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Abstract
This thesis contributes new knowledge toward understanding the relationship between capacity

procurement and power system reliability through rigorous analysis of generator-level availability

data.

In Chapter 2 I analyze four years of data (2012-2015) from the Generating Availability Data

System (GADS) database maintained by the North American Electric Reliability Corporation

(NERC) to evaluate key assumptions made by power system planners when determining capacity

requirements. Using block subsampling and binomial modeling, I demonstrate that large unavailable

capacity events have occurred with much greater frequency than should be expected if current-practice

assumptions hold.

In Chapter 3 I propose a nonhomogeneous Markov model to explain the observed correlated

failures. I use logistic regression to fit a simple model specification that allows generator transition

probabilities to depend on ambient temperatures and system load. I fit the model using 23 years of

GADS data for the PJM Interconnection (PJM), the largest system operator by generation capacity

in North America. Temperature and load are each statistically significant for two-thirds of generators.

Temperature dependencies are observed in all generator types, but are most pronounced for diesel

and natural gas generators at low temperatures and nuclear generators at high temperatures. The

nonhomogeneous Markov model predicts system-level unavailable capacity substantially better than

the homogeneous Markov model used currently by industry.

In Chapter 4, joint work with Luke Lavin, I quantify the reliability risks implied by temperature

dependence in PJM’s generator fleet. We modify an open-source resource adequacy modeling tool to

allow generator availability to depend on temperature. We then parameterize the tool for PJM’s

system using temperature-dependent forced outage rates developed in Chapter 3. We find that

temperature dependence substantially increases capacity requirements to achieve the target level of

reliability, though PJM procures still more than our model finds is required. Given the seasonality

in temperatures and loads, we also demonstrate that average annual capacity requirements could be
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significantly reduced were PJM to set separate monthly targets, rather than a single annual target.

Finally, we explore the resource adequacy implications of various future generator resource and

climate change scenarios for PJM.
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Chapter 1 Introduction and motivation
Having sufficient generation capacity is crucial for maintaining adequate reliability in electric

power systems. Not only must electric supply and demand be balanced at all times, but generation

reserves are required to guard against unanticipated generator outages and deviations from forecasted

loads. All else equal, greater procurement of generation capacity is desirable because it reduces

the probability of loss-of-load events. However, procuring capacity is costly and thus electric power

system planners strive to strike a reasonable balance between the costs and benefits of reserves.

The key question is how a given level of capacity procurement translates to the probability of

not being able to serve load—particularly the probability of not being able to serve the forecast

peak demand for the system. With this knowledge, a system planner could immediately determine

the level of capacity that satisfies the agreed-upon risk of generation shortage. System planners

have long assumed that generators fail independently of one another and with constant probability

throughout the year. This has worked well historically. However, recent events, such as the Polar

Vortex of January 2014, have threatened grid reliability in the eastern United States despite capacity

procurement levels far above those deemed sufficient under these assumptions.

In this thesis, I contribute new knowledge toward understanding the relationship between capacity

procurement and power system reliability. In Chapter 2 I conduct what is to my knowledge the first

systematic evaluation of the two key assumptions just mentioned—that generators fail independently

of one another and that generators are equally likely to fail at all times of the year—for several

large power systems in North America. To do this, I analyze four years of data from the Generating

Availability Data System (GADS), a proprietary database of generator-level availability data for

approximately 8,000 generators maintained by the North American Electric Reliability Corporation

(NERC). I devise a novel method of translating the event records reported in GADS into hourly time

series of unavailable capacity for each reporting generator. I then use multiple statistical methods

to demonstrate that historical generator failure patterns are inconsistent with these assumptions.

The key takeaway from this analysis is that large generator outages, where many generators are

1



simultaneously unavailable, occur much more frequently than system planners expect them to.

Given these results, in Chapter 3 I then propose a model to explain the observed correlated failures.

Instead of assuming that generator failure probabilities are constant, and thus that generators fail

unconditionally independently of one another, I relax this assumption by allowing environmental

variables to moderate generator failure probabilities, making generator failures now conditionally

independent of one another. I use logistic regression to fit a simple model specification that allows

failure probabilities to depend on ambient temperatures and on system load (electricity demand), but

many additional or alternative covariates could be included. I fit the model on the 1,845 generators

that report to the GADS database maintained by the PJM Interconnection (PJM), the largest

system operator by generation capacity in North America. My results demonstrate that PJM’s

generator fleet is substantially less available at both very cold and very hot temperatures. Given that

both temperature extremes correspond to high demand for electricity in PJM, this result suggests

that part of the challenge of the Polar Vortex of 2014 was due to the limitations of current reliability

planning models.

In Chapter 4, joint work with Luke Lavin, I quantify the reliability risks implied by the temperature

dependence of PJM’s fleet. We modify an open-source resource adequacy modeling tool to allow

generator availability to depend on temperature. We then parameterize the tool for PJM’s system.

We find that temperature dependence substantially increases capacity requirements to achieve the

target level of reliability, though PJM procures still more than our model finds is required. This

suggests substantial benefit could be achieved by helping system planners to quantify capacity

requirements necessary to achieve a desired reliability target. Given the seasonality in temperatures

and loads, we also demonstrate that average annual capacity requirements could be significantly

reduced were PJM to set separate monthly targets, rather than a single annual target.
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Chapter 2 An empirical evaluation of resource
adequacy modeling assumptions*

Abstract

To keep the electric power system reliable, grid operators procure reserve generation capacity to protect

against generator failures and significant deviation from the load forecast. Current methods for determining

reserve requirements use historical generator availability data (recorded as failure events) to compute the

fraction of the time each unit in the power system was unavailable unexpectedly. These values are then

combined using analytical or simulation methods to yield a distribution of available capacity. From this

distribution, the reserve capacity needed to maintain a particular reliability target may be determined. Such

an approach implicitly assumes that generator failures occur independently of one another and that generator

availability is not seasonal. To test these assumptions, we process the more than two million event records

reported to the Generating Availability Data System (GADS) database maintained by the North American

Electric Reliability Corporation (NERC) between January 1, 2012 and December 31, 2015. This allows us

to construct complete availability histories for each of the approximately 8,000 generating units reporting

to GADS during this period. Using these time series, we find strong evidence of correlated failures in most

regions, even when removing Hurricane Sandy and the exceptionally cold month of January 2014 from the

data. We find that correlated failures occur in all seasons. We do not find evidence of seasonality but note

that seasonal structure may emerge with more data. In addition we determine the distribution of unscheduled

unavailable capacity, unscheduled derating magnitudes, event durations, event arrival probabilities, and

mean time between failure (MTBF) and mean time to recovery (MTTR) values. In each case, we report fit

parameters to facilitate use by practitioners. We find statistically significant differences in mean time between

failure for small and large units for three unit types when aggregating over regions. Finally we present time

series of unavailable capacity from unscheduled, maintenance, and scheduled events. These may be used in

conjunction with load data to directly study resource adequacy risks without assuming independent failures

or constant availability. Our findings suggest that power system resource planners should consider correlated

outages as they identify reliability and reserve capacity requirements.

* Published as: Murphy, S, Apt, J., Moura, J., & Sowell, F. (2018). Resource adequacy risks to the bulk power system
in North America. Applied Energy, 212, 1360-1376. https://doi.org/10.1016/j.apenergy.2017.12.097
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2.1 Introduction

Extended low temperatures in much of the United States (U.S.) and Canada in January of

2014 resulted in significant losses of electricity generation capacity. In the control area of PJM

Interconnection LLC (PJM), a large regional transmission organization (RTO) in the eastern U.S.,

more than 20% of total capacity was unavailable during the peak of the polar vortex event [1].1

To avoid blackouts, PJM had to enact emergency measures, including making public appeals for

conservation, calling on demand-response resources, reducing system voltage, and scheduling shared

reserves with neighboring systems.

Resource adequacy modeling (RAM) is the process of determining how much capacity is needed

to achieve a given reliability standard.2 Probabilistic methods have been used to determine required

reserve generation from power plant outage data for more than 80 years [6, 7]. Significant advances

were made in the immediate postwar period and led to the creation of a joint program of the Edison

Electric Institute and the American Institute of Electrical Engineers on the application of probability

methods [8–11].

Current industry practice proceeds as follows. First, historical availability data are used to

calculate an “availability statistic” for each generating unit. The predominant availability statistic in

use in the U.S. is the equivalent forced outage rate of demand (EFORd) which seeks to estimate

the conditional probability of a unit being unavailable when needed by the power system [12].

Second, the availability statistics for each generating unit in the power system are used to determine

the distribution of available capacity for the system through analytical or simulation methods.

Finally, the resulting distribution is compared to a forecast of system load to determine capacity

requirements [13].3

The availability statistic approach to RAM distills multiple years of availability history for each
1The Pennsylvania-New Jersey Interconnection was a power pool formed in 1927. It was renamed the Pennsylvania-

New Jersey-Maryland (PJM) Interconnection in 1956 when Maryland-based utilities joined. Its current footprint
includes all or parts of 13 U.S. states and the District of Columbia.

2The most common reliability standard in use in North America is the “1-in-10” standard, usually interpreted
to mean that a loss of load event due to insufficient generation capacity will occur on no more than one day in ten
years on average [2, 3]. It is also sometimes interpreted to mean no more than 24 hours of loss of load due to supply
shortages will occur in ten years on average [4]; various reliability regions have other interpretations [5].

3Current resource adequacy planning procedures for several control areas in the United States may be found in
the following sources: [14–19].
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generating unit to a single number. Because all temporal information is discarded, it implicitly

assumes failures are independent among generating units [20]. However, failures could be correlated

for a number of reasons, including common weather events, fuel supply disruptions, or a common

vintage of defective mechanical components, leading to biased estimates of the level of capacity

needed to achieve a reliability standard [21]. For lack of a tractable alternative, the assumption

of independent failures is also made by scholars working outside RAM: [22] assume independence

when simulating the marginal cost curve for electricity supply in California to test for the exercise

of market power. Finally, we note that the availability statistic approach to RAM also implicitly

assumes that generator availability is not seasonal.

Here we seek to test the validity of these two assumptions. To do this we devise a novel method for

reconstructing the availability history of a generating unit from event records. We demonstrate our

method using the Generating Availability Data System (GADS), a proprietary database maintained

by the North American Electric Reliability Corporation (NERC) [23]. GADS contains more than two

million event records affecting approximately 8,000 generating units between 2012 and 2015. These

units represent approximately 85% of generation capacity in the conterminous U.S. and Canadian

provinces. We use the GADS data to create time series of unavailable capacity from unscheduled,

maintenance, and scheduled events for each unit.

Our primary objective is to use the hourly time series to test both for failure correlation among

generating units and for seasonal availability patterns. While we are not the first to recognize the

potential challenges posed by correlated failures for RAM, previous research has been hampered by

a lack of access to the necessary data [5, 20].

In addition, we use the time series to generate inputs for Markov modeling of power systems.

This includes Weibull and lognormal distributions fit to each region’s series of unavailable capacity,

Weibull distributions fit to unscheduled derating magnitudes by unit type, lognormal distributions fit

to unscheduled event durations by event type, and lognormal distributions fit to hourly unscheduled

event arrival probabilities. In each case we report the parameters of our fits. We also calculate the

mean time between failure (MTBF) and mean time to recovery (MTTR) for every unit in the GADS

data and test whether large and small units have different MTBF values by unit type. Finally, we
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present hourly time series of unavailable capacity from unscheduled, maintenance, and scheduled

events and publish the data. These may be used in conjunction with load data to study resource

adequacy risks without assuming either independent failures or constant generator availability, which

we believe represents a significant advancement versus current RAM practice.

The paper is organized as follows. Section 2.2 introduces the GADS data. Section 2.3 describes

the steps we take to clean the data and generate time series of unavailable capacity. Section 2.4

presents our results. Section 2.5 concludes.

The novel results discussed in Section 2.4 are summarized here. We present the first evidence

that correlated failures are present in most NERC regions, even when removing Hurricane Sandy

and January 2014 from the data (a map of the NERC regions is Figure A.1 in the supplementary

materials). We find that correlated failures can occur in any season. We show distributions of

unscheduled unavailable capacity in each NERC region and find that they are reasonably well modeled

by Weibull and lognormal distributions. The distributions of normalized derating magnitudes vary

by unit type; combined cycle and simple cycle gas units are not well approximated by common

parametric fits. Three out of five unit types that we studied show statistically significant differences

in mean time between failure for small and large units. The mean time between failure for fossil

steam units tends to be shorter for large units, while the mean time between failure for simple cycle

and hydroelectric units tends to be shorter for small units.

2.2 Data

A working group of the Institute of Electrical and Electronics Engineers (IEEE) Application of

Probability Methods subcommittee began developing generator reliability definitions to support the

use of probability methods in bulk power system planning in 1968. This led to the creation of IEEE

Standard 762, which provides the basis for generator availability data collection today [24]. NERC,

formed in 1968 to develop voluntary standards to support bulk power system reliability following

the Northeast blackout of 1965, assumed responsibility for collecting generator availability data from

the Edison Electric Institute in 1979, renaming the database GADS [25,26].
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In response to rapid changes in the North American resource mix and NERC’s designation

as the electric reliability organization in the U.S. in 2006, NERC phased in mandatory reporting

to GADS [27]. Beginning in January 2012, all units with nameplate capacities greater than 50

megawatts (MW), other than wind and solar generators, were required to report. This threshold

was reduced to 20 MW in January 2013. There are approximately 8,000 units with events logged

in GADS, representing approximately 85% of installed capacity in the conterminous U.S. and the

Canadian provinces. The present analysis spans January 1, 2012 through December 31, 2015, the

full period of mandatory reporting for which complete data were available at the time we began our

work.

The GADS database comprises several tables. We use primarily the Units table, which records

attributes of each generating unit reporting to GADS, and the Events table, which records each

event affecting any generating unit reporting to GADS. Secondarily we use the Performance table,

which records monthly summaries of the hours each generating unit spent in different operational

states, to validate the Events table data.

Units are required to report nearly every event that affects their ability to generate electricity,

even if dispatch requirements can still be met.4 Approximately 500,000 events are logged each year

under mandatory reporting. There are 20 event types in total, including startup failures (where

the affected unit is fully unavailable due to a failure that occurred during its startup procedure),

outages (where the affected unit is fully unavailable), deratings (where the affected unit is partially

unavailable), reserve shutdowns (where the affected unit is offline for economic reasons but is not

experiencing any reduction in its ability to generate power), unit retirements, and several others [28].

Each event logged in GADS reports the affected unit, the type of event, the start and end time of

the event, and several additional details.

Outages and deratings are further classified as unscheduled, maintenance, or scheduled events

based on how much advance notice the unit operator had before the event went into effect (ranging

from none to several weeks). We focus on the seven unscheduled (forced) event types: startup

4Reporting failures that represent less than 2% of a unit’s capacity and last less than 30 minutes is voluntary.
Hydroelectric and pumped storage units without automatic data recording equipment are not required to report
reserve shutdown events, but as noted above these events do not affect a unit’s ability to generate power [28].
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failures (the GADS term for these is SF), the three unscheduled outages (U1, U2, and U3), and the

three unscheduled deratings (D1, D2, and D3).5 These are the primary event types considered in

RAM. We next describe our methods for processing the raw GADS events data into time series of

unavailable capacity.

2.3 Methods

2.3.1 Preprocessing

Both the Units and Events tables required basic cleaning and preprocessing. Preprocessing of the

Units table included removing any records missing a nameplate capacity value or having a NERC

region code other than the eight corresponding to the conterminous U.S. and Canada.

Derating event do not have their magnitude directly reported. Instead, each derating records the

net available capacity (NAC) remaining for the affected generating unit at the start of that event.

To ensure that all derating magnitudes will be calculated correctly (Section 2.3.2), we check that

each unit’s nameplate capacity is greater than its largest reported NAC. An example is shown in

Figure 2.1. Approximately 300 units’ nameplate capacity values were updated by this procedure.

This accounts for unit up-ratings, as GADS nameplate capacity values are not generally kept up to

date by operators.

5Among the seven unscheduled event types, there are still temporal gradations: SF, U1, and D1 events take effect
immediately, U2 and D2 events take effect within six hours, and U3 and D3 events can be postponed beyond six hours
but not beyond the end of the upcoming weekend.
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Figure 2.1: Illustration of scenarios for which updating the unit’s nameplate capacity is and is not
necessary. In the example on the left, the unit experiences a derating event with a net available
capacity (NAC) greater than its nameplate capacity so the nameplate is increased in order for all
derating event magnitudes to be positive (see Section 2.3.2). In the example on the right, the unit’s
current nameplate capacity is sufficient to yield a positive magnitude for each derating event.

We also validate the reported time zone for each unit using ABB Velocity Suite [29]. For units

whose time zone was updated by this process, we adjust the start and end times of its events

accordingly.6

In the Events data, we remove any records missing a start or end date, as well as duplicate

derating records. These are derating events that match on start time, end time, event type, and

NAC. When derating events match on start time, event type, and NAC but have different end times,

we keep only the event with the latest end time. These steps are necessary for correctly calculating

the magnitudes of overlapping deratings, as described next.

2.3.2 Calculating derating magnitudes

Deratings account for 19-35% of all unscheduled unavailable MWh during our study period,

depending on the NERC region. Thus it is important to treat reported deratings rigorously. If

deratings never overlapped, each derating magnitude could be calculated as:

Magnitude_of_event = Nameplate_capacity_of_unit−NAC_of_event (2.1)

6Subsequent conversations with members of the GADS Working Group identified that at least one large utility
sets all of its units to adhere to the time zone of headquarters, even when that conflicts with the time observed in
the state. We do not account for this as it would be extremely difficult to confirm this behavior for the hundreds of
reporting entities, but believe the bias introduced should be small.
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However, deratings can overlap and usually the magnitude of the succeeding derating must be

calculated as a function of the derating(s) already underway [28]. For example, if just one derating

was already in progress, the magnitude of the succeeding derating must be calculated against it

rather than against the nameplate capacity of the unit:

Magnitude_of_event = NAC_of_previous_event−NAC_of_event (2.2)

Any number of deratings can overlap, which makes determining the correct baseline event difficult.

We develop specialized functions to handle all possible configurations of overlapping deratings.

2.3.3 Calculating time series of unscheduled unavailable capacity

With the derating magnitudes calculated, we next build hourly time series of unavailable capacity

for each generating unit.7 For outages and startup failures, unavailable capacity is the unit’s

nameplate capacity in every hour where an outage event is in effect. For deratings, unavailable

capacity is the sum of the magnitudes of events in effect in each hour. We sum outages and deratings

for each unit, cap the series at each unit’s nameplate capacity, and aggregate the unit-level series to

the eight NERC regions.8 An example time series is shown in Figure 2.2.

7Despite event starts and ends reported to the minute, the large plurality of start and end times fall on the hour.
Histograms of start and end minute of each unscheduled event are shown in Figure A.9 and Figure A.10.

8Because the original purpose of the GADS database was to facilitate unit benchmarking, a derating in progress
when an outage occurs is not modified to prevent unavailable capacity from being overstated. Other potential causes
of overestimation include events appearing to overlap at the hourly resolution.
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Figure 2.2: Illustrative unavailable capacity time series for one generating unit. In hour 1 the unit
experiences an outage and is fully unavailable. In hour 2 the outage has been repaired and the unit
is fully available. In hour 3 the unit experiences a 60-MW derating. In hour 4 the unit experiences a
second derating (10 MW) in addition to the previous derating, so 70 MW is unavailable. In hour 5
both deratings have been repaired and the unit is fully available.

2.4 Results

We begin by presenting a brief descriptive summary of the GADS data by NERC region (Section

2.4.1). We then test for correlated failures (Section 2.4.2) and for seasonal patterns in unscheduled

11



unavailable capacity (Section 2.4.3). Finally, we present a set of analyses with direct application for

reliability analysis (Section 2.4.4). These include parametric fits to each NERC region’s distribution

of unscheduled unavailable capacity; parametric fits to each unit type’s distribution of normalized

derating magnitudes; parametric fits to each region’s distribution of event durations by event type;

parametric fits to the hourly probability of an unscheduled event arrival by region; parametric fits to

the distributions of mean time between failure and mean time to recovery by unit type and region;

statistical tests of whether small and large units have different mean times between failure; and time

series of unavailable capacity from unscheduled, maintenance, and scheduled events by unit type

and region.

2.4.1 Descriptive analysis of unscheduled unavailable capacity

Installed capacity and unit counts for the eight NERC regions spanning the conterminous U.S.

and the Canadian provinces are listed in Table 2.1. We show time series of unscheduled unavailable

capacity for each NERC region as a percentage of installed capacity in Figure 2.3, using data from

ABB Velocity Suite to construct an hourly series of each region’s installed capacity. Hourly time

series of the percent of units (unweighted by capacity) affected by an unscheduled event are shown

in Figure A.2 in the supplementary material.

We report the mean (which may be thought of as the base rate of unscheduled unavailable

capacity), median, maximum, and quartile coefficient of dispersion (QCD) for each region’s time

series in Table A.1. Over the four years we analyzed, the regions’ mean unscheduled unavailable

capacity ranged from 2.8% of installed capacity in FRCC to 6.3% in SPP. We use the QCD as a

measure of the spread of the unscheduled unavailable capacity rather than the standard deviation

because the data are asymmetric. The QCD ranges from 0.13 for SERC to 0.30 for FRCC. The

ratio of the maximum to the mean ranges from 1.8 in WECC to 4.0 in RFC. There is more than a

three-fold difference in the regional maxima, ranging from 7.2% of installed capacity for WECC to

22.6% for RFC.

12



Table 2.1: Description of the eight NERC regions in the conterminous U.S. and Canada.

Acronym Definition Installed capacity, start (MW)1 Installed capacity, end (MW)2 Unit count3

FRCC Florida Reliability Coordinating Council 60,111 60,300 328
MRO Midwest Reliability Organization 56,100 56,300 523
NPCC Northeast Power Coordinating Council 149,700 146,900 1,142
RFC ReliabilityFirst Corporation 227,800 215,000 1,441
SERC Southeast Reliability Corporation 264,400 264,300 1,688
SPP Southwest Power Pool 58,100 59,000 423
TRE Texas Reliability Entity 80,400 81,900 428
WECC Western Electricity Coordinating Council 206,900 209,300 1,903
1 Starting installed capacity is the sum of nameplate capacity of active conventional units with nameplate capacities greater than 20 MW on January 1, 2012;
wind and solar units are excluded. Data source: [29].

2 Ending installed capacity is the sum of nameplate capacity of active conventional units with nameplate capacities greater than 20 MW on June 30, 2015;
wind and solar units are excluded. Data source: [29].

3 The number of units experiencing an unscheduled event during the study period.
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Figure 2.3: Unscheduled unavailable capacity as a percent of installed capacity, by unscheduled
event type. Green: unscheduled outages only; red: unscheduled deratings only; blue: start-up failures
only; black: all unscheduled events (the sum of green, red, and blue curves).

We compute the breakdown of unscheduled unavailable megawatt-hours (MWh), the sum of

the product of each event’s magnitude (MW) and duration (hours), by event type. On average,

startup failures account for 3% (ranging from 2% to 5% for the eight NERC regions), deratings

account for 27% (ranging from 19% to 35%), and outages account for 70% (ranging from 63% to

77%) of the total. These breakdowns are shown in Figure A.3. We present breakdowns of the count

of unscheduled events by event type in Figure A.4.
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2.4.2 Tests for independence among generators

We wish to test the assumption that generator failures are independent. From Figure 2.3 it is

clear that several regions show instances of much greater unavailable capacity than their base rate.

These could be due to correlated failures or to random chance.

We test whether the peaks violate the independent failures assumption using two main methods.

We describe each briefly here, then give details and results in the next sections. First we apply block

subsampling to “shuffle” each unit’s observed time series independent of every other unit. Summing

over units to regions yields a simulated time series for each region that is representative of each

unit’s observed performance, but which breaks any correlation among generator failures that may

have been present. Repeating this process many times allows us to compare the prevalence and

magnitudes of large unavailable capacity instances in the observed time series to what is possible

under the null hypothesis of independent failures. We do this by creating confidence bands from each

region’s subsampled runs and plotting them along with the empirical series as exceedance curves.

As a second test, we model each unit’s hourly availability as a binomial random variable using

its observed time series to determine the probability of an event arrival in each hour. With these

arrival probabilities we then simulate representative time series independently for each unit. As with

block subsampling, we then aggregate the unit series to regions. Repeating this process many times

allows us to compare the prevalence of large unavailable capacity instances in the observed series to

what is possible under the null hypothesis of independent failures.

With each method, we look for violations of the independent failures assumption both with and

without Hurricane Sandy and the cold weather events of January 2014 in order to test the possibility

that these two well-known events were responsible for all the observed violations during our study

period.9

9We remove all hours from October 29, 2012 through November 30, 2012 for Hurricane Sandy and from January 1,
2014 through January 31, 2014 for the Polar Vortex and the subsequent winter storms of January 2014 to allow time
for some unit repairs to be completed. We do this in all regions for consistency.
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Test of independent failures method 1: Block subsampling

We first test whether the observed generator failures are independent using block subsampling

with replacement on each unit’s time series. The time series of unavailable capacity for a generator

has significant and important dependence over time. This dependence is preserved by sampling

blocks of hours instead of individual hours. Sampling blocks independently ensures independence

between distinct generators. In essence, block subsampling allows us to “shuffle” each unit’s series

independent of every other series, breaking any dependence across units while preserving dependence

within units. This allows us to generate new (simulated) regional distributions under the null

hypothesis that generator failures are independent. By repeating this process many times, we can

trace out the space of distributions that is consistent with independent failures (the null hypothesis)

for each region.10 We reject the hypothesis that the generator failures are independent if a region’s

empirical distribution exceeds the upper bound of its 99% confidence band at any point above the

50th percentile.

We begin by generating 1000 subsampled series for each region using the full study period. This

is consistent with current industry practice: it assumes not only independent failures among units,

but also no seasonality in generator performance.11 We use these series to generate 95% and 99%

confidence bands of the distribution of unscheduled unavailable capacity under the null hypothesis,

which we plot together with the region’s empirical distribution as exceedance curves (termed survival

curves in medical and some reliability literature) in Figure A.11. We summarize the percentiles at

which each region’s empirical distribution exceeds the upper bound of the 99% confidence band,

along with the maximum magnitude of exceedance, in the left-hand side of Table A.4.

Six regions (MRO, NPCC, RFC, SERC, SPP, and TRE) show evidence of correlated failures at

the 99% confidence level. FRCC and WECC are the only two regions whose empirical distributions do

not exceed the upper bounds of their 99% confidence bands at any point in their respective domains.

As a measure of whether the exceedances we observe in these regions represent a resource adequacy

10The block length is a function of the autocovariance sequence, the spectral density function, and the length of
the time series [30]. We compute each unit’s block length using the np library in R [31,32]. Subsampling is carried
out using the boot library in R [33,34].

11Because there is no requirement that, for example, a winter observation be selected when populating winter hours
in the subsampled series.
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risk, we determine the amount of capacity that must be procured in order to achieve the 1-in-10 loss of

load expectation (LOLE) standard under the assumption of independent failures. The “one day in ten

years” interpretation of this rule translates to 2.4 hours of loss of load expectation per year, denoted

2.4 LOLH [2] as used in the SPP region; other NERC regions use slightly different interpretations.

2.4 LOLH is indicated via the dashed horizontal line in Figure A.11; the corresponding amount of

capacity required at 95% and 99% confidence is indicated by the dashed vertical lines, drawn where

the dashed horizontal line intersects the upper bound of each region’s confidence bands. We define a

region as having “managerially significant” correlated failures if its empirical distribution exceeds

the amount of capacity required to meet the 2.4 LOLH criterion at the 99% confidence level, at

an incidence greater than that corresponding to 2.4 LOLH. Using this definition, we conclude that

managerially significant correlated failures are present in NPCC, RFC, SERC and TRE during the

full study period.

Hurricane Sandy in 2012 and the two cold events in January 2014 were responsible for the largest

violations of the independence assumption in our study period. To see if other correlated failures

exist, we remove October 29-November 30, 2012 and January 2014 and repeat our analysis. As

before, we plot exceedance curves (Figure A.12) and summarize the instances where each region’s

empirical distribution exceeds the upper bound of its 99% confidence band, along with the maximum

magnitude of exceedance (right-hand side of Table A.4).

Even without Hurricane Sandy and January 2014, five regions (NPCC, RFC, SERC, SPP, and

TRE) show evidence of correlated failures at the 99% confidence level. When considering the 2.4

LOLH resource adequacy requirement, we conclude that managerially significant correlated failures

were present at the 99% confidence level in only NPCC, RFC, and TRE.

Test of independent failures method 2: Modeling hourly availability as a binomial

random variable

We next test whether the observed peaks in unavailable capacity are due to correlation or to

random chance by modeling each unit’s hourly availability as a binomial random variable. We
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estimate the probability of an unscheduled event arrival at each unit in a given hour as:

P (arrivali) =
C(eventsD1:D3,SF,U1:U3i)

C(hours1:T )− C(hoursSF,U1:U3i)
(2.3)

where C indicates the count of the elements taken in its argument, i indexes generating units,

T indicates the final hour of the study period, and D1 : D3, SF , and U1 : U3 refer to the seven

unscheduled event types.12 When calculating this probability, we subtract the number of hours in

which the unit is fully unavailable from the total period hours because no additional event arrivals

can occur during these times. We retain only the units that are at least partially available for at

least 1,000 hours (approximately 6 weeks) during the study period; this removes nine units from the

analysis. Histograms of the estimated probabilities are reported in Figure A.14. Parameters from

lognormal fits to the estimated probabilities are reported in Table A.5.

With the event arrival probabilities calculated for each unit, we then draw from each unit’s

parameterized binomial distribution as many times as there are hours in the study period to create a

simulated series of event arrivals for each unit. We populate each event’s magnitude and duration by

sampling uniformly with replacement from the unscheduled events experienced by that unit. After

completing this process, we cap each unit’s series of unavailable capacity at its nameplate capacity

and aggregate the unit-level time series to the regions. We show exceedance curves in Figure 2.4.

We again adopt the convention of rejecting the hypothesis of independent failures if a region’s

empirical distribution exceeds the upper bound of its 99% confidence band at any point above the

50th percentile. We conclude that all regions except FRCC violate the independence assumption.

While this finding for WECC differs from the corresponding block subsampling result, we note that

our definition of statistical significance ignores the magnitude of exceedance and that the results are

qualitatively quite similar. When considering the 2.4 LOLH resource adequacy requirement, only

NPCC, RFC, SERC, and TRE exhibit resource adequacy risk for the full study period, in agreement

with block subsampling.

12Assuming constant failure probabilities, as we do here, is again consistent with typical RAM practice in the U.S.
which implicitly assumes no seasonality in generator availability.
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Figure 2.4: 95% and 99% confidence bands from 1000 binomial simulation runs shown in dark
and light gray, respectively; empirical distributions from full study period shown in red. Dashed
horizontal line indicates 2.4 LOLH threshold; dashed vertical lines indicate intersection of 2.4 LOLH
threshold with the upper bound of each confidence band.

We again remove the hours corresponding to our definition of Hurricane Sandy and January 2014

and repeat our analysis. Now when creating the simulated series, we exclude events that start inside

either deleted period; events that start prior to and continue into or beyond either period are not

removed or altered. Exceedance curves of the results are shown in Figure 2.5.

Without these two months of data we again conclude that all regions except FRCC exhibit

violations of the independent failures assumption. When considering the 2.4 LOLH resource adequacy

requirement, NPCC, RFC, SERC, and TRE were the only regions to exhibit resource adequacy

risk. While this finding for SERC differs from the corresponding block subsampling result, we again

note that our definition of statistical significance ignores the magnitude of exceedance and that the

results are qualitatively quite similar.
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Figure 2.5: 95% and 99% confidence bands from 1000 binomial simulation runs shown in dark and
light gray, respectively; empirical distributions from removing Hurricane Sandy and January 2014
shown in red. Dashed horizontal line indicates 2.4 LOLH threshold; dashed vertical lines indicate
intersection of 2.4 LOLH threshold with the upper bound of each confidence band.

There is reasonable agreement between the block subsampling and the binomial results. In

the full study period we conclude that six and seven regions, respectively, exhibit violations of the

independent failures assumption under our basic definition of correlated failures. When removing

Hurricane Sandy and January 2014 from the study period, five and seven regions, respectively,

exhibit violations under this definition. By either method, NPCC, RFC, SERC, SPP, and TRE

show clear evidence of violating the independent failures assumption, even when Hurricane Sandy

and January 2014 are removed. We also see reasonable agreement between block subsampling and

binomial results for both study periods when applying our managerially significant correlated failures

definition. We summarize these results in Table 2.2.

While FRCC, MRO, and WECC show little to no evidence of violating the independent failures

assumption over the period examined, we caution that four years of data is not sufficient to conclude

that no such violations are possible in these regions. For example, on September 8, 2011 WECC

experienced system disturbances that resulted in a loss of 7 GW of capacity, representing a 4-sigma
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Table 2.2: Summary of correlated failure test results. “–” indicates no correlated failures; “*”
indicates correlated failures according to our basic definition (the region’s empirical trace exceeds
the upper bound of its 99% confidence band above the 50th percentile); “**” indicates correlated
failures according to our definition of managerial significance (the region’s empirical trace exceeds
the level of capacity corresponding to the intersection of the upper bound of the 99% confidence
band with 2.4 LOLH, with greater incidence than allowed under the 2.4 LOLH resource adequacy
requirement). The definitions are nested such that a region cannot satisfy the second definition
without also satisfying the first.

Region
Full period Excluding Hurricane Sandy and January 2014

Block subsampling Binomial Block subsampling Binomial

FRCC – – – –
MRO * * – *
NPCC ** ** ** **
RFC ** ** ** **
SERC ** ** * **
SPP * * * *
TRE ** ** ** **
WECC – * – *

event for our study period, larger than any event we observed in the region during the four years we

studied [35].

2.4.3 Seasonality

We next wish to test whether there are intra-annual patterns in unscheduled unavailable capacity.

Our goals are to understand whether violations of the independent failures assumption occur in

only particular seasons and whether particular seasons experience more unscheduled unavailable

capacity on average, more variability in unscheduled unavailable capacity, or a greater number of

large unavailable capacity events than others. Systematic patterns in any of these attributes would

support improved forecasting and could provide insight into whether reserve margins should be

computed seasonally.

When do correlated failures occur?

For this analysis, we adopt NERC’s definition of the seasons: winter is December through

February, spring is March through May, summer is June through September, and fall is October
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through November [36]. When considering winter and fall with and without January 2014 and

Hurricane Sandy, respectively, we test six seasons in total.

We use block subsampling to generate 1000 simulated runs of unscheduled unavailable capacity

for each region in each season.13 From this, we compute 95% and 99% confidence bands and plot

them as exceedance curves along with the corresponding empirical distributions (Figure A.15 through

Figure A.20). We find violations of the independent failures assumption in all seasons using our

basic definition of correlated failures: four regions (NPCC, RFC, SERC, and SPP) in each winter

definition, four regions (MRO, RFC, SERC, and TRE) in spring, three regions (NPCC, RFC, and

TRE) in summer, five regions (MRO, NPCC, RFC, SPP, and TRE) in the full fall definition, and

three regions (RFC, SPP, and TRE) in the shortened fall definition. We conclude that violations of

the independent failures assumption can likely occur in any season in any region.

Seasonality in average unavailable capacity

Since violations of the independent failures assumption are observed in all seasons, we next

examine whether there are recurrent patterns in average unavailable capacity by month. We compute

the average unscheduled unavailable capacity in each month for each region and plot autocorrelation

functions for each region (Figure A.21).

Significant seasonality would manifest as a lag-12 peak (corresponding to a one-year lag) that

exceeds the 95% confidence bands. Except for FRCC, we see that each region’s lag-12 peak is not

significant. However, every region shows a significant 1-month lag, suggesting that unscheduled

unavailable capacity can be thought of as an autoregressive process of order 1 (AR(1) process).14

This is intuitive: failures can occur anytime during the year and require time to repair, so our best

prediction of average unavailable capacity next month is the average unavailable capacity this month.

As a robustness check, we repeat this analysis by NERC season; the results are consistent with the

monthly result (Figure A.22). From these results we conclude that generally we cannot support the

hypothesis of seasonality in average unavailable capacity from unscheduled events.
13We use only winter observations for winter, only spring observations for spring, and so on.
14A weakly stationary AR(1) model can be written xt = µ+ ρxt−1 + εt where εt is an independent and identically

distributed zero-mean process with variance σ2 and |ρ| < 1. The temporal dependence in xt is completely summarized
by conditioning on only its previous value.
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As a complementary approach, we make exceedance curves for the empirical distribution of

unscheduled unavailable capacity in each of the 17 seasons fully or partially covered by our study

period (Figure A.23).15 We observe significant overlap of the seasonal exceedance curves in most

regions, indicating that periods of low and high unscheduled unavailable capacity can occur in any

season.

Heteroskedasticity

We next study whether certain times of the year have more variability in unscheduled unavailable

capacity. If so, these periods could represent elevated resource adequacy risks. We test for the

presence of heteroskedasticity at the monthly level by fitting AR(1) terms to each region’s monthly

series of average unavailable capacity and plotting the residuals (Figure A.24). The residuals resemble

white noise and appear to be homoskedastic. Autocorrelation functions of the residuals show no

significant remaining structure (Figure A.25). Values and t-statistics for the AR(1) parameters

are reported in Table A.8. From these results we conclude that we cannot generally support

the hypothesis that certain times of the year systematically have more variability in unscheduled

unavailable capacity than do others.

Would seasonal availability statistics improve RAM?

Current RAM practice in North America calculates a single availability statistic for each generating

unit using five years of historical data. This implicitly assumes that generator availability is constant

throughout the year. If instead generator availability was seasonal, calculating availability statistics

separately for each season could improve the accuracy of each season’s probability distribution of

available capacity. To assess these potential benefits we combine the seasonal block subsampling

results and plot the results as exceedance curves for both the full study period (Figure A.26) and

when excluding Hurricane Sandy and the Polar Vortex (Figure A.27). Consistent with the results

from our previous tests of seasonality, we find minimal benefits from calculating availability statistics

separately for each season.
15The first winter includes only January and February 2012 (i.e. no December 2011); the fifth winter includes only

December 2015 (i.e. no January and February 2016).
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In summary, even with just four years of data we see violations of the independent failures

assumption in all seasons. We do not see recurrent seasonal patterns in unscheduled unavailable

capacity on average or in terms of variance. Finally, we do not find evidence to suggest that seasonal

availability statistics would significantly improve the accuracy of RAM. With a longer study period

it is possible that more intra-annual structure would emerge (for example from hurricanes), thus we

recommend that system planners repeat this analysis to assess implications of seasonality for RAM

in their control areas.

2.4.4 Reliability applications

We next present a set of results that can be used to populate Markov models of the generating

units in each NERC region. We report: (1) Weibull and lognormal distributions fit to each region’s

series of unscheduled unavailable capacity; (2) Weibull distributions fit to each unit type’s normalized

derating magnitudes; (3) lognormal distributions fit to each region’s event durations by event type;

(4) lognormal fits to the hourly probability of an unscheduled event arrival by region; (5) mean

time between failure and mean time to recovery values for each region and unit type, with fitted

Weibull and gamma distributions; and (6) time series plots of unavailable capacity from unscheduled,

maintenance, and scheduled events.

Markov models of generator availability have long been employed in reliability analyses. In a

standard two-state model, a unit is assumed to be either fully available or fully unavailable, with

failure rate λ = 1/MTBF and recovery rate µ = 1/MTTR [37].16 These values can be used to

define the steady-state availability and unavailability of a generating unit. Unit availability models

are also implicitly employed in current RAM practice in the definition of the availability statistic

computed for each unit [12]. Many extensions have been made to improve the applicability of these

models. For example, additional Markov states have been added to model partial unit availability,

maintenance and planned outages, and whether periods of unit unavailability coincide with periods

of system need. Models have also been extended to sets of units, allowing for both independent and

common-mode failure states [38, 39].
16For completeness we note that sometimes the term mean time to failure (MTTF) is used to indicate the same

concept as we are terming MTBF [37].
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The primary challenge for populating Markov models is data availability. NERC GADS and

Strategic Power Systems’ Operational Reliability Analysis Program (ORAP) are the main sources

for reliability data in the U.S., but neither makes sufficiently disaggregated data publicly available.

Representative examples of reliability metrics published in the literature include MTBF values for

10 power stations [40], MTTR and MTTF values for a single coal-fired generating unit modeled with

10 availability states [41], MTBF values for seven gas turbine units in India [42], MTBF and MTTR

values for 11 gas turbine units in Nigeria [43], and MTTF values for a single combined-cycle unit

modeled with 8 availability states in Israel [44].

We are not aware of any published source of MTBF and MTTR data for all of the generating units

in a large power system. We provide below the first such data for the vast majority of generation

capacity in the U.S. and Canada. In conjunction with the fit parameters for time series of unavailable

capacity from unscheduled events, the normalized magnitudes of unscheduled deratings, unscheduled

event durations, and hourly event arrival probabilities, these data can be used to significantly improve

the numeric accuracy of reliability modeling.

Parametric fits to distributions of unscheduled unavailable capacity

We fit Weibull and lognormal distributions to each region’s distribution of unscheduled unavailable

capacity, both for the full study period (Figure A.28) and with January 2014 and Hurricane Sandy

removed (Figure A.29). We report the parameters of each fit in Table A.9.

Parametric fits to distributions of normalized derating magnitudes

We fit Weibull distributions to each unit type’s distribution of normalized derating magnitudes

(Figure A.30). We report the parameters of each fit in Table A.10.

Parametric fits to unscheduled event durations by event type

We present histograms of event durations by event type and overlaid with lognormal fits in

Figure A.6 through A.8. We report the fit parameters in Table A.2.
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Parametric fits to hourly probabilities of unscheduled event arrivals

We fit lognormal distributions to each region’s distribution of hourly probabilities of an unsched-

uled event arrival, calculated according to Equation 2.3. We present histograms of the results in

Figure A.14. We report the parameters of each fit in Table A.5.

Mean time between failure and mean time to recovery

We determine the mean time between failure and mean time to recovery for each generating

unit and fit Weibull and gamma distributions to the results. We define the mean time between

failure (MTBF) as the average number of service hours that elapse between unscheduled reductions

of availability of any magnitude.17 To do this, we first process the 1.6 million reserve shutdown (RS)

events reported during our study period into hourly time series for each unit. Any hour when an RS

event is in effect is removed from the unit’s corresponding time series of unscheduled unavailable

capacity. We then calculate an MTBF for the unit by averaging the durations of all instances where

it is fully available.

We generate capacity-weighted histograms of these values by associating each unit’s nameplate

capacity (reported in MW) with its MTBF (Figure 2.6 through Figure 2.10). In each of these plots

we construct histograms with 50 bins. The heading of each plot reports the number of units for which

an MTBF value can be calculated (numerator) and the number of units reporting at least a single

unscheduled event during our study period (denominator), which serves as a proxy for the sample

size.18 We exclude units with significant discrepancies in RS reporting between the Events and

Performance tables, taking that to indicate that RS hours may be incompletely reported on those

units and thus that our estimate of the MTBF restricted to service hours would be unreliable. Table

A.16 summarizes the proportion of capacity that appears to incompletely report RS events. We

report selected percentiles of MTBF values for each unit type in Table 2.3 to facilitate comparison.

Larger MTBF values indicate greater reliability.

17Restricting our attention to service hours is important since peaking units are likely to be offline for economic
reasons for large portions of the year.

18We use this as an estimate of the number of units that were active during the study period as GADS does not
always correctly record commercialization and retirement dates for units that are sold.
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Figure 2.6: Capacity weighted mean time between failure (MTBF) values for combined cycle gas
units. Note the log scale for MTBF. Values are calculated with all reserve shutdown hours removed
so as to restrict attention to service hours. Numerator indicates count of units for which an MTBF
could be calculated. Denominator indicates count of units experiencing at least one unscheduled
event during the study period (proxy for total count of active units during the study period). Units
with significant reserve shutdown reporting discrepancies are excluded (see Table A.16).
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Figure 2.7: Capacity weighted mean time between failure (MTBF) values for simple cycle gas
units. Note the log scale for MTBF. Values are calculated with all reserve shutdown hours removed
so as to restrict attention to service hours. Numerator indicates count of units for which an MTBF
could be calculated. Denominator indicates count of units experiencing at least one unscheduled
event during the study period (proxy for total count of active units during the study period). Units
with significant reserve shutdown reporting discrepancies are excluded (see Table A.16).
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Figure 2.8: Capacity weighted mean time between failure (MTBF) values for fossil steam and
fluidized bed units. Note the log scale for MTBF. Values are calculated with all reserve shutdown
hours removed so as to restrict attention to service hours. Numerator indicates count of units for
which an MTBF could be calculated. Denominator indicates count of units experiencing at least one
unscheduled event during the study period (proxy for total count of active units during the study
period). Units with significant reserve shutdown reporting discrepancies are excluded (see Table
A.16).
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Figure 2.9: Capacity weighted mean time between failure (MTBF) values for hydroelectric units.
There are no such units in FRCC. Note the log scale for MTBF. Values are calculated with all reserve
shutdown hours removed so as to restrict attention to service hours. Numerator indicates count of
units for which an MTBF could be calculated. Denominator indicates count of units experiencing at
least one unscheduled event during the study period (proxy for total count of active units during the
study period). Units with significant reserve shutdown reporting discrepancies are excluded (see
Table A.16).
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Table 2.3: Selected percentiles of capacity-weighted mean time between failure values (hours) by
unit type. Values have been calculated with all reserve shutdown hours removed so as to restrict
attention to service hours. Units with significant reserve shutdown reporting discrepancies are
excluded (see Table A.16). Abbreviations: CC combined cycle units, CT simple cycle gas units,
FSFB fossil steam and fluidized bed units, HY hydroelectric, NU nuclear.

Type 10th 20th 30th 40th 50th 60th 70th 80th 90th

CC 250 362 464 572 669 808 1,002 1,336 1,984
CT 66 102 135 176 220 297 410 589 1,076
FSFB 84 119 167 213 263 335 445 576 853
HY 573 1,013 1,328 1,698 2,113 2,495 3,298 4,286 6,107
NU 702 1,097 1,503 1,839 2,032 2,412 2,850 3,629 4,889
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Figure 2.10: Capacity weighted mean time between failure (MTBF) values for nuclear units. Note
the log scale for MTBF. Values are calculated with all reserve shutdown hours removed so as to
restrict attention to service hours. Numerator indicates count of units for which an MTBF could be
calculated. Denominator indicates count of units experiencing at least one unscheduled event during
the study period (proxy for total count of active units during the study period). No nuclear units
had significant reserve shutdown reporting discrepancies (see Table A.16).

We conclude that nuclear, hydro, and combined cycle units tend to run longer before failing than

simple cycle and fossil steam units.19 We fit Weibull and gamma distributions to the MTBF values

19We note that our results do not control for the type of failures, the age of the units, operations and maintenance
expenditures, or other variables that may affect the MTBF.
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by unit type and report the parameters in Table A.11 and Table A.12.

We note that these results depend to some degree on our definition of a failure. While we have

defined a failure as any reduction from full availability, any desired threshold could be used. We

include a sensitivity analysis over a range of failure definitions (Figure A.36). The MTBF results

are quite insensitive to alternative failure definitions. We present histograms of the number of

between-failure periods used to calculate each unit’s MTBF in Figure A.31 through Figure A.35.

We note that some units’ MTBFs are calculated based on only a single between-failure period. With

a longer time series, the proportion of units with MTBFs based on very few between-failure periods

would decrease, increasing confidence in the robustness of these results. We also note that metrics

such as the equivalent forced outage rate (EFOR) can complement the MTBF by summarizing the

average availability of a unit over a desired study period, rather than just the frequency of reductions

in availability.

We define the mean time to recovery (MTTR) as the average number of hours that elapse while

a unit experiences some reduction in availability—i.e. the average duration of failure periods. In

contrast to MTBF, we do not need to remove RS hours prior to calculating MTTR, so no units are

excluded on the basis of their RS reporting fidelity. We present capacity-weighted histograms of the

MTTR results (Figure A.37 through Figure A.41). The heading of each plot reports the number of

units for which an MTTR value can be calculated (numerator) and the number of units reporting at

least a single unscheduled event during our study period (denominator), which again serves as a

proxy for the sample size. We summarize selected percentiles of MTTR values for each unit type in

Table 2.4. Smaller MTTR values indicate shorter average repair durations.

We conclude that combined cycle units typically have among the lowest MTTR values while

nuclear units have among the highest.20 We fit Weibull and gamma distributions to the MTTR

values by unit type and report the parameters in Table A.13 and Table A.14. We present histograms

of the number of failure periods used to calculate each unit’s MTTR in Figure A.42 through Figure

A.46. We note that some units’ MTTRs are calculated based on only a single failure period. With a

longer time series, the proportion of units with MTTRs based on very few failures periods would
20We note that our results do not control for the type of failures, the age of the units, operations and maintenance

expenditures, or other variables that may affect the MTTR.
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Table 2.4: Selected percentiles of capacity-weighted mean time to recovery values (hours) by unit
type. Abbreviations: CC combined cycle units, CT simple cycle gas units, FSFB fossil steam and
fluidized bed units, HY hydroelectric, NU nuclear.

Type 10th 20th 30th 40th 50th 60th 70th 80th 90th

CC 6 10 13 17 21 28 38 60 115
CT 5 9 14 20 31 50 79 161 409
FSFB 15 21 27 34 44 56 74 107 240
HY 4 6 9 14 22 32 57 134 370
NU 49 69 81 97 126 176 332 680 1,058

decrease, increasing confidence in the robustness of these results.

Testing whether MTBF values differ for small and large units

We next test whether the MTBF values of large and small units differ. For each of the five unit

types we consider, we define “large” units as those with nameplate capacities greater than or equal

to the median value for that unit type, and “small” otherwise. We employ two tests of stochastic

dominance: the Mann-Whitney U test (two-sample unpaired Wilcoxon test) and the two-sample

Kolmogorov-Smirnov test.

For each of the 40 region-by-unit-type cases we examine, the Mann-Whitney U test sorts the

MTBF values and uses the resulting arrangement of the labels (i.e. whether each data point

represents a small or large unit) to compute a test statistic representing how “separated” the large

and small units are. If the separation is great enough, we reject the null hypothesis that there is no

statistically significant difference. We conduct both directions of a one-sided test for each of the 40

cases (i.e. testing both that small units have lower MTBF values than large units, and that large

units have lower MTBF values than small units)—only one of which can be significant—and report

the results in Table 2.5. We also conduct the test when aggregating over regions. Table 2.6 provides

selected percentiles of nameplate capacity by unit type for reference. We present histograms with

the MTBF values of small and large units overlaid in Figure A.47 through Figure A.51.

For combined cycle gas units, large units have statistically significantly lower MTBF values than

small units in four regions (MRO, RFC, SERC, and TRE), FRCC exhibits the reverse relationship,
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Table 2.5: Mann-Whitney U test results for stochastic dominance comparing MTBF values of small
(S) and large (L) units by unit type and region. Large units are those with nameplate capacities
greater than or equal to the median value for that unit type. L < S indicates that large units have
a statistically significantly lower MTBF than small units at the indicated significance level. Reserve
shutdown hours have been removed. Units with significant reserve shutdown reporting discrepancies
are excluded (see Table A.16). Abbreviations: CC combined cycle units, CT simple cycle gas units,
FSFB fossil steam and fluidized bed units, HY hydroelectric, NU nuclear.

Type CC CT FSFB HY NU

FRCC S < L **** – L < S * N/A1 N/A2

MRO L < S * S < L **** L < S *** – N/A2

NPCC – S < L **** L < S *** S < L **** S < L *
RFC L < S ** S < L **** L < S **** L < S *** L < S *
SERC L < S *** S < L **** L < S *** S < L *** –
SPP – – L < S **** – N/A2

TRE L < S **** S < L ** L < S ** – N/A2

WECC – S < L *** L < S **** S < L **** N/A2

Combined – S < L **** L < S **** S < L **** –

Significance levels: – ≥ 0.1; * < 0.1; ** < 0.05; *** < 0.01; **** < 0.001
1 FRCC has no hydroelectric units, so no test could be conducted.
2 Five regions do not have any nuclear units in one size category, so no test could be
conducted.

Table 2.6: Selected percentiles of nameplate capacity values by unit type. Here units with significant
reserve shutdown reporting discrepancies are included, so median nameplate capacity values do not
always match the threshold used to define “small” and “large” units for the MTBF comparisons.
Abbreviations: CC combined cycle units, CT simple cycle gas units, FSFB fossil steam and fluidized
bed units, HY hydroelectric, NU nuclear.

Type 10th 20th 30th 40th 50th 60th 70th 80th 90th

CC 60 91 155 173 182 191 217 269 370
CT 19 24 40 49 57 66 85 100 165
FSFB 50 80 111 150 199 265 394 527 661
HY 2 3 8 14 24 34 47 70 113
NU 663 867 887 946 1,022 1,155 1,175 1,207 1,274

33



and the remaining three regions show no significant difference. For simple cycle gas units, small

units have statistically significantly lower MTBF values than large units in six regions, while FRCC

and SPP showed no statistically significant difference. For fossil steam units, all eight regions show

statistically significantly lower MTBF for large units than small units. For hydroelectric units, three

of the regions (NPCC, SERC, and WECC) show smaller units having lower MTBF values than

large units, RFC exhibits the reverse relationship, three regions (MRO, SPP, and TRE) showed no

significant difference, and FRCC had no hydroelectric units. Finally, for nuclear units, five of the

regions did not have representation from both “small” and “large” categories so no test could be

conducted, SERC showed no significant difference, NPCC showed smaller units having statistically

significantly lower MTBF values than large units, and RFC exhibited the reverse relationship. In

the aggregate only simple cycle, fossil team, and hydroelectric units showed statistically significant

MTBF values between small and large units.

As a robustness check, we also conduct two-sample Kolmogorov-Smirnov tests for each region-

by-unit-type case. This test similarly seeks to determine whether two data samples come from the

same population. The test statistic is the greatest discrepancy between the empirical distribution

functions of the small and large units for the current region-by-unit-type case. The test statistic is

compared to a critical value defined by the sample sizes and desired significance level. Results were

consistent with the Mann-Whitney U test and are reported in Table A.15.

Time series of unavailable capacity from unscheduled, maintenance, and scheduled

events

In addition to the seven unscheduled event types, GADS also includes maintenance and scheduled

outages and deratings. Maintenance events have flexible start dates and are less urgent than

unscheduled events. Scheduled (planned) events are set well in advance and are of predetermined

durations.21 We present time series of these events, overlaid with our time series of unscheduled

events for context, by unit type (Figure 2.11 through Figure 2.15). We also publish these data so
21NERC defines maintenance events as those that can be deferred beyond the end of the upcoming weekend (i.e.

beyond Sunday 2400 hours) if the event occurs prior to Friday 2400 hours, or beyond the end of the subsequent weekend
if the event occurs after Friday 2400 hours [28]. While NERC does not give a precise definition for scheduled events,
system operators typically require requests for scheduled events to be submitted with at least 30 days’ notice [45].
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that others may work with them. These time series can be used to model the statistical relationship

of unavailable capacity and relevant features such as weather, attributes of the generating unit, and

system load. Such a model could then be used to determine capacity requirements for a power

system without making any assumptions about independence or seasonality.
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Figure 2.11: Unscheduled (black), maintenance (red), and scheduled (blue) unavailable capacity
for combined cycle units.
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Figure 2.12: Unscheduled (black), maintenance (red), and scheduled (blue) unavailable capacity
for simple cycle units.
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Figure 2.13: Unscheduled (black), maintenance (red), and scheduled (blue) unavailable capacity
for fossil steam and fluidized bed units.
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Figure 2.14: Unscheduled (black), maintenance (red), and scheduled (blue) unavailable capacity
for hydroelectric units.
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Figure 2.15: Unscheduled (black), maintenance (red), and scheduled (blue) unavailable capacity
for nuclear units.
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2.5 Conclusions

Using four years of generator availability data for approximately 85% of installed capacity in the

conterminous U.S. and the Canadian provinces, we have shown that correlated failures represent

a significant resource adequacy risk. While FRCC and WECC were exceptions in this analysis22,

we note that neither region is likely immune to correlated failures; they simply did not experience

correlated failures during our four-year study period.

We found little evidence for seasonal patterns in unscheduled unavailable capacity in the eight

NERC regions. Instead we found that large unavailable capacity events can occur in any season and

that unavailable capacity should be thought of as an AR(1) process, where the best prediction of

average unavailable capacity this month is average unavailable capacity last month. These findings

suggest that a seasonal resource adequacy construct, whereby an availability statistic is calculated

for each unit in each season, may not meaningfully reduce resource adequacy risk. However, these

conclusions may change with a longer study period.

Our findings highlight an important limitation of current resource adequacy modeling (RAM)

practice: distilling the availability history of a generating unit to a single value (e.g. EFORd,

the equivalent forced outage rate during times of high demand) discards important information

about when units in a power system fail in relation to one another. Only by incorporating the full

availability history of each unit into RAM can we account for correlations among generator failures

when determining the capacity needs of a power system. We strongly recommend that system

planners incorporate correlated failure analysis into their RAM practice.

Noting that the largest correlated failure instances were caused by extreme weather (Hurricane

Sandy and the cold weather events of January 2014), we further recommend that unscheduled

unavailable capacity be modeled as a function of relevant features (e.g. temperature and other

weather variables, unit age, maintenance histories, system load). In conjunction with temperature

and load forecasts for a desired planning year, system planners could likely compute improved

estimates of capacity requirements. We are currently pursuing this research.

22FRCC showed no evidence of correlated failures during our study period. WECC showed evidence of correlated
failures under our binomial modeling approach but not under our block subsampling approach.
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In addition to our study of correlated failures and seasonality, we reported the results of a

set of analyses that can be used to populate Markov models of generator availability for a power

system. These included parametric fits to distributions of unscheduled unavailable capacity, derating

magnitudes, event durations, hourly failure probabilities, and mean time between failures (MTBF)

and mean time to recovery (MTTR) values. In each case we report the fit parameters for use by

reliability practitioners. The final component needed to allow for correlated failures under a Markov

model is a correlation matrix for the generating units. We do not report this due to confidentiality

requirements, but note that it can be readily calculated using time series of unscheduled unavailable

capacity; it cannot be computed when using the availability statistic approach to RAM. In addition

we tested for statistically significant differences in the MTBF between small and large units. We found

many significant differences when looking at regions individually; when aggregating over regions,

simple cycle gas, fossil steam, and hydroelectric units showed statistically significant differences

while combined cycle gas and nuclear units did not.

The requirement for mandatory reporting to GADS has allowed the development of the analyses

presented. As additional years of data accumulate, the techniques used here will allow more robust

results that may differ from the conclusions reached based on only four years of data.
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2.6 Appendix A: Supplementary figures and tables

2.6.1 Characteristics of the generator availability data

Figure A.1: The NERC regions. (Source: NERC)
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Table A.1: Summary statistics for the regional time series of unscheduled unavailable capacity.

Region Mean (%) Median (%) Maximum (%) QCD1

FRCC 2.8 2.8 8.4 0.30
MRO 4.9 4.7 12.2 0.24
NPCC 2.9 2.8 10.22 0.25
RFC 5.7 5.5 22.63 0.19
SERC 5.0 5.0 15.63 0.13
SPP 6.3 6.1 16.4 0.21
TRE 4.8 4.5 14.1 0.28
WECC 4.0 3.9 7.2 0.15
1 The quartile coefficient of dispersion (QCD) is calculated as (Q3 −
Q1)/(Q3 +Q1), where Q1 and Q3 refer to the first and third quartiles,
respectively.

2 Hurricane Sandy, October 2012.
3 Polar Vortex, January 2014.

44



FRCC

Pe
rc

en
t o

f u
ni

ts

2012 2013 2014 2015 2016

0%
10

%
20

%
30

%

MRO

Pe
rc

en
t o

f u
ni

ts

2012 2013 2014 2015 2016

0%
10

%
20

%
30

%

NPCC

Pe
rc

en
t o

f u
ni

ts

2012 2013 2014 2015 2016

0%
10

%
20

%
30

%

RFC

Pe
rc

en
t o

f u
ni

ts

2012 2013 2014 2015 2016

0%
10

%
20

%
30

%
SERC

Pe
rc

en
t o

f u
ni

ts

2012 2013 2014 2015 2016

0%
10

%
20

%
30

%

SPP

Pe
rc

en
t o

f u
ni

ts

2012 2013 2014 2015 2016

0%
10

%
20

%
30

%

TRE

Pe
rc

en
t o

f u
ni

ts

2012 2013 2014 2015 2016

0%
10

%
20

%
30

%

WECC

Pe
rc

en
t o

f u
ni

ts

2012 2013 2014 2015 2016

0%
10

%
20

%
30

%

Figure A.2: Percent of units in each region reporting an unscheduled event in each hour of the
time series. Green is unscheduled outages, red is unscheduled deratings, blue is start-up failures,
and black is the sum of all unscheduled events.
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Figure A.3: Proportion of unscheduled unavailable capacity (MWh) by event type category.
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Figure A.4: Proportion of unscheduled event counts by event type category.
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Figure A.5: Histogram of the number of months each unit was in operation (2012-2015).

In order to facilitate some forms of statistical analysis of the durations of unscheduled events,

we show histograms of the duration of unscheduled events by event type in Figures A.6, A.7, and

A.8 for the full four-year study period. In all regions the distributions are long-tailed: while the

90th percentile duration is less than 100 hours in each region, the maximum is always a full calendar

year (i.e., either 8760 or 8784 hours). Events that span multiple calendar years are broken into

calendar year components automatically in GADS, though this does not affect any of our primary

results. We note that in NPCC the most common event duration is 24 hours—representing 60% of
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all unscheduled events reported in the region. More than 99% of these 24-hour events are deratings.

When derating magnitudes vary over time, NERC allows generating unit operators to either report

one derating corresponding to the average availability reduction or to report separate deratings each

time the unit’s availability changes [28]. This suggests that generating unit operators in NPCC

are more likely than in other regions to report separate deratings each time the unit’s availability

changes, and to do so on a daily basis. Again, this does not affect any of our primary results but it

does illustrate a human element of GADS reporting.
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Figure A.6: Histogram of event durations for start-up failures. Full study period. Note the log
scale.
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Figure A.7: Histogram of event durations for unscheduled outages. Full study period. Note the
log scale.
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Figure A.8: Histogram of event durations for unscheduled deratings. Full study period. Note the
log scale.
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Table A.2: Parameters of lognormal distributions fit to each region’s unscheduled event durations
by event type. Standard errors in parentheses.

Region
Startup failures Unscheduled outages Unscheduled deratings

meanlog sdlog meanlog sdlog meanlog sdlog

FRCC 1.47 (0.049) 1.42 (0.035) 1.93 (0.028) 1.70 (0.020) 1.89 (0.019) 1.43 (0.014)
MRO 1.38 (0.056) 1.58 (0.039) 2.45 (0.023) 1.89 (0.016) 1.96 (0.013) 1.60 (0.0090)
NPCC 1.04 (0.023) 1.35 (0.016) 1.65 (0.0097) 1.71 (0.0069) 3.01 (0.0028) 0.97 (0.0012)
RFC 1.69 (0.035) 1.53 (0.025) 2.39 (0.012) 1.83 (0.0084) 2.14 (0.0065) 1.63 (0.0046)
SERC 1.36 (0.027) 1.48 (0.019) 2.32 (0.011) 1.76 (0.0079) 1.86 (0.0094) 1.73 (0.0066)
SPP 1.22 (0.041) 1.57 (0.029) 2.45 (0.023) 1.90 (0.016) 2.03 (0.012) 1.50 (0.0084)
TRE 0.84 (0.032) 1.14 (0.023) 2.01 (0.018) 1.70 (0.013) 1.69 (0.011) 1.43 (0.0079)
WECC 1.14 (0.023) 1.38 (0.016) 1.93 (0.0099) 1.84 (0.0070) 1.61 (0.0065) 1.43 (0.0046)
All 1.24 (0.011) 1.44 (0.008) 2.07 (0.0048) 1.81 (0.0034) 2.31 (0.0026) 1.49 (0.0019)

Another human element of the GADS data is the time resolution of reported events. While

GADS allows the precise start and end time of an event to be recorded, the observed data shows

that nearly 40% of event starts and event ends are recorded on the hour. Event starts and ends are

next most commonly logged on the half-hour, with significant representation in all other multiples of

five minutes.
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Figure A.9: Histogram of recorded start minute of unscheduled events.
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Figure A.10: Histogram of recorded end minute of unscheduled events.
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Table A.3: Selected percentiles of the number of unscheduled events experienced during our 4-year
study period in each NERC region.

Region 10th 20th 30th 40th 50th 60th 70th 80th 90th

FRCC 3 5 7 9 13 19 25 32 43
MRO 2 4 6 9 11 16 22 38 99
NPCC 8 15 21 27 36 47 69 131 491
RFC 3 6 9 13 17 26 41 80 179
SERC 3 5 7 10 13 18 27 42 84
SPP 3 7 10 15 22 29 42 62 130
TRE 5 10 15 20 27 33 44 56 83
WECC 4 6 9 14 18 23 30 31 65

2.6.2 Tests for independence among generators

Block subsampling supplementary data

Figure A.11 shows the distribution of each region’s empirical series of unscheduled unavailable

capacity along with confidence intervals generated from 1000 block subsampling runs as exceedance

curves for the full study period. Figure A.12 shows the same with the months containing Hurricane

Sandy and January 2014 removed. We summarize the percentiles at which each region’s empirical

distribution exceeds the upper bound of the 99% confidence band, along with the maximum magnitude

of exceedance, in the left-hand side of Table A.4. The right two columns show the same results when

removing the periods that encompass Hurricane Sandy and the extreme cold month of January 2014.

As can be seen from the figures and table, all regions except FRCC and WECC exceed the upper

bound of the 99% confidence band at some point in each region’s domain during the study period.

When removing Hurricane Sandy and January 2014, MRO no longer exceeds the upper bound of its

99% confidence band. As a measure of whether the exceedances we observe in these six (five) regions

represent a resource adequacy risk, we determine the amount of capacity needed to be procured

in order to achieve the 1-in-10 loss of load expectation (LOLE) standard under the assumption of

independent failures. Using the “one day in ten years” interpretation of this rule translates to 2.4

hours loss of load expectation per year, denoted 2.4 LOLH [2]. 2.4 LOLH is indicated via the dashed

horizontal line in Figure A.11 and Figure A.12; the corresponding amount of capacity required at
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95% and 99% confidence is indicated by the dashed vertical lines, drawn where the dashed horizontal

line intersects the upper bound of each regions confidence bands. Using this approach, we conclude

that managerially significant correlated failures are present in NPCC, RFC, SERC and TRE during

the full study period, and only in NPCC, RFC, and TRE when removing Hurricane Sandy and

January 2014.
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Figure A.11: 95% and 99% confidence bands from 1000 block subsampling runs (non-seasonal
subsampling, full 2012-2015 period) in dark and light gray, respective; full empirical distributions in
red. Dashed horizontal line indicates 2.4 loss-of-load-hours (LOLH) resource adequacy threshold;
dashed vertical lines indicate intersection of 2.4 LOLH threshold with the upper bound of each
confidence band.

58



1e
−0

4
1e
−0

3
1e
−0

2
1e
−0

1
1e

+0
0 FRCC

Pr
ob

ab
ili

ty

0 2 4 6 8
Unavailable capacity (GW)

1e
−0

4
1e
−0

3
1e
−0

2
1e
−0

1
1e

+0
0 MRO

Pr
ob

ab
ili

ty

0 2 4 6 8
Unavailable capacity (GW)

1e
−0

4
1e
−0

3
1e
−0

2
1e
−0

1
1e

+0
0 NPCC

Pr
ob

ab
ili

ty

0 5 10 15
Unavailable capacity (GW)

1e
−0

4
1e
−0

3
1e
−0

2
1e
−0

1
1e

+0
0 RFC

Pr
ob

ab
ili

ty

0 10 20 30 40 50
Unavailable capacity (GW)

1e
−0

4
1e
−0

3
1e
−0

2
1e
−0

1
1e

+0
0 SERC

Pr
ob

ab
ili

ty

0 10 20 30 40
Unavailable capacity (GW)

1e
−0

4
1e
−0

3
1e
−0

2
1e
−0

1
1e

+0
0 SPP

Pr
ob

ab
ili

ty

0 2 4 6 8 10 12
Unavailable capacity (GW)

1e
−0

4
1e
−0

3
1e
−0

2
1e
−0

1
1e

+0
0 TRE

Pr
ob

ab
ili

ty

0 2 4 6 8 10 12
Unavailable capacity (GW)

1e
−0

4
1e
−0

3
1e
−0

2
1e
−0

1
1e

+0
0 WECC

Pr
ob

ab
ili

ty

0 5 10 15
Unavailable capacity (GW)

Figure A.12: 95% and 99% confidence bands from 1000 block subsampling runs (non-seasonal
subsampling, Hurricane Sandy and January 2014 removed) in dark and light gray, respective;
empirical distributions (excluding Hurricane Sandy and January 2014) in red. Dashed horizontal line
indicates 2.4 loss-of-load-hours (LOLH) resource adequacy threshold; dashed vertical lines indicate
intersection of 2.4 LOLH threshold with the upper bound of each confidence band.
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Table A.4: Summarizing percentiles for which empirical distribution exceeds block subsampling
confidence band and magnitude of exceedance via block subsampling, for both the full study period
(left) and when removing Hurricane Sandy and January 2014 (right).

Region
Full period Excluding Sandy and Jan 2014

Percentiles Max divergence Percentiles Max divergence

FRCC – – – –
MRO 97 2% – –
NPCC 79-100 47% 79-100 28%
RFC 73-100 115% 70-100 29%
SERC 100 73% 100 14%
SPP 98-99 5% 99 4%
TRE 87-100 17% 89-100 16%
WECC – – – –
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Figure A.13: Histograms of optimal block lengths used in the block subsampling analysis.
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Binomial event arrivals supplementary data
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Figure A.14: Histograms of event arrival probabilities by region with fitted lognormal distribution
overlaid. Probabilities estimated via Equation 2-3 in the main text. Full study period. Excludes the
nine units that are not at least partially available for 1000 or more hours during the study period.
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Table A.5: Parameters of lognormal fits to distribution of unscheduled event arrival probabilities,
by region. Full period. Standard errors in parentheses.

Region meanlog sdlog

FRCC -8.10 (0.065) 1.19 (0.046)
MRO -7.94 (0.061) 1.40 (0.043)
NPCC -6.77 (0.044) 1.49 (0.031)
RFC -7.53 (0.040) 1.52 (0.028)
SERC -7.93 (0.032) 1.33 (0.23)
SPP -7.50 (0.069) 1.42 (0.049)
TRE -7.37 (0.057) 1.19 (0.041)
WECC -7.73 (0.027) 1.20 (0.019)
Combined -7.60 (0.016) 1.41 (0.011)

A supplemental statistical test for failure correlation

We test for positive correlation for every possible pair of units in each region using a t-test as

described in [46]. For each pairwise comparison, we compare the test statistic to the critical value

for a one-sided 5% test (1.645) and then record the percent of test statistics that are statistically

significant in each region. For this test, each unit’s series has been normalized by its nameplate

capacity. Because each unit’s series of arrivals is used for many pairwise comparisons, we establish

the rejection rate under the null hypothesis for each region through simulation. We use the same

simulated series of normalized unscheduled unavailable capacity generated for the binomial simulation

analysis presented in the main text. Here, for each iteration of the simulation, we compute a t-test

for all possible pairs of generating units in each region and record the percent of test statistics that

are statistically significant. We repeat this process 1000 times and determine the 95th and 99th

percentile of rejection rates for each region. These are the thresholds of significance we use to say

whether each region demonstrates correlated failures under this method. We present results for the

full study period in Table A.6 and when removing Hurricane Sandy and January 2014 in Table A.7.

Using this method we find evidence of correlated failures in all eight regions for the full study period

and when removing the two months of data corresponding to Hurricane Sandy and January 2014, at

both the 95% and 99% confidence levels. However we emphasize that as this test does not weight

generating units by their size, statistical significance need not imply meaningful resource adequacy
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risk. Rather, we refer the reader to our conclusions in Section 2.4 in the main text, where we found

meaningful violations of the independence assumption only in four regions: NPCC, RFC, SERC,

and TRE.

Table A.6: Pairwise binomial test results for empirical and simulated series by region for the full
period.

FRCC MRO NPCC RFC SERC SPP TRE WECC

Empirical 13.3% 20.5% 29.0% 30.7% 18.8% 25.0% 20.3% 17.7%
99% simulation 12.1% 17.4% 23.9% 21.8% 15.5% 22.5% 19.1% 16.1%
95% simulation 11.8% 17.2% 23.7% 21.7% 15.4% 22.2% 18.8% 15.9%

Table A.7: Pairwise binomial test results for empirical and simulated series by region when excluding
Hurricane Sandy and January 2014.

FRCC MRO NPCC RFC SERC SPP TRE WECC

Empirical 13.2% 19.7% 28.3% 27.0% 17.4% 24.7% 20.0% 17.6%
99% simulation 12.0% 17.0% 23.5% 21.0% 15.1% 22.5% 18.9% 15.9%
95% simulation 11.8% 16.8% 23.3% 20.8% 15.0% 22.2% 18.7% 15.8%

2.6.3 Seasonality

When do correlated failures occur?

To determine whether correlated failures are restricted to particular seasons, we generate

exceedance curves for each NERC season and overlay 95% and 99% confidence bands generated via

block subsampling (Figures A.15 through A.20). When removing Hurricane Sandy from fall and

January 2014 from winter, there are six seasons in total. We find evidence of correlated failures

in all seasons: four regions (NPCC, RFC, SERC, and SPP) in each winter definition, four regions

(MRO, RFC, SERC, and TRE) in spring, three regions (NPCC, RFC, and TRE) in summer, five

regions (MRO, NPCC, RFC, SPP, and TRE) in the full fall definition, and three regions (RFC, SPP,

and TRE) in the shortened fall definition. We conclude that violations of the independent failures

assumption can likely occur in any season in any region.
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Figure A.15: 95% and 99% confidence bands from 1000 block subsampling runs for the full winter
period (December, January, and February 2012-2015) in black, empirical distributions for only winter
months in red.
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Figure A.16: 95% and 99% confidence bands from 1000 block subsampling runs for the winter
period except January 2014 in black, empirical distributions for corresponding winter months in red.
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Figure A.17: 95% and 99% confidence bands from 1000 block subsampling runs for the spring
period (March, April, and May 2012-2015) in black, empirical distributions for corresponding months
in red.
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Figure A.18: 95% and 99% confidence bands from 1000 block subsampling runs for the sum-
mer period (June, July, August, and September 2012-2015) in black, empirical distributions for
corresponding months in red.
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Figure A.19: 95% and 99% confidence bands from 1000 block subsampling runs for the fall period
(October and November 2012-2015) in black, empirical distributions for corresponding months in red.
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Figure A.20: 95% and 99% confidence bands from 1000 block subsampling runs for the fall period
except Hurricane Sandy (October and November 2012-2015 except for October 29-November 30,
2012) in black, empirical distributions for corresponding months in red.
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Supplementary data for seasonality in average unavailable capacity

To test for recurrent patterns in average unscheduled unavailable capacity, we compute monthly

autocorrelation functions of unscheduled unavailable capacity by region (Figure A.21). We gener-

ate these by computing average unscheduled unavailable capacity in each month for each region.

Significant seasonality would manifest as a lag-12 peak (corresponding to a one-year lag) that

exceeds the 95% confidence bands. Except for FRCC, we see that each region’s lag-12 peak is not

significant. As a sensitivity analysis, we repeat this analysis by season (Figure A.22). Here significant

seasonality would manifest as a lag-4 peak (again corresponding to a one-year lag) that exceeds the

95% confidence bands. Except for FRCC, we see that each region’s lag-4 peak is not significant.
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Figure A.21: Autocorrelation functions of monthly average unscheduled unavailable capacity by
region with 95% confidence interval for assessing statistical significance of lags (dashed blue lines).
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Figure A.22: Autocorrelation functions of seasonal average unscheduled unavailable capacity by
region with 95% confidence interval for assessing statistical significance of lags (dashed blue lines).
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Figure A.23: Seasonal distributions of unscheduled unavailable capacity. Winter is shown in blue,
spring in green, summer in red, and fall in black for each of the four years analyzed.
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Supplementary data for heteroskedasticity

Given that we previously identified the one-month lag as being statistically significant, to test

for heteroskedasticity at the monthly level we first fit AR(1) terms to each region’s monthly series of

average unavailable capacity and then examine the residuals (Figure A.24). The residuals resemble

white noise and appear to be homoskedastic. Autocorrelation functions of the residuals show

no significant remaining structure (Figure A.25). We report AR(1) coefficients, standard errors,

and t-statistics in Table A.8. From these results we conclude that we cannot generally support

the hypothesis that certain times of the year systematically have more variability in unscheduled

unavailable capacity than do others.
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Figure A.24: AR(1) residuals for each NERC region.
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Figure A.25: Autocorrelation functions of the AR(1) residuals for each NERC region with 95%
confidence interval for assessing statistical significance of lags (dashed blue lines).
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Table A.8: AR(1) coefficients, standard errors, and t-statistics by region.

FRCC MRO NPCC RFC SERC SPP TRE WECC

Coefficient 0.689 0.458 0.751 0.563 0.502 0.359 0.632 0.707
Standard error 0.101 0.127 0.094 0.120 0.131 0.134 0.109 0.098
t-statistic 6.82 3.61 7.99 4.69 3.83 2.68 5.80 7.21

Supplemental data on the potential benefits of seasonal availability statistics

Current resource adequacy modeling practice in North America calculates an availability statistic

using five full years of data. This implicitly assumes that generator availability is constant throughout

the year. If instead generator availability was consistently seasonal, calculating availability statistics

separately for each season could improve the accuracy of the probability distribution of different

contingencies by season. To assess these potential benefits we combine the seasonal block subsampling

results from Section 2.4 in the main text and plot the results as exceedance curves for both the full

study period (Figure A.26) and when excluding Hurricane Sandy and the Polar Vortex (Figure A.27).

We find minimal benefits from using seasonal availability statistics for resource adequacy modeling.
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Figure A.26: 1000 seasonal block subsampling runs for the full period 2012-2015.
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Figure A.27: 1000 seasonal block subsampling runs for the period 2012-2015 excluding Hurricane
Sandy and January 2014.
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2.6.4 Reliability applications

Parametric fits to distributions of unscheduled unavailable capacity
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Figure A.28: Overlay of Weibull (red) and lognormal (blue) fits to observed exceedance curves
(black) for the 2012-2015 period. Weibull and lognormal parameters are given in Table A.9.
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Figure A.29: Overlay of Weibull (red) and lognormal (blue) fits to observed exceedance curves
(black), removing Hurricane Sandy and January 2014. Weibull and lognormal parameters are given
in Table A.9.
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Table A.9: Parameters for Weibull and lognormal distributions of unscheduled unavailable capacity
by region for the fully study period (left) and when excluding Hurricane Sandy and January 2014
(right). Standard errors in parentheses.

Full period Excluding Sandy and Jan 2014

Region
Weibull Lognormal Weibull Lognormal

shape scale meanlog sdlog shape scale meanlog sdlog

FRCC 2.47 (0.010) 1,910 (4.35) 7.32 (0.0028) 0.526 (0.0020) 2.54 (0.011) 1,940 (4.39) 7.34 (0.0027) 0.500 (0.0019)
MRO 3.20 (0.013) 3,100 (5.47) 7.87 (0.0019) 0.348 (0.0013) 3.22 (0.013) 3,070 (5.51) 7.86 (0.0019) 0.347 (0.0013)
NPCC 2.65 (0.010) 4,940 (10.53) 8.31 (0.0021) 0.396 (0.0015) 2.84 (0.011) 4,790 (9.74) 8.29 (0.0021) 0.382 (0.0015)
RFC 3.00 (0.011) 14,130 (26.77) 9.40 (0.0017) 0.313 (0.0012) 3.48 (0.014) 13,690 (22.77) 9.38 (0.0016) 0.297 (0.0011)
SERC 4.78 (0.015) 14,370 (16.95) 9.48 (0.0010) 0.187 (0.00071) 5.81 (0.023) 14,270 (14.20) 9.48 (0.0010) 0.184 (0.00071)
SPP 3.27 (0.013) 4,070 (7.044) 8.15 (0.0018) 0.339 (0.0013) 3.34 (0.013) 4,100 (7.11) 8.16 (0.0018) 0.326 (0.0013)
TRE 2.52 (0.010) 4,360 (9.77) 8.17 (0.0023) 0.435 (0.0016) 2.50 (0.010) 4,360 (10.09) 8.17 (0.0024) 0.439 (0.0017)
WECC 5.22 (0.021) 8,940 (9.65) 8.99 (0.0012) 0.216 (0.00081) 5.15 (0.021) 8,920 (10.01) 8.99 (0.0012) 0.218 (0.00084)
Combined 1.41 (0.0020) 6,989 (9.91) 8.46 (0.0015) 0.798 (0.0011) 1.24 (0.0018) 5,880 (9.74) 8.25 (0.0016) 0.850 (0.0012)
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Parametric fits to distributions of normalized derating magnitudes
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Figure A.30: Distribution of derating magnitudes as a percentage of nameplate capacity, with
fitted Weibull distributions.
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Table A.10: Parameters for Weibull fits to derating magnitudes by unit type. Standard errors in
parentheses.

Combined cycle Simple cycle Fossil steam Hydroelectric Nuclear

Shape Scale Shape Scale Shape Scale Shape Scale Shape Scale

1.77 (0.010) 0.44 (0.0018) 1.72 (0.022) 0.44 (0.0040) 1.12 (0.0022) 0.23 (0.00053) 1.69 (0.0042) 0.51 (0.00095) 0.72 (0.011) 0.17 (0.0047)

Mean time between failure and mean time to recovery

Table A.11: Parameters for Weibull fits to capacity-weighted MTBF values excluding reserve
shutdown hours, by unit type. Standard errors in parentheses.

Combined cycle Simple cycle Fossil steam Hydroelectric Nuclear

Shape Scale Shape Scale Shape Scale Shape Scale Shape Scale

1.12 (0.0016) 1,060 (2.12) 0.78 (0.0015) 440 (1.71) 1.08 (0.112) 420 (0.65) 1.13 (0.0029) 3,120 (10.35) 1.34 (0.0029) 2,880 (7.03)

Table A.12: Parameters for gamma fits to capacity-weighted MTBF values excluding reserve
shutdown hours, by unit type. Standard errors in parentheses.

Combined cycle Simple cycle Fossil steam Hydroelectric Nuclear

Shape Scale Shape Scale Shape Scale Shape Scale Shape Scale

1.48 (0.004) 680 (2.19) 0.75 (0.0026) 710 (3.41) 1.30 (0.0026) 310 (0.76) 1.34 (0.006) 2,220 (12.04) 1.94 (0.0079) 1,350 (6.20)

Histograms of the number of between-failure periods used to calculate each unit’s MTBF are

shown in Figure A.31 through Figure A.35. We note that some units’ MTBFs are calculated based

upon only a single between-failure period. With a longer time series, the proportion of units with

MTBFs based on very few between-failure periods would decrease, increasing confidence in the

robustness of these results.
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Figure A.31: Count of between-failure periods used to calculate mean time between failure for
combined cycle units. Units with significant reserve shutdown reporting discrepancies are excluded.
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Figure A.32: Count of between-failure periods used to calculate mean time between failure for
simple cycle units. Units with significant reserve shutdown reporting discrepancies are excluded.
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Figure A.33: Count of between-failure periods used to calculate mean time between failure for
fossil steam and fluidized bed units. Units with significant reserve shutdown reporting discrepancies
are excluded.
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Figure A.34: Count of between-failure periods used to calculate mean time between failure for
hydroelectric units. FRCC has no such units. Units with significant reserve shutdown reporting
discrepancies are excluded.
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Figure A.35: Count of between-failure periods used to calculate mean time between failure for
nuclear units. Units with significant reserve shutdown reporting discrepancies are excluded.

Not every unit has a calculated MTBF value because calculation of the MTBF requires at least
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two non-overlapping failures (i.e. at least one fully contained non-failure period). We disregard the

hours occurring before the first failure and after the last failure, as applicable, because we cannot say

how long these non-failure periods would extend. An alternative approach would be to average the

durations of all non-failure periods. This would not exclude any units, but would be guaranteed to

underestimate the MTBF for those units excluded by our method. With either approach, one could

also apply a Bayesian prior on the MTBF to perhaps make the results more robust for units that

have few unscheduled events. However, selection of an informative prior would be difficult. Some

units’ MTBF values are based on very few non-failure periods. These units may be very reliable or

may have just performed well during our study period. We recommend that system planners repeat

this analysis with longer time series to increase confidence in the result. One could also look at the

MTBF and MTTR for different primary cause codes. We note that our MTBF results depend to

some degree on our definition of a failure. While we have defined a failure as any reduction from full

availability, any desired threshold could be used. We include a sensitivity analysis over a range of

failure definitions (Figure A.36). We conclude that the calculation of MTBF is not very sensitive to

the selection of the minimum percent of a unit’s nameplate capacity that must be unavailable to

constitute a “failure”.
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Figure A.36: Sensitivity of MTBF to the minimum percent of a unit’s nameplate capacity that
must be unavailable to constitute a failure. The legend has been split between the top two panels
for readability. The rug along the y-axis indicates each region’s MTBF values when a failure is
defined as any reduction in availability. Values have been calculated with all reserve shutdown hours
removed. Units with significant reserve shutdown reporting discrepancies are excluded (see Table
A.16).
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We define the mean time to recovery (MTTR) as the average number of hours that elapse while

a unit experiences some reduction in availability—i.e., the average duration of failure periods. In

contrast to MTBF, we do not need to remove RS hours prior to calculating MTTR. We present

capacity-weighted histograms of the MTTR results (Figures A.37 through A.41). In each of these

plots we construct histograms with 50 bins. The heading of each plot reports the number of units

for which an MTTR value can be calculated (numerator) and the number of units reporting at least

a single unscheduled event during our study period (denominator), which again serves as a proxy for

the sample size. Smaller MTTR values indicate shorter average repair durations. Histograms of the

number of failure periods used to calculate each unit’s MTTR are shown in Figure A.42 through

Figure A.46. We note that some units’ MTTRs are calculated based upon only a single failure

period. With a longer time series, the proportion of units with MTTRs based on very few failure

periods would decrease, increasing confidence in the robustness of these results. We present the

parameters for Weibull and gamma distributions fit to each unit type’s distribution of MTTR values

in Tables A.13 and A.14. We do not report parameters at the region-by-unit-type level due to small

sample sizes in several instances.

Table A.13: Parameters for Weibull fits to capacity-weighted MTTR values by unit type. Standard
errors in parentheses.

Combined cycle Simple cycle Fossil steam Hydroelectric Nuclear

Shape Scale Shape Scale Shape Scale Shape Scale Shape Scale

0.69 (0.00085) 45 (0.14) 0.53 (0.00090) 95 (0.48) 0.60 (0.00056) 106 (0.28) 0.47 (0.00092) 77 (0.50) 0.66 (0.0013) 386 (1.90)

Table A.14: Parameters for gamma fits to capacity-weighted MTTR values by unit type. Standard
errors in parentheses.

Combined cycle Simple cycle Fossil steam Hydroelectric Nuclear

Shape Scale Shape Scale Shape Scale Shape Scale Shape Scale

0.58 (0.0014) 125 (0.45) 0.37 (0.0010) 644 (3.21) 0.44 (0.00076) 528 (1.51) 0.30 (0.00098) 914 (5.62) 0.55 (0.0020) 1,071 (5.84)

Similar to the considerations mentioned for the MTBF calculations above, we require that units

have at least one completed failure period in order for us to calculate an MTTR. While this is a less

restrictive requirement than that needed to calculate an MTBF, it still excludes 10 units from the

analysis.
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Figure A.37: Capacity-weighted mean time to recovery (MTTR) values for combined cycle gas
units. Note the log scale for MTTR. In the parenthetical notation after the region name, the
numerator indicates the count of units for which an MTTR could be calculated. The denominator
indicates the count of units experiencing at least one unscheduled event during the study period (as
a proxy for total count of active units during the study period).
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Figure A.38: Capacity-weighted mean time to recovery (MTTR) values for simple cycle gas units.
Note the log scale for MTTR. In the parenthetical notation after the region name, the numerator
indicates the count of units for which an MTTR could be calculated. The denominator indicates the
count of units experiencing at least one unscheduled event during the study period (as a proxy for
total count of active units during the study period).
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Figure A.39: Capacity-weighted mean time to recovery (MTTR) values for fossil steam and
fluidized bed units. Note the log scale for MTTR. In the parenthetical notation after the region
name, the numerator indicates the count of units for which an MTTR could be calculated. The
denominator indicates the count of units experiencing at least one unscheduled event during the
study period (as a proxy for total count of active units during the study period).
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Figure A.40: Capacity weighted mean time to recovery (MTTR) values for hydroelectric units.
FRCC has no such units. Note the log scale for MTTR. In the parenthetical notation after the
region name, the numerator indicates the count of units for which an MTTR could be calculated.
The denominator indicates the count of units experiencing at least one unscheduled event during the
study period (as a proxy for total count of active units during the study period).
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Figure A.41: Capacity-weighted mean time to recovery (MTTR) values for nuclear units. Note the
log scale for MTTR. In the parenthetical notation after the region name, the numerator indicates
the count of units for which an MTTR could be calculated. The denominator indicates the count
of units experiencing at least one unscheduled event during the study period (as a proxy for total
count of active units during the study period).
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Figure A.42: Count of failure periods used to calculate mean time to recovery for combined cycle
units.
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Figure A.43: Count of failure periods used to calculate mean time to recovery for simple cycle
units.
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Figure A.44: Count of failure periods used to calculate mean time to recovery for fossil steam and
fluidized bed units.
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Figure A.45: Count of failure periods used to calculate mean time to recovery for hydroelectric
units. FRCC has no such units.
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Figure A.46: Count of failure periods used to calculate mean time to recovery for nuclear units.

In section 2.4 of the main text, we sought to determine whether the MTBF of large and small

units differed using the Mann-Whitney U test and the two-sample Kolmogorov-Smirnov test. For
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each of the five unit types considered, we defined “large” units as those with nameplate capacities

greater than or equal to the median value for that unit type, and “small” otherwise. We exclude units

with significant discrepancies in RS reporting between the GADS Events and GADS Performance

tables, which can lead to median nameplate values that differ slightly from those shown in Table

2.6 in the main text. Here we present the two-sample Kolmogorov-Smirnov test results (Table

A.15). Results are highly consistent with the Mann-Whitney U test results (Table 2.5 in the main

text). Note the test does not report directionality, unlike the Mann-Whitney U test; we presume

directionality is consistent with those results.

Table A.15: Two-sample Kolmogorov-Smirnov test for statistically significant differences in MTBF
between small and large units by region and unit type. Abbreviations: CC combined cycle units,
CT simple cycle gas units, FSFB fossil steam and fluidized bed units, HY hydroelectric, NU nuclear.

Type CC CT FSFB HY NU

FRCC **** – *** N/A1 N/A2

MRO – **** *** – N/A2

NPCC – **** – **** –
RFC * **** **** *** **
SERC *** **** *** *** –
SPP – *** *** **** N/A2

TRE **** *** **** N/A3 N/A2

WECC – – *** **** N/A2

Combined – **** **** **** –

Significance levels: – ≥ 0.1; * < 0.1; ** < 0.05; ***
< 0.01; **** < 0.001

1 FRCC has no hydroelectric units, so no test could
be conducted.

2 Five regions do not have any nuclear units in one
size category, so no test could be conducted.

3 There are not enough hydroelectric units in TRE to
conduct this test.

As a complement to those results, we present histograms of the MTBF for small versus large

units as Figure A.47 through Figure A.51. We again exclude units with significant discrepancies in

RS reporting between the GADS Events and GADS Performance tables.
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Figure A.47: Mean time between failure values for small (orange) versus large (black) combined
cycle gas units; threshold is 185 MW. Note the log scale for MTBF. Numerator indicates count of
units for which an MTBF could be calculated. Denominator indicates count of units experiencing at
least one unscheduled event during the study period (proxy for total count of active units during the
study period). Units with significant reserve shutdown reporting discrepancies are excluded (see
Table A.16).
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Figure A.48: Mean time between failure values for small (purple) versus large (black) simple cycle
gas units; threshold is 57 MW. Note the log scale for MTBF. Numerator indicates count of units for
which an MTBF could be calculated. Denominator indicates count of units experiencing at least one
unscheduled event during the study period (proxy for total count of active units during the study
period). Units with significant reserve shutdown reporting discrepancies are excluded (see Table
A.16).
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Figure A.49: Mean time between failure values for small (blue) versus large (black) fossil steam and
fluidized bed units; threshold is 212 MW. Note the log scale for MTBF. Numerator indicates count
of units for which an MTBF could be calculated. Denominator indicates count of units experiencing
at least one unscheduled event during the study period (proxy for total count of active units during
the study period). Units with significant reserve shutdown reporting discrepancies are excluded (see
Table A.16).

107



C
ou

nt
 o

f u
ni

ts

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 10 100 1000 10,000
Mean time between failures (hours)

FRCC 
Large: n=0 
Small: n=0

C
ou

nt
 o

f u
ni

ts

0
2

4
6

8
10

14

1 10 100 1000 10,000
Mean time between failures (hours)

MRO 
Large: n=80/85 
Small: n=55/66

C
ou

nt
 o

f u
ni

ts

0
5

10
20

30

1 10 100 1000 10,000
Mean time between failures (hours)

NPCC 
Large: n=158/162 
Small: n=256/257

C
ou

nt
 o

f u
ni

ts

0
2

4
6

8
10

12

1 10 100 1000 10,000
Mean time between failures (hours)

RFC 
Large: n=17/18 

Small: n=117/133

C
ou

nt
 o

f u
ni

ts

0
5

10
15

20
25

30

1 10 100 1000 10,000
Mean time between failures (hours)

SERC 
Large: n=203/210 
Small: n=167/177

C
ou

nt
 o

f u
ni

ts

0
1

2
3

4
5

1 10 100 1000 10,000
Mean time between failures (hours)

SPP 
Large: n=20/22 

Small: n=6/6

C
ou

nt
 o

f u
ni

ts

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 10 100 1000 10,000
Mean time between failures (hours)

TRE 
Large: n=4/5 
Small: n=3/3

C
ou

nt
 o

f u
ni

ts

0
10

20
30

40
50

1 10 100 1000 10,000
Mean time between failures (hours)

WECC 
Large: n=447/477 
Small: n=306/323

Figure A.50: Mean time between failure values for small (tan) versus large (black) hydroelectric
units; threshold is 23 MW. FRCC has no such units. Note the log scale for MTBF. Numerator
indicates count of units for which an MTBF could be calculated. Denominator indicates count of
units experiencing at least one unscheduled event during the study period (proxy for total count of
active units during the study period). Units with significant reserve shutdown reporting discrepancies
are excluded (see Table A.16).
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Figure A.51: Mean time between failure values for small (green) versus large (black) nuclear units;
threshold is 1022 MW. Note the log scale for MTBF. Numerator indicates count of units for which
an MTBF could be calculated. Denominator indicates count of units experiencing at least one
unscheduled event during the study period (proxy for total count of active units during the study
period). No nuclear units had significant reserve shutdown reporting discrepancies (see Table A.16).
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Some generator types are most typically employed as shoulder or peaking units, while others

are most typically employed as baseload units. Non-baseload units will not always be required by

a power system even when physically able to generate power, and these service requirements may

vary by region due to market structure. Thus, when comparing the MTBF, both across and within

unit types, it is important to consider only service hours. To do this, we remove RS hours from

each unit’s time series prior to calculating the MTBF. The validity of our MTBF analysis therefore

hinges upon robust reporting of RS events. While RS reporting is mandatory for all units except

those hydroelectric units without automatic data recording equipment, we sought to verify reporting

prior to attempting the analysis [28]. We tabulate the total RS hours reported under the Events

and Performance tables for each unit that reported an unscheduled event during our study period.

Based on these results, we divide units into three categories: those that do not report RS events at

all, those for whom total RS hours differ by 100 hours or less between the two tables, and those

for whom total RS hours differ by more than 100 hours between the two tables. Unit counts are

converted to installed capacity values and summarized by unit type in Table A.16.

Table A.16: Summary of capacity falling into each of three reserve shutdown reporting categories,
by unit type. Abbreviations: CC combined cycle units, CT simple cycle gas units, FSFB fossil steam
and fluidized bed units, HY hydroelectric, NU nuclear.

Category CC CT FSFB HY NU Total

Capacity not reporting RS events 11,660 4,840 64,670 32,740 103,710 217,620
Capacity with discrepancy > 100 hours 16,060 29,970 30,080 36,790 0 112,900
Capacity with discrepancy ≤ 100 hours 215,690 129,480 348,530 51,440 3,630 748,770
Percent of capacity included in MTBF analysis 93.4% 81.8% 93.2% 69.6% 100% 89.5%

The majority of capacity (70%) reports RS events with high fidelity, 10% of capacity has lower

fidelity reporting, and 20% does not report RS events at all. In some cases the complete lack of RS

reporting is not surprising. Large fossil steam units, nuclear units, geothermal units, and hydroelectric

units could all have very low operating costs and never be “out of the money”. (And, as mentioned

previously, hydroelectric units without automatic data recording equipment are not required to

report RS events to GADS.) In other cases—particularly for simple cycle gas turbines, diesel units,

and most combined cycle units—this seems much more likely to be the result of incomplete data
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reporting. However for the purposes of this analysis we only exclude those units that fall into the

lower fidelity RS reporting category. Sensitivity analysis on the threshold used to delineate higher

and lower fidelity RS reporting could also be done.
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Chapter 3 A model of correlated generator
failures and recoveries*

Abstract

Most current approaches to resource adequacy modeling assume that each generator in a power system fails

and recovers independently of other generators. This assumption is inconsistent with recent empirical work.

Here we present a statistical model that allows for correlated failures and recoveries. The probability of a

transition is modeled as a time-dependent coin flip. Transition probabilities are a function of exogenous

variables; as an example we use temperature and system load. We model the dependence of transition

probabilities on temperature and load using logistic regression. The resulting time-varying probabilities imply

a nonhomogeneous Markov model of generator failures and recoveries. Model parameters are estimated using

23 years of generator-level data for 1,845 generators in the USA’s largest electricity market. Temperature and

load covariates are found to be statistically significant for both generator failures and recoveries. Temperature

dependencies are observed in all generator types, but are most pronounced for diesel and natural gas generators

at low temperatures and nuclear generators at high temperatures. Load dependencies are observed in nuclear

and coal generators at high temperatures. Our approach yields significant improvements in predictive

performance compared to current practice, suggesting that explicit models of generator transitions using

jointly experienced stressors should help resource planners more precisely manage their systems.

* Under peer review as Murphy, S, Sowell, F., & Apt, J. A time-dependent model of generator failures and recoveries
captures correlated events and quantifies temperature dependence. Working paper CEIC-18-02 available at https:
//ceic.tepper.cmu.edu/publications/working-papers

112

https://ceic.tepper.cmu.edu/publications/working-papers
https://ceic.tepper.cmu.edu/publications/working-papers


3.1 Introduction

It is well known that severe environmental conditions can lead to elevated failure probabilities

for exposed power system components [1–3]. Yet most current approaches to resource adequacy

modeling (RAM) are unable to account for these risks because they assume that each generator fails

and recovers with fixed probabilities, independently of other generators [1, 4–6].1 This assumption

is inconsistent with results from recent empirical work using four years of Generating Availability

Data System (GADS) data from the North American Electric Reliability Corporation (NERC) [7].

The statistical evidence of dependence between generators leaves open the question of how to model

correlated failures and recoveries.

Here we propose an answer with a nonhomogeneous (time-varying) Markov model. The nonho-

mogeneous Markov model’s probabilities of transitioning, e.g. from fully available to derated, depend

on exogenous variables. Many factors could affect transition probabilities. However, if transition

probabilities depend on variables that are jointly experienced by many generators, such an approach

could potentially capture the observed correlated failures. Understanding the causes of correlated

failures and recoveries can help in the procurement of reserves, payments for which amount to billions

of dollars per year in the USA [8].

Markov models are widely used in power system reliability analyses [9]. The traditional two-state

model assumes generators are either fully available or fully unavailable with constant transition

probabilities [10]. Common generalizations allow different two-state models over a discrete set of

environments: e.g. “normal weather” versus “adverse weather”, or generator “in demand” versus

“not in demand” [11–14], where transition probabilities are constant over each environment. To

model correlated failures, a new state must be created for each combination of generators failing

simultaneously; the state space therefore grows geometrically as the number of generators increases

[15, 16]. The intractability of applying this to a large power system has led researchers to define

states in terms of system capabilities or to merge states [17,18].
1Standard RAM practice in the USA is as follows. First, the most recent five years of historical availability data

are used to calculate an availability statistic for each generator. Second, the availability statistics are combined to
calculate a distribution of available capacity for a future planning year for the power system. RAM assumes that the
availability statistic corresponds to the generator’s probability of being unavailable due to an unscheduled failure in
every hour of the planning year.
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This paper takes a different approach to generalizing the two-state model: we employ only two

states, but allow transition probabilities to depend on exogenous variables. To examine the suitability

of such an approach, we create hourly time series of transitions for 1,845 generators in the eastern

USA using 23 years of GADS data from the PJM Interconnection (PJM). For each generator, the

two-state Markov model’s time-varying probabilities are modeled as functions of exogenous variables

using logistic regression. We model transition probabilities as a function of temperature and load,

though the model can be extended to include additional covariates. Both temperature and load vary

with time and are jointly experienced by many generators, thus transition probabilities in generators’

Markov chains can be correlated.

This paper proceeds as follows. Section 3.2 describes our modeling approach. Section 3.3 describes

the datasets and the steps we take to prepare them for analysis. Section 3.4 discusses our findings.

Section 3.5 concludes and makes suggestions for future work.

3.2 Method

We use logistic regression to model each generator’s transition probabilities as a function of

covariates. We fit these models using the GLM library in R, with default initial values. While there

are many binary classification algorithms, logistic regression is relatively insensitive to unbalanced

data [19]. This is an important attribute for this analysis, as most generators fail infrequently.

Unbalanced data makes accurately estimating transition probabilities more difficult [20].

We employ a two-state Markov model wherein each generator is treated as either fully available

(subsequently referred to as available and abbreviated A) or at least partially unavailable (subsequently

referred to as derated and abbreviated D). For each generator we separately model two pairs of

transition probabilities: the probability of an available generator remaining available in the next

hour versus becoming derated (failing), and the probability of a derated generator remaining derated

in the next hour versus becoming available (recovering).

As in [21], we allow transition probabilities to be a function of covariates. We consider temperature

and load because they have time series dependence and affect multiple generators simultaneously.
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As a result, if they are found to have statistically significant associations with changes in transition

probabilities, our model may be able to explain the correlated failures identified in [7]. If no covariates

are statistically significant, this model reduces to the familiar homogeneous (time-invariant) Markov

model of [9] (Figure 3.1).

Figure 3.1: Nonhomogeneous (left) and homogeneous (right) two-state Markov models. A indicates
the available state, D indicates the derated state. Q and Qt are the constant and time-varying prob-
abilities of an AA transition, respectively. P and Pt are the constant and time-varying probabilities
of a DD transition, respectively.

We fit our models using maximum likelihood estimation (iteratively reweighted least squares).

The estimation procedure is conducted on each generator, using its hourly series of Markov state

transitions and covariate data, described below. If the transition probabilities were constant, this

would be equivalent to determining the probability of a coin coming up heads. The likelihood

functions are:

L(βA) =
count(A)∏

i=1

Qi(β
A)AAi ∗ (1−Qi(β

A))1−AAi (3.1)

L(βD) =
count(D)∏

i=1

Pi(β
D)DDi ∗ (1− Pi(β

D))1−DDi (3.2)

where βD and βD are vectors of parameters for the failure and recovery models, respectively, Qi is
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the probability of the generator remaining available in the next hour when it is currently available,

Pi is the probability of the generator remaining derated in the next hour when it is currently derated,

count(A) is the sum of the number of available-to-available (AA) and available-to-derated (AD)

transitions experienced by the generator, count(D) is the sum of the number of derated-to-derated

(DD) and derated-to-available (DA) transitions experienced by the generator, AAi = 1 if the ith

AA or AD transition is AA and 0 otherwise, and DDi = 1 if the ith DD or DA transition is DD

and 0 otherwise. The sum of count(A) and count(D) equals the total number of Markov state

transitions in the period of reporting for the current generator. The failure and recovery models are

fit separately for each generator (Figure 3.2).

Figure 3.2: Defining a generator’s time series of transitions and allocating them to the failure and
recovery models. The generator’s hourly time series of unavailable capacity is first used to determine
which Markov state the generator is in in each hour. The series of hour-over-hour state transitions
is then determined. These observations, along with our covariates (illustrated as a single vector of
hourly temperatures for clarity of presentation) are then allocated to the failure and recovery models.
Any observation in which a generator begins in the A state is assigned to the failure model, whereas
any observation in which a generator begins in the D state is assigned to the recovery model. Note
that there are one fewer transitions than original observations, so the final covariate observation is
not used.
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We allow Qi and Pi to be functions of covariates while still ensuring all transition probabilities

are bounded by [0, 1] by employing the logistic function:

Qi(β
A) = 1/(1 + exp(−βAXi)) (3.3)

Pi(β
D) = 1/(1 + exp(−βDXi)) (3.4)

where Xi is a vector of covariate observations in hour i, with as many elements as the number of

constants and covariates in the model.

We consider the following model specification for both failure and recovery models for each

generator:

Indexi = β1 ∗ constantHoti + β2 ∗ constantCooli

+ β3 ∗ degreesHoti + β4 ∗ degreesHot2i + β5 ∗ degreesCooli

+ β6 ∗ degreesCool2i + β7 ∗ systemLoadi

(3.5)

where βXi = Indexi (linking Equations 3.3 through 3.5), degreesHoti = max(temperaturei −

18.3, 0), degreesCooli = max(18.3− temperaturei, 0), systemLoadi is the load residual in hour i,

constantHoti = 1 if temperatureCooli = 0 (and 0 otherwise), constantCooli = 1 if temperatureCooli >

0 (and 0 otherwise), and temperaturei is the temperature in hour i, reported in degrees Celsius.2

This specification allows for an asymmetric response to hot and cold temperature.

So that our model can better generalize to temperatures and loads not observed in the data,

we employ stepwise regression (backward elimination) as described in Procedure 3.1, selecting a

significance level of 0.05. To reduce bias, we then eliminate any generator having fewer than 10 DA

or AD transitions per statistically significant model covariate [23].3

218.3 degrees Celsius is approximately 65 degrees Fahrenheit. This corresponds to the flattest region of the
temperature-load relationship in the PJM area found by [22].

3DA or AD is always the least-experienced transition.
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Procedure 3.1: Adaptive logistic regression model fitting:
For each generator, do:

• For each model (i.e., failure and recovery), do:

– Fit full model specification (Equation 3.5)

– While model has one or more linearly dependent or statistically insignificant covariates,
do:

∗ If model has one or more linearly dependent covariates, remove one linearly dependent
covariate and re-estimate model

∗ Else, remove covariate with smallest absolute value of t-statistic and re-estimate
model

– Save final model

Remove generators that do not have at least 10 AD and 10 DA transitions per final model parameter

3.3 Data

3.3.1 GADS data description

The GADS database records availability and design information for all generators serving the

PJM control area, with the exception of wind, solar, and behind-the-meter generation. Reporting to

GADS is mandatory, regardless of generator size [24]. We work primarily with the Events, Units,

and Performance tables. The Events table reports any event affecting the ability of a generator to

produce electricity, as well as other event types defined by the Institute of Electrical and Electronics

Engineers (IEEE) Standard 762 [25]. The Units table reports design details of each generator,

such as generator type and nameplate capacity.4 The Performance table reports monthly summary

statistics of each generator’s operating and non-operating time. We analyze data from January 1,

1995 (database inception) through March 31, 2018. Over this period 1,845 generators representing

267 gigawatts (GW) of capacity have reported to GADS.

4The generator types include combined cycle gas (abbreviated as CC in figures and tables), simple cycle gas (CT),
diesel (DS), hydroelectric and pumped storage (HD), nuclear (NU), and steam turbine (ST). In 2017, the vast majority
(95%) of ST generation in PJM was from coal, thus we use the two terms interchangeably [26].
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3.3.2 GADS data processing

Obtaining time series of availability state transitions

PJM’s GADS database is virtually identical to that of NERC (albeit covering many more years),

thus we prepare it for analysis as described in [7]. We calculate the magnitude of each derating event

and then process events into time series of unavailable capacity. We restrict each generator’s time

series to complete calendar years. We then use each generator’s time series of unavailable capacity

to define a corresponding time series of hour-over-hour Markov state transitions (Figure 3.2). For

example, an AA transition occurs when the generator is available in two adjacent hours.

Determining when a generator is available to transition

Our model assumes each generator is able to transition out of its current state in each hour (i.e.,

the generator can experience a failure if it is currently available and recover if currently derated).

We attempt to exclude hours in which this assumption is violated in order to minimize bias. When

fitting the failure model, we remove mothball, inactive reserve, and all scheduled outage events

because the generator cannot be operating when these events are underway [27]. The generator can

still operate when a scheduled derating is in effect, so these hours are not removed.

When fitting the recovery model, we remove only mothball and inactive reserve events. This

is because no repair work is allowed to occur when these events are in progress [27]. Repair work

on unscheduled failures can occur during scheduled outage and scheduled derating events, so these

hours are not removed. In addition, some failures are catastrophic and take many months to repair.

Including these events would bias recovery probabilities downward. To correct for this, we remove

hours when a generator remains in the derated state without interruption for more than six months.

A note on reserve shutdown events

Reserve shutdown events are used to indicate when a generator is offline for economic reasons

but is capable of coming online within its normal startup time if needed. With the exception of

hydroelectric and pumped storage generators without automatic reporting equipment, all conventional
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generators participating in the PJM market became obligated to report reserve shutdown events to

GADS in January 2004, nine years after the beginning of our data.

When a reserve shutdown event is underway, a generator should neither be in service or have

repair work conducted. If one assumes that the incidence of a failure while a generator is not

operating and not being repaired is much lower than when operating or when being repaired, reserve

shutdown hours should also be excluded from both failure and recovery model fits. However, given

that most generators fail infrequently and that we require a minimum of 10 AD and DA transitions

per statistically significant covariate to keep a generator in our analysis, eliminating the first nine

years of data results in significantly fewer generators retained, particularly for CTs.

As a result, we fit our models twice: first using the full data period (1995-2018) ignoring reserve

shutdown events, and second restricting to 2004-2018 and removing reserve shutdown hours from

both failure and recovery model fits. Results based upon the former are presented in the main

text and in Appendix B (figures and tables numbered B.1, B.2, etc.), while results based upon the

latter are included in Appendix C (figures and tables numbered C.1, C.2, etc.). In general, we find

reasonable agreement between the two sets of results.

Calculating the average derating magnitude for each generator

Because derating magnitudes can take any value up to a generator’s nameplate capacity, but our

model allows only one derated state, we calculate the average failure magnitude for each generator

(Figure B.1). We calculate this as a duration-weighted average of all unscheduled events experienced

by the generator, excluding any hour removed when fitting either the failure or recovery model. The

average and median failure magnitudes are 78% and 96% of nameplate capacity, respectively.

3.3.3 Geographic, weather, and load data processing

Geocoding generators

To determine the location of each generator, we match the GADS data to the Emissions

and Generation Resource Integrated Database (eGRID), maintained by the USA Environmental

Protection Agency [28–31]. This task was completed using a combination of automated and manual
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matching using generator names and other descriptive fields. We manually confirm each automated

match and then associate the eGRID latitude/longitude data with the generator.

Weather station data

We obtain temperature data from the Global Surface Hourly database, maintained by the USA

National Oceanic and Atmospheric Administration [32]. We include all weather stations active

for the full study period in any state containing or adjacent to any generator. We process these

data into hourly time series for each weather station by first rounding observations to the nearest

hour and then removing observations with duplicate time stamps. We discard any weather station

missing more than 100 sequential observations or more than 5,000 total observations over the 23

years, with three exceptions to increase coverage in Pennsylvania.5 We then fill missing observations

by propagating forward the most recent non-missing observation.6 Finally, we link each generator to

its nearest weather station meeting our data criteria. We map the retained generators and matched

weather stations (Figure 3.3 and Figure C.1).

Load data

Finally we obtain hourly metered load data by PJM transmission zone for the full study period.

We sum over all zones that have been part of the control area since January 1995 to develop an

hourly load series for the system.7 To account for non-stationarities in that series, we fit a time

trend (Equation 3.6) and recover the residuals, which we use as the load signal experienced by each

generator.

PredictedLoadi = βL0 + βL1 ∗ houri + βL2 ∗ hour2i (3.6)

5These three stations had 268, 65, and 103 sequential missing observations and 2937, 8962, and 1370 total missing
observations.

6We initially filled missing observations by propagating forward the most recent non-missing observation at
the same hour of the day, but discovered that several weather stations were systematically missing observations at
particular times of the day over long durations.

7We include: Allegheny Power, Atlantic City Electric Company, Baltimore Gas and Electric Company, Delmarva
Power and Light Company, Jersey Central Power and Light Company, Metropolitan Edison Company, PPL Electric
Utilities Corporation, Pennsylvania Electric Company, Philadelphia Electric Company, Potomac Electric Power
Company, and UGI.
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Figure 3.3: Locations of 1,111 retained generators and linked weather stations, overlaid on
corresponding U.S. states (1995-2018 model fits). Only generators with at least 10 failure and
recovery transitions per statistically significant model parameter are retained. All generators in
multi-generator power plants have identical locations. Orange circles indicate combined cycle, blue
squares with inset ‘x’ indicate simple cycle, yellow triangles indicate diesel, small green squares
indicate hydroelectric and pumped storage, teal ‘plus’ signs indicate nuclear, purple asterisks indicate
steam turbine, and large black squares indicate weather stations. A small number of retained
generators are not shown for presentation considerations: Alabama (3), Louisiana (5), Michigan (23),
Mississippi (3), South Carolina (1), Texas (8).

where βL are the parameters for the load model. We plot the load time series with regression trend

and residuals (Figure B.2 and Figure C.2).

3.3.4 Model significance summaries

When fitting models on the full dataset, we retain 1,111 of 1,845 generators, representing 78%

of the capacity that has ever reported to GADS (Figure B.3); when restricting to 2004-2018, we

retain 748 generators representing 67% of capacity (Figure C.3). While failures and recoveries for

the remaining generators may indeed be influenced by temperature and/or load, they have so few
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transitions that we would not have confidence in the fitted models. We summarize the count and

capacity of these generators (Table 3.1 and Table C.1).

Generator type Total count Retained count (%) Total capacity Retained capacity (%)

CC 224 148 (66) 53.4 33.5 (63)
CT 663 274 (41) 44.9 16.5 (37)
DS 236 132 (56) 0.8 0.5 (58)
HD 244 125 (51) 11.0 8.3 (75)
NU 35 35 (100) 37.2 37.2 (100)
ST 443 397 (90) 119.5 113.1 (95)

All 1,845 1,111 (60) 266.8 209.0 (78)

Table 3.1: Summary of total and retained generator counts and capacity, by generator type
(1995-2018 model fits). CC is combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric
and pumped storage, NU is nuclear, ST is steam turbine.

We summarize marginal statistical significance of the covariates by plotting parameter t-values

by generator type (Figures B.4-B.5 and Figures C.4-C.5) and reporting the number of times each

model term is statistically significant at the 95% level by generator type (Tables 3.2-3.3 and Tables

C.2-C.3). We include corresponding summaries of model coefficients (Figures B.6-B.7 and Figures

C.6-C.7).

Generator type Count Mean hot Mean cool Temp hot Temp hot2 Temp cool Temp cool2 Load

CC 148 148 148 25 26 75 115 41
CT 274 274 274 59 53 110 203 228
DS 132 131 132 32 30 59 29 104
HD 125 125 125 16 14 22 35 43
NU 35 35 35 10 10 9 7 15
ST 397 397 397 70 61 103 134 285

All 1,111 1,110 1,111 212 194 378 523 716

Table 3.2: Number of times each model term is statistically significant at the 95% level for the
failure model (1995-2018 model fits). Results reported for the 1,111 generating generators with at
least 10 instances of the less-common transition per parameter in both failure and recovery models.
CC is combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped storage, NU
is nuclear, ST is steam turbine.

When fitting on the full dataset, linear and quadratic hot-temperature variables are statistically

significant for 19% and 17% of generators’ failure models; linear and quadratic cold-temperature
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Generator type Count Mean hot Mean cool Temp hot Temp hot2 Temp cool Temp cool2 Load

CC 148 147 148 38 35 61 52 100
CT 274 270 272 65 54 104 124 242
DS 132 131 130 40 31 56 67 113
HD 125 124 124 24 16 39 41 93
NU 35 35 35 13 11 12 6 10
ST 397 397 397 73 79 125 101 192

All 1,111 1,104 1,106 253 226 397 391 750

Table 3.3: Number of times each model term is statistically significant at the 95% level for the
recovery model (1995-2018 model fits). Results reported for the 1,111 generating generators with at
least 10 instances of the less-common transition per parameter in both failure and recovery models.
CC is combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped storage, NU
is nuclear, ST is steam turbine.

variables are statistically significant for 34% and 47% of generators’ failure models; and load is

statistically significant for 64% of generators’ failure models. For the recovery model, linear and

quadratic hot-temperature variables are statistically significant for 23% and 20% of generators; linear

and quadratic cold-temperature variables are statistically significant for 36% and 35% of generators;

and load is statistically significant for 68% of generators.

We summarize the joint statistical significance of model covariates by creating scatterplots of

parameter t-values between all non-orthogonal covariate pairs, excluding constants (Figures B.8-

B.9 and Figures C.8-C.9). We observe systematic joint statistical significance between linear and

quadratic temperature parameters in both sets of models, suggesting true temperature dependence

rather than individual temperature parameters being significant by random chance. We include

corresponding bivariate summaries of model coefficients (Figures B.10-B.11 and Figures C.10-C.11).

We report the number of statistically significant parameters for each generator (Table 3.4 and

Table C.4). We report similar information when restricting attention to linear and quadratic

temperature parameters (Table 3.5 and Table C.5). When fitting on the full dataset, 69% of

generators have at least one statistically significant temperature covariate for the failure model; 67%

do for the recovery model. These results demonstrate that temperature and load can have independent

effects on transition probabilities. We compactly summarize variation in model predictions over the

experienced covariate observations for each generator (Figure B.12 and Figure C.12).
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Model 0 1 2 3 4 5 6 7

Failure 0 1 125 338 338 236 64 9
Recovery 0 2 130 366 294 235 72 12

Table 3.4: Number of statistically significant parameters (including constants) for the 1,111
generators with at least 10 instances of the less-common transition per parameter in both failure
and recovery models (1995-2018 model fits).

Model 0 1 2 3 4

Failure 346 341 323 84 17
Recovery 365 351 288 88 19

Table 3.5: Number of statistically significant temperature parameters (excluding constants) for
the 1,111 generators with at least 10 instances of the less-common transition per parameter in both
failure and recovery models (1995-2018 model fits).

3.4 Results and discussion

3.4.1 Modeling correlated failures

Our descriptive results have demonstrated that temperature and load can predict state transitions

at the generator level. We next use Monte Carlo simulation to demonstrate that the models can

also predict correlated failures (Procedure 3.2). This procedure simulates time series of unavailable

capacity for each generator according to the hourly failure and recovery probability distributions

defined by the historical series of covariate values. Any hour that was ignored when fitting a

generator’s failure or recovery model is set to zero in both the empirical and simulated series.

In order to have a true out-of-sample test of model performance, we refit the models using only

1995-2015 data (rather than 1995-2018) and retain just the 1,047 generators that have sufficient

transitions over the shortened time series. This leaves 2016-2018 as test data. We carry out this

procedure 5,000 times and generate pointwise median and 95% confidence intervals from the result,

which we plot along with the empirical time series (Figure 3.4). We repeat the process fitting on
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2004-2015 data, again leaving 2016-2018 as test data (Figure C.13). For reference, we report annual

installed capacity values for these generators (Table 3.6 and Table C.6).

Figure 3.4: Simulated time series from logistic regression model (1995-2015 model fits). Results
presented for 1,047 generators with at least 10 failure and recovery transitions per statistically
significant model parameter when fitting on 1995-2015; 2016-2018 used as test of model performance.
The split between training and testing periods is denoted with a dashed vertical line. Presented
for 2000-2018 for consistency with Figure 3.5. Weekly averages rather than hourly series. 5000
simulations conducted. Refer to Table 3.6 for installed capacity by calendar year. Black trace is
the empirical time series; blue trace is the concatenation of pointwise median simulation values; red
traces are the concatenation of pointwise 2.5% and 97.5% simulation values.

126



Year CC CT DS HD NU ST All

2000 4.2 7.1 0.1 3.3 19.5 69.2 103.5
2001 5.2 8.0 0.1 6.4 32.7 79.4 131.8
2002 6.3 9.8 0.1 6.4 32.7 80.4 135.7
2003 9.1 10.2 0.1 6.5 32.7 83.0 141.5
2004 15.6 11.1 0.1 7.2 34.9 83.8 152.9
2005 20.3 12.9 0.1 6.3 36.3 96.5 172.4
2006 21.2 12.9 0.2 5.9 36.3 96.6 173.1
2007 23.1 13.2 0.2 5.9 36.3 103.8 182.5
2008 24.9 13.4 0.3 6.0 36.3 103.3 184.1
2009 26.0 13.5 0.3 6.0 36.3 102.9 184.9
2010 25.8 13.6 0.3 6.0 36.3 103.1 185.1
2011 25.8 13.6 0.3 6.1 36.3 103.0 185.1
2012 28.1 13.3 0.4 6.1 36.3 95.7 179.8
2013 28.3 13.6 0.4 6.1 36.3 95.7 180.3
2014 29.1 13.0 0.4 6.1 36.3 94.0 178.9
2015 29.1 11.4 0.4 6.1 36.3 86.2 169.5
2016 29.1 10.9 0.4 6.1 36.3 85.2 167.9
2017 28.5 10.8 0.4 6.1 36.3 83.1 165.0
2018 28.5 10.8 0.4 6.1 36.3 82.9 164.9

Table 3.6: Installed capacity (GW) of 1,047 retained generators by year and generator type (1995-
2015 model fits). For use with Figure 3.4 and Figure 3.5. CC is combined cycle, CT is simple cycle,
DS is diesel, HD is hydroelectric and pumped storage, NU is nuclear, ST is steam turbine.

Procedure 3.2: Simulating unavailable capacity from nonhomogeneous Markov models:
For each simulation, do:

• For each generator, do:

– Initialize the state of the generator to match its reported state during its first hour of data
reporting

– For each subsequent hour of the generator’s reporting period, do:
∗ Use the current state of the generator and the current values of all model covariates to

define the current transition probability distribution (i.e., over AA/AD if the generator
is currently available; over DD/DA if the generator is currently unavailable)

∗ Draw 0 or 1 using the probability distribution defined above, where 0 indicates the
generator is available and 1 indicates the generator is unavailable

– Replace all 1s with the generator’s average unscheduled capacity reduction to yield a time
series of unscheduled unavailable capacity

– Zero out any unavailable capacity occurring during hours removed during model fitting

• Sum over generators’ time series to obtain one simulated system-level time series
Compute desired quantiles from simulation results (e.g., 2.5%, 50%, 97.5%) and save
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Even with our simple model specification, we find that the median simulation generally tracks

the empirical time series quite well. The correlation between weekly average median simulation

values and weekly average empirical values is 0.47 and 0.67 over the training and testing periods,

respectively, for the 1995-2015 model fits and 0.47 and 0.69 during training and testing periods for

the 2004-2015 fits. Furthermore, it is rare for an empirical event to exceed the upper confidence band.

The largest instances of under-prediction by our model occurred during two known events where

significant generator outages were due to causes not included as covariates: the 2014 Polar Vortex

(due to fuel unavailability events, which increase non-linearly in cold weather) and Hurricane Sandy

(an extreme weather event but not with regard to temperature). While many other factors may

contribute to generator failures and recoveries [33–35], these results demonstrate that temperature

and load are strongly correlated with system-level unavailable capacity dynamics.

We next compare the performance of our model to that of current RAM practice. This entails

computing an availability statistic for each generator in each planning year (Equation 3.7), and then

using those statistics in Monte Carlo simulations (Procedure 3.3).

We compute the equivalent forced outage factor (EFOF 8) as follows:

EFOF = (FOH + EFDH)/PH (3.7)

where FOH (forced outage hours) is the sum of hours where the generator experiences a forced outage,

EFDH (equivalent forced derating hours) is the sum of hours where the generator experiences a

forced derating, reported in full-outage-equivalent hours, and PH (period hours) is the total number

of hours in the period of interest. In accord with current RAM practice, we define the period

supporting each planning year as the preceding five calendar years. For consistency with the logistic

regression results, we carry out the procedure for the 1,047 generators retained when fitting models

on 1995-2015 data and we ignore contributions to FOH and EFDH that occur during any hour
8More commonly, the equivalent forced outage rate (EFOR) is used. EFOR = (FOH +EFDH)/(FOH + SH +

Synch+Pump+EFDHRS), where SH (service hours) is the total number of hours the generator produces electricity,
Synch is the number of hours the generator operates in synchronous condensing mode, Pump is the number of hours
a pumped-storage hydroelectric generator operates in pumping mode, and EFDHRS (equivalent forced derating
hours during reserve shutdown) is the number of hours the generator experiences a forced derating during a reserve
shutdown event, reported in full-outage-equivalent hours [27]. However, using EFOF allows us to not worry about
incomplete reporting of reserve shutdown events prior to 2004.
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removed during model fitting.

We plot the pointwise median and 95% confidence intervals from 5,000 simulations (Figure 3.5).

As anticipated, the current practice approach does not capture system-level dynamics (e.g. correlated

failures) because the distribution of unavailable capacity is the same in every hour of a given planning

year. The correlation between weekly average median simulation values and weekly average empirical

values is 0.15 over 18 years and 0.11 during the testing period.9 In addition, the pointwise 95%

confidence intervals are wider, averaging 5% of installed capacity over 18 years compared to 3.1%

of installed capacity for the logistic regression model. We summarize the divergence between the

empirical series and the upper bound of the 95% pointwise confidence interval in each hour (i.e., the

magnitude the hourly overpredictions and underpredictions) for the logistic regression model and

current practice in Figure B.13.

Procedure 3.3: Simulating unavailable capacity from homogeneous Markov models:
Define duration of data period supporting each planning year (e.g., five years)
For each simulation, do:

• For each planning year (e.g., 2000-2018), do:

– For each generator, do:
∗ If the generator was active during period supporting current planning year and does

not retire prior to planning year, do:
· Compute EFOF (Equation 3.7) using all of generator’s data supporting current
planning year, except for hours removed during model fitting

· For each hour in planning year, draw a 1 with probability equal to generator’s
EFOF and 0 otherwise, where 0 indicates the generator is available and 1
indicates the generator is unavailable

· Replace all 1s with the generator’s nameplate capacity

– Sum over generators’ time series to obtain one simulated system-level series for current
planning year

Compute desired quantiles from simulation results (e.g., 2.5%, 50%, 97.5%) and save

9Note that the predictions of the current practice model are always out of sample, in contrast with those of the
logistic regression model prior to 2016.
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Figure 3.5: Simulated time series from current practice model (1995-2015 model fits). Results
presented for the same set of 1,047 generators as in Figure 3.4. Time series restricted to 2000-2018
because five years of data are used to calculate the availability statistic. Traces are flat within each
calendar year because current practice model assumes failure probabilities are constant in each hour
of a given year. Small discontinuities at year boundaries are due to weekly averaging not respecting
calendar year boundaries, in conjunction with capacity additions and retirements occurring at the
start of the year. Weekly averages rather than hourly series. 5000 simulations conducted. Refer
to Table 3.6 for installed capacity by calendar year. Black trace is the empirical time series; blue
trace is the concatenation of pointwise median simulation values; red traces are the concatenation of
pointwise 2.5% and 97.5% simulation values.

3.4.2 Characterizing resource adequacy risk as a function of temperature and

load

We next examine resource adequacy risks for the modeled fleet. For fixed values of temperature

and load, each generator’s failure and recovery models imply a stationary distribution over the

available and derated states. We make use of this fact to determine the proportion of the time

each generator is unavailable in expectation. By calculating this result over a range of temperature

values, we determine expected unavailable capacity as a function of temperature for the modeled

fleet (Procedure 3.4). We determine the analogous result under current modeling practice by first

computing an unconditional transition probability matrix for each generator using all available years

of data and then following the remainder of the inner loop of Procedure 3.4. We present results by

generator type (Figure 3.6 and Figure C.14). We report the prevalence of temperatures experienced
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by the fleet of modeled generators (Figure B.14 and Figure C.15).

Figure 3.6: Expected levels of unavailable capacity as a function of temperature under logistic
regression (dots) and current practice (dashed horizontal line) (1995-2018 model fits). Black dots
calculated using median load from temperature neighborhood, red dots calculated using 90th percentile
load from temperature neighborhood. Temperature neighborhood is defined as +/- 10 degrees. Not
all generators experience full temperature range; see Figure B.14 for prevalence of temperatures. CC
is combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped storage, NU is
nuclear, ST is steam turbine.
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Procedure 3.4: Characterizing unavailable capacity as a function of temperature
For each desired quantile of load (e.g., 50th, 90th), do:

• For each desired temperature value (e.g., spanning the range of temperatures experienced by
the fleet, in 5-degree intervals), do:

– Fix the value of temperature

– Fix the value of load at the current load quantile, calculated on observations within the
“neighborhood” of the current temperature value (e.g., within +/- 10 degrees)

– For each generator, do:
∗ Compute predicted transition probabilities using generator’s failure and recovery

model and current temperature and load values
∗ Define transition probability matrix as the transpose of Figure 3.1
∗ Normalize the first eigenvector of the eigendecomposition of the transition probability

matrix to obtain the proportion of the time the generator is unavailable in expectation
∗ Multiply result by generator’s nameplate capacity and its average unscheduled capacity

reduction to obtain expected unavailable capacity
∗ Compute variance of expected unavailable capacity by treating generator as a Bernoulli

random variable
– Sum expected unavailable capacity values over generators and save

– Sum variance values over generators and use to calculate desired confidence interval (e.g.,
95%) and save

With the exception of nuclear, all generator types perform worse in very cold weather than

recognized under current modeling practice. This result is consistent with analysis conducted by

PJM [2]. Poor cold-weather performance is particularly pronounced for gas and diesel generators.

In addition, all generator types perform worse in very hot weather than recognized under current

practice. Because loads are high at both temperature extremes, the resource adequacy risk implied

by these performance penalties is compounded: less generation capacity is available when demand is

greatest.

Finally, we repeat the preceding analysis switching the role of temperature and load in order to

visualize resource adequacy risk as a function of load. Because the relationship between load and

unavailable capacity could be different at high and low temperatures, we generate two sets of results:

one for observations where the temperature is below 18.3 degrees, and one for observations where

temperature is above 18.3 degrees. With these modifications, we repeat Procedure 3.4. We again

present results by generator type (Figures 3.7-3.8 and Figures C.16-C.17).

In Figure 3.7, at median temperature values, only coal generators at very high loads show
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Figure 3.7: Expected levels of unavailable capacity as a function of load under logistic regression
(dots) and current practice (dashed horizontal line) when restricting to temperatures below 18.3
degrees Celsius (1995-2018 model fits). Black dots computed at median temperature from load
neighborhood; blue and red dots correspond to 10th and 90th percentile temperatures from load
neighborhood, respectively. Load neighborhood defined analogously to temperature neighborhood
of Figure 3.6. Current practice dashed line matches that of Figure 3.6. Plot domain defined using
only observations below 18.3 degrees. CC is combined cycle, CT is simple cycle, DS is diesel, HD is
hydroelectric and pumped storage, NU is nuclear, ST is steam turbine.

noticeable divergence from the unconditional level of unavailable capacity. When considering low-

percentile temperatures, gas and diesel generators also exhibit divergence from the unconditional

result at higher loads. Nuclear generators show no load response for cold-temperature observations,

regardless of load level or temperature quantile, consistent with Figure 3.6. In Figure 3.8, coal and

nuclear generators diverge from their respective unconditional levels of unavailable capacity at high

loads regardless of temperature percentile considered. Diesel generators show some divergence at

very low loads.
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Figure 3.8: Expected levels of unavailable capacity as a function of load under logistic regression
(dots) and current practice (dashed horizontal line) when restricting to temperatures above 18.3
degrees Celsius (1995-2018 model fits). Black dots computed at median temperature from load
neighborhood; blue and red dots correspond to 10th and 90th percentile temperatures from load
neighborhood, respectively. Load neighborhood defined analogously to temperature neighborhood
of Figure 3.6. Current practice dashed line matches that of Figure 3.6. Plot domain defined using
only observations above 18.3 degrees. CC is combined cycle, CT is simple cycle, DS is diesel, HD is
hydroelectric and pumped storage, NU is nuclear, ST is steam turbine.

3.5 Conclusions

In this paper we present a model of how correlated failures previously identified in the North

American power system can occur [7]. Our approach is a novel, computationally tractable generaliza-

tion of the traditional two-state Markov model widely used in power system reliability analyses [9].

We demonstrate a simple specification in which transition probabilities between the available and

derated states are modeled as a function of temperature and load, but note that any desired covariates

could be employed.

We fit these models using logistic regression with 23 years of availability data for 1,845 generators

serving the PJM control area. To reduce bias, we discard any generator with fewer than 10 failure

or recovery events per statistically significant covariate. We retain 78% of the generation capacity

that has ever reported to PJM GADS. We find that temperature and load can predict generator
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transitions: temperature and load are each statistically significant for two-thirds of the retained

generators.

We demonstrate that our model specification captures most of the correlated failures observed in

PJM since 2000 and that it significantly outperforms the homogeneous Markov model underlying

current resource adequacy modeling practice. The correlation of our median simulation with the

observed series of unavailable capacity at the weekly level is 0.47 over 18 years, whereas that of the

median simulation from current practice is 0.15. Our model also has narrower confidence intervals,

averaging 3.1% of installed capacity compared to 5% for current practice.

We demonstrate that all generator types are susceptible to extreme temperatures. With the

exception of nuclear generators, which have reduced availability only during hot weather, all generator

types have reduced availability at both temperature extremes. The cold-weather penalty for gas and

diesel generators is particularly pronounced, as is the hot-weather penalty for nuclear generators.

Finally, we demonstrate that nuclear and coal generators experience an availability penalty at high

loads; for nuclear generators this penalty is present only in conjunction with high temperatures.

These risks are not captured in current approaches to resource adequacy modeling.

Taken together, our results demonstrate that there are systematic relationships between temper-

ature, load, and generator availability. Accounting for these relationships, as we have done here,

may enable more efficient procurement of reserve capacity. Future work should examine the specific

causes of the temperature dependence of generator availability and what improvements in reserves

procurement can be achieved now that correlated failures can be successfully modeled.
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3.6 Appendix B: Supplementary figures for 1995-2018 model fits

Figure B.1: Histogram of average generator failure magnitudes. Calculated for the 1,748 generators
with at least one full calendar year of data reporting and at least one unscheduled transition during
1995-2018. Values calculated as a duration-weighted average of the magnitudes all unscheduled
events experienced by the generator, excluding any hour removed when fitting either the failure or
recovery model.
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Figure B.2: Metered load time series (1995-2018 model fits). Left: hourly time series of metered
system load for PJM transmission zones that have been part of PJM since database inception, with
time trend (red curve) as given by Equation 3.6. Right: residuals from fitting time trend given by
Equation 3.6 to the original series.
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Figure B.3: Histogram of the count of each generator’s least frequently experienced transition
(1995-2018 model fits). The 1,748 generators with at least one full calendar year of data reporting
and at least one unscheduled transition during 1995-2018 are plotted in light gray. Of these, the 1,111
generators with at least 10 failure and recovery transitions per statistically significant parameter are
then overplotted in dark gray. Above 70 such transitions the full model specification (Equation 3.5)
can be supported, so no generators in corresponding bins are discarded. Note the log scale on the
abscissa.
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Figure B.4: Summarizing t-values for the failure model by covariate and generator type (1995-2018
model fits). Only generators for which the covariate is statistically significant at the 0.05 level are
included. Thresholds for significance (+/-1.96) indicated by dashed vertical lines. Constants are
excluded. CC is combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped
storage, NU is nuclear, ST is steam turbine.
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Figure B.5: Summarizing t-values for the recovery model by covariate and generator type (1995-
2018 model fits). Only generators for which the covariate is statistically significant at the 0.05 level
are included. Thresholds for significance (+/-1.96) indicated by dashed vertical lines. Constants are
excluded. CC is combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped
storage, NU is nuclear, ST is steam turbine.
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Figure B.6: Summarizing coefficients for the failure model by covariate and generator type (1995-
2018 model fits). Only generators for which the covariate is statistically significant at the 0.05 level
are included. Dashed vertical lines indicate 0. Constants are excluded. Temperature units are
degrees Celsius. Load units are GW. Abscissa scales set independently. CC is combined cycle, CT
is simple cycle, DS is diesel, HD is hydroelectric and pumped storage, NU is nuclear, ST is steam
turbine.
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Figure B.7: Summarizing coefficients for the recovery model by covariate and generator type
(1995-2018 model fits). Only generators for which the covariate is statistically significant at the 0.05
level are included. Dashed vertical lines indicate 0. Constants are excluded. Temperature units are
degrees Celsius. Load units are GW. Abscissa scales set independently. CC is combined cycle, CT
is simple cycle, DS is diesel, HD is hydroelectric and pumped storage, NU is nuclear, ST is steam
turbine.
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Figure B.8: Summarizing t-value relationships for non-orthogonal covariate pairs for the failure
model (1995-2018 model fits). Thresholds for significance at 0.05 level (+/-1.96) indicated by dashed
lines. To be included in a plot in this figure, both relevant covariates must be present in a generator’s
final failure model. Black is combined cycle gas, red is simple cycle gas, green is diesel, blue is
hydroelectric, cyan is nuclear, magenta is steam turbine.
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Figure B.9: Summarizing t-value relationships for non-orthogonal covariate pairs for the recovery
model (1995-2018 model fits). Thresholds for significance at 0.05 level (+/- 1.96) indicated by
dashed lines. To be included in a plot in this figure, both relevant covariates must be present in a
generator’s final recovery model. Black is combined cycle, red is simple cycle, green is diesel, blue is
hydroelectric, cyan is nuclear, magenta is steam turbine.
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Figure B.10: Summarizing coefficient relationships for non-orthogonal covariate pairs for the failure
model (1995-2018 model fits). To be included in a plot in this figure, both relevant covariates must
be present in a generator’s final failure model. Black is combined cycle gas, red is simple cycle gas,
green is diesel, blue is hydroelectric, cyan is nuclear, magenta is steam turbine. Dashed lines indicate
0. Temperature units are degrees C. Load units are GW. Axis scales set independently in each plot.
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Figure B.11: Summarizing coefficient relationships for non-orthogonal covariate pairs for the
recovery model (1995-2018 model fits). To be included in a plot in this figure, both relevant
covariates must be present in a generator’s final recovery model. Black is combined cycle, red is
simple cycle, green is diesel, blue is hydroelectric, cyan is nuclear, magenta is steam turbine. Dashed
lines indicate 0. Temperature units are degrees C. Load units are GW. Axis scales set independently
in each plot.
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Figure B.12: Summarizing the empirical range of hourly transition probabilities (1995-2018 model
fits). Plots include 1,111 generators with at least 10 failure and recovery events per statistically
significant model parameter. Each generator is represented as a vertical line at an integer index (1 to
1,111). In each plot, generators are sorted by generator type and maximum experienced transition
probability. Black is combined cycle, red is simple cycle, green is diesel, blue is hydroelectric, cyan is
nuclear, magenta is steam turbine.
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Figure B.13: Histograms of underpredictions and overpredictions of logistic regression (red)
and current practice (black) models (1995-2018 model fits). The abscissa of the underpredictions
histogram is truncated to improve presentation: the logistic regression model has a maximum
underprediction of 16.2 GW, while the current practice model has a maximum underprediction of
20.8 GW; both models’ maximum underprediction occurs during the Polar Vortex of January 2014.

151



Figure B.14: Prevalence of temperatures experienced by 1,111 modeled generators by generator
type (1995-2018 model fits). For use with Figure 3.6. Note the log scale on the ordinate. CC is
combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped storage, NU is
nuclear, ST is steam turbine.
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3.7 Appendix C: Figures and tables for 2004-2018 model fits

Figure C.1: Locations of 748 generators and linked weather stations, overlaid on corresponding
U.S. states (2004-2018 model fits). Only generators with 10 transitions per statistically significant
model parameter when fitting models using 2004-2018 data are retained. Note that all generators
in multi-generator power plants have identical locations. Orange circles indicate combined cycle,
blue squares with inset ‘x’ indicate simple cycle, yellow triangles indicate diesel, small green squares
indicate hydroelectric and pumped storage, teal ‘plus’ signs indicate nuclear, purple asterisks indicate
steam turbine, and large black squares indicate weather stations. A small number of retained
generators are not shown for presentation considerations: Alabama (2), Louisiana (3), Michigan (12),
Mississippi (3), South Carolina (1), Texas (7).
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Figure C.2: Metered load time series (2004-2018 model fits). Left: hourly time series of metered
system load for PJM transmission zones that have been part of PJM since database inception, with
time trend (red curve) as given by Equation 3.6. Right: residuals from fitting time trend given by
Equation 3.6 to the original series.
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Figure C.3: Histogram of the count of each generator’s least frequently experienced transition
(2004-2018 model fits). The 1,748 generators with at least one full calendar year of data reporting
and at least one unscheduled transition during 1995-2018 are plotted in light gray (consistent with
Figure C.3). Of these, the 748 generators with at least 10 failure and recovery transitions per
statistically significant parameter during 2004-2018 are then overplotted in dark gray. In contrast to
Figure C.3, not all generators with at least 70 failure and recovery transitions are retained due to
the more restrictive time period. Note the log scale on the abscissa.
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Generator type Total count Retained count (%) Total capacity Retained capacity (%)

CC 224 126 (56) 53.4 31.2 (58)
CT 663 44 (7) 44.9 1.9 (4)
DS 236 120 (51) 0.8 0.4 (46)
HD 244 68 (28) 11.0 4.2 (38)
NU 35 32 (91) 37.2 34.2 (92)
ST 443 358 (81) 119.5 106.4 (89)

All 1,845 748 (41) 266.8 178.3 (67)

Table C.1: Summary of total and retained generator counts and capacity, by generator type
(2004-2018 model fits). CC is combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric
and pumped storage, NU is nuclear, ST is steam turbine.
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Figure C.4: Summarizing t-values for the failure model by covariate and generator type (2004-2018
model fits). Only generators for which the covariate is statistically significant at the 0.05 level are
included. Thresholds for significance (+/-1.96) indicated by dashed vertical lines. Constants are
excluded. CC is combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped
storage, NU is nuclear, ST is steam turbine.
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Figure C.5: Summarizing t-values for the recovery model by covariate and generator type (2004-
2018 model fits). Only generators for which the covariate is statistically significant at the 0.05 level
are included. Thresholds for significance (+/-1.96) indicated by dashed vertical lines. Constants are
excluded. CC is combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped
storage, NU is nuclear, ST is steam turbine.
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Generator type Count Mean hot Mean cool Temp hot Temp hot2 Temp cool Temp cool2 Load

CC 126 126 126 17 21 43 80 21
CT 44 44 44 9 6 11 26 16
DS 120 120 120 36 29 57 27 93
HD 68 68 68 11 13 17 12 31
NU 32 32 32 9 2 4 4 12
ST 358 358 358 68 53 84 91 204

All 748 748 748 150 124 216 240 377

Table C.2: Number of times each model term is statistically significant at the 95% level for the
failure model (2004-2018 model fits). Results reported for the 748 generating generators with at
least 10 instances of the less-common transition per parameter in both failure and recovery models.
CC is combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped storage, NU
is nuclear, ST is steam turbine.

Generator type Count Mean hot Mean cool Temp hot Temp hot2 Temp cool Temp cool2 Load

CC 126 124 126 26 27 52 47 69
CT 44 44 44 9 6 18 20 39
DS 120 120 119 41 24 55 62 100
HD 68 67 67 8 15 23 26 56
NU 32 32 32 9 10 5 5 6
ST 358 358 358 58 66 111 87 128

All 748 745 746 151 148 264 247 398

Table C.3: Number of times each model term is statistically significant at the 95% level for the
recovery model (2004-2018 model fits). Results reported for the 748 generating generators with at
least 10 instances of the less-common transition per parameter in both failure and recovery models.
CC is combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped storage, NU
is nuclear, ST is steam turbine.
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Figure C.6: Summarizing coefficients for the failure model by covariate and generator type (2004-
2018 model fits). Only generators for which the covariate is statistically significant at the 0.05
level are included. Dashed vertical lines indicate 0. Constants are excluded. Temperature units
are degrees C. Load units are GW. Abscissa scales set independently. CC is combined cycle, CT
is simple cycle, DS is diesel, HD is hydroelectric and pumped storage, NU is nuclear, ST is steam
turbine.
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Figure C.7: Summarizing coefficients for the recovery model by covariate and generator type
(2004-2018 model fits). Only generators for which the covariate is statistically significant at the 0.05
level are included. Dashed vertical lines indicate 0. Constants are excluded. Temperature units
are degrees C. Load units are GW. Abscissa scales set independently. CC is combined cycle, CT
is simple cycle, DS is diesel, HD is hydroelectric and pumped storage, NU is nuclear, ST is steam
turbine.

161



Figure C.8: Summarizing t-value relationships for non-orthogonal covariate pairs for the failure
model (2004-2018 model fits). Thresholds for significance at 0.05 level (+/-1.96) indicated by dashed
lines. To be included in a plot in this figure, both relevant covariates must be present in a generator’s
final failure model. Black is combined cycle gas, red is simple cycle gas, green is diesel, blue is
hydroelectric, cyan is nuclear, magenta is steam turbine.
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Figure C.9: Summarizing t-value relationships for non-orthogonal covariate pairs for the recovery
model (2004-2018 model fits). Thresholds for significance at 0.05 level (+/- 1.96) indicated by
dashed lines. To be included in a plot in this figure, both relevant covariates must be present in a
generator’s final recovery model. Black is combined cycle, red is simple cycle, green is diesel, blue is
hydroelectric, cyan is nuclear, magenta is steam turbine.
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Figure C.10: Summarizing coefficient relationships for non-orthogonal covariate pairs for the failure
model (2004-2018 model fits). To be included in a plot in this figure, both relevant covariates must
be present in a generator’s final failure model. Black is combined cycle gas, red is simple cycle gas,
green is diesel, blue is hydroelectric, cyan is nuclear, magenta is steam turbine. Dashed lines indicate
0. Axis scales set independently.
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Figure C.11: Summarizing coefficient relationships for non-orthogonal covariate pairs for the
recovery model (2004-2018 model fits). To be included in a plot in this figure, both relevant
covariates must be present in a generator’s final recovery model. Black is combined cycle gas, red is
simple cycle gas, green is diesel, blue is hydroelectric, cyan is nuclear, magenta is steam turbine.
Dashed lines indicate 0. Axis scales set independently.
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Model 0 1 2 3 4 5 6 7

Failure 0 0 141 282 184 110 28 3
Recovery 0 0 150 237 169 145 42 5

Table C.4: Number of statistically significant parameters (including constants) for the 748 generators
with at least 10 instances of the less-common transition per parameter in both failure and recovery
models (2004-2018 model fits).

Model 0 1 2 3 4

Failure 287 247 166 41 7
Recovery 263 233 187 57 8

Table C.5: Number of statistically significant temperature parameters (excluding constants) for
the 748 generators with at least 10 instances of the less-common transition per parameter in both
failure and recovery models (2004-2018 model fits).
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Figure C.12: Summarizing the empirical range of hourly transition probabilities (2004-2018 model
fits). Plots include 748 generators with at least 10 failure and recovery events per statistically
significant model parameter. Each generator is represented as a vertical line at an integer index (1
to 748). In each plot, generators are sorted by generator type and maximum experienced transition
probability. Black is combined cycle gas, red is simple cycle gas, green is diesel, blue is hydroelectric,
cyan is nuclear, magenta is steam turbine.
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Figure C.13: Simulated time series from logistic regression model (2004-2015 model fits). Results
presented for 703 generators with sufficient state transitions to support their failure and recovery
models when fitting on 2004-2015; 2016-2018 used as test of model performance. The split between
training and testing periods is denoted with a dashed vertical line. Weekly averages rather than
hourly series. 5000 simulations conducted. Refer to Table C.6 for installed capacity by calendar
year. Black trace is the empirical time series; blue trace is the concatenation of pointwise median
simulation values; red traces are the concatenation of pointwise 2.5% and 97.5% simulation values.
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Year CC CT DS HD NU ST All

2004 14.8 1.6 0.1 2.9 31.8 79.3 130.5
2005 19.5 1.6 0.1 3.0 33.2 92.1 149.4
2006 20.4 1.6 0.1 3.0 33.2 92.3 150.5
2007 21.9 1.6 0.1 3.0 33.2 99.4 159.2
2008 23.1 1.6 0.1 3.0 33.2 98.8 159.9
2009 23.5 1.6 0.2 3.0 33.2 98.4 159.9
2010 23.3 1.8 0.2 3.0 33.2 98.7 160.1
2011 23.2 1.8 0.2 3.1 33.2 98.6 159.9
2012 25.1 1.8 0.2 3.1 33.2 92.6 155.9
2013 25.4 1.8 0.3 3.1 33.2 92.6 156.2
2014 25.4 1.8 0.3 3.1 33.2 91.0 154.6
2015 25.3 1.3 0.3 3.1 33.2 83.2 146.4
2016 25.3 1.3 0.3 3.1 33.2 82.2 145.4
2017 25.1 1.3 0.3 3.1 33.2 80.2 143.0
2018 25.1 1.3 0.3 3.1 33.2 80.2 143.0

Table C.6: Installed capacity (GW) of 703 retained generators by year and generator type (2004-
2015 model fits). For use with Figure C.13. CC is combined cycle, CT is simple cycle, DS is diesel,
HD is hydroelectric and pumped storage, NU is nuclear, ST is steam turbine.

169



Figure C.14: Expected levels of unavailable capacity under logistic regression (dots) and current
practice (dashed horizontal line), as a function of temperature (2004-2018 model fits). Black
dots calculated using median load from temperature neighborhood, red dots calculated using 90th

percentile load from temperature neighborhood. Temperature neighborhood is defined as +/-10
degrees. Not all generators experience full temperature range; see Figure C.15 for prevalence of
temperatures. CC is combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and
pumped storage, NU is nuclear, ST is steam turbine.

170



Figure C.15: Prevalence of temperatures experienced by 748 modeled generators by generator
type (2004-2018 model fits). For use with Figure C.14. Note the log scale on the ordinate. CC is
combined cycle, CT is simple cycle, DS is diesel, HD is hydroelectric and pumped storage, NU is
nuclear, ST is steam turbine.
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Figure C.16: Expected levels of unavailable capacity as a function of load under logistic regression
(dots) and current practice (dashed horizontal line) when restricting to temperatures below 18.3
degrees Celsius (2004-2018 model fits). Black dots computed at median temperature from load
neighborhood; blue and red dots correspond to 10th and 90th percentile temperatures from load
neighborhood, respectively. Load neighborhood defined analogously to temperature neighborhood of
Figure C.14. Current practice dashed line matches that of Figure C.14. Plot domain defined using
only observations below 18.3 degrees. Abscissa spans different values than Figure 3.7 because load
stationarizing procedure computed independently for 2004-2018 model fit. CC is combined cycle, CT
is simple cycle, DS is diesel, HD is hydroelectric and pumped storage, NU is nuclear, ST is steam
turbine.
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Figure C.17: Expected levels of unavailable capacity as a function of load under logistic regression
(dots) and current practice (dashed horizontal line) when restricting to temperatures above 18.3
degrees Celsius (2004-2018 model fits). Black dots computed at median temperature from load
neighborhood; blue and red dots correspond to 10th and 90th percentile temperatures from load
neighborhood, respectively. Load neighborhood defined analogously to temperature neighborhood of
Figure C.14. Current practice dashed line matches that of Figure C.14. Plot domain defined using
only observations above 18.3 degrees. Abscissa spans different values than Figure 3.8 because load
stationarizing procedure computed independently for 2004-2018 model fit. CC is combined cycle, CT
is simple cycle, DS is diesel, HD is hydroelectric and pumped storage, NU is nuclear, ST is steam
turbine.
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Chapter 4 Resource adequacy implications of
temperature-dependent generator availability*

Abstract

Standard resource adequacy modeling assumes generator failures are unconditionally independent and invariant

to ambient conditions. We evaluate the resource adequacy implications of correlated failures in the PJM

Interconnection by making use of recently developed temperature-dependent forced outage rates for the

grid operator’s conventional generator fleet. To carry out this analysis, we modify the Renewable Energy

Capacity Planning Model, an open-source resource adequacy tool, and parameterize it for PJM’s system. We

demonstrate correlated failures pose substantial resource adequacy risk, increasing PJM’s required reserve

margin from 15.9% to 22.9% to achieve their target loss-of-load-expectation in the 2018/2019 delivery year.

However, PJM actually procured a 26.6% reserve margin for this delivery year, translating to excess capacity

payments of $315 million per year and an implied value of lost load of approximately $700k/MWh, a figure two

orders of magnitude greater than typically used in operational contexts. This suggests substantial potential

benefit in applying our method to aid grid operators in quantifying the capacity levels necessary to achieve

a desired reliability target. Capacity requirements vary by month, with more than 95% of loss-of-load risk

accruing in July, due to high temperatures increasing both demand for electricity and the probability of

generator failures. We find that setting monthly capacity targets instead of an annual target could reduce

procurement by approximately 16% in PJM over the delivery year. Given economic pressure being exerted on

nuclear and coal generators in PJM, we examine the resource adequacy implications of replacing them with

combined-cycle gas generators. We find moderate benefits of these resource transitions: approximately 1% and

3% reduction in capacity requirements, respectively, driven by lower forced outage rates for combined-cycle

gas generators during peak-load hours. We identify modest resource adequacy risks from potential future

climate scenarios, operationalized as temperature increases of 1 and 2 degrees Celsius relative to our study

period. Holding loads fixed, these scenarios increase capacity requirements by approximately 0.5% and 1.5%,

respectively. The resource transition scenarios and future climate scenarios offset each other to varying

degrees, resulting in modest changes in capacity requirements in order to maintain the target reliability level.

* Joint work with Luke Lavin.
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4.1 Introduction

Significant attention has been given to the question of how much generation capacity is required

to ensure power system reliability [1–12]. In the U.S., system operators have formalized probabilistic

approaches for determining capacity requirements in their balancing area. These methods are designed

to satisfy mandatory reliability targets established by the North American Electric Reliability

Corporation (NERC) and approved by the U.S. Federal Energy Regulatory Commission (FERC) [13].

In parts of the U.S. where planning and operation are mediated by an independent system operator

(ISO) or Regional Transmission Organization (RTO), capacity procurement processes are also

reviewed by planning leadership and stakeholder bodies. In the subset of ISOs with competitive,

centralized capacity procurement, capacity obligations for load-serving entities in the balancing area

may be used to parameterize the demand curve for the capacity market [14, 15]. Capacity markets

are intended to help provide generators with revenue sufficiency and stability in support of long-term

resource adequacy [16,17].

Despite these quantitative procedures, there is a tendency in recent years toward capacity over-

procurement. A recent NERC Summer Reliability Assessment reports that most assessment areas

have anticipated reserve margins well in excess of their NERC reference summer target [18]. Similarly,

the PJM Interconnection LLC (PJM), the largest system operator by installed generating capacity

and load in North America, forecasts a planning reserve margin of approximately 25-29% over the

period of 2019-2028, while their annual Reserve Requirement Study calls for no more than 16% over

that period [19]. Higher procurement may be justified by a low cost of maintaining existing supply

in an era of low load growth [20] or in response to systematic under-forecasting of high demand

events. In PJM’s case, several recent weather events have stressed the grid, including Hurricane

Sandy (2012), the Polar Vortex of January 2014, and cold snaps in subsequent winters. This suggests

that current approaches to resource adequacy modeling are not capturing important reliability risks,

and that better methods may be able to reduce the need for heuristics in determining capacity

procurement.

Recent research examined key assumptions made in resource adequacy modeling. Using four
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years of Generating Availability Data System (GADS) data for the eight North American reliability

regions, [21] demonstrates large generation outage events—correlated generator failures—occur with

much greater frequency than is consistent with the assumptions of unconditional independence of

generator failures and constant failure probabilities currently made [19]. Assuming unconditional

independence and constant generator failure probabilities lowers the probability of large-outage

events at the system level.

To identify a plausible mechanism to explain observed correlated failures, subsequent research

explicitly modeled generator transition probabilities. Based on 23 years of GADS data for the

PJM Interconnection, [22] used logistic regression to demonstrate significant correlations between

transition probabilities and temperature. At both very cold and very hot temperatures, PJM’s

fleet is less available than on average. For example, nuclear generators are less available at high

temperatures, likely due to cooling water constraints, while natural gas generators are less available

at low temperatures, in part due to fuel unavailability. This temperature dependence was also

shown to capture most of the observed correlated failures over the data period. Given that extreme

temperatures tend to be associated with high loads and that temperatures are highly spatially

correlated at the scale of an individual balancing area such as PJM, it follows that temperature

dependence could pose significant resource adequacy risks for PJM.

Here we examine the resource adequacy implications of temperature-dependent generator avail-

ability. To do this we use the temperature dependence of generator resources identified in [22] and a

modified version of the Renewable Energy Capacity Planning Model (RECAP) [23], an open-source

resource adequacy tool originally developed by Energy+Environmental Economics (E3) in collabora-

tion with the California Independent System Operator.1 Like the resource adequacy planning tools

used by PJM, RECAP computes loss of load expectation (LOLE) given a parameterized fleet of

generators and a load forecast. We modify RECAP to allow each generator’s forced outage rate to

depend on hourly ambient temperature in PJM’s footprint, rather than fixing it at an average value
1E3 includes the following disclaimer with the user guide to the public version of the model: "RECAP is open-source

and not a commercial software package, thus users are welcome to modify or tailor any part of the RECAP model
to their needs. RECAP has a complicated set of inputs and model settings and E3 takes no responsibility for the
validity of results produced by third parties using this model, which requires some intuition and knowledge of the
methodology to use successfully." We change the underlying RECAP Python source code to enable input of hourly
generator forced outages dependent on ambient conditions.
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in a given month or year, as is common industry practice. We use this modification to compute

capacity requirements for PJM under two scenarios: current practice (representing assumptions

of unconditional independence and constant failure probabilities) and when allowing generator

availability to depend on temperature. By comparing these two sets of results, we can identify when

violations of planning assumptions are most likely to result in loss-of-load events. This information

can be used to incentivize appropriate risk mitigation investments. Given that extreme temperatures

are seasonal, we also use RECAP to set monthly capacity targets to achieve the same reliability

metric and quantify the implied reductions in capacity that could be obtained versus the current

annual procurement approach. Finally, we explore how various bounding changes to the resource

mix and future temperature increases under climate change scenarios may affect resource adequacy

in PJM.

We find that relaxing the restrictive assumptions of unconditionally independent generator failures

and constant generator failure probabilities uncovers substantial latent resource adequacy risk: a

6% increase in annual procurement (corresponding to a 7 percentage point increase in the reserve

margin) is required to maintain the target 0.1 LOLE in the 2018/2019 delivery year. This is driven

by the temperature dependence of generator availability, which can lead to substantially different

distributions of available capacity at different hours of a given day, in conjunction with strong

spatial dependence of temperature across the PJM footprint. Monthly capacity procurement targets

could reduce annual average procurement by 16% in PJM with negligible impact on LOLE. An

increase in temperature of 2 degrees Celsius from current levels would increase annual procurement

requirements by 1.5%. Replacement of all nuclear and coal generation in PJM with equivalently sized

combined-cycle gas generators having the same forced outage rates as PJM’s existing combined-cycle

generators leads to a reduction in annual procurement requirements of 1% and 3%, respectively, due

to combined-cycle generators having lower forced outage rates during peak-load summer hours which

have the highest LOLE. Finally, combining the temperature and retirement cases described above

results in a 1% increase and 0.5% decrease in capacity requirements when replacing nuclear and coal

generators, respectively.

The remainder of the paper is organized as follows. Section 4.2 reviews how resource adequacy
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modeling is currently conducted in PJM. Section 4.3 describes the RECAP model. Section 4.4

describes data development, modeling, and RECAP parameterization. Section 4.5 presents results.

Section 4.6 concludes.

4.2 Overview of resource adequacy modeling in PJM

Resource adequacy is concerned with ensuring sufficient forward procurement of generation

capacity to serve firm load within the operational parameters of the grid. Each year PJM conducts

a resource adequacy planning analysis that seeks to determine the level of capacity required to

limit the frequency of loss-of-load events to once in 10 years, termed 0.1 loss of load expectation

(0.1 LOLE) [13].2 Each analysis forecasts capacity requirements for the next 11 delivery years.3

The modeling process considers historical generator forced outage rates, generator maintenance

requirements, load forecast error, peak load variability, interzonal transmission constraints, and

emergency transfer capacity from neighboring synchronous balancing authorities [19, 25]. The

installed reserve margin (IRM) is the quantity of capacity required to meet the reliability criterion,

reported as a percentage above the forecast 1-in-2 (median) peak load [19,25].

PJM forecasts the 1-in-2 peak load for the delivery year using an econometric model in conjunction

with historical temperature profiles [19,20,25,26]. To determine the peak demands for each week

of the future delivery year, PJM takes the five most recent years of metered loads and normalizes

each daily peak by that year’s peak value. These normalized daily peak values are used to sort

the 52 weeks of each historical load year in descending order by weekly peak by season. After

magnitude-ordering the weeks, the 25 normalized peak-load observations for each calendar week are

used to calculate a mean and standard deviation, defining a Gaussian distribution for that week,

assumed to apply to each weekday of the week. This information, along with the forecast peak load

and a forecast error factor, is used to calculate the most probable peak load for each week of the

2The LOLE metric used by PJM does not consider either the duration or magnitude of the load-shed event. Some
U.S. system operators use a different interpretation where "once in ten years" instead means 24 total hours of expected
load shed per 10 years; some international systems consider magnitude by using a quantity of expected unserved
energy as the reliability metric [24].

3The delivery year begins June 1 and ends May 31 of the following calendar year.
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future delivery year. The most probable peak for week i (MPPi) is calculated as:

MPPi = µi + 1.163 ∗ ψi (4.1)

where µi is the mean of the Gaussian distribution for week i, ψi =
√
σ2i + FEF 2 is the standard

deviation after including the forecast error factor (FEF ), σi is the standard deviation of the Gaussian

distribution for week i, and 1.163 is a multiplier that relates the expected value of the maximum of a

sample drawn from a Gaussian distribution to the mean and standard deviation of that distribution,

based on the number of draws [27].4 Uncertainty in each weekly peak load is assumed to follow a

Gaussian distribution centered at MPPi with standard deviation ψi. For purposes of calculating

LOLE, PJM represents each week’s Gaussian as a probability mass function using 21 equally spaced

points spanning +/- 4.2 standard deviations. As will be described in detail below, the goal of PJM’s

procedure is to determine whether sufficient generation capacity will be available to meet each of the

21 points in each week of the delivery year. Points for which this is not true accrue LOLE.

With the 21 possible peak load values for each week of the delivery year established, PJM next

forecasts the performance of its generator fleet for the delivery year. For each generator expected

to serve the balancing area during the delivery year, PJM uses the most recent 5 years of GADS

data to calculate the forced outage rate.5,6 Each generator is modeled as a two-state homogeneous

Markov model, with available and unavailable states, where the forced outage rate is assumed to

represent the probability of the generator being unavailable when needed by the system. Note that

the forced outage rate is assumed to apply in all hours of the delivery year—i.e., the probability of

failure is assumed to be constant.

To determine the probability distribution of available capacity for the power system, all possible

4Here, 1.163 is the first Gaussian order statistic for n=5 draws, corresponding to five weekdays in each week.
5The precise forced outage rate used by PJM has changed over the years. Prior to the creation of the Capacity

Performance capacity product, implemented through changes to PJM’s capacity market in 2015 in response to poor
generator performance during the 2014 Polar Vortex, PJM used XEFORd. XEFORd does not penalize generators for
events considered “outside management control”. For Capacity Performance resources, all failures are now considered
the responsibility of the plant owner, and the availability statistic has switched to EFORd. Procurement of Capacity
Performance resources began with the Base Residual Auction for the 2018/2019 delivery year (held in 2015); the
Base Residual Auction for the 2020/2021 delivery year was the first that procured only Capacity Performance
resources [28,29].

6Generators with fewer than 5 years of historical data are supplemented by class-average data.
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combinations of generator states are enumerated [19, 26]. The probability of a given state is

computed as the product of the relevant generator-level probabilities, thereby assuming unconditional

independence of generator failures. This forecast distribution of available capacity is then compared

to the forecast peak load distribution in each weekday of the delivery year (approximately 260 days),

as described previously, to compute the total LOLE for the delivery year [19]:

LOLE =
260∑
i=1

LOLEi

=

260∑
i=1

21∑
j=1

LOLPj

=
260∑
i=1

21∑
j=1

P (Dj) ∗ P (G < Dj)

(4.2)

where LOLEi is the aggregate loss of load expectation for weekday i of the delivery year, LOLPj

is the loss of load probability at the load value corresponding to the jth position in the 21-point

Gaussian representing weekday i’s MPP, P (Dj) is the probability of the jth load value occurring, and

P (G < Dj) is the probability of available generation (i.e., generation not on forced, maintenance, or

planned outage) being insufficient to meet the jth load value.7 The forecast peak load is then scaled

until aggregate loss of load expectation (equation 4.2) precisely satisfies the reliability criterion (0.1

LOLE), and then the final IRM for the delivery year is calculated.

The IRM is used to define PJM’s piecewise-linear demand curve for capacity for the corresponding

delivery year, termed the variable resource requirement (VRR) curve. Capacity obligations for

participating load-serving entities are procured through a set of forward auctions in the PJM capacity

market, termed the reliability pricing model (RPM). The first auction is held three years prior to the

start of the delivery year, with three subsequent auctions used to address any changes in capacity

requirements that may emerge [25].

7G is shifted to account for ambient deratings during the summer and aggregate maintenance requirements
(primarily scheduled during off-peak months). While it would therefore be more precise to use Gi to represent the
distribution of available capacity, in broad strokes this distribution is the same across the delivery year due to the
assumption of constant failure probabilities.
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As will be discussed in detail below, our contribution is to evaluate the resource adequacy

implications of relaxing the assumption of an invariant G, based on previous research demonstrating

that the distribution of available capacity strongly depends on temperature [22].

4.3 RECAP

RECAP [23] was developed by Energy+Environmental Economics (E3) in collaboration with the

California Independent System Operator to improve resource adequacy valuation of unconventional

capacity resources like wind and solar. RECAP is similar in scope and capabilities to PJM’s own

resource adequacy tools and has been used by system operators, utilities, and in regulatory processes.

It is implemented in Python with a Microsoft Excel front end for case development. We briefly

describe the main functionality of the open-source version of the model used in this paper and our

modifications.

RECAP divides the 8760 hours of the delivery year into time-slice bins for quantifying loss-of-load

risk. By default, there are 576 time-slice bins: month (12) x hour (24) x weekday/weekend (2).8

The user may define additional bins by load level within the month x hour x weekday/weekend

time-slices to improve the model’s ability to represent peak loads. Using historical input data, the

contribution of wind and solar generation in each time-slice bin is subtracted from the load. RECAP

then fits a user-selected probability distribution to the net-load data in each bin; we employ Gaussian

distributions for consistency with PJM.

RECAP uses the forced outage rate for each conventional generator to compute a probability

distribution of available capacity for the power system in each time-slice bin. We modify the

RECAP source code, which by default can only consider generator outage probabilities at a monthly

granularity, to consider hourly ambient temperature when generating this probability distribution.

In this way we relax the assumption that available capacity of conventional generation is invariant

to temperature.

8Recall from Equation 4.2 that PJM assumes that only non-holiday weekdays represent LOLE risk, while RECAP
includes weekends and holidays. There is little discrepancy introduced by this difference: we find that weekends
represent less than 0.1% of total LOLE under both the temperature-dependent and the unconditional forced outage
rates scenarios.
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RECAP computes the probability that net load exceeds available generation (termed the loss of

load probability, LOLP) in each bin through convolution of the corresponding net load and generation

availability probability density functions. Results are aggregated across any additional user-defined

load bins, weighting appropriately.9 By default, RECAP sums up resulting LOLP over all hours

of the delivery year; however, to better match PJM’s definition of LOLE, we modify RECAP to

consider only the peak LOLP hour in each day.

4.4 Data development, modeling and parameterization

We parameterize RECAP with PJM’s conventional generator fleet, hourly wind and solar

generation profiles, hourly temperature data, and normalized historical PJM hourly load data. We

discuss the development of each set of inputs below.

4.4.1 Conventional generator fleet

We use the PJM GADS database [30] to define the currently operating conventional generators

serving the PJM balancing area, which includes all generators other than wind, solar, and behind-

the-meter resources.10 From PJM GADS we obtain full operating histories of each conventional

generator serving the balancing area between 1995-2018Q1. In RECAP we parameterize conventional

generators by their nameplate capacity and generator type, both of which are reported in PJM

GADS, and their forced outage rate, which we calculate from PJM GADS.

We develop both temperature-dependent and unconditional forced outage rates for each generator.

Temperature-dependent forced outage rates are calculated using the logistic regression approach

described in [22]. In brief, the model specification includes linear and quadratic terms for both cold

and hot temperatures in each hour, as well as a linear load term; the threshold delineating cold and

hot temperatures is 18.3 degrees Celsius (65 degrees Fahrenheit). After fitting these models using all

9For example, if three load bins were used, with splitting occurring at the 80th and 90th percentiles, the three
LOLP values for the current month x hour x weekday/weekend level would be weighted by 80%, 10%, and 10%.

10PJM GADS resource types include the following: combined-cycle gas (abbreviated as CC in figures and tables),
simple-cycle gas (CT), diesel (DS), hydroelectric and pumped storage (HD), nuclear (NU), and steam turbine (ST). In
2017, the vast majority (95%) of ST generation in PJM was from coal, thus we use the two terms interchangeably [15].
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available data, we evaluate them at a temperature of interest (along with the median load value

at that temperature) to obtain a transition probability matrix governing failures and recoveries for

each generator at that temperature. Eigendecomposition allows us to obtain the ergodic probability

of a generator being unavailable at that temperature. We repeat this procedure over a temperature

range of -30 degrees Celsius to 40 degrees Celsius for each generator and compute the average by

generator type.

Repeating this process for each generator sweeping over temperatures allows us to obtain our

final result: temperature-dependent forced outage rates.11

We calculate unconditional forced outage rates using the following equation:

EFOFi = (FOHi + EFDHi)/PHi (4.3)

where EFOFi is the equivalent forced outage factor for generator i,12 FOHi (forced outage hours)

is the sum of hours where generator i experiences a forced outage, EFDHi (equivalent forced

derating hours) is the sum of hours where generator i experiences a forced derating, reported on a

full-outage-equivalent basis, and PHi (period hours) is the total number of hours of data reporting

for generator i. While resource adequacy studies in PJM are conducted using the five most recent

years of GADS data, here we use all historical data for each generator, consistent with our approach

for computing temperature-dependent forced outage rates.13 As with the temperature-dependent

forced outage rates, we then compute averages by generator type. We use the unconditional forced

outage rates to establish a baseline representing current PJM practice. This allows us to quantify

latent resource adequacy risk from temperature-dependent generator availability.

Temperature-dependent distributions of available capacity for PJM’s conventional generator fleet

are shown in Figure 4.1. The distributions of available capacity at cold and hot temperatures are

shifted to the left of the distributions at moderate temperatures, indicating less available capacity on

11See [22, Procedure 4] for more information.
12EFOF is an approximation of EFORd, the availability statistic actually used by PJM, that allows us to

circumvent data reporting limitations in PJM GADS prior to 2004. For further discussion see [22, Section 4].
13Given the infrequency of generator failures, the logistic regression approach requires many years of data to avoid

introducing bias into the estimated transition probabilities [31]; see [22, Section 2] for more details.

183



average; they are also shorter and wider than the distributions at moderate temperatures, indicating

greater risk of large deviations from the average.

Figure 4.1: Distributions of available capacity as a function of temperature for PJM’s conventional
generator fleet (narrow curves, various colors). Note reduced capacity at both cold and hot tempera-
tures. Wide black curve is the distribution of the 1-in-2 (median) load forecast. Dashed black line is
the peak value from the 1-in-2 load forecast.

A comparison of available capacity for selected hours in July for the temperature-dependent

and unconditional forced outage rate scenarios is shown in Figure 4.2. The temperature-dependent

afternoon distribution is shifted to the left of, and has a higher variance than, the unconditional

forced outage rate distribution due to the high temperatures that occur during afternoon hours in

July. Current resource adequacy modeling procedures do not account for this shift in the available

capacity distribution when determining capacity requirements.
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Figure 4.2: Illustration of how temperature-dependent forced outage rates can identify latent
resource adequacy risk. Distributions of available capacity for selected July hours using temperature-
dependent forced outage rates shown in red and orange; the distribution of available capacity
when using unconditional forced outage rates shown in blue. Black and gray curves indicate load
distributions for corresponding July hours. "HE" indicates hour-ending. Current practice does not
recognize that the distributions of available capacity will differ between morning and afternoon due
to the temperature differential, and consequently understates the risk of not being able to serve load.

4.4.2 Wind generation

To model wind generation output and its coincidence with peak load, RECAP requires an hourly

normalized historical generation profile (i.e., as a fraction of maximum output) and quantity of

installed wind capacity for the modeled delivery year. Because of the relatively recent vintage and

sparse public hourly generation data for most wind generators in PJM, we choose to model wind

generation rather than use empirical profiles.

To develop normalized wind generation profiles, we first identify online wind generators serving

PJM as of December 2017 using Energy Information Administration (EIA) Form 923 [32]. Identified

generators are then matched against the U.S. Wind Turbine Database [33] to obtain information

about physical location, generator online date, turbine hub height and turbine technology, as well as

to verify installed capacity. We exclude all installations with less than 4 MW capacity and those

that could not be matched, leaving 89 wind generation locations in PJM totaling 8.3 GW of installed
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capacity (more than 97% of total installed capacity).

To simulate hourly output from each of these wind sites, we then match their location data

against the closest available 100-meter hub height wind speeds from the National Renewable Energy

Laboratory’s (NREL) Wind Integration National Dataset Toolkit [34], which contains 5-minute

windspeeds for 2007-2012. Matched 100-meter windspeeds are scaled to individual generator

hub heights using [35, Equation 2]. Wind speeds are then converted to power output using an

appropriate power curve given the vintage and type of installation [34]. To account for degradation

in wind turbine performance over time, we apply a historical degradation factor as a function of

generator age in 2018 using Lawrence Berkeley National Laboratory’s 2017 Wind Technologies

Market Report [36, Figure 39].

Our resulting simulated wind generation output for 2007-2012 has a 39% capacity factor compared

to a reported capacity factor of 32.6% for installations in the Great Lakes region and 44.4% for

installations in the Interior region of the country [36, Figure 41]. Because most PJM wind capacity

is located in Illinois, Indiana, and Ohio, closely mapping to the Great Lakes region, we derate

our simulated hourly profiles to match the reported empirical 32.6% Great Lakes Region capacity

factor.14 Though our approach and RECAP’s functionality enable calculation of the capacity value

of each wind generation site in PJM individually, for study scope and model runtime reasons we

aggregate generation into a single shape for input into RECAP.

4.4.3 Solar generation

As with wind generation, RECAP takes two key inputs for solar generation: hourly normalized

generation profile(s) as a fraction of maximum output, and a total quantity of installed capacity

corresponding to the profile(s) for the modeled delivery year. Given our focus on conventional

resources and the relatively low level of utility-scale solar capacity in PJM, we model a single

aggregate solar generation profile.

To develop the hourly normalized solar profile for PJM, we obtain solar radiation and weather

data from NREL’s National Solar Radiation Database [38, 39], and convert it to alternating current
14Reasons for simulated generation exceeding actual performance may include curtailment, turbine down time for

maintenance, wake effects, and icing on blades [37].
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(AC) generation output using Pacific Northwest National Laboratory’s (PNNL) GridLab-D solar

panel and inverter objects [40]. GridLab-D uses the same solar modeling as NREL’s System Advisory

Model [41], a widely used engineering-economic tool.

Key assumptions for our PJM solar shape include a fixed solar panel tilt of 30 degrees, a solar

multiplier of 1.2, an inverter efficiency of 96%, a panel efficiency of 17% and a constant power factor

of 1.0. We use a south-facing panel orientation, which maximizes capacity factor. Hourly modeled

profiles are adjusted to account for daylight savings time and leap years. The resulting annual

average AC capacity factor for this PJM shape is 19.3%.

Using EIA-923 [32] we identify approximately 2 GWAC of installed utility-scale solar capacity

online in PJM as of December 2017. This includes 1.3 GWAC of capacity in Maryland, Virginia,

Delaware, Ohio, Pennsylvania, Indiana, Illinois, and Kentucky, and an additional 0.7 GWAC in

North Carolina that may be deliverable to PJM. We assume behind-the-meter solar generation is

accounted for in the input load profiles.

4.4.4 Temperature data

We obtain hourly historical temperature data from the National Oceanic and Atmospheric

Administration [42]. Temperature data are used for two purposes: first, to specify a load regression

and obtain a time trend for PJM loads; and second, to estimate the ambient temperature in PJM

for the 2018 delivery year to model the probability of hourly generator forced outages under the

temperature-dependent scenario.

We select weather stations corresponding to Chicago, Cleveland, Philadelphia and Washington,

D.C. for 2006-2017, the same time period as our historical load data. We process each into hourly

time series and then average them together to derive our input temperature series for PJM. Over

this period there was nearly complete reporting for each weather station: in total only 25 hourly

observations were missing across the four weather stations. Missing observations were interpolated

using the nearest non-missing observation.

187



4.4.5 Load forecast

We obtain hourly historical metered load data from PJM by zone for 2006-2017 and aggregate to

a PJM-wide load shape for input to RECAP. 2006 is chosen as a starting point for historical loads

because in the years immediately prior there were significant changes to the PJM footprint with

the addition of Duquesne Light (2005), Dominion (2005), Commonwealth Edison (2004), American

Electric Power (2004), and Dayton Power and Light (2004). Since 2006, three zones have been

added to PJM: American Transmission Systems Inc. (ATSI, 2011), Duke Energy Ohio and Kentucky

(DEOK, 2012), and East Kentucky Power Cooperative (EKPC, 2013). To account for these missing

zonal loads, we develop a correlation matrix between ATSI, DEOK, EKPC, and the zones that were

present since 2006. We then match ATSI, DEOK, and EKPC to the zone with which each is most

highly correlated. ATSI and DEOK most closely match Dayton Power and Light, while EKPC is

matched to American Electric Power; the correlation of each of the three zones with their matched

zone is always greater than 0.95. We then fill in the unobserved loads in ATSI, DEOK, and EKPC

using the corresponding load in the matched zone, scaling by the ratio of the average loads.

With the unobserved loads added back in, we next seek to estimate the time trend in the historical

PJM load data so that we can make the historical values comparable to loads in our future delivery

year. We model daily loads using the following linear regression specification:

Loadt = Chi_HDDt + Chi_CDDt + Cle_HDDt

+ Cle_CDDt +DC_HDDt +DC_CDDt

+ Phi_HDDt + Phi_CDDt +Weekdayt + Tt

(4.4)

where Loadt is the sum of the hourly loads in day t, Chi, Cle, DC, and Phi are abbreviations of

the four cities in PJM’s footprint for which we collect airport temperature data (Chicago, Cleveland,

Washington, D.C., and Philadelphia), CDDt is cooling degree days in day t, HDDt is heating degree

days in day t, Weekday is a Boolean variable indicating whether day t is a non-holiday weekday,

and T is a linear time trend.
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We use the coefficient of T when modeled on the full 2006-2017 load data to de-trend historical

loads to the 2018 delivery year for input to RECAP. In addition to the historical loads, RECAP

takes in the forecast peak load and forecast total annual load for the delivery year. The 1-in-2

(median) unrestricted forecast peak load for our delivery year is 152.1 GW and the forecast annual

load is 806.7 TWh (92.1 GWavg) [43].

4.4.6 RECAP parameterization

Finally we parameterize RECAP with the developed generator fleet and load forecast for the

modeled delivery year. We summarize our base parameterization in Table 4.1, matching PJM’s

parameterization reported in the 2018 Reserve Requirement Study (RRS) to the extent feasible [19].

We note that our parameterization does not account for all modeling details that are included in

PJM’s resource adequacy analysis. In particular, we do not include transmission constraints nor

emergency imports from neighboring power systems. We do not include demand response (DR) due

to the simplifications required to model duration-limited resources in RECAP; however, for this

reason PJM also omits DR from the RRS.15

4.5 Results

We conduct several RECAP runs to examine the resource adequacy risks of temperature-

dependent generator availability. First we compare capacity requirements to achieve 0.1 LOLE

under unconditional and temperature-dependent forced outage rates. We next examine potential

reductions in capacity requirements when setting monthly targets, rather than a single annual target.

We then quantify the value of lost load (VOLL) implied by a range of reliability criteria by looking

at the incremental change in expected unserved energy (EUE) associated with an incremental change

in the quantity of capacity procured. Finally, we evaluate the resource adequacy implications of

selected future generation and temperature scenarios.

15At minimum, the total number of calls per delivery year and the maximum duration of a call need to be specified
to endogenously model DR’s contribution to resource adequacy. This requires tracking system state over sequential
hours. The version of RECAP modified for this study does not model sequential hours, though it does allow for
ex-post analysis of DR’s contribution by outputting hourly LOLP for the input historical hours.
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Table 4.1: Parameterizing the RECAP model.

Metric Value

Conventional generation1, 2 207.5 GW installed capacity
Solar generation 2.0 GW installed capacity
Wind generation 8.3 GW installed capacity
Demand response3 0 GW
Emergency imports4 0 GW
Footprint All current PJM zones
Zonal disaggregation None
Scheduled outages Average historical requirements by generator type and calendar month
Peak load forecast5 152.1 GW
Load percentile bins6 0-80, 80-90, 90-100
Reliability metric7 0.1 LOLE per year
Capacity addition resource8 Combined-cycle gas generator
1 We enforce a 2.5 GW reduction to thermal generator capacity July–August. This corresponds to the 2.5 GW
of thermal capacity that PJM puts on planned outage during weeks 6-15 of the delivery year to account for
thermal generator capability reductions driven by high temperature and humidity.

2 This number includes all non-retired conventional resources reporting to GADS as of 2018 Q1. It includes
resources in the PJM footprint as well as resources external to PJM which have obtained firm transmission to
the PJM system and firm available transfer capability into PJM [19]. For comparison, 209 GW of installed
capacity was eligible to be offered into the 2018/2019 Base Residual Auction, 189.6 GW of which was
offered [28].

3 We do not include demand response (DR) in the model due to the difficulty of parameterizing it in RECAP;
PJM similarly omits it from their annual Reserve Requirement Study.

4 Represents emergency capacity from neighboring power systems
5 Corresponds to the peak load used in delivery year 2018/19 [19].
6 Percentiles of the load in each hour x month x weekday/weekend “bin”. Gaussian distributions are subsequently
fit to each set of load observations.

7 PJM does not consider weekends in calculating LOLE.
8 This is the resource assumed to be built if the load forecast results in greater than 0.1 LOLE for the existing
fleet.
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4.5.1 Aggregate effect of accounting for temperature dependence

We begin by determining capacity requirements for achieving the 0.1 LOLE reliability target

when treating generator forced outage rates as invariant to temperature. In this scenario, 174.5 GW

of conventional generation capacity, corresponding to a 15.9% planning reserve margin, is required to

cover the forecast 1-in-2 peak load.16,17 For comparison, PJM reports that a 16.2% planning reserve

margin achieves 0.1 LOLE for the 2018/2019 delivery year [19]. The close agreement between these

two results gives us confidence that we have captured the primary drivers of LOLE in PJM despite

not accounting for emergency imports or zonal transmission constraints, nor using PJM’s internal

modeling tools.

When using temperature-dependent forced outage rates, capacity requirements to achieve 0.1

LOLE increase by 10.6 GW to 185.1 GW, corresponding to a 22.9% planning reserve margin. This

difference represents substantial latent resource adequacy risk from the simplifying assumption

that forced outage rates are invariant to temperature. However, even the higher 185.1 GW figure

is less than the 192.6 GW of total capacity (26.6% planning reserve margin) PJM procured for

the 2018/2019 delivery year [28, 44].18 Using a capacity market clearing price of $184/MW-day

($67.2/kW-year), this translates to $315 million per year in additional capacity payments beyond

what is required to achieve 0.1 LOLE when accounting for temperature dependence in generator

availability.19 To the extent that PJM has set the parameters of its capacity demand curve to hedge

against unmodeled resource adequacy risk driven by correlated failures, the method presented here

offers a means of more precisely quantifying capacity requirements for achieving a target LOLE.

While greater reliability is desirable, a demand curve for forward capacity procurement in markets like

16We report installed capacity values rather than unforced capacity values throughout this section. Unforced
capacity values deflate installed capacity by the generator’s forced outage rate and are used by PJM to determine
capacity payments for generators that clear the capacity market.

17We focus on conventional generation requirements (i.e., capacity requirements net of wind and solar) when
reporting capacity quantity results. However we include the capacity value of the wind and solar resources when
reporting the corresponding planning reserve margin.

18The majority of capacity required to serve the balancing area is centrally procured on behalf of load-serving
entities via the Base Residual Auction (BRA); however, load-serving entities are allowed to procure capacity through
a separate bilateral mechanism termed the Fixed Resource Requirement (FRR). In the 2018/2019 delivery year, 177.4
GW was procured through the BRA and 15.2 GW was procured through the FRR.

19$184/MW-day is the average of 2018/2019 final zonal capacity prices, weighted by zonal unforced capacity
obligations [45]. PJM capacity prices have fluctuated in recent years for multiple reasons but generally clear between
$100/MW-day–$200/MW-day; other centralized capacity markets have experienced similar or more price volatility [46].
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PJM’s is meant to balance the incremental costs and benefits of capacity, and should be articulated

as accurately as possible to achieve this aim.

As a sensitivity analysis, we determine the quantity of capacity required to achieve a range of

reliability targets, from 0.02 LOLE to 0.18 LOLE (Figure 4.3). Achieving a lower LOLE target

requires additional capacity procurement, implying a higher value of lost load (VOLL) for PJM and

its stakeholders. The difference in capacity requirements between the unconditional and temperature-

dependent forced outage rates scenarios is reasonably constant, ranging from 10.4 GW at 0.18 LOLE

to 11.0 GW at 0.02 LOLE. PJM’s procurement of 192.6 GW places it at 0.02 LOLE when accounting

for temperature-dependent forced outage rates, the most stringent procurement scenario we consider.
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Figure 4.3: Incremental generator capacity required to achieve various LOLE targets under
unconditional (hollow blue circles) and temperature-dependent (solid red circles) forced outage
rates. Values are calculated with respect to the baseline reliability standard (0.1 LOLE) under
unconditional forced outage rates. Circle size indicates corresponding planning reserve margin. For
a fixed reliability level, the distance between the hollow blue circle and the red circle indicates the
magnitude of latent resource adequacy risk in PJM’s system when incorrectly treating forced outages
as invariant with respect to temperature. Note that 0.02 LOLE in the unconditional forced outage
rates scenario is a less stringent reliability target than 0.18 LOLE in the temperature-dependent
forced outage rates scenario.

We then compute the incremental VOLL for each scenario. We do this by calculating the

change in capacity procurement required to achieve the reliability target of interest, along with the

corresponding change in EUE, reported in megawatt-hours (MWh). These values can be combined

with an assumed cost of incremental capacity procurement to obtain an implied VOLL. We calculate

the VOLL for both 0.08 LOLE and 0.12 LOLE using 0.10 LOLE as the baseline, and proceed

“outward” from there (e.g., the VOLL for 0.06 LOLE is computed from a starting point of 0.08 LOLE,

while the VOLL for 0.14 LOLE is computed from a starting point of 0.12 LOLE).20 We again use a

20The VOLL corresponding to 0.1 LOLE is calculated as the arithmetic mean of the VOLLs for 0.08 LOLE and
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capacity value of $184/MW-day ($67.2M/GW-year) to obtain our final result.21 Implied VOLLs for

this LOLE range are $100k/MWh to $700k/MWh, approximately two orders of magnitude higher

than price caps at operational time scales in U.S. wholesale electricity markets [48, footnote 1]. As

PJM’s current procurement is at the lower end of our explored LOLE range, PJM’s implicit VOLL

corresponds to the upper end of our estimated VOLL range. These values add to previous studies

that have argued that the 0.1 LOLE target may overvalue unserved energy and lead to a higher

planning reserve margin than is economically optimal [47].

Figure 4.4: Incremental value of lost load (VOLL), in $/MWh, as a function of the reliability
target, under the temperature-dependent (solid red circles) and unconditional (hollow blue circles)
forced outage rate scenarios. Values calculated using $184/MW-day. With the exception of 0.1
LOLE, the VOLL at each reliability target is calculated with respect to the immediately adjacent
reliability target in the direction of 0.1 LOLE; for example, the VOLL at 0.06 LOLE is calculated by
computing the change in capacity procurement and expected unserved energy using 0.08 LOLE as
the baseline. The VOLL corresponding to 0.1 LOLE is calculated as the arithmetic mean of the
VOLLs for 0.08 LOLE and 0.12 LOLE.

0.12 LOLE.
21This likely represents an upper bound on the VOLL, given that PJM procured the maximum amount of capacity

considered in this sensitivity analysis.
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4.5.2 Resource adequacy implications of monthly capacity targets

Accounting for temperature dependence in generator failure rates significantly increases capacity

procurement requirements over PJM’s computed planning reserve margin (but as previously noted

not above their procured reserves). Given the strong seasonality of extreme temperatures, we next

consider whether and to what extent capacity requirements could be reduced through monthly

procurement rather than the current PJM practice of annual procurement.

To conduct this analysis, we begin by looking at accumulated LOLE in each calendar month

under an annual procurement approach, using both unconditional and temperature-dependent

forced outage rates. In any month accounting for at least 0.01% of the total annual LOLE (i.e.,

0.00001 LOLE given a 0.1 LOLE annual target), we retain the annual capacity procurement level as

that month’s requirement. For the remaining months—i.e., for those with zero, or effectively zero,

LOLE—we allow RECAP to increase the LOLE to the monthly 0.01% contribution threshold by

procuring a lower level of capacity.22 In this way, we can quantify opportunities for reducing capacity

procurement in low-load months without significantly increasing overall LOLE in the delivery year.

In the unconditional forced outage rates scenario, only July and August have more than 0.01%

of annual LOLE, so we decrease capacity procurement until the LOLE threshold value is achieved in

the other 10 months. This results in an average monthly procurement of 148.5 GW, a 15% reduction

in capacity requirements on an annual basis. The result in the temperature-dependent forced outage

rates scenario is similar, with again only July and August having more than 0.01% of annual LOLE.

Here, decreasing procurement in the other 10 months to our threshold results in an average monthly

procurement of 156.2 GW, a 16% reduction in capacity requirements on an annual basis. This

capacity requirement is even 10% below annual base-case procurement in the unconditional forced

outage rates scenario. A barplot showing monthly procurement requirements for achieving 0.1 LOLE

under both forced outage rate scenarios is Figure 4.5.

22This is an arbitrary but reasonable target intended to illustrate the degree to which LOLE is concentrated in a
small subset of months, effectively creating over-procurement in other months when procuring on an annual basis.
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Figure 4.5: Monthly capacity requirements for achieving 0.1 LOLE under unconditional (blue
hatching lines) and temperature-dependent (red) forced outage rates, with corresponding annual
average procurement indicated by dashed horizontal lines. Annual capacity requirements in each
scenario correspond to the height of the respective July bars. Monthly procurement levels for April,
October and November are slightly lower in the temperature-dependent forced outage rates scenario
than in the unconditional forced outage rates scenario.

We note that the 16% reduction obtained when procuring to achieve 0.1 LOLE on a monthly

basis in the temperature-dependent scenario is a lower bound on the reduction that would be

obtained by PJM if it opted to maintain its current reliability preference of 0.02 LOLE (implied by

PJM’s 26.6% realized reserve margin). This is because capacity requirements increase non-linearly

in LOLE reductions, while LOLE is heavily concentrated in the summer. While we do not attempt

to quantify the market implications of monthly procurement for capacity prices, we note that to

the extent monthly procurement better enables inherently time-varying resources like wind, solar,

and seasonally available demand-responsive loads to participate in the capacity market, monthly

procurement should increase efficiency and reduce costs in the aggregate. However, we caveat that

extreme temperatures are not the only cause of correlated failures. Further analysis on additional

drivers of correlated failures should be conducted prior to proceeding with a seasonal or monthly

procurement proposal.
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4.5.3 Resource adequacy implications of future generation resource scenarios

The results presented thus far have considered capacity requirements for PJM’s current con-

ventional generator fleet. Given the economic pressure on nuclear and coal generators as a result

of low natural gas prices [49, 59, 60], we next consider illustrative bounding scenarios on future

fleet composition. In particular, we consider the resource adequacy implications of replacing the

following with combined-cycle gas generators: 1). all existing nuclear generators; 2). all existing

coal generators; and 3). all existing nuclear and coal generators. In each case, the replacement

combined-cycle gas generator is the same size as the retired generator and has the same forced

outage rates as PJM’s existing combined-cycle gas generators.23 Any of these fleet composition

changes could increase or decrease capacity requirements, depending on how the change affects the

system-level distribution of available capacity, particularly during peak-load hours.

In the unconditional forced outage rates scenario, replacing existing nuclear generators with

combined-cycle gas generators results in a very slight increase in capacity requirements, while

replacing existing coal generators reduces capacity requirements by approximately 5 GW. This is

because combined-cycle generators’ unconditional forced outage rates are slightly higher than those

of nuclear generators but much lower than those of coal generators. In the temperature-dependent

forced outage rates scenario, replacing existing nuclear generators reduces capacity requirements by

approximately 2 GW, while replacing existing coal generators again reduces capacity requirements

by approximately 5 GW. This is because combined-cycle generators’ temperature-dependent forced

outage rates are lower than those of nuclear and coal generators during the hot, high-load hours that

contribute overwhelmingly to LOLE. Results are summarized in Table 4.2.

The inconsistent effect on resource adequacy of retiring nuclear generators under the two scenarios

illustrates the importance of robust modeling of forced outage rates during high-load hours. We

caution that if winter resource adequacy risks, particularly increased natural gas supply deliverability

risks, are insufficiently captured by the logistic regression model of [22] then nuclear generators may

23This analysis makes a number of assumptions, notably that gas pipeline infrastructure would be expanded to
achieve an equal level of deliverability for the replacement combined-cycle generators as for the current fleet. We also
do not consider vintage effects, but note that the average age of existing coal and nuclear generators is higher than
that of combined-cycle generators.
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Table 4.2: Resource adequacy implications of fleet composition change scenarios under unconditional
and temperature-dependent forced outage rates. Values reflect annual procurement.

Case Unconditional Temperature-dependent

Base case 174.5 GW 185.1 GW
Replace NU with CC 174.8 GW 183.2 GW
Replace ST with CC 169.2 GW 179.5 GW
Replace NU and ST with CC 169.5 GW 178.9 GW

provide reliability value not accounted for here. Increases in gas-fired generation capacity could

exacerbate fuel supply constraints during cold weather events, particularly affecting the availability

of gas under interruptible contracts [50]. In contrast, nuclear generators do not experience increased

outage rates at cold temperatures [22].

4.5.4 Resource adequacy implications of future temperature scenarios

We next examine the resource adequacy risks of increased temperatures for PJM’s existing fleet.

Previous research examining the implications of climate change for power system reliability has

focused on understanding changes in load patterns [51] as well as generator-level effects, such as

increased deratings needed to comply with thermal pollution regulations [52,53], with some work

aggregating the implications for power systems planning [54]. Here we consider the resource adequacy

implications of temperature increases as they translate to higher generator forced outages for PJM’s

conventional fleet. We examine two simplified scenarios: first, where the temperature in each hour

increases by 1 degree Celsius, and second where the temperature in each hour increases by 2 degrees

Celsius.24 This approach is reasonable given that nearly all resource adequacy risk in PJM accrues

in the summer, particularly during the hottest hours of July. These temperature scenarios increase

capacity requirements by approximately 1 and 3 GW (0.5-1.5%) in the temperature-dependent

forced outage rates scenario. By definition, increased temperatures have no effect on supply in the

24These temperature increases are with respect to the average temperatures occurring during 2006-2017, the period
of our historical temperature data. Global temperatures during this time were already approximately 1 degree Celsius
above the pre-industrial reference point [55]. Under business-as-usual emissions trajectories, an additional 1 and 2
degrees of temperature increase could be realized in approximately 2050 and 2100, respectively, though outcomes are
highly sensitive to future emissions scenarios [56].
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Table 4.3: Resource adequacy implications of temperature increases under unconditional and
temperature-dependent forced outage rates. Values reflect annual procurement.

Case Unconditional Temperature-dependent

Base case 174.5 GW 185.1 GW
+1 degree Celsius 174.5 GW1 186.1 GW
+2 degrees Celsius 174.5 GW1 188.0 GW
1 By definition there is no effect from temperature increases in the uncon-
ditional forced outage rates scenario, so these values are identical to the
base case.

unconditional forced outage rates scenario.25 Results are summarized in Table 4.3.

4.5.5 Resource adequacy implications of future temperature scenarios in con-

junction with future generation resource scenarios

Finally, we consider capacity requirements under increased temperatures in conjunction with

replacement of all nuclear and/or coal generators by combined-cycle gas generators. This simply

combines the +2 degrees Celsius case with the three generator replacement scenarios considered

previously. In the unconditional forced outage rates scenario, increased temperatures have no effect

on capacity requirements, so each fleet replacement case matches the corresponding result from

Table 4.2. In the temperature-dependent forced outage rates scenario, the capacity reductions

from generator replacement offset the capacity increases required from increased temperatures to

various extents; the net effect ranges from a reduction of 2 GW when replacing all coal and nuclear

generators, to an increase of 1.5 GW when replacing only nuclear generators. Results are summarized

in Table 4.4.

25We do not account for increases in the peak load as a result of temperature increases. This would increase
capacity requirements in both scenarios, and creates an important interaction for consideration in power systems
planning [54].
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Table 4.4: Resource adequacy implications of temperature increases combined with generator
replacement under unconditional and temperature-dependent forced outage rates. Values reflect
annual procurement.

Case Unconditional Temperature-dependent

Base case (current temperature, current fleet) 174.5 GW 185.1 GW
+2 degrees Celsius with no fleet change 174.5 GW1 188.0 GW
+2 degrees Celsius with NU to CC 174.8 GW1 186.6 GW
+2 degrees Celsius with ST to CC 169.2 GW1 184.3 GW
+2 degrees Celsius with NU and ST to CC 169.5 GW1 183.0 GW
1 By definition there is no effect from temperature increases in the unconditional forced outage rates
scenario, so these values are identical to the corresponding fleet change element of Table 4.2.

4.6 Conclusions

We have examined the implications of temperature-dependent generator availability for resource

adequacy in the PJM Interconnection. By combining PJM’s GADS database with an open-source

resource adequacy modeling tool and publicly available datasets, we demonstrate that the increased

failure probabilities previously shown to affect PJM’s conventional generator fleet at extreme

temperatures [22] pose significant reliability risks not considered in standard resource adequacy

modeling. Temperature dependence increases PJM’s required reserve margin from 15.9% to 22.9% to

achieve their reliability target of 0.1 LOLE in the 2018/2019 delivery year. However, PJM actually

procured a 26.6% reserve margin for this delivery year, equivalent to 0.02 LOLE in our modeling

framework, resulting in excess capacity payments of $315 million per year beyond what was required

to achieve 0.1 LOLE.

While greater procurement of generation capacity reduces the probability of loss-of-load events,

the incremental reliability benefits should be weighed against the incremental costs. We estimate

that the VOLL implicit in PJM’s selected level of capacity procurement during the 2018/2019

delivery year is approximately $700k/MWh, two orders of magnitude above common values used

in operational contexts. This excess procurement helps explain why PJM has rarely triggered its

operational scarcity pricing, even during recent extreme weather events [57], and creates doubt as to

whether current initiatives on scarcity pricing reform [58] will have meaningful effects.

To the extent PJM understands that extreme temperatures increase generator failures and that
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this effect cannot be accounted for in its current resource adequacy modeling approach, the decision

to procure additional capacity is prudent. The key contribution of this work is to demonstrate a

tractable method for incorporating correlated failures into resource adequacy modeling. In the case

of PJM and other system operators with operationally similar conventional generator fleets and

ambient conditions, we strongly recommend accounting for the correlation between temperature and

generator failure probabilities. System operators in different contexts should adapt this approach by

modeling key drivers of correlated failures in their balancing areas.

Given the seasonality of temperatures, we examine the potential benefits of monthly, rather

than annual, capacity procurement for PJM. We find that monthly capacity targets could reduce

total annual capacity procurement by approximately 16% without meaningfully increasing LOLE.

While we do not estimate the economic benefits of a monthly capacity market, given how a monthly

structure would likely alter generator bidding strategies, we note this potential reduction in capacity

requirements is substantial. Further, a monthly or seasonal structure should allow for improved

efficiency in the supply offers of truly seasonal resources, such as solar, wind, and some demand

response.

Given the economic pressure being exerted on nuclear and coal generators, largely driven by

inexpensive natural gas, we examine the resource adequacy implications of the retirement and

replacement of all nuclear and/or all coal generators. When these resources are replaced with

combined-cycle gas generators with forced outage rates equal to PJM’s existing combined-cycle

generators, the system experiences moderate resource adequacy benefits of approximately 1% and

3%, respectively. This result is driven by the lower forced outage rates of existing combined-cycle

generators during the hot, high-load hours that contribute overwhelmingly to LOLE.

Given that all PJM generator types exhibit increased failure probabilities during hot temperatures,

we examine the resource adequacy implications of future climate change scenarios corresponding to

incremental temperature increases of 1 and 2 degrees Celsius. Holding other factors constant, these

scenarios result in increased capacity requirements of approximately 0.5% and 1.5%, respectively, as

a result of higher forced outage rates. This result suggests temperature-dependence of generator

forced outages should be considered when planning for climate change. Combining the 2-degrees
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Celsius temperature increase with the retirement cases results in a 1% increase and 0.5% decrease in

capacity requirements when replacing nuclear and coal generators, respectively.

While we have endeavored to parameterize our model to be consistent with PJM, this analysis

is not a substitute for PJM’s own resource adequacy modeling process. For example, we do not

account for transmission constraints nor emergency imports from neighboring systems. In addition,

we make the following caveats about the temperature-dependent forced outage rate scenario. First,

the regression specification employed may not capture the full extent of winter resource adequacy

risk, particularly the risk of interruptions to non-firm gas transportation. That effect becomes even

more important under the various retirement scenarios in which coal and/or nuclear generators

are replaced by additional gas capacity. Similarly, we caution that extreme temperatures are not

the only drivers of correlated failures. For example, states in PJM’s territory have been affected

by hurricanes since 2000, and the Atlantic hurricane season includes fall months which typically

experience moderate temperatures. In addition, we note that our temperature-dependent forced

outage rates are calculated on 23 years of PJM GADS data. PJM’s Capacity Performance program—

which did away with “outside management control” forced outage events and enacted penalties for

resources that fail to perform when called—was implemented only after the Polar Vortex of 2014, and

has led to significant investment in generator maintenance, dual-fuel capabilities, and firm gas supply

contracts. Thus it is possible that the relationship between extreme temperatures and forced outages

has weakened in recent years. Despite these caveats, this analysis demonstrates the importance of

considering ambient conditions that significantly impact generator availability, particularly during

high load hours.

Finally we note that planning models such as RECAP and PJM’s own resource adequacy tools

do not perform full sequential modeling of the system over time. Thus even when accounting for

temperature-dependent generator availability, resource adequacy modeling may miss important

reliability risks. Future work will consider temperature-dependent generator availability on opera-

tional timescales using a security-constrained unit commitment and economic dispatch model. Such

an approach can better account for chronological risk of lost load from generator outages during

sustained extreme weather events, incorporate demand response resources, quantify operational
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flexibility needs, and allow system operators to better understand the value of procuring operating

reserves, complementing this analysis.
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