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Abstract

Critical infrastructures, including those that concern the nation’s economy and security such as

electrical power systems, water distribution systems and transportation systems, are becoming

more and more interdependent with each other. Although they bring unprecedented improve-

ments on efficiency and flexibility, the interdependent relations enable failures in one network

to propagate and impact the performance of other coupled networks. Cascading failures is

one such phenomenon that creates dramatic damages to critical infrastructures, where a small

initial shock can get escalated due to the intricate dependencies and result in system-wide

collapses. This dissertation aims to understand and mitigate the root cause of the seemingly

unexpected large-scale cascading failures by characterizing and modeling the inherent depen-

dencies between and within different networks. A main finding is that allocating the available

redundancies uniformly across the system maximizes the robustness against random failures.

We support this thesis statement with different networks and attack types: flow-carrying

networks under random and targeted attack, interdependent flow-carrying networks under

random attacks, and interdependent cyber-physical networks under random attacks. In the flow

redistribution network, we propose a global and equal flow redistribution model to capture the

cascading failure dynamics. In the case of random attacks, we derive the final system size and

critical attack size, and prove that the optimal robustness is reached when system redundancy

is allocated uniformly. For targeted attacks, we propose the optimization problem of finding

the best k lines to attack so as to minimize the number of alive lines at the steady-state,

to reveal the worst-case attack vulnerability of the system. In interdependent flow-carrying

networks, we study a model where the flow of a failed line is redistributed partially within the

network that the failed line belongs to, with the rest being shed to other coupled networks.

Analyzing the cascading failures in this model, we show that interdependence has a multi-

faceted impact on system robustness in that as the level of coupling increases, the chance for

both networks to survive or collapse concurrently increases, whereas it becomes more difficult

v



for each component network to survive on its own. To understand the robustness of integrated

cyber-physical systems (CPSs), we develop a novel interdependent system model to capture the

inherently different failure cascade characteristics of each component network; i.e., the cyber

and the physical networks are governed by different cascade rules to be able to function. We

demonstrate the ability of our model to capture the unexpected nature of large-scale cascading

failures in CPSs, and provide insights on improving system robustness by proposing optimal

redundancy allocation schemes.
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Chapter 1

Introduction and Motivation

Our national security, economic prosperity, and national well-being are dependent upon a set

of highly interdependent critical infrastructures, examples include the national electrical grid,

oil and natural gas systems, telecommunication and information networks, transportation net-

works, water systems, and banking and financial systems. However, while the interdependent

relations bring unprecedented improvements and functionality to the critical infrastructures as

well as improve the economy, it has been observed that such interdependent systems tend to

be fragile against failures, natural hazards, and attacks [7]. For instance, in the event of an

attack or random failures in an interdependent system, the failures in one network can cause

failures of the dependent nodes in other coupled networks and vice versa. This process may

continue in a recursive manner, triggering a cascade of failures that can potentially collapse an

entire system. For instance, an adversarial attack to any essential Internet hosts, e.g., tier-1

ISPs such as Qwest, AT&T or Sprint servers, once successful, may cause tremendous break-

downs to both millions of online services and the further large-area blackout because of the

cascading failures [8]. As we can see, the failures in these interdependent networks are far more

complicated and destructive than the failures in an isolated network, because the systems are

exposed to threats not only to themselves but also to the cascading failures induced by their

interdependent systems. The smart grid is such an example, where the power grid network

and the information network are coupled together; the grid depends on the information net-

work for its control, and the information network depends on the grid for power. In fact, the

cascading effect of even a partial Internet blackout could disrupt major national infrastruc-
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ture networks involving Internet services, power grids and financial markets [9]. For example,

it was shown [10] that the electrical blackout that affected much of Italy on 28 September

2003 had started with the shutdown of a power station, which led to failures in the Internet

communication network, which in turn caused the breakdown of more stations, and so on.

Given the importance of their reliable and secure operations, understanding the behavior

of these infrastructures – particularly when stressed or under attack – is crucial. As we embark

on a future where interdependent systems are becoming an integral part of our daily lives, a

fundamental question arises as to how we can design them in a robust and reliable manner.

Numerous applications of interdependent systems – including those that concern the nation’s

security, the health care system, monitoring and protecting natural landscapes, the electrical

power system, and emergency services – clearly put the successful and efficient operation of

them at the core of technologies that are vital to us. To that end, a major focus has to be put

on understanding their vulnerabilities, and in particular the root cause of the seemingly unex-

pected but large scale cascading failures through an accurate characterization and modeling of

these inherent dependencies.

Models and simulations can provide considerable insight into the complex nature of the

behaviors and operational characteristics of the critical infrastructures, but they must include

interdependent relations if they are to provide accurate representations of infrastructure char-

acteristics and operations. Traditional network science falls short in providing such a charac-

terization since the focus has mainly been on single networks in isolation; i.e., networks that

do not interact with, or depend on any other network. The current literature on robustness

of interdependent networks focus extensively on percolation-based models [9, 11–15], where a

node can function only if it belongs to the largest connected (i.e., giant) component of its

own network; nodes that lose their connection to this giant core are deemed non-functional.

While such models are suitable for many cases such as information networks, they fail to accu-

rately capture the dynamics of cascading failures in many real-world systems that are tasked

with transporting physical commodities; e.g., power networks, traffic networks, etc. In such
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flow-carrying networks, failure of nodes (or, lines) lead to redistribution of their load to func-

tional nodes, potentially overloading and failing them. As a result, the dynamics of failures is

governed primarily by load redistribution rather than the structural changes in the network.

A real-world example to this phenomenon took place on July 21, 2012, when a heavy rain

shut down a metro line and caused 100 bus routes to detour, dump stop, or stop operation

completely in Beijing [16].

Another problems is, despite some recent research activity aimed at studying interdepen-

dent networks [9,17–21], very few consider engineering aspects of inter-dependent networks and

very little is known as to how such systems can be designed to have maximum robustness under

certain design constraints; see [22–25] for rare exceptions. The current literature is also lacking

interdependent system models that enabling the study of robustness of systems that integrate

networks with inherently different behavior, such as the fundamental difference between the

physical and cyber networks in the cyber-physical systems; e.g., the functionality of the physical

subsystem would be primarily governed by the physical flows and capacities associated with

its components, while in a cyber-network, system-wide connectivity would be the prominent

requirement for maintaining functionality. There is thus a need to develop new approaches

for modeling and analyzing cascading failures in interdependent systems, and considering en-

gineering aspect of improving the robustness of interdependent networks. This dissertation

aims to solve the abovementioned problems by accurately characterize and model the inher-

ent dependencies between and within different networks in interdependent systems. With our

approach, we make an effort to understand the root cause of the seemingly unexpected large-

scale cascading failures that are able to create dramatic damages to critical infrastructures. We

will also demonstrate through our analysis that, uniform redundancy allocation in the system

maximizes robustness over all random failures sizes under a flow redistribution model.
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1.1 Research theme and considered research problems

As we mentioned before, the study on robustness of networks has long been concentrated on the

case of a single or isolated network which doesn’t interact with other networks. However, this

is rarely the case in our life and society now. Modern infrastructures are becoming significantly

more dependent on each other, making a system more complicated with interacting networks

involved. A fundamental property of interdependent networks is that failures happen in one

network can propagate to another coupled network in the system, where the failure may bounce

back and forth between the initial failed network and its coupled networks, causing a global

cascade of failures. This type of failure will lead to a much severe damage, for example of

failure of a power grid may cause failures in financial systems, water distribution systems,

transportation systems and so on, potentially collapsing the functionality of the whole society.

In this thesis, we aim to answer the question of how we can understand the vulnerabilities and

further design interdependent infrastructure systems in a robust manner.

Understanding the vulnerabilities and the root cause of the seemingly unexpected large-scale

cascading failures passes through accurately characterizing and modeling the inherent depen-

dencies between and within different component networks. The studies of network topologies

and degree distributions are quite extensive; see [26–30] for some examples. These models are

often suitable for information or cyber networks, since the robustness of a network is justified

by the largest connected component (i.e., giant component) based on percolation rules. In

other words, a node in such networks needs to connect to the giant core in order to function.

However, most of the percolation based models do not consider the real load or flow carried by

the network, which is often the case in real-world. Actually, the literature falls short in charac-

terizing networks carrying a physical flow or load. Especially, the different load redistribution

rules upon failure has been understudied. This is an important module for interdependent net-

works, since in many real-world applications physical networks are substantial in maintaining

the functionality of an interdependent system. Thus, we study the robustness of a flow-carrying
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networks under an equal and global redistribution model, where when a node or a line fail, the

load it carried will be redistributed equally among all the alive nodes (or lines). The proposed

model takes into consideration the long-range effect in many systems, where failures not only

affect neighboring regions, but also influence the load in far away areas in the system. This

phenomenon is observed in many systems such as the power grid, and the proposed model is

shown to capture this character of the system.

Under the equal and global redistribution model, we will study the robustness of a flow-

carrying network initiated by both a random attack and a targeted attack. Random attacks

model the random events that cause initial failure in the system such as urgent weather condi-

tions, misoperation, etc. We will analyze the final system size, critical attack size above which

the system completely collapses, and the transition behavior (how system transit from certain

level of functionality to completely breakdown) against cascading failures started by randomly

remove a portion of lines in the network. In the case of targeted attacks, we will study the

optimization problem of finding the best k lines to attack so as to minimize the number of alive

lines at the steady-state (i.e., when cascades stop). This is done to reveal the worst-case attack

vulnerability of the system as well as to reveal its most vulnerable lines. We will furthermore

consider a modified optimization problem where the adversary is also constrained by the total

load (in addition to the number) of the initial attack set, and develop heuristic algorithms for

both the original and modified problems.

In reality, networks with similar function are often coupled together to construct an in-

terdependent structure for better robustness and lower risk, for example power networks of

different region may be coupled together; or similar financial institutes may be related to lower

system risk. We model this type of system as an interdependent networks composed of two

identical networks under a flow redistribution model, and will investigate dynamics and be-

havior of the system during the cascading failure process. Due to the interdependent relations

between component networks, load on failed lines (or nodes) will not only be redistributed

internally, but will also be redistributed across other component networks. To quantify the
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level of the interdependency, we will define coupling coefficients that represent the percentage

of load shed from failure-initiated network to other networks. After redistribution of load from

failed lines (or nodes), more failure will happen within the network and across the system,

potentially leading to a cascade of failures in multiple component networks, till the system

reaches a steady state and no more failures happen. We will analyze the cascading dynamics

and system behavior during this process, and propose a resource allocation scheme to reach

optimal robustness.

Turning from interdependent systems composed of similar function networks, next we con-

sider interdependent systems composed of sub-networks of inherently different characters, a

typical example is the cyber-physical systems (CPS). CPS are integration of computing and

physical processes [31], and often in the real-world we have a physical network and cyber net-

work for different processes. Due to the interdependent relations, usually the physical network

affects the cyber network by providing a unique physical substance, and the cyber network

sends out control and communication information without which the physical network can-

not function. There are considerable challenges, particularly because the physical components

of the CPS introduce safety and reliability requirements qualitatively different from those in

general-purpose cyber networks [31]. Moreover, physical networks are qualitatively different

from cyber networks, in a way that the failure is often caused by redistribution of load while

the cyber networks rely more on the connectivity to the giant core. To this end, we will cap-

ture this fundamental difference between the two types of networks by proposing a framework

with inter-dependency relations and intra-dependency relations defined. Specifically, inter-

dependency relations define the rules and physical laws within each component network; and

intra-dependency relations define the interdepend relations between coupled networks. The in-

terdependent relations between component networks are established through one-to-one links,

and we will provide a thorough analysis of the dynamics of cascading failures in this interde-

pendent system initiated with a random attack.

Till now, we mainly focus on the study of a global redistribution rule when flow-carrying
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networks are involved. In other words, loads will be redistributed globally to all alive lines

upon failure. In this thesis, we also complement our results with simulations on a global-local

combined redistribution model. In this model, a factor β controls how many load of the failed

nodes goes to geographic neighbors, and how many goes to everyone else. We will explore

different β values under this model, and analyze how topology brings changes as well as keeps

qualitatively behaviors the same for different β values.

1.2 Thesis contributions

We pursue the study on modeling and analyzing the robustness of interdependent networks

against cascading failures. Through accurately characterizing and modeling the inherent de-

pendencies between and within component networks, we analyze and help to understand the

root cause of the seemingly unexpected large-scale cascading failures. Furthermore, we show

that uniform redundancy allocation in the system maximizes robustness over all random fail-

ures sizes.

Regarding the flow-carrying networks, we propose a global and equal redistribution model

that takes into consideration the cascading failure effect caused by load redistribution. Our

model captures the long-range effect existing in many systems, and we provide a complete

understanding of system robustness under random attacks by i) deriving an expression for the

final system size as a function of the size of initial attacks; ii) deriving the critical attack size

after which system breaks down completely; iii) showing that complete system breakdown takes

place through a first-order (i.e., discontinuous) transition in terms of the attack size; and iv)

establishing the optimal load-capacity distribution that maximizes robustness. In the scenario

of targeted attacks, we propose the optimization problem of finding the best k lines to attack

so as to minimize the number of alive lines at the steady-state (i.e., when cascades stop). This

reveals the worst-case attack vulnerability of the system as well as its most vulnerable lines.

We derive optimal attack strategies in several special cases of load-capacity distributions that

are practically relevant. We also prove the modified problem where the adversary is further
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constrained by the total load (in addition to the number) of the initial attack set is NP-Hard.

Besides the analysis, we develop heuristic algorithms for selecting the attack set for both the

original and modified problems.

Then, we consider the case of interdependent networks under a flow-redistribution model.

Specifically, we consider a model consisting of networks A and B with initial line loads and

capacities. When a line fails in system A, a-fraction of its load is redistributed to alive lines in

B, while remaining (1− a)-fraction is redistributed equally among all functional lines in A; a

line failure in B is treated similarly with b giving the fraction to be redistributed to A. We give

a thorough analysis of cascading failures of this model initiated by a random attack targeting

p1-fraction of lines in A and p2-fraction in B. We show that the model captures the real-world

phenomenon of unexpected large scale cascades and exhibits interesting transition behavior;

network robustness tightly depends on the coupling coefficients a and b, and robustness is

maximized at non-trivial a, b values in general. Unlike existing models, we show in our work

that interdependency has a multi-faceted impact on system robustness in that it can lead to

an improved robustness for each individual network.

For interdependent systems composed of networks with inherently different characters, we

investigate the cascading failure dynamics and system robustness of a cyber-physical system,

also initiated by a random attack. We develop a novel interdependent system model to cap-

ture the intricate dependencies within and across the individual (e.g., cyber and physical)

counterparts of the system, with different failure rules in the cyber network and physical net-

work. For simplicity, we consider a one-to-one interdependency model where every node in

the cyber-network is dependent upon and supports a single node in the physical network, and

vice versa. We provide a thorough analysis of the dynamics of cascading failures in this in-

terdependent system initiated with a random attack. The system robustness is quantified as

the surviving fraction of nodes at the end of cascading failures, and is derived in terms of all

network parameters involved (e.g., degree distribution, load/capacity distribution, failure size,

etc.). Among other things, these results demonstrate the ability of our model to capture the
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unexpected nature of large-scale failures, and provide insights on improving system robustness.

For the global redistribution model studied in this thesis, we further complement our ana-

lytical results with simulations that demonstrate how network topology affects the robustness

properties. To this end, we propose a model that combines the global redistribution model

and the local redistribution model. We show that the qualitative behavior of the robustness

remains relatively unchanged, and suggest that the mean-field approached used in our analysis

is able to capture well the qualitative behavior of the final system size for different global-local

parameters.

1.3 Thesis outline

This thesis is divided into four parts. In Part I, we introduce the motivation, research theme,

research problems, research contributions, as well as the background for this thesis. In Part II,

we consider the robustness of flow-carrying networks. In particular, we consider the cascading

failures in flow-carrying networks initiated by a random attack (Chapter 3) and the case when

targeted attack is deployed (Chapter 4). In Part III, we consider interdependent networks and

their robustness behavior against cascading failures. We considered interdependent systems

composed of similar networks and inherently different networks; specifically, the case of in-

terdependent flow-carrying networks (similar networks coupled) introduced in Chapter 5 and

cyber-physical systems (inherently different networks coupled) studied in Chapter 6. Finally,

Part IV summarizes the conclusion and future work for this thesis.

1.4 Table of symbols used in the thesis
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symbol meaning explanation

1− p initial failure size
fraction of initially failed nodes
(or line)

Li line a line in the network
Li initial load initial load carried by line Li
Si free-space redundancy available to line Li
Ci capacity maximum flow line Li can sustain
αi tolerance factor the proportion of Li with Ci
U(Lmin, Lmax) Uniform distribution Lmin, Lmax > 0

Pareto(Lmin, b)
Pareto distribution
(power-law
distribution)

Lmin, b > 0

Weibull(Lmin, λ, kw) Weibull distribution Lmin, λ, kw > 0

β
parameter in heuristic
algorithm for
targeted attacks

used in maximum L ∗ Sβattack

k
attack size in
targeted attacks

number of lines attacked initially

a, b coupling coefficients
a (or b) fraction of load is shed
to the coupled network;
1− a (or 1− b) is shed within

〈d〉 mean degree mean degree in ER or SF graph

SF (γ,Γ) scale-free network

power-law degree distribution with
exponential cut-off; γ is the power
exponent and Γ is the
cut-off parameter

µ
parameter in global-local
combined redistribution

µ fraction of load distributed to
neighbors, the rest to all other
functional lines or nodes

Table 1.1: Symbols used in the thesis and their meanings.
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Chapter 2

Background

2.1 Cascading failures in critical infrastructures

Robustness and vulnerabilities of real world systems have always been an important issue, and

due to the fast development of information technologies and the recent advances in complex

network theory [32–37], networks now play an even more important role in modeling and

analyzing system infrastructures that compose the basics of our lives and industry. Cascading

failures are one of the most important issues studied in the robustness of various systems,

since the breakdown of a single or a very small size group of elements can be sufficient to

cause the entire systems to collapse, due to the dynamics of redistribution of flows on the

networks [38]. How is it possible that a small initial shock, such as the breakdown of a node in

the power system or a route in traffic system, can trigger avalanches affecting a considerable

fraction of the system, or even collapsing a system that was proven to be stable with respect to

similar shock in the past? In this thesis, we try to answer this question and aim to model and

analyze the robustness of interdependent systems (or networks) regarding the cascading failure

phenomenon.To take into account this phenomenon, we need to apply dynamical approaches

due to the fact that the breakdown of a small region of the system not only affect the network

performance directly, but also can cause an overload and consequently the breakdown of failure

of other parts of the network, which may further cause failure in the redistribution process,

thus generating a cascading effect that may collapse the entire network.

The most vital infrastructure where cascading failure can create huge damage is the elec-
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blackout events
people

affected
(millions)

location date

2012 India blackouts 620 India 30-31 Jul 2012
2001 India blackout 230 India 2 Jan 2001
2014 Bangladesh blackout 150 Bangladesh 1 Nov 2014
2015 Pakistan blackout 140 Pakistan 26 Jan 2015
2005 Java-Bali blackout 100 Indonesia 18 Aug 2005
1999 Southern Brazil
blackout

97 Brazil 11 Mar-22 Jun 1999

2009 Brazil and Paraguay
blackout

87 Brazil, Paraguay 10-17 Nov 2009

2015 Turkey blackout 70 Turkey 31 Mar 2015
Northeast blackout of 2003 55 United States, Canada 14-15 Aug 2003
2003 Italy blackout 55 Italy, Switzerland 28 Sept 2003
2016 Kenya Blackout 44 Kenya 7 Jun 2016
2002 Luzon blackout 40 Philippines 21 May 2002
1978 Thailand blackout 40 Thailand 18 Mar 1978
2001 Luzon blackout 35 Philippines 07 Apr 2001
Northeast blackout of 1965 30 United States, Canada 9 Nov 1965
2019 Venezuelan blackouts 30 Venezuela 7 Mar-26 Apr 2019
2016 Sri Lanka blackout 21 Sri Lanka 13 March 2016

Table 2.1: List of the largest power outages in history. Data from [6].

trical power systems or the smart grids, since a power system failure can have far-reaching

and higher-order effects on the economy as well as most aspects of life, and also impair the

operation of other critical infrastructures [39]. With the capabilities we construct that allow

power to be transferred over hundreds of miles, it also enables the propagation of local failures

into grid-wide events [33]. A typical example is the August 2003 blackout, where the power

outage spread widely throughout parts of the Northeastern and Midwestern United States and

the Canadian province of Ontario; see Figure 2.2 for the satellite photo. The outage affected

an estimated 10 million people in Ontario and 45 million people in eight U.S. states. The

cause of the blackout is a software bug causing operators to remain unaware of the need to

redistribute load after overloaded transmission lines drooped into foliage, and what should have

been a manageable local blackout cascaded into collapse of the entire North East Region [40].

At the same year, the Italy blackout affected 55 million of people, and blackouts continue to
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Figure 2.1: A light map of Venezuela on the night of 7 March 2019 and the night of 8 March
2019 [1].

happen with more and more sever impact: in the 2012 India blackouts, 620 million people

was affected; the 2014 Bangladesh blackout affected 150 million people; and the 2015 Pakistan

blackout caused 140 million people to lose power [6], just name a few (see table 2.1 for more

information). Actually, the most recent blackout, 2019 Venezuelan blackouts, is till going [1].

The nationwide recurring electrical blackouts began in March 2019, and was the largest power

outage in the country’s history. It causes serious problems in hospitals and clinics, industry,

transport and in water service. At least 43 deaths resulted (see Figure 2.1 for the light map of

Venezuela during the blackout).

Actually, analysis of North American Electrical Reliability Council blackout data suggests

the existence of blackout size distributions with power tails. Power tails decay as according to a

power law and are also exhibited by complex systems near criticality. This is an indication that

blackout dynamics behave as a complex dynamical system [41]. These observations indicate

the non-Gaussian character of the blackout size probability distributions and are of concern

because they indicate a much larger risk of large blackouts than might be expected [42], which

is also shown in the recent large blackouts listed in table 2.1.

Besides power systems, cascading failures also happen in other areas of social and econom-

ical systems that greatly our daily lives. For example, in the event of a hurricane evacuations,
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Figure 2.2: A satellite photo showing the dark swath cut by the outages in the August 2003
Northeast blackout [2].

cascading failure is a critical factor that affect transportation systems, where signal failure and

subway suspension may happen that lead to the capacity loss of roadway network in evacua-

tion [43]. Cascading failures in the Internet has also been a critical issue, in that the traffic

is rerouted to bypass malfunctioning routers that eventually lead to an avalanche of overloads

on other routers [44]. In wireless sensor networks(WSN), the studies are now turning away

from the traditional focus on impacts of network topology and consider the impact of cascad-

ing failures brought by redistribution of network load. In this scenario, the load of a sensor

node is defined as the number of data packets it’s processing, and is limited by its capacity.

When a node fails, the transmitted data will choose a new route to continue transmission,

and network load will be redistributed. The redistribution of network load may further cause

new nodes to overload and fail, thus trigger a cascade of failures. In WSNs, due to the exis-

tence of cascading failures, even though most failures emerge very locally, the entire network

can be largely affected or even collapsed globally [45]. Besides the aforementioned social and

technology systems, cascading failures can also happen in financial and economic networks. In

light of global economic convergence, economic entities and financial markets become increas-

ingly intertwined, and a shock in a financial network can provoke significant cascading failures

throughout the global economic system [46]. Another example in economical systems is the

case of firms’ adaptive strategies against disruptions in a supply chain network [47]. In the

disruption propagation process under this scenario, if an agent needs to find an alternative
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supplier due to the failure of one of its original suppliers, this agent’s operation will be dis-

rupted if he cannot secure one such supplier. As a results, all its customers will need to seek

alternative suppliers, leading to consecutive removal of nodes from the supply chain network

that result the cascading failures across the whole network. The effect of cascading failures is

also studied in risk and reliability assessment of complex infrastructure systems [48].

As we mentioned before, as infrastructures especially critical infrastructures such as power

system, water system and traffic systems are becoming more interdependent and more inter-

active, a small failure can get amplified due to inherent infrastructure interdependencies and

cause system-wide cascading failures. Thus, there is an increasing need to develop models and

analytical tools for studying the robustness of interdependent systems when cascading failures

happen. In the next section, we will introduce some existing load redistribution models in the

failure process, and see their benefits and limitations.

2.2 Load redistribution models for cascading failures

The study of network failures, or resistance of networks to the removal of nodes or edges due

to random breakdowns or intentional attacks, starts with the static properties of the network.

This means that such studies focuses on the removal of a group of nodes and the corresponding

consequences on the network performance [49–54]. Following such approach, it has been shown

that the deleterious consequences happen in the network when a sizable group of nodes are

removed. However in many real world systems such as the power network, the failure of a

single or very small portion of the nodes can cause system-wide collapses, due to the dynamics

of flow redistribution on the networks. Thus dynamic approaches have been developed to

take into consideration of this phenomenon [38, 44, 55, 55–58]. In these models that involve

dynamic approaches, usually each node in the network is characterized by a given initial load

and capacity. Initially, the network is stable in that the load at each node is smaller than its

capacity. The removal of breakdown of a node changes the balance of the flow and leads to a

redistribution of loads over other nodes. If the capacity of these nodes cannot handle the extra
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load, more failure will happen, and the loads from failed nodes will be redistributed again,

triggering a cascade of failures that results in a large portion of malfunction or even collapse

in the network.

One of the most influential model on this topic is by Motter and Lai [59], where they focus

on cascades triggered by the removal of a single node. In their model, it is assumed that at

each time step one unit of relevant quantity is exchanged between any pair of nodes along

the shortest path, so the load at each node is defined as the number of shortest paths passing

through this node. In other words, the authors used betweenness centrality to define the

load. The capacity Cj of node j is defined as proportional to its initial load Lj by a tolerance

parameter α; i.e., Cj = (1 + α)Lj, j = 1, 2, · · · , N . Cascading happens due to the removal of

nodes since the distribution of shortest paths changes, and the load at a node can then change

and may further fail due to the load being greater than the capacity. Since the load is defined

as the shortest path, their results on the global cascades relies on the topology of the network

involved. Their results show that when the network is highly heterogeneous and one of the the

high-load nodes is removed, global cascades can occur.

Subsequent studies introduced alternative measures for the network load, such as the work

of Crucitti et. al. [44] where load is defined as the number of most efficient paths passing

through certain node. They also focus on cascading failures caused by removing a single node,

and both random removals and load-based removals were discussed in their model. Again, since

the load is defined according to the topology, they have the same results that the breakdown of

a single node is sufficient to collapse a network if the node is among the ones with the largest

load. There also appeared more realistic redistribution mechanisms [44,60–62].

In the aforementioned models, the redistribution of loads is treated in a time-independent

or static way, so they are also called static overload failure models. In other words, the load

redistributions are instantaneously and discontinuously switched to the stationary loads of

the new network, without any consideration of the transient dynamics in between. For this

reason, Simonsen et. al. [63] suggested to take into account the dynamical flow properties, and
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proposed a dynamical overload failure model for cascading failures. They study the transient

dynamical effects as well as overload situations before the stationary state is reached, and show

that the transient dynamics is often characterized by overshooting and/or oscillations in the

loads, which may result in characteristic ”failure waves” spreading over the network. They also

show that cascading failures is generally given by a complex interplay between the network

topology and flow dynamics.

2.3 Study on cascading failure of interdependent net-

works

Robustness of networks under the giant-component based failure model has been extensively

analyzed in the case of single networks [5,64,65]. The focus has recently been shifted towards

interdependent networks with the work of Buldyrev et al. [9], where robustness of two inter-

dependent networks, both operating under the giant-component based intra-dependence rule,

was studied. This model considers two networks of the same size, say networks A and B,

where a one-to-one correspondence between nodes in each network is defined. Furthermore, it

is assumed that a node in either network can function only if it’s corresponding support node

in the other network is functioning. To simulate the cascading failures, initially 1−p fraction of

nodes are removed from network A along with links attached to them. Due to the dependence

between networks, all nodes in network B that are connected to the removed A-nodes will also

be removed, which in turn may cause further failures from A and triggering an avalanche of

cascading failures. To evaluate the robustness of the interdependent networks, the size of the

giant component of both networks are computed at each stage of the the failure process until a

steady state is reached and no more failures happen. The authors show in their results that a

broader degree distribution increases the vulnerability of interdependent networks to random

failure, which is opposite to how a single network behaves.

This work has received much attention and inspired the study of interdependent networks
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in many different directions. For example, in [66], the authors studied cascading failures of

two coupled network with multiple connectivity links, and under the initial scenario when both

networks are randomly attacked. In [11, 67], the mitigation strategy of partially decoupling

the networks by creating some autonomous nodes is studied, and the problem of balancing the

disconnection of interdependent links and system functionality is discussed. This strategy is

shown to mitigate the system-wide failure by changing the first-order transition to a second-

order, or a smooth transition, when computing the fraction of nodes in the giant component.

The case of targeted attacks on high or low degree nodes is studied in [68], by using a technique

that can map the targeted attack problem to the random attack problem in a transformed

pair of interdependent networks. in [12], the authors studied the correspondently coupled

networks, where the mutually dependent nodes have the same number of connectivity links, or

the interdependent networks have identical degrees of mutually dependent nodes. In [69], the

optimal strategy to allocate inter-links against random attacks are studied without specifying

the topology of each individual network. The more realistic cases of interdependent systems

are studied in [70, 71]. In [72], the authors consider a sandpile model on modular random

graphs to study the cascade of load in an interdependent network. In this formulation, the

initial load is dropped as grains uniformly distributed from zero to one less than its degree on

the nodes, and the capacity of nodes are defined as their degree so that each node shed one

grain (load) to each neighbor upon failure. Each network has its own distribution, with a fixed

fraction of neighbors within the network and the rest connected to the other network. Using a

multitype branching process, the authors show the effects of interconnections and the optimal

connectivity level to balance the trade-offs.

We can see that the literature on robustness of interdependent systems focus heavily on the

study of structure changes in the dynamics, especially percolation based rules where only the

giant component of the graph can function, and all small components are regarded failed. Even

if load is considered, the composition and redistribution of load is often closely related to the

topology; for example betweenness centrality is used to define the load in many cases, which
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itself is a measure for network structure. In many real world systems, the load is a specific

physical commodity, such as electricity or water, instead of abstract of topology features. And

the redistribution of load is often times not only restricted by topology; for example long term

effect in the power system is observed where the failure of nodes not only affect neighboring

areas but has influenced the load in regions far away. On the other hand, very few studies

consider engineering aspects of inter-dependent networks and very little is known as to how

such systems can be designed to have maximum robustness under certain design constraints; see

[22–25] for rare exceptions. The current literature is also lacking interdependent system models

that enable studying robustness of systems that integrate networks with inherently different

behavior. For example, in cyber-physical systems, it would be expected that the functionality

of the physical subsystem is primarily governed by the physical flows and capacities associated

with its components, whereas system-wide connectivity would be the prominent requirement

for maintaining functionality in the cyber network. There is thus a need to develop new

approaches for modeling and analyzing cascading failures in interdependent networks. In the

following chapters of this thesis, we will introduce our models that takes into consideration the

aforementioned factors, and provide detailed analytic results in the case of a flow-redistribution

network and an interdependent network.
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Part II

Robustness of Flow-carrying Networks
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Chapter 3

Flow-carrying Networks under Random Attacks

In this chapter, we build a simple yet useful model to study the robustness of flow-carrying

networks against cascading failures. We will focus on cascading failures caused by random

attacks in this chapter, and the case of targeted attack will be discussed in the next chapter.

We will introduce motivation, the formulation of the model, give a comprehensive analytical

results including the proof of the optimal robustness, then verify our analysis with various

simulation results from both synthetic data and real-world data.

3.1 Motivation and problem statement

Our study of flow-carrying networks is motivated by the concern of vulnerabilities of flow-

carrying networks such as power networks, traffic networks, etc. Flow-carrying networks are

often among the most critical national infrastructures that affect all areas of daily life, for

example electrical power systems provide crucial support for other national infrastructures

such as telecommunications, transportation, water supply systems and emergency services.

However, several large-scale failures happened recently around the world rises the concern for

these critical flow-carrying infrastructures. For example, in the 2012 India blackout, 600 million

people, nearly a tenth of the world’s population, were left without power [73,74].

These large-scale failures often start with natural hazards such as lightning shorting a line

or with malicious attacks, and affect only a small portion of the network initially. But due

to the nature of the physical commodity carried, such as the long range nature of electricity,
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the redistribution of loads (or flow) may affect not only geographically co-located nodes or

lines but also other parts of the system far from the initial affected area, as history records

show [75]. The large-scale blackouts in power systems are often attributed to this initial shock

getting escalated due to the intricate dependencies within a power system. For example, when

a line is tripped, the flow on all other lines will be updated, and some lines may end up with

a total flow (initial plus redistributed after failures) exceeding their capacity. All lines with

flows exceeding their capacity will in turn fail and flows on other lines will be updated again,

possibly leading to further failures, and so on. This process may continue recursively and lead

to a cascade of failures, which may potentially breakdown the entire system.

Since these critical infrastructures such as electrical power systems are among the largest

and most complex technological systems ever developed [76], it is often hard to have a full

understanding of their inter- and intra-dependencies and therefore it is hard to predict their

behavior under external attacks or random failures. In this work, we aim to shed light on

the robustness of such flow-carrying networks using a simple yet useful model. In particular,

we assume that when a line fails, its load (i.e., flow) is redistributed equally among all other

lines. The equal load redistribution model has the ability to capture some critical character

of the network, such as the long-range nature of the Kirchhoff’s law, at least in the mean-field

sense, as opposed to the topological models where failed load is redistributed only locally among

neighboring lines [77, 78]. This is particularly why this model received recent attention in the

context of power systems first in the work by Pahwa et al. [79] and then in Yağan [80]; the

model is originally inspired by the democratic fiber-bundle model [81] that is used extensively

for studying the rupture of fiber-bundles under increasing external force.

Our main goal is to study the robustness of flow-carrying networks under the equal load-

redistribution model. In this work, we assume that failures are initiated by a random attack (or

failure) that results with a failure of 1− p fraction of the lines. In other words, only p fraction

of lines are alive after the initial failure. The initial failures lead to redistribution of flows from

the failed lines to alive ones (i.e., non-failed lines), so that the load on each alive line becomes
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its initial load plus its equal share of the total load of the failed lines. This may lead to the

failure of some additional lines due to the updated flow exceeding their capacity. This process

may continue recursively, generating a cascade of failures, with each failure further increasing

the load on the alive lines, and may eventually result with the collapse of the entire system.

Throughout, we let n∞(p) denote the expected final fraction of alive lines when 1− p fraction

of lines is randomly attacked:

n∞(p) := lim
N→∞

E [|Nsurviving(p)|]
N

(3.1)

where Nsurviving ⊂ {1, . . . , N} is the set of lines that are still functioning at the steady state.

The robustness of a flow-carrying network will be evaluated by the behavior n∞(p) for all attack

sizes with 0 < p < 1. Of particular interest is to characterize the critical attack size 1− p? at

which n∞(p) drops to zero.

We believe that our results provide interesting insights into the dynamics of cascading

failures in such systems. In particular, we expect our work to shed some light on the qualitative

behavior of real-world systems under random attacks, and help design them in a more robust

manner. Although we set the example mainly in power systems, the results obtained here may

have applications in other fields as well. A particularly interesting application is the study

of the traffic jams in roads, where the capacity of a line can be regarded as the traffic flow

capacity of a road [82,83].

3.2 Model definition

Equal load-redistribution model. We consider a flow-carrying system, such as a power

system, with N transmission lines L1, . . . ,LN with initial loads (i.e., power flows) L1, . . . , LN .

The capacity Ci of a line Li defines the maximum flow that it can sustain, and is given by

Ci = Li + Si, i = 1, . . . , N, (3.2)
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where Si denotes the free-space (or, redundancy) available to line Li. The capacity of a line

can be defined as a factor of its initial load, i.e.,

Ci = (1 + αi)Li (3.3)

with αi > 0 defining the tolerance parameter for line Li. Put differently, the free space Si is

given in terms of the initial load Li as Si = αiLi; it is very common [59,77,84,85] to use a fixed

tolerance factor for all lines in the system, i.e., to use αi = α for all i. It is assumed that a

line fails (i.e., outages) if its load exceeds its capacity at any given time. The key assumption

of our model is that when a line fails, the load it was carrying (right before the failure) is

redistributed equally among all remaining lines.

Throughout we assume that the pairs (Li, Si) are independently and identically distributed

with PLS(x, y) := P [L ≤ x, S ≤ y] for each i = 1, . . . , N . The corresponding (joint) probability

density function is given by pLS(x, y) = ∂2

∂x∂y
PLS(x, y). Throughout, we let Lmin and Smin

denote the minimum values for load L and free space S; i.e.,

Lmin = inf{x : PL(x) > 0}

Smin = inf{y : PS(y) > 0}

We assume that Lmin, Smin > 0. We also assume that the marginal densities pL(x) and pS(y)

are continuous on their support.

3.3 Main results

3.3.1 Final system size

Our first main result characterizes the robustness of the network under any initial load-space

distribution PLS and any attack size 1−p. Let L and S denote generic random variables follow-
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ing the same distribution with initial loads L1, . . . , LN , and free spaces S1, . . . , SN , respectively.

Then, with x? denoting the smallest solution of

h(x) := P [S > x] (x+ E [L | S > x]) ≥ E [L]

p
(3.4)

over the range x? ∈ (0,∞), the expected final system size n∞(p) at attack size 1 − p is given

by

n∞(p) = pP [S > x?] . (3.5)

This result provides a complete picture about a flow-carrying network’s robustness against

random attacks of arbitrary size. In particular, it helps understand the response n∞(p) of the

system to attacks of varying magnitude.

Figure 3.1 shows the analytic results and simulation results of final system size. We see

from this result that an adversarial attack aimed at a certain part of the electrical power grid

may lead to failures in other parts of the system, possibly creating a recursive failure process

also known as cascading failures. This will often result with a damage in the system much

larger than the initial attack size 1 − p. However, in most cases “some” part of the system

is expected to continue its functions by undertaking extra load; e.g., with n∞(p) > 0. In

such cases, although certain service areas are affected, the system such as power grid remains

partially functional. The most severe situations arise when cascading failures continue until

the complete breakdown of the system where all lines fail; e.g., when n∞(p) = 0. This prompts

us to characterize the critical attack size 1 − p?, defined as the largest attack size that the

system can sustain.

3.3.2 The critical attack size

Of particular interest is to derive the critical attack size 1−p? such that for any attack with size

1 − p > 1 − p?, or the initially survived line fraction p < p?,the system undergoes a complete

breakdown leading to n∞(p) = 0; on the other hand for p > p?, we have n∞(p) > 0. More
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Figure 3.1: Final system size under different load-free space distributions. Analytic results
(obtained from (3.4) and (3.5)) are represented by lines, whereas simulation results (averaged
over 200 independent runs) are represented by symbols. We see that in each case theoretical
results match the simulation results very well.

precisely, we define 1− p? as

1− p? = inf{p : n∞(p) > 0}.

The critical attack size can be derived from the previous results (3.4)-(3.5) that characterize

n∞(p).Namely, for any load-free space distribution pLS(x, y), the maximum attack size 1− p?

can be computed from the global maximum of the function P [S > x] (x+ E [L | S > x]). In

particular, we have

1− p? =
E [L]

max
x
{P [S > x] (x+ E [L | S > x])}

. (3.6)

3.3.3 Phase transitions and abrupt rupture

It is of significant interest to understand the behavior of the system near the phase transition;

i.e., when the attack size is very close to but smaller than the critical value 1 − p?. One
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Figure 3.2: Different types of first-order transitions. We demonstrate the difference between an
abrupt first-order transition and a first-order transition with a preceding divergence from the p
line. The lower curves (shown in red) correspond to the case where the load L and extra space
S are independent and uniformly distributed with Lmin = Smin = 10 and E[L] = E[S] = 20.
The upper curves (shown in blue) are obtained under the same setting except that we set
E[S] = 35. We see that the lower curve in Figure 3.2a reaches its maximum at Smin = 10,
and the corresponding final system size exhibits an abrupt first-order transition as shown in
Figure 3.2b. On the other hand, the upper (i.e., blue) curve in Figure 3.2a is maximized at
S = 20 > Smin. As expected from our result (e.g., see (3.8)), the total breakdown of the system
takes place after a diverging failure rate is observed.

main questions here is whether n∞(p) decays to zero continuously (i.e., through a second-order

transition), or discontinuously (i.e., through a first-order transition). The practical significance

of this is that continuous transitions suggest a more stable and predictable system behavior

with respect to attacks, whereas with discontinuous transitions system behavior becomes more

difficult to predict, for instance, from past data. Our analysis shows that under the equal-

load redistribution model considered here the total breakdown of the system will always be

through a first-order (i.e., discontinuous) transition. This means that regardless of the attack

size and the distribution of load and capacity, the transition point where the system has a total

breakdown (i.e., where the fraction of alive lines drops to zero) is always discontinuous. These

cases are reminiscent of the real-world phenomena of unexpected large-scale system collapses;

i.e., cases where seemingly identical attacks/failures leading to entirely different consequences.

Now that we showed that the breakdown of the power system takes place through a first-
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order transition, an interesting question arises as to whether this first-order rupture at 1− p?

has any early indicators at smaller attack sizes; e.g., a diverging failure rate leading to a non-

linear decrease in n∞(p). Otherwise, an abrupt first-order transition is said to take place if the

linear decay of n∞(p) is followed by a sudden discontinuous jump to zero at 1− p?; i.e., we say

that the system exhibits an abrupt rupture when it holds that

n∞(p) =

 p if 1− p ≤ 1− p? or p > p?

0 if 1− p > 1− p? or p < p?
(3.7)

In Figure 3.2b we demonstrate the distinction between an abrupt rupture and a rupture with

preceding divergence from the p line.

We show that the system goes through an abrupt first-order breakdown (e.g., see the below

line shown in red in Figure 3.2b), if and only if the function h(x) = P[S > x](x+E[L | S > x])

reaches its maximum at x = Smin, where Smin is the minimum value the extra space S can

take. Namely, an abrupt first-order rupture (without a preceding divergence) takes place if and

only if

arg max
x>0
{P [S > x] (x+ E [L | S > x])} = Smin. (3.8)

Otherwise, if arg maxx>0 h(x) 6= Smin, then a preceding divergence from the p line will be

observed before n∞(p) drops to zero; e.g., see the above line shown in blue in Figure 3.2b).

More precisely, it will hold that n∞(p) < p for some p > p?.

3.3.4 Achieving optimal robustness

The most important question from a system design perspective is concerned with deriving

the universally optimum distribution of initial loads L1, . . . LN and free spaces S1, . . . , SN that

leads to maximum robustness under the constraints that E [L] and E [S] are fixed. We believe

that the answer to this problem would be very useful in designing real-world power grids with

optimum robustness, i.e. with the final system size n∞(p) maximized for any attack size p.

29



The motivation for the constraints on the mean load E [L] and mean free space E [S] are as

follows. The total load carried by the system is likely to be dictated by system requirements in

most real-world cases, which also determines the average load per line. In addition, the total

capacity (or, total free space) available to the system is likely to be bounded due to the costs

associated with using high-capacity lines.

Our results concerning this important problem are presented next. First, we focus on

maximizing the critical attack size 1 − p?. We show in Methods that the critical attack size

always satisfies

1− p? ≤ E[S]

E[S] + E[L]
=

E [S]

E [C]
(3.9)

Namely, regardless of the distribution pLS that generates load-capacity pairs, the system will

always go into a complete breakdown if more than E[S]/E[C]-fraction of lines are attacked;

i.e., the system can never sustain a random attack of size exceeding the ratio of mean free

space to mean capacity. Next, we show that this critical attack size is in fact attainable

under any load distribution by a Dirac delta distribution for the free-spaces, i.e., by giving

every line the same free space. More precisely, let p?dirac denote the critical attack size when

pLS(x, y) = pL(x)δ(y − E [S]), where the distribution pL(x) of the initial loads L1, . . . , LN is

arbitrary. We show in Methods that

1− p?dirac ≥
E[S]

E[S] + E[L]
.

Combined with (3.9) this shows that assigning every line the same free space (regardless of the

initial loads) maximizes the largest attack that the system can sustain.

More can be said regarding the optimality of equal free-space allocation. Let 1 − p?optimal

denote the maximum critical attack size as established above, i.e., 1− p?optimal = E[S]/(E[S] +

E[L]). In view of the fact that we always have n∞(p) ≤ p, the next result firmly establishes

that using the Dirac delta distribution for free space optimizes the robustness of the system

uniformly for any attack size p. In particular, if pLS(x, y) = pL(x)δ(y − E [S]), then the
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corresponding final system size n∞,dirac(p) satisfies

n∞,dirac(p) =

 p for 1− p < 1− p?optimal

0 for 1− p ≥ 1− p?optimal
(3.10)

Namely, the distribution pLS(x, y) = pL(x)δ(y − E [S]) maximizes the final system size n∞(p)

uniformly for all p.

This result shows that as far as the random attacks are concerned, the system’s robustness

can be maximized under the constraints of fixed E [L] and fixed E [S] (and hence fixed E [C]),

by giving each line an equal free space E [S], irrespective of how the initial loads are

distributed. Put differently, the robustness will be maximized by choosing a line’s capacity

Ci through Ci = Li + E [S] no matter what its load Li is.

A possible explanation to this result is as follows. When all lines have the same extra

space, we ensure that the system never goes through a cascade of failures. In other words,

when 1 − p fraction of the lines are attacked, we will have either n∞(p) = p or n∞(p) = 0

depending on whether or not, respectively, the total load of failed lines divided by p is less

than the common free space S. In addition, if the attack size is large enough that total load

of failed lines, i.e., (1− p)E [L], is larger than the total free space pE [S] available in the rest of

the system, then regardless of the distribution pLS(x, y), the system will collapse. Collectively,

these explain why assigning equal free-space to all lines ensures that system will go through

an abrupt rupture, but only at the optimal critical attack size p?optimal.

3.4 Simulation results

We now confirm our theoretical findings via numerical simulations, using both synthetic and

real-world data. We focus on the former case first and consider various commonly known

distributions for the load and free-space variables.

Synthetic data. Throughout, we consider three commonly used families of distributions:
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i) Uniform, ii) Pareto, and iii) Weibull. The corresponding probability density functions are

defined below for a generic random variable L.

• Uniform Distribution: L ∼ U(Lmin, Lmax). The density is given by

pL(x) =
1

Lmax − Lmin

· 1 [Lmin ≤ x ≤ Lmax]

• Pareto Distribution: L ∼ Pareto(Lmin, b). With Lmin > 0 and b > 0, the density is given

by

pL(x) = Lbminbx
−b−11 [x ≥ Lmin] .

To ensure that E [L] = bLmin/(b − 1) is finite, we also enforce b > 1. Distributions

belonging to the Pareto family are also known as a power-law distributions and have

been extensively used in many fields including power systems.

• Weibull Distribution: L ∼ Weibull(Lmin, λ, kw). With λ, kw, Lmin > 0, the density is

given by

pL(x) =
kw
λ

(
x− Lmin

λ

)kw−1

e−(x−Lmin
λ )

kw

1 [x ≥ Lmin] .

The case kw = 1 corresponds to the exponential distribution, and kw = 2 corresponds to

Rayleigh distribution. The mean load is given by E [L] = Lmin + λΓ(1 + 1/kw), where

Γ(·) is the gamma-function given by Γ(x) =
∫∞

0
tx−1e−tdt.

First, we confirm our results presented in Sections 3.3.1 and 3.3.3 concerning the response of

the system to attacks of varying size; i.e. concerning the final system size n∞(p) under different

load-extra space distributions including its transition behavior around the critical attack size

1−p?. In all simulations, we fix the number of lines at N = 106, and for each set of parameters

being considered (e.g., the distribution pLS(x, y) and attack size p) we run 200 independent

experiments. The results are shown in Figure 3.1 where symbols represent the empirical value

of the final system size n∞(p) (obtained by averaging over 200 independent runs for each data
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point), and lines represent the analytical results computed from (3.4) and (3.5). We see that

theoretical results match the simulations very well in all cases.

The specific distributions used in Figure 3.1 are as follows: From left to right, we have i)

L is Weibull with Lmin = 10, λ = 100, kw = 0.4 and S = αL with α = 1.74; ii) L is Uniform

over [10,30] and S is Uniform over [1,5]; iii) L is Weibull with Lmin = 10, λ = 10.78, kw = 6

and S is Uniform over [5,10]; iv) L is Pareto with Lmin = 10, b = 2, and S = αL with

α = 0.7; v) L is Uniform over [10,30] and S is Uniform over [10,60]; and vi) L is Weibull with

Lmin = 10, λ = 10.78, kw = 6 and S is Uniform over [20,100]. Thus, the plots in Figure 3.1

demonstrate the effect of the load-free space distribution on the robustness of the resulting

power system. We see that both the family that the distribution belongs to (e.g., Uniform,

Weibull, or Pareto) as well as the specific parameters of the family affect the behavior of n∞(p).

For instance, the curves representing the two cases where L and S follow a Uniform distribution

demonstrate that both abrupt ruptures and ruptures with a preceding divergence are possible

in this setting, depending on the parameters Lmin, Lmax, Smin and Smax. In cases where the

load follows a Pareto distribution and S = αL, only abrupt ruptures are possible as shown

in [80]. Finally, we see that the Weibull distribution gives rise to a richer set of possibilities

for the transition of n∞(p). Namely, we see that not only we can observe an abrupt rupture,

or a rupture with preceding divergence (i.e., a second-order transition followed by a first-order

breakdown), it is also possible that n∞(p) goes through a first-order transition (that does not

breakdown the system) followed by a second-order transition that is followed by an ultimate

first-order breakdown; see the behavior of the orange circled line in Figure 3.1. We remark

that these cases occur when h(x) has a local maximum at x = Smin, while its global maximum

occurs at a later point x > Smin; see [80] for a more detailed discussion of this matter.

In our second set of simulations we seek to verify the results presented in Section 3.3.4,

namely the optimality of assigning the same free space to all lines (regardless of how initial

loads are distributed) in terms of maximizing the robustness. In the process, we also seek to

compare the robustness achieved under equal free-space distribution versus the commonly used
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strategy of setting Si = αLi for each line. We note that the latter setting with a universal

tolerance factor α is commonly used in relevant research literature [59, 77, 84, 85] as well as in

industrial applications [38,86]; therein, the term (1 +α) is sometimes referred to as the Factor

of Safety. The results are depicted in Figure 3.4 where lines represent the analytical results

given in Section 3.3.4 and symbols are obtained by averaging over 200 independent experiments

with N = 106 lines. In all cases we fix the mean load at E [L] = 30 and mean free-space at

E [S] = 10. With load distributed as Uniform (Figure 3.4a), Weibull (Figure 3.4b), or Pareto

(Figure 3.4c), we either let Si = 10 for all lines, or use Si = αLi with α = E [S] /E [L] = 1/3,

the latter choice making sure that the mean free-space is the same in all plots.

We see in all cases that there is an almost perfect agreement between theory and simulations.

We also confirm that regardless of how initial load is distributed, the system achieves uniformly

optimal robustness (i.e., maximum n∞(p) for all p) as long as the free-space is distributed

equally; e.g., see Figure 3.4d that combines all plots in Figures 3.4a-3.4c. In other words,

we confirm that (3.10) holds with the critical attack size 1 − p? matching the optimal value

1 − p?optimal = E [S] /E [C] = 0.25. Finally, by comparing the robustness curves under equal

free-space and equal tolerance factor, we see the dramatic impact of free-space distribution

on the robustness achieved. To give an example, we see from Figure 3.4d that regardless of

how initial load is distributed, the system can be made robust against random attacks that

fail up to 25% of the lines; as already discussed this is achieved by distributing the total free-

space equally among all lines. However, if the standard approach of setting the free-space

proportional to the initial load is followed, the system robustness can be considerably worse

with attacks targeting as low as 10% of the lines being able to breakdown the system.

Real wold data. Thus far, our analytical results are tested only on synthetic data; i.e.,

simulations are run when load-free space variables {Li, Si}Ni=1 are generated randomly from

commonly known distributions. To get a better idea of the real-world implications of our work,

we also run simulations on power flow data from the IEEE power system test cases [3]; the

IEEE test-cases are widely regarded as realistic test-beds and used commonly in the literature.
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Here, we consider four power flow test cases corresponding to the 30-bus, 57-bus, 118-bus, and

300-bus systems. For each test case, we take the load values directly from the data-set [3].

Since the data-set does not contain the line capacities, we allocate all lines an equal free-space,

S = 10; clearly, most of the discussion here would follow with different free-space distributions.

Figure 3.5 presents the results from the IEEE data set simulations, where blue circles

represent the final system size n∞(p) under original load data from each test case; each data

point is obtained by averaging the result of 200 independent random attack experiments. As we

compare these circles with our analytical results (represented by solid red lines) we see that the

overall tendency of n∞(p) is in accords with the theoretical analysis. However, the agreement

of theory and simulations is significantly worse than that observed in Figures 3.1 and 3.4. This

is because our mean field analysis relies on the number of lines N being large, while the IEEE

test case data represent very small systems; e.g., the underlying systems have 30, 57, 118, and

300 lines in Figures 3.5a-3.5d, respectively. In order to verify that the mismatch is due to

the small system size (rather than the load distribution being different from commonly known

ones), we re-sample 105 load values from the empirical load distribution obtained from the

data-set in each case; the Inset in each figure shows the corresponding empirical distribution

PL(x). The simulation results with these N = 105 load values are shown in Figure 3.5 with red

triangles. This time with the number of lines increased, we obtain a perfect match between

analysis and simulations. This confirms our analysis under realistic load distributions as well.

We also see that although analytical results fail to match the system robustness perfectly when

N is very small, they still capture the overall tendency of the robustness curves pretty well. In

fact, they can be useful in predicting attack sizes that will lead to a significant damage to the

system; e.g., in all cases we see that the analytically predicted critical attack size p?, ranging

from 0.42 in Figure 3.5a to 0.07 in Figure 3.5d, leads to the failure of more than 50 % of all

lines in the real system.
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3.5 Chapter summary

In this chapter, we introduced the equal and global redistribution model for studying robustness

of flow-carrying networks against cascading failures initiated by a random attack. Our results

provide a complete picture of the robustness of such systems: the analysis explains how the

final system size n∞(p) will behave under attacks with varying size 1−p. We also demonstrate

different types behavior that n∞(p) can exhibit near and around the critical attack size 1− p?,

i.e., the point after which n∞(p) = 0 and the system breaks down completely. We show that

the final breakdown of the system is always first-order (i.e., discontinuous) but depending on

pLS(x, y), this may i) take place abruptly meaning that n∞(p) follows the p line until its sudden

jump to zero; or ii) be preceded by a second-order (i.e., continuous) divergence from the p line.

We also demonstrate the possibility of richer behavior where n∞(p) drops to zero through a

first-order, second-order, and then a first-order transition. The discontinuity of the final system

size at 1− p? makes it very difficult to predict system behavior (in response to attacks) from

previous data. In fact, this is reminiscent of the real-world phenomena of unexpected large-

scale system collapses; i.e., cases where seemingly identical attacks/failures lead to entirely

different consequences. On the other hand, the cases that exhibit a preceding second-order

transition are less severe, since the deviation from the p line may be taken as an early warning

that the current attack size is close to 1−p? and that the system is not likely to sustain attacks

much larger than this.

From a design perspective, it is desirable to maximize the robustness of such system under

certain constraints. In our analysis, we address this problem and derive the optimal load-

free space distribution pLS(x, y) that maximizes the final system size n∞(p) uniformly for all

attack sizes 1− p. Namely, we show that under the constraints that E [L] and E [S] are fixed,

robustness is maximized by allocating the the same free space to all lines and distributing

the initial loads arbitrarily; i.e. the distribution pLS(x, y) = pL(x)δ(y − E[S]) maximizes

robustness for arbitrary pL(x). We show that this optimal distribution leads to significantly

36



better robustness than the commonly used strategy of assigning a universal tolerance factor α,

i.e., using pLS(x, y) = pL(x)δ(y − αx).

Our theoretical results are verified via extensive simulations using both synthetic data and

real world data. We show that our results are in perfect agreement with numerical simulations

when the system size N is large; in most cases it suffices to have N = 104 to N = 105.

However, we see from our simulations with the IEEE test-cases that when N is very small

(we considered N = 30, N = 57, N = 118, and N = 300), our theory fails to yield the

same prediction accuracy. Nevertheless, we see that our results capture the overall tendency

of n∞(p) pretty well, and thus can serve as a useful predictor of the critical attack size.

In the next chapter, we will consider the case of targeted attacks. We will study possible

attack strategies that a capable adversary might use; e.g., given L1, . . . , LN and S1, . . . , SN ,

which k lines should an adversary attack in order to minimize the final system size n∞? We

already know from some preliminary analysis [87] that the optimal attack strategies is NP-

Hard, in other words, it is computationally expensive to derive. We will discuss this problem,

as well as a modified optimization problem where the adversary is further constrained with the

total load of the lines attacked, and give heuristic algorithms for both optimization problems.
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(d) Comparison of different load distribution

Figure 3.3: Final system size under equal free space vs. equal tolerance factor. In all cases,
we set Lmin = 10, E[L] = 30, and E[S] = 10. When load follows Weibull distribution we
let kw = 6 and set λ = 20/Γ(1 + 1/kw) so that E[L] = 30. In each of the three cases, we
either let S ∼ δ(E[S]) meaning that all lines have the same free space, or we set Si = αLi
with α = E [L] /E [S] = 1/3 so that the mean free space still equals 10. We see that analysis
(represented by lines) match the simulations (shown in symbols) very well and that robustness is
indeed optimized by equal free-space allocation regardless of how initial load is distributed. We
also see that system is significantly more robust under equal free space allocation as compared
to the case of the equal tolerance factor.
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(d) Comparison of different load distribution

Figure 3.4: Final system size under equal free space vs. equal tolerance factor. In all cases,
we set Lmin = 10, E[L] = 30, and E[S] = 10. When load follows Weibull distribution we
let kw = 6 and set λ = 20/Γ(1 + 1/kw) so that E[L] = 30. In each of the three cases, we
either let S ∼ δ(E[S]) meaning that all lines have the same free space, or we set Si = αLi
with α = E [L] /E [S] = 1/3 so that the mean free space still equals 10. We see that analysis
(represented by lines) match the simulations (shown in symbols) very well and that robustness is
indeed optimized by equal free-space allocation regardless of how initial load is distributed. We
also see that system is significantly more robust under equal free space allocation as compared
to the case of the equal tolerance factor.
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(a) IEEE 30 bus test case
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(b) IEEE 57 bus test case
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(c) IEEE 118 bus test case
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(d) IEEE 300 bus test case

Figure 3.5: Simulation results on IEEE test cases. The initial load values are taken directly
from the corresponding IEEE test-case data-sheet [3], and each line is given an equal free
space of E[S] = 10. The empirical distribution of load is shown in the Inset of each figure,
and the mean load values are given by 13.54, 29.95, 39.95, and 125.02 for the 30-bus system,
57-bus system, 118-bus system, and 300-bus system, respectively. The blue circles represent
the simulation results for the final system size n∞(p). The theoretical results (shown in lines)
capture the overall tendency of n∞(p) but fail to predict the numerical results well, especially
around the critical attack size. We see that this is merely a finite-size effect as we sample
N = 105 load values from the empirical distribution and repeat the same experiment. The
results are shown in red triangles and are in perfect agreement with the analysis.
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Chapter 4

Flow-carrying Networks Under Targeted Attacks

4.1 Motivation and problem statement

Networks that carry or transport physical commodities, e.g., electricity, water, gas distribution

networks or road, public transportation networks, have been an integral part of our daily lives

for decades. We already introduced in the last section that these systems can be modeled

as flow-carrying networks under a simple yet useful model, equal load-redistribution model.

Namely, we consider a system, such as power grid, with N lines with initial loads L1, . . . , LN

and capacities C1, . . . , CN . If a line fails (for any reason), its load is assumed to be redistributed

equally among all lines that are alive. Thus, the load carried by a line i may exceed its initial

value Li over time due to load redistribution. The capacity Ci defines the maximum flow

allowed on the line i, meaning that if the load carried by i exceeds this capacity at any time,

the line will be tripped (i.e., disconnected) by means of automatic protective equipment so

as to avoid costly damages to the system. Subsequently, the load that was carried by line i

before failure will be redistributed to remaining lines, which in turn may cause further failures,

possibly leading to a cascade of failures.

With these in mind, an important goal is to understand the robustness of systems under the

equal load redistribution model described above against random and targeted attacks. With

the case of random attacks being well-understood in Chapter 3, we shift our attention in this

section to understanding the vulnerability of flow-carrying networks under targeted attacks. As

before, the main goal would be to derive design strategies (in the form of optimal load-‘free
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space’ distributions) that would lead to maximum robustness, this time against a knowledgable

adversary attacking a carefully selected set of lines. However, for this optimization problem

to be well-defined one has to have a good understanding of the problem from an adversary’s

perspective. With this in mind, this section aims to develop good attack strategies that lead

to maximal damage to the system for a given number of lines that can be attacked. The

solution to the optimal attack problem will also help a system designer by i) revealing the

worst-case attack vulnerability of the system which can help evaluate a given system design;

and ii) revealing the most vulnerable lines in the system that will potentially be targeted by

adversaries; this may then provide useful design guidelines for improving system robustness.

Formally, we consider the following optimization problem. Given N lines with loads

L1, . . . , LN and free spaces S1, . . . , SN , we seek to find the optimal set A of k lines that the

adversary should attack in order to minimize the final fraction n∞(A) of alive lines. We pro-

vide optimal solutions via greedy algorithms in three special cases: i) when all lines have

the same load; ii) when Si = αLi for each i = 1, . . . , N (as commonly used in the lit-

erature [38, 59, 77, 84, 85, 88]); and iii) when all lines have the same free space, i.e., when

S1 = · · · = SN .

We also consider a variation of the problem with an additional constraint on the total load

of the lines attacked; i.e., when the adversary is further constrained with
∑

i∈A Li ≤ Q for

some Q. From a practical point of view, this might be the case if high-load carrying lines

are protected better by the network owner and the cost of attacking them is proportional to

their load. We show that this variation of the optimal attack problem is in fact NP-Hard,

meaning that no polynomial-time algorithm can find the set A that minimizes n∞(A), unless

P ≡ NP . For the modified optimization problem, we develop several heuristic algorithms and

evaluate their performance in comparison with benchmarks through an extensive simulation

study. In particular, we modify the previously developed heuristics with a switch that, when

actuated during a sequential selection of lines to be attacked, changes the way algorithm makes

the remaining selections; this idea is inspired from heuristics developed in [89] for the multi-
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dimensional 0-1 Knapsack problem. Among other things, we demonstrate via simulations that

the max-L ∗ S algorithm with a switch performs well in a range of settings.

4.2 Model definitions and the optimal attack problem

The load-redistribution model used here in the flow-carrying network under targeted attacks

is the same as we described in Chapter 3, and the main results still hold for random attacks.

Under the targeted attacks, we consider a scenario where the adversary has full information

about the system and aims to find the best set of k of lines to attack so that it fails maximum

number of lines as a result cascading failures. This optimization problem is formally as follows.

4.2.1 The main optimization problem: ER-k

The Equal Redistribution (ER) problem with k attacks is the optimization problem, denoted

ER-k, that aims to find the set A of k lines such that attacking A leads to the maximum number

of total line failures (as a result of load redistribution and cascading failures), among all possible

attack sets with size k. Put differently, we seek to find A with |A| = k that minimizes n∞(A).

Throughout, we find it useful to consider the decision version of this optimization problem

(referred to as the ER-k-k′ problem) formally defined as follows.

INPUT: N pairs of non-negative numbers in the form (Li, Ci) indicating the load and the

capacity of each line, and integers k and k′ such that 0 < k < k′ ≤ N . We assume Ci > Li so

that no line fails initially at its own load.

OUTPUT: The answer to whether or not there is an attack set A with size k, such that

at the end of the cascading failures the number of failed nodes is at least k′; i.e., whether there

exists A with |A| = k and n∞(A) ≤ N − k′.
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Figure 4.1: In this example we have (load, capacity) values given by (10, 10 + 1/10), (9, 9 +
10/9 + ε), (8, 8 + 19/8 + ε), (7, 7 + 27/7 + ε), (6, 6 + 34/6 + ε), (5, 5 + 40/5 + ε), (4, 4 + 45/4 +
ε), (3, 3 + 49/3 + ε), (2, 52/2 + ε), (1, 1 + 54/1 + ε) where ε > 0 is arbitrarily small. The greedy
maximum-load attack will need to attack k = 10 containers to fail all. It will start attacking
the leftmost container with load L1 = 10 which will not lead to any further failures. Then,
it will continue with the second one from the left, again unable to trigger a cascade, and
continue until attacking all containers directly. The optimal solution can be seen to be k = 1
by attacking the last container, which will trigger a cascading failure destroying the whole
system. We can generalize this counterexample to the case with N containers with the greedy
algorithm’s output being k = N while the optimal solution being k = 1.

4.2.2 Heuristic algorithms that fail

Here we will present three intuitive greedy algorithms and give concrete examples demonstrat-

ing their poor performance for the optimization problem described above. In doing so, we will

focus on the special case where k′ = N meaning that the goal of the attack is to destroy the

whole system, by attacking a minimum number k of lines.

In what follows, we find it useful to describe the problem in a simpler way, where we have N

water containers with capacities C1, . . . , CN , and initial water levels L1, . . . , LN . As in the equal

flow-redistribution model, when a container is “attacked” its content is redistributed equally to

the remaining containers. Also, if the water level in a container exceeds its capacity, we assume

that it has failed and redistribute its content, again equally, to the remaining containers. With

this formulation, the goal of the attackers is to find the smallest number k of containers to

target so that all containers get overloaded and fail eventually. An important observation is

that the following intuitive algorithms can deviate significantly from the optimal solution.

Greedy max-load attack. This greedy strategy aims to maximize the load that will be

redistributed in each attack round. Namely, it starts by attacking the container with the

highest load, and proceeds similarly, waiting after every attack for a steady-state to be reached
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Figure 4.2: Consider 2n + 1 containers where (load, capacity) values are given by (ε,M) for
the first n containers and (M −2ε,M − ε) for the last n+ 1 containers; here ε > 0 is arbitrarily
small and M > 2(n + 1)ε. The greedy max-capacity attack will need to attack k = n + 1
containers to fail the all containers; it will start attacking the first n containers but cascading
failures will not take place. On the other hand, the optimal solution is k = 1 as it takes to
attack only one of the containers with (M − 2ε,M − ε) to trigger a cascading failure that will
fail all.

(meaning that all load redistribution and potential further failures end). The algorithm stops

when all containers fail. This strategy is not optimal in general because it fails to recognize the

opportunity to eliminate containers with very large capacities that will otherwise be difficult

to fail by redistributing the load. The worst-case deviation from the optimal (in terms of the

number of lines needed to be attacked for complete system failure) is Θ(n); e.g., see Figure

4.1.

Greedy max-capacity attack. This strategy is similar in spirit with the greedy max-load

attack except that this time the container with the maximum capacity is attacked in each

round. The idea here is that by taking out large containers, the remaining, supposedly small,

containers will be destroyed due to load redistribution. This strategy is not in general optimal

either, because there may be containers with large capacities but small (or, even almost zero)

loads, rendering an attack to such containers very ineffective in terms of triggering failures

by means of load redistribution. The worst-case deviation from the optimal is again Θ(N) as

demonstrated in Figure 4.2.

Greedy max-free-space attack. It is clear from the previous two cases that the optimal

attack strategy will be one that considers both the loads and capacities of the containers

involved. The greedy approach that targets containers with largest free space (i.e., (capacity−
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Figure 4.3: In this example we have n containers with (load, capacity) values (ε, (n + 1)ε) for
the first n−1 containers and (M,M+(n−1)ε) for the last container, where ε > 0 is arbitrarily
small and M satisfies M > (n2 − n)ε. The greedy max free-space (C − L) attack will output
k = n since it will start attacking the leftmost containers and no cascading failures will take
place. The optimal solution is obviously k = 1 by attacking the last container.

load) difference) falls into this category, and is based on the fact that containers with largest

free space will fail the latest in the course of a cascading failure; e.g., see Section 4.2.3 for

a discussion of this fact. Therefore, it is sensible to eliminate those containers with a direct

attack. On the other hand, containers with small free space are already on the verge of failing

and therefore can be taken down by means of redistribution of loads. Although this greedy

strategy is intuitive (and in fact optimal in some special cases), it fails to be the optimal solution

in general. The main reason is that this approach does not take into account the loads of the

containers directly. For example, a container may have a large free space but its load may be

negligible compared to other containers, rendering a direct attack on this container ineffective.

The worst-case deviation from the optimal is again Θ(N) as demonstrated in Figure 4.3.

4.2.3 Observations towards designing a smart algorithm

We now present some observations that will be useful in designing a smart attack algorithm.

The order of attack does not matter. In the equal redistribution model, the order with

which we launch an attack does not affect the final set of failed containers. This is because

the load of the attacked nodes will be distributed to all of the remaining nodes so at the end

an amount of
∑

i∈A Li will end up in the remaining containers (leading to new failures or not)

irrespective of the order we chose to attack the containers in A. We remark that an attack

strategy can still be designed in a greedy fashion, where the set A is determined one member

at a time, waiting for cascades to stop after each attack.
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Order of failures during the cascading process. Assume that containers are sorted

by increasing free space, Si = (Ci − Li). Given that any failed load is redistributed equally

among the remaining containers, it is clear that this ordering will remain the same throughout

the course of cascading failures; the containers that are attacked directly at the beginning

are excluded from this argument. Therefore, in the process of recursive load redistribution,

containers will fail (due to their free space diminishing to (below) zero) in this exact same

order: the one with smallest free space will fail first, and so on and so forth.

4.3 Optimal attack strategies under special cases

We now present three special cases of the ER-k problem and provide optimal attack strategies

for each of them.

Same Loads. An interesting situation arises when initial loads are the same for all containers

while capacities differ. This reflects situations in which all lines in the power system are given

the same initial load, but have different capacities owing to the physical constraints or material

used. We show that a greedy algorithm finds the optimal solution in this special case. The

ER-k-Same Loads Problem is defined formally as follows.

INPUT: A non-negative rational number L for the common load and a list of N non-negative

numbers Ci > L, ∀i indicating the capacity of each line. The integer k represents the number

of attacks we can launch.

OUTPUT: The set A of lines to be attacked that minimizes n∞(A) under the constraint

|A| = k.

The next result, proved in the Appendix, shows that the max-C-greedy algorithm finds the

optimal solution.

Theorem 1. The max-C-Greedy Algorithm is optimal for the ER-k-Same Loads Problem.
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Same Free Spaces. Sometimes it might be the case that the containers have arbitrary load

and capacity but they have a fixed free space. In [90], this was in fact shown to be the optimal

design that gives maximum robustness against random attacks. We refer to the corresponding

problem as the ER-k-Same Free Spaces, formally defined as follows.

INPUT: A list of N non-negative rational numbers Li indicating the load of each container

and a positive rational number S indicating the common free space.

OUTPUT: Find the minimum number k of containers needed to be attacked in order to

destroy the whole system.

We changed the output here from having a fixed number of lines to be attacked to inflict

the maximum damage, to the case where we aim to destroy the whole system with the mini-

mum number of attacks. This is because in the case where every container has the same free

space, there are no intermediate cascading failures. After an attack, the system will either fail

completely, or no single line will fail other than those attacked directly. We show in Appendix

that the max-L-Greedy algorithm that targets lines with the largest loads leads to the optimal

solution for this problem.

Theorem 2. The max-L-Greedy Algorithm is optimal for the ER-k-Same Free Spaces Prob-

lem.

Capacities Proportional to Loads. In many cases, the capacities and the loads of power

lines are related in a particular way. Namely, the capacity of a line is often set to be proportional

to its load. For example with α > 0 denoting the tolerance factor, we have Ci = (1 + α)Li for

each line i = 1, . . . , N . In this variation, we will also show that there is a greedy algorithm

achieving the optimal solution. The ER-k-(C ∝ L) Problem is defined formally as follows.

INPUT: A list of N non-negative numbers Li indicating the load of each container and a

positive number α such that container capacities are set to Ci = (1 + α)Li for each i.

OUTPUT: The set A of lines to be attacked that minimizes n∞(A) under the constraint

|A| = k.
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In this setting, load, free-space, and capacity of the lines will be ordered in the same way,

and as we show in the Appendix, max-L,C, S-Greedy algorithms that target lines with the

largest load and free-space and capacity give the optimal solution to this problem.

Theorem 3. The max-L,C, S-Greedy Algorithms are optimal for the ER-k-(C ∝ L) Problem.

4.4 A modified optimal attack problem with total load

constraints

In this Section, we will prove that a variation of the decision problem ER-k-k′ is NP-Complete.

In particular, we consider the ER-k-k′-Q problem, defined formally as follows.

INPUT: N pairs of non-negative numbers in the form (Li, Ci) indicating the load and the

capacity of each line, integers k and k′ such that 0 < k < k′ ≤ N , and a positive number Q.

We also assume Ci > Li for each i = 1, . . . , N .

OUTPUT: The answer to whether or not there is an attack set A with size k, and total

sum of loads
∑

i∈A Li ≤ Q, such that at the end of the cascading failures the number of failed

nodes is at least k′; i.e., whether there exists A ⊂ {1, . . . , N} with |A| = k,
∑

i∈A Li ≤ Q, and

n∞(A) ≤ N − k′.

It is clear that the objective is two-fold here and that there is an inherent trade-off: by

attacking lines with larger initial loads we can shed more load on other lines and have a

better chance to trigger a cascade of failures that would destroy the whole system. However,

the problem enforces a constraint on the total load of the attacked containers as well. This

knapsack-like trade-off is what makes the problem NP-complete as we now show. Our proof

is based on the reduction of the ER-k-k′-Q problem from the k-Subset Sum variant defined as

follows: Given a set of integers and a target sum Q, is there any subset of size k whose sum is

Q?

Theorem 4. The ER-k-k′-Q Problem is NP-Complete.
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Proof. First, we show that ER-k-k′-Q Problem is in NP: The certificate is a list of the k

containers we choose to attack. We can check in polynomial time (e.g., see the ER-Attack

Projection algorithm in [91]) whether at least k′ lines in the system fail or not. Since we have

a certificate that can be checked in polynomial time, ER-k-k′-Q is in NP!

Given an instance of the k-Subset Sum problem we will create an instance of the ER-k-k′-Q

problem: Given a set of N integers a1, a2, ..., aN , the k-Subset Sum problem asks whether there

exists k members of the set whose some equals Q. If k = N , we can check if
∑N

i=1 ai = Q and

respond accordingly. From now on, we suppose k < N and create an equivalent version of the

ER-k-k′-Q problem in the following manner. Let lines L1, . . . ,LN have loads L1 = a1, L2 =

a2, ..., Ln = aN and consider the ER-k-k′-Q problem; i.e., we seek to find a set A of k lines

such that
∑

i∈A Li ≤ Q and that attacking A leads to failure of at least k′ > k lines in the

system. We also set Ci = Li + Si where the free space is Si = Q
N−k for each i = 1, . . . , N . This

last constraint ensures two things. First, as discussed in Section 4.3, when all lines have the

same free space then attacking k lines can only have two consequences: either only those k

lines that are attacked fail, or all N lines fail. In either case, there is no cascade of failures and

the system reaches a steady-state immediately. Thus, with equal free space among all lines,

the ER-k-k′-Q problem with k′ > k is equivalent to ER-k-N -Q problem. Secondly, under the

enforced assumptions it is clear that a complete system failure will take place if and only if the

total load failed by the initial attack A is larger than the sum of the free spaces of those that

are not in the attack set A; i.e., if and only if

∑
i∈A

Li ≥
∑

j∈{1,...,N}/A

Sj = (N − k)
Q

N − k
= Q.

Here, the first equality follows from the facts that |A| = k and Si = Q
N−k for each i = 1, . . . , N .

Recalling further the constraint that
∑

i∈A Li ≤ Q, this leads to
∑

i∈A Li = Q. Therefore,

the created instance of the ER-k-k′-Q problem indeed seeks to find a subset A of {a1, . . . , aN}
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such that |A| = k and
∑

i∈A Li = Q, rendering it equivalent to the k-Subset Sum instance

that we have started with. For the reverse direction, assume that the ER-k-k′-Q problem has

a solution with k lines L(1), . . . ,L(k). Then the loads of these lines constitute a solution to the

k-Subset-Sum problem.

The above reduction can be constructed in polynomial time (more precisely, in linear time),

so if there was a polynomial algorithm that could solve the ER-k-k′-Q, then the k-Subset Sum

would be in P, which is wrong unless P=NP. Thus, we conclude that the ER-k-k′-Q Problem

is NP-complete.

An important implication of the above result is that the optimization version of the ER-k-

k′-Q problem, which seeks to find the set A of lines that minimizes n∞(A) under the constraints

|A| = k and
∑

i∈A Li ≤ Q, is NP-Hard. This means that under these constraints, the adversary

can not launch an optimal attack in polynomial time unless P=NP.

4.5 Heuristic algorithms and their performance

Although, it is not known whether the original optimization problem of finding the best k

lines to attack to minimize final system size is NP-Hard or not, the discussion in the preceding

section indicates that the optimal attack problem is likely to be computationally challenging; in

particular, we know that the problem is NP-Hard if we are further constrained by the total load

of those we can attack. This prompts us to develop heuristic algorithms, for both the original

and the modified optimization problems, that work in polynomial time and have competitive

performance under arbitrary load-capacity distributions. The performance of these heuristics

will then be compared with some benchmark heuristics such as max-L, max-C, max-S, and

random attacks.

In the interest of brevity and concreteness, the discussion is restricted here to non-greedy

algorithms that choose the attack set A without ever running the attack projection algorithm.
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In other words, the algorithms are not allowed to run the cascading failures initiated by a

subset of A, and then continue making the remaining selections from the lines that survived

the cascade. Of course, all heuristics considered here including the benchmarks can be modified

to operate in a greedy fashion. One might also be tempted to use a greedy algorithm where,

at each round, the line to be attacked is chosen in an optimal way; i.e., the line whose failure

leads to smallest number of surviving lines is chosen from among all lines that are still alive.

However, for the problem at hand, one can realize that unless |A| is relatively large, the final

system size equals n∞(A) = N − |A| regardless of the set A of attacked lines. For example,

with |A| = k, this will be the case whenever

k ≤ Smin
Lmax

(N − k),

meaning that if Smin/Lmax > 0, the greedy heuristic will have to deal with ties when making its

choices for the next line to be attacked until it makes Ω(n) choices. Since resolving the ties by

randomization for such a large number of selections is likely to lead to poor performance, one

needs heuristic rules to resolve the ties. Even then, our preliminary simulation study indicated

that the greedy versions of the heuristics considered here perform only slightly better than

their non-greedy counterparts, and the comparison among the greedy heuristics provided no

additional insight to what was already observed from non-greedy algorithms; hence the decision

to consider only non-greedy attack strategies here.

4.5.1 Heuristics for the original optimization problem

We first consider the original case where there is no constraint on the total load of the lines

that can be attacked; i.e., we consider the ER-k problem. Let A be the set of lines to be

attacked such that |A| = k. It is clear from the previous discussions that a good attack should
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aim to

maximize
∑
i∈A

Li, and (4.1)

minimize Sj, j ∈ {1, . . . , N} − A (4.2)

In words, the attack should aim to find the lines with the largest free space while making the

total load of the failed lines as large as possible. Thus, the attack should intuitively look for

lines with large initial load and large free-space. Of course, most difficult situations arise when

the load and free-space values of the lines are in reverse order; e.g., the highest load carrying

line has the smallest free-space, etc. as in Figure 4.1.

Our main idea towards handling the trade-off described above is based on its similarities

with the well-studied 0-1 Knapsack problem. In the 0-1 Knapsack problem, we are given a set

of N items, {1, . . . , N}, each with a weight wi and a value vi, and the goal is to choose items

such that their total value is maximized while the total weight is bounded by W ; i.e.,

maximize
∑
i

vixi (4.3)

subject to
∑
i

wixi ≤ W and xi ∈ {0, 1} (4.4)

The 0-1 Knapsack problem is known to be NP-Hard, but polynomial-time heuristics can still

give close-to-optimal solutions. For example, a competitive heuristic is to order the items based

on their “value per weight”, i.e., vi/wi, and choose items according to this order, starting with

the one with the highest vi/wi, until the total weight capacity W is reached. In fact, with a

small modification to handle corner cases, this heuristic is known to yield at least 50% of the

optimum value.

The optimal attack problem we consider, i.e., the ER-k problem, has some similarities with

but is not equivalent to the 0-1 Knapsack problem. In particular, one can construct an analogy

between the constraints of the 0-1 Knapsack problem and the ER-k problem by assigning all
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item weights as wi = 1 and the total weight limit to be W = k. However, the objectives (4.1)-

(4.2) of the ER-k problem are much more complex than the objective (4.3) of the Knapsack

problem. Nevertheless, the two problems have some similarity in that their main difficulties lie

in the trade-offs involved. In the Knapsack problem the trade-off is between the value and the

weight of the item and it is desirable to pick items with high value and low weight, while in

the ER-k, the trade-off lies between the possibly conflicting objectives of choosing lines with

high load and high free-space. Inspired with the efficient heuristic for the Knapsack problem

that is based on selecting items with the largest vi/wi ratio (i.e., items with the biggest bang

for the buck), our first heuristic for the ER-k problem is based choosing lines with the highest

load times free-space, i.e., with the highest Li ∗ Si.

Maximum Load×Free Space Attack. In this algorithm, the load free space product,

Li ∗ Si is computed for each line i = 1, . . . , N . After sorting the lines based on this product,

the k lines to be attacked is chosen as the ones having the highest k load-free space product. As

mentioned above, this is inspired by the 2-approximation heuristic for the Knapsack problem

that orders items according to vi ∗ 1
wi

when the goal is to choose items with high v and low w.

In the ER-k problem, we wish to choose lines with high L and high S, or equivalently, with

high L and low 1
S

. Thus, constructing an analogy between value vi and load Li, and weight

(or, cost) wi and 1/Si, our heuristic chooses lines with the maximum

Li ∗
1

1/Si
= Li ∗ Si.

The performance of this heuristic is demonstrated via several numerical examples in the next

subsection along with a comparison with some benchmark heuristics.

Aside from its connection to a powerful heuristic in a relevant problem, the maximum L∗S

heuristic has several advantages. First of all, this heuristic becomes equivalent to the optimal

attack strategy in the three special cases considered in Section 4.3; e.g., when all lines have

the same load, it chooses ones with highest free-space (and hence capacity), or when all lines
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have the same free-space, it chooses lines with maximum L, etc. Secondly, considering the

product L ∗ S is an effective way to favor lines with high load and free-space, while heavily

penalizing load or free-space values close to zero; note that benchmark heuristics including

the highest-capacity attack (C = L + S) fail to penalize small L or C values. In the optimal

attack problem, this makes perfect sense given that a line with almost no load should never

be attacked even if it has very high free-space since its failure will likely not affect any other

line. Similarly, it may not be a good idea to directly attack a line with almost no free-space

even if it has very high load, since the line will likely fail due to load redistribution regardless

of which other lines are attacked.

Maximum L ∗ Sβ attack. While maximum L ∗ S attack is intuitive and will be seen to be

powerful in many cases, we observe that its performance can be further improved by a small

modification. To this end, we propose a second heuristic as a modified version of the max-L∗S

attack that allows adjusting the relative importance of load and free-space values of the lines.

In particular, with β in [0,∞], we consider a heuristic that chooses k lines with the maximum

Li ∗Sβi . An added benefit of this heuristic is that it contains several heuristics as special cases.

In particular, the maximum L ∗S algorithm described above is obviously a special case of this

algorithm, corresponding to the case β = 1. Also, by setting β = 0, this heuristic reduces to

the max-L attack, while setting β =∞ (or, large enough) makes it equal to the max-S attack.

4.5.2 Numerical comparison with benchmark heuristics

We now compare the heuristics we developed against some benchmark heuristic algorithms via

numerical experiments. The benchmark heuristics we will consider are given below:

Random attack. This is the most primitive attack strategy and considered here only for

comparison purposes. The attack picks k lines to be attacked uniformly at random from

amongst all N lines.
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Highest-L, highest-C, highest-S attacks. These three attacks are based on sorting lines

with respect to their initial load Li, free-space Si, or capacity Ci = Li + Si, respectively and

attacking the top k lines with the highest value of the corresponding metric.

We fix the number of lines atN = 5000 for all experiments. First, we consider the case where

each line is independently given an initial load from a uniform distribution, U(Lmin, Lmax),

where we set Lmin = 10 and Lmax = 30. The free-space allocated to each line is generated

independently from its load, again from a uniform distribution, U(Smin, Smax) with Smin = 10,

Smax = 60. The capacity of a line Li is given by the sum Ci = Li + Si. The independence of

L and S leads to some lines having high load but small free-space, or vice versa, rendering the

optimal attack problem non-trivial; e.g., with these choices, the realized load-capacity values

will almost surely not fall into one of the special cases presented in Section 4.3 where an optimal

solution is available.

Under this setup, we compute the final system size as a function of the number k of lines

attacked, where the set of attacked lines are selected according to the heuristics considered.

The results are given in Figure 4.4 where each data point is obtained by averaging over 100

independent runs. We already see in this simple setting that our attack strategy of targeting

lines with the highest L∗S outperforms all other benchmarks (except a small interval of attack

size where max-L attack seems to give the highest damage). In particular, we see that the

highest L ∗ S attack is able to fail the whole system by targeting 90, 180, 210, and 450 fewer

lines as compared to max-C, max-L, max-S, and random attacks, respectively.

Next, we check if this performance can be further improved by attacking lines with highest

L ∗ Sβ for some β ≥ 0. To this end, we repeat the previous experiment as β varies from zero

to ten. The results are demonstrated in Figure 4.5 and as expected show that with β = 0 or

β � 1, we obtain the same performance with max-L and max-S attack, respectively. More

interestingly, we see that the case β = 1 is indeed not the best one can do. For example, we

see that when β = 0.3, the max-L ∗ Sβ attack can fail the whole system by attacking 75 fewer

lines the case for β = 1. To demonstrate this better, we plot in the inset of Figure 4.5 the
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Figure 4.4: The performance comparison of different heuristic algorithms for L ∼ U [10, 30],
S ∼ U [10, 60], N = 5000.

Attack size, k
500 1000 1500

F
in
a
l
sy
st
em

si
ze

0

1000

2000

3000

4000

5000

β = 0

β = 0.3

β = 0.6

β = 1.0

β = 1.5

β = 2.0

β = 10.0

β
0 0.4 0.8 1.2 1.6 2

1400

1500

1600

1700
min. attack to fail all

Figure 4.5: The performance comparison of maximum L ∗ Sβ algorithms for various β values
for L ∼ U [10, 30], S ∼ U [10, 60], N = 5000. Inset: The minimum number of lines needed to be
attacked to fail all lines for the maximum L ∗ Sβ attack.

minimum number lines needed to be attacked to fail all N lines. To compute this, we again run

100 independent experiments and pick the minimum attack size for which all 100 experiments

led to entire system failure.

The performance of heuristic algorithms are known to vary significantly under different

parameter settings, and our case is not expected to constitute an exception. To that end, we
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have tested the performance of the max-L ∗ Sβ attack with β ∈ [0, 4], for a wide range of

possibilities for the distribution of L and S. In all cases we considered, we were able to identify

a β value for which the max-L ∗ Sβ attack was at least as good as all benchmark attacks

(random, highest-C,L, S-attacks) showing its versatile performance.

As already mentioned, the most challenging cases arise when the load and free-space values

are in reverse order. To that end, we close this section by demonstrating the performance of

the max-L ∗ Sβ attack in such cases. In particular, we start by generating L1, . . . , LN and

S1, . . . , SN independently according to some distribution. Then, the load values (resp. free-

space values) are sorted and re-arranged in increasing (resp. decreasing) order, leading to

highest-load carrying line having the smallest free-space, and so on. To make the problem

more challenging and interesting, we also consider Pareto distribution. Namely, a random

variable X is said to follow Pareto distribution, written X ∼ Pareto(Xmin, b) with Xmin > 0

and b > 0, if its probability density is given by

pX(x) = Xb
minbx

−b−11 [x ≥ Xmin] .

To ensure that E [X] = bXmin/(b− 1) is finite, one must set b > 1, while the variance of X is

finite only if b > 2.

The results for the case where L and S values are reverse ordered are depicted in Figure 4.6.

Here, we show a small number of representative results that correspond to different behaviors

for brevity. As before, all results correspond to the minimum attack size that led to an entire

system collapse in all 100 experiments. The curves represent the results for the max-L ∗ Sβ

attack as β varies from zero to two. In each plot, we add the corresponding results for the

max-C attack (shown by a filled square) and random attack (shown by a filled circle) as well;

for convenience, the x-axis values for these symbols are chosen such that they stay on the

corresponding curve showing the results for max-L ∗ Sβ attack. We note that the max-L

attack is already demonstrated by the case β = 0 while β = 2 gives a good indication of the

performance of the max-S attack, so these plots provide a comparison of the max-L∗Sβ attack
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Figure 4.6: Minimum number of lines needed to be attacked to fail all lines in the system
is shown when load and free-space values are generated independently (from the distributions
given at the figure legend) and then sorted in reverse orders; e.g., to ensure L1 ≤ L2 ≤ · · · ≤ LN ,
while S1 ≥ S2 ≥ · · · ≥ SN . Curves stand for the results obtained under the max-L ∗ Sβ attack
as a function of β. Corresponding results for the max-C attack are shown by filled square
symbols, and those for the random attack by filled circles.

with all the benchmarks considered here.

The main observations from Figure 4.6 are as follows. We see that in all cases there is a

particular β value for which the max-L ∗ Sβ attack performs the best among all benchmarks;

it is only the case of L, S ∼ Pareto(10, 1.2) where we see that the best performance of max-

L ∗ Sβ attack is attained when β = 0, or β ∈ (0.4, 0.7) meaning that max-L attack matches

the performance of the max-L ∗Sβ attack. Also, we see that the β value that leads to the best

performance can be equal to, smaller than, or larger than one in different scenarios showing

the importance of trying different values of β to get the best performance. Finally, while

benchmark attacks (including the random attack) occasionally give results close to the best

max-L ∗ Sβ attack, we see examples for each benchmark where its performance is significantly

worse than the best max-L ∗ Sβ attack; these cases are summarized in Table I.
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4.5.3 Heuristic attacks for the modified optimization problem

We now consider the modified optimization problem ER-k-k′-Q where the attack set A is

further constrained by
∑

i∈A Li ≤ Q, in addition to |A| ≤ k. As shown in Theorem 4, in this

case finding the attack set A that minimizes the final system size is NP-Hard, prompting us

to develop heuristic strategies. With the additional constraint on the total load of the lines

that we can attack, the trade-offs involved become more complicated and heuristics developed

in the previous section may not be well-suited for the ER-k-k′-Q problem. Ultimately, our

strategy should be to choose an attack set that has k (or, very close to k) lines with total

load equal (or, very close) to Q, and that have the highest free space among all lines. This is

because at the first stage of the cascades, any line Li that was not directly attacked will fail

only if

Si ≤
∑

i∈A Li

N − |A|
.

Thus, to facilitate failures it is desirable to make
∑

i∈A Li and |A| as large as possible, while

Si as small as possible.

Distribution of Minimum # of lines to attack to fail all
L and S random max-C max-L max-S best β

L ∼ Pareto(10, 1.2)
S ∼ Pareto(10, 1.2) 981 151 71 2241 71
L ∼ U(0.4, 100)
S ∼ U(0.05, 150) 691 1061 2611 1021 491
L ∼ Pareto(10, 2.5)
S ∼ Pareto(8, 1.2) 1671 1611 1421 2111 1411
L ∼ Pareto(10, 1.1)
S ∼ U(10, 200) 791 711 3261 2221 541
L, S from the

UK National Grid∗ 2371 1491 1611 2111 1441

Table 4.1: Performance comparison of benchmark attacks with the best result of the max-
L ∗ Sβ attack. The first four rows are obtained from Figure 4.6, while the last row is obtained
from simulations with UK National Grid data (see Section 4.6 for details). Values significantly
worse (in the sense of needing to attack many more lines to fail all) than the best-L∗Sβ attack
are made bold.
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Figure 4.7: The performance comparison of different heuristic algorithms for L ∼ U [10, 30],
S ∼ U [10, 60], N = 5000, when the attack is constrained to k lines such that their total
load satisfies a) Ltot ≤ 0.25 ∗ k ∗ E[L]; b) Ltot ≤ 0.75 ∗ k ∗ E[L]; c) Ltot ≤ 1.0 ∗ k ∗ E[L]; d)
Ltot ≤ 1.25 ∗ k ∗ E[L].

Given the multiple constraints involved, this problems shows similarity with the 2-dimensional

0-1 Knapsack problem [89, 92, 93]: Consider a collection of items, where each item i is given a

value vi, has weight wi, and volume qi. The objective is then to maximize
∑

i vixi subject to∑
iwixi ≤ W and

∑
i qixi ≤ Q where xi ∈ {0, 1}; i.e., we want to choose items with the maxi-

mum total value while the total weight is limited by W and total volume is limited by Q. As

can be inferred from the discussion above, an important difference of the ER-k-k′-Q problem

is that while it is desirable to choose lines with high Si (could be thought to be analogous to

the “value” of the item) under given constraints, it is perhaps equally important to attain or

be very close to the limits on both total load and total number of lines attacked.

With these in mind, our heuristics for the ER-k-k′-Q problem are based on incorporating

a switch to the previously developed heuristics that is actuated to ensure that the attack set

A attains or gets close to both constraints on its cardinality and the total load. This idea is
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inspired from the greedy-like heuristic developed for the multi-dimensional Knapsack problem

in [89]. This algorithm initially starts choosing items based on a given set of rules until one or

more of the constrained resources become scarce, and then switches to a different set of rules

that favor items that use very little of the scarce resource. Here, we propose to use a heuristic

that chooses the lines to be attacked one at a time according to the previously developed

max-L ∗ S strategy. After each selection, we check whether the switch needs to be activated.

Namely, with A′ denoting the set of k′ lines selected so far, we check

i) Is it still feasible to select all remaining k − k′ lines from the smallest load carrying

lines available? Namely, with the remaining lines’ loads sorted in ascending order L(1) ≤

L(2) ≤ · · · ≤ L(N−k′), we check if

k−k′∑
j=1

L(j) +
∑
i∈A′

Li≤?Q

If the answer is YES, we continue with the second condition for the switch, while if the

answer is NO, the switch is activated and algorithm is finished by appending A′ with

k−k′−1 lines with the smallest load-carrying lines available; i.e., with L(1), . . .L(k−k′−1).

Alternatively, one can release the latest added member of A′ and append it with k−k′ lines

L(1), . . .L(k−k′); we found no major performance difference between these two approaches.

ii) Next, check whether it is feasible to select all remaining k − k′ lines from the largest

load carrying lines available. Namely, with the remaining lines’ loads sorted in ascending

order L(1) ≤ L(2) ≤ · · · ≤ L(N−k′), we check if

N−k′∑
N−k+1

L(j) +
∑
i∈A′

Li≤?Q

If the answer is NO, we continue the algorithm with the next selection, while if the answer

is YES, the switch is activated and algorithm is finished by appending A′ with k − k′

lines with the largest load-carrying lines available; i.e., with L(1), . . .L(k−k′−1).
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Figure 4.8: The performance comparison of different heuristic algorithms for L ∼ U [0.4, 100],
S ∼ U [0.05, 150], with L and S sorted in reverse order, N = 5000, when the attack is
constrained to k lines such that their total load satisfies a) Ltot ≤ 0.25 ∗ k ∗ E[L]; b)
Ltot ≤ 0.75 ∗ k ∗ E[L]; c) Ltot ≤ 1.0 ∗ k ∗ E[L]; d) Ltot ≤ 1.25 ∗ k ∗ E[L]. Each data point
is obtained by averaging over 100 independent runs.

The two conditions of the switch described above ensure that while the initial selections are

made in line with the original objectives of picking lines with high load and high free-space,

care is also given so as to be able to pick k (or, k − 1) lines whose total load is close to the

limit Q. Of course, any algorithm including the benchmarks can be modified using the switch

idea to better accommodate total load constraints. In particular, when the total load limit Q

is extremely stringent, it would be tempting to pick lines with small load so as to not exhaust

the total load limit quickly, while aiming to choose lines with high free-space. This prompts

us to consider the max-S/L heuristic as well, including its modification with the switch idea

described above. To keep the discussion brief we do not present results for the max-L ∗ Sβ

attack (with or without switch) and consider only the case where β = 1; this is in part due

to the fact that when the switch is added, the performance of the max-L ∗ Sβ attack becomes

much less sensitive to variations in β over small ranges.

We now present numerical results to evaluate the performance of the heuristic attacks
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developed here and compare them against benchmark algorithms; as before, we will use max-

C, S, L and random attacks as benchmarks. Different from the experiments conducted in

Section 4.5.1, here we have to vary not only the maximum number k of lines that can be

attacked, but also the limit Q on the total load of the attacked lines. In particular, we would

expect the performance of the algorithms to depend heavily on Q. To this end, we find it

meaningful to let Q vary with k and to set it in reference to the mean total load of k randomly

selected lines; i.e., we set

Q = Q(k) = c ∗ k ∗ E[L] (4.5)

for some constant c > 0. This choice enables us to tune c to different levels and check

performance in cases where (i) the total load is extremely limited (i.e., c � 1); ii) total load

limit is such that heuristics that do not take load into account (such as max-S or random

attacks) will likely be able to select (close to) k lines with total load very close to Q (i.e.,

c ≈ 1); or iii) total load limit is not stringent at all (i.e., c� 1) and the problem is similar to

the unconstrained load case.

In the first set of experiments, we set N = 5000 and generate load-free space values inde-

pendently from the distributions L ∼ U [10, 30] and S ∼ U [10, 60]. For brevity we consider four

values of c given at (4.5): c = 0.25, c = 0.75, c = 1.0, c = 1.25. The results are presented in

Figure 4.7 from which a number of interesting observations can be made. When c = 0.25, i.e.,

when total load is extremely constrained, we see that all heuristics without a switch perform

poorly and are not able to fail the whole system even until k = 3000. This can be attributed

to their inability to attack the maximum allowed number k of lines as they quickly exhaust

the total load limit. On the other hand, we see that both max-L ∗ S-with-switch and max-

S/L-with-switch attacks perform much better, and despite the stringent limit on the total

load are able to fail the system by attacking about 50% more lines than required in the case

where the total load is unlimited. When c is increased to 0.75, we see that the performance

of the benchmarks improve but still are significantly worse than the two heuristics that use
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the switch; in this case we also see that the max-S/L-with-switch attack slightly outperforms

max-L ∗ S-with-switch.

With c = 1, we see that algorithms that ignore the loads such as max-S and random attacks

perform as well as they do in the unconstrained case; this is expected by virtue of the law of

large numbers. In particular, when c = 1, we would expect max-S to perform well since it picks

the most robust lines in the system and is likely to reach the limits k and Q simultaneously

given that L is independent from S. Figure 4.7c confirms this intuition where we also see that

both heuristics with switch match the performance of the max-S attack. Finally, with c = 1.25,

we get close to the unconstrained load case, and as expected see that the performance of the

max-L ∗ S algorithm becomes the best. What is interesting here is that the max-L ∗ S-attack-

with-switch is able to match this performance, showing its versatile performance across very

different cases considered here. Overall, these experiments demonstrate that incorporating the

switch significantly improves the performance and the max-L ∗ S-attack performs well across

different ranges of the total load limit.

As in Section 4.5.1, it is of interest to check the performance of these algorithms in difficult

cases where load and free-space values are sorted in reverse orders. To this end, we consider

one of the settings used in Figure 4.6, and generate load and free-space independently from

L ∼ U [0.4, 100] and S ∼ U [0.05, 150], and then sort them in reverse orders so that the line

with maximum load gets the smallest free-space and so on and so forth. In this setting, max-S

and max-S/L heuristics become equivalent. Also, since large S values are around 150 while

L is limited to 100, the lines with maximum-C will be those with large S (and small L due

to reverse ordering). As seen in Figure 4.8, this leads to three benchmarks (max-S,C, S/L)

performing almost equally in this setting.

We see from Figure 4.8 that the max-L ∗S-attack-with-switch once again performs well. It

leads to the best performance among all heuristics considered for c = 0.25, c = 0.75, and c = 1.0

(equal with max-L ∗ S), while coming second for c = 1.25 after max-L ∗ S; this is expected

since without a stringent limit on total load, the problem gets closer to the unconstrained case
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where a switch is not needed. Also, in this case we see that the performance of the max-S

attack (along with max-S/L and max-C attacks) is rather unaffected by the load constraint.

We attribute this to the fact that since load and free-space are reverse ordered, targeting max-

S lines is equal to targeting min-L lines and even when c = 0.25 the total load limit is not

likely to be exhausted easily; i.e., the algorithm is able to choose k lines without exceeding the

total load limit. We think this is also the reason why the switch is not helping (and, actually

hurting) the max-S/L algorithm in this case.

4.6 Simulations with UK National Grid data

In this section, we provide simulation results illustrating how the attack strategies covered

here performs when the load and free space distribution are based on real data. We have used

National Grid Electricity Ten Year Statement 2016 Model of Great Britain [4] to generate

load-free space pairs. To be more precise, the load distribution is chosen from the winter

peak power flow diagram presented in [4, Appendix C]. For the free-space distribution, the

transmission line ratings given in [4, Appendix B] has been used. As in the case of previous

examples, the number of lines is taken as N = 5000.

In Figure 4.9, we show the performance of the heuristic algorithms for the unconstrained

case, i.e., for the ER-k problem. The results are very similar to those obtained under synthetic

load-free space distributions and demonstrate that heuristics developed here perform well under

real-world distributions as well. In particular, we see that the proposed max-L ∗ S heuristic

performs better than all benchmarks considered, and its performance can further be improved

by the max-L ∗ Sβ attack. For the UK National Grid data, our results indicated that the best

performance is obtained when β = 1.5; see also the last row in Table I.

Next, we consider the ER-k-k′-Q problem where the total load of the attack set is bounded

byQ. As in Figures 4.7 and 4.8, we setQ according to (4.5) for several c values, and compare the

performance of our attack strategies with benchmarks; this time the load-free space distribution

is set according to the aforementioned UK National Grid data. The results are depicted in
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Figure 4.10. Once again we see that the max-L ∗S attack with switch leads to the best overall

performance among all heuristics considered; it leads to the best performance when c = 0.25

(tied with max-S/L with switch), c = 0.75, and c = 1.25, while coming as second for c = 1

after max-S/L. This shows that the heuristic attacks proposed here have versatile performance

also under distributions observed in real-world power systems.

4.7 Proofs for the theorems

4.7.1 A proof of Theorem 1

A key observation is that since the failed load is always redistributed equally among alive lines,

the system will preserve the “equal load” property through the cascading failures. Namely,

at any stage the load of a line that is functioning will be given by L(1 + M
N−M ) where M is

the number of lines (out of N) failed thus far. In addition the sequence of attacks does not

affect the final state of the system as discussed before. Therefore, the claim would follow for

general attack sizes k, if we establish it for k = 1. This is because after a single line is attacked,

the system will again be one with equal loads and the optimization problem will repeat itself

with k− 1 additional lines to be attacked. Continuing in this manner, we see that the optimal
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Figure 4.9: The performance comparison of different heuristic algorithms when L, S follow the
UK National Grid data [4].
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Figure 4.10: The performance comparison of different heuristic algorithms when L, S pairs
are distributed according to the UK National Grid data [4]. The attack is constrained to k
lines such that their total load satisfies a) Ltot ≤ 0.25 ∗ k ∗ E[L]; b) Ltot ≤ 0.75 ∗ k ∗ E[L]; c)
Ltot ≤ 1.0 ∗ k ∗ E[L]; d) Ltot ≤ 1.25 ∗ k ∗ E[L].

attack strategy in this case would be a combination of optimal single-line attacks launched

sequentially.

Assume now that k = 1, i.e., the goal is to attack the line that will lead to the maximum

number of failed lines. Since all loads are equal, the lines that fail initially as a result of this

attack will be (with A0 denoting the line chosen)

proj(A0) := {A0} ∪
{
` ∈ {1, 2, . . . , N}/A0 : C` ≤ LN/(N − 1)

}

With Li and Lj denoting arbitrary distinct lines, we have

|proj(Li)| − |proj(Lj)| = 1 [Cj ≤ LN/(N − 1)]− 1 [Ci ≤ LN/(N − 1)]

which automatically gives |proj(Li)| ≥ |proj(Lj)| if Ci ≥ Cj. Since i and j are arbitrary, this
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shows that

arg maxi=1,...,Nproj(Li) = arg maxi=1,...,NCi,

meaning that attacking the max-C line maximizes the number of lines failed initially. Also,

with all loads equal, attacking the max-C line is equivalent to attacking the max-S line so

this attack also collectively minimizes the free space of remaining lines. In other words, with

i? = arg maxi=1,...,NCi, we have

{S`}` 6∈proj(L?i ) ≤ {S`}` 6∈proj(Lj)

for any j = 1, . . . , N where the comparison is made pairwise. Combining, we see that the

max-C attack maximizes the number of initially failed lines and minimizes the free-space of

those that remain. Since all lines have equal load, this then shows that the final number of

failed at the end of a potential cascade will be minimized by attacking the max-C line.

4.7.2 A proof of Theorem 2

As before, a key observation is that the optimization problem can be reduced to finding the

optimal single-line attack, and repeating this recursively. The reason is that since failed load

is equally redistributed, the system will maintain to have the same free space (among all alive

lines) throughout the cascade process. Given also that the order of the attack does not matter,

it remains to find the optimal single-line attack, i.e., the case where k = 1. Here, we have

proj(A0) = {A0} ∪ {` ∈ {1, 2, . . . , N}/A0 : S` ≤ LA0/N}

where A0 is the line that is attacked. Since all lines have equal free space S, this gives

|proj(A0)| = N1 [S ≤ LA0/N ]
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showing that there can be no cascades in this case; after an attack either all lines fail simul-

taneously or no single line other than those directly attacked fails. It is clear that |proj(A0)|

is monotone increasing in the load LA0 of A0 so that it is maximized by attacking the line

with the maximum load. Repeating this argument recursively, we see that the max-L greedy

strategy is optimal for the ER-k-Same-Space problem.

4.7.3 A proof of Theorem 3

The key observation about the ER-k-(C ∝ L) Problem is that, given Ci = (1 +α)Li, the load,

capacity, and free spaces of lines all follow the same order. Namely, the lines with the largest

loads, who shall intuitively be attacked to shed more load on others, are also the ones with

the largest free spaces, who are also good to attack given the difficulty of failing them by load

redistribution. This eliminates the trade-off faced in the optimal attack problem and simplifies

it greatly.

In this setting, the problem does not repeat itself since after load redistribution, it may

no longer be the case that all lines have the same tolerance factor (i.e., S/L). However, the

aforementioned key property will be maintained throughout. For instance, assume without

loss of generality that initial loads are ordered as L1 ≤ L2 ≤ · · · ≤ LN . Then, at any stage of

the cascading failures, Li, Ci, and Si will all be in increasing order for all i = 1, 2, . . . , N that

are still alive.

With these in mind, we can show the optimality of max-L,C, S-Greedy Algorithms for

single line attacks in any system whose loads L1, L2, . . . , LN and free spaces S1, . . . , SN follow

the same order. Since this property will be preserved throughout the cascades and the sequence

of attacks doesn’t affect the final state of the system, the proof of Theorem 3 will be completed.

The rest of the proof is similar to that of Theorem 1 and omitted here for brevity.
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4.8 Chapter summary

In this chapter, we continue to understand cascading failures in load-carrying networks under

a flow-redistribution based model. Different from last chapter, we focus on assessing the

vulnerability of such systems against adversarial attacks. Specifically, we take an attacker’s

perspective that seeks to fail as many lines as possible by attacking a given number of lines. In

particular, in a system with N lines with initial loads L1, . . . , LN and capacities C1, . . . , CN , we

study the constrained optimization problem of finding k initial lines to be attacked to minimize

the final number of alive lines in the system. We give optimal greedy algorithms in several

special cases, and prove that a variation of the problem (with a bound on the total load of

the initial attack set) is NP-Hard. Several heuristics are developed and their performance is

compared with benchmark attacks under various settings. Overall, it is seen that the system

is most vulnerable against attacks that target lines with maximum load free-space product

L ∗ (C − L). Till now, we provide a comprehensive of the flow-carrying networks under both

random and targeted attack. From next chapter, we will look into cascading failures in different

interdependent systems and analyze how coupling affect the robustness of the whole system

when cascading failure happens.
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Part III

Robustness of Interdependent

Networks
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Chapter 5

Interdependent Flow-carrying Networks under

Random Attacks

5.1 Motivation

Recently, researchers have become increasingly aware of the fact that most systems do not live

in isolation, and that they exhibit significant inter-dependencies with each other. In particular,

it has been shown that interdependence and coupling among networks lead to dramatic changes

in network dynamics, with studies focusing on cascading failure and robustness [9,69,72,94–97],

information and influence propagation [98–102], percolation [11,103–106], etc. One of the most

widely studied network dynamics is the cascade (or, spread) of failures. Due to the coupling

between diverse infrastructures such as water supply, transportation, fuel and power stations,

interdependent networks are tend to be extremely vulnerable [107], because the failure of a

small fraction of nodes from one network can produce an iterative cascade of failures in several

interdependent networks.

Robustness of interdependent networks has been an active research field after the seminal

paper of Buldyrev et al. [9], with the key result being interdependent networks are more

vulnerable than their isolated counterparts. However, existing works on cascading failures

in interdependent networks focus extensively on percolation-based models [9, 11–15], where a

node can function only if it belongs to the largest connected (i.e., giant) component of its own

network. While such models are suitable for communication networks, they fail to accurately
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capture the dynamics of cascading failures in many real-world systems that are tasked with

transporting physical commodities; e.g., power networks, traffic networks, etc. In such flow

networks, failure of nodes (or, lines) lead to redistribution of their load to functional nodes,

potentially overloading and failing them. As a result, the dynamics of failures is governed

primarily by load redistribution rather than the structural changes in the network. A real-

world example to this phenomenon took place on July 21, 2012, when a heavy rain shut down

a metro line and caused 100 bus routes to detour, dump stop, or stop operation completely in

Beijing [16].

In this chapter, we initiate a study on robustness of interdependent networks under a load

redistribution based cascading failure model. Our approach is inspired by the fiber-bundle

model that has been extensively used to investigate the fracture and breakdown of a broad

class of disordered systems; e.g., magnets driven by an applied field [108], earthquakes [109,110],

power system failure [111], social phenomena [112]. This model has already been demonstrated

to exhibit rich transition behavior in a single network setting under random attacks of varying

size, while being able to capture some key characteristics of real-world cascades [80,111]. In our

case, the equal and global redistribution rule from the fiber-bundle model enables us to focus

on how coupling and interdependence of two arbitrary networks affect their overall robustness,

even if individual network topologies might be unknown.

We extend the fiber-bundle-like cascading failure model to interdependent networks as fol-

lows. Assume that the system consists of n coupled networks each with a given number of

transmission lines. Every line is given an initial load L and a capacity C defined as the maxi-

mum load it can tolerate; if the load on the line exceeds its capacity (for any reason) the line

is assumed to fail. The main ingredient of the model is the load redistribution rule: upon

failure of a line in any network, the load it was carrying before the failure will be redistributed

among all networks in the system, with the proportion received by each network being deter-

mined by the coupling coefficients across networks; see Section 5.2 for precise details. Within

each network, we adopt the fiber-bundle-like model [80, 111] and distribute this received load
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equally among all functional lines. With appropriate meanings of load and capacity, this type

of load oriented models can capture the dependencies in a wide range of physical systems; e.g.,

two smart-grid operators coupled to provide better service [8], two banks highly correlated for

collective risk shifting [113], or two interacting transportation networks [13].

Another way to view the model is to treat the component networks as small communities or

regions that compose a bigger network. In this newly formed network, flow is not redistributed

equally upon failure, but the fraction of load a node will receive from the failed node is based on

the region or community it belongs. The coupling coefficients that we mentioned above can be

viewed as the redistribution factor inside each community or region. For the ease of analyzing

and to give a clear picture of how flow is redistributed among different component networks,

we will continue with interdependent network structure; while we note that one can merge the

component networks in an interdependent flow-carrying system into a single network, where

the redistribution rule is heterogeneous and more general.

5.2 Model definition

We consider a system composed of n networks that interact with each other. Let N =

{1, . . . , n} denote the set of all networks in the system. For each i ∈ N , we assume that

network i has Ni lines L1,i, . . . ,LNi,i with initial loads L1,i, . . . , LNi,i. Each of these lines is

associated with a capacity C1,i, . . . , CNi,i above which the line will be tripped. In other words,

Ck,i defines the maximum flow that line k in network i can sustain and is given by

Ck,i = Lk,i + Sk,i, i ∈ N , k = 1, . . . , Ni

where Sk,i denotes the free space on line k in network i, i.e., the maximum amount of extra

load it can take. The load-free space pairs {Lk,i, Sk,i}Nik=1 are independently and identically

distributed with

PLiSi(x, y) := P [Lk,i ≤ x, Sk,i ≤ y] , k = 1, . . . , Ni
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for each i ∈ N . The corresponding joint probability density function is given by pLiSi(x, y) =

∂2

∂x∂y
PLiSi(x, y). In order to avoid trivial cases, we assume that Sk,i > 0 and Lk,i > 0 with

probability one for each i ∈ N and each k = 1, . . . , Ni. Finally, we assume that the marginal

densities pLi(x) and pSi(y) are continuous on their support.

Initially, 1 − pi fraction of lines are attacked (or failed) randomly in network i, where

pi ∈ [0, 1]. The load on failed lines will be redistributed within the original network and/or

shed to other coupled networks depending on the underlying redistribution rules governing the

system. Further failures may then take place within the initially attacked network or in the

coupled ones due to lines undertaking extra load exceeding their capacity; this in turn leads

to further redistribution in all constituent network, potentially leading to a cascade of failures.

The cascade of failures taking place simultaneously within and across networks leads to an

interesting dynamical behavior and an intricate relationship between the level of coupling and

the system’s overall robustness.

One of our main goals in this paper is to characterize the fraction of alive lines in each

network at that ‘steady state’; i.e., at the point where cascades stop. To that end, we provide

a mean-field analysis of dynamical process of cascading failures. Under this approach, it is

assumed that when a line fails, its flow will be redistributed to its own network as well as

to other networks with the proportion redistributed to each network determined by coupling

coefficients among the networks. The proportion of load to be shed from a failed line in network

i to network j is determined by the coupling coefficient aij, where we have
∑

j∈N aij = 1 for all

i in N ; thus, 1−
∑

j∈N−{i} aij gives the fraction of the load that will be redistributed internally

in network i.. Each network will then distribute its own share of the failed load equally and

globally among all of its remaining lines.

For the ease of exposition, we consider a two-network system in the rest of the paper,

although our results can be extended trivially to arbitrary number of networks. Consider a

system composed of networks A and B that are interdependent in the following manner 1: when

1Of course, there are other ways for two networks to be “interdependent” with each other. Here, we use
this term with its general meaning, i.e., that failures in one network may lead to failures in the other and vice
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Figure 5.1: Illustration of a two-network system. When failures happen in network B, b-
portion of the failed loads goes to network A and (1 − b)-portion stays in B. Similarly in
network A, (1 − a)-portion stays and a-portion goes to B. Failed loads will be redistributed
equally and globally among the remaining lines in each network.

a failure happens in network A, a fraction of the failed load is transferred to network B, while

the remaining 1 − a fraction being redistributed internally in A. Similarly upon failures in

network B, b fraction of the failed load will be shed to network A; here a, b ∈ [0, 1] are system

defined constants. An illustration of the system can be found in Figure 5.1. We assume that

initially 1 − p1 fraction of lines in network A and 1 − p2 fraction of lines in network B fail

randomly. The initial attacks may cause cascading failures, and if one of the network collapses

(i.e., if all of its lines fail) during this process, the other network will take over the rest of the

load in it and function as a single network from that point on. Throughout, we let n∞,A(p1)

and n∞,B(p2) denote the expected final fraction of alive lines of network A and network B

when 1− p1 and 1− p2 fraction of lines is randomly attacked in each network:

n∞,A(p1) := lim
NA→∞

E [|Nsurviving A(p1)|]
NA

(5.1)

n∞,B(p2) := lim
NB→∞

E [|Nsurviving B(p2)|]
NB

(5.2)

where Nsurviving A ⊂ {1, . . . , NA} is the set of lines that are still functioning at the steady state

of network A, similarly for Nsurviving B. The robustness of the system will be evaluated by the

versa, potentially leading to a cascade of failures. Our model constitutes a special case where interdependence
emerges from the inter-connectivity between the two networks
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behavior n∞,A(p1) and n∞,B(p2) for all attack sizes.

5.3 Analytical results

We now provide the mean-field analysis of cascading failures in the two-network interdependent

system. Without loss of generality, we assume that both networks have the same number of

lines, i.e., NA = NB = N . We assume that time is divided into discrete steps, t = 1, 2, . . .. For

each time stage t, and with X ∈ {A,B}, we use the following notation:

ft,X : fraction of failed lines until t;

Ft,X : total load from lines that fail exactly at time t within network X;

Qt,X : extra load to be redistribution at t per alive line in X;

Nt,X : number of alive lines at t in X before redistribution.

In what follows, we occasionally provide expressions only for the quantities regarding net-

work A, while the corresponding expressions for network B (that are omitted in the text for

brevity) can be obtained similarly.

Initially, 1− p1 fraction of lines in network A and 1− p2 fraction of lines in network B are

attacked (or failed) randomly. Thus, the fraction of failed lines within each network at t = 0

is given by

f0,A = 1− p1, f0,B = 1− p2

, while the number of alive lines satisfy

N0,A = (1− f0,A)N = p1N

N0,B = (1− f0,B)N = p2N

Because the initially attacked lines are selected uniformly at random, the total load from failed
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lines (in the mean-field sense) satisfy

F0,A = E [LA] · f0,A ·N = E [LA] · (1− p1) ·N

F0,B = E [LB] · f0,B ·N = E [LB] · (1− p2) ·N

Based on the equal redistribution rule and the load shedding rule between the two interde-

pendent networks, the extra load per alive line in network A at t = 0 is:

Q0,A =
(1− a) · F0,A + b · F0,B

(1− f0,A)N

=
(1− a) · E [LA] · (1− p1) + b · E [LB] · (1− p2)

p1

and similarly for network B:

Q0,B =
a · E [LA] · (1− p1) + (1− b) · E [LB] · (1− p2)

p2

At stage t = 1, line k in network A that survives the initial attack will fail if and only

if the updated loads exceed its capacity, i.e., if Lk,A + Q0,A ≥ Lk,A + Sk,A, or equivalently, if

Sk,A ≤ Q0,A. Based on this condition, the fraction of failed lines at t = 1 is given by

f1,A = f0,A + (1− f0,A) · P [SA ≤ Q0,A]

= 1− (1− f0,A)P [SA > Q0,A]

To compute the extra load per alive line in each network at t = 1, we need to know the

lines that fail exactly at this stage in each network (so that their load can be appropriately

redistributed to both networks according to the coupling coefficients). Namely, we need to find

the lines that survive the initial attack, but have smaller free space than the redistributed load

Q0,A or Q0,B from the previous stage. Let A and B be the initial set of lines that are attacked
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or failed initially in network A and B, respectively. Then, the total load on these failed lines

in network A at t = 1 can be derived as

F1,A = E

 ∑
i/∈A,Si,A≤Q0,A

(Li,A +Q0,A)


= E

[∑
i/∈A

(Li,A +Q0,A) · 1 [Si,A ≤ Q0,A]

]

= p1NE [(LA +Q0,A) · 1 [SA ≤ Q0,A]]

where 1 [·] is the indicator function 2; here we used the fact that for each line i in A, Li, Si

follow the same distribution pLA,SA . Similarly for network B, we have

F1,B = E

 ∑
i/∈B,Si,B≤Q0,B

(Li,B +Q0,B)


= p2NE [(LB +Q0,B) · 1 [SB ≤ Q0,B]]

The load of these lines failed at stage 1 will then be redistributed internally and across

network, based on the aforementioned coupling coefficients. This leads to the extra load per

alive line in network A at t = 1 being given by

Q1,A = Q0,A +
(1− a) · F1,A + b · F1,B

N(1− f1,A)

= Q0,A +

(1− a) · p1 · E [(LA +Q0,A) · 1 [SA ≤ Q0,A]]

+ b · p2 · E [(LB +Q0,B) · 1 [SB ≤ Q0,B]]

1− f1,A

Q1,B can be written in a similar manner.

At t = 2, more lines will fail because of the redistribution in the previous stage. The

condition for a line to fail exactly at t = 2 is: (i) it doesn’t belong to the initial attack set {A,

2Let E be an event. Then, 1 [E] is a Binomial random variable that takes the value of 1 if E takes place,
and 0 otherwise
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B}; (ii) it survived the redistribution in the previous stage t = 1; and (iii) its capacity is less

than the updated total load after redistribution at t = 2. From this we can derive the fraction

of failed lines till t = 2 as

f2,A = 1− (1− f1,A)P [SA > Q1,A | SA > Q0,A]

f2,B = 1− (1− f1,B)P [SB > Q1,B | SB > Q0,B]

Then, the total load from lines that fail exactly at t = 2 in network A is given by

F2,A = E

 ∑
i/∈A,Q0,A<Si,A≤Q1,A

(Li,A +Q1,A)


= p1NE [(LA +Q1,A)1 [Q0,A < SA ≤ Q1,A]]

Similarly in network B, we have

F2,B = E

 ∑
i/∈B,Q0,B<Si,B≤Q1,B

(Li,B +Q1,B)


= p2NE [(LB +Q1,B)1 [Q0,B < SB ≤ Q1,B]]

With the total loads on failed lines F2,A, F2,B and the fraction of failed lines f2,A, f2,B in

each network, the extra load per alive line in network A at stage t = 2 can be calculated as

Q2,A = Q1,A +
(1− a)F2,A + bF2,B

N(1− f2,A)

= Q1,A +

(1− a) · p1 · E [(LA +Q1,A) · 1 [Q0,A < SA ≤ Q1,A]]

+ b · p2 · E [(LB +Q1,B) · 1 [Q0,B < SB ≤ Q1,B]]

1− f2,A

A similar expression gives Q2,B.

In light of the above derivation, the form of the recursive equations is now clear: for each
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time stage t = 0, 1, . . . , we have

ft+1,A = 1− (1− ft,A)P [SA > Qt,A | SA > Qt−1,A]

Nt+1,A = (1− ft+1,A)N

(5.3)

Qt+1,A = Qt,A +

(1− a) · p1 · E [(LA +Qt,A) · 1 [Qt−1,A < SA ≤ Qt,A]]

+ b · p2 · E [(LB +Qt,B) · 1 [Qt−1,B < SB ≤ Qt,B]]

1− ft+1,A

,

and similarly for network B.

From (5.3) we can see that the cascade of failures will stop and the steady state will be

reached only when the number of alive lines doesn’t change in both networks, i.e., Nt+2,A =

Nt+1,A, Nt+2,B = Nt+1,B. This is equivalent to having

P [SA > Qt+1,A | SA > Qt,A] = 1, and

P [SB > Qt+1,B | SB > Qt,B] = 1 (5.4)

In other words, whenever we have finite Qt+1,A, Qt,A, Qt+1,B and Qt,B values that satisfy (5.4),

cascading failures will stop and the system will reach the steady state.

The recursive expressions (5.3) can be simplified further in a way that will make computing

the final system sizes (i.e., fraction of alive lines at steady-state) much easier. Firstly, we use

the first expression in (5.3) repeatedly for each t = 0, 1, . . . to get

1− ft+1,A = (1− ft,A)P [SA > Qt,A | SA > Qt−1,A]

1− ft,A = (1− ft−1,A)P [SA > Qt−1,A | SA > Qt−2,A]

...

1− f1,A = (1− f0,A)P [SA > Q0,A]
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Multiplying these equations together, we obtain

1− ft+1,A = (1− f0,A)
t∏

`=0

P
[
SA > Q`,A

∣∣ SA > Q`−1,A

]
,

where we set Q−1,A = 0 for convenience. Using the fact that Qt,A is non-decreasing in t, i.e.,

Qt+1,A ≥ Qt,A for all t, we then get

1− ft+1,A = (1− f0,A) · P [SA > Qt,A]

P [SA > Qt−1,A]
· · · P [SA > Q1,A]

P [SA > Q0,A]
· P [SA > Q0,A]

= p1P [SA > Qt,A] (5.5)

as we recall that f0,A = 1− p1.

Using the simplified result (5.5) in (5.3), we now get

ft+1,A = 1− p1P [SA > Qt,A]

Nt+1,A = p1P [SA > Qt,A]N

(5.6)

Qt+1,A = Qt,A +

(1− a) · p1 · E [(LA +Qt,A) · 1 [Qt−1,A < SA ≤ Qt,A]]

+ b · p2 · E [(LB +Qt,B) · 1 [Qt−1,B < SB ≤ Qt,B]]

p1P [SA > Qt,A]

leading to a much more intuitive expression than before. To see why (5.6) makes sense realize

that for a line to survive stage t+1 without failing, it is necessary and sufficient that it survives

the initial attack (which happens with probability p1 for line in network A) and its free-space

is greater than the total additional load Qt,A that has been shed on it (which happens with

probability P [SA > Qt,A]. This explains the first and second expressions in (5.6). For the last

equation that computes Qt+1,A, the extra load per alive line at the end of stage t + 1 (to be

redistributed at stage t + 2), we write it as the previous extra load Qt,A plus the extra load

from lines that fail precisely at stage t + 1. For a line in network A, failing precisely at stage
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t + 1 implies that the line was not in the initial attack (happens with probability p1) and its

free space falls in (Qt−1,A, Qt,A] so that it survived the previous load shedding stage but not

the current one. Arguing similarly for lines in network B and recalling the redistribution rule

based on coupling coefficients, we can see that the nominator in the second term of Qt+1,A

(in (5.6)) gives the additional new load that will be shed on the alive lines of A. The whole

expression is now understood upon recalling that p1P [SA > Qt,A] gives the fraction of lines

from A that survive stage t+ 1 to take this extra load.

It is now easy to realize that the dynamics of cascading failures is fully governed and

understood by the recursions on Qt,A, Qt,B given by

Qt+1,A = Qt,A +

(1− a) · p1 · E [(LA +Qt,A) · 1 [Qt−1,A < SA ≤ Qt,A]]

+ b · p2 · E [(LB +Qt,B) · 1 [Qt−1,B < SB ≤ Qt,B]]

p1P [SA > Qt,A]
(5.7)

Qt+1,B = Qt,B +

a · p1 · E [(LA +Qt,A) · 1 [Qt−1,A < SA ≤ Qt,A]]

+ (1− b) · p2 · E [(LB +Qt,B) · 1 [Qt−1,B < SB ≤ Qt,B]]

p2P [SB > Qt,B]
(5.8)

with the conditions for reaching the steady-state still being (5.4). Put differently, in order

to find the final system sizes, we need to iterate (5.7)-(5.8) for each t = 0, 1, . . . until the

stop condition (5.4) is satisfied. Let t? be the stage steady-state is reached and Q?
A, Q

?
B be

the corresponding values at that point. The final system sizes n∞,A and n∞,B, defined as the

expected fraction of alive lines in network A and B at the steady state, respectively, can then

be computed simply from (viz. (5.5))

n∞,A = 1− f∞,A = p1P [SA > Q?
A]

n∞,B = 1− f∞,B = p2P [SB > Q?
B] .

(5.9)

The expressions given above for the steady-state of cascading failures in interdependent

systems constitute a non-deterministic, nonlinear system of equations, which often do not have

to closed-form solution; contrast this with the single network [111] case, where it is possible
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to provide a closed form solution to the final system size. Therefore, in the interdependent

network case, we solve {Q?
A, Q

?
B} by numerically iterating over (5.7)-(5.8). The difficulty of

obtaining a closed-form expression for final system sizes arises due to the recursive shedding

of load across the two networks. At each stage of the cascade, both networks send a portion

of the load from its failed lines to the other network, while receiving a portion of load from

the lines failed in the coupled network. Furthermore, the load a line was carrying right before

failure depends directly on the extra load per alive line (which decide who fails in the next

stage) at the time of its failure. This is why we need to keep track of the set of lines that fail

precisely at a particular stage to be able to obtain an exact account of these loads 3. As a

result, the final system size can only be obtained by running over the iterations and identifying

the first stage at which the stop conditions (5.4) are satisfied.

5.4 Numerical results

5.4.1 Final system size under different system parameters

To verify our analysis with simulations, we choose different load-free space distributions under

various coupling coefficients. Throughout, we consider three commonly used families of distri-

butions: i) Uniform, ii) Pareto, and iii) Weibull. These distributions are chosen here because

they cover a wide range of commonly used and representative cases. In particular, uniform

distribution provides an intuitive baseline. Distributions belonging to the Pareto family are

also known as a power-law distributions and have been observed in many real-world networks

including the Internet, the citation network, as well as power systems [79]. Weibull distribution

is widely used in engineering problems involving reliability and survival analysis, and contains

several classical distributions as special cases; e.g., Exponential, Rayleigh, and Dirac-delta.

In all simulations, we fix the network size at N = 107, and for each set of parameters

being considered we run 20 independent experiments. The results are shown in Fig. 5.2 where

3This is also evident from (5.3) where we see that Qt+1 depends not only on Qt but also on Qt−1
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Figure 5.2: Final system size under different load-free space distributions and coupling coeffi-
cients. We observe interesting transition behaviors under different load-free space distributions
and coupling level, and the simulation represented in symbol matches with the analytical results
represented in lines.

symbols represent the empirical value of the final system size n∞,A of network A (obtained

by averaging over 20 independent runs for each data point), and lines represent the analytical

results computed from (5.9). We see that theoretical results match the simulations very well

in all cases.

The plots in Fig. 5.2 demonstrate the effect of the load-free space distribution as well as

coupling level on the robustness of the resulting interdependent system. We see that both

the family that the distribution belongs to (e.g., Uniform, Weibull, or Pareto) as well as the

specific parameters of the family affect the behavior of n∞,A(p). For instance, the curves repre-

senting the two cases where load and free space in both networks follow a Uniform distribution

demonstrate that both abrupt ruptures and ruptures with a preceding divergence are possible

in this setting, depending on the parameters. Both cases on Pareto networks give an abrupt

breakdown at the final point, and we see that Weibull distribution gives rise to a richer set of

possibilities for the transition of final system size n∞,A(p). Namely, we see that not only we

can observe an abrupt rupture, or a rupture with preceding divergence (i.e., a second-order

transition followed by a first-order breakdown), it is also possible that n∞,A(p) goes through a
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first-order transition (that does not breakdown the system) followed by a second-order transi-

tion that is followed by an ultimate first-order breakdown; see the behavior of the purple circled

line in Fig. 5.2. Thus in the next section, we will use Weibull distribution to explore the in-

teresting transition behaviors observed in interdependent systems composed of two identical

networks.

5.4.2 Transition behavior for two identical networks

To explore the effect of coupling and interdependency on the robustness of networks, we couple

two (statistically) identical networks. Put differently, we consider networks A and B where the

load and capacity of each of their lines are drawn independently from the same distribution.

We also assume that they are coupled together in a symmetric way, i.e., that a = b. This is

a commonly seen case of an interdependent systems where networks of similar characteristics

establish a coupling for mutual benefit; e.g., two grid distributors or financial institutions with

similar characteristics. More importantly, this will help us understand the affect of coupling

with another identical system on the robustness of a given system; the seminal results of

Buldyrev et al. [9] suggest that coupling leads to increased vulnerability under percolation

based models.

With these motivations in mind, we let the initial loads in both networks follow a Weibull

distribution, with shape parameter kw = 0.4, scale parameter λ = 100, and minimum initial

load Lmin = 10. The free space is assigned proportional to the initial load on each line with a

tolerance factor α, i.e. S = αL where α = 0.6. The network size is fixed at N = 108. We attack

1− p fraction of lines randomly in network A, and observe the dynamics of failures driven by

the load redistribution across and within the two networks. We then compute the final (i.e.,

steady-state) size of network A as a function of initial attack sizes 1− p under different values

of the coupling coefficient a. The results are depicted in Fig. 5.3, where symbols represent

simulation results averaged over 20 independent runs, while lines correspond to our analytical

results; in all parameter settings, we observed little to no variance in the final system size
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Figure 5.3: Effect of coupling on the robustness of a single system. We see that contrary
to percolation-based models, robustness can indeed be improved by having non-zero coupling
between the constituent networks. Inset. The critical point 1 − p? defined as the smallest
1 − p1 at which n∞,A(p1) deviates from p1. The optimal (i.e., largest) 1 − p? is attained at a
non-trivial coupling level a = b =' 0.53.

across the 20 independent experiments 4.

A number of interesting observations can be made from Fig. 5.3. First, we see that coupling

level can lead to significant changes in the robustness against random attacks. In particular,

the inset in Fig. 5.3 plots the critical attack size 1−p? at which the final network size deviates

from the p line; given attack size 1− p, the final system size can be at most p, which happens

when the initial attack does not lead to any further failures. The network can be deemed to

be more robust when 1− p? is larger. An interesting observation is that unlike the traditional

percolation-based models, here coupling with another network might lead to a network to become

more robust against failures. To the best of our knowledge, the only other model where coupling

can improve robustness is studied by Brummitt et al. [72], which constitutes an extension of

the sandpile model. Perhaps more interestingly, we also see that the optimal robustness (i.e.,

largest p?) is attained at a non-trivial coupling level a =' 0.53. This suggests that coupling has

4We believe this is because the network size N is taken to be very large in the experiments and the random
variable n∞,A(p1) converges almost surely to its mean (e.g., by virtue of Strong Law of Large Numbers); though
it is beyond the scope of this paper to prove this.
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a multi-faceted impact on robustness and that systems are most robust when they are coupled

in a specific, non-trivial way; in Section 5.4.3 we provide some concrete ways to identify such

optimum coupling levels.

In addition to affecting the system robustness in non-trivial ways, we see from Figure 5.3

that changing the coupling level can also give rise to different (and, sometimes very interesting)

transition behaviors. In particular, we see that network A can go through any one of the tran-

sitions demonstrated in previous work [80, 111] for single networks depending on its coupling

level with network B. More interestingly, when coupled to network B at a specific level, i.e.,

with a = b = 0.37, it is seen to go through a type of transitions that was not seen in the case

when it operates as an isolated network. This behavior can be described as a sequence of first,

second, first, second, and first order transitions, and to the best of our knowledge was not seen

before in any model 5. In this case, the network stabilizes twice after a sudden drop in the

network size during the cascading process, before going through an abrupt final breakdown.

To further explore the transition behavior during the cascading failure process, we plot

the number of iterations (i.e., the number of load redistribution steps) needed for the system

to reach steady-state. The divergence of the number of iterations is considered to be a good

indicator of the onset of large failures, and often suggested as a marker of transition points in

simulations; e.g., see [112, 114]. We see that this is indeed the case for our model as well. In

Fig. 5.4, we plot the final system size together with the number of iterations taken to reach

that final size. The solid lines represent final system size under different coupling coefficients,

and the symbols represent the number of iterations needed (divided by the maximum iterations

number, 1000) in each case. We see that the number of iterations needed is piece-wise stable

with discontinuous jumps corresponding to the transition points, and it diverges near the

final breakdown of the network. In Section 5.5, we provide a more detailed discussion on the

5We note that the behavior demonstrated here is fundamentally different from the few other cases in the
literature where multiple transitions have been reported; e.g., see [97, 106]. There, the type or the number of
transitions do not change with the level of coupling across the networks. Instead, multiple transitions arise
only when networks with different robustness levels are coupled together, and their total (or, average) size is
plotted against the size of the attack that is applied to all networks involved.
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Figure 5.4: Number of steps needed to reach steady state for identical networks (a = b),
for various a values. For the case when a = 0.37, we observe a novel, unforeseen transition
behavior.

possible correlations between the type and number of transitions a network exhibits with the

distribution of its load and free-space.

For a clearer explanation, let us focus on the case when a = 0.37 (purple asterisks). We see

that both discontinuous drops in the final system size coincide with a discontinuous increase in

the number of iterations. As the attack size 1−p1 increases further from that second jump, we

see a continuous increase in the number of iterations coinciding with the continuous decrease

in final system size. This eventually leads to the number of iterations diverging, and as would

be expected coincides with the system breaking down entirely.

In Fig. 5.5, the final system size of network A and B are depicted together (for the case

a = 0.37), showing clearly the effect of interdependence on transition behaviors. Up until

1−p1 = 0.0287, there are no failed lines in network B although network A already experiences

cascading failures; this indicates that all lines in B are able take the extra load from network

A even though A loses a significant fraction of its lines at 1 − p1 = 0.0271. When some lines

start failing in network B at 1 − p1 = 0.0287, a large cascade of failures take place causing a

significant number of lines fail from both networks marked by discontinuous drop in the final
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Figure 5.5: Final system size in two networks when only network A has been attacked initially.
The two networks are statistically identical with a = b = 0.36. Their loads follow a Weibull
distribution with kw = 0.4, λ = 100, Lmin = 10, and S = 0.6L

size of both networks. After this point, the remaining system is able to sustain higher initial

attacks (because the lines that survive until this point tend to have larger free-space than

average). However, when we reach 1 − p1 = 0.0314, another large cascade takes place that

collapses both networks. This final breakdown is observed almost simultaneously in networks

A and B, primarily because once a network collapses, the other network will need to take over

all the load in the system, and in most cases will not be able survive on its own.

5.4.3 Optimizing the robustness of an interdependent system

We now discuss how the robustness of an entire interdependent system can be quantified, with

an eye towards identifying optimal coupling levels that maximize system robustness. Assume

that initially 1 − p1 fraction of lines from A and 1 − p2 fraction of lines from B are attacked

randomly. The p1, p2 ∈ [0, 1] plane is naturally divided into four survival regions [115]. where

i) S12 represents the initial attack pair (1− p1, 1− p2) under which both networks survive, i.e.,

have positive fraction of functional lines when steady state is reached; ii) S1 represents the case

where only network A survives; iii) S2 represents the case where only network B survives; and

iv) S0 represents the region where no network survives, i.e., the entire system fails with no
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Figure 5.6: Survival regions of the coupled system under load-redistribution based model.
When coupling is introduced, regions where both networks survive or collapse (S12 and S0,
respectively) get larger, while regions where only one network survives (S1 and S2) shrink
significantly.

alive lines. It is then tempting to study the affect of network coupling on these four regions.

To provide a concrete example, let network A have LA ∼ U [10, 30], SA ∼ U [40, 100], and

network B have LB ∼ U [20, 40], SB ∼ U [30, 85], with U denoting uniform distribution. The

initial load distribution and free space distribution are assumed to be independent in each

network. We see from Fig. 5.6 that when there is no coupling (a = b = 0), both networks

operate in isolation and the survival of A and B are independent from each other; as we would

expect, the two dashed lines (in red color) mark the critical attack sizes for A and B when

they are in isolation [111]. When we introduce coupling to the system, e.g., with a = 0.33 and

b = 0.37, we see an interesting phenomenon indicating a multi-faceted impact of coupling on

system robustness. The region S12 where both networks survives enlarges, while S1, S2 where

only one network survives shrink dramatically. Meanwhile, S0 where both networks collapse

also enlarges. In a nutshell, when coupled together, the two networks are able to help each

other to survive larger attack sizes as compared to the case when they are isolated; however,

this comes at the expense of also failing together at smaller attack sizes than before.

To further quantify the effect of coupling on system robustness, we consider the setting

above while varying the coupling coefficients a and b. For both networks, we deploy the same
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Figure 5.7: Color map of the critical attack size under different coupling coefficients a and b.
Darker colors indicate larger 1− p?sys values, meaning that the interdependent system is more
robust.

initial attack, i.e., 1− p1 = 1− p2 = 1− p, and define the critical system attack size 1− p?sys as

the minimum 1− p that collapses at least one network in the system when cascading failures

stop; i.e., 1−p?sys marks the intersection of the p1 = p2 line and the boundary of the S12 region

in Figure 5.6.

The metric 1− p?sys proposed here provides a simple and useful way to quantify the robust-

ness of the overall system. For example, aside from being the smallest attack size needed to be

launched on both networks to fail at least one of them completely, it gives a good indication

of the area of the S12 region where both networks are functional at steady-state. In Fig. 5.7

we show the value of 1 − p?sys for different coupling coefficients (a, b) using a color map; the

darker the graph, the larger is the 1− p?sys value. Using this, one can design an interdependent

system to have the optimum coupling levels (a, b) so that robustness of the overall system is

maximized (in the sense of maximizing 1−p?sys). We see that the optimum (a, b) is not unique,

but instead contain in a certain strip of the [0, 1]2 plane. This indicates that the robustness of

the interdependent system can be optimized even under certain application-specific constraints

on the coupling levels a and b; e.g., one might need to have a = b for fairness to both networks,
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Figure 5.8: Extra load per alive line Qt,A is shown (at different attack sizes 1− p1 on Network
A) as a function of cascade step t = 0, 1, . . ., for the setting considered in Figure 5.5. The
jumps in the transitions divide the final system curve into four regions (marked with circled
numbers), which correspond to four clusters in the Qt,A plots (distinguished by four colors).

or a+ b = 1 to bound the total load transfer across networks, etc.

5.5 Explanation on multiple continuous/discontinuous

transitions

In this Section, we will explore in more details the underlying reasons for a network to undergo

multiple continuous/discontinuous transitions under the flow redistribution model studied in

this paper. First of all, we note that whether a line survives or fails a particular stage of

cascading failure depends on the the extra load per alive line at that iteration, i.e., Qt,A or

Qt,B. With this in mind, in Figure 5.8b we plot Qt,A as a function of the iteration step t under

the setting of Figure 5.5 (i.e., when network A experiences multiple transitions). In all cases,

we vary attack size 1− p1 over a range with small increments, so that a single curve in Figure

5.8b represents the change of Qt,A vs. t under a specific attack size 1− p1.

We observe that each 1−p1 value leads to a variation of Qt,A that belongs to one of the four

clusters, distinguished by different colors in Figure 5.8b. For example, as 1− p1 increases from

0.0250 to 0.0271, the corresponding Qt,A curves move up smoothly forming the blue cluster.
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At 1− p1 = 0.0272, Qt,A experiences a jump, but as 1− p1 increases further, Qt,A curves move

up continuously until 1 − p1 = 0.0287, forming the red cluster. The jump between the blue

and red clusters at 1 − p1 = 0.0271 coincides with the first jump in the transition in Figure

5.8a. Similarly, at 1 − p1 = 0.0287 we observe a second jump in Qt,A curves between the red

and black clusters, which corresponds to the second jump in Figure 5.8a. When attack size

1−p1 further increases, Qt,A curves keep moving up smoothly until 1−p1 = 0.0314 after which

Qt,A goes to infinity as t → ∞, meaning that network A collapses completely without any

alive lines; the corresponding Qt,A curves for 1− p1 ≥ 0.0315 form the fourth cluster show by

dotted green lines. Not surprisingly, 1− p1 = 0.0314 corresponds to the final breakdown point

observed in Figure 5.8a.

Another way to read these figures is that after the extra load per non-failed line Qt,A

(resp. Qt,B) reaches a certain value, the network A (resp. B) goes through a sequence of failures

after which it either stabilizes with a large fraction of failed lines, or it can not stabilize and

goes through a complete breakdown. These critical values of Qt,A, Qt,B and their connection

to the emergence of multiple transitions can be understood better in the case of a single

network. In [111], we have provided a detailed analysis of the global redistribution model in

single networks and demonstrated that the critical transition values are determined by the

inequality:

g(x) := P[S > x](x+ E[L | S > x]) ≥ E[L]

p
, x ∈ (0,∞) (5.10)

With x? denoting the smallest solution of (5.10), the final system size is given by

n∞(p) = pP [S > x?] . (5.11)

Here x represents candidate values for the extra load per alive line at the steady-state; i.e., it

represents potential solutions to Q∞. To see this better, we can rewrite the inequality (5.10)
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as

x ≥ (1− p)E [L] + pE [L1 [S ≤ x]]

pP[S > x]
. (5.12)

We can now realize that for any 1 − p and x for which this inequality holds, the alternative

attack that kills i) 1− p-fraction of the lines randomly; and ii) all remaining lines whose free-

space is less than x (i.e., that satisfy S ≤ x), is a stable one that does not lead to any single

additional line failure. To see this, note that the term pP[S > x] in (5.12) gives the fraction of

lines that survive the alternative attack, where each surviving line having at least x amount of

free-space, while (1− p)E [L] + pE [L1 [S ≤ x]] gives the total load failed initially as a result of

the alternative attack. Thus, for a given attack size 1− p, the smallest x satisfying inequality

(5.10) or (5.12) will give us the steady-state extra load per alive line Q∞.

With these in mind, we now explore the underlying reasons for the final system size n∞(p)

to exhibit (potentially multiple) discontinuous transitions. From Figure 5.8 and the discussion

that follows, we expect discontinuous transitions in n∞(p) to appear simultaneously with dis-

continuous jumps in the behavior of Qt as 1 − p varies. We now show that our results given

at (5.10)-(5.11) confirm this intuition. To visualize the implications of (5.10)-(5.11) better,

we should plot g(x) as a function of x, and find the leftmost intersection of this curve and

the horizontal line drawn at E[L]
p

. Let this leftmost intersection be denoted by x?(p) (with the

notation making the dependence of x? on the attack size p explicit). The final system size is

given from (5.11) as n∞(p) = pP [S > x?(p)]. Assuming that the tail of the distribution of S

is continuous, we see that n∞(p) will exhibit a discontinuous jump if (and only at the points

where) x?(p), which is analogous to the steady-state extra-load per alive line Q∞, exhibits a

discontinuous jump. This confirms the intuition stated above.

Recall that x?(p) is the leftmost intersection of g(x) and E [L] /p, and assume that E [L | S > x]

is continuous, so that g(x) is continuous. Then, x?(p) (and thus the final system size n∞(p))

will exhibit one discontinuous jump for every local and the global maxima of g(x). This last

statement explains why certain L, S distributions lead only to a single discontinuous jump

(since the corresponding g(x) has a single maxima) while others give two (or, potentially
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Figure 5.9: Multiple transitions in a single network and the corresponding function g(x) (de-
fined at (5.10)) is plotted when L follows Weibull distribution with kw = 0.4, λ = 100,
Lmin = 10, and S = αL where α = 1.74. The Inset zooms in to the region where g(x)
has a local maximum.

more) discontinuous transitions. An example for the latter case is given in Figure 5.9. We see

that the corresponding function g(x) (Figure 5.9b) exhibits a local maxima at x = 17.4. As a

result, when we search for the leftmost intersection of g(x) and E [L] /p as p varies from zero

to one, we see that at a certain 1 − p value, the leftmost solution x?(p) jumps from x = 17.4

to x = 29.3, creating a first-order transition in the final system size n∞(p) = pP [S > x?(p)].

After this point, as attack size 1−p increases further, the (leftmost) intersection points increase

smoothly, leading to the continuous transition seen in Figure 5.9a, until the global maxima of

g(x) is reached. At that 1− p value, the leftmost intersection of g(x) and E [L] /p jumps from

a finite value to infinity (indicating that there is no x satisfying inequality (5.10)), and the

system goes through a discontinuous transition leading to its complete break down.

5.6 Simulation results under global-local combined re-

distribution model

The main problem considered in this paper, concerning the cascade of failures in two inter-

dependent flow networks, would be expected to depend on the network connectivity patterns
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in practical scenarios. However, the approach used in this paper offers physical insight by

proposing a mean field approach on the setup presented. In fact, the abstraction used in this

paper is equivalent in spirit to the determination of percolation properties based on degree

distributions, mean-field, heterogeneous mean-field, and generating function approaches, etc.

In addition, merely topology-based models where the failed load is redistributed solely in the

local neighborhood of the failed line (e.g., as in [59, 116, 117]) suffers from two main issues.

First of all, it is often not possible to obtain complete analytic results under topology-based

redistribution models, even within the single network framework. Thus, unlike the detailed

analytical results given in this paper for interdependent networks, one would most likely be

constrained to simulation results if a topology-based redistribution model was used. Secondly,

models where the failed flow gets redistributed only locally according to a topology cannot

capture the long-range behavior of failures that are observed in most real-world cascades [115].

With these in mind, we believe our paper exercises a reasonable trade-off of capturing key

aspects of real-world cascades while being able to obtain complete analytic results. Neverthe-

less, we find it useful to complement our analytical results with simulations that demonstrate

how network topology affects the robustness properties of interdependent networks. To this

end, we consider a model that combines the global redistribution model described in Section

6.2 and the local redistribution model used in [59]. In particular, assume that upon failures

in a network, µ fraction of the failed flow is redistributed solely in the local neighborhood

of the failed line, while the rest gets redistributed among all functional lines. In the case of

interdependent networks studied here, we only focus on the intra-topology of networks A and

B and still couple them through parameters a and b; i.e., when a line in A fails, a-fraction

of the failed flow gets redistributed equally among all functional lines of B, while (1 − a)µ-

fraction gets redistributed locally in A among the neighbors of the failed line, and the remaining

(1− a)(1− µ)-fraction gets redistributed among all functional lines of A.

With this approach, we recover the model analyzed in our paper when µ = 0, while setting

µ = 1 gives a merely topology-based model. We now present a simulation result that shows the
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Figure 5.10: Effect of parameter µ, which controls the fraction of failed load that will be redis-
tributed locally according to network topology, on the robustness of interdependent systems.

robustness of an interdependent system under different µ values. For convenience, we consider

the same set-up used in Fig. 5.5, i.e. the two networks are statistically identical with coupling

coefficient a = b = 0.36, and their loads follow a Weibull distribution with kw = 0.4, λ = 100,

Lmin = 10, and S = 0.6L. For simplicity, we assume that the topologies of both networks are

generated by the Erdős-Rényi model with 9000 nodes and link probability 0.2, leading to a

mean number N of links around 8.1× 106.

The results are depicted in Figure 5.10. As would be expected, as µ decreases from one

(purely topology-based model) to zero (the model analyzed in our paper), the robustness

of network A increases. In other words, the more fraction of failed flow gets shared globally

instead of locally, the more robust the network becomes. This is intuitive since when failed flow

is shared globally, the additional load per functional line decreases, leading to a lower chance

of triggering cascading failures. Nevertheless, the qualitative behavior of the robustness of

network A as the attack size 1−p1 increases remains relatively unchanged at different µ values;

e.g., in all cases, we observe multiple discontinuous transitions, with continuous transitions in

between. This suggests that the mean-field approach used in our analysis (i.e., the case with

(µ = 0)) is able to capture very well the qualitative behavior of final system size for all µ values.
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5.7 Chapter summary

In this chapter, we start to look into interdependent system. To begin with, we studied the

robustness of interdependent systems under a flow-redistribution based model. In contrast

to percolation-based models that most existing works are based on, our model is suitable for

systems carrying a flow (e.g., power systems, road transportation networks), where cascading

failures are often triggered by redistribution of flows leading to overloading of lines. We give

a thorough analysis of cascading failures in a system of two interdependent networks initiated

by a random attack. We show that (i) the model captures the real-world phenomenon of

unexpected large scale cascades: final collapse is always first-order, but it can be preceded by a

sequence of several first and second-order transitions; (ii) network robustness tightly depends on

the coupling coefficients, and robustness is maximized at non-trivial coupling levels in general;

(iii) unlike existing models, interdependence has a multi-faceted impact on system robustness

in that interdependency can lead to an improved robustness for each individual network. In

the next chapter, we will study the interdependent networks composed of inherently different

networks; i.e., cyber-physical systems and the robustness of such systems against cascading

failures.
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Chapter 6

Robustness of Cyber-Physical Systems

6.1 Introduction and motivation

Today’s worldwide network infrastructure consists of a web of interacting cyber-networks (e.g.,

the Internet) and physical systems (e.g., the power grid). Integrated cyber-physical systems

(CPSs) are increasingly becoming the underpinning technology for major industries. The smart

grid is an archetypal example of a CPS where the power grid network and the communication

network for its operational control are coupled together; the grid depends on the communica-

tion network for its control, and the communication network depends on the grid for power.

While this coupling with a communication network brings unprecedented improvements and

functionality to the power grid, it has been observed [7] that such interdependent systems tend

to be fragile against failures, natural hazards, and attacks. For instance, in the event of an

attack or random failures in an interdependent system, the failures in one of the networks can

cause failures of the dependent nodes in the other network and vice versa. This process may

continue in a recursive manner, triggering a cascade of failures that can potentially collapse an

entire system. In fact, the cascading effect of even a partial Internet blackout could disrupt

major national infrastructure networks involving Internet services, power grids, and financial

markets [9]. For example, it was shown [10] that the electrical blackout that affected much of

Italy on 28 September 2003 had started with the shutdown of a power station, which led to

failures in the Internet communication network, which in turn caused the breakdown of more

stations, and so on.
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With interdependent systems becoming an integral part of our daily lives, a fundamental

question arises as to how we can design an interdependent system in a robust manner. Towards

this end, a major focus has to be put on understanding their vulnerabilities, and in particular

the root cause of the seemingly unexpected but large scale cascading failures. These events

are often attributed to a small initial shock getting escalated due to the intricate dependencies

within and across the individual (e.g., cyber and physical) counterparts of the system. There-

fore, a good understanding of the robustness of many real-worlds systems passes through an

accurate characterization and modeling of these inherent dependencies.

Traditional studies in network science fall short in characterizing the robustness of interde-

pendent networks since the focus has mainly been on single networks in isolation; i.e., networks

that do not interact with, or depend on any other network. Despite some recent research activ-

ity aimed at studying interdependent networks [9,17–21], very few consider engineering aspects

of inter-dependent networks and very little is known as to how such systems can be designed

to have maximum robustness under certain design constraints; see [22–25] for rare exceptions.

The current literature is also lacking interdependent system models that capture fundamental

differences between physical and cyber networks, and enable studying robustness of systems

that integrate networks with inherently different behavior. For example, it would be expected

that the functionality of the physical subsystem is primarily governed by the physical flows

and capacities associated with its components, whereas system-wide connectivity would be the

prominent requirement for maintaining functionality in the cyber network. There is thus a

need to develop new approaches for modeling and analyzing cascading failures in interdepen-

dent cyber-physical systems.

In this chapter, we develop a model that will help understand how failures would propa-

gate in an interdependent system that constitutes physical and cyber networks. This requires

characterization of intra-dependency models for each constituent network as well as an inter-

dependency model describing the spread of failures across networks; see Section 6.2.1 for details.

As already mentioned, the main drawback of the current literature on interdependent networks
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is that the focus has almost exclusively been on percolation-based failure models, where a node

can function only if it belongs to the largest connected (i.e., giant) component in the networks.

While suitable for cyber or communication networks, such models are not appropriate for net-

works carrying physical flows; e.g., in power grid, islanding is a commonly used strategy for

preventing cascades [118].

We provide a thorough analysis of the dynamics of cascading failures in this interdependent

system, where failures are initiated by a random attack on a certain fraction of nodes. The

system robustness, defined as the steady-state fraction of nodes that survive the cascade, is

characterized in terms of all network parameters involved (e.g., degree distribution of the cyber-

network, load-capacity values in the physical-network, network size, attack size, etc.). Analytic

results are supported by an extensive numerical study. An interesting finding is that under

our model, the system goes through a complete breakdown through a discontinuous transition

with respect to increasing attack size. In other words, the variation of the “mean fraction of

functional nodes at the steady state” with respect to “attack size” has a discontinuity at the

critical attack size above which the system collapses. This indicates that our model’s behavior

is reminiscent of large but rare blackouts seen in real world, and thus might help explain how

small initial shocks can cascade to disrupt large systems that have proven stable with respect

to similar disturbances in the past.

We also leverage our main result to investigate how the robustness can be improved by

adjusting various parameters defining the interdependent system; e.g., load/capacity values

in the physical network and the degree distribution of the cyber-network. This can prove

useful in designing an interdependent system so that it has maximum robustness under given

constraints. It is important to note that limited prior work revealed unprecedented differences

in the behaviors of interdependent networks as compared to single networks. For instance, it has

been shown [9,22] that a network design that is optimal in countering node failures in a single

network could be the most catastrophic choice for the resiliency of interdependent networks.

For the model considered here, our results reveal an intricate connection between the robustness
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of each constituent network when they are isolated and the robustness of the interdependent

system formed by them. First of all, when all else is fixed, and the total capacity available

to all nodes in the physical network is given, the interdependent system becomes more robust

when capacities are allocated such that every node has the same redundant space (i.e., capacity

minus initial load) as compared to the commonly used [59, 77, 84, 85] allocation where nodes

are given a redundant space proportional to their initial load. However, the situation becomes

much more intricate when the degree distribution of the cyber-network and the redundant

space allocation in the physical network are adjusted simultaneously. There, we observe that

depending on the degree distribution of the cyber-network, an interdependent system with

equal redundant space allocation can be more or less robust than one where redundant space

is proportional to load (with mean node degree and initial loads fixed). Also, in contrast with

the well-known results in single networks [5] where degree distributions with large variance

(e.g., Pareto) are associated with higher robustness (against random failures) than cases where

the variance is small (e.g., Poisson distribution), we demonstrate that the comparison is more

intricate for interdependent systems. In particular, we provide several examples where the

interdependent system with a Pareto-distributed cyber-network is more or less robust than

one where the cyber-network has Poisson degree distribution, even when all other parameters

are kept constant.

We believe this work brings a new perspective to the field of robustness of interdependent

networks and might help steer the literature away from the heavily-studied percolation models

towards flow-redistribution models, and towards models that combine networks with inherently

different cascade characteristics (of which CPS is an archetypal example); to the best of our

knowledge, this is the first work where the interdependence of two networks with fundamentally

different cascade behavior is studied. We believe that our results provide interesting insights

on the robustness of interdependent CPSs against random failures and attacks. In particular,

despite the simplicity of the models used, our results might capture the qualitative behavior

of cascades in an interdependent system well. We also believe this work will trigger further
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studies (and provide initial ideas) on how node capacities in the physical-network and the

topology of the communication network can be designed jointly to maximize the robustness of

an interdependent CPS.

6.2 System model

6.2.1 Intra-dependency vs. inter-dependency

Our modeling framework is motivated from the inherent dependencies that exist in many

real-world systems including cyber-physical systems. Namely, we characterize how component

failures propagate and cascade, both within the cyber or the physical parts of the system

(due to “intra-dependency”), as well as across them due to “inter-dependency”. The actual

meaning of “failure” is expected to be domain-dependent and can vary from a component being

physically damaged to a node’s inability to carry out its tasks; in all cases we adopt a binary

model where a node is either fully functional or failed completely and is removed from the

system. For ease of exposition, we consider two sub-systems, say A and B.

Assume that network A consists of nodes {a1, . . . , aN} and network B consists of nodes

{b1, . . . , bN}. For illustration purposes, we can think of network A as the power network

consisting of generators and substations (i.e., the physical network), and network B as the

control and communication network consisting of control centers and routers (i.e., the cyber

network) – This is a classical example of an interdependent CPS, with the power stations

sending data to and receiving control signals from routers, and routers receiving power from

substations. Modeling the dependencies within and between networks A and B amounts to

answering three questions. First, for both networks we must decide on the set of rules governing

how failures would propagate within that network, leading to a characterization of the intra-

dependencies. For example, we should identify how the failure of a power node ai affects other

substations and generators in the power network A. Similarly, we should identify how the

failure of a communication node bj affects other nodes in B. Finally, we must characterize the
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Figure 6.1: An illustration of failure propagation model in an interdependent system.

inter-dependence of the two networks, and how interdependence may lead to propagation of

failures across them. Namely, we must have a set of rules that specify how the failure of a

power station ai impacts the nodes {b1, . . . , bN} in the communication network and vice versa.

Once these modeling questions are answered, the propagation of failures in an interdepen-

dent system (consisting of networks A and B) can be studied. Without loss of generality,

assume that the failures are initiated in network A due to random failures or attacks. To

get a better idea about the role of intra- and inter-dependencies in the cascade of failures,

consider an asynchronous failure update model, where the effect of intra-dependencies and

inter-dependencies are considered in two separate batches, following one another. See Figure

6.1 for an illustration of the asynchronous failure propagation model. The asynchronous fail-

ure update assumption eases the implementation and analysis of the model, and can be shown

to yield the same steady-state network structures with a synchronous failure update model;

just note that failure propagation process is monotone and that (according to our assumption)

nodes can not heal once failed.

6.2.2 Proposed model for CPS system

Despite the vast literature on interdependent networks [9,22,119,120], there has been little (if

any) attempt to characterize the robustness of interdependent systems where the constituent

networks have different intra-dependency behaviors. In the case of CPS, it would be expected

that the cyber and physical counterparts obey inherently different rules governing how failures

would propagate internally in each network. To this end, we study in this paper an interdepen-
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Network A

Network B

Figure 6.2: System model illustration for the cyber-physical systems, where network A can
be the physical grid, and network B can be the communication network that sends control
signals. The interdependence across the two networks are realized through random one-to-one
support links shown by dashed lines. Our analysis of cascading failures is based on a mean-field
approach for network A, meaning that the topology of network A, shown above for illustration
purposes, is not taken into account (i.e., assumed to be fully-connected).

dent system model that consists of two networks with different characteristics governing their

intra-dependency: i) a cyber-network where a node is deemed to be functional as long as it

belongs to the largest connected (i.e., giant) component; and ii) a physical network where nodes

are given an initial flow and a capacity, and failure of a node results with redistribution of its

flow to the remaining nodes, upon which further failures might take place due to overloading

(i.e., the flow of a node exceeding its capacity). To the best of our knowledge, this is the first

work in the literature that studies interdependence between networks with fundamentally dif-

ferent intra-dependency; most existing works are focused on the interdependency between two

physical networks (that obey a flow-redistribution-based model) [115], or two cyber-networks

(that obey a giant-component-based intra-failure model) [9].

Intra-dependency in Network A. Let network A represent a flow network on nodes

a1, . . . , aN . Each node ai is given an initial load (e.g., power flow) L1, . . . , LN . The capac-

ity Ci of node ai defines the maximum flow that it can sustain, and is given by

Ci = Li + Si, i = 1, . . . , N, (6.1)

where Si denotes the free-space (or, redundancy) available to node ai. It is assumed that a

node fails (i.e., outages) if its load exceeds its capacity at any given time. The key assumption

of our intra-dependency model for network A is that when a node fails, the load it was carrying
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(right before the failure) is redistributed equally among all remaining nodes. This leads to an

increase in load carried by all remaining nodes, which in turn may lead to further failures of

overloaded nodes, and so on, potentially leading to a cascade of failures.

The equal flow redistribution rule takes its roots from the democratic fiber bundle model

[81,121], and has been recently used by Pahwa et al. [122] in the context of power systems; see

also [23,88]. The relevance of the equal flow-redistribution model for power systems stems from

its ability to capture the long-range nature of the Kirchhoff’s law, at least in the mean-field

sense, as opposed to topological models where failed load is redistributed only locally among

neighboring lines [77,78]; e.g., it was suggested by Pahwa et al. [79] that equal flow redistribu-

tion is a reasonable assumption especially under the DC power flow model. In Section 6.5, we

confirm via simulations that the mean-field assumption leads to results that are qualitatively

very similar to those obtained under different flow-redistribution models based on network

topology.

Throughout we assume that the load and free-space pairs (Li, Si) are independently and

identically distributed with PLS(x, y) := P [L ≤ x, S ≤ y] for each i = 1, . . . , N . The corre-

sponding (joint) probability density function is given by pLS(x, y) = ∂2

∂x∂y
PLS(x, y). In order to

avoid trivial cases, we assume that Si > 0 and Li > 0 with probability one for each ai. Finally,

we assume that the marginal densities pL(x) and pS(y) are continuous on their support.

Intra-dependency in Network B. Let network B represent a cyber (e.g., communication)

network consisting of nodes b1, . . . , bN . In this network, we assume that a node keeps func-

tioning as long as it belongs to the largest (i.e., giant) connected component of the network.

If a node loses its connection to the giant core of the network, then it is assumed to have

failed and can no longer carry out its functions. This percolation-based failure rule, though

not suitable for physical systems carrying a flow, can be regarded as a reasonable model for

cyber-networks (e.g., sensor networks) where connectivity to a giant core would be crucial for

a node’s capability to deliver its tasks.

Robustness of networks under the giant-component based failure model has been exten-
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sively analyzed in the case of single networks [5, 64, 65]. The focus has recently been shifted

towards interdependent networks with the work of Buldyrev et al. [9], where robustness of two

interdependent networks, both operating under the giant-component based intra-dependence

rule, was studied. Their model, and most works that follow, are unable to capture the true

nature of a cyber-physical network, where the cyber-network and the physical-network should

obey a different set of rules determining their intra-dependencies.

We define the structure of the network B through its degree distribution, namely the prob-

abilities {dk, k = 0, 1, . . .} that an arbitrary node in B has degree k; clearly, we need to

have
∑∞

k=0 dk = 1. In particular, each node b1, . . . , bN is assigned a degree drawn from

the distribution {dk}∞k=0 independently from any other node. Once the degree sequence,

degree(b1), . . . , degree(bN), of the network is determined, network B is constructed by selecting

uniformly at random a graph among all graphs on N nodes with the given degree sequence;

see [65,123,124] for details of such constructions. This class of networks is known in the liter-

ature as the configuration model or random graphs with arbitrary degree distribution. Degree

distribution is often regarded as the core property defining a graph, and random networks

with arbitrary degree distributions are extensively used as a starting point in the literature on

robustness of complex networks.

Interdependent System Model. For simplicity, the interdependence across the two net-

works is assumed to be one-to-one; i.e., every node in the cyber-network is dependent upon and

supports a single node in the physical network, and vice versa; see Figure 6.2. More precisely,

we assume that for each i = 1, . . . , N , nodes ai and bi are dependent on each other meaning

that if one fails, the other will fail as well. Although simplistic, the one-to-one interdependence

model is considered to be a good starting point and has already provided useful insights in

similar settings [9]; more complicated interdependence models shall be considered in future

work including regular allocation strategy, i.e., each node in A is connected to k nodes in B

and vice versa, or a more general case where some nodes do not have interdependent links and

can function even without any support from the other network.
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With these in mind, we are interested in understanding the dynamics of cascading failures in

this interdependent system, where failures are initiated by removing a (1−p)-fraction of nodes,

selected randomly, from network A . As explained in Figure 6.1, we assume an asynchronous

cascade model, where intra-propagation and inter-propagation of failures are considered in a

sequential manner. At any stage t = 1, 2, . . . of the cascade process, a node ai in network A will

still be functioning if and only if (i) its current flow at time t is less than its capacity; and (ii)

its counterpart bi in network B is still functioning (which is equivalent to bi being contained

in the largest connected subgraph of B). Similarly, a node bj in network B survives cascade

step t if and only if i) it belongs to largest connected component of B at time t; and (ii) its

counterpart aj in network A is still functioning (which is equivalent to aj carrying a flow at

time t that is less than its capacity).

Since the cascade process is monotone, a steady-state will eventually be reached, possibly

after all nodes have failed. Let Nsurviving ⊂ {1, . . . , N} be the set of node id’s that are still

functioning at the steady state. In other words, the surviving interdependent system will

consist of nodes {ai : i ∈ Nsurviving} where each ai has more capacity than its flow and {bi : i ∈

Nsurviving} that constitute a connected subgraph of (the giant component of) network B. The

primary goal of this paper is to derive the mean fraction of nodes that survive the cascades

as a function of the initial attack size 1 − p, in the asymptotic limit of large network size N .

More precisely, we would like to characterize S(p) defined as

S(p) := lim
N→∞

E [|Nsurviving(p)|]
N

Note that this definition of S(p) represents the same quantity as n∞(p) in equation 3.1,

except that here we consider the mean fraction of nodes instead of lines survived at the steady-

state. In what follows, we present our main result that allows computing S(p) under any degree

distribution {dk}∞k=0 of the cyber-network B, any load-(free-space) distribution PLS(x, y) of the

physical network A, and under any attack size 0 ≤ 1 − p ≤ 1. This is followed in Section 6.4

by a numerical study that demonstrates the accuracy of our analysis even with finite N , and
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presents insights on how the robustness of an interdependent cyber-physical system can be

improved by careful allocation of available resources (e.g., node capacities and degrees).

6.3 Main results

Our main result is presented next. The approach is based on recursively deriving the mean

fraction of surviving nodes from both networks at each stage t = 1, 2, . . . of the cascade process.

The cascade process starts at time t = 0 with a random attack that kills 1− p fraction of the

nodes from network A. As mentioned earlier, we assume an asynchronous cascading failure

model where at stages t = 1, 3, . . . we consider the failures in networkA and in stages t = 2, 4, . . .

we consider the failures in network B. In this manner, we keep track of the subset of vertices

A1 ⊃ A3 ⊃ . . . ⊃ A2i+1 and B2 ⊃ B4 ⊃ . . . ⊃ B2i that represent the functioning (i.e.,

surviving) nodes at the corresponding stage of the cascade. We let fAi denote the relative size

of the surviving set of nodes from network A at stage i, i.e.,

fAi =
|Ai|
N

, i = 1, 3, 5, . . .

We define fBi similarly as

fBi =
|Bi|
N

, i = 2, 4, 6, . . .

Our main result, presented next, shows how these quantities can be computed in a recursive

manner.

Theorem 5. Consider an interdependent system as described in Section 6.2, where the load

and free-space values of nodes a1, . . . , aN are drawn independently from the distribution pLS,

and network B is generated according to the configuration model with degree distribution

{dk}∞k=0; i.e., we have P [degree of node bi = k] = dk for each k = 0, 1, . . . and i = 1, . . . , N .

Let mean degree be denoted by 〈d〉, i.e., let 〈d〉 =
∑∞

k=0 kdk. With fB0 = pB0 = p, fA−1 = 1,

and Q−1 = 0, the relative size of the surviving parts of network A and B at each stage of

111



the cascade, initiated by a random attack on 1 − p fraction of the nodes, can be computed

recursively as follows for each i = 0, 1, . . .

pA2i+1
=

fB2i

fA2i−1

(6.2)

Q2i+1 = Q2i−1+min

{
x∈(0,∞] :

P [S > Q2i−1 +x]

P [S > Q2i−1]
(x+Q2i−1+E [L|S >x+Q2i−1])≥ Q2i−1 +E [L|S >Q2i−1]

pA2i+1

}
(6.3)

fA2i+1
= fA2i−1

· pA2i+1
· P [S > Q2i+1 | S > Q2i−1] (6.4)

pB2i+2
= pB2i

fA2i+1

fB2i

(6.5)

u2i+2 = max

{
u ∈ [0, 1] : u = 1−

∞∑
k=0

kdk
〈d〉

(1− u · pB2i+2
)k−1

}
(6.6)

fB2i+2
= pB2i+2

(
1−

∞∑
k=0

dk
(
1− u2i+2 · pB2i+2

)k)
(6.7)

The notation used in Theorem 5 is summarized in Table 6.1. In these iterations, it is

assumed that if at any stage i, it happens to be the case that no x <∞ satisfies the inequality

at (6.3), we set Q2i+1 = ∞. It is then understood that the entire network A (and thus B)

have failed, and we get fA2i+1
= fB2i+2

= 0. Similarly, it can be seen that the equality in (6.6)

always holds with u = 0. Thus, if at any stage i, there is no u > 0 satisfying the equality in

(6.6), we will get u2i+2 = 0 leading to fB2i+2
= 0; i.e., the entire network B (and thus A) will

have collapsed.

Ai set of surviving nodes in network A at stage i = 1, 3, 5, . . .
Bi set of surviving nodes in network B at stage i = 2, 4, 6, . . .
fA2i+1

fraction |A2i+1|/N of surviving nodes in A at stage 2i+ 1
fB2i+2

fraction |B2i+2|/N of surviving nodes in B at stage 2i+ 2
Q2i+1 extra load per surviving node in A at stage 2i+ 1
pA2i+1

prob. of a node in A2i−1 surviving inter-failures at stage 2i
1− pB2i+2

equivalent prob. of random attack to B that gives B2i+2

u2i+2 auxiliary variable used in computing fB2i+2

Table 6.1: Key notation in the analysis of cascading failures
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As mentioned before, our goal is to obtain the final system size, i.e., the relative size of

the surviving nodes at the steady-state. In view of the one-to-one interdependence model, the

surviving size of the networks A and B will be the same at the steady-state. Thus, we conclude

that

S(p) = lim
i→∞

fAi = lim
i→∞

fBi .

Next, we provide an outline of the proof, while the full details are available in Appendix.

In [23], we already analyzed the cascade dynamics and derived the final system size in a single

flow carrying network (similar to network A in our analysis), when 1− p fraction of its nodes

are randomly removed; the result enables computing the final system size in terms of the

initial attack size 1− p, as well as the load and free space distribution PLS(x, y). The results

established in [23] are incorporated in the recursions above through expression (6.3) that allows

us to calculate, in a recursive manner, the extra load that each of the surviving nodes at a

particular stage will be carrying in addition to their initial load.

According to the failure propagation model described at the beginning of this section, at odd

stages failures from network B can propagate to network A, causing a fraction of nodes to be

removed. As explained in details in Appendix, given that the intra-failure dynamics of network

B is completely independent from network A, the impact of the failures in B to network A will

be equivalent to a random attack launched on A. In addition, at each odd stage t = 2i − 1,

i = 1, 2, · · · , we can treat the remaining part of network A as a new physical network A2i−1, with

the appropriately updated size and load-‘free-space’ distribution. Thus, the random removal of

nodes caused by failures in network B (through the one-to-one interdependency links) from last

cascade stage can be viewed as a new random attack to A2i−1 that keeps only pA2i+1
fraction

of its nodes alive. Then following a similar approach, we can compute the size of network

A at the next stage 2i + 1, i.e., fA2i+1
. An important observation is the need to update the

load and free-space distributions for each new network A2i+1 to incorporate the facts that the

surviving nodes in A2i+1 are added with Q2i−1 amount of extra load, and at the same time

the free-space of each surviving node must be at least Q2i−1. We show in the detailed proof
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in Appendix that the changes of the distribution can be represented by the initial load and

free-space distribution with Q2i+1 representing the extra load in each stage. In other words,

each time failures propagate between the two networks, network A will shrink to a group of

nodes that have a higher free space and that are now carrying more load. The fractional size

of this surviving subset of nodes at each time stage can be computed via the equivalent attack

size pA2i+1
(caused by failures in network B propagated via the one-to-one dependent links),

extra load Q2i+1 and the load free-space distribution PLS(x, y); see (6.2)-(6.4).

Following the same approach, in network B we treat each new failure that comes from

network A as a new random attack (or failure) on the existing network B2i+2. For a node

in network B to function, it must belong to the largest connected (i.e., giant) component, so

actually the functioning network B2i+2 at time stage t = 2i + 2, i = 0, 1, 2, · · · is the giant

component after the random attack propagated from network A. A key insight here is that the

sequential process of applying a first random attack on the cyber-network, then computing the

giant component, and then applying a second random attack and then computing the giant

component is equivalent to (in terms of the fractional size of the set of nodes that survives) the

process where the second random attack is applied directly after the first one without computing

the giant component; e.g., see [9]. This way, the result of a series of random attack/giant-

component calculation processes can be emulated by a single random attack/giant-component

calculation, with an appropriately calculated equivalent random attack size. In our calculations,

this equivalent attack size for stage 2i + 2 is represented by 1 − pB2i+2
and can be computed

recursively as given in (6.5). This formula is based on treating all new failures propagated from

network A in the following time stage as the new random attack size launched on B, which

is then used to update the equivalent attack size 1 − pB2i+2
that will be used to emulate the

entire cascade sequence up until that stage. Then, the size of network B2i+2, namely the size of

the giant component after randomly removing (1− pB2i+2
)-fraction of nodes, can be computed

using the technique of generating functions [9, 13, 64–66]. The formulas that give the network

size fB2i+2
at each time stage i = 0, 1, . . . are presented at (6.6) and (6.7).
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Once we know how to compute the surviving network sizes fA2i+1
and fB2i+2

at each stage,

the propagation of failures between the two networks is seen to be governed via (6.2) and

(6.5) that reveal how the key quantities pA2i+1 and pB2i+2
used in computing fA2i+1

and fB2i+2
,

respectively, need to be updated based on the result of the last cascade stage. Collecting,

a thorough analysis that reveals a full understanding of the system behavior and robustness

during the failure process is presented in equations (6.2)-(6.7).

6.4 Numerical results

In this section, we confirm our analytic results through numerical simulations under a wide

range of parameter choices, with a particular focus on checking the accuracy of the results

when the network size N is finite.

For physical networks carrying a certain flow (i.e., network A in our analysis), we con-

sider different combinations of probability distributions for the load and free-space variables.

Throughout, we consider three commonly used families of distributions: i) Uniform, ii) Pareto,

and iii) Weibull. These distributions are chosen here because they cover a wide range of com-

monly used and representative cases. In particular, uniform distribution provides an intuitive

baseline. Distributions belonging to the Pareto family are also known as a power-law distribu-

tions and have been observed in many real-world networks including the Internet, the citation

network, as well as power systems [79]. Weibull distribution is widely used in engineering

problems involving reliability and survival analysis, and contains several classical distributions

as special cases; e.g., Exponential, Rayleigh, and Dirac-delta.

The corresponding probability density functions are defined below for a generic random

variable L.

• Uniform Distribution: L ∼ U(Lmin, Lmax). The density is given by

pL(x) =
1

Lmax − Lmin

· 1 [Lmin ≤ x ≤ Lmax]
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• Pareto Distribution: L ∼ Pareto(Lmin, b). With Lmin > 0 and b > 0, the density is given

by

pL(x) = Lbminbx
−b−11 [x ≥ Lmin] .

To ensure that E [L] = bLmin/(b − 1) is finite, we also enforce b > 1. Distributions

belonging to the Pareto family are also known as a power-law distributions and have

been extensively used in many fields including power systems.

• Weibull Distribution: L ∼ Weibull(Lmin, λ, kw). With λ, kw, Lmin > 0, the density is

given by

pL(x) =
kw
λ

(
x− Lmin

λ

)kw−1

e−(x−Lmin
λ )

kw

1 [x ≥ Lmin] .

The case kw = 1 corresponds to the exponential distribution, and kw = 2 corresponds to

Rayleigh distribution. The mean is given by E [L] = Lmin + λΓ(1 + 1/kw), where Γ(·) is

the gamma-function given by Γ(x) =
∫∞

0
tx−1e−tdt.

As explained in Section 6.2.2, the cyber-network where a node is only functional when it

belongs to the giant component (i.e., network B in our analysis) is generated according to

the configuration model with degree distribution {dk}∞k=0. In the simulations, we consider two

representative cases given below:

• Erdős-Rényi (ER) network model [125–127]. This corresponds to having the degree

distribution dk follow a Binomial distribution, i.e., dk ∼ Binomial(N − 1; 〈d〉
N−1

); as before

〈d〉 gives the mean node degree.

• The scale-free (SF) network model [5]. We consider the case where the degree distribution

{dk}∞k=0 is a power-law with exponential cut-off, which was observed [128] in many real

networks including the Internet; i.e., we have

dk =


0 if k = 0

1
Liγ(e−1/Γ)

k−γe−k/Γ if k = 1, 2, · · · ,
(6.8)
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Figure 6.3: Final system size under different network settings, including different load-free
space distributions in the physical network and different mean degree in the cyber network
modeled by an ER network. Analytic results are represented by lines, whereas simulation
results are represented by symbols (averaged over 100 independent runs). We see that in
each case theoretical results match the simulation results very well. Gray dashed lines show
the robustness behavior of a single cyber-network (i.e., not interdependent with a physical
network) for comparison.

where γ is the power exponent, Γ is the cut-off point, and Lim(z) :=
∑k=∞

k=1 zkk−m is the

normalizing constant.

We remind that although we restrict our attention to these special cases in the simulations,

our analysis applies under more general degree distributions as well.

6.4.1 Fiber network coupled with ER network

The Erdős-Rényi graph is one of the most basic and widely used network models and often

serve as a starting point in simulations. In our study, we start with N nodes, and connect

each pair of vertices with an edge with probability 〈d〉/(N −1) independently from each other.

When N is large, this is equivalent to generating the network via the configuration model using

a Poisson degree distribution with mean 〈d〉.

First, we confirm our main result presented in Sec. 6.3 concerning the final system size

S(p), i.e., the mean fraction of surviving nodes at the end of cascading failures initiated by
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a random attack that removes 1 − p fraction of nodes in network A. In all simulations, we

fix the number of nodes in both networks at N = 105, and for each set of parameters being

considered (i.e., the distribution pLS(x, y), the attack size 1 − p in network A, and the mean

degree 〈d〉 in network B), we run 100 independent experiments. The results are shown in

Figure 6.3 where symbols represent the empirical value of the final system size S(p) (obtained

by averaging over 100 independent runs for each data point), and lines represent the analytic

results computed via (6.2)–(6.7). We see that theoretical results match the simulations very

well in all cases1. This suggests that although asymptotic in nature, our main result can still

be helpful when the network size N is finite. The specific distributions used in Figure 6.3 are

as follows: From left to right, we have i) in network A (the physical network), L is Weibull with

Lmin = 10, λ = 100, kw = 0.6 and S = αL with α = 3.74; in network B (the cyber network)

the mean degree 〈d〉 = 5.5; ii) in network A, L is Weibull with Lmin = 10, λ = 100, kw = 0.6

and S is Uniform over [60, 80]; in network B 〈d〉 = 4; iii) L is Uniform over [10, 30] and and

S = αL with α = 2.74; in network B 〈d〉 = 3.5; iv) L is Uniform over [10, 30] and S is Uniform

over [40, 50]; 〈d〉 = 4; v) L is Pareto with Lmin = 10, b = 2, S = αL with α = 2.3; 〈d〉 = 4.5;

vi) L is Pareto with Lmin = 10, b = 2, S = αL with α = 2.3; 〈d〉 = 3.

In Figure 6.3, gray dashed lines correspond to the case where a single cyber network (with

the same parameters used in Figure 6.3) is attacked. We see that interdependent systems can

be significantly more vulnerable to attacks as compared to single networks. An interesting

observation is that despite their vulnerability at large attack sizes, the robustness of inter-

dependent systems (quantified by the final system size S(p)) overlaps with the single cyber

network case up until the attack size exceeds a certain level. This indicates the possibility of

designing an interdependent system with the same level of robustness as a single network as

long as attacks or failures that exceed a certain size are ruled out.

The plots in Figure 6.3 show how different load-free space distributions in network A as well

1We remark that when loads follow a Uniform distribution, it is sufficient to have a few thousand nodes
in the network in order to observe the match between simulations and analytic results (which are asymptotic
in nature). However, larger networks with around hundred thousand nodes are needed when highly-variable
distributions such as Pareto are used to generate the load values.
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as the mean degree in network B affect the system behavior. For example, with the mean degree

of network B is fixed to 〈d〉 = 4, the two different cases considered in Figure 6.3, one where

the initial loads in network A follow a Weibull distribution (magenta asterisk) and the other

where the initial loads follow a Uniform distribution (purple triangle) lead to vastly different

system behavior against attacks. When load in network A follows Weibull distribution, the

final system size drops to zero at a point where the attack size is around 0.23, meaning that any

random attack that kills more than 23% of the nodes will destroy the entire system. On the

other hand, if the load and free space follows Uniform distribution, the system is quite robust

and can sustain initial attack sizes up to 0.55 without collapsing. Similarly, when we fix the

distribution in network A, we can see the effect of mean degree in the cyber network on system

robustness: when initial load in physical network follows Pareto(10, 2) distribution, and free

space is given by S = αL with α = 2.3, we see that increasing mean degree of network B from

〈d〉 = 3 (green cross) to 〈d〉 = 4.5 (light blue triangle) leads to a substantial increase on the

final system size at all attack sizes; i.e., the interdependent CPS becomes more robust. This is

intuitive since higher 〈d〉 values lead to a cyber-network B with higher levels of connectivity

enabling the entire CPS to sustain larger attacks while maintaining a larger fraction of nodes

in its giant component.

An interesting observation from Figure 6.3 is that in all cases, the final drop of the system

size to zero takes place through a first-order (i.e., discontinuous) transition2, making it diffi-

cult to predict system behavior from previous data (in response to attacks with larger than

previously observed size). In fact, this abrupt failure behavior is reminiscent of the real-world

phenomena of unexpected large-scale system collapses; i.e., cases where seemingly identical

attacks/failures leading to entirely different consequences. We also see that our model can lead

to a rich set of behaviors to increasing attack sizes. For instance, when the initial load follows

a Weibull distribution, depending on the parameters, it is possible to observe an abrupt first-

2The nomenclature concerning the order of transitions is adopted from the studies on phase transition in
Physics; simply put, first (resp. second) order transitions are associated with discontinuous (resp. continuous)
variations.
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Figure 6.4: Final system size under equal free space (solid lines with symbols) or equal tolerance
factor (dashed lines with symbols) when network B is a ER graph with fixed mean degree. The
symbols are empirical results over 100 independent runs on network size N = 105, and lines
(dashed or solid) represent analytic results. We can see in all cases equal free space greatly
improves system robustness by allowing the system to sustain a larger initial attack size and
still not collapsing.

order transition with no prior indication of system collapse at smaller attack sizes (magenta

asterisk), as well as a first-then-second order transition (orange triangle) before the system size

drops to zero through a final first-order transition. These behaviors are due to the intrinsic

characters of different distributions, and should be considered in designing CPS where the

physical network may be governed by different flow distribution types.

From a design perspective, it is of interest to understand how the robustness of the in-

terdependent system can be improved or even maximized under certain constrains. To gain

insights on this, we fix the mean degree in network B (the cyber network), and explore the

effect of the allocation (i.e., distribution) of node capacities in the physical network. A key

determining factor of system robustness is expected to be the free-space distribution as it spec-

ifies the extra load a node can receive from the failed ones before it fails due to overloading.

The vast majority of the literature and most real world applications employ a linear free-space

allocation scheme where the free-space assigned to a node is set to be a fixed proportion of its

initial load. In other words, it is assumed that S = αL, where α is the tolerance factor and is

usually a fixed value [59,77,84,85] used for the entire network. We already showed in [23] that
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Figure 6.5: Final system size under different network settings, including different load-free space
distributions in the physical network and different exponent in the scale-free cyber network.
Analytic results are represented by lines, whereas simulation results are represented by symbols
(averaged over 100 independent runs). The gray dashed line represents the case when a single
cyber network is attacked. In all cases, theoretical results match the simulation results well.

in a single flow-carrying network, allocating every node exactly the same free-space leads to a

higher robustness (at any attack size 1− p) than the commonly used setting of equal tolerance

factor (with the comparison made when the total free-space in the entire network is fixed).

In fact, in the single network case, the robustness is shown to be maximized when all nodes

receive the same free space.

Our numerical simulations, presented in Figure 6.4, shows that the above conclusion still

applies in interdependent networks. Namely, assigning every node the same free space provides

a much better overall system robustness as compared to the widely used setting of equal

tolerance factor (i.e., linear free-space allocation). To provide an overall evaluation of the

system robustness, we define the critical attack size 1 − p? as the minimum attack size that

breaks down the whole system. Thus, the larger 1− p? is, the more robust will the system be

since it can sustain larger attacks. In Figure 6.4, the comparison between the equal free-space

and equal tolerance factor allocations are made with the mean free space E[S] being fixed

(i.e., the total free space in the network is constrained). We see that compared to the equal

tolerance factor scheme, the equal free-space allocation enables the system to sustain much
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larger attacks. In fact, in the case of Weibull distribution, the robustness is almost 2.5 times

higher in the case of equal free space as compared to the case with equal tolerance factor; i.e.,

1− p? = 0.7 vs. 1− p? = 0.28.

6.4.2 Flow-carrying network coupled with SF network

Although the ER graph constitutes a simple and useful network model, networks in most real-

world applications might have significantly different structure and robustness behavior against

attacks. For instance, scale-free networks (SF model) were shown [129] to exhibit fundamentally

different robustness behavior with ER networks; the former is very robust against random

attacks but fragile against targeted attacks, while the situation is exactly the opposite for the

latter. In order to better understand the impact of the topology of the cyber-network on the

overall robustness of an interdependent CPS, we consider in this section the case where the

cyber network (network B) has a power-law degree distribution with exponential cutoff. In

addition to being observed in many real-world networks including the Internet [128], power-

law distributions with exponential cut-off also ensure that all moments of the node degree are

finite, which helps certain convergences take place faster (i.e., with smaller N).

In Figure 6.5, we verify our analytic results when network B (cyber network) has a degree

distribution in the form of a power-law with exponential cut-off; this is denoted by SF (γ,Γ),

where γ is the power exponent and Γ is the cut-off parameter given at (6.8). In all cases,

we fix the number of nodes in both networks to be N = 106, and consider several different

load-‘free space’ distributions in network A and different (γ,Γ) values for network B (while

noting that in real-world networks, it is often observed that 2 < γ < 3). The simulation results

are obtained by averaging over 100 independent experiments for each data point and it is seen

that they are in very good agreement with the analytic results.

Next, we seek to obtain an overall understanding of how the free-space allocation in the

physical network together with the topology of the cyber network (ER vs. SF model) affect

the system robustness. With the discussion from Section 6.4.1 in mind, we consider the widely
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Figure 6.6: Comparison of final system size when equal tolerance factor (equal α) and equal
free space (equal S) schemes are used. The mean value of free space is kept the same, as well
as the mean degree in SF and ER networks. In all cases, equal S outperform the widely used
equal α scheme. The effect of topology in the cyber network is not unitary: in some cases
ER leads to better robustness, while in other cases SF is better, contradicting the results [5]
concerning the robustness of single networks. To compare with the case where a single cyber
network is randomly attacked, gray dashed lines show the final system size S(p) of a single ER
and SF network (with the same parameters as above).
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used equal tolerance factor allocation (equal α), where the free-space S is a fixed factor α of

the load on a node (i.e., S = α ∗ L) and the equal free-space allocation scheme (equal S) that

was shown [23] to be optimal in a single physical network. For fairness, all comparisons are

made under the same initial load distribution, and with the mean free-space in network A and

the mean node degree in network B being fixed.

The results are shown in Figure 6.6. We can see that no matter how the initial load is

distributed, i.e., whether it’s Uniform, Pareto or Weibull, and despite of the structure of the

cyber network being SF network or ER network, equal free-space allocation can greatly improve

system robustness as compared to the equal tolerance factor allocation. We observe that when

all nodes in network A are given the same free-space, the overall interdependent CPS can

sustain a much larger initial attack size without collapsing; i.e., it has a much larger critical

attack size. For example in the case of Weibull distributed load with SF network, the system

can only take around 16.8% of initial attack size when using equal α, but can sustain a initial

attack that removes 58% of the nodes when equal S is used, making the system about 3 times

more robust in terms of the critical attack size.

We also see in Figure 6.6 that the topology of the cyber network affects the robustness of the

interdependent CPS in an intricate way, with some cases showing the exact opposite of what

would have been expected from the results on single networks. In particular, SF networks

are known [5] to be more robust than ER networks against random attacks. This is often

attributed to the fact that SF networks typically have a few nodes with very high degrees and

the network will likely contain a large connected component unless these high-degree nodes

are removed (which is unlikely to happen if the attack is random); this dependence on a few

nodes is exactly what makes SF networks very fragile against a targeted attack. In the case of

the interdependent CPS model, we see that the comparison of the overall robustness between

the cases where they cyber network is SF or ER is a much more complicated matter. In fact,

depending on the load-‘free-space’ distribution in the physical network, the cyber network

being SF does not always lead to a better robustness than the case with ER. For example, in
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the upper two plots in Figure 6.6 where the initial load is Uniform and Pareto, respectively, the

cases with the ER network leads to a better robustness than that with SF. In the bottom left

picture where the initial load in the physical networks is Weibull, the situation is even more

intricate. With equal α, the case where the cyber-network is ER leads to a better robustness,

while SF network performs better (in terms of the critical attack size) under the equal-S

allocation. This shows that an integrated CPS can not be designed in the most robust way by

considering the physical and cyber counterparts separately. Instead, a holistic design approach

is needed where the robustness of the CPS as a whole is considered.

An intuitive explanation for these findings can be obtained from the comparison of the

robustness of a single SF network and an ER network, which is shown in gray dashed lines

in Figure 6.6. From this, we see that the SF network is more robust than the ER network

only in the sense that its “critical” attack size, after which the final system size is zero, is

larger than that of the ER network. However, for any attack size smaller than a certain point

(around 1− p = 0.5), the ER network has a larger final system size than the SF network. This

can be the underlying reason for seeing different comparisons with regard to the robustness of

interdependent CPSs. If the physical network that the cyber-network is interdependent with

has a small critical attack size (i.e., it is fragile), then the interdependent CPS will be more

robust when the cyber network is ER as compared to case when it is SF. However, if a robust

physical network with large critical attack size is made inter-dependent with a cyber network,

then the CPS is more robust when the cyber-network is SF.

6.5 Simulation results under global-local combined flow

redistribution model

In this section, we check via simulations the robustness of an interdependent CPS where the

physical network has a given topology and redistribution of flow (from failed nodes) is done,

at least in part, according to this topology. To this end, we consider global-local combined
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redistribution model [120], where µ fraction of load will go to the neighbors of a failed node,

and 1−µ fraction of load will go to all remaining nodes in the network. The intra-dependency

in the cyber network and the inter-dependence model between the two networks remain the

same. With this approach, we recover the model analyzed in our paper when µ = 0, while

setting µ = 1 leads to a fully topology-based redistribution model in the physical network.

In Figure 6.7, we present simulation results showing the robustness of an interdependent

CPS under different µ values. For simplicity, we assume the load-carrying physical network

has an underlying topology characterized by an ER graph with mean degree 〈d〉 = 2.5388.

The network size is taken to be N = 105 and the coupled cyber network is also taken to be an

ER graph with the same parameters (though it is generated independently from the physical

network). The load carried by each node in the physical network follows uniform distribution

U(10, 30), and free space follows either equal-α (α = 2.74) or equal-S (S = 54.8) allocations.

We see from Figure 6.7 that as µ changes from 0 to 1, i.e., when the physical network

gradually changes from a fully global redistribution model (µ = 0) to a fully local redistribution

model (µ = 1), the robustness of the whole system decreases. However, the qualitative behavior

of the robustness remains unchanged under different µ values. In particular, in all cases we

observe a first-order (i.e., discontinuous) transition at the critical attack size when final system

size S(p) drops to zero. Furthermore, we see that in all cases the equal-S allocation of capacities

outperforms (in terms of robustness) the commonly used equal-α allocation. Concluding, these

simulation results suggest that the mean-field approach used in our analysis (i.e., the case with

µ = 0) is able to capture well the qualitative behavior of final system size for all µ values.

We should note that when µ = 1, i.e. a fully local redistribution model is deployed, the

difference between the equal S and equal α allocation scheme is greater when the load and

free space distribution has larger variance. This is illustrated further in Figure 6.8, where the

cyber network is kept the same with Figure 6.7, but the variance of load distribution is greater

with L U [5, 75].
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Figure 6.7: Physical network adopts the global-local redistribution rule under ER topology,
with µ denoting the fraction of flow redistributed locally. The gray dashed line represents the
case when a single ER graph is randomly attacked. In all cases, we see that equal-S allocation
outperforms the equal-α allocation, meaning that the qualitative behavior of the robustness
remains unchanged under different µ values.
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Figure 6.8: Physical network adopts the global-local redistribution rule under ER topology,
with µ denoting the fraction of flow redistributed locally. In the case when µ = 1, a fully local
distribution is deployed, the difference between equal S and equal α is larger when the variance
of the load distribution is greater.

6.6 Chapter summary

In this chapter, we studied the robustness of an interdependent system against cascading

failures initiated by a random attack. This is done through a novel model where the constituent

networks exhibit inherently different intra-dependency characteristics. In particular, inspired

by many applications of interdependent cyber-physical systems (CPSs), our model consists of

a flow network where failure of a node leads to flow redistribution and possible further failures

due to overloading (i.e., the flow on a node exceeding its capacity), and a cyber-network where

nodes need to be a part of the largest connected cluster to be functional. We derive relations

for the dynamics of cascading failures, characterizing the mean fraction of surviving nodes

from each network at every stage of the cascade. This leads to deriving the mean fraction

of nodes that ultimately survive the cascade as a function of the initial attack size. Through

simulations, we confirm our analysis and derive useful insights concerning the robustness of

interdependent CPSs.
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Part IV

Concluding Remarks and Future Work
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Chapter 7

Concluding Remarks

This thesis studied the robustness of interdependent networks against cascading failures. As

the critical infrastructures such as power systems or water distribution systems are becoming

more interdependent, the threat of cascading failures that can lead to catastrophic system-wide

damages raises great concern. Through carefully characterizing and modeling the inherent de-

pendencies between and within different component networks, we provide a thorough analysis

in understanding and mitigating the seemingly unexpected large-scale cascading failures. A

main finding is that allocating the available redundancies uniformly across the system maxi-

mizes the robustness against random failures.

In particular, we considered the robustness of flow-carrying networks under random and

targeted attacks, where we propose a global and equal flow redistribution model to capture the

cascading failure dynamics. In the case of random attacks, we derive the final system size and

critical attack size, and prove that the optimal robustness is reached when system redundancy

is allocated uniformly. For targeted attacks, we propose the optimization problem of finding

the best k lines to attack so as to minimize the number of alive lines at the steady-state, to

reveal the worst-case attack vulnerability of the system. We also derive heuristic algorithms

for the optimization problems proposed.

Besides flow-carrying networks, we consider interdependent networks composed of similar of

inherently different component networks. For the first case, we consider an interdependent flow-

carrying networks under random attacks. In interdependent flow-carrying networks, we study a

model where the flow of a failed line is redistributed partially within the network that the failed
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line belongs to, with the rest being shed to other coupled networks. Analyzing the cascading

failures in this model, we show that interdependence has a multi-faceted impact on system

robustness in that as the level of coupling increases, the chance for both networks to survive or

collapse concurrently increases, whereas it becomes more difficult for each component network

to survive on its own. The integrated cyber-physical systems (CPSs) is a typical example

of interdependent networks composed of inherently different component networks (i.e., cyber

networks and physical networks).To understand the robustness of the CPSs, we develop a novel

interdependent system model to capture the inherently different failure cascade characteristics

of each component network; i.e., the cyber and the physical networks are governed by different

cascade rules to be able to function. We demonstrate the ability of our model to capture the

unexpected nature of large-scale cascading failures in CPSs, and provide insights on improving

system robustness by proposing optimal redundancy allocation schemes.
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Chapter 8

Future Work

There are many open directions for future work. First of all, for flow-carrying networks, it

would be interesting to analyze more complicated flow redistribution models based on network

topology, rather than the equal redistribution model considered in most part of the thesis; e.g.,

the global-local redistribution model discussed in Section 6.5 with some preliminary simulation

results. For targeted attacks considered in a flow-carrying network, one can further explore

the complexity of the optimal k-attack problem (without a bound on the total load) since it’s

unknown. Also, with the results of Chapter 4 revealing good attack strategies, one might now

seek optimal design strategies (e.g., in the form of load-capacity distributions) that lead to

maximum robustness against such attacks. It might also be interesting to study information

cascades in social networks [130–133] using the models considered here; the optimal attack

problem studied here will then amount to influence maximization problem [134].

For interdependent networks, the simplistic one-to-one interdependence model used to build

the interdependent relations can be replaced by more sophisticated and realistic dependency

models. A good starting point would be to consider a model where every node is assigned

m inter-links and can continue to function as long as at least one of its m support nodes in

the other network is functional. It would be interesting to study the trade-off between the

number of inter-links and the resulting improvements in overall system robustness; one might

also consider a heterogeneous allocation of inter-links and study the optimal (in the sense of

maximizing robustness) way to assign inter-links subject to certain constraints [22]. One can

also extends our results to cases where the cyber-network is generated by richer models than
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the configuration model. A good candidate would be random networks with clustering [135]

that go beyond the degree distribution and specify also the number of triangles each node

belongs to. Finally, it would be interesting to study the interdependent system robustness

under targeted attacks [136] (where the set of nodes to be attacked is chosen carefully by an

adversary) besides the case of random attacks considered in this thesis.

For the main finding in this thesis, which states that allocating the available redundancies

uniformly across the system maximizes the robustness against random failures, one can further

apply in real world system or platforms and evaluate effectiveness of the results on a more

realistic setting. A possible case is the power grid, where one can test the result on a simulation

platform for power grid analysis. A new and efficient platform is the SUGAR system [137–139],

which is an equivalent split circuit formulation for power grid analysis. The system enables

adaptation and application of techniques that were developed for circuit simulation to robustly

analyze power grids, and unifies steady state, dynamics and transient analyses. Also, it assesses

feasibility and solution of optimal power flow conditions in the simulation. The SUGAR system

is specially powerful in analyzing cascading failures in power grid, in that the circuit-theoretic

approach incorporates frequency deviations and implicit models for under-frequency/under-

voltage load shedding, and it enables contingency analysis to calculate violations during the

failure process. We tested the equal free-space allocation in some of the simple test cases, and

in many cases it gives a better robustness when we adjust the line rating according to equal

free-space allocation. More sophisticated experiments can be carried out in the platform with

the uniform assign of system resource if one would continue this direction in the future. Besides

adjusting line rating using equal free-space schemes, there are also many dynamic line rating

schemes that one can explore in the future.
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[32] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks.

Reviews of modern physics, 74(1):47, 2002.
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of complex networks. Nature, 406(6794):378–382, 2000.

[50] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Network robust-

ness and fragility: Percolation on random graphs,” network robustness and fragility:

Percolation on random graphs. Phys. Rev. Lett., 85(25):5468–5471, 2000.

[51] Reuven Cohen. Resilience of the internet to random breakdowns. Phys. Rev. Lett.,

85(21):4626–4628, 2000.

[52] Adilson E Motter, Takashi Nishikawa, and Ying-Cheng Lai. Range-based attack on links

in scale-free networks: Are long-range links responsible for the small-world phenomenon?

Physical Review E, 66(6):065103, 2002.

[53] Paolo Crucitti, Vito Latora, Massimo Marchiori, and Andrea Rapisarda. Efficiency of

scale-free networks: error and attack tolerance. Physica A: Statistical Mechanics and its

Applications, 320:622–642, 2003.
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[55] Yamir Moreno, JB Gómez, and AF Pacheco. Instability of scale-free networks under

node-breaking avalanches. EPL (Europhysics Letters), 58(4):630, 2002.

[56] Petter Holme and Beom Jun Kim. Vertex overload breakdown in evolving networks.

Physical Review E, 65(6):066109, 2002.

[57] Adilson E Motter and Ying-Cheng Lai. Cascade-based attacks on complex networks.

Physical Review E, 66(6):065102, 2002.

139



[58] Paolo Crucitti, Vito Latora, and Massimo Marchiori. A topological analysis of the italian

electric power grid. Physica A: Statistical mechanics and its applications, 338(1-2):92–97,

2004.

[59] Adilson E. Motter and Ying-Cheng Lai. Cascade-based attacks on complex networks.

Phys. Rev. E, 66:065102, Dec 2002.

[60] Liang Huang, Lei Yang, and Kongqing Yang. Geographical effects on cascading break-

downs of scale-free networks. Physical Review E, 73(3):036102, 2006.

[61] Jan Øystein Haavig Bakke, Alex Hansen, and János Kertész. Failures and avalanches in

complex networks. EPL (Europhysics Letters), 76(4):717, 2006.

[62] Luca Dall?Asta, Alain Barrat, Marc Barthélemy, and Alessandro Vespignani. Vulnera-
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Herrmann. Towards designing robust coupled networks. Scientific reports, 3:1969, 2013.

140



[68] Xuqing Huang, Jianxi Gao, Sergey V Buldyrev, Shlomo Havlin, and H Eugene Stan-

ley. Robustness of interdependent networks under targeted attack. Physical Review E,

83(6):065101, 2011.
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systems: optimal load-capacity distributions and hardness of attacking. In Information

Theory and Applications Workshop (ITA), 2016.

[92] Shizuo Senju and Yoshiaki Toyoda. An approach to linear programming with 0-1 vari-

ables. Management Science, pages B196–B207, 1968.

[93] Yoshiaki Toyoda. A simplified algorithm for obtaining approximate solutions to zero-one

programming problems. Management Science, 21(12):1417–1427, 1975.

[94] Wei Li, Amir Bashan, Sergey V Buldyrev, H Eugene Stanley, and Shlomo Havlin. Cas-

cading failures in interdependent lattice networks: The critical role of the length of

dependency links. Physical review letters, 108(22):228702, 2012.

143



[95] Jianxi Gao, Sergey V Buldyrev, Shlomo Havlin, and H Eugene Stanley. Robustness of a

network of networks. Physical Review Letters, 107(19):195701, 2011.

[96] Steven M Rinaldi. Modeling and simulating critical infrastructures and their interdepen-

dencies. In System sciences, 2004. Proceedings of the 37th annual Hawaii international

conference on, pages 8–pp. IEEE, 2004.

[97] Ginestra Bianconi and Sergey N. Dorogovtsev. Multiple percolation transitions in a

configuration model of a network of networks. Phys. Rev. E, 89:062814, Jun 2014.
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