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Abstract

In this thesis, a family of integral representation results are proved for problems involving
energies with different dimensionalities and multiscale interactions. The first part is work
in the framework of functions of bounded Hessian, with an eye towards application to the
theory of second order structured deformations. A relaxation theorem for BH functionals
is obtained in the spirit of the 1992 work of Ambrosio and Dal Maso, Fonseca and Miiller
within the BV context. An integral representation theorem is established for abstract second
order structured deformations functionals, using proof techniques from the global method for
integral representation introduced in 1998 by Bouchitté, Fonseca and Mascarenhas. The
second family of results concerns systems featuring simultaneous homogenization and phase
transition effects. These are studied via the technique of I'-convergence, and multiple regimes
are considered corresponding to the relative scaling of the phase transition thickness and the
scale of the heterogeneity. In particular, I'-limit results are proved in the general case of
vector-valued functions when the two rates are commensurate and when the frequency of the

heterogeneity is sufficiently small with respect to the thickness.



CONTENTS CONTENTS

Contents
(1__Introductionl
[L1_Structured Deformationsand BHl . . . ... ... ... ... ... ... ...
(1.2 Homogenization and phase transition| . . . . . . . . .. ... .. .. .. ...
(1.3 Publications resulting from this thesis|. . . . . . .. .. ... ... ... ... 14
2__Preliminaries| 15
[2.1  Finite nonnegative Radon measures| . . . . . .. .. ... ... ... ... .. 15
[2.2  Sets of finite perimeter| . . . . . .. ... 17
2.3 [T'-convergence| . . . . . . . . ... 18
[2.4  Bounded Hessian functions and 2-quasiconvexity|. . . . . . . . . . . .. ... 19
B__Structured Deformations and BH] 31
B.1 Statement of main results] . . . .. ... ..o oo 31
[3.2  Density result| . . . . . . .. 31
[3.2.1  Step 1: Lower bound| . . . . . . . .. .. ... ... ... 33
[3.2.2  Step 2: Upper bound| . . . . . . . .. .. ... L. 40
.23 A BHextensionresult] . .. ... ... ... .. ... ......... 46
[3.3 The integral relaxation theorem| . . . . . . . . . .. ... ... ... 51
[3.3.1 On coercivity] . . . . . . . . . . ... 52
[3.3.2 Step 1: V2| . . . . . . 55
[3.3.3  Step 2: D(Vu)|l . . . o o oo 59
[3.4  Global method in SDo| . . . . . . . . .. 65
[3.4.1 An approximation lemmal . . . . .. ... ... ... ... ... 65
[3.4.2  The global method| . . . . . ... .. ... ... 0oL 69
[3.4.3  Applications (5D, integral representation)| . . . . . . ... ... ... 82
[3.4.4  Applications (SBH, BH integral representation)| . . . ... .. ... 87
[4 Phase Transitions and Homogenization| 92
M1 Statement of main results . . . .. ... ... oo 92
[4.1.1 The case € o 92
412 Thecaseo =2 ... ... . . . . . . e 94
4.2 T'he case ¢ O o e 97
[4.2.1 A homogenization lemma] . . . . . ... ... ... ... ... ... 98
[4.2.2  'The I'-convergence result| . . . . . . . .. .. ... ... ... ... 100
4.3 Thecase o =&l . .. . . . . . . e 102




CONTENTS CONTENTS
[4.3.1  Some technical resultsl . . . . ... ... .. ... .. .. L. 102
[4.3.2  Properties of the functiono| . . . . . .. .. .. ... ... ... 110
[4.3.3  Compactness| . . . . . . . . . e 122
[4.3.4  Liminf inequality| . . . . .. ... ... ... o 123
[4.3.5 Limsup mequality|. . . . .. ... ... oo 126
[4.3.6 Continuityof of . . . . . . . . . . ... 138
L References| 139

IT



1 INTRODUCTION

1 Introduction

This thesis consists of mathematical results in the calculus of variations motivated by ques-
tions in materials science. A recurrent feature of these problems is the presence of microstruc-
ture coupled with macroscopic effects. We seek to understand the behavior of minimizers
to families of multi-scale problems by considering the microstructure to be infinitesimally
small compared to the macroscopic structure. In this endeavour, we make frequent use of
[-convergence techniques, due to De Giorgi [33]. By taking the I'-limit of the multi-scale
problems as the microstructure becomes infinitely fine, we can determine an “effective” func-
tional, in which the multiple scales decouple, that describes the asymptotic behavior of the
family of functionals.

In order to understand the limiting processes, one hopes to prove integral representation
results, allowing us to work directly with the effective functional. To this end, we use so-called
“blow-up” techniques developed by Fonseca and Miiller [45] to characterize the pointwise
behavior of a priori abstract functionals. Here we apply this framework and strategy to
problems in the field of second order structured deformations and to problems arising from
the interplay of phase transition and homogenization.

The mathematical theory of structured deformations arises as a particular model for
plasticity, fracture and defects in a universal setting. Briefly, one views the formation of
singularity within a material through the lens of misalignment between the macroscopic de-
formation and the submacroscopic crystalline structure. As there has been recent interest in
a second-order theory of structured deformations, taking into account curvature and bending
effects, we include work in the setting of functions of bounded Hessian, BH. The space BH,
which is comprised of of W! functions with bounded variation (BV') gradient, has peculiari-
ties which differentiate it from other second order spaces with L' control, such as BV?2, which
consists of BV functions such that the absolutely continuous part of the gradient is itself
BV. In particular, a BH function may have jumps in the gradient, corresponding to “kinks”
in the function, but cannot have jumps itself. Therefore, we cannot directly apply standard
BV results to BH, and thereby this goal required the development of new mathematics in
order to extend certain Sobolev space constructions, such as Lipschitz extension theorems,
to BH, see Chapter

This thesis also contains the results of a project towards a complete theory of fluid-
fluid phase transitions for materials with small scale heterogeneities. The technique of I'-
convergence has proven extremely powerful for modelling systems of asymptotic homoge-
nization of composite materials as well as Cahn-Hilliard models of phase transitions. To

understand the nature of potential interaction between the two processes, we study mate-



1.1 Structured Deformations and BH 1 INTRODUCTION

rials for which both properties hold. One would expect that the relative length scales of
the heterogeneity versus the thickness of the phase transition would have an effect on the
interaction, and we see that this is in fact true. If the scale of the heterogeneity is sufficiently
small with respect to the thickness, we see that the system effectively “homogenizes” and we
are left with an energy that penalizes the perimeter of the phase transition, as in the classical
Modica-Mortola [62] result. However, when the length scales of the heterogeneity and the
thickness are roughly commensurate, we observe interaction between the relative alignment
between the heterogeneity and the orientation of the phase transition boundary, resulting in
an anisotropic perimeter term. The third regime, where the phase transition is sufficiently
small with respect to the heterogeneity, is part of this ongoing project, but has not been fully
studied at this date.

1.1 Structured Deformations and BH

The space of Wh! functions whose Hessian is a Radon measure, BH (bounded Hessian)
was introduced by Demengel [38]. BH is the natural setting to study second-order integral
functionals with linear growths. In Chapter |3[ we prove an integral representation result for
relaxed functionals in BH.

In the theory of structured deformations, which model geometrical changes at microscopic
and macroscopic scales, the first-order theory fails to account for the effect of microscopic
jumps in the gradients. A second-order theory is introduced in [65] which uses the space
BH and related spaces SBH, which consists of BH functions whose Hessian has trivial
Cantor part, and SBV?2, which consists of BV? functions whose gradient and Hessian each
have trivial Cantor part. Recent results in [11] approach a second-order theory in the SBV?
setting and establish relaxation and integral representation theorems.

Beyond applications to second order structured deformations, the space BH appears in
other areas of applied mathematics, motivating its study as a space in its own right. In the
field of image processing, there has been some study of second-order energies with linear
growth. The addition of second-order term in Rudin-Osher-Fatemi TV denoising can act
as a regularizing factor, avoiding the so-called "staircasing effect", as discussed in [12], [13],
[14]. More applications of second-order terms in regularization and denoising may be found
in [50], [52], [70]. Further, second-order energies have found application in variational image
fusion [58] and image colorization [53].

Another problem, this one again from materials science, in which we see the space BH
as the natural setting is in models of elastic perfectly-plastic materials, where the energy is
a second-order functional with linear growth, see [I5], [30], [31], [37], [59], [GS].

For a bounded open Lipschitz set 2 in RY we define the functional
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F(u) := / f(z, V2u)dz, ue W' (Q,RY).
Q
where f: Q x R*NVXN 10, 00) is a continuous function satisfying the following hypotheses:

(H1) Linear growth: f(x, H) < C(1+ |H|) for all z € , H € R*N*N and some C > 0;

(H2) Modulus of continuity: |f(z, H) — f(y, H)| < w(|z — y|)(1 + |H]) for all z,y € Q, H €

R*NXN " where w(s) is a nondecreasing function with w(s) — 0 as s — 07,

We consider the lower-semicontinuous envelope of F in the space BH(Q;R?),

F(u) := inf { liminf Flu,] : u, — u in W1 (Q; R?),

n—o0

Viu, LY L Q 5 D(Vu) in M(Q,RdXNXN)},

where M(Q, R>N*N) is the set of finite Radon measures on €2 taking values in RTV*N,

In Chapter 3] we will prove the following integral representation result (see Theorem [3.1J).
Theorem 1.1. If f satisfies (H1) and (H2), then for every v € BH(Q;R?)

Fw) = [ Qute vyt + [ <sz>w(m,%)dms<w>|.

where Qo f is the 2-quasiconver envelope of f, and (Qaf)™ is the recession function defined

Va4

(Qof)*(x, H) := lim sup M

t—o0 t

This result may be seen as a second-order version of the work of Fonseca and Miiller
[45], as well as Ambrosio and Dal Maso [3], on first-order linear growth functionals. It is
inspired by recent progress in the field of A-quasiconvexity, in the sense of Fonseca and
Miiller, introduced in [46]. A recent paper of Arroyo-Rabasa, De Philippis, and Rindler [7]
uses a Young measure based approach to prove a relaxation result in a very general setting.
Knowing that the space BH may be viewed through the lens of A-quasiconvexity, this section
adopts some of these techniques to BH relaxation, using the extra structure of BH to avoid
invoking Young measures as in [7].

The author acknowledges a higher order relaxation result that is contained in the work
of Amar & De Cicco [I]. However, to our knowledge, there seems to be a gap in the proof

of lower semicontinuty in [I], in particular with regards to the singular part. Our proof
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makes use of modern results which take a completely different approach in proving lower
semicontinuity.

The author is also aware of recent work by Breit, Diening and Gmeineder [23] which
examines what they call A-quasiconvexity. As they note in Section 5, with the existence of
the annihilator 1L, this is what Dacarogna called A-B quasiconvexity [27], where in this case
we have A =L and B = A. Although BH may be viewed in the frame of A-quasiconvexity
by restricting matrix-valued measures to lie in a particular subspace, it is not obvious that we
can view it in the framework of A-B quasiconvexity as easily. Regardless, for their argument
of lower-semicontinuity, Breit, Diening and Gmeineder make use of [7] and thus do not provide
a Young measure-free argument.

The goal of this project is to establish relaxation results in the space BH using standard
blow-up methods. In order to prove the upper bound, we first demonstrate an area-strict
density theorem (see Section , in a very general setting, requiring no extra structure on
the limiting measure .

We develop a direct argument with an eye towards ultimately including lower order terms
in the relaxation. It should be noted that while the arguments in this section are only for
second-order case, an extension to higher order derivatives should be possible using similar
arguments.

The macroscopic deformation of a continuous body does not need to coincide with the
submacroscopic deformation. For instance, in a crystalline body deformed beyond the plastic
regime the macroscopic deformation may be simply due to several slips of the crystallographic
planes. Thus, submacroscopically the lattice of the crystalline body does not deform but
simply undergoes to “submacroscopic cracks” or disarrangements. This kind of multi-scale
geometrical changes were addressed by Del Piero and Owen in [36] who introduced the notion
of structured deformation (k,u,G): k being the macroscopic crack site, v the macroscopic
deformation, and G a tensor associated with the submacroscopic geometrical changes and
called deformation without disarrangements. In the example of the crystalline body, discussed
above, we would have k = () since the submacroscopic cracks diffuse and do not generate a
macroscopic crack, G = I the identity tensor field since the lattice does not deform locally,
and, in general the deformation gradient Vu is different from G = 1.

Del Piero and Owen, still in [36], showed that every structured deformation can be seen
as the (appropriate) limit of sequences of piecewise-continuous “classical deformations”. This
result makes the theory even more interesting from a mechanical point of view, since, for in-
stance, in the example of the crystalline body mentioned above, the “submacroscopic cracks”
that form during the deformation can be thought as the jump sets of the piecewise-continuous

“classical deformations” of an approximating sequence. This result also opens the way to
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define the energy of a structured deformation by using the “classical” energy of piecewise-
continuous “classical deformations”. Indeed, Choksi and Fonseca [26], following the belief
that “Nature always minimizes actions”, made the natural assumption that the structured
deformation (k,u,G) would be the limit, among all approximating sequences, of the approx-
imating sequence that uses the least amount of energy. Choksi and Fonseca worked within
a variational framework and described the macroscopic deformation by a function u € BV
whose jump set represents the crack site s of Del Piero and Owen, and with a deformation
without disarrangements G € L'. In this framework, they proved the following approxima-
tion theorem: for any structured deformation (u,G) there exists a sequence {u,} C SBV
such that

u, = uin L', Vu, = G in the sense of measures, (1.1)

where Vu, denotes the absolutely continuous part of the distributional derivative of w,;

moreover, they defined the energy &(u,G) of (u,G) as

E(u,G) = {iﬁf} I%I_I}i&f Eo(un), (1.2)
where the inf is taken among all the sequences that generate, according to , the struc-
tured deformation (u, G), and & (u,) is the energy associated to the “classical deformation”
u,. Thus, the energy £(u,G) is equal to the limit of the energies associated to the most
economic approximating sequence from the energetic point of view.

The concept of structured deformation was extended in [65] by defining the second-order
structured deformation (k,u,G,U): where k denotes the set of points were the fields involved
are discontinuous, u, and G are as above, and U, called second-order deformation without
disarrangements, is a third-order tensor field that allows to describe the submacroscopic de-
formation up to the second-order; for instance, it allows to describe the “bending” of the
microstructure. Second-order structured deformation are important since they allow to in-
clude the effects of limits of second gradients and jumps in the first gradients of approximating
deformations: these jumps play a crucial role in the mechanics of phase-transitions. In [67]
two different variational frameworks for second-order structured deformation are discussed:
the primary difference being the function space on which the deformation fields are defined.
The first framework consider a space named SBV? that allows jumps of the displacement as
well as its gradient. A recent paper of Barroso, Matias, Morandotti, and Owen [I1] provides
relaxation and integral representation results for second-order structured deformations in the
framework of SBV?2. The second framework considers the space SBH of special functions
of bounded Hessian. Within this framework we have u € W1 and hence G = Vu and & is

simply the jump set of Vu. In the SBH framework, a second-order structured deformation is
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therefore described by the pair (u,U). We remark that the SBH setting is more constrained
than the SBV? setting, since the functions may not have “jumps", and hence the techniques
used in [IT] cannot be directly applied to the SBH setting.

Consider the family of structured deformations
SDQ(Q) = SBH(Q; Rd) % LI(Q; Sd><N><N)7

where SN*N C RIXNXN denotes the set of tensors (My;r), i € {1,...,d}, j, k€ {1,...,N},
such that M;;, = M, for all 4,5 € {1,...,N}, d, N € N. We prove a general integral
representation result in the spirit of the global method of Bouchitté, Fonseca and Mascarenhas
[19]. Let A(€2) be the family of open subsets of 2. Assume that the functional

F :SDy(Q) x A(Q) — [0, +o0]
satisfies the following hypotheses:

(I1) F(u,U;-) is the restriction to A(€2) of a Radon measure for every (u,U) € SDy(12).

(I2) F(-,:;A) is SDy-lower semicontinuous, in the sense that if (u,U) € SDy(Q2) and
{(tn, Up)} € SD5(Q) with u, — u in WH(Q;RY) and U, = U in M(Q), then

F(u,U; A) < liminf F(uy,, Uy; A).

n—-+o0o

(13) F is local, i.e., for all A€ A(Q) ifu=vand U=V LY ae. x € A then F(u,U; A) =
F(v,V; A).

(I4) There exists a constant C' > 0 such that
1
GVl + [D*ul(A)) < Fu, Us A) < CILY(A) + U]y + [D*ul(A))
for every (u,U) € SDy(Q2), A € A(Q).
In Theorem we prove an integral representation for F of the form

F(u,U; A) = / f(z,u, Vu, Viu,U) dx —l—/ h(z,u, Vu', Vu~,ve,) dHY L.
A S(Vu)nA

This result is then used to define the energy of a second-order structured deformation

(u,U), in the same spirit of (1.2)), as the limit of the energy of the most energetically conve-
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nient approximating sequence, i.e.

F(u,U) := inf liminf Fy(u,),
{un} n—+oo

where the inf is taken among all the sequences that generate the second-order structured
deformation (u, U), and Fo(u,,) is the energy associated to the “classical deformation” w,,, see
Theorem [3.22

The general relaxation result proved has applications also outside the framework of struc-
tured deformations. Indeed, it has an immediate corollary to any functional defined on SBH:
we can show, see Theorem that for any F : SBH(;RY) x A(Q)) — [0,00) satisfying
(H1)-(H4), we have the integral representation

Fu; A) = / f(z,u, Vu, V) dx+/ h(z,u, Vu®, Vu~, ve,) dHY L.
A S(Vu)nA
In the case of functionals defined in BH ({;RY), with the additional assumptions of affine

invariance and area-strict continuity, our earlier BH relaxation results can leveraged along
with the SBH relaxation result to yield Corollary

dD,(Vu

Flu; A) = /Af(x,VQU) dx+/Af°° (x, W) d|Ds(Vu)|(x).
The assumption of affine invariance is merely a technical detail due to the lack of a BH
relaxation result involving lower order terms. We motivate the assumption of area-strict
continuity by comparison to the first order global method for relaxation [19]. In this situation,
although we do not assume a prior: that our abstract lower semicontinuous functional is
area-strict continuous, once we have the integral representation result, area-strict continuity
follows a posteriori, [56]. Thus, in the first-order case, nothing is lost by adding the additional
assumption that the functional is area-strict continuous. We expect that the same holds in
the second-order framework.

The BH results are structured as follows. In Chapter [2] we collect some common notions
and establish pointwise results about BH functions. In Section we prove an approxi-
mation result in the SD, framework along the lines of the approximation theorems of [36]
and [26]. In Section we use the global method approach introduced in [19] on func-
tionals defined on SD, in order to prove the main integral representation result. In Section
we apply the integral representation result to the problem of second order structured
deformations to get a relaxation as in [26]. In Section we find further application of the
integral relaxation result in the spaces SBH and BH.
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1.2 Homogenization and phase transition

In order to describe the behavior at equilibrium of a fluid under isothermal conditions confined
in a container Q C RY and having two stable phases (or a mixture of two immiscible and
non-interacting fluids with two stable phases), Van der Waals in his pioneering work [73]
(then rediscovered by Cahn and Hilliard in |25]) introduced the following Gibbs free energy

per unit volume

E.(u) ::/Q[W(u)—l—eSQ\Vu\ﬂ dz . (1.3)

Here ¢ > 0 is a small parameter, W : R — [0, +00) is a double well potential vanishing at
two points, say +1 and —1 (the simplified prototype being W (¢) := (1 —t*)?),and u : Q — R
represents the phase of the fluid, where u = +1 correspond to one stable phase and u = —1
to the other one. According to this gradient theory for first order phase transitions, observed
stable configurations minimize the energy FE. under a mass constraint fﬂu = m, for some
fixed m € (-9, |]).

The gradient term present in the energy provides a selection criterion among mini-
mizers of I : u — [, W(u) dz. If neglected then every field u such that W (u) = 0 in Q and
satisfying the mass constraint is a minimizer of I. The singular perturbation u — &2?|Vul|?
plays the role of an interfacial energy. It provides a selection criterion as it competes with
the potential term in that it penalizes inhomogeneities of u and acts as a regularization for
the problem. It was conjectured by Gurtin (see [51]) that for 0 < ¢ < 1 the minimizer u,
of the energy FE. will approximate a piecewise constant function, u, taking values in the zero
set of the potential W, and minimizing the surface area H" (S, of the interface separating
the two phases. Here H¥~! denotes the (N — 1)-dimensional Hausdorff measure and S, is
the set of jump points of .

Gurtin’s conjecture has been validated by Modica in [62] (see also the work of Stern-
berg [72]) using I'-convergence techniques introduced by De Giorgi and Franzoni in [33]. In

particular, it has been showed that

lim éEE(ug) — A HYT(S,) )

e—0

where the constant v > 0 is the surface energy density per unit area required to make a

transition from one stable phase to the other, and it is given by

- 2/_11 VIVt

Several variants of the Van der Waals-Cahn-Hilliard gradient theory for phase transitions
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have been studied analytically. Here we recall the extension to the case of d non-interacting
immiscible fluids, with a vector-valued density u : RY — R? In [48] Fonseca and Tartar
treated the case of two stable phases (i.e., the potential W : RY — [0, 00) has two zeros),
while the general case of several stable phases has been solved by Baldo in [§]. In [8] and
[48] it has been proved that the limit of a sequence {u.}.~o, where u. is a minimizer of E_,
is a minimal partition of the container {2, where each set satisfies a volume constraint and
corresponds to a stable phase, i.e., a zero of W.

Other generalizations of include the work of Bouchitté [17], who studied the case
of a fluid where its two stable phases change from point to point, in order to treat the
situation where the temperature of the fluid is not constant inside the container, but given a
priori. From the mathematical point of view, this corresponds to considering the energy
with a potential of the form W (z,u) vanishing on the graphs of two non constant functions
21, 29 :  — R% Fonseca and Popovici in [47] dealt with the vectorial case of the energy
where the term |Vu| is substituted with a more general expression of the form h(x, Vu),
while the full coupled singular perturbed problem in the vectorial case, with the energy
density of the form f(x,u,eVu), has been studied by Barroso and Fonseca in [I0]. The case
in which Dirichlet boundary conditions are considered was addressed by Owen, Rubinsten
and Sternberg in [66], while in [63] Modica studied the case of a boundary contact energy.
We refer to the works [72] of Sternberg and [2] of Ambrosio for the case where the zeros of
the potential W are generic compact sets. Finally, in [55] Kohn and Sternberg studied the
convergence of local minimizers for singular perturbation problems.

We consider the problem of fluid-fluid phase transitions in the presence of small scale

heterogeneities. More precisely, for €,0 > 0 we consider the energy
1 x 9
Feslw) = | | 5W (g,u(:v)> 4 8|Vu(@)? | d,
Q

where W : RY x R? — [0, 00) is a double-well potential satisfying the following properties:
(GO) z +— W(x,p) is Q-periodic for all p € R?,
(G1) W is a Carathéodory function, i.e.,

(i) for all p € R? the function x — W (z, p) is measurable,

(ii) for a.e. z € @ the function p — W (x, p) is continuous,
(G2) there exist a,b € R? such that W (z,p) = 0 if and only if p € {a, b}, for a.e. z € Q,

(G3) there exists a continuous function W, : R? — [0, 00) such that W.(p) < W (x,p) for a.e.
z € @ and W,(p) = 0 if and only if p € {a, b}.

9
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1.2 Homogenization and phase transition

(G4) there exist C' > 0 and ¢ > 2 such that £ (|p|? — 1) < W(z,p) < C(1 + |p|) for a.e.
r € Q and all p € R
Here the periodicity at scale ¢ fixes the scaling of the heterogeneity while ¢ corresponds to

the thickness of our transition layers.
We characterize the limiting behavior of minimizers to J. s by identifying the I'-limit of
F.5 as €,0 — 0 for different regimes corresponding to the relative behavior of € and .
In Section [4.2] we study a scaling in which the homogenization effects occur far more
rapidly than that of the phase transition, namely ¢ << §. For the key lemma, we require a
certain quantitative control to this scale, namely
— 0. (1.4)

o

We will address this scaling later. Further, we also require an additional locally Lipschitz
assumption on W, to be precise
(G5) W is locally Lipschitz in p, i.e., for every K C R¢ compact there is a constant L such

that
W (x,p) — W(x,q)| < Llp — ¢

for almost every x € () and every p,q € K.

Definition 1.2. We define the functional F : L}(Q; R?) — [0, +-00] as
if uw e BV (2;{a,b}),
(1.5)

KgP({u = a};Q)

Ff (u) ==
otherwise,

where P({u = a}; () is the relative perimeter of {u = a} with respect to €2, and the transition
(1.6)

energy density Ky is defined as

Ky = 2inf {/0 VWi (g(s)|g'(s)lds : g € C1,([0,1];R% a, b) } :

Here C},([0,1];R% a,b) denotes the space of piecewise C'' curves from [0, 1] to R? such that
g(0) = a and g(1) = b, and the homogenized potential Wy : R? — [0, +00) is given by
(1.7)

Wi (p) = /Q W(y,p) dy.

In Section [4.2] we prove the following result (see Theorem [4.4)).
10



1.2 Homogenization and phase transition 1 INTRODUCTION

Theorem 1.3. Assume that W satisfies hypotheses (G0)-(G4). Let {€,}nen and {9, }nen be

two infinitesimal sequences such that

. €
lim = — 0

Set I, := F, 5,. Then the following hold:

(i) If {tn ey C HY(Q;R?) is such that

sup F,(u,) < 400,
neN

then, up to a subsequence (not relabeled), we have u, — u in L'(Q;RY) for some

u € BV (;{a,b}).
(11) We have F, ' Ff.

Next we turn to the case in which ¢ and ¢ are commensurate (see Section [4.3). For

simplicity, we set § = ¢, that is to say

F(u) :=/Q[1W<§, <x))+g|vu<x>|2] dz.

€

In this regime, the I'-limit is an anisotropic perimeter caused by potential mismatch between
the direction of periodicity and the orientation of the interface.

We introduce some notation. For v € S¥=!, with S¥~! the unit sphere of RY, we denote
by Q, the family of cubes (), centered at the origin with two faces orthogonal to v and with
unit length sides.

Definition 1.4. Let v € SV~ ! and define the function Uy RY — R? as

a ify-v<o0,
U = - 1.8
o (¥) {b ify-v>0. (18)

Fix a function p € C*(B(0,1)) with [py p(x)daz = 1, where B(0,1) is the unit ball in RY.
For T > 0, consider the family of mollifiers pr(z) := T p(Tz) and

ﬂp,T,u = pr * Uy - (19)

When it is clear from the context, we will abbreviate u, 7, as ur,.

11



1.2 Homogenization and phase transition 1 INTRODUCTION

Definition 1.5. We define the function o : S¥~1 — [0, 00) as

o(v):= lim g(v,T),

T—o00

1
g, T) = Winf{ /TQ (W (y,u(y)) + |Vul’] dy : Q, € Qu, u € C(p,Q,,T) }

and
C(p,Qy,T) = {u € HY(TQ,;RY) : u =7, on 0(TQ,) } .

Just as before, if there is no possibility of confusion, we will write C(p, Q,,T) as C(Q,,T). A

treatment of the function o, including a justification of its definition as a limit, is found in

Section [4.3.2
Consider the functional Fy : L}(Q;R?) — [0, oc] defined by
/ o(va(z))dHY " (2) if u € BV(Q;{a,b}),
Foluy:= ¢ """ (1.10)

—+00 else,

where A := {u = a} and v4(z) denotes the measure theoretic external unit normal to the
reduced boundary 0*A of A at x (see Definition [2.9)).

In Section we prove the following result (see Theorem |4.9)).

Theorem 1.6. Let {e, },en be a sequence such that €, — 0 as n — o0o. Assume that (G0),
(G1), (G2), (G3) and (G4) hold.

(i) If {t ey C HY(Q;R?) is such that

sup F., (u,) < 400
neN

then, up to a subsequence (not relabeled), u,, — u in L*($;RY),
where u € BV (Q;{a,b}),

71
(ii) Tt holds that F., =% F,.
Moreover, the function o : S¥=1 — [0, 00) is continuous.

In the literature we can find several problems treating simultaneously phase transitions

and homogenization. In [6] (see also [5]) Ansini, Braides and Zeppieri considered the family

12



1.2 Homogenization and phase transition 1 INTRODUCTION

of functionals

S.(u) ::/Q Ew<u(x))+5f (%Du)} dz |

and identified the I'-limit in all three regimes

. € . € . €
ll_r%%:O, 21_1%@::0>0, ll_l)l(l)@:-i-oo, (1.11)
using abstract ['-convergence techniques to prove the general form of the limiting functional,
and more explicit arguments to derive the explicit expression in the three regimes (actually,
in the first case they need to assume £¥2371(g) — 0 as ¢ — 0, the same as [1.4).
Moreover, we mention the articles [39] and [40] by Dirr, Lucia and Novaga regarding a
model for phase transition with an additional bulk term modeling the interaction of the fluid
with a periodic mean zero external field. In [39] they considered, for a € (0, 1), the family of

functionals

1 1 x
(1) — il 2,0 — 4=
VI (u) : /Q LW(u(x)) +¢|Vul* + ptl <€a> u(l‘)] dz,
for some g € L>°(2), while in [40] they treated the case

VO (u) = /Q {éW(u(m)) +€|Vul® + Vv (

T

€

)-Vu(m)} dz |

where v € W1 (RY). Notice that V" is a particular case of V!¥ when o = 1 and v € H2(Q)
has vanishing normal derivative on 0€). An explicit expression of the I'-limit is provided in
both cases.

The work [22] by Braides and Zeppieri is similar in spirit to an ongoing project of ours
where we consider the case of the wells of W depending on the space variable x. Indeed, in

[22] the authors studied the asymptotic behavior of the family of functionals

6 ) i~ | 1 WO (550 + SO |,

for §(¢) > 0, with the potential W*) defined, for k € [0,1), as

Ww®(t,s) = {

with W (t) := min{(t — 1)?, (¢t + 1)?}. For k € (0,1) the fact that the zeros of W*) oscillate
at a scale of §(¢) leads to the formation of microscopic oscillations, whose effect is studied by

identifying the zeroth, the first and the second order T'-limit expansions (with the appropriate

13
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rescaling) in the three regimes (1.11]).
In the context of the gradient theory for solid-solid phase transition, we mention the work

[49] by Francfort and Miiller, where the asymptotic behavior of the energy

L(u) ::/Q [W(%,Vu(x)) +62|Au|2} dz.

for v > 0 is studied under some growth conditions on the potential .

1.3 Publications resulting from this thesis

1. A. Hagerty, Relaxation of functionals in the space of vector-valued functions of bounded
Hessian, Sections [3.2]and [3.3] Calculus of Variations and Partial Differential Equations,
2019.

2. R. Cristoferi, I. Fonseca, A. Hagerty, C. Popovici, A homogenization result in the gradi-
ent theory of phase transitions, Section [4.3] accepted to Interfaces and Free Boundaries,
2019.

3. A. Hagerty, A note on homogenization effects on phase transition problems, Section [4.2]
published on the Center for Nonlinear Analysis website, 2019.

4. 1. Fonseca, A. Hagerty, R. Paroni, Second order structured deformations in the space of
bounded Hessian, Section submitted to Proceedings of the Royal Society A, 2019.
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2 PRELIMINARIES

2 Preliminaries

We begin by collecting some basic notions and definitions needed throughout the thesis.
The set Q C RY will always be a bounded, open domain with Lipschitz boundary. By
Q C RY we denote the unit cube centered at the origin with faces orthogonal to the coordinate
axes, Q = (—1/2,1/2)N. We consider the cube of side length r centered at z, € RY,
Q(zo,r) =20+ 71Q ={x0+ 7Y : Yy € Q}.
In what follows, we fix a function ¢ € C°°(R"; [0, 00)) such that supp(¢) C B(0,1) and
Jan @(x)dx = 1. We define the standard mollifiers ¢. by ¢.(x) := SLN¢(€JU), e > 0.

2.1 Finite nonnegative Radon measures

The family of finite nonnegative Radon measures in an open set U C RY will be denoted
by M(U), and the space of finite vector valued Radon measures taking values in R? will be
denoted M(U;R?). For simplicity of notation, we will often write the Lebesgue measure of
a Borel set £ C RY via the notation |E| := LN (E).

For any open set U C RY and any finite Radon measure u € M(U;R?), by the Radon-

Nikodym theorem there exist

tae € LM(U;RY), py € M(U;RY)

with 5| L LNLU, and a |u1s|-measurable function v, := 2 with |1, (z)| = 1 for |u,| almost

- d|u3|
every x € U, such that for every Borel set £ C U we have

u(B) = [ puc@)de + [ vyl (o)

When the measure p being referenced is clear in context, we will often drop the subscript

and write v, as v.

Definition 2.1. We say that a sequence {p,tnen C M(U) weakly-x converges to a finite

/wdun%/wdu
U U

as n — oo, for all p € Cy(U), the space of continuous functions with compact support in U.

nonnegative Radon measure p if

In this case we write j, — j.

The following compactness result for Radon measures is well known (see [42, Proposition
1.202|).

15



2.1 Finite nonnegative Radon measures 2 PRELIMINARIES

Theorem 2.2. Let {i }nen C M(U) be such that sup, ey pin(U) < 0o. Then there exists a
subsequence (not relabeled) and € M(U) such that i, — pu.

We recall a result of Reshetnyak (see [69]).

Theorem 2.3. Let {u,} be a sequence in M(U;R?). If p, = pu € M(U;R?), then

.. d, dp
lim inf H( :L‘)d,un Z/H(— x)du
Rt G ) et = f A ™))

for every positively 1-homogeneous and convex function H : RY — R satisfying the growth

condition |H ()| < Cl¢| for each & € R? and for some C' > 0.

We will use a modification of a lemma which can be found in [45], Lemma 2.13. To be

precise,

Lemma 2.4. Let \ be a nonnegative Radon measure in RY. For X\ almost every zo € RY

and for every 0 < o < 1,

lim sup M@y, om)) > o, (2.1)

ro0t AMQ(zo,7))
In (2.1) we can choose r — 07 so that, given another Radon measure p, neither p nor A

charge the boundary of the larger cubes. Namely, we have the following result.

Lemma 2.5. Let A and i be nonnegative Radon measures in RY. For every 0 < o < 1, and
for X almost every o € RY, there exist r,, — 07 such that 1(0Q(xg,1,)) = MOQ(x¢,7,)) = 0

and

hm )\(Q(.To,a'rn)) 2 UN.
n=o0 A(Q(z0,7))
Proof. Fix o € (0,1) and z9 € RY so that, by Lemma , we can find p, — 0 such that

im A(Q(IO’O—IO’H)> O'N
N O, pn)) =

For every n, we can select 9, < p, such that

n

MQ(w0,00n)) 2 ——— MQ(x0,7pn))-

Find r,, € (0., pn) such that p(0Q(zo,7,)) = A(0Q(x,r,)) = 0. We obtain

ANQ (o, 070))

MQ(20,00,)) 1 MQ(z0,9pn))
)\(Q(l’oﬂ"n))

MQ(wo, pn)) — n+1 MQ(w0, pn))
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2.2 Sets of finite perimeter 2 PRELIMINARIES

and we conclude that
i jnf AQEL0T)) o v
n—o0 )\(Q(CC(), Tn))

M} is bounded, we can extract a subsequence which is conver-

. )\(
Since the sequence { CIETE)]
gent. Without loss of generality we can assume that the sequence actually converges and
thus

im )\(Q(xoam”n)) oN
A A Qo) =

2.2 Sets of finite perimeter

We recall the definition and some well known facts about sets of finite perimeter (we refer

the reader to [4] for more details).

Definition 2.6. Let E C RY with |E| < oo and let 2 C RY be an open set. We say that £

has finite perimeter in €2 if

P(E;Q) := sup{/ divpdz = ¢ € CHQRY) | ol < 1} < 00.
E

Remark 2.7. £ C RY is a set of finite perimeter in Q if and only if Yz € BV (), i.e., the

distributional derivative Dy is a finite vector valued Radon measure in (), with

/ (pdDXE:/divapdx
RN E

for all ¢ € CHQ;RY), and |Dxg|(Q) = P(E;Q).

Remark 2.8. Let 2 C RY be an open set, let a,b € RY, and let u € L*(Q; {a,b}). Then u is
a function of bounded variation in Q, and we write u € BV (Q; {a, b}), if the set {u = a} :=
{z € Q : u(x) = a} has finite perimeter in €.

Definition 2.9. Let £ C R" be a set of finite perimeter in the open set Q C RY. We define
0*F, the reduced boundary of E, as the set of points € RY for which the limit

i Pxe(r +1Q)
=0 [Dxgl(z +rQ)

ve(r) =

17



2.3 T'-convergence 2 PRELIMINARIES

exists and is such that |vg(x)| = 1. The vector vg(x) is called the measure theoretic exterior

normal to E at x.

We now recall the structure theorem for sets of finite perimeter due to De Giorgi (see [4]

Theorem 3.59| for a proof).

Theorem 2.10. Let E C RY be a set of finite perimeter in the open set @ C RY. Then

(i) for all x € O*E the set E, := E;x converges locally in L*(RY) as v — 0 to the halfspace

orthogonal to vg(x) and not containing ve(x),

(ii) Dxgp = —vg HN ' LO"E,

(iii) the reduced boundary O*E is HN"-rectifiable, i.e., there exist Lipschitz functions f; :
RN-1 5 RN i €N, such that

0°E = fi(K5),
i=1
where each K; C RN~! is a compact set.

Remark 2.11. Using the above result it is possible to prove that (see |3, Proposition 2.2])

. Dxgp(z+1rQ)
vp() = — lig ZXE LT

for all x € 9*F.

Finally, we state another theorem of Reshetnyak in a form specifically tailored for sets of

finite perimeter, whose proof may also be found in [69].

Theorem 2.12. Let {E,}°°, be a sequence of sets of finite perimeter in the open set ) C RY
such that Dxg, — Dxg and |Dxg,|(Q) — |Dxg|(2), where E is a set of finite perimeter in

Q. Let f: SV — [0,00) be an upper semi-continuous bounded function. Then

fimswp [ f (s, @) @) < [ o) a8 @),

n—oo O*ENQ

2.3 TI'-convergence

We refer to [20] and [28] for a complete study of I'-convergence in metric spaces.

18



2.4 Bounded Hessian functions and 2-quasiconvexity 2 PRELIMINARIES

Definition 2.13. Let (X,m) be a metric space. We say that F,, : X — [—o0,+oo] I'-
converges to F': X — [—o00, +0o0], and we write F), I F, if the following hold:

(i) for every x € X and every x, — x we have

F(z) <liminf F,(z,),

n—oo

(ii) for every x € X there exists {x,}>2, C A (a so called recovery sequence) with x, — x
such that
lim sup F,(x,) < F(z).

n—o0

In the proof of the limsup inequality in Section we will need to show that a certain
set function is actually (the restriction to the family of open sets of) a finite Radon measure.
The classical way to prove this is by using the De Giorgi-Letta coincidence criterion (see
[34]), namely to show that the set function is inner regular as well as super and sub additive.
We will use a simplified coincidence criterion due to Dal Maso, Fonseca and Leoni (see |29,
Corollary 5.2|).

Given ©Q C RY an open set, we denote by A(Q) the family of all open subsets of €.

Lemma 2.14. Let A : A(Q) — [0,00) be an increasing set function such that:

(i) for all A, B,C € A(Q) with A C B C C it holds
AMC) S MC\A) +A(B),

(i1) N\(AU B) = A(A) + X\(B), for all A,B € A(Q) with AN B =10,

(111) there exists a measure p : B(2) — [0, 00) such that

A(A) < u(4)

for all A € A(QY), where B(Q) denotes the family of Borel sets of €.
Then X is the restriction to A(S) of a measure defined on B(S2).

2.4 Bounded Hessian functions and 2-quasiconvexity

We recall the space of bounded Hessian functions

BH(Q;RY) = {uc WH(Q;R?) : D%y is a finite Radon measure}
= {ue L% RY) : Du € BV(Q; RN
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2.4 Bounded Hessian functions and 2-quasiconvexity 2 PRELIMINARIES

We consider also the space of special functions of bounded Hessian
SBH(Q;R?) :={u € BH(;RY) : D.(Vu) = 0},

that is, BH functions with no Cantor part in the Hessian. This is distinct from the related

space
SBV(Q;RY) := {u € BV(Q;RY) : D.(u) = 0,Vu € BV(; RPN D.(Vu) = 0}.

We now establish some basic results concerning approximate differentiability properties

of functions in the setting of BH.
Theorem 2.15. If u € BH(Q;R?) then

(i) for LY a.e. x € Q

1 1

lim — u(y) —u(z) = Vu()(y — =) = 5Vu(@)(y =2,y —2)| dy = 0, (2.2)
r—0t T Q(z,r)
and .
lim — |Vu(y) — Vu(z) — Vu(z)(y — z)| dy = 0; (2.3)
r—0t T Q(z,r)
(ii) for HN"! a.e. x € S(Vu) we have
1 + _
tm L f ) = ) = Dty = )| dy =, (2.0
and
lim |Vu(y) — Vu* ()| dy =0, (2.5)

r—0+ Q} (z,r)

where QF (z,1) = Qu(x,r)N{y : (y —z) - v(z) > 0} and Q, (z,r) = Q,(x,r) N {y :
(y —z)-v(zx) <0}

Proof. A proof of can be found in Theorem 6.1 in [41], applied to f = Vu. Similarly, a
proof of and can be found in Theorem 5.19 in [41], applied to f = u and f = Vu
respectively.

It remains to show (2.2)), which involves a second-order approximation. Its proof uses
arguments similar to those found in [41], and it is included below for completeness.

Fix z¢ € € such that

lim lu(z) — u(zo)| de =0, (2.6)

=0 Q(zo,r)
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lim |Vu(x) — Vu(zy)| de =0, (2.7)

r—0t Q(zo,r)

lim |V2u(z) — Vu(zo)| dz =0, (2.8)
r—07t Q(zo,r)
and D
lim | Su|(Q]\§xO’T)) =0. (2.9)
r—0t r

Since the above hold for £V a.e zo € €, it suffices to show that for every such z, we have

u(z) — u(zg) — Vu(zo)(x — x0) — %Vzu(xo)(:r: — Zo, T — )| dx = 0.

. 1
lim -
r—0t 7 Q(wo,r)

Without loss of generality, we take xqg = 0. Define smooth functions u. by u * ¢., for

0 <e<<r<<dist(0,00). By (2.6), (2.7) and (2.8), note that

li (0) = li (0) = li 2u.(0) = V2 .
lim u (0) u(O),E_lgi Vu(0) VU(O),ELI(I#V u:(0) = V=u(0)
For z € Q(0,r), consider now the function g¢.(t) defined by

ge(t) :==u(tx), t €0, 1].

By smoothness of the u. , applying the fundamental theorem of calculus twice, we see that

1) =90 +50) + [ (- g0 dt

and thus .
us(x) = u(0) + Vu (0)z + /o (1 —t)V2u.(tz)(z, x) dt.

Rearrange these terms and subtract $V?u(0)(x, z) from both sides to obtain
1 1
us(x) — u(0) = Vu (0)z — §V2u€(0)(x,:z;) = / (1 —t)(V?u.(tr) — V*u.(0))(z, ) dt,
0

and so
1

r2

|%@yﬂqm—v%mn—%v%ﬂmﬁwmx

Q(0,r)
1 1
33/ /]W%ﬂ@—V%ﬂM@@MWm
T J Q) Jo
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By Fatou’s lemma,

L ) — u(0) — Yu(0)r — 2V2u(0)(x, )| de
) Qo 2
1 1
< I _ . 2
liminf 5 f fue(o) = (0) = Vuel0)z = 5 Vus(0)(a, )| do
< liminf —][ / Vu.(tz) — Vu.(0)) (z,z)| dt du. (2.10)
e—0t 12 Q(0,r)

Thus, it suffices to bound (2.10)). Applying the change of variables z = tz, we have

11 1
/0 Nii,NT2 /Q(Ot ) ‘(Vzug(z) — Vzug(O)) (z, z)‘ dz dt

ol
S/o W/Q(O )qus(z) — V2u.(0)| dz dt.
NAd

Using the triangle inequality, we obtain

1 1 /
V2u5 us )| dz </ / uE V2u(z)| dzdt
/0 rVtN Q(O,tr)’ =) ) NN Q(0,tr) )l
1
+/][ \VZu(z)—V2u(O)\dzdt+/][ (V2u(0) — V. (0)|dz dt. (2.11)
0 J QOtr) 0 J Q)

If we let € tend to 0T, the second term will be unchanged and the third term will vanish. We

turn our attention to the first term, namely

Y11
/ t—N—N/ |V2u.(2) — V?u(z)| dz dt.
0 " JQo,tr)

he(t) := / |V2u.(2) — V*u(z)| dz, for t € (0,1),
Q(0,¢r)

Set

and note that

he(t) < /Q o (T 0(e) ~ 9 de + /Q (D2 6.)(2)] d=.

(0,tr)
Sending € — 0%, we have

limsup he(t) < [D2u| (Q(0,tr)).

e—0t
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Observe that

h(t) 1 1
O 2 e -Vl g [ (V) [Fue) d
t ™ J o, S,

1 D?u|(Q(0, tr
Q(0,tr)

for some constant C' by (2.8)), since r is fixed. On the other hand,

1
w [ W@l [ oo pdti)d
Q(0,tr) Q(0,tr) JQ

1
— [ [ ede-pdzdnn)
Q JQo,tr)
C

dz d| D*ul(y)
eNtN /Q(O,trJrs) /Q(O,tr)ﬂB(y,s)

c .
< NV min{e™, "} D*u|(Q(0, tr + ¢)).

<

Again by (2.8)) and (2.9), we have
|D2u|(Q(0,tr +€)) < C(tr + )V,

so we conclude that h;(f) is bounded by a constant for t € (0,1), and we may apply the

Reverse Fatou Lemma to deduce

) | | —
lim sup/ W/ (V2u.(z) — V2u(z)| dzdt < / NN }D?u} (Q(0,tr))dt.
0 Q(0,tr) 0

e—0t

Thus from (2.10) and (2.11]) we have

L @) u(0) - V() - 9%u(0) (. 2)] da
Q(0,7)
(|02 (@00, ) o
S/0 ( NN +][Q(O,tr)‘v u(z) =V u(0)|d2> dt. (2.12)

For a given r there are only countably many ¢ € (0, 1) such that |D?u|(0Q(0,¢r)) > 0. Thus,

we can rewrite (2.12)) as

/0 1 ('Dzu’ﬁf’m) + ][Q(O’tr)w%(z) — V2u(0)] dz) dt
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2.4 Bounded Hessian functions and 2-quasiconvexity 2 PRELIMINARIES

We note that by (2.8) and (2.9) we can apply the dominated convergence theorem to conclude

that
1 D2
lim / (‘ Su’(NQS\?’tT)) +][ IV2u(z) — VZu(0)] dz) dt = 0.
0 tr Q(0,tr)

r—0t+

[
For a Borel measurable function f : R>N*N — [0 00) we define the 2-quasiconvex

envelope

Qo f(H) := inf { /Q f(H +V?¢(2))dz | 6 € W (Q; Rd)}

for H € RIXN*N,

The notion of 2-quasiconvexity, introduced by Meyers in [61], is an extension of quasicon-
vexity to second-order integrands.

The BH relaxation result of Chapter |3| relies on geometric properties of Hessians and
2-quasiconvex functions. In particular, any 2-quasiconvex function is convex along certain
directions- analogous to quasiconvex functions being rank-one convex, see [27]. To be precise,
we will follow the notation of Ball, Currie, and Olver [9]. By X (N, d,2) we denote the space
of symmetric bilinear maps from RY x R" into R? noting that every Hessian matrix is in

X (N,d,2) when viewed as a bilinear map

0*u (20)
8’018?]2 0):

(Ul,UQ) —
We define the cone A(N,d,2) as
A(N,d,2) :={a®@b®b:ac R bec RV}

Lemma 2.16. Let M = dim(X(N,d,2)) = @N. There is a basis {&}M, C A(N,d,?2)
for X(N,d,2) with |§| =1 for every i € {1,... M} and there exists ¢(N,d) > 0 such that for

all H € X(N,d,?2) written as

M
H = Zai@, a; GR,’iI 1,...,M,
=1
it holds that
1 M
S| < |l < el H]
i=1

Proof. Since tensors of the form
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2.4 Bounded Hessian functions and 2-quasiconvexity 2 PRELIMINARIES

erReVe;j+ep®ej®e;, k=1,...,d, andi,57=1,..., N,

form a basis for X(N,d,2), to see that we can form a basis contained in A(N,d,2) it will
suffice to show that the span of A(N,d,2) contains these basis vectors. When i = j, we

trivially have

2e, ®e; Re; € A(N,d, 2),

and if ¢ # j, we note that A(N,d,2) contains

er®@(e;+e)®(e;+e)=e,®(€Re;+e; e +e;, e+ e Qej)

which, combined with our above observation, implies that

er®e ®e; +ep,@e; ®e; € Span(A(N, d, 2)).

Thus we have Span(A(N,d,2)) = X(N,d,2) and we can select a basis for X(N,d,2)
consisting of A(V, d,2) tensors, and by scaling these appropriately we can guarantee |§;| = 1
for every ¢ € {1,..., M}. Note that with H = Zi\il a&,a;, €Ri=1,..., M,

M
1H] = lail
i=1

defines a norm on X (V,d, 2), and the existence of a constant ¢ > 0 such that
1 M
HH) <3 ol < ol

i=1

follows from the equivalence of norms on finite dimensional normed spaces.

Definition 2.17. We say that a function F': X(N,d,2) — R is A(N,d, 2)-convex if
FE+ (1 -1)&) <tF(E) + (1 —t)F(£)

whenever (£ —¢') € A(N,d,2), t € (0,1).
Theorem 3.3 in [9] relates 2-quasiconvexity to A(N, d, 2)-convexity.

Lemma 2.18. Let F : RV*4d 5 R be continuous and 2-quasiconvexr. Then F is A(N,d,2)-

convex.
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Next we show that A(N,d,2)-convex functions with linear growth are in fact Lipschitz
continuous in all of X(N,d,2). This lemma is a slight modification of a similar result on

separately convex functions in [42] Proposition 4.64.

Lemma 2.19. Let f : RN 5 R be a A(N,d, 2)-convex function such that
[f(H)| < C(1 + |H) (2.13)
for some C > 0 and all H € R>*N*N_ Then
|f(H) = f(H")| < C|H - H'|

for all H H" € X(N,d,2), where C' depends only on C, N and d.

Proof. Step 1: First, consider the case where f € C°(RV*4*4) From Lemma we can
select a basis {§;} C A(NV,d,2) for X(N,d,2). Fix H € X(N,d,2), which can be expressed
as H = Z£1 ai&,a; € Ri=1,..., M. Fix j € {1,..., M} and consider the function

g(t) = f (tsj + ; ai@-).

Since ¢ is convex and smooth, it follows from [42] Theorem 4.62 that for every t,s € R we

have
gt +s) —g(t) > ¢'(t)s.

In particular, letting s = 1+ |H| and ¢ = aj,

t+s)—g(t) _ [f(H+ A+ [H)E) +[f(H)]

) = i) < &

0 s - 1+ |H|
_ CO+ H|+ 1§+ [H]) +C1 +[H])
1+ |H|
1+ |H]|
< 3C =3C
1+ |H| ’

by virtue of (2.13) and the fact that |¢;| = 1. Similarly,
g(t —s) —g(t) = —4'(t)s

SO
_olt=s)—g(t) _ 1 +|H]

=3C
s 1+ |H|
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2.4 Bounded Hessian functions and 2-quasiconvexity 2 PRELIMINARIES

and thus

of
%
for every j = 1,...,M, and H € X(N,d,2). Let H H € X(N,d,2). By the mean value
theorem, we can find 6 € (0, 1) so that

(H )‘<3(J

|f(H) = f(H)| = |Vf(0H + (1= 0)H') - (H — H')] (2.14)
and we can decompose H — H' into Zle b;&; so that

Sy U

i=1 j=1

IVF(OH + (1 —-0)H') - (H — H')| = 9H+ 1= 0)H")b&; - §;

M M
< ZZ30|bj! < 3cMC|H — H'|

where we used Lemma We conclude in view of ([2.14)).
Step 2: For an arbitrary A(N,d, 2)-convex function f satisfying (2.13), consider the mol-
lified functions f. := f % ¢, € > 0. Each function f. is still A(N,d,2)-convex and for every

H € RV*dXd wa have

|f-(H)| < ‘/RNMM f(H — S)dS‘ <C o-(S)(1+|H — S|)dS

B(0,e)
<C(1+|H|),

and by Step 1
|f-(H) = f(H")| < C|H — H'|

for every H, H' € X (N, d, 2) for some C independent of e. Since f. — f pointwise as e — 0,
we have our desired result.

m

To prove the upper bound, we will establish an area-strict density result in BH. The

notion of area-strict convergence is as follows.

Definition 2.20. We say that a sequence of Radon measures {u"} C M(Q;R?) converges
area-strictly to u € M(Q;R?) if u™ > p, ie.,

/ V- dp, — / Y - dp for every ¢ € C,(Q;RY),
Q Q
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and
/ \/1+‘Mac‘ dr + |pg|(2 _>/ \/1+{Ma6{ dz + |ps| (2

We will make use of another Reshetnyak-type theorem found in [56] Theorem 5.

Theorem 2.21. Let f € E(Q;RYN) and let {u"} be a sequence of matriz valued measures

on € such that u™ — p area-strictly on €2. Then,

du’? dys
flz, chm—l—/foo x, 5_|d Z—>/fx, acdx+/f°° x, d| s
/Q () Q d|pr| 1] Q (% Hac) Q d|pus| o

where E(Q; R™Y) is the set of all functions f :  x R>Y — R such that the function

Flan) = - 60f (05 ) o e 9 e BOLY

has a continuous extension to 2 x B(0,1).
In Chapter [3, we apply this Reshetnyak-type theorem of Kristensen and Rindler in the

following form:

Theorem 2.22. Let f : Q x R>NXN [0, 00) be a 2-quasiconvexr continuous integrand

satisfying the growth condition (H1). Then the functional

/f x, Vu( daH—/foo <x,%(m)>d\Ds(Vu)\(x)

is continuous with respect to area-strict convergence of D(Vu).

Proof. From Lemma 1 in [56], we know that since f is continuous and nonnegative with
linear growth, we can find gy, by € E(Q; R>*N>*N) such that

gk(va) /‘f(l’,H), glio(va) /‘f#(JZ,H),
hk(xaH>\f(va)v hzo(x’H)\f#(x’H>7
for every x € 0, H € X(N,d,2), where
fu(z, H) = liminf{w = a, H — H it — —i—oo},

and
,tHl
f#(x,H) := hmsup{% ' —x,H — H,t — —i—oo}.
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Let u € BH(Q;RY) and let u,, € W*1(Q; R%) be such that u, — u in Wt and V2u, LV
2 — D(Vu) area-strictly. For every k we apply Theorem to obtain

lim inf G(u,) > lim inf / gz, Vu,)dx
Q

n—o0 n—oo

- /Q i (@, V2u)dz + /Q g?(m,%)cﬂl)s(vm,

and

lim sup G(u,) < lim Sup/ hy(z, V2u,)dx
Q

n—oo n—oo
dD4(Vu)
— V2uyde + | B2 (2, ~=o ) d| Dy (V).
/Qhk(:c, u)dx /Qhk (x,d‘ N u)\)d‘ s(Vu)

Taking the supremum over k, we apply Monotone Convergence to conclude

dD,(Vu)
liminf G (u,,) /f z, Vu) dx—i—/f ( —)d|D (Vu)|. (2.15)
mi #\™ 0D, (%)
Similarly, since hy, h$° € E(Q; R>*V*N) we can apply Monotone Convergence to —hy, —h5°

to conclude

D,
lim sup G (u,,) /f x, VZu) dx+/ f#( w)cﬂD (Vu)l. (2.16)
n—00 " d|Dy(Vu)

A generalization of Alberti’s Rank One theorem to Hessians, proved in [35], Theorem 1.6,

says that
Ds(Vu)

[ Ds(Vu)
for |Ds(Vu)| almost every x. We claim that for all H € A(N,d,2)

(z) € A(N, d,2) (2.17)

folw, H) = f*(x, H) = [*(z, H). (2.18)

To see this, as in [56], we examine the expression

f@' tH")  f(2',tH') — f(2',tH) N f(z',0) N fla' tH) — f(a',0)

= 2.19
t t t t ( )

for ' € Q, H € X(N,d,2) and t > 0. By Lemma [2.18 f(x,-) is A(N,d,2)-convex with
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linear growth. Hence by Lemmal[2.19] f(x,-) is Lipschitz on all of X (N, d, 2) and the Lipschitz
constant is independent of x. Thus, the first term in (2.19) will vanish as H' — H.

The second term clearly goes to zero as t — 400, so we turn to the third term. We note
that for all H € A(N,d,2), y € Q,

f(yatH) _f(y>0)
t

is an increasing function in ¢ by A(N, d, 2)-convexity, and since f(y, ) is Lipschitz, we have

i LW ) @0 _ W tH) ~ f(y,0)
t—+00 t >0 +

= foo(y7H)

As f is continuous in y for every H, we can apply Dini’s Theorem to conclude that the
convergence as t — 400 is locally uniform in y. Thus, the third term converges to f*°(z, H)
as t — +oo and 2’ — .

In view of (2.15)), (2.16), (2.17) and we conclude that

lim G(u,) = G(u).

n—oo
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3 STRUCTURED DEFORMATIONS AND BH

3 Structured Deformations and BH

3.1 Statement of main results

We consider a functional F : W2(Q,RY) — [0, cc] given by

F(u) := / f(z, V2u)dz, ue W(Q,RY),
0
where f: Q x R&NXN 10 00) satisfies the following hypotheses:

1) Linear growth: f(x, <C(l+ orall z € (), H e and some C' > 0;
(H1) Li g h: f(z, H) < C( |H|) for all Q, H € R”N*N and C

(H2) Modulus of continuity: |f(z, H) — f(y, H)| < w(|z — y|)(1 + |H]) for all z,y € Q, H €

R>N*N “where w(s) is a nondecreasing function with w(s) — 0 as s — 07,

Denoting the lower-semicontinuous envelope of F onto the space BH(Q;R?) by

n—oo

F(u) := inf { liminfF (uy) : u, — u in W (Q; RY),
Viu, LY L Q 5 D(Vu) in M(Q,RdXNXN)},

we will prove the following integral representation result.

Theorem 3.1. If f satisfies (H1) and (H2), then for every u € BH(Q;R?) we have

Flu) = /Q ng(x,v2u)dx+[2(92f)w (x %)dms(vun.

The proof of Theorem is structured as follows. In Section [3.2], we prove an area-strict
density result for Radon measures and a second-order extension theorem in order to apply
this theorem to BH. Section contains the relaxation result which is achieved by a direct

blow-up argument.

3.2 Density result

Here we prove a useful density result which states that we can approximate a measure in the
area-strict sense via smooth functions, as long as the domain is sufficiently regular. In order

to prove this, we will need the following estimate.

Lemma 3.2. Let Q C RY be an open set. Let g : R? — R be a convex function satisfying
lg(&)] < C(1+ [€]) for some C > 0 and all £ € R and let p € M(Q,R?). For every x € Q
and € < gq = dist(x, 092),

31
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9((Hac * ¢) (7)) < (g(Hac) * @) (),

and

o((11s % 26.) (x)) < / 9 W) (1 _ i) (), (3.1)

Q t-(z)
where t. € C*(B(x,¢€)); [0,00)) is given by

v) = / 6oy — 2)d| 1| (y)dy

and holds whenever t.(z) > 0, a set of |us| density 1.

Proof. Fix x € Q and note that € < gy implies that B(x,e) C 2. By Jensen’s inequality,

(00 =9 [ 0.0 =) ) < [ 6100~ gty = (o) 00
where we used the fact that [, ¢.(y — 2)dy = 1.

For the singular part, we set t.(z) := [, #(y — x)d|ps|(y)dy. Then, for ¢ << 1, we have
t- € C°(B(z,0);[0,00)), and if t. > 0 then the measure 7, := igbe(- — x)|us| is a probability

measure. Thus, we can again apply Jensen’s inequality to obtain

(e 20)0) = ([ 2000 = 21} = o [ 2rominano))
< [ gtzttomians) = [ L6 i)

Q te(z)
O

Theorem 3.3. If U is a bounded, open set in RN, u € M(U;R?) is a Radon measure, and

g: R4 —[0,00) is a nonnegative function with the following properties:
(A1) Linear growth: g(p) < C(1+ |p|) for all p € R? and some C > 0;
(A2) Convezity: g(tp+ (1 —t)q) < tg(p) + (1 —t)g(q) for all p,q € R? and t € (0,1);
(A3) Monotone in norm: |p| < |q| implies g(p) < g(q) for all p,q € R%;

(A4) Uniform Convergence to Recession Function: For some a > 1 and C' > 0,
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for all p e R, t > 0.

Then, for every Q CC U with |0 = |p|(092) = 0, we have

i [ e = [ lmclda+ [ g

e—0t Q

where [ie = [t * @e.

Proof. We divide the proof into two steps, a lower and upper bound.

3.2.1 Step 1: Lower bound

We claim that

/ﬁwwm+/mwmggmn
Q Q e—

For this inequality, we use the fact that {u.} converges weakly-* to p, and that {|u.|}

i£1f /Q g(ue)dx (3.2)

0

converges weakly-x to |u| (See [4], Theorem 2.2).
We will apply the blow-up argument originally found in [45]. Choose ¢ — 0 which
achieve the liminf, and, for simplicity, using the notation p., =: ux, we define the Radon

measures

Mww:émwuwm

for any Borel set £ C €. Due to the growth condition (A1), we have

mmzﬁmmmsﬂfuﬂwwwﬁ%QMmeQ, (33

and since {u} converge weakly-x, the sequence {|ux|(2)} is bounded. We deduce that
{ ()} is bounded, therefore, along a subsequence (not relabeled) we have A, — X for some

finite Radon measure \.
The growth conditions on ¢ yield

A<< LYLQ+ |pl. (3.4)

Indeed, let F be any Borel subset of Q2 with |E| = |u|(E) = 0. By inner regularity, it suffices

33



3.2 Density result 3 STRUCTURED DEFORMATIONS AND BH

to show A\(K') = 0 for every K C E compact. For any such K, we have
|K| = |ul|(K) = 0. (3.5)
Define the open sets

Ks = {x € Q: dist(z, K) < 0}. (3.6)

Since 0K5; = {z € Q : dist(x, K) = 0} are an uncountable family of disjoint sets, we can
select §; — 0T such that

Wl(OK) = 0. (3.7)
We have by (3.3)

AMEK) < \Kj,) < lilgninf Ae(Ks,) < lilgninfC'(|K5i| + |,uk](K51,)>
—00 —00

= i (1l + il (53) ) = (1] + 053 )

by virtue of 1) and the fact that [p| = |u|. Since Nyoo Ks = K, letting i — oo, we get

by (3.9)

) < (1K1 + ) ) =

and this concludes (3.4)).

We claim that

d\

M—N(xo) > g(tae(z0)) for LNace. zo € Q, (3.8)
and

d\ N

M(:ﬁo) > g™ (v(xo)) for |us| a.e. xyg € Q. (3.9)

If (3.8) and (3.9) hold, then on one hand
A(Q) <liminf \y(Q) = lim | g(uk(x))de,
k—ro0 k—o0

Q
while (3.8)) and (3.9)) yield
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/ﬂ 9(ttae()) iz + 112](©2) < A(S).

Thus, we conclude the lower bound (3.2). We begin by establishing the inequality for the
absolutely continuous part, i.e. (3.8). For LY almost every xq € €2, we have

ddﬁ/\N (o) = }}L% W exists and is finite,
l 1/ [Htac() — pac(o)|da = 0 (3.10)
-5 Mac\T) — tacZp)|dxT = U, .
r—0 T’N Qlzo.r)

o 1:1(@(o, )

r—0 TN

Choose 7, — 0 such that A\(0Q(zo,7,)) = 0. Then

— 0. (3.11)

dA AQ(@o, ) _ . Ae(Q(20,70))
I L
~ lim lim — (pu(2))d 3.12
i 1 Sy T o

Define the functions v, x(y) = ux(xo + rpy) for y € Q. Apply a change of variables so

that (3.12) becomes

dA

2N (@o) = lim lim g 9(vnk(y))dy.

Since i — p, we have that for every n, the measures vn e LY L Q converge weakly-* to a

measure 7, given by

(TE,..(E)  p(zo+71,E)
rN N ry

T(E) =

, for every Borel set £ C Q (3.13)

where Tﬁrn 1 denotes the push-forward of 1 under the mapping which takes

T

r — XIg
X —

T'n

Indeed, by the standard change of variables for push-forward measures (see [16] Theorem
3.6.1), for any test function ¢ € C.(Q) we have
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/Qvn,k(y)w(y)dy = /Quk(xo +ray)(y)dy = LN /Q . (x)w(x — %)dx

r, T

: i/ w(x;f(’) = o [ vz, mw

w )dm, (y

k

1

\ \L

In turn, T, — pae(7o) LN L Q. To see this, fix any ¢ € C.(Q). We have

‘ / b(y)dmaly / ) e xo)dy‘

1 Tr— T Tr—T
R T
T | JQ(zo,rm) "n Q(z0,7n) "n
1 T — g T — X
_ 5 le) — oo+ [ (T
/r‘;]’bv Q($07Tn) T'n Q(IO’TW) T'n

! S y'mn
<00l [ )= )+ 2l

which goes to 0 as n — oo by (]3.10[) and (]3.11[). Thus, T, = pac(70) LY L Q.

By an identical argument, since || = || and |pee] = |1t]ae We have |v,, .| LYLQ = |,
and |7, = |tae| (z0) LY L Q.

Recall that bounded sets in M (Q;R?) with the weak-* topology are metrizable (see [24],
Theorem 3.29). Since

lim sup lim sup ||v,, x| = im sup lim sup |v,, x[(Q) < |tac|(x0)
n—>00 k—o0 n—00 k—o0

we have

sup sup ||v, x| < oo.
n k

Thus we can select a diagonal sequence v,, := vy, such that v, B pae(zo) LYNLQ, Ju,| 2
|ttac(0)] LY L Q, and

lm lim [ g(vur(y))dy = lim [ g(v.(y))dy.

n—o00 k—o00 Q n—o00 Q
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Since g is convex by (A2), consider an affine function a +b- ¢ < g(£) (in the manner of
[42] Theorem 5.14) and observe that

d\
— (T0) = hm / (vn(y))dy > hm mf/ <a +5b- vn(y))dy
L 0
= a+liminf/ b-vn(y)dy > a+0b- pac(zo). (3.14)
n—oo Q

To see why the last step of (3.14) holds, for any ¢ < 1 let ¢, € C.(Q;][0,1]) be such that
Yy = 1 in tQ). We have

lim '/ Un(Y) — fac(o) dy‘ < lim ‘/ Un(Y) — flac x(]))d}tdy‘

n—oo n—oo

+ hm ‘/ Un — Hac 1’0))(]— - wt)dy’

n—0o0

= lim /(vn(y) Hac(T0)) (1 — @th)d?/‘
< lim [0n(y) — fac(To)|dy
n—oo Q\tQ
< 11_>_m |’Un<y>|dy+ ‘,U/ac(x())HQ\tQ’
n—0oo Q\tQ

S 2|Mac|(x0>|@\ th = 2|:uac’(x0>(1 - tN)'

As this holds for any t < 1, we conclude that

lim ‘/ Un(Y) — Hae xo))dy‘ =0,
n—oo
and thus

lim Un (Y)Y = Hac(T0).-

n—oo
Q

Since ([3.14) holds for any affine function below g, we conclude that

@) 2 g(palo))

To address the singular part, we fix o € (0,1). We know that for |u,| almost every x,

ﬂ(‘ro) = lim )‘(Q(:E07T)) — 1 )\(Q(IL‘U,T))

P sl Q. 1)) — 0 Tl QL. 7))
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1
lim —/ |,u,ac|(x)dl’ =0,
r—00 |M5|(Q($Oa T)) Q(zo,r)

f o vt - vieoldinlz) =0,
Q(zo,r)
and by Lemma [2.5| we may select r,, — 0 such that |u|(0Q(xo,7,)) = 0 and

oo @G ar)

oo |p|(Q(zo, 7))
Note that in view of (3.4]), |\ (0Q(xo,r,)) = 0 for all n € N. We have

i\ Qo) Qo)
— lim SVeEO )iy 20 T))
T 0 = O ) A I Qo)
) . 1
= 0 (@G0 ) /Q@O,M) 9lpue(w))dr.
Let
Q)
n - TT];[ b)
and define

_ tw(zotray) N pe(To £y
o) = o) tn

We can apply a change of variables to (3.18)) to get

dA - 1
] ) = i i [ gt )y

For a fixed n, as k — co we have v, , LY = 7, with

. (Tjé,rnﬂ)(E) ~ w(wo + 1 E)
Tl E) = QG ) — 1al@o )

, for every Borel set E C Q,

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

where, as in 1) Tx#OM i denotes the push-forward of 1 under the mapping which takes

T — XIg

T —r
T'n

On the other hand, if we define measures
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|l (xo + 70 )

plE) = Qo)

, for every Borel Set E C Q),

we see that m, — m, p, — p, for some Radon measures 7 € M(Q;R?) and p a finite

nonnegative Radon measure in M(Q), perhaps along a subsequence. We claim that

= v(xo)p. (3.20)

Indeed, fix ¢ € C.(Q). We have

‘ /Q (y)dm(y / () (o) dpa >]

- m\/ R G LC B B Co CE S
] [ ( 50 ) vl (o) - / (Wn)w(”;fo)u<azo>dms|<x>
m( /Q - |w|( 0 ) i 0) + [ (555 vt

< oy [ ) = radnl@) + (@)

which goes to 0 as n — oo in view of (3.15) and (3.16). Since

/Q@/Jdﬂn—>/Q¢d7T,
/Q v (o) dpn = v(a0) /Q $dp — v(zo) /Q pdp = /Q bw(zo)dp,

we conclude that m = v(zo)p. We note that p(Q) > oV. To see this, by (3.17) we have

and

1(Qo,om))

Q) 2 ploQ) 2 limsup pu(0Q) 2 Timsup po(0Q) = lim sup T ror =)

Diagonalizing as in the absolutely continuous case, we have

d\ 1
—(wo) = lim | —g(t,ua(y))dy.
dms,(xo) Tim Qtng( un(y))dy
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Fix n > 0. Since the convergence to ¢* is uniform as in (A4), we can find M > 0 so that
for all p € R? and ¢ > 0 with |p| > 2, we have

@ > g% (p) — .

Define the sets E,, := {|v,| > %} Then,

1 1
lim [ —g(tyvn(y))dy > liminf [ —g(tyva(y))dy = liminf [ g% (v.(y))dy — 1.

n—oo Q n n—oo En n n—0o0 En

On the other hand,

lim inf/ 9> (v (y))dy > lim inf/ 9% (vn(y))dy — lim sup/ 9> (vn(y))dy
Ey Q Q\En

n—00 n—00 n—00

and, since

cM
lim sup/ 9% (v (y))dy < limsup =0
Q\En

n—oo n—oo n
we have

1
lim t—g(tnvn(y))dy > lim inf / g% (vn(y))dy — 1
Q

n—oo Q n n—oo
for every n > 0, and thus
. 1 ..
lim —g(tpvn(y))dy > lim mf/ 9% (vn(y))dy.
n—oe /o tn n—oo fo

Now, by Theorem [2.3] since ¢* is convex and 1-homogeneous with the appropriate growth

condition, we have lower semicontinuity with respect to weak-* convergence, and so

d\
d|pus|

and, letting ¢ — 1~ we conclude

(20) > /Q > W(w0))dply) = 5 (v(ao))o™,

dA N
e (70) 2 97 ((w0)).

3.2.2 Step 2: Upper bound
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We claim that
limsup/g(us)dxﬁ/g(uac)der/g(V)d\usl. (3.21)
£—00 Q Q Q

We will use the blow-up method. Choose a sequence {¢;} which achieves the limsup, and

define measures

Me(E) = / g(pe, )dz for every Borel Set £ C ().
E

As in Step 1, we may pass along a subsequence to a weak-x limit

A << LN + |- (3.22)

To prove the upper bound, we will show that

dA
dL_N(xO) < 9(ftac(x0)) for LNa.e. zg € Q, (3.23)
and
dA -
i I(xo) < 9™ (v(xo)) for |us| a.e. zq € Q. (3.24)

Assuming (3.23) and (3.24)), by our boundary regularity assumption on  and ({3.22) we
have A(0€2) = 0, and therefore

Q) = A(Q) > limsup M\ (Q) = limsup M\ (Q),

k—00 k—o00

while

A(Q) < / 9(ttae())d + / g% (v(2))dlpa] (),

and putting these together, we have (3.21). To prove (3.23)), we know that for £V -almost

every xp, we have

=0, (3.25)
and

lim |ftac() — prac(x0)|da = 0. (3.26)
r—0 Q(ZBO,T)
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For all such points, we have

dﬁN r—0 TN r—0 k—oo TN ’

and thus

d\ o]
a7~ (%0) —}grg”}lﬁrgor—N/Q(W)g(u*%)dx

r—0k—oo T

1
= lim lim _N/ g(ﬂ/ac * ¢5k + s * ¢5k)d$
Q(zo,m)

By convexity of g, for any p,q € R? and 6 € (0,1) we have

9(p+4q) < g (%p) +(1—0)g (1—if)q),

hence

dA 1 1 1
— <lim lim — Ogl - - 1-6 — U * O d
dﬁN(IO)_%kL_TOTN /Q(aco,r) [g(euac*gbk)—'—( )g(l_eu *¢k)] !

and in view of Lemma [3.2] we have

X | | 1
22 (o) < lim lim — - 1—6)g( —— . (32
gCv (o) < lim i 7 /Q(aco,r) leg(euac) * et 6)g<1 —” d)k)] dr (320

Moreover,

1—0/ ( 1 ) 1-46 1
o — e 60, o < / (14| —p s 0.
TN Q(zo,r) 1-— 9 k T’N Q(zo,r) 1-— 9 k

C
s<1—e>c+—N/ s * 6o, |d,
™ JQ(zo,r)

Jas

and this yields
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e 10 1 - |l (@0, 7))
lim lim — /Q(ww) g(mps * ¢£k>dm <(1-0)C+ C}g%r—N

r—+0k—oo T

—(1-0)0, (3.28)

where we have used (3.25). In turn,

1 1 1 1
lim lim — g = ttae . dr = lim — gl =t |d
TILI(I) k1—>rgo rN /Q(zo,?") g(elu ) i qb e rli:% r /Q(mo,r) g(elu > !
1
=g (éuac(:vo)). (3.29)

To see why the last step above holds, note g is convex with linear growth, and so by regularity
properties of convex functions (see [42] Proposition 4.64) we have that g is Lipschitz with

some constant L > 0. Thus,

o b))

by virtue of (3.26). By (3.27), (3.28), and (3.29), we have for every 6 € (0, 1) that

1 L r—0
< — - [HMac - Mac d —0
<o Glhce) = o

G0 < 00 Gratoo) ) + 1 0)C.

and letting § — 17, by continuity of g we conclude that

o) < glitcla)

for £V almost every zy € €.

Next, we tackle the singular part, i.e. (3.24) . We know that for |us| almost every g, we

have
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1

lim t/ |,uac|(x)dm = 07 (331)
20 sl (@20, 7)) JQwor)

and

tm { )il = ¢ ().
Q(zo,7)

We choose a sequence r,, — 0 such that |us|(0Q(xo,r,)) = 0. Note that by (3.22) we also
have A(0Q(zo,7,)) = 0. We obtain

d\ _ AMQ(zo,70)) o Qo))
— =1 =1 1
) ) = I L Qo)) e I (0 o, )
1
— lim I )z,
nl—>nolok:l—>lgo |MS|(Q($O,7’n)) L(IO,Tn) g(ﬂ* Qb k) v

Again appealing to convexity of g, we get

1 1 1
(o) < lim i = (2t % 0o ) 4+ =g (200 % &) | dz. (3.32
o) < i Ji o [ o) + ot )| (33

n—00 k—00

Since by (Al)

1
QQ(Q/LQC * (bgk) < C(l + |/Lac * (bt‘k')a

we have

o 1 1
lim lim / —9(2ftge * ¢, )dx
n—00 k—o00 |MS|(Q<$0’ rn)) Q(z0,mn) 2 *
- 1
< lim lim / C(1 + |ptae * ¢, |)dx
n—00 k—00 |/j,s|(Q(.T0, Tn)) Q(z0,mn) r
. C < N /
= lim )+ ],uac|(:v)dx) =0, (3.33)
n—oo |15 (Q (70, 7n)) Q(wo,n)

where we used (3.30)) and (3.31]).

Next, we restrict our attention to the singular part in (3.32)). Since

|(Der * 1s) (2)] < (P2 * |ps]) () = 2e (@), (3.34)
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and ¢ is monotone in norm by (A3), we obtain

920z, * ps(x)) < g(2tc, (x)).

Partition Q(zo,7,) into two regions, where t., < 1 and t., > 1. In the first region we have

/ 9(260, * 1a(a))dz < / 921, (x))dz
Q(zo,rn)N{te, <1} Q(zo,mn)N{te, <1}

<rg(2)=Crl. (3.35)

Meanwhile, in the second region, using Lemma we obtain

/ 9(262, * p1a())de
Q(ﬂmﬂ”n)m{tsk >1}
g(2t., (z)v(y))

= / / T Qe — )l (y)da. (3.36)
Q(zo,rn)N{te, >1} /0 ()

Note that by (A4),

' 9(2te, (x)v(y))

L) gt <

and by ([3.36)) we have

/ 9200, % pa(a / / ()b, (2 — y)dluel (9)de
Q(zo,mn)N{te, >1} Q(z0,mn)N{te, >1}

n / 6., (2 — y)d| s | (y)da
Q(zo,rn)N{te, >1} /Q tEk (‘T *
C

<[ Al [ g

Qo,r){te, >1} Lex

< / 2(g™ (v()) 1] # 62,) (2)dz + Cr™ (3.37)
Q(zo,mn)

In view of (3.35)), (3.37)), we have shown for every 6 that

/ 920, * pia(x))d < / 2 (g () ] * o) () + Y,
Q(x0,mn)

Q(IO/’"n)

therefore,
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1 — 1
lim/ —g(2¢., * pus(x))dz
Q@0 m)) o Jgan y 291202 % 15(2))

N
,
<f e o (339
Qao.rn) s

(@0, 7))

and by (3.30), (3.33), (3.38) we conclude that

d\
d|pus|

(o) < g% (v(20)).

3.2.3 A BH extension result

In our application, we are interested in the case when the measure y is the Hessian of a
BH function. It should be noted that the first-order case, when p is the gradient of some
BV function, an area-strict density theorem follows from the integral representation results of
Fonseca and Miiller, Ambrosio and Dal Maso, with no regularity assumption on the boundary
(451, [31).

To apply Theoremto a given u € BH(; RY), the main obstacle is finding an extension
of u to a larger set U such that |D(Vu)|(0€2) = 0. In order to achieve a fairly general class

of domains, we shall borrow from the construction of Stein [71].

First we will construct the extension in the case where €Q is of type special Lipschitz. Recall
that we say a set Q C RVt is special Lipschitz if there is a Lipschitz function f : RY — R
such that

Q={(z,t) e RN .t > f(x)}

where we are identifying RV+! with RY x R.

We begin with a simpler approximation lemma.

Lemma 3.4. Let Q C RY*! be a special Lipschitz domain. For any v € BH(Q;RY) there
exists a sequence {u,} € W>L(Q; R?) such that

lim [Ju, — ul|lwriray = 0 and sup ||un,||wr2@re < 0.
n—o0 n

Proof. Given any v € L*(Q2) and 6 > 0, we define its translation Tsv € L*(€s) via

Tsv(x,t) :=v(x,t+9)
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where Qs := {(z,t) e RN : ¢ > f(x) — 6}
Note that if L is the Lipschitz constant of f, then for (z,¢) € Q and € < HLL we have

B((z,t),e) C Qs, so the function ¢. * Tsv € C*°(1) is well-defined. Since VTsu = T5Vu and

the translation is continuous in the L' norm, we have

51_i>%l+ ||T5U — Ule,l(Q;Rd) = 0

By standard mollification results, we must have for every § > 0 that

lim Hgbg * Tgu — Tgunl,l(Q;Rd) = 07
e—0T

lim sup ||¢5 * T(SUHWQ,I(Q;Rd) S ||U||BH(Q)
e—0t

Thus, for any sequence 9, — 0% we can choose ¢, < ffL such that the smooth (and thus

W21} functions ¢., * Ts,u converge to u with bounded W*! norm.
0

Lemma 3.5. Let Q C RY* be a special Lipschitz domain. For any function u € BH(Q;R?)
there is an extension E[u] € BH(RNTL:RY) such that Elu] = u in Q and |D(VE[u])|(09Q) =
0.

Proof. The general theory of extending BH functions can be reduced to the theory of extend-
ing BV functions. We recall that (see [4I], 5.4.1) we since € is Lipschitz, given w; € BV (Q)
and wy, € BV(RY*1\ Q), the function

wy(x) for z € Q,

w(x) = _
wo(x) for x € RVTL\ Q,

is a BV function with

Dw = Dwio + Dws|gning + (Trace(w:) — Trace(ws))v HN Y oq (3.39)
where v indicates the inward normal vector to 0f2.
Let w € BH(2). Since Vu is a BV function, in view of (3.39), to guarantee that our

extension does not charge the boundary, it suffices to ensure that the traces of Vu and of

the extension V E[u| agree on the boundary 0.
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We will use the construction given by Stein to introduce Efu]. Namely, for (z,t) €
RN\ Q we define

EM@¢y:Amu@¢+AA@¢mmmw

where A € C®(RM™!) is the regularized distance function, that is,

c dist((z,t),00) < A(z,t) < C dist((z,t), 00)

and 1 : [1,00) — R is a continuous function with

/ Y(A)d\ =1 and / Y(MNNAAN=0, k=1,2,3...
1 1
The function Efu] is well-defined, and it is clear that if it were sufficiently regular it would

satisfy Trace(FE[ul; 0Q) = Trace(u; 0f2) and Trace(V E[ul]; 0Q2) = Trace(Vu; 00Q).

It remains to prove that E[u] € BH(RY*1;R?). Consider a sequence {u, } C W21({;R?)
as in Lemma Since {u,} is bounded in W21(Q; R?) and the extension operator of Stein
is a continuous linear operator

E:WHH(Q;RY) — WHHRNTLRY),
then the sequence {F[u,]} is bounded in W2(R¥+1;R?) and thus, along a subsequence,
there is a function v € BH (R *1; R?) such that
Elu,] — v in L.

We claim that v = E[u]. To see this, fix any (z,t) € RN\ Q. Then,

|Eu)(z,t) — Eluy)(z,t)| < /00 Clu(z,t + NA(x, ) — up(z,t + AA(x, t))|dA

1

o C
= w(x,t+s) —uy(x,t + s)|ds.
L Bt + 9 et )

For fixed t and ¢ > 0, we can integrate both sides with respect to x over the set RNV {A(x, t) >
(} to get
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Flu|(xz,t) — Elu,|(x,1)|dx
/RNO{A(M| () (2,£) — Elun) (2, 1)

C [e.e]

< — / lu(x,t + s) — up(x,t + s)|dsdz.
RNn(a >0 Je

C

U JRN nac>0 /e+t
< g/ lu(z, 7) — up(z, 7)|dxdr.
t Ja

o0

|u(z, ) — up(x, 7)|dTdx

Then, for any 7' < oo we integrate over ¢t € (0,7") to get

T
/ / \Eu](z, ) — Elu,(z, D)|dwdt < C- / iz, 7) — un(z, 7)| dzdr
0o JRNA[AGH>0 t Jo

Since for every fixed T and /¢, the right hand side goes to 0 as n — oo, we see that { E|u,]}

converges to Flu] in L}

Tl
loe- However, we also know that {E[u,|} converges in L, . to v, so we

must have Fu| = v and therefore Efu] € BH. Since E[u] is a BH function whose traces
agree with u on 0, it is the desired extension.
[l

Theorem 3.6. Let Q C RY be bounded and Lipschitz. For any function uw € BH(Q;R?)
there exists an extension E[u] € BH(RY;R?) such that |D(VE[u])|(09Q) = 0.

Proof. Since Q is a Lipschitz domain, we can cover €2 by bounded open Uy, CC €2 and
Ui, ..., U such that U; N 0f) is the graph of a Lipschitz function. We may also choose a

smooth partition of unity )y, ..., subordinate to this cover.

For ¢ > 1, the domains U; are the subgraphs of Lipschitz functions- So, we can find special
Lipschitz domains §2; such that €, N Q) = U; N ). Thus, by extending the functions ;u by
zero, we can consider them to be defined on the special Lipschitz domains §2;. By Lemma (3.5
we can find BH functions E[y;u] € BH(RY;R?) which satisfy Trace(E[;u]) = Trace(;u)
and Trace(V E[¢;u]) = Trace(V(¢;u)) on U; N ON.

Define the function Efu] via
k

Elu] == Z Eul,

=0
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where, for the sake of notation, E[tu] is just the function t¢pu extended by 0 to RY. As
Elu] is the sum of functions in BH(RY;R%), it is clearly in BH(RY;R%), and inside Q we

have

k k

=0 1=0

It suffices to verify that V E[u] has the correct trace on 9€2. To see this, note that

k
Trace(V E[ul; 0Q) = Z Trace(V E[¢;u]; 09)
i=0
k
= Z Trace(V(¢;u); 0Q N U;)
i=0
k
= Z Trace(u ® Vi, + 1;Vu; 0Q N U;)
i=0
k
= Z Trace(u; 0Q N U;) @ Vb; + ¢ Trace(Vu; 0Q2 N U;)

=0

= Trace(Vu; 09),

where in the last line we use the fact that 2% Vi, = V(325 4) = V(1) = 0. Since VE[u]
has the same trace as Vu on 09, we conclude that |D(VE[u])|(022) = 0. O

We now present the second-order version of Theorem [3.3]

Corollary 3.7. Let Q C RY be a bounded Lipschitz domain. For any function uw € BH(; RY)
there exist smooth functions u, such that v, — w in L', Vu, — Vu in L', VZu, LN =
D(Vu), and

/\/1+\V2un]2d:c—>/\/1+|V2u\2+|Ds(Vu)|(Q).
Q 0

Proof. Since Q) is Lipschitz, by Theorem there is a function E[u] € BH(RY;R?) with
Elu] =uin Q and |D(VE[u])|(022) = 0.

Let w, := Efu] * ¢1/,,. Since V?u, = D(VEu]) * ¢1,,, we can apply Theorem [3.3[to the
measure y := D(VE[u]) using the integrand

9(p) =1+ |p*.
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3.3 The integral relaxation theorem 3 STRUCTURED DEFORMATIONS AND BH

noting that ¢ satisfies conditions (A1)-(A4) and

9> (p) = Ipl.

3.3 The integral relaxation theorem

We consider a functional

F(u) := / f(z, Vu(x))dz.
Q
where f satisfies the following hypotheses:

(H1) Linear growth: f(z, H) < C(1+|H|) for all z € Q, H € R>*M*N and some C' > 0;

(H2) Modulus of continuity: |f(z,H) — f(y, H)| < w(|lz —y|)(1 + |H|) for all z,y €

Q, H € R”N*N where w(s) is a nondecreasing function with w(s) — 0 as s — 07.

The relaxation of F' onto the space BH (Q;R?) is defined as

n—o0

F(u) := inf { liminfF(u,) : u, — u in WHH(Q;RY),
Viu, LY L Q> D(Vu) in M(Q,RdexN)}
Our goal is to prove the integral representation result stated in Theorem [3.1] We will prove

this in two steps. Setting

6(0) = [ Qufte Vs + [ <Q2f>w(x,%)dws<w>|,

we will show that F < G and g < F.

Theorem 3.8. For all u € BH(;RY), we have F(u) < G(u).

Proof. We first prove this upper bound for v € W2(Q RY). By the definition of F, it
suffices to find a sequence of functions {u,} C W2'(Q,R?) such that u, — u in Wh
Vu, LY Q5 V2u £V L Q, and

n—o0

liminf/f(x,VQUn)de/ng(x, V2u)dz.
Q Q

The existence of such a sequence is guaranteed by from the integral representation of the

weakly lower semi-continuous envelope in W2!(Q, R?) from [21], Theorem 1.3. In addition,

o1
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necessary and sufficient conditions on lower-semicontinuity of second-order vector valued
functionals can be found in [61], Theorem 4. Thus, for any u € W21(Q, R?) we have

F(u) < G(u). (3.40)

Next we show that for any u € BH(Q;R?) we have F(u) < G(u). By Corollary 3.7, we
know that we can find u,, € W2'(Q, R?) so that u, — u in W', V?u, LN = D(Vu) and the

convergence is area-strict, i.e.,

mlxﬁTﬁﬁfwz/wHﬂmﬁhﬂmwwm)

Since Qs f is 2-quasiconvex with linear growth, Theorem [2.22] applies. Thus, G is contin-

uous with respect to area-strict convergence, and

F(u) < liminf F(u,) < lim G(u,) = G(u)

n—oo n—oo

where we use (3.40) on each of the u,,.

3.3.1 On coercivity

Before we prove the lower bound in the most general case, we will first assume that, in

addition, f(z, H) is coercive, i.e.,
(H3) Coercivity: f(z, H) > c|H| for all x € Q, H € R*N*N and some ¢ € (0,1).

Note that under (H3), Qs f will inherit the modulus of continuity from f. Indeed, for any
z,y € Q, He R*MN and w € W (Q; RY) we have

/f(x,H+V2w(z))dz—/ f(y,H+V2w(z))dz

Q Q

< [ 17 H + V() - Sy H + Vou()d:
Q

< / (|2 — )1+ [H + V2w (z)|)dz (3.41)
Q
by (H2). But, if f is coercive, we have

/cw(\x—y\)(uyH+v2w(z)|)dzg/w(\x—y\)u+f<y,H+v2w(z))dz, (3.42)
Q Q
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and so we have by and ,

Q. f(x, H) — /Q f(y H + V2u(2))dz < %/Qw(lm (L F(y, H + V2u(z))de
If we choose w such that

| $0H 5 )z < Qufly 1) o,

this becomes

Qf(z, H) = Qof(y, H) —n S w(lz —y)(1+ Qo f(y, H)) < w(|z —y[)(1 +[H])
where, in the last line, we may have scaled w by some constant. Letting n — 0 we have

Qo f(z, H) = Qof (y, H) Sw(lz —y)(1 + Quf(y, H)) < w(lz —y[)(1 + [H]).
By symmetry, the inequality holds where x and y are switched, yielding
|Qaf (2, H) = Quf(y, H)| < w(|z —y[)(1 + [H]).

Thus, if f is coercive, Qs f will inherit a modulus of continuity from f. I claim that if we

can prove the lower bound for coercive integrands, we have it in general.

Lemma 3.9. If we have F > G for every integrand satisfying (H1), (H2), and (H3), then
we have F > G for every integrand satisfying (H1) and (H2).

Proof. Let f be an arbitrary integrand satisfying (H1) and (H2), and consider the coercive
integrand f. := f +¢|-|. We observe that

Qa(fe) > Qaf +¢| - |

since | - | is convex. Furthermore, by basic properties of limits,

(Qa(fe))™ 2 (Qaf +el - )* = (Qaf)™ +¢l -
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Now, for any sequence {u,} C W2!(Q,R?%) with u, — u, we have

lim [ f(x, Vuy(z))de > lim [ f(z, Vu,(2)) + | VZu,(z)|dz — lim [ |V2u,(z)|dx

n—oo JQ n—oo J Q) n—oo Jo

: w(, ADAVu(@))
> [ Qute Vuta)de + [ (@uf* (G TUEL DL (Vuta)| + D) - e

where we have used the lower bound for f. and the fact that { [, [V?u,|} is bounded. Letting

e — 0, we have that for any sequence u,, — wu,

lm F(un) > G(u)

n—o0

and, taking the infimum over all such sequences, we have

F(u) = G(u).

We will now prove our theorem in the case where f is coercive.

Theorem 3.10. Assume that f satisfies (H1), (H2) and (H3). For all u € BH(Q;RY), we
have G(u) < F(u).

Proof. Let u € BH(Q;R?) be given, and let {u,} C W>(Q,R?) be an arbitrary sequence
with u, — win W', V2u,, LYLQ 5 D(Vu). We proceed according to the blow-up method.

Define nonnegative Radon measures p, via
pn(E) = / f(z, V*u,)dx for every Borel set £ C Q.
E

Without loss of generality we may assume that {u,(2)} is bounded, and so, passing to a
subsequence (not relabeled), we may assume that {y,} has a weak-* limit p.

We consider the Radon-Nikodym decomposition of p with respect to |D(Vu)|,

dp dp
= LT L+ | Ds 5

where p, is a nonnegative Radon measure such that s L D(Vu).
We claim that

du

dL,—N(xO) > Qs f(wo, V2u(xg)) for LNa.e. 2 € Q, (3.43)
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and

dDs(Vu)

dp o
(20> (@uf)* (0. en

d|Dy(Vu)|
If (3.43) and (3.44) hold, then we have

lim inf/ f(z, Vu,)dr = hm inf 10, (2) > ()

n—o0

<I0)> for |Dy(Vu)|a.e. zq € 2. (3.44)

- [ dgwte+ [ gt DAVl + () > Gl

The arbitrariness of the sequence {u,} would yield F(u) > G(u). The remainder of this
proof is dedicated to proving (3.43)) and (3.44]). O
3.3.2 Step 1: V?u

For £V a.e. xy € Q, we have

dp
d£N< 0) = Qaf (0, VZu(xo)).

Note that the measures {|V2u,|CY L Q} are bounded in total variation, so, along a
subsequence, not relabeled, we have |V2u,| Xy for some measure v. By the Lebesgue

differentiation theorem, for £V a.e. zq € Q we have

dp o Q@0 €))

apv () = m T (3:49)
VZu(zy) = lim D(vu)g(%’g)), (3.46)
dv - v(Q(x0,¢€))
dE—N(xO) = ellggr — .~ <% (3.48)
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Select e — 0 such that u(0Q(zo, ex)) = v(0Q (0, €x)) = |D(Vu)|(0Q(xo,cx)) = 0, and write

dp o Q@o,er) e (@0, €8))
R -
1
= lim lim —/ f(z, V?u,)dz.
k—00 n—o0 g]kv Qlzo.er)
With x = xg + €y, we obtain
A1 (o) = Tim 1 (2o + ey, V2 d
g7 (@) = lim lim f o + xy, Vun (2o + €xy))dy
> kﬁ lim / Qo f (10 + ery, Vi, (o + e1y))dy. (3.49)
—00 N—00
Define functions v, € W2(Q;R?) by
Un (0 + 1Y) — Pepy — ae, 1
U e(y) = (70 T ¢ >€2 d £ §V2u(xo)(y,y),
k

where a.j = vanyk and P.j = fQanyk, selected so that each v, and its gradient have

average zero. By (3.49) we get

d
dEM (x0) > hm lim | Qof(x0 + ery, VZu(mo) + Vu,i(y))dy. (3.50)

For fixed k, the measures {V?v,;, LY L Q} converge weakly-* to the measure \;, given by

D E
M (FE) = (VU)(:]S k) V2u(z0) LN (E), for every Borel set E C Q,
k

and by (3.46) {\x} converge weakly-* to 0.
To see this, fix any ¢ € C.(Q). We have

S L — Zo B T =20\ oo
‘/ Y(y)dA(y ’ y /Q(ID@C) 1/1( - >dD(VU)(ZE) /Q(m,ak) ¢< - )V u(zo)dx
T~ %o T — Xo
ey /Q(mo,fk) 77Z}( €k ) (VQU(I) - V2U(x0))dx " /Q(:m,sk) ¢< Ek )dDS(VU) (l’)

€k
1 D.(V |
ol [ 7 - Tt AT )

which goes to 0 as kK — oo by (3.46) and (3.47).
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We also note that for any n, k we have
V201 (y)] < [V i(z0 + exy)| + C

for some C > 0. For fixed k£ we have

. T# v
V2, (w0 + ) |[LY L Q > g—Nk
k

and since, by (3.48)) we have
V(Q(i[}o,&‘k) <

lim 00
k—o0 Eév ’

we conclude that

sup sup / V20,1, (y)|dy < oo
k>0 n>0JQ

Thus, along a diagonalized sequence, we can find vy := v, ; such that {VZu, LY L Q}
converge weakly- to the constant measure 0 and {|V?v;|LY L Q} converge weakly-* to some
nonnegative Radon measure 7. Using the modulus of continuity of Qs f, which follows from
(H3), we have

d .
a0 2 Jim [ Quof(ro + e, VPu(au) + Vo)l

> Tm /Q Qs f (20, V2u(0) + V2ur(y))dy — / w(E)(C + V20 () )dy

k—o0 Q

k—o0

> lim /Q Qa f (w0, Vu(z0) + VZui(y))dy

because [, [V?vi(y)|dy is bounded and w(ey) — 0.

In order to apply 2-quasiconvexity, we have a to use a VVO2 ’1(Q;RN ) perturbation of
V2u(zg). For § < 1, let ¢5 € C(Q;[0,1]) be such that ¢ = 1 on Qs = Q(0,1 — §),
supp(¢) C Qs2 = Q0,1 —8) , |[Ve]lw < &, [V?0|loc < & for some C > 0, and let

2o = @5 Ug. In view of the definition of 2-quasiconvexity, for every k and ¢ we have

/Q Qs f (10, V2u(0) + V221.5(y))dy > Qo f (0, V2u(z0)). (3.51)
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On the other hand, denoting Qs /2 \ Qs as Ss, we obtain

/Q Qa o, Vulwo) + Vkafy))dy = [ Qal(ro, Voulwo) + V7u(y))dy

+ s Qs f (w0, Vu(xo) + V216(y))dy + Qo f (w0, Vu(0))|Q \ Qsy2] (3.52)

and, as k goes to infinity,

- 1 1
i [ Quflan, Voute) + Faaalidy < € Jim (54 [ (Gl + 5190+ 190 )dy
k—o0 Ss k—o00 Ss 0 )

(3.53)
where we have used the growth condition (H1) and the fact that Qo f < f.

Since we have V2v, — 0 and the average of vj, and Vuy are 0, {|vg|} and {|Vv|} are
vanishing in L'(Q). To see this, let {vy,} be an arbitrary subsequence of {v;}. We observe
that, by the Poincaré inequality for BV functions (see [41], 5.10), we must have that {v,}
and {Vuy, } are bounded in L'. Since we have a bounded sequence in BH, we can extract a

further subsequence, not relabeled, and a function v € BH such that

lim [ |og,(z) —v(x)|de = lim [ |V, (z) — Vo(z)|dz = 0.
Q

1—00 1—00
Q

and
D(Vu,) = D(Vv) in Q

However, since D(Vu,) — 0, we have D(Vv) = 0 and therefore Vv is a constant function.
Since (@ is connected and f 0 Vv = 0, we must have Vv = 0. Similarly, this implies that v is

a constant function, and fQ v = 0 implies v = 0. Thus, we have

lim [ [o,(2)|de = lim / Vg, (2)|dz = 0.
Q 71— 00 Q

1—00

Due to the arbitrariness of the subsequence of {vy}, we conclude that it is true for our
original sequence. Since the v, and Vuy are going to 0 in L', (3.53) becomes

lim / Qo f (w0, V2u(zo) + VZ215(y))dy < C6 + C(S;).
Ss

k—00
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Thus, we have that for every § < 1, using (3.51)) and (3.52))

lim / Qo f (0, VZu(mo) + Vui(y))dy > lim [ Quf (0, VZu(zo) + V0r(y))dy
Q

k—o0 k—o0 Qs

> Qo f (w0, V*u(wo)) — €9 — C|Q \ Q512 — C7(Sh).

Note that for every 6 > 0, S5 C Q \ Qs and (Q \ Qs) \, @ as § — 1~. Thus, as we let &

increase to 1, we have

k—o0

lim /Q Qa f (o, VQU(UUO) + szuk(y))dy > Qs f (o, Vzu(ﬂﬁo))-

3.3.3 Step 2: Dy(Vu)

For |Ds(Vu)| a.e. xy € 2, we have

_dn o, ADs(Vu)
7 ) (@0 (a0 o)

If we note that the measures {|V?u,|LY L Q} are bounded in total variation, along a
subsequence, not relabeled, we have |V2u,,]| = 7 for some measure 7.
Fix o € (0,1). By standard properties of BV functions, we know that for |Ds(Vu)| a.e.

xo € () we have

BT = I e G o

o™ = B I e 4

T~ B g B <™ 20

. iy 170D _ @57

By Lemma [2.5] we can select g, — 0 such that |Dg(Vu)|(0(Q(z0,ex)) = u(0Q(xo,ex)) =

7(0Q (9, e;)) = 0 and
lim | Ds(Vu) [(Q (0, o)) > N

D0 Q) (3.58)
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Then, we have

,Un(Q(xOv Ek’))

dp (z0) = lim 1(Q(zo,€x))

= lim lim

d|Dy(Vu) k=00 [Ds(Vu)|(Q(zo, 1)) k=roon—oo [Dy(Vu)|(Q(zo, €x))
— Tim T 1 2
= jim T [ Ds(Vu) (Q(x0, £x)) /Q(xo,sk) fl@, Vum ).

With the change of variables x = x¢ + €.y, we obtain

dp - ey )
e (10) = lim 1 ) J
IO = B Tz J, (0 v T+ i
N
Ck

> lim lim

ko0 n—oo | Dy (V)| (Q(0, &,

)) /Q ng($o + €LY, VQUn(ZL‘Q + eky))dy
(3.59)

Note that by (3.57)
tk = E;N‘Ds<vu)‘<Q($0’€k)) 7 00

as k — oo by (3.57). We define functions V,,; € L*(Q, R>*N*N) defined by

1
Vor(y) == EVQUn(l'O + 1Y)

and consider the associated matrix-valued measures X, j,

1 2U xTr)axr
|D5(vu)|(Q(x0’5k‘)) /xo+€kEv n( )d

Syu(E) = / Via(y)dy =

for every Borel set 2 C (). Note that the total variation of ¥,  is given by

1 V20, | LV L Q) (20 + £4E)

_ 2 (2 xz(
=) = T @ T o™ = Ol 20

Note that we can now write (3.59)) as

dp — — 1
e > = ‘ .
d|Dy(Vu)| (o) 2 lim lim - /Q Qaf (o + ey teVar(y))dy (3.60)

Now, for a fixed k, we have X, A%, as n — 0o where

 D(Vu)(zo +erE)
Yi(E) = |Ds(Vu)|[(Q(xg,er))

for every Borel set F C Q, (3.61)
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and |, x| A e where

- m(xo + e )
5 D v l@e. )

Letting k — oo, by (3.55)) we have

for every Borel set £ C @)

« dDs(Vu)

X — W(%)P (3.62)

where p denotes the weak-+ limit of |X|. This follows from an identical argument to the
claim in (3.20]).
Note that
= | D(Vu)|(Q(x0, 1))

p(Q) 2 ploQ) = lim [Zl(0@Q) = im 75 7 o 5

> o (3.63)

by (3.58). Recall that we have

dDs(Vu)

Hy= —5\"
O d|Dy(Vu)|

(z0) € A(N, d,2). (3.64)

by the generalized form of the Alberti rank-one theorem. We also have for any Borel set F,

T () = L (5 (0o ) (2.65)
S Ll o e (3.60)

L D Qe oo | TDATI ) ~ T 0 DV

(3.67)

T 001 D @ o) (3.65)

Thus, taking E' = @ \ 0@ we have

Iim m(Q\ 0Q) < C(1—0o")

for some C > 0.
Since sup,, mx(Q) < oo by (3.56)), we have

sup sup |2, (Q) < o0
k n
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and we can consider a diagonalized sequence of the v, ; and X, ; so that, using (3.62)) and
(3.63) ¥,k — Hop, im |2, £/(Q \ 0Q) < C(1 — o) and

hm hm —/ Q2 $0+€ky,tkvnk( ))dy— hm —/ QQ :cg—i—é?ky,thnk k( ))dy

k—o0 k—oo t k k—oo t k

Applying our modulus of continuity (H2) to (3.60)), we have

dp — (1
dD,(va) ) = 8 )G Vi 1 ()
D, (va ) 2 i [ 5-Qaf (o eyt s(y)y

- 1 1
> T [ Gr@ufro tiVas(o)dy — / w(e) (1 + [tV s))dy
Q

= T [ 20w Vi sy - /Q w@)(i " |vnk,k<y>|)dy

= lim QQf(:Emthnk k(y))dy. (3.69)
since {fQ |V, k(y)|dy} is bounded and t; — oo.
For any nn > 0 we can find M such that ¢ > M implies

QQf(:EO; tHu)

n > (QQf) (ZL’(), ) -0

for every H, with |H,| = 1. If not, there exist {H,,} with |H,,| = 1 and ¢,, — oo such that

sz(xo, thu,n)

t (Q2f) (:L‘07 un) -7 (3.70)

Without loss of generality, since the unit sphere is compact, we can assume H,, — H, for
some H, with |H,| = 1. Note that for any ¢ > 0 fixed, we have

= LIH - H|.

QQf(x07tH) . QQf(x07tH/) < L|tH _ 7(“-‘[{/|
t t - t

where L is the Lipschitz constant of Qs f. Since the mappings

Qs f (o, tH)
t

H—

are uniformly Lipschitz, their infimum Qs f4 is Lipschitz. Thus, letting n — oo in (3.70)

H
QQf#(xO’ ) < h QQf(‘TOatn u,n)

n—0o0 n

S nh—>120 QQf#(lEm Hu,n) -0

- QQf#(x07 Hu) -7
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which is impossible. Thus, for any n > 0 we can find M such that t > M implies

QQf(:EO; tHu)

0250 > (Qaf)alao, Ha) =

for every H, with |H,| = 1. This in turn implies that for any H and ¢ such that |H| > %

we have

Qy f(wo,tH)
t

by letting H, := % Consider the set

> (Qaf)(zo, H) — || (3.71)

Bei={r€ Qi Vate) > 1. |

(78
We have by (3.71))
1 1
EQZf(an Vo k(y))dy > EQJ(%, t Vo, k(y))dy

k

(Qa2f) 4 (20, Vi k(y) — 0|Vay 1 (v)|dy

k

W
m\m\m\

(Qaf) (0. V() dly — 1 / Vai@ldy — (3.72)

k

We can write

/(Q2f> (x(]? nkk Q2f $0, nkk‘( ))dy+/ (Q2f) ($0, ”kk(y))dy

Ej, Q\Ey
< [ (Quf) (o, Vo)) dy + / OV k() dy
Ey Q\Ek
(o), Vi w))y + O (3.73)
E;, k
Nowyields
M
| (@) Vst 2 [ (@h)oon Veeatdy = C- (37)

As discussed in Theorem [2.22] the function (Qa f)4(xo, -) is positively 1-homogeneous and
A(N,d,2)-convex. Since Hy € A(N,d,2) (see (3.64)), by [54], Theorem 1.1 we can find an
affine function L(H) = b+ ¢ - H such that L < (Qaf)x(xo,-) and

L(Hy) = (Qaf)4(wo, Ho). (3.75)
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We have

k—o0 k—oo

lim sup /Q (Qaf) (0, V() dy > limsup /Q LV, () dy

= lim sup/ <b +¢- Vnk’k(y)>dy =b—+lim sup/ €-dX,, k(y). (3.76)
Q Q

k—o0 k—o0

Let ¢, € C.(Q; [0, 1]) be such that ¢, =1 in 0@Q). We have

lim sup /Q £+ dSn, (y) = lim /Q Vo (Y)€ - d%, 1 (y) + limsup /Q (1= Yo (y)) - dSn, x(y)

k—00 k—o0

_ / ¢ - Hotby (y)dp(y) + limsup / (1= Go))€ - dS e 1(0)
Q Q

k—o00

> € Hy p(00Q) — limsup /Q el

k—o0

> ¢ Hy oV — Clizn sup |2, 1 (Q \ 0Q) (3.77)
—00

for some C' > 0, where we use (3.63]).
But,
limsup |2, £/(Q \ 0Q) < C(1 — o), (3.78)

k—o0

therefore, by (3.76)),

limsup/ £-dY,, k(y) > & Hyo™ — C(1 —om),
Q

k—o00

and so by (3.76), (3.77), and (3.78)

k—o0

i int | (Quf)ao. vy sy > b€ - Hoo™ — C(1 = ")
Q

> oM (Qof) (20, Hy) — C(1 — ™).
Putting this together with (3.69), (3.72) and (3.74)), we have

lim ;ng(xo,tkvnk,k(y))dy > lim [/ (QQf)#(xo,vnk,k(y))dy—n/ Ivnk,k(y)ldy}
Ep Q

k—o0 Q lk k—oo
. M
> lim sup (/ (Q2f)# (2o, vy i (y))dy — C—) —nC
k—00 ) 2%

> o™ (Qa f)y(wo, Ho) — C(1 — ™) —1C.
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Given the arbitrariness of n > 0, we conclude that

i 1
lim sup EQ2f(x0u tevnk(y))dy > o™ (Qa f)y(xo, Ho) — C(1 — o)
—00 Q

for every o € (0,1). Thus, as we send ¢ — 1~ we have

1
h;n sup Esz(Zlfo, tkvnk,k(y))dy > (Q2f)#(x0, Ho)-
—00 Q

3.4 Global method in SD,

3.4.1 An approximation lemma

Let 2 be an open, bounded subset of RY. Set
SdXNXN - {U € RdXNXN : Uijk — UZkJ,VZ - 1,...,d, j,k — 1,,N}

Definition 3.11. The space of second-order structured deformations SD.(2) consists of
pairs (u,U) with u € SBH(Q;R?) and U € L(§; SPN*N),

SDQ(Q) = SBH(QJRd) X Ll(Q;SdXNxN).
The approximation result stated next can be proved by applying the generalization of

Alberti’s theorem to BH functions contained in [43].

Theorem 3.12. For every (u,U) € SDy(Q) there exists a sequence {u,} C SBH(;RY)
such that u, — u in WH(Q;RY) and V2u, = U in M(Q), with

sup [[unllpr < C([lullpa + [U]|11)

for some constant C > 0.

For convenience of the reader, we give a self-contained proof of Theorem [3.12] for which

we will make use of the following lemma.

Lemma 3.13. Let U € LY(Q, R>N*N) “and for every § > 0 let {Q9 }ien be a countable family
of open sets such that Q) C Q, Q)N QS =0 for every i,j € N with i # j, LN(Q\ U; Q7) =0,
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and sup; diam Q9 < 4. Fori € N let V2 : Q — R>N*N pe such that

/dez/ U dz,
Q? Q!

= ZXQ;‘V;S-

If sup; | V|21 < 400 then VLN S ULN,

and set

Proof. Arguing component-wise, it suffices to prove the lemma for scalar fields, hence we
suppose that U € L'(Q). Define

Zan][ V dr = ZXQ‘S][ Udz.
Fix ¢ > 0 and choose W € L'(Q2) N C§°(Q?) such that ||U — W/ 1) < /3. Define
=6

Since W is uniformly continuous, there exists n > 0 such that if |z — y| < n then |W(x) —
W(y)| <e/(3LN(Q)). For 0 < 6 < n we have
5W(y) dy

=0
Z/@f@ W)l dyde <

dx

IA
wlm

and

(O}

—0 —
W = V|11 ZﬁN (W(y) —U(y)) dy| < ||U = W|pa) < =

-3

Q(?

Thus

=0 - S, S —

V' =Ulli) < U =Wllpyey + W = Wllpi + W =V o) <,
and we conclude that ¥’ — U in LY(Q). For ¢ € Cy(Q2) we have

lim [ (V° = U)pde = lim [ (V°— 75)w dx,

6—0t Q §—0t Q
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and hence it suffices to show that lims_,g+ fQ(V6 — V(S)w dxz = 0. Note that

/QV%dx = Z/Qé ][Q6V6 ) dy ¥ (x dx—Z/ ng(x)dw
_ ;/Qf V2 (y)¥(y) der;/Q;S \/(S(y)][Q;S ((x) — ¥(y)) dzdy,

and therefore

/Q(W — V' Wdx

since v is uniformly continuous. This concludes the proof. O

(¥(z) = ¥(y)) dzdy

< sup V7110 O(0),

We now proceed to establish the approximation theorem.

PROOF OF THEOREM We claim that it suffices to prove that for every
Ve LYQ;SNXN) there exists a sequence {f} C SBH(£;RY) such that f& — 0 in
WEHQRY), V2f 5V in M(Q) and sup, |D2f7[(©2) < C|[V]lz). In fact, if the claim
holds then we can define w, := u + f where the sequence {f°} is the one obtained by
applying the claim to V := U — V?u.

We now prove the claim. For simplicity of notation we will consider N = 2, however the
same argument works for a generic N. Extend V outside 2 by 0 and denote this extension
still by V. Fix € > 0 and let {Q*'}; be the family of open cubes whose side length is ¢ and
whose centers y*! belong to the lattice (¢Z)2. Let

2|JZ2’
€

2|I’1|

¢ () := (1 - > X{Jwzl<e/2 o1 |<|z2]} T (1 - ) X{Jz1|<e/2, w2 | <[z}

€

i.e., ¢° is the function whose graph is the pyramid over the cube Q(0,¢) of height one. Let
{ A=} be a family of tensors in S¥*2*2 to be defined later and let f¢ € SBH(Q;R?) be given
by

Fla):=) %qﬁs(w —y ) A (@ =y o — ).

l

We now define A%' as the tensor for which

VQfde:/ Vdx. (3.79)
Qs,l g,l
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Note that, since V2¢° = 0 and A must be symmetric,
(V2F)irs = (VOO)s A5y (25 = 45") + (VO7)r Af(; — 45) + 0 AL,

where the summation convention is adopted throughout this proof. Define

Zio= [ e = [ (99— o

Qs,l

ZF = / ¢ (x) dx = o (z — y*h) dx, and  Vol.= / Vdzx,
Q(ng) Qe,l Qs,l

and rewrite (3.79) as
AL ZE + A Ze + AT =V

iyr<ijs ijs<gr irs irs”

(3.80)

It turns out that Z¢ = —c2I, where [ is the identity matrix. Indeed,

—2sgn(x 2 e _og
Q(O,E) 5/2 —x1 €

€
and, similarly,

—2sgn(a»)
Q(0,e) €

On the other hand,

—2sgn(z)
2y = / Lo X{Ja1|<|zz]} dT =0
Q(0e) €

since the integrand is odd in x5 and x; and the region of integration is symmetric in both
variables, and the same is true for Z5,. We can also calculate z° as the volume of a pyramid
with base €2 and height 1 to find z° = 1¢2.

3
From this, (3.80) becomes

—ggQAEJ =V, (3.81)

We now prove that f& — 0 in Wh1(Q;R?). We have

1
fz—: de = = / (bs x_ys,l Ae,l x_ys,l’x_ys,l dr
i 32 g oA )

C«Z |Aa,l|€2£2(Qa,l n Q) < Ce2 Z |‘7&,l|
l l

IN

IN

0522/ l V| da < C2||V |11
| e
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where we have used ([3.81). Furthermore, again by ([3.81)) we obtain

[IVsde < €S9l A2LHQ7 1 0) + 7] A oL Q7 n )
Q

< cl}Y %252(@571 AQ) + [AL2(Q N Q)

l

S CSHVHLl(Q)

Next, we show that sup, |D?f¢|(Q) < C||V| 1o Indeed, by (3.81)
[ <0 > 4712207 1 0) + 1AEH@ )| < CY e
and
foo FU < 32 [ s [ ane

CZ( (|A=t[e?) & + |A%H|? )

< O AMNLQ) <OV,
l

IN

where d®' is the union of the diagonals of Q%', and we used the estimate
°1
[ awran <o [ et opa < o
del 0

That V2f¢ = V in M(Q) follows from (3.79), the inequalities above and from Lemma
B.131 O

3.4.2 The global method

Let A(Q2) be the family of open subsets of 2. Consider a functional
F 1 SD5(2) x A(2) — [0, +00] (3.82)

satisfying the following hypotheses:
(I1) F(u,U;-) is the restriction to A(€2) of a Radon measure for every (u,U) € SDy(f2).

(I2) F(-,; A)is SDy-lower semicontinuous, in the sense that if (u, U) € SDy(Q), {(u,,U,)} C
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SDy(2), u, — u in WHHQ;R?) and U,, = U in M(Q), then

F(u,U; A) < liminf F(uy,, Uy; A).

n——+o00

(13) F is local, i.e., for all A € A(Q),ifu=vand U=V LY ae. x € A then F(u,U;A) =
F(v,V; A).

(I4) There exists a constant C' > 0 such that
1
SVl + [D*ul(A)) < Fu, Us A) < CILY(A) + U] 1y + [ D*ul(A))

for every (u,U) € SDy(Q2), A € A(R).

In the spirit of the global method for relaxation [I8, [19], given (u, U; A) € SD5(2) x A(Q2)
we define

W(u,U; A) = {(U,V) € SD5(Q) : spt (u—v) CC A,/ (U-=V)dx= O} : (3.83)

and
m(u,U; A) :=inf {F(v,V;A): (v,V) € A(u,U; A)}. (3.84)

Lemma 3.14. If (I1) and (1) hold, then for every (u,U) € SDy(2) and A € A(Q)
limsup m(u, U; As) < m(u,U; A),
0—07t

where As = {x € A : dist(z,04) > 6}.

Proof. Let € > 0. Choose (u, [7) € A(u, U; A) such that
F@,U; A) < m(u,U; A) +¢.
Let do := dist(spt(u — u),0A) > 0. For 0 < § < /2 define

o~ ﬁ in Ag(g,
U= N -1 77
(ﬁ (Ag\AQC;)) (fA(s Udx — fA% de) on A(s \ Ag(s.
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Since (u, (7) € A(u, U; As), for every compact set K C Ays we have by (I1) and (I3),
m(u,U; As) < F(t,U; As)
< F(@,U; Ags) + F(u, U; A;\K)

< F@,U; A)+C (EN(A\K) + /A \U| dz + |D2u|(A\K))

s\K

<m(u,U;A) +e+C (EN(A\K) + | D?*u|(A\K)

de—/ U dx )
As Ags

Using inner regularity and letting K * Ass, we have

LY(A5\K)
LN (As\Ags)

m(u,U; As) <m(u,U; A) + ¢

+C (EN (A\Ass) + | D?ul (A\ Ags) +

)

/ de—/ U dx
As Azs

and since [, Udr = [, U dx, we obtain

limsupm(u,U; As) < m(u; A) + ¢

0—0t

and by letting € go to zero we finish the proof. m

Again by analogy with [18, [19], for a fixed (u,U) € SDy(Q2) we set pu:= LY L Q + |D?ul,
we define
A (Q) = {Q,(z,e) 12 € Qv e SV e >0},

and for A € A(Q2) and § > 0,
mé(u, U; A) := inf { Zm(u, U;Qi): Qi€ A"(Q), Q:NQ; =0, Q; C A,
i=1
diam(Q;) < 0, p(A\ UZ,Q;) = O}.

)

Since m? increases as d goes to 0, we can define

m*(u,U; A) == supm®(u, U; A) = lim m°(u, U; A).

>0 6—0t
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Lemma 3.15. Assume that hypotheses (I11)-(1}) hold. Then for all A € A(Q)
F(u,U; A) = m™(u, U; A).

Proof. Fix A € A(QQ). For every § > 0 and every collection of cubes {Q;}°, admissible in

the definition of m? we obtain
O(u,U; A) SZ (u,U;Q;) < Z (u,U; Q;) < F(u,U; A)

where we used (I1) in the last inequality. Hence m*(u,U; A) < F(u,U; A).
Conversely, fix § > 0 and choose a family {Q?}2°, such that

Zm(m U; Q) <m’(u,U; A) + 6.
i=1

For each Q¢ let (v?, V) € A(u, U; Q?) be such that
F(of, V3 QF) < mlu, U3 Q) + 6LY(Q0).

Now, we stitch together these v? and V;’ to define

v = iU?XQf +uxw, V= i‘/fog + UXns»
=1 i=1
where N5 = Q\ UX,Q%. By the coercivity hypothesis (I4), we have v° € BH(Q) and
Ve e LY(). By (I1) and (13),
F@°, VA Z}"U V2Q0) + F(u,U; N5 N A),
and since p(Ns N A) =0, by (I4) we have F(u,U; Ns N A) = 0, and so
i m(u,U; Q)) + 0LN(Q))] < m’(u,U; A) + 5 + 6LV (A).
i=1

If we prove that v° — u in WH(Q;R?) and V° 5 U in M(Q), then by lower semiconti-
nuity of F (see (12)), we will have

F(u,U; A) < liminf F(v°, V5 A) < liminf m®(u, U; A) = m*(u, U; A),

6—0t 6—0t
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thus proving the lemma. To see that v — u in W51 by the BV Poincaré inequality (see
Theorem 5.10 in [41]) applied to (Vu — Vu’) we obtain

VU — V|| 1) = Z |Vu — VU6||L1(Q?) < Z C§|D*u — D*°)(Q?)
=1 i=1
< CH(|D?u|(A) + |D*0°|(A)).

By coercivity of F (see (I4)) we have that {|D%*°|(A)} is bounded, so this term goes to 0
with 0. By Poincaré’s inequality applied now to u— v, we see that since HVu—VU‘5||L1(Q) — 0

we have that ||u — v°|ly1.1(q) — 0. Finally, again by (I4)

sgp 1Vl 21y < 00

and applying Lemma we conclude that V0 = U in M(Q). O]

Theorem 3.16. If (11), (I12) and (14) hold then for every (u,U) € SDy(2) and for all
ve SNt

. .F('U/,U;QV<£L'0,€)) T m(u7 U7 Qu(x(J?g))
DB T Q) e Qe 0))

for  a.e. zg € Q where p:= LY LQ + | D?ul.

Proof. By (14), F(u,U;-) is absolutely continuous with respect to pu. Therefore, by Besicov-

itch’s derivation theorem,
lim .F(U, Ua Qu(x()a 5))
=0t p(Qu(20,€))

exist for p-almost every zo € Q. Since m(u, U;-) < F(u,U;-), we have trivially that

. F(uy U7 Qu(x(hg)) . m(“? Ua Qy(l‘o,ﬁ))
T Qulrne)) = ST 0, (00 )

whenever the left-hand limit exists. Thus, it suffices to show that

P m(“’u U; QV(‘TOJ 8)) . f(“’u U; Q,,(.T}o, 8))
o @(@0e) o (Qulr02))

for p-almost every zy € 2. Fix ¢ > 0 and let

Ey:={x € Q:3Je, — 0such that 4(0Q,(x,e,)) = 0 and
Fu,U; Qulx,en)) > m(u, U; Qu(x, n)) + tpu(Qu (7, €5)) for every n}.
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First, we observe that the condition that p does not charge the boundary of the cubes is

innocuous: for every x € (2 such that there is a sequence {e,} converging to 0 with

F(u,U; Q,(x,e,)) > m(u,U; Qu(x,6,)) + ti(Qy(x,2,))

we can find another sequence {e/ } such that

F(u,U; Qux,€,)) > m(u, U; Qu(x, £,)) + tu(Qu(,€,)), 1(0Qu(z,2,)) =0. (3.85)

Indeed, for every n we can find e¥ 7 ¢, so that u(90Q,(z,e%)) = 0. By inner regularity we

have

lim F(u, Us Qu(r,<8)) = Flu, U Qul, ), Jim u(Qu(,€5)) = j(Qul,20),

k—oo

and by Lemma |3.14]

limsup m(u, U; Q, (,€5)) < m(u,U; Q,(x, €n))-

k—o0

Hence for k large enough we have

Flu, U Qu(w,ey)) > m(u,Us Qu(w, ep)) + tu(Qu(w, 7).
Extracting a diagonal subsequence of {¢¥} we obtain a suitable subsequence {&/, := 5]3(”)} for
which (3.85) holds. Thus we see that without loss of generality we can take the €, so that u
does not charge the boundary.
Fix a compact set K C €2 such that K C E;. For § > 0, define the families of cubes

X0 :={Q,(x,¢) 1 € <6, Qu(x,¢e) CQ, udQ,(z,¢)) =0,
Y0 ={Q,(z,¢) : e <0, Q(x,6) CQ\ K, p(0Q,(x,¢)) = 0}.

Since K C Ej, for every x € K there exists Q,(z,¢) € X° for some ¢ < §, and, similarly, if

z € Q\ K there exists a cube Q,(7,¢) € Y°. Hence we can write

o= Jou | @

Qex?d Q'eYy?

and applying the Vitali-Besicovitch covering theorem, we can find a countable collection of
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QzX& e X9, Q}/‘S € Y?, all mutually disjoint, such that
0= UQX5UUQY5UE
J=1

where u(E) = 0, and, as a consequence F(u, U; E') = 0. Note that since Q}-ﬂs C Q\ K for all

7, we have
WK) = p(QNK) (U @X‘S>

and thus

F(u,U; QX" +qu U;QY")

Mg

Flu,U; Q) =

i=1

Mg

>

[ (0, U; QXY + tpu(QX° ]—i—imuUQY(S
7j=1

1

1

>m (u, Us Q)+ Y (@) = m®(u, U Q) + tp(K).

=1

Sending 6 — 0, we can apply Lemma to obtain
Fu,U;Q) > m™(u, U, Q) + tp(K) = F(u,U; Q) + tu(K)

and so p(K) = 0 for every compact K C F;. By inner regularity we conclude that p(FE;) = 0,

i.e., for p-almost every x € €, if ¢ is sufficiently small,

F(u,U; Qu(,€)) < m(u,U; Qu(x,€)) + tn(Qu(z,€))

and thus

lim F(w, U3 Q(0,)) < lim inf m(u, U: Qy (2o, €))

>0t Qo €)) 0t p(Qu(o,€))
Sending ¢t — 0, we assert our claim. []
Lemma 3.1. Assume that hypotheses (I1), (I3) and (I4) hold. Let {(v.,V:)} C SDy(Q),
(u,U) € SDy(Q), 720 € Q,v € SV1 and let A be a nonnegative Radon measure on €. Let
xo € ) and suppose that

+t.

i m(u, Ua Qu(%ﬁ))
A 00 (0, 2)
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exists. Then,

. m(”&)‘/E;QV<xO’€)) . m(uv U; Qu(ajO»g))
s @ur0ne) e AQu(enns)

lim sup lim sup ——— < eV 4 V(1 — 6V) + | D? (20, € (20, 0
wsuplimsup 1o (1 8%) + |D%ul(Qu(w0.2) \ Qulr0,02))
—_— 1
‘D2 &€ v Y v 75 “o/1 o\ - Ue d
1D Qulon, N\ Qo) + g [ o) )] e
1
/ |VU(ZL‘)—VUE(ZL‘)|de‘+‘/ nga:—/ U dz }

e(1=9) Jo o) Qu(zo.e) Qu(0.0)
Proof. Fix 6 € (0,1) and let € > 0 be so small that @, (z¢,&) C . Choose a cut-off function
¢ € C°(Q,(xo,€)) such that ¢ = 1 in a neighborhood of @, (xo, £6),

_|_

4
e2(1—0)%

Vol < and  [|[V?¢|p~ <

e(l—=19¢)’

Define
o { ou+ (1= 0)v: in Qulwo,e),

Vg otherwise,

and choose (7, U) € A(u, U; Q,(x0,28)) such that

1 s

§€N+1 + m(u> U; Ql/(x(b 55)) = F(”? U; Qll(xoa 65))
By outer regularity of F(u,U;-) (see (I1)) we can find & € (4,1) such that

F(ﬂa (7; Qu(xm 65/)) - %gN—H S ‘/T_'(ﬂ’ [7; Qu(x(]y 55))

Set
_Ju  in Qu(xo, ),
e {wg on 2\ Qu (w0, £0),
and
oo { U in Q, (x0,£0),
. (LN(Qu (@0, \Qu(0,20)) ™ (fog (moe) V= 42 = Jo (mesy U d) — om Q\ Q, (0, £6).

Recalling that ny(IO o Ude = fQu(ﬂﬁo 5) U da, we have (., V.) € A(v., Ve; Q, (w0, €)), and by
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(I3) and (I4) we obtain

‘F(567 ‘75; Qu<x07 6))
F (@, U; Qu(wo,28")) + F (w2, Va; Qulo, €) \ Qu (9, 20))
N 4 m(u, U; Qo (20, €0)) +

C(€N<1 - 5N) + |D2w5‘(Qu<x07 6) \ Q,,(xg,{f(S)) +

‘/ V.dx — / Udx
Qy(x075) Qu($0,€6)

Vw: = (u—v.) @ Vo + ¢Vu + (1 — ¢) Vo,

m(”e; V;; Qu(%, 5))

IN A

VAN

>. (3.86)

Since

we obtain

| D*we|(Qu (w0, €) \ Qu(w0,20)) < C{\DQU\(QV(%, £) \ Qu(xo,€9))

+‘D2U€I(Qu(‘r07 5) \ QV('IO7 85))
1

+—/ u(x) — v.(x)| dz
=yl ANUCORS G

1
+m /QV(IO,a) |Vu(z) — Vo ()| dx.} (3.87)

From Lemma we deduce that

— T m(ua U; Qu($0755)) el m(ua U;QV($0,€5)) /\(Qu(xﬂvgé))
dm i e )y ( MOy (20,20)) MOy (20,2)) )
< li m(ua U7 QV(:EO7 8))
<  lim

o0t MQu(wo,€))

and hence to complete the proof it suffices to substitute (3.87) into (3.86]), divide the resulting
inequality by A(Q,(zo,¢)) and take the limsup as ¢ — 07 and § — 1™ ]

The next corollary is an immediate consequence of the previous lemma.

Corollary 3.17. Assume that hypotheses (I1), (I3) and (I}) hold. Let (v,V),(u,U) €
SDy(Q), 20 € Qv € SN, and let X\ be a nonnegative Radon measure on Q be given. Let
xo € Q0 and suppose that

_m(u, U; Q,(20,€)) . m(v,V;Qu(x0,€))
M (G (0, 2) and - (O l0,2))

7



3.4 Global method in SD, 3 STRUCTURED DEFORMATIONS AND BH

exist. Then

m(v,V; Q}/(x07€)) . m(u7 U; Qu(mOaE)) ‘

0t MQu(T0,2))  emot MQy(20,2))

< lim sup lim sup N4 N (1 — M) + | D*u|(Qu (w0, €) \ Qu (w0, 6¢))

el
§—1— e—0t )‘(Qu(x()?g))
+ | D*v|(Qu (20, €) \ Qu(z0,5¢)) + ﬁ/@) - lu(z) —v(x)| dz

1
+—/ |Vu(x)—Vv(x)|dx+‘/ de—/ Udzx
5(1 - 5) Qv (zo,e) Qv (zo,e) Qu(o,¢)

+ ‘ / Udzx }
QV(I(%E)\QV(IO’JE)

Theorem 3.18. Under hypotheses (I1), (12), (13),and (I}), for every (u,U) € SDy(2) and
A e A(Q) we have

+ Vdx

/QV (I075)\QV (ID 765)

F(u,U; A) :/f(x,u,Vu,Vzu, U) d:ic+/ h(z,u, Vut, Vu~, vg,) dHY
A S(Vu)nA

where

m(r+&(- — xo) + 1/2G(- — xg, - — o), H; Q(z0,€))

f(zo,7, &, G, H) := lim N ,

e—0t

m(r + un1C7V(. - $0)7 Oa Qu(xm 5))
gN—l )

for all g € Q,r € RN, &,n,¢ € RN G, H € RUN*N 1 e SN=1 with O € R>*NXN peing

the matriz with all entries equal to zero, and

e (y) = ny ify-v>0,
¥ = Cy otherwise.
Proof. We first show that
dF(u,U; -
¥(xo) = f(zo, u(z0), Vu(zo), Viu(z), U(zo)) (3.88)

acy

for LV a.e. zg € Q. Define

Vo () = u(xo) + Vu(zo)(x — o) + %Vzu(iﬁo)($ — Zo, T — Tp).
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By Theorem and Theorem for LN a.e. o € Q,

1 1
lim — |u(x) — v(x)| dz =0, lim — |Vu(z) — Vug(x)| de =0, (3.89)

2
e—0t & Q(z0,¢) e—0t & Q(z0.¢)

)
e—0t  LN(Q(xo;¢))

= [V2u(zo)|, (3.90)

AF@Us) (e Us Q)
dﬁ—N(mO) - al—>0+ LN (Q(x0;€)) (3.9
AF (va, U(z0);i) o 1Uve, Ulwo); Q03 )
dﬁN (1’0) a al—>(]4r ,CN(Q(CL’(); 5)) ’ (392)
lim |U(z) — U(xg)| dz =0 (3.93)

=07 Qzo.e)
Select a point zq € Q with the above properties. Apply Corollary with v 1= v,,V =
U(zo) and X := LY L Q to find

m(’l}a,U(l'o);Q,/(xo,E)) m(ua U; Qu($0>€>>

lim — lim < ClimsuplimsupG(e,d, u,v,,U),
e—0* LN(Q, (o, €)) e=0t  LN(Q,(20,€)) 5—>1*p e—>o+p ( )
where

| D?u|(Qu (20, €) \ Qu(0,02))

eN

G(e,0,u,v,,U) = C{6+(1—5N)+ + [ V2u(20)] (1 — 6N)

1 1][
+—— w(xr) — vg(x)| do
=0z Q(W)I () — va(2)]|

1 1][
+ - \Vu(z) — Vu,(z)| do
(1-0d)e Q(zo.e)

1
+'][ Udx — U(wo) —N/ U dx +(1—(5N)U(x0).}
Q(x0.e) €7 JQ(w0,6)\Q(w0,29)

+

By (3.90) we find

|D2u‘<Qu(x07 8) Qu(x()v 58))

N < lim sup [V?u(x)|(1 — 6") = 0,

o—1—

0 < lim sup lim sup
d—1- e—0t
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and by (3.93]) we obtain

1
lim sup lim sup —N/ Udx| = limsuplimsup ][ Udx — 5N][ Udx
=1 e=0t € JQ(20,6)\Q(w0,0) §—1— e—0t Q(z0,e) Q(x0,e6)
= limsup |U(zo) — 0" U(z0)| = 0,
6—1—

which, together with (3.89)), yields

lim sup limsup G (¢, §, u, vy, U) = 0

6—1— e—0t

and, consequently,

dF (u, U)o m(u,Us Qu(xo,)) . m(va, Uzo); Qu(o, €))
ey T TN Q) AT D @uwe)

concluding the proof of (3.88]).

Now we show that

dF(u,U;")
dHN-1|S(Vu)

(o) = g(z0, u(z0), Vu' (20), VU™ (0), vvu(T0)),

for HN7LS(Vu) a.e. 29 € Q. Hereafter, for simplicity, we will just write v in place of vy,.

Define
Vut(zo)(x —xo) if (x — xg) - v(z0) > 0,

vy(z) = u(zo) +
() (o) { Vu~(xo)(z — xg) if (x — x0) - v(x0) < 0.
Again by Theorem and Theorem for HV=1 a.e. 29 € S(Vu) we have

1
lim — lu(xz) —vy(z)| de =0, lim |Vu(z) — Vuy(z)| de =0, (3.94)

e=0" €J Q(xose) 20" J Qu(wose)

N CRERE),

e—0+ eN-1 = |[vu] (l‘g)|, (395)
dF(u,U; ) o om(u,U;Qy(x0;€))

dHN1[S(Vu) (o) = sllgh P 3 (3.96)
dF(vs,0;) o m(vy, 0;Qu(x0;€))

dHN1[S(Vu) (o) = EliglJr N1 ; (3.97)
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1
51_igl+ g /Q ) |Ul|dz = 0. (3.98)
v(T03€

Select a point xg € S(Vu) such that the above properties hold. Apply Corollary
with v :=v;,V := O and X := HV 1L S(Vu) to deduce that

m(vJa O; QV('TOJ 6))

i . o m(u,U; Q. (xg, € X )
lim 5 — lim ( NQ (z0,¢)) < Climsuplimsup Gy (e, 6, u,v;, U),
e—0+ gh-1 e—0+ gN-1 §1=  em0t

where

| D2ul(Qu (w0, 2) \ Qu(w0, %))

eN—-1

Go(e.6,u,00,U) = 0{52 Fel— oY)y [Vl a) (1 — 65

1 1][
o uw(z) —vy(z)| dx
(1—0)2¢ Qy(xo,5)| (z) ()]

1
(1-0) ][QV ) IVu(z) — Vuy(z)| do

][ U dx
Qu(x075)

+

+e + U dx

b

gN—l /
QV (xo 7‘5)\QV (1’0 785)

By (3.95) we find

| D2u|(Qu (20, €) \ Qu(w0,02))

€N_1

< limsup [[Vu](z0)|(1 = 6"71) = 0,
o—1—

0 < lim sup lim sup
0—1- e—0t

while from (3.98]) we obtain

1
T / Udx
€ v (20,6)\Qu (70,69)

and thus, using Eq. (3.94), we conclude that

lim sup
e—0t

1
< lim Nl/ |U|dx =0,
e—0t € Qu(z0.€)

lim sup limsup G;(e, 0, u, vy, U) = 0,

0—1— e—0t

and hence the proof is completed. O
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3.4.3 Applications (SD, integral representation)

We consider the functional defined for each A € A(Q2) by

fA fo(z,u, Vu, V?u) dx
Folu; A) := + fS(Vu)r‘lA go(w,u, Vut, Vu=,vg,) dHN 1 if u € SBH(Q;RY),

400 otherwise,
(3.99)

where the densities fy and go satisfy the following hypotheses:
(J1) fo: @ x R? x RN x RNXN [0 4+00) continuous and

é|A| < folz,u,6,A) < C(1+]A)

for all (z,u,&,A) € Q x RY x RN x RNN and for some C > 0;
(J2) the function gg : Q x R? x (R¥>*M)2 x SN=1 — [0, +-00) is continuous and

1

for all (x,u,&,n,v) € Q x RY x (R*N)2 x SV=1 and for some C > 0;
The functional F : SDy(Q2) x A(Q2) — [0, +00) is defined by

F(u,U; A) := inf{lim inf Fy(upn; A) : u, — u, in L'(QRY), V3, > U} (3.100)

n—-+00

Lemma 3.19. For every (u,U) € SDy(Q), A € A(Q) and every sequence {(u,,U,)} C
SDy(Q) such that u, — u in L'(;R?Y) and U, = U in in M(S; R>NXN)

F(u,U; A) < liminf F(uy,, Uy; A).

n—oo

Proof. Fix a sequence {(uy,U,)} C SDy(Q) such that u, — u in L' and U, = U. For every
(un, Uy,) we can pick a sequence {(unx, Unr)} C SD2(Q) such that w,r — u, in L' and
Upi — U, as k — oo and

1
lim inf Fo(un g, Uns; A) < F(tp, Uy A) + —.

k—o0 n

We can extract diagonalized sequences v, := u,, and V,, := v, , such that v,, — u in L',

V, = U as n — oo, and

lim inf Fo(vy,, Vi; A) < liminf F(uy,, U,; A)

n—oo n—0o0
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and thus
F(u,U; A) < liminf F(uy,, Un; A).

n—oo

O

Lemma 3.20. The functional F is local, i.e., for all A € AQ), ifu=v and U =V LV
a.e. x € A then F(u,U; A) = F(v,V; A).

Proof. Let A, u,U, and v,V be as in the statement of the lemma. For every sequence
{(tn, Up)} C SDy(Q) such that u,, — uin L'(A) and U,, = U, we also have u,, — v in L'(A)
and V,, = V. Thus

F(u,U; A) > F(v,V; A),

and by symmetry we conclude that
F(u,U; A) = F(v,V; A).

]

Lemma 3.21. Assume hypotheses (J1) and (J2) hold. For every (u,U) € SDy(2) and for
every A € A(Q) we have

& (01 +1D%l(A)) < Flus A) < C (E¥(A) + ULy + [Dl(4))

where C' > 0. Moreover, for every u € BH(S;RY) the functional F(u;-) is the restriction to
A(Q2) of a Radon measure.

Proof. We note that hypotheses (J1) and (J2) imply that
1
GI1D7ul(A4) < Fo(us A) < C(L(A) + [ Dul(A))

for every u € SBH(;RY) and A € A(Q). For any (u,U) € SDy(Q2) and any § > 0, we can
find u,, € SBH(Q;R?) such that u, — w in L', V?u, = U, and
F(u,U; A) > liminf Fo(u,; A) — 0.

n—oo

On one hand, this implies that

F(u,U: A) > liminf %|D2un|(A) 5> é\D2u|(A) ]

n—oo

83



3.4 Global method in SD, 3 STRUCTURED DEFORMATIONS AND BH

and letting 6 — 0 we have
1
F(u,U; A) > 6|D2u|(A). (3.101)

On the other hand, we obtain

1 1 1

n—oo

and, again letting  — 0, we have
1
Averaging this with (3.101]), we deduce that
1 2
F(u,U; A) > c (1T ay + [ D*ul(A)) -

To prove the upper bound, we consider the sequence {u,} constructed in Theorem which

satisfies u, — w in L', V?u, — U and
up |D(Vun)|(A4) < € (D(Vu](A) + [U]11a)
Then we have

F(u,U; A) < liminf Fo(u,; A) < liminf © (£Y(4) + | D(Vu,)|(4))

n—oo n—oo

< C(LY(A) + ID(VW)[(A) + Ul a)) -

Finally, we will prove that for (u,U) € SDy(Q2), F(u,U;-) is the restriction to A(2) of
a Radon measure. We will apply the coincidence criterion, Lemma Since item (1)
follows directly from the fact that Fo(u,-) is a Radon measure and item (#ii) follows from

the growth condition that we have just proved, it only remains to prove that for any open
sets A, B,C € A(Q) with A C B C C we have

F(u,U;0) < F(u,U;C\ A) + F(u,U; B).

To see this, for € > 0 we choose v, € BH(Q;R?) and w,, € BH(Q;R?) as in the definition of
F(u,U;-) (perhaps along a subsequence) so that

lim Fo(v,, O\ A) < F(u,U;C\ A) —¢ (3.102)

n—oo
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and
lim Fo(w,, B) < F(u,U; B) —«.

n— o0
We will use a slicing argument in order to construct (up to a subsequence) a sequence {u,} C
BH(C;R?) as in the definition of F(u,U;-) so that

lim inf Fo(up; C) < lim Fo(v,, O\ A) + lim Fy(w,, B).
n—00 n—00 n—00
Let 6 > 0 be so small that

Ss:={x € B:dist(x,A) <} CC B.

Given k € N we can decompose S5 \ A into a disjoint union of strips, to be precise we write

k
Ss\ A= U Li,
1=1

where 5
< dist(z, A) <

| &

Liyk:{Q?ESgi (Z_

b

sup | D(Ve,)[(C'\ A) +sup [ D(Vr, ) (B) < M

By coercivity of Fy, we have

for some M < oo, and thus

k
Sgpz (ID(Von)| + [D(Vwn)|) (Lix) < M.

=1

We remark that since there are only finitely many values of ¢ and infinitely many values of
n, there must be some fixed 7 such that

M

(ID(Vua)| + |D(Vwa)|) (Lix) < —-

k
for infinitely many n € N. Thus for any k, there is a iy € {1,...,k} and a subsequence
{ngk)} C {n} such that

(1ID(V0,0)l + 1D(Vw,0)]) (L) <
We consider a smooth cutoff function ¢, € C°(B; |0, 1]) such that {0 < ¢ < 1} C L, &,
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or(z) = 0 if dist(z, A) < %16, ¢ (x) = 1 if dist(z, A) > %6 and

IVoilloo < Ck, [Vi¢1lloe < CK*.

For z € C, we define

Ujp = ¢kvn§k) + (1 — gbk)wn;k).

Then we have
fo(Uj’k; C) S ./_"o(Un(vk); C \ Z) + ]-"o(wn@); B) + f()(u]',k; Lik,k);

and the last term is bounded by

Fo(tjw; Ligk) SC(EN(Lik,k:) + k?2/ 0,00 — w,, 00 |d + k/
L J J

Vv ) — Vw @ l|dx
n; n:
Liy .k ’ /

ik

£ 1D(To, )| (L) + \D<an;k>>r<Lik,k>)

1
§C<— + k2/ \vn<k) — W, k) |dx + k/
k Lo, j L

Since v, — u and w,, — u in WH1(B\ A), for any k we can choose an element n
(k)
Jk

|an(k) - an(_k) ’dl’) .
J J

ik

(k)

(];) of n; S0

J

that the map k — n; "~ is increasing and

/ |Un(k) - wn(k) |d$ = 0(1/1{32)
B\A /

Ik Ik

and
/ ’an(k) — Vw |dx = o(1/k).
B\A Ik k

With this choice we have that

lllzgloglf FO(Ujk,k; Lik,k) =0.

Since v, — u in L'(C'\ A), w, — u in L'(B) and V?v, = U in C'\ 4, V*w, = U in B, we
must have that w;, x — u in L'(C) and V?u;, x — U in C. Thus, by definition of F(u, U;-),

we conclude

F(u,U; C) < liminf Fo(uj, x5 C) < lim Fo(v ay; C\ A) + lim Fo(w @; B)
k—o0 k—o0 . k—o00 .

< F(u,U;C\ A) + F(u,U; B) — 2e.
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Sending € — 0, we are done. m

Theorem 3.22. Under hypotheses (J1) and (J2) the functional F, defined by Eq. (3.100)),
there exist functions f: Q x RY x RN 5 RUNN 5 RINXN 10 00) and g : Q x R x
RN x RN x SN=1 [0, 00) such that
F(u,U; A) = /f(x,u(x),Vu(x),Vzu(x),U) dx
A
+/ g(x,u(x), Vu'(x), Vu~ (x), vou(z)) dHY 7 (2),
S(Vu)nA

for allw € SBH(Q;R?) and A € A(9).

Proof. We note that by Lemmas|3.19] [3.20|and |3.21] the functional F satisfies the hypotheses
of Theorem [3.18] and so the integral representation result follows immediately. O

3.4.4 Applications (SBH, BH integral representation)

In this section we obtain integral representation results for abstract lower semicontinuous

functionals on SBH and BH. Counsider a functional
F BH(Q;Rd) x A(Q) — [0, +o0] (3.103)

satisfying the following hypotheses:

(K1) F(u;-) is the restriction to A(£2) of a Radon measure,

(K2) F(; A) is L'(A,R?)-lower semicontinuous,
(K3) Fis local, i.e., for all A € A(Q) if u=v LY a.e.in A then F(u; A) = F(v; A),
(K4)

K4) there exists a constant C' > 0 such that

ZID%l(4) < Flus A) < O(LY(4) + [ D%l ()
Given (u, A) € BH(Q;R?%) x A(Q) we introduce
A(u; A) := {v € BH(GRY) :spt (u—v) CC A}, (3.104)

and
m(u; A) == inf{F (v, A) : v € A(u; A)}. (3.105)

As a corollary of Theorem we have the following SBH representation theorem.
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Theorem 3.23. Under hypotheses (K1), (K2), (K3) and (K4), for every u € SBH(); RY)
and A € A(Q2) we have

F(u; A) :/f(x,u,Vu7V2u) dx+/ h(z,u, Vut, Vu~ vg,) dHY 1,
A S(Vu)nA

where

m(g + G(- — xp) + 1/25(- — g, - — 20); Q (o, 8))7

f('r();gaGa Z) = lim

e—0t

m(g + ur, (- — 20); Qu(zo,€))

h(xo,g,L, H,v) := lim g ,

e—0t

for all zo € Q,g € RYL, G, H, L € RN ¥ € RXNXN 1y ¢ SN=1 " and where

Ly ify-v>0,
UL,H,V(Z/) = .

Hy otherwise.

In the case where the functional F is invariant under affine translations of u, we can

leverage this result to upper bound F on the space BH.
Corollary 3.24. Let F satisfy hypotheses (K1), (K2),(K3),(K4), and further assume that

for every affine function
v(x) :=p+ Ax

forp e R4, A € RN we have
Flu;+) = F(u+v;-).

Then for every u € SBH(Q;R?) and A € A(Q) we have
Flu; A) = / f(z, Vu) dx +/ h(z, Vu©™ — Vu™, vg,) dHY
A S(Vu)nA

where, with an abuse of notation, we write f(x,%) := f(x,0,0,%) and h(x, J,v) := h(x,0,0, J,v).
Moreover, for u € BH(Q;R?) and A € A(Q)) we have

F(u, A) /f Vud:v+/f°°( W)))du)( w)|

where > is the recession function defined by

f(x,%) = lim f(x;tE)

t—o00
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Proof. The assumption that F is affine invariant implies that m is also affine invariant. Thus
for any 7o € 2, g € R%, G € RN ¥ € RNV ¢ SN=1 we have

f(*%'Oaga G7 Z) = f(l’o,0,0, E)
and for any xp € Q,g € R, L, H € R™YN v ¢ SN~ we have
h(zo,g,L,H,v) = g(x0,0,0, H — L, v).

In particular, we deduce that for every u € W2(Q; RY)

Flu; A) = /Af(x,Vzu) dx

The relaxation of such functionals to BH was the subject of Section [3.3] where we get an

integral representation of the relaxation, to be precise

inf {liminf]:(un; A) :you, € WAL RY), uy — w,sup ||t |[wen < oo}

n—oo

_ 9 0o dD4(Vu) "
_/AQQf(I,V u)d$+/4(Q2f) (:L“, —d\DS](Vu))OHDS(V )| (3.106)

for every u € BH(Q;R?), A € A(Q), where Qyf is the 2-quasiconvex envelope of f. In this
case, since F is lower semicontinuous, we must have that f is 2-quasiconvex as shown in
[9], [46], [61], , and thus Qyf = f. Thus for every u € BH(Q; R?) we may take a recovery
sequence for the relaxation u, € W2!(Q;R?) such that u, — v in L' and

dD,(V
Tim F(uy; A) /fxvﬂ<m+/fw(zmﬁ§%)ﬂmﬂmM

to conclude from lower semicontinuity of F that
ADy(Vu)
Flu; A) /fo M+/f( d|Ds(Vu)|.
dID I( u)
O

We can push this further under a stronger continuity assumption on F. If F is continu-
ous with respect to area-strict convergence, (see Definition , then this upper bound is
actually sharp.

This condition is very natural for BH lower semicontinuous integral functionals. Indeed,

Theorem [2.22] shows that 2-quasiconvex potentials along with their recession function of
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the form are automatically area-strict continuous. In the first order global method
result [19], the area-strict continuity assumption is not needed, but once we have the integral
representation, we can see that it is automatically area-strict continuous by [56]. Thus in
the first order case an assumption of area-strict continuity is innocuous, which motivates our

assumption here. With the assumption of area-strict continuity, we have the following:

Corollary 3.25. Let F satisfy hypotheses (K1), (K?2),(K3),(K4), and further assume that
for every affine function
v(z) :=p+ Ax

for p e RY, A € R™N we have
Flu;-) = F(u+wv;-)

and that for every u € BH(Q;RY) and every sequence {u,} C BH(;R?) so that u, — u in
L' and D(Vu,) — D(Vu) area-strictly,

lim F(un; Q) = F(u; ).

n—oo

Then for every u € BH(;R?) and A € A(Q) we have

F(u, A) :/Af(x, V2u) dm+!/Af°° (x,%) d|Ds(Vu)|.

Proof. Following the proof of Corollary (K1), (K2), (K3), (K4) and the affine invariance
property give us a representation of F on W2(Q;R4). For any u € BH, we can use Corollary
to construct a sequence u, € W21(Q;R?) so that u,, — u in L' and D(Vu,) — D(Vu)

area-strictly. Thus, by area-strict continuity, we have

F(u; Q) = lm F(u,; Q). (3.107)

n—oo

On the other hand, the functional

€ BH(Q:RY s /Qf(:c, V) dz + /Qf°° (:z: %) d|D.(Vu)| = I(u: )

is area-strict continuous on BH by Theorem and agrees with F on W21, therefore

lim F(up; Q) = lim I(u,; Q) = I(u; Q).

n—o0 n—o0
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This, together with (3.107) yields

Flu; Q) /fo2 dx+/f°°< W)))CHD( u)]

for every u € BH(Q;R?).
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4 PHASE TRANSITIONS AND HOMOGENIZATION

4 Phase Transitions and Homogenization

4.1 Statement of main results

Consider a double well potential W : RY x R? — [0, 0o) satisfying the following properties:
(GO) z +— W(x,p) is Q-periodic for all p € R?

(G1) W is a Carathéodory function, i.e.,

(i) for all p € R? the function x — W (x,p) is measurable,

(ii) for a.e. x € @ the function p — W (x,p) is continuous,
(G2) there exist a,b € R? such that W (z,p) = 0 if and only if p € {a,b}, for a.e. z € Q,

(G3) there exists a continuous function W, : R? — [0, 00) such that W.(p) < W (x,p) for a.e.
z € Q and W,(p) = 0 if and only if p € {a, b}.

(G4) there exist C' > 0 and ¢ > 2 such that £|p|?—C < W(z,p) < C(1+|p|?) for ae. z € Q
and all p € R4

Let 2 C RY be an open bounded set with Lipschitz boundary.

Definition 4.1. For £, > 0 we define the potential F. s : H'(2;R?) — [0, 00) by

Fes(u) 3:/Q [%W <§,u(x)> +5|Vu(x)|2} dz.

Remark 4.2. Hypotheses (G1), (G2) (G3) and (G4) conform with the prototypical potential

W(a:,p) = ZXEz(x>WZ(p) )

i=1

where E; C Q are measurable pairwise disjoint sets with Q = U¥_ E;, and W; : R? — [0, 00)
are continuous functions with quadratic growth at infinity and such that W;(p) = 0 if and
only if p € {a,b}, modeling the case of a heterogeneous mixture composed of k different
compositions. Here W in (G3) may be taken as W= min{ Wi, ..., Wi}.

4.1.1 The case ¢ << §

In the case where ¢ << 9§, the homogenization effects occur so rapidly that the system is

essentially homogenized before interacting with the phase transition problem. In this case,
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we prove that the I'-limit of F.; coincides with the interfacial energy associated with a

homogenized potential. In this regime, we require an additional regularity assumption on W:

(G5) W is locally Lipschitz in p, that is, for every K C R? compact there is a constant L
such that
(W (z,p) = W(z,q)| < Llp—q

for almost every x € () and every p,q € K.
Definition 4.3. We define the functional FJ : L'(Q;R?) — [0, +-00] as
KyP({u=a};Q) ifue BV(Q;{a,b}),

F (u) := (4.1)

400 otherwise.

Here the transition energy density Ky is defined as

Ky = 2inf {/0 VWi (g(s))lg'(s)lds : g € C},(0,1];R% a, b) } ; (4.2)

where C} ([0, 1];R%; a, b) denotes the space of piecewise C" curves from [0, 1] to R” such that
g(0) = a and g(1) = b, and the homogenized potential Wy : R? — [0, +00) is given by

Whr(p) = /QW(ym) dy (4.3)

When the length scale of homogenization is sufficiently small with respect to the transition

thickness, we have the following result.

Theorem 4.4. Let {e,}nen {0n}tnen be two infinitesimal sequences such that
3
2

)
lim = — +o00.
n—oo &,

Set F,, := F., 5, Assume that W satisfies hypotheses (G0)-(G4). Then the following hold:

1. If {un tneny € HY (S RY) is such that

sup Fy,(u,) < 400,
neN

then, up to a subsequence (not relabeled), we have u, — u in L'(;RY) for some
u € BV (Q;{a,b}).
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r-r!
2. Asn — oo, we have F, — F}I.

4.1.2 The case § =¢

For € > 0 consider the energy F. : H'(£;RY) — [0, 0o] defined as

Fo(u) = J-"g,g(u):/g [lw (g (x))ﬂyvu(a;)yﬂ dz | (4.4)

We introduce some definitions. For v € S¥=1, with S¥~! the unit sphere of RY, we denote
by O, the family of cubes @), centered at the origin with two faces orthogonal to v and with
unit length sides.

Definition 4.5. Let v € SV~ ! and define the function U,y RY — R? as

a ify-v<0,
Uo. = - 4.5
o (¥) {b ify-v>0. (4:5)

Fix a function p € C°(B(0,1)) with [py p(x)daz = 1, where B(0,1) is the unit ball in RY.
For T > 0, set pr(x) :== TN p(Tz) and

ap,T,z/ = pPr kU - (46)

When it is clear from the context, we will abbreviate u, 7, as ur,.

Definition 4.6. We define the function o : S¥~! — [0, 00) as

o(v):= lim g(v,T),

T—00

g(V7 T) = Wlnf{ /TQ [W(y,U(y)) + |VU‘2] dy : QV € QV? u e C(ﬂ? QV>T) }7

and

Clp,Q,,T) = {u c H (TQ,;RY) : u= U,y on 0(TQ,) } .

Just as before, if there is no possibility of confusion, we will write C(p, Q,,T) as C(Q,,T).

Remark 4.7. For every v € S¥~1, o(v) is well defined and finite (see Lemma [4.23)) and its
definition does not depend on the choice of the mollifier p (see Lemma [4.25). Moreover, the

function v — o (v) is upper semi-continuous on SV~ (see Proposition [4.26)).
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Figure 1: The misalignment between a square (), with two faces orthogonal to v and the
directions of periodicity of W (the grid in the picture) is the reason for the anisotropy
character of the limiting surface energy.

Using [19], it is possible to prove that the infimum in the definition of g(v,T") may be
taken with respect to one fixed cube Q, € Q,. Namely, given v € S¥~! and Q, € Q, it holds

inf{ /TQV (W(y,u(y)) + |Dul*] dy : v e C(Q,,T) } .

Remark 4.8. In the context of homogenization when dealing with nonconvex potentials W
it is natural to consider, in the cell problem for the limiting density function o, the infimum
over all possible cubes T'Q),. For instance, this was observed by Miiller in [64], where the

asymptotic behavior as ¢ — oo of the family of functionals

T
G (u) = /QW (; Vu) dz,
defined for v € H'(2;R?), is studied. The limiting energy is of the form
/W(Vu(x)) dz,
Q

with

_ 1
W(A) :=inf  inf —/ Wy, \+V dy.
() T (y U(y)) dy

In the case where W is convex, the infimum over & € N is not needed (see [60]).

95



4.1 Statement of main results 4 PHASE TRANSITIONS AND HOMOGENIZATION

Consider the functional Fy : L}(Q;R?) — [0, o] defined by

/ o(va(x))dHY M (z) if u e BV(Q;{a,b}),
Folu) =4 "7 (4.7)

—+00 else,

where A := {u = a} and v4(z) denotes the measure theoretic external unit normal to the
reduced boundary 9*A of A at z (see Definition [2.9).

We now state the main I'-convergence result in the case ¢ = 4.

Theorem 4.9. Let {e, },en be a sequence such that €, — 0 as n — oco. Assume that (G0),
(G1), (G2), (G3) and (G4) hold.

(i) If {tn neny C HY(Q;R?) is such that

sup F., (u,) < 400
neN

then, up to a subsequence (not relabeled), u, — u in L*(Q; R?Y), where u € BV (Q; {a,b}),
(ii)) Asn — oo, it holds F., p’ Fo.

Moreover, the function o : SN=1 — [0, 00) is continuous.

The proof of the Theorem will be divided into several parts. We would like to briefly
comment on the main ideas we will use.

After establishing auxiliary technical results in Section we will prove the com-
pactness result of Theorem (i) (see Proposition by reducing our functional to the
standard Cahn-Hilliard energy (L.3).

In Section we will obtain the liminf inequality by using the blow-up method intro-
duced by Fonseca and Miiller in [44] (see also [45]). Although this strategy can nowadays
can be considered standard, for clarity and completeness we include the argument.

The limsup inequality is presented in Section and requires new geometric ideas.
This is due to the fact that the periodicity of W in the first variable is an essential ingredient
to build a recovery sequence. It turns out (see Proposition that there exists a dense
set A C SV! such that, for every v; € A there exists T,, € N and vy,...,vy € A for
which W (z + T,,v;,p) = W{(x,p) for ae. z € Q, all p € RY and all i = 1,..., N, and
such that {vy,...,vy} is an orthonormal basis of RY. Using this fact, in the first step of

the proof of Proposition we obtain a recovery sequence for the special class of functions
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u € BV (Q;{a,b}) for which the normals to the interface 9* A, where A := {u = a}, belong to
A. We decided to construct a recovery sequence only locally, in order to avoid the technical
problem of gluing together optimal profiles for different normal directions to the transition
layer. For this reason, we first prove that the localized version of the I'-limit is a Radon
measure absolutely continuous with respect to H¥ 'L 9* A, and then we show that its density,
identified using cubes whose faces are orthogonal to elements of A, is bounded above by o.
Finally, in the second step we conclude using a density argument that will invoke Reshetnyak’s

upper semi-continuity theorem (see Theorem [2.12)) and the upper semi-continuity of o (see
Proposition [4.26]).

4.2 The case ¢ << ¢

We proceed to prove the I" convergence result in the case where the homogenization occurs

at a much smaller scale than the phase transition. To be precise, we consider the scaling

— 0

S| o

Remark 4.10. The reason that this scaling is necessary as opposed to the more general case
without a factor of % is not yet clear. Indeed, if one could show that a sequence {u,} with

bounded energy satisfies
lim F,(u,; Q\ {lzn| >6}) =0
n—oo

then Theorem [£.4] would follow in the more general scaling e << 4.

First, in order to rule out possible pathological behavior corresponding to large values of

u, we will introduce a truncated potential W,

Definition 4.11. Let R > 0 be given such that every minimizing curve g € C},,([0,1]; R% a,b)
for the minimization problem defining Ky (see (4.2))) is such that |g(t)] < R for every
t € [-1,1]. Let

M := esssup max W(z,p),
zeQ  [PISR

and define the truncated potential W : Q x R? — [0, 00) as

—

W(z,p) := min{W(x,p), M }.

Remark 4.12. The truncated potential W is Lipschitz (not only locally) in p, uniformly in
x. Moreover, note that 0 < M < 400 by the upper bound given by (G4).
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4.2 The case e << ¢ 4 PHASE TRANSITIONS AND HOMOGENIZATION

The proof of Theorem is based on a convergence result (Lemma [4.14)) stating that in
the functional F), it is possible to substitute the (truncated) energy with the homogenized

energy, which leads to the following definition.

Definition 4.13. For a sequence 9,, — 0, we define the homogenized energy
FH: LYQ;RY) — [0, 4+00] by

FH(U): A{%WH(u(x)>+5n|VU($)!2} dz u€H1<Q;Rd)’

400 otherwise,

where WH is defined as

Wi (p) = / Wy, p) dy.
Q
Note that this definition of W} coincides with that in (4.3)).

4.2.1 A homogenization lemma

We prove that as n — oo, the limiting behavior of F! captures the limiting behavior the

truncated problem.

Lemma 4.14. Let {0, },{e,} be sequences converging to 0 and let {u,}neny C H'(;RY) be
such that

sup/ 5n|Vu, > dr < co. (4.8)
neN JQ
Then .
lim —/ [W(E,un(x)> —WH(un(x))] dz|=0.
n—oo | 0, Q En
Proof. Let
T .= Sup/ 6n|Vu,|* dz < co. (4.9)
neN JQ
Write
My

Q= Qi en) U Ry,

=1

where p; € £,Z", R, is the set of cubes Q(z,¢,) with 2 € £,Z" such that Q(z,e,) NN # 0,
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and M,, € N. Note that

1 —
o (7))
On UM Qpien) En
n o I’ o
/ (W (—,un> - WH(un)) dz
pz 877, €n

<53
| (T 20) = W20 ) dy’7 (4.10)

=1

where in the last step we have used the change of variables y := “=%* and we used the fact

that W <y -y ) = W(y, -) by periodicity. From here, we can rewrite (4.10) as

N Mn
n

85_”21// (Y, un(pi + €ny)) = W<Zvun(2?i+€ny)))dzdy'

N Mn

= | [ (Tt ) = Wl )

NM
n

: //’W Y, un(pi +eny)) — W(y,un(pi—l—gnz))’dzdy

= 0

_ Ley w,

L&‘N M”
(//Iunpz+6ny umldzdy+//|um— n(pi +€nz )Idzdy),

(4.11)

IA

where in the second to last step L > 0 is the Lipschitz constant of W, and we define
Wiy 1= / Un(p; + €nz)dz.
Q

By symmetry, the last term in (4.11) can be written as

2L5N o

/ / |un Di + Eny uz n| dZ dy = / |un(pz + 5ny) - ﬂi,n| dy
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By the Poincaré inequality and (4.9), we have

M,
C€N+1 n

M,
2L <& _
S [ s+ )~ iy <
noi—1 /@

/ \Vu,(p;i + €ny)| dy

Cep
c Z/ |Vu,(z)| dz
Q(phan)

)
noi=1

< an/ |Vu,| dz

05"|Q| (/ |Vun|2dx>

Ci”Ta. (4.12)

on

Using (4.10), (4.11) and (4.12)), we conclude that

<

1 N N
lim —/ <W (ﬁ,un) - WH(un)) dz| = 0. (4.13)
n—00 5n Uhfn (Pisen) €n
Noticing that W and Wy are bounded and |R,| < Ce, we get
! 1/ W (2w ) = W) ) dz| =0 (4.14)
dim 15 ] ot (U, x| =0. .
Thus, from (4.13)) and (4.14)) we conclude. O

4.2.2 The I'-convergence result
With Lemma [4.14] we may proceed to prove the I'-convergence result stated in Theorem

Proof of Theorem[{.4 Step 1: Compactness. Let {u,fnen C H'(;R?) be a sequence such
that

sup F,(u,) < 400.
neN

Then we have
sup/ 6n|Vu, > dr < oo,

neN JQ
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and thus, since W< W, we can apply Lemma m to conclude

sup FX (u,) < +o0.
neN

Invoking classical results (see, for instance, [48, Theorem 4.1]) we get that, up to a subse-
quence (not relabeled) u,, — u in L'(2; R?) for some u € BV (;{a, b}).

Step 2: Liminf inequality. Let {u,}neny C HY(Q;R?) and u € BV (Q; {a,b}) be such that
u, — uin L'(Q;RY) . In order to prove that

F (u) < liminf F,(uy,),

n—oo

without loss of generality we restrict ourselves to the case in which

lim F,(u,) = liminf F,,(u,) < +o0. (4.15)

n—0o0 n—oo

Using Step 1, we get that u € BV (Q;{a, b}). Moreover, noticing that by definition of M (see
Definition [4.11f) we have

Ky = 2inf {/0 WH(g(s))|g'(s)|ds 1g € C;w([O, 1];R% a, b) } : (4.16)

where W is defined in (4.11). Using standard results (see, for instance, [48, Theorem 3.4]),
we obtain
F(u) < liminf F¥(u,) < liminf F, (u,),

n—00 neN

where in the last step we used Lemma noting that (4.15)) yields the validity of (4.8).

Step 3: Limsup inequality. Let u € BV (£2;{a,b}). We want to find a sequence {u, }neny C
HY(;RY) with u,, — u in L}(Q;R?) such that

F(u) > limsup F,(u,).

n—oo

Since Ff is the T-limit of FZ (again, because the constant Kp is the same regardless of

truncation) we can find a sequence {u, }ney C H'(€;RY) with u, — w in L'(€;R?) such that

Ff (u) > limsup F2 (uy,).

n—o0
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—

Moreover, by our choice of truncation, |u,| < R, so that W (z,u,(z)) = W (z, u,(z)) for a.e.
x € Q2. Note that
sup/ 6n|Vu,|? do < 400

Q

neN

and thus, we can apply Lemma to conclude

limsup F., (u,) = limsup F/ (u,,)
n—oo n— o0

In particular, we have

F(u) > limsup F,(u,).

n—oo

4.3 The case § =¢

Before proving the I'-convergence result in the case where § = ¢, we must establish prelimi-

nary technical results.

4.3.1 Some technical results

The first result relies on De Giorgi’s slicing method (see [32]), and it allows to adjust the
boundary conditions of a given sequence of functions without increasing the energy, by care-
fully selecting where to make the transition from the given function to one with the right
boundary conditions. Although the argument is nowadays considered to be standard, we
include it here for the convenience of the reader.

For € > 0, we localize the functional F. by setting

Fo(u, A) ::/AFW @ (x))ﬂmu(xﬂ dz |

€

where A € A(Q) and u € H'(A4;R?). Also, for j € N, we define
AV = {z e A d(z,0A) <1/5}.

Lemma 4.15. Let D € A(Q) be a cube with 0 € D and let v € SN, Let { Dy }ren C A(Q)
with Dy, C D be cubes, let {ny}ren with ny — 0 as k — oo, and let u, € HY(Dy; RY), with
k € N, satisfy

(7’) XDy, — XD mn Ll(RN)7
(i) ukXp, — o, in L*(D;RY),
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(tit) supgey Fo, (Ur, Dy) < 00.

Let p € C(B(0,1)) with [,y p(x)dz = 1. Then there exists a sequence {wytren C H'(D;R?),
with wy, = Uy /. 0 D,(gj’“), where Uy 1/, 15 defined as in (4.6), for some {ji}ren with
Jp — 00 as k — oo, such that

lim inf 7, (ug, Dy) > limsup F,, (wy, D) .

k—o0 k—o0
Moreover, wy, — ug,, in LY(D;RY) as k — oo, where ¢ > 2 is as in (G4).

Proof. Assume, without loss of generality, that

lim inf F,, (uy, Dy) = kh_)rgo For (g, Dy) < 400 (4.17)

k—o00

and that, as n — 00, u,(z)xp, () = ug,(x) for a.e. z € D.

Step 1. We claim that

Jim {lug, = wo,[| LoD, ma) = 0- (4.18)

Indeed, using (G4), we get

lug () — o, (z)]7 < C (W <%,uk(x)) + 1) , (4.19)

for € Dy. From (4.17) we have X, (2)W (= ue(x)) = 0 as k — oo for a.e. x € D, and
thus

C|D| = limsup [Jug, — uou |7,

Dj,;Rd
k—o0 KRY)

k—00

_ liminf/Dk [CW (%,uk(aj)) +C - Jup(z) — u07y(a:)|q] dz

Z/Dligglfxpk(x) [OW (%,uk(x)) +C’—|uk(x)—uo,y($)|q} dz

> C1D],

where we used Fatou’s lemma and (4.19).

Step 2. Here we abbreviate w,1/p, as Uijg,. Set vy = Uiy, and Ay = |Jupxp, —

Vk||2(p;ray- Using Step 1, since ¢ > 2 we get lim_,o A = 0. For every k,j € N divide D,(gj)
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into Mj, ; equidistant layers L};’j of width nyAg, for i =1,..., My ;. It holds
1

For every k,j € N let Lﬁgj, with 7o € {1,..., M} ;}, be such that

1
Az A(z) do, 4.21
[, Ao g ) (4.21)

k,j

where

Ag(z) = %(1 + |ug — vg]? + [vr]?) + k() — vp(2) > + i (|Vur(@) P + [Voe(2)]?)

A¥Ti
Further, consider cut-off functions ¢y ; € C°(D) with

C

0<¢r; <1, [Veorll < ——, (4.22)
NNk
such that .
10—
prjlr) =1,  forze U Ly, ) (Di\ DY), (4.23)
My
pri(r) =0,  forze | |J Ly, | UD\ D). (4.24)
i=19+1
Set

Wij = prjur + (1 — Prj)vx
It holds that 1imj—>oo limy, 00 “ak,j - U/OJ/HLQ(D;Rd) = 0. Let jx € N be such that D,gjk) C

Uf\i’zojﬂ L};j. Then wy, ; = vy, in D,(gj’“). We claim that

liminf 7, (ug, Dy) > limsup lim sup F,, (wy, ;, D) . (4.25)

k—o0 j—o0 k—o0
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Indeed
i0—1
Foi(Wr 3, Dy) = Fo (uk, ( U LZg) U (Dg \ D;i”)) + Fo (Whgy L)
=1 e,
+ Fo | Vks U LZJ
i=tp+1
= A+ B+ Crj. (4.26)

To estimate the first term in (4.26)) we notice that

lilgn inf F,, (ug, Di) > limsup limsup Ay, ; . (4.27)
—00

j—oo k—o0

Consider the term By ;. Using (G4) together with (4.22) we have that

1 ~
B}C,j S 0/.0 |:%(1 + |U}k7j|q) + Nk (|Vg0k7j\2|uk — Uk|2 + |Vuk|2 + \Vvk|2)} dx
LY,

1 1
SC/ {—(1+\uk—vk\q+\vqu)+ 2]uk—vkl2+nk (]Vuk\2+]Vvk\2)1 dz
Lo, L7 NeA,
C / 1+|Uk—Uk|q |uk—vk|2 2 9
< + 0 (|Vug|™ + [V dx, 4.28
Mg Jop | aog Vv e

where in the last step we used (4.21)) and the fact that sup,cy ||vk || o (p;ray < 00. Since for a
cube r(@) with side length r we have
2NNl

)
Q) < ——

and the cubes Dy, are all contained in the bounded cube D, we can find j € N such that for
all j > j and k € N we get

Dy C
< - =C)\;. 4.29
Mi g = Mg jnk ; (4:29)
Step 1 (see (4.18))) yields
C ) . . .
S o 1 1= wal?) do < C [l = 0l 0+ t=cin. @a0)
’ k
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Moreover, by (4.20) we obtain

1 2
— - dz < CjA 4.31
Uk/ |Vug|* dy < limsup F,, (ug, D) < o0, (4.32)
Dk k—o0
and, since
C
Vol < —, (4.33)
Tk
Nk / 2 C .
Voui|* dy < =Cjg. 4.34
Vi g T8 0 S g = Cin (1.31)

From (4.28)), (4.29), (4.30), (4.31), (4.32) and (4.34) we get

lim lim By ; =0. (4.35)

j—00 k—o0

We now estimate the term Cj ;. Using (4.33)), we obtain

[ W (ui(y)) + ni | Vo(y)]? ] dy

Nk
and so
lim lim C;,; =0. (4.36)
Jj—00 k—o0
Similarly, it holds that
: ~ . C
lim F,, (W, D\ D) < lim —[(D\ Dg)N{x €D : |z-v| <n}| =0. (4.37)
k—oo k—oo Nk

Using (4.26)), (4.27), (4.35), (4.36) and (4.37) we obtain (4.25).

Applying a diagonalizing argument, it is possible to find an increasing sequence {j(k)}ren
such that
Jim [ By + Crjory + Fu (W), D\ Di)] = 0,

and limy_,o || Wk i) — vowllzr(prey = 0. Thus, the sequence {wy}ren, With wy = wy k)

satisfies the claim of the lemma. ]
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Remark 4.16. We will make use of the basic idea behind the proof of Lemma in several
occasions. In particular, it is possible to see that the result of Lemma still holds true if
the set D C R” is a finite union of cubes, and D, = D for all k € N.

The proof of the limsup inequality, Proposition [4.31] uses periodicity properties of the
potential energy W. In particular, we will show that W is periodic in the first variable
not only with respect to the canonical set of orthogonal direction, but also with respect to a
dense set of orthogonal directions. In the sequel we will use the notation A := Q¥ NSY¥~! and
{e1,...,en} will denote the standard orthonormal basis for RY. We first recall the following

classical extension theorem for isometries (for a proof see, for instance, [57, Theorem 10.2]).

Theorem 4.17. (Witt’s Extension Theorem) Let V' be a finite dimensional vector space
over a field K with characteristic different from 2, and let B be a symmetric bilinear form
on V with B(u,u) > 0 for all u # 0. Let U, W be subspaces of V and let T : U — W be
an isometry, that is, B(u,v) = B(Tu,Tv) for all u,v € U. Then T can be extended to an
wsometry from 'V to V.

Lemma 4.18. Let v € A. Then there exist a rotation R, : RN — RY and )\, € N such that
Roen =v and \,Rye; € ZN foralli=1,..., N.

Proof. Let v € A be fixed. Consider the spaces
U := Span(en), W := Span(v)

as subspaces of V := QY over the field K := Q, with B being the standard Euclidean inner
product. Then, the linear map 7" : U — W defined by T'(ey) := v is an isometry. Apply
Theorem[4.17to extend T as a linear isometry 7' : Q¥ — QY. In particular, T'(e;)-T(e;) = ;.
Up to redefining the sign of T'(e;) so that det T > 0, we can assume T to be a rotation. Let
A, € N be such that \,T(e;) € ZY for all i = 1,..., N. Finally, define R, : RY — R to
be the unique continuous extension of 7' to all of R, which is well defined as isometries are

uniformly continuous. O]

Proposition 4.19. Let vy € A. Then there exist v1,...,un_1 € N and T € N such that

V1,...,UN_1,VN 15 an orthonormal basis of RN, and for a.e. x € Q it holds W(z+Tv;,p) =
W (z,p) for allp e R andi=1,...,N.

Proof. Let R: RY — RY be a rotation and let T := ), € N be given by Lemma relative
to vy. Set v; := Re; for i =1,...,N —1. We have that Ty; € Z" for all i = 1,...,N. Fix
ie{l,...,N} and write Tv; = Z;VZI Ajej, for some \; € Z. For p € R?, using the periodicity
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of W (-, p) with respect to the canonical directions, for a.e. x € ) we have that

N
W(x+Tv,p) =W (sc + Z/\jej,p> = W(x,p).
j=1

]

In the following, given a linear map L;RY — RY we will denote by ||L|| the Euclidean
norm of L, i.e., ||L|]* := ij:l[lj(ei) -e;]?. For the sake of notation, we will also define the set

of rational rotations SO(N;Q) C SO(N) as the rotations R € SO(N) such that Re; € QY
forie {1,...,N}.

Lemma 4.20. Let £ >0, v € A, and let S : RN — RY be a rotation with S(ey) = v. Then
there exists a rotation R € SO(N;Q) such that R(ex) =v and |[R — S|| < e.

Proof. Step 1 We claim that SO(N;Q) is dense in SO(N) for every N > 1.

We proceed by induction on N. When N = 1, SO(N) counsists of the identity, so the
claim is trivial. Let N > 1 be fixed and let ¢ > 0 and S € SO(N) be arbitrary. By density
of Q¥ N'SN! we can find a sequence {q,}nen € A with |g,| = 1 such that ¢, — S(ey) as
n — oco. By Lemma [£.18 we can find R, € SO(N;Q) such that R,(ex) = ¢,. Since SO(N)
is a compact set, we can extract a convergent subsequence (not relabeled) of { R, } such that
R, - R € SO(N), with R(ey) = lim,,_,o Ry(en) = S(en).

Thus, the rotation R~ o S fixes ey and may be identified with a rotation T' € SO(N —1),
i.e., writing e; =: (e},0),i=1,..., N — 1, it follows that Re; = (T€¢},0),i=1,...,N — 1. By
the induction hypotheses, we can find 7" € SO(N — 1; Q) such that

&
T-T| < <.
I <3
Define R’ € SO(N;Q,) by

o (T'¢},0) i=1,...,N—1,
€; 1=

Let ng be so large that
€
IR~ Rull < 5.
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We claim that our desired rotation is R,, o R € SO(N;Q). Indeed,

| Ry © R — S|l <[ Rp, © R — Ry, 0 R'o S|+ [| R, oR oS- S|
= ||k =R oS| +|Rn, — R
=T =T + |Rn, — R|| <&

Step 2 Let S € SO(N) with S(ey) = v be given. If N = 1, there is nothing else to prove,
so we proceed with N > 1.

By Lemma we can find a rotation R; € SO(N;Q) such that Ry(ey) = v. Since
R;' 0 S is a rotation with (R;* o S)(eny) = ey, as in Step 1 we can identify R~ o S with
a rotation T} € SO(N — 1). Also by Step 1, SO(N — 1;Q) is dense in SO(N — 1), so we
can find T, € SO(N — 1;Q) such that |7, — T1|| < €. As before, identifying 75> with a
rotation Ry € SO(N;Q) that fixes ey, we set R := R o Ry € SO(N;Q). We have that
(Ry10 Ry)(ey) = Ri(ey) = v and

|Rio Ry — S| =[R2 — Ry o S|| = T2 — Th| <e.

]

Definition 4.21. Let V C SV~!. We say that a set £ C RY is a V-polyhedral set if OF is a
Lipschitz manifold contained in the union of finitely many affine hyperplanes each of which

is orthogonal to an element of V.

A variant of well known approximation results of sets of finite perimeter by polyhedral
sets yields the following (see [4, Theorem 3.42|).

Lemma 4.22. Let V C SV~ be a dense set. If E is a set with finite perimeter in §, then
there exists a sequence {Ep}nen of V-polyhedral sets such that

T [xe, el =0, lim [P(E,; Q) — P(E:Q)] =0.

n—oo

Proof. Using [4, Theorem 3.42| it is possible to find a family {F},},en C RY of polyhedral
sets such that

: |P(F,;Q) — P(E;Q)| <

3|~
SHN

IxE, — xEllL@ <

For every n € N, let Fg"), e ,ng? be the hyperplanes whose union contains the boundary of
F,. Let v\, ... v{" € S¥=1 be such that T; = (V}”))L. Then it is possible to find rotations

R™ : RN — RY such that R™v™ € A and, denoting by E, C RY the set enclosed by the
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hyperplanes (R\"™v™)+

i , we get

|P(En; Q) — P(E;Q)| <

S
SII\D

IxE, — XEllL1(0) <

4.3.2 Properties of the function o

The aim of this section is to study properties of the function o introduced in Definition

that we will need in the proof of Proposition4.31|in order to prove the limsup inequality.

Lemma 4.23. Let v € SNL. Then o(v) is well defined and is finite.

Proof. Let v € S¥=1. For T > v/N let Qp € Q, and uy € C(Qr,T) be such that

1 1
T g Wy, ur(y)) + [Vur(y)*dy < g(T) + =, (4.38)
T
where, for simplicity of notation, we write g(T") for g(v,T'). Let {l/T1 . N)} be an or-

thonormal basis of RY normal to the faces of Q7 such that v = I/é« We deﬁne an oriented

rectangular prism centered at 0 via
P(a,B) :=={r € RY : |z -v| < B and \x-z/éf)] <afor1<i<N-—1}.
Let S > T + 3+ +v/N. We claim that for all m € N with 2 < m < T, we have
9(8) < g(T) + R(m, S, T), (4.39)
where the quantity R(m,S,T) does not depend on v and is such that

lim lim lim R(m,S,T) =

m—o0 T—o00 S—o0

Note that if this holds then

limsup g(5) < liminf ¢(7),
S o0 T—00
and this ensures the existence of the limit in the definition of 0. Therefore, the remainder of
Step 1 is dedicated to proving [4.39]

The idea is to construct a competitor ug for the infimum problem defining ¢(S) by taking
|2]V=1 copies of TQ, Nv* centered on v N SQ, in each of which we define ug to be (a
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translation of) up. In order to compare the energy of ug to the energy of ur, we need the
copies of the cube T'Q), to be integer translations of the original. Moreover, we also have to
ensure that the boundary conditions render ug admissible for the infimum problem defining
g(S). For this reason, we need the centers of the translated copies of TQ, N vt to be close

to v+ N SQ, (recall that the mollifiers pr,, and ps, only depend on the direction v).

Set
S 1 N-1
e |5
T++VN+2
and notice that N1
Jim, i g Vs = 1. (40

Ms T
We can tile (S — %) Q7 with disjoint prisms {pi + P <T +VN+2,5— %)} so that

i=1

1 1
pi—l—P(T—l—\/N—i—Q,S—T)C(S—f)QT, p; € v,

for each i € {1,..., Msr}. In each cube p; + vV NQr we can find z; € ZV since dist(-, ZV) <
V/N in RY, and we have

2+ (T +2)Qr Cpi + (T + VN +2)Qr.

Consider cut-off functions pg7 € C.(SQr;[0,1]) and, for m € N with 2 < m < T, i €
{1,..., Mgz}, let ¢, € Ce(x; + (T + %)QT; [0, 1]) be such that
0 ifze a(SQT>,

wsr(r) = Vsl < CT, (4.41)
1 ifze (S—%)QT,

0 ifareﬁ(mi—k (T+%)QT),

Pmi(T) = IVem.illoe < Cm, (4.42)

and

1 ifﬂ?EZEi‘l'TQT,
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SQr

(T-I- %) Qr

Figure 2: Construction of the function ug: in each yellow cube z; + TQr we defined it as a
copy of ur and we use the grey region (z; + (7' + %)QT) \ (x; + TQr) around it to adjust the
boundary conditions and make them match the value of ug in the green region. Finally, in
the pink region SQr \ (S — %)Qr we make the transition in order for ug to be an admissible
competitor for the infimum problem defining ¢(S).

for some C' > 0. Define ug : SQr — R? by

(

up(r — ;) ifx €x;, +TQr

Omi(T)(pr * w0, ) (T + pi — ) + (1 = ©mi(®)) (pm * o) (2)
ifx e (z; + (T + %)QT) \ (z; + TQr)

ug(x) := <
@s7(2) (pm * uo,) (@) + (1 — psr(2))(ps * ton)(2)
if 2 € SQr\ (S — 7)Qr
L (pm * o) () otherwise.

Notice that since p; - v =0, if x € d(z; + TQr) we have

ur(z — ;) = (pr * wo,)(x — ;) = (pr * o, ) (T + pi — 13).
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4.3 The case d = ¢ 4 PHASE TRANSITIONS AND HOMOGENIZATION

Thus us € H'(SQr;R?) and, if x € dSQr then ug(x) = (ps * ug,)(x), so ug is admissible

for the infimum in the definition of g(.5). In particular,

g(9) < 51\11—1 /SQT {W(:c,us(x)) + |Vug(2)|* | dx

— L Fi(us 5Qr)

GN-1
= L(T,S) + I,(T,S,m) + I3(T,S,m) + I,(T, S, m), (4.43)
where
: Mrs
Il<T, S) Z:W Z fl(US,xi + TQT)7
i=1
1 Mr s 1
L(T, S, m) =oNT Z F1 (U& (ffz + (T + E) QT) \ (2 + TQT)) 5
i=1
1 (1)
(T, S,m) ZZW]‘—l(US»ET,S,m%
I4(T7 S7 m) ::Wfl(uSH Eg,)g)a
and we set
] Mr.s 1
E(le@m = <S - ?) Qr \ g (952 + <T‘|‘ E) QT)
and

Eg)s 1= 5Qr \ <S - %) Qr-

It is worth pointing out the following properties of py *ug, for L > 0. We will demonstrate
that

1

and that
IV (pL * uop)||eo < CL. (4.45)

To prove these, we note that v, is a jump function and hence its distributional derivative

is the vector measure (b — a) @ vHY 1L vt. Then we see

V(ps * o) (z) — / po(y) (b — a) ® vdHN " (y).

B(m,%)ﬂzﬂ-
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4.3 The case d = ¢ 4 PHASE TRANSITIONS AND HOMOGENIZATION

Thus, if |z - v| > 1, we have B (z,1) Nv* = 0 and thus V(py, * ug,)(z) = 0. To see ([4.45)),

'L

1
W (5 ()

On the other hand, since ||V |l < LY, we have for every z that
P

we can estimate

1
IV (pr * g, ) (z)] < CLNHN! (B (x, Z) N Vl> <CL

and thus ||V (pL * ug,)]|e < CL.
We now bound each of terms I, ..., I, separately. We start with I,(T,S). Since z; € Z",
the periodicity of W together with (4.38)) yield

L(T,S) = %MS,T /TQ (W (z,ur(z)) + |[Vur(z)[*] do

1

g MrsTV ! (g(T) + f)' (4.46)

In order to estimate I5(T, S, m), notice that by (4.44))

a fzr-v< -2,
m

(o * 100, () = (4.47)

and that

(pr * uoy) (T +p; — x;) =
b ifx-yzl—k\/—ﬁ

since x; € p;v NQr. Furthermore, since for every € R%, the function ¢ — (pr*ug,)(z+tv)

is constant outside of an interval of size 1/T, we have, for every i € {1,..., My}, that

IV (pr *uow)(x + pi — ;)] do

/(zi+(T+,1l)QT)\(:ci+TQT)

1 1 N-1
< FIVerewnlie | (T45) -1
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Thus, using (4.42) and (4.48) we obtain

C VN 1 1
(7, 5,m) < g Ms| (54 1)1+ [9male) + 219 (om w0

Lo [T L) -
T PT * Uo,w)|| oo m

C 1 N-1
< ——Mrs(1+m*+7) KTJFE) —TN‘l}

= gN-1
TNfl 1 N-1
2
TN N -1
S CWMT’S (]_ + m2 + T) <W) =. JQ(T, S, m) (449)
where in the last step we used the inequality
A+ <14+ C(N - 1)t (4.50)

for t < 1, that is valid here when 7" > 1.
Using (4.47), we can estimate I3(T,S,m) as

1
RS =g [ (WG s w0,) + [V (0, do

T,S,m

C 1
S v Ef) N {Ix vl < EH (1 + V(o * uO,u)lliw)
C 1\ V! N1]1+m?
(o 3)
1\¥t Nt (14 m?)
=C 1-— S_T — WMT’S —_— = Jg(T, S, m) (451)
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Finally, we get

C 1
Wt som) < o | B0 {lo vl < g 04 1908w l)
1
# B0 (it < LY+ 19psalie + 1900 *Uo,u)H%oo)]

2 N-1
<olts [SN—1—<S—1> F

- SNl T S
1+ m? 1\"1'71
C—cr | SN[ 5= = —
ol =(s-7) Ja
1+S5*N -1 1+m?*N -1
<C C =: L(T,S . 4.52
where in the last step we used (4.50)), assuming 7" > 1.
Taking into account (4.49), (4.51)), and (4.52), we obtain
lim lim lim [Jo(T,S,m)+ J5(T,S,m)+ Ju(T,S,m)] = 0. (4.53)

m—o0 T'—o00 S—o0

Thus, in view of (4.43), (4.46), (4.40) and (4.38), we conclude (4.39) with

R(m,S,T) = Jo(T,S,m) + J3(T,S,m) + Ju(T, S, m). (4.54)

Notice that R(m,S,T) does not depend on v nor on Q.
Finally, to prove that o(v) < oo for all v € S¥~! we notice that, by sending S — oo in
(4.39) we get
o(v) <g(T)+ Slgglo R(m,S,T).

Since g(T) < oo and, by (4.53) and (4.54), limg o R(m,S,T) < oo for all T > 0, we
conclude. O

Remark 4.24. The proof of Lemma [4.23| shows, in particular, that

T—o0

lim %inf{ /TQ (W (. u(w) + [Duf] dy = u e CQ.T) }

exists, for every v € SV~! and every Q € Q,. This will be used later in the proof of Lemma

.28

Next we show that the definition of o(v) does not depend on the choice of the mollifier p

we choose to impose the boundary conditions.
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Lemma 4.25. For every v € SN~ the definition of o(v) does not depend on the choice of
the mollifier p.

Proof. Fix v € SV~ and let {T},},en be such that T, — oo as n — oo. Let pM), p? ¢
C>(B(0,1)) be two mollifiers and let us denote by o(v, p!) and o(v, p@) the functions
defined as in Deﬁnitionusing pM and p, respectively, to impose the boundary conditions
for the admissible class of functions. Let {Q,}.en C Q, and {ug)}neN C HY(T,Q,;R?) with
ug) = p%) * up,, on 01,Q), be such that

Fi(tn, T,Qn) = o (v, pV). (4.55)

Jm R
with 0 < ¢,,.m < 1such that @,,, =1in T,,Qpn, ©nm = 0on 8[(Tn+%)Qn] and [|[Veonmlleo <
Cm. For every n € N define uy) € H' (T, + £)Qn;R?) as

For every m,n € N, consider the cubes (Tn + %) Q,, and a function ¢, ,, € C=((T, + 2)Q,)

(2)

u®(z) = uy () if © € T,Q,,
T @nm(@) (05 % u0,) (@) + (1= @m(@)) (05 % ug,)(x)  otherwise .

Then u) = pggn)*uoﬂj on O[(T++)Q,] and u'?) is constant (taking values a or b) outside the set

{(«/,2,) eRY 2’ € Q) m, = sv for 5 € [—7-, 7-]} where Q) := [(T, + - )Qn \ TQu] N+
We have

1 1 1
—(Tn n L)N—lfl (U%Q), (Tn + E) Qn) < W‘Fl(uanQn) -+ Rn,ma (4.56)
where
1
Rum = 7 | (W (. u(0)) + [VuD )] dy
n (Tnt57)Q\TnQn

C
<

TN (1412 +m?)

1 N-1
)
m

C 2 2

where in the last inequality we use (4.50). Using (4.55) and (4.56) we get

. 1 1 C
O'(V7 p(2)) S lim inf mfl (U,?(f)’ <Tn + E) Qn) S O’(y’ p(l)) —+ E

n—o0

Using the arbitrariness of m we get the result. O]
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We now prove a regularity property for the function o.

Proposition 4.26. The function o : S¥=1 — [0, 00) is upper semi-continuous.

Proof. Step 1. Fix v € S¥=1 and let {v, }nen € SV~ be such that v, — v as n — oco. We
first prove that, for fixed 7" > 0, the function v — ¢(v,T) is continuous. We claim that
limsup,, .. 9(Vn, T) < g(v,T). Fix e > 0. Let Q, € Q, and u € C(TQ,,v) be such that

‘TN_lg(y, T) —/ [W(y,u(y) + [Vul’ ] dy| < e. (4.57)
TQ,

Without loss of generality, by density, we can assume that u € L>(Q; R?). For every n € N,

let R, : RY — RY be a rotation such that R,v, = v and R, — Id as n — oo, where

Id : RY — RY is the identity map. Define u, € C(TQ,,,v,) as u,(y) = u(R,y). By ({57

we have

™ g, T) < | )+ V)

< / Wy u(w)) + |Val?] dy + 6,
TQv

< TN Y9, T) + & + 6, (4.58)

where

5, = ‘ W (y, un(y))dy — W(%“(y))dy‘ :
TQu, Qv

We claim that 6, — 0 as n — co. Since £ > 0 is arbitrary in (4.58), this would confirm the
claim.

Fix n > 0 and let M := C(1 + ||ul|1), where C' > 0 and ¢ > 2 are given by (G4). Let
K c RY be a compact set such that 7Q, C K and TQ,, C K for every n € N. Notice
that W (z,u(z)) < M for all x € TQ,.. Using the Scorza-Dragoni theorem (see [42, Theorem
6.35]) and the Tietze extension theorem (see [42, Theorem A.5]), we can find a compact set
E C K with |E| < 5 and continuous map W : K x R? — [0, 00) such that W (z,-) = W(z, ")
for all z € K\ E and [W(z, u(z))| < M for every = € K. We claim that

[ [t = Tt | s < w59,

and that

/TQD ) W (y, tn(y)) — W (y, un(y)) ) dy < Cy. (4.60)
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4.3 The case d = ¢ 4 PHASE TRANSITIONS AND HOMOGENIZATION

Indeed

[ Wwat) = Wuw) | dy= [ W u) - W) | ay
Qv E

<2M|E|
<2Mn.

A similar argument yields (4.60). Since T'Q), is bounded

/TQV ‘W(Rny, u(y)) — Wy, u(y)) ‘ dy — 0, (4.61)

as n — oo. Thus, from (4.59)), (4.60) and (4.61) we obtain

limsupd, < 2Cn.

n—o0

The claim follows from the arbitrariness of 7.
In an analogous way it is possible to show that liminf, .. g(v,,T) > g(v,T), and thus

we conclude that the function v — ¢(v,T') is continuous.

Step 2. Fix v € S¥=1 £ >0, and let T > 0 be such that
lg(v,T) —o(v)| <e. (4.62)
Let {v, }nen be a sequence converging to v. By Step 1 we have that

lim g(v,,T) = g(v,T). (4.63)

n—oo

Then, for S > T + 3 + /N, using ([#.39) and ([&.62) we get, for m € {1,...,T},

9, S) < g(vy, T) + R(m, S, T)
g, T)+ gWwn, T) — g(v,T) + R(m, S, T)
ov)+e+ g, T)—g(v, T)+ R(m,S,T).

IN

Taking the limit as S — oo we obtain

o(n) <o) +e+gwn,T)—gv,T)+ Jim R(m,S,T).
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Letting n — oo, by (4.63)

limsupo(v,) < o(v)+¢e+ Slim R(m,S,T).
—00

n—o0

Finally, taking T"— oo and then m — oo, using (4.54)), we conclude that

limsupo(v,) < o(v)+e¢

n—oo

for every € > 0, and thus we obtain upper-semicontinuity. O

The following technical results, that will be fundamental in the proof of the limsup in-
equality (see Proposition 4.31), aim at providing two different ways to obtain, for v € SN=1,

the value o(v).

Lemma 4.27. Let v € A. Then

o(v) = lim ¢*(v,T), (4.64)

T—o00

where

90 7) = gzt [ W) + D0y + @ e @ we @},

and QF is the family of cubes with unit length side centered at the origin with two faces

orthogonal to v and the other faces orthogonal to elements of A.

Proof. Fix v € A. From the definition of o(v) it follows that
o(v) < liminf g (v, T). (4.65)
T—o0

Let {7}, }nen with T,, — 0o as n — oo. By Lemma [4.23] let {Q,}nen C Q, and {uy, }pen with
U, € C(Qn, Ty) N L=(T,Q,; R?) be such that

lim = (up, ToQn) = o(v). (4.66)

n—o00 Tév_l

For every fixed T},, an argument similar to the one used in Step 1 of the proof of Proposition
together with Lemma ensure that it is possible to find rotations R, : RY — RY
with R, (ex) = v and R,(e;) € Afor all i = 1,..., N — 1 such that

1t TuQu) — i, TeRA(Q0)] < (1.67)
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where w0, () := u, (R, 'z). Thus

: . 1 -
limsup ¢* (v, T') < limsup W}-l (U, TR (Q))

n—o0 n—o0

1
< lim sup W-Fl (tn, TrQn)

n—oo

=o(v), (4.68)
where the last step follows from (4.66]), while in the second to last step we used (4.67)). By
(4.65) and (4.68) and the arbitrariness of the sequence {7}, },en, we conclude (4.64]). O

Lemma 4.28. For v € S¥=! and Q € Q, define

o9 v) = lim g9, T),

T—o00

where

1
(v, T) =

'—WWQM{AQUW%MM%HDW1®ruec@JV}

Then there exists {Qp fneny C Q. such that 09" (v) — o(v) as n — oo. In particular, if v € A
it is possible to take {Qy tneny C QL.

Proof. First of all notice that, in view of Remark [4.24) 0%(v) is well defined. By definition,
we have o(v) < 09(v) for all Q € Q,. Thus, it suffices to prove that it is possible to find
a sequence {Qy ey C Q, such that 0% (v) < o(v) + R, where R, — 0 as n — oo. Let

{T,}nen be an increasing sequence with T,, — 0o as n — oo such that

9, Ty) < o(v) + %

It is then possible to find {Q,}neny C Q, (or, using Lemma {Qn}nen C Q) in case
v € A) such that for all n € N it holds

1
an(Vv Tn) < g(V7 Tn) + n (4'69)

An argument similar to the one used in Lemma to establish (4.39) shows that for every
vresSN1QeQ,, T>0,S>T+3++Nandme {l,...,T}, it holds

g?v,8) < g%, T)+ R(m, S, T), (4.70)
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where R(m, S, T) is independent of v € S¥~! and of Q € Q, (see (4.54)), and is such that

lim lim lim R(m,S,T) = 0.

m—o00 T—00 S—o0

In particular, for all n € N, it is possible to choose m,, € {1,...,T,} such that

lim lim R(m,,S,T,) = 0. (4.71)

n—oo S—oo

Thus, we get
g9 (v, S) < g9 (v, T,,) + R(my, S, T,). (4.72)

From (4.69)) and (4.72)), sending S — oo, we get
Q 2
o (v) <o(v)+ —+ lim R(m,,S,T,).
n S—+00

Using (4.71)) we conclude that

o(v) = nh_)ngoa (v).

4.3.3 Compactness

Proposition 4.29. Let {u,}nen C H'(R?Y) be a sequence with sup,ey Fe, (un) < 400,
where €, — 07. Then there exists u € BV (Q;{a,b}) such that, up to a subsequence (not
relabeled), u, — u in L*(Q;R?).

Proof. Let W : R? — [0,00) be the continuous function given by (G3). Let R > 0 be such
that &|p|?—C > 0 for [p| > R, where C' > 0 and ¢ > 2 are as in (G4), and |a|, [b| < R. Take
a function ¢ € C*°(R?) such that ¢ =1 in Br(0) and ¢ = 0 in Byr(0). Define the function
W :R? = [0,00) by

W) = W)+ (1= ) (Gl =€)

for p € R Notice that W(p) = 0 if and only if p € {a,b}. Since W (p) < W(z, p) for a.e.
x € Q, we get

Pl > [ [1w<u<w>>+s|w<x>|2] Qe = Fo (1)

3

and, in turn, we have that sup,cy F.. (u,) < +00. We now proceed as in [48] to obtain a
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4.3 The case d = ¢ 4 PHASE TRANSITIONS AND HOMOGENIZATION

subsequence of {u, n.en and u € BV (;{a, b}) such that u, — u in L*(Q;RY). O

4.3.4 Liminf inequality

This section is devoted to the proof of the liminf inequality.

Proposition 4.30. Given a sequence {,}nen with £, — 07, let {u,}nen C H(;R?) be
such that u, — u in L*(Q;RY). Then

Fo(u) < liminf F. (u,) .

n—o0

Proof. Let {uyneny C HY(;RY) with u, — u in LY(Q;R?). Without loss of generality, and

possibly up to a subsequence, we can assume that

liminf 7 (u,) = lim F. (u,) < oo. (4.73)

n—o0 n—o0

By Proposition 4.29, we get u € BV (Q; {a,b}). Set A := {u = a}. Consider, for every n € N,

the finite nonnegative Radon measure

1
i = {gw (g,un(x)) +5\Dun(:c)|21 LVLQ.
From (4.73) we have that sup,cy pn(€2) < co. Thus, up to a subsequence (not relabeled),
Lhn, N (1, for some finite nonnegative Radon measure p in €). In particular,

liminf F. (u,) = liminf 1, () > pw(92) . (4.74)

n—o0 n—oo

We claim that for H¥'-a.e. 2y € 0*A it holds

j—'l;(:ro) > o(va(xg)), (4.75)

where X := HY 1L 9*A. The liminf inequality follows from (4.74) and (4.75)). The rest of the
proof is devoted at showing the validity of (4.75).

Step 1. For HN¥'-a.e. x € 0*A we have

dp

(%) < oo (4.76)

Fix zo € 0*A satisfying (4.76) and a cube Q, € Q,, with v := v4(xg). Let {0 }ren be a
sequence with 6 — 0 as k — oo, such that u(9Q, (o, dx)) = 0, where Q,(zo, 0x) := o+ Q.
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for all £ € N. Then it holds

d\ 0 Eosoo 5N71 = By 00 100 5N71 . (477)

We have

n 14 75 1 1
(@ ]53_72 ) = N—l/ [—W (ﬁ,un(x)) +€n|Dun(a:)]2} dx
616 516 Qv (z0,01)

En n

1 )
— (Sk/ {—W (M,un(aﬁo + (5kz)) + &p| Dug (z0 + 5kz)\2} dz

L LEn En
. 6kW 5k n ny|2
= —W I =y, un(yy) ) + el Dun(yy)|” | dy, (4.78)
Qu_%s gn €n
where in the last step, for the sake of simplicity, we set y; = o + 0y + €,5,, We wrote

0 = m,, — s,, with m,, € Z" and |s,| < VN, and we used the periodicity of W to simplify,

En

forz:y—i—f;—:sn,zEQ,,,

n n n 5n

Consider the functions ug ,(x) := u,(zo + o), for n, k € N. We claim that

klggo nll_g}o Huk,n = Uo,va(x0) HLl(Q,,;Rd) =0, (4.79)

where ug,,(z) 18 defined as in (L.3). Set Q) = Q, N{z € RY : z-v > 0} and Q, its
complement in @),. We get

kh—golo nh_{{)lo “uk‘m — U0,v 4 (w0) ||L1(Qv?Rd)

= lim lim [/ |tun(zo + dpz) — al dx—f—/
k—o00 n—00 Q5 Q,f

= lim {/ |u(zo + dpz) — a| dx +/ |u(zo + o) — b dx}
b L/an Q

) 1
~ tm [ / ) — ol dy+ [ uly) — b dy]
k=00 0) Qv (z0,05)NH,, Qo (w0,6)NH;F

|Qu(x0,0) NH, NB| |Qu(x0,0x) N H N A|
5N + 5N

|un(zo + dxz) — b dx}

k—o0

= |b— al lim [
—0,
where Hf :={z € RN : z-v > x¢-v}, H; is its complement in RV and B := Q\ A. The
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last step follows from (i) of Theorem [2.10]
Step 2. Using a diagonal argument, and (4.79)), it is possible to find an increasing sequence
{ni}ren such that, setting

g
Nk = 5&: ) Tk = NkSny, » wk(ﬂ/’) = Uk,ny, (‘7“ - I’k) )

the following hold:
(1) limg 00 m = 0;
(ii) limgeo zx = 0;
(iii) wy — ug, in LY(Q,;RY) for all ¢ > 1;

(iv) we have

. 1 n n
lim (5k/ {—W (g,unk(yk’“o +Enk]Dunk(yk’“)|2} dy
Qu—zy, nk

k—o00 Eny,

k—o00 n—o0 En

1 0
=g g g [ () el .
u—isn n

From (4.77)), (4.78)) and (iv) we get

ECI A A ) !
—(z9) = lim —W | =, wk(y) | + nx| Dwi(y dy.

o (20) = lim S L k(Y) | + el Dwi(y)]
Let @) be the largest cube contained in (), — x; centered at zero and having the same
principal axes of ). Since z;, — 0 as k — o0, Q) C @, — x for k large and the integrand

is nonnegative, we have that

d _ 1
ﬁ(%) > hmsup/ {—W (i,wk(y)) + nk]Dwk(y)F} dy . (4.80)

Step 3. Finally we modify wy close to 0@y in order to render it an admissible function
for the infimum problem defining o(v) as in Definition [4.6l Using Lemma we find a
sequence {wy, hreny C H(Q,;R?) such that

lilzgn inf F,, (wg, Qx) > limsup F,,(wx, Q) , (4.81)

k—o0
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and with @, = (ux)r, on 0Q,, where (uy)r, is defined as in (4.6). Hence, by (4.80) and
(4.81))

1

d . _ _
ﬁ(ﬂfo) > lim SUP/ {—W <£7wk(y)> + nk‘Dwk(yMQ} dy
k—oo JQ, LTk Mk

= lim sup /1 [n,iv’lw (2, wp(me2)) + nﬁ*l\Dwk(nkz)\z} dz
Qv

k—o0

= lim sup nﬁl/ [W (z,04(2)) + | Du(2)]? ] d=

k—o00 %QV
>o(v),
since wy € C(Q,, nik), where v (2) := wg(nrz), and this concludes the proof. O

4.3.5 Limsup inequality

In this section we construct a recovery sequence.

Proposition 4.31. Let u € BV (Q;{a,b}). Given a sequence {e,}nen with €, — 01 as
n — oo, there exist {t, bneny C HY(Q;RY) with u, — u in L*(;RY) as n — oo such that

lim sup F;, (u,,) < Fo(u). (4.82)

n—o0

Proof. Notice that it is enough to prove the following: given any sequence {e,},eny with
en, — 0 as n — o0, it is possible to extract a subsequence {e,, }ren for which there exists
{upren C HY(;RY) with uy, — uw in L' (2;R?) as k — oo such that

limsup F,, (ux) < Fo(u).

k—o00

Since L'(£2;R?) is separable, we conclude using the Urysohn property of the I-limit (see [28]
Proposition 8.3]).

Case 1. Assume that the set A := {u = a} is a A-polyhedral set (see Definition [4.21)).

We need to localize the I'-limit of our sequence of functionals. For {6, },en with 6, — 0,
ve LYQ;RY) and U € A(Q) we set

n—oo

Wi,y (v U) := inf { liminf F5, (vn, U) : v, — v in LY(U;RY), v, € HI(U;]Rd)} .

Let C be the family of all open cubes in 2 with faces parallel to the axes, centered at points
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r € QN Q, and with rational edge length. Denote by R the countable subfamily of A(€2)

whose elements are €2 and all finite unions of elements of C, i.e.,

k
R::Qu{U@:keN,@eC}.

i=1

Let g, — 07. We will select a suitable subsequence in the following manner. We enumer-
ate the elements of R by {R;};en. First considering R;, by a diagonalization argument, we
can find a subsequence {,,};jen C {€n}nen and functions {u[*};en C H'(R1;R?Y) such that

Ry
J

u™ = in LY(Ry;RY),

and
Wi, 1 (u; Ry) = lim .anv(uf&? R).
J Jj—o0 7

Now, considering R», we can extract a further subsequence {e,, }ren and functions {u?} C
H'(Ry;RY) such that

uf? —u in L'(Rg;RY), uﬁl —u in LY(Ry;RY),

and

W{ }(u, Ry) = kli_}rgo]-"en_ (uf?, Ry), W{

En.
Ik njk o0 Ik

ny, }(u, Ry) = kh_}m Fe. (uﬁ’:, Ry).

Continuing along the {R;} in this fashion and employing a further diagonalization argument,
we can assert the existence of a subsequence {e%},.cn of {&, }nen With the following property:
for every C' € R, there exists a sequence {u% }nen C H'(C;R?) such that

u% —wu in LY(C;RY),

and
Wiry(u; C) = lim For(ule, C). (4.83)
n—o0 n

We claim that
(C1) the set function A : A(2) — [0, 00) given by
A(B) := Wiery(u; B)
is a positive finite Radon measure absolutely continuous with respect to p := H¥N 1L 9% A,
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Figure 3: The sets U C V C W and V° C V, W% C W\ U. Notice that V°\ W° can be
non-empty.

(C2) for HN la.e. 2y € AA, it holds
—(z0) < o(v(zo)) (4.84)

This allows us to conclude. Indeed, we have that

lim F5§ (ui%, Q) = W{Sg}(u; Q)

n—oo
A\
= —(z) dHN Nz
/MO @) @)

< /8140 o(v(z)) dH" " (z)

Step 1. We first prove claim (C1).

We use the coincidence criterion in Lemma to show that A(B) is the restriction of a
positive finite measure to A().

We will first prove (i) in Lemma [2.14 Let U, V,W € A() be such that U cC V C W.
For 6 > 0, let V% and W° be two elements of R such that V° c V, W® c W\ U, and

HN (0" AN (W N\ (VO UW?))) <6 (4.85)

Let {v, bneny C HY(VO;RY) and {w, }nen € HYW?; RY) be such that v, — win L' (V?;R?),
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w, — u in L*(W?; R?), and (see (4.83))

Weepy(us V?) = lim For (v, V), (4.86)
Wiery (u; W) = lim For (wy, W°). (4.87)
n—oo

Let p: RY — [0, +00) be a symmetric mollifier, and define

&n(z) == @d%) : (4.88)

From Remark we can assume that w, = &, * v on OW?° and v, = &, * u on 9V°. Using
a similar argument to the one found in Lemma applied to the sets E, := (W°\ V°)\
(WI\ V™ and E := W%\ V° with boundary data &,  u, it is possible to find functions
{p,} € C=(W?) with supp Vi, C LG (here we are using the notation of the proof of
Lemma such that, if we define the function u,, : W — R? as

Up 2= Xysuws (PnUn + (1 — @n)wn) + X (vouws) (§n * 1),

we have that u, € H'(W;R?) and

lim For (u,, L{) = 0. (4.89)

n—oo

Notice that u,, — u in L*(W;R?%) as n — co. Moreover, we get

W{EZLZ} (u; W) < lim inf ‘/—-5’5 (un, W)

n—oo

< lim inf [IR (s V) + For (11, W)

n—0o0

+ fsﬁ(“n; W \ (V6 U W6)) + ./ng(un, Lgo))

< Weery (u; VO) + Wiery (u; W)
+ lim inf Fog (u,, W\ (VO UW?)) (4.90)
n—oo
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where in the last step we used (4.86)), (4.87) and (4.89). We see that

lim inf Fg (w,, W\ (VU W?))
n—oo :

= For (& xu, {z € W\ (VEUW?) : dist(z, 0A) < F})
N 0 6\ . A < R
SCliminfE ({z e W\ (VOUW?) : dist(z,04) <ef})

= CHN (AN (W \ (VP U W‘S)))n
s, (4.91)

where in the last step we used (#.85). Using (#.90), (#.91) and the fact that V? C V and
W c W\ U, we get
Wiry (u; W) < C8 + Wiery (u; V) + Wiery (u; W)
< Co+ W{eg}(u; V) + W{Eg}(u; w \ U) .

Letting § — 0T, we obtain (i).

We proceed to proving (ii) in Lemma [2.14] Let U,V € A(Q) be such that U NV = 0.
Fixing n > 0, we can find u,, € H*(U U V;R?) such that u, — u and

W{E;Z}(u; Uu V) > lim inf ‘Feﬁ (un, UuU V) — 1.

n—0o0

Then, since the restriction of u, to U and V converges to u in these sets,

Wiry(u; U) < liminf For (up, U)

n—o0

and
Wiery(u; V) < liminf For (up, V')

n—oo

by definition, we have

AMU) + AMV) <liminf For (un, U) + lim inf For (u,, V)

n—oo n—o0

< liminf For (u,, UUV) < AU UV) +1.

n—oo

Sending n — 0T, we conclude

AU) 4+ MV) < AUNV).
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To prove the opposite inequality, as in the proof of (i), we select U° C U, V° C V with
U°,V? € R and
HYH (0" AN (UUV)\ (U°UV?))) <. (4.92)

Again we may select v, € H*(V°;RY) and u,, € H*(U%;R?) such that v, — u in L'(V?;R?),
u, — u in LY(U% R?) and

Wiery (un; U°) < liminf For (u,, U°), (4.93)
n—00 n
Wiery (vn; V) < liminf For (v,, V). (4.94)
n—oo

As in (i), we may assume without loss of generality that u, = &, * u on OU°, v, = &, v on
OV, and we can find functions ¢, € C*(U NV;|0,1]) so that, defining

Wy, 1= Xuouvs (Pntin + (1 = ©n)vn) + Xwuvn@suve)én * U
we have w, € H'(U UV;R?) and

lim For (w,, L)) = 0, (4.95)

n—oo

where Vi, C L,(fO), again using the notation of Lemma . Observing that w, — wu in
LY U UV;R?), we get

AU UV) < liminf Fur (w,, U U V)

n—o0

< ‘Fag(una U(S) + Feﬁ(”na Vé)

+ Fer (W, (UUV)\ (U UV?)) + For (wn, L)

< AU + MV?) + liminf For (w,, (UUV)\ (U°UV?))

n—oo

where in the last step we used (4.93)), (4.94), and (4.95). Noticing as in (ii) that

lim inf For (w,, (UUV)\ (U UV) < CHN (0" 4o 0 (UUV)\ (U U V)

n—oo

and by (4.92)) we have

MUUV) S ANUDY+ AV +C5 < ANU) + MV) + O
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and, letting 6 — 0, we conclude (ii).

We prove (iii) in Lemma Let ' CC Q. Recalling (4.88), we know that u * &, is
constant outside a tubular neighborhood of width e® around 9*A and that ||V (u*&,)||ze <
c
R- Thus

M) = Wiy (u; ) < liminf Fog (u* &, Q) < CHNHQ NG A) = Cp(). (4.96)

n—oo

This shows, by the coincidence criterion Lemma that AL Q' is a Radon measure. Since
p is a finite Radon measure in 2 and (4.96]) holds for every ' CC Q, we conclude that A is a

finite Radon measure in € absolutely continuous with respect to u, which was the claim (C1).

Step 2. We now prove (C2). Let g € Q2N 9*A be on a face of 0*A (since the set is
polyhedral) and write v := v4(x¢). Using Proposition it is possible to find a rotation
R, and T" € N such that, setting @), := R,Q, we get (), € Q, and

W(x +nTv,p) = W(x,p),

for a.e. x € €, every v € SV~! that is orthogonal to one face of Q,, every p € RM and n € N.
By Remark it follows that for p-almost every x( € €2,

@(ﬁo) — lim )\(Qy($0,€))

d,u e—0t gN-1 ’

(4.97)

where Q, (o, ) := 29+ Q. In view of Lemma [1.28] it is possible to find {7} }ren C TN with
Ty — o0 as k — 00, and {ug }reny C C(Qy, Tk) such that

o) = fim v [ N [my,uk@» ¥ rwmﬂ dy

k—o0 &
1
= lim |:TkW(Tk:L‘, vE(x)) + —|Vvk(x)|2] dx, (4.98)
k—oo Q. Tka

where vy, : Q, — R? is defined as vy(7) := uy,(Tix) and 09 (v) is defined as in Lemma [4.28]
Without loss of generality, by density, we can assume uy, € C(Q,, Tj) N L>=(TQ,; R?). Since
the choice of mollifier p € C2°(B(0,1)) is arbitrary by Lemma [4.25 we will assume here that
supp p C B(0, 3) and thus

ug (Thr) = uo,(z) i |Tpx| >

N | —
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QV(an 5)

(e

n,

). for every ¢ > 0 and k£ € N fixed,
EZ.?Tk
I

Figure 4: The construction of the recovery sequence v

we defined it as ug, in the green region and, in each yellow square of side length
rescaled version of the function wuy.

, as a

For z € RN let 7, := 7 - v and 2’ := x — x,v. Moreover, set Q' := Q, N v+,
For t € ( 1 l), extend the function 2’ +— vi (2’ + tv) to the whole v+ by periodicity, and

T 2032
define
€§Tk
2e

vff;ﬂ(m) = (4.99)

R

ET : & Tk

_Er if < tntk
“k(szszrk) o] < =5

ug () if |z, | >

The idea behind the definition of the function vff,)c is the following (see Figure : for every
fixed e > 0 and k € N we are tiling the face of A orthogonal to v with eR-rescaled copies of
the optimal profile u;. The fact that A is a A-polyhedral set and that 7}, € TN ensure that
it is possible to use the periodicity of W to estimate the energy in each cube of edge length
52}%. The presence of the factor € in localizes the function around the point zy and
accommodates the blow-up method we are using to prove the limsup inequality and, because
of periodicity, will play no essential role in the fundamental estimate .

Let m, € R, (TZN) and s, € [0,7)" be such that & = My + sp, and let

133



4.3 The case d = ¢ 4 PHASE TRANSITIONS AND HOMOGENIZATION

Note that for every € > 0 we have
lim z., =0. (4.100)

n—oo

Define the functions u, ., € H*(Q,(zo,<); RY) by

r—X
Unep(T) := vff?c ( 0 xs,n) :

We claim that there is &’(xo) such that for every 0 < e < £'(x) and any k € N

nh_)IEO ||Un,s,k - UHLI(QV(:E(),E);Rd) =0. (4101)

Since x¢ is on a face of 0*A, we can find ¢’ such that u = ug, (2 — x¢) in Q, (2o, €’). Changing

variables,

/ i () — u(a)|de
Qv (zo0,e)

vff,)c (E> —w(xo + 2+ 2. p)|d2.

= R
/(aQV—azg,n)m{z:|zy<%2Tk} €

Since the functions USL are uniformly bounded with respect to n € N, we prove our claim by

noticing that |(¢Q, —ex.,,) N{z : |z,| < 57{%}] — 0 as n — oo.
Thus, using the definition of A and (4.101]), we get

—)\(QV(ZEO’ 6)) < lim inf ]\}_1 Faf (un,e,ka Qu(x(h 5)) (4102)

EN_l n—oo &

We want to rewrite the right-hand side of (4.102)) in terms of the functions vy, ;. To do so,
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changing variables, we write

= i( nkaQu_xe,n)7

€

where in the second to last step we used the periodicity of W.
We claim that

lim sup lim sup lim sup F_g ( Uy 1> (Qu — Ten) \ Q,,) = 0. (4.103)

k—o00 e—0t n—00 5

Indeed, using Fubini’s Theorem and a change of variables, we have

fR(nk?(Q xsn)\Qu)

—W D Gw)) + V)R | d
EnTk ’ ’ €R7 ley £ nng y
v ZLe, n)\Q n
/ / w1 4T ez,
T,V |,v TV
% L=z \Q, ¥ kE:RTk/' F F 8T7LQT]€
ex’
Vvk <€RTk + 33,,1/)
Fix k € N. By (4.100)), for each ¢ > 0, let n(¢) € N be such that |x5n| < eforalln >n(e

). 1
particular, we have (Q!, —x.,)\ Q. C (1+)Q,\ Q.. Set u:* (—% %)
the functions f, ¢ : Q! — R defined by

2
] dHN (2 )dw, .

2

f&) =W (Tpa' + Thx,v), (2" + 2,v)), g(a) := ‘Vvk (a:’ + ny)
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are ), periodic. The Riemann-Lebesgue Lemma yields

lim f( e,k /)drHN 1( )

=\U| | W (Txa' + Tha,v), vi(a’ + z,v)) dHYH(2) (4.104)
Qy
and
lim [ g(us*2YdHYH(2) = |U]| Vg, (2 + z,0))* dHN (), (4.105)

for every open and bounded set U C RY. Thus we get

lim Sup]: ( Up k> (Qv — Tem) \ QV)

n—oo
ex!
T.W ((Tk BT, + Tkxl,y),vk<€§Tk + :L',,y>)
+ JE—

< lim sup/ /
oo Jo3J (14e)Q\Q)
ex’ 2
N—1/_1
Tk Vo (dka + x,,u) ]d’H (z")dx,

< |(1+6)Q,\ Q) (/ [Tkwmx,vk(x)) + %k \wk(m?] dx) |

Sending £ — 0 we obtain (4.103)).
Finally, we claim that

lim sup lim sup lim sup F_z ( (o, Ql,) = o (v). (4.106)

k—o00 e—0+ n—00 e

Recalling the definition of the functions U,(f;{ (see (4.99)) and using Fubini’s Theorem we can

€ e €nRTk
f‘ﬁ (Un,lm@u) = fﬁ 'UnJgan/ N ’$u| < 5

: €
S ’ /
2 £ ex’  ex,v ex ET,V
= | = Il W e O W e
~ BTk Jq Len gx exn eRTy  eRTy
e/ exr\|
RTZ Vvk( RT + R}')
gn k Z.:n k Z':n k

3 ex! e’
— /_1// [TkW(Tk RT, + Tyy,v, Uk(ﬁﬁTk +yyy)>

write

+

} dx'dz,,
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Thus, using (4.104) and (4.105)) (that are independent of ¢), we obtain

1
lim lim lim Fr (v, Q,) = lim (TkW(Tkx,vk(x)) + T|Vvk(x)|2) dz
k

k—o0 e—0t n—oo - k—o0 Q.

= o9 (v).
From (4.102)), (4.103)) and (4.106) we get

. . . 1
< lim sup lim sup lim sup —— F.r (Un ek Qu(xo,€))
k—oo e—0t+ n—oo & "

< o9 (V). (4.107)

In order to conclude, we use Lemma to find a sequence {Q,},en C QP such that
0% (v) = o(v) as n — oo. Using (4.107) we obtain for every n € N

and, letting n — oo we have
d\

dp
Using the Urysohn property, we conclude that if the set A := {u = a} is A-polyhedral, then
there exists a sequence {u, fneny C H'(Q;RY) with u, — u in L'(Q; R?) such that

(l’o) S O’(V).

limsup F, (u,) < Fo(u).

n—o0

Case 2. We now consider the general case of a function u € BV (€; {a, b}). Using Lemma
it is possible to find a sequence of functions {vy }reny C BV (£2;{a,b}) with the following
properties: the set Ay := {vy = a} is a A-polyhedral set and, setting A := {u = a}, we have

Jim [, = Xallzi@ =0, lim [P(A; Q) — P(4;Q)| =0.
—00 k—o00

From the result of Case 1, for every k& € N it is possible to find a sequence {uf},cy C
H(Q; R?Y) with uf — vy, as n — oo, such that

limsup Fy, (u¥) < Fo(vy).

n—oo
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Choose an increasing sequence {n(k)}ren such that, setting uy := qu(k),

1 1
g, — ul| 2 < = Fo, (uf) < Fo(vr) + T (4.108)

Recalling that the function o is upper semi-continuous on S¥~! (see Proposition 4.26)), from

Theorem and (4.108)) we get

limsup 7., (u*) < limsup Fo(vr) < Folu).

k—o0 k—o0

This concludes the proof of the limsup inequality. n

4.3.6 Continuity of ¢

To prove that the function v +— o(v) is continuous, notice that Theorem implies, in
particular, that the functional F is lower semi-continuous with respect to the L' convergence.
It then follows from [4] Theorem 5.11| that the function o, when extended 1-homogeneously
to the whole RY, is convex. Since o(v) < oo for every v € S¥~! (see Lemma [4.23), we also
deduce that o is continuous.

For the convenience of the reader, we recall here the argument used in [4, Theorem
5.11] to prove convexity. Take wvg,v1,vy € RY such that vy = v; + vo. We claim that
o(vg) < o(v1) + o(vz). Using the 1-homogeneity of o, this is equivalent to convexity. To
prove the claim, let £ := {x € Q : -1y < a}, where @ € R is such that Q \ E # 0,
QNE # 0. Consider a cube z+7rQ C Q\ E, where 2 € RY and r > 0, and a triangle T C rQ

with outer normals —*%, 2+ and 2. For n € N, let
[vol? |val |val
nN—l 1
E,:=FEU U1 (zi—{—ET) ,
1=

where the z;’s are such that z; + 27 C z +7Q and (z; + =T) N (z; + =T) # 0 if i # j. It can

be shown that xg, — Xxg, so by lower semi-continuity of F, we obtain

HY A (E)o() = Fo(xe) < limint Fol,)

=HN Y (E)o (o) + Lio(n) + o(ve) — ()],

where L > 0 is the length of the side of T" orthogonal to 1. This proves the claim.
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