
                                                                      

 Carnegie Mellon University 

MELLON COLLEGE OF SCIENCE

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

TITLE:  First-Order Methods in Convex Optimization: Acceleration, Conditioning, and Rescaling

PRESENTED BY:  David Gutman

ACCEPTED BY THE DEPARTMENT OF: Mathematical Sciences

          __Javier Pe  ña  ______                             __________________            _____May 2019_____
                                          MAJOR PROFESSOR                                                                      DATE

          ___Thomas Bohman__                                 ____________________            ___     May 2019    ____
                                              DEPARTMENT HEAD                                                                     DATE

APPROVED BY THE COLLEGE COUNCIL

            _  Rebecca W. Doerge                                       ________   ________           _______May 2019_____
                                               DEAN                                                                                                  DATE

 



First-Order Methods in Convex Optimization:

Acceleration, Conditioning, and Rescaling

David Huckleberry Gutman

Committee:
Javier Peña

Steven Shreve
Fatma Kilinç-Karzan
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Abstract

This thesis focuses on three themes related to the mathematical theory of first-order
methods for convex minimization: acceleration, conditioning, and rescaling.

Chapters 1 and 2 explore the acceleration theme. In chapter 1, we give a novel proof
of the O(1/k) and O(1/k2) convergence rates of the proximal gradient and accelerated
proximal gradient methods for composite convex minimization. The crux of the new
proof is an upper bound constructed via the convex conjugate of the objective function.

Chapter 2 extends the approach of chapter 1 to the convergence analysis of Bregman
proximal first-order algorithms for convex minimization. We provide novel proofs of the
convergence rates of the Bregman proximal subgradient, Bregman proximal gradient,
and a new accelerated Bregman proximal gradient algorithm under fairly general and
mild assumptions. Our accelerated Bregman proximal gradient algorithm attains the
best-known accelerated rate of convergence when suitable relative smoothness and
triangle scaling assumptions hold. However, the algorithm requires no prior knowledge
of any related smoothness or triangle scaling constants.

Chapter 3 explores the conditioning theme by proposing a condition number of a
differentiable convex function relative to a reference set and distance function pair.
This relative condition number is defined as the ratio of a relative smoothness constant
to a relative strong convexity constant. We show that the relative condition number
extends the main properties of the traditional condition number both in terms of its
geometric insight and in terms of its role in characterizing the linear convergence of
first-order methods for constrained convex minimization.

Chapter 4 explores the rescaling theme. In this chapter, we propose three enhanced
versions of the projection and rescaling algorithm’s basic procedures, using an efficient
algorithmic implementation of Carathéodory’s Theorem. Each of these enhanced pro-
cedures improves upon the order of complexity of its analogue in Peña and Soheili
(Math Program 166(1):87111, 2017) when the dimension of the subspace is sufficiently
smaller than the dimension of its ambient space.
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Introduction

This thesis focuses on the mathematical theory of first-order methods for convex min-
imization problems. The generic convex minimization problem is

min
x∈X

f(x)

where f : Rn → R∪ {∞} denotes a convex objective function and X ⊆ Rn is a convex
feasible set. Essentially, a first-order method is an iterative scheme that uses the
subdifferential/gradient information of the objective function to generate each iterate.
More formally, a first-order method generates iterates

xk+1 = xk + tkdk

for k = 0, 1, 2, ... where tk and dk depend on X, k, and {∇f(xi)}ki=0 (or {∂f(xi)}ki=0 if
f is non-differentiable). In the case that f is differentiable then ∇f(x) will denote the
gradient of f evaluated at x ∈ dom(f). The effective domain of f is the set

dom(f) := {x ∈ Rn : f(x) <∞}.

We will say that ∇f is Lipschitz or a Lipschitz gradient when it is Lipschitz contin-
uous on dom(f). When f is non-differentiable ∂f(x) denotes the subdifferential of f
evaluated at x ∈ dom(f), that is

∂f(x) := {g ∈ Rn : f(y) ≥ f(x) + 〈g, y − x〉 for all y ∈ dom(f)}.

The new era of big data and machine learning spawned a resurgent interest in these
classical methods. The typical machine learning algorithm depends on the successful,
approximate solution of a large-scale optimization problem comprised of millions, if
not more, decision variables. Thus, the low storage and iteration costs of first-order
methods relative to more elaborate schemes make these methods particularly attractive
for modern data science applications. This thesis consists of four chapters that explore
three themes: acceleration, conditioning, and rescaling. The first two chapters explore
the first theme while the final two chapters explore the latter themes.

Acceleration

The relatively slow convergence rates of first-order methods offset their relatively cheap
iteration and storage costs. For a general convex objective f : Rn → R, first-order
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methods for the unconstrained minimization problem minx∈Rn f(x) typically converge

in O
(

1/
√
k
)

iterates which we formally write as

f(xk)−min
x∈X

f(x) ≤ O
(

1/
√
k
)

where the quantity on the left is often referred to as the suboptimality gap. If we
further assume that f has a Lipschitz gradient then the standard gradient descent
algorithm for minx∈Rn f(x) converges in O (1/k) iterates. Moreover, it is well-known
that the lower bound for the convergence rate for the minimization of a convex function
with a black box first-order oracle and Lipschitz gradient is O(1/k2) [53].

In his seminal paper, [52] Nesterov devised an accelerated first-order algorithm with
the optimal O(1/k2) rate of convergence in this setting via a modification of the stan-
dard gradient descent algorithm that includes momentum steps. A later breakthrough
was the acceleration of the proximal gradient method independently developed by Beck
and Teboulle [8] and by Nesterov [54]. The proximal gradient method, also known as
the forward-backward splitting method [45], is an extension of the gradient descent
method to solve the composite minimization problem

min
x∈Rn

f(x) + Ψ(x) (1)

where f : Rn → R∪{∞} is differentiable on dom(f) and Ψ : Rn → R∪{∞} is a closed
convex function such that dom(Ψ) ⊆ dom(f) and such that for L > 0 the proximal
map Prox 1

L
: Rn → dom(Ψ) defined by

Prox 1
L

(x) := argmin
y∈Rn

{
Ψ(y) +

L

2
‖y − x‖2

}
(2)

is computable.
The class of Bregman proximal first-order methods, a more flexible and generalized

class of proximal gradient methods, are based on the Bregman proximal map

(x, g) ∈ Rn × Rn 7→ argmin
y∈Rn

{〈g, y〉+ Ψ(y) + LDh(y, x)} (3)

where Dh(y, x) := h(y)−h(x)−〈∇h(x), y − x〉 is the Bregman distance [16] generated
by some reference convex function h : Rn → R ∪ {∞}. If the reference function in (3)
is the squared Euclidean norm h(x) := 1

2
‖x‖2

2 then we precisely recover the proximal
map which defines the class of proximal gradient methods.

The mirror descent method [7, 47, 51] is a well-known instance of a Bregman prox-
imal first-order method when Ψ = IC , the indicator function of C, for some closed
convex set C ⊆ Rn. Some more recent instances of Bregman proximal methods include
the NoLips algorithm introduced by Bauschke, Bolte, and Teboulle [4], which follows
a Bregman proximal gradient template [3, 9, 69, 70]. This same algorithmic template
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underlies the relative gradient scheme proposed by Lu, Freund, and Nesterov [4]. Both
[4] and [48] establish convergence results for the Bregman proximal gradient method
by relying on a Lipschitz-like convexity condition (LC) as defined in [4] or the equiv-
alent relative smoothness condition as defined in [48]. Both papers derive a O(1/k)
rate assuming that the relative smoothness condition holds. This relative smoothness
condition is crucial to the analysis in [34]. The Bregman proximal subgradient method
[11, 10, 23, 69] which allows for f to be non-differentiable and converges in O(1/

√
k)

iterates is also an instance of this class. Recently, Hanzely, Richtarik, and Xiao [34]
achieved the acceleration of Bregman proximal gradient methods for relatively smooth
functions. In particular, this accelerated scheme achieves a O(1/kγ) rate where the
constant γ > 0 depends on the underlying Bregman divergence.

The enormous significance of Nesterov’s and Beck and Teboulle’s original break-
throughs prompted interest in new explanations for how to achieve the acceleration of
first-order methods [1, 17, 22, 26, 43, 59, 68]. Some of these approaches are based on
geometric [17, 22], control [43], and differential equations [68] techniques. The recent
article [59] relies on the convex conjugate to give a unified and succinct derivation of
the known O(1/

√
k),O(1/k), and O(1/k2) convergence rates of the subgradient, gradi-

ent, and accelerated gradient methods for unconstrained smooth convex minimization.
A natural question is whether this approach extends to the broader class of proximal
gradient methods and its generalization, Bregman proximal gradient methods. Chap-
ters 1 and 2, respectively based on the papers [33] and [31], offer an affirmative answer
to this question. The crux of the approach is a generic upper bound, constructed via
the convex conjugate of the objective function, of the iterates generated by the subgra-
dient, gradient, and accelerated gradient algorithms from the proximal and Bregman
proximal classes. The frameworks presented in these chapters not only provide general
templates for the design of future accelerated methods, but also subsume a number of
popular methods.

In chapter 1, which is based on the paper [33] written jointly with Prof. Javier
Peña, we apply this new technique to recover the known rates for the proximal gra-
dient and subgradient methods, and the accelerated proximal gradient method. Our
treatment covers the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA), a pop-
ular variant of the accelerated proximal gradient method, when the step size is chosen
by backtracking line search. Notably, we provide a unified derivation of the convergence
rates of the three methods under weaker conditions than those previously assumed in
the literature. Previously, authors obtained the convergence rates under the hypothesis
that the objective function’s smooth component possessed a Lipschitz gradient. We
assume only that the iterates of each algorithm satisfy a decrease condition which is
easily seen to hold if the smooth component has a Hölder continuous gradient and the
step sizes are chosen judiciously.

In chapter 2, which is based on the paper [31] written jointly with Prof. Javier
Peña, we extend the technique of chapter 1 to derive new and known rates for the
class of Bregman proximal first-order methods. We provide a unified derivation of the
convergence rates of the Bregman proximal gradient method, Bregman subgradient
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method, and the new accelerated Bregman proximal gradient of Hanzely, Richtarik,
and Xiao [34]. In particular, we show that our algorithmic template for accelerated
Bregman proximal methods and its related analysis subsumes the new algorithm of
[34]. As in chapter 1, we assume only that a decrease condition holds at each iterate.
Furthermore, we provide periodic restart schemes for the accelerated Bregman proximal
gradient template that ensure linear convergence assuming sufficient smoothness and
error bound conditions.

Chapter 2 highlights the interplay of the selection of the momentum parameter
and step size for Bregman proximal methods based on arbitrary reference functions.
Accounting for this relationship facilitates the simultaneous treatment of the effect of
continuity and geometric conditions for the objective and reference functions on con-
vergence rates for accelerated and basic algorithms. However, certain algorithms, such
as FISTA with backtracking, require selections that do not accord with this relation-
ship. Chapter 1 recognizes that the simple structure of the squared Euclidean norm,
which is the Bregman divergence used for the proximal gradient methods, enables the
analysis of a broader class of step size and momentum parameter regimes for proximal
methods. Consequently, as corollaries of chapter 1’s main theorem, we are able to
consider flexible step size selection for FISTA and derive the modern convergence rates
for the projected subgradient algorithm from [29].

Conditioning

Let f : Rm → R ∪ {∞} be a convex differentiable function. The condition number
of f is the ratio Lf/µf where Lf and µf are respectively the smoothness and strong
convexity constants of the function f measured with respect to ‖ · ‖2. The condition
number Lf/µf is closely tied to a number of fundamental properties of the function f .
In the special case when f is a quadratic convex function the condition number has
the following geometric interpretation. Suppose f(x) = 1

2
‖Ax − b‖2

2 where A ∈ Rn×n

is non-singular. Then the condition number of f is

Lf
µf

= ‖ATA‖ · ‖(ATA)−1‖ = (‖A‖ · ‖A−1‖)2. (4)

The latter quantity is the square of the aspect ratio of the ellipsoid A(B) := {Ax : x ∈
Rn, ‖x‖2 ≤ 1} since ‖A‖ and 1/‖A−1‖ are respectively the radii of the smallest ball
that contains A(B) and the largest ball contained in A(B).

The condition number Lf/µf also bounds the linear convergence rate of the gradient
descent algorithm for the unconstrained minimization problem

f̄ = min
x∈Rm

f(x).

More precisely, for a suitable choice of step sizes the iterates xk, k = 0, 1, . . . generated
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by the gradient descent algorithm satisfy

‖X̄ − xk‖2
2 ≤

(
1− µf

Lf

)k
‖X̄ − x0‖2

2

and

f(xk)− f̄ ≤
Lf
2

(
1− µf

Lf

)k
‖X̄ − x0‖2

2,

where X̄ := {x ∈ Rn : f(x) = f̄} and ‖X̄ − x‖2 = infy∈X̄ ‖y − x‖2. The articles
[17, 22, 39, 49, 50, 53, 54], among others, discuss the above type of linear convergence
and a number of interesting related developments. In particular, Necoara, Nesterov
and Glineur [50] establish linear convergence properties for a wide class of first-order
methods under assumptions that are relaxations of strong convexity.

However, the condition number of a convex function alone is unfit to describe the
performance of some optimization algorithms including the away step variant of the
Frank-Wolfe algorithm. At each iteration k, the Frank-Wolfe algorithm selects its
search direction by minimizing the first-order Taylor approximation of the objective
function over the feasible set. Formally, for k = 0, 1, 2, ..., the algorithm selects dk
according to the rule

vk = min
y∈X

[f(xk) + 〈∇f(xk), y − xk〉] ,

dk = vk − xk.

To ensure a linear convergence rate when the objective is strongly convex, the away step
variant of the Frank-Wolfe algorithm is usually used in place of the basic algorithm. As
[60, 6, 42] show, the linear convergence rates for the away step variant of Frank-Wolfe
depend on constants informed not only by characteristics of the objective function, but
also the geometry of the feasible set induced by the norm of choice.

This joint dependence on the function and the domain is the inspiration for our
theme in chapter 3. The theme of this research line is relative condition numbers,
condition numbers for constrained convex optimization that depend on the objective
function, the underlying domain, and a distance-like function on the underlying do-
main. In chapter 3, which is based on the paper [32] written jointly with Prof. Javier
Peña, we propose a relative smoothness constant Lf,X,D and a relative strong convexity
constant µf,X,D of the function f relative to the pair (X,D) where X ⊆ dom(f) is a
convex set, and D : X ×X → R+ is a distance-like function, that is, D(y, x) ≥ 0 and
D(x, x) = 0 for all x, y ∈ X. Our main results highlight the tight connection between
the relative constants and geometric features of the set X. In particular, we consider
functions of the form f = g ◦A for some matrix A ∈ Rm×n and g : Rm → R∪{∞}. For
functions of this form, we provide characterizations and bounds on Lf,X,D and µf,X,D
in terms of Lg and µg, and geometric properties of the pair (A,X).

The relative constants Lf,X,D and µf,X,D are defined globally. In particular, they
do not depend on any specific point in X. We consider several variants of relative
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strong convexity following the constructions of Necoara, Nesterov and Glineur [50].
In particular, we define a relative quasi-strong convexity constant µ?f,X,D and a D-

functional growth constant µ]f,X,D. See Definition 5 and equation (3.9). Unlike µf,X,D,

the constants µ?f,X,D and µ]f,X,D depend on the set of minimizers X̄ of f on X. We
show that relative quasi-strong convexity is a relaxation of relative strong convexity.
We also show that under suitable assumptions D-functional growth is a relaxation
of quasi-strong convexity. Not surprisingly, there are classes of non-strongly convex
functions for which the constant µ]f,X,D is positive while µf,X,D and µ?f,X,D may not be.
(See Theorem 11.)

We show that the relative condition number Lf,X,D/µf,X,D and some related quan-
tities readily yield a linear convergence rate for the mirror descent algorithm for the
constrained minimization problem

f̄ = min
x∈X

f(x). (5)

Furthermore, we show that a similar relative condition number also yields a linear
convergence rate for a version of the Frank-Wolfe algorithm with away steps when the
set X is a polytope.

We should note that the linear convergence of the mirror descent algorithm, Frank-
Wolfe algorithm with away steps, and other first-order methods have been previously
established in [6, 42, 48, 50, 54, 60, 69] under various kinds of assumptions. Our
approach based on the relative condition number shows that the linear convergence of
the mirror descent algorithm (Propositions 8 and 9) holds for a sharper rate and under
conditions that are weaker than those assumed in [48, 69]. Our approach based on
the relative condition number yields a proof of linear convergence for the Frank-Wolfe
algorithm with away steps that is significantly shorter, simpler, and more general than
the ones previously presented in [6, 42, 60]. In particular, our most general statement
of linear convergence for the Frank-Wolfe algorithm with away steps (Proposition 10)
is at least as sharp or sharper than the linear convergence statements in [6, 42, 60].

Our work in chapter 3 draws on and connects several seemingly unrelated threads
of research on first-order methods [4, 6, 42, 48, 50, 60, 69] and on condition measures
for convex optimization [25, 24, 28, 27, 44, 56, 58, 63, 64]. Our construction of Lf,X,D
and µf,X,D is inspired by and closely related to the work of Lu, Freund, and Nesterov
[48] and of Bauschke, Bolte, and Teboulle [4, 69]. Lu et al. [48] extend the concepts of
smoothness and strong convexity constants by considering them relative to a reference
function h, see [48, Definition 1.1 and 1.2]. Our construction is identical to theirs in the
special case when the distance function is the Bregman distance function Dh associated
to the reference function h and the function f is strictly convex. Bauschke, Bolte, and
Teboulle [4] define a concept of Lipschitz-like condition that is equivalent to smoothness
relative to a reference function. Our construction of Lf,X,D and µf,X,D is also relat-
ed to the away curvature constant and geometric strong convexity constant proposed
by Lacoste-Julien and Jaggi in [42, Appendix C]. Our constructions of D-functional
growth, and relative quasi strong convexity are natural extensions of analogous con-
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cepts proposed by Necoara, Nesterov, and Glineur [50] to unveil relaxations of strong
convexity that ensure the linear convergence of first-order methods. Our D-functional
growth is in the same spirit as a quadratic growth approach used by Beck and Shtern
[6] to established the linear convergence of a conditional gradient algorithm with away
steps for non-strongly convex functions.

In contrast to the approaches in [6, 42, 48, 50, 60], our construction of the relative
condition constants applies to any pair (X,D) of reference set and distance function.
Our main results (Section 3.3 and Section 3.4) reveal some interesting insights when D
is a squared norm. We establish a close connection between our relative conditioning
approach and the conditioning of linear conic systems pioneered by Renegar [63, 64]
and further developed by a number of authors [19, 25, 24, 28, 27, 44, 56, 58, 57]. We
especially draw on ideas developed in the recent paper [57]. We note that consistent
with our construction of the relative constants Lf,X,D, µf,X,D, µ

?
f,X,D, µ

]
f,X,D, all of

our results concerning them scale appropriately, that is, they scale by λ whenever the
objective function f is replaced by f̃ = λf for some constant λ > 0. In particular,
the relative condition number Lf,X,D/µf,X,D and all of our bounds on it are invariant
under positive scaling of f . Due to the dependence of these constants on geometric
properties of the pair (X,D), they are not invariant under rescalings of X.

Rescaling

In contrast to first-order methods, second-methods trade low cost iterates for fast con-
vergence rates. Newton’s method, the canonical second-order method, can be viewed
as a gradient descent algorithm that incorporates a Hessian-based rescaling of the ob-
jective function’s level sets. This straightforward enhancement yields local quadratic
convergence for well-conditioned problem instances. In this light, it seems reasonable
to ask if periodic rescaling or reconditioning can improve the convergence rate of first-
order methods. Rescaling to improve the complexity of first-order methods for solving
linear feasibility problems is the third theme of this thesis. We pay specific attention
to the Projection and Rescaling algorithm of Peña and Soheili [61].

A projection method seeks to solve the linear feasibility problem

Find x ∈ L ∩ Rn
++, (6)

where L is a subspace of Rn. Typically this problem is recast as

Find x such that PLx > 0. (7)

A projection method is a first-order method that iteratively reduces the value of ‖PLx‖
until a feasible point is reached or a certificate of infeasibility is discovered. The Von
Neumann and Perceptron algorithms, which can be viewed as special cases of the
Frank-Wolfe algorithm, are well-known instances of projection methods. Convergence
analyses for projection methods usually rely upon condition numbers that measure how
“deeply interior” points in L are to the cone Rn

+ [19, 12, 38].
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In the case of a poorly conditioned system, i.e. one for which points in L are
not “deeply interior” to Rn

+, it is desirable to recondition the system to improve the
complexity of projection methods. Rescaling provides a popular and modern enhance-
ment that preconditions problems for projection methods. A rescaling step rescales
the ambient space such that the condition number improves, i.e. points in L become
more deeply interior. Peña and Soheili [61] introduce the Projection and Rescaling
algorithm, which extends an algorithm by Chubanov [20], to solve the linear feasibility
problem. This is a two-step algorithm that alternates between the limited execution of
a projection method, referred to in this context as the basic procedure, and a rescaling
of the ambient space determined by the basic procedure’s output.

Recent literature has attempted to improve or extend the projection and rescaling
procedure in many ways. Some authors have attempted to extend the projection and
rescaling algorithm to other settings and using different progress measures. The paper
[40] extends the algorithm to the setting in which Rn

+ is replaced with the second-
order cone while [46] extends it to the setting where Rn

+ is replaced with a general
symmetric cone. Other authors have attempted to enhance the basic procedure to
improve the complexity of the algorithm. In particular [66], produces a modified basic
procedure that reduces the iteration bound for Chubanov’s original projection and
rescaling algorithm by a factor of 5.

In chapter 4, based on the forthcoming paper [30], we propose enhancements to
three of the four Von Neumann/Perceptron basic procedures in [61] to improve the
complexity of the basic procedures from O(n4m) to O(n2m3) operations: a significant
improvement when m << n where m is the dimension of L. Our enhancements
depend on an algorithmic implementation of Carathéodory’s Theorem. Moreover, the
implementation of this technique strongly resembles the revised Simplex method.
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Chapter 1

Acceleration, Part I: Convergence
Rates of Proximal Gradient
Methods via the Convex Conjugate

1.1 Introduction

In this chapter, we give a unified derivation of the convergence rates of the proxi-
mal gradient, accelerated proximal gradient, and proximal subgradient algorithms for
the composite convex minimization problem (1). The central results of this chapter
(Theorems 1-3) are upper bounds on the iterates generated by the non-accelerated
proximal gradient, accelerated proximal gradient, and proximal subgradient methods.
The expressions in the three upper bounds (see (1.6), (1.9), and (1.14)) as well as their
proofs (see section 1.4) are strikingly similar. They highlight the commonalities and
differences of the three methods. The upper bounds are constructed via the convex
conjugate of the objective function. Theorem 1 and Theorem 2 readily yield the widely
known O(1/k) and O(1/k2) convergence rates of the proximal gradient and accelerat-
ed proximal gradient algorithms for (1) when the smooth component f has Lipschitz
gradient and the step sizes are chosen judiciously. The convex conjugate approach un-
derlying Theorems 1 and 2 also extend to a proximal subgradient algorithm when the
component f is merely convex but not necessarily smooth. (See Algorithm 2 and The-
orem 3.) This extension automatically yields a novel derivation of both classical [53,
Theorem 3.2.2] as well as modern convergence rates [29, Theorem 5] for the projected
subgradient algorithm.

We should note that in contrast to the classical proofs of the iconic convergence
rates O(1/k) for proximal gradient, O(1/k2) for accelerated proximal gradient, and
O(1/

√
k) for projected subgradient algorithms, our central results, namely Theorems

1-3 require substantially weaker assumptions. More precisely, Theorems 1-3 hold under
suitable assumptions on the step sizes and momentum steps but do not require any
Lipschitz condition on the components of the objective function or on their gradients.

17



As a consequence, for the proximal gradient method Theorem 1 guarantees convergence
of the iterates’ objective values to optimality in the absence of Lipschitz continuity
provided the step sizes are not summable. Similarly, for the accelerated proximal
gradient Theorem 2 guarantees the same type of convergence under an even milder
boundedness condition. Finally, Theorem 3 yields convergence results of similar flavor
for the projected subgradient method provided the subgradient oracle satisfies a fairly
mild and general steepness condition.

Throughout the chapter we assume that Rn is endowed with an inner product 〈·, ·〉
and that ‖ · ‖ denotes the corresponding Euclidean norm.

1.2 Proximal Gradient and Accelerated Proximal

Gradient Methods

Let Ψ : Rn → R ∪ {∞} be a closed convex function such that the proximal map (2) is
computable and let f : Rn → R ∪ {∞} be a differentiable convex function such that
dom(Ψ) ⊆ dom(f). Let φ := f +Ψ and consider the problem (1) that can be rewritten
as

min
x∈Rn

φ(x). (1.1)

Algorithm 1 describes a template of a proximal gradient algorithm for (1.1).

Algorithm 1 Template for proximal gradient method

1: input: x0 ∈ dom(f)
2: y0 := x0; θ0 := 1
3: for k = 0, 1, 2, . . . do
4: pick tk > 0
5: xk+1 := Proxtk(yk − tk∇f(yk))
6: pick θk+1 ∈ (0, 1]

7: yk+1 := xk+1 + θk+1(1−θk)

θk
(xk+1 − xk)

8: end for

Step 7 of Algorithm 1 incorporates a momentum step. The non-accelerated prox-
imal gradient method is obtained by choosing θk+1 = 1 in Step 6. In this case Step
7 simply sets yk+1 = xk+1 and does not incorporate any momentum. Other choices
of θk+1 ∈ (0, 1] yield accelerated versions of the proximal gradient method. In par-
ticular, the FISTA algorithm in [8] is obtained by choosing θk+1 ∈ (0, 1] via the rule
θ2
k+1 = θ2

k(1− θk+1). In this case θk ∈ (0, 1) for k ≥ 1 and there is a non-trivial momen-
tum term in Step 7. Algorithm 1 implicitly assumes that the choice of θk+1 in Step 6 is
so that the point yk+1 in Step 7 satisfies yk+1 ∈ dom(f). This holds provided dom(f)
is sufficiently larger than dom(Ψ).

The main results in this chapter are Theorem 1 and its variant Theorem 2 below
which subsume the widely known convergence rates O(1/k) and O(1/k2) of the prox-
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imal gradient and accelerated proximal gradient algorithms under suitable choices of
tk, θk, k = 0, 1, . . . .

Theorem 1 relies on a suitably constructed sequence zk ∈ Rn, k = 1, 2, . . . . The
construction of zk ∈ Rn, k = 1, 2, . . . in turn is motivated by the identity (1.3) below.

Consider Step 5 in Algorithm 1, namely

xk+1 = Proxtk(yk − tk∇f(yk)) = argmin
x∈Rn

{
Ψ(x) +

1

2tk
‖x− (yk − tk∇f(yk))‖2

}
. (1.2)

The optimality conditions for (1.2) can be written as

gΨ
k +

1

tk
(xk+1 − (yk − tk∇f(yk))) = 0

for some gΨ
k ∈ ∂Ψ(xk+1). These conditions imply that

xk+1 = yk − tk · gk

where gk := gfk + gΨ
k for gfk := ∇f(yk) and for some gΨ

k ∈ ∂Ψ(xk+1). Thus Step 5 and
Step 7 of Algorithm 1 imply that for k = 0, 1, . . .

yk+1 − (1− θk+1)xk+1

θk+1

=
xk+1 − (1− θk)xk

θk
=
yk − (1− θk)xk

θk
− tk
θk
gk.

Since θ0 = 1 and y0 = x0, it follows that for k = 1, 2, . . .

yk − (1− θk)xk
θk

= x0−
k−1∑
i=0

ti
θi
gi ⇔ (1−θk)(yk−xk) = θk

(
x0 − yk −

k−1∑
i=0

ti
θi
gi

)
. (1.3)

As it is customary, we will assume that the step sizes tk chosen at Step 4 in Algo-
rithm 1 satisfy the following decrease condition

φ(xk+1) ≤ min
x∈Rn

{
f(yk) + 〈∇f(yk), x− yk〉+

1

2tk
‖x− yk‖2 + Ψ(x)

}
(1.4)

= f(yk) + Ψ(xk+1) +
〈
gΨ
k , yk − xk+1

〉
− tk

2
‖gk‖2.

The condition (1.4) holds in particular when ∇f is Lipschitz and tk, k = 0, 1, . . . are
chosen via a standard backtracking procedure. Observe that (1.4) implies φ(xk+1) ≤
φ(yk).

The proof of theorem 1 relies on the convex conjugate function. The algorithm
does not require the computation of this function. Recall that if h : Rn → R ∪ {∞} is
a convex function then its convex conjugate h∗ : Rn → R ∪ {∞} is defined as

h∗(z) = sup
x∈Rn
{〈z, x〉 − h(x)} .
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Theorem 1. Suppose θk ∈ (0, 1], k = 0, 1, 2, . . . and the step sizes tk > 0, k =
0, 1, 2, . . . are such that (1.4) holds. Let xk ∈ Rn, k = 1, 2, . . . be the iterates generated
by Algorithm 1. Let zk ∈ Rn, k = 1, 2 . . . be as follows

zk :=

k−1∑
i=0

ti
θi
gi

k−1∑
i=0

ti
θi

. (1.5)

Then for k = 1, 2, . . .

LHSk ≤ −φ∗(zk) + 〈zk, x0〉 −
∑k−1

i=0
ti
θi

2
‖zk‖2, (1.6)

where LHSk is as follows depending on the choice of θk ∈ (0, 1] and tk > 0.

(a) When θk = 1, k = 0, 1, . . . let

LHSk :=

∑k
i=0 tiφ(xi+1)∑k

i=0 ti
.

(b) When tk = 1/L, k = 0, 1, . . . for some positive constant L and θk, k = 0, 1, 2, . . .
are chosen via θ0 = 1 and θ2

k+1 = θ2
k(1− θk+1), k = 0, 1, . . . let

LHSk = φ(xk).

Theorem 1 readily implies that in both case (a) and case (b)

LHSk ≤ inf
u∈Rn
{φ(u)− 〈zk, u〉}+ min

u∈Rn

{
〈zk, u〉+

1

2 ·
∑k−1

i=0
ti
θi

‖u− x0‖2

}

≤ inf
u∈Rn

{
φ(u) +

1

2 ·
∑k−1

i=0
ti
θi

‖u− x0‖2

}
≤ φ(x) +

1

2 ·
∑k−1

i=0
ti
θi

‖x− x0‖2

for all x ∈ Rn.
Let φ̄ and X̄ respectively denote the optimal value and set of optimal solutions to

(1.1). If φ̄ is finite and X̄ is nonempty then in both case (a) and case (b) of Theorem
1 we get

φ(xk)− φ̄ ≤
dist(x0, X̄)2

2 ·
∑k−1

i=0
ti
θi

. (1.7)
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Suppose tk ≥ 1/L, k = 0, 1, 2, . . . for some constant L > 0. This holds in particular for
L := max{L0, Lf/α} if ∇f is Lf -Lipschitz and tk is chosen via the following standard
type of backtracking procedure: pick tk = 1/L0 for some L0 > 0 and scale tk by
α ∈ (0, 1) until (1.4) holds for xk+1 = Proxtk(yk − tk∇f(yk)). Then inequality (1.7)
yields the following known convergence bound for the proximal gradient method

φ(xk)− φ̄ ≤
L · dist(x0, X̄)2

2k
.

On the other hand, suppose tk = 1/L, k = 0, 1, 2, . . . for some constant L > 0 and
θk, k = 0, 1, 2, . . . are chosen via θ0 = 1 and θ2

k+1 = θ2
k(1−θk+1). Then a straightforward

induction shows that
k−1∑
i=0

ti
θi

= (1− θk)
k∑
i=0

ti
θi

=
1

Lθ2
k−1

. (1.8)

The conditions θ0 = 1, θ2
k+1 = θ2

k(1 − θk+1) and an additional induction show that
θ2
k−1 ≤ 4/(k + 1)2, k = 1, 2, . . . . Thus Theorem 1(b), inequality (1.7), and equation

(1.8) yield the following known convergence bound for the accelerated proximal gradient
method

φ(xk)− φ̄ ≤
2L · dist(x0, X̄)2

(k + 1)2
.

Although Theorem 1 yields the iconic O(1/k2) convergence rate of the accelerated
proximal gradient algorithm, it applies under the somewhat restrictive conditions as
stated in case (b) above. In particular, case (b) does not cover the more general case
when tk, k = 0, 1, . . . are chosen via backtracking as in the FISTA with backtracking
algorithm in [8]. The convergence rate in this case, namely [8, Theorem 4.4] is a
consequence of Theorem 2 below. Theorem 2 is a variant of Theorem 1(b) that applies
to more flexible choices of tk, θk, k = 0, 1, . . . . In particular, Theorem 2 applies to the
popular choice θk = 2

k+2
, k = 0, 1, . . . .

Theorem 2. Suppose φ̄ = min
x∈Rn

φ(x) is finite, θk ∈ (0, 1], k = 0, 1, 2, . . . satisfy θ0 = 1

and θ2
k+1 ≥ θ2

k(1 − θk+1), and the step sizes tk > 0, k = 0, 1, 2, . . . are non-increasing
and such that (1.4) holds. Let xk ∈ Rn, k = 1, 2, . . . be the iterates generated by
Algorithm 1. Let zk ∈ Rn, k = 1, 2, . . . be as follows

zk =
θ2
k−1

tk−1

·
k−1∑
i=0

ti
θi
gi.

Then for k = 1, 2, . . .

φ(xk)− φ̄ ≤ −(Rk · (f − φ̄))∗(zk) + 〈zk, x0〉 −
tk−1

2θ2
k−1

‖zk‖2, (1.9)
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where R1 = 1 and Rk+1 = tk−1

tk
· θ2

k

θ2
k−1(1−θk)

· Rk ≥ 1, k = 1, 2, . . . . In particular, if

X̄ = {x ∈ Rn : φ(x) = φ̄} is nonempty then

φ(xk)− φ̄ ≤ inf
u∈Rn

{
Rk · (φ(u)− φ̄) +

θ2
k−1

2tk−1

‖u− x0‖2

}
≤
θ2
k−1 · dist(x0, X̄)2

2tk−1

.

Suppose the step sizes tk, k = 0, 1, 2, . . . are non-increasing, satisfy (1.4), and
tk ≥ 1/L, k = 0, 1, 2, . . . for some constant L > 0. This holds in particular when ∇f
is Lipschitz and tk is chosen via a suitable backtracking procedure as the one in [8]. If
θ0 = 1 and θ2

k+1 ≥ θ2
k(1− θk+1), k = 0, 1, . . . then Theorem 2 implies that

φ(xk)− φ̄ ≤
Lθ2

k−1 · dist(x0, X̄)2

2
.

If θ2
k+1 = θ2

k(1−θk+1), k = 0, 1, . . . or θk = 2/(k+2), k = 0, 1, . . . then θ2
k−1 ≤ 4/(k+1)2

and so

φ(xk)− φ̄ ≤
2L · dist(x0, X̄)2

(k + 1)2
.

We conclude this section by noting other immediate and interesting consequences of
Theorem 1 and Theorem 2. Observe that these two theorems rely only on some assump-
tions on the step sizes tk, k = 0, 1, 2, . . . and on the momentum steps θk, k = 0, 1, 2, . . . .
Unlike classical proofs of convergence for the proximal gradient and accelerated proxi-
mal gradient algorithms, Theorem 1 and Theorem 2 do not require ∇f to be Lipschitz
continuous. As a consequence, the iterates generated by Algorithm 1 satisfy φ(xk)→ φ̄
for a broader class of functions. In particular, consider the special case when Ψ = 0
and ∇f satisfies the following type of Hölder continuity: there exist constants L and
v ∈ (0, 1] such that for all x, y ∈ Rn

‖∇f(y)−∇f(x)‖ ≤ L‖x− y‖v.

In this case φ = f and some straightforward calculations show that for all x, y ∈ Rn

φ(y) ≤ φ(x) + 〈∇φ(x), y − x〉+
L

1 + v
‖y − x‖1+v.

Thus a standard backtracking procedure guarantees that the stepsize tk at each main
iteration of Algorithm 1 can be chosen so that (1.4) holds and

tk ≥ C · ‖∇φ(yk)‖
1−v
v (1.10)

for some constant C > 0. When θk = 1, k = 1, 2, . . . inequality (1.4) implies that
the sequences φ(xk), k = 0, 1, 2, . . . and dist(xk, X̄), k = 0, 1, 2, . . . are non-increasing.
Thus in that case the convexity of f implies that

φ(xk)− φ̄ ≤ ‖∇φ(xk)‖ · dist(xk, X̄) ≤ ‖∇φ(xk)‖ · dist(x0, X̄). (1.11)
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Combining equation (1.10), equation (1.11), Theorem 1, and the fact that φ(xk), k =
0, 1, 2, . . . is non-increasing, we see that φ(xk)→ φ̄ and ∇φ(xk)→ 0 when θk = 1, k =
1, 2, . . . .

Theorem 1 also implies that the iterates generated by Algorithm 1 satisfy φ(xk)→ φ̄
when θk = 1, k = 1, 2, . . . provided

∑k
i=0 ti →∞. Similarly, Theorem 2 implies that the

iterates generated by Algorithm 1 satisfy φ(xk)→ φ̄ when θ2
k+1 ≥ θ2

k(1−θk+1) provided

tk/θ
2
k → ∞. We note that the condition

∑k
i=0 ti → ∞ is implied by and therefore

weaker than the popular Lipschitz continuity assumption on ∇f . Likewise for the
condition tk/θ

2
k →∞ when θk = 2/(k + 2), k = 0, 1, 2, . . . or θ2

k+1 = θ2
k(1− θk+1), k =

0, 1, 2, . . . .

1.3 Proximal Subgradient Method

Algorithm 2 describes a variant of Algorithm 1 for the case when f : Rn → R ∪ {∞}
is merely convex.

Algorithm 2 Proximal subgradient method

1: input: x0 ∈ dom(f)
2: for k = 0, 1, 2, . . . do
3: pick gfk ∈ ∂f(xk) and tk > 0

4: xk+1 := Proxtk(xk − tkg
f
k )

5: end for

When Ψ is the indicator function IC of a closed convex set C ⊆ dom(f), Step 4 in
Algorithm 2 can be rewritten as xk+1 = argmin

x∈C
‖xk − tk · gfk − x‖ = PC(xk − tk · gfk ),

where PC is the projection onto the set C. Hence when Ψ = IC Algorithm 2 becomes
the projected subgradient method for

min
x∈C

f(x). (1.12)

The classical convergence rate for the projected subgradient method is an immediate
consequence of Theorem 3 as we detail below. Observe that

xk+1 = Proxtk(xk − tkg
f
k )⇔ xk+1 = xk − tk · gk

where gk = gfk + gΨ
k for some gΨ

k ∈ ∂Ψ(xk+1). Next, let zk ∈ Rn, k = 0, 1, 2 . . . be as
follows

zk =

∑k
i=0 tigi∑k
i=0 ti

. (1.13)
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Theorem 3. Let xk ∈ Rn, k = 0, 1, 2, . . . be the sequence of iterates generated by
Algorithm 2 and let zk ∈ Rn, k = 0, 1, 2 . . . be defined by (1.13). Then for k =
0, 1, 2, . . .∑k

i=0 ti(f(xi) + Ψ(xi+1)) + 1
2

∑k
i=0 t

2
i (‖gΨ

i ‖2 − ‖gfi ‖2)∑k
i=0 ti

≤ −f ∗(zk) + 〈zk, x0〉 −
∑k

i=0 ti
2
‖zk‖2. (1.14)

Let C ⊆ Rn be a nonempty closed convex set and Ψ = IC . As noted above, in
this case Algorithm 2 becomes the projected subgradient algorithm for problem (1.12).
We next show that in this case Theorem 3 yields the classical convergence rates (1.16)
and (1.17), as well and the modern and more general one (1.18) recently established
by Grimmer [29, Theorem 5].

Suppose f̄ = min
x∈C

f(x) is finite and X̄ := {x ∈ C : f(x) = f̄} is nonempty. From

Theorem 3 it follows that∑k
i=0 tif(xi) + 1

2

∑k
i=0 t

2
i (‖gΨ

i ‖2 − ‖gfi ‖2)∑k
i=0 ti

≤ inf
u∈C
{f(u)− 〈zk, u〉}+ min

u

{
〈zk, u〉+

1

2
∑k

i=0 ti
‖u− x0‖2

}
≤ f̄ +

dist(x0, X̄)2

2
∑k

i=0 ti
.

Therefore,

k∑
i=0

ti(f(xi)− f̄) ≤
∑k

i=0 t
2
i (‖g

f
i ‖2 − ‖gΨ

i ‖2) + dist(x0, X̄)2

2
. (1.15)

In particular, if ‖g‖ ≤ L for all x ∈ C and g ∈ ∂f(x) then (1.15) implies

min
i=0,...,k

(f(xi)− f̄) ≤
∑k

i=0 t
2
iL

2 + dist(x0, X̄)2

2
∑k

i=0 ti
. (1.16)

Let αi := ti‖gfi ‖, i = 0, 1, . . . . Then Step 4 in Algorithm 2 can be rewritten as xk+1 =

PC

(
xk − αk · gfk/‖g

f
k‖
)

provided ‖gfk‖ > 0, which occurs as long as xk is not an optimal

solution to (1.12). If ‖gfi ‖ > 0 for i = 0, 1, . . . , k and ‖g‖ ≤ L for all x ∈ C and
g ∈ ∂f(x) then (1.15) implies

min
i=0,...,k

(f(xi)− f̄) ≤ L ·
∑k

i=0 α
2
i + dist(x0, X̄)2

2
∑k

i=0 αi
. (1.17)

Let L : R+ → R+. According to the definition of Grimmer [29], the subgradient
oracle for f is L-steep on C if for all x ∈ C and g ∈ ∂f(x)

‖g‖ ≤ L(f(x)− f̄).
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As discussed by Grimmer [29], L-steepness is a more general condition than the tra-
ditional bound ‖g‖ ≤ L for x ∈ C and g ∈ ∂f(x) used above. Indeed, the latter
bound is precisely L-steepness for the constant function L(t) = L and holds when f is
L-Lipschitz on C. For another example of L-steepness, consider the case when C = Rn,
and f is differentiable on Rn and such that ∇f is L-Lipschitz. In this case it readily
follows that

f̄ ≤ min
y

{
f(x) + 〈∇f(x), y − x〉+

L

2
‖y − x‖2

}
= f(x)− 1

2L
‖∇f(x)‖2.

Thus the subgradient oracle for f is L-steep for L(t) =
√

2Lt. More generally, if ∇f is
Hölder-continuous, that is, if there exist L and v > 0 such that for all x, y ∈ Rn

‖∇f(y)−∇f(x)‖ ≤ L‖x− y‖v,

then

f̄ ≤ min
y

{
f(x) + 〈∇f(x), y − x〉+

L

1 + v
‖y − x‖1+v

}
= f(x)− v

1 + v
· 1

L
1
v

‖∇f(x)‖
1+v
v .

Thus the subgradient oracle for f is L-steep for L(t) = ((1 + v)vLtv/vv)1/(1+v).
Suppose the subgradient oracle for f is L-steep for some L : R+ → R+. If αi :=

ti‖gfi ‖ > 0 for i = 0, 1, . . . , k then (1.15) implies

k∑
i=0

αi ·
f(xi)− f̄
L(f(xi)− f̄)

≤
∑k

i=0 α
2
i + dist(x0, X̄)2

2
,

and thus

min
i=0,...,k

(f(xi)− f̄) ≤ sup

{
t :

t

L(t)
≤
∑k

i=0 α
2
i + dist(x0, X̄)2

2
∑k

i=0 αi

}
. (1.18)

For αi = a/
√
k + 1, i = 0, . . . , k with a > 0 inequality (1.18) yields

min
i=0,...,k

(f(xi)− f̄) ≤ sup

{
t :

t

L(t)
≤ 1

2
√
k + 1

(
a+

dist(x0, X̄)2

a

)}
. (1.19)

As we discussed above, when f is L-Lipschitz on C then the subgradient oracle is L-
steep for L(t) = L. Hence inequality (1.19) yields the classical O(1/

√
k) convergence

rate of the projected subgradient method. Furthermore, when C = Rn and f is differ-
entiable and ∇f is L-Lipschitz, then the subgradient oracle is L-steep for L(t) =

√
2Lt.

Hence inequality (1.19) yields

min
i=0,...,k

(f(xi)− f̄) = O(1/k) (1.20)
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which matches the dependence on k of the classical convergence rate of the gradient
method. As noted by Grimmer [29], it is striking that (1.20) holds for Algorithm
2 which relies only on the availability of a subgradient oracle for f . However, we
should note that the O(1/k) rate attained by Algorithm 2 depends on the choice
αi = a/

√
k + 1, i = 0, . . . , k. In particular, (1.20) holds for a prescribed number k of

iterations and the constant in the O(1/k) expression in (1.20) depends on how closely
a approximates dist(x0, X̄).

1.4 Proofs of Theorems 1, 2, and 3

Our convex conjugate-based analysis depends on standard convex analysis notation
and results as presented in [5, 14, 35, 65]. We will use the following properties of the
convex conjugate.

Suppose h : Rn → R ∪ {∞} is a convex function. Then

h∗(z) + h(x) ≥ 〈z, x〉 (1.21)

for all z, x ∈ Rn, and equality holds if z ∈ ∂h(x).
Suppose f, φ,Ψ : Rn → R ∪ {∞} are convex functions and φ = f + Ψ. Then

φ∗(zf + zΨ) ≤ f ∗(zf ) + Ψ∗(zΨ) for all zf , zΨ ∈ Rn. (1.22)

Suppose f : Rn → R+ ∪ {∞} is a convex function and R ≥ 1. Then

(R · f)∗(Rz) = R · (f ∗(z)), (1.23)

and
(R · f)∗(z) ≤ f ∗(z). (1.24)

Proof of Theorem 1

We prove (1.6) by induction. To ease notation, let µk := 1∑k−1
i=0 ti/θi

throughout this

proof. For k = 1 we have

LHS1 = φ(x1) ≤ f(x0) + Ψ(x1) +
〈
gΨ

0 , x0 − x1

〉
− t0

2
‖g0‖2

= f(x0)−
〈
gf0 , x0

〉
+ Ψ(x1)−

〈
gΨ

0 , x1

〉
+ 〈g0, x0〉 −

t0
2
‖g0‖2

= −f ∗(gf0 )−Ψ∗(gΨ
0 ) + 〈g0, x0〉 −

t0
2
‖g0‖2

≤ −φ∗(z1) + 〈z1, x0〉 −
‖z1‖2

2µ1

.

The first step follows from (1.4). The third step follows from (1.21) and gf0 = ∇f(x0),
gΨ

0 ∈ ∂Ψ(x1). The last step follows from (1.22), the choice of z1 = g0 = gf0 + gΨ
0 , and

µ1 = 1/t0.

26



Suppose (1.6) holds for k and let γk = tk/θk∑k
i=0 ti/θi

. The construction (1.5) implies

that

zk+1 = (1− γk)zk + γkgk

µk+1 = (1− γk)µk.

Therefore,

〈zk+1, x0〉 −
‖zk+1‖2

2µk+1

= (1− γk)
(
〈zk, x0〉 −

‖zk‖2

2µk

)
+ γk

(〈
gk, x0 −

zk
µk

〉
− γk

2(1− γk)µk
‖gk‖2

)
. (1.25)

In addition, the convexity of φ∗, properties (1.21), (1.22), and gfk = ∇f(yk), g
Ψ
k ∈

∂Ψ(xk+1), gk = gfk + gΨ
k imply

−φ∗(zk+1) ≥ −(1− γk)φ∗(zk)− γkf ∗(gk) (1.26)

≥ −(1− γk)φ∗(zk)− γk(f ∗(gfk ) + Ψ∗(gΨ
k ))

= −(1− γk)φ∗(zk)− γk
(〈
gfk , yk

〉
− f(yk) +

〈
gΨ
k , xk+1

〉
−Ψ(xk+1)

)
.

Let RHSk denote the right-hand side in (1.6). From (1.25) and (1.26) it follows that

RHSk+1 − (1− γk)RHSk ≥ γk ·Dk

where

Dk :=

〈
gk, x0 − yk −

zk
µk

〉
+ f(yk) + Ψ(xk+1) +

〈
gΨ
k , yk − xk+1

〉
− γk

2(1− γk)µk
‖gk‖2.

Hence to complete the proof of (1.6) by induction it suffices to show that

LHSk+1 − (1− γk)LHSk ≤ γk ·Dk. (1.27)

To that end, we consider case (a) and case (b) separately.

Case (a). In this case γk = tk∑k
i=0 ti

and yk = xk. Thus µk = 1∑k−1
i=0 ti

, γk
(1−γk)µk

= tk, and

x0 − yk − zk
µk

= 0. Therefore

LHSk+1 − (1− γk)LHSk
= γk · φ(xk+1)

≤ γk

(
f(yk) + Ψ(xk+1) +

〈
gΨ
k , yk − xk+1

〉
− tk

2
‖gk‖2

)
= γk

(
f(yk) + Ψ(xk+1) +

〈
gΨ
k , yk − xk+1

〉
− γk

2(1− γk)µk
‖gk‖2

)
= γk ·Dk.
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The second step follows from (1.4). The third and fourth steps follow from γk
(1−γk)µk

= tk
and x0 − yk − zk

µk
= 0 respectively. Thus (1.27) holds in case (a).

Case (b). In this case equation (1.8) yields γk = θk and
γ2
k

(1−γk)µk
= tk. Therefore

LHSk+1 − (1− γk)LHSk
= φ(xk+1)− (1− γk)(f(xk) + Ψ(xk))

≤ f(yk) + Ψ(xk+1) +
〈
gΨ
k , yk − xk+1

〉
− tk

2
‖gk‖2

− (1− γk)
(
f(yk) +

〈
gfk , xk − yk

〉
+ Ψ(xk+1) +

〈
gΨ
k , xk − xk+1

〉)
= γk

(
f(yk) + Ψ(xk+1) +

〈
gΨ
k , yk − xk+1

〉)
+ (1− γk) 〈gk, yk − xk〉 −

tk
2
‖gk‖2

= γk ·Dk.

The second step follows from (1.4) and the convexity of f and Ψ. The last step follows

from θk = γk, equation (1.3), and
γ2
k

(1−γk)µk
= tk. Thus (1.27) holds in case (b) as well.

Proof of Theorem 2

The proof of Theorem 2 is a modification of the proof of Theorem 1. Without loss of
generality assume φ̄ = 0 as otherwise we can work with φ− φ̄ in place of φ. Again we
prove (1.9) by induction. To ease notation, let µk := θ2

k−1/tk−1 throughout this proof.
For k = 1 inequality (1.9) is identical to (1.6) since R1 = 1 and θ0 = 1. Hence this case
follows from the proof of Theorem 1 for k = 1. Suppose (1.9) holds for k. Observe
that

zk+1 = ρk(1− θk)zk + θkgk

µk+1 = ρk(1− θk)µk

for ρk := Rk+1

Rk
= tk−1

tk
· θ2

k

θ2
k−1(1−θk)

= µk+1

µk(1−θk)
≥ 1. Next, proceed as in the proof of

Theorem 1. First,

〈zk+1, x0〉 −
‖zk+1‖2

2µk+1

(1.28)

= ρk(1− θk)
(
〈zk, x0〉 −

‖zk‖2

2µk

)
+ θk ·

〈
gk, x0 −

zk
µk

〉
− θ2

k

2µk+1

‖gk‖2

= ρk(1− θk)
(
〈zk, x0〉 −

‖zk‖2

2µk

)
+ θk ·

〈
gk, x0 −

zk
µk

〉
− tk

2
‖gk‖2.
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Second, the convexity of φ∗ and the fact that φ ≥ φ̄ = 0 imply

−(Rk+1 · φ)∗(zk+1) ≥ −(1− θk)(Rk+1 · φ)∗(ρk · zk)− θk(Rk+1 · φ)∗(gk) (1.29)

≥ −(1− θk)(ρk ·Rk · φ)∗(ρk · zk)− θk · φ∗(gk)
≥ −ρk(1− θk)(Rk · φ)∗(zk)− θk(f ∗(gfk ) + Ψ∗(gΨ

k ))

= −ρk(1− θk)(Rk · φ)∗(zk)

− θk
(〈
gfk , yk

〉
− f(yk) +

〈
gΨ
k , xk+1

〉
−Ψ(xk+1)

)
.

The first step follows from the convexity of φ∗. The second step follows from (1.24).
The third step follows from (1.22) and (1.23). The last step follows from (1.21) and
gfk = ∇f(yk), g

Ψ
k ∈ ∂Ψ(xk+1).

Let RHSk denote the right-hand side in (1.9). The induction hypothesis implies
that RHSk ≥ φ(xk) ≥ 0. Thus from (1.28), (1.29), and ρk ≥ 1 it follows that

RHSk+1 − (1− θk)RHSk (1.30)

≥ RHSk+1 − ρk(1− θk)RHSk

≥ θk

(〈
gk, x0 − yk −

zk
µk

〉
+ f(yk) + Ψ(xk+1) +

〈
gΨ
k , yk − xk+1

〉)
− tk

2
‖gk‖2.

Finally, proceeding exactly as in case (b) in the proof of Theorem 1 we get

φ(xk+1)− (1− θk)φ(xk)

≤ θk
(
f(yk) + Ψ(xk+1) +

〈
gΨ
k , yk − xk+1

〉)
+ (1− θk) 〈gk, yk − xk〉 −

tk
2
‖gk‖2

= θk

(〈
gk, x0 − yk −

zk
µk

〉
+ f(yk) + Ψ(xk+1) +

〈
gΨ
k , yk − xk+1

〉)
− tk

2
‖gk‖2

≤ RHSk+1 − (1− θk)RHSk.

The second step follows from (1.3). The third step follows from (1.30). This completes
the proof by induction.

Proof of Theorem 3

Let LHSk and RHSk denote respectively the left-hand and right-hand sides in (1.14).
We proceed by induction. For k = 0 we have

LHS0 = f(x0) + Ψ(x1) +
t0(‖gΨ

0 ‖2 − ‖gf0‖2)

2

= −f ∗(gf0 ) +
〈
gf0 , x0

〉
−Ψ∗(gΨ

0 ) +
〈
gΨ

0 , x1

〉
+
t0(‖gΨ

0 ‖2 − ‖gf0‖2)

2

≤ −φ∗(g0) + 〈g0, x0〉 −
t0‖g0‖2

2
= RHS0.
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The second step follows from (1.21) and gf0 ∈ ∂f(x0), gΨ
0 ∈ ∂Ψ(x1). The third step

follows from (1.22) and g0 = gf0 + gΨ
0 , x1 = x0 − t0 · g0.

Next we show the main inductive step k to k+ 1. Observe that zk+1 = (1− γk)zk +
γkgk+1 for k = 0, 1, . . . where γk = tk+1∑k+1

i=0 ti
∈ (0, 1). Proceeding exactly as in the proof

of Theorem 1 we get

RHSk+1 − (1− γk)RHSk

≥ γk

(
f(xk+1) + Ψ(xk+2) +

〈
gΨ
k+1, xk+1 − xk+2

〉
− tk+1‖gk+1‖2

2

)
= γk

(
f(xk+1) + Ψ(xk+2) +

tk+1‖gΨ
k+1‖2

2
−
tk+1‖gfk+1‖2

2

)
.

The second step follows because gk+1 = gfk+1 + gΨ
k+1 and xk+2 = xk+1− tk+1 · gk+1. The

proof is thus completed by observing that

LHSk+1 − (1− γk)LHSk = γk

(
f(xk+1) + Ψ(xk+2) +

tk+1‖gΨ
k+1‖2

2
−
tk+1‖gfk+1‖2

2

)
.
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Chapter 2

Acceleration, Part II: A Unified
Framework for Bregman Proximal
Methods: Subgradient, Gradient,
and Accelerated Gradient Schemes

2.1 Introduction

The central contribution of this chapter is a framework to analyze the convergence of
Bregman proximal first-order methods for the convex composite minimization problem

min
x∈Rn

φ(x) := f(x) + Ψ(x). (2.1)

where f : Rn → R ∪ {∞} and Ψ : Rn → R ∪ {∞} are closed convex functions. The
class of Bregman proximal first-order methods, a flexible generalization of the proximal
method class of chapter 1, are based on the Bregman proximal map

(x, g) 7→ argmin
y∈Rn

{〈g, y〉+ Ψ(y) + LDh(y, x)} (2.2)

where Dh(y, x) := h(y)−h(x)−〈∇h(x), y − x〉 is the Bregman distance [16] generated
by some reference convex function h : Rn → R ∪ {∞}. Naturally, Bregman proximal
methods rely on the critical assumption that the problem (2.2) is well-posed and has
a computable solution.

Our framework hinges on the convex conjugate introduced in chapter 1. The frame-
work can be seen as a natural extension of the approach that was introduced in [59, 31]
and discussed in chapter 1, which was restricted to the Euclidean setting. We rely
on standard convex analysis notation and results as presented in [5, 14, 35, 65]. By
construction the convex conjugate function F ∗ is convex and satisfies the following
Fenchel inequality: For all x ∈ Rn, u ∈ Rn we have F (x) + F ∗(u) ≥ 〈u, x〉 and
F (x) + F ∗(u) = 〈u, x〉 if and only if u ∈ ∂F (x).
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Our convex conjugate framework automatically yields new derivations of conver-
gence rates for the Bregman proximal subgradient method and for the Bregman prox-
imal gradient method (Sections 2.2 and 2.3). In addition, and perhaps most inter-
esting, our convex conjugate framework also applies to a new accelerated Bregman
proximal gradient method (Section 2.4). The gist of our convex conjugate approach
can be summarized as follows. Suppose y ∈ dom(φ) and a convex distance function
D : Rn → R ∪ {∞} satisfies

φ(y) ≤ −φ∗(u)−D∗(u). (2.3)

for an appropriately selected u. From (2.3) it immediately follows that φ(y)− φ(x) ≤
D(x) for all x ∈ dom(φ) since (2.3) implies

φ(y) ≤ inf
w∈Rn
{φ(w) + 〈∇D(z), w〉}+ inf

w∈Rn
{D(w)− 〈∇D(z), w〉} ≤ φ(x) +D(x).

In the main sections of the chapter we show that three classes of Bregman proxi-
mal methods (subgradient, gradient, accelerated gradient) generate sequences xk, zk ∈
dom(φ) ∩ relint(dom(h)), k = 0, 1, 2, . . . such that (2.3), or a slight modification of it,
holds for y = xk, z = zk, and D(·) = CkDh(·, x0) for some nondecreasing sequence
Ck ∈ R+, k = 0, 1, 2, . . . . More precisely, Theorem 6 shows that (2.3) holds for the
accelerated Bregman proximal gradient method iterates, see (2.11). Theorem 5 shows
that an inequality stronger than (2.3) holds for the Bregman proximal gradient method
iterates, see (2.7). Theorem 4 shows that a slight variation of (2.3) holds for the Breg-
man proximal subgradient method iterates, see (2.4). In particular, for the Bregman
proximal gradient and accelerated Bregman proximal gradient methods Theorem 5 and
Theorem 6 yield

φ(xk)− φ(x) ≤ CkDh(x, x0)

for all x ∈ dom(φ). We also get a similar inequality for the Bregman proximal subgra-
dient method. In each case it will be easy to see that the sequence Ck, k = 0, 1, . . .
goes to zero under fairly mild and general assumptions. In particular, we show that
the sequence Ck is as follows under suitable assumptions on f, φ, and h:

• For the Bregman proximal subgradient method Ck = O(1/
√
k) if the pair (φ, h)

satisfies the W [φ, h] boundedness condition as defined in [69]. See Corollary 2.

• For the Bregman proximal gradient method Ck = O(1/k) if f is smooth relative
to h as defined by [4, 48]. See Corollary 3.

• For the accelerated Bregman proximal gradient method Ck = O(1/kγ) if f is
smooth relative to h and Dh has a triangle scaling exponent γ > 0 as defined in
[34]. See Theorem 7.

The above results yield new derivations of known convergence rates via our convex
conjugate approach. However, our main results, namely Theorem 4, Theorem 5, and
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Theorem 6 hold more broadly. In particular, Theorem 4 only requires the Bregman
steps to be admissible as defined below. Theorem 5 and Theorem 6 only require the
Bregman steps to be admissible and to satisfy a suitable decrease condition. None of
these three main results requires any further assumptions like Lipschitz continuity or
relative smoothness.

The main sections of the chapter are organized as follows. Sections 2.2 through
2.4 develop our convex conjugate approach in the contexts of the Bregman proximal
subgradient, Bregman proximal gradient, and accelerated Bregman proximal gradient
templates. In the latter case we discuss the connection between our work and the recent
work of Hanzely, Richtarik and Xiao [34]. Section 2.5 shows that a variant of our ac-
celerated Bregman proximal gradient template that includes periodic restart has linear
convergence provided that suitable smoothness and functional growth conditions hold.
Finally, Section 2.6 summarizes some numerical experiments on the D-optimal design
problem and on the Poisson linear inverse problem. Consistent with the numerical
evidence reported in [34], we observe that the accelerated Bregman proximal gradient
method converges approximately at a rate O(1/k2). Furthermore, our computational
experiments provide interesting new numerical evidence that explains this behavior.

2.1.1 Technical Assumptions

We aim to present our developments in as much generality as possible. To that end,
throughout the chapter we make the blanket Assumption 1 below. We should note
that the admissibility condition (A.3) is primarily a technicality. This condition is
concerned with the choice of L > 0 that guarantees the well-posedness of problem
(2.2). As Example 1(b,c) below illustrates, in many cases problem (2.2) is readily
well-posed and thus the admissibility condition (A.3.i) automatically holds for all L >
0, g ∈ Rn, x ∈ relint(dom(h)). However, Example 1(a) also illustrates that in some
cases the well-posedness of problem (2.2) may require a more careful choice of L > 0.

Assumption 1. The functions f : Rn → R∪ {∞}, Ψ : Rn → R∪ {∞}, and h : Rn →
R ∪ {∞} satisfy the following conditions.

(A.1) The functions f and Ψ are closed and convex. Throughout the sequel, we let
φ := f + Ψ.

(A.2) The reference function h is convex and differentiable on relint(dom(h)) and sat-
isfies dom(Ψ) ⊆ dom(h) and ∅ 6= relint(dom(h)) ∩ dom(Ψ) ⊆ relint(dom(f)).

(A.3) The pair of functions (h,Ψ) satisfies the following admissibility conditions:

(i) For all g ∈ Rn and x ∈ relint(dom(h)) there exists L > 0 such that the Breg-
man proximal map (2.2) has a unique solution in relint(dom(h)) ∩ dom(Ψ).
When this holds we shall say that L is admissible for g at x.

33



(ii) There is an oracle that takes as input g ∈ Rn, x ∈ relint(dom(h)), L > 0 and
yields as output either a certificate that L is not admissible for g at x or
the unique solution to (2.2) in relint(dom(h)) ∩ dom(Ψ). Observe that in
the latter case the solution to (2.2) is the unique point y ∈ relint(dom(h))∩
dom(Ψ) that satisfies the optimality conditions

g + gΨ + L(∇h(y)−∇h(x)) = 0, gΨ ∈ ∂Ψ(y).

Observe that a constraint of the form x ∈ C for a closed convex set C ⊆ Rn can be
easily incorporated in the above setting by adding the indicator function IC to Ψ. The
admissibility condition (A.3.i) can be ensured under suitable assumptions on Ψ and
h. In particular, as detailed in [4, 69], condition (A.3.i) holds when h is a Legendre
function [65] and Ψ is bounded below and satisfies relint(dom(Ψ)) ⊆ relint(dom(h)), see
[69, Lemma 2.3]. Furthermore, in concrete applications it is often easy to verify directly
the admissibility conditions (A.3.i) and (A.3.ii) as Example 1 shows. For simplicity,
Example 1 assumes that Ψ = 0. The admissibility properties in Example 1 can be
extended to popular choices of regularization functions Ψ such as Ψ(x) = λ‖x‖2

2/2 or
Ψ(x) = λ‖x‖1 for λ > 0. They can also be extended to popular choices of indicator
functions such as Ψ = δ∆n−1 for ∆n−1 := {x ∈ Rn

+ : ‖x‖1 = 1}.

Example 1. Suppose Ψ = 0. The admissibility conditions (A.3.i) and (A.3.ii) hold
for the following reference functions h : Rn → R ∪ {∞}.

(a) The Burg entropy function h(x) := −
∑n

i=1 log(xi). In this case L > 0 is admis-
sible for g ∈ Rn at x ∈ Rn

++ = relint(dom(h)) if and only if −∇h(x) + g/L ∈ Rn
++

and in this case the solution to (2.2) is the vector y ∈ Rn
++ defined componentwise

as yi = 1/(1/xi + gi/L), i = 1, . . . , n.

(b) The Boltzmann-Shannon entropy function h(x) :=
∑n

i=1 xi log(xi). In this case
any L > 0 is admissible for any g ∈ Rn at any x ∈ Rn

++ = relint(dom(h))
and the solution to (2.2) is the vector y ∈ Rn

+ defined componentwise as yi =
elog(xi)−gi/L, i = 1, . . . , n.

(c) The squared Euclidean function h(x) := ‖x‖2
2/2. In this case any L > 0 is admis-

sible for any g ∈ Rn at any x ∈ Rn = relint(dom(h)) and the solution to (2.2) is
the vector y = x− g/L.

To sharpen some of our results, sometimes we will assume that the pair (h,Ψ)
satisfies the sufficient admissibility condition defined below. Observe that this condition
is satisfied by the three reference functions h in Example 1 and the popular choices
of Ψ mentioned above. By [69, Lemma 2.3], the sufficient admissibility condition also
holds when h is a Legendre function and relint(dom(Ψ)) ⊆ relint(dom(h)).

Definition 1. Let h : Rn → R∪{∞} be a convex function differentiable on relint(dom(h))
and let Ψ : Rn → R ∪ {∞} be a closed convex function with dom(Ψ) ⊆ dom(h) and
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dom(Ψ) ∩ relint(dom(h)) 6= ∅. The pair (h,Ψ) satisfies the sufficient admissibility
condition if L > 0 is admissible for g ∈ Rn at x ∈ relint(dom(h)) whenever the function

y 7→ 〈g, y〉+ Ψ(y) + LDh(y, x)

is bounded below.

We will rely on properties of the convex conjugate [5, 14, 35, 65] and on the following
three-point property [18, Lemma 3.1] of the Bregman distance induced by h. For all
a ∈ dom(h) and b, c ∈ relint(dom(h))

Dh(a, b) +Dh(b, c) = Dh(a, c)− 〈∇h(b)−∇h(c), a− b〉 .

2.2 Bregman Proximal Subgradient

We first consider the case when f is convex and we only have a subgradient oracle for
f . Algorithm 3 describes a Bregman proximal subgradient template for (2.1). This
algorithmic template has been discussed in [23, 69]. Observe that Step 1 and Step
4 in Algorithm 3 automatically guarantee that xk ∈ relint(dom(f)), k = 0, 1, . . . by
conditions (A.2) and (A.3) in Assumption 1.

Algorithm 3 Bregman proximal subgradient template

1: input: x0 ∈ relint(dom(h)) ∩ dom(Ψ)
2: for k = 0, 1, 2, . . . do
3: pick gk ∈ ∂f(xk) and tk > 0 so that 1/tk is admissible for gk at xk
4: xk+1 := argminx∈Rn{tk(〈gk, x〉+ Ψ(x)) +Dh(x, xk)}
5: end for

Theorem 4. For k = 0, 1, 2, . . . and uk := 1∑k
i=0 ti

(∇h(x0) − ∇h(xk+1)) the iterates

generated by Algorithm 3 satisfy∑k
i=0 ti(f(xi) + Ψ(xi+1) + 〈gi, xi+1 − xi〉) +Dh(xi+1, xi)∑k

i=0 ti

≤ −φ∗(uk) + 〈uk, xk+1〉+
1∑k
i=0 ti

Dh(xk+1, x0) (2.4)

= −φ∗(uk)−

(
1∑k
i=0 ti

Dh(·, x0)

)∗
(−uk).

Proof. The optimality conditions for Step 4 in Algorithm 3 can be written as

tk(gk + gΨ
k ) +∇h(xk+1)−∇h(xk) = 0
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for some gΨ
k ∈ ∂Ψ(xk+1). Therefore uk = 1∑k

i=0 ti

∑k
i=0 ti(gi + gΨ

i ). On the other hand,

since gk ∈ ∂f(xk) and gΨ
k ∈ ∂Ψ(xk+1) for each k = 0, 1, . . . and φ = f + Ψ, it follows

that

f(xk) + Ψ(xk+1) + 〈gk, xk+1 − xk〉 = −f ∗(gk)−Ψ∗(gΨ
k ) +

〈
gk + gΨ

k , xk+1

〉
≤ −φ∗(gk + gΨ

k ) +
〈
gk + gΨ

k , xk+1

〉
. (2.5)

Now we prove (2.4) by induction on k. The case k = 0 readily follows from (2.5)
for k = 0. Suppose (2.4) holds for k and let θk := tk+1∑k+1

i=0 ti
. Observe that uk+1 =

(1− θk)uk + θk(gk + gΨ
k ). Therefore (2.4), (2.5), the convexity of φ∗, and the three-

point property of Dh yield∑k+1
i=0 ti(f(xi) + Ψ(xi+1) + 〈gi, xi+1 − xi〉) +Dh(xi+1, xi)∑k+1

i=0 ti

≤ −φ∗(uk+1) + 〈uk+1, xk+1〉+
1∑k+1
i=0 ti

(Dh(xk+1, x0) +Dh(xk+2, xk+1))

= −φ∗(uk+1) + 〈uk+1, xk+2〉+
1∑k+1
i=0 ti

Dh(xk+2, x0).

Theorem 4 implies the convergence of mini=0,1,...,k φ(xi) to minx φ(x) under fairly
mild and general conditions as detailed in Corollary 1 and Corollary 2 below. To that
end, we will rely on the following type of boundedness condition discussed by Teboulle
[69].

Definition 2. The pair (f, h) satisfies the condition W [f, h] on C ⊆ dom(f)∩dom(h)
if there exists some G > 0 such that for all x, u ∈ C, g ∈ ∂f(x), and t > 0 the following
inequality holds

〈tg, u− x〉 −Dh(u, x) ≤ G2t2

2
.

As noted by Teboulle [69], the condition W [f, h] holds for G = L/σ whenever f is
L-Lipschitz and h is σ-strongly convex for some norm on Rn. It is also easy to see that
the condition W [f, h] holds if f is G-continuous relative to h as defined by Lu [47].

The following result concerns the special case when Ψ = IC for some closed convex
set C ⊆ dom(f) ∩ dom(h). In this case Algorithm 3 is the mirror-descent method for
the problem

min
x∈C

f(x).

Corollary 1. Suppose Ψ = IC for some closed convex set C ⊆ dom(f) ∩ dom(h) and
the pair (f, h) satisfies the W [f, h] condition for some G > 0 on C. Then the iterates
generated by Algorithm 3 satisfy

min
i=0,...,k

(f(xi)− f(x)) ≤ Dh(x, x0) +
∑k

i=0 t
2
iG

2/2∑k
i=0 ti

.
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for all x ∈ C.

Proof. In this case Ψ(x) = 0 for all x ∈ C and thus Theorem 4 implies that∑k
i=0 ti(f(xi) + 〈gi, xi+1 − xi〉) +Dh(xi+1, xi)∑k

i=0 ti

≤ min
x∈C
{f(x)− 〈uk, x〉}+ min

x

{
1∑k
i=0 ti

Dh(x, x0) + 〈uk, x〉

}
.

Therefore for all x ∈ C∑k
i=0 ti(f(xi) + 〈gi, xi+1 − xi〉) +Dh(xi+1, xi)∑k

i=0 ti
≤ f(x) +

1∑k
i=0 ti

Dh(x, x0).

Since each gi ∈ ∂f(xi), the convexity of f and W [f, h] condition imply that

min
i=0,...,k

(f(xi)− f(x)) ≤ Dh(x, x0) +
∑k

i=0 〈tgi, xi − xi+1〉 −Dh(xi+1, xi)∑k
i=0 ti

≤ Dh(x, x0) +
∑k

i=0 t
2
iG

2/2∑k
i=0 ti

.

For general Ψ, we have the following result discussed in [69]. This result is also
closely related to some results by Bello-Cruz [10] on the proximal subgradient method.

Corollary 2. Suppose the pair (φ, h) satisfies the W [φ, h] condition for some G > 0
on dom(φ). Then the iterates generated by Algorithm 3 satisfy

min
i=0,...,k

(φ(xi)− φ(x)) ≤ Dh(x, x0) +
∑k

i=0 t
2
iG

2/2∑k
i=0 ti

for all x ∈ dom(φ).

Proof. The convexity of Ψ and Theorem 4 imply that∑k
i=0 ti(φ(xi) +

〈
gi + g̃Ψ

i , xi+1 − xi
〉
) +Dh(xi+1, xi)∑k

i=0 ti

≤ min
x
{φ(x)− 〈uk, x〉}+ min

x

{
1∑k
i=0 ti

Dh(x, x0) + 〈uk, x〉

}
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for any g̃Ψ
i ∈ ∂Ψ(xi). Hence for all x ∈ dom(φ)∑k

i=0 ti(φ(xi) + 〈gi + g̃i, xi+1 − xi〉) +Dh(xi+1, xi)∑k
i=0 ti

≤ f(x) +
1∑k
i=0 ti

Dh(x, x0).

Since each gi + g̃i ∈ ∂φ(xi), the convexity of φ and W [φ, h] condition imply that

min
i=0,...,k

(φ(xi)− φ(x)) ≤ Dh(x, x0) +
∑k

i=0 〈t(gi + g̃i), xi − xi+1〉 −Dh(xi+1, xi)∑k
i=0 ti

≤ Dh(x, x0) +
∑k

i=0 t
2
iG

2/2∑k
i=0 ti

.

In both Corollary 1 and Corollary 2 it is easy to see that if ti = 1/
√
k + 1, i =

0, 1, . . . , k are admissible then for this choice of ti, i = 0, 1, . . . , k we have

min
i=0,...,k

(φ(xi)− φ(x)) ≤ Dh(x, x0) +G2/2√
k + 1

.

A closer look at the proof of Corollary 2 also reveals that if ti := 1/(i+ 1), i = 0, 1, . . .
are admissible then for this choice of ti, i = 0, 1, . . . we have mini=0,...,k φ(xi) →
infx∈Rn φ(x) provided the following weaker version of W [φ, h] holds: there exist γ > 1
and G > 0 such that for all x, u ∈ dom(φ) ∩ dom(h) and g ∈ ∂φ(x)

〈tg, u− x〉 −Dh(u, x) ≤ (Gt)γ.

Likewise for Corollary 1.

2.3 Bregman Proximal Gradient

Next, we consider the case when f is differentiable on relint(dom(f)) and we have a
gradient oracle for f . Algorithm 4 describes a Bregman proximal gradient template
for (2.1). This template has been discussed in [3, 4, 48, 69]. Observe that Step 1 and
Step 4 in Algorithm 4 automatically guarantee that xk ∈ relint(dom(f)), k = 0, 1, . . .
by conditions (A.2) and (A.3) in Assumption 1.

The bound (2.7) in Theorem 5 below is similar to the bound (2.4) in Theorem 4.
The similarity is more salient if we let tk := 1/Lk, k = 0, 1, . . . .

Theorem 5. Suppose Lk, k = 0, 1, . . . in Step 3 of Algorithm 4 are chosen so that the
following decrease condition holds

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+ LkDh(xk+1, xk). (2.6)
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Algorithm 4 Bregman proximal gradient template

1: input: x0 ∈ relint(dom(h)) ∩ dom(Ψ)
2: for k = 0, 1, 2, . . . do
3: pick Lk > 0 admissible for ∇f(xk) at xk
4: xk+1 := argminx∈Rn{〈∇f(xk), x〉+ LkDh(x, xk) + Ψ(x)}
5: end for

Then for k = 1, 2, . . . and uk := 1∑k−1
i=0 1/Li

(∇h(x0)−∇h(xk)) the iterates generated by

Algorithm 4 satisfy∑k−1
i=0 φ(xi+1)/Li∑k−1

i=0 1/Li
≤ −φ∗(uk) + 〈uk, xk〉+

1∑k−1
i=0 1/Li

Dh(xk, x0) (2.7)

= −φ∗(uk)−

(
1∑k−1

i=0 1/Li
Dh(·, x0)

)∗
(−uk).

Proof. The optimality conditions for Step 4 in Algorithm 4 can be written as

∇f(xk) + gΨ
k + Lk(∇h(xk+1)−∇h(xk)) = 0 (2.8)

for some gΨ
k ∈ ∂Ψ(xk+1). In particular, u1 = ∇f(x0) + gΨ

0 . On the other hand,
inequality (2.6), the fact that gΨ

k ∈ ∂Ψ(xk+1), and φ = f + Ψ imply that

φ(xk+1) ≤ −f ∗(∇f(xk))−Ψ∗(gΨ
k ) +

〈
∇f(xk) + gΨ

k , xk+1

〉
+ LkDh(xk+1, xk)

≤ −φ∗(∇f(xk) + gΨ
k ) +

〈
∇f(xk) + gΨ

k , xk+1

〉
+ LkDh(xk+1, xk). (2.9)

We now prove (2.7) by induction on k. The case k = 1 readily follows from (2.9) and the

fact that u1 = ∇f(x0)+gΨ
0 noted above. Suppose (2.7) holds for k. Let θk := 1/Lk∑k

i=0 1/Li
.

From (2.8) it follows that uk+1 = (1− θk)uk + θk(∇f(xk) + gΨ
k ). Therefore (2.7), (2.9),

the convexity of φ∗, and the three-point property of Dh yield∑k
i=0 φ(xi+1)/Li∑k

i=0 1/Li

≤ −φ∗(uk+1) + 〈uk+1, xk+1〉+ 〈uk, xk − xk+1〉+
1∑k

i=0 1/Li
(Dh(xk, x0) +Dh(xk+1, xk))

= −φ∗(uk+1) + 〈uk+1, xk+1〉+
1∑k

i=0 1/Li
Dh(xk+1, x0).

Corollary 3. If the assumptions of Theorem 5 hold then

φ(xk)− φ(x) ≤ 1∑k−1
i=0 1/Li

Dh(x, x0)

for all x ∈ dom(φ).
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Proof. From Theorem 5 and the convexity of φ it follows that φ(xk+1) ≤ φ(xk) and∑k−1
i=0 φ(xi+1)/Li∑k−1

i=0 1/Li
≤ min

x
{φ(x)− 〈uk, x〉}+ min

x

{
〈uk, x〉+

1∑k−1
i=0 1/Li

Dh(x, x0)

}
.

In particular,

φ(xk) ≤
∑k−1

i=0 φ(xi+1)/Li∑k−1
i=0 1/Li

≤ φ(x)− 1∑k−1
i=0 1/Li

Dh(x, x0)

for all x ∈ dom(φ).

Consider the case when f is Lf -smooth relative to h on relint(dom(h))∩ dom(Ψ) as
defined in [4, 48]. This means that h− Lff is convex on relint(dom(h)) ∩ dom(Ψ) for
some constant Lf > 0 and as a consequence [4, Lemma 1]

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ LfDh(y, x)

for all x, y ∈ relint(dom(h))∩ dom(Ψ). Suppose that in addition φ = f + Ψ is bounded
below and the pair (h,Ψ) satisfies the sufficient admissibility condition (see Definition
1). Thus to ensure (2.6) we can choose Lk = L := Lf if Lf is known, or more generally
Lk ≤ L := max{L̄, αLf} for some α > 1 and some initial guess L̄ via a standard
backtracking procedure. In this case Corollary 3 thus yields the following convergence
rate previously established in [4, 48]: for all x ∈ dom(φ)

φ(xk)− φ(x) ≤ LDh(x, x0)

k
.

2.4 Accelerated Bregman Proximal Gradient

The interesting challenge of devising an accelerated version of Algorithm 4 was posed
as an open problem in both [69] and [48]. A solution to this challenge was recently
given by Hanzely, Richtarik, and Xiao in [34]. We develop a new accelerated Bregman
proximal gradient template as described in Algorithm 5. This algorithmic template
shares some similarities with Algorithm ABPG in [34] but there are also some key
differences. In particular, Algorithm 5 relies only on the decrease condition (2.10) at
each iteration. The algorithm does not require explicit knowledge of relative smooth
or triangle scaling constants. Like Steps 1, 2, and 3 in [34, Algorithm ABPG], the
updates of the sequences xk, yk, zk in Steps 6, 8, and 9 of Algorithm 5 follow the same
pattern used in the Improved Interior Gradient Algorithm (IGA) in [3].

As in Algorithm ABPG in [34] and in Algorithm IGA in [3], the gist of achieving
acceleration in Algorithm 5 is to generate different sequences for the main iterates, the
gradients, and the reference points used in the Bregman proximal gradient steps. (See
steps 6, 8, and 9.) This is in sharp contrast to Algorithm 4 that generates a single
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Algorithm 5 Accelerated Bregman proximal gradient template

1: input: x0 ∈ relint(dom(h)) ∩ dom(Ψ); θ0 := 1 z0 := x0; y0 := x0

2: pick L0 > 0 admissible for ∇f(x0) at x0

3: x1 := z1 := argminz∈Rn{〈∇f(x0), z〉+ L0Dh(z, x0) + Ψ(z)}
4: for k = 1, 2, . . . do
5: pick θk ∈ (0, 1) so that Lk is admissible for ∇f(yk) at zk for Lk and yk as below
6: yk := (1− θk)xk + θkzk
7: Lk := Lk−1θk−1(1− θk)/θk
8: zk+1 := argminz∈Rn{〈∇f(yk), z〉+ LkDh(z, zk) + Ψ(z)}
9: xk+1 := (1− θk)xk + θkzk+1

10: end for

sequence. The idea of generating different sequences can be traced back to Nesterov’s
seminal accelerated gradient algorithm [52] and underlies a number of other accelerated
first-order algorithms [8, 22, 52, 53, 54].

The bound (2.11) in Theorem 6 below has a similar format to the bounds (2.4) and
(2.7).

Theorem 6. Suppose L0 > 0 and θk ∈ (0, 1], k = 0, 1, 2, . . . are chosen so that
each Lk is admissible for ∇f(yk) at zk and the following decrease condition holds for
k = 0, 1, 2, . . .

φ(xk+1) ≤(1− θk)φ(xk) + θk(f(yk) + 〈∇f(yk), zk+1 − yk〉) + LkDh(zk+1, zk) + Ψ(zk+1)).
(2.10)

Then for k = 1, 2, . . . and uk := θk−1Lk−1(∇h(x0)−∇h(zk)) the iterates generated by
Algorithm 5 satisfy

φ(xk) ≤ −φ∗(uk) + 〈uk, zk〉+ θk−1Lk−1Dh(zk, x0) (2.11)

= −φ∗(uk)− (θk−1Lk−1Dh(·, x0))∗ (−uk).

Proof. The optimality conditions for Step 8 of Algorithm 5 can be written as

∇f(yk) + gΨ
k + Lk(∇h(zk+1)−∇h(zk)) = 0 (2.12)

for some gΨ
k ∈ ∂Ψ(zk+1). In particular, u1 = ∇f(x0) + gΨ

0 .
We next prove (2.11) by induction. The case k = 1 follows from (2.10). Indeed,

since θ0 = 1, y0 = x0, z1 = x1, and u1 = ∇f(x0) + gΨ
0 with gΨ

0 ∈ ∂Ψ(z1), inequality
(2.10) yields

φ(x1) ≤ f(x0) + 〈∇f(x0), z1 − x0〉+ θ0L0Dh(z1, z0) + Ψ(z1)

= −f ∗(∇f(x0))−Ψ∗(gΨ
0 ) +

〈
∇f(x0) + gΨ

0 , z1

〉
+ θ0L0Dh(z1, z0)

≤ −φ∗(u1) + 〈u1, z1〉+ θ0L0Dh(z1, z0).
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Suppose (2.11) holds for k. Since φ = f + Ψ and gΨ
k ∈ ∂Ψ(zk+1) we have

−φ∗(∇f(yk) + gΨ
k ) ≥ −f ∗(∇f(yk))−Ψ∗(gΨ

k ) (2.13)

= f(yk)− 〈∇f(yk), yk〉+ Ψ(zk+1)−
〈
gΨ
k , zk+1

〉
.

From (2.12) it follows that uk+1 = (1 − θk)uk + θk(∇f(yk) + gΨ
k ). Thus the identity

θkLk = (1 − θk)θk−1Lk−1, convexity of φ∗, three-point property of Dh, and inequality
(2.13) yield

−φ∗(uk+1) + 〈uk+1, zk+1〉+ θkLkDh(zk+1, x0)

≥ (1− θk) (−φ∗(uk) + 〈uk, zk+1〉+ θk−1Lk−1Dh(zk+1, x0))

+ θk(−φ∗(∇f(yk) + gΨ
k ) +

〈
∇f(yk) + gΨ

k , zk+1

〉
)

≥ (1− θk) (−φ∗(uk) + 〈uk, zk〉+ θk−1Lk−1Dh(z, x0))

+ θk(f(yk) + 〈∇f(yk), zk+1 − yk〉+ LkDh(zk+1, zk) + Ψ(zk+1))

Therefore the induction hypothesis and (2.10) imply that

−φ∗(uk+1) + 〈uk+1, zk+1〉+ θkLkDh(zk+1, x0)

≥ (1− θk)φ(xk) + θk(f(yk) + 〈∇f(yk), zk+1 − yk〉+ LkDh(zk+1, zk) + Ψ(zk+1))

≥ φ(xk+1).

Corollary 4. If the assumptions of Theorem 6 hold then for k = 1, 2, . . .

φ(xk)− φ(x) ≤ θk−1Lk−1Dh(x, x0)

for all x ∈ dom(φ).

Proof. From Theorem 6 it follows that

φ(xk) ≤ min
x
{φ(x)− 〈uk, x〉}+ min

x
{〈uk, x〉+ θk−1Lk−1Dh(x, x0)}

Thus φ(xk) ≤ φ(x) + θk−1Lk−1Dh(x, x0) for all x ∈ dom(φ).

Suppose f is Lf -smooth relative to h on relint(dom(h)) ∩ dom(Ψ) and let γ > 0
be a triangle scaling exponent of Dh introduced by Hanzely, Richtarik, and Xiao [34].
That is, for all x, z, z̃ ∈ dom(h) and θ ∈ [0, 1] the Bregman distance Dh satisfies the
following triangle scaling property

Dh((1− θ)x+ θz̃, (1− θ)x+ θz) ≤ θγDh(z̃, z).

The next proposition shows that if both constants Lf and γ are known then the ad-
missibility of Lk and condition (2.10) for k = 0, 1, . . . can be ensured by choosing of
L0 := Lf and θk via θ0 = 1, θγk = (1− θk)θγk−1. In this case Algorithm 5 is identical to
Algorithm APGM in [34] and to Algorithm APDA in [34] when x0 = argminx∈Rn h(x).
Furthermore, Theorem 6 yields the convergence rate established in [34] as the next
proposition shows.
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Proposition 1. Suppose f is Lf -smooth relative to h on relint(dom(h))∩dom(Ψ) and
γ ≥ 1 is a triangle scaling exponent of Dh. Suppose also that φ is bounded below and
the pair (h,Ψ) satisfies the sufficient admissibility condition. If Algorithm 5 chooses
L0 = Lf and θk via θ0 = 1 and θγk = (1−θk)θγk−1, k = 1, 2, . . . then each Lk is admissible
for ∇f(yk) at zk and (2.10) holds for k = 0, 1, . . . . Furthermore, in this case

φ(xk)− φ(x) ≤
(

γ

k − 1 + γ

)γ
LfDh(x, x0) (2.14)

for all x ∈ dom(φ).

Proof. For this choice L0 and θk we have θkLk = θγkLf , k = 0, 1, . . . . To show that Lk
is admissible, we establish a lower bound on the function z 7→ 〈∇f(yk), z〉+LkDh(z, zk)
and use the sufficient admissibility condition of (h,Ψ). To that end, observe that the
convexity of f and Ψ, the triangle scaling property of Dh, and the Lf -smoothness of f
imply that for all k = 0, 1, . . . , z ∈ relint(dom(h)), and x := (1− θk)xk + θkz

(1− θk)φ(xk) + θk(f(yk) + 〈∇f(yk), z − yk〉) + LkDh(z, zk) + Ψ(z))

≥ f(yk) + 〈∇f(yk), x− yk〉+ θγkLfDh(z, zk) + Ψ(x)

≥ f(yk) + 〈∇f(yk), x− yk〉+ LfDh(x, yk) + Ψ(x)

≥ φ(x).

The boundedness of φ and the sufficient admissibility condition of (h,Ψ) thus imply
that Lk is admissible for ∇f(yk) at zk for k = 0, 1, 2, . . . . Furthermore, (2.10) also
follows by taking z := zk+1. To finish, observe that as shown in [34, Lemma 4], the
sequence θk, k = 0, 1, . . . defined via θ0 = 1 and θγk = (1−θk)θγk−1, k = 1, 2, . . . . satisfies

θk ≤
γ

k + γ
.

Since θk−1Lk−1 = θγk−1Lf , Corollary 4 yields (2.14).

Our next result shows that the same, or a possibly faster, rate of convergence as
(2.14) is attained by Algorithm 5 if L0 = Lf and θk ∈ (0, 2/3] is chosen as large as
possible. This choice of θk is motivated by the following considerations. Observe that
the iterates of Algorithm 5 satisfy θkLk = (1 − θk)θk−1Lk−1, k = 1, 2, . . . . Therefore,
the larger the θk, k = 1, 2, . . . , the tighter the bound in Corollary 4. In Theorem 7
we make the ideal assumptions that L0 = Lf and that θk ∈ (0, 2/3] is chosen as large
as possible simply for ease of exposition. As we detail below, the slightly weaker rate
(2.15) holds for more realistic and easily implementable line-search procedures that
choose L0 and θk.

Theorem 7. Suppose f is Lf -smooth relative to h on relint(dom(h)) ∩ dom(Ψ) and
γ > 0 is a triangle scaling exponent of Dh. Suppose also that φ is bounded below and
the pair (h,Ψ) satisfies the sufficient admissibility condition. If Algorithm 5 chooses
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L0 = Lf in Step 2 and θk, k = 1, 2, . . . in Step 5 as the largest θk ∈ (0, 2/3] such that
Lk is admissible for ∇f(yk) at zk and (2.10) holds then for k = 1, 2, . . .

φ(xk)− φ(x) ≤
(

γ

k − 1 + γ

)γ
LfDh(x, x0)

for all x ∈ dom(φ).

Proof. By Corollary 4, it suffices to show that

θk−1Lk−1 ≤
(

γ

k − 1 + γ

)γ
Lf .

We proceed by induction. The case k = 1 is an immediate consequence of the Lf -
smoothness of f relative to h, the boundedness of φ, and the sufficient admissibility
condition of (h,Ψ). For the main inductive step, we follow a similar reasoning to that
in the proof of Proposition 1. Observe that the convexity of f and Ψ, the construction
of Lk, and the triangle scaling property of Dh imply that for all z ∈ relint(dom(h)) and
x := (1− θk)xk + θkz

(1− θk)φ(xk) + θk(f(yk) + 〈∇f(yk), z − yk〉) + LkDh(z, zk) + Ψ(z))

≥ f(yk) + 〈∇f(yk), x− yk〉+
(1− θk)θk−1Lk−1

θγk
Dh(x, yk) + Ψ(x).

Hence the Lf -smoothness of f , boundedness of φ, and sufficient admissibility condition
of (f,Ψ) imply that Lk is admissible for ∇f(yk) at zk and (2.10) holds provided θk ∈
(0, 2/3] is such that

(1− θk)θk−1Lk−1

θγk
≤ Lf .

The induction hypothesis implies that

1− θk
θγk

≤ Lf
θk−1Lk−1

=

(
k̂ − 1 + γ

γ

)γ

for some k̂ ≥ k not necessarily integral. Thus θk ≥ θ̂ where θ̂ ∈ (0, 2/3] is the root of

1− θ̂
θ̂γ

=
Lf

θk−1Lk−1

=

(
k̂ − 1 + γ

γ

)γ

.

As shown in [34, Lemma 3], the arithmetic mean geometric mean inequality implies
that θ̂ ≤ γ/(k̂ + γ) ≤ 2/3. Therefore,

θkLk = (1− θk)θk−1Lk−1 ≤ (1− θ̂)θk−1Lk−1 = θ̂γLf ≤
(

γ

k̂ + γ

)γ
Lf ≤

(
γ

k + γ

)γ
Lf .
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Consider the following more realistic line-search procedures. Suppose we choose L0

via the following standard binary search procedure: Start with an initial guess L0 > 0
for Lf and repeatedly scale L0 (up or down) by α > 1 until (2.10) just holds for k = 0.
This kind of procedure will choose L0 ≤ αLf . Suppose θk ∈ (0, 2/3], k = 1, 2, . . . is
chosen via the following binary search procedure which is a variant of the approach
used in [34, Algorithm ABPG-e]: Set θk := γk/(k + γk) for some initial guess γk > 0
and repeatedly increase or decrease γk by some sufficiently small δ > 0 until (2.10)
just holds. These two procedures and a straightforward modification of the proof of
Theorem 7 imply that for some γ̃ ≥ γ− δ the iterates generated by Algorithm 5 satisfy

φ(xk)− φ(x) ≤
(

γ̃

k − 1 + γ̃

)γ̃
αLfDh(x, x0) (2.15)

for all x ∈ dom(φ).
We note that although (2.15) is theoretically weaker than (2.14), the above line-

search procedures could choose L0 < Lf and θk > γ/(k + γ) thereby yielding a faster
rate of convergence. Our numerical experiments in Section 2.6 shed some light into
this phenomenon.

2.5 Linear Convergence of Accelerated Bregman Prox-

imal Gradient

We next show that some variants of Algorithm 5 that include restart attain an accel-
erated linear rate of convergence provided that some suitable relative smoothness and
functional growth conditions hold. The algorithmic schemes and proofs in this section
follow in a fairly straightforward fashion from the same ideas used in known restart
schemes such as those in [50, 54, 55, 67]. We should note than unlike the previous
algorithms in the chapter, Algorithm 6 and Algorithm 7 below require some additional
knowledge about the problem.

Throughout this section assume that φ̄ := minx φ(x) <∞ and X̄ := {x ∈ dom(φ) :
φ(x) = φ̄} 6= ∅. Let for x ∈ dom(φ) let Dh(X̄, x) := inf x̄∈X̄ Dh(x̄, x). Suppose f is
both Lf -smooth relative to h and µf -strongly convex relative to h on relint(dom(h))∩
dom(Ψ). That is, both Lfh−f and f−µfh are convex on relint(dom(h))∩dom(Ψ). As
discussed in [69] and [48], under these conditions the iterates generated by Algorithm
4 satisfy

Dh(X̄, xk) ≤
(

1− µf
Lf

)k
Dh(X̄, x0)

and

φ(xk)− φ̄ ≤ Lf

(
1− µf

Lf

)k
Dh(X̄, x0)

provided Lk = Lf , k = 0, 1, . . . . A straightforward modification of the argument in
[69] shows that these inequalities also hold with Lf replaced with max{L̄, αLf} if Lk
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is instead chosen via a backtracking procedure that starts with an initial guess L̄ for
Lf and repeatedly scales it up by α > 1 until condition (2.6) holds.

The above bounds imply that Algorithm 4 yields xk ∈ dom(φ) with φ(xk)− φ̄ < ε
in at most

k = O
(
Lf
µf
· log

(
LfDh(X̄, x0)

ε

))
iterations. We next show that under the same relative smoothness assumption and a
relative functional growth assumption, two variants of Algorithm 5 that include restart
achieve a faster linear rate when γ > 1. Note that Algorithm 6 requires knowledge of
the optimal value φ̄. On the other hand, Algorithm 7 requires knowledge of a certain
condition number Lf/κφ of φ and of the triangle scaling exponent γ of Dh.

Following [50], define the functional growth constant κφ of φ relative to h as follows

κφ := inf
x∈Rn\X̄

φ(x)− φ̄
Dh(X̄, x)

.

Algorithm 6 Accelerated Bregman proximal gradient with restart (version 1)

Pick w0 ∈ relint(dom(h)) ∩ dom(Ψ)
for ` = 0, 1, . . . do

let x0 := w` and run Algorithm 5 until

φ(xk)− φ̄ ≤
φ(x0)− φ̄

2

let w`+1 := xk
end for

Algorithm 7 Accelerated Bregman proximal gradient with restart (version 2)

Pick w0 ∈ relint(dom(h)) ∩ dom(Ψ)
for ` = 0, 1, . . . do

let x0 := w` and run Algorithm 5 until

k = γ

(
2Lf
κφ

)1/γ

let w`+1 := xk
end for

Proposition 2. Suppose f is Lf -smooth relative to h on relint(dom(h)) ∩ dom(Ψ), φ
has positive functional growth constant κφ relative to h, and Dh has triangle scaling
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exponent γ ≥ 1. Then each call to Algorithm 5 in Algorithm 6 halts after at most

k = γ

(
2Lf
κφ

)1/γ

(2.16)

iterations. On the other hand, the sequence of outer iterates {w` : ` = 0, 1, . . . }
generated by Algorithm 7 satisfies

φ(w`+1)− φ̄ ≤ φ(w`)− φ̄
2

. (2.17)

and

Dh(X̄, w`+1) ≤ Dh(X̄, w`)

2
.

In particular, either Algorithm 6 or Algorithm 7 yields xK ∈ dom(φ) such that φ(xK)−
φ̄ < ε after at most

K = O

((
Lf
κφ

)1/γ

log

(
LfDh(X̄, x0)

ε

))

accelerated Bregman proximal gradient iterations.

Proof. Theorem 7 implies that the iterates generated by Algorithm 5 satisfy

φ(xk)− φ̄ ≤
(

γ

k − 1 + γ

)γ
LfDh(X̄, x0) ≤ Lf

κφ

(
γ

k − 1 + γ

)γ
(φ(x0)− φ̄).

Thus both (2.16) and (2.17) follow. In addition, for ` = 0, 1, . . . the outer iterates
generated by Algorithm 7 satisfy

φ(w`+1)− φ̄ ≤
(

γ

k − 1 + γ

)γ
LfDh(X̄, w`) ≤

κφDh(X̄, w`)

2

and so

Dh(X̄, w`+1) ≤ φ(w`+1)− φ̄
κφ

≤ Dh(X̄, w`)

2
.

2.6 Numerical Experiments

We implemented a Python version of Algorithm 4 with line-search to choose Lk. Follow-
ing the convention in [34], we will refer to this implementation as Algorithm BPG-LS.
We also implemented two Python versions of Algorithm 5. The first one sets L0 := Lf
and θk via θ0 = 1 and θγk = (1 − θk)θ

γ
k−1, k = 1, 2, . . . assuming that Lf and γ are

known. As indicated in Section 2.4, this version is identical to Algorithm ABPG in
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[34]. We also implemented a second version of Algorithm 5 with the line-search proce-
dures to choose L0 and θk sketched at the end of Section 2.4 for α = 2 and δ = 0.1. In
particular, our implementation sets θk = γk

k+γk
, k = 1, 2, . . . were γk > 0 is chosen via

line-search so that (2.10) holds. We refer to this version as Algorithm ABPG-LS.
We next report results on some numerical experiments on random instances of two

problems that provide interesting tests for Bregman proximal methods. The first one
is the D-optimal design problem [2, 48]

min
x∈∆n−1

− log(det(HXHT))

where X = diag(x) and H ∈ Rm×n with m < n and ∆n−1 := {x ∈ Rn
+ : ‖x‖1 = 1}.

The second one is the Poisson linear inverse problem [4]

min
x∈Rn+

DKL(b, Ax)

where b ∈ Rn
++ and A ∈ Rm×n

+ with m > n and DKL(·, ·) is the Kullback-Leibler di-
vergence, that is, the Bregman distance associated to the Boltzmann-Shannon entropy
function x 7→

∑n
i=1 xi log(xi).

It was shown in [48] that the function f(x) = − log(det(HXHT)) is 1-smooth
relative to the Burg entropy h(x) = −

∑n
i=1 log(xi). On the other hand, it was shown in

[4] that the function x 7→ DKL(b, Ax) is ‖b‖1-smooth relative to h(x) = −
∑n

i=1 log(xi).
Thus we use the Burg entropy h(x) = −

∑n
i=1 log(xi) as reference function for both

problems. The implementation of Algorithm ABPG requires values of Lf and γ as
input. We used the values Lf = 1 for the D-optimal design problem and Lf = ‖b‖1 for
the Poisson linear inverse problem which are “safe” as per the above relative smoothness
results. For γ, we used the default value γ = 2. This value is attractive because it
yields the accelerated rate O(1/k2) but is not safe because as discussed in [34], the
Bregman distance for the Burg entropy has a smaller uniform triangle scaling exponent.
Nonetheless, as in the experiments reported in [34], the choice of γ = 2 worked fine in
our numerical experiments.

Figure 2.1 depicts the convergence of Algorithms BPG-LS, ABPG, and ABPG-LS
on two typical random instances H ∈ R100×250 and H ∈ R200×300 for the D-optimal
design problem. The suboptimality gap is measured relative to the smallest objective
value attained by the three algorithms, which was ABPG-LS in all cases. The entries
of the instances H for this problem are independent draws from the standard normal
distribution.

Figure 2.2 depicts similar convergence results on typical random instances A ∈
R250×100, b ∈ R250 and A ∈ R300×200, b ∈ R300 for the Poisson linear inverse problem. In
this case the entries of A and of b are independent draws from the uniform distribution
on [0, 1].

The numerical experiments demonstrate that the convergence rates of the algo-
rithms BPG-LS, ABPG, and ABPG-LS usually follow the pattern one would expect:
In most cases Algorithm BPG-LS is the slowest while ABPG-LS is the fastest. An
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(a) m = 100, n = 250 (b) m = 200, n = 300

Figure 2.1: Suboptimality gap on typical instances of the D-optimal design problem.

(a) m = 250, n = 100 (b) m = 300, n = 200

Figure 2.2: Suboptimality gap on typical instances of the Poisson linear inverse prob-
lem.

exception occurs in the easier 200 × 300 D-optimal design instances where BPG-LS
performs performs as well as ABPG or better. As noted in [34] this can be attributed
to the better conditioning of these instances and the linear convergence property of
Algorithm 4. Figure 2.3 and Figure 2.4 depict an interesting phenomenon that we
observed in our experiments. These figures display plots of the values of γk throughout
the execution of Algorithm ABPG-LS in the four instances discussed above. In all of
these cases it is evident that γk hovers near 2. Since the algorithm sets θk = γk/(k+γk),
these values of γk imply that Algorithm ABPG-LS approximately attains the iconic
O(1/k2) convergence rate of accelerated gradient methods. This numerical evidence is
striking and consistent with the results reported in [34].
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(a) m = 100, n = 250 (b) m = 200, n = 300

Figure 2.3: Sequence {γk : k = 1, 2, . . . } in ABPG-LS for typical instances of D-design
optimal problem.

(a) m = 250, n = 100 (b) m = 300, n = 200

Figure 2.4: Sequence {γk : k = 1, 2, . . . } in ABPG-LS for typical instances of Poisson
linear inverse problem.
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Chapter 3

Conditioning: The Condition
Number of a Function Relative to a
Set

3.1 Introduction

In this chapter, we propose a relative smoothness constant Lf,X,D and a relative strong
convexity constant µf,X,D of the function f relative to the pair (X,D) where f : Rm →
R ∪ {∞} is a convex differentiable function, X ⊆ dom(f) is a convex set, and D :
X × X → R+ a distance-like function, that is, D(y, x) ≥ 0 and D(x, x) = 0 for all
x, y ∈ X. See Definition 4 and equation (3.5) below for details.

The main sections of the chapter are organized as follows. Section 3.2 presents
our central construction, namely relative smoothness and relative strong convexity.
This section also introduces relative quasi strong convexity and D-functional growth,
both of which are variants of relative strong convexity. Section 3.3 and Section 3.4
present the main technical results of the chapter when D is a squared norm. Section
3.3 develops several properties of the constants Lf,X,D and µf,X,D. More precisely,
Proposition 4 gives an upper bound on Lf,X,D when f is of the form g ◦ A for some
A ∈ Rm×n, g : Rm → R ∪ {∞}. The more involved Theorem 8 and Theorem 9
give lower bounds on µf,X,D when f is of the form g ◦ A and X is a convex cone or
a polyhedron. These bounds readily imply that for f = g ◦ A the relative condition
number Lf,X,D/µf,X,D can be bounded in terms of the product of the classical condition
number Lg/µg and a condition number of the pair (A,X). See equation (3.14) and
equation (3.16). Section 3.4 develops properties analogous to those in Section 3.3 but
for the constants µ?f,X,D and µ]f,X,D. Finally Section 3.5 presents linear convergence
results for the mirror descent algorithm and for the Frank-Wolfe algorithm with away
steps in terms of the relative constants Lf,X,D and µ?f,X,D, µ

]
f,X,D.
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3.2 Conditioning Relative to a Reference Set and

Distance Function Pair

This section presents the central ideas of this chapter. We introduce the concepts of
relative smoothness and relative strong convexity of a function relative to a reference
set and distance function pair. We also introduce some variants of relative strong
convexity that are natural extensions of the approach developed by Necoara, Nesterov
and Glineur [50].

Throughout the entire chapter we will typically make the following blanket assump-
tion about the triple (f,X,D).

Assumption 2. The function f : Rn → R ∪ {∞} is convex and differentiable. The
set X ⊆ dom(f) is convex. The function D : X ×X → R+ is a reference distance-like
function, that is, D(y, x) ≥ 0 for all x, y ∈ X and D(x, x) = 0 for all x ∈ X.

Throughout our development we will consider mainly the following two classes of
distance-like functions:

• The Bregman distance associated to a reference convex differentiable function
h : X → R, that is,

D(y, x) := Dh(y, x) = h(y)− h(x)− 〈∇h(x), y − x〉 .

• The square of a (non-necessarily Euclidean) norm ‖ · ‖ in Rn, that is,

D(y, x) :=
1

2
‖y − x‖2.

Our main construction is based on bounding the behavior of the Bregman distance
associated to f in terms of the reference distance function D. The following object
provides a key building block for our construction. For y ∈ X let Zf,X(y) ⊆ X denote
the set

Zf,X(y) := {x ∈ X : f(x) = f(y) and 〈∇f(x)−∇f(y), x− y〉 = 0}.

Observe that if f is strictly convex then Zf,X(y) = {y} for all y ∈ X.

3.2.1 Relative Smoothness and Relative Strong Convexity

To motivate our main construction we first recall the classical notion of smoothness
and strong convexity constants. We recall these classical concepts in a format that
we subsequently use for our main construction. Recall that for a convex differentiable
function f : Rn → R ∪ {∞} and x, y ∈ dom(f) the Bregman distance Df (y, x) is

Df (y, x) = f(y)− f(x)− 〈∇f(x), y − x〉 .
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Definition 3. Suppose (f,X,D) satisfy Assumption 2 and D(y, x) = 1
2
‖y − x‖2 for

some norm ‖ · ‖ in Rn.

(a) The function f is smooth on X if there exists a constant L > 0 such that

Df (y, x) ≤ LD(y, x) for all x, y ∈ X. (3.1)

(b) The function f is strongly convex on X if there exists a constant µ > 0 such that

Df (y, x) ≥ µD(y, x) for all x, y ∈ X. (3.2)

Next, we present our main construction. In Definition 4 and throughout the chapter
we will use the following notational convention. For a nonempty S ⊆ X and x ∈ X let
Df (S, x) and D(S, x) denote infy∈S Df (y, x) and infy∈S D(y, x) respectively.

Definition 4. Let (f,X,D) satisfy Assumption 2.

(a) We say that f is smooth relative to (X,D) if there exists a constant L > 0 such
that

Df (y, x) ≤ LD(y, x) for all x, y ∈ X. (3.3)

(b) We say that f is strongly convex relative to (X,D) if there exists a constant µ > 0
such that

Df (Zf,X(y), x) ≥ µD(Zf,X(y), x) for all x, y ∈ X. (3.4)

When D = Dh for some convex differentiable function h : X → R, the above
relative smoothness concept is identical to the smoothness of f relative to h on X as
defined in [48]. The latter in turn is equivalent to the Lipschitz-like condition defined
in [4]. Furthermore, when D = Dh and f is strictly convex, the above relative strong
convexity concept is identical to the strong convexity of f relative to h on X as defined
in [48].

We will use the following notation throughout the rest of the chapter. Suppose
(f,X,D) satisfies Assumption 2. Let Lf,X,D and µf,X,D be the following relative
smoothness and strong convexity constants

Lf,X,D := inf{L > 0 : (3.3) holds}, µf,X,D := sup{µ > 0 : (3.4) holds}. (3.5)

In addition, suppose (f,X,D) satisfies Assumption 2 and D(x, y) = 1
2
‖x − y‖2 for

some norm ‖ · ‖ in Rn. Let Lf and µf be the following classical smoothness and strong
convexity constants

Lf := inf{L > 0 : (3.1) holds}, µf := sup{µ > 0 : (3.2) holds}. (3.6)

The following example illustrates the values of the relative smoothness and convexity
constants Lf,X,D and µf,X,D of a convex quadratic function relative to (X,D) for some
canonical choices of X and D. It also lays the ground for the main properties that we
develop in Section 3.3.
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Example 2. Let A ∈ Rm×n, b ∈ Rm with A 6= 0 and Rn and Rn be endowed with
the Euclidean norm. Let f(x) = 1

2
‖Ax − b‖2

2 and D(y, x) := 1
2
‖y − x‖2

2. Then f has
the following smoothness and strong convexity constants Lf,X,D and µf,X,D relative to
(X,D) for two particular choices of X.

(a) For X = Rn we have Lf,X,D = σmax(ATA) = σmax(A)2 and µf,X,D = σ+
min(ATA) =

σ+
min(A)2 > 0, where σ+

min(·) denotes the smallest positive singular value. Observe
that in this case Lf = Lf,X,D but µf = µf,X,D only when A is full column rank.

(b) Suppose X ⊆ Rn is a linear subspace such that the mapping A|X : X → Rm

defined via x ∈ X 7→ Ax ∈ Rm is nonzero. Then Lf,X,D = σmax(A|X)2 and
µf,X,D = σ+

min(A|X)2. Observe that in this case Lf,X,D ≤ Lf and Lf,X,D can be
quite a bit smaller. Likewise, µf,X,D ≥ µf and µf,X,D could be quite a bit larger.

The statements (a) and (b) in Example 2 can be verified directly but they also
follow from the more general Proposition 4 and Corollary 5 in Section 3.3 below.

3.2.2 Relative Quasi-strong Convexity and D-functional Growth

Following [50], we next consider two variants of relative strong convexity that are nat-
ural extensions of the quasi-strong convexity and quadratic functional growth concepts
defined in [50]. For that purpose, we will rely on the following strengthening of As-
sumption 2.

Assumption 3. Suppose (f,X,D) satisfy Assumption 2, f̄ := minx∈X f(x) is finite,
X̄ := {x ∈ X : f(x) = f̄} 6= ∅, and the map x 7→ x̄ := argminy∈X̄ D(y, x) is well
defined for all x ∈ X.

Definition 5. Suppose (f,X,D) satisfies Assumption 3.

(a) We say that f is quasi-strongly-convex relative to (X,D) if there exists a constant
µ > 0 such that

Df (x̄, x) ≥ µD(x̄, x) for all x ∈ X. (3.7)

(b) We say that f has D-functional growth on X if there exists a constant µ > 0
such that

f(x)− f̄ ≥ µD(x̄, x) for all x ∈ X. (3.8)

Throughout the sequel we will use the following notation analogous to (3.5). Sup-
pose (f,X,D) satisfies Assumption 3. Let µ?f,X,D and µ]f,X,D be as follows

µ?f,X,D := sup{µ > 0 : (3.7) holds}, µ]f,X,D := sup{µ > 0 : (3.8) holds}. (3.9)

The next proposition shows that, as one may intuitively expect, relative quasi-
strong convexity is a relaxation of relative strong convexity. In other words, µf,X,D ≤
µ?f,X,D whenever (f,X,D) satisfies Assumption 3.

54



Proposition 3. Suppose (f,X,D) satisfy Assumption 3. If µ > 0 is such that
(f,X,D, µ) satisfies (3.4) then (f,X,D, µ) satisfies (3.7).

Proof. The construction of Zf,X(y) implies that Zf,X(y) ⊆ X̄ for all y ∈ X̄. Therefore,
if (f,X,D, µ) satisfies (3.4) then by taking y = x̄ it follows that

Df (x̄, x) ≥ Df (Zf,X(x̄), x) ≥ µD(Zf,X(x̄), x) = µD(x̄, x) for all x ∈ X.

The following simple example shows that, perhaps contrary to what one might
intuitively expect, D-functional growth is not necessarily a relaxation of strong relative
convexity unless some additional assumptions are made about f,X, or D.

Example 3. Let a > 0 and f : R → R be the function f(x) = eax. For X := R+

we have X̄ = {0}. Thus for D := Df and µ = 1 the tuple (f,X,D, µ) satisfies (3.4).
However, observe that for all µ̂ > 0 and x ≥ 1/(µ̂a)

f(x)− f̄ = eax − 1 < µ̂(1 + axeax) = µ̂(f̄ − f ′(x)(0− x)) = µ̂D(X̄, x).

In particular, (f,X,D, µ̂) does not satisfy (3.8) for any µ̂ > 0.

It can be shown that under additional assumptions on f,X, or D the D-functional
growth condition is a relaxation of the relative strong convexity condition. For instance,
it is easy to see that this is the case if Df is symmetric, that is, Df (y, x) = Df (x, y) for
x, y ∈ X. In addition, D-functional growth is a relaxation of relative strong convexity
when D is a squared norm and X as we discuss in Section 3.4 below.

3.3 Properties of Lf,X,D and µf,X,D when D is a Squared

Norm and f is of the Form g ◦ A
This section develops some properties of the relative constants Lf,X,D and µf,X,D when
f is of the form f := g ◦ A for A ∈ Rm×n, g : Rm → R ∪ {∞}, and D is of the form
D(x, y) = 1

2
‖x−y‖2 for some norm in Rn. The main results of this section are Theorem

8 and Theorem 9. These results provide lower bounds on µf,X,D in terms of µg and
the norms of some canonical set-valued maps that depend on A and X. In a similar
vein, Proposition 4 gives an upper bound on Lf,X,D in terms of Lg and the norm of a
canonical map associated to A and X.

We will rely on the objects ZA,X(·) and A|C, (A|C)−1 defined next. For A ∈
Rm×n, X ⊆ Rn nonempty and y ∈ X let ZA,X(y) := {x ∈ X : Ax = Ay}. Ob-
serve that the set-valued mapping ZA,X : X ⇒ X can be seen as an extension of the
set-valued mapping Zf,X : X ⇒ X introduced in Section 3.2.1.
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For A ∈ Rm×n and a convex cone C ⊆ Rn let A|C : Rn ⇒ Rm be the set-valued
mapping defined via

x 7→ (A|C)(x) :=

{
{Ax} if x ∈ C
∅ otherwise.

And let (A|C)−1 : Rm ⇒ Rn be its inverse, that is,

v 7→ (A|C)−1(v) := {x ∈ C : Ax = v}.

Suppose Rn and Rm are endowed with norms. Define the norms of A|C and of (A|C)−1

as follows
‖A|C‖ := max

x∈C
‖x‖≤1

‖Ax‖, ‖(A|C)−1‖ := max
v∈A(C)
‖v‖≤1

min
x∈C
Ax=v

‖x‖.

Observe that if A ∈ Rm×n and X ⊆ Rn is a nonempty convex set such that A(X)
contains more than one point then

‖A| span(X −X)‖ = sup
y,x∈X
x 6=y

‖Ay − Ax‖
‖y − x‖

. (3.10)

In particular, the following property of the relative smoothness constant readily follows.

Proposition 4. Suppose Rm,Rn are endowed with norms and D(y, x) := 1
2
‖y − x‖2.

Let A ∈ Rm×n and X ⊆ Rn be a nonempty convex set such that A(X) contains more
than one point.

(a) If Rm is endowed with the Euclidean norm and f(x) = 1
2
‖Ax−b‖2

2 for some b ∈ Rm

then
Lf,X,D = ‖A| span(X −X)‖2.

(b) If f = g ◦ A where g is Lg smooth A(X) for the norm in Rm then

Lf,X,D ≤ Lg‖A| span(X −X)‖2.

Proof. (a) This follows from (3.10) and Df (y, x) = 1
2
‖Ay − Ax‖2

2.

(b) This follows from (3.10) and Df (y, x) = Dg(Ay,Ax) ≤ Lg
2
‖Ay−Ax‖2. The latter

inequality follows from the Lg smoothness of g.

We next discuss far more interesting results that either characterize or lower bound
the relative strong convexity constant µf,X,D.
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3.3.1 Lower Bound on µf,X,D when X is a Convex Cone and
A(X) is a Linear Subspace

In this subsection we will consider the special case when X ⊆ Rn is a convex cone
and A ∈ Rm×n is such that A(X) is a linear subspace of Rm. The latter condition is
equivalent to the following Slater condition: there exists x ∈ relint(X) such that Ax =
0. When this is the case, the norms ‖A|X‖ and ‖(A|X)−1‖ have the following geometric
interpretation. Let Bm and Bn denote the unit balls in Rm and Rn respectively. It is
easy to see that if X is a convex cone and A(X) is a linear subspace then

‖A|X‖ = inf{r : A(X ∩ Bn) ⊆ rBm ∩ A(X)} (3.11)

and
1

‖(A|X)−1‖
= sup{r : rBm ∩ A(X) ⊆ A(X ∩ Bn)}. (3.12)

In other words, ‖A|X‖ is the radius of the smallest ball in A(X) centered at the origin
containing A(X∩Bn) and 1/‖(A|X)−1‖ is the radius of the largest ball in A(X) centered
at the origin and contained in A(X ∩Bn). The above norms, especially ‖(A|X)−1‖ and
other related quantities, have been extensively studied in the literature on condition
measures for convex optimization [19, 24, 27, 58, 64, 63]. They have been further
extended to the broader variational analysis context [44, 21]. In particular, when
A(X) = Rm the family of conic systems Ax = b, x ∈ X is well-posed. That is, for all
b ∈ Rm the conic system Ax = b, x ∈ X is feasible and remains so for sufficiently small
perturbations of (A, b). In this case it follows from [64] that the quantity 1/‖(A|X)−1‖
is precisely the distance to ill-posedness introduced by Renegar [63, 64], that is, the size
of the smallest perturbation ∆A on A so that the conic system (A+∆A)x = b, x ∈ X is
infeasible for some b ∈ Rm. A similar identity holds for the distance to non-surjectivity
of closed sublinear set-valued mappings [44]. The latter in turn extends to a far more
general identity for the radius of metric regularity [21].

Observe that if A ∈ Rm×n and X ⊆ Rn is a linear subspace then A(X) is automat-
ically a linear subspace. If in addition Rn and Rm are each endowed with Euclidean
norms, then (3.11) and (3.12) yield

‖A|X‖ = σmax(A|X) and
1

‖(A|X)−1‖
= σ+

min(A|X).

Corollary 5 and Theorem 8 below show that there is a tight connection between
the relative strong convexity constant µf,X,D and the norm ‖(A|X)−1‖ when f is of the
form g ◦A. Both of these results rely on the following proposition that characterizes a
certain type of Hoffman constant [37]. Proposition 5 is closely related to developments
in [57, 62].

Proposition 5. Suppose Rn and Rm are endowed with norms. Let A ∈ Rm×n and
X ⊆ Rn be a convex cone such that A(X) contains more than one point. If A(X) is a
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linear subspace then

1

‖(A|X)−1‖
= inf

x∈X
y∈X\ZA,X (x)

‖Ay − Ax‖
‖ZA,X(y)− x‖

. (3.13)

Proof. Fix y ∈ X and x ∈ X \ZA,X(y). Since A(X) is a linear subspace, it follows that
Ay − Ax ∈ A(X) and thus Ay − Ax = Au for some u ∈ X with ‖u‖ ≤ ‖(A|X)−1‖ ·
‖Ay−Ax‖. Hence x+u ∈ ZA,X(y) and ‖ZA,X(y)−x‖ ≤ ‖u‖ ≤ ‖(A|X)−1‖·‖Ay−Ax‖.
Since this holds for arbitrary y ∈ X and x ∈ X \ ZA,X(y) we conclude that

1

‖(A|X)−1‖
≤ inf

y∈X
x∈X\ZA,X (y)

‖Ay − Ax‖
‖ZA,X(y)− x‖

.

To prove the reverse inequality, let v ∈ A(X) be such that ‖v‖ = 1 and ‖y‖ ≥
‖(A|X)−1‖ for all y ∈ X with Ay = v. Pick ŷ ∈ X with Aŷ = v. Then ‖z‖ ≥
‖(A|X)−1‖ for all z ∈ ZA,X(ŷ). Thus for x̂ := 0 ∈ X \ ZA,X(ŷ) and

1

‖(A|X)−1‖
≥ ‖Aŷ − Ax̂‖
‖ZA,X(ŷ)− x̂‖

≥ inf
y∈X

x∈X\ZA,X (y)

‖Ay − Ax‖
‖ZA,X(y)− x‖

.

Proposition 5 readily yields the following result that generalizes Example 2.

Corollary 5. Suppose Rm is endowed with the Euclidean norm ‖ · ‖2, Rn is endowed
with a norm ‖ · ‖, and D(x, y) = 1

2
‖x− y‖2. If f(x) = 1

2
‖Ax− b‖2

2 for some A ∈ Rm×n

and b ∈ Rm, X ⊆ Rn is a convex cone, and A(X) is a linear subspace that contains
more than one point then

µf,X,D =
1

‖(A|X)−1‖2
.

Proof. This follows from Proposition 5 and the observation that for this choice of f and
X we have Zf,X(y) = ZA,X(y) and f(y)− f(x)− 〈∇f(x), y − x〉 = 1

2
‖Ay − Ax‖2

2.

The following result extends Corollary 5 to a broader class of functions.

Theorem 8. Suppose Rn and Rm are endowed with norms and D(x, y) = 1
2
‖x − y‖2

for the norm ‖ · ‖ in Rn. Let A ∈ Rm×n, g : Rm → R ∪ {∞} be a convex differentiable
function, and X ⊆ Rn be a convex cone such that A(X) is a linear subspace that
contains more than one point. If g is µg strongly convex on A(X) for the norm ‖ · ‖ in
Rm then the function f = g ◦ A satisfies

µf,X,D ≥
µg

‖(A|X)−1‖2
.
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Proof. Observe that Df (y, x) = g(Ay) − g(Ax) − 〈g(Ax), A(y − x)〉 for all y, x ∈ X
Since g is µg strongly convex, it follows that Df (y, x) ≥ µg‖Ay−Ax‖2/2 for all y, x ∈ X
and Zf,X(y) = {x ∈ X : Ax = Ay} = ZA,X(y) for all y ∈ X. Therefore Proposition 5
implies that

µf,X,D = inf
y∈X

x∈X\∈ZA,X (y)

Df (y, x)

‖ZA,X(y)− x‖2/2
≥ inf

y∈X
x∈X\∈ZA,X (y)

µg‖Ay − Ax‖2

‖ZA,X(y)− x‖2
=

µg
‖(A|X)−1‖2

.

If f,X,D are as in Corollary 5 then by Proposition 4 the relative condition number
Lf,X,D/µf,X,D is

Lf,X,D
µf,X,D

=
(
‖A| span(X)‖ · ‖(A|X)−1‖

)2

which has a striking resemblance to the classical condition number of f(x) = 1
2
‖Ax−

b‖2
2. More generally, if f,X,D are as in Theorem 8 and g is also Lg Lipschitz then

by Proposition 4 we obtain the following bound on the relative condition number
Lf,X,D/µf,X,D in terms of the condition number of g and a condition number of the
pair (A,X):

Lf,X,D
µf,X,D

≤ Lg
µg
·
(
‖A| span(X)‖ · ‖(A|X)−1‖

)2
. (3.14)

3.3.2 Lower Bound on µf,X,D when X is a Polyhedron

The results in Section 3.3.1 require X to be a convex cone and A(X) to be a linear
subspace. We next provide some results of similar flavor that relax these assumptions
in exchange for the assumption that X is a polyhedron. The main ideas and results
that we next develop are inspired by the recent work of Peña, Vera, and Zuluaga [57].
For a nonempty polyhedron X ⊆ Rn let T (X) := {TX(y) : y ∈ X}, where TX(y) is
tangent cone of X at y, that is,

TX(y) := {d ∈ Rn : y + td ∈ X for some t > 0}.

Observe that T (X) is finite since X is polyhedral. The paper [57] shows that Propo-
sition 5 extends as below in Proposition 6. From this, Corollary 5, and Theorem 8
extend naturally.

Proposition 6. Suppose Rn and Rm are endowed with norms. Let A ∈ Rm×n and
X ⊆ Rn be a polyhedron such that A(X) contains more than one point. Then

min
C∈S(X)

1

‖(A|C)−1‖
= min

C∈T (X)

1

‖(A|C)−1‖
= inf

y∈X
x∈X\ZA,X (y)

‖Ay − Ax‖
‖ZA,X(y)− x‖

. (3.15)

where S(X) := {T ∈ T (X) : A(T ) is a subspace}.
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Corollary 6. Suppose Rm is endowed with the Euclidean norm ‖ · ‖2, Rn is endowed
with a norm ‖ · ‖, and D(x, y) = 1

2
‖x− y‖2. If f(x) = 1

2
‖Ax− b‖2

2 for some A ∈ Rm×n

and b ∈ Rm, and X ⊆ Rn is a polyhedron such that A(X) contains more than one point
then

µf,X,D = min
C∈S(X)

1

‖(A|C)−1‖2
.

Proof. Proceed exactly as in the proof of Corollary 5 but apply Proposition 6 instead
of Proposition 5.

Theorem 9. Suppose Rn and Rm are endowed with norms and D(x, y) = 1
2
‖x − y‖2

for the norm ‖ · ‖ in Rn. Let A ∈ Rm×n, g : Rm → R ∪ {∞} be a convex differentiable
function, and X ⊆ Rn be a polyhedron such that A(X) contains more than one point.
If g is µg strongly convex on A(X) for the norm in Rm then the function f = g ◦ A
satisfies

µf,X,D ≥ min
C∈S(X)

µg
‖(A|C)−1‖2

.

Proof. Proceeding exactly as in the proof of Theorem 8 but applying Proposition 6
instead of Proposition 5 we get

µf,X,D = inf
y∈X

x6∈ZA,X (y)

Df (y, x)

‖ZA,X(y)− x‖2/2
≥ inf

y∈X
x 6∈ZA,X (y)

µg‖Ay − Ax‖2

‖ZA,X(y)− x‖2
= min

C∈S(X)

µg
‖(A|C)−1‖2

.

Observe that if X is polyhedral then span(X −X) ∈ S(X) and

‖A| span(X −X)‖ = max
C∈S(X)

‖A|C‖.

Thus Proposition 4 implies that for f,X,D as in Corollary 6, the relative condition
number Lf,X,D/µf,X,D has the following expression, which is again strikingly similar to
the classical condition number of f(x) = 1

2
‖Ax− b‖2

2:

Lf,X,D
µf,X,D

=

(
max
C∈S(X)

‖A|C‖ · max
C∈S(X)

‖(A|C)−1‖
)2

.

Proposition 4 also implies that if f,X,D are as in Theorem 9 and g is Lg smooth then
the relative condition number Lf,X,D/µf,X,D can be bounded in terms of the condition
number of g and a condition number of the pair (A,X) as follows:

Lf,X,D
µf,X,D

≤ Lg
µg
·
(

max
C∈S(X)

‖A|C‖ · max
C∈S(X)

‖(A|C)−1‖
)2

. (3.16)

We next place some of the developments by Peña and Rodŕıguez [60] in the context
of this chapter. To that end, consider the special case when X is the standard simplex
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∆n−1 := {x ∈ Rn
+ : ‖x‖1 = 1} in Rn. For A =

[
a1 · · · an

]
∈ Rm×n let conv(A) :=

conv({a1, . . . , an}) = {Ax : x ∈ ∆n−1} and let faces(conv(A)) denote the set of faces of
conv(A). Furthermore, for F ∈ faces(conv(A)) let A \ F denote the set of columns of
A that do not belong to F . Suppose Rm is endowed with a norm and for F,G ⊆ Rm

let dist(F,G) := infu∈F,v∈G ‖u− v‖. Following [60] define the facial distance Φ(A) of A
as follows

Φ(A) := min
F∈faces(conv(A))
∅6=F 6=conv(A)

dist(F, conv(A \ F )).

Let diam(A) denote the diameter of the set of columns of A defined as follows

diam(A) := max
i,j∈{1,...,n}

‖ai − aj‖.

In the special case when X = ∆n−1 it follows from [60, Theorem 1] that (3.15) in
Proposition 6 has the following geometric characterization

min
y∈∆n−1

x∈∆n−1\ZA,X (y)

‖Ay − Ax‖
‖ZA,X(y)− x‖1

=
Φ(A)

2
. (3.17)

Furthermore, in this same special case when X = ∆n−1 it is easy to see that (3.10) has
the following geometric characterization

max
x,y∈∆n−1

x 6=y

‖Ay − Ax‖
‖y − x‖1

=
diam(A)

2
. (3.18)

Example 4 below, a special case of Corollary 6, shows that for f(x) = 1
2
‖Ax− b‖2

2,
X = ∆n−1, and D(y, x) = 1

2
‖y−x‖2

1 the relative condition number Lf,∆n−1,D/µf,∆n−1,D

is the square of diam(A)/Φ(A), which has a flavor of an aspect ratio of conv(A). This
gives an interesting analogy to the classical condition number of f .

Example 4. Suppose Rn is endowed with the one-norm, Rm is endowed with the
Euclidean norm, and f(x) = 1

2
‖Ax− b‖2

2 for some A ∈ Rm×n with at least two different
columns and b ∈ Rm. Then for D(y, x) := 1

2
‖y − x‖2

1 Corollary 6 and identities (3.18)
and (3.17) yield

Lf,∆n−1,D =
diam(A)2

4
and µf,∆n−1,D =

Φ(A)2

4
.

In particular,
Lf,∆n−1,D

µf,∆n−1,D

=

(
diam(A)

Φ(A)

)2

.
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3.4 Properties of µ?f,X,D, and µ]f,X,D when D is a Squared

Norm

We next provide bounds on µ?f,X,D and µ]f,X,D analogous to those developed in Section
3.3 for µf,X,D. Proposition 3 already established µ?f,X,D ≥ µf,X,D ≥ 0. It is intuitively
clear that µ?f,X,D could be a lot larger. When D is a squared norm, the techniques

developed in [50] show that µ]f,X,D ≥ µ?f,X,D. Indeed, when D is a squared norm, the
relationship among other variants of strong convexity introduced in [50] extend to our
context in a straightforward fashion as we next explain.

Definition 6. Suppose (f,X,D) satisfy Assumption 3.

(a) We say that f has D-under approximation on X if there exists a constant µ > 0
such that

Df (x, x̄) ≥ µD(x̄, x) for all x ∈ X. (3.19)

(b) We say that f has D-gradient growth on X if there exists a constant µ > 0 such
that

〈∇f(x)−∇f(x̄), x− x̄〉 ≥ µD(x̄, x) for all x ∈ X. (3.20)

Suppose (f,X,D) satisfies Assumption 3 and D is a squared norm. Then for µ > 0
[50, Theorem 4] yields the following chain of implications for (f,X,D, µ):

(3.4)⇒ (3.7)⇒ (3.19)⇒ (3.20)⇒ (3.8).

We note that [50, Theorem 4] is stated and proven for the Euclidean norm but the
same statement and proof hold for any norm.

From the above chain of implications it follows that if (f,X,D) satisfies Assumption
3 and D is a squared norm then µf,X,D ≤ µ?f,X,D ≤ µ]f,X,D. In particular, any lower
bound on µf,X,D, such as those in Theorem 8 or Theorem 9, is also a lower bound

on µ?f,X,D and on µ]f,X,D when D is a squared norm. We next show that the ideas in
Section 3.3 can be extended to obtain sharper bounds on these two constants.

3.4.1 A Sharper Lower Bound on µ?f,X,D

Suppose A ∈ Rm×n and X ⊆ Rn is a polyhedron such that A(X) contains more than
one point, and S ⊆ X is nonempty. Proposition 6 readily implies

inf
y∈S

x∈X\ZA,X (y)

‖Ay − Ax‖
‖ZA,X(y)− x‖

≥ min
C∈S(X)

1

‖(A|C)−1‖
> 0. (3.21)

Proposition 7 below, which extends Proposition 6, gives a sharper version of (3.21).
Suppose A ∈ Rm×n, X ⊆ Rn is a polyhedron, and S ⊆ X is nonempty. Let

T (X;S,A) := {TX(y;S,A) : y ∈ X}
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where

TX(y;S,A) := {d ∈ Rn : y + td ∈ X and A(y + td) ∈ conv(A(S)) for some t > 0}.

Proposition 7. Suppose Rn and Rm are endowed with norms. Let A ∈ Rm×n and
X ⊆ Rn be a polyhedron such that A(X) contains more than one point. Then for all
nonempty S ⊆ X

inf
y∈S

x∈X\ZA,X (y)

‖Ay − Ax‖
‖ZA,X(y)− x‖

≥ inf
C∈T (X;S,A)

1

‖(A|C)−1‖
≥ min

C∈T (X)

1

‖(A|C)−1‖
.

Furthermore, if A(S) is closed and convex then

inf
y∈S

x∈X\ZA,X (y)

‖Ay − Ax‖
‖ZA,X(y)− x‖

= inf
C∈T (X;S,A)

1

‖(A|C)−1‖
.

Proof. The construction of TX(y;S,A) readily implies that TX(y;S,A) ⊆ TX(y) and
‖(A|TX(y;A, S))−1‖ ≤ ‖(A|TX(y))−1‖ for all y ∈ X. Hence

sup
C∈T (X;S,A)

‖(A|C)−1‖ ≤ max
C∈T (X)

‖(A|C)−1‖.

The rest of the proof follows from a straightforward modification of the proof in [57] of
Proposition 6 by using supC∈T (X;S,A) ‖(A|C)−1‖ in lieu of maxC∈T (X) ‖(A|C)−1‖.

The following theorem gives a lower bound on µ?f,X,D analogous to the one on µf,X,D
in Theorem 9. In light of Proposition 7, the lower bound on µ?f,X,D in Theorem 10 is
at least as large, and possibly much larger, than the one on µf,X,D in Theorem 9.

Theorem 10. Suppose Rn and Rm are endowed with norms and D(y, x) = 1
2
‖y − x‖2

for the norm ‖ · ‖ in Rn. Let A ∈ Rm×n, g : Rm → R ∪ {∞} and X ⊆ Rn be a
polyhedron such that A(X) has more than one point. If g is µg-strongly convex on
A(X) for the norm in Rm then the function f = g ◦ A satisfies

µ?f,X,D ≥ inf
y∈X̄

x∈X\ZA,X (y)

µg‖Ay − Ax‖2

‖ZA,X(y)− x‖2
= inf

C∈T (X;X̄,A)

µg
‖(A|C)−1‖2

.

Proof. Observe that for all y ∈ X̄ and x ∈ X

Df (y, x) = g(Ay)− g(Ax)− 〈g(Ax), A(y − x)〉 .

Since g is µg strongly convex on A(X), it follows that Df (y, x) ≥ µg‖Ay −Ax‖2/2 for
all y ∈ X̄ and x ∈ X, and it also follows that ZA,X(y) = {x ∈ X : Ax = Ay} = X̄ for
all y ∈ X̄. Therefore

µ?f,X,D = inf
x∈X\X̄

Df (x̄, x)

‖x̄− x‖2/2
≥ inf

y∈X̄
x∈X\X̄

Df (y, x)

‖y − x‖2/2
≥ inf

y∈X̄
x∈X\ZA,X (y)

µg‖Ay − Ax‖2

‖ZA,X(y)− x‖2
.

To finish, observe that A(X̄) is closed and convex and apply Proposition 7.
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Once again there is an interesting connection with the developments in [60] when
X = ∆n−1. Consider the special case when X = ∆n−1, A ∈ Rm×n has at least two
different columns, S ⊆ ∆n−1 is nonempty, and G ∈ faces(conv(A)) is the smallest face
of conv(A) that contains A(S). From [60, Theorem 3] it follows that if Rn is endowed
with the one-norm then

inf
y∈S

x∈X\ZA,X (y)

‖Ay − Ax‖
‖ZA,X(y)− x‖1

≥ min
F∈faces(G)
∅6=F 6=conv(A)

dist(F, conv(A \ F )). (3.22)

The following example illustrates the difference between µf,X,D and µ?f,X,D.

Example 5. Suppose Rn is endowed with the one-norm and D(y, x) := 1
2
‖y − x‖2

1.
Suppose Rm is endowed with the Euclidean norm, and f(x) = 1

2
‖Ax − b‖2

2 for some
A ∈ Rm×n with at least two different columns and b ∈ Rm. As noted in Example 4, in
this case

µf,∆n−1,D =
Φ(A)2

4
=

1

4

(
min

F∈faces(conv(A))
∅6=F 6=conv(A)

dist(F, conv(A \ F ))

)2

.

This relative strong convexity constant depends only on A but not on b. On the other
hand, the smallest face of conv(A) containing X̄ is

G(b) := argmin
G∈faces(conv(A))

dist(G, b),

which evidently depends on both A and b. Theorem 10 and (3.22) yield

µ?f,∆n−1,D
≥ 1

4

(
min

F∈faces(G(b))
∅6=F 6=conv(A)

dist(F, conv(A \ F ))

)2

.

3.4.2 A Sharper Lower Bound on µ]f,X,D

Suppose f : Rn → R∪{∞} is defined as f(x) = g(Ax)+〈c, x〉 where g : Rm → R∪{∞}
is a strongly convex function, A ∈ Rm×n and c ∈ Rn. Theorem 10 does not apply to
this kind of function due to the extra linear term 〈c, x〉. Indeed for a function of this
form the constant µ?f,X,D may be zero, see Example 6 below. On the other hand, the
next result shows that for a function of this form and for a polyhedral set X it is always
the case that µ]f,X,D > 0 provided a suitable linear cut is added to X.

Theorem 11. Suppose Rn and Rm are endowed with norms and D(x, y) = 1
2
‖x− y‖2

for the norm ‖·‖ in Rn. Let A ∈ Rm×n, c ∈ Rn, and X ⊆ Rn be a polyhedron such that
A(X) contains more than one point. Suppose g : Rm → R∪{∞} is µg-strongly convex
on A(X) for the norm in Rm and f : Rn → R∪{∞} is defined via f(x) = g(Ax)+〈c, x〉.
Then the vector v := 2∇f(y) is the same for all y ∈ X̄ and satisfies 〈v, x− y〉 ≥ 0
for all x ∈ X, y ∈ X̄. Furthermore, one of the following two possible cases applies
depending on the range of values of 〈v, x− y〉 for x ∈ X, y ∈ X̄.
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Case 1: For all x ∈ X, y ∈ X̄ we have 〈v, x− y〉 = 0. In this case

µ]f,X,D ≥ inf
y∈X̄

x∈X\ZA,X (y)

µg‖Ay − Ax‖2

‖ZA,X(y)− x‖2
= inf

C∈T (X;X̄,A)

µg
‖(A|C)−1‖2

.

Case 2: For some x ∈ X, y ∈ X̄ we have 〈v, x− y〉 > 0. In this case for all δ > 0

µ]f,Xδ,D ≥ inf
y∈X̄

x∈Xδ\ZM,X (y)

‖Ay − Ax‖2 + 〈v, y − x〉
‖ZM,X(y)− x‖2

≥ inf
y∈X̄

x∈Xδ\ZM,X (y)

‖My −Mx‖2

‖ZM,X(y)− x‖2

= inf
C∈T (Xδ;X̄,M)

1

‖(M |C)−1‖2
,

for the polyhedron Xδ := {x ∈ X : 〈v, x− y〉 ≤ δ for all y ∈ X̄} ⊇ X̄, the matrix
M ∈ R(m+1)×n, and the norm ‖ · ‖ in Rm+1 defined as follows

M :=

[√
µg · A

1√
δ
· vT

]
and

∥∥∥∥[ y
ym+1

]∥∥∥∥ :=
√
‖y‖2 + y2

m+1.

Proof. The optimality conditions for minx∈X f(x) imply that

〈∇f(y), x− y〉 =
〈
AT∇g(Ay) + c, x− y

〉
≥ 0 for all x ∈ X, y ∈ X̄. (3.23)

Thus for all y, y′ ∈ X̄ the strong convexity of g and (3.23) imply

µg‖Ay − Ay′‖2 ≤ 〈∇g(Ay)−∇g(Ay′), Ay − Ay′〉 = 〈∇f(y)−∇f(y′), y − y′〉 ≤ 0.

Hence Ay = Ay′ whenever y, y′ ∈ X̄. In particular, v = 2∇f(y) = 2(AT∇g(Ay) + c) is
the same for all y ∈ X̄. Furthermore, the optimality conditions for minx∈X f(x) imply
that 〈v, x− y〉 ≥ 0 for all x ∈ X, y ∈ Y ?. In particular, 〈v, y〉 = minx∈X 〈v, x〉 for all
y ∈ X̄.

Next, the strong convexity of g on A(X) implies that for all x ∈ X, y ∈ X̄

f(x)− f̄ = g(Ax)− g(Ay) + 〈c, x− y〉

≥ µg
2
‖Ax− Ay‖2 + 〈∇g(Ay), Ax− Ay〉+ 〈c, x− y〉

=
1

2

(
µg‖Ax− Ay‖2 + 〈v, x− y〉

)
.

If 〈v, x− y〉 = 0 for all x ∈ X, y ∈ X̄ then Case 1 applies. In this case ZA,X(y) = {x ∈
X : Ax = Ay} = X̄ for all y ∈ X̄ and thus

µ]f,X,D = inf
y∈X̄

x∈X\X̄

f(x)− f̄
‖y − x‖2/2

≥ inf
y∈X̄

x∈X\ZA,X (y)

µg‖Ay − Ax‖2

‖ZA,X(y)− x‖2
.
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If 〈v, x− y〉 > 0 for some x ∈ X, y ∈ X̄ then Case 2 applies. In this case ZM,X(y) =
{x ∈ X : Ax = Ay, 〈v, x〉 = 〈v, y〉} = X̄ for all y ∈ X̄ and thus

µ]f,Xδ,D = inf
y∈X̄

x∈Xδ\X̄

f(x)− f̄
‖y − x‖2/2

≥ inf
y∈X̄

x∈Xδ\ZM,X (y)

µg‖Ay − Ax‖2 + 〈v, y − x〉
‖ZM,X(y)− x‖2

.

Next, observe that for y ∈ X̄ and x ∈ Xδ

µg‖Ay − Ax‖2 + 〈v, y − x〉 ≥ µg‖Ay − Ax‖2 +
〈v, y − x〉2

δ
= ‖My −Mx‖2.

To finish, apply Proposition 7 after observing that A(X̄) is closed and convex in Case
1 and likewise for M(X̄) in Case 2.

Observe that if X in Theorem 11 is bounded then Case 2 gives a lower bound on
µ]f,X,D by taking δ := maxx∈X,y∈X̄ 〈v, x− y〉 because X = Xδ for this choice of δ.

We conclude this section with a simple example showing that µ]f,X,D > µ?f,X,D = 0
can occur. The example also shows that the additional bound on Xδ in Theorem 11,
Case 2 cannot simply be dropped without making some additional assumptions.

Example 6. Let R3 be endowed with the one-norm and let D(y, x) := 1
2
‖y − x‖2

1.
Suppose f : R3 → R is as follows

f(x) =
1

2
(x1 − x2)2 + x3.

If X := ∆2 ⊆ R3 then X̄ = {
[
1/2 1/2 0

]T}. For x =
[
0 0 1

]T
we have

f(x̄)− f(x)− 〈∇f(x), x̄− x〉 = 0 and ‖x̄− x‖1 = 2. Hence µ?f,X,D = 0. On the other

hand, Theorem 11 implies that µ]f,X,D > 0. A more careful calculation shows that in

this case µ]f,X,D = 1/2.

On the other hand, if X = R3
+ then X̄ = {

[
t t 0

]T
: t ≥ 0}. For t > 0 and

x =
[
0 0 t

]T
we have f(x) − f̄ = t and ‖X̄ − x‖1 = t. Therefore µ]f,X,D = 0.

Furthermore, in the context of Theorem 11 we have v =
[
0 0 1

]T
. Thus for all δ > 0

we have Xδ := {x ∈ X : x3 ≤ δ} and µ]f,Xδ,D = 2/δ > 0.

3.5 Convergence of First-order Methods

In our statements in this section sometimes it will be convenient to use the following
notation adapted from [50] about some functional classes. Given a convex set X ⊆
Rn, a distance-like function D : X × X → R, and positive constants L and µ, let
rSL,µ(X,D), qSL,µ(X,D), and FL,µ(X,D) be defined as follows.

rSL,µ(X,D) := {f : (f,X,D) satisfy Assumption 3 and both (3.3) and (3.4) hold},
qSL,µ(X,D) := {f : (f,X,D) satisfy Assumption 3 and both (3.3) and (3.7) hold},
FL,µ(X,D) := {f : (f,X,D) satisfy Assumption 3 and both (3.3) and (3.8) hold}.
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Observe that rSL,µ(X,D) ⊆ qSL,µ(X,D) by Proposition 3. In addition, qSL,µ(X,D) ⊆
FL,µ(X,D) when D is a squared norm as we noted in Section 3.4.

3.5.1 Mirror Descent Algorithm

Suppose h : Rn → R ∪ {∞} is convex and differentiable on X ⊆ Rn and the Bregman
proximal map

g 7→ argmin
y∈X

{〈g, y〉+ LDh(y, x)}

is computable for x ∈ X and L > 0. The mirror descent algorithm for problem (5) is
based on the following update for x ∈ X:

x+ := argmin
y∈X

{〈∇f(x), y〉+ LDh(y, x)}

Algorithm 8 gives a description of the mirror descent algorithm for (5).

Algorithm 8 Mirror descent algorithm

1: Pick x0 ∈ X ;
2: for k = 0, 1, 2, . . . do
3: choose Lk > 0
4: xk+1 = argmin

y∈X
{〈∇f(xk), y〉+ LkDh(y, xk)}

5: end for

Proposition 8 and Proposition 9 show the linear convergence of Algorithm 8 when
f ∈ qSL,µ(X,Dh) and when f ∈ FL,µ(X,Dh) respectively. We should note that Propo-
sition 8 and its proof are straightforward modifications of the linear convergence results
in [48] and [69]. The latter results rely on some relative smoothness and strong con-
vexity assumptions. Proposition 8 shows that the linear convergence of Algorithm 8
holds with a sharper rate and under the weaker quasi strong convexity assumption.
The following lemma, which is a straightforward extension of results presented in [69],
provides the crux of the proof of Proposition 8.

Lemma 1. Suppose f ∈ qSL,µ(X,Dh), x ∈ X, and

x+ = argmin
y∈X

{f(x) + 〈∇f(x), y − x〉+ LDh(y, x)}. (3.24)

Then
f(x+)− f̄ ≤ (L− µ)Dh(x̄, x)− LDh(x̄, x+). (3.25)

Proof. Since f ∈ qSL,µ(X,Dh) we have

f(x+) ≤ f(x) + 〈∇f(x), x+ − x〉+ LDh(x+, x). (3.26)
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and
f(x) ≤ f̄ + 〈∇f(x), x− x̄〉 − µDh(x̄, x). (3.27)

In addition, the three-point property of Dh [18, Lemma 3.1] yields

Dh(x+, x) = Dh(x̄, x)−Dh(x̄, x+) + 〈∇h(x+)−∇h(x), x+ − x̄〉 . (3.28)

By putting together (3.26), (3.27), and (3.28) we get

f(x+) ≤ f̄ + (L− µ)Dh(x̄, x)− LDh(x̄, x+)

+ 〈∇f(x) + L(∇h(x+)−∇h(x)), x+ − x̄〉 .

We get (3.25) by observing that the optimality conditions for (3.24) imply

〈∇f(x) + L(∇h(x+)−∇h(x)), x+ − x̄〉 ≤ 0.

Proposition 8. Suppose f ∈ qSL,µ(X,Dh). If Lk = L, k = 0, 1, . . . in Algorithm 8
then the iterates generated by Algorithm 8 satisfy

Dh(X̄, xk) ≤
(

1− µ

L

)k
Dh(X̄, x0) for k = 0, 1, . . . (3.29)

and

f(xk)− f̄ ≤ L
(

1− µ

L

)k
Dh(X̄, x0) for k = 1, 2, . . . .

Proof. Lemma 1 applied to x = xk implies that

(L− µ)Dh(x̄k, xk)− LDh(x̄k, xk+1) ≥ f(xk+1)− f̄ ≥ 0 for k = 0, 1, . . . . (3.30)

Therefore

Dh(X̄, xk+1) ≤ Dh(x̄k, xk+1) ≤
(

1− µ

L

)
Dh(x̄k, xk) for k = 0, 1, . . . .

Thus (3.29) readily follows. Inequality (3.30) also yields

f(xk)− f̄ ≤ L
(

1− µ

L

)
Dh(X̄, xk−1) ≤ L

(
1− µ

L

)k
Dh(X̄, x0) for k = 1, 2, . . . .

Proposition 8 implies that if f ∈ qSL,µ(X,Dh) then Algorithm 8 yields xk ∈ X such
that f(xk)− f̄ < ε in at most

O
(
L

µ
log

(
LDh(X̄, x0)

ε

))
iterations.

Proposition 9 below shows that the same kind of iteration bound holds when
f ∈ FL,µ(X,Dh). Observe that neither Proposition 8 nor Proposition 9 implies the
other since neither qSL,µ(X,Dh) nor FL,µ(X,Dh) necessarily includes the other. (See
Example 3 and Example 6.)
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Proposition 9. Suppose f ∈ FL,µ(X,Dh). If Lk = L, k = 0, 1, . . . in Algorithm 8
then for K = d2L/µe the iterates generated by Algorithm 8 satisfy

Dh(X̄, xk+K) ≤ Dh(X̄, xk)

2
for k = 0, 1, 2, . . . . (3.31)

In addition, Algorithm 8 yields xk ∈ X such that f(xk)− f̄ < ε in at most

O
(
L

µ
log

(
LDh(X̄, x0)

ε

))
(3.32)

iterations.

Proof. Since f ∈ FL,µ(X,Dh) and Lk = L, it follows from [48, Theorem 3.1] that the
(k +K)-th iterate generated by Algorithm 8 satisfies

Dh(X̄, xk+K) ≤ 1

µ
(f(xk+K)− f̄) ≤ L

µK
Dh(X̄, xk) ≤

Dh(X̄, xk)

2
.

Thus (3.31) follows. It also follows that k = mK, m = 1, 2, . . .

f(xmK)− f̄ ≤
LDh(X̄, x(m−1)k)

K
≤ LDh(X̄, x0)

2m−1

and thus (3.32) follows as well.

To ease our exposition we assumed Lk = L in Proposition 8 and Proposition 9.
However, it is easy to see that these two results also hold if the assumption Lk = L is
relaxed to the assumption Lk ≤ L and f(xk+1) ≤ miny∈X {〈∇f(xk), y〉+ LkDh(y, xk)}.
The latter condition is easier to implement via standard backtracking.

In the recent paper [31], we showed that if f ∈ FL,µ(X,Dh) then an accelerated
version of Algorithm 8 with periodic restart has a linear accelerated rate similar to
(3.32) but with L/µ replaced by (L/µ)1/γ where γ > 0 is the triangle scaling constant
of the Bregman distance Dh as defined in [34].

3.5.2 Frank-Wolfe Algorithm with Away Steps

Suppose X ⊆ Rn is a polytope and a vertex linear oracle for X is available, that is,
the map

g 7→ argmin
y∈X

〈g, x〉

is computable and outputs a vertex of X for all g ∈ Rn.
The Frank-Wolfe algorithm, also known as the conditional gradient algorithm, for

(5) is based on the following update for x ∈ X

u := argmin
y∈X

〈∇f(x), y〉

x+ := x+ α(u− x) for some α ∈ [0, 1].
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Each step of the Frank-Wolfe algorithm adds weight to some vertex u. The basic idea
of the Frank-Wolfe algorithm with away steps is to combine the above regular steps with
away steps that reduce weight from some vertex a. To that end, the algorithm requires
an additional vertex representation of x ∈ X. More precisely, let S(x) ⊆ vertices(X)

and λ(x) ∈ ∆(S(x)) := {z ∈ RS(x)
+ : ‖z‖1 = 1} be such that

x =
∑
s∈S(x)

λs(x)s and λ(x) > 0.

Algorithm 9 describes a Frank-Wolfe algorithm with away steps. We should highlight
that although the set vertices(X) could be immense, the algorithm does not require
it explicitly. Instead the algorithm only maintains S(x) and λ(x) that are far more
manageable. Indeed, by using the IRR procedure in [6] or its modification described in
[30], Step 10 in Algorithm 9 can guarantee that the sets S(xk) have size at most n+ 1
for k = 0, 1, . . . .

Algorithm 9 Frank-Wolfe algorithm with away steps

1: Pick x0 ∈ vertices(X); S(x0) := {x0};λ(x0) = 1
2: for k = 0, 1, 2, . . . do
3: u := argminy∈X 〈∇f(xk), y〉 ; a := argmaxy∈S(xk) 〈∇f(xk), y〉
4: if 〈∇f(xk), u− xk〉 < 〈∇f(xk), xk − a〉 then (regular step)
5: v := u− xk; αmax = 1;
6: else (away step)

7: v := xk − a; αmax = λa(xk)
1−λa(xk)

;
8: end if
9: xk+1 := xk + αkv for some αk ∈ [0, αmax]
10: update S(xk+1) and λ(xk+1)
11: end for

Proposition 10 below establishes the linear convergence of Algorithm 9 under suit-
able assumptions on the chosen direction v at each iteration. This proposition can be
readily inferred from the ideas and results introduced in [42] and further developed in
[6, 60]. The rate of convergence in Proposition 10 stated in terms of the ratio σ/L is at
least as sharp as the sharpest of the linear rates established in [6, 42, 60]. To provide a
full picture of this linear convergence result, the section 3.6 gives a proof of Proposition
10 that replicates the main ideas in [6, 42, 60]. We discuss only the linear convergence
of Algorithm 9 but the same techniques yield similar results for other variants of the
Frank-Wolfe algorithm as those discussed in [42] or the one recently developed in [15].

Proposition 10. Suppose X ⊆ Rn is a polytope and there exist positive constants σ
and L such that the following conditions hold at each iteration k of Algorithm 9. First,

〈∇f(xk), v〉2 ≥ σ(f(xk)− f̄). (3.33)
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Second, the stepsize αk in Step 9 of Algorithm 9 is chosen so that

f(xk+1) = f(xk + αkv) ≤ min
α∈[0,αmax]

{
f(xk) + α 〈∇f(xk), v〉+

Lα2

2

}
. (3.34)

Then the iterates generated by Algorithm 9 satisfy

f(xk)− f̄ ≤
(

1−min

{
1

2
,
σ

2L

})k/2
(f(x0)− f̄) for k = 1, 2, . . . .

We next give bounds on the constants L and σ in Proposition 10 in terms of the
relative smoothness and quasi strong convexity or D-functional growth constants of a
canonical function f̃ associated to f and X. To that end, let A ∈ Rn×N denote the
matrix whose columns are vertices(X) and let f̃ : RN−1 → R ∪ {∞} be defined via
f̃ := f ◦ A. Thus X = conv(A) = {Az : z ∈ ∆N−1} and for all x = Az ∈ X we have
f(x) = f̃(z). Once again, we observe that although N could be immense, both A and
f̃ are used only in our analysis but Algorithm 9 does not require them explicitly. Let

∆?
N−1 := {z ∈ ∆N−1 : Az ∈ X̄} =

{
z ∈ ∆N−1 : f̃(z) = min

w∈∆N−1

f̃(w)

}
.

Consider the following distance-like function in RN :

D(z, w) :=
1

2
‖z − w‖2

1.

Observe that f̃ is strongly convex relative to (∆N−1, D) if f is strongly convex on X.
Indeed, Proposition 4, Theorem 9, and identities (3.18) and (3.17) imply that if f is
Lf Lipschitz and µf strongly convex on X then

Lf̃ ,∆N−1,D
≤ Lf · diam(A)2

4
and µ?

f̃ ,∆N−1,D
≥ µf̃ ,∆N−1,D

≥ µf · Φ(A)2

4
.

Similarly, Theorem 11 implies that µ]
f̃ ,∆N−1,D

> 0 if f is of the form f(x) = g(Ex) +

〈c, x〉 for g strongly convex.

The following result provides an interesting link between the conditioning of f̃
relative to (∆N−1, D) and the constants L and σ in Proposition 10. It also shows
an interesting identity between the relative smoothness constant Lf̃ ,∆N−1,D

and the

following away curvature constant CA
f defined by Lacoste-Julien and Jaggi [42]:

CA
f := sup

x,u,w∈X, α>0
x+α(u−w)∈X

2

α2
(f(x+ α(u− w))− f(x)− α 〈∇f(x), u− w〉). (3.35)

We note that this expression for CA
f is equivalent to but not identical to the definition

of CA
f in [42].

71



Proposition 11. Suppose f,X,A, f̃ , and D are as above.

(a) Inequality (3.33) holds for σ = 2µ?
f̃ ,∆N−1,D

.

(b) Inequality (3.33) holds for σ = µ]
f̃ ,∆N−1,D

/2.

(c) 4Lf̃ ,∆N−1,D
= CA

f . In particular, inequality (3.34) holds for L = 4Lf̃ ,∆N−1,D
and

αk := argmin
α∈[0,αmax]

{
f(xk) + α 〈∇f(xk), v〉+

Lα2

2

}
= min

{
−〈∇f(xk), v〉

L
, αmax

}
.

(3.36)

Proof. Suppose that we are at iteration k of Algorithm 9. To ease notation, let x := xk
and S := S(xk). Then u = argminy∈X 〈∇f(x), y〉 , a := argmaxs∈S 〈∇f(x), s〉 , and

−〈∇f(x), v〉 ≥ 〈∇f(x), a− u〉
2

. (3.37)

In addition, x =
∑

s∈S λs(x)s for some λ(x) ∈ ∆(S). By setting all components outside
S to zero, we can take λ(x) ∈ ∆N−1 and write x = Aλ(x). From the construction of
A and D it follows that x − x̄ = δ(w − y)/2 for δ = ‖∆?

N−1 − λ(x)‖1 and for some
w = Az ∈ conv(S) and y ∈ X. Then

〈∇f(x), x− x̄〉 =
δ

2
〈∇f(x), w − y〉

≤ δ

2

(
max

w∈conv(S)
〈∇f(x), w〉 −min

y∈X
〈∇f(x), y〉

)
=
δ

2
〈∇f(x), a− u〉 . (3.38)

We next consider each part separately.

(a) For µ? := µ?
f̃ ,∆N−1,D

inequality (3.38) implies

µ?δ2

2
≤ f̄ − f(x) + 〈∇f(x), x− x̄〉 ≤ f̄ − f(x) +

δ

2
〈∇f(x), a− u〉 .

Rearranging and applying the arithmetic-mean geometric-mean inequality we get

〈∇f(x), a− u〉 ≥ µ?δ + 2(f(x)− f̄) ≥ 2
√

2µ?(f(x)− f̄).

Thus (3.37) implies that (3.33) holds for σ = 2µ?.

(b) For µ] := µ]
f̃ ,∆N−1,D

the convexity of f and inequality (3.38) imply

µ]δ2

2
≤ f(x)− f̄ ≤ 〈∇f(x), x− x̄〉 ≤ δ

2
〈∇f(x), a− u〉 .
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Hence

〈∇f(x), a− u〉 ≥
√

2µ](f(x)− f̄).

Again (3.37) implies that (3.33) holds for σ = µ]/2.

(c) We first show 4Lf̃ ,∆N−1,D
≤ CA

f . To that end, suppose ỹ, x̃ ∈ ∆N−1 and α :=

2‖ỹ − x̃‖1 > 0. Then Aỹ − Ax̃ = αA(ũ − w̃) for some ũ, w̃ ∈ ∆N−1. For x :=
Ax̃, y := Aỹ, u := Aũ, w := Aw̃ we have y = x+ α(u− w) ∈ X and thus

Df̃ (ỹ, x̃) = f(y)− f(x)− α 〈∇f(x), u− w〉 ≤
CA
f

2
α2 =

CA
f

4
D(ỹ, x̃).

Since this holds for all ỹ, x̃ ∈ ∆N−1 with ‖ỹ− x̃‖1 > 0 it follows that Lf̃ ,∆N−1,D
≤

CA
f /4.

We next show the reverse inequality 4Lf̃ ,∆N−1,D
≥ CA

f via a similar argument.

Suppose x, u, w ∈ X and α > 0 are such that y := x + α(u − w) ∈ X. Then
there exist ũ, w̃, x̃, ỹ ∈ ∆N−1 such that u = Aũ, w = Aw̃, x = Ax̃, y = Aỹ and
‖ỹ − x̃‖1 = α‖ũ− w̃‖1. Therefore

f(x+ α(u− w))− f(x)− α 〈∇f(x), u− w〉 = Df̃ (ỹ, x̃)

≤ Lf̃ ,∆N−1,D
·D(ỹ, x̃) = Lf̃ ,∆N−1,D

· α
2‖ũ− w̃‖2

1

2
≤ 4Lf̃ ,∆N−1,D

· α
2

2
.

The last step holds because ‖ũ − w̃‖1 ≤ 2 for all ũ, w̃ ∈ ∆N−1. Since the above
inequality holds for all x, u, w ∈ X and α > 0 such that y := x+ α(u− w) ∈ X,
it follows that CA

f ≤ 4Lf̃ ,∆N−1,D
.

The identity 4Lf̃ ,∆N−1,D
= CA

f and (3.35) readily imply that for L = 4Lf̃ ,∆N−1,D

at iteration k of Algorithm 9 we have

f(xk + αv) ≤ f(xk) + α 〈∇f(xk), v〉+
Lα2

2
for all α ∈ [0, αmax].

Thus (3.34) holds for L = 4L and αk chosen as in (3.36).

3.6 Proof of Proposition 10

We consider separately the three possible cases that can occur at iteration k, namely
αk < αmax, αk = αmax ≥ 1, and αk = αmax < 1.

Case 1: αk < αmax. In this case |S(xk+1)| ≤ |S(xk)| + 1. In addition, inequalities
(3.33) and (3.34) imply that

f(xk+1)− f(xk) ≤ −
〈∇f(xk), v〉2

2L
≤ − σ

2L
(f(xk)− f̄). (3.39)
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Case 2: αk = αmax ≥ 1. In this case |S(xk+1)| ≤ |S(xk)|. In addition, inequality
(3.34), the choice of v, and the convexity of f imply that

f(xk+1)− f(xk) ≤
1

2
〈∇f(xk), v〉 ≤

1

2
〈∇f(xk), x̄k − xk〉 ≤ −

1

2
(f(xk)− f̄). (3.40)

Case 3: αk = αmax < 1. In this case |S(xk+1)| ≤ |S(xk)| − 1. In addition, (3.34)
implies that

f(xk+1)− f(xk) ≤ 0.

We next show that in the first k iterations Case 3 can occur at most k/2 times by
using the argument introduced by Lacoste-Julien and Jaggi in [42]. Since |S(x0)| = 1
and |S(xi)| ≥ 1 for i = 1, 2, . . . , it follows that for each iteration when Case 3 occurred
there must have been at least one previous iteration when Case 1 occurred. Hence in
the first k iterations Case 3 could occur at most k/2 times.

To finish the proof, observe that at every iteration k when Case 1 or Case 2 occur
inequalities (3.39) and (3.40) yield

f(xk+1)− f̄ = f(xk)− f̄ + f(xk+1)− f(xk) ≤
(

1−min

{
1

2
,
σ

2L

})
(f(xk)− f̄).

We note that the minimum in the last expression is necessary because σ/L > 1 may
indeed occur. For a concrete example, see [60, Example 6].
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Chapter 4

Rescaling: Enhanced Basic
Procedures for the Projection and
Rescaling Algorithm

4.1 Introduction

Peña and Soheili [61] propose a two-step projection and rescaling algorithm, which
extends an algorithm by Chubanov [20], to solve the conic feasibility problem

Find x ∈ L ∩ Rn
++ (4.1)

where L subspace of Rn [20, 61]. Assuming the projection matrix, PL, for L is available
we can rewrite (4.1) as

Find x such that PLx > 0. (4.2)

The projection and rescaling algorithm consists of two subprocedures:

1. Basic Procedure (Projection): This procedure uses PL to find a point in L∩Rn
++

provided this cone contains a deeply interior point. This is implemented via one
of four schemes based on the Von Neumann/Perceptron algorithm.

2. Rescaling : Using the final iterate from the basic procedure, this step rescales
L ∩Rn

++ such that its interior points - provided L ∩Rn
++ 6= ∅ - become “deeper”

in the interior of Rn
+.

In this chapter, we propose enhancements to three of the four Von Neumann/Perceptron
basic procedures in [61]. The key feature of these three procedures that allows for our
enhancements is that the number of non-zero entries in x grows by at most one in
each iteration. Consequently, our enhancements can efficiently and iteratively apply
a technique used to prove Carathéodory’s Theorem. It remains an interesting open
question how fast the Smooth Perceptron, the fourth basic procedure in [61], grows
the number of non-zero entries. These enhanced procedures improve the complexity of
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the basic procedure from O(n4m) to O(n2m3) operations when L has dimension m: a
significant improvement when m << n.

Fundamentally, the basic procedure of Peña and Soheili adapts the Von Neumann
and Perceptron procedures to iteratively reduce ‖PLx‖2 on the standard n dimensional
simplex ∆n−1 := {x ∈ Rn : ‖x‖1 = 1, x ≥ 0} until either PLx > 0 or ‖PLx‖2 ≤

1
3
√
n
‖x‖∞. Thus, the basic procedure intends to approximately solve the subproblem

min
x∈∆n−1

‖PLx‖2
2. (4.3)

The convergence proofs in [61] depends on the observation that ‖x‖∞ ≥ 1
n

for all
x ∈ ∆n−1. As such, the reasoning in [61] yields a faster rate provided we restrict the
iterates of the Von Neumann/Perceptron schemes to proper faces of ∆n−1. If Q ∈ Rn×m

is an orthonormal basis for L then PL = QQT and we may rephrase (4.3) as

min
x∈∆n−1

‖QTx‖2
2 = min

z∈conv(QT )
‖z‖2

2 (4.4)

where conv(QT ) is the convex hull of the columns of QT . By Carathéodory’s Theorem,
any point in conv(QT ) can be written as convex combination of at most m+ 1 columns
of QT . Our proposed enhancements apply this observation to ensure that each of the
iterates is a convex combinations of no more than m+ 1 columns of QT .

Our enhanced basic procedures iteratively reduce the objective (4.4) using a Von
Neumann/Perceptron scheme which applies a modified version of the Incremental Rep-
resentation Reduction (IRR) procedure of [6] at each iteration. When provided a point
z ∈ conv(QT ), the IRR outputs a new affinely independent, convex representation of
the point z provided it already contains a sufficiently large set of affinely independent
vectors in its support. Whereas the IRR operates in O(m3) time, our version operates
in O(m2) time by allowing for vectors in the representation of x that have zero sup-
port. We call this new version, the Modified Incremental Representation Reduction
procedure (mIRR).

This chapter is organized as follows. Section 2 describes the mIRR, and proves
important properties of it including its O(m2) complexity. Section 3 describes the
limited support Von Neumann and Perceptron algorithms.

4.2 Modified Incremental Representation Reduc-

tion

The heart of our improved basic procedure is a modified version of the Incremental
Representation Reduction Procedure of [6]. This subprocedure iteratively applies the
main technique used in standard proofs of Carathéodory’s Theorem [36]. To simplify

notation, given a matrix A ∈ Rm×n we define Ã as the augmented matrix

[
1 . . . 1
A

]
.

If B = [B(1), ..., B(k)] ⊆ {1, ..., n} is an ordered set of indices and x ∈ Rn we let
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AB = [AB(1)...AB(k)] ∈ Rm×k where AB(i) denotes the B(i)-th column of A and xB =
(xB(1)...xB(k)) ∈ Rk and xB(i) denotes the B(i)-th entry of x. Similarly, we regard
Bc = [Bc(1), ..., Bc(n − k)] = {1, ..., n} \ B as an ordered set of indices and define
xBc = (xBc(1)...xBc(n−k)) ∈ Rn−k and ABc = [ABc(1)...ABc(n−k)] ∈ Rm×(n−k). Given
a full column rank matrix M ∈ Rk×l, we let M † denote its unique pseudoinverse,
(MTM)−1MT . Ik×k will denote the identity matrix of dimensions k × k and 0k×` will
denote the zero matrix of dimensions k × `. For i ∈ {1, .., n}, let ei denote the i-th
coordinate vector. This notation strongly mimics the notation used in [13] to present
the revised Simplex method. The resemblance is entirely intentional; our method
strongly resembles the revised Simplex method.

Theorem 12. Suppose B ⊆ {1, ..., n} is an ordered set of indices such that AB consists
of affinely independent columns and Ã†B is known. If z = Ax = ABxB +Ajxj for some
x ∈ ∆n−1 and j ∈ {1, ..., n}\B then we can find x+ ∈ ∆n−1, an ordered set of indices
B+ ⊆ B′ :=

[
B j

]
, and Ã†B+ such that z = AB+x+

B+ and AB+ consists of affinely
independent columns in O(m2) operations.

Proof. There are two cases we must tackle:

1. Ãj 6= ÃBÃ
†
BÃj: Aj is affinely independent of the columns of AB, i.e. the matrix[

AB Aj
]

has affinely independent columns.

2. Ãj = ÃBÃ
†
BÃj: Aj is affinely dependent on the columns of AB, i.e. the matrix[

AB Aj
]

has affinely dependent columns.

Determining the equality of Ãj and ÃBÃ
†
BÃj requires vector-matrix multiplication, an

O(m2) operation. To simplify notation, we let k := |B|.

Case 1 (Ãj 6= ÃBÃ
†
BÃj): In this case, let B+ = B′ and x+ = x. We claim that Ã†B+ is

given by the formula

Ã†B+ =

[
Ã†B

01×(m+1)

]
−
[
Ã†BÃj
−1

]
ÃTj (I(m+1)×(m+1) − ÃBÃ†B)

ÃTj (I(m+1)×(m+1) − ÃBÃ†B)Ãj
. (4.5)

This may be seen as an application of the Sherman-Morrison formula for the rank-one
update of a matrix inverse. The quantity

ÃTj (I(m+1)×(m+1) − ÃBÃ†B)Ãj = ‖Ãj − ÃBÃ†BÃj‖
2

is non-zero by hypothesis and thus the expression on the right hand side of (4.5) is well
defined. It suffices to verify that right multiplication of the right hand side of (4.5) by
ÃB+ =

[
ÃB Ãj

]
yields the identity matrix. We compute[
Ã†B

01×(m+1)

] [
ÃB Ãj

]
=

[
Ã†BÃB Ã†BÃj
01×k 0

]
=

[
Ik×k Ã†BÃj
01×k 0

]
(4.6)

ÃTj (I(m+1)×(m+1) − ÃBÃ†B)
[
ÃB Ãj

]
= ÃTj (I(m+1)×(m+1) − ÃBÃ†B)Ãj

[
01×k 1

]
. (4.7)
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Observe that the right hand side of (4.7) is non-zero since Ãj 6= ÃBÃ
†
BÃj. Combining

equations (4.6) and (4.7) yields([
Ã†B

01×(m+1)

]
−
[
Ã†BÃj
−1

]
ÃTj (I(m+1)×(m+1) − ÃBÃ†B)

ÃTj (I(m+1)×(m+1) − ÃBÃ†B)Ãj

)[
ÃB Ãj

]
=

[
Ik×k Ã†BÃj
01×k 0

]
−
[

0 Ã†BÃj
01×k −1

]
= I(k+1)×(k+1) (4.8)

thus verifying our formula for Ã†B+ . The formula (4.5) uses matrix addition and vector-
matrix multiplication so it takes at most O(m2) operations.

Case 2 (Ãj = ÃBÃ
†
BÃj): Let u =

[
Ã†BÃj
−1

]
, θ∗ = mini:ui<0

(
−xB′(i)

ui

)
, x+

B′ = xB′ + θ∗u,

and x+
(B′)c = 0. We must show that x+ ∈ ∆n−1. By hypothesis, u is the solution to the

system [
ÃB Ãj

]
u = 0(m+1)×1

because Ãj = ÃBÃ
†
BÃj. Hence,

∑k+1
i=1 ui = 0 which implies

k+1∑
i=1

x+
B′(i) =

k+1∑
i=1

xB′(i) = 1.

Moreover, the definition of θ∗ ensures x+ ≥ 0 completing our proof that x+ ∈ ∆n−1.
Next, we construct B+ and Ã†B+ . Let i∗ denote the smallest index such that

−xB′(i∗)
ui∗

= θ∗ and ui∗ < 0. By construction, θ∗ ensures x+
B′(i∗) = 0. We now have

two subcases: B(i∗) = j and B(i∗) 6= j. In the first case, let B+ = B and Ã†B+ = Ã†B.
By hypothesis, AB+ = AB consists of affinely independent columns. In the second
case, let B+(i) = B(i) for i 6= i∗ and B+(i∗) = j. We must show that AB+ consists of
affinely independent columns. Assume for the sake of contradiction that it does not.
Then there must exist some w ∈ Rk+1 such that wi∗ = 0 and

0(m+1)×1 = ÃB+w − Ãj = ÃBw − Ãj

but this implies that

ÃB

(
w − Ã†BÃj

)
= Ãj − Ãj = 0(m+1)×1.

since we assume Ãj = ÃBÃ
†
BÃj. By affine independence of the columns of AB we

determine that
w − Ã†BÃj = 0(m+1)×1 ⇔ w = Ã†BÃj

so that the i∗-th entry of Ã†BÃj, which is precisely ui∗ , is zero: a contradiction. Thus,
the columns of AB+ are affinely independent. Finally, we prove that it is possible
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to derive AB+ in O(m2) operations in this second case. Form the augmented matrix[
Ã†B Ã†BÃj

]
. Add to each row a multiple of the i∗-th row to make the last column

equal to the coordinate vector ei∗ . The first |B| columns of the resultant matrix are
Ã†B+ . This requires no more than O(m2) operations since at most m row operations
are required.

The proof of this theorem immediately yields our core algorithm as well as an easy
corollary.

Algorithm 10 Modified Incremental Representation Reduction Procedure (mIRR)

1: Input: An ordered set of indices B = [B(1), ..., B(k)] ⊆ {1, ..., n} such that AB is a
matrix with affinely independent columns, Ã†B, j /∈ B, and z = Ax = ABxB +Ajxj
for some x ∈ ∆n−1 with x[B,j]c = 0.

2: Compute u′ = Ã†BÃj and u =
[
(u′)T −1

]
. If ÃBu

′ 6= Ãj then the columns of[
ÃB Ãj

]
are affinely independent. In this case, output x+ = x, B+ = B ∪ {j},

and

Ã†B+ =

[
Ã†B

01×(m+1)

]
−
[
Ã†BÃj

1

]
ÃTj (I(m+1)×(m+1) − ÃBÃ†B)

ÃTj (I(m+1)×(m+1) − ÃBÃ†B)Ãj
,

to complete the procedure. Otherwise, proceed to the next step.

3: Let θ∗ = mini:ui<0

(
−xi
ui

)
, i∗ be the smallest index for which θ∗ is achieved, and

x+
[B,j] = x[B,j] + θ∗u, x+

[B,j]c = 0(n−(k+1))×1.

If i∗ = j then output x+, B+ = B, and ÃB+ = ÃB to complete the procedure.
Otherwise, proceed to the next step.

4: Let B+ = [B(1), ..., B(i∗ − 1), j, B(i∗), ..., B(k)]. Form the |B| × (|B| + 1) matrix[
Ã†B u′

]
. Add to each row a multiple of the i∗-th row to make the last column

equal to the unit vector ei∗ . The first |B| columns of the resultant matrix are Ã†B+ .

Output B+, x+ and Ã†B+ .

Corollary 7. The mIRR produces an affinely independent representation, z = Ax =
AB+xB+ with x ∈ ∆n−1 and x(B+)c = 0(n−|B+|)×1, of the input point z = Ax and the

pseudoinverse Ã†B+ in O(m2) operations.

4.3 Limited Support Basic Procedures

In this section we propose each of our modified basic procedures. Recall that we assume
the availability of an orthonormal basis for L and that Q ∈ Rn×m is the matrix whose
columns are these basis vectors. The convergence results of [61] for the original basic
procedures depend upon the maximum size of the support of the iterates. If it were
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possible to ensure that the iterates maintained affinely independent support then the
support would have maximum size m+ 1. This is the crux of our enhanced procedures
and the mIRR enables us to do this. Our enhanced procedures start with a single
column of the matrix QT . Then, until the stopping condition is reached, they take a
Von-Neumann/Perceptron-like step - which may increase the size of the support by at
most one - followed by an application of mIRR to ensure the support remains affinely
independent. We will let {qi}n1 denote the columns of QT and we use P in place of PL.
Given z ∈ R` for some ` ∈ N, we let z+ = (max{z1, 0}, ...,max{z`, 0}).

The first two schemes, the Limited Support Von Neumann and Limited Support
Perceptron, are subsumed in the following framework which we call the Limited Support
Scheme (LSS). Each of these procedures is an enhancement of those found in [61] using
mIRR. Our modified schemes exchange the roles played by xt and zt in [61][Algorithm
5] to accord with our notation in the mIRR. Namely, we want to ensure each xt is an
element of the simplex.

Algorithm 11 Limited Support Scheme

x0 = e1, z0 = QTx0 = q1, B0 = {1}, Q̃†B0
= 1
‖q̃1‖ q̃

T
1 , t = 0

while Pxt 6> 0 and ‖(Pxt)+‖ ≥ 1
3
√
n
‖xt‖∞ do

Let j = argmini∈[n] 〈qi, zt〉
x′t+1 = xt + θt(ej − xt)
zt+1 = QTx′t+1

if j /∈ Bt then
(xt+1, Bt+1, Q̃

†
Bt+1

) = mIRR(Bt, Q̃
†
Bt
, j, x′t+1, Qj)

else
xt+1 = x′t+1, Bt+1 = Bt, Q̃

†
Bt+1

= Q̃†Bt
end if
t = t+ 1

end while

If θt = 1
t+1

then the resulting procedure is referred to as the Limited Support
Perceptron Scheme (LSP). If θt is determine by an exact line search then the resulting
procedure is referred to as the Limited Support Von Neumann Scheme (LSVN).

Proposition 12. The following hold for algorithms LSP and LSVN:

1. For all t ≥ 0 such that LSP or LSVN have not halted, ‖zt‖2 ≤ 1
t
.

2. The stopping condition, Pxt > 0 or ‖(Pxt)+‖ ≤ ‖xt‖∞
3
√
n

, occurs in at most 9(m +

1)2n iterations.

3. LSP and LSVN require O(m3n2) arithmetic operations.
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Proof.

1. This part of our proposition is known from [61].

2. If zt has affinely independent columns throughout the algorithm then

|{i ∈ {1, ..., n} : xi > 0}| ≤ |Bt| ≤ m+ 1.

In this case, ‖xt‖∞ ≥ 1
m+1

since xt ∈ ∆m. This implies that 1
3
√
n
‖x‖∞ ≥ 1

3(m+1)
√
n
.

As ‖(Px)+‖ ≤ ‖Px‖, we conclude from 1 that the one of the two stopping conditions
occurs by t = 9(m+ 1)2n.

We proceed by induction to show that zt has affinely independent columns in its sup-
port and concurrently that LSS maintains the pseudoinverse of the matrix formed by
the augmented columns in zt’s support. This is readily seen to be true for z0 and QB0 .
Suppose zt has affinely independent columns and Q̃†Bt is available. Then x′t+1 has at
most one additional non-zero entry xj. Indeed, as we highlighted in the introduction,
this is they key feature that permits our application of the mIRR. By corollary 7, the
mIRR will generate xt+1 and Q̃†Bt+1

such that zt+1 = QTxt+1 and the non-zero entries

of xt+1, which are given by Bt+1, correspond to affinely independent columns of QT .

3. By part 1, LSP and LSVN terminate in at most t = 9(m + 1)2n main iterations.
Each of the operations besides mIRR requires at most nm operations while corollary
7 states mIRR requires O(m2) operations. Since m2 ≤ nm, we conclude each iteration
has computational cost O(nm). Thus, the number of required arithmetic operations
for LSP and LSVN is O(m3n2).

4.3.1 Limited Support Von Neumann with Away Steps Scheme

Here we propose a limited support variation of the Von Neumann with Away Steps
scheme proposed in [61]. This procedure is essentially the same as above except that
it allows for “away” directions.
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Algorithm 12 Limited Support Von Neumann with Away Steps Scheme (LSVN)

x0 = e1, z0 = QTx0 = q1, B0 = {1}, Q̃†B0
= 1
‖q̃1‖ q̃

T
1 , t = 0

while Pxt 6> 0 and ‖(Pxt)+‖ ≥ 1
3
√
n
‖xt‖∞ do

Let j = argmini∈[n] 〈qi, zt〉,k = argmaxi∈[n] 〈qi, zt〉
if ‖zt‖2 − 〈qj, zt〉 > 〈qk, zt〉 − ‖zt‖2 then

(Regular Step) a := ej − xt; θmax = 1
else

(Away Step) a := xt − ek; θmax =
(xt)j

1−(xt)j

end if
θt = argminθ∈[0,θmax] ‖P (xt + θa)‖2 = min

{
θmax,− 〈xt,Pa〉‖Pa‖2

}
x′t+1 = xt + θta
zt+1 = QTx′t+1

if j /∈ Bt and a regular step is taken then
(xt+1, Bt+1, Q̃

†
Bt+1

) = mIRR(Bt, Q̃
†
Bt
, j, x′t+1, Qj)

else
xt+1 = x′t+1, Bt+1 = Bt, Q̃

†
Bt+1

= Q̃†Bt
end if
t = t+ 1

end while

Proposition 13. The following hold for algorithm LSVNA:

1. For all t ≥ 0 such that LSVNA has not halted, ‖zt‖2 ≤ 1
t
.

2. The stopping condition, Pxt > 0 or ‖(Pxt)+‖ ≤ ‖xt‖∞
3
√
n

, occurs in at most 9(m +

1)2n iterations.

3. LSVNA requires O(m3n2) arithmetic operations.

Proof. The proof of the first part of the proposition is known from [61]. The remaining
parts follow from similar reasoning to that in the proof of proposition 12.
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Conclusion

Summary

In this section, we summarize our findings in the four chapters that comprise this thesis.

• In chapter 1, we applied the analysis of [59] to the class of proximal gradient
methods. This method yielded known, modern convergence rates for the proximal
gradient, accelerated proximal gradient, and proximal subgradient methods under
assumptions weaker than those found in the literature. This chapter is based on
our published paper [33].

• In chapter 2, we extended the analysis of chapter 1 and [59] to the class of Breg-
man proximal first-order methods, a class of first-order methods that is both
more general and flexible than proximal gradient methods. Again, we derived
convergence rates for this class of methods under weaker than previously em-
ployed conditions. This chapter is based on our paper [31] which is currently
under review.

• In chapter 3, we proposed condition numbers for a differentiable convex function
relative to a domain and a distance-like function on the domain. We demon-
strated that these condition numbers naturally arise in the convergence analyses
of first-order methods and that they retain much of the geometric flavor of the
standard condition number of a convex function. This chapter is based on our
paper [32] which is currently under review.

• In chapter 4, we proposed three enhanced versions of the basic procedures for
the Projection and Rescaling Algorithm of [61]. These enhancements yield a
substantially improved convergence rate when the subspace L has dimension
sufficiently smaller than that of the ambient Euclidean space. This chapter is
based on our published paper [30].
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Extensions and Future Work

Acceleration

An alternative and intriguing framework for explaining acceleration examines first-
order methods as discretizations of ordinary differential equations. Prominent examples
of this approach include [68, 41]. However, these techniques have yet to be applied to
derive the convergence rates of the primal gradient schemes of [48] or their accelerated
variants in [34]. A future interest is the analysis of these methods using a differential
equations-based framework.

Conditioning and Frank-Wolfe

Seemingly all of the research on the Frank-Wolfe algorithm assumes that the feasible
set is bounded. For polyhedrally constrained convex optimization problems, such as
the non-negative least squares problem

min
x∈Rn+

1

2
‖Ax− b‖2

2

where A ∈ Rm×n and b ∈ Rm, this condition is not satisfied. The compactness hypoth-
esis precludes Frank-Wolfe’s defining linear subproblem from being unbounded and
thus producing undefined search directions. However, for unbounded linear problems
some well-known solvers such as the Simplex return an extreme ray along which the
objective descends to −∞. This hints at one possible path for extending the Frank-
Wolfe algorithm to unbounded domains. This potential extension of the Frank-Wolfe
algorithm is one of our topics of interest.

Convergence Analysis with Approximately Computable Breg-
man Proximal Maps

The literature on Bregman proximal gradient methods assumes the computability of
the Bregman proximal map

(x, g) 7→ argmin
y∈Rn

{〈g, y〉+ Ψ(y) + LDh(y, x)} . (4.9)

Yet in practice this map may only be approximately computable. Thus, in light of the
practical relevance of approximate computablity of this map, one direction of interest
is the extension of our convergence analysis to this case.
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