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Abstract
Language comprehension is a crucial human ability, but many questions remain

unanswered about the processing of sentences. Specifically, how can sentences that
are structured differently, e.g. “The woman helped the man.” and “The man was
helped by the woman.” map to the same proposition? High temporal resolution neu-
roimaging, coupled with machine learning can potentially provide answers. Using
magnetoencephalography (MEG) we can measure the activity of many neurons at a
rate of 1kHz while humans read sentences. With machine learning, we can decode
sentence attributes from the neural activity and gain insight into the inner computa-
tions of the brain during sentence comprehension.

We collected data from subjects reading active and passive voice sentences in
two experiments: a pilot and a confirmation set The pilot set constituted a testbed
for optimizing the application of machine learning to MEG data, and was used for
exploratory analysis to generate data-driven hypotheses. The confirmation set al-
lowed for confirmation of these hypotheses via replication.

Through exploration of the pilot data set, we are able to make several concrete
recommendations on the optimal application of machine learning to MEG data.
Specifically, we demonstrate that by combining data from multiple human subjects
as additional features, classifier performance is significantly improved, even without
additional data samples. Furthermore we show that while test set signal-to-noise ra-
tio (SNR) is critical for classifier performance, training set SNR has limited impact
on performance. We achieve near-perfect classification accuracy on a wide range of
decoding tasks from neural activity. We also explored a non-machine learning tech-
nique, representational similarity analysis (RSA) that is quite popular for analyzing
neuroimaging data, and show that by combining data across subjects we can again
greatly improve performance.

We examine how sentence processing differs between active and passive sen-
tences by showing the information flow over time during the reading of each type of
sentence. We additionally explore post-sentence wrap-up activity that carries infor-
mation about syntax and integrated semantics of the sentence being read. We com-
pare the ability of models that separate syntax, semantics, and integration to explain
neural activity during the post-sentence time period. Our results provide converging
evidence that after a sentence is read, its syntactic structure is processed, followed by
a semantic integration of sentence meaning. These results refine previous theories
of sentence processing as a purely incremental process by revealing the existence of
a post-sentence wrap-up period.
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decoding the second noun from active voice sentences. Classification task was
to detect the identity of the second noun of the sentence, training and testing only
on active voice sentences. D. TGM for decoding the first noun from passive
voice sentences. Classification task was to detect the identity of the first noun
of the sentence, training and testing only on passive voice sentences. E. TGM
for decoding the verb from passive voice sentences. Classification task was
to detect the identity of the verb of the sentence, training and testing only on
passive voice sentences. F. TGM for decoding the second noun from passive
voice sentences. Classification task was to detect the identity of the second noun
of the sentence, training and testing only on passive voice sentences. . . . . . . . 50
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sentences separately, using the mean sensor activation over a 100ms window con-
catenated across subjects as the feature vector. Cross-validation was leave-one-
sentence out. A. Information flow during active voice sentence reading. Ac-
curacy for decoding each of the constituent words from active sentences. B. In-
formation flow during passive voice sentence reading. Accuracy for decoding
each of the constituent words from passive sentences. . . . . . . . . . . . . . . . 51
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5.3 Helmet plots for each during-sentence classification task at 0.15s post word
onset. Each plot shows the resulting importance map from training a classifier
0.15s post onset of the word of interest. Importance maps were computed from
the classifier weights on the concatenation of all subjects’ mean sensor activity
from 0.15 to 0.25 s post onset as described in [2]. Maps were then averaged over
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first noun of the sentence, training and testing only on active voice sentences.
B. Importance map for decoding verb from active sentences. Classification
task was to detect the identity of the verb of the sentence, training and testing
only on active voice sentences. C. Importance map for decoding second noun
from active sentences. Classification task was to detect the identity of the sec-
ond noun of the sentence, training and testing only on active voice sentences.
D. Importance map for decoding first noun from passive sentences. Classifi-
cation task was to detect the identity of the first noun of the sentence, training and
testing only on passive voice sentences. E. Importance map for decoding verb
from passive sentences. Classification task was to detect the identity of the verb
of the sentence, training and testing only on passive voice sentences. F. Impor-
tance map for decoding second noun from passive sentences. Classification
task was to detect the identity of the second noun of the sentence, training and
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5.5 Decodability of determiners over time. F1 score when decoding three tasks:
‘a’ vs ‘the’, ‘a’ vs ‘dog’ and ‘the’ vs ‘dog’ over word presentation time. F1
score was used instead of classification accuracy because there are many more
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6.1 Model RDMs. Model Representational Dissimilarity Matrices (RDMs) for ex-
ploratory RSA analysis. Each element of an RDM is the distance between a
pair of stimuli according to a theoretical model. The rows are ordered active
sentences first, followed by passive sentences. Sentence length alternates ev-
ery four rows. A. Syntax RDM. Each entry is determined by the voice and the
length of the given sentence pair. A different in voice is assigned a distance
of 1, while a difference in length is assigned a distance of 0.5 if the voices are
the same. B. Bag of Words RDM. Each sentence is represented by the average
of the GloVe vectors for the constituent words. The entries of this RDM are
the euclidean distances between these sentence representations. C. Hierarchical
RDM. Each entry is the average of the pairwise distances between the GloVe
vectors for the agent, patient, and verb. For short sentences, the missing noun
(agent or patient) is represented by the average over the nouns in the experiment . 63

6.2 Rank accuracy TGMs for each during-sentence classification task. Each plot
shows all pairs of training and testing timepoints over sentence presentation. The
y axis indicates training time, and the x axis indicates test time, with sentence on-
set starting in the upper left corner. White vertical lines indicate word onsets and
final sentence offset. Chance rank accuracy is 0.5, with a maximum value of
1.0. Classification was performed on either the set of active or passive sentences
separately, using the mean sensor activation over a 100ms window concatenated
across subjects as the feature vector. Cross-validation was leave-one-sentence
out. A. TGM for decoding the first noun from active-voice sentences. Classi-
fication task was to detect the identity of the first noun of the sentence, training
and testing only on active-voice sentences. B. TGM for decoding the verb from
active-voice sentences. Classification task was to detect the identity of the verb
of the sentence, training and testing only on active-voice sentences. C. TGM
for decoding the second noun from active-voice sentences. Classification task
was to detect the identity of the second noun of the sentence, training and testing
only on long active-voice sentences. D. TGM for decoding the first noun from
passive-voice sentences. Classification task was to detect the identity of the
first noun of the sentence, training and testing only on passive-voice sentences.
E. TGM for decoding the verb from passive-voice sentences. Classification
task was to detect the identity of the verb of the sentence, training and testing
only on passive-voice sentences. F. TGM for decoding the second noun from
passive-voice sentences. Classification task was to detect the identity of the sec-
ond noun of the sentence, training and testing only on long passive-voice sentences. 69
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6.3 Rank accuracy over time during sentence reading. Each plot shows rank ac-
curacy over time for each word in the sentence. Black vertical lines indicate word
onsets and final sentence offset. Chance rank accuracy is 0.5, with a maximum
value of 1.0. Classification was performed on either the set of active or passive
sentences separately, using the mean sensor activation over a 100ms window con-
catenated across subjects as the feature vector. Cross-validation was leave-one-
sentence out. A. Information flow during active-voice sentence reading. Ac-
curacy for decoding each of the constituent words from active sentences. B. In-
formation flow during passive-voice sentence reading. Accuracy for decoding
each of the constituent words from passive sentences. . . . . . . . . . . . . . . . 70

6.4 Helmet plots for each during-sentence classification task at 0.15s post word
onset. Each plot shows the resulting importance map from training a classifier
0.15s post onset of the word of interest. Importance maps were computed from
the classifier weights on the concatenation of all subjects’ mean sensor activity
from 0.15 to 0.25 s post onset as described in [2]. Maps were then averaged over
subjects. Importance values for a single gradiometer are shown. Titles give the
rank accuracy at the time examined. A. Importance map for decoding first
noun from active sentences. Classification task was to detect the identity of the
first noun of the sentence, training and testing only on active-voice sentences.
B. Importance map for decoding verb from active sentences. Classification
task was to detect the identity of the verb of the sentence, training and test-
ing only on active-voice sentences. C. Importance map for decoding second
noun from active sentences. Classification task was to detect the identity of the
second noun of the sentence, training and testing only on long active-voice sen-
tences. D. Importance map for decoding first noun from passive sentences.
Classification task was to detect the identity of the first noun of the sentence,
training and testing only on passive-voice sentences. E. Importance map for
decoding verb from passive sentences. Classification task was to detect the
identity of the verb of the sentence, training and testing only on passive-voice
sentences. F. Importance map for decoding second noun from passive sen-
tences. Classification task was to detect the identity of the second noun of the
sentence, training and testing only on long passive-voice sentences. . . . . . . . . 71

xvii



6.5 Helmet plots for each during-sentence classification task at 0.3s post word
onset. Each plot shows the resulting importance map from training a classifier
0.3s post onset of the word of interest. Importance maps were computed from the
classifier weights on the concatenation of all subjects’ mean sensor activity from
0.3 to 0.4 s post onset as described in [2]. Maps were then averaged over sub-
jects. Importance values for a single gradiometer are shown. Titles give the rank
accuracy at the time examined. A. Importance map for decoding first noun
from active sentences. Classification task was to detect the identity of the first
noun of the sentence, training and testing only on active-voice sentences. B. Im-
portance map for decoding verb from active sentences. Classification task
was to detect the identity of the verb of the sentence, training and testing only on
active-voice sentences. C. Importance map for decoding second noun from
active sentences. Classification task was to detect the identity of the second
noun of the sentence, training and testing only on long active-voice sentences.
D. Importance map for decoding first noun from passive sentences. Classifi-
cation task was to detect the identity of the first noun of the sentence, training and
testing only on passive-voice sentences. E. Importance map for decoding verb
from passive sentences. Classification task was to detect the identity of the verb
of the sentence, training and testing only on passive-voice sentences. F. Impor-
tance map for decoding second noun from passive sentences. Classification
task was to detect the identity of the second noun of the sentence, training and
testing only on long passive-voice sentences. . . . . . . . . . . . . . . . . . . . . 72

6.6 Information flow post-sentence. Each plot shows rank accuracy over time for
each post-sentence classification task. Chance rank accuracy is 0.5, with a max-
imum value of 1.0. Classification was performed on either the set of active and
passive sentences separately as well as the pool of all sentences, using the mean
sensor activation over a 100ms window concatenated across subjects as the fea-
ture vector. Cross-validation was leave-one-sentence out. The black vertical line
indicates the offset of the last word (the end of the sentence). A. Decoding ac-
curacy post active-sentences. Classification accuracy of agent, verb and patient
training and testing on long active sentences only. B. Decoding accuracy post
passive-sentences. Classification accuracy of agent, verb and patient training
and testing on long passive sentences only. C. Decoding accuracy post all sen-
tences. Classification accuracy of sentence length, agent, verb, patient, voice,
first noun, and proposition, training and testing on the pool of all sentences.
Agent, patient and proposition decoding tasks were conducted only on the set of
long sentences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xviii



6.7 Rank accuracy TGMs for each post-sentence classification task. Each plot
shows all pairs of training and testing timepoints over sentence presentation.
The y axis indicates training time, and the x axis indicates test time, with sen-
tence onset starting in the upper left corner. Chance rank accuracy is 0.5, with a
maximum value of 1.0. Classification was performed on the pool of both active
and passive sentences, using the mean sensor activation over a 100ms window
concatenated across subjects as the feature vector. Cross-validation was leave-
one-sentence out.The white line indicates the offset of the second noun (the end
of the sentence). A. TGM for decoding the agent of the sentence. Classifica-
tion task was to detect the identity of the agent from the pool of long sentences.
In active sentences, this is the first noun, and in passive sentences it is the sec-
ond noun. B. TGM for decoding the patient of the sentence. Classification
task was to detect the identity of the patient from the pool of long sentences.
In active sentences, this is the second noun, and in passive sentences it is the
first noun. C. TGM for decoding the verb of the sentence. Classification task
was to detect the identity of the verb from the pool of all sentences (short and
long). D. TGM for decoding sentence length Classification task was to detect
whether the sentence was long or short (two nouns or one noun). E. TGM for
decoding the first noun of the sentence. Classification task was to detect the
identity of the first noun from the pool of all sentences (short and long). In active
sentences this is the agent, and in passive sentences it is the patient. F. TGM for
decoding the voice of the sentence. Classification task was to detect the voice
of the sentence (active or passive) from the pool of all sentences (short and long).
G. TGM for decoding the proposition of the sentence. Classification task was
to detect the proposition of the sentence (where the active and passive version of
the proposition were given the same class label) from the pool of long sentences. 74

xix



6.8 Helmet plots for each during-sentence classification task at 1.44s post last
word onset. Each plot shows the resulting importance map from training a clas-
sifier 1.44s post onset of the last word in the sentence. Importance maps were
computed from the classifier weights on the concatenation of all subjects’ mean
sensor activity from 1.44 to 1.54 s post onset as described in [2]. Maps were then
averaged over subjects. Importance values for a single gradiometer are shown.
Classification tasks were conducted on the pool of both active and passive sen-
tences. Titles give the rank accuracy at the time examined. A. Importance map
for decoding the agent. Classification task was to detect the identity of the agent
of the sentence, which in passive sentences is the second noun and in active sen-
tences is the first noun, from the pool of long sentences. B. Importance map
for decoding the patient. Classification task was to detect the identity of the
patient of the sentence, which in passive sentences is the first noun and in active
sentences is the second noun, from the pool of long sentences. C. Importance
map for decoding verb. Classification task was to detect the identity of the verb
of the sentence, from the pool of long sentences. D. Importance map for de-
coding sentence length Classification task was to detect whether the sentence
was long or short (two nouns or one noun). E. Importance map for decoding
first noun. Classification task was to detect the identity of the first noun of the
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Chapter 1

Introduction

Overview
In this thesis, we sought to solve two problems: firstly, we wanted to understand sentence com-
prehension in the brain, specifically how the brain reconciles sentences with different syntactic
structure. Secondly, we wanted to develop data analysis methods that enabled us to solve our first
problem. To that end, we optimized two common analysis approaches, decoding and representa-
tional similarity analysis (RSA) and applied them to Magnetoencephalography (MEG) data. The
high temporal resolution of MEG data allowed us to distinguish computations that occur in the
brain during sentence reading from those that occur after the sentence has been read, henceforth
referred to as the post-sentence time period.

By applying our improved decoding and RSA approaches to the MEG data, we were able to
demonstrate that during sentence reading, each word is processed as it is read in an incremental
fashion. Then, post-sentence, syntactic information such as sentence voice dominates the MEG
data signal. When syntax becomes less decodable from the MEG data, the sentence proposition
(i.e. “Who did what to whom?”) is decodable. Our results from both decoding and RSA pro-
vide converging evidence of the existence of a post-sentence wrap-up period in which syntax is
processed, followed by the integration of syntax and semantics to form the full sentence meaning.

The rest of the thesis is structured as follows: in this Chapter we give an overview of the
scientific and methodological problems we solved. Chapter 2 is an overview of the relevant
neuroscientific background on sentence processing as well as an introduction to the literature
discussing the application of decoding and RSA to neural data. Chapter 3 details our method-
ological contributions, while Chapter 4 provides context on the limitations and relevant good
practice measures needed for our methods. Chapters 5 and 6 present our results on a pilot and a
confirmation data set, and Chapter 7 contains our discussion and ideas for future work.

Scientific Problem Statement
Language is an important part of the human experience, one that most humans use in their ev-
eryday lives. A loss of language ability can have a profound personal and psychological impact
that has been likened to losing one’s sense of self [3]. Understanding language processing has
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been a long-standing goal of linguistics, psychology, and neuroscience.
In order to communicate complex ideas and narratives, small linguistic units (such as words

or phrases) are combined into sentences. Sentence comprehension is the first step on the linguis-
tic pathway in which the meaning of single words are merged via structural rules into a linguistic
whole. They are the smallest linguistic unit that requires a hierarchical structure for representa-
tion (as opposed to a simple list of elements), with potentially long-range structural relationships.
Sentences constitute an essential building block of language, and thus make a natural entry point
into the study of language comprehension.

However, many questions remain as to how humans understand even simple sentences. Sen-
tences capture meaning in many ways; for example, "The dog found the peach," and "The peach
was found by the dog," are the same proposition in different syntactic voices. In English, the
former version, called active voice, is the most common. These two versions allow us to test
theories of syntactic integration. For example, it is possible that sentences are read without any
assumptions of syntax, and the human brain is flexible enough to understand active and passive
sentences in the same manner. Alternatively, given the human tendency to make easy assump-
tions, reading the passive-voiced version may require a correction of the initial reading, which
defaults to active voice, since it is more common. Evidence seems largely to point to the second
theory of integration, and the correction has been referred to commonly as reanalysis.

The scientific goal of this thesis is to shed light on sentence processing, specifically on the
comprehension of sentences with alternative syntactic structure. To that end, we contrasted active
and passive sentences, dissociating syntax and semantics to better understand how the brain pro-
cesses each type of information. We used both decoding and RSA to examine information flow
in the brain during sentence reading and to probe the post-sentence time period for information.
We found that words are processed incrementally during sentence reading, and observed that
during the post-sentence time period syntactic processing is followed by sentence integration.

Methodological Problem Statement
While sentence comprehension in the brain can be studied in many ways, non-invasive neu-
roimaging is currently the easiest and most direct way to answer questions about the human
brain. Of the techniques available, magnetoencephalography (MEG) holds the most promise for
examining language. It measures the induced magnetic field produced by concerted neural activ-
ity at a rate of 1kHz [4]. This is ample resolution for our purposes, as humans typically process
words on an order of hundreds of milliseconds [5]. Compared to functional magnetic resonance
imaging (fMRI), which operates on the order of seconds, MEG is clearly the best choice, espe-
cially given that we want to distinguish processes that occur during sentence reading from those
that occur post-sentence. MEG also has an advantage over electroencephalography (EEG) in that
magnetic fields, unlike electric fields, are not distorted by the human skull. This improves the
localization of MEG signals to actual brain regions (known as source-localization). Analyzing
MEG data is difficult from a statistical standpoint: the signal-to-noise ratio of a single MEG trial
is quite low, so a stimulus must be presented multiple times and the resulting trials are averaged
together [6].

Given that we can only collect so many trials from a single participant in one scan session,
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we are severely data limited when analyzing MEG data. Furthermore, the time resolution greatly
expands the feature space. This data deficit dictates which types of data analysis techniques
(machine learning-based and otherwise) will perform well (with high sensitivity) on MEG data.
Approaches that are standard for fMRI data cannot simply be transferred to MEG data applica-
tions without modifications.

The methodological goal of this thesis is to optimize two analysis approaches for MEG data:
machine learning classification (referred to throughout as decoding), and representational simi-
larity analysis (RSA) [7]. In decoding, we attempt to classify stimulus attributes from the neural
activity. For example, we may want to decode whether the sentence was in the active voice or
a passive voice from post-sentence neural activity. In RSA, we compare various models of sen-
tence similarity in terms of their ability to correlate with neural activity. RSA can be thought
of as asking the question: “Are stimuli that are similar according to this model close in neural
activity space?” For example, we can compare a model that denotes two sentences as similar
based only on their syntax to one that uses both syntactic and semantic information.

Both decoding and RSA, when applied in their standard forms, underperform on MEG data,
and are insufficiently sensitive to detect the full range of effects we may be interested in [8]. In
this thesis, we sought to improve the performance of decoding by combining data from multiple
subjects (as opposed to the traditional single-subject approach), boosting test data signal-to-
noise ratio (SNR), and using classifiers with regularization. Our RSA approach also combined
data from multiple subjects, and we developed a novel method of noise ceiling computation to
account for our multi-subject approach.

Thesis Statement
Magnetoencephalography (MEG) data can help us understand language comprehension in the
brain, but only through careful tailoring of our analysis approaches.

By optimizing our methods, we were able to reveal the information contained in the MEG
data to an unprecedented degree. Our approach revealed that sentence comprehension, previously
theorized to be an entirely incremental process, involves a post-sentence wrap-up period in which
syntactic and semantic information are integrated.
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Chapter 2

Related Work

Overview

In order to accomplish the goals of this thesis, we need to understand the relevant work in two
fields:

1. The neuroscience of sentence comprehension

2. Analysis methods for neuroimaging data
This chapter begins by defining key terminology related to sentences and sentence processing

as used in this thesis. We then explore work that has been done on sentence comprehension in the
brain. In addition to work on general sentence comprehension, we examine relevant conclusions
in the literature pertaining to active and passive voice sentences and how the brain may respond
differently to each type of sentence. In the latter part of the chapter we explore common analysis
approaches for neuroimaging data, with special attention to decoding and to representational
similarity analysis.

2.1 Terminology

For ease of understanding, below are the definitions of several key concepts in sentence compre-
hension, as they are used in this thesis.

A proposition is the basic information conveyed by a sentence. For a simple, noun-verb-
noun sentence, it answers the question "Who did what to whom?" Multiple sentences can convey
the same proposition. The proposition can be thought of as the semantic content of the sentence,
whereas the form (the order of the words and overall structure) is the syntax. Properly parsing
the syntax is necessary in order to determine the proposition.

The constituent words of a sentence can be described using the thematic roles that these
words play in the proposition. The agent is the "who" in "Who did what to whom?" It is the
noun that performs the verb. The patient is the object of the verb; it is the "whom." A simple
proposition can be represented as a tuple: (agent, verb, patient).

In English, propositions are usually phrased in the active voice, which orders the words
agent-verb-patient. An alternative is the passive voice, which orders them patient-verb-agent.
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To illustrate, consider the following sentences:
1. The woman approached the man.

2. The woman was approached by the man.

3. The man approached the woman.

4. The man was approached by the woman.
In sentences 1 and 4, the agent is woman. In sentences 2 and 3, the agent is man. Sentences 1
and 3 are in the active voice, and sentences 2 and 4 are in the passive voice. Sentences 1 and 4
convey the same proposition, and sentences 2 and 3 convey the same proposition.

2.2 Sentence Comprehension
Sentence comprehension is essential to language understanding, and has been studied some-
what separately in two different fields: linguistics and psycholinguistics. Linguistic accounts
for sentence comprehension tend to focus on the notion of a grammar, the set of rules by which
a string of words are combined to get the full sentence meaning. Psycholinguistics and neu-
roscience characterize something slightly different: the actual process of combining the words.
This distinction is important and accounts for several differences in understanding between fields,
because contradictions can arise due to processing limitations in measured human subjects, as
opposed to flaws in a given grammatical theory [9]. However, an ideal connection between fields
would be for neuroscience to test in a rigorous manner grammatical theories put forth by linguists
[10].

A central common point between pure linguistics and psycholinguistics is the concept of
Merge [11]. Merge is the fundamental operation by which linguistic concepts are combined. In
order to comprehend a sentence, the listener (or reader) applies Merge repeatedly, combining the
constituent words into phrases and the phrases into the sentence. Merge can occur is theorized to
occur at all levels of language processing. How humans know when to merge and which entities
should be merged are key questions of the process of sentence comprehension.

In the neuroscientific and psycholinguistic literature, there are several prominent models of
language comprehension [12, 13, 14, 15]. All have the following in common:

• Sentences are represented in the brain as hierarchical, tree-like structures.
• Online comprehension builds this structure by integrating each new linguistic unit into it

incrementally.

This integration step is either referred to explicitly as Merge [14, 15] or as unification [12, 13].
The primary differences in models of sentence comprehension lie in the accounts of where

in the brain the different kinds of merge (syntactic, semantic, phonetic) are performed and in
what order. Many of these differences can be explained by the difficulty in recording from the
healthy human brain: one must generally make a trade-off between spatial resolution (fMRI) and
temporal resolution (M/EEG). Furthermore, differences in stimulus selection, task, and analysis
approach can make certain effects appear larger or smaller. Lastly, while the works reviewed
here have involved either auditory or visual presentation of linguistic stimuli, little work has
been done to evaluate the correspondence between the neural response across modes. However,
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Figure 2.1: Model of Auditory Language Comprehension Taken from [1] A. Auditory lan-
guage comprehension model. Illustration of the processing steps taken during the processing of
acoustic language stimuli. Note the parallel paths for general linguistic processing (syntactic and
semantic) and for prosody. B. The brain basis of auditory language comprehension. Brain
regions activated in relation to the different processing steps outlined in panel A.

as will become apparent, there is a large overlap between the results gleaned from the separate
types of stimuli.

2.2.1 The Neurobiology of Simple Sentence Comprehension

What happens in the brain as a person hears a word as part of a sentence? According to a large-
scale review of the EEG literature [1], the first 150ms are spent recognizing the word acoustically.
In the next 100ms, local syntactic structure is processed, e.g., the identification of the category of
the word (verb, noun, etc. ). In the next 250ms, the brain elucidates how the word semantically
relates to the sentence, as well as how it relates syntactically. That is, the role the word plays in
the sentence is understood. Finally, at the 600ms mark, the brain Merges the word into the rest of
the sentence. See Fig. 2.1, A. for an illustration from [1]. Note that a similar perceptual-semantic
gradient has been replicated for written nouns [5].

In most models of sentence processing, the left inferior frontal gyrus (lIFG), otherwise known
as Broca’s area, is thought to underlie syntactic Merge (see Fig. 2.1, B.) Additional important
regions range from the left tempero-parietal junction anteriorly along the lateral sulcus to the
superior and medial frontal gyri [1, 16, 17]. Similarly, the Memory, Unification, and Control
model implicates primarily the inferior frontal gyrus, the lateral sulcus and superior temporal
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sulcus, with lIFG housing the unification operation [12].
These models and their neural substrates have arisen from decades of lesion studies as well

as careful fMRI and EEG studies that contrast syntactically complex sentences with simpler
sentences or word lists [13, 14, 18]. However, a somewhat contradictory account has arisen from
studies that use more naturalistic language stimuli and more complex analysis techniques. An
experiment consisting of natural story listening has implicated the left anterior temporal lobe
(lATL) as essential for syntactic processing by correlating its activation with the number of open
nodes in the sentence hierarchy [19], a result that has early historical precedent (see [20], and for
a review, see [17]). An EEG study of sentences and phrases in Chinese potentially confirms the
role of the lATL in sentence processing, although EEG lacks the spatial resolution necessary to be
certain [21]. Chinese words corresponding to phrases and sentences were presented auditorally
at a constant rate, with complete phrases occurring at a harmonic rate and sentences at another,
slower harmonic. Different sensors revealed activity that synchronized with the word, phrase,
and sentence presentation frequencies, with more anterior sensors along the left temporal lobe
synchronizing to the presentation frequencies of greater syntactic complexity [21].

Additionally, the use of language localizers (contrasting linguistic and non-linguistic stim-
uli) has improved sensitivity in fMRI, thus allowing a larger number of distributed regions to be
detected as involved with sentence comprehension and syntactic complexity [22], whereas previ-
ously it was thought that semantics was distributed while syntax was more localized (specifically,
to the left IFG) [18].

These potentially contradictory explanations of the neurobiology of sentence processing can
perhaps be accounted for via the general nature of the Merge/Unification operation, which can
operate not only at the syntactic level, but at the phonological and the semantic levels [12, 23]. In
fact, attempts to isolate merge in the context of syntactic hierarchy have localized the operation
to a small sub-portion of lIFG [23], and there is evidence that phonological and semantic merge
are similarly housed in distinct subregions [12]. Additionally, as sentence length and syntac-
tic complexity increases, so too does working memory load. Attempts to distinguish working
memory from core linguistic computation via fMRI have focused on whether or not additional
linguistic material is hierarchically more complex, finding again that a small subportion of left
IFG is selectively active for language-specific complexity [24].

Using intracranial, which has high spatial resolution while retaining the crucial temporal
resolution needed to measure linguistic phenomena, work has been done explicitly measuring the
building of syntactic hierarchies. In this experiment, the output of various parsers was correlated
with neural activity, finally demonstrating that a bottom-up can strongly predict neural activity in
lIFG. Furthermore, in a broad range of linguistic areas, gamma-band power was found to increase
with each incoming word, and then decrease as soon as items could be successfully merged into
a single unit (such as a phrase or clause), perhaps indicating a more global neural footprint of
Merge [25].

From these many pieces of (sometimes contradictory) evidence, we can conclude the follow-
ing about sentence processing:

• There is evidence of a neurobiological implementation of Merge likely localized to left
IFG or Broca’s Area [1, 12, 13, 16, 18, 23, 25].

• A set of left-lateralized brain regions activate in a manner correlated with incremental
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sentence structure building [21, 25]
• A broad range of left-lateralized regions are implicated in sentence comprehension more

generally [17, 21, 22, 25].

2.2.2 Passive Sentences and the Need for Reanalysis

The aforementioned accounts of sentence comprehension all characterize the brain as an online
parser that integrates incoming words with the current tree structure as they are received. How-
ever, sentences with unconventional structure (e.g. passive voice sentences) pose a problem for
such a theory. For many sentence structures, the true proposition cannot be known until all of the
words have been received, and the original parse may not be correct. For example, in the sentence
"The woman was approached by the man.", the reader or listener must wait until the end before it
becomes clear that the man is the agent of the verb. If the brain has parsed the sentence greedily
(as in a bottom-up parser [25]), the tree may incorrectly contain "woman" in the agent role. In
the psycholinguistic literature, processes related to correcting the tree are broadly referred to as
reanalysis. An alternative explanation to reanalysis is that all likely parses are maintained by the
brain, with the brain finally committing to one once all information has been received. However,
this hypothesis would predict minimal (if any) difference in the neurological signature elicited
by active and passive sentences that cannot simply be explained by processing load. The work
reviewed in this section will demonstrate that this is not the case, providing support for reanalysis
as the solution to the voice parsing problem.

Early work using fMRI used active and passive voice sentences to try to dissociate semantic
and syntactic processing in the brain [26]. Participants were assigned to one of two types of
sentence similarity judgments: syntactic or semantic. In the case of the syntactic task, sentences
with the same voice were regarded as the same, whereas in the semantic task, the meaning of the
sentence was fully processed. Results implicated an anterior portion of Broca’s area in syntactic
processing, while a more inferior portion activated for semantic processing, a division that has
since been replicated [12, 23].

Additional work using EEG recordings during the presentation of German sentences revealed
evidence for a reanalysis effect: [27] found that sentences containing object-experiencer verbs,
the German equivalent of passive sentences, elicited greater neural activity 250-500ms after final
word (verb) presentation than active-voice sentences. This reveals a fundamental difference in
how active and passive sentences are processed. Furthermore this difference is detectable only at
the end of the sentence. However, it is impossible to say what the increase reflects, information-
wise. Supposedly it corresponds to thematic reanalysis, but it can also be explained via an
increase in processing load induced by distance between the agent noun and the verb.

Another study conducted in German sought to disentangle these two potential mechanisms
by crossing passive and active sentences (thematic reanalysis, or argument reordering) with sen-
tences with long- and short-range noun-verb dependencies (called argument retrieval) [28]. fMRI
data revealed that reordering selectively activated Broca’s Area (left IFG), as has been implicated
in the general sentence processing literature, while retrieval elicits activity in the tempero-parietal
(TP) junction. Using EEG, they could isolate the activation in the TP junction as occurring early
(in the first 200ms), and the activity in Broca’s area as occurring as late as 300-600ms post last
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word onset.
Studies conducted in English and Japanese using fMRI have also provided evidence consis-

tent with the existence of a reanalysis effect, demonstrating that these results generalize to other
languages. In both cases, passive-voice sentences elicit greater neural activation as measured by
BOLD response in Broca’s area as well as in temporal regions [29, 30]. The study conducted
with Japanese stimuli went one step further and attempted to disentangle the semantic aspect of
reanalysis (assigning the nouns to agent and patient) from the syntactic aspect (reordering the
words), and found that while both Broca’s area and the superior temporal gyrus are activated for
thematic reanalysis, Broca’s area shows greater sensitivity to syntax [30].

A parallel line of inquiry in sentence processing has looked at the effect of syntactic and
semantic errors on neural activity. While errors elicit specific event-related potentials during the
reading of the erroneous word, there is an additional change in neural activity during and after
the reading of the last word in the sentence [31]. This implicates the post-sentence time period as
crucial for sentence comprehension and can be likened to the reanalysis signal detected by other
studies.

These studies all provide neural evidence for a reanalysis effect, housed in Broca’s area and
the superior temporal lobe, and coming into effect around 250-600ms post final word onset. In
fact, they potentially point to two separate reanalysis effects: semantic and syntactic, both of
which are required for understanding passive sentences. However, the question remains: what is
the information content of the reanalysis signal? That is, what is the computation performed by
the brain during reanalysis?

Multivariate pattern analysis (MVPA) can potentially answer this question [32]. For example,
a study that presented video concepts of the form agent-verb-patient to subjects while recording
fMRI demonstrated that the identity of the agent and the patient could be reliably decoded with a
whole-brain analysis (excluding occipital lobe) [33]. There has been additional work along this
line for both active and passive sentences, using a searchlight approach to classify the agent and
the patient using the activity in many different regions in the brain separately [34]. Two proximal
yet distinct subregions of left medial superior temporal cortex were found to selectively contain
information about the agent and the patient of the sentence, respectively. The authors propose
(speculatively) that the processing of sentences uses these two regions as registers to store the
relevant roles of the nouns of the sentence. What follows naturally from such a theory is that if
one of these registers is incorrectly filled, e.g. if a word that was supposedly the agent is found
to truly be the patient, the brain must perform a transfer operation in order to correctly assign
word role. This transfer operation could be a mechanistic explanation for the reanalysis effect. It
should be noted that this work faces a challenge from subsequent work that reviews a wide array
of regions that can semantically encode words in all grammatical roles in a sentence [35].

Taken together, this body of work is consistent with the idea that processing a passive-voice
sentence involves reanalysis, in which the roles of agent and patient are swapped, in order for
the proposition to be fully understood. There is some evidence that Broca’s area underlies the
syntactic aspect of this role-reversal, whereas the superior temporal lobe performs the semantic
aspect of the operation. The work conducted in fMRI demonstrates that inferior frontal regions
are involved, and that noun role assignment takes place in those regions ([30, 34], while M/EEG
studies give us an indication that the process starts soon after the last word is presented [27, 28].

The presented work seeks to complete the picture by answering the following:
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• What is the information content of the reanalysis signal as measured by MEG?
• Can we distinguish syntactic and semantic aspects of reanalysis using MEG?

2.3 Machine Learning for MEG Data
The use of machine learning in neuroscience has been steadily gaining popularity since the incep-
tion of multivariate pattern analysis (MVPA) [32, 36] and Representational Similarity Analysis
(RSA) [7], although these techniques are still most commonly applied to fMRI data. The goal
for each approach is to correlate neural data with behavioral measures (e.g. the stimulus being
read) in order to elucidate the neural representation of those measures.

2.3.1 Decoding and Encoding Models
Multivariate pattern analysis (MVPA) is another name for the application of machine learning al-
gorithms to brain imaging data (as apposed to traditional univariate analyses, such as ANOVAs).
Typically this refers to a decoding approach, in which the stimulus (or some other variable) is
predicted from the neural activity [32]. Machine learning can be applied in the opposite di-
rection, predicting neural activity from stimuli, in what is referred to as an encoding approach
[37]. While there are differences in how decoding and encoding results can be interpreted [38],
the methodological approach remains consistent. Each case reduces to the standard machine
learning problem of prediction.

When evaluating prediction performance, one typically trains on a subset of the data samples
and tests the trained model on another subset of data samples. With M/EEG data, what constitutes
a data sample can vary. For example, during the experiment subjects are typically shown the
stimuli in trials. Multiple trials in which the same stimulus was shown can be averaged together
to improve signal-to-noise ratio (SNR). For machine learning purposes, a data sample can be
either a single trial or the average of several trials.

In recent years, machine learning has been applied to M/EEG data, not just fMRI (for a basic
tutorial for MEG, see [8], for fMRI see [36]). The most straightforward way to apply machine
learning to neural timeseries data is the sliding window approach. At each time point, train a
model using some window of data, e.g. the data from time point t to time point t + w. This
creates T different models for a timeseries of length T . We can then cross-validate over data
samples to generate a classification accuracy for each timepoint. A simple extension to this
approach is the temporal generalization method (TGM) [39], which takes the trained model at
each time point and tests it on every other timepoint. This can help assess whether the neural
representation of the class to be decoded at time t is similar to that at t′: if the two representations
are similar, then a model trained on t will be able to successfully decode at time t′.

Models are typically trained and tested on the data from each subject separately, with the
resulting classification accuracies averaged over subjects. Because so many models are trained
in this manner, testing for significance via a permutation test, the field standard [36], is extremely
computationally expensive. For that reason, the Wilcoxon signed-rank test [40], which tests for
consistency in results across subjects, is often used as an alternative [8]. Once significance is
established, the results must be corrected for multiple comparisons over time (and potentially
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over regions in the brain), either via a cluster-based approach (see [41] for a primer) or standard
False Discovery Rate (FDR) correction [42].

There has been some work combining data from multiple subjects for the purposes of decod-
ing. One approach involves transforming the individual subject brains into a common space via
Canonical Correlation Analysis [43]. Another competing approach, hyperalignment, computes
pairwise alignments between subjects [44]. The former has been applied specifically to MEG
data, whereas hyperalignment has traditionally been applied only to fMRI data. In both cases the
goal is to mitigate the effect of brain morphology and timing differences across subjects for the
purposes of training a classifier.

Early work decoding linguistic stimuli from MEG helped to reveal the timecourse of single-
word processing by decoding semantic and visual attributes about the words [5]. This approach
was later extended to Adjective-Noun phrases [45], and to tracking the neural correlate of context
in stories [46]. For a review of this body of work, see [47].

The current work applies decoding to MEG data to better understand the information content
of the neural signal. The prevailing assumption is that if we can reliably decode an attribute of
the stimulus from the neural data, information about that stimulus is contained in the data (note
that the inverse is not true [38]). To that end, in the next two chapters we will explore how to
optimize a decoding approach (Chapter 3), as well as discuss potential pitfalls in interpretation
(Chapter 4).

2.3.2 Representational Similarity Analysis
Another popular multivariate approach to neural data analysis is Representational Similarity
Analysis (RSA). While not quite machine learning, per se, RSA faces many of the same chal-
lenges of decoding/encoding approaches, while also having its distinct advantages and chal-
lenges.

RSA answers the question: are stimuli that are similar according to some set of assumptions
also similar in neural activity space? That is, if we think of the neural response to a stimulus as
a point in a high-dimensional space, do the distances between points corresponding to different
stimuli correspond to some hypothesis-driven notion of similarity between those stimuli? The
goal is to capture the “representational geometry” of the neural space and see which hypotheses
or models of behavior can best explain that geometry [7].

In a typical RSA pipeline, one has neural data collected in response to several different stim-
uli. One also has several candidate models of how the stimuli might be similar. For example,
let us say that the stimuli are words. Words can be similar orthographically (they are spelled the
same way), by part-of-speech (they are both nouns), or semantically (they mean similar things).
For example, the words ‘dog’ and ‘boy’ are orthographically similar, and are the same part-of-
speech. However, ‘boy’ is more semantically similar to ‘man’ than it is to ‘dog’. Each of these
notions of similarity corresponds to a different hypothesis or model1. The critical computational
unit of RSA is the Representational Dissimilarity Matrix (RDM), which consists of all the pair-
wise distances between stimuli. The neural data will produce one RDM, and a separate RDM can

1Note that model in the RSA sense refers to something different from model in the decoding sense. As opposed
to being a model with learned parameters, a model used for RSA is usually a theory about how the stimuli are
related.
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be produced for each model of similarity. The neural data RDM can be computed via a variety
of distance metrics: cosine, euclidean, or even classification accuracy (the idea being that neural
codes that are more easily distinguished by a classifier are further apart). Then the rank correla-
tion between each model RDM and the neural RDM is computed. The choice of rank correlation
is somewhat critical so as to maximize sensitivity of the approach. To combine data across par-
ticipants, a single RDM is computed per-person and the correlation between each of those neural
RDMs and the model RDMs is averaged over participants. To determine significance, one can
either use a label-permutation test (i.e. the Mantel test [48]), or the Wilcoxon signed-rank test
over the individual participant correlations, comparing with 0 [40].

One can also ask: how well can a model reasonably perform, conditioned on the noise intrin-
sic to the neural RDM? This level of performance is known as the noise ceiling. Think of each
neural RDM as a noisy draw from some true signal distribution. While the true noise ceiling
is impossible to compute without knowing the true underlying signal, we can attempt to bound
its value above and below using the data itself. The standard approach to computing the lower
bound is to correlate each individual subject’s data to the group average (excluding that subject).
To generate the upper bound, correlate each individual’s data with the total group average. The
reasoning is that the lower bound underfits the data, while the upper bound overfits. For a full
tutorial on RSA with examples of its application to fMRI data, see [49].

What if the models of interest are correlated with one-another because they capture related
stimulus attributes? For example, if they are competing representations of sentence meaning, it is
natural for some correlation to exist between models (unless some models capture nothing about
the sentence meaning). Correlation across models can be detected by rank-correlating the model
RDMs with each other. While no RSA tutorial makes mention of this possibility [49], there are
examples of studies that use partial correlation, conditioning on alternative models, whenever
this is the case [50, 51].

Like most neural data analysis techniques, RSA has mainly been used for fMRI data. How-
ever, there have been a few examples applying RSA to MEG data [8, 52]. Just as with MVPA,
the simple extension of RSA to neural timeseries data such as MEG is to use a sliding window
approach and compute separate neural RDMs at each timepoint, so as to trace the evolution of
the representational geometry over time. Different models of similarity may correlate best with
the MEG RDMs at different times.

Importantly, the correlations achieved via RSA for MEG are quite low, with the noise ceiling
lower bound sometimes hitting a correlation of 0 [8, 52]. This is a strong indication that there is
much room for optimizing RSA for MEG data, which we will discuss later on in this thesis.

Conclusions
In this chapter we have reviewed what is known about sentence processing in the brain. While
linguistic, psycholinguistic, and neuroscientific research indicate that sentences are parsed incre-
mentally, sentences with alternative syntactic structure (such as passive voice sentences) pose a
problem for this account. Previous studies contrasting active and passive voice sentences reveal
a difference in the neural activity post-sentence across the two conditions, but it is unclear what
information and computations underlie that difference.
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We further reviewed two prominent methods for analyzing neural activity data: decoding and
RSA. In decoding, the stimulus or stimulus attributes are predicted from the neural data using
machine learning classifiers. In RSA, the pairwise distances between stimuli in neural activity
space are compared to the distances predicted by theoretical models. Both approaches have the
potential to reveal unique insights about the brain.
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Chapter 3

Methodology

Overview

Historically, neuroimaging experiments consisted of the comparison of two or more stimulus
conditions. The mean neural activity from one condition in a particular brain region was sub-
tracted from the mean activity from the other condition in that same region, and if that difference
was significantly large, one concluded that that region treated the stimulus conditions differently.
This approach is not sufficiently expressive to answer all types of scientific questions. In partic-
ular, it does not make use of the fact that multiple attributes of the neural signal could work in
tandem to represent a given stimulus or produce a given behavior.

To improve the sensitivity of neuroimaging data analysis, the field has turned to multivariate
approaches, which make use of the neural activity across multiple areas of the brain simultane-
ously to draw scientific conclusions. In addition to being more sensitive, multivariate approaches
can be more expressive by allowing us to extract the information content of the neural activity,
that is, what aspects of the stimuli are detectable in which parts of the brain and at which times.

Two of the most popular multivariate approaches for analyzing neural activity are decoding
(otherwise known as multivariate pattern analysis (MVPA) [32]) and representational similarity
analysis (RSA) [7]. The former uses classification or regression to predict stimulus (or behav-
ior) information from the neural data. The latter captures the similarity structure across stimuli
according to the neural activity, for comparison with theoretical similarity structures. In each
method, neural activity for a given trial is considered a point in a high-dimensional space: de-
coding seeks to separate these points according to some class label, whereas RSA estimates the
similarity structure of stimuli as distances in the space.

Each technique has the potential to make different contributions to our understanding of
the data. When using decoding, we require representations of the stimuli to form labels for
classification. While this is straightforward, it can also limit the kinds of decoding tasks we can
perform. RSA, on the other hand, requires a well-defined notion of distance between the stimuli
in the experiment. This can sometimes restrict the analysis, but it also has the potential to make
RSA more expressive than decoding. For example, instead of having to develop a full-fledged
representation of the stimulus (for example, of a sentence), we can instead develop a similarity
metric between stimuli, which may be an easier task. RSA has a further advantage in that one
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can estimate a noise ceiling, i.e. we can determine how well the best model we have can perform
given the noise in our data.

Both approaches extract information from the MEG signal and have the potential to be quite
sensitive (indeed, they have been shown to be highly sensitive when applied to fMRI data [7, 32]).
However, in order for these approaches to take full advantage of the high temporal resolution of
MEG data, and in order for them to account for the low SNR of individual MEG trials, modifi-
cations to the standard procedures are required.

What follows are two sections, one for decoding and one for RSA. In each section we discuss
the basic out-of-the-box application of the technique. Then, using a sample analysis task, we
detail how changes to the basic methodological approach can improve the sensitivity of that
approach. The knowledge gained here is then used to answer our scientific questions of interest
in Chapters 5 and 6.

3.1 Decoding

3.1.1 Basic Approach

A typical neuroimaging experiment consists of recording neural activity while a person experi-
ences a stimulus of some kind and/or while that person performs a behavior. In language studies,
our goal is often to understand how the brain represents a linguistic stimulus. To that end, it is
useful to see what linguistic information can be extracted from the neural data.

Decoding is a kind of signal detection technique. If the stimulus can be reliably decoded
from the neural data, that indicates that relevant information is present in the neural data. The
ideal decoding accuracy is 100%, although whether this is achievable given the noise level of the
data is unclear. However, our ability to make inferences from decoding accuracy is contingent
upon that accuracy being above chance performance (the performance of a classifier that was just
randomly guessing), and the better it does ,the more confident we can feel that we have found a
true effect in the data. Additionally, we can test whether decoding accuracy is significant with
limited assumptions by using a permutation test. We permute the order of the labels with respect
to the data samples and re-train and re-test our decoder many times, producing a histogram of ac-
curacies that estimates what the decoding accuracy would look like if there were no relationship
between the data and the labels.

In order to measure decoding accuracy, the classic approach is 0/1: if the classifier chooses
the correct class for a given data sample, then that sample is marked as correct; otherwise, it is
incorrect. While 0/1 is straightforward, it is not as sensitive as the alternative: rank accuracy.
Rank accuracy requires a classifier that yields a distribution of confidence values over the poten-
tial classes (e.g. the log-likelihood that the data sample belongs in each class). We can then order
the class labels by these confidence values and find the rank r of the correct class in that sorted
list of C classes. We can take this rank and transform it into an accuracy, a:

a = 1− r − 1

C − 1
(3.1)

Intuitively: if the correct class is ranked first, then the accuracy will be 1, as in 0/1 accuracy.
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For each rank lower for the correct class, the accuracy decreases by 1
C−1 , the fraction of remaining

classes that outrank the correct class. Regardless of how many classes there are, chance rank
accuracy is 0.5, because in the event that there is no relationship between the classes and the
data, the resulting ranks should be uniformly distributed. With the exception of our comparison
of classification algorithms, all decoding accuracies reported in this thesis are rank accuracies.

Optimizing decoding accuracy is an important task for scientific inference. We can think of
accuracy as an indicator of the sensitivity of our approach, in the statistical sense: that is, our
likelihood of detecting a true effect that is present in the data is directly represented by accuracy.
Ideally, we would like to be as sensitive as possible, which motivates tailoring our decoding
approach to maximize accuracy.

To apply decoding to MEG data (or to other timeseries data in general), a straightforward
approach is to use a sliding window over time. That is, if we think of the trial pertaining to
a stimulus as a timeseries of length T , we train and test our classifier on a subwindow of size
w, where 1 ≤ w ≤ T . We can do this for all possible subwindows of the timeseries. This
has been used to great effect to capture the temporal evolution of the information in MEG data
[5, 8, 45, 46]. One can either use all the time points in a window or some function of the
timepoints, such as the average, over that window.

A natural extension of the sliding window approach is the Temporal Generalization Method
[39], which creates a Temporal Generalization Matrix (TGM) of decoding accuracies from all
pairs of time points. That is, instead of training and testing on data from the same subwindow of
the trial, accuracies are additionally computed for all possible pairs of subwindows. This TGM
can help us understand whether the neural representation of the stimulus that we use for decoding
at window i is the same as that at window j. If it is, then training on window i will lead to high
accuracy when testing on window j, and vice-versa. This interpretation, however, is contingent
on the signal to noise ratio (SNR) of the data being the same at these two times [39].

Because MEG is a highly sensitive recording technique, individual MEG trials are suscepti-
ble to many sources of noise [6]. Thus individual data trials are quite noisy and it is customary
to average over trials for the same stimulus in order to improve SNR. This creates a trade-off for
classification: we could have fewer, high-SNR samples, or a larger number of low-SNR sam-
ples. For example, if we have 10 trials of a given stimulus, we could use each trial separately
(10 instances/sentence), average pairs of trials (5 instances/sentence), average half the trials sep-
arately (2 instances/sentence), or average all of the trials (1 instance/sentence). As the number
of instances decreases, SNR increases. This is intuitive if one models the MEG data at trial i,
xi, as the sum of a true signal s related to the stimulus presented during that tiral and zero-mean
Gaussian noise, N (0, σ):

xi = s+ εi (3.2)

εi ∼ N (0, σ) (3.3)

Averaging multiple trials is akin to taking the expected value of Equation 3.2 as the trials i
go to∞:

Ei[xi] = Ei[s+ εi] = s (3.4)

For an empirical illustration of the profound effect of averaging on data quality, see Fig. 3.1.
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Figure 3.1: Data as a function of trial averaging MEG sensor data for the same stimulus as
more trials are averaged together. Note that as more trials are averaged, the visual response to
each word in the sentence (presented every 0.5 seconds) becomes more pronounced.

Related to the question of data samples is the cross-validation scheme used to evaluate perfor-
mance. When using decoding as a signal detection technique, as we are here, one must demon-
strate that the classifier can distinguish the classes of interest at a rate better than chance (i.e.,
better than random guessing) on a test data set that the classifier did not have access to during
training. To make optimal use of the data available, cross-validation is used: the data samples
are partitioned into train and test sets, and the classifier is trained and tested (respectively) on
those sets. Then the data samples are partitioned again, with new samples in the test set, and
the process is repeated. The reported accuracy is the average performance over all the test sets.
One can perform leave-one-out cross-validation, in which each data sample is held out as the test
sample once, or one could perform k-fold (where 2 ≤ k ≤ N , if N is the number of samples)
cross-validation, and divide the data into k partitions. While leave-one-out seems likely to yield
the highest accuracy, because there is only one way to partition the data in that scheme, it tends
to yield high variance results. On the other hand. 2-fold cross-validation uses less data per fold,
but tends to yield more stable results [53].

We must additionally consider the question of how best to combine data across subjects. Typ-
ical decoding experiments consist of training and testing a separate classifier on each individual
subject’s data, then averaging the resulting decoding accuracies across subjects. If the data are
well aligned in time across subjects, averaging the decoding accuracies will result in minimal
loss of signal, but even a small delay between subjects can reduce accuracy. To gain some in-
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sight into the reliability of data across subjects, see Fig. 3.2. Note how even the visual response
to the word presentations, which are generally quite stereotyped within a subject (see Fig. 3.1D),
are misaligned.

Attempts to increase power by combining data from multiple subjects as additional training
instances are generally not successful without some transformation on the feature space (e.g.
PCA or Hyperalignment [44, 54]). However, an alternative is to combine data from multiple
subjects as additional features, an approach that has been used successfully in fMRI [55].

The basic decoding approach has four attributes that we must consider: first, the way data
from multiple subjects are combined, second, the choice of classifier, third, the treatment of time,
and fourth, the treatment of trials. We will explore the effects of these attributes in the rest of
this section. Unless indicated otherwise, the basic parameters used for decoding are those given
in Table 3.1.

Attribute Choice
Accuracy Measure Rank accuracy
Subject Combination Concatenate subject feature vectors
Classifier `2-penalized Logistic Regression
Window Size 4ms (Averaged)
Stride between Windows 4ms
Instances 1 Instance/Sentence
Cross-validation Leave one sentence out

Table 3.1: Basic decoding approach

As a running example, we will decode the sentence verb from the pool of all sentences (ac-
tive and passive) from the pilot data set (full description in Chapter 5). In this experiment, 8
participants read active and passive voice sentences (e.g. “The dog found the peach.” and “The
peach was found by the dog.”) while MEG data was recorded. After preprocessing, the data is
sampled at 500Hz, and there are 10 single trials per sentence. We will decode sentence verb over
time, aligning the sentences to the onset of the last word of the sentence, and decoding from that
point until the next sentence is presented.. Throughout this section we will occasionally present
full TGMs and full decoding timeseries accuracies for illustration, however, the metric of interest
will largely be max classification accuracy over time for the sample task.

It should be noted that because so many classification tasks were run for the exploration in
this chapter, it was computationally unfeasible to perform permutation testing and subject-level
cross-validation (discussed in the following section) for all results. In Chapters 5 and 6 we
provide that statistical analysis.

3.1.2 Combining Data from Multiple Subjects
In a typical neuroscientific language experiment, data is collected from multiple subjects. Decod-
ing analysis is usually applied separately to each subject, with classifiers being trained and tested
only on the data from a single subject at a time. This is due to the fact that slight differences
in brain morphology across subjects can hurt classifier performance. There exists an alignment
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approach for classifying cross-subject using fMRI data, namely Hyperalignment; however it
is quite computationally expensive [44]. Generally population-level decoding accuracy is esti-
mated by averaging the separate decoding accuracies from each of the subjects. Inference on
this population-level effect can be done by looking at consistency across subjects, potentially
combined with a permutation test1. Averaging over subjects is straightforward, but it can result
in a loss of signal if the subjects are not perfectly aligned in time.

How aligned are subjects in time? Unfortunately, time misalignment across subjects is quite
common. See Fig. 3.2 for the difference between subject B and subject I for the 10-trial average
of sentence 0. Note how even the visual response to the word presentations are not exactly
aligned.
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Figure 3.2: Data difference between subjects Data from subject B, subtracted from the data
from subject I. Each subject’s data is the average of 10 trials of sentence 0. Values close to
0 for a given sensor, time point entry indicate that the subjects had similar data values at that
point. Large differences indicate a temporal misalignment across subjects. Vertical lines show
the onset of each word and the offset of the sentence. Note that after each word, the visual
response is misaligned between the two subjects.

While combining subjects as additional data samples may hurt as opposed to help classifica-
tion, an alternative is to combine subjects along the feature dimension. That is, we can concate-
nate the f features of each of N subjects to create a feature vector of length f × N . This has
the benefit of boosting the amount of signal available, and for temporal decoding with MEG, is
potentially more robust to small differences in timing across subjects. At any given time t only
one subject needs to have the necessary signal in order for us to decode accurately. If multiple
subjects contain signal, even weakly, then decoding accuracy will improve.

At first it may seem counter-intuitive; adding more features when there are few data samples
could lead to overfitting. However, as is discussed in the following section, regularization of our
classifier can help prevent overfitting even when the number of features is quite large.

1It should be noted that no consensus exists for combining permutation distributions across subjects
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Empirically, we can see that the multi-subject approach strongly outperforms the single sub-
ject approach. Figure 3.3 illustrates the sample verb decoding task for the single subject (panel
A) and multi-subject (panel B) approaches. While qualitatively the results are similar in that
above chance accuracy is detected at roughly the same time points relative to sentence offset, the
multi-subject approach has a much higher accuracy at those time points as compared with the
single subject approach.
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Figure 3.3: Single subject vs Multi-subject approach. Rank accuracy TGMs computed for
decoding verb identity post-sentence from the pool of all sentences (active and passive). The
white vertical line indicates sentence offset. Chance performance is 0.5 and optimal performance
is 1.0. Cross-validation was leave-one-sentence out. A. Rank accuracy TGM averaged over
subjects. A separate TGM was computed for each subject, training and testing on that subject
individually. The resulting TGMs were then averaged over subjects. B. Rank accuracy TGM
from multi-subject approach. TGM generated from using the concatenation over subjects as
the feature vector for classification.

Estimating significance of the accuracy is straightforward via a permutation test. To estimate
the null hypothesis that there is no decoding signal in the data, we randomly shuffle the order
of the labels, breaking the relationship between them. We then retrain and retest the classifier
as we normally would. This generates a distribution of null accuracies that estimates chance
performance on the finite data set we have available. The p value against the null is simply the
fraction of permutations that achieve a higher accuracy than the observed classification accuracy
[56].

A potential drawback of the multi-subject approach is that population-level inference is no
longer as straightforward as in the single-subject approach. The strength of the multi-subject
approach from a decoding perspective is its weak point from an inference perspective. Because
only one subject’s data needs to contain the necessary signal, it is possible that the observed
decoding accuracy at any given time can only be attributed to a small set of subjects, as opposed
to the population of subjects

In order to estimate reliability over the population, we can cross-validate over subjects. For
each subject, we leave it out, forming instead a f ×N − 1 feature vector, and classify as before.
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We can quantify consistency in the subject population via the fraction folds that achieve above-
chance accuracy. If only a few subjects are responsible for above-chance decoding at a given
time point, this fraction will be less than 1, because only draws containing those subjects will be
decodable. If, however, the decodability comes from the subject population together (e.g. via a
weak contribution from each subject), then nearly all folds will achieve above-chance accuracy.
Ideally the folds should cluster near the full N subject accuracy.

Concatenating subjects as features for multi-subject analysis substantially improves decoding
accuracy. It also lends itself in a straightforward manner to significance testing and to evaluating
population-level effects. If our goal is to draw conclusions from decoding results, multi-subject
analysis is a clear choice over the conventional single subject approach.

3.1.3 Choice of Classifier
The field of machine learning has produced a wide variety of classification algorithms. These
classifiers seek to separate the given data into the labeled classes, and do so by minimizing an
objective function that estimates the error on a training data set. During training, the classifier
“learns” the parameter values that best separate the data. We then evaluate classifier performance
on a test set, asking the classifier to provide labels for data that it has never seen before. If there
are more parameters to learn than training data samples, most classifiers will “overfit” and pick
up patterns in the data that are actually noise. This is evidenced by a training error that is close
to 0 but a high test error [57].

In the case of MEG data, there are 306 sensors and many time points per trial. The number of
features used for classification can be quite large if we consider the neural activity at all sensors,
at all time points, and concatenated across all subjects. However, scanner time is expensive and
humans have limited energy for performing experimental tasks, thus the number of trials we can
collect is generally quite small (in this case the experiment has a total of 320 trials). Due to the
aforementioned noise in the MEG data, multiple trials are typically averaged together to make
a single data point, which reduces the amount of training samples for a given classifier even
further. This makes classifiers likely to overfit on this kind of data.

Classifiers are mainly distinguished by the assumptions they make about the nature of the
data. For example, Gaussian Naive Bayes assumes that the features of the data are independent
conditioned on the label, while Logistic Regression assumes that the boundary between labels is
linear. Stronger assumptions generally indicate simpler classifiers. A simpler classifier (such as
a linear classifier) is less likely to overfit. We can further prevent overfitting by regularizing our
classifier - that is, instead of allowing it to fit the training data perfectly, we limit the complexity of
the boundary between classes. There are several types of regularization; the two most commonly
used with linear classifiers are `1 and `2. `1 results in sparse weights where some of the features
are assigned a weight of 0 in the final classification decision. `2 penalizes large weights but
does not result in any 0 weights. These indicate two different assumptions about the features of
the data: in the first case, we assume that some features are useless and should be ignored. In
the second case, we assume that while no one feature is especially useful, none is particularly
useless, either [57].

Previous work has been done comparing the effects of different classifiers on MEG data;
however, it was not viewed through the framework of regularization and preventing overfitting.
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In this past comparison of classifiers by Grootswagers and colleagues, if principal component
analysis had been applied or if the classifier were regularized, linear classifier performance was
the same across several choices [8]. Here we take the analysis a step further by contrasting
regularized and non-regularized classification algorithms, as well as contrasting two types of
regularization. We compare performance on the sample task for the following classifiers:

• Unregularized Logistic Regression
• `1-penalized Logistic Regression
• `2-penalized Logistic Regression
• `1-penalized Support Vector Machine (SVM)
• `2-penalized SVM
• Unregularized Gaussian Naive Bayes
• Gaussian Naive Bayes with feature selection

The resulting comparison is shown in the blue bars in Fig. 3.4. Additionally, runtime was es-
timated for each algorithm2 . To place the runtimes on the same scale as accuracy, the maximum
runtime over all the algorithms was used to scale them. So a 1.0 indicates that that algorithm
had the highest runtime, and smaller values should be interpreted as fractions of that maximum
value. These runtime fractions are shown in green in Fig. 3.4.

The conclusion of this analysis is that so long as regularization or feature selection is a part
of the decoding process, classifier choice is not important (this confirms previous work [8]).

3.1.4 Treatment of Time
Standard decoding of MEG data takes all the timepoints in a given window and averages over
them [8, 39]. However, there are two key benefits to not averaging over time and instead using
both the spatial and temporal information in a given subwindow:

1. The temporal information in a given window can help decoding accuracy.

2. Temporal averaging reduces the effective sampling rate, thereby reducing the maximum
signal frequency detectable in the data.

Item 1 is illustrated in Fig. 3.5. Here note that while all trials have the same average value
for the selected window, trials belonging to class A show an increase over time in that window,
while trials belonging to class B show a decrease. Our classifier would be much more effective
at distinguishing the classes if it could make use of that information.

Item 2 is simply a restating of Nyquist’s theorem, that is, that in order to represent a frequency
of f , one must sample at a rate of 2f [58]. One of the benefits of decoding neural activity from the
time domain is that we can capture all frequencies present in the data. By averaging our temporal
windows, we reduce the effective sampling rate and thereby reduce the maximum frequency our
classifier can use. Given that relevant linguistic information has been shown to be present even
in the high gamma frequency range (30-60Hz) of neural data [25], data fidelity is important.

2Algorithms were implemented with Sci-Kit Learn, with the exception of Gaussian Naive Bayes. Runtime was
computed as the minimum runtime over 10 runs on the same machine
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Figure 3.4: Algorithm Comparison Maximum 0/1 accuracy and fraction of maximum runtime
for several algorithms on the verb decoding task. Red error bars on blue bars show standard
deviation across subjects in mean classifier performance.

However, choosing to not average over time can create a problem in the interpretation of
TGMs [39], namely that two windows may be time-shifted versions of one another, thus leading
to a failure to generalize. Using averaged windows can suffer from the same problem, although
it is less sensitive.

Previous work has examined the effect of using small windows of time for classification
w ≤ 25ms. For small time windows, window size and temporal averaging make little difference
[8]. This is an indication that such timescales are smaller than the relevant effects. In this chapter
we will examine a much wider range of time window sizes, w ∈ [4, 25, 50, 100, 200]ms. We will
also compare the results with and without averaging over timepoints.

The resulting effect on accuracy is summarized in Fig. 3.6. Note that even for large window
sizes, averaging over time results in similar if not better performance over using the full time
window. In conclusion, the empirical evidence in favor temporal averaging is stronger than the
theoretical evidence against. The optimal window size, for use in feature experiments, is 100ms,
averaged over time.

3.1.5 Treatment of Trials

While linear classifiers are simple, they are still quite powerful and can separate even noisy data
like MEG. Crucially, many low-SNR samples can be used to achieve similar performance as a
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Figure 3.5: Time Averaging Example Toy example illustrating how averaging over time can
make classification more difficult. The signal for the red class and the signal for the blue class
have the same average value in the window (selected in green). However, if all the temporal
information were used, they would be highly distinguishable.

small number of high-SNR samples. However, there may be an optimal point in the trade-off.
For example, averaging over trials assumes that the timing of mental processes in each trial is
consistent.

In a classical decoding setting, the classifier considers each test sample independently. Even
if we provide many low-SNR test samples, they will still be more difficult to classify than a single
high-SNR test sample. We can think of averaging over test data samples as providing additional
information to the classifier: namely, that the test samples all belong to the same class. This may
seem counter-intuitive at first, because the higher SNR test data is no longer drawn from the same
distribution as the training data. However, at training time, the classifier is given the information
that several low-SNR samples belong to the same class, information which is not available at test
time since each test sample is considered separately. By averaging the test samples to create the
best possible sample, we better present the signal that the classifier is looking for.

To illustrate the impact of training data SNR on classifier training, let us consider Gaussian
Naive Bayes, and data for which we have M trials of N separate instances of C classes. For
example, a class could be the word “dog”, and each of the N instances would be the sentences
that contain the word “dog.” Each trial represents one presentation of a given sentence to the
subject. Let the data for the jth trial of the ith instance and the cth class be xcij . Let the average
over trials for the ith instance be x̄ci = 1

M

∑M
j xcij . The single trial parameters for Naive Bayes

are computed as follows:
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1

N

N∑
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The parameters for Naive Bayes trained on the average over trials are:
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Figure 3.6: Time Treatment Comparison. Maximum accuracy for several window sizes on
the verb decoding task. Blue bars show accuracy with temporal averaging, and green bars show
without.
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Note that Equations 3.5 and 3.7 are equivalent. The second two terms of Equations 3.6 and
3.8 are also equivalent. For comparing σ2

c and σ̄2
c this leaves the the first term:
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By Jensen’s Inequality we have demonstrated that σ̄2
c ≤ σ2

c , since all the terms in the sum
over i are positive [59].

Thus averaging over trials does not affect one of the parameters, µc, and the per-class variance
σc for averaged trials is bounded above by the per-class variance for single trials. The potential
theoretical impact of averaging over trials is small.

We can demonstrate the effect of trial averaging empirically on the sample task. Consider the
following approaches to handling the training data:

• Average over all trials, creating 1 instance/sentence
• Average over half the trials, creating 2 instances/sentence
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• Average over 2 trials, creating 5 instances/sentence
• Use single trials, 10 instances/sentence
We have additionally another choice to make: either the test set can receive the same averag-

ing treatment as the training set, or it be averaged to create 1 instance/sentence.
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Figure 3.7: Trial Treatment Comparison. Maximum accuracy for several ways of combining
trials on the verb decoding task. Blue bars show accuracy with test set averaging, and green bars
show without, i.e. when the test set has received the same treatment as the training set.

Performance on our verb decoding task is shown in Fig. 3.7. Note that without test set
averaging, accuracy drops off with SNR. But with test set averaging, all trial treatments perform
roughly the same. This confirms the claim that the test set SNR is most critical for decoding
performance.

3.1.6 Cross-validation Folds
Thus far we have mainly discussed the maximum accuracy over time, but also of interest is the
minimum accuracy over time. It is the case that when using the leave-one-out scheme, as we do
throughout this section, one can observe below chance accuracy. This presents somewhat of a
puzzle - how is it possible for a classifier to do worse than guessing randomly?

The answer lies in the fact that we are data limited and in our cross-validation scheme. In
order to assess true classifier performance, and particularly in order for a bad classifier to have
performance that is perfectly at chance, one requires infinite data [60]. Any estimate we make
of performance by cross-validating over a finite data set should be treated as a value bounded by
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confidence intervals. In the case of leave-one-out cross-validation, the confidence intervals tend
to be much larger than for say, 2-fold cross validation [53].

To demonstrate this phenomenon, we looked at two additional decoding tasks: decoding the
voice (active or passive) of the sentence, and decoding the proposition (the tuple of (agent, verb,
patient)). For each decoding task, we computed results using the leave-one-out scheme, as well
as the result from 2-fold cross-validation, using 100 different partitions of the data. For verb and
voice decoding, since the number of classes was sufficiently high, we were also able to compute
results from 4- and 8-fold cross-validation (also with 100 different data partitions).

The comparison of cross-validation schemes is shown in Fig. 3.8. Note how as the number of
folds decreases, the accuracy over time becomes much smoother. This is due to the fact that there
are many different partitions of the data possible under those fold schemes, so these estimates are
more stable. Note also how, particularly in Fig. 3.8C the minimum accuracy over time increases
as cross-validation fold number decreases.

What may seem puzzling at first is that maximum classification accuracy also increases. Why
should this be the case? Despite the fact that 2-fold cross-validation uses less training data than
leave-one-out, we are so data limited in either case that it is unlikely to cause much harm. In the
case of the classification tasks explored here, the number of samples is either 32 or 62, which is
the same order of magnitude, especially when compared with the number of features, which is
2448 at each time point.
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Figure 3.8: Cross-validation Comparison. Accuracy over time for three classification tasks:
Voice (A), Verb (B), and Proposition (C). In each case performance was assessed with several
cross-validation techniques, ranging from leave-one-out (LOO) to 2-fold cross-validation, with
intermediate schemes where possible. The dashed horizontal line shows chance performance,
and the vertical black line indicates sentence offset.

3.1.7 Optimal Hyperparameter Selection
In this section, we explored several key design choices for decoding from MEG data. From this
analysis we can conclude that certain design choices are more important than others. Combining
data across subjects by concatenating their feature vectors is much more powerful than building
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single-subject classifiers. Classification algorithm, which seems at first to be a crucial choice,
is not as important as whether that classifier uses regularization. Using larger time windows
improves decoding accuracy, but averaging over time as opposed to using all time points does
not make a significant difference. Test sample SNR is crucial for performance, but training set
SNR is less important.

Taken together, we can create an optimal decoding paradigm, summarized in Table 3.2. These
parameters will be used in Chapters 5 and 6 to try and address scientific questions about MEG
data. We choose to use a 10ms stride to save computation time, and we use 2 instances/sentence
to facilitate nested cross-validation for choosing the `2 penalty weight.

Attribute Choice
Accuracy Measure Rank accuracy
Subject Combination Concatenate subject feature vectors
Classifier `2-penalized Logistic Regression
Window Size 100ms (Averaged)
Stride between Windows 10ms
Instances 2 Instances/Sentence

Table 3.2: Optimized decoding approach

3.2 Representational Similarity Analysis (RSA)

3.2.1 Basic Approach
Like decoding, RSA also seeks to reveal the information content of the neural activity; how-
ever, it does so by looking at the similarity between the stimuli. Typically in RSA we treat the
neural activity for each stimulus as a point in a high-dimensional space, and we compute a Rep-
resentational Dissimilarity Matrix (RDM), the pairwise distances between each stimulus. This
RDM captures which stimuli are similar to one another according to the brain. We also typically
have several models3 that theorize what the similarity structure would look like under different
hypotheses, also represented by RDMs. The rank correlation is computed between each model
RDM and the brain RDM, which measures whether stimuli that are close in model space are
also close in neural activity space. Separate RDMs are computed for each subject’s data, and all
correlations are averaged over subjects [7].

While the ideal rank correlation between the “true” model and the data should be 1, noise
inherent in the data makes this impossible4. While it is not possible to compute the correlation
of the true model with the neural activity without knowing this true model, we can bound that
value above and below, creating what is referred to as the noise ceiling. In computing a noise
ceiling the goal is to understand how well two different sets drawn from our data distribution
could possibly correlate with one another.

3Here model is used to mean a theoretical model of how the brain might work, as opposed to a learned machine
learning model. One could use a machine learning model as a candidate model for RSA, but it is not necessary.

4Note that this is also true of decoding.
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In the traditional RSA approach, the lower bound is computed by taking each subject’s neural
activity RDM and correlating it with the average of all other subject’s RDMs (not including that
subject). The goal is to see how well the individual subject’s data correlates with the data of all
other subjects. The upper bound can be computed by taking the individual subject RDMs and
correlating them with the total average RDM. The reasoning is that the lower bound underfits,
because a single subject is a poor estimate for the data distribution. The upper bound, on the
other hand, overfits, since the same data is used for both RDMs in the correlation. If the average
correlation between a given model and the neural activity RDMs is within these two bounds,
one can conclude that the model predicts the neural activity at least as well as the neural activity
predicts itself. If two models are both within the estimated noise ceiling bound, they cannot be
distinguished by the data due to excessive noise [7].

RSA has typically been performed on fMRI data, although some instances of its use on
MEG data exist [8, 52], with somewhat lackluster results. As in decoding, extending RSA to
timeseries data can be done by sliding a window over the timeseries, creating a different neural
activity RDM at each timepoint. Crucially, the model RDM does not need to change over time.
We can either use whole-brain sensor-level data to compute the neural activity RDMs or we can
use source-localized ROIs, which is more similar to the typical RSA approach for fMRI data.

In this section we will use post-sentence neural activity from the confirmation data set, de-
scribed in full in Chapter 6. In brief, 20 participants read sentences from four categories, long
active sentences (e.g. “The man approached the woman.”), short active sentences (“The man
approached.”), long passive sentences (“The woman was approached by the man.”), and short
passive sentences (“The woman was approached.”). One of our candidate models will be a
sentence-length model, in which two sentences are considered the same (distance of 0) if they
are both short or are both long, and are considered different (distance of 1) if they differ in length.
The other candidate model is a more comprehensive “syntax” model, in which two sentences are
considered the same if they have the same voice and are the same length. They have a distance
of 0.5 if they are the same voice but different lengths, and a distance of 1 if they are different
voices. The model RDMs are given in Fig. 3.9.

Traditional RSA does not perform well on MEG data. In this section we will propose a
novel approach to RSA, and demonstrate the superior sensitivity of that approach. We will also
examine the effect of using multiple timepoints on RSA (as we did in the previous section with
decoding). Lastly, we will discuss an extension to RSA for when two models are correlated with
one another (as is the case for our sample models here).

Unless indicated otherwise, the basic parameters used for each RSA analysis are given in
Table 3.3.

Attribute Choice
Noise Ceiling Computed by splitting data over trials.
Window Size 4ms (Not Averaged)
Stride between Windows 4ms
Correlation Standard Kendall τ

Table 3.3: Basic RSA approach
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Figure 3.9: Sample Models. Sample model RDMs for analyzing post-sentence data. Each entry
in the matrix corresponds to a pair of sentence stimuli. A. Syntax model. Model that assigns
sentence pair a distance of 0 if both sentences are the same length and voice, 0.5 if they are the
same voice but different lengths, and 1 if they are different voices. B. Sentence length model.
Model that assigns sentence pair a distance of 0 if both sentences are the same length, otherwise
a distance of 1.

3.2.2 Noise Ceiling Computation

As has been discussed earlier in this chapter, MEG data can be quite noisy. For that reason, using
the RDM created from an individual subject’s neural activity can often lead to lackluster results.
See Fig. 3.10, panel A for the result yielded by traditional RSA on our sample task. Note that all
correlations (including the noise ceiling) are very close to 0, and that the models are completely
indistinguishable. While it is possible to potentially draw inferences from such a result, the effect
size is so small as to be worrisome-the results seem lost in the noise.

Our proposed novel approach to RSA uses trials as an indicator of neural data reliability.
Instead of correlating the model RDMs to individual subject RDMs and averaging the results,
we instead correlate the model RDMs to the average RDM over all subjects, computed using
only a subset of the trials from each subjects. This greatly boosts the SNR available.

To compute a noise ceiling in this approach, we again need an upper and lower bound. Recall
that each stimulus is presented for multiple trials - these repetitions give us an intuitive way to
measure data repeatability. One can ask: how correlated are these repetitions to each other? To
get the lower bound for our noise ceiling, we compute the all-subject average RDM using half
the trials for each stimulus, and compute the RDM again with the other half. This is repeated
for all possible splittings of the trials. To bound from above, relate the half-trial RDMS to the
full-trial RDM. This is overfit, as there is a replication of data, while the lower bound is underfit
(the SNR of these data RDMs is lower than that used to test the models).

Our new approach yields the results shown in Fig. 3.10, panel B. All reported correlations
have increased over the traditional approach, including the noise ceiling height. Note, however,
that the two models are still indistinguishable given the noise level in the data. While there is a
difference in how much each model correlates with the data, that difference could be attributable
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Figure 3.10: RSA Approach Comparison. Rank correlations between length and syntax mod-
els and neural activity over time. Gray shaded region gives the noise ceilling. A. Traditional
RSA. Models are correlated to individual subject data RDMs and reported correlation is the av-
erage over those scores. Noise ceiling is computed in the tradition single-subject manner. B.
Repetition-based RSA Proposed novel approach to RSA. Models are correlated with the mean
data RDM over subjects. Noise ceiling lower bound is computed by correlating an RDM con-
structed from half the trials with an RDM constructed from the other half, for all possible split-
tings. Upper bound is computed by correlating the half-trial RDMs with the full mean RDM.

to noise in the data as opposed to a true difference in explanatory power between models.

The noise ceiling is a powerful aspect of RSA that is not shared by decoding approaches. Not
only does it give us an estimate of how well any given model could possibly hope to correlate
with the neural activity, but it also gives us a principled method for measure neural activity SNR.
Without a noise ceiling, RSA would have the same problem that decoding has: it is clear whether
a model fails to correlate with neural activity because of an issue with the model, or because of
an issue with the MEG data itself (see Chapter 4 for a further explanation with this).

If we have multiple potential ways of creating a MEG RDM, say with different data pro-
cessing choices or different distance metrics, we need a principled way to choose between them.
Since using correlation with models creates circularity in that analysis, the clear answer is to
look at how design choices affect our noise ceiling. The noise ceiling tells us whether the data
RDMs become more reliable if we make a particular change.
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3.2.3 Treatment of Time
In the case of decoding, it was clear that using multiple timepoints was superior to using a single
timepoint, in terms of sensitivity. Is this also true for RSA? In this section we examine window
sizes ranging from 4ms to 200ms, as in the decoding section. For each window size, we compute
the noise ceiling as described in the previous section. We also compare averaging over time to
not averaging over time.
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Figure 3.11: Time Treatment Comparison. Mean of noise ceiling lower and upper bound over
post-sentence time period, for each window size, both averaging and not averaging over the
timepoints in that window.

The results are shown in Fig. 3.11. As we saw with decoding, more timepoints generally
improves performance. However, as in decoding, averaging over time seems to make little to no
difference.

3.2.4 Partial Correlations
Recall Fig. 3.10, and note that neither model is distinguishable in terms of its performance,
because both are as correlated with the MEG data as the MEG data is with itself (i.e. they are both
within the estimated noise ceiling bounds). Furthermore, as is intuitive from the construction of
these models, the model RDMs (shown in Fig. 3.9) are actually also correlated with one another
(Kendall τ of 0.31). This creates a problem for interpretation, because any of the following
scenarios could be true:
• Each model is correlated directly with the neural activity, and the correlation between

models is incidental. That is, the models are conditionally independent given the neural
activity.

• The syntax model is correlated directly with the neural activity and with the length model,
and the correlation between the length model and the neural activity is incidental.
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• The length model is correlated directly with the neural activity and with the syntax model,
and the correlation between the syntax model and the neural activity is incidental.

If we want to be able to disentangle these scenarios, we must look not at the zero-order corre-
lation across RDMs, but rather at the partial correlation. If the correlation between a given model
and the brain data conditioned on the other model is still high, then we can feel confident that
it has an independent relationship with the neural activity that cannot be explained by the other
model. If, alternatively, all the explanatory power rests with one model, correlations conditioned
on that model will be close to 0.

While the models in this section form a somewhat obvious example of this problem, it is by
no means a rare issue. As discussed in more detail in Chapter 4, in language, many features of
interest about a given stimulus are correlated (for example, word frequency is inversely correlated
with word length). This makes it difficult if not impossible to create a stimulus set that resembles
natural reading and spans an interesting linguistic space of stimuli. If we are comparing linguistic
models, particularly a model that is an incremental change over another (say, successive layers
in a neural network), there will also be correlations between model RDMs, independent of the
stimulus choice. Thus, if we want to use RSA to study language, we must use partial correlations
instead of zero-order correlations whenever necessary.

Zero-order Spearman’s (rank) correlation ρs between variables X and Y is defined as the
Pearson’s correlation computed on the ranks of those variables, rgX and rgY [61]:

ρs(X, Y ) =
cov(rgX , rgY )

σrgXσrgY
(3.10)

where σ denotes the standard deviation. In order to condition this rank correlation on a third
variable, Z, we first regress from Z to X and Y to produce X̂ = BZXZ and Ŷ = BZYZ. Then
we correlate the residuals from that regression to each other:

ρs(X, Y |Z) = ρs(X̂ −X, Ŷ − Y ) (3.11)

This easily generalizes to several conditioning variables via repeated regression and residual
computation [62].

Figure 3.12 demonstrates the difference that partial correlations can make. The standard zero-
order correlations are shown on the left. As we already know, both models perform very well and
are in the noise ceiling. On the right, each model’s partial correlation is plotted, conditioned on
the other model. That is, the correlation for the syntax model is the partial correlation conditioned
on the length model, and the correlation for the length model is the partial correlation conditioned
on the syntax model.

As is potentially obvious from the construction of these RDMs, the syntax RDM contains all
of the explanatory power of the two models. When the length model is conditioned on the syntax
model, its correlation with the neural activity drops almost to 0.

Conclusions
Multivariate analysis approaches have great potential to provide new insights into MEG data.
They can capture information content, moving beyond the simple contrasts of the past. However,
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Figure 3.12: Correlation Type Comparison. Comparison of max model correlations over time
with neural activity over the post-sentence time period. Noise ceiling is given in gray. On the
left are the zero-order correlations between each model and the neural activity. On the right we
have the conditional correlations, where each model is conditioned on the other model.

most of these approaches have been developed with fMRI data in mind. Some modifications
are necessary so as to better tailor them to noisy, timeseries data such as MEG data. In this
chapter, we examined two such methods, decoding and RSA, which each can provide unique
insight. Both methods, when applied without care, are insufficiently sensitive. What follows is a
set of guidelines distilled from the results in this chapter on how to most effectively employ each
method.

Decoding provides a straightforward and sensitive way of determining what stimulus infor-
mation is present in the neural signal. It draws its power from a wide array of classification
algorithms. However, MEG data has few data samples and many features, restricting us to the
domain of simple, linear classifiers. The most important attribute of a successful algorithm for
decoding from MEG data is that it include regularization and/or feature selection. Furthermore,
decoding can make use even of noisy single-trial MEG data during classifier training. However,
the performance of that trained classifier hinges on the SNR of the test data. It is best to average
all trials in which the test stimulus was presented to create the highest quality sample to test the
decoder on. Combining data across subjects by concatenating their feature vectors provides a
huge boost in performance over averaging single-subject results.

RSA allows us to compare theoretical models in terms of their ability to relate to neural
activity. As with decoding, data SNR is crucial for the efficacy of this technique. Traditional
RSA, which requires individual subject data to be highly reliable, is not effective when applied
to MEG data. We propose the use of RDMs averaged over all possible subjects to boost RSA
sensitivity. A strong advantage of RSA is the use of a noise ceiling to compute how well a model
can possibly do given the noise inherent in the data. When using our proposed approach, the
noise ceiling can be computed by comparing half the trials to either the other half of the trials
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(for the lower bound) or all of the trials (for the upper bound). This noise ceiling indicates much
higher data reliability than the traditional single-subject noise ceiling. Furthermore, the RSA
noise ceiling can be used to optimize the creation of the MEG data RDM in a principled and
straightforward manner. We additionally recommend that when using RSA to compare models
that are correlated to one another, partial correlations are used so as to distinguish the unique
explanatory power of each model.

MEG data is spatio-temporal, and its high temporal resolution is a large part of its appeal as a
neuroimaging technique. Both RSA and Decoding benefit from making use of the spatiotemporal
nature of the data, namely by using multiple timepoints at once for analysis. In the case of
decoding, it is crucial not to average over timepoints, but instead use them as they are. In RSA,
this does not appear to make very much difference in performance.

Overall, both decoding and RSA have great potential in terms of MEG data analysis, but they
must be tailored to suit the particularities of the MEG data in order to be effective. In Chapters
Chapters 5 and 6 we will use both techniques to learn more about sentence processing in the
brain.
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Chapter 4

Good Practices

Overview

The goal of neuroscience is to answer scientific questions about the brain. Sometimes these sci-
entific questions are broad and exploratory, such as “What happens in the brain of a person as
they read a sentence?” Sometimes these questions are specific and pertain to a particular hy-
pothesis, e.g., “Do humans post-process sentences after reading?” Neuroscientists record neural
activity while subjects perform particular tasks and use the resulting data to answer the scientific
question.

The choice of data analysis approach is crucial, because it determines what questions can
and cannot be answered. Previously, neuroscientists collected data from two conditions and
compared the data to see which parts of the brain behave differently under each condition, usually
using statistical parametric mapping (SPM) [63]. While statistically straightforward, this cannot
satisfactorily answer either of our two aforementioned example questions. Ideally we want to
understand the information content of neural activity in a broad sense, not simply the difference
between two conditions. A further ideal would be to record from the brain in a naturalistic
setting, as opposed to using unnatural, carefully chosen stimuli.

To that end, we can employ machine learning. Machine learning can tell us what information
a signal contains by testing the ability of that signal to distinguish between categories of interest.
This requires us to transform our scientific questions into prediction tasks, as shown in Table 4.1.

While a more complex approach gives us more flexibility in the types of questions we can

Scientific Question Prediction Task
What happens in the brain of
a person as they read a sen-
tence?

What information about the
sentence can be decoded from
the neural activity?

Do humans post-process sen-
tences after reading?

Can sentence-relevant infor-
mation be decoded from the
post-sentence neural activity?

Table 4.1: Sample Scientific Questions and Corresponding Prediction Tasks
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answer, it also requires more care. We should take note of the assumptions made by a given
approach (for example, the assumption that a classifier has no access to information about the
test data). We should also be concerned about the kinds of inferences we can make from our
results. This relies both on the analysis approach and the way the data was collected. In this
chapter, we detail several major concerns. While most of these concerns have been expressed by
others, in the interest of painting a complete picture, we present them all here, and explain how
these concerns informed the experimental and analysis choices made throughout the rest of the
thesis.

4.1 Decoding

The most obvious concern with decoding is double dipping, in which information about the test
set, on which we are validating performance, is leaked to the classifier during training [64]. This
compromises all results by making them optimistic, i.e., the classification accuracy is higher than
it would be on a true out-of-sample test [65]. However, this is not the only concern one should
be aware of when employing decoding to answer a scientific question. The inferences one can
make from decoding/classification results are not always straightforward.

4.1.1 Failure to decode indicates nothing

Given a data set contrasting the neural responses to two conditions, A and B, one can train a
classifier to distinguish A and B from the data. Let us say that it achieves only 50% accuracy on
an out-of-sample test, which is chance performance, equivalent to randomly guessing the class
assignment. What are potential explanations for this?

1. The data contains no information distinguishing A and B because the brain does not dis-
tinguish these conditions.

2. The data contains no information distinguishing A and B because our neural recording
approach cannot detect it.

3. The data contains information distinguishing A and B, but the difference between the two
is within the noise margin of the data.

4. The data contains information distinguishing A and B, but the chosen classifier cannot
detect it, e.g. because it is a nonlinear relationship and the chosen classifier is linear.

Scenario 1 is extremely unlikely, unless A and B are in fact the same in the brain. Scenario 2
is more likely, since each neural recording modality is limited in what it can detect. For example,
MEG can only detect magnetic fields orthogonal to the skull, but the cortical folds of the brain
are arranged such that neural activity propagates along a variety of directions. Scenario 3 is un-
fortunately also somewhat likely, depending on which regions in the brain underlie the difference
in A and B. Scenario 4 is also likely, although our choice of classifier is often restricted by the
number of data samples that we have. Because it is not possible to distinguish between these
scenarios, one cannot make scientific claims from a failure to decode. Therefore, throughout the
thesis we only make scientific inferences from positive decoding results.
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4.1.2 Causal inference of classifier weights is not possible
It is tempting to believe that if a particular feature x (e.g. the neural activity at a particular sensor
at a particular time)s is important for the success of a decoder (i.e. it is given a large weight),
that indicates that x plays an important computational role in the brain for distinguishing the
conditions of interest. Unfortunately this is an erroneous conclusion to draw.

It should be noted that the causal relationship between stimuli, neural activity, and behavior
has strong implications for what can and cannot be inferred from decoding (and encoding) mod-
els. Stimuli “cause” neural activity and neural activity “causes” behavior. For example, in our
experimental setup the subject reads a stimulus provided by the experimenter. Periodically the
subject gives an answer to a question about the previous sentence. The causality relationship be-
tween the neural activity and the stimulus/behavior differs in these two settings. In the setting of
passive reading, the stimulus is causing the neural activity. In the case of the question answering,
the neural activity causes the behavior. Decoding the stimulus from the neural activity is actually
anti-causal [38].

It is generally true that features useful for decoding are not necessarily the features that
contain class-distinguishing information. Take as an example a two-dimensional regression task,
with features x1 and x2 to predict an output variable y. Consider the following relationships:

x1 = y + ε

x2 = ε (4.1)

Here ε ∼ N (0, 1) is some noise that happens to be present in both features. Any reasonable
regression approach will assign weight w1 = +1 to x1 and weight w2 = −1 to x2. If feature
“importance” is indicated by |w|, both x1 and x2 will be considered signal-carrying. However,
x2 is obviously just playing a denoising role. Note that the signs could easily be reversed and the
same would still be true. It is impossible to determine which is the signal-carrying feature just
from decoding weights.

A typical neuroscientific goal is brain mapping, in which the neural regions recruited for the
computation of interest are identified. Using decoding to form such a map is difficult, given
the issues with interpreting classifier weights. However, recent methods have been developed
to transform classifier weights into interpretable importance maps [2]. When examining our
sensor-level decoding results, we will use this transform before interpreting our weight maps.

4.1.3 Correlation between labels affects inferences
In science we would ideally like to draw causal conclusions. However, due to ethical concerns,
neuroscientists mainly use passive recording techniques such as MEG to study healthy subjects.
These approaches can only yield correlational inferences.

Let us say that we can decode real-valued feature f (e.g. the length of a word stimulus)
from neural activity. Does that necessarily mean that the brain uses feature f as part of its
computational representation of the stimulus? Unfortunately, it does not. Let us suppose that
the true neural feature is g (in our example, g could be the number of text-colored pixels on the
screen). So long as the correlation between f and g, ρ(f, g) > 0, we will be able to decode f
reliably.
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This is the single most difficult problem in interpreting decoding results, although we can
attempt to mitigate this issue through careful stimulus selection and choice of decoding task.
For example, in the case of active and passive sentences, a clear confound with sentence voice
is sentence length. In English, passive-voice sentences are longer than active voice sentences.
So when we attempt to decode sentence voice, we may actually be decoding sentence length.
However, by intermixing shortened active and passive sentences with longer ones in the stimulus
set, we can decorrelate these two variables.

Correlation between models of stimulus processing can create issues for RSA as well. For
example, let us say we are trying to correlate successive layers of a neural network with neural
activity. These layers will likely be highly correlated with one another, and so too will the
respective RDMs. In RSA, we can use partial correlation to counteract this problem.

4.2 Language
Studying language in the brain is particularly challenging. Because language is a uniquely hu-
man phenomenon, neuroscientists have been unable to use animal models to study it. Much of
the causal inference in language neuroscience comes from lesion studies, which give Broca’s
and Wernicke’s areas their prominence in nearly all language models. For most neuroscientists,
language in healthy participants can only be studied passively.

Language processing is a naturally occurring behavior that is hard to replicate in an experi-
mental setting. Natural reading involves eye movements that create noise, and speech production
involves jaw movements that create noise. All methods currently available for recording neural
activity will be adversely affected by these noise sources.

Furthermore, one has to ensure that the subjects are engaged: passively reading single words
with no purpose is too boring, especially if the same words are presented over and over again (as
they must be to boost signal-to-noise ratio (SNR)). However, the task that a subject is performing
can directly impact how they think about the stimulus.

Lastly, as discussed in the previous section, correlation between stimulus attributes of inter-
est can be problematic for scientific inference. Unfortunately, many attributes of language are
correlated with one another, e.g. frequent helper words like “the” tend to be shorter than content
words.

In this section we discuss language-specific concerns in detail and provide recommendations.

4.2.1 Tasks influence how participants engage with the stimuli
In general, most participants in neuroscientific experiments are college students from the univer-
sity at which the research is conducted. Aside from the obvious issue with sample bias [66], this
type of participant may lack motivation to perform the requested task.

Lack of motivation is a clear problem for SNR, especially if the task involves the repetitions
of the same stimuli, which can be boring and tiresome. Furthermore, it has long been established
that the task context can affect even low-level sensory perception of the stimuli [67, 68, 69].

To combat this problem, most experiments using linguistic stimuli include an engagement
task. The purpose of this task is two-fold:
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1. To incentivize the correct kind of engagement with the stimuli (e.g. motivate the subject
to semantically engage with the material instead of passively look at it)

2. To indicate to experimenters whether a subject failed to engage (e.g. if they answered
many more questions incorrectly than their fellow participants, they were likely not engag-
ing) so that they can be excluded from further analysis.

However, humans are very good at subverting the desired “correct” kind of engagement if
another option is easier, as has been reliably observed in Mechanical Turk workers [70]. Let us
take the example of the semantic engagement questions used in this thesis. Participants could
use either one of the following strategies:

1. Read the sentence and integrate it semantically as soon as possible, then rehearse/store that
integrated meaning until a question is asked.

2. Read the sentence without integrating it, and just rehearse the component words, integrat-
ing only if there is a question.

If our goal is to detect sentence integration, we ideally want participants to integrate every
single sentence. We also want sentence integration to occur at roughly the same time. By in-
creasing the frequency of question trials, we can hopefully motivate participants to use Strategy
1.

When interpreting results, it is important to account for task effects by asking ourselves:
• Could these results be explained by the task the participants were required to perform?
• Do these results distinguish which strategy the participants used to complete the task?
• What implications do the answers to these questions have for my scientific conclusions?

4.2.2 Language features correlate with one another

The ideal scenario in hypothesis-driven scientific experiments is that we hold all stimulus at-
tributes constant except the variables of interest. Unfortunately, language does not lend itself
easily to such a scenario. Here are some examples of how language can complicate the scientific
endeavor:

1. If we want to study syntactic complexity of sentences, we are forced to admit that complex-
ity adds length to the sentences. For example, passive-voice sentences are always longer
than active-voice sentences

2. In natural language, it is unusual for inanimate objects to be the agents of verbs

3. The usage frequencies of words are correlated with their parts-of-speech and their length
It is simply not possible to account for all of these minute correlations in designing stimuli

while maintaining a naturalistic language experience for the subject.
Therefore the best we can do in analyzing language data is to try to give ourselves the op-

portunity to correct for these correlations when making scientific inferences. Looking at the
examples given:

1. Include both short active and short passive sentences. While the passive sentences are
longer than their active counterparts, a short passive sentence is shorter than a normal
active sentence.
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2. Eliminate animacy as a confound by only including animate nouns.

3. Explicitly model the unique contributions of different properties using partial correlations
or using additional regressors.

4.3 Exploratory vs Confirmatory Analysis

Many neuroscientists would agree that the field of neuroscience suffers from a reproducibility
crisis [71]. There has been discussion both of the theoretical explanation of the existence of the
crisis (namely, small sample sizes and marginally significant results) [72], as well as attempts to
quantify the lack of reproducibility empirically [73].

There are many factors that can make reproducing the results of others difficult:

1. Low statistical power and small effect sizes

2. Failure to communicate methods and data in a transparent manner

3. Conflating exploratory and confirmatory analysis (otherwise known as HARKing - “Hy-
pothesizing After Results are Known”) [74]

All three explanations have received attention in the community, culminating in a set of con-
crete recommendations to improve reproducibility [75]. I want to direct special attention to the
third factor, HARKing, which is likely the easiest mistake to make when conducting neurosci-
entific research. HARKing can lead to optimistic results that will later be difficult to reproduce,
since they are the result of overfitting to the data set. Recall our neuroscientific questions:

• What happens in the brain of a person as they read a sentence?
• Do humans post-process sentences after reading?

Our first question has no hypothesis, and everything we do, from data collection to analysis, is
done without a hypothesis in mind. This has implications for our results. Because we want to be
able to build appropriately on prior work it is important to draw a distinction between exploratory
and confirmatory work. In exploratory analysis we are given data and ask the question: what is
here? Conclusions drawn from exploratory work are not affirmative scientific statements, but
rather hypotheses that are potentially true and require explicit confirmation. In a confirmatory
analysis, a hypothesis and analysis plan are decided in advance, and the conclusion can thus be
interpreted as the truth or the falsehood of the hypothesis.

While we would never dream of directly double-dipping within a given analysis, e.g. by
reporting training accuracy instead of test accuracy, when we apply many analyses with many
different hyperparameters to a data set, we are effectively overfitting to that data set. This can
also be thought of as creating an unintended multiple comparisons problem [76].

What can we do about this? The ideal is to perform replications of our experiments to test
any discovered effects explicitly in a confirmatory manner. Another solution that may be less
expensive is to reserve a held-out test set from all explorations, although in order to maintain
statistical power that test set will need to be large [72]. Alternatively, the field could shift to
value the honest reporting of exploratory results.
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Conclusions
Answering scientific questions with certainty is difficult, and while more complex analysis tools
such as machine learning can improve our ability to uncover signal in the data, they also come
with caveats to bear in mind during scientific inference. Language is a difficult phenomenon
to study, as it puts in direct conflict experimental controls and naturalistic experience. While
exploration of a data set for clues is a critical part of the research life-cycle, it is important to
bear in mind that results of exploration are optimistic and additional data is needed to confirm
any discovered hypotheses.

There is hope for neuroscience, as the field moves to a more open structure (sharing data,
code, publishing preprints), we will naturally produce more reliable results. More and more
neuroscientists are dedicated to tackling these issues as they arise [75].

In this thesis we make a strong effort to bear all of these concerns in mind. There are two
components to this work: the first is optimizing our analysis approaches to MEG data, as pre-
sented in the previous chapter. All of this tuning is performed on a pilot data set. The second
component is to uncover the information about syntax and semantics available in the MEG data,
so as to better understand how humans process sentences. In the next chapter, we will present ex-
ploratory results on the pilot data set that yield several key hypotheses. In the following chapter,
these hypotheses are directly tested in a confirmatory manner on an untouched data set.
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Chapter 5

Pilot Data Analysis

Overview
Evidence suggests that when humans read a sentence, they greedily “merge” each word they en-
counter into a hierarchical tree-like representation of the sentence [25]. However, sentences with
atypical syntax, such as passive voice sentences, present a problem for online sentence compre-
hension; assuming that the sentence is active voice when parsing is incorrect and will require
correction. Only when one has read the full sentence can one hope to make the correct parse.
Previous work examining this problem points to the existence of a post-sentence “reanalysis”
effect, but no study has revealed what information is present in the neural signal during this
reanalysis time period [27, 28].

To better understand the interplay of syntax and semantics in sentence reading, and to hope-
fully uncover the information content of post-sentence neural activity, we designed an experiment
contrasting active and passive voice sentences.

The purpose of this pilot data set was two-fold: first, to serve as a testbed for optimizing the
machine learning approach to analyzing MEG data, described in Chapter 3. The second purpose
of this pilot data set was to conduct an exploratory analysis of neural activity during sentence
reading and post-sentence. Previous work has shown that there is a difference in neural activity
between active and passive sentences, and that this difference is most visible post-sentence [27,
28]. What is unknown is what kind of information that neural signal may contain.

In this chapter we first detail the initial scientific questions we hoped to answer through ex-
ploration of this data set. We then describe the experimental design and data collection, informed
by these questions. Next we outline the basic decoding approach as developed in Chapter 3.

The results presented in this chapter show the information flow decodable from the MEG
signal both during sentence reading and post-sentence. From these results we distill a list of
data-driven hypotheses that we then confirm in Chapter 6.

5.1 Questions of Interest
In analyzing the pilot data set we were interested in the following broad questions:

1. What is the information flow over time in the MEG signal as a sentence is being read?
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2. Is there a post-sentence ‘wrap-up’ period, and what information does it contain?

The questions of information content in the MEG signal can be distilled into a series of clas-
sification tasks in a straightforward manner. Each sentence contains a noun in the role of agent
(e.g. ‘dog’ in ‘A dog found the peach’ and ‘The peach was found by a dog’), and a noun in the
role of patient (e.g. ‘peach’ in the previous example), along with an action verb (e.g. ‘found’). If
we can classify above chance (successfully decode) the identity of one of these words, e.g. the
verb, we can claim that information pertaining to that word is present in the MEG signal. Note
that, as discussed in Chapter 4, the inverse is not true.: when a classifier fails to decode above
chance, there are many potential causes of that failure (insufficient data, poor SNR, weak classi-
fier) between which we cannot distinguish.

Using the full timecourse from sentence onset until the presentation of the following stim-
ulus, we attempt to decode the following, training and testing on active and passive sentences
separately:

1. First noun identity

2. Verb identity

3. Second noun identity

As an additional task, we attempted to decode the identity of the first determiner (‘a’ or
‘the’) from the first 500ms of the sentence, and contrasted the neural activity elicited by these
determiners to that corresponding to ‘dog’, a short noun. Given that determiners are very unique
linguistically, we were curious to see if this difference is detectable in neural activity.

Using the timecourse from the last word (the second noun) onset onward, we attempt to
decode the following sentence attributes, using active and passive sentences separately, but also
the pool of active and passive sentences:

1. Proposition identity (e.g. ‘A dog found the peach’ and ‘The peach was found by a dog’ are
considered the same class) (pooled sentences only)

2. Sentence voice (pooled sentences only)

3. Agent identity

4. Patient identity

5. Verb identity

6. First Noun identity (pooled sentences only)

There were minimal a priori hypotheses when collecting this data set, as is evident from
the exploratory nature of our questions of interest. The data were subjected to many different
classification approaches in Chapter 3, and while the results are consistent independent of ap-
proach, the exact decoding accuracies shown here are likely optimistic since analysis decisions
were made based on test accuracy reported in Chapter 3, leading to overfitting (see Chapter 4 for
a more detailed discussion of this). However, the work presented here presents an important first
step in understanding sentence processing: it reveals that a wealth of information can be detected
during a post-sentence ‘wrap-up’ period, when using an optimized decoding approach.
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5.2 Methods

5.2.1 Data Collection

8 neurologically healthy, right-handed native English speakers from Carnegie Mellon Univer-
sity’s Machine Learning Department read 32 noun-verb-noun sentences that varied in voicing.
The sentences are composed of 8 nouns and 4 verbs. Each of 16 propositions was presented
in both active and passive voice 15 times over the course of 5 blocks (e.g. “The dog found the
peach" and “The peach was found by the dog"). Each word was presented for 300ms with 200ms
rest in between, and there was a 2s rest period between sentences. Comprehension questions
(e.g. “Was there a vegetable?”) followed 10% of sentences, to ensure semantic engagement.
All 8 subjects answered close to all of the questions correctly and so all were used in the final
analysis. Of the 15 trials per sentence, the first 10 were used for analysis, as we were concerned
about memorization of the stimuli. See Appendix A for data recording and preprocessing details
and Appendix B for the full set of stimuli.

5.2.2 Basic Decoding Approach

Throughout this chapter we follow the optimized decoding approach described in Chapter 3, in
which an `2-penalized, one-vs-all logistic regression classifier is trained and tested in a sliding
window fashion over the MEG data timeseries. Each window is the mean activity at 306 sensors
over 100ms, concatenated over subjects to form a 306× 8 = 2448 dimensional feature vector. In
addition to a simple sliding window approach, we also apply the temporal generalization method
[39], in which a Temporal Generalization Matrix (TGM) is constructed from the accuracies of
training and testing on all possible pairs of time points. The stride between windows is 10ms.

The cross-validation scheme throughout is leave-one-sentence-out, in which all trials of the
test sentence are held out and averaged together to create one high-SNR test instance. To fa-
cilitate hyperparameter selection for the `2 penalty via nested cross-validation, we train on 2
instances per sentence, where each instance is the average of 5 trials.

Significance is established via a per-timepoint permutation test with 100 permutations (note
that due to computational complexity, permutation results are only available for the post-sentence
decoding experiments). Multiple comparisons are corrected via controlling the false discovery
rate [42]. To determine whether the effect at a given timepoint (as measured by decoding accu-
racy) is representative of the subject population or due to the data from only a small subset of
subjects, we re-run the analysis in a leave-one-subject-out fashion, using the data from all but
one subjects (thus generating a 306×7 = 2142 length feature vector). We then report the fraction
of folds (out of 8) for which the accuracy was above chance. If that fraction is high, then the
decoding accuracy comes from a signal that is consistently present in the subject population. If
not, then only a few subjects carry the effect. For a given timepoint, it is counted as “significant”
if 100% of subject folds are above chance and if it has a corrected p < 0.05.
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5.3 Results

5.3.1 Information Flow during Sentence Reading

The TGM for each during-sentence classification task is shown in Fig. 5.1. For each sentence
type, each word in the sentence is decodable as it is being read, and the verb and second noun are
again decodable post-sentence. However, the strength and duration of post-sentence reactivation
seems to differ: active sentences have a strong, sustained verb reactivation, while the second
noun is more strongly reactivated in passive sentences.

Two issues are apparent from these results: first, that there is some problem with the stimuli,
since the second noun in active sentences can be decoded during first determiner presentation.
Upon further inspection, we realized that the first determiner is in fact predictive of second noun
identity due to the construction of the stimulus sentences. Secondly, there is insufficient post-
sentence time for passive sentences, which may lead us to miss effects. These two issues are
addressed in the confirmation experiment in Chapter 6.

Focusing on the diagonal of these matrices (when the classifier was trained and tested on
the same time point) can give a potentially clearer sense of information flow. The overlay of
when words are decodable in active and passive sentences is shown in Fig. 5.2. These are the
composites of the diagonal entries of the TGMs in Fig. 5.1.

Figure 5.2 makes certain aspects of the results more apparent. For example, while decoding
accuracy can be quite high above chance, it can also be quite far below chance. The verb is actu-
ally more decodable and has more sustained decoding in passive sentences during presentation,
but, as we have already noted, post-sentence verb decoding is stronger in active sentences. It
is even more clear in these plots that there is insufficient time post-sentence to see all potential
effects in passive sentences.

From which brain regions are we decoding the identities of these words and at which times?
To examine this question, we generated importance maps from the learned classifier weights as
described in [2] at 0.15s post word onset (for the word of interest) and again at 0.3s post word
onset. The feature vector used to train the classifier consisted of the concatenation across subjects
of mean sensor activity over 100ms. The resulting transformed importance map was averaged
over subjects, giving an importance weight to each of 306 sensors. Plots of the importance of
the lateral gradiometer are shown in Figs. 5.3 for the 0.15-0.25s time window and 5.4 for the
0.3-0.4s time window.

In the early time period, occipital sensors dominate; however, for the verb, right temporo-
frontal sensors are also important. In second noun decoding, frontal sensors are even more
pronounced. In the late time period, left and right temporal and frontal sensors are the most
important for decoding, but occipital sensors are still relevant.

In this experiment, we additionally contrasted the determiners used for the nouns, using ‘a’
and ‘the.’ These two determiners turned out to be highly distinguishable from one another,
with F1 score 1.0 for many timepoints. It is reasonable to ask whether the two determiners are
solely distinguishable due to the difference in string length (1 vs 3 letters). As control tasks, we
contrasted both determiners to the noun ‘dog’ and observed the resulting accuracy. The results
are summarized in Fig. 5.5. If the sole driver of determiner distinguishability were word length,
then that ‘a’ vs ‘dog’ task would achieve a similarly high accuracy to the ‘a’ vs ‘the’ task. This
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is evidently not the case. While the ‘a’ vs ‘dog’ task achieves a higher accuracy than the ‘the’ vs
‘dog’ task, it does not match the performance of the ‘a’ vs ‘the’ task. Therefore we must conclude
that there is something beyond word length that explains the decodability of determiners.

5.3.2 Post-sentence Wrap-up

While the difference between active and passive sentences was the original primary investigative
goal, it is possible that some questions about the post-sentence period can be best answered by
decoding from the pool of active and passive sentences. That is, we can examine what occurs
post-sentence for all sentences, independent of syntax.

The performance at each decoding task over time is shown in Fig. 5.6. In active sentences
(panel A), the patient (second noun) is decodable, but the agent (first noun) is not really decod-
able. As obseved previously, the verb is highly decodable. In passive sentences (panel B), both
the agent and the patient are decodable (the agent is less strongly decodable, but is still above
chance). The verb is decodable from passive sentences as well but in two distinct windows,
concurrent with the agent. On the pool of all sentences (panel C), sentence voice is highly de-
codable. When voice declines in decodability, the proposition becomes decodable. All sentence
components (agent, patient, verb) are weakly decodable as well.

How stable are the post-sentence representations over time? We can answer this question with
temporal generalization, shown in Fig. 5.7. Voice decoding (panel E) seems to evolve somewhat
rapidly and then dissipate, while verb decoding highly stable.

Again, we can examine the importance map over the brain underlying the decoding accura-
cies that we see, using the method described in [2] at 0.61s post last word onset (the time at which
proposition decoding accuracy peaks). The feature vector used to train the classifier consisted of
the concatenation across subjects of mean sensor activity over 100ms. The resulting transformed
importance map was averaged over subjects, giving an importance weight to each of 306 sensors.
Helmet plots of the importance of the lateral gradiometer for each classification task are shown
in Fig. 5.8.

The sensors that contribute most to proposition decoding are left temporal and frontal, and
verb decoding is similarly supported. Sentence voice, on the other hand, draws on activation
from bilateral temporal sensors, as well as left parietal sensors in the neighborhood of the inferior
frontal gyrus.

Conclusions

Hypotheses for Sentence Comprehension

Our results clearly support the existence of a post-sentence ‘wrap-up’ period in which the fol-
lowing information is present in the MEG signal:
• The voice of the sentence
• The identity of the verb
• The identity of the agent
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• The identity of the patient
• The identity of the first noun
• The identity of the sentence proposition
This refines the view that sentence processing is fully incremental by demonstrating that voice

reconciliation and further processing occur once the sentence has been completely read. Another
important observation is that the post-sentence information content differs between active and
passive sentences. We can decode both agent and patient identity from passive sentences, but
not from active sentences. These results confirm two key findings in the literature: that there are
differences in the post-sentence neural representations of active and passive sentences [27, 28],
and that there are separate neural signatures for nouns in the roles of agent and patient [30, 34].

We expand on what is known by showing a temporal evolution of this post-sentence activity,
where sentence voice, agent, and patient, are all present in the neural signal, followed by the verb
and the proposition identity. While it is impossible to prove that integration is taking place when
these attributes are decodable, we clearly see evidence of both the necessary pieces of integration
and the result of that integration in rapid succession post-sentence.

Through the exploration of this pilot data set, we have the following hypotheses to confirm
on the confirmation data set:

1. A post-sentence wrap-up period exists and contains relevant sentence integration infor-
mation, and the result of that integration: the final sentence proposition, independent of
syntax.

2. This wrap-up starts at the presentation of the last word and persists for 500ms beyond its
offset.

Additional results of interest from this exploration are that we can decode constituent words
of a sentence as they are being read, independent of the context in which the words are pre-
sented. Furthermore, determiners seems to have highly separable neural representations, a fact
that cannot solely be attributed to their visual differences.

Alternative Explanations for Results
Unfortunately the stimuli for the pilot data set are not completely balanced. This leads to two
problems for interpretation:

1. The patient is always inanimate and the agent is always animate. This confounds the
difference between active and passive sentences at last word presentation and possibly
beyond.

2. All active sentences are shorter than all passive sentences. Therefore the difference be-
tween active and passive sentences can be confounded by sentence length.

3. The first determiner (‘the’ or ‘a’) is predictive of the second noun in active sentences, and
the second determiner is predictive of the first noun in passive sentences. This causes issues
for interpreting the decoding accuracy timeseries observed during sentence presentation
and explains why some words can be decoded before they are presented.

We can test explanation 1 directly by running a follow-up experiment. We can train an
animacy decoder on data from the presentation of the first noun. We can then apply this animacy

48



decoder to the data from the presentation of the second noun. If the difference in noun animacy
is the primary driver of our sentence voice classification results, then the animacy decoder will
perform nearly as well as the voice decoder does. The result is shown in Fig. 5.9. While animacy
is decodable from the neural data, it only explains the early voice decoding peak and a secondary
peak at 0.4s post second noun onset.

Additionally, as previously mentioned, when one performs so many classification tasks on
the same data as we did in Chapter 3, even with cross-validation, the results will start to overfit
the data set. Thus the effect sizes presented here are likely optimistic.

Lastly, it is natural to ask whether the post-sentence wrap-up period observed here is an
artifact of requiring subjects to answer comprehension questions after a subset of the sentences.
The comprehension questions are necessary in order to ensure the engagement of subjects in the
experiment; however, they do make the reading setting less natural. It is possible that the only
reason we observe a post-sentence ‘wrap-up’ is because participants are holding the sentence in
working memory in preparation for the question that may come. In light of previous work on
post-sentence activity (as discussed in Chapter 2), it seems unlikely that this is the major driver
of this effect. While this is the first work to our knowledge on the precise information content of
the post-sentence signal, post-sentence activity has been shown to distinguish between linguistic
conditions in a variety of task settings [25, 27, 28].
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Figure 5.1: Rank accuracy TGMs for each during-sentence classification task. Each plot
shows all pairs of training and testing timepoints over sentence presentation. The y axis indi-
cates training time, and the x axis indicates test time, with sentence onset starting in the upper
left corner. White vertical lines indicate word onsets and final sentence offset. Chance rank ac-
curacy is 0.5, with a maximum value of 1.0. Classification was performed on either the set of
active or passive sentences separately, using the mean sensor activation over a 100ms window
concatenated across subjects as the feature vector. Cross-validation was leave-one-sentence out.
A. TGM for decoding the first noun from active-voice sentences. Classification task was to
detect the identity of the first noun of the sentence, training and testing only on active voice
sentences. B. TGM for decoding the verb from active voice sentences. Classification task
was to detect the identity of the verb of the sentence, training and testing only on active voice
sentences. C. TGM for decoding the second noun from active voice sentences. Classification
task was to detect the identity of the second noun of the sentence, training and testing only on
active voice sentences. D. TGM for decoding the first noun from passive voice sentences.
Classification task was to detect the identity of the first noun of the sentence, training and testing
only on passive voice sentences. E. TGM for decoding the verb from passive voice sentences.
Classification task was to detect the identity of the verb of the sentence, training and testing only
on passive voice sentences. F. TGM for decoding the second noun from passive voice sen-
tences. Classification task was to detect the identity of the second noun of the sentence, training
and testing only on passive voice sentences.
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Figure 5.2: Rank accuracy over time during sentence reading. Each plot shows rank accu-
racy over time for each word in the sentence. Black vertical lines indicate word onsets and final
sentence offset. Chance rank accuracy is 0.5, with a maximum value of 1.0. Classification was
performed on either the set of active or passive sentences separately, using the mean sensor acti-
vation over a 100ms window concatenated across subjects as the feature vector. Cross-validation
was leave-one-sentence out. A. Information flow during active voice sentence reading. Ac-
curacy for decoding each of the constituent words from active sentences. B. Information flow
during passive voice sentence reading. Accuracy for decoding each of the constituent words
from passive sentences.
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Figure 5.3: Helmet plots for each during-sentence classification task at 0.15s post word on-
set. Each plot shows the resulting importance map from training a classifier 0.15s post onset of
the word of interest. Importance maps were computed from the classifier weights on the con-
catenation of all subjects’ mean sensor activity from 0.15 to 0.25 s post onset as described in
[2]. Maps were then averaged over subjects. Importance values for a single gradiometer are
shown. Titles give the rank accuracy at the time examined. A. Importance map for decoding
first noun from active sentences. Classification task was to detect the identity of the first noun
of the sentence, training and testing only on active voice sentences. B. Importance map for
decoding verb from active sentences. Classification task was to detect the identity of the verb
of the sentence, training and testing only on active voice sentences. C. Importance map for
decoding second noun from active sentences. Classification task was to detect the identity of
the second noun of the sentence, training and testing only on active voice sentences. D. Impor-
tance map for decoding first noun from passive sentences. Classification task was to detect
the identity of the first noun of the sentence, training and testing only on passive voice sentences.
E. Importance map for decoding verb from passive sentences. Classification task was to de-
tect the identity of the verb of the sentence, training and testing only on passive voice sentences.
F. Importance map for decoding second noun from passive sentences. Classification task
was to detect the identity of the second noun of the sentence, training and testing only on passive
voice sentences.
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Figure 5.4: Helmet plots for each during-sentence classification task at 0.3s post word on-
set. Each plot shows the resulting importance map from training a classifier 0.3s post onset of
the word of interest. Importance maps were computed from the classifier weights on the concate-
nation of all subjects’ mean sensor activity from 0.3 to 0.4 s post onset as described in [2]. Maps
were then averaged over subjects. Importance values for a single gradiometer are shown. Titles
give the rank accuracy at the time examined. A. Importance map for decoding first noun from
active sentences. Classification task was to detect the identity of the first noun of the sentence,
training and testing only on active voice sentences. B. Importance map for decoding verb
from active sentences. Classification task was to detect the identity of the verb of the sentence,
training and testing only on active voice sentences. C. Importance map for decoding second
noun from active sentences. Classification task was to detect the identity of the second noun
of the sentence, training and testing only on active voice sentences. D. Importance map for
decoding first noun from passive sentences. Classification task was to detect the identity of the
first noun of the sentence, training and testing only on passive voice sentences. E. Importance
map for decoding verb from passive sentences. Classification task was to detect the identity
of the verb of the sentence, training and testing only on passive voice sentences. F. Importance
map for decoding second noun from passive sentences. Classification task was to detect the
identity of the second noun of the sentence, training and testing only on passive voice sentences.
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Figure 5.5: Decodability of determiners over time. F1 score when decoding three tasks: ‘a’ vs
‘the’, ‘a’ vs ‘dog’ and ‘the’ vs ‘dog’ over word presentation time. F1 score was used instead of
classification accuracy because there are many more instances of the determiners than of ‘dog’.
Classifier was balanced during training by weighting the samples, so as to eliminate bias towards
the more common class.
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Figure 5.6: Information flow post-sentence. Each plot shows rank accuracy over time for each
post-sentence classification task. Chance rank accuracy is 0.5, with a maximum value of 1.0.
Classification was performed on either the set of active and passive sentences separately as well
as the pool of all sentences, using the mean sensor activation over a 100ms window concatenated
across subjects as the feature vector. Cross-validation was leave-one-sentence out. The black
vertical line indicates the offset of the second noun (the end of the sentence). A. Decoding
accuracy post active-sentences. Classification accuracy of agent, verb and patient training and
testing on active sentences only. B. Decoding accuracy post passive-sentences. Classification
accuracy of agent, verb and patient training and testing on passive sentences only. C. Decoding
accuracy post all sentences. Classification accuracy of agent, verb, patient, voice, first noun,
and proposition, training and testing on the pool of all sentences.

55



0.0

0.5

1.0

A Agent B Patient C Verb

0.0 0.5 1.0

0.0

0.5

1.0

D First Noun

0.0 0.5 1.0

E Sentence Voice

0.0 0.5 1.0

F Proposition ID

0.60

0.75

0.90

Rank Accuracy TGMs
All Sentences

T
ra

in
 T

im
e
 R

e
la

ti
v
e
 t

o
 L

a
st

 W
o
rd

 O
n
se

t 
(s

)

Test Time Relative to Last Word Onset (s)

Figure 5.7: Rank accuracy TGMs for each post-sentence classification task. Each plot shows
all pairs of training and testing timepoints from second noun presentaiton onwards. The y axis
indicates training time, and the x axis indicates test time, with word onset starting in the upper
left corner. Chance rank accuracy is 0.5, with a maximum value of 1.0. Classification was
performed on the pool of both active and passive sentences, using the mean sensor activation over
a 100ms window concatenated across subjects as the feature vector. Cross-validation was leave-
one-sentence out.The white line indicates the offset of the second noun (the end of the sentence).
A. TGM for decoding the agent of the sentence. Classification task was to detect the identity
of the agent. In active sentences, this is the first noun, and in passive sentences it is the second
noun. B. TGM for decoding the patient of the sentence. Classification task was to detect the
identity of the patient. In active sentences, this is the second noun, and in passive sentences it is
the first noun. C. TGM for decoding the verb of the sentence. Classification task was to detect
the identity of the verb. D. TGM for decoding the first noun of the sentence. Classification
task was to detect the identity of the first noun. In active sentences this is the agent, and in passive
sentences it is the patient. E. TGM for decoding the voice of the sentence. Classification task
was to detect the voice of the sentence (active or passive). F. TGM for decoding the proposition
of the sentence. Classification task was to detect the proposition of the sentence (where the active
and passive version of the proposition were given the same class label).
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Figure 5.8: Helmet plots for each during-sentence classification task at 0.61s post last word
onset. Each plot shows the resulting importance map from training a classifier 0.61s post onset
of the last word in the sentence. Importance maps were computed from the classifier weights on
the concatenation of all subjects’ mean sensor activity from 0.61 to 0.71 s post onset as described
in [2]. Maps were then averaged over subjects. Importance values for a single gradiometer are
shown. Classification tasks were conducted on the pool of both active and passive sentences.
Titles give the rank accuracy at the time examined. A. Importance map for decoding the
agent. Classification task was to detect the identity of the agent of the sentence, which in passive
sentences is the second noun and in active sentences is the first noun. B. Importance map
for decoding the patient. Classification task was to detect the identity of the patient of the
sentence, which in passive sentences is the first noun and in active sentences is the second noun.
C. Importance map for decoding verb. Classification task was to detect the identity of the verb
of the sentence. D. Importance map for decoding first noun. Classification task was to detect
the identity of the first noun of the sentence. E. Importance map for decoding sentence voice.
Classification task was to detect the voice (active or passive) of the sentence. F. Importance
map for decoding proposition. Classification task was to detect the identity of the proposition
of the sentence.
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Figure 5.9: Rank accuracy TGMs crossing noun presentations for animacy decoding. Each
plot shows a rank accuracy TGM for a pair of training and testing scenarios from which we at-
tempted to decode noun animacy. The y axis indicates training time, and the x axis indicates
test time, with word onset starting in the upper left corner. Chance rank accuracy is 0.5, with
a maximum value of 1.0. Classification was performed on the pool of both active and passive
sentences, using the mean sensor activation over a 100ms window concatenated across subjects
as the feature vector. Cross-validation was leave-one-sentence out. A. Training on first noun,
testing on first noun. Animacy decoding results when training and testing on data from first
noun presentation. B. Training on first noun, testing on second noun. Animacy decoding re-
sults when training on data from first noun presentation (agnostic to sentence length) and testing
on data from second noun presentation. C. Training on second noun, testing on first noun.
Animacy decoding results when training on data from second noun presentation and testing on
data from first noun presentation. D. Training on second noun, testing on second noun. Ani-
macy decoding results when training on data from second noun presentation and testing on data
from second noun presentation.
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Chapter 6

Confirmatory Data Analysis

Overview

The neuroscientific goal of this thesis has been to better understand how the brain processes
sentences, even when those sentences differ in syntactic structure. To that end we have collected
MEG data from participants reading active and passive voice sentences and used a decoding
approach to understand the information content in the neural signal both during sentence reading
and post-sentence.

In Chapter 5 we discussed a small pilot data set that we used to refine our decoding approach
and to conduct an exploratory analysis of the data. From that pilot experiment, we were able to
determine several key methodological choices (discussed in more detail in Chapter 3), as well as
distill some hypotheses about sentence reading.

We collected a second data set for two reasons:
1. To confirm the (likely optimistic) results found in Chapter 5.

2. To present more balanced stimuli than were presented in the pilot data set.
In spirit, the experiment discussed in this chapter is a replication of the pilot experiment: we

again contrasted active and passive sentences. However, there are three key stimulus changes
(for example stimuli, see Table 6.1):

1. We present both short and long active and passive sentences.

2. All nouns are animate nouns.

3. The only determiner used is “the.”

By adjusting the stimuli, we are able to draw stronger scientific conclusions by accounting for
potential confounds. Furthermore, the new set of stimuli enables us to ask additional scientific
questions that the pilot data set could not answer.

In this chapter we present two lines of analysis: the confirmation of the Chapter 5 hypotheses,
and the exploration of further questions. The first line of analysis is conducted with the decoding
approach that we tuned in Chapter 3, while the second uses RSA, modified to be more sensitive
to MEG data (as discussed in Chapter 3).
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6.1 Questions of Interest

6.1.1 Hypotheses to Confirm
In Chapter 5 we uncovered a post-sentence ‘wrap-up’ period in which the following information
is present in the MEG signal:
• The voice of the sentence
• The identity of the verb
• The identity of the agent
• The identity of the patient
• The identity of the first noun (independent of role as agent or patient)
• The identity of the sentence proposition
This can be distilled into the two following hypotheses:

1. A post-sentence wrap-up period exists and contains relevant sentence integration informa-
tion, and the result of that integration.

2. This wrap-up starts at the presentation of the last word and persists for 1.5s beyond its
onset.

Furthermore we observed that the wrap-up period for passive sentences differed from that of
active sentences. Specifically, we found that while both agent and patient were decodable from
active sentences, only the patient was decodable from post-sentence data in active sentences.

The stimuli in the pilot data set were unfortunately not balanced: sentence voice is con-
founded both by sentence length and by the fact that all agents were animate nouns and all
patients were inanimate nouns. While we seek to confirm the pilot result of the post-sentence
wrap-up period, this experiment further refines it by accounting for these stimulus confounds.

6.1.2 Further Exploratory Questions
Because the confirmatory data set is unencumbered by confounds such as sentence length and
noun animacy, it can potentially answer additional questions.

To what extent is sentence length decodable from the data? We hypothesize that sentence
length (short vs long) will be highly decodable, based on results showing that the number of open
nodes in a syntactic tree correlates with neural activity [25]. This is an additional classification
task that can only be applied to the confirmatory data set.

An additional question of interest that is corollary to that of proposition identity: how well
can we decode argument binding? That is, how well can a classifier distinguish “The man ap-
proached the woman” from “The woman approached the man”? This is related to decoding
proposition identity insofar as succeeding at this task will improve proposition decoding perfor-
mance. However, it is possible to simply decode the tuple of (first noun, verb, second noun), and
not the desired tuple of (agent, verb, patient) and still perform well at the proposition identity
decoding task. For example, the classifier gets credit for distinguishing “The boy kicked the girl”
from “The man approached the woman,” but that does not require getting the argument binding
right. Decoding accuracy for argument binding can be derived from the proposition identity de-
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Syntactic Category Example Sentence
Long Active The man approached the woman.
Short Active The man approached.
Long Passive The woman was approached by the man.
Short Passive The woman was approached.

Table 6.1: Sample Stimuli from Confirmatory Experiment

coding task by rescoring the classifier’s predictions to only count whether the correct binding is
ranked above the incorrect binding.

As discussed in Chapter 3, RSA is a useful analysis technique that, when optimized for
MEG, can help us evaluate models of sentence processing based on their ability to correlate with
neural activity. In this chapter we present an application of RSA to the confirmatory data set that
contrasts the following:

1. A pure syntax model, in which sentences are considered similar if they have similar syn-
tactic structure.

2. A pure semantic model, in which a bag-of-words semantic representation is created for
each sentence.

3. An integration model, that uses both syntactic and semantic information to compute the
similarity between sentences.

By comparing these three models in terms of their ability to explain post-sentence activity,
we can complement our decoding analysis. The decoding analysis shows which components
of the sentence are distinguishable post-sentence, whereas the RSA analysis shows which type
of global information (syntax, semantics, an integration of both) best characterizes the neural
activity.

6.2 Methods

6.2.1 Data Collection
26 neurologically healthy, native English speakers recruited from the city of Pittsburgh, PA read
32 simple sentences that varied in voicing. The sentences are composed of combinations of 4
nouns (man, woman, girl, boy) and 4 verbs (helped, approached, kicked, punched). Sentences
belonged to four syntactic categories, with 8 sentences in each category, summarized in Table
6.1. See Appendix A for data recording and preprocessing details and C for complete stimulus
set.

Each sentence was presented a total of 10 times over the course of 5 blocks. Each word
was presented for 300ms with 200ms rest in between, and there was a 3s rest period between
sentences. Comprehension questions (e.g. “Did she do nothing?”) followed 25% of sentences,
to ensure semantic engagement.

All but one of the subjects were right-handed; the left-handed participant was excluded from
analysis. Of the remaining 25 subjects, one had data quality that was too poor to use, and 4 failed

61



to answer greater than 50% of the engagement questions correctly. These 5 were excluded from
analysis, for a total of 20 subjects remaining.

Of the 20 remaining subjects, 10 returned for structural scans that enabled us to source-
localize their data. Data were source-localized using Minimum Norm Estimation (MNE) [85].
Sources were spaced 7mm apart using an icosahedral structure. The source-localized data was
then parcellized using the Freesurfer atlas so that decoding results could be obtained for each
region-of-interest (ROI).

6.2.2 Decoding Experiments
In Chapter 5 we optimized our decoding approach for the classification tasks of interest. Here
we use the same parameters (with no adjustment) to cleanly attempt to replicate the pilot results,
namely an `2-penalized, one-vs-all logistic regression classifier is trained and tested in a sliding
window fashion over the MEG data timeseries. Each window is the mean activity at 306 sensors
over 100ms, concatenated over subjects to form a 306 × 20 = 6120 dimensional feature vector.
The lack of parameter exploration on our part is the crucial element that allows this study to
constitute a replication of the pilot study. For each task we computed the temporal generalization
matrix (TGM), training and testing our classifier on all pairs of timepoints, cross-validating in a
leave-one-sentence-out manner.

To replicate the results found in Chapter 5 that showed that the constituent words of a sentence
are decodable as they are being read, we attempted to decode the first noun, verb, and second
noun (when applicable) of each sentence, training and testing on active and passive sentences
separately, during sentence reading and post-sentence.

We also attempted to decode the following post-sentence: agent, patient, verb, first noun,
voice, and proposition identity. These are replications of the results presented in Chapter 5 . In
addition to these tasks we attempted to decode sentence length (long vs short) from the post-
sentence activity.

Because some of the sentences presented in the experiment did not contain a second noun,
that decoding task, as well as the agent, patient and proposition decoding tasks, was run only on
the long sentences from this experiment.

Significance is established via a per-timepoint permutation test with 100 permutations (note
that due to computational complexity, permutation results are only available for the post-sentence
decoding experiments). Multiple comparisons are corrected via controlling the false discovery
rate [42]. To determine whether the effect at a given timepoint (as measured by decoding accu-
racy) is representative of the subject population or due to the data from only a small subset of
subjects, we re-run the analysis in a leave-one-subject-out fashion, using the data from all but one
subjects (thus generating a 306 × 19 = 5814 length feature vector). We then report the fraction
of folds (out of 20) for which the accuracy was above chance. If that fraction is high, then the
decoding accuracy comes from a signal that is consistently present in the subject population. If
not, then only a few subjects carry the effect. As in Chapter 5, for a given timepoint to be counted
as “significant”, 100% of the subject folds must be above chance and it must have a corrected
p < 0.05.

As an additional analysis, we ran six of the post-sentence decoding tasks (voice, verb, agent,
patient, and argument binding) on a per-ROI basis using the 10 source-localized subjects. For
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each ROI, the sources from each subject were concatenated together (as we did with the sensors)
to form the feature vector. Again, a 100ms window average was used.

6.2.3 RSA Experiments

Representational Similarity Analysis (RSA) is an alternative approach to analyzing neural data,
with its own distinct advantages over decoding [7]. RSA can allow us to contrast different the-
oretical models of sentences in terms of their ability to capture the similarity structure of the
stimuli in the neural activity. We contrasted three models of sentence similarity in order to try
and disentangle different aspects of sentence reading: a pure syntax model, a pure semantics
model, and a hierarchical integration model. The model RDMs, with sample stimuli labeled, are
shown in Fig. 6.1
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The girl kicked the man. 

The man kicked the girl. 

The man kicked. 

The girl kicked. 

The girl was kicked by the man. 

The girl was kicked. 

The man was kicked by the girl. 

The man was kicked. 

Figure 6.1: Model RDMs. Model Representational Dissimilarity Matrices (RDMs) for ex-
ploratory RSA analysis. Each element of an RDM is the distance between a pair of stimuli
according to a theoretical model. The rows are ordered active sentences first, followed by pas-
sive sentences. Sentence length alternates every four rows. A. Syntax RDM. Each entry is
determined by the voice and the length of the given sentence pair. A different in voice is as-
signed a distance of 1, while a difference in length is assigned a distance of 0.5 if the voices are
the same. B. Bag of Words RDM. Each sentence is represented by the average of the GloVe
vectors for the constituent words. The entries of this RDM are the euclidean distances between
these sentence representations. C. Hierarchical RDM. Each entry is the average of the pairwise
distances between the GloVe vectors for the agent, patient, and verb. For short sentences, the
missing noun (agent or patient) is represented by the average over the nouns in the experiment

The first model, referred to as the Syntax model (Fig. 6.1A), attempts to capture structural
information about the sentences such as length and voice. If two sentences have the same voice
and are the same length, they are assigned a distance of 0. If they are the same voice but a
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different length, they are assigned a distance of 0.5. Sentences that differ in voice are assigned a
distance of 1.0.

The second model, referred to as the Bag of Words model (Fig. 6.1B), is intended to capture
the semantic content of the sentence without making use of any syntactic or structural informa-
tion (hence the name Bag of Words). First, we represented each verb and noun in the experiment
by its GloVe vector [77], which captures the semantic content of the word from its usage in a
large corpus. For a given sentence, its Bag of Words representation is the average of the vectors
for its constituent content words. An RDM element is the euclidean distance between these Bag
of Words representations for two sentences.

The third model, referred to as the Hierarchical model (Fig. 6.1C), is intended to capture the
fully integrated meaning of the sentence, using both semantic and syntactic cues. Again, we
represented each verb and noun in the experiment by its GloVe vector [77]. Instead of building
a sentence-level representation from these vectors, we computed the sentence distances directly.
For a given pair of sentences, the euclidean distance between the agent vectors, verb vectors,
and patient vectors were each computed separately. The sentence distance is the average of
these three distances. For short sentences, which only have one noun, the second noun was
represented for the purpose of distance computation by the average GloVe vector of all 4 nouns
in the experiment.

For the whole brain analysis, sensor-level data was used to compute MEG RDMs in a sliding-
window fashion over time. We focused on the post-sentence time period for this analysis, align-
ing the sentences by the presentation of the last word.

As discussed in Chapter 3, we computed the rank (Spearman) correlation at each timepoint
between the MEG RDM and each of the model RDMs. The three models are not correlated with
one-another (max correlation: 0.08), so zero-order correlations are all that is needed. Signifi-
cance was evaluated via the Mantel test, which amounts to a label permutation test, with 10,000
permutations [48]. Multiple comparisons correction was done by controlling the false discovery
rate [42]. The noise ceiling was computed by repeatedly splitting the trials in half, as described
in Chapter 3. The lower bound is the correlation between disjoint sets of trials, and the upper
bound is the correlation between the average over half the trials and the average over all the trials.

6.3 Results

6.3.1 Confirmatory Decoding Results

As in Chapter 5, our first goal was to see whether we can decode the constituent words of the
sentence as they are being read, and how stable the neural representations of these words are over
time. To that end, we computed temporal generalization matrices for the first noun, the verb and
the second noun of the sentence, training and testing on active and passive sentences separately.
For verb and first noun decoding, the pool of long and short sentences were used. Since only the
long sentences contained a second noun, that decoding task was restricted to long sentences only.
The resulting TGMs, in Fig. 6.2, demonstrate that once again, we can decode these constituent
words during sentence reading, and that the representations of these words change rapidly and
evolve over time.
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Note that these plots by and large are similar to those shown in Fig. 5.1. A key difference,
however, is verb decoding from active sentences (Fig. 6.2B). Whereas the pilot experiment results
showed a robust reactivation of the verb post-sentence in active sentences, that is not replicated
in the confirmation experiment. However, there is a strong symmetric pattern of off-diagonal
decoding accuracy.

The diagonal entries of the TGMs, shown in Fig. 6.3, show remarkably similar patterns to
those computed from the pilot data, albeit with a much smaller post-sentence effect. An addi-
tional difference is that while during-sentence verb decoding accuracy was higher for passive
sentences in the pilot data set, it is higher for active sentences in the confirmation data set.

From which brain regions are we decoding the identities of these words and at which times?
To examine this question, we generated importance maps from the learned classifier weights as
described in [2] at 0.15s post word onset (for the word of interest) and again at 0.3s post word
onset. The feature vector used to train the classifier consisted of the concatenation across subjects
of mean sensor activity over 100ms. The resulting transformed importance map was averaged
over subjects, giving an importance weight to each of 306 sensors. Plots of the importance of
the lateral gradiometer are shown in Figs. 5.3 for the 0.15-0.25s time window and 5.4 for the
0.3-0.4s time window.

Again the early decoding period is dominated by occipital electrodes, while late decoding
accuracy is supported by a combination of frontal and temporal electrodes.

To boost our sensitivity for post-sentence decoding, we again aligned the sentences by the
presentation of the last word and attempted to decode agent, verb, and patient, from the long ac-
tive sentences and long passive sentences separately. These accuracy traces are shown in Fig. 6.6,
panels A and B. Here we see a replication of a key result from the pilot experiment: both the
agent and the patient are decodable post-sentence from passive voice sentences, but not from
active voice sentences.

On the pool of all sentences (active and passive, long and short), we decoded sentence length
(long vs short), sentence voice (active vs passive), and verb identity. From the pool of long
active and passive sentences we attempted to decode agent, patient, and proposition identity.
These accuracy traces are shown in Fig. 6.6C.

We see a confirmation of the post-sentence wrap-up period on the pooled set of sentences.
First sentence length and sentence voice are highly decodable from last word onset until around
1.4s post onset. Once voice and sentence length decoding accuracy start to decline, the proposi-
tion can be decoded with high accuracy. The components of the proposition can be decoded as
well. This confirms our observation that structural and syntactic information is processed first,
followed by a semantic integration of the sentence.

How stable are the representations of the concepts decodable in Fig. 6.6C? We examined this
question using temporal generalization matrices for each task, shown in Fig. 6.7.

Sentence length (Fig. 6.7D) is strongly decodable throughout the post-sentence time period,
but the representation seems to evolve quite rapidly in that there are very few off-diagonal points
of high accuracy. Sentence voice (Fig. 6.7F) is also decodable throughout but peaks just af-
ter sentence offset, persisting until 1.4s post last word onset. Again, the neural representation
evolves quite rapidly over this time period.

The proposition, verb and agent are decodable only after sentence voice and sentence length
are no longer decodable. Patient does not seem very decodable but is another example of off-
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diagonal accuracy without a corresponding on-diagonal accuracy.
Again, we can examine the importance map over the brain underlying the decoding accura-

cies that we see, using the method described in [2] at 1.44s post last word onset (the time at which
proposition decoding accuracy peaks). The feature vector used to train the classifier consisted of
the concatenation across subjects of mean sensor activity over 100ms. The resulting transformed
importance map was averaged over subjects, giving an importance weight to each of 306 sensors.
Helmet plots of the importance of the lateral gradiometer for each classification task are shown
in Fig. 5.8.

Just as we observed in the pilot experiment, proposition decoding is supported by left tempo-
ral and parietal sensors. Sentence voice decoding is also supported by similar regions.

6.3.2 Source Localized Decoding Results

While helmet plots such as those in Fig. 6.8 can be helpful in understanding which sensors
underlie the observed decoding accuracy, but they fail to provide strong answers regarding which
brain regions are responsible for which computational tasks. By source-localizing MEG data, we
can estimate the cortical dipoles that produced the observed sensor activity. Using those source-
activations, we can better understand the neurobiological underpinnings of the task of interest.
To better understand the regions underlying the post-sentence decoding results, we applied six of
the post-sentence decoding tasks (voice, verb, agent, patient, proposition, and argument binding)
to source-localized data on a per-region basis.

Voice decoding, summarized in Fig. 6.9 is supported primarily by bilateral occipital cortex ac-
tivation. Additionally, early in the post-sentence time period we see left pars opercularis (Broca’s
Area) as yielding high decoding accuracy as well. Surprisingly, bilateral tempero-parietal junc-
tion and more parietal areas also yielded high decoding accuracy.

Verb identity was much less decodable on a per-region basis, as is evident from Fig. 6.10, but
was supported by supported by left superior temporal regions and Broca’s area. Of additional
interest is the strong decodability from the premoter strip, bilaterally.

A very striking result from the source-localized analyses is the difference in accuracy patterns
for agent and patient decoding. On the left hemisphere, early agent decoding is supported largely
by frontal regions, whereas early patient decoding is weakly supported by the temporal lobe and
inferior parietal cortex. However, late post-sentence, agent and patient are both decodable from
roughly the same set of left hemisphere regions, centering on parietal cortex.

Proposition identity (see Fig. 6.13) and argument binding (see Fig. 6.14) show, as predicted,
a similar pattern of decodability over the brain. In the period immediately following the sen-
tence, left superior temporal cortex dominates, but at the very end of the sentence, as with agent
and patient decoding, a diffuse set of parietal regions contain proposition and argument binding
information.

6.3.3 Exploratory RSA Results

The whole brain scores over time for each model are shown in Fig. 6.15. As could be predicted
from the decoding results, the syntax model correlates strongly with the MEG data for nearly
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the entire time period. The Bag of Words model fails to correlate significantly with the neural
activity at any timepoint.

The Hierarchical model correlates with the neural activity about 1 second after the onset of
the last word, which is the same time during which the proposition identity is decodable from
the neural activity (see Fig. 6.6).

Conclusions
In this study we were able to replicate several key results from Chapter 5. During sentence read-
ing, the identities of the constituent words of the sentence are decodable. Because the decoding
accuracy for each of these tasks persist beyond word presentation and have a rapidly evolving
representation (see Fig. 6.2), the decoding of these words is unlikely to be due solely to the visual
aspect of the stimulus.

After the sentence has been presented and the subject is looking at a blank screen (and await-
ing a question), we again observed a post-sentence wrap-up period. This wrap-up period con-
tained the following information:
• Sentence Length
• Sentence Voice
• Proposition Identity
• Argument Binding
• Agent Identity
• Patient Identity
• Verb Identity
Sentence length is decodable from two sources: the fact that short sentences end with verbs

and long sentences end with nouns, but also the true length of the sentence. This is reflected in the
TGM in Fig. 6.7A. Unlike in the pilot experiment, sentence length is distinct from sentence voice,
which is also decodable post-sentence. Sentence voice in this experiment is only discernible from
true syntactic differences between the sentences.

Early (relative to sentence end) voice decodability is supported by bilateral occipital cortex
and left pars opercularis (Broca’s area). In the second 500ms of post-sentence time, the verb and
the proposition identity (and the arugment binding) are decodable from superior temporal cortex.
In the late portion of the post-sentence time period, agent, patient, verb, and proposition are all
decodable from parietal cortex.

Using RSA, we were able to confirm and complement our decoding result. As was the case
in decoding, syntactic and sentence length information were highly decodable post-sentence.
Purely semantic information (as represented both by the word decoding tasks and the Bag of
Words RSA model), could not be recovered.

However, an integration of semantic and syntactic information is detectable in the neural
signal. We were able to significantly but not strongly decode the proposition identity from the
post-sentence neural activity, about 1 second after the onset of the last word of the sentence.
Additionally, an integration-based RSA model significantly correlated with neural activity and
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this correlation was within noise tolerance. Again, this significant correlation occurred 1 second
after the onset of the last word of the sentence.

Taking all of these results together, we can refine our picture of the results uncovered in the
pilot experiment in Chapter 5. We can confirm that there is a post-sentence wrap-up period.
This post-sentence wrap-up period contains syntactic/structural information about the sentence.
Additionally, 1s after the onset of the last word, we see, using two separate analysis approaches,
that the integrated meaning of the sentence is present in the post-sentence neural activity.
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Figure 6.2: Rank accuracy TGMs for each during-sentence classification task. Each plot
shows all pairs of training and testing timepoints over sentence presentation. The y axis indi-
cates training time, and the x axis indicates test time, with sentence onset starting in the upper
left corner. White vertical lines indicate word onsets and final sentence offset. Chance rank ac-
curacy is 0.5, with a maximum value of 1.0. Classification was performed on either the set of
active or passive sentences separately, using the mean sensor activation over a 100ms window
concatenated across subjects as the feature vector. Cross-validation was leave-one-sentence out.
A. TGM for decoding the first noun from active-voice sentences. Classification task was to
detect the identity of the first noun of the sentence, training and testing only on active-voice
sentences. B. TGM for decoding the verb from active-voice sentences. Classification task
was to detect the identity of the verb of the sentence, training and testing only on active-voice
sentences. C. TGM for decoding the second noun from active-voice sentences. Classifica-
tion task was to detect the identity of the second noun of the sentence, training and testing only
on long active-voice sentences. D. TGM for decoding the first noun from passive-voice sen-
tences. Classification task was to detect the identity of the first noun of the sentence, training
and testing only on passive-voice sentences. E. TGM for decoding the verb from passive-voice
sentences. Classification task was to detect the identity of the verb of the sentence, training and
testing only on passive-voice sentences. F. TGM for decoding the second noun from passive-
voice sentences. Classification task was to detect the identity of the second noun of the sentence,
training and testing only on long passive-voice sentences.
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Figure 6.3: Rank accuracy over time during sentence reading. Each plot shows rank accu-
racy over time for each word in the sentence. Black vertical lines indicate word onsets and final
sentence offset. Chance rank accuracy is 0.5, with a maximum value of 1.0. Classification was
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Figure 6.4: Helmet plots for each during-sentence classification task at 0.15s post word on-
set. Each plot shows the resulting importance map from training a classifier 0.15s post onset of
the word of interest. Importance maps were computed from the classifier weights on the con-
catenation of all subjects’ mean sensor activity from 0.15 to 0.25 s post onset as described in
[2]. Maps were then averaged over subjects. Importance values for a single gradiometer are
shown. Titles give the rank accuracy at the time examined. A. Importance map for decod-
ing first noun from active sentences. Classification task was to detect the identity of the first
noun of the sentence, training and testing only on active-voice sentences. B. Importance map
for decoding verb from active sentences. Classification task was to detect the identity of the
verb of the sentence, training and testing only on active-voice sentences. C. Importance map
for decoding second noun from active sentences. Classification task was to detect the identity
of the second noun of the sentence, training and testing only on long active-voice sentences.
D. Importance map for decoding first noun from passive sentences. Classification task was
to detect the identity of the first noun of the sentence, training and testing only on passive-voice
sentences. E. Importance map for decoding verb from passive sentences. Classification task
was to detect the identity of the verb of the sentence, training and testing only on passive-voice
sentences. F. Importance map for decoding second noun from passive sentences. Classifica-
tion task was to detect the identity of the second noun of the sentence, training and testing only
on long passive-voice sentences.
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Figure 6.5: Helmet plots for each during-sentence classification task at 0.3s post word on-
set. Each plot shows the resulting importance map from training a classifier 0.3s post onset of
the word of interest. Importance maps were computed from the classifier weights on the concate-
nation of all subjects’ mean sensor activity from 0.3 to 0.4 s post onset as described in [2]. Maps
were then averaged over subjects. Importance values for a single gradiometer are shown. Titles
give the rank accuracy at the time examined. A. Importance map for decoding first noun from
active sentences. Classification task was to detect the identity of the first noun of the sentence,
training and testing only on active-voice sentences. B. Importance map for decoding verb
from active sentences. Classification task was to detect the identity of the verb of the sentence,
training and testing only on active-voice sentences. C. Importance map for decoding second
noun from active sentences. Classification task was to detect the identity of the second noun of
the sentence, training and testing only on long active-voice sentences. D. Importance map for
decoding first noun from passive sentences. Classification task was to detect the identity of the
first noun of the sentence, training and testing only on passive-voice sentences. E. Importance
map for decoding verb from passive sentences. Classification task was to detect the identity
of the verb of the sentence, training and testing only on passive-voice sentences. F. Impor-
tance map for decoding second noun from passive sentences. Classification task was to detect
the identity of the second noun of the sentence, training and testing only on long passive-voice
sentences.
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Figure 6.6: Information flow post-sentence. Each plot shows rank accuracy over time for each
post-sentence classification task. Chance rank accuracy is 0.5, with a maximum value of 1.0.
Classification was performed on either the set of active and passive sentences separately as well
as the pool of all sentences, using the mean sensor activation over a 100ms window concate-
nated across subjects as the feature vector. Cross-validation was leave-one-sentence out. The
black vertical line indicates the offset of the last word (the end of the sentence). A. Decoding
accuracy post active-sentences. Classification accuracy of agent, verb and patient training and
testing on long active sentences only. B. Decoding accuracy post passive-sentences. Classi-
fication accuracy of agent, verb and patient training and testing on long passive sentences only.
C. Decoding accuracy post all sentences. Classification accuracy of sentence length, agent,
verb, patient, voice, first noun, and proposition, training and testing on the pool of all sentences.
Agent, patient and proposition decoding tasks were conducted only on the set of long sentences.
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Figure 6.7: Rank accuracy TGMs for each post-sentence classification task. Each plot shows
all pairs of training and testing timepoints over sentence presentation. The y axis indicates train-
ing time, and the x axis indicates test time, with sentence onset starting in the upper left corner.
Chance rank accuracy is 0.5, with a maximum value of 1.0. Classification was performed on the
pool of both active and passive sentences, using the mean sensor activation over a 100ms win-
dow concatenated across subjects as the feature vector. Cross-validation was leave-one-sentence
out.The white line indicates the offset of the second noun (the end of the sentence). A. TGM for
decoding the agent of the sentence. Classification task was to detect the identity of the agent
from the pool of long sentences. In active sentences, this is the first noun, and in passive sen-
tences it is the second noun. B. TGM for decoding the patient of the sentence. Classification
task was to detect the identity of the patient from the pool of long sentences. In active sentences,
this is the second noun, and in passive sentences it is the first noun. C. TGM for decoding the
verb of the sentence. Classification task was to detect the identity of the verb from the pool of
all sentences (short and long). D. TGM for decoding sentence length Classification task was to
detect whether the sentence was long or short (two nouns or one noun). E. TGM for decoding
the first noun of the sentence. Classification task was to detect the identity of the first noun from
the pool of all sentences (short and long). In active sentences this is the agent, and in passive
sentences it is the patient. F. TGM for decoding the voice of the sentence. Classification task
was to detect the voice of the sentence (active or passive) from the pool of all sentences (short
and long). G. TGM for decoding the proposition of the sentence. Classification task was to
detect the proposition of the sentence (where the active and passive version of the proposition
were given the same class label) from the pool of long sentences.
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Figure 6.8: Helmet plots for each during-sentence classification task at 1.44s post last word
onset. Each plot shows the resulting importance map from training a classifier 1.44s post onset
of the last word in the sentence. Importance maps were computed from the classifier weights on
the concatenation of all subjects’ mean sensor activity from 1.44 to 1.54 s post onset as described
in [2]. Maps were then averaged over subjects. Importance values for a single gradiometer are
shown. Classification tasks were conducted on the pool of both active and passive sentences.
Titles give the rank accuracy at the time examined. A. Importance map for decoding the
agent. Classification task was to detect the identity of the agent of the sentence, which in passive
sentences is the second noun and in active sentences is the first noun, from the pool of long
sentences. B. Importance map for decoding the patient. Classification task was to detect
the identity of the patient of the sentence, which in passive sentences is the first noun and in
active sentences is the second noun, from the pool of long sentences. C. Importance map for
decoding verb. Classification task was to detect the identity of the verb of the sentence, from the
pool of long sentences. D. Importance map for decoding sentence length Classification task
was to detect whether the sentence was long or short (two nouns or one noun). E. Importance
map for decoding first noun. Classification task was to detect the identity of the first noun of
the sentence. F. Importance map for decoding sentence voice. Classification task was to detect
the voice (active or passive) of the sentence. G. Importance map for decoding proposition.
Classification task was to detect the identity of the proposition of the sentence from the pool of
long sentences.
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Figure 6.9: Voice Decoding Accuracy by Region and Time. Rank Accuracy for decoding per-
ROI over time for the voice decoding task. A. Heatmap of accuracy by ROI and Time, Left
Hemisphere Each point in the grid is the rank accuracy for voice decoding at a given region and
time point. The y-axis lists left hemisphere regions (from the Freesurfer atlas) and the x-axis
shows time relative to last word onset. The vertical lines divide the post-sentence time period
into 4 500ms periods. B. Heatmap of accuracy by ROI and Time, Right Hemisphere Same as
in A but for right hemisphere regions. C. Inflated Left Hemisphere Brain Maps of Accuracy
for 500ms Periods. For each 500ms window indicated in A, we took the max over time for each
region and plotted it on the inflated brain map. D. Inflated Right Hemisphere Brain Maps of
Accuracy for 500ms Periods. Same as in C but for right hemisphere regions.
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Figure 6.10: Verb Decoding Accuracy by Region and Time. Rank Accuracy for decoding
per-ROI over time for the verb decoding task. A. Heatmap of accuracy by ROI and Time,
Left Hemisphere Each point in the grid is the rank accuracy for verb decoding at a given region
and time point. The y-axis lists left hemisphere regions (from the Freesurfer atlas) and the x-axis
shows time relative to last word onset. The vertical lines divide the post-sentence time period
into 4 500ms periods. B. Heatmap of accuracy by ROI and Time, Right Hemisphere Same as
in A but for right hemisphere regions. C. Inflated Left Hemisphere Brain Maps of Accuracy
for 500ms Periods. For each 500ms window indicated in A, we took the max over time for each
region and plotted it on the inflated brain map. D. Inflated Right Hemisphere Brain Maps of
Accuracy for 500ms Periods. Same as in C but for right hemisphere regions.
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Figure 6.11: Agent Decoding Accuracy by Region and Time. Rank Accuracy for decoding
per-ROI over time for the agent decoding task. A. Heatmap of accuracy by ROI and Time,
Left Hemisphere Each point in the grid is the rank accuracy for agent decoding at a given region
and time point. The y-axis lists left hemisphere regions (from the Freesurfer atlas) and the x-axis
shows time relative to last word onset. The vertical lines divide the post-sentence time period
into 4 500ms periods. B. Heatmap of accuracy by ROI and Time, Right Hemisphere Same as
in A but for right hemisphere regions. C. Inflated Left Hemisphere Brain Maps of Accuracy
for 500ms Periods. For each 500ms window indicated in A, we took the max over time for each
region and plotted it on the inflated brain map. D. Inflated Right Hemisphere Brain Maps of
Accuracy for 500ms Periods. Same as in C but for right hemisphere regions.
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Figure 6.12: Patient Decoding Accuracy by Region and Time. Rank Accuracy for decoding
per-ROI over time for the patient decoding task. A. Heatmap of accuracy by ROI and Time,
Left Hemisphere Each point in the grid is the rank accuracy for patient decoding at a given
region and time point. The y-axis lists left hemisphere regions (from the Freesurfer atlas) and
the x-axis shows time relative to last word onset. The vertical lines divide the post-sentence time
period into 4 500ms periods. B. Heatmap of accuracy by ROI and Time, Right Hemisphere
Same as in A but for right hemisphere regions. C. Inflated Left Hemisphere Brain Maps of
Accuracy for 500ms Periods. For each 500ms window indicated in A, we took the max over
time for each region and plotted it on the inflated brain map. D. Inflated Right Hemisphere
Brain Maps of Accuracy for 500ms Periods. Same as in C but for right hemisphere regions.
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Figure 6.13: Proposition Decoding Accuracy by Region and Time. Rank Accuracy for decod-
ing per-ROI over time for the proposition decoding task. A. Heatmap of accuracy by ROI and
Time, Left Hemisphere Each point in the grid is the rank accuracy for proposition decoding at a
given region and time point. The y-axis lists left hemisphere regions (from the Freesurfer atlas)
and the x-axis shows time relative to last word onset. The vertical lines divide the post-sentence
time period into 4 500ms periods. B. Heatmap of accuracy by ROI and Time, Right Hemi-
sphere Same as in A but for right hemisphere regions. C. Inflated Left Hemisphere Brain
Maps of Accuracy for 500ms Periods. For each 500ms window indicated in A, we took the
max over time for each region and plotted it on the inflated brain map. D. Inflated Right Hemi-
sphere Brain Maps of Accuracy for 500ms Periods. Same as in C but for right hemisphere
regions.
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Figure 6.14: Argument Binding Decoding Accuracy by Region and Time. Rank Accuracy for
decoding per-ROI over time for the argument binding decoding task. A. Heatmap of accuracy
by ROI and Time, Left Hemisphere Each point in the grid is the rank accuracy for argument
binding decoding at a given region and time point. The y-axis lists left hemisphere regions (from
the Freesurfer atlas) and the x-axis shows time relative to last word onset. The vertical lines
divide the post-sentence time period into 4 500ms periods. B. Heatmap of accuracy by ROI
and Time, Right Hemisphere Same as in A but for right hemisphere regions. C. Inflated Left
Hemisphere Brain Maps of Accuracy for 500ms Periods. For each 500ms window indicated
in A, we took the max over time for each region and plotted it on the inflated brain map. D.
Inflated Right Hemisphere Brain Maps of Accuracy for 500ms Periods. Same as in C but
for right hemisphere regions.
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Figure 6.15: Whole brain RSA model comparison. Spearman correlation between each model
RDM in Fig. 6.1 and a MEG data RDM constructed from whole brain sensor-level data. Noise
ceiling is shown in gray. Corrected significance is indicated via starred points.
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Chapter 7

Conclusion and Future Work

Overview

In order to better understand sentence comprehension in the brain, we recorded magnetoen-
cephalography (MEG) data from humans while they read active and passive sentences. This
choice of stimuli allowed us to dissociate syntax and semantics, since the same semantic propo-
sition can be expressed in both the active and passive voice. By using MEG data, we were able
to determine the information flow in the brain during sentence reading, as well as during the
post-sentence time period.

In order to draw scientific conclusions from these data, we require advanced analysis tech-
niques. In the service of our neuroscientific goal, we optimized two common analysis approaches
for neural data, decoding and representational similarity analysis (RSA). Thus the contributions
of this thesis are two-fold: we have contributed methodologically by improving existing analysis
approaches for MEG data. We have then used these approaches to gain insight into sentence
comprehension in the brain.

We determined that the best way to improve performance for both decoding and RSA is
to combine data from multiple subjects. The standard decoding approach is to classify using
data from only a single subject, and then average the resulting decoding accuracies across sub-
jects. Similarly, RSA is typically applied per-subject, and with correlations then averaged over
subjects. In the case of decoding, by concatenating data from multiple subjects as additional
features, we were able to improve performance significantly, despite having the same number of
data samples. This of course was contingent upon using classifiers with regularization. In the
case of RSA, we used the average representational dissimilarity matrix (RDM) over subjects for
comparison with each model’s RDM. The correlation was significantly higher for all models.
However, this multi-subject RSA approach required us to develop a novel method for computing
the noise ceiling that splits data over trials (as opposed to subjects) to assess data repeatability.

Our improved approaches to decoding and to RSA provide consistent and converging evi-
dence that after a sentence is read, relevant information is present in the neural signal. Neural
activity post-sentence is dominated first by syntactic information such as sentence voice and
length. Then, semantic information integrated with syntactic information is detectable from
the neural signal. Specifically, we can determine the sentence proposition (“Who did what to
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whom?”) independent of syntactic voice. This constitutes the first such characterization of the
information content of post-sentence neural activity using the temporal resolution of MEG data.

Methodological Contributions
Traditional decoding approaches that rely on averaging accuracy timeseries from single-subject
models lose a great deal of signal due to temporal misalignment across subjects. By combining
data from multiple subjects into a large feature vector, we are able to greatly boost accuracy. We
can still retain the power to perform population-level inference by cross-validating over subjects
and examining the fraction of folds where above chance accuracy is achieved. Additionally we
demonstrated that regularization and test set SNR are the most important factors in determining
classifier performance.

We contributed a novel approach to noise ceiling computation for RSA so that we can make
use of data from multiple subjects to boost SNR. We additionally showed how the noise ceiling
height can be used to optimize the creation of MEG RDMs. Lastly, we recommend the use of
partial correlations to account for model confounds, although none of the models explored in this
work suffer from such a problem.

Neuroscientific Contributions
To our knowledge, this work constitutes the first ever demonstration of the decoding stimuli while
they are not currently visually present on the screen, without asking the subject explicitly to hold
the stimuli in memory. We demonstrate that during sentence reading, each content word (noun
or verb) in a sentence is decodable as it is presented. Furthermore, we show that determiners are
uniquely represented in the brain and can be decoded with high accuracy.

We decode sentence voice and sentence length from whole-brain post-sentence activity with
near-perfect accuracy. Both in our pilot and our confirmation data set, syntactic and structural
sentence information was highly decodable from the MEG signal, and this result was additionally
shown using RSA on our confirmation data set, demonstrating that a model of sentence similarity
based on syntax correlated significantly with neural activity.

The neural activity during this post-sentence time period also contains the information needed
for sentence integration, such as the identities of the agent, patient, and verb of the sentence,
which can be reliably decoded above chance. Furthermore, a model of sentence similarity that
uses both the semantic word content and the syntactic structure correlates significantly with the
MEG data post-sentence. This model computes the similarity between two sentences by compar-
ing their respective agents, verbs, and patients, thus correctly understanding that sentences with
different voices can still convey the same meaning.

A Refined Theory of Sentence Processing
In Chapter 2 we explored the existing literature on sentence processing in the brain, finding
results that supported the idea that processing a passive voice sentence involves post hoc reanal-
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ysis, in which the roles of agent and patient are swapped, in order for the proposition to be fully
understood. Left pars opercularis (Broca’s area) supposedly supports the syntactic aspect of the
computation [1, 12, 13, 16, 18, 23, 25], whereas superior temporal lobe is implicated in semantic
integration [12, 30, 34].

Past work has only demonstrated that there exists a neural activity difference between active
and passive sentences during the post-sentence time period, which we confirmed by demonstrat-
ing that sentence voice (active or passive) is highly decodable from the post-sentence signal. In
this thesis we sought to determine the information content of the reanalysis signal, specifically,
what computations the brain is performing in passive sentences but not active sentences that
would lead to the observable signal difference. To that end, we decoded content words (agent,
verb, patient) from active and passive sentences to search for informational differences.

Figure 7.1: Computations underlying the reanalysis signal. Diagrams demonstrating the ex-
pected decoding result under several hypotheses for reanalysis, as well as the true decoding
result. Colored blocks indicate significantly above-chance decoding. A. Hypothesis 1: No dif-
ference in post-sentence word decoding. Under this hypothesis, there is no difference between
active and passive sentences in terms of which of the constituent sentence words can be decoded.
It is unclear what the reanalysis signal can be attributed to in this case aside from some purely
syntactic function. B. Hypothesis 2: Patient reactivation in passive sentences only. Under this
hypothesis, part of the reanalysis signal can be explained by the fact that the first noun in passive
sentences must switch its role from agent to patient, leading to a reactivation. Since no reacti-
vation is necessary in active sentences, we will not see any decodability of the first noun in that
case. C. Hypothesis 3: Verb reactivation in passive sentences only. Under this hypothesis, it
is not the noun’s role that must be switched, but rather the argument bindings of the verb, leading
to selective verb reactivation. D. Results. Results show that the patient is reactivated in passive
sentences, while the agent is not reactivated in active sentences, conforming to Hypothesis 2
(panel B).
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Figure 7.1 shows three candidate hypotheses regarding reanalysis, as well as a summary of
our true result. In the first hypothesis (Fig. 7.1A), there is no difference between active and
passive sentences in terms of which aspects of the sentence can be decoded. Under that circum-
stance, we would see a similar decodability profile for both types of sentences across classifi-
cation tasks, and we would attribute the reanalysis signal to working memory or some purely
syntactic process. An alternative hypothesis, shown in Fig. 7.1B, is that first noun information
(the patient, for passive voice sentences) is selectively reactivated in passive-voice sentences.
This theory corresponds best with what would be predicted by the literature, which points to
separate storage of agent and patient [30, 34]. In this case, we should be able to decode the
patient from passive-voice sentences but we should not be able to decode the agent in active
voice sentences (because there is no need for it to be reactivated). A third hypothesis (Fig. 7.1C)
centers on the verb, which may require selective reactivation so that the argument binding can be
reversed. Under this hypothesis we would selectively decode the verb in passive voice sentences.
These three hypotheses are only a few of many potential explanations for reanalysis. Our results,
shown in Fig. 7.1D, confirm the second hypothesis. We observed selective decodability of the
first noun in passive voice sentences, thus indicating that the reanalysis signal can be attributed
in part to a reactivation of the first noun (the patient) in passive voice sentences.

Figure 7.2: Regions that maximally decode agent and patient identity. During the post-
sentence time period, we decoded agent and patient identity from the pool of all sentences (active
and passive) for each ROI and each time point. In red are the regions for which agent decoding
was maximal over the time period, and in blue are the regions where the patient was most de-
codable, with purple indicating overlap. Accuracy was thresholded at 0.8 for inclusion in this
map.

Recall the claims from the fMRI literature that agent and patient are stored in proximal but
distinct regions of the brain, specifically in inferior frontal cortex [30, 34]. Our whole-brain
decoding results regarding reanalysis are consistent with what one would expect under this theory
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(namely that the patient must be reactivated in passive voice sentences in order to be “transferred”
to its true location). We can further investigate the truth of this claim using our source-localized
decoding results. Figure 7.2 shows the regions of maximal decoding accuracy (of accuracy at
least 0.8) for decoding agent and patient identity from the post-sentence time period, using the
pool of all sentences (active and passive). Note that there is large overlap in parietal and inferior
frontal cortex, while there are also a few completely separate regions (e.g. the parieto-occiptal
junction). While source-localized MEG data lacks the resolution to truly verify the existing
fMRI results, these findings are largely consistent with the idea that there are proximal regions
encoding agent and patient identity, with some separation.

Figure 7.3: Post-sentence wrap-up. Diagrams demonstrating the expected decoding result un-
der several hypotheses of post-sentence wrap-up, as well as the true decoding result. Colored
blocks indicate significantly above-chance decoding. A. Hypothesis 1: Semantics-first sen-
tence wrap-up. Under this hypothesis, the a bag-of-words representation of the sentence is
detectable (e.g. the component words), followed by the syntax and then the integration of syntax
and semantics to get the proposition. B. Hypothesis 2: Simultaneous sentence wrap-up. Under
this hypothesis, syntax and semantics are integrated simultaneously to generate the proposition.
C. Hypothesis 3: Syntax-first sentence wrap-up. Under this hypothesis, syntax information is
processed first, followed by semantic and then the final integration. D. Results. Results support
a mixture of Hypothesis 2 and 3. Sentence voice and length (syntactic properties) are decodable
first, along with the verb identity. Then, the proposition and agent become decodable as well. At
the very end of the post-sentence time period, all sentence attributes are decodable.

Decoding and RSA provided complementary and converging evidence in support of the exis-
tence of a post-sentence wrap-up period. Through both methods we were able to determine that
sentence voice and length were encoded in the neural signal post-sentence. With decoding, we
determined this because voice and length could be decoded with high accuracy, while with RSA
we showed that a model of sentence similarity based on syntax and length correlated strongly
with neural activity.
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We can situate these results in terms of a classic psycholinguistic debate: syntax or semantics
first. One could theorize, as shown in Fig. 7.3A, a semantics-first sentence wrap-up period, in
which the constituent words of a sentence are held in memory in a bag-of-words fashion and
then combined syntactically so that full integration can take place. In that case we would expect
to see that content words are decodable prior to syntactic properties such as voice or sentence
length, ultimately followed by proposition identity decoding. An alternative, shown in Fig. 7.3B,
is that all processing occurs simultaneously, with every attribute decodable during the same post-
sentence window. Yet another alternative is a syntax-first model, shown in Fig. 7.3C, in which
syntactic attributes are first decodable, followed by semantics and integration.

Both our RSA and decoding results (decoding results summarized in Fig. 7.3D), support a
mixture of the last two hypotheses, with a largely syntax-first presentation but with the verb
decodable throughout the post-sentence time period. Our RSA model of sentence meaning that
incorporated both syntax and semantics, i.e. our hierarchical model, correlated significantly with
the neural activity after correlation between the neural activity and the syntax model began to
decline. Similarly, after sentence voice and length become less decodable, we can decode the
sentence proposition and the other pieces of that proposition (e.g. the agent and the patient).

Figure 7.4: Regions that maximally decode verb, voice and proposition identity. During the
post-sentence time period, we decoded voice, verb, and proposition identity from the pool of all
sentences (active and passive) for each ROI and each time point. In red are the regions for which
voice decoding was maximal over the time period, and in blue are the regions where the verb was
most decodable. Green represents maximal proposition decoding. Accuracy was thresholded at
0.8 for inclusion in this map.

Which regions underlie our ability to decode the voice, the proposition, and the verb of a
sentence? We can again examine our source-localized decoding results, summarized in Fig. 7.4.
The regions that maximally decoded voice included the left pars opercularis (Broca’s area), as
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would be expected from the literature [1, 12, 13, 16, 18, 23, 25], as well as occipital cortex and
frontal cortex. The regions that maximally decoded the proposition include superior temporal
cortex (as expected [12, 30, 34]) as well as parietal cortex. Importantly, the verb is decodable in
what seems to be the union of these regions, with inferior frontal cortex, Broca’s area, parietal
cortex, and superior temporal cortex all containing information for decoding. This result impli-
cates verb processing as crucial for the unification of syntactic and semantic information and the
formation of the integrated proposition.

Future work
The scientific goal of this thesis was to understand how varied syntax could be reconciled during
sentence comprehension. While active and passive sentences are a convenient set of syntactic
structures to use (since the same proposition can be expressed in both voices), the logical exten-
sion of this work would be to explore a wider array of syntactic structures. This in turn can allow
us to test a more complex set of models of sentence composition, beyond the simple syntax,
semantic, and hierarchical models explored in Chapter 6.

Additionally, sentences are not typically read in a vacuum, without context, but rather as
part of a larger narrative. An important next step for the neuroscience of language is to explore
sentences in a natural context and determine whether the post-sentence wrap up period observed
here is similarly detectable.
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Appendix A

Data Collection and Preprocessing Details

Elekta Neuromag. 102 locations, each location has 3 sensors: a magnetometer that detects mag-
netic field, and two orthoganal planar gradiometers to detect magnetic field spatial gradient.

The data were spatially filtered using the temporal extension of the signal space separation
(tSSS) algorithm, lowpass filtered to 150Hz with notch filters applied at 60 and 120Hz, and
downsampled to 500Hz. Artifacts from tSSS-filtered same-day empty room measurements, ocu-
lar and cardiac artifacts were removed via signal space projection (SSP).
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Appendix B

Pilot Stimuli

Active

Det-1 Noun-1 Verb Det-2 Noun-2
A dog found the peach
The dog kicked a school
A dog inspected a hammer
The dog touched the door
The doctor found a school
A doctor kicked the peach
A doctor inspected a door
The doctor touched the hammer
The student found a door
A student kicked the hammer
The student inspected the school
A student touched a peach
A monkey found the hammer
The monkey kicked a door
The monkey inspected the peach
A monkey touched a school

Table B.1: Active sentences used in the experiment.

Passive

Det-1 Noun-1 Verb-Aux Verb Prep Det-2 Noun-2
The peach was found by a dog
A school was kicked by the dog
A hammer was inspected by a dog
The door was touched by the dog
A school was found by the doctor
The peach was kicked by a doctor
A door was inspected by a doctor
The hammer was touched by the doctor
A door was found by the student
The hammer was kicked by a student
The school was inspected by the student
A peach was touched by a student
The hammer was found by a monkey
A door was kicked by the monkey
The peach was inspected by the monkey
A school was touched by a monkey

Table B.2: Passive sentences used in the experiment.
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Engagement Question

Question Answer
Was there a vegetable? N
Could you get hurt doing this? Y
Was a tool seen? Y
Was it bouncy? N
Could this item be put in a pocket? N
Was fruit damaged? Y
Was it a hard surface? Y
Was it bendy? N
Was this item bigger than a whale? N
Was it a soft item? N
Did this involve a building? Y
Was there something fuzzy? Y
Was this item smaller than an elephant? Y
Is this something you could do? Y
Was something blue seen? N
Was this item squishy? N

Table B.3: Comprehension questions used in the Pilot experiment.
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Appendix C

Confirmatory Stimuli

The stimuli are listed in Tables C.1 and C.2.

Active

Art-1 Noun-1 Verb Det-2 Noun-2 Question Answer
The man kicked the girl. Did he see someone? Y
The girl helped the boy. Did she do nothing? N
The woman approached the man. Was he seen? N
The boy punched the woman. Was she attacked? Y
The man kicked. Was he sleeping? N
The girl helped. Did she act? Y
The woman approached. Did she move? Y
The boy punched. Was he still? N
The girl kicked the man. Did she behave nicely? N
The boy helped the girl. Did he do something? Y
The man approached the woman. Was she visible? Y
The woman punched the boy. Was he safe? N
The girl kicked. Was she sleeping? N
The boy helped. Did he act? Y
The man approached. Did he move? Y
The woman punched. Was she sleeping? N

Table C.1: Active voiced Stimuli
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Passive

Det-1 Noun-1 Verb-Aux Verb Prep Det-2 Noun-2 Question Answer
The girl was kicked by the man. Did he see someone? Y
The boy was helped by the girl. Did she do nothing? N
The man was approached by the woman. Was he seen? N
The woman was punched by the boy. Was she attacked? Y
The girl was kicked. Was she hurt? Y
The boy was helped. Was he ignored? N
The man was approached. Was he visible? Y
The woman was punched. Was she unharmed? N
The man was kicked by the girl. Did she behave nicely? N
The girl was helped by the boy. Did he do something? Y
The woman was approached by the man. Was she visible? Y
The boy was punched by the woman. Was he safe? N
The man was kicked. Was he hurt? Y
The girl was helped. Was she ignored? N
The woman was approached. Was she visible? Y
The boy was punched. Was he unharmed? N

Table C.2: Passive voiced stimuli
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