building the GC, PA also obtains the respective pairs of output
keys (518518).


• Connectors of Output. For each circuit output wire of the GC (i ∈ OB), PA uses a
PRG procedure to produce, from each output key (k[c]


j,i ), and respective underlying bit, one
respective inner encoding (ν(c)


j,i,c) (519519) (i.e., a group element encoding the bit underlying
the respective output key) that can be used as “randomness” to produce a respective
BitCom ν′j,i,c. In order to guarantee enough entropy (important against “birthday attacks”),
the PRG procedure uses as additional seed the previously computed auxiliary seed (λ(auxi)


j )
(520520).


• Aggregate info, compute global hash and RSC commitment. Intuitively, the GC,
the key commitments and the inner BitComs computed above constitute all elements
that should be sent to PB if the protocol was not using a RSC technique. For each
challenge index (j), PA aggregates all inner BitComs of input wires of PA (521521), all inner
BitComs of input wires of PB (522522), all inner BitComs of output wires of PB (523523); and
then aggregates them all together (524524). For each challenge index, PA aggregates all
elements into a single tuple Rj (525525), containg the garbled circuit, all respective pairs of
ordered commitments of input keys of PA and all inner BitComs (525525). In order to enable
communication reduction (i.e., via the RSC technique), and also to enable (in a simple
way) equivocability of the committed values, PA joins these elements into a single tuple
and computes a respective (compressive) CR-Hash Λ, hereinafter denoted global hash
(526526). Finally, PA selects randomness Λ (527527) needed to commit to the global hash, and
then sends a respective non-malleable Equiv-Com Λ to PB (528528).


Stage 3 — ChallengeChallenge.
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The set of possible cut-and-choose partitions is defined by the C&C parameters implicitly
agreed in the SetupSetup stage (529529).


If the cut-and-choose selection style is interactive with selection by PB (i.e., Int-B), then
PB randomly selects a cut-and-choose partition from within the set of allowed partitions, i.e.,
satisfying the constraints imposed by the C&C parameters implicitly agreed in the SetupSetup
stage, and sends it to PA, thus defining a subset JV of indices for check and a complementary
subset of evaluation JE indices (530530).


If the selection style is instead non-interactive with selection by PA (NI-A), and in this
case the statistical security parameter must equate the computational security parameter,
then PA calculates the partition pseudo-randomly as the hash output of a non-programmable
oracle, using as input the execution context, the CRS and the RSC Equiv Com (531531).
(Another non-interactive alternative (NI-B) is possible with PB deciding the cut-and-choose
partition before the commit stage in and committing to it using an oblivious transfer §2.4.22.4.2.)


The party that selected the cut-and-choose partition sends it to the other party (532532).
Then, the receiver of the partition (PA if Int-PB, PB if NI-PA) locally verifies that the
subsets are disjoint and complementary (533533), and that they satisfy the implicitly agreed
restrictions on the minimum and maximum numbers of each challenge type (534534).


Stage CF.2 — Coin-flip Permutations (Continue)Coin-flip Permutations (Continue).


As a continuation of the coin-flipping protocol previously initiated by PB, and in regard
to the wire sets of PB, PA sends a respective message to the ideal coin-flipping functionality
(535535), which leads the ideal functionality to send the outer-randomness permutations γ
to PB (536536). From these values, PB is already able to compute the respective outer-com
permutations γ′ (537537).


It is noteworthy that PA does not have to send any contribution related to the wires of
PA, because the initial outer-Coms of PA are already random (i.e., in the view of a possibly
malicious PB, if PA is honest). Thus, the outer-Coms of PA are what need to be permuted
by a random contribution (already committed) from PB alone.


While some logical stages can be interleaved, this coin-flipping component (i.e., the
communication part of it, from PA to PB) must occur in conjunction with the communication,
from PA to PB, of the RespondRespond stage, so that PB learns the circuit output and the respective
final outer-coms at the same time (i.e., without any further communication being required in
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Stage 3. ChallengeChallenge (cut-and-choose).
(see §2.4.22.4.2 for alternatives in non-interactive setting)


Π ≡ PARTITIONS[(vmin, vmax), (emin, emax)][s] (529529)


If Int-B =? C&C-styleC&C-style, then: ((PS,PR) ≡ (PB,PA))


PB ∶ (JV , JE)←$ Π (530530)


If NI-A =? C&C-styleC&C-style, then: ((PS,PR) ≡ (PA,PB))
PA ∶ (JV , JE) = NPRO[ctx,CRS,Λ](Π) (531531)


PS → PR ∶ (ctx,c&c-partition, (JV , JE)) (532532)


PR ∶ JV ∩ JE =? ⊘, JV ∪ JE =? [s] (533533)


PR ∶ emin ≤? e ≡ ∣JE ∣ ≤? emax, vmin ≤? v ≡ ∣JV ∣ ≤? vmax (534534)


CF.2. Coin-flip Permutations (Continue)Coin-flip Permutations (Continue).


PA → FGMCF-1FGMCF-1 ∶ (in-2, ctxcf) (see (470470)) (535535)
FGMCF-1FGMCF-1 → PB ∶ (out-1, ctxcf, (γIB , γOB)) (536536)


PB ∶ γ′set = CB (0#(set);γset) ∶ set ∈ {IB,OB} (537537)


Stage 4. RespondRespond. PA → PB:


4.1. Check indices. λj ∶ j ∈ JV (RSC seeds) (538538)


4.2. Evaluation indices. For j ∈ JE ∶


λ
(auxi)
j (auxiliary seed — not the RSC seed) (539539)


GCj (garbled circuit) (540540)
4.2.1. Connectors of Input of PA.
cj,i = bi ⊕ πj,i ∶ i ∈ IA (541541)
cj,i = di ⊕ πj,i ∶ i ∈ IA’ (542542)


νj,i ≡ ν
(cj,i)
j,i = αj,i+∗+∗(πj,i)µ


(bi)
i ∶ i ∈ IA ∪ IA’ (543543)


(ξj,i, ξj,i) ≡ (k⟨cj,i⟩
j,i , k


⟨cj,i⟩
j,i ) ∶ i ∈ IA ∪ IA’ (544544)


k
[1⊕bi]
j,i ≡ k⟨1⊕cj,i⟩


j,i ∶ i ∈ IA ∪ IA’ (545545)


4.2.2. Connectors of Input of PB. For i ∈ IB ∶
If (OTLevel,OTType) = (BitComs,2/1) ∶


βj,i,c ≡ β(0)
j,i,c = invinv (µ


(c)
i ) ∗ ν(c)j,i,c ∶ c ∈ {0,1} (546546)


If (OTLevel,OTType) = (GC-InWires,1/2) ∶
ν′j,i (≡ E (f(βbi


))) (547547)
4.2.3. Connectors of Outputs.


For i ∈ OB ∪OA, c ∈ {0,1} ∶


βj,i,c ≡ β(0)
j,i,c = invinv (ν


(c)
j,i,c) ∗ µ


(c)
i (548548)


4.3. Open global hash. (Λ,Λ) (549549)


Stage 5. VerifyVerify. PB:


5.1. Check indices. For j ∈ JV ∶


λ
(auxi)
j = PRGenAuxiSeed[λj][0] (as in (500500)) (550550)


Do steps (501501)-(524524) to get (GCj , InKeys(2)
A,j ,N


′
j) (551551)


5.2. Evaluation indices. For j ∈ JE ∶
5.2.1. Connectors of input of PA. For i ∈ IA ∪ IA’ ∶


ξj,i ≡ k
⟨cj,i⟩
j,i = CInKey (ξj,i; ξj,i) (552552)


ν′j,i = BConA(cj,i; νj,i) (553553)
5.2.2. Connectors of input of PB. For i ∈ IB ∶


If (OTLevel,OTType) = (BitComs,2/1) ∶
β′j,i,c = BOT(0; βj,i,c) ∶ c ∈ {0,1} (554554)
ν′j,i,c = µ′i ∗′ β′j,i,c ∶ c ∈ {0,1} (555555)


If (OTLevel,OTType) = (GC-InWires,1/2) ∶
(do nothing — PB knows ν′j,i from (547547)) (556556)


5.2.3. Connectors of outputs. For i ∈ OB ∪OA ∶
β′j,i,c = BFLB(0; βj,i,c) ∶ c ∈ {0,1} (557557)
ν′j,i,c = µ′i ∗′ (1/β′j,i,c) ∶ c ∈ {0,1} (558558)


5.3. Recompute and verify global hash.
Λ∗ ∶ (as in (526526), but using (550550)–(551551) for j ∈ JV ,


and using (539539), (540540), (541541), (542542) (545545)
(552552), (553553), (555555), and (558558) for j ∈ JE) (559559)


Λ =? Λ∗ (i.e., opened (549549) vs. regenerated (559559)) (560560)


Figure B.9: Protocol S2PC-with-Coms (stages 3, CF.2, 4 and 5). (See preceding in
Figure B.8B.8 and continuation in Figure B.10B.10.) Legend in §NotationNotation.


the opposite direction).


Stage 4 — RespondRespond.


• Check indices. For each check index (j ∈ JV ), PA simply reveals the respective random
RSC seed λj (538538).


• Evaluation indices. For each evaluation index (j ∈ JE), PA does not send the RSC seed,
but sends the elements derived therefrom in the CommitCommit stage, as follows.
– The auxiliary (pseudo-randomly generated) PRG seed λ(auxi)


j (539539)
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– The garbled circuit GCj (540540).
– For each input wire of PA: the permuted bit cj,i, both for the original input wires
(541541) and for the adjusted input wires (542542); the respective inner encoding νj,i (543543),
computed as the pseudo-homomorphic product between the multiplier αj,i and the outer
BitCom µi; the circuit input key ξj,i ≡ k[bi]


j,i corresponding to the input bit bi of PA, and
the randomness ξ


j,i
≡ k


[bi]
j,i used to generate the respective key commitment (544544); and


the commitment k[1⊕bi]
j,i of the circuit input key corresponding to the complementary bit


(545545);
– For each input wire of PB, the response depends on the level and type of OT. For


each input wire of PB:
∗ If the OT is at the level of BitComs and of 2-out-of-1 type, then PA sends to PB


the two multipliers βj,i,c that lead the two outer encodings µj,i (the two possible
openings of the input BitComs of PB), of which PB only knows one, into the respective
two inner encodings νj,i,c. In this case, each multiplier is obtained by taking the
multiplicative inverse of the respective outer encoding and then computing the group
product by the respective inner encodings (546546).


∗ If the OT is at the level of GC-InWires and of 1-out-of-2 type, then PA sends to
PB the single inner commitment ν′j,i (547547), which PB has previously computed as a
randomized linear homomorphic transformation (513513) of the outer BitCom µ′i. In the
perspective of PA, the resulting inner commitment is an encryption of a function f of
the linear coefficient (selected by PA) of degree equal to the bit committed by PB.


– For each output wire of PB: the two multipliers βj,i,c that lead the two inner
encodings νj,i,c into the respective two outer encodings (the opening of the output
BitComs of PB), of which PB does not yet know any (548548).


• Open global hash. Finally, PA opens the committed global hash Λ, by revealing its
value and the randomness Λ used to commit it (549549) Note: this must be done using an
equivocable commitment scheme, in order to allow the simulator in the proof of security
to open any value in the later RespondRespond stage.


Stage 5 — VerifyVerify.


• Check indices. For each check index (j ∈ JV ), PB uses the respective RSC seed λj


to locally regenerate the auxiliary PRG seed λ(auxi)
j (550550) and recompute all remaining


elements that were used to prepare the RSC commitment Λ (see steps (501501) through
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(524524)). Specifically, for each check index, PB regenerates the GC, regenerates the permuted
pairs of commitments of input keys of PA and combines them into a tuple (InKeys(2)A,j),
and regenerates the inner BitComs of connectors of wires of PA and PB and combines
them into a tuple (N ′


j) (551551).
• Evaluation indices. For each evaluation index (j ∈ JE), PB needs to reconstruct the


same elements, but without knowing the RSC seed. Instead, PA uses the other elements
received from PA, as follows, for each evaluation index:
– Connectors of Input PA. For each input wire of PA (i ∈ IA), PB computes: the


commitment ξj,i of the received input key ξj,i (also using the received associated
randomness ξ


j,i
) (552552); then it computes the inner BitCom ν′j,i corresponding to the


received inner encoding νj,i (of the permuted bit) (553553)
– Connectors of Input of PB. The check operation for connectors of input bits of PB


depends on the level and type of OT. For each input wire of PB (i ∈ IB):
∗ If the OT is at the level of BitComs and of 2-out-of-1 type:
PB uses the two received multipliers βj,i,c as randomnesses associated with bit 0,
to compute respective BitComs (554554). If using the original Blum BitCom scheme
notation, then PB must also verify that the multipliers are in class 0; if instead
using the alternative description the mapping from randomness to BitCom already
explicitly depends on the bit being committed. Then, PB uses the obtained BitComs
to obtain the respective two inner BitComs ν′j,i,c (both of bit 0), by multiplying the
single (outer) input BitCom µ′i with the respective multiplier BitComs β′j,i,c (555555).


∗ If the OT is at the level of GC-InKeys and of 1-out-of-2 type: PB does not
need to do any specific verification (556556), because it has already received from PA


the inner commitment ν′j,i (547547) (which is what is needed to produce the global RSC
hash).


– Connectors of Output of PB. For each output wire of PB (i ∈ IB): PB uses the
received multipliers βj,i,c as randomness to compute respective BitComs β′j,i,c of 0 (557557)
(see Remark B.2B.2). Then, PB computes the multiplicative inverse of these BitComs and
multiplies each of them by the single intermediate output BitCom µ′i, thus obtaining
the respective inner BitComs ν′j,i,c (558558).


Remark B.2 (group operations in the randomness space). In an IFC instantia-
tions, when using the Blum BitCom scheme (e.g., for the input connectors of PBin case


Page 303 of 376







Section B.2. Protocol description (2016-Dec-27)


of 2/1-OT, and for output connectors of PB), a special care is required in respect to the
operations in the randomnesses space. For example, if using the original description of
Blum BitComs, then PB must check that the multipliers β sent by PA have the expected
class 0, i.e., that they have Jacobi symbol 1 (554554, 557557). If instead using the alternative
description, then Jacobi symbol computations can be avoided, because of the commit-
ment operation explicit dependency of the committed bit (511511,520520,569569) In that case the
homomorphic operations in the randomness space also depend explicitly on the committed
bits. For example, multiplying two randomnesses implies further multiplying the auxiliary
element z if and only if both bits underlying the two original randomnesses are equal to
1 (this is however not needed for the multipliers associated with bit 0). (546546, 548548) are
indeed treated as randomness related to BitComs of 0. Also, the homomorphic inverse of
a randomness involves an extra division by the auxiliary group element z if the underlying
bit is 1 (546546,548548).


• Recompute and verify global hash. Using the reconstructed elements, PB computes
the respective global hash, which essentially depends on the garbled circuits GCj (for all
indices), the inner BitComs ν′j,i for all input and output bits, and the pair of commitments
k
⟨c⟩
j,i of the keys of input wires of PA (559559). Finally, PB verifies that the global hash


previously opened by PA (549549) is equal to the one just reconstructed (560560).


If throughout this VerifyVerify stage any verification has failed, then PB outputs abort.


Stage 6 — EvaluateEvaluate.


• Compute keys of input wires of PB. For each evaluation index (j ∈ JE) and each
input wire of PB (i ∈ IB), PB computes the inner encoding νj,i,bi corresponding to its own
input bit, as follows:
– If the OT level is BitComs and the type is 2-out-of-1, then PB multiplies the known


outer encoding µ(bi)
j,i (the BitCom opening that encodes the private input bit of PB)


with the respective received multiplier β(0)
j,i,bi


(561561), thus obtaining the respective inner
encoding νbij,i,bi .


– If the OT level is GC-InWires and the type is 1-out-of-2, then PB simply takes the inner
commitment ν′j,i and decrypts its content, thus obtaining the respective inner encoding
νj,i,bi (562562), which is the f -image of one of the linear coefficients βj,i,c used by PA when
homomorphically transforming the outer BitCom of the input bit of PB.
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Stage 6. EvaluateEvaluate. PB:


6.1. Compute keys of input wires of PB.


For j ∈ JE , i ∈ IB ∶
If (OTLevel,OTType) = (BitComs,2/1) ∶


νj,i,bi
= µ(bi)


i ∗ β(0)
j,i,bi


(561561)


If (OTLevel,OTType) = (GC-InWires,1/2) ∶
νj,i,bi


= E −1 (ν′j,i) (≡ f(βj,i,bi
)) (562562)


ξj,i ≡ k[bi]
j,i = PRGenInKey [λ(auxi)j ] [ν(bi)


j,i,bi
] (bi) (563563)


6.2. Evaluate GCs. For j ∈ JE ∶


InKeys(1)
j ≡ ⟨(i, ξj,i) ∶ i ∈ IA ∪ IA’ ∪ IB⟩ (564564)


⟨(i, ξj,i) ∶ i ∈ OA ∪OB⟩ = GCEval (GCj , InKeys(1)
j ) (565565)


6.3. Get output encodings. For j ∈ JE ∶


JIgnore = ⊘ (566566)
For j ∈ JE and i ∈ OA ∪OB ∶


cj,i = ε (ξj,i) (567567)


vj,i = PRGen$ForCom [λ(auxi)j ] [ξj,i] (BB, cj,i) (568568)


If BFLB (cj,i; vj,i) =? ν′j,i,cj,i
(see (558558)) (569569)


then uj,i = vj,i+∗+∗(cj,i)βj,i,cj,i
(570570)


else JIgnore = JIgnore ∪ {j} (571571)


6.4. Check for inconsistencies.


For i ∈ OA ∪OB ∶ zi = ∪j∈JE/JIgnore {(cj,i, uj,i)} (572572)


If max{#(zi) ∶ i ∈ OA ∪OB} =? 1 ∶ (573573)


then (bi, µ(bi)
i )← zi ∶ i ∈ OA ∪OB (regular path) (574574)


Else enter Forge-and-Lose path: (575575)
tFLA = ExtractTrapdoor(⟨zi ∶ i ∈ OA ∪OB⟩) (576576)
bi = ExtractBit[tFLA](φ′i) ∶ i ∈ IA ∪ IA’ (577577)
⟨(i, bi) ∶ i ∈ OB⟩ ∣∣ ⟨(i, ei) ∶ i ∈ OAA⟩ =
C′ (⟨(i, bi) ∶ i ∈ IA ∪ IA’ ∪ IB⟩) (578578)


(µi ∶ BFLB(bi;µi) = µ′i)← zi ∶ i ∈ OB (579579)
(µi ∶ BFLB(ei;µi) = µ′i)← zi ∶ i ∈ OAA (580580)


Figure B.10: Protocol S2PC-with-Coms (stage 6). (See preceding in Figure B.9B.9 and
continuation in Figure B.11B.11.) Legend in §NotationNotation.


• Regardless of the OT type, PB uses a PRG PRGenInKey to pseudo-randomly generates
the respective (tentative) circuit input wire key ξj,i, using as seed the previously received
“auxiliary seed” and also the inner encoding νj,i,bi .
(563563). This PG generation also uses as additional seed In this way, PA learns one tentative
key per circuit input wire of PA. (The keys are herein called tentative because they may
be incorrect in case P∗


A acted maliciously.) Since PB already knew also one tentative key
for each input wire of PA (544544), PB is able to parse one key for all input wires of the
garbled circuit (564564)


• Evaluate GCs. For each evaluation index (j ∈ JE), PA uses the keys obtained across all
input wires to evaluate the GC and thus obtain one tentative key per circuit output wire
(565565).


• Get output bit encodings. PB initializes an empty list (JIgnore), dubbed Ignore list
(566566), where it will add any challenge index (j) for which it is not able to obtain a valid
inner encoding (i.e., in respect to the expected inner BitCom).
As mentioned, for simplicity it is assumed that each output key directly reveals the
respective underlying bit, e.g., its least significant bit (ε(⋅)) (567567). (The assumption, which
is not essential, is simplifying by allowing PB to directly know for which bit value it should
generate an encoding and against which BitCom to verify its correctness.)
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Then, for each output wire index (i ∈ OB) and each evaluation instance (j ∈ JE), PB uses
a PRG procedure, seeded with the auxiliary seed (λ(auxi)


j ) and also with the obtained
output wire key ξj,i (tentative), to obtain a tentative inner encoding (“randomness”) vj,i
of the respective tentative output bit cj,i (568568). PB then verifies that the BitCom that can
thus be generated (569569) coincides with the respective inner BitCom ν′j,i,c computed in the
VerifyVerify stage (558558).
If this is the case, PB computes an outer encoding (uj,i, opening of the respective output
BitCom µj,i) (570570), by multiplying the obtained inner encoding (vj,i) with the respective
earlier received multiplier (βj,i,cj,i) (548548). Otherwise, if the tentative inner encoding is
not valid, then PB adds the challenge index j to the Ignore list, and ignores this index
henceforth (571571).


Remark B.3 (The Ignore list). The Ignore list corresponds to indices ignored with
respect to computations in the remainder of the procedure, but in practice the index may
have to be accounted in counter-measures put in place to avoid side channel attacks. For
example, a malicious PA must not be able to find whether or not there are indices which
were ignored, or otherwise such knowledge could enable a selective failure attack.


• Check for inconsistencies. For each output wire index, PB gathers all valid pairs of
bit and respective calculated encodings (572572), i.e., ignoring indices that may have been
selected for the Ignore list.
– Regular path: If for every output wire index there are no inconsistencies across


different GCs (i.e., if for each wire index all pairs are the same) (573573), then PB simply
accepts these bits (bi = cj,i) and respective bit encodings (µj,i = ubij,i) as correct (574574).


– Forge-and-lose path: If PA finds instead that for some output wire there is more
than one outer encoding (i.e., valid opening) for the respective BitCom, then PB


activates the forge-and-lose path (575575) to recover the final outputs. Within this path,
PB extracts the trapdoor tFLA associated with the intermediate BitCom scheme (BFLA)
devised for the forge-and-lose path in respect to the input BitComs of PA. Essentially,
this is obtained from a non-trivially-correlated pair of proper openings of one of the
output BitComs of PB (576576), which has been produced with a dual BitCom scheme
(BFLB). PB then uses the trapdoor to obtain the input bits of PA from the respective
intermediate forge-and-lose Com or BitComs (577577), which had been committed in the


Page 306 of 376







Ph.D. dissertation: The forge-and-lose technique and other contributions to S2PC-with-Coms (2016-Dec-27)


Produce initial BitComs of PAProduce initial BitComs of PA stage (491491, 492492, 493493–494494), then uses the original
Boolean Circuit (C) to compute the circuit output bits (578578) and finally chooses the
openings (µi) that encode the correct output bits, including in output wires of PB (579579)
and in the masked private output wires of PA (580580). (The encodings could also be
extracted with the newly obtained trapdoor, but in practical instantiations that would
require more exponentiations.)


In respect to the next steps, PB interacts in a way that prevents PA from learning via
which path the output of PB was obtained (regular (574574) vs. forge-and-lose (575575)). This
may have to imply controlling the time of execution, eventually inserting an artificial delay,
so that PB does not detect a time difference between the two paths.


Stage 7 — Transmit Circuit Output of PATransmit Circuit Output of PA.


• Private output bits of PA. PB sends to PA the masked bits obtained for private output
wires (i ∈ OAA) of PA (581581). Then, PB proves that these are indeed the bits that it
obtained in the garbled circuit evaluation. For simulatability under general instantiations,
this can be a “NIZKPoK” of openings corresponding to the transmitted (masked) circuit
output bits (582582), which in turn can be trivially reduced to a statistically sound proof
of committed zeros, upon a (pseudo) XOR-homomorphic BitCom adjustment performed
locally by each party. In rigor, this ZK sub-protocol does not (and does not intend to)
conform with the definition of proof of knowledge in the non-rewinding setting, in the
sense that it does not need to allow extraction of the committed bits from the “NIZKPoK”
transcript (indeed, the masked bits were simply sent in clear and PA already knows all
openings), but it is in a rewinding setting in order to ensure soundness. Thus, it may
alternatively be informally understood as a NIZKP that the revealed bits are the correct
ones, considering the underlying evaluation of garbled circuits.


Remark B.4 (Different proofs of knowledge). Depending on the type of instantia-
tion, the proof of knowledge (582582) could be allowed to actually reveal the learned openings,
namely considering that PA already knows the two openings per output wire — it only did
not yet know in a verifiable way which openings PB learned. For example, in a PKI setting
where the forge-and-lose Equiv-BitCom scheme (BFLB) has the same trapdoor as the
outer Ext-Com scheme (BA) defined by the PKI, and where PA had provided a NIZKPoK
of the trapdoor (enabling the simulator to extract it), the simulator (impersonating an
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honest PB playing against a possibly malicious PA) may be able to extract a second
opening of the forge-and-lose BitComs, once a first opening is known (e.g., learned in
the EvaluateEvaluate stage). In this case the proof of openings could correspond to PB simply
sending a CR-Hash of the learned openings (µi(bi)), without affecting simulatability. Since
PA knows all openings, it could directly recompute the hash and verify that it is correct.


• Common output bits. For simulatability under corruption of any party, it would be
enough for PB to send in clear the bits obtained in the wires corresponding to common
output wires. However, interestingly, the case of no corrupted party requires that the
bits are not visible to a passive eavesdropper (the real adversary), and so the bits need
to be encrypted between PB and PA. In practice PB can encrypt each such bit using
the Ext-BitCom scheme BFLA used by PA for the forge-and-lose technique. Specifically,
PB produces and sends one BitCom per common output bit (583583–584584), and then proves
that the known openings correspond to the same bits as the known openings of the
forge-and-lose output BitComs (BFLB) obtained from the garbled circuit evaluations (585585).
PA is able to use her trapdoor to open the BitComs and discover the bit values (586586).


Stage CF.3 — Coin-flip Permutations (Finish)Coin-flip Permutations (Finish). The last stage of the coin-flipping
of permutations takes place.


• Wire sets of PB. PB asks the ideal generalized coin-flipping functionality to send the
output to PA (587587). As a result, the ideal functionality FGMCF-1FGMCF-1 sends to PA one outer
Com permutation γIB for the set of input wires of PB, and another permutation γIB for
the set of output wires γOB’ (588588)


• Wire sets of PA. PB opens his previously committed contribution, which in the hybrid-
FMCom model corresponds to PB asking the functionality to open the commitment (589589)
and then the functionality sending the committed value to PA (590590). From the opened
outer-randomness permutations γ decided by PB for the wire sets of PA, both parties
locally compute the respective outer-com permutations γ′ (591591).


Stage 8 — Permute Outer ComsPermute Outer Coms.


• 8.1. Adjust outer private output wires of PB.
For each private output bit index i ∈ OBB of PB, PB computes the bit offset ei between the
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Stage 7. Transmit Circuit Output of PATransmit Circuit Output of PA.
7.1. Private output wires of PA.


PB → PA ∶ ei ∶ i ∈ OAA (see (578578)) (581581)
PB → PA ∶ NIZKPoKOpenKnownBits[BFLB]


(⟨(µ′i, ei) ∶ i ∈ OA⟩) (582582)


7.2. Common output wires of PA.


PB ∶ φi ←$ Gen$ForCom[BFLA](bi) ∶ i ∈ OA/OAA (583583)
PB → PA ∶ φ′i = BFLA(bi;φi) ∶ i ∈ OA/OAA (584584)
PB → PA ∶ NIZKPSameComBits[(BFLA,BFLB)]


(⟨(φ′i, µ′i) ∶ i ∈ OA/OAA⟩) (585585)
PA ∶ bi = ExtractBit[tFLA](φ′i) ∶ i ∈ OA/OAA (586586)


CF.3. Coin-flip Permutations (Finish)Coin-flip Permutations (Finish).


Wire sets of PB.
PB → FGMCF-1FGMCF-1 ∶ (OK, ctxcf) (see (470470,535535)) (587587)
FGMCF-1FGMCF-1 → PA ∶ (out-2, ctxcf, (γ′IB


, γ′OB
)) (588588)


Wire sets of PA.
PB → FMComFMCom ∶ (open, ctxcom1) (see (473473)) (589589)


FMComFMCom → PA ∶ (open, ctxcom1,(γIA , γOA’
)) (590590)


PA,PB ∶ γ′set = CB (0#(set);γ(B)
set ) ∶ set ∈ {IA,OA’} (591591)


Stage 8. Permute Outer ComsPermute Outer Coms.
8.1. Adjust outer private output wires of PB.


PB → PA ∶ ei = bi ⊕ di ∶ i ∈ OBB (see (457457)) (592592)
PB ∶ σi = (zBzB


ei)+∗+∗(ei)ςi ∶ i ∈ OBB (see (459459)) (593593)
PB ∶ σOBB = StringizeStringize (⟨σi ∶ i ∈ OBB⟩) (594594)
PA,PB ∶ σ′i = z′Bz′B


ei ∗′(ei) ς
′
i ∶ i ∈ OBB (see (459459)) (595595)


PA,PB ∶ σ′OBB
= StringizeStringize (⟨σ′i ∶ i ∈ OBB⟩) (596596)


PB → PA ∶ NIZKPSameComBits[(BB,BFLB)]
(⟨(σ′i, µ′i) ∶ i ∈ OBB⟩) (597597)


8.2. Adjust outer private output wires of PA.


PA ∶ bi = ei ⊕ di ∶ i ∈ OAA (see (581581) and (478478)) (598598)
PA ∶ σi = (zAzA


ei)+∗+∗(ei) ςi ∶ i ∈ OAA (see (479479)) (599599)
PA ∶ σOAA = StringizeStringize (⟨σi ∶ i ∈ OAA⟩) (600600)
PA,PB ∶ σ′i = z′Bz′B


ei ∗′(ei) ς′i ∶ i ∈ OAA (see (480480)) (601601)


PA,PB ∶ σ′OAA
= StringizeStringize (⟨σ′i ∶ i ∈ OAA⟩) (602602)


8.3. Integrate common output wires.


For p ∈ {A,B} ∶
PA,PB ∶ σOpp’ = StringizeStringize (⟨zpzpbi ∶ i ∈ Opp’⟩) (603603)


Pp ∶ σOp’ = σOpp ∣∣σOpp’ ∶ p ∈ {A,B} (604604)


PA,PB ∶ σ′Opp’ = StringizeStringize (⟨z′pz′pbi ∶ i ∈ Opp’⟩) (605605)


PA,PB ∶ σ′Op’ = σ
′
Opp ∣∣σ


′
Opp’ (606606)


8.4. Apply random permutations.


PB ∶ ρset = σset+∗+∗γset ∶ set ∈ {IB,OB’} (see (536536)) (607607)
PA ∶ ρset = σset+∗+∗γset ∶ set ∈ {IA,OA’} (see (590590)) (608608)
PA,PB ∶ ρ′set = σ′set ∗′ γ′set ∶ set ∈ {IA, IB,OA’,OB’} (609609)


Stage 9. Final OutputFinal Output.


PB ∶ yB ≡ ⟨bi ∶ i ∈ OB⟩ (610610)


PB ∶ resB ≡ (ρ′IA
, (ρIB , ρ


′
IB


), ρ′OA’
, (yB, ρOB’ , ρ


′
OB’


)) (611611)


PB → Z ∶ (s2pcwC-out-1, ctx, resB) (612612)
PA ∶ yA ≡ ⟨di ⊕ ei ∶ i ∈ OAA⟩ ∣∣ ⟨bi ∶ i ∈ OAA’⟩ (613613)


PA ∶ resA ≡ ((ρIA , ρ
′
IA


), ρ′IB
, (yA, ρOA’ , ρ


′
OA’


), ρ′OB’
) (614614)


PA → Z ∶ (s2pcwC-out-2, ctx, resA) (615615)


Figure B.11: Protocol S2PC-with-Coms (stages 7, CF.3, 8 and 9). (See preceding in
Figure B.10B.10.) Legend in §NotationNotation.


previously computed random bits di and the actual obtained circuit bit bi, and sends it to
PA (592592). Then, PB uses the mutually agreed auxiliary fixed encoding zB (of the BitCom
scheme (BB) of PB) (353353), to adjust the initial outer-randomness (ςi) of her output bits
into randomness (σi) that effectively correspond to her output circuit bits (bi) (593593). This
is done as follows: if the offset bit is 0, then no change is required; if the offset bit is 1,
then the adjustment corresponds to dividing the fixed encoding (zB) by the inverse of the
initial outer encoding (ςi) (as in a pseudo-homomorphism). PB stringizesstringizes the result, to
obtain the initial bit-string outer-com σOBB of her private output wires (594594).
Both parties (i.e., including PA) locally make a respective adjustment in the BitCom
space, leading the initial outer BitComs (ς ′i) of random bits (di) of PB into BitComs of the
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(supposed) output obtain by PB, also based on a XOR pseudo homomorphismpseudo homomorphism (595595): if
the offset bit (ei) is 0, then no change is required; if the offset bit is 1, then the adjustment
corresponds to dividing the fixed BitCom of 1 (z′B) by the inverse of the initial outer
BitCom (ς ′i). Both parties also stringizestringize the result, to obtain a single bit-string outer-Com
of the private output bits of PB (596596).
If PB acted honestly, then the BitComs (σ′i) resulting from the adjustment are supposedly
committing to the same bits (bi) that PB obtained from the S2PC evaluation. To ensure
this, PB sends to PA a respective proof, in the form of a ZKP of same committed bits
(NIZKPSameComBits) between the BitComs µ′i associated with the forge-and-lose technique
(BFLB) (of which PB has learned one opening) and the newly permuted outer BitComs
(σ′i) of PB (597597) (this can also be done directly from the respective stringized BitComs).


• 8.2. Adjust outer private output wires of PA. Based on the offset bits ei received
from PB and proven correct, and the private bit-masks previously decided, PA computes
her private output bits bi (598598). Then, also based on the offset bits ei, PA adjusts the
randomness ςi associated with her private output wires (which were committing to random
bit-masks), into initial outer-randomnesses σi for committing to her actual private output
bits (599599). Once again, this is achieved with the help of the auxiliary group element zA
associated with her BitCom scheme. The vector of BitComs is then stringized into a
single outer-randomness element σOAA (600600). Correspondingly, both parties make the
same adjustments at the level of BitComs, i.e., to produce an initial outer-BitCom of the
private output bit of PA (601601), and stringize it into an initial outer-Com for the set of
private output wire of PA (602602).


• 8.3. Integrate common output wires. Both parties stringize also an initial randomness
σOpp’ associated with the common output wires of each party — it is worth recalling here
that for common output wires there are two independent BitComs produced, each party
leaning an opening of each. Since each party known the value of the common output
bits, the initial randomnesses are defined locally, based on the auxiliary group element
zp of each BitCom scheme (603603). Then, each party is able to concatenate the initial
outer-randomness of her private output wires set, with the randomness just computed of
the common output wires set and associated with the respective BitCom scheme (604604).
The parties can then repeat the procedure at the level of BitComs: both parties locally
produce and stringize initial outer-BitComs for the common output wires, for each BitCom
scheme (605605); both parties concatenate, for each type of wire (input and output) of each


Page 310 of 376







Ph.D. dissertation: The forge-and-lose technique and other contributions to S2PC-with-Coms (2016-Dec-27)


party Pp, the initial outer-Com σ′Opp of private output wires of the party, with the initial
outer-Com σ′Op’


of the common output wires of the party, thus obtaining a single initial
outer-Com σ′Op’


of (all) the output wires of each party (606606).
• 8.4. Apply random BitCom permutations. Finally, each party locally applies the


previously decided random outer-randomness permutations (γset) directly to the initial
known (i.e., possibly modified) outer randomnesses (σset) (the openings related with
their own circuit input and circuit output bits). Specifically: PA applies it to the initial
(outer) randomnesses of her own input and output bits (608608); PB applies it to the initial
(outer) randomnesses of his input and output bits (607607), and to the modified initial outer
encodings of his output bits. Al the level of outer-Coms (instead of outer-randomnesses),
each party also applies the respective permutations (γ′set) associated to the respective
initial (including modified) input and output outer-Coms (σ′set) of both parties (609609). The
resulting permuted values (σset and σ′set) are dubbed final outer-randomnesses and final
outer-Coms, respectively.


Stage 9 — Final OutputFinal Output. Each party prepares her final outputs as follows. PB parses
his output bits into a respective bit-string yB (610610), and then computes the expected tuple of
needed final outer-randomnesses and outer-Coms, namely including the outer-Coms ρ′set of
the sets of input and output wires of both parties and the outer-randomnesses ρset of his own
input and output wires, and also including his final output wires (611611). This tuple is what
an honest PB outputs (in a contextualized manner) to the environment (612612).


PA also parses her output bits into a bit-string yA (613613), and then prepares a corresponding
tuple for her final output, namely including the final outer-Coms ρ′set for the sets of input
and output bits of both parties, and the final outer-randomnesses for the sets of her input
and output bits (614614), and also including her final circuit output bit-string yA. Finally, PA


outputs the tuple to the environment (615615).


B.3 Simulators for the S2PC-with-Coms protocol


This section describes simulators to prove security of the S2PC-with-Coms protocol. §B.3.1B.3.1
shows the simulator for the case of a malicious P∗


A (the constructor of garbled circuits). §B.3.2B.3.2
gives a modular proof of soundness in case of malicious P∗


A, to complete the argument of
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ideal/real indistinguishability. §B.3.3B.3.3 shows the simulator for the case of a malicious P∗
B (the


garbled circuit evaluator) and a respective analysis.


In the following subsections, the description considers the simplification (possible in the
static model with up to one corrupted party) whereby, in each world, the adversary and the
corrupted party are mentioned as the same entity. Whenever the simulator (S ≡ P̂∗


p) receives
an input from the environment (Z) in the ideal world, it relays it to the real adversary
(A ≡ P∗


p) in the simulated execution. Whenever the adversary in the simulated execution
outputs something to its environment, S relays it to Z.


B.3.1 Simulator for the case of malicious P∗
A


The simulator S ≡ SA∗ , with access to a black-box malicious P∗
A, simulates the beginning of


a real protocol execution. SA∗ [PB] impersonates a real honest PB while interacting in the
simulated execution with the malicious P∗


A. As the simulation proceeds, if P∗
A induces the


simulated execution to abort (i.e., takes actions that would make an honest PB abort), then
SA


∗
[P̂A] (in the role of ideal P̂∗


A in the ideal world) sends abort to the TTP, thus leading
the ideal P̂B to also receive (and then output) abort (384384–415415), and then SA∗


[P̂A] outputs
in the ideal world whatever P∗


A outputs in the simulated execution. It is worth noticing that
after PB is able to find his output in a real execution it will no longer abort in the real world.
Similarly, an abort message sent from SA∗


[P̂A] to the TTP after P̂B has already received
the output from the TTP will no longer make the ideal P̂B abort, because it has already
outputted to Z.


1. Impersonate honest PB with arbitrary input.
• Commit arbitrary input bits of PB. In the Outer BitComs of input bits of PBOuter BitComs of input bits of PB


stage, SA∗ [PB] simulates an honest PB with a circuit input composed of all zeros, i.e., a
zero for each input bit of PB (454454–456456). Given the hiding property of BitComs, the
view of P∗


A is indistinguishable from the case where PB would commit any other input.
• Other BitComs as honest PB. Then, SA


∗ [PB] continues as an honest PB, producing
outer Coms of random output offset bits of PB and proving them correct (457457–460460),
eventually producing (i.e., if-need-be) new intermediate BitComs for the OTs and a
respective ZKP of same commited bits (461461–464464).


• ZKPoK of openings. After stringizing the Outer BitComs of PB, i.e., parsing the
outer BitComs into two BitSringComs (one for the set of input wires and the other
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for the set of output wires) (467467), SA∗ [PB] gives a ZKPoK of the openings of the outer
Coms (468468). In a PKI setting, where the ZKPoK of openings may be facilitated by
a ZKPoK of the trapdoor, S uses his power to give a fake ZKPoK of trapdoor (e.g.,
by equivocating the opening of a RSC Equiv-Com used in a NPRO-transformation to
define the proof challenge). If the ZKPoK of openings does not involve the trapdoor,
e.g., in a CRS setting, then S gives an honest ZKPoK of the openings (that it indeed
knows) of the outer Coms σ′set.


• Initiate coin-flip of permutations. SA∗ [PB] initiates the coin-flipping stage as an
honest PB would, committing to outer-randomness permutations γ for the wire sets of PA


(472472–474474), and initiating the generalized coin-flipping of outer-Coms of 0 (permutations)
for the wire sets of PB (470470–471471). In the considered (FGMCF-1FGMCF-1,FMComFMCom)-hybrid model,
SA


∗ [PB] will later be able to equivocate any of these permutations.


2. Extract circuit input and randomness of P∗
A. The simulated execution then enters


the stage of P∗
A committing to her bits (private input bits and random bit-masks for her


future output) (475475–489489). From the respective NIZKPoK of openings (490490), S extracts
the private circuit input bits and the random output bit-masks of PA, as well as the
randomnesses (σIA , ςOAA) used to commit them. For IFC a single NIZKPoK of trapdoor
is enough, as it enables computing square-roots. For DLC the extraction is enabled via
NIZKPoKs of ElGamal opening.


3. Continue simulation till receiving all elements from P∗
A. SA


∗ [PB] continues the
simulation as an honest PB. It is assumed that the cut-and-choose partition is selected
in a way that prevents P∗


A from guessing the exact partition before producing the pre-
viously committed elements (see §3.1.43.1.4 and §B.3.2B.3.2). After the decision and validation
of the cut-and-choose partition (530530–534534), the simulation enters the next stage of the
coin-flipping. (Coin-flip Permutations (Continue)Coin-flip Permutations (Continue)), where SA∗ [PB] receives outer-
randomness permutations γ for the set of input wires and the set of output wires of PB


(536536). SA∗ [PB] also receives the respective responses from P∗
A, including RSC seeds for


check instances (538538), other elements (e.g., multipliers) for evaluation instances (539539–548548),
and the opening of the global hash from the RSC Equiv-Com Λ (549549). As in a regular
protocol execution, S verifies the correctness of all the responses (550550–560560), which includes
verifying the multipliers and the global hash.


4. Interact with the TTP. If some verification fails during or before the VerifyVerify stage, then
SA


∗
[P̂A] emulates an abort in the ideal world, and outputs in the ideal world whatever
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P∗
A outputs in the simulated execution. The abort in the ideal world leads the ideal


functionality FS2PCwCFS2PCwC to send an abort message to the ideal PB (415415), which in turn leads
PB to output an abort to Z.
Otherwise, if all verifications are successful, an honest PB would have all the elements


needed to compute his own output of the protocol. However, S does not perform the
evaluation stage in the simulated execution. Instead, it pauses the simulation and assumes
its role in the ideal world, as the ideal P̂A, and sends to the ideal functionality FS2PCwCFS2PCwC


the initial message of the protocol in the ideal world, containing the input extracted from
P∗
A (392392).
Once FS2PCwCFS2PCwC receives from the ideal P̂B the respective input (392392), and once the public


parameters of the Com schemes of both parties are known, the functionality makes the
needed local computations (396396- 402402), sends the output initially to the ideal honest P̂B


(404404) and then, after receiving an OK message from P̂B (383383), FS2PCwCFS2PCwC sends the final
output to the simulator SA∗


[P̂A] (409409), which includes the circuit output yA of P̂A, the
commitments (xA, xB, yA, yB) ≡ (ρ′IA


, ρ′IB
, ρ′OA’


, ρ′OB’
) (402402) of inputs and output of both


parties, and the randomnesses (xA, yA) ≡ (ρIA , ρOA’) used to commit the input and output
of P̂A.


5. Enforce the circuit output of PA computed by the TTP. SA∗ [PB] resumes the
simulation in order to induce P∗


A to obtain the output decided by FS2PCwCFS2PCwC, as follows.
SA


∗ [PB] executes the EvaluateEvaluate stage (561561–580580), evaluating the garbled circuits until
obtaining all circuit outputs and one valid opening per forge-and-lose outer BitCom.
Assuming the cut-and-choose partition has adequate parameters (§3.1.43.1.4), there is a
negligible probability that a malicious P∗


A could have prevented SA∗ [PB] from a successful
evaluation (i.e., conditioned to the previous validation in the VerifyVerify stage). Thus,
hereafter the analysis assumes a successful evaluation.
SA


∗ [PB] has previously extracted the bit-masks di that P∗
A defined for the private output


wires of PA (see (478478,482482,490490)), so it is able to compute the respective offset bits ei that
are required to induce the private circuit output bits bi of PA as decided by FS2PCwCFS2PCwC (613613).
SA


∗ [PB] sends these offset bits to P∗
A (581581). For the common output wires it commits


to the bits informed by the ideal functionality (583583–584584). Then, SA∗ [PB] sends to PA an
appropriate proof that these are the correct bits (582582).


6. Enforce the final outer-Coms and outer-randomnesses computed by the TTP


• Summary of relevant values already held by S. In regard to the outer-Coms
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and outer-randomnesses, SA∗ has obtained the following relevant sets of elements: (i)
from the ideal functionality FS2PCwCFS2PCwC, it received the final outer-Coms ρ′ for wires of
PB and final outer-randomnesses ρ for wires of PA (409409), which need to be induced
to the final output that P∗


A would at this point accept if it is honest; (ii) from the
malicious P∗


A, it received the initial outer Coms σ of input bits of PA (476476), the outer
coms ς of random bit-masks for the output bits of PA (479479), and has extracted the
respective openings from the respective NIZKPoK (490490); (iii) from the ideal generalized
coin-flipping FGMCF-1FGMCF-1, it received the outer-randomness permutations γ for the wires
sets of PB (536536); (iv) from the initial commitments of the impersonated honest PB, it
already sent to PA the initial outer-Coms σ′ of input bits of PB (455455), as well as of
output offset masks of output bits of PB (458458), and about which it knows the respective
randomnesses σ;


• Compute initial outer-Coms and initial outer-randomnesses for output
wires. SA∗ [PB] looks ahead in the protocol structure (to the Permute Outer ComsPermute Outer Coms
stage), and locally makes the needed adjustments to obtain the “initial” outer-Com
(σ′OBB


) of the set of private output wires of PB (595595- 596596), the “initial” outer-
randomnesses (σOAA) of private output wires of PA (599599–600600), and the initial outer-
randomness (σOpp’) and outer-Coms (σ′Opp’


) of common output wires of both parties
(i.e., one version for each party p ∈ {A,B}) (603603,605605).


• Determine the needed permutations. Based on the mentioned values, and consid-
ering the group structure upon which the outer-Coms are supported, SA∗ [PB] computes
what are the necessary outer-Com permutations (γ′IB


, γ′OB’
) of wire sets of PB that


lead the respective initial outer-Coms (σ′IB
, σ′OB’


) into the respective final outer-Coms
(σ′IB


, σ′OB’
), and what are the needed outer-randomness permutations (γIA , γOA’) of


wire sets of PA that lead the respective initial outer randomnesses (σIA , σOA’) into the
respective final outer randomnesses (ρIA , ρOAline) of PA.


• Equivocate the coin-flipping result. SA∗ [PB] uses its equivocation power to equivo-
cate the opening of the generalized coin-flipping and the Ext-and-Equiv Com scheme to
the needed values. In the (FGMCF-1FGMCF-1,FMComFMCom)-hybrid model this equivocation is achieved
by impersonating the respective ideal functionalities and simply opening the intended
values to P∗


A (588588,590590).
• Enforce needed adjustments to initial outer-Coms of output wires of PB.
SA


∗ [PB] then sends the remaining values expected by P∗
A, namely the offset bits
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associated with output wires of PB (592592) and a respective ZKP of correctness with
respect to the evaluated bits and the initially committed offsets (597597).


• Final output. P∗
A has now all the permutations (588588–591591) needed to permute the


initial outer-randomnesses σ (600600, 603603, 604604) and initial outer-Coms σ′ (602602, 605605, 606606)
into the respective final outer-randomnesses ρ (606606) and final outer-coms ρ′ (608608), 609609,
thus obtaining the output proposed by the ideal functionality FS2PCwC (613613–614614). S
outputs in the ideal world whatever P∗


A outputs in the real world 615615, be it the correct
output or anything else, including abort.


B.3.1.1 Analysis of the simulation


The indistinguishability of S2PC-with-Coms between the two worlds (ideal and real) follows
directly from the simulatability of the underlying coin-flipping protocol, the hiding of BitComs
of PB and the ability to produce fake NIZKPs and NIZKPoKs.


A high level protocol structure. The execution is analyzed in three macro phases:


1. In the first phase, PB sends commitments to PA, along with NIZKPs and NIZKPoKs.
2. In the second phase, PA commits her input, and proceeds with the cut-and-choose approach,


until the point where it sends respective responses to the cut-and-choose partition challenge,
as well as her contribution to the coin-flipping of outer-randomness permutations for wire
sets of PB. Except for an eventual influence in the soundness error probability, it is
irrelevant whether the decision of the cut-and-choose partition involves interaction (i.e., if
decided by PB between the CommitCommit and the RespondRespond stages) or non-interactively (e.g.,
by PA based on a NPRO applied to the RSC Equiv-Com, of by PB and hidden by initial
OTs PB).


3. In the third phase, PB determines his output of the execution and sends to PA the elements
that allow PA to compute her own output of the protocol execution


Analysis in a hybrid world. The simulation is initially analyzed assuming that all sub-
protocols and primitives are replaced by respective ideal functionalities. Each NIZKP and
NIZKPoK sent by SA∗ [PB] is replaced by a message from a trustworthy ideal functionality
simply asserting correctness of the assertion/knowledge being proven. The Ext-and-Equiv
commitment is replaced by a respective ideal commitment functionality FMComFMCom.
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In the first phase, S acts as an honest PB with an arbitrary circuit input. The only part
where it may deviate is if the chosen NZKPoK involves (for efficiency reasons) a ZKPoK of
trapdoor, which PB would possess but the S does not have. Yet, in a hybrid instantiation
with an ideal ZKPoK functionality the view by P∗


A is equal to the case where an honest PB


would use the same input. Also, the use of an arbitrary input (e.g., all zeros) is in the view
of P∗


A indistinguishable from any other input, because of the hiding property of the BitComs.
Also, since the final output decided by the ideal functionality FS2PCwC will instead be based
on the actual input of the ideal P̂B, the arbitrary input simulated by SA∗ [PB] is irrelevant.


In the second macro phase, a malicious P∗
A may adaptively decide her circuit input


depending on the actual values it received, e.g., the initial outer-Coms produced by SA∗ [PB].
Regardless, the circuit input xA that the malicious P∗


A decides to use (i.e., unless it decides
to abort or lead the honest PB to abort) is the one that the simulator will extract and use
in the ideal world. In other words, even in the ideal world a malicious party is already able
to be malicious in respect to her input, so this action is indistinguishable between the two
worlds. Since the initial outer-Coms are not part of an honest output, namely will not be
outputted by a real PB, they also cannot be convincingly used by a malicious P∗


A to induce
indistinguishability, i.e., a real malicious P∗


A cannot convince a party external to the protocol
that the initial outer-Coms of PB were actually produced by PB (it may as well have been
SA


∗
[P̂A] to simulate it).


Besides breaking the hiding assumption of the outer BitComs, which would imply breaking
a cryptographic assumption, the only other avenue for attempting a distinguishable execution
is inducing PB in the real world to fail to obtain a correct output. This would happen if PB


is not able to decide a final circuit output, or if it is lead to decide an incorrect output, e.g.,
by using inputs different from those that have been committed by outer-Coms. However, this
cannot happen, except with at most a negligible probability dependent on the cut-and-choose
configuration. This aspect of soundness against a malicious P∗


A is proven separately in §B.3.2B.3.2.


The intuition is as follows. Given the forge-and-lose technique, P∗
A would accept an


incorrect output only if the output of all evaluation circuits is identically incorrect. However,
since incorrect circuits or incorrect input bits would be caught in any check challenge, P∗


A


would have to guess in advance the C&C partition. If PA would correctly build all circuits,
but would use different inputs across several evaluation circuits, then either the output would
be different across several garbled circuits and thus enable PB to use the forge-and-lose path,
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or the output would nonetheless be the same everywhere (e.g., possibly by virtue of a specific
circuit and specific inputs) and in that case the output would be correct.


The respective negligible probability for guessing the C&C partition, and respective
needed numbers of garbled circuits are summarized in Table 3.13.1 and Table 3.23.2.


§B.3.2B.3.2 proves that, if P∗
A is not able to guess in advance the C&C partition, then with


overwhelming probability one of the following three occurs: some inconsistency is detected in
the VerifyVerify stage; or inconsistencies in the EvaluateEvaluate stage will lead PB to obtain a correct
final output via the forge-and-lose path, or no inconsistency is detected and the computation
leads to a correct final output.


The third macro phase, which in terms of interaction only involves a communication from
PB to PA, is, in the view of P∗


A, also indistinguishable between the real and the simulated
execution. Specifically, the actions that in the ideal world are different from those of an honest
PB in the real world are the equivocation of the Ext-and-Equiv com used in the coin-flipping,
the faking of the NIZKPoK revealed in the coin-flipping, and the faking of NIZKPs. All of
these are indistinguishable when using the respective ideal functionalities, as well as when
using concrete simulatable instantiations.


B.3.2 Soundness against P∗
A


Soundness requires that a malicious P∗
A cannot, except with negligible probability, make an


honest PB accept an incorrect output. This means that PB must only accept a circuit output
that would be computed by a correct Boolean circuit, that the circuit inputs used therein are
the inputs committed in the outer Coms of both parties, and that the outer-Coms of PA are
indeed openable by PA. The ZKPoK of openings of outer Coms of bits of PA (490490) already
ensures that PB only accepts those Coms if PA knows respective openings. Thus, it remains
to show that the committed bits are indeed the ones used in the garbled circuit evaluation.
Soundness also requires that the probability of PB obtaining his (correct) circuit output vs.
aborting without circuit output be independent (except variations up to a negligible amount)
of his private circuit input, and consequently also of any intermediate or output bit of the
computation. This follows from the hiding property of the commitments of PB, as well as
from the statistical nature of the cut-and-choose that with overwhelming probability renders
ineffective any selective failure attack by PA.
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B.3.2.1 Proof sketch


In the S2PC-with-Coms protocol, all inconsistencies found in the VerifyVerify stage are com-
plainable, even if referring to evaluation indices. Conversely, all inconsistencies found in
the EvaluateEvaluate stage are, for privacy-reasons (e.g., to resist a selective failure attack), non-
complainable. This complainability notion is expressed from the point of view of whether
of not PB is allowed to complain without any security property being broken. Since the
protocol does not specify a concrete complaining action, besides aborting, a non-complainable
inconsistency is one whose detection should not lead PB to abort, lest it breaks some security
property. Thus, soundness is broken not only if PB is lead to output an incorrect circuit
output, but also when it is lead to abort due to a non-complainable inconsistency, i.e., when
in fact it should have not aborted. More concretely, if the VerifyVerify stage is successful, then
a subsequent abort by PB could endanger the privacy of PB. For example, since PB is the
first to learn the output, an inability for an honest PB to send a proper final message to PA


could be understood as PA learning that PB found an inconsistency and failed to complete
the circuit evaluation.


Types of revealed elements. The potential for breaking soundness is associated with
the correctness and consistency of garbled circuits and connectors, which are committed
and partially revealed for check or evaluation, differently for each type of challenge. Before
elaborating the proof of soundness, it is useful to recall the three types revealed in the
RespondRespond stage of the protocol, in association with the RSC technique and the cut-and-
choose (see §3.1.23.1.2 and Table 3.53.5):


• Type-C — Base-commitment elements. The RSC commitment Λ commits directly
to the garbled circuits (which commit the Boolean circuit), to the inner Coms ν′ (which
are a one-way function of the respective randomnesses ν), and to the commitments k of
the input keys k of PA. These are the elements that would be revealed in the CommitCommit
stage if the RSC technique was not in place.


• Type-RC — Reveal-for-check elements. The reveal for check of connectors is
achieved by simply revealing the seed λj of each check instance (538538). Besides the mentioned
Type-C elements, PB is able to derivable from the seed the following elements: for each
input wire of PA, the opening (k, k) of the two wire keys (506506–505505), the permutation bit π
(501501) and the randomness α selected for a corresponding commitment of the permutation
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bit (502502); for each input and output wire of PB, an inner randomness ν (510510, 514514)
• Type-RE — Reveal-for-evaluation elements. The RSC seed is not revealed for


evaluation challenges. Instead of the seed, PB directly receives some Type-C and the
Type-RE elements. The Type-C elements are those described abovedescribed above, including the garbled
circuits, the inner Coms ν′ for all types of wires, and the commitments of wire keys of PA.
However, only one out of two wire key commitments needs to be revealed for each input
wire of PA (545545), because the other one will be derivable from some Type-RE elements.
The type RE elements are: the multipliers β for the input and output wires of PB (546546,
548548); and, for each input wire of PA, one inner randomness ν of the permuted bit (i.e., of
the position of the permuted key commitment that corresponds to the input bit of PA)
(541541–543543) and one circuit input key opening (k, k) (544544).


Sketch. The proof of soundness comprehends three steps:


1. §B.3.2.2B.3.2.2 shows that if Type-C and Type-RC elements are incorrect (e.g., a GC that encodes
an incorrect Boolean circuit) for some challenge index j, then the respective instance
cannot withstand the VerifyVerify stage (i.e., the incorrectness will be detected by PB while
still allowing a safe abort), unless if PA can break some cryptographic assumption.


2. §B.3.2.3B.3.2.3 shows that if Type-C elements are correct (and consequently also the Type-RC
elements known by PA), then P∗


A is not able to produce non-complainable bad Type-RE
elements, except if it could break some cryptographic assumption. In other words, if P∗


A


acted honestly in the CommitCommit stage for a certain challenge index j (i.e., if it used Type-C
and Type-RC elements properly generated from a seed), then any incorrect Type-RE
element is detectable by PB and safely complainable (based on the respective verification
procedure also carried out for evaluation challenges).


3. Finally, §B.3.2.4B.3.2.4 notices that PB is able to determine a correct output if for at least
one challenge index j the respective Type-C and Type-RE elements are correct. This
means that soundness can be broken only if P∗


A produces correct Type-C and Type-RC
elements for all check indices j ∈ JV , and incorrect Type-C and/or Type-RC elements for
all remaining evaluation indices j ∈ JE. §3.1.43.1.4 shows that for several C&C partitioning
methods the probability of this event is negligible in the number s of challenges.
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B.3.2.2 If Type-C and/or Type-RC elements are incorrect.


Assume a successful verification of the RSC global hash Λ (560560) in the VerifyVerify stage. Then, by
correctness of the PRG procedures (e.g., PRGenGC (348348), PRGenInKey (349349), PRGen$ForCom,
PRGenBitString (351351)), including the pseudo-random generation of garbled circuits (which uses
as input the Boolean circuit specification), the Type-CType-C and Type-RCType-RC elements associated
with check instances (j ∈ JV ), and derived by PB from the RSC seeds λj revealed by PA, are
correct and do indeed contribute to a valid pre-image of the global hash Λ that PA was able
to open from an Equiv-Com Λ. By reduction to absurd, assume that, when composing the
pre-image of the global hash, PA had used some incorrect Type-C element (e.g., an incorrect
garbled circuit) that it would “hope” to be selected for evaluation, but which was instead
selected for check. If the VerifyVerify stage were nonetheless successful (i.e., without PB noticing
any inconsistency), then it means that the incorrect elements would also contribute to a
valid pre-image of the committed global hash. Then, this would mean that PA was able to
compute two different pre-images of the same global hash, or two different hashes with the
same RSC commitment. Therefor, assuming collision resistance of the hash and binding
of the RSC Equiv-Com (binding to a collision-resistant hash implies binding to the known
pre-image of the hash), it follows that any incorrect Type-C or Type-RC elements used in
the pre-image known by PA lead PB to a detect a complainable consistency, i.e., a global
hash different from the one opened by PA.


B.3.2.3 If Type-C and Type-RC elements are correct.


If an index is selected for evaluation, then PA needs to send, in the RespondRespond stage, the
Type-C and Type-RE elements. Even for evaluation challenges, PB also performs some
verifications, associated with the Type-RE elements. The following paragraphs show that if
the Type-C and Type-RC elements for a particular instance would be validated by a check
instance (i.e., if they were correct — §B.3.2.2B.3.2.2), then P∗


A is not capable of forging a respective
response for an evaluation challenge, i.e., it is not able to produce incorrect Type-RE elements
that would not lead to a valid pre-image of the global hash. The above consideration does
not claim anything about the case where the Type-C and/or Type-RC elements would be
incorrect (for an index selected for evaluation). In fact, if Type-C or Type-RC elements
associated with an evaluation challenge are incorrect (e.g., an incorrect GC), then it is possible
to have incorrect Type-RE elements pass by undetected (i.e., forgeries). The properties of
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forgeries are now examined:


• Input wires of PA (i ∈ IA ∪ IA’ — see Illustration 3.43.4). For evaluation indices
(j ∈ JE), PA reveals: the permuted bit (cj,i) (541541–542542); the inner-randomness νj,i (543543)
used to produce the inner-commitment ν′j,i used in the global hash pre-image; the input
wire key k[bi]


j,i and the randomness k[bi]
j,i (544544) used to produce the key commitment k[bi]


j,i in
the adequate position < cj,i > of the permuted pair of commitments that was also used in
the global hash pre-image; and the complementary commitment k[1⊕bi]


j,i (545545).
– Forged permuted bit. Since it is assumed that the inner Com ν′j,i (a Type-C element)


is correct, a forgery related with a permuted bit cj,i would imply PA revealing an inner
randomness νj,i corresponding to the opening of a different permuted bit (i.e., 1 − cj,i,
for some wire index i). However, this would mean breaking the binding property of
the Com scheme (BConA). Hereafter it is assumed that PA reveals the correct inner
randomness ν(c)


j,i .
– Forged circuit input key. By assumption of correct Type-C elements, the pair of


key-commitments (k
<0>
j,i , k


<1>
j,i ) commits to two correct keys. Further assuming that the


revealed permuted bit (cj,i) is correct, then the only remaining possibility of forgery
would be for PA to open a different (i.e., to equivocate an incorrect) key ξ<c>j,i in the
correct position cj,i, i.e., to reveal a key-randomness pair (ξj,i, xij,i) that verifies well
against the key-commitment (552552), but which would be different from the one derived
from the RSC seed. However, this would mean breaking the binding property of the
intermediate commitment scheme (BConA). (More precisely, given the RSC technique,
a forgery could also be from an opening whose derivable key commitment would lead to
a correct verification of the global hash, but again this would mean breaking collision
resistance of the CR-Hash or binding of the RSC Equiv-Com.)


Thus, if the Type-C and Type-RC elements would withstand a check challenge, P∗
A is


bound to respond with correct Type-RE elements for the input wires of PA, or else be
detected in a complainable condition.


• Input wires of PB (i ∈ IB). For each evaluation index (j ∈ JE):
– If OT if of type 2-out-of-1 (see Illustration 3.5a3.5a). In the RespondRespond stage, PA


reveals each possible bit value (c ∈ {0,1}), an independent multiplier β(0)
j,i,c (randomness


for committing 0) (546546) that leads the intermediate randomness (µ(c)
i ) of the bit (of which


PB knows one and PA knows both) into the respective independent inner randomness
ν
(c)
j,i,c (a proper square-root of the respective inner BitCom) of the bit. For each possible
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bit value c ∈ {0,1} in each input wire i ∈ IB, there is only one multiplier (βj,i,c) that is
simultaneously a randomness for committing 0 and a proper opening of the multipler
BitCom β′j,i,c (554554). PB verifies correctness homomorphically (which could be done even
if it did not know any intermediate randomness µ(c)


j,i ), by calculating the two multiplier
BitComs β′j,i,c of 0 (554554), then multiplying each of them by the intermediate BitCom
µ′j,i (555555), and checking that the resulting pair of inner BitComs ν′j,i contributes to a
correct pre-image of the global hash. Thus, P∗


A cannot not produce forged multipliers
for input wires of PB. Furthermore, assuming that the Type-C elements are all correct,
if follows that the revealed multipliers allow PB to obtain one correct input key per
input wire of PB.


– If OT if of type 1-out-of-2 (see Illustration 3.5b3.5b). In the RespondRespond stage, PA


reveals to PB an inner Com ν′j,i (547547) that was obtained by homomorphically encrypting
(probabilistically), on top of the intermediate OT BitCom µ′i of the input bit of PB, a
linear combination of two random multipliers (βj,i,0, βj,i,1) (512512- 513513). This inner Com
is the value that is used directly as a contribution to the pre-image of the global hash
(556556), so it does not involve any further verification by PB. Since it is being assumed
here that the Type-C elements (including the inner Coms) are correct, it follows that an
honest PB, who knows the decryption key (a trapdoor of the intermediate OT BitCom
scheme BOT) and has previously provided (a verifiably or proven) correct commitment
of a bit (i.e., 0 or 1), is able to decrypt the image f(βj,i,bi), under a particular one-way
function f , of the multiplier corresponding to the committed input bit bi of PB.


• Output wires of PB (i ∈OB — see Illustration 3.63.6).
For each evaluation index j ∈ JE, the garbled circuit is by assumption correct; also, as
discussed above, the circuit input keys kj,i are assumed to be correct. Thus, PB is able
to evaluate the garbled circuit to obtain one and only one correct key k[bi]


j,i per output
wire i ∈ OB (565565). Assuming (see §3.3.43.3.4) that each output wire key reveals the respective
underlying bit c, the output wire key is then transformed via a (also using the extra
auxiliary seed λ


(auxi)
j ) into a single inner randomness νj,i,c (568568), which is verified as


being a proper opening of the respective inner BitCom ν′j,i,c (569569) (also assumed to be
correct). Thus, the only possible forgery would be for P∗


A to reveal an incorrect multiplier
in the RespondRespond stage. However, similarly to the case of input wires of PB, the multiplier
(randomness βj,i,c for committing 0 (554554)) can be verified homomorphically, by checking the
relation between the respective BitCom β′j,i,c, the inner BitCom νj,i,c and the intermediate
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BitCom µ′i previously proposed by P∗
A(555555), even without PB knowing the respective inner


encodings of the output wire. Furthermore, since the BitCom scheme is assumed to only
have one possible valid randomness per committed bit (e.g., in case of Blum BitComs the
square-roots have to be properproper), it follows that there is no proper forgery.


B.3.2.4 Decision of final output.


Above, it was shown that (i) incorrect Type-C and/or Type-RC elements are detected as
incorrect if they are selected for check; and (ii) that correct Type-C and Type-RC elements
selected for evaluation either lead to a correct output (if the Type-RE elements are correct)
or allow detection of incorrect (and complainable) responses. Thus, to lead PB into accepting
an incorrect output, P∗


A needs to produce incorrect Type-C and Type-RC elements, and
be lucky that none becomes associated with a check challenge. Furthermore, in order for
the bad instances selected for evaluation to be validated by the reveal for evaluation mode,
they need to lead PB to find one valid randomness of the forge-and-lose output BitCom of
each output bit. However, by combining a forged (i.e., undetected and incorrect) output
with a correct output, PB can obtain the trapdoor of P∗


A (a pair of different openings to the
same forge-and-lose BitCom of an output wire; e.g., in IFC a pair of non-trivially correlated
square-roots of the same square, or in DLC a pair of different representations of the same
Pedersen BitCom), and thus activate the forge-and-lose evaluation path to obtain a correct
final output. Thus, the only way that PA has to lead PB to accept an incorrect output or to
abort in the EvaluateEvaluate stage, after a successful VerifyVerify stage, is to guess in advance exactly
what indices will be selected for evaluation and then build incorrect elements for all these
and only for these indices. As shown in §3.1.43.1.4, there is a negligible probability of such guess
being correct, for practical C&C partition parameters.


B.3.3 Simulator for the case of malicious P∗
B


The simulator S ≡ SB∗ , with access to a black-box malicious P∗
B, simulates the beginning of


a real protocol execution. SB∗ [PA] impersonates a real honest PA while interacting in the
simulated execution with the malicious P∗


B. As the simulation proceeds, if P∗
B takes actions


that would make an honest PA abort, then SB∗[P̂B] (in the role of ideal P̂∗
B in the ideal


world) sends abort to the TTP. In this case the TTP sends an abort message to P̂A, which
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leads P̂A to also abort in the ideal world (i.e., send an abort message to Z). Then SB∗[P̂B]


outputs in the ideal world whatever P∗
B outputs in the simulated execution.


1. Extract trapdoor and circuit input of P∗
B. In the Produce initial BitComs of PBProduce initial BitComs of PB


stage, SB∗ [PA] receives the outer Com of the input bit-string of PB and the Com of the
offset bit-string for the future private output bit-string of PB, and, from the respective
ZKPoK (of trapdoor and/or of openings), extracts the circuit input bits of PB and
respective openings (454454–468468). If any NIZKP or NIZKPoK is invalid, then S∗B̂ emulates
an abort in the ideal world (in the role of ideal P̂∗


B).
2. Initiate coin-flipping protocol. The simulation enters the Coin-flip Permutations (Start)Coin-flip Permutations (Start)


stage, where SB∗ [PA] receives from PB the initial message of the coin-flipping of permuta-
tions, which contains an Ext-and-Equiv Com of contributions (γ


(B)
IA
, γ


(B)
OA


) of permutations
for the outer-randomness for sets of input and output wires of PA, and of contributions
(γ′


(B)
IB
, γ′


(B)
OB


) for the permutation of the initial outer-Coms for sets of input and output
wires of PB. The coin-flipping message also contains a committed ZKPoK of the openings
of the contributions of PB to the permutation of the initial outer-Coms for sets of wires of
PB (472472–474474). If P∗


B has done anything that would make an honest PA abort, then S∗B̂
emulates an abort in the ideal world.


3. Interact with the TTP. S∗B̂ in the role of the ideal P̂∗
B sends to the TTP the private


circuit input that was extracted from the initial outer Coms of P∗
B (455455, 468468). The TTP


then makes the necessary internal procedures and returns the output first to S∗B̂ (404404), which
includes the outer-Coms of the inputs and outputs of P̂A and P̂B, the outer-randomnesses
for the input and output bits of P̂B, and the circuit output yB of P̂B.


4. Enforce the BitCom values selected by the TTP. Upon receiving the output from
the TTP (FS2PCwC), SB


∗ [PA] needs to induce that output to the malicious P∗
B in the


simulated execution, except of course if P∗
B aborts.


In regard to the outer Coms and outer-randomnesses of sets of wires of PA, SB
∗ [PA] knows:


(i) the outer-randomness permutations γ extracted from the Ext-and-Com commitment
provided by P∗


B; (ii) the final outer-Coms ρ′ (but not the respective outer-randomnesses)
decided by FS2PCwC. (iii) the common circuit output bits. SB∗ [PA] uses these elements to
calculate what needs to be the initial outer-Com σ′IA


of input of PA (476476) and the outer-
Com σ′OA


for output bit-masks of PA (479479), so that a final adjustment and permutation
will lead into the final outer-Coms ρ′ decided by the TTP. SB∗ [PA] resumes the simulation
and in the Outer BitComs of input bits of PAOuter BitComs of input bits of PA stage sends those outer-Coms to P∗


B,
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and (if need-be, e.g., for DLC) forges a respective NIZKPoK of openings (490490) and NIZKP
of correct BitComs (477477,481481).
In regard to the outer Coms and outer-randomnesses of sets of wires of PB, SB


∗ [PA] knows:
(i) the initial outer-randomness σ extracted from the ZKPoK of opening of the initial
outer-Com of input of PB (468468); (ii) the final outer-randomness ρ (and also outer-Coms
ρ′) decided by the TTP (FS2PCwCFS2PCwC). SB


∗ [PA] uses these elements to calculate the needed
outer-randomness permutations γ that are needed to induce P∗


B to accept the final outer-
randomnesses ρ decided by FS2PCwCFS2PCwC. SB


∗ [PA] impersonates the ideal FGMCF-1FGMCF-1 to output
the calculated outer-randomness to P∗


B (536536).
In regard to the circuit output yB, SB


∗ [PA] equivocates the opening of the RSC Equiv-Com
(549549), to yield a hash of the tuples composed of correct elements for the check instances
(derived by respective random seeds), and of incorrect elements (e.g., garbled circuits) for
the evaluation instances, such that the output of the evaluation garbled circuits is the
circuit output decided by FS2PCwCFS2PCwC.


5. Finalize the execution.
If P∗


B decides to do a correct execution, it will proceed by transmitting to PA the masked
private output bits of PA and the common output bits, and to correctly open his contribu-
tion in the last message of the coin-flipping of permutations (i.e., opening her contributions
and the NIZKPoK), and giving a NIZKP that the outer-Com permutation contribution
for the wires of PB are commitments to all zeros. S∗B̂ checks the validity of all received
values. If they are correct, then in the ideal world it sends an OK message to the TTP
(383383), otherwise it sends an abort (384384).
Finally, S∗B̂ outputs in the ideal world whatever the P∗


B outputs in the simulated execution.


Analysis of the simulation. The described simulation leads the parties in the ideal
world to produce an output indistinguishable from the corresponding one in the real world.
Essentially, simulatability is reduced to the extractability of the openings (circuit input bits
and respective randomnesses for commitment) of outer Coms of P∗


B, and of the respective
committed contributions to permutations, and of the outer-randomness of the committed
outer-Coms contributions, from the respective committed ZKPoK. and the equivocability of
the RSC challenge from the respective Equiv-Commitment.


The type-RE elements cannot be derived directly from the Type C elements. Unless P∗
B


could break the hiding property of commitments, P∗
B cannot open commitments (k) of the
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circuit input keys (k) of the input wires of PA; since the inner BitComs are hiding, P∗
B does


not learn anything about the permutation bits;


in the case of a 2-out-of-1 OT, P∗
B cannot compute the multipliers (β) of wires of PB,


unless it could calculate modular square-roots (i.e., if it could find the integer factorization
of the Blum integer modulus); in case of a 1-out-of-2 OT, P∗


B can really only extract one
multiplier from the OT answer from the honest PA.


B.4 Optimizations and other details about connectors


This section describes optimizations to the connectors.


B.4.1 Connectors of input of PA


B.4.1.1 Additive pseudo-homomorphism of bit-string Coms


Based on the idea of XOR pseudo-homomorphism, a further optimization is possible based
on an additively-homomorphic commitment scheme CA (e.g., Pedersen or ElGamal), using it
to directly commit to bit-strings, i.e., more compactly than a concatenation of BitComs. The
optimization being considered still makes use of BitComs of the input bits of PA. However, the
goal is to use BitStringComs to improve the communication and computational complexity
associated with connectors (which overall have a complexity proportional to the number
of evaluated garbled circuits), and also the complexity associated with the needed random
permutation of commitments for the purpose of producing final random commitments.


The (multiplicative) group operation ∗′ in the commitment space depends on the commit-
ment scheme. For example: for Pedersen commitments it corresponds to multiplication of the
group elements, resulting in a new group element; for ElGamal commitments it corresponds to
the pair-wise multiplication of the two components (group elements), resulting in a new pair
of components. With Blum and GM BitComs the group operation in the randomness space
(i.e., the space of square-roots) uses multiplicative notation. With Pedersen and ElGamal
BitComs the group operation in the randomness space (i.e., the space of exponents) uses
additive notation. For generality, when considering a generic BitCom scheme the notation +


∗


in the randomness space may simultaneously show the multiplicative and additive options.
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Pre-condition. The input of PA can be encoded as a bit-string xA (616616). Correspondingly,
an adequately weighed combination (617617) of the randomnesses µi of the respective BitComs
µ′i results in a commitment µA of the input string of PA (618618). If the input is longer than the
length allowed by the commitment scheme, then the bit-string encoding can be partitioned
across several bit-strings, e.g., with 128 bits per bit-string. Also, as a pre-condition it is
assumed that PA proves that the BitCom µj,i of each input bit is indeed a BitCom, i.e., that
it commits to a 0 or a 1.


Commit. Regarding the connectors, the idea now is that all inner BitComs ν′j,i of a
particular challenge instance j can be condensed into a single BitStringCom ν′j. First, PA


samples a random BitString permutation πj ← {0,1}`A (619619), which essentially corresponds
to a sequence of the isolated random bit permutations πj,i. Then, PA uses the additively
homomorphic BitStringCom scheme CInA to produce a BitStringCom α′j of each bit-string
permutation πj (620620), with the respective randomness αj being a random integer (a.k.a.
scalar, typically an exponent) between 1 and the order of the group. For example: if using
Pedersen CommitmentsPedersen Commitments, then PA must not known the trapdoor, but PB may (but does not
need to) know it; if using ElGamal CommitmentsElGamal Commitments, then PB may (but does not need to) know
the trapdoor, and PA must not know it.


The construction uses the additive homomorphism to enable a bit-string XOR pseudo-
homomorphism. Each connector (now one per challenge index j) has an associated permuted
string cj , which is equal to the bit-wise XOR of the input string xA of PA and the permutation
string πj of the challenge index (621621). The bit-wise XOR can also be obtained via a weighed
integer sum bit by bit, with the weighing not only depending on the position of the bit, but
also on the value of each input bit of PA (622622). Associated with the permuted bit cj there is
a corresponding BitStringCom ν′j (623623), denoted inner BitStringCom, which can be obtained
pseudo-homomorphically from the BitStringCom α′j of the permutation string πj and the
BitComs µ′i of the input bits of PA. Given the additive homomorphism, the “randomness”
νj associated with inner BitStringCom can also be obtained pseudo-homomorphically from
the randomness αj of the commitment of the permutation string πj, and a weighed sum of
the “randomness” µi of the BitComs of the input bits of PA, with the (signal of the) weighs
depending on the permutation bits πj,i (624624). Given the homomorphic properties, the inner
BitStringCom ν′j can be obtained directly from the combination of the permuted string cj
and the respective pseudo-homomorphically obtained “randomness” νj (625625).
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xA ≡∑i∈[`A]2
i−1bi (616616)


µA ≡∑i∈[`A]2
i−1µi (617617)


µ′A = CInA(xA, µ) =
′


˚i∈[`A](µ
′
i
2i
) (618618)


πj ≡∑i∈[`A]2
i−1πj,i (619619)


α′j = CInA(πj , αj) (620620)


cj = πj ⊕ xA (621621)


≡ πj + (∑i∈[`A](−1)πj,i2i−1bi) (622622)


ν′j = α
′
j ∗


′
(˚i∈[`A](µ


′
i)


2i−1(1−2πj,i)
) (623623)


νj = αj + (∑i∈[`A](µi)2
i−1


(−1)πj,i) (624624)


CInA(cj , νj) ≡ ν
′
j (625625)


Figure B.12: Optimization of connectors InA — from BitComs to BitStringComs.
For simplicity of notation it is here assumed that IA = [`A] ≡ {1, ..., `A}. For concreteness, equations
(617617,624624) are shown with additive notation, but there may be multiplicative instantiations as well.
Intuitively, equations (623623, 624624) could be expressed as α′j ∗′(πj) µ


′
A and αj +(πj) µA, respectively,


with the subscript (πj) in the group operation symbol denoting the pseudo homomorphism, varying
accordingly to the respective permutation πj — however, in fact the operations require knowledge
of the BitComs µ′i and respective randomness µi.


Reveal for check. For each check instance (j ∈ JV ), PA reveals the respective RSC seed
λj to PB. This gives PB the ability to: pseudo-randomly determine the permutation bits
πj,i and from there determine the permutation string πj (619619); pseudo-randomly determine
the “randomness” αj needed to commit the permutation bit, and from there compute the
respective commitment α′j (620620) (needed to check a correct pre-image of the RSC hash). The
permutation bits πj,i allow PB to check whether the revealed keys k⟨b⟩


j,i are properly permuted.


Reveal for evaluation. For each evaluation instance (j ∈ JE), PB reveals the permuted
bit-string cj (621621) and the encoding νj (i.e., the “randomness”) of the respective homomorphic
commitment (624624). This also allows PB to determine the inner BitStringCom ν′j , also needed
to check the correctness of the RSC hash. The permuted string cj informs the position cj,i of
the input key in the respective wire i of each garbled circuit j that PA should open, from
within the randomly permuted pair of key commitment, but without informing what is the
respective underlying bits.


Complexity advantages. In this construction the number of exponentiations is reduced
to just one per challenge index j ∈ [s], apart from two extra multiplications per pair (i, j)


of challenge index j ∈ [s] and input wire index i ∈ IA. In terms of exponentiations this
is approximately as good as the described IFC instantiations based on Blum BitComs or
GM BitComs. It is conceivable that a similar communication optimization can be achieved
with an IFC-based additively homomorphic Com scheme, e.g., based on Pailier encryption


Page 329 of 376







Section B.4. Optimizations and other details about connectors (2016-Dec-27)


[Pai99Pai99] or an encryption scheme that generalizes the Goldwasser Micali encryption scheme to
bit-strings (e.g., [JL13JL13]), but a concrete instantiation is not explored in this dissertation.


B.4.1.2 Blum-based BitString Com scheme


This subsection describes a generalization of the Blum BitCom scheme to a compact equivo-
cable commitment scheme for bit-strings, taking advantage of the existence of a principalprincipal
square-root of each square, i.e., a square-root that is itself a square. Similarly to the described
Blum BitCom scheme, let there be an auxiliary public group element z with Jacobi Symbol
−1 (possibly the smallest), and let its respective square z′ also be pre-computed. Let there
also be a fixed length k, e.g., 256, smaller than the size of the Blum integer, defining the size
of the bit-string being committed. (The Blum BitCom scheme is the case of length 1.) A
description with succinct notation is presented in row 55 of Table 2.22.2.


Procedure.


• Commit. To commit a non-negative integer m, smaller than two raised to the power of
the fixed length k (cell C5C5), the sender (i) computes a first power by modularly raising
the auxiliary square z′ to the power of the integer m being committed; then (ii) computes
a second power by selecting a random multiplicative residue r (cell E5E5) and modularly
raising it to the power of two raised to the power of the length k plus 1; and finally (iii)
sends the modular product of the two powers to the receiver (cell E5E5).


• Open type 1. To open, the sender reveals the randomness r and the committed value m
(cell G5G5). The receiver accepts only if it recomputes the expected commitment (cell H5H5).


• Open type 2. To open without revealing the randomness and without knowing the
trapdoor, the sender: (i) reveals the committed value; then (ii) computes the quotient
between the commitment and the auxiliary square z′ to the power of the integer m being
committed; and (iii) sends a NIZKPok of the 2k+1-th root of the obtained quotient.


• Efficient equivocation with trapdoor. A simulator knowing the trapdoor is able to
equivocate the opening of any value m′, by simply sending m, and the 2k+1-th root of the
modular quotient between the commitment and the m-th power of the auxiliary square z′.


Analysis.


• Binding. Breaking the biding property implies the ability to factor the Blum integer.
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Suppose that for a certain commitment c the sender knows two valid openings to distinct
values, i.e., a pair (m,m′) of distinct messages and a pair of randomnesses (r, r′), such
that a pair composed of the first message and the first randomness leads to the same
commitment as the commitment obtained from the second message and second randomness.
The sender is able to manipulate the equation of commitments to isolate in the left side
a power of the quotient of randomnesses, and in the right side a power of the difference
of messages. In the left side, the exponent applied to the (quotient of) randomnesses
remains being two raised to the power of the fixed length k. In the right side, the exponent
that is equal to twice the difference of messages is less than two raised to the power of
the fixed length. Upon removing from both sides the even factor of exponent present
in the right side, the sender obtains in both sides (no longer equal) square-roots of the
same value, with the left-side one having Jacobi Symbol 1, and the right-side one having
Jacobi Symbol −1 (because it is an odd power of the auxiliary element z). This pair of
non-trivially correlated square-roots allows calculation of the Blum integer trapdoor. To
ensure that the sender is not able to find a short cycle, the Blum integer can be chosen
such that the Euler totient of each prime factor of the Blum integer has an exponentially
large smallest odd prime, e.g., by selecting a Blum integer as a product of two safe primes
(i.e., each equal to one plus twice a prime).


• Hiding and equivocability. Any commitment has a possible opening to any integer
with the allowed length. Also, a simulator is able to equivocate the opening of any intended
value, by computing the respective needed randomness. With the trapdoor, a simulator is
able to take the commitment and divide it by the term corresponding to the square of
the auxiliary value to the power of the intended value to decommit. Then, the simulator
iteratively computes square-roots a number of times equal to the length of the committable
space. The result is the randomness needed to equivocate the intended value.


• Additive homomorphism. The multiplication of two commitments values yields a new
commitment of the sum of the two originally committed values, modulo two raised to the
power of the fixed length. The randomness of the product commitment is the product of
the two original randomnesses, further multiplied by the auxiliary element if and only if
the sum of the messages exceeds the allowed length.
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B.4.1.3 Shorter connectors, based on short-term binding


While the outer BitComs of input bits of PA require long-term security (binding and hiding),
the inner BitComs and the multiplier BitComs used in connectors of input of PA are used
only to ensure that PA (who knows her own input bits) opens the (one out of two) correct
input garbled keys to PB. The respective binding properties are only needed during the
protocol execution, in contrast with the hiding properties that need to be ensured in the long
term. Thus, if it can be assumed that the protocol duration is short, the security parameter
associated with short-term binding of these connectors can be shortened, with respective
complexity improvements. In other words, the cryptographic security related to the integrity
of connectors can be reduced, while retaining the confidentiality of the input bits of PA. For
example, if it is adequate to define a time-out duration of 1 minute for an oblivious AES-128
evaluation (e.g., see some benchmarks take about 1 second to execute [KSS12KSS12]), then it may
be valid to use shorter Blum integers assumed not to be factorable in such amount of time.
One could propose to use original (long) BitComs with 3,248 bits in size for BitComs of
the input bits (assumed equivalent to 128 bits of cryptographic security), and new (short)
BitComs with 1,776 bits for use for the connectors of PA (assumed equivalent to 96 bits
of cryptographic security). This paragraph merely intends to exemplify the effects that a
smaller modulus for the connectors of PA may have in the communication complexity of the
protocol, but not to discuss what are the shorter adequate sizes. Naturally, the optimization
is worth only if the complexity arising from the new unconditionally hiding BitComs and the
extra ZKP does not exceed the communication and/or computation savings obtained in the
connectors. Given the improvement already obtained with the use of bit-string Coms, the
“short term binding” optimization is mostly overshadowed, but is here mentioned to highlight
one more tradeoff between security properties.


B.4.2 Connectors of input of PB


B.4.2.1 ElGamal-based 1-out-of-2 OT for honest-sender


In the S2PC-with-Coms protocol in this dissertation, oblivious transfers are used to sustain
connectors for the input of PB, allowing a connection between BitComs and keys of garbled
circuits. The following paragraph describes a straightforward approach for a single round 1-out-
of-2 OT based on ElGamal BitComs, facilitated by the underlying additive homomorphism of
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ElGamal encryption. Considering its application integrated with the cut-and-choose approach
of the S2PC-with-Coms protocol, the protocol does not have to be simulatable against a
malicious sender, and so can be simpler than the PVW protocol [PVW08PVW08].


The goal is to let PA send (a la OT) a pair of exponentiations (ν0, ν1), denoted inner values,
for which it knows the respective random discrete-logs (β0, β1), base the global generator g0,
such that PB only receives one exponentiation (the result of raising the global generator g0 to
the power of the exponent βb with index equal to the bit of PB, without PA knowing which).
For notation consistency across different connectors, the exponents of the inner values are
also denoted as multipliers. The basis of the method is to have PA use a linear combination
of two multipliers to homomorphically transform an ElGamal BitCom produced by PB, such
that PB is then able to decrypt the result of exponentiating the base generator to the power
of the multiplier with index equal to the input bit of PB. PA does not need to give a ZKP
of correct transformation, because in the S2PC-with-BitComs application the respective
verification is performed statistically based on the cut-and-choose structure.


Procedure. The 1-round 1-out-of-2 OT protocol proceeds as follows.


• Setup. The protocol is based on an ElGamal BitComElGamal BitCom scheme. Since the scheme will
also be used as an ElGamal encryption scheme, it is imperative that PB knows the secret
decryption key x (626626). The public parameters form a pair (g0, g2) of generators, such that
the decryption key is the discrete log of the second generator g2 base the first generator g0


(627627). This pair is known by both parties. In practice, they may be decided by PB and
sent to PA along with the first message of an OT, or they may be part of a trusted setup
that also gives to PA the respective trapdoor.


• Input. The parties are activated to play an 1-out-of-2 OT. As input, PB is activated
with a bit of input (628628). PA is activated with two exponents (β0, β1) (629629), i.e., two
multipliers (i.e., exponents) (in the S2PC-with-BitComs protocol these exponents are
called multipliers and will be used to generate respective input wire keys of a garbled
circuit). This protocol is actually designed to “transmit” (a la OT) the result of raising
the first generator to the power of the respective multipliers.


• Step 1 (PB → PA). For each input bit of PB, PB (the receiver in the 1-out-of-2 OT)
produces and sends a respective ElGamal BitCom of his bit b (630630, 631631), and then sends a
respective ZKP of correctness (632632) (e.g., see §A.3.2A.3.2). On its own this ZKP is not intended
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Setup.
PB ∶ x = DLg0(gB) (626626)
PA,PB ∶ (g0, gB) (627627)


Input.
inputA → PA ∶ (β0, β1) (628628)
inputB → PB ∶ b (629629)


Commit to bit.


PB ∶ µ←
$ Zq (630630)


PB → PA ∶ (c1, c2) ≡ (g0
r, g0


bgB
µ) (631631)


PB → PA ∶ NIZKPElGamalBitCom(c1, c2) (632632)
Homomorphically encrypt value.


PB ∶ β0, β1, r ←
$ Zq (633633)


PA ∶ c′1 = c1
β1−β0g0


r (634634)
PA ∶ c′2 = c2


β1−β0g0
β0gB


r (635635)
PA → PB ∶ (c


′
1, c


′
2) (636636)


Output.
PA → outputA ∶ c1, c2, r (637637)
PB → outputB ∶ νb ≡ g0


βb ≡ c′2/(c
′
1)
x (638638)


Figure B.13: A 1-out-of-2 OT protocol based on an ElGamal BitCom scheme. The
output of the receiver (PB) is not one of the elements (β0, β1) of the input of the sender (PA),
but rather the result of exponentiating the base generator g0 to the power of one (βb) of the
input elements. The protocol is not secure against a malicious PA — and it does not need
to be for its application within a cut-and-choose structure (§3.3.2.23.3.2.2). Several components
could be more generally described based on an underlying homomorphic encryption scheme:
(c1, c2) = EE [µ](b); (c′1, c′2) = RandLHTRandLHT[β0, β1, r]((c1, c2)); νb ≡ g0βb = E −1((c′1, c


′
2)).


to provide extractability. If the public parameters (i.e., both generators g0 and g2) and the
respective trapdoor are decided by a trusted setup (as implicitly assumed in Figure B.13B.13),
then extractability can be directly assumed possible, because the simulator himself would
decide the trapdoor. If, instead, g2 is selected by PB, then PB may give a ZKPoK of the
trapdoor, possibly a NIZKPoK (see §A.3.3A.3.3), independent of the number of needed OTs.
Alternatively, if more efficient for concrete instantiations, PB could instead give a ZKPoK
of each committed bit (i.e., one such ZKPoK per committed bit).


• Step 2 (PA → PB). Each ElGamal BitCom received by PA is also an ElGamal encryption,
of either the group identity g00 (i.e., a commitment of bit 0) or of the first generator
g0 (i.e., a commitment of bit 1). PA then prepares to compute a randomized version of
an homomorphic transformation of the ElGamal ciphertext. Specifically, PA selects as
randomizer a new random exponent r′ (633633), and uses the pair (β0, β1) of multipliers
(i.e., the linear-transformation exponents) to compute a randomized encryption of an
exponentiation of a respective linear combination of the unknown committed value. This
is done using the multiplicative homomorphic property of the ElGamal encryption scheme
(respectively an additive homomorphic property of the committed exponents). The
resulting committed exponent is the one (βb) with index equal to the bit encrypted by PB.
Specifically, the new first component c′1 of the ElGamal encryption is computed from the
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first component c1 of the original encryption by exponentiating to the difference β1 − β0 of
the two multipliers and then multiplying by the first generator g0 exponentiated to the
first multiplier β0 (634634). The second component c′1 is obtained similarly, but additionally
multiplying the second generator g2 to the power of the first multiplier β0 (635635). PA sends
the resulting transformed pair — an ElGamal ciphertext — to PB (636636). Even though
the ciphertext has the form of an ElGamal commitment of one of the multipliers (βb), the
multiplier is not semantically hidden, because PB to decrypt the ciphertext and find the
result of raising the base generator g0 to the power of the multiplier.


• Output. As output of the protocol, PA outputs the bit commitment of PB, and the
randomization used in the homomorphic linear transformation (637637). PB outputs the
decryption of the value received from PA, which is the exponentiation g0βb by the multiplier
with index equal to the input bit of PB (638638). Even though PB cannot compute the discrete
log (i.e., the multiplier), the exponentiation is not (and is not inteded to be) a commitment,
because it is not semantically hiding.


Remark B.5 (Trading BitComs for pre-images). The IFC-based 2-out-of-1 requires
communication of two pre-images per connector of each evaluation instance, but the pre-
images are as large as BitComs. Conversely, in FFC the pre-images are much shorter, e.g., 256
bits instead of 3,248 bits, but the (single-round) 1-out-2 OT technique requires communication
of one group element (instead of two pre-images) per connector. A conceivable improvement
for FFC-based connectors may arise from a combination of ideas from the 2-out-of-1 and the
1-out-of-2 OT methods, to change the communication per connector to two pre-images.


B.5 More details on communication complexity


This section details better the communication complexity of the S2PC-with-Coms protocol.


B.5.1 Concrete parameters for 128 bits of security


Table B.1B.1 proposes sizes for diverse parameters (row 11), for 128 bits of cryptographic security
(row 22).
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Group for BitComs and pre-images. The size of group elements supporting BitComs
depends on the type of intractability assumption (row 33: IFC based on Blum integers requires
n = 3,248 bits per group element [SBC+12SBC+12, Table 7.2]; for DLC the sizes vary with the
concrete type of group — FFC requires group elements as large as IFC (i.e., 3,248 bits),
whereas ECC allows much shorter 256-bit elements (only twice the security parameter size).
The size n′ of pre-images (e.g., square-roots or exponents), under the respective one-way
function (e.g., squaring for IFC or exponentiation for DLC), also varies with the type of
instantiation: 3,248 for IFC and 256 for DLC (both FFC and ECC) (row 44). Interestingly,
the sizes associated with FFC lies between those of IFC and ECC, in the sense of having
group elements as large as in IFC, but short pre-images as in ECC. In practice, this means
larger size for outer BitComs (without much impact in the overall size), and low size for some
types of connectors (input of PA and output of PB), where it matters most.


CR-Hash (row 55). A CR-Hash function can be instantiated by the SHA-256 function,
with κHash = 256 bits of output, for 128 bits of security under birthday attacks.


PRG (row 66). Pseudo-random generation of elements can be instantiated via pseudo-
random number generators based on block-ciphers. For simplicity of security considerations,
AES-256 is used instead of AES-128, ensuring a birthday bound of 128 bits in respect to
ever repeating the same entropy across two uses. It requires a seed with at least κPRG = 256
bits of entropy. The actual internal seed may be larger (e.g., see [BK15BK15, §10.2, Table 3] for
bit-string generation based on AES-256, requiring a seed length of 384 bits). Nonetheless, in
practice the seed can be derived from an initial random bit-string of 256 bits, and if useful
also on additional input. The input of the PRG generations in the S2PC-with-Coms protocol
also includes a counter and/or identifier, used to differentiate the specific procedures within
the same protocol, and a specification of the intended output set (e.g., a bit-string length, or
a the specification of an IFC or DLC group) (see Remark B.6B.6 below).


Remark B.6 (Construction of PRGs and entropy of seeds). The PRG procedures
include: the generation (PRGenGC) of garbled circuits (517517); the generation (PRGenInKey)
of input wire keys of PA (506506); the generation (PRGenBitString) of “random” bit-strings (e.g.,
for permutation bits) (501501); the generation (PRGen$ForCom) of “randomness” needed for
some BitComs (502502, 510510) and for commitments of some input keys (505505). In order to let all
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Table B.1: Parameter sizes (e.g., for 128 bits of security)
A B


Item Description 1


κ long-term cryptographic security parameter (e.g., 1128 ≡ 128 bits) 2


n′
size of group-elements used for BitComs (e.g., for κ = 1128: 3,248 bits for IFC and FFC;
264 bits for ECC) 3


n


size of pre-images of group-elements, a.k.a. scalars, e.g., square-roots or exponents, under
the respective one-way function, e.g., squaring or exponentiation (e.g., for κ = 1128: 3,248
bits for IFC square-roots; 256 bits for FFC and ECC exponents)


4


κHash
output size (e.g., 256 bits) of CR-Hash (e.g., SHA-256), needed to ensure κ bits of security
(e.g., 128 bits) under birthday attacks 5


κPRG
size of PRG seed (e.g., 256 bits for AES-256 based PRGen procedure), needed to ensure
κ bits of security (e.g., 128 bits) under birthday attacks. 6


∣gg∣ size of a garbled (multiplicative Boolean) gate (e.g., 256 bits) 7


(∣C
(m)
Reg ∣,


∣O
(m)
Reg ∣)


sizes, when using a regular (i.e., hiding and binding) minicrypt-based Com scheme, of a
commitment (C ) and opening (O) of an m-bit string (e.g., 256 bits for committing and
256 +m for opening, when using a String-Com based on SHA-256 with 256-bit salt; see
possible optimization in Remark B.7B.7)


8


(∣C
(m)
Ext ∣,


∣O
(m)
Ext ∣)


sizes, when using an Ext-Com scheme non-malleable with respect to opening, of a
commitment (C ) and opening (O) of a string with m bits (e.g., (3, 248+m; 256) bits for
a RSA-OAEP-based scheme, or (6,496 +m; 256) bits for an FFC-based ElGamal Com
scheme, or (512 +m; 256) bits for an ECC-based ElGamal Com scheme, all of which
having randomness with a NPRO pre-image that includes the context of the execution)


9


(∣C
(m)
Equiv∣,


∣O
(m)
Equiv∣)


when using an Equiv-Com scheme, sizes of a commitment (C ) and opening (O) of an
m-bit value (e.g., 256 bits of commitment and 3, 248 +min(256,m) bits for opening with
IFC; same sizes are required by an FFC-based Pedersen Com scheme for DLC; smaller
sizes of (256; 256 +max(256,m)) bits are possible with an ECC-based Pedersen Com
scheme for DLC)


10


Note. The following abbreviations will be used: ∣CO⋅⋅⋅∣ ≡ ∣C ⋅
⋅⋅∣ + ∣O⋅⋅⋅∣; ∣CEquiv∣ ≡ ∣C


(κHash)
Equiv ∣; ∣CExt∣ ≡ ∣C


(κPRG)
Ext ∣.


PRG procedures be based on the same block-cipher, it is assumed that, in order to prevent
collisions, each procedure uses a distinctive identifier (e.g., 3 bits) as part of the plaintext
input of the block-cipher, along with remaining indices that serve as a counter for repetition
of the same PRGen procedure. In contrast to the above mentioned PRG procedures, there
are two whose dependency on the RSC seeds is only implicit. These are: the generation of
wire input keys of PB (515515), which are generated (via PRGenInKey) using a (pseudo-random)
group-element νj,i,c as seed; and the generation of wire output keys of PB (519519), which are
generated (via PRGen$ForCom) using a (pseudo-random) wire key as seed. In order to explicitly
ensure an entropy of 256 bits, the input of the two above-mentioned procedures also includes
an auxiliary seed λ(auxi)


j , itself generated (via PRGenAuxiSeed) from the respective RSC seed
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(500500), and being disclosed in the RespondRespond stage for evaluation instances. This is specially
important for the procedure PRGen$ForCom used to obtain output keys of PB, because there
the wire output key used as seed k[c]


j,i has less entropy, namely only 128 bits. This would
not be as important for the inner group elements νj,i,c used for input keys of PB, because
there the actual group elements are generated from a pre-image with at least 256 bits of
randomness. Nonetheless, the auxiliary seed also has the benefit of allowing that for each
challenge instance (j) all pseudo-random generations of the two above-mentioned procedures
can be computed using a block-cipher with the same key (in this case the auxiliary seed),
which in practice may lead to better efficiency of PRG generation (e.g., by avoiding the
key-scheduling needed in AES whenever changing the key).


Garbled gates. Each garbled gate requires 256 bits, corresponding to two AES ciphertexts
each, based on the recent “two halves make a whole” construction [ZRE15ZRE15] (row 77).


Reg-Com scheme (row 88). A regular (i.e., hiding and binding) standalone commitment
scheme (CReg,OReg) used to commit a bit-string with m bits can be instantiated with 256 bits
per commitment and 256+m bits per opening (row 88). Based on any regular non-interactive
commitment scheme, The underlying randomness can be used as a PRG seed of any non-
interactive regular commitment scheme, and the final commitment can be the CR-Hash
of the commitment. In practice, if assuming that a concrete cryptographic hash function
(e.g., SHA-256) has a pseudo-random output whenever the input is unpredictable, then it is
sufficient to compute the commitment as the hash of the value being committed appended
with a random 256-bit salt. Then, the randomness is 256 bits, the commitment is 256 bits
and the opening is the randomness followed by the committed value.


Remark B.7 (Shorter openings for commitments of input garbled keys of PA).
An optimization is possible to amortize the size of openings of input keys of PA, from 384 to
128 bits per opening, as explicitly considered in (505505–507507). Considering that several keys are
opened for each evaluation instance, and that all of them are pseudo-random and already
have the length of the security parameter (e.g., 128 bits), it is possible to let the randomness
be equal for all keys of each instance, and let the inherent unpredictability be the basis of
the hiding property of the commitment (no longer in a semantic sense). The commitment
is no longer semantically hiding, because after the RSC open phase PB is able to check if a
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given tentative key is correct or not, but it still has 128 bits of security in respect to finding
the key, i.e., finding a pre-image. In practice, assuming that a cryptographic hash has a
pseudo-random output whenever the input is unpredictable, then each key commitment may
be the hash of a pseudo-random bit-string (e.g., 256 bits) concatenated with the committed
key. Overall this optimization allows reducing the size of the opening of each key from 384
bits to 128 bits, i.e., being enough to reveal the key, besides the randomness that is common
across all keys for that challenge instance. Each commitment (of the complementary key in
each wire) still remains with 256 bits, to have collision resistance up to 128 bits against a
malicious PA.


Ext-Com scheme (row 99). An extractable commitment scheme (CExt,OExt) can be
obtained from a public-key encryption scheme. The commitment corresponds to encrypting
a random seed using public-key encryption and then appending the string obtained by the
one-time-pad of the value being committed XORed with the of the PRG expansion of the seed.
For an IFC instantiation, RSA-OAEP [BR95BR95, Sho01Sho01] allows semantically secure encryption
of the random 256-bit seed, producing as cipher-text a group element (e.g., with 3,248 bits).
Thus, the commitment of a bit-string of size m requires 3,248 +m bits in size, and the
respective opening requires 512 bits. For a DLC instantiation, a hybrid encryption based
on an initial ElGamal encryption of a random seed requires overall 512 bits of randomness,
leading to a ciphertext with 6,496 +m bits of commitment and 512 bits for opening. An
ECC instantiation reduce the size of the commitment to 512 +m bits.


Equiv-Com scheme (row 1010). The equivocable commitment scheme (CEquiv,OEquiv)
used for the RSC technique, not needing to be homomorphic, can be instantiated by the
Blum-based Equiv BitString Com and a CR-Hash function. The commitment is a 256-bit
CR-Hash of a group element; the opening requires 3,248+256 bits (from a group element and
the committed CR-Hash). The same sizes are required by the Pedersen commitment scheme
supported on FFC, but shorter sizes of (256; 512) bits can be obtained with ECC (row 1010).
Besides supporting the RSC technique in the overall S2PC-protocol, Equiv-BitComs are also
relevant for simulatable coin-flipping and the transformation of interactive ZKP and ZKPoKs
into non-interactive versions.
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B.5.2 Communication complexity per component of the protocol


The cost of NIZKPs and NIZKPoKs and random BitCom permutations is either linear in the
statistical parameter or in the number of input and output wires, respectively, but not in
their product. Conversely, the communication cost of connectors is linear in the number of
evaluation instances multiplied by the number of input and output wires.


Table B.2B.2 lists the communication complexity required by the useful NIZKPs and
NIZKPoKs, for IFC and DLC instantiations, and refers to their descriptions.


Table B.3B.3 describes the communication complexity per type of connector, with a cost
proportional to the number of input and output wires, multiplied by the number of evaluation
GCs, but not the number of check circuits.


Clearly, the size of garbled circuits is a substantial cost. As the circuits increase in size
(in proportion to their number of input and output wires) the garbled circuits necessarily
become the main communication cost contribution.


For IFC and FFC instantiations, communication may be improved in respect to connectors
of input bits of PA by using additively bit-string Coms to commit to bit-string permutations,
instead of one BitCom for each bit of the permutation. For FFC instantiations, communication
may be improved in respect to connectors of input bits of PB, by using a mixed OT construction
that combines ideas from the 2-out-of-1 and the 1-out-of-2 constructions.


It is worth noticing that the communication associated with connectors of input of PA


(row 99) and connectors of output of PB (row 1111) requires communication of scalars, whereas
the connectors of input of PB (row 1212) for an IFC instantiation (based on 2-out-of-1 OT)
requires group elements. As a consequence, an instantiation using finite fields over the
integers (FFC) will require more communication for input wires of PB than for other types of
connectors. Conversely, the communication when using ECC (with exponents of the same
size as the size by which group elements can be represented) is indifferent to the type (group
elements vs. exponents) of communicated elements. Interestingly, for the IFC instantiation
based on Blum integers, no gain is obtained from the construction (based on 2-out-of-1 OT)
requiring communication of pre-images (square-roots) instead of group-elements (squares),
because they are all (group-elements) of the same size.


A variation of the protocol could also consider one RSC commitment per instance, instead
of a single one, and in that case there would be a very slight difference associated with also
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Table B.2: Communication sizes of NIZKPs, NIZKPoKs and coin-flipping


A B C D E


Label Crypto Description Reference Size 1


NIZKPoKBI-trapdoorNIZKPoKBI-trapdoor[n]


IFC


NIZKPoK of a trapdoor of a Blum Integer
of size n (also proves correctness)


§A.2.3A.2.3
Fig. A.2A.2


2n + σ × (2n + 1)+
σ × (κPRG + ∣C


(n)
Ext ∣)


2


NIZKPoKPseudoSqrts[n](`)
NIZKPoK of ` pseudo square-roots
of a vector of ` Blum BitComs,
modulo a Blum integer of size n


— (not specified here;
not needed in PKI model) 3


NIZKPoKDLNIZKPoKDL[n
′, n]


DLC


NIZKPoK of a discrete log in a group
with group elements of size n′,


and pre-images of size n


§A.3.3A.3.3
Fig. A.5A.5


n + v × κPRG+


s + e × (n + ∣C
(n)
Ext ∣)


4


NIZKPoKElGOpeningNIZKPoKElGOpening[n
′, n]


NIZKPoK of opening of an ElGamal Com
(a pair of group elements of size n′,


with two exponents of size n)


§A.3.4A.3.4
Fig. A.7A.7


n + s + v × κPRG+


e × (2n + ∣C
(2n)
Ext ∣)


5


NIZKPGBINIZKPGBI[n]


IFC
NIZKP of correct Blum integer of size n §A.2.2A.2.2


Fig. A.1A.1 σ × (1 + 2n) + 2n 6


NIZKPGM-All-0sNIZKPGM-All-0s[n](`)
NIZKP that a vector with ` GM BitComs,


each of size n, only commits to zeros §A.2.4A.2.4 σ × (2n) + n
(does not depend on `) 7


NIZKPGEBNIZKPGEB[n
′, n](`)


DLC


NIZKP of ` good ElGamal BitComs, each
being a pair of group elements of size n′


with exponents of size n


§A.3.2A.3.2
Fig. A.4A.4 ` × (4n′ + 3n) + n 8


NIZKPElG-All-0sNIZKPElG-All-0s[n
′, n](`)


(parallelization of ` instances
of NIZKPPair-with-Same-DL)


NIZKP of ` ElGamal Coms of 0, all
based on the same pair of generators
(each Com is a pair of group elements


of size n′, with DLs of size n)


§A.3.1A.3.1
Fig. A.8A.8


2n′ + 3n
(does not depend on `) 9


NIZKPSameComBitsNIZKPSameComBits
[(n′1, ..., n


′
m), (n1, ..., nm)](`)


(e.g., with m equal to 2 or 3)
IFC


NIZKP of same committed bits across
m vectors (k ∈ [m]), each with
` BitComs each of size n′k and
openings of size nk, respectively


§A.4.1A.4.1
Fig. A.9A.9


e × (n′1 + ... + n
′
m)+


e × (n1 + ... + nm)+


s + (v + 1) × κPRG+
e × (1 +m × n)


(does not depend on `)


10


GMCF1ElGCom0GMCF1ElGCom0[n
′, n](`)


(Protocol with three phases) DLC


Generalized coin-flipping (type 1) of
a vector of ` ElGamal Coms of 0


(PA learns the ElGamal Coms of 0;
PB learns their openings)


§C.2.3C.2.3
Fig. C.6C.6


` × (4n′ + n) +
` × ∣NIZKPoKElGOpeningNIZKPoKElGOpening[n


′, n]∣
+∣NIZKPElG-All-0sNIZKPElG-All-0s[n


′, n](1)∣
11


Ext-&-Equiv-ComExt-&-Equiv-Com[n](`)
(Protocol with two phases) DLC


Ext-and-Equiv Com and opening of
` exponents, each of size n


(hidden in ElGamal Coms of size 2n′)
§C.1.5C.1.5


` × (2n′)+
` × ∣NIZKPoKElGOpeningNIZKPoKElGOpening[n


′, n]∣
+n + ∣NIZKPElG-All-0sNIZKPElG-All-0s[n


′, n](0)∣
12


GMCF1GMCom0GMCF1GMCom0
(Protocol with three phases) IFC


Generalized coin-flipping (type 1) of
a vector of ` GM BitComs of 0


(PA learns the GM BitComs of 0;
PB learns their openings)


§C.2.4C.2.4
Fig. C.7C.7


|Ext-&-Equiv-ComExt-&-Equiv-Com[n](`)∣
+ ` × n′+


∣NIZKPGM-All-0sNIZKPGM-All-0s[n](`)∣
13


Ext-&-Equiv-ComExt-&-Equiv-Com[n](`)
(Protocol with two phases) IFC Ext-and-Equiv Com and opening of


` group elements, each of size n
§C.1.4C.1.4
Fig. C.2C.2


` × n × (1 + e/t) + κHash × (1 + e)+
κPRG × v + n(1 + 2e) + σ 14


Legend: Table B.1B.1 suggests parameter sizes. σ (number of bits of statistical security); (v, e)
(number of evaluation and check instances in a cut-and-choose with RSC technique, selected to
satisfy a statistical security goal — see Table 3.23.2 in §3.1.43.1.4, for concrete parameters, e.g., (vmin, emax)
equal to (65,64) or (188,32) for σ = 128 for non-interactive ZK sub-protocols). In DLC, each
randomness for opening of an Equiv-Com is assumed to be one exponent of size n; in IFC it is one
square-root of size n.


sending check seeds. The RSC technique could also be applied independently to garbled
circuits and connectors. If not using RSC for garbled circuits, then the multiplicative factor
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Table B.3: Communication of PKI-based S2PC-with-Coms (per protocol component)
A B C D E F


Instantiation / Intractability IFC / DQR DLC / DDH 1


Commun. of evaluation GCs PA → PB e × ∣gg∣ × (∣C ∣ + `B) e × ∣gg∣ × (∣C ∣ + `B) 2


Commun. of NIZKPoK of trapdoor
of outer BitCom scheme (Bp) of Pp


Pp → Pp̄ ∣NIZKPoKBI-trapdoorNIZKPoKBI-trapdoor[n
′, n]∣ ∣NIZKPoKDLNIZKPoKDL[n


′, n]∣ 3


Commun. of initial outer BitComs of
input and auxiliary output of each party Pp → Pp̄


(`p + `
′
p) × n


′


(from GM BitComs)


(`p + `
′
p) × (2n′)+


(from ElGamal BitComs)
∣NIZKPGEBNIZKPGEB[n


′, n](`p + `′p)∣
4


Commun. of NIZKPoKs of
openings of outer Coms of Pp


Pp → Pp̄ (not needed) (`p + `
′
p) × ∣NIZKPoKElGOpeningNIZKPoKElGOpening[n


′, n]∣ 5


Commun.
of extra


intermediate
BitComs


and respective
NIZKPs


Input of PA
(related to BConA)


PA → PB
`A × n


′ (from Blum BitComs) +
∣NIZKPSCBNIZKPSCB[(n


′, n′), (n,n)](`A + `
′
A)∣


— 6


Input of PB
(related to BOT)


PB → PA
`B × n (from Blum BitComs) +
∣NIZKPSCBNIZKPSCB[(n


′, n′), (n,n)](`B)∣
`B × (2n) (from ElGamal BitComs) +
∣NIZKPSCB[(2n,2n), (n′, n′)](`B)∣


7


Output of PB
(related to BFLB)


PA → PB `′B × n (from Blum BitComs) —
(outer Coms are enough) 8


Commun. of
connectors


InA


From pre-images
PA → PB


e × (n + `A + `
′
A)


(openings of Gen Blum ComsGen Blum Coms)
(§B.4.1.1B.4.1.1, §B.4.1.2B.4.1.2)


e × (`A + `
′
A) × (n + `A + `


′
A)


(openings of ElGamal Coms)
(§B.4.1.1B.4.1.1)


9


From GC Keys e × `A × ∣COReg(Key)∣ 10


Commun. of
connectors


InB


From group-elements
and/or pre-images PA → PB


e × `B × (2n)
(Two multipliers per j ∈ JE , i ∈ IB,


complementing the 2-out-of-1 OT)


e × `B × (2n′) (One ElGamal
encryption per j ∈ JE , i ∈ IB,


constituting a 1-out-of-2 OT)
11


Commun. of
connectors


OutB


From group-elements
and/or pre-images PA → PB


e × `′B × (2n)
(Two multipliers per j ∈ JE , i ∈ OB)


e × `′B × (2n)
(Two exponents per j ∈ JE , i ∈ OB)


12


Commun. of
cut-and-choose


If interactive PB → PA ∣v∣ + ∣e∣ 13


If non-interactive PA → PB ∣COEquiv∣ 14


Commun. of RSC seeds PA → PB v × κPRG 15


Commun. of
permutations


to outer
BitComs


Adjust outer BitComs
of output of PB


PB → PA
`′B′ + ∣NIZKPSCBNIZKPSCB[(n


′, n′), (n,n)](`′B′)∣
(Blum BitComs vs. GM BitComs)


`′B′ + ∣NIZKPSCB[(n
′, n′), (n,n)](`′B′)∣


(Pedersen BitComs vs. ElGamal BitComs) 16


Adjust outer BitComs
of output of PA


PB → PA
`′A+


∣NIZKPGM-All-0sNIZKPGM-All-0s[n
′](`′B)∣


`′A+
∣GMCF1ElGCom0GMCF1ElGCom0[n


′, n](`′B)∣
17


Coin-flipping of
random BitCom
permutations


PB → PA
|Ext-&-Equiv-ComExt-&-Equiv-Com[n](L)| +
∣NIZKPGM-All-0sNIZKPGM-All-0s[n


′, n](0)∣


(`A + `
′
A) × (2n′) + (`B + `


′
B) × (4n′ + n)+


∣NIZKPElG-All-0sNIZKPElG-All-0s[n
′, n](0)∣+


(`A + `
′
A + `B + `


′
B)×


∣NIZKPoKElGOpeningNIZKPoKElGOpening[n
′, n]∣


18


PA → PB
(`B + `


′
B) × n+


∣NIZKPGM-All-0sNIZKPGM-All-0s[n
′, n](0)∣


(`B + `
′
B) × n


+ ∣NIZKPElG-All-0sNIZKPElG-All-0s[n
′, n](0)∣


19


Legend: Commun. (communication); `′B′ (in row 1616 – number of private output wires of PB, i.e.,
i ∈ OB’); `p (= ⌈`p/n⌉, for p ∈ {A,B}) and `


′
p (= ⌈`′p/n⌉, for p ∈ {A,B}) (in rows 55, 99, 1818 and 1919


— number of outer-Coms of each type of wire set, after stringizestringize operation). L (`A+ `′A+ `B+
`′B — total number of circuit input and output bits). See Table B.2B.2 for sizes and description of
NIZKPs, NIZKPoKs and coin-flipping sub-protocols. See Table 4.14.1 in Chapter 44 for parameters
(v′, e′, t) used for coin-flipping in cell E18E18. See Table B.1B.1 for sizes of other parameters (e.g.,
n,n′, n2, n


′
2, κHash, κPRG, ∣gg∣, ∣COReg(Key)∣, ∣COEquiv∣, ∣CExt∣).


e in row 22 would be replaced by (v + e). In that case the C&C challenge would necessarily
have to be simulatable for the case of malicious P∗


B, i.e., the respective simulator would need
to be able to induce the outcome of the C&C partition. This induction can either be via the
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Table B.4: Communication in S2PC-with-BitComs of AES-128
A B C D E F G H I J K


Pa
ra
m
et
riz


at
io
n


Type of cryptographic instantiation IFC FFC ECC IFC FFC ECC ECC 1


Bits of Statistical security (σ) 40 40 96 128 2


C&C
param-
eters


Condition on # evaluation instances 1 ≤ e ≤ σ/2 1 ≤ e ≤ σ/5 1 ≤ e ≤ σ/5 3


s ≡ # GCs 41 123 272 365 4


(vmin; vmax) (# check circuits) (21; 40) (115; 122) (253; 271) (340; 364) 5


(emin; emax) (# evaluation circuits) (1;20) (1;8) (1;19) (1;25) 6


Si
ze


of
co
m
m
un


ic
at
ed


el
em


en
ts


Set
initial
outer


BitComs


NIZKPoK trapdoor (kB) 426 — 426 — — 7


Initial outer BitComs (kB) 156 312 25 156 312 25 25 8


NIZK good BitComs (kB) — 673 100 — 673 100 100 9


NIZKoK of outer openings (kB) — 187 44 — 187 44 44 10


BConA
Extra intermediate BitComs (kB) 52 — 52 — — 11


NIZKP of same committed bits (kB) 59 — 59 — — 12


BOT
Extra intermediate BitComs (kB) 52 — 52 — — 13


NIZKP of same committed bits (kB) 59 — 59 — — 14


BFLB Extra intermediate BitComs (kB) 52 4.2 52 4.2 4.2 15


†C&C
of


GCs


Connectors InA (kB) 131 124 53 50 118 155 16


Connectors InB (kB) 2,079 169 831 68 161 205 17


Connectors OutB (kB) 2,079 164 831 66 156 205 18


Communicated GCs (kB) 4,434 1,774 4,212 5,542 19


Communicated RSC seeds and
RSC Equiv Com and opening (kB) 1.5 1.1 0.77 4.5 4.2 3.8 8.2 11 20


Set final
outer
Coms


Coin-flip of random permutations (kB) 1,069 193 44 923 193 44 44 21


Adjust output BitComs OutB (kB)
(offset bits and NIZKP of same Com Bits) 59 48 11 59 48 11 11 22


† A
na


ly
sis


Size of final state of PA (kB) 209 3.3 0.34 209 3.3 0.34 0.34 23


Size of final state of PB(kB) 261 3.4 0.39 261 3.4 0.39 0.39 24


Total communication (kB) 10,709 8,265 5,478 5,332 4,188 2,189 4,883 6,353 25


(Not GCs) / Total 59% 46% 13% 68% 58% 19% 14% 13% 26


Total commun. if local-PKI and simple S2PC 8,984 7,734 5,012 3,753 3,657 2,081 4,775 6,245 27


Circuit parameters: ∣C ∣∧ = 6, 800; `A = `B = `′B = 128. †See Remark B.8B.8 on the variable communication
of GCs and connectors, depending on the number of evaluation instances. The NIZKPS, NIZKPoKs
and coin-flipping use cut-and-choose parametersparameters for 128 bits of statistical security.


NPRO and Equiv-Com technique, where PA decides the challenges non-interactively, or in
an interactive decision of cut-and-choose, e.g., via a coin-flipping.


The communication of RSC seeds is mostly irrelevant.


B.5.3 Comparison of AES-128 and SHA-256


Tables B.4B.4 and B.5B.5 show the communication required for different types of elements.
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Table B.5: Communication in S2PC-with-BitComs of SHA-256
A B C D E F G H I J K


Pa
ra
m
et
riz


at
io
n


Type of cryptographic instantiation IFC FFC ECC IFC FFC ECC ECC 1


Bits of Statistical security (σ) 40 40 96 128 2


C&C
param-
eters


Condition on # eval instances 1 ≤ e ≤ σ/2 1 ≤ e ≤ σ/5 1 ≤ e ≤ σ/5 3


s ≡ # GCs 41 123 272 365 4


(vmin; vmax) (# check circuits) (21; 40) (115; 122) (253; 271) (340; 364) 5


(emin; emax) (# evaluation circuits) (1;20) (1;8) (1;19) (1;25) 6


Si
ze


of
co
m
m
un


ic
at
ed


el
em


en
ts


Set
initial
outer


BitComs


ZKPoK/NIZKPoK of trapdoors (kB) 426 — 426 — — 7


Initial outer BitComs (kB) 312 624 51 312 624 51 51 8


NIZK good BitComs (kB) — 1346 200 — 1346 200 200 9


NIZKoK of outer openings (kB) — 187 44 — 187 44 44 10


BConA
Extra intermediate BitComs (kB) 104 — 104 — — 11


NIZKP of same committed bits (kB) 59 — 59 — — 12


BOT
Extra intermediate BitComs (kB) 104 — 104 — — 13


NIZKP of same committed bits (kB) 59 — 59 — — 14


BFLB Extra intermediate BitComs (kB) 104 8.5 104 8.5 8.5 15


†C&C
of


GCs


Connectors InA (kB) 255 247 102 99 235 309 16


Connectors InB (kB) 4,157 338 1663 135 321 422 17


Connectors OutB (kB) 4,157 328 1,663 131 311 410 18


Communicated GCs (kB) 58,292 23,317 55,377 72,865 19


Communicated RSC seeds and
RSC Equiv Com and opening (kB) 1.5 1.1 0.77 4.5 4.2 3.8 8.2 11 20


Set final
outer
Coms


Coin-flip of random permutations (kB) 1,797 193 44 1,797 193 44 44 21


Adjust output BitComs OutB (kB)
(offset bits and NIZKP of same Com Bits) 59 48 11 59 48 11 11 22


† A
na


ly
sis


Size of final state of PA (kB) 417 3.3 0.36 417 3.3 0.36 0.36 23


Size of final state of PB(kB) 521 3.4 0.42 521 3.4 0.42 0.42 24


Total communication (kB) 69,887 65,525 59,563 29,773 27,714 24,044 56,611 74,375 25


(Not GCs) / Total 17% 11% 2.1% 22% 16% 3.0% 2.2% 2.0% 26


Total commun. if local-PKI and simple S2PC 67,382 64,890 59,447 27,269 27,079 23,928 56,494 74,259 27


Circuit parameters: ∣C ∣∧ = 90,825; `A = `B = `′B = 256. Notes from Table B.4B.4 also apply.


An initial NIZKPoK is produced in case of an IFC instantiation, to support the simulator
in its subsequent extraction of square-roots, but is not necessary for the DLC instantiation
(row 77). The communication size for initial outer BitComs is shown in row 88, with BitComs
being more expensive for the IFC and FFC instantiations, which use 3,248-bit group elements
and with the ElGamal BitComs in DLC instantiations using 2 group elements per BitCom.
The ECC instantiation is much shorter, because each group element has only 264 bits.


The DLC instantiations further require a ZKP of correctness of the ElGamal BitComs
(row 99). All BitComs are parsed into a BitStringCom, which in IFC is a simple vector of GM
BitComs but in DLC is an homomorphic combination into a single ElGamal BitStringCom
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per wire type. A ZKPoK of the randomness of each of these BitStringComs is performed to
provide the randomness to the simulator (row 1010).


The pre-condition of connectors requires the parties to agree on intermediate BitComs. If
they are different from the outer BitComs, then they need to be prepared. For example, for
the input bits of PA the bit-string Com optimization can be implemented with generalized
Blum Coms (with trapdoor known by PB). PA still needs to build one new Blum BitCom
per input bit (row 1111) and send a NIZKP that they commit to the same bits as her outer
GM BitComs (row 1212).


In the case of input bits of PB, the use of a 2-out-of-1 OT technique with IFC also requires
new intermediate BitComs for the input bits of PB (row 1313), along with a standalone NIZKoK
of openings corresponding to the bits that are committed by the outer BitComs (row 1414).


For the output bits of PB, the forge-and-lose technique requires PA to send to PB Equiv-
Coms (Blum or Pedersen) associated with each possible output bit (row 1515).


Cut-and-choose parameters for sub-protocols. The number of rounds of interactions
is reduced by using NIZKPs and NIZKPoKs instead of interactive ZKPs and ZKPoKs. For
those sub-protocols the statistical security parameter is instead equal to the computational
security parameter, because the prover learns the inherent proof challenge before sending a
message to the prover. In the sizes reported in Tables B.4B.4 and Table B.5B.5: the NIZKPs of
same committed bits (rows 1212, 1414 and 2222) is performed with 128 bits of statistical security,
using (vmin, emax) equal (188,32) (allowing better communication than (65,64)). In row 2121:
the coin-flipping for the IFC case is based on an Ext-and-Equiv Com scheme with (v, e, t)


equal to (245, 148, 74), achieving 128 bits of statistical security with an expansion rate equal
to 2 in the commit phase (see Table 4.14.1); the coin-flipping for the DLC case uses a specialized
protocol (§C.2.3C.2.3) based on another NIZKP and NIZKPoK.


Cut-and-choose of garbled circuits. To sustain the cut-and-choose of garbled circuits,
PA sends to PB the elements of connectors, GCs associated with evaluation instances.


• Connectors InA. For connectors of input of PA, the communication includes group
elements associated with the permutation bit, and includes commitments and openings
of the wire keys (row 1616). In respect to group elements, in IFC the technique requires
communicating one BitCom opening per wire per evaluation circuit, whereas in DLC it
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requires communicating one BitStringCom opening per evaluation circuit (i.e., without
repetition across wires). This is thus much shorter for DLC, because it requires fewer open-
ings and each such opening is smaller. However, the communication component associated
to regular commitments (hiding and binding) of the wire input keys (for check instances)
and openings (for evaluation instances) is the same for both IFC and DLC instantiation.


• Connectors InB. For connectors of input of PB, the communication varies again with
the type of cryptographic instantiation, requiring two group elements per wire per circuit
row 1717. By coincidence, the size is the same for IFC and FFC. In the former the connectors
require one BitCom and one opening, whereas in the later it requires one ElGamal BitCom.
ECC is smaller because of the smaller group elements.


• Connectors OutB. The connector scheme is essentially the same for connectors of the
output of PB, but using different BitCom schemes (Blum for IFC and Pedersen for DLC).
The construction requires two pre-images per wire per circuit, and thus the sizes vary
accordingly to the size of pre-images (IFC vs. DLC) (row 1818).


• GCs. Only the garbled circuits selected for evaluation need to be communicated. Their
number and size is independent of the cryptographic instantiation of connectors (IFC or
DLC) and account for a very significant portion of the overall communication, specially
for low values of evaluation instances and high values of circuit size (row 1919).


• RSC elements. The avoidance of communication of check circuits is made possible by
the sending of one RSC PRG seed for each check instance and also by implementing the
RSC Equiv-Com and opening it (row 2020).


Remark B.8 (On the size of GCs and connectors). The actual communicated sizes
of GCs and connectors varies with the number of evaluation instances. The sizes reported in
rows 1616–2020 (for the C&C of garbled circuits), with respective effect on the communication
analysis, consider a cut-and-choose partition whose numbers (e, v) of check and evaluation
instances is equal to the respective minimum and maximum (emin, vmax) associated with the
chosen interval of variation. An execution where the number of evaluation instances is smaller
incurs a lower communication overhead.


Set final outer Coms. The final outer commitments are randomized based on random
permutations decided via a simulatable coin-flipping. The parties agree on random “random-
nesses” for committing 0 for each final outer commitment (DLC) or BitCom (IFC), which can
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then be applied as a permutation to the initial outer commitments (row 2121). Furthermore,
the final BitComs of output of PB, which initially had just been prepared with BitComs of
random bitS, need to be offset to incorporate the actually obtained output bits. PB transmits
to PA the needed information: the offset bits and a ZKP that they are the correct offset bits
(reducible to a ZKP of same committed bits between Blum and GM BitComs, or Pedersen
and ElGamal BitComs) (row 2222).


Analysis.


• Final state of each party. The final state of each honest party then includes the private
input and output bits, the private randomnesses, all final outer Coms, the PKI private
trapdoor and the PKI public-parameters of both parties (rows 2323 and 2424). In the case
of DLC the size of the final state is even smaller than the communication associated
with the initial outer BitComs because the final outer Coms corresponding to a parsing
that compresses several BitComs into a single BitStringCom per wire type. In linked
executions the parties may also retain information about the outer BitComs and/or some
intermediate BitComs, to enable a more efficient linkage.


• Total communication. The overall estimated communication is shown in row 2525. It
does not account with some metadata elements that would be present in actual imple-
mentations, e.g., session identifiers, identifiers of the parties, and other communication
protocol overheads, which would nonetheless be insignificant in comparison with the
overall communication.


• “(Not GCs)/ GCs.” Row 2626 shows the overhead proportion required by non-GCs.
While this gives a an intuition about the communication cost inherent to the BitCom
approach, it is not good enough on its own. The overhead shown is minimal in the sense
that a varying number of evaluation instances in each execution may lead to fewer GCs
(and also connectors). Thus, when a particular execution has better (lower) “total size”
than shown, the respective overhead proportion may be higher. It is also noteworthy that
in a traditional cut-and-choose approach, just the additional GCs account for a significant
overhead. In comparison with the forge-and-lose case, in a traditional cut-and-choose
the additional GCs would represent a 200% overhead (e.g., 123 vs. 41 GCs) if not using
RSC technique, or about 140% (e.g., 49 vs. 20 evaluation GCs) if using RSC. On top of
this, there would still be the overhead related with ensuring the consistency of input and
output across different GCs, depending on the S2PC protocol.
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• Communication in simpler S2PC. In a setting where the output BitComs can be
ignored and where a local-PKI can be assumed (i.e., decidable by a simulator for the pur-
pose of simulatability), the overall communication requirements are smaller, as represented
in row 2727. This total is calculated by discounting from row 2525 the values of rows 77, 1010, 1212,
1414, 2020 and 2222, and by considering the values in rows 1111 and 1313 instead of the contribution
of respective initial outer BitComs in row 88.


Pipelining tradeoff. If the parties pipeline computation and communication, namely the
generation and sending of garbled gates (PA), or the receiving and evaluation of garbled gates
(PB), the memory required by each party can be lower than the required communication
[HEKM11HEKM11]. When generating a GC, PA discards each garbled gate as soon as it uses it in the
computation of the (compressive) RSC commitment (in the CommitCommit stage), or as soon as it
sends it to PB (in the RespondRespond stage, for evaluation GCs), and discards the keys of each
intermediate wire as soon as all related garbled-gates have been generated. (This requires
a trivial re-ordering of some steps, e.g., in the CommitCommit stage and/or on how to compute
the global-hash, which for simplicity is not shown.) For each evaluation GC, PB discards
each garbled gate as soon as it obtains its output wire key, and discards each (intermediate)
wire key as soon as all respective garbled-gates have been evaluated. For each check GC,
PB simply generates the GC, from the respective random seed, as described for PA. This
technique allows a significant reduction in memory (i.e., the amount of information that needs
to be stored simultaneously). As noted in [KSS12KSS12], a down-side of implementing pipelining
in a C&C protocol is that PA needs to generate twice each evaluation GC.
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Appendix C


Commitments and coin-flipping


This chapter gives details about concrete protocols for simulatable (Ext&Equiv) Com schemes
(Section C.1C.1) and coin-flipping (Section C.2C.2).


C.1 Simulatable commitments


§C.1.1C.1.1 specifies a variation of the interactive Ext&Equiv Com scheme described at higher
level in §4.34.3, with ExtExcIfAb type of extractability, and defined in a hybrid model with access
to an ideal Ext Com functionality and an ideal Equiv Com functionality. §C.1.2C.1.2 makes the
security analysis, describing the simulators and showing that they lead the joint distribution of
outputs in the ideal world to be indistinguishable to the respective distributions of real world
executions. §C.1.3C.1.3 shows possible adjustments to achieve post and pre verifiable extractability
and comments on non-malleability aspect. §C.1.4C.1.4 adjusts the protocol to a non-interactive
instantiation, in the CRS-and-NPRO model. §C.1.5C.1.5 comments on a specialized protocol for
exponents in DLC.


C.1.1 Interactive Ext&Equiv Com scheme


This section gives with succinct notation in Figure C.1C.1 a description of an ExtExcIfAb&Equiv
scheme, constituting an adjustment of the respective scheme described in Section §4.34.3, here
adjusted to have a single commitment of a (global) hash, instead of one per instance of the
cut-and-choose. An adjustment to ExtPost&Equiv can be made by simply augmenting the
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underlying Equiv Com of the global hash into an ExtPost&Equiv Com.


Setup parameters. The parties implicitly agree on several common-input parameters:
the family S of committable domains, for simplicity assumed hereafter to be the family of
bit-strings, indexed by bit-string length ` (639639); the security parameters (computational and
statistical) (640640); the cut-and-choose parameters, with a fixed number of check and evaluation
instances (641641), and the IDA threshold t (642642), consistent with the statistical security goal
(643643), defining the number t of fragments needed to decode a string that has been split with
a t-out-of-e erasure encoding; the IDA scheme (644644), containing a split algorithm and a
recover algorithm, the former one to be used by both parties, the later one only needed for
simulation; an authenticator mode (645645) (in Figure C.1C.1, the strict mode corresponds to
the description given in §4.3.14.3.1) and other respective parameters (a function specification
Auth, a respective output length `a, and the nonce length `z) (646646); a pair of globally known
PRG and CR-Hash functions and respective parameters (seed length and hash output),
adequate to the cryptographic security parameter (647647). There is thus an auxiliary tuple
auxi that can be defined with the implicit common input (in practice it might be proposed
by PS and accepted by PR, or agreed upon in a higher level of a larger protocol), containing:
security parameters, cut-and-choose parameters, IDA parameters,authenticator parameters,
cryptographic primitives and respective parameters (648648). For the purpose of the subsequent
specification, the auxiliary parameters are considered implicit in the protocol specification.


Abbreviations. Each execution defines a particular execution context ctx, composed of
a session and sub-session identifiers, and an identifier of the sender and receiver parties (649649),
to be used as common context of messages communicated between the two parties. Each call
to an underlying ideal commitment functionality will use an adjusted message context that
will have the same session identifier but an adjusted (and unique) sub-session identifier (650650).


Extractable commit phase (PS commits a string to PR).


• Activation. The sender (PS) is activated to initialize the protocol, by receiving from its
upper environment a message with identifier commit, contextualized, and indicating the
length ` of the string to commit and the respective string m (651651).


• 1.a. Commit instances. PS selects n random seeds (652652) (e.g., 119) and uses FX to
commit individually to each of them (653653,654654). PS uses the PRG to expand each seed sj
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Setup parameters.
S = {{0,1}` ∶ ` ∈ N} (committable domains) (639639)


κ ≡ 1κ, σ ≡ 1σ (security parameters) (640640)
(v, e) (C&C parameters) — let n ≡ e + v (641641)
t (IDA threshold) — let b ≡ e − t + 1 (642642)


(with ((n − b)!e!) / ((e − b)!n!) > 2σ) (643643)
IDA ≡ (IDASplit, IDARecover) (algorithms) (644644)


AuthMode ∈ {strict,loose} (645645)
AuthParams = (AuthMode,Auth, `a`a, `z`z) (646646)
Prims = ((PRG, κPRG), (CR-Hash, κHash)) (647647)
auxi = ((κ,σ), (v, e, t), IDA,AuthParams,Prims) (648648)


Abbreviations.
ctx ≡ (sid, cid,PS,PR) (649649)
ctx(⋅⋅⋅) ≡ (sid, (cid, ⋅ ⋅ ⋅),PS,PR) (650650)


Phase 1. Ext-Commit phase.
inputS → PS ∶ (commit, ctx, `,m ∈ {0,1}`) (651651)
(1.a. Commit instances.)
For j ∈ [n] ∶


PS ∶ sj ←
$
{0,1}κPRG (seed) (652652)


PS → FX ∶ (commit, ctx(X,j), κPRG, sj) (653653)
FX → PR ∶ (receipt, ctx(X,j), κPRG) (654654)
PS ∶ s


′
j = PRG[sj](⌈`/t⌉ + `a) (655655)


PS ∶ h = CR-Hash (⟨s′j ∶ j ∈ [n]⟩) (global hash) (656656)
PS → FQ ∶ (commit, ctx(Q,0), κHash, h) (657657)
FQ → PR ∶ (receipt, ctx(Q,0), κHash) (658658)
If AuthMode =? strict, then:


PS ∶ h
′
= CR-Hash (m) (message hash) (659659)


PS → FQ ∶ (commit, ctx(Q,1), κHash, h′) (660660)
FQ → PR ∶ (receipt, ctx(Q,1), κHash) (661661)


(1.b. Cut-and-choose. )
PR ∶ (JV , JE)←


$ PARTITIONS[v, e](n) (662662)
PR ∶ z ←


$ {0,1}`z (nonce) (663663)
PR → PS ∶ (c&c-partition, ctx, (JV , JE, z)) (664664)


(1.c. Open check seeds.)
PS → FX ∶ (open-ask, ctx(X,j)) ∶ j ∈ JV (665665)
FX → PR ∶ (open-send, ctx(X,j)), sj) ∶ j ∈ JV (666666)


(1.d. Send eval maskings.)
PS ∶ ⟨m


′
j ∶ j ∈ JE⟩← IDASplit[t, JE] (m) (667667)


PS ∶ aj = Authz (m
′
j) ∶ j ∈ JE (authenticators) (668668)


PS ∶ tj = (m′
j ∣∣aj)⊕ s


′
j ∶ j ∈ JE (maskings) (669669)


PS → PR ∶ (maskings, ctx, `, ⟨tj ∶ j ∈ JE⟩) (670670)
PR ∶ ↓ (receipt, ctx, `) (671671)


Phase 2. Equiv-Open phase.
inputS → PS ∶ (open-ask, ctx) (672672)


(2.a. Reveal message and open global hash.)
PS → PR ∶ (reveal, ctx,m) (673673)
PS → FQ ∶ (open-ask, ctx(Q,0)) (674674)
FQ → PR ∶ (open-send, ctx(Q,0), h) (675675)
If AuthMode =? strict, then:


PS → FQ ∶ (open-ask, ctx(Q,1)) (676676)
FQ → PR ∶ (open-send, ctx(Q,1), h′) (677677)
PR ∶ If CR-Hash(m) ≠ h′ then ↓ (abort, ctx) (678678)


(2.b. Obtain check masks.)
PR ∶ s′j = PRG[sj](⌈∣m∣/t⌉ + `a) ∶ j ∈ JV (679679)


(2.c. Obtain eval masks.)
PR ∶ ⟨m′


j ∶ j ∈ JE⟩← IDASplit[t, JE] (m) (680680)
PR ∶ aj = Authz (m


′
j) ∶ j ∈ JE (authenticators) (681681)


PR ∶ s′j = tj ⊕ (m′
j ∣∣aj) ∶ j ∈ JE (tentative masks) (682682)


(2.d. Verify global hash.)
PR ∶ If CR-Hash(⟨s′j ∶ j ∈ [n]⟩) ≠ h ∶ (683683)


then PR → outputR ∶ (abort, ctx) (684684)
else PR → outputR ∶ (open-send, ctx,m) (685685)


Figure C.1: ExtExcIfAbExtExcIfAb&Equiv BitStringCom scheme in (FX,FQ)-hybrid world.


into a string s′j with a reduced-length (equal to the target length ` divided by the IDA
recovery-threshold t) extended by the authenticator-length `a (655655). PS calculates the
global hash h as the CR-hash of the concatenation of all seed-expansions (656656). PS then
uses FQ to commit to the hash h (657657,658658). If in the strict mode, PS also computes the
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hash of the string m (659659) and then uses FQ to commit to said hash (660660,661661).
The reduced-length mentioned above assumes for simplicity that the IDA split operation
produces optimal size fragments. In practice it is possible to use an IDA that produces
slightly larger fragments, though not significantly affecting the communication rate. For
simplicity this eventual contribution is here ignored.


• 1.b. Cut-and-choose. PR samples a random cut-and-choose partition (662662), with the
parametrized number v of check instances (e.g., 73) and eval instances (e.g., 46), and also
samples a random nonce z (663663) (of appropriate length `z) and sends them both to PS (664664).


• 1.c. Open check seeds. PS asks FX to open to PR the seeds of check instances (but
not those of evaluation instances) (665665,666666).


• 1.d. Send eval maskings. PS uses the threshold IDA to split the string m being
committed into as many fragments m′


j as the number of evaluation instances (667667), each
with a reduced length. Then, PS computes the authenticator aj of each fragment m′


j as an
appropriate function Authz indexed by the nonce (668668); PS then uses the extended mask
s′j to compute the masking tj of the fragment concatenated with the authenticator (669669).
Finally, PS sends to PR the maskings associated with all evaluation instances (670670), and
also informing the committed string length `. For simplicity the syntactical checks required
by PR are left implicit (e.g., confirming the lengths of all elements in received messages).
Finalizing the commit phase, PR outputs a contextualized receipt message to her upper
environment, also including the length ` of the committed string (671671). PR memorizes
the eval maskings and the check seeds needed for the open phase of the same context ctx.


Equivocable open phase (PS opens a string to PR).


• 2.a. Reveal committed string. Upon being initialized to the open phase (672672), PS


sends the string m to PR (673673). PS asks FQ to open to PR the previously committed
global hash h (674674,675675). If using the strict authenticator mode, then PS also asks FQ to
open to PR the hash h′ of the string (676676,677677), and PR verifies that the received hash h′


is consistent with the hash of the received string m (678678). If not, PR aborts; otherwise it
proceeds.


• 2.b. Obtain check masks. PR locally computes the PRG-expansion (with the appro-
priate length) of each check seed (679679).


• 2.c. Obtain evaluation masks. PR uses the IDA to obtain the same fragments that an
honest PS would (680680). For each fragmentm′


j , PR computes an authenticator aj in the same
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way that an honest PS would have, based on the fragment and the nonce (681681). Then, PR


concatenates the tentative fragment m′
j and the tentative authenticator aj, and computes


the XOR combination of the resulting string with the extended masking tj , thus obtaining
a tentative extended mask s′j, supposedly used by PS to produce the masking (682682).


• 2.d. Verify global hash. Then, PR verifies that the global hash of all concatenated
masks is equal to the global hash h opened by PS (683683). If some verification fails, then
PR aborts (684684), otherwise it accepts the string of PS as a correct opening (685685).


Complexity of the protocol. Asymptotically as the target length of the strings being
committed increases: the open phase of the protocol has communication rate 1; for each
fixed value of maximum allowed communication expansion rate in the commit phase, there
is a cut-and-choose (n, e) and erasure-code parametrization (e, t) that achieves a respective
allowed communication rate e/t, requiring each phase of FQ and FX to be invoked for short
bit-strings only a number of times that is independent of the polynomial target length.


C.1.2 Simulatability analysis


Proving security amounts to show, without rewinding in the simulation, that the new
commitment scheme is Ext&Equiv, i.e., the commit phase is extractable (Ext) and the
open phase is equivocable (Equiv). The analysis assumes that the PRG and CR-Hash are
cryptographically secure and that the underlying commitments of seeds and hashes are
mediated (in a hybrid model) by respective ideal functionalities (FX, FQ). The proof of
security is accomplished by defining simulators for the cases of each corrupted party and
showing that with overwhelming probability in the statistical security parameter they induced
a probability distribution of outputs that is computationally indistinguishable (with respect
to the computational security parameter) from the one in the ideal world.


Theorem 2 (security of protocol). Assuming a cryptographically secure PRG, CR-Hash
and authenticator, the protocol described in Figure C.1C.1 securely emulates, with extractability
of type ExtExcIfAbExtExcIfAb and with error negligible in the statistical security parameter σ (Table 4.14.1),
the ideal functionality FMComFMCom (with abort) of long bit-string commitments in the (FX,FQ)-
hybrid model, in the presence of static and computationally active adversaries.


Adjustments to ExtPostExtPost and and ExtPreExtPre extractability are discussed in §C.1.3C.1.3.
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C.1.2.1 Extractability — simulatability with corrupted P∗
S.


The extractor-simulator SS∗Ext initiates a simulation, with black-box access to the real adversary
A, letting it believe that it is in the real world controlling P∗


S.


Simulation of the commit phase. Once the protocol starts, SS∗Ext (impersonating the
honest PR and also the ideal Ext-Com FX in the simulated execution) extracts the eval seeds
(or all seeds) committed by P∗


S (653653) and later receives from P∗
S the check seeds and the


maskings of authenticated fragments of the string being committed (670670). SS∗Ext then unmasks
each eval masking, using an XOR with the PRG-expansion of the respective extracted eval
seed, obtaining from each a respective tentative authenticated fragment µ′j. SS


∗
Ext verifies


whether the authentication is correct or not, thus identifying which instances are good (i.e.,
with respect to the seed-based unmasking). (The security of the described authenticator is
statistically derived from the properties of a universal hash family.)


If the number of good evaluation fragments is at least t (the recovery threshold) then
SS


∗
Ext uses them (any subset of t good fragments) as input (along with respective indices) to


the IDA recovery algorithm to reconstruct a tentative committed string and accepts it as
the assumed extracted string. Otherwise, if there are fewer than t good fragments, then SS∗Ext
assumes that this is a case of delayed abort by P∗


S, and decides an arbitrary string (e.g., all
zeros, or a random string) of appropriate length as the (fake) extracted string. For example,
in the trivial case where P∗


S would build all check and evaluation instances as bad, SS∗Ext in
the ideal world would still commit to an arbitrary valid value, but later in the open phase
it would never let the ideal commitment functionality FMComFMCom open the value to the honest
PR. Finally, in either of the two above cases (delayed abort or not), SS∗Ext (in the role of the
ideal P̂∗


S) commits in the ideal world to the extracted string, by sending a respective commit


message to the ideal functionality FMComFMCom in the ideal world, thus committing to it.


For the purpose of the ExtExcIfAb property, it is not problematic that S uses any subset
of eval masks labeled as good. Even if for any of those instances the malicious P∗


S has used
a difference mask, the authenticator mechanism guarantees that P∗


S will then fail to induce
a successful opening, because the respective instance will lead PR to calculate in the open
phase a different mask that will not be correctly authenticated. As described ahead in §C.1.3C.1.3,
the simulation procedure changes in case of intending to achieve ExtPostExtPost, and if using an
ExtPostExtPost&Equiv Com for the global hash.
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Simulation of the open phase. Once P∗
S opens the committed string to PR in the


simulated execution (673673–666666), SS∗Ext checks that the opening is successful (685685) and that it
corresponds to the previously extracted string. If the opening is unsuccessful, e.g., if the
global hash verification fails (683683), then SS∗Ext emulates an abort, leading FMComFMCom to send a
contextualized abort message to the ideal PR. If (with negligible probability) the opening
is successful but different from the string previously extracted by SS∗Ext, then SS


∗
Ext outputs


Fail (i.e., in this case the simulation fails). Otherwise, if the opening of the expected string
is successful in the simulated execution, then S sends a respective open-ask message to the
ideal FMComFMCom in the ideal world, thus leading the ideal P̂R to receive said string.


Analysis of the simulation (statistical security). In the commit phase, S makes a
perfect emulation of the abort distribution, since it only aborts early in the ideal world
(leading the ideal PR to abort) if and only if P∗


S also leads SS∗Ext[PR] to abort in the simulated
execution. Thus, distinguishability (by the environment) between real and ideal world might
only happen if P∗


S is able to successfully open a string different from the one SS∗Ext has extracted.
However, the probability of such event can be made negligible small in the statistical security
parameter, for appropriate cut-and-choose and IDA parameters.


Based on the security of the authenticator mechanism, P∗
S cannot lead SS∗Ext to believe


that, with respect to consistency between committed seed and openable fragment, a bad
fragment is good, except with negligible probability in the length of the nonce. Also, based
on the default binding property of all underlying commitments (actually, on the binding
of the respective ideal functionalities), P∗


S is not able to equivocate any of the Ext-Com or
Equiv-Com. Now, a malicious successful opening by P∗


S requires that all check instances
are good, and that the number of bad evaluation instances is (at least e − t + 1) such that
the number of good evaluation instances is less than the required threshold t of recovery.
Examples of parameters for the negligible probability of this event are shown in Table C.1C.1.


Nuances of extractability. The extractability of the described Com scheme is of type
ExtExcIfAbExtExcIfAb, as defined in §4.2.24.2.2. This is because SS∗Ext can with noticeable probability miss
detection of a delayed abort, namely always if a malicious P∗


S commits to an incorrect global
hash but otherwise builds correct maskings of a string based on the PRG-expansion of the eval
seeds. The overall scheme can be transformed into an ExtPostExtPost-and-Equiv Com scheme if the
Equiv-Com of the hash is replaced by an ExtPostExtPost-and-Equiv (or ExtPreExtPre-and-Equiv) Com, and
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assuming that the Ext-Coms of seeds are also ExtPostExtPost (or ExtPreExtPre). In particular, this is happens
if the hybrid model is adjusted from (FX,FQ) to (FX,FXQ), i.e., allowing S to impersonate FXQ
when PS uses it to commit to the global hash, thus allowing S to extract the global hash during
the commit phase. The global hash can then be used to validate in advance whether a tentative
extracted string is correct or is in fact a delayed abort. Such simulation is described in more
detail in §C.1.3C.1.3. A further adjustment to allow pre-verifiable extraction is also detailed therein.


C.1.2.2 Equivocability — simulatability with corrupted P∗
R.


The equivocator-simulator SR∗
Equiv initiates a simulation, with black-box access to A, letting it


believe that it is in the real world controlling P∗
R.


Simulation of the commit phase. In the ideal world, SR∗
Equiv in the role of P̂∗


R waits to
receive from FMComFMCom a receipt of commitment initiated by the ideal P̂S. Then, in the role of
PS in the simulated execution, SR∗


Equiv plays the whole commit phase to commit an arbitrary
string to P∗


R. This involves keeping state about the the Equiv-Com of the global hash of
masks (658658), and possibly (i.e., in the strict authenticator mode) about the Equiv-Com of
the hash of the committed string (661661), about the cut-and-choose partition and the nonce,
and about the maskings of authenticated fragments (670670). If P∗


R aborts at any point before
the end of the overall commit phase, then SR∗


Equiv emulates an abort, i.e., in the role of P̂∗
R


in the ideal world sends an abort message to FMComFMCom, thus making it ignore further actions
related with this commitment sub-session.


Simulation of the open phase. SR∗
Equiv waits in the ideal world to receive from FMComFMCom the


opening of the target string (i.e., the one initially committed by the ideal P̂S). Then, SR
∗


Equiv,
in the role of PS and also in the role of FQ in the simulated execution, sends to P∗


R the target
string (673673), instead of the previously committed arbitrary string. If in the strict mode, then
SR


∗
Equiv in the role of FQ equivocates the opening of the needed hash of the string (677677). Then,
SR


∗
Equiv computes what are the needed alternative eval masks s′j to obtain (via unmasking of the


previously sent maskings tj) the target string received from FMComFMCom. This is done in the exact
same way that PR does, as follows: SR∗


Equiv computes the string fragments (680680), then their
authenticators (681681), and then takes the XOR with the maskings tj (682682) that were transmitted
in the commit phase. Finally, SR∗


Equiv computes the global hash (as in (656656), but now using the
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updated masks), and then impersonates FQ and equivocates the opening of said global hash
(675675). This allows P∗


R to perform all verifications as if SR∗
Equiv was in fact an honest PS. Finally,


SR
∗


Equiv outputs in the ideal world whatever P∗
R outputs in the simulated execution (685685).


Analysis of the simulation. The only difference between a real protocol execution and
the simulated execution is that SR∗


Equiv commits to an arbitrary string and later equivocates
it. However, detection by P∗


R of equivocation would require differentiating the random
masks from seed-expansions, which is contrary to the pseudo-randomness assumption of
the PRG. Thus, in case of corrupted P∗


R the distributions between real and ideal world are
computationally indistinguishable.


C.1.3 Achieving post- and pre-verifiable extraction


The main difference between ExtExcIfAbExtExcIfAb and ExtPostExtPost extractability is that in the former the
simulator is not guaranteed an overwhelming probability of distinguishing a delayed-abort
commitment from an openable commitment. Interestingly, the difference does not affect the
emulatability of the ideal two-party commitment functionality in the static corruption model.
First, S extracts with overwhelming probability any correct value that after a commit phase
can be opened successfully with noticeable probability. Second, when no valid value can be
opened, the revealing of a delayed abort by a malicious PS leads an honest PR to an abort


message identical to the case of a regular abort in the open phase. Correspondingly, after
a delayed abort by PS in a simulated execution, the ideal P̂R in the ideal world will still
perform a regular abort, regardless of the value committed by S in the ideal world. This
dissertation does not explore the adaptive corruption model, where a secure commitment
scheme would have to satisfy a more stringent notion of simulatability.


Enabling post-verifiable extractability. As already mentionedalready mentioned, the protocol from
§C.1.1C.1.1 (Fig. C.1C.1) can be easily adapted to allow extractability of the post-verifiable type
(ExtPostExtPost), by replacing the Equiv-Com of the global hash by an ExtPost-and-Equiv Com.
Even though this involves using an Ext&Equiv Com for a short string to enable another
Ext&Equiv Com for a larger string, it allows increasing the size of the committable domain,
i.e., what may be called a commitment extension. In other words, an ExtPost-and-Equiv Com
of an arbitrarily (polynomially) large string can be obtained from an ExtPost-and-Equiv Com
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of a short hash and a few ExtPost Coms of short seeds.


In the simulated commit phase, S extracts the eval seeds sj (653653) and the global hash h
(657657) (and possibly also the hash h′ of the committed string (660660)). If any of those Coms (of a
seed or of the global hash) is detected as a case of delayed abort, then S immediately decides
that the overall commit phase is in the state of delayed abort. Also in the commit phase,
S receives from P∗


S the nonce z (664664) needed to calculate authenticators, the check seeds s′j
(666666) and the maskings tj (670670) (of authenticated fragments (m′


j ∣∣aj) of the string m being
committed). S uses the PRG-expansion s′j of each eval seed to unmask each eval masking
tj and obtain a respective tentative authenticated fragment µ′j ∣∣αj. S verifies whether the
tentative authenticator αj is valid; if yes, then the instance is marked as good (i.e., with
respect to the extracted seed).


If there are fewer than t good fragments, then SS∗Ext decides that this is a case of delayed
abort by P∗


S. Otherwise, if the number of good evaluation fragments is at least t (the recovery
threshold), SS∗Ext uses the tentative fragments µ′j (any subset with t tentative fragments marked
as good) as input (along with respective indices) to the IDA recovery algorithm, to calculate
a tentative committed string µ. S uses the tentative string as input to the (deterministic)
IDA split algorithm, thus obtaining one new tentative fragment µ′′j for each eval instance.
S then calculates the authenticator α′′j of each IDA-outputted fragment µ′′j (namely for the
instances that had not been used to recover the string), and uses the respective authenticated
fragments (i.e., concatenation of fragment and authenticator) to calculate the tentative mask
σ′′j corresponding to the respective masking tj. Finally, in possession of all these new eval
tentative masks σ′′j , and also using the check masks s′j obtained as the PRG expansion of
the seeds learned in the commit phase, S concatenates (with an appropriate ordering) all
check and tentative eval masks and calculates a respective tentative global hash η. In the
strict authenticator mode, SS∗Ext also computes the hash η′ of the tentative extracted string
µ. If the calculated tentative hash(es) is(are both) the same as the extracted hash(es) (i.e., if
h = µ and h′ = µ′), then S accepts the extracted string µ as the correctly committed string
m. Otherwise PS decides that this is a delayed abort, because any successful opening by PS


would require that all eval masks used as pre-image of the global hash are inconsistent with
the respective eval seeds.


If S detected a delayed abort during the described simulation, then it decides an arbitrary
string (e.g., all zeros, or a random string) of appropriate length as the (fake) extracted string.


Page 358 of 376







Ph.D. dissertation: The forge-and-lose technique and other contributions to S2PC-with-Coms (2016-Dec-27)


For example, in the trivial case where P∗
S would build all check and evaluation instances as


bad, SS∗Ext in the ideal world would still commit to a fake value, but later in the open phase it
would never let the ideal functionality open the value to the honest PR.


In summary, the commitment is decided as a delayed abort case if any of the following
happens: (i) SS∗Ext detects any of the underlying commitments (sj) of seeds or (h, h′) of
hash(es) as a delayed abort; (ii) SS∗Ext is not able to calculate a valid pre-image (s′1∣∣...∣∣s′n)
of the extracted global hash h, either because it does not find at least t well authenticated
fragments (µ′j ∣∣αj) with respect to the extracted seeds, or because the concatenation of eval
masks s′′j required to successfully unmask the calculated tentative string µ (recovered from
enough well authenticated fragments) and check masks s′j obtained as PRG expansion of
the extracted seeds is not a valid pre-image of the global hash h; (iii) (if in the strict
authenticator mode), the tentative string µ calculated by SS∗Ext is not a pre-image of the
respective extracted hash h′.


If SS∗Ext decides that PS has performed a delayed abort, then any successful opening by
PS would either require breaking collision resistance of the CR-Hash (or the binding of
commitments), or be lucky to have anticipated the position of enough (n − t + 1) evaluation
instances, to allow undetected construction of a sufficient number of bad instances to prevent
reconstruction of the correct string. The two first conditions are assumed infeasible by
cryptographic assumptions; the third condition is statistically prevented (i.e., except with
negligible probability) with appropriate cut-and-choose and erasure-code threshold.


Remark C.1 (Authenticators vs. ExtPost&Equiv-Coms of hashes). In the scheme
just described, based on an ExtPost&Equiv Com of a global hash (§C.1.3C.1.3), the authenticators
are essential to enable an ExtPost type of extractability, i.e., to ensure detection of delayed
abort cases. Conversely, the scheme hinted in Section 4.34.3, with procedure depicted in Fig. 4.34.3
and with simulation depicted in Fig. 4.44.4 (case B), achieves correct ExtPost extraction without
using authenticators, and rather using one ExtPost&Equiv-Com (of the hash of each mask)
per evaluation instance. Indeed there is a tradeoff: when using one ExtPost&Equiv-Com per
mask (to commit its hash), the Com serves as an authenticator.


Enabling pre-verifiable extractability. A post-verifiable extractable (ExtPostExtPost) Com
scheme can be transformed into a respective pre-verifiable (ExtPostExtPost) scheme by defining that
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a delayed abort is equal to a conventionalized value in the domain of committable values,
e.g., the all-zeros string in the case of a scheme for bit-strings of a given length, thus making
PR accept said value, instead of aborting, in case PS proves that a delayed abort took place.
The opening of the conventionalized value via the “delayed abort” can be performed by
opening the hash(es) and the eval seeds, thus giving to PR the same power as SS∗Ext had
during the commit phase, i.e., with respect to deciding whether or not the commitment was
a delayed abort. While the described opening procedure is not equivocable, this commitment
would never be produced by a simulator SR∗


Equiv impersonating an honest PS, in a simulated
execution with access to a possibly malicious P∗


R. Complementary, upon the opening of the
conventionalized string, the output of an honest PR does not reveal whether the opening was
regular or via the delayed abort path, and thus the emulation in the ideal world works well
by asking the ideal commitment functionality to simply commit the conventionalized value.


Remark C.2 (Comparison with non-malleability). A notion somewhat similar to
post-verifiable extraction can be found in an “a-posteriori verifiable proof of knowledge,” e.g.,
used by Fischlin in a rewinding setting to devise Ext-Coms of sub-linear size, non-malleable
with respect to opening (NM-wrt-opening) [FF09FF09] — there, the proof is only validated in the
open phase, i.e., allowing an incorrect proof to be given in the commit phase. However, as a
possible property of a real commitment scheme (not necessarily simulatable), NM-wrt-opening
is incomparable to ExtPost extractability, in the sense that neither implies the other. For
example, if the ExtPost scheme described in §C.1.3C.1.3 is instantiated by replacing the underlying
ideal Com functionalities (applied to the seeds and the hash) by (i) malleable (e.g., including
removing the dependency on the context ctx) or (ii) NM-wrt-opening real Com schemes (not
necessarily simulatable) — ExtPostExtPost-Coms for seeds and ExtPostExtPost&Equiv-Coms for hashes —
then the overall Com scheme respectively becomes (i) malleable or (ii) NM-wrt-opening. Com-
plementary, an ExtExcIfAb (i.e., not ExtPost) Com scheme may also be malleable (obvious) or
NM-wrt-opening (e.g., a Com scheme defined as the nested composition of a NM-wrt-opening
Com of an ExtExcIfAb Com).


In the constructions in this dissertation, it is the inclusion of the execution context ctx
(which includes the identities of sender and receiver, the session identifier and an unique
sub-session identifier), as part of the input of the commit and open phases, that ensures NM-
wrt-to opening and/or NM-wrt-commitment, namely preventing the success of replay attacks.
For example, a simple replay of a real commitment, by the same sender or a different sender,
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would not be accepted by an honest receiver — the ideal underlying functionalities confirm
the source and destination of each message and ignore the repetition of execution contexts;
the defined real commitment scheme assumes (often implicitly) a way to ensure uniqueness of
the execution context, and relates the execution context with the actual commitment value
in a non-trivial way (e.g, with the help of a NPRP, as in the construction in §C.1.4C.1.4).


C.1.4 Non-interactive Ext&Equiv-Com


The non-interactive Com scheme alluded in Remark 4.44.4 is described in Figure C.2C.2. In-
terestingly, the use of real non-interactive Com schemes allows avoiding the authenticator
mechanism, by taking advantage of the explicit value of commitments, which did not exist
when commitments were mediated through ideal commitment functionalities. In the new
scheme, which uses one Equiv-Com and one Ext-Com per instance of the cut-and-choose, there
is as usual one random seed for each instance, and a respective Ext-Com of the seed, but then
(as an innovation in comparison with the protocol in the hybrid model), the Equiv-Com of the
respective hash of the mask is produced using the same seed as “randomness.” This ensures
that for a good instance (i.e., one that is validated if selected for check) the extraction of the
seed actually also allows extraction of the Equiv-Com of the hash of the mask, thus providing
the needed verifiability that would otherwise be provided by an authenticator mechanism.


Remark C.3. On simultaneous extractability and equivocability. An interesting
feature of this non-interactive instantiation is that the actual commitment sent in the commit
phase is simultaneously extractable and equivocable, for a simulator that knows the trapdoor.
This is in contrast with other approaches (e.g., mixed commitments [DN02DN02]) where the actual
CRS changes (though indistinguishable to a real party) with the type of corruption being
simulated, in order to either allow extraction or allow equivocation. The property of a
CRS allowing simultaneous extraction and equivocation of the same commitment intuitively
appears to be interesting to consider for protocols designed for adaptive security. However,
such analysis is outside of the scope of the static model considered in this dissertation, and it
is worth recalling that the protocols herein are not proven secure in the adaptive model.


Setup parameters. As common setup input, the parties agree on the family S of commit-
table domains, hereafter assumed to be the family of sets of bit-strings of indexed length (686686),
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Setup parameters.
S = {{0,1}` ∶ ` ∈ N} (committable domains) (686686)


κ ≡ 1κ, σ ≡ 1σ (security parameters) (687687)
(v, e) (C&C parameters) — let n ≡ v + e (688688)
Π ≡ PARTITIONS[v, e]([n]) (689689)
t (IDA threshold) — let b = e − t + 1 (690690)


(with ((n − b)!e!) / ((e − b)!n!) > 2σ) (691691)


IDA ≡ (IDASplit, IDARecover) (algorithms) (692692)
Prims = (PRG, κPRG), (CR-Hash, κHash) (693693)
CRS (common reference string) (694694)


Abbreviations.
auxi = ((κ,σ), (v, e, t), IDA,Prims,CRS) (695695)
ctx = (sid, cid,PS,PR) (696696)
ctx’ = (ctx,auxi) (697697)


Phase 1. Ext-Commit phase.
inputS → PS ∶ (commit, ctx,auxi, `,m ∈ {0,1}`) (698698)
(1.a. Commit instances.) PS ∶ For j ∈ [n] ∶


sj ←
$
{0,1}κPRG (seed) (699699)


sj ←
$ Gen$ForCom (C


(CRS)
Ext ; sj) (700700)


sj = C
(CRS)
Ext (sj ; sj) (Ext-Com of seed) (701701)


s′j = PRGenBitString[sj][1](⌈`/t⌉) (mask) (702702)
hj = CR-Hash (ctx’, s′j) (hash of mask) (703703)


hj = PRGen$ForCom[sj][2] (C (CRS)
Equiv ;hj) (704704)


hj = C
(CRS)
Equiv (hj ; hj) (Equiv-Com of hash) (705705)


(1.b. Cut-and-choose.) PS ∶


H = CR-Hash (⟨(sj , hj) ∶ j ∈ [n]⟩) (global hash)
(706706)


(JV , JE) = NPRO[CRS,H](Π) (707707)


(1.c. String masking.)


PS ∶ ⟨m
′
j ∶ j ∈ JE⟩← IDASplit[t, JE] (m) (708708)


PS ∶ tj =m
′
j ⊕ s


′
j ∶ j ∈ JE (maskings) (709709)


PS ∶ RV = ⟨(sj , sj) ∶ j ∈ JV ⟩ (check seeds) (710710)
PS ∶ RE = ⟨(sj , hj , tj) ∶ j ∈ JE⟩ (eval commits) (711711)
PS ∶m ≡ ((JV , JE), (RV ,RE)) (712712)
PS → PR ∶ (commit, ctx, `,m) (713713)


(1.d. Commitment verification.) PR ∶


((JV , JE), (RV ,RE)) ≡m (as (712712)) (714714)
⟨(sj , hj , tj) ∶ j ∈ JE⟩ ≡ RE (as (711711)) (715715)
⟨(sj , sj) ∶ j ∈ JV ⟩ ≡ RV (as (710710)) (716716)
Get (sj , hj) ∶ j ∈ JV (steps (701701–705705)) (717717)
H = CR-Hash (⟨(sj , hj) ∶ j ∈ [n]⟩) (as (706706)) (718718)
If NPRO [H] (Π) ≠ (JV , JE), (719719)


then ↓ (abort, ctx) (720720)
else ↓ (receipt, ctx, `) (721721)


Phase 2. Equiv-Open phase.
inputS → PS ∶ (open-ask, ctx) (722722)


(2.a. Reveal message and open hashes.)
PS → PR ∶ (open, ctx, (m, ⟨hj ∶ j ∈ JE⟩)) (723723)
(2.b. Verify opening.)
PR ∶ ⟨m′


j ∶ j ∈ JE⟩← IDASplit[t, JE] (m) (724724)


For j ∈ JE ∶


PR ∶ s′j = tj ⊕m
′
j (tentative masks) (725725)


PR ∶ hj = CR-Hash (ctx′, s′j) (tentative hashes)
(726726)


PR ∶ If ∨j∈JEC
(CRS)
Equiv (hj ; hj) ≠ hj , (see (711711,723723))


(727727)
then ↓ (abort, ctx) (728728)
else ↓ (open-send, ctx,m) (729729)


Figure C.2: Non-interactive rate-e/t ExtExcIfAbExtExcIfAb&Equiv BitStringCom scheme.


the computational and statistical security parameters (κ,σ) (687687), the cut-and-choose param-
eters (v, e) (688688), which define the set Π of possible cut-and-choose partitions (689689), an IDA
threshold t (690690), which defines the number b of bad instances in an optimal attack, and which
overall must be consistent with the statistical security goal (691691). The IDA scheme is defined
by a Split algorithm that splits strings into fragments, and a Recover algorithm that allows
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decoding (indexed) sets with enough number of correct fragments into the respective original
strings (692692) (the parties will not need to use the Recover algorithm, but it needs to be defined
to allow extractability by a simulator). The needed PRG and CR-Hash primitives are globally
defined, along with respective input and output lengths consistent with the computations secu-
rity parameter κ (693693). As a fundamental difference from the interactive protocol described in
a (FX,FQ)-hybrid setting with ideal commitments (see Figure C.1C.1), the current non-interactive
protocol is based on a common reference string (CRS) that defines the parameters of the
underlying real non-interactive Ext-Coms and non-interactive Equiv-Coms (694694), and allowing
respective Ext and Equiv properties to a simulator that is able to decide the CRS. This current
CRS-based non-interactive protocol does not need to use the authenticator mechanism.


Abbreviations. The parties are aware of all auxiliary parameters mentioned above, knowing
how to parse it deterministically into a tuple auxi (695695). Each execution is contextualized
with a tuple ctx that contains the session and subsession identifiers, and the identity of the
sender and receiver (696696). By definition, the extended context is defined as the pair composed
of the basic context ctx and the tuple auxi of auxiliary parameters (697697).


Commit phase. The protocol is initialized when the environment activates PS with an
input tuple composed of a message identifier commit for initiating a commitment, an adequate
execution context ctx, a length ` (i.e., the index that defines the committable domain), and
a respective bit-string m to be committed (698698). (All other required parameters — auxi —
remain implicit and assumed known by both parties; otherwise they would be transmitted or
negotiated in a first step.)


• 1.a. Commit instances. For each instance j ∈ [n] of the cut-and-choose, PS proceeds
as follows: selects a random PRG seed sj (699699), uses it to pseudo-randomly generate
“randomness” sj suitable to produce an Ext-Com of the seed (700700), and then uses the
generated randomnesses to generate an Ext-Com sj of the seed (701701). Then, PS calculates
the pseudo-random expansion s′j of the seed into a mask with a reduced length equal to
the least integer not less than the string length ` divided by the IDA threshold t, i.e.,
the length necessary to mask a fragment (702702). PS calculates the CR-Hash hj of the pair
composed of the extended context ctx’ and the mask s′j (703703). (The use of the extended
context in the pre-image induces non-malleability of the overall scheme, i.e., preventing a
successful reuse in executions with different contexts.) Then, PS uses the initial seed sj
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to pseudo-randomly generate “randomness” hj suitable for an Equiv-Com of the hash
(704704), and uses it indeed to produce an Equiv-Com hj of the hash (705705).
As already mentioned when describing the interactive scheme, for simplicity the length of
a mask is being defined for the case of using a perfectly ... erasure code. In practice the
use of an erasure code with a slight expansion in size of fragments is trivially possible, by
correspondingly increasing slight the size of masks. Here, “slightly” means an overhead
that is not relevant vs. the communication savings brought by the use of fragmentation.
It is crucial that the seed sj committed by the Ext-Com sj is also the seed used to pseudo-
randomly generate the randomness hj used to produce the Equiv-Com hj of the hash hj,
so that the extraction of the seed allows the simulator to reconstruct the Equiv-Com hj of
the hash once having a correct guess of the committed hash hj.


• 1.b. Cut-and-choose. PS computes a CR-Hash H, hereafter denoted global hash, of
the vector of pairs of instances, i.e., with each pair being composed of an Ext-Com sj


of a seed and an Equiv-Com hj of a hash (706706). PS then feeds the global hash into the
NPRO, obtaining as output a random cut-and-choose partition from the set Π of allowed
partitions (707707).


• 1.c. String masking. PS uses the IDA Split algorithm to split the committing value
m into a set of fragments mj, one for each evaluation instance, with the agreed recovery
threshold t (708708). PS computes the masking tj of each fragment m′


j by XORing it with
the respective mask s′j (709709). PS prepares a “reply” tuple RV for check instances, as
a vector of pairs, with one pair per check instance, and each pair being composed of
the seed sj and the randomness sj used to commit it (710710). PS also prepares a “reply”
tuple RE for eval commit-related elements, as a sequence of triplets, with each triplet
containing the Ext-Com s of the seed sj, the Equiv-Com hj of the hash and the masking
tj of the authenticated fragment (711711). PS then prepares the string commitment m as the
tuple containing the pair (JV , JE) of subsets that defines the cut-and-choose partition,
and the pair (RV ,RE) of “reply” tuples (712712). Finally, PS sends to PR a message with
identifier commit, containing the execution context ctx, the string length ` and the string
commitment m (713713).


• 1.d. Commitment verification. PR starts by parsing the received commitment m into
the respective expected elements (714714, 715715, 716716). It is left implicit that the necessary
syntactic verifications are performed, and if any one of them fails then PR would output an
abort (as in (720720)). Then, for each check instance (j ∈ JV ), PR repeats the initial procedure
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of an honest PS to obtain a pair with an Ext-Com sj of a seed and an Equiv-Com hj


(717717). PR joins these elements along with the ones received in the commit message with
respect to the eval instances, to reproduce a vector of pairs (i.e., a pair for each instance),
and use it as input to recompute the tentative global hash H (718718). Then, PR uses this
hash as input to the NPRO, to obtain the cut-and-choose partition from the CRS and the
Equiv-Com of the global hash (719719). If the partition is not the one in the commitment
message then PR aborts (720720); otherwise it accepts the commitment (721721).


Open phase. Upon activation to open the commitment (722722), PS sends a contextualized
open-ask message to PR, containing the committed string m and a tuple with the random-
nesses hj used to produce the Equiv-Coms hj of the hashes hj of eval instances (723723). PS


applies the IDA Split algorithm to obtain from the committed string a tuple of fragments
m′
j, one for each eval instance (724724). For each eval instance, PR uses the obtained fragment


m′
j to unmask the respective masking tj and thus obtain a tentative mask s′j (725725), which a


honest PS would have used,and then PR calculates the CR-Hash hj of the extended context
followed by the tentative mask (726726). Finally, using the randomnesses hj received from PS,
PR recomputes the Equiv-Coms hj of the hashes hj of masks (727727), and verifies that they
are equal to the Equiv-Coms received from PS in the commit phase. If some verification fails,
then PR outputs a contextualized abort message (728728); otherwise it outputs a contextualized
open-send message containing the revealed string m (729729).


Analysis. The analysis of simulatability is look-alike to the case of the interactive protocol,
except for some differences mentioned in this paragraph.


• Extractability. Instead of the previous ad-hoc authenticator mechanism, in this protocol
the verifiability of each tentative fragment is achieved by checking whether or not the seed
sj extracted from the Ext-Com sj enables recomputing the Equiv-Com hj of the hash
hj. By the binding property of commitment schemes, a correctly verified Equiv-Com hj


informs the extractor-simulator (SS∗Ext) that the respective committed hash hj is the only
one that even a malicious PS may be able to open later in the open phase. Thus, from
the maskings tj of fragments of instances for which SS∗Ext has a confirmation of the only
possible mask that may lead to a successful opening, SS∗Ext may compute the respective
unmasking, thus obtaining tentative fragments. Once SS∗Ext obtains enough good tentative
fragments, i.e., in number equal to the IDA threshold, SS∗Ext can reconstructs a tentative


Page 365 of 376







Section C.1. Simulatable commitments (2016-Dec-27)


string µ, using the IDA Recover algorithm. For the purpose of ExtExcIfAb extractability,
this tentative extracted string is enough, because it means that PS will in the open phase
either open such message or abort. The statistical security is related in the same way as
before to the cut-and-choose and IDA threshold parameters.


• Equivocability. Equivocability is directly related to the ability of equivocating the
underlying Equiv-Com of hashes. Interestingly, in this protocol the pre-image of the
NPRO can directly be an actual hash, instead of having to use a respective Equiv-Com
(as in the NIZKPs and NIZKPoKs in Appendix AA). This is because here the NPRO is
only used to prove that the commit phase was appropriately generated, and in fact the
equivocation power of a simulator (SR∗


Equiv, impersonating an honest PS, in a simulation with
access to a black-box PR) does not require building incorrect instances in the commit phase.
(Conversely, in NIZKPs and NIZKPoKs the simulator needs the ability to produce “fake”
proofs.) To equivocate, SR∗


Equiv reveals the intended string being equivocated, then calculates
what are the hashes hj of the masks that would be consistent with such string (even though
those masks might not be obtainable as PRG expansion of any seeds), and then sends
the “randomnesses” hj needed to equivocate those hashes from the respective hashes.


• Non-malleability. Non-malleability with respect to executions with other contexts is
ensured by the NPRO use, whose pre-image can be traced back, still during the commit
phase, to the particular execution context. Basically, the verification that PR makes for
check instances requires using the extended context ctx’ as pre-image to several CR-Hashes.
Even though the Ext-Coms of seeds do not use the extended context (apart from the CRS
that defines the Ext-Com scheme), they are committed and opened in the same message,
and so the malleability aspect does not apply.


• Communication complexity. The communication of the commit phase is (except
message contexts and the length of the specification of the string length): one PRG
seed, one randomness of Ext-Com, and one bit, per check instance; one Equiv-Com,
one Ext-Com, one fragment, and one bit, per eval instance. The communication of the
open phase is (except message contexts) the committed string and one randomness of
Equiv-Com per eval instance. In summary, the communication is amortized to


Table 4.14.1 in §4.3.44.3.4 has already shown cut-and-choose and IDA threshold parameters for
several goals of statistical security and asymptotic communication rate — these parameters
are applicable to the non-interactive instantiation just defined.


Table C.1C.1 complements the analaysis by comparing the parameters for 40 bits of statistical
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Table C.1: UC commitment scheme parameters for 40 bits of statistical security


A B C D E F


Maximum
allowed


expansion
rate


This work [GIKW14GIKW14] (original) Variations of [GIKW14GIKW14] 1


r = e/t ≤ rmax r′ = n/t ≤ rmax
δ = t0/(2n′)
r = n′/n


Optimal δ
r = n′/n


t0-out-of-n′ OT
r = n′/n


2


rmax ≤ 2


n = 119
v = 73
e = 46
t = 23
r′ ≈ 5.17
r = 2


n = 324
v = 87
e = 237
t = 162
r′ = 2
r ≈ 1.46


n = 826
n′ = 1652
t0 = 428


terror = ⌊399/2⌋
δ = 107/826 ≈ 0.1295


r = 2


n = 577
n′ = 1154
t0 = 339


terror = ⌊239/2⌋
δ ≈ 0.2064
r = 2


n = 352
n′ = 704
t0 = 186


terror = ⌊167/2⌋
r = 2


3


rmax ≤ 3/2


n = 193
v = 121
e = 72
t = 48
r′ ≈ 4.02
r = 1.5


n = 822
v = 144
e = 678
t = 548
r′ = 1.5
r ≈ 1.237


n = 2540
n′ = 3810
t0 = 650


terror = ⌊621/2⌋
δ = 65/762 ≈ 0.0853


r = 1.5


n = 1706
n′ = 2559
t0 = 481


terror = ⌊373/2⌋
δ ≈ 0.1379
r = 1.5


n = 1152
n′ = 1728
t0 = 296


terror = ⌊281/2⌋
r = 1.5


4


rmax ≤ 11/10


n = 775
v = 500
e = 275
t = 250
r′ = 3.1
r = 1.1


n = 12,793
v = 598


e = 12,195
t = 11,630
r′ = 1.1
r ≈ 1.0489


n = 48,200
n′ = 53,020
t0 = 2424


terror = ⌊2397/2⌋
δ = 303


13255 ≈ 0.0229
r = 1.1


n = 28,740
n′ = 31,614
t0 = 1498


terror = ⌊1377/2⌋
δ ≈ 0.03945
r = 1.1


n = 23,530
n′ = 25,883
t0 = 1185


terror = ⌊1169/2⌋
r = 1.1


5


rmax ≤ 101/100


n = 7310
v = 4684
e = 2626
t = 2600
r′ = 2.81
r = 1.01


n = 1,125,645
v = 5631


e = 1,120,014
t = 1,114,500
r′ = 1.01
r ≈ 1.00495


n = 4,474,600
n′ = 4,519,346
t0 = 22,388


terror = ⌊22,359/2⌋
δ = 5597


2,259,673 ≈ 0.00248
r = 1.01


n = 2,384,200
n′ = 2,408,042
t0 = 12,166


terror = ⌊11,677/2⌋
δ ≈ 0.004737
r = 1.01


n = 2,231,600
n′ = 2,253,916
t0 = 11,166


terror = ⌊11,151/2⌋
r = 1.01


6


Common legend for columns BB-FF. r (communication expansion rate in the commit phase, relative
to the target length, i.e., to the length of the value being committed — it is asymptotic in that it does
not account with the base short commitments (columns BB-CC) or the OT implementation (columns DD–FF).
Legend for columns BB-CC (“This work”). r′ (overall length of PRG output, divided by the target
length (at PA — it is smaller at PB, because PB does not evaluate the PRG for evaluation instances);
also the overall length of CR-Hash input, divided by the target length); n (total number of instances in
the cut-and-choose); e (number of evaluation instances = number of fragments); t (recovery threshold =
number of fragments necessary to recover message). The parameters were chosen to minimize the total
number of instances n, while satisfying the maximum allowed rate (rmax, identified in column AA), as
follows: in column BB (“r = e/t ≤ rmax”), the communication expansion rate r is limited to rmax (in this
case the PRG and the CR-Hash can be applied to bigger lengths — see r′); in column CC (t = ⌈n/r⌉), the
computation expansion rate r′ determined by the length of PRG output and CR-Hash input are limited
to rmax (and in this case the overall communication rate r is smaller). After minimizing n, the remaining
parameters were chosen to minimize e.
Legend for columns DD–FF (“[GIKW14GIKW14]” and variations). n (number of blocks before encoding, i.e.,
number of symbols in which the target message is partitioned); t0 (0-info threshold (the original notation
was t), i.e., number of blocks whose knowledge does not reveal anything about the original message); terror
(error-recovery threshold — the original notation is ∆/2); δ (probability of message passing through the
δ-Rabin-OT — the original version uses t0 = 2δn′); n′ (total number of blocks after encoding, satisfying
n′ = t + n +∆ − 1). For each value r = n′/n, the values of other parameters were chosen to minimize n. In
column FF, where the equivocator-simulator can always equivocate, statistical security depends only on
the probability that a malicious PA can guess terror + 1 positions that PB will not select in the OT.
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security with the respective parameters required by the protocol from [GIKW14GIKW14]. For
example, for a goal of asymptotic communication rate of 1.1 their protocol would require
encoding the committing value m into 53,020 blocks, and using an error correcting code
capable of correcting more than 1198 semantic errors. The table also describes parameters for
optimizations of [GIKW14GIKW14], namely by using k-out-of-n OT instead of δ-Rabin OT, reducing
the number of instances by up to a factor slightly larger than two. In the protocol in this
dissertation it would be enough to encode the committing string into 275 blocks, and allowing
recovery from 250 blocks using an erasure code. The table also shows in column CC the
parameters required to reduce the overall length of PRG output and CR-Hash input into a
corresponding proportion (r′) of the length of the string being committed.


C.1.5 Specialized Ext&Equiv Com of an exponent in DLC


In spite of the above defined Ext&Equiv Com schemes with asymptotically low communication
complexity, it is useful to define a specialized scheme for committing exponents in DLC,
which may be more practical whenever the number of exponents is very small. In the proof of
knowledge and proof of correctness approach, the commit phase is followed by a ZKPoK of the
opening, and the open phase corresponds to revealing the committed value followed by a ZKP
that it is the value committed by the commitment (e.g., see [Lin03Lin03] in a rewinding setting).


More specifically, to commit an exponent: in the commit phase, the sender sends an
ElGamal commitment of the exponent and gives a NIZKPoK of the ElGamal opening. in the
open phase, the sender reveals the committed exponent and gives a NIZKP that it is the
correct value — this can be trivially reduced to a NIZKP of ElGamal Com of 0. A set of
NIZKPs of ElGamal Com of 0 based on the same pair of generators can be blended into a
single NIZKP of a vector of ElGamal BitComs of 0 (§A.3.5A.3.5), at the cost of a single NIZKP
of ElGamal Com of 0.


C.2 Generalized multi coin-flipping


C.2.1 Ideal generalized multi coin-flipping


Figure C.3C.3 describes a successful protocol flow of generalized coin-flipping in the ideal world.
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Initial activation:
Z ∶ ctx = (sid, cfid,P1,P2) (730)
Z → P1 ∶ (gcf-in-1, ctx,G, (f1, f2)) (731)
Z → P2 ∶ (gcf-in-2, ctx,G, (f1, f2)) (732)


Phase 1:


P1 → FMCF ∶ (in-1, ctx,G, f1) (733)
FMCF → P2 ∶ (req-1, ctx,G, f1) (734)


Phase 2:


P2 → FMCF ∶ (in-2, ctx, f2) (735)
FMCF ∶ γ ←


$ G (736)


FMCF ∶ res1 = f2(γ) (737)
FMCF → P1 ∶ (out-1, ctx, f2, res1) (738)


Phase 3:


P1 → FMCF ∶ (OK, ctx) (739)
FMCF ∶ res2 = f1(γ) (740)
FMCF → P2 ∶ (out-2, ctx, res2) (741)


Final local outputs


P1 → Z ∶ (gcf-out-1, ctx, res1) (742)
P2 → Z ∶ (gcf-out-2, ctx, res2) (743)


Figure C.3: Generalized coin-flipping (into-a-well) — successful flow of ideal pro-
tocol. Legend: f1, f2 (polynomial size specifications of efficiently computable functions);
S (polynomial size specification of a set, efficiently samplable in a uniform way and with
elements representable in size polynomial in the implicit computational security parameter
κ.) Example: S = {0,1}` for some positive integer ` ∈ poly(κ); or S = Zq, with q being the
order of a finite field (i.e., a power of a prime), with ∣q∣ ∈ poly(κ), e.g., with f1 or f2 being the
function that computes an ElGamal Com γ′ of 0 using as input a respective randomness γ).


Remark C.4 (On coin-flipping images of trivial functions). If f1 and f2 are bijections,
i.e., one-to-one from G to its f -image, and if they can be efficiently inverted, then it is sufficient
to perform a regular coin-flipping (using the simple FMComFMCom in the traditional templatetraditional template), and
then let each party output the image under the function that the other party chose. Specifically,
this is applicable to the identity function.


C.2.2 GMCF based on ideal commitments


When the full generality of FGMCFFGMCF is not needed, simpler versions can be considered, with more
efficient instantiations. This subsection considers several specialized cases: one (FGMCF-1)
where only the first function (f1) is not the trivial identity function; one (FGMCF-2) where only
the second function (f2) is not the trivial identity function; one (FMCF) where both functions
(f1, f2) are the trivial identity function. The next paragraphs show how to emulate these less
general versions, in a hybrid model with access to some type of ideal multi Com functionality,
and assuming some special structure (e.g., homomorphism) in the underlying set G.
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Setup:


Z ∶ ctx = (sid, cfid,P1,P2) (744)
Z ∶ f2(⋅) ≡ ⋅ (identify function) (745)
Z → P1 ∶ (cfg-in-1, ctx,G, (f1, f2)) (746)
Z → P2 ∶ (cfg-in-2, ctx,G, (f1, f2)) (747)
P1,P2 ∶ ctx’ = (sid, (com, cfid),P1,P2) (748)


Phase 1:


P1 ∶ γ
(1)
←


$ G (749)
P1 → FGMComFGMCom ∶ (commit, ctx’,G, γ(1)) (750)
FGMComFGMCom → P2 ∶ (receipt, ctx’,G) (751)


Phase 2:
P2 → P1 ∶ (contrib-2, ctx, γ(2) ←$ G) (752)


Phase 3:
P1 ∶ f


′
1(⋅) ≡ f1(⋅ ⊕ γ


(2)
) (753)


P1 → FGMComFGMCom ∶ (open, ctx’, f ′1) (754)
FGMComFGMCom ∶ γ′ = f ′1(γ


(1)
) (755)


FGMComFGMCom → P2 ∶ (open, ctx’, (f ′1, γ′)) (756)


Final local outputs
P1 → Z ∶ (cf-out-1, ctx, γ ≡ γ(1) ⊕ γ(2)) (757)
P2 → Z ∶ (cf-out-2, ctx, γ′) (758)


Figure C.4: Hybrid protocol for GMCF-1 (FGMCF-1FGMCF-1). Legend: f (efficiently-computable
function — typically a one-way function, but may also be a trivial function, such as the identity
function (see Remark C.4C.4)); G (specification of a group set, with elements representable
in polynomial size in the implicit computational security parameter κ; e.g., G = {0,1}` for
some positive integer ` ∈ poly(κ); or G = Zq, with q being the order of a finite field (i.e., a
power of a prime), with ∣q∣ ∈ poly(κ), for example (in a DLCDLC instantiation) with f being the
function that computes an ElGamal Com γ′ of 0 using as input a respective randomness γ);
⊕ (efficient group operation).


Generalized Coin-flipping Type-1 (FGMCF-1). If only the first party decides a non-
identity function f1 to be applied, and if the underlying set G has an associated group
operation ⊕, then the functionality FGMCFFGMCF can be emulated in the FGMComFGMCom-hybrid model
with access to an ideal generalized multi-com functionality FGMComFGMCom. Figure C.4C.4 describes a
protocol in the respective hybrid world.


An alternative to the generalized MCom is possible, as follows. In phase 1, P1 would
start by committing, using an ideal simple MCom FMComFMCom, to the f2-image γ′(1) of a random
element γ(1), and then also commit to a respective NIZKPoK of the f2-pre-image element
γ(1) of the committed element γ′(1). This would enable P2 to extract the pre-image of the
contribution of P1, if the NIZKPoK is correct and associated with the committed element.
Then, in phase 3, P1 would directly open the f2-image γ′(1) and the respective NIZKPoK. If
P2 would find something wrong with the NIZKPoK (which the simulator would have also
found during extraction in the phase 1), then it would not accept the opening and would
abort. In a simulated execution, the simulator would have to wait for phase 3 to also abort,
instead of aborting directly in phase 1.
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Setup:


Z ∶ ctx = (sid, cfid,P1,P2) (759)
Z ∶ f1(⋅) ≡ ⋅ (identify function) (760)
Z ∶ f2 is a group homomorphism, i.e.,


satisfies f2(⋅ ⊕ ⋅⋅) = f2(⋅)⊗ f2(⋅⋅) (761)


Z → P1 ∶ (cfg-in-1, ctx,G, (f1, f2)) (762)
Z → P2 ∶ (cfg-in-2, ctx,G, (f1, f2)) (763)


P1,P2 ∶ ctx’ = (sid, (com, cfid),P1,P2) (764)
P1,P2 ∶ ctx” = (sid, (zkpok, cfid),P1,P2) (765)


Phase 1:


P1 ∶ γ
(1)
←


$ G (766)


P1 → FMComFMCom ∶ (commit, ctx’,G, γ(1)) (767)


FMComFMCom → P2 ∶ (receipt, ctx’,G) (768)


Phase 2:
P2 ∶ γ


(2)
←


$ G (769)


P2 → P1 ∶ (contrib-2, ctx, γ′(2) = f2 (γ
(2)


)) (770)


P2 → F
Func-Inv
ZKPoK ∶ (send, ctx”, f2, γ


(2)
) (771)


F
Func-Inv
ZKPoK → P1 ∶ (OK, ctx”, f2, γ


′(2)
= f2 (γ


(2)
)) (772)


Phase 3:
P1 ∶ γ


′
= f2 (γ


(1)
)⊗ γ′


(2) (773)


P1 → FMComFMCom ∶ (open, ctx’) (774)


FMComFMCom → P2 ∶ (open, ctx’, γ(1)) (775)


P2 ∶ γ = γ
(1)


⊕ γ(2) (776)


Final local outputs
P1 → Z ∶ (cf-out-1, ctx, γ′) (777)
P2 → Z ∶ (cf-out-2, ctx, γ) (778)


Figure C.5: Hybrid protocol for GMCF-2 (FGMCF-2FGMCF-2). Notes in Figure C.4C.4 also apply.


Generalized Coin-flipping Type-2 (FGMCF-2). If only the second party decides a non-
identity function f2 to be applied, and if the function is a group homomorphism from the
underlying group (G,⊕) into a new group (f2(G),⊗), then the functionality FGMCFFGMCF can
be emulated in the (FMComFMCom, FFunc-Inv


ZKPoK )-hybrid model, with access to an ideal functionality
FMComFMCom simple multi-Com, and an ideal functionality for ZKPoK of a function inverse FFunc-Inv


ZKPoK .
Figure C.5C.5 describes a protocol in the respective hybrid world.


C.2.3 GMCF-1 (in DLC) of an ElGamal Com of 0


This subsection describes a concrete instantiation of GMCF type 1, for the specific function
of ElGamal Com of 0 from a respective randomness. The protocol takes advantage of the
ElGamal Com structure, using it to commit to part of its own function image. In phase 1, the
commit phase of FGMComFGMCom is equivalent to the commit phase of a simple FMComFMCom, which can be in-
stantiated as a simple commitment followed by a ZKPoK of the committed element. In phase 3,
the open phase of FGMComFGMCom is obtained with the revealing of the final value (the image obtained
from applying the ElGamal-Com-of-0 function to the previously committed randomness)
followed by a NIZKP that it is consistent with the function and the commitment. Based on the
structure of ElGamal, this can be reduced to just two NIZKPs of same DL, i.e., twice as expen-
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Setup Parameters:


Generators: g, h (779779)
Order: q = # (⟨g⟩) = # (⟨h⟩) (780780)
f1(⋅) = ⟨g⋅, h⋅⟩ (ElGamal Com of 0) (781781)
f2(⋅) = ⋅ (Identity function) (782782)


Initial activation:


Z ∶ ctx = (sid, cfid,P1,P2) (783783)
Z → P1 ∶ (cfg-in-1, ctx,Zq, (f1, f2)) (784784)
Z → P2 ∶ (cfg-in-2, ctx,Zq, (f1, f2)) (785785)


Phase 1:


P1 ∶ γ
(1)
←


$ Zq (786786)


P1 ∶ γ
′(1)


= f1 (γ
(1)


) = (gγ
(1)
, hγ


(1)
) (787787)


P1 ∶ r ←
$ Zq (788788)


P1 ∶ c = (c1, c2) ≡ (gr, gγ
(1)
hr) (789789)


P1 ∶ z1 = NIZKPoKElGCom[g,h]
OpeningNIZKPoKElGCom[g,h]
Opening (c) (790790)


P1 → P2 ∶ (msg-1, ctx, (c, z1)) (791791)


P2 ∶ VerOpening
NIZKPoK[ElGCom[g, h]][c](z1) (792792)


Phase 2:


P2 ∶ γ
(2)
←


$ Zq (793793)


P2 → P1 ∶ (msg-2, ctx, γ(2)) (794794)


P1 ∶ γ = γ
(2)


+ γ(1)(mod q) (795795)


Phase 3:


P1 ∶ C1 = (c1, c2/g
γ(1)


) (796796)


P1 ∶ C2 = ((gγ , hγ)) (797797)


P1 ∶ z2 = NIZKP[g,h]
VecElGCom0sNIZKP[g,h]
VecElGCom0s ((C1,C2)) (798798)


P1 → P2 ∶ (msg-3, ctx, (γ′(1), z2)) (799799)


P2 ∶ γ
′(2)


= f1 (γ
(2)


) = (gγ
(2)
, hγ


(2)
) (800800)


P2 ∶ γ
′
= γ′


(2)
∗ γ′


(1) (801801)


P2 ∶ C1 ≡ (c1, c2/g
γ(1)


) (802802)


P2 ∶ C2 ≡ γ
′ (803803)


P2 ∶ VerVecElGCom0s
NIZKP [g, h] [(C1,C2)] (z2) (804804)


Final outputs:


P1 → Z ∶ (cfg-out-1, ctx, γ) (805805)
P2 → Z ∶ (cfg-out-1, ctx, γ′) (806806)


Figure C.6: Generalized coin-flipping type-1 of ElGamal Com of 0


sive as the NIZKP that would be required to equivocably open an actual ElGamal Com of 0.


Procedure. The procedure is described with succinct notation in Figure C.6C.6.


• Setup parameters. The setup considers two generators (g0, g1) known by both parties
(779779), each defining the same group of known order q (780780). The first function of the
generalized coin-flipping is the ElGamal function f1 for committing to bit zero, using as
bases the two generators. The function image is a pair of exponentiations of the input (the
“randomness”), each with the respective generator as base (781781). The second function of
the generalized coin-flipping is set to be the identity function (782782).


• Initial activation. For the initial activation of an execution, the environment sets
the session and subsession identifiers, as well as the involved parties (783783). Then, the
environment activates the two parties, which party is in the role of first and second to
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receive the output (784784, 785785).
• Phase 1. The first party (P1) selects a random exponent γ(B) (786786) and computes its


image under the first function, i.e., it computes a respective ElGamal BitCom of 0 (787787).
Then, P1 generates a new random exponent r, (788788), and uses it as randomness to produce
an ElGamal Com c (hereinafter denoted the second commitment) of the first randomness
γ(B) used to produce the BitCom of 0. (789789). Then, P1 produces a NIZKPoK of the
ElGamal opening of the second commitment (790790), and sends to the second party (P2)
a contextualized message with the second commitment c and the respective NIZKPoK
(791791). P2 verifies the correctness of the NIZKPoK (792792).


• Phase 2. The second party selects a random exponent γ(A) (793793), and sends it in a
contextualized message to P1 (794794). At this point, P1 is able to compute the combination
γ of the contributions of the two parties (this will later be the output of P1). (795795)


• Phase 3. Before revealing the contribution of P1 to the coin-flipping (a BitCom γ′(1)


of 0, P1 elaborates the needed NIZKP, namely that it is consistently related to the
randomness to which P1 was bound in phase 1 and in respect to which it proved knowledge.
Conceptually, this can be split in two assertions, one for each component of the ElGamal
BitCom γ′(1) of 0 to be revealed.
One assertion to prove is that the initial ElGamal Com c revealed in the first phase
was an encryption of the first component of the BitCom to be revealed. This can be
reduced to a proof of ElGamal BitCom of 0 after dividing the second component c2 of the
initial commitment by the first component of the BitCom to reveal (796796). The second
assertion to prove is that the ElGamal BitCom to reveal is indeed an ElGamal BitCom of
0, i.e., that both components have the same discrete log, in respect to the respective base
generators. Equivalently, this second assertion can be performed directly in respect to the
final ElGamal BitCom of the coin-flipping (i.e., after combining the two contributions)
(797797). P1 elaborates a NIZKP transcript of the two assertions, i.e., using parallelization to
obtain one transcript as large as if it was just a single assertion (798798).
P1 sends a contextualized message with her contribution γ′(1) — a BitCom of 0 — and
with the NIZKP transcript (799799). P2 then computes the result of the coin-flipping, first
by calculating the BitCom γ′(2) associated with his own contribution γ(2) (800800), then
combining the result with the contribution γ(1) of P1 (801801), then calculating the elements
relative to the received NIZKP, namely two ElGamal BitComs (802802,803803) and then verifying
the respective NIZKP (804804). If the verification returns false, then P2 outputs abort.
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• Final outputs. As final output, P1 outputs the combined randomness γ (805805), whereas
P2 outputs the respectively combined BitCom of 0 γ′. (806806).


Complexity. The overall communication complexity of the three messages is four group
elements (from two ElGamal Coms), one exponent, one NIZKPoK of ElGamal Opening and
one NIZKP of a vector (of length two) of ElGamal Coms of 0 (i.e., of pairs with the same DL
in respect to the pair of generators). Actually, the NIZKPs of same DL can be parallelized
and cost the same as just one.


C.2.4 GMCF-1 (in IFC) of a vector of GM BitComs of 0


This subsection describes a concrete instantiation of GMCF type 1, for the specific function
of GM BitCom of 0 from a respective randomness. Instead of taking advantage of a concrete
structure of GM BitComs for the initial Commitments, the protocol follows a different
approach. The initial commitment is directly made for the image that needs to be later
opened. However, in general this would not allow extraction of the pre-image, e.g., if the
simulator did not possess the GM trapdoor. Thus, P1 also commits to a NIZKPoK transcript
of the GM openings (i.e., of their pseudo-square-roots). Later, in the open phase it is enough
to open the GM BitComs and prove that they are BitComs of 0. Something that can go
wrong here is that in the open stage (phase 3) the receiver P2 may find that the ZKPoK
was incorrect. This means that a simulator would have actually not been able to extract the
pre-images of the contribution of P1, but could not abort in time. Nonetheless, once in phase
3 detecting an incorrect opening, it is defined that P2 aborts in the real world. Thus, in the
simulated execution the simulator in the ideal world sends an abort message to the TTP,
which will induce P̂2 to also receive an abort form the TTP and then output abort to Z.


Procedure. The procedure is described with succinct notation in Figure C.7C.7.


• Setup. The protocol goal is in respect to a Blum integer modulus N (807807), namely to
allow the seconds party P2 to learn GM BitComs and the first party to learn theur openings
(pseudo-square-roots). In the notation of generalized coin-flipping, the first function is
thus defined as modular squaring (808808), whereas the second function is the identity (809809).


• Initial activation. The initial activation is similar to the case of DLC, i.e., Z prepares
the execution context (810810) and then activates each party with the context, the information
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Setup Parameters:


Blum integer modulus: N (807807)
f1(⋅) = ⋅


2
(mod N) (vectorizable) (808808)


Vector of BitComs of 0
f2(⋅) = ⋅ (Identity function) (809809)


Initial activation:


Z ∶ ctx = (sid, cfid,P1,P2) (810810)
Z → P1 ∶ (cfg-in-1, ctx,Z∗N , (f1, f2)) (811811)
Z → P2 ∶ (cfg-in-2, ctx,Z∗N , (f1, f2)) (812812)
P1,P2 ∶ ctx’ = (sid, (z1, cfid),P1,P2) (813813)
P1,P2 ∶ ctx” = (sid, (com, cfid),P1,P2) (814814)
P1,P2 ∶ ctx”’ = (sid, (z2, cfid),P1,P2) (815815)


Phase 1:


P1 ∶ γ
(1)
[`] ←


$
(Z∗N)


` (816816)


P1 ∶ γ
′
[`]


(1)
= f1 (γ


(1)
[`] ) = (γ


(1)
[`] )


2
(mod N) (817817)


P1 ∶ γ
′(1)
[`] = ⟨γ′


(1)
i ∶ i ∈ [`]⟩ (818818)


P1 ∶ z1 = NIZKPoK(ctx’)
Sqrts(N) (γ


′(1)
[`] ) (819819)


P1 ∶ c = Gen$ForCom [CExt&Equiv] (γ
′(1)
[`] , z1) (820820)


P1 ∶ c = C
(ctx”,CRS)
Ext&Equiv ((γ′


(1)
[`] , z1) ; c) (821821)


P1 → P2 ∶ (msg-1, ctx, c) (822822)


Phase 2:
P2 ∶ γ


(2)
[`] ←


$
(Z∗N)


` (823823)


P2 → P1 ∶ (msg-2, ctx, γ(2)[`] ) (824824)


P1 ∶ γ[`] = γ
(2)
[`] ∗ γ


(1)
[`] (mod N) (825825)


Phase 3:
P1 ∶ z2 = NIZKP(ctx”’,CRS)


Squares (N)NIZKP(ctx”’,CRS)
Squares (N) (γ′


(1)
[`] ) (826826)


P1 ∶ c = O
ctx”,CRS
Ext&Equiv (c, c, c) (827827)


P1 → P2 ∶ (msg-3, ctx, (γ′(1)[`] , z1, c, z2)) (828828)


P2 ∶ VerSqrts(N)
NIZKPoK(ctx”,CRS) [γ


′(1)
[`] ] (z1) (829829)


P2 ∶ VerSquares(N)
NIZKP(ctx”’,CRS) [γ


′(1)
[`] ] (z2) (830830)


P2 ∶ γ
′(2)
[`] = f1 (γ


(2)
[`] ) = (γ


(2)
[`] )


2
(mod N) (831831)


P2 ∶ γ
′
[`] = γ


′(2)
[`] ∗ γ


′(1)
[`] (832832)


Final outputs:
P1 → Z ∶ (cfg-out-1, ctx, γ[`]) (833833)


P2 → Z ∶ (cfg-out-1, ctx, γ′[`]) (834834)


Figure C.7: Generalized coin-flipping type-1 of squares (GM BitComs of 0)


about who learns the output first and who learns it in the second place (811811,812812). Upon
receiving the context, each party knows the adjustment in needs to perform to use a slightly
different (and unique) context in subsequent sub-routines, namely one for a NIZKPoK
(813813), another for an Ext&Equiv Com (814814), and another for a NIZKP (815815).


• Phase 1. For each index i ∈ [len], P1 selects a random residue (816816) and then computes
its square, i.e., a respective BitCom of zero (817817). Then, P1 aggregates all squares into a
vector γ(1)


[`] (818818). P1 elaborates a NIZKPoK z1 of a vector of square-roots of the vector of
squares (819819). (This is avoidable if for P1 has already provided a NIZKPoK of trapdoor in
a setup phase.) Then, P1 prepares randomness c for an Ext&Equiv Com (820820) of the pair
composed of the vector of random squares and the respective NIZKPoK of square-roots. It
uses the randomness to produce the commitment c (821821), and sends it in a contextualized
message to P1 (822822).


• Phase 2. P2 selects a random group element γ(2) as her contribution (823823), and sends it
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in a contextualized message to P1 (824824). P1 compute his final output γ, as a combination
of the pre-image γ(1) of his contribution and the contribution γ(2) received from P2 (825825).


• Phase 3. P1 prepares a NIZKP that his contribution is a vector of squares, i.e., that
they are correct BitComs of 0 (826826). Then, P1 prepares the auxiliary information c


needed to open the previous commitment (827827). Since the commitment is equivocable
(besides extractable), the auxiliary information may have a sintax different from the actual
randomness used by P2 to build the commitment. P1 sends a contextualized message to
P2, containing the committed values, the remaining auxiliary info need to verify it, and
the new NIZKP transcript (828828). P2 verifies the correctness of the NIZKPoK (829829), and
of the NIZKP (830830). If something is wrong then it aborts, otherwise it continues. P2


calculates the square (i.e., the f1-image) γ′(2) of her contribution (831831), and then combines
it with the previous square contribution γ′(1) received from P1, thus obtaining her final
output square γ′ (832832).


• Final outputs P1 outputs the product of square-roots (833833), whereas P2 outputs the
product of squares (834834).


Complexity. The overall communication complexity of the three messages is ` group ele-
ments from P2, one NIZKP of squares (i.e., a NIZKP of GM BitComs of 0NIZKP of GM BitComs of 0), one Ext&Equiv-
Com and opening of a vector with ` group elements and also of a respective NIZKPoK of
square-roots. In a PKI setting where the simulator has access to the trapdoor (e.g., via
another NIZKPoK), the NIZKPoK of square-roots is not necessary, because the trapdoor is
enough to extract square-roots. However, in a global-CRS setting an explicit NIZKPoK would
be needed. The NIZKP of GM BitComs of 0 only requires communication of group elements
in number twice the statistical security parameter (in this non-interactive case the statistical
parameters is equal to the computational security parameter), and one Equiv-Com (see row 77
in Table B.2B.2). The communication of the commit and open phases of the Ext-and-Equiv-Com
depend on the size of the committed value and also on the cut-and-choose and erasure code
parameters (e.g., see Table C.1C.1).
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