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Abstract

This thesis aims to provide a variational framework for the study of two problems that arise from
fluid dynamics and continuum mechanics. The first part concerns a free boundary approach for
the existence of periodic water waves. This is a notoriously hard problem as the only variational
solutions of the unconstrained problem are waves with flat profiles. Nevertheless, it is shown that by
considering an additional Dirichlet condition on part of the lateral boundary, nontrivial solutions can
be found among minimizers of the classical Alt-Caffarelli functional. The second part of the thesis
focuses on a regularization by singular perturbations of a mixed Dirichlet-Neumann boundary value
problem. The asymptotic behavior of the solutions to the perturbed problems is studied by means of
an asymptotic development by Gamma-convergence, recovering classical results in the literature.
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Chapter 1

Introduction

In this thesis we study two (essentially unrelated) problems with techniques borrowed from the
theory of partial differential equations and the calculus of variations.

The first part of the thesis focuses on formulating a framework for the study of periodic water
waves. The results presented here are mostly contained in the papers [56] and [57].

In the second part we are concerned with the study of a regularization for a mixed Dirichlet-
Neumann boundary value problem. This contribution is contained in [55].

1.1 A free boundary approach for water waves

In the classical paper [2], Alt and Caffarelli studied the existence and regularity of solutions to the
one-phase free boundary problem

∆u = 0 in Ω ∩ {u > 0},

u = 0 on Ω ∩ ∂{u > 0},

|∇u| = Q on Ω ∩ ∂{u > 0},

u = u0 on Γ,

(1.1.1)

using a variational approach. Here Ω is an open connected subset of RN with locally Lipschitz
continuous boundary and Q is a nonnegative measurable function. Solutions to (1.1.1) are critical
points for the functional

J (u) :=

ˆ
Ω

(
|∇u|2 + χ{u>0}Q

2
)
dx, u ∈ K, (1.1.2)

where
K := {u ∈ H1

loc(Ω) : u = u0 on Γ}, (1.1.3)

with Γ ⊂ ∂Ω a measurable set with HN−1(Γ) > 0 and u0 ∈ H1
loc(Ω) a nonnegative function

satisfying
J (u0) <∞. (1.1.4)
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The equality u = u0 on Γ is in the sense of traces. Under the assumption that Q is a Hölder
continuous function satisfying

0 < Qmin ≤ Q(x) ≤ Qmax <∞, (1.1.5)

Alt and Caffarelli proved local Lipschitz regularity of local minima and showed that the free bound-
ary ∂{u > 0} is a C1,α

loc regular curve in Ω if N = 2, while if N ≥ 3 they proved that the reduced
free boundary is a hypersurface of class C1,α

loc in Ω, for some 0 < α < 1. See also [5] for the
quasi-linear case and [45] for the case of the p-Laplace operator.

We remark that while the regularity of minimizers is optimal, the regularity of the free boundary
for N ≥ 3 was improved by Weiss in [91]. Weiss, following an approach closely related to the
theory of minimal surfaces and by means of a monotonicity formula, proved the existence of a
maximal dimension k∗ ≥ 3 such that for N < k∗ the free boundary is a hypersurface of class
C1,α

loc in Ω, for N = k∗ the singular set consists at most of isolated points, and if N > k∗ then
Hs({singular set}) = 0 for every s > N − k∗. In [27], Caffarelli, Jerison and Kenig proved the
full regularity of the free boundary in dimension N = 3, thus showing that k∗ ≥ 4. They also
conjectured that k∗ ≥ 7. In a later work De Silva and Jerison exhibited an example of a global
energy minimizer with non-smooth free boundary in dimension 8 (see [49]); their result implies
that k∗ ≤ 7. As it was remarked in [2], if N = 3 the energy functional admits a critical point
with a point singularity in the free boundary. Similar results have been obtained for two-phase free
boundary problems (see [7], [22], [24], [23]).

It is important to observe that the regularity of the free boundary is strongly related to the
assumption 0 < Qmin ≤ Q(x) in (1.1.5). Indeed, in the recent paper [15], Arama and Leoni
showed that for N = 2 and in the special case in which

Q(x, y) =
√

(h− y)+ for some h > 0, (1.1.6)

if a local minimizer u has support below the line {y = h} and if there exists a point x0 = (x0, h) ∈
∂{u > 0}, then

|∇u(x)| ≤ Cr1/2, for x ∈ Br(x0) (1.1.7)

(see Remark 3.5 in [15]). On the other hand, using a monotonicity formula and a blow up method,
Varvaruca and Weiss (see Theorem A in [90]) proved that for a suitable definition of solution if the
constant C in (1.1.7) is one then the rescaled function

u(x0 + rx)

r3/2
→
√

2

3
ρ3/2 cos

(
3

2

(
min

{
max

{
θ,−5π

6

}
,−π

6

}
+
π

2

))
as r → 0+,

strongly in W 1,2
loc (R2) and locally uniformly on R2, where (x, y) = (ρ cos θ, ρ sin θ), and near x0

the free boundary ∂{u > 0} is the union of twoC1 graphs with right and left tangents at x0 (see also
[93]). This type of singular solutions are related to Stokes’ conjecture on the existence of extreme
water waves (see [87]). The existence of extreme waves and the corner singularity have been proved
in a series of papers (see [9], [10], [79], [84], [88]; see also [38], [65], [78], [85]) using a hodograph
transformation to map the set {u > 0} onto an annulus.

Note that for planar water waves of finite depth it is customary to set N = 2 and define

Ω := (−λ/2, λ/2)× (0,∞), Γ := (−λ/2, λ/2)× {0}, u0 ≡ m (1.1.8)
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(see (1.1.1), (1.1.3)) and choose Q to be as in (1.1.6), where λ > 0 is the wavelength, and m,h > 0
are renormalized constants related to mass flux and hydraulic head, respectively (see, for example,
[35]). Indeed, solutions to this problem correspond to steady periodic water waves moving on the
free surface of an irrotational flow above a flat impermeable bed.

The main drawback in proving the existence of regular and extreme water waves using the
variational setting of (1.1.2) is that global minimizers of the energy functional J specialized to the
case (1.1.6), (1.1.8) are one dimensional functions of the form u = u(y), which correspond to
flat profiles (see Theorem 3.2.2). For this reason the paper [15] gives interesting results only for
local minimizers or when the Dirichlet boundary datum u0 is not constant on the bottom, a situation
which is not compatible with water waves. Necessary and sufficient minimality conditions in terms
of the second variation of J have been derived by Fonseca, Leoni and Mora in [50]. We refer
to the papers [37], [36], [39], [30], [31], [52], [66], [89] and the references therein for alternative
approaches to water waves.

To be precise, in the following we assume that N = 2 and focus on the study of solutions to

∆u = 0 in Ω ∩ {u > 0},

u(x+ λ, y) = u(x, y) in Ω,

u = 0 on Ω ∩ ∂{u > 0},

|∇u| =
√

(h− y)+ on Ω ∩ ∂{u > 0},

u = m on {y = 0},

(1.1.9)

where Ω is a half infinite strip, i.e.,

Ω :=

(
−λ

2
,
λ

2

)
× (0,∞). (1.1.10)

One of our main results is showing that by considering an additional Dirichlet boundary condi-
tion on part of the lateral boundary it is possible to construct solutions to (1.1.9), which are not of
the form u = u(y). We define the Sobolev space

H1
λ,loc(Ω) :=

{
u ∈ H1

loc(R2
+) : u(x+ λ, y) = u(x, y) for L2-a.e. x = (x, y) ∈ R2

+

}
, (1.1.11)

and for m,h > 0 consider the energy functional

Jh(u) :=

ˆ
Ω

(
|∇u|2 + χ{u>0}(h− y)+

)
dx, for u ∈ Kγ , (1.1.12)

where

Kγ :=
{
u ∈ H1

λ,loc(Ω) : u(·, 0) = m and u(±λ/2, y) = 0 for y ≥ γ
}
. (1.1.13)

Here γ is a positive constant, and the boundary conditions are satisfied in the sense of traces. Choos-
ing γ opportunely has the effect of eliminating trivial solutions from the domain of Jh. This is made
precise in the following theorem.
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Theorem 1.1.1. Given m,λ, h > 0, let Ω and Jh be defined as in (1.1.10) and (1.1.12), respec-
tively. Let

h# := 3
(m

2

)2/3
, h∗ := 3

(
m√

2

)2/3

, (1.1.14)

and, for h > h#, let th be the first positive root of the cubic polynomial

t3 − ht2 +m2 = 0.

Furthermore, for h ∈ (h#, h∗), let τh > th be the unique value such that

m2

th
+
h2 − (h− th)2

2
=
m2

τh
+
h2 − (h−min{h, τh})2

2
,

and set τh = th = 2h/3 if h = h#. Then every global minimizer uof Jh in Kγ is not of the form
u = u(y) provided 

γ ∈ (0,∞) if h < h#,

γ ∈ (0, th) ∪ (τh,∞) if h# ≤ h < h∗,

γ ∈ (0, th) if h ≥ h∗.

(1.1.15)

Remark 1.1.2. The numbers h#, h∗, th, and τh arise naturally from the study of the minimization
problem for a one dimensional version of Jh, as discusses in detail in Section 3.2.

−λ/2 λ/2u(·, 0) ≡ m

γ

h

We then study qualitative properties of global minimizers as we vary the height h. By adapting
to our setting the monotonicity techniques developed in Section 5 in [3], Theorem 10.1 in [53], and
the non-degeneracy result of Lemma 3.4 in [2], we are able to prove an analogue of Theorem 5.6 in
[15].
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Theorem 1.1.3 (Existence of a critical height). Given m,λ > 0, let θ : R+ → R+ be a non-
increasing function such that

θ(h) = γh, (1.1.16)

where for every h the number γh is chosen as in (1.1.15). Furthermore, let Ω, Jh andKγh be defined
as in (1.1.10), (1.1.12), and (1.1.13), respectively. Then there exists a critical height 0 < hcr <∞
with the property that

(i) if hcr < h <∞ then every global minimizer of Jh in Kγh has support strictly below the line
{y = h};

(ii) if 0 < h < hcr then every global minimizer is positive in (−λ/2, λ/2)× [h,∞).

Notice that for h > hcr we are in a position to apply the regularity result of [2] to conclude that
the free boundary ∂{u > 0} of every global minimizer ofJh inKγh is locally an analytic curve in Ω.
Theorem 3.3.5 shows that the result holds for h > hcr as well. We also remark that Theorem 1.1.3
shows that the critical height hcr is the only value of the parameter h for which the free boundaries
of global minimizers of Jh can touch the line {y = h} without crossing it, and that every such
minimizer is a Stokes wave. By the comparison principle in Theorem 3.3.6 and the convergence
of minimizers of Corollary 4.1.4, it follows that by letting h ↗ hcr there exists a global minimizer
u− ∈ Kγhcr

of Jhcr whose support (restricted to Ω) is contained in (−λ/2, λ/2)× [0, hcr], while if
h ↘ hcr then there exists another global minimizer u+ of Jhcr with u− ≤ u+ and whose support
cannot be strictly below the line {y = hcr} (see also Theorem 3.3.15). We have not been able to
prove that the support of any global minimizer touches the critical height. This would follow if we
had uniqueness at this level (see Theorem 3.3.14).

Concerning the value of hcr, we are able to show that for all m

hcr ≤ h∗,

and, under mild assumptions on the function θ in the statement of Theorem 1.1.1, that

hcr ≥ kh#,

where k > 0 is a constant (we refer to Lemma 3.3.8 and Theorem 3.3.9 for more details). In
particular, we find the scaling law

hcr ∼ m2/3.

Finally, it is important to notice that while the additional Dirichlet condition in (1.1.13) allows us
to construct nontrivial solutions to (1.1.9), it comes with the disadvantage of potentially destroying
the regularity near the fixed boundary. The regularity at the boundary for global minimizers and
their free boundaries away from the points (±λ/2, γ) is well understood. Indeed, due to the periodic
boundary conditions below the line {y = γ}, if the free boundary ∂{u > 0} of a global minimizer
touches the fixed boundary strictly below the line {y = γ} then the regularity follows from the
classical interior regularity of [2]. On the other hand, if the free boundary touches the fixed boundary
strictly above that line, then it follows from a recent results of Chang-Lara and Savin (see Theorem
1.1 in [29]; see also [4], [8], [63], and [92]) that its free boundary detaches tangentially from the
fixed boundary and is a C1,1/2 regular curve locally in a neighborhood of ∂Ω.
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(−λ/2, γ)

(−λ/2, γ)

We refer to the work of Raynor [86] for a variational proof of the Lipschitz continuity of global
minimizers of J near a Neumann fixed boundary.

In Section 3.4 we analyze the behavior of the free boundary near the points (±λ/2, γ) for a
certain class of global minimizers of Jh.

Definition 1.1.4. Let u be a global minimizer of Jh in Kγ . We say that u is a symmetric minimizer
if for L1-a.e. y ∈ R+ the map x 7→ u(x, y) is even and nondecreasing in (−λ/2, 0).

The main result of the section can be stated as follows.

Theorem 1.1.5. Given m,λ, h > 0 and γ < h, let Ω, Jh, and Kγ be defined as in (1.1.10),
(1.1.12) and (1.1.13), respectively. Let u ∈ Kγ be a symmetric global minimizer of Jh in the sense
of Definition 1.1.4 and assume that x0 = (−λ/2, γ) is an accumulation point for the free boundary
on ∂Ω, i.e.,

x0 ∈ ∂{u > 0} ∩ Ω.

Then the free boundary ∂{u > 0} meets the fixed boundary at the point x0 with horizontal tangent.

(−λ/2, γ)

Hence, the results of Section 3.4 show that it is possible to construct a family of gravity waves,
i.e., solutions to (1.1.9), whose free boundaries are non flat and meet the fixed boundary either
with a vertical tangent or with a horizontal tangent. We remark that if one was able to prove that for
some choice of the parameters λ,m, h, γ there exists a global minimizer with the property that every
contact point in the set {y ≤ γ}, as a Corollary of Theorem 1.1.5, we would obtain a variational
proof of the existence of regular water waves which does not rely on Nekrasov’s equation (see the
classical paper of Keady and Norbury [65]).

The starting point of our analysis is Theorem 3.4.1, where we prove a uniform estimate on
the gradient of a symmetric minimizer in a neighborhood of the point x0. This kind of result
is commonly referred to as the bounded gradient lemma (see, for example, Lemma 8.1 and 8.2
in [4], Lemma 2.1 and 2.2 in [26], and 3.7 Theorem in [1]). Our main contribution is proving

8



that the estimate holds up to the fixed Dirichlet boundary, uniformly with respect to the distance
from the point x0. This is accomplished through the use of a boundary Harnack principle (see
Theorem 2.2.9). The relevance of Theorem 3.4.1 is that it allows us to consider blow-up limits.
Indeed, as it is often the case for this kind of regularity results (see for example [63], [11], [12],
and [19]), the proof of the main result will rely heavily on the complete characterization of blow-
up solutions (see Theorem 3.4.13). This, in turn, is derived from a monotonicity formula. To be
precise, we show that the boundary monotonicity formula of Weiss (see Theorem 3.3 and Corollary
3.4 in [92], see also [91] and [90]) holds at the point x0 for global minimizers of Jh in Kγ with
bounded gradients.

1.2 Higher-order Gamma-limits for singularly perturbed Dirichlet-
Neumann problems

Mixed Dirichlet-Neumann boundary value problems arise naturally from a wide range of applica-
tions. Examples are the problem of a rigid punch or stamp making contact with an elastic body (see
[40], [41], [94], and the references therein), the steady flow of an ideal inviscid and incompressible
fluid through an aperture in a reservoir (see [80], [94], and the references therein), as well as free
boundary problems (see, e.g., [2]).

The prototype for this kind of problems is given by
∆u0 = f in Ω,

∂νu0 = 0 on ΓN ,

u0 = g on ΓD,

(1.2.1)

where Ω ⊂ RN is an open set with sufficiently smooth boundary and ΓD,ΓN are disjoint sets such
that

∂Ω = ΓD ∪ ΓN .

It is well known (see [47], [58], [68], and [76]) that solutions to mixed boundary problems are
in general not smooth near the points on the boundary of the domain where two different conditions
meet. Indeed, when N = 2 in (1.2.1), f = 0, g = 0, and Ω is given in polar coordinates by

{(r, θ) : r > 0, 0 < θ < π},

the function S : Ω→ R given is polar coordinates by1

S̄(r, θ) := r1/2 sin (θ/2) (1.2.2)

is a solution to (1.2.1), where ΓD and ΓN correspond to the positive real axis and the negative real
axis, respectively. However, S fails to be in H2 in any neighborhood of the origin.

In dimension N = 2 it turns out that functions of the type (1.2.2) completely characterize the
behavior of solutions to (1.2.1). Indeed, we have the following classical result (see [47], [58], [68],
and [76]).

1In what follows, given a function v = v(x) where x = (x, y), we denote by v̄ the function v̄(r, θ) :=
v(r cos θ, r sin θ), and with a slight abuse of notation we write v = v̄(r, θ).

9



Theorem 1.2.1. Let N = 2, and let Ω be an open, bounded, and connected subset of R2, with ∂Ω
of class C1,1. Assume that ΓD and ΓN are nonempty, relatively open, and connected subsets of ∂Ω
with

∂Ω = ΓD ∪ ΓN , and ΓD ∩ ΓN = {x1,x2},

and that ∂Ω ∩ Bρ(xi) is a segment for i = 1, 2 and for some 0 < ρ < min{1, |x1 − x2|/2}. Let
f ∈ L2(Ω), g ∈ H3/2(∂Ω), and let u ∈ H1(Ω) be a weak solution to (1.2.1). Then u admits the
decomposition

u = ureg +
2∑
i=1

ciSi,

where ureg ∈ H2(Ω) and the ci are coefficients that only depend on u. The singular functions Si
are given by the formula

S̄i(ri, θi) = ϕ̄(ri)r
1/2
i sin(θi/2),

where (ri, θi) are polar coordinates centered at xi such that

Ω ∩Bρ(xi) = {xi + (ri, θi) : 0 < ri < ρ, 0 < θi < π} ,

ΓD ∩Bρ(xi) = {xi + (ri, 0) : 0 < ri < ρ} ,

and ϕ̄ ∈ C∞([0,∞)) is such that ϕ̄ ≡ 1 in [0, ρ/2] and ϕ̄ ≡ 0 outside [0, ρ]. Furthermore, there
exists a constant c, which only depends on the geometry of Ω, such that

‖ureg‖H2(Ω) +
2∑
i=1

|ci| ≤ c
(
‖f‖L2(Ω) + ‖g‖H3/2(∂Ω)

)
.

An approach that often proved to be successful for the study of ill-posed problems, and in
general for problems that present singularities of some kind, is to consider a small perturbation,
typically chosen with an opportunely regularizing effect, and then carry out a careful analysis on the
convergence of solutions of the regularized problems to solutions of the original one. This procedure
often requires to prove estimates that are independent of the parameter of the regularization. We
refer to the classical monograph of Lions [73] for more details.

In the second part of this thesis we regularize the problem (1.2.1) by introducing a family of
mixed Neumann-Robin boundary value problems parametrized by ε > 0. To be precise, we consider

∆uε = f in Ω,

∂νuε = 0 on ΓN ,

ε∂νuε + uε = g on ΓD.

(1.2.3)

The convergence of solutions to (1.2.3) to solutions of (1.2.1) has been studied by Costabel and
Dauge in [40] using classical PDE expansions (see [73]), who proved the following result.

Theorem 1.2.2 (Costabel-Dauge). Let N = 2, Ω be as in Theorem 1.2.1, f = 0, g ∈ H1+δ(ΓD)
for some δ > 0, and let uε and u0 be solutions to (1.2.3) and (1.2.1) (with f = 0), respectively.
Then

‖uε − u0‖L2(Ω) = O(ε log ε),
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‖uε − u0‖H1+s(Ω) = O(ε1/2−s), for s ∈
(
−1

2
,
1

2

)
, (1.2.4)

∥∥(uε − u0)|ΓD

∥∥
L2(ΓD)

= O(ε
√
| log ε|). (1.2.5)

Moreover, these estimates cannot be improved in general.

We refer to [40] for the precise statement in the case f 6= 0. This problem was also previously
considered by Colli Franzone in [32], where the author proved estimates on the difference uε − u0

in certain Sobolev norms (see also the work of Aubin [16] and Lions [73]).
The question of convergence of solutions to the family of problems (1.2.3) to the solution to

(1.2.1) is of significance for the numerical approximations of (1.2.1). We refer to [17], [21], [41],
[33], [34], and the references therein for more information on this topic.

In the second part of this thesis we present an alternative proof of the estimates (1.2.4) with s = 0
and (1.2.5) using the variational structure of (1.2.3). Indeed, solutions to (1.2.3) are minimizers of
the functional

ˆ
Ω

(
1

2
|∇v|2 + fv

)
dx+

1

2ε

ˆ
ΓD

(v − g)2 dH1, v ∈ H1(Ω). (1.2.6)

Thus a natural approach is to use the notion of Gamma-convergence (Γ-convergence in what fol-
lows) introduced by De Giorgi in [48] (for more information see also [20] and [42]).

The powerfulness of asymptotic expansions by Γ-convergence has been shown in the recent pa-
pers [43], [71], [72], and [82], where the authors completely characterized the second order asymp-
totic expansion of the Modica-Mortola functional and used it to obtain new important results on
the slow motion of interfaces for the mass-preserving Allen-Cahn equation and the Cahn-Hilliard
equation in higher dimensions.

We investigate asymptotic expansions by Γ-convergence for the functionals (1.2.6) with respect
to convergence in L2(Ω), and thus we define Fε : L2(Ω)→ (−∞,∞] via

Fε(v) :=


ˆ

Ω

(
1

2
|∇v|2 + fv

)
dx+

1

2ε

ˆ
ΓD

(v − g)2 dH1 if v ∈ H1(Ω),

+∞ otherwise.
(1.2.7)

We begin by studying the Γ-convergence of order zero of (1.2.7).

Theorem 1.2.3 (0th order Γ-convergence). Let Ω ⊂ RN be an open, bounded, connected set with
Lipschitz continuous boundary, and let ΓD ⊂ ∂Ω be non-empty and relatively open. Assume that
f ∈ L2(Ω) and g ∈ H1/2(∂Ω). Then the family of functionals {Fε}ε defined in (1.2.7) Γ-converges
in L2(Ω) to the functional

F0(v) :=


ˆ

Ω

(
1

2
|∇v|2 + fv

)
dx if v ∈ V,

+∞ otherwise,
(1.2.8)

where
V := {v ∈ H1(Ω) : v = g on ΓD}. (1.2.9)

11



Since the first asymptotic development by Γ-convergence of (1.2.7) strongly relies on Theo-
rem 1.2.1, in what follows we assume N = 2. We begin with a compactness result.

Theorem 1.2.4 (Compactness). Let N = 2, Ω be as in Theorem 1.2.1, f ∈ L2(Ω), g ∈ H3/2(∂Ω),
Fε and F0 be the functionals defined in (1.2.7) and (1.2.8), respectively, and define

F (1)
ε :=

Fε −minF0

ε| log ε|
. (1.2.10)

If εn → 0+ and vn ∈ L2(Ω) are such that

sup{F (1)
εn (vn) : n ∈ N} <∞,

then there exist a subsequence {vnk}k of {vn}n, r0 ∈ H1(Ω) and v0 ∈ L2(ΓD) such that

vnk − u0√
εnk | log εnk |

⇀ r0 in H1(Ω), (1.2.11)

vnk − u0

εnk
√
| log εnk |

⇀ v0 in L2(ΓD), (1.2.12)

where u0 is the solution to (1.2.1).

Theorem 1.2.5 (1st order Γ-convergence). Under the assumptions of Theorem 1.2.4, the family
{F (1)

ε }ε Γ-converges in L2(Ω) to the functional

F1(v) :=


−1

8

2∑
i=1

c2
i if v = u0,

+∞ otherwise,

(1.2.13)

where the coefficients ci = ci(u0) are as in Theorem 1.2.1. In particular, if uε ∈ H1(Ω) is a
solution to (1.2.3), then

Fε(uε) = F0(u0) + ε| log ε|F1(u0) + o (ε| log ε|) . (1.2.14)

To characterize the second order asymptotic development by Γ-convergence of the family of
functionals {Fε}ε, we introduce the auxiliary functional

Ji(w) :=

ˆ
R2

+

|∇w(x)|2 dx+

ˆ 1

0

(
w(x, 0)2 − cix−1/2w(x, 0)

)
dx

+

ˆ ∞
1

(
w(x, 0)− ci

2
x−1/2

)2
dx

(1.2.15)

defined in
H := {w ∈ H1

loc(R2
+) : w ∈ H1(B+

R(0)) for every R > 0}, (1.2.16)
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where w(·, 0) indicates the trace of w on the positive real axis. Let2

Ai := inf{Ji(w) : w ∈ H}, (1.2.17)

Bi :=
1

2

ˆ ρ

0
ϕ̄(ri)r

−1/2
i ∂νu0

reg

(i)
(ri, 0) dri, (1.2.18)

Cϕ :=
1

8

ˆ 1

ρ/2

(
1− ϕ̄(x)2

)
x−1 dx, (1.2.19)

ψ̄i(ri) :=
1

2
ϕ̄(ri)r

−1/2
i . (1.2.20)

As shown in Proposition 4.3.4, there exists wi ∈ H such that Ji(wi) = Ai, and thus wi satisfies
∆wi = 0 in R2

+,

∂νwi = 0 on (−∞, 0)× {0},

∂νwi + wi = ci
2 x
−1/2 on (0,∞)× {0}.

(1.2.21)

Observe that if ci = 0 then Ji ≥ 0 and so wi = 0 and Ai = 0. Finally, let u1 ∈ H1(Ω) be the
solution to the Dirichlet-Neumann problem

∆u1 = 0 in Ω,

∂νu1 = 0 on ΓN ,

u1 = −∂νu0
reg on ΓD.

(1.2.22)

Theorem 1.2.6 (Compactness). Let N = 2, Ω be as in Theorem 1.2.1, f ∈ L2(Ω), g ∈ H3/2(∂Ω),
Fε, F0, F (1)

ε , F1, Ji be as in (1.2.7), (1.2.8), (1.2.10), (1.2.13), and (1.2.15), respectively, and
define

F (2)
ε :=

F (1)
ε −minF1

1/| log ε|
=
Fε −minF0

ε
− | log ε|minF1. (1.2.23)

If εn → 0+, wn ∈ L2(Ω) are such that

sup{F (2)
εn (wn) : n ∈ N} <∞,

and Wi,n ∈ H is defined as

W̄i,n(ri, θi) := ϕ̄(riεn)
w̄

(i)
n (riεn, θi)− ū(i)

0 (riεn, θi)− εnū(i)
1 (riεn, θi)√

εn
(1.2.24)

2In what follows, given a function v = v(x), we denote by v̄i the function v̄(i)(ri, θi) := v(xi + ri(cos θi, sin θi)),
for polar coordinates (ri, θi) given as in Theorem 1.2.1.
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for (ri, θi) polar coordinates as in Theorem 1.2.1, then there exist a subsequence {wnk}k of {wn}n,
w0 ∈ H1(Ω) and q0 ∈ L2

loc(ΓD) such that

wnk − u0 − εnku1√
εnk

⇀w0 in H1(Ω), (1.2.25)

wnk − u0

εnk
− u1 −

2∑
i=1

ciψi[1− χBεnk (xi)] ⇀ q0 −
2∑
i=1

ciψi in L2(ΓD), (1.2.26)

where ψi is the function given in polar coordinates by (1.2.20) and u1 is the solution to (1.2.22).
Furthermore, for every R > 0,

Wi,nk ⇀Wi in H1(B+
R(0)), ∇Wi,nk ⇀ ∇Wi in L2(R2

+;R2)), (1.2.27)

Wi,nk(·, 0) ⇀Wi(·, 0) in L2((0, 1)× {0}), (1.2.28)

Wi,nk(·, 0)− ci
2
x−1/2 ⇀Wi(·, 0)− ci

2
x−1/2 in L2((1,∞)× {0}), (1.2.29)

for some Wi ∈ H such that Ji(Wi) < ∞, where Wi,nk(·, 0) and Wi(·, 0) indicate the trace of
Wi,nk and Wi on the positive real axis.

Theorem 1.2.7 (2nd order Γ-convergence). Under the assumptions of Theorem 1.2.6, the family
{F (2)

ε }ε Γ-converges in L2(Ω) to the functional

F2(v) :=


∑2

i=1

(
Ai
2 +Bici + Cϕc

2
i

)
− 1

2

´
ΓD

(
∂νu

0
reg

)2
dH1 if v = u0,

+∞ otherwise,

where the numbers Ai, Bi, and Cϕ are defined in (1.2.17), (1.2.18), and (1.2.19), respectively. In
particular, if uε ∈ H1(Ω) is a solution to (1.2.3) then

Fε(uε) = F0(u0) + ε| log ε|F1(u0) + εF2(u0) + o (ε) . (1.2.30)

As a consequence of our results, we obtain an alternative proof of the sharp estimates (1.2.4) for
s = 0 and (1.2.5) in Theorem 1.2.2. Indeed, we have the following theorem.

Theorem 1.2.8. Let N = 2, Ω as in Theorem 1.2.1, f ∈ L2(Ω), g ∈ H3/2(∂Ω), and let uε and u0

be solutions to (1.2.3) and (1.2.1), respectively. Then

‖uε − u0‖L2(ΓD) = O
(
ε
√
| log ε|

)
, (1.2.31)

‖∇(uε − u0)‖L2(Ω;R2) = O
(
ε1/2

)
. (1.2.32)

In contrast to the work of Costabel and Dauge [40], our results rely on the variational structure
of the mixed Neumann-Robin problem (1.2.3), rather than the PDE. In particular, the compactness
results in Theorem 1.2.4 and Theorem 1.2.6 are valid for energy bounded sequences and not just
for minimizers, and thus are completely new. A key ingredient in the proof of compactness is the
following Hardy-type inequality on balls due to Machihara, Ozawa and Wadade (see Corollary 6 in
[75]).

14



Theorem 1.2.9. Let BR(0) be the ball of R2 with radius R > 0 and center at the origin. Then

(ˆ
BR(0)

h(x)2

|x|2 (1 + logR− log |x|)2 dx

)1/2

≤
√

2

R

(ˆ
BR(0)

h(x)2 dx

)1/2

+ 2(1 +
√

2)

(ˆ
BR(0)

∣∣∣∣ x|x| · ∇h(x)

∣∣∣∣2 dx
)1/2

for every h ∈ H1(BR(0)).

We remark that our results rely heavily on the decomposition of Theorem 1.2.1 and on the
Hardy-type inequality (Theorem 1.2.9) and thus hold only for N = 2. The extension to dimension
N ≥ 3 seems to be highly non-trivial and, in particular, the correct scalings in the asymptotic
development by Γ-convergence are not clear and may depend in a significant way on the geometry
of the domain (see, for example, [77] for a discussion on the mixed Dirichlet-Neumann problem in
a three-dimensional dihedron).

It also important to observe that the asymptotic development by Γ-convergence leads naturally
to the asymptotic expansion of the solutions uε to (1.2.3), and does not require an a priori ansatz
of this expansion. Thus it could be applied to a large class of problems, including the p-Laplacian
mixed problem 

div(|∇u0|p−2∇u0) = f in Ω,

|∇u0|p−2∂νu0 = 0 on ΓN ,

u0 = g on ΓD.

In the seminal paper [18], Berestycki, Caffarelli and Nirenberg considered the family of elliptic
equations

Luε = βε(uε) (1.2.33)

to approximate (as ε → 0+) a one-phase free boundary problem. Here the family {βε}ε is an
approximate identity and the term βε(uε) is non-zero only for values of uε less than ε. In particular,
the region {uε < ε} can be thought of as an approximation of the free boundary of the solution
to the limiting problem. One-phase free boundary problems with mixed boundary conditions are
strongly related to problems arising in fluid-dynamics (see [56]).

Our original motivation for considering the family of problems (1.2.3) was the study of the
regularized problem 

∆uε = 1
2βε(uε)Q

2 in Ω,

∂νuε = 0 on ΓN ,

ε∂νuε + uε = g on ΓD,

where {βε}ε is a family of approximate identities as in (1.2.33) and Q is a nonnegative function
in L2

loc(Ω). Solutions uε of this problem converge to a solution u of the one-phase free boundary
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problem 

∆u = 0 in Ω,

u = 0, |∇u| = Q on Ω ∩ ∂{u > 0},

∂νu = 0 on ΓN ,

u = g on ΓD.

The asymptotic development by Γ-convergence of the corresponding family of functionals
ˆ

Ω

(
|∇v|2 +Bε(v)Q2

)
dx+

1

ε

ˆ
ΓD

(v − g)2 dHN−1, v ∈ H1(Ω)

is ongoing work. Here Bε is a primitive of βε.
As a warm-up problem, we begin Chapter 4 with the study of the simpler case in which ΓD =

∂Ω, so that (1.2.3) reduces to  ∆uε = f in Ω,

ε∂νuε + uε = g on ∂Ω.
(1.2.34)

Under suitable regularity assumptions on the set Ω, we characterize the complete asymptotic ex-
pansion by Γ-convergence of {Fε}ε, still defined as in (1.2.7), but with ΓD replaced by ∂Ω (see
Theorem 4.2.2, Theorem 4.2.4, and Theorem 4.2.6). In Corollary 4.2.5 and Corollary 4.2.7 we ad-
dress the question of the convergence of uε to u0, i.e., the unique variational solution to the Dirichlet
problem ∆u0 = f in Ω,

u0 = g on ∂Ω.
(1.2.35)

To be precise, we show that the asymptotic expansion

uε =
∞∑
i=1

εiui

holds, where for every i ∈ N the function ui is a solution to the Dirichlet problem∆ui = 0 in Ω,

ui = −∂νui−1 on ∂Ω.

We remark that Corollary 4.2.7 fully recovers the results of Theorem 2.3 in [40] and that the auxil-
iary problems for ui arise naturally during the study of higher order Γ-limits ofFε (see, for example,
the proof of Theorem 4.2.4). The case of a Robin boundary condition that transforms into a Dirichlet
boundary condition for Helmholtz equation was considered by Kirsch in [67].
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Chapter 2

Preliminaries

2.1 Gamma-convergence and asymptotic developments

Γ-convergence, introduced by De Giorgi in 1975 (see [48]), is a notion of convergence which is
particularly suited for analyzing the convergence of variational problems. For more information we
refer to the monographs of Braides [20] and Dal Maso [42].

Definition 2.1.1. Given a metric space X and a family of functions Fε : X → R, ε > 0, we say
that {Fε}ε Γ-converges to F0 : X → R as ε → 0+, and we write Fε

Γ→ F0, if for every sequence
εn → 0+ the following two conditions hold:

(i) liminf inequality: for every x ∈ X and every sequence {xn}n of elements of X such that
xn → x,

lim inf
n→∞

Fεn(xn) ≥ F0(x);

(ii) limsup inequality: for every x ∈ X , there is a sequence {xn}n of elements of X such that
xn → x and

lim sup
n→∞

Fεn(xn) ≤ F0(x).

A sequence {xn}n as in (ii) is called a recovery sequence for x.

Proposition 2.1.2 (Proposition 1.42 in [20]). LetX be a separable metric space and let {Fn}n be a
sequence of functions Fn : X → R. Then there exist a subsequence {Fnk}k of {Fn} and a function
F : X → R such that {Fnk}k Γ-converges to F .

Definition 2.1.3 (Coercive and equi-midly coercive). A function F : X → R is coercive if for all
t ∈ R the set {F ≤ t} is precompact, and is midly coercive if there exists a non-empty compact
subset K such that inf{F(x) : x ∈ X} = inf{F(x) : x ∈ K}. A family of functions {Fε}ε
is equi-midly coercive if there exists a a non-empty compact subset K such that inf{Fε(x) : x ∈
X} = inf{Fε(x) : x ∈ K} for all ε > 0.

Theorem 2.1.4 (Theorem 1.21 in [20]). Let X be a metric space and let {Fε}ε be a family of
functions where Fε : X → R for all ε > 0. Suppose that the family {Fε}ε is equi-mildly coercive
and that Fε Γ-converges to F for some F : X → R. Then there exists x0 ∈ X such that

F(x0) = inf{F(x) : x ∈ X} = lim
ε→0

inf{Fε(x) : x ∈ X}.
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Moreover, if {xε}ε is precompact and such that

lim
ε→0
Fε(xε) = lim

ε→0
inf{Fε(x) : x ∈ X}, (2.1.1)

then every accumulation point of {xε}ε is a minimum point for F .

As explained in [13], the Γ-limit might fail to completely characterize the asymptotic behavior
of the family {Fε}ε. Indeed, consider X = R and let Fε(x) = ε|x|; then, as one can readily check,
Fε Γ-converges to F , where F is identically equal to zero. In turn, every x ∈ R is a minimizer for
F while {xε : Fε(xε) = infRFε} = {0}. This shows that in general the inclusion

{limits of minimizers} ⊂ {minimizers of the Γ-limit}

can be a proper inclusion.

Definition 2.1.5. We say that the asymptotic development by Γ-convergence of order k

Fε = F0 + ω1(ε)F1 + · · ·+ ωk(ε)Fk

holds if there are functions Fi : X → R, i = 0, . . . k, such that Fε
Γ→ F0 and for i ≥ 1

F (i)
ε :=

(
F (i−1)
ε − inf{Fi−1(x) : x ∈ X}

) ωi−1(ε)

ωi(ε)

Γ→ Fi,

where F (0)
ε := Fε, ω0 ≡ 1 and for i ≥ 1, ωi : R+ → R+ is a suitably chosen function such that

both ωi and ωi/ωi−1 converge to zero as ε→ 0+.

Remark 2.1.6. For ωi(ε) := εi one has the standard power series asymptotic expansion

Fε = F0 + εF1 + · · ·+ εkFk.

Asymptotic developments by Γ-convergence provide a selection criteria for minimizers of F0.
This is the content of the following result.

Theorem 2.1.7 (Proposition 1.3 in [14]). Let X be a metric space and let {Fε}ε be a family of
functions where Fε : X → R for all ε > 0. Suppose that Fε admits an asymptotic expansion as in
Definition 2.1.5. For each ε > 0 let xε be a minimizer of Fε and assume that xn → x0 ∈ X for
some subsequence εn → 0+. Then the following holds:

(i) x0 is a minimizer of F0, . . . ,Fk,

(ii) if we let Ui be the set of minimizers of Fi then

Fi(x) =∞ for x ∈ X \ Ui.

In particular,
{limits of minimizers of Fε} ⊂ Uk ⊂ · · · ⊂ U1 ⊂ U0.

(iii) If mε denotes the infimum of Fε and mi denotes the infimum of Fi, then

mε = m0 + ω1(ε)m1 + · · ·+ ωk(ε)mk + o(ωk(ε)).
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2.2 Second order linear elliptic equations

In this section we collect a few selected results on the existence and regularity of solutions to linear
elliptic partial differential equations of the second order that will be used throughout the following
chapters.

2.2.1 Solvability of the classical Dirichlet problem

We call a set Ω a domain in RN if Ω is a connected, non-empty, proper open subset of RN .

Definition 2.2.1. Let Ω be a domain in RN and let u ∈ C2(Ω). The function u is called harmonic
in Ω if it satisfies ∆u = 0 everywhere in Ω.

Definition 2.2.2. Let Ω be a domain in RN and let v : Ω→ R∪{−∞} be an upper semi-continuous
function. The function v is called subharmonic in Ω if for every closed ball Br(x) contained in Ω
and every harmonic function u in Br(x) that satisfies v ≤ u on ∂Br(x) we have v ≤ u in Br(x).
A function w is called superharmonic in Ω if −w is subharmonic in Ω.

Definition 2.2.3. Let Ω be a domain in RN and let ξ be a point of ∂Ω. A continuous function
w ∈ C(Ω) is called a barrier at x relative to Ω if:

(i) w is superharmonic in Ω;

(ii) w > 0 in Ω \ {x}, w(x) = 0.

Furthermore, a boundary point will be called regular if there exists a barrier at that point.

Theorem 2.2.4 (Theorem 2.14 in [54]). Let Ω be a bounded domain in RN . Then, for every contin-
uous function ϕ ∈ C(∂Ω), there exists a function u ∈ C2(Ω) ∩ C(Ω) such that∆u = 0 in Ω,

u = ϕ on ∂Ω,

if and only if every boundary point is regular.

Remark 2.2.5. We recall that, if Ω is a domain in R2 and x ∈ ∂Ω, then x is a regular point if it
is the endpoint of a simple arc lying in the exterior of Ω. Thus, if N = 2, the Dirichlet problem
is solvable in every bounded domain whose boundary points are accessible from the exterior by
a simple arc. On the other hand, if N ≥ 3, a simple sufficient condition for the solvability in a
bounded domain is that Ω satisfies the exterior ball condition, i.e. for every point x ∈ ∂Ω there
exists a ball BR(y) such that Ω ∩ BR(y) = {x}. This is satisfied, in particular, if ∂Ω is of class
C2. For more details we refer to the discussion at the end of Section 2.8 in [54].

A similar result to that of Theorem 2.2.4 holds also for Poisson’s equation.

Theorem 2.2.6 (Theorem 4.3 in [54]). Let Ω be a bounded domain in RN and suppose that every
boundary point is regular. Then, if f is a bounded and locally Hölder continuous function in Ω, the
classical Dirichlet problem ∆u = f in Ω,

u = ϕ on ∂Ω,

is uniquely solvable for any continuous function ϕ.
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2.2.2 Harnack’s and Carleson’s inequalities

The classical Harnack inequality can be stated as follows.

Theorem 2.2.7 (Theorem 2.5 in [54]). Let u be a nonnegative harmonic function in Ω ⊂ RN . Then
for every bounded domain Ω′ which is compactly supported in Ω there exists a positive constant C,
depending only on N,Ω and Ω′ such that

sup
Ω′

u ≤ C inf
Ω′
u.

The following two results are a version of Harnack inequality when Ω and Ω′ are two concentric
balls, particularly useful due to the fact that the constant is explicit, and an up to the boundary
version of Harnack’s inequality, respectively. The latter is also referred to as Carleson estimate in
the literature. These will prove instrumental when addressing the issue of boundary regularity in the
following chapter.

Theorem 2.2.8 (Problem 2.6 in [54]). Let u be a nonnegative harmonic function in BR(0). Then

RN−2(R− |x|)
(R+ |x|)N−1

u(0) ≤ u(x) ≤ RN−2(R+ |x|)
(R− |x|)N−1

u(0).

for every x ∈ BR(0).

Theorem 2.2.9 (Theorem 11.5 in [28]). Let u ∈ C2(B+
r (0)) ∩ C(B+

r (0)) be a nonnegative
harmonic function in B+

R(0), vanishing on {xN = 0}. Then there exists a positive constant
M = M(N) such that

u(x) ≤Mu

(
R

2
eN

)
for every x ∈ B+

R/2(0).

2.2.3 Interior and boundary estimates in concentric balls

Following the presentation of Chapter 4 in [54], we introduce the following notation: for k ∈
N ∪ {0}, α ∈ (0, 1], and D ⊂ RN let d := diam(D) and define

|Dku|0;D := sup
|β|=k

sup
D
|Dβu|,

[Dku]α;D := sup
β=k

sup
x6=y∈D

|Dβu(x)−Dβu(y)|
|x− y|

,

|u|k,α;D :=

k∑
j=0

|Dju|0,D + [Dku]α,D,

|u|′k,α;D :=

k∑
j=0

dj |Dju|0,D + dk+α[Dku]α,D.
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Theorem 2.2.10 (Theorem 4.6 in [54]). Let Ω be a domain in RN and let u ∈ C2(Ω), f ∈ Cα(Ω),
satisfy Poisson’s equation ∆u = f in Ω. Then for any two concentric balls B1 := BR(x), B2 :=
B2R(x) compactly contained in Ω we have

|u|′2,α;B1
≤ C

(
|u|0;B2 +R2|f |′0,α;B2

)
where C = C(N,α) > 0.

Theorem 2.2.11 (Theorem 4.11 in [54]). Let B+
1 := BR(0)∩{xN > 0}, B+

2 := B2R(0)∩{xN >

0}, and u ∈ C2(B+
2 ) ∩ C(B+

2 ) satisfy∆u = f in B+
2 ,

u = 0 on {xN = 0},

where f ∈ Cα(B+
2 ). Then u ∈ C2,α(B+

1 ) and we have

|u|′
2,α;B+

1
≤ C

(
|u|0;B+

2
+R2|f |′

0,α;B+
2

)
where C = C(N,α) > 0.

2.2.4 Boundary estimates in more general domains

While a satisfactory interior regularity theory for solutions to Laplace’s or Poisson’s equations es-
sentially follows from Theorem 2.2.10, the regularity up to the boundary, which requires straight-
ening a portion of the boundary, is based on the study of more general elliptic equations. For suffi-
ciently smooth domain, i.e. if ∂Ω is of class C2,α, one can rely on Schauder’s theory for equations
of the form

Lu = aij(x)∂2
iju+ bi(x)∂iu+ c(x)u = f(x),

where repeated indices are summed, and the coefficients satisfy

aij(x)ξiξj ≥ λ|ξ| (2.2.1)

for every x ∈ Ω and ξ ∈ RN , and

|aij |0,α;Ω + |bi|0,α;Ω + |c|0,α;Ω ≤ Λ.

Here it is assumed that Λ, λ are positive constants.

Theorem 2.2.12 (Corollary 6.7 and Lemma 6.18 in [54]). Let Ω ⊂ RN be a domain with a C2,α

boundary portion T , and let ϕ ∈ C2,α(Ω). Suppose that u is a C(Ω) ∩ C2(Ω) function satisfyingLu = f in Ω,

u = ϕ on T,

where L is as above and f ∈ Cα(Ω). Then u ∈ C2,α(Ω ∪ T ) and furthermore, if x0 ∈ T and
B := Bρ(x0) is a ball with radius ρ < dist(x0, ∂Ω \ T ), we have

|u|2,α;B∩Ω ≤ C (|u|0;Ω + |ϕ|2,α;Ω + |f |0,α;Ω) ,

where C = C(N,α, λ,Λ, B ∩ Ω) > 0.
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The issue of boundary regularity for domains that are only of class C1,α can be addressed by
the theory of weak solutions for operators whose principal part is in divergence form, i.e.,

Lu = ∂i
(
aij(x)∂ju+ bi(x)u

)
+ ci(x)∂iu+ d(x).

Here the coefficients aij , bi, ci, d are assumed to be measurable functions on Ω that satisfy (2.2.1)
and

|aij |0,α;Ω + |bi|0,α;Ω + |ci|0;Ω + |d|0;Ω ≤ K

for some positive constant K.

Theorem 2.2.13 (Corollary 8.36 in [54]). Let Ω ⊂ RN be a domain with a C1,α boundary portion
T , and suppose u ∈ H1(Ω) is a weak solution ofLu = g + ∂if

i in Ω,

u = ϕ on T,

where g ∈ L∞(Ω), f i ∈ Cα(Ω), ϕ ∈ C1,α(Ω), and the boundary condition is satisfied in the sense
of traces. Then u ∈ C1,α(Ω ∪ T ), and for any Ω′ compactly contained in Ω ∪ T we have

|u|1,α;Ω′ ≤ C (|u|0;Ω + |g|0;Ω + |f |0,α;Ω + |ϕ|1,α;Ω) ,

where C = C(N,λ,K,dist(Ω′, ∂Ω \ T ), T ) > 0.

2.3 Symmetric rearrangements

Let U ⊂ R2 be an open subset of the strip Sa := (−a, a)× R, Ut := U ∩ {y = t}, and define

U∗t :=

{
(x, t) : −1

2
L1(Ut) < x <

1

2
L1(Ut)

}
.

Definition 2.3.1. The set
U∗ :=

⋃
t∈R

U∗t

is called the Steiner symmetrization of U with respect to the y-axis.

Remark 2.3.2. Analogous definitions can be given for a closed subset of Sa. Furthermore, it is
not difficult to see that if U is an open (closed) subset of Sa, then U∗ is also open (closed) and
L2(U) = L2(U∗).

LetRa,b := (−a, a)× (0, b) and consider a function u : Ra,b → R which is continuous, nonneg-
ative, and symmetric about the y-axis. For y ∈ (0, b), let vy := u(·, y) and consider the segments

{vy ≥ c}∗ :=

{
x ∈ (−a, a) : |x| ≤ 1

2
L1({vy ≥ c})

}
,

{vy > c}∗ :=

{
x ∈ (−a, a) : |x| < 1

2
L1({vy > c})

}
.
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Definition 2.3.3. The function u∗ : Ra,b → R defined via

u∗(x, y) = c if x ∈ {vy ≥ c}∗ \ {vy > c}∗

is called the Steiner symmetrization of u in the variable x or with respect to the y-axis.

Lemma 2.3.4. Let u be as above and u∗ be its Steiner symmetrization in variable x. Then u∗ is
also symmetric with respect to the y-axis and is monotone decreasing in x for x ≥ 0. Moreover, for
any real numbers c and d such that 0 < c < d, we have

L2({x : u∗(x) ∈ (c, d)}) = L2({x : u(x) ∈ (c, d)}).

In addition, if u is decreasing in x for x ≥ 0 then u = u∗.

We conclude this section with the following version of the Pólya-Szegő inequality.

Theorem 2.3.5. Let u ∈ C(Ra,b) ∩H1(Ra,b) be nonnegative, symmetric in the variable x, and let
u∗ be its Steiner symmetrization with respect to the y-axis. Then u∗ ∈ H1(Ra,b) and

ˆ
Ra,b

|∇u∗|2 dx ≤
ˆ
Ra,b

|∇u|2 dx.

Proof. The proof is essentially a corollary of Theorem 2.31 in [64]. Indeed, since Ra,b satisfies
the assumptions of Remark 2.44c and Remark 2.32 in [64], one can then reason as in the proof of
Corollary 2.14 in [64]; we omit the details.

2.4 Derivation of Bernoulli’s free boundary problem

For the convenience of the reader we present here the derivation of the one-phase free boundary
problem (1.1.1) from the equations of motion of a planar periodic wave. The content of this section
is adapted from [35] (see also [38] and [39]). To be precise, we consider a two-dimensional, inviscid,
incompressible fluid which undergoes a steady motion in a vertical plane over a flat, horizontal,
impermeable bed. By steady we mean that the flow propagates in a fixed direction at constant speed
c. We assume that the gravity is the only restoring force. Choosing a moving frame of reference we
can eliminate the time variable and rewrite the equations of conservation of momentum asρ((u− c)∂xu+ v∂yu) = −∂xP,

ρ((u− c)∂xv + v∂yv) = −∂yP − ρg,
(2.4.1)

where u = (u, v) if the flow velocity field, P is the pressure and g is the gravitational constant. The
conservation of mass condition can be written as

∇ · (ρu) = 0. (2.4.2)

Henceforth we assume that the density ρ is everywhere equal to one in the fluid, and so the incom-
pressibility condition (2.4.2) simplifies to

∂xu+ ∂yv = 0. (2.4.3)
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Furthermore, we assume that the free surface is the graph of a function η; thus, the region occupied
by the fluid is given by

Dη := {(x, y) : x ∈ R and 0 < y < η(x)}.

In the following we require that the unknowns u, v, P, η are periodic in the x variable of period
λ. The equations of motion (2.4.1) and (2.4.3) are complemented by the kinematic and dynamic
boundary conditions on the free surface v = (u− c)η′ on y = η(x),

P = Patm on y = η(x),
(2.4.4)

as well as the kinematic boundary condition on the flat bottom:

v = 0 on y = 0. (2.4.5)

Notice that if ψ is a stream function for the flow (defined up to a constant), i.e.,

∂yψ = u− c, ∂xψ = −v, (2.4.6)

then the irrotationality of the flow implies that

∆ψ = 0 (2.4.7)

in the fluid domain Dη. Moreover, by (2.4.4)1 and (2.4.5), we see that both the free surface
{(x, η(x))} and the bottom {y = 0} must be streamlines, i.e. level sets of ψ. Assuming that
ψ(x, η(x)) = 0, it follows from (2.4.6) that

ψ(x, y) = p0 +

ˆ y

0
(u(x, s)− c) ds, (2.4.8)

where p0 is a constant. Finally, observe that Bernoulli’s condition

(u− c)2 + v2

2
+ gy + P = const

holds along the free surface, where it can be rewritten in terms of the stream function ψ as

|∇ψ| =
√

const−2Patm − 2gy. (2.4.9)

After an opportune renormalization, the free boundary problem (1.1.1), for Q as in (1.1.6), is equiv-
alent to (2.4.7), (2.4.8), (2.4.9).
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Chapter 3

Variational methods for water waves

3.1 Existence and regularity of global minimizers via regularization

Throughout the section we assume that Ω is an open connected subset of RN with locally Lipschitz
continuous boundary. We remark that Ω may be unbounded. For the convenience of the reader, in
this section we recall some fundamentally well known results concerning the minimization problem
for J in K, defined as in (1.1.2) and (1.1.3) respectively. Here it is only assumed that

Q ∈ L2
loc(Ω), Q ≥ 0. (3.1.1)

Following the approach of [18], we introduce the family of approximate identities βε, defined as

βε(s) :=
1

ε
β
(s
ε

)
, (3.1.2)

where

β ∈ C(R; [0,∞)), suppβ ⊂ [0, 1],

ˆ ∞
0

β(s) ds =

ˆ 1

0
β(s) ds = 1. (3.1.3)

We also define Bε by

Bε(t) :=

ˆ t

0
βε(s) ds. (3.1.4)

It follows that Bε is nonnegative, increasing, Lipschitz continuous, with

Bε(t) =


0 if t ≤ 0,ˆ t/ε

0
β(s) ds if 0 < t < ε,

1 if t ≥ ε.

(3.1.5)

Finally, we consider the functional

Jε(u) :=

ˆ
Ω

(
|∇u|2 +Bε(u)Q2

)
dx (3.1.6)

defined for u ∈ K. We refer to [25], [45], [46], [59], [60], [62], [69], [81] and the references therein
for some of the recent literature on this type of singularly perturbed free boundary problems.
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3.1.1 Gamma convergence and global minimizers

The proof of the existence of a global minimizer forJε in the next theorem is adapted from Theorem
3.1 in [2].

Theorem 3.1.1. Let Ω be an open and connected subset of RN with locally Lipschitz continuous
boundary, and assume that (1.1.4), (3.1.1), (3.1.3) hold. Let Jε and K be defined as in (3.1.6) and
(1.1.3), respectively. Then there exists a global minimizer uε ∈ K of the functional Jε. Further-
more, uε is a weak solution of the mixed Dirichlet-Neumann problem

∆uε = 1
2βε(uε)Q

2 in Ω,

uε = u0 on Γ,

∂νuε = 0 on ∂Ω \ Γ,

(3.1.7)

where ν is the outward unit normal vector to ∂Ω.

Proof. We claim that for every u ∈ K,

Jε(u) ≤ J (u), (3.1.8)

where J is the functional defined in (1.1.2). Indeed, by (3.1.3) and (3.1.5) we have that for every
u ∈ L1

loc(Ω),
Bε(u(x)) ≤ χ{u>0}(x) for LN -a.e. x ∈ Ω,

and the claim follows. In particular, we see from (1.1.4) and (3.1.8) that Jε(u0) <∞.
We now let α := inf{Jε(u) : u ∈ K} and {uk,ε}k ⊂ K be a minimizing sequence, that is,

lim
k→∞

Jε(uk,ε) = α.

Then {∇uk,ε}k is bounded inL2(Ω;RN ). Let Ωr := Ω∩Br(0), where r is such thatHN−1(Br(0)∩
Γ) > 0. Then by Poincaré’s inequality we have that

ˆ
Ωr

|uk,ε − u0|2 dx ≤ C(Γ,Ωr)

ˆ
Ωr

|∇uk,ε −∇u0|2 dx.

Therefore {uk,ε}k is bounded in H1(Ωr) and hence, up to extraction of a subsequence (not rela-
beled), we can assume that uk,ε → uε in L2(Ωr) and pointwise almost everywhere as k → ∞ to
some uε ∈ H1

loc(Ωr). By letting r ↗ ∞ and by using a diagonal argument, up to extraction of a
further subsequence, we have that

∇uk,ε ⇀∇uε in L2(Ω,RN ),

uk,ε → uε in L2
loc(Ω), (3.1.9)

uk,ε → uε pointwise almost everywhere in Ω.
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Moreover, sinceBε is Lipschitz continuous and nonnegative (see (3.1.3) and (3.1.4)), by the weakly
lower semicontinuity of the L2-norm and Fatou’s lemma, we have that

ˆ
Ω

(
|∇uε|2 +Bε(uε)Q

2
)
dx ≤ lim inf

k→∞

ˆ
Ω

(
|∇uk,ε|2 +Bε(uk,ε)Q

2
)
dx = α.

To conclude, notice that uε ∈ K since K is closed with respect to the convergence in (3.1.9).
Moreover, one can check that uε is a weak solution of (3.1.7) by considering variations of the
functional Jε. We omit the details.

Corollary 3.1.2. Let uε ∈ K be a global minimizer of the functional Jε. Then, under the assump-
tions of Theorem 3.1.1,

0 ≤ uε(x) ≤ ‖u0‖L∞(Γ)

for LN -a.e. x ∈ Ω, provided ε is small enough.

Proof. To prove the upper bound, we can assume without loss of generality thatM := ‖u0‖L∞(Γ) <
∞, since otherwise there is nothing to prove. For every 0 < ε < M and for every η > 0, let
vε := max{uε −M, 0} and consider uηε := uε − ηvε. Then uηε ∈ K and

Bε(uε(x)) = Bε(u
η
ε(x)) (3.1.10)

for LN -a.e. x ∈ Ω. Indeed, the equality holds almost everywhere in {vε = 0}, while for almost
every x such that vε(x) > 0 we have that

uε(x) > uηε(x) = (1− η)uε(x) + ηM > (1− η)M + ηM > ε.

Therefore (3.1.10) follows from (3.1.5). This, together with the minimality of uε, implies that
ˆ

Ω
|∇uε|2 dx ≤

ˆ
Ω
|∇uηε |2 dx.

Expanding the square on the right-hand side, rearranging the terms, and dividing by η in the previous
inequality yields

2

ˆ
Ω
∇uε · ∇vε dx ≤ η

ˆ
Ω
|∇vε|2 dx = η

ˆ
Ω
∇uε · ∇vε dx,

where in the last equality we have used the fact that ∇uε = ∇vε a.e. in the set {uε > M} while
∇vε = 0 a.e. in the set {uε ≤ M}. Taking η < 2, since Ω is connected, we have that vε ≡ cε for
some constant cε. In turn, its trace is cε, but since uε = u0 ≤ M on Γ, necessarily cε = 0. Thus
uε ≤M as desired.

The proof that uε is nonnegative is similar taking uηε := uε − ηmin{uε, 0} and therefore we
omit it.

Theorem 3.1.3 (Compactness). Let Ω be an open and connected subset of RN with locally Lipschitz
continuous boundary, and let Jε and K be defined as in (3.1.6) and (1.1.3), respectively. Assume
that (3.1.1), (3.1.3) hold. Given εn → 0+ and {un}n ⊂ K such that

sup{Jεn(un) : n ∈ N} <∞, (3.1.11)

there are a subsequence {εnk}k of {εn}n and u ∈ K such that un → u in L2
loc(Ω).
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Proof. Since {∇un}n is bounded in L2(Ω;RN ) by (3.1.11) and Bε ≥ 0, the desired convergence
follows as in the proof of (3.1.9). We omit the details.

In view of the previous theorem, we study the Γ-convergence of the family of functionals defined
as in (3.1.6) with respect to convergence inL2

loc(Ω) (see Definition 2.1.1). In the following, although
with a slight abuse of notation, we consider the functionals Jε,J : L2

loc(Ω) → [0,∞], extended to
infinity outside of K.

Theorem 3.1.4. Let Ω be an open and connected subset of RN with locally Lipschitz continuous
boundary, and let Jε and J be defined as in (3.1.6) and (1.1.2), respectively. Assume that (3.1.1),

(3.1.3) hold. Then Jε
Γ→ J with respect to L2

loc convergence.

Proof. Let un → u in L2
loc(Ω). Without loss of generality, we may assume that

lim inf
n→∞

Jεn(un) = lim
n→∞

Jεn(un) <∞,

since otherwise there is nothing to prove. By extracting successive subsequences, we may find a
subsequence {εnk}k of {εn}n such that sup{Jεnk (unk) : k ∈ N} < ∞, unk → u pointwise
LN -a.e. in Ω and the following limits exist and are finite

lim
k→∞

ˆ
Ω
|∇unk |

2 dx, lim
k→∞

ˆ
Ω
Bεnk (unk)Q2 dx.

In turn, ˆ
Ω
|∇u|2 dx ≤ lim inf

k→∞

ˆ
Ω
|∇unk |

2 dx = lim
k→∞

ˆ
Ω
|∇unk |

2 dx. (3.1.12)

Now fix δ > 0 and let K be any compact set contained in {u > δ}. By Egorov’s theorem, for
every η > 0 there exists a compact set Kη ⊂ K such that LN (K \Kη) ≤ η and {unk}k converges
uniformly to u on Kη. Notice that {Bεnk (unk)}k is bounded in L∞(Ω) and hence admits a further
subsequence (not relabeled) that converges in the weak star topology to some function ξ ∈ L∞(Ω).
By uniform convergence, we can find k such that unk ≥ δ/2 on Kη for k ≥ k. Moreover, if
εnk ≤ δ/2, Bεnk (unk(x)) = 1 for LN -a.e. x in Kη by (3.1.5), and hence

0 =

ˆ
Kη

(Bεnk (unk)− 1)unk dx→
ˆ
Kη

(ξ − 1)u dx.

Since u > 0 on Kη, then necessarily ξ = 1 LN -a.e. in Kη. Letting η ↘ 0, K ↗ {u > δ} and
δ ↘ 0 we conclude that ξ = 1 LN -a.e. in {u > 0} and hence

ξ(x) ≥ χ{u>0}(x) for LN -a.e. x ∈ Ω.

Let now D be a compact subset of Ω. By the previous inequality, the fact that Q2 ∈ L1(D) and
Bεnk (unk)

∗
⇀ ξ in L∞(Ω),

ˆ
D
χ{u>0}Q

2 dx ≤
ˆ
D
ξQ2 dx = lim

k→∞

ˆ
D
Bεnk (unk)Q2 dx ≤ lim

k→∞

ˆ
Ω
Bεnk (unk)Q2 dx.
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Finally, letting D ↗ Ω we get
ˆ

Ω
χ{u>0}Q

2 dx ≤ lim
k→∞

ˆ
Ω
Bεnk (unk)Q2 dx,

which together with (3.1.12) proves that J (u) ≤ lim infn→∞ Jεn(un).
To prove the existence of a recovery sequence, we let u ∈ L2

loc(Ω) and define un ≡ u. If
J (u) = ∞, then there is nothing to prove. Thus, assume that J (u) < ∞. By (3.1.8) we have
Jεn(un) ≤ J (u) and therefore the result follows.

Corollary 3.1.5. Let Ω be an open and connected subset of RN with locally Lipschitz continuous
boundary, and assume that (1.1.4), (3.1.1), (3.1.3) hold. Let J and K be defined as in (1.1.2) and
(1.1.3) respectively. Then there exists a global minimizer u ∈ K of the functional J . Furthermore,
every global minimizer of J in K is locally Lipschitz continuous in Ω, and solves (1.1.1), where the
free boundary condition is satisfied in a distributional sense.

Proof. Let εn → 0+. By Theorem 3.1.1, for every n ∈ N we can find un, a global minimizer of
Jεn . Then by (1.1.4) we have

sup{Jεn(un) : n ∈ N} ≤ J (u0) <∞.

Let {εnk}k and u ∈ K be given as in Theorem 3.1.3. Then, by Theorem 3.1.4, u is a global
minimizer of J . The rest is classical, see Lemma 2.4, Theorem 2.5, and Corollary 3.3 in [2].

Remark 3.1.6. In view of the previous corollary, given a global minimizer u ∈ K of the functional
J , we can work with the precise representative

u(x) = lim
r→0+

 
Br(x)

u(y) dy, x ∈ Ω.

3.1.2 Uniform gradient estimates and boundary regularity

In view of Corollary 3.1.2, we study uniform properties of nonnegative and uniformly bounded
solutions of (3.1.7). In particular (see Corollary 3.1.10), combining the results of [18] with the ones
of [59] and [61], we show that under certain regularity conditions on ∂Ω and u0, if uε is a global
minimizer of Jε in K (see (1.1.3), Theorem 3.1.1 and (3.1.6)), then the family {uε}ε satisfies a
uniform-in-ε Lipschitz estimate away from ∂Γ, where ∂Γ denotes the boundary of Γ as a subspace
of ∂Ω. In this subsection we work with sets that have the uniform C2-regularity property.

Definition 3.1.7 (Definition 4.1 in [51]). Let Ω be an open subset of RN . We say that Ω has the
uniform C2-regularity property if there exist a locally finite open cover {Us}s of ∂Ω, and corre-
sponding C2 homeomorphisms φs, such that:

(i) for each s, φs(Us) = B1(0) and φs(Ω ∩ Us) = B+
1 (0);

(ii)
⋃
s

φ−1
s (B1/2(0)) ⊃ {x ∈ Ω : dist(x, ∂Ω) ≤ τ}, for some τ > 0;

(iii) there exists an integer R such that any R+ 1 distinct sets Us have empty intersection;

29



(iv) for some sequence of points {cs}s ⊂ RN ,

‖φs‖C2(Us;RN ) ≤M, ‖φ−1
s − cs‖C2(B1(0);RN )

≤M,

for some M independent of s.

Remark 3.1.8. (i) Definition 3.1.7 is standard in the treatment of regularity results for PDEs in
unbounded domains. We remark that it is equivalent to the definition of boundary uniformly
of class C2 (see Definition 3.4 and Theorem 4.2 in [51]). Moreover, it is also equivalent to
Property P in [18].

(ii) For any given d > 0, eventually replacing R with a larger number, we can assume without
loss of generality that diamUs ≤ d.

Theorem 3.1.9. Let Ω be an open connected subset of RN with boundary ∂Ω uniformly of class
C2, and let u0 ∈ C1,α(Ω), 0 < α < 1. Let {uε}ε ⊂ W 2,p

loc (Ω), N < p < ∞, be a family of
nonnegative uniformly bounded solutions of (3.1.7) where Q, in addition to (3.1.1), is assumed to
be locally bounded in Ω. Then, for every K compactly contained in Ω \ ∂Γ, there exists a constant
C such that

|∇uε(x)| ≤ C, x ∈ K, (3.1.13)

where C only depends on N, p,K, ‖Q‖L∞(K), ‖β‖L∞(R), ‖u0‖C1,α(Ω), supε ‖uε‖L∞(Ω) and ∂Ω
through τ,R and M as in Definition 3.1.7.

Proof. Let K be a compact subset of Ω \ ∂Γ. If K ⊂ Ω the desired result follows directly from
Theorem 3.1 (a) in [18]. Thus, assume that K ∩ ∂Ω is non-empty and let dK := dist(K, ∂Γ). Let
{Us}s be as in Definition 3.1.7 with diamUs ≤ dK/2 (see Remark 3.1.8 (ii)). By a compactness
argument, we can find an integer S such that K ∩ Us is empty for every s > S. Then there are
D,N ⊂ N such that:

(i) D,N are disjoint and D ∪N = {1, . . . , S};

(ii) Ui ∩ ∂Ω ⊂ Γ for every i ∈ D and Uj ∩ ∂Ω ⊂ ∂Ω \ Γ for every j ∈ N ;

(iii)
⋃

s∈D∪N
φ−1
s (B1/2(0)) ⊃ K ∩ {x ∈ Ω : dist(x, ∂Ω) ≤ τ}, where τ is as in Definition 3.1.7;

(iv)
⋃

s∈D∪N
Us ∩ Ω ⊂ Ω \ {x ∈ Ω : dist(x, ∂Γ) < dK/2}.

Notice that we are in a position to apply Theorem 3.1 in [61] in Ui ∩Ω, i ∈ D, and Theorem 3.1 (b)
in [18] in Uj ∩ Ω, j ∈ N . Therefore, there exists a constant C (depending on the other parameters
of the problem, but independent of ε) such that

|∇uε(x)| ≤ C, x ∈
⋃

s∈D∪N
φ−1
s (B1/2(0)).

Moreover, again by Theorem 3.1 (a) in [18], a similar estimate holds inK∩{x ∈ Ω : dist(x, ∂Ω) ≥
τ/2} and hence, by (iii), everywhere in K.
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Corollary 3.1.10. Let Ω be an open and connected subset of RN with boundary ∂Ω uniformly of
class C2, and assume that (1.1.4), (3.1.1), (3.1.3) hold. In addition, we assume that u0 ∈ C1,α(Ω),
0 < α < 1, and that Q, in addition to (3.1.1), is locally bounded in Ω. Let Jε,J and K be defined
as in (3.1.6), (1.1.2) and (1.1.3) respectively. Then, given εn → 0+ and {un}n ⊂ K such that un
is a global minimizer of Jεn for every n ∈ N, we have that {un}n ⊂ W 2,p

loc (Ω), N < p < ∞, and
moreover there exists a subsequence {εnk}k such that {unk}k converges locally uniformly in Ω\∂Γ
to a function u that is a global minimizer of J in K. In particular, u is locally Lipschitz continuous
in Ω \ ∂Γ.

Proof. By Theorem 3.1.1, for every n ∈ N, un is a weak solution of (3.1.7) with ε = εn. More-
over, by Corollary 3.1.2, the sequence {un}n is nonnegative and uniformly bounded from above by
‖u0‖L∞(Γ), which is finite by assumption. By standard elliptic regularity theory, {un}n ⊂W 2,p

loc (Ω),
N < p <∞ (see, e.g., [54] and [83]). Let {εnk}k, u be given as in Theorem 3.1.3. Then, reasoning
as in the proof of Corollary 3.1.5, we obtain that u is a global minimizer of J in K. Notice that by
Theorem 3.1.9, we are in a position to apply the Ascoli-Arzelà Theorem to {unk}k. This proves the
existence of a further subsequence (which we don’t relabel) that converges uniformly to u on every
compact subsets of Ω \ ∂Γ. To conclude, it is enough to notice that u inherits the gradient estimates
on every compact subset of Ω \ ∂Γ from the weak star convergence in L∞ of (a subsequence of)
{∇unk}k.

Remark 3.1.11. (i) Under the slightly more restrictive assumptions that ∂Ω is smooth and u0 ∈
C2,α(Ω), an estimate up to the boundary near the Dirichlet fixed boundary can be obtained
as in Section 2.3 of [59].

(ii) One of the main results presented in this thesis is the study of the boundary regularity for a
certain class of global minimizers, with special emphasis given to the regularity of the free
boundary. We refer to Section 3.4 for more information.

3.2 Existence of nontrivial minimizers

In this section we shift the attention to our suggested framework for the study of planar gravity
waves. For the convenience of the reader, we recall that throughout the rest of the chapter we will
assume that N = 2 and let Ω be a half infinite strip, i.e.

Ω :=

(
−λ

2
,
λ

2

)
× (0,∞).

Furthermore, we define the Sobolev space

H1
λ,loc(Ω) :=

{
u ∈ H1

loc(R2
+) : u(x+ λ, y) = u(x, y) for L2-a.e. x = (x, y) ∈ R2

+

}
,

and for m,h > 0 consider the energy functional

Jh(u) :=

ˆ
Ω

(
|∇u|2 + χ{u>0}(h− y)+

)
dx, for u ∈ Kγ ,

where
Kγ :=

{
u ∈ H1

λ,loc(Ω) : u(·, 0) = m and u(±λ/2, y) = 0 for y ≥ γ
}
.

Here γ is a positive constant, and the boundary conditions are satisfied in the sense of traces.
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Theorem 3.2.1. Let Ω,Jh, and Kγ be defined as above. Then there exists a global minimizer
u ∈ Kγ of the functional Jh. Furthermore, every global minimizer is locally Lipschitz continuous
away from the points {(±λ/2, γ)}, and solves (1.1.1), for Q as in (1.1.6), where the free boundary
condition is satisfied in a distributional sense.

Proof. Notice that if we let

u0(x) := m

(
1− y

γ

)
+

then u0 ∈ Kγ and Jh(u0) < ∞. Consequently, the existence of global minimizers in Kγ for
Jh can be adapted from the results of the previous subsections (see Corollary 3.1.5), essentially
without change. We omit the details. Since the boundary regularity for y > γ is a consequence of
Corollary 3.1.10, we are left to show that if u is a global minimizer of Jh in Kγ then u is Lipschitz
continuous in Ω ∩ {y < γ}. To see this it is enough to notice that u is a minimizer of Jh over the
set

K(u) := {v ∈ H1(Br(x) ∩ {y > 0}) : v = u on ∂(Br(x) ∩ {y > 0})}

for every x ∈ Ω and L1-a.e. r ∈ (0, λ/2) such that Br(x) ⊂ {y < γ}. The desired result then
follows from both the interior and the boundary regularity, as above.

The rest of this section is dedicated to the proof of Theorem 1.1.1. Since this requires a precise
understanding of the energy landscape of trivial solutions, i.e., solutions of the form u = u(y),
for the convenience of the reader we recall some preliminary definitions and results concerning the
one-dimensional minimization problem for the functional

Ih(v) :=

ˆ ∞
0

(
v′(t) + χ{v>0}(t)(h− t)+

)
dt, (3.2.1)

defined over the set

Kγ,1-d := {v ∈ H1
loc((0,∞)) : v(0) = m and v(γ) = 0}, (3.2.2)

wherem,h, γ are positive numbers, andH1
loc((0,∞)) is the space of all functions v ∈ L2

loc((0,∞))
such that v ∈ H1((0, r)) for every r > 0. Indeed, if u ∈ Kγ is a trivial solution to (1.1.9), then
u(x, y) = v(y) for L1-a.e. x ∈ (−λ/2, λ/2) and L1-a.e. y ∈ (0,∞), where v(0) = m and
v(γ) = 0, and by Tonelli’s theorem we have

Jh(u) =

ˆ λ/2

−λ/2

ˆ ∞
0

(
|v′(y)|2 + χ{v>0}(h− y)+

)
dydx = λIh(v). (3.2.3)

For a fixed m > 0 and for every h > 0, we define gh : R+ → R by

gh(t) :=
m2

t
+
h2 − (h−min{h, t})2

2
, (3.2.4)

and let vt : R+ → R be the function

vt(s) :=
m

t
(t− s)+ (3.2.5)

be defined for t ∈ R+. Observe that gh ∈ C1(R+).
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Theorem 3.2.2. Given m,h, γ > 0, let Ih and Kγ,1-d be as in (3.2.1) and (3.2.2), respectively, let
h#, h∗ be given as in (1.1.14), and gh, vt be given as above. Then

inf{Ih(v) : v ∈ Kγ,1-d} = inf{gh(t) : 0 < t < γ}, (3.2.6)

and the following hold:

(i) if h ≤ h# then gh is decreasing and vγ is the only global minimizer of Ih in the class Kγ,1-d,

(ii) if h# < h < h∗ then gh has two critical points, th, Th,

0 < th <
2h

3
< Th < h, (3.2.7)

which correspond to a point of local minimum and a point of local maximum of gh, respec-
tively. Moreover, there exists a unique τh > Th such that gh(th) = gh(τh). In this case we
have that

(a) if 0 < γ ≤ th then gh is decreasing in (0, γ) and vγ is the only global minimizer of Ih
in the class Kγ,1-d;

(b) if th < γ < τh then inf{Ih(v) : v ∈ Kγ,1-d} = gh(th) and vth is the only global
minimizer of Ih in the class Kγ,1-d;

(c) if γ = τh then inf{Ih(v) : v ∈ Kγ,1-d} = gh(th) = gh(τh) and vth , vτh are the only
global minimizers of Ih in the class Kγ,1-d;

(d) if γ > τh then inf{Ih(v) : v ∈ Kγ,1-d} = gh(γ) and vγ is the only global minimizer of
Ih in the class Kγ,1-d;

(iii) if h ≥ h∗ then th is a point of absolute minimum for gh. Moreover, vγ is the only global
minimizer of Ih in the class Kγ,1-d if 0 < γ ≤ th, while if th < γ then the only global
minimizer is given by vth .

Proof. We divide the proof into several steps.
Step 1: By Corollary 3.1.5 we have that there exists a global minimizer v of Ih in Kγ,1-d. We claim
that v is linear on {v > 0}. Indeed, the minimality of v implies that the set {v > 0} is connected;
the claim follows recalling that v is harmonic in {v > 0} (see Corollary 3.1.5). Thus, v is of the
form v = vt for some 0 < t < γ and so (3.2.6) follows by noticing that

Ih(vt) = gh(t). (3.2.8)

Thus it remains to study inf{gh(t) : 0 < t < γ}.
Step 2: Since

g′h(t) =

−
m2

t2
+ h− t if t ≤ h,

−m2

t2
if t > h,

we have that g′h(t) < 0 if t ≥ h. Moreover, g′h(t) ≤ 0 for t < h if and only if

ψh(t) := −m2 + ht2 − t3 ≤ 0. (3.2.9)
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Since ψh has a global maximum in (0, h) at the point t = 2h/3, it follows that

ψh(2h/3) = −m2 +
4

27
h3 ≤ 0 (3.2.10)

if and only if h ≤ h#, where h# is the number given in (1.1.14)1. Consequently, if h ≤ h# then
gh is decreasing and so

inf{gh(t) : 0 < t < γ} = gh(γ),

which, together with (3.2.6) and (3.2.8), shows that vγ is the only global minimizer of Ih in the
class Kγ,1-d.
Step 3: If h > h#, then in view of (3.2.9) and (3.2.10) there exist

0 < th <
2h

3
< Th < h

such that gh strictly decreases in (0, th) and in (Th,∞), and strictly increases in (th, Th). It follows
that

inf{gh(t) : 0 < t < γ} =


gh(γ) if 0 < γ ≤ th,

gh(th) if th < γ ≤ Th,

min{gh(th), gh(γ)} if γ > Th.

(3.2.11)

Hence, in what follows, it remains to treat the case γ > Th. Notice that

inf{gh(t) : 0 < t < γ} = gh(th) ≤ lim
t→∞

gh(t) =
h2

2
(3.2.12)

if and only if
2m2 ≤ sup{fh(t) : 0 < t < h},

where fh(t) := t(h− t)2. The function fh has a maximum at t = h/3, and so,

2m2 ≤ fh(h/3),

or equivalently h ≥ h∗, where h∗ is the number given in (1.1.14)2. Hence by (3.2.12) if h ≥ h∗

then gh(th) < gh(γ), which, by (3.2.6), (3.2.8), and (3.2.11), proves (iii), while if h < h∗ then by
(3.2.12) there exists Th < τh such that gh(th) = gh(τh).

Properties (a), (b), (c), (d) now follow again by (3.2.6),(3.2.8), and (3.2.11).

Proof of Theorem 1.1.1. Step 1: For γ, δ > 0, consider the function

w(x, y) := m

(
1− yλ

(γ + δ)λ− 2|x|δ

)
+

,

defined first for x = (x, y) ∈ Ω and then extended by periodicity to R × (0,∞). Notice that the
support of w in Ω corresponds to the polygonal region with vertices (±λ/2, 0), (±λ/2, γ), and
(0, γ + δ), and therefore w belongs to the class Kγ . A direct computations shows that

ˆ
Ω
|∇w|2 dx = m2

(
4δ

3λ
+
λ

δ

)
log

(
1 +

δ

γ

)
. (3.2.13)
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In the following, if γ < h, we will only consider values of δ for which γ + δ ≤ h. Once again by
means of a direct computation, we see that the contribution from the second term in the energy for
w is given by 

λh2

2
if h ≤ γ,

λh2

2
− λ(h− γ)2

2
+
λ(h− γ)δ

2
− λδ2

6
if γ < γ + δ ≤ h.

(3.2.14)

Next, we will show that if δ > 0 is chosen opportunely then

Jh(w) < λgh(γ), (3.2.15)

where gh is the function defined in (3.2.4). Notice that this implies the desired result; indeed, if γ is
chosen as in (1.1.15), then it follows from Theorem 3.2.2 and (3.2.3) that

λgh(γ) = λ inf{Ih(v) : v ∈ Kγ,1-d} ≤ inf{Jh(u) : u ∈ Kγ , u = u(y)}, (3.2.16)

and so (3.2.15) implies that solutions of the form u = u(y) cannot be found among global minimiz-
ers of Jh in Kγ .
Step 2: In this step we address the case in which γ, chosen as in (1.1.15), is such that γ ≥ h. Using
the inequality

log (1 + t) < t− t2

2
+
t3

3
, t > 0, (3.2.17)

it follows from (3.2.4), (3.2.13) and (3.2.14) that to prove (3.2.15) it is enough to show that for a
certain choice of δ (

4δ

3λ2
+

1

δ

)(
δ

γ
− δ2

2γ2
+

δ3

3γ3

)
<

1

γ
. (3.2.18)

Notice that the previous inequality is equivalent to

− 1

2γ2
+ δ

(
4

3λ2γ
+

1

3γ3
− 2δ

3λ2γ2
+

4δ2

9λ2γ3

)
< 0, (3.2.19)

which is satisfied if δ is sufficiently small.
Step 3: We now turn our attention to the case γ < h. Since we only consider values of δ for which
γ + δ ≤ h, by (3.2.4), (3.2.13) and (3.2.14) we find that (3.2.15) is equivalent to

m2

(
4δ

3λ
+
λ

δ

)
log

(
1 +

δ

γ

)
+
λ(h− γ)δ

2
− λδ2

6
<
λm2

γ
. (3.2.20)

By (3.2.17), and reasoning as in the previous step, we see that it is enough to prove that the inequality

− m2

2γ2
+m2δ

(
4

3λ2γ
+

1

3γ3
− 1

6m2
− 2δ

3λ2γ2
+

4δ2

9λ2γ3

)
+

(h− γ)

2
≤ 0 (3.2.21)

holds for an opportune choice of δ. By Theorem 3.2.2 we see that if γ is as in (1.1.15) then

− m2

γ2
+ h− γ = g′h(γ) < 0. (3.2.22)

Consequently, also in this case, (3.2.21) is satisfied if we choose δ small enough (with respect to the
other parameters in the problem).
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Lemma 3.2.3. Given m > 0, let th and τh be defined as in Theorem 3.2.2. Then th is decreasing
as a function of h, while τh is increasing.

Proof. By the implicit function theorem, we have that the maps h 7→ th and h 7→ τh are differen-
tiable, and we write t′h and τ ′h to denote the derivatives. Then we see that

t′h = − th
2h− 3th

< 0, for h > h#,

from which we conclude that th is decreasing as a function of h. To prove the statement about τh,
we first assume that τh < h. Then τh is defined by

m2

th
− (h− th)2

2
=
m2

τh
− (h− τh)2

2
,

which in turn implies that

m2t′h
t2h

+ (h− th)(1− t′h) =
m2τ ′h
τ2
h

+ (h− τh)(1− τ ′h). (3.2.23)

The definition of th can now be used to simplify the left-hand side of (3.2.23):

m2t′h
t2h

+ (h− th)(1− t′h) = t′h

(
m2

t2h
− h+ th

)
+ h− th = h− th.

Therefore we can rewrite (3.2.23) as(
m2

τ2
h

− h+ τh

)
τ ′h = τh − th,

and the conclusion follows recalling that th < τh and m2 − hτ2
h + τ3

h > 0. The proof for the case
τh ≥ h is similar but simpler.

Remark 3.2.4. The result of Theorem 1.1.1 cannot be improved for h < h# and h ≥ h∗. However,
it is still unclear whether the result is optimal also for h# ≤ h < h∗ (see figure below).

Remark 3.2.5. For h > h# and 0 < t < h, the cubic equation t3 − ht2 + m2 = 0 has three real
solutions, two of which are positive. Setting

θ := arccos

(
1− 33

2

m2

h3

)
so that 0 < θ < π, the two positive solutions are given by

th :=
2h

3
cos

θ + 4π

3
+
h

3
∈
(

0,
2h

3

)
,

Th :=
2h

3
cos

θ

3
+
h

3
∈
(

2h

3
, h

)
.
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h# h∗ h

γ

2h#/3

h∗/3 th

τh

?

We also know that
th < 21/3m2/3 < Th.

Indeed, for every η ∈ (0, h− h#), by (3.2.7) and Lemma 3.2.3 we have

th < th−η <
2

3
(h− η) < Th−η < Th.

To conclude, let η → h− h#.

We conclude the section with a result which states that not only trivial solutions, but also flat
free boundaries cannot be observed if γ is chosen as in Theorem 1.1.1.

Lemma 3.2.6. For γ as in Theorem 1.1.1, let u ∈ Kγ be a global minimizer of Jh. Then ∂{u >
0} ∩ Ω does not coincide with a horizontal line segment.

Proof. Assume for the sake of contradiction that ∂{u > 0} coincides with the line {y = k}, for
some k > 0. Then k ≤ h. Assume first that k ∈ (0, γ]. We claim that

v(x, y) =
m

k
(k − y)+

satisfies Jh(v) = Jh(u). Notice that since by assumption k ≤ γ we have that v ∈ Kγ and the claim
would imply that v is a global minimizer of Jh, which would be in contradiction with the choice of
γ. To prove the claim, it is enough to observe that Tonelli’s theorem and Jensen’s inequality yield

ˆ
Ω
|∇u|2 dx ≥

ˆ λ/2

−λ/2

ˆ k

0
(∂yu)2 dydx ≥

ˆ λ/2

−λ/2

1

k

(ˆ k

0
∂yu dy

)2

dx =
λm2

k
=

ˆ
Ω
|∇v|2 dx,

and that the functions u and v have the same support. On the other hand, since the free boundary
detaches tangentially from a smooth portion of the Dirichlet fixed boundary (see Theorem 1.1 in
[29]), k cannot be larger than γ, and the result is thus proved.
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3.3 The shape of global minimizers

The aim of this section is to carry out the study of additional properties of global minimizers of the
functional Jh, defined as in (1.1.12). In particular, our main interest lies in understanding how the
shape of global minimizers is influenced by the parameter h. To this end, throughout the rest of this
section we fix a non-increasing function θ : R+ → R+ such that

θ(h) = γh, (3.3.1)

where for every h the number γh is chosen in accordance with Theorem 1.1.1. We then consider
solutions to the minimization problem for Jh in Kγh .

3.3.1 Existence of minimizers with bounded support

Proposition 3.3.1. Given m,λ, h, γ > 0 and k ∈ (0, 1), there exists a positive constant Cmin(k)
such that for every minimizer u of Jh in Kγ and for every ball Br(x) ⊂ Ω, if

1

r

 
∂Br(x)

u dH1 ≤ Cmin(k)
√

(h− y − kr)+,

then u ≡ 0 in Bkr(x). Moreover, if 0 < r < λ, the result is still valid for balls not contained in Ω,
provided Br(x) ⊂ {y > γ} or Br(x) ⊂ {y < γ}.

For a proof of Proposition 3.4.3 we refer to Lemma 3.4 and Remark 3.5 in [2]; see also Theorem
3.6 and Remark 5.2 in [15].

Theorem 3.3.2. Given m,λ > 0, let Jh and Kγh be defined as in (1.1.12), (1.1.13), respectively,
where for every h the value of γh is given as in (3.3.1). Then for every ȳ > 0 there exists h0 = h0(ȳ)
such that if h ≥ h0 then the support of every global minimizer of Jh in Kγh is contained in the set
{y < h}. In particular, the free boundary of every such minimizer is locally of analytic in Ω.

Proof. Let ȳ > 0 be given. Assume first that there exists h1 such that γh1 ≤ 3ȳ/2 and let r := ȳ/4.
Then for every x ∈ (−λ/2, λ/2),

Br(x, ȳ) ⊂ {y > γh}
for every h ≥ h1. Moreover, for every global minimizer u,

1

r
√
h− ȳ − r/2

 
∂Br(x,ȳ)

u dH1 ≤ m

r
√
h− ȳ − r/2

=
4m

ȳ
√
h− 9

8 ȳ
,

where the first inequality follows from Corollary 3.1.2. We can then find h0 ≥ h1 such that if
h ≥ h0 then

4m

ȳ
√
h− 9

8 ȳ
≤ C(1/2).

Thus we are in a position to apply Proposition 3.4.3 to show that u is identically equal to zero in the
set (−λ/2, λ/2)× [7ȳ/8, 9ȳ/8]. Since by minimality the support of u is connected, we have that u
must vanish in (−λ/2, λ/2)× [ȳ,∞). Similarly, if γh > 3ȳ/2 for every h, we have that

Br(x, ȳ) ⊂ {y < γh}

for every h > 0. Thus we can proceed as above. The last statement follows from Theorem 8.4 in
[2].
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3.3.2 Existence of a critical height

The following result is inspired by Theorem 10.1 in [53] (see also Theorem 5.5 in [15]).

Theorem 3.3.3. (Monotonicity). Given m,λ > 0, let Jh and Kγh be defined as in (1.1.12),
(1.1.13), respectively, where for every h the value of γh is given as in (3.3.1). Consider 0 < d < h
and let ud, uh be global minimizers of Jd and Jh in Kγd and Kγh respectively. Then

{x ∈ Ω : uh(x) > 0} ⊂ {x ∈ Ω : ud(x) > 0} (3.3.2)

and
uh ≤ ud. (3.3.3)

Moreover, if ∂{ud > 0} 6= ∅ then uh < ud in {x ∈ Ω : ud(x) > 0}.

Proof. Step 1: Define v1 := min{ud, uh} and v2 := max{ud, uh}. Since h 7→ γh is decreasing,
we have that v1 ∈ Kγh and v2 ∈ Kγd , and so

Jd(ud) + Jh(uh) ≤ Jd(v2) + Jh(v1). (3.3.4)

Notice thatˆ
Ω

(
|∇v1|2 + |∇v2|2

)
dx =

ˆ
{uh>ud}

(
|∇v1|2 + |∇v2|2

)
dx+

ˆ
{uh≤ud}

(
|∇v1|2 + |∇v2|2

)
dx

=

ˆ
{uh>ud}

(
|∇ud|2 + |∇uh|2

)
dx+

ˆ
{uh≤ud}

(
|∇uh|2 + |∇ud|2

)
dx

=

ˆ
Ω

(
|∇ud|2 + |∇uh|2

)
dx.

Therefore we can rewrite (3.3.4) canceling out the gradient terms and by rearranging the remaining
terms we obtain ˆ

{uh>ud}

(
χ{uh>0} − χ{ud>0}

)
((h− y)+ − (d− y)+) dx ≤ 0. (3.3.5)

Since the integrand is nonnegative in the set {uh > ud}, and recalling that ud and uh are continuous
in Ω, we have that

{uh > 0} ∩ {y < h} ∩ {uh > ud} ⊂ {ud > 0} ∩ {y < h} ∩ {uh > ud},

which together with the fact that

{uh > 0} ∩ {uh ≤ ud} ⊂ {ud > 0} ∩ {uh ≤ ud}

yields
{uh > 0} ∩ {y < h} ⊂ {ud > 0} ∩ {y < h}. (3.3.6)

We now notice that if suppuh ⊂ (−λ/2, λ/2)× [0, d] then (3.3.2) follows from (3.3.6), while if it
is not the case, again by (3.3.6) we get that there is x ∈ (−λ/2, λ/2)× (d,∞) such that ud(x) > 0.
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Furhermore, we see that ud > 0 in (−λ/2, λ/2) × (d,∞), and so the desired inclusion is also
satisfied in (−λ/2, λ/2)× [h,∞). This concludes the proof of (3.3.2).
Step 2: We observe that since the equality holds in (3.3.5), then the equality necessarily holds in
(3.3.4) as well, and so v1 and v2 are global minimizers of Jh and Jd in Kγh and Kγd respectively.
We now claim that if there is x0 ∈ Ω such that ud(x0) = uh(x0) > 0, then ud = uh everywhere
in Ω. To see this, we notice that in a neighborhood of x0 the functions ud − v2 and uh − v2 are
harmonic, nonpositive and attain a maximum at an interior point. Then, by the maximum principle,
ud − v2 = uh − v2 ≡ 0 in the connected component of {uh > 0} that contains x0; since {uh > 0}
is connected by minimality, this proves the claim.

To prove (3.3.3), assume by contradiction that there is x ∈ Ω such that uh(x) > ud(x). If there
is y ∈ {uh > 0} such that ud(y) > uh(y), then by the connectedness of {uh > 0}, together with
the fact that uh and ud are continuous, we have that there is z ∈ Ω such that uh(z) = ud(z) > 0.
By the claim we just proved, this would imply that uh = ud, a contradiction. Hence ud ≤ uh in
{uh > 0}, which together with (3.3.2) implies that

{uh > 0} = {ud > 0}. (3.3.7)

In turn,
ˆ

Ω
χ{uh>0}(h− y)+ dx =

ˆ
Ω
χ{ud>0}(h− y)+ dx,

ˆ
Ω
χ{ud>0}(d− y)+ dx =

ˆ
Ω
χ{uh>0}(d− y)+ dx.

(3.3.8)

From (3.3.7) we also see that ud ∈ Kγh . Since h 7→ γh is decreasing, we also have that uh ∈ Kγd
and hence we can conclude that Jh(uh) ≤ Jh(ud) and Jd(ud) ≤ Jd(uh), which, together with
(3.3.8), implies that ˆ

Ω
|∇uh|2 dx =

ˆ
Ω
|∇ud|2 dx.

Consider v := 1
2uh + 1

2ud ∈ Kγh . By the strict convexity of the Dirichlet energy, we have

Jh(v) <

ˆ
Ω

(
1

2
|∇uh|2 +

1

2
|∇ud|2 + χ{v>0}(h− y)+

)
dx = Jh(uh),

a contradiction to the minimality of uh, and (3.3.3) is hence proved.
Step 3: Finally, assume by contradiction that there is x0 ∈ {ud > 0} such that uh(x0) = ud(x0), so
that uh = ud in Ω. Since by assumption ∂{ud > 0} 6= ∅, and since γd is chosen in such a way that
ud is not a one-dimensional profile, it must be the case that there exists x ∈ ∂{ud > 0} ∩ {y < d}.
Consequently, for every such x we have

√
h− y =

∂uh
∂ν

(x) =
∂ud
∂ν

(x) =
√
d− y.

This is a contradiction since by assumption d < h. Hence uh < ud in {ud > 0} and the proof is
complete.
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Proof of Theorem 1.1.3. Let

hcr := inf{h > 0 : there is a global minimizer uh ∈ Kγh of Jh s.t. suppuh ⊂ {y ≤ h}}. (3.3.9)

By Theorem 3.3.2 we have that hcr <∞. Assume for the sake of contradiction that hcr = 0. Then
for every h > 0 there exists a global minimizer uh ∈ Kγh with the property that the support of uh
is entirely contained in the set {y ≤ h}. Reasoning as in the proof of Lemma 3.2.6, we see that

Jh(uh) >

ˆ
Ω
|∇uh|2 dx ≥

λm2

h
.

Since by assumption the function θ is non-increasing, there exists h̄ such that if h ≤ h̄ then

h ≤ θ(h) = γh.

For every such h we let w be function defined in the proof of Theorem 1.1.1, where for simplicity
we fix δ = 1. Then, it follows from (3.2.13) and (3.2.14) that

Jh(w) = m2

(
4

3λ
+ λ

)
log

(
1 +

1

γh

)
+
λh2

2
.

In particular, notice that for every h small enough (with respect to the other parameters in the
problem)

m2

(
4

3λ
+ λ

)
log

(
1 +

1

γh

)
+
λh2

2
≤ λm2

h
.

Since by definition w ∈ Kγ , this gives a contradiction with the minimality of uh. In turn, we have
shown that hcr > 0. Properties (i) and (ii) follow immediately from Theorem 3.3.3; we omit the
details.

Remark 3.3.4. By Theorem 8.4 in [2], it follows that if u ∈ Kγh is a global minimizer of Jh for
h > hcr, then ∂{u > 0} is analytic locally in Ω. The following result shows that the result is true
also for h < hcr.

Theorem 3.3.5. Under the assumptions of Theorem 1.1.3, let h > hcr. Then the free boundary of
every global minimizer is analytic locally in Ω.

Proof. Since by assumption there exists x ∈ Ω with y > h such that u(x) > 0, it follows from the
maximum principle that u > 0 in (−λ/2, λ/2)× (h,∞). For the sake of contradiction, assume that
the free boundary of a global minimizer u intersects the line {y = h} at a point z. Then, by Remark
3.5 in [15], there exists a constant C such that

|∇u(y)| ≤ C
√
r (3.3.10)

for all y ∈ Br(z), where r > 0 is sufficiently small. Let Bρ be any ball in (−λ/2, λ/2) × (h,∞)
such that x ∈ ∂Bρ. Since u(y) > u(z) = 0 for every y ∈ Bρ, we have that (3.3.10) is in
contradiction with Hopf’s Lemma. To conclude it is then enough to invoke Theorem 8.4 in [2].
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3.3.3 Scaling of the critical height

Theorem 3.3.6. (Comparison principle). Givenm,λ > 0, let Jh andKγh be defined as in (1.1.12),
(1.1.13), respectively, where for every h the value of γh is given as in (3.3.1). Let u and w be a
global minimizers of Jh in Kδ and Kγ respectively, where Kδ,Kγ are defined as in (1.1.13). Then
either

{u > 0} ⊂ {w > 0} and u ≤ w
or

{w > 0} ⊂ {u > 0} and w ≤ u.

Proof. Assume without loss of generality that δ ≤ γ. As in the proof of Theorem 3.3.3, we consider
v1 := min{u,w} and v2 := max{u,w}. Then v1 ∈ Kδ, v2 ∈ Kγ and in particular we have

Jh(u) + Jh(w) = Jh(v1) + Jh(v2).

Therefore v1 and v2 are global minimizers of Jh in Kδ and Kγ respectively. Reasoning as in the
proof of Theorem 3.3.3, we have that if there exists a point x0 such that u(x0) = w(x0) > 0 then
u = w everywhere in Ω. Next, we assume by contradiction that the supports of u and w do not
satisfy the inclusions as in the statement, i.e., there exist x,y ∈ Ω such that u(x) > 0, w(y) > 0
and u(y) = w(x) = 0. Let z ∈ Ω be such that u(z) > 0 and w(z) > 0 (such a point z exists since
by minimality we have that Jh(u) and Jh(w) are both finite). We assume first that w(z) > u(z).
Then, since by minimality {u > 0} is open and connected and thus path-wise connected, we can
find a continuous curve ϕ : [0, 1]→ Ω joining z to x, with support contained in Ω. Define

v(t) := w(ϕ(t))− u(ϕ(t)).

Notice that by construction v(0) = w(z) − u(z) > 0 and v(1) = w(x) − u(x) < 0, and so there
exists t0 ∈ (0, 1) such that v(t0) = 0. Thus 0 < u(ϕ(t)) = w(ϕ(t)), which in turn implies that
u = w, a contradiction. Similarly, if u(z) > w(z), we arrive to a contradiction by considering a
continuous curve ψ : [0, 1] → Ω that joins z with y and with support contained in {w > 0}. The
rest of the proof is analogous to the proof of (3.3.3).

Remark 3.3.7. Notice that in Theorem 3.3.6 we also allow for the case where δ = γ.

In this lemma we show that hcr in Theorem 1.1.3 is less than the value h∗ given in (1.1.14)2.

Lemma 3.3.8. Under the assumptions of Theorem 1.1.3, we have that

hcr ≤ h∗ = 3

(
m√

2

)2/3

.

Proof. Assume by contradiction that hcr > h∗, and let h∗ < h < hcr. By Tonelli’s theorem and
Theorem 3.2.2 (iii) we have that w : R2

+ → R defined by

w(·, y) := vth(y)

is the unique global minimizer of Jh in Kth . Let u ∈ Kγh be a global minimizer of Jh. Since
h > h∗, by Theorem 1.1.1 we have that γh < th, and hence u(x) = 0 for x ∈ {±λ/2} × (γh,∞).
By continuity, we can find x0 ∈ (−λ/2, λ/2) such that

u(x0, γh) <
m

th
(th − γh) = w(x0, γh).
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Then, by Theorem 3.3.6, u ≤ w and

{u > 0} ⊂ {w > 0} = {xN < th}.

Thus, by (3.2.7), u has bounded support in Ω, a contradiction to the definition of hcr.

The following result shows that for certain choices of θ as in (3.3.1), the critical height hcr is
greater or equal to a constant multiple of h#, where h# is given as in (1.1.14)1.

Theorem 3.3.9. Under the assumptions of Theorem 1.1.3, fix k1, k2 > 0 such that

1

k2
< 1− k3

1

2
, and let k =

22/3k1

3

Notice that k2 > 1 and k ∈ (0, 2/3). Furthermore, assume that γh ≥ k2h for h < h#. Then
hcr ≥ kh#.

Proof. Assume for the sake of contradiction that hcr < kh#. Then, every global minimizer of Jh
in Kγh for h = kh# is a regular solution. In turn,

Jh(u) ≥
ˆ

Ω
|∇u|2 dx ≥ λm2

h
.

Let w be the function given in Theorem A, then

Jh(w) = m2

(
4δ

3λ
+
λ

δ

)
log

(
1 +

δ

γ

)
+
λh2

2
.

Notice that we obtain a contradiction if we show that

Jh(w) < Jh(u).

In particular, it is enough to prove that, if δ is chosen appropriately,

m2

(
4δ

3λ2
+

1

δ

)(
δ

γ
− δ2

2γ2
+

δ3

3γ3

)
+
h2

2
≤ m2

h
. (3.3.11)

For δ small we can rewrite (3.3.11) as

m2

γ
− m2

h
+
h2

2
+O(δ) ≤ 0. (3.3.12)

Notice that h = kh# = k1m
2/3 and since γ ≥ k2h = k1k2m

2/3 we see that to prove (3.3.12) it is
enough to prove the following inequality

1

k1k2
− 1

k1
+
k2

1

2
< 0,

which is true by assumption.

Remark 3.3.10. Under the assumptions of Theorem 3.3.9 we have that hcr ∼ m2/3.
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3.3.4 Convergence and uniqueness of global minimizers

Theorem 3.3.11. Given m,λ > 0, let Jh and Kγh be defined as in (1.1.12), (1.1.13), respectively,
where for every h the value of γh is given as in (3.3.1). In addition, assume that θ is continuous
and let {hn}n ⊂ (0,∞) be a strictly increasing (respectively, decreasing) sequence converging to
h. Then there exists u ∈ Kγh which is a global minimizer of Jh, with the property that for if un
is a global minimizer of Jhn in Kγhn for every n ∈ N, then un → u ∈ H1

loc(Ω) and uniformly
on compact subsets of Ω. Moreover, if {`n}n ⊂ (0,∞) is another strictly increasing (respectively,
decreasing) sequence converging to h and vn ∈ Kγ`n are global minimizers of J`n , then vn → u in
H1

loc(Ω) and uniformly on compact subsets of Ω.

We begin by proving a preliminary lemma.

Lemma 3.3.12. Under the assumptions of Theorem 3.3.11, let w ∈ Kγh be such that Jh(w) < ∞.
Then there exists a sequence {wn}n such that wn ∈ Kγhn for every n ∈ N and Jhn(wn)→ Jh(w)
as n→∞.

Proof. Notice that if hn ↗ h then w ∈ Kγhn for every n ∈ N and the result follows by considering
the constant sequence wn = w. Hence we assume that hn ↘ h, set

σn :=
γh
γhn

,

and define the rescaled function wn(x, y) := w(x, σny). We then notice that wn ∈ Kγhn and by a
change of variablesˆ

Ω
|∇wn|2 dx =

ˆ
Ω

(∂xw(x, σny))2 + (σn∂yw(x, σny))2 dx

=

ˆ
Ω

(
(∂xw(x, z))2 + (σn∂yw(x, z))2

)
σ−1
n dxdz

→
ˆ

Ω
|∇w(x, z)|2 dxdz,

where in the last step we have used the fact that σn ↘ 1. Similarly one can show thatˆ
Ω
χ{wn>0}(hn − y)+ dx→

ˆ
Ω
χ{w>0}(h− y)+ dx,

and the result follows.

Proof of Theorem 3.3.11. Assume that hn ↘ h. We divide the proof into several steps.
Step 1: We begin by showing that there exists a subsequence of {un}n that converges weakly in
H1

loc(Ω) to a function u that is a global minimizer ofJh in the classKγh . To this end, let v : R2
+ → R

be defined by
v(·, y) :=

m

γh1

(γh1 − y)+

(see (3.2.5)). Then v ∈ Kγhn for every n ∈ N and in particular
ˆ

Ω
|∇un|2 dx ≤ Jhn(un) ≤ Jhn(v) ≤ Jh1(v) <∞.
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Hence {∇un}n is bounded in L2(Ω;RN ). Moreover since un − v = 0 on (−λ/2, λ/2) × {0}, by
Poincaré’s inequality we obtainˆ

Ωr

|un − v|2 dx ≤ C(Ωr)

ˆ
Ωr

|∇un −∇v|2 dx,

where Ωr := Ω ∩ {y < r}, with r > 0. This shows that {un}n is bounded in H1(Ωr) and thus, up
to the extraction of a subsequence, un ⇀ ur in H1(Ωr). If we now let s > r, up to extraction of a
further subsequence, we have that un ⇀ ur inH1(Ωr) and un ⇀ us inH1(Ωs). By the uniqueness
of the weak limit we conclude that

ur(x) = us(x) for L2-a.e. x ∈ Ωr.

By letting r ↗∞ and by a diagonal argument, up to the extraction of a consecutive subsequences,
this defines a function u such that for some {nk}k ⊂ N

∇unk ⇀ ∇u in L2(Ω,R2),

unk → u in L2
loc(Ω), (3.3.13)

unk → u pointwise almost everywhere in Ω,

unk → u in L2
loc(∂Ω),

In particular, this shows that u ∈ Kγh . Moreover, we claim that up to the extraction of a subsequence
which we don’t relabel, {χ{unk>0}}k converges weakly star in L∞(Ω) to a function ξ such that

ξ(x) ≥ χ{u>0}(x) for L2-a.e. x ∈ Ω. (3.3.14)

Indeed, arguing as in the proof of Theorem 3.1.4, we observe that for every D compactly contained
in {u > 0}

0 =

ˆ
D

(χ{unk>0} − 1)unk dx→
ˆ
D

(ξ − 1)u dx.

Since u > 0 in D, then necessarily ξ = 1 L2-a.e. in D and hence in {u > 0}.
To prove that u is a global minimizer of Jh inKγh , fix r > 0, let w ∈ Kγh . If Jh(w) =∞ there

is nothing to show, hence we assume that Jh(w) < ∞ and consider {wn}n as in Lemma 3.3.12.
Then ˆ

Ωr

(
|∇u|2 + χ{u>0}(h− y)+

)
dx ≤

ˆ
Ω

(
|∇u|2 + ξ(h− y)+

)
dx

≤ lim inf
k→∞

Jhnk (unk) ≤ lim
k→∞

Jhnk (wnk) (3.3.15)

= Jh(w).

Letting r ↗∞, we conclude that Jh(u) ≤ Jh(w) for every w ∈ Kγh .
Step 2: Taking w = u in (3.3.15) yieldsˆ

Ωr

(
|∇u|2 + χ{u>0}(h− y)+

)
dx ≤ lim inf

k→∞
Jhnk (unk) ≤ lim sup

k→∞
Jhnk (unk) ≤ Jh(u).
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Letting r ↗∞ we conclude that

Jh(u) = lim
k→∞

Jhnk (unk).

On the other hand, by the lower semicontinuity of the L2-norm and (3.3.14)
ˆ

Ω
|∇u|2 dx ≤ lim inf

k→∞

ˆ
Ω
|∇unk |

2 dx,

and ˆ
Ω
χ{u>0}(h− y)+ dx ≤ lim inf

k→∞

ˆ
Ω
χ{unk>0}(h− y)+ dx.

Thus the previous two inequalities are necessarily equalities and therefore unk → u in H1
loc(Ω).

Moreover, by Theorem 3.3.3, {unk}k is an increasing sequence of continuous functions with a
continuous pointwise limit (see (3.3.13)). Hence, by Dini’s convergence theorem, the convergence
is uniform on compact subsets of Ω.
Step 3: Suppose by contradiction that the entire sequence does not converge to u in H1

loc(Ω). Then
there are another subsequence {unj}j and a minimizer w of Jh in Kγh such that unj → w in
H1

loc(Ω) and uniformly on compact subsets of Ω. By Theorem 3.3.3 we have that unk ≤ w and
unj ≤ u. Let x and r be such that Br(x) is compactly contained in the support of u. Then, passing
to the limit as k → ∞ and j → ∞ in the previous inequalities we obtain u = w in Br(x) and in
particular 0 < u(x) = w(x). Reasoning as in the proof of Theorem 3.3.3 we obtain that u = w in
Ω.

The same technique can be used to show the independence of the limiting minimizer on the
sequences {hn}n and {un}n. This concludes the proof.

Corollary 3.3.13. Under the assumptions of Theorem 3.3.11, for every h > 0 there are two (pos-
sibly equal) global minimizers u+

h , u
−
h of Jh in Kγh such that u−h ≤ u+

h and if w is another global
minimizer then u−h ≤ w ≤ u

+
h .

Theorem 3.3.14. Given m,λ > 0, let Jh and Kγh be defined as in (1.1.12), (1.1.13), respectively,
where for every h the value of γh is given as in (3.3.1). In addition, assume that θ is continuous.
Then there is a unique global minimizer of Jh in Kγh for all but countably many values of h.

Proof. We define

Λ := {h ∈ R+ : the minimization problem for Jh in Kγh has at least two distinct solutions}.

We claim that

Λ =
∞⋃
j=1

∞⋃
n=1

{
h ∈ (j − 1, j] : sup{|u+

h (x)− u−h (x)| : x ∈ (−λ/4, λ/4)× (0, γh/2)} ≥ 1

n

}
.

We recall that by Corollary 3.3.13, h ∈ Λ if and only if u−h 6= u+
h . To prove the claim it is enough

to notice that if u−h = u+
h in (−λ/4, λ/4)× (0, γh/2) then the equality holds everywhere in Ω. Let

Λj,n :=

{
h ∈ (j − 1, j] : sup{|u+

h (x)− u−h (x)| : x ∈ (−λ/4, λ/4)× (0, γh/2)} ≥ 1

n

}
;
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we observe that it is enough to show that Λ1,n is countable for every n ∈ N and that Λj,n is finite
for every j, n ∈ N with j ≥ 2. Fix j, n ∈ N with j ≥ 2 and assume by contradiction that Λj,n
has infinite cardinality. Then we can find a sequence {hi}i ⊂ hj,n and h ∈ [j − 1, j] such that
{hi}i converges strictly monotonically to h. By Theorem 3.3.11, there exists a function u such that
u−hi , u

+
hi
→ u in H1

loc(Ω) and uniformly in the compact set of [−λ/4, λ/4] × [0, γh/2]. In turn, for
i large enough we have that

|u+
i (x)− u−i (x)| ≤ |u+

i (x)− u(x)|+ |u(x)− u−i (x)| < 1

n

for all x ∈ (−λ/4, λ/4) × (0, γh/2). We notice that this is in contradiction with the definition of
hj,n. On the other hand, if j = 1 we can write

Λ1,n =

∞⋃
i=2

{
h ∈

(
1

i
, 1

]
: sup{|u+

h (x)− u−h (x)| : x ∈ (−λ/4, λ/4)× (0, γh/2)} ≥ 1

n

}
.

We can then set

Λ1,n,i :=

{
h ∈

(
1

i
, 1

]
: sup{|u+

h (x)− u−h (x)| : x ∈ (−λ/4, λ/4)× (0, γh/2)} ≥ 1

n

}
and repeat the same argument as above to prove that Λ1,n,i is finite for every i ≥ 2. This concludes
the proof.

Having established the convergence of monotone sequences of minimizers in Theorem 3.3.11,
we now investigate the type of convergence of the associated free boundaries. Our proof is inspired
by standard techniques commonly used in the study of blow-up limits (see, for example, 4.7 Blow-
up limits in [2]).

Theorem 3.3.15. Under the assumptions of Theorem 3.3.11, let {hn}n ⊂ (0,∞) be a monotone
sequence that converges to h > 0. For every n ∈ N, let un be a global minimizer of Jhn in Kγhn
and consider u+

h , u
−
h as in Corollary 3.3.13. The following statements hold:

(i) if hn ↘ h then ∂{un > 0} → ∂{u−h > 0} in Hausdorff distance locally in Ω;

(ii) if hn ↗ h then ∂{un > 0} → ∂{u+
h > 0} in Hausdorff distance locally in (−λ/2, λ/2) ×

(0, h);

(iii) if hn ↘ h (respectively hn ↗ h) then χ{un>0} → χ{u−h>0} (respectively to χ{u+
h>0}) in

L1
loc((−λ/2, λ/2)× (0, h)).

Proof. (i) Let hn ↘ h > 0 and consider a ball Br(x) ⊂ Ω such that Br(x) ∩ ∂{u−h > 0} = ∅.
Then either u−h ≡ 0 in Br(x) or u−h > 0 in Br(x). By Theorem 3.3.3 we have that for every n ∈ N
{un > 0} ⊂ {u−h > 0}; thus if u−h ≡ 0 in Br(x) so does un for every n ∈ N. In particular, this
implies that

Br/2(x) ∩ ∂{un > 0} = ∅. (3.3.16)

On the other hand, if u−h > 0 in Br(x), since by Theorem 3.3.11 we have that {un}n converges
uniformly to u−h in Br/2(x), then for n sufficiently large

un(x) ≥ 1

2
min

{
u−h (y) : y ∈ Br/2(x)

}
> 0
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for every x ∈ Br/2(x) and hence (3.3.16) is satisfied.
Conversely, if Br(x) ∩ ∂{un > 0} = ∅ then for all n sufficiently large we have that either

un > 0 in Br(x) or un = 0 in Br(x). Assume first that um > 0 in Br(x) for some m ∈ N. Then,
by Theorem 3.3.3, un > 0 in Br(x) for every n ≥ m and therefore u−h is harmonic in Br/2(x)

being the uniform limit of harmonic functions. Consequently, either u−h > 0 in Br/2(x) or u−h = 0
in Br/2(x). In both cases

Br/2(x) ∩ ∂{u−h > 0} = ∅. (3.3.17)

On the other hand, if un ≡ 0 in Br/2(x) for every n ∈ N then also u−h ≡ 0 in Br/2(x). This
shows that (3.3.17) is also satisfied in case. By a standard compactness argument one can show that
∂{un > 0} → ∂{u−h > 0} in Hausdorff distance locally in Ω.

(ii) Let hn ↗ h and consider a ball Br(x) ⊂ (−λ/2, λ/2)× (0, h) such that Br(x)∩ ∂{u+
h >

0} = ∅. As before, either u+
h ≡ 0 in Br(x) or u+

h > 0 in Br(x). If u+
h > 0 in Br(x), by

Theorem 3.3.3, un > 0 in Br(x) for every n ∈ N. Therefore (3.3.17) holds. On the other hand, if
u+ = 0, for every δ > 0 we can find m such that un ≤ δ in B3r/4(x) for every n ≥ m. Hence, for
δ = δ(r) sufficiently small and n ≥ m,

1
3
4r

 
B3r/4(x)

un dH1 ≤ 4δ

3r
≤ C(2/3)

√
h− y − 2

3

3

4
r.

Then we can conclude from Proposition 3.4.3 that un ≡ 0 in Br/2(x), proving that (3.3.16) holds.
The rest of the proof follows as in the previous case, therefore we omit the details.

(iii) Let hn ↘ h > 0 and letK be a compact subset of (−λ/2, λ/2)×(0, h). If dist(K, ∂{u−h >
0}) > 0 then either u−h ≡ 0 in K or u−h > 0 in K. Reasoning as the proof of (i), we can conclude
that either un ≡ 0 in K for every n or un > 0 in K for n sufficiently large; hence in this case
there is nothing to prove. Therefore, we can assume that K ∩ ∂{u−h > 0} 6= ∅. By (i), for every
0 < η < dK := dist(K, ∂((−λ/2, λ/2) × (0, h))) we can find m = m(η,K) such that if n ≥ m
then

∂{un > 0} ∩K ⊂ Nη(∂{u−h > 0}),

where for any set A ⊂ Ω, Nη(A) represents the tubular neighborhood of A of width η, i.e.

Nη(A) := {x ∈ Ω : dist(x, A) < η}.

Observe that by Proposition 3.4.3, for every ball Br(x) ⊂ K with center on ∂{u−h > 0}

1

r

 
∂Br(x)

u−h dH
1 ≥ C(1/2)

√
(h− y − r/2)+ > C(1/2)

√
dK .

Similarly, by Lemma 3.2 in [2] (see also Theorem 3.1 in [15]), there is a constant Cmax such that

1

r

 
∂Br(x)

u−h dH
1 ≤ Cmax

√
h− y + r < Cmax

√
2h.

Hence we are in a position to apply Theorem 4.5 in [2] to conclude that

H1(∂{u−h > 0} ∩K) <∞.

48



Since χ{un>0} → χ{u−h>0} in L1(K \ Nη(∂{u−h > 0})) and since

L2(Nη(∂{u−h > 0}) ∩K) ≤ 2ηH1(∂{u−h > 0} ∩K),

letting η → 0+ in the previous estimate concludes the proof.
The proof of (iii) for a monotonically increasing sequence hn ↗ h is almost identical, thus we

omit the details.

3.3.5 Symmetric global minimizers

In this section we prove the existence of a global minimizer which is symmetric with respect to the
y-axis and monotone in the x variable in the half-strips (−λ/2, 0)× (0,∞) and (0, λ/2)× (0,∞).
The results of this section are inspired by Section 7 in Chapter 3 of [53] and Theorem 5.10 in [15].

Theorem 3.3.16. Given m,λ, h > 0 and γ as in Theorem 1.1.1 there exists a symmetric global
minimizer of Jh in Kγ in the sense of Definition 1.1.4.

Proof. Let u ∈ Kγ be a global minimizer of Jh and set

v(x) :=

u(x, y) if x ≥ 0,

u(−x, y) if x < 0,

and

w(x) :=

u(x, y) if x ≤ 0,

u(−x, y) if x > 0.

Notice that v, w ∈ Kγ and that the minimality of u implies that Jh(u) = Jh(v) = Jh(w). There-
fore v and w are two minimizers that are even in the x-variable. In particular, the support of v
and w in Ω coincides with their Steiner symmetrizations with the respect to the y-axis (see Defi-
nition 2.3.1). Let v∗ be the Steiner symmetrization of v with respect to the variable x (see Defini-
tion 2.3.3). Then v∗ ∈ Kγ and by the Pólya-Szegö inequality (see Theorem 2.3.5), together with
Tonelli’s theorem, we obtain ˆ

Ω
|∇v∗|2 dx ≤

ˆ
Ω
|∇v|2 dx.

By definition of v∗, for every y > 0

ˆ λ/2

−λ/2
χ{v∗>0}(x, y) dx =

ˆ λ/2

−λ/2
χ{v>0}(x, y) dx

and thus, again by Tonelli’s theorem,

ˆ
Ω
χ{v∗>0}(h− y)+ dx =

ˆ h

0
(h− y)+

ˆ λ/2

−λ/2
χ{v∗>0}(x, y) dx dy

=

ˆ h

0
(h− y)+

ˆ λ/2

−λ/2
χ{v>0}(x, y) dx dy
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=

ˆ
Ω
χ{v>0}(h− y)+ dx.

Consequently, Jh(v∗) ≤ Jh(v) and similarly Jh(w∗) ≤ Jh(w). In turn, this implies that v∗ and
w∗ are also minimizers of Jh. This concludes the proof.

Corollary 3.3.17. Let u+
h , u

−
h be as in Corollary 3.3.13. Then u+

h , u
−
h are symmetric in the sense of

Definition 1.1.4.

Proof. Let h ∈ R+ \ Λ, where Λ is the set defined in the proof of Theorem 3.3.14, and let uh be
the unique global minimizer of Jh in Kγh . Then u+

h = u−h = uh = u∗h. On the other hand, if
h ∈ Λ, consider a sequence {hn}n ⊂ R \ Λ such that hn ↗ h and let un be the unique minimizer
of Jhn in Kγhn . Then, uhn = u∗hn and by Theorem 3.3.11 it follows that u+

h has all the desired
properties. The result for u−h follows similarly by considering a sequence {hn}n ⊂ R \ Λ such that
hn ↘ h.

Remark 3.3.18. Notice that the free boundary ∂{u > 0} can be described by the graph of a
function x = g(y), where g : (0, h)→ [−λ/2, 0] is defined via

g(y) := inf{x ∈ (−λ/2, 0) : u(x, y) > 0}. (3.3.18)

Proposition 3.3.19. For γ as in Theorem 1.1.1, let u ∈ Kγ be a symmetric minimizer of Jh and let
g be defined as above. Then g is a continuous function.

Proof. Step 1: We begin by showing that if ∂{u > 0} contains the line segment S of endpoints
(`, k), (L, k), with ` < L and k < h, then ∂{u > 0} = {y = k} ∩ Ω, a contradiction to
Lemma 3.2.6. Without loss of generality, we can assume that S is maximal, i.e., for every line
segment S′ such that S ⊂ S′ and S′ ⊂ ∂{u > 0}, it must be that S = S′. If ` = −λ/2 and
L = λ/2 there is nothing to do. Then assume without loss that L < λ/2. Since k < h, we are in
a position to apply Theorem 8.4 in [2], which gives a number ρ > 0, an analytic function f , and
a set of local coordinates such that the free boundary ∂{u > 0} coincides with the graph of f in
Bρ((L, k)) in the local coordinates. In turn, f agrees with an affine function on a subinterval of its
domain, and so by analyticity it must be equal to the same affine function on its whole domain; this
contradicts the maximality of S.
Step 2: Next we show that both one-sided limits

lim
y→ȳ+

g(y) and lim
y→ȳ−

g(y)

exist for every ȳ ∈ (0, h). To see this, suppose that

L := lim sup
y→ȳ+

g(y) > lim inf
y→ȳ+

g(y) =: `;

then we can find two sequences {yn}n, {zn}n such that yn ↘ ȳ, zn ∈ (yn+1, yn) and

lim
n→∞

g(yn) = L, lim
n→∞

g(zn) = `.

Let y := (L, ȳ). We claim that y ∈ ∂{u > 0}. To prove the claim, first observe that there exists a
δ > 0 such that Bδ(y) ⊂ Ω, and notice that u(y) = 0 since u is continuous in Ω and by assumption
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u(g(yn), yn) = 0 for every n ∈ N. Given η > 0, if n ∈ N is large enough then (g(yn), yn) ∈ Bη(y)
and since by assumption (g(yn), yn) ∈ ∂{u > 0} then there exists xn ∈ Bη((g(yn), yn)) such that
u(xn) > 0. This shows that y ∈ ∂{u > 0}. By Theorem 8.1 in [2] there exists ρ > 0 such
that Bρ ∩ ∂{u > 0} is the graph of a C1,α function (in an opportunely defined set of coordinates
centered at the point y). Let κ be the Lipschitz constant of this function in (−ρ, ρ). Then the length
of ∂{u > 0} in Bρ(y) cannot exceed 2ρ

√
1 + κ2. But on the other hand, observe that for n large

enough one also has that (g(yn), yn) ∈ Bρ/2(y) and (g(zn), zn) /∈ Bρ(y), thus showing that the
length of ∂{u > 0} cannot be finite. We have therefore arrived at a contradiction. The proof in the
other case is similar and therefore we omit the details.
Step 3: The previous step we shows that g cannot have essential discontinuities. To exclude jump
discontinuities it is enough to notice that these would correspond to horizontal line segments in the
free boundary of u, a behavior that is ruled out in the first step. Finally, in view of Corollary 3.6 in
[2], we see that removable discontinuities are also not possible. This concludes the proof.

3.4 Boundary regularity

As remarked in the introduction, the behavior of the free boundary near contact points away from
(±λ/2, γ) is well understood. This section is devoted to the study of the remaining case in which
the free boundary hits the fixed boundary exactly at (±λ/2, γ).

3.4.1 The bounded gradient lemma

The following result states that a symmetric minimizer is Lipschitz continuous in a neighborhood
of the contact point x0. This fact will be of fundamental importance in the following sections.

Theorem 3.4.1. Given m,λ, h > 0 and γ < h, let u ∈ Kγ be a symmetric global minimizer of Jh
in the sense of Definition 1.1.4 and assume that x0 = (−λ/2, γ) is an accumulation point for the
free boundary on ∂Ω, i.e.,

x0 ∈ ∂{u > 0} ∩ Ω. (3.4.1)

Then∇u is bounded in a neighborhood of x0.

Proof. It is enough to show that there exists a constant C such that for every µ > 0 sufficiently
small (with respect to λ, h, γ and h− γ)

|∇u(y)| ≤ C (3.4.2)

for y ∈ Ω ∩B2µ(x0) \Bµ(x0). For x ∈ B8(0) and µ small enough, let w be the rescaled function

w(x) :=
u(x0 + µx)

µ
.

Then w is harmonic in {w > 0} and for x = (x, y) ∈ ∂{w > 0}, by Theorem 8.1 in [2], we have
that the Bernoulli condition is satisfied in a classical sense, i.e.

∂νw(x) = ∂νu(x0 + µx) =
√
h− γ − µy, (3.4.3)
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where ν is the interior unit normal vector to {w > 0} at x. Then, to prove (3.4.2) is enough to show
that

|∇w(x)| ≤ C (3.4.4)

for x ∈ {w > 0} ∩B+
2 (0) \B+

1 (0), where B+
r (0) := Br(0)∩ {x > 0}. For x ∈ B8(0) we define

d(x) := dist(x, ∂{w > 0}), D(x) := dist(x, {(0, y) : y ≥ 0}). (3.4.5)

The proof of (3.4.4) is divided into several steps.
Step 1: In this first step we show that in order to obtain (3.4.4), it is enough to prove that for every
x ∈ B+

2 (0) \B+
1 (0) either

w(x) ≤ cmin{d(x), D(x)} (3.4.6)

or there exists ρ > 0 such that x = (x, y) ∈ B+
ρ/2(0, y) and for every y ∈ B+

ρ (0, y)

w(y) ≤ cρ. (3.4.7)

Indeed, assume that x ∈ B+
2 (0) \ B+

1 (0) is such that (3.4.6) is satisfied. Then, if let δ(x) :=
min{d(x), D(x)}, we have that w is harmonic in Bδ(x)(x) and

|∇w(x)| ≤ sup{|∇w(y)| : y ∈ Bδ(x)/2(x)} ≤ 4

δ(x)
sup{w(y) : y ∈ Bδ(x)(x)} ≤ 4c,

where the second inequality follows from the standard interior gradient estimates (see Theorem 2.10
in [54]). Similarly, for every x = (x, y) ∈ B+

2 (0) \B+
1 (0) such that (3.4.7) holds we see that

|∇w(x)| ≤ sup{|∇w(y)| : y ∈ B+
ρ/2(0, y)} ≤ K

ρ
sup{w(y) : y ∈ B+

ρ (0, y)} ≤ Kc,

where in the second inequality we have used the result of Theorem 2.2.11.
Step 2: Let c0 > 3 log 2

√
h. We claim that for every x ∈ B+

4 (0) for which d(x) < D(x) then

w(x) ≤ c0d(x). (3.4.8)

Notice that if w(x) = 0 then there is nothing to do, therefore, we can assume that w(x) > 0. Since
Bd(x)(x) ⊂ {w > 0} we have that w is harmonic in Bd(x)(x) and by definition there must be
x̄ ∈ ∂Bd(x)(x) ∩ ∂{w > 0}. Suppose that

w(x) > c0d(x). (3.4.9)

Then, by Harnack’s inequality (see Excercise 2.6 in [54]),

w(y) ≥ w(x)

3
>
c0d(x)

3

for every y ∈ Bd(x)/2(x). Let v be the harmonic function in the annulus Bd(x)(x) \ Bd(x)/2(x)
which satisfies the boundary conditionsv = c0d(x)/3 on ∂Bd(x)/2(x),

v = 0 on ∂Bd(x)(x).
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Writing v in polar coordinates centered at x, v must be the radial function

r 7→ c0d(x)

3 log 2
log

(
d(x)

r

)
By the maximum principle for harmonic functions, v ≤ w in the annulus, and since the equality
holds at x̄, it follows that

2c0

3
= ∂νv(x̄) ≤ ∂νw(x̄) ≤

√
h,

where in the last inequality we have used (3.4.3). In turn,

c0 ≤ 3 log 2
√
h,

which is a contradiction.
Step 3: Let

U0 := {x = (x, 0) : 1 < x < 4} .

In this step we show that there exists a constant c1 ≥ c0, independent of µ, such that for every
x ∈ U0 ∩ {w > 0} with 1 ≤ D(x) ≤ d(x) the following inequality holds

w(x) ≤ c1D(x). (3.4.10)

Let z0 = (s0, t0) be any point on ∂{w > 0} ∩ B+
1/4(0). Then, for every s such that (s, t0) ∈

B+
4 (0) \B+

1 (0), we must have that d(s, t0) < D(s, t0). Consequently,

w(s, t0) ≤ c0d(s, t0),

where c0 is the constant given in the previous step. Notice that by assumption d(x) ≥ D(x) ≥ 1,
and therefore B1/2(x) ⊂ {w > 0}. Moreover, the ball B1/4(x) contains the point (x, t0) and
Harnack’s inequality then yields

w(x) ≤ 3w(x, t0). (3.4.11)

On the other hand,

w(x, t0) ≤ c0d(x, t0) < c0D(x, t0) ≤ c0

√
x2 + t20 ≤

√
17c0x

4
=

√
17c0D(x)

4
, (3.4.12)

where in the last inequality we have used the fact that |t0| ≤ 1/4 ≤ x/4. The desired inequality
(3.4.10) follows directly from (3.4.11) and (3.4.12).
Step 4: The purpose of this step is to show that (3.4.10) holds, possibly with a larger constant, at
every point x ∈ B+

4 (0) \ B+
1 (0), such that y < 0 and D(x) ≤ d(x). We begin by considering the

case

x ∈ U1 :=

{
z = (s, t) ∈ B+

4 (0) \B+
1 (0) : t < 0 and dist(z, U0) <

1

4

}
.

Reasoning as in the previous step, we see that since d(x) ≥ D(x) ≥ 1 we are in a position to apply
Harnack’s inequality in B1/4(x) ⊂ B1/2(x) ⊂ {w > 0} to conclude that

w(x) ≤ 3w(z1)
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for every z1 ∈ U0 such that |x− z1| < 1/4. Additionally, it follows from the first two steps that

w(z1) ≤ c1 min{d(z1), D(z1)} ≤ c1D(z1) ≤ 4c1 ≤ 4c1D(x).

Define the sets Ui, i ≥ 2, recursively via

Ui :=

{
z = (s, t) ∈

(
B+

4 (0) \B+
1 (0)

)
\
⋃i−1
j=1Uj : t < 0 and dist(z, Ui−1) <

1

4

}
,

and notice that, by simple geometric considerations,

(
B+

4 (0) \B+
1 (0)

)
∩ {t ≤ 0} =

16⋃
j=0

Ui.

In particular, if x ∈ Ui is such that D(x) ≤ d(x) then an iteration of the argument above yields

w(x) ≤ 12ic1D(x). (3.4.13)

Step 5: We are left to consider the case where x = (x, y) ∈ B+
2 (0) \ B+

1 (0) is such that y > 0,
x ∈ {w > 0}, andD(x) ≤ d(x). Suppose that there exists a sequence {xn}n∈N ⊂ B+

4 (0)\B+
1 (0)

such that xn → x and such that d(xn) < D(xn) for every n. Then necessarily d(x) = D(x) and
by (3.4.8)

w(x) = lim
n→∞

w(xn) ≤ lim
n→∞

cd(xn) = cD(x). (3.4.14)

Hence, we can assume that such a sequence does not exist. Then there is 0 < δ < y such that for
every t ∈ (y − δ, y + δ) the point (x, t) is such that D(x, t) ≤ d(x, t), and in particular w(s, t) > 0
for every 0 < s < x. We define

a := inf {t ≤ y : for every t < t̄ < y + δ, w(s, t̄) > 0 for every s small} ,

b := sup {t ≥ y : for every y − δ < t̄ < t, w(s, t̄) > 0 for every s small} .

Notice that by (3.4.1), a ≥ 0. Moreover, y ∈ (a, b), and it follows from the definition that if b <∞,
every point of the form (s, a) and (s, b), s > 0, is the limit a sequence of points {xn}n∈N with the
property that d(xn) < D(xn). In turn, (3.4.8) and (3.4.14) imply that

w(s, a) ≤ cs, w(s, b) ≤ cs, (3.4.15)

for every s > 0 such that the points (s, a), (s, b) ∈ B+
4 (0). Assume first that y − a < b− y and fix

ε > 0 small enough so that

1− tan θ ≤ 1

4
, θ :=

π

4
− ε. (3.4.16)

Case 1: Assume that y − a ≤ x tan θ. Let x̄ = (x, a) and notice that

|x− x̄| = y − a ≤ x tan θ < x = D(x).

Since by assumption D(x) ≤ d(x) we have that Bx tan θ(x) ⊂ BD(x)(x) ⊂ {w > 0} and by
Harnack’s inequality we can find a constant c = c(ε) such that

w(x) ≤ cw(x̄) ≤ cx = cD(x),
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where in the last inequality we have used (3.4.15).
Case 2: Assume that tan θ < y − a ≤ x and let x̂ = (x, a+ x tan θ). By (3.4.16) we see that

|x− x̂| ≤ x (1− tan θ) ≤ x

4
.

In turn, Bx/2(x) ⊂ {w > 0}, and similarly to above, by Harnack’s inequality,

w(x) ≤ 3w(x̂) ≤ cD(x), (3.4.17)

where in the last inequality follows from the fact that x̂ satisfies the conditions of Case 1.
Case 3: Assume that

3

4
(y − a) ≤ x < y − a.

Since y − a < b− y it follows that B 1
2

(y−a)(x) ⊂ {w > 0}, and therefore

w(x) ≤ 3w(y − a, y) ≤ c(y − a) ≤ 4

3
cx =

4

3
cD(x),

where in the second inequality we have used the fact that the point (y−a, y) satisfies the conditions
of Case 2.
Case 4: Assume that

1

2
(y − a) ≤ x < 3

4
(y − a).

Then (3(y − a)/4, y) satisfies of the conditions of Case 3, and so, reasoning as above, we obtain
that

w(x) ≤ cw(3(y − a)/4, y − a) ≤ c(y − a) ≤ 2cx = 2cD(x).

Case 5: Finally, assume that x < (y − a)/2. Notice that B+
y−a(0, y) ⊂ {w > 0} by the non-

decreasing property of symmetric minimizers. Then, for every y ∈ B+
(y−a)/2(0, y), by the boundary

Harnack principle (see Theorem 11.5 in [28]) we have that

w(y) ≤Mw(y − a, y) ≤Mc(y − a),

where in the last inequality we used (3.4.17). If y − a > b− y then 4 ≥ 2y − a > b and therefore
we can repeat the same argument as above. This concludes the proof.

Remark 3.4.2. Note that Theorem 3.4.1 holds also for γ = h, with minor changes in the argument
for the first step. To be precise, let x be such that d(x) < D(x), and consider x̄ as in the first step.
If x̄ = (x̄, ȳ), with ȳ < 0 then (3.4.3) holds and we can proceed as above. On the other hand, if
x̄ = (x̄, 0) we must replace (3.4.3) with the estimate

|∇u(x)| ≤ C
√

3r,

which holds for every x in Br(x̄), as shown in Remark 3.5 (i) in [15]. The rest follows without
changes.
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3.4.2 Blow-up limits

Given a global minimizer u ∈ Kγ , consider a sequence ρn → 0+, a real number R > 0, and for
every n ∈ N sufficiently large define the rescaled functions

un(z) :=
u(x0 + ρnz)

ρn
, (3.4.18)

where z ∈ BR(0), and x0 = (−λ/2, γ). Notice that if ∇u is bounded in a neighborhood of x0 (a
condition that is guaranteed by Theorem 3.4.1 if, in addition, u is symmetric, γ < h, and x0 is an
accumulation point for the free boundary ∂{u > 0}), then

|∇un(z)| = |∇u(x0 + ρnz)| ≤ C,

where C is a positive constant independent of n and z. Since un(0) = 0 for every n ∈ N, it follows
that there exist a subsequence (which we don’t relabel) and a function w ∈W 1,∞

loc (R2) such that for
every R > 0,

un →w in C0,α(BR(0)) for all 0 < α < 1,

∇un
∗
⇀∇w in L∞(BR(0);R2).

(3.4.19)

The function w is called a blow-up limit of u at x0 with respect to the sequence {ρn}n.

Non-degeneracy properties of blow-up limits

Proposition 3.4.3. Given m,λ, h, γ > 0 and k ∈ (0, 1), there exists a positive constant Cmin(k)
such that for every minimizer u of Jh in Kγ and for every ball Br(x) ⊂ Ω, x = (x, y), if

1

r

 
∂Br(x)

u dH1 ≤ Cmin(k)
√

(h− y − kr)+,

then u ≡ 0 in Bkr(x). Moreover, if 0 < r < λ, the result is still valid for balls not contained in Ω,
provided Br(x) ∩ ∂Ω ⊂ {y > γ}.

For a proof of Proposition 3.4.3 we refer to Lemma 3.4 and Remark 3.5 in [2]; see also Theorem
3.6 and Remark 5.2 in [15].

Lemma 3.4.4. Given m,λ, h > 0 and γ < h, let u ∈ Kγ be a global minimizer of Jh and let w be
a blow-up limit of u at x0 = (−λ/2, γ) with respect to the sequence {ρn}n. Furthermore, assume
that there exist a constant β ≥ 1 and a sequence of points xn ∈ ∂{u > 0} ∩ Ω such that

ρn ≤ |xn − x0| ≤ βρn (3.4.20)

for every n large enough. Then w is not identically equal to zero.

Proof. By assumption, there exists a sequence of radii {rn}n, 1 ≤ rn ≤ β, such that

∂Bρnrn(x0) ∩ ∂{u > 0} ∩ Ω 6= ∅.

Thus, for every n ∈ N sufficiently large,

zn :=
xn − x0

ρn
∈ ∂Brn(0) ∩ ∂{un > 0} ∩ {s > 0},
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and furthermore we can assume that h − γ − 2βρn > 0. Given k ∈ (0, 1), for every such n,
consider the ball Brn(zn) and observe that by the change of variables x = x0 + ρnz, (3.4.18), and
Proposition 3.4.3

1

rn

 
∂Brn (zn)

un dH1 =
1

2πρnr2
n

ˆ
∂Brn (zn)

u(x0 + ρnz) dH1(z)

=
1

2πρ2
nr

2
n

ˆ
∂Bρnrn (xn)

u(x) dH1(x)

=
1

ρnrn

 
∂Bρnrn (xn)

u dH1 ≥ Cmin(k)
√

(h− yn − kρnrn)+.

In addition, we notice that by (3.4.20), yn ≤ γ + ρnrn, and therefore

1

rn

 
∂Brn (zn)

un dH1 ≥ Cmin(k)
√
h− γ − 2βρn. (3.4.21)

Let z̄n be such that un(z̄n) = sup{un(z) : z ∈ ∂Brn(zn)}. Then, by (3.4.21) we see that

un(z̄n) ≥
 
∂Brn (zn)

un dH1 ≥ rnCmin(k)
√
h− γ − 2βρn. (3.4.22)

Eventually extracting a subsequence (which we don’t relabel), we can find a point z̄ such that
z̄n → z̄. Consequently, by the uniform convergence of un to w, (3.4.22), and the fact that rn ≥ 1
for every n, we obtain

w(z̄) = lim
n→∞

un(z̄n) ≥ lim
n→∞

rnCmin(k)
√
h− γ − 2βρn ≥ Cmin(k)

√
h− γ > 0.

This concludes the proof.

Some preliminary results

The following classical lemma, due to Alt and Caffarelli, is a consequence of Proposition 3.4.3; for
a proof we refer to Section 4.7 in [2].

Lemma 3.4.5. Given m,λ, h > 0 and γ < h, let u ∈ Kγ be a global minimizer of Jh and let w be
a blow-up limit of u at x0. Then, if un is defined as in (3.4.18),

(i) ∂{un > 0} → ∂{w > 0} locally in Hausdorff distance in R2 \ {(0, y) : y ≥ 0},

(ii) χ{un>0} → χ{w>0} in L1
loc(R2 \ {(0, y) : y ≥ 0}).

Theorem 3.4.6. Given m,λ, h > 0 and γ < h, let u ∈ Kγ be a global minimizer of Jh and let w
be a blow-up limit of u at x0 = (−λ/2, γ). Then, for every R > 0, w is a global minimizer of

Fh(v) :=

ˆ
BR(0)

(
|∇v(z)|2 + χ{v>0}(z)(h− γ)

)
dz, (3.4.23)

over the set

K(w,R) :=
{
v ∈ H1

loc(R2) : v = w on ∂BR(0) and v(0, y) = 0 for 0 < y < R
}
. (3.4.24)
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The following proof is adapted from Lemma 5.4 in [2].

Proof. For un defined as in (3.4.18) and n large enough so that 0 < γ − Rρn < γ + Rρn < h, let
η ∈ C1

0 (BR(0); [0, 1]) and for v ∈ K(w,R) set

vn(z) := v(z) + (1− η(z))(un(z)− w(z))

and, for x ∈ BRρn(x0), define

wn(x) := ρnvn

(
x− x0

ρn

)
.

Notice that by (3.4.18),wn = u on ∂BRρn(x0) in the sense of traces and furthermore thatw(−λ/2, y) =
0 for L1-a.e. y ∈ (γ, γ +Rρn). Then the minimality of u implies that

ˆ
BRρn (x0)

(
|∇u|2 + χ{u>0}(h− y)

)
dx ≤

ˆ
BRρn (x0)

(
|∇wn|2 + χ{wn>0}(h− y)

)
dx,

and the change of variables x = x0 + ρnz, z = (s, t), then yields
ˆ
BR(0)

(
|∇un|2 + χ{un>0}(h− γ − ρnt)

)
dz

≤
ˆ
BR(0)

(
|∇vn|2 + χ{vn>0}(h− γ − ρnt)

)
dz.

(3.4.25)

Since

∇vn(z) = ∇v(z) + (1− η(z))(∇un(z)−∇w(z))−∇η(z)(un(z)− w(z)),

we observe that

|∇vn|2 − |∇un|2 = |∇v|2 + |∇η|2|un − w|2 − 2(un − w)∇η · ∇v + (1− η)2|∇un −∇w|2

+ 2(1− η)(∇un −∇w) · (∇v −∇η(un − w))− |∇un|2

≤ |∇v|2 + |∇η|2|un − w|2 − 2(un − w)∇η · ∇v − 2∇un · ∇w + |∇w|2

+ 2(1− η)(∇un −∇w) · (∇v −∇η(un − w)), (3.4.26)

where in the last inequality we have used the fact that (1 − η)2 ≤ 1. Fix ε > 0 and let Rε := {z :
dist(z, {(0, y) : y ≥ 0}) < ε}. Then, by Lemma 3.4.5, it follows that

ˆ
BR(0)\Rε

χ{un>0}(h− γ − ρnt) dz →
ˆ
BR(0)\Rε

χ{w>0}(h− γ) dz (3.4.27)

Using the fact that
χ{vn>0} ≤ χ{v>0} + χ{η<1},

58



combining (3.4.25), (3.4.26), (3.4.27), letting n → ∞, and using the fact that un ⇀ u in H1, we
deduce thatˆ

BR(0)
|∇w|2 dz +

ˆ
BR(0)\Rε

χ{w>0}(h− γ) dz

≤
ˆ
BR(0)

(
|∇v|2 + (χ{v>0} + χ{η<1})(h− γ)

)
dz.

Letting ε→ 0+, by the monotone convergence theorem we see that

Fh(w) ≤
ˆ
BR(0)

(
|∇v|2 + (χ{v>0} + χ{η<1})(h− γ)

)
dz.

The desired result follows from an application of the dominated convergence theorem, choosing a
sequence of functions ηk such that ηk ↗ 1.

The next result is commonly referred to as a non-oscillation lemma (see, for example, Lemma
6.1 in [6], Lemma 5.2 in Chapter 3 of [53], and Lemma 2.4 in [74]).

Lemma 3.4.7. Given m,λ, h > 0 and γ < h, let u ∈ Kγ be a global minimizer of Jh and let w
be a blow-up limit of u at x0 = (−λ/2, γ). Assume that there exists an open set G contained in
{w > 0}, which is compactly supported in R2 \ {(0, y) : y ≥ 0} and bounded by the line segments

`i := {(si, t) : ti < t < ti + εi}, i = 1, 2,

and two non intersecting arcs φi, i = 1, 2, contained in the free boundary ∂{w > 0} and joining
the points (s1, t1) with (s2, t2) and (s1, t1 + ε1) with (s2, t2 + ε2). Then

|s2 − s1| ≤
(ε1 + ε2) supG |∇w|

2
√
h− γ

.

Proof. Observe that w is harmonic in G and therefore by the divergence theorem

0 =

ˆ
∂G
∂νw dH1 =

2∑
i=1

ˆ
`i

∂νw dH1 +

2∑
i=1

ˆ
φi

∂νw dH1.

Notice that
−
ˆ
φi

∂νw dH1 = H1(φi)
√
h− γ ≥ |s2 − s1|

√
h− γ,

while ˆ
`i

∂νw dH1 ≤ sup
G
|∇w|εi.

Consequently

2|s2 − s1|
√
h− γ ≤ −

2∑
i=1

ˆ
φi

∂νw dH1 =

2∑
i=1

ˆ
`i

∂νw dH1 ≤ sup
G
|∇w|(ε1 + ε2),

and the desired result readily follows.
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Convergence of free boundaries for symmetric blow-up limits

Throughout this subsection we will work under the assumptions of Theorem 3.4.1. In particular, if
w is a blow-up limit with respect to the sequence {ρn}n of the symmetric global minimizer u, then
the map s 7→ w(s, t) is increasing in [0,∞) (and decreasing in (−∞, 0]) for L1-a.e. t ∈ R. In turn,
its free boundary restricted to the half-plane {s > 0} coincides with the set {(g0(t), t) : t ∈ R},
where g0 : R→ [0,∞] is defined via

g0(t) := inf{s > 0 : w(s, t) > 0}. (3.4.28)

We recall that by Proposition 3.3.19 the function g0 is continuous in its effective domain. Further-
more, if we let

gn(t) :=
g(γ + ρnt)− g(γ)

ρn
=
g(γ + ρnt) + λ

2

ρn
(3.4.29)

for g defined as in (3.3.18), then we have that

gn(t) = inf{s > 0 : un(s, t) > 0}. (3.4.30)

Thus the free boundary of un in BR(0) ∩ {s > 0} is given by the graph of gn. It is then natural to
ask whether gn converges to g0.

Lemma 3.4.8. Let gn, g0 be given as above. Then for every τ ∈ R such that g0(τ) < ∞ we have
that g0 is finite in a neighborhood of τ and

g0(τ) = lim
n→∞

gn(τ). (3.4.31)

Proof. Step 1: Let τ be as in the statement. We begin by proving that either g0(t) < ∞ for every
t < τ or g0(t) < ∞ for every t > τ . Indeed, assume for the sake of contradiction that there exist
t1 < τ < t2 such that g0(t1) = g0(t2) = ∞, so that w(s, t1) = w(s, t2) = 0 for every s > 0
by (3.4.28), and fix s > g0(τ). For every M > 0, by the continuity of w, there exist T1, T2 ∈ R,
ε1, ε2 > 0 such that

t1 ≤ Ti < τ < Ti + εi ≤ t2

and with the property that

{(s, T1), (s, T1 + ε1), (s+M,T2), (s+M,T2 + ε)} ⊂ ∂{w > 0}.

Let G be the region bounded by the free boundary ∂{w > 0} and the two vertical line segments
that connect the points (s, T1) with (s, T1 + ε1) and (s + M,T2) with (s + M,T2 + ε2). Then
Lemma 3.4.7 yields

M ≤ C(t2 − t1)√
h− γ

,

a contradiction to the fact that M is arbitrary. Hence g0(t) < ∞ for all t ≤ τ or for all t ≥ τ .
Without loss of generality, we assume the latter. Arguing by contradiction, assume that there exists
a sequence tn → τ− such that g0(tn) =∞. Reasoning as above we see that necessarily g0(t) =∞
for t1 ≤ t < τ . In turn, since w is continuous, it must be the case that w(s, τ) = 0 for every s > 0,
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a contradiction to the assumption that g0(τ) <∞.
Step 2: Suppose that there exists ε > 0 such that

L := lim sup
n→∞

gn(τ) ≥ g0(τ) + ε. (3.4.32)

By eventually extracting a subsequence we can assume that the limsup is achieved, and furthermore
we notice that for every n sufficiently large, (3.4.30) and (3.4.32) imply that un(L − ε/2, τ) = 0.
Since the map s 7→ un(s, τ) is increasing by assumption, we have that un(s, τ) = 0 for every
s ≤ L − ε/2. In turn, passing to the limit in n, w(s, τ) = 0 for every s ≤ L − ε/2, which is in
contradiction with the definition of g0 (see (3.4.28) and (3.4.32)). This shows that

lim sup
n→∞

gn(τ) ≤ g0(τ).

Notice that if g0(τ) = 0 then there is nothing else to prove. Therefore, we can assume without loss
that g0(τ) > 0. Assume for the sake of contradiction that for some ε > 0

lim inf
n→∞

gn(τ) ≤ g0(τ)− 2ε. (3.4.33)

Since g0 is continuous in a neighborhood of τ , there exists δ = δ(ε, τ) > 0 such that if |t− τ | < δ
then

g0(τ)− ε ≤ g0(t).

Notice that without loss of generality we can assume that 4ε < g0(τ). Fix r < min{ε, δ} and set
σ := g0(τ)− ε− r. Then Br(σ, τ) ⊂ {w = 0} and thus it follows from Proposition 3.4.3 that

Br/2(σ, τ) ⊂ {un = 0}

for every n sufficiently large. In particular, un(s, τ) = 0 for every s ≤ σ + r/2 and therefore

gn(τ) ≥ σ +
r

2
≥ g0(τ)− 3

2
ε. (3.4.34)

Since (3.4.34) is in contradiction with (3.4.33) we conclude that

lim inf
n→∞

gn(τ) ≥ g0(τ),

which completes the proof.

3.4.3 A boundary monotonicity formula

In this section we show that the boundary monotonicity formula of Weiss (see Theorem 3.3 and
Corollary 3.4 in [92]) holds at the point x0 = (−λ/2, γ) for global minimizers of Jh in Kγ with
bounded gradient in a neighborhood of x0. In particular, in view of Theorem 3.4.1, the following
theorem applies to symmetric global minimizers.

Theorem 3.4.9. Given m,λ, h > 0 and γ < h, let u be a global minimizer of Jh in Kγ . Fur-
thermore, let r0 < min{γ, h − γ, λ} be such that ∇u is bounded in Br0(x0) and for r ∈ (0, r0)
define

Φ(r) := r−2

ˆ
Br(x0)

(
|∇u|2 + χ{u>0}(h− y)

)
dx− r−3

ˆ
∂Br(x0)

u2 dH1. (3.4.35)
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Then for L1-a.e. ρ and σ such that 0 < ρ < σ < r0,

Φ(σ)− Φ(ρ) =

ˆ σ

ρ
r−2

ˆ
∂Br(x0)

2
(
∂νu−

u

r

)2
dH1dr −

ˆ σ

ρ
r−3

ˆ
Br(x0)

χ{u>0}(y − γ) dxdr.

Proof. Step 1: For simplicity we consider the translated function

w(x) = u(x0 + x).

We begin by showing that for L1-a.e. r ∈ (0, r0),
ˆ
Br(0)

χ{w>0}(2h− 2γ − 3y) dx

=

ˆ
∂Br(0)

r
(
|∇w|2 − 2 (∂νw)2 + χ{w>0}(h− γ − y)

)
dH1.

(3.4.36)

To this end, we consider the functional

Fh(v) :=

ˆ
Br0 (0)

(
|∇v|2 + χ{v>0}(h− γ − y)

)
dx,

defined for v ∈ K(w, r0) (see (3.4.24)). By the minimality of u, w is necessarily a global minimizer
of Fh in K(w, r0), and in particular it must be the case that the first variation of Fh with respect to
domain variations vanishes at w. To be precise, for every φ = (φ1, φ2) ∈ C1(Br0(0);R2) which is
compactly supported in Br0(0) \ {(0, y) : y ≥ 0}, if we set wε(x) := w(x+ εφ(x)) we have that
wε ∈ K(w, r0) for every ε sufficiently small and

0 = − d

dε
Fh(wε)|ε=0

(3.4.37)

=

ˆ
Br0 (0)

(
|∇w|2 divφ− 2∇wDφ∇w + χ{w>0}(h− γ − y) divφ− χ{w>0}φ2

)
dx.

For r ∈ (0, r0) and δ > 0 define

ηδ(x) := max

{
0,min

{
1,

1

δ
(r − |x|)

}}
, (3.4.38)

ξδ(x) := min

{
1,

1

δ
dist(x, {(0, y) : y ≥ 0})

}
. (3.4.39)

Letφδ(x) := ηδ(x)ξδ(x)x. By a standard density argument, for every δ > 0 we can find a sequence
{φδ,ε}ε of functions in C1

0 (Br0(0);R2) with compact support in Br0(0) \ {(0, y) : y ≥ 0} such
that φδ,ε → φδ in W 1,∞(Br0(0),R2). Using φδ,ε as test function in (3.4.37), letting ε → 0, and
noticing that

Dφδ = ηδξδ Id +ηδ∇ξδ ⊗ x+ ξδ∇ηδ ⊗ x,

divφδ = 2ηδξδ + ηδ∇ξδ · x+ ξδ∇ηδ · x,
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we obtain the identity
Iδ1 + Iδ2 + Iδ3 = 0, (3.4.40)

where

Iδ1 :=

ˆ
Br0 (0)

ηδξδχ{w>0}(2h− 2γ − 3y) dx,

Iδ2 :=

ˆ
Br0 (0)

ξδ

(
|∇w|2∇ηδ · x− 2(∇w · x)(∇w · ∇ηδ) + χ{w>0}(h− γ − y)∇ηδ · x

)
dx,

Iδ3 :=

ˆ
Br0 (0)

ηδ

(
|∇w|2∇ξδ · x− 2(∇w · x)(∇w · ∇ξδ) + χ{w>0}(h− γ − y)∇ξδ · x

)
dx.

By (3.4.38), (3.4.39), and the monotone convergence theorem we have that

Iδ1 →
ˆ
Br(0)

χ{w>0}(2h− 2γ − 3y) dx. (3.4.41)

Observe that

∇ηδ(x) =


− x

δ|x|
in Br(0) \Br−δ(0),

0 otherwise.

Thus we can rewrite Iδ2 as follows:

Iδ2 = − 1

δ

ˆ
Br(0)\Br−δ(0)

ξδ|x|

(
|∇w|2 − 2

(
∇w · x

|x|

)2

+ χ{w>0}(h− γ − y)

)
dx

= − 1

δ

ˆ r

r−δ

ˆ
∂Bs(0)

ξδs

(
|∇w|2 − 2

(
∇w · x

s

)2
+ χ{w>0}(h− γ − y)

)
dH1(x)ds.

Consequently, by Fubini’s theorem and Lebesgue’s differentiation theorem, for L1-a.e. 0 < r < r0,
we have that

Iδ2 → −
ˆ
∂Br(0)

r
(
|∇w|2 − 2 (∂νw)2 + χ{w>0}(h− γ − y)

)
dH1 (3.4.42)

as δ → 0+. By (3.4.40), (3.4.41), and (3.4.42), it follows that to conclude the proof of (3.4.36) we
are left to show that Iδ3 → 0 as δ → 0+. To this end, we let

Ω+
δ := {x ∈ Br(0) : x > 0, y > 0, and dist(x, {(0, y) : y ≥ 0}) < δ} ,

Ω−δ := {x ∈ Br(0) : x < 0, y > 0, and dist(x, {(0, y) : y ≥ 0}) < δ} ,

Ω∗δ := {x ∈ Bδ(0) : y < 0} ,
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and notice that

∇ξδ(x) =



(±δ−1, 0) in Ω±δ ,

x

δ|x|
in Ω∗δ ,

0 otherwise.

(3.4.43)

From (3.4.43) and the fact that

dist(x, {(0, y) : y ≥ 0}) =


|x| in Ω±δ ,

|x| in Ω∗δ ,

we see that |∇ξδ · x| ≤ 1 in Br0(0), and consequently∣∣∣∣∣
ˆ
Br0 (0)

ηδ
(
|∇w|2 + χ{w>0}(h− γ − y)

)
∇ξδ · x dx

∣∣∣∣∣
≤
ˆ
{∇ξδ 6=0}

(
|∇w|2 + χ{w>0}(h− γ − y)

)
dx.

Furthermore, the right-hand side in the previous inequality vanishes as δ → 0+ by the dominated
convergence theorem. It remains to show thatˆ

Br0 (0)
ηδ (x∂xw + y∂yw) (∇w · ∇ξδ) dx→ 0

as δ → 0+. Since |∇ξδ||x| ≤ 1, reasoning as above we see that∣∣∣∣∣
ˆ
Br0 (0)

ηδx∂xw (∇w · ∇ξδ) dx

∣∣∣∣∣ ≤
ˆ
{∇ξδ 6=0}

|∂xw||∇w| dx→ 0.

Fix ε ∈ (0, r). Using (3.4.43) and the fact that ηδ vanishes outside Br(0), we see that∣∣∣∣∣
ˆ

Ω+
δ

ηδy∂yw(∇w · ∇ξδ) dx

∣∣∣∣∣ ≤ 1

δ

ˆ
(0,δ)×(0,r)

y|∂yw||∂xw| dx

≤ ε

δ

ˆ
(0,δ)×(0,ε)

|∂yw||∂xw| dx+
r

δ

ˆ
(0,δ)×(ε,r)

|∂yw||∂xw| dx.

Since∇w is bounded, the first term on the right-hand side can be bounded uniformly in δ, and so it
vanishes as ε→ 0+. By Theorem 1.1 in [29], we have that the extended free boundary

∂{w > 0} ∩ Ω+
δ \Bε/2(0)

is of class C1,1/2. In turn, it follows from Corollary 8.36 in [54] that

w ∈ C1,1/2({w > 0} ∩ Ω+
δ \Bε(0)). (3.4.44)
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In particular, this implies that∇τw = 0 on ∂{w > 0}\Bε(0). Consequently, a change of variables
and the dominated convergence theorem give

r

δ

ˆ
(0,δ)×(ε,r)

|∂yw||∂xw| dx = r

ˆ
(0,1)×(ε,r)

|∂yw(δx, y)||∂xw(δx, y)| dx→ 0

as δ → 0+. Since similar estimates hold in Ω−δ and Ω∗δ , this concludes the proof of (3.4.36).
Step 2: This step is dedicated to the proof of the integration by parts formula

ˆ
Br(0)

|∇w|2 dx =

ˆ
∂Br(0)

w∂νw dH1, (3.4.45)

which holds for L1-a.e. r ∈ (0, r0), and is in spirit very close to the result of Lemma 3.1 in [44].
Let

Uε,η := Br(0) \ (Bε(0) ∪ {x : dist(x, {(0, y) : y ≥ 0}) < η}) ,

and observe that by the divergence theorem, together with the fact that w = 0 on ∂{w > 0},
ˆ
Uε,η∩{w>0}

|∇w|2 dx =

ˆ
∂Uε,η∩{w>0}

w∂νw dH1.

Next, using the fact that w is Lipschitz continuous in Br0(0), that w(0, y) = 0 for y > 0, and
(3.4.44), we obtain

lim
ε→0+

lim
η→0+

ˆ
Uε,η∩{w>0}

|∇w|2 dx = lim
ε→0+

ˆ
∂(Br(0)\Bε(0))

w∂νw dH1 =

ˆ
∂Br(0)

w∂νw dH1,

and the desired formula (4.3.1) follows immediately upon noticing that
ˆ
Br(0)

|∇w|2 dx = lim
ε→0+

lim
η→0+

ˆ
Uε,η∩{w>0}

|∇w|2 dx.

Step 3: By a direct computation we see that for L1-a.e r ∈ (0, r0),

Φ′(r) = r−2

ˆ
∂Br(0)

(
|∇w|2 + (h− γ − y)χ{w>0} + 2r−2w2 − 2r−1w(∂νw)

]
dH1

− 2r−3

ˆ
Br(0)

(
|∇w|2 + χ{w>0}(h− γ − y)

)
dx (3.4.46)

where Φ is defined in (3.4.35) and we recall that w(x) = u(x0 + x). Moreover, by (3.4.36) and
(4.3.1), we can rewrite (3.4.46) as

Φ′(r) = 2r−2

ˆ
∂Br(0)

(
∂νw −

w

r

)2
dH1 − r−3

ˆ
Br(0)

χ{w>0}y dx,

and the desired formula follows by integration.

Remark 3.4.10. Under the additional assumption that x0 is an isolated accumulation point for
∂{u > 0} on ∂Ω, the regularity result of [29] is not needed for the proof of Theorem 3.4.9.
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Corollary 3.4.11. Let Φ be defined as in Theorem 3.4.9. Then Φ has finite right limit at zero, i.e.,

lim
ρ→0+

Φ(ρ) =: Φ(0+) ∈ R.

Proof. Fix 0 < σ < r0 and consider ρ < σ. By Theorem 3.4.9

Φ(σ) = Φ(ρ) +A(ρ, σ) +B(ρ, σ) + C(ρ, σ),

where

A(ρ, σ) :=

ˆ σ

ρ
r−2

ˆ
∂Br(x0)

2

(
∂νu(x)− u(x)

r

)2

dH1(x)dr,

B(ρ, σ) := −
ˆ σ

ρ
r−3

ˆ
Br(x0)

χ{u>0}(y − γ)χ{y≥γ} dxdr,

C(ρ, σ) := −
ˆ σ

ρ
r−3

ˆ
Br(x0)

χ{u>0}(y − γ)χ{y<γ} dxdr.

Notice that the maps ρ 7→ A(ρ, σ) and ρ 7→ C(ρ, σ) are decreasing, while r 7→ B(ρ, σ) is increas-
ing. Then

lim
ρ→0+

A(ρ, σ) + C(ρ, σ) = sup{A(ρ, σ) + C(ρ, σ) : 0 < ρ < σ},

lim
ρ→0+

B(ρ, σ) = inf{B(ρ, σ) : 0 < ρ < σ} <∞.

In turn, Φ admits a limit as ρ→ 0+ as it was claimed. Moreover, the fact that |Φ(0+)| <∞ follows
upon recalling that u is Lipschitz continuous in a neighborhood of x0 and u(x0) = 0. Hence
u(x)2 ≤ C|x− x0|2, and so Φ is bounded (see 3.4.35).

Corollary 3.4.12. Under the assumptions of Theorem 3.4.9, let w be a blow-up limit of u with
respect to the sequence {ρn}n. Then

∇w(z) · z = w(z) for L2-a.e. z ∈ R2. (3.4.47)

Proof. For every r > 0 and n large enough so that ρnr < r0, by the change of variables x =
x0 + ρnz we see that (3.4.35) becomes

Φ(ρnr) = r−2

ˆ
Br(0)

(
|∇un|2 + χ{un>0}(h− γ − ρnt)

)
dz − r−3

ˆ
∂Br(0)

u2
n dH1,

where the functions un are defined as in (3.4.18). Therefore for every 0 < R < S and n large
enough we have the formula

Φ(ρnS)−Φ(ρnR) =

ˆ S

R
r−2

ˆ
∂Br(0)

2
(
∂νun −

un
r

)2
dH1dr−

ˆ S

R
r−3

ˆ
Br(0)

χ{un>0}ρnt dxdr.
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Letting n→∞, by Corollary 3.4.11, we obtain

0 = lim
n→∞

Φ(ρnS)− Φ(ρnR) = lim inf
n→∞

ˆ S

R
r−2

ˆ
∂Br(0)

2
(
∂νun −

un
r

)2
dH1dr

≥
ˆ
BS(0)\BR(0)

2|z|−4 (∇w(z) · z − w(z))2 dz. (3.4.48)

In turn, the integrand in (3.4.48) must be zero L2-a.e. in BS(0) \ BR(0) By the arbitrariness of
R,S, this concludes the proof.

3.4.4 The proof of Theorem 1.1.5

Theorem 3.4.13. Given m,λ, h > 0 and γ < h, let u be a symmetric global minimizer of Jh in Kγ
in the sense of Definition 1.1.4, and w be a blow-up limit of u at x0. Then either w is identically
equal to zero or w(s, t) = (h− γ)(−t)+.

Proof. Step 1: We begin by showing that w is a positively homogenous function of degree one. To
see this let z ∈ {w > 0} and notice that

d

dt

(
1

t
w(tz)

)
=

1

t
∇w(tz) · z − 1

t2
w(tz) =

1

t2
(∇w(tz) · tz − w(tz)) = 0

for every t > 0 such thatw(tz) > 0, where in the last equality we have used (3.4.47). Consequently,
it must be the case that w(tz) = tw(z) for every such that, and furthermore it follows that the
entire ray {tz : t ∈ R+} must necessarily be contained in {w > 0}. In particular, each connected
component of {w > 0} is a sector with vertex at the origin. Next, we claim that the opening angle
of every such sector is π, i.e. each connected component of {w > 0} is a half-plane passing through
the origin. To this end, we can find a rotation R, a set of polar coordinates (r, θ), and a function f
in such a way that

f(r, θ) = w(R(r cos θ, r sin θ)),

and ∆f = 0 in Sα := {(r, θ) : 0 < r <∞, 0 < θ < α},

f = 0 on ∂Sα.
(3.4.49)

Notice that the homogeneity of w implies that

f(r, θ) = rf(1, θ) = rh(θ),

for a function h which satisfies
h′′(θ) + h(θ) = 0.

In turn, h(θ) = c1 cos θ + c2 sin θ. Moreover, the boundary conditions in (3.4.49) give that c1 = 0
and c2 sinα = 0. Since f > 0 in Sα, then it must be the case that α = π.
Step 2: Since u is symmetric about the line {x = −λ/2}, then un, defined as in (3.4.18), is
symmetric about the t-axis, and so is w. This, together with the fact that w(0, t) = 0 for t ≥ 0,
shows that if w is not identically equal to zero then either w(s, t) = (h − γ)(−t)+ or w(s, t) =
(h − γ)|s|. The desired result follows upon noticing that w(s, t) = (h − γ)|s| does not minimize
the functional Fh over the set K(w, 1) (see 3.4.24), a contradiction to Theorem 3.4.6.
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Proof of Theorem 1.1.5. For g be defined as in (3.3.18), assume for the sake of contradiction that

lim inf
y→∞

|g(y)− g(γ)|
|y − γ|

= α <∞,

let {yn}n be a sequence for which the limit is realized, and assume without loss of generality that
{yn}n is monotone. Let ρn := |yn − γ| and notice that for n large enough

ρn ≤
√

(g(yn)− g(γ))2 + (yn − γ)2 ≤ β|yn − γ| = βρn, where β :=
√
α2 + 2.

In turn, Lemma 3.4.4 gives that every blow up of u at x0 with respect to the sequence {ρn}n is not
identically equal to zero. Then, it follows from Theorem 3.4.13 that the half-plane solution

w(s, t) = (h− γ)(−t)+ (3.4.50)

is the unique blow-up limit. Assume first that yn → γ+, set ρn := yn − γ and let un be defined as
in (3.4.18). Notice that (3.4.29)

0 ≤ gn(1) =
g(yn)− g(γ)

yn − γ
=
g(yn) + λ

2

yn − γ
→ α. (3.4.51)

On the other hand, since {t ≥ 0} ⊂ {w = 0} by (3.4.50), it must be the case that un ≡ 0 in
B1/2(α + 1, 1) by Lemma 3.4.5. This contradicts (3.4.51). Next, we assume that yn → γ−. Then
gn(−1)→ α and by the uniform convergence of un to w we see that

0 = un(gn(−1),−1)→ w(α,−1) = h− γ > 0.

This concludes the proof.
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Chapter 4

Singular perturbations of mixed
Dirichlet-Neumann boundary value
problems

4.1 Gamma-convergence of order zero and global minimizers

Throughout the section we study the mixed problem (1.2.3) and the associated minimization prob-
lem under the following assumptions on the set Ω and on ΓD, namely the portion of the boundary
where the Robin boundary condition is imposed:

(i) Ω is an open, bounded and connected subset of RN ,

(ii) ∂Ω is Lipschitz continuous,

(iii) ΓD is a non-empty and relatively open subset of ∂Ω.

(H0)

Furthermore, define ΓN := ∂Ω \ ΓD. Notice that for the purposes of this section we do not assume
that ΓN 6= ∅; analogous results hold (with trivial changes) if ΓN = ∅.

Theorem 4.1.1. Let Ω be as in (H0), f ∈ L2(Ω), g ∈ L2(∂Ω), and ε ∈ (0, 1). Then the functional
Fε, defined as in (1.2.7), admits a unique minimizer uε ∈ H1(Ω). Furthermore, uε is a weak
solution to the mixed Neumann-Robin problem (1.2.3).

The proof of Theorem 4.1.1 is based on the following well-known result.

Lemma 4.1.2. Let Ω be as in (H0) and for u ∈ H1(Ω) set

|||u|||H1(Ω) :=
(
‖∇u‖2L2(Ω;RN ) + ‖u‖2L2(ΓD)

)1/2
. (4.1.1)

Then |||·|||H1(Ω) defines a norm on H1(Ω) that is equivalent to the standard norm, i.e., there are two
constants κ1, κ2, which only depend on the geometry of Ω and ΓD, such that for every u ∈ H1(Ω),

κ1|||u|||H1(Ω) ≤ ‖u‖H1(Ω) ≤ κ2|||u|||H1(Ω).
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Proof of Theorem 4.1.1. By Hölder’s inequality, we have that for every ε ∈ (0, 1) and for every
u ∈ H1(Ω),

Fε(u) ≥ 1

2
‖∇u‖2L2(Ω;RN ) − ‖f‖L2(Ω)‖u‖L2(Ω) +

1

2
‖u− g‖2L2(ΓD). (4.1.2)

Young’s inequality then implies

‖u− g‖2L2(ΓD) = ‖u‖2L2(ΓD) + ‖g‖2L2(ΓD) − 2

ˆ
ΓD

ug dHN−1

≥ 1

2
‖u‖2L2(ΓD) − 7‖g‖2L2(ΓD),

(4.1.3)

and thus, combining the estimates (4.1.2) and (4.1.3) with Lemma 4.1.2, we obtain

Fε(u) ≥ 1

4
|||u|||2H1(Ω) − κ2‖f‖L2(Ω)|||u|||H1(Ω) −

7

2
‖g‖2L2(ΓD).

In turn,
inf{Fε(u) : ε ∈ (0, 1), u ∈ L2(Ω)} > −∞

and for every ε ∈ (0, 1) the functional Fε is coercive. Since Fε is lower semicontinuous with
respect to weak convergence in L2(Ω), the existence of a global minimizer uε follows from the
direct method in the calculus of variations and the assertion about uniqueness is a consequence of
the strict convexity of the functional Fε. Moreover, one can check that uε is a weak solution to
(1.2.3) by considering variations of the functional Fε. We omit the details.

Proposition 4.1.3 (Compactness). Under the assumptions of Theorem 1.2.3, if εn → 0+ and un
are such that

sup{Fεn(un) : n ∈ N} <∞,

then there exist a subsequence {unk}k of {un}n, u ∈ V and v ∈ L2(ΓD) such that

unk ⇀ u in H1(Ω),

ε−1/2
nk

(unk − g) ⇀ v in L2(ΓD).

Proof. Let M := supnFεn(un) and assume without loss of generality that ε1 ≤ 1. Reasoning as in
the proof of Theorem 4.1.1, by Hölder’s inequality we see that

M ≥ 1

2
‖∇un‖2L2(Ω;RN ) − ‖f‖L2(Ω)‖un‖L2(Ω) +

1

2εn
‖un − g‖2L2(ΓD) (4.1.4)

for every n ∈ N. Young’s inequality, together with the fact that εn ≤ 1, then implies that

1

2εn
‖un − g‖2L2(ΓD) ≥

1

4
‖un − g‖2L2(ΓD) +

1

4εn
‖un − g‖2L2(ΓD)

≥ 1

8
‖un‖2L2(ΓD) −

7

4
‖g‖2L2(ΓD) +

1

4εn
‖un − g‖2L2(ΓD),

(4.1.5)

70



and thus, combining the estimates (4.1.4) and (4.1.5) with Lemma 4.1.2, and using the notation
(4.1.1), we arrive at

M ≥ 1

8
|||un|||2H1(Ω) − κ2‖f‖L2(Ω)|||un|||H1(Ω) −

7

4
‖g‖2L2(ΓD) +

1

4εn
‖un − g‖2L2(ΓD).

Consequently, {un}n is bounded in H1(Ω) by Lemma 4.1.2, and furthermore {ε−1/2
n (un − g)}n is

bounded in L2(ΓD). Hence there are functions u ∈ H1(Ω), v ∈ L2(ΓD) and a subsequence {unk}k
of {un}n as in the statement. To conclude we notice that un → g in L2(ΓD), and so u ∈ V .

Proof of Theorem 1.2.3. Let εn → 0+ and {un}n be a sequence of functions in L2(Ω) such that
un → u in L2(Ω). If lim infn→∞Fεn(un) = ∞ there is nothing to prove. Hence, up to the
extraction of a subsequence (not relabeled), we can assume without loss of generality that

lim inf
n→∞

Fεn(un) = lim
n→∞

Fεn(un) <∞.

In particular, Fεn(un) < ∞ for every n sufficiently large. Let {unk}k and u be given as in Propo-
sition 4.1.3, then

lim inf
k→∞

Fεnk (unk) ≥ lim inf
k→∞

ˆ
Ω

(
1

2
|∇unk |

2 + funk

)
dx

= lim inf
k→∞

1

2

ˆ
Ω
|∇unk |

2 dx+ lim
k→∞

ˆ
Ω
funk dx

≥ 1

2

ˆ
Ω
|∇u|2 dx+

ˆ
Ω
fu dx = F0(u).

On the other hand, for every u ∈ L2(Ω), the constant sequence un = u is a recovery sequence.
Indeed, Fεn(u) = F0(u) for every u ∈ V , while if u /∈ V then F0(u) = ∞ and hence there is
nothing to prove.

Corollary 4.1.4. Under the assumptions of Theorem 1.2.3, if εn → 0+ and {un}n is a sequence of
functions in L2(Ω) such that

lim sup
n→∞

Fεn(un) ≤ inf
{
F0(v) : v ∈ L2(Ω)

}
then un → u0 strongly in H1(Ω), where u0 is the unique global minimizer of F0. In particular,
global minimizers uεn of Fεn converge in H1(Ω) to u0.

Proof. Since g ∈ H1/2(∂Ω), by standard trace theorems (see Theorem 18.40 in [70]) the space V
defined in (1.2.9) is nonempty. In turn, the strictly convex functional F0 given in (1.2.8) admits a
unique minimizer u0 which is a weak solution to (1.2.1). Let {un}n be a sequence of functions in
L2(Ω) such that

lim sup
n→∞

Fεn(un) ≤ F0(u0). (4.1.6)

Given a subsequence {εnk}k of {εn}n, by Proposition 4.1.3 we can find a further subsequence
{unkj }j and v0 ∈ V such that unkj → v0. By Γ-convergence

F0(u0) ≥ lim sup
j→∞

Fεnkj (unkj ) ≥ F0(v0),
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which in turn implies that v0 = u0. Hence the full sequence {un}n converges in L2(Ω) to u0.
Moreover, by (4.1.6)

F0(u0) ≥ lim sup
n→∞

Fεn(un) ≥ lim sup
n→∞

ˆ
Ω

(
1

2
|∇un|2 + fun

)
dx

≥ lim inf
n→∞

1

2

ˆ
Ω
|∇un|2 dx+

ˆ
Ω
fu0 dx ≥ F0(u0),

and so
lim
n→∞

ˆ
Ω
|∇un|2 dx =

ˆ
Ω
|∇u0|2 dx.

By the strict convexity of the L2-norm it follows that∇un → ∇u0 in L2(Ω;RN ).

4.2 A problem without singularities

Following Costabel and Dauge [40], in this section we will be concerned with the study of the easier
case of the non-mixed problem (1.2.34); to be precise, it is assumed throughout the section that
ΓD = ∂Ω. Under this additional assumption we prove asymptotic developments by Γ-convergence
of all orders for the family of functionals {Fε}ε and deduce a complete asymptotic expansion for
uε, i.e., the solution to (1.2.34) (see Theorem 4.1.1). Throughout the section, we will make the
following assumptions on the set Ω: (i) Ω is an open, bounded and connected subset of RN ,

(ii) ∂Ω is of class Cj,1.
(Hj)

4.2.1 The non-mixed problem: Gamma-convergence of order one

In this section we prove a first order asymptotic expansion for Fε. We begin by studying the com-
pactness properties of sequences with bounded energy.

Proposition 4.2.1 (Compactness). Let Ω be as in (H1), f ∈ L2(Ω), g ∈ H3/2(∂Ω), Fε and F0 be
the functionals defined in (1.2.7) and (1.2.8) (with ΓD = ∂Ω), respectively, and define

F (1)
ε :=

Fε −minF0

ε
. (4.2.1)

If εn → 0+ and vn ∈ L2(Ω) are such that

sup{F (1)
εn (vn) : n ∈ N} <∞,

then un → u0 in H1(Ω) and there exist a subsequence {vnk}k of {vn}n, r0 ∈ H1(Ω) and v0 ∈
L2(∂Ω) such that

vnk − u0√
εnk

⇀ r0 in H1(Ω),

vnk − u0

εnk
⇀ v0 in L2(∂Ω),

(4.2.2)

where u0 is the solution to (1.2.35).
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Proof. If we let M := sup{F (1)
εn (vn) : n ∈ N}, then Fε(vn) ≤ F0(u0) + εnM . On the other hand,

lim inf
n→∞

Fεn(vn) ≥ F0(u0)

by Theorem 1.2.3, and in turn vn → u0 strongly in H1(Ω) by Corollary 4.1.4.
For every n ∈ N, let rn ∈ L2(Ω) be such that vn = u0 + εnrn. Then F (1)

εn (vn) can be rewritten
as

F (1)
εn (vn) =

ˆ
Ω

(
∇u0 · ∇rn +

εn
2
|∇rn|2 + frn

)
dx+

1

2

ˆ
∂Ω
r2
n dHN−1. (4.2.3)

Since ∂Ω is of class C1,1, f ∈ L2(Ω), and g ∈ H3/2(∂Ω), by standard elliptic regularity theory
for (1.2.35), u0 ∈ H2(Ω) (see Theorem 2.4.2.5 in [58]) and by an application of the divergence
theorem we have ˆ

Ω
(∇u0 · ∇rn + frn) dx =

ˆ
∂Ω
∂νu0rn dHN−1. (4.2.4)

Substituting (4.2.4) into (4.2.3) we arrive at

M ≥ F (1)
εn (vn) =

εn
2

ˆ
Ω
|∇rn|2 dx+

ˆ
∂Ω

(
1

2
r2
n + ∂νu0rn

)
dHN−1

=
εn
2

ˆ
Ω
|∇rn|2 dx+

1

2

ˆ
∂Ω

[
(rn + ∂νu0)2 − (∂νu0)2

]
dHN−1,

(4.2.5)

and (4.2.2) is proved at once.

Theorem 4.2.2 (1st order Γ-convergence). Under the assumptions of Proposition 4.2.1, the family
{F (1)

ε }ε Γ-converges in L2(Ω) to the functional

F1(v) :=


−1

2

ˆ
∂Ω

(∂νu0)2 dHN−1 if v = u0,

+∞ otherwise.
(4.2.6)

In particular, if uε ∈ H1(Ω) is the solution to (1.2.34), then

Fε(uε) = F0(u0) + εF1(u0) + o (ε) . (4.2.7)

Proof. Let εn → 0+ and {vn}n be a sequence of functions in L2(Ω) such that vn → v in L2(Ω).
Reasoning as in the proof of Theorem 1.2.3, we can assume without loss of generality that

lim inf
n→∞

F (1)
εn (vn) = lim

n→∞
F (1)
εn (vn) <∞.

In particular, F (1)
εn (vn) < ∞ for every n sufficiently large. Let {vnk}k be as in Proposition 4.2.1.

Then vn → u0 in H1(Ω) and from (4.2.5) we deduce that

lim inf
n→∞

F (1)
εn (vn) ≥ −1

2

ˆ
∂Ω

(∂νu0)2 dHN−1 = F1(u0).

On the other hand, for every v ∈ L2(Ω) \ {u0} the constant sequence vn = v is a recovery
sequence. If now v = u0, since by assumption ∂νu0 ∈ H1/2(∂Ω), we can find w ∈ H1(Ω) such
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that w = −∂νu0 on ∂Ω, where the equality holds in the sense of traces. Set vn := u0 + εnw. Then
vn → u0 in H1(Ω) and again from (4.2.5) it follows that

lim
n→∞

F (1)
εn (vn) = lim

n→∞

εn
2

ˆ
Ω
|∇w|2 dx− 1

2

ˆ
∂Ω

(∂νu0)2 dHN−1 = F1(u0).

This concludes the proof of the Γ-convergence. The energy expansion (4.2.7) follows from Theo-
rem 2.1.7.

4.2.2 The non-mixed problem: Gamma-convergence of order two

In this section we prove a second order asymptotic expansion for Fε. As customary, we begin by
investigating the compactness properties of sequences with bounded energy.

Proposition 4.2.3 (Compactness). Let Ω be as in (H1), f ∈ L2(Ω), g ∈ H3/2(∂Ω), Fε, F0, F (1)
ε ,

and F1 be as in (1.2.7), (1.2.8), (4.2.1), and (4.2.6), respectively, and define

F (2)
ε :=

F (1)
ε −minF1

ε
=
Fε −minF0 − εminF1

ε2
.

If εn → 0+ and wn ∈ L2(Ω) are such that

sup{F (2)
εn (wn) : n ∈ N} <∞,

then wn → u0 in H1(Ω) and there exist a subsequence {wnk}k of {wn}n, w0 ∈ H1(Ω) and
q0 ∈ L2(∂Ω) such that

wnk − u0

εnk
⇀w0 in H1(Ω),

wnk − u0 + εnk∂νu0

ε
3/2
nk

⇀ q0 in L2(∂Ω),

where u0 is the solution to (1.2.35). In particular, w0 = −∂νu0 on ∂Ω in the sense of traces.

Proof. By Corollary 4.1.4, we deduce that wn → u0 in H1(Ω). For every n ∈ N, let rn ∈ L2(Ω)

be such that wn = u0 + εnrn. Then F (2)
εn (wn) can be rewritten as

F (2)
εn (wn) =

1

2

ˆ
Ω
|∇rn|2 dx+

1

2εn

ˆ
∂Ω

(rn + ∂νu0)2 dHN−1. (4.2.8)

We then proceed as in the proof of Proposition 4.1.3 with f = 0, g = −∂νu0 and rn in place of
un.

Theorem 4.2.4 (2nd order Γ-convergence). Under the assumptions of Proposition 4.2.3, let u1 ∈
H1(Ω) be the unique solution to the Dirichlet problem∆u1 = 0 in Ω,

u1 = −∂νu0 on ∂Ω.
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Then the family {F (2)
ε }ε Γ-converges in L2(Ω) to the functional

F2(v) :=


1

2

ˆ
Ω
|∇u1|2 dx if v = u0,

+∞ otherwise.

In particular, if uε ∈ H1(Ω) is the solution to (1.2.34), then

Fε(uε) = F0(u0) + εF1(u0) + ε2F2(u0) + o
(
ε2
)
. (4.2.9)

Proof. Let εn → 0+ and {wn}n be a sequence of functions in L2(Ω) such that wn → w in L2(Ω).
Reasoning as in the proof of Theorem 1.2.3, we can assume without loss of generality that

lim inf
n→∞

F (2)
εn (wn) = lim

n→∞
F (2)
εn (wn) <∞.

In particular, F (2)
εn (wn) < ∞ for every n sufficiently large. Let {wnk}k and w0 be as in Proposi-

tion 4.2.3. Then wn → u0 in H1(Ω) and from (4.2.8) we deduce that

lim inf
k→∞

F (2)
εnk

(wnk) ≥ lim inf
k→∞

1

2

ˆ
Ω
|∇rnk |

2 dx ≥ 1

2

ˆ
Ω
|∇w0|2 dx

≥ inf

{
1

2

ˆ
Ω
|∇p|2 dx : p ∈ H1(Ω), p = −∂νu0 on ∂Ω

}

=
1

2

ˆ
Ω
|∇u1|2 dx = F2(u0).

We remark that the function u1 exists (and is unique) by an application of Corollary 4.1.4.
On the other hand, for every w ∈ L2(Ω) \ {u0} the constant sequence wn = w is a recov-

ery sequence. As one can check from (4.2.8), wn := u0 + εnu1 is a recovery sequence for u0.
This concludes the proof of the Γ-convergence. The energy expansion (4.2.9) follows from Theo-
rem 2.1.7.

Corollary 4.2.5. Let Ω be as in (H1), f ∈ L2(Ω), g ∈ H3/2(∂Ω), and let uε and u0 be solutions to
(1.2.34) and (1.2.35), respectively. Then there exists a constant c > 0, independent of ε, such that

‖uε − u0‖H1(Ω) ≤ cε
(
‖f‖L2(Ω) + ‖g‖H3/2(∂Ω)

)
,

‖uε − u0 + ε∂νu0‖L2(∂Ω) ≤ cε
3/2
(
‖f‖L2(Ω) + ‖g‖H3/2(∂Ω)

)
.

Proof. If we let wε := u0 + εu1, for u1 as in Theorem 4.2.4, then

Fε(wε) = F0(u0) + εF1(u0) + ε2F2(u0)

and from the minimality of uε we deduce

Fε(uε) ≤ F0(u0) + εF1(u0) + ε2F2(u0).
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Writing rε := uε−u0
ε , expanding, and rearranging the terms in the previous inequality we arrive at

1

2

ˆ
Ω
|∇rε|2 dx+

1

2ε

ˆ
∂Ω

(rε + ε∂νu0)2 dHN−1 ≤ ε2

2

ˆ
Ω
|∇u1|2 dx. (4.2.10)

Since ∂Ω is of class C1,1, f ∈ L2(Ω), and g ∈ H3/2(∂Ω), by standard elliptic estimates (see
Theorem 2.4.2.5 in [58]) the solution u0 ∈ H1(Ω) to the Dirichlet problem (1.2.35) belongs to
H2(Ω) with

‖u0‖H2(Ω) ≤ k1

(
‖f‖L2(Ω) + ‖g‖H3/2(Ω)

)
.

In turn, by standard trace theorems (see Theorem 18.40 in [70]), we have that ∂νu0 ∈ H1/2(∂Ω),
and so there is z0 ∈ H1(Ω) such that z0 = −∂νu0 on ∂Ω in the sense of traces and

‖z0‖H1(Ω) ≤ k2‖∂νu0‖H1/2(∂Ω) ≤ k3‖u0‖H2(Ω) ≤ c
(
‖f‖L2(Ω) + ‖g‖H3/2(Ω)

)
.

Since u1 ∈ H1(Ω) is a minimizer of

v 7→
ˆ

Ω
|∇v|2 dx

over all functions v with v = −∂νu0 on ∂Ω, we have that

‖∇u1‖L2(Ω;RN ) ≤ ‖∇z0‖L2(Ω;RN ) ≤ c
(
‖f‖L2(Ω) + ‖g‖H3/2(Ω)

)
.

The previous estimate, together with (4.2.10), gives the desired result.

4.2.3 The non-mixed problem: Gamma-convergences of all orders

In this section we prove asymptotic expansions by Γ-convergence of any order for Fε and derive
asymptotic expansions for uε, i.e., the solution to (1.2.34).

Theorem 4.2.6. Given k ∈ N, let j ∈ N be such that k = 2j − 1 or k = 2j, Ω be as in (Hj),
f ∈ L2(Ω), g ∈ H1/2+j(∂Ω), and for every m ∈ {1, . . . , j} let um ∈ H1(Ω) be the solution to the
Dirichlet problem ∆um = 0 in Ω,

um = −∂νum−1 on ∂Ω,
(4.2.11)

where u0 is the solution to (1.2.35). Let F (k+1)
ε be defined recursively by

F (k+1)
ε :=

F (k)
ε −Fk(u0)

ε
,

where F (1)
ε is given as in (4.2.1) and the functionals Fi, for i ∈ {1, . . . , k + 1}, are given by

F2m+1(v) :=


−1

2

ˆ
∂Ω

(∂νum)2 dHN−1 if v = u0,

+∞ otherwise,
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and

F2m(v) :=


+

1

2

ˆ
Ω
|∇um|2 dx if v = u0,

+∞ otherwise.

Then the family {F (i)
ε }ε Γ-converges in L2(Ω) to the functional Fi for every i ∈ {2, . . . , k+ 1}. In

particular, if uε ∈ H1(Ω) is the solution to (1.2.34), then

Fε(uε) =
k+1∑
i=0

εiFi(u0) + o
(
εk+1

)
.

Proof. Notice that for k = 1 we have that j = 1 and so the statement reduces to the one of
Theorem 4.2.4. The result for k ≥ 2 follows by induction from arguments similar to the ones of
Theorem 4.2.2 and Theorem 4.2.4 (depending on the parity of k). We omit the details.

Corollary 4.2.7. Under the assumptions of Theorem 4.2.6, and for an odd value of k ∈ N, let uε,
u0, ui be solutions to (1.2.34), (1.2.35), and (4.2.11), respectively. Then there exists a constant
c > 0, independent of ε, such that for every j ∈ {1, . . . , (k + 1)/2}∥∥∥∥∥uε −

j−1∑
i=0

εiui

∥∥∥∥∥
H1(Ω)

≤ Cεj
(
‖f‖L2(Ω) + ‖g‖H1/2+j(Ω)

)
,

∥∥∥∥∥uε −
j−1∑
i=0

εiui + ε∂νuj

∥∥∥∥∥
L2(∂Ω)

≤ Cε1/2+j
(
‖f‖L2(Ω) + ‖g‖H1/2+j(Ω)

)
.

Proof. The proof is analogous to the one of Corollary 4.2.5 and therefore we omit the details.

4.3 The case of mixed boundary conditions

In this section we prove our main results regarding the higher order Γ-limits for the functional Fε
defined as in (1.2.7).

4.3.1 Some technical results

Throughout the section Ω is assumed to be as in the statement of Theorem 1.2.1. We recall that
we use the following notations: given a function v = v(x) where x = (x, y), we denote by v̄ the
function

v̄(r, θ) := v(r cos θ, r sin θ), (4.3.1)

and with a slight abuse of notation we write v = v̄(r, θ). Moreover, we denote by v̄(i) the function

v̄(i)(ri, θi) := v(xi + ri(cos θi, sin θi)), (4.3.2)

where the polar coordinates (ri, θi) are as in Theorem 1.2.1. Furthermore, recall that ϕ̄ ∈ C∞([0,∞))
is such that ϕ̄ ≡ 1 in [0, ρ/2] and ϕ̄ ≡ 0 outside [0, ρ].
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Proposition 4.3.1. Let N = 2, Ω be as in Theorem 1.2.1, f ∈ L2(Ω), g ∈ H3/2(∂Ω), and let
u0 ∈ H1(Ω) be the solution to (1.2.1). Then

ˆ
Ω

(∇u0 · ∇ψ + fψ) dx =

ˆ
ΓD

∂νu
0
regψ dH1 −

2∑
i=1

ci
2

ˆ ρ

0
ϕ̄(ri)r

−1/2
i ψ̄(i)(ri, 0) dri

for every ψ ∈ H1(Ω), where u0
reg, ci and ϕ̄ are given as in Theorem 1.2.1.

Proof. By Theorem 1.2.1, given ψ ∈ H1(Ω), we get
ˆ

Ω
∇u0 · ∇ψ dx =

ˆ
Ω
∇u0

reg · ∇ψ dx

+

2∑
i=1

ci

ˆ π

0

ˆ ρ

0

(
∂riS̄i∂riψ̄

(i)r−2
i ∂θiS̄i∂θiψ̄

(i)
)
ri dridθi.

(4.3.3)

Since the function u0
reg belongs toH2(Ω) and satisfies a homogenous Neumann boundary condition

on ΓN , the divergence theorem yields
ˆ

Ω
∇u0

reg · ∇ψ dx =

ˆ
Ω
−∆u0

regψ dx+

ˆ
ΓD

∂νu
0
regψ dH1. (4.3.4)

To rewrite the second term on the right-hand side of (4.3.3), we consider the auxiliary function

Φ̄(ri, θi) := ri∂riS̄i(ri, θi)ψ̄
(i)(ri, θi);

indeed, a simple computation shows that Φ̄ ∈ W 1,1((0, ρ) × (0, π)) and thus Φ̄(·, θi) is absolutely
continuous for L1-a.e. θi ∈ (0, π). For any such θi, by the fundamental theorem of calculus, we
have that

0 = Φ̄(ρ, θi)− Φ̄(0, θi) =

ˆ ρ

0
∂riΦ̄(ri, θi) dri

=

ˆ ρ

0

(
∂riS̄iψ̄

(i) + ri∂
2
riS̄iψ̄

(i) + ri∂riS̄i∂riψ̄
(i)
)
dri.

(4.3.5)

Similarly, noticing that the function Ψ̄(ri, θi) := r−1
i ∂θiS̄i(ri, θi)ψ̄

(i)(ri, θi) belongs to the space
W 1,1((0, ρ)× (0, π)), and reasoning as above we find that

−1

2
ϕ̄(ri)r

−1/2
i ψ̄(i)(ri, 0) = Ψ̄(ri, π)− Ψ̄(ri, 0) =

ˆ π

0
∂θiΨ̄(ri, θi) dθi

=

ˆ π

0
r−1
i

(
∂2
θi
S̄iψ̄

(i) + ∂θiS̄i∂θiψ̄
(i)
)
dθi

(4.3.6)

holds for L1-a.e. ri ∈ (0, ρ). Combining the identities (4.3.5) and (4.3.6), we get
ˆ π

0

ˆ ρ

0

(
∂riS̄i∂riψ̄

(i) + r−2
i ∂θiS̄i∂θiψ̄

(i)
)
ri dridθi
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= − 1

2

ˆ ρ

0
ϕ̄(ri)r

−1/2
i ψ̄(i)(ri, 0) dri −

ˆ π

0

ˆ ρ

0
ψ̄(i)

(
∂2
riS̄i + r−1

i ∂riS̄i + r−2
i ∂2

θi
S̄i
)
ri dridθi

= − 1

2

ˆ ρ

0
ϕ̄(ri)r

−1/2
i ψ̄(i)(ri, 0) dri −

ˆ π

0

ˆ ρ

0
ψ̄(i)∆(ri,θi)S̄iri dridθi.

Consequently, the desired formula follows from the previous equality, (4.3.3), (4.3.4), and upon
noticing that

ˆ
Ω
fψ dx =

ˆ
Ω

∆u0
regψ dx+

2∑
i=1

ci

ˆ π

0

ˆ ρ

0
ψ̄(i)∆(ri,θi)S̄iri dridθi.

This concludes the proof.

In the following theorem we present an estimate that will prove instrumental for the proofs of
our compactness results, namely Theorem 1.2.4 and Theorem 1.2.6.

Theorem 4.3.2. There exists a constant κ such that for any R > 0 and h ∈ H1(B+
R(0)),

ˆ R

0
x−1/2|h(x, 0)| dx ≤ κ

(
R

ˆ
B+
R(0)
|∇h(x)|2 dx

)1/2

+ κ

(ˆ R

0
h(x, 0)2 dx

)1/2

,

where h(·, 0) indicates the trace of h on the positive real axis.

We begin by adapting Theorem 1.2.9 to our framework.

Lemma 4.3.3. There exists a constant κ such that for any R > 0 and h ∈ H1(B+
R(0)),

ˆ
B+
R(0)

h(x)2

|x|2 (1 + logR− log |x|)2 dx ≤ κ

(ˆ
B+
R(0)
|∇h(x)|2 dx+

1

R

ˆ R

0
h(x, 0)2 dx

)
,

where h(·, 0) indicates the trace of h on the positive real axis.

Proof. Since B+
R(0) is an extension domain, we can find ĥ ∈ H1(BR(0)) such that ĥ(x) = h(x)

for L2-a.e. x ∈ B+
R(0) and with the property that

‖ĥ‖L2(BR(0)) ≤ C1‖h‖L2(B+
R(0)),

‖∇ĥ‖L2(BR(0);R2) ≤ C1‖∇h‖L2(B+
R(0);R2),

for some constant C1 > 0 independent of R. Theorem 1.2.9 applied to the function ĥ and the
previous estimates yield
ˆ
B+
R(0)

h(x)2

|x|2 (1 + logR− log |x|)2 dx ≤ C2

(ˆ
B+
R(0)
|∇h(x)|2 dx+

1

R2

ˆ
B+
R(0)

h(x)2 dx

)
,

for some constant C2 > 0 independent of h and R. By Lemma 4.1.2, together with a simple
rescaling argument, we deduce that

1

R2

ˆ
B+
R(0)

h(x)2 dx ≤ C3

(ˆ
B+
R(0)
|∇h(x)|2 dx+

1

R

ˆ R

0
h(x, 0)2 dx

)
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for some constant C3 > 0, which is again independent of both h and R. This concludes the
proof.

Proof of Theorem 4.3.2. By the fundamental theorem of calculus,

h̄(r, θ) = h̄(r, 0) +

ˆ θ

0
∂θh̄(r, α) dα,

and so, multiplying both sides by r−1/2 and integrating over B+
R(0), we get

ˆ R

0
r−1/2h̄(r, 0) dr =

1

π

ˆ π

0

ˆ R

0
r−1/2h̄(r, θ) drdθ − 1

π

ˆ π

0

ˆ R

0

ˆ θ

0
r−1/2∂θh̄(r, α) dαdrdθ

=
1

π

ˆ π

0

ˆ R

0
r−1/2h̄(r, θ) drdθ −

ˆ π

0

ˆ R

0

(π − θ)
π

r−1/2∂θh̄(r, θ) drdθ,

where the last equality follows from Fubini’s theorem. In particular,ˆ R

0
r−1/2|h̄(r, 0)| dr ≤ 1

π

ˆ π

0

ˆ R

0
r−1/2|h̄(r, θ)| drdθ +

ˆ π

0

ˆ R

0
r−1/2|∂θh̄(r, θ)| drdθ, (4.3.7)

and thus we proceed to estimate the terms on the right-hand side of (4.3.7). Passing to cartesian
coordinates,ˆ π

0

ˆ R

0
r−1/2|h̄(r, θ)| drdθ =

ˆ
B+
R(0)

|h(x)|
|x| (1 + logR− log |x|)

(1 + logR− log |x|)
|x|1/2

dx

≤ (5πR)1/2

(ˆ
B+
R(0)

h(x)2

|x|2 (1 + logR− log |x|)2 dx

)1/2

,

where in the last step we have used Hölder’s inequality together with the fact that
ˆ
B+
R(0)

(1 + logR− log |x|)2

|x|
dx = π

ˆ R

0
(1 + logR− log r)2 dr = 5πR.

Then, from Lemma 4.3.3 we deduce thatˆ π

0

ˆ R

0
r−1/2|h̄(r, θ)| drdθ

≤ (5πκ)1/2

(
R

ˆ
B+
R(0)
|∇h(x)|2 dx+

ˆ R

0
h(x, 0)2 dx

)1/2

.

(4.3.8)

On the other hand, Hölder’s inequality yields
ˆ π

0

ˆ R

0
r−1/2|∂θh̄(r, θ)| drdθ ≤

(
πR

ˆ π

0

ˆ R

0
r−1|∂θh̄(r, θ)|2 drdθ

)1/2

≤

(
πR

ˆ
B+
R(0)
|∇h(x)|2 dx

)1/2

, (4.3.9)

and so the desired inequality follows from (4.3.7), (4.3.8), and (4.3.9).
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4.3.2 Mixed boundary conditions: Gamma-convergence of order one

In this section we prove Theorem 1.2.4 and Theorem 1.2.5. We recall that we use the notations
(4.3.1) and (4.3.2).

Proof of Theorem 1.2.4. By Corollary 4.1.4 we have that vn → u0 in H1(Ω). For every n ∈ N, let
zn ∈ L2(Ω) be such that vn = u0 + εn

√
| log εn|zn. Then F (1)

εn (vn) can be rewritten as

F (1)
ε (vn) =

1√
| log εn|

ˆ
Ω

(∇u0 · ∇zn + fzn) dx+
εn
2

ˆ
Ω
|∇zn|2 dx+

1

2

ˆ
ΓD

z2
n dH1,

and an application of Proposition 4.3.1 yields

F (1)
εn (vn) =

1√
| log εn|

(ˆ
ΓD

∂νu
0
regzn dH1 −

2∑
i=1

ci
2

ˆ ρ

0
ϕ̄(ri)r

−1/2
i z̄(i)

n (ri, 0) dri

)

+
εn
2

ˆ
Ω
|∇zn|2 dx+

1

2

ˆ
ΓD

z2
n dH1.

(4.3.10)

For n large enough so that 2εn ≤ ρ, we write
ˆ ρ

0
ϕ̄(ri)r

−1/2
i z̄(i)

n (ri, 0) dri =

ˆ εn

0
r
−1/2
i z̄(i)

n (ri, 0) dri +

ˆ ρ

εn

ϕ̄(ri)r
−1/2
i z̄(i)

n (ri, 0) dri (4.3.11)

and proceed to estimate both terms on the right-hand side separately. By Theorem 4.3.2 we obtain

ˆ εn

0
r
−1/2
i |z̄(i)

n (ri, 0)| dri ≤ κ

(
εn

ˆ
Bεn (xi)∩Ω

|∇zn|2 dx

)1/2

+ κ

(ˆ εn

0
z̄(i)
n (ri, 0)2 dri

)1/2

,

(4.3.12)

while by Hölder’s inequality we get

ˆ ρ

εn

ϕ̄(ri)r
−1/2
i |z̄(i)

n (ri, 0)| dri ≤
√

log ρ+ | log εn|
(ˆ ρ

εn

z̄(i)
n (ri, 0)2 dri

)1/2

. (4.3.13)

Consequently, from (4.3.10), (4.3.12), and (4.3.13) we deduce that

F (1)
εn (vn) ≥ 1

2
‖zn‖2L2(ΓD) −

(
‖∂νu0

reg‖L2(ΓD)√
| log εn|

+
|ci|(κ+

√
log ρ+ | log εn|)

2
√
| log εn|

)
‖zn‖L2(ΓD)

+
1

2
‖ε1/2
n ∇zn‖2L2(Ω;R2) −

|ci|κ
2
√
| log εn|

‖ε1/2
n ∇zn‖L2(Ω;R2),

and so (1.2.11) and (1.2.12) are proved at once.
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Proof of Theorem 1.2.5. Step 1: Let εn → 0+ and {vn}n be a sequence of functions in L2(Ω) such
that vn → v in L2(Ω). Reasoning as in the proof of Theorem 1.2.3, we can assume without loss of
generality that

lim inf
n→∞

F (1)
εn (vn) = lim

n→∞
F (1)
εn (vn) <∞.

In particular, F (1)
εn (vn) < ∞ for every n sufficiently large. Let {vnk}k be a subsequence of {vn}n

given as in Theorem 1.2.4 and define

ξ̄(i)
n (ri) :=

ci

2
√
| log εn|

ϕ̄(ri)r
−1/2
i . (4.3.14)

Arguing as in the proof of Theorem 1.2.4 (see (4.3.10) and (4.3.12)) we arrive at

F (1)
εnk

(vnk) ≥ 1

2
‖znk‖

2
L2(ΓD) −

(
‖∂νu0

reg‖L2(ΓD)√
| log εnk |

+
|ci|κ

2
√
| log εnk |

)
‖znk‖L2(ΓD)

− |ci|κ
2
√
| log εnk |

‖ε1/2
nk
∇znk‖L2(Ω;R2) +

1

2
‖ε1/2
nk
∇znk‖

2
L2(Ω;R2)

−
2∑
i=1

ˆ ρ

εnk

ξ̄(i)
nk

(ri)z̄
(i)
nk

(ri, 0) dri. (4.3.15)

Then, as k →∞, we have

lim inf
k→∞

F (1)
εnk

(vnk) ≥ lim inf
k→∞

2∑
i=1

ˆ ρ

εnk

(
1

2
z̄(i)
nk

(ri, 0)2 − ξ̄(i)
nk

(ri)z̄
(i)
nk

(ri, 0)

)
dri

= lim inf
k→∞

2∑
i=1

[
1

2

ˆ ρ

εnk

(
z̄(i)
nk

(ri, 0)− ξ̄(i)
nk

(ri)
)2

dri −
1

2

ˆ ρ

εnk

ξ̄(i)
nk

(ri)
2 dri

]

≥ − 1

2

2∑
i=1

lim inf
k→∞

ˆ ρ

εnk

ξ̄(i)
nk

(ri)
2 dri

= − 1

8

2∑
i=1

c2
i lim inf
k→∞

1

| log εnk |

ˆ ρ

εnk

ϕ̄(ri)
2r−1
i dri

≥ − 1

8

2∑
i=1

c2
i lim inf
k→∞

1

| log εnk |
(log ρ+ | log εnk |) = −1

8

2∑
i=1

c2
i , (4.3.16)

where in the second to last step we have used (4.3.14).
Step 2: For every v ∈ L2(Ω) \ {u0}, the constant sequence vn = v is a recovery sequence. Then
let v = u0 and consider the radial function ζi,n given in polar coordinates at xi by

ζ̄i,n(ri) := ξ̄(i)
n (ri)

(
1− ϕ̄

(
ρ

εn
ri

))
=

ci

2
√
| log εn|

ϕ̄(ri)

(
1− ϕ̄

(
ρ

εn
ri

))
r
−1/2
i , (4.3.17)
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where ξ̄(i)
n is the function defined in (4.3.14). We define

zn(x) :=

ζi,n(x) if x ∈ Br(xi) ∩ Ω with r < ρ,

0 otherwise.
(4.3.18)

Notice that if we let

Ψ̄i,n(ri) := ϕ̄(ri)

(
1− ϕ̄

(
ρ

εn
ri

))
,

then Ψ̄i,n : R+ → [0, 1] and satisfies

Ψ̄i,n(ri) = 1 if εn ≤ ri < ρ/2,

Ψ̄i,n(ri) = 0 if 0 ≤ ri ≤ εn/2 or ρ ≤ r,

|Ψ̄′i,n(ri)| ≤ c
εn

if εn/2 ≤ ri ≤ εn,

|Ψ̄′i,n(ri)| ≤ c if ρ/2 ≤ ri ≤ ρ,

(4.3.19)

for some constant c > 0 independent of n. Finally, set

vn := u0 + εn
√
| log εn|zn.

Notice that vn → u0 in L2(Ω) since the sequence {zn}n is uniformly bounded in L2(Ω), indeed

ˆ
Ω
z2
n dx ≤

2∑
i=1

c2
iπ

4| log εn|

ˆ ρ

εn/2
r−1
i dri =

π(log ρ+ | log εn|+ log 2)

4| log εn|

2∑
i=1

c2
i .

Next, we claim that ε1/2
n ∇zn → 0 in L2(Ω;R2). Indeed, using the notation above we have that

ζ̄i,n(ri) =
ci

2
√
| log εn|

Ψ̄i,n(ri)r
−1/2
i ,

and therefore

εn

ˆ
Ω
|∇zn|2 dx =

εn
| log εn|

(
2∑
i=1

c2
iπ

4

)ˆ ρ

0

(
Ψ̄′i,n(ri)r

−1/2
i − 1

2
r
−3/2
i Ψ̄i,n(ri)

)2

ri dri

≤ εn
| log εn|

(
2∑
i=1

c2
iπ

2

)ˆ ρ

0

(
Ψ̄′i,n(ri)

2 +
1

4
r−2
i Ψ̄i,n(ri)

2

)
dri. (4.3.20)

From (4.3.19) we see that
ˆ ρ

0
Ψ̄′i,n(ri)

2 dri =

ˆ εn

εn/2
Ψ̄′i,n(ri)

2 dri +

ˆ ρ

ρ/2
Ψ̄′i,n(ri)

2 dri ≤ c2

(
1

2εn
+
ρ

2

)
(4.3.21)

and ˆ ρ

0
r−2
i Ψ̄i,n(ri)

2 dri ≤
ˆ ρ

εn/2
r−2
i dri =

2

εn
− 1

ρ
. (4.3.22)
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Combining (4.3.20) with the estimates (4.3.21) and (4.3.22) we obtain

εn

ˆ
Ω
|∇zn|2 dx ≤

εn
| log εn|

(
2∑
i=1

c2
iπ

2

)(
c2

2εn
+
c2ρ

2
+

1

2εn
− 1

4ρ

)
→ 0 (4.3.23)

and the claim is proved. From (4.3.10), using (4.3.11), (4.3.12), (4.3.13), and (4.3.14) we have

F (1)
εn (vn) ≤ 1

2
‖zn‖2L2(ΓD) +

(
‖∂νu0

reg‖L2(ΓD)√
| log εn|

+
|ci|κ

2
√
| log εn|

)
‖zn‖L2(ΓD)

+
1

2
‖ε1/2
n ∇zn‖2L2(Ω;R2)

|ci|κ
2
√
| log εn|

‖ε1/2
n ∇zn‖L2(Ω;R2)

−
2∑
i=1

ˆ ρ

εn

ξ̄(i)
n (ri)ζ̄i,n(ri) dri, (4.3.24)

By (4.3.23) we have that the second, third, and fourth member on the right-hand side of the previous
inequality vanish as n→∞. Since ϕ̄

(
ρ
εn
ri

)
= 0 for ri ∈ [εn, ρ], by (4.3.14) and (4.3.17),

ζ̄i,n = ξ̄(i)
n in [εn, ρ]. (4.3.25)

Consequently, from (4.3.14), (4.3.25), (4.3.18), and the fact that ϕ̄ ≡ 1 in [0, ρ/2],

lim sup
n→∞

F (1)
εn (vn) ≤ lim sup

n→∞

{
1

2
‖zn‖2L2(ΓD) −

2∑
i=1

ˆ ρ

εn

ξ̄(i)
n (ri)ζ̄i,n(ri) dri

}

= lim sup
n→∞

2∑
i=1

ˆ ρ

εn

(
1

2
ζ̄i,n(ri)

2 − ξ̄(i)
n (ri)ζ̄i,n(ri)

)
dri

= lim sup
n→∞

2∑
i=1

−1

2

ˆ ρ

εn

ξ̄(i)
n (ri)

2 dri

≤ − 1

8

2∑
i=1

c2
i lim inf
n→∞

1

| log εn|

(ˆ ρ/2

εn

r−1
i dri +

ˆ ρ

ρ/2
ϕ̄(ri)

2r−1
i dri

)

= − 1

8

2∑
i=1

c2
i . (4.3.26)

The energy expansion (1.2.14) follows from Theorem 2.1.7.

4.3.3 An auxiliary variational problem

In this section we study the functional

Ji(w) :=

ˆ
R2

+

|∇w(x)|2 dx+

ˆ 1

0

(
w(x, 0)2 − cix−1/2w(x, 0)

)
dx
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+

ˆ ∞
1

(
w(x, 0)− ci

2
x−1/2

)2
dx

defined in
H :=

{
w ∈ H1

loc(R2
+) : w ∈ H1(B+

R(0)) for every R > 0
}
,

wherew(·, 0) indicates the trace ofw on the positive real axis. This functional appears in the charac-
terization of the second order Γ-convergence of Fε (see (1.2.15), (1.2.16), (1.2.17), Theorem 1.2.6,
and Theorem 1.2.7).

Proposition 4.3.4. Let Ji and H be given as above. Then Ai := inf{Ji(w) : w ∈ H} ∈ R and
there exists wi ∈ H such that Ji(wi) = Ai. Furthermore, wi is a weak solution to the mixed
problem (1.2.21).

Proof. Let v be the function given in polar coordinates by

v̄(r, θ) :=


ci

2
√
r

if r > 1 and 0 < θ < π,

ci
2

√
r if r ≤ 1 and 0 < θ < π,

where (r, θ) are polar coordinates centered at the origin of R2 and such that the set {(r, 0) : r > 0}
coincides with the positive real axis. Then v ∈ H and Ji(v) <∞, indeed

Ji(v) =

ˆ π

0

ˆ ∞
0

r(∂rv̄)2 drdθ +

ˆ 1

0
(v̄(r, 0)− civ̄(r, 0)) dr =

c2
i (π − 3)

8
.

In turn, this implies that Ai < ∞. On the other hand, by Theorem 4.3.2, we see that for every
w ∈ H ,

Ji(w) ≥
ˆ
R2

+

|∇w(x)|2 dx+

ˆ 1

0
w(x, 0)2 dx− |ci|κ

(ˆ
B+

1 (0)
|∇w|2 dx

)1/2

− |ci|κ
(ˆ 1

0
w(x, 0)2 dx

)1/2

+

ˆ ∞
1

(
w(x, 0)− ci

2
x−1/2

)2
dx,

and so Ai > −∞. Furthermore, we deduce that for an infimizing sequence it must be the case that
(eventually extracting a subsequence which we don’t relabel)

∇wn ⇀ ∇w in L2(R2
+;R2),

wn(·, 0) ⇀w(·, 0) in L2((0, 1)× {0}),

wn(·, 0)− ci
2
x−1/2 ⇀w(·, 0)− ci

2
x−1/2 in L2((1,∞)× {0}),

for some w ∈ H , where wn(·, 0) and w(·, 0) indicate the trace of wn and w on the positive real
axis. To conclude, it is enough to show that Ji is lower semicontinuous for sequences converging as
above. The lower semicontinuity is certainly true for the nonnegative terms in Ji, thanks to Fatou’s
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lemma. In order to pass to the limit in the remaining term we can argue as follows. First, we observe
that by Lemma 4.1.2 {wn}n in bounded in H1(B+

1 (0)) and in particular in H1/2((0, 1) × {0}).
Next, we recall that H1/2((0, 1) × {0}) embeds continuously into Lp((0, 1) × {0}) for every p ∈
[1,∞). Consequently, up to the extraction of a further subsequence, we can assume that wn ⇀ w
in Lp((0, 1)× {0}), p > 2. Therefore, we deduce that

lim inf
n→∞

ˆ 1

0
x−1/2wn(x, 0) dx =

ˆ 1

0
x−1/2w(x, 0) dx.

This proves the existence of a global minimizer of Ji in H . The rest of proposition follows by
considering variations of the functional Ji; we omit the details.

We remark that wi doesn’t necessarily belong to the space L2(R2
+), unless ci = 0, in which

case wi ≡ 0. In the following lemma we prove an estimate on the L2-norm of global minimizers in
an annulus that escapes to infinity. This estimate will be crucial for the construction of the recovery
sequence for u0 in the proof of Theorem 1.2.7.

Lemma 4.3.5. Let εn → 0+ and wi be given as in Proposition 4.3.4. Then

ε2
n

ˆ
B+
ρ/εn

(0)\B+
ρ/2εn

(0)
w2
i dx→ 0

as n→∞.

Proof. By applying Lemma 4.1.2 and by a rescaling argument in B+
1 (0) \ B+

1/2(0) we can deduce
that there exists a constant c, independent of n, such that

ˆ
B+
ρ/εn

(0)\B+
ρ/2εn

(0)
w2 dx ≤ c

ε2
n

(ˆ
B+
ρ/εn

(0)\B+
ρ/2εn

(0)
|∇w|2 dx+ εn

ˆ ρ/εn

ρ/2εn

w(x, 0)2 dx

)

for every w ∈ H1(B+
ρ/εn

(0) \ B+
ρ/2εn

(0)). If we apply the previous inequality to w = εnwi we
obtain

ε2
n

ˆ
B+
ρ/εn

(0)\B+
ρ/2εn

(0)
w2
i dx ≤ c

(ˆ
B+
ρ/εn

(0)\B+
ρ/2εn

(0)
|∇wi|2 dx+ εn

ˆ ρ/εn

ρ/2εn

wi(x, 0)2 dx

)
.

The first term on the right-hand side vanishes as n→∞ since ∇wi ∈ L2(R2
+;R2), and the second

term is shown to vanish by the following computation:

εn

ˆ ρ/εn

ρ/2εn

w(x, 0)2 dx ≤ 2εn

ˆ ρ/εn

ρ/2εn

(
wi(x, 0)− ci

2
x−1/2

)2
dx+ 2εn

ˆ ρ/εn

ρ/2εn

c2
i

4x
dx

= 2εn

ˆ ρ/εn

ρ/2εn

(
wi(x, 0)− ci

2
x−1/2

)2
dx+ 2εn log 2→ 0

since wi(·, 0)− ci
2 x
−1/2 ∈ L2((1,∞)). This concludes the proof.
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4.3.4 Mixed boundary conditions: Gamma-convergence of order two

In this section we prove Theorem 1.2.6 and Theorem 1.2.7. We recall that we use the notations
(4.3.1) and (4.3.2).

Proof of Theorem 1.2.6. Step 1: By Corollary 4.1.4 we have that wn → u0 in H1(Ω). For every
n ∈ N, let sn ∈ L2(Ω) be such that

wn = u0 +
√
εnsn. (4.3.27)

Then, by (1.2.7), (1.2.8), (1.2.10), (1.2.13), and (1.2.23), F (2)
εn (wn) can be rewritten as

F (2)
εn (wn) =

1
√
εn

ˆ
Ω

(∇u0 · ∇sn + fsn) dx+
1

2

ˆ
Ω
|∇sn|2 dx+

1

2εn

ˆ
ΓD

s2
n dH1

+
| log εn|

8

2∑
i=1

c2
i ,

and an application of Proposition 4.3.1 yields

F (2)
ε (wn) =

1
√
εn

(ˆ
ΓD

∂νu
0
regsn dH1 −

2∑
i=1

ci
2

ˆ ρ

0
ϕ̄(ri)r

−1/2
i s̄(i)

n (ri, 0) dri

)

+
1

2

ˆ
Ω
|∇sn|2 dx+

1

2εn

ˆ
ΓD

s2
n dH1 +

| log εn|
8

2∑
i=1

c2
i .

Using the fact that | log εn| =
´ 1
εn
r−1 dr, grouping together the different contributions on ΓD ∩

Bεn(xi), ΓD ∩ (Bρ(xi) \Bεn(xi)) and ΓD \Bρ(xi), and completing the squares we obtain

F (2)
εn (wn) =

2∑
i=1

{
1

2

ˆ ρ

εn

(
s̄

(i)
n (ri, 0)
√
εn

+ ∂νu0
reg

(i)
(ri, 0)− ci

2
ϕ̄(ri)r

−1/2
i

)2

dri +Bi,nci + Cϕc
2
i

+

ˆ εn

0

(
∂νu0

reg

(i)
(ri, 0)

s̄
(i)
n (ri, 0)
√
εn

− ci
2
r
−1/2
i

s̄
(i)
n (ri, 0)
√
εn

+
s̄

(i)
n (ri, 0)2

2εn

)
dri

}

+
1

2

ˆ
ΓD\

⋃
iBρ(xi)

(
sn√
εn

+ ∂νu
0
reg

)2

dH1 − 1

2

ˆ
ΓD\

⋃
iBεn (xi)

(
∂νu

0
reg

)2
dH1

+
1

2

ˆ
Ω
|∇sn|2 dx,

where
Bi,n :=

1

2

ˆ ρ

εn

ϕ̄(ri)r
−1/2
i ∂νu0

reg

(i)
(ri, 0) dri, (4.3.28)

and Cϕ is given as in (1.2.19). Setting

zn := sn −
√
εnu1, (4.3.29)

87



where u1 is the solution to (1.2.22), and using the fact that u1 = −∂νu0
reg on ΓD we can rewrite the

previous expression as

F (2)
εn (wn) =

2∑
i=1

{
1

2

ˆ ρ

εn

(
z̄

(i)
n (ri, 0)
√
εn

− ci
2
ϕ̄(ri)r

−1/2
i

)2

dri +Bi,nci + Cϕc
2
i

+
1

2

ˆ εn

0

(
z̄

(i)
n (ri, 0)2

εn
− cir−1/2

i

z̄
(i)
n (ri, 0)
√
εn

)
dri

}
+

1

2

ˆ
ΓD\

⋃
iBρ(xi)

z2
n

εn
dH1

− 1

2

ˆ
ΓD

(
∂νu

0
reg

)2
dH1 +

1

2

ˆ
Ω
|∇(zn +

√
εnu1)|2 dx. (4.3.30)

Notice that all the terms in the previous expression are either positive or independent of n, with
the only exception of Bi,nci, which converges to Bici, and the fourth term on the right-hand side.
However, by an application of Theorem 4.3.2 we get

−
ˆ εn

0
cir
−1/2
i

z̄
(i)
n (ri, 0)
√
εn

dri ≥ −|ci|κ

(ˆ
B+
εn (xi)

|∇zn|2 dx

)1/2

− |ci|κ

(ˆ εn

0

z̄
(i)
n (ri, 0)2

εn

)1/2

,

and thus (1.2.25) and (1.2.26) are proved at once.
Step 2: Let Wi,n be as in (1.2.24). Then

W̄i,n(ri, θi) = ϕ̄(εnri)z̄
(i)
n (εnri, θi) (4.3.31)

by (4.3.27) and (4.3.29), and thus by a change of variables and the fact that ϕ̄ ≡ 1 in [0, ρ/2], if
εn < ρ/2,

ˆ 1

0

(
W̄i,n(s, 0)2 − cis−1/2W̄i,n(s, 0)

)
ds =

ˆ εn

0

(
z̄

(i)
n (ri, 0)2

εn
− cir−1/2

i

z̄
(i)
n (ri, 0)
√
εn

)
dri.

Similarly, for every R > 1 and for every n such that εnR < ρ/2, we have

ˆ R

1

(
W̄i,n(s, 0)− ci

2
s−1/2

)2
ds =

ˆ εnR

εn

(
z̄

(i)
n (ri, 0)
√
εn

− ci
2
r
−1/2
i

)2

dri,

ˆ
B+
R(0)
|∇Wi,n|2 dy =

ˆ
B+
εnR

(xi)
|∇zn|2 dx.

Hence, in view of (4.3.30)

M ≥ F (2)
εn (wn) ≥

2∑
i=1

{
1

2

ˆ 1

0

(
W̄i,n(s, 0)2 − cis−1/2W̄i,n(s, 0)

)
ds+Bi,nci + Cϕc

2
i

+
1

2

ˆ R

1

(
W̄i,n(s, 0)− ci

2
s−1/2

)2
ds+

1

2

ˆ
B+
R(0)
|∇Wi,n|2 dy

}
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− 1

2

ˆ
ΓD

(
∂νu

0
reg

)2
dH1 +

√
εn

ˆ
Ω
∇zn · ∇u1 dx. (4.3.32)

Since {∇zn}n is bounded in L2(Ω;R2
+) (see (1.2.25)), it follows that

ˆ
B+
R(0)
|∇Wi,n|2 dy +

ˆ 1

0

(
W̄i,n(s, 0)2 − cis−1/2W̄i,n(s, 0)

)
ds

+

ˆ R

1

(
W̄i,n(s, 0)− ci

2
s−1/2

)2
ds ≤ c,

for some constant c > 0 independent of n and R. To conclude, it is enough to send R→∞.

Proof of Theorem 1.2.7. Step 1: Let εn → 0+ and {wn}n be a sequence of functions in L2(Ω)
such that wn → w in L2(Ω). Reasoning as in the proof of Theorem 1.2.3, we can assume without
loss of generality that

lim inf
n→∞

F (2)
εn (wn) = lim

n→∞
F (2)
εn (wn) <∞.

In particular, F (2)
εn (wn) < ∞ for every n sufficiently large. Let {wnk}k be the subsequence of

{wn}n given in Theorem 1.2.6 and for every k ∈ N let znk be such that wnk = u0 +
√
εnkznk +

εnku1. Let Wi,n be given as in (4.3.31), then by (4.3.30), taking n = nk in (4.3.32) and letting
k → 0 we obtain

lim inf
k→∞

F (2)
εnk

(wnk) ≥
2∑
i=1

{
1

2

ˆ 1

0

(
W̄i(s, 0)2 − cis−1/2W̄i(s, 0)

)
ds+Bici + Cϕc

2
i

+
1

2

ˆ R

1

(
W̄i(s, 0)− ci

2
s−1/2

)2
ds+

1

2

ˆ
B+
R(0)
|∇Wi|2 dy

}

− 1

2

ˆ
ΓD

(
∂νu

0
reg

)2
dH1,

where we have used (1.2.27), (1.2.28), (1.2.29), and the fact that {∇zn}n is bounded in L2(Ω;R2
+)

(see (1.2.25)). By letting R→∞ in the previous inequality we get

lim inf
n→∞

F (2)
εn (wn) = lim

k→∞
F (2)
εnk

(wnk)

≥
2∑
i=1

{
Ji(Wi)

2
+Bici + Cϕc

2
i

}
− 1

2

ˆ
ΓD

(
∂νu

0
reg

)2
dH1

≥ F2(w),

where in the last step we used the fact that Ji(Wi) ≥ Ai.
Step 2: For every w ∈ L2(Ω)\{u0}, the constant sequence wn = w is a recovery sequence. On the
other hand, if w = u0, let wi ∈ H be given as in Proposition 4.3.4. Let zn be the function defined
in Bρ(xi) ∩ Ω using polar coordinates around xi (see (4.3.2)) via

z̄(i)
n (ri, θi) := ϕ̄(ri)W̄i

(
ri
εn
, θi

)
(4.3.33)
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and zn(x) := 0 in Ω \
⋃2
i=1Bρ(xi). Set

wn := u0 +
√
εnzn + εnu1.

We claim that {wn}n is a recovery sequence for u0. To prove the claim, we notice that (4.3.30)
implies

lim sup
n→∞

F (2)
εn (wn) ≤

2∑
i=1

{
lim sup
n→∞

1

2

ˆ εn

0

(
W̄i(ri/εn, 0)2

εn
− cir−1/2

i

wW̄i(ri/εn, 0)
√
εn

)
dri

+Bici + Cϕc
2
i + lim sup

n→∞

1

2

ˆ ρ

εn

ϕi(r)
2

(
wi(r/εn, 0)
√
εn

− ci
2
r−1/2

)2

dr

}

− 1

2

ˆ
ΓD

(
∂νu

0
reg

)2
dH1 + lim sup

n→∞

1

2

ˆ
Ω
|∇(zn +

√
εnu1)| dx. (4.3.34)

Letting r = sεn, we obtain
ˆ εn

0

(
W̄i(ri/εn, 0)2

εn
− cir−1/2

i

W̄i(ri/εn, 0)
√
εn

)
dri

=

ˆ 1

0

(
W̄i(s, 0)2 − cis−1/2W̄i(s, 0)

)
ds,

(4.3.35)

and similarly
ˆ ρ

εn

ϕi(r)
2

(
W̄i(ri/εn, 0)
√
εn

− ci
2
r
−1/2
i

)2

dr =

ˆ ρ/εn

1
ϕi(sεn)2

(
W̄i(s, 0)− ci

2
s−1/2

)2
ds

≤
ˆ ∞

1

(
W̄i(s, 0)− ci

2
s−1/2

)2
ds. (4.3.36)

Next, we compute the contribution to the energy coming from the gradient term. Since ϕ̄ = 0
outside of [0, ρ], by (4.3.33) we have

ˆ
Ω
|∇zn|2 dx =

2∑
i=1

ˆ
Bρ(xi)

|∇zn|2 dx

and thereforeˆ
Ω
|∇zn|2 dx

=

2∑
i=1

ˆ π

0

ˆ ρ

0

[
ri
(
∂ri(ϕ̄(ri)W̄i(ri/εn, θi)

)2
+

1

ri
ϕ̄(ri)

2
(
∂θiW̄i(ri/εn, θi)

)2]
dridθi.

We writeˆ π

0

ˆ ρ

0
r (∂r(ϕi(r)wi(r/εn, θ))

2 drdθ
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=

ˆ π

0

ˆ ρ

0
r
(
ϕ′i(r)wi(r/εn, θ) + ϕi(r)εn∂rwi(r/εn, θ)

)2
drdθ.

Expanding the square on the right-hand side of the previous identity we obtain three terms, which
we study separately. By the change of variables s = ri/εn we obtain

ˆ π

0

ˆ ρ

0
riϕ̄
′(ri)

2W̄i(ri/εn, θi)
2 dridθi =

ˆ π

0

ˆ ρ/εn

0
sε2
nϕ
′
i(sεn)2W̄i(s, θi)

2 drdθi

≤ c

ρ

ˆ π

0

ˆ ρ/εn

ρ/2εn

sε2
nW̄i(s, θ)

2 dsdθ → 0,

where in the last step we have used Lemma 4.3.5. Similarly,
ˆ π

0

ˆ ρ

0
riϕ̄(ri)

2(∂riW̄i(ri/εn, θi))
2 dridθi =

ˆ π

0

ˆ ρ/εn

0
sϕ̄(sεn)2(∂sW̄i(s, θi))

2 dsdθi

≤
ˆ π

0

ˆ ρ/εn

0
s(∂sW̄i(s, θ))

2 dsdθ.

In turn, Hölder’s inequality implies that

2

ˆ π

0

ˆ ρ

0
riϕ̄
′(ri)W̄i(ri/εn, θi)ϕ̄(ri)∂riW̄i(ri/εn, θi) dridθi → 0

as n→∞. The same change of variables s = ri/εn also yields
ˆ π

0

ˆ ρ

0

ϕ̄(ri)

ri

(
∂θiW̄i(ri/εn, θi)

)2
dridθi =

ˆ π

0

ˆ ρ/εn

0

1

s
ϕ̄(sεn)2(∂θiW̄i(s, θi))

2 dsdθi

≤
ˆ π

0

ˆ ρ/εn

0

1

s
(∂θiW̄i(s, θ))

2 dsdθ.

Thus

lim sup
n→∞

ˆ
Ω
|∇(zn +

√
εnu1)|2 dx ≤ lim sup

n→∞

ˆ
Ω
|∇zn|2 dx ≤

2∑
i=1

ˆ
R2

+

|∇Wi|2 dx, (4.3.37)

which, together with (4.3.34), (4.3.35), and (4.3.36), concludes the proof of the Γ-limsup inequality.
The energy expansion (1.2.30) follows from Theorem 2.1.7.

4.3.5 Sharp estimates

Proof of Theorem 1.2.8. Suppose by contradiction that (1.2.31) is not true. Then there exists a
sequence εn → 0+ such that

‖uεn − u0‖L2(ΓD) > n
(
εn
√
| log εn|

)
(4.3.38)

for every n ∈ N. In view of (1.2.14), we have that

sup{F (1)
εn (uεn) : n ∈ N} <∞,

91



and thus by Theorem 1.2.4 there exist a subsequence {uεnk}k of {uεn}n and v0 ∈ L2(ΓD) such
that

uεn − u0

εn
√
| log εn|

⇀ v0,

which is a contradiction to (4.3.38).
The proof of (1.2.32) follows analogously from (1.2.25) and (1.2.30).

4.4 More general Gamma-convergence results

Our results can be recast in a more general framework by decoupling the different scales in the
asymptotic expansion of uε. Here we present in full detail the generalizations of Theorem 1.2.5 and
Theorem 1.2.7; the results of Section 3 can be analogously reformulated. Throughout the section we
assume that the domain Ω is given as in Theorem 1.2.1 and use the notations introduced in (4.3.1)
and (4.3.2).

Theorem 4.4.1. Under the assumptions of Theorem 1.2.4, let K(1)
ε : L2(Ω) × L2(ΓD) → R be

defined via

K(1)
ε (u, v) :=


F (1)
ε (u) if u ∈ H1(Ω) and u−u0

ε
√
| log ε|

= v on ΓD,

+∞ otherwise.
(4.4.1)

Then the family {K(1)
ε }ε Γ-converges in L2(Ω)× L2(ΓD) to the functional

K1(u, v) :=


1

2

ˆ
ΓD

v2 dH1 − 1

8

2∑
i=1

c2
i if u = u0 and v ∈ L2(ΓD),

+∞ otherwise,

where the coefficients ci are as in Theorem 1.2.1.

Proof. Step 1: (Compactness) Let εn → 0+ and (un, vn) ∈ L2(Ω)× L2(ΓD) such that

sup{K(1)
εn (un, vn) : n ∈ N} <∞.

Then by (4.4.1), un ∈ H1(Ω), the function

v∗n :=
un − u0

εn
√
| log εn|

belongs to H1(Ω) and satisfies v∗n = vn on ΓD in the sense of traces. By Theorem 1.2.4, there exist
a subsequence {unk}k of {un}n, r ∈ H1(Ω) and v ∈ L2(ΓD) such that

ε1/2
nk
∇v∗nk ⇀ r in H1(Ω),

vnk ⇀ v in L2(ΓD).
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Step 2: (Liminf inequality) Let εn → 0+ and {(un, vn)}n be a sequence in L2(Ω)× L2(ΓD) such
that (un, vn)→ (u, v). Reasoning as in the proof of Theorem 1.2.3, we can assume without loss of
generality that

lim inf
n→∞

K(1)
εn (un, vn) = lim

n→∞
K(1)
εn (un, vn) <∞.

In particular, K(1)
εn (un, vn) < ∞ for every n sufficiently large. Let {unk}k be the subsequence of

{un}n given as in the previous step and ξin be the function defined in polar coordinates as in (4.3.14).
Then

lim inf
k→∞

K(1)
εnk

(unk , vnk) = lim inf
k→∞

F (1)
εnk

(unk)

and so, reasoning as in the proof of Theorem 1.2.5 (by (4.3.15) and (4.3.16) with vnk and znk
replaced by unk and v∗nk , respectively), we obtain

lim inf
k→∞

K(1)
εnk

(unk , vnk) ≥ lim inf
k→∞

{
1

2

ˆ
ΓD

v2
nk
dH1 −

ˆ
ΓD\

⋃
iBεnk

(xi)
vnk(ξ1

nk
+ ξ2

nk
) dH1

}

≥ lim inf
k→∞

ˆ
ΓD\

⋃
iBεnk

(xi)

[
1

2
v2
nk
− vnk(ξ1

nk
+ ξ2

nk
)

]
dH1

= lim inf
k→∞

1

2

ˆ
ΓD\

⋃
iBεnk

(xi)

[(
vnk − ξ

1
nk
− ξ2

nk

)2 − (ξ1
n)2 − (ξ2

nk
)2
]
dH1

≥ 1

2

ˆ
ΓD

v2 dH1 − 1

8

2∑
i=1

c2
i = K1(u0, v),

where in the last step we have used the fact that vnk ⇀ v, ξink ⇀ 0 in L2(ΓD), and so

lim inf
k→∞

ˆ
ΓD\

⋃
iBεnk

(xi)

(
vnk − ξ

1
nk
− ξ2

n

)2
dH1 ≥

ˆ
ΓD

v2 dH1.

Step 3: (Limsup inequality) Let u = u0 and v ∈ L2(ΓD). We extend v to zero in ∂Ω \ ΓD and
assume first that v ∈ H1/2(∂Ω) (in what follows, although with a slight abuse of notation, we
identify v with its extension). Then there exists v∗ ∈ H1(Ω) such that v∗ = v on ∂Ω in the sense
of traces (see Theorem 18.40 in [70]). Set

un := u0 + εn
√
| log εn|(zn + v∗),

where zn is defined as in (4.3.18). As one can check (see (4.3.24) and (4.3.26)), {(un, zn + v∗)}n
is a recovery sequence for (u0, v).

If v ∈ L2(∂Ω) \H1/2(∂Ω) we consider a sequence {vn}n of functions in H1/2(∂Ω) such that

‖vn − v‖L2(∂Ω) → 0 as n→∞, (4.4.2)

and for every n ∈ N we let v∗n ∈ H1(Ω) be such that v∗n = vn on ∂Ω and

‖v∗n‖H1(Ω) ≤ c‖vn‖H1/2(∂Ω), (4.4.3)
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where c > 0 is independent of n (see Theorem 18.40 in [70]). Furthermore, notice that by a standard
mollification argument we can also assume that

‖ε1/2
n vn‖H1/2(∂Ω) → 0 as n→∞. (4.4.4)

Set
un := u0 + εn

√
| log εn|(zn + v∗n)

and notice that by (4.4.3) and (4.4.4), ‖ε1/2
n ∇(zn + v∗n)‖L2(Ω;R2) → 0 as n → ∞. Thus, we can

proceed as in (4.3.24) and (4.3.26).

Theorem 4.4.2. Under the assumptions of Theorem 1.2.6, let

K(2)
ε : L2(Ω)× L2

loc(R2
+)× L2

loc(R2
+)× L2

loc(ΓD)→ R

be defined via
K(2)
ε (u, v1, v2, w) := F (2)

ε (u) (4.4.5)

if u− u0 − εu1 =
√
εVi,ε in Ω ∩Bρ(xi),

u− u0 − εu1 = εw on ΓD \Bε(xi),
(4.4.6)

where the functions Vi,ε are defined in polar coordinates by

V̄i,ε(ri, θi) := v̄i

(ri
ε
, θi

)
, (4.4.7)

and K(2)
ε (u, v1, v2, w) := +∞ otherwise. Then the family {K(2)

ε }ε Γ-converges with respect to the
topology of L2(Ω)× L2

loc(R2
+)× L2

loc(R2
+)× L2

loc(ΓD) to the functional

K2(u, v1, v2, w) :=

2∑
i=1

[
1

2
Ji(vi) +Bici + Cϕc

2
i

]
+

1

2

ˆ
ΓD

(w − 2∑
i=1

ciψi

)2

−
(
∂νu

0
reg

)2 dH1

if u = u0, v1, v2 ∈ H , w −
∑2

i=1 ciψi ∈ L2(ΓD), and K2(u, v1, v2, w) := +∞ otherwise, where
Bi and Cϕ are defined as in (1.2.18) and (1.2.19), respectively.

Proof. Step 1: (Liminf inequality) Let εn → 0+ and {(un, v1,n, v2,n, wn)}n be a sequence in
L2(Ω) × L2

loc(R2
+) × L2

loc(R2
+) × L2

loc(ΓD) such that (un, v1,n, v2,n, wn) → (u, v1, v2, w). Let
un := (un, v1,n, v2,n, wn). Reasoning as in the proof of Theorem 1.2.3, we can assume without
loss of generality that

lim inf
n→∞

K(2)
εn (un) = lim

n→∞
K(2)
εn (un) <∞.

In particular,K(2)
εn (un) <∞ for every n sufficiently large. Let {unk}k be the subsequence of {un}n

given as in Theorem 1.2.6. By (4.3.30) (with wn replaced by unk ), (4.4.5), (4.4.6), and (4.4.7) it
follows that for every εnk < δ < ρ,

K(2)
εnk

(unk) =
2∑
i=1

{
1

2

ˆ δ

εnk

(
v̄i,nk(ri/εnk , 0)

√
εnk

− ci
2
ϕ̄(ri)r

−1/2
i

)2

dri +Bi,nkci + Cϕc
2
i
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+
1

2

ˆ εnk

0

(
v̄i,nk(ri/εnk , 0)2

εnk
− cir−1/2

i

v̄i,nk(ri/εnk , 0)
√
εnk

)
dri

}

+
1

2

ˆ
ΓD\

⋃
iBδ(xi)

(
wnk −

2∑
i=1

ciψi

)2

dH1 − 1

2

ˆ
ΓD

(
∂νu

0
reg

)2
dH1

+
1

2εnk

ˆ
Ω
|∇(unk − u0)|2 dx, (4.4.8)

where Bi,nk is defined as in (4.3.28). Arguing as in the first step of the proof of Theorem 1.2.7, we
arrive at

lim inf
k→∞

K(2)
εnk

(unk) ≥
2∑
i=1

[
1

2
Ji(vi) +Bici + Cϕc

2
i

]
+

1

2

ˆ
ΓD\

⋃
iBδ(xi)

(
w −

2∑
i=1

ciψi

)2

dH1

− 1

2

ˆ
ΓD

(
∂νu

0
reg

)2
dH1.

To conclude the proof of the liminf inequality it is enough to let δ → 0+.
Step 2: (Limsup inequality) Let (u0, v1, v2, w) be such that K2(u0, v1, v2, w) < ∞. We assume
first that there exists 0 < δ < ρ/2 such that

w ∈ H1/2

(
ΓD \

2⋃
i=1

Bδ/4(xi)

)
, (4.4.9)

and we extend it to a function in H1/2(∂Ω) (in what follows, although with a slight abuse of nota-
tion, we identify w with its extension). Then there exists w∗ ∈ H1(Ω) such that w∗ = w on ∂Ω in
the sense of traces (see Theorem 18.40 in [70]). Set

un := u0 + εnu1 +
√
εnZn,

where Zn is given in polar coordinate at xi by

Z̄(i)
n (ri, θi) := ϕ̄

( ρ
2δ
ri

)
v̄i

(
ri
εn
, θi

)
+
√
εn

(
1− ϕ̄

( ρ
2δ
ri

))
w∗

(i)
(ri, θi),

and Zn :=
√
εnw

∗ in Ω \
⋃2
i=1Bρ(xi). We claim that {un}n, defined from {un}n via (4.4.6) and

(4.4.7), is a recovery sequence for (u0, v1, v2, w). Using the fact that ϕ̄
( ρ

2δ ri
)

= 1 for ri ≤ δ and
the change of variables εns = ri (see also (4.3.35), (4.3.36), and (4.3.37)), we get

Ji(vi) ≥ lim sup
n→∞

{ˆ
Bδ(xi)

|∇Zn|2 dx+

ˆ εn

0

(
Z̄

(i)
n (ri, 0)2

εn
− cir−1/2

i

Z̄
(i)
n (ri, 0)
√
εn

)
dri

+

ˆ δ

εn

(
Z̄

(i)
n (ri, 0)
√
εn

− ci
2
ϕ̄(ri)r

−1/2
i

)2

dri

}
.

95



In turn, it follows from (4.4.8) that

lim sup
n→∞

K(2)
ε (un) ≤

2∑
i=1

{
Ji(vi)

2
+Bici + Cϕc

2
i

}
− 1

2

ˆ
ΓD

(
∂νu

0
reg

)2
dH1

+ lim sup
n→∞

1

2

ˆ
ΓD\

⋃
iBδ(xi)

(
Zn√
εn
−

2∑
i=1

ciψi

)2

dH1

+ lim sup
n→∞

1

2

ˆ
Ω\

⋃
iBδ(xi)

|∇(Zn +
√
εnu1)|2 dx. (4.4.10)

By the convexity of the square function we have

ˆ 2δ

δ

(
Z̄

(i)
n (ri, 0)
√
εn

− ci
2
ϕ̄(ri)r

−1/2
i

)2

dri ≤
ˆ 2δ

δ
ϕ̄
( ρ

2δ
ri

)(
v̄i(ri/εn, 0)− ci

2
ϕ̄(ri)r

−1/2
i

)2
dri

+

ˆ 2δ

δ

(
1− ϕ̄

( ρ
2δ
ri

))(
w − ci

2
ϕ̄(ri)r

−1/2
)2

dri,

and therefore, since Ji(vi) <∞,

lim sup
n→∞

ˆ 2δ

δ

(
Z̄

(i)
n (ri, 0)
√
εn

− ci
2
ϕ̄(ri)r

−1/2
i

)2

dri ≤
ˆ 2δ

δ

(
w − ci

2
ϕ̄(ri)r

−1/2
)2

dri.

In addition, using the fact that ϕ̄
( ρ

2δ ri
)

= 0 for ri ≥ 2δ, we obtain

ˆ
ΓD\

⋃
iB2δ(xi)

(
Zn√
εn
−

2∑
i=1

ciψi

)2

dH1 =

ˆ
ΓD\

⋃
iB2δ(xi)

(
w −

2∑
i=1

ciψi

)2

dH1.

We now observe that the result of Lemma 4.3.5 straightforwardly extends to every vi ∈ H such that
Ji(vi) < ∞. Consequently, we can argue as in the second step of the proof of Theorem 1.2.7 to
deduce that

lim sup
n→∞

1

2

ˆ
Ω\

⋃
iBδ(xi)

|∇(Zn +
√
εnu1)|2 dx = 0.

This concludes the proof of the limsup inequality under the assumption that (4.4.9) is satisfied.
If on the other hand

w /∈ H1/2

(
ΓD \

2⋃
i=1

Bδ/4(xi)

)
for any δ > 0, we reproduce the mollification argument in (4.4.2) - (4.4.4) and proceed as before.
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