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Executive Summary

It is estimated that more than 15% of the building heating, ventila-

tion, and air conditioning (HVAC) problems are due to control software

programming. The estimated annual energy impact of building HVAC

control logic faults in the United States is 12 trillion BTU.

Current industry practice adopts two approaches to deal with HVAC

control logic faults: manual logic verification during commissioning and

fault detection and diagnosis (FDD) during system operation. Both ap-

proaches have limitations that make them ineffective in verifying HVAC

control logic. The manual logic verification process requires subjective

ad-hoc reasoning, which is costly (knowledge and labor intensive) and

error-prone. Existing FDD tools and studies do not provide an approach

to specify possible logic faults that might exist, and they rely heavily on

user input to diagnose faults effectively. This research targets the prob-

lem of HVAC control logic faults by proposing an HVAC control logic

fault identification and diagnosis framework following the software unit

testing paradigm.

This research specifically focuses on air handling unit (AHU) sys-

tems, since control logic faults are more frequently found in them and

they are one of the most important and prevalent types of equipment in

commercial building central HVAC systems. Two specific challenges this

research addresses are: 1) the need for a formalized approach to define

control logic faults customized based on system-specific information, 2)

the need for a computer-aided approach to help diagnose control logic

fault causes in the control logic program effectively.



To address the first challenge, the contributions I made in this re-

search include: 1) developing a formalism of defining applicable AHU

control logic faults based on system-specific information, and 2) devel-

oping an AHU component and control ontology that specifies the in-

formation requirements for defining control logic faults. The generality

of the fault definition formalism (including the ontology) and the preci-

sion/recall of the faults it defined are validated with 27 different AHUs

specified by the American Society of Heating, Refrigerating and Air-

Conditioning Engineers (ASHRAE). The implemented prototype is able

to provide customized control logic fault definition for all 27 AHUs with

an average precision of 94.2% and recall of 83.0%.

To address the second challenge, the contributions I made in this re-

search include: 1) developing a framework of casting AHU control logic

fault diagnosis problem into a software fault localization task, 2) evalu-

ating the performance of spectrum-based and mutation-based fault lo-

calization algorithms for locating AHU control logic fault causes, and 3)

identifying effective mutation operators and conducting sensitivity anal-

ysis to explore setup options for AHU control logic fault localization

computation. The implementation of the developed framework sup-

ported the evaluation of 39 considered spectrum-based and mutation-

based fault localization algorithms on 11 real-world control logic fault

cases I developed from two real-world AHUs. The evaluation showed

that the mutation-based Metallaxis method outperformed all other con-

sidered algorithms for diagnosing AHU control logic faults.

The outcomes of this research are expected to alleviate the significant
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energy waste caused by HVAC control logic faults through motivating

the industrial deployment of the proposed HVAC control logic fault iden-

tification and diagnosis framework for a more effective and systematic

control logic verification process. This thesis also points out multiple fu-

ture research directions, such as HVAC information inference for control

logic specification, and HVAC control logic code analysis.
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Chapter 1

Introduction

1.1 Industry problem
Building heating, ventilation, and air conditioning (HVAC) system control logic

faults are implementation errors of the control logic programs causing violations of

HVAC control objectives and resulting in inefficient system operation and build-

ing service compromises. Ardehali and Smith [4] conducted a review of existing

HVAC control case studies to identify how issues related to controls and building

energy management and control systems (EMCSs) contribute to inefficient energy

consumption. The review identified 384 control-related problems in more than 118

buildings and 67 reported case studies. The reviewed case studies ranged from the

1980s to the 2000s and were mostly conducted in the United States. The review

also showed that HVAC control logic programming problems are responsible for

the largest portion (31.3%) of all identified problems in these case studies. Be-

sides this quantitative evidence, the significance of HVAC control logic faults was

also pointed out by qualitative expert opinions. From the viewpoints of experts (in-

cluding consultants, facilities engineer, utility company technologist), HVAC control

1



Chapter 1. Introduction

programming problems have the largest occurrence rate as well as the largest energy

impact among all control related faults [5]1. It is estimated that the annual energy

impact of building HVAC control software programming faults is 12 trillion BTU

[6]. These facts indicate the prevalence and magnitude, in terms of energy waste, of

HVAC control logic faults.

Current industry practice adopts two approaches to deal with HVAC control

logic faults: (1) manual logic verification [7] during commissioning, and (2) fault

detection and diagnosis (FDD) [8] during system operation. Both approaches have

limitations. First, the manual logic verification process is instructed by general nar-

rative instructions, and in order to apply the instructions to specific systems under

evaluation, commissioners must conduct heuristic interpretation and make subjec-

tive judgments on how to apply them to the verification of specific control logic

programs. Additionally, during manual logic verification, a given control logic pro-

gram, which can be highly complex in terms of variable interactions across different

parts of the program, needs to be manually interpreted (control logic programmers

or control commissioners subjectively read and understand the code from the be-

ginning to the end of the program) to diagnose the causes of faults. This inaccurate

manual interpretation of computer code and non-comprehensive identification of all

operating scenarios [9, 10] cause the manual logic verification to be costly [11] and

error-prone. Secondly, existing FDD tools and studies focus on hardware faults or a

combination of mostly hardware and a small number of control logic faults without

systematic exploration of all possible control logic faults that might exist. For exam-

ple, within the 28 defined HVAC faults in the AHU Performance Assessment Rules
1Other control related problems include hardware related problems, human factor related prob-

lems, and other aspects of software related problems, which are input / output implementation
problems, operation problems and data management problems

2



1.2. Problem abstraction

(APAR) [12, 13], only two faulty control logic behaviors are specified: 1) incorrect

cooling mode, 2) simultaneous modulating of mixing box damper, heating coil valve,

and cooling coil valve. The definition of these two faults is not a systematic control

logic fault definition for AHU systems because, for instance: 1) it is only applicable

to systems having a cooling coil, a mixing box and a heating coil; 2) it does not

include any faults about single control loop behavior, while there are popular control

logic faults with regard to single control loop behavior observed in real-world cases

[4]. All these limitations make the current practice ineffective for verifying HVAC

control logic.

1.2 Problem abstraction
The general objective of this research is to detect and diagnose HVAC control

logic faults in the implementations of logic programs. HVAC control logic is essen-

tially a software program, which acquires inputs and provides outputs to a physical

process, as stated in [14]. This is also known as a hybrid system (i.e. cyber-physical

system (CPS)). The target of resolving HVAC control logic faults is to verify the

correctness (compliance to the operation requirements of HVAC systems) of the

control logic software.

Any software implementation can be inspected manually in a heuristic manner

[15]. In this approach, software products are reviewed using reading techniques

(a series of steps or procedures that guide an inspector in acquiring a deep under-

standing of the software product), such as ad-hoc based reading [16, 17] and checklist

based reading [18, 19], to detect defects [20]. Software systems can also be validated

computationally. There are four principal categories of computational approaches

that are used for validating complex systems in the software and CPS domains.

3



Chapter 1. Introduction

These four categories are: simulation (making experiments on an abstracted model

of the system), testing (making experiments on the actual product), deductive ver-

ification (using of axioms and proof rules to prove the correctness of the system)

and model checking [21, 22] (verifying a finite state machine [23] model with for-

mal specifications (e.g. temporal logic [24] )). All four categories of techniques are

about verifying the systems with specifications that encode the requirements of the

systems under evaluation.

One major advantage of testing methods is that testing works directly on the

software program source code, the actual system, while the other three techniques all

require abstractions of actual systems into models. For example, for model checking,

the system needs to be abstracted to a finite state machine, and for deductive veri-

fication, a mathematical automata model [25] is needed. Abstracting these models

from software source code and using formal methods to verify them requires manual

reasoning of a given software program. Thus, these techniques do not avoid the

human cognition limitations of manual logic verification, and the system to be ver-

ified is an abstracted model rather than the actual software program implemented.

On the other hand, model checking and deductive verification techniques are more

rigorous than testing methods, in the sense that they prove the correctness of the

system models with regards to provided specifications. That said, although testing

can never prove correctness, there are strategies to improve the confidence of testing

results [26]. More importantly, testing involves less manual ad-hoc computation be-

cause, instead of abstracted models, testing directly verifies the actual control logic

code, which is the focus object of this research. Thus, as an initial attempt to bring

computational software verification into the HVAC domain, this research focuses on

resolving HVAC control logic faults with the software testing paradigm.

4



1.3. Motivating case study and underlying engineering problems

According to three authoritative publications [27, 28, 29], the generic software

testing process can be categorized into 4 core activities:

• Generate program input/output data: related activities of generating the test

cases containing the input and output data of the software under test.

• Generate program requirements specification: for most engineering profes-

sions, the term "specification" refers to the assignment of numerical values

or limits to a product’s design goals [30]. Here, it refers to the activity that

generates an agent that decides, for each execution of the test, whether the

software product behaved in compliance with the requirements.

• Execute the test: related activities of the process that take the test cases,

program source code and the specification as the inputs, execute the program

with the test cases, and evaluate the program outputs according to the speci-

fication.

• Evaluate test results: to resolve software faults, this activity analyzes the

outcome of the test execution to diagnose the faults and remove them [27].

My envisioned computational framework of HVAC control logic fault identifica-

tion and diagnosis focuses on these four activities and the process diagram of this

computational framework is shown in Figure 1.1.

1.3 Motivating case study and underlying engineer-

ing problems
A motivating case study is carried out on 7 air handling units (AHUs) (all

with the same component layout, as shown in Figure 1.2) located in one academic

5



Chapter 1. Introduction

Figure 1.1: Process diagram of the HVAC control logic fault identification and diagnosis
framework

building. In the case study, I manually identified and diagnosed control logic faults

by conducting the four activities stated in Figure 1.1.

Figure 1.2: System layout of the 7 case study AHUs

1.3.1 Generate program requirements specification

To identify what control logic faults exist in a specific HVAC system, the first

step involves detailing what possible control logic faults one should check for that

specific system. A review of existing HVAC operation instructions [31, 32, 33, 34, 35,

36, 37, 38] and studies about HVAC control logic faults [4, 12, 13, 39, 40, 41, 42, 43]

showed that no existing instruction or study specifies HVAC control logic faults in

6



1.3. Motivating case study and underlying engineering problems

a systematic manner. Only a few control logic fault definitions were proposed in an

ad-hoc way in existing studies.

Existing HVAC operation instructions have two issues. First, they use narrative

language to describe either how HVAC systems should be operating or what con-

ditions they should avoid, without detailed instructions on checking actual control

loops and control input/output variable values. For example: "For units with econo-

mizer control, confirm that the outdoor air damper returns to the minimum position

at the appropriate temperature (enthalpy) level" [33]. This instruction item does

not specify: a) what variables in the control logic should be checked for the outdoor

air damper position, b) what "the minimum position" of the outdoor air damper

for the specific system is, and c) what "the appropriate temperature (enthalpy)

level" is and how one should check that in the specific system. Second, different

systems with different components and functions would have different applicable

control logic faults, while existing instructions are static narrative documents that

are not tailored to specific system information. For example, ASHRAE handbook –

Applications [31] uses plots to show AHU supply air temperature control sequencing

and implicitly assumes the unit has a modulating preheat coil, a cooling coil and

a mixing box with economizer control. Thus, the instruction is not applicable to

systems without economizer control.

In terms of existing studies about HVAC control logic faults, Ardehali and Smith

[4] summarized the HVAC operation problems caused by programming problems

into 11 types with items like "Improper sequencing" and "Improper control logic".

Dexter and Pakanen [39] provided a list of 8 types of controller software faults with

items like "Improper control action" and "Incorrect flags". The majority of HVAC

fault detection and diagnosis (FDD) studies focus on hardware faults, while several
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existing studies [13, 40, 41, 42, 43] discussed a combination of both hardware and

software faults in the systems [31]. These reviewed studies adopted expert rules

to detect control logic faults, together with other hardware faults. None of them

developed a non-heuristic strategy to specify what possible control logic faults exist

in a given system. As shown in the example discussed in Section 1.1, two control logic

faults were defined in APAR [12, 13]: 1) incorrect cooling mode, 2) simultaneous

modulating of more than one of the three devices: mixing box dampers, heating coil

valve and cooling coil valve. However, this study did not provide a methodology of

defining these faults, and these two faults are only applicable to AHUs with preheat

coil, cooling coil and mixing box.

Having specifications that unequivocally depict the requirements to control be-

havior is essential to the testing of control logic programs. However, from existing

publications, it was not possible to identify a set of control logic program require-

ments specification that can be applied to the case study systems without ad-hoc

interpretations and reasoning. This is the first challenge I propose to address.

To be able to conduct this case study, after reviewing the aforementioned in-

structions and studies, I defined a set of control logic fault types to be applicable

to the case study, as shown in Table 1.1. These control logic faults indicate im-

plemented control logic violating two general objectives I summarized from existing

publications: 1) violating energy efficiency objective for sequencing of different com-

ponents, or 2) causing a component’s capacity to be not fully and correctly utilized

(discussion of objectives is detailed in Chapter 2). The defined faults are instances

of violations of these two general control objectives with regard to the specific infor-

mation of the case study AHU systems. Each type of control logic fault is defined

to have a symptom in terms of unambiguous mathematical expressions of control
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1.3. Motivating case study and underlying engineering problems

logic input/output variable value relationships. A set of 16 faults are defined in an

ad-hoc manner for the use of this case study, by manually and heuristically iterating

over the components and brainstorming the possible faults.

Fault Type classification Fault description

1 Building service - Temp
- Cooling

Supply air temperature continuously higher than supply air temperature set
point, but cooling coil valve command is less than 100%.

2 Building service - Temp
- Cooling

Supply air temperature continuously lower than supply air temperature set
point, but cooling coil valve command is greater than 0%.

3 Building service - Temp
- Heating

Supply air temperature continuously lower than supply air temperature set
point, but preheat coil valve command is less than 100%.

4 Building service - Temp
- Heating

Supply air temperature continuously higher than supply air temperature set
point, but preheat coil valve command is greater than 0%.

5 Building service - sup-
ply air pressure

Supply air static pressure continuously lower than supply air static pressure
set point when supply fan command is less than 100%.

6 Building service - sup-
ply air pressure

Supply air static pressure continuously higher than supply air static pressure
set point when supply fan command is greater than 0%.

7 Building service - Air
quality

Outdoor air damper command is less than minimum out door air damper set
point.

8 Building service - Air
quality

Outdoor air cfm continuously lower than outdoor air cfm set point, but out-
door air damper command is less than 100%.

9 Building service - Air
quality

Return air CO2 level continuously higher than return air CO2 level set point,
but outdoor air damper command is less than 100%.

10 Energy eff. - simultane-
ous heating & cooling

Preheat coil valve command and cooling coil valve command greater than 0%
simultaneously.

11 Energy efficiency -
Economizer

Outdoor air temperature lower than supply air temperature set point and the
outdoor air damper command is less than 100%, but the cooling coil valve
command is greater than 0%.

12 Energy efficiency -
Economizer

Outdoor air temperature lower than supply air temperature set point and
the outdoor air damper command is larger than needed to satisfy indoor air
quality requirement, but the preheat coil valve command is greater than 0%.

13 Energy efficiency - En-
thalpy (Heat) wheel -
Heating

Outdoor air enthalpy (temperature) lower than return air enthalpy (temper-
ature) and the enthalpy (heat) wheel command is less than 100%, but the
preheat coil valve command is greater than 0%.

14 Energy efficiency - En-
thalpy (Heat) wheel -
Heating

Outdoor air enthalpy (temperature) lower than return air enthalpy (temper-
ature) and the enthalpy (heat) wheel command is greater than 0%, but the
cooling coil valve is greater than 0%.

15 Energy efficiency - En-
thalpy (Heat) wheel -
Cooling

Outdoor air enthalpy (temperature) higher than return air enthalpy (temper-
ature) and the enthalpy (heat) wheel command is less than 100%, but the
cooling coil valve command is greater than 0%.

16 Energy efficiency - En-
thalpy (Heat) wheel -
Cooling

Outdoor air enthalpy (temperature) higher than return air enthalpy (temper-
ature) and the enthalpy (heat) wheel command is greater than 0%, but the
preheat coil valve command is greater than 0%.

Table 1.1: Control logic fault definition for the case study AHUs

This heuristic fault definition activity is challenging due to two facts: first, it

requires ad-hoc interpretation of ambiguous operational requirements and, second,
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it also requires subjective identification of how to apply the interpreted requirements

to a specific HVAC system’s information (component layout and attributes of con-

trollers). This challenge causes the subjectively generated fault definition to be more

likely to contain errors and omissions. To overcome this challenge, I envision a for-

malized approach that utilizes a system that mimics the reasoning procedures used

by people to derive control logic fault definition from general control objectives, but

avoids the human cognition barriers. This work is detailed in Chapter 2 and is a

major component of this research.

1.3.2 Generate program input/output data

One essential activity in the testing process is to generate program input/output

data to be used as test cases. The input/output dataset of the control logic program

depicts the control behavior of the HVAC system and contains the symptoms of

control logic faults that exist in the control logic program implementation of the

system.

If the HVAC system under evaluation has a building automation system (BAS)

historical dataset containing control logic input/output variable data points, this

dataset can be used to provide test cases for the test execution.

On the other hand, if the system has not been put in operation, multiple testing

techniques (e.g. structural testing, combinatorial testing and random testing) can

be used for test case generation [26]. For example, dynamic symbolic execution

(DSE) [44], a recently proposed testing technique, analyzes a software source code

to provide a test suite that is able to exercise all possible execution paths of the

program and provide full code path coverage. Majumdar et al. [45] also applied DSE

in generating test case for control applications. Compared with previous simplified

test case generation techniques, such as random testing, with this full path coverage,
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test cases provided by DSE can most likely trigger the symptoms of program defects

by exercising all possible execution paths of a program.

In this case study, I was able to acquire a test case set by leveraging historical

BAS operational dataset and by applying DSE, without any major challenges.

1.3.3 Execute the test

In the test execution activity, I implemented a rule-based system that checks the

test cases with assertions derived from the fault definition described in Section 1.3.1.

The faults are defined as control input/output variable expressions and the test cases

are a set of value instances of these variables. The test execution activity assigns

a tag of faulty / not faulty (i.e. fail/pass) to each test case instance. This activity

identifies the existence of defined faults in the actual implementation of the control

logic programs by examining the test cases with regard to the fault definition.

1.3.4 Evaluate test results

After identifying the existence of specific control logic faults of a system under

test, the next step is to find the causes of the identified faults. This step is referred

to as fault diagnosis [8] or fault isolation [46] within the HVAC FDD domain. It

refers to the evaluation of the existing faults and determining their causes [8]. In the

software engineering domain, this step is referred to as fault localization, meaning

the act of "identifying the locations of faults in a program" [2].

Multiple studies have pointed out the challenges of fault diagnosis in HVAC

systems: despite focusing on hardware faults or a combination of hardware and

software faults, most FDD tools developed to date focus on fault detection and

still rely heavily on user input to diagnose the fault effectively [11]. FDD methods

yielded a number of possible causes for a specific fault, and more work is needed
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to ascertain the cause of the faults [47]. In many cases, it may only be possible to

detect rather than diagnose faults. Few, if any, FDD methods can make a conclusive

diagnosis for the cause of a detected fault [48]. Current data visualization programs

can help users to detect and diagnose faults on AHUs, but a large amount of time

can be spent to ascertaining the causes of the possible issues [11]. In general, when

an HVAC control logic fault is observed from the control output variables, existing

approaches do not provide effective instructions to locate the fault causes inside the

programs.

In this case study, after identifying the existence of control logic faults in the

test execution activity, I proceeded to manually inspect the control logic code with

the help of test cases to find the causes of the identified faults in test bed AHUs.

The values of variable in test cases were used to instruct the understanding of what

statements were executed during the corresponding test executions.

For example, the most prevalent control logic fault identified in one test bed

AHU is "heat wheel heating not maximized before preheat coil heating starts". The

symptoms of this fault are:

• Outdoor air temperature is lower than return air temperature

• Heat wheel command is less than 100%

• Preheat coil valve command is greater than 0%

After iteratively checking BAS data and subjectively interpreting the complex

control logic code (more than 250 lines of graphical program (lines of the graphical

program are designated by the control manufacture’s software) with interacting

control loops and variables), the cause of this fault is located to be an inappropriate

heat wheel heating control loop set point being 50 °F instead of 55 °F (the supply air
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temperature set point). To get HVAC control logic fault causes, manually reading

complex programs is ineffective. For example, for this one fault, several iterations

of ad-hoc complex program interpretations are needed and subjective reasoning of

the fault cause is prone to mistakes.

1.3.5 Lessons learned and underlying engineering problems

Engineering problem 1

In order to verify the correctness of control logic programs by testing, a set of

specifications defining the requirements of the programs in terms of program input

and output variable expressions need to be provided. General guidelines and existing

studies provide "rules of thumb" instructions, such as "For units with economizer

control, confirm that the outdoor air damper returns to the minimum position at

the appropriate temperature (enthalpy) level" [33], and "Improper control logic" [4].

These instructions do not discuss specific symptoms of the faults or requirements

in terms of the program’s input and output variables. Thus, in order to implement

these instructions into specifications compatible to the testing process, people who

evaluate HVAC systems have to subjectively adapt these instructions with their

own interpretations and brainstorm what the applicable types of faults are and how

to apply instructions to the specific system configurations under evaluation in an

ad-hoc manner. This non-systematic process of heuristic specification elicitation

from existing instructions is error-prone and incomprehensive. Thus, there is a need

for a formalized approach to define control logic faults without the involvement

of heuristic reasoning. This formalized approach needs to provide control logic

fault definition in terms of program input/output variable expressions to enable

the software testing based HVAC control logic fault identification and diagnosis

framework shown in Figure 1. For instance, the fault described in the example
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shown in Section 1.3.4 shall be defined as "OA_T < RA_T & EW_VFD < 20 &

pht_vlv > 0" (variable names and specific numerical values in the expressions are

actuators’ control related information of the case study AHU). This definition is

computer processable without heuristics. Defining the fault in this manner makes

it unambiguous and directly adoptable by the fault detection process.

Engineering problem 2

After observing the existence of control logic faults in the test execution, man-

ual diagnosis of the control logic fault causes requires interpretation of complex

control logic programs and reasoning of logic execution information from program

input/output data. For instance, the diagnosis example presented in Section 1.3.4

involves a subjective interpretation and reasoning of more than 250 lines of graphical

control logic program containing interacting control loops and variables, with clues

provided by executed test cases. Manual ad-hoc reasoning of such complex code

is error-prone and time-consuming due to human cognition barriers. For example,

the reasoning of one specific fault in this aforementioned example cost several iter-

ations of reading of the source code with different input/output variable samples to

understand the logic of the program before locating the cause of the fault to be a

conflicted set point. There is a need to have a computer-aided approach that is able

to locate the cause of the identified control logic fault inside the program.

1.4 Research vision and objectives
I envision a modular framework for identifying and diagnosing HVAC control

logic faults based on the four core activities of software testing perspective shown

in Figure 1.1. Figure 1.3 depicts an IDEF0 diagram of the envisioned framework.

This computational framework can be applied by a control logic programmer during
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control implementation, or by an HVAC commissioner for field testing [33] during

(retro-/re-) commissioning.

Figure 1.3: Envisioned HVAC control logic fault identification and diagnosis framework

In Figure 1.3, the research objectives are highlighted with dashed bounding

boxes.

• Research objective 1 (RO1): Propose a formalized approach that is able to

generate control logic fault definition applicable to specific system information.

It has the following three sub-objectives:

– Research objective 1.1 (RO1.1): develop a reasoning mechanism to gen-

erate customized HVAC control logic fault definition based on system

control objectives, such as the energy efficiency objective discussed in

the case study (discussion of these objectives are detalied in Chapter 2).
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– Research objective 1.2 (RO1.2): identify, organize and represent HVAC

component and control information in an extensible manner to support

generation of customized HVAC control logic fault definitions.

– Research objective 1.3 (RO1.3): identify the sources of the information

to be specified in relation to research objective 1.2 from existing building

information model (BIM) schemas.

• Research objective 2 (RO2): identify a fault localization approach that effec-

tively locates the cause of control logic faults inside the control logic program.

Here the effectiveness is measured by the amount of code statements in the

control logic program that is needed to be manually inspected by the program

inspector to reach the actual root cause of the fault. This metric is discussed

in more detail in Chapter 3.

1.5 Overall scope and assumptions
In this section, I list the scope and assumptions of research work in this thesis.

1.5.1 Scope

This research has the following scope:

• While the envisioned approach may be applied to different types of HVAC sys-

tems, this research only focuses on AHU systems. AHUs are the predominant

carriers of control logic faults [4]. They are also one of the most important and

prevalent types of equipment in commercial building central HVAC systems.

Hence by focusing on AHUs, it is expected that the impact of this research

to the industry problem will be more significant compared with focusing on

other types of equipment.

16



1.6. Overall scope and assumptions

• Though this research only considers control objectives, AHU components and

corresponding functionalities observed from existing documentations and from

test bed systems during approach development of RO1, the intention is to

have an extensible approach that is able to encompass new control objectives,

components, and functionalities in the future if needed.

• This research only focuses on control logic faults during normal operation

mode2 of the systems violating general control objectives.

• This research does not focus on how to properly set the service level of AHU

systems, i.e. this research does not intend to address questions such as "What

is the appropriate supply air set point and reset strategy for the AHU?" or

"How to properly decide the scheduling (set back) of the AHU?"

1.5.2 Assumptions

The research work is conducted with the following assumptions:

• The general control objectives for operating AHUs do not change among dif-

ferent AHUs. For example, for the energy efficiency general objective, in an

AHU cooling scenario, economizer cooling is always preferred over cooling coil

based cooling because it is more energy efficient.

• The control logic programs source code is available.

• AHUs are equipped with EMCSs, and BAS data access containing all control

logic input / output variables is available.
2The system is actively providing services to building spaces and occupants in a normal condi-

tion, i.e. not in an abnormal or transitioning status, such as unoccupied or warm-up modes
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1.6 Research questions
This section discusses the two research questions targeting the two research ob-

jectives (in Section 1.4) that will be addressed in this thesis.

1.6.1 Research question 1

• RQ1: What is a formalized process of defining control logic faults in terms of

program input / output variable expressions that is general to be applicable

to AHUs with different configurations?

The first research question aims to develop an approach that formalizes the

heuristic control logic fault definition process conducted in the motivating case study

to generate program requirements specification for AHUs (Section 1.3.1).

Given the magnitude of the control logic fault problem, the faults need to be

identified systematically. The first step towards identifying the control logic faults is

to systematically define the faults that need to be checked. As discussed earlier, pre-

vious studies in this area do not include a non-heuristic strategy to specify what are

the applicable control logic faults for an AHU system. Through research question

1, I intend to address this gap by developing a formalism that contains reasoning

mechanisms for defining control logic faults and a corresponding HVAC component

and control information ontology. This research builds on existing studies of clas-

sification system [49] development methodology and HVAC product modeling (The

selection of these approaches is detailed in Chapter 2). To the best of my knowledge,

this is the first attempt to adopt a formal classification approach for the purpose of

defining HVAC system control logic requirement specifications.

Control logic faults applied to a given AHU system vary since different systems

have different components and control information. Thus, the formalism needs to
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be general enough to be applicable to AHUs with different information, and it needs

to output customized control logic fault definitions accordingly. It is not possible

to consider all possible AHU general control objectives and components once and

for all, especially with the advancement of technologies leading to new hardware

inventions and new strategies of system control. Thus, the proposed approach also

needs to be extensible to include new objectives and components without needing

to modify existing system implementation.

1.6.2 Research question 2

• RQ2: What is a fault localization algorithm that is able to effectively identify

the location of fault causes in the control logic program of AHUs?

In the motivating case study described in Section 1.3.4, in order to locate the

cause of the identified fault of "heat wheel heating not maximized before preheat coil

heating starts", I have to iteratively read the whole control logic program from the

beginning to the end because the control logic of different components interact with

each other through variable calls and value assignments. This research question aims

to identify a fault localization algorithm to help this control logic fault diagnosis

process by identifying the suspicious piece of code that contains the cause of the

identified control logic fault.

The performance of the fault localization algorithm is measured by effective-

ness, which is a metric adopted in the fault localization research domain [2]. Fault

localization techniques provide suggestions of suspicious code statements contain-

ing the actual fault causes. Program inspectors follow the suggestions to manually

check the suspiciousness statements. The effectiveness metric indicates the amount

of code needed to be manually checked in the program until identifying the actual
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fault cause. The lower the effectiveness value is, the less manual efforts are needed

to locate the actual fault cause.

To address this research question, I first review existing fault localization tech-

niques from the software engineering domain, with selected ones being implemented

and evaluated on diagnosing the control logic faults of real world test bed AHU

logic programs. I also identify semantic characteristics of the control logic faults

that impacts fault localization effectiveness. I suggest a set of mutation operators

to support Metallaxis fault localization for AHU control logic fault based on cate-

gorization of actual control logic fault fixes in terms of mutations. Additionally, I

explore multiple aspects of fault localization task design options, based on which the

guidance of fault localization computation settings is proposed for HVAC control

logic fault localization.

1.7 Validation plan
This section discusses the plan of validation the research outcomes from address-

ing the two research questions described in Section 1.6.

1.7.1 Control logic fault definition formalism validation of

generality

A software prototype is developed to implement the fault definition formalism

proposed in Chapter 2. The generality of the prototype is validated because it is

essential for the formalism to be applicable to AHU systems with different configu-

rations.

Generality refers to the formalism’s ability to accommodate different AHUs

(AHU components and functions are already covered by the developed ontology).

The ASHRAE publication "Sequence of Operation for Common HVAC Systems"
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[1] provided examples of 27 different AHUs. The ontology instance inputs to the

developed prototype corresponding to these 27 examples will be manually generated

and used for validating the generality of the developed formalism.

1.7.2 Control logic fault localization algorithms evaluation of

effectiveness

Multiple fault localization algorithms are applied to a selected set of control logic

fault diagnosis cases to evaluate the performance of these algorithms and identify

the winning algorithm for being utilized in AHU control logic fault diagnosis.

I have not identified any real-world AHU control logic program with its configu-

ration information and BAS data that is publicly available to be used as a test bed

in this evaluation. Thus, two distinguishable test bed AHUs from different man-

ufactures, with different configurations and service requirements are developed to

be used to evaluate the effectiveness of the fault localization algorithms considered

in addressing research question 2. As will be shown in Chapter 3, a total of 11

real-world control logic fault cases are developed based on these two test bed AHUs.

With 11 control logic fault cases, my target is not to claim the generalizability of

the acquired fault localization performance with statistical significance. Instead, the

objective is to support the claim of fault localization effectiveness with:

• Demonstration of the diversity of the 11 fault cases, in terms of the differences

of the AHUs they come from, the differences of their fault symptoms, and the

differences of the semantic characteristics of the fault causes.

• Observations of the relationships between the fault cause characteristics and

the fault localization effectiveness, and the reasoning about what fault cause

characteristics lead to good/bad fault localization results.
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1.8 Dissertation organization
This dissertation consists of five chapters including Introduction and Conclu-

sions. Chapter 1 provides an overview of the research problems, the motivating

case study to identify the engineering challenges, the research vision and objectives,

and the research questions addressed in this dissertation. Chapter 5 highlights the

research contributions made from addressing the research questions, practical impli-

cations and future research directions. Chapter 2 and Chapter 3 focus on research

work of addressing each of the two research questions, and are each organized as

a self-contained extended journal paper draft. Chapter 4 contains a detailed and

complete real-world use case of the proposed AHU control logic fault identification

and localization framework, showcasing applications and values of the research work

presented in this dissertation.
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Chapter 2

Formalized Control Logic Fault

Definition of Air Handling Units

with Ontological Reasoning

Control logic programs determine the behavior of Heating, Ventilation, and Air Con-

ditioning (HVAC) systems under different operating conditions. Control logic faults

are inconsistencies in the program implementations with regard to the design intent

and control objectives, and they account for more than 15% of all HVAC system

problems, causing energy waste and occupancy discomfort. The first step towards

systematically detecting and diagnosing control logic faults is to have an unam-

biguous control logic fault definition. Since different HVAC systems have different

component information, control logic faults applicable to different systems vary. In

this chapter, we propose an object-oriented classification approach to systematically

define customized control logic faults in terms of control logic input/output variable

expressions. We specifically focus on the implementation of this approach to air han-
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dling units (AHUs), since they are core devices of most central HVAC systems and

are prone to have control logic faults due to their complex multi-component opera-

tion nature. In developing the formal object-oriented approach, we elaborated four

control goals from the general objectives of energy efficiency and occupancy com-

fort, and developed corresponding reasoning mechanisms to derive fault definitions.

To be used in the reasoning mechanisms, we also developed an HVAC component

and control information ontology by extending existing HVAC information models.

To validate, we implemented the developed approach in a prototype system. The

prototype was tested with 27 common AHUs specified by the American Society of

Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), and the results

show that using the developed approach, it is possible to define a customized set

of control logic faults applicable to each specific AHU with an average precision of

94.2% and average recall of 83.0%. This demonstrates the generality of our proposed

approach in providing customized control logic fault definitions for different types

of AHUs.

2.1 Introduction
HVAC Control logic programs are software programs implemented in direct dig-

ital controllers (DDC) to define the operating behavior of HVAC hardware systems

[38]. The existence of control logic faults compromises the general HVAC system op-

eration objectives of energy efficiency and occupancy comfort, and can even cause

equipment damage. More than 15% of building HVAC system problems are at-

tributable to control logic faults [50, 4], and they are estimated to be responsible for

around 12 trillion BTU of energy wasted each year in the United States alone [6].

Air handling unit (AHU) systems are core devices of most central HVAC systems.
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Since AHUs contain multiple components working together to regulate properties of

air, such as temperature, pressure, and air quality, their complex multi-component

operation makes them prone to have control logic faults. For example, Figure 1.2

shows the layout of an AHU in a university campus building. Just for supply

air temperature control, at least four components are involved: the heat wheel, the

mixing box with three dampers in coordination, the preheat coil and the cooling coil,

because they all can heat/cool the supply air stream. Each of these components is

controlled by a dedicated local controller and has different operating conditions and

efficiencies. For instance, preheat coil and heat wheel can both heat the supply air

stream. While preheat coil can always heat the air, heat wheel can only heat the

supply air when the return air temperature (or enthalpy, depends on the designed

functionality of the heat wheel) is higher than the outdoor air temperature (or

enthalpy), and it does it with a higher efficiency compared with preheat coil. As

another example, the mixing box can change both supply air temperature and the

supply air quality at the same time by controlling its dampers. Trying to fulfill

multiple air property requirements simultaneously with an optimal efficiency makes

the multi-component coordination complex and error-prone.

In current industry practice, control logic programs are manually inspected and

tested together with the installed hardware systems in functional tests during com-

missioning. This process is instructed by narrative guidelines in different forms,

such as standards, handbooks, and checklists. Existing guidelines of this process

[31, 32, 33, 34, 35, 36, 37] provide general instructions of sequencing strategies of

components. For example, in ASHRAE Guideline 11 – Field Testing of HVAC

Controls Components [33], one instruction item about air temperature control se-

quencing is "For units with economizer control, confirm that the outdoor air damper
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returns to the minimum position at the appropriate temperature (enthalpy) level".

Instructions like this are not customized for specific system information and use

ambiguous narrative language such as "appropriate". In contrast, for the example

AHU shown in Figure 1.2, the customization of this instruction could be "if OAT >

RAT, then OAD = 20%", assuming in the control logic: OAT represents outdoor air

temperature, RAT represents return air temperature, OAD represents the outdoor

air damper command, and the minimum opening position for outdoor air damper

is 20%. Since different HVAC systems are unique in terms of their components,

layout, functionality and service requirements, things to inspect within the control

logic programs are different. Using existing guidelines, in order to verify a specific

system under evaluation, commissioners must conduct heuristic interpretation of

the narrative instructions in the guidelines and make subjective judgments on how

to apply them during verification of a specific control logic program. As a result,

this non-systematic control logic fault identification process is highly subjective and

error-prone.

Thus, there is a need for a formalized approach that provides HVAC control logic

fault definition that is customized according to specific system information. This

chapter describes an approach that is developed to address this need.

Having customized fault definition for specific HVAC systems will not only ben-

efit the current practice of HVAC manual verification, but also facilitate HVAC

control logic fault detection and diagnosis (FDD) through computational verifica-

tion techniques [51], such as testing, simulation and formal verification. In order

to utilize these verification techniques, a set of clearly defined quantitative require-

ments for the software to be verified is needed. These verification techniques have

been applied to software artifacts of systems, such as chemical process control [52],
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automotive body assembly line [53], and rotating-turbine machinery [54].

In this research, we aim at developing an formalized approach of deriving con-

trol logic fault definition through ontological reasoning of information about specific

AHU system. An overview of our approach is provided in the next section, after

which the rest of the chapter is organized as follows. In Section 2.3 we provide a

review of four domains relevant to the research work, namely requirement definition

approaches, HVAC control logic specifications, HVAC FDD approaches, and HVAC

information models. Then, the chapter describes the AHU control goals used in con-

trol logic fault definition derivation. Section 2.5 provides detailed discussions about

the techniques selection, design and development of our proposed approach, after

which we discuss the prototype implementation and validation. Then we discuss the

application boundaries of the proposed research. Finally we conclude the chapter

and provide an outlook on future work.

2.2 Approach Overview
Several existing industry guidelines [1, 34] provide example control specifications

for specific HVAC systems. In each of these examples, a major part of the specifica-

tion focuses on detailing control behavior rules during normal operation. These rules

are designed to achieve the high-level objectives of energy-efficiency and occupancy

comfort. In order to specify these rules for a specific HVAC system, certain infor-

mation about this system needs to be considered. Observed from these examples

and sequence of operations from real-world HVAC system test beds, we summarize

the considered system-specific information into three categories, based on which an

HVAC ontology specifying the information requirements of deriving control logic

fault definition will be developed later in this chapter:
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• System component information: this specifies information about a system’s

physical components, such as what components are available and what func-

tions each of the components can perform.

• System control information: this specifies the control loop information of each

component, such as what the output command variables should be and their

saturation ranges (i.e., the output command’s maximum and minimum bound-

ary values).

• System service requirements: this specifies the desired control targets of the

HVAC system, such as what supply air temperature set point should be.

In this research, our target is to formalize the process of deriving unambiguous

HVAC control logic fault definition with system-specific information. To do so, we

focus on developing a formalism that contains an HVAC ontology mentioned above

and an inference engine that encodes and executes the reasoning mechanism of de-

riving customized control logic fault definition based on high-level energy efficiency

and occupancy comfort objectives by reasoning about the system-specific informa-

tion provided by the ontology instances. The control objectives and the formalism

approach will be discussed in detail in later sections.

To eliminate ambiguity, the desired output of our formalism is a set of control

logic fault definition, in which, each derived control logic fault is defined by its

symptoms in terms of control logic input/output variable expressions. For example,

"simultaneous heating and cooling" is a typical control logic fault in AHU systems

[4], meaning that the control logic instructs the preheat coil valve and cooling coil

valve to open at the same time. This fault will be defined as "PHO > 0 & CCO
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>0", assuming "PHO" and "CCO" are the control logic output variables for the

preheat coil and cooling coil valve opening percentages, respectively.

2.3 Background and related work
In the following three subsections, we first justify our decision of adopting on-

tological reasoning as the technical approach in this research by discussing related

work about requirement definition. We then briefly discuss existing literature about

HVAC control logic specifications, after which we discuss existing FDD studies re-

lated control logic fault definition, finally we discuss existing HVAC information

models that the development of our HVAC ontology is based on.

2.3.1 Requirement definition studies

In this subsection, we justify our decision of adopting ontological reasoning as

the technical approach for formalizing the customized control logic fault definition.

From the software requirement engineering perspective, our target of deriving

customized control logic fault definition from high-level control goals is to do goal-

oriented requirement elicitation, i.e. refining goals to acquire sub-goals / detailed

requirements [55]. Goal refinement is the core activity in goal-oriented requirement

engineering (GORE) and various approaches are proposed for this activity [56]. In

popular GORE methods, such as KAOS [57], GBRAM [58], and GRL [59], the

essentials of discovering sub-goals are through heuristic thinking. For example, the

KAOS method focuses mainly on transforming high-level goals into concrete system

requirements [60]. In KAOS, the strategy of identifying sub-goals from their parent

goal is by "asking HOW questions" [61]. These also echo software requirement

elicitation techniques, which typically are directed by strategies of heuristic activities

such as brainstorming, interview, survey, and document analysis [62].
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Although the elicitation of refined sub-goals are through heuristic thinking, there

exists formalized approaches to support goal refinement process. Darimont and

Lamsweerde [61] proposed the use of generic refinement patterns to specify the

completeness of refined goals. This approach is also leveraged in the requirement

refinement of cyber-physical systems (CPS) by Bueres et al. [63]. Bueres et al. [63]

proposed the invariant refinement method, which is a systematic and gradual re-

finement of higher-level invariant by means of its decomposition into a conjunction

or disjunction of lower-level sub-invariants. The authors formally defined that de-

composition of a parent invariant Ip into a conjunction of sub-invariants Is1, ..., Isn

is a refinement if the conjunction of the sub-invariants entails the parent invariant,

i.e., if it holds for the patterns of entailment (Is1 ∧ ... ∧ Isn ⇒ Ip) and consistency

(Is1 ∧ ... ∧ Isn ; false). As will be shown later, the control logic fault definition

derivation approach we proposed in this study can be viewed as the refinement of

high-level control goals into low-level requirements, each specified as a specific po-

tential violation of the high-level goal it is decomposed from, and our design of the

fault definition inference engine embraces the entailment and consistency refinement

patterns discussed above.

In this study, to support algorithmic reasoning of control logic fault definition,

we use ontology to specify the needed context of the HVAC system. Among context

modeling and reasoning techniques, ontology-based models have benefits for the two

reasoning tasks: 1) automatically derive knowledge about the current context, and

2) detect possible inconsistencies in the context source [64]. These two tasks are

essential to the process of control logic fault definition, in the sense that task 1)

is about deriving new knowledge of customized control logic fault definition, and

task 2) is about using the ontology to specify and acquire information needed for
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control logic fault definition with consistency checking in terms of ontology instance

validation check.

There are multiple studies about using domain ontologies in GORE for require-

ment elicitation and specification [65]. Although the prevalent use of ontologies in

these studies is to model requirements with ontologies (e.g. [66]), there are studies

about using ontologies to model system functionality and identify/refine goals and

elicit requirements based on mapping between ontology and requirement document

through morphological analysis [67, 68].

Our intended approach of ontological reasoning follows the same idea of Shibaoka

et al. [68] for utilizing ontology to represent domain knowledge and help the goal

refinement activity. However, there are major approach differences: In [68], the new

requirements are identified through reasoning that is based on mappings between

existing requirements and the domain ontology. For example, if in the ontology,

there is a "require" relationship between class A and class B, and in the requirement

document, it is identified that there is a requirement of "A needs to exist", then

the proposed approach [68] provides suggestions to human requirement analyst to

include requirement of "B needs to exist". In our approach, the inference mechanism

conducts reasoning solely based on the ontology (i.e. no initial list of faults involved)

and the output is not narrative suggestions to the research analyst, but machine-

readable control logic fault definition that can be directly used in control logic fault

detection.

It is worth noting that, in the building domain, there is a recent study [69]

about knowledge-based FDD with integrated ontologies modeling multiple domains

(building, mechanical system, BAS, and FDD rules). This study conducted fault

detection with if-then inference rules documented in the "Fault" ontology to check
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information and data encoded in other ontologies. It also conducted fault diag-

nosis through the chains of if-then inference rules on the ontologies of fault states

(symptoms), hypothesis and evidence. However, instances of the "Fault" ontology

(including information about fault states, hypothesis and evidence), i.e. the consid-

ered faults in the FDD method, are hard-coded without any information about how

they are elicited.

2.3.2 HVAC control logic specifications

As highlighted in Section 2.1, currently, existing knowledge on how to control

and operate AHU systems during normal operation exists in narrative guidelines

of different forms [31, 32, 33, 34, 35, 36, 37]. Due to the large number of possible

component arrangements and control loop setup options, it is practically impossible

to cover all possible AHU configurations in narrative guidelines. For example, the

AHU component layout shown in Figure 1.2 is not covered in any of these reviewed

guidelines, not to mention that even for AHUs with the same components layout,

their control loop setup can be very different due to reasons such as different user

requirements (e.g. different temperature requirements) and actuator specifications

(e.g. actuation signal ranges).

In current practice, while the ASHRAE handbooks contain discussions of general

control objectives of AHU systems, most of the reviewed documents describe exam-

ple instantiations of these general objectives on specific categories of AHU systems

in different formats, such as checklists, plots, and textual descriptions. Under this

situation, applying these instructions to a system configuration that is not covered

directly by the guidelines is highly subjective and unformalized. In this research,

we identify general control goals from existing guidelines and develop a formalized

approach to derive control logic fault definition based on the reasoning of these
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goals with no subjectivity. The research work of general control goal identification

is discussed in detail in Section 2.4.

2.3.3 Control logic faults in HVAC FDD studies

Many systems have been developed for detecting and diagnosing HVAC faults,

e.g. [13, 12, 70, 71, 72, 73, 74]. Each of these existing methods conducts FDD on a

set of defined faults with observations of building automation system (BAS) data.

We did not identify any HVAC FDD study that provides a systematic approach to

specify a set of control logic faults of focus.

From existing HVAC automated FDD studies [46], we identify a handful of stud-

ies containing some control logic faults specified, as shown in Table 2.1. As can be

observed from this table, the majority of these studies only provide high-level control

logic problem descriptions (e.g. consider "control logic fault" as one type of fault)

without quantitative specification of the control logic faults, while the ones pro-

viding quantitative control logic fault specifications only focused on specific HVAC

systems considered in their studies. A systematic method to define control logic

faults applicable to a variety of different systems is lacking.

In this research, we address this limitation by developing a formalized system

to derive control logic fault definition based on specific AHU system information.

The derived control logic fault definition are in terms of control logic input/output

variable expressions, which are in the same form as those specified by existing studies

[13, 12, 40, 75, 76]. Defining control logic faults in this way avoids ambiguity through

mathematical representation, and it is easy for HVAC professionals to grasp and use

for fault detection because the faults are specified with control logic variable (BAS

data point) names of HVAC context.
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Publication System Control logic faults specified in publication

Dexter and Pakanen [48] AHU Improper control action
Incorrect initial values
Improper range selection
Improper run-time
Incorrect flags
Improper step size
Scheduling errors
Errors in the control logic

Choinière [42] AHU logic, tuning, signal, instability

Schein et al. [13, 12] AHU Outdoor air temperature too high for mechanical cooling with
100% outdoor air (Toa > Tco + εt)
Outdoor air temperature too low for mechanical cooling with
minimum outdoor air ( Toa < Tco − εt)
At least two of components (cooling coil valve, heating voil valve,
and mixing box dampers) are modulating simultaneously (ucc >
εcc, uhc > εhc, εd < ud < 1− εd)

Hyvarnen et al. [77] AHU E.g. supply air temperature controller - improper sequencing of
valves and dampers
mixed air controller - control signal (no signal, incorrect signal)

Brambley et al. [73] AHU E.g. Improper value for supply air temperature set point
Error in control code (logic)
Improper value for zone air temperature set point

Wang et al. [75, 40] VAV E.g. Too high minimum air flow rate set point ( Tset − T > εt
and |F − Fset < εf and Fset = Fmin and |Fmin − FD,min| > εf )

Lee et al. [76] AHU E.g. Ucc − Ucc,es > εTs and Tm − Tm,es < εTm

Li [78] AHU Return fan at fixed speed
Cooling coil valve control unstable
cooling coil valve reverse action
mixed air damper unstable
Cooling coil control unstable
Sequence of heating and cooling unstable

West et al. [79] AHU Cooling coil valve control fault
1. mathematical expressions of the control logic faults are listed if they are provided by the publication

2. mathematical symbol notations are omitted due to space limits, and are in cited publications

Table 2.1: HVAC control logic faults specified in existing studies

2.3.4 HVAC information models

Three categories of HVAC system-specific information to support the reasoning

of control logic fault definition are discussed in Section 2.1. In order to derive

control logic faults applicable to specific AHU system, all three categories of HVAC

information need to be collected and provided to the reasoning mechanisms. In
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this section, we first discuss existing HVAC information model standards, then we

discuss studies about conducting reasoning of HVAC information models for different

purposes.

Many building information modeling (BIM) standards have been proposed. Two

recent publications in 2018 [80] and 2010 [81] provided comprehensive reviews of

this topic. Among existing BIM standards, the ones that modeled HVAC systems

semantically at least to the component level are IFC [82] (including its model view

definitions (MVD) e.g. HVACie [83]), gbXML [84], and Computer Models for the

Building Industry in Europe (COMBINE II) HVAC equipment model [85]. As

will be discussed in detail in Section 2.5.2, none of these BIM standards cover

all the information needs for our control logic fault definition reasoning purpose.

Thus, no existing BIM standard can be utilized directly to support the information

requirements of deriving control logic fault definition.

Besides BIM standards, there have been several studies focusing on reasoning

about additional HVAC related information from either existing BIM standards or

newly developed ontologies, as shown in Table 2.2. Among these studies, all of the

extended and newly developed HVAC ontologies aim at supporting the information

requirements associated with the specific objectives of their research, as detailed in

Table 2.2, and none of them contain all the system-specific information needed for

control logic fault definition.

A notable new HVAC information model is the Brick schema proposed by Balaji

et al. [93], for representing metadata (e.g. sensors’ locations and types) in buildings.

This schema specifies this metadata with a concrete ontology for sensors, subsystems

and relationships among them. It utilizes the tagging concept of Haystack [94], the

location concepts of IFC, and a semantic representation to utilize its flexibility and
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Studies Information model utilized Objective
Bazjanac et al. [86] extended the HVAC part of IFC

schema
to facilitate interoperability between soft-
ware used in HVAC system design, oper-
ation and analysis

Yang and Ergan [87] used IFC schema to deduce the functionalities of HVAC
components from topological information
in IFC schema

Liu et al. [88, 89] proposed a functional taxonomy
of AHU components

to formally represent AHU component
functions and to infer component func-
tional relationships

Bulbul and Akin [90] proposed the Embeded Commis-
sioning Model

to standardize the commissioning process

Chen et al. [91] proposed a data schema to represent building control knowledge
Schneider et al. [92] proposed an ontology to semantically model building control

systems
Balaji et al. [93] proposed the Brick schema utiliz-

ing concepts of Haystack and IFC
to represent metadata (e.g. sensors’ loca-
tions and types) in buildings.

Table 2.2: Studies of reasoning about HVAC information from existing BIM or newly
developed information models

extensibility properties [93].

In this research, by combining and extending existing BIM standard and product

models, we develop a new HVAC ontology covering the information requirements

for control logic fault definition. This will be discussed in detail in Section 2.5.2.

Our objective is to 1) generate a unified schema to specify information requirements

for deriving control logic fault definition, and 2) identify information sources for

deriving control logic fault definition by mapping items specified in our ontology to

those specified in existing BIM standards.

2.4 Goals of AHU control
As mentioned in Section 2.1, the desired control logic fault definition for specific

AHUs are customized applications of the general objectives of energy efficiency and

occupancy comfort. In this section, we elaborate these two general objectives into

four goals at two levels of AHU system control so that each goal can be described

with a precondition (if) and a postcondition (then) and can be applied to a specific
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AHU algorithmically (details in Section 2.5.3) to identify all possible instances of a

specific goal’s application in a specific AHU system.

2.4.1 Two levels of HVAC control

fTwo levels of control exist in the control logic of AHU systems: local control

and supervisory control [95]. Local control functions, such as proportional-integral-

derivative (PID) control and ON/OFF switch control, adjust the control variable of

a single device to achieve control process objectives, such as maintaining a set point

[96]. Supervisory control functions are higher-level controls that are responsible for

implementing the sequencing strategies [31] with consideration of device interactions

and energy efficiency among multiple system components [97].

Sometimes in AHU control logic programs, there is another level of supervisory

control, here referred to as optimal control that builds on top of the above mentioned

supervisory control. In some studies, this optimal control is also referred to as

supervisory control [96, 98]. Example functions of optimal control are scheduling

strategies and dynamic set point reset strategies. These strategies are more related

to requirements of building owners and mechanical designers to achieve energy saving

objectives than they are related to physical principles of operating the systems.

Thus, this level of control is out of the scope of this chapter.

We elaborate the general control objectives into goals, so that each goal can

be represented by a sequence of algorithmic steps to solicit its application instance

with regard to a specific AHU system. The general control objective of occupancy

comfort maximization is about using the component’s functionality in the correct

way and at designed capacity. This objective can be elaborated into two goals at the

local control level. The general control objective of energy efficiency maximization is

about sequencing components to achieve best overall usage of multiple components.
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This objective can be elaborated into two goals at the supervisory control level. The

following two subsections describe these goals in detail.

2.4.2 Goals at local control level

The goals of achieving maximum occupancy comfort at local control level indi-

cate that the functionalities of AHU components shall be used in the correct way and

with maximum capacity if needed, to fulfill occupants’ requirements. These goals

are representations of the characteristics of close-loop control theory. In ASHRAE

handbooks, example descriptions of this objective are: "A closed loop or feedback

control measures actual changes in the controlled variable and actuates the con-

trolled device to bring about a change. The corrective action may continue until the

controlled variable is at set point or within a prescribed tolerance." (in ASHRAE

Handbook - Fundamentals [99] Ch 7.1), and "... the longer error e exists, the more

the controller output changes in attempting to eliminate the error..." (in ASHRAE

Handbook - Fundamentals [99] Ch 7.3). As indicated by the formula below (t is

the time variable), for a closed-loop PID controller, the controller output command,

u(t), is computed from the error value, e(t), through a weighted sum of the propor-

tional, integral, and derivative terms. Kp, Ki, and Kd are the weights of these three

terms, respectively.

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)

dt

If the control objective is to have a process variable (e.g. supply air temperature)

track a specific set point value r(t) (e.g. supply air temperature set point), then

e(t) = r(t) − y(t), where y(t) is the measured process variable. If the control

objective is to maintain a process variable above a low limit set point value, then

e(t) = r(t)− y(t), if y(t) ≤ r(t); and e(t) = 0, if y(t) > r(t). Similarly, if the control
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objective is to maintain a process variable below a high limit set point value, then

e(t) = r(t) − y(t), if y(t) ≥ r(t); and e(t) = 0, if y(t) < r(t). This characteristic of

the control objective leads to the specialization of set point types in the development

of the ontology, which will be detailed in Section 2.5.2.

AHU system control mostly uses proportional-integral (PI) controllers [38] be-

cause a proportional (P) only controller is not able to track a set point without error,

and the appearance of a derivative (D) term makes the controller hard to tune while

the main contribution of the derivative term is to have the controller more responsive

in tracing the change of set points, which is not an essential need for AHU control.

The following two goals are depictions of the saturation characteristic of closed-loop

PI controllers:

• Goal 1: If positively actuating a component (increasing the control command)

helps achieve the control objective and the control objective is continuously1

not reached, then the actuation should saturate at its maximum. For exam-

ple, if the supply air temperature is continuously lower than the supply air

temperature set point, the preheat coil valve command should saturate at its

maximum point, i.e. the preheat coil valve should be commanded to fully

open.

• Goal 2: If negatively actuating a component (decreasing the control command)

helps achieve the control objective and the control objective is continuously

not reached, then the actuation should saturate at its minimum. For exam-

ple, if the supply air temperature is continuously higher than the supply air
1"continuously" essentially represents the amount of time for the error term e(t) to accumulate

so the integral term in a PI controller saturates the control signal. This can be implemented as
a fault trigger timer during fault detection activity. It is the commissioner’s discretion to decide
the amount of time that represents "continuous". We use this term multiple times throughout the
description of Goal 1 and 2, with the same meaning.
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temperature set point, the preheat coil valve command should saturate at its

minimum point, i.e. the preheat coil valve should be commanded to close.

2.4.3 Goals at supervisory control level

The goals at supervisory control level are elaborated from the energy efficiency

objective of sequencing multiple components. To achieve maximum energy efficiency,

one should always try to use the most efficient way to achieve service requirements,

and one should avoid simultaneously activating multiple energy-consuming compo-

nents "fighting" with each other. Example descriptions of this efficiency objective

at supervisory control level are: "Supervisory control variables should be chosen to

maximize the coefficient of performance (COP)2 of the system at all times while

meeting the building load requirements." (in ASHRAE Handbook - Application

[31] Ch 42.4). At the supervisory control level, sequencing of multiple components

should comply with the following two goals about multi-component sequencing:

• Goal 3: If actuating each of multiple components helps achieve the control

objective, then the more energy efficient component should be actuated be-

fore using the less energy efficient component, and the less energy efficient

component should only be active when the actuation of more energy efficient

component has been saturated. For example, if the heat wheel can be used for

heating, it should be actuated to the maximum capacity before the actuation

of the preheat coil valve starts.

• Goal 4: If actuating two components have opposite effects on the control

objective, then they should not be active at the same time. For example, the

preheat coil valve command and the cooling coil valve command should not
2COP: "Heating or cooling output divided by electrical power input; may include chilled-

water(CW) pump and tower fan as well as compressor power" [31]
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be positive at the same time. Note that if the actuation has other effects in

addition to the conflicting control objective, then this is not necessarily a fault.

For example, a cooling coil valve command and a reheat coil (a heating coil

that is at the downstream of the cooling coil) valve command being positive

at the same time is not fault, as the cooling coil is also used to dehumidify

the supply air. Cases like this will be solved by the fault definition conflict

resolution mechanism discussed in Section 2.5.4.

In this goals identification work, Goal 1 and 2 are based on the saturation fea-

ture of closed-loop PI/PID controllers, and Goal 3 and 4 are based on efficiency

maximization of multi-component sequencing. Although Goal 1 and 2 are based

on the same control theory, their reasoning steps to derive fault definition are not

identical, so they are split into two goals. Goal 3 and 4 are split into two goals due

to the same reason.

Existing case studies discussing HVAC control issues are reviewed by Ardehali

and Smith [4]. In these reviewed case studies, 14 different control logic faults about

AHU normal operation are specifically mentioned. Among these 14 types of control

logic faults, 12 faults are violations of the above four goals. This justifies the preva-

lence of the identified goals. More importantly, these four prevalent and straight-

forward goals served as the starting point of our formalism development. As will be

discussed in Section 2.6.3, we develop our proposed approach to be extensible, so

new goals can be added without the need of modifying goals already implemented.
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2.5 Fault definition formalism development

2.5.1 Fault definition derivation strategy

In this research, with the focus of control logic faults, we propose an approach

to formalize the process of fault definition. The vision is to develop a formalism

that reasons about a specific AHU component and control information, and derives

a set of applicable control logic faults for this specific AHU. Each control logic fault

describes the symptom of a possible violation of general control goals in terms of

control logic input/output variable expressions. The central of this formalism is a

classification task, which begins with input data stating the problem settings and

identifies classes as solutions [49].

Classification approaches have been used in areas such as human factor analysis

[100] and medical diagnostic problems [101]. As shown in Figure 2.1, we apply

the classification paradigm [49] to the control logic fault definition problem by: 1)

considering the specific AHU system information as the input data; 2) considering

the control logic fault definition as the output solution; and 3) considering the fault

definition reasoning process as an integration of three sequential steps – extracting

only needed information from input data for fault definition reasoning use (data

abstraction), deriving potential fault types (knowledge based mapping) and assemble

final fault definition expressions with conflict resolution (solution refinement).

There are two primary inference methodologies that can be used to implement

classification systems: forward chaining and backward chaining [102]. Forward

chaining is a data-driven search, which uses knowledge to infer the solution from ini-

tial information input and facts. Contrarily, backward chaining is a solution-driven

search that starts from a hypothetic solution and traces back using knowledge to

check whether the initial inputs hold. Thus, forward chaining is appropriate for
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Figure 2.1: Control logic fault definition program under the classification paradigm

problems with the initial inputs given and for which there are a large number of po-

tential solutions, while backward chaining is appropriate for problems with an easily

formulated hypothetic solution and a large knowledge base [103]. For the control

logic fault definition problem we are targeting, the initial information input of AHU

component and control information is available while the output control logic fault

definition set cannot be pre-defined without knowing anything about specific sys-

tem information. Because of this, we design our classification system with forward

chaining reasoning mechanisms.

Domain knowledge to be used in knowledge systems can be categorized into two

types: declarative knowledge and procedural knowledge. Declarative knowledge

refers to descriptions of factual knowledge, while procedural knowledge refers to

descriptions of how to perform certain activities [104, 105].

In our research, the information we use to specify AHU is factual and the control

goal-based reasoning mechanism is procedural. We utilize object-oriented structure
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to represent both factual and procedural knowledge. The abstraction [106] charac-

teristic of object-oriented approach, enables the extensibility of both the ontology

and the reasoning algorithms. Thus, new components and their functions can be

included into the ontology, and new goal considerations can be included into the

reasoning mechanism easily without modifying existing implementations.

To summarize the AHU control logic fault definition formalism development

strategy: we adopt the forward chaining design methodology to develop an approach

using the classification paradigm. The formalism development mainly includes an

object-oriented information ontology that encodes AHU component and control in-

formation, and an object-oriented inference engine that implements the procedural

knowledge of how to reason about control logic fault definition according to AHU

control goals. Although being separately discussed in the following subsections, in

our research work, the information ontology and the inference engine were developed

concurrently due to their high inter dependency.

2.5.2 HVAC component and control configuration ontology

development

As concisely depicted in Section 2.2, three types of AHU-specific input informa-

tion are needed to support the customized control logic fault definition process. We

follow the "form, function and behavior" design theory of product modeling [107] to

develop the HVAC ontology. The ontology is developed by integrating and extend-

ing existing HVAC product models. None of the HVAC product models mentioned

in Section 2.3.4 cover the information requirements of deriving control logic fault

definition. Among these existing product models, we select IFC, gbXML and Brick

as candidates for extension because they are semantic-rich information schemas cov-
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ering HVAC domain semantics at least to the component level of granularity, and

their full schemas are expressively specified and publicly available. This provides a

solid starting point for extension. Moreover, by mapping information items between

our developed ontology to these popular HVAC information models, we specify the

information sources to facilitate our fault definition approach.

The information requirements discussed above can be further grouped into the

following 5 categories. While the reasons of why this information is needed for

deriving control logic fault definition will be clearer when we present the reasoning

algorithms later, at this point we first discuss these information categories and

their coverages in the three candidate schemas below, with some mentioning of why

certain information is needed for the reasoning:

1. AHU component types: while all three schemas specify AHU component type,

IFC does not differentiate component subtypes, such as different types of coils.

The type specialization of AHU components is important because different

components may have different functions to achieve different service require-

ments, and as will be illustrated later, the fault definition reasoning relies

heavily on information about component functions.

2. AHU component controller information: IFC specifies this information with

objects such as "IfcController", "IfcActuator", and "IfcSensor"; Brick uses dif-

ferent types of "Point" objects to specify this information, but does not cover

information such as actuator saturation range and controller type; gbXML also

does not cover this information, except for specifying "controlType". This in-

formation is essential to describe the actuation direction and saturation limits

of control logic output variable, and is utilized in the definition of every control

logic fault in our reasoning.
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3. AHU component functionality: this category contains information items such

as the air regulation functionality of AHU components (e.g. supply air heat-

ing), the component efficiency in terms of COP in achiving the function, and

the condition needed for the component to provide its function (e.g. mixing

box can only provide the function of supply air cooling when the outdoor air

temperature is lower than the return air temperature). None of the schemas

cover this category of information, except for gbXML covers the "efficiency"

property.

4. AHU service requirements (service set points): service requirements of an

AHU are specified in terms of desired air property values of multiple types

(e.g. supply air temperature set point). This information is needed in the

reasoning to identify if there is a need for a certain function. IFC does not

specify this information; gbXML specifies temperature and pressure control

designed value; Brick uses "Setpoint".

5. Associations between components, controllers, and functions: gbXML does not

specify these associations; IFC uses relation objects; Brick specifies different

types of associations.

In general, out of these 5 categories of information, IFC specifies 3; gbXML

specifies 2; and Brick specifies 4. None of the information model can provide all

categories of information listed above. Additionally, even if an information model

specifies a certain category of information, in many cases, it does not specify 100%

of the needed information items under that category for deriving control logic fault

definition. Thus, we develop the information ontology by combining and extending

these three information models to generate a new information model that itself
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would cover all information needed at desired granularity for deriving control logic

fault definition.

The structure of the developed information ontology is demonstrated in Figure

2.2 as a UML class diagram. It contains the classes needed for providing information

to define control logic faults for typical AHUs specified by ASHRAE [1]. It’s ability

to support the reasoning of control logic fault definition will be illustrated in Section

2.6.

For the purposes of 1) identifying the information source of the developed ontol-

ogy from BIM standards, and 2) specifying which parts of the developed ontology is

integrated from which BIM standards, a table explicitly mapping essential informa-

tion elements specified in the developed ontology with existing HVAC information

models is provided in Table 2.3.
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Information Classes, attributes and associations BIM standards involving detailed HVAC modelling
items category in developed ontology Item Type Brick IFC 4 gbXML 6.01

AHU component AHUComponent Class Equipment IfcDistribution-
FlowElement AirLoopEquipment

types information CompTypeEnum Enumeration CoolingCoil, etc. IfcCoil, etc. equipmentTypeEnum

AHU component Function Class / / /
functionality FuncTypeEnum Enumeration / / /
information funcRank Attribute-Integer / / /

energyEfficiency Attribute-Double / / Efficiency (Efficiency.
efficiencyType = "COP")

FunctioningCondition Class / / /

AHU component
controller

ClosedLoopControl Class / IfcController
(Type:Proportional)

Control

information PIDTypeEnum Enumeration / / /
DataPoint Class Point / /
Sensor Class Sensor ifcSensor /
SensorTypeEnum Enumeration Temperature Sensor, etc. ifcSensorTypeEnum /
Command Class Command IfcActuator Control.controlType
SaturationLimit Class / / /

satValue Attribute-Double / IfcController-P_Set:
IfcPropertyBoundedValue/

SaturationTypeEnum Enumeration / IfcController-P_Set:
IfcPropertyBoundedValue/

varName Attribute-String / / /

AHU service re-
quirements

SetPoint Class Setpoint / /

spValue Attribute-String /
IfcController-P_Set:
IfcPropertyBoundedValue
.SetPointValue

TemperatureControl.DesignTemp,
PressureControl.DesignPressure

SetPointTypeEnum Enumeration / / /

Class A Class B Relation

Associations AHUComponent Function has / / /
Function FunctioningCondition has / / /

Function EnergyEfficiency has / / AirLoopEquipment.
Efficiency.operationType

Function Command has / / /
ClosedLoopControl Command association isControlledBy IfcRelConnectsElements /
ClosedLoopControl SetPoint association / P_Set /
ClosedLoopControl Sensor association / IfcRelConnectsElements /
Command SaturationLimit association / IfcRelConnectsElements /

"/" indicates the information is not specified in the BIM standard

Table 2.3: Ontology information items and BIM information source mapping

49



Chapter 2. Formalized Control Logic Fault Definition of Air Handling Units with Ontological
Reasoning

We further explain and clarify several information elements specified in the on-

tology shown in Figure 2.2 below:

• Function class and its attributes: the Function class specifies information

about AHU component functions, such as supply air heating, outdoor air flow

increase, etc. the energyEfficiency attribute of this class specifies the efficiency

level of the belonging AHU component performing this function, in terms of

coefficient of performance (COP), i.e. how many units of energy are consumed

by the component in order to provide 1 unit of energy for the function. The

value of this attribute is used in the reasoning algorithm to compare efficiency

of different components when they can perform the same type of function, for

this purpose, the value of energyEfficiency does not need to be very accurate,

as long as a comparison can be done between multiple components having

the same function type. For example, we typically specify the supply air

cooling function of cooling coil with energyEfficiency value of 1, indicating

that it consumes 1 unit of energy from the energy source (e.g. chilled water)

to provide 1 unit of cooling energy to the supply air. Another example is the

supply air cooling with mixing box, which does not actively consume energy to

provide the cooling (i.e. it uses the cooling energy from the cold outdoor air).

In this case, we assign an energyEfficiency value of 99 or larger to indicate

that it does not actively consume energy when providing the function.

• FunctioningCondition class: Some AHU components can only provide some of

their functions under specific conditions. This class specifies these conditions.

For example, the mixing box with three dampers in coordination can only

provide the supply air cooling function when the outdoor air temperature is

lower than the return air temperature. Note that not all component functions
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have functioning conditions. For example, the VFD supply fan can provide

the function of supply air pressurization under all conditions during normal

operation and thus won’t need a functioning condition to be specified.

• SetPoint class and its attributes: The SetPoint class is used to specify the

service requirements of the AHU. The enumeration attribute spType specifies

the type of service requirements. For example, the requirement for supply

air static pressure is typically a tracking set point, i.e. the supply air static

pressure needs to be maintained around this specific value, neither higher nor

lower is deemed fulfilling the requirement. On the other hand, the requirement

for supply air temperature heating is a temperature set point of lower bound,

i.e. as long as the supply air temperature is at or above the set point, the

heating requirement is satisfied. Note that a heating lowerbound set point

and a cooling upperbound set point can be used together to specify the user

requirement of a deadband. The spValue String attribute of this class specifies

the actual service requirement in terms of a static numeric set point value or

a data point variable name if the design intent is to read dynamic service

requirement set point from this data point.

• ClosedLoopControl class and its attributes: This class does not model the con-

trol logic program in any way. Instead, it is used to semantically link different

elements of a closed-loop control process. The notion of two types of PID

control [38], i.e., direct acting and reverse acting, is adopted as an attribute

to specify the control command’s effects on feedback (process) variable. For

example, a ClosedLoopControl object can be used to organize a closed-loop

supply air static pressure control, it includes the service requirement of supply

air static pressure set point, the feedback variable of supply air static pressure
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sensor, and the control command of supply fan VFD speed. This control is

a reverse acting control, meaning that a decreasing feedback sensor reading

should cause the control command to increase.

2.5.3 Inference engine development

According to the design of our approach that was discussed in Section 2.5.1,

we design the inference engine to be a two-layer object-oriented system, as shown

in Figure 2.3. The first layer contains reasoning algorithms deriving control logic

fault definitions within each of the considered goals, and the second layer contains

algorithms combining control logic fault definitions from multiple goals and resolving

fault definition conflicts. The first layer is discussed in detail in this subsection, and

the second layer will be detailed in the next subsection
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Figure 2.3: Flowchart of fault definition reasoning process

The reasoning mechanisms of deriving control logic fault definition are goal-

specific. For each goal discussed in Section 2.4, we develop a reasoning mechanism

in terms of algorithmic steps that take the AHU information instantiated from the

ontology as the input, and provide definition of control logic faults as the output.

Each defined fault is applicable to the specific AHU system information and indicates

a violation of the corresponding general control goal.

As discussed in Section 2.5.1, the fault definition derivation mechanism is devel-

oped in an object-oriented manner for extensibility purpose. As pieces of procedu-

ral knowledge,the reasoning mechanisms can be implemented as algorithmic steps
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in methods of the class. The implemented forward chaining algorithms of defin-

ing control logic faults violating each of the considered four goals in Section 2.4

are shown as flowchart diagrams in Figure 2.4, 2.5, 2.6, and 2.7, respectively. The

identification and detailed discussion of these four goals can be found in Section 2.4.
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Figure 2.4: Flowchart of reasoning algorithm for defining control logic faults violating
"Goal 1": if positively actuating a component helps achieve the control objective and the
control objective is continuously not reached, then the actuation should saturate at its
maximum.
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Figure 2.5: Flowchart of reasoning algorithm for defining control logic faults violating
"Goal 2": if negatively actuating a component helps achieve the control objective and the
control objective is continuously not reached, then the actuation should saturate at its
minimum.
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Figure 2.6: Flowchart of reasoning algorithm for defining control logic faults violating
"Goal 3": if actuating each of multiple components helps achieve the control objective,
then the more energy efficient component should be utilized before using the less efficient
component. 57
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Figure 2.7: Flowchart of reasoning algorithm for defining control logic faults violating "Goal
4": if actuating two components have opposite effects on the control objective, then they
should not be active at the same time. The static information of counter functions (e.g.
supply air heating and supply air cooling are counter function pairs) can be implemented
as a configuration file of the software so it can be easily updated.
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2.5.4 Control logic fault definition conflict resolution

All control goals discussed in Section 2.4 are about controlling component be-

haviors to achieve certain service requirement targets. Thus, the straightforward ap-

plication of these goals is within the scope of one particular service function target,

such as maintaining supply air temperature set point with supply air temperature

control. A typical AHU has multiple service function targets to achieve simultane-

ously. When combing multiple sets of fault definitions together, conflicts may exist

between two defined faults from different targets when, under certain circumstances,

the control commands of two faults specify the same control variable to different

saturation directions. That is, the negations of these two control expressions have

no intersection.

For example, mixing box (control variable MAO, ranging from 0 to 100, repre-

senting the percentile portion of intaking outdoor air) can be used in two service

functions, supply air temperature control (tracking supply air temperature set point

SATSP) and supply air quality control (outdoor air flow rate low limit OAFSP).

As discussed by ASHRAE handbook [31], the primary function of mixing box is to

supply air quality control, and the secondary function is to supply air temperature

control. When applying Goal 1 in supply air quality control, one of the defined faults

is: (OAF < OAFSP) & (MAO < 100). The interpretation is, when the outdoor air

flow rate (OAF) is lower than the low limit (OAFSP), if the mixing box does not

open to 100% outdoor air, then this is a fault. When applying Goal 2 in supply air

temperature control, one of the defined faults is: (SAT > SATSP) & (RAT < OAT)

& (MAO > 0). The interpretation is, when the supply air temperature (SAT) is

higher than the set point (SATSP), and the return air temperature (RAT) is higher

than the outdoor air temperature (OAT), if the mixing box does not open to 100%
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return air (hotter air), then this is a fault. A conflict exists between these two faults

because, when the AHU is in the scenario of (OAF < OAFSP) & (SAT > SATSP)

& (RAT < OAT), to be fault-free, MAO needs to be 100 (avoiding the first fault)

and 0 (avoiding the second fault), which is impossible.

As described above, our objective is to resolve requirements conflicts of the con-

trol logic software when merging the requirements from different control objectives.

We develop our approach of resolving these conflicts based on existing approaches

of software requirement conflict resolution. The work of fault definition for HVAC

control logic programs to achieve the compliance of general control goals is a case

of requirement definition in goal-driven requirement engineering (GORE) [57, 56],

in which a requirement exists because some underlying goal provides a base for it

[108, 109]. A well-cited study on requirement conflict resolution in GORE is au-

thored by Lamsweerde et al. [110], in which the authors discussed various techniques

for systematically resolving conflicts by introduction of new goals or by transfor-

mations of goals / objects towards conflict free versions. Approaches of resolving

conflicts through goal transformation include avoiding boundary conditions, goal

restoration, conflict anticipation, goal weakening, and alternative goal refinement;

Approaches of resolving conflicts through object transformation include object re-

finement and agent refinement. Detailed definitions of these approaches and their

contexts are discussed in [110].

In the context of HVAC control, the goals elaborated from high-level general

control objectives of maximizing occupancy comfort and energy efficiency should

not be compromised by being replaced with new goals. With this prerequisite, we

propose a conflict resolution approach to prioritize control logic faults in terms of

the priorities of single AHU component’s multiple functions and revise faults of low
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priority function to avoid their conflicts with high priority faults. This approach is

instrumented through the combination of object refinement [110], alternative goal

refinement [110] and pairwise requirement prioritization [111, 112, 113], in the fol-

lowing sense:

• Object refinement: In the HVAC ontology (discussed in Section 2.5.2 and vi-

sualized in Figure 2.2), the Function class of an AHU component is further

specialized with the attribute of funcRank – function rank to distinguish the

function priorities of each component if a component has more than one func-

tions.

• Alternative goal refinement: The original goal is to avoid all possible violations

of considered goals for each of the components under every service function.

This goal is refined to an alternative goal, that is to avoid goal violations of

primary functions first, and then to avoid goal violations of the secondary

function of a component only when the primary function of this component is

fault free. This process will be illustrated with a concrete example below.

• Requirement prioritization: According to the alternative goal discussed above,

the fault definitions are compared pairwise and prioritized according to the

function rank of different functions within one component.

To realize this approach, the only additional information needed from the user is

the specialization of AHU component function ranks. This information is discussed

in the ASHRAE handbook [31] and is provided in sequence of operations of AHU

systems in many cases [1]. With this additional information encoded in the ontol-

ogy, we show the algorithm of this conflict resolution approach in Figure 2.8 as a

flowchart. The implementation of this algorithm can resolve conflicts among control
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logic faults defined with reasoning mechanisms in the first layer of the inference

engine that are discussed in Section 2.5.3.

Figure 2.8: Flowchart of control logic fault definition conflict resolution algorithm

Continuing with the example of two conflicting defined faults, to resolve the

conflict, we first specialize the component functions with function rank property
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funcRank. For mixing box, the supply air quality control function has funcRank=1,

and the supply air temperature control function has funcRank=2. This is deter-

mined according to the functionalities of AHU components described in ASHRAE

handbooks and other guidelines. Then with the refined alternative goal stated ear-

lier, the two conflicting fault definitions are compared and prioritized:

• The fault defined under the primary function of supply air quality control is

prioritized and remained unchanged: (RAC > RACSP) ∧ (MAO < 100).

• The fault defined under the secondary function of supply air temperature con-

trol is specialized by adding one expression, and the resulting fault definition

is: (SAT > SATSP) ∧ (RAT < OAT) ∧ (MAO > 0) ∧ (RAC < RACSP)

After revising the definition of the second fault, the conflict is resolved.

2.6 Prototype implementation and evaluation re-

sults

2.6.1 Prototype implementation

The proposed system discussed in Section 2.5 is implemented into a prototype ap-

plication for validation. The developed HVAC information ontology is implemented

as an XML Schema Definition (XSD) file. Following the methodology of implement-

ing UML structures in XSD discussed in [114, 115], the classes and attributes in the

ontology are implemented as XML elements and XML attributes respectively, and

associations are modeled by implementing id and reference attributes in the XML

schema.
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The inference engine is implemented in the Java programming language. It

processes the AHU information XML as the input and returns a list of defined

control logic faults as the output. 3

2.6.2 Control logic fault definition results

In order to evaluate the performance of the proposed approach, the prototype is

used to generate control logic fault definition for 27 AHUs of which the component

and control information is specified by ASHRAE publication "Sequence of Operation

for Common HVAC Systems" [1]. These 27 AHUs are different in terms of the

following aspects [1]:

• Fan type

• Coil type

• Supply air static pressure control

• Supply air temperature control

• Space pressure control

• Minimum outside air control

• Economizer type

Sequence of operation in normal operation mode, component and sensor ar-

rangements of the 27 AHUs are specified in [1] and are used to instantiate the AHU

information XML files based on the developed ontology. The ontology instances of

these AHUs are provdied in Appendix A. Information such as control input/output
3The schema and prototype will be released as open source code at https://github.com/

leijerry888/ once the review process is over.
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variable names and some actuator saturation ranges is not specified in the publica-

tion but exists for real-world AHUs. In this evaluation, this information is created

based on typical values and naming conventions observed in real-world AHU sys-

tems. For example, we assign the variable name of ahu1pho for the preheat coil

valve of ASHRAE AHU 1, and specify the saturation range of this valve to be from

0 to 100. This information only affects the final representation of the defined control

logic faults, and it does not affect what control logic faults will be defined based on

the reasoning mechanisms. So our self discretion of assigning this information will

not impact the precision and recall of control logic fault definition in our evaluation,

which will be discussed below.

In order to validate the control logic fault definition outcome of the formalism

we proposed in this research, we need to first build the ground truth control logic

fault definition of the validation set AHUs. Following the reasoning ideas discussed

in Section 2.4, we interpreted the sequence of operation sentence by sentence and

manually generated control logic fault definition in terms of control logic variable

input/output expressions. Although the sequence of operation narratives in the

validation set are written in a uniform simple sentence structure (e.g. "The air

handling unit supply fan speed shall modulate to maintain duct static pressure

setpoint."), we recognize the subjectivity in this manual fault definition process,

and the following sequential steps are taken to minimize the subjectivity:

1. Decompose the sequence of operation narratives into a list of simple sentences.

2. Exclude sentences providing general descriptions4, discussing temporal re-

quirements5, or discussing optimal control requirements6. These requirements
4E.g. "The supply fan shall be energized."
5E.g. "When a cooling stage is called to run, it will run for at least 5 minutes."
6E.g. "Supply air temperature setpoint shall be reset based on space temperature according to
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are out of the scope of this research, as discussed earlier.

3. For each of the considered sentence:

• if it is discussing the operation of one component to achieve one setpoint

(E.g. "The air handling units supply fan speed shall modulate to maintain

duct static pressure setpoint of 0.75 inch of water (adjustable)."), then

the reasoning of control goals 1/2 discussed in Section 2.4 are used to

define control logic faults.

• If it is discussing the operation of multiple components in coordination

to achieve one setpoint (E.g. "The heating shall stage and the mixed

air dampers and cooling coil valve shall modulate in sequence to main-

tain space temperature setpoint."), then the reasoning of control goals

1/2/3/4 discussed in Section 2.4 are used to define control logic faults.

• If it is discussing specific conditions that apply to a component when

providing functions, (E.g. "There shall be a mixed air low limit func-

tion to modulate the mixed air dampers closed to prevent the mixed air

temperature from dropping below the mixed air low limit setpoint of 45F

(adjustable).") this condition is directly specified and indicated in related

faults defined if applicable.

• If it is solely discussing a command saturation limit of a certain compo-

nent, (E.g. "The supply fan speed shall not drop below 30% (adjustable)

to assure adequate fan motor cooling."), no dedicated fault will be defined

only about violations of this saturation limit. However, this saturation

limit will be used to specify related faults of the component.

the following reset schedule."
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The control logic fault definitions generated by executing the prototype imple-

mentation of our approach are compared with the ground truth control logic fault

definitions discussed above. The results are summarized in Table 2.4. Precision is

used as the evaluation metric to indicate the percentage of prototype defined faults

that match the gorund truth fault definition. Precision values are threatened by false

positive instances each indicates that a defined fault is actually not a fault applicable

to the corresponding AHU. The false positives are caused by specific requirements

in the sequence of operation (in most cases component-specific requirements) that

invalid certain defined control logic faults under certain conditions. Recall is used

as the evaluation metric to indicate the percentage of the ground truth fault defi-

nition that are correctly specified in the fault definition formalism output. Recall

values are threatened by false negative instances each indicates that a ground truth

fault is not specified or not specified correctly in the fault definition provided by the

formalism. These false negatives are largely caused by sequence of operation items

about control sequencing that are not included in the four reasoning goals discussed

in Section 2.4 and the same reason causing false positives. Overall, the prototype

defines a total of 343 faults for the 27 AHUs in the validation set and achieves an

average precision of 94.2% and an average recall of 83.0%.

In the evaluation, it takes the authors an average of 20 minutes to prepare the

input XML file of each AHU based on the ontology (XSD) with the help of an XML

editor [116]. For a validation prototype, we didn’t implement a graphical user inter-

face. Instead, the XMLs are manually written based on textual templates and the

XSD file. It is expected that a graphical user interface and/or a parser to automat-

ically acquire information from available BIM files will make the preparation of the

AHU information XML file much more efficient in the future. The rest of the process
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AHU
ID

# Faults derived
by formalism

# Faults specified
based on SOO

# False
positive

# False
negative

Precision Recall

1 8 9 1 2 87.5% 77.8%
2 8 10 2 4 75.0% 60.0%
3 8 10 2 4 75.0% 60.0%
4 5 5 0 0 100.0% 100.0%
5 9 11 2 4 77.8% 63.6%
6 8 10 2 4 75.0% 60.0%
7 8 10 2 4 75.0% 60.0%
8 8 10 2 4 75.0% 60.0%
9 14 15 3 4 78.6% 73.3%
10 8 8 0 0 100.0% 100.0%
11 16 17 3 4 81.3% 76.5%
12 14 15 0 1 100.0% 93.3%
13 15 16 0 1 100.0% 93.8%
14 15 19 0 4 100.0% 78.9%
15 16 16 0 0 100.0% 100.0%
16 15 19 0 4 100.0% 78.9%
17 16 16 0 0 100.0% 100.0%
18 14 15 0 1 100.0% 93.3%
19 15 16 0 1 100.0% 93.8%
20 11 12 0 1 100.0% 91.7%
21 13 14 0 1 100.0% 92.9%
22 17 22 1 6 94.1% 72.7%
23 17 20 0 3 100.0% 85.0%
24 17 20 0 3 100.0% 85.0%
25 16 20 0 4 100.0% 80.0%
26 16 17 0 1 100.0% 94.1%
27 16 17 0 1 100.0% 94.1%

Total 343 389 20 66 94.2% 83.0%

Table 2.4: Summary of fault definition results of AHUs specified by ASHRAE [1]

is automated and the ending results are machine-processable control logic program

input/output variable expressions representing the symptoms of defined faults. In

addition to the textual control logic fault definitions, the developed prototype is

able to output the defined control logic faults in terms of Python scripts that can

be utilized directly for control logic fault detection.

2.6.3 Generality, comprehensiveness and extensibility

Generality

68



2.7. Prototype implementation and evaluation results

The generality of the developed system is validated by testing with AHUs of

different configurations, as shown in Table 2.4.

Comprehensiveness

The authors recognize the fact that we cannot implement all possible AHU con-

trol goals, components, and functions in the system design once and for all, especially

with the advancing of technologies leading new hardware inventions and new strate-

gies of system control. In this sense, the proposed system is not intended to cover

control goals, components and functions comprehensively.

However, for goals implemented in the system, and for components and functions

that have been covered in the developed ontology, our proposed system comprehen-

sively defines applicable faults violating considered goals by having the algorithm

iterating over all components and functions in an AHU, with an average precision

of 94.2% and an average recall of 83.0%

Extensibility

In our design of the system, procedural knowledge of how to derive control

logic fault definition from a specific goal (e.g. Figure 2.6) is implemented as a

dedicated method in the inference engine. Extending the system with consideration

of new general goals is realized by adding new methods in the inference engine.

Extending the system with new functions or components is realized by updating the

corresponding Enumeration definition in the ontology. Except for these updates, no

other changes of the existing system are needed.

To show extensibility, we create Table 2.5 listing typical scenarios of extensibility

and corresponding steps of how to extend the system for each scenario in the context

of the prototype implementation.
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No. Scenario Extending steps

1 Extend with a new AHU component type

1. Add the new AHU component type name as a new element in Enumeration
class "CompTypeEnum" in the ontology file (XSD)

2. Confirm that functions of the newly added AHU component type are already
listed in Enumeration class "FuncTypeEnum", if not, continue to scenario 2

2 Extend with a new AHU function type

1. Add the new AHU component function type name as a new element in Enu-
meration class "FuncTypeEnum" in the ontology file (XSD)

2. If the new AHU component function type has a counter function (e.g. supply
air heating as a counter function of supply air cooling), then add the counter
function type as a new element in Enumeration class "FuncTypeEnum" in the
ontology file (XSD) if it is not already in there

3. If the new AHU component function type has a counter function, add this
counter function pair in the counter functions configuration file (CSV)

3 Extend with a new general control goal

1. Design the reasoning algorithm of this general control goal in a way that it
uses information specified by the ontology and outputs a list of control logic
faults each representing a possible violation of this general control goal

2. Implement this reasoning algorithm as a new Java method in the "FaultDefi-
nition" class in the following manner

(a) The input argument of this method is a object of type "XMLReader",
which is a wrapper class we wrote for JDOM

(b) This method add each newly derived control logic fault as a "Fault" class
object to an "ArrayList<Fault>" object of the "FaultDefinition" class,
the "Fault" class is described below

(c) The "Fault" Class mainly contains an ArrayList of "FaultExpression"
and a double variable recording the "funcRank" value of the fault related
function (value from the ontology instance)

(d) The "FaultExpression" class mainly contains String type variables of the
operator and two operands of a logical expression (e.g. "OAD" "<"
"100"), and an expression type enumeration object with potential values
of "FUNCTION", "ENVIRONMENT", "CONTROL", "EMPTY"

3. Add a method call to the newly added method with the argument of ontology
instance "XMLReader" object in the Main class adjacent to the method calls
of already considered reasoning algorithm methods

Note: only key prototype implementation details related to the extension are mentioned in the table.
Complete details of the prototype implementation can be found in the prototype source code.

Table 2.5: Extensibility scenarios of the prototype
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2.7 Discussion of application boundaries
The way we designed our approach puts certain boundaries for the AHU systems

and their control software that, if going over the boundaries, the proposed formalism

would not apply without modifications. With the appearances of more advanced

control methods for HVAC systems, such as model predictive control [117, 118, 119,

120], fuzzy logic control [121, 122, 123, 124], and neural network control [125, 126,

127], it is likely that in the future, new HVAC systems will be controlled in different

ways than the traditional DDC control. Thus, we are motivated to discuss the

application boundaries of our approach as follows:

• Deterministic service requirements and component functional information: the

control logic faults are defined based on the information provided by the on-

tology instance, i.e., if the AHU information specified in the ontology changes,

the control logic fault definition may change accordingly. Thus, if this infor-

mation is nondeterministic, then a static control logic fault definition derived

based on the service requirements and component functional information of

the AHU at some specific time point is likely to be inaccurate.

• Representation of service and control information: in the developed formal-

ism, the service requirements of the AHU are specified in terms of set points

(static numeric values or data point variable names) of different air regulation

functions (e.g. supply air heating). In order for the formalism to be applicable

to an AHU, the service requirements of this AHU need to be specified in this

manner. The formalism is also designed based on the idea that the actuator of

an AHU component is associated with one control command with its actuation

range represented by two saturation limits (max and min).
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• The reasoning of control logic fault definition is based on general control goals

for operating AHUs. This requires that these goals do not change. For ex-

ample, for the purpose of maximizing energy efficiency, in an AHU cooling

scenario, economizer cooling, if functional, is always preferred over cooling

coil based cooling because it is more energy efficient. Thus, if a more ad-

vanced control method dictates a dynamic compliance with general control

goals, e.g. energy efficiency goal shall be compromised during some specific

scenario, then this will cause the control logic fault definition provided by the

proposed research ineffective.

• Single AHU scope: our formalism is designed with the scope of a single AHU.

That is, we view a single AHU as the subject of application and view it as a

multi-input multi-output (MIMO) system following general control goals with

high-level service requirements specified. In current practice, we observe the

existence of AHUs controlled in coordination with other systems at optimal

control level. Our formalism can still apply to these scenarios as optimal

control is one level above the focus of this formalism, i.e. supervisory and

local control. In the future, if the coordinated control of multiple systems are

introduced into supervisory control level, and the service requirements cannot

be specified within the scope of one AHU, then our proposed formalism will

not be able to apply to these scenarios.

To clarify, the applicability of the proposed approach does not require the control

logic being written explicitly as white-box program code. For example, the control

logic can be implemented as a neural network model and the control logic fault

definition formalism would still be applicable as long as the neural network model

based control logic falls within the boundaries discussed above.
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2.8 Conclusions and future work
This chapter highlights the need of systematically defining customized HVAC

control logic faults. To address this challenge, we developed an object-oriented

classification formalism that contains an HVAC component and control information

ontology and a two-layer inference engine. The formalism takes factual informa-

tion about one AHU system as the input and provides a set of control logic fault

definition applicable to that AHU, specified in terms of control logic input/output

variable expressions that can be directly used for control logic fault detection. Four

general control goals of AHUs are identified and implemented in the system as the

starting point. Our formalism is able to derive control logic fault definition indi-

cating potential violations of these control goals applicable to specific AHU systems

with an average precision of 94.2% and an average recall of 83.0 % when testing on

27 different AHUs specified by ASHRAE [1].

Future work of this research we recognized includes: 1) Studying inference of

component functionality and control information through techniques such as topo-

logical reasoning to alleviate the need of user’s efforts to specify information required

in the ontology; 2) studying the potential of defining control logic faults for more

operation modes besides normal operation mode, through the consideration of new

goals and functionalities; 3) investigating the applicability of the developed system

to other HVAC equipment, such as boilers and chillers.

Postamble
In this chapter, I present the research work addressing the first research question

discussed in Chapter 1, structured as a self-contained journal paper draft.

This research targeted the need of a formalism to derive unambiguous control
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logic fault definition that is applicable, i.e. with customized contents, for specific

AHU systems. In current practice, in order to decide what potential control logic

faults should be checked in a specific AHU, people who evaluate the AHU have

to subjectively adapt "rules of thumb" instructions from existing HVAC control

guidelines with their own interpretations and brainstorm what the applicable types

of faults are for the specific AHU in an ad-hoc manner. With the formalism I

developed in this research, instead of ad-hoc brainstorming, the user only needs to

provide factual information about the component availability, control information,

and service requirements of the AHU in a standard format specified by the developed

ontology. With this information, the proposed fault definition formalism is able to

derive a set of control logic faults in terms of control logic input/output variable

expressions that is unambiguous and can be applied for fault detection directly.

I validate the generality of the proposed formalism, i.e. the ability to accommo-

date different AHUs, by testing the developed prototype against 27 AHUs specified

by ASHRAE [1]. The results show that the prototype derived customized control

logic fault definitions for these 27 AHUs with an average precision of 94.2% and an

average recall of 83.0 %.

The contributions of this research is summarized into the following two points:

• A Formalism of defining applicable AHU control logic faults based on system-

specific information.

• An AHU component and control ontology that specifies the information re-

quirements for defining control logic faults.

The potential industrial deployment of the formalism developed in this research

is expected to greatly facilitate the deployment of automatic FDD for AHUs by
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addressing the need of a formalized approach to systematically define control logic

faults.
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Chapter 3

AHU Control Logic Fault Diagnosis

with Software Fault Localization

Algorithms

Software faults in the control logic programs for heating, ventilation, and air con-

ditioning (HVAC) systems are prevalent and cause significant energy waste and

building occupancy comfort compromises. This chapter presents a framework that

incorporates software engineering fault localization techniques to diagnose control

logic fault causes. Performance of 39 existing spectrum-based and mutation-based

fault localization algorithms are evaluated using 11 real-world control logic fault

cases from 2 air handling unit (AHU) test beds. The results show that the mutation-

based Metallaxis fault localization technique outperforms all other fault localization

techniques in diagnosing control logic faults. We characterize the fault cases in the

test beds in terms of causes of control logic faults and software code to fix the faults,

to show the diversity of the fault cases in the test beds and to study the relation-
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ships between control logic fault characteristics and fault localization performance

of Metallaxis. We categorize control logic fault fixes in terms of mutation operations

and make suggestions of mutation operators to consider for diagnosing control logic

faults. Additionally, we conduct sensitivity analysis of multiple aspects of fault lo-

calization scenario setup options, including test suite size, test case selection down

sampling methods and failed test case rate in test suite. The results show that

Metallaxis computation provides peak fault localization performance with efficient

computation time when it: 1) utilizes a test suite of size 100, down sampled via

clustering algorithms and 2) adopts failed test cases ratio ranging from 60% to 90%

in the test suite.

3.1 Introduction
Building heating, ventilation, and air conditioning (HVAC) system control logic

programs are software programs implemented in direct digital controllers (DDC)

to define the operating behavior of HVAC hardware systems. Control logic faults

are implementation errors of the control logic program, causing inefficient system

operation (e.g., simultaneous heating and cooling in air handling units (AHUs)1)

and compromises in building service (e.g., insufficient heating when heating needs

accumulates in AHUs). More than 15% of building HVAC system problems are

attributable to control logic faults [4, 50], and they are estimated to be responsible

for around 12 trillion BTU of energy wasted each year in the United States alone

[6].

Multiple review studies (e.g. [11, 128]) have reiterated that existing computa-

tional HVAC fault detection and diagnosis (FDD) approaches are not effective in

diagnosing HVAC control logic faults. First, existing FDD studies mostly focus
1We specifically mean preheat coil heating and cooling coil cooling in this example.

77



Chapter 3. AHU Control Logic Fault Diagnosis with Software Fault Localization Algorithms

on hardware faults or a combination of hardware and a handful of software faults.

Second, most FDD tools developed to date focus on fault detection and they rely

heavily on user input to diagnose the fault effectively [11]. Third, FDD methods

yield a number of possible causes for a specific fault, and more work is needed to

ascertain the cause of the faults [128].

Assuming access to control logic input and output data through building automa-

tion system (BAS), when an HVAC control logic fault exists, its symptoms can be

observed from BAS data readings related to control logic input and output variables.

In general, existing HVAC FDD approaches do not provide effective computational

support to locate the fault causes inside control logic programs and locating the

cause of the fault requires manual diagnosis [11]. The operation logic of multiple

components within an HVAC system is highly interactive in the sense that different

blocks of the logic are interdependent, and the control logic is executed iteratively

with stateful variables (variable values from the previous execution of the control

logic are needed in the current execution). Manual diagnosis of possible causes of

control logic faults requires interpretation of such control logic programs and rea-

soning of logic execution information from input/output data, which is error-prone

and time-consuming due to the human cognition barriers.

Computational software fault localization techniques, such as spectrum-based

fault localization techniques [2], and more recently, mutation-based fault localization

techniques [129, 130], have shown their value in studies from software engineering

domain. In this chapter, we investigate the feasibility and effectiveness of utilizing

these software fault localization techniques to help diagnose control logic faults in

HVAC systems. We specifically focused on AHU systems, since control logic faults

are more frequently found in them [131] and they are one of the most important
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and prevalent types of equipment in commercial building central HVAC systems.

In order to computationally diagnose control logic faults with software fault lo-

calization techniques, a quantitative specification of the control logic fault definition

is required. In this study, we utilize the system-specific control logic fault defini-

tion generated by Chapter 2, which specifies control logic fault definition about

violations of general control objectives (e.g. energy efficiency maximization) dur-

ing system normal operation mode in terms of control logic program input/output

variable expressions.

Multiple studies (e.g. [2, 3, 129, 130]) have evaluated the effectiveness of these

software fault localization techniques. However, the software programs used in these

studies for fault localization evaluation are either small programs with very simple

control flow2 and data dependency3, or software applications of large size (tens to

hundreds of thousands of lines of code (LOC)). Control logic programs of AHU

systems have their unique features when comparing with either of these programs:

1) AHU control logic programs are relatively small in size (hundreds of LOC) and

have relatively many (dozens of) input and output variables; 2) The whole AHU

control logic program is executed repeatedly (like under a loop statement) with

stateful variable values and stateful functions; 3) All AHU control logic faults are

specified as multiple expressions of input/output variables inequality expressions

satisfied at the same time [13, 12]. Since the control logic of real-world AHUs are

too complicated to be used as an illustrative example, here we provide an example

with a fictional AHU to illustrate the aforementioned features: assuming an AHU

is serving supply air of required temperature range with two components, a preheat
2Control flow is the order in which individual statements of a program are executed.
3Data dependency is a situation in which a program statement refers to the data of a preceding

statement.
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coil and a cooling coil, the pseudo control logic of this AHU is shown below4. A

control logic fault for this AHU is defined as "(cooling coil command > 0) and

(preheat coil command > 0)" to indicate the inefficient operation of simultaneous

heating and cooling.

1 while AHU is in normal operation mode, repeat the following:

2 cooling coil command = feedback control (cooling loop set point,

supply air temperature sensor, cooling control direction, cooling

output range, cooling previous error, cooling loop PID gains)

3 preheat coil command = feedback control (preheat loop set point,

supply air temperature sensor, heating control direction, preheat

output range, preheat previous error, cooling loop PID gains)

4 sleep for 5 minutes

Each of the aforementioned three unique features of AHU control logic programs

may have an impact on the performance of fault localization computation. The

combination of these features makes the control logic programs different from typi-

cal software engineering applications. Thus, a dedicated performance evaluation is

needed to study the application of software fault localization techniques on AHU

control logic program fault diagnosis.

In general, this chapter aims at making the following contributions:

• Develop a framework of casting AHU control logic fault diagnosis problem into

a software fault localization task

• Evaluate performance of spectrum-based and mutation-based fault localization
4the control logic shown in the pseudo code and the component constitutes it implies is in-

tentionally oversimplified for a clear illustration. Control logic programs of real-world AHUs is
significantly more complex
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algorithms for the purpose of locating AHU control logic fault causes and

study the relationships between characteristics of control logic faults and fault

localization performance.

• Evaluate the mutation operators’ impact on fault localization and make mu-

tation operators suggestions based on analysis of actual fault fixes patterns.

• Conduct sensitivity analysis of multiple aspects of setup options of AHU con-

trol logic fault localization computation and provide guidelines for improving

HVAC control logic fault diagnosis performance using fault localization.

The remainder of the chapter is organized as follows. Section 3.2 provides brief

introduction of existing HVAC fault diagnosis approaches and software fault lo-

calization. Section 3.3 describes in detail the fault localization algorithms and the

corresponding evaluation metrics we considered in this chapter. Section 3.4 presents

the framework we formulated to adopt software fault localization for control logic

fault diagnosis. After discussing the test beds and fault cases we developed for this

study in Section 3.5, we present our research work on fault localization evaluation,

mutation operators suggestion, and setup exploration in Section 3.6, Section 3.7, and

Section 3.8 respectively. Finally, we conclude the chapter with discussions about the

implications of our findings, limitations and future work in Section 3.9.

3.2 Research background

3.2.1 HVAC fault diagnosis approaches

A recent review of HVAC FDD studies [46] summarizes 89 HVAC automated

FDD methods. Within the 89 FDD studies, 34 studies involving systematic fault
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diagnosis approaches5 are listed in Table 3.1. The targeted systems and focusing

faults of these studies are provided [46] and also listed in the table.

As shown in Table 3.1, among the 34 existing HVAC FDD studies that per-

formed systematic fault diagnosis tasks to find out the causes of the detected faults,

the majority adopted expert rules that mirror human reasoning processes, while

the others used statistical and machine learning methods (solely or together with

expert rules) to analyze BAS data to infer the possible causes of the faults. These

identified HVAC fault diagnosis studies mostly focused on hardware faults, such as

sensor failures and stuck valves, while only a few studies considered software related

faults at a high-level (i.e. consider "control logic fault" as one type of fault). We

have not identified any HVAC fault diagnosis research that focuses on a general

and formalized approach of locating control logic fault causes. This chapter aims

at filling this gap by adopting software fault localization techniques in the HVAC

FDD domain and evaluating their performance of diagnosing the fault causes inside

control logic programs.

3.2.2 Software fault localization

In the software engineering domain, software testing is the process of making

experiments on the software to evaluate its properties. When testing a piece of

software program, the program under test is executed with a set of test case inputs,

and the results of these executions, i.e. behavior of the program under test case

conditions, are checked by test assertions [158] that implement the requirements

of this program. If a test case input/output pair satisfies an assertion rule, then

regarding this rule, it is a passed test case. Otherwise, it is a failed test case.
5The authors consider a fault diagnosis approach being systematic if the approach is repeatable

by following the documented process, and the fault diagnosis results are reproducible and not
experience dependent
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Publication System Fault diagnosis method

Castro and Vaezi-Nejad [43] AHU Functional testing
Wang et al. [132] AHU Expert rules
Yang et al. [70] AHU Expert rules
Fernandez et al. [72] AHU Expert rules
Fernandez et al. [133] AHU Expert rules
Brambley et al. [134] AHU Expert rules
Wang et al. [75] VAV Expert rules
Wang et al. [40] VAV Expert rules
Li et al. [135] AHU Expert rules
Lee et al. [76] AHU Expert rules
Wang and Jiang [136] AHU Expert rules
Wang and Xiao [137] AHU SPE (Squared Prediction Mean)
Wang and Xiao [138] AHU SPE, Expert rules
Qin and Wang [139] AHU T-statistics, SPE
Wang and Qin [140] AHU T-statistics, SPE, VRE (Variance Recon-

struction Error)
Hou et al. [141] AHU Expert rules
Jin and Du [142] AHU SPE, JAA (Joint Angle Analysis)
Xiao et al. [143] AHU SPE contribution plot, expert rules
Du et al. [144] AHU SPE plots, JAA
Du et al. [145] AHU FDA (Fisher Discriminant Analysis)
Du and Jin [146] AHU SPE plots, JAA
Du and Jin [147] AHU SPE plots, JAA
Du and Jin [148] AHU FDA
Du et al. [149] AHU Wavelet analysis
Du et al. [150] VAV SPE plots, JAA
Li [78] VAV Wavelet analysis, pattern matching
Xiao et al. [151] VAV Expert-based multivariate decoupling
Fan et al. [152] AHU Wavelet analysis, ENN (Elmann Neural

Network), FCM (Fuzzy C-Mean) clustering
Chen and Lan [153] AHU SPE, SVI (sensor validity index)
West and Guo [79] AHU Expert rules
Yang et al. [154] AHU Statistical residual
Yang et al. [155] AHU Statistical residual
Li and Wen [156] AHU Wavelet analysis
Li and Wen [157] AHU Pattern matching

Table 3.1: HVAC FDD studies with fault diagnosis methods

Among various software testing techniques, computational fault localization tech-

niques provide suggestions of suspicious code that are responsible for causing a soft-
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ware fault observed from test cases execution results. The domain of software fault

localization is best depicted by three recent survey papers [2, 159, 160]. Among these

three survey papers, Wong et al. [2] provided the most comprehensive overview of

different categories of fault localization techniques, in which software fault localiza-

tion techniques were grouped into eight categories, as listed in Table 3.2. Among

these 8 categories, spectrum-based fault localization techniques are selected over

other techniques for evaluation in HVAC control logic fault diagnosis because:

1. Spectrum-based techniques are the most prevalent type of method used nowa-

days in the software engineering domain, account for 35% of the reviewed

publications [2], and it is well-known due to its efficiency (easy to compute)

and effectiveness [161] 6.

2. Spectrum-based techniques do not require ad-hoc modeling of the software

under test into another form other than its source code. In other words,

control logic program code is the only artifact of the software needed to apply

spectrum-based techniques.
6The definition of effectiveness is discussed in detail in Section 3.3
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Fault localization technique cat-

egory

Description

Slice-based techniques Program slicing abstracts a program into a reduced form by

deleting irrelevant parts

Program spectrum-based techniques A program spectrum details the execution information of a pro-

gram and can be used to track program behavior

Statistics-based techniques Isolating bugs in programs with instrumented predicates at par-

ticular points and rank the suspiciousness predicates

Program state-based techniques A program state consists of variables and their values at a par-

ticular point during program execution, which can be a good

indicator for locating faults

Machine learning-based techniques In the context of fault localization, the program can be identi-

fied as trying to learn or deduce the location of a fault

Data mining-based techniques The software fault localization problem is abstracted to a data

mining problem – identify the pattern of statement execution

Model-based techniques Assuming a correct model of each program being diagnosed is

available and using the differences between the observed pro-

gram model

Other techniques Techniques do not below to above categories, many of which

focus on specific programming languages or testing scenarios

Table 3.2: Software fault localization techniques categorization by Wong et al. [2]

Mutation-based fault localization techniques [129, 130] are a new type of software

fault localization techniques that has gained traction very recently, and are not

contained in the survey papers [2, 159, 160]. While spectrum-based techniques try

to use the connections between test execution results (passed or failed) and the

binary test execution profile (whether a statement is executed by a test case) to

find the suspicious statements, mutation-based techniques try to gain more insights

about the software through executing test cases on different versions of the software
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(mutants, generated by modifying the original program), instead of executing test

cases only on the original software, which is the case for spectrum-based techniques.

Thus, although mutation-based techniques are computationally expensive due to the

needs of executing test suites under plenty of mutant programs, they are expected

to provide better fault localization results than spectrum-based fault localization

techniques [129, 130].

In this chapter, existing spectrum-based and mutation-based techniques are uti-

lized and their ability to localize HVAC control logic faults are evaluated. These

fault localization techniques, their outputs and evaluation metrics are discussed in

detail in Section 3.3.

3.3 Fault localization methods
This section provides a detailed discussion about software fault localization tech-

niques utilized in this chapter. The first two subsections provide the algorithms and

explanations of the two types of fault localization techniques of our focus respec-

tively. The third subsection focuses on the discussion of fault localization perfor-

mance metrics.

3.3.1 Spectrum-based methods

The idea of spectrum-based fault localization techniques is as follows: program

statements that are more likely to be executed by failed test cases than successful

test cases are more suspicious to be the cause of the software fault. Plenty of

spectrum-based techniques have been proposed and different techniques implement

this same general idea with different suspiciousness computation formulas.

We recognize a list of existing spectrum-based fault localization techniques by

complementing the survey conducted by Wong et al. [2] with three additional tech-
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niques (Op2, Barinel and D2) evaluated by Pearson et al. [3]. Using the same

notations used in [2] (Table 3.3), the full list of spectrum-based fault localization

techniques we evaluated are detailed in Table 3.4.

Notation Description

NCF number of failed test cases that executed the statement

NUF number of failed test cases that did not execute the statement

NCS number of successful test cases that executed the statement

NUS number of successful test cases that did not execute the statement

NC total number of test cases that executed the statement

NU total number of test cases that did not execute the statement

NS total number of successful test cases

NF total number of failed test cases

n = NCF +NUF +NCS +NUS

Table 3.3: Notations used in Table 3.4

Table 3.4: Spectrum-based fault localization techniques [2, 3] evaluated in this study

No. Spectrum-based

technique name

Statement suspiciousness calculation formula

1 Tarantula NCF /NF

NCF /NF+NCS/NS

2 Ochiai NCF√
NF×(NCF+NCS)

3 Ochiai2 NCF×NUS√
(NCF+NCS)×(NUS+NUF )×(NCF+NUF )×(NCS+NUS)

4 Op2 NCF − NCS

(NS+1)

5 Barinel 1− NCS

NCS+NCF

6 D2 (DStar) N2
CF

NCS+(NF−NCF )
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Table 3.4 continued from previous page

No. Spectrum-based

technique name

Statement suspiciousness calculation formula

7 Braun-Banquet NCF

max(NCF+NCS ,NCF+NUF )

8 Dennis (NCF×NUS)−(NCS×NUF )√
n×(NCF+NCS)×(NCF+NUF )

9 Mountford NCF

0.5×((NCF×NCS)+(NCF×NUF ))+(NCS×NUF )

10 Fossum n×(NCF−0.5)2
(NCF+NCS)×(NCF+NUF )

11 Pearson n×((NCF×NUS)−(NCS×NUF ))2

NC×NU×NS×NF

12 Gower NCF+NUS√
NF×NC×NU×NS

13 Michael 4×((NCF×NUS)−(NCS×NUF ))
(NCF+NUS)2+(NCS+NUF )2

14 Pierce (NCF×NUF )+(NUF×NCS)
(NCF×NUF )+(2×(NUF×NUS))+(NCS×NUS)

15 Baroni-Urbani &

Buser

√
(NCF×NUS)+NCF√

(NCF×NUS)+NCF+NCS+NUF

16 Tarwid (n×NCF )−(NF×NC)
(n×NCF )+(NF×NC)

17 Ample | NCF

NCF+NUF
− NCS

NCS+NUS
|

18 Phi (Geometric

Mean)

NCF×NUS−NUF×NCS√
(NCF+NCS)×(NCF+NUF )×(NCS+NUS)×(NUF+NUS)

19 Arithmetic Mean 2×(NCF×NUS−NUF×NCS)
(NCF+NCS)×(NUS+NUF )+(NCF+NUF )×(NCS+NUS)

20 Cohen 2×(NCF×NUS−NUF×NCS)
(NCF+NCS)×(NUS+NCS)+(NCF+NUF )×(NUF+NUS)

21 Fleiss 4×(NCF×NUS−NUF×NCS)−(NUF×NCS)
2

(2NCF+NUF+NCS)+(2NUS+NUF+NCS)

22 Zoltar NCF

NCF+NUF+NCS+
10000×NUF×NCS

NCF

23 Harmonic Mean (NCF×NUS−NUF×NCS)((NCF+NCS)×(NUS+NUF )+(NCF+NUF )×(NCS+NUS))
(NCF+NCS)×(NUS+NUF )×(NCF+NUF )×(NCS+NUS)

24 Rogot2 1
4
( NCF

NCF+NCS
+ NCF

NCF+NUF
+ NUS

NUS+NCS
+ NUS

NUS+NUF
)

25 Simple Matching NCF+NUS

NCF+NCS+NUS+NUF
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Table 3.4 continued from previous page

No. Spectrum-based

technique name

Statement suspiciousness calculation formula

26 Rogers & Tanimoto NCF+NUS

NCF+NUS+2(NUF+NCS)

27 Hamming NCF +NUS

28 Hamann NCF+NUS−NUF−NCS

NCF+NUF+NCS+NUS

29 Sokal 2(NCF+NUS)
2(NCF+NUS)+NUF+NCS

30 Scott 4(NCF×NUS−NUF×NCS)−(NUF−NCS)
2

(2NCF+NUF+NCS)(2NUS+NUF+NCS)

31 Rogot1 1
2
( NCF

2NCF+NUF+NCS
+ NUS

2NUS+NUF+NCS
)

32 Kulczynski NCF

NUF+NCS

33 Anderberg NCF

NCF+2(NUF+NCS)

34 Dice 2NCF

NCF+NUF+NCS

35 Goodman 2NCF−NUF−NCS

2NCF+NUF+NCS

36 Jaccard NCF

NCF+NUF+NCS

37 Sorensen-Dice 2NCF

2NCF+NUF+NCS

3.3.2 Mutation-based methods

Two mutation-based techniques have been proposed, MUSE [129] and Metal-

laxis [130]. Both techniques leverage the power of mutants (different versions of the

original software program, each has a single and unique difference from the original

program), but their underlying ideas are different. MUSE utilizes the knowledge

of how mutants can change the test results, i.e. making failed test cases pass or

making passed test cases fail, assuming that mutating faulty statements will make

more failed test cases pass than mutating correct statements, and mutating correct

statements will make more passed test cases fail than mutating faulty statements.
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In contrast, Metallaxis utilizes the knowledge of how mutants and original program

output differently under the same test cases. In the software testing domain termi-

nologies, a test case "kills" a mutant if executing the test case on the mutant yields

a different test output than executing it on the original program. The intuition of

Metallaxis is that mutants generated by mutating faulty statements are more likely

to be killed by test cases that are failed on the original program because mutants and

faults located on the same program statements frequently exhibit a similar behavior.

The computations of MUSE and Metallaxis are detailed below.

MUSE

Moon et al. [129] proposed the MUSE suspiciousness calculation of statement

(s) suspiciousness as:

1
|mut(s)|

∑
m∈mut(s)(

|fP (s)∩pm|
|fP |

− α× |pP (s)∩fm|
|pP |

), α = f2p
|fP |
× |pP |

p2f

where:

fP (s) - test cases executed s and failed on the original program

pP (s) - test cases executed s and passed on the original program

mut(s) = m1, ...,mk - all mutants of statement s with observed changes in test

results (i.e. killed by at least one test case)

fm - test cases failed on mutant m

pm - test cases passed on mutant m

fP - test cases failed on the original program

pP - test cases passed on the original program

p2f - total number of instances when a test case passed on the original program

and failed on a considered mutant

f2p - total number of instances when a test case failed on the original program

and passed on a considered mutant
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As noted in [129], MUSE selects only a subset of statements of the original

program to mutate. These statements are executed by at least one failed test case.

Metallaxis

Papadakis and Le Traon [130] proposed the Metallaxis suspiciousness calculation

of mutant (e) as:

NKF√
NF×(NKF+NKS)

where:

NKF - number of failed test cases that kill mutant e

NKS - number of passed test cases that kill mutant e

NF - total number of failed test cases

Metallaxis calculates a dedicated suspicious value for each mutant, instead of

for each statement, like spectrum-based techniques and MUSE. In Metallaxis, the

suspiciousness value of a statement is decided as the maximum of all suspiciousness

values of mutants that mutated this statement in the original program.

3.3.3 Fault localization metrics

Both spectrum-based and mutation-based fault localization techniques compute

a numerical suspiciousness value for each statement of the program source code.

Then they output a ranked list of these statements according to the calculated sus-

piciousness values in descending order. These techniques suggest a programmer to

manually examine the statements one by one according to the ranked list and assume

that the programmer will identify the fault once the actual fault-causing statement

is manually examined. This assumption is commonly referred as the "perfect bug

understanding assumption" in existing software fault localization studies [162]. Al-

though this is obviously an over-simplified assumption of how the programmer can

debug the program, this assumption is widely adopted in software fault localiza-
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tion studies and facilitates a set of simple effectiveness metrics based on the ranked

list to evaluate the effectiveness of fault localization techniques. The most popular

example of these metrics is the EXAM score [2], which represents the percentage

of statements in a program that needs to be manually examined until the faulty

statement is reached.

Various empirical studies [162, 163, 164, 165] have conducted user studies to

investigate the usefulness of fault localization techniques’ ranked list outputs to

programmers in real-world. They found that programmers locate bugs significantly

faster with the fault localization tool, and most programmers deemed the fault lo-

calization tool useful. Although these user studies mostly focused on investigating

the usefulness of only spectrum-based fault localization techniques, mutation-based

fault localization techniques gave the result in the same form (ranked list based on

statement suspiciousness) with potentially better quality (faulty statement ranked

higher in the list), so it can be inferred that mutation-based fault localization tech-

niques should be as useful as spectrum-based fault localization techniques, if not

more useful, to practitioners [164].

Before discussing the specific metric we used in this study to evaluate the fault

localization performance for HVAC control logic fault diagnosis, we clarify three

issues about the faulty statement in the ranked list: multiple faulty statements, tie,

and absolute ranking vs. percentage ranking.

Multiple faulty statements

It is very common that more than one statements in the original program need

to be modified, deleted, or added, in order to fix a software fault. Thus, a fault

may have multiple faulty statement locations. For the purpose of evaluating fault

localization methods, there have been metrics taking either the best result (highest
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ranking faulty statement), the worst result (lowest ranking faulty statement), or the

average [166]. In our study, we use the best result in our evaluation metric for two

reasons:

• Empirical studies of fault localization uses in practice [164, 165] indicated

that while the perfect bug understanding assumption is false, fault localization

results provide valuable hints to the programmer to guide them in the creation

of fault fixing hypotheses. The focus is to help programmers find a good

starting point to initiate the bug-fixing process rather than to provide the

complete set of code that must be modified, deleted, or added [2]. Examining

one faulty statement instead of all supports this use.

• Widely used metrics, such as the EXAM score and T score, use the best

result as well [2].

Tie

For both spectrum-based and mutation-based fault localization results, it is com-

mon to have multiple statements assigned the same suspiciousness value. Statements

with the same suspiciousness value will result in ties in the ranking [2]. If the highest

ranking faulty statement has tie statements with the same ranking, we adopt the

average ranking of these tied statements in our evaluation metric, as the average

is the expected number of statements the programmer should examine assuming

that the programmer chooses these tie statements at random. This strategy is also

adopted by other studies [3, 167].

Absolute ranking vs. percentage ranking

Although percentage ranking metrics, such as the EXAM score, are widely

used in existing fault localization studies, recently, more and more empirical studies
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have suggested the adoption of absolute ranking metrics. Parnin and Orso [162]

suggested that fault localization techniques should focus on improving absolute rank

rather than percentage rank for two reasons: 1) their collected data indicated that

programmers will stop inspecting statements and transition to debugging without

the fault localization tool’s assistance if they do not get promising results within the

first few statements they inspect; 2) the use of percentages underscores how difficult

the problem becomes when moving to larger size programs. Among the participants

of the user study conducted by Kochhar et al. [163], 74% of the participants think

that the fault localization is successful if the faulty statement is among the top-5

ranking, and 98% of the participants think that inspecting more than 10 statements

is beyond their acceptability level. Xia et al. [164] found that 75% of their study’s

participants visit the top-5 suspicious statements in sequence, and if the faulty

statement is in the top-5 suspicious statements, the participants debug faster than

if the faulty statement is ranked at a position between 6 and 10. Souza [165] found

that developers navigate more frequently among the well-ranked statement of the

ranked list and most developers did not inspect statements below the top-20 when

using fault localization techniques. Based on this empirical evidence, we adopt the

absolute ranking in our evaluation metric, and check if the faulty statements are

within top-5, top-10 and top-20 ranked list in our fault localization results.

As a result, we evaluate our fault localization results with a single-value metric,

referred to as fl-effectiveness hereafter, representing the expected absolute number of

statements a programmer needs to manually examine following the fault localization

ranked list, until he/she reaches the first actual faulty statement.
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3.4 Control logic fault diagnosis framework and im-

plementation
Following the software unit testing paradigm [28], we formulate the AHU con-

trol logic fault diagnosis process as a computation framework shown in Figure 3.1,

in which spectrum-based and/or mutation-based fault localization techniques are

utilized.

Figure 3.1: Control logic fault diagnosis framework

Under this framework, the artifacts needed from the HVAC system domain are

AHU control logic program source code (typically in manufactures’ specific format)

and a BAS dataset including control logic input/output variables data points. The

control logic fault definition can be acquired with the fault definition approach

proposed in Chapter 2.

The control logic program of an AHU system asks for multiple input variable

values about sensor readings and user settings, then it repeatedly computes multiple
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output variable values about actuator commands at a certain time interval. This

is similar to placing the control logic program under an infinite loop condition. In

order to utilize the fault localization algorithms, the control logic program cannot

be executed with such infinite loops. Hence, the control logic program is simplified

to eliminate such looping behavior by: 1) modifying all proportional-integral (PI)

controllers to be proportional (P) controllers; 2) rearranging statements to avoid

the instances of a variable being called before its value being assigned; 3) in some

occasion when such an instance cannot be avoided by rearranging statements, adding

this variable as a control logic input variable and reading its value from input data.

As discussed in Section 3.3, in order to conduct fault localization computation,

the control logic program execution profiles need to be collected. This requires

the execution of control logic program with instrumentation to extract execution

information. In our framework, we assume that the original control logic program

is written in manufactures’ proprietary format and that its compiler and runtime

environment are not disclosed to the public (this was the case in our test beds). In

this situation, the control logic program needs to be translated 7 so that we can

execute the control logic program and collect its execution information.

In this framework, the control logic output data from BAS is used to verify the

correctness and accuracy of control logic program simplification and translation.

It is worth noting that when the framework is being adopted in the industry, we

envision that the control manufactures should be implementing this framework with

their programming platform of choice and provide the fault localization functionality

as a product or service to customers. Thus, the manual control logic simplification

and translation should not be needed by then.
7rewrite the program source code into a different programming language syntax, with the same

program semantics of the original program source code.
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Control logic input data from the BAS dataset and its corresponding logic ex-

ecution result is first used to detect the existence of control logic faults with the

control logic fault definition list. Then the user of the framework shall select one ex-

isting fault based on the fault detection results for fault cause localization. For this

selected fault, each input/output sample is marked as passed if it does not contain

the symptom of the fault and failed otherwise.

After the dataset has been marked, it is treated as a test case suite and supplied

to the fault localization algorithms together with the tests execution profiles. Fi-

nally, the fault localization algorithms compute the suspiciousness of each program

statement of being the cause of the fault.

We implemented this framework in the Java programming language with the

utilization of two existing software packages: Major framework [168] for generating

program mutants and Tacoco [169] for generating JUnit tests execution profiles. 8

3.5 Fault cases from real-world test beds

3.5.1 Test beds information

Two real-world AHU test beds, referred to as PAM and DELTA hereafter, are

used in this study. We picked two AHUs from different buildings, with different

system configurations, and from different manufactures, in order to acquire diverse

control logic programs and control logic fault cases. Located in an academic building,

the PAM AHU has steam heating coil, chilled water cooling coil, supply and return

variable frequency drives (VFD) fans, and a mixing box with linked three dampers

(outdoor air damper, mixed air damper, and exhaust air damper). Located in an

office building, the DELTA AHU has hot water heating coil, direct expansion (DX)
8The implementation source code will be available at https://github.com/leijerry888/ once

the review process is over.
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cooling coil, supply and relief VFD fans, a mixing box with linked two dampers

(outdoor air damper and mixed air damper), and an independent exhaust air damper

for space pressure control.

As shown in Figure 3.1, in order to apply software fault localization techniques

on control logic programs, the control logic programs need to be executable and

their execution information needs to be extractable from test executions. The PI

controllers also need to be simplified as P controllers to avoid running the control

logic with dynamic (looping) behavior. Each of the 2 test beds control logic pro-

grams is written in its manufacture’s proprietary software. We manually translated

and simplified the two control logic programs into Java methods, with the help of

control programmers from the manufactures. One minute interval BAS datasets

of normal operation containing all control logic input and output variables are col-

lected for both test beds for the purpose of verifying control logic translation as

well as facilitating the application of fault localization techniques (as indicated in

Figure 3.1), i.e., each sample of BAS data is developed into a test case of the control

logic program during software fault localization. We verified the accuracy of the

control logic translation and simplification by simulating the translated programs

with control logic input from the BAS dataset and verifying the simulation outputs

with actual control logic output data from the BAS dataset. Basic information of

these two test beds is provided in Table 3.5.

3.5.2 Fault cases information

In order to detect control logic faults, a control logic fault definition is needed.

We utilized the control logic fault definition approach we proposed in Chapter 2 to

derive a set of control logic fault definition for each of the two test beds according

to their specific component, control and service requirement information. For the
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Test bed AHU PAM DELTA

Control Manufacture American Automatrix Delta Controls
Original control logic format BACnet objects with manufacture added properties textual code
Original control logic access American Automatrix NBPro software Delta Controls web interface
Translated control logic program length 383 LOC 431 LOC
Main sequencing logic program length 189 LOC 215 LOC
# Mutants for main sequencing logic 336 693
# Control logic input variables 29 38
# Control logic output variables 13 21
Available BAS dataset size 28,800 Samples 5,951 Samples
Time span of BAS dataset 24 hour operation for 20 days 9 hour operation for 11 days

Table 3.5: Two AHU test beds information

PAM AHU, 16 control logic faults are defined, and for the DELTA AHU, 21 control

logic faults are defined. All defined faults are associated with mathematical expres-

sions about the control logic input/output variables that can be used as JUnit test

assertions [170] during fault detection process. The BAS datasets and the program

simulation outputs are used to detect the existence of control logic faults in the test

beds, as indicated in Figure 3.1. Control logic faults existed in the two test beds

that will be used in the following fault localization tasks are listed in Table 3.6.

3.5.3 Faulty statements identification

In order to identify the faulty statements (i.e. the coding errors causing control

logic faults), we manually went through and interpreted the control logic programs,

identified the fault causes, and fixed the faults. When generating the fault fixes, we

follow the idea of finding the smallest change (i.e., add/delete/modify source code

statements) of the program that represents the isolated fault fix [3, 171], while still

complying with the control objectives of the AHU systems. After fixing each fault,

we executed the fixed control logic program with all control logic input data from

the BAS datasets to verify that all test cases passed for that fault. Then, for each

AHU test bed, we merged together all the fault fixes to generate a control logic

program and verify it with the execution of all test inputs again to make sure that
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Fault ID Fault detection results Fault definition concise description
# Failed
test case

# Passed
test case

PAMfault2 27,989 811 Mixing box cooling not fully utilized
PAMfault7 17,834 10,966 Preheat coil valve active when there is contin-

uously no heating need
PAMfault9 163 28,637 Supply air fan speed larger than minimum

when discharge air static pressure is conti-
nously above service set point

PAMfault10 25,505 3,295 Return air fan speed larger than minimum
when return air flow is continuously above ser-
vice set point

PAMfault15 17,589 11,211 Simultaneous economizer cooling and mechan-
ical heating

DELTAfault1 3,199 2,752 Mixing box heating not fully utilized
DELTAfault2 169 5,782 Economizer cooling not fully utilized
DELTAfault3 3,345 2,606 Preheat coil heating not fully utilized
DELTAfault4 1,259 4,692 Mechanical cooling not fully utilized
DELTAfault11 2,679 3,272 Mechanical cooling active when there is con-

tinuously no cooling need
DELTAfault16 293 5,658 Mechanical cooling active before economizer

cooling is fully utilized

Table 3.6: Fault cases used in this study

the control logic program is completely fault-free with regard to all defined control

logic faults. Finally, we confirmed with HVAC control professionals the legitimacy

of our control logic fault findings and fixes. Note that there can be more than one

ways to fix a fault at different program locations, even following the same fault fixing

ideas. In this case, we also identified alternate fault fixes directly linked them to the

original fix. A fault shall be deemed fixed when either the original or one alternate

fix is performed [3].

In the next two subsections, we characterize the 11 fault cases of our case study

for two purposes: 1) benchmark the diversity of the faults considered in our evalua-

tion, and 2) analyze the relationships between fault characteristics and fault localiza-

tion performance. We conducted fault characterization in two different aspects: 1)
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causes of control logic faults, and 2) software code statements to fix the faults. The

characterization methods and results are discussed below and fault characteristics’

impact on fault localization performance is discussed in detail in Section 3.6.

3.5.4 Fault causes categorization

The 11 fault cases used for fault localization evaluation have various causes. To

semantically characterize the control logic fault causes, we first discuss the seman-

tic characterization of HVAC control logic. There are three levels of controls in

AHU systems, namely, local level control, supervisory control, and optimal control

[95, 172]. The optimal control level is out of our scope because the decisions of

service set points are not questioned in the control logic fault definition, and thus

not detected and diagnosed. The semantics of AHU control logic programs can be

built based on the perspective of two levels of controls and the idea of hierarchical

control loops. Two existing studies have been identified that developed semantic

models of HVAC control logic [172, 92]. Chen [172] specified three levels of controls,

i.e. building layer control module, system layer control module, and local layer con-

trol module. The meaning of these three levels of controls corresponds to optimal,

supervisory, and local control. The three levels of controls contain "Control Mod-

ules" connected hierarchically through module inputs and outputs. Schneider [92]

proposed an ontology for the semantic modeling of control logic programs, of which

the central building blocks are "ControlActors" connected to each other through

inputs and outputs. The ideas of "Control Module" and "ControlActor" associated

with inputs and outputs is based on the theory of open/closed loop control through

the Sense-Process-Actuate cycles [92].

We categorize the control logic fault causes according to which parts of the

aforementioned control logic semantic model they are affecting, and how they are
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affecting them (e.g. missing certain elements, or incorrect value of certain elements).

At local control level, the local controllers of components adjust their control output

variables to track set points. Each local controller can be semantically modeled by

further elaborating with elements that define a closed-loop feedback controller [173]:

set point, output (actuation range and direction), feedback (only for closed-loop

control). The supervisory control contains logic that coordinates the sequencing of

different components. The supervisory controls are added on top of local controllers

through constraints, such as conditional code that lockout/override/select local con-

trollers under certain conditions. Based on this perspective, the fault causes of our

11 fault cases are categorized in Table 3.7. It is worth noting that some faults are

caused by multiple different types of fault causes, thus they are being categorized

into multiple categories.

TestBed PAM DELTA
FaultID Fault2 Fault7 Fault9 Fault10Fault15 Fault1 Fault2 Fault3 Fault4 Fault11Fault16

Fault cause at local control level
Incorrect local controller
set point

X X X

Incorrect local controller
feedback

X X X

Incorrect local controller
output mapping

X X

Missing local controller X
Fault cause at supervisory control level

Incorrect constraint ex-
pression(s)

X X X X X X X X

Missing constraint(s) X

Table 3.7: Fault cause categorization of 11 fault cases

3.5.5 Fault fixing statements categorization

As discussed in Section 3.5.3, one or more control logic program statements need

to be changed (modified, inserted, or deleted) in order to fix one control logic fault,

and there may be more than one ways of fixing each fault. For the 11 control logic

faults we used in this study, a total of 68 changes of statements (i.e. fault fixing
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statements) are identified. In this subsection, we discuss the categorization of these

68 fault fixing statements.

Plenty of studies about software fault categorization have been published since

the 1970s [174]. Although several fault categorization schemes exist, such as the

Orthogonal Defect Classification (ODC) [175] and the fault taxonomy proposed in

[176], there is no widely accepted, comprehensive and consistently used software

fault characterization scheme [177], because different studies conducted fault cate-

gorization with a wide range of focus and motivations [178]. For example, 8 software

defect types were defined in ODC [175], with focuses including general design issues

and documentation problems, while 27 software bug fix types were defined by Pan

et al. [179], all of which focused specifically on Java statement level code changes.

In this study, we leverage the software bug fix categorization scheme proposed

by Zhao et al. [180], because of the following features of this scheme:

• It focuses on categorizing bug fixes at code statement level, which aligns with

the focus of our faulty statement characterization.

• It is programming language independent [180], so the control logic fault fixing

statements can be categorized accordingly even if they are written in other

programming languages.

• It provides unambiguous description for classifying bug fixes, so we can catego-

rize control logic fault fixing statements without confusions and uncertainties.

Actually, Zhao et al. [180] developed a tool to automatically categorize fault

fixing code based on this scheme for existing open source software projects.

• It provides bug fix frequencies of different categories from multiple software

systems. We can compare this information with our control logic fault fixes
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to identify the diversity of the control logic fault fixes in our 11 fault cases.

More specifically, we utilize the following 5 out of the 9 non-exclusive 9 bug fixing

code change types:

1. Changes on data declaration/initialization

2. Changes on assignment statements

3. Changes on function call

4. Changes on branch statements

5. Moving statements (specified in the "Others" category in [180])

The other 4 code change types are about loops, function declaration/definition,

return/goto statements, and preprocessor directives [180]. They do not apply to

AHU control logic programs because the control logic programs do not contain

these four types of statements.

Zhao et al. [180] classified more than 2,000 bug fixing statements in existing

software projects and found that the first four categories listed above are the four

most prevalent bug fix types.

Among the 68 fault fixing statements we identified, 12 are about adding new

statements, 8 are about deleting statements, and the rest 48 are about modifying

statements. The categorization of these 68 bug fixing statements are shown in Table

3.8, in which the diversity of our fault fix types is demonstrated, i.e., each of the four

most prevalent bug fix types identified in [180] exists in our fault fixing statements.

The diversity of the fault fixing statements illustrated by Table 3.8 helps to

make sure that our fault localization performance evaluation results, which will be
9One statement level code change can be classified into multiple categories
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Faulty statement type Data declaration
/ initialization

Assignment
statements

Function
call

Branch
statements

Move
statements

Total

Number of statement 18 42 26 19 8 68
Frequency over all bug fixing statements 26.5% 61.8% 38.2% 27.9% 11.8% 100.0%

Table 3.8: Fault fixing statements categorization results

shown in Section 3.6, do not overfit to a specific fault fixing statement type. We will

also study the relationships between the fault fixing types and the fault localization

performance in more detail in Section 3.6.

3.6 Evaluation of existing techniques
In Section 3.3, we discussed two types of fault localization techniques of our focus,

namely spectrum-based and mutation-based techniques, and presented the compu-

tations of 39 existing algorithms of these two types. In order to evaluate the per-

formance of these spectrum-based and mutation-based fault localization techniques

for the purpose of AHU control logic fault diagnosis, we applied and evaluated these

39 fault localization algorithms on 11 real-world control logic fault cases from two

AHU test beds, using our control logic fault diagnosis framework implementation.

The evaluation results are shown in Table 3.9 with the metric, fl-effectiveness, artic-

ulated earlier. In Table 3.9, the first two rows are fault localization results of the 2

mutation-based techniques, and the following rows are results of 37 spectrum-based

techniques, ordered according to Table 3.4.

3.6.1 Fault localization performance of considered algorithms

Fault localization results from Table 3.9 are visualized as box plots shown in Fig-

ure 3.2. For each evaluated fault localization algorithm, its median of the 11 fault

cases’ fl-effectiveness is plotted in Figure 3.3. The medians are used instead of means

to summarize the results because they are less affected by outliers. It can be ob-
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Fault localization PAM DELTA
algorithm Fault2 Fault7 Fault9 Fault10 Fault15 Fault1 Fault2 Fault3 Fault4 Fault11 Fault16

MUSE-LOC 2.5 1.5 95 95 9.5 108 1 108 108 4 114
Metallaxis 3.5 3.5 19 11 1 18 1 18 1 1 128.5
Tarantula 56 56 56 56 56 40 1 40 43 3.5 40
Ochiai 53 54 51 52 54 39 1 38 43 2.5 39
Ochiai2 98 99.5 100 100 99.5 12 1 114.5 9 2.5 111.5
Op2 52 52 51 51 52 35 36 35 36 2.5 38
Barinel 56 56 56 56 56 40 1 40 43 3.5 40
DStar 53 54 51 52 54 39 1 37 43 2.5 39
Braun-Banquet 53 54 56 53 54 40 1 40 43 3.5 40
Dennis 95 95 95 95 95 106.5 1 106.5 109.5 3.5 106.5
Mountfod 53 54 51 52 54 39 1 39 43 2.5 40
Fossum 53 54 51 52 54 39 1 38 43 2.5 39
Pearson 100 100 100 100 100 1.5 1.5 114.5 4 6 114.5
Gower 100 100 100 100 100 13 8 114.5 1 4.5 114.5
Michael 95 95 95 95 95 106.5 1 106.5 109.5 2.5 106.5
Pierce 99.5 99.5 100 100 99.5 1 12 114.5 1.5 113 113
Baroni-Urbani & Buser 53 54 61 53 54 40 6 40 43 2.5 42
Tarwid 95 95 95 95 95 106.5 1 106.5 109.5 3.5 106.5
Ample 100 100 100 100 100 2 1.5 114.5 4 6 114.5
Phi (Geometric Mean) 95 95 95 95 95 106.5 1 106.5 109.5 2.5 106.5
Arithmetic Mean 95 95 95 95 95 106.5 1 106.5 109.5 2.5 106.5
Cohen 95 95 95 95 95 106.5 1 106.5 109.5 2.5 106.5
Fleiss 94 91 90 90 91 101.5 102.5 101.5 102.5 2.5 104.5
Zoltar 52 52 51 51 52 35 36 35 36 2.5 38
Harmonic Mean 95 95 95 95 95 106.5 1 106.5 109.5 2.5 106.5
Rogot2 100 100 100 100 100 13 1 114.5 9 2.5 114.5
Simple Matching 53 54 139 53 54 40 67 40 141 2.5 67
Rogers & Tanimoto 53 54 139 53 54 40 67 40 141 2.5 67
Hamming 53 54 139 53 54 40 67 40 141 2.5 67
Hamann 53 54 139 53 54 40 67 40 141 2.5 67
Sokal 53 54 139 53 54 40 67 40 141 2.5 67
Scott 53 56 139 53 56 40 67 40 141 3.5 68
Rogot1 53 56 139 53 56 40 67 40 141 3.5 68
Kulczynski 53 54 55 52 54 40 1 40 43 2.5 40
Anderberg 53 54 55 52 54 40 1 40 43 2.5 40
Dice 53 54 55 52 54 40 1 40 43 2.5 40
Goodman 53 54 55 52 54 40 1 40 43 2.5 40
Jaccard 53 54 55 52 54 40 1 40 43 2.5 40
Sorensen-Dice 53 54 55 52 54 40 1 40 43 2.5 40

Table 3.9: Fault localization evaluation on 11 fault cases

served that Metallaxis outperforms all other evaluated fault localization algorithms

considerably. The median of 11 fault cases’ fl-effectiveness values for Metallaxis

is 3.5 LOC, while the second best algorithm is Op2/Zoltar, with a median of 38

LOC. Additionally, as shown in Figures 3.4 and 3.5, out of 11 fault cases, Metallaxis

ranked faulty statements at the 1st position (highest suspiciousness) 4 times and

within Top-5 positions 6 times, both counts are the highest over other algorithms.

As revealed by empirical studies discussed in Section 3.3.3, the fault localization

technique’s ability of pinpointing the faulty statement in the top-5 positions is very
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important [163, 164].

Figure 3.2: Box plot of fault localization evaluation results
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Figure 3.3: Medians of fault localization evaluation results

Figure 3.4: Top-1 case counts of fault localization evaluation results

The underlying assumption of spectrum-based fault localization is that state-

ments that are more likely to be executed by failed test cases are more suspicious

to be causes of the failures. One limitation when applying spectrum-based fault

localization techniques on control logic fault localization is that in many cases, the

root cause of the fault in the control logic program is not in any conditional branch

(i.e., the faulty statements, together with many other statements, are executed by

108



3.6. Evaluation of existing techniques

Figure 3.5: Top-5 case counts of fault localization evaluation results

every test case). In this situation, these statements do not show their proneness of

being executed by failed or passed test cases, thus spectrum-based fault localization

becomes ineffective. All considered spectrum-based algorithms suffered from this

issue and there is no clear winner within the evaluated spectrum-based fault local-

ization techniques, as can be observed from Figure 3.2. Mutation-based techniques

overcome this limitation because they can scrutinize program statements with ad-

ditional information by evaluating how mutating the original program will affect

outcomes of each test case execution.

While Metallaxis outperforms all spectrum-based fault localization by a large

margin, MUSE, the other mutation-based fault localization technique, performs

very poorly. More specifically, for fault cases PAM Fault9, Fault10, and DELTA

Fault1, Fault3, Fault4, and Fault16, it ranked the faulty statements worse than

many spectrum-based fault localization techniques, as shown in Table 3.9. A closer

look at the MUSE computations revealed the following two main causes of poor

effectiveness: 1) considering program mutants on service requirement related logic,
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and 2) invalid MUSE computation. These two issues are elaborated in the following

two paragraphs.

MUSE relies on the mutants’ ability of turning originally failed test cases to

passed ones, or the other way around, to infer the suspiciousness of statements. For

a specific statement in the control logic program, if no mutant of it has this ability,

then the suspiciousness of this statement is 0 10. A closer look at DELTA Fault1,

Fault3, and Fault4 revealed that in these three fault cases, the only mutants that

have this ability of switching passed/failed test cases to failed/passed test cases are

on the statements that implemented the resetting of supply air temperature service

requirements. We use an example to explain why these statements are marked sus-

picious by MUSE and why they are not the actual faulty statements: if a control

logic fault is found causing the cooling coil to be active when the supply air temper-

ature is well below the service requirement set point, a fix that lowers the service

requirement set point will make the fault symptom disappear, but this fix is invalid.

In other words, if the system’s behavior does not meet the service requirement, to

fix the problem, one should focus on troubleshooting the incorrect behavior rather

than modifying the requirement and compromising the service.

If none of the mutants for a control logic program can switch any passed test

cases to fail and/or switching any failed test cases to pass, the MUSE computation

(formula discussed in Section 3.3.2) becomes invalid as α is either 0 (no failed to

passed instances) or infinite (no passed to failed cases), or undefined (no failed

to passed and no passed to failed cases). This scenario happened to PAM Fault9

and Fault10, the two PAM fault cases where MUSE provided very bad results (fl-
100 is not the minimum suspiciousness value as there might be negative suspiciousness value in

MUSE. Furthermore, suspiciousness is a relative value and it only intends to be used for ranking
and does not mean probability
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effectiveness was 95). This scenario will happen to DELTA Fault 1 - 4 as well

if no mutants on statements implementing service requirement resetting logic are

included in the computation, as discussed in the previous paragraph.

To summarize, both Metallaxis and MUSE leverage the execution profiles from

program mutants to infer fault cause locations. Metallaxis collects two types of

information: 1) if the mutated program outputs differently from the original pro-

gram, and 2) whether the corresponding test case is failed or passed on the original

program. On the other hand, MUSE collects the information about whether the

mutated program can change the test result (pass or fail) of the original program.

For AHU control logic programs, while it is easy to have mutants changing program

outputs, thus providing insights to Metallaxis, it is much harder to have mutants

changing test results in both directions to support MUSE computation. This is

largely caused by the feature of control logic fault symptom as multiple expressions

of control logic input/output variables inequality expressions being satisfied at the

same time [13]. Due to this feature, in many cases, it is rare to have a 1st order

mutant11 switching failed test cases to passed, and it is even rarer to have such a

mutant switching passed test cases to failed. This characteristic is unique for control

logic fault localization when comparing it with fault localization of typical software

engineering domain applications, assuming it is easier to have a mutant "break" a

correct program than to have a mutant "fix" a faulty program [129].

It is worth noticing that Pearson et al. [3] evaluated the fault localization perfor-

mance of 5 spectrum-based techniques, namely Tarantula, Ochiai, Op2, Barinel and

D2, and the same 2 mutation-based techniques as we evaluated. They found that
11only have 1 difference from the original program, due to the computational expensiveness of

mutation-based fault localization, considering higher than 1st order mutants will introduce too
many mutants and make the computation intractable
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when used for localizing real-world software faults, Metallaxis and MUSE perform

worse than any of the five evaluated spectrum-based techniques. Our evaluation

showed contrary results as we found that when diagnosing real-world control logic

faults, Metallaxis performs better than spectrum-based fault techniques with a large

margin.

3.6.2 Fault localization performance v.s. control logic fault

cause semantics

Comparing the semantic characteristics of the cause of each fault shown in Table

3.7 to the Metallaxis fault localization fl-effectiveness of each fault shown in Table

3.9, we have the following observations:

• If a fault is caused by one or more semantic logic elements being incorrect, i.e.

fix is done by modifying existing program statements, Metallaxis will perform

very well, ranking faulty statements within top-5 positions, as long as there

are considered mutants that can mimic at least one incorrect element. For

example, one cause of PAM Fault 2, is an incorrect value assigned to the

set point variable for the mixing box local controller. Although no mutant

fixes this issue exactly, there are mutants changing the assignment of this set

point variable to other incorrect values. Using these mutants is enough to

make Metallaxis rank the corresponding faulty statement to the third most

suspicious statement of all program statements. Other fault cases that fall

under this observation are PAM Fault 7, Fault 15, Delta Fault 4 and Fault 11.

• If a fault is caused by one or more semantic logic elements being incorrect,

but no mutants can mimic the fix, then it is likely that Metallaxis will be able

to provide a ranking of top-20 position, for the fault causing statement. For
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example, PAM Fault 9 is solely caused by a supply air fan local controller using

an incorrect variable as the feedback. There are considered mutants changing

other settings of this local controller, but no mutant changes the incorrect

feedback variable name to something else. As a result, Metallaxis provided an

fl-effectiveness value of 19 for this fault case. Other fault cases that fall under

this observation are PAM Fault 10 and Delta Fault 3.

• When a fault is caused only by missing semantic elements, i.e. fixing the fault

requires solely adding new program statements, Metallaxis performs poorly

because no mutants will be able to mimic the fault’s behavior at all. Fault

cases of this scenario are Delta Fault 1 and Fault 16. 12

The above observations of the relationships between Metallaxis fault localization

performance and the fault causes are in line with Metallaxis’ underlying idea of

computing suspiciousness according to behavioral similarities between faults and

mutants.

3.6.3 Fault localization performance v.s. fault fixing state-

ments semantics

We summarize the semantic characteristics of the 68 fault fixing statements and

their Metallaxis fault localization rankings into segmented stacked bar graphs in

Figure 3.6 and Figure 3.7. The fault fixing statements are characterized in terms

of their statement semantic types (the five types in Table 3.8) in Figure 3.6, and

are characterized in terms of their fault fixing code change types (modifying/delet-

ing/adding statements) in Figure 3.7.
12Although Metallaxis provides an fl-effectiveness of 18 for Delta Fault 1, after a closer look

at related mutants provide this ranking, we found that this top-20 ranking comes by coincidence
rather than links of mutants to fault cause.
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Figure 3.6: Fault fix statements’ type v.s. Metallaxis ranking

Figure 3.7: Fault fix code change type v.s. Metallaxis ranking

From Figure 3.6 and Figure 3.7, we have the following observations:

• Metallaxis is good at picking up fault fixing statements about data declaration

and initialization, and is bad at picking up fault fixes about branch statements.

• Metallaxis is good at picking up fault fixes in terms of modifying existing

statements, and is bad at picking up fault fixes about adding new statements

or deleting existing statements.
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3.7 Mutation operators evaluation and suggestion
As discussed earlier, the predominant factor that affects Metallaxis fault local-

ization performance is whether the considered program mutants are similar to the

actual faults. In another word, if the mutation operators utilized to generate pro-

gram mutants match the fault fixing patterns of control logic faults, then Metallaxis

is expected to provide good fault localization results.

In this section, we first summarize the mutants considered in our Metallaxis

fault localization evaluation (generated by the Major framework [168]) that provide

positive suspiciousness scores for the fault fixing statements about code modification

and deletion. Then we provide suggestions of mutation operators based on the

categorization of the actual fixes of control logic faults.

3.7.1 Summary of considered mutants

The Major framework [168] is utilized in this work for mutant generation to

support mutation-based fault localization computation. We used all Major mutation

operators to generate mutants for the two test bed AHU control logic programs. As

shown in Table 3.5, 336 mutants are utilized for the PAM test bed, and 693 mutants

are utilized for the DELTA test bed.

In order to identify what types of Major mutants help the most for Metallaxis to

provide good performance, for each of the 56 faulty statements that corresponding

fault fix is performed through code modification or deletion, we select mutants that:

• mutate this statement

• provide positive suspiciousness value

• provide highest suspiciousness value among all mutants of this statement
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A total of 82 mutants are selected from the Metallaxis computation of 9 faults.

Note that fault fixes through adding new code are not considered because no mu-

tation that modifies/deletes existing code can mimic the behavior of adding new

code. As a result, we exclude two faults (DELTA Fault 1 and Fault 16) that are

fixed solely through adding new code.

We leverage the mutation operator terminologies used by Major to classify these

mutants and summarize their Metallaxis fault localization calculation results in

Table 3.10.

Major mutation operator Number of involved Metallaxis Metallaxis
fl-effectiveness susp. value

Mutants Faulty
LOC

Faults Average Median Average Median

Literal Value Replacement (LVR) 46 22 9 13.86 6.75 0.61 0.79
Expression Value Replacement (EVR) 12 12 6 17.38 9 0.76 0.99
Relational Operator Replacement (ROR) 10 5 2 24.35 37 0.37 0.1
Conditional Operator Replacement (COR) 5 3 2 30.8 37 0.24 0.1
STatement Deletion (STD) 4 4 4 41.25 49.5 0.35 0.25
Arithmetic Operator Replacement (AOR) 4 1 1 11 11 0.94 0.94
Operator Replacement Unary (ORU) 1 1 1 39 39 0.1 0.1

Table 3.10: Summary of effective mutants for Metallaxis

In Table 3.10, we first ignore the last two rows, namely AOR and ORU, because

each of these two appeared only for one faulty statement, thus the fault localization

performance is not representative. Moreover, as will be shown in the next subsection,

none of the actual fault fixes can be attributed as AOR/ORU mutation operations.

Among the rest of the mutation operators, we discuss them in three categories as

follows:

• LVR and EVR: these two mutation operators are about replacing literal values

with other literal values (LVR), or replacing expression values, such as variable

identifiers (names) and method calls, with literal values (EVR). Among the
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selected mutants, they are more popular and more effective for Metallaxis

computation than other mutation operators.

• ROR and COR: these two mutation operators focus on relational and con-

ditional operators in logical expressions, which appear mostly in conditional

branch statements. They are not as effective as LVR and EVR mutation

operators for Metallaxis. This echos the observation discussed earlier in the

previous section: Metallaxis is not very good at picking up control logic faults

located in branch statements.

• STD: as the name suggests, this mutation operator is about deleting single

statement completely. This mutation operator provides similar performance

as the ROR and COR operators.

The above mutation operators will be discussed in more detail in the next sub-

section when being compared with the actual fixes of control logic faults.

3.7.2 Mutation operator suggestion

In order to discover what mutation operators, if utilized to generate mutants

of control logic programs, can provide the most benefits for Metallaxis to localize

control logic fault causes, we summarize the actual fixes of the faulty code statements

in terms of "mutation operations" conducted. The summary is shown in Table 3.11

(A detailed list is provided in Appendix B). As stated earlier, only fault fixes about

modifying/deleting code are considered, which correspond to 56 out of the 68 fault

fixing statements. Because 2 of the 56 fault fixes can be attributed to 3 mutation

operations each, a total of 60 mutation operations are summarized in the table.

Some notations in Table 3.11 that we borrow from Major are clarified below:
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MutOp # Mutate from # Mutate to # Covered Covered by related ID for
type by Major operator in Major ref.

LVR 13 POS 9
POS 5 No Yes LVR1

NEG 2 Yes \ LVR2

0 2 Yes \ LVR3

0 4 POS 4 Yes \ LVR4

EVR 27

<IDENTIFIER> 7

POS 1 No Yes (0) EVR1

NEG 1 No Yes (0) EVR2

<IDENTIFIER> 4 No No EVR3

<METHOD_INVOCATION> 1 No No EVR4

<IDENTIFIER>as
Method Argument 9

<IDENTIFIER> 5 No No EVR5

<METHOD_INVOCATION> 2 No No EVR6

POS(1) 2 No Yes (0) EVR7

<METHOD_INVOCATION> 10

POS(1) 7 No Yes (0) EVR8

NEG 1 No Yes (0) EVR9

0 1 Yes \ EVR10

<IDENTIFIER> 1 No No EVR11

Arithmetic Expression 1 <IDENTIFIER> 1 No No EVR12

STD 8 Assignment Statement 2 <NO-OP> 3 Yes \ STD1

Condition Block 6 <NO-OP> 6 No No STD2

COR/ROR 12
Add logical expression(s) 4 No No CR1

Delete multiple logical expressions 2 No No CR2

Delete one logical expression 6 No No CR3

Table 3.11: Actual fault fixes summarized as mutations

• POS: positive number

• NEG: negative number

• <IDENTIFIER>: variable name

• <METHOD_INVOCATION>: method call

• <NO-OP>: No code (statements deleted)

From Table 3.11, the first observation is that Expression Value Replacement

(EVR) is the most popular mutation operator for actually fixing control logic faults,

corresponding to 27 of the 60 fault fix instances, while the second most popular

mutation operator, Literal Value Replacement (LVR), corresponds to 13 of the 60

instances. These two operators together cover 2/3 of the actual fault fixes.
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While LVR mutations are largely covered by Major, EVR mutations are not, as

indicated in Table 3.11. This is especially true for mutation operators that change

some variable name / method call / arithmetic expression into a variable name or

method call. As a result, although EVR mutations are twice more popular than LVR

mutations for fixing faults, among effective mutants generated by Major that support

Metallaxis computation (shown in Table 3.10), number of effective LVR mutants are

almost four times of the number for effective EVR mutants. Major only supports

EVR operations that change into literals, more specifically, default values (e.g. 0 for

integer). These non-supported mutations are actually responsible for half of the fault

fixes under the EVR category. Based on this observation, we suggest the inclusion of

mutation operators that mutate code of aforementioned types into names of variables

that have been assigned values before the mutation LOC and names of control logic

input variables, filtered by data types. Comparatively, mutation operations that

change code into method calls might be difficult to include as the search space is,

in most cases, infinite. In the meantime, it is worth noting that replacing code with

method calls are rarer than with variable names, i.e. 3 versus 11 among actual fault

fixes of our evaluated faults.

The second observation is that in 10% of the cases, fixing control logic faults

involves deleting statements about conditional blocks, but this is not supported by

Major. Major only supports deleting single statement of assignment, method call,

etc., while deleting conditional blocks may require deleting multiple statements (e.g.

conditional branch statement together with the bracket pair).

The third observation is that 20% of the fault fixes are about adding/deleting

logical expressions in conditional branch statements. While Major supports mod-

ifying conditional/relational operators for expressions in conditional branch state-
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ments, it does not support adding/deleting logic expression(s) directly. As a result,

very limited mutants can be provided to effectively support Metallaxis computation

to locate faults about branch statements, as shown in both Figure 3.6 and Table

3.10. Although adding new logical expressions can be a difficult task for a mutation

operator, deleting expressions are actually straightforward, and deleting logical ex-

pressions are responsible for 8 out of the 12 actual fault fixes about logical expression

addition/deletion.

Based on the above discussion, the mutation operators we suggest for supporting

Metallaxis computation to diagnose AHU control logic faults are summarized into

the following three categories:

1. Changing literal values with other literal values of same data type.

2. Changing variable names (whether they are called directly by assignment

statements, or in arithmetic expressions, or as method call arguments) with

other variable names that have assigned values, and with literal values of the

same data type as the variable to be replaced.

3. Deleting assignment statements, conditional blocks, and logical expression(s)

of conditional branches.

Through the link of the 60 actual fault fixes, the mutations listed in Table 3.11

can be grouped by fault cause categories discussed in Section 3.5.4, with which

we discuss the linkage between the aforementioned three categories of suggested

mutation operators and the control logic fault cause characteristics as follows:

• The fixes of control logic faults caused by incorrect setpoint values and incor-

rect output mappings typically involve changing the incorrect setpoint values
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or output mapping boundaries. Changing literal values of related assignment

statements or method call arguments are likely to generate mutants that lead

to the localization of these faulty statements.

• Control logic faults caused by incorrect local controller feedback typically re-

quire fixes replacing the incorrect feedback variable name with the correct one.

In this case, mutation operators replacing variable names with other variable

names have the chance to provide mutants that are effective in helping localize

this type of faults.

• Because supervisory control constraints have different typical types, such as

lockout, override, and select, constraints of different types can be implemented

in different types of statements. For example, a select constraint can be imple-

mented as an assignment statement with the method call of the select function

on the right hand side, while a lockout constraint can be implemented as a

conditional branch constraint over the local control function. As a result,

control logic faults caused by incorrect constraint expressions of supervisory

control may have their faults rooted in different types of statements. All three

aforementioned categories of mutation operators should be utilized together

for a broad coverage of effective mutations for different statement types. This

will maximize the chance to localize faulty code about supervisory control

sequencing.

The above fault causes are popular in our 11 fault cases, as indicated in Table 3.7.

Moreover, their popularity is also revealed by existing case studies of control logic

faults, summarized by Ardehali and Smith [4], in which control logic program faults
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Fault cause category Actual fault fix mutation operations (represented
with ref. ID in Table 3.11)

Fault cause at local control level
Incorrect local controller set point LVR1, EVR1
Incorrect local controller feedback EVR4, EVR5
Incorrect local controller output mapping LVR1, CR1, CR3
Fault cause at supervisory control level

Incorrect constraint expression(s) LVR2-4, EVR2, EVR3, EVR5-12, STD1, STD2, CR1-3

Table 3.12: Actual fault fix mutation operation grouped by fault causes

such as improper setpoint of different local control functions and using incorrect

feedback in local controllers frequently appeared.

3.8 Fault localization setup exploration
Spectrum-based fault localization techniques require the execution profiles of a

suite of both failed and passed test cases on the original program under evalua-

tion. Mutation-based fault localization techniques take a step further and require

additional execution profiles of this test suite on mutated programs as well. In our

evaluation of fault localization techniques in Section 3.6, fault cases of two different

AHUs have different test suite size and each fault case has a different ratio of failed

test cases in its test suite. It is unknown what is the optimal setting for test suite

size and failed test cases ratio.

To investigate the optimal setup options of fault localization computations, we

design and conduct experiments to explore the setup option space. A total of 22

different setup scenarios were explored, as listed in Table 3.13. All Major [168]

supported mutation operators are utilized to generate mutants for mutation-based

fault localization. While Exp0 is the same scenario of the evaluation in Section 3.6

and is used as a baseline reference, the other scenarios are assembled to explore two

different dimensions of setup options:
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• Exp0 to Exp8 explored test suite sizes at three different orders of magnitude

(100, 1000, and original (28800 or 5951)) and four different down sampling

approaches to acquire test suites with reduced sizes.

• Exp9 to Exp 21 explored different failed test cases ratios within the test suite,

ranging from 1% to 99%.

The following two sub-sections discuss approaches and findings of each dimen-

sion’s exploration in detail.

ExpID # Test cases Fail
rate %

Down sam-
pling method

Mutation Op-
eration

0 28800 / 5951 original None ALL
1 100 original Random ALL
2 1000 original Random ALL
3 100 original KMeans ALL
4 1000 original KMeans ALL
5 100 original AHC ALL
6 1000 original AHC ALL
7 100 original Sequential ALL
8 1000 original Sequential ALL
9 100 10% KMeans ALL
10 100 20% KMeans ALL
11 100 30% KMeans ALL
12 100 40% KMeans ALL
13 100 50% KMeans ALL
14 100 60% KMeans ALL
15 100 70% KMeans ALL
16 100 80% KMeans ALL
17 100 90% KMeans ALL
18 100 95% KMeans ALL
19 100 99% KMeans ALL
20 100 5% KMeans ALL
21 100 1% KMeans ALL

Table 3.13: Fault localization setup experiments information
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3.8.1 Sample size and down sampling methods

Our available BAS datasets of the two test beds provide us 28,800 test cases

for the PAM test bed and 5,951 test cases for the DELTA test bed. These test

cases helped us to detect the existence of the 11 faults detailed in Table 3.6. The

computational time of fault localization is linearly proportional to the number of

test cases. In this subsection, we explore options of reducing the size of test cases,

since using all available test cases for fault localization computation increases the

computation time, especially for mutation-based fault localization techniques, which

is computationally very expensive. By applying different down sampling methods to

reduce the test suite size for fault localization, we explore the possibility of obtaining

fault localization performance at the same level as using all test cases. We aim at

reducing the test suite size by orders of magnitude, thus, besides evaluating the

fault localization performance using all available test cases, i.e. thousands or tens

of thousands of test cases, we also evaluate test suite sizes of 1000 and 100.

When selecting a subset of test cases, we conjecture that selecting test cases that

are distinct will benefit the fault localization performance, because similar test cases

provide similar, if not the same, test results and execution profiles, which leads to

redundant information being given to fault localization computations. This conjec-

ture is in line with the heuristic of similarity-based test case selection in software

testing studies, which state that "the greater the dissimilarity between test cases,

the easier it becomes to detect faults" [181]. Among test case selection methods

that are proposed in the software testing domain, two popular methods utilized to

select test cases before test execution are, random selection and clustering meth-

ods [181]. An effective choice of clustering algorithm used in the test case selection

studies [182, 183] is Agglometrative Hierarchical Clustering (AHC) [184]. Comple-
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menting random selection and AHC with K-Means [185] (another popular clustering

algorithm) and a baseline reference, we adopted four methods of down sampling in

our experiments to select k (including f failed test cases and p passed test cases,

f + p = k) test cases from the original 28,800 or 5,951 test cases:

• Random: Select f test cases randomly from all available failed test cases, and

select p test cases randomly from all available passed test cases.

• AHC: Use the AHC algorithm to cluster all available failed test cases into

f clusters, then select 1 test case from each cluster to assemble a total of f

failed test cases. Use the same approach to select p passed test cases from all

available passed test cases.

• K-Means: Use the K-Means algorithm instead of AHC algorithm and follow

the same process under the AHC method.

• Sequential: Select the first f test cases from all available failed test cases, and

select p test cases randomly from all available passed test cases.

We conducted the experiments for all 39 considered fault localization algorithms.

From the results of the experiments, we have the following observations:

• The performance of considered four down sampling methods can be ranked

as K-Means ≈ AHC > Random > Sequential. This echoed our conjecture

discussed above.

• For the three different levels of sample sizes we explored (original, 100, and

1000), while a bigger sample size provides better fault localization results in

general, the effect is only marginal if a clustering algorithm (K-Means or AHC)

is used for down sampling. For example, the 6 fault cases that had their faulty
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statements ranked within top-5 positions in Exp0 (as discussed in Section 3.6

and shown in Table 3.9) are still having their faulty statements ranked within

top-5 positions in Exp3. The Metallaxis fl-effectiveness median value of 3.5 in

Exp0 becomes 4.0 in Exp3.

3.8.2 Failed test cases ratio

The 11 fault cases originally have different failed test cases ratio in their test

suite, which can be computed based on the information in Table 3.6. We conducted

Exp9 to Exp21 to investigate if there exist an optimal failed test cases ratio to achieve

best fault localization performance. As discussed in the previous subsection, a test

suite size of 100 using one of the clustering methods achieves almost the same fault

localization performance as using all test cases. For computational efficiency, all

experiments discussed in this subsection are conducted with a test suite size of 100,

down sampled from the original test suite using the K-Means clustering method.

From these experiments, we observe three typical patterns between fl-effectiveness

and failed test cases ratio. The three typical patterns can be represented by the re-

sults of Metallaxis, MUSE, and Op2 respectively, as shown in Figure 3.8, in which

number of fault cases that got fl-effectiveness less than or equal to 5 is plotted:

• Pattern A: fault localization performs better when the failed test cases ratio

increases at lower values and remains the same after some mid-range threshold.

The Metallaxis plot in Figure 3.8 represents this pattern.

• Pattern B: fault localization performs better when the failed test cases ratio

increases at lower values, then the performance remains the same after some

mid-range threshold, finally the performance drops after failed test cases ratio

reaches 90% or 95%. The MUSE plot in Figure 3.8 represents this pattern.
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• Pattern C: fault localization performance does not change much under different

failed test cases ratios. The Op2 plot in Figure 3.8 represents this pattern.

Overall, with a test suite size of 100, our findings suggest that the optimal failed

test cases ratio range is from 60% to 90%.

It is worth noticing that Abreu et al. [186] evaluated test suite options for

spectrum-based fault localization. Knowing some key differences in the study of

Abreu et al. that they only used Ochiai for evaluation and their fault cases most

involve a single faulty location in the program, our findings are different from theirs.

Abreu et al. found that adding failed test cases improve the fault localization

performance, but the benefit of having more than around 10 failed test cases is

marginal on average. However, we found that in many cases, there is much room to

improve the fault localization performance by adding more failed test cases.

Figure 3.8: Top-5 case counts of different failed test cases ratio

3.9 Conclusions and discussions
As the first attempt to leverage software fault localization techniques in the

HVAC domain, in this study, we proposed a framework of adopting spectrum-based

and mutation-based fault localization techniques for AHU control logic program

fault diagnosis.
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We evaluated the performance of 39 existing mutation-based and spectrum-based

fault localization techniques on 11 real-world AHU control logic fault cases from 2

AHU test beds and identified that, for AHU control logic fault localization, the

mutation-based Metallaxis method significantly outperformed all other methods,

while the computations of the other mutation-based method, MUSE, were invalid

in many cases. Due to the lack of existing control logic fault cases, we have to

develop our own test beds of 2 AHUs, from which a total of 11 fault cases are lever-

aged. With only 11 fault cases, we do not compute and claim the evaluation results

with statistical significance. However, the large effects demonstrated in Figure 3.2

and the diversity of the fault causes and fault fixing statements illustrated in Table

3.7 and Table 3.8 lead us to believe that Metallaxis’ superior performance on lo-

calizing control logic faults when compared with other algorithms is unlikely to be

coincidental. In the meantime, we recognize the limited size of the evaluation case

set and suggest future work of evaluating fault localization techniques on additional

fault cases to obtain results with statistical significance.

Based on our characterization of the control logic faults and the observations

of fault characteristics’ relationship to Metallaxis fault localization performance, we

would like to provide the following practical suggestions:

• If the control logic program under evaluation is relatively complete, i.e., it

contains all control logic semantic elements and the fixes to existing faults are

likely to be only about modifying existing control logic code, then one should

use Metallaxis as it is likely to provide very good fault localization results

• If the control logic program under evaluation is relatively incomplete, i.e. it

misses some control logic semantic elements (e.g. misses a local control loop

for a specific component) and the fault fixes likely involve adding new code for
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the missing logic, then one should rely more on manual troubleshooting and

only uses Metallaxis loosely

The differences between our evaluation of fault localization algorithms to those

done by others [3, 129] imply that there are some underlying differences between

HVAC control logic faults and the software faults considered by them [3, 129]. Our

work discussed in this chapter cannot answer what these differences are, and this

calls for future research on code analysis [187] of HVAC control logic programs.

We took a close look at what mutants we considered are most effective in sup-

porting Metallaxis computation for control logic fault localization. We also make

suggestions of three categories of mutation operators based on the categorization of

control logic fault fixes in terms of mutation operations and discussed why these sug-

gested mutation operators would lead Metallaxis to AHU control logic fault causes.

In this chapter, we also conducted sensitivity analysis to explore the setup op-

tions of fault localization computations in two aspects: 1) test suite size and down

sampling approaches, and 2) test suite failed test case ratio. The exploration is con-

ducted with 22 controlled experiments and the results suggest: 1) using clustering-

based down sampling methods to acquire a 100 test cases suite provides as good

fault localization performance as using tens of thousands of test cases; 2) a safe

choice of failed test cases ratio within test suite is ranging from 60% to 90%.

Postamble
In this chapter, I present the research work addressing the second research ques-

tion discussed in Chapter 1, structured as a self-contained journal paper draft.

This research mainly targets the identification of a software fault localization

technique among various existing software fault localization algorithms for AHU
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control logic fault diagnosis, through evaluation of considered software fault local-

ization algorithms against real-world AHU control logic fault cases. I was able to de-

velop 11 fault cases (with their fault symptoms and causes verified by BAS datasets

and control logic program simulation) to be used in the evaluation. My objective

is not to make claims with statistical significance based on fault localization evalu-

ation on these 11 fault cases. Instead, I developed these fault cases with the aim of

them being diverse in terms of fault types (symptoms), fault causes, and fault fixing

code types. According to the evaluation results, I found that among the considered

fault localization algorithms that suit for the task scenario of AHU control logic

fault cause diagnosis, the mutation-based Metallaxis method [130] outperformed all

other evaluated algorithms with a large margin.

The contributions of this research is summarized into the following points:

• A framework of casting AHU control logic fault diagnosis problem into a soft-

ware fault localization task

• Performance evaluation of spectrum-based and mutation-based fault localiza-

tion algorithms for the purpose of locating AHU control logic fault causes with

analysis of characteristics of control logic faults and their relationships to fault

localization performance

• Evaluate the mutation operators’ impact on fault localization and make mu-

tation operators suggestions based on analysis of actual fault fixes patterns

• Exploration of setup options for AHU control logic fault localization compu-

tation

Based on the evaluation results shown in this research, the potential industrial

deployment of software fault localization algorithm, more specifically, Metallaxis,

130



3.9. Conclusions and discussions

with the setup option guideline provided in this research, will aid the manual control

logic fault diagnosis to improve the efficiency of troubleshooting control logic fault

causes.

131



Chapter 4

An Integrated Use Case of Control

Logic Fault Identification and

Diagnosis

4.1 Introduction
To concretely show the application scenario and value of the proposed research

in a practical setting, in this chapter, I detail the usage of the proposed research

with a complete use case demo.

Two software applications, each implementing one research approach discussed in

Chapter 2 and 3, are developed and used in this demo. Details of these applications

are provided in Section 4.2. Leveraging the developed software applications, this

demo shows the processes of troubleshooting the control logic program of a real-

world AHU ( the "PAM" AHU test bed discussed in Chapter 3) through the following

sequential activities:

1. Information collection of the AHU under evaluation
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2. Automatic control logic fault definition using the control logic fault definition

software implementation

3. Automatic control logic fault detection of BAS historical data with regard to

the defined control logic faults

4. Computer-aided fault diagnosis with the fault localization software implemen-

tation

These four activities are detailed in dedicated sections after the details of system

implementation.

4.2 System Implementation

4.2.1 AHU control logic fault definition system

As discussed in Chapter 2, the fault definition system consists of a inference

engine and a HVAC ontology.

The developed HVAC ontology, shown in Chapter 2 (Figure 2.2), is implemented

as an XML Schema Definition (XSD) and is used to specify the requirements and

encoding of the AHU information. Information specified by the ontology is the

only information needed from the user (i.e. the only information needed about the

specific AHU system) as the input to the control logic fault definition inference

engine.

The inference engine has two layers of reasoning: the lower level reasoning mech-

anism encodes the reasoning mechanism responsible of deriving control logic fault

definition according to high level control objectives; the higher level reasoning mech-

anism merges the control logic fault definition results provided by the lower level

reasoning mechanism and resolves control logic fault conflicts if there exists any. The
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inference engine is implemented as a Java application and the implementation of the

two layers of reasoning mechanisms are completely decoupled as shown in Figure

2.3 so that extending the system with additional lower level reasoning mechanisms

can be done without modifying higher level reasoning implementation. In my im-

plementation, the inference engine outputs the control logic fault definition in two

forms: textual control logic fault definition list and executable Python script that

can be directly imported for control logic fault definition (additional information

about the BAS data set is needed, as will be showcased later in this chapter).

4.2.2 AHU control logic fault localization system

The control logic fault localization framework, shown in Chapter 3 (Figure 3.1),

is implemented in the Java programming language. The implementation contains

the following modules that shall be run sequentially:

1. Test Code Generation: generate control logic program JUnit test code accord-

ing to BAS data and control logic fault definition.

2. Mutant Generation: generate mutants using the Major framework [168]. This

is only needed for running mutation-based fault localization algorithms.

3. Test Execution: execute the JUnit tests with Tacoco [169] execution profile

analyzer.

4. Test Results Extraction: extract and summarize the test case results and

execution profiles.

5. Test Case Selection: select a subset of test cases for fault localization con-

sideration. This is only needed if not all test cases are considered in fault

localization.
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6. Fault Localization Calculation: calculate the fault localization results with

spectrum-based and / or mutation-based fault localization algorithms.

As shown in Figure 3.1, this implementation asks for the following inputs about

the AHU under evaluation:

• Control logic program source code encoded as a Java class, provided to the

"Mutant Generation" module.

• Control logic test suite from BAS data set containing all control logic input

data points as a csv file, provided to the "Test Code Generation" module.

• Control logic fault to be diagnosed as a Java mathematical expression with

Boolean result, provided to the "Test Code Generation" module as well.

The implemented fault localization framework outputs a CSV file containing the

calculated statement-wise suspiciousness values of the control logic program with

regard to the provided control logic fault expression, for each of the considered

fault localization algorithms. This result is further transformed into suspiciousness

ranking, analyzed and visualized with Python scripts.

4.3 Use case information collection

4.3.1 Specific AHU configuration information

For control logic fault definition, the information needed to specify the configu-

ration of the PAM AHU is encoded in an XML file listed below.

Listing 4.1: PAM AHU XML file
<?xml version="1.0" encoding="UTF-8"?>

<Project name="PAM DOH AHU-1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
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<AHUComponent name="Linked OAD-MAD-EAD" id="1"
compType="MixingBox_ModLinkOAMAEA">
<Function name="MBHeating" id="2" funcType="SAHeating">

<EnergyEfficiency name="MBEfficiency" id="3" efficiency="99" />
<FunctioningCondition name="MBHeatingCondition" id="4"

opAId="41" expOperator="GT" opBId="43" />
<Command name="MAO" id="5" varName="DOH_AHU-1_Economizer Damper

Output">
<SaturationPoint name="MAOMax" id="6" satType="Max"

satValue="100" />
<SaturationPoint name="MAOMin" id="7" satType="Min"

satValue="20" />
</Command>

</Function>
<Function name="MBCooling" id="8" funcType="SACooling">

<EnergyEfficiency name="MBEfficiency" id="9" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="10"

opAId="41" expOperator="LT" opBId="43" />
<Command name="MAO" id="11" varName="DOH_AHU-1_Economizer

Damper Output">
<SaturationPoint name="MAOMax" id="12" satType="Max"

satValue="100" />
<SaturationPoint name="MAOMin" id="13" satType="Min"

satValue="20" />
</Command>

</Function>
</AHUComponent>
<AHUComponent name="PHTCoil" id="20" compType="PreheatCoil">

<Function name="PCHeating" id="21" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="22" efficiency="1.0"

/>
<Command name="PHO" id="23" varName="DOH_AHU-1_Preheat Valve

Output">
<SaturationPoint name="PHOMax" id="24" satType="Max"

satValue="100" />
<SaturationPoint name="PHOMin" id="25" satType="Min"

satValue="0" />
</Command>

</Function>
</AHUComponent>
<AHUComponent name="CHWCoil" id="26" compType="CoolingCoil">

<Function name="CCCooling" id="27" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="28" efficiency="1.0"

/>
<Command name="CCO" id="29" varName="DOH_AHU-1_CHW Valve

Output">
<SaturationPoint name="CCOMax" id="30" satType="Max"

satValue="100" />
<SaturationPoint name="CCOMin" id="31" satType="Min"

satValue="0" />
</Command>

</Function>
</AHUComponent>
<AHUComponent name="VFDSF" id="32" compType="SupplyFan_VFD">

<Function name="SFPressurization" id="33"
funcType="SAPressurization">
<EnergyEfficiency name="SFEfficiency" id="34" efficiency="1.0"

/>
<Command name="SFO" id="35" varName="DOH_AHU-1_SA Fan VFD

Speed">
<SaturationPoint name="SFOMax" id="36" satType="Max"

satValue="100" />
<SaturationPoint name="SFOMin" id="37" satType="Min"

satValue="0" />
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</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDRF" id="38" compType="ReturnFan_VFD">

<Function name="RAFlowIncrease" id="133" funcType="RAFlowIncrease">
<EnergyEfficiency name="RFEfficiency" id="134" efficiency="1.0"

/>
<Command name="RFO" id="135" varName="DOH_AHU-1_RA Fan VFD

Speed">
<SaturationPoint name="RFOMax" id="136" satType="Max"

satValue="100" />
<SaturationPoint name="RFOMin" id="137" satType="Min"

satValue="0" />
</Command>

</Function>
</AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="41" varName="DOH_AHU-2_OA Temperature"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="42" varName="DOH_AHU-1_MAT"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="43" varName="DOH_AHU-1_RAT"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="44" varName="DOH_AHU-1_SAT"

sensorType="SupplyAirTemperature" />
<Sensor name="OAF" id="45" varName="DOH_AHU-1_OA Airflow"

sensorType="OutdoorAirFlow" />
<Sensor name="SSP" id="46" varName="DOH_AHU-1_Remote Static Pressure"

sensorType="SupplyAirPressure" />
<Sensor name="SAF" id="47" varName="DOH_AHU-1_SA Airflow"

sensorType="SupplyAirFlow" />
<Sensor name="RAF" id="48" varName="DOH_AHU-1_RA Airflow"

sensorType="ReturnAirFlow" />
<!-- Service setpoint -->
<SetPoint name="SSPSP" id="49" spValue="1.25" spType="Tracking" />
<SetPoint name="SAHeatingSP" id="50" spValue="45" spType="LowerBound"

/>
<SetPoint name="SACoolingSP" id="51" spValue="50" spType="UpperBound"

/>
<SetPoint name="RAFlowSP" id="58" spValue="DOH_AHU-1_SA Airflow SP"

spType="Tracking" />
<!-- Controllers -->
<ClosedLoopControl name="MAOHeating" id="52" setPointId="50"

feedBackId="44" outputId="5" pidType="Reverse" />
<ClosedLoopControl name="MAOCooling" id="53" setPointId="51"

feedBackId="44" outputId="11" pidType="Direct" />
<ClosedLoopControl name="PHOHeating" id="55" setPointId="50"

feedBackId="44" outputId="23" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="56" setPointId="51"

feedBackId="44" outputId="29" pidType="Direct" />
<ClosedLoopControl name="SFOPressurization" id="57" setPointId="49"

feedBackId="46" outputId="35" pidType="Reverse" />
<ClosedLoopControl name="RFOFlowIncrease" id="59" setPointId="58"

feedBackId="48" outputId="135" pidType="Reverse" />
</Project>

The AHU information contained in the above XML is the end product after all

user inputs. That is, the XML file shown above is the XML provided directly to the

inference engine for control logic fault definition.
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4.3.2 BAS data set

A BAS historical dataset is used to detect defined control logic faults, and later

to provide test cases for control logic fault diagnosis. For the PAM AHU, the system

is in normal operation mode 24 hours a day and we acquired 20 consecutive days

of data in November/December for our use case. The collected raw BAS dataset is

not interpolated and each data point has its own time stamps. This data set is then

interpolated into one-minute interval data, with a total of 28,800 samples. The data

set contains all the input and output variables of the control logic program.

4.3.3 Control logic program

The control manufacture of the PAM AHU is American Auto-matrix [188]. The

original control logic program of this AHU is implemented as different objects ref-

erencing each other in American Auto-matrix’s NBPro software. We have access to

this software and the control logic program is manually translated into Java code

with the help of the NBPro software documentation. The building manager and the

original control programmer of this AHU also offered help during the translation.

The translated Java program is verified by simulating it with control logic input

provided by the BAS dataset and comparing simulation output with actual control

logic outputs in the BAS dataset. Simulated data and actual BAS interpolated data

agrees well for most of the points, except for the cooling coil command. The BAS

data of the cooling coil command has erroneous readings. Due to this issue, all

cooling coil command related control logic problems are excluded in our study for

the PAM AHU.
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4.4 Control logic fault definition
Running the control logic fault definition application with the input XML file

shown in Section 4.3, a total of 16 control logic faults are defined for the PAM AHU,

as shown below. (Note that it is a coincidence that the number of the control logic

faults defined by the control logic fault definition system here and the number of

those defined manually in the motivating case study are both 16)

Listing 4.2: PAM AHU control logic fault definition

1,[DOH_AHU-1_SAT < 45 (continuously), DOH_AHU-2_OA Temperature >

DOH_AHU-1_RAT, DOH_AHU-1_Economizer Damper Output < 100]

2,[DOH_AHU-1_SAT > 50 (continuously), DOH_AHU-2_OA Temperature <

DOH_AHU-1_RAT, DOH_AHU-1_Economizer Damper Output < 100]

3,[DOH_AHU-1_SAT < 45 (continuously), DOH_AHU-1_Preheat Valve Output < 100]

4,[DOH_AHU-1_SAT > 50 (continuously), DOH_AHU-1_CHW Valve Output < 100]

5,[DOH_AHU-1_Remote Static Pressure < 1.25 (continuously), DOH_AHU-1_SA

Fan VFD Speed < 100]

6,[DOH_AHU-1_RA Airflow < DOH_AHU-1_SA Airflow SP (continuously),

DOH_AHU-1_RA Fan VFD Speed < 100]

7,[DOH_AHU-1_SAT > 45 (continuously), DOH_AHU-1_Preheat Valve Output > 0]

8,[DOH_AHU-1_SAT < 50 (continuously), DOH_AHU-1_CHW Valve Output > 0]

9,[DOH_AHU-1_Remote Static Pressure > 1.25 (continuously), DOH_AHU-1_SA

Fan VFD Speed > 0]

10,[DOH_AHU-1_RA Airflow > DOH_AHU-1_SA Airflow SP (continuously),

DOH_AHU-1_RA Fan VFD Speed > 0]

11,[DOH_AHU-2_OA Temperature > DOH_AHU-1_RAT, DOH_AHU-1_Economizer Damper

Output < 100, DOH_AHU-1_Preheat Valve Output > 0]

12,[DOH_AHU-2_OA Temperature < DOH_AHU-1_RAT, DOH_AHU-1_Economizer Damper
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Output < 100, DOH_AHU-1_CHW Valve Output > 0]

13,[DOH_AHU-2_OA Temperature > DOH_AHU-1_RAT, DOH_AHU-1_Economizer Damper

Output > 20, DOH_AHU-1_CHW Valve Output > 0]

14,[DOH_AHU-2_OA Temperature > DOH_AHU-1_RAT, DOH_AHU-1_Preheat Valve

Output > 0, DOH_AHU-1_CHW Valve Output > 0]

15,[DOH_AHU-2_OA Temperature < DOH_AHU-1_RAT, DOH_AHU-1_Economizer Damper

Output > 20, DOH_AHU-1_Preheat Valve Output > 0]

16,[DOH_AHU-2_OA Temperature < DOH_AHU-1_RAT, DOH_AHU-1_Preheat Valve

Output > 0, DOH_AHU-1_CHW Valve Output > 0]

4.5 Control logic fault detection
When detecting the existence of the 16 defined control logic faults, the following

thresholds are used.

• Temperature threshold: 2 °F

• Pressure threshold: 0.2 inch of water

• Air flow rate threshold: 200 CFM

For example, the first defined fault can be implemented as the following Python

code for fault definition:

Listing 4.3: PAM AHU control logic fault definition

temp_thresh = 2

if (pData[’DOH_AHU-1_SAT’] < 45 - temp_thresh) and \

(pData[’DOH_AHU-2_OA Temperature’] > pData[’DOH_AHU-1_RAT’]) and \

(pData[’DOH_AHU-1_Economizer Damper Output’] < 100): faultCount += 1
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Using thresholds in this manner to add margin to the expression that specifies

unsatisfied service requirements corresponds to the PID controller behavior (P con-

troller if being simplified in the control logic program simulation) in control logic

programs. The selection of the thresholds value shall be decided heuristically while

considering the values used as proportional gains in local component controllers.

For example, if the economizer PID/P controller has a proportional gain of 50, then

when the deviation between the supply air temperature and the set point is larger

than 2, then economizer control output should be saturated to 100 (computation of

PID controller is described in Chapter 2).

Note that troubleshooting the PID gain settings are out of the scope of the

proposed control logic program fault identification and localization framework. As

long as the P gains used in control logic program simulation corresponds to the

thresholds used in the control logic fault definition as described above, the framework

will be able to troubleshoot the control logic faults of focus.

Using these thresholds, the fault detection results from the 28,800 samples are

shown below, and visualized in Figure 4.1.

Listing 4.4: PAM AHU control logic fault definition

Fault_1 0

Fault_2 27989

Fault_3 0

Fault_4 16702

Fault_5 46

Fault_6 1

Fault_7 17834

Fault_8 4
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Fault_9 163

Fault_10 25505

Fault_11 0

Fault_12 11307

Fault_13 0

Fault_14 0

Fault_15 17589

Fault_16 1159

4.6 Control logic fault localization
In this use case, we show the diagnosis of "Fault 2" for the PAM AHU. This

fault is observed in 27,989 out of the 28,800 samples.

As discussed in Section 4.2, to conduct fault localization, the following steps are

taken based on our implementation.

1. The 28,800 samples from the BAS dataset and the focusing control logic fault

definition are provided to the test case generation module to generate explicit

non-parameterized JUnit test classes. Parameterized JUnit tests are not sup-

ported in the current implementation due to limitation of the Tacoco execution

profile analyzed utilized.

2. All mutation operators of the Major framework is leveraged to generate mu-

tants of the control logic program. A total of 336 mutants are generated

for the main logic section of the control logic program (mutants generated

for statement in helper functions and for control logic input assignments are

discarded).
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Figure 4.1: 1-minute-trigger fault flags for PAM AHU 1 with thresholds

3. The generated mutants, together with the original control logic program is ex-

ecuted with the generated JUnit tests by Tacoco to provide execution profiles.

While the previous steps took little time to conduct (within seconds), this

step is computationally expensive. Running 337 versions of the program with

regard to 28,800 tests means the control logic program needs to be executed

almost 10 million times. The tasks of mutant test executions can be con-
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ducted in a paralleled mannered because test executions for different mutant

are independent from each other. In my experiment, a Linux workstation with

Intel Xeon E5-2623 v4 CPU (8 logical cores @ 2.60 GHz) and 32 GB RAM is

utilized and this step can be finished in around 8 hours with paralleled tasks.

4. The Tacoco execution profiles and test execution results (pass/fail, kill/alive)

of original control logic program and mutants are summarized and extracted

by the test results extraction module. This step is done within 30 minutes.

5. The extracted test results are provided to the fault localization calculation

module, and the fault localization calculation is done in around 15 minutes.

Based on the fault localization algorithm evaluation results in Chapter 3, the

mutation-based Metallaxis algorithm outperforms other evaluated techniques con-

siderably. Thus, I use the Metallaxis fault localization suspiciousness results to

direct my manual search of the control logic fault cause. The Metallaxis calculation

results is visualized as a scatter plot in Figure 4.2.

Figure 4.2: PAM Fault 2 Metallaxis calculated statement suspiciousness

Following the list of control logic program statements ranked according the de-

scending order of the Metallaxis suspiciousness value, the control logic program is

manually examined. As an illustration, the top-10 ranked statements are shown in

Table 4.1.
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Line No. Suspiciousness Java control logic program statements

189 0.999535855 if (EnthalpySelect <MATLowLimPID) {
190 0.999446489 MnMxAvg1 = EnthalpySelect;
72 0.998641833 double MATStpt = 55;
134 0.998641833 double MATStptRemap = MATStpt;
177 0.998552387 double MAT_Control = PID_Normal(Mixed_Air_Temp, MATStptRemap, 30, FanCommand, 2);
154 0.985853829 double ElecRm_Space_Temp_Setpoint_Remap = ElecRm_Space_Temp;
59 0.985819597 double Static_Pressure_Setpoint = 1.25;
60 0.985819597 double Speed_Offset = 5;
81 0.985819597 int Control_Slect2 = 0;

Note: statements with same Metallaxis suspiciousness value are listed according to their line number sequence

Table 4.1: Metallaxis top-10 ranked suspicious statements of PAM AHU Fault 2

Sequentially checking the ranked statement list shown in Table 4.1, a fault caus-

ing statement is soon examined: MATStpt should be 50 °F instead of 55 °F. Context

of the fault cause and fixes are provided below.

Key logic details of the control logic program related to this fault are:

1. The normal economizer control is implemented as a direct acting PID con-

troller (LOC 177) with a set point of 55 °F (LOC 72).

2. The economizer control has a temperature bound switch, i.e., the economizer

control is on when -10 °F < OAT < 100 °F.

3. The economizer control has a enthalpy switch, i.e., the economizer control is

on when outdoor air enthalpy > 20.

This logic has the following issues causing the focusing fault:

1. The cooling function requirement for this unit is a set point of 50 °F (as

specified in the xml instance), not 55 °F (LOC 72).

2. The enthalpy switch of the economizer should be comparing the outdoor air

enthalpy with the return air enthalpy, rather than comparing outdoor air en-

thalpy with a static enthalpy value of 20 BTU/lb.
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3. The economizer closed-loop control (LOC 177) uses mixed air temperature as

feedback rather than discharge air temperature. (This is a problem, although it

is not the cause of any failed test cases in this test suite, verified by simulation)

With the help of Metallaxis ranked statements, we are able to locate one of the

three logic problems causing the focusing fault at the early statement of manual

examination and using it as the start point to troubleshoot the program.

4.7 Summary of the integrated use case
In previous sections of this chapter, we demonstrate the usage and value of the

research approaches proposed in Chapter 2 and Chapter 3 with a concrete and

real-world use case.

The prototype implementation of the proposed control logic fault identification

and localization framework was able to first formally derive the definition of 16

control logic faults for the PAM AHU under evaluation. The control logic fault

definition can be directly utilized for fault detection. Then control logic localization

framework casted the fault diagnosis problem into a software fault localization task

and leveraged the Metallaxis algorithm to provide guidance for manual control logic

examination. With the help of the fault localization results, we can discover the

program statements causing the fault at very early stage of the manual examination

process.

4.8 Envisioned industry use cases
We envision four typical use cases of our proposed approach once deployed in

the industry as an software application provided by the control manufacture. Each

envisioned use case is discussed with one subsection below.
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4.8.1 Use case 1: AHU control logic fault identification and

localization during functional test in commissioning

Brief description

This use case describes how the implementation of the proposed approach (here-

after referred to as application) helps control logic fault identification, detection and

diagnosis during HVAC control functional test during commissioning / recommis-

sioning / retro-commissioning.

Actor

The primary actor is the user of this application, who is in charge of control logic

verification of the AHU systems during commissioning.

Preconditions

1. AHU system design intents are collected in terms of sequence of operations and

control drawings (showing system component availability and data points).

2. BAS data is collected from functional tests or normal operation.

3. Access to control logic program is available.

Basic flow of events

1. The use case begins when the user starts to verify the control logic program

of the AHU system during commissioning.

2. The user instantiates the AHU component and control ontology based on the

AHU control design intents.

3. The user provides the instantiated ontology instance to the application.
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4. The application returns derived control logic fault definition back to the user

in terms of textual document and executable code.

5. The application checks the BAS data for existence of control logic faults.

6. The application shows the visual and summary of control logic fault detection

results.

7. The user selects an existing control logic fault for fault diagnosis.

8. The application executes the fault localization task with the selected fault.

9. The application returns ranked list of control logic program statements based

on suspiciousness values calculated by the fault localization algorithm.

10. The user finds and fixes the control logic fault causes with the assistance of

the ranked list from the previous step.

11. The application executes the modified control logic program with control logic

inputs from the BAS data and verifies the symptom of the fault disappears.

12. Return to 7 if the user wants to diagnose another existing fault.

Post-conditions

Existing control logic faults in the AHU systems are fixed.

4.8.2 Use case 2: AHU control logic program development

fault identification and localization

Brief description

This use case describes how the application helps the control logic program

developer to test and troubleshoot the control logic during program development.
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Actor

The primary actor is the control logic programmer who is in charge of generating

the control logic program code for the AHU system.

Preconditions

1. AHU system design intents are collected in terms of sequence of operations and

control drawings (showing system component availability and data points).

2. A suite of control logic test cases are available, either manually generated or

by test case generation techniques mentioned in Chapter 1.

3. Access to control logic program is available.

Basic flow of events

1. The use case begins when the control logic programmer finishes developing

the control logic program for the AHU and wants to verify the control logic

program implementation.

2. The control logic programmer instantiates the AHU component and control

ontology based on the AHU control design intents.

3. The control logic programmer provides the instantiated ontology instance to

the application.

4. The application returns derived control logic fault definition back to the user

in terms of textual document and executable code.

5. The application executes the control logic program with the test cases and

collects test outputs
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6. The application checks the control logic test cases input and outputs for exis-

tence of control logic faults.

7. The application shows the visual and summary of control logic fault detection

results.

8. The control logic programmer selects an existing control logic fault for trou-

bleshooting.

9. The application executes the fault localization task with the selected fault.

10. The application returns ranked list of control logic program statements based

on suspiciousness values calculated by the fault localization algorithm.

11. The control logic programmer debugs control logic program with the assistance

of the ranked list from the previous step.

12. The application executes the modified control logic program with the test cases

and verifies the symptom of the fault disappears.

13. Return to 8 if more faults need to be fixed.

Post-conditions

The updated control logic program is free of faults defined by the application.

4.8.3 Use case 3: AHU control logic fault identification and

continuous detection during normal operation

Brief description

This use case describes how the control logic fault definition function of the

application facilitates the implementation of control logic fault detection for AHU

system continuous monitoring.
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Actor

The primary actor is the implementer of fault detection rules for AHU continuous

monitoring / fault detection.

Preconditions

1. Access to AHU system control input/output real time data is available.

2. A rule-based fault detection platform is available for continuous monitoring

/fault detection of the HVAC systems.

3. AHU system design intents are collected in terms of sequence of operations and

control drawings (showing system component availability and data points).

Basic flow of events

1. The use case begins when the fault detection rules implementer starts to work

on implementing rules for continuous monitoring / fault detection for the AHU

system.

2. The implementer instantiates the AHU component and control ontology based

on the AHU control design intents.

3. The implementer provides the instantiated ontology instance to the applica-

tion.

4. The application returns derived control logic fault definition back to the user

in terms of textual document and executable code.

5. The implementer implements the fault definition from the previous step as

rules in the rule-based fault detection platform.
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Post-conditions

Continuous monitoring and fault detection of the AHU system control is in

operation with the rules based on control logic fault definition provided by the

application.

4.8.4 Use case 4: Reactive AHU control logic fault diagnosis

Brief description

This use case describes how control logic fault is diagnosed and fixed with the

assistance of the application after someone (e.g. building manager) reports the

existence of a control logic fault.

Actor

The primary actor is the person (user of the application) who is in charge of

troubleshooting the control logic program after someone reports the existence of a

control logic fault.

Preconditions

1. Access to BAS data containing control logic input/output data points

2. The existence and symptom of control logic fault is reported and available

3. Access to control logic program is available

Basic flow of events

1. The use case begins when the user starts to troubleshoot the control logic

program for a reported control logic fault.

2. The user specifies the symptom of the control logic fault to troubleshoot in

terms of control logic input/output variable expressions and supply it to the

application.

152



4.8. Envisioned industry use cases

3. The application checks the BAS data to verify the existence of control logic

fault and flag the BAS data as test cases.

4. The application shows the summary of the focusing fault.

5. The application executes the fault localization task for the focusing fault with

the flagged BAS data as test cases.

6. The application returns ranked list of control logic program statements based

on suspiciousness values calculated by the fault localization algorithm.

7. The user finds and fixes the control logic fault causes with the assistance of

the ranked list from the previous step.

8. The application executes the modified control logic program with control logic

inputs from the BAS data and verifies the symptom of the fault disappears.

Post-conditions

The reported control logic fault is diagnosed and fixed by the user.
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Conclusions

In this chapter, I summarize the contributions of the research work presented in

this thesis, echoing the research objectives discussed in Chapter 1, and discuss the

practical implications and future research directions.

5.1 Contributions
In this thesis, the presented research focuses on two of the four core activities of

the HVAC control logic fault identification and localization framework discussed in

Section 1.4:

• Generate control logic fault definition

• Locate the cause of identified faults

The contributions made by this research can be summarized into the follow-

ing five points, among which the first two are about generating control logic fault

definition and the latter three are about control logic fault localization:

1. A formalism of defining applicable AHU control logic faults for specific systems
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2. An AHU component and control ontology that specifies the information re-

quirements for defining control logic faults

3. A framework of casting AHU control logic fault diagnosis problem into a soft-

ware fault localization task

4. Performance evaluation of spectrum-based and mutation-based fault localiza-

tion algorithms for the purpose of locating AHU control logic fault causes

5. Identification of effective mutation operators and sensitivity analysis of setup

options for AHU control logic fault localization computation

Each of these research contributions is discussed in the following subsections.

A formalism of defining applicable AHU control logic faults

based on system-specific information

In order to conduct AHU systems control logic programs fault detection and di-

agnosis, the first step is to specify a set of potential control logic faults to be checked

against the behavior of the control logic. In current practice, HVAC commissioners

have to subjectively adapt "rules of thumb" instructions from existing HVAC con-

trol guidelines with their own interpretations and brainstorm what the applicable

types of control logic faults are for the specific AHU.

In this research, I proposed a formalized approach of deriving control logic fault

definition for AHUs that is customized according to the specific AHU system infor-

mation and is unambiguous in the sense that the fault is defined in terms of control

logic program input/output variable mathematical expressions, and can be directly

adopted by fault detection tools, as shown in the use case in Chapter 4. From the

high-level objectives of occupancy comfort and energy efficiency maximization, I
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identified four general control goals of AHU systems, and developed corresponding

reasoning algorithms to identify potential violations of these goals, i.e. to derive

control logic fault definition, based on AHU system-specific information. I also de-

veloped an approach of resolving control logic fault definition conflict when merging

faults defined under different goals. The proposed formalism is implemented as a

prototype in this research, and the validation results shows that the prototype is able

to provide customized control logic fault definition for 27 different AHUs specified

by ASHRAE [1] with an average precision of 95.4%.

This contribution corresponds to research objective 1.1 discussed in Chapter 1.

The developed formalism is a systematic approach to specify customized control logic

fault definition. With this, the HVAC commissioners no longer need to conduct ad-

hoc adaptation of general narrative instructions to identify potential control logic

faults for a specific AHU. In this research, I focus on AHU systems, however, I

envision that the proposed formalism can be extended to be used in other types of

HVAC equipment such as variable air volume boxes, boilers, and chiller, assuming

that they are also being controlled via Direct Digital Controls (DDC), and their

operations also aim at certain general control objectives such as energy efficiency

maximization.

An AHU component and control ontology that specifies the

information requirements for defining control logic faults

In order to specify customized control logic fault definition, certain AHU system-

specific information needs to be collected. These information requirements are not

explicitly identified previously. Without these information requirements being ex-

plicitly identified and organized, a systematic approach of deriving control logic fault
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definition based on system-specific information cannot be developed.

To address this limitation, I identified the information requirements of the fault

definition formalism alongside the development of the formalism. In general, These

information requirements consists of three aspects of information about AHUs: 1)

AHU component and function information, 2) AHU component control information,

and 3) AHU service requirement information. Targeting research objective 1.3 dis-

cussed in Chapter 1, I developed an HVAC information ontology to specify these

requirements in detail by integrating and extending existing HVAC BIM standards.

Targeting research objective 1.2 discussed in Chapter 1, I also identified the informa-

tion source of the developed ontology from BIM standards by generating a mapping

table between essential information elements specified in the developed ontology and

existing HVAC BIM standards, namely Brick, IFC 4 and gbXML 6.01. The devel-

oped object-oriented ontology is easily extensible to include new AHU components

and functions. The ontology’s ability to specify information about an AHU and

support the fault definition reasoning is validated together with the fault definition

formalism discussed in the previous subsection.

This contribution, together with the previous contribution, form a formalized

approach that extracts information about AHU system into an ontology instance and

systematically derives control logic fault definition through ontological reasoning.

The ontology developed in this research focuses on information about AHU systems.

In order to use the formalism for fault definition of other types of HVAC equipment,

additional work needs to be conducted to identify the information requirements,

develop the ontology and the goal-based reasoning algorithms, following the strategy

similar to the one discussed in Chapter 2.

157



Chapter 5. Conclusions

A framework of casting AHU control logic fault diagnosis

problem into a software fault localization task

In current practice, the diagnosis of control logic faults, i.e. localization of the

code in the control logic programs that causes the control logic faults, requires the

HVAC control programmers/commissioners to manually read the whole control logic

program to understand the logic, which is very time-consuming [11] and error-prone

due to human cognition limitations.

To alleviate this problem, in this research, I aim at leveraging software fault

localization techniques in the HVAC domain, to provide a computer-aided approach

for AHU control logic fault diagnosis. In order to adopt software fault localization

techniques, I formulated the AHU control logic fault diagnosis process into a com-

putation framework (Figure 3.1) according to the software unit testing paradigm

and the computation procedures of spectrum-based and mutation-based software

fault localization techniques. In this framework, the inputs of HVAC domain ar-

tifacts are AHU control logic program source code and BAS dataset with control

logic input/output variables. Based on these inputs, the framework specifies a se-

quence of activities to perform software fault localization computation for diagnosing

AHU control logic fault causes, including 1) control logic simplification, translation

and verification, 2) control logic fault detection through simulation, 3) control logic

mutants generation (only needed if running mutation-based fault localization algo-

rithms), 4) control logic program testing and execution profile extraction, and 5)

fault localization algorithms execution. The framework also specifies the input and

output artifacts of each activity. In this research, the implementation of this frame-

work successfully provide fault localization algorithms computation results for 11

AHU control logic faults from 2 real-world AHU systems.
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Performance evaluation of spectrum-based and mutation-based

fault localization algorithms for the purpose of locating AHU

control logic fault causes

The framework discussed in the previous contribution support the computations

of various software fault localization algorithms. Plenty of software fault localization

algorithms have been proposed in the software engineering domain, and without

evaluation, it is unknown which algorithm(s) works best for the fault diagnosis of

AHU control logic programs.

In this research, in order to identify a fault localization algorithm that effectively

locate AHU control logic fault causes, I evaluated the performance of 39 existing

mutation-based and spectrum-based fault localization techniques on 11 real-world

AHU control logic fault cases from 2 AHU test beds. I identified that, for AHU

control logic fault localization, the mutation-based Metallaxis method significantly

outperforms all other evaluated methods. My evaluation results contradicts with

existing evaluation of these techniques in the software engineering domain. The rea-

sons of why other evaluated techniques are not as good as Metallaxis are identified.

Multiple existing user studies have shown that when a fault localization tool

is able to rank a faulty statement within the top-5 position, it will help the pro-

grammer to debug much faster. The Metallaxis algorithm’s performance in my

evaluation reached a median value of 3.5, meaning that the programmer will reach

the faulty statement within 4 statements if he/she follows the Metallaxis ranking list

to diagnose AHU control logic faults. Thus, it is expected that Metallaxis can help

HVAC control programmers/commissioners to diagnose control logic faults much

faster than diagnosing without its help.

I also characterized the control logic fault cases in the evaluation set in terms of
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1) causes of control logic faults, and 2) software code statements to fix the faults.

These characteristics showed the diversity of the 11 fault cases. The relationships

observed between these characteristics and the Metallaxis fault localization per-

formance showed that Metallaxis works best when 1) the control logic program is

relatively complete in terms of its logic semantic elements, and 2) when the fault

can be fixed by modifying existing code rather than adding/deleting code.

Identification of effective mutation operators and sensitivity

analysis of setup options for AHU control logic fault localiza-

tion computation

Spectrum-based fault localization algorithms perform computation based on a

test suite of passed and failed test cases. In addition to a test suite, the compu-

tation of mutation-based fault localization algorithms also requires the generation

of program mutants. The setup options with regard to the test suite and mutant

generation for these fault localization algorithms have direct impacts on fault lo-

calization performance. What’s more, mutation-based fault localization algorithms

require the execution of each test case against each program mutant, which can be

computationally very expensive when the considered test cases size and mutants size

are large.

In order to identify what mutation operators work best for diagnosing AHU

control logic faults, I summarized effective mutants considered in the Metallaxis fault

localization evaluation. I also categorized actual control logic fault fixes in terms

of mutation operations. These results lead to the suggestions of three categories

of mutation operators that will boost Metallaxis fault localization performance for

localizing AHU control logic faults: 1) Changing literal values with other literal
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values of same data type; 2) Changing variable names with other variable names

that have assigned values, and with literal values of the same data type as the

variable to be replaced; 3) Deleting assignment statements, conditional blocks, and

logical expression(s) of conditional branches.

In this research, in order to identify strategies to select test cases that provide

peak fault localization performance with efficient computation, I also conducted

sensitivity analysis to explore two aspects of setup options for AHU control logic

fault diagnosis with software fault localization techniques. These two aspects are:

1) test suite size and down sampling methods, and 2) failed test cases ratio. The

same 11 fault cases used in the fault localization evaluation are utilized in this

work to evaluate the performance of a total of 29 different fault localization setup

options. From the experiments results, I identified that: 1) using clustering-based

down sampling methods to acquire a 100 test cases suite provides as good fault

localization performance as using tens of thousands of test cases (fault localization

computation time is linearly proportional to the size of test suite); 2) a safe choice

of failed test cases ratio within test suite is a range from 60% to 90%.

Summary

With the aforementioned contributions, I address two major research objectives

in the computation framework of HVAC control logic fault identification and diag-

nosis (Figure 1.3).

To facilitate the systematic derivation of customized control logic fault definition,

I developed a formalism of conducting ontological reasoning about AHU system-

specific information to specify applicable control logic faults for the specific AHU.

The AHU information ontology used for the reasoning was developed together with

the identification of its information sources from existing BIM standards. With
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these contributions, the HVAC professionals can specify customized control logic

fault definition for AHU systems under evaluation without ad-hoc reasoning. They

only need to provide factual information about the AHU system that is clearly

specified in the ontology.

To help the control logic programmers/commissioners to locate the control logic

fault causes inside the control logic programs more effectively, I developed a frame-

work that facilitates the adoption of software fault localization techniques in di-

agnosing control logic faults. I evaluated existing spectrum-based and mutation-

based fault localization techniques and identified that the mutation-based Metallaxis

method outperforms others when used for diagnosing control logic faults defined by

the formalism developed for the first research objective. I also explored AHU control

logic fault localization setup options to identify strategies to improve computational

efficiency. With these contributions, the control logic programmers/commissioners

are expect to diagnose control logic faults much faster, through the fault localization

tool that can perform automatic computation for each fault within tens of minutes.

These contributions address the challenges of control logic fault verification iden-

tified in Chapter 1, with limitations that will be discussed in the Section 5.3 together

with future research direction.

5.2 Practical implications
The outcome of this research has the following practical implications on practi-

tioners in the domain of HVAC system control implementation and commissioning.
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Providing a complete framework to deploy systematic HVAC

control logic fault verification

The HVAC control logic fault verification framework (Figure 1.3) presented in

this research details a complete verification process of HVAC control logic programs.

This is showcased with the use case presented in Chapter 4. The applicability of

this framework makes it practical for HVAC system control practitioners, especially

HVAC control manufactures, to adopt the framework and develop corresponding

products/service to improve the HVAC system performance and alleviate the prob-

lem of HVAC control logic faults, which have an estimated impact of 12 trillion BTU

energy wasted every year in the United States.

Providing a formalism to automatically specify control logic

fault definition for HVAC FDD

I developed a formalism that can automatically derive control logic fault defini-

tion for HVAC systems based on the information of specific systems. The formalism

requires factual information that can be collected from sequence of operations, con-

trol drawing submittals, and existing BIMs (e.g. IFC, gbXML) if available. The

formalism provides control logic fault definition that can be directly adopted by

rule-based fault detection systems. The formalism liberated commissioners from

manual ad-hoc reasoning of what faults should be checked for specific AHUs under

evaluation. The formalism’s practicability motivates the wide adoption of control

logic FDD in existing HVAC DDC systems.
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Identifying a computational fault localization approach that

has the potential to greatly improve control logic fault diag-

nosis efficiency

A framework of utilizing spectrum-based and mutation-based software fault lo-

calization algorithms to help locate control logic fault causes is proposed in the

research presented in Chapter 3. My evaluation of the fault localization perfor-

mance showed that, in terms of median value, the mutation-based fault localization

algorithm can rank AHU control logic fault causing statements within top-5 posi-

tions. User studies showed that, when faulty statements are ranked within top-5

positions, the fault localization results can greatly help the programmer to fix the

fault faster. This research is expected to motivate control manufactures to imple-

ment the proposed fault localization framework in the same software platform they

provide to control programmers/commissioners to develop control logic programs.

When the programmers/commissioners use the software to troubleshoot control logic

programs, the fault localization functionality can help them to troubleshoot control

logic faults faster.

5.3 Future work directions
Based on the work conducted in this research and its outcome, I present the

following future work directions.

Studying automatic inference of HVAC information to support

the reasoning of control logic fault definition

In Chapter 2, I presented the research of developing a formalism of deriving AHU

control logic fault definition based on system-specific information. This system-
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specific information requirements are specified in the HVAC information ontology

developed in the research. Although a considerate amount of information contained

in the ontology can be mapped from existing BIM standards, such as IFC, gbXML,

and Brick, information about AHU component functionalities, which is essential to

the deriving of control logic fault definition, is not contained in these BIM standards.

To use the developed fault definition approach, the user needs to specify this com-

ponent functionality related information based on the sequence of operation (SOO)

of the AHU system. However, this requires the user’s knowledge to understand the

SOO and supply ontology required information.

Ideally, every component and sensor installed in the AHU systems has a func-

tional purpose, so the component functionality related information required by the

fault definition reasoning may be inferred by reasoning about the information and

arrangements of the available components and sensors installed in the AHU systems.

For example, if an outdoor air flow sensor is installed in the supply air duct after the

outdoor air damper, then it is very likely that the outdoor air damper will be used to

provide the function of maintaining an outdoor air flow rate set point. On the other

hand, if there is a separate two-stage (open/close) outdoor air damper installed in

addition to the modulating outdoor air damper, then it is very likely that the mod-

ulating outdoor air damper will not have functions about supply air quality control.

Based on this opinion, aiming at avoiding the need of human heuristic knowledge

and manual ad-hoc work, I propose the future research direction of studying the

automatic inference of AHU component functionality information based on factual

information, such as the topological configuration of components and sensors inside

an AHU system.
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Expanding and formalizing control logic fault definition rea-

soning algorithms

Reasoning algorithms of violations of four general control goals are identified

and developed in Chapter 2. Although these four control goals cover the majority

of the control logic faults discussed in existing case studies [4], during the validation

study of the fault definition prototype, I found that certain requirements of the

AHUs specified in the sequence of operations are not covered by any of the four

reasoning algorithms. A typical example of such requirements is the low temperature

mixing box protection. Observations like this call for research to identify additional

control goals and develop additional reasoning algorithms to be included in the fault

definition formalism.

The needs of additional control goals and reasoning algorithms to be considered

for deriving control logic fault definition also call for a more formalized understand-

ing of the constitutes of control goals and/or fault definition reasoning algorithms

to provide a search space of reasoning algorithms and a principled description of

what elements form control goals and/or fault definition reasoning algorithms.

Investigating expanding the fault definition derivation formal-

ism to domains outside of HVAC systems

The fault definition formalism developed in Chapter 2 focuses on AHU control

logic fault definition. The formal classification approach adopted in the research has

its generality and there is no constraint to limit its use within AHU systems.

As discussed in Chapter 1, the developed control logic fault definition derivation

approach is a formalization of the reasoning procedures of people to derive system-

specific requirements according to general control objectives. The problem I dealt
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with is the requirement specification of a cyber-physical system, in which the re-

quirements to the control (cyber) system is based on high level objectives about the

operation of the physical system, such as achieving optimal energy efficiency and

providing required services with maximum capacity. Although I have not recognized

similar cases in other domains, it is expected that this scenario of having require-

ments of a specific system coming from the application of high-level general rules is

not unique. In my opinion, it is valuable to research on the generalization of the

developed formalism so that similar cases in other domains, such as other cyber-

physical systems, can potentially benefit from the proposed approach by adapting

the approach to their use.

Expanding the control logic fault cases for fault localization

evaluation

In Chapter 3, I evaluated the performance of software fault localization algo-

rithms for diagnosing AHU control logic faults. Test beds for this evaluation work

need to contain: 1) control logic programs, 2) control logic faults and corresponding

fault fix (i.e. faulty statements) locations, and 3) control logic program test cases.

After an intensive search on the Internet, I did not find any publicly available test

beds that can be utilized in the evaluation. Thus I developed my own test beds of 2

AHUs with 11 real-world control logic faults for research work conducted in Chap-

ter 3. Nonetheless, hardly any statistical significant conclusions can be drawn with

only 11 fault cases. In order to make more convincing evaluation conclusions, more

control logic fault cases are needed. Moreover, a pool of well organized real-world

control logic fault cases can be very valuable to many other research topics, such as

building energy simulation, control logic code analysis, etc.
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Conducting code analysis of HVAC control logic and faults

In Chapter 3, my evaluation of fault localization performances of mutation-based

and spectrum-based algorithms show that mutation-based Metallaxis technique out-

performed other techniques considerably. This contradicts with previous studies in

the software engineering domain, which showed that mutation-based techniques per-

formed poorly on real faults of software. The contradictory results imply that there

may be some fundamental differences between HVAC control logic programs and

typical software applications. Research presented in this thesis cannot answer this

question, which calls for future research on code analysis of HVAC control logic

programs and faults.
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Appendix A

AHU ontology instances of 27

ASHRAE AHUs

Listing A.1: ASHRAE AHU 1
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU1: CV1A1-XSX21"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent compType="MixingBox_ModOA" id="1" name="OAD">

<Function funcType="SpaceCO2Decrease" id="2" name="MBCO2Decrease"
funcRank="1">
<EnergyEfficiency name="MBEfficiency" id="3"

efficiency="99"></EnergyEfficiency>
<Command name="MAO" id="56" varName="AHU1oad">

<SaturationPoint name="MAOMax" id="4" satType="Max"
satValue="100"></SaturationPoint>

<SaturationPoint name="MAOMin" id="5" satType="Min"
satValue="10"></SaturationPoint>

</Command>
</Function>

</AHUComponent>
<AHUComponent compType="PreheatCoil" id="18" name="PHTCoil">

<Function funcType="SAHeating" id="19" name="PCHeating">
<EnergyEfficiency name="PCEfficiency" id="20"

efficiency="1.0"></EnergyEfficiency>
<Command name="PHO" id="21" varName="AHU1pho">

<SaturationPoint name="PHOMax" id="22" satType="Max"
satValue="100"></SaturationPoint>

<SaturationPoint name="PHOMin" id="23" satType="Min"
satValue="0"></SaturationPoint>

</Command>
</Function>

</AHUComponent>
<AHUComponent compType="CoolingCoil" id="24" name="CHWCoil">

<Function funcType="SACooling" id="25" name="CCCooling">
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<EnergyEfficiency name="CCEfficiency" id="26"
efficiency="1.0"></EnergyEfficiency>

<Command name="CCO" id="27" varName="AHU1cco">
<SaturationPoint name="CCOMax" id="28" satType="Max"

satValue="100"></SaturationPoint>
<SaturationPoint name="CCOMin" id="29" satType="Min"

satValue="0"></SaturationPoint>
</Command>

</Function>
</AHUComponent>
<AHUComponent compType="SupplyFan_CAV" id="30"

name="CAVSF"></AHUComponent>
<AHUComponent compType="Humidifier" id="31" name="Humidifier">

<Function funcType="SAHumidification" id="32"
name="HMHumidification">
<EnergyEfficiency name="HMEfficiency" id="33"

efficiency="1.0"></EnergyEfficiency>
<Command name="HMO" id="34" varName="AHU1hmo">

<SaturationPoint name="HMOMax" id="34" satType="Max"
satValue="100"></SaturationPoint>

<SaturationPoint name="HMOMin" id="35" satType="Min"
satValue="0"></SaturationPoint>

</Command>
</Function>

</AHUComponent>
<!-- Sensors -->
<Sensor sensorType="OutdoorAirTemperature" id="38" name="OAT"

varName="AHU1oat"></Sensor>
<Sensor sensorType="SupplyAirTemperature" id="39" name="SAT"

varName="AHU1sat"></Sensor>
<Sensor sensorType="MixedAirTemperature" id="40" name="MAT"

varName="AHU1mat"></Sensor>
<Sensor sensorType="ReturnAirTemperature" id="41" name="RAT"

varName="AHU1rat"></Sensor>
<Sensor id="42" name="SAH" sensorType="SupplyAirHumidity"

varName="AHU1sah"></Sensor>
<Sensor id="43" name="SpaceTemp" sensorType="SpaceTemperature"

varName="AHU1spaceTemp"></Sensor>
<Sensor id="44" name="SpaceCO2" sensorType="SpaceCO2"

varName="AHU1spaceCO2"></Sensor>
<Sensor id="45" name="RAH" sensorType="ReturnAirHumidity"

varName="AHU1rah"></Sensor>
<!-- Service setpoint -->
<SetPoint name="CoolingSP" spValue="58" id="46"

spType="UpperBound"></SetPoint>
<SetPoint name="HeatingSP" spValue="53" id="47"

spType="LowerBound"></SetPoint>
<SetPoint name="SAHSP" spValue="30" id="48"

spType="Tracking"></SetPoint>
<SetPoint name="SACO2" spValue="1000" id="49"

spType="UpperBound"></SetPoint>
<!-- Controllers -->
<ClosedLoopControl name="MAOCO2Decrease" id="50" setPointId="49"

feedBackId="44" outputId="56" pidType="Direct"></ClosedLoopControl>
<ClosedLoopControl name="PHOHeating" id="53" setPointId="47"

feedBackId="39" outputId="21" pidType="Reverse"></ClosedLoopControl>
<ClosedLoopControl name="CCOCooling" id="54" setPointId="46"

feedBackId="39" outputId="27" pidType="Direct"></ClosedLoopControl>
<ClosedLoopControl name="HMOHumidification" id="55" setPointId="48"

feedBackId="42" outputId="34" pidType="Reverse"></ClosedLoopControl>
</Project>
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Listing A.2: ASHRAE AHU 2
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU2: CV1B1-XSX12"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD-EAD" id="1"

compType="MixingBox_ModLinkOAMAEA">
<Function name="MBCooling" id="8" funcType="SACooling">

<EnergyEfficiency name="MBEfficiency" id="9" efficiency="99" />
<FunctioningCondition name="MBCoolingEfficiency" id="10"

opAId="29" expOperator="LT" opBId="31" />
<Command name="MAO" id="11" varName="AHU2oad">

<SaturationPoint name="MAOMax" id="12" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="13" satType="Min"
satValue="10" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="2-Stage PHTCoil" id="14" compType="PreheatCoil">

<Function name="PCHeating" id="15" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="16" efficiency="1.0"

/>
<Command name="PHO" id="17" varName="AHU2pho">

<SaturationPoint name="PHOMax" id="18" satType="Max"
satValue="2" />

<SaturationPoint name="PHOMin" id="19" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="CHWCoil" id="20" compType="CoolingCoil">

<Function name="CCOCooling" id="21" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="22" efficiency="1.0"

/>
<Command name="CCO" id="23" varName="AHU2cco">

<SaturationPoint name="CCOMax" id="24" satType="Max"
satValue="100" />

<SaturationPoint name="CCOMin" id="25" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="CAVSF" id="26"

compType="SupplyFan_CAV"></AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="29" varName="AHU2oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="30" varName="AHU2mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="31" varName="AHU2rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="32" varName="AHU2sat"

sensorType="SupplyAirTemperature" />
<Sensor name="SpaceTemp" id="33" varName="AHU2spaceTemp"

sensorType="SpaceTemperature" />
<!-- Service setpoint -->
<SetPoint name="CoolingSP" spValue="58" id="34" spType="UpperBound" />
<SetPoint name="HeatingSP" spValue="53" id="35" spType="LowerBound" />
<!-- Controllers -->
<ClosedLoopControl name="MAOCooling" id="37" setPointId="34"

feedBackId="32" outputId="11" pidType="Direct" />
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<ClosedLoopControl name="PHOHeating" id="38" setPointId="35"
feedBackId="32" outputId="17" pidType="Reverse" />

<ClosedLoopControl name="CCOCooling" id="39" setPointId="34"
feedBackId="32" outputId="23" pidType="Direct" />

</Project>

Listing A.3: ASHRAE AHU 3
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU3: CV1C1-XSX12"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD-EAD" id="1"

compType="MixingBox_ModLinkOAMAEA">
<Function name="MBCooling" id="8" funcType="SACooling">

<EnergyEfficiency name="MBEfficiency" id="9" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="10"

opAId="29" expOperator="LT" opBId="31" />
<Command name="MAO" id="11" varName="AHU3oad">

<SaturationPoint name="MAOMax" id="12" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="13" satType="Min"
satValue="10" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="PHTCoil" id="14" compType="PreheatCoil">

<Function name="PCHeating" id="15" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="16" efficiency="1.0"

/>
<Command name="PHO" id="17" varName="AHU3pho">

<SaturationPoint name="PHOMax" id="18" satType="Max"
satValue="100" />

<SaturationPoint name="PHOMin" id="19" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="2-Stage CHWCoil" id="20" compType="CoolingCoil">

<Function name="CCCooling" id="21" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="22" efficiency="1.0"

/>
<Command name="CCO" id="23" varName="AHU3cco">

<SaturationPoint name="CCOMax" id="24" satType="Max"
satValue="2" />

<SaturationPoint name="CCOMin" id="25" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="CAVSF" id="26"

compType="SupplyFan_CAV"></AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="29" varName="AHU3oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="30" varName="AHU3mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="31" varName="AHU3rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="32" varName="AHU3sat"

sensorType="SupplyAirTemperature" />
<Sensor name="SpaceTemp" id="33" varName="AHU3spaceTemp"
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sensorType="SpaceTemperature" />
<!-- Service setpoint -->
<SetPoint name="CoolingSP" spValue="58" id="34" spType="UpperBound" />
<SetPoint name="HeatingSP" spValue="53" id="35" spType="LowerBound" />
<!-- Controllers -->
<ClosedLoopControl name="MAOCooling" id="37" setPointId="34"

feedBackId="32" outputId="11" pidType="Direct" />
<ClosedLoopControl name="PHOHeating" id="38" setPointId="35"

feedBackId="32" outputId="17" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="39" setPointId="34"

feedBackId="32" outputId="23" pidType="Direct" />
</Project>

Listing A.4: ASHRAE AHU 4
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU4: CV1D1-XSX11"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="2-Stage OAD" id="1"

compType="MixingBox_2StageOA"></AHUComponent>
<AHUComponent name="2-Stage PHTCoil" id="2" compType="PreheatCoil">

<Function name="PCHeating" id="3" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="4" efficiency="1.0" />
<Command name="PHO" id="25" varName="AHU4pho">

<SaturationPoint name="PHOMax" id="5" satType="Max"
satValue="2" />

<SaturationPoint name="PHOMin" id="6" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="2-Stage CHWCoil" id="7" compType="CoolingCoil">

<Function name="CCCooling" id="8" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="9" efficiency="1.0" />
<Command name="CCO" id="10" varName="AHU4cco">

<SaturationPoint name="CCOMax" id="11" satType="Max"
satValue="2" />

<SaturationPoint name="CCOMin" id="12" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="CAVSF" id="13"

compType="SupplyFan_CAV"></AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="16" varName="AHU4oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="17" varName="AHU4mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="18" varName="AHU4rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="19" varName="AHU4sat"

sensorType="SupplyAirTemperature" />
<Sensor name="SpaceTemp" id="20" varName="AHU4spaceTemp"

sensorType="SpaceTemperature" />
<!-- Service setpoint -->
<SetPoint name="CoolingSP" spValue="58" id="21" spType="UpperBound" />
<SetPoint name="HeatingSP" spValue="53" id="22" spType="LowerBound" />
<!-- Controllers -->
<ClosedLoopControl name="PHOHeating" id="23" setPointId="22"
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feedBackId="19" outputId="25" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="24" setPointId="21"

feedBackId="19" outputId="10" pidType="Direct" />
</Project>

Listing A.5: ASHRAE AHU 5
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU5: CV2A1-XSX32"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD-EAD" id="1"

compType="MixingBox_ModLinkOAMAEA">
<Function name="MBCooling" id="8" funcType="SACooling">

<EnergyEfficiency name="MBEfficiency" id="9" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="10"

opAId="36" expOperator="LT" opBId="38" />
<Command name="MAO" id="11" varName="AHU5oad">

<SaturationPoint name="MAOMax" id="12" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="13" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="MinOAD" id="14" compType="MixingBox_ModMinOA">

<Function name="MinOADOAFlowIncrease" id="15"
funcType="OAFlowIncrease">
<EnergyEfficiency name="MinOADEfficiency" id="16"

efficiency="99" />
<Command name="MinOAO" id="17" varName="AHU5minOad">

<SaturationPoint name="MinOADMax" id="18" satType="Max"
satValue="100" />

<SaturationPoint name="MinOADMin" id="19" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="PHTCoil" id="20" compType="PreheatCoil">

<Function name="PCHeating" id="21" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="22" efficiency="1.0"

/>
<Command name="PHO" id="23" varName="AHU5pho">

<SaturationPoint name="PHOMax" id="24" satType="Max"
satValue="100" />

<SaturationPoint name="PHOMin" id="25" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="CHWCoil" id="26" compType="CoolingCoil">

<Function name="CCCooling" id="27" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="28" efficiency="1.0"

/>
<Command name="CCO" id="29" varName="AHU5cco">

<SaturationPoint name="CCOMax" id="30" satType="Max"
satValue="100" />

<SaturationPoint name="CCOMin" id="31" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
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<AHUComponent name="CAVSF" id="32"
compType="SupplyFan_CAV"></AHUComponent>

<AHUComponent name="CAVRF" id="33"
compType="ReturnFan_CAV"></AHUComponent>

<!-- Sensors -->
<Sensor name="OAT" id="36" varName="AHU5oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="37" varName="AHU5mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="38" varName="AHU5rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="39" varName="AHU5sat"

sensorType="SupplyAirTemperature" />
<Sensor name="SpaceTemp" id="40" varName="AHU5spaceTemp"

sensorType="SpaceTemperature" />
<Sensor name="MinOAFlow" id="41" varName="AHU5minOAFlow"

sensorType="OutdoorAirFlow" />
<!-- Service setpoint -->
<SetPoint name="CoolingSP" spValue="58" id="42" spType="UpperBound" />
<SetPoint name="HeatingSP" spValue="53" id="43" spType="LowerBound" />
<SetPoint name="MinOAFlowSP" spValue="1500" id="49"

spType="LowerBound" />
<!-- Controllers -->
<ClosedLoopControl name="MAOCooling" id="45" setPointId="42"

feedBackId="39" outputId="11" pidType="Direct" />
<ClosedLoopControl name="MinOADOAIncrease" id="46" setPointId="49"

feedBackId="41" outputId="17" pidType="Reverse" />
<ClosedLoopControl name="PHOHeating" id="47" setPointId="43"

feedBackId="39" outputId="23" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="48" setPointId="42"

feedBackId="39" outputId="29" pidType="Direct" />
</Project>

Listing A.6: ASHRAE AHU 6
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU6: CV2B1-XSX12"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD-EAD" id="1"

compType="MixingBox_ModLinkOAMAEA">
<Function name="MBCooling" id="8" funcType="SACooling">

<EnergyEfficiency name="MBEfficiency" id="9" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="10"

opAId="30" expOperator="LT" opBId="32" />
<Command name="MAO" id="11" varName="AHU6oad">

<SaturationPoint name="MAOMax" id="12" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="13" satType="Min"
satValue="10" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="2-Stage PHTCoil" id="14" compType="PreheatCoil">

<Function name="PCHeating" id="15" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="16" efficiency="1.0"

/>
<Command name="PHO" id="17" varName="AHU6pho">

<SaturationPoint name="PHOMax" id="18" satType="Max"
satValue="2" />

<SaturationPoint name="PHOMin" id="19" satType="Min"
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satValue="0" />
</Command>

</Function>
</AHUComponent>
<AHUComponent name="CHWCoil" id="20" compType="CoolingCoil">

<Function name="CCCooling" id="21" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="22" efficiency="1.0"

/>
<Command name="CCO" id="23" varName="AHU6cco">

<SaturationPoint name="CCOMax" id="24" satType="Max"
satValue="100" />

<SaturationPoint name="CCOMin" id="25" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="CAVSF" id="26"

compType="SupplyFan_CAV"></AHUComponent>
<AHUComponent name="CAVRF" id="27"

compType="ReturnFan_CAV"></AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="30" varName="AHU6oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="31" varName="AHU6mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="32" varName="AHU6rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="33" varName="AHU6sat"

sensorType="SupplyAirTemperature" />
<Sensor name="SpaceTemp" id="34" varName="AHU6spaceTemp"

sensorType="SpaceTemperature" />
<!-- Service setpoint -->
<SetPoint name="CoolingSP" spValue="58" id="35" spType="UpperBound" />
<SetPoint name="HeatingSP" spValue="53" id="36" spType="LowerBound" />
<!-- Controllers -->
<ClosedLoopControl name="MAOCooling" id="38" setPointId="35"

feedBackId="33" outputId="11" pidType="Direct" />
<ClosedLoopControl name="PHOHeating" id="39" setPointId="36"

feedBackId="33" outputId="17" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="40" setPointId="35"

feedBackId="33" outputId="23" pidType="Direct" />
</Project>

Listing A.7: ASHRAE AHU 7
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU7: CV2C1-XSX12"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD-EAD" id="1"

compType="MixingBox_ModLinkOAMAEA">
<Function name="MBCooling" id="8" funcType="SACooling">

<EnergyEfficiency name="MBEfficiency" id="9" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="10"

opAId="30" expOperator="LT" opBId="32" />
<Command name="MAO" id="11" varName="AHU7oad">

<SaturationPoint name="MAOMax" id="12" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="13" satType="Min"
satValue="10" />

</Command>
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</Function>
</AHUComponent>
<AHUComponent name="PHTCoil" id="14" compType="PreheatCoil">

<Function name="PCHeating" id="15" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="16" efficiency="1.0"

/>
<Command name="PHO" id="17" varName="AHU7pho">

<SaturationPoint name="PHOMax" id="18" satType="Max"
satValue="100" />

<SaturationPoint name="PHOMin" id="19" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="2-Stage CHWCoil" id="20" compType="CoolingCoil">

<Function name="CCCooling" id="21" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="22" efficiency="1.0"

/>
<Command name="CCO" id="23" varName="AHU7cco">

<SaturationPoint name="CCOMax" id="24" satType="Max"
satValue="2" />

<SaturationPoint name="CCOMin" id="25" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="CAVSF" id="26"

compType="SupplyFan_CAV"></AHUComponent>
<AHUComponent name="CAVRF" id="27"

compType="ReturnFan_CAV"></AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="30" varName="AHU7oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="31" varName="AHU7mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="32" varName="AHU7rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="33" varName="AHU7sat"

sensorType="SupplyAirTemperature" />
<Sensor name="SpaceTemp" id="34" varName="AHU7spaceTemp"

sensorType="SpaceTemperature" />
<!-- Service setpoint -->
<SetPoint name="CoolingSP" spValue="58" id="35" spType="UpperBound" />
<SetPoint name="HeatingSP" spValue="53" id="36" spType="LowerBound" />
<!-- Controllers -->
<ClosedLoopControl name="MAOCooling" id="38" setPointId="35"

feedBackId="33" outputId="11" pidType="Direct" />
<ClosedLoopControl name="PHOHeating" id="39" setPointId="36"

feedBackId="33" outputId="17" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="40" setPointId="35"

feedBackId="33" outputId="23" pidType="Direct" />
</Project>

Listing A.8: ASHRAE AHU 8
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU8: CV2D1-XSX12"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD-EAD" id="1"

compType="MixingBox_ModLinkOAMAEA">
<Function name="MBCooling" id="8" funcType="SACooling">
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<EnergyEfficiency name="MBEfficiency" id="9" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="10"

opAId="30" expOperator="LT" opBId="32" />
<Command name="MAO" id="11" varName="AHU8oad">

<SaturationPoint name="MAOMax" id="12" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="13" satType="Min"
satValue="10" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="2-Stage PHTCoil" id="14" compType="PreheatCoil">

<Function name="PCHeating" id="15" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="16" efficiency="1.0"

/>
<Command name="PHO" id="17" varName="AHU8pho">

<SaturationPoint name="PHOMax" id="18" satType="Max"
satValue="100" />

<SaturationPoint name="PHOMin" id="19" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="2-Stage CHWCoil" id="20" compType="CoolingCoil">

<Function name="CCCooling" id="21" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="22" efficiency="1.0"

/>
<Command name="CCO" id="23" varName="AHU8cco">

<SaturationPoint name="CCOMax" id="24" satType="Max"
satValue="2" />

<SaturationPoint name="CCOMin" id="25" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="CAVSF" id="26"

compType="SupplyFan_CAV"></AHUComponent>
<AHUComponent name="CAVRF" id="27"

compType="ReturnFan_CAV"></AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="30" varName="AHU8oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="31" varName="AHU8mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="32" varName="AHU8rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="33" varName="AHU8sat"

sensorType="SupplyAirTemperature" />
<Sensor name="SpaceTemp" id="34" varName="AHU8spaceTemp"

sensorType="SpaceTemperature" />
<!-- Service setpoint -->
<SetPoint name="CoolingSP" spValue="58" id="35" spType="UpperBound" />
<SetPoint name="HeatingSP" spValue="53" id="36" spType="LowerBound" />
<!-- Controllers -->
<ClosedLoopControl name="MAOCooling" id="38" setPointId="35"

feedBackId="33" outputId="11" pidType="Direct" />
<ClosedLoopControl name="PHOHeating" id="39" setPointId="36"

feedBackId="33" outputId="17" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="40" setPointId="35"

feedBackId="33" outputId="23" pidType="Direct" />
</Project>
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Listing A.9: ASHRAE AHU 9
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU9: VAV1A1-25022"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD-EAD" id="1"

compType="MixingBox_ModLinkOAMAEA">
<Function name="MBOAIncrease" id="2" funcType="OAFlowIncrease"

funcRank="1">
<EnergyEfficiency name="MBEfficiency" id="3" efficiency="99" />
<Command name="MAO" id="4" varName="AHU9oad">

<SaturationPoint name="MAOMax" id="5" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="6" satType="Min"
satValue="0" />

</Command>
</Function>
<Function name="MBCooling" id="13" funcType="SACooling"

funcRank="2">
<EnergyEfficiency name="MBEfficiency" id="14" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="15"

opAId="45" expOperator="LT" opBId="47" />
<Command name="MAO" id="16" varName="AHU9oad">

<SaturationPoint name="MAOMax" id="17" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="18" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="PHTCoil" id="19" compType="PreheatCoil">

<Function name="PCHeating" id="20" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="21" efficiency="1.0"

/>
<Command name="PHO" id="22" varName="AHU9pho">

<SaturationPoint name="PHOMax" id="23" satType="Max"
satValue="100" />

<SaturationPoint name="PHOMin" id="24" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="CHWCoil" id="25" compType="CoolingCoil">

<Function name="CCCooling" id="26" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="27" efficiency="1.0"

/>
<Command name="CCO" id="28" varName="AHU9cco">

<SaturationPoint name="CCOMax" id="29" satType="Max"
satValue="100" />

<SaturationPoint name="CCOMin" id="30" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDSF" id="31" compType="SupplyFan_VFD">

<Function name="SFPressurization" id="32"
funcType="SAPressurization">
<EnergyEfficiency name="SFEfficiency" id="33" efficiency="1.0"

/>
<Command name="SFO" id="34" varName="AHU9sfo">

<SaturationPoint name="SFOMax" id="35" satType="Max"
satValue="100" />

<SaturationPoint name="SFOMin" id="36" satType="Min"
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satValue="30" />
</Command>

</Function>
</AHUComponent>
<AHUComponent name="Humidifier" id="37" compType="Humidifier">

<Function name="HMHumidification" id="38"
funcType="SAHumidification">
<EnergyEfficiency name="HMEfficiency" id="39" efficiency="1.0"

/>
<Command name="HMO" id="40" varName="AHU9hmo">

<SaturationPoint name="HMOMax" id="41" satType="Max"
satValue="100" />

<SaturationPoint name="HMOMin" id="42" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="45" varName="AHU9oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="46" varName="AHU9mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="47" varName="AHU9rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="48" varName="AHU9sat"

sensorType="SupplyAirTemperature" />
<Sensor name="SAH" id="49" varName="AHU9sah"

sensorType="SupplyAirHumidity" />
<Sensor name="RAH" id="50" varName="AHU9rah"

sensorType="ReturnAirHumidity" />
<Sensor name="SpaceCO2" id="51" varName="AHU9spaceCO2"

sensorType="SpaceCO2" />
<Sensor name="MinOAF" id="52" varName="AHU9oaf"

sensorType="OutdoorAirFlow" />
<Sensor name="SSP" id="53" varName="AHU9ssp"

sensorType="SupplyAirPressure" />
<!-- Service setpoint -->
<SetPoint name="SSPSP" id="54" spValue="0.75" spType="Tracking" />
<SetPoint name="SATSP" id="55" spValue="55" spType="Tracking" />
<SetPoint name="RAHSP" id="56" spValue="30" spType="Tracking" />
<SetPoint name="OAFSP" id="64" spValue="1500" spType="LowerBound" />
<!-- Controllers -->
<ClosedLoopControl name="MAOOAFIncrease" id="57" setPointId="64"

feedBackId="52" outputId="4" pidType="Reverse" />
<ClosedLoopControl name="MAOCooling" id="59" setPointId="55"

feedBackId="48" outputId="16" pidType="Direct" />
<ClosedLoopControl name="PHOHeating" id="60" setPointId="55"

feedBackId="48" outputId="22" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="61" setPointId="55"

feedBackId="48" outputId="28" pidType="Direct" />
<ClosedLoopControl name="SFOPressurization" id="62" setPointId="54"

feedBackId="53" outputId="34" pidType="Reverse" />
<ClosedLoopControl name="HMOHumidification" id="63" setPointId="56"

feedBackId="50" outputId="40" pidType="Reverse" />
</Project>

Listing A.10: ASHRAE AHU 10
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU10: VAV1D1-11031"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
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<!-- Components -->
<AHUComponent name="Linked OAD-MAD" id="1"

compType="MixingBox_ModLinkOAMA">
<Function name="OAFlowIncrease" id="101" funcType="OAFlowIncrease">

<EnergyEfficiency name="MBEfficiency" id="102" efficiency="99"
/>

<Command name="OAD" id="103" varName="AHU10oad">
<SaturationPoint name="OADMax" id="104" satType="Max"

satValue="100" />
<SaturationPoint name="OADMin" id="105" satType="Min"

satValue="10" />
</Command>

</Function>
</AHUComponent>
<AHUComponent name="2-Stage PHTCoil" id="2" compType="PreheatCoil">

<Function name="PCHeating" id="3" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="4" efficiency="1.0" />
<Command name="PHO" id="5" varName="AHU10pho">

<SaturationPoint name="PHOMax" id="6" satType="Max"
satValue="2" />

<SaturationPoint name="PHOMin" id="7" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="2-Stage CHWCoil" id="8" compType="CoolingCoil">

<Function name="CCCooling" id="9" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="10" efficiency="1.0"

/>
<Command name="CCO" id="11" varName="AHU10cco">

<SaturationPoint name="CCOMax" id="12" satType="Max"
satValue="2" />

<SaturationPoint name="CCOMin" id="13" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDSF" id="14" compType="SupplyFan_VFD">

<Function name="SFPressurization" id="15"
funcType="SAPressurization">
<EnergyEfficiency name="SFEfficiency" id="16" efficiency="1.0"

/>
<Command name="SFO" id="17" varName="AHU10sfo">

<SaturationPoint name="SFOMax" id="18" satType="Max"
satValue="100" />

<SaturationPoint name="SFOMin" id="19" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="22" varName="AHU10oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="23" varName="AHU10mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="24" varName="AHU10rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="25" varName="AHU10sat"

sensorType="SupplyAirTemperature" />
<Sensor name="MinOAF" id="26" varName="AHU10minOAF"

sensorType="OutdoorAirFlow" />
<Sensor name="SSP" id="27" varName="AHU10ssp"

sensorType="SupplyAirPressure" />
<!-- Service setpoint -->
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<SetPoint name="SSPSP" id="28" spValue="0.75" spType="Tracking" />
<SetPoint name="SATSP" id="29" spValue="55" spType="Tracking" />
<SetPoint name="OAFSP" id="291" spValue="1000" spType="LowerBound" />
<!-- Controllers -->
<ClosedLoopControl name="PHOHeating" id="30" setPointId="29"

feedBackId="25" outputId="5" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="31" setPointId="29"

feedBackId="25" outputId="11" pidType="Direct" />
<ClosedLoopControl name="SFOPressurization" id="32" setPointId="28"

feedBackId="27" outputId="17" pidType="Reverse" />
<ClosedLoopControl name="OADFlowIncrease" id="321" setPointId="291"

feedBackId="26" outputId="103" pidType="Reverse" />
</Project>

Listing A.11: ASHRAE AHU 11
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU11: VAV2A1-25124"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD" id="1"

compType="MixingBox_ModLinkOAMA">
<Function name="MBOAIncrease" id="2" funcType="OAFlowIncrease"

funcRank="1">
<EnergyEfficiency name="MBEfficiency" id="3" efficiency="99" />
<Command name="MAO" id="4" varName="AHU11oad">

<SaturationPoint name="MAOMax" id="5" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="6" satType="Min"
satValue="0" />

</Command>
</Function>
<Function name="MBCooling" id="13" funcType="SACooling"

funcRank="2">
<EnergyEfficiency name="MBEfficiency" id="14" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="15"

opAId="58" expOperator="LT" opBId="57" />
<Command name="MAO" id="16" varName="AHU11oad">

<SaturationPoint name="MAOMax" id="17" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="18" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="PHTCoil" id="19" compType="PreheatCoil">

<Function name="PCHeating" id="20" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="21" efficiency="1.0"

/>
<Command name="PHO" id="22" varName="AHU11pho">

<SaturationPoint name="PHOMax" id="23" satType="Max"
satValue="100" />

<SaturationPoint name="PHOMin" id="24" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="CHWCoil" id="25" compType="CoolingCoil">

<Function name="CCCooling" id="26" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="27" efficiency="1.0"

/>
<Command name="CCO" id="28" varName="AHU11cco">
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<SaturationPoint name="CCOMax" id="29" satType="Max"
satValue="100" />

<SaturationPoint name="CCOMin" id="30" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDSF" id="31" compType="SupplyFan_VFD">

<Function name="SFPressurization" id="32"
funcType="SAPressurization">
<EnergyEfficiency name="SFEfficiency" id="33" efficiency="1.0"

/>
<Command name="SFO" id="34" varName="AHU11sfo">

<SaturationPoint name="SFOMax" id="35" satType="Max"
satValue="100" />

<SaturationPoint name="SFOMin" id="36" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDRF" id="37" compType="ReturnFan_VFD">

<Function name="RFO" id="371" funcType="MAPressurization">
<EnergyEfficiency name="RFEfficiency" id="372" efficiency="1" />
<Command name="RFO" id="373" varName="AHU11rfo">

<SaturationPoint name="RFOMax" id="374" satType="Max"
satValue="100" />

<SaturationPoint name="RFOMin" id="375" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="EAD" id="38" compType="MixingBox_ModEA">

<Function name="SpaceDepressurization" id="39"
funcType="SpaceDepressurization">
<EnergyEfficiency name="EADEfficiency" id="40" efficiency="99"

/>
<Command name="EAO" id="41" varName="AHU11ead">

<SaturationPoint name="EAOMax" id="42" satType="Max"
satValue="100" />

<SaturationPoint name="EAOMin" id="43" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="46" varName="AHU11oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="47" varName="AHU11mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="48" varName="AHU11rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="49" varName="AHU11sat"

sensorType="SupplyAirTemperature" />
<Sensor name="RAH" id="50" varName="AHU11rah"

sensorType="ReturnAirHumidity" />
<Sensor name="OAH" id="51" varName="AHU11oah"

sensorType="OutdoorAirHumidity" />
<Sensor name="SpaceCO2" id="52" varName="AHU11co2"

sensorType="SpaceCO2" />
<Sensor name="MinOAF" id="53" varName="AHU11minoaf"

sensorType="OutdoorAirFlow" />
<Sensor name="SSP" id="54" varName="AHU11ssp"

sensorType="SupplyAirPressure" />
<Sensor name="SpaceAP" id="55" varName="AHU11spaceap"
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sensorType="SpacePressure" />
<Sensor name="RAP" id="56" varName="AHU11rap"

sensorType="ReturnAirPressure" />
<Sensor name="RAE" id="57" varName="AHU11rae"

sensorType="ReturnAirEnthalpy" />
<Sensor name="OAE" id="58" varName="AHU11oae"

sensorType="OutdoorAirEnthalpy" />
<!-- Service setpoint -->
<SetPoint name="SSPSP" id="59" spValue="0.75" spType="Tracking" />
<SetPoint name="SpaceAPSP" id="60" spValue="0.02" spType="Tracking" />
<SetPoint name="SATSP" id="61" spValue="55" spType="Tracking" />
<SetPoint name="MinOAFSP" id="62" spValue="1500" spType="LowerBound" />
<SetPoint name="MAPSP" id="621" spValue="0.1" spType="Tracking" />
<!-- Controllers -->
<ClosedLoopControl name="MAOOAIncrease" id="63" setPointId="62"

feedBackId="53" outputId="4" pidType="Reverse" />
<ClosedLoopControl name="MAOCooling" id="65" setPointId="61"

feedBackId="49" outputId="16" pidType="Direct" />
<ClosedLoopControl name="PHOHeating" id="66" setPointId="61"

feedBackId="49" outputId="22" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="67" setPointId="61"

feedBackId="49" outputId="28" pidType="Direct" />
<ClosedLoopControl name="SFOPressurization" id="68" setPointId="59"

feedBackId="54" outputId="34" pidType="Reverse" />
<ClosedLoopControl name="EAOSpaceDepressurization" id="69"

setPointId="60" feedBackId="55" outputId="41" pidType="Direct" />
<ClosedLoopControl name="RFOMAPressurization" id="691"

setPointId="621" feedBackId="56" outputId="373" pidType="Reverse" />
</Project>

Listing A.12: ASHRAE AHU 12
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU12: VAV2A2-21232"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD-EAD" id="1"

compType="MixingBox_ModLinkOAMAEA">
<Function name="MBCooling" id="8" funcType="SACooling">

<EnergyEfficiency name="MBEfficiency" id="9" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="10"

opAId="41" expOperator="LT" opBId="43" />
<Command name="MAO" id="11" varName="AHU12oad">

<SaturationPoint name="MAOMax" id="12" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="13" satType="Min"
satValue="10" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="MinOAD" id="14" compType="MixingBox_ModMinOA">

<Function name="MinOADOAIncrease" id="15" funcType="OAFlowIncrease">
<EnergyEfficiency name="MinOADEfficiency" id="16"

efficiency="99" />
<Command name="MinOAD" id="17" varName="AHU12minoad">

<SaturationPoint name="MinOADMax" id="18" satType="Max"
satValue="100" />

<SaturationPoint name="MinOADMin" id="19" satType="Min"
satValue="0" />

</Command>
</Function>
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</AHUComponent>
<AHUComponent name="PHTCoil" id="20" compType="PreheatCoil">

<Function name="PCHeating" id="21" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="22" efficiency="1.0"

/>
<Command name="PHO" id="23" varName="AHU12pho">

<SaturationPoint name="PHOMax" id="24" satType="Max"
satValue="100" />

<SaturationPoint name="PHOMin" id="25" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="CHWCoil" id="26" compType="CoolingCoil">

<Function name="CCCooling" id="27" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="28" efficiency="1.0"

/>
<Command name="CCO" id="29" varName="AHU12cco">

<SaturationPoint name="CCOMax" id="30" satType="Max"
satValue="100" />

<SaturationPoint name="CCOMin" id="31" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDSF" id="32" compType="SupplyFan_VFD">

<Function name="SFPressurization" id="33"
funcType="SAPressurization">
<EnergyEfficiency name="SFEfficiency" id="34" efficiency="1.0"

/>
<Command name="SFO" id="35" varName="AHU12sfo">

<SaturationPoint name="SFOMax" id="36" satType="Max"
satValue="100" />

<SaturationPoint name="SFOMin" id="37" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDRF" id="38" compType="ReturnFan_VFD">

<Function name="RFRAFlowIncrease" id="381"
funcType="RAFlowIncrease">
<EnergyEfficiency name="RFEfficiency" id="382" efficiency="1.0"

/>
<Command name="RFO" id="383" varName="AHU12rfo">

<SaturationPoint name="RFOMax" id="384" satType="Max"
satValue="100" />

<SaturationPoint name="RFOMin" id="385" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="41" varName="AHU12oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="42" varName="AHU12mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="43" varName="AHU12rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="44" varName="AHU12sat"

sensorType="SupplyAirTemperature" />
<Sensor name="MinOAF" id="45" varName="AHU12minOAF"

sensorType="OutdoorAirFlow" />
<Sensor name="SSP" id="46" varName="AHU12ssp"

sensorType="SupplyAirPressure" />
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<Sensor name="SAF" id="47" varName="AHU12saf"
sensorType="SupplyAirFlow" />

<Sensor name="RAF" id="48" varName="AHU12raf"
sensorType="ReturnAirFlow" />

<!-- Service setpoint -->
<SetPoint name="SSPSP" id="49" spValue="0.75" spType="Tracking" />
<SetPoint name="SATSP" id="50" spValue="55" spType="Tracking" />
<SetPoint name="MinOAFlowSP" id="51" spValue="1500"

spType="LowerBound" />
<SetPoint name="RAFSP" id="511" spValue="1200" spType="Tracking" />
<!-- Controllers -->
<ClosedLoopControl name="MAOCooling" id="53" setPointId="50"

feedBackId="44" outputId="11" pidType="Direct" />
<ClosedLoopControl name="MinOADOAIncrease" id="54" setPointId="51"

feedBackId="45" outputId="17" pidType="Reverse" />
<ClosedLoopControl name="PHOHeating" id="55" setPointId="50"

feedBackId="44" outputId="23" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="56" setPointId="50"

feedBackId="44" outputId="29" pidType="Direct" />
<ClosedLoopControl name="SFOPressurization" id="57" setPointId="49"

feedBackId="46" outputId="35" pidType="Reverse" />
<ClosedLoopControl name="RFORAIncrease" id="571" setPointId="511"

feedBackId="48" outputId="383" pidType="Reverse" />
</Project>

Listing A.13: ASHRAE AHU 13
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU13: VAV2B1-15132"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD" id="1"

compType="MixingBox_ModLinkOAMA">
<Function name="MBCooling" id="8" funcType="SACooling">

<EnergyEfficiency name="MBEfficiency" id="9" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="10"

opAId="41" expOperator="LT" opBId="43" />
<Command name="MAO" id="11" varName="AHU13oad">

<SaturationPoint name="MAOMax" id="12" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="13" satType="Min"
satValue="10" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="4-Stage PHTCoil" id="14" compType="PreheatCoil">

<Function name="PCHeating" id="15" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="16" efficiency="1.0"

/>
<Command name="PHO" id="17" varName="AHU13pho">

<SaturationPoint name="PHOMax" id="18" satType="Max"
satValue="4" />

<SaturationPoint name="PHOMin" id="19" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="CHWCoil" id="20" compType="CoolingCoil">

<Function name="CCCooling" id="21" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="22" efficiency="1.0"

/>
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<Command name="CCO" id="23" varName="AHU13cco">
<SaturationPoint name="CCOMax" id="24" satType="Max"

satValue="100" />
<SaturationPoint name="CCOMin" id="25" satType="Min"

satValue="0" />
</Command>

</Function>
</AHUComponent>
<AHUComponent name="VFDSF" id="26" compType="SupplyFan_VFD">

<Function name="SFPressurization" id="27"
funcType="SAPressurization">
<EnergyEfficiency name="SFEfficiency" id="28" efficiency="1.0"

/>
<Command name="SFO" id="29" varName="AHU13sfo">

<SaturationPoint name="SFOMax" id="30" satType="Max"
satValue="100" />

<SaturationPoint name="SFOMin" id="31" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDRF" id="32" compType="ReturnFan_VFD">

<Function name="RFO" id="371" funcType="MAPressurization">
<EnergyEfficiency name="RFEfficiency" id="372" efficiency="1" />
<Command name="RFO" id="373" varName="AHU13rfo">

<SaturationPoint name="RFOMax" id="374" satType="Max"
satValue="100" />

<SaturationPoint name="RFOMin" id="375" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="EAD" id="33" compType="MixingBox_ModEA">

<Function name="SpaceDepressurization" id="34"
funcType="SpaceDepressurization">
<EnergyEfficiency name="EADEfficiency" id="35" efficiency="99"

/>
<Command name="EAO" id="36" varName="AHU13ead">

<SaturationPoint name="EAOMax" id="37" satType="Max"
satValue="100" />

<SaturationPoint name="EAOMin" id="38" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="41" varName="AHU13oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="42" varName="AHU13mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="43" varName="AHU13rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="44" varName="AHU13sat"

sensorType="SupplyAirTemperature" />
<Sensor name="SSP" id="45" varName="AHU13ssp"

sensorType="SupplyAirPressure" />
<Sensor name="SpaceAP" id="46" varName="AHU13spaceap"

sensorType="SpacePressure" />
<Sensor name="RAP" id="47" varName="AHU13rap"

sensorType="ReturnAirPressure" />
<!-- Service setpoint -->
<SetPoint name="SSPSP" id="48" spValue="0.75" spType="Tracking" />
<SetPoint name="SpaceAPSP" id="49" spValue="0.02" spType="Tracking" />
<SetPoint name="SATSP" id="50" spValue="55" spType="Tracking" />
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<SetPoint name="MAPSP" id="621" spValue="0.1" spType="Tracking" />
<!-- Controllers -->
<ClosedLoopControl name="MAOCooling" id="52" setPointId="50"

feedBackId="44" outputId="11" pidType="Direct" />
<ClosedLoopControl name="PHOHeating" id="53" setPointId="50"

feedBackId="44" outputId="17" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="54" setPointId="50"

feedBackId="44" outputId="23" pidType="Direct" />
<ClosedLoopControl name="SFOPressurization" id="55" setPointId="48"

feedBackId="45" outputId="29" pidType="Reverse" />
<ClosedLoopControl name="SpaceDepressurization" id="56"

setPointId="49" feedBackId="46" outputId="36" pidType="Direct" />
<ClosedLoopControl name="RFOMAPressurization" id="691"

setPointId="621" feedBackId="47" outputId="373" pidType="Reverse" />
</Project>

Listing A.14: ASHRAE AHU 14
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU14: VAV2B2-25142"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD" id="1"

compType="MixingBox_ModLinkOAMA">
<Function name="MBCooling" id="8" funcType="SACooling">

<EnergyEfficiency name="MBEfficiency" id="9" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="10"

opAId="42" expOperator="LT" opBId="44" />
<Command name="MAO" id="11" varName="AHU14oad">

<SaturationPoint name="MAOMax" id="12" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="13" satType="Min"
satValue="10" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="4-Stage PHTCoil" id="14" compType="PreheatCoil">

<Function name="PCHeating" id="15" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="16" efficiency="1.0"

/>
<Command name="PHO" id="17" varName="AHU14pho">

<SaturationPoint name="PHOMax" id="18" satType="Max"
satValue="4" />

<SaturationPoint name="PHOMin" id="19" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="CHWCoil" id="20" compType="CoolingCoil">

<Function name="CCCooling" id="21" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="22" efficiency="1.0"

/>
<Command name="CCO" id="23" varName="AHU14cco">

<SaturationPoint name="CCOMax" id="24" satType="Max"
satValue="100" />

<SaturationPoint name="CCOMin" id="25" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDSF" id="26" compType="SupplyFan_VFD">

<Function name="SFPressurization" id="27"
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funcType="SAPressurization">
<EnergyEfficiency name="SFEfficiency" id="28" efficiency="1.0"

/>
<Command name="SFO" id="29" varName="AHU14sfo">

<SaturationPoint name="SFOMax" id="30" satType="Max"
satValue="100" />

<SaturationPoint name="SFOMin" id="31" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDRF" id="32" compType="ReturnFan_VFD">

<Function name="RFO" id="371" funcType="MAPressurization">
<EnergyEfficiency name="RFEfficiency" id="372" efficiency="1" />
<Command name="RFO" id="373" varName="AHU14rfo">

<SaturationPoint name="RFOMax" id="374" satType="Max"
satValue="100" />

<SaturationPoint name="RFOMin" id="375" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="EAD" id="33" compType="MixingBox_ModEA">

<Function name="SpaceDepressurization" id="34"
funcType="SpaceDepressurization">
<EnergyEfficiency name="EADEfficiency" id="35" efficiency="99"

/>
<Command name="EAO" id="36" varName="AHU14ead">

<SaturationPoint name="EAOMax" id="37" satType="Max"
satValue="100" />

<SaturationPoint name="EAOMin" id="38" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="MinOAD" id="39"

compType="MixingBox_ModMinOA"></AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="42" varName="AHU14oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="43" varName="AHU14mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="44" varName="AHU14rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="45" varName="AHU14sat"

sensorType="SupplyAirTemperature" />
<Sensor name="SSP" id="46" varName="AHU14ssp"

sensorType="SupplyAirPressure" />
<Sensor name="SpaceAP" id="47" varName="AHU14spaceap"

sensorType="SpacePressure" />
<Sensor name="RAP" id="48" varName="AHU14rap"

sensorType="ReturnAirPressure" />
<Sensor name="MAP" id="49" varName="AHU14map"

sensorType="MixedAirPressure" />
<!-- Service setpoint -->
<SetPoint name="SSPSP" id="50" spValue="0.75" spType="Tracking" />
<SetPoint name="SpaceAPSP" id="51" spValue="0.02" spType="Tracking" />
<SetPoint name="SATSP" id="52" spValue="55" spType="Tracking" />
<SetPoint name="MAPSP" id="621" spValue="0.1" spType="Tracking" />
<!-- Controllers -->
<ClosedLoopControl name="MAOCooling" id="54" setPointId="52"

feedBackId="45" outputId="11" pidType="Direct" />
<ClosedLoopControl name="PHOHeating" id="55" setPointId="52"
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feedBackId="45" outputId="17" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="56" setPointId="52"

feedBackId="45" outputId="23" pidType="Direct" />
<ClosedLoopControl name="SFOPressurization" id="57" setPointId="50"

feedBackId="46" outputId="29" pidType="Reverse" />
<ClosedLoopControl name="SpaceDepressurization" id="58"

setPointId="51" feedBackId="47" outputId="36" pidType="Direct" />
<ClosedLoopControl name="RFOMAPressurization" id="691"

setPointId="621" feedBackId="48" outputId="373" pidType="Reverse" />
</Project>

Listing A.15: ASHRAE AHU 15
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU15: VAV2C1-25133"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD" id="1"

compType="MixingBox_ModLinkOAMA">
<Function name="MBOAIncrease" id="2" funcType="OAFlowIncrease"

funcRank="1">
<EnergyEfficiency name="MBEfficiency" id="3" efficiency="99" />
<Command name="MAO" id="4" varName="AHU15oad">

<SaturationPoint name="MAOMax" id="5" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="6" satType="Min"
satValue="0" />

</Command>
</Function>
<Function name="MBCooling" id="13" funcType="SACooling"

funcRank="2">
<EnergyEfficiency name="MBEfficiency" id="14" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="15"

opAId="46" expOperator="LT" opBId="48" />
<Command name="MAO" id="16" varName="AHU15oad">

<SaturationPoint name="MAOMax" id="17" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="18" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="PHTCoil" id="19" compType="PreheatCoil">

<Function name="PCHeating" id="20" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="21" efficiency="1.0"

/>
<Command name="PHO" id="22" varName="AHU15pho">

<SaturationPoint name="PHOMax" id="23" satType="Max"
satValue="100" />

<SaturationPoint name="PHOMin" id="24" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="4-Stage CHWCoil" id="25" compType="CoolingCoil">

<Function name="CCCooling" id="26" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="27" efficiency="1.0"

/>
<Command name="CCO" id="28" varName="AHU15cco">

<SaturationPoint name="CCOMax" id="29" satType="Max"
satValue="4" />

<SaturationPoint name="CCOMin" id="30" satType="Min"
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satValue="0" />
</Command>

</Function>
</AHUComponent>
<AHUComponent name="VFDSF" id="31" compType="SupplyFan_VFD">

<Function name="SFPressurization" id="32"
funcType="SAPressurization">
<EnergyEfficiency name="SFEfficiency" id="33" efficiency="1.0"

/>
<Command name="SFO" id="34" varName="AHU15sfo">

<SaturationPoint name="SFOMax" id="35" satType="Max"
satValue="100" />

<SaturationPoint name="SFOMin" id="36" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDRF" id="37" compType="ReturnFan_VFD">

<Function name="RFO" id="371" funcType="MAPressurization">
<EnergyEfficiency name="RFEfficiency" id="372" efficiency="1" />
<Command name="RFO" id="373" varName="AHU15rfo">

<SaturationPoint name="RFOMax" id="374" satType="Max"
satValue="100" />

<SaturationPoint name="RFOMin" id="375" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="EAD" id="38" compType="MixingBox_ModEA">

<Function name="SpaceDepressurization" id="39"
funcType="SpaceDepressurization">
<EnergyEfficiency name="EADEfficiency" id="40" efficiency="99"

/>
<Command name="EAO" id="41" varName="AHU15ead">

<SaturationPoint name="EAOMax" id="42" satType="Max"
satValue="100" />

<SaturationPoint name="EAOMin" id="43" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="46" varName="AHU15oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="47" varName="AHU15mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="48" varName="AHU15rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="49" varName="AHU15sat"

sensorType="SupplyAirTemperature" />
<Sensor name="MinOAF" id="50" varName="AHU15minoaf"

sensorType="OutdoorAirFlow" />
<Sensor name="SSP" id="51" varName="AHU15ssp"

sensorType="SupplyAirPressure" />
<Sensor name="SpaceAP" id="52" varName="AHU15spaceap"

sensorType="SpacePressure" />
<Sensor name="RAP" id="53" varName="AHU15rap"

sensorType="ReturnAirPressure" />
<!-- Service setpoint -->
<SetPoint name="SSPSP" id="54" spValue="0.75" spType="Tracking" />
<SetPoint name="SpaceAPSP" id="55" spValue="0.02" spType="Tracking" />
<SetPoint name="SATSP" id="56" spValue="55" spType="Tracking" />
<SetPoint name="MinOAFSP" id="57" spValue="1500" spType="LowerBound" />
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<SetPoint name="MAPSP" id="621" spValue="0.1" spType="Tracking" />
<!-- Controllers -->
<ClosedLoopControl name="MAOOAIncrease" id="58" setPointId="57"

feedBackId="50" outputId="4" pidType="Reverse" />
<ClosedLoopControl name="MAOCooling" id="60" setPointId="56"

feedBackId="49" outputId="16" pidType="Direct" />
<ClosedLoopControl name="PHOHeating" id="61" setPointId="56"

feedBackId="49" outputId="22" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="62" setPointId="56"

feedBackId="49" outputId="28" pidType="Direct" />
<ClosedLoopControl name="SFOPressurization" id="63" setPointId="54"

feedBackId="51" outputId="34" pidType="Reverse" />
<ClosedLoopControl name="EAOSpaceDepressurization" id="64"

setPointId="55" feedBackId="52" outputId="41" pidType="Direct" />
<ClosedLoopControl name="RFOMAPressurization" id="691"

setPointId="621" feedBackId="53" outputId="373" pidType="Reverse" />
</Project>

Listing A.16: ASHRAE AHU 16
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU16: VAV2C2-11142"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD" id="1"

compType="MixingBox_ModLinkOAMA">
<Function name="MBCooling" id="8" funcType="SACooling">

<EnergyEfficiency name="MBEfficiency" id="9" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="10"

opAId="42" expOperator="LT" opBId="44" />
<Command name="MAO" id="11" varName="AHU16oad">

<SaturationPoint name="MAOMax" id="12" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="13" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="PHTCoil" id="14" compType="PreheatCoil">

<Function name="PCHeating" id="15" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="16" efficiency="1.0"

/>
<Command name="PHO" id="17" varName="AHU16pho">

<SaturationPoint name="PHOMax" id="18" satType="Max"
satValue="100" />

<SaturationPoint name="PHOMin" id="19" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="4-Stage CHWCoil" id="20" compType="CoolingCoil">

<Function name="CCCooling" id="21" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="22" efficiency="1.0"

/>
<Command name="CCO" id="23" varName="AHU16cco">

<SaturationPoint name="CCOMax" id="24" satType="Max"
satValue="4" />

<SaturationPoint name="CCOMin" id="25" satType="Min"
satValue="0" />

</Command>
</Function>
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</AHUComponent>
<AHUComponent name="VFDSF" id="26" compType="SupplyFan_VFD">

<Function name="SFPressurization" id="27"
funcType="SAPressurization">
<EnergyEfficiency name="SFEfficiency" id="28" efficiency="1.0"

/>
<Command name="SFO" id="29" varName="AHU16sfo">

<SaturationPoint name="SFOMax" id="30" satType="Max"
satValue="100" />

<SaturationPoint name="SFOMin" id="31" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDRF" id="32" compType="ReturnFan_VFD">

<Function name="RFO" id="371" funcType="MAPressurization">
<EnergyEfficiency name="RFEfficiency" id="372" efficiency="1" />
<Command name="RFO" id="373" varName="AHU16rfo">

<SaturationPoint name="RFOMax" id="374" satType="Max"
satValue="100" />

<SaturationPoint name="RFOMin" id="375" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="EAD" id="33" compType="MixingBox_ModEA">

<Function name="SpaceDepressurization" id="34"
funcType="SpaceDepressurization">
<EnergyEfficiency name="EADEfficiency" id="35" efficiency="99"

/>
<Command name="EAO" id="36" varName="AHU16ead">

<SaturationPoint name="EAOMax" id="37" satType="Max"
satValue="100" />

<SaturationPoint name="EAOMin" id="38" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="MinOAD" id="39"

compType="MixingBox_ModMinOA"></AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="42" varName="AHU16oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="43" varName="AHU16mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="44" varName="AHU16rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="45" varName="AHU16sat"

sensorType="SupplyAirTemperature" />
<Sensor name="SSP" id="46" varName="AHU16ssp"

sensorType="SupplyAirPressure" />
<Sensor name="SpaceAP" id="47" varName="AHU16spaceap"

sensorType="SpacePressure" />
<Sensor name="RAP" id="48" varName="AHU16rap"

sensorType="ReturnAirPressure" />
<Sensor name="MAP" id="49" varName="AHU16map"

sensorType="MixedAirPressure" />
<!-- Service setpoint -->
<SetPoint name="SSPSP" id="50" spValue="0.75" spType="Tracking" />
<SetPoint name="SpaceAPSP" id="51" spValue="0.02" spType="Tracking" />
<SetPoint name="SATSP" id="52" spValue="55" spType="Tracking" />
<SetPoint name="MAPSP" id="621" spValue="0.1" spType="Tracking" />
<!-- Controllers -->
<ClosedLoopControl name="MAOCooling" id="54" setPointId="52"
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feedBackId="45" outputId="11" pidType="Direct" />
<ClosedLoopControl name="PHOHeating" id="55" setPointId="52"

feedBackId="45" outputId="17" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="56" setPointId="52"

feedBackId="45" outputId="23" pidType="Direct" />
<ClosedLoopControl name="SFOPressurization" id="57" setPointId="50"

feedBackId="46" outputId="29" pidType="Reverse" />
<ClosedLoopControl name="SpaceDepressurization" id="58"

setPointId="51" feedBackId="47" outputId="36" pidType="Direct" />
<ClosedLoopControl name="RFOMAPressurization" id="691"

setPointId="621" feedBackId="48" outputId="373" pidType="Reverse" />
</Project>

Listing A.17: ASHRAE AHU 17
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU17: VAV2D1-11132"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD" id="1"

compType="MixingBox_ModLinkOAMA">
<Function name="MBOAIncrease" id="2" funcType="OAFlowIncrease"

funcRank="1">
<EnergyEfficiency name="MBEfficiency" id="3" efficiency="99" />
<Command name="MAO" id="4" varName="AHU17oad">

<SaturationPoint name="MAOMax" id="5" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="6" satType="Min"
satValue="0" />

</Command>
</Function>
<Function name="MBCooling" id="13" funcType="SACooling"

funcRank="2">
<EnergyEfficiency name="MBEfficiency" id="14" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="15"

opAId="46" expOperator="LT" opBId="48" />
<Command name="MAO" id="16" varName="AHU17oad">

<SaturationPoint name="MAOMax" id="17" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="18" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="4-Stage PHTCoil" id="19" compType="PreheatCoil">

<Function name="PCHeating" id="20" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="21" efficiency="1.0"

/>
<Command name="PHO" id="22" varName="AHU17pho">

<SaturationPoint name="PHOMax" id="23" satType="Max"
satValue="4" />

<SaturationPoint name="PHOMin" id="24" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="4-Stage CHWCoil" id="25" compType="CoolingCoil">

<Function name="CCCooling" id="26" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="27" efficiency="1.0"

/>
<Command name="CCO" id="28" varName="AHU17cco">

<SaturationPoint name="CCOMax" id="29" satType="Max"
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satValue="4" />
<SaturationPoint name="CCOMin" id="30" satType="Min"

satValue="0" />
</Command>

</Function>
</AHUComponent>
<AHUComponent name="VFDSF" id="31" compType="SupplyFan_VFD">

<Function name="SFPressurization" id="32"
funcType="SAPressurization">
<EnergyEfficiency name="SFEfficiency" id="33" efficiency="1.0"

/>
<Command name="SFO" id="34" varName="AHU17sfo">

<SaturationPoint name="SFOMax" id="35" satType="Max"
satValue="100" />

<SaturationPoint name="SFOMin" id="36" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDRF" id="37" compType="ReturnFan_VFD">

<Function name="RFO" id="371" funcType="MAPressurization">
<EnergyEfficiency name="RFEfficiency" id="372" efficiency="1" />
<Command name="RFO" id="373" varName="AHU17rfo">

<SaturationPoint name="RFOMax" id="374" satType="Max"
satValue="100" />

<SaturationPoint name="RFOMin" id="375" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="EAD" id="38" compType="MixingBox_ModEA">

<Function name="SpaceDepressurization" id="39"
funcType="SpaceDepressurization">
<EnergyEfficiency name="EADEfficiency" id="40" efficiency="99"

/>
<Command name="EAO" id="41" varName="AHU17ead">

<SaturationPoint name="EAOMax" id="42" satType="Max"
satValue="100" />

<SaturationPoint name="EAOMin" id="43" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="46" varName="AHU17oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="47" varName="AHU17mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="48" varName="AHU17rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="49" varName="AHU17sat"

sensorType="SupplyAirTemperature" />
<Sensor name="MinOAF" id="50" varName="AHU17minoaf"

sensorType="OutdoorAirFlow" />
<Sensor name="SSP" id="51" varName="AHU17ssp"

sensorType="SupplyAirPressure" />
<Sensor name="SpaceAP" id="52" varName="AHU17spaceap"

sensorType="SpacePressure" />
<Sensor name="RAP" id="53" varName="AHU17rap"

sensorType="ReturnAirPressure" />
<!-- Service setpoint -->
<SetPoint name="SSPSP" id="54" spValue="0.75" spType="Tracking" />
<SetPoint name="SpaceAPSP" id="55" spValue="0.02" spType="Tracking" />
<SetPoint name="SATSP" id="56" spValue="55" spType="Tracking" />
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<SetPoint name="MinOAFSP" id="57" spValue="1500" spType="LowerBound" />
<SetPoint name="RAPSP" id="621" spValue="0.1" spType="Tracking" />
<!-- Controllers -->
<ClosedLoopControl name="MAOOAIncrease" id="58" setPointId="57"

feedBackId="50" outputId="4" pidType="Reverse" />
<ClosedLoopControl name="MAOCooling" id="60" setPointId="56"

feedBackId="49" outputId="16" pidType="Direct" />
<ClosedLoopControl name="PHOHeating" id="61" setPointId="56"

feedBackId="49" outputId="22" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="62" setPointId="56"

feedBackId="49" outputId="28" pidType="Direct" />
<ClosedLoopControl name="SFOPressurization" id="63" setPointId="54"

feedBackId="51" outputId="34" pidType="Reverse" />
<ClosedLoopControl name="EAOSpaceDepressurization" id="64"

setPointId="55" feedBackId="52" outputId="41" pidType="Direct" />
<ClosedLoopControl name="RFOMAPressurization" id="691"

setPointId="621" feedBackId="53" outputId="373" pidType="Reverse" />
</Project>

Listing A.18: ASHRAE AHU 18
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU18: VAV2D2-15232"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD-EAD" id="1"

compType="MixingBox_ModLinkOAMAEA">
<Function name="MBCooling" id="8" funcType="SACooling">

<EnergyEfficiency name="MBEfficiency" id="9" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="10"

opAId="41" expOperator="LT" opBId="43" />
<Command name="MAO" id="11" varName="AHU18oad">

<SaturationPoint name="MAOMax" id="12" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="13" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="MinOAD" id="14" compType="MixingBox_ModMinOA">

<Function name="MinOADOAIncrease" id="15" funcType="OAFlowIncrease">
<EnergyEfficiency name="MinOADEfficiency" id="16"

efficiency="99" />
<Command name="MinOAD" id="17" varName="AHU18minoad">

<SaturationPoint name="MinOADMax" id="18" satType="Max"
satValue="100" />

<SaturationPoint name="MinOADMin" id="19" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="4-Stage PHTCoil" id="20" compType="PreheatCoil">

<Function name="PCHeating" id="21" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="22" efficiency="1.0"

/>
<Command name="PHO" id="23" varName="AHU18pho">

<SaturationPoint name="PHOMax" id="24" satType="Max"
satValue="4" />

<SaturationPoint name="PHOMin" id="25" satType="Min"
satValue="0" />

</Command>
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</Function>
</AHUComponent>
<AHUComponent name="4-Stage CHWCoil" id="26" compType="CoolingCoil">

<Function name="CCCooling" id="27" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="28" efficiency="1.0"

/>
<Command name="CCO" id="29" varName="AHU18cco">

<SaturationPoint name="CCOMax" id="30" satType="Max"
satValue="4" />

<SaturationPoint name="CCOMin" id="31" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDSF" id="32" compType="SupplyFan_VFD">

<Function name="SFPressurization" id="33"
funcType="SAPressurization">
<EnergyEfficiency name="SFEfficiency" id="34" efficiency="1.0"

/>
<Command name="SFO" id="35" varName="AHU18sfo">

<SaturationPoint name="SFOMax" id="36" satType="Max"
satValue="100" />

<SaturationPoint name="SFOMin" id="37" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDRF" id="38" compType="ReturnFan_VFD">

<Function name="RFRAFlowIncrease" id="381"
funcType="RAFlowIncrease">
<EnergyEfficiency name="RFEfficiency" id="382" efficiency="1.0"

/>
<Command name="RFO" id="383" varName="AHU18rfo">

<SaturationPoint name="RFOMax" id="384" satType="Max"
satValue="100" />

<SaturationPoint name="RFOMin" id="385" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="41" varName="AHU18oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="42" varName="AHU18mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="43" varName="AHU18rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="44" varName="AHU18sat"

sensorType="SupplyAirTemperature" />
<Sensor name="MinOAF" id="45" varName="AHU18minOAF"

sensorType="OutdoorAirFlow" />
<Sensor name="SSP" id="46" varName="AHU18ssp"

sensorType="SupplyAirPressure" />
<Sensor name="SAF" id="47" varName="AHU18saf"

sensorType="SupplyAirFlow" />
<Sensor name="RAF" id="48" varName="AHU18raf"

sensorType="ReturnAirFlow" />
<!-- Service setpoint -->
<SetPoint name="SSPSP" id="49" spValue="0.75" spType="Tracking" />
<SetPoint name="SATSP" id="50" spValue="55" spType="Tracking" />
<SetPoint name="MinOAFlowSP" id="51" spValue="1500"

spType="LowerBound" />
<SetPoint name="RAFSP" id="511" spValue="1200" spType="Tracking" />
<!-- Controllers -->
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<ClosedLoopControl name="MAOCooling" id="53" setPointId="50"
feedBackId="44" outputId="11" pidType="Direct" />

<ClosedLoopControl name="MinOADOAIncrease" id="54" setPointId="51"
feedBackId="45" outputId="17" pidType="Reverse" />

<ClosedLoopControl name="PHOHeating" id="55" setPointId="50"
feedBackId="44" outputId="23" pidType="Reverse" />

<ClosedLoopControl name="CCOCooling" id="56" setPointId="50"
feedBackId="44" outputId="29" pidType="Direct" />

<ClosedLoopControl name="SFOPressurization" id="57" setPointId="49"
feedBackId="46" outputId="35" pidType="Reverse" />

<ClosedLoopControl name="RFORAIncrease" id="571" setPointId="511"
feedBackId="48" outputId="383" pidType="Reverse" />

</Project>

Listing A.19: ASHRAE AHU 19
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU19: VAV3A1-25153"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD" id="1"

compType="MixingBox_ModLinkOAMA">
<Function name="MBCooling" id="8" funcType="SACooling">

<EnergyEfficiency name="MBEfficiency" id="9" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="10"

opAId="43" expOperator="LT" opBId="45" />
<Command name="MAO" id="11" varName="AHU19oad">

<SaturationPoint name="MAOMax" id="12" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="13" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="PHTCoil" id="14" compType="PreheatCoil">

<Function name="PCHeating" id="15" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="16" efficiency="1.0"

/>
<Command name="PHO" id="17" varName="AHU19pho">

<SaturationPoint name="PHOMax" id="18" satType="Max"
satValue="100" />

<SaturationPoint name="PHOMin" id="19" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="CHWCoil" id="20" compType="CoolingCoil">

<Function name="CCCooling" id="21" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="22" efficiency="1.0"

/>
<Command name="CCO" id="23" varName="AHU19cco">

<SaturationPoint name="CCOMax" id="24" satType="Max"
satValue="100" />

<SaturationPoint name="CCOMin" id="25" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDSF" id="26" compType="SupplyFan_VFD">

<Function name="SFPressurization" id="27"
funcType="SAPressurization">
<EnergyEfficiency name="SFEfficiency" id="28" efficiency="1.0"
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/>
<Command name="SFO" id="29" varName="AHU19sfo">

<SaturationPoint name="SFOMax" id="30" satType="Max"
satValue="100" />

<SaturationPoint name="SFOMin" id="31" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDRF" id="32" compType="ReturnFan_VFD">

<Function name="RFO" id="371" funcType="MAPressurization">
<EnergyEfficiency name="RFEfficiency" id="372" efficiency="1" />
<Command name="RFO" id="373" varName="AHU19rfo">

<SaturationPoint name="RFOMax" id="374" satType="Max"
satValue="100" />

<SaturationPoint name="RFOMin" id="375" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="EAD" id="33" compType="MixingBox_ModEA">

<Function name="SpaceDepressurization" id="34"
funcType="SpaceDepressurization">
<EnergyEfficiency name="EADEfficiency" id="35" efficiency="99"

/>
<Command name="EAO" id="36" varName="AHU19ead">

<SaturationPoint name="EAOMax" id="37" satType="Max"
satValue="100" />

<SaturationPoint name="EAOMin" id="38" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="2-Stage MinOAD" id="39"

compType="MixingBox_2StageOA"></AHUComponent>
<AHUComponent name="CAVInjection" id="40"

compType="Injection_CAV"></AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="43" varName="AHU19oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="44" varName="AHU19mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="45" varName="AHU19rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="46" varName="AHU19sat"

sensorType="SupplyAirTemperature" />
<Sensor name="PHT" id="47" varName="AHU19pht"

sensorType="PreheatAirTemperature" />
<Sensor name="SSP" id="48" varName="AHU19ssp"

sensorType="SupplyAirPressure" />
<Sensor name="SpaceAP" id="49" varName="AHU19spaceap"

sensorType="SpacePressure" />
<Sensor name="RAP" id="50" varName="AHU19rap"

sensorType="ReturnAirPressure" />
<!-- Service setpoint -->
<SetPoint name="SSPSP" id="51" spValue="0.75" spType="Tracking" />
<SetPoint name="SpaceAPSP" id="52" spValue="0.02" spType="Tracking" />
<SetPoint name="SATSP" id="53" spValue="55" spType="Tracking" />
<SetPoint name="RAPSP" id="621" spValue="0.1" spType="Tracking" />
<!-- Controllers -->
<ClosedLoopControl name="MAOCooling" id="55" setPointId="53"

feedBackId="46" outputId="11" pidType="Direct" />
<ClosedLoopControl name="PHOHeating" id="56" setPointId="53"
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feedBackId="46" outputId="17" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="57" setPointId="53"

feedBackId="46" outputId="23" pidType="Direct" />
<ClosedLoopControl name="SFOPressurization" id="58" setPointId="51"

feedBackId="48" outputId="29" pidType="Reverse" />
<ClosedLoopControl name="EAOSpaceDepressurization" id="59"

setPointId="52" feedBackId="49" outputId="36" pidType="Direct" />
<ClosedLoopControl name="RFOMAPressurization" id="691"

setPointId="621" feedBackId="50" outputId="373" pidType="Reverse" />
</Project>

Listing A.20: ASHRAE AHU 20
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU20: VAV3C1-25154"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<AHUComponent name="Linked OAD-MAD" id="1"

compType="MixingBox_ModLinkOAMA">
<Function name="MBCooling" id="8" funcType="SACooling">

<EnergyEfficiency name="MBEfficiency" id="9" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="10"

opAId="54" expOperator="LT" opBId="53" />
<Command name="MAO" id="11" varName="AHU20oad">

<SaturationPoint name="MAOMax" id="12" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="13" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="PHTCoil" id="14" compType="PreheatCoil">

<Function name="PCHeating" id="15" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="16" efficiency="1.0"

/>
<Command name="PHO" id="17" varName="AHU20pho">

<SaturationPoint name="PHOMax" id="18" satType="Max"
satValue="100" />

<SaturationPoint name="PHOMin" id="19" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="4-Stage CHWCoil" id="20" compType="CoolingCoil">

<Function name="CCCooling" id="21" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="22" efficiency="1.0"

/>
<Command name="CCO" id="23" varName="AHU20cco">

<SaturationPoint name="CCOMax" id="24" satType="Max"
satValue="4" />

<SaturationPoint name="CCOMin" id="25" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDSF" id="26" compType="SupplyFan_VFD">

<Function name="SFPressurization" id="27"
funcType="SAPressurization">
<EnergyEfficiency name="SFEfficiency" id="28" efficiency="1.0"

/>
<Command name="SFO" id="29" varName="AHU20sfo">

<SaturationPoint name="SFOMax" id="30" satType="Max"
satValue="100" />
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<SaturationPoint name="SFOMin" id="31" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDRF" id="32"

compType="ReturnFan_VFD"></AHUComponent>
<AHUComponent name="EAD" id="33"

compType="MixingBox_ModEA"></AHUComponent>
<AHUComponent name="2-Stage MinOAD" id="39"

compType="MixingBox_2StageOA"></AHUComponent>
<AHUComponent name="CAVInjection" id="40"

compType="Injection_CAV"></AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="43" varName="AHU20oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="44" varName="AHU20mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="45" varName="AHU20rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="46" varName="AHU20sat"

sensorType="SupplyAirTemperature" />
<Sensor name="SSP" id="48" varName="AHU20ssp"

sensorType="SupplyAirPressure" />
<Sensor name="SpaceAP" id="49" varName="AHU20spaceap"

sensorType="SpacePressure" />
<Sensor name="RAP" id="50" varName="AHU20rap"

sensorType="ReturnAirPressure" />
<Sensor name="RAH" id="51" varName="AHU20rah"

sensorType="ReturnAirHumidity" />
<Sensor name="OAH" id="52" varName="AHU20oah"

sensorType="OutdoorAirHumidity" />
<Sensor name="RAE" id="53" varName="AHU20rae"

sensorType="ReturnAirEnthalpy" />
<Sensor name="OAE" id="54" varName="AHU20oae"

sensorType="OutdoorAirEnthalpy" />
<Sensor name="PHT" id="55" varName="AHU20pht"

sensorType="PreheatAirTemperature" />
<!-- Service setpoint -->
<SetPoint name="SSPSP" id="56" spValue="0.75" spType="Tracking" />
<SetPoint name="SATSP" id="58" spValue="55" spType="Tracking" />
<!-- Controllers -->
<ClosedLoopControl name="MAOCooling" id="60" setPointId="58"

feedBackId="46" outputId="11" pidType="Direct" />
<ClosedLoopControl name="PHOHeating" id="61" setPointId="58"

feedBackId="46" outputId="17" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="62" setPointId="58"

feedBackId="46" outputId="23" pidType="Direct" />
<ClosedLoopControl name="SFOPressurization" id="63" setPointId="56"

feedBackId="48" outputId="29" pidType="Reverse" />
</Project>

Listing A.21: ASHRAE AHU 21
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU21: VAV3C2-15252"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD" id="1"

compType="MixingBox_ModLinkOAMA">
<Function name="MBCooling" id="8" funcType="SACooling">
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<EnergyEfficiency name="MBEfficiency" id="9" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="10"

opAId="43" expOperator="LT" opBId="45" />
<Command name="MAO" id="11" varName="AHU21oad">

<SaturationPoint name="MAOMax" id="12" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="13" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="PHTCoil" id="14" compType="PreheatCoil">

<Function name="PCHeating" id="15" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="16" efficiency="1.0"

/>
<Command name="PHO" id="17" varName="AHU21pho">

<SaturationPoint name="PHOMax" id="18" satType="Max"
satValue="100" />

<SaturationPoint name="PHOMin" id="19" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="4-Stage CHWCoil" id="20" compType="CoolingCoil">

<Function name="CCCooling" id="21" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="22" efficiency="1.0"

/>
<Command name="CCO" id="23" varName="AHU21cco">

<SaturationPoint name="CCOMax" id="24" satType="Max"
satValue="4" />

<SaturationPoint name="CCOMin" id="25" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDSF" id="26" compType="SupplyFan_VFD">

<Function name="SFPressurization" id="27"
funcType="SAPressurization">
<EnergyEfficiency name="SFEfficiency" id="28" efficiency="1.0"

/>
<Command name="SFO" id="29" varName="AHU21sfo">

<SaturationPoint name="SFOMax" id="30" satType="Max"
satValue="100" />

<SaturationPoint name="SFOMin" id="31" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDRF" id="32" compType="ReturnFan_VFD">

<Function name="RFRAFlowIncrease" id="381"
funcType="RAFlowIncrease">
<EnergyEfficiency name="RFEfficiency" id="382" efficiency="1.0"

/>
<Command name="RFO" id="383" varName="AHU21rfo">

<SaturationPoint name="RFOMax" id="384" satType="Max"
satValue="100" />

<SaturationPoint name="RFOMin" id="385" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="EAD" id="33"

compType="MixingBox_ModEA"></AHUComponent>
<AHUComponent name="2-Stage MinOAD" id="39"
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compType="MixingBox_2StageOA"></AHUComponent>
<AHUComponent name="CAVInjection" id="40"

compType="Injection_CAV"></AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="43" varName="AHU21oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="44" varName="AHU21mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="45" varName="AHU21rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="46" varName="AHU21sat"

sensorType="SupplyAirTemperature" />
<Sensor name="PHT" id="47" varName="AHU21pht"

sensorType="PreheatAirTemperature" />
<Sensor name="SSP" id="48" varName="AHU21ssp"

sensorType="SupplyAirPressure" />
<Sensor name="SpaceAP" id="49" varName="AHU21spaceap"

sensorType="SpacePressure" />
<Sensor name="RAF" id="50" varName="AHU21raf"

sensorType="ReturnAirFlow" />
<Sensor name="SAF" id="60" varName="AHU21saf"

sensorType="SupplyAirFlow" />
<!-- Service setpoint -->
<SetPoint name="SSPSP" id="51" spValue="0.75" spType="Tracking" />
<SetPoint name="SATSP" id="53" spValue="55" spType="Tracking" />
<SetPoint name="RAFSP" id="511" spValue="1200" spType="Tracking" />
<!-- Controllers -->
<ClosedLoopControl name="MAOCooling" id="55" setPointId="53"

feedBackId="46" outputId="11" pidType="Direct" />
<ClosedLoopControl name="PHOHeating" id="56" setPointId="53"

feedBackId="46" outputId="17" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="57" setPointId="53"

feedBackId="46" outputId="23" pidType="Direct" />
<ClosedLoopControl name="SFOPressurization" id="58" setPointId="51"

feedBackId="48" outputId="29" pidType="Reverse" />
<ClosedLoopControl name="RFORAIncrease" id="571" setPointId="511"

feedBackId="50" outputId="383" pidType="Reverse" />
</Project>

Listing A.22: ASHRAE AHU 22
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU22: VAV4A1-25322"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD" id="1"

compType="MixingBox_ModLinkOAMA">
<Function name="MBCooling" id="8" funcType="SACooling">

<EnergyEfficiency name="MBEfficiency" id="9" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="10"

opAId="52" expOperator="LT" opBId="54" />
<Command name="MAO" id="11" varName="AHU22oad">

<SaturationPoint name="MAOMax" id="12" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="13" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="PHTCoil" id="14" compType="PreheatCoil">

<Function name="PCHeating" id="15" funcType="SAHeating">
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<EnergyEfficiency name="PCEfficiency" id="16" efficiency="1.0"
/>

<Command name="PHO" id="17" varName="AHU22pho">
<SaturationPoint name="PHOMax" id="18" satType="Max"

satValue="100" />
<SaturationPoint name="PHOMin" id="19" satType="Min"

satValue="0" />
</Command>

</Function>
</AHUComponent>
<AHUComponent name="CHWCoil" id="20" compType="CoolingCoil">

<Function name="CCCooling" id="21" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="22" efficiency="1.0"

/>
<Command name="CCO" id="23" varName="AHU22cco">

<SaturationPoint name="CCOMax" id="24" satType="Max"
satValue="100" />

<SaturationPoint name="CCOMin" id="25" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDSF" id="26" compType="SupplyFan_VFD">

<Function name="SFPressurization" id="27"
funcType="SAPressurization">
<EnergyEfficiency name="SFEfficiency" id="28" efficiency="1.0"

/>
<Command name="SFO" id="29" varName="AHU22sfo">

<SaturationPoint name="SFOMax" id="30" satType="Max"
satValue="100" />

<SaturationPoint name="SFOMin" id="31" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDEF" id="32" compType="ReliefFan_VFD">

<Function name="EFDepressurization" id="33"
funcType="SpaceDepressurization">
<EnergyEfficiency name="EFEfficiency" id="34" efficiency="1.0"

/>
<Command name="EFO" id="35" varName="AHU22efo">

<SaturationPoint name="EFOMax" id="36" satType="Max"
satValue="100" />

<SaturationPoint name="EFOMin" id="37" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="EAD" id="38" compType="MixingBox_ModEA">

<Function name="EADDepressurization" id="39"
funcType="SpaceDepressurization">
<EnergyEfficiency name="EADEfficiency" id="40" efficiency="99"

/>
<Command name="EAO" id="41" varName="AHU22ead">

<SaturationPoint name="EAOMax" id="42" satType="Max"
satValue="100" />

<SaturationPoint name="EAOMin" id="43" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="MinOAD" id="44" compType="MixingBox_ModMinOA">

<Function name="MinOADOAIncrease" id="45" funcType="OAFlowIncrease">
<EnergyEfficiency name="MinOADEfficiency" id="46"

204



efficiency="99" />
<Command name="MinMAO" id="47" varName="AHU22minoad">

<SaturationPoint name="MinOADMax" id="48" satType="Max"
satValue="100" />

<SaturationPoint name="MinOADMin" id="49" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="52" varName="AHU22oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="53" varName="AHU22mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="54" varName="AHU22rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="55" varName="AHU22sat"

sensorType="SupplyAirTemperature" />
<Sensor name="SpaceCO2" id="56" varName="AHU22spaceCO2"

sensorType="SpaceCO2" />
<Sensor name="MinOAF" id="57" varName="AHU22minoaf"

sensorType="OutdoorAirFlow" />
<Sensor name="SSP" id="58" varName="AHU22ssp"

sensorType="SupplyAirPressure" />
<Sensor name="SpaceAP" id="59" varName="AHU22spaceap"

sensorType="SpacePressure" />
<Sensor name="MAP" id="60" varName="AHU22map"

sensorType="MixedAirPressure" />
<!-- Service setpoint -->
<SetPoint name="SSPSP" id="61" spValue="0.75" spType="Tracking" />
<SetPoint name="SpaceAPSP" id="62" spValue="0.02" spType="Tracking" />
<SetPoint name="SATSP" id="63" spValue="55" spType="Tracking" />
<SetPoint name="MinOAFSP" id="64" spValue="1500" spType="LowerBound" />
<!-- Controllers -->
<ClosedLoopControl name="MAOCooling" id="66" setPointId="63"

feedBackId="55" outputId="11" pidType="Direct" />
<ClosedLoopControl name="PHOHeating" id="67" setPointId="63"

feedBackId="55" outputId="17" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="68" setPointId="63"

feedBackId="55" outputId="23" pidType="Direct" />
<ClosedLoopControl name="SFOPressurization" id="69" setPointId="61"

feedBackId="58" outputId="29" pidType="Reverse" />
<ClosedLoopControl name="EFODepressurization" id="70" setPointId="62"

feedBackId="59" outputId="35" pidType="Direct" />
<ClosedLoopControl name="EAODepressurization" id="71" setPointId="62"

feedBackId="59" outputId="41" pidType="Direct" />
<ClosedLoopControl name="MinMAOOAIncrease" id="72" setPointId="64"

feedBackId="57" outputId="47" pidType="Reverse" />
</Project>

Listing A.23: ASHRAE AHU 23
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU23: VAV4B1-25322"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD" id="1"

compType="MixingBox_ModLinkOAMA">
<Function name="MBCooling" id="8" funcType="SACooling">

<EnergyEfficiency name="MBEfficiency" id="9" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="10"
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opAId="52" expOperator="LT" opBId="54" />
<Command name="MAO" id="11" varName="AHU23oad">

<SaturationPoint name="MAOMax" id="12" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="13" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="4-Stage PHTCoil" id="14" compType="PreheatCoil">

<Function name="PCHeating" id="15" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="16" efficiency="1.0"

/>
<Command name="PHO" id="17" varName="AHU23pho">

<SaturationPoint name="PHOMax" id="18" satType="Max"
satValue="4" />

<SaturationPoint name="PHOMin" id="19" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="CHWCoil" id="20" compType="CoolingCoil">

<Function name="CCCooling" id="21" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="22" efficiency="1.0"

/>
<Command name="CCO" id="23" varName="AHU23cco">

<SaturationPoint name="CCOMax" id="24" satType="Max"
satValue="100" />

<SaturationPoint name="CCOMin" id="25" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDSF" id="26" compType="SupplyFan_VFD">

<Function name="SFPressurization" id="27"
funcType="SAPressurization">
<EnergyEfficiency name="SFEfficiency" id="28" efficiency="1.0"

/>
<Command name="SFO" id="29" varName="AHU23sfo">

<SaturationPoint name="SFOMax" id="30" satType="Max"
satValue="100" />

<SaturationPoint name="SFOMin" id="31" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDEF" id="32" compType="ReliefFan_VFD">

<Function name="EFDepressurization" id="33"
funcType="SpaceDepressurization">
<EnergyEfficiency name="EFEfficiency" id="34" efficiency="1.0"

/>
<Command name="EFO" id="35" varName="AHU23efo">

<SaturationPoint name="EFOMax" id="36" satType="Max"
satValue="100" />

<SaturationPoint name="EFOMin" id="37" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="EAD" id="38" compType="MixingBox_ModEA">

<Function name="EADDepressurization" id="39"
funcType="SpaceDepressurization">
<EnergyEfficiency name="EADEfficiency" id="40" efficiency="99"

/>
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<Command name="EAO" id="41" varName="AHU23ead">
<SaturationPoint name="EAOMax" id="42" satType="Max"

satValue="100" />
<SaturationPoint name="EAOMin" id="43" satType="Min"

satValue="0" />
</Command>

</Function>
</AHUComponent>
<AHUComponent name="MinOAD" id="44" compType="MixingBox_ModMinOA">

<Function name="MinOADOAIncrease" id="45" funcType="OAFlowIncrease">
<EnergyEfficiency name="MinOADEfficiency" id="46"

efficiency="99" />
<Command name="MinMAO" id="47" varName="AHU23minoad">

<SaturationPoint name="MinOADMax" id="48" satType="Max"
satValue="100" />

<SaturationPoint name="MinOADMin" id="49" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="52" varName="AHU23oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="53" varName="AHU23mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="54" varName="AHU23rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="55" varName="AHU23sat"

sensorType="SupplyAirTemperature" />
<Sensor name="MinOAF" id="57" varName="AHU23minoaf"

sensorType="OutdoorAirFlow" />
<Sensor name="SSP" id="58" varName="AHU23ssp"

sensorType="SupplyAirPressure" />
<Sensor name="SpaceAP" id="59" varName="AHU23spaceap"

sensorType="SpacePressure" />
<!-- Service setpoint -->
<SetPoint name="SSPSP" id="61" spValue="0.75" spType="Tracking" />
<SetPoint name="SpaceAPSP" id="62" spValue="0.02" spType="Tracking" />
<SetPoint name="SATSP" id="63" spValue="55" spType="Tracking" />
<SetPoint name="MinOAFSP" id="64" spValue="1500" spType="LowerBound" />
<!-- Controllers -->
<ClosedLoopControl name="MAOCooling" id="66" setPointId="63"

feedBackId="55" outputId="11" pidType="Direct" />
<ClosedLoopControl name="PHOHeating" id="67" setPointId="63"

feedBackId="55" outputId="17" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="68" setPointId="63"

feedBackId="55" outputId="23" pidType="Direct" />
<ClosedLoopControl name="SFOPressurization" id="69" setPointId="61"

feedBackId="58" outputId="29" pidType="Reverse" />
<ClosedLoopControl name="EFODepressurization" id="70" setPointId="62"

feedBackId="59" outputId="35" pidType="Direct" />
<ClosedLoopControl name="EAODepressurization" id="71" setPointId="62"

feedBackId="59" outputId="41" pidType="Direct" />
<ClosedLoopControl name="MinMAOOAIncrease" id="72" setPointId="64"

feedBackId="57" outputId="47" pidType="Reverse" />
</Project>

Listing A.24: ASHRAE AHU 24
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU24: VAV4C1-25333"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
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xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD" id="1"

compType="MixingBox_ModLinkOAMA">
<Function name="MBCooling" id="8" funcType="SACooling">

<EnergyEfficiency name="MBEfficiency" id="9" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="10"

opAId="52" expOperator="LT" opBId="54" />
<Command name="MAO" id="11" varName="AHU24oad">

<SaturationPoint name="MAOMax" id="12" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="13" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="PHTCoil" id="14" compType="PreheatCoil">

<Function name="PCHeating" id="15" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="16" efficiency="1.0"

/>
<Command name="PHO" id="17" varName="AHU24pho">

<SaturationPoint name="PHOMax" id="18" satType="Max"
satValue="100" />

<SaturationPoint name="PHOMin" id="19" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="4-Stage CHWCoil" id="20" compType="CoolingCoil">

<Function name="CCCooling" id="21" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="22" efficiency="1.0"

/>
<Command name="CCO" id="23" varName="AHU24cco">

<SaturationPoint name="CCOMax" id="24" satType="Max"
satValue="4" />

<SaturationPoint name="CCOMin" id="25" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDSF" id="26" compType="SupplyFan_VFD">

<Function name="SFPressurization" id="27"
funcType="SAPressurization">
<EnergyEfficiency name="SFEfficiency" id="28" efficiency="1.0"

/>
<Command name="SFO" id="29" varName="AHU24sfo">

<SaturationPoint name="SFOMax" id="30" satType="Max"
satValue="100" />

<SaturationPoint name="SFOMin" id="31" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDEF" id="32" compType="ReliefFan_VFD">

<Function name="EFDepressurization" id="33"
funcType="SpaceDepressurization">
<EnergyEfficiency name="EFEfficiency" id="34" efficiency="1.0"

/>
<Command name="EFO" id="35" varName="AHU24efo">

<SaturationPoint name="EFOMax" id="36" satType="Max"
satValue="100" />

<SaturationPoint name="EFOMin" id="37" satType="Min"
satValue="30" />

</Command>
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</Function>
</AHUComponent>
<AHUComponent name="EAD" id="38" compType="MixingBox_ModEA">

<Function name="EADDepressurization" id="39"
funcType="SpaceDepressurization">
<EnergyEfficiency name="EADEfficiency" id="40" efficiency="99"

/>
<Command name="EAO" id="41" varName="AHU24ead">

<SaturationPoint name="EAOMax" id="42" satType="Max"
satValue="100" />

<SaturationPoint name="EAOMin" id="43" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="MinOAD" id="44" compType="MixingBox_ModMinOA">

<Function name="MinOADOAIncrease" id="45" funcType="OAFlowIncrease">
<EnergyEfficiency name="MinOADEfficiency" id="46"

efficiency="99" />
<Command name="MinMAO" id="47" varName="AHU24minoad">

<SaturationPoint name="MinOADMax" id="48" satType="Max"
satValue="100" />

<SaturationPoint name="MinOADMin" id="49" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="52" varName="AHU24oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="53" varName="AHU24mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="54" varName="AHU24rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="55" varName="AHU24sat"

sensorType="SupplyAirTemperature" />
<Sensor name="MinOAF" id="57" varName="AHU24minoaf"

sensorType="OutdoorAirFlow" />
<Sensor name="SSP" id="58" varName="AHU24ssp"

sensorType="SupplyAirPressure" />
<Sensor name="SpaceAP" id="59" varName="AHU24spaceap"

sensorType="SpacePressure" />
<!-- Service setpoint -->
<SetPoint name="SSPSP" id="61" spValue="0.75" spType="Tracking" />
<SetPoint name="SpaceAPSP" id="62" spValue="0.02" spType="Tracking" />
<SetPoint name="SATSP" id="63" spValue="55" spType="Tracking" />
<SetPoint name="MinOAFSP" id="64" spValue="1500" spType="LowerBound" />
<!-- Controllers -->
<ClosedLoopControl name="MAOCooling" id="66" setPointId="63"

feedBackId="55" outputId="11" pidType="Direct" />
<ClosedLoopControl name="PHOHeating" id="67" setPointId="63"

feedBackId="55" outputId="17" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="68" setPointId="63"

feedBackId="55" outputId="23" pidType="Direct" />
<ClosedLoopControl name="SFOPressurization" id="69" setPointId="61"

feedBackId="58" outputId="29" pidType="Reverse" />
<ClosedLoopControl name="EFODepressurization" id="70" setPointId="62"

feedBackId="59" outputId="35" pidType="Direct" />
<ClosedLoopControl name="EAODepressurization" id="71" setPointId="62"

feedBackId="59" outputId="41" pidType="Direct" />
<ClosedLoopControl name="MinMAOOAIncrease" id="72" setPointId="64"

feedBackId="57" outputId="47" pidType="Reverse" />
</Project>
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Listing A.25: ASHRAE AHU 25
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU25: VAV4D1-11342"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD" id="1"

compType="MixingBox_ModLinkOAMA">
<Function name="MBCooling" id="8" funcType="SACooling">

<EnergyEfficiency name="MBEfficiency" id="9" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="10"

opAId="52" expOperator="LT" opBId="54" />
<Command name="MAO" id="11" varName="AHU25oad">

<SaturationPoint name="MAOMax" id="12" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="13" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="4-Stage PHTCoil" id="14" compType="PreheatCoil">

<Function name="PCHeating" id="15" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="16" efficiency="1.0"

/>
<Command name="PHO" id="17" varName="AHU25pho">

<SaturationPoint name="PHOMax" id="18" satType="Max"
satValue="4" />

<SaturationPoint name="PHOMin" id="19" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="4-Stage CHWCoil" id="20" compType="CoolingCoil">

<Function name="CCCooling" id="21" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="22" efficiency="1.0"

/>
<Command name="CCO" id="23" varName="AHU25cco">

<SaturationPoint name="CCOMax" id="24" satType="Max"
satValue="4" />

<SaturationPoint name="CCOMin" id="25" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDSF" id="26" compType="SupplyFan_VFD">

<Function name="SFPressurization" id="27"
funcType="SAPressurization">
<EnergyEfficiency name="SFEfficiency" id="28" efficiency="1.0"

/>
<Command name="SFO" id="29" varName="AHU25sfo">

<SaturationPoint name="SFOMax" id="30" satType="Max"
satValue="100" />

<SaturationPoint name="SFOMin" id="31" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDEF" id="32" compType="ReliefFan_VFD">

<Function name="EFDepressurization" id="33"
funcType="SpaceDepressurization">
<EnergyEfficiency name="EFEfficiency" id="34" efficiency="1.0"

/>
<Command name="EFO" id="35" varName="AHU25efo">

<SaturationPoint name="EFOMax" id="36" satType="Max"
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satValue="100" />
<SaturationPoint name="EFOMin" id="37" satType="Min"

satValue="30" />
</Command>

</Function>
</AHUComponent>
<AHUComponent name="EAD" id="38" compType="MixingBox_ModEA">

<Function name="EADDepressurization" id="39"
funcType="SpaceDepressurization">
<EnergyEfficiency name="EADEfficiency" id="40" efficiency="99"

/>
<Command name="EAO" id="41" varName="AHU25ead">

<SaturationPoint name="EAOMax" id="42" satType="Max"
satValue="100" />

<SaturationPoint name="EAOMin" id="43" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="MinOAD" id="44"

compType="MixingBox_ModMinOA"></AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="52" varName="AHU25oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="53" varName="AHU25mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="54" varName="AHU25rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="55" varName="AHU25sat"

sensorType="SupplyAirTemperature" />
<Sensor name="SpaceCO2" id="56" varName="AHU25spaceCO2"

sensorType="SpaceCO2" />
<Sensor name="MAP" id="57" varName="AHU25map"

sensorType="MixedAirPressure" />
<Sensor name="SSP" id="58" varName="AHU25ssp"

sensorType="SupplyAirPressure" />
<Sensor name="SpaceAP" id="59" varName="AHU25spaceap"

sensorType="SpacePressure" />
<Sensor name="MAP" id="60" varName="AHU25map"

sensorType="MixedAirPressure" />
<!-- Service setpoint -->
<SetPoint name="SSPSP" id="61" spValue="0.75" spType="Tracking" />
<SetPoint name="SpaceAPSP" id="62" spValue="0.02" spType="Tracking" />
<SetPoint name="SATSP" id="63" spValue="55" spType="Tracking" />
<!-- Controllers -->
<ClosedLoopControl name="MAOCooling" id="66" setPointId="63"

feedBackId="55" outputId="11" pidType="Direct" />
<ClosedLoopControl name="PHOHeating" id="67" setPointId="63"

feedBackId="55" outputId="17" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="68" setPointId="63"

feedBackId="55" outputId="23" pidType="Direct" />
<ClosedLoopControl name="SFOPressurization" id="69" setPointId="61"

feedBackId="58" outputId="29" pidType="Reverse" />
<ClosedLoopControl name="EFODepressurization" id="70" setPointId="62"

feedBackId="59" outputId="35" pidType="Direct" />
<ClosedLoopControl name="EAODepressurization" id="71" setPointId="62"

feedBackId="59" outputId="41" pidType="Direct" />
</Project>

Listing A.26: ASHRAE AHU 26
<?xml version="1.0" encoding="UTF-8"?>
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<Project name="AHU26: VAV5A1-25352"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
<AHUComponent name="Linked OAD-MAD" id="1"

compType="MixingBox_ModLinkOAMA">
<Function name="MBCooling" id="8" funcType="SACooling">

<EnergyEfficiency name="MBEfficiency" id="9" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="10"

opAId="48" expOperator="LT" opBId="50" />
<Command name="MAO" id="11" varName="AHU26oad">

<SaturationPoint name="MAOMax" id="12" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="13" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="PHTCoil" id="14" compType="PreheatCoil">

<Function name="PCHeating" id="15" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="16" efficiency="1.0"

/>
<Command name="PHO" id="17" varName="AHU26pho">

<SaturationPoint name="PHOMax" id="18" satType="Max"
satValue="100" />

<SaturationPoint name="PHOMin" id="19" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="CHWCoil" id="20" compType="CoolingCoil">

<Function name="CCCooling" id="21" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="22" efficiency="1.0"

/>
<Command name="CCO" id="23" varName="AHU26cco">

<SaturationPoint name="CCOMax" id="24" satType="Max"
satValue="100" />

<SaturationPoint name="CCOMin" id="25" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDSF" id="26" compType="SupplyFan_VFD">

<Function name="SFPressurization" id="27"
funcType="SAPressurization">
<EnergyEfficiency name="SFEfficiency" id="28" efficiency="1.0"

/>
<Command name="SFO" id="29" varName="AHU26sfo">

<SaturationPoint name="SFOMax" id="30" satType="Max"
satValue="100" />

<SaturationPoint name="SFOMin" id="31" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDEF" id="32" compType="ReliefFan_VFD">

<Function name="EFDepressurization" id="33"
funcType="SpaceDepressurization">
<EnergyEfficiency name="EFEfficiency" id="34" efficiency="1.0"

/>
<Command name="EFO" id="35" varName="AHU26efo">

<SaturationPoint name="EFOMax" id="36" satType="Max"
satValue="100" />

<SaturationPoint name="EFOMin" id="37" satType="Min"
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satValue="30" />
</Command>

</Function>
</AHUComponent>
<AHUComponent name="EAD" id="38" compType="MixingBox_ModEA">

<Function name="EADDepressurization" id="39"
funcType="SpaceDepressurization">
<EnergyEfficiency name="EADEfficiency" id="40" efficiency="99"

/>
<Command name="EAO" id="41" varName="AHU26ead">

<SaturationPoint name="EAOMax" id="42" satType="Max"
satValue="100" />

<SaturationPoint name="EAOMin" id="43" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="MinOAD" id="44"

compType="MixingBox_2StageOA"></AHUComponent>
<AHUComponent name="CAVInjection" id="45"

compType="Injection_CAV"></AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="48" varName="AHU26oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="49" varName="AHU26mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="50" varName="AHU26rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="51" varName="AHU26sat"

sensorType="SupplyAirTemperature" />
<Sensor name="PHT" id="52" varName="AHU26pht"

sensorType="PreheatAirTemperature" />
<Sensor name="SSP" id="53" varName="AHU26ssp"

sensorType="SupplyAirPressure" />
<Sensor name="SpaceAP" id="54" varName="AHU26spaceap"

sensorType="SpacePressure" />
<!-- Service setpoint -->
<SetPoint name="SSPSP" id="55" spValue="0.75" spType="Tracking" />
<SetPoint name="SpaceAPSP" id="56" spValue="0.02" spType="Tracking" />
<SetPoint name="SATSP" id="57" spValue="55" spType="Tracking" />
<!-- Controllers -->
<ClosedLoopControl name="MAOCooling" id="59" setPointId="57"

feedBackId="51" outputId="11" pidType="Direct" />
<ClosedLoopControl name="PHOHeating" id="60" setPointId="57"

feedBackId="51" outputId="17" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="61" setPointId="57"

feedBackId="51" outputId="23" pidType="Direct" />
<ClosedLoopControl name="SFOPressurization" id="62" setPointId="55"

feedBackId="53" outputId="29" pidType="Reverse" />
<ClosedLoopControl name="EFODepressurization" id="63" setPointId="56"

feedBackId="54" outputId="35" pidType="Direct" />
<ClosedLoopControl name="EAODepressurization" id="64" setPointId="56"

feedBackId="54" outputId="41" pidType="Direct" />
</Project>

Listing A.27: ASHRAE AHU 27
<?xml version="1.0" encoding="UTF-8"?>

<Project name="AHU27: VAV5C1-25352"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AHUSchema_v2_3.xsd">
<!-- Components -->
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<AHUComponent name="Linked OAD-MAD" id="1"
compType="MixingBox_ModLinkOAMA">
<Function name="MBCooling" id="8" funcType="SACooling">

<EnergyEfficiency name="MBEfficiency" id="9" efficiency="99" />
<FunctioningCondition name="MBCoolingCondition" id="10"

opAId="48" expOperator="LT" opBId="50" />
<Command name="MAO" id="11" varName="AHU27oad">

<SaturationPoint name="MAOMax" id="12" satType="Max"
satValue="100" />

<SaturationPoint name="MAOMin" id="13" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="PHTCoil" id="14" compType="PreheatCoil">

<Function name="PCHeating" id="15" funcType="SAHeating">
<EnergyEfficiency name="PCEfficiency" id="16" efficiency="1.0"

/>
<Command name="PHO" id="17" varName="AHU27pho">

<SaturationPoint name="PHOMax" id="18" satType="Max"
satValue="100" />

<SaturationPoint name="PHOMin" id="19" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="4-Stage CHWCoil" id="20" compType="CoolingCoil">

<Function name="CCCooling" id="21" funcType="SACooling">
<EnergyEfficiency name="CCEfficiency" id="22" efficiency="1.0"

/>
<Command name="CCO" id="23" varName="AHU27cco">

<SaturationPoint name="CCOMax" id="24" satType="Max"
satValue="4" />

<SaturationPoint name="CCOMin" id="25" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDSF" id="26" compType="SupplyFan_VFD">

<Function name="SFPressurization" id="27"
funcType="SAPressurization">
<EnergyEfficiency name="SFEfficiency" id="28" efficiency="1.0"

/>
<Command name="SFO" id="29" varName="AHU27sfo">

<SaturationPoint name="SFOMax" id="30" satType="Max"
satValue="100" />

<SaturationPoint name="SFOMin" id="31" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="VFDEF" id="32" compType="ReliefFan_VFD">

<Function name="EFDepressurization" id="33"
funcType="SpaceDepressurization">
<EnergyEfficiency name="EFEfficiency" id="34" efficiency="1.0"

/>
<Command name="EFO" id="35" varName="AHU27efo">

<SaturationPoint name="EFOMax" id="36" satType="Max"
satValue="100" />

<SaturationPoint name="EFOMin" id="37" satType="Min"
satValue="30" />

</Command>
</Function>

</AHUComponent>
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<AHUComponent name="EAD" id="38" compType="MixingBox_ModEA">
<Function name="EADDepressurization" id="39"

funcType="SpaceDepressurization">
<EnergyEfficiency name="EADEfficiency" id="40" efficiency="99"

/>
<Command name="EAO" id="41" varName="AHU27ead">

<SaturationPoint name="EAOMax" id="42" satType="Max"
satValue="100" />

<SaturationPoint name="EAOMin" id="43" satType="Min"
satValue="0" />

</Command>
</Function>

</AHUComponent>
<AHUComponent name="MinOAD" id="44"

compType="MixingBox_2StageOA"></AHUComponent>
<AHUComponent name="CAVInjection" id="45"

compType="Injection_CAV"></AHUComponent>
<!-- Sensors -->
<Sensor name="OAT" id="48" varName="AHU27oat"

sensorType="OutdoorAirTemperature" />
<Sensor name="MAT" id="49" varName="AHU27mat"

sensorType="MixedAirTemperature" />
<Sensor name="RAT" id="50" varName="AHU27rat"

sensorType="ReturnAirTemperature" />
<Sensor name="SAT" id="51" varName="AHU27sat"

sensorType="SupplyAirTemperature" />
<Sensor name="PHT" id="52" varName="AHU27pht"

sensorType="PreheatAirTemperature" />
<Sensor name="SSP" id="53" varName="AHU27ssp"

sensorType="SupplyAirPressure" />
<Sensor name="SpaceAP" id="54" varName="AHU27spaceap"

sensorType="SpacePressure" />
<!-- Service setpoint -->
<SetPoint name="SSPSP" id="55" spValue="0.75" spType="Tracking" />
<SetPoint name="SpaceAPSP" id="56" spValue="0.02" spType="Tracking" />
<SetPoint name="SATSP" id="57" spValue="55" spType="Tracking" />
<!-- Controllers -->
<ClosedLoopControl name="MAOCooling" id="59" setPointId="57"

feedBackId="51" outputId="11" pidType="Direct" />
<ClosedLoopControl name="PHOHeating" id="60" setPointId="57"

feedBackId="51" outputId="17" pidType="Reverse" />
<ClosedLoopControl name="CCOCooling" id="61" setPointId="57"

feedBackId="51" outputId="23" pidType="Direct" />
<ClosedLoopControl name="SFOPressurization" id="62" setPointId="55"

feedBackId="53" outputId="29" pidType="Reverse" />
<ClosedLoopControl name="EFODepressurization" id="63" setPointId="56"

feedBackId="54" outputId="35" pidType="Direct" />
<ClosedLoopControl name="EAODepressurization" id="64" setPointId="56"

feedBackId="54" outputId="41" pidType="Direct" />
</Project>
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Appendix B

Control logic fault causes categorized

as mutations
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Fault ID No. Actual / Al-
ternate fix

LOC Change
Type

MutOp
type

Mutate from Mutate to

PAM Fault2 1 Actual 72 Modify LVR POS POS
2 Alternate 134 Modify EVR <IDENTIFIER> POS
3 Actual 158 Modify EVR <IDENTIFIER>as Method Argument <METHOD_INVOCATION>
4 Alternate 186 Modify EVR <IDENTIFIER>as Method Argument <METHOD_INVOCATION>
5 Actual 177 Modify EVR <IDENTIFIER>as Method Argument <IDENTIFIER>

PAM Fault7 6 Actual 161 Modify EVR <METHOD_INVOCATION> POS(1)
7 Alternate 198 Modify EVR <IDENTIFIER>as Method Argument POS(1)
8 Alternate 223 Modify EVR <IDENTIFIER> <IDENTIFIER>
9 Alternate 141 Modify EVR <IDENTIFIER> NEG
10 Alternate 67 Modify LVR POS NEG

PAM Fault9 11 Actual 174 Modify EVR <IDENTIFIER>as Method Argument <IDENTIFIER>
12 Alternate 219 Modify EVR <IDENTIFIER> <METHOD_INVOCATION>

PAM Fault10 13 Actual 81 Modify LVR 0 POS
14 Alternate 182 Modify EVR Arithmetic Expression <IDENTIFIER>
15 Alternate 185 Modify EVR <METHOD_INVOCATION> <IDENTIFIER>
16 Alternate 220 Modify EVR <IDENTIFIER> <IDENTIFIER>

PAM Fault15 17 Actual 161 Modify EVR <METHOD_INVOCATION> POS(1)
18 Alternate 198 Modify EVR <IDENTIFIER>as Method Argument POS(1)
19 Alternate 223 Modify EVR <IDENTIFIER> <IDENTIFIER>
20 Alternate 141 Modify EVR <METHOD_INVOCATION> NEG
21 Alternate 67 Modify LVR POS NEG
22 Actual 177 Modify EVR <IDENTIFIER>as Method Argument <IDENTIFIER>

Delta Fault2 23 Actual 247 Modify COR/ROR Add logic expression(s)
24 Actual 256 Modify COR/ROR Add logic expression(s)
25 Actual 266 Delete STD Condition Block <NO-OP>
26 Actual 268 Delete STD Condition Block <NO-OP>
27 Actual 269 Delete STD Assignment Statement <NO-OP>
28 Actual 270 Delete STD Condition Block <NO-OP>

Delta Fault3 29 Actual 188 Modify COR/ROR Delete one logical expression
30 Alternate 166 Modify EVR <METHOD_INVOCATION> POS(1)
31 Actual 189 Modify COR/ROR Delete one logical expression
32 Alternate 167 Modify EVR <METHOD_INVOCATION> 0
33 Actual 190 Delete STD Condition Block <NO-OP>
34 Alternate 172 Modify LVR 0 POS
35 Actual 192 Delete STD Condition Block <NO-OP>
36 Actual 193 Delete STD Assignment Statement <NO-OP>
37 Actual 194 Delete STD Condition Block <NO-OP>
38 Alternate 213 Modify EVR <IDENTIFIER> <IDENTIFIER>

Delta Fault4 39-41 Actual 107 Modify
LVR
LVR
EVR

POS
0
<IDENTIFIER>as Method Argument

0
POS
<IDENTIFIER>

42 Alternate 110 Modify COR/ROR Delete multiple logical expressions
43 Alternate 115 Modify COR/ROR Delete one logical expression
44 Actual 111 Modify EVR <METHOD_INVOCATION> POS(1)
45 Actual 116 Modify EVR <METHOD_INVOCATION> POS(1)
46 Actual 142 Modify COR/ROR Delete one logical expression
47 Actual 143 Modify LVR POS POS
48 Actual 148 Modify COR/ROR Add logic expression(s)
49 Actual 149 Modify LVR POS POS

DeltaFault11 50-52 Actual 107 Modify
LVR
LVR
EVR

POS
0
<IDENTIFIER>as Method Argument

0
POS
<IDENTIFIER>

53 Alternate 110 Modify COR/ROR Delete multiple logical expressions
54 Alternate 115 Modify COR/ROR Delete one logical expression
55 Actual 111 Modify EVR <METHOD_INVOCATION> POS(1)
56 Actual 116 Modify EVR <METHOD_INVOCATION> POS(1)
57 Actual 142 Modify COR/ROR Delete one logical expression
58 Actual 143 Modify LVR POS POS
59 Actual 148 Modify COR/ROR Add logic expression(s)
60 Actual 149 Modify LVR POS POS

Table B.1: Actual fault fixing code changes categorized by mutation operation
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