
Behavior Prediction in Autonomous Driving

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Department of Electrical and Computer Engineering

Chiyu Dong

B.S., Precision Instruments and Mechanology, Tsinghua University

M.S., Mechanical Engineering, Carnegie Mellon University

Carnegie Mellon University

Pittsburgh, PA

May 2019



c© Chiyu Dong, 2019.

All Rights Reserved



Acknowledgments

I would like to express my deepest gratitude to my supervisor Professor John

M. Dolan. This thesis would hardly have been completed without his patience, mo-

tivation, and immense knowledge. I also want to express my warmest gratitude to

my thesis committee: Professor Stephen F. Smith, Professor Anthony Rowe, and Dr.

Bakhtiar B. Litkouhi.

My sincere thanks also goes to all colleagues in GM-CMU ADCRL: Professor

Ragunathan Rajkumar, Jarrod Snider, Junqing Wei, Tianyu Gu, Wenda Xu, Gaurav

Bhatia, Hyoseung Kim, Jongho Lee, and Junsung Kim. They enlightened me the

first glance of the autonomous driving research. I would also like to thank General

Motors Research and Development for sponsoring the research.

I am forever thankful to my labmates: Zhiqian Qiao, Jordan Ford, Chen Fu, Yilun

Chen, Aman Khurana, Adam Villaflor, Yanjun Pan and Jing Zhao. The hard time

before deadlines and fun days together are unforgettable. I thank my colleagues in

the department of Electrical and Computer Engineering, the Robotics Institute and

Mechanical Engineering. In particular, I am grateful to Wenhao Luo, Sasanka Na-

gavalli, Yuqing Tang, Hsu-Chieh Hu, Anqi Li, Weikun Zhen, for fruitful discussions

in research topics.

Last but not the least, I would like to thank my family, especially my parents,

for their unconditional and endless support, inspiration and encouragement with my

academic pursuit and my life in general.

iii



Abstract

As autonomous driving vehicles are being tested on public roads, they will share

the road with human-driven vehicles. It becomes important for autonomous driving

vehicles to estimate human drivers’ intentions in order to interact properly with the

human drivers to achieve safe and efficient experiences. The current work proposes

a new cooperative driving framework which is capable of predicting other vehicles’

behaviors. The estimated prediction provides an input for a trajectory planner to

perform cooperative behavior and to generate a path to react to other vehicles. The

system has three stages:

1 Abstract intention prediction;

2 Intermediate-level important points prediction;

3 Ultimate trajectory prediction.

The system bridges the gap between higher-level mission planning and behavioral

execution or trajectory planning, especially in interactive scenarios. The validation

contains two aspects: Firstly, the estimated trajectory is compared with the ground-

truth in datasets. Secondly, the estimated trajectory is applied to current trajectory

planners to generate cooperative plans. The second step evaluates the closed-loop

performance of the behavioral estimation in the whole system. The proposed method

outperforms previous solutions in terms of collision rates, safety distance, and error

when tested against a human-driven trajectory database. The method is implemented

in simulation and on a real autonomous driving platform to test its feasibility in real

scenarios.
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Chapter 1

Introduction

Autonomous vehicles have been testing on public roads for some time. Safety and economical

concerns are the top reasons for the development of autonomous driving technology. The analysis

from the National Highway Traffic Safety Administration (NHTSA) shows that human drivers

are the leading causes of unsafe events. Recognition and decision error are the leading causes for

these events, and contribute 41% and 34% of the total errors, respectively. The development of

autonomous driving techniques aims to reduce accidents, costs, and human labor, and to increase

transportation efficiency.

NHTSA has also published a white paper [1] suggesting 4 levels of autonomous driving. The

highest level is full autonomy in all environments, whereas the lowest level is manual driving.

The intermediate levels differ in whether the vehicle just warns the driver or operates the vehicle,

and how many functions are controlled by the vehicle itself. There is an increasing number of

companies seeking to commercialize autonomous driving vehicles at level 3 or 4. For example,

Google has been testing their fully automated vehicle since 2009, and has accumulated more than

one million miles of testing data on public roads. Its autonomous driving department has now

“graduated” from Google [X] and established Waymo to further promote its self-driving vehicle.

Uber started testing their autonomous driving vehicle on public roads in the Pittsburgh area in

2016. It is also the first company to offer a commercial vehicle sharing service. Lyft and Aptiv
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released their autonomous ride-sharing service in parts of Las Vegas after Uber announced their

self-driving public road tests.

Unlike IT companies, who built their vehicles mainly for research and exploration, tradi-

tional car makers have moved rather slowly, since they are not only interested in the specific

advanced technique, but also commercialization problems such as industrial integration, sup-

ply chain, marketing and safety. Car makers such as General Motors, Ford, Tesla, Volkswagen,

Mercedes-Benz, BMW, and Audi have been gradually and continuously integrating state-of-the

art autonomous driving techniques or Advanced Driver-Assistance Systems (ADAS) into their

commercial products. For example, they offer Lane Departure Warning Systems (LDWS), Lane

Keeping Systems(LKS), Collision Warning (CW), and Full Speed Range Adaptive Cruise Con-

trol (FSRACC). General Motors’ “SuperCruise” performs single-lane hands-free autonomous

driving at freeway speeds; Tesla’s “AutoPilot” combines lane keeping with ACC on the highway,

and features the lane-changing assistant. Audi’s “Stop and Go” frees human drivers from having

to control vehicles in congestion at low speeds. Nowadays, almost all car makers, ranging from

basic car brands like Toyota, Honda and Subaru to luxury brands, can provide consumers with

optional self-driving packages which enable the cars with level 2 or 3 features.

As the technology proceeds, in the near future, autonomous driving vehicles will be com-

mercialized and share roads with human-driven vehicles. However, current autonomous driving

systems do not deal well enough with complex environments filled with human-driven vehicles.

The main reason is that the current systems are not able to accurately predict the intention or

future movement of surrounding vehicles and then negotiate with them. Ideally, there should be

a prediction module in the autonomous driving system architecture. There are two modules in

most systems that are related to the understanding and negotiation, i.e., Behavior and Trajectory

Planning. The behavior planning module normally outputs high-level commands, such us “Go

to the goal”, “Make a lane change” or “Turn left”. The trajectory planning then generate a fea-

sible plan to conduct the command given by the behavior planner. Unfortunately, most behavior

planners are not able to predict human behaviors and negotiate with human drivers, then generate
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interactive behavioral commands. Similarly, in order to generate cooperative trajectories, most

of the planning algorithms require an accurate trajectory estimate for other vehicles.

It is therefore important for the autonomous driving vehicle to have an extra module to enable

the car to understand other human drivers’ intentions, predict human-driven vehicles’ behaviors

in the near future, and then use the well-developed trajectory planning algorithms to socially

cooperate with surrounding vehicles. Figure 1.1 shows the whole autonomous driving system ar-

chitecture, without including detailed perception modules and controller modules. The main idea

of this figure is to illustrate the differences between the classic framework and our prediction-

augmented one. The dashed-line box highlights the proposed extra module. Note that in the

previous framework, there is not an extra module between the behavioral and trajectory planner.

As discussed above, the intermediate layer that we propose is a prediction engine. To better man-

age and fulfill different scenarios or tasks, the prediction layer consists of various sub-modules

with differing complexity and computational demands.

A command from the Behavioral Planner, for example, Lane Change, will be sent to the Be-

havioral Estimation layer. In this layer, it will activate a corresponding module to process the

prediction, for example, the Trajectory Prediction for all surrounding vehicles. After the predic-

tion, the Behavioral Estimation layer will select a proper module in the actuation level. In this

case, the predicted trajectories will be sent to the trajectory planner to generate a cooperative

lane-change path plan. In the case of ramp merging, since the task is not as complex as lane

change, after Intention Estimation is completed, a lower-level distance-keeping model is acti-

vated in the actuation layer, instead of calculating a full trajectory. Details will be discussed in

Chapter 3. This framework allows the system to use computational power efficiently, and adopt

the most robust actuators/controllers for individual tasks.

However, human drivers’ behaviors contain uncertainty, and there are numerous factors af-

fecting these behaviors. Modeling the influence of these factors on a human driver’s behavior is

a challenging task. These factors include but are not limited to:

3



Figure 1.1: An overview of the autonomous driving system architecture and the proposed mod-
ule. Arrows represent data flow. The dashed bounding box highlights the key contribution of this
dissertation.
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1 The current goal, such as lane-keeping, lane-changing, ramp-merging, and intersection-

traversing. The ego-vehicle should perform a proper behavior to achieve the goal.

2 Surrounding traffic vehicles’ status, e.g., one or some of the surrounding vehicles make a

lane-change or a car in the neighboring lane speeds up to prevent a lane change.

3 Traffic rules, signs, and signals. For example, if a “Yield” sign appears at the end of an

entrance ramp, a merging vehicle should wait for the main-road vehicle until the traffic

condition meets the merging requirement.

Since these factors can be coupled, the driver’s behavior becomes even more complicated.

For instance, in dense urban traffic, say that a vehicle plans to make a left turn at the next inter-

section. The current goal is “Left-Turn”. Unfortunately, there is no green arrow for a left-turn,

so the ego vehicle must keep monitoring the approaching vehicles from the opposite direction

while waiting for a condition that satisfies the left turn requirements. This requires the vehicles to

understand the approaching vehicles’ intentions, have a reasonable prediction of their behaviors,

and finally perform a sequence of proper reactions. Due to the complexity of the interaction, it

is extremely hard for a single model to handle all cooperative scenarios, such as ramp-merging,

lane-changing or intersection traversing. However, a universal framework may be able to serve

as a solution for various scenarios, with minor modifications or specific data to fit in.

The core task for such a framework is to formulate the interaction between the host vehicle

and other human-driven vehicles. Then, a prediction of surrounding vehicles’ behaviors and

trajectories can be generated. Based on the prediction, a cooperative trajectory for the vehicles

can be planned. The framework bridges the gap between the trajectory planner and higher-

level task planner, especially in dynamic environments where the trajectory planner needs other

vehicles’ future movements as a reference. Because there are differences in the abstraction of

input information, the trajectory planners and higher-level planners (such as reference planners

and mission planners) can encounter conflicts in the decision making and its execution. For

example, the behavioral planner may send out a command to make a lane-change, but due to

5



the dense traffic or aggressive human drivers’ behaviors, the trajectory planner cannot generate a

feasible and collision-free path in a very limited area and time.

Generally, a behavioral planner does not consider the failure of lower-level planners (the

trajectory planner and controller), and there is also no feedback mechanism if the lower-level

planners/controllers do not work properly. Addressing this problem has two aspects: 1. The

behavioral planning should consider more detailed information and have the capability to pre-

dict environmental changes, e.g., the future trajectories of surrounding vehicles, with bounded

uncertainty. 2. The behavioral planner should take feedback from the trajectory planner and

always prepare to make follow-on decisions. The second step serves as a backup mechanism if

the first step fails. The feedback mechanism will be the future work followed by this project.

The first step is the main topic of this dissertation. To accomplish the first step, the autonomous

driving vehicle needs a prediction engine. The prediction engine takes surrounding vehicles’

trajectories as inputs and it outputs a future trajectory for a target vehicle.

To fulfill the requirements for the different levels of decision making and planning, there are

three stages of prediction:

1 Discrete intentional prediction: The behavioral predictor only gives an abstract command

from a discrete options set. For example, in a merging scenario, the ego-vehicle on the

main road only needs to know whether one merging vehicle intends to yield or not, then

the ego-vehicle will select a needed target to keep a safe distance, either the leading car in

the current lane or the merging vehicle.

2 Semi-continuous prediction: In this stage, the behavioral predictor implicitly considers

the surrounding vehicles’ movements and outputs key points for the ego-vehicle to aid

cooperative driving. For example, in a dense-traffic lane-change scenario, the path planner

in the ego-vehicle needs to know the location where it is possible to make/finish a lane-

change, and the instant when the car can start/end the behavior. Those key points are start

and end points for the cooperative behavior. However, there is no explicit modeling of
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surrounding vehicles’ movements; instead, direct advice (the start/end points) is given to

the vehicles. Trajectory planners highly rely on those key points to make a detailed path

with a speed profile.

3 Continuous prediction: the object of this stage is one of the surrounding vehicles. It focuses

on predicting its future trajectory by explicitly analyzing the interaction between other

surrounding vehicles and the factors which are discussed below.

The predicted trajectories of all surrounding vehicles provide more detailed information for deci-

sion making and path planning. Most existing decision making and path planning algorithms do

not consider other agents’ future trajectories, or simply assume a constant model for all agents.

Those solutions work well in low-speed robot agent interactions. However, neither is sufficiently

realistic for autonomous driving vehicles, which face more challenging situations such as higher

speeds, more dynamic environments, dense traffic interactions, and most importantly, extremely

high safety and real-time requirements. These requirements naturally increase demands on the

behavioral predictor: 1. Accuracy is the most obvious criterion. The predicted trajectory should

be similar to the real human-driven trajectory in the same situation, and must have a bounded

uncertainty. This criterion suggests that the algorithm should learn human-like behaviors from

real data. 2. The algorithm should be consistent and robust. Since the decision making should

be done at each timestep, but the prediction is over a long horizon, the results cannot change

frequently or dramatically.

Besides these cooperative scenarios, the behavioral prediction engine can be applied to other

kinds of situations. For example, as indicated in [2], in a two-direction narrow road with soft lane

dividers, the ego-vehicle can enter the opposite lane to swerve around a large parked car, overtake

a slow-moving vehicle or keep a safe distance to a bicyclist. To enable such behavior, especially

in dense traffic areas, it is necessary to analyze the opposing vehicle’s behavior. Normally, this

approaching vehicle may not slow down for the ego-vehicle, thus, if it needs to perform such a

behavior, it should accurately predict the incoming car’s trajectory, and then plan a corresponding
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path to cross the lane divider and successfully perform the task without seriously interfering with

vehicles moving in the opposite direction.

1.1 Problem Definition

Using probabilistic methods will improve the autonomous driving cars’ behavior in interactive

scenarios. The estimation of surrounding vehicles’ future behaviors includes discrete intentions,

important way points, and possible trajectories. It should consider the interaction between all

surrounding traffic participants. The prediction is based on the historical observation of these

vehicles. The main difficulty is to represent a continuous trajectory and compare the similarity

between trajectories. Another challenge is to smoothly update a predicted trajectory over time

according to the changes in surrounding traffic. In a symbolic representation, the system is a

function which maps observations to predicted behavior:

Oτ fτ−→ Bτ

where O ∈ Rn×t denotes observation, which is a tuple containing n surrounding vehicles’ dy-

namic information over the last t seconds; B ∈ Rh, which is an array of predicted behaviors

for the target vehicle; and fi is the predictor. Note that all of Oτ , Bτ , f τ have specific forms to

manage one scenario and task τ ∈ T. The main topic of this dissertation is to figure out f τ

for specific tasks τ . Probabilistic methods are proposed in the dissertation to understand other

human-driven cars’ behaviors and take the uncertainty of human drivers’ intentions in to consid-

eration. In addition, the forms of Oτ , Bτ will also be discussed, according to different scenarios.
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1.2 Contributions

The main contribution of this thesis is a behavioral estimation framework for socially cooperative

driving. The work is a probability framework which tolerates the uncertainty of traffic conditions

and human drivers. The framework has the following novel features compared with previous

work:

1 It estimates behaviors by considering historical trajectories of surrounding vehicles;

2 It smoothly updates the estimates according to the surrounding traffic using a non-parametric

method, without assuming a human driver model;

3 It separates the behavioral estimation into three levels with increasing complexity to satisfy

the requirements of different scenarios.

To validate the performance of the method, a realistic simulation environment is built. Real

human-driven data are used as other agents and ground-truth. The simulation helps the test

and integration of the system. Furthermore, sensitivity analysis is conducted in the simulator.

Different types of sensing uncertainty and their effects are studied. This analysis gives guidelines

and criteria for the design of an engineering realization of a perception system. Finally, the

system is deployed on a real autonomous driving system to show its performance in urban traffic.
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Chapter 2

Related Work

2.1 Social Behavior in human

Before reviewing behavioral planning methods for autonomous vehicles, we look to the field of

psychology for a definition of “Social Behavior” among people. This definition can be applied

to the social behaviors among autonomous vehicles and other human-driven vehicles.

2.1.1 Social Behavior in Social Psychology

In psychology research [3], social behaviors and interactions are defined as follows: “ Behavior

that is peculiarly social is oriented towards other selves. Such behavior apprehends another as a

perceiving, thinking, moral, intentional, and behaving person; considers the intentional or ratio-

nal meaning of the others’ field of expression; involves expectations about the others’ acts and

actions and manifests an intention to invoke in another self-certain experiences and intentions. ”

In autonomous driving scenarios, the ego-vehicle should understand surrounding vehicles’

actions and intentions, in order to achieve social behaviors in traffic.
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2.1.2 Decision making in human brain

Rustichinir [4] reviewed two major theories which explain the decision making mechanism in the

human brain. Though the real mechanism remains a topic of research in the field of psychology,

it is agreed that there are different stages of decision making which are governed by different

modules in the human brain. Decision making is described as a ”dual system”: immediate and

long-term. Immediate decision making often occurs subconsciously, whereas long-term decision

making “calculates” the accumulated rewards over time, which is similar to the framework of

Markov Decision Making models. Different “modules” are in charge of different decisions. In

other words, for a specific event, different modules can output opposite decisions. The problem

is how the human selects a proper decision in the face of contradiction. Although psychologists

do not agree on the architecture of these modules, in robotics, where the decision system is not as

complex as that of a human, different types of decision modules in the system apply to different

scenarios. An upper-level model activates the proper module to handle a specific situation, and

the module is followed by a proper lower-level planner or controller to execute the behavioral

planning.

Following this dual system, reflective-impulsive models [5] are applied to social behavior.

The impulsive model explains the immediate decision-making, and the reflective part of the

model considers decisions over long horizon with prediction. This part shares the same idea

with the design of the behavioral planning of autonomous vehicles: collect enough past data to

analyze and consider long-horizon rewards and mutual benefit at the same time.

2.2 Social behavior in autonomous vehicles

The social behavioral planner in autonomous vehicles is not as complicated as the decision-

making component of the human brain. However, different approaches are able to manage spe-

cific scenarios, from simple cases to complex ones. In the autonomous vehicle application, there
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are three kinds of approaches to address cooperative driving.

• Rule-based

• Optimization- and Search-based

• Probabilistic

2.2.1 Rule-based methods

Rule-based methods are the most straightforward approaches. They have been applied on test

vehicles since the 2007 DARPA Urban Challenge. Baker and Dolan [6] developed CMU Boss’s

merge planner using a slot-based approach. Kinematic information is used to check merge-in

feasibility of each slot, such as the distance to the Goal, remaining distance in the current lane,

etc. Then the target slot is selected from the set of feasible slots according to the context of the

maneuver, and predictions of others. The slot-based approach is straightforward to implement

and robust in simple scenarios. However, the lack of prior knowledge of surrounding vehicles’

intentions makes it hard to estimate or predict their movements and corresponding behaviors.

Most teams in the Urban Challenge used rule-based methods, such as a state machine with pre-

defined behaviors [7], for decision making and behavioral planning [8, 9, 10]. These approaches

are efficient, deterministic and feasible in the competition field, since the scenarios had fewer

uncertainties than real driving environments.

Naranjo et al. [11] perform lane-change decision making by using fuzzy logic. The method

is also straightforward and simple to implement. However, it also does not consider prior knowl-

edge and prediction. Lu and Hedrick [12] formulated the merge planning as a platoon control

problem. But the algorithm still requires a “coordination layer” to select a pair of main-road cars

to interact with, i.e., it needs a decision to yield or not yield by the host vehicle. The rule-based

algorithms mainly consider kinematic variables such as speed, distance or time-to-arrival, and

make an instantaneous decision based on the current observations. These algorithms are suitable
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for simple scenarios which have a limited number of variables. The rule-based algorithms do not

consider the reaction of other vehicles to the behaviors that are performed by the ego-vehicle.

Therefore, rule-based algorithms can easily fail in dense traffic or interactive scenarios, or need

an arbitrarily large expert system, which is infeasible for storage and efficient computation.

2.2.2 Optimization and Search-based methods

Nilsson et al. [13, 14] formulated cooperative planning as an optimization problem under a

Model Predictive Control (MPC) framework. The weighted effects of acceleration and braking

are optimized subject to the trajectory’s shape and feasibility. The author provided a straightfor-

ward way to transform the problem into a well-defined optimization problem that can be solved

by applying a specific solver. However, the manual tuning of weights is difficult. Also, the

equation to be optimized and objective functions are designed by hand, without the use of data.

Liu et al. [15] convert the MPC to a convex optimization over its manifold, and achieved bet-

ter performance and computational improvements. Their method is a sound theory to calculate a

proper cooperative trajectory planning for robots. But it still needs a predictive engine to provide

an initial estimate of the other agents’ possible future trajectories and the associated uncertainty.

Algorithms based on the Intelligent Driver Model (IDM) [16] optimize the ego-vehicle’s reac-

tions in scenarios requiring interaction such as freeway entrances and turns in intersections. The

algorithms assume that all other vehicles apply the identical behavioral model (IDM). Given a

proposed intention for the ego-vehicle, the optimization algorithms converge to a proper coop-

erative trajectory regarding the reactions from the IDM-driven agents. However, this approach

has some problems. Firstly, the assumption of IDM does not necessarily fit all other vehicles,

especially in interactive scenarios. Secondly, the IDM relies on several parameters which require

hand-tuning. Thirdly, despite the fact that IDM is one of the most robust distance-keeping mod-

els, interactive scenarios do not merely require car-following, which only considers the leading

car. Instead, a vehicle should also consider all surrounding vehicles’ behaviors and then react.
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Xu et al. [17] combined the path and velocity in a single search and optimization process

to make the car navigate traffic. This work only considered the current interaction among cars,

instead of explicitly predicting a target car’s motion.

In order to optimize a cooperative trajectory, these methods need to know the future trajec-

tory of other traffic participants, which is not included in these methods. In other words, these

methods do not sufficiently consider future behaviors of surrounding vehicles.

2.2.3 Probabilistic methods

Probabilistic methods form the largest percentage of solutions to lane changing or cooperative

driving. Montemerlo et al. [10] integrated lane-changing behavior into Stanford Junior’s global

path planner, which is an instance of dynamic programming (DP). In fact, the problem is formu-

lated as optimizing a variant Bellman equation, which implicitly follows the MDP framework and

value iteration. Each action is assigned a penalty cost. The lane changing behavior is a penalty

term in the cumulative cost function which is optimized by the DP. However, the algorithm does

not consider other traffic participants. Yao et al. [18] search for k-nearest-neighbors in a lane-

change scenario database to generate a trajectory. Measuring differences between trajectories

and scenarios remains a problem. If the data-set contains a large number of samples, searching

for the k-nearest-neighbors is time-consuming. Galceran and Cunningham et al. [19, 20] make

the decision depending on the probability of past trajectories of all traffic participants. Both

of them report discrete actions such as left-lane-change, right-lane-change etc., which can be

used as an upper-level module in our method. Dong et al. [21, 22] detect whether the other

car will merge in by using PGM. However, this method only provides binary output of either

Yield or Not Yield. Ulbrich et al. [23] and Wei et al. [24] proposed an online PoMDP [25]

for lane-change using real-time belief space search [26]. However, to achieve real-time perfor-

mance and use a simple PoMDP framework, they discretized state and action spaces. To avoid

discrete states, Bai et al. [27] proposed a continuous-state PoMDP using a belief tree and the
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model was applied to navigating intersections. However, its actions are discrete and represented

by a generalized policy graph (GPG). Seiler et al. [28] proposed an online and approximate

solver for a continuous-action PoMDP, but only tested in toy problems, such as a 4-by-4 maze.

The PoMDP solutions above still need manually designed probabilistic transition models and re-

ward functions. Hadfield et al. [29] establish those transition models by (inverse) reinforcement

learning, but their solutions are tied to specific scenario features, such as the number of traffic

participants. E. Ward et al. and Klingelschmitt et al. [30, 31] predict the intention probabilities

and then use the Intelligent Driver Model (IDM) as a planning module to execute actions such

as over-take and right/left turns in traffic conditions or intersections. Althoff and Magdici [32]

introduced Set-Based Prediction for traffic participants on arbitrary road geometry. In this work,

vehicle dynamics and route shape are considered. However, the method does not consider mutual

interactions in the constraints. It also tends to over-estimate the reachable sets of surrounding

vehicles, which results in larger occupied regions and narrow corridors, sometimes making it

impossible to traverse.

As Deep Learning techniques advance, there are methods that adopt Deep Network for the in-

teractive behavior prediction. Kuefler et al. [33] used Generative Adversarial Networks (GANs)

to mainly imitate and estimate single-lane behaviors (e.g., car following). Chen et al. [34] and

Su et al. [35] solved the sequential prediction of the lane-change trajectory by using recurrent

deep neural networks such as Long Short-Term Memory (LSTM). However, the interaction is

not explicitly modeled in these LSTM or GANs methods. To better modeling the interaction

among autonomous driving cars and other human-driven cars, Qiao et al. [36] and Sadigh et

al. [37] used reinforcement learning to describe the interaction behaviors among vehicles and

decision making for autonomous driving cars in intersections and lane change, respectively. In

addition, Yan et al. [38] formulate highway decision making as a game theory problem, and a

deep neural network is used to approximates a payoff in the game. However, those algorithms

are mainly developed and tested in simulators. There are so called “realistic gap” between the

real world and the simulators. To close the gap, Zhan et al. [39] and Li et al. [40] mainly focused
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on the safety guarantees for the probabilistic methods, and its deployment from simulation to

real environments.

2.3 Summary

All of these methods have their own advantages and disadvantages. The rule-based algorithms

are straightforward, understandable, and easy to tune and have low execution time. Empirically,

rule-based algorithms can make decisions for easy and obvious scenarios. They have trouble

with subtle scenarios since it is infeasible to enumerate all possible situations and their combina-

tions for an expert system. In the case of complex scenarios, these systems have a high chance

to suffer from logic loopholes. Additionally, the rule-based algorithms do not explicitly analyze

surrounding vehicles’ intentions and their future movements, which are important information

for social behavioral planning. Most rule-based algorithms make decisions based on the current

circumstance, regardless of possible environmental changes. This is based on the current obser-

vations, and there is no guarantee that they can result in consistent estimates. The result will

oscillate if the environment changes or sensor noise is too severe.

The optimization-based algorithms are theoretically sound and guarantee an optimal result

with respect to constraints. Since the only parts which require human design are objective func-

tions and constraints which abstract scenarios and reward desired actions (or penalize undesired

actions), they are less labor-intensive than rule-based algorithms, which require enumerating

cases. One more advantage over the rule-based algorithms is that rather than an abstract com-

mand, most optimization-based algorithms can directly output detailed and continuous lower-

level control, for example, acceleration rate and steering. There are still limitations for optimiza-

tion algorithms in generating cooperative behaviors. The optimization algorithms for cooperative

driving relay on prior knowledge of other vehicles’ movements. This information is extremely

hard to obtain and is one of the main topics which the current work will discuss in depth. PoMDP-

based algorithms mainly look for a complete solution for a policy. However, solving the PoMDP

16



online remains a challenge, and the transition models are hard to extract, especially in continuous

state and action spaces whose dimensions can be infinite.

Our proposed method does not require an overall policy based on the belief states; instead, it

outputs the prediction with the maximum posterior probability. In addition, unlike Value Iteration

or Gradient Descent solvers, the proposed method has a closed-form solution. Compared with

previous methods, the proposed method explicitly predicts the trajectory of one target, consid-

ering its surrounding vehicles. The method updates the estimation in a Bayesian Filter fashion:

once a new segment of the trajectory is observed, the whole estimate of the future trajectory is

adjusted. The new approach does not assume a parametric transition model of the state updating.

Instead, the transition probability is directly extracted and built from data. The proposed model

is non-parametric, namely, there is no assumed model to represent the transition. However, the

price of the non-parametric model is the size of training data. It takes all training trajectories and

saves to a single transition matrix, which means that the size of the transition matrix grows as

the training size increases. Though both the updating and estimation steps are closed-form linear

transforms, the size of these matrices can be huge. Thus, the method requires large memory

space and efficient algorithms to handle the matrix manipulation on such a large scale.

Table 2.1 shows the summary of all discussed prior work. There are five important aspects in

evaluating different methods:

• Interactive: Whether the algorithm considers the reactions between vehicles.

• Predictive: Whether the method can predict the future movement of surrounding traffic.

This is explicit prediction of the movement that can directly affect changes in the ego-

vehicle’s behavior. For example, [19] unrolls the candidate policies for forward prediction,

and then evaluates all candidates to find the best one.

• Robustness: Whether the method is stable against observation noise and is able to avoid

oscillating decisions.
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• Real-Time: Whether the feasible behaviors can be evaluated in real time.

• Full-Trajectory: Whether the method can estimate a full trajectory for other cars or the

ego-vehicle.

In addition, the “Info” column describes the input information of the listed algorithms, for ex-

ample, V means speed, S means location or trajectory, and T means time-to-arrival or headway.

The main advantages of the proposed method compared with previous methods are:

• Surrounding vehicles’ historical trajectories are taken into consideration;

• The full-trajectory estimation is explicit, and will be smoothly updated in response to new

observations over time;

• The estimation is in three levels to satisfy different levels of traffic complexity.

Unlike previous methods, our solution focuses on all five of these important aspects. A de-

tailed performance comparison with other methods is given in Chapter 4. Realistic aspects for

the implementation and engineering are considered, for example, the solution takes full advan-

tage of current Level-3 features on commercial passenger cars; Sensitivity analysis is provided

in Chapter 5 to provide a guideline for the engineering realization of a perception system that

satisfies the requests of the behavior estimation system.
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Chapter 3

Methods

In a real heterogeneous scenario where autonomous vehicles share the road with human-driven

vehicles, especially in dense traffic conditions or scenarios that require interactions, it is impor-

tant for the autonomous driving vehicle to firstly understand the human-driven vehicles’ behav-

iors and intentions. However, the human intentions or behaviors are extremely hard to model.

Most prior work does not consider social behavior and human-driver behaviors, especially for

rule-based algorithms and optimization algorithms. Despite the fact that some probabilistic

algorithms (PoMDP framework) do consider interactions, they may require massive computa-

tional power and do not guarantee real-time performance. However, an immediate understand-

ing/estimate of surrounding vehicles is essential for social behavior in autonomous vehicles. To

address the social behavioral problems, the proposed framework contains three stages for differ-

ent levels of complexity in behavioral planning. Results from each stage can be directly used for

the next-level planners or executive module.

• Discrete Intention Prediction provides an abstract behavioral estimation, such as yield

or not, lane change or not. This task is accomplished by a probabilistic graphical model.

This model is illustrated in Section 3.1.

• Important Points Prediction provides references for interactive planning, such as lane
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change start/end points. The task is based on a non-parametric regression. The model is

introduced in Section 3.2.

• Trajectory Prediction provides an ultimate estimation of surrounding cars’ future trajec-

tories over a given horizon, which is based on a neural process. The model is discussed in

Section 3.3.

All of the stages analyze future movements of surrounding traffic, ranging from intention to full

trajectory predictions. The proposed method ultimately focuses on generating a future trajectory

estimate. Since there is no assumption on the probabilistic distribution model for human behav-

iors, a non-parametric description is more powerful to describe human behaviors in response to

other traffic participants. In addition, the estimation keeps updating itself by considering the last

result and environmental changes.

3.1 Discrete Intention Prediction

In this section, a model that provides discrete behavioral estimation is discussed. At this stage,

the estimator selects the most likely behavior from a discrete set of options. The discrete behav-

ioral prediction uses a Probabilistic Graphical Model (PGM), shown in Figure 3.1, to organize

the relationship between the observations of the environment and the intentions.

3.1.1 The Naı̈ve Behavioral PGM

The PGM organizes the observation with discrete intentions, as illustrated in Figure 3.1. By

collecting sufficiently long historical trajectories of other vehicles, the PGM can evaluate the

intention of the target vehicle based on a set of training data. Intuitively, human drivers estimate

intentions of other cars by their current and immediately previous state and by considering the

driving environment, e.g., the velocity of surrounding cars and positions. Our method simulates

this process to achieve human-like social behavior. The most important part of our method is
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V1 V2 V3 Vn

I

Tm Th

Figure 3.1: The PGM model for the binary merging intention estimation. Vis are speed nodes, Tm
and Th are the time-to-arrival to the merging point for the merging and host vehicle respectively,
I is the intention to be estimated.

understanding the cause-effect relationship among previous states and intention. To simplify and

abstract this dependency, we apply a probabilistic graphical model. There are three kinds of

nodes in the model: (1) time nodes (Th, Tm), which are the time-to-arrival to the merging point

for the host and merging car respectively; (2) an intention node (I), which is either “Yield” or

“Not Yield”; (3) speed nodes (V1, ..., Vn), which contain the speed history of the target vehicle.

The model’s topology describes the dependency. Intuitively, current state affects intention, thus

speed changes. So we design the graphical model as shown in Figure 3.1. The task here is to

estimate the intention node once the car has observed enough information (speeds and times-to-

arrival). As the program runs, the speed nodes are updated by the speeds of the last n cycles and

the time-to-arrival nodes are updated by the current speeds and the distance-to-merging-point for

each car.

Our model assumes that human intention does not oscillate as fast as the program’s update

rate. Therefore, one intention node will affect the next n speed nodes. These n speed nodes

keep track of the target vehicle’s speed during n cycles. The time-to-arrival for each car will

initially decide the intention. However, this decision is solely based on current states. To further

adjust the intention estimate, more evidence is needed. The speeds in the last n cycles can

provide movement information of the car, and thus refine the intention estimate. Physically, given

intention, those speeds form a Markov Chain, which means that every speed node is affected only
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by its parent node (the vehicle’s previous speed).

Evaluation of PGM

We are interested in the following probability of the merging car’s yielding or not yielding to

the autonomous car: P (I|V, Tm, Th), where V denotes a vector of speed during n cycles: V =

[V1, V2, ..., Vn] and Tm, Th are the time-to-arrival for the merging and host cars, respectively. I

denotes the estimated intention of the target vehicle.

P (I|V, Tm, Th) =
P (I,V, Tm, Th)

P (V, Tm, Th)

∝P (V, Tm, Th|I)P (I)

(3.1)

Equation 3.1 is based on Bayes’ Rule, and we focus on the likelihood term P (V, Tm, Th|I).

From the graphical model, it is assumed that V and Tm, Th are conditionally independent, given

intention. Therefore this term can be further separated into two parts:

P (V, Tm, Th|I) = P (V|I)P (Tm, Th|I) (3.2)

The first term is the speed term, and the second one is the time term. Besides these two terms,

we also rely on the prior information P (I) in Equation 3.1.

Speed term

From the graphical model, the merging speed has the Markov Property given intention. Thus the

speed term can be further simplified:

P (V|I) = P (V1, V2, ..., Vn|I)

= P (V1|I)P (V2|V1, I)...P (Vn|Vn−1, I)

(3.3)
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Figure 3.2: Merging vehicle following behind but accelerating. The host (green) vehicle is on
the main road; the merging vehicle (red) is on the on-ramp. In fact, the host vehicle can slightly
accelerate to avoid ambiguities and collisions. However, the iPCB model will slow down the
host vehicle regardless of the distance from the merging vehicle to the host and the merging
car’s current speed. The PGM model sends proper commands by integrating speed and distance
information.

Here we assume V1, I are independent, thus P (V1|I) = P (V1). Since there is no preference for

V1, it can be assumed to have a uniform distribution, namely P (V1) = α. To prevent underflow,

log-likelihood is used:

logP (V|I) = α
n∑
i=2

logP (Vi|Vi−1, I) (3.4)

There are only two intentions to be considered: yield and not yield, i.e., P (V|I = Y ) and

P (V|I = N). The probability distribution P will be learned directly from training data.

Time term

The time term implicitly contains two kinds of information: 1) current speed; 2) distance to the

merge point. The time term describes how soon the cars will reach the merging point given cur-

rent speed and distance. Values in the time term determine the intention of the merging vehicle.

The time term will also reduce ambiguity in the speed term. In the earlier iPCB algorithm [42],

only instantaneous acceleration is considered. Figure 3.2 shows a failure scenario for iPCB that

results from solely considering the current acceleration. This is a non-trivial problem which con-
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tributes the majority of the failure cases in the iPCB algorithm, as shown in Table 4.2. However,

in our proposed model, we additionally consider the time term, avoiding the ambiguity described

above. The time term P (Tm, Th|I) is a joint conditional probability, where Tm, Th denote the

time-to-arrival of the merging and host car, respectively. Time-to-arrival is defined as the current

distance to the merging point divided by the current speed. To prevent underflow, we instead use

logP (Tm, Th|I).

Prior Term

In Equation 3.1, the last term P (I) is the prior distribution for the merging vehicle intention,

i.e., the percentage of merging vehicles that yield (P (I = Y ) = γ) or do not yield (P (I =

N) = 1 − γ). This prior term gives an initial statistical estimate of intentions. To emphasis the

effects from speeds and time-to-arrivals, we set γ = 0.5, which does not affect the prediction.

However, the γ does affect the estimation if there is enough and convincing prior probability for

the intention. Normally, merging car is more likely to yield, i.e., γ > 0.5. One possible way to

adopt the PGM for host-on-ramp scenario is to adjust the prior γ accordingly.

3.1.2 Intention Estimation Procedure

The final step is to combine the speed term and time term. Equations 3.1 and 3.2 yield:

logP (I|V, Tm, Th) ∝ logP (V, Tm, Th|I)P (I)

= logP (V|I)P (Tm, Th|I)P (I)

=α

n∑
i=2

logP (Vi|Vi−1, I)︸ ︷︷ ︸
Speed Term

+

logP (Tm, Th|I)︸ ︷︷ ︸
Time Term

+

logP (I)︸ ︷︷ ︸
Prior Term

(3.5)
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The estimated intention is:

I∗ = arg max
I

logP (I|V, Tm, Th) (3.6)

I∗ is either “Yield” or “Not Yield”. If “Not Yield”, the merging car will be set as the target for

the distance keeping model.

Algorithm 1 shows the full procedure for the intention estimation using the proposed PGM.

We use a fixed-length queueQ to keep track of historical speed data. A new speed will be pushed

to the end of the queue Q. If the size of Q is greater than length n, then the first element will be

popped. This data structure ensures the program observes at most the last n cycles. The required

state information S includes: current speeds and distances to the merging points of both cars.

The current speeds and distances are used to calculate the time term in Equation 3.5. Lines 6 and

7 calculate the probability of the Yield P (Y ) or Not Yield P (N) intention of the other car, by

using the method introduced in Section 3.1.1. If P (Y ) > P (N), the host vehicle accelerates and

tries to reach the merging point earlier than the merging car.

Algorithm 1 PGM-based intention estimation.
1: procedure INITIALIZATION(n)
2: Q← Queue with fixed-sized (n).
3: procedure EVALUATE PGM
4: while New State S Comes in do
5: Push new speed to Q.
6: P (Y )← calculatePGMY (Q,S).
7: P (N)← calculatePGMN(Q,S).
8: if P (Y ) > P (N) then
9: Command← Controller(Accelerate,S)

10: else
11: Command← Controller(Decelerate,S)
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Figure 3.3: Multi-Merging PGM with a leading car. The green car is the host vehicle, and the
gray one is the leading car. Both the host and leading car run on the main road. Red cars are
merging vehicles on the ramp.
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3.1.3 The Naı̈ve Behavioral PGM in a Complex Setup

The 1-on-1 model handles one merging vehicle w.r.t. a host vehicle. In reality (also in our

dataset), there is often more than one merging vehicle on the ramp, so the 1-on-1 model is

insufficient. Moreover, in the main lane, there is often a leading vehicle running closely in front

of the host vehicle. Obviously, while reacting to the merging vehicle, we need to be cognizant of

the leading vehicle by keeping a safe distance. The following sections build on the 1-on-1 model

to create a Multi-Merging Leading PGM to handle multiple merging vehicle and leading vehicle

scenarios. In addition, a rule is introduced to react based on estimated intentions w.r.t. the host

and the leading vehicle.

The Multi-Merging PGM method has two significant modifications compared with the single

PGM model:

1 The single PGM model is duplicated and applied to each merging vehicle to generate an

instant intention array.

2 The process is also applied to the leading vehicle, to obtain the leading vehicle’s estimate

of the merging vehicles’ intentions.

Figure 3.3 shows a merging example with three merging vehicles and one leading vehicle.

The three PGMs on the left estimate the intentions of merging vehicles w.r.t. the host vehicle;

the three PGMs on the right estimate the intentions w.r.t. the leading vehicle. At the bottom of

the figure, there are two merging vehicle intention arrays: one for the host vehicle (with green-

outlined boxes) and one for the leading vehicle (with yellow-outlined boxes). Each element of

an array contains the estimated intention of one of the merging vehicles.

Ideally, each of the arrays contains at most one pivot. The pivot corresponds to the vehicle

that divides the array of merging vehicles into two groups: a not yielding and a yielding group.

Merging vehicles running ahead of the pivot (including the pivot itself) will not yield to the

vehicle on the main road; those running behind the pivot will yield. According to the definition,
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(a) Ph > Pl : Host follows leading

(b) Ph < Pl : Host follows its own pivot

(c) Ph = Pl(including null) : Host follows leading

(d) Ph is null and Pl is not null : Host follows lead-
ing

(e) Pl is null and Ph is not null : Host Follows its
own pivot

Figure 3.4: Illustration of the pivot rules, with examples of pivot cases and corresponding rules.
Numbers of cars and positions of pivot dynamically change according to real situations. The
upper array is for the merging intentions w.r.t. the host car; and the lower one is for the merging
intentions w.r.t. the leading car.

if no vehicle yields, the pivot vehicle will be the last one in the merging group; if all vehicles

yield, the pivot is “NULL”. Since the pivot is the last vehicle that does not yield, the host /

leading vehicle should follow the pivot by using an aggressive distance keeping model, without

considering other merging vehicles. (Because the merging vehicles which run behind the pivot
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are identified to yield to the vehicle on the main road, the merging vehicle behind the pivot will

naturally keep a reasonable distance between itself and the main-road vehicle.) After identifying

pivots for both the leading vehicle and the host vehicle, a deterministic rule-based planner is

proposed to activate different behaviors for the host vehicle. The rule-based planner is described

in the next section.

3.1.4 Pivot rules

Note that the host vehicle is always behind the leading vehicle, and the merging vehicles behind

the pivot must yield to their corresponding main-road vehicle. We use Ph, Pl to denote the pivot

merging car for the host car and the leading car, respectively. Then Ph = Pl if the host car

and the leading car have the same pivot; Ph < Pl if the pivot for the host car runs behind the

leading car’s; Ph > Pl if the pivot for the host car runs ahead of the leading car’s. The high level

description of the rule is that: if Ph ≥ Pl, the host follows its leading; otherwise, host follows it

own pivot. Detailed deterministic cases and corresponding rules are shown in Figure 3.4. In each

subfigure, the upper array (green boxes) is the merging intentions w.r.t. the host vehicle; and the

lower array (yellow boxes) is the merging intentions w.r.t the leading vehicle. In each array, each

cell corresponds to a merging car. The number of merging cars and cells may change. A blue

cell means Yield, and a red cell means Not Yield. The leftmost red cell corresponds to the pivot

merging car.

3.1.5 The Smoothed Behavioral PGM with Hidden States

The smoothed behavioral PGM, shown in Figure 3.5, considers the restriction and uncertainty

in sensors. Since RADAR can only give range and range rate (relative position and speed with

respect to the host vehicle), speed and acceleration measurements can contain large error. The

smooth PGM utilizes position observations and adds them as an extra layer in the Naı̈ve Be-

havioral PGM. Using a RTS-smoother, the array of speeds can be derived from a sequence of
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position measurements. Compared with merely using a Naı̈ve Behavioral PGM, the smoothed

version requires fewer observations and achieves better performance. In the graphical model

(Figure 3.5), only location nodes Oi are observable. The observation is the relative location of

the target with respect to the end of the merging ramp; I is the intention node; latent node Xi is

the state of the merging car, which is expected to have an optimal estimation. It consists of nodes

S, V : Si are the locations to be estimated; Vi nodes are speeds after smoothing. Compared with

the models in the sections above, this improved model does not include Time-to-Arrival nodes,

since their information can be derived from location and speed nodes.

Figure 3.5: The structure of the smoothed PGM. Shown is the graphical model of ramp merging
considering position observations and intentions. O nodes are positions for the merging car
relative to the end of the auxiliary lane, and are the direct output of sensors; X is the latent state
estimated by smoothing and it consists of S, V nodes for positions and speeds; The I node is the
intention. The number of required observations and states is determined based on experiment.

Based on the observations, the model is expected to output probability of intentions, i.e.,:

P (I|O,X) (3.7)

where I is the intention and O,X are arrays of observations {Oi}, and state {Xi}, which contains
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the estimated distances to the merging point {Si} and estimated speeds {Vi}. According to the

structure of the graphical model, I and O are conditionally independent given X. Therefore,

(3.7) yields the same probability which is stated in [21]:

P (I|X) (3.8)

From the graphical model, the state Xi has the Markov Property given intention. Thus (3.8) can

be further simplified by assuming X to be multi-variable and uniformly distributed:

P (I|X) ∝ P (X|I)P (I)

P (X|I) = P (X1, X2, ..., Xn|I)

= P (X1|I)P (X2|X1, I)...P (Xn|Xn−1, I)

(3.9)

Since the initial state X1 can vary regardless of the intention, here we assume X1, I are indepen-

dent, thus P (X1|I) = P (X1). Since there is no preference for X1, it can be assumed to have a

uniform distribution, namely P (X1) = α. To prevent underflow, log-likelihood is used:

logP (X|I) = α
n∑
i=2

logP (Xi|Xi−1, I) (3.10)

The estimated intention is:

I∗ = arg max
I

logP (I|X) (3.11)

There are only two intentions to be considered: yield and not yield, i.e., P (X|I = Y ) and

P (X|I = N). The problem remains finding the best estimate of X.

Instead of measuring the speeds, the model relies on location measurements, and then derives

speeds using filtering and smoothing. As typically the locations cannot be perfectly measured

from sensors, it is necessary to estimate their true values. Since the model collects a certain

number of location observations, all of these data can be utilized to smooth the estimation of true
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values, i.e., estimating Xi = (Si, Vi), 1 ≤ i ≤ n using a series of observations Oi.

P (Xi|O1:n) (3.12)

According to [43, 44] the predicted distribution at time step i+1 by adapting Bayesian optimal

smoothing is:

P (Xi+1|O1:i) =
∑
Xi

P (Xi+1|Xi)P (Xi|O1:i) (3.13)

And the smoothing estimation of the state at any time step i < n is:

P (Xi|O1:n) = P (Xi|O1:i)
∑
Xi

P (Xi+1|Xi)P (Xi+1|O1:n)

P (Xi+1|O1:i)
(3.14)

With a proper edge condition, i.e., P (Xn|O1:n), which will be discussed in the following para-

graphs, every past state can be solved by iteratively evaluating (3.14).

Here, we assume the distribution of the state at any time step given that the full observation

is a Normal Distribution, i.e.,

Xi|O1:n ∼ N(Xi|M,P) (3.15)

Then the Bayesian smoothing equations in (3.13) and (3.14) become a Rauch-Tung-Striebel

smoother[44] (RTS smoother, which is also called the Kalman smoother). The speed part of

the maximum a posteriori of the state will be taken as the condition of the intention I’s estimate.

The RTS smoother consists of two steps, the forward prediction and the backward recursion.
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The Forward Prediction

The Forward Prediction step uses a Kalman Filter to update the mean Mi and the covariance Pi

of the distribution, as well as the Kalman Gain Gi:

M−
i+1 = AMi,

P−i+1 = APi+1A
T +Q,

Gi = PiA
T [P−i+1]

−1

(3.16)

where A is the motion model of the Kalman Filter, which will be specified in the following

section. Q is the covariance for the process noise,

A =

1 ∆t

0 1

 , Q =

q∆t
3

3

q∆t2

2
q∆t2

2
q∆t


The Backward Recursion

M̂i = Mk +Gk[M̂i+1 −M−
i+1],

P̂i = Pi +Gk[P̂i+1 − P−i+1]G
T
k

(3.17)

where the ·̂ indicates the smoothed variables. The backward equations start from the last step,

where M̂n = Mn, P̂n = Pn. Note that the result M̂ contains all optimal states, which is an array

of location and speed tuples, X = (S, V ).

The estimation procedures

In the application, the model is used as a unit which can be executed in every cycle. As shown

in Figure 3.6, the upper-level nodes are the state nodes, which contains the observation O and

the smoothed optimal estimation X shown in Figure 3.5. The lower-level nodes are the inten-

tions over the whole merging period, which will be estimated. Each intention node in the lower

level links with n consecutive upper-level state nodes. n is the number of observation in each
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Algorithm 2 smoothPGM intention estimation.
1: procedure INITIALIZATION(n)
2: Q← Queue with fixed-sized (n).
3: procedure SMOOTHING(Q,Onew)
4: Push new Observation Onew to Q.
5: (M−, P−)← predictForward(Q)
6: (M̂, P̂ )← recurseBackward(M−, P−)
7: V← H · M̂
8: procedure EVALUATE PGM(V)
9: P (Y )← calculatePGMY (V).

10: P (N)← calculatePGMN (V).
11: if P (Y ) > P (N) then
12: Command← Controller(Accelerate)
13: else
14: Command← Controller(Decelerate)

estimation cycle. Here, n = 4 is for the sake of illustration. Each pair of intention node and its

corresponding n state nodes is a smoothedPGM unit, as in Figure 3.5.

Figure 3.6: Use the PGM model as a unit over time in each intention estimation cycle.

The whole estimation procedure of the smoothPGM method is shown in Algorithm 2. Note

that compared with Algorithm 1, the main improvement is the “SMOOTHING(Q,Onew)” func-

tion from line 3 to line 7. This function implements the forward prediction step and backward

recursion step. Then it outputs an optimal estimation of the hidden states. The H in line 7 is a

variable selection matrix. Since lines 10 and 9 only require an array of velocities with dimension

of 1×n, and M̂ contains both location and velocity with dimension of 2×n, H is a 1×2 matrix

that helps in selecting the corresponding row of M̂. In the implementation, the second row of M̂

contains smoothed velocities. Therefore, with H = [0, 1], an array of velocity V is selected. The
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array is then sent to the evaluation procedure.

3.1.6 Example Scenarios for Discrete Intention Prediction

There are scenarios which do not require detailed trajectory prediction. Trajectories in these

scenarios are simple or deterministic. For example, in an ambiguous four-way stop scenario, the

ego-vehicle does not need to predict the trajectory of other vehicles; instead, an abstract decision

of “go” or “wait” is sufficient. In ramp merging control, cars on the main road only run along

their lane, and merging cars only follow the ramp. With a known path, the interaction between

the ego-vehicle and merging vehicles becomes the problem of whether the ego-vehicle should

overtake the merging car or yield to it. A discrete behavioral prediction works with an off-the-

shelf module and helps the ego-vehicle perform cooperatively. Based on results of the discrete

behavioral prediction, it directly executes separate modules in different scenarios to react to the

behavioral planning. When the ego-vehicle decides to yield to the merging car, it will initiate

the Adaptive Cruise Control and set the following target as the merging car. Otherwise, the

ego-vehicle keeps the original dynamics and overtakes the merging car.

3.2 Important Waypoints Prediction

This part of the behavioral estimation bridges the gap between higher-level behavior commands

and the trajectory planner. There are two challenges in the task: 1) Analyzing the surrounding

vehicles’ mutual effects from their trajectories; 2) Estimating the proper behavioral start point

and end point according to the analysis of surrounding vehicles. We propose a learning-based

approach to understanding surrounding traffic and making decisions to achieve cooperative be-

havior.

Intermediate important points prediction is suitable for scenarios such as lane change. As

shown in Figure 3.7, the red car (Veh-s) is the autonomous car (host car), which received a left-
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Veh-fVeh-r

Veh-ftTarget Lane

Current Lane Veh-s

Veh-st

Past trajectory The start point The end  point

Figure 3.7: A left lane change scenario.

lane-change command. The blue cars are the leading car (Veh-f) and the following car (Veh-r)

in the current lane. The vehicles in the target lane are also considered: the immediate left car

(Veh-st), its leading car (Veh-ft) and its following car (Veh-rt). The method will generate a pair

of start/end points for the left-lane-change behavior. The red dashed line just indicates the lane-

change behavior, not necessarily as a planned path.

3.2.1 Reproducing Kernel Hilbert Space

The reproducing Kernel Hilbert Space (RKHS) representation for planning was introduced by

Marinho et al. [45]. In this work, a trajectory is explicitly described by Gaussian radial basis

functions, using a functional gradient to optimize a cost functional to avoid static obstacles or

navigate a high-dimensional manipulator. However, they did not explore the opportunity to apply

similar methods to dynamic environments and cooperative scenarios. We follow their formula-

tion, but instead of using a functional gradient to find the optimal solution, our proposed method

relies on RKHS non-parametric regression and a prior dataset to estimate continuous values, i.e.,

the start/end points.

Reproducing Kernel Hilbert Space H contains families of smooth functions which are defined

by a Mercer Kernel. The Mercer Kernel is a continuous mapping K : X × X → IR, i.e.,

K(x, y) =< f, g >H , where f := Kx, g := Ky, f, g ∈ H. A function f in H can be

represented by a linear combination of the kernel: f(·) =
∑
αiKxi(·), and this kernel has the

reproducing property: f(x) =< f,Kx >, which is essential to RKHS. With the help of the
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kernel, it is possible to evaluate the function without explicit definition of the function (or basis

functions) in the high-dimensional functional space [46]. A behavior generator is a function

F : X → B, which maps a vector of trajectories (X ∈ X ) to a behavior (b ∈ B). X is

a coordinate space which contains vectors of N surrounding vehicles’ past trajectories X
def
=

{xi}N1 , xi ∈ IRT. T is the length of the relevant historical poses. The input contributes to

all elements in the output vector. Using Γ = {X}Ni as the training set and Xi as a training

sample, then F(Γ) = {[f1(X1), ..., fD(X1)], ..., [f1(XN), ..., fD(XN)]}. The output range B ⊆

IRD represents the behavior. In the lane-changing problem, we are interested in two points:

the start and the end points of the lane-changing behavior. Thus D = 2 in the current setup.

Since the dimension of the range (the output domain) is D > 1, this function is a vector-valued

function. The kernel K(·, ·) which is mentioned in the paragraph above is no longer a scalar-

valued function but a matrix-valued one, i.e., X × X → IRD×D,

K(X,U) =



k(X,U)1,1 · · · k(X,U)1,D

k(X,U)2,1 · · · k(X,U)2,D
... · · · ...

k(X,U)D,1 · · · k(X,U)D,D


(3.18)

Parallel to the scalar-valued kernel, the matrix-valued kernel has the reproducing property which

is also given by the Representer Theorem [47, 48] :

F (X) =
N∑
i=1

K(Xi, X) ·αj, αj ∈ IRD (3.19)

The · operator is the normal inner product in Euclidean Space, and α is a ND-dimensional coef-

ficient. By constraining the behavior function F into the RKHS, we assume that F is continuous

and can be represented by a linear combination of a set of basis functions. The functions are

unknown to us, and we are not interested in the exact form of the behavior generator function;

instead, we are interested in its evaluation given trajectories. In order to approximate the eval-
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uation, and since we do not explicitly know the form of the function, we use non-parametric

regression from the data in the RKHS, which is defined by the kernel above.

3.2.2 Important points estimation as a regression in RKHS

The method for the intermediate level of prediction has the following three features:

• Uses the dataset to generalize surrounding vehicles’ effects on the autonomous vehicle’s

cooperative behaviors from the dataset.

• Surrounding vehicles’ and the autonomous vehicle’s past trajectories are applied as input

to the method, thus historical information is also used.

• Formulates the behavior generator as a function in Reproducing Kernel Hilbert Space, and

evaluates the start and end points from an input by a non-parametric regression (RKHS

estimator). Therefore, no fitting model is assumed.

As the kernel representation of the behavior generator function was defined above, the func-

tion should be estimated from data and properly evaluated at a given input. Note that we do not

explicitly define the form of the function; instead, we use a linear combination of kernels, as de-

scribed in Equation 3.19. Once the kernel is decided (often given by users or separately learned

from data), the only parameter left to be optimized is the coefficient α. Thus the approximation

results in minimizing the regularized empirical error:

f̂ = arg min
f∈H

N∑
i=1

(bi − f(Xi))
2 + λJ(f) (3.20)

where (Xi, bi) is training input and behavior output, and J(f) is the penalty term. Here ||f ||H

is used as the penalty term (or the regulation term). The coefficient has a closed-form solution

[47, 48]:

α = (K(X,X) + λNI)−1b (3.21)
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Substituting the evaluation from Equation 3.21 into Equation 3.19 yields the estimated behavior

generator function f̂ . Given a new input X ′, the estimated behavior b̂ becomes:

b̂ = K∗(K + λI)−1b (3.22)

Where b
def
= {bi}N1 is the collection of the training behaviors. K∗ is the new kernel result given

incoming input, a D × ND matrix. The regularization factor λ leverages the smoothness and

accuracy of the regression function. Note that the (K+λI)−1b part can be pre-calculated offline

given the training samples. Once an input comes in, only the K∗ will be re-evaluated, and matrix

multiplication is performed with the pre-calculated (K + λI)−1b.

3.3 Meta Induction Program and Conditional Neural Process

The meta induction architecture takes a set of demonstration examples and an additional observa-

tion as the inputs, i.e.,D =
(
(X1, Y1), ..., (Xn, Yn)

)
and X̂ , and then it outputs the corresponding

estimate Ŷ . The size of D can be as small as 1 ∼ 5, i.e., n ∈ [1, 5]. In each training step, n

demonstration examples as well as a new observation X̂ are used to approximate the corre-

sponding output Ŷ . The main difference between the Meta Induction Program and the plain

deep learning approaches (e.g., the plain LSTM trajectory prediction [34]) is the demonstration

part. Instead of directly looking for the mapping between the new observed input X̂ and its

corresponding output Ŷ , the demonstration part encodes a higher-level description of the prior

condition of the task. More specifically, most previous methods look for P (Ŷ |X̂), but the Meta

Induction Program uses one more condition: D (i.e., the demonstration examples), which results

in P (Ŷ |X̂,D).

The lane change problem can be considered as a set of trajectory prediction tasks that have

various numbers of surrounding cars, different types of dynamic changes, etc. The demonstration

D and the network are used to generalize tasks in the training process. During evaluations, the
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demonstration network keeps a short period of past trajectory observations and ”categorize” the

current task from these observations (demonstrations) when evaluating new inputs. Therefore,

the condition D can better guide the training and evaluation of the network to achieve sound

performance.

Conditional Neural Process [49] is one of the latest meta-learning induction [50] methods.

There are three sub-modules in the original Conditional Neural Process (CNP) , shown in Equa-

tion 3.23:

ri = h(Xi, Yi)

r =
n⊕
i

ri

φi = g(Xt, r)

(3.23)

where h is the demonstration network, which can be considered as an encoder for the input of

demonstration examples. g is the generator network, which can be considered as a decoder.

The middle line is the condition which is extracted from the historical input. Using the result

from the demonstration network, it generates a set of intermediate results ri. Along with the

latest demonstration, the result r which is aggregated from ri is used to generate factorized

parameters for a stochastic process. Due to the demonstration and the condition framework, it

can be considered as an adaptive kernel. The kernel that defines the stochastic process can change

according to the recent observations. For example, if the CNP’s results are tied to a Gaussian

Process (GP), its kernel, i.e., mean µt and variance σt, will be a function of the observation data,

and determined by the CNP.

3.3.1 Recurrent Meta Induction Network

In the vanilla CNP, the result of each demonstration is summarized by ri. For N demonstrations,

r0, ...rn−1 will be obtained from the observation sub-net. The total condition which is generated
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from the N demonstrations is represented by the aggregation of ri, i.e.,

r = r0
⊕

r1....
⊕

rn−1 (3.24)

The main purpose of the aggregation is to ensure permutation invariance, which further satisfies

the requirement that CNP is a stochastic process. In most cases, the aggregation is implemented

by mean, i.e., Eq. 3.24 becomes

r =
1

n

n−1∑
0

ri

.

The permutation invariance property is theoretically sound for most static tasks, for exam-

ple, function regression or image completion, whereas in applications where sequence is more

important, the aggregation eliminates the sequential information. However, in most dynamic sce-

narios and tasks, such as trajectory prediction, the observation and result are highly serialized,

and permutation invariance cannot be satisfied.

To retain the sequential information, it is intuitive to introduce recurrent neural networks

into the demonstration sub-net. In Fig. 3.8, the green box indicates the demonstration sub-net,

which consists of an asynchronous LSTM network. The figure shows a roll-out description of the

LSTM. The dashed-arrow lines between LSTMs indicate its inner variables, which are passed

inside the LSTM cell over time. The LSTM’s results remain internal until it obtains enough

demonstrations.

The result of the LSTM is passed through a fully connected network before being used as a

condition tensor r. Therefore, the whole process can be expressed as:

r = h(Xn,Yn)

Ŷ = g(X̂, r)

(3.25)

where h is the LSTM layer and is followed by a fully connected layer. Comparing with the orig-
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Figure 3.8: The proposed recurrent structure. The green box indicates the observer sub-net. The
LSTM is an asynchronous setup, which gives outputs until obtaining enough demonstrations.
This output is then passed through a fully connected network (FCN) to obtain r, the intermediate
condition tensor. X̂ is the current observation right before the prediction, Ŷ is the expected
trajectory, and g is the generator.

inal CNP’s expression, shown in Equation (3.23), here the aggregation operation
⊕

is replaced

by the recurrent network (which mainly retains the sequential information) and a fully connected

network. Xn contains n segments of observed trajectories. Yn contains n corresponding trajec-

tories for the target vehicle. In detail, Xi ∈ Xn is the observation of historical trajectories from

time t of all vehicles including the target and its surrounding cars; And Yi+1 ∈ Yn is one segment

of the trajectory of the target vehicle from time i+ 1. A pair of (Xi, Yi+1) is taken as one demon-

stration. Note that for the input of one step for the LSTM cell, Xi and Yi+1 are asynchronous (Xi

contains all cars’ trajectories in the i-th time interval, and Yi+1 contains the target car’s trajectory

in the (i+1)-th time interval). Xn+1 is the new input that is ready to be evaluated.

To avoid confusion, the inputs to the demonstration and generator sub-nets will be described

separately. To better illustrate the idea, only lateral translation vs. timestamp plot is shown and

discussed (see Figure 3.9 caption). Solid lines indicate the observed changes of lateral position

over time of all related cars, i.e., one target and its surrounding cars. At time T , the goal is to

predict the future trajectory of the target car, which is shown as the dark dashed line. L is the
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Figure 3.9: Illustration of the input and output of the network in a lane change scenario. The
figure shows the idea, but does not correspond to real trajectories. The horizontal axis is the
timestamp; the vertical axis is the lateral position, labeled as ’X’.

observation segment’s time interval.

3.3.2 Input of the observer sub-net

The input of the demonstration network is the ordered set of examples

D =
(
(X0, Y1), (X1, Y2), ...(Xn−1, Yn)

)
,

where the input set here
(
·
)

retains the order of the demonstration (Xi, Yi+1) for each time

interval. At each timestamp, the single observation Xi is a segment of past trajectories of length

L for all cars. In Fig. 3.9, Xi corresponds to the pink region. Yi+1 is the trajectory of the target

vehicle in the next time interval of Yi. Yi+1 corresponds to the green region in Fig. 3.9.
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3.3.3 Input of the generator sub-net

The input of the generator sub-net has two parts: a) The condition representation, which is

generated from the observer sub-net. b) The segments of all vehicles’ trajectories in the time

interval immediately before the time of prediction T . More specifically, this input contains all

vehicles’ trajectories in the time interval [T-L, T).

The main difference between the Conditional Meta induction and the plain Conditional Neu-

ral Process induction is that, instead of using an aggregator to remove the sequential effects, the

proposed method uses a recurrent sub-network (LSTM) to extract conditions for the generator

sub-network.

The loss function is a combination of the loss in two directions:

C = Clon + λClat (3.26)

where C is the total loss, and Clon, Clat are the losses in the longitudinal and lateral directions,

respectively. The main reason for this separation is that the longitudinal translation and lateral

drifting are not in the same range. Empirically, the ratio is set to λ = 10 in the lane changing

scenario. In detail, since we consider the sequence of the trajectory, a mean-squared-error is

applied for both longitudinal and lateral losses.

3.4 Summary

This chapter introduced a three-stage behavioral estimation system for the interaction between

autonomous driving cars and human-driven cars. The study focuses on two scenarios: 1) Ramp

merging and 2) Lane changing. The ramp merging is a forced lane change, which has a fixed

routine. Due to the nature of the ramp merging scenario, the merging cars’ intentions can be

categorized by two behaviors: Yield or Do not Yield. These behaviors are estimated by a proba-

bilistic graphical model that takes both host and merging cars’ moving dynamic and ramp length
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into consideration. The model is refined to tolerate observation uncertainties, and extended to a

more complex and realistic scenario: a ramp that has multiple merging cars with a leading car. In

the lane changing scenario, the intermediate points prediction implicitly models the interaction

between a target car and its surrounding cars, and then outputs the cooperative lane change start

and end points. A non-parametric regression model is applied here to avoid the assumption of

the probability distribution of the human behavioral model.

Finally, a full-trajectory estimation method is proposed. The trajectory estimation takes all

surrounding cars’ past trajectories, and then outputs a future trajectory of a target in traffic (not

necessarily an autonomous driving car). An induction network model is adopted here in order

to use limited data and receive sound prediction results. The three-stage model leverages the

computation and capability for the behavioral or trajectory estimation in various scenarios with

different complexities.

In waht follows, Chapter 4 shows the individual and statistical experimental results for each

of the stages in corresponding scenarios. Chapter 5 performs sensitivity analysis to studies the

robustness of the estimation towards different type of sensing uncertainties.
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Chapter 4

Examples and Experiments

In this chapter, experiments are designed to test the performance of the three-stage framework.

The three stages are :

1 Discrete intention estimation [21, 22, 51], which is used in scenarios which only need to

determine following targets, such as ramp merging. In these scenarios, since the merging

route or the main road has a fixed geometry, every car should follow the determined route,

and it is sufficient for an ego-vehicle to select a correct target to follow. Therefore, there

is no need to spend time and computational power to make a full trajectory for a target

vehicle in the merging scenario. In ramp merging, the main target for the algorithm is to

estimate discrete high-level intentions of human-driven vehicles on the ramp.

2 Semi-continuous points estimation [52], which is used in more complex scenarios, such

as lane change. The semi-continuous points estimation provides critical points prediction

to aid the path planning. For example, in the lane change scenario, it is important for

the ego-vehicle to determine the locations where the car starts and ends the lane change

behavior.

3 To further provide more details, a full trajectory predictor [53] is established. Combined

with the prediction, a path planner can generate a cooperative trajectory. A cooperative
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trajectory is more critical for interactive scenarios such as lane changing. A sound full

trajectory prediction is the foundation for the generation of a cooperative plan in such a

scenario.

In the discrete intention estimation, low collision rates, large safety distances, and small K-L

divergence are expected to be observed as the results from a series of the proposed probabilis-

tic algorithms. In addition, in semi-continuous and continuous trajectory estimation, the pro-

posed framework is expected to have limited error and standard deviation when compared with

ground-truth. The methods are trained and tested mainly in NGSIM datasets which include sce-

narios such as ramp merging and lane changes. Individual vehicle trajectories are extracted from

NGSIM, and details and statistics of the trajectories are shown in Table 4.1. These trajectory data

are so far unique in the history of traffic research and provide a great and valuable basis for the

validation and calibration of microscopic traffic models. The methods are tested on the datasets

from the I80 and the US101 highways. The I80 dataset consists of three 15-minute periods: 4:00

p.m. to 4:15 p.m., 5:00 p.m. to 5:15 p.m., and 5:15 p.m. to 5:30 p.m. These periods represent

the buildup of congestion, or the transition between uncongested and congested conditions, and

full congestion during the peak period. A total of 45 minutes of data are available in the US101

dataset, which is segmented into three 15-minute periods: 7:50 a.m. to 8:05 a.m., 8:05 a.m. to

8:20 a.m., and 8:20 a.m. to 8:35 a.m. In both the I80 and the US101 datasets, vehicle trajectory

data provide precise location of each vehicle within the study area every one-tenth of a second.

The road geometry is shown in Figure 4.1. 806 pairs of merging and 543 cases of lane-change

scenarios are extracted from the dataset. The dataset contains a trajectory for every vehicle, with

information such as position, speed and acceleration.
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Figure 4.1: The studied ramp section on US101 in NGSIM dataset.

Table 4.1: Features of the US-101 and I-80 datasets

Dataset Ramp Length SMS [54] Num. of Pairs. Lane-Change
m m/s (mph)

US-101 640 12.4 (27.7) 354 315
I-80 503 14.2 (31.3) 452 228

4.1 Experiments Results for Discrete Behavioral Prediction

4.1.1 Tests in Single-Host Single-Merging Scenario

The tests for discrete behavioral prediction contain two sets of experiments in simulation: 1)

reacting to merging vehicles with real-data trajectories which are extracted from datasets; and 2)

reacting to merging vehicles which use a manually designed motion strategy. The second set of

tests is to evaluate the generality of our method with respect to differing merging car strategies

and a broader range of initial conditions (speeds and relative location). It should be emphasized

that even though the strategy of the merging vehicle is programmed in the second experiment, the

host car does not know the strategy or true intention of the merging car. All the host car can do

is observe the state of the merging car and estimate its intention by using the proposed models:

Naive PGM and Smoothed PGM. We compare our new algorithm with the following methods:

1. ACC merging, a non-cooperative method that distance-keeps to the merging car if it is

closer to the merging point;
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2. Slot checking, which is adopted from the Urban Challenge [8].

3. iPCB, which is proposed in [42].

4. PGM-G, which uses the proposed PGM structure, but assumes a Gaussian Distribution for

the speed transition probability, like iPCB [42].

5. PGM, which is proposed in [21].

To evaluate the performance, three criteria are examined:

1 Collision Rate: the ratio of the failure numbers over the total number of testing cases;

2 Safety Distance: the distance between the ego- and merging vehicle when the first of

them passes the merging point (or the merging vehicle enters the main road in auxiliary-

lane scenarios);

3 Update Rate: The frequency or period of time to analyze a vehicle’s intention.

Table 4.2: Statistical results for different methods

US-101 I-80 Designed Designed Cycle
Method Data Data Test I Test II rate

% D(m) % D(m) % % ms

ACC 17.6 22.2 16.5 7.0 13.3 6.8 0.05
Slot 14.8 22.8 10.4 10.3 2.4 4.2 N/A

iPCB 19.3 23.7 15.8 13.7 0.9 1.2 0.20
PGM-G 20.1 24.3 11.3 14.6 0.9 1.8 0.51

PGM 8.7 25.8 7.6 16.4 0.4 0.2 0.08
smoothPGM 3.6 25.5 5.3 17.4 0.3 0.2 0.08

The host car uses each of the methods in the “Method” column for intention estimation and

LQR for lower-level control. In a given test, the merge car replays a real trajectory from the

dataset, and the host vehicle’s start position and speed are also taken from the dataset. We then

run our proposed PGM method to estimate the intention of the merging car and apply the LQR
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control model. The failure rates are shown in Table 4.2 in the “US-101 Data” and the “I-80

Data” columns. smoothPGM has the lowest failure rate, and does well on I-80 even though it

was trained on US-101. In tests of different datasets, the D(m) columns show average distances

between the host vehicle and the closest merging car when the first of these two cars reaches the

merge point. smoothPGM has the highest average distance (it has similar D(m) to PGM), which

is an indication of its greater safety. There are two reasons that make smoothPGM outperform

our previous approach (PGM), which are highly related to the design of the proposed model:

1. smoothPGM does not rely on a fixed merging point. Since the merging point of PGM is

fixed and it ignores the effect of the auxiliary lane, there are merging cars which run beyond the

assumed merging point, resulting in a negative or undesired measurement (distance-to-merge);

2. The proposed method smooths out the speeds from location measurements instead of directly

trusting noisy speed measurements.

4.1.2 Determine the optimal number of the observation nodes

To determine the proper number of state nodes, and inspect the smoother’s effect on the estima-

tion result, the proposed method was applied to a subset of the dataset with a varying number of

speed nodes and compared with a version which does not have the smoothing step. In Figure 4.2,

the blue line is the result for non-smoothing PGM, and the red one is for the proposed method.

Since more past information can help the estimation, both lines go down as we increase the num-

ber of state nodes to around 20, and then go up since redundant nodes affect the sensitivity to the

present dynamic changes. For the same reason, the two lines converge to one collision rate. Fur-

thermore, the red line is below the blue line and its minimum is lower than that of the blue one.

This plot indicates that by using the new approach, one can achieve the same level of collision

rate by using fewer state nodes than the previous method, and also obtain a lower collision rate

with no more than 20 state nodes.
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Figure 4.2: Collision rates vs. different numbers of speed nodes with (red line) and without
smoothing (blue line).

4.1.3 Individual examples

To verify the performance of the intention estimation for the single-merging scenario, an exper-

iment was done with real cars in a closed area. A virtual merging ramp and main road were

established in the simulator. Both merging car and host vehicle followed their designated routes.

The host vehicle detects and tracks the merging truck (as shown in Figure 4.3a), and estimates

its merging intentions. To visualize the estimation results, a colored circle in the left-hand-side

figure (in front of the host car) indicates the hosts estimate of the merging car intention. A green

circle indicates that the merging car yields, whereas a red circle indicates that the merging car

does not yield. To create greater uncertainty in the tested scenario, the merging car suddenly sped

up near the end of the ramp. The PGM also estimated that the merging car was overtaking, as the

indicator circle turns from green to red in Figure 4.3c. To ensure safety of the test, even though

the merging car sped up, the merging car driver did not follow the virtual merging ramp around
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the merging point. Instead, the tester drove the car out of the virtual map. Since the merging car

is no longer visible on the virtual ramp, the indicator turns red to green in Figure 4.3d.
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(a)

(b)

(c)

(d)

Figure 4.3: An individual example for single-merging PGM in a closed area in Pittsburgh with a
virtual ramp scenario. The merge car (the truck) approached the merging point, and do not yield
near the end of the ramp. For safety reasons, the merging car deviated from and exited the virtual
ramp at the end. 54



4.1.4 Tests in Multi-Merging-Leading Merge Scenario

Figure 4.4: An illustration for the Multi-Merging-Leading scenario. The green car is the host
car, the white car is the leading car, and red cars are multiple merging cars on the entrance ramp.

Experiments for a multi-merging-leading scenario (shown in Figure. 4.4) were also con-

ducted on the datasets discribed in Table 4.1.

We use collision rate and time-to-collision (TTC) to the vehicle which runs in front of the

host as safety criteria. Collision rates for the four algorithms are shown in Table 4.3. In the

dataset, human-driven vehicles have no collisions. GeoACC, iPCB and MultiPolicy Decision

Making (MPDM [55], which selects an optimal policy from preset ones) have high collision rates

relative to MML-PGM. GeoACC only follows the closest merging vehicle without considering

its intention, whereas iPCB considers the closest vehicle’s intention. MPDM estimates the most

likely behavior based on a simple forward simulation model and a manually designed reward

function. None of them is easy to design to reflect real maneuver actions in forward simulation

and a reward mechanism for selecting a proper trajectory. Note that even the proposed MML-

PGM has a non-zero collision rate, which means the algorithm is still imperfect. Compared with

1-on-1 merging results in Table 4.2, the MML-PGM’s collision rate is about 2 times higher than

the 1-on-1 PGM’s lowest collsion rate. The reason is that the 1-on-1 merging scenario only has

one merging target, whereas in MML-PGM, collisions with non-merging-target vehicles are also

counted. The model is not yet sophisticated enough, since it: 1) does not predict trajectories of

merging vehicles, the host vehicle and the leading vehicle; 2) only has a binary output to react to

the merging vehicles and the leading vehicle; 3) cannot handle uncertainty, e.g., noise.

55



In addition to the collision rate, Time-to-Collision (TTC) is also used as a safety criterion

(details are introduced in the next paragraph). Having the TTC, Kullback-Leibler divergence

[56] (K-L divergence) is applied to quantify the difference between our estimates and real human

behaviors.

Table 4.3: Statistical results for different Merging Control Algorithms and human-driven vehicles
in Multi-merging-leading scenarios.

Algorithms GeoACC iPCB MPDM MML-PGM Human

Collision Rate 20.0% 18.9% 15.9% 7.2% 0.0%
K-L divergence 0.24 0.11 0.61 0.02 —

Rate/car (ms) 0.05 0.20 100.55 0.08 —

The second safety criterion considered is the Time-To-Collision (TTC) between the host

vehicle (the ego vehicle) and the leading vehicle (which runs ahead of the host vehicle) when the

host vehicle reaches the merge point:

TTC = (Llead − Lhost)/(vhost − vlead) (4.1)

where Llead and Lhost are the distances to the merging point of the leading vehicle and host

vehicle, respectively. Note that the leading vehicle always runs ahead of the host vehicle, so the

numerator is always non-negative. If the speed of the host vehicle is lower than that of its leading

vehicle (either the original leading vehicle or a merged vehicle), the denominator is negative, so

the TTC is negative and no collision can occur, since the vehicle ahead is moving faster than the

vehicle behind. There will be a collision if the TTC is positive, which means that the host vehicle

is moving faster than the leading vehicle. We examine the distribution of the host vehicles’ TTC

for the four algorithms with the real data. The results are shown in Fig. 4.5.

Fig. 4.5 shows the Probability Mass Functions (PMF on the y-axis) over the TTCs that are

generated from the four different algorithms and human-driven vehicles. The peak and majority

(about 80%) of the MML-PGM TTCs are negative, whereas the other algorithms’ TTCs have a
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Figure 4.5: TTC to the leading vehicle when the host vehicle reaches the merging point.

peak at zero on the x-axis (indicating collision) and about 50% of the testing cases have positive

TTC. The TTC results correspond to what is shown in Table 4.3: in most of the test cases, MML-

PGM has negative TTC, which ensures that the gap between the host and its leading vehicle

keeps growing, and results in a lower collision rate than that of the other algorithms. Note that

the majority of the human-driven vehicles (grey curve) also have negative TTC. But the peak is

closer to zero, which means that human drivers are more aggressive than MML-PGM but still

retain a zero collision rate.

4.1.5 Individual examples

A simulation example

Experiments in simulation were conducted to highlight the features of the proposed discrete

intention estimation, in comparison with the previous iPCB model. The sequences of figures

(Figure 4.6 and Figure 4.7) show the results of iPCB and MML-PGM in the same scenario. This
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scenario is one example from the US101 dataset. All surrounding cars replay their trajectories

from the dataset. The initial status of the host vehicle (the initial position and speeds) is also the

same as the dataset. Then iPCB and MML-PGM run separately to estimate the intentions of all

surrounding cars, and generate interactive behaviors for the host vehicle.

Figures 4.6 and 4.7 show the comparison between the iPCB and MML-PGM for an individual

example. The black rectangle indicates the leading car; pink is the host car; cyan is the human-

driven host;blue designates merging cars; yellow is the following target.

Figure 4.6 shows a sequence for one merging example, with the intention estimation is con-

ducted by iPCB. iPCB only analyzes the intention of the closest vehicle, and does that based on

the acceleration. The following target changes frequently, which leads to instability. As shown

from Figure 4.6b to Figure 4.6e, the host vehicle repeatedly switches its following target, i.e., the

merging car which is most likely to cutin in front of the host vehicle.

MML-PGM analyzes intentions of all merging cars w.r.t. both the host car and its leading car,

and then returns a relatively stable following target. Its behavior is similar to that of the human-

driven car. From Figure 4.7a to 4.7c, the host vehicle consistently follows its leading car, without

identifying a merging car to follow as a target. This means that the merging estimation program

on the host vehicle does not believe that there will be a cut-in merging car. It will maintain the

distance-keeping behavior to follow its current leading car, until the estimation program detects

a merging intention from a car that is preparing to cut in between the host vehicle and the leading

car. From Figure 4.7d to 4.7e, it recognizes the merging intention of one of the merging cars,

and then sets it as the following target.

As a result, comparing Figure 4.7e with Figure 4.6e, the host vehicle (in pink color) that

is controlled by iPCB is too late to react to the merging car when it finally identifies the last

following target, and then collides with the merging car. In the case of MML-PGM, though

the host vehicle falls behind its human-trajectory ground-truth, it makes a larger space than the

human between the merging car and itself. The larger space in the longitudinal direction grants

a safer merging behavior.
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(a)

(b)

(c)

(d)

(e)

Figure 4.6: An individual example for iPCB in US-101 dataset.

59



(a)

(b)

(c)

(d)

(e)

Figure 4.7: An individual example for MML-PGM in US-101 dataset.
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Since both iPCB and MML-PGM use a distance keeping model that limits the distance be-

tween the host and leading vehicle, which is larger than 1.5 meters, the program-controlled host

vehicle cannot behave as aggressively as the human driver. As shown in Figures 4.7c and 4.6c,

the distance between a human driver (the cyan car) and its leading car (the black one) is as small

as 0.5 meters. However, the host car (the pink one) has a longer distance to the leading car. This

is also one reason that the behavior of the MML-PGM deviates from that of the human in the

statistical results (Table 4.3 and Figure 4.5).

Public Road Testing

To further verify the estimation performance, a public road test was conducted in the southbound

merging area on Bloomfield Bridge, as shown in the sequence of figures in Figure 4.8. To

ensure safety in the public area, the autonomous vehicle runs in open loop: the target selection

and accelerate/decelerate decisions are made autonomously, but the lower level control, i.e., the

acceleration rate and emergency brake are managed by the safety driver through pedals. Figures

4.8a and 4.8b show that the host car follows the leading car, and keeps track of a merging car

(the white SUV on the right merging ramp, indicated by the green cross in the left-hand-side

figures). The host car runs MML-PGM to evaluate the merging intentions w.r.t both the host car

and the leading car. If it does not consider the leading car, the host car can pass the merging car.

However, the leading car running in front of the host car does not allow acceleration. Figures

4.8c and 4.8d show that the host car finally switches the following target to the merging car,

and follows the new target. In the left-hand-side figures, the merging indicator turns from green

to red and the following target on the ramp is marked as a red cross. Even though, in Figure

4.8c, it is clear from its brake lights that the merging car brakes, combining its location, speed,

and historical information, the MML-PGM model does not believe that the merging car is going

to yield. The main advantage of the MML-PGM is that it does not depend exclusively on the

immediate dynamic information of the merging vehicle.
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(a)

(b)

(c)

(d)

Figure 4.8: An individual example for MML-PGM on the Bloomfield Bridge Ramp area in
Pittsburgh. The merging car is the white SUV on the ramp, shown in the right-hand-side photos.
The left-hand-side figures show the scenario in the control software, centered on the host vehicle.
The green/red circles are the intention indicator which shows the estimated intention. The red
circle indicates that the merging car’s intention is “Not Yield”, then the host vehicle decelerates
and follows the merging car.
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4.2 Experimental Results for Intermediate Behavioral Predic-

tion

The intermediate behavioral prediction is the second stage in the behavior estimation system.

The output of this stage is semi-continuous behaviors. For example, in the lane change scenario

shown in Figure 3.7, it outputs a proper lane change start and end points for an target vehicle.

The results for semi-continuous behavioral estimation in lane-change scenarios are shown in

Figure 4.9. The method takes a short period of observations of surrounding vehicles around

a target vehicle, implicitly analyzes the mutual interactions, and finally results in a prediction.

The following results illustrate the prediction of the lane-change start and end points for a target

vehicle. The result can be used in the trajectory planner of an autonomous driving vehicle, or

can be used to estimate a target vehicle’s future behavior.

Table 4.4: Statistical results for different kernels compared with ground-truth, All units are me-
ters (m).

kernels µstart µend σstart σend

Laplacian RBF[45] -54.90 -116.61 24.10 43.40
Gaussian RBF[45] -13.55 -31.15 16.20 25.42
IMK with || · ||F -0.95 -18.50 6.38 13.77
IMK with || · ||S 1.78 -17.90 5.87 13.10

Figure 4.9 shows the start/end point predictions of six scenarios from the testing group. High-

lighted segments are used for prediction, and are the only input to the proposed method. The

segments consist of all traffic participants’ trajectories in a 3-second time window. The red di-

amonds are the output of the method, and indicate the start points and the end points of the

lane-change behavior. The real lane-change paths generated by human drivers are shown as the

black curves on the Time = 0 plane. The red diamonds (the outputs) are close to the turn points

of the black curves, which indicates that the predicted start/end points correspond to feasible

lane-change behaviors.
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Figure 4.9: Examples and results of the estimation. Vertical axis is time (s). The black curve
is the host vehicle’s trajectory; colored curves are surrounding vehicles’; the black curve on the
Time = 0 plane is the projected path of the host vehicle; Dashed straight lines are lane dividers;
Red diamonds are predicted start/end points. Highlighted segments on the curves are used to
predict the start/end points.

450 groups of trajectories are randomly selected as training sets, and the remaining 93 groups

are used for testing. To concentrate on the recent past, training trajectories are pruned and only

retain the last 30 steps (3 seconds) before the host vehicle starts the lane-change (when the
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heading departs from the orientation of the current lane.).

Four kernels are tested: Laplacian RBFs, Gaussian RBFs which are suggested in [45], and

inverse multiquadric kernels (IMK) constructed with the Frobenius norm || · ||F and the Spectral

norm || · ||S . Results are shown in Table 4.4. µstart is the difference in the start point between

the estimate and the ground-truth, and σstart is the standard deviation. µend is the difference in

end point between the estimate and the ground-truth, and σend is the standard deviation.

Table 4.4 shows that the RBFs have large errors. However, according to the nature of the

Frobenius norm and Spectral norm, which work similarly, both significantly outperform the other

kernels. In terms of standard deviation, the performance of the Spectral norm is slightly better

than that of the Frobenius norm. In the second row, the widely used Gaussian RBF kernel, which

is also used in [45], performs worse than the inverse multiquadric kernels with Frobenius norm

and Spectral norm.

In summary, the results show that the current framework can handle discrete intention es-

timation in ramp-merging scenarios and semi-continuous behavior estimation in lane-change

scenarios, with lower collision rates, larger safe distances, and similar reactions compared with

the ground-truth.

4.3 Experimental Results for the Neural-Process based Tra-

jectory Prediction

The third stage of the system is the estimation of the future trajectory of a target vehicle, which

is based on the past observation of its surrounding vehicles. As shown in Figure 4.10, instead of

giving semi-continuous points, the full trajectory estimation takes past observations of the target

vehicle and its surrounding vehicles and then estimate a full trajectory for the target vehicle.

This section shows the performance of the trajectory prediction via Neural Process. The

model (shown in Figure 4.11) also takes the historical trajectories of all surrounding vehicles and
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Figure 4.10: A scenario of full trajectory prediction for a target vehicle (red). The predicted
trajectory is the red dashed line. Five surrounding cars are taken into consideration. Dot lines
are the input of the predictor.

Figure 4.11: A recap of Recurrent Meta Induction Network

the host vehicles as input. A set of historical trajectories is firstly used as input, which results

in a “conditional value” r. This value is a representation of the input historical trajectories.

The most recent observation is used as the second input. Combining the new observation with

r, a trajectory prediction is made. The same dataset is used to learn and evaluate the system,

where there are 543 lane changing examples from US-101 and I-80 scenarios in NGSIM dataset.

Besides the following car and the leading car in the host lane, three closest cars in the target lane

are also recorded and considered in the method.

4.3.1 Baseline Models

Three baseline models are implemented to demonstrate the features and improvements of the

proposed algorithm.

1 Continuous trajectory estimation in RKHS [52];
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2 Conditional Neural Process (CNP) [49];

3 Plain LSTM trajectory estimation.

Note that all of the baseline algorithms predict the trajectory by considering the interactions

between the target and its surrounding cars. Historical trajectories of all involved cars also con-

tribute to the prediction in these baseline methods.

Conditional Neural Process (CNP) is implemented as a baseline model. The main difference

between CNP and RMIN is that, to retain the property of a stochastic process, CNP should be

permutation-invariant. Therefore, there is an aggregation operation
⊕

in an intermediate layer

between the demonstration and generator sub-net. The implementation also retains this property,

and as is recommended, the aggregation operation
⊕

is implemented by a mean operator, which

means that

r =
1

n

n∑
1

ri

In addition, the dimension of the intermediate condition representation r is 128. The intermediate

condition r is the output of the demonstration sub-network h. h contains a three-layer fully

connected network, with increasing dimensions of 32, 64, and 128. Note that the last layer of

the fully connected network outputs the condition representation r. Followed by the r, a new

observation input xt is combined. A concatenated tensor which contains r and xt is then fed

into the generator network g. The generator g also consists of a three-layer fully connected

network. The CNP baseline shows the performance of the induction network. However, it does

not consider the sequential information. This lack inspired the proposed method, which takes the

sequencing of trajectories into consideration.

A plain LSTM sequence-to-sequence trajectory estimation is also implemented; a one-stack

LSTM model is used. Instead of using a whole observed trajectory as the input, it feeds individual

(x, y) coordinates once per step.

In the design of the proposed method, only one LSTM is stacked for the observer sub-net.

The LSTM cell uses an asynchronous structure, which means that it will not output the inter-
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mediate condition representation r until it has processed enough data. We set the number of the

demonstrations to three, so that the demonstration sub-net will generate a result r only once it

has processed three segments of past trajectory. However, the output dimension of the LSTM

cell is the same as its input. With a possible variable dimension of the input, its output dimen-

sion is desired to be fixed. Then a fully connected network follows immediately after the LSTM

observer network. To make the structure more comparable to the CNP implementation, the fully

connected network only has one layer, containing 128 hidden nodes. The dimension of the condi-

tion representation r is equal to the one in CNP. The generator architecture uses the same design

as that in the CNP implementation, i.e., a three-layer fully connected network. Note that in the

implementation of the continuous trajectory estimation in RKHS (the first baseline method), sce-

narios that have different numbers of surrounding vehicles are separately trained and the model

is updated by a selection matrix. Otherwise, the result of the RKHS will be poor. However, the

induction models (including CNP and the proposed RMIN) are more robust than other methods

when facing the uncertainty of the surrounding traffic, as long as the total number of surrounding

cars does not exceed the design value. In the current implementation, the upper bound on the

number of surrounding cars is five, excluding the target car itself.

4.3.2 Comparison Results

Table 4.5 and Table 4.6 show the prediction errors of the different methods at each timestamp.

Mean errors and standard deviation are used in the comparison. To better demonstrate the results,

errors are separately shown in longitudinal and lateral directions. All of these methods have

increasing mean errors and standard deviations. The RKHS method can only predict over a 2s

horizon within an acceptable accuracy.

In the lateral direction, the proposed method achieved the lowest mean error at each examined

timestamp. The mean error of the RKHS at 2s is at the same level as that of RMIN at the 5-

second mark. At 2s, RMIN has a mean error that is half of CNP’s and 36% of the error of
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Table 4.5: Mean error and standard deviation of lateral error of the trajectory prediction compared
with the ground-truth, in the lateral direction. The units are meters (m).

Methods 1s 2s 3s 4s 5s

RKHS
µ 0.052 0.251 — — —
σ 0.051 0.250 — — —

LSTM
µ 0.286 -0.330 -0.588 -0.776 -1.209
σ 0.776 0.880 0.919 1.020 1.160

CNP
µ 0.085 0.181 0.382 0.379 0.444
σ 0.476 1.268 1.995 2.325 2.472

RMIN
µ 0.019 0.090 0.195 0.235 0.248
σ 0.501 1.299 1.997 2.343 2.492

Table 4.6: Mean error and standard deviation of the longitudinal error of the trajectory prediction
compared with the ground-truth. The units are meters (m).

Methods 1s 2s 3s 4s 5s

RKHS
µ 1.425 9.925 — — —
σ 0.871 5.794 — — —

LSTM
µ -2.100 -4.429 -6.050 -9.851 -17.932
σ 6.356 8.225 10.303 14.608 20.553

CNP
µ -0.229 -0.565 -0.782 -0.979 1.126
σ 2.184 4.846 7.685 10.764 13.995

RMIN
µ 0.169 0.485 0.666 0.831 1.091
σ 2.606 5.476 8.611 11.946 15.510

RKHS. However, RMIN has the largest standard deviation at that timestamp. At 5s, RMIN has a

mean error of 0.248 meter, which is 55% of the CNP error at the same timestamp. Their standard

deviations are at roughly the same level. Though the LSTM approach has the lowest standard

deviation in the lateral direction, its absolute mean error is almost five times larger than that of

RMIN.

In the longitudinal direction, the proposed method also achieves the lowest (absolute) mean

error at each examined timestamp. RKHS is significantly worse than other methods in terms of

mean error, even looking at the first two seconds. At 2s, the standard deviations are at the same
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level. However, the absolute mean errors of CNP and RMIN are around 0.5, which is 1/20th of

the error of RKHS. One possible reason is that RKHS uses one kernel function to estimate the

whole trajectory with 2 dimensions. In detail, only one kernel function is used for the estimates in

both lateral and longitudinal directions. At 5s, the mean error of RMIN is 27.8% smaller than that

of CNP. The standard deviation of RMIN is only 9.8% larger than CNP’s. The LSTM approach

performs badly in the longitudinal direction, though its lateral performance is comparable to that

of the other methods. Note that its absolute mean error at 1s is already larger than that of CNP

or RMIN at 5s. There are several reasons that contribute to the differences: 1) The input of

the plain LSTM directly takes individual coordinates at each time step. However, RMIN and

CNP take a segment of trajectories at each time step respectively as input to either an LSTM

or a fully connected layers-based observer network. The latter provides more data and relations

to the observer network. The induction models also use both historical observations and their

expected output as inputs to extract the correlations between the observation and output, and

the relationship is encoded as the condition tensor. This design makes it easier for induction

models to accurately extract the tendency of the trajectory changes. In addition, the speed along

the longitudinal direction is larger than that in the lateral direction. 2) The output (generator)

network of the induction models uses a fully connected network, whereas the plain LSTM uses

one LSTM cell. Since the fully connected network (FCN) describes the relationships among

positions in the predicted trajectory more explicitly than the LSTM cell does, with a small set of

training data, the FCN in the induction models can work better. 3) Therefore, any subtle changes

of the observation (especially for the longitudinal positions) and model prediction error can result

in a larger deviation in the longitudinal direction than in the lateral one.

4.3.3 Individual Results

Figure 4.12 shows two individual examples of lane change trajectory prediction. Figure 4.12a

is an example for the right lane change prediction and Figure 4.12b is for the left lane change
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prediction. The target car’s trajectory is shown as black lines. Surrounding cars are represented

by other colors. The thick parts are the observations (demonstration). The light gray curve that

follows the thick black line is the ground-truth, and the red curve that follows the thick black line

is the prediction of the target car. To have a clearer comparison, the prediction and ground-truth

are projected to the ground plane (z=0). Dashed thick lines on the ground are lane markers.

The individual results show that considering three seconds of demonstration before lane

change, the predicted trajectories are close to the ground-truth. The predicted trajectories’ cur-

vatures also follow the lane change pattern: The curvature increases at the beginning of the lane

change, and then decreases. Once the target car passes the lane marker, the curvature increases

and then directs the heading of the car to align with the lane.

4.4 Summary

In this chapter, three methods that correspond to three stages of behavioral estimation are tested

in various scenarios. The tests are conducted to compare with human-driven ground-truth tra-

jectories, in a realistic simulator which contains more testing cases, and finally, the method is

implemented on a self-driving platform to test its performance in real urban traffic. The experi-

ments validate the performance of the methods for different stages:

1. The PGM-based algorithms surpass previous methods for the intention estimation and in-

teraction in merging scenarios: including one-on-one and multi-merging-leading scenar-

ios;

2. The RKHS-based algorithm predicts the end and start points of a lane change behavior of

a target vehicle, considering its past trajectory and past observations of the surrounding

vehicles;

3. The RCNP-based method outperforms other methods in the prediction of a lane changing

trajectory, which is based on the observation of the behavior of surrounding vehicle. By
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using an induction neural network, the performance can be achieved by using a small

dataset.
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(a) A right lane change trajectory prediction

(b) A left lane change trajectory prediction

Figure 4.12: Individual examples for right and left lane change of a target vehicle, with sur-
rounding cars. x-axis is for the longitudinal direction; y-axis is for the lateral direction; z-axis is
for the time horizon. Black curves are the trajectories of the target car. Detailed discussion and
description are in Section 4.3.3.
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Chapter 5

Analysis of Practical Issues

Chapter 3 introduces the behavior system in interactive scenarios. Chapter 4 shows the feasibility

of the proposed work in ideal set-ups. In part of the realization of the system, not only the

theoretical analysis is performed, but engineering and implementation aspects are also studied in

this chapter. These studies include the sensitivity analysis for sensor failures and the discussion

of practical integration to the autonomous driving system.

5.1 Sensitivity and Failure Analysis

In this section, we mainly focus on the sensor failure. Without specifying a certain type of sensor,

like LIDAR, RADAR or Camera, the study is conducted at the tracker level. Tracker drop-off,

drifting and oscillating effects are examined. The following sections will discuss the sensitivity

to perception uncertainties. We then propose requirements for the perception system in terms of

tracker stability and coverage ranges. This study gives guidelines and criteria for the design of

an engineering realization of a perception system on an autonomous driving car. For example,

we discuss the desired range of LIDAR/RADARs and resolution of cameras.
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5.2 Sources of Uncertainties

Uncertainties come from the driving environment, drivers and perception equipment. To better

understand these effects, several main sources are listed in detail below:

• Human intentions: A human driver may change his mind during the negotiation and dif-

ferent individuals have different intentions in the same scenario.

• Road geometry: Different merging ramp angles may lead to various behaviors.

• Vehicle type: Sedans and trucks will behave differently based on their own dynamics.

• Sensing coverage: The longest distance that a tracker can be stably estimated affects how

far we can see.

• Sensing stability: The oscillation of the detected tracker in pose and velocity affects how

well we can see.

This chapter focuses on the analysis of the sensitivity of the proposed system, with respect to

the uncertainty of the perception system, i.e., sensing coverage and stability. The analysis aims

to provide a guideline for the design of the perception system for interactive tasks. Since the

proposed framework is not limited to a specific type of perception system (e.g., LIDAR, RADAR

or cameras), the analysis is conducted on the tracker level. A tracker represents the pose, velocity

and dimensions of a surrounding vehicle. The noise and failures will be applied to the tracker.

Therefore, the uncertainty can be separated into the following phenomena:

• Tracker drop-out: Temporary losing track of one object. Effects of drop-out frequency

and period will be studied.

• Tracker drifting: A low-frequency offset from the real position of the vehicle.

• Oscillation: A high-frequency error in the kinematic information of the tracked objects.
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In the test process, other types of tracker failures, such as unexpected tracker divergence or

merging are also observed. However, these types of failure have been fixed by the fusion system

followed by the tracking system. Since no object can appear or disappear around another one, it

is straightforward to identify and filter out these failures if the dimension, pose and kinematics

can be detected. The fusion and tracking system is not the main contribution of this dissertation;

therefore, only the effects of tracker drop-out, drifting and oscillation will be examined. Details

of the fusion framework and segmentation/tracking methods can be found in [57, 58, 59].

5.2.1 Verification factors

In simulation, various scenarios can be generated. These scenarios have different initial condi-

tions, i.e., start point S0, initial speed V0 for both the merging and host vehicle. The start positions

range from 180 meters to 60 meters to the merge point, and the initial speeds range from 10 to

20 meters per second. Using a resolution of one meter and one meter per second respectively for

the initial position and velocity, and applying the initial states to both vehicles, there are 2400

cases in total. To make the comparison clear and straightforward, the three factors are examined

separately. Coupled effects are not considered in these experiments.

5.2.2 Drop-out

Bernoulli Dropout

As discussed above, two items need to be considered in the drop-out effects: 1) drop-out fre-

quency and 2) drop-out period. Each item needs a separate set of testing cases. Since the update

rate of the whole estimation is set to 10Hz, only drop-out frequencies that are lower than 10Hz

will be considered. Note that the synchronization between the perception and the intention es-

timation system is not the topic here. For the sake of clarity, only the end effect of perception

drop-out is discussed. In other words, the dropout effect results in an unobservable tracker at

some timestamps.
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The drop-out period is the time for a single drop-out. In the view of the estimation system,

this results in a number of speed nodes with no observation value. Based on our study about

the optimal number of observations in Section 4.1.2, the whole observation period for a single

update cycle will take up to 20 observations in total, which is two seconds.

To formulate the dropout uncertainty, the event of dropout D is firstly considered as i.i.d. at

each timestamp. In this way, the state of one observation is either dropout or the real perception

value, with assignable probability. Therefore the probability of the dropout event can be modeled

by a Bernoulli Distribution:

D ∼ Bernoulli(p) (5.1)

where p is the probability of the occurrence of the sensing dropout. Since there are about 100

timestamps in a merging control cycle and the dropout event is i.i.d., the number of dropout

events in a merging scenario then follows the Binomial Distribution:

ND ∼ Binomial(n, p) (5.2)

where n is the total number of timestamps and p is the same p as in the Bernoulli distribution.

To test the sensitivity towards the dropout effect, different values of p are studied and tested. In

addition, since the period of a dropout event can be longer than one timestamp, the length m

of one dropout event is also studied. Since the probability of the start of a dropout also follows

the Bernoulli Distribution in (5.1), the whole process follows a more complex distribution than

Binomial:

f(k, n,m, p) =

(
n−m− km+ 1

k

)
pk(1− p)n−k(m+1)+1

+
m∑
l=1

(
n− l − (k − 1)m+ 1

k − 1

)
pk(1− p)n−2l−(k−2)m+1

(5.3)

where k is the number of the dropout,m is the length of one dropout, and l is the length of the last
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dropout if it happens at the end of the observation (l ≤ m). Details, explanation and derivation

can be found in Appendix B. The experiments are to obtain the collision rates with a changing

dropout probability p and dropout length m, where p ∈ (0, 1) with step of 0.05 and m ∈ [1, 11]

with step size of 2. Since the optimal size of the observation is n = 20, the value of m cannot

exceed n.

Figure 5.1: Collision rates with varying dropout probability. Dropout length m = 1.

Figure 5.1 shows the collision rates with varying dropout probability when the dropout length

is one. The collision rates increase in an oscillatory way. Once the probability reaches 0.5, the

collision rate become 6.8%, and does not change along with the increasing dropout probability.

Fixed length Dropout with varying locations

The dropout location is also an important factor which leads to different collision rates. We

define the dropout location as the ratio of the traveled distance at the beginning of dropout to

the length of the whole merging trajectory. The length of dropout is the number of consecutive
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timestamps during which the perception system fails to give the positions of the merging target.

Figure 5.2 shows the change of collision rate with varying dropout location for two different

drop lengths. When the observation is unavailable, old data are used without any prediction.

The reason why unobservable moving distances is not used is that, normally, the perception will

be offline randomly and then recover after a certain period. Since the merging car may move in

different speed, which results in different unobservable distances, the dropout period is preferred.

To better illustrate the effects of dropout locations, only one dropout event is considered.

Note that one dropout event may block the observations for a certain number of timestamps. The

x-axis stops at 70%, since from 70% to 90%, the collision rate remains unchanged. In each test,

the dropout location varies from 10% to 90% of the whole merging trajectory. In Figure 5.2a

and 5.2b, regardless of the length of the dropout (up to half of the number of total observations

in a cycle), the collision rates increase when the dropout location is within the first 20% of the

trajectory. From 20% to 40%, the collision rates decrease to about 3.2%. After 40%, the collision

rates gradually increase to 5%. If the received sensing data are not enough, the default behavior

will slow down the host vehicle and let the merging car go first. This default behavior does

contribute to the 5% collision rate, however, the speed of the host vehicle will be unnecessarily

decreased, which leads to unreasonable longer time for the whole merging behavior.

It is easy to understand that the late dropout will lead to more collisions, since it will affect

the last-minute decisions. Therefore, the collision rates increases after 40%.

5.2.3 Drifting

A lower-frequency error can exist in the dynamic information of a tracker, and affects the accu-

racy of the pose (locations, heading) and the speed of the object. This type of error is common in

the perception system, not only as a result of the detection and tracking algorithm, but also from

the nature of the sensors. Sensors like LIDAR and camera can only observe at most 3 surfaces (in

parts) of a vehicle. Using the partial observations will naturally introduce error in the estimation
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(a) Drop length m = 5. (b) Drop length m = 10.

Figure 5.2: Collision rates with varying dropout location with drop length m = 5 and m = 10.

of the center of mass and the dimensions of the target vehicle, hence affect the speed estimation

through the derivative of the pose. In the case of LIDAR observation, if the object is approaching

the ego-vehicle, the tracker position estimate will be closer than the real location; as the distance

between two cars shrinks, the pose estimation goes back to the real value; and after the target

car passes the ego-vehicle, the error increases again. Figure 5.3 shows the phenomenon of the

described low-frequency error. Different curves represent different levels of deviation. Consid-

ering most sensors nowadays can detect objects robustly at 100 meters, and limiting the type of

vehicle to sedan ( 5.5 meters in length), the upperbound of the error is ±2.3 meters (half length

of a sedan).

Figure 5.4 shows the resultant collision rates w.r.t. to the different coefficients in Figure 5.3. It

is clear that as the coefficient increases, the collision rate tends to increase. In the end, the failure

rate is approximate 9.2%. Same as the intuition, this indicates that the low-frequency drifting

error results in less failures. However, it is impossible to have a zero drift target position and

speed estimation. If the system is required to have a failure rate lower than 8%, the coefficient

value should be less than 1.3e−4, which means that at 100 meter, the drift should be less than 1.3

meters.
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Figure 5.3: A designed pattern for the shape of low-frequency error on the tracker. X-axis is the
distance between two cars, negative value means that the target car is behind the ego car. Y-axis
is the error to the real pose.
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The error follows the equation:

E =


− coef · (Ph − Pm)2 (Ph − Pm) < 0)

coef · (Ph − Pm)2 (Ph − Pm) ≥ 0)

(5.4)

where E is the error which is the function of the coefficient and the distance between two cars.

coef is the coefficient which changes its value from 1.3 × 10−4 to 2.3 × 10−4. Ph, Pm are the

positions of the host and merging car, respectively.

Figure 5.4: Collision rates in a subset of real data, with the given range of coefficients.

5.2.4 Oscillation

Oscillation error is also caused by the nature of the sensor, as well as the algorithm itself. White

noise can be used to represent the high-frequency error. Theoretically, white noise covers oscil-

lation at all frequencies. The only free parameter is the standard deviation. Again, as discussed
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in Section 5.2.3, errors larger than 2.3 meters are unlikely. Therefore, the largest magnitude of

the white noise is set to 2.3 meters; in addition, the sum of low- and high-frequency error cannot

exceed 2.3. There is a hard cut-off at ±2.3.

Figure 5.5: Collision rates in a subset (the third part of I-80) of real data, with σ ranging from 0
to 10m/s.

In Figure 5.5, there is no obvious impact of standard deviation magnitude on the change of

collision rate. The reason is that the smoothed PGM model uses a RTS smoother, which is based

on a Kalman Filter. In the Kalman filtering and smoothing processes, uncertainty is considered

as Gaussian noise. And optimal states are guaranteed to be estimated through the processes.

Therefore, if only white noise (zero-mean Gaussian noise) is injected into the observation, the

smoothing framework can still estimate the optimal states.
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5.3 Failure statistic and analysis

Figure 5.6 shows a statistical representation of the failure cases in One-on-One PGM. The failures

are plotted according to the initial distance and speed difference between the host and the merging

vehicles. The x-axis is the initial distance, and the y-axis is the initial speed difference. The 2-D

plot is the joint distribution of the failures w.r.t. the distances and speed distances. The upper and

right-hand-side 1-D distributions are the marginal distributions. The most failures occur when

the merging car is about 0∼20 meters ahead of the host car and has a similar speed to the host

car (or 1m/s faster).

Figure 5.6: Statistical results of the failure cases.

84



5.3.1 An individual failure example

Figure 5.7 shows a failure example. The initial positions of the host (red) and merging car (green)

are 100 meters and 90 meters to the merging point, respectively. The merging car is about 10

meters ahead of the host car. The initial speed of the host car is 4.8 m/s and the initial speed of

the merging car is 6.0 m/s, which is 1.2 m/s faster than the host. The differences of the initial

positions and speeds are located in the high failure probability region in Figure 5.6. As a result,

the host car fails to estimate the merging car’s intention, since it reduces speed in the middle of

the merging ramp. However, in the last 20 meters of the ramp, it speeds up and the host car still

believes that the merging car is yielding. At the end, both of the two cars increase the speed,

close the gap in between and finally collide.

5.4 Practical integration issues

In this section, the integration of the behavior framework into real-world autonomous driving sys-

tem is discussed. In the three-stage behavior system, an upper-level estimator is not necessary to

replace the lower-level ones. Though the upper-level prediction contains more detailed informa-

tion than that of the lower-level ones, the price is greater computational complexity. However,

not all scenarios require the detail information. For example, in ramp merging, as is discussed in

Chapter 3, there is no need to estimate the full trajectory since the route is determined. In order to

save computational resources for other tasks, lower-level estimators are always preferred to the

upper-level ones if they are sufficient to manage the given scenario. Compared to non-parametric

regression or conditional neural process, the PGM merging control requires less computation and

can run as fast as 1.8kHz. However, the system is artificially limited to update at 10Hz, instead

of operating at the highest cycle rate and draining the computational resources. In addition, since

other human drivers do not change their mind rapidly (as fast as 10Hz), it is also reasonable to

limit the update rate of the behavioral estimation system.
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Figure 5.7: An individual example for a failure. In the initial state, the merging car is about 10
meters ahead of the host vehicle, and the speed different is 1.2m/s.
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Chapter 6

Conclusion and future work

6.1 Conclusions

This dissertation introduce a system that enables autonomous driving cars to cooperate with

human-driven cars in ramp merging and lane changing scenarios. The system makes it possible

for the autonomous driving cars to understand the intentions of human-driven cars. The system

has three stages, which are suitable for various scenarios with different complexity. Experimental

results show that the three-stage system can handle ramp merging and lane changing scenarios

and outperform previous solutions in terms of collision rate, distance to other human-driven cars,

similarity to human drivers and updating rate. In addition, the proposed methods are capable of

running in real time. Individual and real world tests demonstrate the performance of the intention

estimation and trajectory prediction. Sensitivity analysis studied the robustness of PGM and its

variants in merging scenarios. Multiple types of uncertainty are studied in the research. The

results of the sensitivity analysis provide a guideline and requirements for perception systems.

The key contributions of this research are:

1. Introduce an efficient three-stage framework that estimate the future behaviors of one or a

set of vehicles considering with their surrounding traffic and the interaction.
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2. Valid the proposed system in a simulator with extended interactive scenarios and human-

driven trajectories. Valid the methods in a real autonomous driving system in both private

and public areas.

3. Conduct sensitivity analysis study the effects of sensing uncertainty and find the failure

range. This study gives a guideline for the engineering realization of the perception system

in a autonomous driving system.

6.2 Future work

In the future, road geometry and traffic conditions should be taken into consideration, especially

for the ramp merging intention estimation, since the road geometry such as the length and an-

gle of the ramp/auxiliary lane can affect the behavior of a merging car. In the non-parametric

solution, there is no clear explanation about the nature of different kernels and their effect on

the prediction. More sophisticated kernels can be developed to better fit the problem. For ex-

ample, a network can be used to represent the analytical kernel. Such a network-based kernel

will work in a classic way: given two inputs, return the “distance”. More importantly, a kind of

mechanism should be identified to captures the interaction between an autonomous driving car

and a human-driven car. Current methods “react” to other human-driven cars; however, they do

not explicitly consider the reaction of human-driven cars if the autonomous driving car performs

a certain behavior. Though PoMDP/MDP is a theoretically sound solution, there are several

limitations: 1) Real time solutions of PoMDP are not guaranteed, especially for continuous state

space and action space; 2) The dimensions of the state space are fixed, which is unrealistic in real

traffic conditions since the number of surrounding cars keeps changing. Therefore, the biggest

challenge (not limited to PoMDP/MDP) is to model with a space having a undetermined number

of dimensions. Finding real time solutions for this kind of model also remains an open question.

In the practical engineering aspect, the failure modes has been discussed to figure out the
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boundary of the system. Currently, there is no solid theoretical bound for the whole system. To

assure the safety of the system, more simulation experiments should be performed to discover

the boundary of the three-level methods. In order to handle the outliers cases which can not be

managed by the probabilistic methods, a hybrid system is a promising way to complement the

data-driven approach. The hybrid system may switch to rule-based or other approaches from the

probabilistic methods, if the scenario and vehicles’ states locate in the high-danger region of the

proposed approach.

Figure 6.1: An overview of the autonomous driving system and the proposed behavior estimation
subsystem.

Figure 6.1 summarized the positions and functions of the proposed method in the whole
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autonomous driving system. The green parts are the modules established in the dissertation.

The system should close loop (marked as the yellow arrow and box following the trajectory

prediction module) with a trajectory generator later to produce a feasible interactive trajectory.

A monitoring system is also required as a feedback mechanism to tolerate the error from the the

behavior estimator or the trajectory generator.
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Appendix A

The one dimensional lane/car following

model

The distance keeping model uses a Linear-Quadratic Regulator(LQR)-based controller. The state

S and control u are defined as a discrete-time system:

St =

 Dt −D∗

V lead
t − V host

t

 , ut = at

where Dt is the current distance between the leading and host car, D∗ is the desired distance

should be kept, V lead
t is the leading car’s speed and also the desired speed for the host car, V host

t

is the host car’s current speed, at is the desired acceleration, which is to be estimated. Therefore,

the system is:

St+1 = A · St +B · ut (A.1)

where

A =

 1 dt

0 1

 , B =

 dt2

−dt


dt is the timestep.
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The goal is to generate a gain K, such that

ut = −K · St (A.2)

which achieve the minimum value for the quadratic performance index:

C =
∑
t

STt QSt + uTt Rut (A.3)

Where Q and R are user-defined penalties. The K in Equation A.2 is estimated by discrete-time

LQR solvers, details refer to Zhou et al. [60].
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Appendix B

Distribution for dropout more than one

timestamp

Suppose there are n timestamp, dropout period is m, and for a single timestamp, the start of a

dropout is p,

f(k, n,m, p) =

(
n−m− km+ 1

k

)
pk(1− p)n−k(m+1)+1

+
m∑
l=1

(
n− l − (k − 1)m+ 1

k − 1

)
pk(1− p)n−2l−(k−2)m+1

(B.1)

where l is the length of the last dropout period at the end of the observation. Due to the end

effect, this distribution becomes more complicated. The process is considered as a sum of several

mutually exclusive events. There are two category of the events:

Case 1 The last observation is not dropped, which means that the last m observations are not

dropped.

Case 2 The last observation is dropped, which means that from the end of the observation list, at

most m consecutive observations are dropped. Further more, in this category, there are m

mutually exclusive events which corresponding different numbers of consecutive dropped
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observation at the end. The number of dropout at the end is represented by l, which ranges

from 1 to m.

(a) The observations and drops

(b) The first term, drop in the first n-m nodes. Red group is one of the dropout
groups of observation nodes. Arrows indicates possible positions for a dropout with
length m.

(c) The second term, has dropout in the last l nodes, where l ≤ m.

Figure B.1: Dropout cases.

Figure B.1a shows one estimation cycle with n possible available observations.

Case 1.

Figure B.1b illustrate the case that is described in the first item. Say if the dropout length is m,

i.e., the number of consecutive unobservable nodes, The event A0 that corresponds to the first

item is: all the last m nodes are observable and k groups of m unobservable nodes will be placed

in Therefore, k groups of m dropped nodes (markded as red) will select n−m− k ·m+ 1 slots,
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and the probability is:

P (A0) =

(
n−m− km+ 1

k

)
pk(1− p)n−k(m+1)+1 (B.2)

Case 2

Similarly to the case 1, but the last m nodes will contain dropout. Say the last dropout length is l,

where l ≤ m, which means that the last l nodes are dropped. The last l nodes is the k-th dropout

group. Therefore, there are k − 1 groups of m nodes still need to select n− l − (k − 1) ·m+ 1

slots, and the probability for a single l value is:

P (Al) = pl(1− p)m−l·(
n− l − (k − 1)m+ 1

k − 1

)
pk−l(1− p)n−l−(k−1)m+1

=

(
n− l − (k − 1)m+ 1

k − 1

)
pk(1− p)n−2l−(k−2)m+1

(B.3)

Since the events A0 and Al where l = 1...m are mutually exclusive, the probability of k dropouts

with the length of m in n observations is:

P = f(k, n,m, p) = P (A0) +
m∑
l=1

P (Al) (B.4)

Substituting Equation (B.2) and (B.3) to Equation (B.4), yields Equation (B.1).
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