
ProtoGANist: Protocol Reverse

Engineering using Generative Adversarial

Networks

Submitted in partial fulfillment of the requirements for

the degree of

Master of Science

in

Information Security

Carolina M. Zarate

B.S., Computer Science, Carnegie Mellon University

Carnegie Mellon University
Pittsburgh, PA

May, 2019

c© Carolina M. Zarate, 2019
All Rights Reserved

Acknowledgements

First and foremost a huge thank you to my thesis advisors, Dr. Vyas Sekar and

Dr. Giulia Fanti, who have shared their extensive knowledge and experience in the

subject matter. This research had me working with new and challenging ideas and I

feel like I have gained a lot from this experience. I am grateful for the opportunity

you have provided me in this work and your guidance and experience has been truly

been instrumental in my research.

I would also like to thank the many folks at Carnegie Mellon University that

have made my time at CMU a great experience: Professor Mark Stehlik, Dr. David

Brumley, Professor Dave Eckhardt, Dr. Dena Haritos Tsamitis, and so many others.

I am thankful for the opportunities and help you have provided for me to succeed

during my time at CMU. Your faith in my abilities has given me the determination

to succeed.

Thank you to my peers in CyLab and the research community that have sup-

ported me during the course of this research — specifically Sekar Kulandaivel and

Zinan Lin, who have provided much help and feedback during the course of my re-

search. And a thank you to the many current and previous research students that

have helped — Soo-jin Moon, Jay Bosamiya, and Dr. Tiffany Bao. Your experiences

and advice have helped me better prepare myself to complete this work.

This research was self-funded by the researcher.

To my friends near and far — Matthew Savage, Zachary Wade, Corwin de Boor,

Noelle Toong, John Davis, Sarah Bien, Azer Wang, Ananya Rajgarhia, Ana Vlajnic,

Eunice Chung, Manuel Guillen, Alex Jia, Chris Thompson, and so many others.

Your moral support has helped me achieve many things.

ii

Thank you to Joseph Kim, for all his love and support in my many crazy endeav-

ors.

Lastly, a thank you to my family: my mother, Silvina Zarate, my father, Carlos

Zarate, and my siblings, Diego and Sofia Zarate. Your unconditional love, support,

and goofing off has brought me so much joy and strength in all my undertakings.

Again, a huge thank you to the immense number of people that have supported

me. Your encouragement has played a huge part in the completion of this research

and other aspects of my life.

iii

Abstract

Many reported vulnerabilities are related to the way that a system accepts, pro-

cesses, and interprets protocol packets and the information contained therein. Ad-

versaries can trigger these vulnerabilities by sending specially crafted packets to the

system. Typical solutions to this problem include generating packets in accordance

with the protocol format, sending them to the system, and observing the resulting

behavior on the system. However, these solutions fall apart when dealing with a

black box system and black box protocols, because it is unclear how to generate

realistic protocol packets. We present ProtoGANist, a system to model unknown

protocol message formats and produce messages similar to the underlying format

using generative machine learning models. Given sample messages from a black-box

protocol and a black-box system that uses the protocol, our goal is to learn to pro-

duce randomized protocol-compliant messages. The difficulty of this task lies in the

complexity of the protocol message format. Message fields’ values, lengths, and over-

all structure may be defined by complex functions that depend on other fields. These

dependencies are difficult for existing tools to capture, primarily because they may

be a result of several operations performed on the value or length of many fields, such

as in checksums. Generative Adversarial Networks (GANs) have been shown to have

the ability to learn to generate samples that are similar to the data given to them.

GANs traditionally have been used in image processing to create generative models

of images. We leverage this capability in a novel way for the purposes of learning

the message format of an unknown protocol. Ground-truth sample messages of the

unknown protocol are provided to the GAN system. We show that ProtoGANist is

able to identify and learn about complex message format features. We demonstrate

iv

that this feature of ProtoGANist is able to outperform other state-of the-art tools

in this manner with a separate testing system. This testing system is able to pro-

duce protocols with different characteristics to test the complexities that may exist

in protocol message formats.

v

Table of Contents

Acknowledgements ii

Abstract iv

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Security Testing of Software . 2

1.2 Security Testing in Black Box Systems 3

1.3 Contributions . 6

1.4 Thesis Outline . 7

2 Protocol Reverse Engineering 8

2.1 Protocol Reverse Engineering Overview 8

2.1.1 Goals of Protocol Reverse Engineering 8

2.1.2 Inference Process . 9

2.2 State of the Art Tools . 10

2.2.1 Terminology . 11

2.2.2 Techniques . 11

2.2.3 Limitations in State of the Art 16

3 Generative Adversarial Networks 17

3.1 Architecture Overview . 17

3.1.1 Adversarial Approach . 19

3.2 Wasserstein Generative Adversarial Networks 20

vi

3.3 Security-Related Applications of GANs 21

3.3.1 Avoiding Detection of Malware 21

4 Problem Overview 23

4.1 Overview . 23

4.2 Protocol Message Format Definition 24

4.3 Goals . 26

5 System Overview 28

5.1 ProtoGANist Protocol Format-Learning System 28

5.1.1 Challenges . 28

5.1.2 System Setup . 30

6 Evaluation 32

6.1 Experiment Setup . 32

6.2 Methodology . 32

6.3 Experimentation Process . 35

6.4 Synthetic Protocol Modeler . 36

6.5 Protocol Message Format Properties 37

6.5.1 Experiment 1: Ranges (ASCII Printable Characters) 37

6.5.2 Experiment 2: Basic Operations (XOR Bit Operation) 38

6.5.3 Experiment 3: Checks (TCP Checksum) 40

6.5.4 Experiment 4: Stress Test (Controller Area Network) 41

6.6 Investigating Difficulties with CRC 45

6.6.1 Training Set Size vs CRC-4 47

6.7 Memorization vs Learning . 48

7 Discussion and Future Work 51

7.1 Findings . 51

7.1.1 Limitations and Improvements 52

7.2 Future Work . 53

8 Conclusion 55

vii

Bibliography 57

viii

List of Tables

Table 2.1 Protocol RE tool inference process 15

ix

List of Figures

Figure 1.1 Approach to test software interacting w/ protocols. 2

Figure 1.2 Approach to test software in black box scenario 3

Figure 1.3 TCP checksum toy protocol . 6

Figure 2.1 Inputs and outputs for protocol RE tools 9

Figure 2.2 Definitions of common protocol RE terms 11

Figure 2.3 Needleman-Wunsch Algorithm 12

Figure 3.1 Overview of a GAN . 18

Figure 4.1 Definition of protocol message format 25

Figure 5.1 Handling of variable-length messages 29

Figure 5.2 ProtoGANist System Overview 30

Figure 6.1 Types of content to test . 33

Figure 6.2 List of experiments . 35

Figure 6.3 Synthetic protocol modeler . 36

Figure 6.4 Experiment 1 protocol . 37

Figure 6.5 Experiment 1 evaluation . 38

Figure 6.6 Experiment 2 protocol . 39

Figure 6.7 Experiment 2 evaluation . 39

Figure 6.8 TCP checksum function . 40

Figure 6.9 Experiment 3 protocol . 40

Figure 6.10Experiment 3 evaluation . 41

Figure 6.11Experiment 4 protocol . 43

x

Figure 6.12Experiment 4 protocol - length 43

Figure 6.13Experiment 4 evaluation - length 43

Figure 6.14Experiment 4 protocol - static 44

Figure 6.15Experiment 4 evaluation - static value 44

Figure 6.16Experiment 4 protocol - check 45

Figure 6.17Experiment 4 evaluation - check 46

Figure 6.18Experiment 4 protocol - check 46

Figure 6.19Experiment - CRC-4 . 47

Figure 6.20CRC-4 accuracy based on training set size 48

Figure 6.21Amount of generated messages that were new content 49

Figure 6.22Accuracy of generated messages with new content 50

Figure 7.1 Summary of findings . 52

xi

1

Introduction

Ensuring the security of software for bugs is a critical step in the software engineering

process. Many software artifacts interact with network protocols, allowing users and

other systems to remotely interact with it. It is thus important to test the code

interacting with these protocols in the software testing process. In some cases, this

objective is difficult to achieve simply because the protocol is proprietary or poorly

documented. An analyst would not have little intuition on how to test software on

a black box system with black box protocols.

Current solutions to this issue revolve around reverse engineering the protocols

[9][27][32]. However, many of these techniques do not fully characterize the com-

plexities of protocols and furthermore may have requirements outside the scope of

common protocol reverse engineering scenarios.

Our goal is to identify an alternative technique to perform this protocol reverse

engineering in black box scenarios. We look to achieve a sufficiently high accuracy

such that our solution is better than naive generation.

1

Figure 1.1: Software testing techniques such as fuzzing involve an analyst sending
protocol-compliant messages to a system & seeing if any trigger unexpected behavior
in the system.

1.1 Security Testing of Software

There are no guarantees that the content received by a system over a network is of

the expected format or that it will not trigger unintentional behavior. Many reported

Common Vulnerabilities and Exposures (CVEs) stem from a specially-crafted pro-

tocol packet triggering unintended behaviors in the receiving system. Some relevant

CVEs include the following:

• 2010: A case study of Tire Pressure Monitoring System (TPMS) had an oc-

currence where the Engine Control Unit (ECU) was bricked by fuzzing TPMS

packets [15].

• Late 2018: An ICMP packet was demonstrated to be able to trigger an out-

of-bounds write in the Apple XNU kernel [3].

• Feb 2019: Several CVEs in Remote Desktop Protocol (RDP) clients were

found [16].

The typical setup for software testing is depicted in Figure 1.1. A client sends

protocol messages following the protocol specification to a system. The system

2

Figure 1.2: A black box system is such that there is no prior knowledge of or access
to the software running on the system. A black box protocol is a proprietary or
poorly-documented protocol that we have no knowledge about the specification.

has some software running on it which would send and receive messages.

An analyst tests a system by sending protocol messages to it either with a tool

or by hand. The analyst’s goal is to induce some unintended behavior on the system

with these messages. Unintended behavior can vary between different situations.

Crashes in software are one such common unintended behavior. Another example

may be the engine unexpectedly shutting off in a car in the middle of the road. We

will assume for the purposes of this work that the analyst is interested in testing the

functionality of the software for unintended behavior beyond the checks that software

may make on the input.

1.2 Security Testing in Black Box Systems

A black box system is one which we have no knowledge of or access to the software

running on the system. This means we cannot perform any analysis directly on

the software itself. The black box system interacts with client via some black box

protocol. We have no prior knowledge of the specification of the black box protocol.

The described black box scenario is depicted in Figure 1.2.

Black box systems and protocols require security testing as well. Oftentimes,

3

security and privacy were not prioritized in many of these systems during their de-

velopment. Increases in interconnectivity of devices have both significantly increased

the attack surface and increased the potential for vulnerabilities.

One such case of this has been in the automobile industry. Automobile systems

were created with a focus on speed and reliability, not security and privacy. The

development of automobile entertainment systems, Vehicle-to-Vehicle (V2V) com-

munication, and automobile automation have led to serious concerns about security

in cars. Miller and Valasek demonstrated the ability to remotely hack and control

an automobile in their 2015 work [26].

Many of the protocols used in automotive systems are proprietary. For instance,

the Tire Pressure Monitoring System (TPMS) protocol is one such proprietary pro-

tocol not equipped with security or privacy features. A 2010 TPMS case study

demonstrated the many security and privacy issues in the car [15]. Most notably,

they demonstrated that sending many random TPMS packets to the system could

brick the Engine Control Unit (ECU) [15].

Another realm in which black box protocols have been deployed is the Internet

of Things (IoT) field. The IoT space has rapidly expanded in the past several years.

This has led to many issues in security and privacy, namely in the Mirai botnet

incident [1]. Furthermore, proprietary and poorly-documented protocols are the

norm in the IoT space [17], adding an additional layer of difficulty to security testing

of these systems.

TPMS and many of these other proprietary protocols are important to investi-

gate because they are a largely unexplored attack vector [15] [26]. In order to be

able to efficiently test the software using these protocols, we would have to reverse

engineer the protocol format to understand the expected format of the messages.

This process can take anywhere from weeks to months to years depending on the

protocol, amount of information available, and skill level of the analyst performing

4

the reverse engineering. In the case of the Samba project, it took approximately 12

years to reverse engineer the Microsoft SMB protocol [35].

Security testing of these systems is difficult without any prior knowledge of the

protocol. Software is typically structured such that after receiving user input, it

checks that parts of the message follow an expected format. For instance, software

may expect a certain field to contain an integer number and check for such. If the

sample messages used to test software do not follow the format, they are immediately

thrown out. Therefore, for a message to be effective in testing a system for security

vulnerabilities, it must align closely with the protocol specification.

In the case of a black box scenario, we do not have access to the software in-

teracting with the protocol, so we do not know the types of protocol specification

checks that are performed. Furthermore, the protocol the software interacts with is

a black box protocol so we have no information about how the protocol messages

should look.

Current techniques involved manual testing, fuzzing, static analysis, or dynamic

analysis [22]. Effective fuzzing is only possible if we have information about the

software binary either through prior knowledge or performing static or dynamic

analysis on the software binary. However, in the black box scenario we presented, the

best we can do is blind fuzzing since we have no prior knowledge about the system or

the protocol. This is because other fuzzing and software testing techniques typically

require a binary to statically or dynamically analyze. In naive testing, we conceive

every possible combination of input and send it to the system to look for unintended

behaviors. This naive testing is inefficient and highly unlikely to find unintended

behavior.

Let us present a toy protocol to highlight the issue of naive testing. The toy

protocol consists of three fields as represented in Figure 1.3. The first two fields

accept any value. The third field’s value is the TCP checksum function on the values

5

Figure 1.3: A toy protocol consisting of two 8-bit fields accepting any value and a
third 16-bit field whose value is the TCP checksum of the first two fields.

of the first two fields. To pass checks on a message following this specification, the

third field must be the TCP checksum of the first two fields. For a combination of

fields, if we had to guess the TCP checksum, we would get it correct 1
216
“ 1

65536
of

the time. If this was extended to more complex protocols with many fields each with

complex values and lengths, guessing a message that passes all the checks would be

highly unlikely.

1.3 Contributions

The protocol reverse engineering process is as follows. First, a model is created that

describes the protocol in some way. Messages are then synthesized from this model

to test software. In this thesis, we apply a deep learning technique, Generative

Adversarial Networks [13], to the black box protocol reverse engineering problem.

We demonstrate that a system using this technique is able to implicitly learn the

protocol message format of a black box protocol by skipping over the modelling stage

straight to the synthesis of messages.

The specific contributions of this thesis are as follows:

• We create a formal definition of protocol message formats and a synthetic

protocol modeler to generate sample messages of that format.

• We built ProtoGANist, a protocol message format-learning system that applies

Generative Adversarial Networks.

• We set up an experimental framework that highlights different aspects of the

6

protocol message format. From these experiments, we gained insight on the

limitations of ProtoGANist, specifically examples of what it can or cannot

learn.

1.4 Thesis Outline

This thesis is outlined as follows. Chapter 1 introduces the general setup of software

verification and the overall motivation behind this work. Chapter 2 goes into the

goals and state of the art of current protocol reverse engineering. We specially focus

on black box protocol reverse engineering state of the art that follows our particular

scope. Chapter 3 describes a new application of Generative Adversarial Networks

to solve the black box protocol reverse engineering problem. Chapter 4 gives an

overview of the problem. Chapter 5 gives an overview of our system using the

proposed Generative Adversarial Networks technique. In Chapter 6, we perform the

evaluation of our system. The results are discussed in Chapter 7.

7

2

Protocol Reverse Engineering

There has been extensive work in protocol reverse engineering [9][27][32]. The tech-

niques proposed in these works address the large variety of content, formats and

properties, use cases, restrictions, and more in protocols. This chapter first presents

an overview of protocol reverse engineering and the state of the art with respect to

the black box scenario we presented in Section 1.2.

2.1 Protocol Reverse Engineering Overview

2.1.1 Goals of Protocol Reverse Engineering

The overall goal of protocol reverse engineering is to infer some information about

a protocol. The exact goal for a protocol reverse engineering tool varies depending

on the use case it is geared towards. We focus on tools that automate the protocol

reverse engineering process.

Tools may look to reverse engineer a protocol to model a network for the purposes

of simulating a given protocol [9]. Models can be used to simulate the network to

allow for convincing interactions with attackers such as in honey pots [20][21] or

8

Figure 2.1: A summary of different types of inputs and outputs protocol reverse
engineering tools may have.

to gain understanding about malware and botnets [7][8]. Information about the

format of messages can also be used to interface with software [35] or to identify

vulnerabilities [6][10].

2.1.2 Inference Process

Protocol reverse engineering tools can be summarily categorized by their inference

process. The inference process consists of the inputs, outputs, and analysis tech-

niques. Figure 2.1 depicts the input and outputs in these tools.

Input The input to a tool may be a network trace and/or software binary.

A network trace is a series of protocol messages in some format such as a packet

capture. For tools that analyze a network trace, they will identify patterns that

indicate a format within them. The software binary is the software running on the

system that interacts via the protocol messages. Tools that take a software binary

can either perform static analysis on the content of the binary or dynamic analysis

by examining application execution traces.

9

Output Tools will either try to determine the protocol message format or the

protocol grammar. The protocol message format is the format of an individual

message of the protocol. The protocol grammar adds another layer of complexity,

referring to the protocol message format over time between different messages. For

instance, in a protocol grammar, an id field may be some field incrementing by 1 with

each message. In the protocol message format, that field would just be considered

as an integer field since there is no concept of statefulness between messages. While

we leave protocol grammar as future work for ProtoGANist, we believe that it is

important to evaluate the feasibility of adding in such a feature.

Analysis Analysis may be done passively or actively. Passive analysis is analysis

that is done without any feedback or additional information given during the learning

process. This may be the case when an analyst is given a packet capture but cannot

interact with the system. Active analysis is when a system actively seeks out

feedback to incorporate into the learning process. An example of active analysis

would be creating a network protocol model and then updating it based on live

network traffic or performing dynamic analysis of a software binary.

Examples of this would be tweaking a network protocol model based on responses

received from a server or dynamic analysis of a software binary.

2.2 State of the Art Tools

We will describe the set of tools designed to solve the black box protocol reverse

engineering problem. Furthermore, we will consider how this process can be done

using only network message traces as input and the protocol message format as the

output.

10

Figure 2.2: Protocol message components commonly referenced in protocol reverse
engineering tools.

2.2.1 Terminology

We will define terminology in Figure 2.2 to help characterize the abilities of these

protocol reverse engineering tools.

Field A primitive segment of the protocol in which data is stored.

Field Boundary The point of separation between distinct fields.

Length The size of the field. This may vary in different messages of the protocol.

Value/Type A functional description of the inhabitants of a field. In Figure 2.2

this happens to be the TCP checksum function.

Dependencies The fields from which the value/type function of a field takes input.

2.2.2 Techniques

There are a wide variety of black box protocol reverse engineering tools. These tools

draw inspiration from many other fields such as bioinformatics, natural language

processing, image processing, and more to approach this problem.

11

We will focus on three of these tools that are available and open-source. A

summary of the techniques used by other tools is in Table 2.1.

Protocol Informatics Project (PIP)

PIP[4] applies bioinformatics algorithms such as Smith Waterman [33], Needleman-

Wunsch [28], and UPGMA [29] to identify fields within variable-length messages.

First, the Smith Waterman algorithm is used to perform local alignment of message

bits to identify messages with similar subsequences. This can be used to cluster

similar messages into families. Next, the Needleman-Wunsch algorithm is used to

perform global alignment for messages within a cluster. Needleman-Wunsch is used

in bioinformatics to align protein sequences in the most likely configuration. In

PIP, messages are aligned from beginning to end such that similar components are

grouped together with padding in between. This process can be seen in the example

from the PIP paperFigure 2.3. Lastly, UPGMA can be used to create a phylogenetic

tree of messages. UPGMA uses multiple sequence alignment to create a phylogenetic

tree showing the similarity in structure between messages.

1 GET / index . html HTTP/1 .0
2 GET / HTTP/1 .0

Figure 2.3: An example of running the Needleman-Wunsch algorithm on “GET /
HTTP/1.0” and “GET /index.html HTTP/1.0”.

This paper was an early protocol reverse engineering paper and the first to thor-

oughly examine the application of bioinformatics techniques to the protocol reverse

engineering problem. Later tools have been developed atop the success of PIP, of-

tentimes applying the proposed algorithms as an initial step in identifying the ap-

proximate locations of fields.

12

However, PIP struggles with large sets of binary data. If the data is not easily

characterizable by a simple function, it is difficult for it to be properly interpreted

as a field. Furthermore, aligning data of a single field does not take into account

dependencies on other fields.

Netzob

Netzob [5] is a tool that applied the findings of PIP. Netzob uses the bioinformatics

techniques outlined in the PIP paper to perform initial field alignment. Netzob

applies contextual information about the fields in order to improve clustering of fields

and learn additional information such as basic dependencies and types. Maximal

Information Coefficient (MIC) [30] is used to identify dependencies within data

even if they are not linear. MIC allows Netzob to identify fields and field boundaries

and characterize the values as functions dependent on other fields.

However, Netzob relies on these functions to be predefined. The code contains

predefined attributes, relationships, and types which are then efficiently searched for

in the messages using the Maximal Information Coefficient technique. If the function

is not defined, Netzob does not know to search for it.

This issue stems from a naive solution in protocol reverse engineering where

one would conceive every possible function in existence and test every subarray of

the message to see if the values in the field match the function. While Maximal

Information Coefficient prevents us from having to naively compare the function

with every subarray of the message, we still have no method of determining what

functions characterize the field values in the protocol.

NEMESYS

Lastly, NEMESYS [11] is able to efficiently determine field boundaries by examining

the distribution of changes in the bits throughout the protocol message. By inferring

13

format information from values within a single message, this technique allows for

analysis to be done per message rather than between every message. The approach

worked well in inferring field boundaries in binary protocols, which many other tools

had difficulties in handling.

While NEMESYS is able to identify field boundaries, it cannot give information

about the protocol message format as a whole. In addition, cases with consecutive

fields of the same data may be difficult to identify as separate fields.

14

T
e
ch

n
iq

u
e
s

U
se

s

P
IP

S
m

it
h
-W

at
er

m
an

L
o
ca

l
al

ig
n
m

en
t

N
ee

d
le

m
an

-W
u
n
sc

h
G

lo
b
al

se
q
u
en

ce
al

ig
n
m

en
t

U
P

G
M

A
P

h
y
lo

ge
n
et

ic
tr

ee
(h

is
to

ri
ca

l
si

m
il
ar

it
y
)

S
cr

ip
tG

en
N

ee
d
le

m
an

-W
u
n
sc

h
G

lo
b
al

se
q
u
en

ce
al

ig
n
m

en
t

B
y
te

ty
p

e,
fr

eq
u
en

cy
,

va
ri

ab
il
it

y
G

ro
u
p
in

g
si

m
il
ar

b
y
te

s
in

to
fi
el

d
s

R
ol

eP
la

ye
r

N
ee

d
le

m
an

-W
u
n
sc

h
G

lo
b
al

se
q
u
en

ce
al

ig
n
m

en
t

P
ai

rw
is

e
co

n
st

ra
in

t
m

at
ri

x
A

li
gn

m
en

t
v
ia

fi
el

d
se

m
an

ti
cs

D
is

co
ve

re
r

N
ee

d
le

m
an

-W
u
n
sc

h
G

lo
b
al

se
q
u
en

ce
al

ig
n
m

en
t

P
ar

si
n
g

le
ft

to
ri

gh
t

C
lu

st
er

m
es

sa
ge

s
of

si
m

il
ar

fo
rm

at
in

p
ar

si
n
g

or
d
er

L
Z

fu
zz

L
em

p
el

-Z
iv

co
m

p
re

ss
io

n
P

ac
ke

t
se

gm
en

ta
ti

on
in

to
to

ke
n
s

A
S
A

P
S
ta

ti
st

ic
al

t-
te

st
Id

en
ti

fy
n
on

-v
ol

at
il
e

or
co

n
st

an
t

st
ri

n
gs

M
at

ri
x

fa
ct

or
iz

at
io

n
G

et
b
u
il
d
in

g
b
lo

ck
s

(fi
el

d
s)

of
m

es
sa

ge
B

ip
ro

m
in

er
T

ra
n
si

ti
on

P
ro

b
ab

il
it

y
M

o
d
el

D
et

er
m

in
e

p
ro

b
ab

il
it

ie
s

of
fi
el

d
va

lu
es

P
ro

D
ec

o
d
er

N
ee

d
le

m
an

-W
u
n
sc

h
G

lo
b
al

se
q
u
en

ce
al

ig
n
m

en
t

N
-g

ra
m

se
q
u
en

ce
s

F
in

d
ke

y
w

or
d

fi
el

d
s

N
et

zo
b

N
ee

d
le

m
an

-W
u
n
sc

h
G

lo
b
al

se
q
u
en

ce
al

ig
n
m

en
t

M
ax

im
al

In
fo

rm
at

io
n

C
o
effi

ci
en

t
R

et
ri

ev
es

n
on

-l
in

ea
r

d
ep

en
d
en

ci
es

of
fu

n
ct

io
n
s

A
u
to

R
eE

n
gi

n
e

A
p
ri

or
i

Id
en

ti
fy

p
ro

to
co

l
ke

y
w

or
d
s

P
U

L
S
A

R
N

on
-n

eg
at

iv
e

m
at

ri
x

fa
ct

or
iz

at
io

n
P

ar
t-

b
as

ed
cl

u
st

er
in

g
in

to
si

m
il
ar

st
ru

ct
u
re

s
D

F
A

m
in

im
iz

at
io

n
M

in
im

iz
e

D
F
A

re
p
re

se
n
ti

n
g

m
es

sa
ge

la
n
gu

ag
e

W
A

S
p

B
y
te

an
al

y
si

s
(f

ea
tu

re
,

ra
n
ge

,
et

c.
)

Id
en

ti
fy

co
n
te

n
ts

of
fi
el

d
s

S
h
an

n
on

en
tr

op
y

D
et

er
m

in
e

fi
x
ed

b
y
te

va
lu

es
N

-g
ra

m
te

st
C

on
si

st
en

cy
of

p
ac

ke
t

co
n
te

n
ts

N
E

M
E

S
Y

S
D

el
ta

of
b
it

va
lu

e
co

n
gr

u
en

ce
Id

en
ti

fy
fi
el

d
b

ou
n
d
ar

ie
s

G
au

ss
ia

n
fi
lt

er
D

et
er

m
in

e
li
ke

li
h
o
o
d

of
fi
el

d
b

ou
n
d
ar

ie
s

T
ab

le
2.

1:
T

h
e

in
fe

re
n
ce

ap
p
ro

ac
h
es

p
ro

to
co

l
re

ve
rs

e
en

gi
n
ee

ri
n
g

to
ol

s
ta

ke
.

15

2.2.3 Limitations in State of the Art

We can summarize the approach of the majority of these tools as follows:

1. Use bioinformatics algorithms to perform initial field identification.

2. Apply some additional technique such as MIC and delta bit congruence to

further refine this information.

From our review of current literature, none of the tools performing black box pro-

tocol reverse engineering for protocol message formats were able to fully characterize

complex functions or dependencies within protocol messages. Referring back to our

toy TCP checksum protocol in Figure 1.3, PIP and NEMESYS would likely struggle

with identifying field boundaries from randomized binary. Furthermore, both would

not be able to model the functional dependency between fields. Netzob’s application

of Maximal Information Coefficient was a step in the right direction to identify field

dependencies, but it relied too heavily on the user knowing the types of functions

present in the protocol message format.

Additionally, current tools for software vulnerability testing would not be able to

function well in our proposed black box scenario. Fuzzers work by creating content

to use as input into software binaries and then looking for unintended behavior

such as crashes. One state of the art fuzzer, American Fuzzy Lop (AFL), generates

seeds for fuzzing by mutating inputs and focusing on testing new code paths [36].

However, AFL requires access to the software binary for information that it uses to

create inputs. Other fuzzing and security testing techniques also face the issues of

ineffectiveness in a black box system [22].

16

3

Generative Adversarial Networks

Generative Adversarial Networks are a type of machine learning system that perform

unsupervised learning. GANs employ an adversarial process to produce a generative

model for a data distribution.

3.1 Architecture Overview

We will describe the architecture of Generative Adversarial Networks as depicted in

Figure 3.1.

The generative neural network, or Generator, aims to construct a generative

model characterizing data distributions [12][13]. A generative model is a model which

learns about the distribution of a data set such that it can generate new samples

from the distribution [13]. Specifically, the Generator attempts to create a mapping

between a latent space and a data distribution. The Generator can produce new

samples from this generative model that fit the data distribution.

The discriminator neural network, or Discriminator, looks to identify sim-

ilarities between the data distribution and a new sample of data by discriminating

between the two [12][13]. The discriminative model aims to identify the difference

17

Figure 3.1: GANs consist of a Generator and Discriminator neural network. The
Generator learns to generate fake samples similar to the real samples and the Dis-
criminator learns to discriminate between real and fake samples.

between samples of two distributions — in our case, between the training set data

distribution and fake samples.

Prior work had focuses specifically on either discriminative or generative models

[13]. Whereas generative models provided the useful feature of generating new data

from a sample data distribution, discriminative models found more success at the

time.

Generative Adversarial Networks (GANs) were proposed to leverage the

features of both generative and discriminative models [13]. GANs employ an ad-

versarial approach between generative and discriminative networks. A high-level

overview of this adversarial approach is as follows:

1. The Generator attempts create a generative model characterizing a data dis-

tribution.

2. Samples produced from the Generator’s generative model as well as samples

from the training set are presented to the Discriminator.

18

3. The Discriminator attempts to match the sample to its understanding of the

training set distribution or the generated data distribution.

4. Based on whether the Discriminator’s answer is correct, the Generator and

Discriminator learn to improve their approach and better achieve their goals.

This new technique has been largely successful, particularly in the area of image

generation. Prior work has demonstrated the ability to transform images such as

in CycleGAN [37], which could transform images of horses to look like zebras or

vice versa. There has also been work in creating non-existent variations images such

as in StyleGAN [18] which could produce images of non-existent faces. Overall,

Generative Adversarial Networks have proven to be successful in characterizing data

distributions and generate realistic mimics of data.

GANs are currently only able to implicitly learn about the data they are mod-

elling. This means that while Generative Adversarial Networks are able to learn to

mimic data, they are not able to describe the relationship between the input and

output. For instance, in the context of StyleGAN, the GAN system is not able to

describe the choices it made in creating images of faces (ie. nose, eyes, etc.) even

though it can generate non-existent faces. If GANs were able to explicitly learn,

they would be able to describe their understanding of eyes, noses, etc. to the user.

3.1.1 Adversarial Approach

The adversarial component of the learning process follows a minimax game charac-

terized by Equation 3.1.

min
G

max
D

V pD,Gq “ Ex„pdatapxqrlogDpxqs ` Ez„pzpzqrlog p1´DpGpzqqqs (3.1)

The Discriminator wants to maximize the probability that it correctly character-

izes the data and identifies a sample. This is represented as Ex„pdatapxqrlogDpxqs,

19

where pdatapxq is the distribution over the real data samples and Dpxq is the proba-

bility that x came from the real data sample distribution rather than the generated

data distribution pg.

On the other hand, the Generator wants to minimize the likelihood of the Discrim-

inator giving the correct answer. This is represented as Ez„pzpzqrlog p1´DpGpzqqqs

where Gpzq is the fake sample generated from noise and pz is the data distribution

over the noise z.

In short, the Discriminator and Generator have the following goals [13]:

• The Discriminator wants Dpxq, the probability of correctly classifying the real

samples to be 1.

• The Discriminator wants DpGpzqq, the probability of incorrectly classifying

fake generated samples as real samples to be 0.

• The Generator wants DpGpzqq to be 1.

The loss function in GANs is a way of quantifying the similarity between the

distribution of real samples and the distribution of generated fake samples. This

provides a way to quantify Dpxq in the minimax game equation. Standard GANs

use Jensen-Shannon Divergence as the loss function to measure the distance between

the two distributions [13].

3.2 Wasserstein Generative Adversarial Networks

While Generative Adversarial Networks are a promising technique to characterize a

training set data distribution, there are several problems with their architecture noth

in the context of our domain and in general.

Both the Discriminator and Generator attempt to find the Nash equilibrium of the

two-player game as described in Section 3.1.1 [31]. However, they do so independently

20

which means convergence is not guaranteed [31]. GANs could also experience “mode

collapse” where the variety of generated samples is limited to a few different samples

[2]. The loss functions typically used with GANs, Kullback-Leibler and Jensen-

Shannon divergence, are not able to properly model discrete distributions [2].

Wasserstein Generative Adversarial Networks (WGANs) proposed the

usage of Wasserstein Distance or Earth Mover’s distance to provide a con-

tinuous measure for discrete distributions [2]. While WGANs may become unstable

and thus are imperfect [2], they have solved many of the issues faced in the original

proposed Generative Adversarial Network both in effective sample generation and

dealing with discrete distributions.

3.3 Security-Related Applications of GANs

3.3.1 Avoiding Detection of Malware

Malware Detection Avoidance MalGAN [14] aims to solve the issue of attack-

ers sending malware to a system. The attackers oftentimes do not know what the

internals of malware detection on a system are and thus must treat it like a black

box. The findings suggested that MalGAN was successful at circumventing machine

learning-based malware detectors.

MalGAN provided some unique insight on how Generative Adversarial Networks

could be applied as a technique for attackers. This raises the possibility that Proto-

GANist could be used by both analysts and malicious attackers.

Seed Generation SmartSeed [23] provides a unique approach to generating high-

value seeds by applying Wasserstein Generative Adversarial Networks to the problem.

High-value seeds are those that have a higher probability of triggering crashes or

reaching new code paths. SmartSeed was able to generate high-value seeds at a

higher rate than other seed generation techniques. These seeds were able to produce

21

twice the number of crashes and 5,040 more code paths than the best competing

strategies.

This work provides a similar application of Wasserstein Generative Adversarial

Networks for performing security verification. This suggests that ProtoGANist would

be a promising approach to fuzzing software working with protocols.

22

4

Problem Overview

4.1 Overview

We present Generative Adversarial Networks as a technique in solving the black

box protocol reverse engineering problem. In particular, we believe that GANs can

bypass the modeling stage and skip straight to synthesizing messages of the protocol

format. This characteristic is useful in fuzzing where one would not necessarily need

the model to fuzz the software. The intuition underlying this decision stems from

requirements needed to fully solve this problem and the properties of GANs that

meet these requirements.

Requirement 1 The technique must be able to characterize complexities with the

protocol message format including properties defined as functions and determine de-

pendencies between fields.

Generative Adversarial Networks are able to learn how to model complex data dis-

tributions that may not have an obvious function generation [13]. For instance,

modeling the exact features that make up a realistic face is not trivial, but Style-

GAN was able to learn to develop such a generative model [18]. Specifically, they

23

are able to characterize distributions of data that may not have a straightforward

method of characterization.

Requirement 2 The technique must be able to characterize the protocol message

format and encode this knowledge in some format.

Generative Adversarial Networks can implicitly learn about the data distribution by

presenting generated samples following the distribution.

Requirement 3 The technique must take only protocol messages for its input.

There is no prior knowledge of either the protocol or the software that interacts with

the protocol.

Generative Adversarial Networks learn only by the data in the training set given to

them.

Requirement 4 The technique must not involve human participation in the learn-

ing phase.

Generative Adversarial Networks learn via an unsupervised learning process.

Thus we believe that Generative Adversarial Networks would be capable of ad-

dressing the black box protocol reverse engineering problem.

4.2 Protocol Message Format Definition

First let us present a formal definition for the protocol message format to identify

the features we would like to see if GANs can model. This description is depicted in

Figure 4.1.

Protocol Message Format The protocol message format is the format of an

individual message for a particular protocol. This differs from protocol grammar,

24

Figure 4.1: A protocol message format is composed of a meta structure and several
fields along with the characteristics that make up each.

which extends protocol message format to the format of messages over time. We

focus solely on the protocol message format as Generative Adversarial Networks

have not been used to solve the black box protocol reverse engineering problem and

thus we would like to first examine the feasibility of such an approach.

Fields A protocol message format is made up of a series of fields. Each field conveys

a different information in the protocol message. Fields have several properties that

define the content they carry.

• Field Dependencies: References other fields in the message needed to com-

pute the value of this field. The field dependencies of a TCP checksum would

be the fields the checksum is used to detect errors.

• Value: The function that characterizes the value of this field. The function

may take other fields’ values or lengths as input.

• Length: The function that characterizes the length of this field. The function

may take other fields’ values or lengths as input. For instance, a data field in

CAN varies is a byte-aligned length from 0 to 8 bytes.

25

Meta An individual protocol format will contain data beyond what is needed for

its constituent fields. The meta segment of the message describes the manner in

which fields are organized within a message.

• Fields: The fields which may be present within the function and their prop-

erties. Note that not all fields may be present in a particular message of the

protocol.

• Structure: The functional definition of the presence and ordering of fields

based on the values of field dependencies. For any particular message, not all

fields may be present. The concept of structure encompasses this idea. HTTP

may have different structures depending on the type of HTTP method such as

GET or POST.

• Structural Dependencies: As with field dependencies, the structure of a

message itself may be itself dependent on fields’ values or lengths. The structure

of HTTP may be dependent on the context of the method field such as GET

or POST.

The formal definition of the protocol message format allows us to understand the

types of properties our system may encounter with real protocols. This allows us

to define experiments that test these properties to understand the limitations in the

system.

4.3 Goals

For this work, we look to investigate whether providing protocol messages to a Gener-

ative Adversarial Network system would result in it generating messages that fit the

protocol message format specification. The characteristics of Generative Adversarial

26

Networks support the requirements needed to solve the black box protocol reverse

engineering problem, provided that it is able to accomplish this goal.

We also looked to understand the limitations of such an approach. State of the

art black box protocol reverse engineering tools struggle in characterizing complex

functions and dependencies within protocol messages. We were interested in seeing

if our approach would have similar issues.

27

5

System Overview

This chapter covers an overview of the ProtoGANist system. This includes our

approach the ProtoGANist system itself and specific challenges encountered in the

development of the system.

5.1 ProtoGANist Protocol Format-Learning System

We will now describe the setup of our GAN-based protocol format-learning system.

The system can be generalized to three components: the training set or input data,

the learning system, and the evaluation of the output.

5.1.1 Challenges

First, we will describe the challenges encountered in these components during the

development of our system.

Data Representation

We decided to represent our data as bits rather than bytes. Protocols oftentimes de-

fine 1 bit-long flag fields or other fields of some non-byte aligned length. We believed

28

that representing the data as bits would allow the GANs to better understand the

content and dependencies within these types of fields. Each protocol message is then

represented as the 0’s and 1’s (bits) that make it up.

Variable Length Data

The GAN setup that we used required that training set be provided as a 2-D array

with a fixed length for each row (message). However, protocol messages may vary

in length as fields may contain different-sized content and fields may or may not

be included in a message. Furthermore, patterns of 0’s and 1’s cannot be used to

indicate the end of a message. Protocol definitions could be such that the particular

pattern of 0’s and 1’s could potentially show up as part of the protocol specification.

Figure 5.1: Variable-length messages are supported in the GAN system by padding
shorter messages with 2’s.

To circumvent these issues, we introduced “2 padding”. Since messages are de-

fined with only 0’s and 1’s, a 2 would clearly not be part of the protocol message.

The training sets are not created or collected containing the 2’s. If a training

set contains variable-length messages, it is padded to the longest message using 2’s

as a pre-learning step. Following this process, the data was able to be fed into the

system. This process is shown in Figure 5.1.

The system would have to learn about the 2’s padding as part of the learning pro-

cess. The resulting generated samples it produces should contain the 2’s as padding.

Everything from the first 2 onwards is stripped from the end of the message to inter-

29

pret variable-length messages. Note that there may be 0’s and 1’s included in this

stripped-out data.

Discrete Distributions

The metric used as a loss function in most Generative Adversarial Networks does

not perform well when characterizing discrete distributions. This is problematic

in our case as the representation of protocol messages, bits 0 and 1, are discrete

distributions.

Our solution to this issue is to employ a different metric, Wasserstein distance

or Earth Mover’s distance, as a loss function in our GAN system [2]. This metric

is able to characterize discrete distributions by approximating in between them, as

described in Section 3.2.

5.1.2 System Setup

We will now describe the ProtoGANist system setup. The final ProtoGANist system

setup is illustrated in Figure 5.2.

Figure 5.2: ProtoGANist consists of three main components. (1) The training set is
created by modeling synthetic protocols or collecting from real protocols. (2) The
GAN system learns to characterize the protocol messages in the form of a generative
model. (3) Samples from the generative model are evaluated for accuracy of the
feature of interest.

30

Training Set The training set consists of messages from a synthetic or real pro-

tocol. In the case of a synthetic protocol, we write a definition for the specification

of the protocol message format and use our synthetic protocol modeler to create m

sample messages for our training set. For a real protocol, we collect m samples of

the protocol for our training set.

Learning System The learning system is a Wasserstein Generative Adversarial

Network (WGAN) employing Wasserstein distance as the loss metric. Both the GAN

Discriminator and Generator were 6-layer neural networks with a layer dimension of

600. The system is fed the training set of protocol messages as the input. Every

i iterations, the Generator in the WGAN system is asked to generate n sample

messages based on its current characterization of the training set distribution. These

generated samples are considered the output and are evaluated for accuracy.

Output Evaluation Each set of n generated sample messages is evaluated. For

a given experiment, we consider one or more several fields of interest where a field

of interest has some unique feature we would like to experiment. We evaluate the

generated messages by checking if the field or characteristic of interest fits the defined

specification. The evaluation is solely dependent on the field of interest rather than

the message as a whole as it allows us to evaluate components individually even when

there were many complexities in a particular protocol message format. The accuracy

for the set of n messages is the total number of messages with a correct field out of

the total number of messages. This allows us to examine the accuracy of the WGAN

Generator over time in the context of the experiment.

31

6

Evaluation

This chapter evaluates the proposed ProtoGANist system for accuracy in the context

of different properties.

Simpler experiments (up to the stress test experiment) were performed on a

Windows 10 laptop with an Intel Core i7-7700HQ CPU @ 2.80 GHz and NVIDIA

GeForce GTX 1060 GPU. The latter experiments were performed on a server with

an Intel Xeon CPU E5-2698 v3 and a NVIDIA Tesla V GPU, as they required more

time to run.

6.1 Experiment Setup

This section describes the approach to experimentation, both in terms of creating

and carrying out the experiments.

6.2 Methodology

The properties of the protocol message format defined in Section 4.2 characterize

the different content that may be seen in real protocols. We would need to test

these properties in order to identify limitations with the system that would become

32

Figure 6.1: The different experiments needed to test length, value, and dependencies.
Each of the experiments builds up in complexity by using some aspect of a previous
experiment. For example, error detection functions using basic functions.

apparent when working with real protocols.

We had three criteria in identifying the types of features to test in our experi-

ments:

1. The content must be commonly found in real protocols.

2. The content must highlight specific properties within the protocol message

format definition. All the content together must test all the properties of

interest.

3. The tested features should build up in complexity. For example, we would like

to test basic operations before functions that use those operations.

These criteria was characterized into the following types of content to test.

33

Ranges of Values This content defines particular values that are considered valid.

They may be continuous or disjoint ranges or values or static content. Many protocol

fields contain this type of content. We decided to test ASCII bytes ranges with a

field that accepts any printable character.

Basic Operations This includes bit operation functions such as XOR, OR, AND,

etc. and mathematical functions such as addition, subtraction, etc. Basic operations

are used in more-complex functions and general use. Note that these functions take

in values as input, and thus basic operations spans both value and dependencies.

Checks These include error detection checks such as TCP checksum and Cyclic

Redundancy Check (CRC), which are often used in protocols for error detection.

These types of functions involve some combination of basic operations, allowing us

to build on those tests. Furthermore, checksums have been considered a difficult

edge chase in fuzzing and software verification when generating content following an

input specification. We picked TCP checksum, a basic 1’s complement check using

addition for this experiment.

Real Protocol (Stress Test) As a stress test, we take a real protocol that com-

bines several of the properties in the protocol message format definition. The goal of

this test is to highlight potential limitations that are not present in the prior simple

synthetic experiments. The Controller Area Network (CAN) protocol used in vehic-

ular networks has a combination of features. Not only could the messages vary in

length, but one of the fields’ values depended on the length. A check in the form of

CRC-15 was present in the protocol as well. CRC-15 consists of a combination of bit

shifts and other basic operations. Lastly, there was a static set of acknowledgements

at the end of every message.

34

Figure 6.2: Experiments were picked that tested different characteristics of protocol
format message (range of values, dependencies, and length) and built up on each
other.

6.3 Experimentation Process

We will now describe the parameters for our experiments. Experiments were run in

order of increasing complexity.

The first three experiments required synthetic protocols to be defined. The syn-

thetic protocols kept as many components static as possible to focus on the content

of interest. The synthetic protocol modeler was used to generate samples following

the given specification. The fourth experiment tested a real protocol. We collected

randomized messages of the protocol where non-specified fields were randomized.

10,000 samples were generated as the input training set for the WGAN system.

During the learning phase, the WGAN system Generator would output 10,000

samples at a fixed interval of iterations. This allowed us to examine the accuracy of

the system over time.

35

For each experiment, the specific field(s) of interest are examined for accuracy.

A message is considered correct if the field follows the given specification. As an

example, in our TCP checksum toy example in Figure 1.3, if we were evaluating the

TCP checksum feature, a message would be considered correct if its value was the

TCP checksum of the other two fields’ values. For each 10,000 generated samples,

we calculate the accuracy as the number of correct messages out of 10,000.

Experiments were run for approximately 10 hours until the model converged.

The exception to this was for cases where we ran for just over 24 hours to debug if

a limitation was a result of training time.

6.4 Synthetic Protocol Modeler

Figure 6.3: The synthetic protocol modeler accepts a synthetic protocol specification
following the protocol message format definition and can generate messages following
the specification.

In order to fully test our system, we need the ability to work with simple protocols.

This allows us to focus the testing on a particular property.

To achieve this, we created a synthetic protocol modeler. This applies our def-

inition of a protocol message format from Section 4.2 as a template. The synthetic

protocol modeler would then take this synthetic protocol definition and produces

random sample messages following the specification, as depicted in Figure 6.3.

36

Figure 6.4: Protocol message format for experiment 1.

The synthetic protocol modeler allows us to finely tune the experiments to run on

the GAN system. It also provides a way of generating training sets for these protocol

messages.

6.5 Protocol Message Format Properties

We will now present the results of the experiments.

6.5.1 Experiment 1: Ranges (ASCII Printable Characters)

Our first experiment consisted of the simplest non-static test; whether the Proto-

GANist system can handle accepted ranges (continuous or discrete) of bytes. The

synthetic protocol defined for this experiment in Figure 6.4 consisted of two fields

with any value and a third accepting printable ASCII characters. There were no field

or structural dependencies or dynamic lengths in this setup.

The ASCII printable characters consist of a few discrete ranges of values: a large

range for letters, numbers, punctuation, and some whitespace characters such as

space and other separate ranges for whitespace characters such as newline (0x0a).

This type of distribution would likely have to be characterized as a piecewise-type

function since there are non-printable characters like 0x0e. ProtoGANist handled it

remarkably well, achieving approximately 90-100% accuracy early on in the learning

process as seen in Figure 6.5.

37

Figure 6.5: Experiment 1: An evaluation of how ProtoGANist handled ranges of
printable characters. It handled it remarkably well almost instantaneously, between
90-100% accuracy.

6.5.2 Experiment 2: Basic Operations (XOR Bit Operation)

The second experiment looked to test a basic operation. XOR was picked as it is

frequently used in protocols in various forms and within more complex functions such

as in encryption and checksums [25]. Furthermore, XOR is a more difficult function

to derive than the previous range-inclusion function. The synthetic protocol for this

experiment also consisted of two fields of any value and a third field whose value

was the XOR of the first two fields as seen in Figure 6.6. This experiment added on

the complexity of dependencies within the protocol message format but retained the

static length.

ProtoGANist took significantly longer to accurately characterize this synthetic

38

Figure 6.6: Protocol message format for experiment 2.

Figure 6.7: Experiment 2: An evaluation of how ProtoGANist handled XOR as a
value function. It struggled a bit with learning but was still able to characterize the
XOR.

protocol and even then, was able to achieve 80-90% accuracy as seen in Figure 6.7.

Data distributions consisting of XOR may be difficult to model as a function. The

model for this experiment took much longer to converge than the ASCII printable

character experiment which converged almost immediately.

39

6.5.3 Experiment 3: Checks (TCP Checksum)

In our experiment for checks, we picked TCP checksum. TCP checksum is a 1’s

complement addition-based checksum function. The code for this is in Figure 6.8.

This type of checksum is used as an error detection technique in protocols such as

IP, TCP, and UDP. This protocol message format also retained a static length. The

protocol message format followed that of the prior experiments; two fields accepting

anything and a third field computing the value as the TCP checksum function on

the first two fields in Figure 6.9. Note that while the first two experiments had fields

of equal length (8 bits), the TCP checksum is 16 bits long and thus longer than each

of the first two fields.

def tcp chksum (msg) :
s = 0
for i in range (0 , len (msg) , 2) :

i f (i +1) < len (msg) :
a = ord (msg [i])
b = ord (msg [i +1])
s = s + (a+(b << 8))

e l i f (i+1)==len (msg) :
s += ord (msg [i])

else :
raise ”Error ”

s = s + (s >> 16)
s = ˜ s & 0 x f f f f
return s

Figure 6.8: The TCP checksum function as Python code.

Despite being a combination of basic operations, ProtoGANist’s accuracy with

Figure 6.9: Protocol message format for experiment 3.

40

Figure 6.10: Experiment 3: An evaluation of how ProtoGANist handled TCP check-
sum as a value function. It was able to learn this one far quicker than XOR.

TCP checksum took far less time to converge than in the XOR experiment. This is

somewhat surprising given that the TCP checksum is 16 bits versus the result of the

XOR which was 8 bits long. It is possible that addition or some other characteristic

of the TCP checksum may be easier to characterize as a function than XOR.

6.5.4 Experiment 4: Stress Test (Controller Area Network)

For our final experiment, we wanted to perform a stress test with a real protocol that

encompassed all the different field properties — length, value, and dependency. The

hope was that by testing a real protocol, we could uncover limitations that were not

present in the synthetic protocol experiments we picked. In addition, it would also

demonstrate how well ProtoGANist worked with real protocols.

We picked the Controller Area Network (CAN) protocol for the stress test. CAN

41

is a protocol used in automobiles and other vehicles. CAN has several features of

interest including a variable-length field, a field whose value is dependent on that

length, a CRC-15 check, and static bits at the end. These features are described in

Figure 6.11.

We will individually consider each feature of interest and evaluate as before.

Length

Field 3 of the CAN protocol holds a variable length message passed by the CAN

protocol and varies between 0 and 64 bits. Field 2 as seen in Figure 6.12 contains

information about the length of the data in terms of the number of bytes of data.

This allowed us to test a case where ProtoGANist deals with variable-length messages

and a field that was a function of that length.

Since every other field is of a static length, we can determine the length of the

data field by shaving off bits from the beginning and end.

We believed that length would be a more difficult concept to learn than some of

the other features. The length did take some effort for ProtoGANist to learn about,

but it did achieve an accuracy of approximately 80-85%. We believe part of this

issue stems from the fact that not only does ProtoGANist have to learn about the

contents of the fields, but it has to learn about padding in the form of 2’s. The extra

dimension of learning may impede the process either in terms of time to learn or

accuracy.

Static Bits

Field 5 in Figure 6.14 contains the static bits ‘010’ at the end of every message.

These bits are used as an acknowledgement to previous information sent.

Our initial expectation is that ProtoGANist would not have any issues with

learning static bits. Experiment 1 demonstrated that ProtoGANist did not struggle

42

Figure 6.11: Protocol message format for experiment 4.

Figure 6.12: Protocol message format for experiment 4. One of the features we
evaluated was a field value dependent on variable length.

Figure 6.13: Experiment 4: An evaluation of how ProtoGANist handled a field value
dependent on the length of another.

43

Figure 6.14: Protocol message format for experiment 4. One of the features we
evaluated was static bits at the end of the message.

Figure 6.15: Experiment 4: An evaluation of how ProtoGANist handled static value
at the end of the message.

even when presented with discrete ranges of values.

However, ProtoGANist was not able to immediately learn about the static bits at

the end. Rather, it took some time to learn and even then, only achieved about 85%

accuracy. The reason for this was not immediately clear but comparing Figure 6.14

and Figure 6.12 suggested that it was related to ProtoGANist learning about the

variable length. The accuracy curve for the static bits in field 5 followed a similar

44

Figure 6.16: Protocol message format for experiment 4. One of the features we
evaluated was a CRC-15 check on the first part of the message.

pattern to that of the length accuracy curve, but with a slightly higher accuracy.

While previous experiments showed that ProtoGANist can normally handle ranges

of values, ProtoGANist does take a bit to learn to interpret the 2’s as padding for

variable lengths. Whenever the system messes up the interpretation of 2’s for padding

and variable lengths, it likely affects the static acknowledgement bits since they are

directly before any padding.

CRC-15 Check

The CRC-15 field in Figure 6.16 was an error detection check on the first three fields.

We decided that CRC-15 was an important function to evaluate as it is present in

many protocols and has been considered a difficult edge case in software verification

and fuzzing.

While we expected ProtoGANist to struggle with CRC-15, it performed miserably

achieving a maximum of 2 out of 10,000 correct samples.

6.6 Investigating Difficulties with CRC

To better understand the issues with CRC-15, we scoped the problem down to a

simpler experiment. This helps identify if CRC itself was an issue or if perhaps the

many moving parts of the CAN protocol as we presented contributed to the problem.

The experiment was simplified back to a synthetic protocol as seen in Figure 6.18.

Again, there are two fields that accept any value and a third which is the CRC-4 of

the first two fields. Note that in this case, the third field is 4 bits long vs the first

45

Figure 6.17: Experiment 4: An evaluation of how ProtoGANist handled CRC-15.

two fields which are each 8 bits long.

We found that ProtoGANist was, after a significant number of iterations, able

to learn the CRC-4 function. While the accuracy had not yet fully converged in

Figure 6.19, the system was able to get up to about 65% accuracy. This was signifi-

cantly better than guessing and suggested that there were actions we could take to

characterize more-complex functions.

Figure 6.18: Protocol message format for experiment 4. One of the features we
evaluated was a CRC-15 check on the first part of the message. Note that our y-axis
scale goes up to 0.10%.

46

Figure 6.19: Re-examine CRC in a simpler content to understand what the limitation
is and how we might be able to circumvent it.

6.6.1 Training Set Size vs CRC-4

Among the variables that influence the accuracy of the CRC-4 experiment, the size of

the training set was believed to be an influential one. We wanted to investigate how

reducing the training set size would impact the learning process of the experiment.

For a training set size of 7,500 samples, the accuracy in Figure 6.20 followed

approximately the same curve as with 10,000 samples but ended with a slightly

lower accuracy by 10-15 percentage points. As the accuracy did not converge before

the completion of data collection, it is unclear if the accuracy in the end would be

impacted by the smaller training set.

47

Figure 6.20: If the training set size for the CRC-4 experiment is reduced, we get
approximately the same curve but with slightly lower accuracy.

6.7 Memorization vs Learning

Lastly, we wanted to understand if ProtoGANist was learning or if it was just mem-

orizing the training set contents.

The impetus for this experiment was that not every combination of content in

dependency fields was present in the training set. For example, in the TCP checksum

example, the third field value is dependent on the values of the first two fields. Since

the first two fields were each 8 bits long, there are 216 “ 65536 different combinations

of field 1 and field 2 values. However, there are only 10,000 samples in the training

set. Thus, there are at least 15,536 different mappings from unseen combinations of

the first two fields that ProtoGANist has not yet seen.

If ProtoGANist was only memorizing, it would struggle when dealing with some

combination of the first two fields not present in the training set. It would not know

48

Figure 6.21: We looked at the percentage of new content generated by ProtoGANist.
The system was confirmed to generate new content rather than only repeating content
from the training set.

what field 3 value is mapped to it.

First, we examined the number of generated samples that had such combinations

of dependency fields not present in the training set. We tested this in three exper-

iments with the number of dependency combinations larger than the training set.

The three functions we tested were XOR, TCP checksum, and CRC-4. We found, as

shown in Figure 6.21, that there was a sizeable number of generated samples with

dependency content not present in the training set.

Then we looked into the accuracy with respect to only those generated messages.

The accuracy of these messages was found to be still relatively high. We also com-

pared the accuracy to the expected results from guessing the field with dependencies

and found that ProtoGANist did significantly better.

49

Figure 6.22: We examined the accuracy of only generated messages containing new
dependency content. ProtoGANist’s accuracy remained high and was significantly
better than guessing.

50

7

Discussion and Future Work

We now present a discussion of our proposed ProtoGANist system in this chapter.

7.1 Findings

Overall, we have demonstrated that ProtoGANist is a promising approach to the

black box protocol reverse engineering problem. We summarize these findings in

Figure 7.1.

We demonstrated that ProtoGANist can handle most of the different properties

of the protocol message format. It was able to achieve an accuracy of greater than

80% on length, ranges of values, and basic operations. ProtoGANist attained such

an accuracy for TCP checksum, but struggled with CRC-4 and outright failed in

learning CRC-15.

Despite this failure, ProtoGANist succeeded in all other components in the CAN

experiment. This suggests that even in cases where there is a single field that Pro-

toGANist struggles with, it is not prevented from learning about other fields.

We also developed and ran an experiment that proved that ProtoGANist was

actually learning about the functions making up the properties of the field rather

51

Figure 7.1: Most experiments worked well, but CRC-15 was a challenge.

than just memorizing the training set. We also found that ProtoGANist did generate

many samples that were not present in the training set. This is important in the

context of security verification in which we want to test new parts of the software

further than the input checks the software would make. ProtoGANist is able to

generate protocol-compliant messages not seen in the training set.

7.1.1 Limitations and Improvements

Our work has revealed several limitations in the ProtoGANist approach.

We demonstrated that while ProtoGANist can still learn about complex functions

and dependencies with a smaller training set, the accuracy is somewhat reduced, and

the model takes more time to train. This results in a trade-off in terms of the amount

of data collected for the training set and the time for the system to learn about the

protocol message format. Depending on the scenario in which ProtoGANist is being

used, it may make more sense to trade one for the other.

52

While ProtoGANist was able to characterize functions that were not straightfor-

ward, it did struggle with learning complicated functions. Its accuracy with CRC-15

was the same as if it were just guessing. However, we demonstrated that in a scoped-

down version of the experiment with CRC-4, it was able to attain an accuracy sig-

nificantly higher than guessing. This suggests that there may be actions we can take

to improve ProtoGANist’s accuracy in these difficult cases. Two solutions may be

to increase the training set size or run the learning portion for a longer period of

time. However, this may not always be possible depending on the scenario. Users

may have restrictions in the amount of data they can collect or the limit of time they

can run our proposed technique. Thus, improvements may need to be restricted to

tweaks within WGAN system. Parameters such as the number of layers in the neu-

ral network or the dimension of each layer could be tweaked to improve the system.

These would help characterize more complexities in a data distribution.

7.2 Future Work

While we demonstrated that the ProtoGANist approach is promising, more work

is needed to make it a viable alternative among other black box protocol reverse

engineering tools.

First, while we developed experiments to test different properties of the protocol

message format, we did not test every possible feature found in real protocols. In

particular, we found that testing a real protocol was able to uncover limitations of

our system. We would like to create a system to create random protocols based on

our protocol message format definition from which we can automate a testing process

in our system. This will allow us to better scope the limitation within our system

and identify potential points of improvement.

Our focus in black box protocol reverse engineering was specifically scoped down

to examine the feasibility of such an approach. We focused on the simpler problem of

53

learning about the protocol message formats instead of protocol grammar. However,

many protocols do have some dependencies in between messages and thus it will be

important to investigate the feasibility of supporting protocol grammar as well.

The current iteration of ProtoGANist is also only able to perform implicit learning

of a protocol message format rather than explicit learning. This is because Genera-

tive Adversarial Networks are not able to encode the generative model of the data

distribution in terms that people would easily understand. While this has been a

known issue in Generative Adversarial Networks, it would be useful if the technique

could be modified to additionally provide information its learned protocol message

format in human-readable format. Disentangled Generative Adversarial Networks

are a new approach that may provide a solution in this space. Disentangled GANs

aim to capture the features responsible for the learned generative model [19][24][34]

but are still being improved. If this information can be interpreted as a message

format, it would provide a method for ProtoGANist to perform explicit learning.

54

8

Conclusion

In this work, we have presented a new approach to solving the problem of black

box protocol reverse engineering. Prior state of the art struggled in presenting a

way to characterize complex functions such as nonlinear functions or those with

dependencies. Our proposed approach, Generative Adversarial Networks, were found

to provide a promising approach to characterizing these types of functions even when

several instances of such are present in a single protocol message format.

There are limitations to our system, as we found that it was difficult to learn

CRC-15 error detection within the Controller Area Network protocol. Despite this,

we demonstrated that ProtoGANist is able to learn other content within the same

protocol message format. Furthermore, it was able to obtain an accuracy significantly

better than guessing when we scoped the problem down to CRC-4. We believe there

are steps that we can take to improve the accuracy in these case both outside the

system and within the system itself.

Overall, we believe that ProtoGANist is a promising approach to solving the

black box protocol reverse engineering. It can characterize complex functions and

dependencies that make up protocols with an accuracy significantly higher than

55

guessing. We believe that this technique will be useful in software security verification

techniques such as fuzzing that benefit from sending protocol-compliant messages to

a system.

56

Bibliography

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran,
Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis et al., “Understanding
the mirai botnet,” in 26th tUSENIXu Security Symposium (tUSENIXu Security
17), 2017, pp. 1093–1110.

[2] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv preprint
arXiv:1701.07875, 2017.

[3] K. Backhouse, “Kernel crash caused by out-of-bounds write in apple’s
icmp packet-handling code (cve-2018-4407),” 2018. [Online]. Available:
https://lgtm.com/blog/apple xnu icmp error CVE-2018-4407. [Accessed 2019-
05-06].

[4] M. A. Beddoe, “Network protocol analysis using bioinformatics algorithms,”
Toorcon, 2004.

[5] G. Bossert, F. Guihéry, and G. Hiet, “Towards automated protocol reverse engi-
neering using semantic information,” in Proceedings of the 9th ACM symposium
on Information, computer and communications security. ACM, 2014, pp. 51–
62.

[6] S. Bratus, A. Hansen, and A. Shubina, “Lzfuzz: a fast compression-based fuzzer
for poorly documented protocols,” Darmouth College, Hanover, NH, Tech. Rep.
TR-2008, vol. 634, 2008.

[7] J. Caballero, P. Poosankam, C. Kreibich, and D. Song, “Dispatcher: Enabling
active botnet infiltration using automatic protocol reverse-engineering,” in Pro-
ceedings of the 16th ACM conference on Computer and communications security.
ACM, 2009, pp. 621–634.

[8] C. Y. Cho, E. C. R. Shin, D. Song et al., “Inference and analysis of formal
models of botnet command and control protocols,” in Proceedings of the 17th
ACM conference on Computer and communications security. ACM, 2010, pp.
426–439.

57

https://lgtm.com/blog/apple_xnu_icmp_error_CVE-2018-4407

[9] J. Duchêne, C. Le Guernic, E. Alata, V. Nicomette, and M. Kaâniche, “State
of the art of network protocol reverse engineering tools,” Journal of Computer
Virology and Hacking Techniques, vol. 14, no. 1, pp. 53–68, 2018.

[10] H. Gascon, C. Wressnegger, F. Yamaguchi, D. Arp, and K. Rieck, “Pulsar:
Stateful black-box fuzzing of proprietary network protocols,” in International
Conference on Security and Privacy in Communication Systems. Springer,
2015, pp. 330–347.

[11] E. Gelenbe, G. Görbil, D. Tzovaras, S. Liebergeld, D. Garcia, M. Baltatu, and
G. Lyberopoulos, “Nemesys: Enhanced network security for seamless service
provisioning in the smart mobile ecosystem,” in Information Sciences and Sys-
tems 2013. Springer, 2013, pp. 369–378.

[12] I. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,” arXiv
preprint arXiv:1701.00160, 2016.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in
neural information processing systems, 2014, pp. 2672–2680.

[14] W. Hu and Y. Tan, “Generating adversarial malware examples for black-box
attacks based on gan,” arXiv preprint arXiv:1702.05983, 2017.

[15] R. M. Ishtiaq Roufa, H. Mustafaa, S. O. Travis Taylora, W. Xua, M. Gruteserb,
W. Trappeb, and I. Seskarb, “Security and privacy vulnerabilities of in-car wire-
less networks: A tire pressure monitoring system case study,” in 19th USENIX
Security Symposium, Washington DC, 2010, pp. 11–13.

[16] E. Itkin, “Reverse rdp attack: Code execution on rdp
clients,” 2019. [Online]. Available: https://research.checkpoint.com/
reverse-rdp-attack-code-execution-on-rdp-clients/. [Accessed 2019-05-06].

[17] A. J. Jara, A. C. Olivieri, Y. Bocchi, M. Jung, W. Kastner, and A. F. Skarmeta,
“Semantic web of things: an analysis of the application semantics for the iot
moving towards the iot convergence,” International Journal of Web and Grid
Services, vol. 10, no. 2-3, pp. 244–272, 2014.

[18] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for
generative adversarial networks,” arXiv preprint arXiv:1812.04948, 2018.

[19] H. Kazemi, S. M. Iranmanesh, and N. Nasrabadi, “Style and content disentan-
glement in generative adversarial networks,” in 2019 IEEE Winter Conference
on Applications of Computer Vision (WACV). IEEE, 2019, pp. 848–856.

58

https://research.checkpoint.com/reverse-rdp-attack-code-execution-on-rdp-clients/
https://research.checkpoint.com/reverse-rdp-attack-code-execution-on-rdp-clients/

[20] T. Krueger, H. Gascon, N. Krämer, and K. Rieck, “Learning stateful models for
network honeypots,” in Proceedings of the 5th ACM workshop on Security and
artificial intelligence. ACM, 2012, pp. 37–48.

[21] C. Leita, K. Mermoud, and M. Dacier, “Scriptgen: an automated script genera-
tion tool for honeyd,” in 21st Annual Computer Security applications Conference
(ACSAC’05). IEEE, 2005, pp. 12–pp.

[22] B. Liu, L. Shi, Z. Cai, and M. Li, “Software vulnerability discovery techniques:
A survey,” in 2012 Fourth International Conference on Multimedia Information
Networking and Security. IEEE, 2012, pp. 152–156.

[23] C. Lv, S. Ji, Y. Li, J. Zhou, J. Chen, P. Zhou, and J. Chen, “Smartseed: Smart
seed generation for efficient fuzzing,” arXiv preprint arXiv:1807.02606, 2018.

[24] L. Ma, Q. Sun, S. Georgoulis, L. Van Gool, B. Schiele, and M. Fritz, “Disen-
tangled person image generation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 99–108.

[25] T. C. Maxino and P. J. Koopman, “The effectiveness of checksums for embed-
ded control networks,” IEEE Transactions on dependable and secure computing,
vol. 6, no. 1, pp. 59–72, 2009.

[26] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger vehi-
cle,” Black Hat USA, vol. 2015, p. 91, 2015.

[27] J. Narayan, S. K. Shukla, and T. C. Clancy, “A survey of automatic protocol
reverse engineering tools,” ACM Computing Surveys (CSUR), vol. 48, no. 3,
p. 40, 2016.

[28] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search
for similarities in the amino acid sequence of two proteins,” Journal of molecular
biology, vol. 48, no. 3, pp. 443–453, 1970.

[29] M. Nei, F. Tajima, and Y. Tateno, “Accuracy of estimated phylogenetic trees
from molecular data,” Journal of molecular evolution, vol. 19, no. 2, pp. 153–
170, 1983.

[30] D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean, P. J.
Turnbaugh, E. S. Lander, M. Mitzenmacher, and P. C. Sabeti, “Detecting novel
associations in large data sets,” science, vol. 334, no. 6062, pp. 1518–1524, 2011.

59

[31] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,
“Improved techniques for training gans,” in Advances in neural information
processing systems, 2016, pp. 2234–2242.

[32] B. D. Sija, Y.-H. Goo, K.-S. Shim, H. Hasanova, and M.-S. Kim, “A survey of
automatic protocol reverse engineering approaches, methods, and tools on the
inputs and outputs view,” Security and Communication Networks, vol. 2018,
2018.

[33] T. F. Smith, M. S. Waterman et al., “Identification of common molecular sub-
sequences,” Journal of molecular biology, vol. 147, no. 1, pp. 195–197, 1981.

[34] L. Tran, X. Yin, and X. Liu, “Disentangled representation learning gan for pose-
invariant face recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 1415–1424.

[35] A. Tridgell, “How samba was written,” Retrieved February, vol. 26, p. 2014,
2003.

[36] M. Zalewski, “American fuzzy lop,” 2014. [Online]. Available: http:
//lcamtuf.coredump.cx/afl/. [Accessed 2019-05-06].

[37] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image trans-
lation using cycle-consistent adversarial networks,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 2223–2232.

60

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	1 Introduction
	1.1 Security Testing of Software
	1.2 Security Testing in Black Box Systems
	1.3 Contributions
	1.4 Thesis Outline

	2 Protocol Reverse Engineering
	2.1 Protocol Reverse Engineering Overview
	2.1.1 Goals of Protocol Reverse Engineering
	2.1.2 Inference Process

	2.2 State of the Art Tools
	2.2.1 Terminology
	2.2.2 Techniques
	2.2.3 Limitations in State of the Art

	3 Generative Adversarial Networks
	3.1 Architecture Overview
	3.1.1 Adversarial Approach

	3.2 Wasserstein Generative Adversarial Networks
	3.3 Security-Related Applications of GANs
	3.3.1 Avoiding Detection of Malware

	4 Problem Overview
	4.1 Overview
	4.2 Protocol Message Format Definition
	4.3 Goals

	5 System Overview
	5.1 ProtoGANist Protocol Format-Learning System
	5.1.1 Challenges
	5.1.2 System Setup

	6 Evaluation
	6.1 Experiment Setup
	6.2 Methodology
	6.3 Experimentation Process
	6.4 Synthetic Protocol Modeler
	6.5 Protocol Message Format Properties
	6.5.1 Experiment 1: Ranges (ASCII Printable Characters)
	6.5.2 Experiment 2: Basic Operations (XOR Bit Operation)
	6.5.3 Experiment 3: Checks (TCP Checksum)
	6.5.4 Experiment 4: Stress Test (Controller Area Network)

	6.6 Investigating Difficulties with CRC
	6.6.1 Training Set Size vs CRC-4

	6.7 Memorization vs Learning

	7 Discussion and Future Work
	7.1 Findings
	7.1.1 Limitations and Improvements

	7.2 Future Work

	8 Conclusion
	Bibliography

