
Robot-Dependent Maps for Coverage and
Perception Task Planning

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Tiago Pereira

M.Sc., Electrical and Computer Engineering,
Faculdade de Engenharia da Universidade do Porto, Portugal

Carnegie Mellon University
Pittsburgh, PA

May, 2019

c© 2019 Tiago Pereira.
All rights reserved.

iii

Acknowledgments

This thesis is the result of people cooperating and working together, even across the Atlantic Ocean.

First of all, I would like to thank my advisors, António Moreira and Manuela Veloso, for the constant

support and guidance over the past years. The time we spent together was much more than working on

research; it was fun, and it was a great learning experience on every level. Without their last push, I would

not have completed this thesis.

I also want to thank the members of the thesis committee for their flexibility and valuable feedback,

namely Ana Aguiar and Pedro Costa from FEUP, and Maxim Likhachev and Ragunathan Rajkumar from

CMU. I am grateful towards the CMU-Portugal program, whose staff was always ready to help, and for

the financial support provided by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation of

Science and Technology) under grant SFRH/BD/52158/2013.

My doctoral journey started in Portugal, where I had my first contact with robotics, and I was happy

to meet my colleagues Héber Sobreira, Miguel Pinto, and Filipe Santos. Our enticing discussions molded

the person I am today. I am also grateful to all the people in the CORAL group that let me feel at home

when I went to Pittsburgh, and with whom I learned so much. I would like to acknowledge the people

that spent the most time with me: Steven Klee, Guglielmo Gemignani, Richard Wang, Vittorio Perera,

Philip Cooksey, Juan Pablo Mendoza, and Kim Baraka.

But a fulfilled Ph.D. is not one without fun. I want to recognize the friendship of the CMU-Portugal

colleagues that accompanied me in this journey between two countries and became my housemates in

Pittsburgh, Damião Rodrigues and Luis Pinto. I would also like to acknowledge all the fun and great

times I had with my housemates Evgeny Toropov and Paola Buitrago. And I will never forget the week-

ly “meetings” with my fellow Portuguese friends in Pittsburgh, Luís Oliveira, Rui Silva, and Sheiliza

Carmali, with whom I spent evenings with good food and great company.

A special thanks to my girlfriend Romina, who I was lucky to meet as I was starting my Ph.D., for

always being there for me. She was my constant support and motivation, and I want to thank her for the

happiest years of my life. Last but not least, I would like to thank my family. To my parents Arminda

and Raul, and my brother João, I am eternally grateful. They are my unwavering support and inspiration,

encouraging me into ever greater adventures.

Abstract

As different mobile robots may increasingly be used in everyday tasks, it is crucial for path planning to

reason about the robots’ physical characteristics. This thesis addresses path planning where robots have to

navigate to a destination, either for coverage tasks or perception tasks, which we introduce. For coverage

tasks, robots target the destination position, whereas for perception tasks a robot has to reach a point from

where a target can be perceived.

For complex planning problems with multiple heterogeneous robots, it is essential for planning to

run efficiently. This thesis introduces robot-dependent maps, which are map transformations that quickly

retrieve information related to the feasibility of coverage and perception tasks. The map transformation

depends on properties such as footprint, sensing range and field of view.

When dealing with perception tasks, this thesis introduces the concept of perception planning, where

paths are calculated not only to minimize motion cost but also to maximize perception quality. In order to

find optimal paths for the perception of targets, this work uses an informed heuristic search to determine

paths considering both motion and perception. Robot-dependent maps are then used to improve the

efficiency of perception planning, by providing dominant heuristics that reduce the number of ray casting

operations and node expansion. The use of robot-dependent maps has a low cost that amortizes over

multiple search instances.

This thesis also provides a novel technique for multi-robot coverage task planning, with the new

robot-dependent maps used as a pre-processing step. The robot-dependent maps are used to improve the

performance of task allocation when splitting tasks among multiple robots. By using a pre-processing

phase, the feasibility of coverage tasks is known for each robot beforehand, and estimates on the cost of

each robot executing each task can be quickly computed. This thesis contributes an algorithm to calculate

paths for multiple heterogeneous robots that need to perceive multiple regions of interest. Clusters of

perception waypoints are determined and heuristically allocated to each robot’s path to minimize overall

robot motion and maximize the quality of measures on the regions of interest.

Overall, this thesis provides techniques that deal with robot heterogeneity mathematically, modeling

iv

v

the individual characteristics, so that path planning takes into account the perception quality as well. As-

suming we have multiple robots with different geometries, ranging from different footprints to different

sensors, the planner accounts for those differences when coordinating the robots. This thesis thus explores

algorithms for a planner to dynamically adapt and be able to generate path solutions based on the advan-

tages of each robot. We provide theoretic proofs for some of our contributions and evaluate our algorithms

on simulations with a variety of 2D obstacle maps and robots with different physical characteristics.

List of Publications

T. Pereira, M. Veloso, and A. Moreira. Multi-robot planning using robot-dependent reachability maps. In

Robot 2015, Second Iberian Robotics Conference. Lisbon, Portugal, 2015

T. Pereira, M. Veloso, and A. Moreira. Visibility maps for any-shape robots. In IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). Deajeon, South Korea, 2016

T. Pereira, A. Moreira, and M. Veloso. Improving heuristics of optimal perception planning using visibility

maps. In IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC).

Bragança, Portugal, 2016

T. Pereira, M. Veloso, and A. Moreira. PA*: Optimal path planning for perception tasks. In European

Conference on Artificial Intelligence (ECAI). The Hague, The Netherlands, 2016

T. Pereira, A. Moreira, and M. Veloso. Multi-robot planning for perception of multiple regions of interest. In

Robot 2017: Third Iberian Robotics conference. Seville, Spain, 2017

T. Pereira, A. Moreira, and M. Veloso. Optimal perception planning with informed heuristics constructed

from visibility maps. In Journal of Intelligent & Robotic Systems. 2018

T. Pereira, N. Luis, A. Moreira, D. Borrajo, M. Veloso, and S. Fernandez. Heterogeneous multi-agent

planning using actuation maps. In IEEE International Conference on Autonomous Robot Systems and Com-

petitions (ICARSC). Torres Vedras, Portugal, 2018

N. Luis, T. Pereira, D. Borrajo, A. Moreira, S. Fernandez, and M. Veloso. Optimal perception planning

with informed heuristics constructed from visibility maps. Accepted to publication in Journal of Intelligent &

Robotic Systems. 2019

vi

Contents

Contents vii

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Thesis Question . 3

1.2 Thesis Approach . 4

1.3 Contributions . 5

1.4 Reading Guide to the Thesis . 7

2 Robot-Dependent Maps 10

2.1 Morphological Operations . 11

2.2 Robot-Dependent Maps for Circular Footprints . 14

2.3 Robot-Dependent Maps for Any-Shape Robots . 19

2.4 Summary . 25

3 From A* to Perception Planning 26

3.1 Perception Planning Formulation . 27

3.2 PA*: Informed Search for Perception Planning . 29

3.3 Underlying Graph and Node Expansion . 35

3.4 Perception Planning Assumptions . 38

3.5 Running Example of PA* Search . 39

3.6 Summary . 42

4 Perception Planning with Visibility Maps 43

vii

CONTENTS viii

4.1 Regions from Robot-Dependent Maps . 44

4.2 Improved Heuristics . 44

4.3 Node Expansion Analysis for Variants of Perception Planning Heuristic 50

4.4 Summary . 60

5 Using Perception Planning for Delivery Services 62

5.1 Map Representation . 62

5.2 Problem Definition as Perception Planning . 64

5.3 Experiments on City Motion Planning with PA* . 68

5.4 Determining Vehicle-Dependent Visibility Maps . 71

5.5 Results of Improved Heuristics of Perception Planning . 74

5.6 Summary . 76

6 Heterogeneous Multi-Agent Planning Using Actuation Maps 77

6.1 Multi-Agent Classical Planning . 77

6.2 Coverage Task Planning Formulation . 79

6.3 Downsampling of Grid of Waypoints . 81

6.4 Extracting Cost Information from Actuation Maps . 83

6.5 Extending Approach to Any-Shape Robots . 84

6.6 Experiments and Results . 85

6.7 Summary . 92

7 Multi Robot Planning for Perception of Multiple Regions 93

7.1 Problem Formulation . 93

7.2 Perception Clusters from PA* . 95

7.3 Path Construction . 97

7.4 Extending Heuristic Path-Constuction to Multiple Robots . 100

7.5 Visibility Maps for Efficient Perception Cluster Determination 103

7.6 Summary . 109

8 Related Work 110

8.1 Visibility and Perception Planning . 111

8.2 Motion Planning . 112

9 Conclusions and Future Work 116

CONTENTS ix

9.1 Contributions . 116

9.2 Future Work . 119

Bibliography 122

List of Tables

4.1 Color meaning for map, search and points. 51

4.2 Comparison of the five variants of PA* . 58

4.2 Comparison of the five variants of PA* . 59

4.2 Comparison of the five variants of PA* . 60

4.3 Computation time to construct the visibility maps for twelve different scenarios 61

5.1 Comparison of PA* variants on computation of paths for deliveries in a city 75

6.1 Description of scenarios in terms of goal feasibility . 88

6.2 Computation time analysis with and without pre-processing step 90

6.3 Computation time comparison for different multi-agent planners 90

6.4 Plan length comparison for different multi-agent planners . 91

6.5 Makespan comparison for different multi-agent planners . 91

x

List of Figures

1.1 Coverage and perception tasks . 2

1.2 Robot-dependent map example . 5

1.3 Perception planning example . 6

2.1 Morphological operations . 12

2.2 Example of robot-dependent actuation map . 14

2.3 Operations needed to build an actuation map . 16

2.4 Example of robot-dependent visibility map . 17

2.5 Unreachable regions, frontiers of actuation and critical points . 18

2.6 Comparison of robot-dependent visibility map with ground-truth 20

2.7 Simulated environment with any-shape robots . 20

2.8 Rotation of robot footprint when used as structuring element . 21

2.9 Multi layer structure used for robot-dependent map of any-shape robots 22

2.10 Example of navigable and actuation space for any-shape robots 23

3.1 Possible solutions for perception planning problem . 28

3.2 Computing PA* heuristic for straight line case without obstacles 30

3.3 Computing PA* heuristic for non-straight line scenario . 32

3.4 Extended underlaying graph of perception planning . 36

3.5 Candidate and feasible goal position of perception planning . 37

3.6 Example of PA* search using two different λ values . 40

4.1 Improved perception planning heuristic h1 . 45

4.2 Proof of minimum perception distance from critical point to unreachable target 47

4.3 Improved perception planning heuristic h2 . 48

4.4 Worst case scenario for distance between critical point and navigable space boundary 48

xi

List of Figures xii

4.5 Range for perception of unreachable target through frontier . 50

4.6 Comparison of node expansion for PA* variants on S1 . 52

4.7 Comparison of node expansion for PA* variants on S2 . 52

4.8 Comparison of node expansion for PA* variants on S3 . 53

4.9 Initial stage of search expansion for scenario S3 . 53

4.10 Progression of node expansion with multiple critical points . 53

4.11 Comparison of node expansion for PA* variants on S4, S5 and S6 54

4.12 Comparison of node expansion for PA* variants on S7 . 55

4.13 Comparison of node expansion for PA* variants on S8 . 55

4.14 Comparison of node expansion for PA* variants on S9 . 55

4.15 Comparison of node expansion for PA* variants on S10 . 56

4.16 Comparison of node expansion for PA* variants on S11 . 56

4.17 Comparison of node expansion for PA* variants on S12 . 56

5.1 Trinary representation of a city map . 63

5.2 Navigation and Perception Maps . 64

5.3 Indexes of connectivity of a cell in a grid map . 66

5.4 Map with information on direction feasibility . 67

5.5 Impact of changing λ parameter in perception planning for deliveries 69

5.6 Modified perception map to disable crossing of streets by user 70

5.7 Impact of λ parameter on scenario with modified perception map 71

5.8 Impact in delivery rendezvous position by change in vehicle size 72

5.9 Comparison of visibility from critical points and ground-truth, on a city map 73

5.10 Extended critical points on perception planning for deliveries . 73

6.1 Overall planning architecture with pre-processing step . 79

6.2 Example of downsampled navigability and actuation graphs . 81

6.3 Navigability and actuation graphs for any-shape robots . 85

6.4 Analysis of navigability graph both on free configuration and navigable space 86

6.5 Feasible goal waypoints for two different robots . 86

6.6 Scenarios used in experiments of multi-agent planning with pre-processing step 87

6.7 Paths generated for corridor scenario . 88

7.1 Multi-robot perception planning problem with multiple regions of interest 94

List of Figures xiii

7.2 Generation of perception points and clustering into waypoints 95

7.3 Generation of additional clusters and analysis of perception feasibility with ray casting 96

7.4 Complete graph of connected waypoints . 97

7.5 Inefficiencies arising from greedy heuristic . 99

7.6 Inefficiencies arising from robot heterogeneity . 100

7.7 Example of multi-robot perception planning with two different solutions 102

7.8 Critical points in perception of multiple regions of interest . 104

7.9 Determining perception points for unreachable targets, from critical points 105

7.10 Determining perception points for reachable targets . 107

7.11 Comparison of PA*-based and critical point-based approaches to perception of multiple regions 108

7.12 Example of two robots cooperating to perceive multiple regions of interest 109

Chapter 1

Introduction

Motion planning is one of the core capabilities that any robot must have in order to execute even the most

basic tasks. Motion planning is thus a common research topic in robotics, where it is usually associated

with goal positions in a map. This thesis addresses two types of tasks: coverage tasks where the robot has

to navigate to a particular destination from where it can actuate the target; and perception tasks, where the

robot has to reach a point from where the target can be perceived.

Figure 1.1a shows an example of a coverage task, where the robot moves to a target destination to clean

the floor. For the coverage task, the robot needs to move to a target location it can cover, and the robot can

either actuate on that location or even take some measurements, such as moving to a place to measure

temperature or humidity. On the other hand, Figure 1.1b shows the CoBot robot sensing some objects,

which can be done from a distance. For the perception task, the robot does not need to necessarily reach

the target, as long as the robot can sense the target. The only constraint is for the target to lie within the

robot’s “visibility,” i.e., the target needs to be within the robot’s sensing range. As another example, one

can imagine a robot following a human that goes into a narrow corridor. Even if the robot cannot move

into the narrow corridor due to a large footprint, it can still perceive the human if the human is within its

sensor range. As a consequence, for perception tasks, the robot can perceive objects or humans, and take

measures, even in regions of space to where it cannot navigate.

In this work, a 2D grid map is used to represent the space where the robot moves, and all the obstacles

it encounters. This thesis considers mobile robots with heterogeneous geometric properties, such as

varying size, shape, sensing range, and field of view. This work does not tackle problems regarding

height and other 3D related geometric constraints.

Traditional path planning techniques handle only the problem of motion planning that takes the robot

from an initial position to a final destination. When dealing with perception-related problems, too often

1

CHAPTER 1. INTRODUCTION 2

(a) Coverage Task
(b) Perception Task

Figure 1.1: a) Example of a coverage task in where the robot moves to positions where it cleans the floor;
b) example of a perception task, which shows a robot perceiving a scene and detecting objects from a
distance.

the sensing range is considered infinite. Other approaches take into account a maximum sensing range but

they overlook the varying uncertainty of measurements depending on distance, considering equally valid

perception actions taken from any distance below the range limit. There are also object-oriented planning

approaches that tackle mainly the problem of finding the next best view and focus on perception cost and

quality but have limited motion considerations.

This thesis examines the path planning problem for a mobile robot both from the motion and per-

ception perspectives, measuring the cost of both and finding solutions that optimize both for motion and

perception costs. The thesis also considers the heterogeneity of robots and introduces a map transforma-

tion that adapts a grid map to the characteristics of each robot. This map transformation is then used as

a pre-processing step for a less time-consuming planning phase.

Although this work has a big focus on mobile robots moving in structured indoor environments, the

focus of this thesis is the planning for both coverage and perception tasks and the heterogeneity of agents

that execute them. As shown in a later chapter, other mobile vehicles can use the same approach, such

as cars moving in a city to deliver something to a person. Instead of CoBot planning on which lab entry

to use and navigate to perceive if anyone is inside the lab, one can also apply the perception planning

technique to a car moving in a city and deciding where to meet a person for the delivery. In that scenario,

the perception range does not represent a sensing operation, but the person walking in a sidewalk (non-

navigable by the vehicle) to go to one possible delivery location. Intrinsically, both planning scenarios are

similar, and they both consider heterogeneous vehicles with different footprints and different reachability

in the world. The algorithm in both cases considers not only motion cost, but also an additional cost

associated with either a perception operation or a passenger walking to a delivery location. For the first

use case, the planning algorithm finds a solution that optimizes for both motion and perception costs.

For the second use case, the delivery scenario, the planning algorithm optimizes for both vehicle and

CHAPTER 1. INTRODUCTION 3

passenger motion.

The framework for motion and perception planning can also be used for multi-robot planning. This

thesis shows how the novel map transformation can be used in conjunction with multi-robot classical

planning techniques for faster planning in multi-robot problems of coverage tasks. Furthermore, this

thesis shows that motion planning of a team of heterogeneous robots that need to perceive targets in a set

of predetermined regions can also use our contributed perception planning technique.

The idea of planning for paths that minimize both a motion and perception costs consists in reality of

an approach that intrinsically deals with robot heterogeneity. With multiple robots with different physical

characteristics, ranging from different footprints to different sensors and perception capabilities, a planner

needs to mathematically deal with those differences and produce solutions based on the advantages of

each robot. This thesis thus explores and contributes on the techniques necessary for a planner to consider

the individual differences of each robot in a team when planning for robot coordination.

1.1 Thesis Question

This thesis addresses the following question:

How to efficiently plan for coverage and perception tasks with multiple heterogeneous robots, considering

their different geometrical properties, while minimizing motion cost and maximizing perception quality?

This work argues that both motion and perception costs need to be mathematically considered while

executing path planning in order to reflect the heterogeneity of robots in terms of their motion and sensing

capabilities. Measuring the perception quality of measurements and attributing a cost to it provides an

immediate way to consider heterogeneity intrinsically in the planning algorithm.

Moreover, while robots are heterogeneous, they commonly use the same map to represent the envi-

ronment they move in, even if their motion, actuation and perception capabilities in that world are very

different. This thesis shows how to adapt maps to the individualities of each robot, resulting in robot-

dependent maps. By transforming the map according to the robot’s unique geometrical properties, it is

possible to have a more efficient path planning.

Finally, considering the individual capabilities of each robot in the world is essential to create the best

coordination and genuinely use the advantage of heterogeneity on a team of multiple robots. In particular,

in this work there is no coordination that deals with robot variation in a hard-coded way, but instead this

thesis aims for a methodology that can dynamically adjust and optimize the multi-robot task allocation to

the individual capabilities of each robot.

CHAPTER 1. INTRODUCTION 4

1.2 Thesis Approach

In order to achieve the goal of having efficient planning for robots executing coverage and perception tasks,

the thesis introduces a map transformation that represents the task feasibility regarding the heterogeneity

of robots. A brute-force approach can compute the map transformation, but we provide a much faster

algorithm. The rationale is that using a structured map transformation allows for easier incremental

adaptation to changes in the map, faster computation of feasibility and cost estimates, and provides

information that can be used to have a more efficient search in path planning. The maps that are adapted

to each robot, the robot-dependent maps, are built taking into account its use in more efficient planning

techniques.

The thesis approach is to use morphological operations for the map transformation in order to find

the overall coverage capabilities of robots in an environment represented by a 2D grid map. From the

morphological operations, the map transformation is extended to reason about the perception capabilities

of each robot, determining the feasible targets for perception tasks beyond non-traversable regions. The

thesis introduces the concept of critical points, a set of map positions dependent on the robot footprint,

such as those points are the closest to unreachable regions, allowing for fast computation of the visibility

map that is very close to the ground-truth. The critical points provide the minimum perception distance

to some target positions, and the minimum perception distance information can be used to improve the

efficiency of path planning for perception tasks.

In terms of path planning, this thesis approach starts from the common A* algorithm but introduces

a novel heuristic function and a node expansion methodology that makes the heuristic-based search tech-

nique work for the problem of planning for perception tasks. Furthermore, we introduce the concept of

perception cost to measure the perception uncertainty and quality, in order to be able to calculate solutions

that trade-off the motion and perception costs. This work provides theoretical guarantees of optimality

for the cost of paths found, when summing the motion and perception costs, and provides clearly all the

underlying assumptions necessary for those guarantees.

The information from robot-dependent maps is also used to create new heuristics for the problem of

perception planning. As an example, the map transformation automatically determines the minimum

perception distance to some targets, which can be used to improve the heuristics in informed search plan-

ning. Moreover, the robot-dependent maps can also be used to estimate costs for coverage tasks, which

coupled with feasibility information can be used in multi-robot coordination to simplify the problem of

task assignment.

Finally, the perception planning technique can also be used to generate clusters of waypoints from

CHAPTER 1. INTRODUCTION 5

where multiple target regions can be perceived. With cost estimates for each waypoint calculated from

perception planning, it is possible to allocate waypoints to the heterogeneous robots heuristically. By

doing so, the algorithm dynamically creates plans for multi-robot teams that take into consideration the

robot heterogeneity and both motion and perception cost.

1.3 Contributions

The key contributions of this thesis are the following:

Robot-Dependent Map is a novel 2D map we introduced to represent the actuation and visibility capa-

bilities of robots in terms of their footprint and sensor characteristics. We also contribute an algorithm to

quickly generate the robot-dependent maps from grid maps, returning an actuation or visibility map rep-

resenting the accessible regions of the map as a function of the physical constraints of robots, for coverage

and perception tasks. The computation of such maps has a low cost that amortizes over multiple search

instances when planning task execution. The contributed technique depends on the initial robot position,

the models for the sensor and robot shape and the 2D grid map. The initial positions can be grouped

in mutually exclusive sets, such as there is one Robot-Dependent Map for each set of initial positions. The

contributed algorithm determines the robot-dependent map transformation that does not use brute-force,

thus being fast but also returning only an approximation of the true visibility transformation.

(a) Grid Map and Robot (b) Robot-Dependent Map

Figure 1.2: a) A grid map with a circular robot represented with a small green circle, and its sensing
range represented with a light green circumference; b) robot-dependent map with the occluded and non-
reachable regions of the grid map in black, the regions for feasible coverage or perception tasks in white,
and the non-traversable regions only feasible for perception tasks in blue.

The technique to generate robot-dependent maps is based on the morphological closing operation that

is used to first determine the actuation map of each robot, depending on its initial position. The morpho-

logical closing operation also gives information about the non-traversable regions of the environment for

each robot, where the robot can still perceive targets when executing perception tasks. In order to find the

visibility map with all the feasible perception targets, this work contributes the concept of critical points, as

CHAPTER 1. INTRODUCTION 6

a set of map positions dependent on the robot footprint, such as those positions are the closest to unreach-

able regions, allowing for a fast computation of the visibility map that is very close to the ground-truth.

Based on the critical points, we introduce a technique to incrementally add regions to the actuation map

in a smart way, maintaining overall efficiency while increasing the approximation quality. The described

approach with morphological operations is also extended with a multi-layer representation to deal with

the any-shape robot and sensor models. Figure 1.2 gives an example of the robot-dependent map.

Informed Search for Perception Planning is a heuristic search for path planning that finds the optimal

motion path and perception location for a robot trying to sense a target position in a 2D map while

minimizing both motion and perception costs. The overall cost of a path solution is assumed to be the

sum of motion cost with perception costs, and a trade-off parameter is used to be able to change the weight

of each of these components. Changes in the trade-off parameter shift cost from motion to perception and

can generate different solutions, as shown in Figure 1.3.

(a) Map, Robot and Target (b) Solution 1 (c) Solution 2

Figure 1.3: a) A simplistic map with a robot starting in the top left grid position, a target represented with
a red cross; the perception range is shown with the shaded red region around the target; depending on
the trade-off between motion and perception costs, there can be two different path solutions, as shown in
b) and c).

The perception cost in this technique accounts for different inaccuracies and uncertainty of different

sensors, and models the general decreasing quality of perception measurements with increasing distance.

Assuming accurate sensor models, we guarantee the algorithm returns optimal path solutions.

Robot-Dependent Heuristics in Perception Planning is a technique that uses information extracted

from robot-dependent maps to improve the efficiency of node expansion in heuristic search for perception

planning. When computing the robot-dependent maps, for some targets it is possible to calculate infor-

mation on the minimum motion and perception distance, which can be used to build dominant heuristics.

Dominant heuristics result in fewer node expansions and ray casting operations, and as a result, they can

speed up the search process of finding a path for a robot to move to a position that perceives a target

location.

CHAPTER 1. INTRODUCTION 7

Pre-Processing Phase in Multi-Robot Coverage Task Planning introduces the notion of using robot-

dependent maps as a pre-processing technique in an automated planning problem, which uses task as-

signment to distribute covering tasks among multiple robots. In order to do task allocation, a heuristic

is used to estimate the cost of each robot executing a task based on the robot-dependent maps. With

such pre-processing, the automated planner saves time by only computing the heuristic for feasible tasks.

Moreover, the pre-processing also provides a faster cost estimation procedure based on robot-dependent

maps, which further improves the efficiency of goal assignment in the multi-agent planning problem.

Multi-Region and Multi-Robot Perception Planning is an algorithm for solving the problem of path

planning for multiple heterogeneous robots that need to perceive multiple target regions while minimizing

both motion and perception costs. While using the contributed technique for perception planning, this

work generates waypoints, i.e., clusters of locations for perception of targets. These waypoints are then

used to allocate intermediate goal positions to the paths of robots. This technique using the cost estimates

from perception planning as heuristics for the waypoint assignment, creating paths for each robot that

minimize the overall motion cost and maximize the perception quality.

Meeting Point Calculation for Delivery Services is an application of our perception planning technique

to a more realistic use case of deliveries from vehicles to users in a city. When a vehicle has to make a

delivery for a user in a city, it usually drives directly to the passenger location, without ever suggesting the

user to walk to some other location. With this contribution, we used the perception planning technique to

calculate different rendezvous locations, from which the user can choose according to their preferences.

We still consider vehicle heterogeneity with different reachability in the world, and again the algorithm

optimizes not only for vehicle motion cost but also for the cost of the user walking to the calculated

delivery location.

1.4 Reading Guide to the Thesis

The following outline summarizes each chapter of this thesis.

Chapter 2 - Robot-Dependent Maps introduces a map pre-processing algorithm that transforms generic

2D grid maps on adapted maps to each robot, considering geometric differences of robots, such as size,

shape, sensor range and field of view. Those robot-dependent maps can determine the reachability of

each robot in the world in terms of coverage and perception. The map transformation also extracts the

necessary information from each robot-dependent map that can be used for a more efficient path planning.

CHAPTER 1. INTRODUCTION 8

Chapter 3 - From A* to Perception Planning introduces an approach for path planning that considers

both the motion cost and perception cost, which can represent varying sensing quality with measurements

from different distances. The contributed path planning technique is based on heuristic search, and this

chapter introduces the heuristic that accounts for perception and guarantees optimal solutions while

presenting all the necessary assumptions to support those guarantees.

Chapter 4 - Improving Heuristics of Perception Planning with Robot-Dependent Maps extends the

novel perception planning technique with information from Robot-Dependent Maps. For some target

locations that need to be perceived, the Robot-Dependent Map can determine additional information

on the minimum perception distance and the minimum motion to perceive that target, thus providing

valuable information to come up with better heuristic functions closer to the real cost of perceiving a

target position.

Chapter 5 - Using Perception Planning as Meeting Point Calculation for Delivery Services introduces

an alternative use case for the contributed perception planning technique. When a vehicle has to make a

delivery for a user in a city, it usually drives directly to the passenger location, without ever suggesting

the passenger to walk to some other location. In this chapter, perception planning is used to calculate

different rendezvous locations, from which the user can choose according to their preferences.

Chapter 6 - Heterogeneous Multi-agent Planning Using Actuation Maps introduces a novel combina-

tion of robot-dependent maps and classical planning in the context of multi-robot motion planning for

coverage tasks. The robot-dependent maps are used as a pre-processing step to speed up the goal assign-

ment phase of a multi-agent planner, and the results are compared with other state-of-the-art planners.

Chapter 7 - Multi-Robot Planning for Perception of Multiple Regions of Interest introduces an ap-

proach to multi-robot path planning when multiple regions of interest need to be perceived by any of the

robots. Instead of having a single target location that needs to be perceived, this approach uses region-

s composed of multiple perception targets and calculates waypoints from where various targets can be

perceived. A heuristic-based waypoint allocation method that distributes waypoints among the hetero-

geneous robots is contributed, such that both motion and perception cost is minimized for this team of

robots with different capabilities.

Chapter 8 - Related Work reviews the relevant literature. This chapter also presents other motion plan-

ning techniques, focusing on heuristic search for path planning. Relevant work on map representation

CHAPTER 1. INTRODUCTION 9

is reviewed, as well as problems related to visibility and perception planning. We also present related

literature to multi-robot motion planning.

Chapter 9 - Conclusions and Future Work concludes the thesis with a summary of its contributions,

and with a presentation of possible directions for future research.

Chapter 2

Robot-Dependent Maps

Robots have quite often different capabilities, but if they move in the same environment, they all usually

share the same map of the environment. Using the same map can bring inefficiencies.

Given a task for a robot to move to an (x, y) position in its map, why should there be any time spent on

planning a path to get to that position, if it lies in a region that is not reachable to that specific robot? This

question is about a coverage task, but the same applies to perception tasks and other robotic problems.

Why should a robot spend any time planning a solution to perceive a target in a room that cannot be

perceived by the robot from any location? Furthermore, we can also think about the localization problem.

For localization, there is usually a scan matching procedure that finds a position estimate by fitting a laser

range finder scan to the map of the environment. Having an unadapted map of the environment means

that it is possible for the scan to match against walls and other points in the map that are neither reachable

nor visible to a particular robot, introducing inefficiencies in the scan matching process.

In order to achieve our goal of having an adapted map to the geometrical properties of each robot, we

created a map transformation, the robot-dependent map, that represents the task feasibility regarding the

heterogeneity of robots. A brute-force approach can always calculate the map transformation to compute

the coverage or perception task feasibility, but that is not necessarily the best option in terms of the

information we can extract to improve online planning execution. For example, knowing all the exact

location from where a target can be perceived can be opposite to our goal, and burden the computation

complexity for path planning.

In this chapter, we describe our contribution of a map transformation that allows for

• Easier incremental adaptation to changes in the map

• Faster computation of task feasibility and cost estimates

10

CHAPTER 2. ROBOT-DEPENDENT MAPS 11

• Extraction of information that can be used for a more efficient search in planning.

Our approach is to use morphological operations for the map transformation in order to find the overall

actuation capabilities of robots in an environment represented by a 2D grid map. From the morphological

operations, we extend the map transformation to reason about the perception capabilities of each robot,

determining the feasible targets for perception tasks beyond non-traversable regions. We also introduce

the concept of critical points, from which we can have a simple sampling of the reachable space with

very few points and still build an approximate map of the perception feasibility that is very close to the

ground-truth. The critical points also provide minimum perception distance to target positions, a piece of

information from this map transformation that allows for more efficient planning.

The robot-dependent maps represent the accessible regions of the map in terms of actuation and

perception as a function of the initial robot position and its physical constraints, such as robot footprint

and sensor field of view and maximum range. The computation of such maps has a low cost that amortizes

over multiple search instances when executing path planning.

In our previous work, we introduced the algorithm to build robot-dependent maps [34, 32], which we

will explain in detail in this chapter.

In the next section, we review morphological operations, the technical base for the work in this chapter.

2.1 Morphological Operations

Morphological operations are a common technique used in image processing. Here we focus on binary

morphology applied to black and white images, which can be obtained by thresholding a normal image,

as shown in Figure 2.1. One typical application is noise reduction [16, 39], which can be accomplished

with morphological closing, a dilation operation followed by an erosion. In a black and white image

where black is the background and white the foreground, dilation will expand one of the color regions

(e.g., white points), and the erosion will shrink it. By applying these two operations sequentially, small

black clusters inside white regions disappear, successfully eliminating noise from the foreground. The

noise reduction works when the noise blobs are smaller than the inflation and deflation radius. On the

other hand, the morphological opening can be used to eliminate noise from the background, shown in

Figure 2.1.

The basis of mathematical morphology is the description of image regions as sets, where each pixel

can be an element of the set. By definition, when we refer to an image set A, it represents the set of

all pixels with one color in the corresponding image. Assuming A represents the white pixels, then its

complement, Ac, represents the set of black pixels.

CHAPTER 2. ROBOT-DEPENDENT MAPS 12

(a) Original Image (b) After Thresholding (c) After Opening (d) After Closing

Figure 2.1: Examples of morphological operations, where opening eliminates white noise from the black
background, and closing eliminates black noise from the white foreground; the noise eliminated is smaller
than the structuring element used in the morphological operations.

The translated set At corresponds to a translation of all the white pixels by t.

At = {p | ∃a ∈ A : p = a + t} (2.1)

The reflection of a set A, Ă, is defined as

Ă = {p | −p ∈ A}. (2.2)

The two basic morphological operations are dilation and erosion. Dilation ⊕ (also called Minkowski

addition [46]) is defined as follows:

A⊕ B = {c | ∃a ∈ A, b ∈ B : c = a + b}. (2.3)

Alternatively, we can think of dilation as taking multiple copies of A and translating them according

to the pixels in B (an origin for B has to be defined, with the center of image B being usually used as

origin).

A⊕ B =
⋃

b∈B

Ab (2.4)

Even another interpretation can be taken, by thinking of copies of B at each pixel of A, which is equiv-

alent to using the commutative property on equation 2.4, which is somehow similar to the convolution

operation, because the structuring element B is sliding to each position of A and the union for all the

positions is taken.

Erosion 	 (also called Minkowski difference [46]) is defined as

A	 B = {c | ∀b ∈ B : (c + b) ∈ A}, (2.5)

CHAPTER 2. ROBOT-DEPENDENT MAPS 13

which corresponds to taking copies of A translating them with movement vectors defined by each of the

pixels in B. The translation is in the opposite direction, and all copies are intersected.

A	 B =
⋂

b∈B

A−b (2.6)

Thus, erosion is equivalent to moving a copy of B to each pixel of A, and only counting the ones

where the translated structuring element lies entirely in A. Unlike dilation, erosion is not commutative.

Erosion and dilation are dual operations, and their relationship can be written using the complement and

reflection operations defined previously:

(A⊕ B)c = Ac 	 B̆, (2.7)

(A	 B)c = Ac ⊕ B̆. (2.8)

In other words, dilating the foreground is the same as eroding the background with a reflected struc-

turing element.

The opening morphological operation ◦ is an erosion followed by a dilation with the same structuring

element.

A ◦ B = (A	 B)⊕ B (2.9)

The opening morphological operation can be considered to be the union of all translated copies of the

structuring element B that can fit inside A. Openings can be used to remove small blobs, protrusions, and

connections between larger blobs in images.

The closing morphological operation • works in an opposite fashion from opening, by applying first

the dilation and then the erosion.

A • B = (A⊕ B)	 B (2.10)

While opening removes all pixels where the structuring element does not fit inside the image fore-

ground, closing fills all places where the structuring element will not fit in the image background. Closing

and opening are also dual operations, but not the inverse.

(A ◦ B)c = Ac • B̆ (2.11)

The closing and opening operations are idempotent, as when applying more than once the same

operation, nothing changes after the first application: A ◦ B ◦ B = A ◦ B and A • B • B = A • B.

Opening and closing are the basic operations in morphological noise removal.

Morphological operations have already been used as a map transformation, by automatically extracting

topology from an occupancy grid [12]. The morphological operations can thus robustly find the big spaces

in the environment like humans would, separating it into regions.

CHAPTER 2. ROBOT-DEPENDENT MAPS 14

These image processing techniques have also been used in motion planning algorithms, inflating ob-

stacles to determine the configuration space in order to find a path that minimizes a cost function while

avoiding collisions. Indeed, inflation is the solution used, for example, in the ROS navigation package [25].

2.2 Robot-Dependent Maps for Circular Footprints

We first assume robots have a circular shape and a sensor with a maximum sensing range, with 360

degrees of field of view. We assume a full field of view because that is equivalent to considering a robot

with a circular footprint and limited field of view. For example, for a robot with a beam sensor with a

maximum range, if the robot has either an omnidirectional or differential motion, it can rotate in place

and simulate a robot with a full field of view, and the same maximum perception range.

In this section we will show how to build both Robot-Dependent Actuation Maps and Visibility maps

to efficiently determine the feasibility of coverage and perception tasks, respectively, assuming robots with

a circular footprint.

2.2.1 Robot-Dependent Actuation Map

The goal of robot-dependent actuation maps is to efficiently determine the actuation capabilities of a robot

in a particular environment, i.e., determine what regions can be covered from any point that is reachable

from the initial robot position.

Robots move along the environment, which we represent as a grid map. Given the robot’s geometric

properties, there will be some regions that are accessible to the robot and some regions that will be

inaccessible. Our algorithm is a function of robot size and its actuation range. We show in Figure 2.2 a

simulated environment with obstacles and the resulting actuation map.

(a) Map (b) Actuation Map

Figure 2.2: a) A simulated map with obstacles in black and a circular robot in green; b) the resulting
actuation map, with regions that can be covered by the robot in white and regions that cannot be covered
by the robot in black, assuming the actuation range is equal to the robot size.

CHAPTER 2. ROBOT-DEPENDENT MAPS 15

Considering maps are discrete representations of the environment, there is a duality between images

and maps because both of them are a discrete sampling of the world. The first step of our algorithm is to

transform an occupancy grid map (with probabilities of occupation in each cell) into a binary map of free

and obstacle cells, using a threshold. The occupancy grid can be obtained through SLAM methods.

To determine the robot-dependent map, we use the partial morphological closing operation, which can

be applied on images using a structuring element with a shape that represents the robot. The domain is a

grid of positions G. The input is a black and white binary image representing the map, in Figure 2.3a. M

is the set of obstacle positions, where each pixel corresponds to a grid position. The structuring element,

R, represents the robot. The morphological operation dilation on the obstacle set M by R is

M⊕ R =
⋃

z∈R
Mz, (2.12)

where Mz = {p ∈ G | p = m + z, m ∈ M}. By applying the dilation operation to the obstacles in the map

(black pixels in the image), the algorithm inflates the obstacles by the robot radius, which can be used to

find the free configuration space, in Figure 2.3b.

C f ree = {p ∈ G | p /∈ M⊕ R} (2.13)

The configuration space shows where the robot center can be, representing the feasible positions for

the robot center, but not giving any information on which regions can be actuated or perceived by the

robot. From C f ree, it is possible to find the points in the free configuration space where the robot can be by

moving from the initial robot position S, which we call the set of navigable points Nav(S), in Figure 2.3e.

Nav(S) = {p ∈ C f ree | p connected to S} (2.14)

Because dilation and erosion are dual operations, the morphological closing is computed by dilat-

ing the free configuration space. The partial morphological closing applies the second morphological

operation to a subset of C f ree, dilating Nav(S) instead.

A(S) = Nav(S)⊕ R (2.15)

We assume that the actuation radius is the same as the robot size. In case the actuation range is smaller,

in the second dilation operation, instead of R we would have a structuring element representing a circle

with a smaller radius, equal to the actuation range.

Using the partial morphological operation, we determined the actuation space, A(S), which represents

the regions a circular robot can touch with its body, given its radius and an initial position. The corre-

sponding Actuation Map is in Figure 2.3f, which represents the regions of the environment that can be

CHAPTER 2. ROBOT-DEPENDENT MAPS 16

(a) Original Map (b) Dilated Map (c) Closed Map

(d) Initial Robot Position (e) Reachable Space (f) Actuation Space

Figure 2.3: a) Map with two possible positions for the robot, the green one is feasible, while in the red
the robot overlaps with obstacles; b) the configuration space is obtained with the morphological dilation
(C f ree is the set of green regions); c) the morphological closing operation; d) the initial robot position; e)
the navigable space, with initial position represented by gray circle; f) the partial morphological operation
applies the second dilation operation only to the navigable space, resulting in the actuation space.

actuated by a robot. The regions outside the actuation space, U(S), cannot be reached by the robot body,

and thus cannot be actuated.

U(S) = {p ∈ G | p /∈ A(S) ∧ p /∈ M} (2.16)

As an example, we can consider a vacuum cleaning robot. The configuration space represents the

possible center positions for the circular robot, and A(S) represents the regions the robot can clean. Finally,

the unreachable regions U(S) are the parts of the environment the robot cannot clean. For example, a

circular vacuum cleaner can never reach and clean corners.

2.2.2 Robot-Dependent Visibility Map

The goal of robot-dependent visibility maps is to efficiently determine the perception capabilities of a

robot in a specific environment, i.e., determine which regions can be perceived by the robot’s sensor from

any point that is reachable from the initial robot position. We show in Figure 2.4 an example of a resulting

visibility map, given an initial robot position, footprint, and sensor maximum range, rp.

If we consider the problem of perception, a Visibility Map represents the regions of the input map that

are visible by the robot from some reachable position. One approach to finding the visibility map is to

use a brute-force algorithm. Each position in the map can be tested for visibility, by finding at least one

CHAPTER 2. ROBOT-DEPENDENT MAPS 17

(a) Map (b) Visibility Map

Figure 2.4: a) A simulated map of obstacles in black, a circular robot in green, and the robot sensing range
in light green; b) the Visibility Map, with regions that can be sensed by the robot in white and occluded
regions in black.

feasible robot position in Nav(S) that has line-of-sight to the target point. For that purpose, we use the

ray casting technique. This approach is however very computationally expensive, especially if the robot

moves in an environment with unexpected and dynamic obstacles.

Given the robot’s geometric properties, there will be some regions that are accessible to the robot

and some regions that will be inaccessible. Furthermore, robots can use their sensors to perceive inside

inaccessible regions. Our algorithm is a function of the robot size and sensing range.

As an alternative to using the brute-force approach, we can take the actuation space A(S) and consider

it as a first approximation of the visibility map. The visibility map is then built incrementally from A(S).

The unreachable regions U(S) are divided into a set of different disconnected components Ul(S), which

is useful because it allows determining additional visibility inside each one independently. Each region

Ul(S) has its unique openings to the actuation space, from where visibility inside Ul(S) is possible. These

openings are the frontiers, defined as the points of the unreachable space that are adjacent to A(S), as

shown in Figure 2.5a.

Fl(S) = {p ∈ Ul(S) | ∃p′ : p′ is adjacent to p ∧ p′ ∈ A(S)} (2.17)

The frontier set can be composed of multiple disjoint segments Fli(S), and visibility inside the un-

reachable region should be determined for each segment independently. The additional visibility in each

Ul always comes from points with line-of-sight through Fli(S). Therefore, the algorithm automatically

discards unreachable regions without frontiers.

Multiple candidate positions can sense inside Ul(S), and all of them have to be in Nav(S), the feasible

positions for the robot center. In order to have the true visibility map, all points from Nav(S) should be

considered. However, the complete solution is computationally expensive, so we propose an alternative,

where the visibility inside unreachable regions through each frontier segment is determined only from

one point of the navigable space.

CHAPTER 2. ROBOT-DEPENDENT MAPS 18

(a) Unreachable Regions (b) Critical Point

(c) Visibilities from Critical Points (d) Visibility Map

Figure 2.5: a) A map with A(S) in white, the unreachable regions that connect with A(S) in pink, and an
example of a disconnected unreachable region in light blue; b) highlighting a disconnected unreachable
region, with the frontier segment points Fli(S) in dark blue, the critical point c∗li(S) in red, and the expected
visibility Vcli

e (x) in light blue; c) Nav(S) in green, all critical points in red and respective extended visibility
regions in dark blue; d) the final visibility map.

As the algorithm only uses one point, the output of this algorithm is an approximate visibility map.

To obtain a good approximation, the point chosen has to maximize the expected visibility inside the

unreachable region. Given a point p, it is possible to determine the expected visibility Vpli
e (S) as the area

of an annulus sector in Ul defined by the robot sensing radius, and the frontier extremes. A point closer to

the frontier is chosen to maximize the expected visibility, as it has a deeper and wider view inside Ul(S).

c∗li(S) = argmin
p∈Nav(S)

∑
ζ∈Fli(S)

‖p− ζ‖2 (2.18)

We define the point c∗li(S) as a critical point, shown in Figure 2.5b. As explained before, in order

to reduce the computation needed to calculate the visibility map, we choose only one critical point per

frontier Fli(S). For each pair of frontier Fli(S) and critical point c∗li(S), the algorithm defines an annulus

sector of expected visibility inside the unreachable regions, Vcli
e (S), as illustrated in Figure 2.5b. In order

to deal with occlusions, we consider the points in Vcli
e (S) and determine the true visibility of Vcli

t (S) from

critical points c∗li(S) using ray casting, considering the maximum sensing range. The algorithm determines

the true visibility from the critical point and through the corresponding frontier inside the corresponding

unreachable regions. Those points of true visibility define the set Vcli
t (S) ⊆ Vcli

e (S).

CHAPTER 2. ROBOT-DEPENDENT MAPS 19

V(S) = A(S)
⋃
li

Vcli
t (S) (2.19)

After analyzing unreachable regions Ul(S) independently, we were able to determine the visibility

inside each one. The overall visibility for the whole map is then given by the union of the actuation space

with the individual visibilities Vcli
t (S) obtained for each region Ul(S).

The complexity of determining the position of each critical point depends on the robot size and the

size of the frontier. As we know the distance between the critical point and the frontier is the robot radius,

we define a rectangular search box such as its boundaries have a distance to the frontier extremes equal to

the robot radius. Then the algorithm only looks for the critical point inside that rectangular search area.

2.2.3 Results

Our solution is an approximation of the real visibility, as the robot-dependent visibility map is not the

same as the yielded by the ground-truth visibility, as shown in Figure 2.6. The approximation is the result

of considering only visibility from critical points. However, the final visibility is generally very close to

the true visibility given by the ground-truth. Figure 2.6 shows false negatives in blue and correct visibility

in white.

The precision of our algorithm is always 100% because there are no false positives. As an approxima-

tion algorithm, there can be some visibility that is not detected. However, all the visibility determined

from the critical points is always correct, thus resulting in perfect precision. On the other hand, recall is

the amount of visibility not accounted in our approximate algorithm, which is always due to considering

one critical point per frontier. The effect of using only one point varies with the topology of the environ-

ment, being worse for larger unreachable regions and sensing ranges, shown in Figure 2.6c, as the error

propagates and increases with distance from the critical point. While error increases, the efficiency of our

algorithm also increases with larger sensing ranges, as seen in Figure 2.6d. Finally, the time efficiency of

our contributed algorithm increases linearly with the increase of image size.

2.3 Robot-Dependent Maps for Any-Shape Robots

For the case of non-circular robot footprints (Figure 2.7), given that the robot model is not rotation invari-

ant, we need to discretize orientation as well. We introduce a world representation that is composed of

multiple layers, using the partial morphological closing operation to each layer, and as such determining

individually for each orientation the corresponding actuation space [32].

CHAPTER 2. ROBOT-DEPENDENT MAPS 20

(a) Map and Initial Robot Position (b) Visibility Map and Ground-Truth

(c) Recall (d) Time Ratio

Figure 2.6: a) The simulated map; b) comparison of approximate visibility map and ground-truth in a 200
by 200 cells map, robot radius of 9 cells, and sensor radius of 80 cells; visibility true positives in white,
true negatives in black, and visibility false negatives in blue; c) changes in recall as a function of maximum
sensing range; d) changes in the ratio of ground-truth computation time divided by approximate visibility
computation time, as a function of maximum sensing range.

Figure 2.7: Environment and robot models used to test the extended approach to any-shape robots.

CHAPTER 2. ROBOT-DEPENDENT MAPS 21

To extend the approach described in the previous section to any-shape robots with any sensor model

as well, we used a multi-layered representation to discretize orientation and a new method to choose the

critical points. We parametrized both the robot shape and sensor model with images that can be rotated

and scaled. It is also possible to define the sensor and robot centers, and their relative positions. First,

the algorithm needs images to model both the robot and its actuation capabilities. Both are parametrized

by images that can be rotated and scaled to represent any robot. As input, it is also necessary to give the

center of the robot and actuation in terms of their model images and their relative positions.

Here we assume a quantization in the θ dimension (i.e., orientation), where nθ is the number of layers

in the quantization. After the initial parametrization, the robot and sensor models (structuring elements)

are rotated by 2kπ/nθ , where 0 ≤ k < nθ , as shown in Figure 2.8. The rotated R(k) and Sens(k) represent

the robot and sensor models for each possible discrete orientation k.

(a) Robot Model R for θ = 0o (b) Robot Model R for θ = 45o (c) Robot Model R for θ = 90o

Figure 2.8: Example of an image representing the robot footprint, rotated for three different angles, and
used as structuring element in the morphological operations applied to the respective orientation layers;
robot center shown with red dot.

The morphological operations can now be used to determine the free configuration space for each

layer k, by dilating the map with the corresponding robot shape R(k).

C f ree(k) = {p ∈ G | p /∈ M⊕ R(k)} ∀0 ≤ k < nθ (2.20)

We use a circular representation for the layered orientation, where the next layer after θj = nθ − 1 is

layer θ = 0.

In order to model a robot that navigates through the grid map, we need to establish the type of

connectivity between points in different layers, such as it is equivalent to the real motion model of the

robot. As an example, the connectivity graph from Figure 2.9, where one point is connected to all its

neighbors in the same layer and the respective positions in adjacent layers, is equivalent to considering an

omnidirectional model of navigation.

Given the connectivity mode, it is then possible to find all points in each layer of the configuration

space that connect with the starting robot location S, obtaining the navigable set Nav(S, k). We can

CHAPTER 2. ROBOT-DEPENDENT MAPS 22

then use a second dilation operation to the navigable space in each layer to get the actuation space for

each orientation. The structuring element for this second operation is the one that models the actuation

capabilities, T, which dilates the space according to the actuation model. If instead the structuring element

R is used again, that would be equivalent to assuming an actuating ability utterly coincident with the

entire footprint.

Figure 2.9: Three adjacent layers of the discretized orientation, showing in blue the neighbor points of a
central orange dot, representing the connectivity of an omnidirectional motion model.

Then, the actuation space for each layer would be given by

A(S, k) = Nav(S, k)⊕ R(k). (2.21)

This actuation space represents the points in each layer that can be touch by the robot with the cor-

responding orientation. After determining the actuation space for each layer, the multiple layers are

projected into one single 2D image to compute the overall actuation capabilities for any orientation.

PA(S) =
⋃
k

A(S, k) (2.22)

The set PA(S) is equivalent to the feasible points in the Actuation Map.

The actuation space gives the actuation capabilities for each orientation for a given robot shape and

starting position. So, if a point belongs to PA(S), then it can be actuated by the robot. We show in

Figure 2.10 the navigable and actuation spaces for different layers.

From this figure, it may look that navigability and actuation capabilities are calculated with morpho-

logical operations independently based on orientation. If that were the case, projecting the navigability

and actuation onto a 2D image would be an incorrect transformation, as paths could become feasible even

if adjacent 2D grid positions would come from non-adjacent orientations. However, the only operation

that is taken independently in terms of orientation is building the configuration space.

CHAPTER 2. ROBOT-DEPENDENT MAPS 23

(a) Environment Layout and Initial Positions

(b) Navigable Space 0o

Layer, Robot 1
(c) Navigable Space 45o

Layer, Robot 1
(d) Navigable Space 90o

Layer, Robot 1
(e) 2D Projected Navigabil-
ity, Robot 1

(f) Actuation Space 0o Lay-
er, Robot 1

(g) Actuation Space 45o

Layer, Robot 1
(h) Actuation Space 90o

Layer, Robot 1
(i) 2D Projected Actuation
Map, Robot 1

(j) Navigable Space 0o Lay-
er, Robot 2

(k) Navigable Space 45o

Layer, Robot 2
(l) Navigable Space 90o

Layer, Robot 2
(m) 2D Projected Naviga-
bility, Robot 2

(n) Actuation Space 0o

Layer, Robot 2
(o) Actuation Space 45o

Layer, Robot 2
(p) Actuation Space 90o

Layer, Robot 2
(q) 2D Projected Actuation
Map, Robot 2

Figure 2.10: Navigable and actuation space for two non-circular robots with different sizes, for the scenario
shown in a).

CHAPTER 2. ROBOT-DEPENDENT MAPS 24

Afterward, we determine the navigable space from an initial position using the layered structure and

considering the robot motion model. Therefore, paths cannot be feasible if only their 2D positions are grid

neighbors. To determine navigability, we also consider if two points are neighbors in terms of orientation

(being in the same or an adjacent orientation layer). So, after projecting navigability and actuation onto a

2D image, neighbor points will only be connected if there is a path between them that is feasible in terms

of rotation and orientation in the layered structure. Thus we guarantee that a corner in the environment

will only be navigable by a rectangular robot if the passage is not too narrow for the robot footprint,

allowing it to rotate while moving along the corner.

PA(S) has the same kind of representation we had with the circular robot, where the actuation space

is a single 2D image not depending on the orientation.

Similarly, the Visibility Map can also be computed incrementally from the overall actuation space, as

we did in the circular robot case.

However, we need to use a structuring element to represent the sensing capabilities bounded by the

robot shape: SensB(k) = R(k) ∩ Sens(k). Replacing R(k) by SensB(k) in equation 2.21 results in PVB(S),

which now can be used as a starting point to determine the Visibility Map for a robot with a sensor model

Sens. The set PVB(S) gives the projected visibility bounded by the robot shape, and it has the same kind of

representation we had with the circular robot, with a single 2D image that does not depend on orientation.

Therefore, the unreachable regions Ul(S) and respective frontiers Fl(S) can be determined in the same

way as we did with the circular robot.

2.3.1 Critical Points for Any-Sensor Model

In the any-shape robot case with general sensor models, the previous definition of critical point is not

ideal. If the critical point was chosen again as the closest position to the frontier points, the result could be

inferior as a position with a non-optimal orientation towards the frontier might be chosen. Therefore, we

do not use the center of the robot as a critical point, but the sensor center instead, because it is the sensor

position relative to the frontier that controls the amount of visibility determined inside the unreachable

region. The critical point is still the position that maximizes the expected visibility, but now we redefine

the calculation of expected visibility Vcli
e .

For that purpose, we build a histogram of the sensor model that represents the visibility of the sensor

in each direction. If φ is the angle of the vector from the sensor center to another point in the sensor

model, bs(φ) is the correspondent bin in the histogram. Therefore, bs returns values between 0 and ns − 1,

CHAPTER 2. ROBOT-DEPENDENT MAPS 25

with ns being the number of bins.

bs(φ) = argmin
0≤n<ns

|angleNorm(φ− 2nπ/ns)| (2.23)

The function angleNorm normalizes the angle between π and −π. The histogram is built by iterating

over all points in the sensor model Sens, determining the angle φ for each point, and adding the point to

the respective histogram bin bs(φ). With the histogram, it is possible to estimate the expected visibility

inside the unreachable regions using only the frontier extremes.

In order to search for the critical point, we use the angle of an annulus sector defined by the candi-

date point cli and the frontier extremes, with angles φcli
1 and φcli

2 . The expected visible area inside the

unreachable region is given by the sensor histogram:

Vcli
e =

(bs(φcli
2)

∑
n=bs(φcli

1)

hist(n)
)
− ||cli − Cli

f ||
2(φcli

2 − φcli
1)/2, (2.24)

where Cli
f is the frontier center of mass, and ||cli − Cli

f ||
2(φcli

2 − φcli
1)/2 accounts for the area from the

candidate point to the frontier, already counted in the space PVB(S).

c∗li(S) = argmax
cli

Vcli
e (2.25)

Finally, the critical point is given by searching in the layered image representation. Then, visibility

inside U is determined using ray casting, as with the circular shape assumption.

2.4 Summary

In this chapter, we reviewed the morphological operations that are commonly used for noise reduction

in image processing. Then, we introduced our contribution of robot-dependent maps, which transforms

maps of the environment according to the robot’s physical characteristics. The goal of this transformation

is to be able to adapt grid maps to each robot, representing efficiently in the form of maps the robot-

dependent feasibility for coverage and perception tasks. For the visibility map to efficiently represent

perception feasibility, we introduced the concept of critical points to have a smart sampling of the navigable

space in order to quickly obtain a good quality approximation to the visibility map. We showed that the

approximation error depends on the environment topology, being greater for larger sensing radius and

larger unreachable regions, while the time efficiency compared to the brute-force approach also increases

for larger maps. Finally, we presented a multi-layer representation that allows us to extend the robot-

dependent maps to any-shape robots, removing the restriction of using only circular sensor models and

robot footprints.

Chapter 3

From A* to Perception Planning

Path planning usually deals with the problem of finding a route for a robot to move from an initial position

to a destination point. The path can be calculated and optimized according to many different metrics, but

those metrics are usually related to the path size. However, if the goal is not moving to a destination point,

but to perceive a target location, then sensing the target can usually be performed from many different

positions. Thus it becomes necessary to account not only for the motion cost when calculating the optimal

path, but also to consider the perception quality.

In this chapter, we assume the perception quality decreases with distance and depends on the specific

sensor the robot uses to perceive the target. In this work, we consider perception quality by translating

it into a cost function. We introduce a heuristic search for path planning that finds the optimal motion

path and perception location for a robot trying to sense a target position in a 2D map while minimizing

both motion and perception costs. The overall cost of a path solution is assumed to be the sum of motion

cost with perception costs, and a trade-off parameter is used to be able to change the weight of each of

these components. As different robots might have different characteristics and different weights for the

motion and perception costs, changes in the trade-off parameter can generate different solutions, with

each solution being optimal for a specific robot configuration.

The perception cost in this technique is designed to represent the inaccuracies and uncertainty of each

sensor, and as such, it measures perception quality. Assuming accurate sensor models, we can guarantee

that the algorithm returns optimal path solutions.

In our previous work, we developed the search framework for perception planning that we present in

this chapter [35].

26

CHAPTER 3. FROM A* TO PERCEPTION PLANNING 27

3.1 Perception Planning Formulation

In our perception scenario, we have to find a path ρ that minimizes not only the distance traveled but

also the perception cost. The path ρ is a sequence of adjacent positions in a grid, {s0, s1, ..., sN}. The robot

starts from the initial position s0 = S and moves through connected cells of the discretized configuration

space to a final robot position, sN = F, such as the sensing target T is perceived from some position in the

path ρ. The total cost of path ρ is given by

cost(ρ) = costm(ρ) + λcostp(ρ, T), (3.1)

where λ is a weight parameter that trades-off the motion cost costm(ρ) , and the perception cost costp(ρ, T)

in the overall cost function.

Usually, the motion cost costm is proportional to the distance traveled from S to F, where F = sN :

costm(ρ) =
N

∑
i=1
||si − si−1||. (3.2)

Here we assume that costp(ρ, T) is a function of the minimum distance between the ρ and T, making

the perception cost a function of the minimum sensing distance from the path to the target:

costp(ρ, T) = cp

(
min
si∈ρ,

si with line-of-sight to T

||si − T||
)

, (3.3)

with cp being a continuous function that depends on the sensor model. In the perception tasks, one of

the goals is to increase the accuracy of perception. In our work, we represent the accuracy of perception

as a cost function, where a low sensing accuracy corresponds to a high perception cost, and vice-versa.

Therefore, the cost of perception is a function of the sensing distance. We assume that the further away the

robot is from the target, the lower the sensing accuracy, because of the increased probability of inaccurate

measurements. Thus the cost function for perception, cp, increases with distance.

The trade-off parameter λ could be included in the cp function, resulting in one less parameter in our

model. However, we chose to have it as a separate parameter, in order to have a more flexible model,

where λ is only a weight parameter that trades-off motion and perception costs, while the cp function

deals specifically with the modeling of the perception cost function, which depends on the type of sensor

used. For example, the perception cost can increase linearly with distance, quadratically, or in many other

different ways. The cp function models the type of perception cost (e.g., linear or quadratic), and we can

solve the heuristic for a specific perception cost model, and maintain it as a function of λ. By using this

approach, later on, we can reuse the same heuristic, and in case we only want to change the weights

of motion and perception costs, we can change only the λ parameter without having to recalculate the

heuristic equation for a new type of perception cost function.

CHAPTER 3. FROM A* TO PERCEPTION PLANNING 28

The optimal path is given by

ρ∗ = argmin
ρ∈P

cost(ρ)

= argmin
ρ∈P

costm(ρ) + λcostp(ρ, T), (3.4)

where P is the space of all possible paths.

Theorem 3.1. For the optimal path ρ∗, the position that minimizes the distance from the path to sensing target T

is the final position of the path, F.

Proof. If there were another position si in the middle of the path that had the smallest distance to the

target, then there would be a different path ending in si with minimal cost, contradicting the hypotheses

that the path ρ∗ from S to F is the one that minimizes the overall cost.

The space of all possible paths P is a general notation for representing the minimization problem to

find the optimal path, but our proposed algorithm does not implement any search in the path space.

We are going to show in the following sections how to use the A* architecture to do an informed search

that builds the optimal path by moving between neighbor cells from the initial position S to the final

goal position F. We can use heuristic search for this problem because the first theorem states that the

perception cost is only a function of the distance from the last point of the path to the target. Thus the

perception cost in this problem can be rewritten as

costp(ρ, T) = cp
(
||sN − T||

)
. (3.5)

Because the perception cost depends only on the last path position, it is possible to estimate the

perception cost in the heuristic of a search algorithm.

Finally, due to the existence of a trade-off parameter λ, the optimal solution depends on the value of

λ, as shown in Figure 3.1.

T

FA

S

costA
m

costA
p

(a) Solution A with Lower λ

T

FB

S

costB
m

costB
p

(b) Solution B with Higher λ

Figure 3.1: The cost of a path is given by the sum of the motion and perception costs, costm and costp
respectively, and the optimal solution depends on the trade-off parameter λ.

CHAPTER 3. FROM A* TO PERCEPTION PLANNING 29

3.2 PA*: Informed Search for Perception Planning

A* is a graph search algorithm that finds the lowest cost path from a given initial node to a goal node.

It also works with discretized representations of the environments such as grid maps, where each grid

position represents a node, and the graph connectivity can be either a 4 or 8-neighborhood. A* explores

the environment by computing a heuristic cost function for each visited node that estimates the cost to

reach the target. It moves through the search space by selecting the nodes with a lower overall cost.

In traditional motion planning, a node is a goal position if its coordinates are the same as the target

coordinates. Moreover, the total cost estimate is given by the cost of the path from the starting position,

S, to the current node n, plus a heuristic of the cost from n to the target position T.

f (n) = g(S, n) + h(n, T) (3.6)

If the heuristic used is admissible, i.e., always less or equal than the true value, then the path returned

is guaranteed to be optimal. Therefore, the usual choice for the heuristic is just the Euclidean distance

between the current node and the target, without considering any obstacles.

hmp(n, T) = ||n− T|| (3.7)

In this section, we introduce PA* (perception A*), a heuristic search for motion planning that returns

the optimal path to perceive a target, considering both motion and perception cost.

As in the A* algorithm, in PA* the total cost estimate is also given by the sum of g(S, n), the path

distance from the starting position S to the current node n, and h(n, T), which here is a heuristic of both

the motion and perception costs from n to T. In order for the heuristic to be admissible, it is based on the

Euclidean distance between the current node and the target, without considering any obstacles.

The new heuristic in PA* still uses the straight line between the current node and sensing target,

without considering obstacles, as A* does. Nevertheless, it now considers the expected cost of both for

approaching the target and sensing from a smaller distance.

hpp(n, T) = min
q

(
||n− q||+ λcp(||q− T||)

)
(3.8)

We assume that from position n the robot can still approach the target by moving to other location q,

from where it senses the target. There is a trade-off between the possible increase of motion cost and the

decrease in perception cost. We take the distance between points n and q as the approaching cost.

CHAPTER 3. FROM A* TO PERCEPTION PLANNING 30

3.2.1 Optimal Heuristics for PA*

With the previously presented problem formulation, it is possible to solve the perception planning prob-

lem with A*, introducing a new heuristic that takes into account the perception cost. For that purpose, we

will consider the problem of finding the optimal sensing position in a continuous straight line scenario

without obstacles, as presented in Figure 3.2. The idea is to use the solution for the straight line problem

without obstacles as an admissible heuristic for the perception problem.

T
n •

q

||n− q|| = αd ||q− T|| = (1− α)d

Figure 3.2: Given a robot at node n and a perception target T at distance d in a scenario without obstacles,
the optimal sensing goal position lies in the straight line connecting those two points; the image shows a
solution with a motion of αd and sensing distance equal to (1− α)d.

With ||n− T|| = ||n− q||+ ||q− T|| = d, the overall cost from node n to target T can be expressed as

a sum of motion cost |αd| and perception cost cp
(
|(1− α)d|

)
:

cost(α, d) = |αd|+ λcp
(
|(1− α)d|

)
, (3.9)

where cost(α, d) is a continuous function of the overall cost when the robot is at a distance d to the target.

The variable α represents the percentage of the distance the robot can approach the target, and 1− α the

percentage of the distance d that is sensed. In order to have the optimal solution, we need to find α that

minimizes cost.

α∗ = argmin
α
|αd|+ λcp(|(1− α)d|) (3.10)

Therefore, the first step is to find the percentage that minimizes the cost of approaching and sensing

the target in a straight line. This percentage can be calculated analytically or numerically, depending on

the function cp. Later we will show optimal solutions for specific polynomial functions.

Lemma 3.1. If cp is a positive and monotonically increasing function, then 0 ≤ α∗ ≤ 1, i.e., the optimal solution

for the sensing goal position in the straight line perception task lies between the current node n and T.

Proof. The cost of motion is always positive and increases with traveled distance. Using the previous

definition for perception cost, it is a function of sensing distance; thus it is positive and increases mono-

tonically. Thus, the assumption for the perception cost function holds. Assuming a straight line distance

with size d, the optimal decision of approaching the target by α∗d and sensing from a distance (1− α∗)d

CHAPTER 3. FROM A* TO PERCEPTION PLANNING 31

has a minimal cost. By definition,

∀α, d ∈ R cost(α, d) = |αd|+ λcp(|(1− α)d|) ≤

|α∗d|+ λcp(|(1− α∗)d|) = cost(α∗, d). (3.11)

If we take α > 1, with a positive and monotonically increasing function cp, then we have:

∀α > 1 cost(α, d) = αd + λcp(dα− d) > d + λcp(0) = cost(1, d). (3.12)

Using equations 3.11 and 3.12, we prove that approaching the target by more than d always has a

greater cost than approaching just by a distance d, showing that α∗ ≤ 1. In other words, it is always

preferable to approach the target by d and sense from that position than approach by a bigger distance

while increasing the perception distance as well, by sensing the target from further away. The same

analysis can be done for α < 0,

∀α < 0 cost(α, d) = −αd + λcp(d− αd) > 0 + λcp(d) = cost(0, d), (3.13)

proving that 0 ≤ α∗ ≤ 1.

There is an intuitive explanation for the previous lemma. If α∗ > 1, then the robot would move past

the target and perceive it from behind, increasing both motion and perception costs, which contradicts

the initial assumptions. If that were the case, there would be other solutions where the robot could sense

from the same distance, but with a smaller cost of approaching the target, thus having an overall lower

cost. That solution would also contradict the first theorem, as there would be a point in the middle of

the path with a smaller distance to the target. The same reasoning can be applied when α∗ < 0, which

also represents a counter-intuitive situation, because the robot would be moving away from the target,

increasing both the motion and perception cost and again contradicting the first theorem.

The previous results are expected if we use positive and monotonically increasing cost functions,

showing that the optimal solution to sense a target in a straight line is to approach the target while

moving to a position in between the current node and the target. Moving beyond the target or moving

back always yields solutions with a higher cost.

To find the solution for the straight line problem, we have to solve a minimization problem:

α∗ = argmin
α

cost(α, d), (3.14)

for 0 ≤ α∗ ≤ 1. This minimization can be done by setting the gradient to zero in order to find extrema

for the interior region, and if any point exists, comparing it to the cost values on the boundary to find

the point with minimum cost (for α = 0 the cost is λcp(d) and for α = 1 the cost is λcp(0) + d). If the

CHAPTER 3. FROM A* TO PERCEPTION PLANNING 32

function cp has a gradient which is strictly increasing, then the overall cost is a convex function with only

one minimum, and in that case, the optimal solution is either α∗ = 0∨ α∗ = 1∨ α∗ = αc, where αc is given

by

d
(
|αcd|+ λcp(|(1− αc)d|)

)
dαc

= 0. (3.15)

After finding α∗ as the optimal solution for the straight line problem, the heuristic in PA* is

hpp(n, T) = α∗||n− T||+ λcp
(
(1− α∗)||n− T||

)
. (3.16)

If we find the optimal approach point q∗ such as ||q∗ − T|| = α∗||n− T|| (where q∗ has to be in the

straight line distance between n and T), then the heuristic can also be defined as

hpp(n, T) = ||n− q∗||+ λcp(||q∗ − T||). (3.17)

In order to use the straight line solution as the best heuristic for PA* when not considering obstacles,

as in the common A* formulation, we need to prove that the straight line solution yields the smallest cost.

Considering the scenario in Figure 3.3, the direct distance between robot position and target is d,

as in the example before. However, because the approaching is not in a straight line with the target,

d′ = ||n − q|| + ||q − T|| > d = ||n − T||. Given the non-straight line assumption, d′ = d + ε, with

ε ≥ 0. The robot moves a percentage of this path, αd′, and senses the reamining distance, (1− α)d′, where

α = ||n−q||
||n−q||+||q−T|| .

T
n

•
q

||n− q|| = αd′ ||q− T|| = (1− α)d′

Figure 3.3: Robot approaches the target in a non-straight line to position q, with approach distance of αd′,
and the sensing distance of (1− α)d′, with d′ > d, where d is the straight line distance without obstacles.

Theorem 3.2. If the heuristic in PA* uses the straight line solution, the heuristic is admissible and consistent iff the

perception cost function cp(d) is zero for d = 0.

Proof. The cost of the solution with 0 ≤ α ≤ 1 and d′ > 0 is

cost(α, d′) = αd′ + λcp((1− α)d′) = α(d + ε) + λcp((1− α)(d + ε)). (3.18)

Again, if the perception cost function is monotonically increasing

cost(α, d′) = α(d + ε) + λcp((1− α)(d + ε)) ≥ αd + λcp(d− αd) ≥ cost(α∗, d), (3.19)

CHAPTER 3. FROM A* TO PERCEPTION PLANNING 33

proving moving out of the straight line always has a higher cost than the optimal solution for the straight

line, and as such, the straight line solution can be used as a heuristic for the informed search in perception

planning.

As we assumed that cp(0) = 0, then it is trivial to show that h(T, T) = 0.

Furthermore, if we consider a successor node n′ with an optimal approach point q′∗ and a cost to move

from n to n′ as c(n, n′) = ||n− n′||, then

c(n, n′) + h(n′, T) = ||n− n′||+ ||n′ − q′∗||+ λcp(||q′∗ − T||). (3.20)

Using first the geometric triangle inequality and then the definition of the heuristic,

c(n, n′) + h(n′, T) ≥ ||n− q′∗||+ λcp(||q′∗ − T||) ≥ ||n− q∗||+ λcp(||q∗ − T||) = h(n, T). (3.21)

Because h(T, T) = 0, this heuristic is consistent.

We use ||.|| as the Euclidean distance. As we have shown here, the heuristic for PA*, hpp, depends only

on the distance to the target d = ||n− T|| and the parameter α∗, which depends on the perception cost

function cp and the distance d as well. Regarding the cost function g(S, n), it is the same as standard A*

is used, with g being the minimum cost for a robot to move from the initial position S to node n.

We consider the perception quality depends only on the distance to the target because we assume

robots can rotate in place and sense the target from the most favorable direction. Furthermore, the per-

ception cost function cp can be any monotonically increasing function, allowing flexibility to represent the

cost of multiple perception models.

3.2.2 Perception Cost Function Examples

For any specific perception cost, it is possible to find the optimal sensing position q∗ and the parameter

α∗ as a function of the distance ||n− T|| and the function cp. With α∗ known before-hand, the heuristic

hpp becomes only a function of n and T, and easy to compute during the search execution.

We give in this section two examples for the function cp, where the perception cost is either a linear or

quadratic function of the distance to the target. In our model, we assume circular omnidirectional sensing

with a limited range rp. We then formulate the heuristic hpp(n, T) in a way that it can be used for multiple

perception cost functions while being easily computed for each specific perception function.

First, we define the optimal sensing distance as d∗s = ||q∗− T|| = (1− α∗)||n− T||, when ||n− T|| → ∞.

This definition is useful when the overall cost functions are convex, with a perception cost whose gradient

is strictly increasing, which is true for the functions we exemplify in this section. In that case, the optimal

CHAPTER 3. FROM A* TO PERCEPTION PLANNING 34

sensing distance is a constant, and a unique solution that only depends on the function cp, not depending

on the distance ||n− T||. In this scenario, the real sensing distance used in the heuristic hpp is either d∗s or

the boundary solution ||n− T|| if ||n− T|| < d∗s .

In the linear case, the function cp is linear, apart from a limit related to the maximum perception range.

cp(d) =


|d| |d| ≤ rp

∞ |d| > rp

(3.22)

There are two cases for the optimal sensing distance d∗s in the linear case:

• λ < 1: The cost of motion is greater than the cost of sensing, so the robot minimizes motion by

sensing form as far apart as possible (limited by maximum sensing range rp);

• λ ≥ 1: The cost of sensing is higher than the cost of motion, so the robot moves as close to the target

as possible.

Given the analysis before, it is possible to write the optimal sensing distance d∗s for the linear perception

cost function.

d∗s =


rp λ < 1

0 λ ≥ 1
(3.23)

With a quadratic sensing cost, cp(||q− T||) = ||q− T||2, we can solve for α∗ using equation 3.15. In

order to find the minimum, we find the point αc with zero derivative.

d
(
α∗d + λ(d− α∗d)2)

dα∗
= 0⇔ α∗ = 1− 1

2dλ
(3.24)

Ideally, the robot would move to a fixed distance 1/(2λ) of the target to sense it optimally.

The optimal sensing distance d∗s for the quadratic perception cost function also depends on rp.

d∗s =


1

2λ 1/(2λ) ≤ rp

rp 1/(2λ) > rp

(3.25)

We can interpret the quadratic cp as a function that represents a cost that changes little with close

distances. When the robot is already close enough to the target, changes in the distance to the target have

a small impact on the perception cost. On the other hand, the further away the robot is from the target,

the greater the impact of the distance in the perception cost. Therefore, it is reasonable to think of a fixed

optimal sensing distance in that case, which is a function of λ, the parameter that weights motion and

perception cost.

CHAPTER 3. FROM A* TO PERCEPTION PLANNING 35

Having calculated the optimal sensing distance d∗s and checking the boundary condition, we can write

the heuristic as a function of n, T and d∗s .

hpp(n, T) =


(||n− T|| − d∗s) + λcp(d∗s) ||n− T|| ≥ d∗s

λcp(||n− T||) ||n− T|| < d∗s

(3.26)

For nodes from which the target cannot the perceived, the heuristic value becomes infinite.

Other perception cost functions with similar properties (convex functions with unique solutions) can

use the same heuristic equation, with the only requirement of finding d∗s .

The solution to the perception planning problems depends significantly on the sensor used. That is the

reason we approached this problem in a more general perspective first, introducing a heuristic that works

for any perception cost function, as long as it is an increasing function with distance. The specific cases

presented in this section are examples of what needs to be done to determine the heuristics for specific

cost functions. It is possible to adapt the cost functions to the problem in hand (e.g., sensor properties),

and then determine the heuristic for that specific problem using our approach.

3.3 Underlying Graph and Node Expansion

In the solution presented until now, we assume there is a grid-like discretization of the world which serves

as the underlying graph for search. Every grid point is a node in the graph, and two nodes are connected

if their respective grid positions are neighbors, assuming 8-connectivity as the adjacency rule. Due to the

existence of obstacles between grid positions, not all of them are reachable by the robot.

As explained before, nodes are expanded using a heuristic that estimates how much the robot should

approach the target to have an optimal path. If there were no obstacles in the PA* problem, the search

would expand nodes until reaching the final grid position F. In that case, unless F = T, the heuristic

for node F has an approaching distance equal to zero, i.e., α∗ = 0, which can be a stopping condition.

However, in that case, the heuristic in the final expanded state would be non-zero if F 6= T.

Furthermore, if we also consider the existence of obstacles, another problem arises. As the search

progresses, assuming in current node n the optimal α∗ is greater than zero, the algorithm has to continue

the search because the possibility of approaching the target yields a solution with lower cost. The meaning

of this situation is that at the current node n the solution is not guaranteed to be optimal, and there is

the change to find another node with a lower overall cost for both motion and perception. As the search

progresses, the nodes that could in principle have a lower cost might be blocked by obstacles, or not have

line-of-sight with the target.

CHAPTER 3. FROM A* TO PERCEPTION PLANNING 36

Therefore, it is essential that the algorithm can go back to the previous node n if it has a global lower

cost after exploring other alternatives. While for this node n there will always be a positive optimal

approaching distance, after exploring the rest of the graph and increasing the lower bound for the overall

cost, this will be the node minimizing the cost as all the other possibly better alternatives have already

been tested and are not valid final positions. However, the capability of backtracking to previous nodes is

not possible in the graph described so far.

We thus propose an extension to the original underlying graph that is built from the grid discretization,

as shown in Figure 3.4. On this extension, we reuse a solution from other robotic problems, where one

more node, Te, is added to the original graph. The cost between nodes in the original graph is c(n, n′) =

||n − n′||, and they stay the same in the extended graph. However, the extended graph also has new

connections between every node n and the new node Te such as their cost is c(n, n′ = Te) = λcp(||n− Te||).

For the search to finish, the additional node Te has to be expanded, and in that final expanded node the

heuristic value is zero, i.e., hpp(n = Te, T) = 0. Therefore, when expanding node n, not only its grid

neighbors are added to the priority queue with the respective priority f (n′), but also the node Te is added

with priority f (Te) = g(S, Te) = g(S, n) + λcp(||n− Te||), where n is the last grid position expanded.

Te

Figure 3.4: Extending the underlying graph with an additional node Te, which must be reached to finish
the search.

3.3.1 Stopping Condition

The stopping condition becomes trivial if we use the extended graph described before. For the search to

stop with a feasible path for the robot, the final step is to expand node Te. In that case, the search ends

after expanding a node with heuristic equal to zero. Moreover, until now obstacles which occlude the

target have not been considered. So, when expanding the node Te, it is necessary to test with ray casting

if there is line-of-sight between the last position of the path in the grid and the target. If the evaluation is

successful, the algorithm found the optimal path and the search stops.

As there can be multiple entries in the priority queue for the node Te which come from connections

with different grid positions, it is necessary to memorize for each one what was the last grid position m

CHAPTER 3. FROM A* TO PERCEPTION PLANNING 37

visited. When the ray casting test results in a non-obstructed line-of-sight to the target, the position m

becomes F, and the g values are used to find that optimal path from S to F, exactly as done in A* for

motion planning.

Furthermore, it is possible that the ray casting fails and the search has to continue. In that case, even

though the heuristic is consistent, the node Te can be expanded multiple times. All the other nodes from

the original graph built from the grid can never be expanded more than once, and as such, they go into a

closed list of nodes that is never expanded again.

Finally, in the new extended graph, the heuristic in the goal state is always zero, so we can drop the

constraint cp(0) = 0 in order to have a consistent heuristic. The multiple expansion of Te may seem

contradictory to the fact that the heuristic is consistent, but we can explain it as an error in the cost of

connections to the new node Te. When ray casting fails from node n to T, the cost of the connection from

node n to node Te should have been infinite instead of λcp(||n− T||). Therefore, the expansion of Te from

occluded nodes should not have existed, and if that were the case, the first valid expansion would have

terminated search.

As we illustrate in Figure 3.5, there are candidate and feasible final path positions. For all the nodes

outside of the circle, the connection to node Te is infinity. For the grid positions inside the circle, the cost

of the connection to Te depends on the distance to the target, which is known and used when building

the extended graph. When the distance to the target is more than the maximum sensing range rp, the

connection to Te is infinity. Therefore unfeasible sensing distances are never considered during search.

cpcp

Figure 3.5: Given a sensing target and a maximum perception range rp, there is a set of candidate goal
positions (green circle with radius rp); from those positions, not all are feasible because obstacles can block
line-of-sight to the target; the darker green represents feasible goal positions.

The feasible positions are determined using ray casting. That operation could be done in the beginning

too in order to have a correct cost in the connections to Te (again, the cost is infinity to non-feasible

final path locations). However, ray casting is an expensive operation, so we only test for feasibility after

expanding Te, updating the cost to infinity in case ray casting fails during search, meaning there is no

line-of-sight from that position to the target.

CHAPTER 3. FROM A* TO PERCEPTION PLANNING 38

In conclusion, the stopping criteria are 1) expansion of node Te (with a connection from node n) and

2) feasible line-of-sight from n to T (determined with ray casting). After successfully testing the stopping

criteria, the last considered grid position n with a connection to the target becomes the final position F.

3.4 Perception Planning Assumptions

In the algorithm for perception planning presented until now in this chapter, we model some assumptions

both in terms of the robot motion and its sensors. In this section, we clarify the list of assumptions we

make and their consequences in terms of applicability of this planning technique.

First, we discretize the world in a 2D grid map, but robots move in a continuous space. Therefore,

the optimal solutions we compute are only optimal solutions in the discretized world, but not necessarily

optimal in the continuous world where robots do actually move. However, we believe that using a fine-

grained discretization mitigates that problem, especially when considering robots with an omnidirectional

drive. For other types of drives, a carefully designed grid neighbor connectivity, together with a fine

enough resolution, is also enough to have a discretization that is good enough, while greatly facilitating

the planning effort.

Second, in this planning framework, we consider sensors with 360 degrees of field of view, which is not

always realistic. Many sensors have a limited field of view, or they may even be mounted in a way such as

they have blind spots. In this planning framework, for the sake of simplicity, we consider omnidirectional

robots with a footprint close to circular, where this assumption is not relevant because robots can rotate

and sense from a different angle in order to mitigate the possible blind spots of their sensors. However,

even if our assumptions for the robot footprint and motion model do not hold, there is nothing in our

proposed planning algorithm that makes it impossible to deal with sensors with blind spots and different

fields of view. We can cope with those cases by taking some considerations both in the perception cost

function cp and in the perception estimate of the heuristic.

As an example, let’s assume we have a sensor with different maximum ranges in different directions,

a cp(θ, distance) perception model that is a function not only of distance but also perception angle θ,

and a blind spot in the θ = 45◦ direction relative to the front of the robot. To deal with this specific

sensor, our heuristic would still be admissible as long as we create a new perception cost function such

as c′p(distance) = minθ

(
cp(θ, distance)

)
. By taking the minimum function, we guarantee that the heuristic

estimate is always less than the real cost, thus guaranteeing optimal solutions, at the expense of search not

being very efficient. In terms of blind spots, before testing the feasibility of perception with ray casting,

we would consider the angle of perception, and fail the feasibility of perception if the angle of perception

CHAPTER 3. FROM A* TO PERCEPTION PLANNING 39

is θ = 45◦. Another approach to deal with these types of sensor models is to extend the graph of the

PA* algorithm from an xy grid to an xyθ graph that also discretizes orientation. If we were to consider

orientation, a traditional solution is to first run easier searches in the xy 2D grid and use the results in

heuristics of the final problem that considers orientation as well. This approach would also justify the

need of an efficient search method in the more straightforward xy space, and that is also why we optimize

as much as possible the PA* variants in a later chapter that uses robot-dependent maps as a pre-processing

step.

Third, we assume that there is only one sensor. However, most robots usually use multiple sensors, and

in our contributed planning framework we did not address that possibility. Nevertheless, we can discuss

assumption in the same way we did for complex sensors. By combining all the sensor characteristics into

a cp function to model perception, we can take the minimum cost of each sensor in each direction, and

come up with a function that underestimates the true perception cost such as it can still be used in PA*

and guarantee optimal solutions. However, it is trivial to underestimate the cost greatly, but that results in

inefficiencies and slower searches. Therefore, the goal would be to find a cp function that underestimates

the cost, but still is as close as possible to the real cost in order to have an efficient search algorithm.

Finally, we assume there are no explicit constraints in terms of battery life in our optimization problem.

However, by giving cost to motion, and considering the battery life is correlated with the amount of motion

of a robot, we indirectly maximize battery by minimizing the robot motion in a perception task. But given

our cost function also tries to reduce the perception cost, and that we have no constraint on the maximum

motion of the vehicle, we cannot guarantee that solutions from PA* will not make the robot run out of

battery while executing a perception task.

3.5 Running Example of PA* Search

We show in Figure 3.6 two PA* searches with different values for the trade-off parameter λ. In Figure 3.6a

we have a simple environment where black lines represent obstacles. We assume the robot can only be

in eight positions (represented with circles, where the big circle in the upper left corner is the robot in

its initial position). The vertical and horizontal distance between grid points is one unit. From those

eight grid positions, only six are reachable, which are connected two the initial position with the dashed

lines. The red cross shows the target position, and the red region represents a circle with radius rp, the

maximum sensing range. Therefore, all the points inside the red region could perceive the target if there

were no obstacles. The bottom left grid point is the only position from where the target cannot be sensed.

The perception function is quadratic, with cp(||n− T||) = ||n− T||2 when ||n− T|| < rp, and infinity

CHAPTER 3. FROM A* TO PERCEPTION PLANNING 40

(a) Map

g=0.0; h=1.5; fTe=2.0

(b) Point 1, λ = 0.5

g=1.0;h=1.7; fTe = ∞

(c) Point 2, λ = 0.5

g=2.0; h=0.9
fTe=3.0

(d) Point 3, λ = 0.5

g=3.0
h=0.5

fTe=3.5

(e) Point 4, λ = 0.5

g=4.0; h=0.9; fTe=5.0

(f) Point 5, λ = 0.5

g=5.0; h=0.5; fTe=5.5

(g) Point 6, λ = 0.5

λ = 0.5

(h) Solution, λ = 0.5

g=0.0; h=1.9; fTe=16

(i) Point 1, λ = 4

g=1.0;h=2.2; fTe = ∞

(j) Point 2, λ = 4

g=2.0; h=1.4
fTe=10

(k) Point 3, λ = 4

g=3.0
h=0.9

fTe=7.0

(l) Point 4, λ = 4

g=4.0; h=1.4; fTe=12

(m) Point 5, λ = 4

g=5.0; h=0.9; fTe=9.0

(n) Point 6, λ = 4

λ = 4

(o) Solution, λ = 4

Figure 3.6: PA* search for two values of λ and quadratic perception cost: map has eight grid positions,
from which six are reachable by the robot; dashed black lines represent connectivity between feasible
robot positions; the maximum sensing range is shown with the red circle around the target (red cross),
so all grid points except one are close enough to perceive the target; each grid point, which is a graph
node, has a g(S, n) cost and a heuristic estimate h(n, T); each grid point is connected to the node Te of the
extended graph; the priority value of Te with a connection to each node is shown as fTe in the respective
image; red arrows represent the optimal approach distance for the heuristic in each node, and the red
dashed lines represent the optimal perception distance in the heuristic estimate for each node.

otherwise. In the first example, the weight parameter λ = 0.5, so the optimal sensing distance is d∗s = 1.

For each point, the heuristic cost represents the minimal weighted sum of an approach distance and

the cost of a perception distance. The approach distance, α∗d, is represented with a red arrow, and the

perception distance for the heuristic, (1− α∗)d, is represented with a red dashed line.

The reachable points are all connected in a line, and as shown in Figure 3.6 they are Point 1 to Point

6, which are nodes n1 to n6 in the graph representation. To find the optimal path from n1 to perceive the

CHAPTER 3. FROM A* TO PERCEPTION PLANNING 41

target, the algorithm starts by expanding n1 in Figure 3.6b. This node is not the goal because the search

only stops after expanding the node Te in the extended graph. The successors of n1 are node n2 with

priority f2 = 2.7 (= g2 + h2 = 1 + 1.7), as shown in Figure 3.6c, and node Te with priority fTe = 2, as

shown in Figure 3.6b. These two nodes are added to the priority queue. Because Te has a lower priority,

it is the next expanded node, and the stopping criteria are tested with ray casting but fail because there is

no line-of-sight to the target from n1 as shown in Figure 3.6b.

In the next iteration, the only node in the priority queue is n2, which is expanded. The next node

added to the priority queue is n3 with priority f3 = g3 + h3 = 2 + 0.9 = 2.9, because it is the only grid

neighbor to n2 that was not expanded before. The connection to Te from n2 has infinite cost because it is

beyond the maximum sensing range to the target. As such, Te is not added to the priority queue this time.

The next and only node in the priority queue is n3, shown in Figure 3.6d, which adds Te to the priority

queue again, now with priority (3.0). In this iteration, the node n4 is also added with priority (3.5). There

are now two nodes in the priority queue, and the first expanded node is again Te because it has the lowest

priority. The algorithm uses ray casting and finds that n3 has no obstructions and can perceive the target.

Therefore, the stopping criteria are met and search stops. Node n3 is the final position F, and the optimal

path to perceive this target with λ = 0.5 is ρ = {n1, n2, n3}, as shown in Figure 3.6h, with cost of 3

units. Due to the specific parameters used, nodes n4 to n6 shown in Figures 3.6e, 3.6f and 3.6g are never

expanded.

As a side note, it is possible to see in Figures 3.6e and 3.6g that the heuristic distance for perception

takes the total distance from the node to the target, and as such f = g + n = fTe .

In the second example, λ = 4, making the perception cost bigger in comparison to the motion cost,

and as such it is expected for the optimal solution to move closer to the target to reduce the perception

distance. Again, in order to find the optimal path from n1 to perceive the target, the algorithm starts by

expanding n1 in Figure 3.6i. This node has successors node n2 with priority f2 = 3.2 (= g2 + h2 = 1+ 2.2),

as shown in Figure 3.6j, and node Te with priority fTe = 16, as shown in Figure 3.6i. These two nodes are

added two the priority queue.

Because n2 has a lower priority, it is the next expanded node. The next node added to the priority

queue is n3 with priority f3 = g3 + h3 = 2 + 1.4 = 3.4, because it is the only grid neighbor to n2 that was

not expanded before. The connection to Te from n2 has infinite cost again, not being added to the priority

queue.

The next node in the priority queue with the lowest priority is n3, shown in Figure 3.6k, which is

expanded and adds Te to the priority queue again, now with priority 10. In this iteration, the node n4,

the only not expanded neighbor, is also added to the queue with priority 3.9. There are now three nodes

CHAPTER 3. FROM A* TO PERCEPTION PLANNING 42

in the priority queue, n4 with priority 3.9 and Te twice with priorities 16 and 10. The next expanded is

n4, shown in Figure 3.6l, which adds again Te with priority 7.0, and n5 with priority 5.4, as shown in

Fig. 3.6m.

In the next iteration n5 is expanded, adding Te to the priority queue with priority 12 and node n6

with priority f6 = 5.0 + 0.9 = 5.9. Again all the nodes Te added to the priority queue have a higher cost,

so the next expanded node is n6, from Figure 3.6n, and Te is added one last time, with priority 9. At

this point the priority queue has five nodes, all of them being Te, with priorities 7, 9, 10, 12 and 16. The

first expanded node now is Te with a connection from n4, shown in Figure 3.6l, but the stopping criteria

fail with ray casting showing that obstacles block line-of-sight to the target. Finally, the node Te with a

connection from n6 and priority 9 is expanded, and search stops as n6 has line-of-sight with the target.

Having met the stopping criteria, node n6 is the final position F, and the optimal path to perceive this

target with λ = 4 is ρ = {n1, n2, n3, n4, n5, n6}, as shown in Figure 3.6o, with cost of 9 units. As we can

see, the priority of expanded nodes always increases, which is a characteristic of consistent heuristics.

For λ = 3, both solutions with paths stopping in n3 and n6 have the same cost, with eight units.

3.6 Summary

In this chapter we introduced the problem of motion planning for perception tasks, considering both

motion and perception costs. We proposed PA*, an approach extended from A*, and contributed heuristics

to solve the planning problem, proving their admissibility. The heuristics use the minimal cost of motion

and perception in a straight line, not considering obstacles. The methods proposed are general for any

perception and motion costs, as long as they are monotonically increasing functions. The main novelty of

this contribution is the computation of heuristics that take into account the perception cost. Moreover, the

perception cost itself comes from a model of the specific sensor of each robot.

The algorithm determines the optimal path using an informed search strategy. It looks for the most

promising solution first and directs search towards the target, reducing node expansion as much as possi-

ble. Moreover, the algorithm only expands goal nodes when they have the least cost compared to all other

possible nodes, which reduces the number of ray casting operations as well.

We proved the presented perception planning algorithm yields optimal solutions, by showing that the

contributed heuristics are consistent and thus admissible. We also provided two examples of perception

cost functions, (1) a cost function that increases linearly with distance, and (2) a perception function whose

cost increases quadratically with perception distance.

Chapter 4

Perception Planning with Visibility Maps

In the previous chapters, we introduce robot-dependent maps and PA*, a heuristic search for perception

path planning. The robot-dependent maps provide a transformation that quickly gives information on

the feasibility of coverage and perception tasks. Specifically for the robot-dependent visibility maps,

we introduced the concept of critical points, from where visibility inside unreachable regions can be

determined.

In this chapter we combine those two techniques, using information extracted from robot-dependent

maps to improve the efficiency of node expansion in heuristic search for perception planning. When

computing the robot-dependent maps, we determine the position of critical points, and we show here how

to use the critical point position to obtain information on the minimum motion and perception distance.

The goal of using additional information is to build better heuristics that result in fewer node expansion

and ray casting operations, enabling faster computation of solutions for path planning problems that deal

with the perception of a target position.

Using the information on the minimum motion and perception distance, we construct new heuristics

that are still admissible, but we can also prove that they are always more informative than the base PA*

heuristic. Thus, the new heuristics produced in this chapter also result in optimal paths. Moreover, we

improve the goal stopping condition as well with information from critical points, to reduce the number

of ray casting operations. In our previous work we show that with an initial fixed cost of building the

visibility map, it is possible to use the critical points from that transformation to improve the search

heuristic of PA* for multiple search instances [33, 38].

43

CHAPTER 4. PERCEPTION PLANNING WITH VISIBILITY MAPS 44

4.1 Regions from Robot-Dependent Maps

The visibility map gives information on the feasibility of perception, while not giving any information

about the positions from where targets can be perceived. Nevertheless, the transformation provides struc-

tured information about the environment, and it is possible to separate grid points into three categories:

1. Navigable Space: points that can be reached by the robot center, Nav(S);

2. Actuation Space: points that can be “touched” by the robot footprint, A(S);

3. Unreachable Regions: points the robot cannot cover with its footprint and motion only, because

they lie in positions not traversable by the robot, U(S).

The second category is a superset of the first. While there is no perception information for targets

in the first category, it is possible to gain information about points in the second category only, i.e.,

T ∈ (Actuation Space) \ (Navigable Space). We know these targets T have a distance to the navigable set

not larger than the robot size. Therefore, with a small search bounded by the robot size, it is possible to

find the closest point p in the navigable set minimizing the distance to the target t. The distance ||p− T||

is a lower bound for the perception distance. However, in this specific case, the gained information will

probably have only negligible effects on the search efficiency.

The third category of points, those that belong to the unreachable regions, is the category with the

most considerable benefits in terms of information gain from the Visibility Map transform. Targets in the

unreachable regions have associated a critical point, which gives information about a possible position

from where targets can be sensed. Furthermore, we can have a better estimate of the perception distance

in the heuristic for perception planning if we consider the distance between a target in region Ul(S) and its

corresponding critical point c∗li(S). Therefore, we will focus our discussion only on positions that belong

to the third category, Unreachable Regions.

4.2 Improved Heuristics

Considering the base heuristic of PA*, independently of the perception cost function, we know it is as-

sociated with the cost of approaching the target to sense it from a better sensing position, reducing the

perception cost. Moreover, the heuristic does not consider obstacles, and the best sensing position lies

in the straight line between the current node n and the target T. We assume we can solve the heuristic

minimization problem (equation 3.8) for a specific cost function cp, and find the optimal sensing distance

CHAPTER 4. PERCEPTION PLANNING WITH VISIBILITY MAPS 45

d∗s . Assuming 0 ≤ d∗s ≤ ||n− T||, the heuristic becomes

hpp(n, T) = ||n− T|| − d∗s + λcp(d∗s). (4.1)

4.2.1 Using Perception Distance from Critical Points

As presented in a previous chapter, critical points are feasible robot positions that maximize the visibility

inside each unreachable region.

From the visibility map, the critical points can provide information about the minimum sensing dis-

tance from any point in the navigable space to a point in the unreachable region. The heuristic can be

updated and use the minimum sensing distance from the critical point instead of the optimal sensing

distance d∗s from the straight line solution, as shown in Figure 4.1. When using the visibility map, and

being the distance from the critical point to T ∈ Ul(S) (≡ Tl) equal to dc
li(T) = ||T − c∗li(S)||, the heuristic

becomes a function of dc
l (T

l) = min
i

dc
li(T

l).

h1(n, Tl) =


||n− Tl || − dc

l (T
l) + λcp(dc

l (T
l)) ∀||n− Tl || ≥ dc

l (T
l)

λcp

(
dc

l (T
l)
)
||n− Tl || < dc

l (T
l)

(4.2)

The equation for h1 applies to the case dc
l (T

l) ≥ d∗; otherwise, the original heuristic hpp is used. Here

we are not considering the possibility that dc
l is bigger than rp, but in that case the target would not be

visible. In order to use this heuristic as admissible and guarantee an optimal path, we only need to prove

the distance from unreachable Tl to any other point in the navigable space is larger than dc
l (T

l).

d∗s

• n

• q∗

(a) PA* Base Heuristic

dc(T)

• n

• c∗li

(b) h1 Improvement

Figure 4.1: Impact of using the distance to the critical point, dc(T), as the guaranteed minimum perception
distance on the improved heuristic h1.

In the unreachable regions, the minimum sensing distance is the smallest distance from the target to

the corresponding critical point. Again, that distance can be used as the minimum sensing distance in the

PA* heuristic to improve the search speed.

CHAPTER 4. PERCEPTION PLANNING WITH VISIBILITY MAPS 46

Theorem 4.1. The distance of points inside unreachable regions to the critical point is minimal in comparison to

distance to any other point in the navigable space.

Proof. We assume only one critical point and frontier, for the sake of simplicity. As shown in Figure 4.2,

we consider only the frontier extremes, the two obstacles at points O1(0,−ζ) and O2(0, ζ), with ζ < R,

being R the robot radius. The frontier is between those two obstacles. If the robot starts at some point with

x > 0, then the unreachable region consists of points with x ≤ 0. If there were other obstacles besides the

points O1 and O2, there might be unreachable points with x > 0, but those are not relevant to this proof,

and as such, we kept the minimum number of obstacles.

If we use the same reasoning, we can conclude that only points of the navigable space with x > 0 are

relevant because those are the only ones that can be used to have visibility inside the unreachable region.

Following this description, the critical point results as the point that is at R distance from both ob-

stacles, (
√

R2 − ζ2, 0). For any point (a, b), with a < 0, the distance to the critical point has to be the

minimum distance between (a, b) and any position in the navigable space, (α′, β′), with α′ > 0. As we can

see in Figure 4.2, for any point (α′, β′) there is a point (α, β) in the border of reachability that has a lower

distance to (a, b). The distance between (a, b) and (α, β) is d.

d2 = (γ + R cos θ)2 + (R sin θ)2

= γ2 + R2 cos2 θ + 2γR cos θ + R2 sin2 θ

= γ2 + R2 + 2γR cos θ (4.3)

As we can see from the equation, increasing the angle θ minimizes the distance, and at the critical

point, the angle θ reaches its maximum value. Thus, we prove the critical point minimizes the distance to

any unreachable target.

Only minimal errors exist due to discretization. While in the continuum space there is only one point

that minimizes the distance to all frontiers, in the grid map, there might be two points that minimize

the distance, with the same cost. If we take into account the discretization error when determining the

minimal distance, then it is possible to use the distance to the critical point to still obtain an admissible

heuristic. Therefore, we only have to subtract the quantization error from the distance to the critical point

to get an admissible heuristic.

CHAPTER 4. PERCEPTION PLANNING WITH VISIBILITY MAPS 47

y

x

•(0,ζ)

•
(0,−ζ)

•

•(a, b)

R

d

•R

γ

θ •

(
√

R2 − ζ2,0)

(α, β)

(α′, β′)

Figure 4.2: The filled regions represents the set of points in the navigable space that can sense the point
(a, b), given two obstacles at positions (0, ζ) and (0,−ζ); the critical point (

√
R2 − ζ2,0) is the point with

the minimum distance to any (a, b) in the unreachable region.

4.2.2 Using Critical Point Perception Distance in Goal Stopping Condition

With heuristic h1 we can also use the distance to the critical point, dc, for the stopping condition. Given

that dc is proved to be minimal, we can change the cost of connections to node Te if their distance is greater

than the critical point distance to the target, reducing the number of points to be tested with ray casting.

c(n, Tl
e) = ∞ , ||n− Tl || < dc

l (T
l) (4.4)

4.2.3 Using Critical Point Position to Estimate Minimum Motion Cost

However, it is still possible to improve the proposed heuristic. Instead of using the critical point to have

only a lower bound estimate on the perception distance, we can use it to estimate a lower bound for

motion cost as well, as shown in Figure 4.3.

At first, we assume the optimal sensing distance d∗s is lower than the distance to the critical point, dc
li.

Thus, from any position with line-of-sight to the target (robot at point x > 0 in Figure 4.4), the robot

will move to a point as close as possible to the unreachable target, i.e., a border of the navigable space.

CHAPTER 4. PERCEPTION PLANNING WITH VISIBILITY MAPS 48

dc(T)

• n
•

•
c∗li

(a) h1 Inefficiency

dc(T)

•
n

•• c∗li

(b) h2 Improvement

Figure 4.3: Impact of using the critical point location for a better estimate of the motion cost on the
improved heuristic h2.

Therefore, we know that the minimum motion cost will be the distance between the current node n and

the closest point in the border of the navigable space. From Figure 4.4, we can see that in the worst case

scenario, the distance between the critical point and any other point of the navigable space border, with

line-of-sight to the target, is 2R. Thus, the new admissible heuristic becomes

h2(n, Tl) = min
i

(
max(||n− c∗li(S)|| − 2R, 0) + λcp(dc

li(T
l))
)

. (4.5)

c∗li

Fli

2R

R

•
(0,ζ)

•
(0,-ζ)

y

x•
R

Figure 4.4: Worst case scenario for the distance between critical point and the border of navigable space
(the two half circumferences with x > 0), from Figure 4.2; for the worst case, the distance between
obstacles points is precisely the diameter of the robot, and the further point in the border of the navigable
space is at distance 2R from the critical point.

We can also update the heuristic to consider d∗s > dc
li(T

l), using δ = max(d∗s − dc
li(T

l), 0).

CHAPTER 4. PERCEPTION PLANNING WITH VISIBILITY MAPS 49

h2(n, Tl) = min
i

(
max(||n− c∗li(S)|| − 2R− δ, 0) + λcp(dc

li(T
l))
)

(4.6)

Finally, the first heuristic h1 might be a better estimate in cases there is line-of-sight between n and T,

so to always use the best heuristic, we choose the one closest to the true value, considering they are both

admissible.

hAVM(n, Tl) = max(h1(n, Tl), h2(n, Tl)) (4.7)

Theorem 4.2. Heuristic using critical points dominates original heuristic in PA*.

Proof. The original heuristic hpp(n, T) in PA* is always less than the real cost, because it uses the optimal

solution for the Euclidean distance without any obstacles, assuming optimal motion and perception dis-

tances. The heuristics using the visibility map replace the perception and motion costs by better estimates,

but still underestimating the real cost as shown in Figures 4.2 and 4.4 and Theorem 4.1. Thus the estimates

h1(n, T) and h2(n, T) are always greater or equal than hpp(n, T), because we proved the sensing distance to

the critical point is the minimal perception distance. Moreover, if both h1(n, T) and h2(n, T) are admissible

heuristics, the maximum operation keeps that property. Therefore, hpp(n, T) ≤ hAVM(n, T). Also, because

hAVM(n, T) is admissible, it is also dominant over hpp(n, T).

4.2.4 Using Critical Point Position to Further Improve Goal Stopping Condition

Like we did in equation 4.4, we can use the added information of the critical point location to update the

cost of connecting nodes to Te, filtering the clearly unfeasible positions. That allows not only to reduce

the size of the priority queue that manages the PA* search, but also the number of ray casting operations.

Nodes n from where perception is not feasible are updated such as c(n, Te) = ∞.

Given a target Tl in an unreachable region, we consider the distance from the target to the critical

points, dc
li(T

l). We know the robot footprint, a circle with radius R, generates the frontiers Fli. Therefore,

the distance between frontier points and the critical point c∗li is R. Using this information, we can deter-

mine an annulus sector from the target to the possible frontier points with a distance R around the critical

point, and guarantee that any feasible position with line-of-sight to the target has to be in that annulus

sector. So, determining the maximum possible angle range between target and frontier points allows us

to filter the feasible points for perception.

CHAPTER 4. PERCEPTION PLANNING WITH VISIBILITY MAPS 50

c∗li

Fli

R

•
Tl

•

•

θc
li x•

φ∗

Figure 4.5: The maximum angle range from the target to the frontier points, considering the distance to
the critical point and the robot size R.

Assuming a critical point c∗li and target aligned with the x axis, as in Figure 4.5, the maximum angle

to the frontier is given by:

θ
f
li(T

l) = max
φ

atan

(
R sin(φ)

dc
li(T

l)− R cos(φ)

)
. (4.8)

Because dc
li(T

l) > R, we can solve the equation and find the optimal φ∗,

cos(φ∗) =
R

dc
li(T

l)
, (4.9)

and the maximum angle to the frontier θ f becomes

θ
f
li(T

l) = atan

 R√(
dc

li(T
l)
)2 − R2

. (4.10)

Then, we can filter the nodes n that are feasible in terms of perception of the target. For the filtering

operation, we use the angle between n and the target Tl , θn, and the angle between the target and the

critical points c∗li, θc
li.

c(n, Te) =


λcp(||n− Tl ||) ||n− Tl || < dc

l (T
l)∧

∃i : θc
li − θ

f
li ≤ θn ≤ θc

li + θ
f
li

∞ otherwise

(4.11)

4.3 Node Expansion Analysis for Variants of Perception Planning Heuristic

In this section, we present several experiments that show the benefits of each improvement proposed for

the PA* heuristics. We only consider in this analysis the target points that are located in unreachable

regions. Those are the only ones associated with critical points, thus being the regions where it is possible

to use structured information from visibility maps to help the performance of PA* by improving its

heuristics. For targets in the other regions, the algorithm uses just the base PA* heuristic, resulting in

no negative impacts on efficiency. We consider 5 variants of PA*: base PA*, PA* with improved heuristic

h1 (PA*-1), PA* with h1 and equation 4.4 for the stopping condition (PA*-1S), PA* with both improved

CHAPTER 4. PERCEPTION PLANNING WITH VISIBILITY MAPS 51

heuristics h1 and h2 and equation 4.4 (PA*-2S), and finally PA* with both h1 and h2 and extended with

equation 4.11 for the stopping condition (PA*-2SE). Table 4.1 explains the color meaning of the figures

in this section. For the map representation, black represents obstacles, while white represents the free

configuration space for the base PA* or the navigable space for the improved versions of PA*. Dark

gray represents the unreachable space for base PA* or the non-visible parts of the unreachable space for

improved versions of PA*, and light gray the visible parts of the unreachable space (for improved PA*

versions only). Then, for the point representation, cyan represents the starting position, green the target

location, and red the final path position for perception. Finally, for the PA* color representation, light blue

represents the nodes on the open list, dark blue the expanded nodes on the closed list, purple represents

the expanded nodes that are considered feasible locations for perception (c(n, Te) has a finite cost), and

orange represents the nodes tested as goal position using ray casting.

Table 4.1: Color meaning for map, search and points.

Base PA* PA* variants

Map
Colors

Obstacles
C f ree Nav(S)

Free Space \C f ree U(S) \V(S)
- V(S) \ Nav(S)

Search
Colors

Nodes on Open List
Expanded Nodes on Closed List

Expanded Nodes Feasible for Perception
Nodes Tested as Goal Position

Point
Colors

Starting Position
Target Position

Final Path Position for Perception

Overall, the base PA* version has much worse performance in all criteria, because it does not use any

additional information to guide search when targets are inside unreachable regions. As a result, and given

the requirement of always finding optimal solutions, the base PA* variant might have to search the entire

state space to guarantee the optimality of the solution. However, for the new variants introduced in this

chapter, the heuristic has a better cost estimate, which results in search stopping earlier, and guaranteeing

the optimality of the solution without having to explore the entire state space.

Moving into the analysis of our results, we first start evaluating the impact of the first heuristic im-

provement h1, from equation 4.2. In this heuristic, the distance to the critical point dc is used as an

indication of what is the minimum perception distance to the target. If the distance to the critical point is

greater than the optimal sensing distance from the base PA*, d∗s , the heuristic can use this distance to make

a more realistic estimate of the cost to perceive the goal. As expected, the impact of this heuristic improve-

ment is higher when the difference to the base heuristic is more significant, i.e., when the λ parameter is

CHAPTER 4. PERCEPTION PLANNING WITH VISIBILITY MAPS 52

higher (lower optimal sensing distance of PA*, d∗s), and the distance to the critical point greater. In those

cases, for targets in unreachable regions whose real minimum perception distance is large, the base PA*

algorithm will reach the critical point but not consider it as the final position, and search will continue

expanding nodes with lower f values, assuming it might be possible to perceive the target from a smaller

and better distance. Then, only after having explored a large portion of the space, the algorithm will find

the critical point to be the right perception position and test it with ray casting in the stopping condition.

However, using the information from the visibility maps, i.e., the distance to the corresponding critical

point (or minimum distance in case of multiple critical points from where the target can be perceived), the

improved heuristics does not consider an unrealistic perception distance. Therefore, it converges much

faster to the solution, because it knows shortly after reaching the critical point that no other nodes can

have lower cost, significantly minimizing node expansion. Figures 4.6b to 4.8b, 4.11 and 4.12b show

the great impact of this heuristic for small d∗s , while figures 4.13b to 4.17b show the lesser impact of this

heuristic for lower λ.

(a) PA* (b) PA*-1 (c) PA*-1S (d) PA*-2SE

Figure 4.6: S1: Node expansion and ray casting results for search on 200x200 grid map, R = 13, rp = 130,
λ = 0.04, quadratic perception cost function, d∗s = 12.5, and target inside unreachable region with large
distance to critical point.

(a) PA* (b) PA*-1 (c) PA*-1S (d) PA*-2SE

Figure 4.7: S2: Node expansion and ray casting results for search on 200x200 grid map, R = 13, rp = 130,
λ = 0.04, quadratic perception cost function, d∗s = 12.5, and target inside unreachable region with large
distance to critical point.

CHAPTER 4. PERCEPTION PLANNING WITH VISIBILITY MAPS 53

(a) PA* (b) PA*-1 (c) PA*-1S (d) PA*-2SE

Figure 4.8: S3: Node expansion and ray casting results for search on 200x200 grid map, R = 13, rp = 130,
λ = 0.04, quadratic perception cost function, d∗s = 12.5, and target inside unreachable region with large
distance to critical point.

(a) PA* (b) PA*-1 (c) PA*-1S (d) PA*-2SE

Figure 4.9: Initial stage of search for problem S3, figure 4.8.

(a) PA*-1S (b) PA*-2SE

Figure 4.10: Progression of node expansion with multiple critical points.

Moreover, when using the improved heuristic h1, it is also possible to use the distance to the critical

point, dc, as an additional improvement on efficiency by filtering the elements that the algorithm tests with

the stopping condition (PA*-1R). Given the distance to the critical point being the minimum perception

distance possible, we know that nodes with lower distances to the target cannot be the last position of the

path, and obstacles are guaranteed to be in between, not allowing line-of-sight. In the base PA* algorithm,

all expanded nodes are connected to the final node Te if their distance is less than the maximum perception

range. However, in our improved heuristic, using equation 4.4, only nodes with a distance to the target

CHAPTER 4. PERCEPTION PLANNING WITH VISIBILITY MAPS 54

(a) PA* T1 (b) PA*-1S T1 (c) PA*1R2R T1

(d) PA* T2 (e) PA*-1S T2 (f) PA*-2SE T2

(g) PA* T3 (h) PA*-1S T3 (i) PA*-2SE T3

Figure 4.11: S4, S5 and S6: Node expansion and ray casting results for search on 375x200 grid map,
R = 13, rp = 130, λ = 0.04, quadratic perception cost function, d∗s = 12.5, and target inside unreachable
region with large distance to critical points, for 3 different target positions, T1, T2 and T3.

of at least dc are connected to Te, thus reducing the number of nodes tested with ray casting as possible

final positions of the path. Reducing the number of times we check the stopping criteria is an important

contribution, because ray casting is expensive to compute, and enables us to improve the search time. As

seen in all figures, the cloud of points that expand during search remains the same as before, but this

feature reduces considerably the number of nodes considered feasible, and as such it reduces the amount

of ray casting operations to test for line-of-sight (in the figures, orange represents points tested with ray

casting). While the h1 heuristic has a small effect in scenarios with low λ, the PA*-1R variant has a good

CHAPTER 4. PERCEPTION PLANNING WITH VISIBILITY MAPS 55

(a) PA* (b) PA*-1 (c) PA*-1S (d) PA*-2SE

Figure 4.12: S7: Node expansion and ray casting results for search on 200x200 grid map, R = 13, rp = 130,
λ = 0.04, quadratic perception cost function, d∗s = 12.5, and target inside unreachable region with large
distance to critical point.

(a) PA* (b) PA*-1 (c) PA*-1S (d) PA*-2SE

Figure 4.13: S8: Node expansion and ray casting results for search on 200x200 grid map, R = 13, rp = 130,
λ = 0.04, quadratic perception cost function, d∗s = 12.5, similar to S1, but target inside unreachable region
with small distance to critical point.

(a) PA* (b) PA*-1 (c) PA*-1S (d) PA*-2SE

Figure 4.14: S9: Node expansion and ray casting results for search on 200x200 grid map, R = 13, rp = 130,
λ = 0.04, quadratic perception cost function, d∗s = 12.5, similar to S2, but target inside unreachable region
with small distance to critical point.

impact independently of λ, as confirmed in Figures 4.15c to 4.17c.

As shown in the previous section, h1 only updates the perception distance estimate, being agnostic to

the critical point positions. Therefore, many times h1 makes the search expand nodes in undesirable di-

rections, possibly contrary to the critical points, not directing search into the only regions from where the

CHAPTER 4. PERCEPTION PLANNING WITH VISIBILITY MAPS 56

(a) PA* (b) PA*-1 (c) PA*-1S (d) PA*-2SE

Figure 4.15: S10: Node expansion and ray casting results for search on 200x200 grid map, R = 13,
rp = 130, λ = 0.007, quadratic perception cost function, d∗s = 71.4, and target in unreachable region with
dc(T) ≈ d∗s .

(a) PA* (b) PA*-1S (c) PA*-2SE

Figure 4.16: S11: Node expansion and ray casting results for search on 375x200 grid map, R = 13,
rp = 130, λ = 0.007, quadratic perception cost function, d∗s = 71.4, and target in unreachable region with
dc(T) ≈ d∗s .

(a) PA* (b) PA*-1 (c) PA*-1S (d) PA*-2SE

Figure 4.17: S12: Node expansion and ray casting results for search on 200x200 grid map, R = 13,
rp = 130, λ = 0.007, quadratic perception cost function, d∗s = 71.4, and target inside unreachable region
with dc(T) > d∗s .

target is observable. Again, the expansion with h1 might still result in a waste of computation resources,

even though it is better than the original heuristic. For that purpose, we contributed h2, in equation 4.6,

which directs the node expansion towards the points from where targets are observable, i.e., the critical

CHAPTER 4. PERCEPTION PLANNING WITH VISIBILITY MAPS 57

points. As shown before, this new improvement can result in a great search efficiency boost. Besides being

useful for expanding directly towards the best critical point if there are multiple ones (Figures 4.10 and

4.11), this heuristic is also helpful to direct the search towards the feasible regions for perception of the

target, i.e., the critical point, even when there is only one. For the particular case where the target, initial

position and critical point are aligned, as shown in Figure 4.6, the h1 heuristic is dominant, and h2 has

minimal impact. However, as shown in many other figures, the improvements from h2 can have a signifi-

cant effect on search efficiency. Even though for Figure 4.8 the PA*-1S and PA*-2S variants have a similar

cloud of expanded nodes at the end of search, an analysis of the initial expansion behavior, from Fig-

ure 4.9, is useful for understanding what differentiates each variant. While PA* starts expanding towards

the target position, even though a wall blocks it, PA*-1 expands more uniformly, using the information

that the target cannot be observed from a small distance. The PA*-1S variant expands exactly like PA*-1,

but it does not use unnecessary ray casting operations, resulting in faster expansion. Finally, PA*-2S and

PA*-2SE use the critical point location in the heuristic, and as such start expanding in the direction of the

critical point. In Figure 4.12 example, the impact of h2 is visible even at the final search step.

This new heuristic is also capable of being of great help for lower λ, where the d∗s and dc might be

similar and where h1 introduces less gain, as shown in Figures 4.16 and 4.17. Heuristic h2 improvements

are less dependent on λ, because the heuristic does not improve only the estimate for the perception

distance, but also the motion cost estimate, using the critical points.

When there are multiple critical points, h2 can produce vast differences. As shown in Figure 4.11, for

the T1 target positions, the target, optimal and closest critical point and initial position are aligned, so h1

and h2 produce similar results. On the other hand, for T3, the farthest away critical point is optimal, and

h2 is better at directing search towards it. However, more interesting here is the case of T2, where the

optimal critical point is the closest, while the minimum perception distance to the target is the distance to

the farthest critical point. In that case, h1 will expand nodes using in the distance between the target and

the bottom critical point in the heuristic, resulting in a lot of unnecessary expansions while the search tries

to find a solution with a smaller perception distance. On the other hand, h2 uses the trade-off between

perception and motion cost, and immediately stops the search at the top critical point, knowing it is not

worth to expand more and thus significantly reducing the number of node expansions.

Finally, we consider the last variant, PA*-2SE, using the rule from equation 4.11. This case does not

need much explanation, as the results speak for themselves. This variant considers the geometry of the

environment and limits the feasible perception positions to the ones in front of a frontier, resulting in a

considerable reduction of the nodes tested with ray casting (orange in the figures), with great benefits in

terms of computation time. Before, PA*-1 and PA*-1S had the same node expansion cloud and were only

CHAPTER 4. PERCEPTION PLANNING WITH VISIBILITY MAPS 58

different in the number of expanded nodes tested with ray casting. Now, PA*-2S and PA*-2SE have the

same expansion cloud, and again they are only different in terms of the number of ray casting operations,

also having a significant impact on scenarios with low λ and large optimal perception distance d∗s .

Table 4.2 summarizes all the tested scenarios. From the base PA* version to the variant PA*-2SE, the

number of expanded nodes (Exp.), stopping condition tests (SC) and ray casting operations should always

decrease, as the variants introduce changes that always lead to incremental improvements in the heuristic

estimation. As the number of expansions reduces, the search time is also expected to go down, but

that is not guaranteed, because the heuristic calculation complexity increases from PA* to PA*-2SE. More

specifically, the complexity of PA*-2S and PA*-2SE increases linearly with the number of critical points

from where the target is visible. Therefore, for layouts with many critical points per target, the time spent

on search may increase even though the node expansion always goes down. However, we expect the most

common scenarios to be the ones with a lower number of critical points per target.

Table 4.2: Number of expanded nodes (Exp.), number of stopping condition tests (SC) and ray casting

operations, and computation time for the twelve test scenarios and the five variants of PA*.

Test Exp. (#) SC (#) Time (ms) Test

S1

PA* 33312 11795 63 PA*

S1

PA*-1 1963 11 1 PA*-1

PA*-1S 1954 2 2 PA*-1S

PA*-2S 1947 2 3 PA*-2S

PA*-2SE 1946 1 3 PA*-2SE

S2

PA* 33789 12272 72 PA*

S2

PA*-1 11076 3694 24 PA*-1

PA*-1S 7765 383 8 PA*-1S

PA*-2S 5348 329 9 PA*-2S

PA*-2SE 5020 1 5 PA*-2SE

S3

PA* 33813 12296 66 PA*

S3

PA*-1 15604 6684 29 PA*-1

PA*-1S 9324 404 8 PA*-1S

PA*-2S 9110 404 10 PA*-2S

PA*-2SE 8707 1 9 PA*-2SE

S4

PA* 65092 15349 159 PA*

S4

PA*-1 1122 25 1 PA*-1

CHAPTER 4. PERCEPTION PLANNING WITH VISIBILITY MAPS 59

Table 4.2: Number of expanded nodes (Exp.), number of stopping condition tests (SC) and ray casting

operations, and computation time for the twelve test scenarios and the five variants of PA*.

Test Exp. (#) SC (#) Time (ms) Test

PA*-1S 1101 4 1 PA*-1S

PA*-2S 1096 4 1 PA*-2S

PA*-2SE 1093 1 2 PA*-2SE

S5

PA* 70138 20395 150 PA*

S5

PA*-1 51628 17425 105 PA*-1

PA*-1S 36571 2368 68 PA*-1S

PA*-2S 1652 39 2 PA*-2S

PA*-2SE 1614 1 2 PA*-2SE

S6

PA* 65108 15365 114 PA*

S6

PA*-1 58165 15365 106 PA*-1

PA*-1S 46809 4009 65 PA*-1S

PA*-2S 24147 2614 43 PA*-2S

PA*-2SE 21534 1 24 PA*-2SE

S7

PA* 11822 4069 18 PA*

S7

PA*-1 9741 4069 14 PA*-1

PA*-1S 6126 454 6 PA*-1S

PA*-2S 3620 454 6 PA*-2S

PA*-2SE 3185 19 4 PA*-2SE

S8

PA* 1792 1 1 PA*

S8

PA*-1 532 1 0.5 PA*-1

PA*-1S 532 1 0.5 PA*-1S

PA*-2S 532 1 0.5 PA*-2S

PA*-2SE 532 1 0.5 PA*-2SE

S9

PA* 5143 168 6 PA*

S9

PA*-1 3961 165 8 PA*-1

PA*-1S 3941 145 5 PA*-1S

PA*-2S 3778 123 6 PA*-2S

PA*-2SE 3656 1 5 PA*-2SE

CHAPTER 4. PERCEPTION PLANNING WITH VISIBILITY MAPS 60

Table 4.2: Number of expanded nodes (Exp.), number of stopping condition tests (SC) and ray casting

operations, and computation time for the twelve test scenarios and the five variants of PA*.

Test Exp. (#) SC (#) Time (ms) Test

S10

PA* 9348 4503 21 PA*

S10

PA*-1 8288 3973 18 PA*-1

PA*-1S 7366 3051 16 PA*-1S

PA*-2S 5310 2314 14 PA*-2S

PA*-2SE 3003 7 3 PA*-2SE

S11

PA* 35430 12681 87 PA*

S11

PA*-1 33638 11806 90 PA*-1

PA*-1S 30128 8296 80 PA*-1S

PA*-2S 1157 1 12 PA*-2S

PA*-2SE 1157 1 13 PA*-2SE

S12

PA* 10271 4729 16 PA*

S12

PA*-1 10159 4729 17 PA*-1

PA*-1S 6560 1130 8 PA*-1S

PA*-2S 3493 854 4 PA*-2S

PA*-2SE 2686 47 2 PA*-2SE

Table 4.3 shows that the time spent building the visibility maps can be gained back with 10 to 15

searches. The visibility maps calculation can also be done once before-hand, as an offline pre-processing

of the map, while PA* searches can use its information for faster real-time operation. Moreover, the

algorithm to build the visibility map is highly parallelizable, so it is possible to reduce its computation

times significantly.

4.4 Summary

Adding information about the structure of the environment can be used to improve the heuristics in

PA*, resulting in a reduced search with less expanded nodes and ray casting operations. The critical

points from the robot-dependent visibility map enabled the creation of better estimates of the motion and

perception costs. We also proved they can be used in an admissible and dominant heuristic compared

to the one proposed for PA*. We introduced four variants of the perception planning algorithm which

incrementally add new features and improve the search performance: (1) minimum perception distance

CHAPTER 4. PERCEPTION PLANNING WITH VISIBILITY MAPS 61

Table 4.3: Computation time to construct the Visibility Maps of each twelve test scenarios from Figure 4.6
to Figure 4.17.

Test (#) Time (s)
S1 0.90
S2 0.99
S3 0.95
S4 1.32
S5 1.32
S6 1.32
S7 0.76
S8 0.92
S9 0.94

S10 0.93
S11 1.33
S12 0.89

from critical points used in heuristic, (2) information from minimum perception distance used in goal

stopping condition, (3) minimum motion cost from critical points used in heuristic, and (4) information

from critical point position used in goal stopping condition.

Chapter 5

Using Perception Planning as Meeting Point

Calculation for Delivery Services

We have shown how to calculate an optimal path for a perception task and how to optimize its heuristics.

In this chapter, we show other applications that can use the PA* contribution. Here we will focus on a

rendezvous algorithm to determine a meeting location for a user requesting a delivery from a vehicle in a

city. As an example, we can think of the contemporary use case of food delivery.

While this looks like a simple motion planning problem with the actual user location as the target, we

have all already been in situations where it is more efficient to walk towards the vehicle that comes for

the delivery. Some of the reasons include: one-sided streets that force cars to drive long paths around

the user; inexperienced drivers that have difficulty getting into the appropriate lanes for direct access to

the user; roads that are only accessible to public transportation but not to private cars; vehicles that are

too big to drive through the narrow streets of city centers; or even impatience from the user and their

willingness to walk towards the car for a faster delivery.

I wish there could be a way to take all this into account and be able to offer the user smart delivery

locations to choose from. In the next sections of this chapter, we will show how to tackle some of these

questions using our perception planning contribution.

5.1 Map Representation

As before, we consider using a grid map to represent the planning environment. However, here we

introduce a new feature to these maps. While before the maps were always binary - either free or occupied

cells -, now we consider a third cell state which behaves differently for perception and navigation. This

new cell type has the following properties:

62

CHAPTER 5. USING PERCEPTION PLANNING FOR DELIVERY SERVICES 63

• Blocks vehicle navigation

• Allows perception, being transparent to ray casting

In other words, this new cell type in a trinary map can differentiate the perception and navigation

in terms of map representation, as we show in Figure 5.1. With our representation assumption, the

navigation obstacle set is always a superset of the perception obstacle set.

(a) City example

(b) Trinary Map

Figure 5.1: a) An example of a city road map, used as the basis for the experiments in a simulation
environment in this chapter; b) a trinary map, as a simplistic conversion from the above city map example,
with free cells in white, occupied cells in black (both navigation and perception obstacles), and special cells
in gray for cells that behave as obstacles for navigation but are transparent for perception (e.g., sidewalks).

As an example, we can think of sidewalks on a road map. While they block navigation, they do

no affect in terms of perception, as they still allow cars and people on the sidewalk to see each other.

Therefore, in this chapter we will consider three states for grid cells:

• Free: allows both motion and perception (e.g., roads)

• Special: feasible for perception, but not for vehicle navigability (e.g., sidewalks)

• Blocked: occupied cells for both navigation and perception (e.g., buildings)

CHAPTER 5. USING PERCEPTION PLANNING FOR DELIVERY SERVICES 64

For all purposes, it is equivalent to having two different maps representing the world, one that codes

obstacle navigability, and the other codes transparency for perception. We show an example of converting

the trinary map to two binary maps in Figure 5.2.

(a) Navigation Map

(b) Perception Map

Figure 5.2: The trinary map coding both navigation and perception feasibility can be converted in two
binary grid maps: a) free-space in white and navigation obstacles in black, b) free-space in white and
perception obstacles in black.

5.2 Problem Definition as Perception Planning

The determination of a rendezvous point for the vehicle to deliver something to a user seems a good fit

for our proposed perception planning, where we determined an optimal path for a robot to perceive a

target location T. Here, we have U, the initial user position, instead of T. Moreover, there is no perception

action. Instead, the perception cost will represent the cost of a user moving to the rendezvous point. The

overall cost of path ρ is

cost(ρ) = costv(ρ) + λcostu(ρ, U), (5.1)

where costv is a cost dependent on the vehicle path, costu is the cost dependent on the user walking

distance, λ is a trade-off parameter, and U is the initial user position.

CHAPTER 5. USING PERCEPTION PLANNING FOR DELIVERY SERVICES 65

One possible approach would be for the cost functions to convert distance into time. In that case,

assuming the goal would be to minimize the time to the rendezvous, the max operation should be used

instead of a sum between costv(ρ) and λcostu(ρ, U), thus optimizing paths for the faster rendezvous and

delivery. However, different users might have a different willingness to walk towards the vehicle and

might prefer to wait longer instead of meeting the vehicle in a middle point. So, we consider the max

operation not appropriate for this scenario, and we explain now what each cost element represents in our

proposed sum for the overall cost determination.

5.2.1 Vehicle Motion Cost

As for the path of the vehicle, we will still consider its cost to represent a time calculation. While planning

in a grid, the overall cost of a motion path is going to be the sum of all the individual cell connection

costs for the cells that belong to the final path. The cell connection cost can then be dependent on the

maximum speed for a specific vehicle traversing it, corresponding both to the vehicle and road intrinsic

characteristics. There could also be considerations on traffic based upon past and current data from

vehicles, for a better estimate of speed, but we leave those considerations for future work and assume the

speed to be constant with time.

There could also be other cost considerations, such as tolls, but here we also assume those are not rele-

vant in terms of rendezvous determination in a city scenario. The perception planning for user deliveries

deals mainly with the motion planning for the last part of the trip, where vehicles navigate in a city to

get to locations where they can deliver something to the users, such as a food delivery service, a scenario

where it is quite uncommon to have tolls.

A key difference to our previous approach is the necessity to consider directionality in terms of nav-

igation, something that we did consider before on the robot use cases. For a robot navigating indoor,

apart from obstacle avoidance, robots can generally move in any direction from any position. However,

in the vehicle use case that navigates in a city, it is essential to consider, for example, one-sided streets.

Moreover, even normal roads have specific lanes in each direction. Therefore, to consider direction, we

introduce a companion map to the original city map that represents for each cell the feasible navigation

directions. For simplicity, we consider only four basic navigation possibilities:

• Vertical Up

• Vertical Down

• Horizontal Left

CHAPTER 5. USING PERCEPTION PLANNING FOR DELIVERY SERVICES 66

• Horizontal Right

On the other hand, in grid maps, cells have 8-connectivity, connecting to all its eight neighbors with

eight different directions, as shown in Figure 5.3. We represent each of these connection directions with

an index that goes from 0 to 7.

0

123

4

5 6 7

Figure 5.3: Neighbor connections and direction indexes for a cell in a grid map.

Going back to the city map, if we consider for now only a road or lane with the Vertical Up navigation

possibility, we know that a vehicle navigating in that road can move up, but also go left and right to shift

positions inside that lane. Therefore, in cells that lie in roads with Vertical Up navigability, the only feasible

connections between grid neighbors would be the ones that represent motion to the left (connection index

4), up (index 2) and right (index 0), with all the possibilities in between (indexes 1 and 3). Extrapolating to

the other basic navigation directions in the city map, we have the following feasible connections for each

basic navigation direction:

• Vertical Up: neighbor indexes 0 to 4

• Vertical Down: neighbor indexes 4 to 0

• Horizontal Left: neighbor indexes 2 to 6

• Horizontal Right: neighbor indexes 6 to 2

Moreover, if we want to deal with road intersections and roundabouts, we also need to consider other

compound navigation directions, which are intersections of the other four basic directions:

• Up Left: neighbor indexes 2 to 4

• Up Right: neighbor indexes 0 to 2

• Down Left: neighbor indexes 4 to 6

• Down Right: neighbor indexes 6 to 0

CHAPTER 5. USING PERCEPTION PLANNING FOR DELIVERY SERVICES 67

As an example, we represent a roundabout with four quadrants, sequentially going from Up Left to

Down Left, then to Down Right and finally to Up Right. For the simulation environment used in this chapter,

we present in Figure 5.4 a representation of the navigation directions for each region.

Figure 5.4: A demonstration of the direction map with basic directions in blue and compound directions
in red in the roundabouts and intersections.

The delivery problem also fits nicely in the robot-dependent framework, with the possibility of pre-

processing each map according to the footprint and size of each vehicle. The robot-dependent transfor-

mation allows us to render an adapted map to the footprint of each type of vehicle, thus enabling us to

consider both the size of streets and cars in the planning algorithm, which usually does not take place in

state-of-the-art planning algorithms for deliveries in cities. While it could be slow for a car to go through

narrow streets in some city centers, it would not be obvious to eliminate that option if the vehicle in

question is a motorcycle.

For simplicity, for the remaining of this chapter, we run our experiments in examples only with differ-

ently sized circular footprints.

5.2.2 User “Perception” Cost

As for the user cost, costu, it is a function of the minimum walking distance to the vehicle path, and, as we

saw in chapter 3, it is also the walking distance from U, the initial user position, to the final rendezvous

delivery location.

The drawback of solving this problem with perception planning is that there always has to be a non-

occluded line-of-sight between the user and the rendezvous positions. An underlying assumption is that

users can only walk on sidewalks without ever going around buildings that occlude the necessary line-

of-sight. That assumption can be reasonable if, for example, we consider users would only be willing to

walk towards a delivery location when they already see the vehicle.

In terms of the perception function cp from chapter 3, here we have a similar function cu, used to

consider different models for the cost of walking to a rendezvous location, with the only constraint that,

CHAPTER 5. USING PERCEPTION PLANNING FOR DELIVERY SERVICES 68

again, it is a monotonically increasing function with distance in order to guarantee optimal solutions with

our proposed algorithm. A linear model is a reasonable assumption, but we can also imagine that for

some users the increase in cost is stronger for shorter distances (showing some inertia and reluctance to

start walking). For other users, it might be easily accepted to walk a small distance, but the increase in

cost may be higher for large distances.

5.2.3 Trade-off Parameter λ

We are left with the trade-off parameter λ. As it is clear from its name, this parameter trades off the

cost of the vehicle motion with the cost of a user walking to a delivery location. By its nature, it is a

difficult parameter to assess, as it highly depends on user preferences. Regarding the dependence to

the walking distance for the user, that is modeled with the perception function cu, as mentioned in the

previous section. Furthermore, it is quite expected to change with time even for the same user, according

to the constraints of each day and how fast the user needs to get inside the vehicle. Weather is also a

strong example of a variable that causes variability in the trade-off parameter, as someone might be more

than willing to walk on a sunny day, but less happy to do so when it is heavily raining.

We propose, as a solution to that uncertainty, to plan paths with different values of the trade-off

parameter and offer various possibilities to the users. By presenting alternatives to the user, it would

be possible to create a better service by providing the user with the option of choosing according to

their preference, while collecting data at the same time that can be used to learn those user preferences.

However, we don’t implement any learning in this chapter.

It is important to note that while the λ parameter can take any value, its variation generates only some

smaller variations in the rendezvous location. By having the user choose one option does not translate

directly to values of λ, but instead it translates to some windows of λ variation.

5.3 Experiments on City Motion Planning with PA*

Here we show some examples of running our perception planning algorithm in a city map for deliveries

to a user in an initial position. In Figure 5.5, the starting vehicle position is very close to the user, but due

to the navigation directionality of each lane, it needs to go around a long path to invert its direction and

meet the user close to his initial position.

Figure 5.5a presents a solution of perception planning where the trade-off parameter has a high value,

i.e., the user has a high cost of motion, so the vehicle travels a long path to get to the user in a position

very close to the user’s original location when requesting the delivery. On the other hand, in situations

CHAPTER 5. USING PERCEPTION PLANNING FOR DELIVERY SERVICES 69

(a) High λ

(b) Mid λ

(c) Low λ

Figure 5.5: Three different delivery locations, dependent on parameter λ; initial vehicle position in red,
user position represented with a green dot, vehicle path in blue, and walking path in cyan.

with heavy traffic, the vehicle might have a higher motion cost than the user, which is equivalent to having

a lower λ. In Figure 5.5b, the vehicle goes around a roundabout to invert direction and approach the user,

but it is still more cost-effective for the user to cross the street and get to the vehicle himself. Traveling

to the other roundabout to switch lanes again and get even closer to the user would be too expensive

in terms of time, compared to the willingness of the user to walk a short distance. In Figure 5.5c, the λ

parameter is so low that the most cost-effective solution is for the vehicle to remain in the same position,

and let the user walk to it.

As we have shown in the previous example, it is possible to come up with solutions where the user

CHAPTER 5. USING PERCEPTION PLANNING FOR DELIVERY SERVICES 70

might cross a street to get to the vehicle for the rendezvous. In Figure 5.6, we present a slightly modified

simulated city map, where neither the vehicle nor the user can cross the four bigger roads around the

buildings. Previously, the middle of the road was already considered an obstacle in terms of navigation

to separate lanes with different directions, as illustrated in Figure 5.2a, but in the perception map, those

lines were not obstacles, meaning the user could cross those roads when moving towards the rendezvous

position.

(a) Original Perception Map

(b) Modified Perception Map

Figure 5.6: Modified perception map where the middle of some road, separating lanes with different
directions, is considered an obstacle in terms of perception map, as we already had for navigation in
Figure 5.2a; as a result, in the new scenario it is impossible for users to cross any of the four bigger roads
around the buildings.

However, with the modified perception map from Figure 5.6b, the lane separation becomes also an

obstacle for “perception”, and as a result, the user cannot cross those roads any more in the new scenario.

In this particular scenario, the middle of the road has a line of occupied cells separating the two road

navigation directions, and such line functions as an obstacle both in the navigation and the perception

map. In this new scenario, with similar initial positions for the vehicle and user, there is never a solution

for which the user has to cross a road. We present again two planning solutions that are dependent on

the parameter λ. In Figure 5.7a, with a high λ, the solution is the same as for the previous scenario, in

Figure 5.5a. However, for a lower λ, there is a new solution where there is less driving by the vehicle and

more walking by the user compared to Figure 5.7a. This solution arises from the additional constraint

CHAPTER 5. USING PERCEPTION PLANNING FOR DELIVERY SERVICES 71

that the user cannot cross the streets. Otherwise, there would be other solutions (e.g., Figure 5.5b) with a

lower overall cost for the same configuration and trade-off parameter.

(a) High λ

(b) Low λ

Figure 5.7: Planning solutions for two different λ on the modified map of Figure 5.6

In the experiments of Figures 5.5 and 5.7, the vehicle size did not allow it to travel through the narrower

vertical streets, thus explaining the results in Figure 5.7, where the vehicle never gets genuinely close to

the initial user position. That represents the inability of some vehicles to drive through some streets. In

Figure 5.8 we run a planning instance with a smaller vehicle that can now drive in the narrower streets.

As a result, for high λ, there is now a new solution through a different and shorter path that gets very

close to the original user location for the delivery request.

5.4 Determining Vehicle-Dependent Visibility Maps

In a previous chapter, we used the information from visibility maps to generate improved heuristics

for perception planning. Those improved heuristics were based on critical points, as the knowledge of

their position and their distance to target points provided valuable information that could be used to

approximate the heuristic value to the real cost, still with guarantees of optimality.

CHAPTER 5. USING PERCEPTION PLANNING FOR DELIVERY SERVICES 72

Figure 5.8: Sample of a planning instance with a smaller vehicle that can drive in all the streets of the
original map.

However, the algorithm generated critical points on maps where the assumption was that all obstacles

were always both navigation and perception obstacles. That assumption is not valid in the case of city

maps, where the borders of navigation are very different and generally not coincidental with perception

obstacles.

While we could still run the same algorithm based on the obstacle maps for navigation, the approxi-

mate visibility generated could be in some instances very different from the real visibility. We illustrated

those differences in Figure 5.9, where first we generate visibility from the four critical points determined

with the robot-dependent map. Besides showing the difference to the true visibility, we can also see it

is difficult to get valuable information regarding the minimum perception distance with only four crit-

ical points. Moreover, there are no more guarantees that the distance from critical points to targets in

perception-only regions is minimal. This fact makes it still possible to use critical points in the improved

heuristics, but with the certainty that they will generate sub-optimal solutions, thus having little gain in

using any of our contributed variants besides the original PA*.

To go around this problem, we sampled the reachable space to generate additional critical points,

besides the ones determined through the methodology presented in chapter 2. We implemented a uniform

generation by going through all the map cells that are part of the reachable space, and creating a critical

point at that position if there is no other at less than a certain distance. We then determine visibility from

each of these new critical points.

The disadvantage of this approach is that it becomes a lot more time consuming to determine the

visibility map, compared to the original approach, going from less of a second to the tens of seconds

for the map used in this chapter. We show in Figure 5.10 the result of sampling the reachable space to

determine additional critical points for an accurate estimate of visibility.

CHAPTER 5. USING PERCEPTION PLANNING FOR DELIVERY SERVICES 73

(a) Visibility Generated from Four Critical Points

(b) True Visibility

Figure 5.9: For the trinary maps of city motion planning: a) visibility generated from four critical points;
b) real visibility; regions that are visible but not navigable in blue, critical points for the robot-dependent
map represented in the top image with four green dots.

Figure 5.10: Extended critical points generated from an additional sampling of reachable space.

CHAPTER 5. USING PERCEPTION PLANNING FOR DELIVERY SERVICES 74

5.5 Results of Improved Heuristics of Perception Planning

In this section, we run a set of planning instances in the map presented previously in order to compare

the different versions of improved heuristics we can use for perception planning.

We use a linear function for the perception cost, and we test four different values of the λ parameter:

0.1, 1, 10, 100. We bias the experiment towards larger values of λ because we assume it is more probable

for walking to have a higher cost that a vehicle moving an equal distance. For the lower value of λ, it

represents settings with heavy traffic where it is more costly for vehicles to move than it is for users to

walk to a rendezvous location. With the next value, vehicles and users have the same cost for moving the

same distance, then λ = 10 represents a more traditional use case, where vehicles cover some distance

with a lower cost than the user walking that same distance. Finally, the last value of λ represents users

with little willingness to walk, and prefer to wait for the car to reach them, even if that means long paths,

be it for weather reasons or any other personal preference.

As we have seen in the previous chapter, we expect more significant differences for larger λ. Those

represent planning instances where the vehicle moves closer to the user, and as such, it is expected to

have higher numbers of node expansion. For those cases, it is more valuable to have information on the

minimum perception distance from critical points (or minimum walking distance in this specific use case),

as it has the potential to end search faster without expanding all the reachable nodes while expecting a

lower perception distance that is not truly possible.

As before, we consider a vehicle starting position in one corner of the environment, and then for each

λ we test 20 different target locations for the user location, spread uniformly around the environment.

However, we only consider feasible user positions the ones in the “sidewalk” regions. Having the same

starting position and targets located all across the city map lets us test both short and longer planning

instances.

Finally, we test two different vehicles, a smaller one that can move through any road, and a bigger one

that can only move in the four bigger roads around buildings.

As before, we compare the base PA* with the four variations presented previously in Chapter 4: PA*1,

PA*1S, PA*2S, and PA*2SE. We briefly summarize their differences using incremental features:

• PA*1: Improves heuristic with minimum walking distance

• PA*1S: Reduces ray casting operations based on minimum walking distance

• PA*2S: Improves heuristic further using critical points position

• PA*2SE: Reduces even more ray casting operations based on critical points position.

CHAPTER 5. USING PERCEPTION PLANNING FOR DELIVERY SERVICES 75

Table 5.1: Comparison of time spent on planning for the different improved heuristics of perception
planning, for two differently sized vehicles, and running on four different values of λ; results presented
as a proportion of the base variant PA*

Bigger Vehicle Smaller Vehicle
λ = 0.1 λ = 1 λ = 10 λ = 100 λ = 0.1 λ = 1 λ = 10 λ = 100

PA* 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
PA*1 1.2 1.0 0.5 0.4 1.0 1.1 0.6 0.3

PA*1S 1.0 0.9 0.5 0.4 0.9 1.0 0.5 0.3
PA*2S 1.1 2.5 2.1 1.7 1.0 2.5 2.0 1.4

PA*2SE 1.4 2.9 3.5 2.5 0.7 2.5 2.2 1.4

Table 5.1 presents the different time results. Overall, we notice the trend that versions PA*1 and PA*1S

have similar results to the base PA* version for lower λ as expected, and for larger λ there is at least a two

times speedup.

As for the PA*2S and PA*2SE variations, they are almost always outperformed by the other versions,

even the base PA*. We should note that as we saw in the previous chapter, these versions still have lower

node expansion and a smaller number of ray casting operations. However, for these variants, the heuristic

calculation is more expensive, to such extent that even with much lower node expansion and ray casting

operations, the time spent to find a solution was frequently above two times of what needed for the base

PA* with the simpler heuristic.

This considerable increase in the time spend for the more complex heuristics was something we did

not notice in all other experiments before, but it can be easily explained. As we discussed earlier in

previous chapters, we assumed navigation obstacles would be the same as perception obstacles. As a

result, visibility can be approximated with a very low number of critical points. Moreover, for every

unreachable but visible target, there were as well very few critical points from where the target was

visible. As a consequence, the more complex heuristics PA*2S and PA*2SE were not very difficult to

calculate, as they only needed to consider the location of one or two critical points.

However, for the city scenario in this chapter, where navigation obstacles are not necessarily perception

obstacles, we used an algorithm to generate additional critical points in a uniform distribution, in order

to still estimate the visibility map appropriately. As a consequence, now for each unreachable but visible

target, there are plenty of critical points from where the target can be visible. As the complexity of the

heuristic calculation is proportional to the number of critical points that can see the target, it becomes

evident that in this scenario the more complex heuristics become too expensive to compute, losing the

advantage of a lower node expansion and fewer ray casting operations.

We can conclude that for the city scenario it is better to use only the variant that considers the minimum

walking distance, but not the critical point positions.

CHAPTER 5. USING PERCEPTION PLANNING FOR DELIVERY SERVICES 76

5.6 Summary

In this chapter, intending to show a practical use case of PA*, we applied perception planning to a problem

of motion planning for vehicles moving in cities and making deliveries to users that can move to meet the

vehicle in calculated rendezvous positions.

We presented a new map representation that differentiates navigation and perception obstacles, and

which allowed the calculation of the rendezvous point between the user and the vehicle with our PA*

algorithm.

The application of our techniques to this contemporary problem shows how our contributions on

robot-dependent maps and perception planning can enable new advances in the problem of meeting users

to make deliveries in a city. While running searches with different values for the cost trade-off parameter,

we offer the user a novel algorithm where he can choose a delivery location according to his preferences.

We can also adapt to vehicles with different footprints, making narrower streets only navigable by some

vehicles.

We showed how to extend our visibility determination algorithm to the city scenario, and we demon-

strated which changes in the heuristic function can benefit from visibility maps and improve the running

time of search in this specific use case.

Finally, this chapter shows that it is possible to extend the perception planning framework for different

robotic problems. Another interesting example would be to apply this framework to a multi-robot problem

where the algorithm needs to compute a rendezvous location for the robots to meet, assuming it is more

important to have a detailed path computation for one robot moving around obstacles. In that case,

the perception part could represent a second robot with a reduced set of obstacles, as the “perception”

obstacles must be a subset of the navigation obstacles of the first robot.

Chapter 6

Heterogeneous Multi-Agent Planning Using

Actuation Maps

In this chapter, we consider a multi-robot coverage problem, which consists of distributing actuation tasks

among the set of robots. The problem is to plan and find a route for each robot so that all the targets

are actuated by the robots’ actuators while minimizing the execution time. Multiple vacuum cleaning

robots are an example of this type of planning problem. We modeled the problem using the standard

PDDL language [14], using a 2D grid of waypoints as a discrete representation of the map. The robots can

move from one waypoint to another as long as they are grid neighbors, and they can also actuate other

waypoints inside the robot’s actuation range.

We base our approach on a multi-agent classical planning technique that uses a task-allocation phase

before planning individually for each robot.

We introduced the notion of using robot-dependent maps as a pre-processing phase to speed-up task

assignment [37]. To do task allocation, a heuristic is used to estimate the cost of each robot executing

a task. With the pre-processing technique, the automated planner saves time by only computing the

heuristic for feasible tasks. Moreover, we also proposed using the pre-processing step to provide a faster

cost estimation procedure based on robot-dependent maps, which further improves the efficiency of goal

assignment in the multi-agent planning problem [26].

6.1 Multi-Agent Classical Planning

Any robotic problem can use our approach as long as it has at least the following elements:

• A map of the environment;

77

CHAPTER 6. HETEROGENEOUS MULTI-AGENT PLANNING USING ACTUATION MAPS 78

• A set of potential tasks to be executed by an agent over the environment;

• A way to model that scenario into a PDDL domain and problem.

The set of potential tasks can vary depending on the problem to solve. In this work, we are focusing

on the coverage problem, and as a result, it is enough for the robots to move through the environment.

Some other alternative tasks would be looking for objects, opening doors or achieve some clients’ orders

through the environment.

The potential of our approach relies on the ability to extract information from the map related to

the tasks. The aim is to transform that information into a set of estimation costs that can speed up the

planning process, i.e., we have computed the cost as the distance to each of the waypoints on the coverage

problem.

In order to transform this kind of problem into PDDL we have to model (1) a domain; (2) a problem;

and compute (3) a set of estimated costs. The domain and problem are a lifted representation in predicate

logic of the planning task.

Robots execute actions, and each action has a set of preconditions that represent literals that must be

true in a state to execute the action and a set of effects which are literals that are expected to be added

or removed from the state after the execution of the action. As we are working with multiple agents, we

consider a set of m agents given to solve the given coverage problem.

As a baseline we use the classical multi-agent planning that allocates tasks for each robot, plans paths

individually, and then removes conflicts from the combined path solution. For task allocation, the baseline

method uses a relaxed plan to compute per task and robot an estimated cost of executing each task. Thus

the time spent on planning depends highly on the task assignment efficiency.

Usually, estimated costs are computed to divide the goals among the agents before the planning

process starts. In classical planning, the algorithm runs a relaxed plan to obtain a heuristic function.

Even though the classical planner used is domain-independent, our function to compute the estimated

costs is domain-dependent and should be set up differently on each domain, though it would be very

similar to this one in most related robotic domains.

Therefore, we contribute a pre-processing step with Actuation Maps to speed up the task assignment

phase, determining the feasibility of each pair robot-task before-hand. The planner receives the estimated

cost as input and saves time by avoiding the relaxed planning computation and directly assigning tasks to

robots. The Actuation Maps are generated once before planning, determining which regions are feasible

for actuation for each one of the robots, and also providing a cheap estimate of the cost of using each

agent to execute that task.

CHAPTER 6. HETEROGENEOUS MULTI-AGENT PLANNING USING ACTUATION MAPS 79

Figure 6.1 illustrates the contributed architecture. It has been divided into four modules and receives

as input the map of the environment, the general knowledge related to the task to solve and the features

of the set of robots. The aim of each module is described as follows:

1. Actuation Maps module: it is in charge of generating the AMs for each given robot. It also extracts

the map features that can potentially alleviate the planning process, e.g., path-planning features, and

transforms them into a set of estimation costs and generates the planning problem in PDDL.

2. Multi-Agent Planning Task Generation module: once received as inputs the domain and the outputs

from the prior module, the goal assignment process is launched. This module is in charge of dividing

the goals among the agents following some goal-strategy. Then, a specific domain and problem is

generated for each agent, which is known as factorization.

3. Multi-Agent Planning Algorithm module: this module runs the individual planning process and the

merging phase.

4. Conflicts Solver module: if any interactions need to be solved, this module employs a plan-reuse-

planner to fix them.

Multi­Agent Planning
 Task Generation

Actuation Maps
(Feature Extraction)

If any
conflicts

arise

Multi­Agent Planning
Algorithm

Conflicts solver
 (Plan-Reuse Planner)

Environment
Map

Features
Robot1

Features
Robot2

Features
Robotm

...

Input information

2 1

3 4

General
knowledge

Figure 6.1: Complete architecture that combines Actuation Maps and Multi-Agent Planning [26].

6.2 Coverage Task Planning Formulation

In this work, we only consider heterogeneous teams of circular robots that actuate in a 2D environment,

where the world is represented by a 2D image that can be downsampled to a 2D grid of waypoints. The

CHAPTER 6. HETEROGENEOUS MULTI-AGENT PLANNING USING ACTUATION MAPS 80

actuation map gives information about the actuation capabilities of each robot, as a function of robot

size and initial position. In the example with vacuum cleaning robots, the actuation map represents the

regions of the world each robot can clean.

At first, we assume that robots are circular and the only feature is its size, with 2D grid positions being

rotation-invariant. Other shapes can also be trivially considered in our approach by extending the PDDL

domain file to take into consideration robot orientation as well.

As it was previously said, we modeled the domain and problem using PDDL[14]. The domain has two

types of objects: robots, which act as agents; and waypoints, which represent positions in the discretized

world. We consider a coverage problem, where the goal is to have the robots actuating on waypoints. In

this version of the coverage problem, robots actuate a waypoint if it is inside its actuation radius. Thus,

they do not need to be precisely placed on the waypoint to actuate it.

Therefore, the set G is a list of waypoints to actuate on (positions that need to be covered). The PDDL

domain we created has four predicates:

• At (robot, waypoint): defines the robot position;

• Connected (robot, waypoint, waypoint): establishes the connectivity between waypoints, spec-

ified for each robot, and given the robot heterogeneity, some connections might be traversable by

some robots and not by others;

• Actuated (waypoint): indicates which waypoints were already actuated; this predicate is used to

specify goals;

• Actuable (robot, waypoint, waypoint): shows which waypoints can be actuated by a robot when

located on a different waypoint location.

Every position in the world is a waypoint, and all of them need to be covered by at least one robot.

The waypoints, when connected, generate a navigation graph for a particular robot.

The domain defines two actions, and they are called navigate and actuate. The first one moves

a robot from its current waypoint location to a neighbor waypoint as long as both are connected. The

second action is used to mark a waypoint as actuated if it is identified as actuable from the robot’s

current waypoint location, i.e., the waypoint was located inside the robot’s actuation radius on the real

environment. Navigate and actuate are the two actions that can be executed by an agent when it is on

specific a waypoint. Both navigate and actuate have as effect the predicate actuated.

CHAPTER 6. HETEROGENEOUS MULTI-AGENT PLANNING USING ACTUATION MAPS 81

6.3 Downsampling of Grid of Waypoints

For the planning problem, it is possible to consider each pixel as a waypoint. However, that approach

results in a high density of points that would make the planning problem excessively complex. Moreover,

there is some redundancy in having points that are too close to each other, as their difference is not

significant in terms of the environment size and localization accuracy.

Therefore, we reduced the set of locations from all pixels to a smaller set of locations. We considered

again waypoints distributed into a grid, but now the grid-size is greater than one pixel. Then, we can find

the connectivity between points to construct the navigation graph of each robot, shown in Figure 6.2a. It

is also possible to find which waypoints can be actuated from other waypoints using the distance between

them, as shown in Figure 6.2b, by considering the maximum actuation radius.

(a) Navigability (b) Actuation

Figure 6.2: a) Example of the free configuration space, with the discretization waypoints shown as green
dots; blue lines represent the connectivity between waypoints in the navigation graph of the robot; using
parameters δ and α it is possible to maintain the topology of the free configuration space by allowing
points in the navigation graph that were initially unfeasible for the robot; b) actuation map of the same
robot, and the respective actuation graph represented with yellow lines.

The problem of such discretization is the change in the actuation space topology. Adjusting the position

of waypoints could allow a better representation of the topology of the environment, but the multi-robot

nature of the problem compromises that solution. To deal with multiple robots with different reachable

sets, for each agent, we independently adjust the waypoint position -temporarily- in a hidden manner

invisible to the other agents. When discretizing each robot’s configuration space, we might consider

a waypoint as belonging to the free configuration space even if it is strictly outside it, as we assume

an error margin to compensate for the discretization error. Nevertheless, we still maintain the original

waypoint position in further steps, such as determining the actuation feasibility of that waypoint, and for

visualization purposes as well. When determining the navigation graph of each robot, an unreachable

waypoint position might be moved to the closest point in the configuration space, if the adjustment is

CHAPTER 6. HETEROGENEOUS MULTI-AGENT PLANNING USING ACTUATION MAPS 82

under a given margin δ. As stated previously, the adjustment is always temporary to the construction

of the connectivity graph of each robot. After testing the navigation connectivity, the waypoint position

resets to its default grid position for the next steps, such as determining the actuation feasibility, and the

navigation and actuation graphs of other robots.

Moreover, when determining the connectivity of waypoints for the navigation graph, only the eight

grid neighbors are considered. A∗ is then used to determine the real distance between waypoints (e.g.,

around obstacles), only considering connectivity if the actual distance is at most a factor of α = 1.2 the

straight line distance between them.

All waypoints that belong to the robot actuation map should be connected to some waypoint of its

navigable graph. If that is not the case after the previous steps, we connect the isolated waypoints to

the closest navigable vertex in line-of-sight, even if their distance is greater than the maximum actuation

distance, again to compensate for the discretization error. Therefore, while the planner may return an

actuate action to cover waypoint A from the navigable waypoint B in the discretized world, a real robot

would have to move closer from waypoint B to waypoint A to actuate the latter.

The grid density is chosen manually to adjust the level of discretization. As for the α and δ parameters,

they were tuned empirically such as the free space topology is still maintained even while using lower

density discretization of the environment. By trial and error, we found empirically that α = 1.2 works

for all the tested scenarios. As for the δ parameter, we set it to always start with a value of three. The

algorithm then builds the discretized model and verifies if it is valid, i.e., if all the waypoints belonging to

the actuation map become feasible for the respective robot in terms of the discretized representation. If not,

we increment the parameter until a topologically consistent representation is found (number of feasible

goals equals the number of waypoints inside actuation map). Even though this fine-tuning methodology

seems sensitive to the robot heterogeneity, the truth is that the final δ value depends on the size of

the bigger robot, because the correct discretization of the configuration space is more sensitive to the δ

parameter for bigger robots. Through experimentation, we found out that if a particular value of the

δ parameter works well for the biggest robot, it always produces the correct discretization for smaller

robots. Moreover, we also observed that δ = 4 pixels worked well for all the different and very diverse

maps we tested in our experiments with circular robots, only failing for the any-shape experiments where

the configuration space discretization is more sensitive to the possible robot orientation. For the any-

shape robot experiments, we found that δ = 6 pixels were enough to obtain a proper discretization for

all the environments tested. The consistency of the δ parameter over different environment maps shows

that these parameters can be map-independent to a certain extent, with most of the work being easily

automated.

CHAPTER 6. HETEROGENEOUS MULTI-AGENT PLANNING USING ACTUATION MAPS 83

6.4 Extracting Cost Information from Actuation Maps

When converting the original map and the Actuation Space to the PDDL description, it is possible to

consider each pixel as a waypoint in a grid with the size of the whole image. But as discussed in the

previous section, we reduce the set of possible locations by downsampling the grid of waypoints. The

downsampling rate sr is set manually. If the original pixel resolution is used, the resulting grid of way-

points G′ contains all pixels and is equivalent to G. Otherwise, the set G′ represents the grid waypoint

positions after downsampling.

Using the Actuation Space it is possible to very easily find UG, the list of unfeasible goals per agent r:

UG = {g ∈ G′ | g 6∈ Ar(Sr) ∀r}. (6.1)

The positions in the actuation space Ar(Sr) are feasible goal positions for actuation tasks. Even though

this was used to find the unfeasible list UG, the original Actuation Transformation does not provide any

information about the cost for each robot to execute a feasible actuation task.

For that purpose, we contribute the following extension. We build the navigable space Navr(Sr) in an

iterative procedure, from the starting position Sr. In the first iteration we have Nav0
r (Sr)← {Sr}, and then

the following rule applies:

Navj
r(Sr) = {p ∈ G | ∃q ∈ Navj−1

r (Sr) : p neighbor of q

∧p ∈ C f ree
m ∧ p 6∈ Nava

r (Sr) ∀a < j}. (6.2)

When using this recursive rule to build the navigable space, we guarantee that any point in the set

Navj
r(Sr) is exactly at distance j from the initial position Sr.

Furthermore, if we build the actuation space sets with the intermediate navigable sets Navj
r(Sr),

Aj
r(Sr) = Navj

r(Sr)⊕ Rm, (6.3)

then the intermediate actuation set Aj
r(Sr) represents the points that can be actuated by the robot from

positions whose distance to Sr is j. The actuation space defined in the previous section can also be

alternatively defined as

Ar(Sr) = {p ∈ G | ∃a : p ∈ Aa
r (Sr)}. (6.4)

The estimated cost is defined for g ∈ Ar(Sr):

ECr(Sr, g) = min{j | g ∈ Aj
r(Sr)}+ 1. (6.5)

The cost ECr(Sr, g) represents, for each g ∈ Ar(Sr), the minimum number of actions needed for the

robot to actuate the grid waypoint g if starting from the initial position Sr, measured in the pixel-based

CHAPTER 6. HETEROGENEOUS MULTI-AGENT PLANNING USING ACTUATION MAPS 84

grid G. In Equation 6.5, the minimum j∗ represents the minimum distance (i.e., the minimum number of

navigate actions) needed to travel from Sr to some point from where g can be actuated. The added one in

Equation 6.5 accounts for the one actuate action needed to actuate g, after the j∗ navigate actions required

to reach a place from where the robot can actuate g.

Considering the downsampling rate sr, the cost has to be divided by sr to transform the estimated cost

of actions measured in the pixel-based grid G, ECr(Sr, g), to the respective cost value in the downsampled

grid of waypoints G′. The ceil function rounds up the result of the division to the smallest integral value

that is not less than ECr(Sr, g)/sr. The cost function is domain-dependent and works for the coverage

problem. If a different problem is given as input, the cost function should be redefined.

cost(m, g) = ceil (ECr(Sr, g)/sr) (6.6)

6.5 Extending Approach to Any-Shape Robots

For the any-shape robots, a multi-layer representation is used to determine the actuation map, repre-

senting different orientations. However, in terms of accomplishing goals, we assume it is irrelevant the

orientation from which a robot actuates on a waypoint position.

Therefore, while on the rotation-invariant scenario the domain was discretized in a series of 2D way-

points, for the any-shape case there are two types of waypoints: the 3D waypoints representing (x, y, θ)

position, and the 2D waypoints representing (x, y) positions invariant to orientation.

The navigability graph now becomes a graph of connected 3D waypoints, modeling the motion ca-

pabilities of robots in the world in terms of both rotation and translation, individually or combined, as

exemplified for different orientation layers on Figure 6.3.

On the other hand, the actuation graph is now a graph of 3D waypoints connected to 2D waypoints,

representing the actuation of a rotation-independent position in the projected 2D actuation map, from a 3D

robot waypoint location, also shown in Figure 6.3. The predicates on the PDDL problem are represented

as follows:

• Connected (robot, 3Dwaypoint, 3Dwaypoint)

• Actuable (robot, 3Dwaypoint, 2Dwaypoint)

For each 2D waypoint in the circular robot scenario, there are now nθ 3D waypoints in the same (x, y)

position, representing the different orientations a robot can have on the same 2D waypoint. As we show

in Figure 6.4, the two graphs are constructed independently of the initial position, allowing very easily to

CHAPTER 6. HETEROGENEOUS MULTI-AGENT PLANNING USING ACTUATION MAPS 85

(a) Robot 1 Graphs - 0o Layer (b) Robot 1 Graphs - 45o Layer (c) Robot 1 Graphs - 90o Layer

(d) Robot 2 Graphs - 0o Layer (e) Robot 2 Graphs - 45o Layer (f) Robot 2 Graphs - 90o Layer

Figure 6.3: The connected and actuable graphs shown in blue and yellow, respectively; as shown for
each layer, the yellow actuation graph connects 3D waypoints to the original 2D green waypoints, and
the blue connectivity graph connects 3D waypoints not only to neighbors in the same layer but also in
adjacent layers.

change the starting location of any robot and solve a different instance of the same problem. Thus, there

were no modifications in the modeling of the PDDL problem. The 3D to 2D representation is transparent

to the planning process.

If we project the multiple layers of the graphs in a 2D image, we can analyze which waypoints are

navigable in terms of the robot motion, and which ones are only feasible through an actuation action. As

we show in Figure 6.5, some of the waypoints are not feasible by any of the robots, and all the feasible

waypoints lie inside the Actuation Space (gray region of the images).

6.6 Experiments and Results

In this section, we show the results of the experiments that were designed to test the impact of the pre-

processing on two different versions of our MAP algorithm. First, we describe the five scenarios designed

to run the experiments. Then, we show the experiments on the Coverage problem are analyzed. Here we

describe in detail the scenarios used for running the experiments. We designed three different scenarios,

shown in Figure 6.6, each one with two levels of waypoint density (H, the higher, and L, the lower density)

plus two more scenarios that only have one density level. The scenarios are designed for circular robots

except for the last one (called Rooms), which is designed for any-shape robots. Furthermore, in Table 6.1

we present the size of each map image and the number of feasible and unfeasible goals for each scenario.

CHAPTER 6. HETEROGENEOUS MULTI-AGENT PLANNING USING ACTUATION MAPS 86

• Mutual Exclusive: three wide parallel horizontal halls, connected between them by two narrow

vertical halls; three robots move within the horizontal sections, one in each, and their actuation

(a) Robot 2 - Graphs on Free Configuration S-
pace - 0o Layer

(b) Robot 2 - Graphs on Navigable Space - 0o

Layer

(c) Robot 2 - Graphs on Free Configuration S-
pace - 90o Layer

(d) Robot 2 - Graphs on Navigable Space - 90o

Layer

Figure 6.4: The discretized graphs constructed are independent of the initial robot positions, allowing
to run the problem from different initial positions; the constructed graphs cover the navigable space not
only on its white regions, which depend on the initial position, but also on some black regions if they
correspond to white in the free configuration space (independent of initial position).

(a) Robot 1 (b) Robot 2

Figure 6.5: All goal waypoints are shown as spheres on top of the actuation map: unfeasible waypoints
in green, waypoints covered by the connected graph in red, and waypoints only covered by the actuable
graph in blue; for the smaller robot 1, the two graphs are the same.

CHAPTER 6. HETEROGENEOUS MULTI-AGENT PLANNING USING ACTUATION MAPS 87

(a) Mutual Exclusive

(b) Maze

(c) Corridor
(d) Extremities

(e) Rooms

Figure 6.6: Maps of the five scenarios used in the experiments; grey regions represent out-of-reach regions
which cannot contain goal waypoints, being unfeasible for all the robots; robots positioned in the region
of their starting position, in blue circles.

reachability is mutually exclusive.

• Corridor: four wide sections with openings of different sizes connecting them; the opening decreases

from the top to the bottom, with all four robots being able to actuate in the top region, but only one

being able to reach the bottom.

• Extremities: wide open section with three halls departing to different directions, where all 4 robots

actuate; at the end of each hall there is a room that can be accessed through an opening, with only

one robot reaching the extremity connected with the smallest opening, to three reaching the one

connected with the biggest opening.

• Maze: maze-like scenario with narrow halls and passages with different sizes, resulting in bigger

robots not reaching some parts of the maze, or needing to traverse bigger paths to arrive at the same

locations as smaller robots.

• Rooms: simple floor plan environment with some room-like spaces connected through passages of

CHAPTER 6. HETEROGENEOUS MULTI-AGENT PLANNING USING ACTUATION MAPS 88

(a) Waypoints (b) Path 1 (c) Path 2 (d) Path 3 (e) Path 4

Figure 6.7: Corridor scenario used in the experiments: a) the waypoint discretization; b) to e), the resulting
path for each robot after solving the planning problem using load balance as goal-strategy; path 1 belongs
to the smallest robot, while path 4 belongs to the biggest robot.

different sizes as well, used to test the non-circular robot case where they can traverse the passages

using only specific orientations.

Figure 6.7 shows a solution example obtained from the multi-agent planning algorithm. It corresponds

to the scenario called Corridor-High later on the experiments.

Table 6.1: Number of feasible and unfeasible goals for all robots in each problem, and respective grid size.

Feasible Unfeasible Grid Size
CorridorH 819 118 49x19
CorridorL 384 92 33x13
ExtremeH 1993 1325 51x63
ExtremeL 896 589 34x42
MutExH 499 513 45x21
MutExL 223 242 30x14

Maze 572 100 25x25
Rooms 131 61 13x13

In this section, we show some experiments that test the impact of the pre-processing on the MAP

algorithm (mapm in advance). As it was previously said, we have modeled five different scenarios that

include up to four agents with different sizes, and thus different actuation capabilities. Planning results

are shown using as metrics the time in seconds, the length of the resulting plan and the makespan. In

non-temporal domains, we refer as makespan the length of the parallel plan (number of execution steps,

where several actions can be executed at the same execution step). Given that we are dealing with MAP

tasks that have no interactions, it is expected that agents can execute their actions in parallel whenever

possible.

Four different configurations of our MAP algorithm have been set up:

CHAPTER 6. HETEROGENEOUS MULTI-AGENT PLANNING USING ACTUATION MAPS 89

• mapm-lb-ec with estimated-cost information (EC). EC refers to the configuration that combines

Actuation Maps and MAP.

• mapm-bc-ec with estimated-cost information (EC), also combining Actuation Maps and MAP.

• mapm-lb, same as before but without EC information.

• mapm-bc same as before but without EC information.

The load balance strategy helps to minimize the makespan metric. The best cost strategy focuses on

minimizing the plan length metric. We also run the problems without the pre-processing stage in order to

evaluate our impact in terms of computation time and plan quality.

Furthermore, the following state-of-the-art planners have been chosen as a comparison baseline:

• lama [44], centralized planer and winner of IPC 2011.

• yahsp [51], a greedy centralized planner.

• adp [8], a multi-agent planner that automatically detects agents.

• siw [29], a multi-agent planner that factorizes the problem into subproblems solving one atomic goal

at a time until all atomic goals are achieved jointly.

• cmap [5], a multi-agent planner that employs a centralized approach to solve the problem.

The three multi-agent planners that have been chosen participated in the 1st Competition of Distributed

and Multi-agent Planners (CoDMAP1) and obtained good results on the final classification.

Neither of these five planners perform a goal allocation phase separated from the planning process.

Thus, we had to test them using the equivalent PDDL problems that do not contain unfeasible goals.

Also, in order to fairly compare the results of the makespan metric, we had to apply our parallelization

algorithm to the resulting plans of adp and siw, as they only return the sequential plan.

We have generated two problems per scenario, one of them with less number of waypoints (which we

identify as L in tables) and the other one with a high density of waypoints (H), except for the last two

scenarios that only have one density level (Maze and Rooms), making it a total of eight problems. The

Rooms scenario works for any-shape robots while the rest work for circular robots. Before discussing the

results on the tables, we need to clarify that a maximum of two hours was given to each planner to solve

each scenario. yahsp results do not appear in the tables because it could not solve any of the scenarios.

1http://agents.fel.cvut.cz/codmap/

http://agents.fel.cvut.cz/codmap/

CHAPTER 6. HETEROGENEOUS MULTI-AGENT PLANNING USING ACTUATION MAPS 90

The maximum time spent on the pre-processing for any scenario was 170 milliseconds, for the Extrem-

ities problem with four robots. We included the pre-processing times (to generate the Actuation Maps) in

the GA column of Table 6.2, and in the total time in Tables 6.3. Hardware used for running the planner

was IntelXeon 3,4GHz QuadCore 32GB RAM. Actuation maps were computed using a 2.5GHz DualCore

6GB RAM. Table 6.2 is shown to prove the remarkable impact that information from Actuation Maps

(AMs) has in combination with the MAP algorithm. Goal assignment (GA) times in Table 6.2 are minimal

(mapm-lb-ec) in comparison with the ones when mapm-lb needs to compute the relaxed plans for every

goal-agent pair. Even though the individual planning time and parallelization time for mapm-lb-ec is

slightly higher than mapm-lb, the time gains in GA completely dominate the overall planning time.

Table 6.2: Detailed time results in seconds for the MAP algorithm using the Load Balance strategy with
and without estimated cost information; from left to right: total time, goal assignment time, individual
planning time and parallelization time.

mapm-lb-ec mapm-lb

Name TOTAL(s) GA Planning Parallel TOTAL(s) GA Planning Parallel
CorridorH 33.58 0.64 24.37 8.57 1232.97 1204.20 20.88 7.89
CorridorL 6.18 0.26 4.62 1.30 128.78 123.59 4.10 1.09
ExtremH 602.68 3.06 428.28 171.34 timeout
ExtremL 58.32 0.92 40.93 16.47 3870.00 3823.75 32.89 13.36
MutExH 7.39 0.34 5.03 2.02 903.65 896.82 4.81 2.02
MutExL 1.39 0.12 1.04 0.23 69.41 68.19 0.98 0.24
Maze 254.40 0.32 210.32 43.76 timeout
Rooms 146.60 0.15 94.30 52.15 1620.02 1554.36 95.39 50.45

Table 6.3: Total time results in seconds; from left to right: mapm with estimated-cost information in Load-
balance (LB-EC); mapm without estimated cost information in LB; mapm with estimated cost information
in Best-cost (BC-EC); mapm without estimated cost information in BC; adp, siw and cmap are other multi-
agent planners and lama is a centralized planner.

Total Time (s)
mapm-lb-ec mapm-lb mapm-bc-ec mapm-bc adp lama siw cmap

CorridorH 33 1232 41 2839 MEM TO 96 TO
CorridorL 6 128 9 135 104 5 9 180
ExtremH 602 TO 1788 TO MEM TO TO TO
ExtremL 58 3870 112 3929 MEM TO 196 TO
MutExH 7 903 7 910 5 6 4 1274
MutExL 1 69 1 72 0.84 1 1 95
Lab 254 TO 308 TO 427 TO 320 TO
Rooms 146 1620 268 1628 MEM 387 288 1328

The easiest scenario to be solved using planning is the Mutual Exclusive (MutExH, MutExL) because

it is designed for each robot to traverse a mutually exclusive subset of waypoints, and that is why time

results are very similar among all planners except for mapm-lb and mapm-bc where the planner needs to

compute the relaxed plans for each pair robot-goal. Regarding time results, the fastest configuration is

CHAPTER 6. HETEROGENEOUS MULTI-AGENT PLANNING USING ACTUATION MAPS 91

mapm-lb-ec if all total times are summed up. Also, the impact of combining information from actuation

maps with MAP can be easily appreciated if columns from mapm-lb-ec and mapm-lb are compared in

Table 6.3. The same happens with best cost configurations. adp and lama were only capable of solving

four problems. adp reached the memory limit (MEM) when planning the solutions before the two hours

limit. Even though adp is a multi-agent planner, the effort of computing plans when all goals are assigned

to all agents is considerable. lama reached the two hours limit (TO) without returning a solution on the

other four problems.

Table 6.4: Plan length; from left to right: mapm with estimated-cost information in Load-balance (mapm-
lb-ec); mapm without estimated cost information in LB; mapm with estimated-cost in Best-Cost (mapm-
bc-ec); mapm without estimated cost information in BC; adp, lama, siw and cmap.

Plan Length
mapm-lb-ec mapm-lb mapm-bc-ec mapm-bc adp lama siw cmap

CorridorH 1289 1268 1226 1136 1154
CorridorL 605 598 588 475 1403 470 492 470
ExtremH 3428 3116
ExtremL 1490 1587 1365 1233 1398
MutExH 642 642 642 642 748 642 723 642
MutExL 277 277 277 277 278 277 339 277
Maze 1463 1437 1355 1346 1553 1376
Rooms 473 469 475 475 481 478 476 478

Table 6.5: Makespan; from left to right: mapm with estimated-cost information in Load-balance (mapm-
lb-ec); mapm without estimated cost information in LB; mapm with estimated-cost in Best-Cost (mapm-
bc-ec); mapm without estimated cost information in BC; adp, lama, siw and cmap.

Makespan
mapm-lb-ec mapm-lb mapm-bc-ec mapm-bc adp lama siw cmap

CorridorH 403 408 461 734 397
CorridorL 219 189 303 458 1313 286 263 286
ExtremH 1453 1929
ExtremL 556 511 928 1140 463
MutExH 116 116 116 116 162 116 187 116
MutExL 59 59 59 59 60 59 101 59
Maze 466 479 597 793 603 461
Rooms 240 240 242 242 257 253 245 253

Table 6.4 shows the results regarding the plan length and Table 6.5 the results regarding makespan.

The best configuration overall regarding plan length is mapm-bc-ec. Regarding makespan, mapm-lb-ec

is better. Moreover, mapm-lb-ec configuration is the best one for problems with a higher density of

waypoints, while mapm-lb proves to be better for reducing makespan in low density problems, explained

by the discretization errors from Equation 6.5, which are greater when the downsampling rate is bigger.

When allocating goals, the estimation costs are the only guide for the MAP algorithm. The consequence

CHAPTER 6. HETEROGENEOUS MULTI-AGENT PLANNING USING ACTUATION MAPS 92

of having slightly inaccurate cost estimates results in the allocation of some goals to different agents than

the ones that the estimated costs from the relaxation of plans would suggest. However, this issue does not

have a significant impact on makespan and plan length results.

From the set of planners chosen to compare our approach, siw obtains the best performance on time,

plan length and makespan. siw can solve most of the scenarios due to its factorization process. The

importance of factorizing a MAP problem is a conclusion that can be extracted after observing Tables 6.4

and 6.5, as the planners that do not perform factorization (lama, adp, cmap, yahsp) have to solve bigger

and more complex tasks.

Regarding our configuration, mapm-bc-ec’s goal-allocation works better than the one performed by

mapm-bc. On the other hand, the lower the number of agents used to plan, the harder the planning task

needed to solve for the ones in use. Thus, plan length is better with best cost, but on the contrary, the total

time is usually worse than load balance configurations.

6.7 Summary

In this chapter, we showed how to combine information from actuation maps with multi-agent planning

to solve a multi-robot path planning problem more efficiently skipping the computation of estimated cost

during planning. We used actuation maps in a pre-processing step to determine the feasibility of pairs

robot-goal and to extract an estimated cost. That cost is used later to avoid the computation of relaxed

plans during goal-assignment. The environment map was discretized into a grid of waypoints. The goals

were distributed thanks to a goal-allocation algorithm and unfeasible goals identified and discarded from

the planning task. Then, the planning task was factorized for each robot. They generate their individual

paths that result in maximal space coverage in terms of actuation.

On the experiments, we have designed a total of eight scenarios, seven for circular robots and one

for any-shape robots, which show we were able to reduce the overall planning time when preprocessed

information was provided to the multi-agent planner. For the smaller and less complex layouts, almost

all planners obtained solutions with the same cost, and some of them were faster than the ones we

contributed. However, for problems with bigger domains, our contribution can find solutions while other

planners have timeouts or memory problems and are not able to generate a solution. When that happens,

our contributed planner has better solutions, or finds solutions with a similar cost but in much less

time. Finally, and exactly as expected, the load balance strategy was better at generating good solutions

regarding makespan, while best cost is better at optimizing for plan length.

Chapter 7

Multi Robot Planning for Perception of Multiple

Regions of Interest

In this work, we consider multiple heterogeneous robots that have to plan together to perceive a set of

target regions of interest. We consider the robot’s physical characteristics when planning their paths in a

structured environment that has been mapped before. For a given environment, not all target positions

can be perceived by all robots. Instead of having a single target location that needs to be perceived, this

approach uses regions composed of multiple perception targets and calculates waypoints from where

targets can be perceived.

To generate waypoints, we use the contributed technique for perception planning of single targets.

Running simple search instances for every target that belongs to the regions of interest for perception, we

generate many perception locations to optimally perceive specific targets, and those locations are mostly

grouped together in space. Thus the perception locations are clustered to create waypoints from where

we know robots can perceive multiple targets.

From our previous work, we contributed a heuristic-based waypoint allocation method that distributes

waypoints among the heterogeneous robots, minimizing both motion and perception costs for a team of

robots with different capabilities [36].

7.1 Problem Formulation

We consider a 2D grid map of obstacles to represent the environment and mobile robots that are heteroge-

neous regarding geometric properties, such as size and sensing range. As shown in Figure 7.1, we assume

there is a set of heterogeneous robots (Rs) and target regions of interest (Ts) that need to be perceived.

The target regions can represent areas that need to be covered by the robot’s sensors for inspection or

93

CHAPTER 7. MULTI ROBOT PLANNING FOR PERCEPTION OF MULTIPLE REGIONS 94

search. The regions of interest could also represent location uncertainty around a point that needs to be

perceived, and the target regions can have any shape and size.

(a) Problem (b) Target Region in Grid Map

Figure 7.1: a) Environment with obstacles represented in black, circular robots R and target regions of
interest T that need to be perceived; b) a target region with a given shape, size and position in a grid map
which results in the discretization of T.

In traditional multi-robot path planning for perception tasks, an infinite perception range is a common

assumption, or even a finite maximum range. However, determining paths for robots executing perception

tasks should also include the cost of perception. Therefore, we introduce the following problem, where

the goal is to find paths for each robot that minimize the total cost of motion and perception, given by

cost = ∑
R

CR + λ ∑
T

CT , (7.1)

where CR is the path size for robot R, CT is the cost of perception of target region T, and λ is the trade-off

parameter between perception cost and motion cost. We assume all target regions have to be observed.

The cost of perception of a target region T perceived from a robot depends on its path ρ, and we

assume it is the average of perception cost for the grid points inside the region of interest.

CT(ρ) =
1

#T ∑
t∈T

min
p∈ρ

cp(||p− t||) (7.2)

The number of points of the grid map inside the target region is represented by #T. For multiple

robots, CT uses the minimum of the perception cost not only for ρ, but the paths of all robots.

The perception cost function, cp, models sensor accuracy and it is a function of perception distance

dp. As an example, if the sensing error increases quadratically with distance, then the perception cost is a

quadratic function.

cp(dp) = d2
p (7.3)

Given the problem with robots Rs and targets Ts, a planner finds the paths for each robot such as

all the target regions are perceived by at least one robot, and the overall cost function is minimized. We

CHAPTER 7. MULTI ROBOT PLANNING FOR PERCEPTION OF MULTIPLE REGIONS 95

assume the total motion cost to be a weighted sum of all paths’ sizes, thus minimizing the energy spend

to move the robots by using appropriate weights for each robot.

The approach we contribute starts with a first step to determine perception points for each target

grid point. For that we use PA* [35], a technique to determine from a given initial position the optimal

perception position to perceive a target, assuming some perception cost function and the λ parameter. We

then cluster the perception points and use the clusters as new initial positions from where to rerun PA*.

Our algorithm is then able to obtain a set of clusters used as waypoints for path planning.

In the second step, the planner uses the set of waypoints to construct paths for each robot. Given the

combinatorial nature of our problem, we use a constructive heuristic to iteratively add new waypoints

to the robots’ paths, and construct a solution that covers all the targets that need to be perceived, while

minimizing the overall cost. We contribute an algorithm that can be used to find paths to perceive target

regions of interest both for single and multi-robot teams.

In the next sections, we describe our proposed method in more detail.

7.2 Perception Clusters from PA*

We start by considering first a single robot scenario. For each target grid point t inside target regions of

interest, we run PA* to find a path to perceive t from initial robot position r, optimizing for both motion

and perception costs using λ as the trade-off parameter, as shown in Figure 7.2. PA* returns the optimal

path with minimal cost, where the final position is the optimal perception point. PA* search results in a

perception point pr
t for each t.

(a) Perception Points (b) Perception Clusters

Figure 7.2: a) When running PA* from the robot initial position to each point inside target regions, the
search returns an optimal perception point, shown as a red dot; b) in order to reduce the number
of possible combinations, the perception points are clustered in groups as single waypoints for path
planning.

We should note that this perception position is optimal only for the local scenario of a robot starting at

r to perceive t, but it is not necessarily optimal in the multiple target regions scenario. However, we use

CHAPTER 7. MULTI ROBOT PLANNING FOR PERCEPTION OF MULTIPLE REGIONS 96

these points as an initial step for constructing paths for the robots to perceive those regions.

The algorithm then computes the robots’ paths as a combinatorial solution of the determined percep-

tion points. Unlike the traveling salesman problem (TSP), not all perception points need to be visited,

and the robot does not need to return to the initial position. To avoid a combinatorial explosion for path

planning, we cluster perception points based on distance. The point closer to each cluster’s center of

gravity is the one used as a waypoint in the path planning, and the perception cost for each pr
t associated

with the respective cluster.

The proposed approach does not find all needed perception points, as the optimal paths from PA*

depend on the initial position. So, the PA* search to targets t needs to be rerun again from each cluster

centroid, resulting in new perception points pq
t . New clusters might appear from each iteration when

running PA* from new initial positions, as shown in Figure 7.3a. If a new cluster’s centroid is close to

an existing one, they can be merged, with the robot radius being the merging threshold. The cost of

perception of target point t in cluster Pi is

ci
t = min

pq
t ∈Pi ,q∈{Q

⋃
r}

cp(||pq
t − t||), (7.4)

where Q is the set of cluster centroids.

(a) Additional Clusters (b) Ray Casting Extension

Figure 7.3: a) When running PA* from cluster centroids, new perception points might result in new
clusters; b) from that clustering strategy some clusters might only be associated with specific targets,
and additional perception feasibility to other target points can be obtained using ray casting to test for
line-of-sight.

Running PA* to target points t from different initial positions generates clusters, but ci
t is only updated

if PA* searches to t result in perception points that are clustered to Pi. Nevertheless, other target points

might still be observable from cluster Pi, even if PA* finds the cluster position non-optimal to perceive

those points. In Figure 7.3b, for every cluster centroid, ray tracing is used to determine line-of-sight and

perception cost to other target points t whose cost was not previously determined as ci
t. Ray tracing

determines perception feasibility from a cluster centroid to any other target point, and the respective

distance is used to associate a perception cost to the tuple centroid-target point.

CHAPTER 7. MULTI ROBOT PLANNING FOR PERCEPTION OF MULTIPLE REGIONS 97

7.3 Path Construction

Even though there might not be any connections between some pairs of clusters initially, we still consider

them in the heuristic path construction, as shown in Figure 7.4, because PA* is optimal locally for each

target point but is globally sub-optimal in the general multi-target path planning setting.

Figure 7.4: Map with robot and target regions of interest, with red dots as cluster centroids and lines
connecting all of them showing all the path’s combinatorial possibilities.

The clusters centroids can be used as waypoints when determining the path for a robot to perceive all

the target points. Pairwise distances between all cluster centroids and initial robot position can easily be

determined with A*. The waypoints are qj, with 0 ≤ j ≤ m where m is the number of clusters and q0 = r

is the initial position. The path ρ is a sequence {si}, with 0 ≤ i ≤ L (L is path length in terms of number

of clusters covered) and 1 ≤ si ≤ m for i ≥ 1 and s0 = 0. The path cost is given by:

cost(ρ) =
i≤L

∑
i=1

dist(qsi−1 , qsi) + λ ∑
T

(
1

#T ∑
t∈T

min
1≤i≤L

csi
t

)
. (7.5)

Any point can be visited more than once, but that would be redundant. Moreover, not all points need

to be visited. Given the combinatorial characteristics of this problem, solving it optimally for any m > 10

is already very time consuming. Therefore, we use a construction heuristic to iteratively construct a path

from the initial position that covers all the target points with the robot’s sensor. Examples of constructive

heuristics used in the TSP are the nearest neighbor, nearest insertion, cheapest insertion, and farthest

insertion.

Improvement heuristics can be used to improve the solution after finding a feasible path. Examples

are point removal, k-opt moves, and meta-heuristics.

At each iteration, and for each point i that can still be inserted in the robot’s path, the added motion

cost is the cheapest insertion, which finds the best position in the current path to insert the new point.

costm(i) = min
(

min
1≤j≤L

dist(qsj−1 , qi) + dist(qi, qsj)− dist(qsj−1 , qsj), dist(qsL , qi)
)

(7.6)

CHAPTER 7. MULTI ROBOT PLANNING FOR PERCEPTION OF MULTIPLE REGIONS 98

For each point to be inserted, there is also a possible gain associated with the improvement in percep-

tion cost from sensing from a closer distance.

gainp(i) = λ ∑
T

1
#T ∑

t∈T
max

(
min

0≤j≤L

(
c

sj
t

)
− ci

t, 0
)

(7.7)

We use for c0
t the maximum perception cost, λcp(rp), where rp is the maximum perception range. The

bigger c0
t , the highest priority is given to points that perceive previously unseen target points, which is

a behavior similar to the farthest heuristic. Points are valid if the gain is positive, or if it adds visibility

to any previously unseen target. Otherwise, the planner might not add to the path the only positions

that can observe some far away target, even though we want complete coverage in terms of perception.

Algorithm 1 shows the overall base method.

Algorithm 1 Base Path Construction from Cluster Centroids

Require: List of points to insert: {1..m}
1: while There is valid points to choose from do
2: for all points not yet inserted do
3: Find added motion cost, costm(i) as cheapest insertion of point i
4: Find gain in perception cost, gainp(i)
5: gain(i) = gainp(i)− costm(i)
6: if gain(i) is valid then
7: Add i to list of points to consider for insertion in this iteration
8: end if
9: end for

10: Choose point that maximizes gain
11: Insert point in path according with cheapest insertion
12: Update path perception cost to each target point
13: end while
14: Return Path

7.3.1 Avoiding Local Minima

As shown in Figure 7.5, the base algorithm presented before can very easily get stuck in local minima, as

it uses a greedy heuristic. In the figure’s example, in the first iteration cluster 1 has the highest gain and

is added to the robot’s path, but as we show later, that cluster is not even part of the optimal path.

To help avoid local minima, we contribute an n-level depth search for the greedy constructive heuristic.

Instead of looking only one step ahead, it looks at the insertion of n points and chooses the one with

minimal cost. For that purpose, we use Algorithm 2, where we contribute a recursive function that

implements the n depth search and determines the best combination of n points to insert, then chooses

the first point to insert and repeats the process. This function is called once in each iteration, returning

the best point to insert in the path at each time, until there are no points to insert in the robot’s path.

CHAPTER 7. MULTI ROBOT PLANNING FOR PERCEPTION OF MULTIPLE REGIONS 99

Figure 7.5: In the left image, the robot can move to three cluster centroids from its initial position, and
cluster 1 has the highest gain, considering a quadratic perception cost and λ = 0.5; in the middle figure
we show a path that moves through cluster 1 and then to cluster 3 in order to perceive both TA and TB,
with motion cost 7 and perception cost of 1 (2× 0.5× 12); in the last image, we show the optimal path
that moves through cluster 2 and then cluster 3, perceiving both targets with a lower overall cost, motion
cost equal to 3 and perception cost of 2.5 (0.5× 22 + 0.5× 12).

Algorithm 2 Recursive function used in n-depth heuristic for path construction

Require: List of points to insert: {1..m}
1: function search(dists, ct’s, path, n)
2: if n==0 then return < −1, 0 >
3: end if
4: for all points not yet inserted do
5: Find added motion cost, costm(i) as cheapest insertion of point i
6: Find gain in perception cost, gainp(i)
7: gain(i) = gainp(i)− costm(i)
8: if gain(i) is valid then
9: Create new temporary path, pathi, updated with insertion of point i

10: Find the gain from next (n-1)-depth search:
11: < j, nextgain(i) >= search(dists, ct’s, pathi, n− 1)
12: overall_gain(i) = gain(i) + next_gain(i)
13: end if
14: end for
15: if no valid point then
16: return < −1, 0 >
17: end if
18: Choose point that maximizes overall gain
19: return < i, overall_gain(i) >
20: end function

Because we consider combinations of n points and we use the cheapest insertion heuristic, a 2-level

search that inserts first the cluster i and then the cluster centroid j has the same gain as the reverse,

inserting first cluster j and then i. As a tiebreaker rule, we insert first the point with the highest gain in

the top level of the recursive search (variable determined on line 7 of Algorithm 2).

For the path construction algorithm, we also created a brute-force method that can solve smaller

problems with lists with few points to insert in the robots’ paths, resolving the problems optimally. For

CHAPTER 7. MULTI ROBOT PLANNING FOR PERCEPTION OF MULTIPLE REGIONS 100

those simpler scenarios, we can compare the results from the brute-force algorithm with the output of

Algorithm 2 to validate the algorithm correctness. For larger domain problems, the algorithm above was

the only solution implemented, thus in those larger problems we don’t have a baseline to compare to,

trusting the qualification obtained with smaller problems only. The most common depth chosen in our

tests was n = 2 or n = 3.

7.4 Extending Heuristic Path-Constuction to Multiple Robots

The extension of the previous n-depth heuristic from the single robot approach to the multiple robot

setting is now straightforward. We build clusters of perception points from PA* for all the robots. Then

the construction heuristic considers multiple lists of cluster centroids, and at each search level, it can

choose to add any of those points to the respective robot’s path. Insertion on paths at different depth

levels of the recursive search might be for different robots.

The complexity of the n-level heuristic search in the multi-robot scenario is M!/(M − n)! in each

iteration, where M is the total number of cluster centroids over whole the robots. In each iteration, one

cluster is added to a robot’s path.

However, new inefficiencies of the heuristic arise in the multi-robot scenario, as shown in Figure 7.6.

In that example, either cluster centroids 1 or 2 can be added to the respective robot’s paths. From point

2, all target points can be observed, but from point 1 only part of TA can be observed. Using constructive

heuristic with a 1-level search, adding point 1 to R1 path has a higher gain, even though in the next

iteration R2 will still have to move to point 2 to perceive the yet unseen parts of TA, resulting in sub-

optimal path construction. In some cases, this inefficiency can be solved with higher n, as here a 2-level

search would already avoid this problem. Nevertheless, for big problems with multiple targets and robots,

n has to be small to reduce the search complexity, and might not be enough to solve this inefficiency.

Figure 7.6: Inefficiency arising from different robots being able to perceive targets from different locations;
here R2 can move to cluster 2 and perceive all points in TA, but R1 can only move to the first cluster where
it only perceives a part of the target.

CHAPTER 7. MULTI ROBOT PLANNING FOR PERCEPTION OF MULTIPLE REGIONS 101

7.4.1 Unfeasibility Subsets

There are target points that can be perceived by all robots and others that can only be observed by a

subset of robots. Therefore, the idea is, at each iteration of the path construction phase, to consider first

the cluster centroids that are the only ones that can observe some target points. We start by centroids

that are associated with targets that are perceived by one robot only, then by two, and so on, until the

only remaining are the ones that can be observed by any robot. Using this approach solves the problem

in Figure 7.6 without increasing n. The separation of cluster centroids by subsets of unfeasibility is

accomplished by adding a component to the gain that is proportional to the number of robots that cannot

perceive a target, and the maximum gain, Kλcp(rp), where K is the number of regions.

Algorithm 3 shows our complete contribution using unfeasibility sets. Compared to the previous

version, Algorithm 2, this algorithm improves by considering not only one list of waypoints to insert but

one list per robot, extending our solution to multiple robot scenarios. Moreover, calculating in line 8 for

each target point the unfeasibility gain, we compute a bias in the overall gain function that takes into

account the unfeasibility subsets.

Algorithm 3 Recursive n-level constructive heuristic with unfeasibility subsets

Require: List of points to insert: {1..m}
1: function search(dists, ct’s, paths, n)
2: if n==0 then return < −1,−1, 0 >
3: end if
4: for all < r, i > all robot and cluster points not yet inserted do
5: Find costm(r, i), as cheapest insertion of point i in path of robot r
6: Find gain in perception cost, gainp(r, i)
7: for all t do
8: if t is not yet observed by any robot path then
9: unfeas_gain(r, i, t) = #(Robots that cannot perceive t)× (Kλcp(rp))

10: end if
11: end for
12: gain(r, i) = gainp(r, i)− costm(r, i) + maxt(unfeas_gain(r, i, t))
13: if gain(r, i) is valid then
14: Create new temporary paths, pathsi updated with insertion of point i
15: Find the gain from next (n-1)-depth search:
16: < s, j, next_gain(r, i) >= search(dists, ct’s, pathsi, n− 1)
17: overall_gain(r, i) = gain(r, i) + next_gain(r, i)
18: end if
19: end for
20: if no valid point then
21: return < −1,−1, 0 >
22: end if
23: Choose point that maximizes overall gain
24: return < r, i, overall_gain(r, i) >
25: end function

CHAPTER 7. MULTI ROBOT PLANNING FOR PERCEPTION OF MULTIPLE REGIONS 102

Taking into account the subsets allows the algorithm to reduce the inefficiencies of incremental path

construction by assigning first to robots the waypoints that perceive targets with limited coverage by the

robots.

7.4.2 Simulation Example

We show in Figure 7.7 the resulting paths for the planning problem of two heterogeneous robots perceiving

three regions of interest, for a large λ that makes robots move close to the target regions. We consider

two test scenarios with a changing position for one of the target regions, and we show how it impacts the

resulting plan. The smaller robot 1 can get into the region where the changing target is, and observe it

from a close distance. However, the bigger robot 2 can only perceive this region from a distance. Therefore,

when the target moves closer to the opening from where it is perceived, the perception cost for the bigger

robot reduces, and the planner moves this robot such as it perceives two target regions, while the first robot

moves to perceive the target that can only be observed by the first robot. Nevertheless, when the changing

target moves away from the opening, the quadratic perception cost for robot 2 increases significantly, and

as a result, there is a point from where it is worth for robot 1 to move forth and back to observe all the

target regions from a closer distance.

Figure 7.7: Planning scenario with two heterogeneous robots and 3 regions of interest; in the first column
we show the space where robots can move, and in the middle column the associated visible space of each
robot; in the last column, the resulting paths for the robots when one of the regions of interest changes its
position.

CHAPTER 7. MULTI ROBOT PLANNING FOR PERCEPTION OF MULTIPLE REGIONS 103

For scenarios with cluster lists up to ten centroids per robot, we also run a brute-force algorithm to test

all possible combinations and compare them with our heuristic. In the simulated environment we used,

in Figure 7.7, with varying targets’ sizes and positions, the heuristic always returned the same paths as

the brute-force algorithm, but with lower computation time, in the order of seconds, proving its efficiency.

For bigger cluster lists, we could only use the heuristic approach for path planning. For the problems

in Figure 7.7, in a map with 200 by 200 pixels, and a total of five clusters for the two robots, the cluster

determination took around 30 seconds, and the path construction 5 milliseconds.

7.5 Visibility Maps for Efficient Perception Cluster Determination

There is a high computation burden just in the determination of the perception points clusters, which

results from many PA* searches from the clusters centroids and initial robot position to all the target

points in the target regions.

Robot-Dependent Visibility Maps (RDVMs) provide structure information about the environment that

can help alleviate the heavy computation effort by bypassing the PA* searches. For each unreachable

target, RDVMs provide a list of critical points from where targets can be observed.

We use critical points to avoid repeated PA* searches, determining perception positions for each target

from the critical point location, maintaining the clustering method and all the following methodology,

including the construction heuristic to do path planning with cluster centroids.

The path construction also remains the same algorithm, with only the determination of perception

points for each target being done using the critical points instead of PA*.

7.5.1 Perception Cluster Determination from Critical Points

In this section, we show that with an initial fixed cost of building the RDVM, it is possible to use the

critical points to improve the cluster determination with them instead of using PA*.

Points in the unreachable regions have some information about a possible position from where they

can be sensed because they have associated a critical point. The distance between a target in region Ul(p0)

and a critical point c∗li(p0) can be used as an estimate of the perception distance.

Figure 7.8 illustrates how critical points have the potential of being used as the equivalent to perception

cluster centroids. Moreover, we can see that while before the PA* resulted in 3 clusters when searching

from the initial position, and the forth appeared only when searching from the cluster centroids, with the

critical points the 4 points are known before-hand, without using any path search.

CHAPTER 7. MULTI ROBOT PLANNING FOR PERCEPTION OF MULTIPLE REGIONS 104

Figure 7.8: Planning scenario with one robot and two regions of interest, and the multiple critical points
associated with the target regions of interest, dependent on the environment structure and robot footprint
shape.

The figure shows target regions A and B, each with two associated critical points. We asume perception

points for targets can be found by running a simple A* search from the initial position to the multiple

critical points of each target.

The increased efficiency of this approach comes from A* search to critical points being reused for all

the targets that share the same critical points. The number of A* searches for each iteration of perception

point determination (different initial position) is only a function of the number of critical points, instead

of the number of target points, as we had before with the PA* approach.

For each perception cost function cp, there is an optimal sensing distance in a straight line with no

obstacles. For the quadratic cost function, the optimal sensing distance of PA* is 1/(2λ), where λ is

the trade-off parameter between motion and perception cost. If optimal sensing distance is less than the

distance between critical point and target, the path to the critical point is the optimal solution of PA*

(ignoring other critical points), and the perception point determination becomes immediate.

However, if the optimal sensing distance is greater than the distance from the target point to the

critical point, the critical point position is too close to the target, and the optimal perception point should

be further away. So, the perception point position can be estimated by taking testing positions along

the path to the critical point that have line-of-sight to the target and have a distance less or equal than

the optimal sensing distance, shown in Figure 7.9a. The search does not need to start iterating from the

beginning of the path but from a given distance related to the optimal sensing distance. This fact holds

true because other positions further away along the path that could optimally perceive the target can be

other critical points, and all critical points are eventually used for perception point determination.

The full algorithm to determine perception locations from critical points is in Algorithm 4.

For the problem we have in Figure 7.9b, with around 3000 target points in unreachable space, our solu-

CHAPTER 7. MULTI ROBOT PLANNING FOR PERCEPTION OF MULTIPLE REGIONS 105

(a) Perception Point from Critical Point (b) Large Target Unreachable Region Testing

Figure 7.9: a) Determining perception point from path planning to critical points, testing positions along
that path with line-of-sight to a specific target point; b) scenario with one large region of interest in
unreachable space to test the efficiency of our approach with critical points.

Algorithm 4 Perception Point from Path to Critical Point

Require: Critical Point c, current position q, optimal distance d∗s , target t
1: if path(q, c) exists then
2: ρ←path(q, c)
3: else
4: Determine path ρ from q to c
5: Save path ρ: path(q, c)← ρ
6: end if
7: pq

t ← c . Initialization
8: cm ← ρ.cost
9: cs ← λcp(||c− t||)

10: offset← ||c− t||
11: margin← max(d∗s − offset, 0)
12: if margin > 0 then
13: b← max(ρ.size -1- ceil(margin), 0)
14: valid← false
15: for i from b to ρ.size-1 do
16: n← ρ[i]
17: if not valid then
18: d′ = ||n− t||2
19: if d′ < r2

p and raytracing valid then
20: valid← true
21: cs ← λcp(

√
d′)

22: pq
t ← n

23: end if
24: else
25: cm− = dist(n− n′)
26: end if
27: n′ ← n
28: end for
29: end if
30: Return < cm, cs, pq

t >

CHAPTER 7. MULTI ROBOT PLANNING FOR PERCEPTION OF MULTIPLE REGIONS 106

tion using critical points took 560 milliseconds to compute the perception points and respective clustering,

while our previously proposed approach with PA* took 22 seconds.

7.5.2 Perception Point Determination for Points in Navigable Space

There are no critical points for targets in the navigable space. Thus the previous technique will have no

impact in many situations, such as the ones with target regions of interest inside the navigable space or

actuation space (Figure 7.10). In those cases, the bottleneck of perception cluster determination is going

to continue being a problem.

Therefore, in the case of critical point absence, we propose to create groups of targets in the navigable

space, using the optimal sensing distance as the clustering threshold, and use the group center as an

equivalent to the critical point. Algorithm 5 shows the process of clustering in the navigable space. As

before, A* path planning to the cluster centroid determines the perception point for targets. The algorithm

still uses ray casting to test for line-of-sight, and search along the A* path starts before the cluster centroid,

by twice the optimal sensing distance.

Algorithm 5 Clustering of Target Point in Navigable Space

Require: Set of target navigable points {t}
1: {C} ←Cluster({t})
2: G ← ∅
3: for each C do
4: pC ←centerOf(C)
5: for each Gi ∈ G do
6: pi ←centroidFromCluster(Gi)
7: end for
8: p← argminpi

||pi − pC||
9: if ||p− pC|| < d∗s & valid ray casting then

10: G∗ ←clusterFromCentroid(p)
11: G∗ ← G∗ ∪ C
12: else
13: Gn ← C
14: G ← G ∪ {Gn}
15: end if
16: end for
17: for each Gi ∈ G do
18: pi ←centroidFromCluster(Gi)
19: end for
20: Return {pi}

The algorithm used is the same as Algorithm 4, but the margin from line 11 becomes two times the

optimal sensing distance.

For points in the actuation region, given by the robot-dependent map, we determine all the reachable

points from where it can be actuated, using the robot radius for the search window, we then proceed to

CHAPTER 7. MULTI ROBOT PLANNING FOR PERCEPTION OF MULTIPLE REGIONS 107

the clustering step, and for each cluster, we choose the closest reachable point.

(a) Perception Points from targets in Reachable Space
(b) Test with multiple Target Regions in Reachable
Space

Figure 7.10: a) The path plan to a target group center in reachable space, and how the positions along
that path are tested to access line-of-sight to a specific target point when determining the perception point
position from the group center; b) scenario with multiple large regions of interest in the reachable space
to test the efficiency of our approach with the extended concept of critical points to reachable space.

7.5.3 Comparison with PA*-Based Cluster Determination

We tested our method in comparison to PA* searches using the scenario shown in Figure 7.11. As stated

previously, the PA* solution for this example took approximately 34s (33s for cluster determination and

less than one for the heuristic path construction), while our new solution using critical points took only

100ms in total.

Figure 7.11 shows one other benefit of using critical points. In some cases, even running PA* from pre-

viously found clusters does not find all possible perception points, leading to sub-optimal path solutions

because the path construction uses an incomplete set of perception positions. In this case, using visibility

maps, we were able to obtain a solution with cost 329 in 106 milliseconds, while with PA* the non-optimal

solution found had cost 348 and took 4.7 seconds.

Using visibility maps, every target point has associated with them all the critical points from where it

can be observed, resulting in a complete set of perceptions points. Thus the solutions with critical points

are less probable to be stuck in local optima, having better cost solutions with less computational cost.

7.5.4 Experiment With Variant Heuristics from Visibility Maps

We run an experiment with multi-robot path planning for perception tasks, shown in Figure 7.12. This

problem has two robots, and a set of regions of interest defined by the user, that have to be observed by

any of the robots, while minimizing both the motion and perception cost with the trade-off parameter

CHAPTER 7. MULTI ROBOT PLANNING FOR PERCEPTION OF MULTIPLE REGIONS 108

Figure 7.11: An example of a scenario where PA* searches would return an incomplete and thus subopti-
mal solution, while using critical points yields a complete solution that considers all possible perception
positions for the target points with less computational effort; blue path is costly solution with PA* tech-
nique, and red is the more cost-efficient solution using visibility maps.

λ. This problem can be solved by running PA* from different locations and clustering the perception

positions in waypoints that can be used with a constructive heuristic to find paths for the robots. This

method is heavily dependent on PA*, and we evaluated the impact of our heuristic improvements. As

shown in Figure 7.12, we chose thirty regions of interest with equal size, out of each only ten are inside

unreachable regions and can benefit from our contributions, while the other twenty will just run with

the base PA*. Moreover, we use λ = 0.04, which results in a small d∗s = 12.5, but the ten regions that

benefit from our heuristics are evenly distributed in space. Thus some of them have large distances to the

respective critical points, while others have small perception distances from the critical points.

The first part of the algorithm runs PA* multiple times and clusters the perception points, taking 2439

seconds when using the base heuristic, and 1088 seconds when using our contributed PA*2SE variant,

reducing more than half the total computation time of this phase. Moreover, the time to compute the

visibility maps was only 2 seconds, which is completely negligible compared to the total time to complete

all the PA* searches and clustering. The second phase, with the constructive heuristic, took 321 seconds

to compute the robot paths, shown in the figure, as a combination of waypoints determined from the first

phase.

In our approach, we plan paths for each robot without taking into account conflicts between the robots.

We assume that a post-processing iteration could easily solve most conflicts, but for that assumption to

hold, there would have to be few conflicts in the solutions we generate. So our contribution has the

CHAPTER 7. MULTI ROBOT PLANNING FOR PERCEPTION OF MULTIPLE REGIONS 109

Figure 7.12: Path planning for two robots (blue and red) which have to perceive a set of regions of interest
(green), minimizing both motion and perception cost, in a 200x200 grid map, with both robots having size
13, rp = 130 and λ = 0.04; white represents actuation space, gray the visible space, and black the obstacles
or non-visible space.

most value in scenarios with sparse interactions, not cluttered with obstacles, allowing robots space to

maneuver around each other in most situations.

7.6 Summary

In this chapter we contribute a constructive heuristic for path planning, to use with heterogeneous multi-

robot settings in the problem of perception of multiple regions of interest. The solution can be used in

inspection, surveillance or search in robotics. We introduce mechanisms to avoid local minima of the pro-

posed heuristic, such as considering sets of unfeasibility, and n-depth search. We were able to successfully

generate paths for multiple robots in simulated environments, in a novel problem that considers both mo-

tion and perception cost. Furthermore, we used visibility maps and their structured information of critical

points to reduce the time complexity of our algorithm, introducing an alternate method of determining

the perception points. This alternative method enables us to reduce the time spent on perception cluster

determination, the bottleneck of our algorithm using PA*.

In this way, we have a formal representation of heterogeneity and use that to coordinate multi-robot

teams efficiently, with robots executing tasks according to their characteristics. We were able to have mul-

tiple robots coordinate to perceive target regions of interest with minimal cost, considering both motion

and perception cost, and quickly finding paths for all robots that minimize the total cost.

Chapter 8

Related Work

The problem of planning for single or multiple robots has been studied for a long time. When considering

the specificity of each robot and determining the feasibility of tasks for each robot, one approach is to

consider the physical constraints while planning. However, that approach can be costly if there are many

targets in similar positions, where most of the search effort is repeated each time.

Solutions focused on motion planning have been proposed, such as the probabilistic roadmap for path

planning in high dimensional spaces [19], where a pre-processing technique is used to learn a graph

of nodes of collision-free positions connected with edges of feasible paths. During online planning, the

algorithm uses that graph to quickly search for solutions. Another example is the lattice graph [41],

which is a discrete robot state representation that constrains the planning to feasible positions (avoiding

obstacles) and feasible motion dynamics (differential constraints). Another solution that uses some kind

of pre-processing was proposed based on experience graphs [40], where past experience is used to inform

the planner, directing the heuristic search in motion planning not only towards the goal but also towards

previous paths.

In this work, we contribute an efficient algorithm to determine the impact of a robot’s physical charac-

teristics in the robot’s reachability in the world, both in terms of actuation and perception, and then use

it to improve planning. Various robotics techniques use different map representations, e.g., occupancy

grids, geometric landmarks, or topology. An example that combines multiple types is the manifold for

map representation [17].

In this section, we present past work related to our approach of finding robot-dependent maps. We

start by explaining morphological operations, a key component of our approach. Then we present related

work used to determine visibility for perception tasks and methods used in similar perception planning

problems. We then show some other works and background on heuristics for informed search that can be

110

CHAPTER 8. RELATED WORK 111

used for changing target positions and in dynamic environments. Finally, we show the relevant literature

on multi-robot planning.

8.1 Visibility and Perception Planning

In other work it was proposed that robots maintain reachability and visibility information, both of a robot

and a human partner in a shared workspace [31], used for human-robot interaction such as the robot can

reason about what humans might be able to reach or see.

Visibility graphs, as graphs of intervisible locations, have nodes that represent point locations, and

edges that represent visible connection between them [22]. Motion planning can use visibility graphs,

where first the visibility graph is constructed, and then used in planning to find the shortest path with

straight lines (except at the vertices of the obstacles, where it may turn). The art gallery problem is also

related to the concept of visibility graphs and visibility decompositions. This visibility transformation

can also be used for patrolling. However, most of these problems assume a vectorial map of obstacles, so

visibility can easily be calculated using ray casting at the extremes of lines with analytical calculations.

However, in our work we assume robots build with SLAM and update maps in 2D discretized grids,

making it essential to have methods that reason about visibility in grid maps.

Another class of problems for visibility is the inspection problem. A neural network approach was used

to solve the NP-hard Watchman Routing Problem, determining a path that can sense multiple targets. A

fast method was proposed to answer visibility queries [13], and the approach has been extended to 3D [18].

However, in this works, queries ask for visibility from one specific point, while in our work we aim at

finding the overall visibility of a robot from any position reachable from its initial location.

Many robotic applications consider perception separately from planning, with both being computed

interleaved [45]. It has been used for tasks as varied as SLAM [6], object recognition [11], or even active

vision [48], where for all these cases perception is just used as a means to achieve some goal.

However, recently perception got a more active role in planning, where robots plan on how to perceive.

An example is object detection, where the next moves of the robot should be planned to maximize the

likelihood of accurate object detection and classification [43, 50]. In [10], probabilistic active perception

is planned for scene modeling in realistic environments, with arbitrary object positions. They introduce

a POMDP technique which reasons about model and state transition uncertainties to improve detection

results and deal with occlusion problems.

The problem of planning for both the perception and the traveling cost has also been studied [53].

In that work, the planner finds a sequence of sensing actions with the minimum overall cost to inspect

CHAPTER 8. RELATED WORK 112

objects in a known workspace.

8.2 Motion Planning

One example of motion planning in robotics is coverage path planning, which finds a path that passes a

detector over all points in an environment.

One possible way to achieve full coverage is by using the morse decompositions [1]. In this work, the

robot can simultaneously explore and cover the space while incrementally constructing the graph with

the cell decomposition, by sensing the critical points of all cells. Another work extends this approach

to consider coverage with a finite detector range that goes beyond the robot [2]. This algorithm divides

space into two areas, the open spaces where the robot can use the full range of its detector, and the narrow

spaces where obstacles are in the detector range. For the first, the morse cell decomposition technique is

used, and then a simple motion can be used to guarantee total coverage of open spaces. For the latter,

the generalized Voronoi diagram is used to find a skeleton that, if followed, guarantees coverage with

minimal motion. The vast and narrow spaces could also be found using morphological operations on the

configuration space.

In the rest of this section, we focus on heuristic search methods for motion planning in graphs and

multi-robot planning.

8.2.1 Heuristic Search for Motion Planning

A* is a graph search algorithm that finds the lowest cost path from a given initial node to a goal node. In

traditional motion planning, the total cost at each node is estimated by summing the past cost from the

starting position S to the current node n, with a heuristic of the cost from n to the goal position G.

f (n) = g(S, n) + h(n, G) (8.1)

If the heuristic used is admissible, i.e., always less or equal than the true value, then the path returned

is guaranteed to be optimal. Therefore, the natural choice for the heuristic is just the Euclidean distance

between the current node and the goal, without considering any obstacles.

h(n, T) = ||n− G|| (8.2)

There are many extensions to heuristic search to deal with different problems. In order to consider

cost changes in the environment graph, Lifelong Planning A* [21] provides a technique using a heuristic

search that updates the optimal path based on those changes, while minimizing the amount of extra

CHAPTER 8. RELATED WORK 113

nodes expansion (compared to recomputing A* from scratch). That technique was then extended to deal

with changing position from the robot (the updates in the graph can be thought of perception updates

from a moving robot) [20]. For that purpose, the core Lifelong Planning A* was used backward, starting

the search from the goal position (which is constant) to the robot position which is being updated. This

technique, D* lite, uses the concept of local inconsistency to guarantee optimal solutions.

Anytime planning is a different approach where intermediate sub-optimal solutions are computed

and improved until the planning time is used completely, which can end with the path being improved

until being optimal. In ARA* [23], for each intermediate step, there are guarantees on the sub-optimality

bound. In AD* [24], the previous concepts of anytime planning are merged with the D* lite algorithm to

obtain a technique for both incremental and anytime planning.

8.2.2 Motion Planning with Multiple Objectives

One of the novelties of our work is the introduction of a method that optimizes paths considering two

different objectives, namely minimizing both motion and perception costs.

There have also been other works with also consider and optimize for two or more mostly opposing

objectives, such as exploration of unknown territory. For the exploration problem, one can have one

or multiple robots, and the overall goal is usually to explore the entire environment while minimizing

the motion cost. The conflicting goals are, 1) minimizing motion, and 2) maximizing the exploration of

unknown regions. These two objectives are quite the opposite, as exploring unknown regions usually

requires a lot of motion.

One method in particular, frontier-based exploration, introduces the concept of frontiers to prioritize

exploration [47]. Obstacles and unknown territory bound the known regions, and from those boundaries,

it is possible to create multiple frontiers. Exploration is then simply a problem of estimating the informa-

tion gain and motion cost for each frontier and then choosing to explore the one with the best trade-off

between motion cost and information gain.

There are similarities between this robot exploration problem and the algorithm we introduced for

perception planning, where we find paths that minimize both motion cost the cost of perceiving a target.

An alternative to our approach could be to consider multiple final destinations and then choose the

one with the best trade-off between motion and perception cost. The sensor cost function we introduce

could also be used here to estimate the perception cost from the set of possible final destination and the

perception target. However, our perception planning contribution has several advantages. First, we do not

need to find a priori a set of destination positions. Moreover, when using a set of destination positions,

CHAPTER 8. RELATED WORK 114

and estimating the perception cost from the last position, it is possible to have solutions where there are

points in the middle of the path with a lower perception cost than the final position. Finally, our algorithm

can determine a final position in almost a continuous space (except from running in a 2D grid, but we

assume the grid has a good resolution), while the frontier-based exploration is constrained to a set of

fixed final path positions. If we increase the number of possible destinations, it quickly becomes very

computationally expensive and makes it reasonable to choose an informed search algorithm that scales

better with the size of the environment due to search being directed towards the perception target.

8.2.3 Multi-Robot Planning

There have been many works in the field of multi-robot path planning. One approach considers regions

of known interaction, where explicit coordination is needed [28]. Therefore, they propose a decentralized

approach with sparse interactions where for most of the time robots act independently, while learning

which regions require interactions, where planning is treated differently. Other approaches plan indepen-

dently for each robot, and if the algorithm finds interactions, robots are coupled in sets where planning

occurs in the joint space [52]. Therefore, the size of the problem is reduced as much as possible, and the

dimensionality is only increased whenever needed if interactions occur.

Regarding the use of different capabilities, not only terrestrial mobile robots of different sizes and

characteristics but also aerial robots have been used in heterogeneous robot systems for search missions [9,

27]. In these exampless they use the different sensing capabilities of each one to attribute and coordinate

tasks. However, neither of these works focuses on determining the feasibility of goals for each robot, and

the coordination technique does not consider an objective representation of the team heterogeneity.

The works in multi-robot coordination commonly assume homogeneous robots, and when there is

heterogeneity, the strategies are usually hard-coded for the specific kind of diversity found in the team.

In our work, the goal is to have an objective representation of task feasibility for each robot, depending

on the robot’s physical characteristics, and then plan accordingly, without any predefined strategy based

on the robot’s differences.

It is also possible to use communication between independent robots, such as dynamic changes in

the environment, so robots better accomplish their tasks[7]. It is possible to have an efficient replanning

for the tasks that become unfeasible when using the relationships between dynamic conditions and the

scheduling decisions.

Another problem is multi-robot coordination for coverage, where a wide range of planning method-

ologies has been proposed [3, 4]. However, these solutions often assume visibility information is trivial,

CHAPTER 8. RELATED WORK 115

with simplistic models for robot shape, motion, and perception.

Finally, in the multiple robot surveillance problems, multiple points have to be allocated to each robot,

with time limits to finish the surveillance task. An algorithm was proposed using graph searches to solve

the problem optimally [49]. Three levels of graphs are used, where the top one does the goal assignment,

the middle plans opportunistically to include new goals in each robot’s path, and the lower level considers

obstacles. Thus this approach combines the orienteering problem and the dynamic constraints of the

robots at the same time.

Perception got a more active role in planning recently. An example is object detection, where the

next moves of the robot should be planned to maximize the likelihood of correct object detection and

classification [43].

Planning sequences of perception points to cover regularly all interest points in the environment is

also relevant for multi-robot patrolling [42], where a probabilistic strategy was used for a team of agents

to learn and adapt their moves to the state of the system at the time, using Bayesian decision rules and

distributed intelligence. When patrolling a given site, each agent evaluates the context and adopts a

reward-based learning technique that influences future moves.

Other relevant work focuses on the sensing horizon, and how to opportunistically plan navigation

and view planning strategy to anticipate obstacles with look-ahead sensing [30]. Candidate positions are

considered based on the possibility of anticipating obstacles and used as waypoints. In the same topic,

it has also been shown that perception planning and path planning can be solved together [15], selecting

the most relevant perception tasks depending on the current goal of the robot, thus successfully solving

navigation and exploration tasks together.

On the other hand, in our proposed solution for multi-robot perception coverage, we cannot use the

perception planning technique directly because we have to deal with multiple robots who should split the

overall perception task. The proposed solution is computationally heavy, as we run PA* for every pair

of robot and perception target in order to determine a set of waypoints. After having the waypoints, the

algorithm uses a heuristic allocation method to create paths for the robots. However, the main advantage

and novelty of our contribution is that we provide estimates on the perception cost, which are different for

every robot and depend on their sensor model. The information on perception cost enables us to create a

solution that can effectively trade-off motion and perception costs, and consider robot heterogeneity and

their unique characteristics when planning their paths. Regarding the computation effort, we also provid-

ed an alternative method based on Robot-Dependent Maps that can compute much faster the waypoints

used to plan paths for multiple robots in a perception planning problem.

Chapter 9

Conclusions and Future Work

In this chapter, we summarize the thesis contributions and discuss possible directions for future work.

9.1 Contributions

The thesis main contributions are the following:

Robot-Dependent Maps represent the coverage and perception reachability of a robot moving in a

structured environment, which depends on the robot’s physical characteristics. Our contributed tech-

nique receives as input a binary image representing the environment floor plan, the robot’s footprint and

initial position, and the sensor characteristics such as field of view and maximum range. Given those

inputs, our algorithm transforms the environment original map, producing new maps that represent the

robot feasibility in terms of coverage and perception tasks, i.e., the accessible regions of the map for cov-

erage or perception. The computation of such maps has a low cost that amortizes over multiple search

instances when planning task execution. Our technique, based on the morphological closing operation,

first determines the actuation map of a robot, which represents its coverage reachability, depending on

the robot’s initial position. In order to find the map that represents the perception capabilities of the

robot, we introduce the concept of critical points, as a smart sampling of the navigable space that allows

our algorithm to incrementally add regions of visibility to the actuation map, maintaining overall effi-

ciency while increasing the approximation quality of the visibility map. We also extended the described

approach with morphological operations with a multi-layer representation to deal with any-shape robots

and different sensor models. Our algorithm results in a speedup of the computation of those reachabili-

ties when comparing to a brute-force approach, at the cost of returning an approximation instead of the

complete solution. Our experiments show that an almost complete solution can be obtained with very

116

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 117

low computation effort.

Informed Search for Perception Planning is a heuristic search for path planning of perception tasks,

i.e., perception planning. The goal is to find the optimal motion path and perception location for a robot

that has to sense a specific target position in a 2D map. The optimal path solution minimizes not only

the motion cost but the perception cost as well. The perception cost models the decreasing quality of

measurements with increasing distance, accounting for different inaccuracies and uncertainty of sensors.

The algorithm considers the overall cost of a path solution to be the sum of motion cost with perception

costs, using a trade-off parameter to change the weight of each of these components. Changes in the

trade-off parameter may generate different path solutions. The search algorithm minimizes the number of

ray casting operations. We prove that, under certain assumptions and accurate sensor and motion models,

our technique also guarantees optimal path solutions. This thesis also provides examples of perception

cost functions, presenting the respective search heuristics. We theoretically prove those heuristics obey

the triangle inequality, thus being both consistent and admissible heuristics. As the heuristics do not

overestimate the real cost of perceiving a 2D target position, we demonstrate the optimality of the solutions

generated by our technique.

Robot-Dependent Heuristics in Perception Planning is a technique that uses information extracted

from robot-dependent maps to improve the efficiency of node expansion in heuristic search for percep-

tion planning. When computing the robot-dependent maps, the algorithm can retrieve additional data

for targets in unreachable regions. The extracted information comes from critical points, which are the

closest reachable positions from where some targets can be perceived, thus bringing knowledge on the

minimum motion and perception distance. We build dominant heuristics using the information from

robot-dependent maps. Again, the consistency and admissibility of the new heuristics are proven theoret-

ically, as well as their dominance over the original heuristic. Through experiments, we demonstrate that

using those dominant heuristics in our search algorithm results in fewer node expansion and fewer ray

casting operations. As a result, there is a speedup in the search process of finding a path for a robot that

needs to perceive a target location.

Pre-Processing Phase in Multi-Robot Coverage Task Planning represents the combination of robot-

dependent maps with automated planning, which we used here for the problem of coverage task plan-

ning with a team of multiple heterogeneous robots. For planning approaches that deal with multi-robot

problems by distributing coverage tasks among the multiple robots, task allocation is mandatory and re-

quires knowledge on the cost of each robot executing each coverage task. For an effective task allocation,

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 118

heuristic information is needed to estimate the execution cost of each robot-task pair. We contribute a

pre-processing phase for the coverage task planning problem that uses robot-dependent maps to scale for

larger problems with many robots and a large number of coverage tasks. With the pre-processing step,

the feasibility of each robot-task pair can be easily obtained from the robot-dependent maps. Thus the

information from the robot-dependent maps saves on computation effort by allowing the planner to only

compute the heuristic cost for feasible tasks. Moreover, an alternative and faster cost estimation procedure

is also possible, based on robot-dependent maps. We show experimentally that using our contributed pre-

processing phase it is possible to improve the execution time of standard task allocation-based multi-robot

planner. That improvement is a result of reducing the time spent on task assignment while maintaining

the capability to find suitable solutions for the coverage problem. As expected, increasing the number

of robots has an impact on performance, because the number of planning sub-problems that we need to

solve increases linearly with the number of robots. However, the same is true even if we did not use our

pre-processing step. As we address the main bottleneck in terms of planning time, the heuristic calcula-

tion for goal assignment, our approach is faster and is more scalable in terms of number of robots, as the

planning time increases at a lower rate compared to the situation without any pre-processing step.

Multi-Region and Multi-Robot Perception Planning is an algorithm that finds paths for heterogeneous

robots that need to execute multiple perception tasks. Multiple target regions need to be perceived by any

robot, where each region must be fully “covered” by any of the robots’ sensors. The optimization goal is

not only to minimize the traveled distance but also to minimize both the perception cost. The perception

cost accounts for the quality of measurements and may change for different sensors. For this contribu-

tion, multiple perception tasks are created from the target regions, and individual perception planning

instances are run for every robot-task pair, generating multiple final perception positions. The algorithm

clusters those positions from where the robots perceive the target regions in a series of waypoints, which

represent the locations robots have to move to in order to optimally perceive the target regions. The

results from the individual perception planning instances are also used to calculate heuristic values for

each waypoint. The waypoint heuristic value estimates both the motion and perception cost associated

with a robot moving to a particular waypoint to perceive some target regions. Finally, the algorithm in-

crementally assigns those waypoints to the robots’ paths, allocating them as intermediate goal positions,

thus generating a solution that covers all target regions while minimizing the overall motion cost and

maximizing the perception quality.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 119

Meeting Point Calculation for Delivery Services demonstrated how to use our perception planning

technique for rendezvous calculation, in a scenario of deliveries from vehicles to users in a city. When

a vehicle has to make a delivery for a user in a city, it usually drives directly to the passenger location,

without ever suggesting the user to walk to some other location. With this contribution, we used the

perception planning technique to calculate different rendezvous locations, from which the user can choose

according to their preferences. We still consider vehicle heterogeneity with different reachability in the

world, and again the algorithm optimizes not only for vehicle motion cost but also for the cost of the user

walking to the calculated delivery location.

9.2 Future Work

In this thesis, we addressed the challenges of efficiently planning for coverage and perception tasks with

multiple heterogeneous robots. We considered robot differences in terms of their geometrical properties,

such as footprint, sensor range and field of view. In terms of planning, we explored algorithms that could

deal both with the minimization of traveled distance and maximization of perception quality simultane-

ously, for single and multi-robot scenarios. There are multiple possible directions for future work, but

we believe four are the most interesting. The first involves improving the approximation of the robot-

dependent visibility map. The second consists in enabling incremental updates to the robot-dependent

map. The third involves using robot-dependent maps for opportunistic planning in dynamic environ-

ments. Finally, the forth consists of experimenting with some of our contributions on real robots and

vehicles that can perform perception tasks.

Better Robot-Dependent Visibility Map Approximation. Introducing the concept of critical points

proved valuable to calculate good approximations of the true visibility map quickly. However, if one

wants to use robot-dependents maps as a pre-processing phase to speed up multi-robot task planning,

these maps need to provide complete information on the feasibility of robot-task pairs. For the multi-

robot coverage task planning, it was straightforward to integrate the robot-dependent actuation map, as

it was an exact calculation and provided complete information on task feasibility. On the other hand, the

robot-dependent visibility map we contributed is only an approximation. It proved to be a very good

approximation, useful when improving the heuristics of perception planning. Nonetheless, if one wants

to use the visibility map as a pre-processing of a multi-robot task planning problem, the robot-dependent

visibility map should be a complete solution. The main challenge is then to extend the concept of critical

point, so it would be possible to incrementally add visibility from different positions until an exact or

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 120

much better approximation is achieved. Another challenge would be to maintain the efficiency of such

an algorithm, minimizing the number of new added critical points needed to still be able to generate

visibility maps quickly.

Incremental Updates of Robot-Dependent Maps. Even though we contributed an algorithm to compute

robot-dependent maps quickly, our technique computes the full map transformations whenever a change

in the map is detected. For small environments and simple planning problems, such as single robot

scenarios, the computation is fast enough to be computed during online execution. However, for bigger

and more realistic grid maps, and when a centralized planner needs to compute robot-dependent maps

for different robot configurations, recomputing the full transformation could be quite inefficient. This

limitation could make it challenging to compute the transformations online when the environment is

dynamic. A logical next step to address this question would be to compute updates to the robot-dependent

maps incrementally as changes in the environment are detected during robot execution. The first challenge

would be to identify how local changes in a map propagate in terms of our map transformation, from

changes in the partial morphological closing operation to changes in the frontiers of reachability. A small

change in the environment might render some regions unreachable, and it will be necessary to construct

an efficient algorithm to detect and propagate changes in the map, through the various steps in the

calculation of robot-dependent maps. A second challenge would be to detect efficiently in which cases

the algorithm needs to rerun ray casting, which is essential for online execution since ray casting is a

computationally expensive operation.

Opportunistic Replanning in Dynamic Environments. When thinking of dynamic environments for a

robot during online execution, it would be interesting for the robot to learn the probabilistic behavior of

some obstacles. During execution, if changes are detected in the environment around the robot, planning

is usually rerun to account for the last detections. However, for difficult planning problems, such as

multi-robot path planning, it can be expensive to replan for those changes, and therefore it would be

interesting to be able to use robot-dependent maps to quickly determine the effect of those changes in

terms of task feasibility, and avoid expensive replanning when possible. The same reasoning applies for

unexpected openings robots observe during execution, in places accounted as closed while planning due

to learning of obstacles from past observations. In order to have this opportunistic replanning based on

robot-dependent maps, the main challenge is to be able to determine the impact of each obstacle on every

task feasibility using robot-dependent maps, and reason about it without knowing the state of possible

obstacles still unobserved along the robots’ paths.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 121

Experiments with Real Robots Demonstrating Perception Planning. We considered in one chapter a

more realistic use case of perception planning, but we look forward to experimenting with our algorithm

on real mobile robots or autonomous cars when they are available, performing perception tasks. We also

look forward to using robot-dependent maps in different types of robotic planning problems so that our

pre-processing technique can speed-up the planning process in those scenarios.

Bibliography

[1] E. U. Acar and H. Choset, “Sensor-based coverage of unknown environments: Incremental construc-

tion of morse decompositions,” The International Journal of Robotics Research, vol. 21, no. 4, pp. 345–366,

2002. 112

[2] E. U. Acar, H. Choset, and J. Y. Lee, “Sensor-based coverage with extended range detectors,” IEEE

Transactions on Robotics, vol. 22, no. 1, pp. 189–198, 2006. 112

[3] N. Agmon, N. Hazon, G. Kaminka et al., “Constructing spanning trees for efficient multi-robot cov-

erage,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). IEEE,

2006, pp. 1698–1703. 114

[4] N. Agmon, N. Hazon, and G. A. Kaminka, “The giving tree: constructing trees for efficient offline

and online multi-robot coverage,” Annals of Mathematics and Artificial Intelligence, vol. 52, no. 2-4, pp.

143–168, 2008. 114

[5] D. Borrajo and S. Fernández, “MAPR and CMAP,” in Proceedings of the Competition of

Distributed and Multi-Agent Planners (CoDMAP-15), Jerusalem (Israel), 2015. [Online]. Available:

http://agents.fel.cvut.cz/codmap/results/CoDMAP15-proceedings.pdf 89

[6] L. Carlone, M. Ng, J. Du, B. Bona, and M. Indri, “Rao-blackwellized particle filters multi robot

slam with unknown initial correspondences and limited communication,” in Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA). IEEE, 2010, pp. 243–249. 111

[7] B. Coltin and M. Veloso, “Towards Replanning for Mobile Service Robots with Shared Information,”

in Proceedings of the AAMAS’10 Workshop on Autonomous Robots and Multirobot Systems (ARMS), 2013.

114

[8] M. Crosby, “ADP an agent decomposition planner,” Proceedings of CoDMAP, 2015. 89

[9] M. Dorigo et al., “Swarmanoid: A novel concept for the study of heterogeneous robotic swarms,”

IEEE Robotics and Automation Magazine, vol. 20, no. 4, pp. 60–71, 2013. 114

122

http://agents.fel.cvut.cz/codmap/results/CoDMAP15-proceedings.pdf

BIBLIOGRAPHY 123

[10] R. Eidenberger and J. Scharinger, “Active perception and scene modeling by planning with proba-

bilistic 6d object poses,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

IEEE, 2010, pp. 1036–1043. 111

[11] S. Ekvall, P. Jensfelt, and D. Kragic, “Integrating active mobile robot object recognition and slam in

natural environments,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

IEEE, 2006, pp. 5792–5797. 111

[12] E. Fabrizi and A. Saffiotti, “Extracting topology-based maps from gridmaps,” in Proceedings 2000

ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Pro-

ceedings (Cat. No. 00CH37065), vol. 3. IEEE, 2000, pp. 2972–2978. 13

[13] J. Faigl, “Approximate solution of the multiple watchman routes problem with restricted visibility

range.” IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council, vol. 21,

no. 10, pp. 1668–79, 2010. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/20837446 111

[14] M. Fox and D. Long, “PDDL2.1: An extension to PDDL for expressing temporal planning domains,”

JAIR, 2003. 77, 80

[15] J. Gancet and S. Lacroix, “Pg2p: A perception-guided path planning approach for long range au-

tonomous navigation in unknown natural environments,” in IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS), vol. 3. IEEE, 2003, pp. 2992–2997. 115

[16] R. Haralick, S. Sternberg, and X. Zhuang, “Image analysis using mathematical morphology,” IEEE

transactions on pattern analysis and machine intelligence, no. 4, pp. 532–550, 1987. 11

[17] A. Howard, “Multi-robot mapping using manifold representations,” in Proceedings of the IEEE Inter-

national Conference on Robotics and Automation., vol. 4. IEEE, 2004, pp. 4198–4203. 110

[18] P. Janousek and J. Faigl, “Speeding up coverage queries in 3D multi-goal path planning,” Proceedings

- IEEE International Conference on Robotics and Automation, no. 1, pp. 5082–5087, 2013. 111

[19] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic roadmaps for path

planning in high-dimensional configuration spaces,” IEEE transactions on Robotics and Automation,

vol. 12, no. 4, pp. 566–580, 1996. 110

[20] S. Koenig and M. Likhachev, “D* lite,” in Eighteenth national conference on Artificial intelligence. Amer-

ican Association for Artificial Intelligence, 2002, pp. 476–483. 113

http://www.ncbi.nlm.nih.gov/pubmed/20837446

BIBLIOGRAPHY 124

[21] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*,” Artificial Intelligence, vol. 155, no. 1,

pp. 93–146, 2004. 112

[22] S. M. LaValle, Planning algorithms. Cambridge university press, 2006. 111

[23] M. Likhachev, G. J. Gordon, and S. Thrun, “ARA*: Anytime A* with provable bounds on sub-

optimality,” in Advances in neural information processing systems, 2004, pp. 767–774. 113

[24] M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun, “Anytime Dynamic A*: An

Anytime, Replanning Algorithm,” in ICAPS’05, the International Conference on Automated Planning and

Scheduling, vol. 5, 2005, pp. 262–271. 113

[25] D. V. Lu and W. D. Smart, “Towards more efficient navigation for robots and humans,” in Intelligent

Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013, pp. 1707–1713. 14

[26] N. Luis, T. Pereira, D. Borrajo, A. Moreira, S. Fernandez, and M. Veloso, “Optimal perception plan-

ning with informed heuristics constructed from visibility maps,” in submission to Journal of Intelligent

& Robotic Systems, 2018. 77, 79

[27] C. Luo, A. Espinosa, D. Pranantha, and A. De Gloria, “Multi-robot search and rescue team,” in Safety,

Security, and Rescue Robotics (SSRR), 2011 IEEE International Symposium on. IEEE, 2011, pp. 296–301.

114

[28] F. S. Melo and M. Veloso, “Decentralized mdps with sparse interactions,” Artificial Intelligence, vol.

175, no. 11, pp. 1757–1789, 2011. 114

[29] C. Muise, N. Lipovetzky, and M. Ramirez, “MAP-LAPKT: Omnipotent multi-agent planning via

compilation to classical planning,” in Competition of Distributed and Multiagent Planners, 2015.

[Online]. Available: http://www.haz.ca/papers/muise_CoDMAP15.pdf 89

[30] B. Nabbe and M. Hebert, “Extending the path-planning horizon,” The International Journal of Robotics

Research, vol. 26, no. 10, pp. 997–1024, 2007. 115

[31] A. K. Pandey and R. Alami, “Mightability maps: A perceptual level decisional framework for co-

operative and competitive human-robot interaction,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE, 2010, pp. 5842–5848. 111

[32] T. Pereira, M. Veloso, and A. Moreira, “Visibility maps for any-shape robots,” in 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), Oct 2016, pp. 4205–4210. 11, 19

http://www.haz.ca/papers/muise_CoDMAP15.pdf

BIBLIOGRAPHY 125

[33] T. Pereira, A. Moreira, and M. Veloso, “Improving heuristics of optimal perception planning using

visibility maps,” in International Conference on Autonomous Robot Systems and Competitions (ICARSC).

IEEE, 2016, pp. 150–155. 43

[34] T. Pereira, M. Veloso, and A. Moreira, “Multi-robot planning using robot-dependent reachability

maps,” in Robot 2015: Second Iberian Robotics Conference. Springer, 2016, pp. 189–201. 11

[35] T. Pereira, M. M. Veloso, and A. P. Moreira, “Pa*: Optimal path planning for perception tasks.” in

ECAI’16, 2016, pp. 1740–1741. 26, 95

[36] T. Pereira, A. P. G. Moreira, and M. Veloso, “Multi-robot planning for perception of multiple regions

of interest,” in Iberian Robotics conference. Springer, 2017, pp. 275–286. 93

[37] T. Pereira, N. Luis, A. Moreira, D. Borrajo, M. Veloso, and S. Fernandez, “Heterogeneous multi-agent

planning using actuation maps,” in IEEE International Conference on Autonomous Robot Systems and

Competitions (ICARSC). IEEE, 2018, pp. 219–224. 77

[38] T. Pereira, A. Moreira, and M. Veloso, “Optimal perception planning with informed heuristics con-

structed from visibility maps,” Journal of Intelligent & Robotic Systems, vol. 93, no. 3-4, pp. 547–570,

2019. 43

[39] R. A. Peters, “A new algorithm for image noise reduction using mathematical morphology,” IEEE

Transactions on Image Processing, vol. 4, no. 5, pp. 554–568, 1995. 11

[40] M. Phillips, B. J. Cohen, S. Chitta, and M. Likhachev, “E-graphs: Bootstrapping planning with expe-

rience graphs.” in Robotics: Science and Systems, vol. 5, no. 1, 2012. 110

[41] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained mobile robot motion planning

in state lattices,” Journal of Field Robotics, vol. 26, no. 3, pp. 308–333, 2009. 110

[42] D. Portugal and R. P. Rocha, “Cooperative multi-robot patrol with bayesian learning,” Autonomous

Robots, vol. 40, no. 5, pp. 929–953, 2016. 115

[43] C. Potthast and G. S. Sukhatme, “A probabilistic framework for next best view estimation in a

cluttered environment,” Journal of Visual Communication and Image Representation, vol. 25, no. 1, pp.

148–164, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.jvcir.2013.07.006 111, 115

[44] S. Richter and M. Westphal, “The LAMA planner: Guiding cost-based anytime planning with land-

marks,” JAIR, 2010. 89

http://dx.doi.org/10.1016/j.jvcir.2013.07.006

BIBLIOGRAPHY 126

[45] R. B. Rusu, I. A. Şucan, B. Gerkey, S. Chitta, M. Beetz, and L. E. Kavraki, “Real-time perception-guided

motion planning for a personal robot,” in IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE, 2009, pp. 4245–4252. 111

[46] F.-C. Shih and O. R. Mitchell, “A mathematical morphology approach to euclidean distance transfor-

mation,” IEEE Transactions on Image Processing, vol. 1, no. 2, pp. 197–204, 1992. 12

[47] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun, and H. Younes, “Coordination

for multi-robot exploration and mapping,” in Aaai/Iaai, 2000, pp. 852–858. 113

[48] E. Sommerlade and I. Reid, “Probabilistic surveillance with multiple active cameras,” in IEEE Inter-

national Conference on Robotics and Automation (ICRA). IEEE, 2010, pp. 440–445. 111

[49] D. Thakur, M. Likhachev, J. Keller, V. Kumar, V. Dobrokhodov, K. Jones, J. Wurz, and I. Kaminer,

“Planning for opportunistic surveillance with multiple robots,” in IROS’13, the IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2013. 115

[50] J. Velez, G. Hemann, A. Huang, I. Posner, and N. Roy, “Planning to Perceive: Exploiting

Mobility for Robust Object Detection.” Icaps, pp. 266–273, 2011. [Online]. Available: http:

//www.aaai.org/ocs/index.php/ICAPS/ICAPS11/paper/download/2707@misc/3177 111

[51] V. Vidal, “YAHSP3 and YAHSP3-MT in the 8th International Planning Competition.” in 8th Interna-

tional Planning Competition (IPC-2014), 2014. 89

[52] G. Wagner and H. Choset, “M*: A complete multirobot path planning algorithm with performance

bounds,” in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2011, pp.

3260–3267. 114

[53] P. Wang, R. Krishnamurti, and K. Gupta, “View planning problem with combined view and traveling

cost,” in ICRA’07, the IEEE International Conference on Robotics and Automation. IEEE, 2007, pp. 711–

716. 111

http://www.aaai.org/ocs/index.php/ICAPS/ICAPS11/paper/download/2707@misc/3177
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS11/paper/download/2707@misc/3177

	Contents
	List of Tables
	List of Figures
	Introduction
	Thesis Question
	Thesis Approach
	Contributions
	Reading Guide to the Thesis

	Robot-Dependent Maps
	Morphological Operations
	Robot-Dependent Maps for Circular Footprints
	Robot-Dependent Maps for Any-Shape Robots
	Summary

	From A* to Perception Planning
	Perception Planning Formulation
	PA*: Informed Search for Perception Planning
	Underlying Graph and Node Expansion
	Perception Planning Assumptions
	Running Example of PA* Search
	Summary

	Perception Planning with Visibility Maps
	Regions from Robot-Dependent Maps
	Improved Heuristics
	Node Expansion Analysis for Variants of Perception Planning Heuristic
	Summary

	Using Perception Planning for Delivery Services
	Map Representation
	Problem Definition as Perception Planning
	Experiments on City Motion Planning with PA*
	Determining Vehicle-Dependent Visibility Maps
	Results of Improved Heuristics of Perception Planning
	Summary

	Heterogeneous Multi-Agent Planning Using Actuation Maps
	Multi-Agent Classical Planning
	Coverage Task Planning Formulation
	Downsampling of Grid of Waypoints
	Extracting Cost Information from Actuation Maps
	Extending Approach to Any-Shape Robots
	Experiments and Results
	Summary

	Multi Robot Planning for Perception of Multiple Regions
	Problem Formulation
	Perception Clusters from PA*
	Path Construction
	Extending Heuristic Path-Constuction to Multiple Robots
	Visibility Maps for Efficient Perception Cluster Determination
	Summary

	Related Work
	Visibility and Perception Planning
	Motion Planning

	Conclusions and Future Work
	Contributions
	Future Work

	Bibliography

