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Abstract
Robustness is a fundamental and timeless issue, and it remains vital to all

aspects of computation systems, regardless of specific computation platforms,
architectures, and algorithm design. The issue is also timely: modern comput-
ing systems are increasingly built on unreliable substrates. This thesis designs
reliable computing techniques for distributed systems, circuits and networks.
We primarily study techniques inspired from coding theory to address the
robustness issues such as system elasticity, stragglers (slow workers), machine
failures and soft errors, by carefully weaving redundancy into the data and
the design of the algorithm.

We primarily focus on three aspects of coding-based computation tech-
niques. The first aspect is to design adaptive computing techniques in large-
scale systems that are elastic, i.e., the number of machines can change with
time. The second is to make the coding-based computation schemes cater to
the specific needs of iterative and multi-stage algorithms, such as power iter-
ations and gradient descent that are essential for today’s data analytics. The
third aspect is to study the fundamental limits of information propagation in
computation networks, provide information-theoretic outer bounds on error
accumulation, and design in-network computing schemes to compensate for
this error accumulation, e.g., in a circuit network where each computation
component can be unreliable.

This thesis presents theoretical results that are fundamental to the un-
derstanding of computation systems, and opportunities for radical improve-
ments, e.g. in computation load, communication overhead, and storage
cost. We also present real-system implementations and real-data experiments
and show our progress on taking these theoretical results closer to practice.
The academic results presented in this thesis advance on classical results in
the historical field of reliable distributed computing, while simultaneously
addressing timely issues arising in today’s computing systems.

vi



Contents

0 Maxwell’s demon, von Neumann, and Moore’s law: different fundamental per-
spectives on computing systems 1

1 Introduction 5
1.1 Connecting coding, computing and platforms . . . . . . . . . . . . . . . . 5
1.2 Motivation: what do we care about in today’s computing platforms? . . . 8
1.3 The contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Thesis outline: a mental map . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Technical background and preliminaries 25
2.1 Different computation systems and noise models . . . . . . . . . . . . . . . 25
2.2 Technical preliminaries and notation . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Achievable result for the gate-level failure model: binary matrix-vector multi-
plication using entirely unreliable components 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 System model and problem formulation . . . . . . . . . . . . . . . . . . . . 40
3.3 A simplified version of main results . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Main results on robust matrix-vector multiplication . . . . . . . . . . . . . 46
3.5 Main results on energy efficient matrix vector multiplication . . . . . . . . 52
3.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.7 Conclusions and future directions . . . . . . . . . . . . . . . . . . . . . . . 56

4 Fundamental limit: quantifying distortion accumulation for measuring error
accumulation in computing systems 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 System model and problem formulation . . . . . . . . . . . . . . . . . . . . 60
4.3 Main results: outer bounds based on incremental distortion . . . . . . . . 62
4.4 Main results: achievable rates with random Gaussian codebooks . . . . . 66
4.5 Extension to network consensus . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 Conclusions and future directions . . . . . . . . . . . . . . . . . . . . . . . 77

vii



5 Exploiting the multi-stage computing I: new platforms and coded elastic com-
puting 78
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 System model and problem formulation . . . . . . . . . . . . . . . . . . . . 80
5.3 Main results: elastic data partitioning combined with codes . . . . . . . . 82
5.4 Extended results of the coded elastic computing . . . . . . . . . . . . . . . 87
5.5 Experimental evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.6 Conclusions and future directions . . . . . . . . . . . . . . . . . . . . . . . 95

6 Exploiting the multi-stage computing II: convergence viewed as additive error 97
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 System model and problem formulation . . . . . . . . . . . . . . . . . . . . 99
6.3 Main result: coded distributed computing of linear inverse problems . . . 102
6.4 Experiments and simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.5 Conclusions and future directions . . . . . . . . . . . . . . . . . . . . . . . 115

7 Exploiting the multi-stage computing III: combining consecutive iterations in
iterative computing 116
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2 System model and problem formulation . . . . . . . . . . . . . . . . . . . . 117
7.3 Main results: substitute decoding for coded iterative computing . . . . . . 121
7.4 Extended results: applications of substitute decoding . . . . . . . . . . . . 125
7.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.6 Conclusions and future directions . . . . . . . . . . . . . . . . . . . . . . . 135

8 Computation on graphs: network topology and distributed computing 137
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.2 System model and problem formulation . . . . . . . . . . . . . . . . . . . . 140
8.3 Main result 1: GC-1 graph codes in a general graph . . . . . . . . . . . . . . 142
8.4 Main result 2: GC-3 codes in a low-diameter graph . . . . . . . . . . . . . . 145
8.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.6 Conclusions and future directions . . . . . . . . . . . . . . . . . . . . . . . 151

9 Case study 1: distributed logistic regression with noisy decoding 153
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.2 System model and problem formulation . . . . . . . . . . . . . . . . . . . . 154
9.3 Preliminary result: reliable distributed storage of reals with undetectable

faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.4 Main result: distributed logistic regression in the presence of storage and

computation faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

10 Case study 2: fault-tolerant convolution with noiseless decoding 163
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.2 System model and problem formulation . . . . . . . . . . . . . . . . . . . . 164

viii



10.3 Main result: coded parallel linear filters for fault detection . . . . . . . . . 165
10.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
10.5 Conclusions and future directions . . . . . . . . . . . . . . . . . . . . . . . 167

11 Concluding remarks and future directions 170

12 Bibliography 174

A Theoretical proofs for Chapter 3 195
A.1 Proof of Theorem 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
A.2 Proof of Theorem 3.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
A.3 Codes that satisfy the noisy decoding requirement . . . . . . . . . . . . . . 198
A.4 Proof of Theorem 3.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
A.5 Proof of Corollary 3.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

B Theoretical proofs for Chapter 4 205
B.1 Proofs for Section 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
B.2 Proofs for Section 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
B.3 Proofs for Section 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

C Theoretical proofs for Chapter 5 221
C.1 Proof of Theorem 5.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
C.2 Proof of Theorem 5.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

D Theoretical proofs for Chapter 6 223
D.1 Proof of Theorem 6.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
D.2 Proof of Corollary 6.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
D.3 Proof of Theorem 6.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

E Theoretical proofs for Chapter 7 235
E.1 Proof of Theorem 7.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
E.2 Proof of Lemma E.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
E.3 Equivalence of several norms . . . . . . . . . . . . . . . . . . . . . . . . . . 238

F Theoretical proofs for Chapter 8 240
F.1 Proof of Corollary 8.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
F.2 Proof of (8.7) in Theorem 8.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 240
F.3 Proof of Lemma F.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
F.4 Proof of Lemma F.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
F.5 Proof of Theorem 8.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
F.6 Proof of Theorem 8.4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

G Theoretical proofs for Chapter 9 252
G.1 Proof of Theorem 9.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
G.2 Proof of Theorem 9.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

ix



List of Figures

1 Maxwell’s demon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 This map shows the interactions between coding, computing and plat-
forms, and where our works are situated. . . . . . . . . . . . . . . . . . . . 6

1.2 This figure is from [36, Figure 5]. It shows that the soft error rate by the
16nm generation is more than 100 times that of the 180nm generation. . . 12

1.3 This figure shows the mental map of the thesis. . . . . . . . . . . . . . . . . 23

3.1 An unreliable gate g (Gate Model I or II) . . . . . . . . . . . . . . . . . . . . 41
3.2 An illustration of the conceptual difference between classical noisy com-

puting schemes and the ENCODED technique. . . . . . . . . . . . . . . . . 45
3.3 This is the illustration of the 3-time distributed voting scheme for comput-

ing an inner product s · aj = s1a1j + s2a2j + . . . sLaLj , where s is the input
to the matrix-vector multiplication sA, and aj is the j-th column of A. The
computation is divided into L stages. In the i-th stage, the distributed
voting scheme computes x(i)

j = x
(i−1)
j +sigij for three times using three sets

of AND-gates and XOR-gates, uses three noisy majority-gates to compute
three copies of the majority votes. Then, the output of each majority value
is sent to the corresponding copy for the computation in the next stage. . . 55

3.4 In this figure, a simulation result of ENCODED-F using a (4,8) regular
LDPC with ds = 8 is shown. The code length N = 4000, the size of
the matrix-vector multiplication satisfies L = 2100 and K = 2000. A
comparison with the distributed majority voting schemes with repetition
time 3 and 4 is also shown. The gate error probabilities are set to pand =
0.000125, pmaj = 0.0005 and pxor = 0.001 in both ENCODED-F and the
distributed majority voting scheme. . . . . . . . . . . . . . . . . . . . . . . 56

4.1 This is an illustration of matrix-vector multiplication considered in this
chapter. The goal is to compute a weighted sum of distributed Gaussian
vectors (i.e., matrix-vector multiplication) over a tree-network. The nota-
tion Mb→a denotes the message, or the set of bits, transmitted from vb to
va. The set S in this figure can also be written as Sb, which denotes the set
that contains vb and all its descendants in the network. . . . . . . . . . . . 60

x



5.1 The main idea of elastic data partitioning is to use the data in a cyclic
way. Each column of data is stored at one machine. For each group (i.e.,
row block) of data at different machines, there are enough number of sub-
blocks that contain all the information. This cyclic way of using data leads
to linear scaling of the per-machine computational cost in the number of
machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Non-uniform data partitioning . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 The chart of optimal policies under different configurations. . . . . . . . . 92
5.4 Remove data in a cyclic fashion to transit vertically on Figure 5.3. . . . . . 93
5.5 Mini-benchmarks experiments (results normalized due to confidentiality). 94

6.1 A toy example of the comparison between the existing coded computing
scheme and the proposed algorithm. . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Illustration of Algorithm 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3 Experimentally computed overall mean squared error of uncoded, replication-

based and coded personalized PageRank on the Twitter graph and Google
Plus graph on a cluseter with 120 workers. The ratio of MSE for repetition-
based schemes and coded PageRank increase as Tdl increases. . . . . . . . 111

6.4 Experimental comparison of four different codes on the Twitter graph. In
this experiment the DFT-code out-performs the other candidates in mean
squared error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 Experimentally computed overall mean squared error of uncoded, replication-
based and coded personalized PageRank on the Twitter graph on a cluster
with 120 workers. The queries are generated using the model from the
stationary model in Assumption 6. . . . . . . . . . . . . . . . . . . . . . . . 113

6.6 This simulation result shows the mean squared error of the computation
results for k = 200 different problems in the uncoded scheme. . . . . . . . 113

6.7 This simulation result shows the mean squared error of the computation
results for k = 200 different problems in the coded scheme. . . . . . . . . . 114

6.8 This figure shows the mean squared error of uncoded, replication-based
and coded PageRank algorithms. . . . . . . . . . . . . . . . . . . . . . . . . 114

7.1 This shows the comparison between the existing works on coded comput-
ing and the proposed coded computing technique for the computation of
power iterations in the row-splitting case. In the proposed method, we
only show the scalar version as mentioned in Remark 15. . . . . . . . . . . 119

7.2 An illustration on the vec (·) and the mat (·) operations. . . . . . . . . . . . 120
7.3 This is an illustration of substitute decoding where the known parts are

colored blue and the unknown parts are colored red. From G
(t)
s (Bxt + y),

we can get the projection of Bxt + y onto the column space of Vt (see
Proj1). For the unknown part Proj2, we use the projection of xt instead,
which is Proj2’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xi



7.4 Convergence exponent comparison. Substitute decoding can make sparsely
coded iterative computing achieve the optimal convergence rate even for
a large number of failures/stragglers. . . . . . . . . . . . . . . . . . . . . . 125

7.5 The comparison between uncoded, replication-based and substitute-decoding-
based power iterations on the Twitter graph. Substitute decoding (blue
line) achieves almost exactly the same convergence rate as the noiseless
case (red line) for the same number of iterations. Coded computing also
beats the other techniques for the same communication time complexity. . 129

7.6 The comparison between uncoded, replication-based and substitute-decoding-
based power iterations in column-wise splitting. Substitute decoding (blue
line) achieves almost exactly the same convergence rate as the noiseless
case (red line). Coded computing beats the other techniques for the same
communication time complexity. . . . . . . . . . . . . . . . . . . . . . . . . 130

7.7 The comparison between uncoded, replication-based and substitute-decoding-
based power iterations in 2D splitting. All schemes use 2D splitting on
the linear system matrix. Substitute decoding with degree 2 (blue line) is
not close to the noiseless case (red line) because of increased communica-
tion time cost (due to rate=10/11). Coded computing still beats the other
techniques for the same communication time cost. . . . . . . . . . . . . . . 130

7.8 The comparison between uncoded, replication-based and substitute-decoding-
based orthogonal iterations. Substitute decoding (blue line) achieves al-
most exactly the same convergence rate as the noiseless case (red line). . . 131

7.9 This figure shows the clustering result of the graph adjacency matrix using
the spectral clustering algorithm with coded computing techniques. . . . . 131

7.10 The comparison between uncoded, replication-based and substitute-decoding-
based orthogonal iterations for principal component analysis. Substitute
decoding (blue line) achieves almost exactly the same convergence rate as
the noiseless case (red line). Coded computing beats the other techniques
for the same communication time complexity. . . . . . . . . . . . . . . . . . 132

7.11 This figure shows the phenomenon of “Eigenspokes”, which shows that
the principal components of a sparse matrix with dense blocks can have
spoke-like patterns[200]. These patterns can help identify anomalous
dense blocks inside a huge network. . . . . . . . . . . . . . . . . . . . . . . 133

7.12 The comparison between uncoded, replication-based, approximate-gradient-
coding-based [47] and substitute-decoding-based gradient-descent com-
puting. Substitute decoding (blue line) achieves exactly the same conver-
gence rate as noiseless computation (red line). Coded computing beats the
other techniques for the same communication time complexity. The reason
that the coded computing converges slightly faster than the noiseless case
is explained in Remark 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.1 The in-network computing algorithm carried out on the spanning tree. . . . . . 143
8.2 Each code bit is the parity of all one-hop in-neighbors of a specific node. Some

edges might be bi-directional. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xii



8.3 Simulation results of GC-3 codes of different code lengths. . . . . . . . . . . . . . 152

9.1 The row spaces of Ai1j and Ai2j are not completely the same and no one
is contained inside the other. In this way, if the row space of Zj , the
parity check (syndrome) message of the j-th parity check agent, is the
same as or contained inside the row space of the row space of a particular
weight matrix Aij , one can determine that the fault is from the i-th variable
agent. Since the intersection of the row spaces of Ai1j and Ai2j has low
dimension (the red line), the event that the row space of Zj is inside the
intersection happens with probability 0 for randomly chosen Ai1j and Ai2j

and random storage and computation faults. . . . . . . . . . . . . . . . . . 157
9.2 The data are split into data blocks and stored in distributed variable

agents. The data and are encoded such that (9.1) holds for all parity
check agents. Using the intermediate results w>t Xi in logistic regression,
the parity check agents can identify wrong memory blocks and correct
errors. During the computation of logistic regression, the memory faults
are repeatedly suppressed by error correction, and hence the convergence
of logistic regression can be ensured. . . . . . . . . . . . . . . . . . . . . . . 159

10.1 Redundant filters are constructed parallel to the original filters, such that the
outputs from these filters are in a coded form. . . . . . . . . . . . . . . . . . . . 164

10.2 These are the simulation results for coded filters with different coding
rates. Coded filters with higher redundancy can tolerate a higher ratio of
faulty filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10.3 These are the simulation results for coded filters with different magnitudes
faults when R = 1/2. The simulation results are insensitive to the fault
magnitudes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

F.1 Network transformations that relate coding theory to noisy broadcast
networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

xiii



List of Tables

1.1 This table shows the comparison between different robustness techniques
in computing systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 This table shows the energy-reliability tradeoffs of different computing
schemes under different gate error probability models. . . . . . . . . . . . 54

7.1 The factor δt decreases when the degree of G increases. . . . . . . . . . . . 129

8.1 Major attributes of the three different types of graph codes. . . . . . . . . 139

xiv



Chapter 0

Maxwell’s demon, von Neumann, and
Moore’s law: different fundamental
perspectives on computing systems

Fundamental physics perspective

We start with a story of Maxwell’s demon depicted in Figure 1. There is a demon who is
in charge of two rooms of gas, which are room 1 and room 2. There are only two types of
gas, type A and type B, and they are mixed evenly in these two rooms at the beginning.
There is a light door between these two rooms, and the demon can open or close the door
at any time it wants. Then, the demon decides to do the following thing: when a particle
of type A is going to enter room 1 or a particle of type B is going to enter room 2, it opens
the door. Otherwise, it closes the door. Clearly, if the demon is capable of completing
this task, after a finite amount of time, room 1 is full of the gas of type A, while room
2 is full of the gas of type B. This is surprising because, according to the second law of
thermodynamics, the total entropy of an isolated system can never decrease over time.
However, the entropy of the demon’s room eventually decreases to the minimum.

So from where does this new information come? The new information comes from
the demon itself! By repeatedly opening the door to let the particle go through, the
demon loses its information, and the entropy of the demon itself increases. Another
interpretation is that in this story, the physicists assume that friction can be as small as
possible. The next part of the story is that Landauer proved the fact that “any logically
irreversible manipulation of information, such as the erasure of a bit or the merging of
two computation paths, must be accompanied by a corresponding entropy increase in
non-information-bearing degrees of freedom of the information processing apparatus
or its environment” [146]. He showed in another paper that one could communicate
with arbitrarily small energy consumption [147], again with the assumption that one can
lower the friction and noise in communication to zero. We include this story because it
connects to the mental map of the thesis, which is on the fundamentals of computation
systems, how the theory of information can play a role here, and how computation and
information interact between each other. Landauer’s results come from a theoretical
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Figure 1: Maxwell’s demon

physics perspective, which assumes away some critical points of the engineering problem
and aims to understand the fundamental limit of any form of computation.

Von Neumann and Shannon’ perspective

A more engineering perspective was taken by Von Neumann [253] in 1956. In this seminal
work, he showed that one could construct a reliable computing circuit using entirely
unreliable logic components. The main idea is to replicate each logic operation and wire
and use a restoring mechanism to reduce error at each computation stage. This work is
in spirit closely related to Shannon’s work on communication over noisy channels [227]
because von Neumann also established his theory based on comprehensive and rigorous
modeling of noisy computing components.

One may think the work by Von Neumann is profound and universal because it
applies to all kinds of computation that can be expressed as a logic circuit. However,
if one considers today’s unreliable systems, the techniques in this work are sometimes
overkilling because the methods that are useful in typical computation systems nowadays
are often lightweight and straightforward because the failures are usually assumed to
happen in the level of individual processors or machines.

When I start formulating problems in the computation theory, I come to the belief
that it is tough to find the fundamental theory for computation systems. The reason is that
there are so many different theories and problems on computation, and all of them are
limited in some sense, including the one by Landauer and von Neumann. However, a
useful result of this tour in Von Neumann’s world is that I come to the understanding
that different perspectives can lead to fundamentally different fundamental theories, and
it is fine to respect all of them and accept the fact that there is no universal theorem for
computation problems.

A modern perspective

The same principle applies to many seemingly universal theories and techniques. For
example, for over fifty years, people have been trying to follow Moore’s law and increase
the number of transistors on a circuit by making the transistors smaller. However, this
trend is going end sometime inevitably, due to the limit imposed by power density issues
and quantum effect. There may be other types of breakthrough technologies that can
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make the computation components even smaller and faster, but the main point is that
the fundamental theory of transistors may not apply anymore to the new devices and
platforms.

The diversity of computing systems has led to many practical theories that are success-
ful in specific application domains. One example is Andrew Yao’s famous theoretical
framework on communication complexity [284]. This formulation is very intriguing and
has spawned many works on distributed computing problems, such as the one on coding
for computing by Orlitsky and Roche [189] which uses a definition of conditional graph
entropy to characterize the information-theoretic limits of distributed function computa-
tion. However, the setting of these works is often only suitable for calculating the limit of
communication, possibly with distributed dependent sources as in [189], but it is not easy
to generalize these ideas to address robustness issues and some modern computation
problems such as iterative and multi-stage problems. There are many other examples
of the same nature. In the 80s, Thompson established the VLSI model of computation
[246] by explicitly considering the mathematical models of circuit components and was
able to show the implementation and time complexity of many modern computing
problems such as the Discrete Fourier Transform and sorting. In [118], Huang and Abra-
ham established the algorithm-based fault tolerance (ABFT) which is arguably the most
successful and practical coding-based computing framework. We are now in the big
trend of data-driven machine learning [214], and the framework of deep learning is also
endorsed by the fast development of specialized hardware and distributed computing
platforms which are not available when deep learning was invented. These computation
theories and frameworks are tightly related to the development of effective platforms
and are often suitable for designing domain-specific techniques.

When studying the problem of robust computing, the researchers often wish to
establish a fundamental theoretical framework like the one by Shannon. At least from
the current development of computation theory, I think the more appropriate way to say
is that we have established many ways to address these fundamental questions from
different perspectives. However, this is still very encouraging in some sense. Since there
are so many different theories, models and techniques, we have to keep innovating our
results to adapt to the changes in the problem itself. The inevitable saturation of Moore’s
law has made researchers look into the possibility of deliberately allowing noise in the
computation to reduce energy consumption, leaving room for novel devices.

The perspective of this thesis

The fundamental physics perspective focuses on the universal limitations of general or
even arbitrary computing systems by abstracting out the engineering features, such as
noise and friction. On the contrary, our perspective explicitly incorporates technological
limitations of specific computational systems. Our aim is to examine different levels of
abstraction in a computing system, and enable failure and error-prone technologies to be
used in modern systems while ensuring a target reliability. For example, these limitations
can arise from the device technology used (e.g., CMOS 22nm [36, Extreme variations]) or
straggling due to job scheduling and resource contention [271, Section 4.2.2], variation
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across workers [24, Section IV.C] or network-level issues [13, Section 4.2 Crossrack traffic],
etc. Since we are focused on the end-engineering goal, we are interested in a real-system
validation and taking the techniques from theory to practice. Therefore, our perspective
unifies that of von Neumann and the more modern perspective, depending on at which
level these unreliabilities arise, but also goes beyond these perspectives because we
aim to address timely issues in novel systems and platforms. We also connect to and
advance on Von Neumann and Shannon’s classical perspective to develop new theories
and techniques.

For example, Chapter 5 presents the first work that connects coding algorithms to
elastic systems and provides implementation results on Microsoft’s real systems. Some
of them are algorithm level issues, such as Chapter 1 and Chapter 7 which present novel
techniques that can increase the noise tolerance of coding-based reliable computing by
exploiting specific properties of multi-stage and iterative learning algorithms. Some of
them are intellectual issues that transcend platforms but can advance the understanding
of practical systems. For example, results in Chapter 4 tighten the communication
outer bound of distributed in-network matrix-vector multiplication by an arbitrarily
large margin by connecting to another line of exciting works on information dissipation
[79, 198]. Chapter 3 presents the first work to show that coding-based binary matrix
multiplication techniques using noisy computing components can beat replication-based
techniques in a realistic setting.

All models are wrong, and all theories are limited. Some excellent technologies
may last for a long time, but we still have to understand their application domain.
Therefore, the thesis touches different aspects of computation systems, from the gate
level to the processor level, and computation networks. It also presents various aspects
of computation problems, from computation failures and soft errors to stragglers and
elastic events. We focus on the interaction between theory and practice and put effort
into both deriving fundamental bounds and developing system implementations. In a
nutshell, we focus on developing from the modern perspective of computing systems
and on limited non-universal but useful theories and practice.
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Chapter 1

Introduction

1.1 Connecting coding, computing and platforms

In the first chapter, we discuss the connections between the following three components.
• Coding: the information-theoretic algorithms and analytical tools of error-correcting

codes and compression techniques;
• Platform: various robustness issues that arise in today’s computing systems, cir-

cuits and networks, and typical optimization goals of these computing platforms;
• Computing: different types of computation problems, such as numerical linear

algebra, machine learning algorithms, and data analysis problems.
We plot these three components and the connections between them in Figure 1.1 to show
where our works are situated. In this figure, there are two blocks about coding techniques,
which correspond to channel coding and source coding respectively. On the computing
side, we categorize computing problems into two types, which correspond to matrix
operations, such as matrix-matrix multiplications, and applications that have a multi-
stage nature, such as gradient descent algorithms that are generally beyond basic matrix
operations. On the platform side, we mainly consider three types of issues or constraints,
namely system-level noise, gate-level noise, and system constraints imposed by the
communication network. The texts on the solid lines between different blocks represent
some existing techniques in the literature. The dashed lines connect each chapter in this
thesis to different types of platforms and different categories of computing.

In this figure, we can see many existing theoretical frameworks and techniques on
the connections between different blocks. These connections often lead to important
problems that people care. We will provide a thorough literature review in Section 2.3
on these connections. Here, we choose to comment on some of these connections. We
want to use these connections to present some critical coding-based problems where
intellectual problems remain open, and how our works can address these issues.

On the connection between the block of error correcting codes and the gate-level noise,
we have Von Neumann’s seminal work on noisy computing [253]. This work is critical
in that it tries to establish a grand theoretical framework for computing with noisy
components that can fail in the level of logic gates. In my view, It is as important as
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Figure 1.1: This map shows the interactions between coding, computing and platforms,
and where our works are situated.

the work by Shannon [227] on communication using a noisy channel. Although this
work uses robust techniques that are essentially replication-based, it has inspired a lot of
coding-based techniques in the following fifty years [70, 109, 194, 244] about computing
systems. In Chapter 3, we explore this direction of computing with noisy components.
Our work is the first one to show that binary matrix-vector multiplications computed
using entirely unreliable components can beat replication-based techniques in a practical
parameter setting. Although it requires a substantial effort in proving the theoretical
existence of some error-correcting codes, we observe a scaling-sense reduction in the
final computation error using a moderately long code (of length 4000).

Another example is the connection between the block scalar/vector quantization and
the block communication constraints. There are many information-theoretic works on the
communication complexity [142, 284] of distributed computing, such as [60, 189, 240].
In Chapter 4, we present a new analytical tool which characterizes the communication
complexity of linear function computing (i.e., matrix-vector multiplication) in a multi-
stage network. The new theoretical lower bound obtained by this analytical tool is
infinitely tighter than classical bounds based on cut-set techniques [60, 240].

The next point that we want to mention here is the elasticity entry in the block system-
level noise. In Chapter 5, we present the first work in the literature that connects coding
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theory to the problem of elastic computing, and we show that one can design new
coding-techniques by utilizing the properties of system elasticity. We also provide the
first system implementations of coding-based elastic computing techniques and have
applied them to the software at Microsoft (see Chapter 5 for details).

Last but not least, on the connection between Scalar/Vector Quantization and matrix
operations, we have the sketching technique [166, 267]. Currently, researchers are trying
to connect sketching-based techniques with coding [100]. Therefore, there will be more
connections in Figure 1.1 in the future.

In this section, our first goal is to identify some critical connections between coding
and computing problems and platforms, on which both important intellectual issues
and application-oriented problems remain. Starting from Section 1.2, we look at the
computation platform side of Figure 1.1. We will explain the details of each entry
that has shown on the platform side in Figure 1.1 because these entries represent the
primary motivation for us to study coding-based computing techniques. Here, we briefly
summarize what we care about from the three angles of computing platforms.

Major issues that plague today’s computing systems (more details in Section 1.2)

• System/processor-level noise: Noise in this level occurs in the form of processor
or machine failures. Some processors can be slow or fault-prone. We will especially
focus on the elasticity issue where machines can join or leave during computing.
We will provide more details about system-level noise in Section 1.2.1.
• Gate-level noise: Noise in this level occurs in the form of gate failures, e.g., the

output of a gate is always zero due to a short circuit. The problem of error accumu-
lation is severe in this case because there may be thousands of gates for a simple
function. We will provide more details about system-level noise in Section 1.2.1 as
well.
• Communication constraints in distributed/multi-processor scenarios: Commu-

nication is probably one of the most critical limitations in large-scale distributed
systems. We will show more details in Section 1.2.2.

In the following chapters, we will show how coding techniques can help address
these different problems in various computation platforms. Generally speaking, coding
techniques, especially those based on error correcting codes, are redundancy techniques.
However, they often go beyond simple replication schemes that may require extremely
high redundancy [163]. A natural question to ask is how coding-based techniques
perform when compared with other schemes. In Table 1.1, we list some of these schemes.
From this table, it is easy to see which problems are suitable for coding. In the table,
the ignore strategy does not care about system noise and continue the computation
regardless of any computation failure. The stop-the-world scheme means that the entire
system waits for the failed or straggling machine to recover. This scheme can involve
the check-pointing mechanisms [115, 197] which may require a significant amount of
time for machine and state recovery. Dynamic task allocation means the relaunching
of failed tasks especially when some tasks are straggling [9, 10, 12, 90, 242, 259, 260]. In
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Section 2.3, we provide a thorough literature review on related techniques and show
how coding-based techniques compare with them.

1.2 Motivation: what do we care about in today’s comput-
ing platforms?

This thesis is centred around improving the robustness and efficiency of today’s gen-
eral computing systems. To understand the main bottlenecks of these systems, we try
to identify significant issues and main performance bottlenecks plaguing computing
systems, especially those that end users and practitioners pay attention to. Then, we
try to abstract out theoretical models of these systems and propose algorithmic and
mathematical solutions. Finally, we try to implement these solutions in real systems
and new platforms to close the loop. The motivation of the thesis is categorized into
the following aspects. The first two come from practical issues, while the last one is for
advancing the theoretical knowledge and understanding of computing systems.
• Robustness issues in modern computing systems and circuits;
• Major bottlenecks and optimization metrics of computing systems;
• Theoretical fundamental limits on information propagation in computing systems.

1.2.1 Major robustness issues in computing systems

Achieving robustness against system uncertainty issues has been one of the most critical
goals since the beginning of computer designs. In general, designing computing systems
that are robust to any possible failures is hard. As we will show later in this section (Sec-
tion 1.2.1), there are too many different kinds of computation failures, uncertainty issues,
soft errors, and it is impossible to address all of them using one universal technique. The
focus of computation robustness also slightly changes over time. For example, during
the time of the earliest papers that are related to this thesis [245, 253], the focus is on
the “gate-level”, which concerns mostly about computational units that can represent
simple logic operations. A failure at the gate-level means that may be an adder or an
XOR gate fails. Nowadays, the research on computation robustness tends to focus more
on the level of nodes, processors, or machines. There can be tens or even thousands of
computing nodes in a large distributed network, and some of the nodes can fail during
the computation. In different computing systems, the primary uncertainty issues can
be changed. For the same type of issues, it can change over time as well. For example,
for the problem of stragglers, it used to be critical at the early age of cloud service, but
the issue has gradually become less significant. However, for new platforms such as
serverless computing [123], the straggler issue remains.

Our goal, in this section, is to give a thorough overview of some computer system
uncertainty issues that have been attacked using the ideas of error-correcting codes. As

8



Ta
bl

e
1.

1:
T

hi
s

ta
bl

e
sh

ow
s

th
e

co
m

pa
ri

so
n

be
tw

ee
n

di
ff

er
en

tr
ob

us
tn

es
s

te
ch

ni
qu

es
in

co
m

pu
ti

ng
sy

st
em

s.
Sc

he
m

es
St

or
ag

e
re

d
u

n-
da

nc
y

C
om

p
u

te
re

du
nd

an
cy

R
ob

us
t

M
ac

hi
ne

re
co

ve
ry

/
re

-
la

un
ch

in
g

tim
e

co
st

El
as

ti
c

G
et

sa
m

e
re

-
su

lt

R
ep

lic
at

io
n

H
ig

h
H

ig
h

Ye
s

Z
er

o
So

m
et

im
es

(r
ed

u
nd

an
t

co
p

ie
s

of
ne

w
m

ac
hi

ne
s

sa
cr

i-
fic

e
el

as
ti

ci
ty

)

Ye
s

Ig
no

re
Z

er
o

Z
er

o
N

o
Z

er
o

N
o

N
o

St
op

-t
he

-
w

or
ld

L
ow

(f
or

ch
ec

k-
po

in
ti

ng
)

Z
er

o
So

m
et

im
es

(c
an

on
ly

to
le

ra
te

ra
re

fa
ilu

re
s)

H
ig

h
N

o
Ye

s

C
od

in
g

Lo
w

L
ow

(i
nc

lu
d

-
in

g
ti

m
e

fo
r

de
co

di
ng

)

Ye
s

Z
er

o
Ye

s
(s

ee
C

ha
p

-
te

r
5)

Ye
s

D
yn

am
ic

ta
sk

al
lo

ca
ti

on
Z

er
o

L
ow

(f
or

re
-

co
m

pu
ti

ng
)

So
m

et
im

es
(h

ar
d

fo
r

fr
e-

qu
en

tf
ai

lu
re

s)

H
ig

h
(c

om
p

u
-

ta
ti

on
re

la
u

ch
-

in
g)

N
o

Ye
s

9



we have mentioned, there is no way that we can solve all of these issues using a single
technique. However, we hope to make a convincing argument that the coding-based
techniques have applicability in many system issues, and the generalization of these
techniques to different situations is also predictable and has rules to follow. From a
theoretical point of view, this ability to generalize makes it possible to have a bread
and deep conceptual framework. From a practical point of view, it enables a simple
comparison between different techniques and backward compatibility with new system
issues and modern techniques.

Computation elasticity in cloud service

Elasticity has been a focal point of system design from the early stage of cloud computing
[85]. There are two ways to interpret elasticity. The first one is to view it as the ability
for a distributed system to scale to an arbitrary number of computing nodes in a flexible
and fast manner. The second way is to view it as the ability to continue the distributed
computation tasks even if the number of nodes can drastically change. The first one is
more from a system design perspective, while the second one is more from an algorithm
design perspective. In this thesis, we focus on the second algorithm design perspective.
For this perspective, there two possible problems to consider:
• Passive-elasticity: Cloud-service providers allow the exploitation of under-utilized

Virtual Machines (VMs) at a fraction of the original cost [2, 4]. For example, Azure
Batch provides low-priority machines at about one-fifth of the cost of ordinary
virtual machines [5]. Similarly, Amazon Spot Instances provide machines at market
price with a discount which can reach up to 90% concerning regular on-demand
prices [3]. Such offerings, however, have the drawback that machines can be taken
away at any time if a high-priority job appears. This drawback, in turn, will
surface as a computation failure at the application level. During a computation
task, if some machines are taken away, the intermediate computation states and
results, including the local data stored at these machines, are also taken away
[180]. Therefore, the algorithm should be designed in such a way that it has certain
redundancy to compensate for the loss of some machines. The event that some
machines are taken away is often called preemption or being preempted.

• Positive-elasticity: The fact that the number of machines can change also means
that some new machines can join distributed computing. For example, this can
happen when the machines have to be reallocated to achieve fairness [116] between
users in a multi-tenancy cluster or meet the specific needs of some users at runtime.
While ignoring these new machines can certainly make the computation continue,
it is more useful if we can immediately employ these new machines in the compu-
tation, and maybe shift some computation load to these new machines to achieve
the purpose of load balancing.

The elasticity event can happen on a large scale. For example, in the case of using a
greedy bidding strategy to purchase machines from a spot-instance market, the number
of computers can drop by a factor of more than 50% during the computation [165, Figure
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3.c]. For some of the machine learning applications, it is fine to use partial data, especially
if the precision requirement is not high, or if the number of data points is far beyond
the model capacity. However, in many cases, it is still preferable to have all the data
present during the entire process of model training. From the perspective of customers,
it is merely more trustworthy if the whole dataset is available during training. Now
that 50% of the machines can be preempted during the computation process, either the
local data has to be shifted continuously between machines, or some redundancy has
to be introduced into the data to compensate for the information loss. Ignoring these
preempted machines may not be a good idea when preemptions can happen frequently
and on a large scale. There are many different ways to address this system issue. We
refer the readers to Chapter 5 for further details on the possible techniques.

Stragglers

State-of-the-art large-scale computing systems can feature thousands of machines, petabytes
of memory size, hundreds of petabytes of persistent storage, and provide highly parallel
and distributed platforms [26, 162] for executing complex computational tasks. A vital
feature of these systems and the underlying applications is heterogeneity: these systems
are built to perform diverse computational tasks with different data, memory, processing
capabilities, and simultaneously cater to a broad class of end-users (commercial cus-
tomers, institutions, individuals, etc.) with varying task types, resource requirements
and priorities. Even for embarrassingly parallel distributed tasks of the same amount of
computation load, the processing time can also differ at different machines. Therefore,
the performance of these systems can often be bottlenecked by a small number of slow
machines, known as the stragglers [63, 155]. The computation time of each machine is
inherently variable, even if the computational load remains fixed. Thus, the overall
computation time is going to be determined by the slowest machine among all.

This straggling effect has been widely observed in experiments. For instance, it was
reported that stragglers are the most significant limiting factor when implementing
distributed coordinate descent in the internal Google cloud [211]. It has also been
observed in the literature that for the Amazon EC2 service, the slowest machines can
take more than five multiples of the typical computation time to finish the same job [243].
Another example is that for the AWS Lambda service, which has a cloud-based massively
scalable system, about 5 percent of the workers can take much longer time than the other
workers [101]. For distributed computing using mobile devices, the straggler problem
can become even more significant, e.g., in the federated setting [234]. The problem
caused by stragglers can only become more severe in the modern exascale era [26, 162]
where the number of machines increases due to the big data boom.

Machine failures, memory faults and soft errors

There are typically thousands of hard drive failures and about a thousand individual
machine failures each year in an exascale computing system, such as a new cluster
in Google [62]. The failures can also happen in graphics processing units for general-
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Figure 1.2: This figure is from [36, Figure 5]. It shows that the soft error rate by the 16nm
generation is more than 100 times that of the 180nm generation.

purpose computations (GPGPUs), which are commonly used in deep-learning systems
and simulations of molecular-dynamics. For example, it was shown in an experiment
on 50000 commodity GPUs used for the Folding@home distributed computing network
that “two-thirds of tested GPUs exhibit a detectable, pattern-sensitive rate of memory
soft errors” [112].

On the circuit level, the noise and variation issues are common as well. An urgent
motivation to study noise in circuits comes from the saturation of “Moore’s law” or the
“Dennard’s scaling”, a scaling law on the energy with smaller technology [65]. In fact,
greedily reducing CMOS transistor size can lead to severe robustness issues (see Figure
1.2). As transistors become smaller and clock frequencies become higher, the noise margin
of semiconductor devices is reduced [297]. Meanwhile, timing jitter, voltage variation,
crosstalk, thermal noise caused by increased power density and quantum effects can
all jeopardize reliability. Many new devices are being explored to continue reducing
energy consumption, e.g. [181]. However, such emerging low-energy technologies
generally lack the reliability of CMOS as well. On the other hand, aggressive design
principles, such as “voltage-scaling” (which is commonly used in modern circuits),
reduce energy consumption [193], but often at a reliability cost. Beyond CMOS, circuits
for many emerging technologies, such as those built out of carbon-nanotubes [229],
suffer from reliability problems, such as wire misalignment [191]. While most modern
implementations use overwhelmingly reliable transistors, there are also aggressive circuit
design principles to deliberately allow errors in computation to achieve lower energy
consumption [226]. Thus, circuit reliability is becoming an increasingly important issue
and requires efforts from different perspectives such as circuit modeling, simulations
and theoretical analyses.
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1.2.2 System level optimization beyond fault-tolerance

When dealing with modern large-scale systems, e.g., a cloud center, a high-performance
computing cluster, or other exascale computation platforms, we have to face the prob-
lems of arranging thousands of machines, connecting these machines in a massive
network with different (and possibly varying) topologies, scheduling a large amount of
distributed tasks on these machines in a efficient manner, and monitor the robustness of
the entire system at a regular basis. The sheer size of the system design and optimiza-
tion offers tremendous flexibility and numerous opportunities. Although the name of
error-correcting codes makes it sound like the focus of the coding-based techniques are
only issues of robustness, these techniques have been widely employed to improve the
performance of distributed systems from various perspectives beyond fault tolerance
or system uncertainty. In this subsection, we will briefly introduce three system-level
optimization opportunities that we will talk about in the thesis, namely communication
time, computation time, and energy consumption. These system performance metrics
can also be related to robustness issues. For example, in machine learning training, if
some data are missing from the entire dataset due to robustness issues, the training might
take longer time to converge, and hence increasing the number of communication and
computation rounds. Another example is that stragglers, although viewed as robustness
issues, can directly affect the overall communication and computation time.

Reducing communication time

The network communication time in large-scale systems is arguably the most important
metric to consider in the design of distributed systems and algorithms. The reason for
this argument is threefold: (1) the time to communicate one bit of information across
a distributed network can be larger than that of reading one bit of information from
fast memory [62] (2) the increasing of the speed of computing is more rapid than the
increasing of network information transmitting rate (for example, by Nielsen’s law of in-
ternet bandwidth, users’ bandwidth grows by 50% per year [188], which is 10% less than
Moore’s Law for computer speed) (3) while the computation time of many distributed
computing tasks (e.g., the embarrassingly parallel tasks such as gradient evaluation
and Monte Carlo simulations) can be directly reduced by adding more computation
nodes, the communication time might stay the same or most likely increase with a larger
number of nodes. Although the communication problem can be mitigated in small-scale
distributed computing or large-scale systems with proper implementation of communi-
cation primitives, the communication time is likely to maintain a bottleneck for modern
computing systems.

The well-known fact is that the communication time of point-to-point communication
can be modeled by T = α + βN , where α is the time to establish connection, determined
by the network latency, β is the time to transmit one bit of information on the established
communication link, determined by the network bandwidth, and N is the number of
bits to send. Usually, α is much larger than β. However, βN can still be the dominating
factor is the number of bits N is large. Therefore, the communication time can be reduced
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mainly from two perspectives. The first one is to reduce the number of communication
rounds, and the second one is to reduce the overall number of bits to be sent. The
communication time is often critical for I/O bound iterative algorithms in machine
learning. We will discuss how to use coding-based techniques to reduce communication
time mainly in Chapter 7.

Reducing computation time

Although in the previous part, we mentioned that communication time is an important
metric, the computation time is essential as well. This is simply because, in many
distributed computing problems, the computation can be much more complicated than
reading or sending bits. In fact, for memory-bound machine learning applications, even
for the simplest ones with only matrix operations, the computation process often requires
to process data that has orders of magnitude larger size than that of the transmitted
messages. For example, in distributed logistic regression, the size of the signal to
communicate is either equal to the size of the model, or the number of samples at each
machine (when dual methods are used [224]). However, since the size of each sample
may be much larger than one, the computation cost to process each sample is much
larger than transmitting one bit. For more advanced machine learning models, such
as deep neural networks, the computation time involves complicated data processing,
such as convolution and nonlinear operations, which is not negligible. The phenomenon
that the computational cost becomes dominant is observed in experiments, such as in
Chapter 5 and Chapter 6.

Therefore, in the case of a small-scale or medium-scale distributed computing task,
the computation time can be a significant part of the overall time. Sometimes, the
robustness issues, such as straggling, can also significantly increase the amount of
computation time, and can often cause more severe straggling during computation that
that during communication. Note that most of the computation time, from a real system
perspective, comes from the task of loading data from slow storage to fast storage in the
memory hierarchy (which can either be from memory to cache, or from local disks to fast
memory if the local data does not fit into the main memory), while the CPU processing
time is often negligible. In the case that communication time and computation time
have comparable significance, one needs to have a balance between these two. Since
computation time is often an essential metric for system optimization, we will discuss
ways to reduce the computation time in most of the problem formulations mentioned in
this thesis.

Reducing energy consumption

Another advantage of saving computation and communication time is that it often
directly relates to reducing energy consumption in distributed systems. It has been
widely recognized that the energy consumption in data centers is becoming increasingly
critical in recent years. For example, in [61], it was mentioned that “U.S. data centers
use more than 90 billion kilowatt-hours of electricity a year, requiring roughly 34 giant
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(500-megawatt) coal-powered plants. Global data centers used roughly 416 terawatts
(4.16 x 1014 watts) (or about 3% of the total electricity) last year, nearly 40% more than
the entire United Kingdom. And this consumption will double every four years.”

Before the saturation of Moore’s law, we can reduce energy consumption and increase
the computation speed by reducing the size of transistors. However, due to the power
density issue and the robustness issues mentioned in Section 1.2.1, people can no longer
achieve these goals by making transistors smaller. Meanwhile, due to the fast growth
of hyperscale and exascale data centers developed by the technical giants, and the
exponentially growing size of the data and need to process those data, the power and
cooling cost at the data centers worldwide are continuously increasing.

The energy consumption problems arise from not only the giant data centers and
cloud computing centers, but also small and energy-hungry mobile devices. These
mobile devices, although significantly limited in the battery power, are viewed by many
as the emerging platform for the next-generation cloud services [7, 172]. Therefore,
understanding the energy consumption issue, along with the robustness issues such
as straggling and adversaries in these settings, is essential as well. In Chapter 3, we
will show that by using the idea of dynamic voltage scaling, one can reduce the energy
consumption of iterative computing by orders of magnitude.

1.2.3 Intellectual motivation: understanding information propagation
in computing systems

The aim of this section is to review some of the historical developments of the information-
theoretic understanding of the robustness of computing systems, and to provide the
intellectual motivation for the thesis: understanding the fundamental limits of informa-
tion propagation in computing systems, and uses that to provide guidance for problem
formulation and the design of achievable schemes. The extended context of this section
will appear in Chapter 3 and Chapter 8 (achievable schemes for computing in a noisy
network) and Chapter 4 (a fundamental limit for linear computation in a tree network).

We want to start this section with some review of history. The field of robust computa-
tion using unreliable components started from Von Neumann in 1956 in the seminal work
[253], where he designed the technique to replicate computation and communication
wires to achieve reliable computation using unreliable components. More precisely, for
a network that reliably computes a function using l reliable logic gates, Von Neumann
replaces each reliable gate by O(log l) unreliable gates and replaces each reliable wire by
a bundle of O(log l) wires. He then uses “restoring organs” to correct errors. Using this
delicate construction, he shows that the function network comprising l reliable gates can
be implemented using O(l log l) gates. The work of Von Neumann inspired many works
on robust computation using unreliable components, including the first coding-based
technique by Taylor [245] and the works on noisy computing [79, 195]. It also closely
relates to the works on information dissipation [198]. I think many people believe that
the idea of applying coding techniques to computation systems starts from the work of
algorithm-based fault tolerance (ABFT) [118]. However, it is surprising that this line of
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works has a much longer history. Our thesis would like to serve as the first one to connect
the two worlds of researchers on coding-based techniques for computing systems. The
results shown in Chapter 3, 8 and 4 also illustrate that our works are deeply inspired
from these prior works.

Although the construction of Von Neumann provides a clear way to deal with noise in
an arbitrarily large computation network, the replication factor log l is large. The problem
comes from the fact that the noise caused by unreliable computation and communication
may accumulate through the network. Therefore, to compensate for this information
loss, replicate has to be implemented at each stage of the computation. Interestingly, on
any single path of computational units, the computation error will must accumulate, as
discussed in information dissipation work of Evans and Schulman [79, Lemma 2] (see
also [198]). Thus, to reduce the error accumulation, we should maximally distribute the
information in the network, so that information can be integrated from different paths to
fight dissipation on each path. This idea leads to the natural choice of expander graphs,
which are widely used in LDPC codes [233]. It is also quite reasonable to maintain the
computational results in a coding graph, or more precisely, to store the intermediate
results in a coded form, so that forward error-correcting codes can help decode the results
in a fully distributed way. Note that all computational units can be fault-prone, even
including the decoding itself.

Coding has always played a fundamental role in information propagation, e.g., in
communication systems [227] and storage systems [66]. In this thesis, we aim to develop
this understanding of coding theory and techniques from communication systems to
the much broader field of computation systems. As we have mentioned above, the
information dissipation or the accumulation of errors can be mitigated by combining the
information from other information paths, and by storing intermediate results in a coded
form. This idea has a better interpretation (which I believe was first explicitly proposed
in [109]) that the decoding can wait until the number of errors is large enough. In other
words, as long as the noisy version of intermediate results scattered in the information
path is sufficiently close to the coded version of the actual result, one does not need to
remove all the errors at each decoding stage entirely. We will show in Chapter 3 that by
using ideas from coding, one can save computational cost by orders of magnitude than
replication-based techniques, and by using voltage scaling, one can further save energy
consumption by orders of magnitude.

Although the understanding of information propagation and other fundamental
limits in computation systems has immense potential impacts on practice, the achievable
schemes provided in the history of this field thus far have become mostly theoretical. For
example, For the current being, the real-world large scale systems have fundamentally
different structures from the ones assumed in the work of Von Neumann, and the later
works on noisy computing. In fact, the focus of robustness in large-scale distributed
systems nowadays are mostly on the level of machines, instead of gates, and a direct
consequence of this change of attention is that the depth of the standard computation
network is usually small, e.g., a hypercube where the diameter is logarithmic in the
number of nodes. However, we should not merely discard these remarkable prior results
because of the deviation from practice. To some extent, the results in noisy circuits,
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noisy computing and information propagation have a major influence on the research
nowadays. In my own opinion, these first results and the constructive algorithms can
often be simplified to derive the results that can cater to current systems (because a network
of noisy gates considered in [253] is intuitively much more general and complicated
than a network of machines). Nonetheless, it is still vital to build a bridge between
these results to practice, especially to system implementations and new computation
platforms, to address specific issues in modern systems (e.g., computation elasticity).
The content of this part is explicitly shown on some connections in Figure 1.1.

1.3 The contributions of this thesis

The main goal of the study is to understand the fundamental problems in computation
systems and develop theory and practice to improve the performance of real platforms.
There are three primary purposes of the thesis.
• The first purpose is to address grand challenges, especially new problems in today’s

unreliable systems. We will see problems, e.g., elastic computing and multi-stage
computing, that have not been focused on in the literature of robust computation
but can have a major impact on real systems.

• The second purpose is to develop fundamental theory and achievable techniques
to solve or partially solve these problems. Each of the chapters in the thesis is
centered around one aspect or one problem, but these problems are all connected
to robust computation and the optimization of computing systems.

• The third purpose is to present implementation results on real systems and novel
platforms, to prepare for the application of the proposed techniques into real
products.

The main focus of the thesis is to develop practical techniques of and fundamental
understanding of algorithmic robust computing. One approach that we focus on is to
carefully weave redundancy into the computation by tailoring error-correcting codes and
melding them with the computation. In the following, we present the main contributions
of the thesis.

1.3.1 Coded elastic computing: problems, system implementations,
and new platform

In Section 1.2.1, we have explained the problem of computation elasticity. Our work
[281] is the first one to apply coding techniques to address the robustness issue in elastic
systems. The main contribution of the paper comes from designing an adaptive data
partitioning scheme and applying the adaptive scheme into the coding techniques for
the elastic computing problem. The other contribution is the implementation of the
proposed technique under the Apache REEF [56] framework.

The main idea of the paper comes from the following two observations of the problem:
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• (Utilizing new machines) As mentioned in Section 1.2.1, there are two major aspects
of the problem of computation elasticity. Although the first one, passive-elasticity,
or the machine preemption problem, is substantially similar to machine failures,
the second problem of positively utilizing new machines is beyond the usual
motivation of coded computation. Therefore, the first observation is that the coding
technique should be able to adapt to the changing number of machines, especially
the new machines.

• (Utilizing information on elasticity) The second observation is a subtle one: al-
though the number of machines can change over time, at the time a change hap-
pens, the entire system can be notified about the change immediately, and thus
the information can be used for the design of adaptive systems. In other words,
although we do not know when an elastic event (some machines are preempted, or
some new machines join) will happen, and how much does the number of nodes
change, we do know that the number of machines remains fixed for a certain period
of time in the future, and then this information can be used.

Based on the two observations mentioned above, our work [281] proposes an adaptive
coding scheme that can automatically change the workload at each machine based on
the number of existing machines and is observed to continue the exact computation
in the presence of machine preemptions in the multi-tenancy cluster at Microsoft. The
proposed technique can achieve up to about 2× speedup when compared to the existing
way of coded computation and can achieve almost the same time cost as the case when
there is no machine failure. In theory, it can achieve infinite gain when the number of
machines approaches infinity1. The proposed technique is an exact scheme, meaning that
it provides the same computation result as if no machines are preempted. This property
of having an accurate result is helpful in applications where all the data are required to
be present during the entire computation. As we have mentioned in Section 1.2.1, this
property also ensures the requirement from a costumer’s perspective.

1.3.2 Coded computation for multi-stage problems

Multi-stage computing, or iterative computing, is one of the most common computation
patterns in machine learning. Usually, coded computation requires an encoding stage
to weave the redundancy into the computation. If the computation is one-shot, it is
often not desirable to have an expensive encoding step that reduces the applicability of
coded computation. However, for iterative computation, the same encoded data can be
repeatedly utilized for multiple iterations, and the encoding cost can be amortized during
the entire computation. Therefore, coding for iterative computing is more useful than
one-shot problems in terms of reducing encoding cost. Moreover, iterative computing is
the basic format of many gradient-descent type computations and power-iteration based

1As per the discussion with Professor Viveck Cadambe, achieving the benefit when the number of
machines is large may require a better scaling of the communication scheme. In reality, when the number
of machines approaches infinity, the serial communication time usually dominates, and the saving on the
computation becomes insignificant.
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computations. Thus, coded iterative computing has wide applications.
Although designing coded computing techniques for iterative computing problems is

widely applicable in many problems, it is more than just applying coding techniques to
hot problems. One reason is that these techniques can go beyond the simple combination
of multiple rounds of the basic one-shot coded computation, and includes the specific
properties of different iterative algorithms. Coded computing has been applied to itera-
tive computing, e.g., in gradient descent [47, 110, 208, 243]. However, these techniques
apply coding to each single iteration of the iterative computation and do not utilize the
relationships between consecutive stages. This type of applying coded computing into a
multi-stage problem is essentially the same as coded one-shot computing. What we are
interested in are the techniques that can have the following properties:
• They can utilize the properties of iterative algorithms to create opportunities be-

yond one-shot coded computing. For example, they can provide reasonable ways
to combine intermediate results from consecutive stages to speed up computation
and increase the algorithmic robustness to system uncertainties.

• The techniques may directly combine and encode the computation in several
consecutive iterations, instead of coding a single iteration.

The idea of coded multi-stage and iterative computation will appear in two chapters of
the thesis, namely Chapter 6 and Chapter 7. We will mainly talk about two techniques
that meet the above properties [272, 277]. The main observation in both of these two
techniques is that compared to one-shot computations, the iterative computation has the
specific property that can be used to boost the performance of coded computing. For
example, in Chapter 7, we show that by carefully weaving the intermediate result from
the previous iteration, we can improve the tolerable number of failures from O(1) to
O(n). In another line of collaborative works lead by Haddadpour [104, 105], we observed
that jointly coding several iterations of computation can reduce several iterations into
one, and lead to scaling-sense savings on the communication time of power iterations.
This result further shows that the design of coded computation in iterative computing
has some flexibility, and can often result in creating techniques beyond coded single-
shot computation. In the following, we briefly discuss the contributions of these two
techniques of coded iterative computation.

Coded computation for linear inverse problems

In Chapter 6, we consider the problem of solving multiple linear inverse problems
minxi ‖Axi − yi‖ using multiple machines. The number of machines is larger than the
number of linear systems, but some of them may be slow. The same linear system matrix
A is replicated at each machine, and different input vectors yi are given to different
machines. Since the input yi and the output xi of each linear system have the same
linear relationship xi = A†yi (where † means the pseudo-inverse), the linear encoding on
all the inputs yi’s naturally transfers to the linear encoding on the output vectors xi’s.
In Chapter 6, we will see that this linear encoding property makes it possible to apply
off-the-shelf coded computing techniques to this problem directly.
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As we have mentioned, the critical observation in Chapter 6 is that the computation of
the linear system at each machine usually proceeds with iterative algorithms, especially
when the matrix A is hard to invert. Therefore, even for the slow workers, at which
the computation of the linear system has not converged, the intermediate result is
still useful. Therefore, directly discarding these results at the slow workers may not
be the optimal way to combine results. Thus, we propose to combine these results
using different weights that are proportional to the number of completed iterations.
The larger the number of iterations has been completed, the closer the intermediate
result is to the optimal value, and the larger the combined weight is. The proposed
technique achieves a graceful degradation of the overall computation error concerning
the number of stragglers, which differs from ordinary coded computing (e.g., coded
matrix multiplications) that usually has a fundamental limit on the tolerable amount of
stragglers. In other words, for ordinary coded computing, there is typically a threshold
time before which the computation result is not obtainable. However, if the properties of
the linear systems are utilized, approximate computation results can be obtained at any
time.

Interestingly, another critical issue arises in the problem of coded distributed inverse
solver, which turns out to be even more severe than in ordinary coded computing.
The issue is that at the early stage of the inverse problem-solving process, since the
computation result at each worker is an approximation of the exact result xi = A†yi, the
result at each machine has a quite large noise. Then, this noise can get amplified if the
encoding matrix is not appropriately designed, e.g., some of its submatrices have a large
condition number. It turns out that one can bypass the issue by combining all the results,
instead of using just part of the results (e.g., the results from the non-stragglers). Various
techniques, such as truncated SVD, can also solve the problem to some extent. However,
the issue of a large condition number is something worth paying attention to for the
design of coded computing techniques.

Coded iterative computation using substitute decoding

Iterative problems sometimes have certain advantages that coded computing techniques
can exploit. In this section, we will briefly introduce one of these advantages and discuss
a method that can use this advantage.

For linear coded computing, sometimes it is preferred that the code is sparse. Here,
what we mean by saying a linear code is sparse is that each code symbol is a linear
combination of a small constant number of data samples. The requirements to make the
codes sparse come from the following aspects:
• Sometimes, the data itself is sparse. If we apply dense coding to sparse data, the

coded data after computing dense linear combinations becomes dense as well. For
example, suppose we have 20 parts of the data X1,X2, . . . ,X20, and each part is a
sparse matrix of a fixed size. Suppose each coded symbol is a linear combination
of the form Yi =

∑
j αijXj, i = 1, 2, . . . , 25 for some coefficients αij . Then, the

problem is that the coded data can be at most 20 times as dense as the original data.
This is not desirable from the perspective of reducing the storage cost.
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• Sometimes, the code is applied in such a way that the communicated messages,
instead of the data, are encoded. For example, in [110, 208, 243]. In this case, the
data is essentially replicated, and the replication factor, which relates to the density
of the code, directly determines the overhead in both storage and computation time.
Although the main observation is that the communication time may dominate the
overall time cost, and hence increasing the computation time may be acceptable, it
is desirable that the overall storage cost does not increase by much. Therefore, a
sparse code is better than a dense code in this case.

In Chapter 7, we will show a way to boost the performance of sparse codes, despite
the general belief that sparse codes are weak for error correction. We will show that the
number of correctable errors can increase from constant to half of the number of code
bits in a codeword if one carefully combines the information from a previous iteration’s
intermediate result. We will use a more end-to-end metric to measure the improvement
of the algorithm performance, which is the convergence rate of the iterative computation.
To make the connection with coding clear, we will present a theorem showing that by
utilizing the information from the previous iteration, the convergence rate of coded
iterative computing is almost precisely the same as that of the noiseless computation.
The difference is small until the number of erasure-type faults approaches 1−R, where
R is the coding rate.

We call the proposed technique substitute decoding because the main technical idea is
to substitute the unknown part of a codeword after decoding with the information from
the previous iteration’s intermediate result. The main intuition is that the intermediate
results in two consecutive iterations are close to each other, and hence the substitution
does not introduce too much inconsistency. In Chapter 7, we only present the results on
a simple problem of computing power iterations and its applications in PageRank [190].
This substitution technique applies in general to the applications where the intermediate
results converge gradually during each iteration, based on the intuition above.

Coded orthogonal iterations for spectrum analysis and singular value decomposition

Our work in Chapter 7 is the first to apply coded computing techniques to spectral
analysis and singular value decomposition of large-scale matrix analysis. The power-
iteration method is one of the most popular ways to compute the leading eigenvector of
a square matrix. One can compute several leading eigenvectors together by repeatedly
multiplying the candidate eigenvectors with the square matrix and followed by an
orthogonalization step [215]. This orthogonal-iteration method is the prototype of many
large-scale eigendecomposition methods, and can easily generalize to truncated singular-
value decomposition. In Chapter 7, we will show that we can indeed align substitute
decoding with the more general coded orthogonal-iteration method, but with a small
caveat. Note that one of the significant changes is that in the orthogonal-iteration method,
we have a subspace of possible eigenvectors, instead of a single leading eigenvector.
Therefore, these eigenvectors may change their order during the computation. This
becomes tricky if substitute decoding requires the combination of the results from two
consecutive steps, because, if the order of the eigenvectors changes during these two
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steps, the combination is not meaningful anymore. Thus, we also provide a technique
to identify the change in the order of these eigenvectors, thus enabling the correct
combination of these two sets of eigenvectors.

1.3.3 Coded robust computation in the gate-level model

Understanding information propagation in computing systems is the main intellectual
purpose of the thesis. To serve this purpose, we include a purely theoretical part of the
thesis. The proposed techniques and fundamental limits derived in this part are for a
general gate-level error model. In this model, the errors may happen at the gate or wire
level, and one has to look at information propagation in the network structure closely.
This part of the thesis consists of three components, listed in the following.
• Understanding gate-level noisy matrix multiplication: For the gate-level error

model, the noise can accumulate after each logic operation, e.g., AND logic opera-
tions and XOR logic operations. Therefore, for a single dot-product that contains
many such logic operations, the accumulation of the noise may make the final
output a completely random bit. Therefore, we propose to partition the process
of computing a matrix-vector multiplication into multiple stages and apply low-
complexity decoding after each computation stage, so that the error accumulation
is repeatedly suppressed. Our work [278] is the first to show that for binary matrix-
vector multiplications, the number of operations of a coded method is strictly less
than that of a replication-based method under a realistic parameter setting. At
the same time, we also show that by changing the energy consumption at each
stage, the overall energy, under mild assumptions on the energy-error model of
noisy gates, can be reduced by orders of magnitude than conventional coded com-
puting techniques. From this result, we can see that even for one-shot computing
problems like matrix-vector multiplication, it may also be useful to treat it as a
multi-stage problem and apply coding after each stage. This idea works in concert
with the main message in Section 1.3.2, i.e., when applied to multi-stage prob-
lems, the coded computing techniques can have much higher flexibility than in the
single-shot problems.

• Understanding noisy computation in a network structure: Scaling robust compu-
tation in a fully distributed setting requires the design of fault-tolerant techniques
that are specifically tailored to the network structure. That is, the coded computa-
tion algorithm can only be designed in such a way that the network is capable of
implementing it, and the code structure itself has to be realizable by the network
structure. In [283], we show two robust distributed computation techniques in
two specific sparse network topologies, namely arbitrary geometric networks and
random Erdös-Rényi graphs, which can have scaling-sense lower communication
cost than in an arbitrary network topology. This work generalizes the distributed
coding technique in [86] for complete graphs to many different special sparse
graphs while maintaining the achievable result in the communication cost. The
main technical difficulty is to analyze the performance of the designed codes that
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Figure 1.3: This figure shows the mental map of the thesis.

are constrained by the graph topology itself.
• Understanding the fundamental limits of error accumulation: We also study

fundamental limits on the required communicated bits to compute a linear function
to targeted accuracy in any arbitrary tree network [279]. The analysis uses a novel
bounding technique that we call “distortion accumulation” [274] which states
that for linear sequential function computing, the distortion of the intermediate
results accumulates linearly as the number of computation stages increases, and the
required communication bits can be lower-bounded by a function of the incremental
distortion introduced at each stage. This technique leads to an outer bound that is
infinitely tighter than an existing one on sequential function computation [60]. We
propose to study the problem in a tree network because it is more general than a
line graph which represents the flow of iterative computation. The ideal scenario
would be to extend this result to arbitrary directed acyclic graphs which represent
the structure of a general computer program.

1.4 Thesis outline: a mental map

In Chapter 2, we briefly review the background on several mathematical models of
robustness issues and computation platforms. We also discuss some useful and popular
techniques to address these issues. We will carefully provide a thorough literature review
of the previous works on the understanding of computing systems and computation
theory.

In Chapter 3, we introduce the gate-level error model and present an achievable
scheme for binary matrix-vector multiplication. We will show the connections of this
problem to historical developments on the research of information propagation in com-
puting systems, and provide our understanding of the communication limitations in
computation systems in Chapter 4. To connect with the graph structure of the computing
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system, we will revisit this line of works in Chapter 8 and show that the topology of the
computation network plays a critical role in robust computation.

In Chapter 5, we introduce the elasticity problem in today’s large scale systems
and build a coded computation framework for this problem. We will mention a new
computation platform on which our algorithms are implemented. The platform is called
Apache REEF EGC (Elastic Group Communications), which is developed by practitioners
at Microsoft. The new platform and the novel formulation of elastic computing bring out
the necessity to understand multi-stage problems that are very unique in elastic systems,
and we will address these problems in Chapter 6 and 7. In these two chapters, we mainly
focus on utilizing the flexibility and critical properties of iterative computing and multi-
stage problems to help design new coded computing techniques. These results show
that when taking into consideration the multi-stage nature of the problem, we will be
able to achieve scaling-sense improvements over coding-based methods for single-stage
computation. We will also talk about how these techniques can be applied to numerical
linear algebra algorithms such as spectrum analysis and singular value decomposition.

In Chapter 9 and Chapter 10, we show the case studies on two specific computation
problems, namely distributed logistic regression and parallel convolutions using unreli-
able computation components. In Chapter 11, we will provide some discussions of the
thesis, concluding remarks, and future directions. In the appendices, we mainly provide
theoretical proofs. In Figure 1.3, we draw a mental map of the thesis.
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Chapter 2

Technical background and preliminaries

2.1 Different computation systems and noise models

To make each chapter of the thesis self-contained, we will include a complete section
of system models in each chapter. Here, in this background chapter, we provide a brief
summary of different computation system models that we will consider in the thesis and
some typical failure models.

Failures and robustness issues can happen in computation systems across various
platforms and can have multiple forms. In large-scale commercial systems such as Ama-
zon EC2, the failures usually occur at the node level, e.g., a machine failure, stragglers,
and machine preemptions. These “system-level noises” or failure events can happen
even more frequently if one wants to reduce the rental cost because preemptable and
slow machines are often cheap. For circuits, many other gate-level or wire-level prob-
lems can happen, such as voltage variation, crosstalk, timing jitter, and thermal noise
caused by increased power density. For energy-limited wireless sensor networks or in
the edge-computing scenario, the system may cooperate to compute a specific function
such as data summarization or average consensus. In this case, the communication
between the nodes in the network is often limited in bandwidth and reliability because
it is relatively hard to establish reliable and high-throughput communication links in a
system with a large number of nodes. These type of constraints can either be in the form
of noise imposed on the communication channels or imposed as rate constraints on the
communication pipelines.

Therefore, we mainly study three types of failures. Note that we have mentioned these
three models in Section 1.1. Here, we mainly focus on some details about mathematical
assumptions.
• Processor-level Failures: Failures in this model happen at the processor-level of

a distributed or parallel computing system. Failures may happen in the form of
computation faults or delay at a node. For example, a straggler or a computation
failure can be modeled as erasure in the computation result [149]. There may or
may not be a master node. The network topology is usually simple, e.g., it can
be a start network, a ring network, a binary tree network, or a high-dimensional
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mesh network, for which there are standard high-performance communication
implementations. A common processor-level failure happens in a cluster formed
by tens of or hundreds of machines. There can be soft errors as well, and the errors
may not be detectable.

• Gate-level Failures: In this model, all logic gates and storage units are assumed
unreliable. For example, these components may fail with a certain probability
or may have a subset of components that always fail (caused by aging or stuck-
at wire misalignment). This model is the hardest one among the three because
every computation component is limited. Soft memory errors are typical in general-
purpose commercial GPUs, and they can be modeled as undetectable memory noise.
Soft errors in logic computation can also happen with low probability, and the
probability increases when circuits get aged or some extreme design techniques are
adopted to reduce energy consumption or increase computation speed. Therefore,
it also necessary to establish a connection between the energy consumption on
a gate and its output error probability, i.e., the gate error probability εg is some
function h(·) evaluated at the amount of energy Eg.

• Communication failures in distributed/multi-processor scenarios: In this model,
we consider an in-network computation setting and assume that communication
links are limited: they may have noise or rate constraints. There can be a non-
trivial network structure, such as a geometric graph or a general graph. A typical
example of this model is a mobile or edge computation network. A computer
cluster is also a good example of communication-bound tasks in which the overall
communication overhead is the dominating cost compared to other costs like
storage and computation. Compared to the processor-level failure model, the
nodes in the network are often assumed reliable (noiseless). Two settings may
be applicable here. The first one is to assume that each communication link has
an independent communication noise or a bit-flipping event. The other one is
to assume that there is a communication-rate constraint on each communication
link because noiseless communication can be achieved on bit-pipes using channel
coding when the communication rate is below the channel capacity.

In the thesis, we will present the results of our previous study on all of the above three
models. In particular, we will study the following topics:

• the elastic events in the processor-level failure model, which can have a new node
joining the computation (Chapter 5);

• the coded multi-stage and iterative problems, such as PageRank and gradient
descent, in the processor-level failure model (Chapter 6 and Chapter 7);

• the undetectable soft errors in the processor-level failure model (Chapter 9 and 10);
• the soft errors in the gate-level failure model (Chapter 3), and the connection to

energy-robustness tradeoff;
• the communication rate constraint in the communication-failure model, and its

connection to error accumulation in computation systems (Chapter 4);
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• the communication noise bottleneck for short-message transmissions in the com-
munication failure model, when long-block codes are hard to apply (Chapter 8).

In each of these problems, we will see some or all of the issues mentioned above that
arise. We hope to use this thesis as a chance to extend existing robust and system-aware
computing techniques to different models and interesting applications and to explore
deeper insights on some problems that have been addressed by current works.

2.2 Technical preliminaries and notation

Throughout the thesis, vectors are written in bold font, e.g., x and y. Sets are written in
calligraphic letters, such as S. Scalar random variables are written in uppercase letters,
e.g., U and V . A Gaussian distribution with mean µ and covariance Σ is denoted by
N (µ,Σ). The all-zero vector with length N is denoted by 0N , and the N × N identity
matrix is denoted by IN . The calligraphic letter G = (V , E) represents a graph with a node
(vertex) set V and an edge set E . Each graph with N vertices has an N -by-N adjacency
matrix A = (Am,n), which represents the edges or network connections, i.e., Am,n = 1 if
the node vm has a directed edge to the node vn.

We rely on the family of Bachmann-Landau notation [137] (i.e. “big-O” notation).
For any two functions f(x) and g(x) defined on some subset of R, asymptotically (as
x → ∞), f(x) = O(g(x)) if |f(x)| ≤ c2|g(x)|; f(x) = Ω(g(x)) if |f(x)| ≥ c1|g(x)|; and
f(x) = Θ(g(x)) if c3|g(x)| ≤ |f(x)| ≤ c4|g(x)| for some positive real-valued constants
c1, c2, c3, c4.

2.2.1 Preliminaries on error correcting codes

By F2, we denote the binary field {0, 1}. By R, we denote the real field. We will use basic
results from error control coding. From Section 2.2.4, we will consider codes in the real
field. Here, we focus on binary linear block codes.

A binary linear block code with code length N and rate R < 1 is a set of 2NR binary
vectors (codewords) that form a linear subspace C ⊂ FN2 . We always assume that NR is
an integer. Each codeword c ∈ C can be written as the product of a binary row vector m
with length NR, called the message vector, and an NR×N binary matrix G, called the
generator matrix. The coding matrix is usually written as

G =


← g1 →
← g2 →
← ... →
← gK →

 . (2.1)

where each row gk is a length-N codeword. If G = [I,P], where I denotes the NR×NR
identity matrix, we say that the code with the generator matrix G is systematic. The
matrix P is called the parity part of the generator matrix.
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2.2.2 LDPC codes and the decoding algorithms

We will use different types of binary error correcting codes throughout the thesis. One
special family of codes are the low-density parity-check (LDPC) codes [87]. The parity
check matrix of an LDPC code can be represented by a bipartite graph, which is usually
called the Tanner graph. In the Tanner graph, we denote the degree of a variable node v
by dv, and the degree of a check node c by dc, i.e., a variable node v is connected to dv
parity check nodes in its neighborhood Nv and a parity check node c is connected to dc
variable nodes in its neighborhood Nc. The followings are the formal definitions.
Definition: Bipartite graph(G(N,M, dv, dc)): This is a bipartite graph G(N,M) with N
left nodes and M right nodes. In this thesis, we only consider regular bipartite graphs:
each left node is connected to dv right nodes and each right node is connected to dc left
nodes.
Definition: Expander(G(N,M, dv, dc, α, δ)): A bipartite graph G(N,M, dv, dc) is an ex-
pander graph with parameters α ∈ (0, 1) and δ ∈ (0, 1) if for any left node set S such that
|S| ≤ αN , the size of the neighborhood satisfies |N (S)| ≥ δdv|S|.

We will use the Gallager-B decoding algorithm defined in the following, which is
a hard-decision iterative algorithm proposed in [87]. Suppose the received bits are
r = (r1, ...rN). The Gallager-B algorithm works as follows:
• From variable node to check node:

Iteration 0: m(0)
v→c = rv is transmitted from v to every check node c ∈ Nv.

Iteration i: m(i)
v→c is transmitted from v to c ∈ Nv,

m(i)
v→c =

{
x,
z,

if |c′ ∈ Nv \ c : m
(i−1)
c′→v = x| ≥ b,

otherwise,
(2.2)

where b =
⌊
dv+1

2

⌋
and z is a randomly generated bit.

• From check node to variable node:

Iteration i: m(i)
c→v is transmitted from check node c to variable node v ∈ Nc,

m(i)
c→v = ⊕

v′∈Nc/v
m

(i−1)
v′→c . (2.3)

Remark 1. Note that the updating rule (2.2) involves the criterion to break ties. We use
the updating rule m(i)

v→c = z which is different from the original rule m(i)
v→c = yv in [87], in

which yv is the channel output associated with the variable node v.
Apart from the Gallager-B algorithm, We will use another simple parallel bit flipping

algorithm [233] which is also a hard-decision algorithm. In particular, we use the
modified parallel bit flipping algorithm defined in [39]. The PBF algorithm is often
analyzed using the properties of expander graphs.
Definition: The PBF algorithm is defined as follows
• Flip each variable node that is connected to more than dv

2
unsatisfied parity check

nodes;
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• Set the value of each variable node connected to exactly dv/2 unsatisfied parity-
check nodes to 0(or 1) with probability 1/2;

• Update all parity check nodes;
• Repeat the first three steps for ce logN times, where ce is a constant.

The PBF algorithm can be used to correct a constant fraction of errors after Θ(logN)
decoding iterations when the computing components in the decoder are noiseless and
the error fraction is small enough.

In Chapter 3, we may require the utilized LDPC code to satisfy some of the following
conditions. The first bound comes from the need to study circuit implementations of
noisy LDPC codes.
• (A.1) Degree Bound: The variable node degree dv and the parity check node degree
dc are both less than or equal to some constant D, so that each majority or XOR-
operation (which is used in the Gallager-B decoding algorithm [87]) can be carried
out by a single unreliable gate. Moreover, we assume that the variable node degree
dv ≥ 4, ∀v.

• (A.2) Large Girth: The girth lg = Θ(logN). An LDPC code with the following girth
lower bound is obtained in [87, 152]:

lg >
2 logN

log((dv − 1)(dc − 1))
− 2cg, (2.4)

where cg = 1− log dcdv−dc−dv
2dc

log((dv−1)(dc−1))
is a constant that does not depend on N .

• (A.3) Worst-case Error Correcting: One iteration of the PBF algorithm (see below)
using a noiseless decoder can bring down the number of errors in the codeword
from α0N to (1− θ)α0N for two constants α0, θ ∈ (0, 1), for any possible patterns of
α0N errors.

2.2.3 Random coding theory

First we state a lemma that we will use frequently.
Lemma 2.2.1 ([87], pp. 41, Lemma 4.1). Suppose Xi, i = 1, . . . , L, are independent Bernoulli
random variables and Pr(Xi = 1) = pi,∀i. Then

Pr(
L∑
i=1

Xi = 1) =
1

2

[
1−

L∏
i=1

(1− 2pi)

]
, (2.5)

where the summation is over F2, i.e., 1 + 1 = 0.
A binary symmetric channel (BSC) with crossover probability ε is a channel that flips

a bit with probability ε. A binary erasure channel (BEC) with erasure probability ε is a
channel that outputs an erasure value ‘e’ with probability ε, no matter what value the
input takes. We state two useful results from the theory of reliable communication [88].
The first one concerns repetition codes and the second one concerns linear block codes
for reliable message transmission over noisy communication channels.
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Lemma 2.2.2. ([88, Section 5.3]) Suppose we have a BSC with crossover probability ε. If one
bit x ∈ F2 is repeatedly transmitted through the channel for j times and the receiver uses the
majority rule to make a decision x̂ the value of x, then, the bit error probability is upper bounded
by

P (bit)
e = Pr(x̂ 6= x) < [4ε(1− ε)]j/2. (2.6)

Remark 2. Lemma 2.2.2 states that O( log 1/Pe
log 1/ε

) repeated transmissions are sufficient to
achieve an error tolerance probability Pe at the destination, when the point-to-point
source to destination channel is a BSC. One might also consider using adaptive schemes,
such as sequential detection [257], to reduce the number of repetitions to achieve the
same level of Pe. However, this does not change the number of transmissions in scaling
sense.

Then, we provide an important result of binary random codes. Recall that we have
a K-bit message vector m and a code C with length N and rate R = K

N
. Then, we

can encode the message m into N bits by multiplying m with the generator matrix
G, transmit these N bits over a channel and decode the received bits. The block error
probability is defined as the probability that the decoding result m̂ is different from the
original K-bit message at least in one bit. The next lemma characterizes the performance
of using binary linear codes over a BSC.
Lemma 2.2.3. ([88, Theorem 5.6.2])(Random Coding Theorem) Suppose we have aK-bit message
vector m to be transmitted through a BSC with crossover probability ε. Then, for each R < C,
where C is the channel capacity, there exists a binary linear code with length NR and rate R, such
that K < NRR and the K-bit message can be encoded into NR bits, transmitted through the BSC
and decoded with block error probability upper bounded by

P (blk)
e = Pr(m̂ 6= m) ≤ exp[−KEr(ε, R)/R], (2.7)

where Er(ε, R) > 0 is the random coding exponent.
The random coding error exponent Er(ε, R) for a BSC with crossover probability ε

can be written as
Er(ε, R) = max

0≤ρ≤1
[−ρR + E0(ρ, ε)] ,

where
E0(ρ, ε) = ρ ln 2− (1 + ρ) ln

[
ε1/(1+ρ) + (1− ε)1/(1+ρ)

]
.

The random coding error exponent Er(ε, R) is always positive for coding rate R < C =
1−H(ε).

2.2.4 Real-number error correction

In this section, we present the genarlization of error-correcting codes to the real-domain,
and provide results related to coded computing. We look at the problem of matrix-vector
multiplication, and show that error-correcting codes can be used to protect the results
from computation failures. Suppose we want to compute the matrix vector multiplication
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result Xw. We partition the matrix X into K submatrices X1,X2, . . . ,XK of equal size,
i.e.,

X =


X1

X2
...

XK

 . (2.8)

We generate N coded data matrices Xcoded
i , i = 1, 2, . . . , N , (N > K), in which each matrix

is a linear combination of the form

Xcoded
i =

K∑
j=1

gi,jXj, (2.9)

where each gi,j is a predetermined coefficient. Note that this real-number computing
essentially treats each submatrix Xi as a symbol and codes the symbols using a (N,K)-
code with the genertator matrix G = [gi,j]. This encoding process is similar with binary
encoding.

The N coded data matrices are often distributed to N computation nodes. We may
also use P to denote the number of computation nodes. In this way, the coded data
Xcoded
i , i = 1, 2, . . . , N satisfy the following property with probability one for a variety of

choices of the linear coefficients gi,j’s, e.g., if gi,j’s are i.i.d. Gaussian random variables:
Lemma 2.2.4. Suppose we want to compute the matrix-vector product Xw. Then, any K out
of N coded computation results Xcoded

i w, i = 1, 2, . . . , N are sufficient to recover the original
(uncoded) computation results Xiw, i = 1, 2, . . . , K, which are equivalent to recovering Xw.

This result appears in many coding-based linear computation techniques [109, 118,
149, 244]. The recovery of the results is through solving K linear systems of the form
Xcoded
i w =

∑K
j=1 gi,jXjw for the K different computation nodes that successfully finish

the computation. Lemma 2.2.4 essentially shows that no matter which computation
nodes fail, as long as the number of remaining successful computation nodes is not
smaller than K, the final result Xw can be obtained. We often call the parameter K the
recovery threshold in coded computation.

Similar to binary error correcting codes, we can also have systematic code in the real
domain, in which the linear coefficients satisfy

gi,j = 1{i=j}, if i ≤ K. (2.10)

In this case, some of the data data is the original data Xi, i = 1, 2, . . . , L.

2.2.5 Linear programming decoding

In Section 2.2.4, we focus on the case when the failed computation nodes can be detected.
In what follows, we briefly review the linear programming decoding method in [44] for
real-number coding with undetectable errors. These two types of failures are similar to
erasures and undetectable bit flips respectively in communication theory.
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We consider the case when a real-number vector m ∈ RK is encoded using a N -by-K
generator matrix G, and a vector Gm ∈ RN is generated. The encoded vector Gm is
assumed to be corrupted by a sparse error vector e ∈ RN , which satisfies

‖e‖0 := |{i : ei 6= 0}| ≤ α ·N, (2.11)

where 0 < α < 1 is a constant. The original message m is to be retrieved from the
corrupted encoded message r = Gm + e.

This problem can be readily connected to compressive sensing because, as shown
in [44], if we multiply an (N −K)-by-N matrix H before the corrupted message r, which
is precalculated before communication/computation and satisfies HG = 0, we get

Hr = He, (2.12)

which is a classical compressive sensing problem, as the LHS is fixed and the vector
e on the RHS is a sparse vector. The decoding can be implemented by solving an `1

minimization problem
(P.1) min

m∈RK
‖r−Gm‖`1 , (2.13)

which is equivalent to solving a linear programming problem

min
t∈RN ,m∈RK

1>Nt, −t ≤ r−Gm ≤ t. (2.14)

Suppose the matrix H satisfies the RIP constraints [44]:

(A.1) (1− δS)‖c‖22 ≤ ‖HT c‖22 ≤ (1 + δS)‖c‖22, (2.15)

for all subsets T ⊂ {1, 2, . . . , N} of cardinality at most S, and all vectors c with real
coefficients (cj)j∈T , where the constant δS ∈ [0, 1] is called the S-restricted isometry
constant, and

(A.2) |〈HT c,HT ′c
′〉| ≤ θS,S′ · ‖c‖ ‖c′‖, (2.16)

for all disjoint subsets T , T ′ ⊂ {1, 2, . . . , N} of cardinality |T | < S and |T ′| < S ′, and for
all vectors c and c′ with real coefficients (cj)j∈T and (c′k)k∈T ′ , where the constant θS,S′ is
called the S, S ′-restricted orthogonality constant.

The following result shows that the `1 minimization problem recovers m exactly.
Lemma 2.2.5. Suppose H is such that HG = 0 and let S ≥ 1 be an integer satisfying

δS + θS,S + θS,2S < 1, (2.17)

where δS and θS,2S are respectively defined in (2.15) and (2.16). Suppose r = Gm + e, where
e is supported on a sparse set of cardinality at most S, then, the minimization problem (2.13)
recovers m exactly.

In [44], it is shown that for random Gaussian matrices H, as long as the ratio α = S/N
is small enough while still being positive, the condition (2.17) holds with high probability
in the limit of large N .
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2.3 Related works

2.3.1 Common techniques in computing systems to address unrelia-
bility and heterogeneity

Check-pointing and replication: The built-in fault-tolerance techniques in distributed
systems often respond in the following three ways to failure:
• Stop-the-world, or checkpointing [115, 197], which are deployed in the widely used

Spark platform [292]. The entire system rolls back to the point when remaining
machines have all data to recover the computation completely.

• Replication-based techniques, such as modular redundancy and state-machine
replication [84, 163, 254]. The straggling effect of the slow workers [63, 259, 260] can
often be addressed by replicating tasks across workers and using this redundancy
to ignore some of the stragglers.

• Simply ignoring the failure. This method can lead to algorithm-level performance
degradation for certain applications [180].

These techniques are based on the inherent assumption that machine failures are rare,
while some robustness issues can happen on a much larger scale. For example, for
elastic computing, the number of preempted machines may be more than half of all the
machines if a greedy bidding strategy is used in a spot instance market (see Chapter 5).
Dynamic task allocation techniques: For task-level failures or stragglers, dynamic task
allocation is useful [259, 260]. The task scheduler can choose which tasks to replicate,
relaunch based on task profiles, and delay the relaunching to save time [9, 10, 12, 90, 242].
However, recovering from machine failures requires both restoring the machine states,
downloading the data and installing individual software packages, which is usually
time-consuming. The situation gets worse if failures events are frequent.
Resource-allocation in heterogeneous settings: Knowing task-specific properties can
help improve resource allocation. For example, task replication may consume less
resource if only small tasks are cloned [12]. When we have knowledge profiles about
the functions, we can exploit it to achieve further gains beyond the general coding
approaches (see Section 5.4.4 of Chapter 5).

2.3.2 Algorithm-based fault tolerance (ABFT)

Outside information theory, fault-tolerant linear transformations and related matrix
operations have been studied extensively in algorithm-based fault tolerance [15, 37,
51, 68, 118, 125, 209, 238, 263]. In some of our works [273, 275, 278], we assume that
the faults can happen at the gate-level, e.g., in AND gates and XOR gates. Instead, in
ABFT, each functional block, e.g. a vector inner product, fails with a constant probability.
Coding-inspired techniques for computing systems in recent years can be viewed as an
advance to classical ABFT techniques, and often there are scaling-sense advantages by
the use of sophisticated codes.
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2.3.3 Coded computing

Coded computing is a candidate solution to deal with many robustness issues in dis-
tributed computing, as they have been shown to achieve low-redundancy fault-tolerance
in both theory and practice. Coded computing is very general and can deal with ma-
chine failures [62, 92, 183], stragglers [63, 155], soft errors [1, 91, 112, 136, 159, 175, 297],
communication bottlenecks [55, 296] and the respective solutions at exascale [26, 162].
Some problems of interest in coded computing include matrix multiplications [10, 19,
30, 74, 80, 83, 148, 150, 151, 168, 210, 223, 241, 261, 262, 273, 278, 281, 289, 290, 291], dis-
tributed regression [130, 131, 167], inverse problems and iterative solver of linear models
[104, 272, 277, 280], Fourier transform [121, 288], covolution [75, 276], and deep neu-
ral networks [73, 139]. These techniques cover many common distributed computing
primitives. Coded computing techniques can also reduce the communication time and
shuffling time in distributed systems [18, 110, 156, 157, 208, 243, 243, 286]. In many
cases, coded computing achieves scaling-sense speedups in average computation time
compared to replication and other techniques.

2.3.4 Sparse coded computing

In the problem of coding for gradient-descent-type algorithms [47, 110, 130, 131, 208,
243, 286], the codes are often required to be sparse. For gradient coding on nonlinear
gradient functions, a sparse code can reduce the storage overhead and the computational
cost. Another reason to use sparse codes in practice is that the data is often sparse. If the
coding matrix is dense, the encoded data becomes dense as well.

In Chapter 7, we focus on coded computing using a sparse code. Comparing to
coding for gradient descent, Chapter 7 focuses on a more general framework of iterative
computing which includes but is not limited to gradient descent. For example, power
iterations and the more general Jacobi iterations and orthogonal iterations (see Section
7.4.1) are not gradient-descent-type methods and they are included in Chapter 7.

If the exact computation is required in coded computing, there is a tight lower bound
on the number of non-zeros in a sparse code, and the bound is linear in the number of
erasures. This suggests that computing using a sparse code can have severe limitations
in dealing with a large number of failures. In Chapter 7, we focus on the regime where
the encoding matrix is extremely sparse, which means the number of ones in each row
of the encoding matrix is a constant (2 to 3) and does not increase with the number of
erasures. Our technique is to utilize the intrinsic properties of iterative computation
itself to provide good error correction ability and compensate for the weakness of sparse
codes.

Some other works also focus on coded computing for graph analytics [201] and sparse
matrix multiplications [261].
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2.3.5 Iterative computation, inverse problems and spectral analysis

In Chapter 6 and Chapter 7, we show coding-inspired techniques to deal with computa-
tion failures and stragglers in distributed computing of linear inverse problems. We focus
on iterative methods [217] that are designed to solve these inverse problems efficiently.
The iterative problems that we consider include personalized PageRank [113, 190] and
signal recovery on large graphs [49, 179, 264]. A typical example of iterative computing
is the power-iteration method that repeatedly multiplies the intermediate result with
the data matrix until convergence. Apart from PageRank, it is also applied in semi-
supervised learning [299] and clustering [160]. Compared to single-shot computations,
iterative problems have different optimization metrics and different properties for coded
computing to utilize. For example, one may study the convergence rate of iteration
computing, instead of the recovery threshold. The importance of the convergence-rate
for iterative computing in the context of computing with stragglers has also been well-
recognized by recent works [76, 131].

Spectral analysis on large and sparse matrices, such as computing eigenvectors and
the singular value decomposition, can also be conducted in an iterative way [27, 94, 111,
122, 133, 215, 239]. For example, in Chapter 7, we show that coded computing can make
the orthogonal-iteration method robust to erasure-type failures, which can be applied to
eigendecompositions and singular value decompositions.

2.3.6 Communication avoiding distributed computing

Communication efficiency is one of the most import criteria in distributed computing.
The research can be categorized into single-round schemes [114, 171, 173, 295, 300], multi-
round schemes such as Disco [294], Dane [225], COCOA+ [164] and accelerated gradient
method [184], and coding-based approaches [105, 156, 243, 286]. There are also many
works on communication avoiding linear algebra algorithms [21, 64, 248]. In our works,
we aim to connect coding techniques with these techniques, and characterize the tradeoff
between robustness, storage redundancy, and communication efficiency.

2.3.7 Noisy computing theory

The theory of robust computation with noisy components is started by the work of von
Neumann’s repetition-based construction [185] where an error-correction stage follows
each computation stage to keep errors suppressed. Subsequent works [70, 194, 196]
focus on minimizing the number of redundant gates, or the number of logic operations
while making error probability below a small constant. In all of these prior works, it
is usually assumed that both the computation units and the error-correction units (e.g.,
majority gates) are unreliable. However, the focus of these prior works is to study how
a circuit is constructed to compute certain functions. It does not allow preprocessing
steps to build some of the redundancy parts into the circuit in a reliable fashion. In
Chapter 3, we will see that the difference in our work is that we allow (noiseless)
precomputation based on the knowledge of the required function, which our scheme
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(ENCODED) explicitly relies on. This difference in problem formulation is also why some
of our achievable results on computational complexity might appear to beat the lower
bounds of [70, 194, 196]. Therefore, our results are applicable when the same function
needs to be computed multiple times for (possibly) different inputs, and thus the one-
time cost of a precomputation is worth paying for. In [194, Theorem 4.4], Pippenger
designed an algorithm to compute a binary linear transformation with noisy gates. The
algorithm requires gates with unrealistically high fan-in and extremely low gate-error
probability, which is too restricted for practical implementations.

Hadjicostis [108, 109] introduces finite-state fault-tolerant linear systems. The reliable
computation in [109] uses coding to correct state errors after each state transition. Error
control coding is also used in fault-tolerant parallel computing [238], AND-type one-step
computing with unreliable components [202] and applied to error-resilient systems on
chips (SoCs) [28]. The information-theoretic capacity of noisy computation is studied in
[231, 232].

The study on noisy circuits and computing systems [109, 194, 253] often focus on finite
fields. However, finite-field computing systems have limited applicability. It is therefore
of immense practical interest to extend ideas of finite-field noisy computing, possibly
with error control coding, to real-number settings. This need is widely recognized in
the study of coded computing. For example, for soft-error correction in the real-domain
fault-tolerant computing, we can use error control coding inspired from the field of
compressive sensing [20, 43, 44, 158, 219, 270, 293].

2.3.8 Fault-tolerance in encoding, decoding, and storage systems

There are a large amount of works on applying error correcting codes to fault-tolerant
encoders and decoders [71, 117, 244, 249, 249, 285]. Noisy decoders performing message-
passing algorithms can be analyzed using the density evolution technique [152, 212] as
well but the errors that happen during iterative decoding have to be take care of. In our
earlier work [273], the problem of reliable communication with a noisy encoder is studied.
In [273], noisy decoders are embedded in the noisy encoder to suppress errors repeatedly.
The noisy encoding problem is a special case of computing matrix-vector multiplication
when the matrix is the generator matrix of an error-correcting code, and the vector is the
message. In [103], which considers a similar problem, errors are modelled as erasures
on the encoding Tanner graph, and both worst-case and probabilistic analysis of noisy
encoding is provided.

Closer in the spirit of robust computation with unreliable elements, in [53, 144, 245],
the decoders (though not the encoders) for storage are assumed to be noisy as well.
For storage, which can be viewed as computing the identity function, Low-Density
Parity-Check (LDPC) codes [87] and Expander codes [233] have been used to correct
errors.
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2.3.9 Fault-tolerant signal processing and system processing

Researchers from the signal processing community have studied different problems
regarding the design of fault-tolerant systems. For example, in [209], faults in a linear
system are detected using Kalman-filtering based estimation. In [192, 203], adaptive
filters with redundant tap coefficients were designed to deal with faults in these coeffi-
cients. Fault-detection algorithms on circuits and systems with unreliable computation
units have also been studied extensively [8, 38, 54, 107, 204]. These algorithms often
assume that the detection units are reliable. The field of fault-tolerant signal processing
also includes deconvolution [145] and digital filtering [228].

2.3.10 Energy consumption in coding techniques

Energy consumption in decoding algorithms is an important field of study [31, 32, 99,
120]. While ignoring encoding and decoding costs is reasonable in long-range noisy
communication problems [99], where the required transmit energy tends to dominate
encoding/decoding computation energy, this can yield unrealistically positive results
in short-range communication [97, 98, 99] and noisy computing [96], especially in the
context of energy. The works cited above derive fundamental limits for simplistic imple-
mentation models that account for total energy consumption, including that of encoding
and decoding. One can also use adaptive ways to reduce the energy consumption
[120, 278].

2.3.11 Information dissipation in computing systems

Understanding information propagation is extremely useful in the understanding of
robust computing systems. The aim of understanding how information flows in cascade
channels and noisy circuits leads to the concept of information dissipation [79, 198, 279]
which has been studied extensively from an information-theoretic viewpoint. These
results often characterize and quantify the gradual loss of information as it is transmitted
through noisy cascaded channels using information-theoretic lower bounds. In many
classical network information theory problems, such as relay networks, the dissipation of
information is not observed because it can be suppressed by use of asymptotically infinite
blocklengths. The dissipation of information also cannot be quantified easily using
classical information-theoretic tools that rely on the law of large numbers. This study has
also yielded strong data processing inequalities that are essential for the understanding
of information propagation [14, 42, 77, 205], and are beyond those commonly used in
classical information theory.

Our works [273, 278] show that under some conditions, error-correcting codes can be
used to overcome information dissipation and achieve reliable linear computation using
unreliable circuit components. This is through combining information from multiple
computation paths and mixing the information to compensate for the information loss
on one path.
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2.3.12 In-network function computation

From an information-theoretic and in particular rate-distortion viewpoint, information
propagation is often studied from the perspective of distributed source coding for source
reconstruction or function computation. The related works in this area can be categorized
using the network structure, e.g., Gaussian multiple-access networks [237], three-node
relay networks [221], CEO-type function computing networks [141, 255, 256], line or tree
networks [17, 176, 222, 236, 251], and general lossless communication networks [128, 140].
The lossy function computation problem considered in Chapter 4 can be viewed as a
generalization of these prior works for the specific purpose of understanding distortion
accumulation in multi-stage computation networks.

The content in Chapter 4 is mainly inspired by the works by Su, Cuff and El Gamal [60,
240], which concerns outer bounds based on cut-set techniques in computation networks.
This line of works often study the fundamental limits on the rate or the computation time
that is required to meet specific fidelity requirements on function computation. However,
our work is beyond cut-set bounds and shows that the outer bounds in [60, 240] can be
significantly tightened by carefully examining the incremental distortions in multi-stage
computing networks.

Problems of in-network computing have also been extensively studied for the goal
of distributed data aggregation and distributed function computing [17, 60, 67, 93, 140,
141, 182, 222, 237, 247, 269, 279]. Some of the works consider the most communication-
intensive function: the identity function (see, e.g. [86, 95, 154, 178]). The results are
often obtained under specific assumptions on the network structure, including complete
networks [86, 95, 143, 186, 258], grid networks [132], random geometric networks [72, 126,
129, 154, 287, 298] and tree networks [81, 274, 279]. There are three major computation
models in the field of in-network computing: one-shot computation [86, 95, 126, 129,
132, 143, 154, 186], block computation [93, 140, 274, 279] and pipelined computation
[16, 22, 124, 134, 170].
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Chapter 3

Achievable result for the gate-level
failure model: binary matrix-vector
multiplication using entirely unreliable
components

3.1 Introduction

Why do we study the gate-level failure model? One reason is that noise and variation
issues in modern low-energy and low-area semiconductor devices require new design
principles of circuits and systems [36]. For example, beyond 22nm is the region of extreme
circuit component variations (see Figure 1.2). The saturation of “Dennard’s scaling” of
energy with smaller technology [65] also means that reducing CMOS transistor size no
longer leads to a guaranteed reduction in energy consumption.

While most modern implementations use overwhelmingly reliable transistors, we
will explore an appealing idea in this chapter, which is to allow errors in computation
deliberately, and design circuits and systems that can utilize the random nature of
these devices to reduce energy consumption. More specifically, in this Chapter, we
investigate the problem of reliable computation of binary matrix-vector multiplications
using circuits built entirely out of unreliable components, including the circuitry for
introducing redundancy and correcting errors. The results of this chapter mainly appear
in two papers [273, 278].

We will introduce the “ENCODED” technique (Encoded Computation with Decoders
EmbeddeD), in which noisy decoders are embedded inside the noisy encoder to repeat-
edly suppress errors (see Section 3.4 for an explanation). The entire computation process
is partitioned into multiple stages by utilizing the properties of an encoded form of the
matrix to be multiplied (see Section 3.3.1 for details). In each stage, errors are introduced
due to gate failures and then suppressed by embedded noisy decoders, preventing them
from accumulating. Intuition on why embedded decoders are useful is provided in
Section 3.3.2. The problem formulation and reliability models are detailed in Section 3.2.
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We consider both probabilistic error models (transient gate errors) and permanent-errors
models (defective gates).

In Section 3.3 and 3.4, we provably show that using ENCODED with LDPC decoders,
an L×K matrix-vector multiplication can be computed withO(L) operations per output
bit, while the output bit error probability is maintained below a small constant that
is independent of L and K. In Section 3.4.1, we use expander LDPC codes to achieve
worst-case error tolerance, while still using error-prone decoding circuitry. We show that
ENCODED can tolerate defective gates errors as long as the fraction of defective gates is
below a small constant. In Section 3.6, we use simulations to show that using exactly the
same types of noisy gates (even with the same fan-in), the achieved bit error ratio and
the number of iterations of ENCODED are both smaller than those of repetition-based
schemes. Since computing energy is closely related to the number of operations, this
shows an energy advantage of the ENCODED technique as well.

As we have mentioned in Section 1.2.2, energy consumption in circuit and systems is
an important aspect to consider for the algorithm design. Therefore, in Section 3.5, we go
a step further and systematically study the effect of the tunable supply voltage (“dynamic”
voltage scaling) on the total energy consumption by modeling energy-reliability tradeoffs
at the gate-level. For dynamic scaling, the gates are no longer homogeneous. We will
talk about the theoretical modeling on the energy-error tradeoff of spintronic devices
[41, 135, 169], which shows a possible application to tradeoff energy consumption and
reliability of simple logic components. We introduce a two-phase algorithm in which the
first phase is similar to ENCODED with homogeneous gates, but in the second phase,
the voltage (and hence gate-energy) is tuned appropriately, which leads to orders of
magnitude energy savings when compared with “static” voltage scaling (where the
supply voltage is kept constant through the entire computation process). We show that,
when the required output bit error probability is fixed, for polynomial decay of gate error
probability ε with gate energy E (i.e., ε = 1

Ec
), the energy consumption per output bit of

ENCODED with dynamic voltage scaling is in scaling sense smaller than ENCODED
with static voltage scaling (we note that energy for ENCODED with static voltage scaling
is still smaller than uncoded with static voltage scaling).

3.2 System model and problem formulation

In this section, we provide detailed explanations on the noisy circuit computation model.

3.2.1 Circuit model

We first introduce unreliable gate models and circuit models that we will use in this
chapter. We consider two types of unreliable gates: probabilistic gates and defective
gates.
Definition: (Gate Model I (D, ε)) The gates in this model are probabilistically unreliable
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Figure 3.1: An unreliable gate g (Gate Model I or II)

in that they compute a deterministic boolean function g with additional noise zg

y = g(u1, u2, ..., udg)⊕ zg, (3.1)

where dg denotes the number of inputs and is bounded above by a constant D > 3, ⊕
denotes the XOR-operation and zg is a boolean random variable which takes the value
1 with probability ε which is assumed to be smaller than 1

2
. The event zg = 1 means

the gate g fails and flips the correct output. Furthermore, in this model, all gates fail
independently of each other and the failure events during multiple uses of a single gate
are also independent of each other. We allow different kinds of gates (e.g. XOR, majority,
etc.) to fail with different probabilities. However, different gates of the same kind are
assumed to fail with the same error probability.
This model is similar to the one studied in [253] and the failure event is often referred to
as a transient fault. Our next model abstracts defective gates that suffer from permanent
failures.
Definition: (Gate Model II (D,n, α)) In a set of n gates, each gate is either perfect or
defective. A perfect gate always yields a correct output function

y = g(u1, u2, ..., udg), (3.2)

where dg denotes the number of inputs and is bounded above by a constant D > 3. A
defective gate outputs a deterministic boolean function of the correct output ỹ = f(g(·)).
This function can be either f(x) = x̄ (NOT function), f(x) = 0 or f(x) = 1 (also known as
the “stuck-at error”when a circuit wire gets shorted). The fraction of defective gates in the
set of n gates is denoted by α. Defective gates and perfect gates are not distinguishable.
The computation in a noisy circuit is assumed to proceed in discrete steps for which it is
helpful to have circuits that have storage components.
Definition: (Register) A register is an error-free storage unit that outputs the stored
binary value. A register has one input. At the end of a time slot, the stored value in a
register is changed to its input value if this register is chosen to be updated.
Remark 3. It is relatively straightforward to incorporate in our analysis the case when
registers fail probabilistically. A small increase in error probability of gates can absorb
the error probability of registers.
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Definition: (Noisy Circuit Model (G,R)) A noisy circuit is a network of binary inputs
s = (s1, s2, ...sL), unreliable gates G = {g1, g2, ..., gS } and registers R = {r1, r2, ..., rT }.
Each unreliable gate g ∈ G can have inputs that are elements of s, or outputs of other
gates, or from outputs of registers. That is, the inputs to an unreliable gate g are
si1 , . . . , sia , yj1 , . . . , yjb , rk1 , . . . , rkc , where a+ b+ c = dg, the total number of inputs to this
gate. Each register r ∈ R can have its single input from the circuit inputs s, outputs of
unreliable gates or outputs of other registers. For simplicity, wires in a noisy circuit are
assumed to be noiseless.

Definition: (Noisy Computation Model (L,K,Ncomp)) A computing scheme F employs
a noisy circuit to compute a set of binary outputs r = (r1, r2, ...rK) according to a set of
binary inputs s = (s1, s2, ...sL) in multiple stages. At each stage, a subset of all unreliable
gates G are activated to perform a computation and a subset of all registersR are updated.
At the completion of the final stage, the computation outputs are stored in a subset ofR.
The number of activated unreliable gates in the t-th stage is denoted by N t

comp. Denote
by Ncomp the total number of unreliable operations (one unreliable operation means one
activation of a single unreliable gate) executed in the noisy computation scheme, which
is obtained by

Ncomp =
T∑
t=1

N t
comp, (3.3)

where T is the total number of stages, which is predetermined.

The noisy computation model is the same as a sequential circuit with a clock. The
number of stages T is the number of time slots that we use to compute the matrix-
vector multiplication. In each time slot t, the circuit computes an intermediate function
ft(x) using the computation units on the circuit, and the result ft(x) is stored in the
registers for the computation in the next time slot t+ 1. The overall number of stages T
is predetermined (fixed before the computation starts). A computing scheme should be
feasible, that is, in each time slot, all the gates that provide inputs to an activated gate, or
a register to be updated, should be activated. In this chapter, we will only consider noisy
circuits that are either composed entirely of probabilistic gates defined in Gate Model I
or entirely of unreliable gates in Gate Model II.

3.2.2 Problem statement

The problem considered in this chapter is that of computing a binary matrix-vector
multiplication r = s ·A using a noisy circuit, where the input vector s = (s1, s2, ...sL),
the output vector r = (r1, r2, ...rK) and the L-by-K matrix A are all composed of binary
entries. We consider the problem of designing a feasible computing scheme F for
computing r = s · A with respect to Definition 3.2.1. Suppose the correct output is
r. Denote by r̂ = (r̂1, r̂2, ...r̂K) the (random) output vector of the designed computing
scheme F . Note that the number of operations Ncomp has been defined in Definition 3.2.1.
The computational complexity per bit Nper-bit is defined as the total number of operations
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per output bit in the computing scheme. That is

Nper-bit = Ncomp/K. (3.4)

For gates from Gate Model I (Definition 3.2.1), we are interested in keeping the
fraction of (output) errors bounded with high probability. This could be of interest, e.g.,
in approximate computing problems. To that end, we define another metric, δfrac

e , the
“bit-error fraction,” which is simply the Hamming distortion between the computed

output and the correct output (per output bit). That is, δfrac
e = maxs

1
K

K∑
k=1

1{r̂k 6=rk}, where

1{·} is the indicator function. The bit-error fraction depends on the noise, which is
random in Gate Model I. Thus, we will constrain it probabilistically (see Problem 11). The
resulting problems are stated as follows:
Problem 1.

min
F

Nper-bit, s.t. Pr(δfrac
e < ptar) > 1− δ, (3.5)

where ptar > 0 is the target block error fraction and δ is a small constant.
When we consider the Gate Model II (Definition 3.2.1), since all gates are determin-

istic functions, we are interested in the worst-case fraction of errors δfrac
e . Thus, the

optimization problem can be stated as follows:
Problem 2.

min
F

Nper-bit, s.t. max
s,Sidef s.t.|Sidef|<αinF,i,∀i∈W

δfrac
e < ptar, (3.6)

where s is the input vector, S idef is the set of defective gates of type i, W is the set of
indices of different types of noisy gates (such as AND gates, XOR gates and majority
gates), αi is the error fraction of the gates of type i, nF ,i is the total number of gates of
type i in the implementation of F , and ptar > 0 is the target fraction of errors. Note
that nF ,i is chosen by the designer as a part of choosing F , while the error-fraction αi is
assumed to be known to the designer in advance.

3.2.3 Technical preliminaries

We will use error correcting codes to facilitate the computation of the binary matrix-vector
multiplication. We will use a regular LDPC code [87] with code length N , dimension
K and a K × N generator matrix G. Please refer to Section 2.2.2 for more details on
the LDPC codes and the decoding algorithms. The embedded decoders use either the
Gallager-B decoding algorithm or the parallel bit flipping (PBF) algorithm.

Since we will consider noisy decoders, we will build on a more refined result, which
concerns a single decoding iteration of the algorithm (see the requirement (A.3) in
Section 2.2.2). The requirement in (A.3) can be met by using (dv, dc)-regular random
code ensembles and using the analysis in [39], which we will show in details (see
Lemma A.3.2). In particular, we show that almost all codes in the (9, 18)-regular code

1We will show that the bit-error fraction is constrained probabilistically (see Problem 1) for all input
vector s.
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ensemble of sufficiently large length N can reduce the number of errors by θ = 15%
after one iteration of the PBF algorithm, if the fraction of errors is upper-bounded by
α0 ≤ 5.1 · 10−4. We also show that at least 4.86% of the (9, 18)-regular codes of length
N = 50, 000 can reduce the number of errors by θ = 15% after one iteration of the PBF
algorithm, if the number of errors satisfies α0N ≤ 20, which is equivalent to α0 ≤ 0.0004.

3.3 A simplified version of main results

In this section, we present the overview of the main scheme that we use for noisy com-
putation of matrix-vector multiplications. We call this scheme “ENCODED” (Encoded
Computation with Decoders EmbeddeD).

3.3.1 ENCODED: a multi-stage error-resilient computation scheme

Instead of computing a binary matrix-vector multiplication r = s ·A without using any
redundancy, we will compute

x = r ·G = s ·AG, (3.7)

where G = [I,P] = [g1; g2; ...; gK ] is the K ×N generator matrix of the chosen systematic
LDPC code. The matrix product AG is assumed to be computed offline in a noise-free
fashion. An important observation is that since all rows in the matrix product AG are
linear combinations of the rows in the generator matrix G, the rows of AG are codewords
as well. That is,

G̃ = AG =


← g̃1 →
← g̃2 →
← ... →
← g̃L →

 (3.8)

where each row g̃l, l = 1, . . . , L is a codeword. Then, if the computation were noiseless,
the correct computation result r = s ·A could be obtained from the combined result

x = [r, r ·P] = r ·G. (3.9)

Since r ·G = s ·AG = s · G̃,

x = s · G̃ =
L∑
l=1

slg̃l. (3.10)

In the following sections, we will explain how error control coding can be used to reliably

compute x =
L∑
l=1

slg̃l. The basic idea is as follows: we break the computation into L stages,

so that the noiseless intermediate result after the l-th stage would be x(l) =
l∑

j=1

sjg̃j . When
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Figure 3.2: An illustration of the conceptual difference between classical noisy computing
schemes and the ENCODED technique.

gates are noise-free, x(l) is a codeword. When gates are noisy, during the l-th stage, we
first compute x(l−1) + slg̃l using noisy AND gates (binary multiplication) and noisy XOR
gates (binary addition) and then correct errors (with high probability) using an LDPC
decoder or an expander decoder to get x(l). During the entire computing process, AND
gates and XOR gates introduce errors, while the noisy decoders suppress errors. Finally,
it will be proved in Theorem 3.4.2 that error probability is maintained below a small
constant. We summarize the ENCODED technique in Algorithm 1.

Algorithm 1 ENCODED (Encoded Computation with Decoders EmbeddeD)
INPUT: A binary vector s = (s1, s2, ...sL).
OUTPUT: A binary vector x = (x1, x2, ...xN).
INITIALIZE
Compute G̃ = AG = [g̃1; g̃2; ...; g̃L]. Store an all-zero vector x(0) in an N -bit register.
FOR l from 1 to L
• UseN unreliable AND gates to multiply sl with g̃l, the l-th row in G̃, add this result

to x(l−1) using N unreliable XOR gates, and store the result in the N -bit register.2

• Use an unreliable decoder to correct errors and get x(l).
END
Output x(L) as the output x.

7These operations are assumed to be performed noiselessly, as discussed earlier.
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3.3.2 Intuition underlying the embedded decoders

The basic idea of our proposed computing scheme is to split the computation into a

multistage computation of x =
L∑
l=1

slg̃l, and use embedded decoders inside the noisy

circuit to repeatedly suppress errors as the computation proceeds. Since the noisy
circuit can only be constructed using unreliable gates, the embedded decoders are also
constituted by unreliable gates.

Why is such a multistage computation helpful? For instance, if “uncoded” matrix
multiplication r = sA is carried out, each output bit is computed using an inner product,
and O(L) unreliable AND and XOR-operations are required. Without repeated sup-
pression, each output bit is erroneous with probability 1

2
as L→∞. Intermediate and

repeated error suppression alleviates this error accumulation problem.
Also note that due to the ‘last-gate’ effect in noisy circuits, error probability cannot

approach zero. Thus, our goal is not to eliminate errors, but to suppress them so that
the error probability (or the error fraction) is kept bounded below a target value that
depends on the error probability of the last gate.

3.4 Main results on robust matrix-vector multiplication

In this section, we show that a matrix-vector multiplication can be computed ‘reliably’ (in
accordance with the goals of Problems 1-2 in Section 3.2.2) even in presence of noise,
using error correcting codes. We also compare resource requirements of this coding-
based computation with repetition-based computation using simulations (in Section
3.6.) Note that for the purpose of clearly presenting the main intuition, we only include
one algorithm called ENCODED-F. If the readers are interested, they can refer to the
tree-based algorithm ENCODED-T for more details [278].

3.4.1 ENCODED-F: reliable computation of matrix-vector multiplica-
tions using noisy gates

We modify ENCODED as follows: we partition the entire computing process into
⌈

L
ds−1

⌉
stages, where ds is called the group size. First, we store an all-zero codeword in the N -bit
register. In the l-th stage, we first use (ds − 1)N AND gates to obtain the ds − 1 scalar-
vector multiplications si · g̃i for i ∈ {(ds − 1)(l − 1) + 1, (ds − 1)(l − 1) + 2, . . . , (ds − 1)l},
where g̃i is the i-th row of the combined matrix G̃ = AG. Then, we use N XOR gates to
add the ds − 1 results to the N -bit register. The parameter ds is chosen so that ds ≤ D, the
maximum input to each noisy gate. After that, we use one iteration of the PBF algorithm
(see Section 3.3) to correct errors. We use P XOR gates and N majority gates in one
iteration of the PBF algorithm.

In what follows, we prove Theorem 3.4.1, which quantifies the error-tolerance of
ENCODED-F. The basic tool used to prove Theorem 3.4.1 is a modified version of the
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worst-case error correcting result in the requirement (A.3), which provides the worst-
case error correcting capability of regular LDPC codes using one iteration of noisy PBF
decoding.
Theorem 3.4.1 (Error Suppression Using the PBF algorithm for Problem 3). Using unre-
liable AND gates, XOR gates and majority gates from Gate Model II (D,n, α) with respective
error fractions αand, αxor and αmaj respectively, and using an (dv, dc)-regular LDPC code which
satisfies (A.3) to implement ENCODED-F with group size ds, as long as

(ds − 1)αand + [D(1−R) + 1]αxor + αmaj < θα0, (3.11)

the binary matrix-vector multiplication r = sA can be computed using N AND gates, (N + P )

XOR gates, and N majority gates, and the number of operations per bit is at most 2N+P
K

⌈
L

ds−1

⌉
+

NL
K

= Θ(LN
K

). Further, the error fraction of the final output is at most α0.

Proof of Theorem 3.4.1. We use induction on the stage index l to derive an upper bound on
the number of errors. In the first stage, N(ds− 1) AND gates and N XOR gates introduce
at most N [(ds − 1)αand + αxor] errors, which is upper bounded by

(ds − 1)αand + αxor < θα0, (3.12)

which can be obtained by combining (3.11). Suppose in the (l−1)-th stage, after adding a
set of (ds−1) codewords si · g̃i, i ∈ {(ds−1)(l−2)+1, (ds−1)(l−2)+2, . . . , (ds−1)(l−1)}
to the N -bit register, the number of errors is strictly less than Nα0.

Then, according to condition (A.3), if no computation errors occur during execution
of one iteration of PBF algorithm, the fraction of errors can be reduced to Nα0(1 − θ).
Whenever an XOR gate flips the corresponding parity check value during the PBF
algorithm, it affects at most dc majority gates. In total, there are P XOR gates used
in one iteration of the PBF algorithm, so there are at most αxorPdc errors due to XOR
errors in the PBF algorithm. There are at most αmajN errors due to majority gate failures.
After this iteration of bit flipping, another set of (ds − 1) codewords sigi is added to
the N -bit register with N(ds − 1) AND gates and N XOR gates. These two operations
introduce (αxor + αand(ds − 1))N errors. Therefore, the total error fraction before the next
PBF algorithm is upper bounded (using the union bound) by

αPBF ≤ Nα0(1− θ)+[dc(1−R) + 1]αxor

+αmaj + (ds − 1)αand,
(3.13)

where R is the code rate (R = N−P
N

). As long as (3.11) holds and dc ≤ D, before the next
bit flipping, it holds that

αPBF ≤ Nα0(1− θ) + θNα0 = α0N. (3.14)

Therefore, the induction can proceed.
In each stage, we need N + P XOR-operations and N majority-operations. During

the entire computation, we need NL AND-operations. Therefore, the computational
complexity per output bit, which is the total number of operations in dL/(ds − 1)e stages
divided by K bits, is (2N + P ) dL/(ds − 1)e /K + NL

K
.
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ENCODED-F can be applied to Gate Model I as well, which is characterized in the
following theorem.
Theorem 3.4.2 (Error Suppression Using PBF algorithm for Problem 2). Using unreliable
AND gates, majority gates and XOR gates from Gate Model I with respective gate error prob-
abilities pand, pxor and pmaj, and using an (dv, dc)-regular LDPC code which satisfies (A.3) to
implement ENCODED-F with group size ds, as long as

max{pand, pxor, pmaj}

< λ :=
θα0/2

(ds − 1) + [dc(1−R) + 1] + 1
,

(3.15)

the binary matrix-vector multiplication r = s ·A can be computed using 2N+P
K

⌈
L

ds−1

⌉
+ NL

K
=

Θ(LN
K

) operations per bit. Further, the final error fraction δfrac
e satisfies

Pr(δfrac
e < α0) > 1− P blk

e , (3.16)

where the probability P blk
e satisfies

P blk
e < 3L exp (−λ∗N) , (3.17)

where

λ∗ = D(2λ‖λ) = (2 log 2− 1)λ+O(λ2). (3.18)

Proof. See Appendix A.1.

Remark 4. The analysis of the PBF algorithm requires finding codes that satisfy As-
sumption (A.3) (see Appendix A.3), which still requires randomized code constructions.
Another method to analyze the bit flipping algorithm is to use Expander codes (also
see Appendix A.3). However, hardware-friendly expander codes tend to be hard to
construct and use in practice, while many hardware-friendly LDPC codes have been
designed. In fact, we included a tree-based algorithm ENCODED-T in [278] because
ENCODED-T works for all regular LDPC codes and does not require the assumption that
a code satisfying (A.3) exists. For a comparison between ENCODED-T and ENCODED-F,
see [278].

The following converse result holds for all computation schemes. Although this
converse result does not match with any of the achievable results listed above, it matches
with an achievable result when a “noiseless decoder” is available (details will be provided
in [278]) in the scaling of the target error probability ptar. Thus, we believe the converse
result captures the required computational complexity for the beginning stages of the
matrix-vector multiplication computation.
Theorem 3.4.3 (Converse result). For Gate Model I with error probability ε, maximum fan-in
D, and the matrix-vector multiplication r = s · A with A having full row rank, in order to
achieve P blk

e smaller than ptar, the number of operations required per bit is lower bounded as
Nper-bit ≥ L log 1/ptar

KD logD/ε
= Ω(L log 1/ptar

K log 1/ε
).

Proof. See Appendix A.2.
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3.4.2 Theoretical comparison with repetition coding

In this chapter, although we obtain results on the number of operations for ENCODED
in Theorem 3.4.2, the results are biased for the comparison between ENCODED and
repetition-based schemes, because the number of operations do not take into account
the gate fan-in. Therefore, to compare the complexity of operations with different fan-
in, we define a new concept called “effective number of operations”. We assume that
the “effective number of operations” for an operation with fan-in c is Nc-fan-in = c (the
analysis for a different Nc-fan-in can be done similarly). We show that if we consider
the problem of find a binary matrix-vector multiplication scheme that achieves target
error probability ptar = 5.1 · 10−4 using only noisy gates with max(pxor, pmaj, pand) <
1.3 · 10−6, the effective number of operations of ENCODED-F is smaller than that of
distributed majority voting, provided that the size of the matrix-vector multiplication
satisfies N = 2K > 9.85 · 107, and L > ptar

pand
. We choose these parameters only to show

that ENCODED can provably beat repetition-based schemes in situations when the
parameters are not absurdly large, and hence the theoretical analysis here has potential to
provide practical insight. Here max(pxor, pmaj, pand) is interpreted as the maximum error
probability over all types of different gates, which allows the same type of gates (i.e.,
MAJ-gates) with different fan-in to have different error probabilities.

Counting the effective number of operations

First, we compare the effective number of operations in both schemes. For ENCODED-F,
we use a (9, 18) code. To make the comparison fair, we allow the distributed majority
voting scheme to group several stages into one stage as well. Recall that we use ds to
denote the number of stages that ENCODED-F groups into one stage. Therefore, we use
d′s to denote the number of stages that distributed majority voting groups into one stage.
In general, ds 6= d′s.

We compare ENCODED-F using (9,18) LDPC codes with distributed majority voting
with three-time repetition. We show when

ds > 14, (3.19)

the “effective” number of operations in ENCODED-F is less than that of distributed
majority voting. Note that d′s can be arbitrary.

The number of compute-and-correct stages in ENCODED-F is
⌈

L
ds−1

⌉
, and that of

distributed majority voting is
⌈

L
d′s−1

⌉
. For the ease of analysis, assume L is a multiple of

both ds − 1 and d′s − 1. For ENCODED-F, in each compute-and-correct stage, we need N
XOR-operations of fan-in ds for binary addition, P XOR-operations of fan-in dc and N
MAJ-operations of fan-in dv for LDPC decoding. In all compute-and-correct stages, the
overall number of AND-operations of fan-in 2 is NL. Then,

N ENC
XOR−ds,per-bit =

N

K

⌈
L

ds − 1

⌉
=

2

ds − 1
L, (3.20)
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N ENC
XOR−dc,per-bit =

P

K

⌈
L

ds − 1

⌉
=

1

ds − 1
L, (3.21)

N ENC
MAJ−dv,per-bit =

N

K

⌈
L

ds − 1

⌉
=

2

ds − 1
L, (3.22)

N ENC
AND−2,per-bit =

NL

K
= 2L. (3.23)

In the distributed majority voting scheme with repetition time 3, the number of
operations per output bit is

N
Rep

XOR−d′s,per-bit = 3

⌈
L

d′s − 1

⌉
=

3

d′s − 1
L, (3.24)

N
Rep

MAJ−3,per-bit = 3

⌈
L

d′s − 1

⌉
=

3

d′s − 1
L, (3.25)

N
Rep

AND−2,per-bit = 3L. (3.26)

Therefore, from (3.20)-(3.23), for ENCODED-F with dc = 18 and dv = 9, the effective
number of operations is

N ENC
eff = ds ·

2

ds − 1
L+ dc ·

1

ds − 1
L+ dv ·

2

ds − 1
L+ 2 · 2L

=
36 + 2ds
ds − 1

L+ 4L =
38

ds − 1
L+ 6L.

(3.27)

From (3.24) to (3.26), for distributed majority voting, the effective number of operations
is

N
rep

eff = d′s ·
3

d′s − 1
L+ 3 · 3

d′s − 1
L+ 2 · 3L

=
3d′s + 9

d′s − 1
L+ 6L =

12

d′s − 1
L+ 9L > 9L.

(3.28)

Therefore, when ds > 14,

N ENC
eff <

38

13
L+ 6L < 3L+ 6L = 9L < N

rep
eff . (3.29)

Analyzing the probability of error

Now, we analyze the error probability of ENCODED-F for ds = 14, dc = 18 and dv = 9.
From Lemma A.3.1 in Appendix A.3, using almost all codes in a (dv, dc)-regular LDPC
random code ensemble with dv > 4 and N large enough, after one iteration of the PBF
algorithm, one can reduce the number of errors by at least θα0N for any α0N worst-case
errors if α0 and θ are small enough. That is, using a (dv, dc)-regular LDPC code, the
number of errors after one iteration of noiseless PBF algorithm will be smaller than

50



α0 · (1− θ). Recall that this is the condition (A.3) that we require on the utilized LDPC
code. In Example 1 in Appendix D, for the (9, 18)-regular LDPC code, we computed
numerically the threshold value of α0 for θ = 0.15 and obtained α0 = 5.1 · 10−4. We also
obtained finite-length bounds which state that there exist (9, 18)-regular LDPC codes
with length N = 50, 000 that can reduce the number of errors by 15% for an arbitrary
pattern of at most 20 errors, which corresponds to the case when α0 = 4 · 10−4 and
θ = 0.15.

From Theorem 3, using the (9,18) code, when the maximum gate error probability
ε = max(pxor, pmaj, pand) satisfies the condition

ε < λ =
θα0/2

(ds − 1) + [dc(1−R) + 1] + 1

=
θα0/2

(14− 1) +
[
18(1− 1

2
) + 1

]
+ 1

=
θα0

54
,

(3.30)

ENCODED-F has bounded final error fraction with high probability, which is

1− P blk
e > 1− 3L exp (−D(2λ‖λ)N) , (3.31)

where λ = θα0

54
and D(2λ‖λ) = (2 log 2− 1)λ+O(λ2).

In particular, if we choose ε = 1
60
θα0 <

1
54
θα0 = λ, the final error fraction satisfies

δfrac
e < α0 = 60

θ
· ε with probability 1− 3L exp (−D(2λ‖λ)N). As we have mentioned, for

θ = 0.15, we obtain α0 = 5.1 · 10−4. Therefore, when the gate error probabilities satisfy
max(pxor, pmaj, pand) = ε = 1

60
θα0 = 0.0043α0 = 1.3 · 10−6, the obtained error probability is

smaller than α0 = 60/θ0 · ε = 400ε = 5.1 · 10−4 with probability 1− 3L exp (−D(2λ‖λ)N),
which is approximately 1 with reasonably large N , which can be guaranteed3 if N >

50
D(2λ‖λ)

≈ 50
(2 log 2−1)·λ = 50

(2 log 2−1)· 1
60
θα0

= 5.02·104

α0
= 9.85 · 107.

Therefore, if we consider the problem “find a binary matrix-vector multiplication
scheme that achieves target error probability ptar = α0 = 5.1 · 10−4 using only noisy gates
with max(pxor, pmaj, pand) < 1.3 · 10−6”, ENCODED-F has smaller “effective number of
operations” than that of distributed majority voting. Additionally, one-time repetition
or two-time repetition cannot obtain ptar = α0 = 5.1 · 10−4 when L is reasonably large
so that 1

2
[1 − (1 − 2pand)L] ≈ Lpand > α0. Thus, we conclude that ENCODED-F beats

repetition-based schemes under this circumstance. Here, we acknowledge that the
problem parameters (such as max(pxor, pmaj, pand) < 1.3 · 10−6 and N > 9.85 · 107) are
chosen to show that the theoretical analysis works even when the parameter sizes are not
extremely large, and thus the theoretical analysis technique has the potential to provide
practical insight.

3We believe that further optimization in code design can provide techniques for error suppression for
even smaller value of N .
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3.5 Main results on energy efficient matrix vector multi-
plication

In this section, we consider unreliable gates with tunable failure probability [78] when
supply voltage, and hence energy consumed by gates, can be adjusted to attain a desired
gate-reliability. To model this property within Gate Model I in (3.1), we assume that
the added noise zg ∼ Bernoulli(εg(Eg)), in which εg(Ev) is a function that depends on
the supply energy Ev. We assume that Ev is identical for all gates at any stage of the
computation, while it can vary across stages. Intuitively, εg(·) should be a monotonically
decreasing function, since the error probability should be smaller if more energy is
used. Suppose the energy-reliability tradeoff functions of AND-gates, XOR-gates and
majority-gates are εand(·), εxor(·) and εmaj(·) respectively. Then, the failure probability of
these three types of gates are pand = εand(Ev), pxor = εxor(Ev) and pmaj = εmaj(Ev).

3.5.1 ENCODED-V: low-energy matrix-vector multiplications using
dynamic voltage scaling

We modify the ENCODED-F technique in Section 3.4.1 with ‘dynamic’ voltage scaling to
obtain arbitrarily small output error fraction. The gate model here is Model I. The original
ENCODED-F technique has dL/(ds − 1)e stages, where in each stage, a noisy decoder of
the utilized LDPC code is used to carry out one (noisy) iteration of PBF decoding. In the
original ENCODED-F technique, we assumed that gate failure probability is constant
(and equal for all gates) throughout the duration of the computation process. Here,
we partition the entire ENCODED-F technique into two phases. In the first phase, we
use constant supply energy, while in the second phase, we increase the supply energy
as the computation proceeds, so that the gate failure probability decreases during the
computation process, in order to achieve the required output error fraction with high
probability.

For ease of presentation, we consider the case when ds = 2, i.e., we only add ds −
1 = 1 codeword to the N -bit storage at each stage. The extension to general ds is
straightforward. We partition the entire ENCODED-F so that there are L− Lvs stages in
the first phase and Lvs stages in the second phase, where Lvs is defined as

Lvs =

⌈
log 1

ptar
+ logα0

log 1
1− 1

2
θ

⌉
, (3.32)

where ptar is the required final output error fraction. In the i-th stage of the last Lvs stages,
we assume that the supply energy is increased to some value to ensure that

[dc(1−R) + 1]p(i+1)
xor + p

(i+1)
maj + p

(i+1)
and ≤ 1

4
θα0

(
1− 1

2
θ

)i
. (3.33)

We call this (dynamic) voltage-scaling scheme the ENCODED-V technique.
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Theorem 3.5.1. (Using dynamic voltage scaling for Problem 1) Using unreliable AND gates,
majority gates and XOR gates defined from Gate Model I (D, ε) with maximum fan-in D and
error probability pand, pxor and pmaj, and using a regular LDPC code that satisfies assumption
(A.3), the binary matrix-vector multiplication r = s ·A can be computed using the ENCODED-F
technique with dynamic voltage scaling, with per-bit energy consumption

Eper-bit =

L− Lvs

K

[
Nε−1

and (pand) +Nε−1
maj

(
pmaj
)

+ (N + P )ε−1
xor (pxor)

]
+
N

K

Lvs∑
i=1

ε−1
and

(
p

(i)
and

)
+
N

K

Lvs∑
i=1

ε−1
maj

(
p

(i)
maj

)
+
N + P

K

Lvs∑
i=1

ε−1
xor

(
p(i)

xor

)
,

(3.34)

where Lvs, which is a function of ptar, is defined in (3.32). Further, the output error fraction is
below ptar with probability at least 1− P blk

e , where the probability P blk
e satisfies

P blk
e < 3(L− Lvs) exp (−λ∗N) + 3

Lvs∑
i=1

exp
(
−λ̃(i+1)N

)
, (3.35)

where
λ∗ = D(2λ‖λ) = (2 log 2− 1)λ+O(λ2),

λ̃(i+1) = D(2λ(i+1)‖λ(i+1))

= (2 log 2− 1)λ(i+1) +O((λ(i+1))
2
),

λ = θα0/2
[dc(1−R)+1]+2

,

λ(i+1) =
θα0(1− 1

2
θ)
i
/4

[dc(1−R)+1]+2
.

(3.36)

Proof. See Appendix A.4.

We consider three specific cases of energy-reliability tradeoff: exponential decay
model εand(u) = εxor(u) = εmaj(u) = exp(−cu), c > 0, polynomial decay model εand(u) =
εxor(u) = εmaj(u) = ( 1

u
)c, c > 0 or sub-exponential decay model εand(u) = εxor(u) =

εmaj(u) = exp(−c
√
u), c > 0. We evaluate the total energy consumption per output bit

under a specific choice of supply energy that ensures the condition (3.33).
Corollary 3.5.2. Using a (dv, dc) regular LDPC code that satisfies assumption (A.3) (with
parameters α0 and θ) and has length N > 1

θ∗
log
(

6L
ptar

)
, where

θ∗ = min {λ∗,

D

(
2

θptar
(
1− 1

2
θ
)
/4

[dc(1−R) + 1] + 2

∥∥∥∥∥ θptar
(
1− 1

2
θ
)
/4

[dc(1−R) + 1] + 2

)}
,

(3.37)

and λ∗ is defined in (3.36), the ENCODED-V technique can achieve output bit error probability
ptar with total energy consumption pet bit Eper-bit: When the energy-reliability tradeoff function
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Table 3.1: This table shows the energy-reliability tradeoffs of different computing schemes
under different gate error probability models.

uncoded ENCODED-T ENCODED-V

ε = exp(−cu) Ω
(
L log L

ptar

)
Θ
(
LN
K

log 1
ptar

)
O
(
N
K

max{L, log2 1
ptar
}
)

ε = ( 1
u
)c Ω

(
L( L

ptar
)

1
c

)
Θ
(
LN
K

( 1
ptar

)
1
c

)
O
(
N
K

max

{
L,
(

1
ptar

) 1
c

})
ε = exp(−c

√
u) Ω

(
L log2 L

ptar

)
Θ
(
LN
K

log2 1
ptar

)
O
(
N
K

max{L, log3 1
ptar
}
)

εand(u) = εxor(u) = εmaj(u) = ( 1
u
)c, c > 0, Eper-bit = O

(
N
K

max

{
L,
(

1
ptar

) 1
c

})
; when the

energy-reliability tradeoff function εand(u) = εxor(u) = εmaj(u) = exp(−cu), c > 0, Eper-bit =

O
(
N
K

max{L, log2 1
ptar
}
)

; when the energy-reliability tradeoff function εand(u) = εxor(u) =

εmaj(u) = exp(−c
√
u), c > 0, Eper-bit = O

(
N
K

max{L, log3 1
ptar
}
)

.

Proof. See Appendix A.5.

We use Table 3.1 to show the energy-reliability tradeoff of “uncoded” matrix multipli-
cation, ENCODED-T and ENCODED-V. The resutls of ENCODED-T are from [278].

3.6 Simulation results

We use simulations to compare ENCODED and repetition-based schemes. In particular,
we provide a comparison between ENCODED-F and a particular repetition-based scheme
called “distributed voting scheme” (see [109] for details on the distributed voting scheme),
that is designed for pmaj > 0. This method repeats not only the computation part, but also
the majority voting part of the repetition-based circuit. The illustration of the distributed
voting scheme is shown in Fig. 3.3. In this way, we can compare the (repetition-coding
based) distributed voting scheme with ENCODED that both use noisy gates.

The performance comparison is shown in Fig. 3.4. In the distributed majority scheme,
we use three-time repetition or four-time repetition. For ENCODED-F, we set dv = 4,
dc = 8, ds = 8, K = 2000, L = 2100, N = 4000. We set pand = 0.000125, pmaj = 0.0005 and
pxor = 0.001. We set these error parameters because we assume that the error probability
of each gate is proportional to its fan-in number (we use 2-input AND-gates, 4-input
MAJ-gates and 8-input XOR gates). Note that the number of compute-and-correct stages
in ENCODED-F should be

⌈
L

ds−1

⌉
= 300. In one compute-and-correct stage, we need N

XOR-operations of fan-in ds = 8 for binary addition, P XOR-operations of fan-in dc = 8
for parity computation and N MAJ-operations of fan-in dv = 4 for majority computation.
In all 300 stages, we also need NL AND-operations of fan-in 2. Therefore the number of
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Copy 1
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=x(i-1)+sigijjx(i)

j

Voter 1

Voter 2

Voter 3

Figure 3.3: This is the illustration of the 3-time distributed voting scheme for computing
an inner product s ·aj = s1a1j + s2a2j + . . . sLaLj , where s is the input to the matrix-vector
multiplication sA, and aj is the j-th column of A. The computation is divided into L
stages. In the i-th stage, the distributed voting scheme computes x(i)

j = x
(i−1)
j + sigij for

three times using three sets of AND-gates and XOR-gates, uses three noisy majority-gates
to compute three copies of the majority votes. Then, the output of each majority value is
sent to the corresponding copy for the computation in the next stage.

operations per output bit for ENCODED-F is

N ENC
XOR−8,per-bit =

N + P

K

⌈
L

ds − 1

⌉
=

3

7
L, (3.38)

N ENC
MAJ−4,per-bit =

N

K

⌈
L

ds − 1

⌉
=

2

7
L, (3.39)

N ENC
AND−2,per-bit =

NL

K
= 2L. (3.40)

In the distributed majority voting scheme with repetition time tm (tm can be 3 or 4 when
the majority gate with fan-in 4 is used), the number of operations per output bit is

N
Rep

XOR−8,per-bit = tm

⌈
L

ds − 1

⌉
=
tm
7
L, (3.41)

N
Rep

MAJ−tm,per-bit = tm

⌈
L

ds − 1

⌉
=
tm
7
L, (3.42)

N
Rep

AND−2,per-bit = tmL. (3.43)

Therefore, when the repetition time tm is 3 or 4, the number of operations per output bit
for ENCODED-F is always smaller than the number of operations per output bit for the
distributed majority voting scheme.
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Figure 3.4: In this figure, a simulation result of ENCODED-F using a (4,8) regular
LDPC with ds = 8 is shown. The code length N = 4000, the size of the matrix-vector
multiplication satisfies L = 2100 and K = 2000. A comparison with the distributed
majority voting schemes with repetition time 3 and 4 is also shown. The gate error
probabilities are set to pand = 0.000125, pmaj = 0.0005 and pxor = 0.001 in both ENCODED-
F and the distributed majority voting scheme.

3.7 Conclusions and future directions

In this chapter, we presented the ENCODED technique that can compute reliable matrix-
vector multiplication using entirely unreliable logic gates. The key idea that ENCODED
relies on is to repeatedly suppress errors in computation process by, in a sense, encoding
the computation matrix of the matrix-vector multiplication, instead of encoding inputs (as
is done in traditional communication). Using ENCODED, both probabilistic errors and
worst-case errors can be kept suppressed. Further, we used thorough numerical analysis
to show that ENCODED outperform repetition-based strategies that are commonly used
today. Inspired by voltage-scaling techniques commonly used to reduce power in circuit
design, we also analyzed possible gains attainable using ‘static’ and ‘dynamic’ voltage
scaling in conjunction with our ENCODED technique.

One limitation of the technique in this chapter is that it is limited to finite fields
instead of real number coding. It turns out that the extension to real-number coding can
indeed be made. One can refer to the two case studies in Chapter 9 and 10 respectively
for real-number coded computing with either noisy and noiseless decoding. In Chapter
9, we also use LDPC-type coding techniques for error-correction over reals.
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Chapter 4

Fundamental limit: quantifying
distortion accumulation for measuring
error accumulation in computing
systems

4.1 Introduction

As we have mentioned in Section 1.2.3, when examining computational problems, a
fundamental question to ask is “what is the correct measure of error accumulation”.
For example, in the computation with noisy or unreliable components, the inaccuracy
can accumulate. In this chapter, we will see one possible way to measure and quan-
tify error that we believe is fundamental. Specifically, we look at the problem of error
accumulation in multi-stage linear computation problems, and we call the measure
of accumulation of error the distortion accumulation phenomenon. Note that a similar
problem has been studied in the field of information dissipation, and here, we present
results on the dissipation of information in multi-stage computation problems due to
successive quantizations. The dissipation of information usually cannot be quantified
easily using classical information-theoretic tools that rely on the law of large numbers,
because the dissipation of information is often due to finite-length of codewords and
power constraints on the channel inputs. In many classical network information theory
problems, such as relay networks, the dissipation of information is not observed because
it can be suppressed by use of asymptotically infinite block length. Quantifying dissi-
pation of information requires tools that go beyond those commonly used in classical
information theory, e.g., cut-set techniques and the data processing inequality.

In this chapter, we show that in distributed lossy computation, information does dis-
sipate. This chapter is a review of the papers [274, 279]. We first study the problem
of lossily computing a weighted sum of Gaussian vectors (i.e., a matrix-vector multi-
plication) over a tree network at an arbitrarily determined sink node. We prove that
distortion must accumulate, and hence information, if measured in the way of mean-
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square distortion, must dissipate, along the way from leaves to the sink node due to
repeated lossy quantization of distributed data scattered in the network. In contrast with
dissipation results in communication, this information loss, measured in mean-square
distortion, happens even at infinite block length. Moreover, by quantifying incremental
distortion, i.e., an incremental information loss on each link of the tree network, we
derive an information-theoretic outer bound on the rate-distortion function that is tighter
than classical cut-set bounds obtained for this problem in the work of Cuff, Su and El
Gamal [60]. Using the same technique, we improve the classical outer bound on the sum
rate of network consensus (all nodes compute the same matrix-vector multiplication)
for tree networks from O

(
nlog2

1
n3/2D

)
(see [240, Proposition 4]) to O

(
nlog2

1
D

)
, where n

is the number of nodes in the tree network and D is the required overall distortion. In
Remark 6, we provide the intuition underlying the difference between our bound and
the cut-set bound for lossy in-network computation. Note that although our definition
of information loss (measured in terms of distortion accumulation) is different from that
of [198], this definition provides a new perspective in this line of study.

In Section 4.3 and Section 4.4, we provide information-theoretic bounds on the rate-
distortion function for matrix-vector multiplication in a tree network, where the function
is computed at an arbitrarily predetermined sink node. For simplicity, we restrict our
attention to independent Gaussian vectors. In Section 4.5, we extend our results to the
problem of network consensus, in which all nodes compute the same matrix-vector
multiplication result. In both cases, the difference between the inner and outer bounds is
shown to approach zero in the high-resolution (i.e., zero distortion) limit. Note that in [60,
Section V], the authors show a constant difference between their lower and the inner
bounds in the Gaussian case. Using our improved outer bound, we can upper-bound the
difference by O(D1/2), where D is the required distortion. Therefore, the inner bound
and the outer bound match in the asymptotic zero-distortion limit. In the special case of
a line network, we show that the rate-distortion function is very similar to the reverse
water-filling result for parallel Gaussian sources [59, Theorem 10.3.3].

The achievable scheme obtained in this chapter is based on random Gaussian code-
books. The main difficulty here is to bound the overall distortion for random coding
in matrix-vector multiplication computation by generalizing classical random coding
to multi-stage computing problems. To generalize classical random coding on point-to-
point channels, and compute the overall distortion, we quantify a non-trivial equivalence
between random-coding-based estimates and MMSE estimates. Relying on the distortion
accumulation result for MMSE estimates, we equivalently obtain the distortion accumu-
lation result for Gaussian random codebooks, and hence obtain the overall distortion.
This equivalence between random coding and MMSE is easy to obtain for point-to-point
channels, but hard for network function computation, due to information loss about
the exact source distribution after successive quantization. The essential technique is to
bound this information loss using bounds on associated KL-divergences, and hence to
show the equivalence between network computation and point-to-point communications.
(See also Remark 8 for details on why our analysis is conceptually different from classical
techniques such as Wyner-Ziv coding and why such new proof techniques are needed.)
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4.1.1 Applications

Since the primary motivation for this chapter is to provide a thorough understanding of
error accumulation in computing systems, the content is mostly theoretical. Therefore,
we think it is useful to comment on some applications of the proof techniques developed
in this chapter. Apart from data aggregation and network consensus, which are the
two main problems in this chapter, the proof techniques on distortion accumulation are
also useful for understanding the fundamental limits of many other problems when
communication overhead dominates the overall distributed computing cost. One such
example application is of current interest is “distributed data summarization” often
done through the computation of histograms. A good example is distributed word
counting: document data are stored distributedly in many workers organized in a data-
center network, and the goal is to compute an overall histogram of the word counts.
The general problem of data summarization aims to obtain the final summarization of
distributed data by computing a linear combination of the summarizations of data at
different workers. Another exciting application [176] is when data comes in a streaming
fashion, and the storage minimization problem in a timeline network in [176] is related
to the computation rate minimization problem in a line network in our framework.

4.1.2 Notation and preliminary results

Quantities that measure mean-square distortions are denoted by D or d with subscripts
and superscripts. The calligraphic letter T = (V , E) is used to represent a tree graph with
a node set V = {vi}ni=0 with cardinality n+ 1 and an edge set E . In this chapter, an edge
is always undirected1. The neighborhood N (vi) of a node vi is defined as all the nodes
that are connected with vi. A root node v0 is specified for the tree graph. For an arbitrary
node vi 6= v0, a unique parent of vi on the path from vi to v0 can be determined, which is
denoted as vPN(i). The children of vi are defined as the set of nodes {vj ∈ V | vi = vPN(j)}.
The descendants of vi are defined as the set of nodes that includes all nodes vj that have
vi on the unique path from vj to the root v0. The set Si is used to denote the set that is
constituted by node vi and all the descendants of vi. As shown in Fig. 4.1, the set S is
constituted by a node vb and its descendants. Thus, in Fig. 4.1, S = Sb and va = vPN(b).
When there is no ambiguity, we use v1, v2, . . . vd to denote the children of a particular
node vb.

First, we state the orthogonality principle and the statisticians’ Pythagoras theorem,
which we will use frequently in this chapter.
Lemma 4.1.1. (Pythagoras theorem, [265, Theorem 9.4], [220, Section 8.1]) For a random
(vector) variable X such that E[X>X] < ∞ and a σ-algebra G, the conditional expectation
E[X|G] is a version of the orthogonal projection of X onto the probability space L2(Ω,G,P): for
all G-measurable (vector) functions Y , it holds that Y ⊥ (X − E[X|G]), or equivalently

E
[
Y (X − E[X|G])>

]
= 0. (4.1)

1Although we consider an undirected tree graph, we specify a unique root node, which makes the
subsequent definitions on descendants and children valid.
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root/sink

Figure 4.1: This is an illustration of matrix-vector multiplication considered in this chapter.
The goal is to compute a weighted sum of distributed Gaussian vectors (i.e., matrix-
vector multiplication) over a tree-network. The notation Mb→a denotes the message, or
the set of bits, transmitted from vb to va. The set S in this figure can also be written as Sb,
which denotes the set that contains vb and all its descendants in the network.

Second, we provide a lemma that describes the relationship between the Kullback-
Leibler divergence and the mean-square error under Gaussian smoothing.
Lemma 4.1.2. ([268][206, Lemma 3.4.2]) Let x and y be a pair of N -dimensional real-valued
random vectors, and let z ∼ N (0N , IN) be independent of (x,y). Then, for any t > 0,

D
(
Px+

√
tz||Py+

√
tz

)
≤ 1

2t
E
[
‖x− y‖2

2

]
. (4.2)

Proof. See the paper [279] for a detailed proof.

4.2 System model and problem formulation

We consider a matrix-vector multiplication problem in a tree network T = (V , E). Sup-
pose each node vi ∈ V has an independent random vector xi ∼ N (0N , IN). We assume
that only bits can be sent on the network links. The objective is to obtain a weighted

sum y =
n∑
i=1

wixi, i.e. matrix-vector multiplication result, at the pre-assigned sink node

v0. In Section 4.5, we will also consider an extension of the problem where the same
matrix-vector multiplication is computed at all nodes.

There are T time slots. In each time slot, only one node transmits along only one edge.
At each time slot t, the transmitting node v(t) computes a mapping ft (whose arguments
are to be made precise below) and transmits an encoded version gt(ft) to one of its
neighbors through the edge e(t). Each encoding mapping gt outputs a binary sequence
of a finite length. The arguments of ft may consist of all the information available at the
transmitting node v(t) up to time t, including its observation xv(t), randomly generated
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data, and information obtained from its neighborhood up to time t. Note that the total
number of time slots T can be greater than number of vertices n in general, i.e., nodes
may be allowed to transmit multiple times. For an arbitrary link vi → vj , define Mi→j
as all the bits transmitted on the link vi → vj (see Fig. 4.1). Denote by Ri→j the number
of bits in Mi→j normalized by N . Note that Ri→j is the (normalized) total number of
bits transmitted possibly over multiple time slots to node vj . Also note that Ri→j > 0
only if vi and vj are connected. We consider the minization of the sum rate defined as the
following.

R =
1

N

n∑
i=1

(NRi→PN(i) +NRPN(i)→i) =
n∑
i=1

(Ri→PN(i) +RPN(i)→i). (4.3)

We only consider oblivious and fixed distributed computation schemes which do not
change with inputs. A scheme must be feasible, i.e., all arguments of ft should be
available in v(t) before time t.

Since the goal is to compute y =
n∑
i=1

wixi at the sink node v0, without loss of generality,

we assume v(T ) = v0 and the output of the mapping f(T ) computed at v(T ) is the final
estimate ŷ. Denote by D the overall (normalized) mean-square distortion

D =
1

N
E
[
‖y − ŷ‖2

2

]
. (4.4)

The objective is to compute the minimum value of the sum rate R (defined in (4.3)) such
that the overall distortion is smaller than Dtar.

min R,

s.t. D ≤ Dtar.
(4.5)

In what follows, we define some quantities associated with the “incremental distor-
tion” that we mentioned in Section 4.1. For an arbitrary set S ⊂ V , define yS =

∑
vj∈S

wjxj

as the partial sum in S. We use σ2
S =

∑
vj∈S

w2
j to denote the variance of each entry of yS .

Suppose at the final time slot T , all the available information (observations of random
variables) at a node vi ∈ V is Ii. Denote by ŷmmse

S,i the MMSE estimate of yS at any node
vi, given the information Ii, which can be written as

ŷmmse
S,i = E [yS |Ii] . (4.6)

For an arbitrary (non-sink) node vi and its parent node vPN(i), denote by DTx
i and DRx

i

the MMSE distortions of estimating ySi , respectively at vi and vPN(i), where, recall, Si
denotes the set of descendants of node vi (including itself). The information about ySi
should be transmitted from vi to its parent vPN(i). Therefore, the superscript Tx means
that the distortion is defined for the transmitting node vi, and the superscript Rx means
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the receiving node vPN(i). Define DInc
i to be the mean-square difference between the two

estimates ŷmmse
Si,i and ŷmmse

Si,PN(i). Thus,

DTx
i =

1

N
E
[∥∥ySi − ŷmmse

Si,i
∥∥2

2

]
, (4.7)

DRx
i =

1

N
E
[∥∥∥ySi − ŷmmse

Si,PN(i)

∥∥∥2

2

]
, (4.8)

DInc
i =

1

N
E
[∥∥∥ŷmmse

Si,PN(i) − ŷmmse
Si,i

∥∥∥2

2

]
. (4.9)

Denote the MMSE distortion in estimating y =
n∑
i=1

wixi at v0 by Dmmse
0 . Because for the

same distributed computation scheme, the overall distortionD cannot be less thanDmmse
0 ,

the overall distortion with MMSE estimate at the sink v0,

D ≥ Dmmse
0 . (4.10)

In Section 4.3.1, we will show that DInc
i = DRx

i −DTx
i (for all feasible distributed computa-

tion schemes) and the overall MMSE distortion Dmmse
0 can be written as the summation

of DInc
i on all links. Therefore, we call DInc

i the incremental distortion.

4.3 Main results: outer bounds based on incremental dis-
tortion

4.3.1 Distortion accumulation

Our first result shows that the overall MMSE distortion can be written as the summa-
tion of the distortion on all the tree links. It asserts that the distortion for in-network
computing must accumulate along the way from all the leaves to the sink node.
Theorem 4.3.1 (Distortion Accumulation). For any feasible distributed computation scheme
(see the model of Section 4.2) and for each node vi ∈ V \ {v0}, the incremental distortion DInc

i

and the MMSE distortions DTx
i and DRx

i satisfy

DRx
i = DTx

i +DInc
i . (4.11)

Thus, we also have
DTx
i =

∑
vj∈Si\{vi}

DInc
j , (4.12)

Dmmse
0 =

n∑
i=1

DInc
i . (4.13)

Proof. See Appendix B.1.1.
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Remark 5. In some of the proofs in this chapter, we adopt an ‘induction method in the
tree network’, which we often briefly refer to as induction in the tree. The idea is that, to
prove that some property P holds for each node vi ∈ V , firstly, we prove that P holds at
all leaves. Secondly, we prove that, for an arbitrary node vb, if P holds at vb, then P also
holds at its parent-node va. It is obvious that these two arguments lead to the conclusion
that P holds for all nodes in the tree network.

4.3.2 Rate-distortion outer bound

Our second result provides an outer bound on the rate-distortion function for matrix-
vector multiplication over a tree network using incremental distortions.
Theorem 4.3.2 (Incremental-Distortion-Based Outer Bound). For the model of Section 4.2,
given a feasible distributed computation scheme, the sum rate is lower-bounded by

R ≥ 1

2

n∑
i=1

[
log2

σ2
Si

DInc
i

− DTx
i

2w2
i

− log2e

2σ2
Si

√
2DTx

i

(
4σ2
Si +DTx

i

)]
=

1

2

n∑
i=1

[
log2

σ2
Si

DRx
i −DTx

i

−O
(
(DTx

i )1/2
)]
,

(4.14)

where wi is the weight of the observation xi, Si is the node set that contains node vi and its
descendants, σ2

Si is the variance of each entry of the partial sum ySi =
∑
vj∈Si

wjxj , DTx
i and DInc

i

are the MMSE distortion and the incremental distortion at the node vi, which are respectively
defined in (4.7) and (4.9). By optimizing over the incremental distortions DInc

i , one obtains the
following scheme-independent bound stated in an optimization form

min
DInc
i ,1≤i≤n

1

2

n∑
i=1

[
log2

σ2
Si

DInc
i

− DTx
i

2w2
i

− log2e

2σ2
Si

√
2DTx

i

(
4σ2
Si +DTx

i

)]
,

s.t.


DTx
i =

∑
vj∈Si\{vi}

DInc
j ,∀i 6= 0,

n∑
i=1

DInc
i = Dmmse

0 ≤ D.

(4.15)

Define the function ψi(·) as

ψi(x) =
x

2w2
i

+
log2e

2σ2
Si

√
2x
(
4σ2
Si + x

)
. (4.16)

Then, a lower bound on R can be obtained from the optimization in (4.15):

R ≥ 1

2
log2

n∏
i=1

σ2
Si

(D/n)n
− 1

2

n∑
i=1

ψi(D), (4.17)
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which means that in the limit of small distortion D, the optimization problem (4.15) provides the
following lower bound in order sense

R ≥ 1

2
log2

n∏
i=1

σ2
Si

(D/n)n
− nO(D1/2).

(4.18)

Proof Sketch: The complete proof is in Appendix B.1.2. The first step is to prove, on an
arbitrary link vb → va towards the root (see Fig. 4.1), NRb→a ≥ h(ŷmmse

S,b )− N
2

log22πeDInc
b ,

where h(·) denotes differential entropy, and hence the rate Rb→a is related to the incre-
mental distortion DInc

b .
Then, we prove that h(ŷmmse

S,b ) > h(yS)−O
(
N(DTx

b )1/2
)
, using inequality (4.2). Thus,

using h(yS) = N
2

log 2πeσ2
Sb (note that S and Sb here denote the same set), we get

Rb→a ≥ 1
2
log2

σ2
Sb

DInc
b

− O
(
(DTx

b )1/2
)
. Inequality (4.14) can be obtained by summing over

all links towards the root. The optimization form obtained in (4.15) only requires the
minimization of the scheme-dependent bound over the choices of DInc

i . The proof of the
last inequality (4.17) and its order-sense form (4.18) can be obtained by lower-bounding
the optimization problem (4.15).

This outer bound is obtained when all incremental distortions are equal, which is
very similar to the reverse water-filling solution for the parallel Gaussian lossy source
coding problem [59, Theorem 10.3.3] in the limit of large rate (zero distortion). We will
prove that this rate (in the small distortion regime) is also achievable using Gaussian
random codebooks (see Section 4.4). To achieve the optimal sum rate, the rate on the link

vi → vPN(i) should be approximately equal to 1
2

log2

σ2
Si

D/n
, where σ2

Si is the variance of each
entry of the partial sum ySi .

4.3.3 Comparison with the cut-set bound

Using the classical cut-set bound technique [240, Thm. 1], we can obtain another bound
different from the one in Theorem 4.3.2. This bound is in the same mathematical form as
the sum rate expression in [60, Sec. V-A.3].
Theorem 4.3.3 (Cut-Set Outer Bound). For the model of Section 4.2, the sum rate is lower-
bounded by

R ≥ 1

2

n∑
i=1

log2

σ2
Si

DRx
i

. (4.19)

Proof. See Appendix B.1.3.

Denote by R1 the outer bound obtained by the classical cut-set bound (Theorem 4.3.3)
and by R2 the outer bound obtained by Theorem 4.3.2. From (4.14) and (4.19)

∆R := R2 −R1 =
1

2

n∑
i=1

[
log2

DRx
i

DRx
i −DTx

i

−O
(
(DTx

i )1/2
)]
. (4.20)
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In order to illustrate the improvement on the outer bound R2, we consider the case when
T = (V , E) is a line network, connected as v0 ↔ v1 ↔ . . .↔ vn. Then,

ŷmmse
Si−1,i−1

(a)
= ŷmmse

Si−1,PN(i)

(b)
= ŷmmse

Si,PN(i) + wi−1xi−1, (4.21)

where (a) holds because vi−1 is the parent-node of vi, and (b) follows from ySi−1
=

ySi + wi−1xi−1. Therefore, ySi−1
− ŷmmse

Si−1,i−1 = ySi − ŷmmse
Si,PN(i). Using (4.7), (4.8), we obtain

DTx
i−1 = DRx

i . Thus, (4.20) changes to

∆R =
1

2

n∑
i=1

[
log2

DTx
i−1

DTx
i−1 −DTx

i

−O
(
(DTx

i )1/2
)]
, (4.22)

where 0 = DTx
n < DTx

n−1 < . . . < DTx
1 < Dmmse

0 ≤ D.
Then, we consider a typical choice of DTx

i , which minimizes the rate outer bound.
In (4.18), we can show that, when D is required to be small enough, the way to minimize
the RHS of (4.14) is to make DRx

i −DTx
i to be a constant for all i. This strategy yields a

lower bound on the minimum possible rate. In the case of a line network, this strategy
becomes DTx

i = n−i
n
Dmmse

0 ,∀i. Then

∆R =
n∑
i=1

[
log2(n− i+ 1)

2
−O

(
(DTx

i )1/2
)]
≈1

2
log2(n!) = Θ(n log2 n), (4.23)

when the overall distortion D is small, i.e., the gap between the two bounds can be
arbitrarily large.
Remark 6. Here, we point out the intuition underlying the difference between the proofs
of the incremental-distortion-based bound (Theorem 4.3.2) and the cut-set bound (Theo-
rem 4.3.3). The classical proofs of cut-set bounds for lossy computation often rely on the
following key steps:

Rate ≥ I (Computed Result; True Result)
≥ h(True Result)− h(True Result|Computed Result),

(4.24)

where h(True Result|Computed Result) can be upper-bounded by a function of overall
distortion and the expression h(True Result) can be obtained explicitly. However, the
proof of the incremental-distortion-based bound is based on the following key steps (see
Appendix B.1.2):

Rate on Link e = (v1, v2)

≥ I (Computed Result 1; Computed Result 2)

≥ h(Computed Result 1)− h(Computed Result 1|Computed Result 2),

(4.25)

where “Computed Result 1” denotes the MMSE estimate at the parent-node v1 on link
e = (v1, v2) and “Computed Result 2” denotes the MMSE estimate at the child-node
v2 on link e. The term h(Computed Result 1|Computed Result 2) leads to a function of
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incremental distortion between two estimates, which yields a tighter bound than cut-
set bounds for lossy in-network computing. However, the distribution of “Computed
Result 1”, the MMSE estimate, is unknown, and hence h(Computed Result 1) cannot
be obtained directly. To solve this problem, we lower-bound h(Computed Result 1)
by upper-bounding the difference between h(Computed Result 1) and h(True Result),
using the inequality in Lemma 4.1.2.

4.4 Main results: achievable rates with random Gaussian
codebooks

In this section, we use random Gaussian codebooks to give an incremental-distortion
based sum rate inner bound. The main achievable result in this chapter is as follows.
Theorem 4.4.1 (Inner Bound). Using random Gaussian codebooks, we can find a distributed
computation scheme, such that the sum rate R is upper-bounded by

R ≤ 1

2

n∑
i=1

log2

σ2
Si
di

+ nδN , (4.26)

where limN→∞ δN = 0 is a parameter defined in (4.39), and di’s are tunable distortion parameters,
and σ2

S =
∑
vj∈S

w2
j . Further, the overall distortion D satisfies

D ≤
n∑
i=1

di + εN , (4.27)

where limN→∞ εN = 0 is a parameter defined in (4.55)2. The limit sum rate limN→∞R exists,
and can be upper-bounded by

lim
N→∞

R ≤ 1

2
log2

n∏
i=1

σ2
Si

(D/n)n
. (4.28)

Proof. See Section 4.4.2.

We rely on typicality-based arguments to prove the inner bound. Therefore, before we
elaborate on the main distributed computation scheme in Section 4.4.2, we first review
some notation and techniques on typicality.

2The parameter δN is used for providing a slight excess rate of the rate defined by mutual information
in (4.39), and the parameter εN upper-bounds the deviation of the overall sum distortion D from the

summation of the tunable distortion parameters
n∑

i=1

di. Note that here N denotes the code length of the

random Gaussian codebooks.
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4.4.1 Notation on typicality-based coding

We first define some random variables, the pdfs of which we will use in the distributed
computation scheme. (We will clarify the absolute continuity and hence existence of
densities with respect to the appropriate Lebesgue measure of the various random objects
used in our proofs.) At each node vi, we define an estimate random variable UTC

i and a
description random variable V TC

i . The superscript TC represents the Gaussian test channel,
which we will use to define these scalar random variables. Denote the variance of UTC

i

by σ̂2
i . The estimate random variables UTC

i ’s are defined from the leaves to the root v0 in
the tree. For an arbitrary leaf vl, define

UTC
l = wlXl, (4.29)

where Xl ∼ N (0, 1) is a scalar random variable, and wl is the weight at node vl in the

weighted sum y =
n∑
i=1

wixi. For non-leaf nodes, without loss of generality, we use v1, v2,

. . . vd to denote the children of an arbitrary node vb (see Fig. 4.1). Suppose the description
random variables {V TC

i }di=1 at the children of node vb have been defined (the formal
definitions of the description random variables are provided later in equation (4.31)).
Then, define the estimate random variable for the non-leaf node vb as

UTC
b =

d∑
k=1

V TC
k + wbXb, (4.30)

where Xb ∼ N (0, 1) is a scalar random variable, and wb is the weight at vb. At each node
vi, the description random variable V TC

i is now defined based on the estimate random
variable using a Gaussian test channel

UTC
i = V TC

i + Zi, (4.31)

where Zi ∼ N (0, di) is independent of V TC
i and di is a variable that will be chosen later.

From the definition of Gaussian test channels, var[V TC
i ] = σ̂2

i − di. Readers are referred to
Appendix B.2.1 for details on the definition of Gaussian test channels. Then, using (4.31),
we have that

σ̂2
b =

d∑
k=1

var[V TC
i ] + w2

b =
d∑

k=1

(σ̂2
k − dk) + w2

b . (4.32)

Note that the estimate random variables and the description random variables are
both defined from leaves to the root. However, we have different definitions of the
estimate random variables for leaves and non-leaf nodes ((4.29) and (4.30)) but the same
definition of description random variables. Note that the Gaussian test channel (4.31) and
the definitions in (4.29) and (4.30) involve linear transformations. Therefore, all estimate
random variables UTC

i ’s and description random variables V TC
i ’s are scalar Gaussian

random variables with zero mean. We will not directly use the random variables UTC
i

and V TC
i in the achievability proof (because they are scalars and cannot be directly used

for coding). However, we use the pdfs of these random variables. We use φUTC
i

and
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φV TC
i

to denote the pdfs of UTC
i and V TC

i . We also use joint pdfs, where the meanings are
always clear from the context. Note that the variance of UTC

i and V TC
i are tunable, since

the parameter di, which is related to the variance of the added Gaussian noise Zi, is a
tuning parameter.

Remark 7. In fact, the way in which we define the description random variables and
estimate random variables in Section 4.4.1 essentially implies the basic idea of our
distributed computation scheme. Although we consider block computation in the entire
chapter, we can view these description random variables and estimate random variables
as the ‘typical’ intermediate results during the computation. In particular, the estimate
random variable UTC

i represents the typical properties of the estimate ŝi of the partial
sum ySi at the node vi (by representing the typical properties, we mean the typical sets
that the estimate ŝi belongs to are defined based on the distributions of the estimate
random variable UTC

i ), while the description random variable V TC
i represents the typical

properties of the descriptions r̂i. Note that the messages to be further transmitted from
the node vi to its parent node is the description sequence r̂i. The estimate UTC

0 represents
the properties of the estimate of Y at the sink v0. Based on this intuition, we can provide
an intuitive explanation of the formula in Theorem 4.4.1: suppose UTC

i and V TC
i are

length-N vectors (this is of course technically incorrect, and we only try to provide some
intuition on Theorem 4.4.1 here), then, since UTC

i and V TC
i are all Gaussian, it can be

proved that V TC
i is just the MMSE estimate ŷmmse

Si,PN(i) = E
[
ySi |IPN(i)

]
= E

[
ySi |V TC

i

]
of

the required partial sum ySi at node vPN(i), the parent node of vi. Then, we can apply
the distortion accumulation result ((4.13) in Theorem 4.3.1) to UTC

i and V TC
i , and obtain

D =
n∑
i=1

di, since di = E[(UTC
i )2 − (V TC

i )2] is the counterpart of the incremental distortion

DInc
i . In Section 4.4.2, we will formalize this intuitive argument using Gaussian random

codes.

Denote by qU , qV and qU,V the N -fold product distribution of the scalar distributions
φUTC

i
, φV TC

i
and φUTC

i ,V TC
i

. Denote by T NU,ε and T NV,ε the two sets of N -length sequences sN

and rN that are respectively typical with respect to φTC
U and φTC

V . Denote by J 2N
ε the

set of all 2N -length sequences
(
sN , rN

)
that are jointly typical with respect to φUTC,V TC .

Denote by T NV,ε(sN) the set of sequences rN that are jointly typical with a particular typical
sequence sN . The formal definitions of these typical sets are provided in the following
equations (note that we will use a general definition of typical sets from [119], and we
will show that the definitions below are special cases of the general definition):

T NU,ε =

{
sN :

∣∣∣∣− 1

N
log qU(sN)− h(UTC

i )

∣∣∣∣ < εN ,

∣∣∣∣ 1

N
||sN ||22 − σ̂2

i

∣∣∣∣ < εN

}
, (4.33)

T NV,ε =

{
rN :

∣∣∣∣− 1

N
log qV (rN)− h(V TC

i )

∣∣∣∣ < εN ,

∣∣∣∣ 1

N
||rN ||22 − (σ̂2

i − di)
∣∣∣∣ < εN

}
, (4.34)
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J 2N
ε =

{
(sN , rN) : sN ∈ T NU,ε, rN ∈ T NV,ε,

∣∣∣∣− 1

N
log qU,V (sN , rN)− h(UTC

i , V TC
i )

∣∣∣∣ < εN ,∣∣∣∣ 1

N
||sN − rN ||22 − di

∣∣∣∣ < εN

}
,

(4.35)

T NV,ε(sN) =
{
rN : (sN , rN) ∈ J 2N

ε

}
. (4.36)

4.4.2 Algorithm: applying Gaussian codes in function computing

The illustrative explanation in Remark 7 relies on Gaussian test channels, which is a
heuristic to provide insights into the design of the achievability strategy. In this part, we
rigorously prove the achievability using explicit random Gaussian codebooks.

Note that all computations are block computations. According to the system model,
each node vi has a random vector xi, where each coordinate is generated by N (0, 1).

The sink v0 has the goal to compute the weighted sum y =
n∑
i=1

wixi, i.e., a matrix-vector

multiplication. Recall that yS =
∑
vj∈S

wjxj and σ2
S =

∑
vj∈S

w2
j .

Before the computation starts, each node vi generates a codebook3 Ci = {ci(w) : w ∈
{0, 1, . . . 2NRi}}, where each codeword is generated i.i.d. according to distribution pV TC

i
.

The rate is chosen such that

Ri = I(UTC
i ;V TC

i ) + δN =
1

2
log

σ̂2
i

di
+ δN , (4.37)

where UTC
i and V TC

i are scalar test-channel random variables defined in Section 4.4.1 and
lim
N→∞

δN = 0. We claim that, for each node vi ∈ V ,

σ̂2
i ≤ σ2

Si . (4.38)

Proof. See Appendix B.2.2.

This leads to

Ri ≤
1

2
log

σ2
Si
di

+ δN . (4.39)

Summing up (4.39) over all links, we obtain the first inequality (4.26) in Theorem 4.4.1.
The codebook Ci is revealed to vi’s parent-node vPN(i). At the beginning of the dis-

tributed computation scheme, each leaf vl uses wlxl as the estimate ŝl. During the
distributed computation scheme, as shown in Fig. 4.1, each non-leaf node vb, upon

3Notice that the rate of this code should be log2(2NRi + 1) ≈ Ri. However, when N →∞ (which is the
case considered in this section), the code rate converges to Ri. In other words, a single codeword ci(0) has
asymptotically no effect on the coding rate.
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receiving description indices M1b,M2b, . . .Mdb from the d children v1, . . . vd, decodes these
description indices, computes the sum of these descriptions and the data vector generated
at vb as follows

ŝb =
d∑

k=1

ck(Mk→b) + wbxb, (4.40)

and re-encodes ŝb into a new description index Mb→a ∈ [1 : 2NRb ] and sends the descrip-
tion index to the parent-node va using rate Rb. We denote the reconstructed description
by r̂b = cb(Mb→a). The decoding and encoding at the node vb are defined as follows. Note
that the leaves only encode and the root v0 only decodes.
• Decoding: In each codebook Ck, k = 1, . . . d, use the codeword ck(Mk→b) as the

description r̂k. If vb = v0 is the root, it computes the sum of all codewords ck(Mk→0)
as the estimate of y:

ŷ =
∑

vk∈N (v0)

ck(Mk→0) =
∑

vk∈N (v0)

r̂k. (4.41)

• Encoding: Find a codeword cb(Mb→a) ∈ Cb \ {cb(0)} such that the two vectors

ŝb =
d∑

k=1

ck(Mk→b) + wbxb and r̂b = cb(Mb→a) are jointly typical with respect to

the test-channel distribution φUTC
b ,V TC

b
(in J 2N

ε ). If there are more than one code-
words that satisfy this condition, arbitrarily choose one of them. However, if

ŝb =
d∑

k=1

ck(Mk→b) + wbxb is not typical with respect to the test-channel distribution

φUTC
b

(not in T NU,ε), or if there is no codeword in Cb \ {cb(0)} that satisfies the joint
typicality condition, send description index Mb→a = 0 (note that this means the
index of the 0-th random codeword cb(0), instead of a vector 0N ).

Since all codebooks Ck, k = 1, . . . d, have been revealed to vb, the decoding is always
successful, in that the decoding process is simply the mapping from the description
index Mk→b to the description ck(Mk→b). However, the encoding may fail. In this case,
the description index Mb→a = 0 is sent and this description index is decoded to a
predetermined random sequence cb(0) on the receiver side. Note that the rate Ri is the
same as Ri→PN(i) in (4.3), and the notation Ri is used here for simplicity. We still use the
notation Ri→PN(i) for the results on network consensus, where each node may have to
send descriptions to different nodes, and Ri→PN(i) can usefully indicate that the direction
of information transmission is from the node vi to its parent node vPN(i).

4.4.3 The proof of Theorem 4.4.1: analysis of the Gaussian random
codes

In this part, we analyze the expected distortion of the Gaussian random codes. Note
that, unless specifically clarified, all results in this part are stated for the random coding
ensemble, i.e., the expectation E[·] and the probability Pr(·) are taken over random
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data sampling, codeword selection and random codebook generation. The result in
Theorem 4.4.1 holds for at least one code in this random coding ensemble.

The following Lemma 4.4.2 states that the estimate ŝb and the description r̂b are jointly
typical for all b with high probability.
Lemma 4.4.2 (Covering Lemma for Lossy In-network Matrix-vector Multiplication). For
the encoding and decoding schemes as described in this section, denote by Ei = 1 the event that
the encoding at the node vi is not successful. Then

lim
N→∞

sup
1≤i≤n

Pr(Ei = 1) = 0, (4.42)

where the probability is taken over random data sampling and random codebook generation.

Proof. See Appendix C-C in [279].

In Lemma 4.4.3, we provide bounds on the variances of ŝb and r̂b. Note that the
inequalities in Lemma 4.4.3 do not trivially follow from the typicality of ŝb and r̂b because
the typicality of ŝb only ensures that 1

N
‖ŝb‖2

2 − σ̂2
b converges to zero in probability, while

(4.43) requires convergence in mean value to zero. This is a standard issue. In [279], we
use a standard technique to overcome this issue. The key idea is that, for non-typical
case (when encoding fails), we send a predetermined random sequence, on the variance
of which we can provide a bound.
Lemma 4.4.3. At each node vb, the description r̂b = cb(Mb→a) and the estimate ŝb defined
in (4.40) satisfy ∣∣∣∣E [ 1

N
‖ŝb‖2

2

]
− σ̂2

b

∣∣∣∣ < εN , (4.43)∣∣∣∣E [ 1

N
‖r̂b‖2

2

]
− (σ̂2

b − db)
∣∣∣∣ < εN , (4.44)∣∣∣∣E [ 1

N
‖r̂b − ŝb‖2

2

]
− db

∣∣∣∣ < εN , (4.45)

where limN→∞ εN = 0.

Proof. See Appendix C-D in [279].

Lemma 4.4.4. At each node vb, the description r̂b = cb(Mb→a) and the estimate ŝb defined
in (4.40) satisfy

h(ŝb) >
N

2
log2 2πeσ̂2

b −NβN , (4.46)

h(r̂b) >
N

2
log2 2πe(σ̂2

b − db)−NβN , (4.47)

where limN→∞ βN = 0, h(·) is the differential entropy function, and the random vectors ŝb and
r̂b are defined in the probability space that contains the random codebook generation4.

4To define differential entropy for the two random vectors ŝb and r̂b, we need to first define the densities
(with respect to the Lebesgue measure) of the two random vectors. The estimate ŝb is certainly absolutely
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Proof. See Appendix C-E in [279].

Lemma 4.4.4 indicates that ŝb and r̂b are close to Gaussian-distributed random vari-
ables in differential entropy sense. We will use Lemma 4.4.3 and Lemma 4.4.4 to show a
non-trivial relationship between the Gaussian-code-based distortion di and the MMSE-
based incremental distortion DInc

i . This relationship is characterized in Lemma 4.4.5. The
proof is based on an observation that, when the true distribution of the source is close
(in the sense of differential entropy) to the expected distribution, the estimate based
on random coding can provide a distortion that is approximately equal to the MMSE
estimate.
Remark 8. If we try to directly obtain the overall distortion bound in (4.27) using some
classical coding schemes such as Wyner-Ziv coding [59, Chapter 15.9], we have to
prove that the incremental errors (the term di) due to successive quantizations along the
network are ‘approximately uncorrelated’ (so that di for different i can be summed up to
obtain the bound on the overall distortion (4.27)). While we do not pursue this direction,
the above may be achieved by obtaining a non-trivial generalization of the “Markov
Lemma” [89, Lecture Notes 13] to Gaussian vectors. To bypass this difficulty, we directly
relate the Gaussian-code-based distortion di and the MMSE-based distortion DTx

i , which
simultaneously shows some nontrivial connections between Gaussian random codes
and MMSE estimates. This is why the proof of the inner bound is conceptually different
from existing literature.

Recall that the MMSE estimate of the sum ySi at the node vj is denoted by ŷmmse
Si,j =

ECi [ySi |Ij], where Ij , as before, denotes the information available to the node vj . Define
DTx
i , DRx

i and DInc
i similar to (4.7), (4.8) and (4.9). That is, DTx

i = E
[

1
N

∥∥ySi − ŷmmse
Si,i

∥∥2

2

]
,

DRx
i = E

[
1
N

∥∥∥ySi − ŷmmse
Si,PN(i)

∥∥∥2

2

]
and DInc

i = 1
N
E
[∥∥∥ŷmmse

Si,PN(i) − ŷmmse
Si,i

∥∥∥2

2

]
. Notice that the

inner E[·] (for the MMSE estimate ŷmmse
Si,j = ECi [ySi |Ij]) is for a given codebook Ci at vi,

because both vi and its parent vPN(i) know the codebook Ci (see the codebook construc-

tion in Section 4.4.2). However, the outer E[·] (for DTx
i = E

[
1
N

∥∥ySi − ŷmmse
Si,i

∥∥2

2

]
) is still

taken over both the codeword selection and the random codebook generation. In this
subsection, the quantities DTx

i , DRx
i and DInc

i are all averaged over the random codebook
ensemble.
Lemma 4.4.5. For an arbitrary node vi√

di − εN − ηN ≤
√
DInc
i ≤

√
di + εN + ηN , (4.48)

where lim
N→∞

ηN = 0 and εN is the same as in (4.45). Further, the mean-square difference between

continuous, because it is smoothed by the Gaussian random variable xb (see (4.40)). However, conditioned
on a specific instance of the Gaussian codebooks, the random vector r̂b has a finite support, and the
(conditional) differential entropy of r̂b is −∞. To overcome this difficulty, we cast the analysis on the
unconditional distribution of r̂b, i.e., taking into account the code generation randomness. In this way, r̂b
is also absolutely continuous.
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the MMSE estimate ŷmmse
Si,i and the estimate ŝi based on Gaussian random codes satisfies

1

N
E
[∥∥ŝi − ŷmmse

Si,i
∥∥2

2

]
≤ ∆N , (4.49)

where lim
N→∞

∆N = 0.

Proof. See Appendix B.2.3.

Since the distributed computation scheme using Gaussian random codes in Theo-
rem 4.4.1 (see Section 4.4.2) satisfies the model in Section 4.2, the distortion accumulation
result in Theorem 4.3.1 holds, i.e.,

1

N
E
[∥∥y − ŷmmse

S0,0

∥∥2

2

]
=

n∑
i=1

DInc
i , (4.50)

where y is the overall weighted sum, ŷS0,0 is the MMSE estimate of y at the sink v0, and
all expectation operations are taken over the random codebook ensemble. Using (4.49)
in Lemma 4.4.5, we have that

1

N
E
[∥∥ŷ − ŷmmse

S0,0

∥∥2

2

]
≤ ∆N , (4.51)

where limN→∞∆N = 0 and ŷ is the estimate of the overall sum y at the sink using random
Gaussian code. From Lemma 4.1.1, we have that

E
[
‖ŷ − y‖2

2

]
= E

[∥∥y − ŷmmse
S0,0

∥∥2

2

]
+ E

[∥∥ŷ − ŷmmse
S0,0

∥∥2

2

]
. (4.52)

Plugging in (4.50), (4.51) and using the triangle inequality, we get

D =
1

N
E
[
‖ŷ − y‖2

2

]
≤

n∑
i=1

DInc
i + ∆N . (4.53)

Using (4.48) in Lemma 4.4.5, we get

D ≤
n∑
i=1

(√
di + εN + ηN

)2

=
n∑
i=1

di +
n∑
i=1

εN + η2
N + 2ηN

√
di + εN .

(4.54)

By defining εN =
n∑
i=1

εN + η2
N + 2ηN

√
di + εN , we get

D ≤
n∑
i=1

di + εN , (4.55)
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where limN→∞ εN = 0. Finally, noticing that (4.55) holds for the random code ensemble,
we can find at least one code in the ensemble such that the distortion bound (4.27) holds.

Since we can tune the distortion parameter di directly, we can set d1 = d2 = . . . = dn =
d. Then, in the limit of large N , D = nd, which means that d1 = d2 = . . . = dn = D/n.

Thus, we can obtain the minimized achievable result R = 1
2

log2

n∏
i=1

σ2
Si

(D/n)n
, which is (4.28) in

Theorem 4.4.1.

4.5 Extension to network consensus

The results in the preceding sections can be extended to the case when each node in the

network T wants to obtain an estimate of y =
n∑
i=1

wixi. Note that the network consensus

problem considered in this chapter is a generalization of average consensus, which is the
case where wi = 1

n
,∀i.

Define Si→j ⊂ V as the set that contains node vi and all its descendants when neigh-
boring node vj is defined to be the parent-node of vi. As in (4.7)-(4.9), define

DTx
i→j =

1

N
E
[∥∥∥ySi→j − ŷmmse

Si→j ,i

∥∥∥2

2

]
, (4.56)

DRx
i→j =

1

N
E
[∥∥∥ySi→j − ŷmmse

Si→j ,j

∥∥∥2

2

]
, (4.57)

and

DInc
i→j =

1

N
E
[∥∥∥ŷmmse

Si→j ,i − ŷmmse
Si→j ,j

∥∥∥2

2

]
, (4.58)

where ŷmmse
Si→j ,i and ŷmmse

Si→j ,j are defined by (4.6), i.e., the MMSE estimates of ySi→j with
information at vi or at vj . Since each node vi makes an estimate of the matrix-vector
multiplication result y, for a given distributed computation scheme, we define the overall
distortion of the MMSE estimate ŷmmse

i of y at the node vi as

Dmmse
i =

1

N
E
[
‖ŷmmse

i − y‖2
2

]
. (4.59)

For the same distributed computation scheme, define the overall distortion of the estimate
ŷi of y at the node vi as

DTotal
i =

1

N
E
[
‖ŷi − y‖2

2

]
. (4.60)

Then, we have that DTotal
i ≥ Dmmse

i . For a feasible and oblivious distributed computation
scheme (T,S ,G ,v, e) ∈ F (see the distributed computation model in Section 4.2), the
sum rate R is defined in the same way as in the problem of matrix-vector multiplication:

R =
n∑
i=1

∑
vj∈N (i)

Ri→j. (4.61)
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The distortion is defined as the sum distortion

D =
n∑
i=1

DTotal
i . (4.62)

Thus, the problem to be considered is

min
(T,S ,G ,v,e)∈F

R,

s.t. D ≤ Dtar.
(4.63)

We define
−→
T k as the edge set of the directed tree towards the root vk. The set

−→
T k can

be written as
−→
T k = {directed edges (vi, vj) : (vi, vj) ∈ E , and vj

is the parent node of vi when vk is defined as the root}.

In all, we define n different directed edge sets of directed trees towards n different roots.
These directed trees are all defined based on the original tree T . The only difference is
that the edges are directed. We use (i, j) ∈

−→
T k to represent that the ordered pair (i, j) is a

directed edge in the directed edge set
−→
T k.

Theorem 4.5.1 (Distortion Accumulation for Network Consensus). For the network con-
sensus problem, the overall distortion of estimating Y at the node vk satisfies

Dmmse
k =

∑
(i,j)∈

−→
T k

DInc
i→j, (4.64)

where
−→
T k is the directed edge set of the directed tree towards the root vk, and DInc

i→j is as defined
in (4.58).

Proof. See Appendix B.3.1.

4.5.1 Inner and outer bounds based on incremental-distortion

Recall that σ2
S is the variance of YS . The counterpart of Theorem 4.3.2 is stated as follows.

Theorem 4.5.2 (Incremental-Distortion-Based Outer Bound for Network Consensus). For
the network consensus problem, given a feasible distributed computation scheme, the sum rate is
lower-bounded by

R =
n∑
i=1

∑
vj∈N (i)

Ri→j

≥ 1

2

n∑
i=1

∑
vj∈N (i)

[
log2

σ2
Si→j

DInc
i→j
−
DTx
i→j

2w2
i

− log2e

2σ2
Si→j

√
2DTx

i→j

(
4σ2
Si→j +DTx

i→j

)]

=
1

2

n∑
i=1

∑
vj∈N (i)

[
log2

σ2
Si→j

DRx
i→j −DTx

i→j
−O

(
(DTx

i→j)
1/2
)]
,

(4.65)
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where σ2
Si→j is the variance of each entry of the partial sum ySi→j =

∑
vk∈Si→j

wkxk, and DTx
i→j ,

DRx
i→j and DInc

i→j are respectively defined in (4.56), (4.57) and (4.58). By optimizing over the
incremental distortions DInc

i→j , one obtains the following scheme-independent bound stated in an
optimization form

min
DInc
i→j ,∀(i,j)∈E

1

2

n∑
i=1

∑
vj∈N (i)

[
log2

σ2
Si→j

DInc
i→j
−
DTx
i→j

2w2
i

− log2e

2σ2
Si→j

√
2DTx

i→j

(
4σ2
Si→j +DTx

i→j

)]
,

s.t.


DTx
i→j =

∑
vk∈Si→j\{vi},(k,l)∈~Tj

DInc
k→l,∀(i, j) ∈ E ,

D ≥ Dmmse
k =

∑
(i,j)∈

−→
T k

DInc
i→j.

(4.66)

Proof. See Appendix B.3.2.

Then, we present an achievable result using Gaussian codes to show that the outer
bound in Theorem 4.5.2 is tight in the low distortion regime.
Theorem 4.5.3 (Inner Bound for Network Consensus). Using Gaussian random codebooks,
we can find a distributed computation scheme, such that the sum rate R satisfies

R ≤ 1

2

n∑
i=1

∑
vj∈N (i)

log2

σ2
Si→j

di→j
+ (2n− 2)δN , (4.67)

where limN→∞ δN = 0, and the di→j’s are distortion parameters. Further, the overall distortion
D in all nodes vi satisfies

D <
n∑
k=1

∑
(i,j)∈

−→
T k

di→j + nεN , (4.68)

where limN→∞ εN = 0.

Proof. See Appendix B.3.3.

If we ignore the small gap between the inner bound (4.67) and the outer bound (4.65)
when the resolution level D is fine enough, the optimal rate can be obtained by solving
the following convex optimization problem:

min
DInc
i→j ,∀(i,j)∈E

1

2

n∑
i=1

∑
vj∈N (i)

log2

σ2
Si→j

DInc
i→j

,

s.t.
n∑
k=1

∑
(i,j)∈

−→
T k

DInc
i→j ≤ D.

(4.69)

Remark 9. The rate-distortion outer bound in (4.65) depends on the distributed com-
putation scheme. Using convex optimization techniques, we can minimize over all
incremental distortions DInc

i→j with the linear constrains specified by (4.64) to obtain a

76



fundamental outer bound on the rate-distortion function of distributed consensus. The
outer bound is essentially obtained by rate allocation in the network. If the O(D1/2) gap
between the inner and outer bound is neglected, the rate (measured in number of bits)

allocated to the link vi → vj is 1
2
log2

σ2
Si→j
DInc
i→j

.

We consider a special case when wi = 1
n
,∀i. This is the classical case of lossy dis-

tributed network consensus with the same distortion requirement at all nodes [240]. We
again consider the line network as shown in Section 4.3.3. In this case, it can be shown
that the optimal solution is

DInc
i→j =

D

2(n− 1)
,∀(i, j) ∈ E ,

if all O
(
(DTx

i→j)
1/2
)

terms are neglected, in the limit of zero-distortion (high resolution)5.
Similar with the data-aggregation case, this solution for network consensus is also very
similar to the reverse water-filling solution for parallel Gaussian lossy source coding
problem [59, Theorem 10.3.3] in the limit of large rate (zero distortion). This solution
yields a sum rate of O

(
nlog2

1
D

)
. The classical outer bound [240, Prop. 4] about the

distributed network consensus in a tree network is O
(
nlog2

1
n3/2D

)
. This means that our

result is certainly tighter than the classical result in a line network in the zero-distortion
limit. Moreover, this O(n log n) gap is also consistent with the log(n!) gap in Section 4.3.3.

4.6 Conclusions and future directions

In this chapter, we have considered the lossy matrix-vector multiplication problem in
tree network, where each node has a Gaussian random vector. Our results show that
the phenomenon of information dissipation (error accumulation) exists in this problem,
and by quantifying the information dissipation, we obtain an information-theoretic outer
bound on the rate-distortion function that is tighter than classical cut-set bounds for lossy
matrix-vector multiplication for both data aggregation and network consensus problems.
The improvement on the classical cut-set bounds can be made arbitrarily large when
the diameter of the network is large enough. The results also show that linear Gaussian
codes can achieve within O(

√
D) of the obtained outer bound, which means that our

outer bound is tight when the required distortion is small (high resolution scenario). A
meaningful future direction is to investigate tighter outer bound for all values of D, and
investigate compression algorithms, e.g., lattice codes, that achieve the outer bound for
all values of D.

5We can neglect the O
(
(DTx

i→j)
1/2
)

terms, because in the zero-distortion limit, log 1
DInc

i→j

> log 1
DTx

i→j

>>

(DTx
i→j)

1/2.
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Chapter 5

Exploiting the multi-stage computing I:
new platforms and coded elastic
computing

5.1 Introduction

Starting from this chapter, we will review three coding-based techniques that are tightly
related to the problem of multi-stage computing, i.e., a computing problem that is
implemented in several communication rounds and (maybe) using similar or repeated
computation patterns. This chapter will introduce a new computation platform on elastic
computing where multi-stage computing problems are critical, which motivates the
study of coding techniques for multi-stage problems. In Chapter 6 and Chapter 7, we
provide other two techniques that intentionally use properties of multi-stage computing
to improve the performance of coded computing. The results of these three chapters
are from a series of papers on coding techniques for multi-stage computing problems
[272, 277, 280, 281]. The results on elastic computing will be updated in the online report
[281].

First, we provide the background of the study on elastic computing. New offerings
from cloud-service providers allow exploiting under-utilized Virtual Machines (VMs) at
a fraction of the original cost. Such offerings, however, have the drawback that machines
can be preempted at any time if a high-priority job appears. This, in turn, will surface
as a computation failure at the application level. While common distributed machine
learning frameworks are already built with fault-tolerance [6, 174], they often assume
that failures are transient and rare. Due to this assumption, machine failures are often
recovered by a “stop-the-world” scheme whereby the entire system is forced to wait until
regular execution on the failure machines is restored from the previous state (eventually
on new machines). The above assumptions, however, do not necessarily hold for failures
due to machines being preempted because (1) these failures are permanent and local
data may not be accessible anymore; (2) several machines can be preempted altogether in
an elastic event; (3) these failures add up to transient failures, therefore leading to more
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frequent disruptions during computation; and (4) the computational framework may
need to acquire additional machines to compensate, meaning that data has to be copied
on the new machines which will likely become stragglers for the running computation. In
practice, we observed situations at scale where the stop-the-world scheme results in zero
computation progress because, by the time a failure is recovered, a new failure occurs.
This results in the necessity to build an elastic run-time framework and related failure-
aware algorithms which can continue the computation and flexibly adapt in the presence
of failures. Another possible technique to deal with preemption is to view the preempted
machines as erasure-type faults and ignore them. Although machine learning algorithms
are robust to small transient faults, merely ignoring the computational results in these
permanently-failed preempted machines may result in algorithmic-level performance
loss. The influence of ignoring the computation results for the preemption type of faults
is also more severe than usual computation faults because the number of failures can
be huge. Similarly, even if the data are redundant in some applications, ignoring partial
results may still lead to reduced confidence levels on the prediction accuracy. It may also
not be desirable from a customer’s perspective who often requires the full dataset to be
present during the entire training process in order to achieve the highest accuracy.

In order to deal with the aforementioned problems, in this chapter, we present coded
elastic computing: a novel distributed learning framework allowing users to train their
machine learning models over preemptable machines. In our coded elastic computing
framework machines are allowed to arbitrarily join or leave during a distributed iterative
learning task thanks to the introduction of redundancy in the computation. Coded elastic
computing can flexibly change the workload of each machine at runtime based on the
number of available machines by selecting to use only a subset of the encoded data in
a cyclic fashion. Apart from providing fault-tolerance when machines are preempted,
coded elastic computing is also positively-elastic in that it can utilize the properties of the
coded data to reduce the workload at existing machines flexibly when new machines join
the computation. We will show that the coded elastic computing framework can make
the computational cost at each machine scale inversely with the number of machines,
which leads to linear scaling of theoretical computational cost. The proposed technique
is also useful in other applications besides elastic computation when the number of
machines needs to be dynamically adjusted during a learning task, such as when the
number of machines is tuned as a hyper-parameter, or when the machines have to be
reallocated to achieve fairness [116] between users or the specific need of some users at
runtime.

The coded elastic computing technique is tested in the multi-tenancy cluster at
Microsoft as an example of the Apache REEF EGC (Elastic Group Communication)
framework. Apache REEF is a library that helps develop distributed high-performance
applications on top of cluster resource managers such as YARN [250] and Mesos [116].
The Apache REEF project provides a set of abstractions and reusable functional blocks
to ease the process of building cloud-scale applications. EGC is a distributed com-
munication framework which extends Apache REEF by providing an API allowing to
implement elastic computations by chaining fault-tolerant MPI-like primitives. Based
on the EGC framework, we test the proposed technique for a coded implementation of
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linear regression on a real dataset when machines can leave and join the computation. We
show that the current technique can obtain the same convergence behavior as ordinary
gradient-descent-based algorithms but can elastically allocate the work load based on
the number of available machines without moving data at the existing machines. We
also compare with other baselines, such as ignore, replication and an existing algorithm
called Elastic Distr-BGD [180] to show the improvement of the proposed technique in
terms of the model generalization error.

In this chapter, we first present a coded elastic matrix-vector multiplication algorithm
to illustrate the main idea. Then, we present the generalizations of the proposed tech-
nique in broader applications, namely matrix-matrix multiplication, linear regression,
and master-free fully-distributed computing. Finally, we validate the approach with a
set of experiments.

5.2 System model and problem formulation

We consider the case when a data matrix X is stored distributedly at several machines.
Note that this is the most typical case for large-scale data training. Note that the results
in this chapter are different from Chapter 4 and 8 in that there is no underlying graph
structure.

Elastic events can happen during which existing machines can be preempted and new
machines can be added to the computation. We use n to denote the number of existing
machines, and m to denote the memory cost at each machine. Note that n and m can
both change over time in the elastic computing settings, and n can even become greater
than P when new machines join. In [281], we identified some properties of the typical
elastic events that can happen in large-scale distributed systems. We now quote them in
the following.
Property 1. When a preemption failure happens, which machine(s) to be preempted is
decided by the resource allocator and is not known in advance.
Property 2. The preemption is permanent, meaning that the preempted machines are
going to be removed forever. However, new machines may join after an unknown time.
Property 3. After an elastic event happens, the entire system gets the information. That
is, if some machines leave or join, the other machines know immediately about which
machines leave or join.

The second and the third properties of the properties mentioned above differentiate
the elastic events from common machine failures and stragglers because (1) new machines
can join the computation, and (2) one may adapt the computation scheme instantly after
an elastic event and possibly utilize the newly available resources. This is because,
although we do not know which machines are going to be taken away, and we do
not know how many machines are going to be taken away, we know that, the network
configuration does not change before the next elastic event. In Section 5.3.1 and Section
5.3.2, we provide the elastic data partitioning scheme which can actively utilize resource
elasticity.
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5.2.1 Definition of computation elasticity

In this section, we review the formal definitions of elasticity provided in [281]. The
main intuition behind these definitions is that we would like to achieve flexible and fast
transitions between different configuration points (which we will define below) when
elastic events happen, without introducing communication overhead.

Denote by P the initial number of machines. A configuration point is a tuple (n,m)
that uses n machines, with the memory cost at each machine not exceeding m. Note
that n means the number of the currently available machines, and can change over
time. An achievable computation policy at a configuration point is said to be optimal if it
obtains the optimal tuple (e, u), where e is the number of machine preemptions that the
policy can tolerate (i.e., the system can continue to compute the exact result as if there
is no machine preemption), and u is the size of data that a machine actually selects to
use (u ≤ m). Note that this is an important property of coded elastic computing: even
though we use the redundancy for preemption tolerance, we do not need to utilize the
redundancy during the computation when we have the knowledge of the failures. For
a configuration point (n,m), we would like to minimize the actually selected data u to
reduce the memory access and maximize the number of tolerable machine failures e to
provide the best preemption tolerance.

For a given configuration (n,m), i.e., n machines where each machine has memory
cost m, denote by An,m the set of computing policies that use n machines where each
machine has memory cost no more than m. Denote by A∗n,m ⊂ An,m the set of optimal
computing policies, i.e., they obtain the optimal tuple (e∗, u∗).
Definition: (transition compatibility) A pair of policies (a, a′) with a ∈ An,m and a′ ∈
An′,m′ is said to be transition compatible if the policy a can be transitioned to policy a′

without having to move or modify the data in the existing machines in the event of a
configuration transition (n,m)→(n′,m′).
As we have mentioned in the beginning of Section 5.2.1, the key to the above defini-
tion is that we discourage inter-machine data movement in order to make the elastic
configuration transitions non-disruptive to ongoing computation tasks.
Definition: (fully transition compatibility) A family of policies F = {an,m}, n ∈ N ,
m ∈ M, is said to be fully transition compatible if every pair (an,m, an′,m′) in F are
transition compatible.

Definition: (optimal fully transition compatibility) A family of fully transition compati-
ble policies F = {an,m}, n ∈ N , m ∈ M is said to be optimal if all policies are optimal,
i.e., each policy an,m ∈ F is in A∗n,m and obtains the optimal tuple (e∗, u∗) for the number
of tolerable machine preemptions and the size of the selected data to use.

Our goal is two-fold. First, we want to find optimal fully transition compatible
families and the conditions under which they exist. Second, we want to study typical
computation primitives and try to see if fully-compatible family of policies exist these
problems. In Section 5.3 present matrix-vector multiplication techniques that can provide
a fully transition compatible family of optimal computation policies with fixed memory
cost at each machine, i.e., when m is fixed in different transition compatible policies an,m.

81



We will generalize these results to other computation problems in Section 5.4. In fact, we
will keep updating the online document [278] to include more computation primitives.

5.3 Main results: elastic data partitioning combined with
codes

In this section, we initially focus on the problem of matrix-vector multiplication for
having a better theoretical understanding of coded elastic computing. Note however that
the proposed technique is general enough to be applicable in many machine learning
algorithms beyond matrix-vector multiplications.

Before presenting the algorithm in Section 5.3.3, we introduce the main idea of
coded elastic computing in Section 5.3.1 and Section 5.3.2. Then, in Section 5.3.4 and
Section 5.3.4, we analyze the proposed techniques and prove that they are indeed elastic
according to our definition.

5.3.1 Coded data partitioning in the presence of preempted machines

Assume that in the worst-case of preemption failures, there are at least L machines
that remain1. We will show that the parameter L is also equal to the recovery threshold
(see Section 2.2.4). In this chapter, we consider repeatedly using the same data but
with different input vectors. For matrix multiplications, it means that we compute Xwt

for t = 1, 2, . . . for the same X. This computation primitive is applicable in a variety
of scenarios, including training linear models, PageRank, model-parallel deep neural
networks and many machine learning algorithms at the inference stage.

We partition the data matrix X intoL subsets (or equivalently, submatrices) X1,X2, . . . ,XL

of equal size. If the total number of data points is not divisible by L, we can use zero-
padding. We generate P coded data matrices Xcoded

s , s = 1, 2, . . . , P , (P > L), in which
each matrix is a linear combination of the form

Xcoded
s =

L∑
k=1

gs,kXk (5.1)

where each gs,k is a random but predetermined coefficient. Note that this is the same
setting as Lemma 2.2.4, so we can use the coded matrices to tolerate P − L failures.
Lemma 2.2.4 is critical for the failure recovery. It essentially shows that no matter which
machines are preempted, as long as the number of remaining machines is not smaller
than L, the whole information of the original data is preserved in the remaining machines.
This is why we call the parameter L the recovery threshold. The parameter L is limited by
the storage constraint at each machine. The more redundancy we can add to the data,

1The parameter L, or a lower bound of L, is needed for exact computation. However, in many machine
learning tasks, one can often optimize with a subset of data due to data redundancy. In that case, knowledge
of L is not necessary.
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the lower recovery threshold we need, and hence more failures we can tolerate. In our
experiments, we use a redundancy factor of P/L = 2, and hence we can at maximum
tolerate failures when half of the machines are preempted. We use systematic codes
in the experiment. This can provide backward-compatibility to switch between coded
computing and uncoded ordinary computing, and at the same time significantly reduce
the cost of encoding the data at the preprocessing stage (5.1).

5.3.2 Elastic data partitioning for elastic computation by using data in
a cyclic way

According to Lemma 2.2.4, as long as the number of machines that are not preempted is
greater or equal to L, the remaining data using the coded data partitioning can preserve
the whole information of the original data. However, when the number of machines is
strictly larger than L, it becomes redundant to use all the coded data because the data at
L machines already preserve the whole information. One may think that this amount of
waste is not significant.

To positively utilize all the remaining machines and achieve the parallel computing
capabilities of the extra machines, we select to use data in a cyclic fashion as shown in
Figure 5.1. We use a systematic code (see (2.10)) by which the first L of the P coded
blocks Xcoded

s , s = 1, 2, . . . , P are the original data Xk, k = 1, 2, . . . , L. In Figure 5.1(a) we
use red to denote original data and blue to denote the remaining coded data. In this
example, the initial number of machines is P = 6 and the recover threshold is L = 3.
From figure 5.1(b) to 5.1(e), we show how to continue the computation when machines
are gradually preempted from 6 to 3 (machines correspond to the columns). The stored
data remains fixed i.e., the same way as in Figure 5.1(a), but we further partition the
data into smaller blocks and only select part of the data to use. Each machine is initially
allocated a single subset of coded data Xcoded

s , s = 1, 2, . . . , P , among which L subsets
are the original data. Each subset of data is represented as a column in any subfigure of
Figure 5.1.

If no failures occur (see Figure 5.1(b)), to remove redundancy from the data, we
partition each data block (column) into P sub-blocks, and let each machine only use L out
of P sub-blocks. By a sub-block of data, we mean one small rectangle in Figure 5.1(b). If
M ≥ 1 machines are preempted (see Figure 5.1(c)-5.1(e)), we partition each data block
into P −M sub-blocks, and still let each node only use L out of P −M sub-blocks. If new
machines join, they download the coded data previously used in some failed machines
or some new linearly combined data, and all the machines, including the ones that just
join, use elastic data partitioning based on the current number of available machines.

There are two advantages of this type of data usage (1) the overall selected data to
use is of the same size as the original data and the selected data across all remaining
machines have the same size; and (2) the selected data preserve the whole information of
the original data. Thus, we can exactly recover the results while removing the redundancy
in the way of using data. These two properties will be formally introduced and proved
in Theorem 5.3.1.
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Original Data Coded Data

machine 1 machine 2 machine 3 machine 4 machine 5 machine 6

X1 X2 X3 X1+2X2+3X3 X1+4X2+9X3X1+X2+X3

(a) Data encoding without further partitioning

a1 x2 x3 x1+2x2+3x3 a1+2a2+3a3 a1+4a2+9a3

OriginalfData CodedfData

b1 b2 y3 y1+2y2+3y3 y1+4y2+9y3 b1+4b2+9b3

machinef1 machinef2 machinef3 machinef4 machinef5 machinef6

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

don'tfuse

c1 c2 c3

d2 d3

e3 e1+2e2+3e3

f1+2f2+3f3 f1+4f2+9f3

d1+d2+d3

e1+e2+e3

f1+f2+f3

(b) No preempted machine

Original Data Coded Data

machine 1 machine 2 machine 3 machine 4 machine 5 machine 6

don't use

don't use don't use

don't use don't use

don't use don't use

don't use don't use

don't use

preempted

(c) One preempted machine

machine 1 machine 2 machine 3 machine 4 machine 5 machine 6

don't use

don't use

don't use

don't use
preemptedpreempted

(d) Two preempted machines

machine 1 machine 2 machine 3 machine 4 machine 5 machine 6

preempted preempted preempted

(e) Three preempted machines

Figure 5.1: The main idea of elastic data partitioning is to use the data in a cyclic way.
Each column of data is stored at one machine. For each group (i.e., row block) of
data at different machines, there are enough number of sub-blocks that contain all the
information. This cyclic way of using data leads to linear scaling of the per-machine
computational cost in the number of machines.

5.3.3 Coded elastic computing for matrix-vector multiplications

We provide the detailed procedures of the coded elastic computing algorithm for the
repeated matrix-vector multiplication problem Xwt, t = 1, 2, . . . in Algorithm 2. We use
Xcoded
k,j to represent the j-th sub-block of the data at the k-th machine. We will call Xcoded

k,j ’s
with the same j “the j-th group” of sub-blocks which correspond to the j-th row block in
any subfigure of Figure 5.1. Note that the number of row blocks changes with the number
of preempted machines. We use Gj to represent the collection of linear combination
coefficients for the j-th group (row block) that are selected to use. For example, for the
first group (row block) in Figure 5.1(b), we have

G1 =

1 0 0
1 2 3
1 4 9

 (5.2)
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because the three selected sub-blocks are a1, a1 + 2a2 + 3a3 and a1 + 4a2 + 9a3. And for
the last group (row block) in Figure 5.1(b),

G6 =

1 1 1
1 2 3
1 4 9

 (5.3)

because the three selected sub-blocks are f1 + f2 + f3, f1 + 2f2 + 3f3, and f1 + 4f2 + 9f3.

Algorithm 2 Coded Elastic Computing for Matrix-Vector Multiplication
Input: The data matrix X, the number of machines P , the recovery threshold L, the
linear combination coefficients gs,k’s in equation (5.1) and the sequence of input vectors
wt t = 1, 2, . . ..
Preprocessing: Partition the data X into L subsets and compute the coded subsets as
in (5.1).
Online computation:
FOR each computation with input wt:

Broadcast: The master node sends wt to each worker.
FOR each group index j:

Gather: The k-th worker computes ut,k,j = Xcoded
k,j wt and sends ut,k,j to the

master.
The master gathers vectors ut,k,j for all workers that use the j-th sub-block

and obtains
the matrix ut,j which contains the results for the j-th group (row block).
Decode: The master node computes ut,jG

−1
j to obtain the results for the j-th

group.
Output: The master node outputs Xwt.
IF Preemption/New Machines: Change the selected data to use based on the

current number of machines.

5.3.4 Analysis of coded elastic computing: achieving optimal fully
transition compatibility

According to Definition 5.2.1, a fully compatible family of policies can support seamless
transitions between any pairs of policies in the family. The coded elastic computing
scheme provided in Algorithm 2 for matrix-vector multiplication gives a family of fully-
compatible policies for fixed memory cost at each machine. In Section 5.3.4, we analyze
the memory cost and the number of data points to be used at each existing machine.
Then, in Section 5.3.4, we provide lower bounds on these two quantities and show that
Algorithm 2 achieves the optimal memory cost and the size of the selected data. Thus,
the coded computing policies in Algorithm 2 is a compatible family of optimal policies, in
that for the fixed storage size, each policy obtains the largest number of tolerable failures
and smallest size of the selected data to use (e∗,u∗), and provides seamless transitions
between each other without moving data at existing machines.
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Upper bounds on the storage cost and the size of the selected data to use

Suppose the original data hasN data points and all data points are in Rd. In the following
theorem, by the size of the data we mean the number of data points.
Theorem 5.3.1. The coded elastic computing algorithm achieves the exact computation result of
Xwt for all t. The size of the data stored at each machine is N/L. The size of the selected data to
use at each machine is N/(P −M) and is the same across different machines. The overall size of
the selected data is the same as the size of the original data.

Proof. See Appendix C.1.

Theorem 5.3.1 shows that our technique uses the same size of data as the original
(uncoded) case. This is desirable for memory-bound applications.
Remark 10. (Cost analysis) Recall that P is the number of workers, N × d is the size
of the matrix X, L is the recovery threshold, and P − M is the number of currently
available machines. The encoding (preprocessing step) is a one-time cost for online
matrix-vector multiplications. The decoding by solving a linear system at the master node
has computational cost O(LN), because the linear system for each group (row-block) of
data involves L equations on L unknown subvectors of size N/L/(P −M) (which is the
height of each sub-block), and there are P −M such groups. Thus, the computational
cost using straightforward matrix-vector multiplication is L2 ·N/L/(P −M) · (P −M) =
NL. The matrix-multiplication step at each worker has cost O(dN/(P − M)). Thus,
the decoding cost is smaller than the computational cost at each worker as long as
d = Ω((P − M)L). Even if d < Ω((P − M)L), we can partition the machines into
smaller groups and respectively code each group. One thing to note is that the decoding
complexity, even for the straightforward matrix-vector multiplication method, is NL,
independent of the number of workers P .

Lower bounds on the storage cost and the size of the selected data to use

Here, we provide a fundamental limit which shows that the achievable scheme provided
in 5.3.1 is optimal in terms of the storage cost at each machine and the size of the
actually used data at each iteration, for a fixed number of machines and a fixed number
of tolerable machine preemptions. Before we present the theorem, we formalize the
definition of the size of data using number of bits. This is because in theory, we cannot
store arbitrarily high-precision numbers.
Assumption 1. Suppose the entries of the matrix X are i.i.d. random variables that take
values in a finite set S ∈ R. Each of this random variable has entropy H = log |S|. Thus,
the overall entropy of all the data in X is NdH .
Assumption 2. For a certain computation policy, suppose each machine initially stores an
array of finite-precision numbers in its memory. Each finite-precision number can be an
arbitrary function of the original data. The overall number of finite-precision numbers
that is stored is finite.

Note that although we use real-number computation all the time, the numbers that we
deal with are always discrete, i.e., we conduct computation of finite-precision numbers
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in the real field. This validates Assumption 1. Also note that the number of possible
combinations of floating point numbers that can be stored by a finite-length bit array is
finite. Therefore, Assumption 2 is also valid. We need these two assumptions because
if they do not hold, the system can concatenate all the real numbers in X into one real
number and only stores that particular real number. In that case, no bound on the storage
is meaningful because one only needs to read this single number in memory to access all
the information of X. We also need the assumption that the size of the stored numbers
are finite because otherwise, we can enumerate all possible Xw and store them.
Assumption 3. Suppose we do not alter the way that we store the data X inside the
memory after the computation begins. Even when a preemption-type failure happens,
we do not move the data at existing machines.
Assumption 4. By selecting to use one number stored in the memory, we mean the algorithm
reads the whole number (e.g., reading all digits if the number is stored as a floating-point
number) from the memory for further processing. The array of finite-precision numbers
can only be accessed one number at a time, meaning that one cannot access a function
value of two numbers and claim that only one number is selected to use.
Theorem 5.3.2. Suppose the Assumptions 1-4 hold. Suppose we require the recovery of the exact
computation result Xw. Then, the following fundamental limits hold.

(a) Denote the entropy of the encoded data at the k-th machine byHk, k = 1, 2, . . . , P . Then, to
provide the tolerance to a maximum of P −L failures, we have maxk∈{1,2,...,P}Hk ≥ N

L
·dH ;

(b) The worst-case entropy of the actually used data (maximized with respect to the choice of
w) has to be no less than NdH , or N/(P −M) · dH at each machine.

Proof. See Appendix C.2.

Remark 11. By comparing Theorem 5.3.1 and Theroem 5.3.2, we see that the coded elastic
computing technique in Algorithm 2 achieves the fundamental limit because each data
point has dimension d and each entry has entropy H . We note a nuance here that the
linear combinations in Algorithm 2 may make each encoded number have entropy larger
than H . See [281] for more details.
Remark 12. Note that the claim (b) has to be stated in a worst-case way because for many
choices of w, computing Xw can be degenerated. For example, if we know in advance
that w only takes value in a very small finite set of vectors, we can compute Xw for all
possible w and store these vectors. When w is sparse, we also do not need to read the
entire matrix X. Therefore, we indeed need to state the fundamental lower bound in
terms of the worst-case w.

5.4 Extended results of the coded elastic computing

The cyclic way of elastic data partitioning applies to general coded computing techniques
proposed thus far and is not limited to matrix-vector multiplications.
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5.4.1 Matrix-matrix multiplications

First, we consider the application of matrix-matrix multiplications. We consider an online
version: we store an encoded version of the matrix A at P machines and compute the
matrix multiplication AB for different B’s. We partition the matrix A column-wise and
the matrix B row-wise, and stores linearly combined submatrices of A and B at each
machine. In an online setting with elastic machine preemptions, we encode and store A
at the initial stage, and do not move A anymore. When we receive B, we still partition
the matrix B row-wise but linearly combine them using the knowledge of the availability
of the machines. The advantage is that we do not need to use the polynomial-based codes
and can thus avoid possible numerical issues. At the same time, since the availability of
the machines are known before we encode B, we can also remove the factor of 2 in the
recovery threshold of MatDot codes. We can also use the same computational time cost
as the uncoded case, which is similar to what we can achieve in the matrix-vector case.

More precisely, suppose we parition the matrix A into L column blocks A1, . . . ,AL,
and encode these blocks into P blocks Acoded

s , s = 1, 2, . . . , P , where P is the initial
number of machines:

Acoded
s =

L∑
k=1

gs,kAk. (5.4)

Denote by G the matrix [gs,k], which is of size P ×L. Assume M machines are preempted
and P −M ≥ L machines remain. Similar to Algorithm 2, we partition each coded sub-
matrix Acoded

s into P −M submatrices. However, here, we partition each Acoded
s column-

wise to Acoded
s,i , i = 1, 2, . . . , P −M . This is mathematically equivalent to partitioning each

uncoded submatrix As into As,i, i = 1, 2, . . . , P −M , and compute

Acoded
s,i =

L∑
k=1

gs,kAk,i, i = 1, 2, . . . , P −M. (5.5)

The subscript s in As,i belongs to a subset with size P −M of the set {1, 2, . . . , P}, which
corresponds to the P −M available machines after the preemption failures. We again
select to use these submatrices As,i in a cyclic fashion, just as shown in Figure 5.1. For
example, consider the case when P = 6, L = 3, M = 2 and the 2nd and the 4th machines
are preempted, which is exactly the same as shown in Figure 5.1(d). Then, we use
A1,1,A1,2,A1,3 at the 1st machine, A3,2,A3,3,A3,4 at the 3rd machine, and so on. Denote
by Si the set of the indices of all the machines that use As,i. For example, for i = 1, in the
above example, S1 = {1, 5, 6}. Again, similar to Section 5.3.3, denote by Gi the submatrix
of G with row indices in Si. Each Gi is a L× L matrix. Denote by

Hi = (G>i )−1, (5.6)

and assume Hi has element hl,k, l = 1, 2, . . . , L, k = 1, 2, . . . , L.
When we get the matrix B, we partition it row-wise into L blocks B1,B2, . . . ,Bk.

Then, we partition each submatrix Bk into P −M row blocks Bk,i, i = 1, 2, . . . , P −M as
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well. For each i, suppose Si = {si,1, si,2, . . . , si,L}, where 1 ≤ si,1 < si,2 < . . . < si,L ≤ P .
Then, we encode

Bcoded
si,l,i

=
L∑
k=1

hl,kBk,i, (5.7)

and send Bcoded
si,l,i

to the si,l-th machine to compute Acoded
si,l,i

Bcoded
si,l,i

.
When we do a reduction on all the partial results Acoded

si,l,i
Bcoded
si,l,i

, we can indeed get AB.
Lemma 5.4.1. If we use the cyclic partitioning technique to determine each Si = {si,1, si,2, . . . , si,L}
and encode B according to (5.7), we have

P−M∑
i=1

L∑
l=1

Acoded
si,l,i

Bcoded
si,l,i

= AB. (5.8)

Proof. See the online report [281].

Remark 13. (Cost analysis) We can see that the computational cost for this algorithm
comes from two parts: (1) the encoding of B using (5.7), and (2) the computational cost
of Acoded

si,l,i
Bcoded
si,l,i

. Assume the matrix A has size dA × N and B has size N × dB, where
dA, dB = Θ(N). Then, encoding B has complexity (P −M)L ·L · (dB ×N/L/(P −M)) =
LdBN = Θ(LN2). Computation of a single Acoded

si,l,i
Bcoded
si,l,i

has complexity dA ×N/L/(P −
M)× dB , and each machine computes L of them, which means the overall complexity is
dA ×N/L/(P −M)× dB × L = dAdBN/(P −M). Note that this is in the order of Θ(N3)
and the complexity is the same as distributing the matrix-matrix multiplication task to
P −M machines. The encoding time is much less than the computation time per worker
if LdBN � dAdBN/(P −M), or L(P −M)� dA. If the encoding time is much smaller
than the matrix-multiplication time, we again achieve linear scaling of the theoretical
computational complexity in the number of available machines P −M without moving
data at the existing machines. At the same time, the computation time cost is the same
at each worker machine as the uncoded case. Note that the scheme here considers a
problem in which the system becomes aware of the indices of the failed machines after
the preemptions have happened, and can adaptively change the encoding of B.

5.4.2 Coded elastic computing for linear models

Then, we focus on the application of coded computing for linear regression. For the
ease of presentation, we consider vanilla gradient descent (we also use line search in the
experiment validation for all competing techniques), in which the full matrix X is used at
each iteration. The technique developed here naturally generalizes to stochastic gradient
descent and other generalized linear models such as logistic regression. Consider the
linear objective function:

f(w; X,y) =
n∑
i=1

(w>xi − yi)
2 + h(w). (5.9)
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The vanilla distributed gradient descent has the form wt+1 = wt−ηgt and gt = X>(Xwt−
y) + ∂wh(wt). When the data matrix X is large, the most time-consuming part is the
computation of X>(Xwt − y). We thus extend Algorithm 2 in the following way to
compute X>(Xwt − y). It is nothing but a combination of Algorithm 2 and the matrix-
matrix multiplication algorithm in Section 5.4.1.
• Compute Xjwt (where Xj is the data in the j-th group, or the j-th row block in

Figure 5.1 across different machines) for all group-index j in an elastic way using
Algorithm 2;
• The master computes zjt = Xjwt − yj for all group-index j, where yj are the labels

corresponding to the data points in the j-th group;
• The master re-encodes zjt ’s using the (pre-computed) inverse generator matrix

Hj = (G−1
j )> to obtain (G−1

j )>zjt , and scatters the results to the workers that use
the j-th group of data;

• Since data at workers are encoded using Gj , the reduced results from all the
workers are∑

j

(Xj)>G>j (G−1
j )>zjt =

∑
j

(Xj)>(Xjwt − yj) = X>(Xwt − y). (5.10)

Note that in the above extension of Algorithm 2, the workers also utilize the data as
in Figure 5.1. The experiment results of coded elastic computing in linear models are
provided in Section 5.5.

5.4.3 Fully distributed coded elastic computing

Coded elastic computing is not restricted to a master-worker setting. In this section, we
consider a fully distributed coded elastic matrix-vector multiplication technique that is a
trivial generalization of Algorithm 2. The advantage of a fully distributed framework is
that communication among workers can be overlapped and the communication to the
master does not become the single bottleneck in the limit of a large number of machines.
Consider an application of iterative matrix-vector multiplication

wt+1 = f(Xwt), (5.11)

where X is a square data matrix, and f(·) is an entry-wise low-complexity operation
on the vector Xwt. We again consider the example shown in Figure 5.1,2 but apart
from the 6 worker machines, there is no master-node. In each iteration, each machine
computes its own matrix-vector multiplication based on the selected data to use. For
example, the 2nd machine computes b2wt, c2wt, d2wt, and stacks the results into one
vector. Then, the results at each machine can be broadcast to all the other machines using
an all-gather communication (using a bucketing algorithm [23]). The communication is
also done in a cyclic way so that all the communications can be maximally overlapped

2Note that the example in Figure 5.1 partitions the data row-wise. The column-wise partition can use
the elastic coding scheme in Section 5.4.1, which is essentially an elastic dot-product scheme.
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Original Data Coded Data

machine 1 machine 2 machine 3 machine 4 machine 5 machine 6

don't use don't use

don't use
don't use don't use

don't use
don't use

don't use

don't use

don't use

don't use

don't use

don't use don't use

don't use

Figure 5.2: Non-uniform data partitioning

(i.e., all machines can communicate at the same time). In this way, the communication
bandwidth can be reduced when compared to the master-worker framework. Moreover,
the overall communication time in this scheme is the same as the uncoded scheme
using the same number of machines, because the selected size of data at each machine
is the same as the uncoded case. The decoding of the intermediate results at each
iteration is done independently at each machine. The decoding can also be conducted
distributedly for each group of data (each row-block), i.e., each machine only takes care
of the decoding of each row-block. This can lead to increase on the communication
time, but can significantly reduce the decoding time. Also, the smaller communication is
possible at the cost of more storage or computation in the individual machines .

5.4.4 Uneven task partitioning in coded elastic computing

In distributed computing, heterogeneity can happen if some machines are predictably
slower than other machines. In this case, the uniform partitioning on the stored data in
Figure 5.1 becomes suboptimal. To partially address the heterogeneity problem, one can
use the non-uniform cyclic partitioning on the data as shown in Figure 5.2. However, due
to the insufficiency of the degree of freedom in this non-uniform partitioning scheme,
it can only roughly approximate the computation capability, which is shown in the
following.
Preliminary Results: To characterize this insufficiency precisely, we define an achievable
combination of computation rates as an n-tuple (x1, x2, . . . , xn) such that the i-th machine
in the n machines only uses xi blocks of data, where 0 ≤ xi ≤ 1. Then, we have the
following lemma.
Lemma 5.4.2. The region of all achievable combinations of heterogeneous computation rates is
characterized by the (n− 1)-dimensional subset Ω = {x = (x1, x2, . . . , xn) : x = Hy, 0 ≤ yi ≤
1,1>y = 1, }, where H is a cylic matrix in which the first row is [1, 1, . . . , 1, 0, 0, . . . , 0] (the
number of ones depends on the recovery threshold).

However, this set does not coincide with the set of all possible computation rates, and
hence the non-uniform data partitioning technique only partially addresses the problem
of heterogeneous computation rates.
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Figure 5.3: The chart of optimal policies under different configurations.

5.4.5 Towards fully transition compatibility: horizontal and vertical
transition compatibility

Horizontal transition compatibility

We can represent the policies in Figure 5.1 as four configuration points (represented
by crosses ×) in Figure 5.3. The x-axis is the number of machines, and the y-axis is
the number of blocks of data stored at each machine. Each (x,y) point represents one
configuration point. Each (t,u) tuple written at a point (x,y) means the optimal policy
at this configuration point (x,y) can maximally tolerate t machine failures, while select
to use only u blocks of data at each machine. The four crossed points, from left to right,
correspond to the (d)(c)(b)(a) respectively in Figure 5.1. Therefore, our preliminary
scheme [281] allows seamless movement in the horizontal direction between different
Pareto-optimal points. Note that horizontal movement between configuration points
results from elastic events (when existing machines leave and new machines join).

Vertical transition compatibility

Moving in the vertical direction in Figure 5.3 means that we add or remove data at each
machine, but still achieve optimal fault tolerance and memory access. We analyze one
example here. Again, assume that we have 6 machines and each machine stores one of
the coded data blocks X1, X2, X3, X1 + X2 + X3, X1 + 2X2 + 3X3, and X1 + 4X2 + 9X3.
Then, we can tolerate 3 failures while only accessing 0.5 blocks of data at each machine
(Figure 5.1(b)). In the upper part of Figure 5.4, we show how to move vertically from the
configuration point (6,1) to the configuration point (6, 5/6), i.e., removing 1/6 of data
while fixing the number of machines to be 6. When 1/6 of data is removed, it can be
shown that the maximum number of tolerable failures reduces from 3 to 2. Now, we
show that the policy shown in Figure 5.4 can indeed tolerate 2 failures (see the lower
part of Figure 5.4). Without loss of generality, suppose the 3rd and the 5th machines fail.
Then, at each remaining machine, we use 3 small blocks of data, and for the two specific
blocks that are marked by the green rectangles, we break each small block into four and
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Figure 5.4: Remove data in a cyclic fashion to transit vertically on Figure 5.3.

only use three, again in a cyclic fashion. In this way, on each row, we have three small
blocks, so we can recover the results. Further, each machine has the optimal memory
access of 3/4 blocks of data, which can be checked by counting the non-black area on
each column. Thus, this is a concrete example of moving vertically in Figure 5.3.

One future direction is to propose a general framework for all possible vertical transi-
tions in Figure 5.3 and combine horizontal and vertical transitions to obtain seamless
transitions between any pair of points. One problem to notice is that we cannot move
up without moving data, because moving up requires increasing the data size. In this
case, we would like to study the minimum data movement to move upwards in the
Pareto-optimal chart.

5.5 Experimental evaluations

The proposed coded elastic computing technique has been implemented on top of Apache
REEF [56] Elastic Group Communication (EGC) framework 3. REEF EGC provides an
API allowing to implement elastic computations by chaining fault-tolerant MPI-like
primitives. In this chapter, we assess the performance of our elastic code computing
approach through 2 mini-benchmarks.
Matrix-vector mini-benchmark. In this mini-benchmark, we test that indeed the time
cost decreases linearly with the increase in the number of machines available. We
mimic an elastic computing environment on Amazon EC2 by using different numbers
of t2.large instances to compute the same matrix-vector product Xw. The matrix is
randomly generated and with size 30000 × 10000, and it is partitioned initially into 3
submatrices of size 10000× 10000. Then, they are encoded into 6 submatrices of the same

3https://github.com/interesaaat/reef/tree/elastic-sync
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Figure 5.5: Mini-benchmarks experiments (results normalized due to confidentiality).

size, and each submatrix is stored at one machine (for a total of 6 machines). To mimic
the elastic events, we change the number of available machines by injecting artificial
failures. The maximum number of failures is 3. The per-iteration overall time (including
both communication and computation) is shown in Figure 5.5(a). The result is averaged
using 20 independent trials. As we can see, the coded elastic computing technique can
utilize the extra machines when the number of machines increases.
Linear model mini-benchmark. In this experiment, we test a coded implementation of
linear regression using line-search-based batch gradient descent. We run the test over 20
machines on a Microsoft internal multi-tenancy cluster. Each data point in the dataset
has 3352 features, and we sample 10000 data for training and 10000 data for testing.
We generate random failures and allow REEF EGC to reschedule new machines when
failures occur. We start with Figure 5.5(b) where we plot the time for each iteration. In
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theory, when all the workers are present, the computational cost per iteration should
be the same as the uncoded case. However, the coded method (all) has slight overhead
due to decoding cost. The coded method (half) shows the cost when only half of the
workers are running, which is, as expected, twice the cost of the uncoded method. In
Figure 5.5(c) and 5.5(d) we report the generalization error and we compare our coded
elastic computing technique with three baselines, namely noiseless (no failure), ignore
the failure and continue, and an existing algorithm called Elastic Distr-BGD. The coded
method can achieve the same convergence behavior as the noiseless case, while the
ignore method achieves worst generalization error, even with different regularization
parameters. In Figure 5.5(d), we show 5 different experiments on Distr-BGD using
the same failure probability but different realizations. The convergence of Distr-BGD
depends on when a failure occurs and can lead to different algorithm performance. Note
that Distr-BGD needs the assumption that failed machines are eventually recovered. If
this assumption is not true, then, the algorithm can have different performance over
different runs because the Distr-BGD keeps using previous gradient vectors at the failed
machines, which can make the optimization miss the minimum point. In the plot of Distr-
BGD, the valley part is due to overfitting, and the sudden change to near flat loss growth
is because when the gradient descent has missed the optimal point of empirical training
loss, the fixed gradient at the failure nodes makes the line search choose the smallest
step size. In some cases, the Distr-BGD works extremely well because the fixed gradients
act like momentum and can improve the speed of convergence. The performance of
the ignore method can be improved using different regularization parameters. Thus, in
Figure 5.5(c), we compare different regularization parameters, and observe again that
the ignore method can have algorithmic level performance degradation.

From the experiment results, we can see that the coded elastic computing technique
can obtain the same convergence behavior as ordinary gradient-descent-based algorithms
but can elastically allocate the workload based on the number of available machines
without moving data around.

5.6 Conclusions and future directions

The coded elastic computing technique presented in this chapter is designed for the
new cloud offerings where machines can leave and join during the computation. Our
framework handles the elastic events positively, meaning that when machines leave, it
shifts the computation to the remaining workers without moving the data, and when new
machines join the computation, it actively reduces the workload of existing machines in a
seamless way. We provably show that the coded elastic computing technique can achieve
the same memory-access cost as the noiseless case, and it achieves the theoretically
optimal memory-access time and storage cost in matrix-vector multiplication problems.
Therefore, the coded elastic computing technique is optimal for memory-bound appli-
cations when the memory-access time dominates the overall computation time. Using
experiments in both Amazon EC2 and on a Microsoft multi-tenancy cluster, we show
that the coded elastic computing technique can achieve the same convergence behavior
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as if no failure occurs, and can dynamically adjust working loads respect to the number
of remaining workers. The proposed technique can be applied to coded matrix-vector,
matrix-matrix multiplications and linear regression, and potentially other applications
where the large-scale matrix operations are the bottleneck.
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Chapter 6

Exploiting the multi-stage computing II:
convergence viewed as additive error

6.1 Introduction

In this chapter, we present a coding-inspired technique to deal with the straggler effect
in distributed computing of linear inverse problems using iterative solvers [217]. As
we have mentioned at the beginning of Chapter 5, we will introduce techniques that
explicitly utilize the properties of multi-stage computing. We focus on the standard
iterative solvers for these linear systems. For example, we consider the personalized
PageRank problem, and we study the power-iteration method which is the most classical
PageRank algorithm [190]. The results in this chapter is a review of the paper [277].

Most algorithms in coded computation treat straggling workers as erasures. In other
words, the computation results at the stragglers are discarded. Interestingly, in the
iterative solvers for linear inverse problems, even if the computation result at a straggler
has not converged, the algorithm presented in this chapter does not ignore the result but
instead combines it (with appropriate weights) with results from other workers. This
is in part because the result of the iterative method converges gradually to the correct
solution.

We use a small example shown in Fig. 6.1 to illustrate this idea. Suppose we want to
solve two linear inverse problems with solutions x∗1 and x∗2. If we use existing techniques,
we can add an additional linear inverse problem, the solution of which is x∗1 + x∗2 (see
Section 6.3.1), and distribute these three problems to three workers. Using this method,
the solutions x∗1 and x∗2 can be obtained from the results of any combination of two
fast workers that are first to come close to their solutions. However, what if we have
a computational deadline, Tdl, by which only one worker converges to its solution?
In that case, existing coded-computation strategies will declare a computation failure
because it needs at least two workers to respond. However, our strategy does not require
convergence: even intermediate results from workers, as long as they are received, can
be utilized to estimate solutions. In other words, our strategy degrades gracefully as
the number of stragglers increases, or as the deadline is pulled earlier. The presented
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Figure 6.1: A toy example of the comparison between the existing coded computing
scheme and the proposed algorithm.

algorithm essentially treats the difference from the optimal solution as “soft” additive
noise.

Theoretically, we show that for a specified deadline time Tdl, under certain conditions
on worker speed, the coded linear inverse solver using structured codes has in scaling
sense smaller mean squared error than the replication-based linear solver (Theorem 6.3.7).
For validation of our theory, we performed experiments to compare the performance
of coded and replication-based personalized PageRank (respectively using coded and
replication-based power-iteration method) on the Twitter and Google Plus social net-
works under a deadline on computation time using a given number of workers on a
real computation cluster (Section 6.4.1). We observe that the MSE of coded PageRank is
smaller than that of replication by a factor of 104 at Tdl = 2 seconds.

The focus of this chapter is on utilizing computations to deliver minimal MSE in
solving linear inverse problems. Our algorithm does not reduce communication cost.
However, because each worker performs sophisticated iterative computations, such as
the power-iteration computations in our problem, the time required for computation
dominates that of communication (see Section 6.3.5).

Although our motivation comes from PageRank, the proposed technique applies
more generally to the distributed computation of linear equations of the form AX = B
using iterative algorithms, and linear dynamical systems such as Navier-Stokes equations
in fluid dynamics [35], in which case the dynamical system is modeled as iterative linear
systems.
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6.2 System model and problem formulation

In this section, we present the model of parallel linear systems that we will apply the
idea of error correcting codes. Then, we provide two applications that can be directly
formulated in the form of parallel linear systems. Note that, different from the previous
chapters, we use P instead of N to denote the number of machines, because N is used to
denote the size of the graph (similar to Chapter 4 and Chapter 8).

6.2.1 Solving parallel linear systems using iterative methods

Consider the problem of solving k inverse problems1 with the same linear transform
matrix and different inputs ri:

Mxi = ri, i = 1, 2, . . . k. (6.1)

When M is a square matrix, the closed-form solution is

xi = M−1ri. (6.2)

When M is a non-square matrix, the solution to (6.1) is interpreted as

xi = arg min ‖Mx− ri‖2 + λ ‖x‖2 , i = 1, 2, . . . k, (6.3)

with an appropriate regularization parameter λ. The closed-form solution of (6.3) is

xi = (M>M + λI)−1M>ri. (6.4)

Computing matrix inverse in (6.2) or (6.4) directly is often hard and commonly used
methods are often iterative. In this chapter, we study two ordinary iterative methods,
namely the Jacobian method for solving (6.1) and the gradient descent method for solving
(6.3).

The Jacobian method for square system

For a square matrix M, one can decompose M = D + L, where D is diagonal. Then, the
Jacobian iteration is written as

x
(l+1)
i = D−1(ri − Lx

(l)
i ). (6.5)

Under certain conditions of D and L (see [217, p.115]), the computation result converges
to the true solution.

1Note that in this chapter, we consider solving k inverse problems instead of a single one. This way
of partitioning the distributed computing problem can be used when we have a large amount of online
requests and the computation capability of one machine is limited.
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Gradient descent for non-square system

For the `-2 minimization problem (6.3), the gradient descent solution has the form

x
(l+1)
i = ((1− λ)I− εM>M)x

(l)
i + εM>ri, (6.6)

where ε is an appropriate step-size.

General formulation

From these two problem formulations, we can see that the iterative methods have the
same form

x
(l+1)
i = Bx

(l)
i + Kri, i = 1, 2, . . . k, (6.7)

for two appropriate matrices B and K. Denote by x∗i the solution to (6.1) or (6.3). Then,

x∗i = Bx∗i + Kri, i = 1, 2, . . . k. (6.8)

Then, from (6.8) and (6.7), the computation error e
(l)
i = x

(l)
i − x∗i satisfies

e
(l+1)
i = Be

(l)
i . (6.9)

6.2.2 Distributed computing and the straggler effect

Consider solving k linear inverse problems in k parallel workers using the iterative
method (6.7), such that each processor solves one problem. Due to the straggler effect,
the computation of the linear inverse problem on different workers can have different
computation speeds. Suppose after the deadline time Tdl, the i-th worker has completed
li iterations in (6.7). Then, the residual error at the i-th worker is

e
(li)
i = Blie

(0)
i . (6.10)

For our theoretical results, we sometimes need the following assumption.
Assumption 5. We assume that the optimal solutions x∗i , i = 1, 2, . . . k are i.i.d. Denote by
µE and CE respectively the mean and the covariance of each x∗i . Assume we start with
the initial estimate x

(0)
i = µE , which can be estimated from data. Then, e

(0)
i = x

(0)
i − x∗i

has mean 0N and covariance CE .
Note that Assumption 5 is equivalent to the assumption that the inputs ri, i = 1, 2, . . . k

are i.i.d., because the input and the true solution for a linear inverse problem are related
by a linear transform. We provide an extension of this i.i.d. assumption in Section 6.3.3.

6.2.3 A motivating example

Now we study an example of the linear inverse problems.
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PageRank as a square system

For a directed graph G = (V , E) with node set V and edge set E , the PageRank algo-
rithm aims to measure the importance of the nodes in V by computing the stationary
distribution of a discrete-time “random walk with restart” on the graph that mimics the
behavior of a web surfer on the Internet. At each step, with probability 1− d, the random
walk chooses a random neighbor on the graph with uniform probability to proceed to
(e.g. d = 0.15 in [190]). With probability d, it jumps to an arbitrary node in the graph.
The probability d is often called the “teleport probability”. From [190], the problem
of computing the stationary distribution is equivalent to solving the following linear
problem

x =
d

N
1N + (1− d)Ax, (6.11)

where N is the number of nodes and A is the column-normalized adjacency matrix, i.e.,
for a directed edge vi → vj , Aij = 1

deg(vj)
, where deg(vj) is the in-degree of vj .

The personalized PageRank problem [113] considers a more general linear equation

x = dr + (1− d)Ax, (6.12)

for any possible vector r ∈ RN that satisfies 1>r = 1. Compared to the original PageRank
problem [190], personalized PageRank [113] utilizes both the structure of the graph and
the personal preferences of different users. The solution x is also the limiting distribution
of a random walk, but with different restarting distribution. That is, with probability
d, instead of jumping to each node with uniform probability, the random walk jumps
to different nodes according to distribution r. Intuitively, difference in the vector r
represents different preferences of web surfers.

A classical method to solve PageRank is power-iteration, which iterates the following
computation until convergence (usually with initial condition x

(0)
i = 1

N
1N ):

x(l+1) = dr + (1− d)Ax(l). (6.13)

One can see that the power-iteration method is exactly the same as the Jacobian iteration
(6.5).

Another example that we have not mentioned here is the problem of reconstructing
graph signals using a non-square linear system [49, 50, 179, 218, 230]. More details can be
found in our paper [277].

6.2.4 Preliminaries on error correcting codes

The encoding means multiplies the inputs to the parallel workers with a generator matrix
G and the decoder multiplies the outputs of the workers with a decoding matrix L. We
use an (n, k) code where the generator matrix has size k× n. In this chapter, we often use
generator matrices G with orthonormal rows, which means

Gk×nG
>
n×k = Ik. (6.14)
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An example of such a matrix is the submatrix formed by any k rows of an n×n orthonor-
mal matrix (e.g., a Fourier matrix). Under this assumption, Gk×n can be augmented
to form an n × n orthonormal matrix using another matrix H(n−k)×n (the parity check

matrix), i.e. the square matrix Fn×n =

[
Gk×n

H(n−k)×n

]
satisfies F>F = In. This structure

assumption is not necessary when we compare the error exponents of different linear
inverse algorithms when the computation time Tdl goes to infinity (e.g., coded and
uncoded). However, it is useful when we present theorems on finite Tdl.

6.3 Main result: coded distributed computing of linear in-
verse problems

6.3.1 The coded linear inverse algorithm

The proposed coded linear inverse algorithm is shown in Algorithm 3 and illustrated
in Figure 6.2. The algorithm has three stages: preprocessing (encoding) at the central
controller, parallel computing at n parallel workers, and post-processing (decoding) at
the central controller. As we show later in the analysis of computing error, the entries
in the diagonal matrix Λ are the expected mean-squared error at each worker prior
to decoding. The decoding matrix Lk×n in the decoding step (6.18) is chosen to be
(GΛ−1G>)−1GΛ−1 to reduce the mean-squared error of the estimates of linear inverse
solutions by assigning different weights to different workers based on the estimated
accuracy of their computation (which is what Λ provides).
Remark 14. This choice of Λ is very similar to the weighted least-squares solution. How-
ever, the analysis of the algorithm is different from the weighted least-squares solution
in that the “samples” already become correlated after the linear encoding. Therefore, the
results presented in this chapter can also be viewed as generalized weighted least-squares
with correlated data samples.

6.3.2 Bounds on performance of the coded linear inverse algorithm

Define l = [l1, l2, . . . ln] as the vector of the number of iterations at all workers. We use the
notation E[·|l] to denote the conditional expectation taken with respect to the randomness
of the optimal solution x∗i (see Assumption 5) but conditioned on fixed iteration number
li at each worker, i.e., for a random variable X ,

E[X|l] = E[X|l1, l2, . . . ln]. (6.21)

Theorem 6.3.1. Define E = X̂−X∗, i.e., the error of the decoding result (6.18). Assuming that
the solutions for each linear inverse problem are chosen i.i.d. (across all problems) according to a
distribution with covariance CE . Then, the error covariance of E satisfies

E[‖E‖2 |l] ≤ σmax(G
>G)trace

[
(GΛ−1G>)−1

]
, (6.22)
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Algorithm 3 Coded Distributed Linear Inverse
Input: Input vectors [r1, r2, . . . , rk], generator matrix Gk×n, the linear system matrices
B and K defined in (6.7).
Initialize (Encoding): Encode the input vectors [r1, r2, . . . , rk] and the initial estimates
by multiplying with the generator matrix G:

[s1, s2, . . . , sn] = [r1, r2, . . . , rk] ·G. (6.15)

[y
(0)
1 ,y

(0)
2 , . . . ,y(0)

n ] = [x
(0)
1 ,x

(0)
2 , . . . ,x

(0)
k ] ·G. (6.16)

Parallel Computing:
for i = 1 to n do

Send si and y
(0)
i to the i-th worker. Compute the solution of (6.1) or (6.3) using the

specified iterative method (6.7) with initial estimate y
(0)
i at each worker in parallel

until a deadline Tdl.
end for
After Tdl, collect all linear inverse results y

(li)
i from these n workers. The superscript li

in y
(li)
i represents that the i-th worker finished li iterations within time Tdl. Denote by

Y(Tdl) the collection of all results

Y
(Tdl)
N×n = [y

(l1)
1 ,y

(l2)
2 , . . . ,y(ln)

n ]. (6.17)

Post Processing (Decoding):
Compute an estimate of the linear inverse solutions using the following matrix multi-
plication:

X̂> = L · (Y(Tdl))> := (GΛ−1G>)−1GΛ−1(Y(Tdl))>, (6.18)

where the estimate X̂N×k = [x̂1, x̂2, . . . , x̂k], the matrix Λ is

Λ = diag [trace(C(l1)), . . . , trace(C(ln))] , (6.19)

where the matrices C(li), i = 1, . . . , n are defined as

C(li) = BliCE(B>)li . (6.20)

In computation of Λ, if trace(C(li)) are not available, one can use estimates of this
trace as discussed in Section 6.3.5.

where the norm ‖·‖ is the Frobenius norm, σmax(G
>G) is the maximum eigenvalue of G>G and

the matrix Λ is defined in (6.19). Further, when G has orthonormal rows,

E[‖E‖2 |l] ≤ trace
[
(GΛ−1G>)−1

]
, (6.23)

Proof. See appendix Section D.1 for a detailed proof.
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Corollary 6.3.2. Suppose the i.i.d. Assumption 5 holds and the matrix Gk×n is a submatrix of

an n× n orthonormal matrix, i.e. there exists a matrix Fn×n =

[
Gk×n

H(n−k)×n

]
satisfies F>F = In.

Assume that the symmetric matrix FΛF> has the block form

FΛF> =

[
J1 J2

J>2 J4

]
n×n

, (6.24)

that is, (J1)k×k is GΛG>, (J2)k×(n−k) is GΛH>, and (J4)(n−k)×(n−k) is HΛH>. Then, we have

E[‖E‖2 |l] ≤ trace(J1)− trace(J2J
−1
4 J>2 ). (6.25)

Proof. The proof essentially relies on the Schur complement. See appendix Section D.2
for details.

6.3.3 Bounds on the mean-squared error beyond the i.i.d. case

Until now, we based our analysis on the i.i.d. assumption 5. For the PageRank prob-
lem discussed in Section 6.2.3, this assumption means that the PageRank queries are
independent across different users. Although the case when the PageRank queries are
arbitrarily correlated is hard to analyze, we may still provide concrete analysis for some
specific cases. For example, a reasonable case when the PageRank queries are correlated
with each other is when these queries are all affected by some “common fashion topic”
that the users wish to search for. In mathematics, we can model this phenomenon by
assuming that the solutions to the i-th linear inverse problem satisfies

x∗i = x̄ + zi, (6.26)

for some random vector x̄ and an i.i.d. vector zi across different queries (different i). The
common part x̄ is random because the common fashion topic itself can be random. This
model can be generalized to the following “stationary” model.
Assumption 6. Assume the solutions x∗i ’s of the linear inverse problems have the same
mean µE and stationary covariances, i.e.,

E[x∗i (x
∗
i )
>] = CE + CCor,∀1 ≤ i ≤ k, (6.27)

E[x∗i (x
∗
j)
>] = CCor,∀1 ≤ i, j ≤ k. (6.28)

Under this assumption, we have to change the coded linear inverse algorithm slightly.
The details are shown in Algorithm 4.

For the stationary version, we can have the counterpart of Theorem 6.3.1 as follows.
Trivial generalizations include arbitrary linear scaling x∗i = αix̄+βizi for scaling constants
αi and βi.
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Algorithm 4 Coded Distributed Linear Inverse (Stationary Inputs)
Call Algorithm 3 but replace the Λ matrix with

Λ̃ = σmax(G>G)Λ + diag{G>1k} ·Ψ · diag{G>1k}>, (6.29)

where σmax(G>G) is the maximum eigenvalue of G>G, and Ψn×n = [Ψi,j] satisfies

Ψi,j = trace[BliCcor(B
>)lj ]. (6.30)

Theorem 6.3.3. Define E = X̂−X∗, i.e., the error of the decoding result (6.18) by replacing Λ
defined in (6.19) with Λ̃ in (6.29). Assuming that the solutions for all linear inverse problems
satisfy Assumption 6. Then, the error covariance of E satisfies

E[‖E‖2 |l] ≤trace
[
(GΛ̃−1G>)−1

]
. (6.31)

where the norm ‖·‖ is the Frobenius norm.

Proof. See [277] for the complete proof.

In Section 6.3.4, we compare coded, uncoded and replication-based linear inverse
schemes under the i.i.d. assumption. However, we include one experiment in Sec-
tion 6.4.1 to show that Algorithm 4 also works in the stationary case.

6.3.4 Comparison with cncoded schemes and replication-based schemes

Here, we often assume (we will state explicitly in the theorem) that the number of
iterations li at different workers are i.i.d.. Ef [·] denotes expectation on randomness of
both the linear inverse solutions x∗i and the number of iterations li.
Assumption 7. Within time Tdl, the number of iterations of linear inverse computations at
each worker follows an i.i.d. distribution li ∼ f(l).

Comparison between the coded and uncoded linear inverse before a deadline

First, we compare the coded linear inverse scheme with an uncoded scheme, in which
case we use the first k workers to solve k linear inverse problems in (6.8) without coding.
The following theorem quantifies the overall mean-squared error of the uncoded scheme
given l1, l2, . . . , lk. The proof is in appendix Section D.3.
Theorem 6.3.4. In the uncoded scheme, the overall error is

E
[
‖Euncoded‖2 |l

]
= E

[∥∥∥[e
(l1)
1 , e

(l2)
2 . . . , e

(lk)
k ]
∥∥∥2
∣∣∣∣ l] =

k∑
i=1

trace (C(li)) . (6.32)

Further, when the i.i.d. Assumption 7 holds,

Ef
[
‖Euncoded‖2] = kEf [trace(C(l1))]. (6.33)
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Then, we compare the overall mean-squared error of coded and uncoded linear
inverse algorithms. Note that this comparison is not fair because the coded algorithm
uses more workers than uncoded. However, we still include Theorem 6.3.5 because we
need it for the fair comparison between coded and replication-based linear inverse.
Theorem 6.3.5. (Coded linear inverse beats uncoded) Suppose the i.i.d. Assumption 5 and 7
hold and suppose G is a k×n submatrix of an n×n Fourier transform matrix F. Then, expected
error of the coded linear inverse is strictly less than that of uncoded:

Ef
[
‖Euncoded‖2]− Ef

[
‖Ecoded‖2] ≥ Ef [trace(J2J

−1
4 J>2 )], (6.34)

where J2 and J4 are defined in (6.24).

Proof. From Corollary 6.3.2, for fixed li, 1 ≤ i ≤ n,

E[‖Ecoded‖2 |l] ≤ trace(J1)− trace(J2J
−1
4 J>2 ). (6.35)

We will show that
Ef [trace(J1)] = Ef

[
‖Euncoded‖2] , (6.36)

which completes the proof. To show (6.36), first note that from (6.33),

Ef
[
‖Euncoded‖2] = kEf [trace(C(l1))]. (6.37)

Since G := [gj,i] is a submatrix of a Fourier matrix, we have |gji|2 = 1/n. Thus, J1 =
GΛG> satisfies

trace(J1) =
k∑
j=1

n∑
i=1

|gji|2trace(C(li)) =
k

n

n∑
i=1

trace(C(li)).

Therefore, Ef [trace(J1)] = kEf [trace(C(l1))]. (6.38)

which, along with (6.37), completes the proof of (6.36), and hence also the proof of
Theorem 6.3.5.

Comparison between the replication-based and coded linear inverse before a dead-
line

Consider an alternative way of doing linear inverse using n > k workers. In this chapter,
we only consider the case when n−k < k, i.e., the number of extra workers is only slightly
bigger than the number of problems (both in theory and in experiments). Since we have
n − k extra workers, a natural way is to pick any (n − k) linear inverse problems and
replicate them using these extra (n−k) workers. After we obtain two computation results
for the same equation, we use two natural “decoding” strategies for this replication-
based linear inverse: (i) choose the worker with higher number of iterations; (ii) compute
the weighted average using weights w1

w1+w2
and w2

w1+w2
, where w1 = 1/

√
trace(C(l1)) and

w2 = 1/
√

trace(C(l2)), and l1 and l2 are the number of iterations completed at the two
workers.
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Theorem 6.3.6. The replication-based schemes satisfies the following lower bound on the mean-
squared error:

Ef
[∥∥Erep

∥∥2
]
>Ef

[
‖Euncoded‖2]− (n− k)Ef [trace(C(l1))]. (6.39)

Proof overview. Here the goal is to obtain a lower bound on the MSE of replication-based
linear inverse and compare it with an upper bound on the MSE of coded linear inverse.

Note that if an extra worker is used to replicate the computation at the i-th worker,
i.e., the linear inverse problem with input ri is solved on two workers, the expected
error of the result of the i-th problem could at best reduced from Ef [trace(C(l1))] to zero2.
Therefore, (n− k) extra workers make the error decrease by at most (and strictly smaller
than) (n− k)Ef [trace(C(l1))].

Using this lower bound, we can provably show that coded linear inverse beats
replication-based linear inverse when certain conditions are satisfied. One crucial con-
dition is that the distribution of the random variable trace(C(l)) satisfies a “variance
heavy-tail” property defined as follows.
Definition: The random variable trace(C(l)) is said to have a “ρ-variance heavy-tail”
property if

varf [trace(C(l))] > ρE2
f [trace(C(l))], (6.40)

for some constant ρ > 1. For the coded linear inverse, we will use a Fourier code the
generator matrix G of which is a submatrix of a Fourier matrix. This particular choice of
code is only for ease of analysis in comparing coded linear inverse and replication-based
linear inverse. In practice, the code that minimizes mean-squared error should be chosen.
Theorem 6.3.7. (Coded linear inverse beats replication) Suppose the i.i.d. Assumption 5 and 7
hold and G is a k×n submatrix of an n×n Fourier matrix F. Further, suppose (n−k) = o(

√
n).

Then, the expected error of the coded linear inverse satisfies

lim
n→∞

1

n− k
[
Ef
[
‖Euncoded‖2]− Ef

[
‖Ecoded‖2]] ≥ varf [trace(C(l1))]

Ef [trace(C(l1))]
. (6.41)

Moreover, if the random variable trace(C(l)) satisfies the ρ-variance heavy-tail property for ρ > 1,
coded linear inverse outperforms replication-based linear inverse in the following sense,

lim
n→∞

1

(n− k)

[
Ef
[
‖Euncoded‖2]− Ef

[∥∥Erep
∥∥2
]]

<
1

ρ
lim
n→∞

1

(n− k)

[
Ef
[
‖Euncoded‖2]− Ef

[
‖Ecoded‖2]] . (6.42)

Proof overview. See appendix Section D.3.1 for a complete and rigorous proof.

2Although this is clearly a loose bound, it makes for convenient comparison with coded linear inverse

108



Asymptotic comparison between coded, uncoded and replication-based linear in-
verse as the deadline Tdl →∞

Consider the coded and uncoded linear inverse when the overall computation time
Tdl →∞. From Theorem 6.3.1 and Theorem 6.3.4, the computation error of uncoded and
coded linear inverse are respectively

E
[
‖Euncoded‖2 |l

]
=

k∑
i=1

trace (C(li)) , (6.43)

E[‖Ecoded‖2 |l] ≤ σmax(G>G)trace
[
(GΛ−1G>)−1

]
, (6.44)

where the matrix Λ is

Λ = diag [trace(C(l1)), . . . , trace(C(ln))] , (6.45)

and the matrices C(li), i = 1, . . . , n are defined as

C(li) = BliCE(B>)li . (6.46)

Assumption 8. We assume the computation time of one power iteration is fixed at
each worker for each linear inverse computation, i.e., there exist n random variables
v1, v2, . . . vn such that li = dTdl

vi
e, i = 1, 2, . . . n.

The k-th order statistic of a statistic sample is equal to its k-th smallest value. Suppose
the order statistics of the sequence v1, v2, . . . vn are vi1 < vi2 < . . . vin , where {i1, i2, . . . in} is
a permutation of {1, 2, . . . n}. Denote by [k] the set {1, 2, . . . k} and [n] the set {1, 2, . . . n}.
Theorem 6.3.8. (Error exponent comparison when Tdl →∞) Suppose the i.i.d. Assumption 5
and Assumption 8 hold. Suppose n− k < k. Then, the error exponents of the coded and uncoded
computation schemes satisfy

lim
Tdl→∞,li=d

Tdl
vi
e
− 1

Tdl
logE[‖Ecoded‖2 |l] ≥ 2

vik
log

1

1− d
, (6.47)

lim
Tdl→∞,li=d

Tdl
vi
e
− 1

Tdl
logE[‖Euncoded‖2 |l]

= lim
Tdl→∞,li=d

Tdl
vi
e
− 1

Tdl
logE[

∥∥Erep
∥∥2 |l] =

2

maxi∈[k] vi
log

1

1− d
,

(6.48)

The error exponents of uncoded, replication and coded linear inverse satisfy coded > replica-
tion=uncoded.

Here the expectation E[·|l] is only taken with respect to the randomness of the linear inverse
sequence xi, i = 1, 2, . . . k, and conditioned on the number of iterations l. The limit limTdl→∞ is
taken under the Assumption 8, i.e., li = dTdl

vi
e.

Proof. See appendix F in [277] for a detailed proof.
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6.3.5 Analyzing the computational complexity

Encoding and decoding complexity

We first show that the encoding and decoding complexity of Algorithm 3 are in scaling-
sense smaller than that of the computation at each worker. This is important to ensure
that straggling comes from the parallel workers, not the encoder or decoder. The proof
of the following Theorem can be found in [277].
Theorem 6.3.9. The computational complexity for the encoding and decoding is Θ(nkN), where
N is the number of rows in the matrix B and k, n depend on the number of available workers
assuming that each worker performs a single linear inverse computation. For a general dense
matrix B, the computational complexity of computing linear inverse at each worker is Θ(N2l),
where l is the number of iterations in the specified iterative algorithm. The complexity of encoding
and decoding is smaller than that of the computation at each user for large B matrices (large N ).

The complexity of encoding and decoding can be further reduced if the Coppersmith-
Winograd algorithm for matrix-matrix multiplication is used [57]. In our experiment on
the Google Plus graph for computing PageRank, the computation time at each worker
is 30 seconds and the encoding and decoding time at the central controller is about 1
second.

Computing the matrix Λ

One difficulty in our coded linear inverse algorithm is computing the entries trace(C(l)) =
trace

(
BlCE(B>)l

)
in the weight matrix Λ in (6.19), which involves a number of matrix-

matrix multiplications. One way to side-step this problem is to estimate trace(C(l))
using Monte Carlo simulations. Concretely, choose m i.i.d. N -variate random vectors
a1, a2, . . . am that are distributed the same as the initial error e(0) after Assumption 5.
Then, compute the statistic

γ̂m,l =
1

m

m∑
j=1

∥∥Blaj
∥∥2
, l = 1, 2, . . . Tu, (6.49)

where Tu is an upper bound of the number of iterations in a practical iterative computing
algorithm. The lemma in appendix Section D.3.2 shows that γ̂m,l is an unbiased and
asymptotically consistent estimator of trace(C(l)) for all l. In our experiments on PageR-
ank, for each graph we choose m = 10 and estimate trace(C(l)) before implementing the
coded linear inverse algorithm (in this case it is the coded power-iteration algorithm),
which has the same complexity as solving m = 10 extra linear inverse problems.

For the correlated case, we have to compute a slightly modified weighting matrix
denoted by Λ̃ in (6.29). The only change is that we have to compute Ψi,j in (6.30) for all
possible li, lj such that 1 ≤ li, lj ≤ Tu. We also choose m i.i.d. N -variate random vectors
b1,b2, . . .bm that are distributed with mean 0N and covariance Ccor, which is the same
as the correlation part according to Assumption 6. Then, compute the statistic

γ̂m,(li,lj) =
1

m

m∑
u=1

buB
ljBlibu, 1 ≤ li, lj ≤ Tu. (6.50)
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Figure 6.3: Experimentally computed overall mean squared error of uncoded, replication-
based and coded personalized PageRank on the Twitter graph and Google Plus graph on
a cluseter with 120 workers. The ratio of MSE for repetition-based schemes and coded
PageRank increase as Tdl increases.

Then, the lemma in appendix Section D.3.2 shows that γ̂m,(li,lj) is also an unbiased and
asymptotically consistent estimator of Ψi,j .

Analysis on the cost of communication versus computation

In this chapter, we focus on optimizing the computation cost. However, what if the
computation cost is small compared to the overall cost, including the communication
cost? If this is true, optimizing the computation cost is not very useful. In what follows,
we show that the computation cost is larger than the communication cost in the scaling-
sense.
Theorem 6.3.10. The ratio between computation and communication at the i-th worker is
COSTcomputation/COSTcommunication = Θ(lid̄) operations per integer, where li is the number of
iterations at the i-th worker, and d̄ is the average number of non-zeros in each row of the B matrix.
The proof can be found in [277].

6.4 Experiments and simulations

6.4.1 Experiments on real systems

We test the performance of the coded linear inverse algorithm for the PageRank problem
on the Twitter graph and the Google Plus graph from the SNAP datasets [153]. The
Twitter graph has 81,306 nodes and 1,768,149 edges, and the Google Plus graph has
107,614 nodes and 13,673,453 edges. We use the HT-condor framework in a cluster to
conduct the experiments. The task is to solve k = 100 personalized PageRank problems
in parallel using n = 120 workers. The uncoded algorithm picks the first k workers
and uses one worker for each PageRank problem. The two replication-based schemes
replicate the computation of the first n− k PageRank problems in the extra n− k workers
(see Section 6.3.4). The coded PageRank uses n workers to solve these k = 100 equations
using Algorithm 3. We use a (120, 100) code where the generator matrix is the submatrix
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Figure 6.4: Experimental comparison of four different codes on the Twitter graph. In this
experiment the DFT-code out-performs the other candidates in mean squared error.

composed of the first 100 rows in a 120× 120 DFT matrix. The computation results are
shown in Fig. 6.3. Note that the two graphs of different sizes so the computation in the
two experiments takes different time. From Fig. 6.3, we can see that the mean-squared
error of uncoded and replication-based schemes is larger than that of coded computation
by a factor of 104.

We also compare Algorithm 3 with existing coded computing schemes (see the paper
[277] for details). The classical coded computing scheme is not designed for iterative
algorithms, but it has a natural extension to the case of computing before a deadline. This
extension uses the results from the k fastest workers to retrieve the required PageRank
solutions. More concretely, suppose S ⊂ [n] is the index set of the k fastest workers. Then,
this extension retrieves the solutions to the original k PageRank problems by solving the
following equation:

YS = [x∗1,x
∗
2, . . . ,x

∗
k] ·GS , (6.51)

where YS is the computation results obtained from the fastest k workers and GS is the
k × k submatrix composed of the columns in the generator matrix G with indexes in
S. However, since there is some remaining error at each worker (i.e., the computation
results YS have not converged yet), when conducting the matrix-inverse-based decoding,
the error is magnified due to the large condition number of GS . This is why existing
coded computing schemes cannot be naively applied in the coded PageRank problem.

Finally, we test Algorithm 4 for correlated PageRank queries that are distributed
with the stationary covariance matrix in the form of (6.27) and (6.28). Note that the only
change to be made in this case is on the Λ matrix (see equation (6.29)). The other settings
are exactly the same as the experiments that are shown in Figure 6.3. The results on the
Twitter social graph are shown in Figure 6.4. In this case, we also have to compute

One question remains: what is the best code design for the coded linear inverse
algorithm? Although we do not have a concrete answer to this question, we have tested
different codes (with different generator matrices G) in the Twitter graph experiment,
all using Algorithm 3. The results are shown in Fig. 6.4. The generator matrix used for
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Figure 6.6: This simulation result shows the mean squared error of the computation
results for k = 200 different problems in the uncoded scheme.

the “binary” curve has i.i.d. binary entries in {−1, 1}. The generator matrix used for the
“sparse” curve has random binary sparse entries. The generator matrix for the “Gaussian”
curve has i.i.d. standard Gaussian entries. In this experiment, the DFT-code performs
the best. However, finding the best code in general is a meaningful future work.

6.4.2 Simulations

We also test the coded PageRank algorithm in a simulated setup with randomly generated
graphs and worker response times. These simulations help us understand looseness in
our theoretical bounding techniques. They can also test the performance of the coded
Algorithm for different distributions. We simulate Algorithm 3 on a randomly generated
Erdös-Rényi graph with N = 500 nodes and connection probability 0.1. The number of
workers n is set to be 240 and the number of PageRank vectors k is set to be 200. We use
the first k = 200 rows of a 240× 240 DFT-matrix as the G matrix in the coded PageRank
algorithm in Section 6.3.1. In Fig. 6.6 and Fig. 6.7, we show the simulation result on
the mean squared error of all k = 200 PageRank vectors in both uncoded and coded
PageRank, which are respectively shown in Fig. 6.6 and Fig. 6.7. The x-axis represents
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the computation results for different PageRank problems and the y-axis represents the
corresponding mean-squared error. It can be seen that in the uncoded PageRank, some of
the PageRank vectors have much higher error than the remaining ones (the blue spikes
in Fig. 6.6), because these are the PageRank vectors returned by the slow workers in the
simulation. However, in coded PageRank, the peak-to-average ratio of mean squared
error is much lower than in the uncoded PageRank. This means that using coding, we
are able to mitigate the straggler effect and achieve more uniform performance across
different PageRank computations. From a practical perspective, this means that we can
provide fairness to different PageRank queries.

We compare the average mean-squared error of uncoded, replication-based and coded
PageRank algorithms in Fig. 6.8. The first simulation compares these three algorithms
when the processing time of one iteration of PageRank computation is exponentially
distributed, and the second and third when the number of iterations is uniformly dis-
tributed in the range from 1 to 20 and Bernoulli distributed at two points 5 and 20 (which
we call “delta” distribution). It can be seen that in all three different types of distributions,
coded PageRank beats the other two algorithms.

6.5 Conclusions and future directions

In this chapter, we study the problem of distributedly solving several linear systems. By
studying coding for iterative algorithms designed for distributed inverse problems, we
aim to identify novel properties of iterative and multi-stage computation systems and
analytical tools for the design of coded computing algorithms.

Since iterative algorithms designed for inverse problems commonly have decreasing
error with time, the partial computation results at stragglers can provide useful informa-
tion for the distributed computing of the final outputs. By incorporating these partial
results, we show improvement on the convergence time and error reduction compared to
treating the results as erasures. In Chapter 7, we study more general settings of iterative
computation, and extend the analytical framework developed in this chapter to the
setting when the data matrix has to be partitioned and stored distributedly.
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Chapter 7

Exploiting the multi-stage computing
III: combining consecutive iterations in
iterative computing

7.1 Introduction

Following Chapter 6, we continue to study the problem of coded multi-stage computa-
tion. Apart from iterative algorithms for linear systems and gradient methods, we also
consider spectral analysis on large and sparse matrices in this chapter, such as comput-
ing eigenvectors and the singular value decomposition. A typical example of iterative
computing is the power-iteration method that repeatedly multiplies the intermediate
result with the data matrix until convergence.

In Chapter 6, we considered coded computing for power iterations when many
inverse problem instances of the form Mxi = bi, i = 1, 2, . . . ,m are computed in parallel.
However, a more common setting is the computation of a single inverse problem Mx = b
when the linear system matrix (or data matrix) M is large and sparse and thus cannot fit
in the memory of a single machine. Existing results in coded computing typically use
dense generator matrices, such as those of MDS codes, to ensure good error-correcting
capability. However, dense encoding of the sparse matrix M can significantly increase
the number of non-zero entries, and hence can increase communication, storage and
computational costs. In fact, dense encoding using MDS codes makes the sparse problem
completely non-sparse. In this chapter, we use codes with sparse generator matrices
instead (low-density generator matrices, or LDGM). However, despite the bad error-
correcting ability of LDGM codes, we show that LDGM codes can be made surprisingly
efficient in maintaining the convergence rate of iterative computing. The key is to use a
novel decoding algorithm that we call “substitute decoding”. The results in this chapter
has appeared in the paper [280] and will be updated in the online report [272].

Substitute decoding is designed specifically for iterative computing problems. It
relies on the fact that the intermediate result in the iterative computing xt+1 = f(xt)
gradually converges to the fixed point or the optimum point, so xt+1 and xt gradually
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become close to each other when t increases. Using this property, the substitute decoding
method works by extracting the largest amount of available information from partial
coded results in the computation of xt+1 = f(xt), and substituting the complementary
unknown information by the available side information xt from the previous step. In
other words, instead of computing the exact result of xt+1 = f(xt), we compute a
combined version xt+1 = Proj1[f(xt)] + Proj2[xt], where Proj1 represents the projection
onto the space of available information from partial decoding, and Proj2 represents the
orthogonal projection of Proj1. This is useful in coded computing with LDGM codes
because even if the exact result is not available (due to the insufficient error-correcting
capability of LDGM codes), we can obtain a partial result and use the side information
xt to compensate the information loss caused by failures and the insufficiency of LDGM
codes. As we show in our main theorem (Theorem 7.3.1), substitute decoding can
multiply the error with a constant δ that drops to 0 when the partial generator matrix is
close to full-rank. More specifically, δ is linear in the rank of the partial generator matrix
formed by the linear combinations from non-erased workers, and is exactly 0 when the
partial generator matrix is full-rank. The convergence rate of noiseless computation
can be achieved when δ is small. This property is essential in using LDGM codes for
coding sparse data because the partial generator matrix is often not full-rank but close
to full-rank, which makes Proj1 approximately equal to the identity projection, and
makes xt+1 = Proj1[f(xt)] + Proj2[xt] close to f(xt). As we show in our simulations (see
Section 7.5), even for sparse generator matrices with only 2 non-zero entries in each row,
coded iterative computing works significantly better than replication-based or uncoded
iterative computing in convergence rate when the results from a constant fraction of
workers are erased. When there are 3 non-zeros in each row, the convergence rate of
noiseless iterative computing (the information limit) can be approximately achieved by
coded computing.

In the first part of the chapter (see Section 7.2 to Section 7.3), we use PageRank as a
simple example of iterative computing and introduce the substitute decoding method
for different types of data splitting, e.g., row-wise splitting and column-wise splitting.
In the second part of the chapter, we show that substitute decoding can be applied to
more iterative computing problems beyond PageRank and linear systems. For example,
we show that substitute decoding can make the orthogonal-iteration method robust to
erasure-type failures, which can be applied to eigen-decomposition and the truncated
singular value decomposition. We also show that substitute decoding can be applied to
the computation of gradient descent with or without sparse data and can improve on
existing techniques when an extremely sparse encoding matrix is used.

7.2 System model and problem formulation

Similar to Chapter 6, we use the PageRank problem as an example to introduce substitute
decoding and relegate the discussion on more iterative computing tasks to Section 7.4.
We consider solving x = dr+ (1−d)Ax using the power-iteration method, which iterates
xt+1 = dr + (1− d)Axt for t = 0, 1, 2, . . . until convergence (see Chapter 6). If we define
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B = (1− d)A and y = dr. Then, we have:

xt+1 = y + Bxt. (7.1)

xt converges to the true solution x∗ if and only if spectral radius ρ(B) < 1. For PageRank,
ρ(B) = 1− d < 1 and xt always converges to x∗.

7.2.1 Noiseless distributed computing of power iterations

When the size of the linear system matrix B is too large to fit in the memory of a single
machine, the computation of (7.1) is performed distributedly. The most straightforward
way is to partition B into several blocks and store them in the memory of several workers.
Denote the number of workers by P , and this is also the number of blocks. We describe
three types of data splitting, namely row-wise splitting, column-wise splitting and 2D
splitting (i.e., both row and column). The 2D matrix splitting is widely used for matrix
multiplications [248] to overlap the communication cost1.

Row-wise splitting

We split the matrix B into several row blocks. At the beginning of the t-th iteration, a
master node sends the current result xt to all workers. Then, the worker that has the row
block Bi computes Bixt and sends it back to the master node. At the end of the iteration,
the master node concatenates all the results Bixt, i = 1, 2, . . . , P from the P workers to
obtain Bxt, and computes xt+1 = Bxt + y.

Column-wise splitting

We split the linear system matrix B into several column blocks and also breaks the current
result xt into P subvectors of the same length N/P . Then, the i-th worker computes Bix

i
t,

and the master node adds up all the results.

2D splitting

In 2D splitting, we split the linear system matrix B both row-wise and column-wise into√
P ×
√
P blocks Bij, i = 1, . . . ,

√
P , j = 1, . . . ,

√
P , and each worker in a 2D mech holds

a submatrix. We also break the current result xt into
√
P subvectors of the same length

N/
√
P and sends each subvector xjt to the j-th column of workers. The (i, j)-th worker

computes Bijx
j
t . Finally, the master node reduces on each row of workers.
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Figure 7.1: This shows the comparison between the existing works on coded computing
and the proposed coded computing technique for the computation of power iterations
in the row-splitting case. In the proposed method, we only show the scalar version as
mentioned in Remark 15.

7.2.2 Preliminaries and notation on coded computing

We first present the direct application of coded computing to the power iteration (7.1)
with row-wise splitting, and point out a drawback of it. As shown in the upper part of
Fig. 7.1, if the common idea of coded computing is applied, BN×N is partitioned into k
row blocks and linearly combined into P > k row blocks B̃i, i = 1, 2, . . . , P using a (P, k)
linear code with a generator matrix G of size P × k. Each encoded block is stored at
one of the P workers. Denote the number of rows in each row block by b = N

k
. Then,

encoding can be written as
B̃ = (GP×k ⊗ Ib)B, (7.2)

where we use the Kronecker product because we encode row blocks.
At each iteration, the i-th worker computes B̃ixt and the master node concatenates

all the results to obtain B̃xt, which is a coded version of Bxt. We define two operations
(shown in Fig. 7.2) to simply the notation and analysis.
Definition: (block-wise operation) Denote by v = vec (X) the operation to vectorize the
matrix X into the concatenation of its transposed rows, and denote by X = mat (v) the
operation to partition the column vector v into small vectors and stack the transposed
small vectors into the rows of X. We always partition the vector v into smaller ones
of length b = N

k
which represents the length of a single row-block at each worker.

Then, it is straightforward to show that any operation of the form x = (A ⊗ Ib) · v for

1The results in this chapter assumes the existence of a master node, which may not be true in general
2D splitting [248]. However, the results can be generalized to the fully-distributed setting, because the
only assumption that we need for substitute decoding is that intermediate results gradually converge.
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Figure 7.2: An illustration on the vec (·) and the mat (·) operations.

an arbitrary matrix A and an arbitrary vector v can be rewritten in a compact form
x = vec (Amat (v)). Therefore, from (7.2), the obtained results at the master node is

B̃x = (GP×k ⊗ Ib)Bx = vec (Gmat (Bx)) . (7.3)

The matrix-version of B̃x is hence Gmat (Bx), which means each column of the matrix-
version of B̃x is a codeword.

In the presence of stragglers or erasures, the coded results Gmat (Bx) would lose
some of its rows, and the decoding can be done in a parallel fashion on each column.
There are b columns in Gmat (Bx). Thus, the decoding complexity is bNdec, where Ndec

is the complexity of decoding a single codeword.
A main drawback of the above method is that the generator matrix G is usually

dense, such as MDS codes or random Gaussian codes. However, in practice, the system
matrix B is often sparse, as in the PageRank problem. Therefore, using a dense G may
significantly increase the number of non-zeros of the sparse linear system matrix. For
example, if the generator matrix G has 20 non-zeros in each row, it means that the
submatrices B̃i stored at each worker can have (in the worst case) 20 times larger size
than the uncoded case if the matrix B is sparse. In this chapter, we show that G can
actually be very sparse (such as two ones in each row), while the iterative computing
(such as power iterations) can still remain robust to a linear number of stragglers in P .

7.2.3 Preliminaries on the proposed technique

For the clarification purposes, in this chapter, we focus on presenting the algorithm
for the row-wise splitting. Readers are referred to the online document [272] for more
details on column-wise splitting and 2D splitting. In our technique for row-wise splitting,
similar to standard coded computing, the linear system matrix B is partitioned into k
row blocks and encoded into P row blocks using a (P, k) code with rate R = k

P
. Each

encoded row block is stored at one worker. We now state an important difference in our
code: at each iteration, we use a different generator matrix G(t), but its sparsity pattern remains
the same across iterations. We choose each non-zero entry gtij to be a standard Gaussian
r.v., and all of these r.v.s are independent of each other. The fixed sparsity pattern G
determines which (sparse) row blocks of the uncoded matrix B are stored at each worker.
In particular, Bj, j = 1, . . . , k is stored at worker-i, i = 1 . . . P , when Gi,j = 1. However,
instead of precomputing the encoded submatrices B̃i as in (7.2), the i-th worker just stores
its required row blocks in B, because the code is time-varying. Similarly, we also partition
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the vector y into k subvectors of length b and store them in the P workers in exactly the
same fashion as B. At the t-th iteration, worker-i computes (G(t))i-th rowmat (Bxt + y).
Since the sparsity pattern is fixed, although the code is time-varying, stored data blocks
at each worker remain the same.

At each iteration, a random fraction ε of the workers fail to send their results back
due to either erasures (packet losses) or stragglers (the communications with slow
workers are discarded to save time). Then, at the master node, available results are
G

(t)
s mat (Bxt + y), where G

(t)
s is the submatrix of Gs formed by the linear combinations

at the non-erased workers. We call G
(t)
s a “partial generator matrix”. In existing works on

coded computing, if a dense Vandermonde-type code is used, the desired result Bxt + y

can be decoded from G
(t)
s mat (Bxt + y) if 1− ε > R, because any square submatrix G

(t)
s

of a Vandermonde matrix is invertible. However, if G is extremely sparse, even if ε
is very small, it is possible that Bxt + y cannot be decoded because G

(t)
s may not be

invertible.

7.3 Main results: substitute decoding for coded iterative
computing

The key observation is that although G
(t)
s (i.e., the remaining part of the encoding matrix

corresponding to the workers that do not fail) may not have full column rank, we can get
partial information of Bxt + y from G

(t)
s mat (Bxt + y). Suppose that the SVD of G

(t)
s is

(G(t)
s )(1−ε)P×k = UtDtV

>
t , (7.4)

where the matrix Vt has orthonormal columns and has size k×rank(G
(t)
s ). By multiplying

Lt = D−1
t U>t to the partial coded results G

(t)
s mat (Bxt + y), the master node obtains

(D−1
t U>t )G(t)

s mat (Bxt + y)
(a)
= V>t mat (Bxt + y) , (7.5)

where (a) follows from (7.4). Then, the master node finds an orthonormal basis of the
orthogonal complementary space of the column space of Vt, i.e., an orthonormal basis of
R⊥(Vt) (whereR⊥(·) means the orthogonal complementary space), and forms the basis
into a matrix Ṽt, such that the matrix [Vt, Ṽt] is an orthonormal one2 of size k × k, i.e.,
Vt, Ṽt are orthogonal to each other, and

VtV
>
t + ṼtṼ

>
t = Ik. (7.6)

The master node uses V>t mat (Bxt + y) obtained from (7.5) and the stored xt as side
information to obtain a good estimate of Bxt + y to compute xt+1. In particular, xt+1 is

xt+1 = vec
(

[Vt, Ṽt] ·
[
V>t mat (Bxt + y)

Ṽ>t mat (xt)

])
. (7.7)

2If G
(t)
s has full rank, Vt is already a square orthonormal matrix and in this case Ṽt is the NULL matrix,

becauseR⊥(Vt) is the trivial space {0}.
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Figure 7.3: This is an illustration of substitute decoding where the known parts are
colored blue and the unknown parts are colored red. From G

(t)
s (Bxt + y), we can get

the projection of Bxt + y onto the column space of Vt (see Proj1). For the unknown part
Proj2, we use the projection of xt instead, which is Proj2’.

This is equivalent to

xt+1 = vec
(
VtV

>
t mat (Bxt + y) + ṼtṼ

>
t mat (xt)

)
. (7.8)

Remark 15. (Intuition underlying substitute decoding) We provide intuition by looking
at a scalar-version as shown in the lower part of Fig. 7.1. In the scalar version, the vector
length b of each subvector of xt satisfies b = 1 and Ib = 1 and (7.8) becomes

xt+1 = VtV
>
t (Bxt + y) + ṼtṼ

>
t xt. (7.9)

Since Vt and Ṽt have orthogonal columns and they are orthogonal to each other, VtV
>
t

and ṼtṼ
>
t are two projection matrices onto the column spaces of Vt and Ṽt respectively.

Since Vt is obtained from the SVD of G
(t)
s (see equation (7.4)), the projection VtV

>
t is the

projection to the row space of G
(t)
s . The intuition of substitute decoding is that even if we

cannot get the exact result of Bxt + y by inverting the sparse G
(t)
s , we can at least obtain

the projection of Bxt + y onto the row space of G
(t)
s . Then, for the remaining unknown

part of Bxt + y, i.e., the projection of Bxt + y onto the right null space of G
(t)
s , we use the

projection ṼtṼ
>
t xt of the side information xt to substitute. This intuition is illustrated in

Fig. 7.3. We give an outline of the substitute decoding algorithm for the row-splitting
case in Algorithm 5.

7.3.1 Cost analysis of substitute decoding

First, let us analyze the communication cost. For each worker, the communication cost at
each iteration comes from the transmission of xt of length N and the transmission of the
result of length b = N/k. So the total number of communicated floating point numbers is
N(1 + 1/k) which is linear in N .
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Algorithm 5 Coded Power Iterations for Row-wise Splitting
Input: Input y, matrix B and sparsity pattern G.
Preprocessing: Partition B into row blocks and y into subvectors and store them
distributedly as specified by the sparsity pattern matrix G. Generate a series of
random generator matrices G(t), t = 1, 2, . . . , T .
Master Node: Send out xt at each iteration and receive partial coded results. Compute
xt+1 using substitute decoding (7.8), where V, Ṽ are obtained from SVD (7.4) and
mat (Bxt + y) is computed using (7.5).
Workers: Worker-i computes (G(t))i-th rowmat (Bx + y).
Output: The master node outputs xT .

For the computation cost at the master node, the SVD has complexity O(kP 2) which
is negligible. The computation of (7.5) and the substitute decoding given in (7.7) to-
gether have complexity O(k2b) = O(kN) which is linear in N . The vectorization and
matricization steps have a negligible cost.

The i-th worker computes a sub-vector of the entire Bx. Denote by E the number of
non-zeros in B. Suppose the sparse generator matrix G has d ones in each row. Then,
the complexity at each worker is O((dE)/k). This complexity can be superlinear in N for
dense graphs, but usually, the average degree of a graph is a large constant. This means
the computation cost at each worker is also linear in N , but with a large constant.

7.3.2 Convergence Analysis of the Coded Power Iterations Using Sub-
stitute Decoding

Analysis of Algorithm 5

Denote by x∗ the true solution of x = Bx + y. Then,

x∗
(a)
=vec

(
VtV

>
t mat (x∗)

)
+ vec

(
ṼtṼ

>
t mat (x∗)

)
=vec

(
VtV

>
t mat (Bx∗ + y) + ṼtṼ

>
t mat (x∗)

)
,

(7.10)

where (a) holds because of (7.6). Defining the remaining error as et = xt − x∗ and
subtracting (7.10) from (7.8), we have

et+1 = vec
(
VtV

>
t mat (Bet)

)
+ vec

(
ṼtṼ

>
t mat (et)

)
. (7.11)

Remark 16. (Why substitute decoding suppresses error) Before presenting formal proofs,
we show the underlying intuition on why the substitute decoding (7.7) approximates the
noiseless power iteration xt+1 = Bxt + y well. Again, we look at the scalar version, i.e.,
Ib = 1. In this case, (7.11) becomes

et+1 = VtV
>
t Bet + ṼtṼ

>
t et. (7.12)
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Ideally, we want et+1 = Bet since B is a contraction matrix (recall that ρ(B) < 1). Due
to noise, we can only realize this contraction in the column space of Vt, which is the
first term VtV

>
t Bet. Although the partial generator matrix G

(t)
s may not have full rank

due to being sparse (i.e., dim(R(Vt)) < k), G
(t)
s can be close to full rank. This means

that the column space R(Ṽt) can have low dimension. Therefore, for the second term
in (7.12), the projection matrix ṼtṼ

>
t suppresses the larger error et (compared to Bet)

by projecting it onto the low-dimensional spaceR(Ṽt). In Theorem 7.3.1, we will show
ṼtṼ

>
t reduces E[‖et‖2] by a small multiple factor that decreases to 0 linearly as rank(G

(t)
s )

increases.
Definition: (Combined cyclic sparsity pattern) The sparsity pattern matrix satisfies

G =

[
S1

S2

]
, where S1 and S2 are both k × k square cyclic matrices with d non-zeros in

each row.
Assumption 9. (Random failures) At each iteration, a random subset of the workers fail
to compute the result due to either stragglers or erasure-type errors. Failure events are
independent across all iterations.
Theorem 7.3.1. (Convergence Rate of Algorithm 5) If the sparsity pattern G in Definition 7.3.2
is used and Assumption 9 holds, the remaining error et = xt − x∗ of Algorithm 5 satisfies

E[‖et+1‖2] = (1− δt)E[‖Bet‖2] + δtE[‖et‖2], (7.13)

where

δt = 1− E[rank(G
(t)
s )]

k
. (7.14)

The proof is in Section E.1. From Theorem 7.3.1, we can simply upper-bound
E[‖Bet‖2] by ‖B‖2

2 E[‖et‖2] and hence

E[‖et+1‖2] ≤ [(1− δt) ‖B‖2
2 + δt] · E[‖et‖2]. (7.15)

This means that when δt is close to 0, i.e., when G
(t)
s is close to full rank, E[‖et‖2] converges

to 0 with rate close to ‖B‖2t
2 . In Table 7.1 in Section 7.5.1, we show how δt changes with

the degree d in Definition 7.3.2. Notice that the noiseless power iterations converge
with rate (ρ(B))2t. For the PageRank problem, B = (1 − d)A and A is the column-
normalized adjacency matrix. We show in Lemma E.3.1 that for Erdös-Rényi model

G(N, p), Pr
(
‖A‖ >

√
1+ε
1−ερ(A)

)
< 3Ne−ε

2Np/8. This means that with high probability
‖A‖2 ≈ ρ(A) and hence ‖B‖2 ≈ ρ(B), and the convergence rate of coded power iteration
and that of noiseless power iteration are close. Here, in G(N, p), it suffices for p to be
Ω(logN/(Nε2)) for 3Ne−ε

2Np/8 to be small.
In Figure 7.4, we show the comparison of the convergence exponent achieved by

substitute decoding and the other two baselines in a simulation result using a (100,50)
code with 3 ones on each row of the generator matrix. The first alternative is the
“pessimistic” worst-case bound, i.e., if the number of errors is larger than the number
of ones on a column, the computation has a failure. The second one is more optimistic:
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Figure 7.4: Convergence exponent comparison. Substitute decoding can make sparsely
coded iterative computing achieve the optimal convergence rate even for a large number
of failures/stragglers.

only when the error combination really makes the partial decoding matrix G
(t)
s singular,

we claim a failure and use last-iteration’s result instead.

7.4 Extended results: applications of substitute decoding

Substitute decoding can be applied to many iterative computing problems. In this section,
we show three applications, namely computing multiple leading eigenvectors, comput-
ing multiple leading singular vectors and gradient descent. The first two applications are
widely used in sparse matrix problems such as spectral clustering [252], principal compo-
nent analysis and anomaly detection [200]. In this thesis, we only present the extension
of computing multiple eigenvectors. The other two extensions can be found online [272].
However, we still present the simulation results regarding all three extensions.

7.4.1 Computing multiple eigenvectors using coded orthogonal itera-
tions

Background on the orthogonal-iteration method

When the input vector y is zero, the power-iteration method in (7.1) is equivalent to
computing the principal eigenvector of B. However, we may be interested in more than
one eigenvectors. For example, in spectral clustering or spectral embedding, instead of
computing a single eigenvector, one often computes the first r eigenvectors of the (nor-
malized) graph Laplacian matrix L = I−D−1/2AD−1/2 [187] and use these eigenvectors
as the coordinates of the r-dimensional Euclidean embedding of the nodes in the graph.

The power-iteration method can be generalized to the orthogonal-iteration method to
compute the first r eigenvectors [25]. To compute the first r eigenvectors of an N ×N
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matrix B, we initialize an N × r random matrix X0 and iterate the following until
convergence:
• Compute

Zt = BXt. (7.16)

• Factorize
QtRt = Zt, (7.17)

using QR-decomposition.
• Set Xt+1 = Qt.

Usually the N × r matrix Xt is tall and thin, because the number of required eigenvectors
r is much less than N .

The orthogonal-iteration method in (7.16) and (7.17) is the prototype of many large-
scale eigendecomposition methods [215, 239][94, Section 7.3.2][27, 111, 122, 133]. For
example, to accelerate the convergence of the orthogonal-iteration method for a sym-
metric B, one can apply the following procedure as suggested in [27, 215, 216, 239] after
obtaining Qt and Rt in (7.17):
• Compute

Dt = RtR
>
t . (7.18)

• Compute the eigendecomposition

StΛtS
>
t = Dt. (7.19)

• Compute the modified eigenvectors

Xt+1 = QtSt. (7.20)

Another method is to apply QR-decomposition (7.17) only once after computing (7.16)
several times in each iteration, which has the effect of making the spectrum of B more
skewed and making the convergence faster [111].

Coded orthogonal iterations for computing multiple eigenvectors

We show how to implement a coded version of the orthogonal-iteration method to
compute the first r eigenvectors of an N ×N matrix B. The number r is much less than
the size of B, so the QR-decomposition (7.17) can be directly computed at the master
node. The only computation at the workers is the matrix-matrix multiplication Zt = BXt

in (7.16).
The procedures of coded orthogonal iterations are outlined in Algorithm 6. We par-

tition the matrix B into column blocks [B1, . . . ,Bk] and distribute them to the workers
as specified by the sparsity pattern matrix G. At each iteration, the master node breaks
the Xt into k submatrices Xj

t , j = 1, . . . , k and each worker computes a linear combi-
nation of Wj,t := BjX

j
t , j = 1, . . . , k. The i-th worker computes the linear combination∑k

j=1 g
t
ijWj,t. The collected results at the master node, if no noise is present, can be com-

pactly written as W̄t(G
(t))>, where W̄t = [W1,t,W2,t, . . . ,Wk,t]. Notice that a rigorous
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way to write W̄t(G
(t))> is to change G(t) into G(t)⊗ I to match the matrix sizes. However,

to avoid cumbersome notation and provide a clean presentation of the main idea, we
view Wj,t, j = 1, . . . , k as symbols and still uses G(t). The master node maintains an
estimate of all the Wj,t, which can be written as Ŵt = [Ŵ1,t, . . . ,Ŵk,t]. In the presence
of erasure noise, the master node can combine the partial coded results W̄t(G

(t)
s )> and

the previous results Ŵt−1 to obtain the current estimate Ŵt.
In order to accelerate the convergence, we further apply the procedures from (7.18) to

(7.20). This modification has to be applied carefully to the coded computing because the
modified eigenvectors in (7.20) may not have the same order as in the previous iteration.
Therefore, the naive combination of the results from the past and the current iteration
in substitute decoding can be affected by the order of the eigenvectors. To address this
problem, we notice that (7.17)-(7.20) are equivalent to the following:
• Factorize

QtRt = Zt, (7.21)

• Compute the SVD

Rt = StΛ
1
2
t S̃>t , (7.22)

• Compute the modified eigenvectors

Xt+1 = QtSt = ZtR
−1
t St = ZtS̃tΛ

− 1
2

t . (7.23)

Thus, we can see that the modified QR-steps in (7.21)-(7.23) essentially right-multiplies a

matrix S̃tΛ
− 1

2
t to Zt, in which the matrix S̃t has the function of reordering the eigenvectors,

because Λ
− 1

2
t is only a diagonal matrix. Therefore, at each iteration, we apply the same

reordering to Ŵt and obtain

Ŵrotate
t = [Ŵ1,tS̃t, . . . ,Ŵk,tS̃t], (7.24)

and uses Ŵrotate
t−1 from last iteration for substitute decoding at the t-th iteration

Ŵt = W̄tVtV
>
t + Ŵrotate

t−1 ṼtṼ
>
t , (7.25)

where W̄tVtV
>
t are computed from W̄t(G

(t))> using the SVD on G(t). The summation
of the symbols in Ŵt is the estimate of Zt:

Zt =
k∑
j=1

Ŵj,t, (7.26)

Then, instead of (7.17)-(7.20), the master node performs the equivalent steps (7.21)-(7.23)
to obtain Xt+1. In order to reduce the decoding time, the master can compute Zt directly
using

Zt = W̄t(G
(t)
s )>[UtD

−1
t V>t 1k] + Ŵrotate

t−1 [ṼtṼ
>
t 1k], (7.27)

and updates (7.25) and (7.24) while communicating with the workers.
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Algorithm 6 Computing r Eigenvectors Using Coded Orthogonal Iterations with Column
Splitting

Input: Matrix B and sparsity pattern G.
Preprocessing: Partition B into column blocks and store them distributedly as spec-
ified by the sparsity pattern G. Generate a series of random generator matrices
G(t), t = 1, 2, . . . , T .
Master Node: At each iteration, partition Xt into k submatrices Xj

t , j = 1, . . . , k and
transmits Xj

t to all worker i such that Gij = 1. Then, receive partial coded results of
BXt and conduct substitute decoding (7.27) and get Zt.
Perform the QR-decomposition steps (7.21)-(7.23) and set Xt+1 = Qt.
While transmitting Xt+1 to the other workers, the master node updates the estimates
(7.25) and (7.24).
Workers: The i-th worker computes

∑k
j=1 g

t
ijWj,t.

Output: The master node outputs XT .

7.5 Simulation results

7.5.1 Coded power iterations for PageRank computation on the Twit-
ter graph

The row-splitting case

To support Theorem 7.3.1, we compare uncoded, replication-based power iterations and
Algorithm 5 on the Twitter graph [153]. We also show the result of noiseless power
iterations. There are P = 20 workers. In each iteration, 50% of the workers are disabled
randomly. In the uncoded simulation, the graph matrix is partitioned into P = 20 row
blocks. The master node updates xt+1 = Bxt + y on the row blocks where results are
available, and maintains the unavailable rows as xt. In the replication-based simulation,
B is partitioned into 10 row blocks and each one is replicated in 2 workers. Therefore, in
each iteration, effectively 50% of the entries in xt get updated in the uncoded simulation
and about 75% of the entries in xt get updated in the replication-based simulation. For the
coded case, the sparsity pattern matrix G is randomly generated using Definition 7.3.2
with degree d = 2 and d = 3. The code is a (20, 10) code with rate 1/2. We show in Table
7.1 how the sample average estimate of δt changes with the degree of G.

Cost Analysis: We also compare the convergence rates against communication cost
(see Fig. 7.5; right). For Algorithm 5, B is partitioned into k = 10 row blocks and encoded
into 20 row blocks. The communication complexity in each iteration isN(1+1/k) = 1.1N .
Similarly, it can be shown that the communication complexity of uncoded and replication-
based power iterations are respectivelyN(1+1/P ) = 1.05N andN(1+1/k) = 1.1N . Since
the average degree of the sparsity pattern is d = 2 ∼ 3, computation cost and memory
consumption only increase by a constant. We also plot the tradeoff for replication scheme
with the same storage cost as d = 3. However, in this case, the communication complexity
for replication is larger, which is N(1 + d/k) = 1.3N .
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Figure 7.5: The comparison between uncoded, replication-based and substitute-decoding-
based power iterations on the Twitter graph. Substitute decoding (blue line) achieves
almost exactly the same convergence rate as the noiseless case (red line) for the same
number of iterations. Coded computing also beats the other techniques for the same
communication time complexity.

d̄(G) 2 3 4 5
δt 0.1294 0.0442 0.0243 0.0040

Table 7.1: The factor δt decreases when the degree of G increases.

The column-splitting case

We compare the substitute decoding method with the baseline methods again on the
Twitter graph for the column splitting case (see Fig. 7.6). We split the graph into k = 48
column-blocks and encoded them into P = 96 column-blocks. Notice that compared
to the row-splitting case, the coded power iterations in the column-splitting case have
higher communication cost because each worker has to receive either 2 or 3 subvectors
from the master node depending on the degree of the generator matrix (number of non-
zeros in each row). This makes its communication complexity increase from N(1 + 1/k)
to N(1 + d/k), in which d = 2 or 3.

The 2D-splitting case

In 2D splitting, we also compare uncoded, replication-based power iterations and the
coded power iterations on the Twitter graph (see Fig. 7.7). The number of workers
is P = 110 and the matrix is partitioned into k = 100 square submatrices using a√
k ×
√
k = 10× 10 2D splitting. The workers are grouped into subsets of 11 and in each

subset, we apply substitute decoding with a (11,10) code. In each iteration, 10 workers
out of the overall 110 ones are disabled, among which 1 worker is permanently disabled
and 9 workers are randomly disabled. The other experimental setting is exactly the same
as in the row-splitting case.
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Figure 7.6: The comparison between uncoded, replication-based and substitute-decoding-
based power iterations in column-wise splitting. Substitute decoding (blue line) achieves
almost exactly the same convergence rate as the noiseless case (red line). Coded comput-
ing beats the other techniques for the same communication time complexity.
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Figure 7.7: The comparison between uncoded, replication-based and substitute-decoding-
based power iterations in 2D splitting. All schemes use 2D splitting on the linear system
matrix. Substitute decoding with degree 2 (blue line) is not close to the noiseless case
(red line) because of increased communication time cost (due to rate=10/11). Coded
computing still beats the other techniques for the same communication time cost.
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based orthogonal iterations. Substitute decoding (blue line) achieves almost exactly the
same convergence rate as the noiseless case (red line).

Figure 7.9: This figure shows the clustering result of the graph adjacency matrix using
the spectral clustering algorithm with coded computing techniques.

7.5.2 Coded orthogonal iterations for spectral clustering

To test the performance of Algorithm 6, we compare uncoded, replication-based orthog-
onal iterations and Algorithm 6 in the application of spectral clustering [187, 252] on
synthesized graphs (see Fig. 7.8) generated from the stochastic block model with two
clusters. We also show the result of noiseless orthogonal iterations. We compute the first
two eigenvectors of the normalized graph Laplacian matrix and measure convergence
in terms of the MSE of the eigenvector estimation. The second eigenvector (the Fiedler
eigenvector) is used to generate the clustering result in Fig. 7.9 with a threshold value 0,
i.e., the nodes are partitioned into two clusters based on the signs of the corresponding
entries in the second eigenvector.

We generate a graph from the stochastic block model with two clusters and with
intra-cluster connection probability 0.02 and inter-cluster connection probability 0.003.
There are P = 96 workers. In each iteration, 50% of the workers are disabled randomly. In
the uncoded simulation, the graph matrix is partitioned into P = 96 column blocks. The
master node updates Zt = BXt using the column blocks where results are available, and
maintains the unavailable column blocks from the last iteration. In the replication-based
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Figure 7.10: The comparison between uncoded, replication-based and substitute-
decoding-based orthogonal iterations for principal component analysis. Substitute
decoding (blue line) achieves almost exactly the same convergence rate as the noiseless
case (red line). Coded computing beats the other techniques for the same communication
time complexity.

simulation (same communication), B is partitioned into k = 48 column blocks and each
one is replicated in 2 workers. The replication-based method (same storage) uses the
same storage of data as the coded case but does not compute the linear combinations
of the partial results. For the case of coded computing, the sparsity pattern matrix G
is randomly generated using Definition 7.3.2 for degree d = 2 and d = 3. The code is a
(96, 48) code with rate 1/2. We run 100 independent simulations and average the results.
Since the number of eigenvectors to compute is very small, we do not use the acceleration
method in (7.21)-(7.23). In this case, the uncoded computation does not converge at all.

Cost Analysis: In each iteration, the communication complexity is Nr(1 + d/k) =
1.04Nr or 1.06Nr because we have r eigenvectors to compute. Similarly, it can be shown
that the communication complexity of uncoded, replication-based (same communication)
and replication-based (same storage) orthogonal iterations are respectivelyNr(1+1/P ) =
1.01Nr, Nr(d + d/k) = 3.06Nr (we use d=3 for replication with the same storage) and
Nr(1 + 1/k) = 1.02Nr. Therefore, the communication costs of these strategies are similar.

7.5.3 Coded orthogonal iterations for singular value decomposition

We compare substitute decoding with the baseline algorithms on synthesized matrices
with planted dense submatrices (see Fig. 7.11; left) and compute the first 5 singular
vectors. We report the MSE of the computed eigenvectors in Fig. 7.10. We also show
the result of noiseless orthogonal iterations. We run 100 independent simulations and
average the results. In each simulation, we generate a random sparse matrix of size
1000× 1000 with non-zero probability 0.01 and plant 5 dense blocks of size 50× 50 with
non-zero probability 0.2. Each non-zero entry is uniformly distributed in [0, 1]. There
are P = 100 workers. In each iteration, 50% of the workers are disabled randomly.
In the uncoded simulation, the master node maintains the partial computation result
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Figure 7.11: This figure shows the phenomenon of “Eigenspokes”, which shows that
the principal components of a sparse matrix with dense blocks can have spoke-like
patterns[200]. These patterns can help identify anomalous dense blocks inside a huge
network.

Zi,t = B>i BiXt from the i-th worker at each time slot. If at the (t+ 1)-th time slot the i-th
worker fails to send the result, the master node just uses the same partial result in the last
iteration. In the replication-based simulation (same communication), B is partitioned
into k = 50 row blocks and each one is replicated in 2 workers. The replication-based
method (same communication) is similar to the uncoded one except that each Zi,t is
computed in two workers for the purpose of achieving fault/straggler tolerance. The
replication-based method (same storage) uses the same storage of data as the coded case
but does not compute the linear combinations of the partial results. For the coded case,
the sparsity pattern matrix G is randomly generated by assigning 3 ones in each row. The
code is a (100, 50) code with rate 1/2. We also report the phenomenon of “Eigenspokes”
in the right part of Fig. 7.11. For each scattered point (x, y), x is the corresponding entry
in the 3rd singular vector, and y is the corresponding entry in the 5th singular vector.
The scattered points in the anomalous dense blocks show regular patterns on this plot.

Cost Analysis: The communication complexity is 2Nr for all schemes except the
replication scheme with the same storage, in which case the communication complexity
is 2(1 + d)Nr, where d is the number of ones assigned to each row of the encoding matrix.
The computation cost of coded computing increases by a constant factor compared to
the uncoded case.

7.5.4 Coded gradient descent using substitute decoding

We compare uncoded, approximate-gradient-coding-based [47] gradient computing
(using fractional repetition codes) and substitute decoding on synthesized data (see
Fig. 7.12). We also apply substitute decoding to a short-MDS scheme inspired by [286]
and report the result. We will introduce the short-MDS scheme in Remark 17.

We compute the result of the following optimization problem

min
x
‖y −Ax‖2 , (7.28)
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Figure 7.12: The comparison between uncoded, replication-based, approximate-gradient-
coding-based [47] and substitute-decoding-based gradient-descent computing. Sub-
stitute decoding (blue line) achieves exactly the same convergence rate as noiseless
computation (red line). Coded computing beats the other techniques for the same com-
munication time complexity. The reason that the coded computing converges slightly
faster than the noiseless case is explained in Remark 18.

where A is the data matrix of size 6000×2000 and y is of length 6000. We compute x
using the vanilla gradient descent

xt+1 = xt − εA>(Axt − y). (7.29)

We run 100 independent simulations and average the results. In each simulation,
we generate a random Gaussian matrix A and a Gaussian random vector y. There are
P = 100 workers. All schemes use the same step size ε = 10−4. In the noiseless case,
we partition the dataset into 120 parts and store one part at each worker. All workers
can successfully compute the correct results and send to the master. In the other cases,
there are still 120 workers but in each iteration, 15 workers are randomly disabled. In
the uncoded simulation, the master aggregates the gradients from only the workers that
successfully send back the partial gradients. For the coded case, the sparsity pattern
matrix G is randomly generated by assigning 3 ones in each row. The code is a (120, 120)
code with rate 1/2. The gradient coding algorithm that we compare with is the one in [47]
using fractional repetition code. The coding matrix is also of size (120, 120) and there are
three ones in each row, i.e., each worker computes three partial gradients and transmits
the sum, and each pair of partial gradients is computed at three workers. We choose this
algorithm to compare with because it also computes the approximate gradient.
Remark 17. (Short-MDS code using substitute decoding) Now we introduce the short-
MDS scheme in Fig. 7.12. This scheme is inspired by the communication-efficient gradient
coding scheme [286] in which the partial gradient vectors are broken into subvectors,
and a coded technique on the subvectors is applied to further reduce communication
cost compared to ordinary gradient coding. We use P = 120 to show how the technique
works. Suppose the P = 120 workers are partitioned evenly into 40 groups of size 3. The
data is also partitioned evenly into 40 parts. Each group of 3 workers compute the same
partial gradient on one part of the data. Then, each worker breaks the partial gradient
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into 2 subvectors and sends a linear combination of the two subvectors. Thus, the 3
workers in each group essentially codes the 2 subvectors using a (3,2)-code (note that
each worker in the same group computes the same partial gradient so each worker also
has the same 2 subvectors).

In this scheme, the communication from each worker to the master is reduced by a
factor of 2 compared to ordinary gradient coding, and the worst-case straggler tolerance
is 1. Using the notation of [286], this can be denoted by m = 2 and s = 1. Note this
scheme essentially partitions the dataset into the same number of subsets as the number
of workers and stores d = 3 subsets at each worker, so d = 3 in [286]. Thus, we have
d = s+m, which achieves the same bound in [286, equation (5)]. The advantage of this
simple scheme is that we can apply substitute decoding to each (3,2)-code and achieves
much higher failure-tolerance than s = 1. In fact, as we have shown earlier, the number
of failures in each iteration is 15.

Cost Analysis: The communication complexity in this case is 2ddata where ddata is
the dimension of the data, because we have two rounds of communication during each
iteration. The communication costs of all the compared schemes are the same except
the short-MDS scheme using substitute decoding, in which case the communication
complexity is 1.5ddata. The computation cost of the coded method increases by a constant
factor compared to the uncoded method and replication-based method (same commu-
nication). The gradient coding method, the replication method (same storage) and our
algorithm have exactly the same communication cost, computation cost and storage cost.
Remark 18. It may be surprising that the result of coded computing actually converges
slightly faster than the noiseless case. Our explanation is that the coded computing
with substitute decoding provides a way of combining past gradients with the current
gradients and hence introduces a certain type of momentum into the computation of
gradient descent. It has been observed for long [214] that introducing momentum may
prevent the convergence trajectory from oscillating in a “narrow valley”. Therefore, we
conjecture that for the specific problem of computing gradient descent, the substitute
decoding method provides a coded way of introducing momentum. Deeply investigating
this behavior and the possible improvements in coding schemes resulted from this
behavior is our future goal.

7.6 Conclusions and future directions

In this chapter, we propose a new decoding method called substitute decoding for coded
computation of iterative algorithms. We utilize the intermediate result from the previous
iteration as side information to improve the performance of sparse codes which are often
considered weak in the error-correction capability. We show through both theorems
and simulations that when the substitute decoding is used, even when we randomly
disable 1 − R (R is the coding rate) percent of the workers during each iteration, the
convergence rate can almost equal to the noiseless rate. This has been shown in Figure
7.4: when the percentage of erasures is more than 1 − R, one can still use substitute
decoding to obtain the near-optimal convergence rate, which is not obtainable even
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using dense codes. We have also applied the decoding method to a wide range of
iterative computation problems, including eigenvalue decomposition, singular value
decomposition, and gradient descent.
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Chapter 8

Computation on graphs: network
topology and distributed computing

8.1 Introduction

In this chapter, we study the interaction between computing problems and the structure
of the computation network. The results in this chapter have appeared mainly in the
paper [283] and have been extended to the setting of energy efficient computing in
[282]. In this chapter, we focus on the problems where there is one sink node in a
network that needs to collect all the measurement data from all other nodes for further
function computation tasks. This problem is of practical importance, e.g., when the
specific function computation task of measurements cannot be foreseen, collecting all
measurements is the safest strategy. We consider the one-time computation model, which
means a one-time gathering of all the data. We assume the data is generated in the form
of short and instant messages, and the number of nodes can be quite large. This kind of
communication problems with limited data is frequent in distributed control of networks
or a distributed monitoring system, where each node is required to report just a few bits
to describe the state of the corresponding subsystem in a timely manner. Short message
gathering is also necessary in monitoring each agent in an emergency response system,
for instance, the wearable wireless sensors that are connected with device-to-device links
provide real-time monitoring signals for smart health care.

In these applications, communication throughput might not be the ultimate goal,
since data is instant, instead of generated in streams. Following the seminal work of
Gallager [86], we consider communication complexity [142], measured in the number
of broadcasts in bits, as the optimization goal. We assume, in each time slot, a network
agent can broadcast a message bit to its neighborhood, and each other agent in this
neighborhood receives an independent noisy copy1 of the broadcast message. Without
loss of generality, we assume that each network agent has only one bit of information and
the sink node needs to collect all these bits with some required accuracy and minimum

1The assumption on noisy networks is suitable to model wireless sensor networks with limited trans-
mission power and decoding capabilities.
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number of broadcasts.
Under the assumption of instant message collecting, applying classic error control

coding to cope with noisy links is highly non-trivial, since it is impossible for each node
to gather enough data to be encoded into blocks before being transmitted and distributed
encoding is necessary. This is also one of the main reasons why we explicitly consider
noisy channels, rather than considering effectively noiseless channels (on which noise-
free communications can be achieved as long as the communication rate is below the
channel capacity). An effective computation (encoding) scheme in our context involves
carefully designed in-network computations and inter-agent message exchanges.

We call the in-network computations schemes graph codes, which extend error control
coding to distributed in-network computations. In the following, we briefly discuss the
three graph codes that are used in this chapter.

8.1.1 Brief summary of main results

In Section 8.3, general graph topologies are considered and the GC-1 graph code is
provided. It is shown that in both BSC and BEC networks with N nodes, the number
of broadcasts required by the GC-1 graph code is max{Θ(d̄GN),Θ(N logN)}, where d̄G
denotes the average distance from all agents to the sink. We also obtain a max

{
Θ(d̄GN),

Θ(N log logN)} lower bound on the communication complexity through cut-set tech-
niques in BSC networks, and a Θ(d̄GN) lower bound in BEC networks using the same
techniques. We also show a max{Θ(d̄GN),Θ(N logN)} lower bound in constant-degree
networks with BEC channels, which implies that the GC-1 graph code also achieves
optimality in this scenario.

Motivated by the above mismatch between the achievable result and the converse
result, we reconsider the data gathering problem in specific graphs on BSC or BEC links
and showed matching results with the lower bound mentioned above. In our paper [283],
we considered two types graph, namely geometric graphs and Erdös-Rényi graphs, and
designed two computation schemes respectively called GC-2 and GC-3. In the thesis, we
only present the results regarding the Erdös-Rényi random graphs. More specifically, we
consider an Erdös-Rényi random graph [34] with two further assumptions:
• More links are added to the Erdös-Rényi graph such that the multi-hop distance

from each agent to the sink is bounded (e.g., when the sink is a central node and all
other nodes have an extra directed link to it);

• The noisy links are BEC instead of BSC.
We call it the extended Erdös-Rényi graph and design the GC-3 code for this graph. We
show that the Θ(N log logN) upper bound can be achieved in this graph, without the
complete graph assumption. The analysis of the error probability of GC-3 code leads to,
as by-products, new fundamental results in the design of erasure codes for point-to-point
communications. In particular, we use the analyses for the GC-3 code to show that
there exist sparse erasure codes that can achieve diminishing error probability decaying
polynomially with the code length even when the encoding is noisy. Moreover, we
show that the number of ones in the generator matrix of an erasure code should be at
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Table 8.1: Major attributes of the three different types of graph codes.
Applicable Networks Analyzable in Number of Broadcasts

GC-1 Arbitrary connected BSC (Section 8.3)
BEC [283] max{Θ(d̄GN),Θ(N logN)}

GC-2 Connected geometric BSC [283]
BEC [283] max{Θ(d̄GN),Θ(N log logN)}

GC-3 Extended geometric BEC (Section 8.4) Θ(N log logN)

least Ω(N logN) in order to achieve decaying block error probability, using the analysis
of GC-3 codes. Note that Ω(N logN) is in the same scale as LT codes (Luby transform
codes) [161]. In all, the GC-3 code has strong a relevance to erasure codes, and techniques
in the in-network computing problem can be applied to the analysis of erasure codes for
the classical point-to-point communication setup.

By studying different graph codes, our goal is to theoretically understand in-network
computing and data aggregation under the assumptions of link noise and distributed
data, with the aim of minimizing the number of communications. Some of the major
attributes of the three different types of graph codes are presented in Table 8.1. Since the
results on GC-2 codes are omitted, the readers are referred to our paper [283] for more
details.

8.1.2 Related works

The works in this chapter were initially inspired by the seminal work of Gallager [86],
where the minimum broadcast complexity problem in a noisy complete network is
examined, and broadcasting scheme is designed to achieve a complexity of Θ(N log logN)
for the parity calculation problem and the identity calculation problem. In [95], this
bound is proved tight for the identity calculation problem. Our result in an extended
Erdös-Rényi random graph can be viewed as a generalization of prior results under
weaker topology assumptions, but the coding techniques are completely different.

In [132], data gathering in a grid network is studied. Theorem IV.1 and Theorem IV.2
in [132] state that, in an

√
N ×

√
N grid broadcast network with a transmission radius r,

the communication complexity for identity function computation is max
{

Θ(N3/2/r),
Θ(N log logN)}. In [154], the same problem in a random geometric graph is examined.
The proposition 2 of [154] claims that the communication complexity is upper bounded

by O(N
√

N
logN

), under the assumption that the diameter of the network is O(
√

N
logN

).
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8.2 System model and problem formulation

8.2.1 Data gathering with broadcasting

Consider a network G = (V , E) with N + 1 agents V = {vn}Nn=0, where v0 is a preassigned
sink node. Each agent vn with 1 ≤ n ≤ N has one bit of information xn ∈ {0, 1}
distributed as Bernoulli(1

2
). This is called the self-information bit. All self-information

bits are independent of each other. Denote the vector of all self-information bits by x =
(x1, x2, ..., xN)>. The objective is to collect x, in the sink v0 with high accuracy. Denote by
A the graph adjacency matrix. In this chapter, an edge is directed unless otherwise stated.
Denote the one-hop out-neighbors of a node v by N+

v := {w ∈ V|(v, w) ∈ E , w 6= v}.
Denote the one-hop in-neighbors of a node v by N−v := {w ∈ V|(w, v) ∈ E , w 6= v}. If
vm and vn have a bidirectional link, Am,n = An,m = 1. When the graph is undirected, we
write N (v) for simplicity. Time is slotted. In the t-th slot, only one chosen node v(t) is
allowed to broadcast one bit of information in F2 to its out-neighborhood N+(v(t)). The
channel between any two connected nodes is assumed noisy. We consider either BSC
channels or BEC channels.
Assumption 10. (BSC) All channels or graph edges are BSCs with identical crossover
probability ε ∈ (0, 1/2). All channels are independent of each other.
Assumption 11. (BEC) All channels of graph edges are BECs with identical erasure
probability ε. All channels are independent of each other.

A broadcast scheme S = {ft}
C (N)

S
t=1 is a sequence of Boolean functions, such that at

each time slot t the broadcasting node v(t) computes the function ft and broadcasts the
computed output bit to its out-neighborhood. The parameter C (N)

S is used to denote
the total number of broadcasts in a broadcasting scheme S which, in our setup, also
corresponds to the time complexity. The minimum value of C (N)

S among all broadcast
schemes is defined as the communication complexity which is denoted as C (N). The
arguments of ft may consist of all the information that the broadcasting node v(t) has up
to time t, including its self-information bit xv(t), randomly generated bits and information
obtained from its in-neighborhood called the outer information. We only consider oblivious
transmission schemes, i.e., the broadcasting scheme is predetermined. Transmission
by silence is not allowed, i.e., a node has to broadcast when it is required. Denote by
F the set of all feasible oblivious schemes. The final error probability is defined as
P

(N)
e = Pr(x̂ 6= x), where x̂ denotes the final estimate at the sink v0. The problem to be

studied is therefore

min
S∈F

C (N)
S ,

s.t. lim
N→∞

P (N)
e ≤ ptar.

(8.1)

We call this problem the noisy broadcasting problem.
In this chapter, we will consider both fixed graph topologies and random graph

topologies, which will be clear in the next subsection. The above mentioned error
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probability P (N)
e needs to be interpreted in the expected sense when dealing with random

graph topologies, i.e., P (N)
e = EG[P Ge ] when dealing with random graphs.

8.2.2 Network models

When working with deterministic (but arbitrary) graph topologies, we assume that the
network is connected.
Assumption 12. (Network Connectivity) In the directed graph G = (V , E), the sink node
v0 is reachable from each non-sink node v ∈ V \ {v0} through a sequence v → vi1 →
vi2 · · · → v0 of directed edges.

We use T = (V , ET ) to represent the breadth-first search (BFS) spanning tree [58] of
the graph rooted at the sink v0. The edge set ET satisfies |ET | = |V| − 1. By d(v, v0), we
denote the multi-hop distance from a node v to the sink v0. An obvious property of the
breadth-first search spanning tree T is that the multi-hop distance d(v, v0) is the same in
T as in the original graph G. By the l-th layer Vl ⊂ V , we denote the set of nodes that
have identical multi-hop distance d(v, v0) = l. Denote the maximum distance from a

node v to the sink v0 by Ld. We know that V =
Ld⋃
l=1

Vl forms a layered partition of the node

set. In the BFS tree, the parent-node vf of a node v is defined to be the unique node such
that there exists a directed edge (v, vf ) in the BFS tree’s edge set ET . The descendants of
a node v is defined as the set Dv ⊂ V that includes all nodes w that are connected to v
through a sequence of directed edges in ET .

In Section 8.4, we consider the noisy broadcasting problem in the extended Erdös-
Rényi network (see Assumption 13), which is slightly different from the original Erdös-
Rényi model in [34]. In this model, the connection probability p = Θ( logN

N
) indicates

that the average node degree is Θ(logN). We will show that the minimum average
node degree is at least Ω( logN

log logN
), if the error probability of data gathering is required

to approach zero when the node number approaches infinity. This result states that
p = Θ( logN

N
) is minimum in the order sense except for a log logN factor. A sink might be

a base station and all agents have direct links to it. In this section, links are assumed to
be BECs.
Assumption 13. (Extended Erdös-Rényi Graph) The extended Erdös-Rényi graph is an
ER graph with the minimal number of additional links that ensures that each non-
source node has directed link to the sink. In the graph G = (V , E), all connections are
independent of each other. Assume that p satisfies p = c logN

N
, where c is a constant. We

further assume that each node in V has a direct link to the sink, in addition to the random
connections between these nodes themselves.

Assumption 13 can be interpreted as follows: the edge set E can be decomposed into
E = E1 ∪ E2, where E1 is the set of directed edges connecting non-sink nodes, which form
the edge set of a directed Erdös-Rényi network with connection probability p = c logN

N
,

and E2 can be viewed as the minimum set of edges that is further added to the graph
with edge set E1 so that each non-sink node has a directed link to the sink2

2It can be shown that this assumption can be relaxed by assuming a bounded multi-hop distance dmax
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8.3 Main result 1: GC-1 graph codes in a general graph

In this section, we consider general connected network topologies. We design a general
distributed in-network computing algorithm called the GC-1 graph code. Recall that in
the case of complete networks, as studied in [86, 95], a lower bound on the communica-
tion complexity for data gathering is Θ(N log logN). In what follows, we provide a lower
bound for general networks. Then, we use the GC-1 graph code to get an upper bound
which, we show, is close to the lower bound when the graph diameter is small, and meets
the lower bound when the diameter is large. In [283], we also give an intuitive example
on why this upper bound can be achieved, and why there is a small gap between the
lower and upper bounds.
Theorem 8.3.1. [283] Suppose the communication links in the graph G satisfy Assumption 12.
Then, if all data are gathered at the sink v0 with error probability P (N)

e by a feasible broadcasting
scheme S , the communication complexity is necessarily bounded below by

C (N) ≥ cεd̄GN, (8.2)

where cε = 1−H(P
(N)
e )

1−H(ε)
is a constant, N denotes the number of nodes in the graph and d̄G is the

average distance to the sink, defined as

d̄G =
1

N

N∑
n=1

d(vn, v0). (8.3)

8.3.1 In-network computing algorithm

In this part we provide the GC-1 in-network computing algorithm for gathering all
data at v0 in an arbitrary network. Before we provide the algorithm, we provide some
preparatory procedures as follows. First, we construct the BFS spanning tree T = (V , ET )
rooted at the sink v0 as defined in Section 8.2.2. Recall that we denote the descendants of
the node v by Dv. Define

BT = {v ∈ V : |Dv| < γ logN}, (8.4)

where γ is a constant. Define AT = V \ BT . It is obvious that each path from a leaf-node
vn to the root v0 is constituted by a series of nodes in BT , followed by another series of
nodes in AT (as shown in Fig. 8.1).

Then, we propose the GC-1 algorithm, as shown in Algorithm 7. The basic idea
is: Each v ∈ V gathers all self-information bits from its descendants in Dv. Then, it
sends all the information in Dv ∪ {v}, including bits from its descendants and its own
self-information bit, to its parent-node.

All nodes use linear block codes to encode the information that it needs to transmit.
Nodes with small descendant size (|Dv| < γ logN ) has to insert zeros (dummy bits) to

from each non-sink node to the sink. See [283] for more details.
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Figure 8.1: The in-network computing algorithm carried out on the spanning tree.

the message vector before encoding. The performance guarantee of this algorithm is
shown in Theorem 8.3.2. The intuition underlying why the error probability is small is
put in Remark 19.

Algorithm 7 GC-1 algorithm
Initialization: Construct the BFS spanning tree T = (V , ET ) rooted at the sink v0.
Step 1: Each leaf-node v encodes the binary vector (xv, 0, . . . , 0) with length γ logN using
random coding with rate R and transmits the codeword to its parent-node.
Step 2: Each non-leaf node v, from its children-nodes, receives the self-information bits
of its entire set of descendants Dv. After all of its children-nodes finish transmitting,
the node v relays the self-information bits of all of its descendants and its own self-
information bit xv to its parent-node, using error control codes. Depending on if v is in
BT or AT , the coding schemes differ. The coding details are shown below.
• Actions in BT : Each v ∈ BT decodes the self-information bits from Dv and form a

binary vector with length Dv + 1 with its own self-information bit. Then the node v
inserts γ logN − 1 − |Dv| zeros to the vector to make the length γ logN and uses
random coding to encode this vector. Finally, it sends the whole d(|Dv|+ 1)/Re bits
to its parent-node, where R is the coding rate.

• Actions in AT : Each v ∈ AT decodes the self-information bits from Dv, and uses
random coding to encode these bits and its own self-information. Finally, it sends
the whole d(|Dv|+ 1)/Re bits to its parent-node, where R is the coding rate.

Theorem 8.3.2. Suppose the communication links in the graph G satisfy the assumption 10.
Then, for each tuple of constants (R, γ) satisfying

R < γEr(ε, R), (8.5)

where Er(ε, R) is the random coding error exponent from (2.7), the number of broadcasts that the
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scheme S provided in Algorithm 7 incurs is upper bounded by

C (N)
S <N(

d̄G
R

+ 1) +N(γ logN/R + 1) = max{Θ(d̄GN),Θ(N logN)}, (8.6)

where N denotes the number of nodes in the graph and d̄G is the average distance to the sink,
which is defined in (8.3). Moreover, as N →∞, the error probability P (N)

e decreases polynomially
as

P (N)
e < N−(

γEr(ε,R)
R

−1) · (1 + exp[−Er(ε, R)/R]) , (8.7)

and, in particular, achieves limN→∞ P
(N)
e = 0.

Proof. In what follows, we show how to obtain the upper bound on the number of
broadcasts in (8.6), while the error probability analysis of (8.7) is put in the Appendix F.2.
Each node v ∈ BT (including leaf-nodes) transmits a codeword of size dγ logN/Re, so
the number of broadcasts at each node v ∈ BT satisfies

Cv < γ logN/R + 1. (8.8)

The number of broadcasts at each node v ∈ AT is

Cv = d(Dv + 1)/Re < (Dv + 1)/R + 1. (8.9)

Therefore, the final number of broadcasts is

C (N)
S =

∑
v∈AT

Cv +
∑
v∈BT

Cv

<
∑
v∈V

[(Dv + 1)/R + 1] +
∑
v∈V

(γ logN/R + 1)

=N(
d̄G
R

+ 1) +N(γ logN/R + 1).

(8.10)

In Appendix F.2 the remaining part of the theorem, i.e., Eq. (8.7), is proved in detail.

Remark 19. The nodes in BT all have a descendent size |Dv| < γ logN , and hence they do
not have enough data to use powerful error control codes with large code length, unless
dummy bits are inserted. The code length γ logN is to ensure that, the probability that
all transmissions in BT are reliable, decays polynomially with N under the union bound.
The nodes in AT all have large descendent size, so they can use powerful error control
codes to carry out block transmissions with low error probability.

Clearly, when the average distance d̄G to the sink is large and grows polynomially
with N , the first term in the RHS of (8.6) dominates. Thus, the upper bound is the same
order as the lower bound in Theorem 8.3.1 when the average multi-hop distance d̄G is
large.
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Corollary 8.3.3. Suppose the communication links in the graph G satisfy the assumption 10.
Then, the communication complexity C (N) of data gathering has an upper bound C (N) and an
lower bound C (N), satisfying

C (N) = max{Θ(d̄GN),Θ(N logN)}, (8.11)
C (N) = max{Θ(d̄GN),Θ(N log logN)}. (8.12)

Proof. See Appendix F.1.

8.4 Main result 2: GC-3 codes in a low-diameter graph

In this section, we provide an in-network computing scheme when the graph diameter
is low (in particular, when the average multi-hop distance d̄G is a constant) and the
graph topologies are random, i.e., when the graph G satisfies the topology assumption
13 and the channel assumption 12. In this in-network computing scheme, the number of
broadcasts meets the general lower bound (8.12)3, with the assumption that d̄G has order
O(1). As noted in Section 8.2.1, since we are dealing with random graph instances in
this section, there are two error probabilities associated with an in-network computation
scheme: the conditional error probability P Ge conditioned on a given graph and the
expected error probability PN

e over all random graph instances.
We recall the assumption 13 of extended Erdös-Rényi-type graphs. Each link is

assumed to be a BEC with erasure probability ε. In what follows, we show that our pro-
posed GC − 3 coding based in-network computing scheme which requires Θ(N log logN)
broadcasts. Therefore, our broadcasting scheme can indeed achieve the broadcasting
communication complexity lower bound in scaling sense, and, moreover, in sparser
graph settings.

8.4.1 In-network computing algorithm

The GC − 3 algorithm has two steps. During the first step, let each node broadcast its
self-information bit to its out-neighborhood N+(v) for t times, where

t =
log( c logN

pch
)

log(1/ε)
, (8.13)

and pch > 0 is a predetermined constant smaller than 1/2. Then, each node estimates
each self-information bit from its in-neighbors. The next lemma provides the probability
of a certain bit being erased when transmitted from a node v to one of its out-neighbors.
This lemma is a counterpart result of Lemma 2.2.2 in BEC.

3Note that the lower bound (8.12) is for BSCs and the techniques we use here are for BECs. However,
even if the algorithm in [86] is applied to a complete graph with BECs, the number of broadcasts still scales
as Θ(N log logN). Thus, our result is still better in that we allow non-complete graph topologies.
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Code Bit = Local Parity

 

1
v

 

2
v

Figure 8.2: Each code bit is the parity of all one-hop in-neighbors of a specific node. Some edges
might be bi-directional.

Lemma 8.4.1. Suppose we have a BEC with erasure probability ε. Then, the erasure probability
of a bit that is repeatedly transmitted for t times on this channel is

Pe = εt =
pch

c logN
. (8.14)

Proof. The proof follows immediately by substituting in (8.13).

After estimating each bit, each vn calculates the local parity. Suppose node vn receives
the self-information bits from its in-neighborhood N−(vn) and if all information bits are
sent successfully, vn can calculate

yn =
∑

vm∈N−(vn)

xm = x>an, (8.15)

where an is the n-th column of the adjacency matrix A, and the summation is in the sense
of modulo-2. If any bit xm is not sent successfully, i.e., erased for t times, the local parity
cannot be calculated. In this case, yn is assumed to take the value ‘e’. We denote the
vector of all local parity bits by y = [y1, y2, ..., yN ]>. If all nodes could successfully receive
all information from their in-neighborhood, we would have

y> = x>A, (8.16)

where A is the adjacency matrix of the graph G, and particularly, a random matrix in this
section.

During the second step, each node vn transmits its self-information bit xn and the
local parity yn in its in-neighborhood back to the sink exactly once. Denote the received
version of the bit xn at the sink by x̃n. Denote the vector of all self-information bits
at the sink by x̃ = [x̃1, x̃2, ..., x̃N ]>. There might be ‘e’s in this vector. Apart from self-
information bits, the sink also gets a (possibly erased) version of all local parities. We
denote all information gathered at the sink by

r = [x̃1, ..., x̃N , ỹ1, ..., ỹN ] = [x̃>, ỹ>], (8.17)

where [ỹ1, ..., ỹN ] is the received version (with possible erasures) of all local parity bits y.
That is, there might be some bits in y changed into value ‘e’ during the second step. If
the channels were perfect, the received information could be written as

r> = x> · [I,A], (8.18)
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which is exactly a channel control code with rate 1/2 and a generator matrix G = [I,A].
However, the received version is possibly with erasures, so the sink carries out the
Gaussian elimination algorithm to recover all information bits, using all non-erased
information. If there are too many bits erased, leading to more than one possible decoded
values x̂>, the sink claims an error.

In all, the number of broadcasts is

C (N)
S = N · t+ 2N = N(2 +

log( c logN
pch

)

log(1/ε)
) = Θ(N log logN), (8.19)

where t is defined in (8.13), and the constant 2 is introduced in the second step of the
in-network computing algorithm, when the self-information bit and the local parity are
transmitted directly to the sink.

8.4.2 An upper bound on the error probability

In this subsection, we analyze the expected error probability of the previous algorithm.
As defined in Section 8.2.1, denote by P Ge (x) the conditional error probability in gathering
all data at the sink conditioned on a graph instance G and self-information bit vector x.
The expected error probability is defined to be P (N)

e (x) = EG[P Ge (x)]. In this section, we
prove that P (N)

e (x) converges to zero as N →∞ for all x.
Theorem 8.4.2. Suppose the graph G satisfies the topology assumption 13 and the channel
assumption 11. Suppose δ > 0 is a constant, pch ∈ (0, 1

2
) is a constant, ε is the channel erasure

probability and ε0 = ( 2
1−1/e

+ 1)pch + ε. Assume c logN > 1. Define

bδ =
1

2
(1− ε0)(1− 1− e−2cδ

2
), (8.20)

and assume
ε < bδ. (8.21)

Then, for the transmission scheme in Section 8.4.1, we have

P (N)
e ≤

{
(1− bδ)N+δeε

N2−c(1−ε0)(1−cδ)

logN

}
. (8.22)

That is to say, if 2 < c(1− ε0)(1− cδ), the error probability eventually decreases polynomially
with N . The rate of decrease can be maximized over all δ that satisfies (8.21).

Proof. See Appendix F.5.

Remark 20. The GC-3 code is “capacity achieving” in some sense, in that this code has
rate 1

2
, and this code can be used even when the erasure probability ε ≈ 1

2
. Consider the

case when ε = 1
2
− ∆, where ∆ is a small constant. In Theorem 4, choose δ = ∆

2c
and

pch = ∆
2( 2

1−1/e
+1)

. In this case, the constants in Theorem 4 satisfy ε0 = ε+ ∆
2

= 1
2
− ∆

2
, and
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2bδ ≥ (1 − ε0)(1 − cδ) ≥ 1 − ε0 − cδ = 1
2
. Then, the error probability upper bound in

Theorem 4 can be simplified to

P (N)
e ≤(1− (

1

2
− (

1

2
−∆)))N +

e∆

2c
(
1

2
−∆)

N2−c( 1
2

+ ∆
2

)(1−∆
2

)

logN

≤(1−∆)N+
e∆

4c

N2−c( 1
2

+ ∆
4

)

logN
,

(8.23)

which decays polynomially with N for all small ∆ > 0 and c > 4.

8.4.3 Connections to random erasure codes

Interestingly, the result of Theorem 8.4.2 implies a more fundamental result for erasure
codes.
Corollary 8.4.3. For a discrete memoryless point-to-point BEC with erasure probability ε, there
exists a systematic linear code with rate-1/2 and an N × 2N generator matrix G = [I,A] such
that the block error probability decreases polynomially with N . Moreover, the generator matrix is
sparse: the number of ones in A is O(N logN).

Proof. The proof relies on building the relation between the GC-3 graph code and an
ordinary error control code. We construct the error control code as follows:

• Construct a directed Erdös-Rényi network G = (V , E) with N nodes and connection
probability p = c logN

N
, where c is a constant which will be defined later.

• Construct a linear code with the generated matrix G = [I,A], where AN×N is
the adjacency matrix of the directed network in the previous step, i.e., the entry
Am,n = 1 if and only if vm is connected to vn.

The number of edges in E is a binomial random variable distributed according to
Binomial(N2, p). Using the Chernoff bound [52], we obtain

Pr(|E| > 2pN2) < exp(−p
2

2
N2) = (

1

N
)
c2

2
logN . (8.24)

Then we use the code constructed above to encode N binary bits and transmit the
encoded bits via 2N parallel BECs to the receiver. Denote by A(N)

e the event of a block
error on the receiver side. Define P (N)

e = Pr(A
(N)
e ) as the block error probability. Note

that
P (N)
e = E

[
P Ge
]
, (8.25)

where P Ge = Pr
(
A

(N)
e | G

)
is the block error probability conditioned on the graph instance

G. In other words, P (N)
e is the expected block error probability of an ensemble of codes

constructed based on directed Erdös-Rényi networks.
Clearly, this point-to-point transmitting scheme is the same as carrying out the in-

network computing algorithm in Section 8.4.1, except that the encoding step in the
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point-to-point case is centralized instead of being distributed. This is equivalent to the
in-network computing scheme when channels between neighboring nodes are without
erasures and erasures happen only when communicating over the channels to the decoder
(compare with the second step of the in-network computing algorithm). Since erasure
events constitute a strict subset of those encountered in the in-network computing
scheme, the upper bound on the error probability in Theorem 8.4.2 still holds, which
means that the expected block error probability P (N)

e goes down polynomially when the
constant c designed for the connection probability p = c logN

N
satisfies the same condition

in Theorem 8.4.2. Note that

P (N)
e = Pr(A(N)

e )

= Pr(|E| > 2pN2) Pr
(
A(N)
e | |E| > 2pN2

)
+ Pr(|E| < 2pN2) Pr

(
A(N)
e | |E| < 2pN2

)
.

(8.26)

Thus, combining (8.26) with (8.24) and (8.22), we conclude that the block error probability
conditioned on |E| < 2pN2, or equivalently Pr(A

(N)
e ||E| < 2pN2), decreases polynomially

with N . This means that, by expurgating the code ensemble and eliminating the codes
that have more than 2pN2 = O(N logN) ones in their generator matrices, we obtain a
sparse code ensemble, of which the expected error probability decreases polynomially
with N . Therefore, there exists a series of sparse codes which obtains polynomially
decaying error probability with N .

8.4.4 The degree lower bound for the GC-3 graph code

In this part, we prove that p = Θ( logN
N

) is the minimum connection probability that gives
the polynomial decay of error probability in Theorem 8.4.2. In fact, we will prove a
worst-case result for the total number of edges in the computation graph G: the number
of edges in the network must be Ω( N logN

log logN
). This result shows that, despite a negligible

ratio 1
log logN

, the connection probability p = c logN
N

is optimal in terms of sparseness. Since
the worst-case result is for a fixed graph, we require the connectivity assumption 12.
Theorem 8.4.4. Suppose the channel assumption 11 holds. Suppose the algorithm in Sec-
tion 8.4.1 is carried out. Then, if lim

N→∞
P

(N)
e = 0, it holds that

|E| = Ω(
N log(N/P

(N)
e )

log logN
), (8.27)

where |E| denotes the number of all directed edges in the edge set E .

Proof. See Appendix F.6.

Remark 21. Note that the lower bound (8.27) holds for individual graph instances with
arbitrary graph topologies, instead of holding for certain ensemble average.

Similar with Theorem 8.4.2 and Corollary 8.4.3, Theorem 8.4.4 also implies a result
in point-to-point coding theory, but the proof is not obtained by directly applying
Theorem 8.4.4. We have to carry out a series of network transforms, as shown in Fig. F.1.
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Corollary 8.4.5. For a rate-1/2 linear block code with an N × 2N generator matrix G = [I,A],
if there are dn ones in the n-th column of A, then, the code is asymptotically good for a point-
to-point discrete memoryless BEC with erasure probability ε, i.e., the block error probability
lim
N→∞

P
(N)
e = 0, only if

N∑
n=1

dn log dn = Ω(N log(N/P (N)
e )). (8.28)

Proof. Suppose we have a code G = [I,A] that satisfies the conditions in this corollary. As
shown in Fig F.1(a), construct a directed graph G = (V , E) with the following procedures

• Set |V| = N ;
• Connect a directed edge from the node vm to the node vn if Am,n = 1, where m can

be equal to n, in which case a directed self loop is constructed;
• Assume each edge is a noiseless channel.

After constructing the graph, construct an extra node v0 to be the sink, and connect
each node to the sink. The links to the sink are all assumed to be discrete memoryless
BECs with identical erasure probability ε. Suppose in the network constructed above,
each node vn ∈ V carries a self-information bit xn. Then, we can use the in-network
computing algorithm in Section 8.4.1 to gather all data measurements at the sink v0.
Clearly, what the algorithm does is encoding the information vector x with the generator
matrix G = [I,A] (see (8.18)) and sending the encoded message through 2N parallel
BECs to the sink. Until now, the inter-node edges in E are all noiseless. The only noisy
edges are from the distributed nodes to the sink, which means in the first step of the
in-network computing algorithm, instead of broadcasting each self-information bit for
t times (as defined in (8.13)), each node only needs to broadcast once. Therefore, the
in-network gathering of all data in the constructed network is equivalent to the encode-
and-decode procedure with the block code G = [I,A] on a point-to-point link, and hence
they have the same error probability P (N)

e .
Now, modify the constructed network by assuming that links from all non-sink nodes

to the sink are noiseless when transmitting the parity bits. That is, in the second step
of the in-network computing algorithm, these node-to-sink links are only noisy when
self-information bits are transmitted. However, assume that the links between non-sink
nodes are noisy, as shown in Fig F.1(b). Specifically, for each node vn, assume that all
the directed links from the in-neighborhood N−vn are changed into BECs with identical
erasure probability ε/dn, where dn = |N−(vn)|. Now that the local parity that vn sends to
the sink is erased with probability 1− (1− ε

dn
)dn < ε, therefore, if the original network

can gather all data with error probability P (N)
e , the transformed network can compute it

with error probability strictly less than P (N)
e .

Now make a further change as shown in Fig F.1(c), which consists of substituting
each communication link with erasure probability ε/dn to a set of d1 + log dn

log(1/ε)
e parallel

links with erasure probability ε connected to a merging gate. This gate claims an ‘erasure’
only if all bits in the incoming edges are erased. This transform is exactly the same as
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repeatedly transmitting t times of the same bit as defined in (8.13). After this transform,
the erasure probability changes to ε1+ log dn

log(1/ε) < ε/dn. Similarly, if the original network can
reliably gather all data with error probability P (N)

e , the new network can also compute it
with lower error probability.

Therefore, if the block code G = [I,A] can be used to successfully transmit all bits
on a point-to-point BEC with error probability P (N)

e , data gathering in the transformed
network shown in Fig F.1(c) can be reliably completed with lower error probability. By
Theorem 8.4.4, to achieve error probability P (N)

e , the degree of the transformed network
should satisfy

N∑
n=1

dnd1 +
log dn

log(1/ε)
e > N · logN − log log(1/(1− P (N)

e ))

log(1/ε)
. (8.29)

This implies that (8.28) holds.

This corollary shows that, if one wants to find a sparse linear block code for BECs,
then (8.28) can serve as a lower bound on ‘sparseness’. Moreover, if the matrix A has the
same number of ones in each column, then, there are Ω( logN

log logN
) ones in each column, in

order for (8.28) to hold. Our result is in coding theory but relates to distributed encoding
as well.

8.5 Simulation results

We simulate the GC-3 code with different code lengths in an extended Erdös-Rényi
network. The ratio of successful identity function computing at the sink node is compared
with the number of broadcasts during the entire in-network function computing scheme
(see Section 8.4.1 for details), including t in-network broadcasts in the first phase and
2 transmissions to the sink node in the second phase. In Figure 8.3, we can see from
the simulation result that the number of broadcasts at each node required for successful
identity function computing almost does not change for different network size. This is
because the required number of broadcasts is O(log logN) at each node, and hence it
increases very slowly with the code length or the number of nodes in the network.

8.6 Conclusions and future directions

In this chapter, we obtain both upper and lower scaling bounds on the communication
complexity, measured in the number of bit broadcasts, in the problem of data gathering in
arbitrary noisy networks. In particular, using different graph-based distributed encoding
schemes, which we call graph codes, we find special graph topologies in which the upper
bounds on the number of broadcasts obtained by graph codes meet with the general
lower bound in scaling sense.
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Figure 8.3: Simulation results of GC-3 codes of different code lengths.

Furthermore, the analysis techniques of the third graph code, the GC-3 code, is used
to construct a sparse erasure code that is used in point-to-point communications. We
also use cut-set techniques to show that the obtained code is almost optimal in terms
of sparseness (with minimum number of ones in the generator matrix) except for a
log logN multiple gap. However, quite a few open questions worthy of further research
remain. For instance, an issue with the GC-3 code proposed in this chapter is that it can
be analyzed only in BEC networks. The focus of this chapter has been primarily on the
design of codes that minimize the broadcast complexity, i.e., the number of broadcasts
required to achieve function computation. Other practical metrics such as the energy of
broadcast (which, depending on the network structure, is somewhat indirectly related to
the number of broadcasts) may be of interest in applications too. An extension of GC-3
codes from an energy minimization perspective is provided in our paper [282], which is
not included in this chapter.

152



Chapter 9

Case study 1: distributed logistic
regression with noisy decoding

9.1 Introduction

Starting from this chapter, we provide two case studies of the coding-based computing
problems. We will see that the techniques and analytical frameworks developed in
the previous chapters can be readily applied to many different settings and various
computation primitives. The results appeared in these two chapters are reviews of
the papers [276] and [275]. In this chapter, we focus on distributed computation of
logistic regression, with both unreliable processing units and unreliable memory units.
In Section 9.3, we present a distributed coding technique that can tolerate storage faults
that happen in multiple time slots in an adversarial manner. We show that if the number
of faults during each time slot is bounded below a constant fraction of the code length,
the overall number of faults will remain bounded. In Section 9.4, we extend the result to
the computation of logistic regression with both memory faults and computation faults.
We show that, if the number of faults during each time slot is bounded below a constant
fraction of the code length, the difference between the result of logistic regression using
unreliable components and the result of logistic regression using fault-free components
is bounded by a small constant that is proportional to the number of faults that happen
in each time slot and does not grow with the number of iterations.

The coding approach that we adopt is based on verification decoding for compressive
sensing. In particular, using a parity check matrix composed of small blocks that repre-
sent subspaces, we convert the noisy decoding process into a verification-type decoding
which is originally proposed for decoding with erasures. We consider sparse-graph codes
over the real field. We use real-number decoding because the ALUs in current GPUs for
high-speed learning systems are often optimized for floating-point computations. Since
we use sparse-graph codes, the decoding computational complexity overhead is shown
to be small. As we will discuss in Remark 23, our algorithm can adopt a “coalesced
memory access” technique [207], which further reduces the decoding overhead.

153



9.2 System model and problem formulation

In this chapter, we use G to denote a graph and use V to denote the set of all nodes in G.
For a node v ∈ V or a node set S ⊂ V , we use N (v) or N (S) to denote the neighboring
nodes of v or S . We use ‖x‖ to denote the `2-norm of the vector x and use ‖X‖ to denote
the induced `2-norm of the matrix X.

Definition: Agent(k,d): An agent is a device1 that can store k vectors in Rd. Note that d
might be one.

The following definition depends on the definition of an expander graph. See Defini-
tion 2.2.2 for details.

Definition: Bipartite multi-core system(N ,M ,k,d,G(N,M, dv, dc, α.δ),Aij , bij ,i ∈ [N ], j ∈
[M ]): A bipartite multi-core system is a set of agents that satisfy the following conditions:
• There are N agents with parameters (k,d), called ‘variable agents’ or ‘left agents’,

and M agents with parameters (k + 1,d), called ‘check agents’ or ‘right agents’.
• There is a bipartite expander graph G(N,M, dv, dc, α, δ) that represents the connec-

tions between the N left agents and the M right agents of the bipartite multi-core
system: a variable agent vi and a check agent pj can communicate with each other
only if vi is connected with pj . With each edge (vi,pj), there is an associated k-by-
(k + 1) dimensional matrix Aij and an associated non-zero column vector bij such
that Aij has full row rank and Aijbij = 0.

• Denote by Xi = [xi,1, . . . ,xi,k] the k vectors in the i-th variable agent. We say that a
check agent is ‘satisfied’ if∑

vi∈N (pj)

XiAij = (0)d×(k+1), j ∈ [M ]. (9.1)

Definition: Storage fault (p(·)): If a storage fault happens at an agent with parameters
(k,d), the stored vectors Xi change to Xi + Ni, where (Ni)d×k is distributed according to
the pdf p(·) with support in Rd×k.

Definition: Computation fault (q(·)): If a computation fault happens to a computation
result, the correct result is added to a noise value distributed according to the pdf q(·).
The dimension of the noise is in accordance with the dimension of the computation
result.

Assumption 14. The storage fault pdf p(·) and the computation fault pdf q(·) have no
point masses in their supports.
Assumption 15. The storage fault and the computation fault are bounded in `2-norm by a
constant Le.
Remark 22. Here we briefly remark on how realistic these two assumptions are. In the
floating point representation of real-numbers, each real number is represented as a
combination of three types of bits: a sign bit, an exponent and a mantissa specifying the
actual digits of the number. We assume that in storage and during the computation, the

1In a GPU, an agent can be a multi-processor.
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mantissa bits and the sign bit can be flipped by storage or computation faults. Then, if
we ignore the finite-length effect of real numbers, the faults can indeed be viewed as
having no point masses and have bounded value. However, even if a single exponent bit
changes, the stored data can change a significant amount, which effectively violates the
assumption on bounded error. Therefore, in practice the exponent bits should be taken
with extreme care.

9.3 Preliminary result: reliable distributed storage of re-
als with undetectable faults

Suppose we want to distributedly store X̃ = [X1, . . .XL] = [x1,1, . . .xL,k] in a fault-
tolerant fashion in presence of storage and computation faults. First, we encode the
data X̃ into X = [X1, . . .XN ] = [x1,1, . . .xN,k] and for i ∈ [N ], store each segment of data
Xi = [xi,1, . . .xi,k] in the i-th variable agent in a bipartite multi-core system with param-
eters N ,M ,k,d,G(N,M, dv, dc),Aij ,bij ,i ∈ [N ],j ∈ [M ]. The vectors X = [X1, . . .XN ] =
[x1,1, . . .xN,k] are referred to as coded data. At the beginning, the data are encoded, and
thus all check agents are ‘satisfied’ (see (9.1)).

However, storage faults may result in unsatisfied check agents. Therefore, we use
a distributed decoding algorithm to correct errors. Note that the computations in the
decoding algorithm are subject to computation faults. During the 0-th iteration, the
variable agents broadcast their stored data to the connected check agents. During the
t-th iteration, all the check agents compute in parallel, and then all the variable agents
compute in parallel.
Assumption 16. The k-by-(k + 1) dimensional matrices Aij, i ∈ [N ], j ∈ [M ] are designed
in such a way that the row spaces of any two matrices Ai1j and Ai2j are not completely
the same and no one is contained inside the other (which is always satisfied because we
have assumed that each Aij has full row rank). This property can be achieved, e.g., if all
these matrices are chosen with random entries. See Fig. 9.1 for details.

We call a check agent that is connected to one faulty variable agent a ‘single-ton’, call
a check agent that is connected to multiple faulty variable agents a ‘multi-ton’, and call a
check agent that is connected to no faulty variable check agent a ‘zero-ton’.
Lemma 9.3.1. Under Assumption 14 and Assumption 16, the check agent pj can determine the
position and value of a wrong message in the check agent’s neighborhood and send the correct
message back if and only if the check agent is a single-ton.

Proof. Recall that the data are initially encoded in such a way that
∑

vi∈N (pj)

XiAij = 0 ∀j.

Suppose there is a single storage error in one of the variable agents vi ∈ N (pj), i.e.,

2In fact, when the storage noise Ni has no point mass and when all parity-check solvers of the equation
(9.3) are fault-free, all verified messages M̃

(t)
pl→vi have the same value with probability 1.
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Algorithm 8 Fault-Tolerant Distributed Storage
• From variable agent to check agent:

Iteration 0: For each variable agent vi, the stored data Xi(0) = Xi. For vi and
each parity check agent pj ∈ N (vi), M

(0)
vi→pj = Xi(0) is transmitted from vi to

pj .

Iteration t ≥ 1: For each variable agent vi, when at least one of the incoming
messages M̃

(t)
pj→vi , pj ∈ N (vi) is not the error message ‘e’, set the stored data

Xi(t) to the majority of these messages2. Otherwise, do not change the stored
data, i.e., Xi(t) = Xi(t − 1). Then, for each parity check agent pj ∈ N (vi),
transmit M

(t)
vi→pj = Xi(t) to pj .

• From check agent to variable agent:

Iteration t ≥ 1: Each check agent pj computes the syndrome

Zj =
∑

vl∈N (pj)

M(t−1)
vl→pjAlj. (9.2)

1. If Zj = 0d×(k+1), the check agent sends back M̃
(t)
pj→vl = M

(t−1)
vl→pj to each

variable agent vl in N (pj).

2. Suppose Zj 6= 0d×(k+1) and there exists a vi ∈ N (pj) such that Zjbij = 0d
(which means that the rows in Zj are in the row space of Aij). Then, pj
computes the solution M to the equation(

M(t−1)
vi→pj −M

)
Aij = Zj, (9.3)

and sends back M̃
(t)
pj→vi = M to vi. For other variable agents vl 6= vi, pj

sends back M̃
(t)
pj→vl = M

(t−1)
vl→pj .

3. Suppose Zj 6= 0d×(k+1) and Zjbij 6= 0d for all vi ∈ N (pj), pj broadcasts an
error message ‘e’ to all of its neighbors.
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Figure 9.1: The row spaces of Ai1j and Ai2j are not completely the same and no one is
contained inside the other. In this way, if the row space of Zj , the parity check (syndrome)
message of the j-th parity check agent, is the same as or contained inside the row space
of the row space of a particular weight matrix Aij , one can determine that the fault is
from the i-th variable agent. Since the intersection of the row spaces of Ai1j and Ai2j has
low dimension (the red line), the event that the row space of Zj is inside the intersection
happens with probability 0 for randomly chosen Ai1j and Ai2j and random storage and
computation faults.

M
(t−1)
vi→pj = Xi + Ni. Then, the parity check in (9.2) satisfies

Zj =
∑

vl∈N (pj)

M(t−1)
vl→pjAlj

=
∑

vl∈N (pj)

XlAlj + NiAij = NiAij.
(9.4)

In this case, after solving the equation (9.3), in which M
(t−1)
vi→pj = Xi + Ni and Zj = NiAij ,

the check agent pj obtains the solution M = Xi and sends it back to vi. If there are at least
two faulty variable agents vi1 and vi2 in N (pj), the parity check Zj = Ni1Ai1j + Ni2Ai2j .
Under Assumption 14 and Assumption 16, with probability 1, the rows of Zj are not in
the row space of any Aij . In this case, the error message ‘e’ is broadcast from pj to all
its neighbors, which conveys that there are too many errors in N (pj). That is, the check
agent pj can determine the position and value of a wrong message if and only if the
check agent is a single-ton.
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9.3.1 Analysis of the fault-tolerant decoding algorithm

For the t-th time slot, suppose some storage faults happen at the beginning of the
time slot. Then, the t-th iteration of the decoding algorithm is carried out. During the
decoding iteration, the majority computation at the variable agents may be faulty, and
the computation of M in (9.3) at check agents may also be faulty. Denote by Vt the set
of variable agents that are storing incorrect data (not equal to the original data Xi) just
before the t-th decoding iteration. Denote by evar

t , echk
t and esto

t respectively the number of
computation faults at variable agents (the majority computation outputs the incorrect
value), the number of computation faults at check agents (the computation of M in (9.3)
is incorrect) and the number of storage faults.
Theorem 9.3.2. (Fault-tolerant Distributed Storage) Suppose the data X̃ = [X1, . . .XL] are
encoded into X = [X1, . . .XN ] and stored in a bipartite expander multi-core system (N ,M ,k,d,
G(N,M, dv, dc, α, δ), Aij , bij ,i ∈ [N ],j ∈ [M ]). Suppose Assumption 14 and Assumption 16
are satisfied. Suppose the number of computation faults evar

t and echk
t and the number of storage

faults esto
t satisfy

evar
t + echk

t + esto
t ≤ (2δ − 1)αN ∀t ≥ 1. (9.5)

Then, the set of variable agents that are storing incorrect data Vt satisfies

|Vt| < αN ∀t ≥ 1. (9.6)

Proof. See Appendix G.1.

Remark 23. In Section 9.3, we introduced the verification-based decoding algorithm,
which can be implemented in parallel for all agents. To further increase the computation
speed, as shown in the algorithm, one may simultaneously load k consecutive data points
in one variable agent to the cache of the processing unit in the check agent (which is called
“coalesced access [207]”). Moreover, if the Tanner graph is quasi-cyclic [48], coalesced
access can be carried out efficiently for the entire data stored in a set of consecutive
variable agents to a set of consecutive check agents.
Remark 24. When errors are rare, the majority-based update rule at each variable node is
not necessary, because the decoding algorithm is based on verifications, and pinpointing
one error only requires one parity check. This indicates that, we may consider an
asynchronous decoding algorithm, in which each check agent sets a Poisson clock. When
its Poisson clock runs out, the check agent sends queries to all connected variable agents,
and corrects the data stored in these agents.
Remark 25. The decoding algorithm analysis is based on the assumption that the decoding
neighborhood of each variable node in the bipartite graph is tree-like, which again
depends on the assumption that N , the number of agents, is large enough. However, this
assumption may not be very practical. To address this problem, we may use Protograph-
based bipartite graph [69] to allocate the data. In this case, each agent has all the data
that are stored in one node of the Protograph, instead of the data that are stored in one
node of the entire bipartite graph, and hence the number of agents can be reduced to the
number of variable nodes in the small Protograph.
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Figure 9.2: The data are split into data blocks and stored in distributed variable agents.
The data and are encoded such that (9.1) holds for all parity check agents. Using the inter-
mediate results w>t Xi in logistic regression, the parity check agents can identify wrong
memory blocks and correct errors. During the computation of logistic regression, the
memory faults are repeatedly suppressed by error correction, and hence the convergence
of logistic regression can be ensured.

9.4 Main result: distributed logistic regression in the pres-
ence of storage and computation faults

9.4.1 A review of distributed logistic regression

Here we provide a brief overview of the logistic regression algorithm for binary classifica-
tion [29, Section 4.3.2]. Suppose we want to solve a logistic regression problem where the
raw data X̃ = [X1, . . .XL] = [x1,1, . . .xL,k] are stored distributedly at L agents, and Xi are
stored at the i-th variable agent. Each d-dimensional column vector in Xi = [xi,1, . . . ,xi,k]
represents one instance of observations of a collection of d features. In total, we have
Lk instances of observations of the d features, and each agent stores k instances. Also,
we assume that the i-th agent has labels y>i = [yi,1, . . . , yi,k], where each entry is in {0, 1}.
Denote by y = [y1; y2; . . . ; yL] the collection of all labels. We want to solve the logistic
regression problem with ridge regression

max
w∈Rd

log p(y|X̃,w)− λ ‖w‖2
2 , (9.7)

under the assumption that

p(y = 0|x,w) =
1

1 + exp(w>x)
, (9.8)

where x and y denote an arbitrary data vector and its corresponding label.
Problem (9.7) can be solved recursively using a gradient descent method. The gradient

update equation can be compactly written as

wt+1 = (1− 2ελ)wt − ε∇L(wt)

= (1− 2ελ)wt − εX̃
[
y − σ(X̃>wt)

]
,

(9.9)
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where σ(·) is the entry-wise sigmoid function. This can also be written in a distributed
form as

∇L(wt) =
L∑
i=1

∇w
(i)
t

:=
L∑
i=1

Xi

[
yi − σ(X>i wt)

]
,

(9.10)

which can be implemented in a distributed way.

9.4.2 Coding-inspired fault-tolerance of distributed logistic regression

The details of the fault-tolerant distributed logistic regression algorithm are provided
in Algorithm 9. The main difference in the decoding stage between Algorithm 8 and
Algorithm 9 is that the parity checks are computed using the linear transform of the
data w>t Xi, instead of the data Xi themselves. To understand why decoding can indeed
correct faults, we note that when no faults happen, the following parity-check equations
are satisfied: ∑

vi∈N (pj)

w>t XiAij = 0, j ∈ [M ]. (9.11)

Note that the parity check Zj =
∑

vi∈N (pj)

w>t M
(t−1)
vl→pjAij in Algorithm 9 is a 1 × (k + 1)

row vector, which is different from the d × (k + 1) matrix in Algorithm 8. This helps
reduce the computational complexity of decoding by a factor of d, which is useful in
high-dimensional problems.
Remark 26. In order to reduce the network-traffic for repairing faulty storage nodes,
one can introduce a fault indicator after detecting a fault at a check agent, instead of
immediately recovering the data stored in the corresponding variable node. This is
because a single mismatch between the computation result w>t Xi and the parity-check
equations may be due to computation fault at this particular time slot, instead of a
storage fault. However, if two consecutive mismatches happen at the variable agent,
we should replace data, because the probability that a storage fault happens dominates
the probability of two consecutive computation faults (under the assumption that the
probability of storage errors and the probability of computation errors are comparable).

9.4.3 Analysis of the fault-tolerant distributed logistic regression al-
gorithm

We assume that at the t-th time slot of the computation of logistic regression, there may
be five types of faults: (1) the stored data at a variable agent Xi may be changed due to

2For the sake of clarity, we assume that this recovery is fault-free. One can easily generalize this to
fault-prone recovery, and carry out analysis for fault-prone recovery parallel to the proof for distributed
storage in Theorem 9.3.2.
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Algorithm 9 Fault-Tolerant Distributed Logistic Regression

• Initialization: Encode the raw data X̃ = [X1, . . .XL] into X = [X1, . . .XN ] and
distribute the parity symbols [XL+1, . . .XN ] into N − L new agents, such that all
check agents defined in Section 9.2 are satisfied. At the central agent, set w0 using
some rough estimate and broadcast it to all the variable agents.

• Iteration t: At each variable agent vi, compute∇w
(i)
t in the following steps:

Compute w>t Xi.

Carry out one iteration of Algorithm 8 for the computed results w>t Xi.

When a fault at a variable agent vi is detected by a check agent pj (i.e., the
second case in Algorithm 8 when Zj 6= 0 and Zjbij = 0), recover the data in
the storage of vi using local parity-check equations3.

Plug in the one-step decoded result of w>t Xi into the computation of ∇w
(i)
t =

Xi

[
yi − σ(X>i wt)

]
at the i-th variable agent. Send back the computed result

∇w
(i)
t to the central agent, even if the computation result may still not be

completely correct.

• Update: At the central agent, compute the sum of all∇w
(i)
t , 1 ≤ i ≤ L, and update

the estimate using (9.10). Then, the central agent broadcasts the updated estimate
wt+1 to all variable agents.

a storage fault; (2) the computation of w>t Xi may be faulty due to a computation fault;
(3) the computation at the check agents may be faulty due to a computation fault (and a
faulty message may be generated that indicates a variable agent stores wrong value); (4)
the majority-based computation at the variable agents may be faulty due to a computation
fault; (5) the computation of the gradient descent update ∇w

(i)
t = Xi

[
yi − σ(X>i wt)

]
may be faulty due to a computation fault. We denote by esto

t , eloc
t , echk

t , evar
t , and e

updt
t the

number of the five types of faults. As we have discussed, we assume that the recovery
stage, which is after the detection of a fault, is fault-free for the sake of clarity.
Theorem 9.4.1. (Fault-tolerant Distributed Logistic Regression) Suppose the data X̃ = [X1, . . .XL]
are encoded into X = [X1, . . .XN ] and stored in a bipartite multi-core system (N ,M ,k,d,
G(N,M, dv.dc),Aij , bij ,i ∈ [N ], j ∈ [M ]). Suppose ‖x‖ ≤ Lx for each column x in the data ma-
trix X̃. Suppose Assumption 14, 15 and 16 are satisfied. Suppose the fault-free update rule (9.9)
satisfies ‖w‖ ≤ Lu. Suppose Lφ is a constant and η is defined as

η :=

(
1

4

√
kLx(Lφ + Lu) + 2k

)
· αLe

+ max

(
1

4

√
kLx, 1

)
· βLe,

(9.12)

Suppose the number of computation faults eloc
t and echk

t and the number of storage faults esto
t satisfy

dve
loc
t + esto

t + echk
t ≤ (2δ − 1)αN ∀t ≥ 1. (9.13)

161



Then, the set of variable agents that are storing incorrect data Vt satisfies

|Vt| < αN, ∀t ≥ 1. (9.14)

Further, suppose the error bound satisfies Lφ = ηN
2λ

, and suppose the number of computation
faults eloc

t , echk
t , evar

t and eupdt
t satisfy

eloc
t + echk

t + evar
t + e

updt
t ≤ βN. (9.15)

Then, the difference between the result of the coded fault-tolerant distributed logistic regression
and the result in the fault-free case is bounded in `2-norm by Lφ.

Proof. See Appendix G.2.

162



Chapter 10

Case study 2: fault-tolerant convolution
with noiseless decoding

10.1 Introduction

The goal of this chapter is to design signal processing systems−in particular, a set of
parallel filters operating on the same input−in an error-resilient fashion. Among these
linear filters, some filters may suffer from a complete failure and may provide completely
arbitrary outputs. Our goal is to obtain the exact filtering output signal despite these
failures.

Building on the real-number error control coding from compressive sensing [43, 44],
we construct m− n redundant filters in addition to the original n parallel filters in order
to enable error correction. We provide a method to detect the faulty filters and correct
errors using the linear programming decoding method [44]. We only need the output
signals from all filters at a particular time instant t for decoding. We show that all faulty
filters can be corrected provided that the errors are sparse, i.e., the number of faulty
filters is smaller than some threshold value.

The decoding technique used in this chapter are assumed fault-free. However, as
we show in the analysis of computational complexity, the complexity of decoding is
much smaller than the complexity of linear filtering. Therefore, we may use higher
power for decoding to eliminate faults. Note that we can actually implement an error-
prone decoding for linear filtering using ideas from Chapter 9. We use the notation
HT to denote the submatrix composed of columns of the p-by-m matrix H, which have
column indices from the set T ⊂ {1, 2, . . . ,m}. We use the notation diag(H) to denote the
diagonal matrix generated from the vector H. We use a linear programming decoding
approach proposed by Candes and Tao [44] to detect filter failures, the details of which
were presented in Section 2.2.5.
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Figure 10.1: Redundant filters are constructed parallel to the original filters, such that the outputs
from these filters are in a coded form.

10.2 System model and problem formulation

In this chapter, we would like to achieve fault-tolerance in a group of unreliable linear
filters. We assume that the same signal r(t) is the input to a group of linear filters with
impulse responses hi(t), i = 1, . . . , n. The output signals are written as

x̂i(t) = r(t) ? hi(t). (10.1)

The model in (10.1) applies to both digital and analog filters, where t takes discrete values
in digital filters. Some implementation issues of digital filters are discussed in Remark 27.

One application of this model is the classical frequency division multiplexing in a
multi-user communication system. In this special context, the signal r(t) is the received
signal composed of signals from n users and is demodulated by a set of linear filters from
the carrier frequency. For example, we may define xi(t) as the bandlimited baseband
signal transmitted by the i-th user. Then, each baseband signal xi(t) is shifted onto a
specific channel (carrier) and turned into a carrier signal x̃i(t). One way of generating
x̃i(t) is to multiply xi(t) with a specific carrier frequency signal gi(t) = cos 2πfit. Finally,
the n carrier signals are summed up to form the transmitted signal r(t). In this special
context, different hi(t)’s can be viewed as the transfer functions of band-pass filters with
different central frequencies.

We assume that the n linear filters are error-prone, i.e., a small portion of these
n filters generate completely faulty signals, while the remaining filters are error-free.
We would like to find the faulty filters by examining the output signals from all the
n filters and correct the erroneous signals. As will be clear in the following sections,
the fault-detection algorithm that we propose is a one-time examination, which only
requires the outputs x̂i(t) at only one instant of time t, and which requires much lower
computational complexity compared to linear filtering1. Therefore, we assume that the

1A faulty filter may coincidentally yield a correct output at this particular time t, which prevents this
filter from being detected. However, this event has zero probability under mild assumptions on the error
statistics.
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decoding algorithm can be implemented using error-free computing components.
We will introduce redundancy by adding m − n redundant filters whose impulse

responses (or transfer functions) are linear combinations of the impulse responses (or
transfer functions) of the original filters. In particular, for digital filters, redundant filters
can be constructed by directly computing linear combinations of the tap coefficients of
the n original filters. For simplicity, we assume that the complexity of building these
redundant filters is the same as that of building each of the original filters. We acknowl-
edge that this assumption might be unrealistic in some applications, and understanding
appropriate application domains for such filters, as well as characterizing filter complex-
ity by familiar metrics (e.g. number of taps or number of poles and zeros) is a meaningful
future direction. We assume there are at most S faulty filters out of the total m filters.

10.3 Main result: coded parallel linear filters for fault de-
tection

We use a coding-inspired algorithm to detect these faulty filters by adding some ‘redun-
dant filters’. In particular, we encode the n linear filters into m linear filters using the
generator matrix Gm×n = [In×n,Pn×p]

> of a systematic (m,n) linear block code, where
m = n+ p. This encoding process can be written as

[h1(t), . . . , hn(t), hn+1(t), . . . , hm(t)]> = Gm×n · [h1(t), . . . , hn(t)]>. (10.2)

The transfer functions of all coded filters can be written as

[H1(s), . . . ,Hn(s), Hn+1(s), . . . ,Hm(s)]> = Gm×n · [H1(s), . . . ,Hn(s)]>, (10.3)

where the argument s should be changed to z for digital filters.
If all the linear filters are error-free, the ideal output signals can be written as

[x̂1(t), . . . , x̂m(t)]> = [h1(t), . . . , hm(t)]> ? r(t)

=Gm×n · [h1(t), . . . , hn(t)]> ? r(t)

=Gm×n · [x̂1(t), . . . , x̂n(t)]>.

(10.4)

However, since the faulty filters generate arbitrary output signals, the true output signals
can be written as

[y1(t), . . . ,ym(t)]> = [x̂1(t), . . . , x̂m(t)]> + [e1(t), . . . , em(t)]>

=Gm×n · [x̂1(t), . . . , x̂n(t)]> + [e1(t), . . . , em(t)]>,
(10.5)

where the error vector [e1(t), . . . , em(t)] is supported on a sparse set of cardinality at
most S, i.e., at most S functions among e1(t), . . . , em(t) are non-zero functions. We can
write (10.5) in a compact form

y(t) = Gm×n · x̂(t) + e(t). (10.6)
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Remark 27. In some digital filters, the convolution operations (see (10.1)) are computed
using IFFT, FFT and entry-wise vector products. One might question the implementation
of coded filters in this situation. However, we note that the convolution results x̂i(t),∀i,
are identical and independent of convolution operation details, if all operations are
error-free. That is to say, (10.4) holds and is independent of convolution implementation
details. Further, in our problem, the faulty filters are allowed to generate arbitrary
outputs, which means that (10.5) also holds and is independent of implementation
details. However, all filters must be constructed by different devices. This is because
if all filters are implemented using a shared faulty FFT computation unit, all outputs
x̂i(t),∀i are faulty and the errors are too many to be corrected. Fault-tolerant FFT has
also been studied in the literature [125, 263].

Equation (10.6), for a particular time instant t, has exactly the same form of the real-
number decoding problem in Section 2.2.5. From Lemma 2.2.5, if we view t as the time
that the fault-detection algorithm is implemented, we readily obtain the following result.
Theorem 10.3.1. As long as there exists a matrix Hp×m such that (i) the restricted isometry
properties (2.15) and (2.16) are satisfied; (ii) the condition (2.17) in Lemma 2.2.5 is satisfied; (iii)
Hp×mGm×n = 0, the signal vector x̂(t) in (10.6) for a particular time t, can be recovered exactly
using an `1 minimization program

x̂(t) = arg min
g∈Rn

‖y(t)−Gg‖`1 , (10.7)

provided that the cardinality of the support of the error vector S is within some constant fraction
α of m.

The constant α for random Gaussian matrices is determined by solving an inequality
in [44]. Readers are referred to equation (3.23) in [44] for details (note that the constant
α is written as r in [44]). The theoretical bound on α is conservative, while simulations
often provide much better results (see [44] and Section 10.4 of this chapter).

From Theorem 10.3.1, using x̂(t) and y(t) for a specific time instant t, we can recover
the error vector e(t). By examining the support of e(t), we obtain the locations of the
faulty filters. Suppose the support of e(t), i.e., the set of obtained indexes of the faulty
filters is U = {i1, i2, . . . , ik} ⊂ {1, 2, . . . ,m}. Denote by HU the submatrix of Hp×m that is
composed of the columns with indexes in U , and denote by HŪ the submatrix of Hp×m
that is composed of the columns with indexes in Ū = {1, 2, . . . ,m} \ U . Denote by yU(t)
the subvector of y(t) composed of the entries with indexes in U , and denote by yŪ(t) the
subvector of y(t) composed of the entries with indexes in Ū . Then, yŪ(t) is the correct
output, while yU(t) contains errors. By solving the following equation,

(HU )p×kŷ
>
U (t) + HŪy>Ū (t) = 0, (10.8)

we obtain the fault-free output [ŷU(t),yŪ(t)]. From the condition of Theorem 10.3.1,
(HU)p×k satisfies k = |U| < S, and hence HU has full column rank (see the RIP assumption
(A.1)). Thus, we can always find a k × k submatrix (K)k×k of (HU)p×k. Suppose the
corresponding rows of (K)k×k in (HU)p×k corresponds to the row set T . Then,

ŷ>U (t) = K−1(HŪ )T y>Ū (t), (10.9)
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where (HŪ)T is the submatrix of HŪ with the row set T .
Remark 28. The performance of the proposed encoded filtering scheme depends on the
design of the sensing matrix Hp×m (often called the parity check matrix in coding theory),
which is shown to satisfy the RIP constraints (A.1) and (A.2) [44]. In our simulations,
we use random Gaussian matrices to generate Hp×m and compute the systematic form
of the annihilating matrix Gm×n. At the first glance, it may seem that the parity check
matrix of a BCH code, i.e., a Vandermonde matrix is a good choice, because any p
columns of a p-by-m Vandermonde matrix are linearly independent (and hence the LHS
of the p-RIP condition (2.15) is satisfied for some constant δk), and the real-number BCH
codes have been successfully designed [266]. However, it is reported in [11] that the
constant δk approaches 1 quickly as then ratio k/n decreases, and k-by-k submatrices of
a Vandermonde matrix suffer from numerical issues.

10.4 Simulation results

The number of original filters is n = 100. These filters are coded into m = n/R filters
using a real-number linear code with a parity check matrix generated from random
Gaussian matrices. The received signal r(t) is composed of n = 100 different sinusoidal
components with coefficients xi, 1 ≤ i ≤ 100 (which is like modulation of many delta-
signals with sinusoids) and is sampled into a vector with length 105. The coefficients
xi of different sinusoids (the delta-signals) are recovered by using matched filters, i.e.,
the original filters. However, some randomly chosen matched filters are faulty and may
generate arbitrary outputs. For simplicity, in this simulation, we assume that the output
of a faulty filter takes the form x̂i + ei, where x̂i is the correct coefficient to be computed
and ei is an additive noise term. We abuse notation and use signal-to-noise ratio (SNR)
to denote E[x̂2

i ]

E[e2i ]
. We use log-SNR in simulations.

In Figure 10.2 and 10.3, we present simulation results which show the relationship
between successful detections (defined as detecting and identifying all faulty filters)
and the total number of faulty filters. The two simulation results show two promising
properties of the coded filters: (1) the higher the redundancy, the higher the ratio of
fault-tolerance; (2) fault-tolerance is insensitive to the statistical properties of noise. To
obtain a single data point, we run 50 simulations with distinct random failures and
distinct random Gaussian matrices.

10.5 Conclusions and future directions

In this chapter, we consider the problem of designing reliable real-number parallel filters
using noisy hardware. We show that by using linear-programming decoding, we can
tolerate a large amount of faulty filters. An interesting result to be investigated is whether
linear programming decoding can be implemented even if the decoding computation
components themselves suffer from failures. Apart from linear programming decoding,
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Figure 10.2: These are the simulation results for coded filters with different coding rates.
Coded filters with higher redundancy can tolerate a higher ratio of faulty filters.

Ratio of Correct Filters

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

R
a
ti
o
 o

f 
S

u
c
c
e
s
s
fu

l 
D

e
te

c
ti
o
n
s

0

0.2

0.4

0.6

0.8

1

SNR=-20dB

SNR=0

SNR=20dB

Figure 10.3: These are the simulation results for coded filters with different magnitudes
faults when R = 1/2. The simulation results are insensitive to the fault magnitudes.
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some other works on real-number error control coding are also applicable, such as real-
number BCH codes [106] and LDPC codes [235]. A thorough performance comparison
between these different codes is certainly of interest.

The parallel digital filtering model in this chapter (defined by (10.1)) can be adapted to
different multi-user communication systems other than frequency division multiplexing.
One example is the zero-forcing beamforming in a multiple access channel, which
requires the projection of the received signal to different directions in the signal space.
Coded linear filtering can be used in this problem to detect if some projections are faulty.
This problem will be addressed in future works.
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Chapter 11

Concluding remarks and future
directions

This thesis develops the methodology, algorithms, and analytical tools of coding-based
robust computation techniques. As we have mentioned in the motivation, robustness is a
timeless issue, and it connects tightly with the overall performance of distributed systems.
For example, one may reduce the energy consumption of circuits by deliberately sacrific-
ing the robustness of each computation component (see Chapter 3). Another example
is that by addressing the straggler’s problem, one can reduce the overall computation
time. From this perspective, the thesis is aimed to pave the way for understanding the
interaction between information-theoretic techniques that are suitable for robustness and
performance of today’s computation systems. In this section, instead of reviewing the
methods that we have discussed in each chapter, we would like to briefly overview the
critical questions that we have tried to address during the thesis and provide the mental
map again on the central theme of the thesis.

Can reliable computation be performed using entirely unreliable logic gates? Note
that the error probability of the output is always lower-bounded by the last gate’s error
probability ε. Therefore, we can only define reliability as being able to make the output
error probability close to ε (which we bound by 2ε in the ENCODED scheme in Chapter
3). In [253], it was shown that any function computable by l logic gates can be computed
using O(l log l) unreliable logic gates. One may think this has provided a satisfying
answer to the above question. However, a log l factor in the increase of logic gates does
not make sense in the saturation of Moore’s law: if the entire semiconductor industry
has tried their best to shrink the size of each transistor, how can we introduce such
scaling-sense larger redundancy? The answer provided by the paper [278] is more
satisfying in that a constant factor can bound the number of redundant computations.
However, all of these techniques cannot make a real impact unless we can experimentally
model the power-reliability tradeoffs of voltage scaling to give more insights to the
designer. It would be useful to connect to the study on energy consumption on wiring
and decoding [98, 99] as well, to choose the best codes for noisy decoding and observe in
experiments if the predicted gains due to coding can indeed be achieved. For example,
in [97], a new measure of the efficiency of circuits is proposed, which concerns the wiring
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length. Perhaps the final answer to the question is a circuit-level implementation that
can showcase the energy reduction in computation while not sacrificing the accuracy of
computation results.

The problem of computation with noisy gates is of considerable practical and in-
tellectual interest. It is widely accepted that biological systems operate with noisy
computational elements, and yet provide excellent performance at low energy. In engi-
neered systems, with the saturation of Dennard’s scaling and Moore’s law, new device
technologies are being used to design circuits that are invariably error-prone. A com-
prehensive understanding of reliability-resource tradeoffs in error-correction coding in
computing could give these novel technologies (e.g. carbon nanotubes and mechanical
switches) a better chance to compete with established ones (i.e., CMOS). To that end, it
will be crucial to identify what causes faults in these novel technologies so that they can
be modeled and analyzed, and appropriate codes are designed for them. Intellectually, it
is interesting (and widely acknowledged) that the remarkable gains that coding brings
to communications, especially at long-range, are not easy to obtain in computational
settings. The theoretical reasoning for this thus far rests on simplistic models and has
slightly loose bounds [96]. Improved strategies and improved outer limits will go a long
way in characterizing how significant these gains can be.

We would also like to remark on the applicability of the gate-level error model in
today’s large scale systems. The current trend in coded computing focuses on “processor-
level” (rather than gate-level) noise, e.g. it is assumed in many works that the product of
input s with each column of A is “erasure-prone”. However, there is an increasing trend
in distributed systems community to consider “soft-errors” that are undetectable [46].
More importantly, there is an increasing need for understanding scalability when the
number of (fixed memory) processors increases for a fixed total problem size (to understand
the limits of gains with parallelization of a problem). This is called “strong scaling” [127,
Chapter 9], whereas “weak scaling” allows for increasing problem size and number of
processors while keeping the memory of each processor fixed. When the number of
processors increases to the level that each processor, with a small amount of memory, only
takes care of a small amount of work, it becomes more useful to consider the problem
in the gate-level model: for strong scaling with soft errors, errors will accumulate and
cause the resulting output to be far from the correct output.

Since we are talking about the error accumulation in computation systems, the natural
question to ask is what is the suitable measure of error accumulation in computation
systems. In Chapter 4, we showed that one such measure for the problem of data
summarization and network consensus in the problem of multi-stage computing is the
accumulation of distortion due to successive quantizations. We have proved theoretical
bounds that are infinitely tighter than classical cut-set based bounds using this new
measure of information loss. It is also interesting to investigate the generalization of
the distortion accumulation effect and the inequalities developed in Chapter 4 to other
computation and inference problems, especially in a computation DAG (directed acyclic
graph) and in the case when data is not stored at all nodes. In fact, one can quickly
obtain loose upper bounds for simple non-tree networks. For instance, for an achievable
distortion bound in non-tree networks, a simple extension could be to the case of a DAG
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with only one source node with message x and only two paths to the sink node. In this
case, if the mean-square error on one path is D1 and the mean-square error on the other
path is D2, an achievable (if suboptimal) variance of estimating the source message using
these two messages is min{D1, D2}. This is achieved by either choosing the first message
or the second message, and equality is achieved when the two messages are the same.
Therefore, one can obtain (loose) upper bounds on the accumulation of distortion using
our achievability results. However, because of apparent looseness in the bound, we may
not achieve an asymptotically tight result, as we obtained in Theorem 4.3.1. Another new
direction is the possible extension of distortion accumulation to non-Gaussian vectors
using the Wasserstein distance as a distance metric [199], although we suspect that a
simple form of distortion accumulation may not be easily obtained.

A crucial problem that is not considered in Chapter 4 is that sources at different
nodes can be correlated. We expect that the concept of graph entropy will play a
vital role in the correlated-source version of our problem [189]. We believe that the
distortion accumulation phenomenon discussed here brings out a complementary and
different issue that also needs to be understood for this comprehensive understanding
(Theorem 4.3.1): even when all information sources are independent, the distortion of
computing and compressing intermediate results must accumulate along the tree. This is
mainly due to the new information introduced at intermediate nodes that needs to be
incorporated into the intermediate results as the distributed computing proceeds along
the edges of the tree network. [81] extends the notion of conditional graph entropy to
distributed computing on tree networks, demonstrating that it is necessary to understand
this concept to obtain a comprehensive information theory of distributed computing.
However, in Chapter 4, the problem that we consider is fundamentally different: we
effectively consider multi-stage computation, and the distortion accumulation effect is
due to the successive quantization in multiple stages. We believe that there is a need to
study examples that incorporate both distortion accumulation and graph entropy but in
multi-stage problems.

Thus, we brought out the third question: what things can change if we consider
computation problems that go beyond one stage? E.g., what if we consider iterative
computing problems such as gradient descent and PageRank? In fact, the results that
we have presented in Chapter 6, 7, and 5 are all about utilizing multi-stage or iterative
computing problems to obtain a better design of coding-based algorithms. In Chapter 6,
we show that by treating the intermediate results at stragglers that have not converged
as additive noise, we can incorporate these results into the decoding of final results
and reduce the computation error by orders of magnitude. In Chapter 7, we show
that by carefully incorporating the intermediate computation result from the previous
iteration, we can improve the number of tolerable erasures of sparse error-correcting
codes by orders of magnitude. These two chapters point out that for the problem
of iterative computing, there is usually a good structure that one can use to improve
the performance of error correction. Essentially, this is because the problems that we
considered in the thesis are mostly about contraction systems. One may argue that
combining information in multi-modal or non-convex problems may not achieve the
expected benefits in contraction systems anymore. However, as the practitioners have
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shown in the case of federated learning [138, 172], even for complicated non-convex
problems, combining the learned models by simple averaging can still provide good
convergence results. Thus, it is promising that we can extend the principles in Chapter 6
and 7 to more general settings. In Chapter 5, we show that when considering the problem
of elastic computing, we have the new opportunity of designing adaptive schemes
that can flexibly change the configuration when elastic events happen. This benefit
cannot be achieved in one-stage computing problems, because if we consider one-stage
problems where nodes can be taken away, we face the same problem as machine failures.
Therefore, considering multi-stage problems can also lead to novel problems and new
understandings of computation platforms. In fact, Chapter 3 and 4 are also closely related
to multi-stage problems. In Chapter 3, we essentially show that by partitioning a one-
stage problem into multiple stages, we can repeatedly suppress errors caused at the gate
level, and make the computation with entirely fault-prone components reliable. Thus, the
principle of considering multi-stage problems can also bring benefits in the reversed way
in that, even if we consider single-stage problems, we can transform them into a multi-
stage version and bring in new techniques and improvements. Finally, in Chapter 4, we
show that by quantifying the distortion accumulation in a network with multiple stages,
we can hope to obtain information-theoretical lower bounds that are infinitely tighter
than existing ones, thus providing a better understanding of information propagation in
distributed computing problems. Therefore, we have seen from multiple angles that the
multi-stage computing can bring in new problem formulations and techniques to the
robust computation literature, and it is of critical importance to understand it.

We want to end this thesis by going back to the fundamental physics perspective
and the Landauer’s principle (see Chapter 0). Of course, the principle of Landauer
and the result on the minimum energy consumption for erasing a bit of information
[147] is not for deriving any immediately practical bound on the energy consumption
of today’s computation systems (it was mainly for understanding Maxwell’s demon).
However, the principle does suggest another interesting point on the understanding of
computing systems, which is that it is often useful to connect a computation problem to
an information-theoretic issue and provide achievable schemes and fundamental limits
in the transformed problem. Another simple example is the comparison-based lower
bound [33] on sorting algorithms. The central theme of this thesis is similar, which is
that the fundamental understanding of computing systems can be obtained through
information-theoretic techniques and analytical frameworks. However, computation
problems, even the simplest ones on matrix operations, are far beyond the scope of
classical information theory. Therefore, it is useful to put in some effort to extend the
method of information processing and coding to that of computation. And last but not
least, it is always helpful to connect these results to real-system implementations and
new computation platforms, as we have shown in Chapter 5.
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Appendix A

Theoretical proofs for Chapter 3

A.1 Proof of Theorem 3.4.2

In probabilistic settings, the number of errors at any stage could exceed Nα0. In what
follows, we use large deviation analysis to show that the probability of exceeding Nα0 is
small. First, we review the large deviation result for binomial distribution [52, page 502,
Example 3].
Lemma A.1.1. Let Xi, i = 1, . . . , N be N i.i.d. binary random variables with Pr[Xi = 1] = p.
Then

Pr

[
1

N

N∑
i=1

Xi > (p+ λ)

]
< exp [−D(p+ λ‖p)N ] , (A.1)

where D(p+ λ‖p) = (p+ λ) loge
p+λ
p

+ (1− p− λ) loge
1−p−λ

1−p . Further, if p < λ,

Pr

[
1

N

N∑
i=1

Xi > (p+ λ)

]
< exp [−D(2λ‖λ)N ] . (A.2)

Proof. The inequality (A.1) is the large deviation bound for binomial distribution and is
presented in [52, page 502, Example 3]. Note that D(p+ λ‖p) is monotone non-increasing
for p ∈ (0, λ). When p < λ, we have D(p + λ‖p) > D(2λ‖λ). Therefore, (A.1) holds for
p < λ.

Then, Theorem 3.4.2 follows from Theorem 3.4.1 and Lemma A.1.1.
Using Theorem 3.4.1, we know that if the error fraction in all stages is bounded by

the inequality (3.11), the final error fraction is at most Nα0.
From Lemma A.1.1, we know that

Pr(αand > pand + λ) < exp [−D(pand + λ‖pand)N ] < exp[−D(2λ‖λ)N ], (A.3)

Pr(αxor > pxor + λ) < exp [−D(pxor + λ‖pxor)N ] < exp[−D(2λ‖λ)N ], (A.4)

Pr(αmaj > pmaj + λ) < exp
[
−D(pmaj + λ‖pmaj)N

]
< exp[−D(2λ‖λ)N ]. (A.5)
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Setting λ = θα0/2
(ds−1)+[dc(1−R)+1]+1

as in the condition (3.15), we have

(ds − 1)pand + [dc(1−R) + 1] pxor + pmaj < (ds − 1)λ+ [dc(1−R) + 1]λ+ λ =
θα0

2
.

Therefore,

Pr
(
(ds − 1)αand + [dc(1−R) + 1]αxor + αmaj > θα0

)
<Pr

(
(ds − 1)αand + [dc(1−R) + 1]αxor + αmaj

> (ds − 1)pand + [dc(1−R) + 1] pxor + pmaj +
θα0

2

)
<Pr((ds − 1)αand > (ds − 1)pand + (ds − 1)λ)

+ Pr([dc(1−R) + 1]αxor > [dc(1−R) + 1] pxor

+ [dc(1−R) + 1]λ) + Pr(αmaj > pmaj + λ)

= Pr (αand > pand + λ) + Pr (αxor > pxor + λ)

+ Pr
(
αmaj > pmaj + λ

)
< 3 exp(−ND(2λ‖λ)),

where

D(2λ‖λ) = 2λ log 2 + (1− 2λ) log
1− 2λ

1− λ

= 2λ log 2− (1− 2λ) log

(
1 +

λ

1− 2λ

)
= 2λ log 2− (1− 2λ)

(
λ

1− 2λ
+O(λ2)

)
= (2 log 2− 1)λ+O(λ2).

(A.6)

Since (ds − 1)αand + αmaj < (ds − 1)αand + [dc(1−R) + 1]αxor + αmaj, we also have

Pr
(
(ds − 1)αand + αmaj > θα0

)
< 3 exp (−D(2λ‖λ)N) .

Therefore, using the union bound for the L stages, the total error probability is upper
bounded by P blk

e < 3L exp (−D(2λ‖λ)N).

A.2 Proof of Theorem 3.4.3

Theorem 3.4.3 provides a lower bound on the number of operations by lower-bounding
the operations done at the entrance stage of the noisy circuit, i.e., operations that have
one of the L inputs (s1, s2, ...sL) as an argument. In order to prove Theorem 3.4.3, we
need the following lemma (stated implicitly in [196, Proposition 1]) which characterizes
the equivalence of a noisy-gate model and a noisy-wire model.
Lemma A.2.1. For each unreliable gate from Gate Model I (D, ε) with error probability ε and fan-
in number ≤ D, its output variable can be stochastically simulated by (equivalent in distribution
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to) another unreliable gate g̃ that computes the same function but with the following property:
each input wire flips the input independently with probability ε/D and the gate has additional
output noise independent of input wire noise.

Proof. For an arbitrary unreliable gate

y = g(u1, u2, ..., ud)⊕ zg, d ≤ D,

consider another unreliable gate together with noisy wires

ỹ = g̃(u1, u2, ..., ud)⊕ z̃g = g(u1 ⊕ w1, u2 ⊕ w2, ..., ud ⊕ wd)⊕ z̃g, d ≤ D,

where wj is the noise on the j-th input wire and takes value 1 with probability ε/D. The
probability that all d wires convey the correct inputs is (1 − ε/D)d > 1 − d ε

D
> 1 − ε.

Therefore, if z̃g is 0 w.p.1, the error of g̃ will be smaller than ε. Thus, using standard
continuity arguments, we can find a random variable z̃g which equals to 1 w.p. ε′ < ε,
while making ỹ and y equivalent in distribution.

Based on this lemma, we know that a noisy network defined in Section 3.2.1 can
always be replaced by another network, where each wire has an error probability ε

D
.

Before a specific input sk enters the noisy circuit, it is always transmitted along the wires
connected to the entrance stage of the gates in the circuit. Because of the assumption
that gates after the inputs are noisy, the bit will be ‘sampled’ by the noisy wires. For
convenience of analysis, we assume each gate can only be used once so that the number of
operations is equal to the number of unreliable gates. Now that each gate only computes
once, each noisy wire can only carry information once as well. We assume each sk is
transmitted on Tk distinct wires. Then, the probability that the message on all Tk wires
flips is

pk = (ε/D)Tk . (A.7)

Therefore, the error probability of the input bit sk satisfies P k
in > pk. Since matrix A is

assumed to have full row rank, if the linear transformation computation is noiseless,
even a single input bit error leads to an output block error. Therefore, even when the
linear transformation computation is noiseless, the output block error probability P blk

e is
greater than the input error probability P k

in. Since the computation is noisy, P blk
e is still

greater than P k
in, and hence is greater than pk. Therefore, if (ε/D)Tk = pk > ptar, the block

error probability P blk
e > P k

in > pk > ptar, which contradicts with the aim to make the block
error probability smaller than ptar. Thus,

ptar > (ε/D)Tk ,

which means that for any bit sk

Tk >
log 1/ptar

logD/ε
. (A.8)

Therefore, the number of wires connected to each input bit must be at least log 1/ptar
logD/ε

. Since
the number of input bits is L, the total number of wires connected to all input bits is at

197



least L log 1/ptar
logD/ε

. Since we are using gates with bounded fan-in smaller than D, the number

of gates is at least L log 1/ptar
D logD/ε

, so does the number of operations. Since there are K output

bits, the number of operations per output bit Nper-bit >
L log 1/ptar
KD logD/ε

.

A.3 Codes that satisfy the noisy decoding requirement

The existence of codes that satisfy the requirement (A.3) in Section 2.2.2 follows from a
result in [39]. We first present the result from [39].

Define β0, β1, β2, β3 respectively as the largest integer less than dv/2, the largest integer
less than or equal to dv/2, the smallest integer greater than or equal to dv/2, and the
smallest integer greater than dv/2. Create four real parameters γ12, δ12, π0 and ω0 that
satisfy the following inequalities

(1− θ)αN ≤ γ12N + δ12N, (A.9)

0 ≤ γ12N ≤ αN, (A.10)

0 ≤ π0(1−R)N ≤ ω0dvN ≤ αdvN, (A.11)

β3(α− γ12)N ≤ω0dvN ≤ min

(
d′

dc
π0dvN, γ12β1N + dv(α− γ12)N

)
, (A.12)

where d′ is the largest odd number which is less than or equal to dc, and

0 ≤ δ12Nβ2 ≤ (π0 − ω0)dvN. (A.13)

Define the following polynomials

F0(x)
∆
=

β0∑
j=0

(
dv
j

)
xj, (A.14)

F1(x)
∆
=

β1∑
j=0

(
dv
j

)
xj, (A.15)

F2(x)
∆
=

dv∑
j=β2

(
dv
j

)
xj, (A.16)

F3(x)
∆
=

dv∑
j=β3

(
dv
j

)
xj, (A.17)

Go(x)
∆
=

∑
j=1,3,...,d′

(
dc
j

)
xj, (A.18)

Ge(x)
∆
=

c∑
j=0,2,...,d′′

(
dc
j

)
xj, (A.19)
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where d′′ is the largest even number less than or equal to dc. Then we define

ψ(α, γ12, δ12, π0, ω0)
∆
= h(γ12, α− γ12, δ12) + (1−R)h(π0)

+t1 + t2 + u1 + u2 − dvh(ω0, α− ω0, π0 − ω0),
(A.20)

where h(·) is the entropy function defined as

h(τ1, τ2, . . . , τi) = −
i∑

j=1

τj log τj −

(
1−

i∑
j=1

τj

)
log

(
1−

i∑
j=1

τj

)
, (A.21)

and
t1 = inf

x>0
{γ12 logF1 + (α− γ12) logF3 − ω0dv log x} , (A.22)

t2 = inf
x>0
{δ12 logF2 + (1− α− δ12) logF0 −(π0 − ω0)dv log x} , (A.23)

u1 = inf
x>0
{π0(1−R) logGo − ω0dv log x} , (A.24)

u2 = inf
x>0
{(1− π0)(1−R) logGe − (α− ω0)dv log x} . (A.25)

The base of all the logarithms is e. Then, Theorem 1 of [39] and the last paragraph on
page 521 of [39] implies the following result:
Lemma A.3.1. ([39, Theorem 1]) Consider the random ensemble of (dv, dc)-regular LDPC codes
with dv > 4 and block length N . Let α0 be the smallest positive root of the function f(α) which is
defined by

f(α) = max
γ12,δ12,π0,ω0

ψ(α, γ12, δ12, π0, ω0), (A.26)

where the maximization is over all values of γ12, δ12, π0, ω0 that satisfy (A.9)-(A.13). Then, for
any ᾱ0 < α0, if N is sufficiently large, then except for almost all codes in this ensemble can correct
at least θᾱ0N errors out of any arbitrary ᾱ0N errors using one iteration of the PBF algorithm.

Proof. Here we briefly summarize the proof in [39]. Denote by p̄e(ᾱ0N) the fraction of
(bad) codes in the (dv, dc)-regular ensemble that cannot correct a linear fraction θᾱ0N of
all combinations of ᾱ0N errors or less using one iteration of the PBF algorithm. Then,
according to (38) in [39], p̄e(α0N) is upper-bounded by

p̄e(ᾱ0N) ≤
∑

αN≤ᾱ0N

C(αN)11/2eNf(α), (A.27)

where the summation is over all integer values of αN ≤ ᾱ0N , and C = (2π)3/2e1/3 d
9/2
v d

3/2
c

β2
.

Therefore, when ᾱ0 is sufficiently small so that f(α) < 0 for all α < ᾱ0, p̄e(ᾱ0N)→ 0 as
N →∞, which means that almost all codes in the (dv, dc)-regular ensemble can correct
θ fraction of all possible combinations of ᾱ0N errors using one iteration of the PBF
algorithm.
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Theorem 1 in [39] was stated for θ = 0 and the original constraint corresponding to
the constraint (A.9) ((1−θ)αN ≤ γ12N+δ12N ) was αN ≤ γ12N+δ12N . In this chapter,we
use the result for θ = constant > 0. This result can be obtained by directly changing
the original constraint αN ≤ γ12N + δ12N in [39] to the new constraint (1 − θ)αN ≤
γ12N + δ12N (this direct change is also stated at the bottom of page 521 in [39] after the
proof of Theorem 1). A refined bound for (A.27) can be obtained using (22)(23)(25) and
(33) in [39], which shows

p̄e(ᾱ0N) ≤
∑

αN≤ᾱ0N

 ∑
γ12N,δ12N,π0(1−R)N,ω0dvN

(2πNdv)
3/2e1/3

√
ω0(α− ω0)(π0 − ω0)eNψ(α,γ12,δ12,π0,ω0)

)
,

(A.28)

where the outer summation is over all integer values of αN ≤ ᾱ0N , and the inner
summation is over all integer values of γ12N, δ12N, π0(1−R)N,ω0dvN that satisfy (A.9)
to (A.13). We will use this refined bound to obtain finite-length result in the following
example.
Example 1. One example of the parameter choice is dv = 9, dc = 18 and θ = 0.15. In
this case, we computed the first positive root of f(α) = 0 using MATLAB and obtained
α = 5.1 · 10−4. This means that using one iteration of the PBF algorithm, we can correct
a fraction θ = 0.15 of 5.1 · 10−4 ·N worst-case errors using a (9, 18) regular LDPC code
when N is sufficiently large. We can also use this result to obtain finite-length bounds
(computing an upper bound on the fraction of bad codes using (A.28)). We obtained
that at least 4.86% of (9, 18) regular LDPC codes of length N = 50, 000 in the random
LDPC ensemble can reduce the number of errors by 15% using one iteration of the PBF
algorithm, when the number of errors is smaller than or equal to 20, which corresponds
to the case when α0 = 0.0004.

The existence of codes that satisfy requirement (A.3) can also be established using
Expander LDPC codes. Here, we review some results on expander LDPCs [233].
Definition: (Expander Graph) An (N,P, dv, γ, α) bipartite expander is a dv-left-regular
bipartite graph G(VL ∪ VR, E) where |VL| = N and |VR| = P . In this bipartite graph, it
holds that ∀S ⊂ VL with |S| ≤ γN , N (S) ≥ αdv|S|, where N (S) denotes the neighbor-
hood of the set S, i.e., the set of nodes in VR connected to S.
An (N,P, dv, γ, α) expander LDPC code is a length-N LDPC code, where the Tanner
graph of the code is the corresponding expander graph with VL corresponding to the
set of variable nodes and VR the parity check nodes. We use dc = dvN/P to denote the
right-degree of the expander code.
Lemma A.3.2. ([233, Thm11]) Using an (N,P, dv, γ,

3
4

+ εe) regular expander LDPC code with
parity check node degree dc = dvN/P , one can use one iteration of noiseless PBF algorithm
to bring the fraction of errors down from α to (1 − 4εe)α provided that the original corrupted
codeword has at most γ(1 + 4εe)/2 fraction of errors.
Example 2. The construction of a good Expander code has been investigated for a long
time. Constructive approaches for Expander codes can be found in [45, 102]. In [40, 82,
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213], it is shown that random regular LDPC codes are expanders with high probability
when the code length N →∞. In [213, Theorem 8.7] it is shown that, suppose γmax is the
positive solution of the equation

dv − 1

dv
h2(γ)− 1

dc
h2(γdc ∗ (3/4 + εe))− γ(3/4 + εe)dch2

(
1

(3/4 + εe)dc

)
= 0, (A.29)

then, for 3/4+εe <
dv−1
dv

and γ ∈ (0, γmax), a random regular (dv, dc) LDPC Tanner graph is
a (dv, dc, γ,

3
4

+εe) expander with probability 1−O(N−β), where β = dv [1− (3/4 + εe)]−1
is a constant greater than 0 when 3/4 + εe <

dv−1
dv

(which means that all sets of left
nodes with cardinality smaller than γN have an expansion factor at least 3

4
+ εe). For

dv = 16, dc = 32, and εe = 0.0375 (which is equivalent to 4εe = 0.15, the same as
θ = 0.15 in Example 1), we use MATLAB to numerically solve the above equation and
obtained γmax ≈ 4.1 ∗ 10−5, which means the fraction of errors α can be as large as
γmax(1 + 4εe)/2 = 2.3575 · 10−5.

A.4 Proof of Theorem 3.5.1

We tune the energy supply such that

max(pand, pxor, pmaj) ≤ λ =
θα0/2

[dc(1−R) + 1] + 2
, (A.30)

is satisfied for the first L− Lvs stages (first phase), which ensures that

pand + [dc(1−R) + 1] pxor + pmaj ≤ θα0/2, (A.31)

is satisfied. We tune the energy supply such that

max(p
(i+1)
and , p(i+1)

xor , p
(i+1)
maj ) ≤ λ(i+1) =

θα0

(
1− 1

2
θ
)i
/4

[dc(1−R) + 1] + 2
, (A.32)

is satisfied for the last Lvs stages (second phase), which ensures that

[dc(1−R) + 1]p(i+1)
xor + p

(i+1)
maj + p

(i+1)
and ≤ 1

4
θα0

(
1− 1

2
θ

)i
, (A.33)

is satisfied (we have mentioned this in (3.33)). Since this version of ENCODED-V
technique with dynamic voltage scaling has the same procedure and constant supply
energy during the first L− Lvs stages (first phase) as the ENCODED-F technique, from
Theorem 3.4.2, we know that after the first (L− Lvs) stages, the output error fraction is
smaller than α0 with probability at least 1 − P blk

e , where P blk
e < 3(L − Lvs) exp (−λ∗N)

and λ∗ is defined in (3.18).
We will prove that, after the i-th stage of the remaining Lvs stages, the error fraction

is upper bounded by
α

(i)
PBF ≤ α0(1− θ/2)i, (A.34)
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with high probability. Thus, after Lvs iterations, we obtain

α
(Lvs)
PBF ≤ α0(1− θ/2)Lvs ≤ ptar, (A.35)

where the last step can be verified by plugging in (3.32).
The case for i = 0 is already true as argued above. Suppose (A.34) holds for some

i ≥ 0, then, we prove (A.34) also holds for the (i+ 1)-th stage of the second phase. Note
that from (A.33), the probability that the number of new errors introduced during the
PBF decoding at the (i+1)-th stage, which is [dc(1−R)+1]α

(i+1)
xor +α

(i+1)
maj +α

(i+1)
and , satisfies

Pr

(
[dc(1−R) + 1]α(i+1)

xor + α
(i+1)
maj + α

(i+1)
and >

1

2
α0θ(1− θ/2)i

)
(a)
< Pr

(
[dc(1−R) + 1]α(i+1)

xor + α
(i+1)
maj + α

(i+1)
and

> [dc(1−R) + 1]p(i+1)
xor + p

(i+1)
maj + p

(i+1)
and +

1

4
α0θ(1− θ/2)i

)
<Pr

(
α

(i+1)
and > p

(i+1)
and + λ(i+1)

)
+ Pr

(
α(i+1)

xor > p(i+1)
xor + λ(i+1)

)
+ Pr

(
α

(i+1)
maj > p

(i+1)
maj + λ(i+1)

) (b)
< 3 exp

(
−λ̃(i+1)N

)
,

(A.36)

where step (a) follows from (A.33), step (c) follows from the large deviation bound
in Lemma A.1.1 and λ̃(i+1) is defined in (3.36). Therefore, with probability at least
1− 3 exp

(
−λ̃(i+1)N

)
,

α
(i+1)
PBF ≤ α

(i)
PBF(1− θ) + [dc(1−R) + 1]α(i+1)

xor + α
(i+1)
maj + α

(i+1)
and

(a)

≤ α0(1− θ/2)i(1− θ) +
1

2
α0θ(1− θ/2)i

= α0(1− θ/2)i+1,

(A.37)

where step (a) can be obtained by combining (A.37) and (A.34). Now that we have
proved (A.34) for the (i+ 1)-th stage, we can carry out the math induction for all i that
satisfies 1 ≤ i ≤ Lvs. If (A.34) holds for all i, the final error fraction is smaller than
ptar. Thus, the overall probability that the final error fraction is greater than ptar is upper
bounded by the summation of 3(L− Lvs) exp (−λ∗N) in the first L− Lvs stages and the
RHS of (A.36) for the last Lvs stages, which is

P blk
e < 3(L− Lvs) exp (−λ∗N) + 3

Lvs∑
i=1

exp
(
−λ̃(i+1)N

)
. (A.38)

Thus, (3.35) is proved.
Finally, we compute the overall energy consumption. The energy consumed in the

i-th stage can be written as

Ei = Nε−1
and

(
p

(i)
and

)
+Nε−1

maj

(
p

(i)
maj

)
+ (N + P )ε−1

xor

(
p(i)

xor

)
. (A.39)
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By summing over all stages both in the first phase and the second phase and normalizing
by the number of outputs K, the total energy consumption per output bit can be written
as in (3.34).

A.5 Proof of Corollary 3.5.2

We choose

pand = pxor = pmaj = λ =
θα0/2

[dc(1−R) + 1] + 2
, (A.40)

in the first L− Lvs stages and

p
(i+1)
and = p(i+1)

xor = p
(i+1)
maj = λ(i+1) =

θα0

(
1− 1

2
θ
)i
/4

[dc(1−R) + 1] + 2
, (A.41)

in the i-th stage of the last Lvs stages (defined in (3.32)).

By plugging in (A.40), (A.41) and Lvs =

⌈
log 2

ptar
+logα0

log 1

1− 1
2 θ

⌉
into the error probability

expression (3.35), we know that the ENCODED-V technique has output error fraction
smaller than α0(1− θ/2)Lvs ≤ 1

2
ptar with probability at least 1− P blk

e , where P blk
e satisfies

P blk
e <3(L− Lvs) exp (−λ∗N) + 3Lvs exp(−λ̃(Lvs+1)N), (A.42)

where λ̃(i+1) = D(2λ(i+1)‖λ(i+1)) = (2 log 2− 1)λ(i+1) +O((λ(i+1))
2
) and λ∗ = D(2λ‖λ) =

(2 log 2− 1)λ + O(λ2). Since λ(Lvs+1) =
θα0(1− 1

2
θ)
Lvs

/4

[dc(1−R)+1]+2
and α0(1− θ/2)Lvs−1 > 1

2
ptar, we

have λ(Lvs+1) >
θptar(1− 1

2
θ)/8

[dc(1−R)+1]+2
. Therefore,

P blk
e < 3L exp(−θ∗N), (A.43)

where θ∗ = min

{
λ∗, D

(
2
θptar(1− 1

2
θ)/4

[dc(1−R)+1]+2

∥∥∥∥ θptar(1− 1
2
θ)/4

[dc(1−R)+1]+2

)}
.

Denote the output error fraction by δfrac
e , which is a random variable supported on

[0, 1]. We know that Pr(δfrac
e > 1

2
ptar) < P blk

e . Thus, the output bit error probability is
upper bounded by

E[δfrac
e ] < Pr(δfrac

e >
1

2
ptar)E

[
δfrac
e |δfrac

e >
1

2
ptar

]
+ Pr(δfrac

e ≤ 1

2
ptar))E

[
δfrac
e |δfrac

e ≤ 1

2
ptar

]
< P blk

e +
1

2
ptar.

(A.44)

When N > 1
θ∗

log
(

6L
ptar

)
, P blk

e < 1
2
ptar, and hence the output bit error probability E[δfrac

e ]

satisfies E[δfrac
e ] < ptar.
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In this corollary, we only examine the case when εand(u) = εxor(u) = εmaj(u) = ε(u)
(either polynomial decay or exponential decay). We also choose the same gate error
probabilities pand = pxor = pmaj = λ and p

(i+1)
and = p

(i+1)
xor = p

(i+1)
maj = λ(i+1) for different types

of unreliable gates (see (A.40) and (A.41)). Therefore, the energy consumption (3.34) is
simplified to

Eper-bit ≤
3N + P

K
(L− Lvs) ε

−1 (λ) +
3N + P

K

Lvs∑
i=1

ε−1
(
λ(i)
)
, (A.45)

where Lvs =

⌈
log 2

ptar
+logα0

log 1

1− 1
2 θ

⌉
.

When the energy-reliability tradeoff function εand(u) = εxor(u) = εmaj(u) = ( 1
u
)c, c > 0,

the total energy consumption per bit

Eper-bit ≤
3N + P

K
λ−

1
c

(L− Lvs) +

(
1− 1

2
θ
)−Lvs

c − 1(
1− 1

2
θ
)− 1

c − 1


≤ 3N + P

K
λ−

1
c

(L− Lvs) +

(
1− 1

2
θ
)− 1

c

(
ptar
2α0

)− 1
c − 1(

1− 1
2
θ
)− 1

c − 1


= Θ

(
N

K
max

{
L,

(
1

ptar

) 1
c

})
.

(A.46)

When the energy-reliability tradeoff function εand(u) = εxor(u) = εmaj(u) = exp(−cu), c >
0, the total energy consumption per bit

Eper-bit =
3N + P

cK

(
L log

1

λ
+

1

2
Lvs (Lvs + 1) log

1

1− 1
2
θ

)
= Θ

(
N

K
max

{
L, log2 1

ptar

})
.

(A.47)

When the energy-reliability tradeoff function εand(u) = εxor(u) = εmaj(u) = exp(−c
√
u), c >

0, the total energy consumption per bit

Eper-bit =
3N + P

K
(L− Lvs)

(
1

c
log

1

λ

)2

+
3N + P

K

Lvs∑
i=1

(
1

c
log

1

λ
+
i− 1

c
log

1

1− 1
2
θ

)2

=
3N + P

K

[
L

(
1

c
log

1

λ

)2

+
2

c
log

1

λ
· 1

c
log

1

1− 1
2
θ

(Lvs − 1)Lvs

2

+
1

c2
log2 1

1− 1
2
θ

1

6
(Lvs − 1)Lvs(2Lvs − 1)

]
= Θ

(
N

K
max

{
L, log3 1

ptar

})
.

(A.48)
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Appendix B

Theoretical proofs for Chapter 4

B.1 Proofs for Section 4.3

B.1.1 Proof of Theorem 4.3.1

We first examine the change of distortion on an arbitrary link vb → va as shown in Fig. 4.1.
Then, we prove this theorem by summing up all distortion on all links. By definition, we
have

ŷmmse
S,b = E [yS |Ib] , (B.1)

where Ib denotes all available information at the node vb. Similarly, we have

ŷmmse
S,a = E [yS |Ia] . (B.2)

However, since the only information available at va to estimate yS is Mb→a, because the
data xi’s are uncorrelated, we have that

ŷmmse
S,a = E [yS |Mb→a] . (B.3)

It is certain that Mb→a, the message bits transmitted from node vb to node va, must be
a function of all the available information in vb. This means that σ (Mb→a) ⊂ σ (Ib), where
σ(·) denotes the σ-algebra generated by the argument and σ (Ib) denotes all the available
information including the observations of all random variables at node vb. Since ŷmmse

S,b ,
the conditional expectation estimate of yS given all the available information in vb, is the
projection of yS onto σ (Ib) and ŷmmse

S,a is the projection of yS onto σ (Mb→a) ⊂ σ (Ib), we
have that ŷmmse

S,b − ŷmmse
S,a is σ (Ib)-measurable. Therefore, using the orthogonality principle

(Lemma 1), we can show that(
ŷmmse
S,b − ŷmmse

S,a
)
⊥
(
ŷmmse
S,b − yS

)
, (B.4)

where the LHS is σ (Ib)-measurable, and the RHS is the projection error of the conditional
expectation estimate ŷmmse

S,b (Lemma 1 basically says that the projection error E[X|G]−X
between the original vector X and the projection (conditional expectation) E[X|G] is
uncorrelated of the sigma-algebra G, i.e., all G-measurable random variables). Therefore,

205



using Pythagoras theorem and the observation that E[ŷmmse
S,b ] = E[ŷmmse

S,a ] = E[yS ] = 0N ,
we get

DRx
b = DTx

b +DInc
b , (B.5)

where, recall that DTx
b = 1

N
E
[∥∥yS − ŷmmse

S,b
∥∥2

2

]
, DRx

b = 1
N
E
[∥∥yS − ŷmmse

S,a
∥∥2

2

]
, and DInc

b =

1
N
E
[∥∥ŷmmse

S,b − ŷmmse
S,a

∥∥2

2

]
. Since the link vb → va is arbitrarily chosen, equation (B.5) can

be generalized to all nodes, and hence (4.11) is proved.

Now, we show that the distortion DTx
b can be written as the sum of the distortions

from the children of vb. Without loss of generality, suppose the node vb has d children
v1, v2, . . . vd, as shown in Fig. 4.1. By definition, we have

yS =
d∑

k=1

ySk + wbxb. (B.6)

By the definition of MMSE estimator, we have that

ŷmmse
S,b = E [yS |Ib] = E

[
d∑

k=1

ySk + wbxb|Ib

]
=

d∑
k=1

ŷmmse
Sk,b + wbxb. (B.7)

Therefore, we have

DTx
b =

1

N
E
[∥∥yS − ŷmmse

S,b
∥∥2

2

]
(a)
=

1

N

d∑
k=1

E
[∥∥ySk − ŷmmse

Sk,b
∥∥2

2

]
=

d∑
k=1

DRx
k , (B.8)

where (a) holds because different estimates ŷmmse
Sk,b on different links vk → vb are indepen-

dent of each other.

Combining (B.8) with (B.5), we have that

DTx
b =

d∑
k=1

(
DTx
k +DInc

k

)
. (B.9)

Using (B.9), we can prove (4.12) using induction in the tree (see Remark 5). Equation
(4.13) is obtained by carrying out the induction in the tree until the sink node v0.
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B.1.2 Proof of Theorem 4.3.2

We still consider the specific set S as shown in Fig. 4.1. On the link vb → va, we have that

NRb→a
(a)

≥H(Mb→a)

≥ I(Mb→a; ŷ
mmse
S,b )

(b)
= I(Mb→a, ŷ

mmse
S,a ; ŷmmse

S,b )

(c)
= I(ŷmmse

S,a ; ŷmmse
S,b ) + I(Mb→a; ŷ

mmse
S,b |ŷmmse

S,a )

≥ I(ŷmmse
S,a ; ŷmmse

S,b )

= h(ŷmmse
S,b )− h(ŷmmse

S,b |ŷmmse
S,a )

= h(ŷmmse
S,b )− h(ŷmmse

S,b − ŷmmse
S,a |ŷmmse

S,a )

≥ h(ŷmmse
S,b )− h(ŷmmse

S,b − ŷmmse
S,a )

(d)

≥ h(ŷmmse
S,b )− N

2
log22πeDInc

b ,

(B.10)

where
(a) holds because Mb→a is a binary information sequence;

(b) holds because ŷmmse
S,a is a function of Mb→a;

(c) follows from the chain rule for mutual information;

(d) holds because the entropy-maximizing distribution under variance constraint is
Gaussian.

Now we only need to lower-bound h(ŷmmse
S,b ). We know that

ŷmmse
S,b = ŷmmse

S\{b},b + wbxb (B.11)

yS = yS\{b} + wbxb. (B.12)

Suppose ŷmmse
S,b ∼ r

(
xN
)

and yS ∼ s
(
xN
)
. Observe that (B.11) and (B.12) are in the form

of the random variables in Lemma 4.1.2 with t = w2
b and z = xb ∼ N (0N , IN). Then,

using Lemma 4.1.2, we have that

D (r||s) ≤ 1

2w2
b

E
[∥∥∥yS\{b} − ŷmmse

S\{b},b

∥∥∥2

2

]
=

1

2w2
b

E
[∥∥yS − ŷmmse

S,b
∥∥2

2

]
=
NDTx

b

2w2
b

. (B.13)

By definition, we have that

yS ∼ s
(
xN
)

=
1(√

2πσS
)N exp

(
−
∥∥xN∥∥2

2

2σ2
S

)
. (B.14)

Therefore,

h(yS) =
N

2
log22πeσ2

S . (B.15)
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The difference between h(ŷmmse
S,b ) and h(yS) is

h(ŷmmse
S,b )− h(yS) = −

∫
xN∈RN

r log rdxN +

∫
xN∈RN

s log sdxN

= −
∫
xN∈RN

r log
r

s
dxN +

∫
xN∈RN

(s− r) log sdxN

(a)
= −D (r||s) + log2e

∫
xN∈RN

(s− r)

(
−
∥∥xN∥∥2

2

2σ2
S

)
dxN

= −D (r||s) +
log2e

2σ2
S
E
[∥∥ŷmmse

S,b
∥∥2

2
− ‖yS‖2

2

]
,

(B.16)

where we used (B.14) in step (a). The second term of the RHS can be bounded by∣∣∣E [∥∥ŷmmse
S,b

∥∥2

2
− ‖yS‖2

2

]∣∣∣ =
∣∣∣E [(ŷmmse

S,b − yS
)> (

ŷmmse
S,b + yS

)]∣∣∣
≤
√

E
[∥∥ŷmmse

S,b − yS
∥∥2

2

]
E
[∥∥ŷmmse

S,b + yS
∥∥2

2

]
=

√
NDTx

b E
[∥∥ŷmmse

S,b − yS + 2yS
∥∥2

2

]
≤
√
NDTx

b · 2
{
E
[
4 ‖yS‖2

2

]
+ E

[∥∥ŷmmse
S,b − yS

∥∥2

2

]}
=
√

2NDTx
b

(
4Nσ2

S +NDTx
b

)
.

(B.17)

Therefore, combining (B.13) and (B.15)-(B.17), we get

h(ŷmmse
S,b ) ≥ h(yS)− NDTx

b

2w2
b

− N log2e

2σ2
S

√
2DTx

b

(
4σ2
S +DTx

b

)
=
N

2
log22πeσ2

S −
NDTx

b

2w2
b

− N log2e

2σ2
S

√
2DTx

b

(
4σ2
S +DTx

b

)
.

(B.18)

Plugging the above inequality into (B.10), we get

Rb→a ≥
1

2
log2

σ2
S

DInc
b

− DTx
b

2w2
b

− log2e

2σ2
S

√
2DTx

b

(
4σ2
S +DTx

b

)
=

1

2
log2

σ2
S

DInc
b

−O
(
(DTx

b )1/2
)
,

(B.19)

in the limit of small DTx
b . Summing (B.19) over all links, we get

n∑
i=1

Ri→PN(i) ≥
1

2

n∑
i=1

[
log2

σ2
Si

DInc
i

− DTx
i

2w2
i

− log2e

2σ2
Si

√
2DTx

i

(
4σ2
Si +DTx

i

)]
.

=
1

2

n∑
i=1

[
log2

σ2
Si

DRx
i −DTx

i

−O
(
(DTx

i )1/2
)]
,

(B.20)
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in the limit of small DTx
i ,∀i. The last equality in (B.20) can be obtained using DRx

i =
DTx
i + DInc

i (see the distortion accumulation equation (4.11)). The optimization bound
shown in (4.15) is basically the same bound (B.20) stated in an optimization form over
the choices of the incremental distortions DInc

i . Now, we prove that the solution of the
optimization satisfies (4.17), which finally leads to the order-sense bound (4.18). When
the constraints in (4.15) are satisfied,

R ≥ 1

2

n∑
i=1

[
log2

σ2
Si

DInc
i

− ψi
(
DTx
i

)]

(a)

≥ 1

2
log2

n∏
i=1

σ2
Si

n∏
i=1

DInc
i

− 1

2

n∑
i=1

ψi (D
mmse
0 )

(b)

≥1

2
log2

n∏
i=1

σ2
Si

(Dmmse
0 /n)n

− 1

2

n∑
i=1

ψi (D
mmse
0 )

(c)

≥1

2
log2

n∏
i=1

σ2
Si

(D/n)n
− 1

2

n∑
i=1

ψi (D) ,

(B.21)

where (a) holds because DTx
i < Dmmse

0 (which can be easily seen by comparing (4.12) and
(4.13)) and the functions ψi(·), i = 1, . . . n are monotone, (b) follows from the constraint
Dmmse

0 =
∑n

i=1D
Inc
i in (4.13) and the fact that the arithmetic mean is greater or equal to

the geometric mean, and (c) follows from the inequality Dmmse
0 ≤ D in (4.10). Further,

using the fact that ψi(D) = D
2w2

i
+ log2e

2σ2
Si

√
2D
(
4σ2
Si +D

)
= O(

√
D), we obtain the lower

bound (4.18).

B.1.3 Proof of Theorem 4.3.3

We still look at a specific set S as shown in Fig. 4.1. Then, we have

NRb→a ≥ H(Mb→a)

≥ I(Mb→a; yS)

= h(yS)− h(yS |Mb→a)

= h(yS)− h(yS |Mb→a, ŷ
mmse
S,a )

= h(yS)− h(yS − ŷmmse
S,a |ŷmmse

S,a ,Mb→a)

≥ h(yS)− h(yS − ŷmmse
S,a )

≥ N

2
log22πeσ2

S −
N

2
log22πeDRx

b =
N

2
log2

σ2
S

DRx
b

.

(B.22)

Summing (B.22) over all links, we get the outer bound (4.19).
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B.2 Proofs for Section 4.4

B.2.1 A review on Gaussian test channels

First, we elaborate on the details of Gaussian test channels. Suppose a transmitter has a
source X ∼ N (0, P ) and wishes to send an approximate description X̂ to a receiver with
distortion D. Then

R(D) = min
p(x̂|x):E[(X−X̂)2]≤D

I(X; X̂) =
1

2
log

P

D
,∀P ≥ D. (B.23)

The “test channel” in this case is the inverse Gaussian channel

X = X̂ + Z, (B.24)

where Z ∼ N (0, D) is an additive noise independent of X̂ (see [59, Theorem 10.3.2]).
The test channel is useful for understanding orthogonality properties of codewords in
random codebooks. To achieve the rate in (B.23), we can use a random code {ĉ(w) :
w ∈ {1, 2, . . . 2NR}}with joint typicality encoding and decoding, where each codeword
ĉ(w) is generated i.i.d. with each entry distributed as N (0, P −D). When N →∞, the
rate (B.23) is asymptotically achieved.

B.2.2 Proof of (4.38)

We use induction in the tree (see Remark 5) to prove (4.38). For an arbitrary leaf vl, we
know that σ̂2

l = σ2
Sl = w2

l . For an arbitrary non-leaf node vb, we have that (see (4.32))

σ̂2
b =

d∑
k=1

(σ̂2
k − db) + w2

b . (B.25)

By definition, we have

yS =
d∑

k=1

ySk + wbxb, (B.26)

which means

σ2
Sb =

d∑
k=1

σ2
Sk + wbw

2
b , (B.27)

Comparing (B.25) and (B.27), we know that, if (4.38) holds at all children of vb, it also
holds at vb. Thus, by induction in the tree, we can show that (4.38) is true.

B.2.3 Proof of Lemma 4.4.5

To simplify notation, for an arbitrary node vb and its parent node va = vPN(b) define

ŝ∗b = ŷmmse
Sb,b , (B.28)

r̂∗b = ŷmmse
Sb,PN(b). (B.29)
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Therefore, ŝ∗b is the MMSE estimate of the partial sum ySb at the node vb, while r̂∗b is the
MMSE estimate of the same variable, but at the parent-node vPN(b). In order to relate the
Gaussian-code-based distortion and the MMSE-based distortion, we will prove that, the
estimates based on the Gaussian code, i.e., the estimate ŝb and the description r̂b, are very
close to the MMSE estimates ŝ∗b and r̂∗b in the sense of mean-square error1. We prove that
as long as N is finite but sufficiently large, the gap between these two types of estimators
can be arbitrarily small. Define

∆Tx
b = E

[
1

N
‖ŝb − ŝ∗b‖

2
2

]
, (B.30)

∆Rx
b = E

[
1

N
‖r̂b − r̂∗b‖

2
2

]
. (B.31)

We will prove that ∆Tx
b → 0 and ∆Rx

b → 0 when N →∞. In particular, we will prove the
following three statements:

Statement 1: For an arbitrary leaf vl,

∆Tx
l = 0. (B.32)

Statement 2: For an arbitrary non-leaf node vb and its d children v1, . . . vd (see Fig. 4.1),

√
∆Tx
b ≤

d∑
k=1

√
∆Rx
k . (B.33)

Statement 3: For an arbitrary node vb,√
∆Rx
b ≤

√
θN +

√
∆Tx
b , (B.34)

where limN→∞ θN = 0.

Proof of Statement 1

For a leaf vl, the random-coding-based estimate is ŝl = wlxl, which is exactly the same as
the MMSE estimate ŝ∗l , since xl is known to vl. Therefore, ∆Tx

l = 0.

Proof of Statement 2

For a non-leaf node vb and its children, we have that (see (4.40))

ŝb =
d∑

k=1

ck(Mk→b) + wbxb =
d∑

k=1

r̂b + wbxb. (B.35)

1Note that according to the intuitive explanation on test channels (see Remark 7), the estimates based on
the Gaussian code and the MMSE estimations are indeed equal to each other when Gaussian test channels
can be physically established.
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Since the partial sum ySb =
d∑

k=1

ySk + wbxb, we have that

ŝ∗b =E [ySb |Ib ] =
d∑

k=1

E [ySk |Ib ] + wbxb =
d∑

k=1

r̂∗k + wbxb. (B.36)

Thus, combining (B.35) and (B.36), we get

∆Tx
b =

[
‖ŝb − ŝ∗b‖

2
2

]
=

d∑
k=1

E
[
‖r̂k − r̂∗k‖

2
2

]
=

d∑
k=1

∆Rx
k , (B.37)

which can be further relaxed by

√
∆Tx
b <

d∑
k=1

√
∆Rx
k . (B.38)

Proof of Statement 3

Note that by (4.45), we have

E
[

1

N
‖ŝb − r̂b‖2

2

]
≤ db + εN . (B.39)

Define Distb = ECb
[

1
N
‖ECb [̂sb |̂rb ]− ŝb‖2

2

]
. We will prove that Distb is approximately

greater than db (the explicit form is in (B.41)), which means that even the MMSE estimate
ECb [̂sb |̂rb ] cannot provide a much better description (in the sense of mean-square error)
of ŝb than the typicality-based estimate r̂b. Notice that the MMSE estimate ECb [̂sb|̂rb] here
should be defined for the chosen codebook Cb at vb, since the receiver va also knows
the codebook. The outer E in Distb = ECb

[
1
N
‖ECb [̂sb |̂rb ]− ŝb‖2

2

]
is also conditioned on a

given codebook Cb at node vb. From (4.37) we have that

N

2
log

σ̂2
b

db
+NδN =NRb

(a)

≥I(ŝb; r̂b)

(b)

≥I (ŝb;ECb [̂sb |̂rb ])
=h(ŝb)− h (ŝb|ECb [̂sb |̂rb ])
=h(ŝb)− h (ŝb − ECb [̂sb |̂rb ] |ECb [̂sb |̂rb ])
≥h(ŝb)− h (ŝb − ECb [̂sb |̂rb ])
(c)
>
N

2
log2 2πeσ̂2

b −NβN −
N

2
log2 2πeDistb,

(B.40)
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where (a) follows from the cut set bound, (b) follows from the data processing inequality,
and (c) follows from Lemma 4.4.4. Notice that although the codebook Cb is fixed, other
codebooks are not fixed, so the random vector h(ŝb) still satisfies Lemma 4.4.4. Therefore,

Distb > 2−δN−βNdb = (1− εN)db, (B.41)

where limN→∞ εN = 0. Since the inequality (B.41) holds for any given codebook Cb, (B.41)
also holds for the entire random codebook ensemble, in which case the outside E is again
taken over the random codebook generation (which is in alignment with the definitions
of other mean-square distortions in other parts of this section and all other sections).
Combining (B.39) and (B.41) and the orthogonality principle

(E [̂sb |̂rb ]− ŝb)⊥ (r̂b − E [̂sb |̂rb ]) ,

we get

E
[

1

N
‖E [̂sb |̂rb ]− r̂b‖2

2

]
≤db + εN − (1− εN)db = εN + εNdb =: θN , (B.42)

where limN→∞ θN = 0. Further, we have that

r̂∗b = E
[
ySb
∣∣IPN(b)

]
= E [ySb |̂rb ]

(a)
= E [E [ySb|Ib] |̂rb ] = E [̂s∗b |̂rb ] , (B.43)

where the equality (a) follows from the iterative expectation principle and the fact that r̂b
is a function of Ib. Therefore

E
[
‖E [̂sb |̂rb ]− r̂∗b‖

2
2

]
= E

[
‖E [̂sb − ŝ∗b |̂rb ]‖

2
2

]
(a)

≤ E
[
E
[
‖ŝb − ŝ∗b‖

2
2 |̂rb

]]
= E

[
‖ŝb − ŝ∗b‖

2
2

]
= N∆Tx

b ,
(B.44)

where inequality (a) follows from the Jensen’s inequality. Thus, combining (B.42) and
(B.44) and using the triangle inequality, we get

√
∆Rx
b =

√
E
[

1

N
‖r̂∗b − r̂b‖2

2

]

≤

√
E
[

1

N
‖r̂∗b − E [̂sb |̂rb ]‖2

2

]
+

√
E
[

1

N
‖r̂b − E [̂sb |̂rb ]‖2

2

]
≤
√
θN +

√
∆Tx
b .

(B.45)

Using Statement 1-3 to prove Lemma 4.4.5

Using the three statements and using induction on the tree, we have that

sup
1≤b≤n

√
∆Tx
b ≤ sup

1≤b≤n

√
∆Rx
b ≤ n

√
θN . (B.46)
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Thus, the conclusion (4.48) can be obtained by combining the orthogonality principle

E
[

1

N
‖r̂∗b − ŝ∗b‖

2
2

]
=E

[
1

N
‖r̂∗b − ySb‖

2
2

]
− E

[
1

N
‖ŝ∗b − ySb‖

2
2

]
= DRx

b −DTx
b (B.47)

and the triangle inequality, which is√
E
[

1

N
‖r̂∗b − ŝ∗b‖

2
2

]
≤

√
E
[

1

N
‖ŝb − ŝ∗b‖

2
2

]
+

√
E
[

1

N
‖r̂b − r̂∗b‖

2
2

]
+

√
E
[

1

N
‖r̂b − ŝb‖2

2

]
≤
√
db + εN + 2n

√
θN ,

(B.48)

and√
E
[

1

N
‖r̂∗b − ŝ∗b‖

2
2

]
≥

√
E
[

1

N
‖ŝb − ŝ∗b‖

2
2

]
−

√
E
[

1

N
‖r̂b − r̂∗b‖

2
2

]
−

√
E
[

1

N
‖r̂b − ŝb‖2

2

]
≥
√
db − εN − 2n

√
θN .

(B.49)

B.3 Proofs for Section 4.5

B.3.1 Proof of Theorem 4.5.1

We consider a general case in Fig. 4.1, where the set S represents Sb→a. Using exactly the
same arguments from (B.1) to (B.4), we obtain(

ŷmmse
Sb→a,b − ŷmmse

Sb→a,a
)
⊥
(
ŷmmse
Sb→a,b − ySb→a

)
. (B.50)

Therefore, using Pythagoras theorem, we get

DRx
i→j = DTx

i→j +DInc
i→j. (B.51)

From the definition of an MMSE estimate, we have that

ŷmmse
Sb→a,b =E [ySb→a|Ib] = E

[
d∑

k=1

ySk→b + wbxb |Ib

]
=

d∑
k=1

ŷmmse
Sk→b,b + wbxb. (B.52)

Therefore

DTx
b→a =E

[(
yS − ŷmmse

Sb→a,b
)2
]

=
d∑

k=1

E
[(

ySk→b,b − ŷmmse
Sk→b,b

)2
]

=
d∑

k=1

DRx
k→b +DInc

k→b. (B.53)

Using induction on the edge set
−→
T k of the directed tree towards the root vk, we get (4.64).
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B.3.2 Proof of Theorem 4.5.2

The main part is to show that in Fig. 4.1

Rb→a ≥
1

2
log2

σ2
Sb→a
DInc
b→a
−O

(
(DTx

b→a)
1/2
)
, (B.54)

which is a counterpart of (B.19). As long as (B.54) holds, the outer bound in Theorem 4.5.2
can be obtained by summing (B.54) over all links.

The proof of (B.54) can be obtained similarly as in the proof of (B.19). We know that
the set S in Fig. 4.1 represents Sb→a ⊂ V . Then, using the same derivations in (B.10), we
get

NRb→a ≥ h(ŷmmse
Sb→a,b)−

N

2
log22πeDInc

b→a. (B.55)

Using Lemma 4.1.2 and the same derivations in (B.16) and (B.17), we get

h(ŷmmse
Sb→a,b)− h(ySb→a) = −D (p||q) +

log2e

2σ2
Sb→a

E
[∥∥ŷmmse

Sb→a,b
∥∥2

2
− ‖ySb→a‖

2
2

]
≥ −ND

Tx
b→a

2w2
b

− N log2e

2σ2
Sb→a

√
2DTx

b→a
(
4σ2
Sb→a +DTx

b→a
)
,

(B.56)

where p(·) and q(·) are the pdfs of ŷmmse
Sb→a,b and ySb→a respectively. Combining (B.55), (B.56)

and the fact that h(yS) = 1
2
log22πeσ2

S , we get

Rb→a ≥
1

2
log2

σ2
Sb→a
DInc
b→a
− DTx

b→a
2w2

b

− log2e

2σ2
Sb→a

√
2DTx

b→a
(
4σ2
Sb→a +DTx

b→a
)

=
1

2
log2

σ2
Sb→a
DInc
b→a
−O

(
(DTx

b→a)
1/2
)
.

(B.57)

This completes the proof.

B.3.3 Proof of Theorem 4.5.3

In this proof, we provide an achievable scheme for the Gaussian network consensus prob-
lem. We basically generalize the scheme for linear function computation in Section 4.4 to
the network consensus problem. Therefore, we will first use Gaussian test channels to
define some distribution functions that we will use in this section. Then, we will provide
the encoding and decoding procedures for the Gaussian random codes. Finally, we will
prove that this scheme achieves the sum rate inner bound (4.67).

Recall that at each node vi, ySi→j denotes the partial weighted sum of all data at all
descendants of vi when the node vj is viewed as the parent node of vi. Denote by ŝi→j the
estimate of the partial sum ySi→j . Denote by r̂i→j the description of ŝi→j that is sent by
vi to vj . The formal definition of the estimates and descriptions will be provided in the
encoding and decoding procedures. Following the same procedures in Section 4.4, we
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first define some distribution functions using Gaussian test channels. These distribution
functions will be defined such that the estimates ŝi→j and descriptions r̂i→j are typical
with respect to them.

At each link vi → vj , we define two scalar random variables UTC
i→j and V TC

i→j . Define
σ̂2
i→j as the variance of UTC

i→j . When UTC
i→j is given, V TC

i→j is defined by the Gaussian test
channel

UTC
i→j = V TC

i→j + Zi→j, (B.58)

where Zi→j ∼ N (0, di→j) is independent of V TC
i→j and di→j is the distortion parameter,

which can be tuned.
For any arbitrary leaf vl, define

UTC
l→n(l) = wlXl, (B.59)

where Xl denotes a random variable that has the same distribution as each entry of xl,
and vn(l) denotes the only neighbor of the node vl. For an arbitrary non-leaf node vb and
an arbitrary neighbor va ∈ N (vb) as shown in Fig. 4.1, define

UTC
b→a =

∑
vk∈N (vb)\{va}

V TC
k→b + wbXb, (B.60)

where Xb denotes a random variable that has the same distribution as each entry of
xb. Since the network is a tree, all descriptions V TC

k→b at different neighbors vk of vb are
independent of each other. Therefore,

σ̂2
b→a =

d∑
k=1

(σ̂2
k→b − dk→b) + w2

b . (B.61)

Define φUTC
i→j

and φV TC
i→j

as distribution functions of UTC
i→j and V TC

i→j . We also use joint pdfs,
where the meanings are always clear from the context. Note that Gaussian test channels
and the calculations in (B.59) and (B.60) are all linear. Therefore, all pdfs φUTC

i→j
and φV TC

i→j

are Gaussian. Moreover, the pdfs φUTC
i→j

and φV TC
i→j

are tunable by changing the normalized
distortions di→j .
Remark 29. The random variableUTC

i→j can be viewed intuitively as the estimate at the node
vi of the partial weighted sum ySi→j when test-channels can be physically established,
while V TC

i→j can be viewed as the description of UTC
i→j .

Before the computation starts, each node vi generates d(vi) random codebooks Ci→j =
{ci→j(w) : w ∈ {0, 1, . . . 2NRi→j}}, ∀j s.t. vj ∈ N (vi), where each codeword is generated
i.i.d. according to distribution φV TC

i→j
. The rate is chosen such that

Ri→j = I(UTC
i→j;V

TC
i→j) + δN =

1

2
log

σ̂2
i→j

di→j
+ δN , (B.62)

where UTC
i→j and V TC

i→j are respectively the ‘estimate’ scalar random variable and the
‘description’ scalar random variable, and lim

N→∞
δN = 0. Thus, the formula of the sum rate

R in (4.61) can be proved by summing up the rates on all links in the network.
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The codebook Ci→j is revealed to the node vj . During the computation, as shown
in Fig 4.1, each node vb, upon receiving description indexes M1b,M2b, . . .Mdb from the d
neighbors v1, . . . vd except the neighbor va, decodes these descriptions, computes the sum
of them and the data vector generated at vb

ŝb→a =
d∑

k=1

ck→b(Mk→b) + wbxb, (B.63)

and re-encodes ŝb→a into a new description index Mb→a ∈ {1, 2, . . . 2NRb→a} and sends
the description index to the neighbor va with NRb→a bits. We denote the reconstructed
description by r̂b→a = cb→a(Mb→a). The decoding and encoding at the node vb are defined
as follows.
• Decoding: In each codebook Ck→b,∀k s.t. vk ∈ N (vb), use the codeword ck→b(Mk→b)

as the description r̂k→b. If vb has obtained all descriptions from all neighbors, it
computes the sum of all descriptions and its own data as the estimate of y:

ŷb =
∑

vk∈N (vb)

r̂k→b + wbxb. (B.64)

• Encoding: For each neighbor va ∈ N (vb), find the codeword cb→a(Mb→a) ∈ Cb→a \

{cb→a(0)} such that the two sequences ŝb→a =
d∑

k=1

ck→b(Mk→b) + wbxb and r̂b→a =

cb→a(Mb→a) are jointly typical with respect to the distribution φUTC
b→a,V

TC
b→a

. If there
are more than one codewords that satisfy this condition, arbitrarily choose one of
them. However, if ŝb→a is not typical with respect to the distribution φUTC

b→a
, or if

there is no codeword in Cb→a \ {cb→a(0)} that satisfies the joint typicality condition,
send description index Mb→a = 0.

Similar to the linear function computation case, the encoding step for network consensus

may fail, because the estimate ŝb→a =
d∑

k=1

ck→b(Mk→b)+wbxb may not be a typical sequence

respect to pdf φUTC
b→a

, or there may not exist codewords in Cb→a that satisfy the typicality
requirement. In this case, the description index Mb→a = 0 is sent and this description is
decoded to a predetermined random sequence cb→a(0) on the receiver side.
Lemma B.3.1 (Covering Lemma for Network Consensus). Denote by Ei→j = 1 the event
that the encoding of the estimate ŝi→j at the node vi is not successful. Then

lim
N→∞

sup
(i,j)∈E

Pr(Ei→j = 1) = 0, (B.65)

where E denotes all links in the tree network G = (V .E) ((i, j) and (j, i) are viewed as two links
in the undirected graph G), and the probability is taken over random data sampling and random
codebook generation.

Proof. The proof of this lemma is almost the same as the proof for linear function com-
puting case (see Appendix C-C in [279]). This is because the distributed computation
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algorithm used in this section can be viewed as a group of n = |V| linear function compu-
tations in n different directed trees ~Tk, 1 ≤ k ≤ n towards n different roots (see definition
of ~Tk below equation (4.63)). Therefore, we can use the conditional typicality lemma and
mathematical induction on each directed tree to obtain the conclusion.

Remark 30. The proofs for network consensus are also based on the induction on the tree
(see Remark 5), except that we may often want to prove that some property P holds at all
links vb → va in the tree network. Firstly, we prove that P holds for all links vl → vn(l),
where vl is a leaf and vn(l) is the only neighbor of vl. Secondly, we prove that, for an
arbitrary node vb with d+ 1 neighbors, denoted by v1, v2, . . . vd and a special neighbor va,
if P holds for all links v1 → vb, v2 → vb, . . . vd → vb, then the property holds for the link
vb → va. It is obvious that these two arguments lead to the conclusion that P holds for all
links in the tree network.

Lemma B.3.1 states that the estimate ŝb→a and the description r̂b→a are jointly typical
with high probability for all links vb → va in the tree network. The following Lemma B.3.2
and Lemma B.3.3 are counterparts of Lemma 4.4.3 and Lemma 4.4.4 in the linear function
computation problem.
Lemma B.3.2. For an arbitrary link vb → va, the description r̂b→a = cb→a(Mba) and the estimate
ŝb→a satisfy ∣∣∣∣E [ 1

N
‖ŝb→a‖2

2

]
− σ̂2

b→a

∣∣∣∣ < εN , (B.66)∣∣∣∣E [ 1

N
‖r̂b→a‖2

2

]
− (σ̂2

b→a − db→a)
∣∣∣∣ < εN , (B.67)∣∣∣∣E [ 1

N
‖r̂b→a − ŝb→a‖2

2

]
− db→a

∣∣∣∣ < εN , (B.68)

where limN→∞ εN = 0.

Proof. Similar with the proof of Lemma B.3.1, the proof of this lemma can be derived
similarly as the proof for the linear function computation case (see Appendix C-D
in [279]), because the proof for the linear function computation case is mathematical
induction in the tree network, while the network consensus computation scheme in this
section can be viewed as a group of linear function computations on n different directed
trees.

Lemma B.3.3. For an arbitrary link vb → va, the description r̂b→a = cb→a(Mba) and the estimate
ŝb→a satisfy

h(ŝb→a) >
N

2
log2 2πeσ̂2

b→a −NβN , (B.69)

h(r̂b→a) >
N

2
log2 2πe(σ̂2

b→a − db→a)−NβN , (B.70)

where limN→∞ βN = 0.

Proof. One can use the same argument as the one used in the proof of Lemma B.3.2.
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The following lemma characterizes the relationship between the Gaussian-code-
based distortion di→j (normalized distortion) and the MMSE-based distortion DTx

i→j for
the Gaussian code.
Lemma B.3.4. For an arbitrary link vi → vj√

di→j − εN − ηN ≤
√
DRx
i→j −DTx

i→j ≤
√
di→j + εN + ηN , (B.71)

where lim
N→∞

ηN = 0 and εN is the same as in (B.68).

Proof. The proof of this lemma essentially follows the same procedures with the ones in
the proof for linear function computation in the Appendix B.2.3. We only provide the
sketch of the proof. First, define

ŝ∗i→j = ŷmmse
Si→j ,i, (B.72)

r̂∗i→j = ŷmmse
Si→j ,j. (B.73)

Therefore, ŝ∗i→j is the MMSE estimate of the partial weighted sum ySi→j at node vi, while
r̂∗i→j is the MMSE estimate of the same weighted sum at node vj . Define

∆Tx
i→j = E

[
1

N

∥∥ŝi→j − ŝ∗i→j
∥∥2

2

]
, (B.74)

∆Rx
i→j = E

[
1

N

∥∥r̂i→j − r̂∗i→j
∥∥2

2

]
. (B.75)

We will prove that ∆Tx
i→j → 0 and ∆Rx

i→j → 0 when N →∞.
Using the same derivations with equation (B.35) to (B.37), we get

∆Tx
b→a =

d∑
k=1

∆Rx
k→b, (B.76)

for an arbitrary link vb → va and the neighborhood structure N (vb) = {v1, . . . vd} ∪ {va}
(see Figure 4.1). Using the same derivations with equation (B.39) to (B.45), we get√

∆Rx
b→a ≤

√
θN +

√
∆Tx
b→a, (B.77)

for an arbitrary link vb → va and the constant limN→∞ θN = 0. Using induction on n
different directed tree networks, we get

sup
(i,j)∈E

√
∆Tx
i→j ≤ sup

(i,j)∈E

√
∆Rx
i→j ≤ n

√
θN . (B.78)

Using the triangle inequality, we get√
E
[

1

N

∥∥r̂∗i→j − ŝ∗i→j
∥∥2

2

]
≤
√
di→j + εN + 2n

√
θN , (B.79)
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and √
E
[

1

N

∥∥r̂∗i→j − ŝ∗i→j
∥∥2

2

]
≥
√
di→j − εN − 2n

√
θN , (B.80)

which conclude the proof.

Using the same procedures from (4.50) to (4.55), one can prove that the overall
distortion at one node, averaged over the random code ensemble satisfies

DTotal
i ≤

∑
(i,j)∈

−→
T k

di→j + εN . (B.81)

Summing the above equations over all directed trees in the network, we have that (4.68)
holds for the overall distortion averaged over the random code ensemble. Therefore, we
can at least find one code for which (4.68) holds.
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Appendix C

Theoretical proofs for Chapter 5

C.1 Proof of Theorem 5.3.1

Recall that we call the sub-blocks on the same row block (in Figure 5.1) of the P different
blocks of data a group, and we use Xcoded

k,j to represent the coded sub-block of data that is
at the k-th machine and belongs to the j-th group. Let Xj be the collections of original
data that belongs to the j-th group. For example, in Figure 5.1(b), X6 represents the
collection of original data

[
f1, f2, f3

]>. Then, from the cyclic way of using data, we can
see that when each machine uses L sub-blocks, the overall number of used sub-blocks in
each group is L. From Lemma 2.2.4, the results ut,k,j = Xcoded

k,j wt for all the workers that
use the coded data in the j-th group can be collected together to decode Xjwt. The other
claim can be seen from the figure, i.e., the area of the used data is always equal to the
area of the original data, and the area of the used data is the same across all remaining
machines. We prove this claim as follows. The size of the data in each of the L subsets
is N/L. Thus, the used data at each machine is the same number N

L
L

P−M = N/(P −M).
There are P −M machines left, so the overall size of the used data is N

P−M · (P −M) = N ,
which is the same as the original data.

C.2 Proof of Theorem 5.3.2

Now, we prove statement (a). Suppose an arbitrary set of P − L machines fail. Since the
algorithm is tolerant to any P −L failures, the master node can still recover exactly all the
results Xw, no matter what w is. Therefore, we can choose w to be the elements of natural
basis w = ei, i = 1, 2, . . . , d, and collect all the results [Xe1,Xe2, . . . ,Xed] = XId = X.
Since data processing can only reduce entropy (from the data processing inequality), the
entropy of the overall data stored at the remaining L machines is no less than the entropy
of X which is NdH . This holds for any combination of L machines, i.e.,

H(Xi1 ,Xi2 , . . . ,XiL) ≥ NdH, ∀1 ≤ i1 < i2 < . . . < iL ≤ P. (C.1)

Adding up the above equation for all combinations of L out of P machines, and by
plugging in

∑L
j=1 H(Xij) ≥ H(Xi1 ,Xi2 , . . . ,XiL), we have

∑P
k=1Hk ≥ NPdH

L
.
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Then, we prove statement (b). Suppose (b) is not true. Then, it means that there
exists a way to encode and store the encoded data in the memory of the machines, such
that for any arbitrary vector w, computing Xw only requires reading data of entropy
strictly less than NdH . Since the overall number of stored data is finite, we can assume
that the overall number of stored numbers is p. For an arbitrary subset S of the stored
numbers such that H(S) < NdH , we denote by PS the set of w such that Xw is able to
be computed using only the numbers in S . Then, we can see that the PS for an arbitrary
subset S is a linear subspace of Rd. This is because if Xw1 and Xw2 are both able to be
computed using the numbers in S, then, aXw1 + bXw2 = X(aw1 + bw2) is also able to
be computed. Now, we prove that PS cannot be the entire Rd that w can take value from.
This is because if PS is equal to Rd, then Xe1,Xe2, . . . ,Xed are all able to be computed
using the numbers in S (e1, . . . ed are the standard basis), which means X itself is able
to be computed using S. This is a clear contradiction to the data-processing inequality
because H(X) = NdH , while H(S) < NdH . Thus, PS can at most be a linear space of
dimension d− 1 in Rd. This means the union of PS for all S is a finite collection of linear
spaces of dimension d− 1 in Rd, which cannot cover the entire Rd. Thus, there must exist
w in Rd such that Xw is not able to be computed by using data of entropy strictly less
than NdH .
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Appendix D

Theoretical proofs for Chapter 6

D.1 Proof of Theorem 6.3.1

We first introduce some notation and preliminary properties that we will use in this
proof. The proof can be found in [277]. Denote by vec(A) the vector that is composed
of the concatenation of all columns in a matrix A. For example, the vectorization of

A =

[
1 2 3
4 5 6

]
is the column vector vec(A) = [1, 4, 2, 5, 3, 6]>. We will also use the

Kronecker product defined as

Am×n ⊗B =

a11B a12B . . . a1nB
...

... . . . ...
am1B am2B . . . amnB.

 (D.1)

We now state some properties of the vectorization and Kronecker product.
Lemma D.1.1. Property 1: if A = BC, then

vec(A) = (C⊗ IN)vec(B). (D.2)

Property 2: vectorization does not change the Frobenius norm, i.e.,

‖A‖ = ‖vec(A)‖ . (D.3)

Property 3: The following mixed-product property holds

(A⊗B)(C⊗D) = (A ·C)⊗ (B ·D), (D.4)

if one can form the matrices AC and BD.
Property 4: If A and B are both positive semi-definite, A⊗B is also positive semi-definite.
Property 5: Suppose C is positive semi-definite and A � B. Then,

A⊗C � B⊗C. (D.5)
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Property 6: (commutative property) Suppose Am×n and Bp×q are two matrices. Then,

(Am×n ⊗ Ip) · (In ⊗Bp×q) = (Im ⊗Bp×q) · (Am×n ⊗ Iq). (D.6)

Property 7: Suppose A is an nN × nN matrix that can be written as

AnN×nN =


A11 A12 . . . A1n

A21 A22 . . . A2n
...

... . . . ...
An1 An2 . . . Ann

 , (D.7)

where each Aij is a square matrix of size N ×N . Then, for an arbitrary matrix L of size k × n,

trace
[
(L⊗ IN) ·A · (L⊗ IN)>

]
= trace

L ·

trace[A11] . . . trace[A1n]
... . . . ...

trace[An1] . . . trace[Ann]

 · L>
 . (D.8)

Computing the explicit form of the error matrix E

From (6.15), we have encoded the input ri to the linear inverse problem in the following
way:

[s1, s2, . . . , sn] = [r1, r2, . . . , rk] ·G. (D.9)

Since x∗i is the solution to the linear inverse problem, we have

x∗i = Cinvri, (D.10)

where Cinv is either the direct inverse in (6.2) for square linear inverse problems or the
least-square solution in (6.4) for non-square inverse problems. Define y∗i as the solution
of the inverse problem with the encoded input si. Then, we also have

y∗i = Cinvsi. (D.11)

Left-multiplying Cinv on both LHS and RHS of (D.9) and plugging in (D.10) and (D.11),
we have

[y∗1,y
∗
2, . . . ,y

∗
n] = [x∗1,x

∗
2, . . . ,x

∗
k] ·G = X∗ ·G. (D.12)

Define ε(l)
i = y

(li)
i −y∗i , which is the remaining error at the i-th worker after li iterations.

From the explicit form (6.10) of the remaining error of the executed iterative algorithm,
we have

y
(li)
i = y∗i + ε

(li)
i = y∗i + Bliε

(0)
i . (D.13)

Therefore,from the definition of Y(Tdl) (see (6.17)) and equation (D.12) and (D.13),

Y(Tdl) =[y
(l1)
1 ,y

(l2)
2 , . . . ,y(ln)

n ]

=[y∗1,y
∗
2, . . . ,y

∗
n] + [ε

(l1)
1 , ε

(l2)
2 , . . . , ε(ln)

n ]

=X∗ ·G + [Bl1ε
(0)
1 , . . . ,Blnε(0)

n ].

(D.14)
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Plugging in (6.18), we get the explicit form of E = X̂> −X∗:

X̂> = (GΛ−1G>)−1GΛ−1(Y(Tdl))>

= (GΛ−1G>)−1GΛ−1
[
G>(X∗)> + [Bl1ε

(0)
1 , . . . ,Blnε(0)

n ]>
]

= (X∗)> + (GΛ−1G>)−1GΛ−1
[
Bl1ε

(0)
1 , . . . ,Blnε(0)

n

]>
.

(D.15)

From (6.16), (D.12) and the definition ε
(0)
i = y

(0)
i − y∗i and e

(l)
i = x

(0)
i − x∗i , we have

[ε
(0)
1 , ε

(0)
2 , . . . , ε(0)

n ] = [e
(0)
1 , e

(0)
2 , . . . , e

(0)
k ] ·G. (D.16)

Vectorization of the error matrix E

From property 2 of Lemma D.1.1, vectorization does not change the Frobenius norm, so
we have

E[‖E‖2 |l] = E[‖vec(E)‖2 |l] = E
[
trace

(
vec(E)vec(E)>

)
|l
]
. (D.17)

Therefore, to prove the conclusion of this theorem, i.e., E[‖E‖2 |l] ≤ σmax(G>G)trace
[
(GΛ−1G>)−1

]
,

we only need to show

E
[
trace

(
vec(E)vec(E)>

)
|l
]
≤ σmax(G>G)trace

[
(GΛ−1G>)−1

]
. (D.18)

Express the mean-squared error using the vectorization form

Now we prove (D.18). From (D.15), we have

E> = (GΛ−1G>)−1GΛ−1[Bl1ε
(0)
1 , . . . ,Blnε(0)

n ]>, (D.19)

which is the same as

E = [Bl1ε
(0)
1 , . . . ,Blnε(0)

n ] · [(GΛ−1G>)−1GΛ−1]>. (D.20)

From property 1 of Lemma D.1.1, (D.20) means

vec(E) =
[
(GΛ−1G>)−1GΛ−1 ⊗ IN

]
· vec([Bl1ε

(0)
1 , . . . ,Blnε(0)

n ])

=
[
(GΛ−1G>)−1GΛ−1 ⊗ IN

]
· diag[Bl1 , . . . ,Bln ] · vec([ε

(0)
1 , . . . , ε(0)

n ]).
(D.21)

Define
L = (GΛ−1G>)−1GΛ−1, (D.22)

D = diag[Bl1 , . . . ,Bln ], (D.23)

and
E0 = vec([ε

(0)
1 , . . . , ε(0)

n ]). (D.24)

Then,
vec(E) = (L⊗ IN) ·D · E0. (D.25)

Therefore,

E
[
trace

(
vec(E)vec(E)>

)
|l
]

= trace
(
(L⊗ IN ·D)E[E0E

>
0 |l](L⊗ IN ·D)>

)
. (D.26)
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Bounding the term E[E0E
>
0 |l] using the maximum eigenvalue σmax(G

>G)

Note that E0 = vec([ε
(0)
1 , . . . , ε

(0)
n ]). From (D.16), we have

[ε
(0)
1 , ε

(0)
2 , . . . , ε(0)

n ] = [e
(0)
1 , e

(0)
2 , . . . , e

(0)
k ] ·G. (D.27)

Therefore, using property 1 of Lemma D.1.1, we have

E0 = (G> ⊗ IN) · vec([e
(0)
1 , e

(0)
2 , . . . , e

(0)
k ]). (D.28)

From Assumption 5, the covariance of e
(0)
i is

E[e
(0)
i (e

(0)
i )>|l] = CE, i = 1, . . . , k. (D.29)

Therefore, from (D.28), we have

E[E0E
>
0 |l] =(G> ⊗ IN) · E[vec([e

(0)
1 , e

(0)
2 , . . . , e

(0)
k ])·

vec([e
(0)
1 , e

(0)
2 , . . . , e

(0)
k ])>|l] · (G> ⊗ IN)>

(a)
=(G> ⊗ IN) · (Ik ⊗CE) · (G> ⊗ IN)>

=(G> ⊗ IN) · (Ik ⊗CE) · (G⊗ IN)

(b)
=(G> · Ik ·G)⊗ (IN ·CE · IN)

=G>G⊗CE

(c)

�σmax(G>G)In ⊗CE,

(D.30)

where (a) is from (D.29), (b) and (c) follow respectively from property 3 and property 5
of Lemma D.1.1.

If G has orthonormal rows, the eigenvalues of G>G (which is an n × n matrix)
are all in (0, 1]. This is why we can remove the term σmax(G>G) in (6.23) when G has
orthonormal rows. In what follows, we assume G has orthonormal rows, and the result
when G does not have orthonormal rows follows naturally.

Assuming G has orthonormal rows, we have

E[E0E
>
0 |l] � In ⊗CE. (D.31)

Plugging (D.31) into (D.26), we have

E
[
trace

(
vec(E)vec(E)>

)
|l
]

≤trace
(
(L⊗ IN) ·D(In ⊗CE)D>(L⊗ IN)>

)
,

(D.32)

where D = diag[Bl1 , . . . ,Bln ]. Therefore,

D(In ⊗CE)D>

=diag[Bl1CE(B>)l1 , . . . ,BlnCE(B>)ln ].
(D.33)

From the definition of C(li) in (6.20),

D(In ⊗CE)D> = diag[C(l1), . . . ,C(ln)]. (D.34)
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Reducing the dimensionality of D(In⊗CE)D> in the trace expression using property
7 in Lemma D.1.1

From Property 7 in Lemma D.1.1, we can simplify (D.35):

E
[
trace

(
vec(E)vec(E)>

)
|l
]

≤trace
(
(L⊗ IN) ·D(In ⊗CE)D>(L⊗ IN)>

)
(a)
=trace

(
(L⊗ IN) · diag[C(l1), . . . ,C(ln)](L⊗ IN)>

)
(b)
=trace

[
L · diag[trace(C(l1)), . . . , trace(C(l1))]L>

]
(c)
=trace

(
LΛL>

)
,

(D.35)

where (a) is from (D.34), (b) is from Property 7 and (c) is from the definition of Λ in (6.19).
Equation (D.35) can be further simplified to

E
[
trace

(
vec(E)vec(E)>

)
|l
]
≤ trace

(
LΛL>

)
(a)
=trace

(
(GΛ−1G>)−1GΛ−1Λ((GΛ−1G>)−1GΛ−1)>

)
=trace((GΛ−1G>)−1),

(D.36)

where (a) is from the definition of the decoding matrix L = (GΛ−1G>)−1GΛ−1. Thus,
we have completed the proof of Theorem 6.3.1 for the case when G has orthonormal
rows. As we argued earlier, the proof when G does not have orthonormal rows follows
immediately (see the text after (D.30)).

D.2 Proof of Corollary 6.3.2

First, note that
G = [Ik,0k,n−k] F. (D.37)

Therefore,

GΛ−1G> = [Ik,0k,n−k] FΛ−1F> [Ik,0k,n−k]
> (a)

= [Ik,0k,n−k] (FΛF>)−1 [Ik,0k,n−k]
> ,

(D.38)

where (a) is from F>F = In. Now take the inverse of both sides of (6.24), we have

(FΛF>)−1 =

[
(J1 − J2J

−1
4 J>2 )−1 ∗
∗ ∗

]
n×n

, (D.39)

where ∗ is used as a substitute for matrices that are unimportant for our argument. Thus,
comparing (D.38) and (D.39),

GΛ−1G> = (J1 − J2J
−1
4 J>2 )−1, (D.40)

which means
(GΛ−1G>)−1 = J1 − J2J

−1
4 J>2 . (D.41)

From (6.23) and (D.41), the theorem follows.
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D.3 Proof of Theorem 6.3.4

In this section, we compute the residual error of the uncoded linear inverse algorithm.
From (6.9), we have

e
(l+1)
i = Be

(l)
i . (D.42)

Therefore, in the uncoded scheme, the overall error is

E
[
‖Euncoded‖2 |l

]
= E

[∥∥∥[e
(l1)
1 , e

(l2)
2 . . . , e

(lk)
k ]
∥∥∥2

|l
]

=
k∑
i=1

E
[∥∥∥[e

(li)
i ]
∥∥∥2

|l
]

=
k∑
i=1

trace
(
E
[
e

(li)
i (e

(li)
i )>|l

])
(a)
=

k∑
i=1

trace
(
E
[
Blie

(0)
i (Blie

(0)
i )>|l

])
=

k∑
i=1

trace
(
BliE

[
e

(0)
i (e

(0)
i )>|l

]
(Bli)>

)
=

k∑
i=1

trace
(
Bli ·CE · (Bli)>

)
=

k∑
i=1

trace
(
BliCE(Bli)>

) (b)
=

k∑
i=1

trace (C(li)) ,

(D.43)

where (a) is from (D.42) and (b) is from the definition of C(li) in (6.20). Thus, we have
proved (6.32). To prove (6.33), we note that from the i.i.d. assumption of li,

Ef
[
‖Euncoded‖2] =Ef

[
k∑
i=1

trace (C(li))

]
= kEf [trace(C(l1))]. (D.44)

D.3.1 Proof of Theorem 6.3.7

From Theorem 6.3.5,

Ef
[
‖Euncoded‖2]− Ef

[
‖Ecoded‖2] ≥ Ef [trace(J2J

−1
4 J>2 )]. (D.45)

We now argue that to show (6.41), we only need to show

lim
n→∞

1

n− k
Ef [trace(J2J

−1
4 J>2 )] ≥ varf [trace(C(l1))]

Ef [trace(C(l1))]
, (D.46)

because then, we have

lim
n→∞

1

(n− k)

[
Ef
[
‖Euncoded‖2]− Ef

[
‖Ecoded‖2]]

(a)

≥ lim
n→∞

1

(n− k)
Ef [trace(J2J

−1
4 J>2 )]

(b)

≥ varf [trace(C(l1))]

Ef [trace(C(l1))]
,

(D.47)

where (a) follows from (D.45) and (b) follows from (D.46).
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Also note that after we prove (6.41), then using (6.39), we have

Ef
[
‖Euncoded‖2]− Ef

[∥∥Erep
∥∥2
]
≤ (n− k)Ef [trace(C(l1))], (D.48)

so we have

lim
n→∞

1

(n− k)

[
Ef
[
‖Euncoded‖2]− Ef

[∥∥Erep
∥∥2
]]

≤Ef [trace(C(l1))]
(a)

≤ 1

ρ

varf [trace(C(l1))]

Ef [trace(C(l1))]

≤1

ρ
lim
n→∞

1

(n− k)

[
Ef
[
‖Euncoded‖2]− Ef

[
‖Ecoded‖2]] ,

(D.49)

which means coded computation beats uncoded computation. Note that step (a) holds
because of the variance heavy-tail property.

Therefore, we only need to prove (D.46). The proof of (D.46) is divided into two steps,
and intuition behind each step is provided along the proof. The main intuition is that
the Fourier structure of the matrix F makes the matrix J4 concentrates around its mean
value, which makes the most tricky term Ef [trace(J2J

−1
4 J>2 )] analyzable.

Exploiting the Fourier structure to obtain a Toeplitz covariance matrix

First, we claim that when Fn×n is the Fourier transform matrix, the matrix FΛF> in (6.24)

FΛF> =

[
J1 J2

J>2 J4

]
n×n

, (D.50)

is a Toeplitz matrix composed of the Fourier coefficients of the sequence (vector) s =
[trace(C(l1)), . . . , trace(C(ln))]. In what follows, we use the simplified notation

sj := trace(C(lj+1)), j = 0, 1, . . . , n− 1. (D.51)

Lemma D.3.1. If

F =

(
wpq√
n

)
p,q=0,1,...,n−1

, (D.52)

where w = exp(−2πi/n), then

FΛF> = Toeplitz[s̃p]p=0,1,...,n−1, (D.53)

where

s̃p =
1

n

n−1∑
j=0

w−pjsj (D.54)
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Proof. The entry on the l-th row and the m-th column of FΛF> is

[FΛF>]l,m =
n−1∑
j=0

wlj√
n

w−mj√
n
sj =

1

n

n−1∑
j=0

w(l−m)jsj. (D.55)

Thus, Lemma D.3.1 holds.

Therefore, the variance of all entries of FΛF> is the same because

varf [s̃p] =varf

[
1

n

n−1∑
j=0

w−pjsj

]
=

1

n
varf [s0] =:

1

n
v. (D.56)

Further, the means of all diagonal entries of FΛF> are

Ef [s̃0] = Ef [s0] =: µ, (D.57)

while the means of all off-diagonal entries are

Ef [s̃p] =
1

n

n−1∑
j=0

w−pjEf [sj] = 0,∀p 6= 0. (D.58)

Using the concentration of J4 to obtain the error when n→∞

From an intuitive perspective, when n→∞, the submatrix J4 concentrates at µIn−k (see
the above computation on the mean and variance of all entries). In this case

Ef [trace(J2J
−1
4 J>2 )] ≈ 1

µ
Ef [trace(J2J

>
2 )] =

1

µ
k(n− k)var[s̃p] =

n− k
µ

v · k
n
. (D.59)

Therefore, we have

lim
n→∞

1

n− k
Ef [trace(J2J

−1
4 J>2 )] =

v

µ
=

varf [s0]

Ef [s0]
. (D.60)

Now, we formalize the above intuitive statement. In fact, we will show a even stronger
bound than the bound on the expected error.

Lemma D.3.2. When n− k = o(
√
n), with high probability (in 1−O( (n−k)2

n
)),

1

n− k
trace(J2J

−1
4 J>2 ) ≥ 1

µ+ ε

(
k

n
v − ε

)
, (D.61)

for any ε > 0.
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After we prove Lemma D.3.2, we obtain a bound on expectation using the fact that

1

n− k
Ef [trace(J2J

−1
4 J>2 )] ≥ (1−O(

(n− k)2

n
))

1

µ+ ε

(
k

n
v − ε

)
. (D.62)

Thus, when n→∞ and n− k = o(
√
n),

lim
n→∞

1

n− k
Ef [trace(J2J

−1
4 J>2 )] ≥ v − ε

µ+ ε
=

varf [s0]− ε
Ef [s0] + ε

, (D.63)

for all ε > 0, which completes the proof of Theorem 6.3.7.
The proof of Lemma D.3.2 relies on the concentration of trace(J2J

>
2 ) and the concen-

tration of J4. In particular, when we prove the concentration of J4, we use the Gershgorin
circle theorem [94]. First, we show the following Lemma.
Lemma D.3.3. When n− k = o(n), with high probability (in 1−O(n−k

n
))

1

n− k
trace(J2J

>
2 ) ≥ k

n
v − ε. (D.64)

Proof. Since (J2)k×(n−k) := [Ji,j] (Ji,j represents the entry on the i-th row and the j-th
column) is the upper-right submatrix of FΛF> = Toeplitz[s̃p]p=0,1,...,n−1,

trace(J2J
>
2 ) =

k∑
i=1

n−k∑
j=1

|Ji,j|2 =
k∑
l=1

n∑
m=k+1

|s̃m−l|2. (D.65)

Since all entries in J2 have zero mean (because l 6= m ever in (D.65) and from (D.58) all
off-diagonal entries have zero mean) and have the same variance v

n
(see (D.56)),

Ef
[

1

n− k
trace(J2J

>
2 )

]
=

1

n− k
· k(n− k)Ef [|s̃1|2]

(a)
=

1

n− k
· k(n− k)varf [s̃1] =

k

n
v,

(D.66)

where (a) holds because Ef [s̃1] = 0. To prove (D.64), we compute the variance of
trace(J2J

>
2 ) and use Chebyshev’s inequality to bound the tail probability. Define

µB := Ef [trace(J2J
>
2 )]

(a)
=
k(n− k)

n
v, (D.67)

where (a) follows from (D.66). From (D.65), we have

trace(J2J
>
2 ) ≤(n− k)

n−1∑
p=1

|s̃p|2
(a)
= (n− k)

(
1

n

n−1∑
j=0

s2
j − |s̃0|2

)
, (D.68)

where the last equality (a) holds due to Parseval’s equality for the Fourier transform,
which states that 1

n

∑n−1
j=0 s

2
j =

∑n−1
p=0 |s̃p|2. Then,

varf

[
1

n− k
trace(J2J

>
2 )

]
= Ef

[(
1

n− k
trace(J2J

>
2 )

)2
]
− E2

f

[
1

n− k
trace(J2J

>
2 )

]
(a)

≤Ef

( 1

n

n−1∑
j=0

s2
j − |s̃0|2

)2
− k2

n2
v2 (b)

= Ef

( 1

n

n−1∑
j=0

s2
j − (

1

n

n−1∑
j=0

sj)
2

)2
− k2

n2
v2,

(D.69)
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where (a) follows from (D.66) and (D.68) and (b) follows from (D.54). Note that

1

n

n−1∑
j=0

s2
j − (

1

n

n−1∑
j=0

sj)
2 =

n− 1

n
s2, (D.70)

where

s2 :=
1

n− 1

n−1∑
j=0

(sj − s̄)2, (D.71)

is the famous statistic called “unbiased sample variance”, and its variance is (see Page
229, Theorem 2 in [177])

var[s2] =
1

n

(
µ4 −

n− 3

n− 1
µ2

2

)
, (D.72)

where
µ4 = E[(s0 − µ)4], (D.73)

and
µ2 = E[(s0 − µ)2] = var[s0] = v. (D.74)

Also note that the sample variance is unbiased, which means

Ef [s2] = v. (D.75)

Therefore, we have

Ef [(s2)2] = var[s2] + (Ef [s2])2 =
1

n

(
µ4 −

n− 3

n− 1
v2

)
+ v2, (D.76)

so we have

varf

[
1

n− k
trace(J2J

>
2 )

]
(a)

≤ Ef

( 1

n

n−1∑
j=0

s2
j − (

1

n

n−1∑
j=0

sj)
2

)2
− k2

n2
v2

(b)
=Ef

[
(
n− 1

n
s2)2

]
− k2

n2
v2 =

(n− 1)2

n2
Ef [(s2)2]− k2

n2
v2

(c)
=

(n− 1)2

n2

1

n

(
µ4 −

n− 3

n− 1
v2

)
+

(n− 1)2 − k2

n2
v2 = O

(
1

n

)
+

(n− 1)2 − k2

n2
v2,

(D.77)

where (a) follows from (D.69), (b) follows from (D.70) and (c) follow from (D.76).
Note that we have computed the expectation of 1

n−k trace(J2J
>
2 ), which is k

n
v (see

(D.66)). Using the Chebyshev’s inequality

Pr

(∣∣∣∣ 1

n− k
trace(J2J

>
2 )− k

n
v

∣∣∣∣ ≥ ε

)
≤ 1

ε2
var

[
1

n− k
trace(J2J

>
2 )

]
(a)

≤ 1

ε2
O
(

1

n

)
+

1

ε2
(n− 1)2 − k2

n2
v2 =

1

ε2
O
(

1

n

)
+

1

ε2
(n− k − 1)(n+ k − 1)

n2
v2

(b)
<

1

ε2
O
(

1

n

)
+

2

ε2
n− k − 1

n
v2 =

1

ε2
O
(
n− k
n

)
.

(D.78)
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where (a) is from (D.77) and (b) is because n+ k − 1 < 2n. Therefore, the proof of (D.64)
is over.

Next, we show that with high probability the largest eigenvalue of (J4)(n−k)×(n−k) is
smaller than (1 + ε)µ. Note that the matrix J4 is a principle submatrix of the Toeplitz
matrix FΛF> = Toeplitz[s̃p]p=0,1,...,n−1, so J4 = Toeplitz[s̃p]p=0,1,...,n−k−1 is also Toeplitz.
Using the Gershgorin circle theorem, all eigenvalues of J4 := [J̃ij] must lie in the union
of (n − k) circles, in which the i-th circle is centered at the diagonal entry J̃ii = s̃0 and
has radius

∑
j 6=i |J̃ij| =

∑
j 6=i |s̃j−i|. These (n− k) circles are all within the circle centered

at s̃0 with radius 2
∑n−k−1

p=1 |s̃p|. Therefore, the maximum eigenvalue of J4 satisfies

σmax < s̃0 + 2
n−k−1∑
p=1

|s̃p|. (D.79)

Thus,

Pr(σmax > µ+ ε) < Pr

(
s̃0 + 2

n−k−1∑
p=1

|s̃p| > µ+ ε

)
= Pr

(s̃0 − µ+ 2
n−k−1∑
p=1

|s̃p|

)2

> ε2


(a)

≤ 1

ε2
E

(s̃0 − µ+ 2
n−k−1∑
p=1

|s̃p|

)2
 (b)

≤ 1

ε2
(2n− 2k − 1)2 v

n
=

1

ε2
O
(

(n− k)2

n

)
,

(D.80)

where (a) is from the Markov inequality and (b) is due to the fact that var[s̃p] = v
n

for all
p and E[s̃0] = µ and E[s̃p] = 0 for all p 6= 0.

From Lemma D.3.3 and (D.80), when n→∞ and (n−k)2 = o(n), with high probability
(which is 1− 1

ε2
O
(

(n−k)2

n

)
),

1

n− k
trace(J2J

>
2 ) ≥ k

n
v − ε, (D.81)

and at the same time

J−1
4 �

1

µ+ ε
In−k. (D.82)

From concentration of trace(J2J
>
2 ) and the lower bound of J−1

4 , we have, with high
probability,

1

n− k
trace(J2J

−1
4 J>2 ) ≥ 1

µ+ ε

(
k

n
v − ε

)
, (D.83)

for all ε. This concludes the proof of Lemma D.3.2 and hence completes the proof of
Theorem 6.3.7 (see the details from after Lemma D.3.2 to equation (D.63)). This lemma is
a formal statement of equality (D.60).
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D.3.2 Computing the matrix Λ

Recall that the statistic γ̂m,l is defined as

γ̂m,l =
1

m

m∑
j=1

∥∥Blaj
∥∥2
, l = 1, 2, . . . Tu. (D.84)

The computational complexity of computing γ̂m,l, l = 1, 2, . . . Tu is the same as the compu-
tation ofm linear inverse problems for Tu iterations. The computation has low complexity
and can be carried out distributedly in m workers before the main algorithm starts. Addi-
tionally, the computation results can be used repeatedly when we implement the coded
linear inverse algorithm multiple times. In the data experiments, we use m = 10, which
has the same complexity as solving m = 10 extra linear inverse problems.

The following Lemma shows that γ̂m,l, l = 1, 2, . . . Tu is an unbiased and asymptoti-
cally consistent estimate of trace(C(l)) for all l.
Lemma D.3.4. The statistic γ̂m,l is an unbiased and asymptotically consistent estimator of
trace(C(l)). More specifically, the mean and variance of the estimator γ̂m,l satisfies

E[γ̂m,l|l] = trace(C(l)), (D.85)

vart[γ̂m,l] ≤
1

m

∥∥Bl
∥∥4

F
E
[
‖aj‖4] . (D.86)

Proof. The expectation of γ̂m,l satisfies

E[γ̂m,l] =
1

m

m∑
j=1

E
[∥∥Blaj

∥∥2
]

= E
[∥∥Bla1

∥∥2
]

= E
[
trace(Bla1a

>
1 (Bl)>)

]
(a)
=trace(BlE[a1a

>
1 ](Bl)>) = trace(BlCE(Bl)>) = trace(C(l)),

(D.87)

where (a) is from the fact that a1 has covariance CE . To bound the variance of γ̂m,l, note
that for all j, ∥∥Blaj

∥∥2 ≤
∥∥Bl

∥∥2

F
‖aj‖2 . (D.88)

Therefore,

var[γ̂m,l] =var[
1

m

m∑
j=1

∥∥Blaj
∥∥2

]
(a)
=

1

m
var

[∥∥Blaj
∥∥2
] (b)

≤ 1

m
E
[∥∥Blaj

∥∥4
] (c)

≤ 1

m

∥∥Bl
∥∥4

F
E
[
‖aj‖4] ,

(D.89)

where (a) holds because all ‖aj‖ are independent of each other, and (b) holds because
var[X] ≤ E[X2], and (c) is from the Cauchy-Schwartz inequality.
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Appendix E

Theoretical proofs for Chapter 7

E.1 Proof of Theorem 7.3.1

Lemma E.1.1. If the sparsity pattern in Definition 7.3.2 is used and Assumption 9 holds, the
projection matrix VtV

>
t satisfies

E[VtV
>
t ] = (1− δt)Ik, (E.1)

where the expectation is taken respect to the randomness of non-zero entries’ values (the sparsity
pattern G is fixed) and the randomness of the workers’ failure events.

Proof. See Appendix E.2 for the full proof. The proof relies on proving some symmetric
properties of E[VtV

>
t ]. We prove that the symmetry of standard Gaussian pdf on the real

line ensures that all of the off-diagonal entries in E[VtV
>
t ] are zero. Further, we prove

that the “combined cyclic” structure of G in Definition 7.3.2 ensures that all diagonal
entries on E[VtV

>
t ] are identical. The two facts above show that E[VtV

>
t ] = xIk for some

constant x. Then, we can use a property of trace to compute x and obtain (E.1).

We denote the projection VtV
>
t by PV . Then, from (7.6), ṼtṼ

>
t = Ik −PV . The first

term vec
(
VtV

>
t mat (Bet)

)
= vec (PV mat (Bet)) in (7.11) can be bounded by

E
[
‖vec (PV mat (Bet))‖2] (a)

= E
[
‖(PV ⊗ Ib)Bet‖2]

(b)
=E

[
trace

(
(Bet)

>(PV ⊗ Ib)
>(PV ⊗ Ib)Bet

)]
(c)
=E

[
trace

(
Bet(Bet)

>(PV ⊗ Ib)
>(PV ⊗ Ib)

)]
(d)
=trace

(
E
[
Bet(Bet)

>]E [(PV ⊗ Ib)
>(PV ⊗ Ib)

])
=trace

(
E
[
Bet(Bet)

>]E [(P>V PV )⊗ Ib
])

(e)
=trace

(
E
[
Bet(Bet)

>]E [PV ⊗ Ib]
)

(f)
= trace

(
E
[
Bet(Bet)

>] ((1− δt)Ik)⊗ Ib
)

=(1− δt)trace
(
E
[
Bet(Bet)

>]) = (1− δt)E[‖Bet‖2],

(E.2)
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where (a) is from the property of mat-vec operations, (b) is because (PV ⊗ Ib)Bet is
a vector, (c) is because trace(AB) = trace(BA), (d) is because trace and E commutes
and the projection PV only depends on the random partial generator matrix Gs and is
independent of et, (e) is because PV is a projection matrix and (f ) is from Lemma E.1.1
and PV = VtV

>
t . Similarly, we can prove

E
[
‖vec ((Ik −PV )mat (et))‖2] = δtE[‖et‖2]. (E.3)

Therefore

E[‖et+1‖2]

(a)
=E[

∥∥vec
(
VtV

>
t mat (Bet)

)∥∥2
] + E[

∥∥∥vec
(
ṼtṼ

>
t mat (et)

)∥∥∥2

]

(b)
=(1− δt)E[‖Bet‖2] + δtE[‖et‖2],

(E.4)

where (a) is from (7.11) and the Pythagorean theorem, and (b) is from (E.2) and (E.3).
Thus, we have completed the proof.

E.2 Proof of Lemma E.1.1

Proof. First, notice that although the SVD decomposition of G
(t)
s in (7.4) is not unique,

the projection matrix VtV
>
t is unique for a certain G

(t)
s , because it is the projection onto

the row space of G
(t)
s . Then, before we prove the lemma, we show another lemma that

will be useful.

Lemma E.2.1. Suppose P is a k × k orthonormal matrix. Then, if the corresponding projection
matrix of G

(t)
s is VtV

>
t , the corresponding projection matrix of G

(t)
s P is P>VtV

>
t P.

Proof. If G
(t)
s has the SVD decomposition G

(t)
s = UtDtV

>
t , then G

(t)
s P = UtDt(V

>
t P) is a

valid SVD of G
(t)
s P, which means the projection matrix now should be (V>t P)>V>t P =

P>VtV
>
t P.

Now, we prove two properties of the expected projection matrix.

E.2.1 Property 1: all off-diagonal entries in E[VtV
>
t ] are zero

Suppose Pi of size k× k is the diagonal matrix where all diagonal entries are 1 except the
i-th diagonal entry is −1. When we multiply G

(t)
s Pi, we effectively flips the i-th column

of G
(t)
s . Now, we observe the fact that the distribution of G

(t)
s Pi is exactly the same

as the distribution of G
(t)
s , because all non-zeros in G have unit Gaussian distribution

and the positive and negative part of this distribution is symmetric. Therefore, the
projection VtV

>
t , which is a deterministic function of G

(t)
s , has the same distribution as

the projection P>i VtV
>
t Pi, which means

E[VtV
>
t ] = E[P>i VtV

>
t Pi] = P>i E[VtV

>
t ]Pi. (E.5)
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By the structure of Pi, this means that after flipping the i-th column and the i-th row of
E[VtV

>
t ], the matrix stays the same. The only way that this can be true is that all entries

on the i-th row and the i-th column are zero, except the diagonal entry.

E.2.2 Property 2: all diagonal entries in E[VtV
>
t ] are equal

Suppose Pπ is the k × k permutation matrix

Pπ =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1
1 0 0 · · · 0

 . (E.6)

It is an orthonormal matrix. When we multiply G
(t)
s Pπ, we effectively do a cyclic shift on

the columns of G
(t)
s by pushing each column to its left (except for the left most column

which is pushed to the right-most). Then, we show that the distribution of G
(t)
s is again

exactly the same as the distribution of G
(t)
s Pπ. To prove this, we look at a specific random

initialization of G
(t)
s Pπ. Suppose G

(t)
s occupies a rows in S1 and b rows in S2, where recall

that S1 and S2 are square cyclic matrices (see Definition 7.3.2). Suppose the a rows are
the i1, i2, . . . , ia-th rows in S1 and the b rows are the j1, j2, . . . , jb-th rows in S2. Then, after
permuting the columns of G

(t)
s by Pπ, the sparsity pattern of G

(t)
s Pπ is the same as if the

(i1−1, i2−1, . . . , ia−1)(mod k)-th rows in S1 and the (j1−1, j2−1, . . . , jb−1)(mod k)-th
rows in S2 are chosen for a realization of G

(t)
s . This ensures that there exists a realization

of G
(t)
s which is exactly the same as the examined realization of G

(t)
s Pπ. These two

realizations have a one-to-one mapping because no other realizations of G
(t)
s Pπ will lead

to the same realization1 of G
(t)
s and the pdfs of these two realizations are also the same,

because all rows are selected uniformly and the all entries have the same unit Gaussian
distribution. Based on this one-to-one mapping, we know that the distribution of G

(t)
s

and G
(t)
s Pπ are the same. Therefore, similar to (E.5), we obtain

E[VtV
>
t ] = P>πE[VtV

>
t ]Pπ. (E.7)

From Property 1 we have proved that all the off-diagonal entries in E[VtV
>
t ] are 0. From

(E.7), we have that the cyclic shift on the diagonal also remains the same. This means all
diagonal entries in E[VtV

>
t ] are identical.

1There is a subtle point here that when the cyclic rows of S1 and S2 are the same, the mapping is not
one-to-one anymore. Therefore, S1 and S2 can be chosen to have different cyclic rows.
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E.2.3 Prove E[VtV
>
t ] = (1− δt)Ik

From Property 1 and Property 2, we can assume that E[VtV
>
t ] = xIk for some constant x.

Notice that on one hand,

trace[E[VtV
>
t ]] = E[trace[VtV

>
t ]]

=E[trace[V>t Vt]] = E[rank(G(t)
s )].

(E.8)

One the other hand,
trace[E[VtV

>
t ]] = trace[xIk] = xk, (E.9)

so we have x = E[rank(G
(t)
s )]

k
= 1− δt.

E.3 Equivalence of several norms

E.3.1 For G(N, p) the induced two-norm ‖A‖ is close to ρ(A)

We prove a lemma stating that for G(N, p), the induced two-norm ‖A‖ is close to ρ(A).
Lemma E.3.1. For random graph from the Erdös-Rényi model G(N, p), the column-normalized
adjacency matrix A satisfies

Pr

(
‖A‖ >

√
1 + ε

1− ε
ρ(A)

)
< 3Ne−ε

2Np/8. (E.10)

Proof. It is well known that the node degrees of Erdös-Rényi graphs concentrate at Np.
For example, Theorem 4.1 in the online book chapter here https://www.cs.cmu.edu/
~avrim/598/chap4only.pdf has the following theorem.

Theorem E.3.2. Let v be a vertex of the random graph G(N, p). For 0 < α <
√
Np

Pr(|Np− deg(v)| ≥ α
√
Np) ≤ 3e−α

2/8. (E.11)

Therefore, by the union bound, with probability at least 1 − 3Ne−ε
2Np/8, all nodes

in the graph have degree within the range (Np(1 − ε), Np(1 + ε)). The matrix A is the
column-normalized adjacency matrix, so its spectral radius ρ(A) = 1. By Hölder’s
inequality

‖A‖2 ≤
√
‖A‖1 ‖A‖∞. (E.12)

The induced 1-norm ‖A‖1 is also the maximum absolute column sum and the induced
infinity norm ‖A‖∞ is also the maximum absolute row sum. Since A is the column-
normalized, the induced 1-norm satisfies

‖A‖1 = 1. (E.13)

Since the degree of the graph is within range (Np(1− ε), Np(1 + ε)) with high probability,
the minimum normalization factor for a node v when doing column normalization,
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i.e., the minimum column sum of the un-normalized adjacency matrix, is greater than
Np(1− ε) with high probability. This means that with high probability, all non-zeros in
A are smaller than 1

Np(1−ε) . Moreover, the maximum number of non-zeros of A in each
row is also smaller than Np(1 + ε) with high probability. This means that the maximum
row sum ‖A‖∞ satisfies the following with high probability

‖A‖∞ ≤
Np(1 + ε)

Np(1− ε)
=

1 + ε

1− ε
. (E.14)

From (E.12) to (E.14), with high probability (at least 1− 3Ne−ε
2Np/8),

‖A‖2 ≤
√

1 + ε

1− ε
=

√
1 + ε

1− ε
ρ(A). (E.15)

This completes the proof.
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Appendix F

Theoretical proofs for Chapter 8

F.1 Proof of Corollary 8.3.3

Considering (8.2) and (8.6), to prove (8.12), it suffices to show C (N) = Ω(N log logN). In
fact, it is stated in Theorem 1 in [5] that if the number of noisy broadcasts is

C (N) = β(N)N,

the error probability P
(N)
e that the receiver does not output all self-information bits

satisfies

1− P (N)
e <

√
1

N
+

48β2 log(1/ε)

ε4β logN
. (F.1)

Then, we have

Inequality (F.1)⇐⇒

(
1− P (N)

e −
√

1

N

)
logN

48 log(1/ε)
<
β2

ε4β

⇐⇒ log logN + log

(
1− P (N)

e −
√

1

N

)
− log

(
48 log

(
1

ε

))
< 2 log β + 4β log

(
1

ε

)
.

Dividing both the LHS and the RHS with 4 log
(

1
ε

)
, we have

β +
log β

2 log 1
ε

>
log logN

4 log 1
ε

+
log(1− P (N)

e −
√

1
N

)− log(48 log(1
ε
))

4 log 1
ε

= Ω(log logN). (F.2)

From (F.2), we immediately have β(N) = Ω(log logN).

F.2 Proof of (8.7) in Theorem 8.3.2

Since the code length at each node v ∈ BT is γ logN , according to Lemma 2.2.3, the
decoding error probability is

Pe,v < exp[−(γ logN + 1)Er(ε, R)/R] = exp[−Er(ε, R)/R]N−γEr(ε,R)/R. (F.3)
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Similarly, the decoding error probability at a node v ∈ AT is

Pe,v < exp[−(Dv + 1)Er(ε, R)/R] < exp[− γ
R

logNEr(ε, R)] < N−γEr(ε,R)/R, (F.4)

where we used the fact that the message size Dv in v is greater than or equal to γ logN ,
and hence we can find a code with length d(Dv + 1)/Re > γ

R
logN .

Combining (F.3) and (F.4) and using the union bound, the error probability is bounded
as follows

P (N)
e <

∑
v∈AT

Pe,v +
∑
v∈BT

Pe,v

<N ·N−γEr(ε,R)/R +N · exp[−Er(ε, R)/R]N−γEr(ε,R)/R

=N−(
γEr(ε,R)

R
−1) · (1 + exp[−Er(ε, R)/R]) .

(F.5)

When the condition R < γEr(ε, R) is satisfied, the error probability in (F.5) satisfies the
property that limN→∞ P

(N)
e = 0 and the convergence rate is polynomial. This concludes

the proof.

F.3 Proof of Lemma F.5.1

We know from the union bound that

P Ge (x) ≤
∑

x>1 ∈{0,1}N\{x}

P Ge (x→ x1). (F.6)

Lemma F.3.1. The probability that x1 is confused with x2 equals the probability that x1 − x2 is
confused with the N -dimensional zero vector 0N , i.e.,

P Ge (x1 → x2) = P Ge (x1 − x2 → 0N). (F.7)

Proof. We define an erasure matrix E as a 2N -by-2N diagonal matrix in which each
diagonal entry is either an ‘e’ or a 1. Define an extended binary multiplication operation
with ‘e’, which has the rule that ae = e, a ∈ {0, 1}. The intuition is that both 0 and 1
become an erasure after being erased. Under this definition, the event that x1 is confused
with x2 can be written as

x>1 · [I,A] · E = x>2 · [I,A] · E, (F.8)

where a diagonal entry in E being ‘e’ corresponds to erasure/removal of the correspond-
ing linear equation. We know that if the erasure matrix E remains the same, we can
arrange the two terms and write

(x>1 − x>2 ) · [I,A] · E = 0>N · [I,A] · E. (F.9)

That is to say, if x1 is confused with x2, then, if all the erasure events are the same
and the self-information bits are changed to x1 − x2, they will be confused with the
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all zero vector 0N and vice-versa. Thus, in order to prove (F.7), we only need to show
that the probability of having particular erasure events remains the same with different
self-information bits. This claim is satisfied, because by the BEC assumption the erasure
events are independent of the channel inputs and identically distributed.

Thus, using the result from Lemma F.3.1, we obtain

P Ge (x) ≤
∑

x>1 ∈{0,1}N\{x}

P Ge (x− x1 → 0N), (F.10)

and hence, (F.14) holds.

F.4 Proof of Lemma F.5.3

First, we notice that for 1 ≤ i ≤ N , the vector x̃> received is the noisy version of x>0 .
Since, according to the in-network computing algorithm in Section 8.4.1, the vector x̃> is
obtained in the second step, the event A(i)

3 (x>0 ) is the only ambiguity event. Moreover, if
the i-th entry of x>0 is zero, it does not matter whether an erasure happens to this entry.
Thus, the error probability can be calculated by considering all the k non-zero entries,
which means

N∏
i=1

Pr[A
(i)
1 (x>0 ) ∪ A(i)

2 (x>0 ) ∪ A(i)
3 (x>0 )] = εk.

For N + 1 ≤ i ≤ 2N , A(i)
3 (x>0 ) is the erasure event during the second step and is indepen-

dent from the previous two events A(i)
1 (x>0 ) and A

(i)
2 (x>0 ). Therefore

Pr
[
A

(i)
1 (x>0 ) ∪ A(i)

2 (x>0 ) ∪ A(i)
3 (x>0 )

]
≤Pr

[
(A

(i)
3 (x>0 ))C

]
+ Pr

[
A

(i)
3 (x>0 )

]
Pr
[
A

(i)
1 (x>0 ) ∪ A(i)

2 (x>0 )
]

=1− ε+ εPr
[
A

(i)
1 (x>0 ) ∪ A(i)

2 (x>0 )
]

=1− ε+ ε
(

Pr
[
A

(i)
1 (x>0 )

]
+ Pr

[
(A

(i)
1 (x>0 ))C ∩ A(i)

2 (x>0 )
])
.

(F.11)

The event A(i)
1 (x>0 ) happens when the local parity x>0 ai equals zero, i.e., in the k locations

of non-zero entries in x>0 , there are an even number of ones in the corresponding entries
in ai, the i-th column of the graph adjacency matrix A. Denote by l the number of ones
in these k corresponding entries in ai. Since each entry of ai takes value 1 independently
with probability p, the probability that an even number of entries are 1 in these k locations
is

Pr[A
(i)
1 (x>0 )] = Pr[l is even] =

∑
l is even

pl(1− p)k−l =
1 + (1− 2p)k

2
. (F.12)
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The event (A
(i)
1 (x>0 ))C ∩ A(i)

2 (x>0 ) indicates that l is odd and at least one entry of all non-
zero entries in x>0 is erased. Suppose in the remaining N − k entries in ai, j entries take
the value 1 and hence there are (l + j) 1’s in ai. Therefore, for a fixed l, we have

Pr[(A
(i)
1 (x>0 ))C ∩ A(i)

2 (x>0 )|l] =
N−k∑
j=0

(
N − k
j

)
pj(1− p)N−k−j · [1− (1− pe)l+j]

≤
N−k∑
j=0

(
N − k
j

)
pj(1− p)N−k−j(l + j)pe,

where p is the edge connection probability and pe is the probability that a certain bit in x0

is erased for t =
log( c logN

pch
)

log(1/ε)
times when transmitted to vi from one of its neighbors during

the first step of the algorithm. Combining the above inequality with Lemma 8.4.1, we get

Pr[(A
(i)
1 )C ∩ A(i)

2 (l)]

≤
N−k∑
j=0

(
N − k
j

)
pj(1− p)N−k−j(l + j)

pch

c logN

=l
pch

c logN

N−k∑
j=0

(
N − k
j

)
pj(1− p)N−k−j +

pch

c logN

N−k∑
j=1

j

(
N − k
j

)
pj(1− p)N−k−j

(a)
=l

pch

c logN
+

pchp

c logN

N−k∑
j=1

(N − k)

(
N − k − 1

j − 1

)
pj−1(1− p)N−k−j

=l
pch

c logN
+
pch(N − k)

N

N−k∑
j=1

(
N − k − 1

j − 1

)
pj−1(1− p)N−k−j = l

pch

c logN
+ pch ·

N − k
N

,

where step (a) follows from j
(
N−k
j

)
= (N − k)

(
N−k−1
j−1

)
. Therefore

Pr[(A
(i)
1 )C ∩ A(i)

2 ]

=
∑
l is odd

(
k

l

)
pl(1− p)k−l Pr[(A

(i)
1 )C ∩ A(i)

2 (l)]

≤
∑
l is odd

(
k

l

)
pl(1− p)k−l(l pch

c logN
+ pch ·

N − k
N

)

=
∑
l is odd

(
k

l

)
pl(1− p)k−lpch ·

N − k
N

+
∑
l is odd

l

(
k

l

)
pl(1− p)k−l pch

c logN

=pch ·
N − k
N

∑
l is odd

(
k

l

)
pl(1− p)k−l +

kppch

c logN

∑
l is odd

(
k − 1

l − 1

)
pl−1(1− p)k−l

=pch ·
N − k
N

1− (1− 2p)k

2
+ pch ·

k

N

1 + (1− 2p)k−1

2
(a)

≤Lpch
1− (1− 2p)k

2
,
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where the constant L in step (a) is to be determined. Now we show that L = 2
1−1/e

+ 1

suffices to ensure that (a) holds. In fact, we only need to prove

N − k
N

1− (1− 2p)k

2
+
k

N

1 + (1− 2p)k−1

2
≤ L

1− (1− 2p)k

2
.

Since N−k
N

< 1, it suffices to show that

k

N

1 + (1− 2p)k−1

2
≤ (L− 1)

1− (1− 2p)k

2
.

Since (1− 2p)k−1 < 1, it suffices to show that

k

N
≤ (L− 1)

1− (1− 2p)k

2
,

or equivalently,

2k

1− (1− 2p)k
≤ N (L− 1) . (F.13)

We know that

1− (1− 2p)k ≥ 2kp− C2
k(2p)2

= 2kp− 2k(k − 1)p2

= 2kp [1− p(k − 1)] ≥ 2kp(1− kp).

Thus, when kp ≤ 1
2
, 1− (1− 2p)k ≥ 2kp(1− kp) ≥ kp and

2k

1− (1− 2p)k
≤ 2k

kp
=

2N

c logN
≤ 2N,

when c logN > 1. When kp > 1
2
, (1− 2p)k ≤ (1− 2p)

1
2p ≤ 1

e
and

2k

1− (1− 2p)k
≤ 2k

1− 1/e
≤ 2N

1− 1/e
.

Thus, as long as L ≥ 1 + 2
1−1/e

, (F.13) holds. Jointly considering (F.12), we get

Pr[A
(i)
1 ∪ A

(i)
2 ] ≤ 1 + (1− 2p)k

2
+ Lpch

1− (1− 2p)k

2
.
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Combining (F.11), we finally arrive at

Pr[A
(i)
1 ∪ A

(i)
2 ∪ A

(i)
3 ] ≤ ε+ (1− ε)

[
1 + (1− 2p)k

2
+ Lpch

1− (1− 2p)k

2

]

= ε+ (1− ε)

[
1− (1− Lpch)

1− (1− 2p)k

2

]

= 1− (1− ε) (1− Lpch)
1− (1− 2p)k

2

< 1− (1− ε− Lpch)
1− (1− 2p)k

2

= 1− (1− ε− Lpch)

[
1− 1 + (1− 2p)k

2

]

= ε+ Lpch + (1− ε− Lpch)
1 + (1− 2p)k

2

= ε0 + (1− ε0)
1 + (1− 2p)k

2
,

where ε0 = Lpch + ε.

F.5 Proof of Theorem 8.4.2

From Section 8.4.1, we know that an error occurs when there exist more than one feasible
solutions that satisfy the version with possible erasures of (8.18). That is to say, when
all positions with erasures are eliminated from the received vector, there are at least
two solutions to the remaining linear equations. Denote by x1 and x2 two different
vectors of self-information bits. We say that x1 is confused with x2 if the true vector of
self-information bits is x1 but x2 also satisfies the possibly erased version of (8.18), in
which case x1 is indistinguishable from x2. Denote by P Ge (x1 → x2) the probability that
x1 is confused with x2.

The Lemma F.5.1 in the following states that P Ge (x) is upper bounded by an expression
which is independent of the argument x (self-information bits).
Lemma F.5.1. The error probability P Ge can be upper-bounded by

P Ge (x) ≤
∑

x>0 ∈{0,1}N\{0N}

P Ge (x0 → 0N), (F.14)

where 0N is the N -dimensional zero vector.

Proof. See Appendix F.3.

Each term on the RHS of (F.14) can be interpreted as the probability of the existence of
a non-zero vector input x>0 that is confused with the all-zero vector after all the non-zero
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entries of x>0 · [I,A] are erased, in which case x>0 is indistinguishable from the all zero
channel input. For example, suppose the code length is 2N = 6 and the codeword
x>0 · [I,A] = [x1, 0, 0, x4, x5, x6] is sent and the output happens to be r> = [e, 0, 0, e, e, e]. In
this case, we cannot distinguish between the input vector x>0 and the all-zero vector 0>N
based on the channel output.

The Lemma F.5.2 in the following states that the expected error of the error event
discussed above can be upper-bounded. This upper bound is obtained by decomposing
the error event into the union of three error events on each bit.
Lemma F.5.2. Define ε0 = ( 2

1−1/e
+ 1)pch + ε, where ε is the erasure probability of the BECs and

pch is a constant defined in (8.13). Then, the expected error probability P (N)
e (x) = EG[P Ge (x)]

can be upper-bounded by

P (N)
e (x) =EG[P Ge (x)] ≤

N∑
k=1

(
N

k

)
εk
[
ε0 + (1− ε0) · 1 + (1− 2p)k

2

]N
. (F.15)

Proof. We will first show how to decompose the error event mentioned in the above
example to obtain an upper bound on the conditional error probability P Ge (x). Then,
we show how to obtain an upper bound on the expected error probability P

(N)
e (x) =

EG[P Ge (x)]. Finally, we compute the expected error probability upper bound using
random graph theory.

Decomposing the error event conditioned on G

The ambiguity event mentioned above, i.e., a non-zero vector of self-information bits
being confused with the all-zero vector 0N , happens if and only if each entry of the
received vector r> is either zero or ‘e’. When x>0 and the graph G are both fixed, different
entries in r> are independent of each other. Thus, the ambiguity probability P Ge (x0 →
0N) for a fixed non-zero input x>0 and a fixed graph instance G is the product of the
corresponding ambiguity probability of each entry in r> (being a zero or a ‘e’).

The ambiguity event of each entry may occur due to structural deficiencies in the
graph topology as well as due to erasures. In particular, three events contribute to the
error at the i-th entry of r>: the product of x>0 and the i-th column of [I,A] is zero; the
i-th entry of r> is ‘e’ due to erasures in the first step; the i-th entry is ‘e’ due to an erasure
in the second step. We denote these three events respectively by A(i)

1 (x>0 ), A(i)
2 (x>0 ) and

A
(i)
3 (x>0 ), where the superscript i and the argument x>0 mean that the events are for the

i-th entry and conditioned on a fixed message vector x>0 . The ambiguity event on the i-th
entry is the union of the above three events. Note that the first event is due to structural
deficiency, while the second and the third events are due to erasures. Therefore, by
applying the union bound over all possible inputs, the error probability P Ge (x) can be
upper bounded by

P Ge (x) ≤
∑

x>0 ∈{0,1}N\{0N}

2N∏
i=1

Pr[A
(i)
1 (x>0 ) ∪ A(i)

2 (x>0 ) ∪ A(i)
3 (x>0 )|G], (F.16)
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In this expression, G is a random graph. The randomness of G lies in the random edge
connections.

Decomposing the unconditioned error event

We will further show that

P (N)
e (x) = EG[P Ge (x)] ≤

∑
x>0 ∈{0,1}N\{0N}

2N∏
i=1

Pr[A
(i)
1 (x>0 ) ∪ A(i)

2 (x>0 ) ∪ A(i)
3 (x>0 )], (F.17)

We use a set of random binary indicators {Emn}Nm,n=1 to denote these edges, i.e.,Emn =
1 if there is a directed edge from node vm to vn. Note that we allow self-loops, because
each node can certainly broadcasts information to itself. By Assumption (A.4), all random
variables in {Emn}Nm,n=1 are mutually independent. Since in the in-network computing
algorithm, the self-information bit xi and the local parity bit yi is only calculated based
on the in-edges of vi, i.e., the edge set E in

i = {Eni|1 ≤ n ≤ N}, we obtain

Pr[A
(i)
1 (x>0 ) ∪ A(i)

2 (x>0 ) ∪ A(i)
3 (x>0 )|G] = Pr[A

(i)
1 (x>0 ) ∪ A(i)

2 (x>0 ) ∪ A(i)
3 (x>0 )|Eni, 1 ≤ n ≤ N ].

(F.18)

Thus
2N∏
i=1

Pr[A
(i)
1 (x>0 ) ∪ A(i)

2 (x>0 ) ∪ A(i)
3 (x>0 )|G]

=
2N∏
i=1

Pr[A
(i)
1 (x>0 ) ∪ A(i)

2 (x>0 ) ∪ A(i)
3 (x>0 )|Eni, 1 ≤ n ≤ N ].

(F.19)

Note a bidirectional edge in the current setting corresponds to two independently gener-
ated directional edges. Therefore

P (N)
e (x)

=EG[P Ge (x)]

≤
∑

x>0 ∈{0,1}N\{0N}

EG

[
2N∏
i=1

Pr[A
(i)
1 (x>0 ) ∪ A(i)

2 (x>0 ) ∪ A(i)
3 (x>0 )|G]

]

(a)
=

∑
x>0 ∈{0,1}N\{0N}

2N∏
i=1

EG
[
Pr[A

(i)
1 (x>0 ) ∪ A(i)

2 (x>0 ) ∪ A(i)
3 (x>0 )|Eni, 1 ≤ n ≤ N ]

]

=
∑

x>0 ∈{0,1}N\{0N}

2N∏
i=1

Pr[A
(i)
1 (x>0 ) ∪ A(i)

2 (x>0 ) ∪ A(i)
3 (x>0 )],

(F.20)

where the equality (a) follows from the fact that the sets {Eni}1≤n≤N and {Enj}1≤n≤N are
independent (by the link generation hypothesis) for any pair (i, j) with i 6= j.

247



Computing the expected error upper bound using random graph theory

Lemma F.5.3. Define k as the number of ones in x>0 and ε0 = ( 2
1−1/e

+ 1)pch + ε, where ε is
the erasure probability of the BECs and pch is a constant defined in (8.13). Further suppose
c logN > 1. Then, for 1 ≤ i ≤ N , it holds that

N∏
i=1

Pr[A
(i)
1 (x>0 ) ∪ A(i)

2 (x>0 ) ∪ A(i)
3 (x>0 )] = εk. (F.21)

For N + 1 ≤ i ≤ 2N , it holds that

Pr[A
(i)
1 (x>0 ) ∪ A(i)

2 (x>0 ) ∪ A(i)
3 (x>0 )] ≤ ε0 + (1− ε0) · 1 + (1− 2p)k

2
, (F.22)

where p is the connection probability defined in Assumption (A.4).

Proof. See Appendix F.4.

Based on Lemma F.5.3 and simple counting arguments, note that (F.17) may be
bounded as

P (N)
e (x) ≤

N∑
k=1

(
N

k

)
εk
[
ε0 + (1− ε0) · 1 + (1− 2p)k

2

]N
, (F.23)

where the binomial expression
(
N
k

)
is from the fact that there are

(
N
k

)
codewords x0 with

k ones. Thus, we conclude the proof.

By respectively analyzing the upper bound in Lemma F.5.2 for k = o
(

N
logN

)
and

k = Ω
(

N
logN

)
, we can obtain the final result.

Combining two bounds together

We will prove that for any δ > 0, it holds that

P (N)
e ≤ (1− bδ)N+δeε

N2−c(1−ε0)(1−cδ)

logN
. (F.24)

As shown in what follows, we bound the right hand side of (F.15) with two different
methods for different k’s. First, when k satisfies

1 ≤ k < δ
N

logN
, (F.25)

define

u = N(1− ε0)
1− (1− 2p)k

2
(F.26)
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Then, based on the inequality

(1− 1

x
)x ≤ e−1,∀x ∈ (0, 1], (F.27)

we have

[ε0 + (1− ε0)
1 + (1− 2p)k

2
]N = (1− u

N
)N = [(1− u

N
)
N
u ]u ≤ e−u. (F.28)

From the Taylor’s expansion, we get

(1− 2p)k = 1− 2pk +
k(k − 1)

2
θ2, θ ∈ [0, 2p].

By applying the equation above to (F.26), we get

u = N(1− ε0)[kp− k(k − 1)

4
θ2].

Therefore, we have

e−u =e−k(1−ε0)·c logN exp{N(1− ε0)
k(k − 1)

4
θ2}

≤
(

1

N

)ck(1−ε0)

exp{N(1− ε0)
k(k − 1)

4

4c2log2N

N2
}

=

(
1

N

)ck(1−ε0)

N (1−ε0)· c
2k(k−1) logN

N .

Plugging the above inequality into (F.28), we get(
N

k

)
εk[ε0 + (1− ε0)

1 + (1− 2p)k

2
]N

≤
(
Ne

k

)k
εk
(

1

N

)ck(1−ε0)

N (1−ε0)· c
2k(k−1) logN

N

=
( e
k
εN1−c(1−ε0)[1− c(k−1) logN

N
]
)k

<
( e
k
εN1−c(1−ε0)(1−cδ)

)k
,

(F.29)

where the last inequality follows from (F.25).
Second, when k satisfies

k > δ
N

logN
, (F.30)

we can directly write

(1− 2p)k = [(1− 2p)
1
2p ]2pk ≤ e−2pk < e−2cδ.
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Therefore, it holds that

∑
k>δ N

logN

(
N

k

)
εk[ε0 + (1− ε0)

1 + (1− 2p)k

2
]N

≤
∑

k>δ N
logN

(
N

k

)
εk[ε0 + (1− ε0)

1 + e−2cδ

2
]N

≤[ε0 + (1− ε0)
1 + e−2cδ

2
]N

N∑
k=0

(
N

k

)
εk

=[ε0 + (1− ε0)
1 + e−2cδ

2
]N(1 + ε)N

=[(1− (1− ε0)
1− e−2cδ

2
)(1 + ε)]N

≤{1− [(1− ε0)(1− 1− e−2cδ

2
)− ε]}N = {1− (2bδ − ε)}N .

When (8.21) holds, we have

∑
k>δ N

logN

(
N

k

)
(

pch

c logN
)
k

[ε0 + (1− ε0)
1 + (1− 2p)k

2
]N < (1− bδ)N . (F.31)

Combining (F.15) and (F.29), we get

P (N)
e ≤ (1− bδ)N+∑

k<δ N
logN

(
N

k

)
εk[ε0 + (1− ε0)

1 + (1− 2p)k

2
]N

≤ (1− bδ)N +
∑

k<δ N
logN

( e
k
εN1−c(1−ε0)(1−cδ)

)k
≤ (1− bδ)N + δ

N

logN

e

k
εN1−c(1−ε0)(1−cδ)

≤ (1− bδ)N+δeε
N2−c(1−ε0)(1−cδ)

logN
.

When 2 < c(1− ε0)(1− cδ), the right hand side decreases polynomially with N .

F.6 Proof of Theorem 8.4.4

During the first step of the algorithm in Section 8.4.1, each self-information bit is broad-
casted for t times. Therefore, for a node vn, the total number of possibly erased versions
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Figure F.1: Network transformations that relate coding theory to noisy broadcast net-
works.

of xn is dnt where dn =
N∑
m=1

1{vn∈N−(vm)}. Each directed edge is counted once, so we have

N∑
n=1

dn = |E|. (F.32)

During the second step of the algorithm, each self-information bit xn is transmitted to
the sink once. For any xn, the probability that all dnt+ 1 copies of xn are erased is

pn = εdnt+1. (F.33)

If this event happens for any xn, the identity function cannot be computed reliably,
because at least all possible information about xn has been erased. Thus, we have

P (N)
e > 1−

N∏
n=1

(1− pn). (F.34)

Based on 1− x ≤ exp(−x) and the fact that arithmetic mean is no less than geometric
mean, we have

1− P (N)
e <

N∏
n=1

(1− pn) ≤

[
1

N

N∑
n=1

(1− pn)

]N

=

(
1− 1

N

N∑
n=1

pn

)N

≤

(
1− ε

1
N

N∑
n=1

dnt+1

)N

≤ exp

(
−N · ε

1
N

N∑
n=1

dnt+1

)
,

(F.35)

which can be translated into
N∑
n=1

(tdn + 1) ≥ N · logN − log log(1/(1− P (N)
e ))

log(1/ε)
. (F.36)

When lim
N→∞

P
(N)
e = 0, it holds that− log log(1/(1−P (N)

e )) = Θ(log 1

P
(N)
e

). Therefore, jointly
considering (8.13), we get

|E| =
N∑
n=1

dn = Ω(
N log(N/P

(N)
e )

log(c logN/pch)
). (F.37)
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Appendix G

Theoretical proofs for Chapter 9

G.1 Proof of Theorem 9.3.2

From Lemma 9.3.1, a check agent can determine the position and value of an incorrect
message if the check agent is a single-ton. The main idea in the proof is to show that most
of the check agents are single-tons. Suppose Vt satisfies (9.6). Then, we prove that Vt+1

also satisfies (9.6). First, we examine the t-th decoding iteration under the assumption
that all computations at the check agents and variable agents are fault-free.

Since Vt satisfies (9.6), from the expansion property, we have that

|N (Vt)| ≥ δdv|Vt|. (G.1)

Denote byFt ⊂ Vt the set of variable agents that fail to correct data after the t-th decoding
iteration. First we upper-bound |Ft| under the assumption that all computations at the
t-th decoding iteration are fault-free. Since all computations are fault-free, the correct
variable agents will not become faulty after the decoding iteration.

Then, we upper-bound the size ofN (Vt) by respectively examining the neighborhood
of Vt \ Ft and Ft. The neighborhood of Vt \ Ft satisfies the trivial upper bound

|N (Vt \ Ft)| ≤ dv|Vt \ Ft| = dv(|Vt| − |Ft|). (G.2)

Denote by E the number of edges connecting Ft and N (Ft). We have that E ≤ dv|Ft|.
Since variable agents in Ft fail to correct the wrong data, the check agents in N (Ft) must
be multi-tons, and they cannot be connected to Vt \ Ft. Therefore, E ≥ 2|N (Ft)|. Thus,
we have

|N (Ft)| ≤ E/2 ≤ dv
2
|Ft|. (G.3)

Combining (G.2) and (G.3), we have

|N (Vt)| =|N (Vt \ Ft)|+ |N (Ft)| ≤ dv(|Vt| − |Ft|) +
dv
2
|Ft| = dv|Vt| −

dv
2
|Ft|. (G.4)

From (G.1) and (G.4), we have

δdv|Vt| ≤ dv|Vt| −
dv
2
|Ft|, (G.5)
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which is equivalent to
|Ft| ≤ 2(1− δ)|Vt|. (G.6)

Now, we consider the case when computations can also be faulty. A single fault at a
check agent can at most corrupt the data at one variable agent. Similarly, a single fault at
a variable agent can only corrupt the data at the same variable agent. Therefore, when
computations are also faulty,

|Ft| ≤ 2(1− δ)|Vt|+ evar
t + echk

t . (G.7)

The number of variable agents that store incorrect data before the (t + 1)-th decoding
iteration satisfies

|Vt+1| ≤ |Ft|+ esto
t . (G.8)

Therefore,

|Vt+1| ≤2(1− δ)|Vt|+ evar
t + echk

t + esto
t ≤ 2(1− δ)αN + (2δ − 1)αN = αN. (G.9)

G.2 Proof of Theorem 9.4.1

The proof for the first part (i.e., the proof of (9.14)) can be derived similarly as in the proof
of Theorem 9.3.2. In fact, we can obtain the same bound (G.6) under the assumption
that all computations in the t-th iteration are fault-free. When computations are fault-
prone, each of the eloc

t computation faults in computing w>t Xi may result in the failure
of detecting at most dv storage faults, because all connected parity check agents may
change from single-tons to multi-tons due to this computation failure; a computation
fault in the parity check computation may result in the failure of correcting at most one
incorrect variable agent. Therefore,

|Vt+1| ≤2(1− δ)|Vt|+ dve
loc
t + echk

t + esto
t ≤ 2(1− δ)αN + (2δ − 1)αN = αN. (G.10)

Then, we look at the effect of different types of faults on the computation of the
local gradient update ∇w

(i)
t = Xi

[
yi − σ(X>i wt)

]
. When a first-type fault (storage fault)

happens, the stored data changes from Xi to Xi + Ni; the second-type fault (computation
of X>i wt), the third-type fault (solving (9.3)) and the fourth-type fault (computation of
the majority) all change X>i wt to X>i wt+ni, and the effect of these three types of faults do
not accumulate, because the third-type fault masks the second-type fault and the fourth-
type fault masks the third-type fault; the fifth-type fault (final computation of the local
gradient) changes the final local gradient from Xi

[
yi − σ(X>i wt)

]
to Xi

[
yi − σ(X>i wt)

]
+

ñi. The overall effect of all five types of errors is to change the local gradient from
Xi

[
yi − σ(X>i wt)

]
to

∇w
(i)
t,f = (Xi + Ni)

[
yi − σ

(
(Xi + Ni)

>wt + ni
)]

+ ñi. (G.11)
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The change in the local gradient computed at the i-th variable agent is

e
(i)
t = ∇w

(i)
t,f −∇w

(i)
t

= (Xi + Ni)
[
yi − σ

(
(Xi + Ni)

>wt + ni
)]

+ ñi −Xi

[
yi − σ(X>i wt)

]
= −Xi

(
σ
(
(Xi + Ni)

>wt + ni
)
− σ(X>i wt)

)
+ Ni

[
yi − σ

(
(Xi + Ni)

>wt + ni
)]

+ ñi.

(G.12)

Define σ̃(x) = dσ(x)
dx

= σ(x)(1 − σ(x)). When σ̃(x) is applied to a vector, the function
σ(x)(1− σ(x)) is applied to each entry of the vector. Then, using Cauchy’s mean-value
theorem [301, Section 10.4], we have

σ
(
(Xi + Ni)

>wt + ni
)
− σ(X>i wt) = D · (N>i wt + ni), (G.13)

where
D = diag

[
σ̃
(
θ
(
(Xi + Ni)

>wt + ni
)

+ (1− θ)X>i wt

)]
, (G.14)

for some θ ∈ (0, 1). Since σ̃(x) = σ(x)(1− σ(x)) ≤ 1
4
∀x ∈ R, we have∥∥D (N>i wt + ni

)∥∥ ≤ 1

4

∥∥N>i wt + ni
∥∥ ≤ 1

4
(Lφ ‖Ni‖+ ‖ni‖). (G.15)

Therefore, the change in the local gradient satisfies∥∥∥e(i)
t

∥∥∥ ≤∥∥Xi

(
σ
(
(Xi + Ni)

>wt + ni
)
− σ(X>i wt)

)∥∥
+
∥∥Ni

[
yi − σ

(
(Xi + Ni)

>wt + ni
)]∥∥+ ‖ñi‖

≤‖Xi‖ ·
1

4
((Lφ + Lu) ‖Ni‖+ ‖ni‖) + ‖Ni‖ · 2k + ‖ñi‖

≤(
1

4

√
k(Lφ + Lu)Lx + 2k) ‖Ni‖+

1

4

√
kLx ‖ni‖+ ‖ñi‖ ,

(G.16)

where the induced matrix norm is the Frobenius norm. Note that the derivation above
accounts for the accumulative effect of different types of faults on the output at a single
local gradient. If a fault does not happen at the i-th variable agent, the fault equals to
zero. Define et = ∇L(wt,f) − ∇L(wt) as the overall computation error of the gradient.
Using the triangle inequality, we have

‖et‖ ≤
L∑
i=1

∥∥∥e(i)
t

∥∥∥ ≤ L∑
i=1

(
1

4

√
k(Lφ + Lu)Lx + 2k) ‖Ni‖+

1

4

√
kLx ‖ni‖+ ‖ñi‖

≤
(

1

4

√
kLx(Lφ + Lu) + 2k

) L∑
i=1

‖Ni‖+
1

4

√
kLx

L∑
i=1

‖ni‖+
L∑
i=1

‖ñi‖ .

(G.17)

From the bound on the number of storage faults (9.14), the bound on the number of
computation faults (9.15) at each iteration and the bound on the `2-norm of the faults
(see Assumption 15), we have

L∑
i=1

‖Ni‖ ≤ αNLe, (G.18)
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and
L∑
i=1

‖ni‖+
L∑
i=1

‖ñi‖ ≤ βNLe. (G.19)

Therefore, we have

‖et‖ ≤
(

1

4

√
kLx(Lφ + Lu) + 2k

)
· αNLe + max

(
1

4

√
kLx, 1

)
· βNLe = ηN, (G.20)

where η :=
(

1
4

√
kLx(Lφ + Lu) + 2k

)
· αLe + max

(
1
4

√
kLx, 1

)
· βLe. The update at the

central controller satisfies

wt+1 =(1− 2ελ)wt − ε∇L(wt,f) = (1− 2ελ)wt − ε(∇L(wt) + et). (G.21)

The desired update is
ut+1 = (1− 2ελ)ut − ε∇L(ut). (G.22)

Suppose the initial value of these two systems are the same. Define the difference
between the two systems as φt = wt − ut, then,

φt+1 =(1− 2ελ)wt − ε(∇L(wt) + et)− (1− 2ελ)ut + ε∇L(ut)

=(1− 2ελ)φt − εet − εH
(
wθ
t

)
φt,

=
(
(1− 2ελ)I− εH

(
wθ
t

))
φt − εet.

(G.23)

where wθ
t = θwt + (1 − θ)ut and the constant θ ∈ (0, 1) is obtained using Cauchy’s

mean-value theorem

∇L(wt)−∇L(ut) = H (θwt + (1− θ)ut) (wt − ut)

= H (θwt + (1− θ)ut)φt,
(G.24)

and the Hessian H(w) is

H(wθ
t ) = X̃R(wθ

t )X̃
> =

L∑
i=1

K∑
j=1

φi,j(1− φi,j)xi,jx>i,j, (G.25)

where

R(wθ
t ) = Diag{φ1,1(1− φ1,1), φ1,2(1− φ1,2), . . . , φL,k(1− φL,k)}, (G.26)

and
φi,j(w

θ
t ) = σ((wθ

t )
>xi,j), 1 ≤ i ≤ L, 1 ≤ j ≤ k. (G.27)

Now we prove that the error φt satisfies

‖φt‖ ≤ Lφ. (G.28)
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First, we can see that
‖φ0‖ = 0, (G.29)

which satisfies (G.28) for t = 0. Suppose at time t, (G.28) is satisfied.
Now, for the contraction linear system (G.23),

‖φt+1‖ ≤
∥∥(1− 2ελ)I− εH

(
wθ
t

)∥∥ · ‖φt‖+ ε ‖et‖
≤ (1− 2ελ) ‖φt‖+ ε ‖et‖
≤ (1− 2ελ)Lφ + εηN

≤ (1− 2ελ)Lφ + 2ελLφ = Lφ.

(G.30)
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