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Abstract

This thesis considers tools and techniques for the design-time validation of cyber-physical systems, where a

software system interacts with or controls a physical system over time. We focus on safety-critical systems

that may be fully or partially autonomous. The goal of the design-time validation is to identify and

diagnose potential failures during system development so that issues can be addressed before they can

manifest in operation. However, finding and analyzing failure scenarios in cyber-physical systems can

be very challenging due to the size and complexity of the system, interactions with large environments,

operation over time, black box and hidden states, rarity of failures, heterogeneous variable types, and

difficulty in diagnosing failures.

This thesis presents AdaStress, a set of design-time validation tools for finding and analyzing the most

likely failure scenarios of a safety-critical system. We present adaptive stress testing (AST), a framework

for simulation-based stress testing to find the most likely path to a failure event. The key innovation in AST

is to frame the search for the most likely failure scenarios as a sequential decision-making problem and

then use reinforcement learning algorithms to adaptively search the scenarios. To handle systems with

hidden state, we present an algorithm for AST, based on Monte Carlo tree search and pseudorandom

seeds, that can be applied to test systems where the state is not fully observable. Furthermore, we present

differential adaptive stress testing (DAST), an extension to AST. DAST compares the failure behavior of

two systems. Specifically, DAST finds the most likely scenarios where a failure occurs with the system

under test but not with a baseline system. This type of differential analysis is useful, for example, when

choosing between two candidate systems or in regression testing. Lastly, grammar-based decision tree

(GBDT) learning is an algorithm for automatically categorizing failure events based on their most relevant

patterns. The algorithm combines a context-free grammar, temporal logic, and decision tree to produce

categorizations with human-interpretable explanations.

We demonstrate AdaStress on two cyber-physical systems within aerospace. The first application

analyzes prototypes of the next-generation Airborne Collision Avoidance System (ACAS X) in simulated

aircraft encounters. We find, categorize, and analyze the most likely scenarios of near mid-air collisions

(NMACs). We also perform differential studies comparing ACAS X to the existing Traffic Alert and

Collision Avoidance System (TCAS). Our results give confidence that ACAS X offers a safety benefit over

TCAS. The second application analyzes a prototype trajectory planning system for a small unmanned

aircraft navigating through a three-dimensional maze. We find and analyze the most likely collision

scenarios and planning failures. Our analysis identifies a variety of potential safety issues that include

algorithmic robustness issues, emergent behaviors from interacting systems, and implementation bugs.
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Chapter 1

Introduction

Emerging applications in artificial intelligence (AI), such as driverless cars, autonomous aircraft, and smart

infrastructure, promise to revolutionize industries by being more convenient, more efficient, cheaper to

operate, and always available. However, safety remains a major challenge due the safety-critical nature

of the applications and the reliance of difficult-to-analyze components in critical roles of the system such

as perception and decision-making. Indeed, failures of these safety-critical systems can have serious con-

sequences including loss of life and property. As a result, it is imperative to have good analytic tools to

ensure their safe operation. Ideally, safety issues should be uncovered and addressed as early in the life

cycle as possible.

Design-time system verification and validation (V&V) aims to discover and diagnose issues while the

system is still in development. Catching issues during the design phase allows them to be addressed

early before the issues have had any opportunity to manifest in operation. Addressing issues early is also

much more desirable in terms of cost, since the cost of resolving issues increases exponentially the later it

is discovered in the life cycle. Validation evaluates whether the system adequately addresses operational

needs, and is distinguished from verification, which evaluates whether a system was built matching its

design specifications.

A primary concern of design-time V&V is analyzing failures to understand how the system can fail.

While simple systems may have few and obvious failure modes, large complex systems can exhibit sur-

prisingly complex failure modes resulting from emergent and subtle system behaviors. Good tools for

discovering and analyzing failures are needed to assist safety engineers in understanding areas where

the system may be vulnerable and in identifying potential issues. A good understanding of failures is

important to the design, evaluation, and certification of safety-critical systems; and to informing decisions

that can reduce the probability and impact of the failures.

1
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However, finding and analyzing failure scenarios in safety-critical cyber-physical systems can be very

challenging due to the size and complexity of cyber-physical systems, interactions with large environ-

ments, operation over time, black box and hidden states, rarity of failures, heterogeneous variable types,

and the difficulty in diagnosing failures. Existing formal and simulation-based approaches do not ade-

quately address these challenges.

One of the main contributions of this thesis is a novel stress testing approach, called adaptive stress

testing (AST). The key innovation in AST is to frame the search for the most likely failure scenarios

as a sequential decision-making problem, which can then be efficiently optimized using reinforcement

learning algorithms. We show that this approach is much more effective at finding failure scenarios

than traditional methods. Failure scenarios can then be assessed by domain experts to determine their

operational significance and the experts can take appropriate action to mitigate the risk if necessary.

In this thesis, we primarily consider cyber-physical systems, where a software system interacts with or

controls a physical system over time. We focus on safety-critical systems that may be fully or partially

autonomous. We also focus on approaches that can be applied to systems containing AI components,

which is where we see the strongest need. Nevertheless, the core ideas and algorithms proposed in this

thesis are sufficiently general that they can also be applied to other types of systems, such as pure software

systems and traditional control systems.

1.1 Applications

This thesis uses two cyber-physical system applications as case studies for motivating and demonstrat-

ing the algorithms proposed. The first is an aircraft collision avoidance application, where we analyze

prototypes of the next-generation Airborne Collision Avoidance System (ACAS X). The second is an

unmanned aerial vehicle (UAV) navigation application where we analyze a trajectory planning system for

goal seeking and obstacle avoidance. These systems are both cyber-physical systems operating in a large

environment over time and performing safety-critical tasks.

1.1.1 Aircraft Collision Avoidance

ACAS X is an aircraft collision avoidance system that operates onboard commercial aircraft. The system

monitors the airspace around the aircraft and warns pilots of potential collisions with other aircraft. The

system issues advisories that contain recommended maneuvers to the pilot. The pilot then responds to the

advisories by maneuvering the aircraft to resolve the conflict. ACAS X was developed and tested by the
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Federal Aviation Administration (FAA) and has recently been accepted by the RTCA1 on September 20th,

2018. The system replaces the existing Traffic Alert and Collision Avoidance System (TCAS) as the new

international standard for airborne collision avoidance. This thesis work was performed on prototypes of

ACAS X while the system was still being developed and tested. This work has contributed to the larger

verification and validation efforts by the FAA, which ultimately led to the acceptance of ACAS X by the

RTCA. This thesis presents our work in applying AdaStress to analyze prototypes of the ACAS X system

in simulated aircraft encounters to discover and analyze scenarios of near mid-air collision (NMAC),

where two aircraft come dangerously close to one another.

1.1.2 Trajectory Planning

The trajectory planner is a prototype system currently being developed as part of the Autonomy Teaming

& TRAjectories for Complex Trusted Operational Reliability (ATTRACTOR) project at National Aeronau-

tics and Space Administration (NASA) Langley. A future version of the system will be used onboard a

UAV for navigating the vehicle toward a destination in the presence of obstacles. The UAV will be used

as part of a search and rescue demonstration mission in a forest environment. Preliminary testing of

the system is being performed in an indoor testbed, called WireMaze. The testbed is a three-dimensional

cubic structure with wires strung across it at various positions and angles providing a three-dimensional

obstacle course for the UAV. The UAV’s task is to safely navigate from one side of the cube to the other

side without colliding with the wires. This thesis uses the WireMaze scenario as the basis for analysis,

applying AdaStress to discover potential issues that may arise during operation. We uncover a wide range

of issues, including collisions, replanning issues, planning failures, and implementation bugs.

1.2 Challenges

Failure analysis in cyber-physical systems faces a number of challenges. This section describes some of

these challenges.

Size and Complexity of Cyber-Physical Systems. Cyber-physical systems can be very large, complex,

and consist of many parts. AI components are particularly problematic in their size and complexity.

For example, a deep neural network [1] can have billions of network parameters and an autonomous

vehicle can have many of such networks for various purposes, such as image processing, lidar processing,

dynamics modeling, and vehicle control. The large size and complexity of the system make the search

space very large and unsmooth, which makes the search for failures very challenging.

1RTCA, Inc. was formerly known as the Radio Technical Commission for Aeronautics, but is now known simply as the RTCA.
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Interactions with Large Environments. System-level failures, such as an autonomous car colliding

with a pedestrian, cannot be discovered by analyzing the behavior of the system alone as the failures

arise from the joint behavior and interactions of the system under test with its environment. As a result,

analysis must be performed over the combined system consisting of both the system under test and its

environment. Large stochastic operating environments can thus dramatically increase the size of the state

space to be searched.

Operation over Time. Cyber-physical systems are systems that interact with physical processes and

thus generally must operate over time. The view that cyber-physical systems are processes that unfold

over time means that the search for failure scenarios must occur over state trajectories rather than sin-

gle states. Indeed, the state history leading up to how the system entered a failure state gives much

more information to safety engineers than just the failure state itself. Searching over trajectories leads to

an exponential explosion of the search space and exhaustive consideration of all possible trajectories is

generally intractable. In this thesis, we consider discrete time processes and thus the search for failure

scenarios occurs over sequences of states.

Black Box and Hidden State Components. Cyber-physical systems can contain black box components

such as software binaries, where the internal details are not available to the validation process. The

presence of these components make the system difficult to analyze because they cannot be accurately

characterized and the uncertainty can affect guarantees on the system. Furthermore, systems can maintain

hidden state across interactions. Systems with hidden state require testing over sequences of input rather

than a single input, which makes the system much harder to test.

Failures are Rare. Safety-critical systems are designed to be very safe and robust against failures. As

a result, it may be very difficult or impossible to reach failures states.

Heterogeneous Variable Types. Cyber-physical systems often have system states that contain a mix

of variable types. For example in an aircraft system, the airspeed and bank angle are real values, the

autopilot mode is categorical, and whether the landing gear is deployed is Boolean. Analyzing systems

with heterogeneous variable types can be very challenging. Heterogeneous state spaces lack a natural

distance metric and many machine learning algorithms are not capable of handling such spaces.

Diagnosing Failures. Diagnosing failures can be very difficult because subtle issues can manifest

in complex and completely unobvious ways. Failures can also arise from interactions between multiple

underlying issues. Moreover, the high-dimensional state space and complex behaviors of cyber-physical

systems can also obscure underlying causes making them difficult to observe in failure examples.
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1.3 Approach

This thesis presents a collection of novel algorithms, called AdaStress, for analyzing failure events in

cyber-physical systems. AdaStress aims to address the challenges mentioned in the previous section and

is suitable for a broad class of systems. The algorithms in AdaStress can be separated into two functional

categories: algorithms that find examples of failures and algorithms that help human experts diagnose

failures.

Scalability is perhaps the biggest challenge to the validation and testing of cyber-physical systems. The

size of the systems and their operating environments compounded by the search over temporal sequences

means that the search space can be exponentially large, which makes exhaustive coverage intractable.

Furthermore, because failures are rare and may be hard to reach, naive sampling methods can be imprac-

tically inefficient. AdaStress takes the approach of scaling the search using adaptive sampling. That is, we

optimize where to sample next by learning from past samples and focus on the most promising areas of

the search space. A sample can be valuable in two ways. It can (1) immediately reveal a failure, which is

the goal of the search; or (2) reveal new information about the search space, which can help inform future

sampling. Adaptive sampling is a core idea behind the adaptive stress testing (AST) framework, where

we formulate the problem of finding the most likely failure scenarios as a sequential decision problem

and then use reinforcement learning to optimize it.

Systems with hidden state are significantly more challenging to test and validate than those without.

There are very few approaches that can be applied to these systems with hidden state. AdaStress handles

software systems (or software simulations) with hidden states by assuming control of the pseudorandom

number generator seed. The control of the seed not only converts a stochastic process into a deterministic

process, but also gives the ability to recreate a system state even if it is unknown to us.

While AST can be very effective at finding failure examples, it can still be very difficult for a domain

expert to diagnose the underlying cause from the examples. The reason is that cyber-physical systems can

have a very high-dimensional state space and exhibit complex behavior, which can be very unintuitive.

Another reason is that deep issues can manifest itself in complex and unobvious ways. Machine learning

techniques are the most appropriate candidates to help analyze the data for recurring patterns. However,

a core problem is how to generate results that are both useful and interpretable to a human expert.

AdaStress addresses this problem by requiring the user to provide a grammar to the search algorithm.

The grammar not only defines the search space but also provides a template for generating interpretable

and domain-specific expressions. This idea of leveraging a grammar for aiding in interpretability is used

in the grammar-based decision tree (GBDT) framework. A key capability of GBDT is to automatically
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categorize data, which both organizes the data according to similar patterns and produces explanations

for them. The categories and their explanations can help human experts diagnose the failures.

AdaStress can fit very well with major iterative and non-iterative development processes. In the tra-

ditional waterfall development model [2, 3], which consists of a sequence of stages: requirements, design,

implementation, verification, and maintenance, AdaStress can be extensively applied in the verification

stage. We can use AdaStress to find the most likely failure scenarios and then analyze the failures to

determine whether the nature of these failures is acceptable or not. In an iterative development process,

such as the spiral development model [4], AdaStress can play an even larger role. The spiral model iterates

between determining objectives, identifying and resolving risks, developing and testing, and planning the

next iteration. In this model, AdaStress can be applied at every iteration to find the failure scenarios and

categorize them for a human, so that the humans can make more informed planning and development

decisions for the next iteration.

1.4 Contributions

Contributions are highlighted in the chapters in which they are presented, and Chapter 10 summarizes

the specific contributions made throughout this thesis. This section provides a brief, high-level overview

of the primary contributions.

This thesis presents AdaStress, a collection of algorithms for finding and analyzing failure events in

safety-critical cyber-physical systems. Implementations of and experiments with these algorithms demon-

strate the effectiveness of the algorithms in analyzing failures in large cyber-physical systems.

An important contribution of this thesis is adaptive stress testing (AST), a general framework for using

sequential decision-making algorithms for finding the most likely path to a failure event. This framework

initiates a novel research direction for scaling and improving the effectiveness of testing and validation

algorithms.

This thesis presents a novel algorithm for stress testing black box and non-Markovian systems in the

AST framework. The algorithm only requires access to the seed of the pseudorandom number genera-

tor, which makes it very broadly applicable. This contribution is significant because the algorithm has

some very desirable characteristics: simple integration with existing simulators, can operate on black box

systems, is scalable, can be applied to multi-time step systems, and supports systems with hidden state.

Another contribution of this thesis is differential adaptive stress testing (DAST), a novel approach for

stress testing a system under test relative to a baseline system. DAST discovers failures that occur in the

system under test but not in the baseline system, making it very useful for regression testing or comparing
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two candidate systems.

In addition to finding failure scenarios, this thesis contributes a novel framework for automatically

categorizing failure examples. The framework, called grammar-based decision tree (GBDT), groups the

failures according to their most relevant properties and also provides precise yet human-interpretable

explanations for each category. This contribution is significant because it simultaneously addresses a

number of key challenges: it provides precise human-interpretable explanations, supports heterogeneous

features, supports multivariate time series data, and produces a hierarchical organization of the data for

human consumption.

This thesis applies AdaStress to analyze NMACs in the next-generation Airborne Collision Avoidance

System (ACAS X). While the system was still under development, we discussed the results of our NMAC

analyses with the ACAS X team to inform their design decisions contributing to the verification and

validation efforts of the ACAS X program. ACAS X has been accepted by the RTCA to replace TCAS as

the new international standard for airborne collision avoidance. The RTCA is a not-for-profit organization

that works with government regulatory bodies to develop aviation standards. We also apply AdaStress

to analyze the trajectory planning algorithms used in the ATTRACTOR project, which aims to develop

trustworthy autonomous systems. We discuss the issues that we find with the ATTRACTOR team so that

the issues can be addressed in future versions of the system.

Finally, we contribute to the open source and scientific communities by making our implementation

of AdaStress available as an open source Julia package, AdaStress.jl. The software package is available at

https://github.com/rcnlee/AdaStress.jl.

1.5 Overview

This thesis presents AdaStress, a collection of algorithms for discovering and analyzing failures in cyber-

physical systems. This chapter has motivated the need for better V&V algorithms for cyber-physical

systems, and summarized contributions. The remainder of this thesis is structured as follows.

Chapter 2 provides an overview of the various approaches taken in the field of testing and validation

of safety-critical systems. The purpose of this chapter is to motivate the approach taken in AdaStress and

provide a broad context in which to understand the contributions made in this thesis.

Chapter 3 provides an introduction to sequential decision processes and approaches to their solution.

This background material will serve as the basis for understanding the AST framework presented in

Chapters 5 and 6. Chapter 4 provides an introduction to approaches for interpretability and explainability

in machine learning. The purpose of this chapter is to provide background and motivate the GBDT

https://github.com/rcnlee/AdaStress.jl
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approach presented in Chapter 7.

Chapter 5 presents adaptive stress testing (AST), a framework that formulates finding the most likely

path to a failure as a sequential decision process allowing it to be solved by reinforcement learning algo-

rithms. The chapter further presents a novel algorithm suitable for testing black box systems with hidden

state. Chapter 6 presents differential adaptive stress testing (DAST), an extension to AST for stress testing

relative to a baseline system. That is, this chapter presents a method for finding the most likely failure

path that occurs in the system under test, but not in the baseline system.

Chapter 7 presents grammar-based decision tree (GBDT), an interpretable machine learning model

for automatically categorizing failure scenarios. Each category is accompanied by a precise yet human-

interpretable expression that uniquely describes the failure category assisting domain experts in identify-

ing the key common patterns in the failure scenarios.

Chapter 8 describes the application of AdaStress to stress test the next-generation Airborne Collision

Avoidance System (ACAS X). We first introduce the aircraft encounter scenario and the basic operation of

ACAS X, then we describe our studies analyzing the NMAC behavior of the system. Our studies include

applying AST to find NMAC scenarios in single-threat and multi-threat encounters, differential studies

using DAST to compare NMACs in ACAS X and TCAS, and using GBDT to automatic categorize NMAC

scenarios.

Chapter 9 describes the application of AdaStress to stress test a trajectory planning system. We first

describe the basic UAV scenario and operation of the planner, then we describe the application of AST to

discover a variety of issues in the planner.

Chapter 10 concludes the thesis with a summary of the key contributions and ideas for further research.



Chapter 2

Verification and Validation of Safety-Critical

Systems

This chapter provides a broad overview of approaches to design-time verification and validation of safety-

critical systems, including formal methods and simulation-based testing. The purpose of this chapter is

to provide the context and motivation for the adaptive stress testing approach discussed in Chapter 5.

Section 2.1 introduces the topic of verification and validation and presents an overview of the main ap-

proaches. Section 2.2 reviews formal verification methods including model checking and automated the-

orem proving. Section 2.3 reviews simulation-based testing approaches to which the proposed approach

in this thesis belongs. Finally, Section 2.4 summarizes the chapter.

2.1 Introduction

Verification and validation (V&V) play a critical role in the development and certification processes of

safety-critical systems. V&V methods check that a system meets requirements and that it fulfills its

intended purpose. During the development process, V&V is applied to uncover bugs and reveal potential

issues. The findings of V&V analysis play a critical role in informing the development path of the system.

During certification, the results of V&V are used to show to a regulating authority that the system is safe

and meets certification criteria. V&V inspires trust in the new system and makes clear the residual risk in

its operation.

Figure 2.1 is an overview of the main verification and validation approaches. Existing methods can

be broadly separated into two categories, formal verification and simulation-based testing. Formal ver-

ification uses mathematical or computational models to prove or exhaustively check properties, while

simulation-based testing relies primarily on simulation models and sampling. The following sections

9
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briefly describe the most relevant methods in each category presented in Figure 2.1. Adaptive stress

testing (AST) (to be introduced in Chapter 5) and the other methods proposed in this thesis belong to

simulation-based testing.

Verification and Validation

Formal Methods

Model
Checking

Automated
Theorem Proving

Probabilistic
Model Checking

Hybrid Systems
Theorem Proving

Simulation-Based

Adaptive
Stress Testing

(this thesis)

Monte
CarloEnumeration

Black Box
Optimization

Trajectory
Planning-Based

Figure 2.1: Categories of verification and validation approaches.

2.2 Formal Methods for V&V

Formal verification constructs a mathematical or computational model of the system and rigorously proves

or exhaustively checks whether a safety property holds [5, 6]. The properties are expressed using a formal

logic, such as linear temporal logic (LTL) [7]. Formal methods can provide a counterexample when a

property does not hold. More importantly, these methods provide completeness guarantees over the

entire model, i.e., they can conclude the absence of violations. The major challenge is scalability. Due

to their exhaustive nature, they have difficulty scaling to systems with large and complex state spaces.

Consequently, applications often make simplifying assumptions, use simplified models, and test subsets

of the system [8, 9, 10].

Model Checking. Model checking is a computer-assisted method for the analysis of dynamical sys-

tems that can be modeled by state-transition systems [8]. Model checking determines whether a temporal

logic property, such as those specified in computation tree logic* (CTL*) [11] or LTL [7], holds on computa-

tional models known as Kripke structures [8]. Model checking provides exhaustive coverage of the space

of the model to determine whether the property holds. Due to its exhaustive nature, model checking algo-

rithms encounter combinatorial explosions in the number of states and paths. As a result, model checking

employs techniques for simplification, including abstraction [12, 13] and composition [14]. Probabilistic

model checking (PMC) extends model checking to the probabilistic setting. PMC checks probabilistic

properties, such as those in probabilistic computation tree logic (PCTL), on probabilistic models, such
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as Markov chains [9, 15, 16], probabilistic automata [17], and probabilistic hybrid automata [18]. PMC

algorithms can compute minimal or maximal probabilities for a given property. They can also provide

counterexamples when a property is violated. However, scalability is a major issue with PMC methods.

Automated Theorem Proving. Automated theorem proving (ATP) uses computer algorithms to au-

tomatically generate mathematical proofs [19]. Systems and assumptions are modeled in formal logic,

and then ATP is applied to prove whether a property holds. If a proof is generated successfully, one can

conclude with certainty that the property holds over the entire model. However, if the algorithm fails

to generate a proof, then it is uncertain whether the property holds. Hybrid systems theorem proving

(HSTP) is a variant of ATP based on differential dynamic logic, which is a real-valued, first-order dynamic

logic for hybrid systems [10, 20]. A hybrid system model can capture both continuous and discrete dy-

namic behavior. The continuous behavior is described by a differential equation and the discrete behavior

is described by a state machine or automaton. The major challenges in ATP are scalability and that current

ATP methods still require significant human assistance.

2.3 Simulation-Based Testing for V&V

The second major category of V&V approaches relies on simulation. Simulation models have very few

modeling requirements. They only require a transition model of the system that can produce the next

state or samples of the next state if the system is stochastic. Simulation-based testing methods are black

box methods and do not require or leverage the internal details of the system. As a result, simulators

can be very simple models or large sophisticated models. They can even directly embed software or call

external programs.

Simulation-based testing methods differ primarily in how test scenarios are chosen. Because simu-

lations are processes, test cases are fundamentally temporal, consisting of sequences of test inputs. For

example, a wind disturbance can vary over time as the simulation evolves. The rest of this section de-

scribes the main approaches to simulation-based testing.

Enumeration. The most straightforward and brute force approach is to enumerate and test the sim-

ulation at all combinations of test inputs. Simulations with real-valued states can be discretized. This

approach can work well for small simulations with short time horizons. However, it quickly becomes

intractable due to a combinatorial explosion in state and time. One approach to overcoming this com-

binatorial explosion is to sweep over a low-dimensional parametric model instead, relying on the low-

dimensional model to generate the original test inputs [21]. This approach requires assumptions and

domain knowledge to define a suitable low-dimensional model. While this method can effectively test a
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large portion of the simulation space, rare corner case failures can be easily missed due to the abstraction.

Monte Carlo. An alternative approach to enumeration is to run simulations using a stochastic model

of the system’s operating environment [22, 23]. Sampling from stochastic models naturally focuses on the

test scenarios with the highest likelihood of occurrence. The simulations produce sequences of states and

then the sequences are checked for failures. Because sampling favors likelihood and does not optimize for

failures, it can take a very large number of samples to encounter the correct sequence and combination of

inputs to trigger a rare failure.

Black Box Optimization. One approach to explicitly search for failure events is to formulate it as

a black box global optimization problem, where the parameters are the test inputs and the objective is

to generate failures. A variety of black box optimization algorithms can been applied, including genetic

algorithm (GA) [24, 25], cross-entropy method [26], simulated annealing [27], ant colony optimization

[27, 28], and stochastic local search [29]. The exact formulation of the black box optimization problem

can vary, such as in how the search parameters and the objective functions are defined. Some approaches

try to maximize the probability of sampling a failure while others search for individual failure scenar-

ios. These approaches improve upon direct Monte Carlo sampling by explicitly optimizing for failure

events. However, performance can be limited, because they do not leverage the sequential structure of the

problem.

Trajectory Planning-Based. An alternative approach is to formulate the problem as a trajectory plan-

ning problem and apply a trajectory optimization algorithm such as rapidly-exploring random tree (RRT)

[30]. The RRT approach involves growing a tree from an initial state to a failure state by sampling a ran-

dom point in the state space and growing the tree toward that target point. In the limit of infinite sample

points, the tree can reach any point in the reachable search space. Crucially, RRT depends on the ability

to “steer” the system transition towards a target point in the state space, which may not be possible in

systems with complex transition behavior. Furthermore, the procedure requires evaluating the closeness

of two points in state space to determine which node in the tree to expand. In its original context, RRT

was applied to trajectory planning in physical spaces, which are Euclidean. When the state space is large

and contains variables with mixed units and scales, then it is unclear what distance metric to use. Lastly,

because the search requires directly operating on the state, this method cannot be used on simulators with

hidden state.
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2.4 Summary

This chapter reviewed the main approaches to verification and validation of safety-critical systems. Formal

verification approaches, such as probabilistic model checking and hybrid systems theorem proving, rely

on more constrained models, and are more rigorous. These factors allow them to make strong guarantees

about properties such as the absence of failures. However, formal methods have difficulty scaling to large

systems and their environments. Simulation-based testing requires only a simulator of the system and its

environment, which allows more sophisticated and higher-fidelity models to be used. They are also able

to scale to much larger systems. These methods can be used to find examples of failure scenarios if they

exist, but cannot guarantee the absence of failures.

Amongst the simulation-based methods, enumeration, Monte Carlo, and black box optimization do

not leverage the sequential structure of the problem. As a result, the search performance can be very poor

or depend heavily on domain knowledge. Trajectory planning-based methods do leverage the sequential

nature of the problem by formulating the problem as a trajectory planning problem. However, due to

their reliance on RRT search algorithms, they require the ability to “steer” the simulator and compute

distances, which is inappropriate for systems with large state spaces, complex transition behavior, and

hidden state (non-Markovian) simulators. Thus, we are left with adaptive stress testing as the most viable

approach among the ones shown in Figure 2.1.



Chapter 3

Decision Processes and Reinforcement Learning

This chapter introduces several fundamental topics in decision theory and reinforcement learning. We

present Markov decision processes, partially observable Markov decision processes, reinforcement learn-

ing, and Monte Carlo tree search. The purpose of this chapter is provide the necessary background

concepts in decision theory and reinforcement learning for understanding adaptive stress testing, a core

contribution presented in Chapter 5 of this thesis. Additionally, this chapter introduces notation and

terminology used in later chapters of this thesis. In Chapter 5, we will show how stress testing can be

mapped to the problem of solving a Markov decision process.

3.1 Markov Decision Process

A sequential decision process is a mathematical framework for modeling situations where an agent makes a

sequence of decisions in an environment to maximize utility derived from the rewards received at each

time step [31]. The agent’s actions interact with the environment which in general can be stochastic.

If the environment is known and its state is fully observable, then the problem can be formulated as a

Markov decision process (MDP). We first introduce MDP for finite state and actions, and then we extend

the discussion to MDPs with continuous states and actions. Formally, an MDP is a 5-tuple 〈S, A, P, R, γ〉,
where S is a set of states; A is a set of actions; P is the transition probability function, where P(s′ | s, a)

is the probability of choosing action a ∈ A in state s ∈ S and transitioning to next state s′ ∈ S; and R

is the reward function, where R(s, a, s′) is the reward for taking a in s and transitioning to s′. We define

the transition function T for convenience, where T(s, a) samples the next state s′ from the distribution

P(s′ | s, a). The parameter γ ∈ [0, 1] is the discount factor that governs how much to discount the value

of future rewards. In an MDP, the agent chooses an action a at time t based on observing the current

state s. The system evolves probabilistically to the next state s′ according to the transition function T(s, a).

14
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The agent then receives reward r for the transition. The process is illustrated in Figure 3.1. In the figure,

circular nodes denote random variables, diamond nodes denote reward values that are evaluated and to

be maximized, and the square nodes denote the actions that the agent can choose. Subscript denotes time.

The assumption that the transition function depends only on the current state and action is known as the

Markov property.

s0 s1 s2

r0 r1 r2

a0 a1 a2

Figure 3.1: Markov decision process problem structure.

In a finite-horizon MDP, where the agent takes a finite number of steps, the utility U of the agent is the

sum of discounted rewards given by ∑tend
t=0 γtrt. Because the utility may be stochastic, the agent ultimately

wishes to maximize expected utility. It is common in finite-horizon problems to set γ = 1 so that the

utility is simply the sum of rewards. The two applications discussed in this thesis are both finite-horizon

problems and we set γ = 1 in both cases. The agent chooses actions according to its policy π which is a

function of state s. The action is given by a = π(s). While the policy can be stochastic in general, this

thesis considers only deterministic policies.

The expected utility of executing π from state s is denoted Vπ(s). In the context of MDPs, Vπ is often

referred to as the value function. An optimal policy π∗ is a policy that maximizes expected utility:

π∗(s) = argmax
π

Vπ(s) (3.1)

for all states s.

Bellman Equation. The value function Vπ can be determined using dynamic programming, which is a

computational technique for solving a complicated problem by recursively breaking it down into simpler

sub-problems [32]. The value function Vπ can be determined by solving the Bellman equation:

Vπ(s) = R(s, π(s)) + γ ∑
s′

P(s′ | s, π(s))Vπ(s′) (3.2)
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for all states s. Similarly, the value function of the optimal policy Vπ∗ can be determined by solving the

Bellman optimality equation:

Vπ∗(s) = maxa{R(s, a) + γ ∑
s′

P(s′ | s, π(s))Vπ∗(s′) (3.3)

for all states s. The Bellman equations are used as the basis of many algorithms for solving MDPs [31, 33].

Multivariate Heterogeneous States and Actions. Cyber-physical systems involve interactions with

physical processes and thus are often most naturally modeled using multivariate heterogeneous states

and actions. That is, the states and actions are vectors where each dimension can be continuous or finite

valued. Indeed, the MDPs in this thesis are of this type (i.e., those in Chapter 8 and Chapter 9). In

the multivariate heterogeneous MDP setting, S and A become infinite sets, and P becomes a probability

density function. Other aspects of the MDP formulation above remain the same. The Bellman equations

hold for multivariate heterogeneous states and actions, however the sum over next states becomes an

integral over next states.

3.2 Partially Observable Markov Decision Process

In cases where the underlying process is Markov, but the agent cannot fully resolve its state based on its

observation, the problem is a partially observable Markov decision process (POMDP) [31]. Formally, a

POMDP is a 7-tuple 〈S, A, P, R, Ω, O, γ〉, where S, A, P, R, and γ is defined as in an MDP; Ω is the set of

possible observations; and O is the observation function, where O(o | s) gives the probability of observing

o ∈ Ω in state s. Instead of choosing a based on observing the state s as in an MDP, the agent chooses

a based on only observing o ∈ O. While the observation o depends on s, it does not contain enough

information for the agent to fully determine what state it is in. Multiple states s ∈ S can produce the same

o. The POMDP is illustrated in Figure 3.2.

3.3 Reinforcement Learning

Reinforcement learning (RL) algorithms can optimize sequential decision problems through sampling of

the transition and reward functions alone without the need to leverage a full probabilitic transition model

of the environment [33, 34]. Instead, reinforcement learning algorithms rely on a generative model G,

which represents all the information about the state transitions and the rewards. To transition from one

time step to the next, samples from G are drawn, which gives (s′, r) ∼ G(s, a). The ability to rely only

on samples from a generative model makes reinforcement learning algorithms very suitable for black box

applications, where the internal details of the environment are not available to the learning agent, but the



CHAPTER 3. DECISION PROCESSES AND REINFORCEMENT LEARNING 17

s0 s1 s2

r0 r1 r2

a0 a1 a2

o0 o1 o2

Figure 3.2: Partially observable Markov decision process (POMDP) problem structure.

environment can be sampled. Since the agent does not have a full model, it must simultaneously explore

the space as it optimizes its decision-making behavior. Model-based reinforcement learning aims to estimate

the missing information by learning a model of the transition function. Model-free reinforcement learning

methods attempt to bypass the missing information by learning the optimal behaviors directly.

3.4 Q-Learning

Q-learning is a model-free reinforcement learning algorithm that is based on temporal differencing, which is

a bootstrapping approach that updates estimates of the value function toward other estimates of the value

function [33, 35]. Rather than estimating the value of a state V(s), Q-learning estimates the state-action

value function Q(s, a), or the Q-function, which is the expected utility of being in state s and executing

action a and following a policy π thereafter. The algorithm uses sample trajectories to incrementally

update estimates of the Q-function according to

Q(s, a)← Q(s, a) + α(r + γ max
a′

Q(s′, a′)−Q(s, a)), (3.4)

where α > 0 is the learning rate, which is a parameter that governs how fast the system learns. Equation 3.4

incrementally updates the current estimate of the Q-value towards a value that is more consistent with

the Bellman equation. Under mild assumptions, Q is guaranteed to converge to the optimal state-action
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value function Q∗. Then the optimal policy is given by

π∗(s) = argmax
a

Q∗(s, a). (3.5)

The Q-learning algorithm is shown in Algorithm 1. The algorithm begins by initializing the Q-function

Q (line 2), which, for example, can be initialized randomly. The first loop initializes the current state s

and then enters the second loop that steps through the transitions of each episode. For each step in the

episode, action a is chosen based on the current estimate of Q and some exploration strategy (line 6).

An example of an exploration strategy is ε-greedy, which chooses the action with the highest Q-value, i.e.,

argmaxa Q(s, a), with probability 1− ε and a random action with probability ε. The parameter ε ∈ (0, 1) is

typically chosen to be small. Then, a transition is sampled from G (line 7) and the Q-learning incremental

update rule is applied to update the estimate of the Q-function (line 8). Finally the state transitions to the

next state (line 9) and the loop continues.

Algorithm 1 Q-learning

1: function Q-Learning
2: Initialize Q
3: for each episode
4: Initialize s
5: for each step in episode
6: Choose action a based on Q and some exploration strategy
7: (s′, r) ∼ G(s, a)
8: Q(s, a)← Q(s, a) + α(r + γ maxa′ Q(s′, a′)−Q(s, a))
9: s← s′

3.5 Monte Carlo Tree Search

Monte Carlo tree search (MCTS) is a state-of-the-art heuristic search algorithm for optimizing sequential

decision processes [36, 37]. MCTS incrementally builds a search tree using a combination of directed

sampling based on estimates of the state-action value function and undirected sampling based on a fixed

distribution, called rollouts. Each node of the tree is a single-state reinforcement learning agent, called a

multi-armed bandit [38]. During the search, sampled paths from the simulator are used to incrementally

estimate Q(s, a) and the optimal policy at nodes in the tree. To account for the uncertainty in the estimates,

which may lead to premature convergence, MCTS encourages exploration by adding an exploration term

to the action value function to encourage choosing paths that have not been explored as often. The

exploration term optimally balances the selection of the best action estimated so far with the need for

exploration to improve the quality of current value estimates. By doing so, MCTS adaptively focuses the

search towards more promising areas of the search space. The effect of the exploration term diminishes
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as the number of times the state is visited increases. For a detailed survey of MCTS, we encourage the

reader to see [37].

MCTS has been successful in many applications, including computer Go [39, 40], dynamic resource

allocation [41], trajectory planning [42], expression discovery [43], and playing video games [44, 45].

It is conceptually simple, scales to large problems, accommodates a variety of computational budgets,

and is very flexible. One reason for its scalability is that MCTS is an online search algorithm, which

approximates the solution to the MDP only for the current state rather than for all states. As a result,

the search is focused only on the reachable state space, which can be substantially smaller than the entire

state space. Computationally, MCTS is an anytime algorithm. The algorithm can be stopped at anytime

and provide a solution, but the solution can be improved with additional computations. The flexibility

of MCTS has led to many variants of the algorithm in support of different problem requirements [37]. In

Chapter 5 of this thesis, we leverage this flexibility to extend the MCTS algorithm to support systems with

hidden state by using the node position in the tree as a substitute for the state.

Double Progressive Widening. The original MCTS algorithm is suitable for small discrete state and

action spaces. For large or continuous state and action spaces, a variant of MCTS with double progressive

widening (DPW) can be used [41, 46]. In progressive widening, not all possible children (either states or

actions) are considered initially. The set of considered children is grown incrementally with the number

of visits. Double progressive widening applies progressive widening to both states and actions. When the

state and action spaces are large (or infinite), visited states and actions are not revisited sufficiently through

sampling alone, which hinders the quality of value estimates. The benefit of MCTS-DPW’s progressive

widening is that it forces revisits to existing states and slowly allows new states to be added as the total

number of visits increase. Progressive widening stabilizes value estimates and prevents explosion of the

branching factor of the tree.

The MCTS-DPW algorithm is shown in Algorithm 2. The algorithm consists of a main loop that

repeatedly performs forward simulations of the system while building the search tree and updating the

state-action value estimates. The search tree T is initially empty. Each simulation runs from initial state

to terminal state. The path is determined by the actions of algorithm and the state transitions sampled

from G. There are three stages in each simulation: search, expansion, and rollout.

• Search. In the search stage, which is implemented by Simulate (line 7), the algorithm starts at

the root of the tree and recursively selects a child to follow. At each visited state node, the first

progressive widening criteria (line 15) determines whether to choose amongst previously visited

actions, tracked by A(s), or to sample a new action from GetAction. The criterion limits the
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number of actions at a state s to be no more than polynomial in the total number of visits to that

state. Specifically, a new action a is sampled if ‖A(s)‖ < kN(s)α, where k and α are parameters,

‖A(s)‖ is the number of previously visited actions at state s, and N(s) is the total number of visits

to state s. Otherwise, the existing action from A(s) that maximizes

Q(s, a) + c

√
log N(s)
N(s, a)

(3.6)

is chosen (line 19), where c is an exploration parameter that controls the amount of exploration in

the search, and N(s, a) is the total number of visits to action a in state s. Equation 3.6 is the upper

confidence tree (UCT) equation [36]. The second term in Equation 3.6 is an exploration bonus that

encourages selecting actions that have not been tried as frequently. At each action node, the second

progressive widening criteria (line 20) determines whether to reuse a previously encountered tran-

sition, tracked by V(s, a), or to sample a new transition from G. Similar to the first widening, the

second widening criterion limits the number of transitions at an action node, defined by the state-

action pair (s, a), to be no more than polynomial in the total number of visits to that state-action

pair. Specifically, a new transition (next state) is sampled from G if ‖V(s, a)‖ < k′N(s, a)α′ , where k′

and α′ are parameters, ‖V(s, a)‖ is the number of previously visited transitions at (s, a), and N(s, a)

is the total number of visits to (s, a). Otherwise, an existing transition is sampled from Sample. The

search stage continues in this manner until the system transitions to a state that is not in the tree T .

• Expansion. Once we have reached a state that is not in the tree T , we create a new node for the state

and add it (line 18). The set of previously taken actions from this state, A(s), is initially empty and

the number of visits to this state N(s) is initialized to zero.

• Rollout. Starting from the state created in the expansion stage, we perform a rollout that repeatedly

samples state transitions until the desired termination is reached (line 37). In the Rollout function

(line 36), actions are drawn according to a rollout policy π0 and state transitions are drawn from G.

The rollout policy is often simply a uniform distribution over possible actions.

At each transition in the simulation, the reward is used to update estimates of the state-action value

function Q(s, a) (line 34). The values are used to guide the search in the UCT selection criterion (line

19). Simulations are run until the stopping criterion is met, which is most commonly a fixed number of

iterations or a fixed amount of time. The algorithm returns the best action at the current time step, which

occurs at the root of the search tree.

Figure 3.3 illustrates the four primary operations of the MCTS algorithm. The three stages of each

simulation, which include search, expansion, and rollout, are shown in Figures 3.3a–3.3c and the update
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Algorithm 2 Monte Carlo tree search with double progressive widening

1: . Inputs: State s, depth d
2: . Returns: Action with highest estimated Q-value at the root a
3: function MCTS-DPW(s, d)
4: loop . Repeat until stopping criterion
5: Simulate(s, d)
6: return argmaxaQ(s, a)
7: function Simulate(s, d)
8: if d = 0 or s ∈ Sterminal
9: return 0

10: if s 6∈ T
11: T ← T ∪ {s} . Expansion, add new node
12: N(s)← 0
13: return Rollout(s, d)
14: N(s)← N(s) + 1
15: if ‖A(s)‖ < kN(s)α . Progressive widening of actions
16: a← GetNext(s, Q) . New action
17: (N(s, a), Q(s, a), V(s, a))← (0, 0, 0)
18: A(s)← A(s) ∪ {a}
19: a← argmaxa Q(s, a) + c

√
log N(s)
N(s,a) . UCT selection criterion

20: if ‖V(s, a)‖ < k′N(s, a)α′ . Progressive widening of states
21: (s′, r) ∼ G(s, a) . Sample a new transition
22: if s′ 6∈ V(s, a)
23: V(s, a) = V(s, a) ∪ {s′}
24: R(s, a, s′)← r
25: N(s, a, s′)← 0
26: else
27: N(s, a, s′)← N(s, a, s′) + 1
28: else
29: s′ ← Sample(N(s, a, ·)) . Sample an existing transition
30: r ← R(s, a, s′)
31: N(s, a, s′)← N(s, a, s′) + 1
32: q← r + γSimulate(s′, d− 1)
33: N(s, a)← N(s, a) + 1
34: Q(s, a)← Q(s, a) + q−Q(s,a)

N(s,a) . Update estimate of Q
35: return q
36: function Rollout(s, d)
37: if d = 0 or s ∈ Sterminal
38: return 0
39: a ∼ π0(s) . Sample action from rollout policy
40: (s′, r) ∼ G(s, a)
41: return r + γRollout(s′, d− 1)
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operation is shown in Figure 3.3d. State nodes are denoted as circles and action nodes are denoted as

squares. In the search stage, shown in Figure 3.3a, the algorithm recursively selects a child to follow using

the progressive widening and UCT criteria until it reaches a state that has not been previously visited.

The selected nodes are labeled s0 and a0 in the example. A new node representing the unvisited state,

labeled s1 in Figure 3.3b, is added to the tree in the expansion stage. Starting from the newly added

node, a rollout continues the simulation until a terminal state (stend in Figure 3.3c) is reached by selecting

actions using a fixed rollout policy π0. Finally, in Figure 3.3d, the observed rewards are used to update

the Q-values at the nodes along the simulated path. The Q-values are used in the UCT criterion in the

search stage.

s0

a0

(a) Search and follow
child node.

s0

a0

s1

(b) Expand node of
unvisited state.

s0

a0

s1

stend

(c) Rollout to end using
rollout policy π0.

s0

a0

s1

(d) Update Q-values for
nodes along path.

Figure 3.3: Primary operations of Monte Carlo tree search with double progressive widening (MCTS-
DPW): search, expansion, rollout, and update.

Figure 3.4 illustrates the three cases that can occur when visiting a state in the search and expansion

stages. If the state st does not exist in the tree, then add the node to the tree as shown in Figure 3.4a.

If the node exists and the number of child action nodes satisfies the progressive widening criterion,

then add a new action node as shown in Figure 3.4b. Specifically, a new child action node is added if

‖A(st)‖ < kN(st)α, where k and α are parameters, ‖A(st)‖ is the number of previously visited actions at

state st, and N(st) is the total number of visits to state st. Otherwise, select an existing child action to

follow using the UCT criterion (Equation 3.6) as shown in Figure 3.4c.
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at−1

st

(a) Add state if unvisited.

at−1

st

at

(b) Progressive widening adds
new action.

at−1

st

at

(c) Select existing action using
UCT.

Figure 3.4: Three cases of search and expansion stages when visiting a state node: expansion, progressive
widening, and UCT selection.



Chapter 4

Interpretable Machine Learning

This chapter provides a broad overview of approaches to interpretability and explainability in machine

learning, including rule-based methods and expression optimization. The purpose of this chapter is to

provide the context, motivation, and background concepts necessary for understanding grammar-based

decision tree (GBDT), a core contribution presented in Chapter 7 of this thesis. In particular, this chapter

introduces several core topics used in that chapter, including context-free grammar, genetic programming,

and grammatical evolution. Section 4.1 motivates the need for interpretability and explainability in ma-

chine learning. Section 4.2 surveys the main approaches to interpretable machine learning. Section 4.3

reviews decision trees. Finally, Section 4.4 reviews expression optimization and various algorithms for

optimization.

4.1 Introduction

Interpretability and explainability are often important qualities of machine learning models. Interpretability

is the degree to which a human can understand the cause of a decision, and is often used interchangeably

with explainability, which is the ability to produce human-understandable justifications. Since there is often

a trade-off between predictive accuracy and interpretability of machine learning models, the machine

learning literature has largely emphasized black box models, such as deep neural networks [1], in recent

times. Black box models can often provide better performance in terms of accuracy, but humans cannot

intuitively rationalize the decision process.

Interpretability and explainability are important for a variety of reasons. When a human can verify

intuitively how a machine learning system arrived at its decision, the human is much more likely to trust

it. Conversely, interpretability also enables the human to confidently disagree with the system if the

explanation of the decision is unsatisfactory. Over time, interpretability also allows the human to better

24
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understand the limitations of the system, and where the system decisions are more likely to fail. For

these reasons, interpretability and explainability are especially important for the analysis and operation

of safety-critical and other high-stakes systems.

Interpretability also plays a critical role in the validation and debugging of machine learning systems.

Machine learning systems are not perfect. When they do fail, interpretability helps validation engineers

understand why the failure occurred and how the system can be changed to mitigate future failures.

Lastly, machine learning algorithms are often much better at pattern recognition and dealing with

large and high-dimensional datasets than humans. As such, humans can learn a great deal from machine

learning models. Interpretability can be used as a tool for humans to mine knowledge from large complex

datasets by first training machine learning models on the large datasets, and then asking the machine

learning models for explanations.

One of the core challenges to interpretability and explainability is addressing how best to express

explanations. Explanations are, at its core, for human consumption, so they should align with the way

humans think and existing domain concepts. One approach is to leverage existing physics-based models

that humans are already familiar with as a basis and fit parameters using the data [47]. However, such

models may not be generally available. In this thesis, we address this issue by using a context-free

grammar to formally define the language of the expressions.

4.2 Approaches to Interpretable Machine Learning

A variety of interpretable models for static data have been proposed in the literature. Regression models

[48], generalized additive models [49], and Bayesian case models [50] have been recently proposed as

models with interpretability. These models aid interpretability by stating decision boundaries in terms

of basis functions or representative instances (prototypes). Bayesian networks have also been used for

prediction and data understanding [51]. Bayesian networks represent the relationship between variables

as conditional probabilities.

Rule-based models, such as decision trees [52], decision lists [53], and decision sets [54] are easy to

understand because their decision boundaries are stated in terms of input features and simple logical

operators. Decision trees partition the data using a tree structure while decision lists use a if-then-else

branching structure. Decision sets use independent decision rules to reduce coupling between rules.

In this thesis, our focus is on time series analysis. Interpretability for time series has focused on finding

motifs such as shapelets [55] and subsequences [56], which have been applied to time series classification.

These approaches search for simple patterns that are most correlated with the class label. Interpretability
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comes from identifying a prototype of a recurring subsequence pattern. Implication rules [57] and simple

logical combinations of shapelets [58] have been proposed to extend the shapelets approach. Hidden

Markov models and dictionary-based approaches have also been used [59, 60].

Another approach to interpretability is expression optimization [61], which is closely related to program

synthesis [62], program induction [63], automatic programming [64], programming by example [65], in-

ductive logic programming [66], and expression discovery [43]. The idea is to learn a symbolic expression,

or program, that can be executed to represent decision boundary of the system. Expressions are very

general and can be mathematical formulas, logic formulas, or even software programs. This approach

to interpretable machine learning is very general, and can thus be used to solve a very broad class of

problems. However, searching over symbolic expressions is very computationally intensive and finding

the optimal expression is generally intractable.

4.3 Decision Tree

The decision tree is a popular machine learning model for classification that humans find very intu-

itive. Decision tree learning recursively partitions the data using a tree structure where the splits are

either the features of the data for Boolean features, or simple logical operators for non-Boolean features

[52, 67]. We consider a dataset D, which consists of m feature vector xj and label l j pairs such that

((x1, l1), (x2, l2), ...(xm, lm)). Each feature vector has n features where feature i is denoted by xi. Algo-

rithm 3 illustrates the decision tree training algorithm for Boolean features and loss function f . The loss

function f (i, D) takes as input a feature i and the dataset D and returns a real-valued loss. Lower loss

values are preferred.

Algorithm 3 Decision Tree Training

1: . Inputs: Loss function f , dataset D, depth d
2: function DecisionTree( f , D, d)
3: R← Split( f , D, d)
4: return Tree(R)
5: function Split( f , D, d)
6: if IsHomogeneous(Labels(D)) or d = 0
7: return Leaf(Mode(Labels(D)))
8: i∗ ← argmini f (i, D), i = 1..n
9: D+ ← [(x, l) | xi∗ , (x, l) ∈ D]

10: D− ← [(x, l) | ¬xi∗ , (x, l) ∈ D]
11: child+ ← Split( f , D+, d− 1)
12: child− ← Split( f , D−, d− 1)
13: return INode(x∗, child+, child−)

In Algorithm 3, DecisionTree (line 2) is the main entry point to the training algorithm. It returns a
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Tree object containing the root node of the decision tree. Split (line 5) attempts to partition the data into

two parts. It first tests whether the terminal conditions are met and if so returns a Leaf node that predicts

the mode of the labels. The partitioning terminates if the maximum depth has been reached or if all

class labels are the same, which is tested by the IsHomogeneous function (line 7). We determine the best

feature to split on by evaluating the loss function conditioned on each feature and the one that minimizes

the loss function f (i, D) is chosen (line 8). Then we partition the data into two parts conditioning on the

Boolean value of feature i∗ (lines 9–10). Split is called recursively on each part (lines 11–12). Finally, the

function returns an internal node INode containing the decision feature and the children of the node (line

13).

Gini impurity [52] is a popular choice for the loss function f . The loss function with Gini impurity is

given by

fGini(i, D) = ∑
L∈{L+ ,L−}

∑
b∈B

f b
L(1− f b

L)

where L+ are the labels where feature i is true, i.e., L+ = [l | xi, (x, l) ∈ D]; L− are the labels where feature

i is false, i.e., L− = [l | ¬xi, (x, l) ∈ D]; B = {True, False}, and f b
L is the fraction of labels in L that are equal

to b, i.e., f b
L = 1{l=b}/|L|, where 1 is the indicator function and |L| denotes the number of elements in L.

We use square brackets with set construction syntax to indicate that L+ and L− are vectors and can have

duplicate elements. Another popular choice for the loss function is maximizing the information gain [67].

4.4 Expression Optimization

Expression optimization is an approach to interpretability in machine learning by learning symbolic ex-

pressions as the model [61]. Humans can inspect the expressions to understand the model’s exact behavior

and how the model arrived at its decision. The desirability of an expression is defined by a loss function,

and the optimal expression is the one that minimizes loss. Expression optimization relies on a context-

free grammar (CFG) to specify the syntax of valid expressions. Since search occurs over syntactically valid

expressions, the CFG inherently defines the domain of the search. We assume that the semantics of the

symbols in the grammar are known.

The expression optimization problem is to find the expression e∗ from a CFG G that minimizes a given

loss function f (e), i.e., e∗ = argmine∈G f (e) [68]. The formulation is extremely general due to the flexibility

and expressiveness of grammars and the arbitrary choice of loss function. For example, the grammar can

be used to define the syntax of linear temporal logic [7] or the syntax of an entire programming language

[69]. Owing to this generality, expression optimization has been applied to a wide variety of applications,

including image and signal processing; modeling of medical, economic, and earth science data; and
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industrial process control [70]. In the following sections, we first review context-free grammars and then

we present several algorithms for optimizing expressions from a grammar.

4.4.1 Context-Free Grammars

A context-free grammar (CFG) defines a set of rules that govern how to form expressions in a formal

language, such as LTL [7]. The grammar defines the syntax of the language and provides a means to

generate valid expressions. A CFG G is defined by a 4-tuple (N , T , P , S ), where N is a set of non-

terminals; T is a set of terminals; P is a set of production rules, which are rules governing the substitution

of non-terminals; and S is the special start symbol that begins a derivation.

To generate an expression from the grammar, we begin with the start symbol as an expression, then

repeatedly apply production rules to rewrite the expression until no more non-terminals remain. When

applying a rule, a non-terminal in the expression is replaced with a substitution defined in a production

rule. The rules can be applied any number of times and in any order. The derivation is commonly

represented as a tree structure called a derivation tree. Most algorithms use derivation trees as the internal

representation for the expressions and partial expressions.

Example: Expression Derivation from a CFG. Figure 4.1 shows a CFG for generating simple sen-

tences, adapted from [61].

S ::= N V
V ::= V A | runs | reads | writes
A ::= rapidly | efficiently
N ::= Alice | Hugo

Figure 4.1: Context-free grammar (CFG) example for generating simple sentences.

In this example, the start symbol is S; the non-terminals are S, V, A, N; and the terminals are runs,

reads, writes, rapidly, efficiently, Alice, Hugo. The symbol | in the production rules indicates possible selection

alternatives. To derive an expression from the grammar, we begin with the start symbol S, and then we

start substituting non-terminals using the production rules. There is only one possibility for substituting

S, which is N V. Now for N, we can choose amongst two alternatives Alice and Hugo. Let’s say we choose

Hugo, which gives Hugo V. For V, we have 4 possibilities: V A, runs, reads, and writes. Let’s say we choose

reads, then we have our completed expression Hugo reads with no remaining non-terminals. If instead,

we had chosen V A for V, then substituting into the partial expression gives Hugo V A, which has two

non-terminals. Then one way to complete the expression would be to choose runs for V and rapidly for



CHAPTER 4. INTERPRETABLE MACHINE LEARNING 29

A, which gives a complete expression Hugo runs rapidly. As we saw, a grammar can define an infinite set

of expressions through recursion. The derivation tree for Hugo runs rapidly is shown in Figure 4.2.

S

N V

V A
Hugo

runs rapidly

Figure 4.2: Derivation tree example for the context-free grammar (CFG) in Figure 4.1.

4.4.2 Optimization Algorithms

A number of existing algorithms can be used for optimizing expressions. The goal is to find the expression

e∗ from a CFG G that minimizes a loss function f , i.e., e∗ = argmine f (e). This section describes three

classes of algorithms: Monte Carlo [61], genetic programming [71], and grammatical evolution [72].

Monte Carlo

The Monte Carlo approach for expression optimization generates expressions by repeatedly selecting non-

terminals in the partial expression and applying a production rule chosen uniformly at random amongst

possible rules. When no non-terminals remain, the loss of the generated expression is evaluated. The

expression generation process is iterated and the expression with the best loss is reported. A maximum

depth is typically used to prevent infinite nesting and ensure that the process terminates. The Monte

Carlo process for generating expressions can be compactly implemented as a recursion on the derivation

tree. Each node represents a substitution in the partial expression. Each node makes a uniformly random

substitution and then recurses on each non-terminal child.

Figure 4.3 illustrates the Monte Carlo approach to expression generation using the example in Fig-

ure 4.2. We first start by expanding the start symbol S in Figure 4.3a. There is only one option, so we

expand S to N V. In Figure 4.3b, we select the leftmost non-terminal to expand, which is symbol N in

this case. The production rule corresponding to N has two possible substitutions as seen in the fourth
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rule of G in Figure 4.1. We choose amongst these two substitutions uniformly randomly. Suppose Hugo

was selected, then we substitute Hugo for N by adding a child node in the derivation tree. We continue

to expand the next non-terminal node in Figure 4.3c, which is V. There are four possible substitutions

for V and we choose uniformly randomly among them. Suppose we selected the first option V A, then

we expand V to V A in the derivation tree as shown in Figure 4.3c. The process continues in the same

manner in Figure 4.3d, where we expand the leftmost non-terminal V, and randomly select runs. Then,

finally in Figure 4.3e, we expand A to rapidly. There are no unexpanded non-terminals remaining and the

tree is complete.

S

N V

(a) Expand start symbol S to N V.

S

N V

Hugo

(b) Replace N with Hugo.

S

N V

V AHugo

(c) Expand V to V A.

S

N V

V AHugo

runs

(d) Replace V with runs.

S

N V

V AHugo

runs rapidly

(e) Replace A with rapidly.

Figure 4.3: Example illustrating Monte Carlo approach to generating an expression.

The major advantage of the Monte Carlo algorithm is simplicity. The algorithm is simple to implement,

requires little memory, and is easily parallelizable. However, because Monte Carlo sampling is undirected,

identical expressions may be evaluated multiple times, which can be inefficient. Furthermore, due to the

nature of the sampling, shallower paths will get sampled more frequently than deeper paths. In fact, deep

paths may have a vanishingly small probability of being reached [70].

Genetic Programming

Genetic programming (GP) is an evolutionary algorithm for optimizing trees [73]. As with traditional

evolutionary methods, GP maintains a population of solution candidates (here, derivation trees) and

applies genetic operators on them to create new and possibly better candidates. Better solutions, as

determined by the loss function, are more likely to be retained in the population. The loss function is also
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known as the fitness function in the evolutionary algorithms literature. The generation of new candidates

is performed in a number of rounds, called generations. The candidate solution with the best loss value is

finally returned. The genetic operators for GP are defined specifically for trees and thus do not require the

derivation tree to be transformed into another intermediate representation. The two primary operators in

GP are crossover and mutation. The crossover operator takes two trees as input and randomly exchanges

a compatible subtree. Derivation subtrees are compatible if they are replacing the same non-terminal

symbol. The mutation operator takes a single tree as input and randomly replaces a subtree with one that

is randomly generated, for example, by sampling uniformly over possible production rules. This thesis

uses standard tournament selection to select the candidates for applying the genetic operators [71].

Figure 4.4 illustrates the two genetic operators in GP, crossover and mutation, which serve to generate

new expressions from existing ones. The crossover operator takes two parent trees and combines them to

create a new child tree. First, a random non-terminal node is selected in the first parent (V in Figure 4.4a).

A random node with the same non-terminal symbol is selected from the second parent (Figure 4.4b). The

child, shown in Figure 4.4c, is the first parent with the selected subtree from the second parent substituted

at the first parent’s selected node. The mutation operator takes a single parent tree and modifies it to

produce a new child tree. First, a random non-terminal is selected in the parent (V in Figure 4.4d). Then,

the subtree is discarded and replaced by a randomly generated subtree using Monte Carlo as shown in

Figure 4.4e.

S

N V

Hugo reads

(a) Crossover 1: Select random node
from first parent.

S

N V

V AAlice

runs rapidly

(b) Crossover 2: Select node of same
type from second parent.

S

N V

V AHugo

runs rapidly

(c) Crossover 3: Child is first parent
with subtree from second parent.

S

N V

V AAlice

reads e f f iciently

(d) Mutation 1: Select random node
from parent.

S

N V

Alice runs

(e) Mutation 2: Child is parent with
random subtree.

Figure 4.4: Crossover and mutation operators for generating new derivation trees in genetic programming
(GP).
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Grammatical Evolution

Grammatical evolution (GE) [72] is another evolutionary algorithm that operates on trees. Like GP, a

population is maintained and genetic operators are applied to candidate solutions to produce the next

generation of population. The candidate solution with the best loss value is finally returned. However,

unlike GP, the genetic operators do not directly operate on trees. Instead, GE relies on an intermediate rep-

resentation by transforming the tree into a sequential representation, typically by assuming a depth-first

traversal order. Traditional GA [74] can be applied to manipulate the solutions, then the transformation

is reversed to recover the derivation tree. Specifically, GE defines a transformation from a variable-length

integer array to a sequence of rule selections in a CFG. Then a standard GA is used to search over integer

arrays. This thesis one-point crossover and uniform mutation for the genetic operators in the GA [70].

Figure 4.5 illustrates the mapping between the derivation tree and the intermediate sequential rep-

resentation, which uses an integer array. The elements of the integer array represent the selection in a

production rule. For example, a 2 means to select the second option in the production rule. To make

the selections in the derivation tree a sequence, a traversal order is chosen, such as a depth-first traversal

order. We illustrate in Figure 4.5 using the example from Figure 4.2. In Figure 4.5a, we start with the

start symbol S and expand it using the first element in the integer array. The first element is 1, so we

expand S using the first (and only) option N V. Following the depth-first traversal order, we now expand

N in Figure 4.5b. The second element of the integer array indicates to use the second option. The option

numbers depend on the particular non-terminal symbol. For N, the second option is Hugo and we make

the substitution. Figures 4.5c–4.5e continue the derivation in this manner, traversing through elements

three through five of the integer array and replacing the non-terminals V, V, and A respectively.
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Array:

(e) Replace A with rapidly.

Figure 4.5: Mapping between integer array and derivation tree in grammatical evolution (GE).



Chapter 5

Finding Failures using Reinforcement Learning

This chapter presents adaptive stress testing (AST), a core component of AdaStress and a core contribution

of this thesis. The key innovation behind AST is to improve stress testing by posing it as a sequential

decision-making problem thus enabling existing reinforcement learning algorithms to adaptively and

efficiently search the space. The first section, Section 5.1, introduces the approach and Section 5.2 describes

the general AST framework. Section 5.3 discusses how to apply AST to fully observable systems and

Section 5.4 discusses how to apply AST to partially observable systems. Section 5.5 summarizes the

contributions made in this chapter.

5.1 Introduction

Stress testing in simulation is a popular approach to testing systems for failures due to its flexibility

and ease of implementation. In Chapter 2, we described various approaches to generating test inputs in

attempt to induce a failure event from the system under test. The input space, or a discretization thereof

for continuous spaces, can be exhaustively covered. However, this approach is only tractable for very small

problems. An alternative approach would be to use a low-dimensional parameterization to abstract the

higher-dimensional input space. However, this approach relies heavily on the design of the abstraction

and the structure of the problem. A third approach uses Monte Carlo samples of a stochastic model

to capture the system’s environment, but this approach can be very sample inefficient for rare corner

case failures because it does not leverage the temporal (sequential) structure of the problem. Finally, the

problem can be formulated as a trajectory planning problem and an algorithm such as RRT can be applied.

However, the RRT approach requires the ability to steer the transition function and a distance measure on

states, which may not be available.

This chapter proposes the AST framework, which formulates the stress testing problem as a sequential

34
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decision-making problem. This view not only exposes the sequential structure of the problem to be

leveraged, it also enables powerful existing reinforcement learning algorithms to be used for search.

5.2 Adaptive Stress Testing

Adaptive stress testing (AST) aims to find the most likely path from a start state to a failure state in a

discrete-time simulator [75]. We formulate the search as a sequential decision-making problem and then

use reinforcement learning to optimize it. Since one of the main applications of this work is the stress

testing of safety-critical systems, we take the view that the simulator can be decomposed internally into

the system under test and a stochastic model of its environment. However, this view is not required, and

the formulations and algorithms presented in this paper can be applied without modification whether

this view is adopted or not.

Figure 5.1 illustrates the general AST framework. A simulator S models the system under test and the

environment at each time step. A reinforcement learning agent interacts with the simulator over multiple

time steps to maximize the reward it receives. At each time step, the agent makes an observation, takes an

action based on the observation, and receives a reward. The reward function is crafted to both encourage

failure events and maximize transition probability. In other words, the overall goal of the agent is to

search for a sequence of actions that is most adversarial to the system under test. AST returns the most

likely failure path, which is the sequence of states with the highest probability that ends in a failure event.

Without loss of generality, we assume that the simulator has multivariate heterogeneous states and actions

as discussed in Chapter 3.

Simulator S

Environment
System

Under Test

Reinforcement
Learner

action observation,
reward

Most Likely
Failure Path

Figure 5.1: Conceptual overview of adaptive stress testing.

Formally, let E ⊂ S be the set of states where the event of interest occurs, st ∈ S be the state of the

simulator at time t, at ∈ A be the actions of the reinforcement learner that affect the simulation at time t,
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and P(st+1 | st, at) be the probability of transitioning from state st to state st+1. Then, the AST problem is

to find the sequence of simulation states s0, s1, ..., stend that results from optimizing:

max
a0,a1,...,atend

tend−1

∏
t=0

P(st+1 | st, at)

subject to stend ∈ E

5.3 Fully Observable Systems

When the state of the system is fully observable, we can formulate the problem as an MDP. The state

of the MDP is the state of the simulator st, which includes both the state of the environment and the

state of the system under test. The transition behavior of the simulator defines T(st, at) and the transition

probabilities are given by P(st+1 | st, at) assumed to be available from the simulator. The actions at are

the controllable elements of the simulator and are chosen to be the stochastic elements of the simulator.

These elements represent the uncertainties in the simulation models, such as wind speed, sensor noise, or

how fast a pedestrian walks. Rather than sampling over these uncertainties, the action at directly sets their

values and then we account for the probability of the value occurring in the reward function. By setting

the stochastic variables through the actions, we remove transition stochasticity, which allows us to first

solve the MDP for the optimal policy π∗ and action sequence a0, a1, ..., atend , and then replay the actions to

find the sequence of states s0, s1, ..., stend . If the transitions were stochastic, then the resulting sequence of

states would not be unique.

Figure 5.2 illustrates the AST framework for one time step in the fully observable case. At each

time step, the agent observes the simulator state st and chooses an action at based on st. The system

then transitions to the next state st+1 and the agent receives a reward rt+1. To properly account for

the transition probabilities in the reward function described in the following section, we assume a finite

horizon problem and set γ = 1.

Reward Function. The reward function is designed to find failure events as the primary objective and

maximize the path probability as a secondary objective. Let RE ∈ R+ be the reward for reaching an event,

dt ∈ R+ be the miss distance, E ⊂ S be the event states, and tend ∈N be the time at which the simulation

terminates. Then the reward function is given by:

R(st, at, st+1) =


RE if st ∈ E

−dt if st /∈ E, t ≥ tend

log(P(at | st)) if st /∈ E, t < tend

(5.1)
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rt+1
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Figure 5.2: Adaptive stress testing of a fully observable system.

The reward function has three terms that provides a big reward for finding an event, penalizes the

learner proportionately according to a miss distance for not finding an event, and penalizes individual

transitions according to their likelihood of occurrence. The first term of Equation 5.1 assigns a positive

reward RE if the path terminates and a failure event occurs. If the path terminates and an event does not

occur, the second term of Equation 5.1 penalizes the agent by assigning the negative of the miss distance

dt to the agent. The miss distance dt is some measure defined by the user that depends on st and indicates

how close the simulation came to a failure. If such a measure is not available, then −dt can be set to a large

negative constant. However, providing an appropriate miss distance can greatly accelerate the search by

giving the agent the ability to distinguish the desirability of two paths that do not contain failure events.

The third term of Equation 5.1 maximizes the overall path probability by awarding the log probability of

each transition. The transition probability is given by P(st+1 | st, at)P(at | st). Since we have chosen our

actions to deterministically set the stochastic variables of the simulator, the transitions are deterministic,

i.e., P(st+1 | st, at) = 1, and the transition probability simplifies to P(at | st). Recall that reinforcement

learning maximizes the expected sum of rewards. By choosing a reward of the log probability at each step,

the reinforcement learning algorithm then maximizes the sum of the log probabilities, which is equivalent

to maximizing the product of the probabilities.

By viewing the simulator S as a generative model G that produces the next state and reward from

the current state and action such that (st+1, rt+1) ∼ G(st, at), the problem conforms to a traditional rein-

forcement learning problem as discussed in Section 3.3. Table 5.1 summarizes the mapping of the stress

testing problem to the reinforcement learning problem. Existing reinforcement learning algorithms such

as Q-learning (Section 3.4) [35] and MCTS (Section 3.5) [36] can be applied to optimize the decision pro-

cess and find the optimal path. Concurrent work has explored using deep reinforcement learning (DRL),
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i.e., reinforcement learning algorithms that use neural network function approximators, with AST to find

collisions between autonomous cars and pedestrians at crosswalks [76].

Table 5.1: Fully observable stress testing to RL problem mapping

RL component Stress testing component

State space S State space of simulator S
Action space A Stochastic variables of the simulator S
Generative model G Simulator state transition and reward function R (Eq. 5.1)
Initial state s0 Initial state s0

5.4 Partially Observable Systems

The formulation described in Section 5.3 requires access to the full state of the simulator. In some applica-

tions, some or all of the state variables may not be accessible. For example, black box components in the

simulator, such as software binaries, can maintain state without exposing it externally. Incomplete state

information leads to different states being aliased to the same observation, which can confuse the learner,

hinder learning, and lead to poor optimization performance.

To deal with the partial observability, we introduce an abstraction that relaxes the need for the simula-

tor to expose its state. Instead of explicitly representing and passing the state into and out of the simulator,

we now assume that the simulator maintains state internally and the state is updated in-place. In other

words, we have previously assumed that the simulator is stateless, but now we assume that the simulator

is stateful. Furthermore, rather than explicitly choosing and passing values of the stochastic variables as

the actions, we use a pseudorandom seed āt as a proxy. The simulator uses āt to seed an internal random

process that draws a sample of the stochastic variables at. We assume that setting the seed makes the

sampling process deterministic and sampling uniformly over all pseudorandom seeds returns the natural

distribution of the stochastic models in the simulator.

5.4.1 Seed-Action Simulators

A seed-action simulator S̄ is a stateful simulator that uses a pseudorandom seed input to update its state

in-place. The hidden state st is not exposed externally, making the simulator appear non-Markovian to

external processes, such as the reinforcement learning agent. The simulator uses āt to draw a sample of

the stochastic variables at and transition to the next state st+1. The next state replaces the current state

in-place. The simulator returns the transition probability pt+1 given by P(at | st); a Boolean indicating

whether an event occurred et+1; and the miss distance dt+1. While the state cannot be observed or set, the
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simulator transitions are deterministic given the pseudorandom seed āt. This property allows a previously

visited state to be revisited by replaying the sequence of pseudorandom seeds ā0, . . . , āt that leads to it

starting from the initial state s0, which we assume can be deterministically reached. In other words, we

can use the sequence of pseudorandom seeds as the state. We use st to denote the hidden state of the

simulator and s̄t to denote the sequence of seeds that induces st.

The seed-action simulator S̄ exposes the following simulation control functions:

• Initialize(S̄) resets the simulator S̄ to a deterministic initial state s0. The simulation state is modi-

fied in-place.

• Step(S̄ , āt) advances the state of the simulator by pseudorandom sampling. First, the pseudorandom

seed āt is used to set the state of the simulator’s pseudorandom process. Second, a sample at of the

stochastic variables in S̄ is drawn according to the natural distribution of the stochastic model. Third,

the simulator transitions to the next state st+1 given the current state st and action at, and the hidden

state st of the simulator is updated. The simulator returns the transition probability pt+1 given by

P(at | st); whether an event occurred et+1; and the miss distance dt+1.

• IsTerminal(S̄) returns true if the current state of the simulator is a terminal state and false other-

wise. The simulator terminates if an event occurs, i.e., st ∈ E, or if the simulation has reached a

maximum number of time steps tmax.

Figure 5.3 illustrates the AST framework under the pseudorandom seed abstraction, where the sim-

ulator has been replaced by a seed-action simulator S̄ , which maintains a hidden state. The seed input

is used to draw a random action and state transition and the state is updated in-place. The simulator

outputs the transition probability pt+1, a Boolean indicating whether an event occurred et+1, and the miss

distance dt+1. The reward function translates the simulator outputs into a reward and the optimization

algorithm learns from the reward to optimize over discrete pseudorandom seeds.

Simulator S̄

Environment
System

Under Test
MCTS-SA

Reward
Function

seed āt

reward rt+1

transition probability pt+1,
event et+1, miss distance dt+1

Figure 5.3: Adaptive stress testing of a partially observable system.
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In addition to supporting hidden states, this abstraction also provides some practical benefits. Large

software simulators are often written in a distributed and modular fashion where each component main-

tains its own state. The simulator may consist of many of these components. Since the simulator state is

the concatenation of the states of all the individual components, explicitly assembling and handling the

state can break modularity and be a major implementation inconvenience. This seed-action abstraction,

which uses in-place state update and pseudorandom seeds as a proxy of the actions, enables the simula-

tor to maintain modularity of the components. From an implementation perspective, it is very convenient

that we do not need to expose all the stochastic models to the optimization algorithm. We only need

the ability to set the global pseudorandom seed, which is generally easy to do in software simulators.

From an algorithmic perspective, the ability to set the pseudorandom seed gives optimizers the ability

make a stochastic simulator deterministic. The algorithm can deterministically return the simulator to

any previously visited state by replaying the sequence of pseudorandom seeds.

5.4.2 Reward Function for Seed-Action Simulator

The reward function for AST of a seed-action simulator is given in Equation 5.2. The reward is expressed

as a function of seed-action simulator outputs and a Boolean variable τt which indicates whether the

simulator has terminated, i.e., τt = IsTerminal(S̄). The three components mirror those in Equation 5.1.

The indicator function 1{x} returns 1 if x is true and 0 otherwise.

R(pt, et, dt, τt) = + RE · 1{et}

− dt · 1{¬et ∧ τt}

+ log pt · 1{¬et ∧ ¬τt} (5.2)

5.4.3 Monte Carlo Tree Search for Seed-Action Simulator

In the fully observable case, we defined a generative model G, such that (st+1, rt+1) ∼ G(st, at). That

definition assumes that G is stateless. However, due to the definition of the seed-action simulator, which

assumes a simulator with hidden state, it is no longer possible to define a suitable G. Instead, we can

define a stateful deterministic transition model Ḡ, such that (s̄t+1, rt+1) ∼ Ḡ(s̄t, āt), where āt is a pseudo-

random seed, and s̄t and s̄t+1 are sequences of pseudorandom seeds. The state s̄t is the action history up

to that time given by the sequence ā0, ..., āt. That means s̄t+1 is independent of the state and computations

inside Ḡ, and can be computed solely from the inputs of Ḡ using the relation s̄t+1 = [s̄t, āt], i.e., append-

ing āt to the sequence. The only reliance on the internals of S̄ comes from the evaluation of the reward
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function, which needs to know whether an event occurred, a miss distance, and a transition probability

(for maximizing path probability). Table 5.2 summarizes the mapping from the problem of stress testing

a seed-action simulator to its corresponding RL problem. While our proposed algorithm to be presented

next does not make explicit use of Ḡ but rather refers to the functions of the seed-action simulator directly,

this view is conceptually useful for understanding the design of the algorithm.

Table 5.2: Stress testing of seed-action simulator to RL problem mapping

RL component Stress testing component

State space S Sequences of pseudorandom seeds
Action space A Pseudorandom seeds
Stateful generative model Ḡ Seed-action simulator functions Initialize, Step, and IsTerminal

and seed-action reward function R (Eq. 5.2)
Deterministic initial state s0 Achieved by calling Initialize

We now present Monte Carlo tree search for seed-action simulators (MCTS-SA). We base the algorithm

on the double progressive widening variant of MCTS, which was discussed in Section 3.5. MCTS-DPW is

used because the actions of the reinforcement learning agent are pseudorandom seeds, which are vast [46].

The transition behavior of the simulator is deterministic given a pseudorandom seed input. Consequently,

only a single next state is possible and there is no need to limit the number of next states. We simplify

the algorithm by removing the progressive widening of the state and its associated parameters, k′ and α′.

The action space is the space of all pseudorandom seeds. Since the seeds are discrete and do not have any

semantic relationship, there is no need to distinguish between them. We choose the rollout policy and

the action expansion function of MCTS to uniformly sample over all seeds. Sampling seeds uniformly

generates unbiased samples of the next state from the simulator. We use Useed to denote the discrete

uniform distribution over all possible seeds. The hidden state st of the simulator is not available to the

reinforcement learning agent. However, since the simulator is deterministic given the pseudorandom seed

input āt, we can revisit a previous state by replaying the sequence of seeds that leads to it starting from the

initial state. As a result, we use the sequence of actions ā0, . . . , āt as the state s̄t in the algorithm. The path

with the highest utility, that is, the sum of all the rewards received over the entire path, may, and likely

will, be from a path that is encountered during a rollout. Since rollouts are not individually recorded,

information about the best path can be lost. To ensure that the algorithm returns the best path seen over

the entire search, we explicitly track the highest utility seen, U∗, and the corresponding action sequence,

s̄∗.

The MCTS-SA algorithm is shown in Algorithm 4. The algorithm takes as input a seed-action simulator

S̄ and returns the most likely failure path s̄∗. The algorithm consists of a main loop that repeatedly
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performs forward simulations of the system while building the search tree and updating the state-action

value estimates. The search tree T is initially empty. Each simulation runs from initial state to a terminal

state. The path is determined by the sequence of pseudorandom seeds chosen by the algorithm, which

falls into three stages for each simulation:

• Search. In the search stage, which is implemented by Simulate (line 13), the algorithm starts at the

root of the tree and recursively selects a child to follow. At each visited state node, the progressive

widening criterion (line 22) determines whether to choose amongst existing actions (seeds) or to

expand the number of children by sampling a new action. The criterion limits the number of actions

at a state s̄ to be no more than polynomial in the total number of visits to that state. Specifically, a

new action ā is sampled from a discrete uniform distribution over all seeds Useed if ‖A(s̄)‖ < kN(s̄)α,

where k and α are parameters, ‖A(s̄)‖ is the number of previously visited actions at state s̄, and N(s̄)

is the total number of visits to state s̄. Otherwise, the existing action that maximizes

Q(s̄, ā) + c

√
log N(s̄)
N(s̄, ā)

(5.3)

is chosen (line 27), where c is a parameter that controls the amount of exploration in the search, and

N(s̄, ā) is the total number of visits to action ā in state s̄. Equation 5.3 is the UCT equation [36]. The

second term in the equation is an exploration bonus that encourages selecting actions that have not

been tried as frequently. The action is used to advance the simulator to the next state and the reward

is evaluated. The search stage continues in this manner until the system transitions to a state that is

not in the tree.

• Expansion. Once we have reached a state that is not in the tree T , we create a new node for the state

and add it (line 18). The set of previously taken actions from this state, A(s̄), is initially empty and

the number of visits to this state N(s̄) is initialized to zero.

• Rollout. Starting from the state created in the expansion stage, we perform a rollout that repeatedly

samples state transitions until the desired termination is reached (line 20). In the Rollout function

(line 36), state transitions are drawn from the simulator with actions chosen according to a rollout

policy, which we set as the discrete uniform distribution over all seeds Useed.

At each step in the simulation, the reward function is evaluated and the reward is used to update

estimates of the state-action values Q(s̄, ā) (line 34). The values are used to direct the search. At the end

of each simulation, the best utility U∗ and best path s̄∗ are updated (lines 10–11). Simulations are run

until the stopping criterion is met. The criterion is a fixed number of iterations for all our experiments in

this thesis except for the performance study in Section 8.6 where we used a fixed computational budget.
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Algorithm 4 MCTS for seed-action simulators

1: . Inputs: Seed-action simulator S̄
2: . Returns: Sequence of seeds that induces path with highest utility s̄∗

3: function MCTS-SA(S̄)
4: global s̄T ← ∅
5: (s̄∗, U∗)← (∅,−∞)
6: loop
7: s̄← ∅
8: Initialize(S̄)
9: U ← Simulate(S̄ , s̄)

10: if U > U∗

11: (s̄∗, U∗)← (s̄T , U)

12: return s̄∗

13: function Simulate(S̄ , s̄)
14: if IsTerminal(S̄)
15: s̄T ← s̄
16: return 0
17: if s̄ 6∈ T
18: T ← T ∪ {s̄} . Expansion, add new node
19: (N(s̄), A(s̄))← (0, ∅)
20: return Rollout(S̄ , s̄)
21: N(s̄)← N(s̄) + 1
22: if ‖N(s̄, ā)‖ < kN(s̄)α . Progressive widening of seeds
23: ā ∼ Useed . New seed
24: (N(s̄, ā), V(s̄, ā))← (0, ∅)
25: Q(s̄, ā)← 0
26: A(s̄)← A(s̄) ∪ {ā}
27: ā← argmaxa Q(s̄, a) + c

√
log N(s̄)
N(s̄,a) . UCT selection criterion

28: (p, e, d)← Step(S̄ , ā) . Deterministic transition
29: τ ← IsTerminal(S̄)
30: r ← Reward(p, e, d, τ)
31: s̄′ ← [s̄, ā]
32: q← r + Simulate(S̄ , s̄′)
33: N(s̄, ā)← N(s̄, ā) + 1
34: Q(s̄, ā)← Q(s̄, ā) + q−Q(s̄,ā)

N(s̄,ā) . Update estimate of Q
35: return q
36: function Rollout(S̄ , s̄)
37: if IsTerminal(S̄)
38: s̄T ← s̄
39: return 0
40: ā ∼ Useed . Sample seeds uniformly
41: (p, e, d)← Step(S̄ , ā)
42: τ ← IsTerminal(S̄)
43: r ← Reward(p, e, d, τ)
44: s̄′ ← [s̄, ā]
45: return r + Rollout(S̄ , s̄′)
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The algorithm returns the path with the highest utility represented as a sequence of pseudorandom seeds.

The sequence of seeds can be used to replay the simulator to reproduce the failure events.

Figure 5.4 illustrates the four primary operations of the MCTS-SA algorithm. The three stages of each

simulation, which include search, expansion, and rollout, are shown in Figures 5.4a–5.4c and the update

operation is shown in Figure 5.4d. The discussion follows closely that of Figure 3.3 with the exception

that actions are no longer explicitly represented as nodes since state transitions are now deterministic.

The actions are pseudorandom seeds and the states are sequences of seeds. In the search stage, shown

in Figure 5.4a, the algorithm recursively selects a child to follow using the progressive widening and

UCT criteria until it reaches a state that has not been previously visited. The selected states and actions

are labeled s̄0, ā0, s̄1, and ā1 in the example. A new node representing the unvisited state, labeled s̄2

in Figure 5.4b, is added to the tree in the expansion stage. Starting from the newly added node, a

rollout continues the simulation until a terminal state (s̄tend in Figure 5.4c) is reached by selecting actions

uniformly from Useed. Finally, in Figure 5.4d, the observed rewards are used to update the Q-values at the

nodes along the simulated path. The Q-values are used in the UCT criterion in the search stage.

s̄0

s̄1
ā0

ā1

(a) Search and follow
child node.

s̄0

s̄1

s̄2

ā0

ā1

(b) Expand node of
unvisited state.

s̄0

s̄1

s̄2

s̄tend

ā0

ā1

(c) Rollout to end using
actions from Useed.

s̄0

s̄1

s̄2

ā0

ā1

(d) Update Q-values for
nodes along path.

Figure 5.4: Primary operations in Monte Carlo tree search for state-action simulators.

Computational Complexity. Each iteration of the MCTS main loop simulates a path from initial state

to terminal state. As a result, the number of calls to the simulator is linear in the number of loop iterations.

The computation time thus varies as O(Nloop · (TInitialize + Nsteps · TStep)), where Nloop is the number of

loop iterations, TInitialize is the computation time of Initialize, Nsteps is the average number of steps in

the simulation, and TStep is the computation time of the Step function.
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5.5 Summary

This chapter proposed a novel approach for finding the most likely failure scenarios of a system. The

approach, called AST, formulates the stress testing problem as a sequential decision problem so that rein-

forcement learning algorithms can be applied for search. We presented an AST formulation for systems

with fully observable state, which can be directly mapped to a traditional reinforcement learning prob-

lem. We also presented an AST formulation for systems with partially or fully hidden state. In this case,

we proposed an abstraction called a seed-action simulator, that uses pseudorandom seeds to control the

pseudorandom number generation process of the simulator. This abstraction creates a deterministic but

non-Markov model, which can be optimized using our proposed MCTS-SA algorithm. By searching the

simulation space using pseudorandom number seeds, the simulator can be a black box with both the

simulation state and transition behavior hidden.



Chapter 6

Finding Failures Relative to a Baseline System

The previous chapter presented AST, a framework for finding failure scenarios in a system. This chapter

presents differential adaptive stress testing (DAST), an extension to AST for comparing the failure behav-

ior of two systems. DAST is a core contribution of this thesis. After providing a brief introduction and

motivation in Section 6.1, Section 6.2 presents the DAST formulation and solution method. Section 6.3

discusses the contributions of the chapter.

6.1 Introduction

The previous chapter presented AST, a framework for efficiently finding failure scenarios of a system

under test. In some applications, it may also be very valuable to identify failure scenarios not in absolute

terms, but compared to another system—that is, areas where the system is relatively weak compared to a

baseline system. In other words, we are not so interested in the cases where both systems perform poorly

as cases where the system under test performs poorly but the baseline system performs well. We call

this type of analysis differential analysis as shown in Table 6.1. Such situations arise, for example, when

comparing two candidate solutions to see which one may be more desirable for release. Another use case

is for regression testing where a new version of a system is compared to a previous one to see whether

any new issues have been introduced.

Table 6.1: Differential analysis

System Under Test System Under Test
Succeeds Fails

Baseline Succeeds - Differential Analysis
Baseline Fails - -

One way to compare the behavior of two systems is to evaluate them against a common set of testing
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scenarios. For example, testing inputs can be randomly drawn using Monte Carlo from a stochastic model

of the system’s operating environment. Then, the inputs can be applied to both systems and the scenarios

where failure occurs in the system under test but not in the baseline system are kept. While this method

can generate failures, the undirected nature of this approach can be very inefficient due to the size and

complexity of the state space, and the rarity of failure events. Moreover, the method does not find the

most likely path to a failure, which is very valuable in the analysis of failure events.

Another, perhaps slightly better, approach is to use a stress testing method, such as AST, to identify

failure scenarios in the system under test, and then replay the scenario on the baseline system. If the

scenario does not fail on the baseline system, then accept the scenario. This method improves upon the

first method in that at least the failure scenarios on the system under test are being optimized. However,

the optimization process does not take into account the behavior of the baseline system.

We propose a novel stress testing method, called DAST, that extends the AST framework to search

both the system under test and the baseline system simultaneously. DAST extends the AST framework

to the differential analysis setting while retaining its desirable properties, including scalability, efficiency,

and support for black box systems. Similar to the AST approach, we formulate the search as a sequential

decision-making problem and then use reinforcement learning algorithms to optimize it.

6.2 Differential Adaptive Stress Testing

This section presents differential adaptive stress testing (DAST), a stress testing method for efficiently

finding the most likely path to a failure event that occurs in the system under test, but not in the baseline

system [77]. The key idea behind DAST is to drive two simulators in parallel and maximize the differ-

ence in their outcomes. To achieve this, we craft a new reward function that accepts the outputs of two

simulators and encourages failures in one simulator but not the other. For optimization, we regard the

two parallel simulators as a larger combined simulator, then we follow the AST approach to formulate

stress testing as a sequential decision-making problem and optimize it using reinforcement learning. One

of the core advantages of the seed-action formulation introduced in Section 5.4.1 is that it uses control

of the pseudorandom seed to abstract the internal state and transition behavior from the optimization

procedure. By composing two seed-action simulators into a combined simulator that is also a seed-action

simulator, we can apply the MCTS-SA algorithm described in Algorithm 4 for optimization without any

modification.

Figure 6.1 illustrates the DAST framework. We create two instances of the simulator S̄ (1) and S̄ (2). The

instances are identical except that S̄ (1) contains the system under test, while S̄ (2) contains the baseline
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system. In particular, they contain identical models of the environment with which the system under

test and the baseline system interface. The simulators are driven by the same pseudorandom seed input,

which leads to the same sequence of stochastic variables being drawn from the environment when the

behaviors of the test and baseline systems match. Under these circumstances, the states st match and thus

the distribution P(at | st) also matches leading to identical samples drawn under the same pseudorandom

seed. When the behavior of the two systems diverge, the states st also diverge. The distribution P(at | st)

may change due to conditioning on a different st, but the seed automatically allows different stochastic

variables at to be drawn in each simulator without requiring any synchronization between the simulators.

We define a combined simulator that contains the two parallel simulators S̄ (1) and S̄ (2). They are both

driven by the same input seed āt. Each simulator produces its own set of outputs, which include the

transition probability pt+1, an indicator of whether an event occurred et+1, and the miss distance dt+1.

These variables are combined in a reward function, where a single reward is provided to the reinforce-

ment learner. Finally, the MCTS-SA algorithm chooses seeds to maximize the reward it receives. The

superscripts on the variables pt+1, et+1, dt+1 and τt+1 indicate the associated simulator.

Combined Simulator

Simulator S̄ (1)

Simulator S̄ (2)

Environment
System

Under Test

Environment Baseline

Reward
Function

MCTS-SA

probability p(1)t+1,

event e(1)t+1,

miss distance d(1)t+1

probability p(2)t+1,

event e(2)t+1,

miss distance d(2)t+1

reward rt+1seed āt

Figure 6.1: Differential adaptive stress testing framework.

6.2.1 Reward Function

The reward function combines the output from the two individual simulators to produce a single reward

for the MCTS-SA learner. The primary objective of the reward function is to maximize the difference in

outcomes of the simulators driving the first simulator to a failure event, while keeping the second simula-

tor away from one. The secondary objective is to maximize the path probabilities of the two simulators to
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produce the most likely paths. The DAST reward function is given by Equation 6.1. The indicator function

1{x} returns 1 if x is true and 0 otherwise.

R(p(1)t , e(1)t , d(1)t , τ
(1)
t , p(2)t , e(2)t , d(2)t , τ

(2)
t ) = + RE · 1{e(1)t }

− d(1)t · 1{¬e(1)t ∧ τ
(1)
t }

− RE · 1{e(2)t }

+ d(2)t · 1{¬e(2)t ∧ τ
(2)
t }

+ (log p(1)t + log p(2)t ) · 1{¬e(1)t ∧ ¬e(2)t ∧ ¬τt} (6.1)

The DAST reward function extends the AST reward function to the differential setting and has a similar

structure. The first term in Eq. 6.1 gives a non-negative reward RE to the learner if the first simulator S̄ (1)

terminates in an event. If S̄ (1) terminates and an event did not occur, then the second term penalizes

the learner by giving the negative miss distance −d(1)t . The third and fourth terms are the negations

of the first and second terms, respectively, applied to the second simulator S̄ (2). The third term gives

−RE if S̄ (2) terminates in an event and the fourth term gives d(2)t if S̄ (2) terminates and an event did

not occur. To maximize the probabilities of the paths, the fifth term gives the sum of the log transition

probabilities of both simulators. The terminal state of the simulators are treated as absorbing. That is,

once a simulator enters a terminal state, it stays there for all subsequent transitions and collects zero

reward for these transitions. The Boolean variables τ
(1)
t and τ

(2)
t indicate whether S̄ (1) and S̄ (2) have

terminated, respectively. The combined simulator terminates when both simulators have terminated,

i.e., τt = IsTerminal(S̄) = τ
(1)
t ∧ τ

(2)
t , where τt (without superscript) indicates whether the combined

simulator has terminated.

6.2.2 Optimization

Our DAST formulation combines two seed-action simulators into a single combined simulator that is also

a seed-action simulator by defining the behavior of the combined simulator in terms of the individual sim-

ulators. For example, the reward function in Eq 6.1 combines the output of the two simulators into a single

reward output. As a result, we can optimize the problem using the same MCTS-SA algorithm described

in Algorithm 4. Because the algorithm is based on scalar rewards and pseudorandom seeds, the internal

details of the simulator are abstracted from the reinforcement learner. As a result, no modifications to the

algorithm presented in Section 5.4.3 are necessary.
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6.3 Summary

This chapter proposed a novel approach for performing differential failure analysis between two systems.

We find the most likely failure scenarios of a system that occurs in one system, but not in another baseline

system. The approach, called DAST, searches two simulators simultaneously and drives their final out-

comes apart. The problem is posed as a sequential decision-making problem in a similar manner to AST

and the same seed-action simulator abstraction is used. As a result, the same algorithm, MCTS-SA, can

be used for optimization as in the case of AST in Chapter 5. DAST addresses the problem of comparing

the failure behaviors of two systems, which arises naturally in candidate selection and regression testing

applications. DAST can search much more efficiently than existing methods because it accounts for the

behavior of both systems during the optimization process.



Chapter 7

Categorizing and Explaining Failures

The previous two chapters discussed methods for finding the most likely failure scenarios for a system

under test. This chapter discusses methods for analyzing failure datasets to identify common patterns

that may reveal underlying issues in the system. We present grammar-based decision tree (GBDT), an

interpretable model for automatically categorizing the failure data and explaining relevant properties to

a human. GBDT is a core contribution of this thesis. The first section, Section 7.1, motivates the need

for automatic organization and explanation of failure data. Section 7.2 presents the GBDT framework,

and Section 7.3 presents a training algorithm for GBDT. Section 7.4 demonstrates GBDT on an example

dataset on Australian sign language, and the final section, Section 7.5, summarizes the contributions of

this chapter.

7.1 Introduction

Large and high-dimensional datasets have necessitated increased automation to help humans in analyzing

data. Automated analysis tools can help humans extract useful insights from the data by automatically

organizing the data into a more human-friendly form, and finding interesting patterns in the data. For ex-

ample, analysis of large datasets of failures can reveal common failure patterns, identify underlying issues,

and ultimately lead to better mitigations. In Chapter 4, we provided a general overview of approaches

to interpretable machine learning. This chapter focuses on interpretable machine learning approaches for

knowledge discovery from heterogeneous multivariate time series data.

Heterogeneous multivariate time series data arises in many applications including driverless cars,

smart homes, robotic servants, and aviation. Understanding these datasets is important for designing

better systems, validating safety, and analyzing failures. However, knowledge discovery from heteroge-

neous multivariate time series datasets is very challenging because it typically requires two major data
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mining problems to be addressed simultaneously. The first problem is how to handle multivariate hetero-

geneous time series data, where the variables are a mix of numeric, Boolean, and categorical types. The

second problem is the need for interpretability, which is closely related to concepts such as explainability,

understandability, and trustworthiness. That is, humans must be able to understand and reason about the

information captured by the model. While these problems have been explored separately in the literature,

we are not aware of any methods that address both interpretability and heterogeneous multivariate time

series datasets together.

Rule-based methods such as decision trees [52] and decision lists [53] are very intuitive because they

use symbolic rules for decision boundaries. However, they do not traditionally support time series data.

Motif discovery methods, such as shapelet [55] and subsequence [56] discovery, find recurring patterns in

sequential data. These methods are less interpretable than rule-based methods as they report prototypes

of patterns rather than state relationships. These methods have also not been applied to heterogeneous

multivariate time series data. On the other hand, models that support heterogeneous multivariate time

series, such as recurrent neural networks [78], are not interpretable. If familiar physics-based models exist,

parameters of the model can be fit using data [47]. The advantage of this approach is that parameters often

have physical meaning and can be independently tested and verified. However, a physics-based model

may not be generally available.

To simultaneously address the problems of interpretability and heterogeneous time series data, we

increase the expressiveness of decision trees by allowing their decision rules or splitting criteria to be

any logical expression. Traditional decision trees, as introduced in Section 4.3, partition the input space

using the Boolean feature itself or using simple thresholds on real-valued features, such as (x1 < 2)

[52]. However, these partitioning rules have limited expressiveness and cannot be used to express more

complex logical relationships, such as those between heterogeneous features or across time. Allowing

more expressive rules in the decision tree increases its modeling capability while retaining interpretability.

In the past, first order logic rules have been used in decision trees [79]. We generalize this idea and

allow any logical language that can be specified using a context-free grammar. In particular, we show

that decision trees combined with temporal logic can be very effective as an interpretable model for

heterogeneous multivariate time series data. Temporal logic, in combination with other algorithms, has

been applied to heterogeneous time series data in aviation [80], but not in our decision tree setting.

This chapter presents grammar-based decision tree (GBDT), which combines decision trees with formal

grammars. The innovative idea of GBDT is to generalize the decision rules of a decision tree to arbitrary

logical expressions that are derived from a CFG. While a CFG defining any language can be used, we

make the particular choice of using expressions derived from temporal logic, which can elegantly handle
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heterogeneous multivariate time series data [7]. Deriving expressions from a CFG also aligns well with

the expression optimization framework presented in Chapter 4. Due to the use of a decision tree as a

model, GBDT can be used for both interpretable classification and categorization, which is the combined

task of clustering data into similar groups and providing explanations for them. We elaborate on the

categorization capability later in Section 7.2.

The combination of decision trees and grammars has been proposed in the past [81, 82]. These prior

works use a grammar to optimize traditional decision trees as a whole where the splits are simple thresh-

olds over individual features. The resulting tree, after machine learning, is a traditional decision tree. In

contrast, GBDT uses a grammar and expression optimization to optimize decision expressions, and the

resulting decision tree contains a (temporal) logic rule at each decision node. This distinction is very im-

portant because the added expressivity of the logical expressions is what allows support for multivariate

heterogeneous time series datasets. While the GBDT model generally has higher complexity, the com-

plexity is localized to logical expressions with higher representational abstraction and the expressions are

organized in an easy-to-understand tree structure. As a result, GBDT is much more interpretable than,

say, a random forest classifier, which increases model expressivity through increasing the number of trees.

7.2 Grammar-Based Decision Trees

Grammar-based decision tree (GBDT) is an interpretable machine learning model that extends decision

trees with a grammar framework to allow general logical expressions to be used as the branching rules of

a decision tree. The domain of the logical expressions is constrained using a CFG given by the user, which

gives the user fine control of the underlying syntax and semantics of the expressions. In this thesis, we

consider grammars based on temporal logic for the modeling of heterogeneous multivariate time series

data. However, any CFG producing logical expressions can be used. While decision trees can be and are

traditionally used for classification, we show that GBDT can also be very useful for categorization. In

particular, our primary interest is in knowledge discovery by first training a GBDT on a large dataset, and

then analyzing the categories and the explanations of the categories that were learned by the model.

7.2.1 Notation

A multi-dimensional time series dataset D consists of m records of feature matrix X j and label l j pairs

((X1, l1), (X2, l2), ...(Xm, lm)). Each feature matrix X j is a two-dimensional n× T matrix of n features by T

time steps and a label l j is its discrete class label. A feature trace ~xi is the i’th row of a feature matrix and

represents the time series of feature xi. Logical and comparison operators are applied elementwise. For
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example, the logical operator in ~xi ∧~xj takes the elementwise conjunction of the two vectors. Elementwise

operators are given broadcast semantics where appropriate. Broadcast semantics extend an elementwise

operator to handle a vector and scalar input (rather than two vectors) by replicating the scalar input so

that it has the same number of elements as the vector input. For example, the comparison operator in

~xi < c compares each element of ~xi to c and returns a vector of the same size as ~xi. The temporal operators

F and G are eventually and globally, respectively. Eventually returns true if any value in the argument vector

is true. Globally returns true if all values in the argument vector are true.

7.2.2 Model

GBDT is a binary decision tree where each non-leaf node contains a logical expression. The children of a

non-leaf node are associated with each of the Boolean outcomes when evaluating the logical expression

at that node. Leaf nodes are associated with a particular class label for prediction. We use the following

definition: A GBDT T is either a leaf with class l, which we denote by T = Leaf(l); or it is an internal node

with expression e ∈ G, true branch T +, and false branch T −, which we denote by T = INode(e, T +, T −).
Both T + and T − are GBDTs.

GBDT Prediction

As in a traditional decision tree, GBDT prediction is performed in a top-down fashion starting at the

root. At each node, the logical expression is evaluated on the feature matrix and the result dictates which

branch is followed. The process continues recursively until a leaf node is reached where the class label at

the leaf node is used for prediction. The process is the same as with a traditional decision tree except for

the more sophisticated logical expressions applied at each internal node.

GBDT Categorization

While decision trees are traditionally used for classification, they can also be used for categorization, which

is the combined task of clustering and explaining data. A categorization of the data can be extracted from

a GBDT by considering each leaf node of the tree to be a separate category. The description of the

category is then the conjunction of all branch expressions between the root and the leaf node of interest.

The members of the cluster are the records where the cluster’s description holds true. Since partitions are

mutually exclusive, the clusters do not overlap.
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Example GBDT Model

Figure 7.1 shows an example of a GBDT with an accompanying CFG. The splitting rules learned for the

nodes in the tree in Figure 7.1a are in fact expressions of the grammar in Figure 7.1b. The CFG describes

a simple temporal logic. It assumes that the data has four features x1, x2, x3, x4, where the feature traces

~x1 and ~x2 are Boolean vectors and ~x3 and ~x4 are vectors of real numbers. The grammar contains a set

of production rules. The rules can contain expressions with a mix of terminal and non-terminal symbols

such as F(~B), where ~B is a non-terminal symbol and F is a terminal symbol for operator F(·). Non-terminal

symbols are substituted further using the appropriate production rules. The production rules can contain

the symbol |, such as Ev | Gl, which delineates the different possible substitutions.

Each non-leaf node of the GBDT contains a logical expression derived from the grammar. The expres-

sion dictates which branch should be followed. Leaf nodes show the predicted class label. In Figure 7.1,

a data record where F(~x1 ∧~x2) is true and G(~x3 < 5) is false would be predicted to have class label 2. We

also label each leaf node with a unique cluster number. For example, the rightmost leaf node in Figure 7.1a

is labeled as cluster 4. The overall expression that describes cluster 4 is ¬F(~x1 ∧~x2) ∧ ¬F(~x1 ∧ (~x3 < 2)).

F(~x1 ∧ ~x2)

F(~x1 ∧ (~x3 < 2))

Cluster 4
Class 1

Cluster 3
Class 2

true false

G(~x3 < 5)

Cluster 2
Class 2

Cluster 1
Class 1

true false

true false

(a) Tree

B ::= Ev | Gl

Ev ::= F(~B)

Gl ::= G(~B)
~B ::= ~x1 | ~x2 | And | Lt

And ::= ~B ∧ ~B
Lt ::= ~R < C
~R ::= ~x3 | ~x4

C ::= 1 | 2 | 3 | 4 | 5

(b) Grammar

Figure 7.1: Grammar-based decision tree example. The node expressions in the tree (a) are derived from
the grammar (b). Each leaf node is a separate cluster.

7.2.3 Grammar Design for Heterogeneous Time Series

Grammar design is crucial to the effectiveness of GBDT. The ideal grammar should produce expressions

that are interpretable, tailored to the application, and support the feature types present in the dataset.

This section aims to offer design suggestions to the user to achieve these goals. The exact details of the

grammar will depend on the specific needs of the user.
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In the GBDT framework, logic expressions are evaluated on traces and produce a Boolean output.

The symbols of the expressions can refer to features, constants, or functions. We adopt a subset of linear

temporal logic (LTL), a formal logic with temporal operators often used in the analysis of time series data

[7]. Temporal logic provides an elegant framework for defining expressions that support heterogeneous

multivariate time series data. For example, the logic rule F(~x1 ∧ (~x3 < 2)) in Figure 7.1 contains a Boolean

vector ~x1 and a vector of real values ~x3. The rule integrates these two different data types elegantly by

first evaluating (~x3 < 2) using an elementwise comparison to produce a Boolean vector. Then, the result

is combined elementwise via conjunction with ~x1 to produce another Boolean vector. Finally, the temporal

operator F collapses the Boolean vector to a single Boolean output. The constants in the grammar can be

preselected based on discretizing over the range of each real-valued feature in the dataset. Alternatively,

some expression optimization algorithms, such as Monte Carlo and genetic programming, also support

drawing random values during search [71].

When designing a grammar, it is important to manage data types. For example, the grammar in Fig-

ure 7.1 is organized by the data type of its non-terminals. The production rule for non-terminal B selects

amongst functions that return a Boolean, whereas the production rule for non-terminal ~B selects amongst

functions and expressions that return a vector of Booleans. Similarly, the non-terminal ~R represents a

vector of real values while C represents a constant. Organization of types is not only important to provide

functions with valid inputs but also key to meaningfully nest and combine heterogeneous types.

For simplicity, the example in Figure 7.1 included only a small number of operators. The grammar

can be readily extended to include other operators including disjunction ∨, greater than >, equals =,

where equality is important for categorical features, and even custom user-defined functions. Depending

on the application, a generic temporal logic grammar can be used (as we will see in Section 7.4) or the

grammar can be tailored to the application (as we will see later in Section 8.5). This paper considers very

simple temporal operators that operate over traces. More sophisticated temporal logics, such as metric

temporal logic (MTL) [83], can be used with GBDT to discover more intricate patterns in the data. Nesting

of temporal operators can also be permitted.

7.2.4 Natural Language Descriptions

Logical expressions can sometimes be dense and hard to parse for humans. In many cases, we can improve

human interpretability by providing natural language descriptions of the expressions. One method to

automatically translate expressions into English sentences is to map expression rules and terminal symbols

in the CFG to corresponding sentence fragments and then use the structure of the expression’s derivation
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tree to assemble the fragments. Figure 7.2 shows an example mapping that could be used with the

grammar in Figure 7.1 for mapping temporal logic expressions into English sentences.

F(~B) := “at some point, ~B"

G(~B) := “for all time, ~B"
~B ∧ ~B := “~B and ~B”
~R < C := “~R is less than C"

~x1 := “advisory is active"
~x2 := “pilot is responding"
~x3 := “vertical rate"
~x4 := “airspeed"

Figure 7.2: Natural language map example.

Applying the mapping in Figure 7.2, the decision rules in Figure 7.1 become the following natural

language descriptions: F(~x1 ∧ ~x2) is translated to “at some point, [advisory is active] and [pilot is re-

sponding]"; G(~x3 < 5) is translated to “for all time, [vertical rate] is less than 5"; and F(~x1 ∧ (~x3 < 2)) is

translated to “at some point, [advisory is active] and [[vertical rate] is less than 2]". We include square

brackets to help the reader disambiguate nested sentence components.

7.3 Training a GBDT

Training a GBDT is performed top-down as in traditional decision tree training. However, rather than

cycling through the features to determine the best split, we use expression optimization as a subroutine to

find the best partition expression. The training algorithm begins with a single (root) node containing the

entire dataset D. Expression optimization is then used to search a CFG G for the partitioning expression

e that yields the best loss given by the loss function f . The expression is evaluated on each record and

the dataset is partitioned into two child nodes according to the results of the evaluation. The process is

applied recursively to each child until all records at the node are either correctly classified or a maximum

tree depth d is reached. The mode of the training labels is used for class label prediction at a leaf node.

The GBDT training algorithm is shown in Algorithm 5.

In Algorithm 5, GBDT (line 2) is the main entry point to the training algorithm. It returns a Tree object

containing the root node of the induced decision tree. Split (line 5) attempts to partition the data into

two parts. It first tests whether the terminal conditions are met and if so returns a Leaf node that predicts

the mode of the labels. The partitioning terminates if the maximum depth d has been reached or if all

class labels are the same, which is tested by the IsHomogeneous function (line 6). The ExprOpt function
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Algorithm 5 Grammar-Based Decision Tree Training

1: . Inputs: CFG G, loss function f , dataset D, depth d
2: function GBDT(G, f , D, d)
3: R← Split(G, f , D, d)
4: return Tree(R)
5: function Split(G, f , D, d)
6: if IsHomogeneous(Labels(D)) or d = 0
7: return Leaf(Mode(Labels(D)))
8: e← ExprOpt(G, f , D)
9: D+ ← [(X, l) | Evaluate(e, X), (X, l) ∈ D]

10: D− ← [(X, l) | ¬Evaluate(e, X), (X, l) ∈ D]
11: child+ ← Split(G, f , D+, d− 1)
12: child− ← Split(G, f , D−, d− 1)
13: return INode(e, child+, child−)

(line 8) uses expression optimization (presented in Section 4.4) to search for the expression that minimizes

the loss function f (e), i.e., e = argmine′ f (e′), given the grammar G and the dataset D. We partition the

data into two parts conditioning on the result of evaluating e on D (lines 9–10). The function Evaluate

evaluates the expression e on the feature matrix X and produces a Boolean result. Then, Split (lines

11–12) is called recursively on each part. Finally, the function returns an internal node INode containing

the decision expression and the children of the node (line 13).

7.3.1 Loss Function

In the expression optimization subroutine ExprOpt (line 9), we set the loss function to trade off between

two competing objectives. On the one hand, we want expressions that partition the data so that the

resulting leaf nodes are homogeneous, i.e., they have the same ground truth class labels. Splits that

induce high homogeneity tend to produce shallower trees and thus shorter global expressions at leaf

nodes, which improves interpretability. They also produce classifiers with better predictive accuracy

when the maximum tree depth is constrained. To quantify homogeneity, we use the Gini impurity metric

[52] discussed in Chapter 4. On the other hand, we want to encourage interpretability by minimizing the

length and complexity of node expressions. Shorter and simpler node expressions are generally easier

to interpret. We use the number of nodes in the derivation tree as a proxy for the complexity of an

expression. The two objectives are combined linearly into a single loss function fGBDT given by

fGBDT(e, D) = w1 IGini(e, D) + w2Nnodes(e)

where w1 ∈ R and w2 ∈ R are weights, and Nnodes(e) is the number of nodes in the derivation tree of

e. The total Gini impurity, IGini(e, D), is the sum of the Gini impurity of each partition that results from
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splitting the data using expression e. It is given by

IGini(e, D) = ∑
L∈{L+ ,L−}

∑
b∈B

f b
L(1− f b

L)

where L+ are the labels of the records on which e evaluates to true, i.e., L+ = [l | Evaluate(e, X), (X, l) ∈
D]; L− are the labels of the records on which e evaluates to false, i.e., L− = [l | ¬Evaluate(e, X), (X, l) ∈
D]; B = {True, False}; and f b

L = 1{l=b}/|L|, where 1 is the indicator function and |L| denotes the number

of elements in L. We use square brackets with set construction syntax to indicate that L+ and L− are

vectors and can have duplicate elements.

7.3.2 Computational Complexity

The most computationally expensive part of GBDT training is evaluating the loss of an expression at

a node, since it involves visiting each record in the dataset and then computing statistics. Expression

optimization also requires a large number of expression evaluations to optimize the decision expression

at each decision node. The deeper the tree, the more decision node expressions need to be optimized.

However, as a the depth of a node increases, it operates on an increasingly smaller fraction of the dataset.

As a result, while the number of nodes grows exponentially with tree depth, the number of records

that must be evaluated at each level remains constant (equal to the size of the dataset). Overall, the

computational complexity of GBDT training is O(m · NEO · d), where m is the number of records in the

dataset, NEO is the number of logical expressions evaluated in each ExprOpt call, and d is the depth of

the decision tree.

7.4 Example: Australian Sign Language

We demonstrate the use of GBDT on the Australian Sign Language (“Auslan”) dataset from the UC

Irvine (UCI) repository [59, 84]. The data originates from participants wearing instrumented gloves while

signing specific words in Australian sign language. The dataset is a multivariate time series of varying

episode length containing 22 continuous features, 95 words with 27 examples each. We extract eight words

(classes) from the dataset: hello, please, yes, no, right, wrong, same, different. First, we present the grammar

used to define the expressions. Then we discuss the evaluation metrics and baseline algorithms used for

evaluating the GBDT results. Finally, we present the experimental results.
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7.4.1 Grammar

We use a generic temporal logic grammar that includes all features and the following operators: eventually

F, globally G, implies =⇒ , negation ¬, disjunction ∨, conjunction ∧, equals =, less than <, less than

or equal to ≤, greater than >, and greater than or equal to ≥. Since features may have different ranges,

constant values used in comparison operators must be specialized to each feature. To address this issue,

we consider the range of each feature in the dataset and uniformly discretize it into 10 points. Features

are compared with their corresponding set of discretized values. The data itself is not being discretized.

Discretization is only used to generate the threshold constants in the grammar.

Figure 7.3 shows the grammar used in the Auslan experiment. The non-terminals of the grammar

loosely represent a Boolean variable B, a Boolean vector ~B, a real vector ~R, a feature index ix, and an index

into a table of discretized constants iv. The expression X[ix] retrieves the feature trace at index ix, i.e., ~xix ,

from the data record X. The function fop(ix, iv) compares the feature trace at index ix to the iv’th constant

corresponding to that feature using operator op. Specifically, the function returns X[ix] op V[ix, iv], where

V is a table containing the discretized constants computed by feature from the data. The row of V

indicates the feature and the column of V indicates the order position of the constant. For example,

V[roll_1, 5] indicates the 5th constant of the feature roll_1. We use the shorthand |(1 : 10) to denote that

all integers between 1 and 10 inclusive are possible values.

B ::= G(~B) | F(~B) | G(~B =⇒ ~B)
~B ::= (~B ∧ ~B) | (~B ∨ ~B) | ¬~B
~B ::= (~R < ~R) | (~R ≤ ~R) | (~R >| R) | (~R ≥ ~R)
~B ::= f<(ix, iv) | f≤(ix, iv) | f>(ix, iv) | f≥(ix, iv)

~R ::= X[ix]

ix ::= x_1 | y_1 | z_1 | roll_1 | pitch_1 | yaw_1 | thumbbend_1
ix ::= f orebend_1 | middlebend_1 | ringbend_1 | littlebend_1
ix ::= x_2 | y_2 | z_2 | roll_2 | pitch_2 | yaw_2 | thumbbend_2
ix ::= f orebend_2 | middlebend_2 | ringbend_2 | littlebend_2
iv ::= |(1 : 10)

Figure 7.3: Auslan grammar.

7.4.2 Evaluation Metrics

For classification performance, we report the accuracy, precision, recall, and F1 scores. We use macro

averaging, which calculates the mean of the binary metrics, giving equal weight to each class. For in-
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terpretability, we report the average number of terminals in each rule of the decision tree. For example,

F(~x1 ∧~x2) has four terminals: F, ~x1, ∧, and ~x2. Rules containing fewer terminals are considered easier to

interpret.

7.4.3 Baselines

We compare our algorithm against decision tree, random forest, and Gaussian naive Bayes classifiers from

Scikit-Learn [85]. Random forest and Gaussian naive Bayes models have low interpretability. Because

these baseline algorithms cannot directly ingest heterogeneous time series data, we preprocess the data

before applying the baseline algorithms as follows: (1) z-score normalize each real-valued feature; (2)

convert Boolean features to [-1.0,1.0]; (3) zero-pad so that all records have the same length in the time

dimension; and (4) reshape the time series data (size m× n× T) into non-time series data (size m× nT)

by concatenating time slices, essentially converting time series data into static data. GBDT can directly

handle heterogeneous multivariate time series data of varying length and thus does not require this

preprocessing.

7.4.4 Results

We performed 20 random trials for each algorithm. A trial is a run of an experiment initialized with a

unique random seed and train-test split. We use randomly-sampled 70/30 train-test splits of the data and

report the mean of the evaluation metrics in Table 7.1. The best value for each metric is indicated in bold.

Tree-based classifiers, i.e., GBDT, decision tree, and random forest models, were trained to a maximum

depth d = 6 and random forest used 32 trees. Results for the various variants of GBDT are separately

listed. GBDT-MC uses Monte Carlo algorithm, GBDT-GE uses grammatical evolution, and GBDT-GP uses

genetic programming for expression optimization. Overall, GBDT-GP performed the best both in terms

of classification and interpretability metrics. Decision tree performed poorly on this dataset because key

characteristics of the features may be shifted in time due to variations in the speed of signing. Random

forest can partially overcome this issue by using a larger number of trees. The temporal logic rules in

GBDT capture the underlying temporal properties of the data much more effectively.

The strength of GBDT lies in its ability to categorize and explain data. GBDT not only provides

interpretable expressions about the data’s distinguishing properties but also a hierarchical organization

of the properties. Figure 7.4 shows the resulting GBDT from the best-performing trial. We compare the

learned model to the videos of the signed words to intuitively verify correctness1. At the root node, GBDT

1https://www.youtube.com/watch?v=_5NbYyUlcHU

https://www.youtube.com/watch?v=_5NbYyUlcHU
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Table 7.1: GBDT performance on Auslan dataset

GBDT-MC GBDT-GE GBDT-GP Decision Tree Random Forest Gaussian NB

Accuracy 0.9840 0.9847 0.9868 0.7585 0.9838 0.6862
F1-Score 0.9840 0.9845 0.9867 0.7085 0.9838 0.6674
Precision 0.9857 0.9872 0.9884 0.6869 0.9851 0.7025
Recall 0.9840 0.9847 0.9868 0.7672 0.9841 0.6867
Avg. Terminals 3.70 3.74 3.59 — — —

partitions same and different from the other words identifying the fully bent left pinky as the distinguishing

property. Subsequently, different is distinguished from same by looking at whether the right palm is ever

facing upwards. Of the remaining words, hello is isolated using the fully straight middle finger and then

wrong is identified using the straight right pinky. The remaining four words are grouped right with yes

and please with no using the yaw position of the right hand. The word yes is distinguished from right

by the bent right thumb. Lastly, no is distinguished from please using the combined property on right

forefinger bend, right yaw angle, and x-position of the right hand.

7.5 Summary

This chapter proposed a novel approach for knowledge discovery for heterogeneous multivariate time

series datasets. We introduced a novel interpretable machine learning model, called GBDT, which extends

decision trees with a grammar framework. In particular, we generalize the decision rules of the traditional

decision tree to Boolean expressions derived from a context-free grammar, which allows temporal logic

rules to be used within the decision tree framework. Expression optimization is used as a subroutine

for training the GBDT. Our experiments applying GBDT on the Australian Sign Language dataset from

UCI showed that GBDT not only provides good prediction accuracy, but also produces hierarchical and

intuitive explanations.
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Figure 7.4: GBDT categorization of the Auslan dataset.



Chapter 8

Application: Aircraft Collision Avoidance

This chapter applies the algorithms of AdaStress—AST, DAST, and GBDT—on an aircraft collision avoid-

ance system, where we find and analyze scenarios of near mid-air collisions. Section 8.1 introduces the

Airborne Collision Avoidance System (ACAS X) and presents evidence from operational studies of its

benefits over the existing system. Section 8.2 summarizes the basic operation of ACAS X. Section 8.3

describes experiments in applying AST to find NMACs in aircraft encounters. Then, Section 8.4 describes

experiments in applying DAST to compare ACAS X and TCAS. Section 8.5 presents experiments in cat-

egorizing failure scenarios using GBDT, and Section 8.6 presents a performance evaluation of AST in

finding NMACs. The final section, Section 8.7 summarizes the results and contributions of this chapter.

8.1 Introduction

Aircraft collision avoidance systems are mandated on all large transport and cargo aircraft in the United

States and other countries around the world to help prevent mid-air collisions. Their operation has played

a crucial role in the exceptional level of safety in the national airspace [86]. The Traffic Alert and Collision

Avoidance System (TCAS) is currently deployed in the United States and many countries around the

world. TCAS has been very successful at protecting aircraft from mid-air collisions. However, studies have

revealed fundamental limitations in TCAS that prevent it from operating effectively in the next-generation

airspace where the number of aircraft is expected to increase significantly [86]. To address the growing

needs of the national airspace, the Federal Aviation Administration (FAA) has decided to create a new

aircraft collision avoidance system. The next-generation Airborne Collision Avoidance System (ACAS X)

was created promising a number of improvements over TCAS including a reduction in collision risk while

simultaneously reducing the number of unnecessary alerts [87]. This thesis work was performed on

prototypes of ACAS X while the system was still being developed and tested. On September 20th, 2018,

64
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the RTCA1 accepted ACAS X to replace TCAS as the next standard for airborne collision avoidance and

the system is expected to be widely deployed in the near future.

Operational Studies. ACAS X has been shown to be much more operationally suitable than TCAS

[88]. Table 8.1 is a comparison of ACAS X and TCAS on several key operational metrics evaluated on a

number of simulated aircraft encounter datasets. The data is excerpted from the results of many studies

performed at MIT Lincoln Laboratory (MIT-LL) and presented at the RTCA [88]. The general trend in

Table 8.1 is that ACAS X shows significant improvements in overall safety and alert rates compared to

TCAS. The primary metric of safety is the probability of a near mid-air collision (NMAC), PNMAC. An

NMAC is defined as two aircraft coming closer than 500 feet horizontally and 100 feet vertically. On large

encounter datasets, ACAS X is shown to reduce the probability of NMAC by 16.82% to 54.37% compared

to TCAS. Alert metrics show significant improvements over TCAS as well, including the aggregate alert

rate, which is the number of times the collision avoidance system alerts (counted by aircraft); and the

500 feet corrective alert rate, which is the number of alerts issued in encounters where the aircraft are

flying level and vertically separated by exactly 500 feet. ACAS X also significantly improves metrics on

generally undesirable scenarios such as the altitude crossing rate, which is the number of encounters

where two aircraft cross in altitude; and the reversal rate, which is the number of times the collision

avoidance system first advises the pilot to maneuver in one direction, then later advises the pilot to

maneuver in the opposite direction.

Table 8.1: Comparison of ACAS X and TCAS operational metrics on various encounter datasets

Metric Dataset Number of TCAS v7.1 ACAS Xa Improvement
encounters 0.10.3 over TCAS

Safety (PNMAC) LLCEM 5,956,128 2.179 · 10−4 1.744 · 10−4 19.57%
Safety (PNMAC) SAVAL 75,173,906 4.361 · 10−4 3.627 · 10−4 16.82%
Safety (PNMAC) SA01 100,000 4.106 · 10−2 1.873 · 10−2 54.37%
Alert Rate (by aircraft) TRAMS 293,101 252,656 121,267 52.00%
500’ Corrective Alert Rate TRAMS 175,184 14,912 9,919 33.48%
Altitude Crossing Rate TRAMS 293,101 3,196 1,582 50.5%
Reversal Rate TRAMS 293,101 1,029 556 45.97%

Near Mid-Air Collisions. Studies have shown that the risk of NMAC is extremely small and more-

over ACAS X reduces the risk even further over TCAS overall. However, the risk of NMAC cannot be

completely eliminated due to factors such as surveillance noise, pilot response delay, and the need for

an acceptable alert rate [87]. Because NMACs are such important safety events, it is important to study

and understand the rare circumstances under which they can still occur even if they are extremely un-

likely. Understanding the nature of the residual NMAC risk is important for certification and to inform
1RTCA, Inc. was formerly known as the Radio Technical Commission for Aeronautics, but is now known simply as the RTCA.
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the development of future iterations of the system. This paper uses AdaStress to find and analyze the rare

corner cases where an NMAC can still occur.

8.2 ACAS X Operation Overview

There are several versions of ACAS X under development. For example, ACAS Xu is a version of ACAS X

for unmanned aircraft. This paper considers a development (and not final) version of ACAS Xa, which

uses active surveillance and is designed to be a direct replacement to TCAS. ACAS Xa and TCAS are

used on commercial passenger and cargo aircraft. Despite the internal logics of ACAS X and TCAS being

derived completely differently, the input and output interfaces of these two systems are identical. As a

result, the following description of aircraft collision avoidance systems applies to both ACAS X and TCAS.

Airborne collision avoidance systems monitor the airspace around an aircraft and issue alerts to the

pilot if a conflict with another aircraft is detected. These alerts, called resolution advisories (RAs), instruct

the pilot to maneuver the aircraft to a certain target vertical velocity and maintain it. The advisories

are typically issued when the aircraft are within approximately 20–40 seconds to a potential collision.

Table 8.2 lists the primary RAs. We use żown to denote the current vertical velocity of own aircraft.

Table 8.2: Primary ACAS X advisories

Abbreviation Description Rate to Maintain (ft/min)

COC Clear of conflict N/A
DND Do not descend 0
DNC Do not climb 0
DNDx Do not descend at greater than x ft/min max(−x, żown)
DNCx Do not climb at greater than x ft/min min(x, żown)
MAINTAIN Maintain current rate żown
DS1500 Descend at 1,500 ft/min −1500
CL1500 Climb at 1,500 ft/min +1500
DS2500 Descend at 2,500 ft/min −2500
CL2500 Climb at 2,500 ft/min +2500

The COC advisory stands for “clear of conflict” and is equivalent to no advisory. The pilot is free to

choose how to control the aircraft. The DND and DNC advisories stand for “do not descend” and “do

not climb”, respectively. They restrict the pilot from flying in a certain direction. The DNDx and DNCx

advisories extend DND and DNC, respectively, with a maximum vertical rate x. They respectively restrict

the pilot from descending or climbing at a vertical rate greater than x feet per minute. The MAINTAIN

advisory is preventative and instructs the pilot to maintain the current vertical rate of the aircraft. The

advisories DS1500 and CL1500 instruct the pilot to descend or climb at 1,500 feet per minute. The pilot

is expected to maneuver the aircraft at 1
4 g acceleration until the target vertical rate is reached, and then
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maintain that vertical rate. The DS2500 and CL2500 advisories instruct the pilot to descend or climb at an

increased rate of 2,500 feet per minute. The DS2500 and CL2500 advisories are strengthened advisories

and a stronger response from the pilot is expected. For these strengthened RAs, the pilot is expected

to maneuver at 1
3 g acceleration until the target vertical rate is reached then maintain that vertical rate.

Strengthened RAs must follow a weaker RA of the same vertical direction. They cannot be issued directly.

For example, a CL1500 advisory must precede a CL2500 advisory.

Advisories issued by collision avoidance systems on different aircraft are not independent. When an

RA is issued, a coordination message is broadcasted to other nearby aircraft to prevent other collision

avoidance systems from accidentally issuing an RA in the same vertical direction.

8.3 Stress Testing using AST

This section describes experiments applying AST to find the most likely NMAC scenarios in aircraft mid-

air encounters. We first present the general setup of the experiments and then we present the studies in

stress testing pairwise (two-aircraft) encounters and multi-threat (three-aircraft) encounters.

8.3.1 Experimental Setup

This section presents the details of the simulation model and the reward function used in AST for stress

testing. These are used throughout the experiments performed in this chapter with minor modifications

depending on the study. Deviations will be made clear in the respective discussions of the studies.

Simulation Model

We construct a seed-action simulator (Section 5.4.1) modeling the evolution of an aircraft mid-air en-

counter in discrete time. The simulator is Markovian by construction but the system state is not used

explicitly by the optimizer. Rather, the optimizer, following the seed-action framework in Section 5.4.1,

relies on controlling the system evolution deterministically via control of the pseudorandom seed. The

overall architecture of the simulator for two aircraft is shown in Figure 8.1. The simulation models cap-

ture the key aspects of the encounter, including the initial state, sensors, collision avoidance system, pilot

response, and aircraft dynamics. Each model has its own set of state variables that can be continuous or

finite valued. The system state is the concatenation of the states in all the models, and thus the simulation

state is in general multivariate and heterogeneous. Due to our seed-action construction, the system state

is never explicitly constructed. We now discuss these the models in more detail.
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Figure 8.1: System diagram of seed-action simulator for pairwise encounters.

Initial State. The initial state of an encounter includes initial positions, velocities, and headings of the

aircraft. The initial state is drawn from a distribution that gives realistic initial configurations of aircraft

that are likely to lead to NMAC. Once the initial state is sampled, it is fixed for the duration of the

search. In our experiments, pairwise (two-aircraft) encounters are initialized using the Lincoln Laboratory

Correlated Aircraft Encounter Model (LLCEM) [89, 90]. LLCEM is a statistical model learned from a

large body of radar data of the entire national airspace. We follow the encounter generation procedure

described in the paper [89]. Multi-threat (three-aircraft) encounters use the Star model, which initializes

aircraft on a circle heading towards the origin spaced apart at equal angles. Initial airspeed, altitude, and

vertical rate are sampled from a uniform distribution over a prespecified range. The horizontal distance

from the origin is set such that without intervention, the aircraft intersect at approximately 40 seconds

into the encounter.

Sensor Model. The sensor model captures how the collision avoidance system perceives the world.

We assume active, beacon-based radar capability with no noise. For own aircraft, the sensor measures

the vertical rate, barometric altitude, heading, and height above ground. For each intruding aircraft, the

sensor measures slant range (relative distance to intruder), bearing (relative horizontal angle to intruder),

and relative altitude.

Collision Avoidance Systems. The collision avoidance system is the system under test. We use a

prototype of ACAS X in the form of a binary library obtained from the FAA. The binary has a minimal

interface that allows initializing and stepping the state forward in time given inputs at each step. The

system maintains internal state, but does not expose it. However, ACAS X and the library are deterministic



CHAPTER 8. APPLICATION: AIRCRAFT COLLISION AVOIDANCE 69

given its inputs. The primary output of the ACAS X system is the RA. ACAS X has a coordination

mechanism to ensure that issued RAs from different aircraft are compatible with one another, i.e., that

two aircraft are not instructed to maneuver in the same vertical direction. The messages are communicated

to all nearby aircraft through coordination messages.

Our differential studies compare ACAS X with TCAS. Our implementation of TCAS is also a binary

library obtained from the FAA. Both binaries have identical input and output interfaces making them

interchangeable in the simulator.

Pilot Model. The pilot model consists of a model for the pilot’s intent and a model for how the

pilot responds to an RA. The pilot’s intent is how the pilot would fly the aircraft if there are no RAs. To

model intended commands, we use the pilot command model of LLCEM, which gives a realistic stochastic

model of aircraft commands in the airspace [89]. The pilot response model defines how pilots respond to

an issued RA. The pilots in our model are assumed to respond deterministically to an RA with perfect

compliance after a fixed delay [91]. Pilots respond to initial RAs with a five-second delay and subsequent

RAs (i.e., strengthenings and reversals) with a three-second delay. During the initial delay period, the pilot

continues to fly the intended trajectory. During response delays from subsequent RAs, the pilot continues

responding to the previous RA. Multiple RAs issued successively are queued so that both their order and

timing are preserved. In the case where a subsequent RA is issued within 2 seconds or less of an initial

RA, the timing of the subsequent RA is used and the initial RA is skipped. The pilot command includes

commanded airspeed acceleration, commanded vertical rate, and commanded turn rate.

Aircraft Dynamics Model. The aircraft dynamics model determines how the state of the aircraft

propagates with time. The aircraft state includes the airspeed, position north, position east, altitude, roll

angle, pitch angle, and heading angle. The aircraft state is propagated forward at 1 Hertz using forward

Euler integration.

In our experiments, the commands of the pilots when not responding to an advisory are stochastic and

are being optimized by the algorithm. When no RA is active, the pilot commands follow the stochastic

dynamic model of LLCEM. When an RA is active, the vertical component of the pilot’s command follows

the pilot response model, while the other components follow LLCEM. Other simulation components are

deterministic in our experiments. However, in the future, we may consider stochastic models for sensors,

aircraft dynamics, and pilot response.

Reward Function

We use the reward function defined in Equation 5.2 for optimization. The event space E is defined to be

an NMAC, which occurs when two aircraft are closer than 100 feet vertically and 500 feet horizontally. We
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define the miss distance d to be the distance of closest approach, which is the Euclidean distance of the

aircraft at their closest point in the encounter. The distance of closest approach is a good metric because

it is monotonically decreasing as trajectories get closer and reach a minimum at an NMAC. Because the

models in the simulator use continuous distributions, we use the transition probability density in the

reward function.

8.3.2 Stress Testing Single-Threat Encounters

We apply AST to analyze NMACs in encounters involving two aircraft. We search 100 encounters initial-

ized using samples from LLCEM. The configuration is shown in Table 8.3. Of the 100 encounters searched,

18 encounters contained an NMAC, yielding an empirical find rate of 18%. When the optimization algo-

rithm completes, it returns the path with the highest reward regardless of whether the path contains an

NMAC or not. When the returned path does not contain an NMAC, it is uncertain whether an NMAC

exists and the algorithm was unable to find it, or whether no NMAC is reachable given the initial state of

the encounter. We manually cluster the NMAC encounters and present our findings.

Table 8.3: Single-threat encounter configuration for AST

Simulation

Number of aircraft 2
Initialization LLCEM
Sensors Active, beacon-based, noiseless
Collision avoidance system ACAS Xa Run 13 libcas 0.8.5
Pilot response model Deterministic 5s–3s

MCTS

Maximum steps 50
Iterations 2000
Exploration constant 100.0
k 0.5
α 0.85

NMAC encounter plots contain horizontal tracks (top-down view) and vertical profile (altitude ver-

sus time). Aircraft numbers are indicated at the start and end of each trajectory. RA codes are labeled

at the time of occurrence and preceded by the aircraft number. Marker colors indicate the RA issued:

blue for COC, orange for CL1500, red for CL2500, cyan for DS1500, purple for DS2500, and grey for

DNC/DND/MAINTAIN/MULTITHREAT. Symbols inside the markers indicate the state of the pilot re-

sponse: no symbol for not responding, dash for responding to previous RA, and asterisk for responding

to current RA.
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Crossing Time. We observed a number of NMACs resulting from well-timed vertical maneuvers. In

particular, several encounters included aircraft crossing in altitude during the pilot response delay to an

initial RA. Figure 8.2 shows one such encounter that eventually ends in an NMAC at 36 seconds into the

encounter. The probability density of the encounter evaluated under LLCEM is 5.3 · 10−18. This measure

can be used as an unnormalized measure of likelihood of occurrence. In this encounter, the aircraft cross

in altitude during pilot 1’s response delay. The crossing leads to aircraft 1 starting the climb from below

aircraft 2. The subsequent reversal later in the encounter is unable to resolve the conflict due to the pilot

response delay.
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Figure 8.2: NMAC encounter where the aircraft cross in altitude during pilot delay at 26 seconds and an
NMAC occurs at 36 seconds.

High Turn and Vertical Rates. Turns at high rates quickly shorten the time to closest approach.

ACAS X does not have full state information about its intruder and must estimate it by tracking relative

distance, relative angle, and the intruder altitude. Figure 8.3 shows an example of an encounter that has

similar crossing behavior as Figure 8.2 but exacerbated by the high turn rate of aircraft 2 (approximately

1.5 times the standard turn rate). In this scenario, the aircraft become almost head-on at the time of closest

approach and a reversal is not attempted. An NMAC with a probability density of 6.5 · 10−17 occurs

at 48 seconds into the encounter. Aircraft 1 is also coincidently descending at a high vertical rate. The

combination makes this encounter operationally very unlikely.

Maneuvering Against RA. Our analysis revealed a number of NMAC encounters where the pilot

initially maneuvers against the issued RA before complying. That is, after the pilot receives the RA, they

maneuver the aircraft in the opposite direction of what is instructed by the RA for the duration of the pilot

response delay before subsequently complying and reversing direction. Pilots do not normally maneuver

in this manner and so this scenario represents a very operationally rare case. Even so, ACAS X does seem

to be able to resolve the majority of these initially disobeying cases. In most cases, the maneuvering must
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Figure 8.3: NMAC encounter where aircraft 2 is simultaneously turning and descending at high rate and
an NMAC occurs at 48 seconds.

be very aggressive against the RA to result in an NMAC.

Sudden Aggressive Maneuvering. Sudden maneuvers can lead to NMACs if they are sufficiently

aggressive. In particular, we observed some NMAC encounters where two aircraft are approaching one

another separated in altitude and flying level, then one aircraft suddenly accelerates vertically towards the

other aircraft as they are about to pass. Under these circumstances, given the pilot response delays and

dynamic limits of the aircraft, there is insufficient time and distance remaining for the collision avoidance

system to resolve the conflict. Pilots do not normally fly so aggressively in operation, so this case is

extremely unlikely. In fact, they are even more rare than our model predicts. ACAS X issues traffic

alerts (TAs) to alert pilots to nearby traffic, so that pilots are made aware of intruding aircraft well before

the initial RA. These advance warnings increase the pilot’s situational awareness and reduce blunders

like these. Our simulator does not model the effect of such TAs, however. As a designer of ACAS X,

one course of action would be to tune ACAS X to intervene preemptively in such scenarios. While this

reduces the risk of possible sudden behavior, it also increases the alert rate of the system. Ultimately, the

ACAS X designer must assess the probabilities of various scenarios and find the delicate balance between

risk of collision and issuing too many advisories. Since these scenarios are extremely rare, we must trade

off accordingly.

Combined Factors. In our experiments, it is rare for an NMAC to be attributable to a single cause.

More commonly, a combination of factors contribute to the NMAC. Figure 8.2 shows an example of an

encounter where multiple factors contribute to the NMAC. In Figure 8.2, crossing time played a crucial

role in the NMAC. However, there are a number of other factors that are important as well. The horizontal

behavior where they are turning into each other is significant as it reduces the time to closest approach.

The two vertical maneuvers of aircraft 1 before receiving an RA are also important. Similar observations
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can be made for many of the other NMAC encounters found.

8.3.3 Stress Testing Multi-Threat Encounters

We apply AST to analyze NMACs in three-aircraft encounters. We search 100 encounters initialized using

samples from the Star model. The configuration is shown in Table 8.4. We found 25 NMACs out of 100

encounters searched, yielding a find rate of 25%.

Table 8.4: Multi-threat encounter configuration for AST

Simulation

Number of aircraft 3
Initialization Star model
Sensors Active, beacon-based, noiseless
Collision avoidance system ACAS Xa Run 13 libcas 0.8.5
Pilot response model Deterministic 5s–3s

MCTS

Maximum steps 50
Iterations 1000
Exploration constant 100.0
k 0.5
α 0.85

Pairwise Coordination in Multi-Threat. Our algorithm discovered a number of NMAC encounters

where all aircraft are issued a MULTITHREAT (MTE) RA and asked to follow an identical climb rate.

Complying with the RA results in the aircraft closing horizontally without gaining vertical separation.

Figure 8.4 shows an example of such an encounter where an NMAC occurs with probability density

5.8 · 10−7 at 38 seconds into the encounter. In discussing these results with the ACAS X development team,

we learned that this behavior is a known issue that can arise when performing multi-aircraft coordina-

tion using a pairwise coordination mechanism. The pairwise coordination messages in essence determine

which aircraft will climb and which will descend in an encounter. Since coordination messaging occurs

pairwise, under rare circumstances it is possible for each aircraft to receive conflicting coordination mes-

sages from the other aircraft in the scenario. In nominal encounters, the aircraft that receives conflicting

coordination messages from two aircraft remains level and lets the other aircraft climb or descend around

it. However, in these encounters, all three aircraft receive conflicting coordination messages. Although

very rare, this is an important case that is being addressed by both TCAS and ACAS X development

teams.

Limited Maneuverable Space. In general, multi-threat encounters are more challenging to resolve

than pairwise encounters because there is less open space for the aircraft to maneuver. Figure 8.5 shows
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Figure 8.4: NMAC encounter where all aircraft receive conflicting coordination messages and an NMAC
occurs at 38 seconds.

an example of an NMAC encounter where aircraft 1 (the aircraft in the middle altitude between 10 and

36 seconds) needs to simultaneously avoid an aircraft below and a vertically closing aircraft from above.

An NMAC with a probability density of 1.0 · 10−16 occurs at 39 seconds into the encounter. Aircraft

2’s downward maneuver greatly reduces the maneuverable airspace of aircraft 1. These encounters are

undoubtedly extremely challenging for a collision avoidance system and it is unclear whether any satis-

factory resolution exists. Nevertheless, we gain insight by observing how the collision avoidance system

behaves under such circumstances.
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Figure 8.5: NMAC encounter where the aircraft have limited maneuverable airspace. Aircraft 1 must
simultaneously avoid collision with aircraft 3 from below and aircraft 2 from above. NMAC occurs at 39
seconds.

Pairwise Phenomena. Phenomena that appear in pairwise encounters also appear in multi-threat

encounters. The presence of the third aircraft typically exacerbates the encounter. In our multi-threat

analysis, we noted similar phenomena related to crossing time, maneuvering against RA, and sudden

aggressive maneuvering as discussed previously. We did not observe any cases related to high turn rates



CHAPTER 8. APPLICATION: AIRCRAFT COLLISION AVOIDANCE 75

in the multi-threat setting due to our use of the Star model.

8.4 Differential Stress Testing using DAST

We present two studies applying DAST to analyze aircraft collision avoidance systems. The first study

(Section 8.4.1) finds the most likely failure scenarios in ACAS X relative to a TCAS baseline, and the

second study (Section 8.4.2) finds the most likely failure scenarios in TCAS when compared to ACAS X.

The following sections present figures containing multiple panels. For ease of discourse, we use the

following abbreviations when referring to a specific panel in a figure: top row (TR), bottom row (BR), far

left (FL), center left (CL), center right (CR), and far right (FR).

8.4.1 Stress Testing ACAS X Relative to TCAS Baseline

We apply DAST to perform differential stress testing of ACAS X relative to a TCAS baseline. We seek to

find NMAC encounters that occur in ACAS X but not in TCAS. The search is extremely difficult. Not only

are both ACAS X and TCAS systems extremely safe, which means that NMACs are extremely rare, but

also ACAS X is a much safer system than TCAS overall, which makes cases where ACAS X has NMAC

but TCAS does not extremely rare. We seek to find those extremely rare corner cases.

We searched 2700 pairwise encounters initialized with samples from LLCEM. The configuration is

shown in Table 8.5. The top 10 highest reward paths were returned for each encounter initialization

producing a total of 27,000 paths. Of these paths, a total of 28 contained NMACs, which originated from

10 encounter initializations. We analyzed the scenarios and confirmed that all were operationally rare

scenarios. We present examples of NMAC found by the algorithm and discuss their properties.

Table 8.5: Differential stress testing configuration comparing ACAS X and TCAS

Simulation

Number of simulators 2
Number of aircraft per simulator 2
Initialization LLCEM
Sensors Active, beacon-based, noiseless
Collision avoidance system (test) ACAS Xa Run 15 libcas 0.10.3
Collision avoidance system (baseline) TCAS II v7.1
Pilot response model Deterministic 5s–3s

MCTS

Maximum steps 50
Iterations 3000
Exploration constant 100.0
k 0.5
α 0.85
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ACAS X Issues RA, but TCAS Does Not. We found some NMAC cases where ACAS X issued an

RA but TCAS did not. An example is shown in Figure 8.6 where an NMAC occurs at 40 seconds in

the ACAS X simulation but no NMAC occurs in the TCAS simulation. The encounter occurs with a

probability density of 1.7 · 10−19. No RA was issued in the TCAS simulation. In the ACAS X simulation

(Figure 8.6(TR)), both aircraft are traveling at a high absolute vertical rate exceeding 70 feet per second

toward each other. Both aircraft receive an RA to level-off but the aircraft cannot respond in time due

to the high vertical rates and the pilot response delay. The aircraft proceed to cross in altitude. After

crossing, ACAS X increases the strength of the advisory in the same direction as the previous RA. Since

the aircraft have crossed in altitude, responding to the RA results in a loss of vertical separation and an

NMAC.
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Figure 8.6: NMAC encounter where ACAS X issues an RA but TCAS does not. The aircraft approach at
high relative vertical velocity. The aircraft cross in altitude at 20 seconds and NMAC occurs at 40 seconds
in ACAS X simulation.

High vertical rates are known to make conflict resolution more difficult, especially for vertical-only

collision avoidance systems like TCAS and this version of ACAS X. Aircraft with high vertical rates take

longer to reverse direction vertically and more vertical distance is traveled during the pilot’s response

delay. As a result, advisories take longer to take full effect. Moreover, in cases where both aircraft are

maneuvering in the same vertical direction, an aircraft may lose the ability to “outrun” the other aircraft.

For example, even if a maximal climb advisory is issued, it may not be sufficient for the aircraft to stay

above a second aircraft climbing at an even higher rate. Another interesting feature of this encounter is

the horizontal behavior (Figure 8.6(FL)). Aircraft 2 is initially turning away from the other aircraft before
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turning towards it at 8 seconds into the encounter. The initial RA is issued shortly after that maneuver.

Large rapid changes in turn rate around the time of an RA can make it difficult for a collision avoidance

system to accurately estimate the time to horizontal intersection.

Overall, ACAS X is much safer and more operationally suitable than TCAS. However, there are some

trade-offs between the two systems as highlighted by our methods in Figure 8.6. ACAS X’s late altering

characteristic, which reduces the number of unnecessary alerts, can sometimes hurt encounters with

higher vertical rates, such as seen in this example. In deciding the trade-off, a designer must weigh the

relative likelihood of these encounters versus the effect on other more frequently observed trajectories.

Simultaneous Horizontal and Vertical Maneuvering. Many of the NMAC encounters found involve

an aircraft turning while simultaneously climbing or descending very rapidly. Figure 8.7 shows an ex-

ample where an NMAC occurs at 45 seconds in the ACAS X simulation but no NMAC occurs in the

TCAS simulation. The encounter occurs with probability density 2.7 · 10−4. In this example, aircraft 1

is flying generally straight and level while aircraft 2 is simultaneously turning and climbing at a verti-

cal rate exceeding 80 feet per second. Aircraft 2 receives an RA to level-off (Figure 8.7(TR)(CL)), but is

unable to maneuver in time before losing vertical separation resulting in an NMAC. In this example,

TCAS is able to resolve the conflict by issuing RAs to both aircraft earlier in the encounter than ACAS X

(Figure 8.7(BR)(CL)).
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Figure 8.7: NMAC encounter where aircraft 2 turns and climbs very rapidly. NMAC occurs at 45 seconds
in the ACAS X simulation. TCAS resolves the conflict by alerting earlier in the encounter.

Horizontally, aircraft 2’s turn quickly shortens the time to closest approach between the two aircraft.

Vertically, aircraft 2 receives a level-off advisory but the high climb rate and pilot response delay limit
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how quickly the aircraft can be brought to compliance. Scenarios that involve turning and simultaneously

climbing or descending at high rate are operationally very rare.

Horizontal Maneuvering. In some very rare cases, NMACs can also result from horizontal maneu-

vering alone. An example is shown in Figure 8.8, where an NMAC occurs at 40 seconds in the ACAS X

simulation but no NMAC occurs in the TCAS simulation. The encounter occurs with probability density

4.3 · 10−11. The aircraft are initially headed away from each other but they are also turning towards each

other. At 25 seconds into the encounter, the aircraft turn more tightly towards each other, rapidly reducing

the time to closest approach. Crossing advisories are issued to both aircraft 9 seconds prior to NMAC

(Figure 8.8(TR)(CL)). However, there is not enough time remaining to cross safely and an NMAC occurs.

In this example, TCAS is able to resolve the conflict by issuing RAs to both aircraft earlier in the encounter

(Figure 8.8(BR)(CL)). However, it is unclear how the aircraft got to their initial positions in the encounter

and whether this initial position is generally reachable.
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Figure 8.8: NMAC encounter where the aircraft maneuver horizontally at 25 seconds. NMAC occurs at
40 seconds in the ACAS X simulation. TCAS resolves the conflict by alerting earlier in the encounter.

8.4.2 Stress Testing TCAS Relative to ACAS X Baseline

For comparison, we perform DAST experiments where we consider TCAS as the system under test and

ACAS X as the baseline, which is the inverse of the experiment in Section 8.4.1. We searched 2700 pairwise

encounters with samples from LLCEM. We use the same configuration as in Table 8.5 with the exception

that the test and baseline systems are reversed. The top 10 highest reward paths are returned for each

encounter initialization, producing a total of 27,000 paths as in Section 8.4.1. Of these paths, a total of 39
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contained NMACs, which represents an increase of 39.3% compared to Section 8.4.1. It is reassuring that

this result, where DAST found 39.3% more NMACs with TCAS compared to ACAS X, is qualitatively

similar to the results from other studies which use direct Monte Carlo sampling and also show a safety

benefit of ACAS X compared to TCAS [23]. The NMACs also originate from a broader set of encounter

initializations as well (22 here versus 10 in Section 8.4.1). We now present examples of NMAC found by

the algorithm and discuss their properties.

Crossing RA Followed by a Reversal. An example is shown in Figure 8.9 where an NMAC occurs

at 41 seconds in the TCAS simulation but no NMAC occurs in the ACAS X simulation. The encounter

occurs with a probability density of 6.6 · 10−12. In the encounter, the aircraft converge vertically while

they approach in a perpendicular configuration horizontally (Figure 8.9(FL–CL)). TCAS issues crossing

initial advisories to the aircraft, but then reverses the RAs shortly before the aircraft cross in altitude (Fig-

ure 8.9(TR)(CL)). The reversal leads to the aircraft reversing vertical direction after they have crossed in

altitude, reducing their vertical separation, and eventually resulting in an NMAC. In contrast, ACAS X

issues preventative advisories to the aircraft early in the encounter and keeps the aircraft vertically sepa-

rated throughout the encounter (Figure 8.9(BR)(CL)).

The crossing TCAS advisory combined with a reversal shortly afterwards suggests that the encounter

may be operating near a decision boundary and TCAS may be having trouble deciding whether the

aircraft should cross in altitude. In this case, it appears the initial crossing RAs CL1500 and DS1500 may

have successfully resolved the conflict had it been maintained, and it is the reversal that complicated the

resolution. The lateness of the TCAS initial RA likely played a major role in the NMAC, leaving a very

difficult decision for the direction selection of the RA. ACAS X gives a desirable outcome in this case by

deciding early in the encounter that the aircraft should not cross in altitude by issuing preventative RAs

DNC and DND.

Double Horizontal Crossing. An example is shown in Figure 8.10 where an NMAC occurs at 50 sec-

onds in the TCAS simulation, but no NMAC occurs in the ACAS X simulation. The encounter occurs with

a probability density of 2.2 · 10−14. In the encounter, the aircraft turn as they converge both horizontally

and vertically, eventually resulting in a horizontal double crossing (Figure 8.10(FL)). TCAS issues MAIN-

TAIN advisories to the aircraft predicting that they will cross safely, then further clears the advisory after

the first horizontal crossing. However, after the first crossing, the aircraft continue to turn toward each

other into a second horizontal crossing. TCAS issues a second sequence of advisories, but it is too late

and an NMAC occurs. Sequences of RAs separated by COC are called split advisories and are undesirable

because they may cause confusion in the pilots. Another contributor to the difficulty of the encounter for

TCAS is aircraft 2 increasing its turn rate mid-encounter, which significantly reduces time to collision (see
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Figure 8.9: NMAC encounter where initial crossing RAs are reversed prior to the aircraft crossing in
altitude. NMAC occurs at 41 seconds in the TCAS simulation. ACAS X resolves the conflict by alerting
much earlier in the encounter with preventative RAs.

Figure 8.10(TR)(CR)). The ACAS X system handles the encounter much more desirably, choosing a DND

advisory to maintain vertical separation as the aircraft cross horizontally (Figure 8.10(BR)(CL)).
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Figure 8.10: NMAC encounter with a double horizontal crossing and a split advisory. In the TCAS
simulation, the aircraft cross twice horizontally and split advisories occur at 30 and 47 seconds. NMAC
occurs at 50 seconds. ACAS X resolves the encounter using a preventative RA to aircraft 1.

Triple Altitude Crossing. An example is shown in Figure 8.11 where an NMAC occurs at 40 seconds

in the TCAS simulation but no NMAC occurs in the ACAS X simulation. The encounter occurs with
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probability density 1.5 · 10−9, which is more likely than the first two examples presented in this section

according to our model. The aircraft approach almost straight, head-on, and co-altitude (Figure 8.11(FL–

CL)). TCAS issues initial RAs just as the aircraft cross in altitude (Figure 8.11(TR)(CL)). Responding to

the RAs actually results in bringing the aircraft closer together vertically. TCAS subsequently reverses

the RAs, but the aircraft cross in altitude for a second time due to the pilot response delay. The aircraft,

following the reversal RAs, cross in altitude for a third time, where an NMAC occurs. In contrast, ACAS X

is able to resolve the conflict by issuing crossing RAs slightly earlier than TCAS and maintaining the RAs

for the duration of the encounter (Figure 8.11(BR)(CL)).
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Figure 8.11: NMAC encounter where the aircraft cross in altitude three times at 20, 29, and 40 seconds in
the TCAS simulation. NMAC occurs at 40 seconds. ACAS X resolves the conflict by committing to and
maintaining a crossing RA.

In the TCAS simulation, interactions between the RA and the pilot response delay lead to oscillations

in the aircraft altitudes (Figure 8.11(TR)(CL)). In particular, the response delay causes RAs and their

responses to be separated by altitude crossings, resulting in the responses reducing vertical separation

rather than increasing it. The oscillations result in multiple altitude crossings and ultimately an NMAC.

Another interesting feature of the encounter is the change in vertical rate by aircraft 2 at 17 seconds, which

immediately precedes the initial RAs and the oscillations (Figure 8.11(TR)(FR)). Due to the proximity of

the maneuver, the effects of state estimation may be playing a significant role in the initial RA. Due to

hardware limitations, the collision avoidance system does not directly measure the vertical rate of the

intruder and must estimate it by tracking altitude over time. Furthermore, the altitude of the intruder is

not known exactly, but quantized to 25 feet increments. To deal with this uncertainty, tracking and filtering
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techniques are used, which introduce a small amount of tracking error and lag. TCAS uses an alpha-beta

filter while ACAS X uses a more sophisticated modified Kalman filter [92]. The modified Kalman filter

has been shown to give better tracking error and lag performances. The improved state tracking may be

a key contributor to the earlier initial RA and better sense selection in ACAS X in this encounter.

Vertical Chase. An example is shown in Figure 8.12 where an NMAC occurs at 43 seconds in the

TCAS simulation but no NMAC occurs in the ACAS X simulation. The encounter occurs with probability

density 8.4 · 10−9, which is more likely than the first two examples presented in this section according

to our model. In the encounter, the aircraft approach perpendicularly in the horizontal direction and are

engaged in a vertical chase. The aircraft are both descending but at different vertical rates. The aircraft

cross in altitude and begin to diverge vertically when TCAS issues a crossing RA. Responding to the

initial RA, the aircraft cross in altitude for a second time. TCAS then reverses the advisory causing the

aircraft to cross in altitude a third time, where an NMAC occurs. In contrast, ACAS X resolves the conflict

by issuing a preventative DND advisory early followed by a CL1500 to maintain vertical separation of the

aircraft.
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Figure 8.12: NMAC encounter where the aircraft are in a vertical chase configuration resulting in multiple
altitude crossings in the TCAS simulation. NMAC occurs at 43 seconds. ACAS X resolves the conflict by
issuing RAs much earlier.

The TCAS encounter shows similar oscillations as in the previous example in Figure 8.11 (see Fig-

ure 8.12(TR)(CL) and Figure 8.11(TR)(CL)). However, there are a couple of key differences. First, the

crossing initial advisories are issued after the aircraft have already crossed in altitude and are beginning

to diverge vertically. Second, this encounter has a change in heading rate immediately preceding the
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initial RAs rather than a change in vertical rate (Figure 8.12(TR)(CR)). As a result, it is likely that both

vertical state tracking and the estimation of time to closest horizontal approach are playing a role in the

initial RAs.

8.5 Categorizing Failure Scenarios using GBDT

Stress testing can produce large datasets of encounters, which are high-dimensional heterogeneous time

series. This section aims to discover patterns in the data that may help a domain expert understand

common failures and potential underlying issues. Toward this end, we apply GBDT to automatically

categorize a dataset of NMAC and non-NMAC encounters and generate explanations that characterize

each failure category. In the following sections, we first describe the dataset and the grammar used in the

study. Then, we present the categorization results.

8.5.1 Dataset

We analyze a dataset that contains simulated two-aircraft mid-air encounters [75]. The dataset contains

10,000 encounters with 863 NMACs and 9,137 non-NMACs. The class imbalance is due to the rarity of

NMACs and the difficulty in generating NMAC encounters. Each encounter has 77 features collected at

1 Hertz for 50 time steps. The features include numeric, categorical, and Boolean types representing the

state of the aircraft, pilot commands, and the state and output of the collision avoidance system for each

aircraft. The data was generated during the stress testing of ACAS X prototype (libcas) version 0.9.8.

Since horizontal separation and vertical separation are features in the data, the NMAC condition

(horizontal separation < 500 feet and vertical separation < 100 feet) is directly observable in the data.

As a result, GBDT will split on this rule because it gives the best loss. While technically correct, this

explanation does not provide useful information about the NMACs. We address the issue by removing

the NMAC event from the encounters as follows: For each encounter, we compute the time of closest

approach, which is the point where the separation of the two aircraft reaches a minimum, then trim the

encounter to retain only data from the start of the encounter to five seconds prior to that time. We choose

five seconds to balance between removing NMAC information and leaving sufficient encounter data for

prediction.

8.5.2 Grammar

We craft a custom CFG for the ACAS X dataset, building on the one presented in Figure 7.1. We include

temporal logic operators eventually F and globally G; elementwise logical operators conjunction ∧, dis-
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junction ∨, negation ¬, and (globally) implies =⇒ ; comparison operators less than <, less than or equal

to ≤, and equals =; mathematical functions absolute value |x|, difference −, and sign Sign; and count

Count (which returns the number of true values in a Boolean vector).

In addition to dividing the features by data type, the ACAS X grammar further subdivides the features

by their physical representations. This enables comparison of features with constant values that have

appropriate scale and resolution. For example, even though aircraft heading and vertical rate are both

real-valued, aircraft heading should be compared to values between −180◦ and 180◦, whereas vertical

rate should be compared to values between −80 and 80 feet per second. The full grammar is included in

Appendix A.

8.5.3 Results

We performed 20 random trials for each GBDT and baseline algorithm. A trial is a run of an experiment

initialized with a unique random seed and train-test split. We use randomly-sampled 70/30 train-test

splits of the data and report the mean of the evaluation metrics in Table 8.6. We use the same evaluation

metrics and baseline algorithms as in the Australian Sign Language experiment presented in Section 7.4.

Evaluation metrics are accuracy, precision, recall, and F1 scores. Baseline algorithms are decision tree,

random forest, and Gaussian naive Bayes classifiers. Tree-based classifiers, i.e., GBDT, decision tree,

and random forest models, were trained to a maximum depth d = 4. Trees that are too deep become

difficult to interpret and manage. Random forest used 64 trees. Results for the various variants of GBDT

are separately listed in Table 8.6. GBDT-MC uses Monte Carlo algorithm, GBDT-GE uses grammatical

evolution, and GBDT-GP uses genetic programming for expression optimization. Overall, GBDT-GP

again performed the best. The temporal logic rules in GBDT are able to more effectively capture the

underlying patterns and are more robust to temporal variations. Random forest performed very poorly at

predicting NMAC. The reason is that random forest randomly subsamples features, which works poorly

when there are many features but only a small subset of features is predictive. Random forest uses a

voting mechanism for class prediction where each tree in the forest has equal weight. If most of the

features are not predictive, then, due to feature subsampling, only a small subset of trees will produce

accurate predictions. However, the accurate predictions of these trees will be outweighed by the trees that

do not have accurate predictions, resulting in poor predictive performance.

The strength of GBDT lies in its ability to categorize and explain data. GBDT not only provides

interpretable expressions about the data’s distinguishing properties but also a hierarchical organization

of the properties. Figure 8.13 shows a visual overview of the categories extracted from one of the learned
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Table 8.6: GBDT performance on ACAS X dataset

GBDT-MC GBDT-GE GBDT-GP Decision Tree Random Forest Gaussian NB

Accuracy 0.9577 0.9583 0.9587 0.9378 0.9251 0.8705
F1-Score 0.8765 0.8768 0.8779 0.8038 0.6130 0.7126
Precision 0.8505 0.8546 0.8553 0.8025 0.8961 0.6799
Recall 0.9102 0.9050 0.9053 0.8083 0.5778 0.8187
Avg. Terminals 5.54 5.56 5.38 — — —

trees. The figure shows plots of altitude versus time, which, while it cannot fully capture the high-

dimensionality of the encounter data, is generally most informative since ACAS X issues RAs only in the

vertical direction. Since we are mainly interested in categorizing NMACs, we consider only the six NMAC

categories out of the 16 total categories produced by the tree. Figure 8.13 shows the first five encounters

for each of the six NMAC categories, where each row is a separate category. The categories are labeled in

ascending order starting at category 1 at the top row. The first row has only two plots because category

1 only contained these two encounters. A full representation of the GBDT is included in Appendix B. We

describe the categories as follows.

Category 1. In this category, the two aircraft maintain altitude separation for most of the encounter,

then one aircraft accelerates rapidly toward the other aircraft as they approach. The aggressive maneu-

vering causes vertical separation to be lost rapidly and an NMAC results. Figure 8.14 shows the spike in

climb rate at 34 seconds, only five seconds before NMAC. The large spike in vertical rate near NMAC is

characteristic of encounters in this category.

Aggressive last-minute maneuvering is known to be problematic. With the pilot’s five-second response

time, there is insufficient time remaining for the collision avoidance system to resolve the conflict. It is

unlikely that any reasonable collision avoidance system would be able to resolve such NMACs. Fortu-

nately, these encounters are extremely rare outside of simulation since pilots do not typically maneuver

so aggressively in operations.

Category 2. The encounters in this category are also characterized by a maintenance of vertical sep-

aration in the first part of the encounter before aggressive maneuvering close to closest point of ap-

proach (CPA). The relative vertical rate of the aircraft exceeds 50 feet per second at some point in the

encounter. These encounters differ from those in category 1 in that the aircraft maintains a greater alti-

tude separation in the early part of the encounter and both aircraft maneuver much more aggressively

toward each other than those in the previous category. The aggressiveness of the pilot’s maneuvering

is revealed in the GBDT explanation that the commanded vertical rate differs from the advisory’s target

rate in excess of 30 feet per second. That is, the pilots are very aggressively maneuvering against the RA
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Figure 8.13: Visual overview of categorized ACAS X encounter data. Each row is a category. Columns
show altitude profiles of five encounters in each category (except category 1, which only contained two
encounters). We see visual similarities within each category.

during pilot response delay after the RA is issued, but before they start complying.

Category 3. Similar to categories 1 and 2, the encounters in this category also contain aggressive ver-

tical maneuvering at some point in the encounter. However, the aggressive maneuvering occurs much

earlier in the encounter causing one or more altitude crossings early on and results in active RAs through-

out most of the encounter. Figure 8.15 shows the vertical rates of an encounter where the large difference

in vertical rate can be seen well prior to CPA in the encounter. The large difference in vertical rates ex-

ceeding 50 feet per second is seen at 25 seconds and an NMAC occurs at the second altitude crossing at

37 seconds.
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Figure 8.14: Vertical maneuvering just before closest point of approach (CPA). Aircraft 2 climbs aggres-
sively starting at 29 seconds and reaching a peak climb rate of almost 80 feet per second (right) shortly
before NMAC at 40 seconds (left).
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Figure 8.15: Vertical maneuvering early in encounter. Aircraft 1 climbs aggressively starting at 18 seconds
and peaking at 25 seconds (right). An NMAC occurs at 37 seconds (left).

Category 4. The encounters in this category also contain aggressive vertical maneuvering close to CPA,

characterized by the commanded vertical rates of the two aircraft differing by more than 50 feet per second

at some point in the encounter. Loss of vertical separation occurs at some point before five seconds prior

to CPA and is manifested either very early in the encounter or as an extended period where the aircraft

are co-altitude near CPA. Compared to category 3, the initial RA occurs later in the encounter, so the

pilots are flying their intended paths for most of the encounter. As with the previous categories, strong

aggressive maneuvering against the initial RA is extremely rare in operation since it represents strongly

uncooperative pilot behavior.

Category 5. In these encounters, the aircraft cross in altitude early in the encounter without active

advisories, then maneuver back toward each other to cause an NMAC. Since the aircraft are predicted

to cross safely and appear to vertically diverge following the crossing, the collision avoidance system
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witholds an RA to allow the encounter to resolve naturally and reduce the number of unnecessary alerts.

However, after crossing, the aircraft change course and maneuver toward each other, which results in an

NMAC. Because the aircraft are already close in altitude, the vertical maneuvering in these encounters

is not as aggressive as those in previous categories. Due to the late maneuvering and the pilot response

delay, pilot 2 does not start to comply with the issued RA until within five seconds of NMAC. Figure 8.16

shows the vertical profile of an encounter in this category where the aircraft cross in altitude at 19 seconds

and then maneuver to NMAC at 38 seconds.

In addition to the RA, the collision avoidance system also has additional mechanisms for alerting the

pilot, which we have not modeled. The collision avoidance system provides visual displays of the location

of other aircraft, and also issues a traffic alert (TA), which alerts the pilots in advance of an RA. These

mechanisms help increase the pilots’ situational awareness and reduce blunders.
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Figure 8.16: Maneuvering following altitude crossing. The aircraft cross in altitude without advisory at 19
seconds then maneuver toward each other to NMAC at 38 seconds.

Category 6. In these encounters, the aircraft receive initial RAs at different times and the aircraft

cross in altitude during the pilot response delay of the first RA. As the pilots start responding to their

advisories, the maneuvers actually result in bringing them closer together rather than further apart. A late

revision to the advisory is issued. However, the encounter ultimately results in an NMAC. Figure 8.17

shows the vertical profile of an encounter in this category. The aircraft cross in altitude during pilot 2’s

response delay period at 21 seconds and NMAC occurs at 39 seconds.

Issuing advisories can be tricky in cases where the aircraft are approximately co-altitude due to uncer-

tainties in the aircraft’s estimated positions and future intentions. In these encounters, the problem arises

as one aircraft maneuvers to cross in altitude immediately after an initial RA is issued to the other aircraft.

Operationally, this is a rare case as the positions of the aircraft and the timing of the maneuver need to
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coincide.
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Figure 8.17: Altitude crossing during pilot response delay. The aircraft cross in altitude during pilot 2’s
response delay at 21 seconds. The aircraft lose vertical separation as they comply with their RAs and an
NMAC occurs at 39 seconds.

8.6 Performance Evaluation of AST

This section evaluates the performance of MCTS-SA against direct Monte Carlo sampling given a fixed

computational budget. MCTS-SA was used in Section 8.3 and Section 8.4. The algorithms are given a

fixed amount of CPU time and the best path found at the end of that time is returned. We compare the

CPU time of the algorithms rather than number of samples to account for the additional computations

performed in the MCTS-SA algorithm. We use the same configuration as the single-threat encounter

experiments as shown in Table 8.3 except that we limit the search based on computation time instead

of a fixed number of iterations. The experiments were performed on a laptop with an Intel i7 4700HQ

quad-core processor and 32 GB of memory.

Figure 8.18 shows the performance of the two algorithms as computation time varies. Figure 8.18a

compares the utility (as defined in Section 3.1) of the best encounters found by the algorithms. Each

data point shows the mean and standard error of the mean of 100 pairwise encounters. Figure 8.18b

shows the percentage of NMACs found out of the 100 encounters searched. In both cases, MCTS-SA

clearly outperforms the baseline Monte Carlo search. The effectiveness of MCTS-SA in finding NMACs is

particularly important and we see that MCTS-SA greatly outperforms the baseline in this regard. As the

computational budget increases, MCTS-SA is able to find increasingly many NMACs, whereas within the

computational budgets considered, direct Monte Carlo is unable to find any NMACs.
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Figure 8.18: Performance of MCTS and direct Monte Carlo with computation time. MCTS-SA clearly
outperforms direct Monte Carlo in both achieving better utility (left) and NMAC find rate (right).

8.7 Summary

This chapter presented several studies that apply AdaStress to analyze near mid-air collision (NMAC)

scenarios in the next-generation Airborne Collision Avoidance System (ACAS X). We applied AST to find

the most likely NMAC scenarios of ACAS X in single-threat and multi-threat encounters and identified

a number of NMAC categories. For single-threat encounters, we identified NMAC scenarios related to

crossing during the pilot response delay, high horizontal and vertical rates, maneuvering against the initial

RA, sudden aggressive maneuvering, and a combination of the above factors. For multi-threat encounters,

we identified NMAC encounters related to pairwise coordination, limited maneuverable airspace, and

phenomena we’ve previously seen in pairwise encounters.

We applied DAST to compare the NMAC behavior of ACAS X and TCAS. In particular, we searched

for the most likely NMAC scenarios of ACAS X relative to a TCAS baseline, and also the most likely

NMAC scenarios of TCAS relative to an ACAS X baseline. In the first study, we found cases where

ACAS X issues an RA but TCAS does not, cases involving simultaneous horizontal and vertical ma-

neuvering, and cases with horizontal maneuvering alone. In the second study, testing TCAS relative to

ACAS X as baseline, we found 39.3% more NMACs originating from a broader set of initial encounters

than in the first study. These results agree with other statistical studies comparing ACAS X and TCAS

and give us additional confidence that ACAS X yields improved safety and performance over TCAS. In

this study, we found NMAC scenarios that involve a crossing RA that is reversed just prior to altitude

crossing, double horizontal crossing, triple altitude crossing, and vertical chase.

We applied GBDT to categorize and explain a dataset of aircraft encounters, where some encounters

had NMAC and some did not. We used a domain-specific grammar that produced Boolean expressions
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based on a customized linear temporal logic. The GBDT automatically identified and characterized six

NMAC categories, including various variations of aggressive maneuvering, crossing altitude and maneu-

vering back, and altitude crossing during pilot response delay.

We summarize the failure categories identified in our various analyses of ACAS X in Tables 8.7–8.9.

Table 8.7 summarizes the failure categories identified in single-threat and multi-threat AST analyses.

Table 8.8 summarizes the failure categories identified in ACAS X and TCAS using DAST. Lastly, Table 8.9

summarizes the failure categories identified through GBDT analysis.

Finally, we compared the performance of MCTS-SA with direct Monte Carlo search and showed that

MCTS-SA is far more effective at finding NMACs than direct Monte Carlo search. MCTS-SA was also

able to find increasingly more NMACs with increasing computational budget, whereas direct Monte

Carlo search struggled to find any NMACs at comparable budgets.
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Chapter 9

Application: Trajectory Planning for Unmanned

Aircraft

This chapter applies AdaStress on a trajectory planning system, where we find and analyze scenarios of

obstacle collisions and planning failures in a UAV navigation task. The first section, Section 9.1, introduces

the topic. Section 9.2 provides an overview of trajectory planning systems. Section 9.3 discusses how

AST can be used to stress test trajectory planning systems, including system architectures, sources of

uncertainty, and failure modes. Section 9.4 presents a case study of stress testing a prototype trajectory

planning system in a UAV navigation application, and discusses the categories of failure scenarios that

the algorithm uncovered. The final section, Section 9.5, summarizes the contributions of this chapter.

9.1 Introduction

Trajectory planners play a critical role in many autonomous vehicle systems, such as unmanned aircraft

and driverless cars. However, analyzing the safety of these systems is very challenging due to their

complexity and operation over time. Trajectory planners vary widely depending on their modeling as-

sumptions, search space, optimization algorithm, and runtime behavior. Existing validation approaches

are generally focused on the correctness of the plans in isolation, while ignoring that the planner may not

be able to generate a valid plan at all due to unanticipated operational conditions.

The validation of trajectory planning systems has generally relied on simulation [93, 94, 95, 96, 97] and

experimental validation [98, 99]. Random perturbations can be used to increase the range of scenarios that

are tested. However, the limited coverage of these approaches, together with the large complex state space

and rarity of failures, make it difficult to uncover rare corner case failure scenarios. Another approach

uses formal mathematical arguments on geometries to prove correctness [100]. More generally, formal

95
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V&V methods have been applied to planning and scheduling problems. These methods apply model

checking to verify properties on various artifacts of the planning system such as the plan, the planning

(or domain) model, and the planning algorithm [101, 102, 103]. Simulated mission scenarios can often

uncover divergences between the intended behavior of a plan and its simulated outcome [104]. Ongoing

research work aims to automatically analyze execution time failures to detect modeling flaws and suggest

fixes to the planning models and abstractions [104].

This chapter takes a simulation-based approach that models a scenario at the level of components,

including the trajectory planning system, vehicle dynamics, sensors, environment, and how they interact

in operation. We consider how the scenario evolves under various sources of stochastic disturbances and

how the system can fail. However, rather than Monte Carlo sampling over these stochastic sources as

is traditionally done in simulation-based testing, we propose to explicitly and adversarially optimize the

stochastic elements in the simulator to drive the simulation toward failure events. This approach can be

much more efficient at exploring the complex state space and finding failures.

We apply AST to find the most likely failure scenarios by posing the problem as a sequential decision-

making problem and then optimizing it using MCTS. We apply the approach presented in Section 5.4.1.

Specifically, we create a seed-action simulator of the scenario, and then apply MCTS-SA to search for

failure scenarios.

In the following sections, we first give an overview of trajectory planning systems, and then describe

how to set up and effectively apply AST to test trajectory planning systems. Then we present experiments

applying the proposed approach to find failure scenarios in a prototype trajectory planning system for a

small unmanned aircraft [105, 106].

9.2 Trajectory Planning Systems Overview

Trajectory planners perceive the environment via sensors and produce path plans for the vehicle to follow.

Planning algorithms optimize some objective, such as reaching a goal while minimizing fuel consumption,

and may do so under constraints, such as the vehicle not colliding with obstacles or other vehicles. This

chapter assumes a two time-scale system architecture, where a trajectory planner produces plans over

longer time horizons while a shorter time horizon controller guides the vehicle to follow the plan. While

trajectory planning systems can vary widely, they can be generally characterized along the following

dimensions.

Modeling. Planning is computationally intensive. As a result, planners often make simplifying as-

sumptions and plan using abstract models. For example, the planner may assume simplified vehicle
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dynamics or approximate complex obstacles using polygons of simple shape. Plans can also depend on

preexisting knowledge of the world, such as preloaded terrain maps. Discrepancies between the planning

model and the real world can represent significant sources of failures.

Search Space and Solution Representation. While trajectory planners all output vehicle paths, they

can differ in how they represent these paths. For example, the plan can be expressed as a sequence of

waypoints [93, 107] or a spline [105]. The plans can be open-loop plans, which do not account for future

information being available, or closed-loop plans that do [31]. The choice of representation defines the

space of solutions that can be found.

Optimization Algorithm. A broad range of search algorithms exist for trajectory planning. For exam-

ple, the algorithms can be stochastic [42, 97, 108] or deterministic [109], i.e., give the same output given

the same input; search tree-based [93, 108], differential equation-based [109], evolutionary algorithms-

based [96], or playbook-based (based on combinations of a small set of base trajectories) [107]. Some

optimization algorithms can operate within a given time constraint, i.e., real-time or anytime algorithms,

[42, 93, 110], while others must run to completion [109]. Some algorithms rely on heuristics [110]. Different

optimization algorithms may be able to handle different types of constraints on the solution.

Operational Behavior. Trajectory planners may use additional logic at runtime. For example, planners

may update their plans, i.e., replan, at regular time intervals; or replan if certain criteria are met. For

example, the planner may replan if the vehicle deviates too much from the plan or if the plan is now

believed to lead to a collision.

Because we take a simulation-based approach to testing, we can support a broad range of trajectory

planning systems without modification to the stress testing algorithm. All that is required is a way

to simulate the trajectory planner to produce the plans. Our approach embeds the trajectory planning

software system in the simulation.

9.3 Adaptive Stress Testing for Trajectory Planning Systems

This section describes how adaptive stress testing (AST) can be applied to stress test trajectory planning

systems. We first describe the overall stress testing architecture. Then we describe various failure sources

and failure modes relevant to the operation of trajectory planning systems and how these can be expressed

in the AST framework.
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9.3.1 Stress Testing Architecture

The overall system architecture is shown in Figure 9.1. The seed-action simulator S̄ models an autonomous

vehicle in operation. The vehicle’s sensors perceive the external environment, which may include wind,

obstacles, and other vehicles, and provide noisy observations to the trajectory planner and the vehicle

controller. The planner, which is the system under test, computes a plan based on these observations.

The vehicle controller controls the vehicle to follow the plan and the vehicle state evolves according to the

vehicle dynamics. The vehicle state is used to update the environment state and the cycle repeats.

Simulator S̄

Sensor

Trajectory Planner
(SUT)

Vehicle
Controller/Dynamics

Environment (wind,
obstacles, other actors)

noisy
observation

environment
state

noisy
observation

plan

vehicle state

MCTS-SA

Reward
Function

seed āt

reward rt+1

transition probability pt+1,
event et+1, miss distance dt+1

Figure 9.1: Architecture for adaptive stress testing of trajectory planning systems. Seed-action simulator
models trajectory planner and its environment. MCTS-SA is used to search the simulator.

The simulation is abstracted following the seed-action framework in Section 5.4.1. The simulator

is Markov and maintains a state, but the state is not exposed externally. Without loss of generality,

we assume multivariate heterogeneous state and actions internal to the simulator. Following the seed-

action framework, the simulator takes a pseudorandom seed ā as input and uses it to set the state of the

simulator’s pseudorandom number generator. The output of the simulator consists of three variables: a

variable et+1 indicating whether a failure event occurred, the probability pt+1 of the state transition, and

some measure dt+1 of how close the simulator came to an event. The reward function converts these

variables into a single reward metric that the reinforcement learner optimizes. We use the MCTS-SA

algorithm presented in Section 5.4.3 for optimization.

9.3.2 Sources of Uncertainty in Trajectory Planning

A number of sources of uncertainty exist in the operation of trajectory planning systems. We can model

these uncertainties using stochastic models inside the various components in the simulator. The stochastic
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variables are the actions in the AST framework being optimized. The optimization algorithm drives the

stochastic variables to maximize the overall adversarial impact and probability of occurrence on the system

under test. We consider the following sources of uncertainty in the system.

Imperfect Sensors. Trajectory planners rely on sensors to perceive the environment. Sensor obser-

vations can be noisy and mislead a planner into producing suboptimal plans. For example, observation

noise in an obstacle’s location can result in a plan in which the vehicle collides with the obstacle. The

effect of noisy sensors is captured in the sensor component of the simulator. The sensor takes an environ-

ment state as input and outputs a noisy observation to the trajectory planner and vehicle controller. In

addition to being noisy, sensors can give a partial view of the world. Important features may be out of

range or occluded. As a result, planners must plan based on incomplete information, which may result

in suboptimal plans. For example, the planner may guide the vehicle toward a hazard that is occluded

by obstacles. The sensor model can be used to capture the effect of incomplete information mapping the

global environment state to local observations.

Changing Environment. A changing environment can drastically degrade the quality of plans. The

specific stochastic elements present in the environment depend on the application. For example, small

aircraft may be susceptible to wind disturbances [111]. Surveillance and rescue missions may encounter

natural hazards that evolve stochastically over time, such as tree branches that sway in the wind, or fires

and smoke [112]. The environment may also contain elements that behave strategically, such as other

vehicle agents [113]. Multi-agent environments, especially under limited communication, are particularly

challenging as the other agents may behave drastically and unexpectedly invalidate existing plans. Plan-

ners that cannot adequately account for the uncertainty in the environment may put the vehicle at risk

under certain disturbance scenarios. These stochastic effects in the vehicle’s environment can be mod-

eled in the environment component of the simulation. We can model the stochastic processes or embed

external physics simulators. External simulators can be used as long as the pseudorandom seed can be

exposed to control any randomness.

Vehicle Control and Dynamics. Closed-loop control of unmanned vehicles is generally well-understood.

However, there may be small uncertainties in the evolution of the vehicle due to unmodeled dynamics

or uncertainties in actuation. In the AST framework, we can model these uncertainties in the vehicle

component using a stochastic model over the vehicle’s state transition.

Computation Time of Planning. Trajectory planning is computationally intensive, so generating a

plan may require significant computation time. In many missions, vehicles do not stop to wait for plans

to compute. Indeed, some vehicles, such as fixed-wing aircraft, cannot stop arbitrarily in mid-flight. But

even for vehicles that are able to do so, this mode of operation is often too disruptive. More commonly,
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vehicles continue following the existing plan while a new one is being computed, which can lead to a

couple of issues. First, the existing plan may be invalid and may become increasingly hazardous to the

vehicle as replanning time increases. Second, there needs to be some transition between the existing plan

and the new plan. If the plans are very different, for example as a result of replanning taking a very long

time, then the transition may introduce additional uncertainties, such as potential collisions.

Planning delays can be modeled in the trajectory planning component using a timed queue. Generated

plans do not immediately take effect, but are added to the queue to take effect at a later time. The

delay period can be stochastic or fixed. For added realism, the delay can be modeled on the wall clock

computation time of the planner. The vehicle continues to follow the previous plan during the delay.

9.3.3 Failure Modes in Trajectory Planning

Trajectory planners can fail in a variety of ways. This section describes some of these failure modes. In the

AST framework, we can capture the failures of interest in the definition of an event E, which is a subset of

the state space S (Section 5.2). An event can be defined by an indicator function IsEvent, which considers

the simulator state and outputs whether a failure event has occurred. For example, an event can be a

collision defined as the vehicle being closer than a certain distance from an obstacle. As another example,

an event can be a software crash in the planner. To help guide the search algorithm, we can also define

a measure that hints to the optimization algorithm how close the simulator came to an event, called the

miss distance. One example is to provide the distance between the vehicle and the closest obstacle. It

may be very difficult to define a distance measure for some failure modes, such as software crashes. In

these cases, we do not provide a distance measure and the search algorithm cannot explicitly drive the

search toward these failures. However, they can still be detected if they are encountered and they often do

arise as the system is put under stress. We consider the following types of failures for trajectory planning

systems.

Vehicle Enters a Failed State. The vehicle enters some failed state, such as a colliding with an obstacle

or running out of fuel. For example, significant observation noise in an obstacle’s location may result in

a plan that travels through the obstacle instead of around it. Another example is a plan that takes the

vehicle too close to an obstacle and a wind disturbance pushes the vehicle into the obstacle. Vehicle failed

states are generally well-defined, so providing a function that detects them is straightforward. Distance

measures to failures are also often available. For example, distances to obstacles can be used for collisions,

the amount of fuel remaining can be used for out-of-fuel scenarios, and mission time and distance to goal

can be used for not reaching goal within a certain time.
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Replanning Issues. Trajectory planners can replan at fixed time intervals or when a certain criterion

is met, such as if the current plan may lead to a collision. A variety of replanning issues can occur.

Noisy observations can lead to excessive triggering of the replanning condition leading to the trajectory

planner constantly replanning. Infinite trajectory loops can also arise due to partial observability, where

the planner may lead a vehicle into and out of a suboptimal area, then later do it again. Many simple

planners that do not retain sufficient information across time are susceptible to this type of failure. In the

AST framework, we can detect that the number of replans becomes excessive or if the vehicle does not

complete its mission in the allotted time. The number of replans and the mission duration can be used as

distance measures to the search algorithm.

Cannot Find a Plan. It is not guaranteed that the planner produces a valid plan that satisfies all

constraints, e.g., collision-free and meets vehicle dynamic constraints. A valid plan may not exist given

the current vehicle state or the algorithm cannot find it. In these cases, the planner may return indicating

that it has failed to produce a plan. We can detect and treat such planning failures as failure events. In

some cases, given access to the internal details of the planner, we may be able to use some computational

metrics such as the number of iterations as a distance measure. In this work, we detect but do not specify

a distance metric for planning failures.

Implementation Issues. Failures to produce a valid plan can also be caused by implementation issues,

such as software crashes, software entering an infinite loop and not completing, or the software producing

erroneous output. We treat these events as failure events. However, it is unclear how to define a distance

measure that leads to these software issues. In this work, we detect, but do not specify a distance measure

for implementation issues.

9.4 Stress Testing a Trajectory Planner for a Search and Rescue UAV

We apply AST to stress test a research prototype trajectory planning system [105]. The system is being

developed as part of the Autonomy Teaming & TRAjectories for Complex Trusted Operational Reliability

(ATTRACTOR) project led by researchers at NASA Langley. A later version of this trajectory planner

is planned to be used in a UAV search and rescue demonstration mission [106]. Preliminary testing of

the system is being performed on an indoor testbed, called WireMaze, which we use as the basis for our

simulations and testing. We conduct experiments using AST to perturb various stochastic elements of the

simulation to discover examples of failure scenarios of the trajectory planner. Failure events are defined

to be collisions and planning failures and we use the distance to the nearest wire obstacle as the miss

distance. In the following sections, we first provide a general overview of the trajectory planning system
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and the WireMaze scenario. Then we present our experiments stress testing the trajectory planning system

and discuss the issues we discovered from our testing.

9.4.1 Silhouette-Informed Trajectory Generation

We stress test a prototype trajectory planner provided as executable source code [105]. We provide a brief

overview of the system, and refer the reader to the original paper for a detailed description [105]. At a

high level, the planner takes as input a start position, a goal position, a list of wire obstacles, and a number

of parameters. The start and goal positions are specified in three dimensions. Wire obstacles are straight

and defined by their start and end points. The parameters govern various aspects of the algorithm. The

system outputs a trajectory that connects the start and goal positions if it is found, otherwise outputs

an error code indicating the type of failure. The trajectory is represented as a sequence of Bezier curves

providing a smooth continuous path for the vehicle. Combined with a speed profile, the planner can

sample along the path to provide a sequence of waypoints for the vehicle to follow. We assume in this

study a constant speed profile.

Internally, the planner computes the trajectory in three stages. The first stage is a stochastic tree-based

trajectory search based on a variant of the rapidly-exploring random tree (RRT) algorithm [114], called

RRT∗ [115]. The RRT∗ algorithm randomly samples points in the planning space and tries to grow a search

tree toward that point by steering the nearest point in the tree toward the target point. For optimizing

vehicle flight trajectories, which are paths in three-dimensional space, RRT∗ samples target points and

grows a tree in three-dimensional space. The algorithm continues to grow the tree until the tree reaches

a point sufficiently close to the goal position. The algorithm returns the sequence of points that connects

the root of the tree to the point closest to the goal position. RRT∗ is guaranteed to find the optimal path to

the goal with an infinite number of samples. For finite samples, the algorithm may not find any feasible

paths to the goal and returns with the search tree so far. In the original RRT∗ algorithm, path segments

are checked for collision before they are added to the tree. If the new segment collides with an obstacle,

then the segment is simply discarded so as to not add collision path segments to the tree.

The ATTRACTOR trajectory planner implements a variant of the RRT∗ algorithm that uses extra in-

formation about the obstacles to accelerate the search around obstacles. Specifically, this variant, called

silhouette-informed tree (SIT), uses silhouette information about the obstacles to generate sample points

around the obstacles if a collision is detected, which facilitates planning around the obstacles [105]. This

implementation also occasionally uses the goal point as the target point to help the search tree grow

toward the goal position.



CHAPTER 9. APPLICATION: TRAJECTORY PLANNING FOR UNMANNED AIRCRAFT 103

The second stage of the trajectory planner performs path smoothing. The SIT algorithm generates a

piecewise linear trajectory. The path smoothing stage takes this solution and tries to approximate it using

Bezier curves so that the final solution is C2 continuous. A C2 solution is one where the second derivative

of the position with respect to time exists and is continuous everywhere along the path. In the third and

final stage, temporal specifications are incorporated through a speed profile with a polynomial structure

that determines the arrival time, and allows the evaluation of the vehicle’s position at any instance in

time. The motivation behind generating C2 continuous trajectories is threefold: (1) The trajectories result

in continuous and nicely behaved control commands when using a path following algorithm to ensure the

vehicle tracks the desired path and speed profile; (2) they provide a naturally looking trajectory that can

be pulled, clipped, and stretched when interacting with human operators; and (3) they exploit existing

algorithms that avoid sampling of the trajectory to make collision queries, and avoids committing to a

particular time discretization, which can be problematic when used to answer queries involving multiple

time scales.

9.4.2 WireMaze Scenario

WireMaze is a three-dimensional structure with 42 wires strung across it at various positions and angles

forming a three-dimensional maze [105]. The structure is a cube with a side length of 2.7 meters and

stands 8.9 centimeters above the ground. The scenario involves a small UAV equipped with the trajectory

planning system described above, using it to navigate from a start position on one side of the maze to a

goal position on the other. Figure 9.2 shows a visualization of the maze and scenario.

The scenario simulates closed-loop operation of the trajectory planner as the UAV navigates through

the maze and tries to avoid the wire obstacles. At the time of this study, the planner is in its preliminary

stages of development and is designed for open-loop planning. As a result, our simulations are antici-

pating how the planner might plausibly be used in closed-loop in the future. The simulation models the

sensors, the aircraft dynamics, and the wire maze. The trajectory planner code is directly embedded in

the simulator as an executable component.

The basic scenario begins with the UAV at a start position and computes a plan to reach the goal

position. From that point, the simulation advances at 1 Hertz with the position of the aircraft following

the waypoints of the plan. Gaussian noise with mean zero and standard deviation σpos is added to

the position of the vehicle simulating uncertainties in the vehicle’s ability to exactly follow the given

waypoints. Deciding whether to replan is governed by a replanning condition specified by the design of

the mission. If the replanning condition is met, the planner is queried to generate a new plan given the
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Figure 9.2: WireMaze scenario. UAV navigates from one side of maze to a the goal position on the
opposite side while avoiding the wire obstacles.

current position and noisy observations of the wire obstacles. The noisy observations are generated by

adding Gaussian noise with zero mean and standard deviation σobs to the endpoints of each wire. Since

the wires are straight and defined by its endpoints, adding noise to the endpoints adds variation to the

entire wire. While the wire itself has no thickness, the planner considers a safety distance of dsa f e and we

consider that a collision has occurred if the vehicle comes within dcollide of the wire. The new plan becomes

active after a time delay ∆plan, which is used to model the computation time of the planning process. The

vehicle continues to follow the existing plan during the delay, i.e., while the plan is being computed. If the

planner fails to produce a valid plan, then an error code is returned. The aircraft continues to follow the

existing plan and another replan is attempted after ∆plan. The scenario ends successfully if the position

of the aircraft comes within a distance dgoal of the goal. Failures are defined as any one of the following:

(1) the vehicle has collided with an obstacle defined as the vehicle’s position being closer than dcollide to

an obstacle; (2) the planner has failed to produce a valid plan for three consecutive attempts; or (3) the

planner has not reached the goal after tmax seconds. A list of parameters and their values is shown in

Table 9.1.
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Table 9.1: AST and simulation parameters for WireMaze scenario

Name Symbol Value

Maximum simulation time tmax 35 s
Simulation time step ∆t 1 s
Vehicle speed vd 0.15 m/s
Safety distance to obstacle dsa f e 0.15 m
Safety distance above ground hsa f e 1 m
RRT∗ number of samples Nrrt 2000
RRT∗ radius of steer function ηrrt 0.10
Planning delay ∆plan 2 s (or disabled)
Replanning time interval τplan 5 s (or disabled)
Wire observation noise standard deviation σobs 3 cm (or disabled)
Vehicle Dynamics noise standard deviation σpos 3 cm
Maximum planning tries before fail N f ail 3
Goal radius dgoal 0.15 m
Collision radius dcollide 0.05 m
Maximum number of smoothing iterations Nsmooth 50
MCTS number of iterations NMCTS 100
MCTS exploration constant c 2
MCTS action widening constant 1 k 1
MCTS action widening constant 2 α 0.25

9.4.3 Testing Dimensions

We stress tested the trajectory planning system in a number of experiments that varied several parameters

of the simulation. Specifically, we experimented with all combinations of the following parameters. All

experiments added Gaussian noise for vehicle motion.

Observation Noise. We considered scenarios with and without observation noise. In the case of no

observation noise, the exact locations of the wire obstacles are always used for planning. In the case with

observation noise, we added a small amount of zero-mean Gaussian noise with standard deviation σobs

to the endpoints of the wires. The noisy version of the wire obstacles is used for planning. A new noisy

observation is sampled each time the planner is called.

Replanning Condition. We considered two alternative conditions for triggering replanning. The first

triggers a replan at a fixed time interval τplan. That is, the planner replans every τplan seconds regardless

of its observations. The second triggers a replan whenever it is predicted that the current plan will lead to

a collision in the future. The prediction is made based on the observation of the obstacles at the current

time step.

Scenario Configuration. The scenario is defined by start and goal positions. We vary these positions

by uniformly sampling start and goal positions within predefined volumes for each. These volumes are

defined to be a short distance away from the entry and exit faces of the cube and at least the safety height
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hsa f e above the ground, but no higher than the top of the maze.

Planning Delay. We considered scenarios with and without planning delay. For the case with no delay,

the plans are generated instantaneously (in simulation time) and are executed immediately by the vehicle.

For the case with delay, we considered a fixed planning delay ∆plan of 2 seconds, which approximates the

typical wall clock time of computing a plan for this implementation of the planner.

9.4.4 Results

We searched 10 scenario configurations under fixed-interval and collision replanning conditions, with and

without observation noise, and with and without planning delay. Each search returns the 20 scenarios

with the highest stress factor meaning that they obtain the highest reward in the AST search. Out of these

1600 obtained scenarios, 386 successfully reached the goal, 19 resulted in a collision, and 1195 terminated

with a planning failure. Note that these failure scenarios are not purely random samples, but represent

scenarios that AST found to be the most problematic. We present selected examples of failure scenarios

and discuss their relevance.

Collision with an Obstacle. This scenario has Gaussian observation and dynamics noise, replanning

based on a fixed time interval every five seconds, and instantaneous planning. Figure 9.3 shows a failure

scenario where the vehicle collides with an obstacle. The vehicle plans successfully five times before a

collision occurs at 24 seconds. This scenario shows that the effects of observation noise and dynamics

noise can be additive to reduce the operational margin of the system and lead to a collision. Out of the 19

collisions that AST found, 18 collisions had the combination of observation and dynamics noise. Only one

collision occurred under dynamics noise alone showing that the planner is quite robust to noise and only

failing when multiple sources of noise conspire. Currently, the planner plans around obstacles to provide

at least a safety distance dsa f e, but does not try to maximize the margin away from multiple obstacles

simultaneously. In the future, the planner may be improved to maximize the distance between multiple

silhouettes, which would provide added margin for avoiding obstacles.

Figure 9.3 illustrates the vehicle’s collision with an obstacle. The left plot shows a top down view of

the WireMaze and the right plot shows a side profile of the maze as viewed from the right. Blue lines

indicate the wire obstacles. The vehicle’s start position is labeled start. The solid black line indicates the

vehicle’s actual traveled path and the dotted black lines indicate the trajectories returned by the planner.

The green diamond markers indicate the times at which the planner computed a plan successfully and

the asterisk marks the time of the collision.
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Figure 9.3: Failure scenario where the UAV collides with an obstacle under both observation and vehicle
navigation noise. Collision is denoted by an asterisk.

SIT Fails to Find a Path When Vehicle Is Inside dsa f e Region. This scenario has Gaussian dynamics

noise, no observation noise, fixed time interval replanning, and instantaneous planning. Figure 9.4 shows

a failure scenario where SIT is unable to find a feasible path. The vehicle plans successfully two times

before the planning failures begin. The planner attempts to compute a plan at 10 seconds but fails with

error code 1 indicating that the SIT algorithm was unable to find a solution. The planner makes two

more failed attempts in the next two time steps returning with the same error code. We terminate the

scenario after 3 consecutive planning failures. The planning failures are indicated by red diamonds and

the terminal event is indicated by a red square in the figure. On analysis, we found that the planning

failure is caused by the position of the vehicle being within the planning safety distance dsa f e of the

nearest wire obstacle. As a result, all the plans returned by SIT contain a collision and are not accepted.

The dynamics noise has caused the vehicle to wander within dsa f e of an obstacle. It would be helpful for

the planner to check for this condition, because the vehicle could still recover from this position and a

valid trajectory could still be reached.

SIT Fails to Find a Path After Exhausting Sampling Budget. This scenario has Gaussian dynamics,

no observation noise, five-second interval replanning, and instantaneous planning. Figure 9.5 shows a

failure scenario where the tree search algorithm is unable to find a feasible path, but the vehicle position

is outside of the dsa f e region. The vehicle plans successfully two times before the planning failures begin.

We focus on the final planning failure indicated by a red square and error code 1, which indicates that

the SIT was not able to find a feasible solution. The vehicle position is not within dsa f e as the previous

example. The probability of the SIT algorithm finding a feasible solution tends towards 1 as the number

of samples increases to infinity. However, for finite samples, the SIT algorithm may not find a solution
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Figure 9.4: Failure scenario where the vehicle begins planning too close to an obstacle. All plans violate
safety constraint and planning fails. Planner fails at three consecutive time steps indicated by the red
markers.

as demonstrated in Figure 9.5. While it is unclear how many samples are required to guarantee a certain

level of search performance, the probability of finding a solution decreases with fewer samples. Since the

algorithm is being used online, the number of samples is constrained, so occasionally there may be cases

where a solution is not found. In this example, the planner was not able to find a solution within the

sampling budget. Interestingly, we see that a solution does exist in this case, since the existing plan can

still be used.
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Figure 9.5: Failure scenario where SIT exhausts the sampling budget. SIT is a stochastic search algorithm
that has non-zero probability of failing to find a solution within a finite sampling budget.

Excessive Replanning. This scenario has Gaussian dynamics noise, collision replanning, and instanta-

neous planning. Figure 9.6 shows a scenario where the vehicle replans if the current trajectory is predicted
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to collide with an obstacle given the current observation. The figure compares the scenarios with and with-

out observation noise and illustrates the emergent behavior resulting from the interactions between the

collision replanning condition and the observation noise. The top row of Figure 9.6 shows the case where

there is no observation noise. The vehicle plans only once at the start of the scenario. Because the vehicle

can observe the obstacles exactly, the condition for replanning is never activated and the vehicle follows

the plan until reaching the goal. The bottom row of Figure 9.6 shows the case where there is Gaussian

observation noise. In this case, the observation noise at each time step makes it seem like a collision will

occur at some point in the future. As a result, the vehicle replans excessively, almost at every opportu-

nity. This scenario also terminates with a planning failure where the SIT algorithm was not able to find a

feasible solution. The reason is because the vehicle is within the dsa f e region for the three final time steps.

This issue is more of a potential problem that can occur if the planner is to be combined with a replanning

rule based on collision prediction since the current version of the planner is meant to be used in open-

loop. Enhancing the planner to increase the margin around obstacles to account for the uncertainty may

help reduce the number of replans as the increased margin can help offset the operational margin lost to

observation noise.

Failure of the Smoothing Stage to Find a Path. This scenario has Gaussian observation and dynamics

noise, fixed time interval replanning, and instantaneous planning. Figure 9.7 shows a failure scenario

where the smoothing algorithm is unable to find a valid solution. The planner experiences three consec-

utive planning errors beginning at five seconds. The scenario terminates after the three planning failures.

The error code 2 indicates that the failure occurred in the smoothing stage of the planner. That is, the

algorithm found a piecewise linear solution. However, the planner was not able to find a C2 continuous

solution that approximates it. Internally, the error is an infinite loop in the smoothing stage that is caught

and returned with an error code. This type of planning error was the most prevalent in our testing.
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Figure 9.6: Planning without (top) and with (bottom) observation noise. Observation noise causes replan-
ning condition to the triggered excessively resulting in excessive replanning.
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Figure 9.7: Failure scenario where the planner fails at the smoothing stage indicated by the error code
2. The smoothing stage is unable to find a C2 continuous path that approximates the piecewise solution
returned by the tree search stage.
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Planning Failure when Near the Goal. This scenario has Gaussian dynamics, no observation noise,

interval replanning, and instantaneous planning. Figure 9.8 shows a failure scenario where the planner

is unable to find a solution when the vehicle is very close to the goal position. The vehicle has traveled

through the maze and has almost reached the goal. At 25 seconds, the vehicle is 0.94 meters from the goal

and the planner is unable to find a solution twice with error code 1. At the final attempt, the vehicle is

0.65 meters from the goal. The SIT algorithm is able to find a solution, but the smoothing algorithm is not

able to find a smooth approximation. The failure of the smoothing stage is not related to the obstacles as

it has already cleared the maze. The problem seems to be that the implementation of the smoothing stage

cannot handle trajectories that contain only a single path segment.
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Figure 9.8: Planning fails when vehicle is too close to the goal. The implementation of the smoothing
stage does not properly handle trajectories that contain only a single path segment.

Planning Delays and Disjunct Paths. This scenario has Gaussian obstacle and dynamics noise, and

the vehicle replans only when a collision is predicted. Planning requires two seconds and the vehicle

follows the existing plan during the computation. The vehicle starts following the new plan after the

two-second delay. Replanning attempts following a planning failure also must wait for two seconds.

Figure 9.9 shows a failure scenario where the vehicle travels a very disjunct trajectory due to the planning

delays. We can see that the planner can produce very different paths on replan. Planning does not take

into account the degree of deviation from the existing plan. Because of the two-second delay, the new

plan may have already diverged from the existing path causing the vehicle’s traveled path to jump as it

switches to follow the new path. Control logic to blend the two plans and smoothen the transition would

be helpful. Furthermore, as we discussed previously, the collision-based replanning strategy can lead to

excessive planning under noisy observations of the obstacles. When combined with the delay, the result

is a very disjunct vehicle path. This issue is another one that anticipates possible closed-loop operation of
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the planner, which is currently meant for open-loop use. It highlights a potential issue in the interaction

between collision replan and computational delays, and motivates the addition of path blending logic.

Enhancing the planner to increase margin between obstacles to account for added noise as discussed

earlier may also help.
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Figure 9.9: Disjunct behavior results from interactions between planning delay and collision replanning.
Planner does not take into account amount of deviation from current plan and thus can produce signifi-
cantly different plans.

Failure in Evaluating Points. This scenario has Gaussian dynamics noise, no observation noise, and

replans every five seconds. Plans take two seconds to compute and take effect. Figure 9.10 shows a

failure scenario involving the final stage of the planner where temporal specifications are incorporated

and the final waypoints are evaluated along the continuous trajectory. In the figure, the planning failure

is shown as error code 3 at seven seconds. The planning failure of the final stage seems to be related to an

implementation issue where the end time of the trajectory is returned as an invalid number.
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Figure 9.10: Failure scenario where the planner fails in the final point evaluation stage (indicated by error
code 3) due to a implementation issue.

9.5 Summary

This chapter discussed how the AST framework can be applied to test the runtime behavior of trajectory

planning systems. We presented a generic system architecture and discussed sources of uncertainty, which

include imperfect sensors, changing environment, vehicle motion, and computation time of the planner.

We also discussed possible failure modes of trajectory planning systems, which include vehicle failed

states, replanning issues, unable to find a plan, and implementation issues. Subsequently, we presented a

study that applies AST to analyze failure scenarios in a prototype trajectory planning system navigating

through a three-dimensional maze of wires. Using AST, we found 1214 failure scenarios out of 1600 tested,

and identified 8 categories of issues, including collisions with obstacles, failures when originating a search

from within a safe region, planner exhausting the sampling budget, excessive replanning, unable to find a

smooth approximation, failure when planning too close to the goal, disjunct paths due to planning delays,

and failures at the point evaluation stage. Table 9.2 summarizes the failure categories identified in our

analysis of the ATTRACTOR trajectory planning system.

These issues were reported to the ATTRACTOR team and future versions of the trajectory planning

system will incorporate changes to address these issues. AST continues to support the ATTRACTOR

project and AST will be applied to stress test future versions of the trajectory planner as they become

available.
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Chapter 10

Summary and Further Work

In this dissertation, we presented AdaStress, a collection of novel algorithms for analyzing failure events

in cyber-physical systems. We identified several key challenges in the failure analysis of safety-critical sys-

tems, including large and complex state spaces, interactions with large environments, operation over time,

black boxes and hidden states, rare failures, heterogeneous multivariate time series data, and explaining

failures from large datasets. We proposed solutions to address these challenges and demonstrated them

on an aircraft collision avoidance system and a trajectory planning system. In this chapter, we conclude

the thesis, highlight the contributions made, and outline several areas of further work.

10.1 Summary

In Chapter 5, we proposed adaptive stress testing (AST), a novel framework for stress testing safety-critical

systems. AST poses the problem of finding the most likely failure scenario as a sequential decision-making

problem, and then uses reinforcement learning algorithms to optimize it. For systems where the full

system state is available, AST can be applied with existing reinforcement learning algorithms. For systems

with hidden state, we propose the seed-action simulator abstraction where the pseudorandom seed of the

simulator is used to control the stochastic evolution of the simulator. We present an optimization algorithm

for searching seed-action simulators, called Monte Carlo tree search for seed-action simulators (MCTS-SA),

that is based on Monte Carlo tree search with double progressive widening (MCTS-DPW). The seed-action

abstraction requires very few internal details to be exposed from the components, which makes it very

easy to apply to new problems.

In Chapter 6, we proposed differential adaptive stress testing (DAST), a novel framework for stress

testing relative to a baseline system. The goal of DAST is to find failure scenarios that occur with the

system under test, but not in the baseline system under the same circumstances. DAST runs two parallel
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instances of the simulator, one running the system under test and the other running the baseline system,

and uses AST to drive them to different outcomes. Differential analysis can be useful for comparing two

candidate solutions or regression testing where a newer version is compared to a previous version to see

whether new failures have been introduced.

In Chapter 7, we proposed grammar-based decision tree (GBDT), a novel interpretable machine model

for classification and categorization of multivariate heterogeneous time series data. GBDT generalizes a

decision tree to support Boolean expressions derived from a context-free grammar (CFG). By choosing a

CFG that produces temporal logic expressions, GBDT can model multivariate heterogeneous time series

data. We proposed a learning algorithm for GBDT that uses expression optimization algorithms as a

subroutine and demonstrated that GBDT can not only produce good classification performance, but also

intuitive explanations in analyzing the Australian Sign Language dataset.

In Chapter 8, we applied the algorithms in AdaStress to analyze near mid-air collisions (NMACs) in

the next-generation Airborne Collision Avoidance System (ACAS X). We created a seed-action simulator

modeling aircraft mid-air encounters and searched for the most likely NMAC scenarios using AST. We

found and analyzed various categories of NMAC for single-threat (two-aircraft) and multi-threat (three-

aircraft) encounters. Subsequently, we applied DAST to compare the NMAC behavior of ACAS X relative

to the existing Traffic Alert and Collision Avoidance System (TCAS). With DAST, we considered both (1)

ACAS X relative to TCAS and (2) TCAS relative to ACAS X and discussed the most likely relative NMAC

scenarios for each system. Overall, we found more NMAC scenarios with TCAS as the system under test,

which gives confidence that ACAS X provides a safety benefit over TCAS. We applied GBDT to analyze

a larger dataset of encounters to automatically discover categories of NMACs. For this encounter dataset,

GBDT found and explained six natural categories of NMACs. Lastly, we evaluated the performance of

AST using MCTS-SA on single-threat encounters and compared the performance to direct Monte Carlo

algorithm. We found that MCTS-SA was significantly more effective at finding NMACs than direct Monte

Carlo.

In Chapter 9, we showed how AST can be applied to stress test trajectory planning systems and

we demonstrated the approach on a prototype trajectory planning system in a wire maze environment

from the Autonomy Teaming & TRAjectories for Complex Trusted Operational Reliability (ATTRACTOR)

project. By considering such factors as observation noise, replanning condition, scenario configuration,

planning delay, and vehicle navigation uncertainty, AST discovered a variety of collisions and planning

failures.
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10.2 Contributions

The first part of this thesis provides a broad introduction to testing and validation approaches (Chapter 2),

sequential decision processes and reinforcement learning (Chapter 3), and interpretable and explainable

machine learning (Chapter 4). These background chapters do not advance any new ideas, but they do

provide a valuable review of existing work from different research communities.

The remainder of this thesis makes the following contributions:

• A novel approach to finding failure scenarios using sequential decision-making. We introduce

adaptive stress testing (AST), a framework that formulates finding the most likely failure scenario as

a sequential decision-making problem, which allows reinforcement learning algorithms to be applied

to optimize it (Section 5.2). A key component of this framework is the AST reward function (Eq. 5.1),

which finds failure events and maximizes the path probability. We propose a novel simulation

abstraction based on controlling the pseudorandom seed, called seed-action simulator (Section 5.4.1)

and an optimization algorithm for it, called MCTS-SA (Section 5.4.3), which enables effective stress

testing of simulators with hidden state.

• A novel approach to differential analysis of failure behaviors between two systems. Some applica-

tions are interested in analyzing failure behavior relative to a another system. Chapter 6 introduces

DAST, a stress testing approach that finds the most likely failure scenarios that occur in one system

but not in another baseline system. A key component of this framework is the DAST reward func-

tion (Eq. 6.1), which compares the output of two simulators to find differences in failure behavior

while maximizing the path probability.

• A novel interpretable machine learning approach for multivariate heterogeneous time series data.

Chapter 7 discusses GBDT, a novel interpretable machine learning model for multivariate hetero-

geneous time series data using expressions from a context-free grammar. In a GBDT model, the

splitting criteria in the decision tree nodes can be more complex, which allows a more abstract and

compact representation. The model can be used for classification as well as categorization and gen-

erating explanations (Section 7.2.2). We propose a novel learning algorithm for the GBDT model

based on expression optimization (Section 7.3).

• A characterization of ACAS X NMAC scenarios in support of a Federal Aviation Administra-

tion (FAA) program. Our analyses of ACAS X have contributed to the verification and validation

and safety case for the certification of ACAS X. The RTCA accepted ACAS X as the new stan-

dard for airborne collision avoidance on September 20th, 2018, and the system is expected to be

widely deployed in the near future. We identified NMAC scenarios in single-threat encounters (Sec-
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tion 8.3.2) and multi-threat encounters (Section 8.3.3). We also identified the most likely scenarios

where ACAS X fails but TCAS does not (Section 8.4.1), and vice versa (Section 8.4.2). We also auto-

matically identified the key failure categories in a large encounter dataset and explained their most

relevant properities (Section 8.5).

• A framework for finding failures in trajectory planning systems. Chapter 9 describes a generic

framework for adaptive stress testing of trajectory planning systems (Section 9.3). The successful

adaptation of AST to the trajectory planning setting demonstrates the generality and broad appli-

cability of AST framework. Our characterization of the failure scenarios in the silhouette-informed

tree (SIT) trajectory planning system is important to the ATTRACTOR project and its final demon-

stration taking place in 2020 (Section 9.4).

• An implemented system for testing safety-critical systems and categorizing failure scenarios. We

provide open source implementations of the algorithms described in this thesis for stress testing

and automatic categorization. The software is available as an open source Julia package AdaStress.jl

available at https://github.com/rcnlee/AdaStress.jl.

10.3 Further Work

In this final section of the thesis, we discuss a few promising areas of work that can further advance this

research and the state-of-the-art.

Apply AdaStress to Other Domains. In this thesis, we have used AST to analyze two applications

in aviation. However, the AST framework is very general and in no way limited to the aviation domain.

Indeed, concurrent work has applied AST to analyze autonomous cars at pedestrian crossings [76]. We

believe there are many opportunities for AST to contribute in other application domains as well, including

autonomous cars, ships, spacecraft, interplanetary rovers, and smart infrastructure.

Scalable Algorithms with Formal Guarantees. We have shown that sequential decision-making algo-

rithms can be used to scale the search for failure scenarios in large and complex cyber-physical systems.

While formal verification methods have difficulty scaling to large systems, they can provide formal guar-

antees that simulation testing cannot. A promising research direction would be to integrate ideas from

formal verification and adaptive stress testing to create scalable validation algorithms with formal guar-

antees.

Integrating Stress Testing and Categorization. At present, AST is used to find failure scenarios and

then GBDT is applied to categorize them. A promising research direction would be to close the loop by

using the results of GBDT categorization as feedback to inform and improve the AST search. AST could

https://github.com/rcnlee/AdaStress.jl
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use the information to search more efficiently or to find a more diverse set of NMACs.

Safe Autonomy that is Easy to Validate. AdaStress, like other existing approaches to validation,

assumes that the system to be validated is fixed. However, development and validation are not isolated

activities. How a system is designed greatly impacts how difficult it is to validate. A promising research

direction would be to improve validation through exploration of system designs that are both safer and

easier to validate. A further goal would also add interpretability, so that the systems could also be easily

checked and understood by a human expert.



Appendix A

ACAS X Grammar

b ::= always | eventually | implies | count

always ::= G(~b)

eventually ::= F(~b)

implies ::= G(~b =⇒ ~b)

count ::= (Count(~b) < timestep) | (Count(~b) ≤ timestep) | (Count(~b) > timestep)

count ::= Count(~b) ≥ timestep) | (Count(~b) = timestep)
~b ::= bin_ f eat | and | or | not | eq | lt | lte | abseq | abslt | abslte | sign
~b ::= absdi f f _eq | absdi f f _lt | absdi f f _lte

and ::=~b ∧~b
or ::=~b ∨~b

not ::= ¬~b
eq ::= vrate_eq | chi_angle_eq | psi_angle_eq | sr_eq | psid_eq | v_eq | alt_eq | abs_altdi f f _eq

vrate_eq ::= (vrate_ f eat = vrate_val) | (vrate_ f eat = vrate_ f eat)
chi_angle_eq ::= (chi_angle_ f eat = angle_val) | (chi_angle_ f eat = chi_angle_ f eat)
psi_angle_eq ::= (psi_angle_ f eat = psi_angle_ f eat)

sr_eq ::= (sr_ f eat = sr_val)
psid_eq ::= (psid_ f eat = psid_val) | (psid_ f eat = psid_ f eat)

v_eq ::= (v_ f eat = v_val) | (v_ f eat = v_ f eat)
alt_eq ::= (alt_ f eat = alt_val) | (alt_ f eat = alt_ f eat)

abs_altdi f f _eq ::= (abs_altdi f f _ f eat = abs_altdi f f _val)
abseq ::= vrate_abseq | altdi f f _abseq | chi_angle_abseq | psi_angle_abseq | sr_abseq | psid_abseq
abseq ::= v_abseq | alt_abseq

vrate_abseq ::= (|vrate_ f eat| = |vrate_val|) | (|vrate_ f eat| = |vrate_ f eat|)
altdi f f _abseq ::= (|altdi f f _ f eat| = |altdi f f _val|)
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chi_angle_abseq ::= (|chi_angle_ f eat| = |angle_val|) | (|chi_angle_ f eat| = |chi_angle_ f eat|)
psi_angle_abseq ::= (|psi_angle_ f eat| = |psi_angle_ f eat|)

sr_abseq ::= (|sr_ f eat| = |sr_val|)
psid_abseq ::= (|psid_ f eat| = |psid_val|) | (|psid_ f eat| = |psid_ f eat|)

v_abseq ::= (|v_ f eat, | = |v_val|) | (|v_ f eat| = |v_ f eat|)
alt_abseq ::= (|alt_ f eat| = |alt_val|) | (|alt_ f eat| = |alt_ f eat|)

lt ::= vrate_lt | chi_angle_lt | psi_angle_lt | sr_lt | psid_lt | v_lt | alt_lt | abs_altdi f f _lt
vratelt ::= (vrate_ f eat < vrate_val) | (vrate_ f eat < vrate_ f eat)

chi_angle_lt ::= (chi_angle_ f eat < angle_val) | (chi_angle_ f eat < chi_angle_ f eat)
psi_angle_lt ::= (psi_angle_ f eat < psi_angle_ f eat)

sr_lt ::= (sr_ f eat < sr_val)
psid_lt ::= (psid_ f eat < psid_val) | (psid_ f eat < psid_ f eat)

v_lt ::= (v_ f eat < v_val) | (v_ f eat < v_ f eat)
alt_lt ::= (alt_ f eat < alt_val) | (alt_ f eat < alt_ f eat)

abs_altdi f f _lt ::= (abs_altdi f f _ f eat < abs_altdi f f _val)
abslt ::= vrate_abslt | altdi f f _abslt | chi_angle_abslt | psi_angle_abslt | sr_abslt | psid_abslt
abslt ::= v_abslt | alt_abslt

vrate_abslt ::= (|vrate_ f eat| < vrate_val) | (|vrate_ f eat| < vrate_ f eat)
altdi f f _abslt ::= (|altdi f f _ f eat| < altdi f f _val)

chi_angle_abslt ::= (|chi_angle_ f eat| < angle_val) | (|chi_angle_ f eat| < chi_angle_ f eat)
psi_angle_abslt ::= (|psi_angle_ f eat| < psi_angle_ f eat)

sr_abslt ::= (|sr_ f eat| < sr_val)
psid_abslt ::= (|psid_ f eat| < psid_val) | (|psid_ f eat| < psid_ f eat)

v_abslt ::= (|v_ f eat| < v_val) | (|v_ f eat| < v_ f eat)
alt_abslt ::= (|alt_ f eat| < alt_val) | (|alt_ f eat| < alt_ f eat)

lte ::= vrate_lte | chi_angle_lte | psi_angle_lte | sr_lte | psid_lte | v_lte | alt_lte | abs_altdi f f _lte
vrate_lte ::= (vrate_ f eat ≤ vrate_val) | (vrate_ f eat ≤ vrate_ f eat)

chi_angle_lte ::= (chi_angle_ f eat ≤ angle_val) | (chi_angle_ f eat ≤ chi_angle_ f eat)
psi_angle_lte ::= (psi_angle_ f eat ≤ psi_angle_ f eat)

sr_lte ::= (sr_ f eat ≤ sr_val)
psid_lte ::= (psid_ f eat ≤ psid_val) | (psid_ f eat ≤ psid_ f eat)

v_lte ::= (v_ f eat ≤ v_val) | (v_ f eat ≤ v_ f eat)
alt_lte ::= (alt_ f eat ≤ alt_val) | (alt_ f eat ≤ alt_ f eat)

abs_altdi f f _lte ::= (abs_altdi f f _ f eat ≤ abs_altdi f f _val)
abslte ::= vrate_abslte | altdi f f _abslte | chi_angle_abslte | psi_angle_abslte | sr_abslte | psid_abslte
abslte ::= v_abslte | alt_abslte

vrate_abslte ::= (|vrate_ f eat| ≤ vrate_val) | (|vrate_ f eat| ≤ vrate_ f eat)
altdi f f _abslte ::= (|altdi f f _ f eat| ≤ altdi f f _val)

chi_angle_abslte ::= (|chi_angle_ f eat| ≤ angle_val) | (|chi_angle_ f eat| ≤ chi_angle_ f eat)
psi_angle_abslte ::= (|psi_angle_ f eat| ≤ psi_angle_ f eat)

sr_abslte ::= (|sr_ f eat| ≤ sr_val)
psid_abslte ::= (|psid_ f eat| ≤ psid_val) | (|psid_ f eat| ≤ psid_ f eat)

v_abslte ::= (|v_ f eat| ≤ v_val) | (|v_ f eat| ≤ v_ f eat)
alt_abslte ::= (|alt_ f eat| ≤ alt_val) | (|alt_ f eat| ≤ alt_ f eat)
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sign ::= vrate_sign | chi_angle_sign | psid_sign
vrate_sign ::= (Sign(vrate_ f eat) = Sign(vrate_ f eat))

chi_angle_sign ::= (Sign(chi_angle_ f eat) = Sign(chi_angle_ f eat))
psid_sign ::= (Sign(psid_ f eat) = Sign(psid_ f eat))

absdi f f _eq ::= vrate_absdi f f _eq | psi_angle_absdi f f _eq | psid_absdi f f _eq | v_absdi f f _eq
vrate_absdi f f _eq ::= (|vrate_ f eat− vrate_ f eat| = vrate_val)

psi_angle_absdi f f _eq ::= (|psi_angle_ f eat− psi_angle_ f eat| = angle_val)
psid_absdi f f _eq ::= (|psid_ f eat− psid_ f eat| = psid_val)

v_absdi f f _eq ::= (|v_ f eat− v_ f eat| = v_val)
absdi f f _lt ::= vrate_absdi f f _lt | psi_angle_absdi f f _lt | psid_absdi f f _lt | v_absdi f f _lt

vrate_absdi f f _lt ::= (|vrate_ f eat− vrate_ f eat| < vrate_val)
psi_angle_absdi f f _lt ::= (|psi_angle_ f eat− psi_angle_ f eat| < angle_val)

psid_absdi f f _lt ::= (|psid_ f eat− psid_ f eat| < psid_val)
v_absdi f f _lt ::= (|v_ f eat− v_ f eat| < v_val)

absdi f f _lte ::= vrate_absdi f f _lte | psi_angle_absdi f f _lte | psid_absdi f f _lte | v_absdi f f _lte
vrate_absdi f f _lte ::= (|vrate_ f eat− vrate_ f eat| ≤ vrate_val)

psi_angle_absdi f f _lte ::= (|psi_angle_ f eat− psi_angle_ f eat| ≤ angle_val)
psid_absdi f f _lte ::= (|psid_ f eat− psid_ f eat| ≤ psid_val)

v_absdi f f _lte ::= (|v_ f eat− v_ f eat| ≤ v_val)
bin_ f eat ::= X[bin_ f eat_id]

vrate_ f eat ::= X[vrate_ f eat_id]
altdi f f _ f eat ::= X[altdi f f _ f eat_id]

abs_altdi f f _ f eat ::= X[abs_altdi f f _ f eat_id]
angle_ f eat ::= X[angle_ f eat_id]

psi_angle_ f eat ::= X[psi_angle_ f eat_id]
chi_angle_ f eat ::= X[chi_angle_ f eat_id]

sr_ f eat ::= X[sr_ f eat_id]
psid_ f eat ::= X[psid_ f eat_id]

v_ f eat ::= X[v_ f eat_id]
alt_ f eat ::= X[alt_ f eat_id]

bin_ f eat_id ::= 1 | 23 | 24 | 25 | 30 | 31 | 32 | 38 | 60 | 61
bin_ f eat_id ::= 62 | 67 | 68 | 69 | 75

vrate_ f eat_id ::= 2 | 22 | 34 | 39 | 59 | 71
altdi f f _ f eat_id ::= 3 | 40

abs_altdi f f _ f eat_id ::= 76
angle_ f eat_id ::= psi_angle_ f eat_id | chi_angle_ f eat_id

psi_angle_ f eat_id ::= 4 | 41
chi_angle_ f eat_id ::= 6 | 43

sr_ f eat_id ::= 5 | 42 | 77
timer_ f eat_id ::= 33 | 70

psid_ f eat_id ::= 35 | 72
v_ f eat_id ::= 36 | 73

alt_ f eat_id ::= 37 | 74
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vrate_val ::= −50 | −45 | −40 | −35 | −30 | −25 | −20 | −15 | −10 | −5 | −1 | 0 | 1 | 5 | 10 | 15
vrate_val ::= 20 | 25 | 30 | 35 | 40 | 45 | 50

altdi f f _val ::= −2000 | −1500 | −1000 | −500 | −250 | −200 | −150 | −100 | −50 | −25 | −10
altdi f f _val ::= −5 | 0 | 5 | 10 | 25 | 50 | 100 | 150 | 200 | 250 | 500 | 1000 | 1500 | 2000

abs_altdi f f _val ::= 0 | 1 | 5 | 10 | 25 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 750 | 1000
abs_altdi f f _val ::= 1250 | 1500 | 1750 | 2000

angle_val ::= −180 | −135 | −90 | −45 | 0 | 45 | 90 | 135 | 180
sr_val ::= 30000 | 25000 | 20000 | 15000 | 10000 | 7500 | 6000 | 5000 | 4500 | 4000 | 3500
sr_val ::= 3000 | 2500 | 2000 | 1500 | 1000 | 500 | 250 | 100 | 50 | 25 | 10 | 1 | 0

psid_val ::= −4.5 | −4.0 | −3.5 | −3.0 | −2.5 | −2.0 | −1.5 | −1.0 | −0.5 | 0.0 | 0.5 | 1.0 | 1.5
psid_val ::= 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5

v_val ::= 25 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | 275 | 300 | 325 | 350 | 375
v_val ::= 400 | 425 | 450 | 475 | 500 | 525 | 550

alt_val ::= 500 | 1000 | 2000 | 3000 | 4000 | 5000 | 7500 | 10000 | 15000 | 17500 | 20000 | 25000
alt_val ::= 25000 | 30000 | 35000 | 40000
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ACAS X GBDT

members=1,2,3,4,5 (+9995 more).
label=2, confidence=0.914, loss=10.78

G(|response_h_d_1 - response_h_d_2| ≤ 50 ft/s)
For all time, [the absolute difference between [pilot 1’s commanded vertical rate] and

[pilot 2’s commanded vertical rate] is less than or equal to 50 ft/s]

members=5,6,45,47,79 (+1609 more).
label=2, confidence=0.509, loss=43.11

F((abs_alt_diff ≤ 100 ft))
At some point, [[absolute altitude difference] is less than or equal to 100 ft]

members=5,45,85,89,91 (+921 more).
label=1, confidence=0.66, loss=38.82

(Count((Sign(target_rate_2) = Sign(target_rate_1))) > 23)
[the number of times [the sign of [aircraft 2’s RA target rate]

is equal to the sign of [aircraft 1’s RA target rate]]
is greater than 23]

members=5,45,85,89,102 (+759 more).
label=1, confidence=0.748, loss=34.9

(Sign(target_rate_2) = Sign(response_h_d_1)) =⇒
(|vert_rate_2| < 10 ft/s)

Whenever [the sign of [aircraft 2’s RA target rate] is equal
to the sign of [pilot 1’s commanded vertical rate]],

it is also true that [the absolute value of [aircraft 2’s
vertical rate] is less than 10 ft/s)]

members=155,257,474,
577,656 (+78 more).

label=2, confidence=0.699

members=5,45,85,
89,102 (+676 more).

label=1, confidence=0.802
category=4

false true

members=91,134,149,221,345 (+157 more).
label=2, confidence=0.759, loss=21.82

(Count((response_stay_1 ∨ alarm_2)) ≤ 1)
[the number of times [[pilot 1 is responding to

previous RA] or [RA alarm occurs on
aircraft 2]] is less than or equal to 1]

members=345,533,661,
686,775 (+47 more).

label=1, confidence=0.654
category=3

members=91,134,149,
221,399 (+105 more).

label=2, confidence=0.955

false true

false true

members=6,47,79,129,145 (+678 more).
label=2, confidence=0.739, loss=25.44

(Sign(vert_rate_2) = Sign(vert_rate_1)) =⇒
response_none_1

Whenever [the sign of [aircraft 2’s vertical rate]
is equal to the sign of [aircraft 1’s vertical rate]],

it is also true that [pilot 1 is flying intended trajectory]

members=6,129,145,331,374 (+284 more).
label=1, confidence=0.571, loss=36.49
¬((|response_h_d_1| < 10 ft/s)) =⇒

(|response_h_d_2 - target_rate_2| < 30 ft/s)
Whenever [it is not true that [the absolute value of

[pilot 1’s commanded vertical rate] is less than 10 ft/s)]],
it is also true that [the absolute difference between
[pilot 2’s commanded vertical rate] and [aircraft 2’s

RA target rate] is less than 30 ft/s]

members=6,145,331,
568,584 (+84 more).

label=2, confidence=0.843

members=129,374,384,
386,395 (+200 more).

label=1, confidence=0.751
category=2

false true

members=47,79,162,
171,174 (+379 more).

label=2, confidence=0.974, loss=5.128
F((response_h_d_2 ≤ 1 ft/s))

At some point, [[pilot 2’s commanded
vertical rate] is less than

or equal to 1 ft/s]

members=47,79,162,
171,174 (+342 more).

label=2, confidence=0.979

members=1533,1774
label=1, confidence=1.0

category=1

false true

false true

false true

false
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members=1,2,3,4,5 (+9995 more).
label=2, confidence=0.914, loss=10.78

G(|response_h_d_1 - response_h_d_2| ≤ 50 ft/s)
For all time, [the absolute difference between [pilot 1’s commanded vertical rate] and

[pilot 2’s commanded vertical rate] is less than or equal to 50 ft/s]

members=1,2,3,4,7 (+8381 more).
label=2, confidence=0.992, loss=2.176

F(response_follow_2)
At some point, [pilot 2 is responding to current RA]

members=1,2,3,4,7 (+7741 more).
label=2, confidence=0.998, loss=0.9283

F(crossing_1)
At some point, [crossing RA is issued to aircraft 1]

members=262,1799,2781,3351,3527 (+6 more).
label=2, confidence=0.545, loss=1.2
(Count((alt_diff_1 ≤ 50 ft)) > 21)

[the number of times [[altitude difference
relative to aircraft 1] is less than

or equal to 50 ft] is greater than 21]

members=262,2781,3527,
8588,11162,11313

label=2, confidence=1.0

members=1799,3351,4706,
4756,6029

label=1, confidence=1.0
category=6

false true

members=1,2,3,
4,7 (+7730 more).

label=2, confidence=0.999, loss=0.8486
G(response_none_1)

For all time, [pilot 1 is
flying intended trajectory]

members=1,62,117,
263,301 (+123 more).

label=2, confidence=0.945

members=2,3,4,
7,8 (+7602 more).

label=2, confidence=1.0

false true

false true

members=15,24,46,51,53 (+635 more).
label=2, confidence=0.913, loss=13.14

F((|vert_rate_1 - vert_rate_2| < 1 ft/s))
At some point, [the absolute difference between [aircraft 1’s vertical rate]

and [aircraft 2’s vertical rate] is less than 1 ft/s]

members=15,24,46,53,59 (+507 more).
label=2, confidence=0.984,loss=3.404

G((Sign(target_rate_2) = Sign(vert_rate_1)))
For all time, [the sign of [aircraft 2’s RA target rate]

is equal to the sign of [aircraft 1’s vertical rate]]

members=15,24,46,
53,59 (+495 more).

label=2, confidence=0.994

members=475,2411,3184,
3709,5132 (+7 more).

label=2, confidence=0.583

false true

members=51,124,136,208,255 (+123 more).
label=2, confidence=0.625, loss=36.36

(response_timer_2 = 5) =⇒
(|target_rate_1 - vert_rate_2| < 20 ft/s)

Whenever [[number of seconds remaining
in pilot 2’s response delay] equals 5], it is also

true that [the absolute difference between
[aircraft 1’s RA target rate] and [aircraft 2’s

vertical rate] is less than 20 ft/s]

members=51,124,208,
309,377 (+74 more).

label=2, confidence=0.823

members=136,255,595,
816,1134 (+44 more).

label=1, confidence=0.694
category=5

false true

false true

false true

true
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