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Abstract

This thesis addresses two challenging problems in the area of optimal infras-

tructure planning: continuous centralized-distributed facility location-allocation,

and power systems generation expansion planning. We focus on decomposition

approaches for solving these optimization problems in face of nonconvexities, dis-

crete decisions, integration of planning and scheduling, and optimization under

uncertainty.

Part I addresses continuous facility location-allocation problems with maxi-

mum capacity, also known as Capacitated Multi-Facility Weber Problem (CMWP).

This class of problems optimizes the 2-dimensional continuous location and allo-

cation of facilities based on their maximum capacity and the given coordinates

of the suppliers and customers. We propose an extended version of the classic

CMWP with fixed costs, multiple types of facilities and two sets of fixed points

(suppliers and consumers), and formulate it as a nonconvex Generalized Disjunc-

tive Programming model. We propose a Bilevel Decomposition algorithm and,

based on the bounding properties of the subproblems, we prove its ε-convergence.

We benchmark our Bilevel Decomposition against commercial global optimiza-

tion solvers and the results show that our method is more effective at finding

global optimal solutions. We then address the design and planning of manufac-

turing networks considering the option of centralized and distributed facilities,

which is formulated as a multi-period version of our previous CMWP. To handle

this added complexity, we propose an accelerated version of the Bilevel Decom-

position with additional steps to reduce the feasible space. We benchmark the

performance of the Accelerated Bilevel Decomposition algorithm against the orig-

inal Bilevel Decomposition and the commercial global solvers and show that the

accelerated algorithm outperforms the other options. Additionally, we illustrate

the applicability of the proposed model and solution framework with a case study

for a biomass supply chain.
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Part II addresses generation expansion planning problems in power systems.

We start by investigating the impact of including operational and temporal details

in a Generation Expansion Planning framework. This preliminary analysis shows

that time-slice approaches tend to overestimate solar capacity and underestimate

wind and natural gas capacity if compared to chronological hourly approaches.

It also reveals that the latter consistently leads to lower unmet demand, implying

the need for sufficient temporal resolution and chronology. Therefore, motivated

by these results, we propose a deterministic Mixed-Integer Linear Programming

(MILP) formulation for long-term planning of electric power infrastructure by

simultaneously considering annual investment decisions and hourly operational

decisions. We adopt judicious approximations and aggregations to improve its

tractability and, to overcome computational challenges, we propose a decompo-

sition algorithm based on Nested Benders Decomposition for multi-period MILP

problems. Our decomposition adapts previous nested Benders methods by han-

dling integer and continuous state variables. We apply the proposed modeling

framework to a case study in the Electric Reliability Council of Texas (ER-

COT) region, and demonstrate large computational savings from our decomposi-

tion. We then extend the proposed deterministic model to Multistage Stochastic

Mixed-integer Programming in order to handle uncertainties. To be able to solve

such large-scale model, we decompose the problem using Stochastic Dual Dy-

namic Integer Programming (SDDiP), and take advantage of parallel processing

to solve it more efficiently. The proposed framework is also applied to a case

study in the ERCOT region, and we show that the parallelized SDDiP algorithm

allows the solution of instances with quadrillions of variables and constraints.

This thesis makes several contributions both in modeling and algorithms. It

addresses challenging practical problems and showcases the benefits of problem-

specific and structure-specific decomposition approaches to solve complex discrete

optimization problems.
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Chapter 1

Introduction

This thesis addresses two challenging problems in the area of optimal infrastructure plan-

ning: continuous facility location-allocation (Part I), and power systems generation expan-

sion planning (Part II). We focus on decomposition approaches for solving these optimization

problems in face of one or more of the following complicating factors: nonconvexities, discrete

decisions, integration of planning and scheduling, and optimization under uncertainty.

The detailed list of objectives for the two classes of problems is as follows:

I. Continuous facility location-allocation design and planning:

• Extend the Capacitated Multi-facility Weber Problem (CMWP), i.e., 2-dimensional

continuous facility location-allocation problem with maximum capacity, to con-

sider fixed costs, multiple types of facilities, and two sets of fixed points rep-

resenting suppliers and consumers. The problem is formulated as a nonconvex

Generalized Disjunctive Programming (GDP).

• Propose a Bilevel Decomposition algorithm for the extended CMWP that con-

verges to the global optimum within an ε-tolerance in a finite number of iterations.

• Propose a general framework to systematically address the optimal multi-period

design and planning of centralized and distributed manufacturing networks as

a 2-dimensional continuous facility location-allocation problem with maximum

capacity.
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• Propose an accelerated version of the Bilevel Decomposition algorithm that keeps

its rigor (i.e., its ε-convergence), but has a better performance to allow the solution

of large-scale multi-period instances within a reasonable amount of time.

II. Electric power infrastructure planning:

• Propose a deterministic Mixed-integer Linear Programming (MILP) model involv-

ing multi-scale spatial and temporal strategies to address generation expansion

planning with hourly operating details.

• Propose a valid Nested Decomposition algorithm to solve large-scale multi-period

MILP models with mixed-integer recourse.

• Extend the deterministic formulation of the generation expansion planning with

hourly operating details to Multistage Stochastic Mixed-integer Linear Program-

ming to be able to handle strategic and operational uncertainties, and solve it

efficiently with a parallel version of the Stochastic Dual Dynamic integer Pro-

gramming (SDDiP) algorithm.

This chapter contains a review of the basic concepts that are dealt with in the rest of the

thesis. We start by giving an overview of the applications covered in this thesis (Section 1.1):

(i) Section 1.1.1 provides motivation and review of the area of centralized and distributed

manufacturing networks; (ii) Section 1.1.2 provides a brief review of the research efforts in

continuous facility location-allocation problems, focusing on the variant of this problem with

maximum capacity; and (iii) Section 1.1.3 provides a brief literature review of contributions

in the area of power systems generation expansion planning, including modeling and solution

efforts for both deterministic and stochastic formulations.

Section 1.2 reviews the main modeling frameworks and solution strategies used through-

out this thesis: Section 1.2.1 provides a brief overview of Generalized Disjunctive Program-

ming (GDP), which is the modeling framework used in Part I of this thesis; Section 1.2.2

reviews fundamental concepts in Stochastic Programming (SP), which is the modeling frame-

work used in Chapter 6; and Section 1.2.3 reviews decomposition methods for mathematical

optimization, focusing on Lagrangean Decomposition, Benders Decomposition, and Nested
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Benders Decomposition, which serve as basis for the solution strategies introduced in this

thesis. This introductory chapter ends with a brief overview of the remaining chapters of

the thesis (Section 1.3).

1.1 Applications in optimal infrastructure planning

1.1.1 Centralized and distributed manufacturing networks

Advances in technology have led to the rethinking of traditional manufacturing. In the

past few decades, public and private initiatives have been sponsoring research on smaller-

scale and cleaner manufacturing processes. The F3 Factory Project was launched in 2009

to enhance the competitiveness of the European chemical industry by promoting modular

continuous plants with small and medium scale production (Bieringer et al., 2013). Likewise,

the U.S. Advanced Manufacturing National Program Office (AMNPO) has brought together

corporations, federal agencies, and universities to advance manufacturing technologies by

investing in areas such as High Efficiency Modular Chemical Processes (HEMCP), Additive

Manufacturing (3D printing), and Process Intensification (Ozokwelu, 2014).

Modular plants consist of manufacturing sites with their major equipment pieces in stan-

dardized modules instead of having customized site-specific design (Chen and Grossmann,

2019). Their potential advantages include higher flexibility, faster time-to-market, and im-

proved safety (Roy, 2017). This concept is not new (Rogers and Bottaci, 1997), but combined

with distributed manufacturing and the recent advances in process intensification (Moulijn

et al., 2008), it can be a viable and beneficial alternative to traditional large-scale manufac-

turing.

The concept of Distributed Manufacturing - a geographically distributed network of facil-

ities - has arisen as a promising option for supply-chain networks in which the transportation

costs and infrastructure are the main bottlenecks (e.g., biomass (You and Wang, 2011), elec-

tric power, and shale gas) (Lara and Grossmann, 2016). However, despite the potential

advantages of having distributed facilities, conventional large-scale centralized manufactur-
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ing can be more cost-effective due to economies of scale. Therefore, there is a need for a

general optimization framework that can support the selection of centralized and distributed

facilities taking into account the potential trade-offs (Lara and Grossmann, 2016).

We address the design and planning of manufacturing networks considering the selec-

tion and location in the continuous 2-dimensional space of centralized and/or distributed

manufacturing facilities. The problem is formulated as a version of the continuous facility

location-allocation problem with limited capacity.

1.1.2 Continuous Facility Location-Allocation Problem

The continuous facility location-allocation problem, also known as the Weber problem,

has as its main objective to determine the locations in continuous 2-dimensional space for

opening new facilities that are connected to supply and customer nodes, and the allocation

of the material flows in this network, while minimizing the overall costs (Brimberg et al.,

2008).

The Weber problem was named after Alfred Weber (Weber and Friedrich, 1929), whose

work is considered to have established the foundations of modern location theories. In his

first problem, he considers one facility to be located based on two suppliers and one customer,

when these three points are not collinear (Weber and Friedrich, 1929; Khun and Kuenne,

1962). The basic model assumes Euclidean distances, but other distance functions such as

Manhattan (or `1) norm and `p norm have also been used depending on the application and

region where the transportation is considered. Advances in the continuous facility location-

allocation with unlimited capacity can be found in the survey by Brimberg et al. (2008).

The capacitated version of the Weber problem, known as Capacitated Multi-facility We-

ber problem (CMWP), considers that the facilities to be installed have a maximum capacity.

As shown by Sherali and Nordai (1988), this class of problems is NP-hard even if all the fixed

points are located on a straight line. The general formulation for a CMWP is as follows.

min
∑
k∈K

∑
j∈J

ck,j · fk,j ·
{

(xk − xj)2 + (yk − yj)2
}1/2 (1.1a)
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s.t.
∑
j

fk,j = mck ∀ k ∈ K (1.1b)

∑
k

fk,j = dj ∀ j ∈ J (1.1c)

fk,j ≥ 0 ∀ k ∈ K, j ∈ J (1.1d)

xk, yk ≥ 0 ∀ k ∈ K (1.1e)

where k is the index of the facilities to be located, j is the index of customers, (xj, yj) are

the fixed coordinates of the customer j, mck is the capacity of facility k, dj is the demand

of customer j, and ck,j is the cost of unit flow per unit distance from facility k to customer

j. The decision variables are: (xk, yk), which represent the coordinates of a new facility k;

and fk,j, which is the material flow between facility k to customer j.

Cooper (1972) was the first to attempt solving this type of location-allocation problem.

He proposes exact and approximate solution methods based on the property that an optimal

allocation occurs at the extreme point of the transportation polytope, while the optimal

set of locations lies in the convex hull of the locations of the existing facilities. His exact

formulation requires the explicit enumeration of the extreme points of the transportation

polytope, limiting its application to small problems. Cooper’s heuristic approach, known

as the Alternating Transportation-Location (ATL) method, exploits the structure of the

problem by alternating the solution of the transportation and allocation problems until

convergence is achieved, but there is no guarantee of global optimality. Cooper (1975, 1976)

further develops the ATL heuristic, extending it to CMWP with fixed charges.

Sherali and Shetty (1977) develop a cutting plane algorithm for the rectilinear distance

location-allocation problem. Sherali and Tuncbilek (1992) propose a branch-and-bound al-

gorithm for the squared-Euclidean distance location-allocation problem. Sherali et al. (2002)

develop a branch-and-bound algorithm based on the partitioning of the allocation space that

finitely converges to a global optimum within a tolerance. Chen et al. (2011) reformulate

the problem as a sequence of nonlinear second order conic problems, and applied the semi-

smooth Newton method to solve it. Akyuz et al. (2018) propose two branch-and-bound
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algorithms for solving exactly the multi-commodity CMWP: one based on partitioning the

allocation space, and the other one considers partitioning of the location space. Besides

the exact methods, there are several heuristics developed for this class of problem (Brimberg

et al., 2008; Aras et al., 2007; Akyuz et al., 2012; Luis et al., 2015, 2016; Akyuz, 2017; Irawan

et al., 2018).

1.1.3 Electric Power Infrastructure Planning

Changes in electricity demand, together with the wear-and-tear and retirement of old

power plants, and the advances in the technology pool for electricity generation and stor-

age, make it necessary to expand or adapt the electric power infrastructure. Generation

Expansion Planning (GEP) models can be used to support the decision-making process in

the power sector considering multiple energy sources (e.g., coal, natural gas, wind, solar),

as well as to study the impact of new technology developments, resource cost trends, and

policy shifts (e.g. carbon tax, and minimum renewable generation quota) (Sadeghi et al.,

2017; Koltsaklis and Dagoumas, 2018; Babatunde et al., 2018; Gacitua et al., 2018).

Although transmission expansion is not considered in this work, it is important to be

aware of its impact on long-term planning decisions, and thus we discuss it here. Tradi-

tionally, generation and transmission expansion are modeled separately: the generation is

planned first and the transmission network is designed to meet this supply (e.g., Zhu and

Chow (1997); Bahiense et al. (2001); Latorre et al. (2003); Alguacil et al. (2003); Bakirtzis

et al. (2012)). Their simultaneous optimization is, however, a better way of capturing the

trade-offs between investing in local generation or transmission from remote supplies (Kr-

ishnan et al., 2016). We recognize the potential benefits of co-optimizing transmission and

generation expansion and that this co-optimized problem is important, especially in the con-

text of high insertion of renewables (Krishnan et al., 2016). However, since these decisions

are typically made independently of one another (Munoz et al., 2012), we chose to pursue

the generation expansion side only, as has been done by many authors.

There is growing interest to use planning models to study scenarios with increasing pen-
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etration of solar and wind generation (MacDonald et al., 2016). Historically, since power

systems were dominated by dispatchable thermal resources, planning models could ignore

short-term operating constraints and have longer time periods without impacting much the

quality of the results. Therefore, many GEP models (e.g. Regional energy deployment sys-

tem (ReEDS) (Short et al., 2011), Integrated Planning Model (IPM) (EPA, 2015), US RE-

GEN (EPRI, 2015)) approximate annual grid operations by using representative “time slices”

to capture the average trends in load, wind and solar power output throughout the day and

across seasons. Several widely-used multi-sector energy-economic models (e.g. NEMS (EIA,

2016)) and integrated assessment models (e.g. GCAM (Muratori et al., 2016)) also use this

temporal representation to model power sector operation.

However, in a system deriving a large proportion of generation from intermittent re-

sources, multiple analyses have indicated that such approximations may not be sufficient

to represent the significant variability in renewable energy generation observed at hourly or

sub-hourly time-scales (NERC, 2009; Albadi and El-Saadany, 2010; Lannoye et al., 2011;

Nahmmacher et al., 2016b; Bistline et al., 2017; Deane et al., 2012), making it critical to

consider hourly or sub-hourly operational decisions to assess the flexibility of the system

(e.g., NERC (2009); Albadi and El-Saadany (2010); Lannoye et al. (2011)). Only then it is

possible to rigorously assess the trade-offs between long-term investment decisions and short-

term operating decisions. Accordingly, several papers have studied the impact of including

operating constraints such as unit commitment, ramping limits and operating reserves in

long term planning models (e.g., Shortt and O’Malley (2010); Ding and Somani (2010);

Palmintier and Webster (2011); Pina et al. (2013); Mai et al. (2013); Palmintier and Web-

ster (2014); Poncelet et al. (2014); Koltsaklis and Georgiadis (2015); Levin and Botterud

(2015); Flores-Quiroz et al. (2016); de Sisternes et al. (2016); Heuberger et al. (2017); Oree

et al. (2017); Mallapragada et al. (2018)).

Energy storage can play an important role in the future of renewable generation as they

can smooth out the variability of wind and solar power output. A range of stationary,

large-scale energy storage technologies are under development and, according to projec-
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tions (Schmidt et al., 2017), they will significantly decrease their capital cost in the next few

decades. Liu et al. (2017) consider a generic energy storage technology in their GEP model,

which was represented as a multistage stochastic linear programming model, and applied it

to a case-study in the Electric Reliability Council of Texas (ERCOT) region.

Power systems are subject to a variety of systematic uncertainties such as fuel prices,

load demand, renewable generation, disruptive technologies, and future policies. However,

because of the computational expense of combining uncertainty with a complete representa-

tion of the grid, and integrating detailed operating decisions with investment decisions over

long planning horizons, most of the available commercial tools (Loulou et al., 2004, 2005;

Short et al., 2011; EPRI, 2013; Diamant, 2017) and academic models (Ding and Somani,

2010; Short et al., 2011; Pina et al., 2013; Koltsaklis and Georgiadis, 2015; Flores-Quiroz

et al., 2016; Heuberger et al., 2017; Lara et al., 2018a) are deterministic. The body of lit-

erature that addresses GEP optimization problem under uncertainty can be classified into

two fundamental approaches for capturing uncertainty: Robust Optimization and Stochastic

Programming.

The main idea behind Robust Optimization (RO) is to guarantee feasibility over a spec-

ified uncertainty set by modeling uncertain variables using bounds (Bertsimas and Sim,

2004). In general, this means that the computational burden of RO is much lower than that

of stochastic programming. However, RO predicts more conservative results compared to

the latter (Grossmann et al., 2016). Malcolm and Zenios (1994) were the first to propose

a RO model for power systems capacity planning. Since then, other authors have explored

GEP formulations in the context of RO (Mulvey and Ruszczyński, 1995; Chen et al., 2012;

Li et al., 2014; Li, 2014). More recently, Adjustable Robust Optimization (ARO) has risen

to prominence as an alternative to classic RO. ARO introduces recourse into the traditional

RO formulation, allowing the model to respond to some uncertainty and generate less con-

servative solutions (Ben-Tal et al., 2004; Zhang et al., 2016). Some of the papers addressing

GEP with ARO are Mejia-Giraldo (2013); Mejía-Giraldo and McCalley (2014); Moreira et al.

(2017); Baringo and Baringo (2018).
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Stochastic Programming (SP) is the most popular modeling framework for GEP problems

under uncertainty. SP tends to be more appropriate for long-term production planning and

strategic design decisions because it allows recourse decisions in the future to adapt to how

the uncertainties are revealed (Grossmann et al., 2016). Thus, it is less conservative than

RO. SP assumes uncertain data are random variables with known probability distributions

and uses sampled values from this distribution to build a scenario tree and optimize over

the expectation (Birge and Louveaux, 2011). As a downside, the solution is dependent on

the accuracy of the assumed probability distributions of the uncertain parameters. However,

there is mathematical theory and computational evidence that solutions obtained from SP are

often stable with respect to changes in input probability distributions (Rachev and Römisch,

2002).

SP models can be formulated as two-stage and multistage problems. A typical two-

stage stochastic GEP model considers as first-stage here-and-now decisions the investment

decision over the entire planning horizon, which is made before the uncertainty realization.

In this context, the second-stage wait-and-see decisions are the operational decisions, which

are fully adaptive to the uncertainty realization. Some of the GEP literature that formulates

the problem as two-stage stochastic programming includes: Dentcheva and Römisch (1998);

Albornoz et al. (2004); Lopez et al. (2007); Jin et al. (2011); Wogrin et al. (2011); O’Neill

et al. (2013); Gandulfo et al. (2014); Jin et al. (2014); Munoz and Watson (2015); Gil et al.

(2015).

Multistage stochastic programming GEP models allow recourse between investment de-

cisions in each stage, hence, they are also fully adaptive to the uncertainty realization. Park

and Baldick (2016) propose a multistage stochastic mixed-integer program to solve GEP

under load and wind availability uncertainty, and solve the model using a rolling-horizon.

Zhan et al. (2017) propose a multistage stochastic programming model with endogenous

uncertainty for GEPs with large amounts of wind power, and introduce a quasi-exact solu-

tion approach to reformulate the model as a mixed-integer linear programming model. Liu

et al. (2018) propose a multistage linear stochastic GEP model that captures both large-scale

9



Chapter 1. Introduction

uncertainties (e.g., investment, fuel-cost demand-growth rate uncertainty), and small-scale

uncertainties (e.g., hourly demand and renewable generation uncertainty), and use progres-

sive hedging algorithm to decompose the model by scenario and reduce computation times.

Zou et al. (2018a) propose a partially adaptive stochastic mixed-integer optimization model

in which the capacity expansion is fully adaptive to uncertainty up to a certain period and

follows a two-stage approach thereafter, and propose an approximation algorithm to solve

their model efficiently.

As mentioned before, even deterministic GEP models can pose significant computational

challenges as the temporal and spatial scale resolution are increased (Lara et al., 2018a).

The added complexity of handling uncertainty greatly intensifies this challenge, especially

for multistage stochastic programming formulations as the scenario tree grows exponentially

with the number of stages. Therefore, significant research has been devoted to the devel-

opment of decomposition techniques to allow the solution of these problems in an efficient

matter.

The most popular decomposition methods applied to multistage stochastic programming

problems can be classified as scenario-based (e.g., Lagrangean Decomposition (Gupta and

Grossmann, 2014), Dual Decomposition (Carøe and Schultz, 1999; Kim and Zavala, 2018),

Augmented Lagrangean Mulvey and Ruszczyński (1995) and Progressive Hedging (Watson

and Woodruff, 2011)), and stage-based decomposition (e.g., Nested Benders Decomposi-

tion (Birge, 1985), Stochastic Dual Dynamic Programming (SDDP) (Pereira and Pinto,

1991), Stochastic Dual Dynamic integer Programming (SDDiP)(Zou et al., 2018b)). Both

categories have guaranteed finite convergence for Linear Programming (LP) formulations.

However, for the case of Mixed-integer Linear Programming (MILP) formulations they can

provide bounds to the optimal solution, but generally do not have guaranteed finite conver-

gence.

Scenario-based decomposition often utilizes the framework of Lagrangean decomposition

to decompose the problem into scenarios by dualizing the nonanticipativity constraints. Ex-

amples of GEP decompositions that fit within this category are: Jin et al. (2011); Munoz

10
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and Watson (2015); Liu et al. (2018). Stage-based decomposition decomposes the model by

nodes in the scenario tree, and are usually based on Benders decomposition. Stage-based

algorithms have smaller subproblems and are more suitable for models in which the solution

of a single scenario is already computationally very demanding. SDDP has been widely used

in the context of optimal scheduling of hydrothermal generating systems (Pereira and Pinto,

1985, 1991; Rebennack et al., 2012; Thome et al., 2013). Regarding GEP problems, both

Nested Decomposition and SDDP have been used in combination with Benders decomposi-

tion for two-stage stochastic programming models in which the operational subproblems are

challenging (Gorenstin et al., 1993; Rebennack, 2014). SDDiP (Zou et al., 2018b), which is

an extension of SDDP to multistage integer programming models, is a promising technique

to solve multistage stochastic integer programming models that has great potential for GEP

models with operating details on an hourly basis.

1.2 Modeling frameworks and solution strategies

1.2.1 Generalized Disjunctive Programming (GDP)

Generalized disjunctive programming (GDP) is an extension of the disjunctive program-

ming paradigm developed by Balas (1979). The GDP formulation involves algebraic equa-

tions, disjunctions and logic propositions in the formulation of a model, and makes the for-

mulation process more intuitive and systematic, while retaining in the model the underlying

logic structure of the problem (Grossmann and Trespalacios, 2013).

The general GDP formulation can be represented as follows:

min f(x) (1.2a)

s.t. g(x) ≤ 0 (1.2b)

∨
i∈Dk

 Yki

rki(x) ≤ 0

 k ∈ K (1.2c)

Y
i∈Dk

Yki k ∈ K (1.2d)
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Ω(Y ) = True (1.2e)

xlo ≤ x ≤ xup (1.2f)

x ∈ Rn (1.2g)

Yki ∈ {True, False} k ∈ K, i ∈ Dk (1.2h)

The objective function (1.2a), which is a function of the continuous variables x ∈ Rn,

is subjected to a set of global constraints (1.2b) (i.e. constraints that must be satisfied

regardless of the discrete decisions). The formulation involves disjunctions (1.2c), each of

which contains disjunctive terms i ∈ Dk. The disjunctive terms in each disjunction are linked

together by an ”or” operator (∨). A Boolean variable Yki and a set of constraints rki(x) ≤ 0

are assigned to each disjunctive term. Exactly one disjunctive term in each disjunction

must be enforced, as imposed by constraint (1.2d). A Boolean variable takes a value of

True (Yki = True) when a disjunctive term is active, and the corresponding constraints

(rki(x) ≤ 0) are enforced. When a term is not active (Yki = False), its corresponding

constraints are ignored. The logic constraints (1.2e) represent the relations between the

Boolean variables in propositional logic. Note that if there are equality constraints g(x) = 0,

they can be represented by g(x) ≤ 0 and −g(x) ≤ 0.

GDP problems are typically reformulated as MILP/MINLP by using either the Big-M or

Hull Reformulation (Wolsey and Nemhauser, 2014; Lee and Grossmann, 2000). The Big-M

reformulation generates a smaller MINLP (i.e. less variables and constraints), while the Hull

Reformulation provides a tighter formulation (Grossmann and Lee, 2003) since it represents

the intersection of the convex hulls of each disjunction.

The Big-M reformulation is as follows:

min f(x) (1.3a)

s.t. g(x) ≤ 0 (1.3b)

rki(x) ≤Mki(1− yki) k ∈ K, i ∈ Dk (1.3c)∑
i∈Dk

yki = 1 k ∈ K (1.3d)
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Hy ≥ h (1.3e)

xlo ≤ x ≤ xup (1.3f)

x ∈ Rn (1.3g)

yki ∈ {0, 1} k ∈ K, i ∈ Dk (1.3h)

In (1.3) the Boolean variables Yki are transformed into binary variables yki: Yki = True

is equivalent to yki = 1 and Yki = False is equivalent to yki = 0. Constraint (1.3d) enforces

that exactly one disjunctive term is selected per disjunction. The transformation of logic

constraints Ω(Y ) = True to integer linear constraints (1.3e) is easily obtained (Williams,

2013; Grossmann and Trespalacios, 2013). For an active term, the corresponding constraints

rki(x) ≤ 0 are enforced. For a term that is not active (yki = 0) and a large enough Mki, the

corresponding constraints rki(x) ≤Mki become redundant.

The Hull Reformulation (Grossmann and Trespalacios, 2013) is given as follows:

min f(x) (1.4a)

s.t. g(x) ≤ 0 (1.4b)

x =
∑
i∈Dk

νki k ∈ K (1.4c)

ykirki(ν
ki/yki) ≤ 0 k ∈ K, i ∈ Dk (1.4d)∑

i∈Dk

yki = 1 k ∈ K (1.4e)

Hy ≥ h (1.4f)

xloyki ≤ νki ≤ xupyki k ∈ K, i ∈ Dk (1.4g)

x ∈ Rn (1.4h)

νki ∈ Rn k ∈ K, i ∈ Dk (1.4i)

yki ∈ {0, 1} k ∈ K, i ∈ Dk (1.4j)

In the Hull Reformulation, similarly to Big-M, the Boolean variables Yki are transformed

into 0-1 variables yki, Ω(Y ) = True is transformed into (1.4f), and (1.4e) enforces that only

one disjunctive term is selected per disjunction. In the Hull Reformulation, the continuous
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variables x are disaggregated into variables νki, for each disjunctive term i ∈ Dk in each

disjunction k ∈ K. The constraint (1.4g) enforces that when a term is active (yki = 1),

the corresponding disaggregated variables lie within their bounds. When it is not selected,

they take a value of zero. The constraint (1.4c) enforces that the original variables x have

the same value as the disaggregated variables of the active terms. The functions in the

constraints of a disjunctive term (rki(x) ≤ 0) are represented by the perspective function

ykirki(ν
ki/yki) (Ceria and Soares, 1999) in constraint (1.4d). When a term is active (yki = 1)

the constraint is enforced for the disaggregated variable (rki(νki) ≤ 0). When it is not active

(yki = 0), the constraint is trivially satisfied (0 ≤ 0). When the constraints in the disjunction

are linear (Akix ≤ aki), the perspective function becomes Akiνki ≤ akiyki, which is a well-

known representation in disjunctive programming (Balas, 1985). To avoid singularities in

the perspective function, the following approximation can be used(Sawaya, 2006):

ykirki(ν
ki/yki) ≈ ((1− ε)yki + ε)rki

(
νki

(1− ε)yki + ε

)
− εrki(0)(1− yki) (1.5)

where ε is a small finite number (e.g. 10−5). This approximation yields an exact value at

yki = 0 and yki = 1 irrespective of the value of ε, and is convex if rki is convex.

Figure 1.1: Illustration of Big-M (BM) and Hull Relaxation (HR) reformulations (Trespalacios,
2015)

Figure 1.1 illustrates the projection over x1 and x2 of the feasible region defined by two

disjunctions for both reformulations (Trespalacios, 2015). The first disjunction represents
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the selection of rectangle A1 or rectangle A2, and the second one the selection of circle B1 or

circle B2. The dashed region defines the feasible region, and the shaded area represents the

continuous relaxation of the Big-M and Hull Relaxation. It is clear that the Hull Relaxation

has a tighter relaxation than the Big-M.

1.2.2 Stochastic Programming

Optimization under uncertainty, also known as Stochastic Optimization, is an umbrella

term that includes multiple communities, using different modeling styles, notation systems,

and solution approaches (e.g., stochastic programming, robust optimization, decision trees,

stochastic search, optimal control, Markov decision processes, approximate/adaptive/neuro-

dynamic programming, reinforcement learning, model predictive control, simulation opti-

mization) - the "jungle of stochastic optimization" (Powell, 2014). In this thesis we focus

on the special case of Stochastic Programming (SP) and follow the same notation as this

community.

The field of SP evolved from deterministic linear programming with the introduction of

uncertain data as random variables with known probability distribution. In SP, the nature

of the decisions is related to the knowledge of the realization of the uncertainty at a given

stage in the decision-making process. Decisions are classified as here-and-now, when they

are taken before the realization of the uncertainty, and wait-and-see, when taken after the

values of the uncertain parameters (random variables) are revealed (i.e., recourse actions).

The classical two-stage stochastic linear programming formulation (Dantzig, 1955; Beale,

1955) is given as follows:

min cᵀx+ Eξ [min q(ω)ᵀy(ω)] (1.6a)

s.t. Ax = b (1.6b)

T (ω)x+Wy(ω) = h(ω) ∀ω ∈ Ω (1.6c)

x ≥ 0, y(ω) ≥ 0 ∀ω ∈ Ω (1.6d)
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where the first-stage decisions are represented by x. In the second stage, a number of random

values ω ∈ Ω may realize and, for a given realization ω, the second-stage problem data q(ω),

h(ω) and T (ω) become known. Each component of q, T , and h is thus a possible random

variable, and piecing together the stochastic components of the second-stage data, we obtain

ξ(ω) (Birge and Louveaux, 2011).

The objective function (1.6a) contains a deterministic term cᵀx and the expectation of

the second-stage objective, q(ω)ᵀy(ω), taken over all realizations of the random event ω.

Therefore, in this second-stage objective term, for each ω the value y(ω) is the solution of

a linear program. To emphasize this fact, the SP formulation can be represented by its

deterministic equivalent program. For a given realization ω, the second-stage value function

is defined as follows:

Q(x, ξ(ω)) =

{
min
y
q(ω)ᵀy : Wy = h(ω)− T (ω)x, y ≥ 0

}
(1.7)

Hence, the expected second-stage value function is

Q(x) = EξQ(x, ξ(ω)) (1.8)

and the deterministic equivalent of problem (1.6) is defined as follows:

min
x≥0
{cᵀx+Q(x) : Ax = b} (1.9)

The general formulation of a two-stage integer program is very similar to the two-stage

linear program (1.6). The only difference is that x ≥ 0, y(ω) ≥ 0 is replaced by x ∈

X, y(ω) ∈ Y and X and/or Y contains some integrality or binary restrictions on x and/or

y. However, if the integrality restrictions are present in the second stage, i.e., if the SP has

mixed-integer recourse, the SP is much harder to solve because the expected recourse function

Q(x) is, in general, lower semicontinuous, nonconvex and discontinuous (see Proposition 20

of Birge and Louveaux (2011)).

This two-stage decision-making process can be generalized to account for multiple stages.
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Multistage stochastic programming models allow recourse between decisions in each stage.

Hence, they are also fully adaptive to the uncertainty realization. The general multistage

stochastic programming formulation is given as follows (Birge and Louveaux, 2011):

min c1x1 + Eξ2 [min c2(ω)x2(ω2) + ...+ EξH [min cH(ω)xH(ωH)]...] (1.10a)

s.t. W1x1 = h1 (1.10b)

T1(ω2)x1 +W2x2(ω2) = h2(ω) (1.10c)

... (1.10d)

TH−1(ωH)xH−1(ωH−1) +WHxH(ωH) = hH(ω) (1.10e)

x1 ∈ X1;xt(ωt) ∈ Xt, t = 2, ..., H; (1.10f)

The deterministic equivalent of the general multi-stage stochastic programming is then

defined as follows (Birge and Louveaux, 2011):

min
x∈X1

{c1x1 +Q2(x1) : W1x1 = h1} (1.11)

where the expected value function for stage t+ 1 is given by:

Qt+1(xt) = Eξt+1 [Qt+1(xt, ξt+1(ω))] (1.12)

for all t to obtain the recursion for t = 2, ..., H − 1,

Qt(xt−1, ξt(ω)) =

{
min

x(ω)∈Xt
ct(ω)xt(ω) +Qt+1(xt) : Wtxt(ω) = ht(ω)− Tt−1(ω)xt−1

}
(1.13)

For terminal conditions t = H, we have:

QH(xH−1, ξH(ω)) =

{
min

x(ω)∈XH
cH(ω)xH(ω) : WHxH(ω) = hH(ω)− TH−1(ω)xH−1

}
(1.14)

When we have a finite number of possible realizations of the future outcomes, the set of

possible future sequences of outcomes are called scenarios. The description of scenarios is
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often made on a scenario trees such as that in Figure 1.2. These problems become extremely

large as the number of stages increases, even if only a few realizations are allowed in each

stage, as the scenario tree grows exponentially with the number of stages.

Figure 1.2: Illustration of a scenario tree with 3 stages and 3 realizations per stage

1.2.3 Decomposition methods for mathematical optimization

To take advantage of special structures in the formulation of an optimization problem,

it may be desirable to use a decomposition algorithm. Decomposition methods can be:

• ad hoc, i.e. created for a particular problem to take advantage of its specific properties

(which is the case of the Bilevel Decomposition and Accelerated Bilevel Decomposition

proposed in Part I of this thesis).

• general, i.e. to target a class of problems with similar structures (which is the case

of the Nested Decomposition algorithm and Stochastic Dual Dynamic Programming

introduced in Part II of this thesis).

Regarding the general decomposition algorithms, they can be classified according to their

structure into complicating constraints methods and complicating variable methods (Conejo
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et al., 2006), as shown in the Figure 1.3. Note that complicating constraints involve variables

from different blocks, and complicating variables link constraints pertaining to different

blocks.

Figure 1.3: Schematic of the set of constraints of a decomposable optimization problem with com-
plicating (a) constraints and (b) variables (Calfa, 2015).

If the constraints can be partitioned into a set of easily decomposable constraints and

complicating constraints, a Lagrangean or a Dantzig-Wolfe algorithms may be appropriate.

On the other hand, if the variables can be partitioned into easily decomposable variables and

complicating variables, Benders Decomposition may be the most suitable approach (Conforti

et al., 2014).

The remainder of this section gives an overview of Lagrangean Decomposition, Benders

Decomposition, and Nested Benders Decomposition, which served as basis for the the general

decomposition algorithms presented by this thesis.

Lagrangean Decomposition

Consider the following MILP formulation:

Φ = max cx (1.15a)

s.t. Ax ≤ b ← λ ≥ 0 (1.15b)

Dx ≤ e (1.15c)

x ∈ Zn+ (1.15d)

19



Chapter 1. Introduction

where (1.15b) are complicating constraints, and λ ≥ 0 are the Lagrange multipliers of the

complicating constraints (1.15b). The Lagrangian relaxation (Geoffrion, 1974) of the MILP

problem (1.15) is given by:

ΦLR(λ) = max cx− λ(b− Ax) (1.16a)

s.t. Dx ≤ e (1.16b)

x ∈ Zn+ (1.16c)

and yields upper bounds to the original MILP problem (1.15), ΦLR(λ) ≥ Φ.

The Lagrangean Dual is given by the following min-max problem:

ΦDual =
{

min
λ

ΦLR(λ) : λ ≥ 0
}

(1.17a)

=
{

min
λ

max
x

x− λ(b− Ax) : Dx ≤ e;λ ≥ 0;x ∈ Zn+
}

(1.17b)

where the minimization of the Lagrange multipliers is often obtained by using the subgradient

method (Fisher, 2004).

Lagrangean Decomposition is a special case of Lagrangean Relaxation in which we define a

different set of variables for each set of constraints (i.e., easily decomposable and complicating

constraints), and (1.18d) becomes the new complicating constraints.

Φ = max cx (1.18a)

s.t. Ax ≤ b (1.18b)

Dy ≤ e (1.18c)

x = y ← λ ∈ Rn (1.18d)

x, y ∈ Zn+ (1.18e)

where λ ∈ Rn are the Lagrange multipliers of constraint (1.18d).

The Lagrangean relaxation of (1.18) trivially decomposes into subproblems:
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ΦLR
1 (λ) = max (c− λ)x ΦLR

2 (λ) = max λy (1.19a)

s.t. Ax ≤ b s.t. Dy ≤ e (1.19b)

x ∈ Zn+ y ∈ Zn+ (1.19c)

and the Lagrangean Dual is given by the following minimization:

ΦLD =
{

min
λ

(
ΦLR

1 (λ) + ΦLR
2 (λ)

)
: λ ∈ Rn

}
(1.20)

The bound predicted by the Lagrangean decomposition is at least as tight as the one provided

by Lagrangean Relaxation (Guignard and Kim, 1987), ΦLR(λ) ≥ ΦDual ≥ ΦLD ≥ Φ.

Benders Decomposition

The Benders Decomposition was proposed by Benders (1962), with the main objective

of tackling problems with complicating variables, which, when temporarily fixed, yield a

problem significantly easier to handle.

Consider the following MILP formulation:

Φ = max fᵀy + cᵀx (1.21a)

s.t. Ax = b (1.21b)

By +Dx = d (1.21c)

x ≥ 0 (1.21d)

y ∈ Zn+ (1.21e)

where y are the complicating variables. Model (1.21) can be re-expressed as:

Φ = min
ŷ∈Y

fᵀŷ + min
x≥0
{cᵀx : Dx = d−Bŷ} (1.22)

where ŷ is a given value for the complicating variables, which belongs to the set Y = {y|Ay =

b, y ∈ Zn+}.
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Based on duality theory, the primal and dual formulations can be interchanged (Rahma-

niani et al., 2016) to extract the following equivalent formulation:

Φ = min
ŷ∈Y

fᵀŷ + max
λ∈Rn
{λᵀ(d−Bŷ) : λᵀD ≤ c} (1.23)

where λ ∈ Rn are the Lagrange multipliers of constraints Dx = d−Bŷ.

The feasible space of the inner maximization, i.e., F = {λ|λᵀD ≤ c}, is independent

of the choice of ŷ. Thus, if F is not empty, the inner problem can be either unbounded

or feasible for any arbitrary choice of ŷ. Given the set of extreme rays Q of F , there is

a direction of unboundedness rq, q ∈ Q for which rᵀq (d − Bŷ) > 0; this must be avoided

because it indicates the infeasibility of the ŷ solution. If we add all the cuts of the form

rᵀq (d − Bŷ) ≤ 0 ∀q ∈ Q to the outer minimization problem, the value of the inner problem

will be one of its extreme points (Rahmaniani et al., 2016). Consequently, problem (1.23)

can be reformulated as the Benders Master Problem, making use of the continuous variable

α ∈ R1 to linearize the inner maximization problem:

ΦUB = min
y,α

fᵀy + α (1.24a)

s.t. Ay = b (1.24b)

α ≥ λᵀe(d−By) ∀e ∈ E (1.24c)

0 ≤ rᵀq (d−By) ∀q ∈ Q (1.24d)

y ∈ Zn+ (1.24e)

where (1.24c) are the optimality cuts and (1.24d) are the feasibility cuts.

The Benders Subproblem is the dual formulation of problem (1.21) for a trial value of ŷ:

ΦLB = max
λ∈Rn
{λᵀ(d−Bŷ) : λᵀD ≤ c} (1.25)

The Benders decomposition algorithm consists of solving the Master Problem (1.24)

and the Subproblem (1.25) iteratively (starting with the Master Problem) until an optimal
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solution is found ΦLB = ΦUB. It is important to highlight that the Subproblem needs to be

convex in order to generate valid cuts.

Nested Benders Decomposition

The nested Benders decomposition method is based on the idea of applying the Benders

Decomposition method to a problem more than once, in a nested fashion. It was first

proposed by Birge (1985) and it is particularly appropriate for multi-period/multi-stage

problems in which each pair of adjacent periods/stages can be considered separately as a

subproblem.

Consider the following multi-period LP problem where t ∈ {1, ..., T} is the set of periods:

Φ = min
T∑
t=1

cᵀtxt (1.26a)

s.t. Atxt = bt ∀t ∈ {1, ..., T} (1.26b)

Btxt +Dtxt−1 = dt ∀t ∈ {2, ..., T} (1.26c)

xt ≥ 0 ∀t ∈ {1, ..., T} (1.26d)

This problem would be fully separable if it was not for constraint (1.26c) that links differ-

ent periods (complicating constraint). Thus, following a similar procedure as the Lagrangean

Decomposition, we define a new set of variables z ≥ 0, and enforce if to have the same value

as the trial value for xt obtained in the previous period zt = x̂t−1.

Φ = min
T∑
t=1

cᵀtxt (1.27a)

s.t. Atxt = bt ∀t ∈ {1, ..., T} (1.27b)

Btxt +Dtzt = dt ∀t ∈ {2, ..., T} (1.27c)

zt = x̂t−1 ← λt ∈ Rn ∀t ∈ {2, ..., T} (1.27d)

xt, zt ≥ 0 ∀t ∈ {1, ..., T} (1.27e)
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where λt ∈ Rn are the Lagrange multipliers of constraint (1.27d).

The problem is now trivially separable and the subproblem is given by (1.28) if t = 1, by

(1.29) if t = {2, ..., T − 1}, and by (1.30) if t = T :

Φ1 = min cᵀ1x1 + α1 (1.28a)

s.t. A1x1 = b1 (1.28b)

α1 ≥ Φ̂2 + λ2(x̂1 − x1) (1.28c)

x1 ≥ 0 (1.28d)

Φt = min cᵀtxt + αt

s.t. Atxt = bt

Btxt +Dtzt = dt

zt = x̂t−1 ← λt ∈ Rn

αt ≥ Φ̂t+1 + λt+1(x̂t − xt)

xt, zt ≥ 0



∀t ∈ {2, ..., T − 1} (1.29)

ΦT = min cᵀTxT (1.30a)

s.t. ATxT = bT (1.30b)

BTxT +DT zT = dT (1.30c)

zT = x̂T−1 ← λT ∈ Rn (1.30d)

xT , zT ≥ 0 (1.30e)

where Φ̂t+1 is the optimal value obtained by the solution of the Subproblem of the period

immediately after t + 1, x̂t are the trial values for xt to be fixed when solving the period

immediately after t+1, λt ∈ Rn is the set of Lagrange multipliers of the complicating linking

constraint (1.27d), and αt is the continuous variable used in the optimality cut similarly to

the classic Benders Decomposition.

The nested Benders decomposition algorithm consists of solving the Subproblems in a

forward (i.e. t = {1, ..., T}) and backward (i.e. t = {T, ..., 1}) fashion. The Forward Pass
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generates trial solutions for xt to be fixed in the period after, and yields a feasible upper

bound to the original LP problem (1.26). The Backward Pass generates the coefficients for

the optimality cuts to be added in the subproblems of the period before, and the solution of

period t = 1 yields a lower bound to the original LP problem (1.26). The cuts generated in

the Backward Pass are kept in the formulation of the next Forward and Backward passes,

which are solved iteratively until an optimal solution is found.

1.3 Overview of the thesis

Figure 1.4: Overview of the thesis.

Figure 1.4 shows a graphic overview of the topics in Chapters 2-6. The following subsec-
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tions provide an abstract of all the chapters.

Chapter 2

In chapter 2, we propose a nonconvex Generalized Disjunctive Programming (GDP)

model to optimize the 2-dimensional continuous location-allocation of the potential facilities

based on the maximum capacity and the given coordinates of the suppliers and customers.

The model belongs to the class of Capacitated Multi-facility Weber Problem. We propose

a bilevel decomposition algorithm that iteratively solves a discretized MILP version of the

model, and its nonconvex NLP for a fixed selection of discrete variables. Based on the

bounding properties of the subproblems, ε-convergence is proved for this algorithm. We

apply the proposed method to random instances varying from 2 suppliers and 2 customers

to 40 suppliers and 40 customers, from one type of facility to 3 different types, and from 2

to 32 potential facilities. The results show that the algorithm is more effective at finding

global optimal solutions than general purpose global optimization solvers tested.

Chapter 3

In chapter 3, we address the design and planning of manufacturing networks considering

the option of centralized and/or distributed facilities, taking into account the potential trade-

offs. The problem is formulated as a version of the continuous facility location-allocation

problem with limited capacity proposed in chapter 2, which involves the selection of which

facilities to build in each time period, and their location in the continuous 2-dimensional

space in order to meet demand and maximize profits. The model is a multi-period nonconvex

Generalized Disjunctive Programming (GDP), reformulated as a multi-period nonconvex

Mixed-Integer Nonlinear Programming (MINLP). We propose an accelerated version of the

Bilevel Decomposition proposed in chapter 2 with additional steps to reduce the feasible

space and help the accelerate the solution of the Master Problem (MILP). We benchmark the

performance of the Accelerated Bilevel Decomposition algorithm against the original Bilevel

Decomposition and the commercial global solvers available, and show that our proposed
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algorithm outperforms the other options in all instances tested. Additionally, we illustrate

the applicability of the proposed model and solution framework with a case study for a

biomass supply chain.

Chapter 4

In chapter 4, we investigate the impact of embedding additional operational and temporal

detail in a Generation Expansion Planning (GEP) framework on the resulting projections

for generation capacity additions and their utilization. This preliminary analysis provides

motivation for the modeling and algorithmic efforts in the remaining chapters. Our ap-

proach is based on systematically comparing the outputs from a chronological hourly GEP

with outputs from a commonly used time-slice GEP, using seasonally-averaged time blocks.

The GEP models mainly differ in their representation of operational flexibility of thermal

generators as well as the temporal resolution of load and renewable generation, and are both

less complex than the models proposed in the remaining chapters. Studying the Texas grid

over a range of hypothetical renewable energy penetration scenarios, we find that the time-

slice approach tends to overestimate solar capacity and underestimate wind and natural gas

capacity relative to the chronological approach. We also test capacity projections of both

GEPs through an hourly grid operations model to explore operational metrics, such as the

ability to meet demand subject to intra and inter-annual variations in load and renewable

generation. This experiment reveals that the projections made by the chronological GEP

consistently lead to lower unmet demand compared to the time-slice capacity projections.

These findings imply the need for sufficient temporal resolution and chronology or validated

parameterizations that yield similar behavior to be included in power sector GEPs and

multi-sector energy-economic models using a time slice representation.

Chapter 5

Chapter 5 addresses the long-term planning of electric power infrastructure considering

fossil fuels (coal, natural gas and nuclear) and high renewable penetration (wind and solar).
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To capture the intermittency of the renewable sources, we propose a deterministic multi-

scale Mixed-Integer Linear Programming (MILP) formulation that simultaneously considers

annual generation investment decisions and hourly operational decisions. We adopt judi-

cious approximations and aggregations to improve its tractability. Moreover, to overcome

the computational challenges of treating hourly operational decisions within a monolithic

multi-year planning horizon, we propose a decomposition algorithm based on Nested Ben-

ders Decomposition for multi-period MILP problems to allow the solution of larger instances.

Our decomposition adapts previous nested Benders methods by handling integer and con-

tinuous state variables, although at the expense of losing its finite convergence property due

to potential duality gap. We apply the proposed modeling framework to a case study in the

Electric Reliability Council of Texas (ERCOT) region, and demonstrate massive computa-

tional savings from our decomposition.

Chapter 6

In chapter 6, we address the long-term planning of electric power infrastructure under

uncertainty. We propose a Multistage Stochastic Mixed-integer Programming formulation

that optimizes the generation expansion to meet the projected electricity demand over mul-

tiple years while considering detailed operational constraints, intermittency of renewable

generation, power flow between regions, storage options, and multiscale representation of

uncertainty (strategic and operational). To be able to solve this large-scale model, which

grows exponentially with the number of stages in the scenario tree, we decompose the prob-

lem using Stochastic Dual Dynamic Integer Programming (SDDiP). The SDDiP algorithm

is computationally expensive but we take advantage of parallel processing to solve it more

efficiently. The proposed formulation and algorithm are applied to a case study in the region

managed by the Electric Reliability Council of Texas (ERCOT) for scenario trees considering

natural gas price and carbon tax uncertainty for a reference case and a hypothetical case

without nuclear power. We show that the parallelized SDDiP algorithm allows the solution

of instances with quadrillions of variables and constraints in reasonable amounts of time.
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Chapter 7

Chapter 7 provides a critical review of the work in this thesis, along with a summary of

its contributions and suggestions for future work.
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Part I

Continuous Facility Location-Allocation

Design and Planning
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Chapter 2

Global Optimization Algorithm for

Capacitated Multi-facility Continuous

Location-Allocation Problems

In this chapter, we address the design of networks that involves the selection and location

of facilities in the continuous 2-dimensional space. The problem is formulated as a continuous

facility location-allocation problem with limited capacity, also known as the Capacitated

Multi-facility Weber Problem (CMWP) with fixed costs. The objective of this type of

problem is to determine locations in continuous 2-dimensional space for opening new facilities

that are connected to supply and customer nodes, taking into account limited capacities and

transportation costs (Brimberg et al., 2008).

We propose an extension of the Capacitated Multi-facility Weber Problem (CMWP) that

considers fixed costs for opening new facilities, fixed transportation costs, and two sets of

fixed-location points: suppliers i and customers j, as represented in Figure 2.1. The latter

goes back to the original Weber problem, in which the location of the facility had to be

determined in relation to 2 suppliers and 1 customer points. The model is a nonconvex

Mixed-Integer Nonlinear Programming (MINLP), in which the nonconvexity comes from the

variable multiplication in the transportation cost. This is, to the best of our knowledge,
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an original problem not reported before that has high practical applicability (Lara and

Grossmann, 2016).

Figure 2.1: Representation of the nodes in the network

The remainder of the chapter is organized as follows. We begin by presenting in Section

2.1 the problem statement, its General Disjunctive Programming (GDP) formulation, and

its reformulation as a nonconvex MINLP. In Section 2.2 we propose a global optimization

algorithm based on the partitioning of the space, which is guaranteed to have ε-convergence.

In Section 2.3 we introduce a small test problem. The performance of the algorithm is

assessed in Section 2.4 by solving randomly generated instances with the proposed algorithm

and comparing the solution, optimality gap and computational time with general purpose

global optimization solvers.

2.1 Problem statement

Given is a set of suppliers i ∈ I, with their respective fixed locations (xi, yi), availability

ai, and cost of material supply csi. Given is also a set of customers j ∈ J , with their

respective fixed locations (xj, yj), and demands dj. Given are the fixed and variable costs

(ffk and vfk, respectively) of potential facilities k ∈ K with N different types, which are

divided in subsets Kn ∀ n = {1, ..., N} such that
⋃
nKn = K. The corresponding maximum

capacity, mck, and conversion to product flows, cvk, of these potential facilities are also

known. Given are also the transportation costs between suppliers and facilities, and facilities

and customers (fti,k, ftk,j: fixed costs; vti,k, vtk,j: variable costs). The problem is to find
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the optimal network of facilities (number, types, location, and corresponding flows) that

minimizes the total cost.

The variables in the problem are the coordinates of potential facilities, (xk, yk), the dis-

tances between supplier and facility, Di,k, and between facility and customer, Dk,j, the flows

between supplier and facility, fi,k, and between facility and customer, fk,j, and the amount

produced by each facility, fk. There are also Boolean variables Wk (True if facility is built;

False otherwise); Zi,k (True if material supply is transported between supplier and facility;

False otherwise); and Zk,j (True if product is transported between facility and customer;

False otherwise). The GDP (Trespalacios and Grossmann, 2014) formulation is given by

Equations (2.1a)-(2.1m).

min Φ =
∑
k

Costk +
∑
i

∑
k

Costi,k +
∑
k

∑
j

Costk,j (2.1a)

s.t.



Wk

Costk = ffk + vfk · fk
0 ≤ fk ≤ mck
0 ≤ xk ≤ xU

k

0 ≤ yk ≤ yU
k


∨



¬Wk

Costk = 0

fk = 0

xk = 0

yk = 0


∀ k ∈ K (2.1b)


Zi,k

Costi,k = csi · fi,k + fti,k + vti,k · fi,k ·Di,k

0 ≤ fi,k ≤ fU
i,k

DL
i,k ≤ Di,k ≤ DU

i,k

 ∨


¬Zi,k

Costi,k = 0

fi,k = 0

 ∀ i ∈ I, k ∈ K (2.1c)


Zk,j

Costk,j = ftk,j + vtk,j · fk,j ·Dk,j

0 ≤ fk,j ≤ fU
k,j

DL
k,j ≤ Dk,j ≤ DU

k,j

 ∨


¬Zk,j

Costk,j = 0

fk,j = 0

 ∀ k ∈ K, j ∈ J (2.1d)

Di,k ≥
√

(xi − xk)2 + (yi − yk)2 ∀ i ∈ I, k ∈ K (2.1e)

Dk,j ≥
√

(xj − xk)2 + (yj − yk)2 ∀ k ∈ K, j ∈ J (2.1f)

Wk ⇐⇒
∨
i

Zi,k ∀ k ∈ K (2.1g)

Wk ⇐⇒
∨
j

Zk,j ∀ k ∈ K (2.1h)
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2.1. Problem statement

∑
k

fi,k ≤ ai ∀ i ∈ I (2.1i)

∑
i

fi,k · cvk = fk ∀ k ∈ K (2.1j)

fk =
∑
j

fk,j ∀ k ∈ K (2.1k)

∑
k

fk,j = dj ∀ j ∈ J (2.1l)

Wk, Zi,k, Zk,j ∈ {True, False} ∀ i ∈ I, k ∈ K, j ∈ J (2.1m)

The objective function (2.1a) includes costs for the facilities and for the transportation

from the suppliers and to the customers. Disjunction (2.1b) determines the selection of

facilities (Wk), while the disjunctions (2.1c) and (2.1d) determine the transportation links

{i, k} and {k, j} with the corresponding Boolean variables (Zi,k, Zk,j). Constraints (2.1e)

and (2.1f) represent the Euclidean distances between suppliers and facilities, and facilities

and customers, while the logic relations in (2.1g) and (2.1h) establish the existence of links

depending on the choice of the facilities and vice-versa. Finally, constraints (2.1i)-(2.1l)

define the mass balances as well as the availabilities and demands.

The model (2.1) is a nonconvex GDP due to the bilinear terms (f ·D) in the transportation

cost, as can be seen in disjunctions (2.1c)-(2.1d). Equations (2.1e)-(2.1f) are nonlinear convex

constraints since they correspond to Euclidean norms (Al-Loughani, 1997). The presence of

nonconvexities was the main motivation for representing the problem as a GDP. By having

the bilinear terms as part of the disjunctions, the transportation costs are calculated only

for the selected connections within an iterative procedure.

The GDP can be transformed into an MINLP using the hull reformulation, which yields

the tightest relaxation for each disjunction (Trespalacios and Grossmann, 2014). Since the

disaggregated variables can be reformulated back to the original variables, the resulting

MINLP is given by Equations (2.2a)-(2.2v).

min Φ =
∑
k

Costk +
∑
i

∑
k

Costi,k +
∑
k

∑
j

Costk,j (2.2a)
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s.t. Costk = ffk · wk + vfk · fk ∀ k ∈ K (2.2b)

Costi,k = csi · fi,k + fti,k · zi,k + vti,k · fi,k ·Di,k ∀ i ∈ I, k ∈ K (2.2c)

Costk,j = ftk,j · zk,j + vtk,j · fk,j ·Dk,j ∀ k ∈ K, j ∈ J (2.2d)

Di,k ≥
√

(xi − xk)2 + (yi − yk)2 ∀ i ∈ I, k ∈ K (2.2e)

Dk,j ≥
√

(xj − xk)2 + (yj − yk)2 ∀ k ∈ K, j ∈ K (2.2f)∑
k

fi,k ≤ ai ∀ i ∈ I (2.2g)

∑
i

fi,k · cvk = fk ∀ k ∈ K (2.2h)

fk =
∑
j

fk,j ∀ k ∈ K (2.2i)

∑
k

fk,j = dj ∀ j ∈ J (2.2j)

wk ≥ zi,k ∀ i ∈ I, k ∈ K (2.2k)∑
i

zi,k ≥ wk ∀ k ∈ K (2.2l)

wk ≥ zk,j ∀ k ∈ K, j ∈ J (2.2m)∑
j

zk,j ≥ wk ∀ k ∈ K (2.2n)

0 ≤ fk ≤ mck · wk ∀ k ∈ K (2.2o)

0 ≤ xk ≤ xU
k · wk ∀ k ∈ K (2.2p)

0 ≤ yk ≤ yU
k · wk ∀ k ∈ K (2.2q)

0 ≤ fi,k ≤ fU
i,k · zi,k ∀ i ∈ I, k ∈ K (2.2r)

DL
i,k · zi,k ≤ Di,k ≤ DU

i,k · zi,k ∀ i ∈ I, k ∈ K (2.2s)

0 ≤ fk,j ≤ fU
k,j · zk,j ∀ k ∈ K, j ∈ J (2.2t)

DL
k,j · zk,j ≤ Dk,j ≤ DU

k,j · zk,j ∀ k ∈ K, j ∈ J (2.2u)

wk, zi,k, zk,j ∈ {0, 1} ∀ i ∈ I, k ∈ K, j ∈ J (2.2v)

We assume that the facilities of the same type have the same costs and characteristics
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associated with them, i.e., ffk, vfk, mck, fti,k, vti,k, ftk,j, vtk,j are the same ∀ k ∈ Kn.

Therefore, in order to avoid symmetry in the solution, we add Equations (2.2w)-(2.2x) to

the formulation. These constraints enforce that for facilities k of the same type, i.e., k ∈

Kn, n ∈ N , the model will chose first to build the ones with the lower indices, and those

will be located in lower xk coordinate.

wk ≥ wk+1 ∀ k ∈ Kn, n ∈ N (2.2w)

xk ≥ xk+1 ∀ k ∈ Kn, n ∈ N (2.2x)

2.2 Bilevel decomposition algorithm

Although global optimization solvers perform reasonably well for small-scale instances of

the nonconvex MINLP problem (2.2), their performance scales poorly due to the loose bounds

of the variables in the bilinear term, thereby becoming computationally very expensive for

mid to large-scale problems. For this reason, we propose a bilevel decomposition algorithm

that consists of decomposing the problem into a master problem and a subproblem. The

master problem is based on a relaxation of the nonconvex MINLP (2.2), which yields an

MILP that predicts the selection of facilities and their links to suppliers and customers, as

well as a lower bound on the cost of problem (2.1) or (2.2). The subproblem corresponds

to a nonconvex NLP of reduced dimensionality that results from fixing the binary variables

wk, zi,k, zk,j in the MINLP problem (2.2), according to the binary variables predicted in the

MILP master problem. Figure 2.2 shows the algorithm.

2.2.1 Master problem

The non-linearity and nonconvexity of the formulation (2.2) arise from the fact that

the distances are decision variables. If the coordinates for the potential facilities are fixed,

the distances can be pre-computed and used as parameters in the model. In order to take

advantage of this property, the master problem partitions the space into p sub-regions, which
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Figure 2.2: Representation bilevel decomposition algorithm

are uniform rectangular cells as represented in Figure 2.3.

In order to derive a valid relaxation for the original MINLP (2.2), we consider that each of

the facilities can be located in each of the sub-regions. Therefore, it is possible to determine

a priori the minimum distance between suppliers and facilities, and between facilities and

customers. Specifically, by discretizing the 2-dimensional space, we are able to pre-calculate

the minimum distance between the fixed points and each sub-region p, D̂i,p and D̂j,p, as

follows:

dxi,p = max{|xi − xp| − x̄/2, 0} ∀ i ∈ I, p ∈ P (2.3a)

dyi,p = max{|yi − yp| − ȳ/2, 0} ∀ i ∈ I, p ∈ P (2.3b)

dxj,p = max{|xj − xp| − x̄/2, 0} ∀ j ∈ J , p ∈ P (2.3c)

dyj,p = max{|yj − yp| − ȳ/2, 0} ∀ j ∈ J , p ∈ P (2.3d)

D̂i,p = max{
√
dx2

i,p + dy2
i,p, D

L
i,p} ∀ i ∈ I, p ∈ P (2.3e)

D̂j,p = max{
√
dx2

j,p + dy2
j,p, D

L
j,p} ∀ j ∈ J , p ∈ P (2.3f)
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Figure 2.3: Representation of p ∈ P sub-regions

where (xp, yp) are the coordinates of the mid-point of each sub-region p; x̄ and ȳ are the

length of sub-region p in the x and y directions, respectively; DL
j,p and DL

i,p are the lower

bounds for the distances, not allowing the model to chose to build a facility k on top of a

fixed point from a supplier or a customer.

Making use of the partitions and the minimum distances, (2.3e)-(2.3f), the MINLP refor-

mulation (2.2) can then be rewritten as an MILP in (2.4). The objective of this model is to

decide which facilities k to build in each sub-region p and how to allocate the raw-material

and products between suppliers i, customers j and these facilities k while minimizing the

total cost for the relaxed problem, ΦP .

min ΦP =
∑
k

∑
p

Costk,p +
∑
i

∑
k

∑
p

Costi,k,p +
∑
k

∑
j

∑
p

Costk,j,p (2.4a)

s.t. Costk,p = ffk · wk,p + vfk · fk,p ∀ k ∈ K, p ∈ P (2.4b)

Costi,k,p = csi · fi,k,p + fti,k · zi,k,p + vti,k · D̂i,p · fi,k,p ∀ i ∈ I, k ∈ K, p ∈ P (2.4c)

Costk,j,p = ftk,j · zk,j,p + vtk,j · D̂j,p · fk,j,p ∀ k ∈ K, j ∈ J , p ∈ P (2.4d)∑
k

∑
p

fi,k,p ≤ ai ∀ i ∈ I (2.4e)
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∑
i

fi,k,p · cvk = fk,p ∀ k ∈ K, p ∈ P (2.4f)

fk,p =
∑
j

fk,j,p ∀ k ∈ K, p ∈ P (2.4g)

∑
k

∑
p

fk,j,p = dj ∀ j ∈ J (2.4h)

wk,p ≥ zi,k,p ∀ i ∈ I, k ∈ K, p ∈ P (2.4i)∑
i

zi,k,p ≥ wk,p ∀ k ∈ K, p ∈ P (2.4j)

wk,p ≥ zk,j,p ∀ k ∈ K, j ∈ J , p ∈ P (2.4k)∑
j

zk,j,p ≥ wk,p ∀ k ∈ K, p ∈ P (2.4l)

∑
p

wk,p ≤ 1 ∀k ∈ K (2.4m)

∑
p

zi,k,p ≤ 1 ∀i ∈ I, k ∈ K (2.4n)

∑
p

zk,j,p ≤ 1 ∀k ∈ K, j ∈ J (2.4o)

∑
p′≤p

wk′,p′ ≥
∑
p

wk,p ∀k′ < k, k ∈ Kn, n ∈ N (2.4p)

0 ≤ fk,p ≤ mck · wk,p ∀k ∈ K, p ∈ P (2.4q)

0 ≤ fi,k,p ≤ fU
i,k,p · zi,k,p ∀i ∈ I, k ∈ K, p ∈ P (2.4r)

0 ≤ fk,j,p ≤ fU
k,j,p · zk,j,p ∀k ∈ K, j ∈ J , p ∈ P (2.4s)

wk,p, zi,k,p, zk,j,p ∈ {0, 1} ∀i ∈ I, k ∈ K, j ∈ J , p ∈ P (2.4t)

Note that the MILP (2.4) has a considerably larger number of variables and constraints

than the MINLP (2.2) since they must be defined for each partition p. It can easily be shown

that the MILP master problem yields a lower bound to the total cost.

Proposition 1. The MILP master problem (2.4) yields a lower bound to the original MINLP

problem (2.2).

Proof. First we note that although the variables are disaggregated by partitions, the inequal-

ities in (2.4m), (2.4n), (2.4o) ensure that only one facility and one link in the original MINLP
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are selected. Second, since we consider the shortest distance between the fixed points and

the sub-regions as in (2.3e)-(2.3f), the transportation costs are underestimated. Thus, the

MILP yields a Lower Bound (LB) to the original problem, i.e., ΦP ≤ Φ.

2.2.2 Subproblem

The subproblem consists of solving (2.2) for the fixed decisions of which facilities k to

build, ŵk, and how to allocate their material supply ẑi,k and products ẑk,j as selected in the

MILP (2.4). The subproblem (2.5) is a reduced nonconvex NLP that is solved using a global

optimization solver.

min ΦN =
∑
k

Costk +
∑
i

∑
k

Costi,k +
∑
k

∑
j

Costk,j (2.5a)

s.t. Costk = ffk · ŵk + vfk · fk ∀ k ∈ K (2.5b)

Costi,k = csi · fi,k + fti,k · ẑi,k + vti,k · fi,k ·Di,k ∀ i ∈ I, k ∈ K (2.5c)

Costk,j = ftk,j · ẑk,j + vtk,j · fk,j ·Dk,j ∀ k ∈ K, j ∈ J (2.5d)

Di,k ≥
√

(xi − xk)2 + (yi − yk)2 ∀ i ∈ I, k ∈ K (2.5e)

Dk,j ≥
√

(xj − xk)2 + (yj − yk)2 ∀ k ∈ K, j ∈ J (2.5f)∑
k

fi,k ≤ ai ∀ i ∈ I (2.5g)

∑
i

fi,k · cvk = fk ∀ k ∈ K (2.5h)

fk =
∑
j

fk,j ∀ k ∈ K (2.5i)

∑
k

fk,j = dj ∀ j ∈ J (2.5j)

0 ≤ fk ≤ mck · ŵk ∀ k ∈ K (2.5k)

xL
k,p · ŵk ≤ xk ≤ x̄U

k,p · ŵk ∀ k ∈ K (2.5l)

yL
k,p
· ŵk ≤ yk ≤ ȳU

k,p · ŵk ∀ k ∈ K (2.5m)

0 ≤ fi,k ≤ fU
i,k · ẑi,k ∀ i ∈ I, k ∈ K (2.5n)
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DL
i,k,p · ẑi,k ≤ Di,k ≤ D̄U

i,k,p · ẑi,k ∀ i ∈ I, k ∈ K (2.5o)

0 ≤ fk,j ≤ fU
k,j · ẑk,j ∀ k ∈ K, j ∈ J (2.5p)

DL
k,j,p · ẑk,j ≤ Dk,j ≤ D̄U

k,j,p · ẑk,j ∀ k ∈ K, j ∈ J (2.5q)

The NLP subproblem (2.5), which comprises the original problem (2.2) for a fixed set of

discrete decisions, yields an Upper Bound (UB) to the total cost, ΦN ≥ Φ. The key point in

the NLP is that we update the bounds of the facilities coordinates such that their location

(xk, yk) has to be within the bounds of the sub-region p chosen in the Master Problem, i.e.,

for a p such that wk,p = 1 in the solution of Problem (2.4) we have that xL
k,p ≤ xk ≤ x̄U

k,p and

yL
k,p
≤ yk ≤ ȳU

k,p, where:

xL
k,p = xp − x̄/2 ∀ k ∈ K (2.6a)

x̄U
k,p = xp + x̄/2 ∀ k ∈ K (2.6b)

yL
k,p

= yp − ȳ/2 ∀ k ∈ K (2.6c)

ȳU
k,p = yp + ȳ/2 ∀ k ∈ K (2.6d)

This assumption greatly impacts tractability because the bounds for Di,k and Dk,j, which

are part of the bilinear terms, become tighter, i.e., DL
i,k,p ≤ Di,k ≤ D̄U

i,k,p and D
L
k,j,p ≤ Dk,j ≤

D̄U
k,j,p, where:

DL
i,k,p = D̂i,p ∀ i ∈ I, k ∈ K (2.7a)

D̄U
i,k,p = D̂i,p +

√
x̄2 + ȳ2 ∀ i ∈ I, k ∈ K (2.7b)

DL
k,j,p = D̂j,p ∀ j ∈ J , k ∈ K (2.7c)

D̄U
k,j,p = D̂j,p +

√
x̄2 + ȳ2 ∀ j ∈ J , k ∈ K (2.7d)

Thus the McCormick convex envelopes (McCormick, 1976) also become tighter, strengthen-

ing the lower bounds in the global optimization search of this NLP.
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2.2. Bilevel decomposition algorithm

2.2.3 Algorithm

As discussed earlier in this section, the bilevel decomposition algorithm consists of iter-

atively solving the MILP master problem and the NLP subproblem, and refining the parti-

tioning of space at each iteration. By shrinking the sub-regions, the minimum distances get

closer to the actual distances, thus the lower bound becomes tighter; the selection of which

facilities to build in each region gets closer to the optimal; and the bounds for Di,k, and Dk,j

in the subproblem becomes tighter; hence, it is easier for the global optimization solver to

find the optimal solution. The only drawback is that the size of the MILP master problem

becomes larger, and thus harder to solve. The proposed procedure is described in Algorithm

1.

Algorithm 1 Bilevel decomposition algorithm for CMWP
1: for a pre-specified optimality tolerance of ε do
2: Determine the tightest rectangle x× y that includes all the fixed points;
3: Partition this rectangle into equally sized rectangles px × py;
4: Set iteration iter = 1;
5: while gap > ε do
6: Solve the MILP master problem (2.4) and compute Lower Bound (LBiter);
7: Fix the decision of which facilities k to build, wk;
8: Fix the decisions of how to allocate the materials, zi,k, and products, zk,j;
9: Fix the bounds for xk and yk according to the sub-region p that was selected for

facility k to be built;
10: Solve the nonconvex NLP subproblem (2.5) using a global optimization solver, and

compute an Upper Bound (UBiter);
11: gap = UBiter − LBiter

12: px = px +Nx and py = py +Ny, where Nx, Ny ∈ N
13: iter = iter + 1
14: end while
15: end for

The partitioning does not need to be uniform. For a fixed number of facilities, an nonuni-

form grid would perform faster since only the sub-regions that had potential to place a facility

would have their grid refined. Thus, the algorithm would not waste computational power

in refining the sub-regions that will not have any facility. However, for the problem that

is proposed in (2.1), the number of facilities k to be built is a decision variable. Based on
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experiments, the model tends to pick fewer and larger facilities in the early stages of the

partitioning, and the structure of the network can completely change from one iteration to

another. Therefore, we decided to adopt a uniform partitioning in this chapter.

A bottleneck in the performance of this procedure is the solution of the subproblem, which

is nonconvex NLP. However, it does not have to be solved to global optimality to yield a valid

upper bound. Therefore, we specify a maximum solution time for the subproblem so that

the algorithm does not waste time trying to achieve global optimality in the early iterations,

when the bounds for Di,k, and Dk,j are still loose.

The proposed bilevel decomposition algorithm 1 converges to the global optimum in a

finite number of steps with an ε-tolerance. We first establish the following proposition.

Proposition 2. For an infinite number of partitions the MILP (2.4) and the MINLP (3.2)

yield the same optimal solution Φ∗.

Proof. It trivially follows that for an infinite number of partitions the MILP (2.4) becomes

an exact infinite dimensional representation of the MINLP (3.2). Thus, both (2.2) and (2.4)

have the same optimal solution Φ∗.

Theorem 1. Algorithm 1 converges in a finite number of iterations to the global optimum

of problem (2.2) within an ε-tolerance at the bounds, LB ≥ UB − ε.

Proof. Algorithm 1 consists at solving a sequence of MILP problems (2.4) by increasing the

number of partitions such that the set of partitions P iter at iteration iter is contained in

the next iteration P iter ⊂ P iter+1. Thus, it follows that the lower bounds from (2.4) satisfy

ΦP,iter ≤ ΦP,iter+1. From Proposition 2 we have that ΦP,∞ = Φ∗. Since we only consider a

finite number of iterations, it follows that ΦP,iter < Φ∗. Since the NLP subproblem (2.5) is

solved to global optimality, it follows that ΦP,iter < Φ∗ ≤ ΦN̂ , where ΦN̂ is the incumbent,

i.e. the best feasible solution of the NLP subproblem (2.5). For a given tolerance ε, a finite

number of iterations îter can be selected such that ΦP,îter ≥ ΦN̂ − ε. Since ΦP,îter = LB,

and ΦN̂ = UB, LB ≥ UB − ε. Thus, the algorithm converges with an ε tolerance in a finite

number of steps.
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2.3. Small Test Problem

Figure 2.4: Small test problem’s network Figure 2.5: Small test problem’s optimal network

2.3 Small Test Problem

In order to test the Algorithm 1, we applied it first to a small test problem with 2 suppliers

and 2 customer points. Supplier 1 is located at coordinates (0,0), and supplier 2 is located

at (0,5). Customer 1 is located at coordinates (5,0), and customer 2 is located at (5,5). The

fixed points of the network are represented in Figure 2.4. The cost of supply material from

supplier 1 is 20 and from supplier 2 is 22. Both suppliers have an availability of 120, and

both markets have a demand of 100.

There are 2 types of facilities. Type 1 has two potential facilities with a maximum

capacity of 125 each, fixed cost of 7.18, and variable cost of 0.087. Type 2 has one potential

facility with a maximum capacity of 250, fixed cost of 10.77, and variable cost of 0.067. All

the facilities have a conversion to product flow of 90%.

The fixed transportation costs, fti,k and fti,k, are 10, and the variable transportation

costs, vti,k and vti,k, are 0.3 for any type of link. It is assumed that the minimum allowed

distance between a fixed supply or customer point and a facility is 0.5. The MILP master

problem is solved to 0.01% optimality gap, and the maximum CPU time allowed for the

NLP subproblem is 200 seconds. The monolithic MINLP version of the problem, (3.2), has
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Table 2.1: Small test problem results

Lower Bound Upper Bound Gap

iter = 1 4776.392 5159.830 8.028%
iter = 2 4916.468 5039.304 2.498%
iter = 3 4946.704 5039.304 1.872%
iter = 4 4968.799 5039.304 1.419%
iter = 5 4982.116 5039.304 1.148%
iter = 6 4991.011 5039.304 0.968%
iter = 7 4997.371 5039.304 0.839%
iter = 8 5002.145 5039.304 0.743%
iter = 9 5005.859 5039.304 0.668%
iter = 10 5008.832 5039.304 0.608%
iter = 11 5011.265 5039.304 0.560%
iter = 12 5013.293 5039.304 0.519%
iter = 13 5015.009 5039.304 0.484%

68 constraints, 15 binary variables, and 38 continuous variables.

Starting from px and py equal 1, i.e., no partition, and increasing them by 1 at each

iteration, it takes 13 iterations and 11.87 seconds to solve this problem to 0.5% optimality

tolerance. The lower bound, upper bound and optimality gap at each iteration are reported

in Table 2.1.

As one can see, the lower bound gradually tightens up as the number of iterations iter, and

consequently the number of partitions increase. The optimal solution of 5039.304 is the same

as found by the general purpose global optimization solvers. However, while the algorithm

solved this problem within an optimality tolerance of 0.5% in 11.87 seconds, BARON solved

it in 1247.10 seconds, and ANTIGONE and SCIP could not solve it in 1 hour. The optimal

network is shown in Figure 2.5.

2.4 Computational Results

In order to compare the performance of our proposed algorithm with currently available

general purpose global optimization solvers, we randomly generated 15 test cases. The

network varies in size as follows.
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• Network 1: 2 suppliers × 2 consumers;

• Network 2: 5 suppliers × 5 consumers;

• Network 3: 10 suppliers × 10 consumers;

• Network 4: 20 suppliers × 20 consumers;

• Network 5: 40 suppliers × 40 consumers;

The 5 network structures are represented in Figures 2.6-2.10.

Figure 2.6: Network 1 Figure 2.7: Network 2

For each of the network options, the choice of 1, 2 and 3 types of facilities were tested,

such that:

• Type 1: up to 2 large-scale facilities

• Type 2: up to 10 mid-scale facilities;

• Type 3: up to 20 small-scale facilities;

Therefore, for each of the network structure the problem was solved for 2, 12 and 32 potential

facilities.

Each test case was solved using Algorithm 1 and by general purpose global optimization

solvers, BARON, ANTIGONE and SCIP. We set the optimality tolerance to 1% and the

maximum total CPU time to 1 hour. Regarding the algorithm, it is required that the master
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Figure 2.8: Network 3 Figure 2.9: Network 4

Figure 2.10: Network 5

problem has to be solved to 0.1% optimality gap, and it is allowed a maximum CPU time of

200 seconds for the solution of each NLP subproblem. We start the algorithm with a 10×10

partitioning of the space and at each iteration this partitioning is increased by Nx, Ny = 5.

Our computational tests were performed on a standard desktop computer with an Intel(R)
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Core(TM) i7-2600 CPU @ 3.40 GHz processor, with 8GB of RAM, running on Windows 7.

We implemented the monolithic formulation and the global optimization algorithm in GAMS

24.7.1, solve the MILPs using CPLEX version 12.6.3 (IBM, 2015), the NLPs using BARON

version 16.3.4 (Tawarmalani and Sahinidis, 2005), and the MINLPs using BARON version

16.3.4 (Tawarmalani and Sahinidis, 2005), ANTIGONE (Misener and Floudas, 2014), and

SCIP (Gamrath et al., 2016).

The case-studies are named such that the first 2 letters represent the network (i.e., N1,

N2, N3, N4, and N5, represent Network 1, 2, 3, 4, and 5, respectively), and the last 2 letters

represent the number of facility types considered (i.e., T1, T2, T3 represent 1 type, 2 types

and 3 types, respectively). The size of monolithic MINLP formulation (3.2) for each of the

test cases is shown in Table 2.2, and their results are shown in Table 2.3.

Table 2.2: Monolithic MINLP formulation size

Binary Variables Continuous Variables Constraints

N1-T1 10 27 49
N2-T1 22 51 91
N3-T1 42 91 161
N4-T1 82 171 301
N5-T1 162 331 581

N1-T2 197 137 329
N2-T2 132 281 551
N3-T2 252 521 921
N4-T2 492 1001 1661
N5-T2 972 1961 3141

N1-T3 160 357 1089
N2-T3 352 741 1671
N3-T3 672 1381 2641
N4-T3 1312 2661 4581
N5-T3 2592 5221 8461

The results in Table 2.3 show that the bilevel decomposition algorithm was able to find

the optimal solution within 1% optimality tolerance in 87% of the the case studies, and

performed better than the other general purpose optimization solvers in 73% of them. It can

be noticed that the improvement in performance due to the use of the algorithm is clearer for
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Figure 2.11: Performance curves comparing the bilevel decomposition algorithm with global opti-
mization solvers

larger instances, specifically the networks with larger number of supplier and customer fixed

points. The global optimization solver that performed the best for this type of problem was

BARON. Antigone was the global solver that had the worst performance, not being able to

find a feasible solution in 47% of the test cases. The performance curves for the Algorithm

1 and each of the global solvers are shown in Figure 2.11 (Dolan and Moré, 2002).

Table 2.3: Computational experiments’ results

Algorithm 1 BARON ANTIGONE SCIP

N1-T1

Minimum Cost 10.537 10.537 10.537 10.537

Gap 0.4% 1.0% 1.0% 1.0%

CPU Time (s) 0.725 0.090 0.267 0.360

N2-T1

Minimum Cost 23.850 23.850 23.850 23.850

Gap 0.8% 1.0% 1.0% 1.0%

CPU Time (s) 5.046 2.480 8.014 12.780

50



2.4. Computational Results

N3-T1

Minimum Cost 44.913 44.957 44.913 44.932

Gap 0.9% 1.0% 1.0% 3.3%

CPU Time (s) 45.854 164.330 225.297 3600

N4-T1

Minimum Cost 60.410 60.416 60.617 60.491

Gap 0.8% 1.6% 1.0% 4.18%

CPU Time (s) 340.541 3600 3183.016 3600

N5-T1

Minimum Cost 91.926 92.515 Infeasible 93.253

Gap 0.8% 3.5% NA 8.4%

CPU Time (s) 705.269 3600 0.311 3600

N1-T2

Minimum Cost 10.537 10.537 10.537 10.537

Gap 0.4% 1.0% 1.0% 1.0%

CPU Time (s) 3.243 1.910 1.093 2.040

N2-T2

Minimum Cost 23.850 23.850 23.850 23.850

Gap 0.8% 1.0% 1.0% 1.0%

CPU Time (s) 12.055 18.810 280.717 73.980

N3-T2

Minimum Cost 44.913 44.913 No solution returned 44.989

Gap 0.9% 1.0% NA 3.6%

CPU Time (s) 50.038 3114.320 3600 3600

N4-T2

Minimum Cost 60.411 60.425 No solution returned 61.042

Gap 0.8% 2.0% NA 5.73%

CPU Time (s) 627.567 3600 3600 3600

N5-T2

Minimum Cost 91.966 92.466 Infeasible 94.362

Gap 1.2% 5.5% NA 10.2%

CPU Time (s) 3600 3600 7.491 3600

N1-T3

Minimum Cost 3.921 3.921 3.921 3.921

Gap 0.6% 1.0% 1.0% 1.0%

CPU Time (s) 15.520 3.921 47.262 3.480
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N2-T3

Minimum Cost 23.850 23.850 23.850 23.850

Gap 0.8% 1.0% 1.0% 1.0%

CPU Time (s) 51.521 93.350 726.475 118.430

N3-T3

Minimum Cost 44.932 44.913 No solution returned 44.989

Gap 0.9% 1.0% NA 3.46%

CPU Time (s) 80.239 1697.660 3600 3600

N4-T3

Minimum Cost 60.408 60.459 No solution returned 61.235

Gap 0.8% 2.1% NA 5.7%

CPU Time (s) 2461.583 3600 3600 3600

N5-T3

Minimum Cost 92.621 92.2545 Infeasible 94.2516

Gap 2.0% 5.4% NA 10.1%

CPU Time (s) 3600 3600 57.453 3600

2.5 Conclusions

In this chapter we have presented a new version of the Capacitated Multi-facility Weber

Problem that has fixed costs, multiple types of facilities, and two sets of fixed points rep-

resenting suppliers and consumers. We have proposed a GDP formulation for this problem,

which was reformulated as an MINLP, and then introduced a bilevel decomposition algo-

rithm for this nonconvex problem. We prove that this algorithm converges to the global

optimum within an ε tolerance in a finite number of iterations.

We test the algorithm for 15 test cases varying from 2 suppliers and 2 consumers, to

40 suppliers and 40 consumers, from 1 to 3 types of facilities, and from 2 to 32 potential

facilities, and compare the results with general purpose global optimization solvers. The

results show that our algorithm performs more efficiently for 73% of the test cases within 1%

of optimality gap, and that the improvement in performance is more noticeable for larger

instances.
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Chapter 3

Global Optimization Algorithm for

Multi-period Design and Planning of

Centralized and Distributed

Manufacturing Networks

In this chapter, we extend the work of chapter 2 to solve the design and multi-period

planning of centralized and distributed manufacturing networks. The model proposed in

this chapter is a multi-period nonlinear Generalized Disjunctive Programming (GDP), re-

formulated as a multi-period nonconvex Mixed-Integer Nonlinear Programming (MINLP).

Due to the extra layer of complexity added by the multi-period formulation, we propose an

accelerated version of the algorithm proposed in chapter 2 to improve its computational per-

formance and scalability. Accordingly, the contributions of this work are on the formulation

(multi-period), application (centralized and distributed networks), and additional steps to

the bilevel decomposition algorithm.

The remainder of the chapter is organized as follows. We begin by presenting in Sec-

tion 3.1 the problem statement. Section 3.2 includes the General Disjunctive Programming

(GDP) formulation and its reformulation as a nonconvex MINLP. In Section 3.3 we propose
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an accelerated version of the global optimization algorithm by Lara et al. (2018c), which is

guaranteed to have ε-convergence, and illustrate the method for a test problem. In Section

3.4 we benchmark the performance of the accelerated algorithm against the original and the

commercial global solvers available for the set of randomly generated instances from Lara

et al. (2018c) extended to multi-period problems. Finally, in Section 3.5 we apply the for-

mulation and solution strategy to a biomass supply chain case study, and in Section 3.6 we

draw the conclusions.

3.1 Problem Statement

Given is a set of suppliers i ∈ I, with their respective fixed location coordinates (Xi, Yi),

availability AVi,t, and cost of material supply CRMi,t at each time period t ∈ T . Given is

also a set of customers j ∈ J , with their respective fixed locations (Xj, Yj), and demands

DMj,t per time period t. Given are the fixed and variable investment costs (FICk,t and

V ICk,t, respectively) and variable operating costs (V OCk,t) of potential facilities k ∈ K

with N different types (i.e. centralized and distributed N = 2), which are partitioned into

subsets Kn ∀ n ∈ N = {1, ..., N} such that
⋃
n∈N Kn = K and Knl ∩ Knm = ∅ ∀nl, nm ∈

N , l 6= m. The corresponding maximum capacity, MCk, and conversion to product flows,

CVk, of these potential facilities are also known. Given are also the transportation costs

between suppliers and facilities, and facilities and markets (FTCs
i,k, FTC

c
k,j: fixed costs;

V TCs
i,k, V TC

c
k,j: variable costs). The problem is to find the optimal network of facilities

(number, types, location, when to build, and corresponding flows) that minimizes the total

cost.

The variables in the problem are the coordinates of potential facilities, (xk, yk), the dis-

tances between supplier and facility, ds
i,k, and between facility and customer, dc

k,j, the flows

between supplier and facility, ff si,k,t, and between facility and customer, ff c
k,j,t, and the

amount produced by each facility, fk,t, in each time period t. There are also Boolean vari-

ables: Bk,t (true if facility is built in time period t; false otherwise); Wk,t (true if facility is

in operation in time period t; false otherwise); Zs
i,k,t (true if material supply is transported
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between supplier and facility during time period t; false otherwise); and Zc
k,j,t (true if product

is transported between facility and customer during time period t; false otherwise).

3.2 Model Formulation

3.2.1 Generalized Disjunctive Programming (GDP)

We first formulate the problem as Generalized Disjunctive Programming (GDP) to take
advantage of the disjunctive structure of some of the decisions. Extending the model pro-
posed by Lara et al. (2018c), the GDP formulation is given by Equations (3.1a)-(3.1t).

min Φ =
∑
t∈T

1

(1 +R)t
·
∑
k∈K

invk,t + opk,t +
∑
i∈I

costsi,k,t +
∑
j∈J

costck,j,t

 (3.1a)

s.t.

 Bk,t

invk,t = FICk,t + V ICk,t ·MCk

 ∨
 ¬Bk,t
invk,t = 0

 ∀ k ∈ K, t ∈ T (3.1b)


Wk,t

opk,t = V OCk,t · fk,t
0 ≤ fk,t ≤MCk

 ∨

¬Wk,t

opk,t = 0

fk,t = 0

 ∀ k ∈ K, t ∈ T (3.1c)


Zs
i,k,t

costsi,k,t = CSi,t · ff s
i,k,t + FTCs

i,k + V TCs
i,k · ff

s
i,k,t · d

s
i,k

0 ≤ ff s
i,k,t ≤ FF

s
i,k,t

 ∨


¬Zs
i,k,t

costsi,k,t = 0

ff s
i,k,t = 0

 ∀ i ∈ I, k ∈ K, t ∈ T (3.1d)


Zc
k,j,t

costck,j,t = FTCc
k,j + V TCc

k,j · ff
c
k,j,t · d

c
k,j

0 ≤ ffc
k,j,t ≤ FF

c
k,j,t

 ∨


¬Zc
k,j,t

costck,j,t = 0

ffc
k,j,t = 0

 ∀ k ∈ K, j ∈ J , t ∈ T (3.1e)


∨
t∈T Bk,t

0 ≤ xk ≤ Xk
0 ≤ yk ≤ Yk

 ∨

¬
∨
t∈T Bk,t

xk = 0

yk = 0

 ∀ k ∈ K (3.1f)

dsi,k ≥
√

(Xi − xk)2 + (Yi − yk)2 ∀ i ∈ I, k ∈ K (3.1g)

dck,j ≥
√

(Xj − xk)2 + (Yj − yk)2 ∀ k ∈ K, j ∈ J (3.1h)

Wk,t ⇐⇒
∨
i∈I

Zs
i,k,t ∀ k ∈ K, t ∈ T (3.1i)

Wk,t ⇐⇒
∨
j∈J

Zc
k,j,t ∀ k ∈ K, t ∈ T (3.1j)

Wk,t ⇐⇒ Wk,t−1 ∨Bk,t ∀ k ∈ K (3.1k)∑
k∈K

fsi,k,t ≤ AVi,t ∀ i ∈ I, t ∈ T (3.1l)

∑
i∈I

fsi,k,t · CVk = fk,t ∀ k ∈ K, t ∈ T (3.1m)
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fk,t =
∑
j∈J

fck,j,t ∀ k ∈ K, t ∈ T (3.1n)

∑
k∈K

fck,j,t = DMj,t ∀ j ∈ J , t ∈ T (3.1o)

wk ≥ wk+1 ∀ k ∈ Kn, n ∈ N (3.1p)

xk ≥ xk+1 ∀ k ∈ Kn, n ∈ N (3.1q)

Dmin ≤ dsi,k ≤ D
max ∀ k ∈ K (3.1r)

Dmin ≤ dck,j ≤ D
max ∀ k ∈ K (3.1s)

Bk,t,Wk,t, Z
s
i,k,t, Z

c
k,j,t ∈ {True, False} ∀ i ∈ I, k ∈ K, j ∈ J , t ∈ T (3.1t)

The objective function (3.1a) is the net present cost, which includes investment and

operating costs for building and operating the facilities, and transportation cost from the

suppliers and to the customers with an interest rate, R. This is different than the GDP

proposed by Lara et al. (2018c) as it now includes a series of cash flows occurring at each

time period, and the facility costs are divided into investment and operating costs.

Disjunction (3.1b) determines whether facility k is built at time t (Bk,t), and disjunction

(3.1c) determines whether facility k is in operation at time t (Wk,t). These disjunctions

indirectly address the choice between centralized and distributed facilities as each of the

potential facilities have a specified type (i.e. distributed or centralized) and their character-

istics and costs are drawn from their type. This differs from the formulation by Lara et al.

(2018c) where multiple types are allowed instead of only two.

Disjunctions (3.1d) and (3.1e) decide if there is material flow between the transportation

links {i, k} and {k, j} at each time period t, which is determined by the corresponding

Boolean variables (Zs
i,k,t, Zc

k,j,t). The last disjunction, (3.1f), specifies that if a facility k

is built at any point within the planning horizon, its coordinates should be within the

appropriate bounds. However, if this facility is not built, then its coordinates should be

set to (0, 0), to avoid degeneracy in the solution. These five proposed disjunctions, (3.1b)-

(3.1f), are similar to the disjunctions in the GDP model by Lara et al. (2018c), but have

the additional flexibility of allowing different allocations by time-period, specifying in which

time period a facility is built, and only accounting for operating costs in the time periods

the facility is in operation.
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Constraints (3.1g) and (3.1h) represent the Euclidean distances between suppliers and

facilities, and facilities and customers, which is the same distance representation used by

Lara et al. (2018c). The logic relations in (3.1i), (3.1j) and (3.1i) establish the existence of

links depending on the choice of the facilities and vice-versa, and specify that a facility k

can only operate (Wk,t) if it has been built before (Bk,t). Constraints (3.1l)-(3.1o) define the

mass balances, as well as the availability and demands, same as in Lara et al. (2018c).

We assume that the facilities of the same type have the same costs and characteristics

associated with them, i.e., FICk,t, V ICk,t, V OCk,t, FTCi,k,t, V TCi,k,t, FTCk,j,t, V TCk,j,t,

MCk, and CVk are the same ∀ k ∈ Kn. Analogously to Lara et al. (2018c), we have

constraints (3.1p)-(3.1q) to break the symmetry in the facility selection within the same

type and avoid degeneracy in the solution. These constraints enforce that for facilities k of

the same type, i.e., k ∈ Kn, n ∈ N , the model will chose first to build the ones with the lower

indices, and those will be located in lower xk coordinate. Finally, constraints (3.1r)-(3.1s)

determine the bounds for the distances, Dmin and Dmax, and (3.1t) defined the Boolean

variables.

The GDP model (3.1) is nonconvex due to the bilinear terms (ff ·d) in the transportation

cost, as can be seen in disjunctions (3.1d)-(3.1e). There is a large body of literature on

relaxations and reformulations of bilinear terms, most of them deriving from the McCormick

envelope (McCormick, 1976): e.g. Bergamini et al. (2005); Gounaris et al. (2009); Vielma

and Nemhauser (2011); Misener et al. (2011); Kolodziej et al. (2013). The presence of

bilinear terms, which can give rise to local minima, is the main motivation behind choosing

a GDP formulation. By having the bilinear terms as part of the disjunctions, they are

calculated only for the selected connections within an iterative procedure. Therefore, for a

fixed choice of Boolean variables, the GDP leads to a reduction in the number of bilinear

terms and generates a more favorable structure that can be exploited in a decomposition

scheme. Additionally, equations (3.1g)- (3.1h) are nonlinear convex constraints since they

correspond to Euclidean norms (Al-Loughani, 1997).
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3.2.2 Mixed-integer nonlinear Programming (MINLP) model

The GDP can be transformed into an MINLP using the hull reformulation, which yields
the tightest relaxation for each disjunction (Trespalacios and Grossmann, 2014). Since the
disaggregated variables can be reformulated back to the original variables, the resulting
MINLP is given by Equations (3.2a)-(3.2x). Again, the main difference between the MINLP
reformulation presented in Lara et al. (2018c) and the following MINLP is the added flexi-
bility of allowing multi-period operating and allocation decisions, as well as accounting for
operating costs by time-period.

min Φ =
∑
t∈T

1

(1 +R)t
·
∑
k∈K

invk,t + opk,t +
∑
i∈I

costsi,k,t +
∑
j∈J

costck,j,t

 (3.2a)

s.t invk,t = (FICk,t + V ICk,t ·MCk) · bk,t ∀ k ∈ K, t ∈ T (3.2b)

opk,t = V OCk,t · fk,t ∀ k ∈ K, t ∈ T (3.2c)

costsi,k,t = CSi,t · fsi,k,t + FTCs
i,k · zs

i,k,t + V TCs
i,k · ff s

i,k,t · ds
i,k ∀ i ∈ I, k ∈ K, t ∈ T (3.2d)

costck,j,t = FTCc
k,j · zc

k,j,t + V TCc
k,j · ff c

k,j,t · dc
k,j ∀ k ∈ K, j ∈ J , t ∈ T (3.2e)

ds
i,k ≥

√
(Xi − xk)2 + (Yi − yk)2 ∀ i ∈ I, k ∈ K (3.2f)

dc
k,j ≥

√
(Xj − xk)2 + (Yj − yk)2 ∀ k ∈ K, j ∈ K (3.2g)∑

k∈K

ff s
i,k,t ≤ AVi,t ∀ i ∈ I, t ∈ T (3.2h)

∑
i∈I

ff s
i,k,t · CVk = fk,t ∀ k ∈ K, t ∈ T (3.2i)

fk,t =
∑
j∈J

ff c
k,j,t ∀ k ∈ K, t ∈ T (3.2j)

∑
k∈K

ff c
k,j,t = DMj,t ∀ j ∈ J , t ∈ T (3.2k)

wk,t =
∑
i∈I

zs
i,k,t ∀ k ∈ K, t ∈ T (3.2l)

wk,t =
∑
j∈J

zc
k,j,t ∀ k ∈ K, t ∈ T (3.2m)

wk,t = wk,t−1 + bk,t ∀ k ∈ K, t ∈ T (3.2n)

0 ≤ fk,t ≤MCk · wk,t ∀ k ∈ K, t ∈ T (3.2o)

0 ≤ ff s
i,k,t ≤ FF s

i,k,t · z
s
i,k,t ∀ i ∈ I, k ∈ K, t ∈ T (3.2p)

0 ≤ ff c
k,j,t ≤ FF c

k,j,t · z
c
k,j,t ∀ k ∈ K, j ∈ J , t ∈ T (3.2q)
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0 ≤ xk ≤ Xk ·
∑
t∈T

bk,t ∀ k ∈ K (3.2r)

0 ≤ yk ≤ Yk ·
∑
t∈T

bk,t ∀ k ∈ K (3.2s)

wk,t ≥ wk+1,t ∀ k ∈ Kn, n ∈ N , t ∈ T (3.2t)

xk ≥ xk+1 ∀ k ∈ Kn, n ∈ N (3.2u)

Dmin ≤ ds
i,k ≤ Dmax ∀ i ∈ I, k ∈ K (3.2v)

Dmin ≤ dc
k,j ≤ Dmax ∀ k ∈ K, j ∈ J (3.2w)

bk,t, wk,t, z
s
i,k,t, z

c
k,j,t ∈ {0, 1} ∀ i ∈ I, k ∈ K, j ∈ J , t ∈ T . (3.2x)

The MINLP model (3.2) can be more concisely represented by (3.3).

Φ = min g(f, ff, z) + dᵀCff (3.3a)

s.t. dl,k ≥
√

(Xl − xk)2 + (Yl − yk)2 ∀l ∈ I ∪ J , k ∈ K (3.3b)

f, ff, z, d, x, y ∈ Ω, (3.3c)

where ff is the vector of all flows between suppliers and facilities, ff si,k,t, and between facilities

and customers, ff c
k,j,t; f is the vector of all facilities’ productions at each time period, fk,t;

z is the vector of all discrete decision variables (bk,t, wk,t, zs
i,k,t, and zc

k,j,t); and g(f, ff, z)

is the cost function associated with these decision variables. Additionally, d is the vector

of distances, C is the matrix of variable transportation costs (V TCs
i,k and V TCc

k,j), and

(dᵀCff) is the bilinear term associated with the variable transportation cost. Constraint

(3.3b) represents both constraints (3.1g) and (3.1h), and the feasible region Ω is given by

(3.2h)-(3.2x).

3.3 Accelerated Bilevel Decomposition Algorithm

As shown by Lara et al. (2018c), global optimization solvers do not perform well for mid

to large instances of the single-period version of this problem. Thus, it is expected that

with the added complexity of having multi-period decisions their performance will degrade
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even further. Lara et al. (2018c) propose a Bilevel Decomposition algorithm that consists of

decomposing the problem into a master problem and a subproblem, for which ε-convergence

can be proved. The master problem is based on a relaxation of the nonconvex MINLP,

which yields an MILP that predicts the selection of facilities and their links to suppliers and

customers, as well as a lower bound on the cost of the original problem. The subproblem

corresponds to a nonconvex NLP of reduced dimensionality that results from fixing the

binary variables in the MINLP problem, according to the binary variables predicted in the

MILP master problem.

In this chapter, we propose an accelerated version of the algorithm proposed by Lara

et al. (2018c) that keeps its rigor (i.e., its ε-convergence), but has some additional steps to

improve its performance to allow the solution of large-scale multi-period instances of this

problem within a reasonable amount of time. The additional steps consist of an attempt of

reducing the optimization search space such that it is easier for the Bilevel Decomposition

to find good bounds and the optimal solution. These steps consist of: i) possibly reducing

the set of potential facilities by performing branch-and-bound on the facilities that were not

selected; ii) potentially reducing the feasible two-dimensional space by performing a branch-

and-bound on the partitions that did not have any facility being built on; iii) giving an initial

feasible solution to the Master Problem based on the solution of the previous iteration.

The main steps in the Accelerated Bilevel Decomposition are shown in Figure 3.1.

Figure 3.1: Accelerated Bilevel Decomposition concise representation
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We start by explaining the basic steps of the original algorithm by Lara et al. (2018c)

applied to the current MINLP formulation (3.2), and then cover the proposed additional

steps to improve its performance.

3.3.1 Master Problem

The nonlinearity and nonconvexity of the formulation come from the fact that the location

of the potential facilities is a decision variable. The master problem takes advantage of this

property and partitions the space into uniform rectangular sub-regions. By having a grid

to represent the feasible area, we can pre-compute the minimum distance between the fixed

points (suppliers and customers) and use them as parameters in the model (Lara et al.,

2018c). The minimum distances between the fixed points and the sub-regions p, D̂i,p and

D̂j,p, are computed as follows:

dxi,p = max{|Xi − xp| −∆x/2, 0} ∀ i ∈ I, p ∈ P (3.4a)

dyi,p = max{|Yi − yp| −∆y/2, 0} ∀ i ∈ I, p ∈ P (3.4b)

dxj,p = max{|Xj − xp| −∆x/2, 0} ∀ j ∈ J , p ∈ P (3.4c)

dyj,p = max{|Yj − yp| −∆y/2, 0} ∀ j ∈ J , p ∈ P (3.4d)

D̂i,p = max{
√
dx2

i,p + dy2
i,p, D

min} ∀ i ∈ I, p ∈ P (3.4e)

D̂j,p = max{
√
dx2

j,p + dy2
j,p, D

min} ∀ j ∈ J , p ∈ P , (3.4f)

where (xp, yp) are the coordinates of the mid-point of each sub-region p; ∆x and ∆y are the

length of sub-region p in the x and y directions, respectively; Dmin is the lower bound for

the distances, not allowing the model to choose to build a facility k on top of a fixed point

from a supplier or a customer (Lara et al., 2018c).

By using the minimum distance parameters, the MINLP formulation (3.2) can be refor-
mulated as a mixed-integer linear programming (MILP) model (3.5), which yields a lower
bound to the solution of the original models (3.1) and (3.2), as proved in Proposition 1
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of Lara et al. (2018c).

min Φ =
∑
t∈T

1

(1 +R)t
·
∑
k∈K

∑
p∈P

invk,p,t + opk,p,t +
∑
i∈I

costsi,k,p,t +
∑
j∈J

costck,j,p,t

 (3.5a)

s.t invk,p,t = (FICk,t + V ICk,t ·MCk) · bk,p,t ∀ k ∈ K, p ∈ P, t ∈ T (3.5b)

opk,p,t = V OCk,t · fk,p,t ∀ k ∈ K, p ∈ P, t ∈ T (3.5c)

costsi,k,p,t = CSi,t · ff s
i,k,p,t

+ FTCs
i,k · zs

i,k,p,t + V TCs
i,k · D̂s

i,p · ff s
i,k,p,t ∀ i ∈ I, k ∈ K, p ∈ P, t ∈ T (3.5d)

costck,j,p,t = FTCc
k,j · zc

k,j,p,t + V TCc
k,j · D̂c

j,p · ff c
k,j,p,t ∀ k ∈ K, j ∈ J , p ∈ P, t ∈ T (3.5e)∑

k∈K

∑
p∈P

ff s
i,k,p,t ≤ AVi,t ∀ i ∈ I, t ∈ T (3.5f)

∑
i∈I

ff s
i,k,p,t · CVk = fk,p,t ∀ k ∈ K, p ∈ P, t ∈ T (3.5g)

fk,p,t =
∑
j∈J

ff c
k,j,p,t ∀ k ∈ K, p ∈ P, t ∈ T (3.5h)

∑
k∈K

∑
p∈P

ff c
k,j,p,t = DMj,t ∀ j ∈ J , t ∈ T (3.5i)

wk,p,t =
∑
i∈I

zs
i,k,p,t ∀ k ∈ K, p ∈ P, t ∈ T (3.5j)

wk,p,t =
∑
j∈J

zc
k,j,p,t ∀ k ∈ K, p ∈ P, t ∈ T (3.5k)

wk,p,t = wk,p,t−1 + bk,p,t ∀ k ∈ K, p ∈ P, t ∈ T (3.5l)∑
p∈P

wk,p,t ≤ 1 ∀ k ∈ K, t ∈ T (3.5m)

∑
p∈P

bk,p,t ≤ 1 ∀ k ∈ K, t ∈ T (3.5n)

∑
p∈P

zs
i,k,p,t ≤ 1 ∀ k ∈ K, t ∈ T (3.5o)

∑
p∈P

zc
k,j,p,t ≤ 1 ∀ k ∈ K, t ∈ T (3.5p)

0 ≤ fk,p,t ≤MCk · wk,p,t ∀ k ∈ K, p ∈ P, t ∈ T (3.5q)

0 ≤ ff s
i,k,p,t ≤ FF s

i,k,t · z
s
i,k,p,t ∀ i ∈ I, k ∈ K, p ∈ P, t ∈ T (3.5r)

0 ≤ ff c
k,j,p,t ≤ FF c

k,j · z
c
k,j,p,t ∀ k ∈ K, j ∈ J , p ∈ P, t ∈ T (3.5s)∑

p

wk,p,t ≥
∑
p∈P

wk+1,p,t ∀ k ∈ Kn, n ∈ N , t ∈ T (3.5t)
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∑
p′≤p

wk′,p′,t ≥
∑
p∈P

wk,p,t ∀ k′ < k, k, k′ ∈ Kn, n ∈ N , t ∈ T (3.5u)

bk,p,t, wk,p,t, z
s
i,k,p,t, z

c
k,j,p,t ∈ {0, 1} ∀ i ∈ I, k ∈ K, j ∈ J , p ∈ P, t ∈ T . (3.5v)

Following the same notation as in (3.3), the MILP master problem (3.5) can be concisely

represented by (3.6).

ΦLB = min g(f, ff, z) +DᵀCff (3.6a)

s.t. f, ff, z, d, x, y ∈ Ω′ (3.6b)

where D is the vector of minimum distance parameters, D̂i,p and D̂j,p, and Ω′ represents the

feasible region described by constraints (3.5f)-(3.5v).

3.3.2 Subproblem

After solving the master problem (3.5), the subproblem consists of solving (3.2) for the

fixed decisions of which facilities k to build and operate at each time period t, b̂k,t and ŵk,t,

respectively, and how to allocate their material supply ẑs
i,k,t and products ẑc

k,j,t as selected in

the MILP (3.5).

Besides fixing the discrete decisions, we also update the bounds of the facilities coordi-

nates such that their location (xk, yk) has to lie within the bounds of the sub-region p chosen

in the Master Problem; i.e., for a p such that
∑

t∈T bk,p,t = 1 in the solution of Problem (3.5)

we have that X ′k,p ≤ xk ≤ X
′
k,p and Y

′
k,p ≤ yk ≤ Y

′
k,p, where:

X ′k,p = xp −∆x/2 ∀ k ∈ K (3.7a)

X
′
k,p = xp + ∆x/2 ∀ k ∈ K (3.7b)

Y ′k,p = yp −∆y/2 ∀ k ∈ K (3.7c)

Y
′
k,p = yp + ∆y/2 ∀ k ∈ K. (3.7d)

This assumption greatly impacts tractability because the bounds for di,k and dk,j, which
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are part of the bilinear terms, become tighter, i.e., D′i,k,p ≤ di,k ≤ D
′
i,k,p and D′k,j,p ≤ dk,j ≤

D
′
k,j,p, where:

D′i,k,p = D̂i,p ∀ i ∈ I, k ∈ K (3.8a)

D
′
i,k,p = D̂i,p +

√
∆x2 + ∆y2 ∀ i ∈ I, k ∈ K (3.8b)

D′k,j,p = D̂j,p ∀ j ∈ J , k ∈ K (3.8c)

D
′
k,j,p = D̂j,p +

√
∆x2 + ∆y2 ∀ j ∈ J , k ∈ K. (3.8d)

Accordingly, the McCormick convex envelopes (McCormick, 1976) also become tighter,

strengthening the lower bounds in the global optimization search of this NLP.

Following the same notation as in (3.3) and (3.6), the NLP subproblem can be concisely

represented by (3.9).

ΦUB = min g(f, ff, ẑ) + dᵀCff (3.9a)

s.t. dl,k ≥
√

(Xl − xk)2 + (Yl − yk)2 ∀l ∈ I ∪ J , k ∈ K (3.9b)

f, ff, d, x, y ∈ Ω′′ (3.9c)

where ẑ represents the discrete decisions obtained in the solution of the Master Problem 3.6

and fixed for this Subproblem, and Ω′′ represents the feasible region Ω with the updated

bounds for the distances and (x, y) coordinates, di,k, dk,j, and (xk, yk), respectively.

The subproblem (3.9) is a reduced nonconvex NLP. Since it comprises the original prob-

lem (3.3) for a set of fixed discrete decisions and tighter bounds for the distances and (x,y)

coordinates, it yields a feasible Upper Bound (UB) to the total cost, ΦUB ≥ Φ.

3.3.3 Facility Pruning

There are instances, especially the ones that favor centralized networks, in which having

a large set of potential distributed facilities adds unnecessary burden to their solution. With

this in mind, we propose an additional step to the original Bilevel Decomposition (Lara et al.,
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2018c) based on the branch-and-bound algorithm. After solving the Master Problem and

the Subproblem, this step consists of solving the MILP (3.5) with the additional constraint:

∑
p∈P

∑
t∈T

bk′,p,t ≥ 1 (3.10)

for each facility k′ that was not selected to be built by the Master Problem (3.5). Constraint

(3.10) enforces facility k′ to be built in one of the partition during the considered planning

horizon. ΦLB,k′ is the optimal solution of the MILP (3.5) with constraint (3.10) for facility

k′. Based on this additional constraint, we have the following Proposition 1.

Proposition 1. If the result of the MILP (3.5) plus the additional constraint (3.10), ΦLB,k′ ,

is greater than the upper bound obtained by the NLP subproblem, it means that building

this facility k′ will never be optimal hence it can be excluded from the set of potential

facilities.

Proof. From Proposition 1 of Lara et al. (2018c) we know that the optimal value of the

MILP (3.5), ΦLB, is an underestimator of the optimal value of MINLP (3.5), Φ. Hence, the

optimal value of the MILP (3.5) with the additional constraint (3.10), ΦLB,k′ , underestimates

the optimal value of MINLP (3.5) with this additional requirement of forcing facility k′ to

be built within the planning horizon, Φk′ .

Moreover, from Theorem 1 of Lara et al. (2018c) we have that the optimal value of the

NLP subproblem, ΦUB is an incumbent (i.e. feasible solution) of the MINLP (3.5), such

that ΦLB ≤ Φ ≤ ΦUB. Therefore, if ΦLB,k′ > ΦUB and ΦLB,k′ ≤ Φk′ , then Φk′ > ΦUB and,

consequently, building this facility k′ will never be optimal. Accordingly, facility k′ can be

pruned from the set of potential facilities.

Since all facilities of the same type have exactly the same characteristics and data and

the symmetry breaking constraint (3.2t) forces lower-index facilities of the same type to be

build first, then if facility k′ is pruned, it means that all facilities k′′ such that k′′ > k′ should

also be pruned (i.e., excluded from the set of potential facilities).
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This step can be computationally expensive; therefore we only perform it in the first

iteration of the algorithm, and also set a maximum solution time for the solution of each

ΦLB,k′ .

3.3.4 Partition Pruning

The idea of the Partition Pruning step is very similar to the Facility Pruning. It consists

of running a set of MILPs (3.5) with the additional constraint:

∑
k∈K

∑
t∈T

bk,p′,t ≥ 1 (3.11)

for each partition p′ that did not have any facility k being built on by the Master Problem

(3.5). This constraint enforces that at least one facility k is built on this partition p′ during

the planning horizon. ΦLB,p′ is the optimal solution of the MILP (3.5) with constraint (3.11)

for partition p′.

Following the same idea as before, we can establish the following Proposition 2.

Proposition 2. If the result of the MILP (3.5) with the additional constraint (3.11), ΦLB,p′ ,

is greater than the upper bound obtained by the NLP subproblem, it means that building

on this partition p′ will never be optimal and this partition and its further refinements can

be excluded from the set of potential partitions.

Proof. This proof is very similar to the proof of Proposition 1. Following the same logic as

before we have that the optimal value of the MILP (3.5) with the additional constraint (3.11),

ΦLB,p′ , underestimates the optimal value of MINLP (3.5) with this additional requirement

of forcing at least one facility to be built on partition p′, Φp′ . Therefore, knowing that

ΦLB ≤ Φ ≤ ΦUB, if ΦLB,k′ > ΦUB and ΦLB,k′ ≤ Φk′ , we can conclude that Φk′ > ΦUB and,

consequently, building a facility on partition p′ will never be optimal. Accordingly, partition

p′ and its further refinements can be pruned from the set of potential facilities.
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This step can also be computationally expensive; therefore we only perform it in the first

two iterations of the algorithm, and also set a maximum solution time for the solution of

each ΦLB,p′ .

Additional to the Partition Pruning step, we automatically prune the partitions that

have their minimum distance to the fixed points, D̂i,p and D̂j,p, plus the diagonal size of the

partition
√

∆x2 + ∆y2 to be less than the allowed minimum distance Dmin, which means

that we prune the partitions in which the maximum distance between them and a fixed point

is less than minimum distance allowed, which would violate the distance bound constraints

in the original MINLP (3.2v) and (3.2w).

3.3.5 Warm-start MILP solutions

The solution of the MILP (3.5) is the main bottleneck to the solution of the Bilevel

Decomposition algorithm because as the number of partitions increases, it greatly impacts

the size of the model and, consequently, its solution time. In order to mitigate this issue, we

warm-start the MILP solutions by providing to the solver a good feasible solution.

This initial feasible solution is directly obtained from the solution of the Master Problem

and Subproblem in the previous iteration, not requiring to solve any additional MILP primal

heuristic (Fischetti and Lodi, 2011). This feasible solution consists of building the facilities

selected on the previous Master Problem (at the same time period as before), and choosing

for their location the partition corresponding to the (xk, yk) coordinates given by the previous

NLP Subproblem. In case the NLP Subproblem builds the facility on the boundary of the

partition chosen by the MILP Master Problem, we select for the warm-start solution the

adjacent partition that shares this boundary. This feasible solution is provided to the MILP

solver (e.g. Gurobi and CPLEX) through the initialize option in Pyomo.

This step is not necessary, as we did not encounter any case in which the MILP solver

could not find a feasible solution without the warm-start. Also, it does not reduce the

computational time required by the MILP solver to solve the LP relaxation. However, it does

provide a good incumbent solution that can help the convergence of the Branch-and-Bound
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algorithm, and expedite the overall convergence of the Accelerated Bilevel Decomposition,

as can be seen in results in sections 3.3.8 and 3.4.

3.3.6 Accelerated Algorithm

As discussed earlier in this section, the Accelerated Bilevel Decomposition Algorithm

consists of iteratively solving the MILP master problem and the NLP subproblem with

additional steps to help convergence: Facility Pruning, Partition Pruning, and Warm-start

of the Master Problem. The proposed algorithm is shown in Figure 3.2.

As proved by Theorem 1 in Lara et al. (2018c), the proposed Bilevel Decomposition

algorithm in Figure 3.2 converges to the global optimum in a finite number of steps within

an ε-tolerance.

3.3.7 Relation between space discretization and optimality toler-

ance

The lower bound of the algorithm is tightly related to how refined the discretization of

space is in the current iteration, as the lower bound comes from the solution of the MILP

(3.5) in which the distance variable is underestimated as the minimum distance between the

fixed points and each partition on the grid. Therefore, Proposition 3 finds an upper bound

to the dimensions of the partitions in the grid, ∆∗, such that if ∆x ≤ ∆∗ and ∆y ≤ ∆∗ the

algorithm will converge in one iteration.

Proposition 3. By starting the Bilevel Decomposition algorithm with a specific p∗x × p∗y

partitioning of the space such that ∆x ≤ ∆∗ and ∆y ≤ ∆∗, the algorithm converges within

ε-tolerance in a single iteration.

Proof. This proposition is true if by starting the Bilevel Decomposition algorithm with a

partitioning of the space such that ∆x ≤ ∆∗ and ∆y ≤ ∆∗, the Master Problem in iter = 1

yields an upper bound, ΦUB, the Subproblem in iter = 1 yields a lower bound, ΦLB, and

both satisfy the optimality tolerance ΦUB − ΦLB ≤ ε. Thus, from (3.6) and (3.9) we have
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Figure 3.2: Accelerated Bilevel Decomposition Representation
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that:

ΦUB − ΦLB ≤ ε (3.12a)

g(f ∗, ff ∗, ẑ) + d∗ᵀCff ∗ − g(f̂ , f̂f , ẑ)−DᵀCf̂f ≤ ε (3.12b)

where the superscript ∗ denotes the optimal solution of the variables in the NLP (3.9), and

the accentˆdenotes the optimal solution of the variables in the MILP (3.6).

From Proposition 1 by Lara et al. (2018c) we know that the difference between the

MINLP (3.2) and the MILP (3.5) is the underestimation of transportation costs by the

latter. Additionally, from Proposition 2 of the same paper, we have that for an infinite

number of partitions the MILP (3.5) becomes an exact infinite dimensional representation

of the MINLP (3.2) and both (3.2) and (3.5) have the same optimal solution Φ∗ = Φ̂.

Since the difference in the optimal value of the MINLP and its MILP underestimation is

only due to the underestimation of the bilinear term, we can fix the optimal solution for the

continuous variables f and ff to be the same between in MILP and the NLP, i.e., f ∗ = f̂

and ff ∗ = f̂f , and this would give as a feasible solution Φfeas ≥ ΦUB. Thus, if the optimality

tolerance is satisfied by Φfeas, it is also satisfied by ΦUB. Therefore, for the sake of simplicity,

we can omit the superscripts and write that

dᵀCff −DᵀCff≤ ε (3.12c)∑
l∈I∪J

∑
k∈K

∑
t∈T

Cl,k,t · ffl,k,t · (dl,k −Dl,k)≤ ε (3.12d)

Since dl,m −Dl,m ≤
√

(∆x∗)2 + (∆y∗)2, if

∑
l∈I∪J

∑
k∈K

∑
t∈T

Cl,k,t · ffl,k,t ·
√

(∆x∗)2 + (∆y∗)2 ≤ ε

is satisfied, then (3.12d) will consequently be satisfied.
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Therefore, we can write that

√
(∆x∗)2 + (∆y∗)2 ·

∑
l∈I∪J

∑
k∈K

∑
t∈T

Cl,k,t · ffl,k,t ≤ ε (3.12e)

Considering an upper bound on the term multiplying the
√

(∆x∗)2 + (∆y∗)2, we denote

it with the accent. If the following condition is satisfied,

√
(∆x∗)2 + (∆y∗)2 ·

∑
l∈I∪J

∑
k∈K

∑
t∈T

Cl,k,t · ffl,k,t ≤ ε (3.12f)

then we can ensure that (3.12d) is satisfied.

Going back to the original (not concise) representation:

∑
l∈I∪J

∑
k∈K

∑
t∈T

Cl,k,t · ffl,k,t =
∑
t∈T

1

(1 +R)t

∑
k∈K

(∑
i∈I

V TCs
i,k,t · ff s

i,k,t +
∑
j∈J

V TCc
k,j,t · ff c

k,j,t

)
(3.12g)

We can then take the maximum of the variable transportation costs over the facilities

k ∈ K such that V TCs
i,t = maxk∈K V TC

s
i,k,t, and V TCc

j,t = maxk∈K V TC
c
k,j,t, and substitute

these parameters back into (3.12g):

∑
l∈I∪J

∑
k∈K

∑
t∈T

Cl,k,t · ffl,k,t ≤
∑
t∈T

1

(1 +R)t

(∑
i∈I

V TCs
i,t

∑
k∈K

ff s
i,k,t +

∑
j∈J

V TCc
j,t

∑
k∈K

ff c
k,j,t

)
(3.12h)

Combining (3.12h) with constraint (3.2k) we can rewrite (3.12h) as follows

∑
l∈I∪J

∑
k∈K

∑
t∈T

Cl,k,t · ffl,k,t ≤
∑
t∈T

1

(1 +R)t

(∑
i∈I

V TCs
i,t

∑
k∈K

ff s
i,k,t +

∑
j∈J

V TCc
j,tDMj,t

)
(3.12i)

and the only remaining variable is ff s
i,k,t.

Now, we can also take maximum value of the variable transportation cost over suppliers
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i such that V TCs
t = maxi∈I V TCs

i,t. Using this new parameter combined with constraints

(3.2i) and (3.2k), and knowing that CVk represents the conversion of facility k thus it is a

fraction number between [0, 1] considering its minimum CV = mink∈K CVk, we can rewrite

(3.12i) as follows

∑
l∈I∪J

∑
k∈K

∑
t∈T

Cl,k,t · ffl,k,t ≤
∑
t∈T

1

(1 +R)t

V TCs
t

∑
k∈K

∑
i∈I

ff s
i,k,t +

∑
j∈J

V TCc
j,tDMj,t

 (3.12j)

≤
∑
t∈T

1

(1 +R)t

V TCs
t

∑
k∈K

fk,t
CVk

+
∑
j∈J

V TCc
j,tDMj,t

 (3.12k)

≤
∑
t∈T

1

(1 +R)t

V TCs
t

∑
k∈K fk,t

mink∈K CVk
+
∑
j∈J

V TCc
j,tDMj,t

 (3.12l)

≤
∑
t∈T

1

(1 +R)t

V TCs
t

CV

∑
j∈J

DMj,t +
∑
j∈J

V TCc
j,tDMj,t

 (3.12m)

With this result, we can go back to (3.12f) and rewrite it as:

√
(∆x∗)2 + (∆y∗)2 ≤ ε∑

t∈T
1

(1+R)t

(
V TCs

t

CV

∑
j∈J DMj,t +

∑
j∈J V TC

c
j,tDMj,t

) (3.12n)

The last step can be applied since the costs and flows are positive, not affecting the sign

of the inequality. Therefore, for ∆∗ = max(∆x∗, ∆y∗), we can write

∆∗ ≤ ε
√

2
∑

t∈T
1

(1+R)t

(
V TCs

t

CV

∑
j∈J DMj,t +

∑
j∈J V TC

c
j,tDMj,t

) (3.12o)

Hence, if the user selects a partitioning of the space p∗x × p∗y such that ∆x ≤ ∆∗ and

∆y ≤ ∆∗ and ∆∗, and ∆∗ is bounded by above as in (3.12o), then the Bilevel Decomposition

algorithm converges in the first step. This means that the solution of the Master Problem in

iter = 1 and the Subproblem in iter = 1 yield bounds that satisfy the optimality tolerance

ΦUB − ΦLB ≤ ε.
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3.3.8 Illustrative Example

We illustrate how the algorithm works by solving a test-case using Network 2 from Lara

et al. (2018c), with facility types 1 and 2 (centralized and distributed, respectively), 5 time-

periods, 10% increase in demand by time period, and interest factor R = 0.01, and optimality

tolerance of ε = 1%. We start iter = 1 with a px = 2 and py = 2 partition of the space, as

shown in Fig. 3.3.

Figure 3.3: Illustrative problem: iteration 1 (px = 2, py = 2)

By solving the Master Problem (3.5) for this grid, we get a LB1 = 144, 712, and a solution

that builds one centralized facility (type 1), k = cf1, on partition p = 2 at time period t = 1

and keeps it operating throughout the planning horizon. We then solve Subproblem (3.9) for

these fixed discrete decisions and obtain a solution that builds facility k = cf1 on coordinate

(46.51, 70.76), yielding a feasible upper bound of UB1 = 149, 236, and an optimality gap of

3%. This gap is higher than the optimality tolerance, hence we proceed with the algorithm.

Since this is the first iteration, we perform the Facility Pruning step. We start by the

second centralized facility k = cf2 which was not built by the Master Problem. By solving

the MILP (3.5) with the additional constraint (3.10), which enforces that k = cf2 is built, we

get ΦLB,cf2 = 150, 135 which is higher than the current UB1, thus we can prune k = cf2 and

know that the optimal solution does not have more than one centralized facility. We then
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continue to solve the Facility Pruning step for the distributed facilities. We start by solving

the MILP with the additional constraint (3.10) for k = df1 and get ΦLB,df1 = 144, 751, which

is lower than the current UB1, thus cannot be pruned. We continue doing the same for

k = df2 and get ΦLB,df2 = 146, 267, which is still lower than the UB1. We then perform

the same step for k = df3 and get ΦLB,df3 = 150, 168, which is higher than UB1, thus we

can prune k = df3 and all the remaining distributed facilities, and know that the optimal

solution does not have more than two distributed facilities.

The next step is to solve the Partition pruning. We solve the MILP (3.5) with the

additional constraint (3.11) for p = {1, 3, 4}, and the results are shown in Table 3.1. Since

none of the ΦLB,p were higher than UB1 = 149, 236, we cannot prune any partition in this

iteration. We proceed then to iter = 2, with px = 4 and py = 4 partition of the space, as

represented in Fig. 3.4, keeping the updated set of potential facilities after pruning.

Figure 3.4: Illustrative problem: iteration 2 (px = 4, py = 4)

Based on the solution of the Master Problem and Subproblem for iteration 1, and the

mapping between partitions in iterations 1 and 2, we warm-start the Master Problem MILP

(3.5) with an initial feasible solution of building k = cf1 on partition p = 7. The solution

yields LB2 = 146, 482, and a solution that builds one centralized facility (type 1), k = cf1,
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on partition p = 11 at time period t = 1 and keeps it operating throughout the planning

horizon. We then solve Subproblem (3.9) for these fixed discrete decisions and get a solution

that builds facility k = cf1 on coordinate (50.00, 69.97), yielding a feasible that is higher

than the previous upper bound, so we keep UB2 = 149, 236. The optimality gap is now 2%,

which is still higher than the optimality tolerance of 1%.

The following step is to solve the Partition pruning for the current grid. Since the

Subproblem builds facility k = cf1 on the boundary between partitions p = 7 and p = 11,

we consider both of them as active and exclude them of the list of partitions to perform the

Partition Pruning step. We solve the MILP (3.5) with the additional constraint (3.11) for

p = {1, . . . , 16} \ {7, 11} and the respective results are shown in Table 3.1. Based on the

results we can prune the current partitions p = {13, 14, 16} and their further refinements.

Table 3.1: Partition Pruning step results (numbers in bold correspond to partitions that were pruned
in the respective iteration)

Iteration 1 Iteration 2
UB1 = 149, 236 UB2 = 149, 236

Partition p ΦLB,p ΦLB,p

1 146,845 148,146
2 - 147,964
3 144,828 148,146
4 144,828 148,892
5 148,093
6 147,452
7 -
8 146,781
9 149,364
10 147,828
11 -
12 146,994
13 150,531
14 149,646
15 148,688
16 149,691

We proceed to iter = 3, with px = 8 and py = 8 partition of the space, as represented in
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Fig. 3.5. All partitions marked with a stripped pattern were pruned in the previous iteration.

Figure 3.5: Illustrative problem: iteration 3 (px = 8, py = 8)

Using the solution of the Master Problem and Subproblem for iteration 2, and the map-

ping between partitions in iterations 2 and 3, we warm-start the Master Problem MILP (3.5)

with an initial feasible solution of building k = cf1 on partition p = 30. The solution yields

LB3 = 147, 805, and a solution that builds one centralized facility (type 1), k = cf1, on par-

tition p = 38 at time period t = 1 and keeps it operating throughout the planning horizon.

We then solve Subproblem (3.9) for these fixed discrete decisions and obtain a solution that

builds facility k = cf1 on coordinate (50.00, 69.97), yielding a feasible that is higher than the

previous upper bound, so we keep UB2 = 149, 236. The optimality gap is now 0.96%, which

is lower than the optimality tolerance of 1%, therefore the algorithm has converged. The

lower bound, upper bound and optimality gap at each iteration are reported in Table 3.2.

Table 3.2: Illustrative test problem results

iter Lower Bound Upper Bound Gap

1 144,712 149,236 3%
2 146,482 149,236 2%
3 147,805 149,236 1%
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As one can see, the lower bound gradually tightens up as the number of iterations iter, and

consequently the number of partitions increase. The optimal network is shown in Figure 3.6.

It takes 192 seconds to solve this instance on a macOS 2.3 GHz Intel Core i5, using Gurobi

8.0.1 to solve the MILPs (optimality tolerance of 0.01% for each MILP) and BARON 18.5.8

to solve the nonconvex NLP (time limit of 30 seconds per NLP). For the Facility Pruning

and Partition Pruning steps, we limit the solution time of the MILPs to 10 seconds.

To evaluate the impact of each of the proposed steps, we solve the same instance using the

Accelerated Bilevel decomposition: (i) without the Facility Pruning step, which takes 2770

seconds; (ii) without the Partition Pruning Step, which takes 211 seconds; and (iii) without

the Warm-start step, which takes 196 seconds. This shows the proposed additional steps

have an additive effect of the performance of the algorithm, and that the Facility pruning is

the step with the greatest impact in the performance for this instance.

Figure 3.6: Illustrative problem optimal network

It takes 2,778 seconds to solve this same instance with the previous Bilevel Decomposition

proposed by Lara et al. (2018c) using the same px, py, nx and ny. Additionally, BARON

18.5.8 takes 1,835 seconds to solve the original nonconvex MINLP (3.2) for this instance,

while SCIP 5.0 and ANTIGONE 1.1 cannot solve it in 3,600 seconds (remaining optimality
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gaps of 2% and 4%, respectively).

By using Proposition 3, we get that if we start with px, py ≥ 20 we have guaranteed

convergence within 1% in the first iteration. This is considerably more refined than the

px, py = 8 needed for the algorithm to converge, showing that even though Proposition 3

provides a valid bound, it is loose for this case, thus using it may add an unnecessary burden

to the solution of the algorithm.

3.4 Computational results

In order to compare the performance of our proposed accelerated algorithm with the

original algorithm and the currently available general purpose global optimization solvers,

we 10 test cases from Lara et al. (2018c). The network varies in size as follows.

• Network 1: 2 suppliers × 2 consumers;

• Network 2: 5 suppliers × 5 consumers;

• Network 3: 10 suppliers × 10 consumers;

• Network 4: 20 suppliers × 20 consumers;

• Network 5: 40 suppliers × 40 consumers;

The 5 network structures are represented in Figures 2.6-2.10.

For each of the network options, we use as centralized facilities the Type 1 facilities

from Lara et al. (2018c) (up to 2 large-scale facilities); and as distributed facilities, we first

use Type 2 (up to 10 mid-scale facilities) and then Type 3 (up to 20 small-scale facilities).

Therefore, for each of the network structures, the problem was solved for 12 and 22, respec-

tively.

We assume that all instances are solved for 5 time periods, and the product demand and

availability of raw material have a 10% increase per time-period.

Each test case is solved using the Accelerated Bilevel Decomposition (Fig 3.2), the orig-

inal Bilevel Decomposition (Lara et al., 2018c), and by general purpose global optimization

solvers, BARON, ANTIGONE and SCIP. We set the optimality tolerance to 2% and the
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maximum total CPU time to 1 hour. Regarding the algorithm, it is required that the Mas-

ter Problem is solved to 0.5% optimality gap (and we use the lower bound of the MILP as

the lower bound in the algorithm), and it is allowed a maximum CPU time of 30 seconds for

the solution of each NLP Subproblem. We start the algorithm with a 2 × 2 partitioning of

the space and at each iteration this partitioning is doubled, i.e Nx, Ny = 2.

Our computational tests were performed on a MacBook Pro laptop with a 2.3 GHz Intel

Core i5, with 8GB of RAM, running on MacOS Mojave. We implemented the monolithic

formulation and the global optimization algorithm in Python/Pyomo (Hart et al., 2017),

solving the MILPs using Gurobi version 8.0.1 (Gurobi Optimization, 2018), the NLPs using

BARON version 16.3.4 (Tawarmalani and Sahinidis, 2005), and the MINLPs using BARON

version 18.5.8 (Tawarmalani and Sahinidis, 2005), ANTIGONE 1.1 (Misener and Floudas,

2014), and SCIP 5.0 (Gleixner et al., 2017). Source code reproducing our results is on

Github (Lara, 2019).

The case-studies are named such that the first 2 letters represent the network (i.e., N1,

N2, N3, N4, and N5, represent Network 1, 2, 3, 4, and 5, respectively), and the last 2 letters

represent the facility types considered (i.e., T1T2 and T1T3 represent types 1 and 2, and

types 1 and 3, respectively). The size of monolithic MINLP formulation (3.2) for each of the

test cases is shown in Table 3.3.

Table 3.3: Monolithic MINLP formulation size

Binary Variables Continuous Variables Constraints

N1-T1T2 360 393 1,265
N2-T1T2 720 825 2,087
N3-T1T2 1,320 1,545 3,457
N4-T1T2 2,520 2,985 6,197
N5-T1T2 4,920 5,865 11,677

N1-T1T3 660 703 2,925
N2-T1T3 1,320 1,495 4,407
N3-T1T3 2,420 2,815 6,877
N4-T1T3 4,620 5,455 11,817
N5-T1T3 9,020 10,735 21,697
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The performance curves for the Accelerated Bilevel Decomposition, the original Bilevel

Decomposition from Lara et al. (2018c) and each of the global solvers are shown in Figure 3.7.

Figure 3.7: Performance curves comparing the Accelerated Bilevel Decomposition algorithm, with
its original version and the commercial global optimization solvers.

The results show that the Accelerated Bilevel Decomposition algorithm was able to find

the optimal solution within 2% optimality tolerance in 70% of the case studies, and performed

better (i.e. found the optimal faster) than the other options in all of them. It can be

noticed that there was a noticeable improvement in performance between the original Bilevel

Decomposition and our Accelerated version of it, being able to solve 7 out of 10 instances

instead of 5 out of 10. The global optimization solver that had the best performance for this

problem and these instances was BARON. SCIP and ANTIGONE had a similar performance,

only being able to solve 2 out of the 10 instances.

To evaluate the impact of each of the proposed steps, we solve these same 10 instances
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using the Accelerated Bilevel decomposition: (i) without the Facility Pruning step, (ii)

without the Partition Pruning Step, and (iii) without the Warm-start step. The performance

curves comparing these options against the proposed Accelerated Bilevel decomposition are

shown in Figure 3.8.

Figure 3.8: Performance curves comparing the Accelerated Bilevel Decomposition algorithm, with
versions without Facility Step, Partition Pruning Step and Warm-start.

The results show that for the smaller instances the absence of each additional step did

not have a great impact on performance. However, for larger instances each additional step

was necessary to allow the solution of 7 instances. The algorithm without the Partition

Pruning and without the Warm-Start could only solve 6 instances within 1 hour, and the

algorithm without the Facility Pruning could only solve 5 instances within 1 hour, which

shows that this is the step with the greatest impact in the performance. It is interesting to

note that for smaller instances not having the Partition Pruning Step reduces the solution

time, which makes sense since this can be a time consuming step that hurts the performance
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of easy instances.

3.5 Biomass supply chain case study

We present a bioethanol case study, adapted from the literature (Lara and Grossmann,

2016; Chen and Grossmann, 2019), to illustrate a real-world application for the proposed

model and solution strategy. Given are 10 switchgrass suppliers and 10 ethanol markets

with locations that are represented in Figure 3.9. There are 12 potential facilities to be

built, of which 10 are distributed (MC = 40.4 MGal/year) and 2 are centralized facilities

(MC = 404 MGal/year). All of the facilities have a conversion of CVk = 26%. Each market

has a demand of 40 MGal of ethanol in the first year, with a 10% increase in demand each

of the following years. Each supplier has 500 kilotonnes/year of switchgrass available, with

a cost of $30/ton, $35/ton, $33/ton, $32/ton, $37/ton, $40/ton, $34/ton, $35/ton, $31/ton

and $39/ton for suppliers 1 to 10, respectively. The fixed transportation costs (FTCi,k,t,

FTCk,j,t) are $10,000/year for all the possible links, and the variable transportation costs are

$2/ton-mile for the switchgrass (V TCi,k,t) and $0.40E-3/gal-mile for the ethanol (V TCk,j,t).

We solve this problem for a 5-year planning horizon.

The resulting model has 3,457 constraints, 1,545 continuous variables, and 1,320 binary

variables. Starting with px, py = 5 and Nx, Ny = 2 it takes 3 iterations and 6 hours to

solve it with the Accelerated Bilevel Decomposition within 2% optimality gap, with an

optimal value of $2.178 billion. We attempted to solve this same instance with BARON (the

commercial global solver that has the best performance in the computational experiments

in Section 3.4), but it only achieved 68% optimality gap when it reached the maximum

solution time of 10 hours, highlighting again the need for a specialized algorithm such as

the proposed Accelerated Bilevel Decomposition to be able to solve real-world applications

of this problem.

The optimal network for the biomass supply chain problem is shown in Figure 3.10 (with-

out the allocation links since it changes according to the time period). All the 10 distributed

facilities were built in year 1, and one centralized facility was built in year 2. It is interesting
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Figure 3.9: Network structure of the biomass supply chain (Lara and Grossmann, 2016)

Figure 3.10: Optimal network for the biomass supply chain

to notice that in some cases the optimization decides to build 2 distributed modular plants

right next to each other instead of replacing them with a larger-scale centralized plant.
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3.6 Conclusions

This chapter has highlighted the need for a general model to optimize the design and

planning of Distributed and/or Centralized manufacturing networks. We propose a GDP

formulation to solve this problem, which belongs to the class of Capacitated Multi-facility

Weber Problem.

We show that with the added complexity of having multi-period decisions the original

Bilevel Decomposition proposed by Lara et al. (2018c) and the available global optimization

solvers (BARON, ANTIGONE and SCIP) do not perform well, taking a long time to find

feasible solutions and an acceptable optimality gap. Therefore, we propose an accelerated

version of the Bilevel Decomposition with additional steps: Facility Pruning, Partition Prun-

ing and Warm-start of the Master Problem. The additional steps do not compromise the

rigorousness of the algorithm, which still has ε-convergence as proven in Lara et al. (2018c).

We discuss theoretical properties of the algorithm and find an upper bound to the space dis-

cretization such that if the space is partitioned in any finer grid, the algorithm is guaranteed

to converge in a single iteration.

Additionally, we perform computational experiments for the multi-period version of the

random instances from Lara et al. (2018c), and show that the proposed Accelerated Bilevel

Decomposition outperforms the original Bilevel Decomposition proposed by Lara et al.

(2018c) and the available global optimization solvers (BARON, ANTIGONE and SCIP)

in all the instances. Finally, we illustrate the applicability of the model and algorithm by

solving a biomass supply chain problem from the literature.
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Part II

Electric Power Infrastructure Planning
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Chapter 4

Impact of Model Resolution on Scenario

Outcomes for Electric Power Generation

Expansion

In his chapter, we perform a systematic comparison of two alternative Generation Ex-

pansion Planning (GEP) frameworks to quantify how the choice of temporal representation

and operational detail in a GEP model impacts the resulting capacity mix projections as

well as operational metrics such as unmet demand, curtailment, and renewable energy pen-

etration. Our analysis is based on a power system that approximately represents the U.S.

Electric Reliability Council of Texas (ERCOT) grid in 2015. Since we focus on highlighting

and understanding the reasons for the relative differences in the outputs of alternate GEP

frameworks, the results presented here should not be interpreted as a detailed analysis of the

ERCOT system along the lines of other efforts in the literature (e.g. Newell et al. (2014)).

Indeed, transmission constraints both within and to and from ERCOT to other regions are

not included (see Section 4.1). Grid stability at every instant of time is not verified. Energy

storage is not considered. Revenue sufficiency constraints are not imposed for any genera-

tors. Therefore, all scenarios evaluated here are meant to exclusively highlight differences in

GEP outputs and should not be interpreted as ERCOT grid projections.
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The rest of the chapter is organized as follows. Section 4.1 provides a brief description of

the two GEP models and the Production Cost Simulation (PCS) model, with comprehensive

algebraic mathematical modeling details in the Appendix A. This is followed by a discussion

of the main data inputs and assumptions in Section 4.2, including the methodology for

generating representative time slices and days for the time-slice (TS-GEP) and chronological

(C-GEP) models respectively. Section 4.3 presents the results of the inter-model comparison,

along with the discussion of the impact of increasing the number of representative days in

the C-GEP. Section 4.4 summarizes the key conclusions and policy implications.

4.1 Methods

Figure 4.1 summarizes the methodology used to investigate the impact of temporal reso-

lution and operational detail in a GEP. Several works (e.g. Brinkman (2015) and Lew et al.

(2013)) have focused on evaluating scenario outcomes of high renewables penetration using a

single GEP (thus, these would follow the left or the right side of Figure 4.1 in which a single

GEP is evaluated). More recently, a few analyses (Cole et al., 2017; Bistline et al., 2017)

have attempted to compare the capacity projections across GEP models for a few scenar-

ios, but have stopped short of comparing operational metrics associated with the projected

capacity in a detailed simulation of annual grid operations. The analysis presented here

relies on a common input data set comprising generator performance attributes and costs,

load and renewable energy generation across multiple historical years and other parameters

(see Section 5.5 and Appendix A). Based on this data set, we define the input parameters

for each GEP, in particular load and renewable energy generation for the specific temporal

resolution in each model. Subsequently, we evaluate the TS-GEP and C-GEP for a range of

hypothetical renewable energy scenarios to estimate the generation capacity in future years.

We go beyond prior GEP assessments by exploring the operational outcomes of the projected

capacity mix of each GEP for multiple realizations of annual load and renewable energy gen-

eration profiles, using the PCS model. For each renewable penetration scenario, the PCS

model simulates the annual hourly dispatch to meet demand and reports various metrics of
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interest, such as unmet demand, share of renewable energy generation, curtailment and so

on. Together, the differences in operational metrics and generation capacity outputs across

the two GEP models form the basis for our conclusions on the impact of temporal resolution

in a GEP framework.

Figure 4.1: Methodology to systematically compare alternate temporal resolution in power system
capacity expansion models across different scenarios. Diamonds refer to model outputs and dot-
ted lines correspond to inputs to the production cost simulation (PCS) model. GEP = Capacity
expansion model; TS = Time slice; C = Chronological.

4.1.1 Summary of Chronological and Time Slice Capacity Expan-

sion Models

The two least-cost power generation GEP models developed in this study, C-GEP and

TS-GEP, are deterministic inter-temporal optimization models that take the vantage point of

a centralized planner seeking to determine cost-optimal expansion decisions over a planning
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horizon of several decades. Regarding their similarities, both models minimize total cost

(discounted to present value), which includes installation (CAPEX) costs for new capacity

being built, costs to extend the lifetime of installed capacity, operating costs (fixed and vari-

able), fuel costs, generator start-up costs (C-GEP only), and unserved load. The objective

function also includes cost savings attributed to the December 2016 implementation of the

investment and production tax credits for wind and solar photovoltaic (PV) generation in

the U.S. context (see data inputs in Table A.13) (DOE, 2016a,b). The models represent solar

and wind capacity expansion decisions as “continuous” decisions meaning that a fractional

wind generator can be built. Importantly, both models represent the existing fleet of coal,

NG and nuclear as well as wind and solar PV generators in ERCOT by clustering the entire

fleet into seven different generator types. As done in EPA (2013), both models also allow

for aging capacity to be retired or extended, whereby the extension option incurs a one-time

cost of extension and returns to operation with the same operational parameters. For each

generation technology, both models include annual capacity installation limits (EPA, 2013)

that implicitly account for supply chain constraints associated with emerging technology

deployment. The models use as input the same forecasted load growth, the same suite of

generation technologies to meet this growth, and the same associated cost assumptions to

model grid evolution in 3-year time increments from 2015 to 2045 (see Appendix A.2). It is

precisely the dissimilarities described below that will help elucidate why different expansion

decisions are made by the C-GEP and TS-GEP in certain scenarios. Figure 4.2 illustrates the

differences in temporal representation of grid operations between the C-GEP and TS-GEP.

Temporally, the C-GEP represents annual load as well as wind and solar generation using

12 representative days at an hourly time resolution, whereas the TS-GEP represents annual

load as well as wind and solar generation, with 16 time slices representing different times of

day and seasons. In other words, the TS-GEP averages load and renewable energy capacity

factor data (see Figure 4.3) in each of the four seasons (spring, summer, fall, winter) into

time slices representing morning (7 am - 2 pm), afternoon (2-6 pm), evening (6-11 pm), and

night (11 pm - 7 am). With the exception of minimum turndown constraints for coal and
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nuclear generators, discussed in Section 4.1.3, the TS-GEP does not link two consecutive

time slices with respect to operational constraints.

Figure 4.2: Differences in temporal resolution of the alternate capacity expansion models studied
here: TS-GEP (top) and C-GEP (bottom).

In contrast, the C-GEP, as its name suggests, “sees” chronology, and therefore events that

occur in a given hour are related to events that occur in the preceding and subsequent hours.

The C-GEP is a deterministic mixed-integer linear program (MILP), while the TS-GEP is

a deterministic linear program; both have perfect foresight. The complete mathematical

formulation of the C-GEP and TS-GEP and data inputs are available in the supplementary

information (Appendix A).

Operationally, the C-GEP considers important details associated with thermal generators

including: unit commitment decisions (i.e. on/off commitments of generators to meet load),

hourly ramping constraints, spinning reserves, quick-start reserves, and start-up costs. In

contrast, the TS-GEP omits these details, although spinning reserves are partially taken into

account. Lastly, because the C-GEP includes unit commitment decisions, thermal generation

expansion decisions are modeled as integer decisions, unlike the TS-GEP which allows for

a fractional number of thermal generators to be built. Together, the different temporal

resolution and operating constraints of the two models lead to different generator dispatch

profiles to meet load in each time period, which ultimately impacts the capacity investment

decisions.
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4.1.2 Production cost simulation (PCS) model

As is typically done in long-term expansion studies (see, e.g. Deane et al. (2012)), we use

a PCS model, essentially a grid operations model, to independently assess annual operations

(e.g. generation mix, unmet reserves, unmet load, and curtailment) given the installation

decisions prescribed by the two GEP models. The PCS model simulates one year of grid

operations at an hourly resolution. It takes as input a given installation of generators for a

particular year (as determined by solving the GEP models) and solves a simultaneous unit

commitment and economic dispatch problem over all 8760 hours in that year. Since the GEP

models must approximate load and other features in order to be computationally tractable,

the PCS model allows for extreme situations such as peak load, minimum renewable energy

output, which may not be considered by the GEP models, to be evaluated. Further, for each

projected generation capacity mix, we evaluate annual grid operations via the PCS model

for seven different realizations of load, wind and solar PV capacity factor profiles, based on

historical load and renewable generation data available from ERCOT. This approach allows

for quantifying the robustness of capacity mix projected by the two GEP models to prevailing

intra and inter-annual variability in load, wind and solar generation (see Section 4.3.2 and

4.3.3).

The PCS model is a deterministic MILP with perfect foresight. It is quite similar to the

C-GEP, except that it does not include any installation related decisions and it models a

single year of operations with hourly granularity, as opposed to several representative days.

As with the C-GEP, generators are clustered by generator type. Generators in a cluster have

the same attributes. This allows on/off decisions for thermal generators to be modeled using

integer decision variables as opposed to binary decision variables, which would be needed if

each individual thermal generator were modeled. The PCS is solved using a rolling horizon

heuristic with a one-day overlap in which unit commitment and economic dispatch decisions

are made (optimally decided by the mixed-integer programming solver) for 21 consecutive

days (504 hours), after which the first 20 days are implemented. The model then “rolls

forward” to considering the next 21 days. Thus, days 1-21 are optimized, followed by days
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21-41, and so forth. The one-day overlap allows the model to “correct” decisions made in the

last 24 hours that may have been too myopic due to the lack of additional foresight. Each

sub-problem (21-day horizon) is solved with a 30-second time limit and a relative optimality

gap tolerance of 0.01%.

A key difference between the two GEP models and the PCS is the presence of unmet load

and unmet reserves. Because the GEP models “see” only a coarse representation of load and

renewables profiles, they prescribe installation decisions that avoid instances of unmet load

based on the limited operational data present in the model. However, the PCS may encounter

more extreme variability in net load and thus may need to shed some reserves, or worse, load.

The PCS penalizes unmet load at $9000/MWh and approximates the penalty associated with

unmet reserves using a step function, based on an approximation of the current operating

reserve demand curve being used by ERCOT in clearing the market (Potomac Economics,

2016). In particular, for the case when the total operating reserves of 7.5% of load are desired

for every hour, the first 1.5% of unmet operating reserves has a cost of $100/MWh, the next

2% has a cost of $300/MWh, the next 2% has a cost of $3000/MWh, and the last 2% has a

cost of $9000/MWh. As a consequence, if an extreme net load event occurs, the PCS first

sheds reserves according to this step function before ultimately shedding load.

The PCS model does not consider a real-time market. In contrast, commercially-available

grid operations models like PLEXOS or GE MAPS that are designed to closely mimic power

system operations, solve for the cost-optimal dispatch for one day ahead and subsequently

re-adjust the dispatch (without turning on or off generators) based on new information (e.g.

improved weather, load forecast) available in real-time conditions (e.g. 4 hours prior to

dispatch) (Anderson et al., 2016). Another limitation of the PCS model is that it does not

represent the minimum on and off times of thermal generators, which could overestimate

their ability to respond to changing load and renewable energy generation and consequently

underestimate the extent of curtailment reported for each scenario. Despite these limitations,

the PCS model provides a consistent basis for comparing the operational differences in the

capacity mix projected by the two GEP models.
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4.1.3 Key model constraints of GEP models and PCS

A summary of the key constraints in the GEP models and the PCS model that highlight

their similarities and differences are presented in Table 4.1. The complete mathematical

formulation of the two GEP models are presented in Appendix A. A “time period” refers to

an hour of a representative day in the C-GEP, to a time slice, i.e. a season-time block pair

(e.g. summer-afternoon) in the TS-GEP, and an hour of the 8760 hours simulated in the

PCS model.

Table 4.1: Key constraints present in the capacity expansion and production cost simulation models

Constraint type Time Slice
(TS-GEP)

Chronological
(C-GEP)

Production Cost
Simulation (PCS)

Load balance X X X
Generator capacity balance X X
Retirement or life extension decisions X X
Annual installation limits X X
Renewable Portfolio Standards X X
Capacity planning reserve requirements X X
System spinning and total operating
reserve requirements X X

Power output from generators upper
and lower bounds X X

On/off commitment decisions X X
Generator ramping limits X X
Quick start and spinning reserves
provided by thermal generation X X

Minimum turndown constraints
to limit differences in seasonal max
and min outputs

X

The types of constraints governing investment and capacity decisions are:

• Capacity balance constraints. The capacity (MW) of each energy type in year y must

equal the capacity in the previous year (y-1) plus the capacity that came on-line in

year y minus the capacity that was retired in year y.

• Annual installation limits. There is an upper bound on the amount of capacity that

can be built in each year for each technology type (see Table A.12).
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• Retirement/extension constraints. Generators must not exceed their lifetime. They

must be extended (with a cost penalty, see Section A.2 and Table A.10) or retired

before or once they have reached their lifetime. Retired capacity immediately exits the

fleet, i.e. is not available for generation. Extended capacity is kept for the remainder

of the planning horizon and preserves all of the defining characteristics (e.g. heat rate),

except its age is reset to zero.

• Minimum capacity reserve constraints. Minimum capacity reserve requirements are

included to ensure that there is sufficient capacity to meet forecasted peak load in every

year plus some margin of error (see Table 4.3). Capacity values are used to determine

the contribution of each generator type to meet this constraint. Thermal generators

are assumed to have a capacity value of one, while renewable energy generator types

have a capacity less than one (see Section A.2, Table A.10 and Table A.11).

• Renewable Energy constraints. In the years when this constraint is implemented, total

generation from renewables used to serve load must be at least a pre-defined percentage

of the total system load in that year and beyond. This constraint is implemented to

consider renewable energy scenarios (40% to 70%) where applicable.

The types of constraints that govern optimal unit commitment and economic dispatch

include:

• Load constraints. In each time period, the total power (dispatched from thermal

generators and generated from renewable energy) plus unserved load must equal total

system load plus curtailment.

• Ramping constraints. These constraints, typically apply to thermal generators, and

limit the increase/decrease in generation from one period to the next, i.e. rate of change

in generation. They are particularly important when modeling generator operations at

an hourly time scale when substantial load or renewable energy output fluctuations in

successive periods are present. These are explicitly considered in the C-GEP and PCS

model.

• Individual generator constraints. When operating, each generator produces power
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between a minimum and maximum generation level. Because generator types are

modeled, as opposed to individual generators, it is assumed that all units of a given

type provide the same level of power and reserves capacity.

• Quickstart reserves. Thermal generators that are off during a given hour may con-

tribute a fraction of their capacity to quickstart reserves. Total quickstart and spin-

ning reserves must provide the necessary operating reserves (typically a % of load, say

7.5%) in every hour.

• Minimum turndown constraints. Due to its lack of high temporal resolution and

chronology, the TS-GEP could choose to cycle, i.e. turn on and off, thermal plants at a

higher frequency than permitted in practice. Minimum turndown constraints prevent

this undesirable behavior by enforcing the following requirement: in each season, a

thermal generator’s power output in a time slice must be at least a pre-defined fraction

of the maximum power output in that season. These are the only constraints in the

TS-GEP that link operations in different time slices.

4.1.4 Modeling limitations

We focus our study on improving two aspects – operation detail and temporal resolution

– of GEP models to evaluate scenarios of increasing renewable energy penetration. However,

there are other areas of improvement that have deliberately not been addressed here. We

did not consider transmission in either GEP to restrict the analysis to the impact of the

temporal resolution differences (as opposed to spatial resolution differences) between the

models. Moreover, transmission constraints were omitted to ensure the models, particularly

the C-GEP, can be solved to optimality while looking ahead for the 30 year planning horizon

with available solution algorithms. Transmission constraints have been ignored by other

studies (Deetjen et al., 2016) evaluating grid expansion in the ERCOT context, with the jus-

tification that there is ample transmission in the region as a result of the recently completed

transmission upgrades connecting the Panhandle area to the rest of ERCOT. Additionally,

the two GEP models and the PCS model do not consider uncertainty (beyond typical reserve
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constraints), outages (planned or forced), storage, demand response, distributed generation,

nor heat rate deterioration due to partial operation of thermal generators. Although these

deficiencies may seem many, they apply to numerous leading models used in practice, e.g.

IPM, NEMS, and ReEDs.

4.2 Case study and data inputs

4.2.1 Summary of data inputs

The power system we analyze as a case study approximately represents the ERCOT

grid. We approximately model the existing ERCOT generator fleet by clustering individual

generators into seven generator types as per the capacities as of May 2015 (ERCOT, 2015a):

coal, nuclear, NGST, NGCC, Natural gas combustion turbine (NGCT), solar PV (single axis

tracking) and wind. For simplicity, we do not include the relatively small amount of biomass

and hydro capacity present within ERCOT. Electricity imports or exports to and from the

region are ignored in this analysis, given their relatively small share of system demand for

ERCOT (Mann et al., 2017). Within each cluster, there are an integer number of generators

whose operating parameters are assumed to be the same. Table 4.2 summarizes the total

installed capacity for each cluster type and the number of plants within that cluster. Each

of the seven generator clusters are associated with an age distribution, based on the age of

the individual generators that belong to that cluster as of 2015. This information, coupled

with the economic lifetime of each generator type, is used in the TS-GEP and C-GEP to

make retirement or extension decisions on the portion of the capacity that is scheduled to

retire in each year of the planning period.

For new capacity additions, both GEP models are allowed to choose from nine different

generator clusters: coal with and without carbon capture and sequestration (CCS), NGCC

with and without CCS, NGCT, nuclear, new solar PV (single axis tracking), new solar

concentrated solar thermal power (CSP) generation and new wind. The projected capital,

variable operating costs and fixed costs over time for each generator type are retrieved from
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Table 4.2: Summary of existing (2015) generator capacity used in the TS-GEP and C-GEP

System parameters Installed capacity (MW) Number of plants

Total 96,996
Nuclear 5,164 4
Coal 17,397 27
NGCC 39,527 55
NGCT 7,4811 48
NGST 6,219 10
Solar PV 663 17
Wind 20,545 153

the NREL 2016 technology baseline database (NREL, 2016). Fuel costs of coal and NG over

the planning period are taken from the EIA Annual Energy Outlook 2016 (see Figure A.3)

(EIA, 2016). A full description of the cost and technological assumptions for the existing

and new generator clusters can be found in Table A.10 and Table A.11, respectively.

A summary of key system parameters used in both GEP models is presented in Table

4.3. The spinning and operating reserve requirements, implemented for each representative

time block (hour or season) modeled in both GEP models, are based on parameters reported

in the ReEDs model (Short et al., 2011). The planning reserve margin of 13.75% corre-

sponds to the value used by ERCOT as part of its annual resource adequacy assessments.

The annual load growth rate is derived from the forecast developed by ERCOT (ERCOT,

2015b). The discount rate is set to be equal to the nominal value of weighted average cost

of capital assumed in the NREL annual technology baseline (ERCOT, 2016a). In this study,

we consider one unique discount rate for all technologies, as is commonly implemented for

GEP studies. However, in practice, this need not be the case. It is also worth noting that

the assumed capital costs of individual generator types, sourced from the NREL annual

technology baseline (Figure A.1), considers the unique cost of construction period financing

for each technology.

We develop the load and renewable energy data for both GEP models based on the

historical hourly profiles for ERCOT during the period 2004-2010 (ERCOT, 2016a, 2017)

and the methodological approaches described in Section 4.2.1 and 4.2.2. Because the load
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Table 4.3: Summary of key system parameters used in the TS-GEP and C-GEP

System parameters Value Reference

Spinning reserve requirement
(% of load) 3% (Short et al., 2011)

Total operating reserve
requirement (% of load) 7.5% (Short et al., 2011)

Planning reserve margin
(% of peak load) 13.75% (Potomac Economics, 2016)

Annual load growth rate 1.4% (ERCOT, 2015b)
Discount rate 5.4% (ERCOT, 2016a)

profiles of both GEP models are sampled from historical data, the extremes in their load

duration curves are less pronounced than what is present in the actual data as shown in

Figure 4.3A, although the load representation in the C-GEP is a better approximation of the

historical data than the TS-GEP. Similar trends are observed when comparing the sampled

data sets and historical data for renewable energy technology capacity factors (4.3B-C). In

particular, Figure 4.3C illustrates how the time slice representation based on averaging time

series over seasonal time blocks results in a poor characterization of the extreme observations

in the historical wind capacity factor data (low and high). It is also worth noting that despite

the differing temporal resolutions of both GEP models, the average annual capacity factors

of all renewable energy technologies modeled are very similar (Table A.14). For example, the

annual average capacity factor for new wind generators modeled in TS-GEP and C-GEP are

39.2% and 38.9%, respectively. In both GEP models, we model renewable energy generation

based on a capacity factor time series that remains constant from one planning year to the

next within the model time horizon, while we model the load as a time series with the same

variability, but increasing annual average to reflect the assumed annual load growth of 1.4%

per year (Table 4.3).

4.2.2 Selecting time slices for the TS-GEP

Since we are interested in comparing the outputs of two GEP models with differing tem-

poral resolution of grid operations, the method of selecting the sampled load and renewable
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Figure 4.3: Load and renewable energy capacity factor duration curves comparison between histori-
cal data (2004-2010, shown in gray) and the corresponding duration curves assumed in the TS-GEP
and C-GEP. A) Load duration curve comparison after the historical load data for all years is ad-
justed to have the same mean as observed in 2014. The mean absolute error (MAE) between the
duration curves is smaller for the C-GEP (MAE = 694 MW) compared to the TS-GEP (MAE =
1941 MW). B) PV with single axis tracking (PVSAT) capacity factor duration curves result in an
MAE of 0.015 and 0.056 for the C-GEP and TS-GEP, respectively. C) New Wind capacity factor
duration curves result in an MAE of 0.022 and 0.125 for the C-GEP and TS-GEP, respectively,
again indicating that the C-GEP better approximates the historical curves than the TS-GEP.

energy capacity factor data is essential to the analysis. For the TS-GEP, we construct time

slices by first clustering consecutive days into “seasons” (loosely corresponding to spring,

summer, fall, and winter). Within each resulting season, four time slices were created using

the hourly clusters as proposed in ReEDS (Short et al., 2011): morning (7 am - 2 pm),

afternoon (2 - 6 pm), evening (6 - 11 pm), night (11 pm - 7 am). Note that ReEDS considers

a 17th time slice to capture the 40 peak load days in a year.

We determined seasons for the TS-GEP using aggregate ERCOT load data from 2004-

2010 while excluding leap days. As shown in Figure 4.4, aggregate load for each year was

normalized between 0 and 1. A variance-minimizing clustering method was used to determine

the four seasons and works as follows: The year was partitioned into 4 clusters by specifying

4 values marking the “start week” of each season. The same “start week” was used for each

of the seven historical years of data. Given clusters, the variance within each cluster was

computed using each day (a 24-hour vector) as a sample point/observation. To determine
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the optimal clusters, i.e. the best “start weeks,” we iterated over all possible “start weeks”

for each season, such that no two seasons overlapped, and identified the cluster with the

smallest variance. For example, the start week for summer was chosen from weeks 20-48.

This approach is arguably more systematic than the procedure used in ReEDS where seasons

are determined simply by grouping consecutive months (Short et al., 2011). Once time slices

were determined, renewable energy capacity factors in each time slice were computed as the

average capacity factor over all hours in each time slice.

Figure 4.4: Seasons used in the TS-GEP, defined using a variance minimizing clustering method
applied to seven years of historical load data (normalized between 0 and 1). The “start week” of
each season is: spring = week 9, summer = week 18, fall = week 40, winter = week 47.

4.2.3 Selecting representative days for the Chronological GEP

For the C-GEP, we utilize a k-means clustering procedure to determine representative

days for modeling annual grid operations. The goal of the clustering procedure is to select

representative days that closely approximate (i) the cumulative distribution functions (also

known simply as “duration curves”) of historical load and renewable energy time series, (ii)

the temporal correlation of each time series, and (iii) the hourly correlation between load
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and renewable energy time series. The first aim ensures that annual load and renewable

energy capacity factors are adequately represented. The second attempts to ensure that

inter-hour variability is characteristic of the actual system, and thus adequately captures the

need for increased ramping in certain hours of the day. The third attempts to ensure that

load and renewable energy profiles sufficiently characterize the correlation between these

time series throughout the year. The data set used for clustering was the hourly ERCOT

data (ERCOT, 2016a, 2017) for the seven year period from 2004 to 2010, with leap days

excluded. Let D = {1, ..., D = 2555} denote the set of days for the seven year period

from 2004 to 2010, let H = {1, ..., 24} denote the set of hours in a day, and let K =

{load, csp, pvsat, old wind, new wind} denote the set of load/technology types considered for

clustering. Note that we assume the capacity factor profile for new and existing PV plants

to be identical, partly because of data availability and the small amount of installed PV

capacity in ERCOT as of 2015 (Table 4.2). In what follows, a “point” denotes a vector

or time series of data associated with a given day. Specifically, let xd = (xdhk)h∈H,k∈K′

denote a vector of hourly data associated with a subset of types in K ′. For example, if

K ′ = load, then x44 denotes a vector of hourly load data, for all of ERCOT, corresponding

to the 44th day in the data set. Several approaches for selecting representative days for

long-term power systems expansion models have been considered. de Sisternes and Webster

(2013) introduce an approach for optimally selecting sample weeks to approximate net load

for long-term generation planning problems. Poncelet et al. (2015) present a mixed-integer

linear optimization approach to simultaneously address the three objectives listed at the

outset. Nahmmacher et al. (2016a) propose an agglomerative clustering algorithm that

begins with D clusters, each consisting of exactly one of the original D observations (days)

in the data set. The two “closest” clusters are then merged reducing the number of clusters

by 1. This procedure continues until a single cluster consisting of all D observations remains.

Since we ultimately selected a k-means approach over a hierarchical approach, it is worth

making some qualitative remarks about the latter. Agglomerative clustering is known to

perform well (often better than centroid-based methods like k-means) when the underlying
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data consists of multiple disjoint “islands.” This superior performance occurs because there

will eventually be an iteration in which two dissimilar “islanded” clusters are deemed “closer”

to one another than all other cluster pairs, and merging these clusters will result in a sig-

nificant increase in the intra-cluster variance for the new cluster. In the context of power

systems planning where observations are historical load and capacity factor profiles, one is

tempted to claim that the data naturally decomposes into easily separable “islands.” In our

experience, this was not the case. For example, while there are clearly days (observations)

with a single peak load and other days with multiple peaks, there were many days that

possess characteristics of both profiles (see Figure 4.5). As a consequence, there are few

iterations in which the intra-cluster variance significantly “jumps.” Worse, an agglomerative

clustering algorithm often produced a single large cluster with many observations and large

intra-cluster variance, along with many small clusters with only a handful of observations.

In contrast, centroid-based clustering is much more blunt in forming clusters, meaning

it assumes that the underlying data come from spherical (Gaussian distributed) clusters.

Below, we provide a step-by-step description of our approach along the lines of what was

done in Nahmmacher et al. (2016a).

Step 1: Normalizing all time series and selecting a distance metric

Clustering algorithms attempt to group similar observations into the same cluster. Fun-

damental to any clustering method is the choice of distance metric used to quantify the

degree of similarity between two observations. Indeed, the importance of choosing an appro-

priate distance metric is often under-emphasized and/or poorly understood. Because most

off-the-shelf algorithms have a set of pre-defined distance metrics (e.g. L1, L2, and cosine),

most practitioners decompose the distance metric selection problem into two problems: data

normalization and selecting a pre-defined distance metric. We have chosen this approach as

well. Together, the choice of normalization and distance metric have a significant impact on

the ultimate clusters. We normalize all load data between 0 and 2 for each year. Renew-

able energy capacity factors were already normalized between 0 and 1, due to their inherent
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Figure 4.5: Clusters produced by k-means algorithm when k=3 clusters using aggregate ERCOT
data, 100 replications, and the L2 distance metric. Five times series – Load, PVSAT, CSP, Old
Wind, and New Wind – are “stitched together” so that each historical day is stored as a single
120-dimensional vector. Load is normalized between 0 and 2, whereas all renewable energy capacity
factors are normalized between 0 and 1. Each subplot depicts the points/days in the cluster (shown
in color) and then most representative day (shown as a single black line). The title of each subplot
indicates the number of points/days assigned to that cluster.

nature. The normalization is shown in each subplot in Figure 4.5 where load, the first 24

components of the 120-sized vector, is normalized between 0 and 2, and the renewable energy

capacity factors are normalized between 0 and 1 in the remaining 96 (= 24×4) components.

We test this normalization scheme with two distance metrics – L1 and L2 norms – and use

the L2 norm method to develop clusters for the C-GEP. As part of a sensitivity analysis, we

present the outputs of the C-GEP using the L1 norm based clustering approach in Section

A.3.
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Step 2: Applying the clustering algorithm and deriving a candidate set of clusters

Clusters were determined using the “kmeans” function in MATLAB with 100 replications.

Because our interest is to select a small number of representative days to include in the

model, we called “kmeans” R times, for values r = 1, ..., R = 12, producing results with 1 to

R clusters.

Step 3: Choosing one representative day per cluster

For each cluster, we select the historical day closest (using the a priori selected distance

metric) to the centroid of that cluster as the most representative day. This is different from

using the centroid of the cluster, which may not capture the true variability seen within a

day. Thus, the most representative days are indeed historical days. Figure 4.5 shows the

most representative day selected for each cluster when three clusters are used.

Step 4: Weighting each representative day according to its cluster size

Each representative day is assigned a weight proportional to the number of historical

days in the corresponding cluster. Specifically, given a total of D = 2555 days in the data

set and Dc days in cluster c, the weight assigned to each representative day is wc = Dc/D.

For example, cluster 1 in Figure 4.5 possesses 959 days and receives a weight of 959/2555.

Step 5: Scaling single time series in order to reach the correct annual average

Finally, the weighted load profile was normalized to equal 2015 aggregate ERCOT load of

347.5 TWh so that a fair comparison between runs with different numbers of clusters could

be made. Let x∗c denote the historical days selected as the most representative days. Then,

the data is scaled such that:

∑
c

wc
∑
h

x(c, h, Load)∗ = 347.5TWh (4.1)
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Figure 4.6: Mean absolute error in the load duration curve (left panel) and the cumulative distri-
bution curves of renewable capacity factors (right panel), relative to the corresponding historical
ERCOT curves, for a varying number of representative clusters

Figure 4.6 presents the approximation accuracy improvement in the load duration curve

and cumulative distribution curves due to the above clustering procedure, for an increasing

number of representative days. Specifically, it shows the mean absolute error (expressed

in MW) in the load duration curve and the mean absolute error (expressed as a fraction)

in the cumulative distribution curves of the renewable energy resources relative to seven

years (2004-2010) of hourly ERCOT data. As expected, the error tends to decrease as more

representative days (more clusters) are included. There are at least two reasons why the

curves are not monotonically decreasing. First, the day chosen as “most representative” is not

the centroid of the cluster, but the one closest in Euclidean distance to the centroid. Second,

to determine the clusters, hourly profiles for load and all renewable energy technologies are

considered simultaneously, not individually. Thus, while the error in the aggregate profile

(the 120-sized vector including all technologies simultaneously) declines nearly monotonically

as the number of clusters increases, the individual technologies do not exhibit this trend.

On the other hand, Figure 4.6 shows that the error in two technologies tend to offset each

other. For example, given two clusters, the sudden decrease in error for CSP is met with a

simultaneous rise in error for New Wind. With three clusters, the opposite occurs: error in

New Wind decreases, whereas CSP error increases. Note that the mean absolute error in the
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Figure 4.7: Comparison of capacity projections by (A) the chronological GEP (C-GEP) and (B)
the time slice GEP (TS-GEP) in the 50% renewables case.

cumulative distribution curves used for the TS-GEP are 1941 MW for load, 0.125 for New

Wind, 0.132 for Old Wind, 0.056 for PVSAT, and 0.071 for CSP. These values are close to

the errors found for a 1-representative day cluster, but otherwise uniformly larger than any

other choice of number of clusters.

4.3 Results

4.3.1 Comparing GEP models with differing temporal resolution

Figure 4.7 presents projections of capacity (2015-2045) for a hypothetical 50% renewables

scenario, estimated by the C-GEP and TS-GEP using a consistent set of input assumptions

described in the prior section and Appendix C.8. In this scenario, a target of 50% renewable

energy penetration is set for model years 2040 and beyond. The main drivers for capacity

additions in both models are the assumed growth in electricity demand of 1.4% per year over

the planning horizon (ERCOT, 2015b) and the imposed renewable energy penetration target

in 2040 and beyond. Both GEP models project approximately 175 GW of grid capacity in

2045, where solar PV dominates new installations. However, the magnitude of solar PV
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installed varies in both models, with the C-GEP demonstrating a preference for a portfolio

of options including wind and natural gas combined cycle (NGCC) capacity. Figure A.4

demonstrates a similar preference for solar PV in the TS-GEP annual generation mix over

the planning period. Both models also project that some existing natural gas (NG) capacity

will be retired – mainly older natural gas steam turbines (NGST) in both models and some

additional natural gas combined cycle (NGCC) plants in the TS-GEP. The TS-GEP’s time

slice representation of load and capacity factors for renewable energy generation overlooks

the hour-to-hour variability in load and capacity factors within these time blocks and the

limited ability of thermal generators to adjust their output accordingly. In contrast, the

C-GEP better approximates the observed hourly variability in load and renewables and

includes explicit limits on the flexibility of thermal generator fleet, through hourly ramping

limits and startup costs. The C-GEP therefore projects the need for adding flexible thermal

capacity, mostly as new NGCC plants, and projects lower solar PV penetration than the

outputs of the TS-GEP. In addition, the variability in wind capacity factors may not be well

characterized by a time slice representation (see comparison of time slice sampling results

and historical data in Figure 4.3) (Bistline et al., 2017; Blanford et al., 2018). This may

partly explain why the TS-GEP results undervalue wind capacity additions compared to the

C-GEP, even though the average annual capacity factors of new wind plants are similar in

both GEP models (Table A.14).

In addition to the 50% renewables scenario, we analyze a range of hypothetical scenarios

to evaluate how the outputs of both GEP models change with increasing renewable energy

penetration. We test the two GEP models by constraining them to meet a specific per-

centage (40% - 70%) of dispatched generation by 2040 (and beyond), resulting in a total

of 4 renewable energy scenarios2. We compare the capacity mix at the end of the planning

period across the 4 renewable energy scenarios between both models. The results, presented

in Figure 4.8A (reference scenario set), suggest that the TS-GEP shows a strong preference

for solar PV installations over wind and NG compared to the C-GEP for a majority of

2These renewable energy targets were chosen to exercise and ultimately contrast the two expansion models
and do not reflect the authors’ opinion or endorsement that such targets are economically viable or attainable.

108



4.3. Results

Figure 4.8: Difference in 2045 capacity projections for solar PV, wind and natural gas (NG) in the
chronological GEP (C-GEP) compared to the time slice GEP (TS-GEP) for a range of renewable
energy scenarios up to 70%, and across 4 alternate scenario sets. Here “NG” includes all types of
natural gas plants including NGCC, NGCT and NGST.

scenarios. For instance, in the 40% renewables scenario, the C-GEP projects only 50 GW

of solar PV by 2045, while the TS-GEP projects 70 GW (35% higher). As the renewable

energy penetration target is increased, however, the difference in PV capacity estimated by

the TS-GEP and the C-GEP tends to decrease. This trend is partly an outcome of the two

models diverging in their estimates of curtailed renewable energy generation with increasing

renewable penetration3 (see Figure 4.9 and Figure A.5). For example, for the 70% renewables

scenario, the C-GEP projects 11% of renewable energy generation is curtailed in 2045 as

3The C-GEP’s increased granularity of representing hourly grid operations, including ramping limits and
on/off status of individual thermal generators, partly explains why it estimates increasing curtailment with
increasing renewable penetration. In contrast, the curtailment observed for the TS-GEP tends to plateau
with increasing renewable penetration, likely because it does not capture the hour-to-hour variability in load
and renewable output and overlooks on/off commitment of all thermal generators (see Table 4.1).
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compared to 6% estimated by the TS-GEP. All else equal, higher curtailment implies that

greater wind and solar PV capacity is required to dispatch the same amount of renewable

energy generation. Under higher renewable penetration scenarios (e.g. 70% renewables),

this effect counterbalances the preferential additions of PV over wind in the TS-GEP due to

its lower temporal resolution, resulting in a diminished PV capacity difference between the

model outputs. In higher renewable energy scenarios (60% and 70%), some coal (2-5 GW)

and nuclear (<3 GW) retirements are also seen in the TS-GEP, which are not observed in

the C-GEP (not shown in Figure 4.8). The TS-GEP’s minimum turndown constraints on

coal and nuclear plants (Table 4.1) result in the inability of these plants to cycle to the same

extent as in the C-GEP, which explains why the TS-GEP chooses to retire some coal and

nuclear capacity under higher renewable energy scenarios.

To evaluate how robust the aforementioned differences in the projected capacity mix of

the TS-GEP and C-GEP are to various technology and cost assumptions, we compare GEP

outputs for three additional scenario sets: B) doubling the annual installation limits on wind

and solar PV compared to the reference scenario set (see reference data in Table A.12); C)

higher solar PV cost compared to projections used in the reference scenario set (presented

in Figure A.2); and D) a higher gas resource scenario (i.e. lower gas price), also from the

EIA Annual Energy Outlook 2016 (EIA, 2016) (presented in Figure A.3). Results across all

scenario sets confirm the same trends observed in the reference scenario set: the TS-GEP

shows a strong preference for solar PV installations over wind and NG, compared to the

C-GEP across a majority of the evaluated scenarios, with reduced differences seen at higher

renewable energy scenarios. Notably, in the high solar PV cost scenario, both models are

directly dis-incentivized to build solar PV and therefore the differences between the model

outputs are relatively smaller (Figure 4.8C).

4.3.2 Using production cost simulations to assess GEP results

Annual hourly grid operations are approximated in both GEP models, although in differ-

ent ways. To test how robust these approximations are, we solve the PCS model to simulate
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grid operations for a single year (2045) with hourly resolution, using the capacity projected

by both GEP models. To account for inter-annual variability in load and renewable en-

ergy generation, we solve the PCS model for seven different realizations of time series for

load and renewables capacity factors, for each renewable energy scenario. The data for the

load and renewables capacity factor profiles were derived from historical data (2004-2010)

available from ERCOT (ERCOT, 2016a, 2017). We then compare the outputs of the GEP

models and the PCS model for each renewable energy scenario using a range of metrics, in-

cluding annual curtailment (Figure 4.9A), unmet demand (Figure 4.9B), annual renewables

penetration (Figure A.6), and annual thermal generation mix (Figure A.7).

Figure 4.9: (A) Comparison of 2045 curtailment in the GEP models to curtailment in the Production
Cost Simulation (PCS) model for the same capacity mix. (B) Comparison of unmet demand in 2045
in the PCS model for the same capacity mix as projected by the GEP models. The GEP outputs
correspond to the reference scenario set (Figure 4.2A). The height of each bar corresponds to the
range of values obtained from the PCS model by simulating seven different realizations of time series
for load and capacity factors for renewable energy generation (further details on load and renewable
energy data available in Section 4.2).

In Figure 4.9A, the individual bars refer to the 4 renewable energy scenarios presented

earlier and the height of each bar represents the range of outputs from the PCS model when

considering seven different realizations of load and renewable energy generation time series.

The inability of either GEP to accurately capture extreme situations such as maximum

or minimum net load (i.e. load minus renewable energy generation), maximum renewable
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energy generation or rapid changes in renewable energy output partly explains why both GEP

models underestimate curtailment. For the C-GEP capacity mix, curtailment projected by

the PCS generally tends to increase as the prescribed renewables penetration level increases.

This is not surprising since both the C-GEP and the PCS have similar thermal generator

operating constraints that directly contribute to instances of curtailment.

Both GEP models estimate that demand is met for all the representative time steps

included in the models. In contrast, when the capacity mix estimated by these models is input

to the PCS model, demand remains unmet in some hours. This is expected, since both GEP

models approximate grid operations and do not capture the full extent of variability of grid

conditions. As seen in Figure 4.9B, increasing the model resolution (C-GEP) as compared to

seasonal-average modeling (TS-GEP) certainly reduces instances of unmet demand. It is also

worth noting that, although the unmet demand for the C-GEP capacity mix increases with

increasing renewable energy targets, the maximum value is still relatively small at 0.023% of

load for the 70% renewables scenario, which is comparable to the loss of load threshold values

considered in estimating reserve margin requirements (Pfeifenberger et al., 2013). Finally,

the C-GEP outputs also better approximate the annual generation mix by technology type,

when compared to the TS-GEP outputs, as shown in Figure A.6 and Figure A.7.

4.3.3 Impact of the number of representative days within the C-

GEP

Within the C-GEP, the number of sample days selected to represent the entire year’s load

and renewable energy generation may also impact results, including capacity and generation

projections. We assessed this aspect by solving the C-GEP using a range of sample days (1

day up to 12 days). Such a question has been considered in the context of a linear GEP

by Nahmmacher et al. (2016a), who concluded that a GEP with fewer representative days

selected to represent annual grid operations may result in higher projections of renewable

energy capacity. In our experiments using the C-GEP, which is a MILP model, we use a

k-means clustering approach with the L2-norm used as the distance metric, to select these
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days from the historical data, with the total annual load adjusted to be identical across all

12 scenarios. Figure 4.4 compares the resulting capacity projections for NG, solar PV and

wind, for each of the scenarios with a different number of sample days, under a 50% renew-

able energy penetration target (comparison of generation shown in Figure A.8). Although

the total renewable energy capacity remains nearly the same across all scenarios, the pro-

jected PV capacity and wind capacity have increasing and decreasing trends, respectively,

with increasing number of representative days selected. For instance, the solar capacity

in the 1-day scenario is approximately 20% higher than the capacity for the scenario with

12 representative days. The NG capacity also follows an increasing trend with increasing

representative days, with up to 10% differences between the two bookend cases in Figure

4.10. The non-monotonic trends in the installed capacity of individual technologies in Figure

4.4 are partly an outcome of the approach for selecting representative days. Specifically, as

discussed in Section 4.2.3, historical data are clustered according to the joint distribution

of load and renewable energy capacity factors, which does not guarantee that the error in

representing individual distributions (capacity factor or load) will exhibit a monotonically

decreasing trend. The capacity trends observed in Figure 4.10 were also found to be robust

to changing the distance metric used in the selection of representative days from the L2-norm

to the L1-norm (see Figure A.9 and Figure A.10). Overall, the results are consistent with the

trends reported when comparing the GEP models: with lower temporal resolution (number

of sample days selected, in this case), solar PV capacity is overestimated while wind and NG

capacity are underestimated relative to the higher resolution GEP models.

For long-term energy planning models like NEMS or ReEDS with multi-sector scope or

large spatial coverage or both, computational issues may make it impractical to include 12

representative days in the power system expansion model. In such cases, representing an-

nual grid operations using fewer representative days could still provide some improvement

over a traditional time slice approach, with regard to addressing the variability of load and

renewable energy generation and other grid operating constraints. This point is illustrated

in Figure 4.10, where for instance, the solar, wind and NG capacity projected using 6 repre-
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Figure 4.10: Capacity projections for solar, wind and natural gas (NG) in 2045, using the chrono-
logical GEP (C-GEP) under a 50% renewable energy scenario, varying as a function of the number
of sample days selected to represent load and renewables data for annual grid operations. (The
L2-norm is used in the k-means clustering approach for choosing the representative days)

sentative days is within 5% of the total installed capacities projected by the GEP using 12

representative days.

4.4 Conclusions

In this chapter, we perform a systematic comparison of two alternate GEP frameworks

to demonstrate how the choice of representing grid operations within a power system GEP

framework can impact future projections of grid evolution. For the same set of technology

and cost assumptions, we find that a GEP with time slice representation of grid operations

(e.g. the TS-GEP developed here) is in general likely to overestimate solar PV capacity (by

35% in one case) and underestimate wind and the supporting NG capacity requirements,

compared to a GEP with higher temporal resolution and generator ramping and startup

constraints (C-GEP). This finding is explained primarily by the limited representation of

the temporal variability in renewable energy generation, notably wind, and its correlation

with load when using the time slice approach as compared to the chronological approach.

For solar PV, using values of capacity factors based on 4-hr seasonal averages (as in the
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TS-GEP) overvalues the coincidence between peak solar PV generation and peak system

load (also a 4-hr seasonal average) and consequently underestimates the declining value of

solar PV generation with increasing penetration, as compared to the chronological approach

using 12 representative days (as in the C-GEP) at an hourly resolution. The differences in

the capacity mix to achieve the same renewable energy targets have reliability implications,

as reflected by the lower unmet demand projected for the C-GEP capacity mix when tested

in a detailed hourly simulation of annual grid operations.

While it is common for policy-focused GEP studies to test the capacity mix estimated by

a GEP through a PCS framework (Brinkman, 2015; Lew et al., 2013), our study highlights

the importance of evaluating the operational performance of the capacity mix projections

for multiple years of load and renewable energy generation profiles. Such an analysis bench-

marks the ability of the capacity mix to achieve the desired reliability and/or environmental

attributes. For instance, the results presented here suggest that the unmet demand resulting

from the capacity mix estimated by the C-GEP (using 12 representative days) is less sensi-

tive to the annual variations in load and renewable energy generation profiles compared to

the outputs projected by the TS-GEP (Figure 4.9B).

Even within a C-GEP framework, selecting fewer than 4 sample days may lead to con-

siderable overestimation of solar PV capacity. This finding has implications for the choice

of temporal resolution in not just power sector planning models, but also more broadly for

multi-sector, multi-country energy economic and integrated assessment models. For exam-

ple, it was recently suggested that the current time slice implementation in the electricity

grid planning implementation of the 2016 NEMS energy-economic model for the US may

be overestimating solar PV capacity projections (Wood, 2016). Similarly, Bistline et al.

(2017) performed an intra-model comparison of alternative temporal representations in the

US-REGEN model and concluded that using a seasonal-average approach (akin to TS-GEP)

is likely to overstate renewables capacity and understate investment in dispatchable genera-

tion, compared to the representative hours approach (akin to C-GEP). Our study contributes

to the growing body of evidence on the need for using a temporal representation based on
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a few representative days or other parameterizations that yield similar behavior in multi-

sector, energy-economic models and other energy system models supporting policy analysis

and decision-making. There are several future research directions worth investigating. While

this study focused on the effect of changing temporal resolution in a GEP while keeping the

spatial resolution constant, it would be interesting to consider the relative importance of spa-

tial and temporal resolution by repeating the analysis in the context of a GEP co-optimizing

generation and transmission expansion. Given the growth in energy storage technologies, it

would be instructive to understand the impact of energy storage on renewable energy pen-

etration projections in future electricity grids, as well as the necessary temporal resolution

required to adequately account for their attributes in a GEP model. Note that we have

developed a GEP similar to the C-GEP that considers energy storage and is presented in

chapter 5. Since parameter uncertainty (e.g., in construction lead times and capex costs)

in GEP models is always a prominent issue, it could be valuable to implement stochastic

versions of our models and perform a similar analysis. Finally, it would be interesting to con-

sider within a GEP framework, the trade-offs between deploying storage, solar PV systems

at the centralized and distributed scale, given the different types of grid services available

from deployment at each scale.
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Chapter 5

Deterministic Electric Power

Infrastructure Planning: Mixed-integer

Programming Model and Nested

Decomposition Algorithm

In this chapter, we propose an optimization modeling framework to evaluate the changes

in the power systems infrastructure required to meet the projected electricity demand over

the next few decades, while taking into account detailed operating constraints, and the vari-

ability and intermittency of renewable generation sources. The modeling framework, which

is based on mixed-integer linear programming (MILP), takes the viewpoint of a central plan-

ning entity whose goal is to identify the source (nuclear, coal, natural gas, wind and solar),

generation technology (e.g., steam, combustion and wind turbines, photovoltaic and concen-

trated solar panels), location (regions), and capacity of future power generation technologies

that can meet the projected electricity demand, while minimizing the amortized capital in-

vestment of all new generating units, the operating costs of both new and existing units, and

corresponding environmental costs (e.g. carbon tax and renewable generation quota).

The major challenge lies in the multi-scale integration of detailed operation decisions
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at the hourly (or sub-hourly) level with investment planning decisions over a few decades.

In order to improve its computational tractability, judicious modeling approximations and

aggregations are considered. The major contribution of this chapter is the combination of

formulation, solution strategy, and application to a case study based on real-world data.

We develop a decomposition algorithm based on Nested Benders Decomposition for mixed-

integer multi-period problems to solve large-scale models. This framework was originally

developed for stochastic programming by Zou et al. (2018b), but we have adapted it to

deterministic multi-period problems. We have modified it to handle integer and continuous

state variables, at the expense of losing the finite convergence property due to potential

duality gap, and have applied acceleration techniques to improve the overall performance of

the algorithm.

In Section 5.1, a formal problem statement is given, and in Section 5.2 we describe the

modeling strategies adopted to handle the spatial and temporal multi-scale aspect of the

problem. The MILP formulation is presented in Section 5.3. Section 5.4 describes the

proposed decomposition algorithm. Section 5.5 shows the results for a real-world case study

for the Electric Reliability Council of Texas (ERCOT) region, and a comparison between

the performance of the full size MILP formulation and the proposed algorithm.

5.1 Problem statement

The proposed planning problem involves choosing the optimal investment strategy and

operating schedule for the power system in order to meet the projected load demand over

the time-horizon for each location.

A set of existing and potential generators is given, and for which the energy source

(nuclear, coal, natural gas, wind or solar)1 and the generation technology are known.

• For the existing generators we consider: (a) coal: steam turbine (coal-st-old); (b)

natural gas: boiler plants with steam turbine (ng-st-old), combustion turbine (ng-

1In this thesis we do not consider hydroelectric power as it is available in very limited amounts in the
ERCOT region.
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ct-old), and combined-cycle (ng-cc-old); (c) nuclear: steam turbine (nuc-st-old); (d)

solar: photovoltaic (pv-old); (e) wind: wind turbine (wind-old);

• For the potential generators we consider: (a) coal: without (coal-new) and with

carbon capture (coal-ccs-new); (b) natural gas: combustion turbine (ng-ct-new),

combined-cycle without (ng-cc-new) and with carbon capture (ng-cc-ccs-new); (c) nu-

clear: steam turbine (nuc-st-new); (d) solar: photovoltaic (pv-new) and concentrated

solar panel (csp-new); (e) wind: wind turbine (wind-new);

Also known are: their nameplate (maximum) capacity; expected lifetime; fixed and vari-

able operating costs; start-up cost (fixed and variable); cost for extending their lifetimes;

CO2 emission factor and carbon tax, if applicable; fuel price, if applicable; and operating

characteristics such as ramp-up/ramp-down rates, operating limits, contribution to spinning

and quick start fraction for thermal generators, and capacity factor for renewable generators.

For the case of existing generators, their age at the beginning of the time-horizon and

location are also known. For the case of potential generators, the capital cost and the

maximum yearly installation of each generation technology are also given. Also given is a

set of potential storage units, with specified technology (e.g., lithium-ion, lead-acid, and flow

batteries), capital cost, power rating, rated energy capacity, charge and discharge efficiency,

and storage lifetime. Additionally, the projected load demand is given for each location, as

well as the distance between locations, the transmission loss per mile, and the transmission

line capacity between locations.

The problem is then to determine: a) location, year, type, and number of generators and

storage units to install; b) when to retire generators and storage units; c) whether or not

to extend the life of the generators that reached their expected lifetime; d) an approximate

operating schedule for each installed generator; and e) the approximate power flow between

each location in order to meet the projected load demand while minimizing the overall

operating, investment, and environmental costs.

119



Chapter 5. Deterministic Electric Power Infrastructure Planning

5.2 Modeling strategies and assumptions

The mix of combinatorial and operational elements of the problem described in Section

5.1 means that, depending on the time horizon and area considered, the corresponding opti-

mization problem may be too large and intractable for current commercial general purpose

MILP solvers. Therefore, in order to solve the resulting deterministic MILP to provable

optimality for large areas and over a few decades, it is key to explore judicious modeling

aggregations and approximations to address the multi-scale aspects, both in its spatial and

temporal dimensions. In order to significantly reduce computation time, generator cluster-

ing (Palmintier and Webster, 2014) and time sampling (Pina et al., 2011) approaches are

adopted.

5.2.1 Spatial representation

Figure 5.1: Model representation of regions and clusters (regional map modified from ERCOT
(2016))
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In order to allow the solution of large-scale instances, the area of scope is divided into

regions that have similar climate (e.g., wind speed and solar incidence over time), and load

demand profiles. It is assumed that the potential locations for the generators and storage

units are the midpoints of each region r. Additionally, based on the work of Palmintier and

Webster (2014), generators and storage units that have the same characteristics, such as

technology and operating status (i.e., existing or potential), are aggregated into clusters i

for each region r. The spatial configuration of the problem is shown in Figure 5.1 for the

ERCOT region.

The major impact of this approximation in the model formulation is that the discrete

variables associated with generators and storage units correspond to integer rather than

binary variables to represent the number of generators/storage units under a specific status

in cluster i.

5.2.2 Temporal representation

Figure 5.2: Multi-scale representation

It is crucial to include hourly level information to evaluate scenarios with increasing

renewable energy generation (Pina et al., 2013), because of the variability in that resource,

as well as the changes in load. On the other hand, strategic capacity expansion decisions

must be optimized over a long-term horizon (e.g., a few decades). Therefore, the investment

decisions are made on a yearly basis, while operating decisions are made at the hourly
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level. To tackle the problem’s multi-scale nature and to reduce computation time, each year

is modeled using d representative days with hourly resolution resulting in 24 subperiods.

We employ a k-means clustering approach to select these days from historical data (see

Section 5.5), where the goal of the clustering procedure is to select representative days to

approximate: (i) the “duration curves” of historical load and renewables time series, (ii) the

temporal correlation of each time series, and (iii) the hourly correlation between each time

series. The temporal configuration of the problem is shown in Figure 5.2

5.2.3 Transmission representation

Transmission is also an important aspect of a power systems infrastructure, influencing

where to build power plants, which ones to operate, and how much power to be generated

by each of them. The rigorous way of representing transmission between generation and

load nodes in the system is through optimal power flow models (e.g., Frank et al. (2012a,b)).

As explained in Section 5.2.1, the proposed model uses a reduced network, which for the

example in Figure 5.1 has only 5 nodes representing the 5 regions. Additionally, in order

to further simplify the transmission model, the "truck-route" representation is adopted as

described in Short et al. (2011) and Krishnan et al. (2016). The transmission network is

represented similarly to pipelines, assuming that the flow in each line can be determined

by an energy balance between nodes. This approximation ignores Kirchhoff’s voltage law,

which dictates that the power will flow along the path of least impedance. It is also assumed

that the transmission lines have a maximum capacity, and that transmission expansion is

not considered. Additionally, the transmission losses are characterized by a fraction loss

per mile, and are not endogeneously calculated. It is important to acknowledge, however,

that the transmission infrastructure affects both location and type of generation investment.

Therefore, not including transmission expansion and disregarding Kirchhoff’s Voltage Law

could distort the planning results (Munoz et al., 2013).
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5.3 MILP Formulation

This section presents a deterministic MILP formulation organized into 4 groups of con-

straints: operational, investment-related, generator balances, and storage constraints. Note

that if an index appears in a summation or next to a ∀ symbol without a corresponding set,

all elements in that set are assumed.

5.3.1 Operational constraints

The energy balance (5.1) ensures that, in each sub-period s of representative day d in

year t, the sum of instantaneous power pi,r,t,d,s generated by generator clusters i in region r

plus the difference between the power flow going from regions r′ to region r, pflow
r′,r,t,d,s, and

the power flowing from region r to regions r′, pflow
r,r′,t,d,s, plus the power discharged from all

the storage clusters j in region r, pdischarge
j,r,t,d,s , equals the load demand Lr,t,d,s at that region r,

plus the power being charged to the storage clusters j in region r, pcharge
j,r,t,d,s, plus a slack for

curtailment of renewable generation cur,t,d,s.

∑
i

(pi,r,t,d,s) +
∑
r′ 6=r

(
pflow
r′,r,t,d,s · (1− T loss

r,r′ ·Dr,r′)− pflowr,r′,t,d,s

)
+
∑
j

pdischarge
j,r,t,d,s

= Lr,t,d,s +
∑
j

pcharge
j,r,t,d,s + cur,t,d,s ∀ r, t, d, s

(5.1)

The distance between regions Dr,r′ assumes the midpoint for each region, and the trans-

mission loss T loss
r,r′ is approximated by a fraction loss per mile.

The capacity factor constraint (5.2) limits the power outlet pi,r,t,d,s of renewable genera-

tors to be equal to a fraction Cfi,r,t,d,s of the nameplate capacity Qgnp
i,r in each sub-period s of

representative day d in year t, where ngorn
i,r,t represents the number of renewable generators

that are operational in year t. Due to the flexibility in sizes for renewable generators, ngorn
i,r,t

is relaxed to be continuous.

pi,r,t,d,s = Qgnp
i,r · Cfi,r,t,d,s · ngorn

i,r,t ∀ i ∈ IRN
r , r, t, d, s (5.2)
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The unit commitment constraint (5.3) computes the number of generators that are ON,

ui,r,t,d,s, or in startup, sui,r,t,d,s, and shutdown, sdi,r,t,d,s, modes in cluster i in sub-period s of

representative day d of year t, and treated as integer variables.

ui,r,t,d,s = ui,r,t,d,s−1 + sui,r,t,d,s − sdi,r,t,d,s ∀ i ∈ ITH
r , r, t, d, s (5.3)

The ramping limit constraints (5.4)-(5.5) capture the limitation on how fast thermal units

can adjust their output power, pi,r,t,d,s, where Rumax
i is the maximum ramp-up rate, Rdmax

i is

the maximum ramp-down rate, and Pgmin
i is the minimum operating limit (Palmintier and

Webster, 2014).

pi,r,t,d,s − pi,r,t,d,s−1 ≤ Rumax
i · Hs ·Qgnp

i,r · (ui,r,t,d,s − sui,r,t,d,s)

+ max
(
Pgmin

i , Rumax
i · Hs

)
·Qgnp

i,r · sui,r,t,d,s ∀ i ∈ ITH
r , r, t, d, s

(5.4)

pi,r,t,d,s−1 − pi,r,t,d,s ≤ Rdmax
i · Hs ·Qgnp

i,r · (ui,r,t,d,s − sui,r,t,d,s)

+ max
(
Pgmin

i , Rdmax
i · Hs

)
·Qgnp

i,r · sdi,r,t,d,s ∀ i ∈ ITH
r , r, t, d, s

(5.5)

Note that the first terms on the right hand side of (5.4) and (5.5) apply only for normal

operating mode (i.e., generator is ON), while the second terms apply for the startup and

shutdown modes. This means that generators in normal operating mode have their ramp

rates limited by Rumax
i and Rdmax

i , while generators in startup and shutdown modes have

their ramp rates limited by the least restrictive between Pgmin
i and Rumax

i , Rdmax
i such that

their operating limits (Equations 5.6 and 5.7) are still satisfied.

The operating limits constraints (5.6)-(5.7) specify that each thermal generator is either

OFF and outputting zero power, or ON and running within the operating limits Pgmin
i ·Qgnp

i,r

and Qgnp
i,r . The variable ui,r,t,d,s (integer variable) represents the number of generators that

are ON in cluster i ∈ ITH
r at the time period t, representative day d, and sub-period s.

ui,r,t,d,s · Pgmin
i ·Qgnp

i,r ≤ pi,r,t,d,s ∀ i ∈ ITH
r , r, t, d, s (5.6)

pi,r,t,d,s + qspin
i,r,t,d,s ≤ ui,r,t,d,s ·Qgnp

i,r ∀ i ∈ ITH
r , r, t, d, s (5.7)

124



5.3. MILP Formulation

The upper limit constraint is modified in order to capture the need for generators to run

below the maximum considering operating reserves, where qspin
i,r,t,d,s is a variable representing

the spinning reserve capacity.

The total operating reserve constraint (5.8) dictates that the total spinning reserve, qspin
i,r,t,d,s,

plus quick-start reserve, qQstart
i,r,t,d,s, must exceed the minimum operating reserve, Opmin, which

is a percentage of the load Lr,t,d,s in a reserve sharing region r at each sub-period s.

∑
i∈ITH

r

(
qspin
i,r,t,d,s + qQstart

i,r,t,d,s

)
≥ Opmin · Lr,t,d,s ∀ r, t, d, s (5.8)

Spinning Reserve is the on-line reserve capacity that is synchronized to the grid system

and ready to meet electric demand within 10 minutes of a dispatch instruction by the inde-

pendent system operator (ISO). Quick-start (or non-spinning) reserve is the extra generation

capacity that is not currently connected to the system but can be brought on-line after a

short delay.

The total spinning reserve constraint (5.9) specifies that the total spinning reserve qspin
i,r,t,d,s

must exceed the minimum spinning reserve, Spinmin, which is a percentage of the load Lr,t,d,s

in a reserve sharing region r at each sub-period s.

∑
i∈ITH

r

qspin
i,r,t,d,s ≥ Spinmin · Lr,t,d,s ∀ r, t, d, s (5.9)

Our model does not currently impose a minimum requirement for total quick-start re-

serve, as presented in Flores-Quiroz et al. (2016). However, this constraint could be easily

incorporated in the formulation to address the extra secondary (quick-start) reserve require-

ments needed to account for the increasing short term uncertainty due to more renewable

generators contributing to the grid.

The maximum spinning reserve constraint (5.10) states that the maximum fraction of ca-

pacity of each generator cluster that can contribute to spinning reserves is given by Fracspin
i ,
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which is a fraction of the nameplate capacity Qgnp
i,r .

qspin
i,r,t,d,s ≤ ui,r,t,d,s ·Qgnp

i,r · Frac
spin
i ∀ i ∈ ITH

r , r, t, d, s (5.10)

The maximum quick-start reserve constraint dictates that the maximum fraction of the

capacity of each generator cluster that can contribute to quick-start reserves is given by

FracQstart
i (fraction of the nameplate capacity Qgnp

i,r), and that quick-start reserves can only

be provided by the generators that are OFF, i.e., not active.

qQstart
i,r,t,d,s ≤ (ngoth

i,r,t − ui,r,t,d,s) ·Qg
np
i,r · Frac

Qstart
i ∀ i ∈ ITH

r , r, t, d, s (5.11)

Here the integer variable ngoth
i,r,t represents the number of thermal generators that are

operational (i.e., installed and ready to operate) at year t.

5.3.2 Investment-related constraints

The planning reserve requirement (5.12) ensures that the operating capacity is greater

than or equal to the annual peak load Lmax
t , plus a predefined fraction of reserve margin

Rmin
t of the annual peak load Lmax

t .

∑
i∈IRN

r

∑
r

(
Qgnp

i,r ·Qv
i · ngorn

i,r,t

)
+
∑
i∈ITH

r

∑
r

(
Qgnp

i,r · ngoth
i,r,t

)
≥ (1 +Rmin

t ) · Lmax
t ∀ t (5.12)

For all thermal generators, their full nameplate capacityQgnp
i,r counts towards the planning

reserve requirement. However, for the renewable technologies (wind, PV and CSP), their

contribution is less than the nameplate due to the inability to control dispatch and the

uncertainty of the output (Short et al., 2011). Therefore, the fraction of the capacity that

can be reliably counted towards the planning reserve requirement is referred to as the capacity

value Qv
i .

The minimum annual renewable generation requirement (5.13) ensures that, in case of

policy mandates, the renewable generation quota target, RNmin
t , which is a fraction of the
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energy demand EDt, is satisfied. If not, i.e, if there is a deficit def rn
t from the quota, this is

subjected to a penalty that is included later in the objective function.

∑
d

∑
s

Wd · Hs ·

∑
i∈IRN

r

∑
r

pi,r,t,d,s − cur,t,d,s

+ def rn
t ≥ RNmin

t · EDt ∀ t (5.13)

Here Wd represents the weight of the representative day d, Hs is the length of the sub-

period, cur,t,d,s is the curtailment of renewable generation, and EDt represent the energy

demand in year t:

EDt =
∑
r

∑
d

∑
s

(Wd · Hs · Lr,t,d,s)

The maximum yearly installation constraints (5.14)-(5.15) limit the yearly installation

per generation type in each region r to an upper bound Qinst,UB
i,t in MW/year. Here ngbrn

i,r,t

and ngbth
i,r,t represent the number of renewable and thermal generators built in region r in

year t, respectively. Note that due to the flexibility in sizes for renewable generators, ngbrn
i,r,t

is relaxed to be continuous.

∑
r

ngbrn
i,r,t ≤ Qinst,UB

i,t /Qgnp
i,r ∀ i ∈ IRnew

r , t (5.14)

∑
r

ngbth
i,r,t ≤ Qinst,UB

i,t /Qgnp
i,r ∀ i ∈ ITnew

r , t (5.15)

5.3.3 Generator balance constraints

Concerning renewable generator clusters, we define a set of constraints (5.16)-(5.17) to

compute the number of generators in cluster i that are ready to operate ngorn
i,r,t, taking

into account the generators that were already existing at the beginning of the planning

horizon NgRold
i,r , the generators built ngbrn

i,r,t, and the generators retired ngrrn
i,r,t at year t. It

is important to highlight that we assume no lead time between the decision to build/install
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a generator and the moment it can begin producing electricity.

ngorn
i,r,t = NgRold

i,r + ngbrn
i,r,t − ngrrn

i,r,t ∀ i ∈ IRN
r , r, t = 1 (5.16)

ngorn
i,r,t = ngorn

i,r,t−1 + ngbrn
i,r,t − ngrrn

i,r,t ∀ i ∈ IRN
r , r, t > 1 (5.17)

As aforementioned, due to the flexibility in sizes for renewable generators, ngorn
i,r,t, ngbrn

i,r,t,

and ngrrn
i,r,t are relaxed to be continuous. Note that ngbrn

i,r,t for i ∈ IRold
r is fixed to zero in

all time periods, i.e., the clusters of existing renewable generators cannot have any new

additions during the time horizon considered.

We also define a set of constraints (5.18)-(5.19) to enforce the renewable generators that

reached the end of their lifetime to either retire, ngrrn
i,r,t, or have their life extended, ngern

i,r,t.

Ngr
i,r,t is a parameter that represents the number of old generators (i.e., i ∈ Iold

r ) that reached

the end of their lifetime, LTi, at year t.

Ngr
i,r,t = ngrrn

i,r,t + ngern
i,r,t ∀ i ∈ IRold

r , r, t (5.18)∑
t′′≤t−LTi

ngbrn
i,r,t′′ =

∑
t′≤t

(
ngrrn

i,r,t′ + ngern
i,r,t′

)
∀ i ∈ IRnew

r , r, t (5.19)

Concerning thermal generator clusters, we define a set of constraints (5.20)-(5.21) to

compute the number of generators in cluster i that are ready to operate ngoth
i,r,t, taking into

account the generators that were already existing at the beginning of the planning horizon

NgTold
i,r , the generators built ngbth

i,r,t, and the generators retired ngrth
i,r,t at year t.

ngoth
i,r,t = NgTold

i,r + ngbth
i,r,t − ngrth

i,r,t ∀ i ∈ ITH
r , r, t = 1 (5.20)

ngoth
i,r,t = ngoth

i,r,t−1 + ngbth
i,r,t − ngrth

i,r,t ∀ i ∈ ITH
r , r, t > 1 (5.21)

Note that ngbth
i,r,t for i ∈ ITold

r is fixed to zero in all time periods, i.e., the clusters of exist-

ing thermal generators cannot have any new additions during the time horizon considered.

We also define a set of constraints (5.22)-(5.23) to enforce the thermal generators that
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reached the end of their lifetime to either retire, ngrth
i,r,t, or have their life extended ngeth

i,r,t.

Ngr
i,r,t = ngrth

i,r,t + ngeth
i,r,t ∀ i ∈ ITold

r , r, t (5.22)∑
t′′≤t−LTi

ngbth
i,r,t′′ =

∑
t′≤t

(
ngrth

i,r,t′ + ngeth
i,r,t′

)
∀ i ∈ ITnew

r , r, t (5.23)

Finally, we have constraint (5.24) that ensures that only installed generators can be in

operation:

ui,r,t,d,s ≤ ngoth
i,r,t ∀ i ∈ ITnew

r , r, t, d, s (5.24)

5.3.4 Storage constraints

We also include a set constraints related to the energy storage devices, which are assumed

to be ideal and generic (Pozo et al., 2014). Constraints (5.25)-(5.26) compute the number of

storage units that are ready to operate nsoj,r,t, taking into account the storage units already

existing at the beginning of the planning horizon Nsj,r and the ones built nsbj,r,t and retired

nsrj,r,t at year t. Due to the flexibility in sizes for storage units, nsoj,r,t, nsbj,r,t, and nsrj,r,t

are relaxed to be continuous.

nsoj,r,t = Nsj,r + nsbj,r,t − nsrs,r,t ∀ j, r, t = 1 (5.25)

nsoj,r,t = nsoj,r,t−1 + nsbj,r,t − nsrj,r,t ∀ j, r, t > 1 (5.26)

Constraint (5.27) enforces retirement of storage units that have reached the end of their

lifetime,LT s
j .

∑
t′′≤t−LT s

j

nsbj,r,t′′ =
∑
t′≤t

nsrj,r,t′ ∀ j, r, t (5.27)

Constraints (5.28) and (5.29) establish that the power charge, pcharge
j,r,t,d,s, and discharge,

pdischarge
j,r,t,d,s , of the storage units in cluster j, nsoj,r,t, has to be within the operating limits:
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Chargemin
j and Chargemax

j , and Dischargemin
j and Dischargemin

j , respectively.

Chargemin
j · nsoj,r,t ≤ pcharge

j,r,t,d,s ≤ Chargemax
j · nsoj,r,t ∀ j, r, t, d, s (5.28)

Dischargemin
j · nsoj,r,t ≤ pdischarge

j,r,t,d,s ≤ Dischargemax
j · nsoj,r,t ∀ j, r, t, d, s (5.29)

Constraint (5.30) specifies that the energy storage level, plevel
j,r,t,d,s, for the storage units in

cluster j, nsoj,r,t has to be within the storage capacity limits Storagemin
j and Storagemax

j .

Storagemin
j · nsoj,r,t ≤ plevel

j,r,t,d,s ≤ Storagemax
j · nsoj,r,t ∀ j, r, t, d, s (5.30)

Constraints (5.31) and (5.32) show the power balance in the storage units. The state of

charge plevel
j,r,t,d,s at the end of sub-period s depends on the previous state of charge plevel

j,r,t,d,s−1,

and the power charged pcharge
j,r,t,d,s and discharged pdischarge

j,r,t,d,s at sub-period s. The symbols ηcharge
j

and ηdischarge
j represent the charging and discharging efficiencies, respectively. For the first

hour of the day d of year t, the previous state of charge (i.e., s = 0) is the variable plevel,0
j,r,t,d .

plevel
j,r,t,d,s = plevel

j,r,t,d,s−1 + ηcharge
j · pcharge

j,r,t,d,s + pdischarge
j,r,t,d,s /η

discharge
j ∀ j, r, t, d, s > 1 (5.31)

plevel
j,r,t,d,s = plevel,0

j,r,t,d + ηcharge
j · pcharge

j,r,t,d,s + pdischarge
j,r,t,d,s /η

discharge
j ∀ j, r, t, d, s = 1 (5.32)

Constraints (5.33) and (5.34) force the storage units to begin plevel,0
j,r,t,d and end plevel

j,r,t,d,s=S

each day d of year t with 50% of their maximum storage Storagemax
j . This is a heuristic to

attach carryover storage level form one representative day to the next (Liu et al., 2017).

plevel,0
j,r,t,d = 0.5 · Storagemax

j · nsoj,r,t ∀ j, r, t, d (5.33)

plevel
j,r,t,d,s = 0.5 · Storagemax

j · nsoj,r,t ∀ j, r, t, d, s = S (5.34)

5.3.5 Objective Function

The objective of this model is to minimize the net present cost, Φ, over the planning

horizon, which includes operating costs Φopex, investment costs Φcapex, and potential penalties
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ΦPEN for not meeting the the targets on renewables.

min Φ =
∑
t

(
Φopex
t + Φcapex

t + ΦPEN
t

)
(5.35)

The operating expenditure, Φopex
t , comprises the variable V OCi,t and fixed FOCi,t oper-

ating costs, as well as fuel cost P fuel
i per heat rate HRi, carbon tax TxCO2

t for CO2 emissions

EFCO2
i , and start-up cost (variable cost P fuel

i that depends on the amount of fuel burned for

startup F start
i , and fixed cost Cstart

i ).

Φopex
t = If t ·

[∑
d

∑
s

Wd · hs·(∑
i

∑
r

(V OCi,t + P fuel
i ·HRi + TxCO2

t · EFCO2
i ·HRi) · pi,r,t,d,s

)

+

∑
i∈IRN

r

∑
r

FOCi,t ·Qgnp
i,r · ngorn

i,r,t


+

∑
i∈ITH

r

∑
r

FOCi,t ·Qgnp
i,r · ngoth

i,r,t


+
∑
i∈ITH

r

∑
r

∑
d

∑
s

Wd · Hs · sui,r,t,d,s ·Qgnp
i,r

·
(
F start
i · P fuel

i + F start
i · EFCO2 · TxCO2

t + Cstart
i

) ]

(5.36)

The capital expenditure, Φcapex
t , includes the amortized cost of acquiring new genera-

tors, DICi,t, new storage devices, SICj,t, and the amortized cost of extending the life of

generators that reached their expected lifetime. The latter is assumed to be a fraction LEi

of the investment cost, DICi,t, in a new generator with the same or equivalent generation

technology. In this framework, the investment cost takes into account the remaining value

at the end of the time horizon by considering the annualized capital cost and multiplying

it by the number of years remaining in the planning horizon at the time of installation to
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calculate the DICi,t.

Φcapex
t = If t ·

[ ∑
i∈IRnew

r

∑
r

DICi,t · CCm
i ·Qg

np
i,r · ngbrn

i,r,t

+
∑

i∈ITnew
r

∑
r

DICi,t · CCm
i ·Qg

np
i,r · ngbth

i,r,t

+
∑
j

∑
r

SICj,t · Storagemax
j · nsbj,r,t

+
∑
i∈IRN

r

∑
r

DICi,t · LEi ·Qgnp
i,r · ngern

i,r,t

+
∑
i∈ITH

r

∑
r

DICi,t · LEi ·Qgnp
i,r · ngeth

i,r,t

]
(5.37)

The capital multiplier CCm
i associated with new generator clusters is meant to account

for differences in depreciation schedules applicable to each technology, with higher values

being indicative of slower depreciating schedule and vice versa.

Lastly, the penalty cost, ΦPEN
t , includes the potential fines for not meeting the renewable

energy quota, PEN rn
t , and curtailing the renewable generation.

ΦPEN
t = If t ·

(
PEN rn

t · def rn
t + PEN c ·

∑
r

∑
d

∑
s

cur,t,d,s

)
(5.38)

The parameters If t, DICi,t, ACCi,t, and T remain
t are defined in B.1.

The integrated planning and operations model for the electric power systems is then given

by the multi-period MILP model defined by equations (5.1)-(5.38).

5.4 Nested Decomposition for Multiperiod MILP Prob-

lems

Even though the multi-period MILP formulation in Section 5.3 incorporates modeling

strategies to reduce the size of the model, it can still be very expensive to solve and po-
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tentially intractable depending on the size of the area considered, and the time resolution

of the representative periods per season. Therefore, we propose a decomposition algorithm

based on Nested Benders Decomposition (Birge, 1985), Stochastic Dual Dynamic Program-

ming (SDDP) (Pereira and Pinto, 1991), and Generalized Dual Dynamic Programming

(GDDP) (Velásquez Bermúdez, 2002).

These methods are used in the context of Multistage Linear Stochastic Programming

(MLSP), but their major limitation is that they can only be applied to convex subproblems.

Thus, they are not suitable for our problem, which gives rise to mixed-integer subprob-

lems. In this context, Cerisola et al. (2009) propose a variant of Benders Decomposition for

multistage stochastic integer programming and apply it to the stochastic unit commitment

problem. Thome et al. (2013) introduce an extension of the SDDP framework by using La-

grangean Relaxation to convexify the recourse function applied to nonconvex hydrothermal

operation planning. Zou et al. (2018b) present a valid Stochastic Dual Dynamic Integer Pro-

gramming (SDDiP) algorithm for Multistage Stochastic Integer Programming (MSIP) with

binary state variables, and prove that for some of the cuts presented the algorithm converges

in a finite number of steps. In their more recent paper, Zou et al. (2017) apply their SD-

DiP algorithm to Stochastic Unit Commitment problems. Finally, Steeger and Rebennack

(2017) propose a dynamic convexification within Benders Decomposition using Lagrangean

relaxation and apply it to the electricity market bidding problem.

In this work, we have adapted the algorithm proposed by Zou et al. (2018b) for deter-

ministic multi-period MILP models and apply it to the formulation given in Section 5.3.

Moreover, we modified the approach in Zou et al. (2018b) by allowing for integer and contin-

uous state variables, at the expense of losing its finite convergence property due to potential

duality gap. The novel features of the proposed decomposition are: a) targets multi-period

deterministic problems; b) allows integer and continuous state variables; c) allows links

between non-adjacent time-periods; and d) utilizes an acceleration technique to generate

warm-start cuts.

To facilitate the understanding of the algorithm, we first describe how the multi-period

133



Chapter 5. Deterministic Electric Power Infrastructure Planning

MILP model defined by equations (5.1)-(5.38) is decomposed by time period (year). Then,

we introduce a more concise notation to represent the decomposed 1-year-long MILPs, and

use this notation to describe the Nested Decomposition algorithm in Section 5.4.2.

5.4.1 Decomposition by time period (year)

In our formulation, the only constraints that depend on more than one time period are

equations (5.17), (5.19), (5.21), (5.23), (5.26), and (5.27). Therefore, these constraints have

to be reformulated in order to be able to solve the problem separately for each time period,

which is done by duplicating the linking variables, ngorn
i,r,t, ngoth

i,r,t, ngbrn
i,r,t, ngbth

i,r,t, nsoj,r,t,

and nsbj,r,t.

Equation (5.17), which computes the number of renewable generators that are operational

at time period t based on the number of generators built and retired at t and operational at

t− 1, is substituted by equations (5.39) and (5.40).

ngorn
i,r,t = ngorn,prev

i,r,t + ngbrn
i,r,t − ngrrn

i,r,t ∀ i ∈ IRN
r , r, t > 1 (5.39)

ngorn,prev
i,r,t = ˆngorn

i,r,t−1 ← µo,rn
i,r,t ∈ R|IRN

r |+|R|+|T |−1 ∀ i ∈ IRN
r , r, t > 1 (5.40)

Here ngorn,prev
i,r,t is the duplicated variable representing ngorn

i,r,t−1, and ˆngorn
i,r,t−1 is the solution

for ngorn
i,r,t at time period t − 1, which is fixed when solving time period t. The Lagrange

multiplier µo,rn
i,r,t of equation (5.40) is unrestricted in sign.

Similarly, equation (5.21), which refers to thermal generators, is substituted by equations

(5.41) and (5.42).

ngoth
i,r,t = ngoth,prev

i,r,t + ngbth
i,r,t − ngrth

i,r,t ∀ i ∈ ITH
r , r, t > 1 (5.41)

ngoth,prev
i,r,t = ˆngoth

i,r,t−1 ← µo,th
i,r,t ∈ R|ITH

r |+|R|+|T |−1 ∀ i ∈ ITH
r , r, t > 1 (5.42)

Here ngoth,prev
i,r,t is the duplicated variable representing ngoth

i,r,t−1, and ˆngoth
i,r,t−1 is the solution

for ngoth
i,r,t at time period t − 1, which is fixed when solving time period t. The Lagrange

multiplier µo,th
i,r,t of equation (5.42) is unrestricted in sign.
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Analogously, equation (5.26) that refers to storage units is substituted by equations (5.43)

and (5.44).

nsoi,r,t = nsoprev
j,r,t + nsbj,r,t − nsrj,r,t ∀ j, r, t > 1 (5.43)

nsoprev
j,r,t = ˆnsoj,r,t−1 ← µo,s

j,r,t ∈ R|J |+|R|+|T |−1 ∀ j, r, t > 1 (5.44)

Here nsoprev
j,r,t is the duplicated variable representing nsoi,r,t−1, and ˆnsoj,r,t−1 is the solution

for nsoi,r,t at time period t − 1, which is fixed when solving time period t. The Lagrange

multiplier µo,s
j,r,t of equation (5.44) is unrestricted in sign.

Equations (5.19) and (5.23) compute the age of the new generators that are built during

the planning horizon to be able to enforce their retirement (or life extension) when they

achieve the end of their lifetime. Hence, these constraints link time period t to time period

t− LTi, where LTi is the expected lifetime of a generator in cluster i. In order to decouple

those time periods, (5.19) has to be replaced by (5.45) and (5.46).

ngbrn,LT
i,r,t = ngrrn

i,r,t + ngern
i,r,t ∀ i ∈ IRnew

r , r, t (5.45)

ngbrn,LT
i,r,t = ˆngb

rn

i,r,t−LTi ← µb,rn
i,r,t ∈ R|IRnew

r |+|R|+|T | ∀ i ∈ IRnew
r , r, t (5.46)

Here ngbrn,LT
i,r,t is the duplicated variable representing the renewable generators built in year

t−LTi, ngbrn
i,r,t−LTi . Thus, the model is able to track when the end of the generators’ lifetime

is, which is the year they were built plus their lifetime, LTi. The solution for ngbrn
i,r,t at year

t − LTi, ˆngb
rn

i,r,t−LTi , is fixed when solving time period t. The Lagrange multiplier µb,rn
i,r,t of

equation (5.46) is unrestricted in sign.

Similarly, constraint (5.23) is replaced by (5.47) and (5.48).

ngbth,LT
i,r,t = ngrth

i,r,t + ngeth
i,r,t ∀ i ∈ ITnew

r , r, t (5.47)

ngbth,LT
i,r,t = ˆngb

th

i,r,t−LTi ← µb,th
i,r,t ∈ R|ITnew

r |+|R|+|T | ∀ i ∈ ITnew
r , r, t (5.48)

Here ngbth,LT
i,r,t is the duplicated variable representing the thermal generators built at year
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t−LTi, ngbth
i,r,t−LTi . The solution for ngbth

i,r,t at time period t−LTi, ˆngb
th

i,r,t−LTi , is fixed when

solving time period t. The Lagrange multiplier µb,th
i,r,t of equation (5.48) is unrestricted in

sign.

Equation (5.27) computes the age of the new storage units that are built during the

planning horizon to be able to enforce their retirement when they achieve the end of their

lifetime. Hence, this constraint links time period t to time period t−LT s
j , where LT s

j is the

expected lifetime of a storage device in cluster j. In order to decouple those time periods,

(5.27) has to be replaced by (5.49) and (5.46).

nsbLT
j,r,t = nsrj,r,t ∀ j, r, t (5.49)

nsbLT
j,r,t = n̂sbi,r,t−LT s

j
← µb,s

j,r,t ∈ R|J |+|R|+|T | ∀ j, r, t (5.50)

Here nsbLT
j,r,t is the duplicated variable representing the storage units built in year t − LT s

j ,

nsbj,r,t−LT s
j
. Thus, the model is able to track when the end of the storage units’ lifetime is,

which is the year they were installed plus their lifetime, LT s
j . The solution for nsbj,r,t at year

t − LT s
j , n̂sbj,r,t−LT s

j
, is fixed when solving time period t. The Lagrange multiplier µb,s

j,r,t of

equation (5.50) is unrestricted in sign.

Furthermore, the objective function for a given time period is solved independently, and

incorporates the cuts for future cost that are added in the following iterations. These cuts,

given by equation (5.52), project the problem onto the subspace defined by the linking

variables, and will be explained in detail in Section 5.4.2. Hence, equation (5.35) is replaced

by (5.51)-(5.52),

min Φt = Φopex
t + Φcapex

t + ΦPEN
t + αt (5.51)
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αt ≥ Φ̂t+1,k +
∑

i∈IRN
r ,r

µo,rn
i,r,t+1,k ·

(
ˆngorn

i,r,t,k − ngorn
i,r,t

)
+
∑

i∈ITH
r ,r

µo,th
i,r,t+1,k ·

(
ˆngoth

i,r,t,k − ngoth
i,r,t

)
+
∑
j,r

µo,s
j,r,t+LT s

j ,k
· ( ˆnsoj,r,t,k − nsoj,r,t)

+
∑

i∈IRN
r ,r

µb,rn
i,r,t+LTi,k

·
(

ˆngb
rn

i,r,t,k − ngbrn
i,r,t

)
+
∑

i∈ITH
r ,r

µb,th
i,r,t+LTi,k

·
(

ˆngb
th

i,r,t,k − ngbth
i,r,t

)
+
∑
j,r

µb,s
j,r,t+LT s

j ,k
·
(
n̂sbj,r,t,k − nsbj,r,t

)
∀ k

(5.52)

where k is the iteration counter.

The MILP subproblem for a given time period t and iteration k, described by equations

(5.1)-(5.16), (5.18), (5.20), (5.22), (5.24), (5.25), (5.28)-(5.34), (5.36)-(5.52), can be more

concisely represented by (Pt,k).

Pt,k : Φt,k(x̂t−1,k, φt,k) = min
xt,yt,zt

ft(xt, yt) + φt,k(x̂t,k) (5.53a)

s.t. zt = x̂t−1,k ← µt,k ∈ Rn (5.53b)

(xt, yt, zt) ∈ Xt (5.53c)

where the feasible region Xt is the mixed-integer set given by

Xt =

{
(xt, yt, zt) :(5.1)− (5.16), (5.18), (5.20), (5.22), (5.24), (5.25),

(5.28)− (5.34), (5.36)− (5.39), (5.41), (5.43),

(5.45), (5.47), (5.49)

xt ∈ Zn1
+ × Rn2

+ , yt ∈ Zm1
+ × Rm2

+ , zt ∈ Rn

}
(5.54)

and n = n1 + n2, m = m1 +m2.
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The components of (Pt,k) map to our problem as follows:

• xt represents the state (i.e., linking) variables, ngorn
i,r,t, ngoth

i,r,t, nsoj,r,t, ngbrn
i,r,t, ngbth

i,r,t,

nsbj,r,t. These are mixed integer variables since ngorn
i,r,t, ngb

rn
i,r,t, nsoj,r,t, nsbi,r,t ∈ R+,

and ngoth
i,r,t, ngb

th
i,r,t ∈ Z+.

• zt represents the duplicated state variables, ngorn,prev
i,r,t , ngoth,prev

i,r,t , nsoprev
j,r,t , ngb

rn,LT
i,r,t ,

ngbth,LT
i,r,t , nsbLT

j,r,t, which are continuous variables.

• yt represents the local variables, i.e. all the other variables not listed above. These are

mixed-integer variables.

• x̂t−1,k is the state of the system at the start of a time period t of iteration k, i.e., the solu-

tion for xt obtained in a previous period of the Forward Pass that is linked to (thus fixed

in) the current time period (both in iteration k). In our problem this corresponds to the

fixed values of ˆngorn
i,r,t−1, ˆngoth

i,r,t−1, ˆnsoj,r,t−1, ˆngb
rn

i,r,t−LTi , ˆngb
th

i,r,t−LTi , n̂sbj,r,t−LT s
j
from

equations (5.40), (5.42), (5.44), (5.46), (5.48), (5.50), such that x̂t−1,k = (x̂o
t−1,k, x̂

b
t−LT,k),

where x̂o
t−1,k maps to ( ˆngorn

i,r,t−1, ˆngoth
i,r,t−1, ˆnsoj,r,t−1), and x̂b

t−LT,k maps to ( ˆngb
rn

i,r,t−LTi ,
ˆngb

th

i,r,t−LTi , n̂sbj,r,t−LT s
j
). Note that x̂bt−LT,k is a slight abuse of notation since the life-

times LTi and LT s
j of different generator and storage clusters may differ. These fixed

values are also used in the following Backward Pass.

• f(xt, yt) is the objective function in terms of the state and local variables, xt and yt,

respectively.

• φt,k is the cost-to-go as a function of x̂t,k.

• Constraint (5.53b) represents the equalities (5.40), (5.42), (5.44), (5.46), (5.48), (5.50),

and µt,k represent their Lagrange multipliers µo,rn
i,r,t, µ

o,th
i,r,t, µ

o,s
j,r,t, µ

b,rn
i,r,t , µ

b,th
i,r,t , µ

b,s
j,r,t, respec-

tively, such that µt,k = (µo
t,k, µ

b
t,k), where µo

t,k maps to (µo,rn
i,r,t, µ

o,th
i,r,t, µ

o,s
j,r,t), and µb

t,k maps

to (µb,rn
i,r,t , µ

b,th
i,r,t , µ

b,s
j,r,t).

The cost-to-go function, φt,k(·), is defined as:

φt,k(x̂t,k) := min
xt,αt
{αt : αt ≥ Φ̂t+1,k + µᵀ

t+1,k(x̂t,k − xt)} (5.55)
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where Φ̂t+1,k is the optimal value for time period t + 1, µt+1,k is the Lagrange multiplier

for the equality constraint, both obtained in the Backward Pass of iteration k, such that

µt+1,k = (µo
t+1,k, µ

b
t+LT,k), where µo

t+1,k maps to (µo,rn
i,r,t+1, µ

o,th
i,r,t+1, µ

o,s
j,r,t+1), and µb

t+LT,k maps

to (µb,rn
i,r,t+LTi

, µb,rn
i,r,t+LTi

, µb,s
j,r,t+LT s

j
). Note that µb

t+LT,k is a slight abuse of notation since the

lifetimes LTi and LT s
j of different generator and storage clusters may differ. x̂t,k is the solution

for xt obtained in the Forward Pass of iteration k and fixed in the following Backward Pass.

5.4.2 Description of the algorithm

The Nested Decomposition algorithm consists of decomposing the problem per time pe-

riod (year) and solving it iteratively in a forward and a backward fashion. The Forward

Pass yields a feasible upper bound, while the Backward Pass, which generates cuts from the

relaxed subproblems, provides a lower bound. New cuts are added in the Backward Pass of

each iteration k, and are kept in the following Forward Pass, until the difference between the

upper and lower bounds is less than a pre-specified tolerance, ε1, or iteration k has reached

the maximum number of iterations, MaxIter, as shown in Figure 5.3. Even though this al-

gorithm is very similar to the work by Zou et al. (2018b), we provide its full description since

the mapping between a stochastic multi-stage and a deterministic multi-period formulation

is not trivial.

Forward Pass

The purpose of the forward pass is to generate a feasible solution to the full problem.

It accomplishes this by making decisions in time period t, implementing the investment

decisions for that period, and then repeating the process in the subsequent period. Therefore,

this first step consists of solving the optimization problem for each time period sequentially,

using the solution from the appropriate previous time period for x̂t−1,k. This first part of

the algorithm, the Forward Pass, is illustrated in Figure 5.4.

The problem is assumed to have complete continuous recourse, which means that for any

value of state variable (i.e., linking variable) and local integer variables, there are values for
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Figure 5.3: Steps at iteration k of the Nested Decomposition algorithm

the continuous local variables such that the solution is feasible. This assumption is valid

since feasibility can be achieved by adding nonnegative slack variables and penalizing them

in the objective function.

The upper bound, UBk, is calculated in the Forward Pass as follows in (5.56). It is easy

to see that the sum of the optimal solutions of the Forward Pass subproblems at iteration

k, Φ̂t,k, minus the cost-to-go approximations, α̂t, for all time periods at that iteration, yields

a valid upper bound, since the sequential solution of the time periods in a myopic fashion,

without relaxing any constraint or integrality, gives a feasible solution to the full-space MILP

problem.

UBk =
∑
t

(
Φ̂t,k − α̂t

)
∀ k (5.56)

Backward Pass

After solving the Forward subproblem for all the time periods, the next step is the

Backward Pass, the purpose of which is to generate cuts. This step consists of solving the

subproblems from the last to the first time period, so the solutions of future periods can be
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Figure 5.4: Forward Pass for iteration k generates a feasible solution to the full/original problem
(over the full planning horizon)

used to generate cuts to provide approximations to predict the cost-to-go functions within

the planning horizon. These are cumulative cuts, but specific for each time period; i.e.,

they are added at each iteration k whenever a new Backward Pass subproblem for year t

is solved, and they are kept in the formulation of the following Forward Pass. Note that

the fixed variables stored in the Forward Pass, x̂t, are also used in the Backward Pass. The

overall procedure of the Backward Pass is represented in Figure 5.5.

The lower bound, LBk, is calculated in the Backward Pass as in (5.57). It is easy to see

that the relaxed solution of the first time period t = 1 is a lower bound to the total cost

since it only has a subset of the original constraints of the original problem.

LBk = Φ̂1,k ∀ k (5.57)

If our problem were convex and solved by standard Nested Benders Decomposition, the

objective value and the Lagrange multiplier of the equality constraint (5.53b) would be
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Figure 5.5: The backward pass generates cuts for the cost-to-go function approximations using the
solutions from the forward pass

enough to generate the Benders cut (5.58). We assume here that t is fixed.

αt ≥ Φ̂t+1,k + µᵀ
t+1,k(x̂t,k − xt) ∀ k (5.58)

However, the cut cannot be directly generated because the subproblems have integer

variables, and thus, are non-convex. In order to provide a valid cut, the subproblems have

to be convexified, which can be done by considering the linear or the Lagrangean relaxation

of the MILP. The cuts generated by the relaxed problems are the Benders and Lagrangean

cuts, respectively (which follows the same notation as Zou et al. (2018b)). A third type

of cut proposed by Zou et al. (2018b) as a Strengthened Benders cut is also valid for the

Backward Pass subproblems.

The choice of cuts directly impacts the performance of the algorithm as some cuts are

tighter and more/less computationally expensive to generate than the others. It is possible,

and sometimes recommended, to combine different cuts in the algorithm if one does not

strictly dominate the other. Following, we define the different types of cuts that can be used

in the Backward Pass, present their potential advantages and disadvantages, and in Section
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5.4.3 we demonstrate their validity.

Benders cut The Benders cut is exactly like (5.58), but the coefficients, i.e., the optimal

solution of the immediately after period, Φ̂LP
t+1,k, and the multipliers for the complicating

equalities, µt+1,k, are obtained from the solution of the linear relaxation, as represented in

equation (5.59). We assume here that t is fixed.

αt ≥ Φ̂LP
t+1,k + µᵀ

t+1,k(x̂t,k − xt) ∀ k (5.59)

This is the weakest of the possible cuts, but it has the advantage of being easily and

quickly computed. It is expected to perform well if the formulation is tight and the solution

of the linear relaxation is close to the actual solution of the MILP (Sahinidis and Grossmann,

1991; Rahmaniani et al., 2016). For certain multistage capacity planning problems with

integer recourse, there is evidence that Benders cuts alone are sufficient for driving the

optimality gap to zero as the number of stages increases (see, e.g., Huang and Ahmed (2009),

Corollaries 1 and 2). However, it is important to highlight that if this is the cut being used,

the algorithm does not have guaranteed finite convergence since there can be a duality gap.

Lagrangean cut The MILP subproblem (Pt,k), given by (5.53), can also be convexified by

considering its Lagrangean relaxation, which yields the convex hull of the noncomplicating

constraint (Frangioni, 2005). In our case this is done by dualizing the linking equalities

(5.53b) and penalizing their violation in the objective function by the vector of Lagrange

multipliers, µt,k. Thus, the Lagrangean relaxation of (Pt,k) is defined by (Lt,k), in (5.60).

Lt,k : ΦLR
t (µt,k, x̂t−1,k, φt,k) = min

xt,yt,zt
ft(xt, yt) + φt,k(x̂t,k)− µᵀ

t,k(zt − x̂t−1,k)

s.t. (xt, yt, zt) ∈ Xt
(5.60)

The closer the Lagrange multipliers are to their optimal value, the tighter the approximation

is, and the stronger the cuts generated by theses multipliers are. The optimal Lagrange

143



Chapter 5. Deterministic Electric Power Infrastructure Planning

multipliers, µ̄t,k, are obtained by the maximization problem (5.61).

ΦLD
t,k (x̂t−1,k, φt,k) = max

µt,k
ΦLR
t,k (µt,k, x̂t−1,k, φt,k) (5.61)

The Lagrangean cut uses the coefficients obtained by the maximization problem (5.61),

as represented in equation (5.62). We assume here that t is fixed.

αt ≥ Φ̂LD
t+1,k + µ̄ᵀ

t+1,k(x̂t,k − xt) ∀ k (5.62)

The maximization problem in (5.61) can, however, be computationally expensive. There-

fore, we adapted the Lagrange multiplier optimization algorithm for each of the subproblems

of the Backward Pass based on Thome et al. (2013) using the subgradient method (Fisher,

2004). The steps of the Backward Pass within the Nested Decomposition algorithm if only

Lagrangean cuts are used is described below.

For a time period t = T, ...,1 in iteration k:

1. Solve the original MILP subproblem in (5.53) to get the actual objective value,

ΦOP
t,k ;

2. Solve the linear relaxation of the MILP subproblem in (5.53), and store the dual

variables, µt,k;

3. Use the dual variables from the LP relaxation as an initial guess for the Lagrange

multipliers;

4. Solve the Lagrangean subproblem in (5.60) to obtain the optimal value ΦLR
t,k ;

5. Check stopping criteria:

(a) If ΦOP
t,k − ΦLR

t,k ≤ ε2, where ε2 is a pre-specified tolerance, store the

optimal value ΦLR
t,k , and multipliers µt,k, and go to the next subproblem

t− 1, adding the appropriate future cost cut.

(b) If no significant progress is achieved after re-solving the Lagrangean

relaxation, i.e., if |ΦLR,old
t,k − ΦLR

t,k | ≤ ε3, where ε3 is a pre-specified tol-

erance and ΦLR,old
t,k is the solution of the Lagrangean Relaxation in the
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previous step of the subgradient method, this means that no further

effort should be made to decrease the duality gap of this subproblem

in this iteration k. Store the optimal value ΦLR
t,k , and the multipliers

µt,k, and go to the next subproblem t − 1, adding the appropriate

future cost cut.

6. If the stopping criteria are not met, update the set of multipliers using the

subgradient method:

µt,k = µt,k − stept,k · (zt − x̂t−1,k)

where stept,k =
ΦOP
t,k−ΦLR

t,k

(zt)2 , and go back to step 3.

Zou et al. (2018b) proved that if all the linking variables are binary, the Lagrangean

cut is tight and the Nested Decomposition algorithm converges in a finite number of steps.

However, in our case the state variables are integer and continuous, thus finite convergence

is not guaranteed because there may be a duality gap associated with the solution (Ahmed,

2016).

Strengthened Benders cut As mentioned in the previous sections, depending on the

structure of the problem, the Benders cuts can be weak and the Lagrangean cuts can take a

long time to compute. In order to mitigate potential performance issues, Zou et al. (2018b)

proposed the Strengthened Benders cut, which is a compromise between Benders and La-

grangean cuts. Its generation is similar to the Lagrangean cut, but it does not use the

subgradient method to improve the multipliers. Instead, it uses the coefficients from the

first Lagrangean relaxation solved after the initialization of the multipliers using LP relax-

ation as shown in (5.63). We assume that t is fixed here.

αt ≥ Φ̂LR
t+1,k + µᵀ

t+1,k(x̂t,k − xt) ∀ k (5.63)

These cuts are at least as tight as the Benders cut (Zou et al., 2018b), but usually less

computationally expensive than the Lagrangean cuts.
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5.4.3 Validity of the cuts

The Nested Decomposition algorithm is valid as long as the cuts generated in the Back-

wards Pass are valid according to the following definition (Zou et al., 2018b).

Definition 1. Let {(Φ̂t,k, µt,k)} be the coefficients obtained from the Backward Pass in

iteration k, and x̂t,k be the value for xt obtained in the Forward Pass of iteration k and fixed

for the Backward Pass. Let Φt(x̂t−1,k) be the optimal solution for subproblem t for a x̂t−1,k

assuming exact representation of the cost-to-go-function. A cut is valid for all periods t ∈ T

and all iterations k ∈ K if

Φt(x̂t−1,k) ≥ Φ̂t+1,k + (µt+1,k)
ᵀ(x̂t,k − xt) (5.64)

The validity of the Benders, Lagrangean and Strengthened Benders cuts in the context of

mixed-integer state variables is proved in Propositions 3, 4, and 5, respectively. Propositions

4 and 5 readily follows from validity part of Theorem 2 in Zou et al. (2018b), but they now

allow mixed-integer state variables.

Proposition 3. The Benders cut (5.59), generated by solving the linear relaxation of (Pt,k),

underestimates Φt(x̂t−1,k).

Proof. It trivially follows that the linear relaxation of (Pt,k), with optimal value ΦLP
t,k , un-

derestimates the optimal value Φt,k of the original problem (Pt,k), that is, Φt,k ≥ ΦLP
t,k .

Therefore, since the Benders cut is valid for the LP problem, as proved by Birge (1985), it

is also valid for the MILP problem.

Proposition 4. The Lagrangean cut (5.62), generated by solving the Lagrangean dual of

(Pt,k), underestimates Φt(x̂t−1,k).

Proof. This proof follows from the proof presented in Zou et al. (2018b), however in latter

only binary state variables are considered, and now we allow mixed-integer state variables.

For the last period t = T , the cost-to-go function φt,k = 0. If we relax the equality zt = x̂t−1,k
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in (Pt,k) using the optimal multiplier of the Lagrangean problem (5.61), µ̄k,t, we have for

any x̂t−1,k ∈ Zn1
+ × Rn2

+ , where n1 + n2 = n,

Φt(x̂t−1,k) ≥ min
xt,yt,zt

{
ft(xt, yt)− µ̄ᵀ

t,k(zt − x̂t−1,k) : (xt, yt, zt) ∈ Xt

}
= ΦLD

t,k

(5.65)

Thus, the Lagrangean cut is valid for t = T . Next, we prove by induction that the

Lagrangean cut is also valid for the remaining timeperiods. Consider t ≤ T − 1 and assume

the Lagrangean cut defined by {(Φ̂t+2,k, µ̄t+2,k, x̂t+1,k)} is valid. Note that:

Φt(x̂t−1,k) = min
xt,yt,zt,αt

{
ft(xt, yt) + αt : (xt, yt, zt) ∈ Xt, zt = x̂t−1,k, αt ≥ Φt+1

}
(5.66)

Since the cut defined by {(Φ̂t+2,k, µ̄t+2,k, x̂t+1,k)} is valid, i.e. Φt+1(xt) ≥ Φ̂t+2,k+(µ̄t+2,k)
ᵀ(x̂t+1,k−

xt+1) for any xt+1 ∈ Zn1
+ × Rn2

+ , then the new feasible region X ′t that incorporates this cut

is a relaxation of the original feasible region Xt of (5.66). Hence, by dualizing the equality

constraint we have that

Φt(x̂t−1,k) ≥ min
xt,yt,zt,αt

{
ft(xt, yt) + αt : (xt, yt, zt) ∈ X ′t , zt = x̂t−1,k

}

≥ min
xt,yt,zt,αt

{
ft(xt, yt) + αt − µ̄ᵀ

t,k(zt − x̂t−1,k) : (xt, yt, zt) ∈ X ′t

}
= ΦLD

t,k

(5.67)

Thus, the Lagrangean cut defined by {(Φ̂t+1,k, µ̄t+1,k, x̂t,k)} is valid for t ∈ T , which

completes the proof of Proposition 4.

Proposition 5. The Strengthened Benders cut (5.63), generated by solving the Lagrangean

relaxation of (Pt,k) using the multipliers from the linear relaxation of (Pt,k), underestimates

Φt(x̂t−1,k).

Proof. Since the Lagrangean dual is the tightest of the Lagrangean relaxations, the proof
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for Proposition 4 is also valid for Proposition 5.

5.4.4 Accelerated Nested Decomposition Algorithm

The proposed Nested Decomposition algorithm (as described in Sections 5.4.2 and 5.4.2)

performs very well for our type of problem as will be shown in the results. However, there

is potential for improvement, particularly in the early iterations, since the initial planning

years have little information of what happens in future years. It is well known that Benders

decomposition and its variants can oscillate wildly during initial iterations when the cost-

to-go approximations of future stages is poor (Rahmaniani et al., 2016). Here, we propose

an acceleration technique aimed at ’warm-starting’ the initial cost-to-go approximations

with information from an aggregated expansion model, which can potentially speed up the

convergence.

The first step is to solve an aggregated version of the full-space MILP and use its solution

to pre-generate cuts before entering in the first Forward Pass. The level of aggregation can

be decided by the user. The key is to balance the trade-off between a highly aggregated

model, which is fast to solve but generates weaker cuts, and a barely aggregated model,

which will take almost as long to solve as the original MILP (especially if the solution of the

LP relaxation is the main bottleneck) but generates stronger cuts. After some preliminary

experiments, we opted to aggregate the model by having only one representative day per year

with hourly-level information and relaxing the integrality of the unit commitment variables.

The aggregated model can provide multiple solutions for the linking variables xt by

using the solver’s solution pool option (IBM, 2015). The decision of how many solutions

to use for cut generation is also user-defined (the larger the number of solutions used, the

better the representation of the original model, but the longer it takes to compute). These

solution values are fixed, x̂t,0, and used to generate cuts in a pre-Backward Pass, which is

solved before entering the Nested Decomposition iterations. Thus, the algorithm uses the

information from this aggregated model that has a view of the full planning horizon (but in

an approximated fashion) to gather information about future periods and what are potential
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good solutions, so that in early iterations, the cost-to-go approximations possess stronger cuts

and, consequently, more relevant information about the cost of future investment decisions.

Note that any of the cuts presented before can be used in this step of the algorithm.

After finishing this pre-Backward Pass, the algorithm goes to the first Forward Pass keep-

ing the pre-generated cuts. From this point on, the algorithm follows the same steps as in

the standard Nested Decomposition. The main steps of the improved Nested Decomposition

are shown in Figure 5.6.

Figure 5.6: Accelerated Nested Decomposition algorithm using pre-generated cuts from an aggre-
gated model to improve initial cost-to-go approximations.

5.5 Case study

In order to test the formulation proposed in Section 5.3 and the algorithm proposed in

Section 5.4, we applied them to a case study approximating the Texas Interconnection, a

power grid that covers most of the state of Texas. This system is managed by the Electric

Reliability Council of Texas (ERCOT), which is an independent system operator responsible

for the flow of electric power of about 90% of Texas’ electric load. The choice for this

interconnection is based on the fact that it is one of the three minor grids in the continental
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U.S. power transmission grid, so it is a fairly isolated system that has manageable size. Since

our focus is on assessing our multi-scale model and decomposition algorithms, the results

presented here should not be interpreted as a detailed analysis of the ERCOT system along

the lines of other efforts in the literature (Newell et al., 2014).

Within the ERCOT covered area, we consider four geographical regions: Northeast, West,

Coastal and South. We also include a fifth region, Panhandle, which is technically outside

the ERCOT limits but due to its renewable generation potential, it supplies electricity to

the ERCOT regions. Thus, Panhandle is considered a zone with zero load demand, i.e., it

is only a supplier, not a consumer. The regions are shown in Figure 5.1. We assume the

geographical midpoints for the Northeast, West, Coastal, South and Panhandle are Dallas,

Glasscock County, Houston, San Antonio, and Amarillo, respectively.

For each of the regions, we use load and capacity factor profiles with an hourly resolution.

Representative days are constructed using a k-means clustering algorithm. After normalizing

2004-2010 zonal load and renewables profiles into a list of 2555 vectors (7 years of data

times 365 days per year – leap days were excluded), d clusters (for d = 1, ..., D = 12)

are constructed to find a most representative day, chosen as the day closest in Euclidean

distance to the centroid of each resulting cluster. Each representative day is then assigned

a weight proportional to the number of historical days in the corresponding cluster. Finally,

the weighted load profile is normalized to equal 2015 aggregate ERCOT load of 347.5 TWh

so that a fair comparison between runs with different numbers of clusters can be made. We

assume a constant load growth of 1.4%/year to project load for the 30 years of the planning

horizon being studied.

The investment cost, fixed and variable operating costs are derived from the National

Renewable Energy Laboratory (NREL), available in the 2016 Annual Technology Baseline

(ATB) Spreadsheet (NREL, 2016). We consider a 30-year time horizon, in which the first

year is 2015. The fuel price data for coal, natural gas and uranium correspond to the

reference scenario of EIA Annual Energy Outlook 2016 (EIA, 2016). A discount rate of

5.7% as chosen in Short et al. (2011) is used to distinguish between the costs incurred in
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various years of the planning horizon. All of our computation results assume no carbon tax

or renewable generation quota is imposed, and no storage expansion allowed.

We assume that the transmission loss is 1%/100 miles, which is the same fraction loss per

miles used by Short et al. (2011). The transmission line capacities were generated combining

information from Park and Baldick (2013); ERCOT Systems Planning (2014); ABB (2010).

The operating data such as ramping limits, minimum operating reserve requirements, are

from a range of sources (Mai et al., 2013; Kerl et al., 2015; NWPCC, 2010; WEC, 1984;

ERCOT, 2016c). The planning reserve requirement is assumed to be 13.75% (Potomac

Economics, 2016). For the nominal capacity of the clusters in each region, we use data

from ERCOT (2016c), which has a list of all the power plants in ERCOT for different

categories. We compile this data into 7 existing cluster types and combine them with the

data from ERCOT (2016) to have this information divided by the regions. Then, for each

of the clusters in each region, we assume that the nominal capacity is the mean size of all

generators within that cluster.

We first solve the proposed model for 1 to 12 representative days, with an optimality gap

tolerance of 1%, to assess the impact of the number of representative days in the planning

strategy. Then, we solve the proposed model as a full-space MILP, as well as using the

Nested Decomposition with the cuts presented in Section 5.4.2 for the 4 representative days

variant of the model, and applied the acceleration technique from Section 5.4.4 to the cut

with the best performance. The two best versions of the algorithm are also tested for the 12

representative days.

Our computational tests were performed on a standard desktop computer with an Intel(R)

Core(TM) i7-2600 CPU @ 3.40 GHz processor, with 8GB of RAM, running on Windows 7.

We implement the monolithic formulation and all the versions of the Nested Decomposition

algorithm in GAMS 24.7.1, and solve the LPs and MILPs using CPLEX version 12.6.3.
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5.5.1 Impact of the number of representative days in the planning

strategy

To evaluate the impact of including more representative days on the generation invest-

ment decisions, we ran the proposed model for 1 to 12 representative days per year. The

fractional difference relative to the 12-day representation by generation source is shown in

Figure 5.7. This plot does not include coal and nuclear because their final year capacities

are exactly the same irrespective of the number of representative days considered. The wind

capacity suffers minor fluctuation and slowly converges to a capacity that is 3% higher than

the 1-day model projected. On the other hand, a major difference occurs in projected PV and

NG generation capacities. For 1 to 4 representative days, there is a clear trend of decreasing

PV and increasing NG contributions as we increase the number of representative days. With

the exception of the outlier in the "5 representative days" results, this trend can be seen

for all the variants until the results reach a plateau with small fluctuations. This trend is

in agreement with the results presented in Nahmmacher et al. (2016b). It is important to

highlight that the jump in the installed capacity of PV and natural gas with 5 representative

days is due in part to the approach for selecting representative days. Namely, historical data

are clustered according to the joint distribution of load and renewables capacity factors.

This does not guarantee that the profile used to represent individual technologies will better

match that technology’s historical duration curves as the number of representative days is

increased.

After this preliminary experiment, we opted to test the algorithm for 4 and 12 repre-

sentative days per year. The 4 representative days variant was chosen because its results

are similar to those of the 12-day variant, while requiring less computational time. We also

opted to solve the 12 representative days variant because it exploits better the full potential

of the Nested Decomposition algorithm, which may be needed for more complex models

that require higher time resolution (e.g, models that consider storage) Nahmmacher et al.

(2016b).

152



5.5. Case study

Figure 5.7: Capacity projections of natural gas, solar PV and wind at the end of the time horizon,
varying with the number of representative days selected. The capacities are represented as a fraction
of capacity projected by the 12-day model.

5.5.2 4 representative days variant

The full-space MILP model using 4 representative days has 1,201,761 constraints, 413,644

discrete variables, and 594,147 continuous variables. After invoking CPLEX’s presolver, the

model was reduced to 800,755 constraints, 25,231 binary variables, 388,493 integer variables,

and 225,367 continuous variables. We solved the problem using several methods: (1) we

solved the monolithic formulation directly in CPLEX; (2) we applied the Nested Decompo-

sition algorithm with each of the cut options; (3) we employed the acceleration technique to

the Nested Decomposition variant with the best performance in (2). For all the versions of

the algorithm, we set a maximum of 20 iterations and an optimality gap tolerance of 0.01%

for any MILP subproblem, and for the full-space MILP we set a maximum time of 4 hours.

The comparison between the performance of the full-space MILP and the various algorithm

versions is shown in Figure 5.8.

All of the versions of the algorithm found solutions within 10% gap in less than 10
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Figure 5.8: Algorithm performance in the 4-representative day model. The results show that the
Benders cut and its accelerated version are the fastest in finding a solution within 1% optimality
gap.

minutes, while the first integer solution by the monolithic MILP took 2.04 hours. The

Benders cuts was the most efficient among the possible cuts, finding a solution within 1%

gap in 47.5 minutes. This was already expected due to the tightness of the linear relaxation,

and to how quickly the Benders cuts are generated. Further improvements can be gained by

employing the accelerated version (see Section 5.4.4) in which warm-start cuts are generated

before invoking the Nested Benders approach. The accelerated Nested Decomposition with

Benders cuts greatly reduces the optimality gap in the initial iterations and is the fastest

(39.6 minutes) at finding a solution within 1% optimality gap.

5.5.3 12 representative days variant

The full-space MILP model for the 12 representative days variant has 3,626,721 con-

straints, 1,243,084 discrete variables, and 1,774,947 continuous variables. After invoking

CPLEX’s presolver, the model was reduced to 2,428,687 constraints, 77,071 binary vari-
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Figure 5.9: Algorithm performance in the 12-representative day model. The results show that
the Accelerated Nested Decomposition algorithm provides smaller optimality gaps in the initial
iterations.

ables, 1,183,373 integer variables, and 673,825 continuous variables. Despite these reductions,

CPLEX terminated with a 100% optimality gap after solving the monolithic formulation for

24 hours, our chosen time limit. We solved the problem using the Nested Decomposition al-

gorithm with the two versions that performed the best using 4 representative days (Benders

cuts, and warm-start cuts + Benders cuts). For those, we set a maximum of 20 iterations and

an optimality gap tolerance of 0.01% for any MILP subproblem. The comparison between

the performance of the two algorithms is shown in Figure 5.9.

Both versions of the algorithm obtained solutions within 2% optimality gap in less than

5 hours. We notice again that by "warm-starting" the algorithm we were able to reduce the

optimality gap in the initial iterations. The accelerated version found a solution with a 2%

gap in its 4th iteration and 3.5 hours, while the normal Benders cut version took 4.6 hours

and 7 iterations to reach the same optimality gap.
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5.5.4 Cost breakdown comparison

Figure 5.10: Breakdown of system costs using 4 and 12 representative days.

We also compare the impact of the having more representative days in the cost breakdown,

which is shown in Figure 5.10. The results indicate that for both cases the cost is driven by

the fuel consumption (coal, natural-gas and uranium), which accounts for about 60% of the

total cost. The major difference between these representations is in the startup contribution,

which goes from 0.3% to 1.5% of the total cost when considering 4 and 12 representative

days. These results show that by having a better representation of the dynamics of the

systems, i.e., higher number of representative days with hourly load and capacity factor, the

startup cost becomes more relevant.

5.6 Conclusions

In this chapter we propose a multiperiod MILP model to solve power systems planning

problem considering increasing share of renewables. We adopt clustering and time scale

strategies in order to reduce the size of the model without greatly impacting the quality

of the results. The major novelties and contributions of this chapter are in the problem
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formulation, especially in the description of retirement and handling of multi-scale aspects,

and in its solution strategy. We develop a decomposition algorithm based on Nested Benders

Decomposition for this multi-period deterministic problem with integer and continuous state

variables that does not have guaranteed finite convergence as there is a potential duality

gap, although in the implementation a maximum number of iterations is specified. We also

present several options of valid cuts for the Backward Pass, and make use of an acceleration

technique to speed up the conversion of the algorithm.

The formulation and solution framework are tested for a case study in the ERCOT

region. The results show that the algorithm can provide substantial speed-up and allow

the solution of larger instances. This improvement in solution time is important because

it allows one to perform several sensitivity analysis and better understand the drivers for a

variety of scenarios. Additionally, we conclude that for the proposed model and case study,

it is sufficient to have 4 representative days per year in order to adequately represent the

variability in load and capacity factor for the different regions. In other instances, such

as when studying the potential role of energy storage technologies, it may be necessary to

consider more than 4 representative days to model grid operations. For those cases, the

developed algorithms are shown to be critical to finding an optimal solution in a reasonable

amount of time.

There are several future research directions worth investigating. Regarding the model

formulation, it would be interesting to see the impacts of including transmission expansion,

having a more detailed representation of transmission, and incorporating long-term uncer-

tainty into the model. Regarding the algorithm, there is potential for parallelization, espe-

cially for the Lagrangean cut version of the algorithm, which could improve its performance

and make it more competitive with other versions.

Nomenclature

Indices and Sets
r ∈ R set of regions within the area considered
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i ∈ I set of generator clusters
i ∈ Ir set of generator clusters in region r
i ∈ Iold

r set of existing generator clusters in region r at the beginning of the time hori-
zon, Iold

r ⊆ Ir
i ∈ Inew

r set of potential generator clusters in region r, Inew
r ⊆ Ir

i ∈ ITH
r set of thermal generator clusters in region r, ITH

r ⊆ Ir
i ∈ IRN

r set of renewable generator clusters in region r, IRN
r ⊆ Ir

i ∈ ITold
r set of existing thermal generator clusters in region r, ITold

r ⊆ ITH
r

i ∈ ITnew
r set of potential thermal generator clusters in region r, ITnew

r ⊆ ITH
r

i ∈ IRold
r set of existing renewable generator clusters in region r, IRold

r ⊆ IRN
r

i ∈ IRnew
r set of potential renewable generator clusters in region r, IRnew

r ⊆ IRN
r

j ∈ J set of storage unit clusters
t ∈ T set of time periods (years) within the planning horizon
d ∈ D set of representative days in each year t
s ∈ S set of sub-periods of time per representative day d in year t
k ∈ K set of iterations in the Nested Decomposition algorithm

Deterministic Parameters
Lr,t,d,s load demand in region r in sub-period s of representative day d of year t (MW)
Lmax
t peak load in year t (MW)

Wd weight of the representative day d
Hs duration of sub-period s (hours)
Qgnp

i,r nameplate (nominal) capacity of a generator in cluster i in region r (MW )
Ngold

i,r number of existing generators in each cluster, i ∈ Iold
r , per region r at the

beginning of the time horizon
Ngmax

i maximum number of generators in the potential clusters i ∈ Inew
r

Qinst,UB
i,t upper bound on yearly capacity installations based on generation technology

(MW/year)
Rmin
t system’s minimum reserve margin for year t (fraction of the peak load)

EDt energy demand during year t (MWh)
LTi expected lifetime of generation cluster i (years)
T remain
t remaining time until the end of the time horizon at year t (years)
Ngr

i,r,t number of generators in cluster i of region r that achieved their expected
lifetime

Qv
i capacity value of generation cluster i (fraction of the nameplate capacity)

Cfi,r,t,d,s capacity factor of generation cluster i ∈ IRN
r in region r at sub-period s, of

representative day d of year t (fraction of the nameplate capacity)
Pgmin

i minimum operating output of a generator in cluster i ∈ ITH
r (fraction of the

nameplate capacity)
Rumax

i maximum ramp-up rate for cluster i ∈ ITH
r (fraction of nameplate capacity)

Rdmax
i maximum ramp-down rate for cluster i ∈ ITH

r (fraction of nameplate capacity)
F start
i fuel usage at startup (MMbtu/MW)
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Fracspin
i maximum fraction of nameplate capacity of each generator that can contribute

to spinning reserves (fraction of nameplate capacity)
FracQstart

i maximum fraction of nameplate capacity of each generator that can contribute
to quick-start reserves (fraction of nameplate capacity)

Opmin minimum total operating reserve (fraction of the load demand)
Spinmin minimum spinning operating reserve (fraction of the load demand)
Qstartmin minimum quick-start operating reserve (fraction of the load demand)
αRN fraction of the renewable generation output covered by quick-start reserve (frac-

tion of total renewable power output)
T loss
r,r′ transmission loss factor between region r and region r′ 6= r (%/miles)
Dr,r′ distance between region r and region r′ 6= r (miles)
Nsj,r number of existing storage units in each cluster j per region r at the beginning

of the time horizon
Chargemin

j minimum operating charge for storage unit in cluster j (MW)
Chargemax

j maximum operating charge for storage unit in cluster j (MW)
Dischargemin

j minimum operating discharge for storage unit in cluster j (MW)
Dischargemax

j maximum operating discharge for storage unit in cluster j (MW)
Storagemin

j minimum storage capacity for storage unit in cluster j (MWh)
Storagemax

j maximum storage capacity (i.e. nameplate capacity) for storage unit in cluster
j (MWh)

ηcharge
j charging efficiency of storage unit in cluster j (fraction)
ηdischarge
j discharging efficiency of storage unit in cluster j (fraction)
LT s

j lifetime of storage unit in cluster j (years)
Ir nominal interest rate
If t discount factor for year t
OCCi,t overnight capital cost of generator cluster i in year t ($/MW)
ACCi,t annualized capital cost of generator cluster i in year t ($/MW)
DICi,t discounted investment cost of generator cluster i in year t ($/MW) 2

SICj,t investment cost of storage cluster j in year t ($/MW)
CCm

i capital cost multiplier of generator cluster i (unitless)
LEi life extension cost for generator cluster i (fraction of the investment cost of

corresponding new generator)
FOCi,t fixed operating cost of generator cluster i ($/MW)
P fuel
i,t price of fuel for generator cluster i in year t ($/MMBtu)
HRi heat rate of generator cluster i (MMBtu/MWh)
TxCO2

t carbon tax in year t ($/kg CO2)
EFCO2

i full lifecycle CO2 emission factor for generator cluster i (kgCO2/MMBtu)
V OCi,t variable O&M cost of generator cluster i ($/MWh)

2DICi,t is used in the calculation for the life extension investment cost, which is in terms of a fraction
LEi of the capital cost. Therefore the investment cost for the existing cluster is approximated as being the
same as for the potential clusters that have the same or similar generation technology.
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RNmin
t minimum renewable energy production requirement during year t (fraction of

annual energy demand)
PEN rn

t penalty for not meeting renewable energy quota target during year t ($/MWh)
PEN c

t penalty for curtailment during year t ($/MWh)
Cstart
i fixed startup cost for generator cluster i ($/MW)
ˆngorn

i,r,t,k solution from the Forward Pass, iteration k, of the number of operational re-
newable generators in cluster i of region r at year t, ngorn

i,r,t, which is a fixed
parameter for the year t+ 1 (unitless)

ˆngoth
i,r,t,k solution from the Forward Pass, iteration k, of the number of operational ther-

mal generators in cluster i of region r at year t, ngoth
i,r,t, which is a fixed pa-

rameter for the year t+ 1 (unitless)
ˆngb

rn

i,r,t,k solution from the Forward Pass, iteration k, of the number of renewable gener-
ators built in cluster i of region r at year t, ngbrn

i,r,t, which is a fixed parameter
for the year t+ LTi (unitless)

ˆngb
th

i,r,t,k solution from the Forward Pass, iteration k, of the number of thermal genera-
tors built in cluster i of region r at year t, ngbth

i,r,t, which is a fixed parameter
for the year t+ LTi (unitless)

µo,rn
i,r,t,k multiplier of the linking equality related to the number of operational renewable

generators in cluster i of region r at year t− 1 in iteration k (unitless)
µo,th
i,r,t,k multiplier of the linking equality related to the number of operational thermal

generators in cluster i of region r at year t− 1 in iteration k (unitless)
µb,rn
i,r,t,k multiplier of the linking equality related to the number of renewable generators

built in cluster i of region r at year t− LTi in iteration k (unitless)
µb,th
i,r,t,k multiplier of the linking equality related to the number of thermal generators

built in cluster i of region r at year t− LTi in iteration k (unitless)
x̂t,k fixed solution of xt in iteration k (concise notation)
x̂o
t,k fixed solution of xt in iteration k corresponding to ˆngorn

i,r,t,k and ˆngoth
i,r,t,k (concise

notation)
x̂b
t,k fixed solution of xt in iteration k corresponding to ˆngb

rn

i,r,t,k and ˆngb
th

i,r,t,k (concise
notation)

Φ̂t,k fixed optimal value for subproblem corresponding to period t in iteration k
µt,k Lagrange multiplier (concise notation)
µo
t,k Lagrange multiplier corresponding to µo,rn

i,r,t,k and µo,th
i,r,t,k (concise notation)

µb
t,k Lagrange multiplier corresponding to µb,rn

i,r,t,k and µb,th
i,r,t,k (concise notation)

µ̄t,k optimal Lagrange multiplier (concise notation)
stept,k stepsize used in the subgradient method (unitless)
ε1, ε2, ε3 tolerances for the decomposition algorithm

Continuous variables

160



5.6. Conclusions

Φ net present cost3 throughout the time horizon, including amortized investment
cost, operational and environmental cost ($)

Φopex
t amortized operating costs in year t ($)

Φcapex
t amortized investment costs in year t ($)

ΦPEN
t amortized penalty costs in year t ($)

pi,r,t,d,s power output of generation cluster i in region r during sub-period s of repre-
sentative day d of year t (MW)

def rn
t deficit from renewable energy quota target during year t (MWh)

cur,t,ss,s curtailment slack generation in region r during sub-period s of representative
day d of year t (MW)

pflow
r,r′,t,d,s power transfer from region r to region r′ 6= r during sub-period s of represen-

tative day d of year t (MW)
qspin
i,r,t,d,s spinning reserve capacity of generation cluster i in region r during sub-period

s of representative day d of year t (MW)
qQstart
i,r,t,d,s quick-start capacity reserve of generation cluster i in region r during sub-period

s of representative day d of year t (MW)
ngorn

i,r,t number of generators that are operational in cluster i ∈ IRN
r of region r in year

t (continuous relaxation)
ngbrn

i,r,t number of generators that are built in cluster i ∈ IRN
r of region r in year t

(continuous relaxation)
ngrrn

i,r,t number of generators that retire in cluster i ∈ IRN
r of region r in year t (con-

tinuous relaxation)
ngern

i,r,t number of generators that had their life extended in cluster i ∈ IRN
r of region

r in year t (continuous relaxation)
pcharge
j,r,t,d,s power being charged to storage cluster j is region r, during sub-period s of

representative day d of year t (MW)
pdischarge
j,r,t,d,s power being discharged to storage cluster j is region r, during sub-period s of

representative day d of year t (MW)
plevel
j,r,t,d,s state of charge of storage cluster j is region r, during sub-period s of represen-

tative day d of year t (MWh)
plevel,0
j,r,t,d state of charge of storage cluster j is region r at hour zero of representative

day d of year t (MWh)
nsoj,r,t number of storage units that are operational in cluster j of region r in year t

(continuous relaxation)
nsbj,r,t number of storage units that are built in cluster j of region r in year t (contin-

uous relaxation)
nsrj,r,t number of storage units that retire in cluster j of region r in year t (continuous

relaxation)
Φt objective function value for subproblem t assuming exact representation of the

cost-to-go function ($)
Φt,k objective function value for subproblem t in iteration k ($)

3All the costs are in 2015 USD.
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φt,k cost-to-go function ($)
αt expected future year cost, when calculating the cost for year t ($)
ΦLP
t,k net present cost of the linear relaxation of the subproblem for year t in iteration

k ($)
ΦLR
t,k net present cost of the Lagrangean relaxation of the subproblem for year t in

iteration k ($)
ΦLD
t,k net present cost of the Lagrangean dual of the subproblem for year t in iteration

k ($)
ΦOP
t,k net present cost of the original MILP subproblem for year t in iteration k ($)

ngorn,prev
i,r,t number of generators that are operational in cluster i ∈ IRN

r of region r in year
t− 1 (continuous relaxation)

ngbrn,LT
i,r,t number of generators that are built in cluster i ∈ IRN

r of region r in year t−LTi
(continuous relaxation)

ngoth,prev
i,r,t number of generators that are operational in cluster i ∈ ITH

r of region r in year
t− 1 (continuous relaxation)

ngbth,prev
i,r,t number of generators that are built in cluster i ∈ ITH

r of region r in year t−LTi
(continuous relaxation)

xt state (linking) variables in the concise notation
zt duplicated state variables in the concise notation
yt local variables in the concise notation

Discrete variables
ngoth

i,r,t number of generators that are operational in cluster i ∈ ITH
r of region r in year

t (integer variable)
ngbth

i,r,t number of generators that are built in cluster i ∈ ITH
r of region r in year t

(integer variable)
ngrth

i,r,t number of generators that retire in cluster i ∈ ITH
r of region r in year t (integer

variable)
ngeth

i,r,t number of generators that had their life extended in cluster i ∈ ITH
r of region

r in year t (integer variable)
ui,r,t,d,s number of thermal generators ON in cluster i ∈ Ir of region r during sub-period

s of representative day d of year t (integer variable)
sui,r,t,d,s number of generators starting up in cluster i during sub-period s of represen-

tative day d in year t (integer variable)
sdi,r,t,d,s number of generators shutting down in cluster i during sub-period s of repre-

sentative day d in year t (integer variable)

Acronyms

NG natural gas
ST steam turbine
CT gas-fired combustion turbine
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CC combined cycle
CCS carbon capture and storage
PV solar photovoltaic
CSP concentrated solar panel
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Chapter 6

Electric Power Infrastructure Planning

under Uncertainty: Stochastic Dual

Dynamic Integer Programming (SDDiP)

and parallelization scheme

In this chapter, we address the long-term planning of electric power infrastructure under

multiscale uncertainty. We propose a Multistage Stochastic Mixed-Integer Programming

(MSIP) formulation that is an extension of the deterministic model proposed in chapter 5

and can be of the order of quadrillion variables and constraints. To be able to solve such

a large-scale model, we decompose the problem using Stochastic Dual Dynamic Integer

Programming (SDDiP) (Zou et al., 2018b) and take advantage of parallel processing to solve

it more efficiently.

The proposed GEP model follows four out of the five trends listed in the GEP survey

by Babatunde et al. (2018): (i) it handles uncertainty, (ii) it considers renewable energy

penetrations and includes short-term operating decisions, (iii) it includes the option of adding

energy storage, and (iv) it addresses sustainable issues by having the option of imposing

minimum renewable generation quota, maximum CO2 emissions quota, and/or carbon tax.
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The only trend from Babatunde et al. (2018) that this chapter does not address is the

deregulation of the power sector.

The major contributions of this chapter are the following: (i) application of SDDiP

in the context of GEP optimization with integrated operating decisions; (ii) SDDiP with

mixed-integer recourse; (iii) parallelization scheme to solve the SDDiP more efficiently; (iv)

application of the model and algorithmic framework to a case-study for Electric Reliability

Council of Texas (ERCOT) region considering operational and strategic uncertainty.

The remainder of the chapter is organized as follows: Section 6.1 presents the problem

statement, discusses modeling assumptions, proposes a concise representation of the multi-

stage mixed-integer linear programming model for GEP optimization under uncertainty (the

detailed model is shown in Appendix C.1), and discusses how the scenario tree is generated.

Section 6.2 describes the SDDiP algorithm, its framework, major assumptions, and how we

parallelize the algorithm. In Section 6.3 we first present the results for a case-study for the

ERCOT region, showing the order of magnitude of problems the SDDiP algorithm can solve

on a personal computer and the solution time. Then, we compare the first-stage here-and-

now decisions for the reference case with natural gas price uncertainty, the no nuclear case

with natural gas price uncertainty, carbon tax uncertainty, and high carbon tax uncertainty,

and show the value of stochastic programming for the no nuclear case with high carbon tax

uncertainty. Finally, in Section 6.4 we draw some conclusions.

6.1 Formulation

The proposed GEP problem involves choosing the optimal investment strategy and op-

erating schedule for the power system in order to meet the projected load demand over the

time-horizon for each location, while minimizing the expected net present cost over the sce-

nario tree. This is an extension of the MILP problem proposed by Lara et al. (2018a) to

multistage stochastic mixed-integer programming, in order to address uncertainty.

A set of existing and potential generators is given, for which the energy source (nuclear,

165



Chapter 6. Electric Power Infrastructure Planning Under Uncertainty

coal, natural gas, wind or solar)1 and the generation technology are known.

• For the existing generators we consider: (a) coal: steam turbine (coal-st-old); (b)

natural gas: boiler plants with steam turbine (ng-st-old), combustion turbine (ng-

ct-old), and combined-cycle (ng-cc-old); (c) nuclear: steam turbine (nuc-st-old); (d)

solar: photovoltaic (pv-old); (e) wind: wind turbine (wind-old);

• For the potential generators we consider: (a) coal: without (coal-new) and with

carbon capture (coal-ccs-new); (b) natural gas: combustion turbine (ng-ct-new),

combined-cycle without (ng-cc-new) and with carbon capture (ng-cc-ccs-new); (c) nu-

clear: steam turbine (nuc-st-new); (d) solar: photovoltaic (pv-new) and concentrated

solar panel (csp-new); (e) wind: wind turbine (wind-new);

Also known are: their nameplate (maximum) capacity; lifetime; fixed and variable oper-

ating costs; start-up cost (fixed and variable); cost for extending their lifetimes; CO2 emission

factor and carbon tax, if applicable; fuel price; and operating characteristics such as ramp-

up/ramp-down rates, operating limits, and contribution to spinning and quick start fraction

for thermal generators.

For the case of existing generators, their age at the beginning of the time-horizon and

location are also known. For the case of potential generators, the capital cost (which is

a linear function of its nameplate capacity), and the maximum yearly installation of each

generation technology are also given. Also given is a set of potential storage units, with spec-

ified technology (we consider as options lithium-ion, lead-acid, and flow batteries), capital

cost, power rating, rated energy capacity, charge and discharge efficiency, and storage life-

time. Additionally, the multiple profiles of projected load demand and renewable availability

(capacity factor) are given for each location, as well as the distance between locations, the

transmission loss per mile, and the transmission line capacity between locations.

The problem is then to find the optimal "here-and-now" decisions for the first-stage

and "wait-and-see" decisions for the remaining stages and respective scenarios regarding:

a) location, year, type, and number of generators and storage units to install; b) when to
1In this chapter we do not consider hydroelectric power as it is available in very limited amounts in the

ERCOT region.
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retire generators and storage units; c) whether or not to extend the life of the generators

that reach their expected lifetime; d) an approximate operating schedule for each installed

generator; and e) the approximate power flow between each location in order to meet the

projected demand. The goal is to minimize the expected net present cost over the scenario

tree (including operating, investment, and environmental costs). The large-scale strategic

level uncertain parameters are user-defined and can be, for example, the yearly fuel price, and

any potential carbon tax. The small-scale operating level uncertain parameters (renewable

generation availability and load demand) are captured through multiple representative days

between investment decisions.

6.1.1 Modeling assumptions

In order to improve tractability and allow the solution of the MSIP model for large areas

over a few decades with multiple scenarios, we adopted judicious modeling aggregations

and approximations to address the multi-scale aspects, both in its spatial and temporal

dimensions (Lara et al., 2018a). In order to significantly reduce computation time, generator

clustering (Palmintier and Webster, 2014) and time sampling (Lara et al., 2018a) approaches

are adopted.

The area considered is divided into regions that have similar climate (e.g., wind speed

and solar incidence over time), and load demand profiles. It is assumed that the potential lo-

cations for the generators and storage units are the midpoints of each region r. Additionally,

generators and storage units that have the same characteristics, such as technology and op-

erating status (i.e., existing or potential), are aggregated into clusters i and j, respectively,

for each region r (Palmintier and Webster, 2014). The major impact of this approxima-

tion in the model formulation is that the discrete variables associated with generators and

storage units correspond to integer rather than binary variables to represent the number of

generators/storage units under a specific status in cluster i and j, respectively.

We use the same representative days as Lara et al. (2018a), selected from historical data

via k-means clustering approach, where the goal of the clustering procedure is to select rep-
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resentative days to approximate: (i) the “duration curves” of historical load and renewables

time series, (ii) the temporal correlation of each time series, and (iii) the hourly correla-

tion between each time series. The operating scenarios are drawn from this larger set of

representative days.

In order to further simplify the transmission model, the "truck-route" representation is

adopted, which assumes that the flow in each line can be determined by an energy balance

between nodes. This approximation ignores Kirchhoff’s voltage law, which dictates that the

power will flow along the path of least impedance. We also assume that the transmission

lines have a maximum capacity, and that transmission expansion is not considered. Addi-

tionally, the transmission losses are characterized by a fraction loss per mile, and are not

endogeneously calculated.

6.1.2 MSIP model

Assuming the data for this process is uncertain and evolves according to a stochastic pro-

cess, the MSIP model can be concisely formulated as in (6.1), following the similar notation

as Zou et al. (2018b).

min
(x1,y1)∈χ1

{
f1(x1, y1) + Eξ̄[2,Γ]|ξ[1,1]

[
min

(x2,y2)∈χ2(x1,ξ2)

{
f2(x2, y2, ξ2)+

...+ Eξ̄[Γ,Γ]|ξ[1,Γ−1]

[
min

(xΓ,yΓ)∈χΓ(xΓ−1,ξΓ)

{
fΓ(xΓ, yΓ, ξΓ)

}]}]} (6.1)

where γ ∈ {1, ...,Γ} is the set of stages and Γ is the last stage; xγ is the set of state variables

that link different stages; yγ is the set of local variables that do not depend on the decision

of previous stages and is only contained in the subproblem at stage γ. In the context of this

GEP problem, the state variables are the number of generators in cluster i of region r that are

operational in year t and number of storage units in cluster j of region r that are operational

in year t. State variables are mixed-integer as the number of active generators is forced to

be integer for thermal units but it is allowed to be fractional for renewable generators and
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storage units (for details see Appendix C.1). It is important to highlight that while decision

stages are ordered in time, individual stages can have one or multiple time-periods t within

it.

χγ(xγ−1, ξγ) is the feasible region of the stage γ, which depends on the decisions in stage

γ − 1 and the uncertainty realization ξγ in stage γ. ξ̄[γ, γ′] denotes a sequence of random

data vectors corresponding to stages γ through γ′ and ξ[1, γ−1] denotes a specific realization

of this sequence of random vectors from stage 1 to stage γ − 1. Eξ̄[γ,Γ]|ξ[1,γ−1] denotes the

expectation operation in stage γ with respect to the conditional distribution of ξ̄[γ,Γ] given

realization ξ[1, γ − 1] in stage γ − 1.

This stochastic process has a finite number of realizations in the form of a scenario tree

T , with Γ stages and a set of nodes in each stage denoted by Sγ. Each node n in stage γ > 1

has a unique parent node P (n) in stage γ − 1. The stage containing node n is denoted by

γ(n). The set of children nodes of a node n is denoted by C(n), such that if n ∈ Sγ and

m ∈ C(n), thenm ∈ Sγ+1. The set of nodes on the unique path from origin node 1 to node n,

including the latter, is denoted by Path(n). A node n ∈ Sγ represents a state of the system

in stage γ and corresponds to the sequence of realizations {ξm}m∈Path(n). The probability of

node n to happen, which is the probability of realization of the sequence {ξm}m∈Path(n), is

denoted probn. For a node in the last stage of the tree, n ∈ SΓ, the sequence of realizations

{ξm}m∈Path(n) is called a scenario sc ∈ SC and the set of nodes n that are part of this

scenario sc are denoted by Ssc. Therefore, the extensive form (also known as deterministic

equivalent) of (6.1) can be formulated as:

P : min
(xn,yn)

{∑
n∈T

probn · fn(xn, yn) | (xP (n), xn.yn) ∈ χn ∀ n ∈ T

}
(6.2)

A summary of the notation of main parts of the scenario tree is shown in Figure 6.1. The

detailed MSIP formulation is described in Appendix C.1.
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Figure 6.1: Summary of the notation for scenario tree T

6.1.3 Scenario tree generation

In our framework we capture both long-scale strategic and short-scale operating uncer-

tainties. The strategic uncertainties occur in the same time scale as the investment decisions

(i.e., yearly), while the operating uncertainties are captured through different representative

days’ profiles of hourly load demand and renewable availability between investment decisions.

Our GEP problem can be represented with the multi-horizon framework proposed by

Kaut et al. (2014) and used by Liu et al. (2018). This methodology represents strategic and

operating uncertainties separately based on the observation that strategic decisions typically

do not depend directly on any particular operational scenario, implying that it is enough to

branch only between strategic stages, and the operational decisions can be seen as embedded

into (or attached to) their respective strategic nodes. However, multi-horizon representation

is not needed as we assume stage-wise independence in the scenario tree (see Section 6.2.2

for more details).

For a problem with Ξs strategic realizations per stage and Ξo operational realizations per

stage leads to a problem with a total number of scenarios of SC = (ΞsΞo)Γ−1. Figure 6.2

shows the standard and the recombining representations of the scenario tree T . They are

equivalent in this context of stage-wise independence.
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6.2. SDDiP Decomposition

Figure 6.2: Standard (left) and recombining (right) representations of the scenario tree T with both
strategic and operating uncertainties. The circles represent the strategic decisions and while the
squares represent the operating decisions.

This scenario tree has Ξs = 3 strategic realizations per stage and Ξo = 2 operational

realizations per stage, hence, it has a total of SC = (6)Γ−1 scenarios.

6.2 SDDiP Decomposition

As mentioned in chapter 1.2.2, multistage stochastic programming models grow expo-

nentially with the number of stages, leading to a large multi-scale problem that quickly

becomes intractable. Formulation 6.1 exploits the nested structure in this MSIP problem.

Therefore, we use Stochastic Dual Dynamic Integer Programming (SDDiP) because it can

take advantage this nested structure in the problem.

Birge (1985) was the first to apply Benders Decomposition on a nested fashion to solve

Multistage Stochastic Linear Programming (MSLP) models. A few years later, Pereira and

Pinto (1991) re-explained Nested Benders Decomposition using dynamic programming nota-

tion, incorporated scenario sampling into the algorithm, and showed that convergence can be

significantly improved under the assumption of stage-wise independence, calling this new de-
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composition method Stochastic Dual Dynamic Programming (SDDP). Both Nested Benders

Decomposition and SDDP convergence (Birge, 1985) and almost-sure convergence (Philpott

and Guan, 2008) proofs, respectively, rely on the fact that cost-to-go functions in MSLP

models are piece-wise linear and convex. Therefore, both decomposition methods had their

application limited to convex multistage stochastic programming models (and were mostly

used for linear programming models).

Recently, there have been research efforts on extending Nested Benders/SDDP to integer

and mixed-integer stochastic programming models. Cerisola et al. (2009) propose a variant

of Benders Decomposition for multistage stochastic integer programming and apply it to

the stochastic unit commitment problem. Thome et al. (2013) introduce an extension of

the SDDP framework by using Lagrangean Relaxation to convexify the recourse function

applied to nonconvex hydrothermal operation planning. Zou et al. (2018b) propose a valid

Stochastic Dual Dynamic Integer Programming (SDDiP) algorithm for MSIP with binary

state variables, and prove that for some of the cuts presented the algorithm converges in a

finite number of steps. Lara et al. (2018a) show that the cuts presented by Zou et al. (2018b)

are still valid for problems with mixed-integer state variables. However, finite convergence

is not guaranteed, i.e., there may be a duality gap.

The SDDiP algorithm consists of breaking down the scenario tree by nodes, and solving it

iteratively in a forward and backward fashion until the optimality tolerance ε is satisfied, as

shown in Figure 6.3. The Forward Pass yields a statistical upper bound, while the Backward

Pass, which generates cuts from the relaxed subproblems to outer approximate the cost-to-go

function, provides a lower bound. New cuts are added in the Backward Pass of each iteration

k, and are kept in the following Forward Pass, until the difference between the upper and

lower bounds is less then a pre-specified tolerance.

To be able to decompose the MSIP problem by node, we make copies of the state variables

xn. These new auxiliary variables, zn, are used to equate to the parent node’s state and make

sure that when solving node n we are continuing from the state of the system at the end of

its parent node. zn is, however, relaxed to be a continuous variable within the same bounds
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Figure 6.3: Steps at iteration k of the SDDiP algorithm, where Φ̂m,k and µm,k are the coefficients
of the cuts, sc is a scenario and SCsplk is the set of scenarios sampled in iteration k.

as xn.

Going back to our MSIP problem, the node subproblems of (6.2) can be formulated as

follows ∀ n ∈ T , k ∈ K:

Pn,k : Φn,k(x̂P (n),k, φn,k) := min
(xn,yn)

fn(xn, yn) +
∑

m∈C(n)

qnmφm,k(x̂n,k)

s.t. (zn, xn.yn) ∈ χn

zn = x̂P (n),k ← µn,k ∈ R`

xn ∈ Z`1+ × R`2
+ , yn ∈ Zo1

+ × Ro2
+ , zn ∈ R`

(6.3)

where ` = `1 + `2, o = o1 + o2; K is the set of iterations; and qnm := probm/probn is

the conditional probability of transitioning from node n to node m for m ∈ T \ {1} and

n = P (m).

The approximate expected cost-to-go function, φn,k(·), is defined as:

φn,k(x̂n,k) := min
xn,αn

αn : αn ≥
∑

m∈C(n)

qnm ·
(

Φ̂m,k′ + µᵀ
m,k′(x̂n,k′ − xn)

)
∀ k′ ∈ K|k′ < k


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(6.4)

6.2.1 Forward Step

The Forward Step for the SDDiP is very similar to the Forward step presented by Lara

et al. (2018a), but now applied to the scenario tree with incorporated scenario sampling.

As mentioned before, the purpose of the Forward Pass in SDDiP is to generate a statistical

upper bound to the solution of the MSIP for the entire scenario tree T . It accomplishes this

by randomly sampling a subset of the scenarios in the tree T - SCspl
k , and for each stage

γ ∈ {1, ...,Γ} solving the nodes n in S(γ) if they are also part of the sampled scenarios. By

solving node n, the algorithm implements the optimal decisions for this node considering

its uncertainty realization and previous Path(n), and passes the current state of the system

forward to its children node m ∈ C(n) if m is also part of the sampled scenarios. This

process is repeated up until all sampled scenarios are fully solved (until last stage Γ) and we

have a total minimum cost for each of those scenarios.

The Forward Pass with scenario sampling is shown in Figure 6.4 for both the standard

representation and the recombining scenario tree representation. For our case in which we

assume stage-wise independence, both representations are equivalent.

The problem is assumed to have complete continuous recourse, which means that for any

value of state variable (i.e., linking variable) and local integer variables, there are values for

the continuous local variables such that the solution is feasible. This assumption is valid

since feasibility can be achieved by adding nonnegative slack variables and penalizing them

in the objective function.

The statistical upper bound, UBk, is calculated in the Forward Pass as in (6.5).

UBk = µ̄k + zα/2 ·
σk√
N spl

∀ k (6.5)

where µ̄k is the mean total cost over the sampled scenarios in iteration k, σk is its standard

deviation, N spl is the number of scenarios sampled in each iteration, and zα/2 is the z-score to
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Figure 6.4: Forward Pass with scenario sampling for both the standard and the recombining scenario
tree representations. The nodes highlighted are the ones that are part of the sampled scenarios,
and the continuous arrows show the paths of the sampled scenarios.

assure a certain confidence interval (for example, for a 95% confidence interval, zα/2 = 1.96).

The total cost of a scenario sc is as follows.

Φtot
sc,k =

∑
γ∈{1,...,Γ}

∑
n∈Sγ ∩ n∈Ssc

(
Φ̂n,k − α̂n

)
∀sc ∈ SCspl

k (6.6)

and µ̄k and σk are defined in (6.7) and (6.8), respectively.

µ̄k =
1

N spl

∑
sc∈SCspl

k

Φsc,k ∀k ∈ K (6.7)

(σk)
2 =

1

N spl − 1

∑
sc∈SCspl

k

(Φsc,k − µ̄k)2 ∀k ∈ K (6.8)

It is important to note that the upper bound, UBk, obtained by the SDDiP is only a

statistical upper bound. Its validity is guaranteed with certain probability provided that N spl

is not too small. However, regardless of the size of N spl, it is possible that the upper bound

is smaller than the valid lower bound evaluated in the backward step. To avoid this issue,
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alternative stopping criteria are reported in the literature (Homem-de Mello et al., 2011;

Shapiro et al., 2013a; Bruno et al., 2016). We, however, are using the standard stopping

criteria of UBk − LBk ≤ ε, where ε is the allowed optimality tolerance.

6.2.2 Backward Step

After solving the Forward Pass, the next step is the Backward Pass, and its purpose is to

generate cuts that outer approximate the cost-to-go function. The Backward Pass consists

of solving the subproblems from the last to the first stage, so the solutions of future stages

can be used to generate cuts and provide approximations to the cost-to-go functions within

the planning horizon.

Since our MSIP has mixed-integer recourse (i.e., the state variables xn are mixed-integer),

instead of solving the original subproblems we have to solve a relaxation that is convex in the

subspace of the state variables in order to generate a valid cut. This relaxation can be the

linear programming relaxation or the Lagrangean relaxation of the subproblem Pn,k given

by (6.3). Depending on the type of relaxation solved, a different type of cut is added in the

Backward Pass to approximate the cost-to-go function.

In this step, instead of only having to solve the nodes that are part of the scenarios

sampled in iteration k, SCspl
k , we have to solve the subproblem of all the children nodes C(n)

of the nodes n that are part of the sampled scenarios n ∈ Ssc, sc ∈ SCspl
k . Consequently, we

solve a total of (N spl ·Ξs ·Ξo) subproblems, as can be seen in Figure 6.5. The solution of this

extra set of nodes is necessary to be able to generate the cuts that approximate the cost-to-go

function, which takes an weighted average of the coefficients coming from the solution of the

subproblem of the children nodes based on the probabilities of the uncertainty realizations.

The lower bound, LBk, is calculated in the Backward Pass as in (6.9). It is easy to see

that the relaxed solution of the root node n = 1 is a lower bound to the total cost since it

only has a subset of the original constraints of the original problem.

LBk = Φ̂1,k ∀ k ∈ K (6.9)
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Figure 6.5: Backward Pass with scenario sampling and stage-wise independence for the standard
(left) and recombining (right) scenario tree representations. The nodes in dark color are the ones
that are part of the sampled scenarios, and the nodes in lighter color are the nodes that are not part
of the sampled scenarios but were solved because they are children nodes of the sampled nodes.

Possible cuts to approximate the cost-to-go function

The choice of cuts directly impacts the performance of the algorithm as some cuts are

tighter and more/less computationally expensive to generate than the others. The Benders

cut, Strengthened Benders cut and Lagrangean cut were first proposed by Zou et al. (2018b)

for MSIP with binary recourse, and Lara et al. (2018a) proved their validity for models with

mixed-integer recourse. However, it is important to highlight that the SDDiP algorithm does

not have guaranteed finite convergence if the formulation has mixed-integer recourse and the

Backward Pass uses any of the following cuts, which means that there can be a duality gap.

Benders cut The first option trivially comes from SDDP Benders cut. The Benders cut’s

coefficients are obtained from the solution of the linear relaxation (LP) of Pn,k in (6.3), and

is formulated as follows.
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αn ≥
∑

m∈C(n)

qnm ·
(

Φ̂LP
m,k′ + µLP

m,k′
ᵀ
(x̂n,k′ − xn)

)
∀ k′ ∈ K|k′ < k (6.10)

This is the weakest of the possible cuts, but it has the advantage of being easily and quickly

computed. As shown by Lara et al. (2018a), the Benders cut performs very well for this

GEP problem, since it has a tight linear relaxation. For certain multistage capacity planning

problems with integer recourse, there is evidence that Benders cuts alone are sufficient for

reducing the optimality gap to zero as the number of stages increases (see, e.g., Huang and

Ahmed (2009), Corollaries 1 and 2).

Lagrangean cut The subproblem Pn,k can also be convexified by considering its La-

grangean relaxation, which yields the convex hull of the nonlinking constraints (Frangioni,

2005). In our case this is done by dualizing the linking equalities in (6.3) and penalizing

their violation in the objective function by the vector of Lagrange multipliers, µn,k. The

closer the Lagrange multipliers are to their optimal value, the tighter the approximation is,

and the stronger the cuts generated by theses multipliers are. Therefore, the Lagrangean

cut uses the coefficients obtained by the Lagrangean Dual (LD) problem and is formulated

as follows.

αn ≥
∑

m∈C(n)

qnm ·
(

Φ̂LD
m,k′ + µLD

m,k′
ᵀ
(x̂n,k′ − xn)

)
∀ k′ ∈ K|k′ < k (6.11)

For more details on the Lagrangean cut, see Zou et al. (2018b); Lara et al. (2018a).

Strengthened Benders cut In order to mitigate potential performance issues, Zou et al.

(2018b) proposed the Strengthened Benders cut, which is a compromise between Benders

and Lagrangean cuts. Its generation is similar to the Lagrangean cut, but it does not use

the subgradient method to improve the multipliers. Instead, it uses the coefficients from the

first Lagrangean relaxation (LR) solved after the initialization of the multipliers using LP
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relaxation and is formulated as follows.

αn ≥
∑

m∈C(n)

qnm ·
(

Φ̂LR
m,k′ + µLP

m,k′
ᵀ
(x̂n,k′ − xn)

)
∀ k′ ∈ K|k′ < k (6.12)

For more details on the Strengthened Benders cut, see Zou et al. (2018b); Lara et al. (2018a).

Due to the computational expense of computing the Lagrangean and the Strengthened

Benders cuts, and the computational evidence in Lara et al. (2018a) that the Benders cuts

are likely sufficient for this GEP problem, we select the Benders cuts to be used in our

computational experiments shown in Section 6.3.

Stage-wise independence and Cut Sharing

In multistage problems, if the stochastic process and the constructed scenario tree is stage-

wise independent, i.e., for any two nodes n and n′ in St the set of children nodes C(n) and

C(n′) are defined by identical data and conditional probabilities, then the cost-to-go functions

do not depend on the current scenario. This means that the value functions and expected

cost-to-go functions depend only on the stage rather than the nodes, Φn(·) ≡ Φγ(·) ∀ n ∈ Sγ,

and the cuts generated for a particular scenario are also valid for any other scenario at the

same stage (Infanger and Morton, 1996).

The SDDiP relies on the stage-wise independence assumption and the ability to share cuts

among different nodes in the same stage to avoid the combinatorial explosion and the "curse

of dimensionality" (Pereira and Pinto, 1991). Therefore, it provides a practical solution for

solving real-world applications of MSIP on very large scenario trees without the need for

scenario reduction methods.

The Backward Pass in the SDDiP algorithm works similarly as the one in a Stochastic

Nested Benders decomposition with sampling. The only difference is that because we have

stage-wise independence, the cuts generated are added to all the nodes in the previous

stage instead of only to the parent node. The Backward Pass with stage-wise independence

assumption is shown is Figure 6.5.
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The stagewise independence assumption is reasonable for the operating uncertainties

considered in our GEP problem (i.e., different profiles for representative days) since the

realization of the solar incidence, wind speed and load profile in one day has little influence

in the next day, especially if we are only including a few representative days a year. Regarding

the strategic uncertainties, the stage-wise independence assumption is adequate for natural

gas price uncertainty as the prices can go up and down without a clear influence of the

realization in the year before. In the case of carbon tax uncertainty, this assumption may

be a stretch as it is unlikely that the carbon tax would wildly vary between two consecutive

years. However, even though carbon tax stage-wise independence generates an exceptionally

uncertain mode, we still believe that in face of the the political uncertainty and changes in

administration over the planning horizon this is a case worth examining.

Additionally, there has been some work on how to extend the use of SDDP/SDDiP for

certain types of interstage dependency (Infanger and Morton, 1996; Shapiro et al., 2013a;

de Queiroz and Morton, 2013; Lohmann et al., 2016), which would be useful to capture GEP

uncertainties that are not well-captured by the stage-wise independence assumptions (e.g.,

learning rate of new generation and storage technologies and peak load). For the case of

strategic uncertainty with stage-wise dependence and operating uncertainty with stage-wise

independence, one can use the framework proposed by Rebennack (2016), which combines

SDDP with the sampling-based stochastic nested Benders decomposition approach. These

extensions are left for fuure investigation.

6.2.3 Parallelization Scheme

In the SDDiP framework the subproblems of the nodes n within the stage γ, n ∈ Sγ,

are independent from each other. Hence, SDDiP is well suited for parallel processing. The

algorithm is not, however, trivially parallel since synchronization is required to share the

Benders cuts generated with all the nodes in the previous stage γ − 1. Therefore, a well-

thought parallelization strategy is required in order to obtain an efficient parallel solution.

There has been some effort in the literature to propose the optimal parallelization scheme
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for SDDP in order to avoid synchronization steps as much as possible (Pinto et al., 2013;

Helseth and Braaten, 2015). We do not claim that our parallelization scheme is optimal, but

based on the results that we obtained it seems to be adequate for our problem.

Figure 6.6: Parallelization scheme used for the SDDiP algorithm. The dashed lines show which
process is in charge of which node, and the highlighted areas show the synchronization points both
in the Forward and Backward Passes.

We use PyMP (Lassner, 2018) for the parallelization, which is a Python package based

on OpenMP (Chandra et al., 2001). We first equally divide the nodes in the tree among the

processes, and then enter the parallel context and have each process generate the subproblems

for those nodes assigned to it. After that, we start the Forward Pass and randomly select

the sampled scenarios to be solved for each of those processes, sc ∈ SCspl,pid
k , such that the

number of processes Npids times the number of sampled scenarios by processes N spl.pid equals

the total number of sampled scenarios per iteration k: Npids ·N spl,pid = N spl. We then solve

the subproblems of all the nodes that are part of the sampled scenarios, storing the results

of the state variables as shared dictionaries among the processes. Note that as the nodes

are statistically assigned to processes there is the potential for load imbalance due to both

the random sample of scenarios and because of variance in the time to solve each MILP
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subproblem. Addressing this potential scaling issue is left for future work.

When all processes reach the end of the Forward Step, there is a synchronization step to

gather all the optimal values before the the first process calculates the upper bound UBk and

distributes it to the other processes. In the Backward Pass there are synchronization steps

after every stage to distribute cuts generated at that stage to all nodes in the previous stage.

In the end only the first process calculates the lower bound LBk and check if the optimality

tolerance ε is satisfied. The parallelization scheme and the synchronization points for both

the Forward and Backward Passes are shown in Figure 6.6.

Our implementation of the parallel SDDiP algorithm for this GEP problem can be found

in Lara (2019).

6.3 Case study: ERCOT region

We test the proposed MSIP formulation and SDDiP algorithm for a case study approxi-

mating the Texas Interconnection, a power grid that covers most of the state of Texas and is

managed by the Electric Reliability Council of Texas (ERCOT). This case study is based on

the deterministic case study presented by Lara et al. (2018a), with the addition of operational

and strategic uncertainties, and the option of adding storage units.

Within the ERCOT covered area, we consider four geographical regions: Northeast, West,

Coastal and South. We also include a fifth region, Panhandle, which is technically outside

the ERCOT limits but due to its renewable generation potential, it supplies electricity to

the ERCOT regions. Thus, Panhandle is considered a zone with zero load demand, i.e., it is

only a supplier, not a consumer. The regions are shown in Figure 5.1. For more details on

the sources of the data used, see Lara et al. (2018a).

We consider 3 types of utility batteries: lithium-ion, lead-acid and flow batteries, for

which we use the capital cost forecast provided by Schmidt et al. (2017) and the technical

information provided by Luo et al. (2015), the same sources used by Lara et al. (2018b).
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6.3.1 Reference case: all energy sources included

For each of the regions, we use load and capacity factor profiles with an hourly resolu-

tion. Representative days are constructed using a k-means clustering algorithm and 2004-

2010 zonal load and renewables profiles, as explained in Lara et al. (2018a). 8 clusters are

constructed to find the 8 most representative days, and these days are split in 2 scenarios

which correspond to 2 realizations of the operational uncertainty per stage, with 4 represen-

tative days each. We can assume that the operational uncertainty satisfies the stage-wise

independence assumption discussed in Section 6.2.2 and follows a uniform distribution.

Additionally, we consider that the natural gas fuel price is uncertain and has 3 realizations

per stage. We assume that this fuel price is stage-wise independent and follows a uniform

distribution. The realizations were built using the minimum, median and maximum value

corresponding to the scenarios presented in the EIA Annual Energy Outlook 2019 (EIA,

2019). We assume that the coal and uranium prices are deterministic since they exhibit

considerably less variation compared to the natural gas price.

Our computational tests are performed on a MacBook Pro with 2.3GHz quad-core 8th-

generation Intel Core i5 processor, with 8GB of RAM, running on macOS 10.14 Mojave. We

implement the SDDiP algorithm in Python 3.6.6 and Pyomo 5.6.1, and solve the LPs and

MILPs of each node of the the scenario tree using Gurobi version 8.0.1 (Gurobi Optimization,

2018). We allow a total number of 3 parallel processes, sample 15 scenarios per iteration,

impose a 95% confidence interval in the statistical upper bound (zα/2 = 1.96), and consider

that the algorithm converges if it reaches an optimality gap of less than or equal to 1%.

We first test the parallel efficiency of our algorithm by solving the same 5-stage problem

both sequentially and in parallel (we fix the random seed to avoid the stochasticity in the

solution by the random sampling of scenarios per iteration). The solution time for the serial

implementation is ts = 13, 950 seconds and for the parallel implementation with 3 processes

is tp = 6, 131. Therefore, our parallel SDDiP algorithm has 76% efficiency.

To test the capabilities of our algorithm, we solve the problem for: (i) 5 stages (5 years,

1 year per stage); (ii) 10 stages (10 years, 1 year per stage); and (iii) 15 stages (15 years, 1
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year per stage). In all of them, the subproblem (node) size before cuts is 50,042 constraints,

13,746 integer variables, and 22,755 continuous variables. The size of the extensive form

(deterministic equivalent) and performance of the SDDiP algorithm for all cases are reported

in Table 6.1.

Table 6.1: Size of the problem and SDDiP performance for scenario trees with different numbers of
stages

5 stages 10 stages 15 stages

Number of scenarios 1, 296 1.01× 107 7.84× 1010

Number of nodes in the scenario tree 1, 555 1.21× 107 9.40× 1010

Number of constraints (extensive form) 7.78× 107 6.05× 1011 4.71× 1015

Number of integer variables (extensive form) 2.14× 107 1.66× 1011 1.29× 1015

Number of continuous variables (extensive form) 3.54× 107 2.75× 1011 2.14× 1015

Wall-clock time [s] 6, 131 8, 146 86, 049
Upper bound [$ billion] 51.69 91.87 122.40
Lower bound [$ billion] 51.69 91.27 121.72
Optimality gap [%] 8.57× 10−4 0.66 0.56

The extensive forms of all three cases are massive, with up to quadrillions of variables

and constraints in the 15-stage case. Considering the size of the models, all cases were solved

in a reasonable amounts of time: 1.7 hours, 2.3 hours and 23.9 hours, respectively. Due to

memory limitations, it is fair to say that at least the 10-stage and 15-stage cases would

not be solvable in a personal laptop or desktop without decomposing the model, or if the

model is decomposed by a scenario-based approach without scenario reduction techniques.

Additionally, the convergence time is considerably less than similar sized GEP problems with

multistage stochastic programming formulations reported in the literature that use scenario-

based decomposition (see Liu et al. (2018)). These results show how powerful and useful

SDDiP can be for practical large-scale MSIP models.

An important question that can now be explored is how impactful the length of the

planning horizon and the number of stages are in the optimal "here-and-now" first stage

investment decisions. For this reference case, even though there are marginal differences

between the optimal first-stage decisions depending on the number of stages (e.g. in the

15-stage solution the optimization adds 2 PV solar units in the first year while the 5-stage
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and 10-stage solutions do not), the results are extremely similar (2.27 GW, 2.21 GW, 2.40

GW of natural gas generation capacity are added in year one, respectively), indicating that

solving a 5-stage problem would be sufficient.

This result is not surprising considering that the ERCOT system is mature and stable,

and therefore we would not expect to see drastic changes without a corresponding drastic

impulse on the system. Accordingly, the optimization chooses to install as few generators as

possible in this first year, and wait until some of the uncertainty is realized to make future

decisions.

6.3.2 No nuclear case

The value of stochastic programming with multiple decision stages becomes more accen-

tuated in power systems where there is a need for quick and significant expansion, which is

the case in some developing countries (e.g., India’s electricity demand is expected to double

over the coming decade (IEEFA, 2017)).

Therefore, we solve a hypothetical case in which ERCOT decides to immediately retire

nuclear power. This is an interesting analysis considering the declining profits and scheduled

retirements of nuclear plants in the United States (Union of Concerned Scientists, 2018).

The nuclear reactors represent 5% of the initial ERCOT generation capacity in the original

data set. Thus, by imposing their immediate retirement, the optimization is forced to make

significant expansion decisions in the first stage (first year).

We first solve the no nuclear case study with the same scenario tree as before, i.e. 2

realizations of operational uncertainty per stage, 3 realizations of natural gas price per stage,

and 15 stages. The optimal ERCOT generation capacity by source in the first year (first

stage) for the reference case (all sources included and natural gas price uncertainty) and the

no nuclear case with natural gas price uncertainty are shown in Figure 6.7. The results show

that the nuclear plants were fully replaced by natural gas combined-cycle plants.

A potential issue that would arise if all nuclear reactors are replaced by natural gas tur-

bines is the increase of CO2 emissions (Union of Concerned Scientists, 2018). Therefore, we
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Figure 6.7: ERCOT generation capacity by source in the first year (origin node) for the reference
case (all sources included and natural gas price uncertainty) and the no nuclear case with natural
gas price uncertainty, carbon tax uncertainty, and high carbon tax uncertainty.

also solve the no nuclear case study with carbon tax uncertainty. We consider 2 realizations

of operational uncertainty per stage (same as before), and 3 realizations of carbon tax price

per stage such that the no realization of carbon tax equals $0.0/tonne CO2 for all stages,

the high realization starts at $10/tonne CO2 at year 2 (stage 2) and increases linearly to

$150/tonne CO2 at year 15 (stage 15), and the medium realization is the average between

low and high realizations. We assume that the carbon tax prices are stage-wise independent

and follow a uniform distribution. As mentioned in Section 6.2.2, the carbon tax stage-wise

independence assumption generates an "exceptionally uncertain" model. The optimal ER-

COT generation capacity by source in the first year (first stage) for the no nuclear case with

carbon tax uncertainty is also shown on the right of Figure 6.7. The results show that even

with the risk of having carbon tax fees in the future, the optimal "here-and-now" decision

is to invest on new natural gas combined-cycle plants.

Additionally, we solve the no nuclear case study with a scenario tree that considers more

extreme realizations of carbon tax: the low realization of carbon tax equals $0.0/tonne CO2
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for all stages (same as before), the high realization starts at $100/tonne CO2 at year 2

(stage 2) and increases linearly to $500/tonne CO2 at year 15 (stage 15), and the medium

realization is the average between low and high realizations. We assume again that the

carbon tax prices are stage-wise independent and follow a uniform distribution.

The reasoning behind solving the no nuclear case study for this more extreme scenario

tree is to find out if natural gas will stop being the most attractive source if the variability

between the realizations of carbon tax is higher. The optimal ERCOT generation capacity by

source in the first year (first stage) for the no nuclear case with high carbon tax uncertainty

is also shown on the right of Figure 6.7. The results show that the risk of having steep

carbon tax fees in the future makes the optimization invest less in natural gas technologies

in the first year (reduction of 0.58 GW in natural gas generation capacity), and more in

renewable sources (increase of 0.74 GW and 0.04 GW in solar and wind generation capacity,

respectively).

6.3.3 The value of stochastic solution

In order to evaluate the potential gain of solving this GEP as a MSIP model instead of a

deterministic model, we solve a deterministic version of the no nuclear case study with high

carbon tax uncertainty using the average of the carbon tax realizations. The comparison

between the generation capacity by generation technology in the first year (first stage) for

the MSIP formulation and the deterministic formulation is shown in Figure 6.8.

The results show that by assuming that carbon tax is a deterministic parameter, the opti-

mization makes more conservative decisions and replaces some of the natural gas combined-

cycle (ng-cc) and gas-fired combustion turbine (ng-ct) by natural gas combined-cycle with

carbon capture (ng-cc-ccs) to avoid having to pay carbon tax for their emissions later. It

also installs more wind turbines in the deterministic case than in the stochastic case. These

results make sense because in the deterministic case the optimization is sure that there will

be carbon tax in the future, while in the stochastic case there may be no carbon tax, a high

carbon tax or a medium carbon tax, therefore it is better to wait and get more information
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Figure 6.8: ERCOT generation capacity by generation technology in the first year (origin node)
for the no nuclear case with high carbon tax uncertainty and the deterministic solution using the
carbon tax averages.

about the carbon tax realization before investing in more expensive low-emission options.

To evaluate how well the deterministic first-stage solution would perform in our high

carbon tax uncertainty scenario tree, we re-solve the MSIP formulation for the no nuclear

case study with high carbon tax uncertainty fixing the investment decisions in the first stage

to be the ones given by the deterministic solution. While the original stochastic solution

gives an optimal expected value of $ 232.47 billion (0.28% optimality gap) the stochastic

solution using the first-stage solution of the deterministic model gives an expected value of $

234.65 billion (0.20% optimality gap), showing that by considering carbon tax an uncertain

parameter the value of the stochastic solution is $2.18 billions, which is the savings one can

achieve in the long term.
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6.4 Conclusion

In this chapter, we have proposed a multistage stochastic mixed-integer programming

formulation to address the long-term generation expansion planning under uncertainty in-

cluding operating details in the hourly level, storage options, and multiscale representation

of uncertainty (strategic and operational). We decompose the model using a parallelized

SDDiP algorithm and show that this is a powerful framework for solving practical large-

scale MSIP formulations, allowing the solution of models with quadrillions of variables and

constraints in a personal computer.

We solved a hypothetical case study for the ERCOT region and show that for most of

the scenario trees tested (with natural gas price and carbon tax uncertainty) the first-stage

decisions consist of investing in new natural gas plants, indicating the competitiveness of

this source for this case study. We also ran a case study in which all nuclear reactors are

immediately retired, and unless we consider steep values for the high realization of carbon tax

the optimization still decides to invest in natural gas turbines in the first stage. Finally, we

show the value of stochastic solution for the scenario tree with high carbon tax uncertainty,

with a potential $ 2 billion reduction in cost in the long run.

As future work it would be interesting to consider the lead time of construction of the

power plants as both a deterministic and an uncertain parameter to evaluate how this would

impact in the planning strategy. Another addition to this work would be to evaluate and

improve the parallel scalability of the proposed algorithm.
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Chapter 7

Conclusions

7.1 Summary of this Thesis

In this section we summarize the major findings and accomplishments in each chapter.

7.1.1 Global Optimization Algorithm for Capacitated Multi-facility

Continuous Location-Allocation Problems

In chapter 2 we have presented a new version of the Capacitated Multi-facility Weber

Problem (CMWP) that considers: (i) fixed costs for opening new facilities, and fixed trans-

portation costs; (ii) multiple types of facilities; and (iii) two sets of fixed points representing

suppliers and consumers. CMWP models assume 2-dimensional continuous variables for

the location of facilities. In principle this may not be considered to be practical and one

may prefer fixed pre-specified locations. However, for large areas in which there is no prior

knowledge of what could be potentially good locations, handling them as discrete might

lead to an intractable problem. Therefore, one can interpret the CMWP model proposed in

this chapter as a higher level screening tool which could be subsequently refined to discrete

locations near those points identified by the proposed model. We have proposed the GDP

formulation (2.1), which is nonconvex due to the bilinear terms in the transportation cost.

The presence of nonconvexities was the main motivation for representing the problem as a
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GDP. By having the bilinear terms as part of the disjunctions, the transportation costs are

calculated only for the selected connections within an iterative procedure. We also assume

that the facilities of the same type have the same characteristics and costs associated with

them. Therefore, we have the additional constraints (2.2w)-(2.2x) to break the symmetry in

the facility selection within the same type and avoid degeneracy in the solution. The GDP

was reformulated into a nonconvex MINLP (2.2) using the hull reformulation.

Although global optimization solvers (BARON, ANTIGONE and SCIP) perform reason-

ably well for small-scale instances of the nonconvex MINLP problem (2.2), their performance

scales poorly due to the loose bounds of the variables in the bilinear term, thereby becoming

computationally very expensive for mid to large-scale problems. For this reason, we have

proposed a bilevel decomposition algorithm that consists of decomposing the problem into

a master problem and a subproblem. The master problem is based on a relaxation of the

nonconvex MINLP (2.2) by discretizing the 2-dimensional space, which yields an MILP that

predicts the selection of facilities and their links to suppliers and customers, as well as a lower

bound on the cost of problem (2.1) or (2.2). The subproblem corresponds to a nonconvex

NLP of reduced dimensionality that results from fixing the binary variables in the MINLP

problem (2.2), according to the binary variables predicted in the MILP master problem. We

have proved that this algorithm converges to the global optimum within an ε tolerance in a

finite number of iterations.

We first illustrated the proposed algorithm by solving a small test problem with 2 suppli-

ers and 2 customer points. The results show that the lower bound gradually tightens up as

the number of iterations proceeds and, consequently, the number of partitions increase. The

optimal solution of 5039.3 is the same as found by the general purpose global optimization

solvers. However, while the algorithm solved this problem within an optimality tolerance of

0.5% in 11.9 seconds, BARON solved it in 1247.1 seconds, and ANTIGONE and SCIP could

not solve it in 1 hour.

We have tested the algorithm for 15 random test cases varying from 2 suppliers and 2

consumers, to 40 suppliers and 40 consumers, from 1 to 3 types of facilities, and from 2 to 32
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potential facilities, and have compared the results with general purpose global optimization

solvers (BARON, Antigone and SCIP). The results show that the bilevel decomposition

algorithm was able to find the optimal solution within 1% optimality tolerance in 87% of the

case studies, and performed better than the other general purpose optimization solvers in

73% of them. We have noticed that the improvement in performance due to the use of the

algorithm is more apparent for larger instances, specifically the networks with larger number

of suppliers and customers fixed points. The global optimization solver that performed the

best for this type of problem was BARON. Antigone was the global solver that had the worst

performance, not being able to find a feasible solution in 47% of the test cases.

7.1.2 Global Optimization Algorithm for Multi-period Design and

Planning of Centralized and Distributed Manufacturing Net-

works

Chapter 3 highlighted the need for a general model to optimize the design and planning

of Distributed and/or Centralized manufacturing networks considering potential trade-offs

between capital and transportation costs over a given time horizon. We have proposed a

GDP formulation to solve this problem, which is a multi-period extension of the model

proposed in chapter 2.

We show that with the added complexity of having multi-period decisions the original

Bilevel Decomposition proposed in chapter 2 and the available global optimization solvers

(BARON, ANTIGONE and SCIP) do not perform well, taking a long time to find feasible

solutions and an acceptable optimality gap. Therefore, we have proposed an accelerated ver-

sion of the Bilevel Decomposition with additional steps: Facility Pruning, Partition Pruning

and Warm-start of the Master Problem. We show that the additional steps do not compro-

mise the rigorousness of the algorithm, which still has ε-convergence as proved in chapter 2.

Additionally, we discuss theoretical properties of the algorithm and find an upper bound to

the space discretization such that if the space is partitioned in any finer grid, the algorithm

is guaranteed to converge in a single iteration.
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Additionally, we have performed computational experiments for the multi-period version

of 10 random instances from chapter 2. The results show that the Accelerated Bilevel De-

composition algorithm was able to find the optimal solution within 2% optimality tolerance

in 70% of the case studies, and performed better (i.e. found the optimal faster) than the

other options in all of them. It should be noted that there was a considerable improvement

in performance between the original Bilevel Decomposition and our Accelerated version of

it, being able to solve 7 out of 10 instances instead of 5 out of 10. The global optimization

solver that had the best performance for this problem and these instances was BARON.

SCIP and ANTIGONE had a similar performance, only being able to solve 2 out of the 10

instances.

Finally, we have illustrated the applicability of the model and algorithm by solving a

biomass supply chain problem from the literature (Lara and Grossmann, 2016; Chen and

Grossmann, 2019). The resulting model has 3,457 constraints, 1,545 continuous variables,

and 1,320 binary variables. Starting with px, py = 5 partitions and Nx, Ny = 2 increments it

takes 3 iterations and 6 hours to solve it with the Accelerated Bilevel Decomposition within

2% optimality gap, which yields an optimal value of $2.178 billion. We have attempted

to solve this same instance with BARON, but it only achieved 68% optimality gap when it

reached the maximum solution time of 10 hours, highlighting again the need for a specialized

algorithm such as the proposed Accelerated Bilevel Decomposition to be able to solve real-

world applications of this problem. The results show that all the 10 distributed facilities

were built in year 1, and one centralized facility was built in year 2.

7.1.3 Impact of Model Resolution on Scenario Outcomes for Elec-

tric Power Generation Expansion

In chapter 4, we have performed in collaboration with researchers from ExxonMobil a

systematic comparison of two alternate Generation Expansion Planning (GEP) frameworks

to demonstrate how the choice of representing grid operations within a power system GEP

framework can impact future projections of grid evolution as well as operational metrics
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such as unmet demand, curtailment, and renewable energy penetration. This preliminary

analysis, which has not focused on algorithmic optimization, is instead focused on identifying

trends based on a power system that approximately represents the U.S. Electric Reliability

Council of Texas (ERCOT) grid in 2015, and motivates the more complex models proposed

in the following chapters. The two least-cost power generation GEP models developed in this

study, C-GEP and TS-GEP, are deterministic inter-temporal optimization models that take

the viewpoint point of a centralized planner seeking to determine cost-optimal expansion

decisions over a planning horizon of several decades. Temporally, the C-GEP represents

annual load as well as wind and solar generation using up to 12 representative days at an

hourly time resolution, whereas the TS-GEP represents annual load as well as wind and

solar generation, with 16 time slices representing different times of day and seasons. It is

important to note that the C-GEP model used in this chapter is simpler than the ones

proposed in chapters 5 and 6 as it has a single load node (i.e. no transmission constraints),

does not include the option of adding storage units, and does not handle uncertainty.

For the same set of technology and cost assumptions, we have found that the TS-GEP

model is in general likely to overestimate solar PV capacity (by 35% in the case study

presented) and underestimate wind and the supporting NG capacity requirements, compared

the C-GEP model. This finding is explained primarily by the limited representation of the

temporal variability in renewable energy generation, notably wind, and its correlation with

load when using the time slice approach as compared to the chronological approach. For

solar PV, using values of capacity factors based on 4-hr seasonal averages (as in the TS-

GEP) overvalues the coincidence between peak solar PV generation and peak system load

(also a 4-hr seasonal average) and consequently underestimates the declining value of solar

PV generation with increasing penetration, as compared to the chronological approach using

12 representative days (as in the C-GEP) at an hourly resolution. The differences in the

capacity mix to achieve the same renewable energy targets have reliability implications, as

reflected by the lower unmet demand projected for the C-GEP capacity mix when tested in

a detailed hourly simulation of annual grid operations.
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While it is common for policy-focused GEP studies to test the capacity mix estimated by

a GEP through a Production Cost Simulation (PCS) framework (Brinkman, 2015; Lew et al.,

2013), our study has highlighted the importance of evaluating the operational performance

of the capacity mix projections for multiple years of load and renewable energy generation

profiles. Such analysis benchmarks the ability of the capacity mix to achieve the desired

reliability and/or environmental attributes. For instance, the results presented here suggest

that the unmet demand resulting from the capacity mix estimated by the C-GEP (using 12

representative days) is less sensitive to the annual variations in load and renewable energy

generation profiles compared to the outputs projected by the TS-GEP. It is also worth noting

that, although the unmet demand for the C-GEP capacity mix increases with increasing

renewable energy targets, the maximum value is still relatively small at 0.023% of load

for the 70% renewables scenario, which is comparable to the loss of load threshold values

considered in estimating reserve margin requirements (Pfeifenberger et al., 2013).

Even within a C-GEP framework, selecting fewer than 4 sample days may lead to con-

siderable overestimation of solar PV capacity. This finding has implications for the choice

of temporal resolution in not just power sector planning models, but also more broadly for

multi-sector, multi-country energy economic and integrated assessment models. For exam-

ple, it was recently suggested that the current time slice implementation in the electricity

grid planning implementation of the 2016 NEMS energy-economic model for the US may

be overestimating solar PV capacity projections (Wood, 2016). Similarly, Bistline et al.

(2017) performed an intra-model comparison of alternative temporal representations in the

US-REGEN model and concluded that using a seasonal-average approach (akin to TS-GEP)

is likely to overestimate renewables capacity and underestimate investment in dispatchable

generation, compared to the representative hours approach (akin to C-GEP). Our study

contributes to the growing body of evidence on the need for using a temporal representation

based on a few representative days or other parameterizations that yield similar behavior

in multi-sector, energy-economic models and other energy system models supporting policy

analysis and decision-making.
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7.1.4 Deterministic Electric Power Infrastructure Planning: Mixed-

integer Programming Model and Nested Decomposition Al-

gorithm

In chapter 5 we have proposed a comprehensive Generation Expansion Planning opti-

mization modeling framework, more general than the one proposed in chapter 4 to optimize

the changes in the power systems infrastructure required to meet the projected electricity

demand over the next few decades, while taking into account detailed operating constraints

and the variability and intermittency of renewable generation sources. The Mixed-integer

Linear Programming (MILP) model takes the viewpoint of a central planning entity whose

goal is to identify the source (nuclear, coal, natural gas, wind and solar), generation and stor-

age technology (e.g., steam, combustion and wind turbines, photovoltaic and concentrated

solar panels, and batteries), location (regions), and capacity of future power generation tech-

nologies that can meet the projected electricity demand, while minimizing the net present

cost, which includes investment, operating, and environmental costs (e.g. carbon tax and

renewable generation quota). The proposed model uses a reduced network, does not allow

transmission expansion, and assumes that the flow in each transmission line can be deter-

mined by an energy balance between nodes, which ignores Kirchhoff’s voltage law. The

major contributions of this model are in the description of retirement, inclusion of storage,

and handling of multi-scale aspects with clustering and time scale strategies.

In order to solve this large-scale multi-period MILP problem more efficienttly, we have

developed a decomposition algorithm based on Nested Benders Decomposition for mixed-

integer multi-period problems to solve large-scale models. This framework was originally

developed for stochastic programming by Zou et al. (2018b), but we have adapted it to

deterministic multi-period problems. We have modified it to handle integer and continuous

state variables, at the expense of sacrificing the finite convergence property due to potential

duality gap, although in the implementation a maximum number of iterations is specified.

We have also proved the validity of the Benders, Strengthened Benders and Lagrangean cuts

for handling mixed-integer recourse, and have applied acceleration techniques to improve the
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overall performance of the algorithm.

The formulation and solution framework were tested for a case study in the ERCOT

region. We first solved the proposed model for 1 to 12 representative days to assess the

impact of the number of representative days in the planning strategy. This is different than

the analysis from chapter 4 because the model here has transmission constraints and 5 load

nodes (note that this case study assumes no storage expansions). The results show that

the wind capacity suffers minor fluctuations and slowly converges to a capacity that is 3%

higher than the 1-day model projected. On the other hand, a major difference occurs in

projected solar photovoltaic (PV) and natural gas (NG) generation capacities. For 1 to 4

representative days, there is a clear trend of decreasing PV and increasing NG contributions

as we increase the number of representative days. With the exception of the outlier in the

"5 representative days" results, this trend can be seen for all the variants until the results

reach a plateau with small fluctuations, which is in agreement with the findings in chapter 4.

We have also compared the impact of the having more representative days in the cost

breakdown. The results indicate that for both cases the cost is driven by fuel consumption

(coal, NG and uranium), which accounts for about 60% of the total cost. The major difference

between these representations is in the startup contribution, which goes from 0.3% to 1.5%

of the total cost when considering 4 to 12 representative days. These results show that

by having a better representation of the dynamics of the systems, i.e., higher number of

representative days with hourly load and capacity factor, the startup cost becomes more

relevant.

We have tested the Nested Decomposition algorithm performance for 4 and 12 represen-

tative days per year. The full-space MILP model using 4 representative days has 1,201,761

constraints, 413,644 discrete variables, and 594,147 continuous variables. We have solved

the problem using several methods: (1) we solved the monolithic formulation directly in

CPLEX; (2) we applied the Nested Decomposition algorithm with each of the cut options;

(3) we employed the acceleration technique to the Nested Decomposition variant with the

best performance in (2). The results show that all of the versions of the Nested Decomposi-
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tion algorithm found solutions within 10% gap in less than 10 minutes, while the first integer

solution by the monolithic MILP took 2.04 hours. The Benders cuts were the most efficient

among the possible cuts, finding a solution within 1% gap in 47.5 minutes. Moreover, the ac-

celerated Nested Decomposition with Benders cuts greatly reduced the optimality gap in the

initial iterations and is the fastest (39.6 minutes) at finding a solution within 1% optimality

gap.

The full-space MILP model for the 12 representative days variant has 3,626,721 con-

straints, 1,243,084 discrete variables, and 1,774,947 continuous variables. We have solved

the problem using the Nested Decomposition algorithm with the two versions that per-

formed the best using 4 representative days (Benders cuts, and warm-start cuts + Benders

cuts). Both versions of the algorithm obtained solutions within 2% optimality gap in less

than 5 hours. We notice again that by "warm-starting" the algorithm we were able to reduce

the optimality gap in the initial iterations. The accelerated version found a solution with

a 2% gap in its 4th iteration and 3.5 hours, while the normal Benders cut version took 4.6

hours and 7 iterations to reach the same optimality gap. These improvements in solution

time are important because they allow one to perform several sensitivity analysis to better

understand the drivers for a variety of scenarios.

7.1.5 Electric Power Infrastructure Planning under Uncertainty:

Stochastic Dual Dynamic Integer Programming (SDDiP) and

parallelization scheme

In chapter 6 we have proposed a Multistage Stochastic Mixed-Integer programming

(MSIP) formulation to address the long-term generation expansion planning under uncer-

tainty, which is an extension of the deterministic MILP model proposed in chapter 5. In

our framework we capture both long-scale strategic and short-scale operating (i.e., multiple

hourly profiles of representative days capturing load demand and renewable energy capac-

ity factor) uncertainties. The strategic uncertainties occur in the same time scale as the

investment decisions (e.g. fuel price and carbon tax), while the operating uncertainties are
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captured through different representative days’ profiles of hourly load demand and renewable

availability between investment decisions.

We have decomposed the model using Stochastic Dual Dynamic integer Programming

(SDDiP) algorithm, which exploits the nested structure in this MSIP problem. The SD-

DiP relies on the stage-wise independence assumption and the ability to share cuts among

different nodes in the same stage to avoid the combinatorial explosion. Therefore, it pro-

vides a practical solution for solving real-world applications of MSIP on very large scenario

trees without the need for scenario reduction methods. Additionally, we have proposed a

parallelization scheme that takes advantage of the fact that in the SDDiP framework the

subproblems of the nodes within the same stage are independent from each other.

We have tested the proposed MSIP formulation and SDDiP algorithm for a case study

in the ERCOT region. This case study is based on the deterministic case study presented

in chapter 5, with the addition of operational and strategic uncertainties, and the option

of adding storage units. We first tested the parallel efficiency of our algorithm by solving

the same 5-stage problem both sequentially and in parallel. The solution time for the serial

implementation is ts = 13, 950 seconds and for the parallel implementation with 3 processes

is tp = 6, 131. Therefore, our parallel SDDiP algorithm has 76% efficiency.

To test the capabilities of our algorithm, we have solved the problem for: (i) 5 stages (5

years, 1 year per stage); (ii) 10 stages (10 years, 1 year per stage); and (iii) 15 stages (15 years,

1 year per stage). In all of them, the subproblem (node) size before cuts is 50,042 constraints,

13,746 integer variables, and 22,755 continuous variables. The extensive forms of all three

cases are massive, varying from the order of 107 variables and constraints (in the 5-stage

problem) to 1015 variables and constraints (in the 15-stage problem). Considering the size of

the models, all cases were solved in reasonable amounts of time: 1.7 hours, 2.3 hours and 23.9

hours, respectively. Due to memory limitations, it is fair to say that at least the 10-stage and

15-stage cases would not be solvable on a personal laptop or desktop without decomposing

the model, or if the model is decomposed by a scenario-based approach without scenario

reduction techniques. Additionally, the convergence time is considerably shorter than similar
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sized GEP problems with multistage stochastic programming formulations reported in the

literature that use scenario-based decomposition (e.g. Liu et al. (2018)). These results

confirm how powerful and useful SDDiP can be for practical large-scale MSIP models.

The results also show that for most of the scenario trees tested (with natural gas price

and carbon tax uncertainty) the first-stage decisions consist of investing in new natural gas

plants, indicating the competitiveness of this source for this case study. We also have run

a case study in which all nuclear power generation is immediately retired, and unless we

consider steep values for the high realization of carbon tax the optimization still decides to

invest in natural gas turbines in the first stage. Finally, we show the value of stochastic

solution for the scenario tree with high carbon tax uncertainty, with a potential $ 2 billion

reduction in cost in the long run.

7.2 Research Contributions

The major contributions of this thesis can be summarized as follows:

1. Proposed an extension to the Capacitated Multi-facility Weber Problem that has fixed

costs, multiple types of facilities, and two sets of fixed points representing suppliers and

consumers. The problem was formulated as a nonconvex GDP, which was reformulated

as a nonconvex MINLP.

2. Proposed a Bilevel Decomposition algorithm for the extended Capacitated Multi-

facility Weber Problem that converges to the global optimum within an ε-tolerance

in a finite number of iterations and outperfors commercial global solvers especially for

larger instances.

3. Proposed a systematic framework to solve the optimal design and multi-period planning

of centralized and distributed manufacturing networks, which capture the trade-offs

between capital and transportation costs. The proposed model, which is an extension

to the Capacitated Multi-facility Weber Problem, is a multi-period nonlinear GDP,

reformulated as a multi-period nonconvex MINLP.
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4. Proposed an accelerated version of the bilevel decomposition algorithm by Lara et al.

(2018c) that keeps its rigor (i.e., its ε-convergence), but has some additional steps to

improve its performance to allow the solution of large-scale multi-period instances of

this problem within a reasonable amount of time. The additional steps are aimed at

reducing the optimization search space such that it is easier for the Bilevel Decompo-

sition to find good bounds and the optimal solution.

5. Compared the outputs of a Generation Expansion Planning (GEP) with chronological

time-representation (C-GEP) of grid operations using 12 representative days against

those of a traditional GEP, which uses a seasonal average or time-slice representa-

tion (TS-GEP) to mimic the salient features in models like IPM (EPA, 2015), ReEDS

(Short et al., 2011), and the Electricity Market Module in NEMS (EIA, 2016). This

inter-model comparison across multiple hypothetical scenarios of renewable energy pen-

etration is an improvement over other recent multi-model comparisons (e.g. Cole et al.

(2017); Bistline et al. (2017)).

6. Tested the robustness of the grid operations approximations made by both C-GEP

and TS-GEP models by evaluating their projected capacity mix through a production

cost simulation (PCS) model, which simulates annual grid operations at an hourly

resolution. The proposed methodology illustrates the importance of evaluating opera-

tional outcomes associated with a GEP projected capacity mix when considering the

prevailing variability in load and profiles, both within a year and across multiple years.

7. Proposed a comprehensive GEP optimization modeling framework to optimize the

changes in the power systems infrastructure required (nuclear, coal, natural gas, wind

and solar) to meet the projected electricity demand over the next few decades, while

taking into account detailed operating constraints, the variability and intermittency

of renewable generation sources, and potential inclusion of storage units. The major

contributions of this model are in the description of retirement, inclusion of storage

options, and handling of multi-scale aspects with clustering and time scale strategies.

8. Proposed a decomposition algorithm based on Nested Benders Decomposition for
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mixed-integer multi-period problems to solve large-scale models. This framework, orig-

inally developed for stochastic programming by Zou et al. (2018b), was adapted to de-

terministic multi-period problems, and modified to handle integer and continuous state

variables (at the expense of losing the finite convergence property due to potential du-

ality gap), proved the validity of the Benders, Strengthened Benders and Lagrangean

cuts for this case of mixed-integer recourse, and have applied acceleration techniques

to improve the overall performance of the algorithm.

9. Tested the proposed deterministic GEP model and Nested Decomposition for a case

study in the ERCOT region and investigated the impact of the number of representative

days selected to represent a year of grid operations on resulting capacity and generation

projections.

10. Extended the MILP model proposed by Lara et al. (2018a) to multistage stochastic

mixed-integer programming with both strategic (yearly) and operational (hourly) un-

certainty, for which we applied Stochastic Dual Dynamic Programming (SDDiP) with

mixed-integer recourse in the context of GEP optimization with integrated operating

decisions and proposed a parallelization scheme to solve the SDDiP algorithm more

efficiently.

11. Applied of the stochastic GEP model and SDDiP algorithmic framework to a case-study

in the ERCOT region for scenario trees considering natural gas price and carbon tax

uncertainty for the reference case, and a hypothetical case without nuclear power. This

study shows that the parallelized SDDiP algorithm allows the solution of multistage

stochastic programming models with up to quadrillions of variables and constraints in

reasonable amounts of time.

7.3 Papers produced from this dissertation

Lara, C.L., Trespalacios, F., Grossmann, I.E. Global Optimization Algorithm for Capaci-

tated Multi-facility Continuous Location Allocation Problems, Journal of Global Optimiza-

tion, 2018. 71:871–889.
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Lara C.L., Bernal, D.E., Li, C., Grossmann I.E., Global Optimization for Multi-period De-

sign and Planning of Centralized and Distributed Manufacturing Networks, Computers &

Chemical Engineering, 2019. Submitted for publication.

Mallapragada, D., Papageorgiou, D., Venkatesh, A., Lara C.L., Grossmann I.E. Impact of

model resolution on scenario outcomes for electricity sector system expansion, Energy, 2018.

163:1231-1244.

Lara C.L., Mallapragada, D., Papageorgiou, D., Venkatesh, A., Grossmann I.E., Determin-

istic Electric Power Infrastructure Planning: Mixed-integer Linear Programming Model and

Nested Decomposition, European Journal of Operational Research, 2018. 271 (3):1037-1054.

Lara C.L., Siirola, J.D., Grossmann I.E., Electric Power Infrastructure Planning Under

Uncertainty: Stochastic Dual Dynamic Integer Programming (SDDiP) and parallelization

scheme., Optimization and Engineering. 2019. Submitted for publication, 2019.

7.4 Future research directions

7.4.1 Continuous Location-Allocation Design and Planning

Allow relocation of the distributed modular facilities

An option that can be added to the multi-period design and planning of centralized

and distributed facility networks proposed in chapter 3 is to allow the relocation of the

distributed modular plants, subject to a transportation cost relative to the distance between

the sites. Chen and Grossmann (2019) show that, in the context of their MILP model

(which is similar to ours but assumes new facilities can only be located in a set of pre-defined

potential locations), there is value in allowing module relocation especially in the presence of
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significant transportation costs and demand variability. Therefore, it would be interesting to

see the effects of adding this flexibility in our 2-dimensional continuous location-allocation

framework.

Allow forbidden areas inside the feasible 2-dimensional space

The current GDP formulations proposed in chapters 2 and 3 assume that the entire

rectangle that includes the fixed points (suppliers and markets) is feasible for locating new

manufacturing facilities. However, in reality, there are location limitations in the placement

of new facilities (e.g. a lake, or a portion of land that is not for sale). Therefore, an

option that could be added to both the single-period and the multi-period formulations is

to have forbidden areas within the feasible 2-dimensional space. Depending on the shape

of this forbidden areas (e.g. polyhedral, convex, nonconvex) this could greatly impact the

computational difficulty of solving this problem, and adaptations to the Accelerated Bilevel

Decomposition may be necessary.

Allow fixed and variable costs to be location dependent

The current formulation does not account for the changes in fixed and variable investment

and operating costs due to the variable cost of real estate and utilities for different locations.

This idea has been explored in the literature (Brimberg and Salhi, 2005) in the context of

continuous location-allocation with no restriction on the capacity of the facilities. It would

be interesting to see how this would affect the results of our capacitated continuous location-

allocation framework.

Use Satisfiability (SAT) to solve the Facility Pruning and Partition Pruning steps

in the Accelerated Bilevel Decomposition

The Satisfiability problem (SAT) is a constraint satisfaction technique and consists of

determining if there exists an interpretation of a given problem that satisfies a given Boolean

formula (Mistry et al., 2018). If the Boolean formula can be consistently satisfied, it evaluates
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to TRUE. However, if no such assignment exists, the function expressed by the formula is

FALSE and the formula is unsatisfiable.

Instead of formulating the subproblems of the Facility Pruning and Partition Pruning

steps as MILPs, we can be formulate them as SAT problems, such that their objective values,

ΦLB,k′ and ΦLB,p′ , have to be less or equal than the current upper bound UBiter. The idea

is to leverage the strength and robustness of modern SAT solvers, and potentially speed-up

the solution of the Accelerated Bilevel Decomposition algorithm.

Extend the model to two-stage stochastic programming to handle demand un-

certainty

The current formulation is deterministic, hence it does not handle the uncertainties

present in these type of supply chain (e.g. demand uncertainty). The multi-period GDP for-

mulation proposed in chapter 3 can be extended to two-stage stochastic programming such

that the design decisions (i.e., which facilities to build and in which location) are first-stage

here-and-now decisions, and the allocation decisions are second-stage wait-and-see decisions,

which are taken after the values of the uncertain parameters (random variables) are revealed,

allowing recourse action.

This extension would directly impact the size of the model and, consequently, its tractabil-

ity. Therefore, it would most likely require changes in the Accelerated Bilevel Decomposition

algorithm such as combining it with a Benders-like decomposition to take advantage of the

"L-shape" structure of the two-stage stochastic programmming model.

7.4.2 Electric Power Infrastructure Planning

Improve the transmission representation in the model and include the option for

transmission expansion

Both the deterministic MILP proposed in chapter 5 and the multistage stochastic pro-

gramming formulation proposed in chapter 6 use "truck-route" representation for the trans-

mission network, which ignores Kirchhoff’s voltage law, and do not consider the option of
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transmission expansion. As mentioned in those chapters, the transmission infrastructure

affects both location and type of generation investment. Therefore, not including trans-

mission expansion and disregarding Kirchhoff’s Voltage Law could distort the planning re-

sults (Munoz et al., 2013).

A future direction for this work is to include transmission expansion with a more detailed

representation of transmission in both the deterministic and the stochastic formulations.

The rigorous way of representing transmission between generation and load nodes in the

system is through optimal power flow models (e.g., Frank et al. (2012a,b)). However, the

constraints in this representation are nonlinear and nonconvex, which would greatly impact

the tractability of the models and limit the size of solvable instances. However, there are in

the literature MILP approximations for transmission expansion planning that have efficient

computational behavior and better represent the physics of the systems (e.g. Alguacil et al.

(2003)). Therefore, it would be interesting to include such constraints in the model and

investigate how this addition would affect the planning strategy.

Perform sensitivity analysis of key parameters

It would be interesting to perform a sensitivity analysis of the key parameters in the

GEP formulation such as planning reserve margin and annualized investment cost of new

technologies (e.g. batteries, solar photo-voltaic panels, and concentrated solar panel) to see

how much they influence the planning strategy.

Adapt the formulation to address the issue of deregulated markets

The proposed GEP framework is monopolistic and assumes a centralized planning entity.

However, with the deregulation of the electricity markets, decisions are taken separately by

the participating companies. It would be interesting to reformulate the GEP problem to

represent competitive market behavior between generation entities/participants using game

theory and multi-level optimization (e.g., Roh et al. (2007); Pozo et al. (2013); Cadre et al.

(2015)).
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Adapt the GEP formulation to include reliability

An important issue that is not included in the current formulation is the reliability of the

system (i.e. to account for potential failure and outage of generators and transmission lines).

As future work, the proposed GEP formulation can be adapted to include reliability issues,

following what has been already proposed in the literature (Ballireddy and Modi, 2017).

Adapt the parallel SDDiP algorithm to handle stage-wise dependent parameters

The SDDiP relies on the stage-wise independence assumption and the ability to share

cuts among different nodes in the same stage to avoid the combinatorial explosion. However,

this assumption is not always valid depending on the uncertain parameters considered (e.g.,

learning rate of the new technologies). There has been some work on how to extend the

use of SDDP/SDDiP for certain types of interstage dependency (Infanger and Morton, 1996;

Shapiro et al., 2013a; de Queiroz and Morton, 2013; Lohmann et al., 2016) which could be

used in our framework.

Additionally, there is the option of using the framework proposed by Rebennack (2016),

which combines SDDP with the sampling-based stochastic nested Benders decomposition

approach such that it can handle strategic uncertainty with stage-wise dependence and op-

erating uncertainty with stage-wise independence.

Include construction lead time in the multistage stochastic programming formu-

lation

In deterministic models it is common practice to assume no lead time between the decision

to build/install a generator and the moment it can begin producing electricity, as one can

subtract the construction time to the beginning-of-operations time given by the optimization

model to find out when to initiate the power plants’ construction. However, in a multistage

stochastic framework this could have an impact in the planning strategy, especially if the lead

time is included as an uncertain parameter. Therefore, it would be interesting to consider
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the lead time of construction of the power plants as both a deterministic and an uncertain

parameter to evaluate how this would affect the planning strategy.

Adapt the parallel SDDiP algorithm to address risk-averse GEP problems

The classical Stochastic Programming formulation minimizes the expected cost and is

risk neutral. However, while a risk-neutral approach may yield solutions that are good in

the long run, it may perform poorly under certain realizations of the random data. For non-

repetitive decision making problems under uncertainty, a risk-averse approach that considers

the effects of the variability of random outcomes would provide more robust solutions com-

pared to a risk-neutral approach (Noyan, 2012). Therefore introducing risk measures such

as Conditional Value at Risk (CVaR) into the the proposed GEP is an interesting direction

as the ultimate goal of such models is to plan a robust and reliable system that can supply

enough electricity at all times.

There has been some effort in the literature to combine risk-averse approach with SDDP (Shapiro

et al., 2013b). However, to the best of our knowledge, the combination of risk-averse ap-

proach with SDDiP has not yet been explored in the literature.

Evaluate and improve the parallel scalability of the SDDiP algorithm

In the implementation of the parallel SDDiP algorithm proposed in chapter 6, the nodes

are statistically assigned to processes, and there is the potential for load imbalance due to

both the random sample of scenarios and because of variance in the time to solve each MILP

subproblem. Addressing this potential scaling issue is left for future work.
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A.1 Detailed Algebraic Modeling Descriptions

This appendix provides the detailed mathematical optimization formulations associated

with the chronological capacity expansion model (C-GEP) and the time slice capacity ex-

pansion model (TS-GEP). Regarding their similarities, both are deterministic optimization

models that take the vantage point of a centralized planner seeking to determine cost-optimal

expansion decisions over a planning horizon of several decades. Both models build and uti-

lize generation capacity to satisfy load in their respective time steps. Both models use as

input the same forecasted load growth, the same suite of generation technologies to meet

this growth, and the same associated cost assumptions to model grid evolution in 3-year

time increments from 2015 to 2045. They represent solar and wind expansion decisions as

“continuous” decisions meaning that a fractional wind generator can be built. Importantly,

both models represent the existing fleet of thermal and renewable generators (wind and so-

lar) by clustering the entire fleet into seven different generator types. C-GEP and TS-GEP

also allow for aging capacity to be retired or retrofitted, whereby the latter options incurs

a one-time cost of retrofit and returns to operation with the same operational parameters

as before. For each generation technology, both models include annual capacity installa-

tion limits that implicitly account for supply chain constraints associated with technology
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deployment.

Despite these similarities, the two models significantly differ in their temporal resolution

and operational detail. It is precisely the dissimilarities described below that will help

elucidate why different expansion decisions are made in certain scenarios. Temporally, the

C-GEP represents monthly load, as well as wind and solar generation, by a single day at an

hourly time resolution, whereas the TS-GEP represents annual load, as well as wind and solar

generation, with 16 time slices representing different times of day and seasons. In particular,

while the chronological model “sees” an hourly load and renewables capacity factor time

series corresponding to twelve representative days of the year. In other words, the TS-GEP

averages load and renewables capacity factor data in each of the four seasons into time slices

representing morning (7 am - 2 pm), afternoon (2-6 pm), evening (6-11 pm), and night (11

pm - 7 am). More importantly, the C-GEP, as its name suggests, “sees” chronology, and

therefore events that occur in a given hour are related to events that occur in the preceding

and subsequent hours. The TS-GEP does not link two consecutive time slices with respect to

operational constraints. Operationally, C-GEP considers important details associated with

thermal generators including: unit commitment decisions, ramping constraints, spinning

reserves, quick-start reserves, and start-up costs. In contrast, the TS-GEP omits these

details, although spinning reserves are partially taken into account. Lastly, because the

C-GEP includes unit commitment decisions, thermal generation expansion decisions are

modeled as integer decisions, unlike the TS-GEP which allows for a fractional number of

thermal generators to be built.

Both models were implemented in GAMS. The descriptions below were generated using

the GAMS utility function model2tex as described on the GAMS website. Table A.1 lists

the section references for key constraints common to both models.
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Chronological Time Slice
Constraint type C-GEP TS-GEP
Load balance A.1.1 A.1.2
Generator capacity balance A.1.1–A.1.1 A.1.2
Retirement or retrofit decisions A.1.1–A.1.1 A.1.2
Annual installation limits A.1.1–A.1.1 A.1.2
RPS A.1.1 A.1.2
Capacity planning reserve requirements A.1.1 A.1.2
System operating reserve requirements A.1.1 A.1.2
Spinning reserves for thermal generation A.1.1 A.1.2
Cluster commitment status A.1.1 NA
Ramping A.1.1–A.1.1 NA
Power output from generators upper and lower bounds A.1.1–A.1.1 NA
Minimum turndown NA A.1.2

Table A.1: Section references to specific constraints

A.1.1 Chronological Capacity Expansion Model (C-GEP)

Sets

Name Domains Description

t, tt t Set of years to be modeled

h, hh * Set of time blocks or hours within each dispatch

period

d * Set of dispatch periods

s, ss s Set of nodes. Model represents ERCOT region

with a single node

g, gg g Set of generator clusters

Wind g Set of wind generators - old and new

CSP g Set of CSP generators

PV g Set of PV generators

Renew g Set of renewable generators

ExistingRenew g Set of existing renewable generators

NewRenew g Set of new renewable generators
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Name Domains Description

Thermal g Set of thermal generators

Existingthermal g Set of existing thermal generators

Newthermal g Set of new thermal generators

Thermalbase g Set of thermal generators with non-zero mini-

mum output

ThermalQstart g Set of thermal generators contributing to quick

start reserves

ThermalSpin g Set of thermal generators contributing to spin-

ning reserves

Parameters

Name Domains Description

CapCost g, t Annualized investment cost of generator type g

in time period t ($ per kW)

LifeExtensionCost g, t One time extension cost to extend plant beyond

its economic life ($ per kW)

Investmult g, t Portion of overnight capital cost of generator

type g in time period t that is included in ob-

jective

Capmult g Technology-specific financial multiplier to ac-

count for any applicable differences in deprecia-

tion schedule, and tax policies for each generator

g >1

FOMCost g, t Annual fixed operating & maintenance costs for

generator g ($ per kW-year)

VOMCost g, t Variable operating & maintenance costs for gen-

erator g ($ per MWh)

243



Appendix A. Chapter 4 additional material

Name Domains Description

FuelCost g, t Fuel costs for generator type g in time period t

($ per MMBtu)

StartupFueluse g Fuel use during startup for each generator type

g (MMBtu per MW)

StartUpcost g, t Startup cost of generator type g in time period

t ($ per MW)

Gridconnect g, t Annualized cost of connecting a new generator

of cluster g to the grid ($ per kW)

CarbonTax t Carbon tax on emissions from power plants dur-

ing year t ($ per ton CO2eq)

Ngenexist g, s Number of units for each generator cluster at

node s at t=0

PTCEligiblePlants g, s, t Number of existing wind plants that are eligible

for the production tax credit in each year t

Cf g, s, h, d Capacity factor for generator type g for each

time instance

Heatrate g, s Heat rate of generator type g (Btu per kWh)

Pgen g, s Assumed size or capacity of an individual type

g generator in node s (MW)

Pgenmin g Minimum operating capacity of an individual

type g generator (MW)

Tlife g Lifetime of generator type g (years)

DPdown g Maximum ramp down rate for thermal genera-

tor between two consecutive time blocks (% of

nameplate capacity per hour)
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Name Domains Description

DPup g Maximum ramp up rate for thermal genera-

tor between two consecutive time blocks (% of

nameplate capacity per hour)

Spinfrac g Fraction of nameplate capacity that can con-

tribute to spinning reserves for generator type

g

Qstartfrac g Fraction of nameplate capacity that can con-

tribute to quick start reserves for generator type

g

Nmaxgeninstall g, t Maximum no. of generators of type g that can

be installed at beginning of each year

Emissionf g Greenhouse gas (GHG) emissions factor of fuel

used by generation type g (kg CO2eq per

MMBtu fuel)

CV g, t Capacity value or fraction of installed capacity

of generator g contributing to planning reserve

requirement

Load s, h, d, t Demand at node s in block h of dispatch period

d in year t (MW)

MaxLoadMW t Maximum load to define planning reserve re-

quirement(MW)

Curtailcost Cost of curtailing generation in $ per MWh

Seasonscale d Weight to scale generation in each hour of repre-

sentative day to d to its contribution to annual

generation

RPSfrac t Fraction of annual load met by renewables in

year t
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Name Domains Description

RPSCapacityMin t Minimum renewable generating capacity to exist

in each year in MW - included to modeled Texas

renewables policy

WindPTC t, tt Production tax credit (PTC) for electricity pro-

duced from wind plants in period t that were

built in periodd tt ($ per MWh) - applies to

only first 10 years of operation of each plant

PTCforExistingPlants PTC credit for each existing wind plant - $23

per MWh

Reservemargin Reserve margin for planning reserves (% of load)

ORspin h, d Operating spinning reserves for each block h in

dispatch period d (%)

ORTot h, d Total operating reserve requirement (spinning +

non-spinning) for each block h in dispatch period

d (%)

DiscountFact Scalar (between 0 and 1) used to discount future

year costs in the objective function to year 1 that

allows consideration of inter-temporal trade-offs

in the model

Dur h Duration of time block h = 1 hour

Yearrel t Years considered in the model (relative to t=0)

Opexmult t Multiplier to account for discounted operating

cost for intermediate years between planning

years

Objval_Units Units in which the objective function value is

measured (e.g. 1e9 ==>US$1 billion)
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Variables

Name Domains Description

NGenR g, s, t No. of renewable generators of type g that are

available at node s at beginning of year t

NGenInstallR g, s, t No. of renewable generators of type g that are

installed at node s at beginning of year t

NGenRetireR g, s, t No. of renewable generators of type g that are

retired at node s at beginning of year t

NGenRExtend g, s, t Number of generators of type g at node s that

are extended beyond their economic lifetime at

beginning of year t

NGenRInstalledCapTotal g, s, t Total number of generators of type g at node s

that have not been retired at beginning of year

t

AvgPower g, s, h, d, t Average power from generator g at node s in

block h of dispatch period d in year t (MW)

SpinCap g, s, h, d, t Spinning capacity of generator type g located at

node s and reserved during block h of dispatch

period d in year t (MW))

Curtail s, h, d, t Total curtailed generation at each node s during

each hour h dispatch period d and year t (MW)

Qstartcap g, s, h, d, t Quick start capacity of generator type g located

at node s and reserved during block h of dispatch

period d in year t (MW))

ObjInvgenTcost t Cost of installing new thermal generators in year

t (billion $)

ObjInvgenRcost t Cost of installing new renewable generators in

year t (billion $)
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Name Domains Description

ObjRetrofitcost t Cost of extending lifetime of existing generator

in year t (billion $)

ObjFOMTcost t Fixed operating and maintenance (FOM) cost of

thermal generators in year t (billion $)

ObjFOMRcost t Fixed operating and maintenance cost of renew-

able generators in year t (billion $)

ObjVOMTcost t Variable operating and maintenance (VOM)

cost of thermal generators in year t, excluding

fuel costs (billion $)

ObjFuelTcost t Fuel costs of thermal generators in year t (billion

$)

ObjEnvgencost t Environmental policy costs of generation in year

t (billion $)

ObjStartupcost t Startup cost of thermal generators in year t (bil-

lion $)

ObjCurtailcost t Cost of curtailment for each year t

ObjVOMRcost t Variable operating cost of renewable generators

in year t, (billion $)

ObjCredits t Production and investment tax credits for re-

newable generation in year t

NGenT g, s, t Integer number of generators of type g at node

s that are before their economic lifetime and at

beginning of year t

NGenTExtend g, s, t Integer number of thermal generators of type g

at node s that are extended beyond their eco-

nomic lifetime at beginning of year t

248



A.1. Detailed Algebraic Modeling Descriptions

Name Domains Description

NGenTInstalledCapTotal g, s, t Integer number of thermal generators of type g

at node s that have not been retired at beginning

of year t

NGenInstallT g, s, t Integer number of thermal generators of type g

at node s installed at beginning of year t

NGenRetireT g, s, t Integer number of thermal generators of type g

at node s that are retired at beginning of year t

NShutD g, s, h, d, t Integer number of generators of type g at node

s that are shutdown at beginning of block h of

period d in year t

NStartUp g, s, h, d, t Integer number of generators of type g at node s

that are started at beginning of block h of period

d in year t

NGenOn g, s, h, d, t Integer number of generators of type g at node

s that are on during block h of period d in year

t

objval Objective function value

Equations

Name Domains Description

ObjectiveFunction Objective function minimizing total annualized

cost

Loadbal s, h, d, t Load balance at each node and time instance

NGenOndef g, s, h, d, t Defining number of generators that are turned

on

Rampdownlim g, s, h, d, t Defining Ramp down limits for thermal genera-

tors
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Name Domains Description

Rampuplim g, s, h, d, t Defining Ramp up limits for thermal generators

Gencapexistdef g, s, t Tracking total existing thermal generation ca-

pacity

Gencapnewdef g, s, t Tracking total new thermal generation capacity

NewThermalendoflife g, s, t Determining end of lifetime state for new ther-

mal generators

NGenTInstalledCapTotaldef g, s, t Total thermal generation capacity either in ex-

tended condition or pre-retirement condition

Renewcapexistdef g, s, t Tracking total existing renewable generation ca-

pacity

Renewcapnewdef g, s, t Tracking total new renewable generation capac-

ity

Newrenewendoflife g, s, t Determining end of lifetime state for new renew-

able generators

NGenRInstalledCapTotaldef g, s, t Total renewable generation capacity either in ex-

tended condition or pre-retirement condition

Planningreservedef t Planning reserve requirement for the entire re-

gion for each year t

TotalOpreservedef h, d, t Total operating reserve requirement for the en-

tire region for each time instance

Spinningreservedef h, d, t Spinning reserve requirement for the entire re-

gion for each time instance

Qstartfracdef g, s, h, d, t Fraction of generation capacity allocated to

quick start reserves

Spinfracdef g, s, h, d, t Fraction of generation capacity allocated to

spinning reserves
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Name Domains Description

OpcapUB g, s, h, d, t Operating capacity upper bound for thermal

generators

OpcapLB g, s, h, d, t Lower bound on operating capacity for thermal

generators when ON

RenewoutputUB g, s, h, d, t Upper bound on renewable energy output for

each hour

NGenOnUB g, s, h, d, t No. of generators turned on at any period can-

not exceed total number of installed generators

NGenInstallTUB g, t Upper bound on number of thermal generators

installed of type g in a year based on annual

installation limits

NGenInstallRUB g, t Upper bound on number of renewable generators

installed of type g in a year

RPSconstr t Minimum renewable penetration constraint for

entire region

RPScapacityconstr t Constraint on minimum generating capacity of

renewable resources as per policy requirements

for Texas region

ObjInvgenTcostdef t Defining investment cost of thermal generators

ObjInvgenRcostdef t Defining investment cost of renewable genera-

tors

ObjRetrofitcostdef t Cost of extending lifetime of existing thermal

generators

ObjFOMTcostdef t FOM cost of thermal generators

ObjFOMRcostdef t FOM cost of renewable generators

ObjVOMTcostdef t VOM cost of thermal generators, excluding fuel

costs
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Name Domains Description

ObjFuelTcostdef t Fuel cost of thermal generators

ObjVOMRcostdef t VOM cost of renewable generators -excludes fuel

ObjEnvgencostdef t Environmental policy cost of generation

ObjStartupcostdef t Startup cost and shutdown costs of thermal gen-

erators

Objcurtailcostdef t Cost penalty for curtailing renewable generation

ObjCreditsdef t Production and investment tax credits for re-

newable generation

Equation Definitions

ObjectiveFunction:

objval =
∑
t

(
1

(1 + DiscountFact)(Yearrelt−1)
· (ObjInvgenTcostt +ObjInvgenRcostt +ObjRetrofitcostt +

ObjFOMTcostt+ObjFOMRcostt+ObjVOMTcostt+ObjFuelTcostt+ObjVOMRcostt+ObjEnvgencostt+

ObjStartupcostt + ObjCurtailcostt − ObjCreditst))

Loadbals,h,d,t:∑
g

(AvgPowerg,s,h,d,t) = Loads,h,d,t + Curtails,h,d,t ∀s, h, d, t

NGenOndefg,s,h,d,t:

NGenOng,s,h,d,t = NGenOng,s,h−−1,d,t+NStartUpg,s,h,d,t−NShutDg,s,h,d,t ∀g, s, h, d, t | Thermalbaseg

Rampdownlimg,s,h,d,t:

AvgPowerg,s,h−−1,d,t − AvgPowerg,s,h,d,t ≤ (NGenOng,s,h,d,t − NStartUpg,s,h,d,t) · DPdowng ·

Pgeng,s · Durh + max((DPdowng · Durh),Pgenming) · Pgeng,s · NShutDg,s,h,d,t − Pgenming ·

Pgeng,s · NStartUpg,s,h,d,t ∀g, s, h, d, t | Thermalbaseg
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Rampuplimg,s,h,d,t:

AvgPowerg,s,h,d,t−AvgPowerg,s,h−−1,d,t ≤ (NGenOng,s,h,d,t−NStartUpg,s,h,d,t)·DPupg ·Pgeng,s ·

Durh + max((DPupg · Durh),Pgenming) · Pgeng,s · NStartUpg,s,h,d,t − Pgenming · Pgeng,s ·

NShutDg,s,h,d,t ∀g, s, h, d, t |Thermalbaseg

Gencapexistdefg,s,t:

NGenTg,s,t = NGenTg,s,t−1 −NGenRetireTg,s,t −NGenTExtendg,s,t + Ngenexistg,s[(ord(t) =

1)] ∀g, s, t |Existingthermalg

NGenTInstalledCapTotaldefg,s,t:

NGenTInstalledCapTotalg,s,t = NGenTg,s,t +
∑

tt|(ord(tt)≤ord(t))

(NGenTExtendg,s,tt) ∀g, s, t |Thermalg

Gencapnewdefg,s,t:

NGenTg,s,t = NGenTg,s,t−1 + NGenInstallTg,s,t − NGenRetireTg,s,t ∀g, s, t |Newthermalg

Renewcapexistdefg,s,t:

NGenRg,s,t = NGenRg,s,t−1 −NGenRetireRg,s,t −NGenRExtendg,s,t + Ngenexistg,s[(ord(t) =

1)] ∀g, s, t |ExistingRenewg

NGenRInstalledCapTotaldefg,s,t:

NGenRInstalledCapTotalg,s,t = NGenRg,s,t +
∑

tt|(ord(tt)≤ord(t))

(NGenRExtendg,s,tt) ∀g, s, t |Renewg

Renewcapnewdefg,s,t:

NGenRg,s,t = NGenRg,s,t−1 + NGenInstallRg,s,t − NGenRetireRg,s,t − NGenRExtendg,s,t ∀g, s, t |NewRenewg

NewThermalendoflifeg,s,t:∑
tt|(ord(tt)≤ord(t))

(NGenRetireTg,s,tt) ≥
∑

tt|(Yearreltt≤(Yearrelt−Tlifeg))

(NGenInstallTg,s,tt)

∀g, s, t | ((Tlifeg ≤ (Yearrelt − 1)) ∧ Newthermalg)
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Newrenewendoflifeg,s,t:∑
tt|(ord(tt)≤ord(t))

(NGenRetireRg,s,tt+NGenRExtendg,s,tt) ≥
∑

tt|(Yearreltt≤(Yearrelt−Tlifeg))

(NGenInstallRg,s,tt)

∀g, s, t | ((Tlifeg ≤ (Yearrelt − 1)) ∧ NewRenewg)

Planningreservedeft:∑
s,Thermalg

(NGenTInstalledCapTotalg,s,t · Pgeng,s) +
∑

s,Renewg

(NGenRInstalledCapTotalg,s,t · Pgeng,s · CVg,t) ≥

(1 + Reservemargin) · MaxLoadMWt ∀t

TotalOpreservedefh,d,t:∑
s,ThermalSping

(SpinCapg,s,h,d,t) +
∑

s,ThermalQstartg

(Qstartcapg,s,h,d,t) ≥ ORToth,d ·
∑
s

(Loads,h,d,t)

∀h, d, t

Spinningreservedefh,d,t:∑
s,ThermalSping

(SpinCapg,s,h,d,t)+ ≥ ORspinh,d ·
∑
s

(Loads,h,d,t) ∀h, d, t

Qstartfracdefg,s,h,d,t:

Qstartcapg,s,h,d,t ≤ (NGenTInstalledCapTotalg,s,t − NGenOng,s,h,d,t) · Qstartfracg · Pgeng,s
∀g, s, h, d, t | ThermalQstartg

Spinfracdefg,s,h,d,t:

SpinCapg,s,h,d,t ≤ NGenOng,s,h,d,t · Spinfracg · Pgeng,s ∀g, s, h, d, t | ThermalSping

OpcapUBg,s,h,d,t:

AvgPowerg,s,h,d,t + SpinCapg,s,h,d,t ≤ NGenOng,s,h,d,t · Pgeng,s ∀g, s, h, d, t | Thermalg
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OpcapLBg,s,h,d,t:

AvgPowerg,s,h,d,t ≥ NGenOng,s,h,d,t · Pgenming · Pgeng,s ∀g, s, h, d, t | Thermalbaseg

RenewoutputUBg,s,h,d,t:

AvgPowerg,s,h,d,t = NGenRInstalledCapTotalg,s,t · Pgeng,s · Cfg,s,h,d ∀g, s, h, d, t | Renewg

NGenOnUBg,s,h,d,t:

NGenOng,s,h,d,t ≤ NGenTInstalledCapTotalg,s,t ∀g, s, h, d, t | Thermalg

NGenInstallTUBg,t:∑
s

(NGenInstallTg,s,t) ≤ Nmaxgeninstallg,t · (Yearrelt+1 − Yearrelt)[(ord(t) < |t|)] +

Nmaxgeninstallg,t · (Yearrelt − Yearrelt−1)[(ord(t) = |t|)] ∀g, t | Newthermalg

NGenInstallRUBg,t:∑
s

(NGenInstallRg,s,t) ≤ Nmaxgeninstallg,t · (Yearrelt+1 − Yearrelt)[(ord(t) < |t|)] +

Nmaxgeninstallg,t · (Yearrelt − Yearrelt−1)[(ord(t) = |t|)] ∀g, t | NewRenewg

RPSconstrt:∑
s,h,d,Renewg

(AvgPowerg,s,h,d,t − Curtails,h,d,t) · Seasonscaled ≥ RPSfract ·
∑
s,h,d

(Loads,h,d,t · Seasonscaled)

∀t | (RPSfract > 0)

RPScapacityconstrt:∑
s,Renewg

(NGenRInstalledCapTotalg,s,t · Pgeng,s) ≥ RPSCapacityMint

∀t | (RPSCapacityMint > 0)

ObjInvgenTcostdeft:

ObjInvgenTcostt = 1
Objval_Units ·

∑
s,g,V alidlocs,Newthermalg

(NGenInstallTg,s,t ·Pgeng,s · (Capmultg ·
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Investmultg,t · CapCostg,t · 1000 + Investmultg,t ·Gridconnectg,t · 1000)) ∀t | ActiveVarSett

ObjInvgenRcostdeft:

ObjInvgenRcostt = 1
Objval_Units ·

∑
s,NewRenewg

(NGenInstallRg,s,t·Pgeng,s·(Capmultg·Investmultg,t·

CapCostg,t · 1000 + Investmultg,t ·Gridconnectg,t · 1000)) ∀t

ObjRetrofitcostdeft:

ObjRetrofitcostt = 1
Objval_Units ·(

∑
s,Thermalg

(NGenTExtendg,s,t·Pgeng,s·Investmultg,t·LifeExtensionCostg,t·

1000) +
∑

s,Renewg

(NGenRExtendg,s,t · Pgeng,s · Investmultg,t · LifeExtensionCostg,t · 1000)) ∀t

ObjFOMTcostdeft:

ObjFOMTcostt = 1
Objval_Units · Opexmultt ·

∑
s,Thermalg

(NGenTInstalledCapTotalg,s,t · Pgeng,s ·

FOMCostg,t · 1000) ∀t

ObjFOMRcostdeft:

ObjFOMRcostt = 1
Objval_Units · Opexmultt ·

∑
s,Renewg

(NGenRInstalledCapTotalg,s,t · Pgeng,s ·

FOMCostg,t · 1000) ∀t

ObjVOMTcostdeft:

ObjVOMTcostt = 1
Objval_Units ·Opexmultt ·

∑
s,h,d,Thermalg

(AvgPowerg,s,h,d,t ·Durh ·VOMCostg,t ·

Seasonscaled) ∀t

ObjFuelTcostdeft:

ObjFuelTcostt = 1
Objval_Units ·Opexmultt ·

∑
s,h,d,Thermalg

(AvgPowerg,s,h,d,t ·Durh ·
Heatrateg,s · FuelCostg,t

1000
·

Seasonscaled) ∀t
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ObjVOMRcostdeft:

ObjVOMRcostt = 1
Objval_Units ·Opexmultt ·

∑
s,h,d,Renewg

(AvgPowerg,s,h,d,t ·Durh · VOMCostg,t ·

Seasonscaled) ∀t

ObjEnvgencostdeft:

ObjEnvgencostt = Opexmultt
Objval_Units · (

∑
s,h,d,

(

AvgPowerg,s,h,d,t·Durh·Seasonscaled·Heatrateg,s
1000

· Emissionfg · CarbonTaxt

1000
)+∑

s,h,d

(
NStartUpg,s,h,d,t · Pgeng,s · FuelCostg,t · StartupFueluseg · Seasonscaled · Emissionfg

1000
· CarbonTaxt)) ∀t

ObjStartupcostdeft:

ObjStartupcostt = 1
Objval_Units ·Opexmultt·

∑
s,h,d,Thermalbaseg

(NStartUpg,s,h,d,t·Pgeng,s·StartUpcostg,t·Seasonscaled+

NStartUpg,s,h,d,t · Pgeng,s · FuelCostg,t · StartupFueluseg · Seasonscaled) ∀t

Objcurtailcostdeft: ObjCurtailcostt = Opexmultt
Objval_Units ·Curtailcost ·

∑
s,h,d

(Curtails,h,d,t ·Durh ·

Seasonscaled) ∀t

ObjCreditsdeft:

ObjCreditst =

Opexmultt
Objval_Units ·(

∑
g,s,h,d,tt|(Windg∧NewRenewg)

(NGenInstallRg,s,tt·Pgeng,s·Cfg,s,h,d·Durh·Seasonscaled·WindPTCt,tt)+∑
g,s,h,d|(Windg∧ExistingRenewg)

(PTCEligiblePlantsg,s,t·Pgeng,s·Cfg,s,h,d·Durh·Seasonscaled·PTCforExistingPlants)) ∀t
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Decision variable Index domain

ObjInvgenTcostt ≥ 0 ∀t

ObjInvgenRcostt ≥ 0 ∀t

ObjRetrofitcostt ≥ 0 ∀t

ObjFOMTcostt ≥ 0 ∀t

ObjFOMRcostt ≥ 0 ∀t

ObjVOMTcostt ≥ 0 ∀t

ObjFuelTcostt ≥ 0 ∀t

ObjFuelRcostt ≥ 0 ∀t

ObjVOMRcostt ≥ 0 ∀t

ObjEnvgencostt ≥ 0 ∀t

ObjStartupcostt ≥ 0 ∀t

ObjCurtailcostt ≥ 0 ∀t

ObjCreditst ≥ 0 ∀t

AvgPowerg,s,h,d,t ≥ 0 ∀g, s, h, d, t

Curtails,h,d,t ≥ 0 ∀s, h, d, t

NGenOng,s,h,d,t ∈ Z+ ∀g, s, h, d, t

NStartUpg,s,h,d,t ∈ Z+ ∀g, s, h, d, t

NShutDg,s,h,d,t ∈ Z+ ∀g, s, h, d, t

NGenTg,s,t ∈ Z+ ∀g, s, t

NGenRetireTg,s,t ∈ Z+ ∀g, s, t

NGenTExtendg,s,t ∈ Z+ ∀g, s, t

NGenTInstalledCapTotalg,s,t ∈ Z+ ∀g, s, t

NGenInstallTg,s,t ∈ Z+ ∀g, s, t

NGenRg,s,t ≥ 0 ∀g, s, t

NGenRetireRg,s,t ≥ 0 ∀g, s, t

NGenRExtendg,s,t ≥ 0 ∀g, s, t

NGenRInstalledCapTotalg,s,t ≥ 0 ∀g, s, t

NGenInstallRg,s,t ≥ 0 ∀g, s, t

Qstartcapg,s,h,d,t ≥ 0 ∀g, s, h, d, t258
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A.1.2 Time Slice Capacity Expansion Model (TS-GEP)

Notes: The time slice model includes a set of nodes, for a transmission network, and a

set of states. Neither are used the study. That is, each set is a singleton.

Sets

Name Domains Description

block, block1, block2 * Set of blocks associated with time load blocks

g g Set of generator types and technologies (existing

and potential)

n * Set of nodes

t, tt t Set of all time periods

state * Set of states

fuel_type * Set of fuel types

fuel_bin * Set of fuel bins for the fuel supply curves

supply_bin * Set of supply bins for each resource capacity sup-

ply curves

t_ptc t Set of time periods (years) in which the produc-

tion tax credit

g_thermal g Set of all (old and new) thermal generators (e.g.,

Coal, NG, Nuclear)

g_renew g Set of renewable generators

g_dispatchable g Set of dispatchable generators that can adjust

power output on demand and contribute to op-

erating reserves

g_wind g_renew Set of wind generators

g_wind_new g_wind Set of new wind generators

g_new g Set of new generator types

g_itc_eligible g_renew Set of ITC eligible generator types
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Parameters

Name Domains Description

CapacityFactor g, n, t,

block

The fraction of nameplate capacity that is actu-

ally available for generator type g at node n in

time period t in time block ’block’

CapacityValue g Amount of electrical demand that may be added

in each time-slice for an incremental increase in

capacity of a given VRRE technology

CapitalMultiplier g Capital multiplier associated with generator

type g (positive scalar typically between 1 and

2

ExistingInstalledCapacity g, n Existing installed capacity of generator type g

at node n prior to the planning horizon (MW)

GHG g GHG emissions of generator (ton CO2e per

MMBtu)

HeatRate g Heat rate of generator type g (MMBtu per

MWh)

LeadTime g Lead time between decision to invest and the

time when generator type g is operational

(years)

LifeTime g Lifetime of generator type g (years)

MTDF g Minimum turndown fraction (as a fraction of

nameplate capacity) that a generator must

maintain (e.g. for nuclear generators ReEDS as-

sumes this parameter is 1.00 implying that nu-

clear generators must run at capacity when they

are available)
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Name Domains Description

ExtensionCost g, t Cost to extend indefinitely the lifetime of gener-

ator type g in time period t ($ per MW)

FOMCost g, t Annual fixed operating & maintenance costs for

generator type g in time period t ($ per MWh)

GridConnectCost g, t Cost of connecting new generation capacity of

generator type g in time period t to the grid ($

per MW)

Min_Cumulative_MW_To_

Extend_Or_Retire

g, t Minimum capacity (MW) of generator type g to

extend or retire by time period t

VOMCost g, t Variable operating & maintenance costs for gen-

erator type g in time period t ($ per MWh)

FuelTypeCost_Bin fuel_type,

t, fuel_bin

Cost of fuel type fuel_type in time period t in

fuel bin fuel_bin at ($ per MMBtu)

GenInstallUB g, n, t Upper bound on amount of generation type g

that can be installed at node n in time period t

(MW)

GenInstallCost_Bin g, t, sup-

ply_bin

Overnight installation capital cost of generator

type g in time period t in supply_bin ($ per

MW)

LoadMW n, t, block Average load at node n in time period t in load

block ’block’ (MW)

LoadMWh n, t, block Average load at node n in time period t in load

block ’block’ (MWh)

MaxLoadMW n, t Maximum load at node n in time period t (MW)

NumHours block Number of hours in time period t in load block

block (positive integer)
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Name Domains Description

PlanningReserveMargin n, t Fraction (e.g., 0.1375) of max load that must be

met in the capacity reserve constraints

OperatingReserveMargin Fraction (e.g., 0.075) of load that must be met

by spinning and quickstart reserves

MaxQuickstartReserveMargin Fraction (e.g., 0.06) denoting the maximum

amount of operating reserves that can be sup-

plied from quickstarts

MinSpinningReserveMargin Fraction (e.g., 0.03) denoting the minimum

amount of amount of spinning reserves

ForecastErrorReserve Fraction

RPS_MIN_GEN_AMOUNT state, t Minimum generation (MWh) in state ’state’ in

time period t required by Renewable Portfolio

Standards

BlocksBelongToSameSeason block1,

block2

1 if blocks belong to same season - 0 otherwise

IsFuelTypeGeneratorPair fuel_type,

g

1 if generator type g uses fuel type fuel_type -

0 otherwise (Needed for supply curves)

IsStateNodePair state, n 1 if node n is in state - 0 otherwise

CarbonPrice t Carbon price ($ per ton C02e)

ITC_Fraction g, t Investment tax credit fraction (fraction of capi-

tal cost) applied to generator type g installed in

time period t

Opexmult t Operating multiplier in time period t to account

for intermediate model years

PTC t_ptc Production tax credit ($ per MWh) to apply

for new wind generators installed in time period

t_ptc
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Name Domains Description

rel_ord t Relative order of time period t e.g. rel_ord(’t3’)

= 3 even if ord(’t3’) = 2

PTC_constant t Constant ($) of production tax credit attributed

to wind-old in time period t (computed directly

in GAMS)

DiscountFactor Scalar (Scalar between 0 and 1)

Include_Tax_Credits Takes value 1 if investment and production tax

credits should be included - 0 otherwise

PenaltyUnmetDemand Penalty for each unit of unmet demand ($ per

MWh)

PenaltyExcessGeneration Penalty for each unit of excess generation ($ per

MWh)

Objval_Units Units in which the objective function value is

measured (e.g. 1e9 ==>US$1 billion)

Variables

Name Domains Description

avgPower g, n, t,

block

Average power (capacity in use) from generator

g at node n in time period t in load block block

(MW)

generation g, n, t,

block

Average generation from g from generator g at

node n in time period t in load block block

(MWh)

genInstall g, n, t Capacity (MW) of generation type g initially in-

stalled at node n in time period t

genInstall_Bin g, t, sup-

ply_bin

Capacity (MW) of generation type g installed in

time period t in supply bin ’supply_bin’
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Name Domains Description

installedCapacity g, n, t Total installed nameplate capacity (MW) of gen-

erator type g at node n available to serve load

in time period t (after all installation - upgrades

- and retirements take place in time period t)

effectiveCapacity g, n, t,

block

Effective or firm capacity (MW) of generator

type g at node n available to serve load in time

period t

extendedCapacity g, n, t Capacity (MW) of generation type g at node

n in time period t whose lifetime is extended

indefinitely

retiredCapacity g, n, t Capacity (MW) of generation type g retired at

node n in time period t

spinningReserve g_dispatchable,

n, t, block

Power (MW) of dispatchable generator g avail-

able to serve spinning reserves at node n in time

period t in block block (MW)

quickstartReserve g_dispatchable,

n, t, block

Power (MW) of dispatchable generator g avail-

able for quickstart at node n in time period t in

block block (MW)

amountEnergyConsumed g, t Amount of energy (MMBtu) consumed by gen-

erator type g in time period t

amountFuelTypeConsumed fuel_type, t Amount of fuel type fuel_type consumed in time

period t (MMBtu)

amountFuelTypeConsumed

InFuelBin

fuel_type,

t, fuel_bin

Amount of fuel type fuel_type consumed in

time period t in fuel bin fuel_bin (Quad = 1e9

MMBtu = 1e15 Btu)

unmetDemand n, t, block Unmet demand (MWh)

excessGeneration n, t, block Excess generation (MWh)
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Name Domains Description

ptc_generation g_wind_new,

t_ptc, t

Generation (MWh) from new wind resources in

time period t that were built in time period

t_ptc

objval Objective function value

VC_Obj_InstallationCost t Auxiliary variable to isolate installation costs

VC_Obj_AnnualFOMCost t Auxiliary variable to isolate annual FOM costs

VC_Obj_CarbonTax t Auxiliary variable to isolate emissions costs

VC_Obj_ExtensionCost t Auxiliary variable to isolate extension costs

VC_Obj_FuelCost t Auxiliary variable to isolate fuel costs

VC_Obj_PenaltyUnmetDemand t Auxiliary variable to isolate unmet demand

costs

VC_Obj_PenaltyExcessGen t Auxiliary variable to isolate excess generation

costs

VC_Obj_VOMCost t Auxiliary variable to isolate VOM costs

VC_Obj_ITC t Auxiliary variable to isolate investment tax

credit savings

VC_Obj_PTC t Auxiliary variable to isolate production tax

credit savings

Equations

Name Domains Description

C_ObjectiveFunction Objective function minimizing generation cost

C_LoadConstr n, t, block Load constraint at node n in time period t

C_PowerToGeneration

Constr

g, n, t,

block

Convert average power (MW) to generation

(MWh) in block

C_InstallationCostConstr t Redundant constraint to isolate installation

costs
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Name Domains Description

C_AnnualFixedOMCost

Constr

t Redundant constraint to isolate annual FOM

costs

C_VarOMCostConstr t Redundant constraint to isolate VOM costs

C_FuelCostConstr t Redundant constraint to isolate fuel costs

C_ExtensionCostConstr t Redundant constraint to isolate extension costs

C_CarbonTaxConstr t Redundant constraint to isolate emissions costs

C_PenaltyUnmetDemand

Constr

t Redundant constraint to isolate unmet demand

costs

C_PenaltyExcessGeneration

Constr

t Redundant constraint to isolate excess genera-

tion costs

C_ITC_Obj_Constr t Redundant constraint to isolate investment tax

credit savings

C_PTC_Obj_Constr t Redundant constraint to isolate production tax

credit savings

C_InstalledCapConstr g, n, t Capacity balance constraint for each generator

type g in each time period t

C_EffectiveCapConstr g, n, t,

block

The effective capacity of generator type g in time

period t and time block ’block’ equals the ca-

pacity factor in that block times the installed

capacity

C_RetireCapConstr g, n, t Retire or extend capacity that exceeds its life-

time + leadtime to build

C_DispatchableGenCap

Constr

g_dispatchable,

n, t, block

Dispatchable power plus spinning reserves plus

quickstart reserves must not exceed effective ca-

pacity

C_RenewableGenCap

Constr

g_renew, n,

t, block

Average power equals effective capacity
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Name Domains Description

C_MinimumTurndown

Constr

g_thermal,

n, t, block1,

block2

Minimum power level that a generator must sat-

isfy in each time block

C_PlanningReserveConstr n, t Planning reserve requirements at node n in time

period t

C_OperatingReserve

Constr

n, t, block Operating reserve requirement at node n in time

period t in load block block - ReEDS does this

for each rs_group

C_MaxQuickstartReserve

Constr

n, t, block

C_SpinningReserveConstr n, t, block Spinning reserve requirement at node n in time

period t in load block block - ReEDS does this

for each rs_group

C_RPS_Gen_Constr state, t Requires a minimum generation amount (MWh)

from renewable resources in a particular state in

time period t

C_AmountEnergyConsumed

Constr

g, t The amount of energy consumed by generator

type g in time period t equals heat rate times

the generation of g over all time blocks in that

period

C_FuelTypeConsumed

Constr

fuel_type, t Equate amount of fuel type fuel_type consumed

in time period t with the amount of generation

from that same fuel type

C_FuelTypeConsumed

SupplyCurveConstr

fuel_type, t Equate amount of fuel type fuel_type consumed

in time period t with amount of fuel type

fuel_type consumed in each fuel bin
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Name Domains Description

C_InstallationSupply

CurveConstr

g, t Sum of installations over all supply bins must

equal the total amount installed (for each g,t

pair)

C_PTC_Constr g_wind_new,

t_ptc, t

Computes the correct amount of ptc eligible gen-

eration

Equation Definitions

C_ObjectiveFunction:∑
t

(DiscountFactorrel_ord
t · (VC_Obj_InstallationCostt + VC_Obj_AnnualFOMCostt+

VC_Obj_VOMCostt + VC_Obj_FuelCostt + VC_Obj_CarbonTaxt+

VC_Obj_PenaltyUnmetDemandt + VC_Obj_PenaltyExcessGent + VC_Obj_ExtensionCostt−

VC_Obj_ITCt[Include_Tax_Credits]−VC_Obj_PTCt[Include_Tax_Credits])) = objval

C_InstallationCostConstr
t
: c

VC_Obj_InstallationCostt =
∑

g,supply_bin

((CapitalMultiplierg ·GenInstallCost_Bing,t,supply_bin+

GridConnectCostg,t) · genInstall_Bing,t,supply_bin) · 1

Objval_Units
∀t

C_AnnualFixedOMCostConstr
t
:

VC_Obj_AnnualFOMCostt = Opexmultt ·
∑
g,n

(FOMCostg,t · installedCapacityg,n,t) ·
1

Objval_Units
∀t

C_VarOMCostConstr
t
:

VC_Obj_VOMCostt = Opexmultt ·
∑

g,n,block

(VOMCostg,t · generationg,n,t,block) ·
1

Objval_Units
∀t

C_ExtensionCostConstr
t
:

VC_Obj_ExtensionCostt =
∑
g,n

(ExtensionCostg,t · extendedCapacityg,n,t) ·
1

Objval_Units
∀t
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C_FuelCostConstr
t
:

VC_Obj_FuelCostt =
1

Objval_Units
·Opexmultt·∑

fuel_type,fuel_bin

(FuelTypeCost_Binfuel_type,t,fuel_bin·

amountFuelTypeConsumedInFuelBinfuel_type,t,fuel_bin) ∀t

C_CarbonTaxConstr
t
:

VC_Obj_CarbonTaxt = Opexmultt·
∑
g

(CarbonPricet·GHGg·amountEnergyConsumedg,t)·
1

Objval_Units

∀t

C_PenaltyUnmetDemandConstr
t
:

VC_Obj_PenaltyUnmetDemandt = Opexmultt ·
∑
n,block

(PenaltyUnmetDemand · unmetDemandn,t,block) ·

1

Objval_Units
∀t

C_PenaltyExcessGenerationConstr
t
:

VC_Obj_PenaltyExcessGent = Opexmultt ·
∑
n,block

(PenaltyExcessGeneration · excessGenerationn,t,block) ·

1

Objval_Units
∀t

C_ITC_Obj_Constr
t
:

VC_Obj_ITCt =
∑

g_itc_eligible,supply_bin

(ITC_Fractiong_itc_eligible,t · CapitalMultiplierg_itc_eligible·

GenInstallCost_Bing_itc_eligible,t,supply_bin · genInstall_Bing_itc_eligible,t,supply_bin) · 1

Objval_Units

∀t | Include_Tax_Credits

C_PTC_Obj_Constr
t
:

VC_Obj_PTCt = Opexmultt·(PTCt1·PTC_constantt+
∑

g_wind_new,t_ptc|(ord(t_ptc)≤rel_ordt)

(PTCt_ptc·

ptc_generationg_wind_new,t_ptc,t)) ·
1

Objval_Units
∀t | Include_Tax_Credits
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C_LoadConstr
n,t,block

:∑
g

(generationg,n,t,block) + unmetDemandn,t,block = LoadMWhn,t,block + excessGenerationn,t,block

∀n, t, block

C_PowerToGenerationConstr
g,n,t,block

:

generationg,n,t,block = avgPowerg,n,t,block · NumHoursblock ∀g, n, t, block

C_EffectiveCapConstr
g,n,t,block

:

effectiveCapacityg,n,t,block = CapacityFactorg,n,t,block · installedCapacityg,n,t ∀g, n, t, block

C_InstalledCapConstr
g,n,t

:

installedCapacityg,n,t = ExistingInstalledCapacityg,n[(rel_ordt = 1)] + installedCapacityg,n,t−1 +

genInstallg,n,t−LeadTimeg − retiredCapacityg,n,t ∀g, n, t

C_RetireCapConstr
g,n,t

:∑
tt|(rel_ord

tt
≤rel_ord

t
)

(extendedCapacityg,n,tt + retiredCapacityg,n,tt)

≥ Min_Cumulative_MW_To_Extend_Or_Retireg,t[(ExistingInstalledCapacityg,n > 0)]

+
∑

tt|(rel_ord
tt
≤(rel_ord

t
−(LeadTimeg+LifeTimeg)))

(genInstallg,n,tt)

∀g, n, t | ((ExistingInstalledCapacityg,n > 0)∨ g_newg ∧ ((rel_ordt− (LeadTimeg +LifeTimeg)) > 0))

C_DispatchableGenCapConstr
g_dispatchable,n,t,block:

avgPowerg_dispatchable,n,t,block + spinningReserveg_dispatchable,n,t,block+

quickstartReserveg_dispatchable,n,t,block ≤ effectiveCapacityg_dispatchable,n,t,block
∀g_dispatchable, n, t, block

C_RenewableGenCapConstr
g_renew,n,t,block:

avgPowerg_renew,n,t,block = effectiveCapacityg_renew,n,t,block ∀g_renew, n, t, block
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C_MinimumTurndownConstr
g_thermal,n,t,block1,block2

:

avgPowerg_thermal,n,t,block1 ≥ MTDFg_thermal · avgPowerg_thermal,n,t,block2

∀g_thermal, n, t, block1, block2 | ((MTDFg_thermal > 0) ∧ (¬(ord(block1) = ord(block2))) ∧

BlocksBelongToSameSeasonblock1,block2)

C_PlanningReserveConstr
n,t
:∑

g

(CapacityValueg · installedCapacityg,n,t) ≥ MaxLoadMWn,t · (1 + PlanningReserveMarginn,t) ∀n, t

C_OperatingReserveConstr
n,t,block

:∑
g_dispatchable

(spinningReserveg_dispatchable,n,t,block + quickstartReserveg_dispatchable,n,t,block)

≥ LoadMWn,t,block ·OperatingReserveMargin + ForecastErrorReserve ∀n, t, block

C_MaxQuickstartReserveConstr
n,t,block

:∑
g_dispatchable

(quickstartReserveg_dispatchable,n,t,block) ≤ LoadMWn,t,block ·MaxQuickstartReserveMargin+

5

6
· ForecastErrorReserve ∀n, t, block

C_SpinningReserveConstr
n,t,block

:∑
g_dispatchable

(spinningReserveg_dispatchable,n,t,block)

≥ LoadMWn,t,block ·MinSpinningReserveMargin ∀n, t, block

C_RPS_Gen_Constr
state,t

:∑
g_renew,n,block|IsStateNodePairstate,n

(generationg_renew,n,t,block)

−
∑

n,block|IsStateNodePairstate,n

(excessGenerationn,t,block)

≥ RPS_MIN_GEN_AMOUNTstate,t ∀state, t | (RPS_MIN_GEN_AMOUNTstate,t > 0)
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C_AmountEnergyConsumedConstr
g,t
:

amountEnergyConsumedg,t =
∑
n,block

(HeatRateg · generationg,n,t,block) ∀g, t

C_FuelTypeConsumedConstr
fuel_type,t:

amountFuelTypeConsumedfuel_type,t

=
∑

g|IsFuelTypeGeneratorPairfuel_type,g

(amountEnergyConsumedg,t) ∀fuel_type, t

C_FuelTypeConsumedSupplyCurveConstr
fuel_type,t:

amountFuelTypeConsumedfuel_type,t =
∑

fuel_bin

(amountFuelTypeConsumedInFuelBinfuel_type,t,fuel_bin)

∀fuel_type, t

C_InstallationSupplyCurveConstr
g,t
:∑

supply_bin

(genInstall_Bing,t,supply_bin) =
∑
n

(genInstallg,n,t) ∀g, t

C_PTC_Constr
g_wind_new,t_ptc,t:

ptc_generationg_wind_new,t_ptc,t =
∑
n,block

(CapacityFactorg_wind_new,n,t,block·genInstallg_wind_new,n,t_ptc)

∀g_wind_new, t_ptc, t | (Include_Tax_Credits ∧ (rel_ordt_ptc ≤ rel_ordt) ∧ (rel_ordt

≤ (rel_ordt_ptc + 10− 1)))

C_Installation_Limit
g,n,t

:

genInstallg,n,t ≤ GenInstallUBg,n,t ∀g, n, t
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Decision variable Index domain

genInstall_Bing,t,supply_bin ≥ 0 ∀g, t, supply_bin

installedCapacityg,n,t ≥ 0 ∀g, n, t

generationg,n,t,block ≥ 0 ∀g, n, t, block

extendedCapacityg,n,t ≥ 0 ∀g, n, t

amountFuelTypeConsumedInFuelBinfuel_type,t,fuel_bin ≥ 0 ∀fuel_type, t, fuel_bin

amountEnergyConsumedg,t ≥ 0 ∀g, t

unmetDemandn,t,block ≥ 0 ∀n, t, block

excessGenerationn,t,block ≥ 0 ∀n, t, block

ptc_generationg_wind_new,t_ptc,t ≥ 0 ∀g_wind_new, t_ptc, t

avgPowerg,n,t,block ≥ 0 ∀g, n, t, block

effectiveCapacityg,n,t,block ≥ 0 ∀g, n, t, block

genInstallg,n,t ≥ 0 ∀g, n, t

retiredCapacityg,n,t ≥ 0 ∀g, n, t

spinningReserveg_dispatchable,n,t,block ≥ 0 ∀g_dispatchable, n, t, block

quickstartReserveg_dispatchable,n,t,block ≥ 0 ∀g_dispatchable, n, t, block

amountFuelTypeConsumedfuel_type,t ≥ 0 ∀fuel_type, t

A.2 Data assumptions

Table A.10 and Table A.11 summarize technology and cost assumptions used to model

operations of existing and new generators, respectively, in the two GEP models and the PCS

model. Unless otherwise stated, all cost parameters reported below are reported in 2015

dollars. Some key points to note regarding the data in Table A.10 and Table A.11:

• Both GEPs do not explicitly consider the construction time for power plants. In-

stead the construction time is implicitly considered by accounting for the cost of cap-

ital financing during the construction period in the capital cost assumptions of each

technology, following the methodology presented in the 2016 NREL technology base-

line (NREL, 2016). In this manner, both GEP models implicitly distinguish between
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the relative construction times of different technologies. The capital multiplier asso-

ciated with new generator clusters is meant to account for differences in depreciation

schedules applicable to each technology in the U.S. context, with higher values being

indicative of a slower depreciating schedule and vice versa.

• In the absence of better data sources, we assume the startup costs for nuclear power

plants to be the same as the values reported for coal power plants.

• The capacity contribution of wind plants to the planning reserve margin is based

on the average value of their capacity contribution to peak demand in summer and

winter months between 2009-2014 (ERCOT, 2016b). Currently, ERCOT estimates

the capacity value of solar PV plants to be 0.8-1, due to the small amount of total

installed capacity (ERCOT, 2016b). We use a lower value of 0.6 to reflect the declining

contribution of solar PV to peak demand with increasing installed PV capacity.

• The life extension costs for existing generators is based on a review of FERC form

1 data regarding the reported annual capital expenditures made by older units and

is reported in the IPM documentation as a proportion of the capital costs of the

corresponding new generators (EPA, 2013). For example, the life extension cost of an

existing NGCC plant in a given year is assumed to be 9.3% of the capital cost of a

new NGCC plant in that year. We assume that the life extension costs for natural gas

boiler plants (NGST) to be the same as the extension costs for existing coal plants,

due to the similar equipment in use (e.g. boilers, steam turbines). In all cases, the life

extension costs are assumed to double the lifespan of the generator (EPA, 2013).

Table A.12 summarizes the annual installation limits assumed for wind, solar PV and

solar CSP generators. These values were obtained from scaling down the annual installation

limits assumed in the Integrated Planning Model (EPA, 2015) for the entire U.S., based on

the relative of share of annual power generation in ERCOT. Additionally, the installation

limits for the period beyond 2018 shown in Table A.12 are scaled up in the GEP models

by a factor 3 to account for the fact that both the GEP models step forward in three year

time increments. Under some scenarios investigated here, such as 50-70% RE scenarios,
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Table A.10: Technology and cost assumptions for existing generator fleet. HHV = Higher heating
value

Source Coal NGCT NGCC NGST Nuclear Solar
PV Wind

Nameplate
capacity (MW)

Estimated based
on generator
categories in

(ERCOT, 2016c)

644 156 719 622 1291 39 134

Heat rate - HHV
(Btu/kWh) 10484 11395 8409 13216 10479 - -

Ramp rate
up and down
(% of nameplate
capacity/hr)

(Kerl et al., 2015),
(NWPCC, 2010),
(WEC, 1984)

25% 100% 100% 25% 17% - -

Min. output
(% of nameplate
capacity)

(ERCOT, 2016c) 48% 25% 32% 28% 90% - -

Max. spin
reserves
(% of nameplate
capacity)

(Mai et al., 2013) 10% 50% 10% 10% 0% - -

Max. quick
start reserves
(% of nameplate
capacity)

Assumption 0% 100% 100% 0% 0% - -

Lifetime (years) (Tidball et al., 2010) 60 30 30 60 60 30 20
Start-up costs
($/MW) (Mai et al., 2013) 140.94 37.15 86.31 140.94 140.94 - -

Start-up
fuel usage
(MMBtu/MW)

(Mai et al., 2013) 14.5 1.53 0.24 14.5 14.5 - -

Fixed O&M
cost ($/kW)

(ERCOT, 2016c)
(NWPCC, 2010) 26.87 5.27 13.96 16.59 76.91 42.48 30.82

Variable O&M
cost ($/MWh) (ERCOT, 2016c) 5.27 4.21 3.16 6.85 4.21 - -

Life extension
cost as a
proportion
of new unit
capital cost (%)

(EPA, 2013) 7.0 4.2 9.3 7.0 9.0 4.2 4.2

Capacity
contribution to
reserve margin

(ERCOT, 2016b)
(Webster et al., 2013) 1 1 1 1 1 0.6 0.15

Minimum
turndown fraction
(only TS-GEP)

(Short et al., 2011) 0.4 0 0 0 1 - -

the assumed installation limits for each model year are found to be binding in a few years

and limit the rate of deployment of wind or solar PV technologies. The installation limits

275



Appendix A. Chapter 4 additional material

Table A.11: Technology and cost assumptions for new generator clusters. HHV = Higher heating
value

Source Nuclear Wind Solar
PV

Solar
CSP

Coal
IGCC

Coal
IGCC
CCS

NGCC NGCC
CCS NGCT

Nameplate
capacity (MW) (EIA, 2015) 2234 100 20 100 600 520 400 340 210

Heat rate - HHV
(Btu/kWh)

(EIA, 2015)
(GE Power, 2016) 10479 7450 8307 6260 7493 8550

Ramp rate
up and down
(% of nameplate
capacity/hr)

(Kerl et al., 2015),
(NWPCC, 2010),

(WEC, 1984)
17% 25% 25% 100% 100% 100%

Min. output
(% of nameplate
capacity)

(GE Power, 2016),
(Black & Veatch, 2012),

(Truby, 2014)
50% - - - 30% 30% 40% 40% 30%

Max. spin
reserves
(% of nameplate
capacity)

(Mai et al., 2013) - - - - 10% 10% 10% 10% 50%

Max. quick
start reserves
(% of nameplate
capacity)

Assumption - - - - 0% 0% 100% 100% 100%

Lifetime (years) (Tidball et al., 2010) 60 20 30 30 60 60 30 30 30
Capital cost
multiplier (NREL, 2016) 1.28 1.13 1.13 1.13 1.33 1.33 1.28 1.28 1.28

Start-up costs
($/MW) (Mai et al., 2013) 140.94 - - - 140.9 140.9 86.31 86.31 37.15

Start-up
fuel usage
(MMBtu/MW)

(Mai et al., 2013) - - - - 14.5 14.5 0.24 0.24 1.5

Fixed O&M
cost ($/kW)1 (NREL, 2016) 94.68 46-50 8-16 51-68 52.1 73.9 14.48 32.27 7.3

Variable O&M
cost ($/MWh) (NREL, 2016) 2.17 - - 3 7.3 8.6 3.50 6.8 13.1

Capacity
contribution to
reserve margin

(ERCOT, 2016b)
(Webster et al., 2013) 1 0.15 0.6 0.6 1 1 1 1 1

Minimum
turndown fraction
(only TS-GEP)

(Short et al., 2011) 1 - - - 0.5 0.5 0 0 0

assumed for the remaining new generator clusters were always much larger than the installed

capacity for all the scenarios considered here and therefore are not shown in Table A.12.

Figure A.1 shows the assumed capital cost projections over time for the new genera-

tor technologies considered in both GEP models. The data was derived from 2016 NREL

technology baseline (NREL, 2016). As a sensitivity analysis, we considered an alternative

trajectory for capital costs of solar PV over time that does not go below $1300/kW, as shown

in Figure A.2.

Figure A.3 plots the fuel price projections over time considered in both GEP models

276



A.2. Data assumptions

Table A.12: Annual installation limits for RE technologies. Data source: (EPA, 2015)

2015-
2018

2018-
2021

2021-
2024

2024-
2027

2027-
2030

2030-
2033

2033-
2036

2036-
2039

2039-
2042

2042-
2045

Wind 1570 3139.9 3139.9 3139.9 7849.8 7849.8 7849.8 7849.8 7849.8 7849.8
Solar
PV 744.1 1488.2 1488.2 1488.2 3720.6 3720.6 3720.6 3720.6 3720.6 3720.6

Solar
CSP 900 900 900 900 900 900 900 900 900 900

Figure A.1: CAPEX over time for all new generator types (source: NREL (2016)).

Figure A.2: High solar PV cost projections (input to high solar PV cost scenario set shown in Figure
4.8C) relative the NREL projections (NREL, 2016) used in the reference scenario set.
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and the PCS model. The data was derived from EIA Annual Energy Outlook 2016 (EIA,

2016). Unless otherwise stated, all results presented consider the “reference” set of fuel price

projections.

Figure A.3: Fuel price projections for “reference” scenarios and “high oil and gas resource” scenarios.
Data source: EIA Annual Energy Outlook 2016 (EIA, 2016). All values reported on a Higher Heating
Value (HHV) basis.

Table A.13 summarizes the implementation of the investment tax credits for wind and

solar PV technologies in the two GEP models that approximates the current policy (DOE,

2016a). In each case, the investment tax credit effectively reduces the capital cost by the

specified percentage. The production tax credit (PTC) is also incorporated in both GEP

models according to current policy (DOE, 2016b). Specifically, the PTC is available for

wind generators, both existing and new, constructed before 2019. For each plant, the PTC

is available for the first 10 years of their operation. Additionally, the PTC of plants built in

the 2018-2021 period is 60% of the current PTC value, i.e. $23/MWh. It should be noted

that we did not consider the PTC for the PCS model runs for different RE scenarios.
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Table A.13: Investment tax credits for new installations of wind and solar PV technologies as %
percentage of capital cost implemented in the two GEP models. Data source: DOE (2016a)

2015-
2018

2018-
2021

2021-
2024

2024-
2027

2027-
2030

2030-
2033

2033-
2036

2036-
2039

2039-
2042

2042-
2045

Wind 30% 18% 0% 0% 0% 0% 0% 0% 0% 0%
Solar
PV 30% 30% 22% 10% 10% 10% 10% 10% 10% 10%

Table A.14: Average annual capacity factors for wind and solar PV technologies for the different
temporal representations used in the chronological (C-GEP) and time-slice (TS-GEP) models. Solar
PV capacity factors correspond to single-axis tracking PV technology.

C-GEP TS-GEP

Wind (existing) 34.6% 36.5%
Wind (new) 38.9% 39.2%
Solar PV (existing and new) 26.3% 27.4%

A.3 Comparison of generation and curtailment between

TS-GEP vs C-GEP

We compare the annual generation projections by both GEP models under a hypothetical

50% renewable energy (RE) scenario in Figure A.4.

We also compare the annual curtailment between both GEP models for the 4 RE scenarios

in the reference scenario set. Curtailment typically occurs when generation from all sources

is higher than the load at a given time, and slow-responding thermal generators cannot

be ramped down quickly enough. RE generation is often curtailed in these instances, and

therefore we report annual curtailment as a fraction of RE generation. As seen in Figure

A.5, the curtailment in 2045 across the 40-60% RE scenarios in the reference scenario set for

the TS-GEP model is similar to the curtailment projected by the C-GEP; for the 70% RE

scenario, the C-GEP projects much higher curtailment than the TS-GEP (11% vs 6%). The

TS-GEP models generation from thermal plants as a continuous variable between zero and

the installed nameplate capacity. Therefore, subject to other model constraints, the TS-GEP

assumes greater flexibility from the thermal generator fleet than would be available when

279



Appendix A. Chapter 4 additional material

Figure A.4: Comparison of ERCOT generation projections by (A) the chronological model and (B)
the time slice model in the 50% RE case.

considering their minimum generation levels (as in the C-GEP). This modeling assumption

and the limited representation of temporal variability of load and RE output partly explain

why the TS-GEP estimates lower curtailment compared to the C-GEP at higher RE scenarios

like 70%.

Figure A.5: Curtailment in 2045 estimated by both capacity expansion models across a range of
renewables penetration scenarios in the reference set.
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A.4 Comparison of outputs between TS-GEP vs. C-GEP

using the PCS model

Both GEP models meet RE penetration targets across all the scenarios considered. The

PCS model was used to test whether the capacity mix estimated by the GEP models did

in fact allow for these targets to be met when considering a full-year simulation of grid

operations at hourly resolution for different possible realizations of load and RE outputs.

This comparison is presented in the parity plot in Figure A.6. The individual bars refer

to the 4 RE scenarios, while the height of the bar represents the range in RE penetration

predicted by the PCS for 7 realizations of load and RE capacity factor profiles for each

scenario. This figure suggests that that both GEP models are able to meet RE penetration

targets reasonably well in these hypothetical model scenarios, given the proximity of the

bars to the parity line, although the C-GEP performance is marginally improved compared

to the TS-GEP.

Figure A.6: Comparison of 2045 renewables (RE) penetration in capacity expansion models (TS-
GEP and C-GEP) to those in the grid operations model (PCS) for the same capacity mix. The
height of each bar corresponds to the range of values obtained from simulating the PCS model for
seven different realizations of profiles for load and capacity factors for RE generation (based on
2004-2010 historical data for ERCOT).

In addition, we compare annual thermal generation projected by the GEP models to the
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PCS model for consistent capacity mix assumptions across the 4 hypothetical RE scenarios

(see Figure A.7). In general, the C-GEP projects annual generation from all thermal sources

better than the TS-GEP, as shown in Figure A.7D, specifically, where the C-GEP bars are

closer to the parity line. Note that only 3 bars representing nuclear generation from the

TS-GEP appear in Figure A.7C because the results of 2 RE scenarios are almost identical

and the bars overlap each other.

Figure A.7: Comparison of 2045 thermal generation in capacity expansion models (TS-GEP and
C-GEP) to those in the grid operations model (PCS) for the same capacity mix. The height of each
bar corresponds to the range of values obtained from simulating the PCS model for seven different
realizations of profiles for load and capacity factors for renewables generation.
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A.5 Additional C-GEP results highlighting impact of num-

ber of representative days

Figure A.8 compares the resulting generation projections for NG, solar PV and wind, for

each scenario with a different number of sample days used in the C-GEP, under a hypothetical

RE 50% target.

Figure A.8: Generation projections for solar, wind and natural gas in 2045, using the C-GEP under
a 50% renewable energy (RE) scenario, varying as a function of the number of sample days selected
to represent load and renewables data for annual grid operations. (The L2-norm is used in the
k-means clustering approach).

Figure A.9 and Figure A.10 compare the resulting capacity and generation projections

for NG, solar PV and wind, for scenarios with a different number of sample days used in

the C-GEP, under a RE 50% target, while using the L1-norm as the distance metric in the

k-means clustering procedure.
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Figure A.9: Capacity projections for solar, wind and natural gas in 2045, using the C-GEP under a
50% renewable energy (RE) scenario, varying as a function of the number of sample days selected
to represent load and renewables data for annual grid operations. (The L1-norm is used in the
k-means clustering approach).

Figure A.10: Generation projections for solar, wind and natural gas in 2045, using the C-GEP
under a 50% renewable energy (RE) scenario, varying as a function of the number of sample days
selected to represent load and renewables data for one year’s operations. (The L1-norm is used in
the k-means clustering approach).
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B.1 Calculated parameters

Regarding the parameters used in equations (5.36)-(5.38), the discount factor in year t, If t,

is calculated from the interest rate, Ir:

If t =
1

(1 + Ir)t

and the discounted investment cost DICi,t is given by:

DICi,t = ACCi,t ·

 ∑
t′≤min(LTi,T remain)

DFt′


where the annualized capital cost ACCi,t is given by:

ACCi,t =
OCCi,t · Ir
1− 1

(1+Ir)LTi

and the remaining time in the horizon T remain
t is defined by T remain

t = T − t+ 1.
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Appendix C

Chapter 6 additional material

C.1 Detailed MSIP Formulation

The detailed Multistage Stochastic Integer Programming formulation is presented below

by equations (C.1)-(C.35). As mentioned before, this is an extension of the MILP model

proposed in chapter 5 (Lara et al., 2018a), now including uncertain parameters:

• for the operational uncertainty we have load demand Lr,t,d,s,n and renewable capacity

factor Cfi,r,t,d,s,n and uncertain parameters drawn from the 2 operational profiles;

• for the strategic uncertainty we have the fuel price P fuel
i,t,n and the carbon tax TxCO2

t,n ,

which are considered separately i.e. when fuel price is assumed to be uncertain then

carbon tax is assumed to be deterministic, and vice versa.

Note that if an index appears in a summation or next to a ∀ symbol without a corresponding

set, all elements in that set are assumed.

C.1.1 Energy Balance

Constraint (C.1) ensures that in each sub-period s of representative day d in year t of

node n, the sum of instantaneous power pi,r,t,d,s,n generated by generator clusters i in region

r plus the difference between the power flow going from regions r′ to region r, pflow
r′,r,t,d,s,n, and

the power flowing from region r to regions r′, pflow
r,r′,t,d,s,n, plus the power discharged from all
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the storage clusters j in region r, pdischarge
j,r,t,d,s,n, equals the load demand Lr,t,d,s,n at that region r,

plus the power being charged to the storage clusters j in region r, pcharge
j,r,t,d,s,n, plus a slack for

curtailment of renewable generation cur,t,d,s,n. The distance between regions Dr,r′ assumes

the midpoint for each region, and the transmission loss T loss
r,r′ is approximated by a fraction

loss per mile.

∑
i

(pi,r,t,d,s,n) +
∑
r′ 6=r

(
pflow
r′,r,t,d,s,n · (1− T loss

r,r′ ·Dr,r′)− pflowr,r′,t,d,s,n

)
+
∑
j

pdischarge
j,r,t,d,s,n

= Lr,t,d,s,n +
∑
j

pcharge
j,r,t,d,s,n + cur,t,d,s,n ∀ r, t ∈ Tn, n, d, s

(C.1)

C.1.2 Capacity factor

Constraint (C.2) limits the power outlet pi,r,t,d,s,n of renewable generators to be equal to

a fraction Cfi,r,t,d,s,n of the nameplate capacity Qgnp
i,r in each sub-period s of representative

day d in year t of node n, where ngorn
i,r,t,n represents the number of renewable generators that

are operational in year t of node n. Due to the flexibility in sizes for renewable generators,

ngorn
i,r,t,n is relaxed to be continuous.

pi,r,t,d,s,n = Qgnp
i,r · Cfi,r,t,d,s,n · ngorn

i,r,t,n ∀ i ∈ IRN
r , r, t ∈ Tn, n, d, s (C.2)

C.1.3 Unit commitment

Constraint (C.3) computes the number of generators that are ON, ui,r,t,d,s,n, or in startup,

sui,r,t,d,s,n, and shutdown, sdi,r,t,d,s,n, modes in cluster i in sub-period s of representative day

d of year t of node n, and treated as integer variables.

ui,r,t,d,s,n = ui,r,t,d,s−1,n + sui,r,t,d,s,n − sdi,r,t,d,s,n ∀ i ∈ ITH
r , r, t ∈ Tn, n, d, s (C.3)
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C.1.4 Ramping limits

Constraints (C.4)-(C.5) capture the limitation on how fast thermal units can adjust their

output power, pi,r,t,d,s,n, where Rumax
i is the maximum ramp-up rate, Rdmax

i is the maximum

ramp-down rate, and Pgmin
i is the minimum operating limit Palmintier and Webster (2014).

pi,r,t,d,s,n − pi,r,t,d,s−1,n ≤ Rumax
i · Hs ·Qgnp

i,r · (ui,r,t,d,s,n − sui,r,t,d,s,n)

+ max
(
Pgmin

i , Rumax
i · Hs

)
·Qgnp

i,r · sui,r,t,d,s,n

∀ i ∈ ITH
r , r, t ∈ Tn, n, d, s

(C.4)

pi,r,t,d,s−1,n − pi,r,t,d,s,n ≤ Rdmax
i · Hs ·Qgnp

i,r · (ui,r,t,d,s,n − sui,r,t,d,s,n)

+ max
(
Pgmin

i , Rdmax
i · Hs

)
·Qgnp

i,r · sdi,r,t,d,s,n

∀ i ∈ ITH
r , r, t ∈ Tn, n, d, s

(C.5)

C.1.5 Operating limits

Constraints (C.6)-(C.7) specify that each thermal generator is either OFF and outputting

zero power, or ON and running within the operating limits Pgmin
i · Qgnp

i,r and Qgnp
i,r . The

variable ui,r,t,d,s,n (integer variable) represents the number of generators that are ON in

cluster i ∈ ITH
r at the time period t of node n, representative day d, and sub-period s. Note

that constraint (C.7) is modified in order to capture the need for generators to run below

the maximum considering operating reserves, where qspin
i,r,t,d,s is a variable representing the

spinning reserve capacity.

ui,r,t,d,s,n · Pgmin
i ·Qgnp

i,r ≤ pi,r,t,d,s,n ∀ i ∈ ITH
r , r, t ∈ Tn, n, d, s (C.6)

pi,r,t,d,s,n + qspin
i,r,t,d,s,n ≤ ui,r,t,d,s,n ·Qgnp

i,r ∀ i ∈ ITH
r , r, t ∈ Tn, n, d, s (C.7)

C.1.6 Total operating reserve

Constraint (C.8) dictates that the total spinning reserve, qspin
i,r,t,d,s,n, plus quick-start re-

serve, qQstart
i,r,t,d,s,n, must exceed the minimum operating reserve, Opmin, which is a percentage
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of the load Lr,t,d,s,n in a reserve sharing region r at each sub-period s.

∑
i∈ITH

r

(
qspin
i,r,t,d,s,n + qQstart

i,r,t,d,s,n

)
≥ Opmin · Lr,t,d,s,n ∀ r, t ∈ Tn, n, d, s (C.8)

C.1.7 Total spinning reserve

Constraint (C.9) specifies that the total spinning reserve qspin
i,r,t,d,s,n must exceed the mini-

mum spinning reserve, Spinmin, which is a percentage of the load Lr,t,d,s,n in a reserve sharing

region r at each sub-period s.

∑
i∈ITH

r

qspin
i,r,t,d,s,n ≥ Spinmin · Lr,t,d,s,n ∀ r, t ∈ Tn, n, d, s (C.9)

C.1.8 Maximum spinning reserve

Constraint (C.10) states that the maximum fraction of capacity of each generator cluster

that can contribute to spinning reserves is given by Fracspin
i , which is a fraction of the

nameplate capacity Qgnp
i,r .

qspin
i,r,t,d,s,n ≤ ui,r,t,d,s,n ·Qgnp

i,r · Frac
spin
i ∀ i ∈ ITH

r , r, t ∈ Tn, n, d, s (C.10)

C.1.9 Maximum quick-start reserve

Constraint (5.11) dictates that the maximum fraction of the capacity of each generator

cluster that can contribute to quick-start reserves is given by FracQstart
i (fraction of the

nameplate capacity Qgnp
i,r), and that quick-start reserves can only be provided by the genera-

tors that are OFF, i.e., not active. Here the integer variable ngoth
i,r,t,n represents the number

of thermal generators that are operational (i.e., installed and ready to operate) at year t of

node n.

qQstart
i,r,t,d,s,n ≤ (ngoth

i,r,t,n − ui,r,t,d,s,n) ·Qgnp
i,r · Frac

Qstart
i ∀ i ∈ ITH

r , r, t ∈ Tn, n, d, s (C.11)
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C.1.10 Planning reserve requirement

Constraint (C.12) ensures that the operating capacity is greater than or equal to the

annual peak load Lmax
t , plus a predefined fraction of reserve margin Rmin

t of the annual peak

load Lmax
t . Due to the due to the renewables inability to control dispatch and the uncertainty

of the output, only a fraction of their nameplate capacity, referred to as the capacity value

Qv
i counts towards the planning reserve requirement.

∑
i∈IRN

r

∑
r

(
Qgnp

i,r ·Qv
i · ngorn

i,r,t,n

)
+
∑
i∈ITH

r

∑
r

(
Qgnp

i,r · ngoth
i,r,t,n

)
≥ (1 +Rmin

t ) · Lmax
t ∀ t ∈ Tn, n

(C.12)

C.1.11 Minimum annual renewable generation requirement

Constraint (C.13) ensures that, in case of policy mandates, the renewable generation

quota target, RNmin
t , which is a fraction of the energy demand EDt,n, is satisfied. If not,

i.e, if there is a deficit def rn
t,n from the quota, this is subjected to a penalty that is included

later in the objective function.

∑
d

∑
s

Wd · Hs ·

∑
i∈IRN

r

∑
r

pi,r,t,d,s,n − cur,t,d,s,n

+ def rn
,n t

≥ RNmin
t · EDt ∀ t ∈ Tn, n

(C.13)

Here Wd represents the weight of the representative day d, Hs is the length of the sub-

period, cur,t,d,s,n is the curtailment of renewable generation, and EDt,n represent the energy

demand in year t of node n:

EDt,n =
∑
r

∑
d

∑
s

(Wd · Hs · Lr,t,d,s,n)
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C.1.12 Maximum yearly installation

Constraints (C.14)-(C.15) limit the yearly installation per generation type in each region

r to an upper bound Qinst,UB
i,t in MW/year. Here ngbrn

i,r,t,n and ngbth
i,r,t,n represent the number

of renewable and thermal generators built in region r in year t of node n, respectively.

Note that due to the flexibility in sizes for renewable generators, ngbrn
i,r,t,n is relaxed to be

continuous.

∑
r

ngbrn
i,r,t,n ≤ Qinst,UB

i,t /Qgnp
i,r ∀ i ∈ IRnew

r , t ∈ Tn, n (C.14)

∑
r

ngbth
i,r,t,n ≤ Qinst,UB

i,t /Qgnp
i,r ∀ i ∈ ITnew

r , t ∈ Tn, n (C.15)

C.1.13 Balance of generators

Concerning renewable generator clusters, we define a set of constraints (C.16)-(C.17) to

compute the number of generators in cluster i that are ready to operate ngorn
i,r,t,n, taking into

account the generators that were already existing at the beginning of the planning horizon

NgRold
i,r , the generators built ngbrn

i,r,t,n, and the generators retired ngrrn
i,r,t,n at year t of node n.

It is important to highlight that we assume no lead time between the decision to build/install

a generator and the moment it can begin producing electricity.

ngorn
i,r,t,n = NgRold

i,r + ngbrn
i,r,t,n − ngrrn

i,r,t,n ∀ i ∈ IRN
r , r, t = 1, n = 1 (C.16)

ngorn
i,r,t,n = ngorn

i,r,t−1,P (n) + ngbrn
i,r,t,n − ngrrn

i,r,t,n ∀ i ∈ IRN
r , r, t ∈ Tn, n > 1 (C.17)

As aforementioned, due to the flexibility in sizes for renewable generators, ngorn
i,r,t,n,

ngbrn
i,r,t,n, and ngrrn

i,r,t,n are relaxed to be continuous. Note that ngbrn
i,r,t,n for i ∈ IRold

r is

fixed to zero in all time periods, i.e., the clusters of existing renewable generators cannot

have any new additions during the time horizon considered.

We also define constraint (C.18) to enforce the renewable generators that reached the

end of their lifetime to either retire, ngrrn
i,r,t,n, or have their life extended, ngern

i,r,t,n. Ngr
i,r,t
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is a parameter that represents the number of old generators (i.e., i ∈ Iold
r ) that reached the

end of their lifetime, LTi, at year t.

Ngr
i,r,t = ngrrn

i,r,t,n + ngern
i,r,t,n ∀ i ∈ IRold

r , r, t ∈ Tn, n (C.18)

Concerning thermal generator clusters, we define a set of constraints (C.19)-(C.20) to

compute the number of generators in cluster i that are ready to operate ngoth
i,r,t,n, taking into

account the generators that were already existing at the beginning of the planning horizon

NgTold
i,r , the generators built ngbth

i,r,t,n, and the generators retired ngrth
i,r,t,n at year t of node n.

ngoth
i,r,t,n = NgTold

i,r + ngbth
i,r,t,n − ngrth

i,r,t,n ∀ i ∈ ITH
r , r, t = 1, n = 1 (C.19)

ngoth
i,r,t,n = ngoth

i,r,t−1,P (n) + ngbth
i,r,t,n − ngrth

i,r,t,n ∀ i ∈ ITH
r , r, t ∈ Tn, n > 1 (C.20)

Note that ngbth
i,r,t,n for i ∈ ITold

r is fixed to zero in all time periods, i.e., the clusters of

existing thermal generators cannot have any new additions during the time horizon consid-

ered.

We also define constraint (C.21) to enforce the thermal generators that reached the end

of their lifetime to either retire, ngrth
i,r,t,n, or have their life extended ngeth

i,r,t,n.

Ngr
i,r,t = ngrth

i,r,t,n + ngeth
i,r,t,n ∀ i ∈ ITold

r , r, t ∈ Tn, n (C.21)

Finally, we have constraint (C.22) that ensures that only installed generators can be in

operation:

ui,r,t,d,s,n ≤ ngoth
i,r,t,n ∀ i ∈ ITnew

r , r, t ∈ Tn, n, d, s (C.22)

C.1.14 Storage

The energy storage devices are assumed to be ideal and generic Pozo et al. (2014).

Constraints (C.23)-(C.24) compute the number of storage units that are ready to oper-
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ate nsoj,r,t,n, taking into account the storage units already existing at the beginning of the

planning horizon Nsj,r and the ones built nsbj,r,t,n at year t of node n. Due to the flexibility

in sizes for storage units, nsoj,r,t,n and nsbj,r,t,n are relaxed to be continuous.

nsoj,r,t,n = Nsj,r + nsbj,r,t,n ∀ j, r, t = 1, n = 1 (C.23)

nsoj,r,t,n = nsoj,r,t−1,P (n) + nsbj,r,t,n ∀ j, r, t ∈ Tn, n > 1 (C.24)

Constraints (C.25) and (C.26) establish that the power charge, pcharge
j,r,t,d,s,n, and discharge,

pdischarge
j,r,t,d,s,n, of the storage units in cluster j, nsoj,r,t,n, has to be within the operating limits:

Chargemin
j and Chargemax

j , and Dischargemin
j and Dischargemin

j , respectively.

Chargemin
j · nsoj,r,t,n ≤ pcharge

j,r,t,d,s,n ≤ Chargemax
j · nsoj,r,t,n ∀ j, r, t ∈ Tn, n, d, s (C.25)

Dischargemin
j · nsoj,r,t,n ≤ pdischarge

j,r,t,d,s,n ≤ Dischargemax
j · nsoj,r,t,n ∀ j, r, t ∈ Tn, n, d, s (C.26)

Constraint (C.27) specifies that the energy storage level, plevel
j,r,t,d,s,n, for the storage units in

cluster j, nsoj,r,t,n has to be within the storage capacity limits Storagemin
j and Storagemax

j .

Storagemin
j · nsoj,r,t,n ≤ plevel

j,r,t,d,s ≤ Storagemax
j · nsoj,r,t,n ∀ j, r, t ∈ Tn, n, d, s (C.27)

Constraints (C.28) and (C.29) show the power balance in the storage units. The state of

charge plevel
j,r,t,d,s,n at the end of sub-period s depends on the previous state of charge plevel

j,r,t,d,s−1,n,

and the power charged pcharge
j,r,t,d,s,n and discharged pdischarge

j,r,t,d,s,n at sub-period s. The symbols ηcharge
j

and ηdischarge
j represent the charging and discharging efficiencies, respectively. For the first

hour of the day d in year t of node n, the previous state of charge (i.e., s = 0) is the variable

plevel,0
j,r,t,d,n.

plevel
j,r,t,d,s,n = plevel

j,r,t,d,s−1,n + ηcharge
j · pcharge

j,r,t,d,s + pdischarge
j,r,t,d,s,n/η

discharge
j ∀ j, r, t ∈ Tn, n, d, s > 1 (C.28)

plevel
j,r,t,d,s,n = plevel,0

j,r,t,d,n + ηcharge
j · pcharge

j,r,t,d,s,n + pdischarge
j,r,t,d,s,n/η

discharge
j ∀ j, r, t ∈ Tn, n, d, s = 1 (C.29)
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Constraints (C.30) and (C.31) force the storage units to begin plevel,0
j,r,t,d,s and end plevel

j,r,t,d,s=S,n

each day d of year t with 50% of their maximum storage Storagemax
j . This is a heuristic to

attach carryover storage level form one representative day to the next Liu et al. (2018).

plevel,0
j,r,t,d,n = 0.5 · Storagemax

j · nsoj,r,t,n ∀ j, r, t ∈ Tn, n, d (C.30)

plevel
j,r,t,d,s,n = 0.5 · Storagemax

j · nsoj,r,t,n ∀ j, r, t ∈ Tn, n, d, s = S (C.31)

C.1.15 Objective function

The objective of this model is to minimize the expected net present cost, Φ, over the

planning horizon, which includes operating costs Φopex, investment costs Φcapex, and potential

penalties ΦPEN for not meeting the the targets on renewables.

min Φ =
∑
n∈T

probn ·
∑
t∈Tn

(
Φopex
t,n + Φcapex

t,n + ΦPEN
t,n

)
(C.32)

The operating expenditure, Φopex
t,n , comprises the variable V OCi,t and fixed FOCi,t oper-

ating costs, as well as fuel cost P fuel
i,t,n per heat rate HRi, carbon tax TxCO2

t,n for CO2 emissions

EFCO2
i , and start-up cost (variable cost P fuel

i,t,n that depends on the amount of fuel burned for

startup F start
i , and fixed cost Cstart

i ). Both P fuel
i,t,n and TxCO2

t,n are potential strategic uncertain

parameters, hence are indexed by node n.

Φopex
t,n = If t ·

[∑
d

∑
s

Wd · hs ·

(∑
i

∑
r

(V OCi,t + P fuel
i,t,n ·HRi + TxCO2

t,n · EF
CO2
i ·HRi) · pi,r,t,d,s,n

)

+

 ∑
i∈IRN

r

∑
r

FOCi,t ·Qgnpi,r · ngo
rn
i,r,t,n

+

 ∑
i∈ITH

r

∑
r

FOCi,t ·Qgnpi,r · ngo
th
i,r,t,n


+
∑

i∈ITH
r

∑
r

∑
d

∑
s

Wd ·Hs · sui,r,t,d,s,n ·Qgnpi,r

·
(
F start
i · P fuel

i,t,n + F start
i · EFCO2 · TxCO2

t,n + Cstart
i

)]
∀ n ∈ T , t ∈ Tn

(C.33)

The capital expenditure, Φcapex
t,n , includes the amortized cost of acquiring new genera-

294



C.1. Detailed MSIP Formulation

tors, DICi,t, new storage devices, SICj,t, and the amortized cost of extending the life of

generators that reached their expected lifetime. The latter is assumed to be a fraction LEi

of the investment cost, DICi,t, in a new generator with the same or equivalent generation

technology. In this framework, the investment cost takes into account the remaining value

at the end of the time horizon by considering the annualized capital cost and multiplying

it by the number of years remaining in the planning horizon at the time of installation to

calculate the DICi,t.

Φcapex
t,n = If t ·

[ ∑
i∈IRnew

r

∑
r

DICi,t · CCm
i ·Qg

np
i,r · ngb

rn
i,r,t,n

+
∑

i∈ITnew
r

∑
r

DICi,t · CCm
i ·Qg

np
i,r · ngb

th
i,r,t,n

+
∑
j

∑
r

SICj,t · Storagemax
j · nsbj,r,t,n

+
∑
i∈IRN

r

∑
r

DICi,t · LEi ·Qgnp
i,r · nge

rn
i,r,t,n

+
∑
i∈ITH

r

∑
r

DICi,t · LEi ·Qgnp
i,r · nge

th
i,r,t,n

]
∀ n ∈ T , t ∈ Tn

(C.34)

The capital multiplier CCm
i associated with new generator clusters is meant to account

for differences in depreciation schedules applicable to each technology, with higher values

being indicative of slower depreciating schedule and vice versa.

Lastly, the penalty cost, ΦPEN
t,n , includes the potential fines for not meeting the renewable

energy quota, PEN rn
t , and curtailing the renewable generation.

ΦPEN
t,n = If t ·

(
PEN rn

t · def rn
t,n + PEN c ·

∑
r

∑
d

∑
s

cur,t,d,s,n

)
(C.35)
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