Carnegie Mellon University

MELLON COLLEGE OF SCIENCE

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

TITLE: Variational Techniques for Water Wave and Singular Perturbations
PRESENTED BY: Giovanni Gravina

ACCEPTED BY THE DEPARTMENT OF: Mathematical Sciences

Giovanni Leoni May 2019
MAJOR PROFESSOR DATE
Thomas Bohman May 2019
DEPARTMENT HEAD DATE

APPROVED BY THE COLLEGE COUNCIL

Rebecca W. Doerge May 2019

DEAN DATE



Variational Techniques for Water Waves and

Singular Perturbations
BY
GIOVANNI GRAVINA

DISSERTATION
Submitted in Partial Fulfillment of the Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
MATHEMATICS
at
CARNEGIE MELLON UNIVERSITY

Department of Mathematical Sciences
Advised by: Prof. Giovanni Leoni

Approved by:

Prof. Giovanni Leoni (Chair)
Prof. Irene Fonseca
Prof. Robert Pego
Prof. Ming Chen

Pittsburgh, PA, April 2019






To my family



ii



Abstract

This thesis aims to provide a variational framework for the study of two problems that arise from
fluid dynamics and continuum mechanics. The first part concerns a free boundary approach for
the existence of periodic water waves. This is a notoriously hard problem as the only variational
solutions of the unconstrained problem are waves with flat profiles. Nevertheless, it is shown that by
considering an additional Dirichlet condition on part of the lateral boundary, nontrivial solutions can
be found among minimizers of the classical Alt-Caffarelli functional. The second part of the thesis
focuses on a regularization by singular perturbations of a mixed Dirichlet-Neumann boundary value
problem. The asymptotic behavior of the solutions to the perturbed problems is studied by means of
an asymptotic development by Gamma-convergence, recovering classical results in the literature.
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Chapter 1

Introduction

In this thesis we study two (essentially unrelated) problems with techniques borrowed from the
theory of partial differential equations and the calculus of variations.

The first part of the thesis focuses on formulating a framework for the study of periodic water
waves. The results presented here are mostly contained in the papers [56] and [|57].

In the second part we are concerned with the study of a regularization for a mixed Dirichlet-
Neumann boundary value problem. This contribution is contained in [55]].

1.1 A free boundary approach for water waves

In the classical paper [2], Alt and Caffarelli studied the existence and regularity of solutions to the
one-phase free boundary problem

Au=0 inQnN{u> 0},
u=0 onQnNao{u>0},

(1.1.1)
|Vu| =Q on QN o{u > 0},

[ u=w onl,

using a variational approach. Here (2 is an open connected subset of RY with locally Lipschitz
continuous boundary and @) is a nonnegative measurable function. Solutions to (I.I.T)) are critical
points for the functional

J(u) = / (IVul* + X{U>O}Q2) de, uwek, (1.1.2)
Q
where
Ki={uec H..(Q) :u=uponT}, (1.1.3)

with I' C 09 a measurable set with HY=H(T') > 0 and up € HL_(Q) a nonnegative function
satisfying
J (ug) < oo. (1.1.4)
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The equality w = wug on I' is in the sense of traces. Under the assumption that () is a Holder
continuous function satisfying

0 < Qmin < Q(x) < Qumax < 0, (1.1.5)

Alt and Caffarelli proved local Lipschitz regularity of local minima and showed that the free bound-
ary O{u > 0} is a C’llo’s‘ regular curve in ) if N = 2, while if N > 3 they proved that the reduced
free boundary is a hypersurface of class Cﬁ)’ca in 2, for some 0 < « < 1. See also [5] for the
quasi-linear case and [45] for the case of the p-Laplace operator.

We remark that while the regularity of minimizers is optimal, the regularity of the free boundary
for N > 3 was improved by Weiss in [91]. Weiss, following an approach closely related to the
theory of minimal surfaces and by means of a monotonicity formula, proved the existence of a
maximal dimension k* > 3 such that for N < k* the free boundary is a hypersurface of class
Cﬁ)’ca in , for N = k* the singular set consists at most of isolated points, and if N > k* then
H* ({singular set}) = O for every s > N — k*. In [27], Caffarelli, Jerison and Kenig proved the
full regularity of the free boundary in dimension N = 3, thus showing that £* > 4. They also
conjectured that £* > 7. In a later work De Silva and Jerison exhibited an example of a global
energy minimizer with non-smooth free boundary in dimension 8 (see [49]); their result implies
that £* < 7. As it was remarked in [2], if N = 3 the energy functional admits a critical point
with a point singularity in the free boundary. Similar results have been obtained for two-phase free
boundary problems (see [[7[], [22[], [24]], [23]]).

It is important to observe that the regularity of the free boundary is strongly related to the
assumption 0 < Quin < Q() in . Indeed, in the recent paper [[15]], Arama and Leoni
showed that for N = 2 and in the special case in which

Q(z,y) =+/(h—y); forsomeh > 0, (1.1.6)

if a local minimizer u has support below the line {y = h} and if there exists a point xg = (xg, h) €
0{u > 0}, then
Vu(z)| < Cr'/2, forx € B,(x) (1.1.7)

(see Remark 3.5 in [15]]). On the other hand, using a monotonicity formula and a blow up method,
Varvaruca and Weiss (see Theorem A in [90]) proved that for a suitable definition of solution if the
constant C' in (I.1.7) is one then the rescaled function

u(zg +rx) V2 3/2 3( . 51 T u i
T%?p cos 5 min { max 0’_E _— +§ asr — 07,

strongly in VV&)CQ(RQ) and locally uniformly on R?, where (x,%) = (pcosf, psinf), and near x
the free boundary O{u > 0} is the union of two C'* graphs with right and left tangents at x (see also
[93]). This type of singular solutions are related to Stokes’ conjecture on the existence of extreme
water waves (see [87]]). The existence of extreme waves and the corner singularity have been proved
in a series of papers (see [9], [10], [79], [84], [88]; see also [38]], [[65], [78]l, [85]) using a hodograph
transformation to map the set {u > 0} onto an annulus.

Note that for planar water waves of finite depth it is customary to set N = 2 and define

Q= (—=A/2,0/2) x (0,00), D= (-A/2,3/2) x {0}, wp=m (1.1.8)
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(see (I.I.T), (I.1.3)) and choose @ to be as in ( , where A > 0 is the wavelength, and m,h > 0
are renormahzed constants related to mass ﬂux and hydrauhc head, respectively (see, for example,
[35]]). Indeed, solutions to this problem correspond to steady periodic water waves moving on the
free surface of an irrotational flow above a flat impermeable bed.

The main drawback in proving the existence of regular and extreme water waves using the
variational setting of is that global minimizers of the energy functional 7 specialized to the
case , are one dimensional functions of the form u = w(y), which correspond to
flat profiles (see Theorem [3.2.2)). For this reason the paper [15] gives interesting results only for
local minimizers or when the Dirichlet boundary datum uq is not constant on the bottom, a situation
which is not compatible with water waves. Necessary and sufficient minimality conditions in terms
of the second variation of 7 have been derived by Fonseca, Leoni and Mora in [50]. We refer
to the papers [37], [36[], [39], [30[, [31], [52], [66], [89] and the references therein for alternative
approaches to water waves.

To be precise, in the following we assume that N = 2 and focus on the study of solutions to

/

Au=0 inQN{u> 0},

u(z + A, y) = u(z,y) in 2,

u=0 on QN o{u > 0}, (1.1.9)
|[Vu| = +/(h —y)+ on QN o{u > 0},
u=m on {y:O},
where (2 is a half infinite strip, i.e.,
A A
Q=|(—, = . 1.1.1
< 2,2>><(0,oo) ( 0)

One of our main results is showing that by considering an additional Dirichlet boundary condi-
tion on part of the lateral boundary it is possible to construct solutions to ( , which are not of
the form u = u(y). We define the Sobolev space

H}“lOC = {ue Hy (RY) :u(z + \,y) = u(z,y) for L2ae. = (z,y) e RZ}, (L.1.11)

and for m, h > 0 consider the energy functional

Tn(u) == /Q (IVul® + X{usoy(h — y)4) dw, foru €K, (1.1.12)

where
Ky = {u € Hy15.(Q) : u(-,0) = mand u(+A/2,y) = 0 fory > v} . (1.1.13)
Here + is a positive constant, and the boundary conditions are satisfied in the sense of traces. Choos-

ing ~y opportunely has the effect of eliminating trivial solutions from the domain of 7;,. This is made
precise in the following theorem.



Theorem 1.1.1. Given m,\,h > 0, let Q and J, be defined as in (1.1.10) and (1.1.12)), respec-

tively. Let
m\ 2/3 m\?/?
R =3 (— =3 —= 1.1.14
(5)" (\@) , (1.1.14)

and, for h > h, let t;, be the first positive root of the cubic polynomial

t3— ht* +m? = 0.
Furthermore, for h € (h¥, h*), let T, > t, be the unique value such that

m72 h? — (h—ty)? mi2 h? — (h — min{h, 7,})?

ty, 2 T 2

)

and set T, = t;, = 2h/3 if h = h¥. Then every global minimizer uof Jj, in K is not of the form
u = u(y) provided

v € (0,00) if h < h?,
v € (0,tp) U (1h,00) if " < h < h*, (1.1.15)
v € (0,tn) ifh>h*.

Remark 1.1.2. The numbers h¥, h*, ty, and 13, arise naturally from the study of the minimization
problem for a one dimensional version of Jy, as discusses in detail in Section[3.2]

We then study qualitative properties of global minimizers as we vary the height h. By adapting
to our setting the monotonicity techniques developed in Section 5 in [3]], Theorem 10.1 in [53]], and
the non-degeneracy result of Lemma 3.4 in [2]], we are able to prove an analogue of Theorem 5.6 in
[l15]].



Theorem 1.1.3 (Existence of a critical height). Given m, A > 0, let 6: R — Ry be a non-
increasing function such that
0(h) = Yh, (1.1.16)

where for every h the number vy, is chosen as in (1.1.15)). Furthermore, let ), Jy, and K, be defined
asin (1.1.10), (1.1.12)), and (1.1.13]), respectively. Then there exists a critical height 0 < he < 00

with the property that

(i) if her < h < 00 then every global minimizer of Jy, in K, has support strictly below the line
{y=h}s

(ii) if 0 < h < hey then every global minimizer is positive in (—\/2,\/2) x [h, 00).

Notice that for h > h., we are in a position to apply the regularity result of [2]] to conclude that
the free boundary d{u > 0} of every global minimizer of .7, in KC,, is locally an analytic curve in €2.
Theorem [3.3.5] shows that the result holds for h > he, as well. We also remark that Theorem [1.1.3
shows that the critical height A, is the only value of the parameter h for which the free boundaries
of global minimizers of 7, can touch the line {y = h} without crossing it, and that every such
minimizer is a Stokes wave. By the comparison principle in Theorem and the convergence
of minimizers of Corollary it follows that by letting h ™ he, there exists a global minimizer
u~ € Ky,  of Jh, whose support (restricted to €2) is contained in (—\/2, A\/2) x [0, hc,|, while if
I\ her then there exists another global minimizer u™ of Jj,,, with v~ < u™' and whose support
cannot be strictly below the line {y = h¢,} (see also Theorem . We have not been able to
prove that the support of any global minimizer touches the critical height. This would follow if we
had uniqueness at this level (see Theorem [3.3.14).

Concerning the value of h.,, we are able to show that for all m

her < R,
and, under mild assumptions on the function 6 in the statement of Theorem I.1.1} that
her > kBT,

where k£ > 0 is a constant (we refer to Lemma [3.3.8| and Theorem for more details). In
particular, we find the scaling law
her ~ m2/3.

Finally, it is important to notice that while the additional Dirichlet condition in (I.1.13)) allows us
to construct nontrivial solutions to (I.1.9), it comes with the disadvantage of potentially destroying
the regularity near the fixed boundary. The regularity at the boundary for global minimizers and
their free boundaries away from the points (£ /2, «y) is well understood. Indeed, due to the periodic
boundary conditions below the line {y = 7}, if the free boundary O{u > 0} of a global minimizer
touches the fixed boundary strictly below the line {y = ~} then the regularity follows from the
classical interior regularity of [2]. On the other hand, if the free boundary touches the fixed boundary
strictly above that line, then it follows from a recent results of Chang-Lara and Savin (see Theorem
1.1 in [29]]; see also [4]], [[8], [63]], and [92]]) that its free boundary detaches tangentially from the
fixed boundary and is a C'*+'/2 regular curve locally in a neighborhood of 9.
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(=A/2,7)

We refer to the work of Raynor [86] for a variational proof of the Lipschitz continuity of global
minimizers of J near a Neumann fixed boundary.

In Section we analyze the behavior of the free boundary near the points (+£A/2,) for a
certain class of global minimizers of Jj.

Definition 1.1.4. Let u be a global minimizer of Jy, in K.,. We say that u is a symmetric minimizer
iffor L'-a.e. y € Ry the map x v+ u(x,y) is even and nondecreasing in (—\/2,0).

The main result of the section can be stated as follows.

Theorem 1.1.5. Given m,\,h > 0 and v < h, let Q, Jy, and K, be defined as in ,
(1.1.12) and (1.1.13)), respectively. Let u € K be a symmetric global minimizer of [Jy, in the sense
of Deﬁnitionand assume that xo = (—\/2,7) is an accumulation point for the free boundary
on 0%, ie.,

x 68{U>O}QQ.

Then the free boundary O{u > 0} meets the fixed boundary at the point xo with horizontal tangent.

(=\/2,7)

Hence, the results of Section [3.4] show that it is possible to construct a family of gravity waves,
i.e., solutions to (1.1.9), whose free boundaries are non flat and meet the fixed boundary either
with a vertical tangent or with a horizontal tangent. We remark that if one was able to prove that for
some choice of the parameters A\, m, h, -y there exists a global minimizer with the property that every
contact point in the set {y < ~}, as a Corollary of Theorem we would obtain a variational
proof of the existence of regular water waves which does not rely on Nekrasov’s equation (see the
classical paper of Keady and Norbury [65]]).

The starting point of our analysis is Theorem [3.4.1} where we prove a uniform estimate on
the gradient of a symmetric minimizer in a neighborhood of the point y. This kind of result
is commonly referred to as the bounded gradient lemma (see, for example, Lemma 8.1 and 8.2
in [4]], Lemma 2.1 and 2.2 in [26], and 3.7 Theorem in [1]]). Our main contribution is proving

8



that the estimate holds up to the fixed Dirichlet boundary, uniformly with respect to the distance
from the point xg. This is accomplished through the use of a boundary Harnack principle (see
Theorem [2.2.9). The relevance of Theorem is that it allows us to consider blow-up limits.
Indeed, as it is often the case for this kind of regularity results (see for example [63], [11], [12]],
and [19]), the proof of the main result will rely heavily on the complete characterization of blow-
up solutions (see Theorem [3.4.13). This, in turn, is derived from a monotonicity formula. To be
precise, we show that the boundary monotonicity formula of Weiss (see Theorem 3.3 and Corollary
3.4 in [92], see also [91]] and [90]) holds at the point x( for global minimizers of 7}, in K, with
bounded gradients.

1.2 Higher-order Gamma-limits for singularly perturbed Dirichlet-
Neumann problems

Mixed Dirichlet-Neumann boundary value problems arise naturally from a wide range of applica-
tions. Examples are the problem of a rigid punch or stamp making contact with an elastic body (see
[40], [41]], [94], and the references therein), the steady flow of an ideal inviscid and incompressible
fluid through an aperture in a reservoir (see [80], [94]], and the references therein), as well as free
boundary problems (see, e.g., [2]).

The prototype for this kind of problems is given by

Aug = f in (),
Oyug =0 onT'y, (1.2.1)
Up =g on 1—‘D7
where QO C RY is an open set with sufficiently smooth boundary and I'p, I' v are disjoint sets such

that
N =TpuUTly.

It is well known (see [47]], [58]], [68], and [[76]]) that solutions to mixed boundary problems are
in general not smooth near the points on the boundary of the domain where two different conditions
meet. Indeed, when NV = 2 in (1.2.1), f = 0, g = 0, and €2 is given in polar coordinates by

{(r,0) :7>0,0<0 <7},
the function S': 2 — R given is polar coordinates by[]
S(r,0) == r'/?sin (6/2) (1.2.2)

is a solution to @ where I'p and I' v correspond to the positive real axis and the negative real
axis, respectively. However, S fails to be in H? in any neighborhood of the origin.

In dimension N = 2 it turns out that functions of the type (I.2.2) completely characterize the
behavior of solutions to . Indeed, we have the following classical result (see [47]], [S8], [68],
and [[76]).

'In what follows, given a function v = wv(x) where * = (z,%y), we denote by @ the function ¥(r,6) =
v(r cos @, rsin #), and with a slight abuse of notation we write v = o(r, 6).

9



Theorem 1.2.1. Let N = 2, and let ) be an open, bounded, and connected subset of R2, with O
of class OV, Assume that T p and T i are nonempty, relatively open, and connected subsets of 05
with - -
OQ:FDUFN, and FDﬁFN:{:cl,acg},
and that 02 N B,(x;) is a segment for i = 1,2 and for some 0 < p < min{1l, |x1 — x2|/2}. Let
i

f e L2(Q), g € HY2(0Q), and let uw € H'(Q) be a weak solution to (1.2.1)). Then u admits the
decomposition

2
U = Upeg + E ciSi,
=1

where uree € H 2(Q) and the c; are coefficients that only depend on u. The singular functions S;
are given by the formula
Si(ri, 0:) = @(ro)ry’” sin(6:/2),
where (r;,0;) are polar coordinates centered at x; such that
QN By(xi) = {z; + (14,0;) : 0 <1 < p,0<0; <7},

I'p N By(xi) = {z; + (14,0) : 0 < r; < p},

and ¢ € C*([0,00)) is such that p = 1in [0, p/2] and ¢ = 0 outside [0, p]. Furthermore, there
exists a constant ¢, which only depends on the geometry of €, such that

2
g 20y + D leil < ¢ (£ lz2(@) + gl 2oy
i=1

An approach that often proved to be successful for the study of ill-posed problems, and in
general for problems that present singularities of some kind, is to consider a small perturbation,
typically chosen with an opportunely regularizing effect, and then carry out a careful analysis on the
convergence of solutions of the regularized problems to solutions of the original one. This procedure
often requires to prove estimates that are independent of the parameter of the regularization. We
refer to the classical monograph of Lions [73]] for more details.

In the second part of this thesis we regularize the problem by introducing a family of
mixed Neumann-Robin boundary value problems parametrized by £ > 0. To be precise, we consider

Au. = f in €,
Oyue =0 on Ty, (1.2.3)
€dyus +u. =g onl'p.

The convergence of solutions to (1.2.3) to solutions of (I.2.1]) has been studied by Costabel and
Dauge in [40] using classical PDE expansions (see [73]), who proved the following result.

Theorem 1.2.2 (Costabel-Dauge). Let N = 2, ) be as in Theorem f=0g¢e HT(Tp)
for some 6 > 0, and let u. and ug be solutions to (1.2.3) and (L.2.1)) (with f = 0), respectively.
Then

[ue — uollz2(0) = O(eloge),

10



11
||u8 - UOHHH‘S(Q) = 0(51/2_5)7 fOVS € (_2a 2> ) (124)

|| (ue — w0y, HLQ(FD) = O(ey/|logel). (1.2.5)

Moreover, these estimates cannot be improved in general.

We refer to [40] for the precise statement in the case f # 0. This problem was also previously
considered by Colli Franzone in [32], where the author proved estimates on the difference u. — g
in certain Sobolev norms (see also the work of Aubin [|16] and Lions [73]).

The question of convergence of solutions to the family of problems (I.2.3) to the solution to
(1.2.1) is of significance for the numerical approximations of . We refer to [17]], [21], [41],
[33], [34]], and the references therein for more information on this topic.

In the second part of this thesis we present an alternative proof of the estimates withs =0
and (I.2.5) using the variational structure of (1.2.3). Indeed, solutions to (I.2.3) are minimizers of
the functional

1 1
/Q<2]Vv|2+fv> da:+2—€ g (v—g)2dH', ve HYQ). (1.2.6)
D

Thus a natural approach is to use the notion of Gamma-convergence (I'-convergence in what fol-
lows) introduced by De Giorgi in [48]] (for more information see also [20] and [42]).

The powerfulness of asymptotic expansions by I'-convergence has been shown in the recent pa-
pers [43[], [71]], [72]], and [82]], where the authors completely characterized the second order asymp-
totic expansion of the Modica-Mortola functional and used it to obtain new important results on
the slow motion of interfaces for the mass-preserving Allen-Cahn equation and the Cahn-Hilliard
equation in higher dimensions.

We investigate asymptotic expansions by I'-convergence for the functionals with respect
to convergence in L%(£), and thus we define F.: L?(2) — (—o0, o] via

/ (;]Vv|2+fv> dw+2i (v —g)?dH' ifve HY(Q),
@ € Jp (1.2.7)

400 otherwise.

Fe(v) =

We begin by studying the I'-convergence of order zero of (1.2.7).

Theorem 1.2.3 (Oth order I'-convergence). Let £ C RY be an open, bounded, connected set with
Lipschitz continuous boundary, and let T'p C 0S) be non-empty and relatively open. Assume that
f € L*(Q)and g € H'/?(99Q). Then the family of functionals { F. }. defined in I-converges
in L%(Q) to the functional

1
/ <|V112+fv> dx ifv eV,
Fov) ={ Ja \2 (1.2.8)
400 otherwise,
where
Vi={ve H(Q):v=gonTp}. (1.2.9)

11



Since the first asymptotic development by I'-convergence of (1.2.7) strongly relies on Theo-
rem|[1.2.1] in what follows we assume N = 2. We begin with a compactness result.

Theorem 1.2.4 (Compactness). Let N = 2, Q be as in Theorem ferL?Q),ge HY?0Q),
F- and Fy be the functionals defined in (1.2.7) and (1.2.8)), respectively, and define

Fe — min Fy

M) .—
Fe e|loge|

(1.2.10)

If e, — 0% and v, € L*(Q) are such that
sup{]:a(i) (vp) :m € N} < o0,
then there exist a subsequence {vy, }r, of {vn}n, ro € H () and vy € L*(Tp) such that

Up,;, — U0
Ven, | logen, |
Unk — UQ

Eng /| logen, |

where ug is the solution to (|1.2.1]).

—~ry in H(Q), (1.2.11)

—uy in L*(I'p), (1.2.12)

Theorem 1.2.5 (1st order I'-convergence). Under the assumptions of Theorem the family
{]-"5(1)}5 [-converges in L?(S2) to the functional

2

—é > e} ifv =,
Fi(v) = i=1 (1.2.13)

400 otherwise,

where the coefficients ¢; = c;(ug) are as in Theorem In particular, if u. € H*(Q) is a
solution to (1.2.3), then

Fo(ue) = Foluo) + €| loge|Fi(ug) + o (e|logel) . (1.2.14)

To characterize the second order asymptotic development by I'-convergence of the family of
functionals { ¥ }., we introduce the auxiliary functional

Ji(w) = /R2 |Vw(zx)|? dm+/(]1 (w(x’0)2 _ cix_1/2w(az70)> da

+ /100 (w(m,O) — %x_1/2>2 dx

(1.2.15)

defined in
H = {we H. (RY) : w € H'(B};(0)) for every R > 0}, (1.2.16)

12



where w(-, 0) indicates the trace of w on the positive real axis. LetE|

A = inf{J;(w) : w € H}, (1.2.17)
1 [° 1/ (i

B; = 2/ a(rr 2ol (s, 0) dr, (1.2.18)

0

1t =0 22) .—1

Cy, =< (1—¢(x)%) 2" dx, (1.2.19)
8 o2

- 1

~1/2

Yi(r;) = 5@(%)@- (1.2.20)

As shown in Proposition 4.3.4} there exists w; € H such that J;(w;) = A;, and thus w; satisfies

Awi =0 in R%_,
dyw; =0 on (—o0,0) x {0}, (1.2.21)
dyw; +w; = $~1/2 on (0,00) x {0}.

Observe that if ¢; = 0 then J; > 0 and so w; = 0 and A; = 0. Finally, let u; € H*(f) be the
solution to the Dirichlet-Neumann problem

Au; =0 in €2,
o,u1 =0 on Iy, (1.2.22)
= —ayu9eg onl'p.

Theorem 1.2.6 (Compactness). Let N = 2, Q be as in Theorem[1.2.1} f € L*(Q), g € H3/2(0Q),

Fe, Fo, .7:5(1), F1, J; be as in d1.2.7b, (I1.2.8|), d1.2.10b, (I1.2.13I), and ([1.2.15)), respectively, and
define

(1) . .
.7:5(2) = fal/“:gll;lfl = e 1;1111.7:0 — |log e| min Fj. (1.2.23)

Ifen — 0T, w, € L(Q) are such that
sup{}_e(z) (wy) :n € N} < o0,
and W; , € H is defined as

= u_)a(q,i)(?“ﬁm 0;) — ﬂ(()i) (rien, 0;) — 5nﬂgi) (rign, 05)

Win(1i,6;) = @(rien) NG

?In what follows, given a function v = v (), we denote by &° the function 7% (r;, 6;) = v(a; + 7:(cos 0;,sin 6;)),
for polar coordinates (r;, 6;) given as in Theorem

(1.2.24)
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for (ri, 6;) polar coordinates as in Theorem|[1.2.1} then there exist a subsequence {wn, }1, of {wn }n,
wo € HY(Q) and qo € LE (T p) such that

Wy U0 7 ey in HY(S), (1.2.25)
Enn
w 2
ni — U — Z cihil = XBep, ( —qo — Z c; in L? (Tp), (1.2.26)
=1

where 1); is the function given in polar coordinates by (1.2.20|) and u; is the solution to ((1.2.22)).
Furthermore, for every R > 0,

Win, = W; in HY(B}(0)), VW, — VW; inL*[R%;R?), (1.2.27)
Wi, (-,0) = Wi(-,0) in L*((0,1) x {0}), (1.2.28)
Wi,nk('70) - %$—1/2 - VVZ(7O) - %IL‘_I/2 in LQ((lv OO) X {O})v (1.2.29)

for some W; € H such that J;(W;) < oo, where W; p,, (-,0) and W;(-,0) indicate the trace of
Wi n,, and W; on the positive real axis.

Theorem 1.2.7 (2nd order I'-convergence). Under the assumptions of Theorem [[.2.6] the family
{]:5(2)}5 [-converges in L?(S2) to the functional

Y (% + Bici + CSDC?) — %fr (0, ureg) dH ifv = uo,

400 otherwise,

Fo(v) =

where the numbers A;, B;, and C, are defined in 1.2.17), (1.2.18), and (1.2.19)), respectively. In
particular; if u. € H(Q) is a solution to ((1.2.3)) then

]:E(ug) = .Fo(uO) + €| log €|]:1 (U()) + é‘fg(uO) +o0 (8) . (1.2.30)

As a consequence of our results, we obtain an alternative proof of the sharp estimates (I.2.4)) for
s = 0 and (T.2.3)) in Theorem|[I.2.2] Indeed, we have the following theorem.

Theorem 1.2.8. Let N = 2, Q as in Theorem f e L), g€ H¥?(0N), and let u. and ug
be solutions to (1.2.3)) and (1.2.1)), respectively. Then

e — woll2rpy = O (a\/\ log€|) , (1.2.31)

IV (e = wo) | p2(0m2) = O (51/2) . (1.2.32)

In contrast to the work of Costabel and Dauge [40]], our results rely on the variational structure
of the mixed Neumann-Robin problem , rather than the PDE. In particular, the compactness
results in Theorem [I.2.4] and Theorem [I.2.6] are valid for energy bounded sequences and not just
for minimizers, and thus are completely new. A key ingredient in the proof of compactness is the
following Hardy-type inequality on balls due to Machihara, Ozawa and Wadade (see Corollary 6 in
[75D.
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Theorem 1.2.9. Let Br(0) be the ball of R? with radius R > 0 and center at the origin. Then

) 1/2 1/2
/ h(z) dx| < V2 / h(z)? da
Br(0) |z[? (1 +log R — log |z|) R\ JBg0)

+2(1+V2) (/B o ”

Vh(x)

||

9 1/2
dm)

We remark that our results rely heavily on the decomposition of Theorem and on the
Hardy-type inequality (Theorem [I.2.9) and thus hold only for N' = 2. The extension to dimension
N > 3 seems to be highly non-trivial and, in particular, the correct scalings in the asymptotic
development by I'-convergence are not clear and may depend in a significant way on the geometry
of the domain (see, for example, [[77]] for a discussion on the mixed Dirichlet-Neumann problem in
a three-dimensional dihedron).

It also important to observe that the asymptotic development by I'-convergence leads naturally
to the asymptotic expansion of the solutions u. to , and does not require an a priori ansatz
of this expansion. Thus it could be applied to a large class of problems, including the p-Laplacian
mixed problem

for every h € H*(Bg(0)).

div(|Vue|P~2Vug) = f in €,
|Vu0|p_28,,u0 =0 on Iy,
ug =g onI'p.

In the seminal paper [18]], Berestycki, Caffarelli and Nirenberg considered the family of elliptic
equations

Lu. = B (ue.) (1.2.33)

to approximate (as € — 071) a one-phase free boundary problem. Here the family {3.}. is an
approximate identity and the term [ (u.) is non-zero only for values of u. less than e. In particular,
the region {u. < e} can be thought of as an approximation of the free boundary of the solution
to the limiting problem. One-phase free boundary problems with mixed boundary conditions are
strongly related to problems arising in fluid-dynamics (see [50]).

Our original motivation for considering the family of problems (I.2.3)) was the study of the
regularized problem

Aue = %ﬁg(us)QQ in ,
Oyue =0 on Iy,

€0 s + u: = g onI'p,

where {[:}. is a family of approximate identities as in (1.2.33) and @ is a nonnegative function

in LIQ0 .(€2). Solutions u. of this problem converge to a solution u of the one-phase free boundary
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problem

Au=0 in €2,
u=0, |Vul=Q onQnao{u > 0},

d,u=0 onIy,

u=g onl'p.

The asymptotic development by I'-convergence of the corresponding family of functionals

1
/ (IVv]? + B.(v)Q?) dz + / (v—g)2dH N, ve HY(N)
Q € Jrp
is ongoing work. Here B; is a primitive of ;.
As a warm-up problem, we begin Chapter [ with the study of the simpler case in which I'p =

012, so that (1.2.3]) reduces to

Aue = f in €,
==/ (1.2.34)
edyus +u. =g on .

Under suitable regularity assumptions on the set 2, we characterize the complete asymptotic ex-
pansion by I'-convergence of {F.}., still defined as in (1.2.7), but with I'p, replaced by 09 (see

Theorem Theorem and Theorem [4.2.6)). In Corollary and Corollary we ad-

dress the question of the convergence of u. to ug, i.e., the unique variational solution to the Dirichlet
problem

Aug = f in €,
0=1 (1.2.35)
ug =g on Jfd.

To be precise, we show that the asymptotic expansion

o)
Ue = E Uy
i=1

holds, where for every ¢ € N the function u; is a solution to the Dirichlet problem
Aui =0 in Q,
U; = —&,ui_l on Jf2.

We remark that Corollary fully recovers the results of Theorem 2.3 in [40] and that the auxil-
iary problems for u; arise naturally during the study of higher order I'-limits of F (see, for example,
the proof of Theorem.2.4)). The case of a Robin boundary condition that transforms into a Dirichlet
boundary condition for Helmholtz equation was considered by Kirsch in [67].
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Chapter 2

Preliminaries

2.1 Gamma-convergence and asymptotic developments

I"-convergence, introduced by De Giorgi in 1975 (see [48]]), is a notion of convergence which is
particularly suited for analyzing the convergence of variational problems. For more information we
refer to the monographs of Braides [20] and Dal Maso [42].

Definition 2.1.1. Given a metric space X and a family of functions F.: X — R, € > 0, we say

that { F.}. T-converges to Fo: X — Ras e — 0T, and we write F. RN Fo, if for every sequence
en — 07 the following two conditions hold:

(7) liminf inequality: for every x € X and every sequence {x,},, of elements of X such that
Tp — T,
liminf F;, (z,) > Fo(z);
n—oo
(73) limsup inequality: for every x € X, there is a sequence {xy}y, of elements of X such that
Ty — X and
lim sup F;, (z,,) < Fo(z).
n—oo

A sequence {xy }y, as in (it) is called a recovery sequence for x.

Proposition 2.1.2 (Proposition 1.42 in [20]). Let X be a separable metric space and let {Fn}nbea
sequence of functions Fy: X — R. Then there exist a subsequence {Fni tie of {Fn} and a function
F: X — Rsuch that { F,,, } i, T'-converges to F.

Definition 2.1.3 (Coercive and equi-midly coercive). A function F: X — R is coercive if for all
t € R the set {F < t} is precompact, and is midly coercive if there exists a non-empty compact
subset K such that inf{F(z) : x € X} = inf{F(x) : = € K}. A family of functions {F}c
is equi-midly coercive if there exists a a non-empty compact subset K such that inf{F.(z) : © €
X} =inf{F.(x):x € K} foralle > 0.

Theorem 2.1.4 (Theorem 1.21 in [20]). Let X be a metric space and let {F:}. be a family of
functions where F.: X — R for all ¢ > 0. Suppose that the family {F.}: is equi-mildly coercive
and that F. T'-converges to F for some F: X — R. Then there exists xo € X such that

F(zog) =inf{F(z) 1z € X} = ;i_r%inf{fa(x) rxe X}
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Moreover, if {x.} is precompact and such that
lim F.(z.) = lim inf{F.(z) : * € X}, (2.1.1)
e—0 e—0

then every accumulation point of {x¢ }. is a minimum point for F.

As explained in [[13]], the I'-limit might fail to completely characterize the asymptotic behavior
of the family { . }.. Indeed, consider X = R and let F.(x) = ¢|z|; then, as one can readily check,
F: I'-converges to F, where F is identically equal to zero. In turn, every x € R is a minimizer for
F while {z. : F.(z.) = infg F.} = {0}. This shows that in general the inclusion

{limits of minimizers} C {minimizers of the I'-limit}
can be a proper inclusion.
Definition 2.1.5. We say that the asymptotic development by I'-convergence of order k
Fe=Fo+wi(e)F1+ -+ wp(e)Fi
holds if there are functions F;: X — R, i =0, ...k, such that F, EN Foandfori>1

wi-1(€) T .
o) 7

FO = (FEY — inf{Fi (@) 0 € X))
where ]-'5(0) = F., wo = land fori > 1, w;: Ry — Ry is a suitably chosen function such that
both w; and w;/w;_1 converge to zero as € — 0.

Remark 2.1.6. For w;() = &' one has the standard power series asymptotic expansion
Fo=Fo+eFi+--+e"Fp.

Asymptotic developments by I'-convergence provide a selection criteria for minimizers of Jj.
This is the content of the following result.

Theorem 2.1.7 (Proposition 1.3 in [[14])). Let X be a metric space and let {F.}. be a family of
functions where F.: X — R for all € > 0. Suppose that F. admits an asymptotic expansion as in
Definition[2.1.5] For each ¢ > 0 let x. be a minimizer of F. and assume that x,, — vo € X for
some subsequence €, — 0F. Then the following holds:

(i) xo is a minimizer of Fo, ..., Fr,
(17) if we let U; be the set of minimizers of F; then
Fi(z) =00 forx e X \U,.

In particular,
{limits of minimizers of F.} C Uy, C --- C Uy C Up.

(7i1) If m. denotes the infimum of F. and m; denotes the infimum of F;, then
me = mo +wi(e)my + - - + wi(e)my + o(wi(€)).
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2.2 Second order linear elliptic equations

In this section we collect a few selected results on the existence and regularity of solutions to linear
elliptic partial differential equations of the second order that will be used throughout the following
chapters.

2.2.1 Solvability of the classical Dirichlet problem

We call a set 2 a domain in RY if ) is a connected, non-empty, proper open subset of R%.

Definition 2.2.1. Let Q be a domain in RN and let u € C?(Q). The function u is called harmonic
in Q if it satisfies Au = 0 everywhere in €.

Definition 2.2.2. Let Q) be a domain in RY and let v: Q — RU{—00} be an upper semi-continuous
function. The function v is called subharmonic in ) if for every closed ball B,(x) contained in )
and every harmonic function u in B, (x) that satisfies v < u on OB,(x) we have v < w in B, ().
A function w is called superharmonic in ) if —w is subharmonic in Q.

Definition 2.2.3. Let Q be a domain in RY and let ¢ be a point of Q. A continuous function

w € C () is called a barrier at x relative to Q if:
(i) w is superharmonic in );
(ii) w > 0in Q\ {z}, w(zx) = 0.
Furthermore, a boundary point will be called regular if there exists a barrier at that point.

Theorem 2.2.4 (Theorem 2.14 in [|54]). Let € be a bounded domaiﬁ in RN Then, for every contin-
uous function p € C(0Y), there exists a function u € C*(Q) N C(Y) such that

Au =0 inQ,
u =@ on 0,

if and only if every boundary point is regular.

Remark 2.2.5. We recall that, if ) is a domain in R2 and © € 99, then x is a regular point if it
is the endpoint of a simple arc lying in the exterior of Q. Thus, if N = 2, the Dirichlet problem
is solvable in every bounded domain whose boundary points are accessible from the exterior by
a simple arc. On the other hand, if N > 3, a simple sufficient condition for the solvability in a
bounded domain is that § satisfies the exterior ball condition, i.e. for every point x € OS2 there

exists a ball Br(y) such that Q N Br(y) = {x}. This is satisfied, in particular, if 9S) is of class
C?. For more details we refer to the discussion at the end of Section 2.8 in [54)].

A similar result to that of Theorem [2.2.4] holds also for Poisson’s equation.

Theorem 2.2.6 (Theorem 4.3 in [54])). Let Q2 be a bounded domain in RY and suppose that every
boundary point is regular. Then, if f is a bounded and locally Hilder continuous function in €, the
classical Dirichlet problem

Au=f in(),
u =@ on 0,

is uniquely solvable for any continuous function .
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2.2.2 Harnack’s and Carleson’s inequalities

The classical Harnack inequality can be stated as follows.

Theorem 2.2.7 (Theorem 2.5 in [[54]]). Let u be a nonnegative harmonic function in €} C RN, Then
for every bounded domain ) which is compactly supported in ) there exists a positive constant C,
depending only on N, Q and Y such that

supu < C'inf u.
Q/

Ql

The following two results are a version of Harnack inequality when € and 2 are two concentric
balls, particularly useful due to the fact that the constant is explicit, and an up to the boundary
version of Harnack’s inequality, respectively. The latter is also referred to as Carleson estimate in
the literature. These will prove instrumental when addressing the issue of boundary regularity in the
following chapter.

Theorem 2.2.8 (Problem 2.6 in [54]]). Let u be a nonnegative harmonic function in Br(0). Then

RY2R—Jaf) o RNRtla))
(R a1 O =) = g O

for every x € Br(0).

Theorem 2.2.9 (Theorem 11.5 in [28]). Let u € C?(B;(0)) N C(B;(0)) be a nonnegative
harmonic function in B} (0), vanishing on {xn = 0}. Then there exists a positive constant

M = M(N) such that
u(x) < Mu (J;eN>

forevery x € BE/Q(O).

2.2.3 Interior and boundary estimates in concentric balls

Following the presentation of Chapter 4 in [54], we introduce the following notation: for k €
NU {0}, a € (0,1],and D C R¥ let d := diam(D) and define

|D*ulo.p = sup sup |DPul,
|Bl=k D

|DPu(x) — DPu(y)]

[D*u]o.p == sup sup

)

B=k x#ycD |’JC - y‘
k .
ulkasp = _ | D7ulo,p + [D*ula,p,
=0
k . .
|l 0ep = Z @ |Diulo p + d*[D*uy, p.
=0
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Theorem 2.2.10 (Theorem 4.6 in [54]). Let Q be a domain in RN and let u € C?(2), f € C%(Q),
satisfy Poisson’s equation Au = f in . Then for any two concentric balls By = Bgr(x), By =
Bsr(x) compactly contained in €2 we have

|u|/2,a;B1 < C (|U|O§B2 + R2|f|6,a;32)
where C' = C(N, ) > 0.
Theorem 2.2.11 (Theorem 4.11 in [54]). Let B := Br(0)N{xy > 0}, By = Bagr(0) N {ay >
0}, and u € C*(By) N C(BY) satisfy
Au=f in B;,
u=0 on{xy =0},

where f € C“(?;). Then u € Cz’a(Ff) and we have

/ 2 !/
[0l it < C (ulosg + B2 o)

where C = C(N,«) > 0.

2.2.4 Boundary estimates in more general domains

While a satisfactory interior regularity theory for solutions to Laplace’s or Poisson’s equations es-
sentially follows from Theorem [2.2.10] the regularity up to the boundary, which requires straight-
ening a portion of the boundary, is based on the study of more general elliptic equations. For suffi-
ciently smooth domain, i.e. if O is of class C*®, one can rely on Schauder’s theory for equations
of the form

Lu = aij(w)afju + b (x)0ju + c(x)u = f(x),

where repeated indices are summed, and the coefficients satisfy
a’(x)&&5 > N¢| 2.2.1)
for every € Q and £ € RY, and

a7 |0.a02 + 160,00 + Iclo.a < A

Here it is assumed that A, A are positive constants.

Theorem 2.2.12 (Corollary 6.7 and Lemma 6.18 in [54]). Let Q C RY be a domain with a C*
boundary portion T, and let p € C*%(Q). Suppose that v is a C(Q) N C%(Q) function satisfying

Lu=f in(,
u=¢ onT,

where L is as above and f € C%(Q). Then u € C**(Q U T) and furthermore, if xo € T and
B = B,(x) is a ball with radius p < dist(xo, 0\ T), we have

‘U|2,a;BﬂQ < C (’u‘O;Q + ‘90’2,01;9 + ‘f‘O,a;Q) 5
where C = C(N,a,\,A, BN Q) > 0.
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The issue of boundary regularity for domains that are only of class C'*“ can be addressed by
the theory of weak solutions for operators whose principal part is in divergence form, i.e.,

Lu = 0; (aij (x)0ju + bz(m)u) + () 0pu + d(z).

Here the coefficients a/, b’, ¢, d are assumed to be measurable functions on € that satisfy (2.2.1))
and
670,050 + ['[0,ac00 + ['[0:0 + |dlo < K

for some positive constant K.
Theorem 2.2.13 (Corollary 8.36 in [54]). Let Q C RY be a domain with a C*® boundary portion
T, and suppose u € H*(Q) is a weak solution of
Lu=g+0;f' inQ,
U= onT,

where g € L>®(Q), f* € C%(Q), p € CH*(Y), and the boundary condition is satisfied in the sense
of traces. Then v € C1*(QUT), and for any €' compactly contained in Q UT we have

|u|17a;9’ <C (|U|O;Q + g 0;0 Tt |f

where C = C(N, \, K, dist(Y, 00\ T),T) > 0.

0,a;0Q + |Q0 l,a;Q) 5

2.3 Symmetric rearrangements

Let U C R? be an open subset of the strip S, = (—a,a) x R, U := U N {y = t}, and define
* 1 1 1 1
Ul =< (x,t): —§£ (Uy) <z < E,C (Up) ¢ -

Definition 2.3.1. The set

U= JUr

teR

is called the Steiner symmetrization of U with respect to the y-axis.

Remark 2.3.2. Analogous definitions can be given for a closed subset of S,. Furthermore, it is
not difficult to see that if U is an open (closed) subset of S,, then U* is also open (closed) and
L2(U) = L2(U).

Let R, == (—a,a) x (0,b) and consider a function u: R, — R which is continuous, nonneg-
ative, and symmetric about the y-axis. For y € (0,b), let v, := u(-,y) and consider the segments

(o2 ) = {2 € (-aa)slol < (0 2 D).

(v, > e} = {x € (—a,a): || < %El({vy > c})} .
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Definition 2.3.3. The function u*: R, — R defined via
u (z,y) =c ifre{vy>c} \{vy, >c}”
is called the Steiner symmetrization of u in the variable x or with respect to the y-axis.

Lemma 2.3.4. Let u be as above and u* be its Steiner symmetrization in variable x. Then u* is
also symmetric with respect to the y-axis and is monotone decreasing in x for x > 0. Moreover, for
any real numbers c and d such that 0 < ¢ < d, we have

L2({z: u*(2) € (c,d)}) = L2({z 2 u(x) € (c,d)}).
In addition, if u is decreasing in x for x > 0 then u = u*.
We conclude this section with the following version of the Pélya-Szegd inequality.

Theorem 2.3.5. Let u € C(R, ;) N H (R, ) be nonnegative, symmetric in the variable x, and let
u* be its Steiner symmetrization with respect to the y-axis. Then u* € H 1(Ra7b) and

/ \Vu*|? de < / |Vu|? de.
Ra,b Ra,b

Proof. The proof is essentially a corollary of Theorem 2.31 in [64]]. Indeed, since R, satisfies
the assumptions of Remark 2.44c and Remark 2.32 in [64], one can then reason as in the proof of
Corollary 2.14 in [64]; we omit the details. OJ

2.4 Derivation of Bernoulli’s free boundary problem

For the convenience of the reader we present here the derivation of the one-phase free boundary
problem from the equations of motion of a planar periodic wave. The content of this section
is adapted from [35] (see also [[38]] and [39]]). To be precise, we consider a two-dimensional, inviscid,
incompressible fluid which undergoes a steady motion in a vertical plane over a flat, horizontal,
impermeable bed. By steady we mean that the flow propagates in a fixed direction at constant speed
c. We assume that the gravity is the only restoring force. Choosing a moving frame of reference we
can eliminate the time variable and rewrite the equations of conservation of momentum as

— ¢)0zu + voyu) = —0, P,
(= €)Byu + vOyu) et
p((u — ¢)0pv + vOyv) = =0y P — pyg,

where u = (u, v) if the flow velocity field, P is the pressure and g is the gravitational constant. The
conservation of mass condition can be written as

V- (pu) = 0. (2.4.2)

Henceforth we assume that the density p is everywhere equal to one in the fluid, and so the incom-
pressibility condition (2.4.2)) simplifies to

Ozt + Oyv = 0. (2.4.3)
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Furthermore, we assume that the free surface is the graph of a function 7; thus, the region occupied
by the fluid is given by

Dy ={(z,y):x€Rand 0 < y < n(x)}.

In the following we require that the unknowns u, v, P, 7 are periodic in the x variable of period
A. The equations of motion (2.4.1) and (2.4.3) are complemented by the kinematic and dynamic
boundary conditions on the free surface

v=(u—c)y" ony=n(x),

(2.4.4)
P = Pym ony = n(zx),
as well as the kinematic boundary condition on the flat bottom:
v=0 ony=0. (2.4.5)
Notice that if ¢ is a stream function for the flow (defined up to a constant), i.e.,
Oy =u—c, 0x=—v, (2.4.6)
then the irrotationality of the flow implies that
A =0 2.4.7)

in the fluid domain D,. Moreover, by (2.4.4); and (2.4.5), we see that both the free surface
{(z,n(x))} and the bottom {y = 0} must be streamlines, i.e. level sets of 1. Assuming that

Y(z,n(x)) = 0, it follows from (2.4.6) that
Yy
vla) =+ [ (ulas) =) ds, 2.48)
0
where pg is a constant. Finally, observe that Bernoulli’s condition
(u —c)? 4 v?

+ gy + P = const

holds along the free surface, where it can be rewritten in terms of the stream function v as

|Vep| = v/const —2Pyim — 29y. (2.4.9)

After an opportune renormalization, the free boundary problem (I.1.1)), for @ as in (I.1.6), is equiv-
alent to (2.4.7), (2.4.8)), (2.4.9).
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Chapter 3

Variational methods for water waves

3.1 Existence and regularity of global minimizers via regularization

Throughout the section we assume that €2 is an open connected subset of R™Y with locally Lipschitz
continuous boundary. We remark that {2 may be unbounded. For the convenience of the reader, in
this section we recall some fundamentally well known results concerning the minimization problem
for J in K, defined as in (T.1.2)) and (T.1.3)) respectively. Here it is only assumed that

Q€ Li (), Q>0 (3.1.1)
Following the approach of [18]], we introduce the family of approximate identities 3., defined as
1 /s
Be(s) = =P <7) : (3.1.2)
€ \e
where
o0 1
g€ C(R;[0,00)), suppp C [0,1], / B(s)ds :/ B(s)ds = 1. (3.1.3)
0 0
We also define B. by
t
B (t) = / Be(s) ds. (3.1.4)
0
It follows that B. is nonnegative, increasing, Lipschitz continuous, with
0 ift <0,
t/e
B.(t) = (s)ds if0 <t <e, (3.1.5)
0
1 ift>e.
Finally, we consider the functional
J-(u) ;:/ (IVul* + B.(u)Q?) dz (3.1.6)
Q

defined for u € K. We refer to [25]], [45]], [46]], [59]], [60], [62]], [69]], [81] and the references therein
for some of the recent literature on this type of singularly perturbed free boundary problems.
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3.1.1 Gamma convergence and global minimizers

The proof of the existence of a global minimizer for 7 in the next theorem is adapted from Theorem
3.11in [2].

Theorem 3.1.1. Let Q be an open and connected subset of RN with locally Lipschitz continuous
boundary, and assume that (1.1.4)), (3.1.1)), (3.1.3)) hold. Let J. and K be defined as in and
, respectively. Then there exists a global minimizer u. € K of the functional J.. Further-
more, ug is a weak solution of the mixed Dirichlet-Neumann problem

Au. = %5&(“6)@2 in Q,
Ue = U onl, (3.1.7)
Oyue =0 on 0Q\ T,
where v is the outward unit normal vector to OS).

Proof. We claim that for every u € K,

Te(u) < T (u), (3.1.8)

where 7 is the functional defined in (I.1.2)). Indeed, by (3.1.3)) and (3.1.3) we have that for every
ue Li (),

loc

B:(u(z)) < X{u>0y () for LN-ae. x €,

and the claim follows. In particular, we see from (1.1.4) and (3.1.8) that 7. (ug) < occ.
We now let o := inf{J.(u) : u € K} and {uy .}, C K be a minimizing sequence, that is,

lim J:(uge) = a.
k—o0

Then {Vug ¢}, is bounded in L2(€; RY). Let Q, :== QNB,(0), where r is such that HN~1(B,.(0)N
I') > 0. Then by Poincaré’s inequality we have that

/ |ug,e — u0]2daz < C(I’,QT)/ |Vuge — Vu0]2d:c.
Q. Q.

Therefore {uy .} is bounded in H'(£,) and hence, up to extraction of a subsequence (not rela-
beled), we can assume that uy . — u. in L2(QT) and pointwise almost everywhere as £ — oo to
some us; € Hlloc(ﬂr). By letting " oo and by using a diagonal argument, up to extraction of a
further subsequence, we have that

Vuge = Vus in L*(Q,RY),
Upe — e in L, (Q), (3.1.9)

Uge — Us  pointwise almost everywhere in (2.
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Moreover, since B: is Lipschitz continuous and nonnegative (see (3.1.3]) and (3.1.4))), by the weakly
lower semicontinuity of the L?-norm and Fatou’s lemma, we have that

/ (IVue|® + Ba(ue)Q?) dz < ligninf/ (Vg |* + Be(up,.)Q%) dz = .
Q —° JO

To conclude, notice that u. € K since K is closed with respect to the convergence in (3.1.9).
Moreover, one can check that u. is a weak solution of (3.1.7) by considering variations of the
functional [7.. We omit the details. J

Corollary 3.1.2. Let u. € K be a global minimizer of the functional J.. Then, under the assump-
tions of Theorem[3.1.1]
0 < wue(x) < [luollzoe(ry

for LN -a.e. € Q, provided ¢ is small enough.

Proof. To prove the upper bound, we can assume without loss of generality that M := |[uo|| 0o (1) <
o0, since otherwise there is nothing to prove. For every 0 < ¢ < M and for every n > 0, let
ve = max{u. — M, 0} and consider u/ := u. — nv.. Then ud € K and

B (us(x)) = B:(u(x)) (3.1.10)

for LN-ae. © € Q. Indeed, the equality holds almost everywhere in {v. = 0}, while for almost
every x such that v.(z) > 0 we have that

ue(x) > ul(x) = (1 —n)ue(x) + nM > (1 —n)M +nM > e.
Therefore (3.1.10) follows from (3.1.5). This, together with the minimality of u., implies that

/|Vu€|2dm§/|Vug|2dm.
Q Q

Expanding the square on the right-hand side, rearranging the terms, and dividing by 7 in the previous
inequality yields

2/Vu€-VU€d:c§77/ |VU€|2dw:n/Vu5-Vv5dw,
Q Q Q

where in the last equality we have used the fact that Vu. = Vo, a.e. in the set {u. > M} while
Ve = 0 a.e. in the set {u. < M}. Taking n < 2, since (2 is connected, we have that v. = ¢, for
some constant c.. In turn, its trace is c., but since u. = ug < M on I', necessarily c. = 0. Thus
ue < M as desired.

The proof that u. is nonnegative is similar taking u{ := u. — nmin{u.,0} and therefore we
omit it. O

Theorem 3.1.3 (Compactness). Let Q be an open and connected subset of RN with locally Lipschitz
continuous boundary, and let J. and KC be defined as in (3.1.6|) and (1.1.3), respectively. Assume

that (3.1.1)), (3.1.3) hold. Given e, — 0" and {uy,},, C K such that

sup{Jz, (un) : n € N} < o0, (3.1.11)

there are a subsequence {en, }r, of {en}n and u € K such that u,, — win L2,

Q).
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Proof. Since {Vuy,}, is bounded in L?(€; RY) by (3.1.11) and B. > 0, the desired convergence
follows as in the proof of (3.1.9). We omit the details. O

In view of the previous theorem, we study the I'-convergence of the family of functionals defined
as in (3.1.6) with respect to convergence in L2 () (see Definition i . In the following, although
L loc

loc
with a slight abuse of notation, we consider the functionals J, J (Q) — [0, 00|, extended to

infinity outside of /C.

Theorem 3.1.4. Let Q2 be an open and connected subset of RN with locally Lipschitz continuous

boundary, and let J. and [J be defined as in and , respectively. Assume that (3.1.1)),
1} hold. Then J. RN J with respect to L12OC convergence.

Proof. Letu, — win L?

ioc(€2). Without loss of generality, we may assume that

liminf 7;, (u,) = lim J, (u,) < o0,

since otherwise there is nothing to prove. By extracting successive subsequences, we may find a
subsequence {en, }i, of {ex}n such that sup{J;,, (un,) : k € N} < oo, un, — u pointwise
LN-a.e. in Q and the following limits exist and are finite

k—o0

lim / 'V, |* de,  lim / B., (un,)Q*dz.
Q k—o0 Q k

In turn,

/|vu\2dmgnminf/ 'V, |? de = lim / |V, | dz. (3.1.12)
Q k—o0 Q k—o00 Q

Now fix § > 0 and let K be any compact set contained in {u > 0}. By Egorov’s theorem, for
every 1) > 0 there exists a compact set K,, C K such that £V (K \ K,;) < n and {uy, }, converges
uniformly to u on K;,. Notice that { B, (us, )} is bounded in L>°(£2) and hence admits a further
subsequence (not relabeled) that converges in the weak star topology to some function £ € L (12).
By uniform convergence, we can find k such that Up, > 6/2 on K, for k > k. Moreover, if
Eny <0/2, Be,, (un,(z)) = 1for LN-ae. zin K, by , and hence

0= / (Be,, (uny) — Dup, de — (& —Dudz.
K, K,

Since u > 0 on K, then necessarily £ = 1 £LV-a.e. in K,). Letting n \, 0, K {u > 4} and
§ \, 0 we conclude that ¢ = 1 £LV-a.e. in {u > 0} and hence

£(x) > Xqusoy(x) for LN ae. x c Q.

Let now D be a compact subset of 2. By the previous inequality, the fact that Q* € L'(D) and
B, (up,) = & in L®(9),

2 2 R T 2 . 2
/l)X{u>O}Q dwg/DﬁQ dcc_kh_?olo/DBg"k(u”’“)Q dwgkli}IrOlOABgnk(unk)Q dx.
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Finally, letting D 7 ) we get

/X{u>O}Q2 de < lim /Ban (unk)Q2 dz,
Q k—oo J k

which together with proves that 7 (u) < liminf, . Jz, (un).

To prove the existence of a recovery sequence, we let u € L%OC(Q) and define u,, = u. If
J(u) = oo, then there is nothing to prove. Thus, assume that 7 (u) < co. By we have
Tz, (un) < J(u) and therefore the result follows. O

Corollary 3.1.5. Let Q be an open and connected subset of RV with locally Lipschitz continuous
boundary, and assume that (1.1.4)), (3.1.1)), (3.1.3)) hold. Let J and K be defined as in and
respectively. Then there exists a global minimizer u € IC of the functional J. Furthermore,
every global minimizer of J in KC is locally Lipschitz continuous in €, and solves , where the
free boundary condition is satisfied in a distributional sense.

Proof. Let e, — 07. By Theorem [3.1.1] for every n € N we can find u,, a global minimizer of
Jz.,- Then by (I.T.4) we have

sup{Je, (uyn) : n € N} < J(ug) < 0.

Let {ey, }% and u € K be given as in Theorem Then, by Theorem [3.1.4] u is a global
minimizer of 7. The rest is classical, see Lemma 2.4, Theorem 2.5, and Corollary 3.3 in [2]. O

Remark 3.1.6. In view of the previous corollary, given a global minimizer u € K of the functional
J, we can work with the precise representative

u(x) = lim u(y)dy, x €.
r—=0% /B, (x)

3.1.2 Uniform gradient estimates and boundary regularity

In view of Corollary 3.1.2] we study uniform properties of nonnegative and uniformly bounded
solutions of (3.1.7). In particular (see Corollary [3.1.10), combining the results of [[18]] with the ones
of [59] and [61]], we show that under certain regularity conditions on 02 and g, if u. is a global
minimizer of 7. in K (see , Theorem [3.1.1) and (3.1.6)), then the family {u.}. satisfies a
uniform-in-¢ Lipschitz estimate away from OI", where OI" denotes the boundary of I" as a subspace
of 9€2. In this subsection we work with sets that have the uniform C?-regularity property.

Definition 3.1.7 (Definition 4.1 in [S1]). Let Q2 be an open subset of RY. We say that Q) has the
uniform C2-regularity property if there exist a locally finite open cover {Us}s of 09, and corre-
sponding C? homeomorphisms ¢, such that:

(i) for each s, ¢5(Us) = B1(0) and ¢5(Q N Us) = B (0);

(i7) U(,bs_l(Bl/Q(O)) D {x € Q: dist(z,00Q) < 7}, for some T > 0;

(7i1) there exists an integer R such that any R + 1 distinct sets Us have empty intersection;
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(iv) for some sequence of points {cs}s C RY,

||¢8HC2(7S;RN) <M, s - CSHC2(31(0);RN) <M,
for some M independent of s.

Remark 3.1.8. (i) Definition is standard in the treatment of regularity results for PDEs in
unbounded domains. We remark that it is equivalent to the definition of boundary uniformly
of class C? (see Definition 3.4 and Theorem 4.2 in [51]). Moreover; it is also equivalent to
Property P in [18].

(13) For any given d > 0, eventually replacing R with a larger number, we can assume without
loss of generality that diam U < d.

Theorem 3.1.9. Let Q) be an open connected subset of RY with boundary 02 uniformly of class
C? and let ug € C1*(Q), 0 < a < 1. Let {uE}E C I/Vlof(Q) N <p < oo, be a family of
nonnegative uniformly bounded solutions of (3.1.7)) where Q, in addition to ( , is assumed to
be locally bounded in ). Then, for every K compactly contained in Q0 \ OT, there exists a constant
C such that

[Vue(z) < C, xeK, (3.1.13)

where C only depends on N, p, K, ||Q|| Lo (), [| Bl o), [[uoll 1.0 () SUPe |tte|| oo () and OS2
through T, R and M as in Definition|[3.1.7]

Proof. Let K be a compact subset of 2\ OI'. If K C € the desired result follows directly from
Theorem 3.1 (a) in [18]]. Thus, assume that K N 0N is non-empty and let dx = dist(K, dT"). Let
{Us}s be as in Definition with diam U < df /2 (see Remark (ii)). By a compactness
argument, we can find an integer .S such that K N Uy is empty for every s > S. Then there are
D, N C N such that:

(i) D,N aredisjointand DUN = {1,...,S};

(it) U; N0 C T forevery i € Dand U; N0 C 0N\ T for every j € N;

(vi1) U ot (B1/2(0)) D> K n{x € Q: dist(x, Q) < 7}, where 7 is as in Definition |3.1.7;
SEDUN

(i) |J UnQcQ\{zeQ:dist(z,dr) < dg/2}.
seDUN

Notice that we are in a position to apply Theorem 3.1 in [61] in U; N (2, ¢ € D, and Theorem 3.1 (b)
in [18] in U; N Q, j € N. Therefore, there exists a constant C' (depending on the other parameters
of the problem, but independent of <) such that

Vu(m)| <C, xe ) ¢7(B2(0).
s€DUN

Moreover, again by Theorem 3.1 (a) in [18]], a similar estimate holds in KN{x € Q : dist(x, Q) >
7/2} and hence, by (ii7), everywhere in K. O
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Corollary 3.1.10. Let Q2 be an open and connected subset of R™ with boundary 0 uniformly of
class C?, and assume that (1.1.4)), (3.1.1)), (3.1.3)) hold. In addition, we assume that ug € CH*(Q),
0 < a < 1, and that Q, in addition to (3.1.1)), is locally bounded in Q. Let J., J and K be defined
as in (3.1.6)), (1.1.2) and (1.1.3)) respectively. Then, given ¢, — 0" and {un}n C K such that u,
is a global minimizer of Jz,, for every n € N, we have that {uy}, C VVlof(Q) N < p < o0, and
moreover there exists a subsequence {ey, } i, such that {uy, }1 converges locally uniformly in 2\ OT
to a function u that is a global minimizer of J in K. In particular, w is locally Lipschitz continuous

inQ\ or.

Proof. By Theorem [3.1.1] for every n € N, w,, is a weak solution of (3.1.7) with ¢ = ¢,,. More-
over, by Corollary - 3.1.2] the sequence {uy, },, is nonnegative and umformly bounded from above by
[|[uol| Lo (1), Which is finite by assumption. By standard elliptic regularity theory, {un }» C Wlo’f(Q)

N<p< oo (see, e.g., [54] and [83])). Let {e, }«, u be given as in Theorem Then, reasoning
as in the proof of Corollary [3.1.5] we obtain that u is a global minimizer of 7 in IC. Notice that by
Theorem we are in a position to apply the Ascoli-Arzela Theorem to {uy, }x. This proves the
existence of a further subsequence (which we don’t relabel) that converges uniformly to u on every
compact subsets of 2\ OT. To conclude, it is enough to notice that  inherits the gradient estimates
on every compact subset of  \ OI' from the weak star convergence in L™ of (a subsequence of)

{Vup, }r. O

Remark 3.1.11. (i) Under the slightly more restrictive assumptions that O) is smooth and ug €
C?(Q), an estimate up to the boundary near the Dirichlet fixed boundary can be obtained
as in Section 2.3 of [59].

(7i) One of the main results presented in this thesis is the study of the boundary regularity for a
certain class of global minimizers, with special emphasis given to the regularity of the free
boundary. We refer to Section |3.4| for more information.

3.2 Existence of nontrivial minimizers

In this section we shift the attention to our suggested framework for the study of planar gravity
waves. For the convenience of the reader, we recall that throughout the rest of the chapter we will
assume that N = 2 and let {2 be a half infinite strip, i.e.

0 (-22) x 00

Furthermore, we define the Sobolev space
H/{’loc —{uEHlOC(RQ) u(zx + N\ y) = u(x, y)for£2ae x = (z,y) GR },
and for m, h > 0 consider the energy functional

Tiu) = /Q (V> + xpusop(h— v)4) dz,  foru e K,

where
Ky={ue H}\JOC(Q) s u(-,0) =mand u(+A/2,y) = 0fory > ~}.

Here v is a positive constant, and the boundary conditions are satisfied in the sense of traces.
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Theorem 3.2.1. Let Q, J),, and K., be defined as above. Then there exists a global minimizer
u € Ky of the functional [Jy,. Furthermore, every global minimizer is locally Lipschitz continuous

away from the points {(£\/2,v)}, and solves (1.1.1)), for Q as in (1.1.6)), where the free boundary

condition is satisfied in a distributional sense.

)

then ug € K, and J,(ug) < oo. Consequently, the existence of global minimizers in /C, for
Jn, can be adapted from the results of the previous subsections (see Corollary [3.1.5)), essentially
without change. We omit the details. Since the boundary regularity for y > -y is a consequence of
Corollary [3.1.10} we are left to show that if u is a global minimizer of 7}, in K, then u is Lipschitz
continuous in {2 N {y < v}. To see this it is enough to notice that v is a minimizer of 7}, over the
set

Proof. Notice that if we let

K(u) = {ve H'(B,(x)N{y > 0}) : v =uon d(B,(z) N {y > 0})}

for every € Q and L'-ae. 7 € (0,)/2) such that B,(x) C {y < v}. The desired result then
follows from both the interior and the boundary regularity, as above. O

The rest of this section is dedicated to the proof of Theorem[I.1.1] Since this requires a precise
understanding of the energy landscape of trivial solutions, i.e., solutions of the form v = u(y),
for the convenience of the reader we recall some preliminary definitions and results concerning the
one-dimensional minimization problem for the functional

T, (v) = / (0 (1) + Xusoy (D) (h — 1)) dt. 32.1)
0
defined over the set
Kyia={ve HL.((0,00)) : v(0) = m and v(v) = 0}, (3.2.2)

where m, h, y are positive numbers, and H. _((0, 00)) is the space of all functions v € L2 _((0, 00))
such that v € H'((0,r)) for every 7 > 0. Indeed, if u € K is a trivial solution to (1.1.9), then
u(z,y) = v(y) for Ltae. © € (—\/2,)/2) and L'-ae. y € (0,00), where v(0) = m and

v(y) = 0, and by Tonelli’s theorem we have
A2 poo )
Tiw) = [ y | @R + oy (= ) dude = 5T, 0). (32.3)
For a fixed m > 0 and for every h > 0, we define g,: R; — R by

2 2 p 2
gn(t) :=m7+ h” = (h— min{h, })" (3.2.4)

and let v;: R4 — R be the function
m
ve(s) == ?(t n (3.2.5)
be defined for t € R. Observe that g;, € C*(R,).
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Theorem 3.2.2. Given m,h,~ > 0, let Ij, and K. 1.q be as in (3.2.1)) and (3.2.2), respectively, let
h#, h* be given as in (1.1.14)), and g,, v; be given as above. Then

inf{Zp,(v) : v € K 1.4} = inf{gn(t) : 0 <t <~}, (3.2.6)
and the following hold:
(i) if h < h then gy, is decreasing and v, is the only global minimizer of Iy, in the class K 1.4,

(ii) if h* < h < h* then gj, has two critical points, tj,, Ty,

2h
0<ty < 3 < Ty < h, (3.2.7)

which correspond to a point of local minimum and a point of local maximum of gy, respec-
tively. Moreover, there exists a unique Ty, > Ty, such that gy (tn) = gn(11). In this case we
have that

(a) if0 <y < ty, then gy, is decreasing in (0,) and v, is the only global minimizer of Iy,
in the class K 1.4;

(b) ifth < v < T, then inf{Zy(v) : v € Ky 1.4} = gn(tn) and vy, is the only global
minimizer of Ly, in the class K 1.4;

(¢) if v = m, then inf{Zy,(v) : v € K514} = gn(tn) = gn(7n) and vy, , s, are the only
global minimizers of Iy, in the class K 1.4

(d) ify > 7y then inf{Zy(v) : v € Ky 1.4} = gn(7) and v, is the only global minimizer of
Ty, in the class K 1.a;

(¢43) if h > h* then ty, is a point of absolute minimum for g,. Moreover, vy is the only global
minimizer of Ly, in the class Ky 1.4 if 0 < v < ty, while if t, < v then the only global
minimizer is given by vy, .

Proof. We divide the proof into several steps.

Step 1: By Corollary [3.1.5]we have that there exists a global minimizer v of Zj, in KC,,1.q. We claim
that v is linear on {v > 0}. Indeed, the minimality of v implies that the set {v > 0} is connected;
the claim follows recalling that v is harmonic in {v > 0} (see Corollary . Thus, v is of the
form v = v; for some 0 < t < y and so (3.2.6) follows by noticing that

Tn(ve) = gu(t). (3.2.8)

Thus it remains to study inf{gy,(t) : 0 < ¢t < v}.
Step 2: Since
—m L h—tift <h,

—m ift > h,

gh(t) =
we have that g (t) < 0if ¢ > h. Moreover, g; (t) < 0 for t < h if and only if
Up(t) = —m? + ht? — 3 < 0. (3.2.9)
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Since 15, has a global maximum in (0, i) at the point ¢ = 2h/3, it follows that
o 4.3
Yn(2h/3) = —m” + 2—7h <0 (3.2.10)

if and only if h < h#, where h* is the number given in (1.1.14));. Consequently, if h < h# then
gy, is decreasing and so

inf{gn(t) : 0 <t <~} =gnly),

which, together with (3.2.6) and (3.2.8), shows that v, is the only global minimizer of 7, in the
class K\ 1.4
Step 3: If h > h¥, then in view of (3.2.9) and (3.2.10) there exist

2h
0<ty < 3 <Th,<h
such that gy, strictly decreases in (0, t},) and in (T}, 00), and strictly increases in (¢5,, 73,). It follows
that
9r(7) if 0 <y <t
inf{gh(t) 0<t< 7} =9 gn(ty) iftp, <v < Ty, (3.2.11)

min{gn(tn), gn(v)} if v > Th.
Hence, in what follows, it remains to treat the case v > T},. Notice that
h2
inf{gn(t) : 0 <t <~} =gn(tn) < lim gp(t) = — (3.2.12)
t—o00 2

if and only if
2m? < sup{fy(t) : 0 <t < h},

where f},(t) := t(h — t)2. The function f;, has a maximum at ¢ = h/3, and so,
2m? < f,(h/3),

or equivalently A~ > h*, where h* is the number given in (1.1.14))2. Hence by (3.2.12) if h > h*

then gy, (tn) < gn(y), which, by (3.2.6), (3.2.8), and (3.2.11)), proves (iiz), while if A < h* then by
(3.2.12) there exists Tj, < 75, such that gy, (tn) = gn(1h)-
Properties (a), (b), (¢), (d) now follow again by (3.2.6),(3.2.8), and (3.2.11). O

Proof of Theorem Step 1: For v, d > 0, consider the function

w(z,y) =m (1 e 5)3/;_ 2|a:|5>+ ’

defined first for x = (z,y) € § and then extended by periodicity to R x (0,00). Notice that the
support of w in € corresponds to the polygonal region with vertices (£A/2,0), (+£\/2,), and
(0, + 9), and therefore w belongs to the class K. A direct computations shows that

45 A J
2 g2 A °
/Q|Vw| de =m <3>\+ 5>log <1—|—7). (3.2.13)
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In the following, if v < h, we will only consider values of § for which v + § < h. Once again by
means of a direct computation, we see that the contribution from the second term in the energy for
w is given by

2
e the
(3.2.14)
2 A2 _ 2
A;LWLQV) +)\(h27)5)\2if7<'y+5§h.

Next, we will show that if § > 0 is chosen opportunely then

TIn(w) < Agn(7), (3.2.15)

where gy, is the function defined in (3.2.4). Notice that this implies the desired result; indeed, if  is
chosen as in (1.1.15), then it follows from Theorem and (3.2.3) that

Agh(y) = Ainf{Zy(v) : v € Ky 1q} < inf{Th(u) 1 v € Ky, u=u(y)}, (3.2.16)

and so (3.2.15)) implies that solutions of the form u = u(y) cannot be found among global minimiz-
ers of Jj, in IC,,.
Step 2: In this step we address the case in which «, chosen as in (1.1.15)), is such that v > h. Using

the inequality
2 3

t t
log(1+t)<t—§+§, t>0, (3.2.17)
it follows from (3.2.4)), (3.2.13)) and (3.2.14)) that to prove (3.2.15) it is enough to show that for a
certain choice of § ) 5
46 1 o 6 ) 1
ot |l st <. 3.2.18
(3A2+5> <7 272+373> gl G219
Notice that the previous inequality is equivalent to
1 4 1 20 462
—— 4+l 5t o555+ 5= <0, 3.2.19
272 + <3)\27 * 3y3 3A%y2 * 9/\2'y3> ( )

which is satisfied if § is sufficiently small.
Step 3: We now turn our attention to the case v < h. Since we only consider values of § for which
v+ 3§ < h, by (3.2.4), (3.2.13) and (3.2.14) we find that (3.2.15) is equivalent to

45 A ) AMh—=7)8 X2 am?
2
— 4+ -1 14+ — _ < —. 3.2.20
(e el T e
By (3.2.17), and reasoning as in the previous step, we see that it is enough to prove that the inequality
2 2
m 9 4 1 1 20 46 (h—7)
- — o P — <0 3221
22 T (3)\27 T3 T emZ 3y tons) T T S (3.2.21)

holds for an opportune choice of 4. By Theorem we see that if vy is as in (1.1.15) then

m? ,
2 +h—v=g,(y) <O0. (3.2.22)

Consequently, also in this case, (3.2.21]) is satisfied if we choose J small enough (with respect to the
other parameters in the problem). O
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Lemma 3.2.3. Given m > 0, let ty, and 1, be defined as in Theorem Then ty, is decreasing
as a function of h, while Ty, is increasing.

Proof. By the implicit function theorem, we have that the maps ~ +— t; and h — 7, are differen-
tiable, and we write t;l and 7',’1 to denote the derivatives. Then we see that
t, = __th < 0, forh>h#,
2h — 3ty
from which we conclude that ¢;, is decreasing as a function of h. To prove the statement about 7,
we first assume that 7, < h. Then 7y, is defined by
m2 (h — th)2 m2 (h — Th)2

tp, 2 Th 2
which in turn implies that
m2t/ m27—/
- by (h—tp)(1—t)) = Th +(h—m)1—1}). (3.2.23)
h h

The definition of ¢;, can now be used to simplify the left-hand side of (3.2.23):

m2t) m?
t2h+(h*th)(1*t§l)=t% <t2h+th)+hth:hth.
h h

Therefore we can rewrite (3.2.23)) as
2
m
<2—h+7'h> T;{L:Th—th,
Th

and the conclusion follows recalling that t;, < 75, and m? — hT}% + Tg’ > 0. The proof for the case
T, > h is similar but simpler. O

Remark 3.2.4. The result of Theorem cannot be improved for h < h" and h > h*. However,
it is still unclear whether the result is optimal also for h# < h < h* (see figure below).

Remark 3.2.5. For h > h# and 0 < t < h, the cubic equation t3 — ht?2 + m2 = 0 has three real
solutions, two of which are positive. Setting

33 m?
0 :==arccos | 1 — ———
so that 0 < 0 < m, the two positive solutions are given by

2h O+4r  h 2h
ty = — + —
Ty 8Ty 3€<O’3>’

Th ::%cosg+ﬁ € (23h7h>.



2h7 /3

h*/3

We also know that

ty < 2Y3m23 < T,

Indeed, for every n € (0,h — h**), by (3.2.7) and Lemma we have

2
th <thp < g(h —n) < Th—r] < Ty,

To conclude, let 1 — h — h*.

We conclude the section with a result which states that not only trivial solutions, but also flat
free boundaries cannot be observed if «y is chosen as in Theorem|1.1.1

Lemma 3.2.6. For v as in Theorem let u € Ky be a global minimizer of Jy,. Then 0{u >
0} N Q does not coincide with a horizontal line segment.

Proof. Assume for the sake of contradiction that O{u > 0} coincides with the line {y = k}, for
some k > 0. Then k < h. Assume first that & € (0, y]. We claim that

m

v(z,y) = (k= y)+

satisfies Jp,(v) = Jp(u). Notice that since by assumption & <  we have that v € K, and the claim
would imply that v is a global minimizer of [}, which would be in contradiction with the choice of
v. To prove the claim, it is enough to observe that Tonelli’s theorem and Jensen’s inequality yield

N2 ok /2 k 2 2
/ \Vul|? d > / / (8yu)* dydx > / % </ 8yudy> dr = )\% = / |Vo|? de,
Q —x/2Jo 22 0 Q

and that the functions v and v have the same support. On the other hand, since the free boundary
detaches tangentially from a smooth portion of the Dirichlet fixed boundary (see Theorem 1.1 in
[29]), k cannot be larger than ~y, and the result is thus proved. O
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3.3 The shape of global minimizers

The aim of this section is to carry out the study of additional properties of global minimizers of the
functional 7}, defined as in (I.1.12)). In particular, our main interest lies in understanding how the
shape of global minimizers is influenced by the parameter h. To this end, throughout the rest of this
section we fix a non-increasing function #: R, — R such that

0(h) =, (3.3.1)

where for every h the number -y, is chosen in accordance with Theorem We then consider
solutions to the minimization problem for 73, in K, .

3.3.1 Existence of minimizers with bounded support

Proposition 3.3.1. Given m,\,h,y > 0 and k € (0, 1), there exists a positive constant Cryin (k)
such that for every minimizer w of Jy, in K., and for every ball B, (x) C Q, if

1][ wdH' < Coon(k)/(h —y — k)5,
OBr(x)

r

then u = 0 in By,.(x). Moreover, if 0 < r < X\, the result is still valid for balls not contained in (,
provided B, (x) C {y > v} or B,(x) C {y <~}.

For a proof of Proposition [3.4.3|we refer to Lemma 3.4 and Remark 3.5 in [2]]; see also Theorem
3.6 and Remark 5.2 in [15]].

Theorem 3.3.2. Given m, A > 0, let J), and K, be defined as in , , respectively,
where for every h the value of vy, is given as in . Then for every § > (O there exists hy = ho(y)
such that if h > hq then the support of every global minimizer of Jy, in K, is contained in the set
{y < h}. In particular, the free boundary of every such minimizer is locally of analytic in <.

Proof. Let y > 0 be given. Assume first that there exists ~; such that 5, < 3y/2 and let r := /4.
Then for every x € (—\/2,\/2),

Br(:zag) - {y > 'Yh}
for every h > h;. Moreover, for every global minimizer wu,

1 ][ wdH < i - am
rh =45 —1/2 JoB.(z5) rvh=y—r/2 5 h— 2y

where the first inequality follows from Corollary We can then find hg > hp such that if

h > hg then
4m

g\/h— g9
Thus we are in a position to apply Proposition[3.4.3|to show that u is identically equal to zero in the

set (—A\/2,A/2) x [7y/8,9y/8]. Since by minimality the support of u is connected, we have that u
must vanish in (—A/2, A\/2) X [y, c0). Similarly, if 75, > 37/2 for every h, we have that

Br(x’g) - {y < 7h}

for every h > 0. Thus we can proceed as above. The last statement follows from Theorem 8.4 in
[2]]. O

< C(1/2).
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3.3.2 Existence of a critical height
The following result is inspired by Theorem 10.1 in [53]] (see also Theorem 5.5 in [[15]]).

Theorem 3.3.3. (Monotonicity). Given m,\ > 0, let Jy and K., be defined as in (1.1.12]),

(1.1.13), respectively, where for every h the value of y, is given as in (3.3.1)). Consider 0 < d < h
and let uq, up, be global minimizers of Jq and [Jy, in K, and K, respectively. Then

{z € Q:up(x) >0} C{x e Q:uy(x) >0} (3.3.2)

and
up < Ug. (3.3.3)

Moreover, if 0{ug > 0} # 0 then up, < ugin {x € Q : ug(x) > 0}.

Proof. Step 1: Define v; = min{ug, up} and vo := max{ug, up}. Since h — =, is decreasing,
we have that v € K, and v2 € K, and so

Ja(ua) + Tn(up) < Ta(v2) + Tn(v1). (3.34)
Notice that
/ (Vo1 + [Voo|?) dz = / (Vo1 + |[Vvo|?) dz +/ (V12 + |Vuo|?) dz
Q up>uqg {un<uq}
— / (IVua* + |Vup|?) dw—i—/ ([Vup|® + [Vug|?) de
{up>uq} {un<uq}

= / (‘Vud|2 + |Vuh|2) dx.
Q

Therefore we can rewrite (3.3.4) canceling out the gradient terms and by rearranging the remaining
terms we obtain

/ (X{un>01 — Xfug>0y) (h—=y)4 — (d—y)4) d < 0. (3.3.5)
{up>uq}

Since the integrand is nonnegative in the set {uj, > w4}, and recalling that u4 and wy, are continuous
in €2, we have that

{up, >0} N{y < h} N {up >ug} C {ug>0}N{y <h}n{uy > uq},
which together with the fact that
{uh > 0} N {Uh < ud} C {ud > 0} N {'LLh < ud}

yields

{up, >0} N{y <h} C{uqg>0}N{y < h}. (3.3.6)
We now notice that if supp up, C (=\/2,A/2) x [0, d] then (3.3.2) follows from (3.3.6), while if it
is not the case, again by (3.3.6) we get that there is € (—\/2, \/2) x (d, 00) such that u4(x) > 0.
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Furhermore, we see that ug > 0 in (—A/2,A/2) x (d,c0), and so the desired inclusion is also
satisfied in (—\/2, A/2) x [h, 00). This concludes the proof of (3.3.2).

Step 2: We observe that since the equality holds in (3.3.5)), then the equality necessarily holds in
(3.3.4) as well, and so v; and v are global minimizers of 7}, and J; in K, and K, respectively.
We now claim that if there is ¢ € €2 such that ug(xo) = up(xg) > 0, then ug = uj everywhere
in €. To see this, we notice that in a neighborhood of x( the functions ug — vy and up — vo are
harmonic, nonpositive and attain a maximum at an interior point. Then, by the maximum principle,
ug — vg = up — vy = 0 in the connected component of {u;, > 0} that contains x¢; since {uy, > 0}
is connected by minimality, this proves the claim.

To prove (3.3.3), assume by contradiction that there is & €  such that uy,(z) > u4(x). If there
isy € {up > 0} such that ug(y) > up(y), then by the connectedness of {u;, > 0}, together with
the fact that uy, and ug are continuous, we have that there is z € 2 such that uy,(z) = uq(z) > 0.
By the claim we just proved, this would imply that u;, = w4, a contradiction. Hence uy < wuy, in
{up, > 0}, which together with implies that

{uh > 0} = {ud > 0}. (3.3.7)
In turn,

/Q X{uh>0}(h —y)ydx = /QX{ud>0}(h —y)4dx,
(3.3.8)

/QX{ud>0}(d —y)dx = /QX{uh>o}(d — )4 dx.

From (3.3.7) we also see that ug € K, . Since h — ~;, is decreasing, we also have that u;, € KC,,
and hence we can conclude that Jp,(up) < Jn(ug) and Jy(ug) < Jy(up), which, together with

(3.3-8), implies that
/ \Vuh|2 dx :/ |Vud’2dili.
Q Q

Consider v := %uh + %ud € K, . By the strict convexity of the Dirichlet energy, we have

1 1
0 < [ (3170 + 51V + x1omo) (=) ) d = i),

a contradiction to the minimality of uj, and (3.3.3) is hence proved.

Step 3: Finally, assume by contradiction that there is ¢ € {ug > 0} such that up (zo) = ug(xo), so
that up, = ug in €. Since by assumption 9{ug > 0} # (), and since 74 is chosen in such a way that
uq is not a one-dimensional profile, it must be the case that there exists © € d{uq > 0} N {y < d}.
Consequently, for every such « we have

. 8uh . 8ud

h—y—g(m)—g(@: d—y.

This is a contradiction since by assumption d < h. Hence u < ug in {ug > 0} and the proof is
complete. O
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Proof of Theorem Let
her == inf{h > 0 : there is a global minimizer u;, € K., of Jp, s.t. suppuy C {y < h}}. (3.3.9)
By Theorem we have that he, < co. Assume for the sake of contradiction that h., = 0. Then

for every h > 0 there exists a global minimizer u;, € K,, with the property that the support of uy,
is entirely contained in the set {y < h}. Reasoning as in the proof of Lemma(3.2.6, we see that

uh / \Vuh\Qdcc > —_—

Since by assumption the function  is non-increasing, there exists h such that if & < h then

For every such h we let w be function defined in the proof of Theorem [[.1.1} where for simplicity
we fix 6 = 1. Then, it follows from (3.2.13)) and (3.2.14)) that

4 1 \h?
= A1 1+ — —_—
In(w) =m <3)\+ ) 0g< —i-%)—i- 5

In particular, notice that for every h small enough (with respect to the other parameters in the

problem)
4 1 Ah? )\m2
2
Al 1+ —_— .
m<3>\+>0g< ’Yh>+ 2 = h

Since by definition w € K., this gives a contradiction with the minimality of uy,. In turn, we have
shown that h., > 0. Properties (i) and (4i) follow immediately from Theorem we omit the
details. O

Remark 3.3.4. By Theorem 8.4 in [2], it follows that if u € K, is a global minimizer of [J), for
h > hey, then 9{u > 0} is analytic locally in Q). The following result shows that the result is true
also for h < he,.

Theorem 3.3.5. Under the assumptions of Theorem let h > hey. Then the free boundary of
every global minimizer is analytic locally in ).

Proof. Since by assumption there exists € €2 with y > h such that u(x) > 0, it follows from the
maximum principle that u > 01in (—\/2,A/2) X (h, 00). For the sake of contradiction, assume that
the free boundary of a global minimizer w intersects the line {y = h} at a point z. Then, by Remark
3.5 in [[15]], there exists a constant C' such that

[Vu(y)| < Cvr (3.3.10)
for all y € B,(z), where r > 0 is sufficiently small. Let B, be any ball in (—=A/2,A/2) x (h, c0)

such that * € 0B,. Since u(y) > wu(z) = 0 for every y € B,, we have that (3.3.10) is in
contradiction with Hopf’s Lemma. To conclude it is then enough to invoke Theorem 8.4 in [2]. [
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3.3.3 Scaling of the critical height

Theorem 3.3.6. (Comparison principle). Given m, A > 0, let Jy and K., be defined as in ((1.1.12]),

(1.1.13)), respectively, where for every h the value of ~yy, is given as in (3.3.1)). Let u and w be a
global minimizers of Jy, in Ks and K., respectively, where Ks, K., are defined as in (1.1.13). Then

either
{u>0} C{w>0}andu <w

or
{w>0} C {u>0}and w < u.

Proof. Assume without loss of generality that § < «. As in the proof of Theorem|3.3.3] we consider
v1 = min{u, w} and vy := max{u, w}. Then vy € ks, vo € K, and in particular we have

TIn(w) + Tn(w) = Tn(v1) + Tn(v2).

Therefore v; and v9 are global minimizers of 7, in K5 and K, respectively. Reasoning as in the
proof of Theorem we have that if there exists a point @ such that u(xg) = w(xzg) > 0 then
u = w everywhere in {). Next, we assume by contradiction that the supports of v and w do not
satisfy the inclusions as in the statement, i.e., there exist ¢,y € € such that u(x) > 0, w(y) > 0
and u(y) = w(x) = 0. Let z € 2 be such that u(z) > 0 and w(z) > 0 (such a point z exists since
by minimality we have that 7 (u) and J,(w) are both finite). We assume first that w(z) > u(z).
Then, since by minimality {u > 0} is open and connected and thus path-wise connected, we can
find a continuous curve ¢ : [0, 1] — €2 joining z to &, with support contained in 2. Define

olt) = we(t)) - ule(t).

Notice that by construction v(0) = w(z) — u(z) > 0 and v(1) = w(x) — u(x) < 0, and so there
exists to € (0, 1) such that v(tg) = 0. Thus 0 < u(p(t)) = w(p(t)), which in turn implies that
u = w, a contradiction. Similarly, if u(z) > w(z), we arrive to a contradiction by considering a
continuous curve ¥ : [0,1] — € that joins z with y and with support contained in {w > 0}. The
rest of the proof is analogous to the proof of (3.3.3). O

Remark 3.3.7. Notice that in Theorem we also allow for the case where § = 7.
In this lemma we show that h., in Theorem is less than the value ~2* given in ([1.1.14]),.

Lemma 3.3.8. Under the assumptions of Theorem|l.1.3| we have that

m \ 2/3
hae <h* =3 —= .
(%)

Proof. Assume by contradiction that k., > h*, and let h* < h < he.. By Tonelli’s theorem and
Theorem (iii) we have that w: R% — R defined by

w(-,y) = vy, (y)

is the unique global minimizer of 7, in Ky,. Let u € K, be a global minimizer of [J,. Since
h > h*, by Theorem we have that y;, < 5, and hence u(x) = 0 for & € {£\/2} x (73, 00).
By continuity, we can find zo € (—A/2, A/2) such that

m
u(xo,vn) < a(th —Yn) = w(xo, V)
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Then, by Theorem [3.3.6] v < w and
{u>0} C{w>0}={zny <tp}.
Thus, by (3.2.7), u has bounded support in €2, a contradiction to the definition of h;. 0
The following result shows that for certain choices of 6 as in critical height h; is
1

greater or equal to a constant multiple of h#, where h# is given as in (1.1.14));.
Theorem 3.3.9. Under the assumptions of Theorem|[I.1.3] fix k1, ko > 0 such that

1 k3
k—<1—51, andlet k=
2

22/3k1

Notice that ks > 1 and k € (0,2/3). Furthermore, assume that v, > koh for h < h¥. Then
hey > kb7,

Proof. Assume for the sake of contradiction that he, < kh¥. Then, every global minimizer of .J;,
in K, for h = kh# is a regular solution. In turn,

A
/ |Vu|? dx > ﬂ

Let w be the function given in Theorem A, then

(1, 5, w2
Ih(w) =m <3)\+5 log 1+7 + 5

Notice that we obtain a contradiction if we show that
TIn(w) < Tn(u).

In particular, it is enough to prove that, if § is chosen appropriately,

45 1\ (6 62 53 h?  m?
2 S+ )[4+ =)+ =< —. 3.3.11
<3A2+5> <7 272+3'y3>+2 ~ h G310
For 6 small we can rewrite (3.3.11)) as

m2  m2 h2

ot t 0(8) < (3.3.12)

Notice that h = kh# = kym?/3 and since v > koh = k1kam?/3 we see that to prove (3.3.12) it is
enough to prove the following inequality

which is true by assumption. O

Remark 3.3.10. Under the assumptions of Theorem we have that he, ~ m?/3,
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3.3.4 Convergence and uniqueness of global minimizers

Theorem 3.3.11. Given m, X > 0, let J, and K., be defined as in (1.1.12]), (1.1.13)), respectively,
where for every h the value of y, is given as in (3.3.1)). In addition, assume that 0 is continuous

and let {hy}, C (0,00) be a strictly increasing (respectively, decreasing) sequence converging to
h. Then there exists u € K., which is a global minimizer of Jy, with the property that for if uy,
is a global minimizer of Jp,, in K, for everyn € N, then u, — u € Hlloc(Q) and uniformly
on compact subsets of Q). Moreover, if {{,}, C (0,00) is another strictly increasing (respectively,
decreasing) sequence converging to h and v, € K, are global minimizers of Jy,,, then v, — w in
H}! (Q) and uniformly on compact subsets of Q.

loc
We begin by proving a preliminary lemma.
Lemma 3.3.12. Under the assumptions of Theorem|3.3.11} let w € K., be such that J,(w) < oo.

Then there exists a sequence {wy }n, such that wy, € IC,, = for everyn € N and Jy,, (wn) — Jn(w)
asn — oc.

Proof. Notice that if hy, ,/* h then w € K, for every n € N and the result follows by considering

the constant sequence w,, = w. Hence we assume that h,, \ h, set
_ hn
n - 9

Yhn

and define the rescaled function wy, (v, y) = w(z, 0,y). We then notice that w,, € KC,, and by a
change of variables

/ [Veon ] de = / (Ozw(z, 00y))* + (ondyw(x, ony))* dae
Q Q
= /Q (@rw(,2))* + (oadyw(@, 2))*) o, dads

— / \Vw(z, 2)|* dedz,
Q
where in the last step we have used the fact that o, ™\, 1. Similarly one can show that

/Q Nt o0 (e — 1)+ d — /Q Yws0y (h — 9)+ da,
and the result follows. O

Proof of Theorem|3.3.11] Assume that h,, \, h. We divide the proof into several steps.
Step 1: We begin by showing that there exists a subsequence of {u,}, that converges weakly in
H, 110 .(£2) to a function w that is a global minimizer of 7, in the class K, . To this end, let v : Ri —R

be defined by

(y) = ,Yﬂml —y)s

h1

(see (3.2.5)). Thenv € K, ~for every n € N and in particular
/ Vunf? dz < Tn, (tn) < T (v) < T (0) < 0.
Q
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Hence {Vuy,},, is bounded in L2(£; RY). Moreover since u,, — v = 0 on (—A\/2,1/2) x {0}, by
Poincaré’s inequality we obtain

/ ]un—v|2dw§0(ﬂr)/ |V, — Vu|? de,
Qr Qr

where €2, := QN {y < r}, with > 0. This shows that {u,, },, is bounded in H'((2,.) and thus, up
to the extraction of a subsequence, u,, — u” in H'(£2,.). If we now let s > 7, up to extraction of a
further subsequence, we have that u,, — u” in H'(Q,) and u,, — u® in H'(Q). By the uniqueness
of the weak limit we conclude that

u'(x) = u’(x) for L%-ae. x € Q,.

By letting r * oo and by a diagonal argument, up to the extraction of a consecutive subsequences,
this defines a function u such that for some {ny}, C N

Vi, — Vu in L*(Q,R?),
Up, —u in LE (), (3.3.13)
Up, — u  pointwise almost everywhere in €2,

Up, —u  in L (09),

In particular, this shows that u € K, . Moreover, we claim that up to the extraction of a subsequence
which we don’t relabel, {X{unk >0} J& converges weakly star in L°°(2) to a function £ such that

§(x) > Xquso0y (z) for L%ae x Q. (3.3.14)

Indeed, arguing as in the proof of Theorem [3.1.4] we observe that for every D compactly contained
in {u > 0}

0= / (X{unk>0} - 1)unk dx — / (f - l)u dx.
D D

Since u > 0 in D, then necessarily ¢ = 1 £2-a.e. in D and hence in {u > 0}.

To prove that u is a global minimizer of J}, in K, , fix r > 0, let w € KC,, . If J(w) = oo there
is nothing to show, hence we assume that 7, (w) < oo and consider {wy, },, as in Lemma [3.3.12
Then

/ (1Yl + Xqusoy (b — )4 dax < / (IVul? + E(h —y)2) da
Q Q

r

< liminf Jy,, (un,) < lim F,, (wn,) (3.3.15)

= jh(w).

Letting » * 0o, we conclude that 7, (u) < Jp,(w) for every w € K.,,,.
Step 2: Taking w = u in (3.3.15)) yields

|0V + Xy (=) do < limind Ty, () < imsup T () < ().

k—o0
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Letting r * oo we conclude that

jh(u) = lim jhnk (unk)

k—o0

On the other hand, by the lower semicontinuity of the L?-norm and (3.3.14)

/]Vu|2dw Sliminf/ |V, | de,
Q k—oo Jq

and

k—o00

/QX{u>0}(h - y)+ dz < lim inf 0 X{unk>0}(h - y)+ de.

Thus the previous two inequalities are necessarily equalities and therefore u,, — w in H, lloc(Q)‘
Moreover, by Theorem {un, }1 is an increasing sequence of continuous functions with a
continuous pointwise limit (see (3.3.13))). Hence, by Dini’s convergence theorem, the convergence
is uniform on compact subsets of 2.
Step 3: Suppose by contradiction that the entire sequence does not converge to « in H 110 .(£2). Then
there are another subsequence {u,,}; and a minimizer w of J, in Ky, such that u,, — w in
Hlloc(Q) and uniformly on compact subsets of {). By Theorem we have that u,, < w and
un; < u. Let z and 7 be such that B,(x) is compactly contained in the support of u. Then, passing
to the limit as & — oo and j — oo in the previous inequalities we obtain u = w in B,(x) and in
particular 0 < u(x) = w(x). Reasoning as in the proof of Theorem [3.3.3| we obtain that u = w in
Q.

The same technique can be used to show the independence of the limiting minimizer on the
sequences {hy, }r, and {uy, },. This concludes the proof. O

Corollary 3.3.13. Under the assumptions of Theorem |3.3.11) for every h > 0 there are two (pos-
sibly equal) global minimizers u;{, uy, of Jy, in Ky, such that u, < u; and if w is another global
minimizer then u, < w < u;

Theorem 3.3.14. Given m, X > 0, let Jy, and K., be defined as in (1.1.12)), (1.1.13)), respectively,
where for every h the value of vy, is given as in (3.3.1). In addition, assume that 0 is continuous.

Then there is a unique global minimizer of Jy, in K, for all but countably many values of h.

Proof. We define
A :={h € R} : the minimization problem for 7}, in K, has at least two distinct solutions}.

‘We claim that

A= U U {h € (4 —1,4] : sup{Ju) (z) —uy, (z)] : € (—A/4,A/4) x (0,7,/2)} > 711}

j=1n=1

We recall that by Corollary 3.3.13, h € A if and only if u, # u;f To prove the claim it is enough
to notice that if u; = w; in (=A/4, A/4) x (0,7;/2) then the equality holds everywhere in (2. Let

Ajp = {h € (j—1,4] - sup{|u) (z) — w, (z)] : @ € (—A/4,A/4) x (0,7,/2)} > i}’
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we observe that it is enough to show that A; ,, is countable for every n € N and that A, , is finite
for every j,n € N with j > 2. Fix j,n € N with j > 2 and assume by contradiction that A;,,
has infinite cardinality. Then we can find a sequence {h;}; C hj, and h € [j — 1, j] such that
{h;}; converges strictly monotonically to /. By Theorem there exists a function w such that
u,;,ui — win H} (€2) and uniformly in the compact set of [—\/4, A/4] x [0,4/2]. In turn, for
1 large enough we have that

() — up ()] < lf (@) (@) + u(@) — vy (@) <

forall z € (—\/4,\/4) x (0,v,/2). We notice that this is in contradiction with the definition of
hjn. On the other hand, if j = 1 we can write

o0

Ay = U {h € (1,1] supf{|u) (z) — up, (z)] 2 @ € (=A/4,M/4) x (0,7,/2)} > 711}

=2

We can then set
A = {h e (1 1] ssup{luf (x) — uj, (2)] @ € (~A/4,1/4) x (0,7/2)} > i}

and repeat the same argument as above to prove that Ay ,, ; is finite for every ¢ > 2. This concludes
the proof. O

Having established the convergence of monotone sequences of minimizers in Theorem [3.3.T1]
we now investigate the type of convergence of the associated free boundaries. Our proof is inspired
by standard techniques commonly used in the study of blow-up limits (see, for example, 4.7 Blow-
up limits in [2]).

Theorem 3.3.15. Under the assumptions of Theorem (3.3.11} let {hy}, C (0,00) be a monotone
sequence that converges to h > 0. For every n € N, let uy, be a global minimizer of Jp,, in K,
and consider u;{, u,, as in Corollary|3.3.13} The following statements hold:

() if hyy N\ h then O{uy, > 0} — 0{w,, > 0} in Hausdorff distance locally in §);

i) if hp 7 h then O{u, > 0} — 0{u > 0} in Hausdorff distance locally in (—\/2,\/2) x
h
(0, );

(23t) if hy, \( h (respectively h,, ,/* h) then X{un>0} = X{u; >0 (respectively to X{u;>0}) in
Lig((=A/2,2/2) x (0, h)).
Proof. (i) Let hy, \, h > 0 and consider a ball B,(x) C € such that B.(x) N 0{u; > 0} = 0.
Then either v, = 0in B,(x) or u;, > 0in B,(x). By Theoremwe have that for every n € N
{un, > 0} C {u, > 0}; thus if u,, = 0in B, (x) so does u,, for every n € N. In particular, this
implies that
By ja(a) N 0{u, > 0} = 0. (3.3.16)

On the other hand, if v, > 0 in B, (x), since by Theorem [3.3.11| we have that {u,, }, converges
uniformly to u; in B, /5(x), then for n sufficiently large

up(x) > %min {uy, (y) :y € B, po(x)} >0
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for every € B, 5(x) and hence (3.3.16) is satisfied.
Conversely, if B,(x) N d{u, > 0} = 0 then for all n sufficiently large we have that either

up > 01in B (x) or u, = 0 in B, (x). Assume first that u,, > 0 in B,(x) for some m € N. Then,
by Theorem up > 0in B.(x) for every n > m and therefore u; is harmonic in B, 5(x)
being the uniform limit of harmonic functions. Consequently, either u; > 0in B, j5(x) or v, =0
in B, /5(x). In both cases

B, a(z) N d{u;;, > 0} = 0. (3.3.17)

On the other hand, if u, = 0 in B, y(x) for every n € N then also u;, = 0 in B, /5(x). This
shows that is also satisfied in case. By a standard compactness argument one can show that
o{un > 0} = 0{u,, > 0} in Hausdorff distance locally in 2.

(ii) Let hy, /* h and consider a ball B,(z) C (—\/2,A/2) x (0, h) such that B, () N 8{u; >
0} = 0. As before, either v} = 0 in By(x) or v > 0in By(x). If uf > 0in B,(x), by
Theorem un > 01in B,.(x) for every n € N. Therefore holds. On the other hand, if
ut = 0, for every § > 0 we can find m such that u,, < § in Bg,,/4(a:) for every n > m. Hence, for
d = 0(r) sufficiently small and n > m,

1][ 1 40 23
_— Up, AH S—SC’QS\/h—y—fﬂ“.
%7’ B3, 4(x) 3r #/%) 34

Then we can conclude from Proposition that up = 0in B, j5(x), proving that (3.3.16) holds.
The rest of the proof follows as in the previous case, therefore we omit the details.

(¢74) Let hy, \ h > 0 and let K be a compact subset of (—A/2, A/2)x (0, h). If dist(K, O{u, >
0}) > 0 then either v, = 0in K or u, > 0in K. Reasoning as the proof of (), we can conclude
that either v, = 0 in K for every n or u, > 0 in K for n sufficiently large; hence in this case
there is nothing to prove. Therefore, we can assume that K N 0{u, > 0} # 0. By (i), for every
0 <n <dg = dist(K,9((—=A/2,A/2) x (0,h))) we can find m = m(n, K) such thatif n > m
then

o{un, >0} N K C N, (0{u, >0}),

where for any set A C Q, N;,(A) represents the tubular neighborhood of A of width 7, i.e.
Ny(A) = {x € Q : dist(x, A) < n}.

Observe that by Proposition [3.4.3| for every ball B,(z) C K with center on d{u; > 0}

S A O e N

r

Similarly, by Lemma 3.2 in [2]] (see also Theorem 3.1 in [[15])), there is a constant C,,x such that

1 /57
][ uy, dH' < CraxvV/h — y + 1 < CrmaxV2h.
OB (x)

,
Hence we are in a position to apply Theorem 4.5 in [2] to conclude that
H(0{u, >0} NK) < oo.
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Since X{u,>0} = Xfu- >0} i LY(K \ N, (0{u;, > 0})) and since

L2(N,(0{u;, > 0}) N K) < 2pH (0{u;, > 0} N K),

letting 7 — 07 in the previous estimate concludes the proof.
The proof of (i7i) for a monotonically increasing sequence h,, /* h is almost identical, thus we
omit the details. O

3.3.5 Symmetric global minimizers

In this section we prove the existence of a global minimizer which is symmetric with respect to the
y-axis and monotone in the x variable in the half-strips (—A/2,0) x (0, c0) and (0, A/2) x (0, c0).
The results of this section are inspired by Section 7 in Chapter 3 of [53|] and Theorem 5.10 in [[15].

Theorem 3.3.16. Given m,\,h > 0 and v as in Theorem there exists a symmetric global
minimizer of Jy, in Ky, in the sense of Definition[l.1.4]

Proof. Let u € K, be a global minimizer of 7}, and set

u(z,y) ifx >0,

u(—z,y) ifx <0,
and

u(z,y) ifx <0,

u(—x,y) ifx > 0.

Notice that v,w € K, and that the minimality of u implies that J,(u) = J5(v) = Jh(w). There-
fore v and w are two minimizers that are even in the x-variable. In particular, the support of v
and w in (2 coincides with their Steiner symmetrizations with the respect to the y-axis (see Defi-
nition 2.3.1). Let v* be the Steiner symmetrization of v with respect to the variable z (see Defini-
tion[2.3.3). Then v* € K, and by the Pélya-Szego inequality (see Theorem [2.3.5)), together with

Tonelli’s theorem, we obtain
/ |Vo* |2 da < / V|2 da.
Q Q

By definition of v*, for every y > 0

A/2 A/2
/ X{v+>0} (2, y) dz = / X{v>0}(2,y) dx
—)/2 A/2

and thus, again by Tonelli’s theorem,

h 2/2
/QX{U*>0}(h—y)+ dx = /0 (h—y)+/A 2><{m>0}(x,y) dx dy

h 22
= / (h—y)+/ X{v>0} (2, y) dx dy
0 /2
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= /QX{v>0}(h3/)+dm~

Consequently, Jp(v*) < Jp(v) and similarly Jp,(w*) < Jp(w). In turn, this implies that v* and
w* are also minimizers of J,. This concludes the proof. O

Corollary 3.3.17. Let u;, uy, be as in Corollary|3.3.13| Then u;, u,, are symmetric in the sense of
Definition[I.1.4]

Proof. Let h € Ry \ A, where A is the set defined in the proof of Theorem [3.3.14] and let uj, be
the unique global minimizer of 7}, in K5, . Then u}‘f = u;, = up = uy. On the other hand, if
h € A, consider a sequence {h, }, C R\ A such that h,, / h and let u,, be the unique minimizer
of Jp, in Ky, . Then, up, = u; and by Theorem it follows that u; has all the desired
properties. The result for u, follows similarly by considering a sequence {h,}, C R\ A such that
hn \ h. O

Remark 3.3.18. Notice that the free boundary 0{u > 0} can be described by the graph of a
function x = g(y), where g: (0,h) — [—\/2,0] is defined via

g(y) = inf{x € (=1/2,0) : u(z,y) > 0}. (3.3.18)

Proposition 3.3.19. For v as in Theorem let w € Ky be a symmetric minimizer of Jy, and let
g be defined as above. Then g is a continuous function.

Proof. Step 1: We begin by showing that if 9{u > 0} contains the line segment S of endpoints
(4,k),(L,k), with £ < L and k < h, then 0{u > 0} = {y = k} N, a contradiction to
Lemma [3.2.6] Without loss of generality, we can assume that S is maximal, i.e., for every line
segment S’ such that S C S" and S’ C 9{u > 0}, it must be that S = S’. If { = —\/2 and
L = \/2 there is nothing to do. Then assume without loss that L < A/2. Since k < h, we are in
a position to apply Theorem 8.4 in [2], which gives a number p > 0, an analytic function f, and
a set of local coordinates such that the free boundary 9{u > 0} coincides with the graph of f in
B,((L, k)) in the local coordinates. In turn, f agrees with an affine function on a subinterval of its
domain, and so by analyticity it must be equal to the same affine function on its whole domain; this
contradicts the maximality of S.

Step 2: Next we show that both one-sided limits

lim g(y) and lim g(y)
Y=yt Y=y

exist for every gy € (0, h). To see this, suppose that

L :=limsup g(y) > liminf g(y) = ¢;
y—gt y—g+

then we can find two sequences {yy, }n, {zn }n such that y, \, ¥, 2 € (Yn+1,yn) and

lim g(y,) =L, lim g(z,) = /.
n—oo

n—oo

Lety := (L, y). We claim that y € 9{u > 0}. To prove the claim, first observe that there exists a
d > 0 such that Bs(y) C €2, and notice that u(y) = 0 since u is continuous in {2 and by assumption
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w(9(Yn), yn) = Oforevery n € N. Givenn > 0, if n € Nis large enough then (g(yn), yn) € By(y)
and since by assumption (¢(yn), yn) € 0{u > 0} then there exists x,, € By, ((g9(yn),yn)) such that
u(x,) > 0. This shows that y € d{u > 0}. By Theorem 8.1 in [2] there exists p > 0 such
that B, N 0{u > 0} is the graph of a C L function (in an opportunely defined set of coordinates
centered at the point y). Let x be the Lipschitz constant of this function in (—p, p). Then the length
of 9{u > 0} in B,(y) cannot exceed 2pv/1 + 2. But on the other hand, observe that for n large
enough one also has that (g(yn),yn) € B,2(y) and (g(2n), 2n) & B,(y), thus showing that the
length of O{u > 0} cannot be finite. We have therefore arrived at a contradiction. The proof in the
other case is similar and therefore we omit the details.

Step 3: The previous step we shows that g cannot have essential discontinuities. To exclude jump
discontinuities it is enough to notice that these would correspond to horizontal line segments in the
free boundary of u, a behavior that is ruled out in the first step. Finally, in view of Corollary 3.6 in
[2], we see that removable discontinuities are also not possible. This concludes the proof. O

3.4 Boundary regularity

As remarked in the introduction, the behavior of the free boundary near contact points away from
(+£A/2,~) is well understood. This section is devoted to the study of the remaining case in which
the free boundary hits the fixed boundary exactly at (+\/2,~).

3.4.1 The bounded gradient lemma

The following result states that a symmetric minimizer is Lipschitz continuous in a neighborhood
of the contact point xq. This fact will be of fundamental importance in the following sections.

Theorem 3.4.1. Given m,\,h > 0 and v < h, let u € K., be a symmetric global minimizer of Jj,
in the sense of Definition and assume that ¢y = (—\/2,7) is an accumulation point for the
free boundary on 05, i.e.,

xo € 0{u >0} NAQ. (3.4.1)
Then Vu is bounded in a neighborhood of x.

Proof. It is enough to show that there exists a constant C' such that for every p > 0 sufficiently
small (with respect to A, b,y and h — )

Vu(y)| < C (3.4.2)
fory € QN By (xo) \ Bu(xo). For © € Bg(0) and 1 small enough, let w be the rescaled function

_ w(@o + px)
w(x) = . .

Then w is harmonic in {w > 0} and for = (x,y) € d{w > 0}, by Theorem 8.1 in [2], we have
that the Bernoulli condition is satisfied in a classical sense, i.e.

dw(z) = dyu(mo + px) = Vh —v — py, (3.4.3)
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where v is the interior unit normal vector to {w > 0} at . Then, to prove (3 is enough to show
that
Vw(x)| < C (3.4.4)

forx € {w > 0} N By (0)\ By (0), where B;7(0) := B,.(0) N {z > 0}. For x € Bg(0) we define
d(x) = dist(z,0{w > 0}), D(x) = dist(x,{(0,y) : y > 0}). (3.4.5)

The proof of is divided into several steps.
Step 1: In this first step we show that in order to obtain (3.4.4), it is enough to prove that for every
x € By (0)\ B (0) either

w(zx) < cmin{d(x), D(x)} (3.4.6)

or there exists p > 0 such that x = (x,y) € B:)F/Q(O, y) and for every y € B, (0,y)
w(y) < ep. (3.4.7)

Indeed, assume that z € B3 (0) \ By (0) is such that (3.4.6) is satisfied. Then, if let 6(x) =
min{d(x), D(x)}, we have that w is harmonic in B, (x) and

[Vw(z)| < sup{|Vw(y)| : y € Bs(z)2(®)} < sup{w(y) : Y € Bs(a)(®)} < 4e,

4
3(x)
where the second inequality follows from the standard interior gradient estimates (see Theorem 2.10
in [54]). Similarly, for every & = (z,y) € By (0) \ B (0) such that (3.4.7) holds we see that

[Vw(z)| < sup{|Vw(y)| : y € B

,0.9)} < fsup{ww) Ly e BH(0.y)} < Ke.

where in the second inequality we have used the result of Theorem [2.2.11]
Step 2: Let g > 3log 2v/h. We claim that for every & € By (0) for which d(x) < D(z) then

w(x) < cod(x). (3.4.8)

Notice that if w(x) = 0 then there is nothing to do, therefore, we can assume that w(x) > 0. Since
Byw)(x) € {w > 0} we have that w is harmonic in Bg)(x) and by definition there must be
& € 0Bg(z)(x) N O{w > 0}. Suppose that

w(zx) > cod(x). (3.4.9)

Then, by Harnack’s inequality (see Excercise 2.6 in [[54]]),

w(x) _ cod(x)
vz T >

for every y € Bj(g)/2(x). Let v be the harmonic function in the annulus Bz (x) \ Bgz)/2(T)
which satisfies the boundary conditions

v =cod(x)/3 on 0By(z)/2(T),
v=0 on OBz ().

52



Writing v in polar coordinates centered at &, v must be the radial function

cod(z) (d(:::))

Tw_>3log2 r

By the maximum principle for harmonic functions, v < w in the annulus, and since the equality

holds at &, it follows that

% = d,v(2) < d,w(x) < Vh,

where in the last inequality we have used (3.4.3). In turn,
co < 3log 2v'h,

which is a contradiction.
Step 3: Let
Up ={x=(2,0): 1 <z <4}.

In this step we show that there exists a constant ¢; > ¢, independent of u, such that for every
x € Uy N{w > 0} with 1 < D(x) < d(x) the following inequality holds
w(x) < 1 D(x). (3.4.10)

Let zo = (so,to) be any point on 9{w > 0} N Bf/4(0). Then, for every s such that (s,%y) €

B, (0) \ B{ (0), we must have that d(s, ty) < D(s,to). Consequently,
w(s,tg) < cod(s,to),

where cg is the constant given in the previous step. Notice that by assumption d(x) > D(x) > 1,
and therefore By /5(x) C {w > 0}. Moreover, the ball By ,(x) contains the point (z,to) and
Harnack’s inequality then yields

w(zx) < 3w(x,to). (3.4.11)
On the other hand,
V17 V17coD
w(z,ty) < cod(z,t9) < coD(z,t0) < coy/22 + 12 < 460:6 = CZ (a:)’ (3.4.12)

where in the last inequality we have used the fact that |tg| < 1/4 < x/4. The desired inequality

(3.4.10) follows directly from (3.4.11)) and (3.4.12).
Step 4: The purpose of this step is to show that (3.4.10) holds, possibly with a larger constant, at

every point z € B (0) \ Bf (0), such that y < 0 and D(x) < d(x). We begin by considering the
case

xeclU = {z = (s,t) € Bf (0)\ B (0) : t < 0 and dist(2,Up) < i}

Reasoning as in the previous step, we see that since d(x) > D(x) > 1 we are in a position to apply
Harnack’s inequality in By /4(x) C By /a(2) C {w > 0} to conclude that

w(x) < 3w(zy)
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for every z; € Up such that | — 21| < 1/4. Additionally, it follows from the first two steps that
w(zl) S C1 min{d(zl),D(zl)} S ClD(Zl) § 461 S 401D(3’:)

Define the sets U;, ¢ > 2, recursively via
U; = {z = (s,t) € (Bf (0)\ B (0)) \U/Z\U; : t < 0 and dist(2, Ui—1) < } :

and notice that, by simple geometric considerations,

16
(Bf (0)\ Bf (0)) n{t <0} = | JU..
=0

In particular, if € U, is such that D(x) < d(z) then an iteration of the argument above yields
w(z) < 12'¢; D(x). (3.4.13)

Step 5: We are left to consider the case where = (z,y) € By (0) \ B, (0) is such that y > 0,
x € {w > 0}, and D(x) < d(x). Suppose that there exists a sequence {z, }nen C By (0)\ B{ (0)
such that &,, — « and such that d(x,,) < D(x,,) for every n. Then necessarily d(x) = D(x) and

by (3.4.8)
w(zx) = lim w(xe,) < ILm cd(xy,) = eD(x). (3.4.14)

n—oo

Hence, we can assume that such a sequence does not exist. Then there is 0 < § < y such that for
every t € (y — 0,y + 9) the point (x,¢) is such that D(x,t) < d(x,t), and in particular w(s,t) > 0
for every 0 < s < x. We define

a =inf{t <y: foreveryt <t < y+ d,w(s,t) > 0 for every s small},
b :=sup{t>y: foreveryy — 0 <t < t,w(s,t) > 0 forevery s small} .

Notice that by (3.4.1), @ > 0. Moreover, y € (a,b), and it follows from the definition that if b < oo,
every point of the form (s,a) and (s,b), s > 0, is the limit a sequence of points {x,, },en With the

property that d(z,,) < D(x;,). In turn, (3.4.8) and (3.4.14) imply that
w(s,a) <cs, w(s,b) <es, (3.4.15)

for every s > 0 such that the points (s, a), (s,b) € BJ (0). Assume first that y — a < b — y and fix

€ > 0 small enough so that
7r

1
l1—tanf <=, O0:=— —c¢. 4.1
anf < 7, 1€ (3.4.16)
Case I: Assume that y — a < ztanf. Let £ = (x, a) and notice that
e —Z| =y —a<ztanh < x = D(x).

Since by assumption D(z) < d(x) we have that B, tang(z) C Bp(g)(z) C {w > 0} and by
Harnack’s inequality we can find a constant ¢ = ¢(¢) such that

w(x) < cw(®) < cx = eD(x),
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where in the last inequality we have used (3.4.15).
Case 2: Assume that tanf < y — a < x and let = (z,a + x tan ). By (3.4.16) we see that

e — 2| <z (1 —tanf) <

-8

In turn, B, /5(x) C {w > 0}, and similarly to above, by Harnack’s inequality,
w(zx) < 3w(Z) < cD(x), (3.4.17)
where in the last inequality follows from the fact that Z satisfies the conditions of Case 1.

Case 3: Assume that

3
Z(y—a)§x<y—a.

Since y — a < b — y it follows that B1(, (@) C {w > 0}, and therefore
2

L >

w(®@) < Buly — a,y) < cly — a) < ser = eD(a),

where in the second inequality we have used the fact that the point (y — a, y) satisfies the conditions
of Case 2.

Case 4: Assume that
1

-0 <o < y-a)

Then (3(y — a)/4,y) satisfies of the conditions of Case 3, and so, reasoning as above, we obtain
that
w(x) < cw(3(y —a)/d,y —a) < c(y —a) < 2cx =2¢D(x).

Case 5: Finally, assume that z < (y — a)/2. Notice that B ,(0,y) C {w > 0} by the non-
decreasing property of symmetric minimizers. Then, for every y € B(’;fa) /2(0, y), by the boundary
Harnack principle (see Theorem 11.5 in [28]]) we have that

w(y) < Mw(y —a,y) < Mc(y — a),

where in the last inequality we used (3.4.17). If y — a > b — y then 4 > 2y — a > b and therefore
we can repeat the same argument as above. This concludes the proof. 0

Remark 3.4.2. Note that Theorem holds also for v = h, with minor changes in the argument
for the first step. To be precise, let x be such that d(x) < D(x), and consider & as in the first step.
Ifx = (z,y), withy < 0 then holds and we can proceed as above. On the other hand, if
& = (Z,0) we must replace with the estimate

[Vu(z)| < CV3r,

which holds for every x in B, (&), as shown in Remark 3.5 (i) in [15]. The rest follows without
changes.
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3.4.2 Blow-up limits

Given a global minimizer u € K, consider a sequence p, — 07, a real number R > 0, and for
every n € N sufficiently large define the rescaled functions

Un(z) = W, (3.4.18)

where z € Bg(0), and y = (—\/2, ). Notice that if Vu is bounded in a neighborhood of x (a
condition that is guaranteed by Theorem if, in addition, u is symmetric, v < h, and x is an
accumulation point for the free boundary O{u > 0}), then

Vun(2)] = [Vulao + puz)| < C,

where C is a positive constant independent of n and z. Since u,,(0) = 0 for every n € N, it follows
that there exist a subsequence (which we don’t relabel) and a function w € I/Vli)fo (IR{2) such that for
every R > 0,
Up —>W in C%*(Bg(0)) forall 0 < a < 1,
(3.4.19)
Vu, =Vw in L®(Bg(0);R?).

The function w is called a blow-up limit of u at &y with respect to the sequence {py, } .

Non-degeneracy properties of blow-up limits

Proposition 3.4.3. Given m,\,h,y > 0 and k € (0, 1), there exists a positive constant Cyin (k)
such that for every minimizer u of J, in K, and for every ball B, (x) C Q, ® = (x,y), if

1][ wdH! < Cmin (k) (h —y — kr) 4,
OB (x)

r

then u = 0 in By, (x). Moreover, if 0 < r < \, the result is still valid for balls not contained in ,
provided B,.(x) N9 C {y > ~}.

For a proof of Proposition|3.4.3|we refer to Lemma 3.4 and Remark 3.5 in [[2]]; see also Theorem
3.6 and Remark 5.2 in [15]].

Lemma 3.4.4. Given m,\,h > 0 and y < h, let u € K, be a global minimizer of [J}, and let w be
a blow-up limit of u at ©y = (—\/2, ) with respect to the sequence {py}n. Furthermore, assume
that there exist a constant § > 1 and a sequence of points x,, € 0{u > 0} N Q such that

pn < |0 — @0| < Bpn (3.4.20)
for every n large enough. Then w is not identically equal to zero.
Proof. By assumption, there exists a sequence of radii {ry, },,, 1 < r, < 3, such that
OBy, r, (xo) NO{u >0} NQ # 0.

Thus, for every n € N sufficiently large,

2 = % € 9B, (0) N d{u, > 0} N {s > 0},
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and furthermore we can assume that h — v — 283p,, > 0. Given k € (0,1), for every such n,
consider the ball B, (z,) and observe that by the change of variables x = xy + p, 2, (3.4.18), and

Proposition [3.4.3]

1 1
= up dH' = / w(xo + ppz) dH (z
Tn 9B, (zn) 27Tpn7‘7% 9B, (2n) ( P ) ( )
o / () dH (x)
_ U
27Tp727,r727, aBpnrn (:Bn)
1
_ ][ wdH' > Coin(B)N/ (B — g — kpnim)s
PnTn JOB,, r, (2n)

In addition, we notice that by (3.4.20), y,, < 7 + pn7y,, and therefore

1
— Uy dH' > Crin(k) /R — v — 2Bpp. (3.4.21)

Tn aBTn, (z’n)

Let Z,, be such that u,(Z,) = sup{un(2) : z € 9B,,,(z,)}. Then, by (3.4.21) we see that

Un(Zn) > ][ Uy dH' > 7, Crinin (B)\/h — v — 2Bpn. (3.4.22)
aB”‘n (z”)

Eventually extracting a subsequence (which we don’t relabel), we can find a point Z such that
zZ, — z. Consequently, by the uniform convergence of u,, to w, (3.4.22)), and the fact that r,, > 1
for every n, we obtain

w(z) = lim u,(2,) > li_)m 7nChmin (k) h — v — 28pn > Cryin(k)\/h — v > 0.

n—o0

This concludes the proof. O

Some preliminary results

The following classical lemma, due to Alt and Caffarelli, is a consequence of Proposition [3.4.3} for
a proof we refer to Section 4.7 in [2].

Lemma 3.4.5. Given m,\,h > 0 and vy < h, let u € K be a global minimizer of J, and let w be
a blow-up limit of u at xg. Then, if u,, is defined as in (|3.4.18)|),

(i) o{u, > 0} — 0{w > 0} locally in Hausdorff distance in R? \ {(0,y) : y > 0},

(“) X{un>0} 7 X{w>0} in Llloc(RQ \ {(O’y) Yy > 0})

Theorem 3.4.6. Given m,\,h > 0 and v < h, let u € K, be a global minimizer of Jy, and let w
be a blow-up limit of uw at €y = (—\/2,7y). Then, for every R > 0, w is a global minimizer of

Fi(v) = / (IVo(2)? + xqus0y (2)(h — 7)) dz, (34.23)
Br(0)

over the set

K(w,R) = {v € Hjr,(R?) : v = w on BR(0) and v(0,y) = 0for0 <y < R}. (3.4.24)
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The following proof is adapted from Lemma 5.4 in [2].

Proof. For u,, defined as in (3.4.18]) and n large enough so that 0 < v — Rp, < v+ Rpn < h, let
n € C}(Br(0);10,1]) and for v € K(w, R) set

vn(2) = v(2) + (1 = 1(2))(un(2) — w(2))

and, for x € Bp,, (%), define

W (Z) = prvn <"” - “’°> .

Pn

Notice that by (3.4.18), w,, = uon 0Bg,, (%) in the sense of traces and furthermore that w(—\/2,y) =
0 for £'-a.e. y € (7, + Rpy). Then the minimality of u implies that

[ vl xpab =) de < [ (9 e y) de,
Ban(wO)

BRPn (:l:o)

and the change of variables * = xg + p, 2z, z = (s, t), then yields

/ (‘vun‘z + X{un>0} (h—v— Pnt)) dz
Br(0)
(3.4.25)
< / (’vvnP+X{vn>0}(h_7_pnt)) dz.
Br(0)

Since
Von(2) = Vou(2) + (1 = 0(2))(Vun(2) = Vw(2)) = Vi(2)(un(2) — w(2)),
we observe that
Von? = [Vun|? = [Vl + [V un — w]? = 2(un = w) V- Vo + (1= 0)*|Vuy — Vol
+2(1 = n)(Vun — V) - (Vo = Vi(up — w)) = [V |
< |Vu|? + |V [ty — w|* = 2(up — w)V7 - Vv — 2V, - Vu + |Vw|?
+2(1 — n)(Vu, — Vw) - (Vo — Vn(u, —w)), (3.4.26)

where in the last inequality we have used the fact that (1 —7)? < 1. Fixe > 0 and let R, = {2 :
dist(z, {(0,y) : y > 0}) < £}. Then, by Lemma 3.4.5} it follows that

/ X{u, >0} (B =7 — pnt) dz — X{w>0y(h —7) dz (3.4.27)
Br(0)\R- Br(0)\R-

Using the fact that
X{vn>0} < X{v>0} + X{n<1}s
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combining (3.4.25)), (3.4.26), (3.4.27), letting n — oo, and using the fact that u,, — « in H', we
deduce that

/ IVl dz + / Xtwsoy (h — ) dz
Br(0) Br(0)\Re

< / (IV0 + (xqus0 + Xppery)(h — 7)) dz.
Br(0)

Letting ¢ — 0T, by the monotone convergence theorem we see that
Faw) < [ (90 (o + xtge) =) d
R

The desired result follows from an application of the dominated convergence theorem, choosing a
sequence of functions 7 such that i, 7 1. O

The next result is commonly referred to as a non-oscillation lemma (see, for example, Lemma
6.1 in [6]], Lemma 5.2 in Chapter 3 of [53]], and Lemma 2.4 in [74]).

Lemma 3.4.7. Given m,\,h > 0 and v < h, let u € K, be a global minimizer of Jj, and let w
be a blow-up limit of v at xy = (—\/2,7). Assume that there exists an open set G contained in
{w > 0}, which is compactly supported in R?\ {(0,vy) : y > 0} and bounded by the line segments

l; = {(Si,t)iti<t<ti+€i}, 1=1,2,

and two non intersecting arcs ¢;, i = 1,2, contained in the free boundary 0{w > 0} and joining
the points (s1,t1) with (s, t2) and (s1,t1 + 1) with (s2,te + €2). Then

(e1 + €2) supg V|
2vh — v '

|sg — s1] <

Proof. Observe that w is harmonic in GG and therefore by the divergence theorem
2 2
0= [ duwdH'= Z/ Byw dH* + Z/ Byw dH.
oG i=1 7% i=1 Y %

Notice that

—/ Syw dH' = HY (¢)) /I —~ > |s2 — s1|\/h — 7,
oi

while
/ dyw dH < sup |Vuwle;.
4; G

Consequently

2 2

2|s9 — s1|\vVh—v < Z/ dywdH' = Z/ dywdH' < sup |Vwl|(e1 + e2),
i=1"7 ¢ i=1 7/t ¢

and the desired result readily follows. O
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Convergence of free boundaries for symmetric blow-up limits

Throughout this subsection we will work under the assumptions of Theorem In particular, if
w is a blow-up limit with respect to the sequence {p, }, of the symmetric global minimizer u, then
the map s +— w(s, t) is increasing in [0, 00) (and decreasing in (—oo, 0]) for £!-a.e. t € R. In turn,
its free boundary restricted to the half-plane {s > 0} coincides with the set {(go(¢), ) : t € R},
where go: R — [0, oo] is defined via

go(t) :==inf{s > 0: w(s,t) > 0}. (3.4.28)

We recall that by Proposition [3.3.19|the function gg is continuous in its effective domain. Further-
more, if we let

A

Pn Pn
for g defined as in (3.3.18), then we have that

gn(t) =inf{s > 0 : uy(s,t) > 0}. (3.4.30)

Thus the free boundary of w,, in B(0) N {s > 0} is given by the graph of g,,. It is then natural to
ask whether g,, converges to gg.

Lemma 3.4.8. Let g, go be given as above. Then for every T € R such that go(T) < oo we have
that g is finite in a neighborhood of T and

go(7) = lim g, (7). (3.4.31)
n—oo
Proof. Step 1: Let 7 be as in the statement. We begin by proving that either go(t) < oo for every
t < 7 orgo(t) < oo forevery t > 7. Indeed, assume for the sake of contradiction that there exist
t1 < 7 < tg such that go(t1) = go(t2) = oo, so that w(s,t;) = w(s,t2) = 0 for every s > 0
by (3.4.28), and fix s > go(7). For every M > 0, by the continuity of w, there exist 71, 7> € R,
€1,€&2 > 0 such that
W <T; <7<Tj+¢e <t

and with the property that
{(S’Tl)a (SaTl + 61)’ (5 + M, TQ)a (5 + M’ Ty + 5)} - 8{11) > 0}

Let G be the region bounded by the free boundary d{w > 0} and the two vertical line segments
that connect the points (s,71) with (s,71 + €1) and (s + M, T3) with (s + M, T3 + £2). Then
Lemma yields

C(ta —t1)

M <
= =~

)

a contradiction to the fact that M is arbitrary. Hence go(t) < oo forall ¢t < 7 or for all £ > 7.
Without loss of generality, we assume the latter. Arguing by contradiction, assume that there exists
a sequence t,, — 7~ such that go(t,) = co. Reasoning as above we see that necessarily go(t) = 0o
for t1 <t < 7. In turn, since w is continuous, it must be the case that w(s, ) = 0 for every s > 0,
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a contradiction to the assumption that go(7) < oo.
Step 2: Suppose that there exists € > 0 such that

L = limsup g,(7) > go(T) + €. (3.4.32)
n—oo
By eventually extracting a subsequence we can assume that the limsup is achieved, and furthermore
we notice that for every n sufficiently large, (3.4.30) and (3.4.32) imply that u,,(L —&/2,7) = 0.
Since the map s +— wu,(s,7) is increasing by assumption, we have that u,(s,7) = 0 for every
s < L —¢/2. In turn, passing to the limit in n, w(s,7) = 0 for every s < L — ¢/2, which is in
contradiction with the definition of g¢ (see and (3.4.32))). This shows that

lim sup g, (7) < go(7).

n—oo

Notice that if go(7) = 0 then there is nothing else to prove. Therefore, we can assume without loss
that go(7) > 0. Assume for the sake of contradiction that for some € > 0

liminf g, (7) < go(7) — 2e. (3.4.33)

n—oo

Since gy is continuous in a neighborhood of 7, there exists 0 = (e, 7) > 0 such that if |t — 7| < §
then

go(T) —€ < go(t).
Notice that without loss of generality we can assume that 4c < go(7). Fix 7 < min{e, §} and set
o= go(t) —e —r. Then B,(0,7) C {w = 0} and thus it follows from Proposition that
By a(o;7) C {un = 0}

for every n sufficiently large. In particular, u,, (s, 7) = 0 for every s < o + r/2 and therefore
T 3
gn(T) > 0+ 2 > go(T) — € (3.4.34)
Since (3.4.34) is in contradiction with (3.4.33) we conclude that

liminf g, (7) > go(7),

n—oo

which completes the proof. O

3.4.3 A boundary monotonicity formula

In this section we show that the boundary monotonicity formula of Weiss (see Theorem 3.3 and
Corollary 3.4 in [92]) holds at the point £y = (—A/2, ) for global minimizers of 7}, in K., with
bounded gradient in a neighborhood of x¢. In particular, in view of Theorem [3.4.1] the following
theorem applies to symmetric global minimizers.

Theorem 3.4.9. Given m,\,h > 0 and v < h, let u be a global minimizer of Jy, in K. Fur-
thermore, let ro < min{~y, h — v, A} be such that Vu is bounded in By, (x) and for r € (0,79)
define
O(r) = r_z/ (]Vu\z + X{us0y (h — y)) da — r_3/ u? dH. (3.4.35)
BT(:E()) 8Br(:120)
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Then for L'-a.e. p and o such that 0 < p < o < 1y,
g 2 g
Do) — P(p) = / r_2/ 2 (81,u - ﬁ) dH dr —/ r_3/ X{u>0}(y — ) dzdr.
p 0By (zo) r p Br(z0)

Proof. Step 1: For simplicity we consider the translated function
w(x) = u(xg + x).

We begin by showing that for £L-a.e. » € (0,79),

/ X{w>0} (2h — 27 = 3y) dz
B,(0)
(3.4.36)
= / r (]Vw[z -2 (8yw)2 + X{w>0}(h -y — y)) dH*.
9B,(0)

To this end, we consider the functional
Fn(v) 22/ (IVol* + X(us0y (h — 7 —v)) da,
By (0)

defined for v € KC(w, ro) (see ). By the minimality of u, w is necessarily a global minimizer
of Fj, in C(w, r¢), and in particular it must be the case that the first variation of F;, with respect to
domain variations vanishes at w. To be precise, for every ¢ = (41, ¢2) € C*(B,,(0); R?) which is
compactly supported in B,,(0) \ {(0,y) : y > 0}, if we set w.(x) = w(x + e¢(x)) we have that
we € K(w, rg) for every e sufficiently small and

0= — L7 w)

3.4.37
e ( )

|E:O

= / | (]Vw|2 div g — 2VwDoVw + xqw>oy(h — v —y) dive — X{w>0}¢2> dx.
0

Br,

For r € (0,79) and § > 0 define

ns(z) = max {O,min{l,(ls(r— |m\)}}, (34.38)
¢s(x) == min {1, % dist(z, {(0,y) : y > 0})} . (3.4.39)

Let ¢s(x) := ns(x)&s(x)x. By astandard density argument, for every § > 0 we can find a sequence
{¢s.c }e of functions in C}(B;,(0); R?) with compact support in By, (0) \ {(0,y) : ¥ > 0} such
that @5 — s in WH(B,,(0),R?). Using ¢ as test function in (3.4.37), letting ¢ — 0, and
noticing that

Dos = n5€s 1d+nsVEs @  + Vs @ x,
div ¢ps = 215&s +nsVEs - T + Vs - x,
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we obtain the identity
B4+ 13+15 =0, (3.4.40)

where

I = / )776§6X{w>0}(2h — 2y — 3y) dz,

By,

I3 = / &s (lVW\QV% cx = 2(Vw - x)(Vw - Vns) + Xqwsoy(h =7 —y)Vns - 33) de,
(0

By (
I = /B o (IV0PVes - @ = 2(Vo - @)(Vw - V&) + X(uso) (h = 7~ 9)VEs - @) da
T0

By (3.4.38)), (3.4.39)), and the monotone convergence theorem we have that

I — / X{w>0}(2h — 27 — 3y) dz. (3.4.41)
B (0)
Observe that
~ % i1 B.(0)\ B,_5(0),
Vns(x) = 0|
0 otherwise.

Thus we can rewrite I as follows:

2
xr
LR slal |Vw|2—2(w> oyt =y —y) | da
5 JB,(0)\B,_s(0) ||

Consequently, by Fubini’s theorem and Lebesgue’s differentiation theorem, for £!-a.e. 0 < 7 < 7,
we have that

5 — - IVw|? = 2 (9,w)* + Xquwsoy (h — 7 — y)> ! (3.4.42)

9B,(0) ' (

as & — 07. By (3.4.40), (3.4.41)), and (3.4.42), it follows that to conclude the proof of (3.4.36) we
are left to show that I. g — 0 as & — 0T. To this end, we let

Qf ={xeB(0):2>0,y>0, and dist(z, {(0,y) : y > 0}) < §},
Q5 ={x € B,(0):2<0, y>0, and dist(x, {(0,y) : y > 0}) <},

Q5 = {x € Bs(0) : y < 0},
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and notice that

.
(£671,0) in QF,
Vés@) =4 2 inqg, (3.4.43)
6|
0 otherwise.
From (3.4.43)) and the fact that
|z| in Q(:St,

|| in 5,

we see that |[Vs - | < 1in B,,(0), and consequently

/ 5 (IVwl® + Xqwsop(h — v — y)) Vs - @ da
Bry(0)

<[ (9P e h = - ) de
{V&s#0}

Furthermore, the right-hand side in the previous inequality vanishes as § — 0" by the dominated
convergence theorem. It remains to show that

/ ns (€0 w + yoyw) (Vw - V) dx — 0
Bry(0)
as & — 0. Since |V&s||z| < 1, reasoning as above we see that

< / |0zw||Vw| dae — 0.
{V&s7#0}

Fix € € (0,r). Using (3.4.43) and the fact that 7s vanishes outside B,.(0), we see that

1
<5/ Y10, w]|0pw] da
0 J(0.8)x(0,r)

<£
)

/ nszoyw (Vw - V&) dx
By (0)

/ nsyOyw(Vw - VEs) d
Qf

10y w]|Dpw| dz + T/ 18w 8w da.
(0,8)%(0,¢) 0 J(0,6)x(e.r)

Since Vw is bounded, the first term on the right-hand side can be bounded uniformly in J, and so it
vanishes as ¢ — 0. By Theorem 1.1 in [29], we have that the extended free boundary

O{w > 0} NQF\ Bejy(0)
is of class C1/2. In turn, it follows from Corollary 8.36 in [54] that

we OV ({w > 0} N Qf \ B:(0)). (3.4.44)
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In particular, this implies that V,w = 0 on 9{w > 0} \ B:(0). Consequently, a change of variables
and the dominated convergence theorem give

r

6/ |0yw||Opw| da = 7‘/ |0yw(dz,y)||0zw(dx,y)| dx — 0
(0,6)x(e,r) (0,1)x(e,r)

as & — 07. Since similar estimates hold in Q5 and €23, this concludes the proof of (3.4.36).
Step 2: This step is dedicated to the proof of the integration by parts formula

/ |Vw|? dee = / wd,w dH?, (3.4.45)
B.(0) dB.,.(0)

which holds for £'-ae. r € (0,70), and is in spirit very close to the result of Lemma 3.1 in [44].
Let

Uep = Br(0) \ (Be(0) U {z : dist(z, {(0,y) : y 2 0}) <n}),
and observe that by the divergence theorem, together with the fact that w = 0 on 9{w > 0},

/ |Vw|? dx = / wd,w dH .
Ue " {w>0} OU. ,,{w>0}

Next, using the fact that w is Lipschitz continuous in B,,(0), that w(0,y) = 0 for y > 0, and

(3.4.44), we obtain

lim lim IVw|? dx = lim wd,wdH' = / wd,w dH?,
e—=0*t n—=0* Ju_ , n{w>0} e=0% J5(B,.(0)\B.(0)) 9B:(0)

and the desired formula (4.3.1)) follows immediately upon noticing that

/ Vw|?dx = lim lim |Vw|? de.
B:(0)

e=0t n—=0% Ju, ,n{w>0}
Step 3: By a direct computation we see that for £!-a.e 7 € (0,70),

®'(r) = r2 /BB o (|Vw|2 +(h—v-— ?/)X{w>0} +2r2w? — 2r_1w(8,,w)} dH?

— 21"_3/ o (\Vw|2 + Xqws0y(h —7 — y)) dx (3.4.46)
(0

where @ is defined in (3.4.35)) and we recall that w(x) = u(xo + x). Moreover, by (3.4.36) and
@.3.1), we can rewrite (3.4.46)) as

2
(I)/ T)= 27"_2/ 8,/71) - E d/}'ll - T_3/ X{w yd.’L’,
") 9B, (0) ( 7‘) B, (0) {w>0}

(o

and the desired formula follows by integration. O

Remark 3.4.10. Under the additional assumption that x is an isolated accumulation point for
O{u > 0} on 0%, the regularity result of [29] is not needed for the proof of Theorem
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Corollary 3.4.11. Let ® be defined as in Theorem[3.4.9 Then ® has finite right limit at zero, i.e.,

lim ®(p) = ®(0") € R.

p—07t

Proof. Fix 0 < 0 < rg and consider p < o. By Theorem [3.4.9

3(0) = B(p) + Alp, o) + B(p, o) + Cl(p, o),

/po 2 /8Br(wo) 2 <3Vu(a:) - “(:’)f dH (z)dr,

B(p,0) = —/ 7“3/ ( )X{u>0}(y — V)X {yzr} dzdr,
P r{Z0o

where

~

>

2
]

C(p,o) = —/ 7“_3/ ( )X{u>0}(y — V)X{y<n} ddr.
P r{€o

Notice that the maps p — A(p, o) and p — C(p, o) are decreasing, while r — B(p, o) is increas-
ing. Then

lim A(p,0) + C(p,0) = sup{A(p,0) + C(p,0) : 0 < p <o},

p—0t

lim B(p,0) = inf{B(p,0):0< p <o} < oo.

p—0t

In turn, ® admits a limit as p — 07 as it was claimed. Moreover, the fact that |®(0")| < oo follows
upon recalling that u is Lipschitz continuous in a neighborhood of xy and u(xy) = 0. Hence

u(z)? < Clz — 2o|?, and so P is bounded (see[3.4.35). O

Corollary 3.4.12. Under the assumptions of Theorem let w be a blow-up limit of u with
respect to the sequence {pp }n. Then

Vw(z) -z =w(z) forL*ae zcR% (3.4.47)

Proof. For every r > 0 and n large enough so that p,r < rg, by the change of variables x =
xo + pnz we see that (3.4.33) becomes

O (pnr) = r2/ (|Vun|2 + X{un>0y (B =7 — pnt)) dz — r3/ ui dH*,
B,(0) 0B (0)

where the functions u,, are defined as in (3.4.18). Therefore for every 0 < R < S and n large
enough we have the formula

8 -2 Up \ 2 1 g -3
D (pnS)—P(pnR) = r 2 <8,,un - —) dH dr— | r X{un >0} Pnt ddr.
R 3B, (0) r R Br(0)
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Letting n — oo, by Corollary [3.4.11] we obtain

n—00 n—00 r

S Up \ 2
0= lim ®(p,S5) — ®(pnR) = liminf/ 7‘2/ 2 (8,,un — —) dH dr
R 8B,(0)

> / 2z (Vw(z) -z —w(z))? dz.  (3.4.48)
Bs(0)\Br(0)

In turn, the integrand in (3.4.48)) must be zero £2-a.e. in Bg(0) \ Br(0) By the arbitrariness of
R, S, this concludes the proof. O

3.44 The proof of Theorem

Theorem 3.4.13. Given m,\,h > 0and v < h, let u be a symmetric global minimizer of Jy, in K,
in the sense of Definition and w be a blow-up limit of u at xy. Then either w is identically
equal to zero or w(s,t) = (h —v)(—t)+.

Proof. Step 1: We begin by showing that w is a positively homogenous function of degree one. To
see this let z € {w > 0} and notice that

% (1w(tz)> = %Vw(tz) -z — t%w(tz) = tlz (Vw(tz) -tz —w(tz)) =0

for every ¢ > 0 such that w(tz) > 0, where in the last equality we have used (3.4.47). Consequently,
it must be the case that w(tz) = tw(z) for every such that, and furthermore it follows that the
entire ray {tz : t € R} must necessarily be contained in {w > 0}. In particular, each connected
component of {w > 0} is a sector with vertex at the origin. Next, we claim that the opening angle
of every such sector is 7, i.e. each connected component of {w > 0} is a half-plane passing through
the origin. To this end, we can find a rotation R, a set of polar coordinates (r, ), and a function f
in such a way that

f(r,0) = w(R(rcosb,rsind)),

and
Af=01in Sy ={(r,0):0<r <o00,0<0<al,

f=0 onds,.

(3.4.49)

Notice that the homogeneity of w implies that

f(T‘, 9) = rf(L 9) - Th(@),

for a function A which satisfies
R"(6) + h(6) = 0.

In turn, h(0) = ¢ cos @ + co sin §. Moreover, the boundary conditions in give that ¢; = 0
and cg sina = 0. Since f > 0in S, then it must be the case that o = 7.

Step 2: Since u is symmetric about the line {x = —\/2}, then u,, defined as in (3.4.18), is
symmetric about the t-axis, and so is w. This, together with the fact that w(0,¢) = 0 for ¢ > 0,
shows that if w is not identically equal to zero then either w(s,t) = (h — v)(—t)4 or w(s,t) =
(h — v)|s|. The desired result follows upon noticing that w(s,t) = (h — 7)|s| does not minimize
the functional F}, over the set (w, 1) (see , a contradiction to Theorem O
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Proof of Theorem[I.1.3] For g be defined as in (3.3.18), assume for the sake of contradiction that

lim it 19®) — 90|

=a < oo,
vooee |y =1l

let {yn }n be a sequence for which the limit is realized, and assume without loss of generality that
{Yn }n is monotone. Let p,, := |y, — ~y| and notice that for n large enough

pn <V (9yn) — 92+ (Yn — )2 < Blyn — 7| = Bon,  where 8= /a2 + 2.

In turn, Lemmam gives that every blow up of u at x( with respect to the sequence {p;, }, is not
identically equal to zero. Then, it follows from Theorem [3.4.13|that the half-plane solution

w(s,t) = (h—v)(—t)+ (3.4.50)

is the unique blow-up limit. Assume first that y,, — v, set p, = y,, — 7 and let u,, be defined as

in (3:4.18). Notice that (3.4.29)

A
0< gn(1) = 9lym) —9(n) _9lm)t3 | (3.4.51)

Yn —7° Yn — 7

On the other hand, since {¢ > 0} C {w = 0} by (3.4.50), it must be the case that u,, = 0 in

By +1,1) by Lemma This contradicts (3.4.51). Next, we assume that i, — ~~. Then
gn(—1) — « and by the uniform convergence of u,, to w we see that

0 =un(gn(-1),—1) > w(a,—1) =h—~ > 0.

This concludes the proof. O
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Chapter 4

Singular perturbations of mixed
Dirichlet-Neumann boundary value
problems

4.1 Gamma-convergence of order zero and global minimizers

Throughout the section we study the mixed problem (1.2.3) and the associated minimization prob-
lem under the following assumptions on the set {2 and on I'p, namely the portion of the boundary
where the Robin boundary condition is imposed:

(1) 2 is an open, bounded and connected subset of R,
(73) 02 is Lipschitz continuous, (Ho)

(#i7) T'p is a non-empty and relatively open subset of 0f2.

Furthermore, define I'yy := 92 \ T'p. Notice that for the purposes of this section we do not assume
that I'y # (); analogous results hold (with trivial changes) if I'y = ().

Theorem 4.1.1. Let Q2 be as in (Hy|), f € L*(Q), g € L*(09), and ¢ € (0,1). Then the functional
F., defined as in (1.2.7), admits a unique minimizer u. € H'(Q). Furthermore, u. is a weak
solution to the mixed Neumann-Robin problem (1.2.3)).

The proof of Theorem {.1.1]is based on the following well-known result.
Lemma 4.1.2. Let Q) be as in (Ho)) and for u € H () set

1/2
el 0y = (IVul2mmy + lulaqey) ) - (@.1.1)

Then ||-|| 1 (q) defines a norm on H Y(Q) that is equivalent to the standard norm, i.e., there are two
constants K1, kg, which only depend on the geometry of ) and T p, such that for every v € H'(Q),

riflulll oy < lullmr@) < rellull o)
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Proof of Theorem[d.1.1} By Holder’s inequality, we have that for every ¢ € (0, 1) and for every
u e HY(Q),

1 1
Felw) 2 SIVulsqmny — 1 L@ el + 5 e = 0l3a(r,)- 4.12)

Young’s inequality then implies

lu = gl Z20,y = llullZe,y + I9ll72,,) — 2/F ug dHN !
L 4.1.3)

1 2 2
2 Sllullzeryy = Tlallze ),

and thus, combining the estimates (4.1.2) and (.1.3) with Lemma[4.1.2] we obtain

1 7
Fe(u) > Z’H“W?{l(m — K2l fllz@lllull g ) — 5”9”%2(%)-

In turn,
inf{F.(u) : e € (0,1),u € L*(Q)} > —o0

and for every ¢ € (0, 1) the functional F, is coercive. Since F. is lower semicontinuous with
respect to weak convergence in L?(2), the existence of a global minimizer u. follows from the
direct method in the calculus of variations and the assertion about uniqueness is a consequence of
the strict convexity of the functional F.. Moreover, one can check that u. is a weak solution to
(T.2.3) by considering variations of the functional F.. We omit the details. O

Proposition 4.1.3 (Compactness). Under the assumptions of Theorem if en, — 07 and u,
are such that
sup{Fe, (u,) : n € N} < o0,

then there exist a subsequence {u,, }i, of {tun}n, u € V and v € L*(Tp) such that

Up, —u in HY(Q),

~-1/2

€np! (Uny, —g) = v in L*(Tp).

Proof. Let M = sup,, F:, (uy) and assume without loss of generality that ; < 1. Reasoning as in
the proof of Theorem d.1.T] by Holder’s inequality we see that

1 1
M 2 [ Vunl2agmm — Il el + 5 —llum = gl3ay)  414)
n

for every n € N. Young’s inequality, together with the fact that £,, < 1, then implies that

1

1 1
2 2 2
Eﬂun =92y 2 Jlun = 9llza,,) + Eﬂun —9llz2 )

(4.1.5)

> 1 2 7 2 1 2
= gHUnHL?(FD) - ZHQHLQ(FD) + Eﬂun - gHLQ(FD)’
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and thus, combining the estimates (#.1.4) and (4.1.5) with Lemma and using the notation
@.1.1), we arrive at

1, .o 7 1
M > §|||Un|\|H1(Q) - “2Hf\|L2(Q)|||Un|HH1(Q) - ZHQH%Z(FD) + @Hun - 9”%2(1“/3)'
. I ~1/2 .
Consequently, {uy, },, is bounded in H"(2) by Lemma and furthermore {e,, /" (un, — g) }n is
bounded in L?(T"p). Hence there are functions u € H'(Q2), v € L?(I'p) and a subsequence {uy,, }x
of {u,}, as in the statement. To conclude we notice that u,, — ¢ in L?(T'p), and sou € V. O

Proof of Theorem[I.2.3} Let e, — 07 and {u,}, be a sequence of functions in L?(£2) such that
Up — win L2(Q). If liminf, o F:, (u,) = oo there is nothing to prove. Hence, up to the
extraction of a subsequence (not relabeled), we can assume without loss of generality that

liminf ;. (un) = lim F. (u,) < oco.

n—o0 n—oo

In particular, F,,, (u,) < oo for every n sufficiently large. Let {u,, }i and u be given as in Propo-

sition |4.1.3] then

v

1
liminf/ <|Vunk|2+funk> dx
k—oo JQ 2

1
= liminf/ |V, |* de + lim /funk dx
2 Q k—o0 O

k—00

liminf 7. (up,)
k—o0 k

1
2/ |Vu|2dw+/fud:n:]:o(u).
Q Q

Y

On the other hand, for every u € L?(£2), the constant sequence u,, = u is a recovery sequence.
Indeed, F, (u) = Fo(u) for every u € V, while if u ¢ V then Fy(u) = oo and hence there is
nothing to prove. 0

Corollary 4.1.4. Under the assumptions of Theorem ifen, — 07 and {up }n, is a sequence of
functions in L?(2) such that
limsup J+, (uy) < inf {Fo(v) : v € L*(Q)}
n—o0

then u, — uq strongly in H' (), where uq is the unique global minimizer of Fo. In particular,
global minimizers u., of F., converge in H'(Q) to uy.

Proof. Since g € H'/?(0%), by standard trace theorems (see Theorem 18.40 in [70]) the space V'
defined in (I.2.9) is nonempty. In turn, the strictly convex functional Fy given in (I.2.8)) admits a
unique minimizer ug which is a weak solution to . Let {u, }, be a sequence of functions in
L?(£2) such that

lim sup F, (un) < Fo(up). (4.1.6)

n—oo

Given a subsequence {e,, }i of {ey}n,. by Proposition we can find a further subsequence
{Unkj };j and vy € V such that Uny,, — V0. By I'-convergence

Fo(uo) = limsup Fe,, (un,) 2 Fo(vo),

Jj—o0

71



which in turn implies that vg = ug. Hence the full sequence {u,}, converges in L?(Q2) to u.

Moreover, by (4.1.6)

1
Fo(ug) > limsup Fe, (upn) > limsup/ <2|Vun|2 + fun> dx
Q

n—oo n—o0

1
> Iiminf/ \Vu,|? dx +/ fuodx > Fo(up),
n—oo 2 Q Q
and so
lim / |V, |* dx = / |Vug|? de.
By the strict convexity of the L?-norm it follows that Vau,, — Vug in L?(£; RY). O

4.2 A problem without singularities

Following Costabel and Dauge [40], in this section we will be concerned with the study of the easier
case of the non-mixed problem (I.2.34); to be precise, it is assumed throughout the section that
I'p = 09). Under this additional assumption we prove asymptotic developments by I"-convergence
of all orders for the family of functionals {F.}. and deduce a complete asymptotic expansion for
Ue, i.e., the solution to (1.2.34) (see Theorem {.1.1). Throughout the section, we will make the
following assumptions on the set €2

(i) € is an open, bounded and connected subset of R, )
. J
(ii) OS2 is of class C7'1.

4.2.1 The non-mixed problem: Gamma-convergence of order one

In this section we prove a first order asymptotic expansion for F.. We begin by studying the com-
pactness properties of sequences with bounded energy.

Proposition 4.2.1 (Compactness). Let Q2 be as in (H,), f € L*(Q), g € H*?(0Q), F. and Fy be
the functionals defined in (1.2.7)) and (1.2.8)) (with T'p = 0N2), respectively, and define

Fe — min Fy
- .

FO)

; “2.1)
Ife,, — 0% and v, € L*(Q) are such that
sup{}“g(? (vp) :n € N} < o0,

then u, — ug in H'(Y) and there exist a subsequence {vy, }i of {vn}n, To € HY(Q) and vy €
L?(0R2) such that

Ung — Y0 _ ro in HY(Q),
Enr
4.2.2)
Une ZH0 o in L2(89),
Eny,

where uyg is the solution to (|1.2.35)).
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Proof. If we let M = sup{]:g(i) (vp) : m € N}, then F.(vy,) < Fo(ug) + £, M. On the other hand,

liminf F,, (vyn) > Fo(uo)

n—00

by Theorem |1.2.3| and in turn v,, — ug strongly in H'(£2) by Corollary
For every n € N, let r,, € L?(€2) be such that v,, = ug + &,,7,,. Then ]{;(i) (vp,) can be rewritten
as

n 1 _
FD(v,) = / (vuo Vi + %|Vrn|2—|— frn> de + 5 / r2 dpN L (4.2.3)
Q o0

Since 99 is of class C11, f € L?(Q), and g € H3/2(9Q), by standard elliptic regularity theory
for (1.2.35), ug € H 2(Q) (see Theorem 2.4.2.5 in [58]) and by an application of the divergence
theorem we have

/ (Vug - Vry + fry) de = Oy uory dHN L. 4.2.4)
Q o9
Substituting @.2.4) into (4.2.3]) we arrive at
n 1 —
M > FD(v,) = E/ V7, |2 dx —i—/ <r721 + ayu(]rn) dHN !
2 Jo o0 \2
4.2.5)

n 1 B
:6/ V?“n|2da:+/ [(rn+a,,uo)2— (a,,uo)ﬂ dHN 1,
2 Ja 2 Joq

and (#.2.2) is proved at once. O

Theorem 4.2.2 (1st order I'-convergence). Under the assumptions of Proposition the family
{]_-6(1)}5 [-converges in L(S2) to the functional

1
—/ (Byu0)® dHN ifv = g,
Fiw)={ 2Jaa (4.2.6)
+00 otherwise.
In particular, if u. € Hl(Q) is the solution to (|1.2.34]), then
Fe(us) = Foluo) + eFi(ug) +o(e). (4.2.7)

Proof. Lete, — 07 and {v,}, be a sequence of functions in L?(Q) such that v,, — v in L?(Q).
Reasoning as in the proof of Theorem[I.2.3] we can assume without loss of generality that

liminf]-"(i)(vn) = le .F(i)(vn) < 00.

n—oo € €

In particular, fg(i)(vn) < oo for every n sufficiently large. Let {vy, } be as in Proposition m
Then v, — ug in H'(Q) and from (4.2.5) we deduce that

lim inf F)(v,) > —% / (Byu0)? dHN 1 = Fi(ug).
o0

n—oo

On the other hand, for every v € L?(2) \ {uo} the constant sequence v, = v is a recovery
sequence. If now v = uyg, since by assumption d,ug € H'/?(9Q), we can find w € H'(Q) such
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that w = —d,ug on OS2, where the equality holds in the sense of traces. Set v, = ug + €,w. Then
vp, — up in H(£2) and again from (4.2.5)) it follows that

lim ]—"6( )(v,) = hm / |Vw|? da — / (8,u0)? dHN 1 = Fy(up).

n—oo
This concludes the proof of the I'-convergence. The energy expansion (4.2.7)) follows from Theo-
rem[2.1.7] O
4.2.2 The non-mixed problem: Gamma-convergence of order two

In this section we prove a second order asymptotic expansion for F.. As customary, we begin by
investigating the compactness properties of sequences with bounded energy.

Proposition 4.2.3 (Compactness). Let Q be as in (Hy), f € L2(Q), g € H32(09Q), Fe, Fo, FV,
and F; be as in (1.2.7), (1.2.8)), (4.2.1), and (4.2.6)), respectively, and define

) ]-“5(1) — min F; Fe. — min Fy — €min .7-"1
Fe = 5 B g2

If e, — 0" and w,, € L?(Q) are such that
sup{]:e(? (wp) :n € N} < oo,

then w, — wug in H*(Q) and there exist a subsequence {wp, }r. of {wn}n, wo € H*(Q) and
qo € L?(09) such that

Wne ZH0 e in HY(SQ),
Eny
Wy, — U Ene. OLU .
Rk 03—; e Ty 70 qo in LQ(GQ),
n

where uy is the solution to (1.2.35)). In particular, wg = —0,ug on 05) in the sense of traces.

Proof. By Corollary we deduce that w,, — ug in H'(£2). For every n € N, let r,, € L*(Q)
be such that w,, = ug + £,7,. Then ]-'e(z) (wy,) can be rewritten as

F(w / V| da o [ (rat Oyug)? dHN L. (4.2.8)
o0
We then proceed as in the proof of Proposition with f = 0, g = —09,up and r, in place of

Theorem 4.2.4 (2nd order I'-convergence). Under the assumptions of Proposition let uy €
H(Q) be the unique solution to the Dirichlet problem

Au; =0 in Q,

u1 = —dyug on 0N).
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Then the family {]—"5(2)}5 D-converges in L(S2) to the functional

1
/ |Vup |2 dx if v = ug,
fz(v) = 2 Q

400 otherwise.

In particular, if u. € H'(Q) is the solution to (1.2.34)), then
Fe(ue) = Fo(uo) + eFi(ug) + €2 Fa(uo) + o (7). (4.2.9)

Proof. Lete, — 0% and {w,}, be a sequence of functions in L?(§2) such that w,, — w in L?(Q).
Reasoning as in the proof of Theorem[I.2.3] we can assume without loss of generality that
&

lim inf F) (w,) = lim F®(w,) < cc.
n—oo n—oo

In particular, .7-}(721) (wp) < oo for every n sufficiently large. Let {wy, }1 and wy be as in Proposi-
tion Then w,, — ug in H'(Q) and from (4.2.8)) we deduce that

Y

1 1
lim inf F?) (w,, ) > liminf = / Vi, |2 dx > = / \Vwo|? da
k—o0 "k w 2 /o 2 /o

k—

Y

1
inf {2/ |Vpl?dx : p e HY(Q), p= —d,up on 89}
Q

1
= Q/Q‘Vulyzdm == fg(uO).

We remark that the function u; exists (and is unique) by an application of Corollary [4.1.4]
On the other hand, for every w € L%(Q) \ {ug} the constant sequence w,, = w is a recov-

ery sequence. As one can check from @), wy, = Ug + €,U1 1S a recovery sequence for ug.
This concludes the proof of the I'-convergence. The energy expansion [#.2.9) follows from Theo-
rem[2.1.71 O

Corollary 4.2.5. Let Q be as in (Hy), f € L*(Q), g € H3/2(0Q), and let u. and ug be solutions to
(1.2.34)) and ([1.2.35)), respectively. Then there exists a constant ¢ > 0, independent of €, such that

iz = woll iy < 2 (I 2oy + lgll oo
lue — uo + €8]l L2agy < e/ (”fHLQ(Q) + ||g||H3/2(6S2)) :
Proof. If we let w. == ug + €uy, for up as in Theorem@ then
Fe(w:) = Foluo) + eFi(ug) + 2 Fa(ug)
and from the minimality of u. we deduce
Fe(ue) < Fo(uo) + eFi(ug) + 2 Fa(up).
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Writing 7. = #=*¢, expanding, and rearranging the terms in the previous inequality we arrive at
1 2 1 2 L N-1_ £ 2
— [ |Vrde + — (re +edyup)” dH < — [ |[Vuw|®de. (4.2.10)
2 0 2e o0 2 Q

Since 9N is of class C1L, f € L%(Q), and g € H>/?(9N), by standard elliptic estimates (see
Theorem 2.4.2.5 in [58]]) the solution vy € H 1(Q) to the Dirichlet problem (|1.2.35) belongs to
H?() with

ol zr2c0y < o (11122 + Il srraqer ) -
In turn, by standard trace theorems (see Theorem 18.40 in [70]), we have that d,ug € H'/? (09),

and so there is 29 € H'(Q) such that z9 = —d,up on 92 in the sense of traces and

120l 1.0y < KallOvuol| /20y < kslluollgz) < ¢ (HfHLQ(Q) + ||g||H3/2(Q)) :

Since u; € H'(2) is a minimizer of

v / |Vo|? dx
Q
over all functions v with v = —09,ug on 952, we have that

IVl 2oz < IV 2002y < e (1 2oy + lglarzqey ) -

The previous estimate, together with (4.2.10), gives the desired result. O

4.2.3 The non-mixed problem: Gamma-convergences of all orders

In this section we prove asymptotic expansions by I'-convergence of any order for F. and derive
asymptotic expansions for u, i.e., the solution to (|1.2.34]).

Theorem 4.2.6. Given k € N, let j € N be such that k = 2j — 1 or k = 2j, Q) be as in {i
f € L2(Q), g€ H/*7(09Q), and for everym € {1,...,j} let u,, € H'(Q) be the solution to the
Dirichlet problem
Ay, =0 in €,
(4.2.11)
U = —OpUm—1 on OS2,

where uyg is the solution to (|1.2.35)). Let .7:5(]“1) be defined recursively by

fg(k) — .Fk(UQ)

Y

]:(k-ﬁ—l) —
€ €

where F is given as in 1) and the functionals F;, fori € {1,...,k + 1}, are given by
1

_2/ (Byum)? dHV T ifv = o,
Fom+1(v) = 0%

+00 otherwise,
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and

—i—l/ Vi, |* dx if v = ug,
Fom(v) =4 2/

400 otherwise.

Then the family {.7-"5(1.)}E D-converges in L?(Q) to the functional F; for everyi € {2,...,k+1}. In
particular, if u. € Hl(Q) is the solution to (|1.2.34)), then

k+1
Folu) = D Fi(uo) + 0 (1),
i=0
Proof. Notice that for K = 1 we have that j = 1 and so the statement reduces to the one of
Theorem The result for £ > 2 follows by induction from arguments similar to the ones of
Theorem and Theorem (depending on the parity of k). We omit the details. O

Corollary 4.2.7. Under the assumptions of Theorem and for an odd value of k € N, let u.,
uo, w; be solutions to (1.2.34)), (1.2.35)), and (4.2.11)), respectively. Then there exists a constant
¢ > 0, independent of ¢, such that for every j € {1,...,(k+1)/2}

j—1
Ue — E Uy;
=0

<02 (Il + loloravey)
HY(Q)

< 0295 (| lzy + lgllsesiey) -
L2(09)

7j—1
Ug — E e'u; + e0yu;
i=0

Proof. The proof is analogous to the one of Corollary i.2.5|and therefore we omit the details. [

4.3 The case of mixed boundary conditions

In this section we prove our main results regarding the higher order I'-limits for the functional J.
defined as in (1.2.7).
4.3.1 Some technical results

Throughout the section €2 is assumed to be as in the statement of Theorem [I.2.1] We recall that
we use the following notations: given a function v = v(x) where = (z,y), we denote by v the
function

o(r,0) == v(rcosf,rsinf), (4.3.1)

and with a slight abuse of notation we write v = %(r, §). Moreover, we denote by 7*) the function
o (ri, 0;) = v(x; + ri(cosb;,sinb;)), (4.3.2)

where the polar coordinates (r;, §;) are as in Theorem Furthermore, recall that € C*°([0, c0))
is such that = 11in [0, p/2] and @ = 0 outside [0, p).
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Proposition 4.3.1. Let N = 2, Q be as in Theorem f € L3Q), g € H¥?(00), and let
ug € H(Q) be the solution to (1.2.1)). Then

L) .
| (Vw004 ) do - / Oilog dH' =" 5 / p(riyr; 1200 (ri,0) dr
Q I'p — < Jo

for every ¢ € HY(Q), where u?eg, ¢; and @ are given as in Theoremm

Proof. By Theorem|1.2.1] given ¢ € H'(Q), we get

/Vuo-wdx: /vufeg-wdm
Q Q
(4.3.3)

2 T e _ _
+) e /0 /0 <6riSi@ri¢(Z)r;289iSiagl.@b(l))ridridt%.
=1

Since the function ureg belongs to H?2(12) and satisfies a homogenous Neumann boundary condition

on I'y, the divergence theorem yields

/ Vg - VO da = / —Aup, ¥ de + / Oy ulegth A (4.3.4)
Q I'p
To rewrite the second term on the right-hand side of (4.3.3), we consider the auxiliary function

(I)(Tu z) —Tzans (Tu 1)7/)(2)(7%9@)7

indeed, a simple computation shows that ® € W11((0, p) x (0,)) and thus ®(-, §;) is absolutely
continuous for £!-a.e. §; € (0, 7). For any such 6;, by the fundamental theorem of calculus, we
have that

0=®(p,0;) — / O, (14, 0;) dr;

(4.3.5)

= [ (0809 + 102 509 + 10, 50,0

0
Similarly, noticing that the function W(r;,0;) = r; ', Si(ri, 0;)9@ (4, 0;) belongs to the space
WHL((0,p) x (0,7)), and reasoning as above we ﬁnd that
L o250 0

_ESD(T’L)T'L ZZ) (7"7;,0) \Ij(rla T’Lv 80 Tlu Z

(4.3.6)

_ / rl (agigi@z(iua@igiagi@(i)) a6
0

holds for £!-a.e. ; € (0, p). Combining the identities (4.3.5) and (4.3.6), we get

™ p B o ~ -
0 0
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L [° =1/2 7 " 26y (a2 @ 19 & 202 &
= — / @(ri)ri Q/J(Z) (T‘Z', 0) d’l“i — / / w(z) (6” S@ + ’l"; GTZS, + 7‘; 89251) T3 dmdgl
0 0 0

L2 . )
= — 2/ @(T’L’)ri 1/21/)(1) (Tia 0) d'f'i - / / w(Z)A(TZ,Hl)SZTZ drldel
0 0 0

Consequently, the desired formula follows from the previous equality, (4.3.3), (4.3.4), and upon
noticing that

2 T 0
/ fodzr = / Aupthdz +) ¢ / / PDA,, gy Siri dridf;.
Q Q — Jo Jo N

This concludes the proof. 0

In the following theorem we present an estimate that will prove instrumental for the proofs of
our compactness results, namely Theorem[1.2.4]and Theorem

Theorem 4.3.2. There exists a constant r such that for any R > 0 and h € H'(B}(0)),
1/2

R 1/2 R
/x_l/th(x,O)]dxgn R/ Vh(z)? da +H(/ h(x,0)2dx> ,
0 Bf(0) 0

where h(-,0) indicates the trace of h on the positive real axis.
We begin by adapting Theorem to our framework.

Lemma 4.3.3. There exists a constant F such that for any R > 0 and h € H'(B},(0)),

h(x)? _ 2 1 2
sdr <K |Vh(z)|” de+ — h(z,0)*dx |,
B40) |z|* (1 + log R —log |z|) B(0) R Jo

where h(-,0) indicates the trace of h on the positive real axis.

Proof. Since B},(0) is an extension domain, we can find h € H'(Bg(0)) such that h(z) = h(z)
for £?-a.e. € B} (0) and with the property that

1l 2 (5 (0)) < CLIBll 252 (0)):

HVEHL2(BR(O);R2) < CIHVhHL2(B§(0);R2),

for some constant C; > 0 independent of R. Theorem applied to the function h and the
previous estimates yield

2 1
/ : h(z) s dz < Oy (/ Vh(z)[* dz + —; h(x)? da:) ,
B (0) || (1 + log R — log |x|) B} (0) R /B 0)

for some constant Co > 0 independent of i and R. By Lemma together with a simple
rescaling argument, we deduce that

e < ([ 19M@P s [t
— h(x)”dx < C Vh(x)|“dx + = h(z,0)*dz
B Jp: 0 (z) 3( Bg(0)| ()| R ), (z,0)
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for some constant C's > 0, which is again independent of both h and R. This concludes the
proof. O

Proof of Theoremd.3.2] By the fundamental theorem of calculus,

0
h(r,8) = h(r,0) —i—/o Iph(r,a) da,

and so, multiplying both sides by 7~1/2 and integrating over BE(O), we get

R B 1 T R B 1 uy R 0 _
/ r V2R, 0) dr = ~ / / Y20 (r, 0) drdf — ~ / / / r=120h(r, ) dadrdd
0 ™ Jo 0 T™Jo 0 0

1 T rR B T rR o B
= / / r_l/Qh(r, ) drdf — / / LT 9)7“_1/269h(7", 0) drde,
T™Jo Jo o Jo T

where the last equality follows from Fubini’s theorem. In particular,

R B 1 T R B T R B
/ r=Y2|h(r,0)| dr < / / r=Y2|h(r, 9)|drd0—|—/ / r=Y20ph(r, 0)| drdf, (4.3.7)
0 T™Jo Jo 0 Jo

and thus we proceed to estimate the terms on the right-hand side of (4.3.7). Passing to cartesian
coordinates,

T rR —
/ / 12| (r, 9)\drde:/ (@) Utlogk —loglz])
o Jo B} (0) 2] (1 +log R —log () |/

) 1/2

< 1/2 -

< (57R) (/13+(0) 2|2 (1 + log R — log |x|)? d:c) )
R

where in the last step we have used Holder’s inequality together with the fact that

1+logR —1 2 r
[, Gt gy [T g R - 101 dr = 5
BE(0) || 0

Then, from Lemma we deduce that

T R
/ / =12 (r, 0)| drdf
0 0

. 12 (4.3.8)
< (57R)/2 R/ yVh(x)y2dm+/ Wz, 0)2dz | .
Bf(0) 0
On the other hand, Holder’s inequality yields
T rR B T rR B 1/2
/ / r=Y2|8gh(r, 0)| drdf < <7rR/ / 1 gh(r, 9)\2drd0>
0o Jo o Jo
1/2
< TFR/ |Vh(x)|? dz : (4.3.9)
B (0)
and so the desired inequality follows from (4.3.7)), (4.3.8)), and (4.3.9). O
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4.3.2 Mixed boundary conditions: Gamma-convergence of order one

In this section we prove Theorem [1.2.4] and Theorem [I.2.5] We recall that we use the notations

(#.3.1) and @.3.2).

Proof of Theorem[1.2.4] By Corollary we have that v,, — ug in H(2). For every n € N, let
2, € L%() be such that v, = ug + €,,1/|log e, | 2. Then féi)(vn) can be rewritten as

1 € 1
FD (v, :/ Vug -V, + [2n dm+”/ Vander/ 22 dH,
& (on) V/|log ey, Q( ’ fn) 2 Q| | 2 Jrp

and an application of Proposition [4.3.1] yields

2
1 i [* _ <
FO () = ——— ([ ulogznart’ = > / priyry 20 (r4,0) dr
V |log | I'p =1 2 Jo
(4.3.10)
€n 2 1 2 1
—l—/ |V 2n] da:—i—/ zZ dH".
2 Ja 2Jrp
For n large enough so that 2¢,, < p, we write
? (r 250 _ [T 20 ? or 250
o(ri)r; 72 (1r3,0) dry = r, T2 (i, 0)dry + | @(ri)r; T2y (i, 0) dry (4.3.11)
0 0 En

and proceed to estimate both terms on the right-hand side separately. By Theorem [4.3.2] we obtain

. | 1/2
/ 7”;1/2’27(? (T‘i, 0)| dr; <k | ep / |vzn|2 dx
0 Be, ()N

en 1/2
+K </ 29 (rs,0)2 dri) ,
0

4.3.12)

while by Holder’s inequality we get
1/2

r_ ~1/2|-(3) ? _G) 2
/ o(ri)r; |z (13, 0)| dr; < /logp+ |loge,] / zZy (13, 0) dr; ) (4.3.13)
En £

n

Consequently, from (#.3.10), (#.3.12)), and (#.3.13)) we deduce that

| 10l 2y il + /o8 2 T TTogen])
f§i>(vn)>\|znyiz(m—( gl l2(Tn) lznllz2p)

2 V/|logey| 2¢/|loge,|

L 12 2 |cilk 1/2
+ e/ *Vz w2y — ———|l&;/ “Vznll r2(Qr2),
5 llen “Vanllzzope) 5 \IOgan!” 7 "Vl L2 ir2)
and so (1.2.11)) and (T.2.12)) are proved at once. O
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Proof of Theorem[I.2.3] Step 1: Let &, — 0™ and {v,, }, be a sequence of functions in L?({2) such
that v,, — v in L?(€2). Reasoning as in the proof of Theorem[1.2.3] we can assume without loss of
generality that
lim inf F! )(vn) = lim f(l)(vn) < o0.
In particular, .Fs(,ll) (vn,) < oo for every n sufficiently large. Let {v,, }+ be a subsequence of {vy, },
given as in Theorem [I.2.4]and define
&D(ri) =

C;
2¢/|log en|
Arguing as in the proof of Theorem[1.2.4] (see (#.3.10) and (#.3.12))) we arrive at

1 10y ufeg |l 20 |cilk
o) > ol - (P ) el

V1ogen,| 24/|logen,

p(ra)ry 2. (4.3.14)

)

lcilk

B 2y/|logen, |
Z/ 9 ()2 (r;, 0) dr. (4.3.15)

Then, as k¥ — oo, we have

€222V 2, | L20m2) + *||51/2vznk\|L2 (Q;R2)

2 oo/
im i (1) imi Z5@(p. )2 = £0) (%) .
lllggffank (Un,,) > hkrgggf E_l/ <2znk (73,0)° = &3 (14) 2y (74, )> dr;

Eny,

2
1 P
— 1 =(4) () _ -
fminfd L/ (320 - &00) a5 [ &’ ]

k

1=

1
= — - li f 201 g
8 ¢ ¢ llclggo} \logsnk/ plr)r dry

Y

1 1
—ch hmmfi(logp+llog5nk|) :—§Zc?, (4.3.16)

k—o0 | og nk‘ =1

where in the second to last step we have used (@.3.14).
Step 2: For every v € L?(2) \ {ug}, the constant sequence v,, = v is a recovery sequence. Then
let v = ug and consider the radial function (; ,, given in polar coordinates at x; by

o) =0y (1—a (L)) = % sty (1—c( L)), 12
Cin(rs) =&Y (rs) (1 <P<€nn>>2 |logsn|go(n) (1 go(gnn>)ri . (43.17)
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where 5_,(1@) is the function defined in (4.3.14)). We define

in(x) ifx € B.(x;) NQ withr < p,
zn(x) = Gin(@) (:) P (4.3.18)

0 otherwise.

() = o) (1 ( £1:)).

then ¥, ,,: RT — [0, 1] and satisfies

Notice that if we let

U, n(r) =1 ife, <r; <p/2,

Uin(ri) =0 if0<r <ep/20rp <,
4.3.19)

W ()| < & ifen/2 <1 < e,

W! (r)| <c ifp/2 <1 <p,

for some constant ¢ > 0 independent of n. Finally, set

Up =g + en/|logen|zn.

Notice that v, — ug in L?() since the sequence {z, },, is uniformly bounded in L?(2), indeed

2 2
/ngmgchﬁ p Tfldri:W(logp+|log5n|+log2)zc
N =1

2

" i1 4] log ey en/2 ! 4|logen| i

Next, we claim that &,/ *Vz, — 0 in L?(2;R?). Indeed, using the notation above we have that
c i T —1/2
Gin(ri) = LUy (i)

2¢/|loge,|

and therefore

2 9 p 2
€ ciT = _ 1 _3/0=
A = (Z i )/ s R )R
n

2 2 P _ 1 _
< o <Z CZ;) /0 (‘Pé,n(ri)2+4ri Q\Pi,n(n)2> dri.  (4.3.20)

From (4.3.19) we see that

P _ En  _ P _ 1 P
/ W, (ri)? dr; :/ U, (ri)? drs +/ U}, (r)? drs < ¢ < + 2) (4.3.21)
€ p/2

0 n/2 / 25%

and 0 p ) 1
/ W (1) dry < / = — = (4.3.22)
0 en/2 En P
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Combining (#.3.20) with the estimates (4.3.21)) and (#.3.22)) we obtain

2 2 2

€ i c p 1 1
V|2 de < —= i S T N 4.3.23
sn/QI 2] T < Togei] (; 2><2€n+ >t 4p> (4.3.23)

and the claim is proved. From (.3.10), using (4.3.11), 4.3.12)), (4.3.13)), and (4.3.14) we have

1 100 upeg | 2 cilk
./_"E(le)(vn) < 5”277,”%2@‘17) + < £ Co) + ’ ‘ | HZHHLQ(FD)

V| logen| 24/|logen

Cilk
fugl/?wnllp(mz) |“| ’|| e/ 2Vl 12 (m2)
2o L
—Z/ ED (ry)Cin (1) dr, (4.3.24)
i=1"¢n

By (4.3.23) we have that the second, third, and fourth member on the right-hand side of the previous
inequality vanish as n — co. Since @ (%ro = 0 for r; € [en, p|, by (4.3.14) and (4.3.17),

G =&Y inen, p]. (4.3.25)
Consequently, from (4.3.14), (4.3.25)), (4.3.18)), and the fact that ¢ = 1 in [0, p/2],

2
1 p_. _
lim sup ]:a(,ll)(”n) < lim sup {2”%”%2(1},) - E / €$zZ) (13)Cin(14) dn}
n—o0 i—1 Jen

n—o0

2
= lim supZ/p (;Cfi,n(nf — &9 (m)Ci,n(m)> dr;

n—00
=1

_hmsupz—/ fn ;) de

n—o0

1 - |
=3 ZC lim inf | log &y, | /n ridrit /p/2 plra)7ri dri
T
= -3 > el (4.3.26)
The energy expansion (I.2.14) follows from Theorem [2.1.7] O

4.3.3 An auxiliary variational problem

In this section we study the functional
1
Ji(w) = / [Vw(zx)|? dw—i—/ (w(m,0)2 - cix71/2w(x,0)) dx
R% 0
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+ /loo (w(:v,()) — %w‘l/z)Q dx

defined in
H:={we H(Ry):we H (B(0)) forevery R >0},

where w(+, 0) indicates the trace of w on the positive real axis. This functional appears in the charac-

terization of the second order I'-convergence of F (see (I.2.15)), (1.2.16), (1.2.17), Theorem[1.2.6
and Theorem [1.2.7)).

Proposition 4.3.4. Let J; and H be given as above. Then A; = inf{J;(w) : w € H} € R and
there exists w; € H such that J;j(w;) = A;. Furthermore, w; is a weak solution to the mixed

problem (|1.2.21)).

Proof. Let v be the function given in polar coordinates by

Ci

o(r,0) = 2vr

% rifr<land0<@<m,

ifr>1and0 <6 <,

where (7, ) are polar coordinates centered at the origin of R? and such that the set {(r,0) : 7 > 0}
coincides with the positive real axis. Then v € H and J;(v) < oo, indeed

W=/ 007“ v)? dr 1177“ —co(r T_L(W—?))
g = [ [T reoraas+ [ w0 - oo ar= T

In turn, this implies that A; < co. On the other hand, by Theorem 4.3.2] we see that for every
w e H,

L 1/2
Ji(w) > / |Vw(z)|? de +/ w(x,0)*dx — |¢i|r (/ |Vwl|? dm)
R2 0 B (0)

2
+ /100 (w(x,O) — %x*1/2>2 dx,

P </01w(a:,0)2dx>

and so A; > —oo. Furthermore, we deduce that for an infimizing sequence it must be the case that
(eventually extracting a subsequence which we don’t relabel)

1/2

Vw, — Vw in L?(R3; R?),
wp(-,0) = w(-,0) in L?((0,1) x {0}),

wa(+,0) = o2 = w(-,0) = Ja7?in L((1,00) x {0}),

for some w € H, where w,(-,0) and w(-,0) indicate the trace of w, and w on the positive real
axis. To conclude, it is enough to show that J; is lower semicontinuous for sequences converging as
above. The lower semicontinuity is certainly true for the nonnegative terms in J;, thanks to Fatou’s
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lemma. In order to pass to the limit in the remaining term we can argue as follows. First, we observe
that by Lemma {wy},, in bounded in H'(B; (0)) and in particular in H'/2((0,1) x {0}).
Next, we recall that H'/2((0,1) x {0}) embeds continuously into LP((0,1) x {0}) for every p €
[1,00). Consequently, up to the extraction of a further subsequence, we can assume that w,, — w
in LP((0,1) x {0}), p > 2. Therefore, we deduce that

1 1
liminf/ x_l/an(:c,())dx:/ a7 2w(z,0) da.

This proves the existence of a global minimizer of J; in H. The rest of proposition follows by
considering variations of the functional 7;; we omit the details. O

We remark that w; doesn’t necessarily belong to the space L? (Ri) unless ¢; = 0, in which
case w; = 0. In the following lemma we prove an estimate on the L?-norm of global minimizers in
an annulus that escapes to infinity. This estimate will be crucial for the construction of the recovery
sequence for ug in the proof of Theorem1.2.”/

Lemma 4.3.5. Let £, — 0" and w; be given as in Proposition Then

ei/ w? dx — 0
By, (O\B,,_ (0)

p/en p/2en

as n — oQ.

Proof. By applying Lemma and by a rescaling argument in B} (0) \ BT/Q(O) we can deduce
that there exists a constant ¢, independent of n, such that

/ w? dx < % /
BT _(0)\B',,_ (0) €n BT

+
p/en p/2en p/en (O)\BP/zsn (O)

) p/en
|Vw|* de —|—5n/
p/2en

w(zx,0)? dac)

+

1
for every w € H (Bp Jen

obtain

(0) \ B;r/zsn(O)). If we apply the previous inequality to w = €, w; we

p/en

5%/ w? dx < ¢ (/ |Vw; |* da +5n/ wi(x,O)de> .
Bf,. (O\B/,,_ (0) B, (O\B/,_ (0) p/2en

p/en p/2en plen

The first term on the right-hand side vanishes as n — oo since Vw; € LQ(Ri; R?), and the second
term is shown to vanish by the following computation:

p/€n p/€n E 2 p/an 2
5n/ w(z,0)% dr < an/ (wi(x,o) — %x—l/Q) dx + an/ .
p

/2€n p/2€en p/2en 4x
plen . 2
- an/ (wi(x, 0) — ﬁx—m) dz + 22, log2 — 0
p/2¢en 2
since w;(+,0) — $2~1/2 € L?((1, 00)). This concludes the proof. O
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4.3.4 Mixed boundary conditions: Gamma-convergence of order two

In this section we prove Theorem [[.2.6| and Theorem We recall that we use the notations
#@31) and @32).

Proof of Theorem[1.2.6] Step 1: By Corollary we have that w,, — ug in H'(£2). For every
n € N, let s, € L?(Q2) be such that

Wn, = Uy + \/EnSn. (4.3.27)

Then, by d1.2.7l), (11.2.81), (11.2.10[), dl.2.13|), and dl.2.23[) 5(2)(10”) can be rewritten as

2 n

1 1 1

2
loge
N
1=1

and an application of Proposition [4.3.1] yields

2
1 [P 12
]:5(2) (wp) = NG (/F 8,,u?egsn dH! — Z 62/0 o(ri)r; 1/2§£f) (ri,0) dr,)
" D i=1

2
1 1 |log en|
- \V/ 2d 2d 1 n 2
—|—2/Q\ Sn w+2€n/FDsn7-l+ 3 ;cl

Using the fact that |loge,| = [ aln r~1 dr, grouping together the different contributions on I'p N
Be,(x;), 'p N (By(x;) \ Be, (x;)) and I'p \ B,(x;), and completing the squares we obtain

2 50 . 2

1 P n 79 0 ~ 0 1 _ —

F& (wn) = {2 / (8 \;; ) B0, (i, 0) - Ser)r; 1/2> dri + Binci + Cyc?
i=1 En n

€ . =(7) ~(7) (1) 2
" [0 5, (ri,0) ¢ —1/250 (14,0)  3n’(14,0)
0 oy VoY) G- .
+ /0 (8,,ureg (r:,0) — 5 i = + 2. dr;

1 Sn 2 1 2
+ / < + 9 ul, ) dH! — / (a,ju(r)e ) dH?
2 Jrp\U; By(z:) \Ven ¢ 2 Jrp\U; Ben (1) ®

1
+ / |Vs,|? de,
2 Ja
where 1 e .
Bin = / ari)ry 2oul," (ri, 0) drs, (4.3.28)
En
and C, is given as in (T.2.T9). Setting

Zn = Sp — \/Enl1, (4.3.29)
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where u; is the solution to (1.2.22), and using the fact that u; = —0,u (r)eg on I'p we can rewrite the
previous expression as

) 2 (1 e[z (ri,0) ¢ ~1/2 ’ 2
fgn) (wp) = Z 2/ T’ — 5@(1@)7} dr; + B; nei + Couc;
T En n

=1
en [ () 2 =@ 2
—i—l/ A (s, 0 czrz_l/Qizn (i, 0) dr; —1—1/ “ngp!
2 Jo En Ven 2 Jrp\U; Bo(ai) €n
1 1
- / (0y ureg) dH' + / IV (2n + VeEnur)|? da. (4.3.30)
2 Jrp 2 /o

Notice that all the terms in the previous expression are either positive or independent of n, with
the only exception of B; ,,c;, which converges to B;c;, and the fourth term on the right-hand side.
However, by an application of Theorem 4.3.2| we get

e (i) 1/2 en 5(0) 2\ /2
" — n i70 " Zn i70
—/ Gr; /220 \Vi 0) (ri, 0) dr; > —|cilk / |Vzn\2da: — leilk / Zn iy 2)7 (ri, 0) ,
0 Vén BY, (z;) 0 En

and thus (1.2.23)) and (1.2.26)) are proved at once.
Step 2: Let W;,, be as in (1.2.24). Then

‘/T/iﬂl(ria 61) = @(Enrl) Z0 )(Snrm 91) (4.3.31)

by (4.3.27) and (4.3.29), and thus by a change of variables and the fact that = 1 in [0, p/2], if
en < p/2,

1 en [0, M2 (i) .
/ (V_Vm(s,())2 - ci571/2ﬁfi7n(s, 0)) ds = / M — cirfl/zw dr;.
0 0 En Ven

Similarly, for every R > 1 and for every n such that £, R < p/2, we have

2
R, Cs 2 enR Z()(,,a 0) Ci —1/92
Win(s,0) — =s71/2) ds = / o ) Sl dr;,
/1 ( als:0) 2 ) e Ven 2

Hence, in view of (4.3.30)

M > FO(w,) > Z{ / (Win(s,0)% = €52 Wi(s,0)) ds + Bici + Coc
0

=1

1R ¢ _1/2\2 1
L (5.0)_ G L P
w5 ] (Winlsoo) = 5s717) ds+2/32(0)|vwm| dy}
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1
- / (0,uy)” dH + /En / Vz, - Vuy de. (4.3.32)
2 Jrp 0

Since {Vz,}, is bounded in L?(; Ri) (see (1.2.25)), it follows that

1
/ ]VW@n]Qdy +/ <Y/T/,;’n(s>’,0)2 —cis_l/QWm(s,O)) ds
Bf(0) 0

. G _1/2\?
+/ (Wi,n(s,O) - 58_ / ) ds < c,
1
for some constant ¢ > 0 independent of n and R. To conclude, it is enough to send R — oo. O

Proof of Theorem[I.2.7) Step 1: Let &, — 0" and {w,}, be a sequence of functions in L?({2)
such that w,, — w in L?(£2). Reasoning as in the proof of Theorem we can assume without
loss of generality that

lim inf}"g(z)(wn) = lim .Fg(f) (wp,) < 0.

n—oo n—oo

In particular, fe(z) (wp) < oo for every n sufficiently large. Let {wy,, }i be the subsequence of
{wp }n given in Theorem and for every k € N let z,,, be such that w,, = ug + /En, 2n, +

enzur. Let Wi, be given as in (#.3.31)), then by (4.3.30), taking n = ny, in (4.3.32)) and letting

k — 0 we obtain

2 1
1 _ _
imi (2) - , 2 _ o2y . 2
hgn inf 72 (Wny) > ;_1 {2 /0 (WZ(S,O) cis EWi(s, 0)) ds + Bic; + Cycj

1R Ci —1/2 2 1 2
5 i(s,0) — = ds+ - i|“d
+2/1 (W(SO) S5 ) s+2/B;(O)|VW| y

21 0 \2 s9/1
: /F (k)

where we have used (1.2.27), (1.2.28), (1.2.29), and the fact that {Vz, },, is bounded in L?(2; R?%)
(see (1.2.25)). By letting R — oo in the previous inequality we get

F2 (wny)

.. (2) —
ff7e ten) = I,

2
Z{‘Z(VV%) —f—BiCi‘f‘CcpC%} B 1/ (8Vu?e )2 di!
2 2Jrp )

=1

A\

> Fo(w),

where in the last step we used the fact that 7;(W;) > A;.

Step 2: For every w € L?(Q) \ {uo}, the constant sequence w,, = w is a recovery sequence. On the
other hand, if w = uyg, let w; € H be given as in Proposition@ Let z,, be the function defined
in B,(x;) N § using polar coordinates around x; (see ) via

20 (ri, 0:) = p(ri) Wi (:791') (4.3.33)

n
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and z,(x) == 0in Q\ U2, B,(x;). Set
Wy, = UY + \/EnZn + EnUL.

We claim that {w, }, is a recovery sequence for ug. To prove the claim, we notice that (4.3.30)
implies

2 En /. . 2 A/ .
hmsup]: (wp) < Z { limsup = / (W _ Ciri1/2uwl(”/5”’0)> dr;
=1 0

n—00 n—00 En VEn

+ Biei + Cuc? + limsu l/p (r)? M_ﬂr—l/z er
iCi pC; n_>oop2 . 2 \/a 5

1 1
- / (0 ureg) dH! + limsup 2/ |V(zn + enur)|de.  (4.3.34)
T'p Q

2 n—o0

Letting » = se,,, we obtain

En 7 (. 2 A7 (o
/ <W1(Tz/5n70) _ Ci'r'i_l/2 Wz(rz/5n70)> dr;
0 En VEn
(4.3.35)

1
:/ <Wi(s,0)2 —ci3*1/2Wi(s,O)> ds,
0

and similarly

r Wi(ri/en,0) ¢ 12\’ plen - Ci 19\ 2
()2 [ N Em P : — , 2 (w. _ 1/2
/gn #ilr) ( VEn 2 ar /1 pilsen) ( i(5,0) =5 ) s

o, C; —1/2 2
< Wi - — ) 3.
< /1 ( i(s,0) 5% > ds (4.3.36)

Next, we compute the contribution to the energy coming from the gradient term. Since ¢ = 0
outside of [0, p], by (4.3.33) we have

2
|V 2,|? da = / |V 2,|? da

and therefore

/ |V 2,|? de
Q

2

= Z/OW /Op [m‘ (8ri(@(Ti)Wi(Ti/En’9i))2 4 :Z-"O(T’) (89 (i) en, Z))Q drsdb;.

=1

We write

/ / (F)w;(r/en, 0))* drdd

90



= /07r /Op r (@;(r)wi(r/sn, 0) + @i(r)enOrw;(r/en, 9))2 drdo.

Expanding the square on the right-hand side of the previous identity we obtain three terms, which
we study separately. By the change of variables s = r;/e,, we obtain

p/en _
/ / rig n Wi(ri/en, 0;) dndG —/ / sangoz (sen) Wi(s,Hi)zdrdHi

T rp/en _
< C/ / se2Wi(s,0)? dsdf — 0,
P Jo p/2€en

where in the last step we have used Lemma[4.3.5] Similarly,

T rp B T rp/en _
/ / ri@(ri)2 (O, Wi(1ri /e, 0:))* drid; = / / 5@(560)2(0s Wi (s, 0;))? dsdb;
0 0 0 0
T rp/en _
5/ / 5(0sW;(s,0))? dsdb.
0 0

T rp B _
2/ / TZ‘@/(TZ‘)WZ'(TZ'/EW Qi)@(ri)ariwi(m/&‘n, QZ) dT‘idei —0
0 0

In turn, Holder’s inequality implies that

as n — oo. The same change of variables s = r; /e, also yields

_ plen 1 _
0, Wi(ri/en, 0;) dnd@ —/ / fnp S€n) (89iWi(s,9i))2 dsdb;

T rplen | _
< / / L (09, Wi (s, 0))2 dsdb.
0 Jo s

2
limsup/ IV (2n + VEnur)|? dz < limsup/ |V 2,|? da < Z/ \VW; | de,  (4.3.37)
@ nree JQ i=1 /RY

n—o0

Thus

which, together with (¢.3.34)), (4.3.33)), and (4.3.36)), concludes the proof of the I'-limsup inequality.
The energy expansion (I.2.30) follows from Theorem [2.1.7] O

4.3.5 Sharp estimates

Proof of Theorem[I.2.8] Suppose by contradiction that (I.2.31)) is not true. Then there exists a
sequence £, — 0T such that

[tte,, — wollL2rpy > n (511\/ | log enl) (4.3.38)
for every n € N. In view of (1.2.14)), we have that

sup{]:e(}l) (ug,) :n € N} < o0,
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and thus by Theorem there exist a subsequence {u.,, }j of {u.,}, and vy € L*(T'p) such
that
Ue,, — UO

S NN V0,
eny/|logen|
which is a contradiction to (4.3.38]).
The proof of (1.2.32) follows analogously from (1.2.25)) and (1.2.30). O

4.4 More general Gamma-convergence results

Our results can be recast in a more general framework by decoupling the different scales in the
asymptotic expansion of u.. Here we present in full detail the generalizations of Theorem|1.2.5|and
Theorem|[I.2.7} the results of Section 3 can be analogously reformulated. Throughout the section we
assume that the domain (2 is given as in Theorem [I.2.1] and use the notations introduced in (4.3.1)

and {#.3.2).
Theorem 4.4.1. Under the assumptions of Theorem let K&V L?(Q) x L*(Tp) — R be
defined via

(1) ; 1 U—U
Fe'(u) ifue H () and O =yponlp,
KO (u,v) = eV/lloge] 4.4.1)

+00 otherwise.

Then the family {ICS)}E I-converges in L*(Q) x L*(T'p) to the functional

2
1/ 9 11 2 . 2
= vidH' — =Y ¢ ifu=wugpandv e L*(I'p),
Kiuv) = ¢ 2Jro =8

400 otherwise,
where the coefficients c; are as in Theorem[1.2.1]
Proof. Step 1: (Compactness) Let €, — 0% and (uy, v,) € L*(Q) x L?(I'p) such that
sup{ng)(un,vn) :n € N} < o0.

Then by (4.4.1), u,, € H*(Q), the function

x . Up —Uo

s
" eny/|logen|

belongs to H'() and satisfies v = v, on I'p in the sense of traces. By Theorem|1.2.4] there exist
a subsequence {uy, }i of {ty}n, 7 € HY(Q2) and v € L*(T'p) such that

el2vr —~r  in H(Q),

Uy, —v in L*(Tp).



Step 2: (Liminf inequality) Let €, — 07 and {(uy,v,) }», be a sequence in L2(Q2) x L*(T'p) such
that (uy,, v,) — (u,v). Reasoning as in the proof of Theorem [1.2.3] we can assume without loss of
generality that

lim inf K (g, v,) = lim K (g, v,) < 0.

In particular, ICSL) (un, vp) < oo for every n sufficiently large. Let {uy, }+ be the subsequence of

{un }n given as in the previous step and £/, be the function defined in polar coordinates as in (4.3.14).
Then
lim inf ICSL) (Uny > V) = liminf FY (uy,,)
k—oo k k—oo "k
and so, reasoning as in the proof of Theorem [1.2.3] (by @.3.13) and (4.3.16) with v,, and z,,
replaced by uy, and vy, , respectively), we obtain

1
liminf KO (u, ,v,) > liminf { = / 2 dH' — / U (62 4+ €2 ) dH!
ki— 00 k k 2Jrp I'p\U; Bey, (a:)

—00

> liminf/ [11)72% — Upy ( 7'llk +5721k)} dH!
k=00 JTp\U, Ben, (@) L2

~ timinf 5 [ (o, = &0, = 62)" = (€0 = (,)°] @’
k=00 2 Jrp\U, Bey, (@)

2
1/ 2 g1 L 2

>— [ v dH ——E i = Ki(uo,v),
2 Jr, Si:1 ( )

where in the last step we have used the fact that v,, — v, £, — 0in L*(I'p), and so

lim inf

/ (0n, — €L, —€2)? ap! > / v dHY.
=0 Jrp\U, Ben, (@)

'p

Step 3: (Limsup inequality) Let u = ug and v € L?(I'p). We extend v to zero in 2 \ I'p and
assume first that v € H'/2(9Q) (in what follows, although with a slight abuse of notation, we
identify v with its extension). Then there exists v* € H'({2) such that v* = v on 9 in the sense
of traces (see Theorem 18.40 in [70]). Set

Up = Uug + en/ |logen|(zn + v7),

where z, is defined as in (4.3.18). As one can check (see (4.3.24) and (4.3.26)), {(un, zn + v*) }n
is a recovery sequence for (ug, v).
Ifv € L2(09Q) \ HY?(99) we consider a sequence {v;, },, of functions in H'/2(9£2) such that

|vn = vll2(a0) = 0 asn — oo, (4.4.2)
and for every n € N we let v} € H'(2) be such that v}, = v,, on 9 and
[valla@) < cllonllgzoa (4.4.3)
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where ¢ > 0 is independent of n (see Theorem 18.40 in [70]). Furthermore, notice that by a standard
mollification argument we can also assume that

e vnll gr12(90) = 0 asn — oo. (4.4.4)
Set

Up = Ug + En/|logen|(zn +v))
and notice that by (4.4.3) and (4.4.4)), ||5,11/2V(zn + vp)llz2r2) — 0 asn — oo. Thus, we can
proceed as in (4.3.24) and (4.3.26). O

Theorem 4.4.2. Under the assumptions of Theorem[I.2.6} let

loc loc

K®: L2(Q) x L3 (R2) x L2 (R%) x L2 .(Tp) - R

be defined via
K (u,v1, v9, w) = F2 (u) (4.4.5)
if
u—uy —euy = VeV in QN By(x;),
0~ eur = Veli (1) (4.4.6)
U — Uy — EU] = EW onT'p\ B:(x;),
where the functions V; . are defined in polar coordinates by
Vie(ri,0) = 3 (2,6 (44.7)

and K& (u,v1,v2,w) == 400 otherwise. Then the family {ICg)}6 [-converges with respect to the
topology of L*(Q) x L (R%) x L% (R%) x L2 .(T'p) to the functional

loc loc loc
2 2
(” - Zc““) — (Do) | a2t!
i=1

2

1 1
]Cg(u, V1, V2, w) = Z |:2L7Z(Ul) + Bic; + C¢C?:| +§ /
I

=1 D

if u = ug, v1,v9 € H, w — Z?:l cip; € L2(Tp), and Ko (u,v1,v9,w) = +00 otherwise, where
B; and C,, are defined as in (1.2.18) and (1.2.19)), respectively.

Proof. Step 1: (Liminf inequality) Let &, — 0% and {(un, v1n,v2n, W)}, be a sequence in
L?(Q) x L} (R2) x L (R2) x L (T'p) such that (un, v1,n, V2,0, wn) — (u,v1,v2,w). Let
Uy, = (Up, V1 n, V20, W,). Reasoning as in the proof of Theorem we can assume without
loss of generality that

lim inf K& (uy,) = Tim K3 (uy,) < cc.

In particular, le;i) (uy,) < oo for every n sufficiently large. Let {uy,, }1 be the subsequence of {uy, },,

given as in Theorem [1.2.6] By (4.3.30) (with wj, replaced by u,,), (#.4.5), (#.4.6), and it

follows that for every €, < 9 < p,

(2) 2 1 J Uiy, (Ti/gnk’ 0) Ci _ -1/2 ? 2
Ksnk (un,) = Z 5 i 590(7”2')7} dri + Bin,ci + Co;
En

&€
i=1 k M
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7
Eny, Eny,

1 / (vi,nk(ri/enk,o>2 _Cirl_l/zvi,nk<m/enk,o>> dn}
0

2 2
1/ 1 1/ 0 )2 1
+ = W, — ;| dH — = Oy Uy dH
2 rD\UiBa(sc»( ' Z ) 2 rD( )

=1

IV (tn, — uo)|? de, (4.4.8)

where B; , is defined as in (4.3.28). Arguing as in the first step of the proof of Theorem we
arrive at

2

2
1 1

lim inf @ wy,, ) > [ji v;) + Bic; + C. 622] +/ w — civi dH!

k—00 5%( o) Z 2 (vi) v 2 Jrp\U; Bs(@:) Z

i=1
L 0 \2 1
5 /FD (8,,ureg) dH".

To conclude the proof of the liminf inequality it is enough to let § — 0.
Step 2: (Limsup inequality) Let (ug, vy, va, w) be such that Ko (ug, v1,v2, w) < oco. We assume
first that there exists 0 < § < p/2 such that

2
we H'Y? <rD U 35/4(@)) , (4.4.9)
=1

and we extend it to a function in H'/2(9€) (in what follows, although with a slight abuse of nota-
tion, we identify w with its extension). Then there exists w* € H'(2) such that w* = w on 9 in
the sense of traces (see Theorem 18.40 in [70]]). Set

Up = Uy + EpUL + / Endn,

where Z,, is given in polar coordinate at x; by
_ B s - L
Z0 (ri,0;) = ¢ (2%7%) vj <€;, 9i> +Ven (1 - (%n)) D (r,0,),

and Z,, = /e,w* in Q\ U?Zl B,(x;). We claim that {w,, },, defined from {u,, },, via || and
|b is a recovery sequence for (ug, vy, va, w). Using the fact that @ (2%7”2-) = 1forr; <6 and

the change of variables €,,s = r; (see also (4.3.33), (4.3.36)), and (4.3.37)), we get

en [ 7@ )2 Z(1) ..
Ji(v;) > limsup / |V Z,|? da +/ M — cn{lmM dr;
n—00 B (x;) 0 €n \/571

_1_/6 M_ﬁ—( ) —1/2 Qd.
. \/a 2307"17"2- s ¢
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In turn, it follows from (@.4.8)) that

2
lim sup IC Z {

n—oo

+C@c} 1/ (0yuly)” dH!
2 Jr,

=1
1 Z 2 ’
—|—limsup/ LR ;i dH!
n—oo 2 FD\LJuEfa(acn(\/a ;
1
—|—limsup/ \V(Zn + enur)|? da. (4.4.10)
n—o0 Q\U Bé(mz)

By the convexity of the square function we have

26 ’(i)(r, 0) ¢ L 2 26 . 9
Zn i, V) Gy, 12 < r = (. _ G2 .
/6 ( Ve 5 o(ri)r; dr; < /5 <25rl) <vl(n/5n, 0) 5 o(ri)r; ) dr;

and therefore, since J;(v;) < oo,

25 [ 7(%) 2 26
. Zp'(ri,0) ¢ _, | —1/2 / Ci_o o —1/2)?
1 e )T dr; < - = i dr;.
1713Lsolip/6 < = 5 o(ri)r; r : (w 5 o(ri)r ) T

In addition, using the fact that ¢ (2%7’2-) = 0 for r; > 24, we obtain

Zy i - :
L Cﬂ/)i d?‘[l = / (w — CZ’(/JZ> d%l.
‘/FD\U7,' Bas () ( Ven ; ) r () ;

We now observe that the result of Lemma[4.3.5]straightforwardly extends to every v; € H such that
Ji(v;) < oo. Consequently, we can argue as in the second step of the proof of Theorem 7| to
deduce that

D\Uz Bas

n—oo

1
limsup/ \V(Zn + enur)|? dz = 0.
\U; Bs(:)

This concludes the proof of the limsup inequality under the assumption that {.4.9) is satisfied.

If on the other hand )
w¢ H'Y/? (FD U Bam(%))

i=1
for any 6 > 0, we reproduce the mollification argument in (4.4.2) - (4.4.4) and proceed as before.
O
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