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Abstract

Amputees face a number of gait deficits due to a lack of control and
power from their mechanically-passive prostheses. Of crucial im-
portance among these deficits are those related to balance, as falls
and a fear of falling can cause an avoidance of activity that leads to
further debilitation. In this thesis, we investigate the role that pros-
thesis control strategies play in maintaining balance with a powered
robotic transfemoral prosthesis. Our approach involves comparing
state-of-the-art prosthesis controllers on a common platform and
learning from this experiment to propose two new prosthesis control
strategies that directly address observed causes of falls in both the
swing and stance phases.

We begin by designing and manufacturing our own powered
transfemoral prosthesis capable of large torques for stumble recovery
and accurate reproduction of desired torques from different control
strategies. We also propose a pair of optimization methods that allow
us to select prosthesis control parameters using qualitative preference
feedback from the user.

Next, we test a hypothesis that a stance control approach based on
a model of the human neuromuscular system may help improve gait
robustness and user satisfaction over the commonly used impedance
control method. This hypothesis stems from previous research apply-
ing neuromuscular control to simulated biped models and to pow-
ered ankle prostheses that suggests that this approach can adapt to
changes in speed, incline, and rough ground. While our experiment
did not find a significant reduction in falls using neuromuscular con-
trol, it did reveal that a lack of robust gait phase estimation caused
a large number of falls for the impedance control strategy and that
both controllers suffered from trips during swing.

Therefore, we next proposed and tested two new control strategies
that directly address these causes of falls. In the first, we use informa-
tion from an inertial measurement unit and a LIDAR distance sensor
to estimate the position, orientation and future trajectory of the hip.
This information is then used to plan trajectories for the prosthesis’
knee and ankle that avoid tripping during swing. Second, we pro-
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pose using an extended Kalman filter to improve phase estimation
during stance. We show the resulting control strategy significantly
reduced the number of falls compared impedance control when users
step on uneven terrain. These results demonstrate the importance of
state estimation for improving gait stability.
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1
Introduction

1.1 Motivation
(a) C-Leg™ Knee ©Ottobock

(b) Rheo™ Knee ©Össur

(c) Thrive™ Foot ©Freedom Innova-
tions

Figure 1.1: Examples of
microprocessor-controlled
mechanically-passive knee
prostheses (a,b) and an energy
storage and return ankle-foot
prosthesis (c).

Six hundred thousand lower-limb amputees currently live in the
United States according to recent estimates [Ziegler-Graham et al.,
2008]. People undergo amputations due to a variety of reasons in-
cluding traumatic injuries from workplace accidents, traffic collisions,
and as casualties of war. In addition, a large percentage (54%) suffer
from the loss of a limb due to complications arising from dysvascular
disease associated with diabetes. Consequently, largely due to the
expected increase in diabetes in the coming years, Ziegler-Graham
et al. [2008] estimate that by 2050 the number of amputees living in
the United States will likely double.

Currently, prosthetists often prescribe transfemoral amputees
(those with amputations between the hip and knee joints) an energy
storage and return composite foot such as the Thrive Foot (Free-
dom Innovations; Irvine, CA; fig. 1.1c) along with a microprocessor-
controlled, mechanically-passive knee prosthesis. These knee pros-
theses feature control algorithms that adjust the knee’s resistance in
response to kinematic and force data measured by sensors embedded
in the device. Examples of microprocessor-controlled prosthetic knees
include the C-Leg (Otto Bock; Duderstadt, Germany; fig. 1.1a), which
has an adjustable hydraulic damping system, and the Rheo Knee (Ös-
sur; Reykjavik, Iceland; fig. 1.1b), which achieves variable damping
via a magnetorheological fluid. While Johansson et al. [2005] show
microprocessor-controlled knees can improve amputee gait character-
istics by decreasing metabolic energy consumption, decreasing peak
hip torque, and increasing gait smoothness compared a fully-passive
knee prosthesis, these prostheses still cannot fully replicate healthy
leg behavior as they are incapable of providing positive net power
during the gait cycle and are may be limited to providing positive
power only during fixed portions of the gait cycle.

Control of positive power generation is important as positive
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power is evident in a number of locomotion tasks. In the knee joint,
we see positive power during level walking [Perry and Burnfield,
2010], walking up stairs [Nadeau et al., 2003], running [Buczek and
Cavanagh, 1990], and jumping [Hubley and Wells, 1983]. In addition,
active knee flexion and extension muscle activations have been noted
during stumble recovery [Eng et al., 1994]. At the ankle joint, passive
spring-like prostheses cannot replicate the positive net work that
is seen in the ankle joint during level ground walking, which is
essential for push-off and forward propulsion [Perry and Burnfield,
2010].

Consequently, lower-limb amputees and especially transfemoral
amputees, those with above the knee amputations, equipped with
mechanically-passive prostheses suffer from a number of issues in-
cluding markedly increased energy consumption [Waters et al., 1976],
abnormal gait kinematics [Jaegers et al., 1995], and an increased likeli-
hood of falling [Miller et al., 2001]. Specifically, large percentages of
transfemoral amputees report they are unable to complete tasks such
as walking outside in inclement weather (47.4%), walking while car-
rying a load (42.7%), walking up or down stairs without a handrail
(38.5%, 37.9%), walking outside on uneven terrain (29.5%), picking up
an object from the ground (28.1%) or getting up from the floor after a
fall (22.8%) [Gauthier-Gagnon et al., 1999].

To help remedy this situation, in the past decade academic re-
search groups and companies have developed robotic powered knee
and ankle prostheses for lower-limb amputees. These prostheses
feature actuators at the knee and/or ankle that, if controlled correctly,
could potentially restore the kinetics, kinematics, and reactions of the
healthy human leg. Notable examples include three generations of
transfemoral prostheses developed by Vanderbilt University (fig. 1.2)
[Sup et al., 2009, Lawson et al., 2013, 2014] and the BiOM powered

Figure 1.2: Vanderbilt Univer-
sity’s Robotic Transfemoral
Prostheses. Images courtesy of
Michael Goldfarb.

(a) Generation 1 (b) Generation 2 (c) Generation 3
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ankle (fig. 1.3) [Herr and Grabowski, 2011]. These powered pros-
theses have helped amputees walk on level ground more naturally
and efficiently, as well as walk up stairs and slopes [Sup et al., 2011,
Lawson et al., 2013], run [Huff et al., 2012, Shultz et al., 2015], per-
form sit-to-stand [Varol et al., 2009], and dance [Rouse et al., 2015].
These results illustrate the benefits of powered prostheses as many of
these tasks require positive joint power and thus would be difficult to
perform with mechanically-passive prostheses.

Figure 1.3: BiOM Robotic An-
kle Prosthesis. Photo by Steve
Jurvetson, CC BY 2.0, Link
(cropped from original).

1.2 Challenges in Transfemoral Prosthesis Control

How to control active prostheses to achieve natural and robust gaits
still remains an open research question. Prosthesis controllers should
address a number of important challenges:

Challenge 1: Control must ensure the stability of the prosthesis and am-
putee Miller et al. [2001] found that 49.2% of lower limb amputees
feared falling and that of those afraid of falls 76% avoided physical
activity as a result. Avoidance of physical activity is eminently
concerning as it may lead to reduced strength, endurance, and
balance, feeding a positive feedback loop that causes further
debilitation. Therefore, to improve amputee quality of life it is
imperative that powered prosthesis control strategies reduce the
risk of falling.

In a traditional robotic system, this goal translates to ensuring
the stability of the states of the robotic system. However, for a
robotic prosthesis, the stability of the prosthesis state is insufficient
to guarantee amputee stability. It is possible for all prosthesis
states to be nominal while its user faces a precarious situation.
Consequently, prosthesis controllers should ensure, either em-
pirically or formally, that both the prosthesis and amputee states
remain stable in the presence of a myriad of disturbances. We
investigate the robustness of proposed prosthesis controllers in
chapters 5 and 7 to 9.

Challenge 2: Control should ideally only use information that can be
garnered from sensors on the prosthesis itself Prosthesis control
is complicated by sensing restrictions in a practical prosthetic
device. While full instrumentation of the amputee’s limbs and
the prosthesis may help guarantee the stability of the overall
system, in a practical prosthesis device, donning and doffing these
sensors may be overly burdensome for amputees in the real world.
Therefore, in this thesis, we only consider approaches that use
information that could be reasonably garnered from sensors on the
prosthesis and its socket.

https://www.flickr.com/photos/jurvetson/13480667874/
https://www.flickr.com/photos/jurvetson/13480667874/
http://creativecommons.org/licenses/by/2.0
https://commons.wikimedia.org/w/index.php?curid=32568854
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Challenge 3: Control must adapt to suit the needs of individual users Vari-
ations in gait between amputees arise due to a number of factors
including the amputee’s limb-lengths, weight, strength, endurance,
reason for amputation, time since amputation, experience, and
personal preferences. Consequently, prostheses and controllers
should be optimized to suit individual users. In this thesis, we
explore methods for optimizing prosthesis parameters from user
preferences (chapter 6) and in later work propose control methods
that automatically adapt to the user’s gait (chapters 8 and 9).

Challenge 4: Control should allow the prosthesis to interact dynamically
with the amputee and environment In human walking, during stance
the leg acts in a compliant, spring-like manner [Geyer et al., 2006]
and significant time is spent in statically-unstable contact on the
heel or toe, suggesting the importance of mechanical stability
achieved via foot placement [Perry and Burnfield, 2010]. During
swing, ballistic motion explains much of the leg trajectory [Mo-
chon and McMahon, 1980]. Indeed, much of the entire gait cycle
can be explained via passive dynamics as evidenced by passive-
dynamic walkers that can stably walk down slight inclines with no
onboard power source [McGeer, 1990, Collins et al., 2005].

Consequently, in order to ensure that amputee gaits are nat-
ural, efficient, and robust to disturbances, it is essential that the
design and control of robotic prostheses admit and leverage the
inherent dynamics of walking. Therefore, in chapter 3 we detail
the mechanical design and low-level control of a prosthesis that
can precisely track torques. Furthermore, all controllers proposed
in this thesis command desired torques to the prosthesis to allow
for compliant interaction with the amputee and the environment.
This is either accomplished via controllers that directly command
torques as a function of sensor inputs, as in the case of neuro-
muscular control (chapter 4), or, when kinematic objectives are
specified, accomplished via the use of feedforward torque com-
mands and low-gain feedback, as in the case of our proposed
swing (chapter 8) and phase-based stance controllers (chapter 9).

In this thesis, we primarily focus on addressing challenge 1 by
evaluating the robustness of various prosthesis controllers, learning
from those evaluations and proposing new methods to improve
gait stability. However, in all presented work we make sure to keep
challenges 2 to 4 in mind.
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1.3 Approach and Contributions

We first investigate whether a novel neuromuscular transfemoral
prosthesis control can improve gait robustness. This control approach
seeks to mimic the underlying dynamics and control of the human
neuromuscular system. Unlike the popular finite state impedance
control methods, which we review in section 2.2.2, during stance, the
neuromuscular control approach provides smooth torque outputs
that do not vary drastically due to discrete phase transitions. We are
motivated to evaluate this control approach by simulations of biped
walking models driven by neuromuscular control that demonstrate
its robustness [Song et al., 2013, Song and Geyer, 2015] and potential
for improvement over finite state impedance control (chapter 5
[Thatte and Geyer, 2016]) and by previous work demonstrating the
adaptability of neuromuscular control on powered ankle prostheses
[Eilenberg et al., 2010, Markowitz et al., 2011].

To objectively compare the proposed neuromuscular prosthesis
control approach to other methods we required a transfemoral pros-
thesis capable of accurately reproducing desired torques. To this
end, in chapter 3 we detail our first contribution: the design of a
transfemoral prosthesis that uses series elastic actuators to achieve
accurate torque control and is capable of large joint torques to allow
for behaviors such as running and stumble recovery. We evaluate the
proposed design by measuring its torque tracking bandwidth, zero
torque tracking capability, and ability to track torques during normal
walking.

Also needed to objectively compare control methods, is a method
of finding parameters that suit individual subjects. There are two
main issues that must be overcome to solve this problem. First, it
is unclear which metric of gait we should be optimizing. There is
a myriad of qualities necessary for a “good” gait including gait
robustness, naturalness, energy efficiency, and comfort. Some of
these metrics such as naturalness can be easily quantified, others,
such as robustness and energy efficiency are quantifiable but only
with considerable data, and others, such as comfort, are less easily
quantifiable. Even if these metrics can be quantified their relative
importance is unknown and may be unique to each user. The second
issue is that many prosthesis control methods have a large number of
parameters, which makes optimization of their parameters difficult
due to the curse of dimensionality. For example, to find parameters
for the neuromuscular control scheme we propose in section 4.6, we
optimize at least 18 parameters.

We present two contributions in chapter 6 to tackle these issues.
Both approaches utilize preference feedback between pairs of control



24 design and evaluation of robust control methods for robotic transfemoral
prostheses

parameters that allow the user to implicitly define the cost function
via their qualitative feedback. In the first approach, we examine
a Bayesian optimization scheme that chooses, at each iteration, a
pair of parameter vectors to compare that is expected to maximize
information gained about the location of the user’s optimum. Our
experimental results show that this approach is unable to address
problems of large enough dimensionality. Therefore, in the second
contribution, we propose an alternative approach that utilizes offline
optimizations to generate a discrete library of control parameter sets
from which the user chooses their optimum, again through pairwise
preference feedback.

With the prosthesis and parameter selection method in place, in
chapter 7, we present the results of an objective comparison between
neuromuscular and impedance control strategies. Based on the
simulations results comparing neuromuscular and impedance control
presented chapter 5, we hypothesized that neuromuscular control
would be less susceptible to falls than impedance control. While we
could not verify this hypothesis at the p < 0.05 level, we were able
to identify failure modes that were unique to impedance control and
found that identifying trips during swing could have a major impact
on gait robustness.

Based on the results of the preceding experiment we make three
additional contributions. The first two, presented in chapter 8 are
motivated by the observation that trips account for a significant
number of falls recorded in the above experiment. Prosthesis swing
controls that reduce the risk of tripping is a largely unexplored area.
We explore two distinct approaches to tackle this problem. In the
first, we employ online learning to train a classifier that can detect
the user’s obstacle avoidance intent and switch the prosthesis swing
trajectory to a safer one. In the second approach, we attach a laser
distance sensor to the prosthesis and develop an extended Kalman
filter to estimate the user’s hip height and orientation. We use this
state estimate to explicitly plan swing trajectories for the knee and
ankle joints that avoid premature toe and heel contact.

Finally, in the last contribution presented in chapter 9, we propose
a new stance control strategy that seeks to rectify the observed issues
with impedance control without the complexity of neuromuscular
control. Moreover, this new proposed strategy seeks to rectify the
issues we faced when implementing a previously proposed phase-
based control [Quintero et al., 2016]. In the proposed control method,
we obtain a continuous phase estimate using a multitude of measure-
ments and an extended Kalman filter. We evaluate the robustness,
naturalness, and adaptability of the proposed control in experiments
with seven able-bodied subjects and one amputee subject.
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Background

2.1 Prosthesis Design

We can trace efforts to build active knee-ankle prostheses to the sev-
enties when Flowers [1974] created an active knee-ankle prosthesis
to test potential control schemes. This prosthesis used a hydraulic
actuator capable of producing 90 N · m of torque and 0.5 rev/s of no-
load speed. With this device, Donath [1974] tested a controller based
on EMG measurements. This line of research proved to be far ahead
of its time, as most relevant research in active lower-limb prostheses
design has occurred only in the last ten years. The recent interest in
active knee ankle prostheses has been spurred by hardware improve-
ments that allow designs to approach the strength, speed, and low
weight of the biological leg. Enabling technologies include power-
dense brushless motors, motor controllers, and lithium-ion batteries,
inexpensive microcontrollers, and inertial measurement units (IMUs),
and strong but light composite materials such as carbon fiber. With
these advancements, engineers have successfully designed prostheses
to meet or exceed the requirements for walking (table 2.1).

Ankle Max Knee Max

Velocity 0.72 rev/s 1.17 rev/s

Torque 130 N · m 57 N · m
Power 350 W 120 W

Table 2.1: Required knee and
ankle torque, velocity, and
power for walking (1.40 m/s

average speed, scaled to 85 kg
subject, data from Winter
[2009])

In this section, we review a number of recent prosthesis designs
and analyze their ability to enable dynamic locomotion. To address
this challenge, prostheses should be able to regulate their output joint
torques and behave as though they have inertial properties similar
to that of a normal human leg. Doing so ensures that a prosthesis
can emulate the energy efficient gaits of normal walking and remain
compliant to unforeseen disturbances and uneven terrain.

2.1.1 Rigid Transmission Transfemoral Prostheses

The most common approach for active transfemoral prosthesis design
employs electric motors with transmissions that are rigidly coupled
to the knee and ankle joints. The transmissions may utilize a combi-
nation of gears, chains, belts, ball screws, and four-bar-mechanisms
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(a) Generation 1 used ball screw trans-
missions, 200 W brushless motors,
and a unidirectional parallel spring in
the ankle that reduced motor torque
requirements [Sup et al., 2009].

(b) Generation 2 replaced ball screws
with custom gear-based transmission
that is less noisy and more durable
[Lawson et al., 2013].

(c) Generation 3 features a modular
design with separable knee and ankle
units [Lawson et al., 2014].

Figure 2.1: Vanderbilt Univer-
sity’s Robotic Transfemoral
Prostheses.

in order to increase the torque output of the actuator, at the expense
of speed, in order to satisfy the requirements listed in table 2.1. A
successful line of transfemoral prostheses following this design
paradigm comes from Vanderbilt University. The first prosthesis in
this line (fig. 2.1a) used a pair of ball screw transmissions and brush-
less motors capable of 200 W of continuous power output to drive its
knee and ankle joints [Sup et al., 2009].

With these actuators, the knee motor can achieve the required
peak torque and peak power intermittently (table 2.1). However, the
ankle motor may be overly stressed due to the high requirements
of walking. To remedy this, the prosthesis includes a unidirectional
parallel spring in the ankle that reduces the required ankle motor
torque. As shown in figure fig. 2.2, during level ground walking, a
linear torsion spring accounts for a significant portion of the ankle’s
torque versus angle relationship. Therefore, incorporating a spring
into the ankle offloads this portion of the torque from the motor. The
ankle motor only needs to provide the difference between the desired
output torque and the linear spring. As a result, the spring reduces
motor energy consumption, heat generation, and transmission wear.

Further improvements resulted in two more generations of pros-
theses (fig. 2.1b,c) [Lawson et al., 2013, 2014]. These versions replaced
ball screw transmissions with a multi-stage belt/chain which im-
proved packaging and reduced noise and wear. With these prosthe-
ses, researchers have extensively tested a variety of control strategies
including finite state impedance/quasi-stiffness control [Sup et al.,
2009, 2011, Lawson et al., 2013, 2014, Lenzi et al., 2014b], EMG-based
control [Ha et al., 2011, Varol et al., 2010], minimum jerk trajectory
following [Lenzi et al., 2014a], and virtual constraint control [Gregg
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et al., 2014].
Additional prostheses in the rigid transmission category include

AMPRO [Zhao et al., 2016], and a commercially available active knee
and ankle prostheses: the Össur Power Knee and Proprio Foot. The
AMPRO prosthesis features two 374 W motors coupled to Harmonic
Drive transmissions. Zhao et al. [2016], use this prosthesis to assess
the merits of a virtual constraint controller. The Össur Power Knee
features an electric motor that can provide torque to facilitate sit-
to-stand motions, stair climbing, and active extension and flexion
during walking. The Proprio Foot also features electric actuation that
allows it to adapt to the terrain and dorsiflex the ankle during swing
to help avoid trips.

Torque Control Strategies for Rigid Transmission Prostheses

In order to achieve dynamic locomotion capabilities, it is crucial
that prosthesis designs allow for closed-loop control of torques. To
do this, the control system must be able to accurately measure the
torque at the joint output. There are two main strategies for torque
measurement used by prostheses with rigid transmissions.

The first strategy is to measure the current draw of the motors
windings, which is related linearly to the motor torque. One can then
multiply this measurement by the gear ratio to obtain an estimate
of the output joint torque. This is the method used by Generations 2
and 3 of the Vanderbilt prosthesis as well as the AMPRO prosthesis.
The benefit of this method is that it utilizes existing hardware and
allows one to use high-frequency current control modes of motor
drivers. However, a drawback of this method is that it measures the
torque before the transmission. Consequently, it does not account
for frictional losses, which can be difficult to model, especially for
geared systems. A strategy that deals with this problem is to install
load cells in series with the motor after the transmission, as was done
on Generation 1 of the Vanderbilt prosthesis. With this method, the
closed-loop control can compensate for frictional losses as they are
included in the torque measurement.
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Figure 2.2: Torque vs angle re-
lationship for the ankle during
level ground walking. A linear
spring relationship captures
a significant portion of ankle
function during stance. Data
from Winter [2009] scaled to 85
kg subject.

However, this method may still not address a second problem:
sluggish passive dynamics caused by reflected inertia and damping.
Reflected inertia refers to the apparent magnification of motor rotor
and gearing inertia on the outside of gearbox. We can derive this
effect through Newton’s second law for the geared motor

Jiq̈i = ti � biq̇i. (2.1)

Here, q and its derivatives refer to angular states of the motor, b
is the damping constant, J is the inertia and t is the motor torque.
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Knee Ankle

rotor inertia 0.035 kg · cm2 1.210 kg · cm2

gear ratio 176:1 115:1
reflected inertia 0.11 kg · m2 1.6 kg · m2

human inertia 0.66 kg · m2 0.019 kg · m2

percent increase 17% 8400%

Table 2.2: Estimated reflected
inertia at knee and ankle joints
of Generation 3 Vanderbilt
Prosthesis [Lawson et al., 2014].
Motor data taken from Maxon
Motors Catalog[Motor, 2016b,a]
Knee reflected inertia compared
to inertia of human shank and
foot about knee. Ankle inertia
compared to human foot about
its center of mass. Human in-
ertias estimated from Winter
[2009] for an 85 kg, 1.7 m tall
person.

We use subscript i to refer to these quantities as seen before the
gear reduction, and subscript o to refer to those quantities reflected
outside of the motor. Substituting qi = nqo and ti = 1

n to, where n is
the gear ratio, and multiplying through by n yields

Jin2q̈o = to � bin2q̇o (2.2)

=) Joq̈o = to � boq̇o. (2.3)

These equations show that the inertia and damping of the motor
rotor are amplified by the square of the gear ratio. As prostheses may
often use gear ratios in excess of 100:1, this effect can be substantial.

For example, table 2.2 shows the calculated reflected inertias of the
Maxon Motors used in Generation 3 of the Vanderbilt prosthesis and
compares the values to the estimated inertia of the shank and foot
about the knee and the foot about its center of mass. We see that at
the knee, the reflected inertia is roughly 17% of that of the human
shank and foot. In practice, this value is likely several times higher
after including the inertia of the encoder, bearings, and gearing.
Consequently, we can estimate that the reflected inertia may be
on the order of the leg itself. At the ankle, the reflected inertia of
the rotor alone is several orders of magnitude more than that of
the foot and more than twice that of the shank and foot. When we
also consider reflected damping and friction, the dynamics of the
prosthesis system may be significantly slower than assumed.

The increase in joint impedance created by transmissions could
present an issue when attempting to execute dynamic behaviors
involving impacts such as running or trip recovery. In an impact
event, the impulse will move through the system at the speed of
sound through metal, roughly 6420 m/s for aluminum [Lide, 2004].
If the prosthesis is 0.5 m long, the shock will traverse its length in
0.00008 seconds. This is about 10 times faster than the typical 1000 Hz
control frequency of prosthesis control systems, rendering closed-
loop torque control with load cells unresponsive. The impact shock
could cause damage to gearing and discomfort for the amputee.
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2.1.2 Design of Dynamic Prostheses

In contrast to the rigid transmission actuation discussed in the previ-
ous subsection, prostheses that employ series elastic actuation may be
better poised to achieve dynamic locomotion [Pratt and Williamson,
1995]. This actuation scheme (illustrated in fig. 2.3) aims to solve
the torque measurement and impedance amplification caused by
transmissions by placing a spring in series with the actuator. Mea-
suring the deflection of the spring allows for accurate closed-loop
control of the joint torque. Moreover, the spring low-pass filters ex-
ternal impulses, granting the control system more time to move the
motor rotor in response to the external load. Due to these proper-
ties, designers have integrated series elastic actuators into a number
of bipedal robots that seek to achieve dynamic locomotion such as
M2V2 [Pratt and Krupp, 2008] and ATRIAS [Grimes, 2013].

Motor Gear Load

θm θl

series
spring

Figure 2.3: Series elastic actu-
ation inserts a spring between
the gear output and the load
(here drawn as linear actuator
for simplicity). Torque is mea-
sured via the spring deflection,
t = k(ql � qm � q0) where t

is the output joint torque, k
is the spring constant, and ql
and qm are the load and motor
positions and q0 is the spring’s
rest length.

Series elastic actuators have found use in a variety of transtibial
and transfemoral prostheses. We can further split these applications
into two categories, those that optimize the spring stiffness for con-
trol bandwidth subject to shock tolerance and those that optimize
spring stiffness to optimize efficiency.

Springs for Bandwidth and Shock Tolerance

Adding a spring between the gear and load introduces additional
dynamics between external torques and torques applied to the gear-
box as external torques must physically displace the load before they
generate torque on the motor. This property can improve the shock
tolerance of SEA actuators over that of direct drive motors [Robin-
son, 2000]. However, by the same token, the SEA also introduces
additional dynamics between motor torque and load torque, hence re-
ducing force control bandwidth. Therefore, a trade-off exists between
the compliance of the actuator and speed with which it can generate
desired torques.

Au et al. [2007], Au and Herr [2008] design powered ankle prosthe-
ses with this trade-off in mind. In these publications, the authors find
that using a SEA spring soft enough to protect the ball screw trans-
mission results in insufficient closed-loop torque control bandwidth.
To overcome this shortcoming, the authors incorporate a parallel
spring into the ankle as was done for some of the knee and ankle
prostheses discussed in section 2.1.1. Because the parallel spring
offsets the motor’s torque requirements, Au and Herr find that it also
improves the bandwidth of the system from 4 Hz to 20 Hz, thereby
exceeding the requirement for walking.

Caputo and Collins [2013] also used series elastic actuators in a
robotic prosthesis testbed. This system uses a large, 1.61 kW offboard
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motor connected to a light-weight prosthesis end-effector via a
Bowden cable transmission. The Bowden cable applies forces to one
end of a fiberglass leaf spring strain gauges measure its deflection.
The author’s note that the series springs isolate the prosthesis end
effector from the motor’s rotor inertia. With this system, the authors
achieve a large peak output torque (175 N · m) and high bandwidth
(17 Hz), allowing them to rapidly test the effects of different control
strategies and emulate prosthesis hardware [Caputo et al., 2015].

Springs for energy efficiency

Designers can also tune series elasticity in order to improve energy
efficiency by mimicking the role of tendons in the biological human
leg. In the human ankle, the Achilles tendon, which is in series with
the ankle plantar flexor muscles, stores energy throughout stance
and releases it just prior to toe-off, producing a surge of mechanical
power. During this process, the ankle plantar flexor muscles hold the
proximal end of the tendon nearly stationary via isometric contrac-
tion. This kind of length-preserving muscle contraction consumes
relatively little metabolic energy compared to concentric or length-
shortening contractions [Rall, 1984]. Consequently, ankle elasticity
helps to store and release energy, thereby improving the metabolic
cost of walking [Sawicki et al., 2009].

Similarly, the SPARKy prosthesis uses a Robotic Tendon comprised
of helical springs in series with the motor to store and release energy
ankle energy during stance [Hitt et al., 2007, Bellman et al., 2008,
Holgate et al., 2008]. Adding a series spring changes the ankle motor
movement to that required to generate desired output torque given
the stiffness of the spring and trajectory of the ankle joint1. Therefore, 1 qm = ql � t/k � q0, where t is the

desired ankle torque, ql is the ankle
trajectory, and k and q0 are the spring
stiffness and offset

with a properly tuned series spring, the design reduces motor move-
ment and thus required motor power from 250 W to 77 W [Hitt et al.,
2007].

Transfemoral prosthesis designs have also sought to use springs in
the knee joint in order to improve energy efficiency. However, these
prostheses require more sophisticated designs due to the complex
behavior of the knee. Whereas a single spring relationship explains
a significant portion of ankle joint behavior (fig. 2.2), as shown in
fig. 2.4, the knee joint requires two springs: one for early stance and
one for pre-swing and swing. Two prostheses that tackle this design
problem are the agonist-antagonist active knee prosthesis (AAAKP)
[Martinez-Villalpando et al., 2008, 2011] and the clutchable series
elastic actuator (CSEA) knee [Rouse et al., 2014, 2015].

The AAAKP prosthesis uses two unidirectional springs, one for
extension and one for flexion, each in series with its own actuator.
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With this setup, AAAKP is able to store energy during the knee
flexion phase just after heel strike and transfer it to a flexion spring
for use during pre-swing and swing. The prosthesis consumes just
5.6 J/stride. However, the downside of this design is inefficient use of
actuator mass, as two electric motors are required, one for extension
and one for flexion.
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Figure 2.4: Torque vs angle
relationship for the knee during
level ground walking. Knee
displays more complicated
functionality than the ankle
(see fig. 2.2), with two distinct
springs needed to explain early
stance and pre-swing/swing
behavior. Data from Winter
[2009] scaled to 85 kg subject.

A second concept is to use a series elastic actuator with a clutch on
the motor [Rouse et al., 2014, 2015] The clutch saves energy by hold-
ing the motor side of the series spring stationary while the spring
is loaded in early stance; no electrical energy is consumed holding
the rotor in place. In this design, the spring-like behavior of the knee
during swing is reproduced by the electric motor alone unlike in the
AAAKP prosthesis. Despite this, the CSEA knee consumes less en-
ergy than the AAAKP, just 3.6 J/stride. Moreover, the simplified design
of the CSEA has a mass of 2.7 kg vs 3.6 kg for the AAAKP.

A potential drawback of SEA designs that are tuned for energy
efficiency is that they typically tune the spring stiffness to match
observed quasi-stiffness of the biological joint during a certain phase
of the gait. However, this stiffness value is not necessarily that which
maximizes torque control bandwidth. Therefore, while prostheses
tuned for efficiency can consume less energy, which is desirable for
a product needing long battery life, they may not represent the most
versatile design for evaluating new control ideas or different gait
modes.

2.2 Prosthesis Walking Control

2.2.1 Time Based Control

The earliest proposed robotic prosthesis control strategy, termed
echo control, records the kinematics of the sound-side as a function
of time leg on each step and then executes an identical trajectory
on the prosthesis side on the following step [Grimes et al., 1977,
Grimes, 1979]. Such a control strategy has a number of drawbacks.
First, the control strategy requires measurement of the sound-side
leg, thus burdening the amputee with additional sensors that need to
be donned and doffed daily. Second, the control is unable to take an
odd number of steps, and all steps must be initiated with the sound
leg. Third, the control is primarily, kinematic as measuring torques of
the sound side leg to use as a feedforward control on the prosthesis
is infeasible. Consequently, it may require high-gain feedback, which
may cause discomfort and gait instability due to a lack of compliance
with the environment.

Another form of time-based control, which we will use later in
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this thesis, is the minimum jerk trajectory swing control presented
in Lenzi et al. [2014b]. This swing control strategy calculates at
toe-off three minimum jerk trajectories, parameterized by 5th order
polynomials, which dictate the movement of the knee and ankle
joints. For the knee joint, two trajectories are computed, one that
starts at the position, velocity, and acceleration of the knee at toe-
off and goes to a peak flexion angle with zero velocity, and one
that starts at the peak flexion state and goes to a final state of zero
angle, velocity, and acceleration. The peak knee angle is tuned to
ensure adequate foot clearance while the acceleration at the peak
angle is based on able-bodied data. For the ankle, one minimum jerk
trajectory is used that starts at the position and velocity at toe-off
and proceeds to a final position, velocity, and acceleration of zero.
The duration of the trajectories is based on a fixed percentage of the
stance duration thereby automatically adapting the swing phase to
different gait speeds. Unlike the previously described echo control,
this control strategy takes advantage of the simple double-pendulum
dynamics during swing to derive a strong feedforward term that
allows the use of small, compliant feedback gains.

2.2.2 Finite State Impedance Control
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Figure 2.5: Finite state machine
used for the impedance control
scheme proposed in Sup et al.
[2009]. In each state the con-
trol employs linear impedance
functions that determine the
behavior of the ankle and knee
joints of an active transfemoral
prosthesis.

To alleviate issues with the time-based echo control, researchers later
proposed finite state impedance control, which has become the most
widely used control for robotic legged prostheses. In this strategy,
the gait cycle is split into a sequence of discrete states or phases.
During walking, a state machine switches between the phases based
on sensor data meeting certain conditions, usually in the form of
thresholds on joint angles, joint velocities, or ground reaction forces.
Within each phase, the controller specifies an impedance relationship
between the output torque at each joint and the angle and angular
velocity of that joint.

For example, Sup et al. [2009], proposes a specific instantiation of
this control paradigm in which the gait cycle is segmented into three
stance states and two swing states as shown in fig. 2.5. In each state,
the impedance of a joint is governed by

t = �k(q � q0)� bq̇, (2.4)

where t is the desired torque of a joint, k is a stiffness parameter q0

is the joint angle offset, b is a damping parameter and q̇ is the joint
velocity. If the stiffness, damping, and angle offset for each joint
and the transition rules are tuned appropriately, this control scheme
can be made to suit sloped walking [Sup et al., 2011] and speed
variations [Shultz et al., 2016] including running [Shultz et al., 2015].
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There have also been a number of variations on this general control
scheme including those with nonlinear impedance functions at the
ankle [Sup et al., 2007, Shultz et al., 2014] and some using high-gain
position control for the late stance push-off phase of gait [Lawson
et al., 2014]. Lenzi et al. [2014b] presents a similar strategy named
quasi-stiffness control that substitutes the parameterized impedance
functions given by eq. (2.4) with lookup tables that provide the
torque vs angle relationship at different gait speeds.

A potential drawback of the impedance control paradigm may be
its sensitivity to the rules that govern transitions between phases. A
premature transition or delayed transition may cause inappropriate
joint torques leading to gait instabilities and falls. For this reason,
prior works have experimented with a wide variety of transition rules
based on joint angles, velocities, and ground reaction forces mea-
sured by the prosthesis. Alternatively, If one is willing to instrument
the sound-side leg, then Liu et al. [2014] provides a method to im-
prove transition rules by using online learning and gait events of the
sound-side leg. In this thesis, however, we focus on control strategies
that do not require extra instrumentation of the body. Therefore, in
later chapters, we will explore, through simulations (chapter 5) and
experiments with our robotic prosthesis (chapters 7 and 9), the con-
sequences of mistimed phase transitions in a finite state impedance
control scheme that does not use external sensing.

2.2.3 Continuous Phase Control

Another approach to walking control in active prostheses is to esti-
mate or measure a continuous phase variable. This may avoid the
gait instabilities that can be caused by joint torques that change dis-
continuously in finite state impedance control. Previous work in this
area has focused on deriving phase variables from single information
sources. For example, Gregg et al. [2014] enforce virtual constraints
on the effective rollover shapes during walking. The rollover shapes
are the locations of the center of pressure (COP) in frames attached
to the shin and thigh. Proportional derivative control or feedback
linearization can be used to drive the error between the measured
rollover shape and desired rollover shape to zero. Typically, during
walking the COP progresses monotonically from heel to toe, making
it an effective phase variable. However, when walking on uneven ter-
rain this assumption could be violated. Additionally, this definition
of phase is only applicable during stance.

To obtain a phase variable that is applicable in a wider variety of
situations, Quintero et al. [2016] propose using the thigh angle and
its integral to derive a continuous phase variable. In this approach,
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one starts by plotting in a chart the thigh angle on the x-axis and
its (normalized) integral on the y-axis. Assuming the thigh angle
approximately follows a cosine trajectory during gait, and with the
right normalization and shift parameters, the thigh angle/thigh an-
gle integral form a circle over one gait cycle. Therefore, one can use
the polar angle of the thigh angle integral vs thigh angle as a phase
variable. However, in order for the method to calculate a phase angle
that increases at a predictable constant rate, the thigh angle/integral
plot should be centered about the origin and the correct normaliza-
tion needs to be applied to the thigh integral. Furthermore, in order
for the thigh integral to reach zero again at the end of a gait cycle,
the average thigh angle must be subtracted from the thigh angle
before integration. The thigh angle shift, integral shift, integral nor-
malization, and angle average must be estimated online in order to
use this method. Incorrect estimation of these parameters can cause
the phase estimate to diverge. Consequently, using this method for
non-periodic motions is difficult. In section 2.2.3 we present our at-
tempt to implement this style of control on our robotic prosthesis.
We found that the variability from step to step alone was enough to
cause significant drift in the thigh angle integral. Thus we were not
able to achieve a consistent gait with this control scheme.

As a possible solution, Rezazadeh et al. [2018] recently proposed a
method that eliminates the thigh angle integral and instead uses the
thigh angle only. This method relies on the insight that, for the most
part, during gait, the thigh angle decreases monotonically from heel
strike to shortly before toe-off, and then increases from that point
until the next heel strike. Therefore, one can define two different
relationships between the hip angle and phase for these two portions
of gait and use a finite state machine to transition between them.
However, reintroducing a finite state machine into the controller
necessitates tuning of transitions rules between phases and may
cause similar issues as in finite state impedance control.

Finally, Azimi et al. [2019] propose another approach to continu-
ous phase-based control of prostheses uses the forward translational
hip position to parameterize the desired gait trajectory. The trajectory
is designed in simulation subject to a partial hybrid zero dynam-
ics constraint that allows one to use an adaptive, control Lyapunov
function-based, controllers with convergence guarantees. However,
to date, this control has only been used to actuate the knee of a pow-
ered prosthesis while the ankle remained passive, perhaps due to
the additional complexity of dealing with multiple hybrid dynamics
transitions between swing, heel contact only, heel and toe contact,
and toe contact only.

In chapter 9, we propose an alternative approach to continuous
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gait phase estimation that uses an extended Kalman filter to derive
the phase estimate. Unlike these reviewed approaches, the proposed
approach can fuse information from any combination of sensors that
produce continuous output and does not need a finite state machine.
Moreover, we show the resulting control can use the phase estimate
to adapt to different gait speeds and enable automatic transitions to
standing mode.

2.2.4 Non-Phase-Based Control

So far, all walking controllers we reviewed keep track of either a
discrete or continuous estimate of phase during gait. However, re-
searchers have also proposed prosthesis controllers that do not take
this approach. For example, the complementary limb motion estima-
tion (CLME) approach proposed by Vallery et al. [2011] uses linear
regression to learn direct mappings between the angles and veloci-
ties of the user’s limbs to the prosthesis’ joint angles and velocities.
However, this approach used many IMUs mounted to the torso and
sound side leg to measure the user’s kinematics and thus may be
impractical for everyday use by an amputee.

Another class of non-phase-based control uses neuromuscular
models that simulate the dynamics of the muscle-tendon units in the
leg and hypothesized reflex pathways to generate the desired torques
for walking. Prior work in simulation of biped walking controlled by
neuromuscular models has demonstrated that this control approach
can produce very natural and robust gait patterns [Geyer and Herr,
2010, Song et al., 2013, Song and Geyer, 2015].
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Figure 2.6: Neuromuscular
model used by Eilenberg et al.
[2010] to control an active ankle
prosthesis. During stance, a
virtual muscle driven by pos-
itive force feedback generates
plantar flexion torque. During
swing, a virtual spring and
damper provides dorsiflexion
torque to prevent toe scuffing.

Motivated by the robustness and natural gait achievable by neu-
romuscular reflex control, past research has applied this model to
active ankle prostheses. Eilenberg et al. [2010] applied a simplified
version of the control to a powered ankle prosthesis (fig. 2.6). In this
work, the neuromuscular model was reduced to a single ankle plan-
tar flexor muscle driven by a positive force feedback reflex during
stance. During swing, the control applies torque to dorsiflex the an-
kle according to a virtual spring-damper model. In amputee testing
of a prosthesis controlled by the neuromuscular model, the control
produced ankle kinematics and kinetics similar to those observed in
healthy human walking. Significantly, Eilenberg et al. found evidence
that the robustness properties observed in neuromuscular model sim-
ulations may carry over to amputee gait as well. The author’s note
that the prosthesis automatically adapts torque output when walking
on slopes, producing more plantarflexion torque when walking up
slopes and less when walking down slopes. Additionally, Markowitz
et al. [2011] found that a similar neuromuscular reflex model auto-
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matically produced more ankle plantarflexion work as the amputee
increased his gait speed.

The inclusion of user intent recognition via surface electromyo-
graphy (EMG) signals represents an interesting extension of neu-
romuscular reflex prosthesis control. In these approaches, muscle
activity in the residual limb is directly measured via EMG sensors
embedded in the amputee’s prosthesis socket. These EMG sensors
are then used to control the torque generation of the amputee’s leg
prosthesis. Because neuromuscular models describe how joint torque
is generated in response to muscle activations, a natural approach is
to use the EMG signal in reflex pathways in order to activate virtual
muscles. This is the approach proposed by Wu et al. [2011]. In this
work, Wu et al. control an active transfemoral prosthesis using EMG
sensor readings from the residual thigh to activate virtual knee flexor
and extensor muscles according to a linearised Hill muscle model.
The resulting prosthesis control allowed an intact subject wearing the
prosthesis via an able-bodied emulator to achieve nearly normal gait.
In a similar approach, Wang et al. [2013] use EMG signals to modify
the gain on a positive torque feedback loop in order to control ankle
plantarflexion torque. As seen in healthy human walking, toe off
angle and ankle net work increased with increasing walking speed.

2.3 High-Level Control

In the previous section, we reviewed mid-level controllers that pro-
duce desired torques given a specific mode of walking. Here, we
describe high-level controllers that classify the current walking
mode, such as standing, level ground walking and stair and ramp
ascent/descent, so that the appropriate control parameters or type of
mid-level control can be selected.

A variety of classifiers have been used to detect gait modes includ-
ing artificial neural networks [Huang et al., 2009], linear discriminant
analysis [Huang et al., 2009, 2011, Hargrove et al., 2015, Young et al.,
2014a], Gaussian mixture models [Varol et al., 2010], support vector
machines [Huang et al., 2011, Massalin et al., 2017, Yan et al., 2018],
dynamic Bayesian networks [Young et al., 2014a, Hargrove et al.,
2015, Spanias et al., 2018]. Additionally, papers have suggested using
different sensors including electromyography (EMG) [Huang et al.,
2009], prosthesis mechanical sensors [Varol et al., 2010, Young et al.,
2014a,b], a combination of EMG and mechanical sensors [Huang
et al., 2011, Spanias et al., 2018, Hargrove et al., 2015], and laser range
finders/depth sensors [Zhang et al., 2011b, Liu et al., 2016, Massalin
et al., 2017, Yan et al., 2018].

In some of the early works on gait mode recognition, a single set
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of training data was collected in which modes were switched either
manually or using hand-tuned rules. Using this dataset, the mode
recognition classifier was trained a single time, and offline classifi-
cation accuracy was reported [Huang et al., 2009, 2011, Young et al.,
2014a]. However, Hargrove et al. [2015] show that when classifiers
trained in this fashion are deployed on the real prosthesis, classifica-
tion errors are worse in the online setting than in the offline setting.
This is because the high level-controller governed by the classifier
affects the behavior of the system, and changes the distribution of
data from that on which the classifier is trained. To overcome this is-
sue, Spanias et al. [2018] provide a method for updating the classifier
online so that the training and testing data distributions converge.
In this method, a forward classifier provides labels for gait modes
for use in real time and a backward classifier labels gait modes in
hindsight with more data. The labels from the backward classifier are
then used to update the forward classifier.

2.4 Prosthesis Optimization

Optimizing control policies for prostheses presents a challenging
task due to four key issues. First, there is significant variability in
gait characteristics that precludes using the same parameters for all
users. Recently, Zhang et al. [2017] demonstrated the effect of gait
variability on lower limb assistive device optimization. In this work,
the researchers optimized an ankle exoskeleton’s torque trajectory for
specific users. The authors found that optimized torque trajectories
could reduce metabolic energy consumption beyond that provided by
a generic assistance strategy.

Second, to optimize prostheses and exoskeletons, it is necessary to
define an objective function that includes and correctly assigns impor-
tance to all characteristics that determine system performance. Most
prior work in this area assumes a certain form for the objective func-
tion. For example, in the work described above, the author’s assume
that the metabolic energy consumption of the user is the only impor-
tant factor. The authors then use the Covariance Matrix Evolution
Strategy [Hansen, 2006] to optimize the parameters of the exoskele-
ton. In other work, Huang et al. [2016] optimize a transfemoral leg
prosthesis assuming the objective is to improve the ability of the knee
to track an able-bodied trajectory. In this work, the authors use a
cyber-expert system (CES) that encodes how a human expert’s tuning
of impedance parameters affects the trajectory error. With this strat-
egy, the author’s improved trajectory tracking of a knee prosthesis,
but also note that other metrics might be important such as metabolic
energy, symmetry, and disturbance rejection. This approach was later
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improved by using adaptive reinforcement learning to circumvent
predefining the tuning rules [Wen et al., 2016, 2019].

If we choose to optimize more than one outcome simultaneously,
we need to assign weights to each feature to each feature that reflect
the user’s individual needs. Moreover, other aspects of gait may also
be important but difficult to quantify, such as the amputee’s comfort
and sense of stability. In any case, measuring gait features require
a high level of technical expertise and equipment to measure, and
therefore preclude an amputee tuning his or her own prosthesis.

To solve the problem of defining and measuring objective func-
tions for robotic systems that human operators can directly control,
researchers have proposed learning from demonstration (LfD) [Argall
et al., 2009]. In this paradigm, one can either circumvent learning
the objective function by directly learning a policy that matches the
distribution of state-action pairs recorded during human demon-
strations of the desired behavior [Pomerleau, 1991, Schaal, 1999], or
one can learn a reward function consistent with the demonstrator’s
actions and visited states and use it to derive an optimal control [Ng
et al., 2000, Ratliff et al., 2006, Ziebart et al., 2009]. LfD methods are
attractive because they allow non-experts to specify both the quan-
tifiable and qualitative aspects of the desired robot behavior via the
non-technical language of demonstration.

For robot behavior that people cannot demonstrate, such as the
optimal behavior of an amputee’s prosthesis, or the desired behavior
of complex, dynamic robots, we can alternatively query human
users for qualitative feedback in order to shape the robot policy. For
example, the TAMER framework [Knox and Stone, 2009, Knox et al.,
2013] utilizes good/bad assessments of a robot’s recent actions to
optimize its policy. Pilarski et al. use this method to allow subjects
to optimize the policy of an EMG-controlled prosthesis arm via
their positive and negative feedback signals [Pilarski et al., 2011].
Another paradigm in qualitative feedback is to obtain preference
feedback between two or more policies or sequences of actions, which
may provide more nuanced feedback than absolute ratings. For
example, Jain et al. and Akrour et al. propose methods that learn a
user’s trajectory scoring function based on his rankings of possible
policies [Jain et al., 2013, Akrour et al., 2014]. Similarly, Wilson et al.
provide a method to directly identify a user’s preferred policy based
on her preferences between pairs of demonstrated trajectories [Wilson
et al., 2012]. These prior works demonstrate that we may be able to
use qualitative feedback, such as preferences, from non-expert users
to program robot behavior, without prescribing an objective function.
However, a drawback of the aforementioned methods that learn from
preference feedback is their reliance on simulators to predict system
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behavior. Human-in-the-loop systems, such as lower-limb prostheses
and exoskeletons, are challenging to simulate accurately, making
these methods difficult to apply.

The third issue an operator tasked with optimizing control policies
for human-in-the-loop systems faces is the expense, in terms of time
and effort, of repeatedly executing policies. Consequently, stochas-
tic sampling approaches may be less applicable in this domain. To
minimize the number of trials needed, researchers have proposed
black-box Bayesian Optimization (BO) methods that model both the ob-
jective function and its uncertainty. In these methods, the uncertainty
informs an acquisition function that speeds up the optimization by
exploiting regions of the parameter space with believed high objec-
tive value while still exploring regions where the objective function
is uncertain. For example, researchers have successfully employed
BO methods to efficiently optimize the gait parameters of a robotic
snake [Tesch et al., 2011] and a dynamic bipedal robot [Calandra
et al., 2014]. In chapter 6 we present a new Bayesian optimization
method that uses learning from preferences between pairs of control
parameters to avoid a priori definition of features and to consider un-
quantifiable qualities of the desired behavior. We apply this method
to optimize several simulated tasks.

However, we also find through these experiments that the pro-
posed Bayesian optimization approach, cannot scale to the dimen-
sionality required for prosthesis optimization. This highlights the
fourth challenge of prosthesis optimization, which is that prosthesis
controllers typically have dozens of parameters, causing optimization
routines to suffer from the curse of dimensionality. Therefore, in
chapter 6 we also explore using a dueling bandits [Yue et al., 2012]
approach to optimizing the prosthesis parameters. This approach
uses significant offline computation to generate a discrete library of
viable parameter sets from which the user can choose.
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Transfemoral Prosthesis Development

3.1 Mechanical Design
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Figure 3.1: Render of proposed
powered knee and ankle pros-
thesis design. The prosthesis
includes series elastic actua-
tors to enable accurate torque
control and an optional unidi-
rectional parallel ankle spring
to offset the required angle
torque.

To test our proposed control approaches and compare to the state of
the art, we have built a custom transfemoral prosthesis capable of re-
producing dynamic locomotion tasks. The prosthesis design, shown
in fig. 3.1, uses brushless electric motors coupled to Harmonic Drive
gear sets to drive both the knee and ankle joints. Additionally, the
joints employ series elastic actuation to enable accurate torque control
and to protect the prosthesis’ gear sets from sudden impacts. The
design also features optional unidirectional parallel springs in the
ankle that can partly offset the torque demands on the ankle motor.
We design both joints to meet the demands of dynamic locomotion
tasks such as running and trip recovery.

The overall design concept sits in a niche between low powered
prostheses designed with commercial applicability in mind [Sup
et al., 2007, 2009, Lawson et al., 2014, Rouse et al., 2015, Martinez-
Villalpando et al., 2011] which feature onboard actuation and power
sources, and high-powered tethered systems [Caputo and Collins,
2013, Caputo et al., 2015] with off-board actuation designed exclu-
sively for use in a lab environment. Our design features onboard
actuators that are more powerful than those used in standalone
devices, but less capable than those employed in tethered devices.
To ensure a reasonable overall weight the device’s batteries, motor
drivers, and computers are off-board. With this design, we expect to
be able to test control ideas without encountering hardware perfor-
mance limitations as with a tethered device. At the same time, the
device is capable of functioning outside of a lab environment like a
standalone prosthesis.

Table 3.1 shows the desired design specifications for the trans-
femoral prosthesis, the design’s theoretical specifications, and the
experimentally confirmed values of the manufactured device. Sec-
tion 3.3 provides details on the experimental evaluation of the pros-
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Specification Desired Value Theoretical Value Achieved Value

Maximum Knee Torque 160 N · m 170 N · m
Maximum Knee Speed 1.80 rev/s 1.93 rev/sec

Knee Torque Bandwidth 4 Hz 11.7 Hz 24 Hz
Maximum Ankle Torque 200 N · m 170 (+120⇤) N · m
Maximum Ankle Speed 1.14 rev/s 1.22 rev/s

Ankle Torque Bandwidth 3.5 Hz 5.9 Hz 7 Hz
Mass 6.8 kg 5.9 kg 6.8 kg
Minimum Height 42.5 cm 42 cm 42 cm

Table 3.1: Designed and
achieved design specifications.
⇤Maximum total ankle torque
is 290 N · m if the optional uni-
directional springs are used.
This torque is achieved at 10� of
dorsiflexion.

thesis’ torque bandwidth.
We specify desired joint torque and speed values to meet the re-

quirements of demanding tasks such as trip recovery and running.
The maximum knee torque specification comes from the findings of
Whitley [2008], who tested the joint torques used during recovery
from a simulated fall. The maximum knee speed requirement comes
from Grabiner et al. [1993], who tested subjects’ responses to sim-
ulated trips induced by unseen obstacles on a walkway. We obtain
the maximum ankle torque requirement from Pijnappels et al. [2005],
who tripped subjects using obstacles that could suddenly emerge
through the floor. The maximum ankle speed requirement comes
from the running data of Novacheck [1998]. We set the minimum
height specification, measured between the center of the knee and
bottom of the foot, to accommodate the 10th percentile female [Gor-
don et al., 1989]. Finally, the required mass corresponds to the mean
leg mass of a 50th percentile male [Winter, 2009].

3.1.1 Knee Joint
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Figure 3.2: Knee motor torque
required for running

In addition to achieving the maximum speeds and torques found
in table 3.1, we design the knee joint so that it can reproduce the
torque and speed required for a 80 kg person to run at 3.2 m/s as
measured by Novacheck [1998]. To reproduce this trajectory in the
knee joint, we utilize a RoboDrive ILM 85⇥ 13 HS-SP motor coupled
to a Harmonic Drive Gear set with a 50:1 reduction (CSG–25–50).
Figure 3.2 shows the motor torque and speed required to reproduce
a running trajectory assuming a gear efficiency of 75%. In this plot,
we see that the running trajectory lies within the speed-dependent
torque limit of the motor. Moreover, the root mean squared torque
of this trajectory (1.46 N · m) exceeds the torque rating of the motor
(1.43 N · m) by just 2%. Therefore, the knee joint should be able to
provide the necessary torque to enable running for a short amount
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Figure 3.3: Internal and external
design of the knee joint.of time, or continuously for lighter subjects or at a slightly reduced

speed.
Figure 3.3 shows the internal and external design of the knee joint.

The primary component in the knee joint is the stator housing. On
top of the housing is a standard pyramid adaptor that allows the
prosthesis to connect to amputee’s sockets. Within the stator housing,
lies the brushless motor stator, rotor, and harmonic drive gear set.
We sense absolute rotor angle for commutation of the brushless
motor via hall effect sensors and a magnetic complementary sin/cos
encoder. To incorporate series elasticity, we take inspiration from
the design of the bipedal robot Atrias [Grimes, 2013], which uses
fiberglass series leaf springs. In our design, the output of the gear
set drives the proximal end of a fiberglass leaf spring in series with
the shank. Two Renishaw Resolute absolute encoders measure the
deflection of this spring. fixed hip

wall

Figure 3.4: Impact simulation
we used to determine appropri-
ate series spring stiffness.

In addition to allowing for accurate torque control, as shown by
Au et al. [2007], Au and Herr [2008], the series elasticity also plays
a crucial role in protecting fragile gear components from impact
loads. To choose the spring stiffness for the knee joint, we simulate
the prosthesis impacting a rigid wall with the foot during swing. To
do this, we construct a model of the prosthesis in Matlab Simulink
Simscape Multibody that includes the series elasticity, gear dynam-
ics, and motor electrical dynamics. Figure 3.4 shows the simulation
environment. The prosthesis is attached to the distal end of a thigh
segment with a fixed hip position. We control the hip via the swing
leg control outlined in section 4.4 (eq. (4.30)) and consider the case
where the external voltage applied to the motor is zero. This simu-
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lation suggests that a spring stiffness under 2300 N·m/rad will ensure
that the peak impact torque remains lower than the peak allowable
impact torque of the Harmonic Drive of 242 N · m.

We can also estimate the torque bandwidth of the actuator by
analyzing the SEA dynamics for the system depicted in fig. 2.3.
Assuming the load is fixed, the transfer function between the motor
and load torques is given by

tl
tm

=
k/Jm

s2 + k/Jm
(3.1)

where tl and tm are the load torque and post-gearbox motor torque
respectively. Jm is the sum of the reflected motor rotor inertia and
inertia of components that form the motor-side attachment of the
spring, which has stiffness k. From this equation we calculate the
bandwidth of the system to be

f3dB =

p
k/Jm

2p
. (3.2)

For a spring stiffness of 2300 N·m/rad we estimate the torque band-
width is 11.7 Hz. This value exceeds the required torque bandwidth
of 4 Hz given by Sergi et al. [2012]1. However, it should be noted 1 obtained by analyzing the torque data

for walking reported by Winter [2009]that this is a very crude estimate of bandwidth. On the one hand,
it may underestimate the true value, as it assumes that to achieve a
desired output torque, the motor control applies the same torque to
the motor side of the spring. In practice, a closed-loop torque control
can transiently apply much larger torques to the motor side in order
to achieve faster convergence to a desired steady-state output torque.
On the other hand, this value may also underestimate the true band-
width, as it does not consider the motor’s voltage-current dynamics
or gear friction.

3.1.2 Ankle Joint

In the ankle joint we utilize a RoboDrive ILM 70⇥ 10 HS-SP motor
coupled to a Harmonic Drive Gear set with a 100:1 reduction (CSG–
20–100). As with the knee joint, we designed the ankle joint to satisfy
the requirements listed in table 3.1. Specifically, for the ankle joint,
we pay considerable attention to the tripping condition described by
Pijnappels et al. [2005], in which the ankle generates a peak torque of
202 N · m.

To avoid using a large and heavy motor to achieve this peak
torque, we take inspiration from previous prosthetic ankle designs
that employ a unidirectional parallel spring in the ankle joint that
performs the conservative portion of the ankle’s torque versus angle
trajectory during normal walking [Au et al., 2007, Au and Herr, 2008,
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Sup et al., 2009, Lawson et al., 2014]. The parallel spring offsets the
required motor torque, as the actuator only needs to provide the
difference between the desired torque and the torque provided by
the parallel spring. Figure 3.5 shows the torque versus angle curve
during level ground walking (Winter [2009], scaled to 80 kg person).
In green, we show the torque generated by a 700 N·m/rad parallel
spring optimized to minimize the root-mean-squared motor torque
for this trajectory. From this plot, we see that with the parallel spring,
the peak torque is lower than the repeated peak torque limit of the
Harmonic Drive Gear set.
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Figure 3.5: Ankle torque vs
angle curve during steady, level-
ground walking (blue) (Winter
[2009] scaled to 80 kg person).
A unidirectional parallel spring
can provide a portion of this
torque (green) and reduces
the required actuator torque
(purple) to lie under repeated
torque limit of the Harmonic
Drive Gear set (orange).

The tripping data obtained by Pijnappels et al. [2005] shows that
the ankle kinematics during trip recovery are similar to those seen
during normal walking. Therefore, the parallel spring should be able
to contribute torque during the tripping case as well. To confirm this,
fig. 3.6 shows the motor torque required for trip recovery (obtained
by scaling walking torque data from Winter [2009] to have a peak
torque of 202 N · m) We see that the inclusion of the parallel spring
allows the prosthesis to produce enough net torque to reproduce
the trip recovery trajectory without exceeding the torque limit of the
motor.

Finally, fig. 3.7 shows the torque and speed required of the motor
for running [Novacheck, 1998]. In this case, we use an ankle parallel
stiffness of 267 N·m/rad. From this plot, we see that this combination
of ankle motor and spring is nearly sufficient for running. Increasing
the voltage of the prosthesis from 48 V to 60 V or decreasing the
gear ratio from 100:1 to 80:1 will allow the torque trajectory to fit
completely within the motor limits.
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Figure 3.6: Ankle motor torque
required to take the trip re-
covery action observed by
Pijnappels et al. [2005] (blue,
trajectory obtained by scal-
ing walking data from Winter
[2009] to a peak torque of
202 N · m, 75% gear efficiency
assumed). Using a parallel
spring allows the motor to
produce the required torque
(green) while remaining within
its torque limit (purple).
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Figure 3.7: Ankle motor torque
required to reproduce the run-
ning trajectory recorded by
Novacheck [1998] assuming
a parallel spring stiffness of
267 N·m/rad and a gear efficiency
of 75%.

Figure 3.8 shows an internal view of the ankle actuator and exter-
nal views of the actuator and foot mechanism. In the ankle design,
the output of the actuator actuates the foot through a four-bar mech-
anism. The actuator pulls or pushes on the proximal end of a length-
adjustable tendon. The distal end of the tendon attaches to one end
of a fiberglass series elastic leaf spring that is also connected to the
foot. To measure torque in the ankle joint, we measure the deviation
from the nominal relationship between the ankle motor encoder and
ankle encoder under the zero torque condition.

We perform a calibration routine with the prosthesis mounted
sideways

The design of the ankle actuator represents a second iteration of
the knee actuator design and features two main improvements. First,
it has increased space on the side of the motor for cable routing. Sec-
ond, the ankle actuator has a solid rotor shaft. In contrast, the knee
actuator’s shaft is comprised of two parts: one that held the motor
rotor and transferred power through the gear set, and another that
held the sin/cos encoder’s magnetic shaft component. In practice,
these two components proved difficult to align, causing degraded
performance of the sin/cos encoder. The ankle actuator’s solid shaft
ensures the encoder magnet stays aligned with the read head.

Solid Rotor Shaft

Increased Space For Wiring

Series Spring

Adjustable Tendon

Ankle Encoder

Unidirectional Parallel Spring

Ankle Actuator Encoder

Figure 3.8: Internal and external
design of the ankle joint.
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Figure 3.9: Impact simulation
we used to determine appropri-
ate series spring stiffness.

As we did for the knee series spring, we again determine an ac-
ceptable ankle spring stiffness by performing an impact simulation.
For the ankle, we simulate an 80 kg person stepping on the prosthesis
when the motor driver provides the ankle motor with zero applied
voltage. Figure 3.9 shows the simulation environment. From this sim-
ulation, we find that a spring stiffness of about 1000 N·m/rad should
sufficiently protect the ankle gear set from impacts. This estimate is
likely softer than necessary due to the additional series compliance in
the amputee’s socket and the composite foot that are not included in
the simulation. Repeating the bandwidth calculation we performed
for the knee spring, we estimate the ankle bandwidth may be around
5.9 Hz. This value exceeds the required torque bandwidth of 3.5 Hz
given by Au and Herr [2008] (obtained by analyzing the torque data
for walking reported by Winter [2009]).

3.1.3 Ground Reaction Force Sensing
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Figure 3.10: GRF sensor read-
ings compared to ground truth
GRF data

To measure ground reaction forces, we measure the deflection in
the prosthesis’ fiberglass foot (Freedom Innovations Pacifica LP).
We measure this deflection by embedding Hall effect sensors and
magnets in the foot. Figure 3.10 shows the measured heel and toe
GRF signals during a single walking stride.

3.2 Series Elastic Actuator Control

To control the prosthesis we use Simulink Real-Time (Mathworks,
USA), which samples all sensors (joint encoders, IMU on thigh, force
sensors in foot), computes the desired torques for the knee and an-
kle joints using a mid-level control strategy (section 2.2), runs the
low-level SEA control, which calculates the motor velocity needed
to achieve these desired torques, and finally sends the velocity com-
mands to the motor controllers at a rate of 1 KHz. Here, we describe
the low-level SEA control.

First, in order to ensure the safety of both the user and the prosthe-
sis, the SEA controller saturates the desired torque commanded by
the mid-level controller. During normal operation, we allow a maxi-
mum of ±100 N · m of torque at the knee and ±150 N · m of torque at
the ankle. Furthermore, when either joint passes within 5 degrees of
its joint limits, a software joint limit stop is activated that calculates
torques that prevent the actuator from damaging itself. The joint
limit torque is inspired by the limit torque used in the neuromuscular
model simulation presented in section 4.1 and takes the form

tlim = klimDqlim(1 + q̇lim/q̇max)(Dqlim > 0)
�

q̇lim/q̇max > �1
�

, (3.3)
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where klim is the joint limit stiffness, Dqlim is the penetration of the
joint into the limit region, q̇lim is the penetration velocity, and q̇max

defines the retraction velocity at which the limit torque drops to zero.
The knee extension limit activates below 5 degrees of flexion at which
point above torque is added to the desired torque. The knee flexion
limit is set to 90 degrees beyond which the limit torque upper bounds
the desired knee torque. For the ankle joint, the flexion and extension
limits activate at ±20 degrees beyond which the limit torque upper
and lower bound the desired ankle torque respectively.

Next, to improve the behavior of the prosthesis knee during swing,
damping compensation in proportion to the knee velocity is added
to the desired knee torque to compensate for friction and damping in
the knee bearing. Finally, after saturation and friction compensation,
a low pass filter is applied to ensure the derivatives of the desired
torque are smooth and to remove frequencies that may excite the SEA
spring. For both joints we use second-order Butterworth filters with a
cutoff frequency of 25 Hz at the knee and 20 Hz at the ankle.

Load
Jl

θm θl

k
blbm

Motor
Jm

ητm

Figure 3.11: Dynamics model
used to derive sea control. qm

is the post-gearbox motor an-
gle, Jm and bm are the reflected
motor inertia and damping, ql
is the load angle, Jm and bm are
the load inertia and damping
respectively. k is the SEA spring
stiffness. tm is the motor torque
applied to the motor rotor and
h captures the efficiency of the
motor torque transmission.

Next, to achieve the desired torque tdes in the SEA spring, we
implement an SEA control similar to that used in Schepelmann
et al. [2012]. The control uses proportional feedback to calculate the
desired velocity needed to achieve the desired load torque:

q̇des = kp(tdes � tmeas) (3.4)

where q̇des is the desired motor velocity and tmeas is the measured
torque. As shown in fig. 3.11, the torque on the load can be measured
through the deflection of the SEA spring as tmeas = k(ql � qm)

where ql is the position of the load side of the spring and qm is the
position of the motor side. To increase performance, we also add a
feed-forward velocity term to the feedback term. We derive this term
by differentiating the desired torque on the load and solving for the
motor velocity

ṫdes = k(q̇l � q̇m) (3.5)

=) q̇m =
ṫdes

k
+ q̇l. (3.6)

Making the total desired velocity,

q̇des = kp(tdes � tmeas) +
ṫdes

k
+ q̇l. (3.7)

The motor controllers used on the prosthesis (Elmo Motion Con-
trol Gold Series) also accept a feedforward torque command, which
can help achieve desired velocities more quickly. To derive the feed-
forward motor torque we refer to the motor dynamics depicted in
fig. 3.11. The dynamics of the motor rotor are

htm � tl � bmq̇m = Jmq̈m (3.8)
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Where h is the efficiency of gear set and tm is the motor torque.
Solving for the motor torque yields

tm =
1
h

�
Jmq̈m + bmq̇m + tl

�
(3.9)

To eliminate the motor velocity and acceleration from the right side
of the equation, we calculate the second derivative of the desired load
torque

ẗdes = k(q̈l � q̈m) (3.10)

=) q̈m =
ẗdes

k
+ q̈l, (3.11)

and substitute eqs. (3.6) and (3.11) into eq. (3.9) to arrive at the final
feedforward motor torque

tm =
1
h

✓
Jm

✓
ẗdes

k
+ q̈l

◆
+ bm

✓
ṫdes

k
+ q̇l

◆
+ tl

◆
. (3.12)

The final two steps of the SEA control are to saturate and low pass
filter the desired joint velocities and feedforward motor torques to
ensure safety and suppress excitatory frequencies. Knee velocities are
saturated to lie within ±9.95 rad/sec and ankle velocities are saturated
to lie within ±6.96 rad/sec. Furthermore, if a joint violates specified
hard constraint limits, the desired velocities are saturated to zero to
prevent further constraint violation. For the knee joint, the flexion
limit is set to 90 degrees and the extension limit is -2 degrees. For the
ankle joint the flexion/extension limits are set to ±30 degrees respec-
tively. The saturated desired motor velocities and feedforward motor
torques are then low pass filtered with second-order Butterworth
filters. For the knee, we use a cutoff frequency of 100 Hz and for the
ankle, we use a cutoff frequency of 50 Hz.

3.3 Performance Evaluation

Able Bodied 
Adaptor

IMU

Ankle 
Motor

Knee 
Motor

Composite 
Foot

Ankle Series 
Spring

Knee Series 
Spring

Figure 3.12: Prosthesis configu-
ration used for experiments. An
IMU attached on the thigh mea-
sures the thigh angle. Note: the
optional unidirectional ankle
springs were not installed for
experiments presented in this
thesis as the ankle motor alone
produces sufficient torque for
the results presented herein.

Figure 3.12 shows the instantiation of the prosthesis design used for
the results presented in this thesis. As large ankle torques were not
required for the experiments conducted in this thesis, the optional
unidirectional ankle springs were not installed. Of crucial importance
for the work presented in this thesis is that the prosthesis faithfully
reproduces the torques commanded by the mid-level control. This is
important so that we can ensure differences between different mid-
level control strategies are due to the differences in those strategies,
and not due to an inability of the prosthesis to follow the desired
behaviors.

We test the ability of the manufactured prosthesis to reproduce
desired torques through three experiments: First, we collect data
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to construct a Bode plot of the torque tracking behavior to confirm
that the bandwidth of the actuators exceeds the desired values in
table 3.1. Second, we investigate the ability of the prosthesis to follow
the desired torques during a typical gait stride. And third, we test
the ability of the prosthesis to track zero torque as a function of input
disturbance frequency.

3.3.1 Torque Tracking Bode Plot

Shank Clamp

Figure 3.13: Fixture for testing
bandwidth of actuators. The
knee was constrained by a
clamp on the shank. The an-
kle was constrained by a floor
under the foot.

To measure the torque tracking bandwidth of the prosthesis’
knee and ankle actuators, we construct bode plots of the transfer
function between measured and desired torque. For this purpose,
we constrain the prosthesis in the fixture shown in fig. 3.13. In this
fixture, the knee joint is rotationally constrained by a clamp around
the prosthesis’ shank and the ankle joint is constrained by a floor
under the foot. To construct the bode plot, we repeatedly command
sinusoidal desired torques of varying frequencies w and observe
the resulting measured torques. We perform nonlinear least squares
regression to identify the amplitude and phase shift parameters of
the function f (t) = A sin(wt + f), where A is the amplitude and f is
the phase shift, such that the function fits the desired and measured
torques. Finally, we calculate the Gain, G(w) = 20 log10(Ameas/Ades)

and the phase shift, f(w) = fmeas � fdes, between the measured and
desired signals at each frequency. For both joints, we construct Bode
plots at two amplitudes of desired torque, a common amplitude of
20 N · m and at the root mean square (RMS) torques during stance
for that joint.2 For the knee joint we sweep frequencies in the range 2 11.5 N · m for the knee, 55.6 N · m for

the ankle according to data from Bovi
et al. [2011] for 80 kg person

1-35 Hz in 1 Hz increments, and for the ankle we sweep frequencies
in the range 1-20 Hz.

Figure 3.14 shows the resulting knee and ankle bode plots at the
two tested amplitudes. We define the bandwidth of the actuator as
the frequency of the desired torque at which the gain falls below
�3 dB or the phase lag falls below �180 deg, whichever comes first.
We also report the lower of the two bandwidth values obtained
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Figure 3.14: Experimentally
obtained bode plots of knee and
ankle actuator torque. Knee is
phase limited at 24 Hz while the
ankle is gain limited at 7 Hz.

from the 20 N · m or RMS torques. For the knee joint, we see that the
bandwidth is phase limited at 24 Hz by the 20 N · m signal. The ankle
bandwidth is gain limited at 7 Hz by the RMS stance torque signal.
The measured bandwidth of the knee and ankle actuators is higher
than the desired values based on able-bodied walking data.3 3 compare table 3.1 desired knee

bandwidth from [Sergi et al., 2012],
desired ankle bandwidth from Au and
Herr [2008]3.3.2 Walking Torque Tracking

Next, we examine the torque tracking performance of the prosthesis
during normal walking. Figure 3.15 shows the desired and measured
torque during a typical stride at a gait speed of 0.8 m/s while table 3.2
shows the median RMS torque tracking error during stance and
swing over 1 min of walking. For both joints, we see that torque
tracking during stance is substantially better than during swing. This
is the case for two reasons: First, during stance, the load inertia is
significantly increased, as it primarily is comprised of the mass of
the user. Consequently, the SEA’s dynamics are slower and easier to
control. In contrast, during swing, the load inertia is primarily the
inertia of the prosthesis itself. This primarily affects the ankle, as
the inertia of the foot is relatively small. Second, during swing the
control’s primary objective is to follow a desired swing trajectory,
(see section 4.6 for more details). In this phase, the desired torque is
generated by a PD feedback + feedforward term to track the desired
trajectory. Consequently, the desired torques may not necessarily
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Figure 3.15: Knee and ankle
torque tracking during a typical
step. Torque tracking during
stance is significantly better
than during swing due to the
significantly increased load iner-
tia during stance (see table 3.2).
During swing, trajectory track-
ing performance is prioritized.

be feasible if the gains are high, as in the case of the desired ankle
torque during swing.

RMS Error (N-m) Knee Ankle

Stance 2.20 4.85
Swing 3.82 10.15

Table 3.2: Median root mean
squared (RMS) torque tracking
error during stance and swing

3.3.3 Zero Torque Tracking

Finally, we test the ability of the prosthesis to track the desired
torque in the presence of external disturbances. To test this ability,
we removed the shank clamp and floor from the fixture shown
in fig. 3.13 and commanded zero desired torque to the ankle and
knee joints. We then manually moved each joint in a sinusoidal
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Zero Torque Tracking Figure 3.16: Zero torque track-
ing of the knee and ankle joints.
The prosthesis was fixed to a
rigid mount and commanded to
maintain zero net joint torque
while the knee and ankle joints
were manually oscillated (blue)
by hand at an increasingly fast
rate (purple). The resulting
measured torque is shown in
the second row of axes in black.
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motion while slowly increasing the frequency. Figure 3.16 shows
the angle of each joint during the experiment and the approximate
frequency of the motion, computed by inverting the time between
peaks of the joint angle. In the second row of plots, we show the
resulting measured torque. At an input disturbance of 2.5 Hz, which
is approximately 1/swing duration, the knee torque error is 5.7N-m,
which is approximately 20% of the peak knee swing torque (compare
fig. 3.15), and the ankle torque error is 10.9N-m, which approximately
equal to the peak ankle swing torque. This result shows that the knee
joint especially should be able to reject disturbances during swing,
which is important due to the more proximal location of the knee. In
contrast, the ankle joint, because of its larger reflected inertia caused
by a 100:1 gear reduction, is less able to reject disturbances at this
frequency. However, because of its more distal location, the ankle
joint plays a lesser role in responding to disturbances during swing.





4
Neuromuscular Model

ϕk

HAT

Thigh

Shank

Foot

ϕh
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Figure 4.1: The skeletal model
we use to simulate neuromus-
cular reflex control. The model
consists of seven segments:
left and right feet, shanks, and
thighs, as well as a lumped
head-arms-trunk (HAT) seg-
ment. Flexion joint angles are
positive, extension joint angles
are negative, and the zero an-
gle configuration represents
standing.

In the first part of this thesis, we investigate the ability of neuromus-
cular reflex control to improve amputee gait robustness. To this end,
here we provide a more detailed review of the neuromuscular model
components on which we base our prosthesis control. Four parts
comprise the model: a mechanical simulation environment we use
to obtain simulation results (section 4.1), biological motors modeled
by the hill muscle model that apply torques to joints (section 4.2),
and finally functionally-motivated stance (section 4.3) and swing
(section 4.4) reflexes that implement the key behaviors required for
walking.

4.1 Mechanical Model

To obtain the simulation results we present in chapter 5, we construct
a mechanical model in the Matlab Simscape MultibodyTM environ-
ment similar to those presented in Geyer and Herr [2010], Song et al.
[2013], Song and Geyer [2015]. This model represents the seven link
biped in fig. 4.1 and includes two legs with thigh, shank, and foot
segments as well as a lumped head-arms-trunk (HAT) segment. Ta-
ble 4.1 lists the segment lengths, center of mass and joint locations
measured from the distal end, masses, and inertias that approximate
those of a 80 kg, 1.8 m tall person.

The mechanical model interacts with the environment through
ground reaction forces on the toes and balls of the feet. Specifically,

Feet Shanks Thighs HAT

l (cm) 20 50 50 80
dCOM (cm) 14 30 30 35
dJoint (cm) 16 50 50
m (kg) 1.25 3.5 8.5 53.5
J (kg) 0.005 0.05 0.15 3

Table 4.1: Segment lengths (ls),
center of mass (dCOM) and joint
(dJoint) locations measured from
the distal end, masses (m), and
inertias (J) approximated from
Günther and Ruder [2003].
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we use a 2-dimensional reduction of the 3D ground contact model
presented in Song and Geyer [2013] to calculate forces in the normal
and tangential directions with respect to the terrain. In the normal
direction, the force is

Fn = knDnc (1 + ṅc/vmax) (Dnc > 0) (ṅc/vmax > �1) , (4.1)

where kn = 78.45 N/mm is the stiffness coefficient in the normal direc-
tion and Dnc and ṅc are the penetration direction and velocity in the
normal direction. The form of the normal force is inspired by Gün-
ther and Ruder [2003] and Scott and Winter [1993] and represents a
linear spring with multiplicative damping. vmax = 3 cm/s represents
the maximum recovery velocity of the ground. If ṅc exceeds this
velocity, ground contact is lost.

In the tangential direction, a state machine switches between two
force models representing sliding and static friction. Sliding friction
is given by

Ft,slide = � sign (ṫc) µslideFn (4.2)

while static friction is given by

Ft,static = �ktDtc

✓
1 + sign (Dtc)

ṫc
vmax

◆
, (4.3)

where Dtc is the penetration in the tangential direction ṫc is the
penetration velocity, µslide = 0.8 is the sliding coefficient of friction,
and kt = 78.45 N/mm is the stiffness coefficient in the tangential
direction.

The contact model begins in the sliding mode and switches to the
static mode if ṫc < 1 cm/s. It switches back to the sliding mode when
|Ft,static| < µstatic|Fn|, where µstatic = 0.9.

Finally, the biped skeletal model includes soft joint limits to rep-
resent the skeletal joint limits on the knee, ankle, and hip joints. The
functional form of the soft limit joint torque is identical to that of the
normal ground reaction force given by eq. (4.1).

tjl = kjlDfjl(1 + ḟjl/ḟmax)(Dfjl > 0) (ḟjl/ḟmax > �1) , (4.4)

where kjl = 0.3 N·m/deg is the joint stiffness Df and ḟjl are the joint
limit penetration angle and velocity respectively, and ḟmax = 1 deg/s

is the maximum joint limit retraction velocity. Table 4.2 lists the
engagement angles for the joint limits.

Joint ext. lim. flex lim.

hip 50
knee 5
ankle -40 20

Table 4.2: Joint limits for the
hip, knee, and ankle joints
listed in degrees. Positive joint
angles represent flexion and
negative joint angles represent
extension (see fig. 4.1).

To obtain simulation results, we simulate the mechanical system
with the ode15s variable-step solver. We set the maximum step size to
10 ms, relative error tolerance to 10�4, and absolute error to 10�6.
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4.2 Hill Muscle Models

CE

lopt lslack

lce

lmtu

SE

PE

Figure 4.2: Hill-type muscle
tendon unit with contractile
element (CE), parallel elasticity
(PE), and series elasticity (SE).

Our proposed transfemoral prosthesis control is comprised of biolog-
ical muscle actuators that are stimulated according to hypothesized
reflex pathways. Specifically, we use a Hill-type muscle tendon unit
(MTU) first described by Hill [1938]. It is comprised of a contrac-
tile element (CE) that represents muscle fibers and produces force
when activated, a parallel elastic (PE) element that represents the
stiffness of the collagen tissue between muscle fascicles, and series
elastic (SE) element that models tendon stretch. Figure 4.2 shows
the arrangement of these elements. Note that the PE and SE both
are unidirectional springs with engagement lengths of lopt and lslack
respectively.

The CE generates force according to

FCE = Fmax A fl (lCE) fv (vCE) . (4.5)

In this equation, the force generated by the CE, FCE, is the maximum
isometric (constant length) force, Fmax, multiplied by activation, A,
the force-length, fl (·), and force-velocity, fv (·), relationships of the
CE. The activation, A, is a low-pass filtered version of the stimulation
signal muscle S(t) generated by the muscle reflexes we will detail
in the next section. This filter, given by A(t) = S� tȦ(t) with time
constant t, represents the diffusion dynamics of calcium ions that
activate binding sites in the muscle fibers. 0 lopt 2lopt

Length

0

1

Fo
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e
M
ul
tip

lie
r

CE Force-Length

w

Figure 4.3: Force-length rela-
tionship of the CE.

The binding sites are where overlapping actin and myosin fila-
ments attach and generate pulling force. The contractile element
length of lopt corresponds to maximum overlap between these fil-
aments. Therefore, as the muscle length moves away from lopt, its
force production capacity decreases leading to the force-length rela-
tionship shown in fig. 4.3. We model the force-length relationship via
a bell curve

fl (lCE) = exp

 
ln(0.05)

����
lCE � lopt

wlopt

����
3
!

. (4.6)
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Figure 4.4: Force-velocity rela-
tionship of the CE.

The velocity-dependent filament attachment probabilities give
rise to a force-velocity relationship shown in fig. 4.4. The following
expression captures this relationship.

fv (vCE) =

8
<

:

vmax�vCE
vmax+KvCE

, if vCE < 0

N + (N � 1) vmax+vCE
7.56KvCE�vmax

, if vCE � 0
(4.7)

In this expression, K is a shape parameter and N determines the
force amplification when the contractile element is lengthening. The
force-velocity relationship acts as a multiplicative damper causing the
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Param Value Param Value

t 0.01 s lham
opt 0.10 m

w 0.56 vham
max -1.2 m/s

K 5 Fham
max 3000 N

N 1.5 lham
slack 0.31 m

ePE w
eSE 0.04

Table 4.3: Neuromuscular pa-
rameters for shared entities
(left) and the hamstring muscle
(right)

CE to produce more contractile force when it is lengthening and less
as it contracts.

We model both passive elements, the PE and SE, using the same
functional form representing a unidirectional, stiffening spring, the
behavior of which is shown in fig. 4.5. The expressions for the elastic
force produced by these elements are

FPE (lCE) = Fmax

✓
lCE � lopt

ePElopt

◆2
(lCE > lopt) (4.8)

FSE (lSE) = Fmax

✓
lSE � lslack

eSElslack

◆2
(lSE > lslack). (4.9)

0 lref ✏ref

Length

0

Fmax

Fo
rc
e

PE/SE Force-Length

Figure 4.5: PE and SE force
length relationship. For the
PE, lref = lopt and eref = ePE.
Likewise, for the SE, lref = lslack
and eref = eSE.

The left-hand side of table 4.3 lists the parameters common among
all seven muscles of each leg of the neuromuscular model. On the
right-hand side of the table, we list four muscle-specific parameters
for hamstrings muscle. For a complete list of muscle parameters
please refer to Song and Geyer [2015].

The full biped model, shown in fig. 4.6, includes seven Hill-Type
muscle-tendon units: soleus, gastrocnemius, tibialis anterior, vastus,
hamstring, hip flexors, and gluteus. The length of these MTUs is
related to the joint angles according to the variable-length moment
arms rj

mtu
�
fj� for each muscle about each joint. For example, the

Hamstrings

Gluteus

Hip Flexors

Vastus
Gastrocnemius

Tibialis Anterior 

Soleus Figure 4.6: Biped walking
model with labeled muscles.
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length of a biarticular muscle spanning joints j and k is

lmtu = lopt + lslack + r

 Z fj

f
j
0

rj
mtu

⇣
fj
⌘

dfj +
Z fk

fk
0

rk
mtu

⇣
fk
⌘

dfk

!
.

(4.10)

Where r is a parameter that approximates the effect of the pennation
angle of the muscle fibers and f

j
0 and fk

0 are reference joint angles at
which the MTU settles to its rest length (lopt + lslack). The variable
length moment arms also govern the torque a muscle produces about
a joint according to

tmtu = rj
mtu

⇣
fj
⌘

Fmtu. (4.11)

4.3 Stance Reflexes

During stance, hypothesized reflex feedback pathways stimulate
the muscles of the leg. In general, a linear feedback law governs the
stimulation Sm (t) of muscle m,

Sm (t) = Sm
0 + Â

n
Gm

n Pron (t� Dtn) , (4.12)

where Sm
0 is a constant pre-stimulation, Pron (t� Dtn) is the time-

delayed proprioceptive signal from muscle n, and Gm
n is the gain

on that signal. The proprioceptive signal can take the form of force
feedback, Fm

n (·), which uses the time delayed tendon force, or length
feedback, Lm

n (·) = lCE
n (·)�off lm

n , which uses the difference between
the length of the contractile element of muscle n and an offset length
offlm

n .
The time delay we apply to proprioceptive signals estimate the

round-trip neural signal transmission delay of afferent signals from
muscle spindles and Golgi tendons to the spine and efferent signals
back to the muscles. For ankle muscles, the soleus, tibialis anterior,
and gastrocnemius, the time delay is Dtn = 20 ms. For knee muscles,
the vastus and hamstrings, it is Dtn = 10 ms. For the hip muscles, the
hamstrings, gluteus, and hip flexors, the time delay is Dtn = 5 ms. We
will denote time delayed signals using tl = t� 20 ms, tm = t� 10 ms,
and ts = t� 5 ms.

The reflexes encode several key functions of legged locomotion:
generating compliant leg behavior, preventing knee overextension,
and balancing the trunk. The first function, generating compliant leg
behavior, is achieved via positive force feedback on the monoarticular
leg extensors: the soleus, vastus, and gluteus. For example, the
reflexes stimulate the vastus in part by

Svas (t) = Svas
0 + Gvas

vas Fvas (tm) + . . . . (4.13)
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To implement the second function, preventing knee overextension,
the reflex control uses two strategies. First, positive force feedback
of the biarticular gastrocnemius and hamstrings muscles helps
counteract the tendency for knee overextension caused by ankle
plantarflexion and hip extension torques respectively. For example,
the gastrocnemius has a force feedback reflex,

Sgas (t) = Sgas
0 + Ggas

gas Fgas (tl) , (4.14)

that flexes the knee as it contributes to ankle plantarflexion. The
hamstring also has a positive force feed back

Sham (t) = Sham
0 + Gham

ham Fham (ts) + . . . (4.15)

that counteracts knee extension caused by hip extension. Also, the
hamstring force feedback helps prevent hip flexion caused by heel-
strike.

A second mechanism further protects the knee by inhibiting
the vastus stimulation in proportion to knee extension beyond a
threshold, resulting in the complete vastus stimulation

Svas (t) = Svas
0 + Gvas

vas Fvas (tm)� Gvas
knee

⇣
fknee(tm)�off fknee

⌘ ⇣
fknee(tm) <off fknee

⌘
(ḟknee(tm) < 0) (4.16)

where offfknee is the angle beyond which the vastus is inhibited.
The reflexes achieve the final function of balancing the trunk by

proportional-derivative control that produces stimulations for the hip
muscles (hip flexors, gluteus, and hamstrings) to stabilize the trunk
at a reference lean. Because muscles can only provide a pulling force,
the proportional-derivative control signal is distributed as hip flexor
stimulation if the signal represents flexion torque and as simultane-
ous stimulation for the gluteus and hamstrings if it represents hip
extension torque. For example, the complete hamstrings stimulation
becomes

Sham (t) = Sham
0 + Gham

ham Fham (ts)

+
n

Gham
p (ftrunk(ts)� fref

trunk) + Gham
d ḟtrunk(ts)

o

+
(4.17)

where the third term returns the positive reflex contribution from the
trunk balance control.
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The full set of stance reflexes are:

Ssol (t) = Ssol
0 + Gsol

sol Fsol (tl) (4.18)

Sta (t) = Sta
0 + Gta

ta Lta (tl)� Gta
sol Fsol (tl) (4.19)

Sgas (t) = Sgas
0 + Ggas

gas Fgas (tl) (4.20)

Svas (t) = Svas
0 + Gvas

vas Fvas (tm)� Gvas
knee

⇣
fknee(tm)�off fknee

⌘ ⇣
fknee(tm) <off fknee

⌘
(ḟknee(tm) < 0) (4.21)

Sham (t) = Sham
0 + Gham

ham Fham (ts) +
n

Gham
p (ftrunk � fref

trunk) + Gham
d ḟtrunk

o

+
(4.22)

Sglu (t) = Sglu
0 + Gglu

glu Fglu (ts) +
n

Gglu
p (ftrunk � fref

trunk) + Gglu
d ḟtrunk

o

+
(4.23)

Shfl (t) = Shfl
0 +

n
Ghfl

p (ftrunk � fref
trunk) + Ghfl

d ḟtrunk

o

�
(4.24)

4.4 Swing Leg Control

During swing, the reflexes shape the natural double pendulum dy-
namics of the leg in order to achieve sufficient knee flexion, prevent
toe scuffing, reach a target landing leg angle, and then extend the
leg towards the ground. We here review an idealized control model,
proposed in Desai and Geyer [2012], which proposes reflexes that
directly apply torques to the hip and knee joints.

The idealized swing control comprises two layers. In the first layer,
a leg placement policy,

atgt = a0 + cdd + cvv, (4.25)

prescribes leg angle for the leg to reach by the end of swing. We
measure the leg angle between the hip-ankle line and horizontal as
shown in fig. 4.7. In eq. (4.25), atgt is the target leg angle, a0 is the
default leg angle, d is the horizontal distance between the stance leg
ankle and the model’s center of mass, v is the velocity of the center
of mass, and cd and cv are constant gain parameters. This policy is
taken from Yin et al. [2007] and represents an empirical generaliza-
tion of the leg placement strategies that recover the linear inverted
pendulum model of human walking from disturbances [Kajita et al.,
2001, Pratt et al., 2006].

αtgt

α
(i) (ii)

(iii)

lclr

Figure 4.7: The idealized swing
leg control guides the leg
towards a desired landing
leg angle atgt through three
phases: (i) Flex the knee until it
achieves a clearance leg length
lclr. (ii) Hold the leg length via
knee damping. (iii) Stop and
Extend the leg towards the
ground when the leg reaches
atgt. Figure reproduced from
Desai and Geyer [2012].

The target angle generated by this policy forms a central input
to the second layer comprised of hip and knee controls. The por-
tion of this control that governs the knee action uses a finite state
machine to switch between three phases. The first phase allows the
knee to passively flex in response to hip moments generated at the
onset of swing. If the passive knee flexion is insufficient (the foot
swings forward with a tendency to scuff the ground), the control
produces active flexion torque of the knee in proportion to the rate ȧ
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of forward leg motion,

ti
k =

8
<

:
0, ȧ > 0

�kiȧ, ȧ  0
, (4.26)

where ki is the flexion gain and the leg angle a is defined as the angle
between the horizontal and the hip-ankle line.

The second phase activates when the leg length, defined as the
distance between the hip and ankle, contracts below a threshold. In
this phase, the knee torque is given by

tii
k =

8
>><

>>:

�kii
1 ḟk, ḟk � 0

�kii
2 ḟk(a� atgt)(ȧ� ḟk), ḟk < 0 & ḟk < ȧ

0, otherwise

, (4.27)

where kii
1 and kii

2 are damping coefficients. The first case dampens
knee flexion, while the second case dampens knee extension, but
allows progressively more extension as the leg angle approaches its
target. The modulation term (ȧ� ḟk) prevents premature landing of
the leg by damping the knee if it extends faster than the overall leg
angle.

The third phase engages when the leg angle gets within a thresh-
old of the target leg angle. The control then applies torque to stop
and extend the knee,

tiii
k =

8
<

:
kiii(athr � a)

⇣
1� ȧ

ȧmax

⌘
, a < athr & ȧ < ȧmax

0, otherwise
, (4.28)

where ȧmax is the maximum leg retraction velocity for which the
stopping knee torque is applied. When this torque brings the leg
velocity to zero, a knee extension torque is added,

tiii0
k = tiii

k � kext(l0 � l), (4.29)

where l0 is the rest leg length, l is the current leg length, and kext is a
proportional gain.

The swing leg control also specifies a hip torque in the form of a
proportional derivative control on the leg angle,

ta
h = kp(a� atgt) + kdȧ. (4.30)

This hip torque is supplemented by a feedforward term

th = ta
h � 2tiii

k (4.31)

that neutralizes the coupling dynamics between the knee and hip
during the knee’s stop and extend phase (Eq. 4.28).
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4.5 Control for Simulation Experiments

In chapter 5, in order to assess the potential benefits of using the
neuromuscular model for prosthesis control, we perform simulated
experiments of an amputee walking with a powered knee and ankle
prosthesis. In those experiments, to generate the reference torques
for the SEAs, we use a hybrid neuromuscular control that blends the
muscle based stance-control (section 4.3) with the idealized swing leg
placement control section 4.4.

For the stance control of the prosthesis, we utilize only muscles
and reflexes of the lower leg: the Hamstring, Vastus, Gastrocne-
mius, Soleus, and Tibialis Anterior. These muscles are stimulated by
eqs. (4.18) to (4.22). However, because the hamstring muscle spans
the hip joint as well, and we do not wish to instrument the torso of
the amputee user, we assume that the torso angle remains fixed at
fref, thereby reducing the hamstring stimulation to eq. (4.15).

Additionally, we make two modifications to the prosthesis-side
swing leg control. First, on the prosthesis-side hip, we remove the
feed-forward term that neutralizes the disturbance created by the
knee’s stop and extend phase (eq. (4.31)), requiring that feedback
control deal with this torque. Second, we do not use the adaptive leg
placement policy of the swing control (eq. (4.25)) as the prosthesis
does not have access to information about the amputee’s center of
mass and stance leg ankle position. Instead the prosthesis swing leg
control employs a constant target leg angle, atgt = const.

The torques produced by the swing controller augment the net
torques produced by the Hill-type muscles and reflexes during stance.
At heel strike, the control policy switches from using the swing leg
control torques to the stance torques generated by the muscle models.
In late stance, the policy mixes the torques specified by the stance
and swing controllers by scaling the stance and swing torques and
muscle stimulations in proportion to the normalized ground reaction
force,

tlate stance = tstance(GRF) + tswing(1� GRF), (4.32)

Sm
late stance = Sm(GRF). (4.33)

During swing, only the swing leg torques are used.

4.6 Control for Prosthesis Experiments

In chapters 6, 7, and 9 we perform experiments with the prosthesis
hardware (detailed in chapter 3) with the neuromuscular model
control. To operate this control on the prosthesis, we measure the
prosthesis’ joint angles using its onboard encoders, the user’s thigh
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Tibialis 
Anterior

Able Bodied Adaptor

IMU

Ankle Motor

Knee Motor

Composite Foot

Ankle Series Spring

Knee Series Spring

a) Transfemoral Prosthesis Hardware b) High-Level Neuromuscular Model Control

F+

Hamstrings

Biceps Femoris
Short Head

Vastus
Gastrocnemius

Soleus
Joint Angles

Joint Torques

Figure 4.8: (a) Custom trans-
femoral prosthesis with series
elastic actuators. In experiments
in this thesis, we use an adap-
tor to test the prosthesis with
able-bodied subjects. (b) During
stance, we propose a control
based on a neuromuscular
model of human physiology
that generates joint torques
through virtual muscles that
are stimulated by hypothesized
local reflex pathways.

angle using an inertial measurement unit, and ground reaction sig-
nals via hall effect sensors embedded in the foot. The measured joint
angles feed into the muscle and reflex models in order to calculate
the desired joint torques for the prosthesis, which are then achieved
by the low-level SEA control (section 3.2). We use the ground reaction
forces in

In chapters 7 and 9, the stance control follows the equations given
in section 4.3 with the same modifications to the Hamstring as were
made for the simulated experiments (fhip = fref). In chapter 6 we
experiment with an augmented version of the model that contains a
Biceps Femoris Short Head, a monoarticular knee flexor (see fig. 4.8).
This muscle helps prevent knee over extension via length feedback of
the form

Sbfsh (t) = Sbfsh
0 + Gbfsh

bfsh Lbfsh (tl) . (4.34)

In this model, knee over extension is further prevented by inhibiting
the vastus in proportion to the BFsH length. Consequently, the vastus
stimulation becomes

Svas (t) = Svas
0 + Gvas

vas Fvas (tm)� Gbfsh
vas Lbfsh (tm) . (4.35)

The properties of BFsH muscle (as well the properties of the other
muscles) are based on human physiological parameters described in
Song and Geyer [2015].

While our simulated experiments used the idealized reflexive
swing control described in section 4.4, in our prosthesis experiments
we instead use the minimum-jerk trajectory swing controller pro-
posed by Lenzi et al. [2014b], which automatically adapts to walking
speed and produces human-like trajectories. In our implementation,
at every toe-off, the control method generates a pair of minimum jerk
trajectories for each joint: one that starts at the toe-off angle, velocity,
and acceleration and reaches peak knee flexion or ankle dorsiflexion
and another that goes from the peak flexion state to the heel strike
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state. The knee and ankle joints are set to 65 and 2 deg at peak flex-
ion and 2 and -5 deg at heel strike respectively. The prosthesis then
follows these desired joint angles via proportional/derivative feed-
back plus a model-based feedforward term. Combined, the feedback
and feedforward terms specify the desired joint torques which the
low-level SEA control tries to achieve (section 3.2). The use of the
feedforward term and SEA torque control during swing allows the
system to maintain a level of impact compliance despite following a
trajectory.

The swing phase duration is set to 60% of the previous stance
phase duration. In the chapters 6 and 7, we specified that the peak
flexion angles for both the knee and ankle would be achieved simul-
taneously at 25% of swing. Later, in the work presented chapters 8
and 9, we delayed peak ankle flexion to 50% of swing to help avoid
some of the frequent trips during swing that we discovered during
the experiment presented in chapter 7. Chapter 8 also presents a
more principled approach to avoiding these swing trips that explicitly
predicts and plans to avoid premature foot contact with the ground.

We switched to this minimum jerk trajectory swing control ap-
proach for two reasons: First, preliminary experiments with the
idealized swing control on the prosthesis hardware revealed that
it was more sensitive to errors in the torque control. This seemed
especially true in the second phase of the idealized swing control,
in which small damping torques are used to control the rate of ex-
tension of the knee. In our SEA design (section 3.1), small errors in
the torque measurement can build up over time due to encoder shift
and thermal expansion. While these torque errors are insignificant
during stance, they appeared to affect the behavior of idealized swing
control. In contrast, a trajectory-based approach can compensate
for these errors through its explicit position feedback. Second, in
our simulated experiments, we held the target angle atgt constant.
However, in a real system, the target angle prediction should adapt
to specific users and to variations in speed, terrain, and balance re-
covery intent. How best to predict this target angle remains an open
research question and is not addressed in this thesis.

Swing

Stance

GRF > threshold
leg angle < 90°

GRF < threshold
leg angle > 90°
hip velocity > 0

Figure 4.9: Universal
stance/swing state machine
utilized for all hardware experi-
ments.

To switch between stance and swing phases, the prosthesis follows
the state machine depicted in fig. 4.9. Transitions to stance occur
when the leg is ahead of the frontal plane (leg angle a > 90�, see
fig. 4.7) and when the ground reaction force (GRF) exceeds a hand-
tuned threshold. Transitions to swing are allowed when the GRF falls
below a threshold, the foot is behind the frontal plane (a < 90�), and
the hip is flexing. For the experiments described in chapters 6 to 8
we use the prosthesis’ built-in GRF sensors detailed in section 3.1.3.
In later work (chapter 9), involving stepping on objects, we use the
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GRF readings from an instrumented treadmill, as they proved more
reliable in this disturbed case.



5
Simulated Comparison of Neuromuscular and Impedance
Controllers

Material in this section based partially on Thatte and Geyer [2016]1 and 1 Nitish Thatte and Hartmut Geyer.
Toward balance recovery with leg
prostheses using neuromuscular model
control. IEEE Transactions on Biomedical
Engineering, 63(5):904–913, 2016

Thatte and Geyer [2014]2

2 Nitish Thatte and Hartmut Geyer.
Towards local reflexive control of a
powered transfemoral prosthesis for
robust amputee push and trip recovery.
In 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages
2069–2074. IEEE, 2014

To evaluate the potential of neuromuscular prosthesis control to
improve amputee gait robustness, we constructed a simulation of
an amputee walking on a powered prosthesis and performed opti-
mizations to identify parameters that lead to robust locomotion over
rough terrain. We then compared the performance of the proposed
control to that of impedance control and found that the proposed
control improves robustness to elevation changes and unexpected de-
viations from nominal walking, suggesting that it may help amputees
prevent trips and falls (fig. 5.1).

5.1 Methods

5.1.1 Simulation Environment

We studied the performance of the proposed transfemoral prosthesis
controller in a simulation model of a unilateral amputee equipped
with the proposed powered prosthesis. To more accurately model an
amputee’s anatomy, we severed the femur of the unimpaired human
model 11 cm above the knee and attached the hamstring muscle
to the distal end of the shortened bone as recommended in Brown
et al. [2012]. This change converts the biarticular hamstring into a
monoarticular muscle that only extends the hip. Next, we attached
a model of the full prosthesis to the severed femur. The prosthesis
modeled in this study is an earlier version of the prosthesis design
presented in chapter 3, which uses the knee actuator design for both
the knee and ankle joints. Our simulation of the prosthesis models
the series elasticity, electrical dynamics, gear ratios, and resultant
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reflected inertias of the actuators and assumes a low-level current-
based SEA control achieves desired torques [Pratt and Williamson,
1995].

As a baseline to compare the performance of the proposed control,
we also simulated the commonly-used impedance control method,
which we reviewed in section 2.2.2, at the behavior level. Specifically,
we implemented the impedance control presented in Sup et al. [2008]
as it tended to perform better than other versions in our simulations.
This control partitions the gait cycle into four phases. In each phase i,
the torque of an actuated joint is governed by an impedance function

ti = �k1,i(q � q1,i)� k2,i(q � q2,i)
3 � bi q̇, (5.1)

where q is the joint angle, q1,i and q2,i are angle offsets, and k1,i, k2,i
and bi are the impedance parameters.

5.1.2 Controller Optimization for Natural and Robust Walking

For both the hybrid neuromuscular controller and the impedance
controller, we optimized control parameters to search for gaits that
appear natural and are robust to disturbances. For the hybrid neu-
romuscular model, we optimized 53 parameters that include reflex
feedback gains and swing leg control parameters for both the am-
putee and prosthesis as well as the SEA control gains. To reduce the
number of parameters to optimize, we used fixed values for many pa-
rameters, such as the muscle properties and prestimulations. For the
impedance controller, we optimized 59 parameters that include the
reflex feedback gains and the swing leg control parameters for the
amputee model, and the impedance parameters and SEA controller
gains for the prosthesis. Again to reduce the number of parameters
to optimize, any parameters set to according by Sup et al. [2008] were
fixed to zero during the optimization.

We relied on the covariance matrix adaptation evolution strategy
(CMA-ES) [Hansen, 2006] and performed optimization in two steps.
In the first step, we searched for control parameters that generate
a gait with natural kinematics and kinetics. To this end, we took
advantage of the observation that human gait seems to result from
minimizing metabolic energy consumption [McNeill Alexander,
2002], and used the cost of transport

Cost =
W

mgx
+

1
mgx

Z ⇣
c1t2

cmd + c2t2
limit

⌘
dt (5.2)

as the optimization criterion. In the cost, W accounts for the energy
consumption of both the modeled amputee’s muscles and the pros-
thesis’ virtual muscles according to Umberger et al. [2003], tcmd is the
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sum of the torques commanded by the neuromuscular swing control
or the impedance control, tlimit is the sum of torques produced by
the model’s mechanical hard stops, which prevent knee and ankle
hyperextension, m is the mass of the amputee, g is the gravitational
acceleration, and x is the distance traveled in 20 seconds. The hand
tuned constants, c1 = 0.1 and c2 = 0.01, ensure that the terms of the
cost function have similar order-of-magnitude.

We ran the above optimization for 300 iterations and used the
best resulting set of control parameters to seed an optimization for
robustness to unexpected changes in ground height. For this second
step, the cost function was

Cost = �x + c3

Z
t2

limitdt, (5.3)

rewarding the distance traveled and penalizing joint hyperextension
(c3 = 0.0005). Instead of level ground, the simulations evaluating the
cost were performed on terrain that is flat for the first 10 meters (to
allow the model to reach steady walking) and then features steps,
spaced one meter apart and drawn from a uniform random distribu-
tion. The width of the distribution grew at a rate of 2.5 cm per meter
distance traveled, resulting in steps that grow progressively rougher
the farther the model walks. To avoid overfitting, we performed the
evaluation on five different terrains, resulting in an average cost. Like
in the first step, the optimization was stopped after 300 iterations,
resulting in the final, best set of control parameters.

5.2 Results

We evaluated the performance of the proposed control and of
impedance control by having the amputee model walk on terrains
that are flat for 10 meters and then feature steps drawn from uniform
distributions for another 90 meters. The widths of the distributions
are constant but varied among the terrains to test the control per-
formance on steps of increasing steepness (0 cm to ±14 cm, 2 cm
increments, total of 8 terrains).

Figure 5.1 shows the distances the amputee model walks over
50 trials at each roughness level (proposed neuromuscular control
in blue, impedance control in green). Most of the trials with the
impedance-controlled prosthesis covered the full distance up to a
roughness of 2 cm. At a roughness of 4 cm, however, the median
distance drops to 34 m, which further declines as the roughness
increases. In contrast, the prosthesis using the neuromuscular con-
trol, allowed the amputee model to walk the full distance up to a
roughness of 6 cm. Moreover, neuromuscular control has a similar
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Figure 5.1: Simulated Control
performance of prosthesis on
rough terrain. The distances
walked over terrains with dif-
ferent ground roughness are
compared between the am-
putee model using a powered
knee-ankle prosthesis with
impedance control (green) and
hybrid neuromuscular con-
trol (blue) as well as with the
unimpaired human model (red).
Shown are the median and
range (25th and 75th percentiles)
of the covered distances for
50 terrains sampled at each
roughness level.

distribution of distances walked at a roughness of 8 cm as impedance
control has at a roughness of 4 cm.

Although controlling the prosthesis with neuromuscular control
substantially improves the robustness of the amputee model on
rough terrain, the performance trails by a large margin that of an
unimpaired model (fig. 5.1, red line), for which most of the trials
covered the full distance up to a roughness of 10 cm. Limiting the
swing leg placement targets in the neuromuscular prosthesis control
to constant angles may account for some of this performance gap.
In future work, we may overcome this limitation by estimating the
amputee’s center of mass velocity and stance ankle position so that
the prosthesis control can take advantage of the full leg placement
policy (eq. (4.25)). Other sources for the performance gap could stem
from differences in the inertial properties between the prosthesis and
the healthy leg, delay and inaccuracy in the series elastic actuator
torque tracking, and the increased number of parameters in the
asymmetric amputee model, which can reduce the quality of the
optimized solutions.

A possible explanation for why the neuromuscular control pro-
duces more robust behavior than impedance control is the former’s
attempt to mimic the underlying dynamics and goals of human
motor control rather than to track impedance behavior about a pre-
defined motion for each individual joint. To illustrate this difference,
we subjected the amputee model with both control strategies to a
simulated trip in the form of a 15 N · s impulse applied at 5% of the
undisturbed swing duration.

Figure 5.2A shows the toe trajectory of the prosthesis using neuro-
muscular control both in the undisturbed and disturbed cases. While
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Figure 5.2: Tripping response of
the amputee model with neu-
romuscular (A) and impedance
control (B) of the prosthesis.
Shown are the prosthetic toe
trajectories during undisturbed
gait (dashed line) and when
disturbed by a 15 N · s impulse
(solid line). The neuromuscular
controller effectively responds
to the disturbance and main-
tains a qualitatively similar
toe trajectory. The impedance
controller leads to foot scuffing
and an eventual fall.

the impulse causes a large deviation from the nominal trajectory in
early swing, the controller quickly recovers. From mid-swing onward,
the foot follows a qualitatively similar path, maintains adequate
ground clearance, and successfully reaches a similar foot placement
as in the undisturbed case. In contrast, with impedance control, the
prosthesis does not respond adequately when subjected to the dis-
turbance (fig. 5.2B). This is illustrated by the prosthesis behavior in
mid-swing, during which it does not react appropriately to maintain
ground clearance of the toe. Rather, the joint-based impedance func-
tions drive the knee into extension prematurely, and the prosthetic
foot scuffs the ground resulting in a trip and subsequent fall.

5.3 Discussion

Our simulation results suggest that the hybrid neuromuscular control
policy may be able to improve amputee gait stability over existing
impedance control methods. An amputee model walking with a
powered prosthesis showed substantial improvements in balance
recovery on rough ground and after swing leg trips when using the
hybrid neuromuscular control policy as opposed to impedance con-
trol. One possible reason for the improvement is that the proposed
controller considers global leg information such as the target leg
angle (eqs. (4.26) to (4.28)), and it is well known that without placing
the feet into proper target points on the ground, legged systems fail
to balance [Townsend, 1985, Raibert, 1986, Kajita et al., 2001, Seyfarth
et al., 2002, Pratt et al., 2006, Wu and Geyer, 2013]. A second reason
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could be that the design of the swing leg control policy explicitly
accounts for large disturbances to the lower limb dynamics in order
to achieve desired leg placements [Desai and Geyer, 2012]. Finally,
the implemented impedance control strategy relies on the reliable
estimation of the discrete phase of gait during stance so that it can ap-
ply the appropriate impedance control parameters. In the presence of
disturbances such as the ground height disturbances we studied here,
this phase estimate may be incorrect, thus causing the impedance
control to apply inappropriate torques.

These results capture only a small portion of the balance distur-
bances that humans typically encounter [Robinovitch et al., 2013].
Other disturbances may evoke amputee responses that the simulation
model does not capture; especially since it is driven solely by a reflex-
ive walking controller that ignores conscious interventions. Therefore,
in future chapters of this thesis, we build towards and present results
wherein we implement prosthesis controllers on real hardware being
used by actual humans in order to more decisively compare control
strategies.



6
Preference Based Optimization

Material in this section based on Thatte et al. [2017]1 and Thatte et al. 1 Nitish Thatte, Helei Duan, and Hart-
mut Geyer. A sample-efficient black-box
optimizer to train policies for human-in-
the-loop systems with user preferences.
IEEE Robotics and Automation Letters,
2017

[2018]2

2 Nitish Thatte, Helei Duan, and Hart-
mut Geyer. A method for online
optimization of lower limb assistive
devices with high dimensional param-
eter spaces. In Robotics and Automation
(ICRA), 2018 IEEE International Confer-
ence on. IEEE, 2018

In chapter 4 we optimized the neuromuscular and impedance
control strategies in simulation using a sampling-based optimization
method called CMA-ES [Hansen, 2006]. This method targeted specific
cost functions. However, as discussed in section 2.4, optimizing a
single objective may ignore other aspects of gait that are important.
Therefore in this thesis, we instead allow users to select parameters
for the prosthesis by providing qualitative feedback in the form of
preferences between parameter vectors. In this chapter, we discuss
two approaches to optimizing parameters with preferences. The first
approach, outlined in sections 6.1 to 6.4, uses Bayesian optimization.
This approach, however, was unable to scale to the dimensionality
needed for application to prosthesis control. Therefore, in sections 6.5
to 6.8 we outline a second method that poses parameter selection as a
dueling bandits problem [Yue et al., 2012].

6.1 Bayesian Approach Introduction

As discussed in section 2.4 previous work has explored learning
from qualitative feedback such as preferences in order to circumvent
defining objective functions. Also, Bayesian optimization has been
proposed to reduce the number of experiments required to solve opti-
mization problems. In this first half of this chapter, we present a new
optimization algorithm, Predictive Entropy Search with Preferences
(PES-P), that combines these two ideas. We adapt an acquisition func-
tion previously proposed for interval scale feedback to the preference
feedback case. This acquisition function seeks a pair of parameters
for which a preference will maximally reduce the entropy of the
distribution of objective function optima. To test the algorithm, we
compare in simulation the performance of the proposed optimization
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method against the expected improvement method (EI) and uniform
random sampling via Latin hypercubes (LH) for two classes of exam-
ples: optimizing randomly generated objective functions and tuning
the control parameters of simulated dynamical systems.

6.1.1 Learning from Preferences

To learn latent objective functions from preferences, we rely on the
method developed by Chu and Ghahramani [Chu and Ghahramani,
2005], briefly reviewed here. The method considers a training dataset
Dn of n preferences between pairs of points, {xa

1 � xb
1 , . . . , xa

k �
xb

k , . . . , xa
n � xb

n}. These points can, for instance, represent control
policy parameters. From the dataset, the method finds a posterior
distribution of latent objective functions f ,

P ( f |Dn) =
P (Dn| f ) P ( f )

P (Dn)
. (6.1)

where f = [ f (xa
1), f (xb

1), . . . , f (xa
n), f (xb

n)]T . First, the method as-
sumes that the prior distribution of objective functions is a zero-mean
Gaussian process (GP), P ( f ) = N (0, S). An appropriate kernel,
Si,j = k (() xi, xj), describes the elements of the covariance matrix S.
(See [Williams and Rasmussen, 2006] for a full description of GPs.)
Second, P (Dn| f ) is the overall likelihood of preferences in the dataset
given specific reward function values and is modeled as the product
of the likelihood of each independent preference in the dataset,

P (Dn| f ) =
n

’
k=1

P
⇣

xa
k � xb

k | f (xa
k), f (xb

k )
⌘

=
n

’
k=1

F(qk), (6.2)

where P
⇣

xa
k � xb

k | f (xa
k), f (xb

k )
⌘

is the probability of a preference if

Gaussian noise with variance s2 corrupts the function values, F(·)
is the cumulative distribution function of a normal distribution,
and qk =

f (xa
k )� f (xb

k )p
2s

. In essence, the likelihood model increases the

certainty of a preference between xa
k and xb

k as the difference between
f (xa

k) and f (xb
k ) widens.

To obtain the posterior distribution P ( f |Dn) the method approxi-
mates eq. (6.1) with a Gaussian distribution. As a result, the predic-
tive distribution (subscript p) of the objective function at test points,
ft, is also Gaussian, P ( ft|Dn) = N

�
µp, Sp

�
. Finally, the predictive

distribution of a preference between two points xa and xb is

P
⇣

xa � xb|Dn

⌘
=
Z

P
⇣

xa � xb| ft, Dn

⌘
P ( ft|Dn) d ft (6.3)

= F

 
µa � µb

sp

!
, (6.4)

s2
p = 2s2 + Saa

p + Sbb
p � Sab

p � Sba
p . (6.5)



preference based optimization 75

Figure 6.1a provides an example of how the method estimates a
ground-truth objective function shown in purple. The blue line and
shaded area show the mean and standard deviation of the posterior
distribution of objective functions, P ( ft|Dn), after two preference
queries between pairs of parameters (orange, higher is preferred
over lower value). The queries have the effect of lifting the estimated
objective function close to preferred points and pushing it down close
to unpreferred points, approximating the true objective function over
time.

6.1.2 Active Learning for Optimization

Learning from preferences describes how to find a distribution of
objective functions given a dataset of comparisons. The question
now becomes how to efficiently solicit preferences from the user. As
our main goal is to find the optimal parameters x⇤, we should forgo
modeling the objective function accurately in all parameter regions
and instead focus on regions where the objective might be high.
Bayesian optimization addresses this problem with an acquisition
function that helps to efficiently sample training data.

a
xa1

xb1

xa2

xb2

f

b

xb3

xa3 x�
1x�

2

f

x

Figure 6.1: Learning from pref-
erences. (a) Mean and standard
deviation of P ( ft|Dn) (blue)
after two preferences queries
(orange) from the true objective
function (purple). (b) Mean of
P ( ft|Dn) (blue) and means of
P ( ft|Dn, x⇤m) (green) for two
samples of x⇤m. PES-P queries
a new comparison (orange) for
which the preference is cur-
rently uncertain, but on average
is certain after conditioning on
all x⇤m.

One such acquisition function is the expected improvement, which
has been used both in the context of preference feedback [Brochu
et al., 2008] and interval scale feedback [Jones et al., 1998],

EI (x) = (µ⇤ � µ(x))F(d) + s(x)f(d), (6.6)

where d = (µ⇤ � µ(x))/s(x), µ⇤ is the mean of the current esti-
mate of the optimum, and µ(x) and s(x) are the mean and stan-
dard deviation of the objective of a new point x, respectively. As
an alternative, for interval scale feedback, [Hennig and Schuler,
2012] and [Hernández-Lobato et al., 2014] proposed acquisition
functions that seek to reduce the uncertainty in the distribution
of objective function optima, measured in terms of the differential
entropy. For example, the Predictive Entropy Search acquisition func-
tion [Hernández-Lobato et al., 2014] seeks a point x that is expected
to reduce the entropy of the distribution of optima x⇤ after observing
its value y,

an (x) = H [P (x⇤|Dn)]� EP(y|x,Dn) [H [P (x⇤|y, x, Dn)]] , (6.7)

where H [P (x)] = �
R

P (x) log P (x) dx is the differential entropy.
The authors of these methods have shown they can outperform EI.

6.2 Bayesian Approach Methods

Our goal is to simultaneously address both the difficulty of defining
objective functions when an expert cannot demonstrate the desired
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robot behavior and the expense of running experiments on hardware.
To this end, we adapt the Predictive Entropy Search acquisition
function (eq. (6.7)) to the preference learning case.

6.2.1 Acquisition Function

To obtain the optimal parameters x⇤ with the smallest number of
preference queries, we solicit preferences that maximize the expected
information gain about the distribution of objective function optima
P(x⇤|Dn). Adapting eq. (6.7) to preference feedback yields

an

⇣
xa, xb

⌘
= H [P (x⇤|Dn)]� EP(y|xa,xb,Dn)

h
H
h
P
⇣

x⇤|y, xa, xb, Dn

⌘ii
, (6.8)

where y is a binary random variable that represents the preference
between xa and xb. The first term in this function is the current
entropy of objective function optima and the second term is the
entropy of optima after observing the preference y. As we have not
yet observed the preference, we take the second term in expectation
over the two possible preference outcomes.

As discussed in [Hernández-Lobato et al., 2014], this acquisition
function is intractable to compute. However, following the approach
used for the original PES algorithm, we can rewrite eq. (6.8) in terms
of the entropies of the predictive distribution of the preference be-
tween xa and xb,

an

⇣
xa, xb

⌘
= H

h
P
⇣

y|xa, xb, Dn

⌘i
� EP(x⇤ |Dn)

h
H
h
P
⇣

y|x⇤, xa, xb, Dn

⌘ii
(6.9)

⇡ H
h
P
⇣

y|xa, xb, Dn

⌘i
� 1

M

M

Â
x⇤m⇠P(x⇤m |Dn)

H
h
P
⇣

y|x⇤m, xa, xb, Dn

⌘i
. (6.10)

This reformulation significantly improves computability. First, the
new acquisition function uses the entropies of probabilities of pref-
erences, given by eq. (6.4). Second, we now take the expectation
over P (x⇤|Dn), which we can perform by sampling M functions
from P ( ft|Dn) and optimizing each one to get M samples of x⇤ (see
Appendix for details). Finally, the second term no longer requires
conditioning the GP on every pair of xa and xb considered during
optimization of the acquisition function. Instead, we only have to
condition the Gaussian process M times on (x⇤m, Dn).

For the experiments in section 6.3 we choose M = 12, which al-
lows us to construct and optimize an(xa, xb) in about five seconds.
Although 12 samples of x⇤ are insufficient to compute an accurate ex-
pectation over P (x⇤|Dn), interpreting the algorithm as an example of
active learning by disagreement may explain why it still works well.
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As shown in fig. 6.1b, optimizing the acquisition function chooses a
pair xa and xb for which the preference is currently uncertain, but cer-
tain on average after conditioning on all x⇤m. The sampled x⇤m do not
necessarily agree on which point is preferred; hence, after observing
the preference, the algorithm can rule out x⇤m that made the model
certain but wrong about the preference. This intuition is similar to
that provided by [Houlsby et al., 2012] for Bayesian active learning by
disagreement for GP classifiers.

6.2.2 Conditioning the Gaussian Process on x⇤

The second term on the right side of eq. (6.10) requires us to compute
the distribution of the preference given the location of the optimum,

P
⇣

y|x⇤m, xa, xb, Dn

⌘
=

Z
P
⇣

xa � xb| ft, x⇤m, Dn

⌘
P ( ft|x⇤m, Dn) d ft. (6.11)

It is not directly feasible to condition the predictive distribution on
x⇤, so instead we turn to approximating this condition with three
constraints (see appendix for details):

C1: First we impose that x⇤ is a local maximum by ensuring that
the gradient of f (x⇤) is zero and its Hessian is negative definite.
We further simplify the Hessian constraint to only require that the
Hessian’s off-diagonal elements are zero and its diagonal elements
are less than zero. We implement the gradient and off-diagonal con-
straints by conditioning the prior, P ( f ), on derivative observations
as outlined in [Solak et al., 2003]. To constrain the diagonal elements
of the Hessian, we amend the likelihood term in eq. (6.1) by adding
terms that penalize Hessians with positive diagonal elements.

C2: Second, we try to ensure that x⇤ is also a global maximum by
enforcing that f (x⇤) is greater than the function values of all training
points sampled so far. We impose this constraint by adding more
preference relations into the likelihood term in eq. (6.1) between x⇤

and all training points.
C3: Finally, to further ensure that f (x⇤) is a global maximum,

we require that it is also larger than the function values of the two
new test points, f (xa) and f (xb). Whereas C2 ensures f (x⇤) exceeds
function values in areas explored so far, C3 ensures that f (x⇤) also
exceeds function values in unexplored regions. We approximate
this constraint analytically by conditioning on the single constraint
f (x⇤) > ( f (xa) + f (xb))/2 using the method detailed in [Xu and Li,
2010].
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Algorithm 1: Predictive Entropy Search with Preferences
1: procedure PES-P
2: Dn = ?
3: for n 0 to N � 1 do . N iterations
4: F  { fm ⇠ P ( ft|Dn) |m 2 [1, M]}
5: X⇤  {arg maxx ( fm) | fm 2 F}
6: (xa

n+1, xb
n+1) arg max(xa,xb) ffn(xa, xb; X⇤)

7: yn+1  QueryUserPref(xa
n+1, xb

n+1)

8: Dn+1 Dn [ (xa
n+1, xb

n+1, yn+1)

9: end for
10: return x⇤  arg maxx mode (P ( ft(x)|DN))

11: end procedure

12: function an(xa, xb; X⇤) . acquisition function
13: h 

n
H
h
P
⇣

y|xa, xb, Dn, C1, C2, C3
⌘i

|x⇤m 2 X⇤
o

14: return H
h
P
⇣

y|xa, xb, Dn

⌘i
�mean (h)

15: end function

6.2.3 Algorithm Summary

With constraints C1 to C3, at each iteration we can efficiently com-
pute the acquisition function, eq. (6.10). We summarize the resulting
Predictive Entropy Search with Preferences (PES-P) algorithm as
follows (algorithm 1): At each iteration n, first, the algorithm sam-
ples M objective functions from the current distribution, P ( ft|Dn),
and optimizes each one to generate M samples of x⇤ (lines 4 and
5). Next, using the set of sampled optimums X⇤, we maximize the
acquisition function to obtain the next two points to present to the
user xa

n+1 and xb
n+1 (lines 6 and 12–15). Note: we can precompute

the effect of C1 and C2 before evaluating ffn(xa, xb) as these two
constraints do not depend on xa

n+1 and xb
n+1. On the other hand, C3

depends directly on xa
n+1 and xb

n+1 and therefore is computed within
the acquisition function for every pair of points considered during
the optimization of ffn(xa, xb). We then query the user to obtain their
preference yn+1 between these two points and add it to the dataset of
preferences (lines 7 and 8). Finally, at the end of the N iterations of
the algorithm, we return the optimum x⇤ of the most likely function,
mode (P ( ft(x)|DN)), which is equal to the posterior mean function
in the Gaussian process case (line 10). While it may be more correct
to return mode (P (x⇤|DN)), we do not do this as the PES algorithm
seeks to avoid approximating this distribution.
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a) 2 dimensions, λ=0.2 b) 3 dimensions, λ=0.2 c) 4 dimensions, λ=0.3 d) 5 dimensions, λ=0.4

e) LQR 3 dim f) LQR 4 dim g) Biped Walking 2 dim h) Biped Walking 3 dim

Figure 6.2: Performance of
predictive entropy search with
preferences (PES-P), expected
improvement (EI), and Latin
hypercube random sampling
(LH) for optimizing random ob-
jective functions sampled from
a GP (a-d), and tuning feedback
control parameters of random
linear systems (e-f) and a biped
walking model (g-h). Shown are
the median and interquartile
range over 20 trials of the im-
mediate regret (IR) against the
number of preference queries.
Black stars indicate iterations
for which PES-P achieves sta-
tistically significant stochastic
reductions in IR compared to
both EI and LH according to
two-sided Mann-Whitney U
tests (p < 0.05).

6.3 Bayesian Approach Results

We test the ability of PES-P to solve optimization problems in three
simulated cases with increasing realism from the optimization of
randomly generated objective functions drawn from a GP to the
tuning of feedback gains of random linear systems and a neuromus-
cular walking model. In all cases, we compare the performance of
the proposed algorithm to the expected improvement criterion (EI)
(eq. (6.6)) and random sampling via Latin hypercubes (LH)3 [McKay

3 LH sampling divides the parameter
space into (2N)D hypercubes, where
D is the dimensionality of the space.
2N samples are placed such that each
hypercube has at most one sample and
there is at most one filled hypercube
along any row of hypercubes when
viewed along any direction. This
method ensures that the samples are
roughly uniformly distributed in the
entire space. At each iteration, we
choose two of these samples.

et al., 2000]. For the three cases, we show results over 20 trials and
measure performance in terms of the immediate regret, defined as
IR = | f (x̃⇤n)� f (x⇤)|, versus the number iterations. Here, f (x̃⇤n) is the
objective value of the current estimate of the optimum at this itera-
tion, f (x⇤) is the value of the true optimum, and an iteration consists
of a single preference query between two points. Additionally, we
also check the statistical significance of the reduction in IR obtained
by PES-P compared to both EI and LH via two-sided Mann-Whitney
U tests (p < 0.05).

6.3.1 Optimizing Randomly Generated Objective Functions

To avoid inducing bias by hand-engineering test functions, we first
evaluate the algorithm on random synthetic objective functions. We
generate objective functions on the domain x 2 [�1, 1]D by sampling
a vector of 500 function values from a GP prior with a quadratic
mean, µ(x) = �xTx, and isometric squared exponential covariance
k(xi, xj) = exp

⇣
�1
2l xT

i xj

⌘
. We use a quadratic mean function to bias

the function distribution away from those that have their optimum on
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a boundary of the domain, as these functions are easier to optimize.
We continue to generate the rest of the function as it is optimized
by conditioning the GP on the 500 seed values and all function
values sampled during the optimization. We assume the mean of the
final function distribution is the true objective function. To simulate
a more realistic situation, we provide the algorithms with noisy
preferences from the sampled function values (s2 = 0.1).

Figures 6.2a-d show the immediate regret for two to five-dimensional
problems with l, the length scale of the kernel, scaling from 0.1 to
0.4 as the dimensionality of the problem increases. On two to four-
dimensional problems, PES-P outperforms EI and LH by achieving
statistically significant reductions in IR. However, as the dimension-
ality increases, it takes more iterations for this advantage to become
apparent. In the five-dimensional case, there is no significant differ-
ence between PES-P and LH, perhaps due to M = 12 samples of
x⇤m being insufficient and the difficulty of accurately sampling x⇤m in
higher dimensions.

6.3.2 Tuning Controllers for Random Linear Systems

Next, we test the ability of PES-P to optimize simple control systems
by optimizing the feedback gains K for D-dimensional single-input
linear systems ẋ = Ax + Bu with feedback u = Kx. We sample
the elements of the A matrix from the standard normal distribution
while B = [01⇥(D�1), 1]T. We assume a quadratic instantaneous cost
resulting in the objective function

f (K) = �
Z t f

0
xT

K(t)(Q + KT RK)xK(t)dt, (6.12)

where xK(t) is the evolution of the state under the control policy K
and a fixed initial condition x0, Q = ID⇥D and R = 1. To obtain
a finite search domain, we find the stable range of parameters by
varying the elements of the true optimal control parameters K⇤

one at a time while keeping other elements constant. We scale and
shift this region to map to the domain [�1, 1]D. Finally, we use the
Automatic Relevance Determination Gaussian Kernel and optimize
the hyperparameters at each iteration by maximizing the posterior
probability of the hyperparameters under a gamma hyperprior [Chu
and Ghahramani, 2005, Williams and Rasmussen, 2006]. In order
to apply a consistent noisy preference model (s2 = 0.1) across all
sampled systems, we transform all objective values by first mapping
them through � log(� f (K)) and then shifting and scaling the values
by the mean and range of the values of 10D randomly sampled
controllers.
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Figures 6.2e and 6.2f show the resulting optimization performance
on three and four-dimensional systems. In the 3 dimensional case,
PES-P achieves a lower median IR than LH after 30 iterations. This
difference becomes significant after 60 iterations. In the 4 dimen-
sional case, PES-P significantly outperforms LH after 50 iterations,
but the significance of this improvement is sporadic as the iterations
continue. A possible reason for the reduced performance difference
between PES-P and LH in the LQR problem as compared to the ran-
dom objective function problems is the existence of hard-to-optimize
flat regions in the LQR objective functions. This suggests that PES-P
may be better suited for problems that have a clear optimum.

6.3.3 Tuning Control Parameters of a Walking Model

In the third case, we test the ability of PES-P to optimize the feed-
back gains for a neuromuscular model of walking [Thatte and Geyer,
2016], a system with a complex non-linear controller addressing the
specific application domain of human locomotion. We perform two
and three-dimensional optimizations, in which we tune the feedback
gains for a subset of the model’s muscle actuators. We use the nega-
tive cost of transport plus the distance walked over a 20 second time
span as the objective function. As in the previous linear systems ex-
ample, we obtain noisy preferences between parameters and optimize
the hyperparameters at every iteration.

Figures 6.2g and 6.2h show the performance of PES-P, EI, and LH.
In this example, PES-P achieves a significant reduction in IR in just 10
iterations in the 2-dimensional case and in 25 iterations in the three-
dimensional case. Furthermore, in the 3D case, the PES-P’s median
solution is approximately 10 times better than those found by EI or
LH.

6.4 Bayesian Approach Discussion

We presented a new optimization algorithm (PES-P) that extends
Predictive Entropy Search to preference feedback. The algorithm
addresses two key problems frequently encountered in system opti-
mization. First, it circumvents the often difficult process of param-
eterizing and learning an objective function by directly querying
users for preferences between pairs of parameters. Second, the algo-
rithm minimizes the required number of experiments by employing
Bayesian optimization techniques that ensure the queries maximize
the information gained about the location of the optimum. Moreover,
unlike previous approaches for preference learning on robotic sys-
tems [Wilson et al., 2012, Jain et al., 2013], PES-P does not require a
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model of the system.
Our experiments show that the proposed algorithm outperforms

baseline algorithms. In most of the experiments, PES-P found op-
tima that achieved higher objective values than those found by the
expected improvement method (EI) or by random comparisons
via Latin hypercubes (LH) (fig. 6.2). The reason why PES-P outper-
formed EI is likely due to the former’s explicit consideration of how
the limited, noisy information obtained from a preference query will
affect the knowledge about potential objective function optima. The
acquisition function (eq. (6.8)) recognizes that preferences become
more uncertain the closer two sample points are to each other. EI,
on the other hand, does not reason about noisy preferences and,
instead, still assumes it can sample values (eq. (6.6)). Consequently,
EI ignores the distance between sample points, which often leads to
a greedy strategy that solicits preferences between adjacent points.
While this strategy can resemble gradient ascent with convergence
to local optima in a noise-free optimization, it often failed in our
experiments characterized by noisy observations. Note, however, that
such limitations were not observed by Brochu and colleagues [Brochu
et al., 2008], who successfully used EI with preferences to optimize
parameters for a graphics application, possibly because the associated
visual task produced less noisy responses than did our simulations.

However, a major drawback of the proposed PES-P approach is its
limited ability to scale to problems of sufficient dimensionality. As
shown in fig. 6.2d PES-P provides little benefit over random sampling
on 5D problems. In contrast, to optimize the neuromuscular model
control proposed in section 4.6 we need to be able to solve prob-
lems with dozens of dimensions. Therefore, in the next half of this
chapter, we explore an alternative approach, that frames prosthesis
optimization as a dueling bandits problem [Yue et al., 2012].

6.5 Bandit Approach Introduction

In the first half of this chapter, we explored the potential of a method
that combines Bayesian optimization with learning from preferences.
However, the simulation results presented demonstrate it is unlikely
the proposed method can scale to the dimensionality needed for pros-
thesis optimization. Previously published impedance control strate-
gies for transfemoral prostheses have roughly 20 tunable parameters
for a given gait condition, such as walking at a specific speed. Sup
et al. [2011] show that these parameters also vary with alternative
conditions such as incline. Therefore, these kinds of parameterized
policies could require on the order of 100 parameters to deal with a
range of situations. Previous work has attempted to reduce the num-
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ber of parameters via heuristic rules that tie impedance parameters to
other states of the prosthesis such as joint angles [Simon et al., 2014].
However, it is not obvious how to translate these heuristics to other
control strategies, such as the neuromuscular control we propose
in section 4.6, or phase-based control [Quintero et al., 2016], which
follows knee and ankle trajectories parameterized as functions of hip
angle and hip angle integral.

To deal with high-dimensional parameter selection for prosthe-
ses, many have turned to offline optimization of control parameters
Markowitz et al. [2011] use data from a height-and weight-matched
intact subject to obtain speed-adaptive neuromuscular control param-
eters for a transtibial amputee’s prosthesis and Aghasadeghi et al.
[2013] use an invariant gait representation to model an amputee’s
gait and find the appropriate impedance control parameters. In these
approaches however, it is unclear how well the resultant parameters
suit the subject when executed on actual hardware.

In this paper, we tackle these issues by framing prosthesis opti-
mization as a dueling bandits problem [Yue et al., 2012]. The result-
ing approach utilizes the subject’s preferences to include subjective
user feedback in the tuning process. The method deals with high
dimensional optimization problems by incorporating domain knowl-
edge in the form of an offline optimization step. We show that this
method produces a library of parameters from which different users
prefer different options and for which preferred controllers tend to
follow human gait trends. Moreover, we explore further utilizing the
offline optimization to help the controllers generalize to speeds that
were not included during the online optimization process.

6.6 Bandit Approach Methods

In this study, we use the transfemoral prosthesis presented in chap-
ter 3 and the prosthesis control that uses neuromuscular reflexes
during stance and minimum jerk swing trajectories during swing
described in section 4.6.

6.6.1 Optimization method

To optimize the control parameters of this neuromuscular trans-
femoral prosthesis control for specific users, we frame the task as
a K-armed dueling bandits problem [Yue et al., 2012]. In this for-
malism, at each iteration t 2 [1, . . . T] of the optimization, an algo-
rithm chooses two options, referred to as bandits, out of the set of K
possibilities, so as to minimize the total cumulated regret over the
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iterations. The cumulated regret is defined as

R(T) = z⇤T � 1
2

T

Â
t=1

E [z1t + z2t] (6.13)

where z⇤, z1t, and z2t, are the values of the optimal bandit and first
and second bandits chosen on iteration t respectively. To minimize
R(T), algorithms must effectively trade of exploration of all bandits
to gain confidence in their values and exploitation of the best bandit
so as to not incur regret.

In a dueling bandits problem, we do not observe numeric rewards
directly. Rather, we observe if an oracle prefers the first bandit to
the second. Because we never directly observe numeric values, algo-
rithms for this problem use alternative notions of value. In this work,
we utilize the Double Thompson sampling method [Wu and Liu,
2016], which achieves state-of-the-art regret on several datasets. This
method defines a bandit’s value as its Copeland Score: the number of
other options that a bandit defeats on average.

Key to employing this method for prosthesis optimization is of-
fline generation of parameter sets for which we are likely to obtain
reasonable gaits for different subjects. This task can be viewed as
sampling from the set of parameters that produce gait patterns con-
sistent with human locomotion. In this work, we explore generating
this set of controllers using a recently published gait data set that
includes kinematics and kinetics for individual subjects walking at
three different speeds, 0.8, 1.2, and 1.6 m/s [Moore et al., 2015]. For
each subject in this dataset, we use the Covariance Matrix Adaptation
Strategy [Hansen, 2006] to find neuromuscular model parameters G
that reproduce the subject’s body-weight-normalized knee and ankle
joint torques th = [tk

h , ta
h ]T given the subject’s hip, knee, and ankle

angle trajectories qh = [qh
h, qk

h, qa
h]T . Specifically, we solve

G = argminG (th � tnm)T (th � tnm) + axT
nmxnm (6.14)

where (tnm, xnm) = neuroG (qh) are the torques and muscle activa-
tions generated by the neuromuscular model given the human joint
angle trajectories and model parameters. a = 0.01 is a small constant
we use to help regularize the solutions.

Table 6.1 shows the parameters we optimize during this process.
For each parameter in the Speed-Independent category, we look for
a single value to use across all speeds. For parameters in the Speed-
Dependent category we search for three different values, one for each
gait speed in the dataset (0.8, 1.2, and 1.6 m/s). The parameters we
choose to optimize include the isometric force and feedback gains for
each muscle, which are closely related to the effective stiffness of the
joint [Geyer et al., 2003], muscle prestimulations, which are related to
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the stride energy [Geyer et al., 2003], and the muscle reference angles,
to help deal with the kinematic variability between subjects [Geyer
and Herr, 2010].

Speed-Independent Speed-
Dependent

Fham
max ham f

hip
0

F+Gham
ham

Fvas
max ham fknee

0
F+Gvas

vas
Fbfsh

max vas f0
F+Ggas

gas
Fgas

max bfsh f0
F+Gsol

sol
Fsol

max gas fknee
0

F�Gta
sol

Fta
max gas fankle

0
L+Gbfsh

bfsh
offlbfsh

bfsh sol f0
L�Gvas

bfsh
offlvas

bfsh ta f0
L+Gta

ta
offlta

ta Svas
0

Sham
0

Table 6.1: Optimized param-
eters, G. Speed-independent
parameters use a single value
for all speeds, while speed
dependent parameters have
distinct values for 0.8, 1.2, and
1.6 m/s gaits. Consequently, in
total we optimize 43 parame-
ters. Fmax refers to a muscle’s
maximum isometric force, f0

is a parameter used for muscle
moment arm calculations, and
S0 is a muscle’s pre-stimulation.

From the dataset provided by Moore et al. [2015], which contains
samples for twelve subjects, we were able to extract nine parameter
sets. (One subject’s torque data is corrupted and two subjects’ data
resulted in an overly flexed knee when used on the prosthesis.)
Figure 6.3 shows an example of two subjects’ torque patterns shown
in red. We see that there are significant differences between the
two subjects in terms of both timing and magnitude of torque. In
green, we see that after optimizing the neuromuscular model for each
subject, it is able to capture both gait patterns.

We can quantify the quality of the model fit to the data by com-
puting the root mean squared (RMS) error between the model’s
predicted torques and the actual torques. Over the nine parameter
sets we achieve a median RMS knee torque error of 35% of the RMS
human knee torque, and a median RMS ankle torque error of 15% of
the RMS human ankle torque. Much of the error in the knee torque
prediction occurs right after heel strike, where the model typically
predicts near-zero torque. In future work, we plan to adapt the model
to produce more knee flexion torque at heel strike, which should
significantly reduce the model error.

To compensate for kinematic differences between the prosthesis
and the training data, before sending prosthesis joint angles to the
neuromuscular control, we add constant bias angles to the joint
encoder readings so that at joint j,

q
j
model = q

j
encoder + q

j
0. (6.15)

We hand-tune these bias parameters for each bandit and subject to
ensure the bandits work as well as possible.

6.6.2 Experiment Procedure

In our experiment, we test the ability of our offline optimization ap-
proach to generate controllers that are suited to different subjects and
to produce kinematics and kinetics similar to those of intact subjects.
We further test the effectiveness of using offline optimizations to help
improve the ability of the control to generalize to speeds different
than those experienced during the online optimization.

After providing informed consent to a protocol approved by the
Carnegie Mellon University Internal Review Board, five non-amputee
subjects (four male, one female, average mass = 68.8 kg std 11.17 kg)
donned the prosthesis via the able-bodied adaptor shown in fig. 3.12.
On the contralateral leg, subjects wore a lift shoe, the height of which
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Figure 6.3: Results of the of-
fline optimization that fits the
neuromuscular model to intact-
subject gait data. Shown are the
knee and ankle torques for two
different subjects. These plots
show there can be significant
inter-subject gait variability.

we adjusted to ensure subjects’ hips were even when standing.
Subjects participated in a three-day study. On the first day, subjects

acquainted themselves with the prosthesis for roughly 2 hours. By
the end of this period, all subjects were able to walk (while holding
handrails) consistently without tripping on a set of hand-tuned
parameters at a speed of up to 1.2 m/s. On the second day, the first 15
minutes consisted of hand-tuning the bias angles for each parameter
set (eq. (6.15)) to allow the subject to achieve adequate ankle and
knee flexion for as many parameters as possible. Then, we performed
the dueling bandits optimization for 50 iterations, which required
approximately thirty minutes of walking at 0.8 m/s. Each iteration
consisted of roughly ten seconds of walking on each parameter,
after which the subject indicated their preference. If subjects were
unsure of their decision they could walk with both parameter sets
multiple times. If their uncertainty persisted, the experimenter chose
the parameter set that produced angles and torques more aligned
with human data. If the experimenter also had no preference, a
random number generator selected the winner. We chose to perform
fifty iterations, as pilot testing suggested this was sufficient for the
algorithm to begin comparing the optimal parameter set to itself,
indicating a high level of confidence in the optimum.

On the third day, subjects walked with their preferred parameters
at 0.8, 1.0, 1.2, 1.4, and 1.6 m/s. For each speed, we tested both the
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appropriate speed-dependent parameters and those designed for
0.8 m/s. To obtain parameters for 1.0 and 1.4 m/s we performed linear
interpolation between the adjacent parameters. Finally, we recorded
the subject’s gait at 0.8 m/s for all non-preferred parameter sets and
the hand-tuned parameters used on the first day.

6.7 Bandit Approach Results

6.7.1 Copeland Scores

The five subjects in the study preferred four different parameter
sets out of the nine parameter sets they could choose from, thereby
demonstrating that the offline optimization approach can gener-
ate parameters that suit different users. Figure 6.4 shows the total
Copeland score achieved by each parameter set across all five sub-
jects. From this chart, we can see it is possible, as in the case of
parameter set 6, that a controller receives high scores from some
users while receiving a score of zero from other users. This illustrates
the importance of tailoring prostheses to individual users. Some
parameters such as parameters 1, 4, and 8, achieved consistently
low scores across all users. It may be possible for us to remove these
parameters from future studies. However, more subjects would be
needed before making such a determination as parameter set four
received a relatively high score from subject five.

6.7.2 Kinematics and Kinetics at 0.8 m/s

Figure 6.5 shows the ankle and knee kinematics achieved by all sub-
jects on all parameters at 0.8 m/s. The thicker solid lines indicate the
gait data produced by subjects’ preferred parameters and the dashed
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Figure 6.4: Total Copeland score
achieved by each parameter set
across all five subjects.



88 design and evaluation of robust control methods for robotic transfemoral
prostheses

−25

0

25

50

75

An
gl
e
(D
eg

)
Knee Kinematics

−40

−20

0

20

40
Ankle Kinematics

0 50 100
Stance Percent

−1

0

1

M
om

en
t(
N
-m

/k
g)

Knee Moment

0 50 100
Stance Percent

−2

−1

0

1
Ankle Moment

Figure 6.5: Median angles and
moments at 0.8 m/s for all pa-
rameter sets for all subjects.
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hand-tuned parameters. The
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subject gait data (from the extra
slow walking data in [Bovi
et al., 2011]).

lines indicate the gait data produced by the hand-tuned parameters.
We see that subject gait with both their preferred parameters and
hand-tuned parameters follow similar trends to intact gait data [Bovi
et al., 2011], whose mean and three sigma variance is shown as the
blue shaded region. However, all subjects preferred the optimized
parameters to the hand-tuned set.

Just as in the intact data, there is significant variation in subjects’
preferred gait characteristics, which reinforces the idea that targeting
a specific kinematic or kinetic pattern may not be ideal for all users.
This seems to be especially true of the knee joint moment, where
there are significant differences in the amount of knee extension
torque in early stance and flexion torque in late stance among users.

6.7.3 Control Performance at Higher Gait Speeds

Figure 6.6 shows the average net ankle work4 produced by the con- 4 The area within the torque versus
angle plot of the ankle over a stride.trol strategy at speeds ranging from 0.8 to 1.6 m/s. Data from subjects

1, 2, and 3, who chose parameter sets 5, 9, and 3 respectively, show a
clear downward trend in ankle work as speed increases when using
a constant set of gains. On the other hand, with the adaptive gains,
as speed increases ankle work increases, mimicking the behavior of
the biological ankle [Herr and Grabowski, 2011]. All three of these
subjects preferred the behavior of the adapted parameters to the
parameters for 0.8 m/s when walking at 1.4 and 1.6 m/s.

Subjects 4 and 5 both chose parameter set six and show no clear
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trend in ankle work as speed increases. For this parameter set, the
speed adapted gains only increased ankle work significantly over
baseline at 1.6 m/s for both subjects. Additionally, these two subjects
indicated no trend in preference between the adapted and unadapted
parameters at higher speeds. These two subjects produced different
amounts of net work despite using the same parameter set. This is
likely due to kinematic differences between the subjects as well as
differently tuned bias settings for the ankle joint.

From this result, we can conclude that the offline optimization ap-
proach can produce improved responses at speeds other than that at
which we conduct the online optimization, but that the improvement
needs to be confirmed on a per-parameter basis. It is not currently
clear why parameter set six does not exhibit increasing ankle work as
speed increases as the underpinning human data for this parameter
set does indeed exhibit the desired trend. The issue could possibly lie
with the structure of the high-level control or with local minimums
obtained by the CMA-ES method.

6.8 Bandit Approach Discussion

We present a new approach for online optimization of lower limb as-
sistive devices that uses preference feedback to incorporate the user’s
subjective assessment of device behavior. The method tackles high di-
mensional tuning problems by incorporating domain knowledge via
an offline optimization step that utilizes kinetic and kinematic data
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from intact subjects to obtain a library of policy parameters. We find
that the five subjects who completed our experiment preferred four
different parameter sets from this library. The resulting gait patterns
resembled intact human gait data and were preferred to hand-tuned
parameters, confirming that the method can generate parameters
suited for different subjects.

A result of the offline optimization we use is that the method is
largely agnostic to the number of tunable parameters. Consequently,
we were able to additionally optimize neuromuscular model pa-
rameters for different speeds. Our experimental results show that
these parameters improved the ankle work characteristics and user
preferences as speed increased for three out of four tested parameter
sets.

Previous works such as Eilenberg et al. [2010] and Markowitz et al.
[2011] have demonstrated control of powered ankle prostheses via
neuromuscular models of muscles and reflexes. This paper extends
that work, as it presents the first instance of neuromuscular control
on a powered knee and ankle prosthesis.

Due to the ability of the method to handle problems of arbitrary
dimensionality given sufficient computational resources, it may be
used to tune many types of control strategies. For example, one
could use the approach to optimize the phase variable control strat-
egy, in which the prosthesis follows predefined knee and ankle
trajectories parameterized as functions of hip angle and hip angle in-
tegral [Quintero et al., 2016]. In this case, each bandit would provide
a different knee and ankle trajectory. Importantly, the ability of this
method to optimize various types of controllers may help researchers
compare control strategies fairly, as we do in chapter 7.

It is probable that the parameter library we obtained in this work
can be further improved. We propose two directions for further inves-
tigation: First, it may be possible to improve the library by obtaining
a larger set of gait data and then using clustering algorithms to ar-
rive at a reduced set of canonical gaits. Vardaxis et al. [1998] apply a
similar idea to EMG data to cluster gaits into five major styles. With
a library derived from canonical gaits, we may cover the parame-
ter space more evenly. A second approach is to use biomechanical
measurements from the amputee, such as segment lengths and mea-
sured peak joint torques, to obtain probability distributions for the
neuromuscular model parameters. We could then compose the pa-
rameter library by sampling parameters from the distributions and
performing rigid body simulations of the amputee and prosthesis
system.

The optimization approach we have presented may have consid-
erable practical value for commercial prostheses as well. Because



preference based optimization 91

it uses preference feedback, users of an assistive device can easily
provide feedback via smartphones or wearable devices. Moreover, the
dueling bandit algorithm is well suited to lifelong learning. Since the
algorithm seeks to minimize regret, we can ensure its exploration is
only as obtrusive as necessary.

The study we presented has several limitations. First, we only
had five subjects complete the study. Ideally, we would have more
subjects than the number of parameter sets so we could determine if
any parameters are never preferred or if any group is not currently
well represented by the current set of parameters. Also, we should
confirm that the proposed optimization framework provides suitable
control parameters for amputees wearing this prosthesis.

Bayesian Approach Appendix

To obtain X⇤ (line 5, algorithm 1), we sample M functions from the
posterior by approximating P ( ft|Dn) using Bayesian linear regression
with Fourier features (as outlined in [Hernández-Lobato et al., 2014])
and sampling M feature weight vectors. As the Fourier features have
analytic derivatives, we can optimize each linear function using a
second order method with multiple restarts.

We approximate conditioning the predictive distribution on x⇤ via
three constraints:

C1 x⇤ is a local maximum. r f |x⇤ = 0 and the Hessian of the objec-
tive function is negative definite by imposing diag (rr f |x⇤) < 0
and upper (rr f |x⇤) = 0. We group r f |x⇤ = 0 and upper (rr f |x⇤) =

0 into constraint C1.1 and diag (rr f |x⇤) < 0 into constraint C1.2.

C2 x⇤ is preferred to current training points, f (x⇤) > f (xa
k) and f (x⇤) >

f (xb
k ), 8k 2 [1, n].

C3 x⇤ is preferred to new training points, f (x⇤) > f (xa
n+1) and

f (x⇤) > f (xb
n+1).

We precompute the effects of contraints C1 and C2 before eval-
uation of ffn(xa, xb). To impose C1 and C2, we first divide their
components into two groups: c = [r f |Tx⇤ , upper (rr f |x⇤)T]T and
f 0 = [ f T, diag (rr f |x⇤)T , f (x⇤)]T. Note C1.1 =) c = 0. We write
the predictive distribution of the objective function at test points ft

given constraints C1 and C2 as

P ( ft|Dn, C1, C2) =
Z

P
�

ft| f 0, C1.1
�

P
�

f 0|Dn, C1, C2
�

d f 0. (6.16)

We use Bayes rule to evaluate the second term in the integral,

P
�

f 0|Dn, C1, C2
�

=
P (Dn, C1.2, C2| f 0) P ( f 0|C1.1)

P (Dn, C1.2, C2|C1.1)
. (6.17)



92 design and evaluation of robust control methods for robotic transfemoral
prostheses

We form the prior term P ( f 0|C1.1) by conditioning the joint distribu-
tion, P (c, f 0) on C1.1 given by c = 0.

P
�

f 0|c
�

= N
⇣

f 0|ST
cf0S
�1
cc c, Sf0f0 � ST

cf0S
�1
cc Scf0

⌘
(6.18)

implies P ( f 0|c = 0) = N ( f 0|0, Sf0 |c).
We implement the likelihood term by adding extra factors to the

likelihood in eq. (6.1) that impose soft constraints representing C1.2
and C2. For C1.2 we use the penalty term P ([rr f |x⇤ ]dd < 0|rr f |x⇤) =

F(�[rr f |x⇤ ]dd/sh) and for C2 we add more preference relations be-
tween x⇤ and all training points.
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k )
⌘
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k)) P
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⇥
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’
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=
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’
k=1
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#
D

’
d=1
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d) (6.19)

Where qa⇤
k =

f (x⇤)� f (xa
k )p

2s
and qb⇤

k =
f (x⇤)� f (xb

k )p
2s

and qh
d = �[rr f |x⇤ ]dd

sh
.

We use Laplace’s approximation to approximate P ( f 0|Dn, C1, C2) as
Gaussian,

P
�

f 0|Dn, C1, C2
�
⇡ N

✓
f 0| f 0MAP,

⇣
S�1

f0 |c + L f 0MAP

⌘�1
◆

, (6.20)

where f 0MAP = arg min f 0 � log P ( f 0|Dn, C1, C2) and Lf0MAP
is the

Hessian of � log P (Dn, C1.2, C2| f 0) evaluated at f 0MAP.
We compute the first term in eq. (6.16), P ( ft| f 0, C1.1) by condition-

ing the joint distribution P (c, f 0, ft) on f 0 and c = 0,

P
�

ft| f 0, c = 0
�

= N
 

ft|
⇣

ST
ctB + ST

f0tD
⌘

f 0, Stt �
h
ST

ct ST
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i "A B
C D
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Sct
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, (6.21)

where,

"
A B
C D

#
=

"
Scc Scf0

ST
cf0 Sf0f0

#�1

. We can substitute eq. (6.21)

and eq. (6.20) into eq. (6.16) to yield the predictive distribution sub-
ject to constraints C1 and C2.

P ( ft|Dn, C1, C2) =N
 

ft|(ST
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f0tD) f 0MAP, Stt �
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ST

ct ST
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ST
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f0tD
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S�1
f0 |c + Lf0MAP

⌘�1⇣
ST

ctB + ST
f0tD

⌘T
◆

. (6.22)
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We obtain P ( ft|Dn, C1, C2, C3) by analytically conditioning eq. (6.22)
on the single inequality f (x⇤m) > ( f (xa) + f (xb))/2 using the method
detailed in [Xu and Li, 2010]. Finally, using eq. (6.11) we can compute
the predictive distributions of preferences given the locations of x⇤m.

To optimize ffn(xa, xb) (line 7, algorithm 1) we construct its gradi-
ent by evaluating P ( ft|Dn) and P ( ft|Dn, C1, C2, C3) at test points xa

and xb as well as points offset by dx = ±0.001 along each dimension.
We then optimize an(xa, xb) via gradient ascent.





7
Experimental Comparison of Neuromuscular and Impedance
Controllers

7.1 Introduction

To date, there have been many proposed controllers for prostheses,
which we reviewed in section 2.2. However, there has been a dearth
of studies directly comparing the merits and detriments of these
different strategies.

In this work, we provide one such study by comparing the neuro-
muscular (NM) and impedance (IMP) control strategies in a similar
manner as in chapter 5. We seek to make this comparison as ob-
jective as possible. To do this, we minimized the experimenter’s
influence on controller parameter selection by using the dueling
bandits parameter selection method presented in chapter 6. This
method comprises of two parts: 1) We first generated parameters for
both controllers through offline optimizations that try to match the
controller output to able-bodied gait data of different subjects. 2) We
used a preference-based optimization that allows users to select their
preferred parameter set. Finally, we also replaced the hand-tuning of
offset angles that we used in chapter 6 (eq. (6.15)) with an iterative
learning procedure.

We had also hoped to compare neuromuscular and impedance
control to the continuous phase-based control proposed by Quintero
et al. [2016]. However, we were unable to achieve a consistent walk-
ing pattern with this control strategy. We present our results trying to
implement this control strategy later in this thesis in section 9.2.

We are primarily interested in potential robustness improvements
provided by neuromuscular prosthesis control, as predicted by the
simulation results presented in chapter 5. To examine controller
robustness, we tested both controllers with able-bodied subjects
walking with their preferred parameters at a constant speed and
with treadmill velocity disturbances. We then evaluated the user
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ratings, number of falls, reasons for falls, and gait variability for each
condition.

7.2 Methods

7.2.1 Parameter Generation

Optimized Parameters
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ta
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Table 7.1: Optimized parame-
ters, G. We optimize 18 param-
eters. Fm

max refers to muscle m’s
maximum isometric force, Sm

0
is muscle m’s pre-stimulation,
signalGm

n is the gain on a feed-
back signal from muscle n
acting on muscle m, e

ap
SE is the

tendon reference strain of the
ankle plantarflexors (sol and
gas) and Fham

init is the initial
force in the hamstring MTU at
heelstrike.

To obtain suitable parameters for the neuromuscular and impedance
control methods we relied on the dueling bandits optimization
approach outlined in section 6.6.1. Whereas in section 6.6.1 we opti-
mized control parameters to match gait data at different speeds to
achieve a speed-adaptive control, in this work, we optimized control
parameters to match both undisturbed and disturbed gait in order to
obtain robust control parameters. We used the dataset provided by
Moore et al. [2015], which provides gait data for undisturbed walking
and walking with treadmill velocity disturbances.

For the neuromuscular control, we used the black-box covariance
matrix adaptation evolution strategy (CMA-ES) [Hansen, 2006] to ob-
tain parameters that can reproduce the behavior of each subject in the
gait dataset. We optimized the parameters listed in table 7.1 so the
model’s output torques match those in the gait dataset. Specifically,
we minimized the following cost function:

G = argminG (th � tnm)T (th � tnm) + axT
nmxnm (7.1)

where tnm and xnm) are the torques and muscle activations respec-
tively generated by the neuromuscular model given the human joint
angle trajectories and model parameters G. a = 0.01 is a small con-
stant we use to help regularize the solutions and prevent muscle
stimulations from saturating. Figure 7.1 shows an example of the fit
achieved to one subject’s joint moments.
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Figure 7.1: Example of fit to
subject data achieved by neuro-
muscular model.
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The impedance stance control strategy we implemented is simi-
lar to those reviewed in section 2.2.2. We paired this stance control
strategy with the same minimum jerk swing control as we used with
neuromuscular control (section 4.6). Figure 7.2 shows the state ma-
chine for the implemented impedance stance/minimum-jerk swing
control. In each stance phase, we use a linear spring-damper relation-
ship between the output torque of a joint and the joint angle/velocity
(eq. (2.4)).
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Swing
minimum jerk 

trajectories

Knee angle
crosses threshold
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Figure 7.2: Finite state machine
used for impedance control
scheme. In each state the con-
trol employs linear impedance
functions that determine the
behavior of the ankle and knee
joints. At toe-off, the controller
generates minimum-jerk trajec-
tories for the knee and ankle to
follow during swing.

To generate parameters for impedance control, we followed a
two-step procedure: In the first step, we identified appropriate joint
angle thresholds that define the impedance controller’s finite state
machine transition rules. In the impedance controller, the transition
from phase 1 to phase 2 of stance is based on the knee angle cross-
ing a threshold. We specified this threshold such that 95% of steps
in a subject’s gait data pass from phase 1 to phase 2. As we used
gait data with disturbances, this procedure automatically sets the
threshold such that it allows for a large degree of gait variation. Next,
we identified the ankle angle threshold that defines the transition
between stance phases 2 and 3. Again, we set this threshold such that
95% of the steps that made it through the first transition successfully
complete the second transition as well. We set the thresholds so that
95% of steps pass through, instead of 100% of steps, to ignore outlier
steps.

Once we identified the joint angle thresholds that define state
transitions, we next fitted the impedance parameters within each
phase. In each phase, the torque output of the impedance control for
a particular joint is

timp = �k (q � q0)� bq̇ (7.2)

=
h
�q �q̇ 1

i
2

64
k
b

kq0

3

75 (7.3)

= Q~k, (7.4)

where Q is a matrix of the subject’s joint angles and velocities and
~k is a vector of the impedance parameters. Therefore, the squared
error between the subject’s joint torque th and the impedance control
model is

et =
�
timp � th

�T �
timp � th

�
(7.5)

=~kTQTQ~k� 2tT
h Q~k + tT

h th. (7.6)

To calculate the impedance parameters for each phase we minimized
the squared error subject to the constraints k > 0 and b > 0, which
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ensures that the resulting impedance models are stable. Finally, to ob-
tain model parameters that are robust to outlier steps in the dataset,
we utilized the Random sample consensus (RANSAC) procedure,
which iteratively solves the above optimization on randomly sampled
subsets of the data in order to classify outliers and fit to inliers only
[Fischler and Bolles, 1981].

Figure 7.3 shows an example of the impedance control model
optimized to match one subject’s gait data. In this figure, the color
of the lines indicates the phase of gait. We see that the majority of
steps fit the subject’s joint moments (grey) well. However, there are a
few steps for which the color of the line, and thus the phase does, not
transition properly. Consequently, the resulting torque diverges from
the human data. This is expected as the phase transition angles were
selected such that 95% of steps pass through each phase transition.

7.2.2 Iterative Learning

In section 6.6, in order to compensate for kinematic differences be-
tween the joint angles in the gait dataset and the joint angles of the
prosthesis, we applied hand-tuned offsets to the measured prosthesis
joint angles before calculating the neuromuscular model torques
(eq. (6.15)). These offsets helped ensure the prosthesis achieved com-
fortable levels of ankle dorsiflexion and prevented knee overextension
(or flexion) during stance. In this experiment, in order to reduce the
potential for bias induced by hand tuning, we take a more systematic,
iterative learning approach to tuning these offsets.

During the iterative learning procedure, each subject walked
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with each parameter set for both the neuromuscular and impedance
controllers. The knee and ankle angle trajectories during stance were
recorded and after each step, the following update rules were applied
to the knee and ankle joint offsets

qoffset
knee  qoffset

knee + klrn

⇣
qext

knee � q
ext,tgt
knee

⌘ ⇣
qflex

knee < qflex,max
knee OR qext

knee > q
ext,tgt
knee

⌘
(7.7)

qoffset
ankle  qoffset

ankle + klrn

⇣
qflex

ankle � q
flex,tgt
ankle

⌘
, (7.8)

where klrn = 0.05 controls the learning rate, qext
knee and q

ext,tgt
knee = 0� are

the measured and target knee extension in mid-stance respectively
and qflex

ankle and q
flex,tgt
ankle = 12� are the measured and target ankle

dorsiflexion in mid-stance respectively. The conditional terms in
the knee iterative learning rule prevent the knee offset angle from
inducing more knee flexion if the knee flexion in early stance, qflex

knee,
crosses a threshold qflex,max

knee = 10�.

7.2.3 Treadmill Disturbance

In our experiment we probed the robustness of the impedance and
neuromuscular prosthesis controllers. To this end, we disturbed
gait using treadmill velocity disturbances similar to those in the
gait dataset we used to generate parameters [Moore et al., 2015].
During the disturbed walking conditions, the treadmill velocity was
generated as follows: First, random accelerations were sampled from
a zero-mean Gaussian distribution with variance 35 m2/s4. These
accelerations were saturated to the range, [�15, 15] m/s2. Next, the
acceleration was integrated to obtain a velocity signal, and the long-
term drift as removed by a 2nd order high-pass filter with a passband
edge frequency of 0.5 hz. Finally, a constant offset of 0.8 m/s was
applied to the velocity signal, which was then saturated to the range
[0, 3.6] m/s.

7.2.4 Experimental Protocol

We evaluated the robustness, user ratings, and causes for falls of
the neuromuscular and impedance controllers in an experiment
with ten able-bodied subjects wearing the prosthesis via an adaptor.
All subjects provided informed consent to IRB-approved protocols.
Subjects participated in the following six-day procedure:

Day 1: Practice Session Subjects practiced walking on the prosthe-
sis until they could achieve consistent gait without the use of
handrails. Subjects who could not achieve hands-free walking by
the end of the two-hour practice session did not continue with the
experiment.
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Day 2: Practice Session On the second day, subjects continued to prac-
tice walking on the prosthesis without the use of handrails. In
addition, on this day subjects practiced walking with the distur-
bance described in section 7.2.3. This session lasted for 2 hours.

Day 3: Iterative Learning Subjects walked with each of the nine param-
eter sets for each controller while the iterative learning procedure
(section 7.2.2) tuned the joint angle offsets.

Day 4: Dueling Bandits Optimization We performed the dueling ban-
dits optimization procedure (section 6.6) to find each subject’s
preferred parameters with both controllers. The order in which we
optimized controllers was chosen randomly.

Day 5: Disturbance Experiment - Practice We performed a practice
session for the full disturbance experiment. First, subjects walked
without the prosthesis at 0.8 m/s for 2 minutes without distur-
bances and then 2 minutes with the treadmill velocity distur-
bance enabled. After completing these no-prosthesis trials, sub-
jects donned the prosthesis and tested the neuromuscular and
impedance controllers in five rounds of trials that consisted of
three trials each. In each trial, subjects walked without distur-
bances for 1 minute and with disturbances for 1 minute. In each
round of trials, the subjects tested their preferred neuromuscular
and impedance control parameters along with a set of suboptimal
parameters for one controller type. Odd numbered subjects tested
a suboptimal neuromuscular parameter set, while even numbered
subjects tested a suboptimal impedance parameter set. For the
suboptimal parameter set, we chose the parameter set that ranked
7th out of 9 in terms of cumulative Copeland score (defined in
section 6.6.1) at the end of the dueling bandits tuning procedure.

Day 6: Disturbance Experiment - Data Collection The procedure for
this day was identical to that of day 5. During these trials, a Vicon
motion capture system captured the motion of the legs. Addition-
ally, subjects wore an IMU that measured the roll and pitch of the
torso during walking. During trials, we recorded the number of
falls (measured as the number of times subjects needed to use the
handrails or the ceiling-mounted hardness to recover balance) and
the user ratings for both the undisturbed and disturbed conditions
of each trial.

We evaluated the robustness of the two control strategies primar-
ily by looking at the number of falls experienced by each subject
in the no disturbance and disturbance cases. As a baseline, we also
compared to the no prosthesis case. As secondary measures of gait
robustness, we also measured the variability of the torso pitch and
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Figure 7.4: Average user rat-
ings across all trials in both
the undisturbed and disturbed
walking conditions when walk-
ing without the prosthesis (No
Pros) and with the Neuromus-
cular (NM) prosthesis control
and impedance (IMP) prosthe-
sis control. Grey bars show the
mean across subjects. Statistical
significance assessed by paired
t-tests. ⇤: p < 0.05, ⇤⇤: p < 0.01,
⇤ ⇤ ⇤: p < 0.001.

roll angles. The variability is measured by subtracting the median
torso angle trajectory over the strides in a condition from the cor-
responding torso angle trajectories. Then the interquartile range
(IQR) of the median subtracted trajectories is used as the measure of
variability.

7.3 Results

First, fig. 7.4 shows the user ratings of the different conditions. We
mandated that users rate the No Prosthesis/No Disturbance case
10/10 so that other conditions could be rated relative to this case. We
see that in both the no disturbance and disturbance cases, neuromus-
cular control was rated significantly more preferably than impedance
control. Neither control could match the ratings given to the no pros-
thesis case. Introduction of the disturbance caused a significant drop
in user rating for all controllers.

Next, fig. 7.5 shows the number of falls in each condition. Here we

No Pros NM IMP No Pros NM IMP
0

2

4

6

N
um

be
ro

fF
al
ls

*
*

**

No Disturbance With Disturbance

Figure 7.5: Total number of
falls across all trials in both
the undisturbed and disturbed
walking conditions when walk-
ing without the prosthesis (No
Pros) and with the Neuromus-
cular (NM) prosthesis control
and impedance (IMP) prosthe-
sis control. Grey bars show the
median number of falls across
all subjects. Statistical signif-
icance assessed by Wilcoxon
signed-rank test. ⇤: p < 0.05,
⇤⇤: p < 0.01.
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Figure 7.6: Torso pitch angle
variation. Angle variation cal-
culated as the interquartile
range of torso angles after the
median torso angle trajectory
over the strides in a trial is sub-
tracted out. For the prosthesis
trials, we report the average
variation across the five trials
for each condition. Grey bars
show the mean across subjects.
Statistical significance assessed
by paired t-tests. ⇤: p < 0.05,
⇤ ⇤ ⇤: p < 0.001.
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Figure 7.7: Torso roll angle
variation. Angle variation calcu-
lated as the interquartile range
of torso angles after the median
torso angle trajectory over the
strides in a trial is subtracted
out. For the prosthesis trials,
we report the average variation
across the five trials for each
condition. Grey bars show the
mean across subjects. Statistical
significance assessed by paired
t-tests.⇤ ⇤ ⇤: p < 0.001.

see that there were significant differences in the median number of
falls between impedance control and no prosthesis walking in the no
disturbance case and both impedance and neuromuscular walking in
the disturbance case. No significant differences were found directly
between the neuromuscular and impedance controllers.

Figures 7.6 and 7.7 show the torso pitch and roll angle variability
respectively. We see significant differences between the no prosthesis
and with prosthesis cases as well as the no disturbance and with
disturbance cases. There is also a significant increase in torso pitch
variability with the impedance control compared to the neuromuscu-
lar control in the disturbance case.

Finally, table 7.2 shows a tally of the reasons for the observed
falls with each controller type when using preferred parameters. We
manually determined the reason for each fall by analyzing video
recordings, motion capture data, and logged prosthesis data. The
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Fall Types Neuromuscular Impedance

Fall Forward 1 0
Fall Backward 6 4
Fall Left 1 0
Fall Right 0 3
Missed Stance / Swing Transition 3 0
Missed Stance 2 / Stance 3 Transition 0 7
Knee Collapse 0 15
Swing Trip 4 12

Table 7.2: Tally of observed rea-
sons for falls across all subjects
and across both the undis-
turbed and disturbed walking
conditions. Falls were manually
classified based on video and
logged prosthesis data. An
individual fall can be assigned
to more than one reason.

first four categories refer to general losses of balance resulting in a
fall in the four cardinal directions. Backward falls generally resulted
from the treadmill suddenly stopping when the prosthesis stance leg
was still in front of the body, causing a loss of balance backward. The
falls forward, left, and right were generally more ambiguous in their
cause, but may be due to improper leg placement.

The missed stance/swing transitions in the neuromuscular control
were caused when subjects did not allow the leg angle to cross the
90� threshold set in stance/swing state machine (compare fig. 4.9).
The missed stance 2/stance 3 transitions occurred with impedance
control if the user did not dorsiflex the ankle sufficiently to trig-
ger the transition. This could cause the knee to produce an exten-
sion torque in late stance, making it difficult to enter the swing
phase (compare fig. 7.3). As shown in fig. 7.8, the rate at which the
impedance controller failed to transition through all three stance
phases significantly increased with the introduction of disturbances.
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Figure 7.8: Fraction of steps
for which impedance control
successfully transitions through
all three stance phases. Distur-
bances significantly decrease
the transition success rate. Grey
bars show the mean success
rate across all users. Statistical
significance assessed by paired
t-test. ⇤ ⇤ ⇤: p < 0.001.

In contrast, the knee collapse fall type was triggered in impedance
control if the user dorsiflexed the ankle too early causing a prema-
ture switch to the third phase of stance. In this phase, knee torque
typically trends towards zero to allow for passive flexion of the knee
heading into swing. However, in the case of a premature switch to
the push-off phase, these near-zero knee torques can cause the knee
to suddenly collapse under the user’s weight.

The last cause of falls, trips during swing, occurred when using
both controllers, but 3x more often with impedance control than
with neuromuscular control. Many of the swing trips for impedance
control were also preceded by a missed transition between the second
and third phases of stance. Others occurred when kinematics were
drastically changed by the disturbance. For example, several swing
trips occurred after a sudden acceleration of the treadmill caused
the stance step length to dramatically increase, thereby altering
kinematics at toe-off and in swing, and leading to the toe hitting the
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Figure 7.9: Comparison of user
scores of optimal versus subop-
timal parameters sets for the
neuromuscular and impedance
control strategies. Grey bars
show the mean user rating
across subjects. Statistical signif-
icance assessed by paired t-tests.
⇤⇤: p < 0.01.

ground mid-swing.
Finally, we look at the effect of using suboptimal controllers on

user ratings and falls. Figure 7.10 shows the median ratings of each
the preferred and suboptimal parameters for each controller. For
neuromuscular control, we see no significant difference between
the preferred controller from day 4 and the suboptimal controllers.
In fact for the neuromuscular control with disturbances, 4 out of 5
users slightly preferred the suboptimal control from day 5. On the
whole, choosing a suboptimal set of parameters seemed to have a
larger effect on impedance control with 4 out of 5 subjects preferring
the optimal to suboptimal parameters without disturbances and all
five subjects preferring the optimal impedance parameters to the
suboptimal parameters in the disturbed case.

Figure 7.10 shows the median number of falls garnered by optimal
and suboptimal parameters. In the disturbance case, we see an in-
crease in the median number of falls with the suboptimal parameter
sets over the preferred parameter sets. However, this difference was
not significant.
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Figure 7.10: Comparison of
number of falls of optimal
versus suboptimal parameters
sets for the neuromuscular and
impedance control strategies.
Grey bars show the median
number of falls across subjects.
Statistical significance assessed
by Wilcoxon signed-rank test.
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7.4 Discussion

In this work, we sought to objectively compare the robustness,
user preferences, and reasons for falls of the neuromuscular and
impedance control strategies for powered, robotic knee and ankle
prostheses. Overall, we found that users rated the neuromuscular
control more highly than impedance control and using impedance
control led to significantly more falls compared to walking without
a prosthesis. While we did observe more falls with the impedance
control across all subjects than with the neuromuscular controller,
when considering the question, “Did individual users fall more often
with impedance control than with neuromuscular control?”, these
differences were not significant. The only measure of gait stability
in which a significant difference between the neuromuscular and
impedance controllers was measured was the torso pitch variability,
which neuromuscular control significantly reduced in the disturbance
case compared to impedance control.

Categorizing the falls by their type gives more insight into differ-
ences between the controllers. There were reasons for falls with each
controller that did not exist for the other. For NM control, missed
transitions between stance and swing caused three falls. While these
falls could be directly attributed to the leg-angle threshold in the
high-level state machine that governs the stance/swing state tran-
sition (fig. 4.9), that these falls only occurred with neuromuscular
control suggests a causal difference in the two strategies. One pos-
sible reason that these falls did not occur with impedance control
is that the discrete transition between the second and third stance
phases generates a sudden increase in the ankle plantarflexion torque.
When walking with impedance control, subjects may have waited
to feel this transition before beginning swing. In contrast, neuro-
muscular control gives no such obvious transition and thus users
may attempt to enter swing too early. However, with better sensing
of ground reaction forces, the threshold on leg angle would not be
necessary, and thus this problem would be resolved.

While impedance control’s discrete phase transitions may have
helped users avoid missing the stance to swing transition, it directly
caused two other failure modes. The first, missed transitions between
the second and third phases of stance, occurred if the user did not
dorsiflex the ankle enough to trigger the transition. This failure could
lead to trips during swing or a later loss of balance. The second, the
knee collapse failure mode, happened if the impedance controller
switched to the third phase of stance too early, which could cause a
sudden reduction in knee extension torque. The fact that individual
subjects fell for both of these reasons suggests that we cannot fix
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these failure modes by simply tuning the ankle angle threshold that
governs the phase transition. Decreasing the threshold to prevent
missed transitions would likely cause more knee collapses. Con-
versely, increasing the threshold would likely cause more missed
transitions.

Finally, users suffered from trips during swing when using both
stance control strategies, which were both paired with the same
minimum-jerk trajectory generation swing control strategy. However,
these trips occurred three times more frequently with impedance
stance control than with neuromuscular stance control. Many of
the trips that occurred with impedance control were preceded by
a missed transition between the second and third stance phases.
Neuromuscular control, in contrast, is smooth throughout stance
with no discrete transitions and thus may transition to swing more
consistently and cause fewer swing trips. Nevertheless, even with its
smoother stance phase, subjects still tripped during swing several
times with the Neuromuscular control. Therefore, in sections 8.5
to 8.8 we seek to explicitly minimize the risk of tripping by using
estimates of the current and future hip height and orientation to
plan knee and ankle swing trajectories that avoid premature ground
contact.

The smooth stance phase of the neuromuscular model, which
eliminates failure modes such as knee collapses and missed stance
phase transitions and may help reduce swing trips, comes at the
cost of dramatically increased model complexity. The implemented
impedance controller has 20 parameters: 3 stance phases ⇥ 2 joints
⇥ 3 parameters per joint per phase + 2 transition parameters. In
contrast, the implemented neuromuscular control is more than 4
times as complex as it has 80 parameters: 54 defining muscle-specific
mechanical properties, 9 defining shared muscle properties, and 17
defining the neural reflexes.

Of these 80, we chose to only optimize 18 when generating pa-
rameter the sets in order to avoid local minima and to complete the
optimization in a reasonable amount of time. The choice of which 18
parameters to choose was based on trial and error and prior experi-
ence with the model. In the clinical setting, the lack of transparency
about the function of and interdependencies between the 80 pa-
rameters may make practical application of neuromuscular control
difficult. Therefore, in order to achieve the potential benefits of a
smooth controller that does not have discrete stance phases, while
avoiding excessive complexity, in chapter 9, we explore an alternative
approach to stance control. This approach relies on a continuous
estimate of phase and easily interpretable models for the output
behavior as a function of this phase estimate.
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A surprising result of this experiment is the lack of substantial
differences between suboptimal and optimal controllers. Only in the
case of impedance control under disturbances did subjects unani-
mously restate their preference for the control parameter sets they
had preferred on the optimization day. The lack of a clear differences
between the neuromuscular parameter sets could be the result of the
neuromuscular model generally being less sensitive to its parame-
ters than the impedance controller. For example, large differences
in behavior between impedance control parameter sets can result
if one set of parameters causes many missed phase transitions and
another parameter set does not. Another reason for the lack of a clear
difference in user ratings could be the difference in the query. During
the optimization procedure, subjects were asked to directly prefer
one parameter set to other after short ⇠ 10 sec bouts of walking with
each parameter set. In contrast, on the data collection day, param-
eter sets were independently rated on a 1-10 scale after 2 minutes
of walking. In future work, we should check for consistency of the
preferred parameters by performing the dueling bandits optimization
procedure on multiple days in order to see if the users’ preferences
are consistent from day to day.

Our simulated results presented in chapter 5 predicted a larger
difference between controllers that was not borne out by this experi-
ment. In future work, the motion capture data collected during these
trials should be used to improve the neuromuscular model so that
researchers can perform experiments investigating prosthetic device
performance with a higher likelihood that those results translate to
the real world. Reliable predictive models would vastly reduce the
time it takes to iterate prosthesis controller designs.

This study has several limitations that should be addressed in
future work. First, we only performed the study with ten subjects,
which made establishing the statistical significance of the results
difficult. Limiting the number of subjects was necessary due to the
substantial practice time required for subjects to achieve reliable
handrail-free walking with the prosthesis. Furthermore, there were
several subjects who could not proceed past the first day of the ex-
perimental procedure as they could not manage to walk without
the handrails or experienced excessive discomfort in the prosthesis
adaptor. While researchers should eventually perform adequately
powered studies comparing prosthesis controllers in the future, at
this point in the development of these controllers, there are still
significant issues in the prosthesis control that can be discovered
and addressed with small n studies. In the case of a safety critical
device like a prosthesis, all causes of falls should be systematically
addressed even if they are rare and their frequency cannot be estab-



108 design and evaluation of robust control methods for robotic transfemoral
prostheses

lished to a high degree of confidence.
Second, we tested very specific implementations of the impedance

and neuromuscular controllers. Specifically, our impedance con-
trol implementation utilized linear impedance functions, as in Sup
et al. [2009], and phase transition rules based on joint angle thresh-
olds, as in Lawson et al. [2014]. However, other variations on the
impedance control have been suggested as well, including those that
use nonlinear impedance functions [Sup et al., 2007, Shultz et al.,
2016] and those using ground reaction signals for the transitions be-
tween phases [Sup et al., 2009]. The neuromuscular control structure
we used was described in section 4.6 and based on Song and Geyer
[2015]. This structure encodes a specific set of reflexes. However,
there are many other feedback pathways that could be incorporated
into this model as well that may improve performance. Additional
experiments will be needed to compare amongst variations in these
control strategies.

Finally, in this experiment, users needed to pick parameters out
of a pre-generated discrete set of possibilities. It is possible and
likely that there are parameters for each control that are more robust,
comfortable, and efficient. However, finding these parameters by solv-
ing a high dimensional optimization problem using real prosthesis
feedback remains an unsolved problem for three reasons: First, opti-
mizations suffer from the curse of dimensionality. Recently, Wen et al.
[2019] optimized 12 parameters of a robotic knee/passive ankle pros-
thesis, a significant improvement from prior approaches. However,
this approach is still insufficient for impedance control of both the
knee and ankle joints, which requires 20 parameters. In our work, the
parameter generation approach tackles the dimensionality through a
large amount of offline computation.

Second, it is unclear what objective function to use in the opti-
mization. For example, Wen et al. [2019] target a desired knee angle
trajectory. However, perfect tracking of this trajectory may come at
the expense of robustness or comfort. In this experiment, we allowed
users to specify their own objective through their preferences. In
future work, similar preference-based approaches could be used to
identify an objective function, made up of weighted gait features, that
aligns with user preferences. An optimization approach, such as Wen
et al. [2019], could then be used to target this objective function if it
can be scaled to the required number of dimensions.

The final challenge for performing the full optimization is that
many important features we would use to quantify gait are difficult
to measure. For example, to measure gait robustness using treadmill
velocity disturbances, we required many minutes of walking under
disturbances just to observe a few falls. Metabolic energy consump-
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tion typically takes several minutes to observe, even when using a
predictive model of its steady-state value [Zhang et al., 2017]. Other
gait features such as comfort are not directly quantifiable. Identifi-
cation of quickly measurable stand-ins for these metrics should be a
focus of future research.





8
Reactive Swing Control for Trip Avoidance

Material in this section based on Gordon et al. [2019]1 and Thatte et al. 1 Max Gordon, Nitish Thatte, and
Hartmut Geyer. Online learning for
proactive obstacle avoidance with
powered transfemoral prostheses. In
Robotics and Automation (ICRA), 2019
IEEE International Conference on. IEEE,
2019

[2019b]2

2 Nitish Thatte, Nandagopal Srini-
vasan, and Hartmut Geyer. Real-time
reactive trip avoidance for powered
transfemoral prostheses. In Proceedings of
Robotics: Science and Systems, 2019b

The experimental results from chapter 7, in which we compared
neuromuscular and impedance control, revealed that trips during
swing were one of the most common causes for falls (table 7.2). In
this chapter, we explore two potential methods for avoiding swing
trips. The first focuses on avoidance of obstacles during gait through
online learning of classifiers that can recognize the user’s obstacle
avoidance intent. In the second, we directly address the trips dur-
ing normal walking that were observed in chapter 7 by planning
swing trajectories that use an estimate of the user’s hip height and
orientation to avoid premature ground contact.

8.1 Classification Approach Introduction

Avoiding obstacles on the ground is a necessity for maintaining
safety while performing a variety of locomotion tasks. This behavior
requires anticipation of an obstacle and active leg control strategies to
avoid it [Patla and Prentice, 1995]. Transfemoral amputees, however,
have a compromised ability to negotiate obstacles, as shown in
Figure 8.1, as current prosthesis technology relies on mechanically
passive knees that necessitate significant compensation at the hip
in order to replicate able-bodied trip recovery strategies [Shirota
et al., 2015]. Compromised ability to avoid and recover from trips
may contribute to a large number of falls that leg amputees suffer.
For instance, 58% of unilateral amputees reported a fall within a
year [Kulkarni et al., 1996]. Moreover, the fear of falling can cause
amputees to avoid activity, leading to further deterioration of their
physical condition [Miller et al., 2001].

The increasing availability of powered prostheses in research labs
provides the opportunity to study active obstacle avoidance strategies
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a) w/o Obstacle Avoidance Controller

b) w/ Obstacle Avoidance Controller

Figure 8.1: a) Utilizing mini-
mum jerk trajectories during
swing does not allow for ap-
propriate adaptation of swing
trajectories to enable obstacle
avoidance. b) Our adaptive
system learns online to detect
the presence of an obstacle from
the amputee’s late stance/early
swing movements. Once de-
tected, the controller modifies
the trajectories of the knee
and ankle to achieve improved
obstacle clearance.

in prosthetics, although so far only a limited number of studies exist
on this topic. These studies focus on detecting and classifying the
correct response strategy after the amputee has tripped. For example,
Lawson et al. [2010] developed a classifier that uses fast Fourier
transform and the root mean square of accelerometer data as features
to classify stumbles and recovery strategies, respectively. Zhang et al.
[2011a] found that adding EMG signals from the residual limb to
accelerometer data can help reduce false positives for stumble and
strategy detection. Finally, Shirota et al. [2014] identified the optimal
sliding window lengths and increments for feature calculation for
trip detection and strategy selection classifiers. While detecting
and classifying trip recovery strategies after their occurrence is
a necessary step towards improving gait robustness, it does not
provide a proactive prosthesis control strategy that prevents obstacle
encounters in the first place.

Another major drawback of the previous studies is that they train
and test classifiers offline. However, a deployed trip classifier needs
to function online and deal with the temporal adaptation of the
learner and amputee. The adaptation is required as the obstacle
avoidance behavior triggered by a trip classifier alters the amputee’s
movements and, therefore, the data used to train the classifier. Con-
sequently, trip classifiers trained offline may be ineffective due to a
mismatch of training and testing data. In section 2.3 we reviewed
high-level classifiers that detect transitions between gait modes such
as standing, level ground walking, and stair/ramp ascent/descent.
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In that setting, classification approaches often run into a similar
problem of training and testing data mismatch. Spanias et al. [2018]
provides a method of rectifying this data distribution mismatch.

Here we present the first pilot study that combines online learn-
ing and proactive control of a powered transfemoral prosthesis to
implement obstacle avoidance in amputee locomotion. The obstacle
avoidance system uses early-swing measurements of the residual
limb angle, angular velocity, and linear acceleration to recognize in-
process obstacle avoidance attempts. To address the online learning
aspect of this system, we adapted the method proposed by Spanias
et al. [2018] for online learning of gait mode classification. We also
changed the existing swing leg behavior of the prosthesis to facilitate
obstacle avoidance. This change includes a regression to predict the
appropriate degree of knee and ankle flexion given the user’s pre-
vious obstacle response motions. Finally, we evaluated the system
behavior in trials with both non-amputee and amputee subjects.

8.2 Classification Approach Methods

8.2.1 Forward-Backward Classifier

In order to learn to classify trips online with minimal hand-labeling
of data, we rely primarily on the forward-backward classifier ap-
proach first proposed by Spanias et al. [2018] for the purpose of
classifying different modes of gait such as level ground walking,
standing, and stair climbing. In their work, a forward classifier predicts
the next step’s gait mode using data in a window shortly before the
transition. In parallel, a backward classifier labels completed steps with
their correct gait mode in hindsight. Because the backward classi-
fier has access to features from the completed step, it can achieve
accurate labels with a small amount of hand-annotated data. Once
trained, the backward classifier can provide labels for training the
forward classifier, obviating the need for further hand-labeling of
steps.

In our work, the forward classifier predicts, shortly after toe-off, if
the upcoming swing will require obstacle avoidance or not. For this
purpose, we use a linear support vector machine and features of the
residual limb motion in the last 210 ms of stance and first 90 ms of the
swing phase. Because user behavior changes over time in response
to changes in prosthesis obstacle avoidance behavior, we retrain the
forward support vector machine every ten steps using labels from the
backward classifier.

The backward classifier is another linear support vector machine,
trained once for each user, which uses features extracted from the
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Forward Classifier

Backward 
Classifier

Step Labels

Early Swing Features

Full Swing Features

Obstacle Prediction
Figure 8.2: Forward-Backward
Classifier Overview. The back-
ward classifier uses features
from the entire swing to pro-
vide training class labels to a
forward classifier. The forward
classifier uses features from late
stance and early swing in order
to predict if an upcoming swing
will be an obstacle avoidance
attempt.

entire swing phase to label a step as an avoidance attempt after
the fact. To train the backward classifier we hand label obstacle
avoidance attempts and normal steps for roughly ten obstacles.
Figure 8.2 provides an overview of this system.

8.2.2 Target Knee Angle Regression

A prosthesis user will not always encounter obstacles of the same
height. As the obstacle avoidance response can be disruptive to
the user, it is desirable to give the user control over the magnitude
of the prosthesis response. We seek to achieve this functionality
by using the normalized backward classifier score as a metric for
the difficulty of avoiding an obstacle. We then implement a simple
linear feedback law that assigns higher target flexion knee angles to
obstacle avoidance attempts that are more difficult according to this
metric. Figure 8.3 outlines this feedback mechanism, which has the
form

q
tgt
n+1 = q

tgt
n � kdecay(q

tgt
n � qmin) + kscorex̂, (8.1)

x̂ =
x � x10th percentile

x90th percentile � x10th percentile
, (8.2)

where qtgt is the current target angle for a given set of features, n is
the current time step, kdecay is a gain that prevents continual target
angle growth by decaying target angles towards qmin, and kscore is a
gain on the normalized class score, x̂. The system shifts class scores,
x, so that scores below the 10th percentile of tripped step scores result
in a reduction of the target knee angle. Furthermore, the system
normalizes the scores by x90th percentile � x10th percentile so that the gain
kscore has a predictable effect across subjects whose score ranges vary.

The system fits the target knee angles with a linear support vector
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Figure 8.3: Knee Angle Re-
gression Feedback. In order to
enable volitional control of the
knee and ankle flexion angles to
allow users to achieve greater
flexion angles for larger obsta-
cles, we implement a feedback
system that uses the backward
classifier class score to quantify
obstacle difficulty. After each
step, the system increases the
desired target angle for that
step’s forward features propor-
tionally to the normalized back
classifier score. We also decay
the current desired target angle
for those features to prevent
the continual growth of the
target angle. The regression is
retrained every ten avoidance
attempts.

regression. Every time the trip avoidance triggers, it appends an
additional target angle, specified by eq. (8.1), to a training data set.
The system retrains the regression using this data set every ten trip-
avoidance steps.

8.2.3 Feature Extraction

For the forward and backward classifiers, as well as the target knee
angle regression, we use features of the thigh angle, angular velocity,
and linear accelerations in a time window. Specifically, we use the
mean, standard deviation, minimum value, and maximum value
of each signal. For forward classification and regression, the time
window begins 210 ms before toe-off and ends 90 ms after toe-off,
while for the backward classification we use a window consisting of
the entire swing phase between toe-off and heel strike.

8.2.4 Trajectory Planning

To generate the knee and ankle motions for unperturbed swing,
we use the minimum jerk swing control outlined in section 4.6 and
first proposed by Lenzi et al. [2014b]. This swing control scheme
generates and follows human-like trajectories for the knee and ankle
joints that start at the toe-off angle, angular velocity, and angular
acceleration of each joint, go to target flexion states, and then extend
to desired final angles at the estimated heel strike time. We estimate
the swing period to be 65% of the stance period.
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Figure 8.4: Bang-bang obstacle
avoidance trajectories (yellow)
vs normal minimum jerk trajec-
tories (blue) for the knee and
ankle.

When the forward classifier triggers an obstacle avoidance attempt,
we switch to bang-bang trajectories for the knee and ankle joints.
These trajectories maximize foot clearance while respecting joint
angle, velocity, and acceleration limits. The bang-bang trajectories
achieve desired flexion angles as quickly as possible and then extend
as late as possible such that they achieve extension before the pre-
dicted heel strike time. The trajectory planner uses the target knee
angle regression to determine the appropriate peak angle for the
knee trajectory, while the ankle trajectory’s target flexion angle is a
linear function of the knee’s target angle. The knee trajectory’s peak
flexion angle is constrained to lie within 65 and 90 degrees while the
peak ankle flexion is constrained within 5 and 15 degrees. Examples
showing the minimum jerk swing trajectories and obstacle avoidance
trajectories planned for large and small obstacles are given in fig. 8.4.

8.2.5 Experimental Protocol

We tested the ability of the proposed online learning system to accu-
rately classify trips and normal swings, help subjects avoid tripping
on obstacles, and modulate knee and ankle flexion appropriately for
obstacles of different heights. To evaluate these aspects of system
performance, we conducted experiments with the powered knee and
ankle prosthesis previously described in chapter 3.

Two subjects, one non-amputee with prior experience using this
prosthesis, and one inexperienced amputee subject, performed walk-
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ing trials with the obstacle avoidance system enabled. As subjects
walked, an experimenter placed objects on the treadmill belt in front
of each subject’s prosthetic leg, necessitating an obstacle avoidance
reaction. To obtain a baseline performance level for non-reactive
prosthetic swing control, we also performed obstacle avoidance trials
with the minimum jerk swing trajectories designed for undisturbed
swing. Before the online trials, the backward classifier was trained for
the prosthesis user with 75 steps. The able-bodied subject completed
446 total steps, with 53 box avoidance steps, while the amputee com-
pleted 222 total steps, with 40 box avoidance steps. The amputee
subject performed trials in an ABBA order, where A is minimum jerk
control and B is the reactive control, in order to average out potential
learning effects. The amputee subject also had an additional practice
session the day prior to the box avoidance trials in which he accli-
mated to walking with the powered prosthesis without obstacles.

8.3 Classification Approach Results

8.3.1 Results

Tables 8.1 and 8.2 show the overall classification accuracies, sensitiv-
ities, and specificities for the forward and backward classifiers for
the able-bodied and amputee subjects respectively. The forward and
backward classifiers for both subjects achieve high specificity (the
number of normal steps classified correctly) and accuracy (> 95%).
The sensitivity, the percentage of true trips classified correctly, of
the classifiers for both subjects is substantially lower than the speci-
ficity or accuracy. For the forward classifier, we see that because the
model is trained online, the sensitivity improves from the first half of
the trial to the second half, which explains some of the low overall
sensitivity.

Controller
Classification

Sensitivity Specificity
Accuracy

Forward, 1st Half 96%

?

73%

??

99%
Forward, 2nd Half 99% 93% 99%
Forward Overall 98% 85%

??

99%
Backward 99% 100% 99%

Table 8.1: Classifier perfor-
mance 3, able-bodied steps: 446,
Avoidance attempts: 53

3 ? =) p < 0.05, ?? =) p < 0.01,
??? =) p < 0.001, Chi-squared testImportantly, the ability of the forward classifier to correctly trigger

the bang-bang obstacle avoidance trajectories improves obstacle
avoidance success rates as shown in table 8.3. Both subjects were
able to avoid significantly more obstacles with the obstacle avoidance
controller than with the minimum jerk trajectory controller.

We also compared our online learning approach for obstacle avoid-
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Controller
Classification

Sensitivity Specificity
Accuracy

Forward, 1st Half 95% 80% 98%
Forward, 2nd Half 96% 85% 98%
Forward Overall 95% 83%

?

98%
Backward 98% 90% 99%

Table 8.2: Classifier perfor-
mance, amputee, total steps3:
222, Avoidance attempts: 40

Controller
Able-Bodied Amputee
Success Rate Success Rate

Minimum Jerk 37%

??
? 35%

??
?

Adaptive Bang-Bang 89% 71%

Table 8.3: obstacle avoidance
success rates3

ance to an offline approach similar to that taken by Lawson et al.
[2010], Zhang et al. [2011a], and Shirota et al. [2015]. To do this, we
trained a classifier offline using the first half of the amputee subject’s
bang-bang control data and tested it on the second half of the data.
Table 8.4 shows that the classifier trained offline has trouble general-
izing to the second half of the data, as it performs significantly worse
than the online-trained model in terms of accuracy and sensitivity.

Classifier Classification Accuracy Sensitivity Specificity

Offline 89%

?

39%

??
? 100%

Online 95% 83% 98%

Table 8.4: Online and Offline
Forward Classifier Performance,
Amputee3

Finally, we examined the ability of the knee angle regression to
choose a target knee angle that is appropriate for the object size.
The feedback law proposed in eq. (8.1) assumes we can use the
backward classifier score as a metric of obstacle difficulty. For the
able-bodied subject, this assumption seems warranted, as there is
a strong relationship between the obstacle height and the classifier
score (fig. 8.5a, R2 = 0.50). However, for the amputee subject, who
was less experienced with walking with the powered prosthesis, this
relationship is less clear (fig. 8.5B, R2 = 0.22).

As shown in fig. 8.5c&d, our system is able to ensure that high
classification score steps, associated with high user effort, obtain
larger target flexion angles. This relationship led to noisy volitional
control of the knee flexion angle for the able-bodied subject (fig. 8.5e)
as evidenced by the linear relationship between knee angle and
obstacle height (R2 = 0.31). However, for the amputee subject, there
is no clear relationship between the obstacle height and knee flexion
angle (fig. 8.5f, R2 = 0.10).
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Figure 8.5: Obstacle height vs
backward classifier score for
(a) the able-bodied and (b) am-
putee subjects. The system uses
the backward classifier score as
a metric for obstacle avoidance
difficulty. This score is used
in a feedback loop that forms
the training set for the flexion
target angle regression (c-d).
With this feedback system, the
able-bodied user (e) is able to
achieve a degree of volitional
control over flexion angle as
evidenced by the linear relation-
ship between knee flexion angle
and obstacle height (R2 = 0.31).
However, the amputee (f) was
not able to achieve meaningful
control over the flexion of the
prosthesis (R2 = 0.10), possibly
due to the decreased experience
level of this subject.

8.4 Classification Approach Discussion

We developed an online learning system to help users of powered
transfemoral prostheses avoid obstacles. Our system uses informa-
tion from an inertial measurement unit during the late stance to early
swing period to classify the upcoming swing as either normal or a
trip avoidance attempt. Unlike previous work on obstacle negotia-
tion for transfemoral prostheses [Lawson et al., 2010, Zhang et al.,
2011a, Shirota et al., 2014], our system learns online on an actual
transfemoral prosthesis. We compared the classification performance
of our online system with a hypothetical offline system using online
trials to provide testing and training data for offline analysis. This
comparison showed that the online learning system provided an im-
provement in sensitivity and accuracy to obstacle avoidance attempts.
Both an experienced, able-bodied subject and an inexperienced,
amputee subject were able to improve their obstacle avoidance suc-
cess rates significantly. However, only the experienced, able-bodied
subject was able to achieve some level of volitional control of the
prosthesis flexion as a function of obstacle height.

There are several reasons why the amputee subject may not have
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been able to achieve volitional control of prosthesis flexion. First,
the amputee had far less experience using the prosthesis than the
able-bodied subject. Consequently, even though both subjects were
informed that trying harder to lift the leg over bigger obstacles would
likely lead to greater flexion once the prosthesis learns, it is likely
that only the first subject was able to incorporate and implement
this information. The amputee may have concentrated on more
rudimentary aspects of gait, as evidenced by his use of the handrails
to walk, whereas the able-bodied subject did not need to use the
handrails. Moreover, the amputee’s socket may have provided less
control over the prosthesis than did the intact subject’s able-bodied
adapter (shown in fig. 3.12). Finally, we noted that the relationship
between joint flexion and obstacle height tended to oscillate over the
course of our trials. This may imply that the gains we used for the
target knee angle regression (eq. (8.1)) were too high.

Before settling on the specifics of the obstacle avoidance system
presented here, we also tested other options for its components. For
example, we also evaluated incorporating EMG signals from the non-
prosthetic limb in our obstacle avoidance classifier. Previous research
showing that able-bodied subjects utilize stance leg musculature to
help raise the hip during obstacle avoidance motivated this choice of
EMG placement [Patla and Prentice, 1995]. However, as was found
by Spanias et al. [2018], using EMG data along with mechanical data
in the forward-backward online learning algorithm did not seem to
improve classification accuracy, which is already high. This lack of
improvement may also result from a significant delay in our wireless
EMG sensors (Delsys Trigno). It is possible that a low-latency wired
EMG sensor would be able to improve classification performance or
the performance of the target angle regression.

We also tried using imitation learning techniques to model able-
bodied strategies for stepping over obstacles. Specifically, we em-
ployed maximum margin inverse optimal control [Ratliff et al., 2007]
to learn, offline, cost functions for the knee that explained obstacle
avoidance trajectories. However, when used online, the generated tra-
jectories tended to diverge and produce unexpected results because
the initial toe-off state of the prosthesis did not match those in the
able-bodied data set. For the obstacle avoidance classifier, we correct
this sort of offline-online mismatch via the backward classifier that
provides labels to train the forward classifier online. It is less clear
how to update trajectories in hindsight as we never see the obsta-
cle. For this reason, we used bang-bang trajectories during obstacle
avoidance, which maximize the time the joints remain flexed.

In the future, this issue could be solved by incorporating a laser
distance sensor into the prosthesis. This sensor could enable precise



reactive swing control for trip avoidance 121

measurement of the ground and obstacle shape during the initial
part of swing as the hip moves forward. We could then use this
information to explicitly plan knee and ankle trajectories that will
avoid the obstacle and the floor until the appropriate touchdown
time. In the second half of this chapter, we present an initial step
in this direction in which we incorporate information from a laser
distance sensor to plan swing trajectories that help prevent trips on
flat terrain.

There are several other limitations of the current study we should
address in future work as well. First, we only tested the algorithm
with two subjects. More subjects of varying skill levels are necessary
to determine how applicable the system is to a broader population.
Additionally, a likely reason why the forward classifier’s sensitivity
was relatively low, was that there were many more normal steps
than obstacle avoidance attempts in the training data set. This may
cause the SVM loss function’s minimum to focus more heavily on
classifying normal steps correctly. Deploying this system on a com-
mercial prosthesis, for which trips are rarer, would exacerbate this
issue. Therefore, future development should investigate how to train
a classifier given heavily unbalanced class frequencies.

8.5 Planning Approach Introduction

Lower limb amputees using state of the art commercial prostheses
face a number of gait deficiencies that negatively impact their quality
of life [Gauthier-Gagnon et al., 1999]. Of acute significance among
these deficiencies are the increased risk of falling and the related
injuries, which can lead to amputees avoiding activity out of a fear
falling [Miller et al., 2001]. As falls and their avoidance are linked
to swing leg placement in locomotion, active swing control strate-
gies could help to substantially reduce the risk of falling. However,
current swing controllers of transfemoral prostheses do little to
proactively minimize this risk.

Existing swing phase control approaches for powered prostheses
predominantly seek to reproduce the average swing phase behav-
ior of the human leg. Whether the approach is based on trajectory
planning [Lenzi et al., 2014b], impedance control [Sup et al., 2009], or
phase-based control [Quintero et al., 2016], they all treat the swing
phase motion as an “open loop” problem with respect to trip haz-
ards, as none of the approaches take the location of the heel and
toe of the prosthetic foot with respect to the ground explicitly into
account. Therefore, current swing control strategies neglect a clear
advantage that robotic prostheses can have over their passive coun-
terparts: the ability to sense and act upon environmental information.
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Consequently, as shown in table 7.2, trips during swing may pose a
significant hazard to users of powered prostheses.

In this work, we develop a swing control strategy to reactively
avoid trips with powered transfemoral prostheses that uses visual
information about the environment and an estimate of the prosthesis
configuration. Some previous studies have explored incorporating
visual feedback into the control of leg prostheses. For example, Scan-
daroli et al. [2009] developed a state estimator and controller that
allowed the ankle joint of a prosthesis to conform to the slope of the
ground under the foot. To address the problem of terrain recognition,
Zhang et al. [2011b] developed a classifier using a LIDAR and an
IMU to discriminate between terrains such as flat ground and steps.
More recently, Liu et al. [2016] combined this terrain classifier with
a Bayesian intent classifier (based on [Du et al., 2012]) to develop an
environment-aware locomotion mode recognition system. In addition,
RGBD sensors have been explored as a source of rich environmental
information for legged assistance, including gait recognition [Mas-
salin et al., 2017] and stair detection [Krausz et al., 2015, Duan et al.,
2018]. However, none of these previous studies have implemented
a control strategy that uses environmental information to reactively
govern the motion of a powered prosthesis in real-time.

We present such a real-time reactive control of a powered prosthe-
sis that combines three building blocks. First, we use an extended
Kalman filter (EKF) that fuses measurements from an IMU, a LIDAR,
and encoders on the prosthesis to estimate the current pose of the
prosthetic leg with respect to the ground. Second, we predict likely
future leg trajectories with sparse Gaussian process models learned
online during swing. Finally, we use the leg pose estimate and tra-
jectory predictions in a fast quadratic-program planner to reactively
generate in real time leg joint trajectories that avoid premature toe
and heel contact with the ground. To evaluate the proposed control,
we compare our method for trip avoidance to a standard non-reactive
minimum-jerk trajectory planning approach in a prosthesis walking
experiment designed to elicit trips.

8.6 Planning Approach Methods

The trip avoidance control we propose involves (1) estimating the
position and orientation of the leg (section 8.6.1), (2) predicting
the future hip angles and heights (section 8.6.2), and (3) planning
corresponding knee and ankle trajectories such that the heel and toe
will not contact the ground prematurely (section 8.6.3).
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8.6.1 Extended Kalman Filter for estimating Leg Position/Orientation

To estimate the position and orientation of the leg, we employ an
EKF that fuses information from a LIDAR distance sensor (SICK
OD1000), an IMU (YEI Technologies 3-Space sensor), and encoders on
the prosthesis (Renishaw Resolute, Netzer DS-25). The EKF filters the
nonlinear, discrete-time dynamics given by
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ṗt

3

75 =

2

64
fgyro(wt) 0 0

0 I3⇥3 DtI3⇥3

0 0 I3⇥3

3

75 xt�1

+

2

64
0

1
2 Dt2 I3⇥3

DtI3⇥3

3

75

2

64ROI(qt�1)at �

2

64
0
0
g

3

75

3

75+ wt (8.3)

= f (xt�1, ut) + wt,

where q is the quaternion orientation, ROI and p are the rotation
matrix and position of the IMU in inertial coordinates, w is the an-
gular rate measured by the gyroscope, fgyro integrates the gyroscope
rate to update the orientation, a is the accelerometer measurement,
ut = [wt, at]

T , and Dt is the integration time step (1 ms).
The dynamics are corrupted by process noise wt ⇠ N (0, Qt) due

to the inaccuracy of the IMU’s measurement of the true acceleration
and angular velocity. Consequently, Qt is given by
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where s2
w and s2

a are the gyroscope and accelerometer measurement
variances, respectively.
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Figure 8.6: Kinematic model of
the user and prosthesis used
for state estimation and motion
planning. The model includes
the hip (H), knee (K), ankle
(A), heel (L) and toe points (T).
Additionally, the start (Lid0)
and end (Lid f ) points of the
LIDAR beam (with length `) are
indicated. The IMU is located
at point I. Both the LIDAR
and IMU are mounted to the
thigh portion of the powered
knee-and-ankle prosthesis.

To estimate the pose given our sensor measurements, we follow a
standard EKF procedure [Anderson and Moore, 1979], reviewed here
for completeness. The EKF state estimation process has two steps:
First, we predict the next state distribution by forward-propagating
the mean x̂t�1|t�1 and covariance of the state estimate St�1|t�1 using
the dynamics given by eq. (8.3),

x̂t|t�1 = f (x̂t�1|t�1, ut) (8.5)

St|t�1 = FtSt�1|t�1FT
t + Qt, (8.6)

where Ft = ∂ f /∂x|x̂t�1|t�1
.

Next, we incorporate information from noisy sensor observations
to update the state estimate. To do this, we utilize a observation
model given by zt = h(xt) + vt, where vt ⇠ N (0, R), and the
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following update equations:

Kt = St|t�1HT
t

⇣
HtSt|t�1HT

t + R
⌘�1

(8.7)

x̂t|t = x̂t|t�1 + Kt

⇣
zt � h(x̂t|t�1)

⌘
(8.8)

St|t = (I � KtHt) St|t�1 (8.9)

where zt are the actual sensor measurements and Ht = ∂h/∂x|x̂t�1|t
.

The observations in our EKF formulation use the kinematic model
shown in fig. 8.6. We calibrate this model using ground truth data
from a VICON motion capture system. In our application we incorpo-
rate three observations:

1. The expected acceleration vector points up in the global coordinate
frame,

h1(xt) = {ROI(q)}row 3 (8.10)

z1 = a (8.11)

2. The expected LIDAR measurement given the position of the IMU,

h2(xt) =
n
` :

�
pOLIDf (xt, `)

 
row3 = 0

o
(8.12)

z2 = `meas, (8.13)

where pOLIDf , is the location of the laser beam endpoint repre-
sented in the global coordinate system, ` = k�����!LID0LIDfk is the
modeled laser beam length, and `meas is the actual measured
LIDAR distance.

3. During stance, the toe point coincides with the origin (active
200 ms after stance begins until toe-off)

h3(xt) = pOT(xt, qk, qa) (8.14)

z3 = [0 0 0]T (8.15)

where pOT is the location of the toe in the inertial frame, and qk
and qa are the measured knee and ankle angles.

The measurement noise for these observations is given by
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during stance. In these equations, s2
a is the accelerometer variance,

s2
` is the LIDAR measurement variance, and s2

f is the foot position
variance.

To further improve the EKF’s state estimate, we enforce a number
of constraints using the methods provided by Gupta and Hauser
[2007]. Specifically, we enforce three equality constraints:

1. First, we require that the quaternion has unit norm

1 = q2
1 + q2

2 + q2
3 + q2

4. (8.18)

2. Second, we prevent the yaw component of the orientation q from
drifting. To do this, we convert the q to ZYX Euler angles and
enforce fz = 0,

0 = atan2
⇣

2(q1q4 + q2q3), 1� 2(q2
3 + q2

4)
⌘

. (8.19)

3. Finally, during stance we further constrain the toe’s x and y-
coordinates to 0,

"
0
0

#
= {pOT(xt, qk, qa)}rows 1 and 2. (8.20)

In addition, we use inequality constraints to ensure the toe and heel
do not penetrate the ground,

0  {pOT(xt, qk, qa)}row 3, (8.21)

0  {pOL(xt, qk, qa)}row 3. (8.22)

We enforce these constraints by solving the following quadratic
program after each update step,

x̂proj
t|t = argminx

⇣
x� x̂t|t

⌘T
S�1

t|t

⇣
x� x̂t|t

⌘
, (8.23)

such that

Aeqx = beq, (8.24)

Aineqx = bineq, (8.25)

where Aeq, beq, Aineq, and bineq are derived from linearizing the
equality and inequality constraints.

To identify the appropriate parameters of the Kalman filter, we
collected ground truth training and testing kinematic data using a
Vicon motion capture system and optimized the parameters of the
EKF to minimize the error of the kinematic estimate. The parameters
we optimized were the rotation of the LIDAR with respect to the hip,
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the translation between the LIDAR and the IMU, and sw, sa, s`, and
sf .

Figure 8.7 shows an example of the resulting EKF estimates of
the hip, knee, ankle, heel, and toe positions during swing (blue stick
figure and traces) compared to the ground truth obtained from the
motion capture system (yellow) and an EKF estimate without the
LIDAR sensor information integrated (red). Over the entire test
data set, the root mean squared error of the estimated heel and
toe positions during swing is 18.6 mm for the EKF with LIDAR
information. In contrast, the EKF without LIDAR information has an
error of 46.7 mm. Thus, including the LIDAR sensor data reduces the
error by 60%.

Ground Truth

EKF with Lidar

EKF without Lidar

Figure 8.7: Trajectories of ex-
tended Kalman Filter (EKF)
estimate of the position of
the leg during swing (blue).
Ground truth positions given by
motion capture (yellow). EKF
estimate without LIDAR infor-
mation shown in red. Thick
lines show the leg configuration
at peak toe height during swing.
Dotted lines indicate heel trajec-
tories while dashed lines show
the toe trajectories. Knee and
ankle trajectories given by solid
lines.

8.6.2 Gaussian Process Hip Trajectory Prediction

To predict the future hip angle and height trajectories, we train
sparse Gaussian process models using the FITC approximation
[Snelson and Ghahramani, 2007]. The sparse approximation ensures
the computational complexity at test time is independent of the
training data set size, providing consistent real-time performance.
Throughout the swing phase, the learned hip angle and height
distributions are conditioned on the swing trajectories completed so
far to predict the distribution of the future trajectories for the rest
of the swing (example shown in fig. 8.8). Our algorithm then uses
the means of these conditional distributions in the motion planning
phase (compare section 8.6.3).

For example, to calculate the conditional mean of future hip
angles, we first compute the joint distribution of completed (qc

h) and
future (qf

h) hip angles,

P
⇣

qc
h, qf

h

⌘
= N

�
µfitc, Sfitc + K

�
tjoint, tjoint

��
(8.26)

= N
 "

µc

µf

#
,

"
Sc,c Sc,f
Sf,c Sf,f

#!
, (8.27)

where µfitc and Sfitc are obtained from equation 11 in [Snelson and
Ghahramani, 2007] and K

�
tjoint, tjoint

�
is an additional noise term

given by a rational quadratic kernel [Rasmussen, 2004] that correlates
the predicted angles across time, which results in smooth predicted
trajectories. The mean of the conditional distribution P

⇣
qf

h|q
c
h

⌘
is

then given by

µcond
f = µf + Sf,cS�1

c,c (µc � qc
h) . (8.28)

As the inversion of Sc,c is the most computationally expensive com-
ponent of eq. (8.28), we use at most the last 10 hip angles and heights
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Figure 8.8: Example of hip
angle and height trajectory
predictions 0.15 s into swing.
The prediction algorithm uses
the previous 10 measured hip
angles and heights (sampled at
100 Hz, black dots) along with
the learned joint distributions
of hip angles/heights versus
time (red) to obtain the condi-
tional distributions of future
hip angles/heights (blue). The
planning algorithm uses the
means of the conditional distri-
butions to generate knee and
ankle trajectories. The actual
hip height and angle trajectories
are shown in black.

(sampled at 100 Hz) when calculating the conditional mean (compare
fig. 8.8).

8.6.3 Trajectory Planning Quadratic Program Formulation

To obtain reactive control of the prosthesis swing leg motion, we
plan future swing trajectories with a fast quadratic program (QP)
operating at 100 Hz. The QP includes equality constraints, which
ensure the trajectories progress smoothly from the current position
to the desired end position, and inequality constraints, which avoid
premature ground contact of toe and heel of the prosthesis. Because
in our formulation the QP can only solve for one joint at a time, we
first solve for the ankle trajectory assuming the knee trajectory found
in the previous time step, and then use this updated ankle trajectory
to solve for the new knee trajectory.

Figure 8.9 provides more details of the actions of the trajectory
planner algorithm. For example, at a time of about 150 ms into the
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Figure 8.9: Planning Algorithm Steps: Panels B and D show the generated knee and ankle trajectories
respectively. The planned trajectory (red) lies within the computed bounds (dashed gray). In contrast,
standard minimum jerk trajectories (blue) do not respect the bounds, thereby increasing the tripping haz-
ard. Panels C and E show examples of inverse kinematics (IK) solutions for toe (purple) and heel (yellow)
contact for the knee and ankle joints respectively. We use the IK solutions to generate bounded regions that
the planned trajectory can safely traverse. We consider ground contact constraints for only the first half of
the remaining swing duration after which we only consider joint angle constraints. We use Dijkstra’s algo-
rithm to select regions (green) that allow a path from the start point to the desired final point. Bounded
regions that do not lie on the path are shown in red. Panel A shows the corresponding prosthesis motion.
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swing phase, the algorithm solves

qtoe bnd
k =

n
qk : {pOT(qh, zh, qk, qa)}row 3 = 0

o
(8.29)

qheel bnd
k =

n
qk : {pOL(qh, zh, qk, qa)}row 3 = 0

o
(8.30)

at a set of sample times spanning the remaining swing trajectory
to obtain a planned knee trajectory (red trace in fig. 8.9B). Fig-
ures fig. 8.9C and E show the predicted inverse kinematics (IK)
solutions at characteristic points into the swing for the knee and
ankle respectively, with solutions leading to toe contact shown in pur-
ple and solutions leading to heel contact shown in yellow. For each
contact point, there are typically two solutions, one lower bound, for
which the joint angle cannot cross from above, and one upper bound,
for which the joint angle cannot cross from below.

Often, the valid leg configurations span disjointed regions in
the configuration space (green and red regions in fig. 8.9B and D).
Therefore, the planner next identifies a valid sequence of regions for
the trajectory to traverse in a four-step procedure. First, the planner
identifies critical points along the predicted trajectory at which any
bound activates or deactivates. Second, at each critical point, the
planner sorts the bound angles from largest to smallest and iterates
through them to define regions between successive upper and lower
bounds. Third, the planner defines a graph over the regions with
edge weights equal to the average squared angle minus the volume
of the child region. This cost favors a sequence of regions that are
large and thus safe to travel through and avoids regions that require
excessive joint flexion or extension. Dijkstra’s algorithm is then used
to find a valid sequence of regions that minimizes this cost [Dijkstra,
1959]. Finally, so that the generated trajectories do not get too close
to the identified bounds, a buffer is added to the bounds. This buffer
takes the form

qbuf = q0
buf sin

 
p

t� t0
t f � t0

!
, (8.31)

where q0
buf is either 5 � or -5 � for lower and upper bounds respec-

tively, t is the future swing time, and t0 and t f are the current and
final swing times.

After identifying the bounded regions, the planner generates the
trajectory for a specific joint by solving a quadratic program. The
trajectory of each joint is represented by three, fifth-order polynomial
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splines,

q1(t) = a01 + a11t + · · · + a51t5 = [1 t · · · t5]a1 (8.32)

T0  t < T1 (8.33)
...

q3(t) = a03 + a13t + · · · + a53t5 = [1 t · · · t5]a3 (8.34)

T2  t < TF, (8.35)

and solved for by the following QP,

a⇤ = argmina
1
2

aT(Hq + wH...
q )a, (8.36)

where a = [aT
1 aT

2 aT
3 ]T , Hq and H...

q encode quadratic costs on angle
and jerk respectively, and w is a weight parameter. The solution is
subject to the inequality constraints

q(t)  qmax(t), 8t (8.37)

q(t) � qmin(t), 8t (8.38)

q̇(t)  q̇max, 8t (8.39)

q̇(t) � q̇min, 8t, (8.40)

which ensure the trajectory lies within the identified bounds and
respects velocity limits, and to the equality constraints

q(T0) = q0 (8.41)

q̇(T0) = q̇0 (8.42)

q̈(T0) = q̈0 (8.43)

q(TF) = qF (8.44)

q̇(TF) = 0 (8.45)

q̈(TF) = 0 (8.46)

q1(T1) = q2(T1) (8.47)

q̇1(T1) = q̇2(T1) (8.48)

q̈1(T1) = q̈2(T1) (8.49)
...

which ensure the trajectory starts at the current and terminates at the
desired positions, velocities, and accelerations and that the splines
join together smoothly. If the QP fails to find a trajectory that can
satisfy the constraints, the last found valid trajectory is reused for the
next time step. In addition, at the first iteration, the ankle trajectory
planner uses the output of the minimum jerk trajectory planner to
solve the inverse kinematics for the bounds.
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8.6.4 Experimental Procedure

We tested the ability of the proposed trip avoidance control to reduce
the incidence and severity of trips while walking with the powered
transfemoral prosthesis shown in fig. 8.6 To evaluate the performance
of the system, an able-bodied user walked with the prosthesis while
attempting to elicit trips by lowering the hip in swing. During the
stance phase, the prosthesis randomly decided to either use the
proposed swing control or to use standard minimum jerk trajectories
that do not consider the tripping hazard. The user was not aware of
which controller would be used in the upcoming swing. The user
completed a total of ten one minute walking trials.

We examined several outcomes for evaluating control performance.
First, we examined the distribution of knee angles at the beginning
of stance. Large knee angles at the beginning of stance indicate
premature landing due to toe-strike instead of heel strike. Ideally,
the landing angle is close to the desired final angle of 2 degrees.
Second, we checked the integral of the ground reaction force during
swing. If this quantity is large, it indicates scuffing of the toe on the
ground. Finally, we examined the relationship between the hip and
toe heights during swing. If our controller is working as intended,
the toe height during swing should have a decreased sensitivity to
the hip height.

8.7 Planning Approach Results

Figure 8.10 shows the knee and ankle swing trajectories generated
by the proposed control (blue) and by a standard jerk minimization
control (red) during normal walking and trip elicitation. During
undisturbed walking, the trajectories produced by both control
strategies are similar. However, the proposed control strategy has
a tendency to keep the knee flexed for longer and then extends it
faster towards the end of swing. In addition, in a few steps, the
proposed controller flexed the ankle significantly more than did the
standard minimum jerk control. These trends are exaggerated during
trip elicitation. There are more knee trajectories in which the knee
stays flexed for longer, thereby creating more ground clearance. In
addition, the ankle flexes earlier, which will help to create more foot
clearance when the hip is suddenly lowered in early swing.

We used video and audio recordings of the trials, as well as data
from the prosthesis, to manually classify trips as those swing trajec-
tories that end with toe strike or during which the foot scuffed on
the ground. We find that over the ten minutes of walking, the mini-
mum jerk control produced 109 trips while the proposed approach
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Figure 8.10: Knee and ankle
trajectories produced during
normal walking and while elic-
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trajectories generated by the
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At the ankle joint we see overall
greater variability in the gen-
erated trajectories during the
trip elicitation condition versus
normal walking.

produced 35 trips, reducing the trip rate by 68%.
To further examine the performance of the two control strategies,

we used kernel density estimates of the landing knee flexion angle,
a measure of the propensity for tripping, and integrated ground
reaction force (GRF) during swing, a measure of the propensity for
foot scuffing. Figure 8.11 shows the distributions of the landing angle
of the prosthesis at the end of swing for the proposed swing control
(blue) and for the standard minimum jerk swing control (red) during
the trip elicitation condition. We observe the minimum jerk control
is much more likely to generate a swing trajectory that ends pre-
maturely with a large knee flexion angle, which is indicative of toe
contact instead of heel contact at the end of swing. The distributions
of the integrated GRFs suggests the minimum jerk control produced
a larger percentage of swings with high ground reaction forces than
the proposed control, indicating an increased frequency and severity
of toe scuffing during swing (fig. 8.12).

We can also ask the question, “For steps during which the pros-
thesis used trajectories generated by the proposed control, would
the user have tripped had the prosthesis used a minimum jerk tra-
jectory?” To answer this question, we can use the kinematics model
shown in fig. 8.6 along with ground truth hip height and hip angle
data captured via a motion capture system, to estimate the location
of the toe had the knee and ankle perfectly followed the desired tra-
jectories produced by each control scheme. This analysis predicts that
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the prosthesis would have tripped or scuffed the toe on the ground
during 22% of the steps if we had used the minimum jerk trajectory.
In contrast, it predicts a trip or scuff rate of 5% had we perfectly
followed the trajectories generated by the proposed control.

Finally, fig. 8.13 shows the relationship between the average toe
and hip heights during swing for both control schemes. The toe
height of the prosthesis, when controlled by the proposed control, is
less sensitive to decreases in the hip height than it is when using the
standard minimum jerk control.

8.8 Planning Approach Discussion

We presented initial work toward a real-time reactive control of
powered prostheses to help amputees avoid tripping in the swing
phase of gait. At any time during swing, the proposed control uses
a laser range finder and an inertial measurement unit to estimate
the current pose of the prosthesis, predicts the future hip angle and
height based on trained Gaussian process models, and then plans
new knee and ankle joint trajectories that ensure neither the toe
nor heel contacts the ground prematurely. Our results indicate the
proposed control approach can substantially reduce the incidence of
trips and reduce the severity and frequency of toe scuffing.

To the best of our knowledge, this work is the first demonstration
of lower limb prosthetic control that integrates perception feedback
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in real-time and that proactively ameliorates the falling hazard am-
putees face. Previous research in this area has largely focused on
detecting stumbles after they have occurred. For example, Lawson
et al. [2010] and Shirota et al. [2014] have proposed classifiers that
can detect trips during swing and predict whether a lower or raising
strategy should be used in response. Similarly, Zhang et al. [2011a]
have proposed a method that can detect stumbles and classify them
as trips during swing or slips during stance. However, these previ-
ous studies have not proposed concrete control actions to preempt
stumbles or to properly react in the event that a stumble is detected.
Our results motivate further research into such proactive and reactive
approaches, closing the perception-action loop for improving gait
robustness with robotic prostheses.

Several avenues for future work exist. First, in our current study,
only one able-bodied user tested the proposed control. Further ex-
periments with amputee subjects are needed to verify the system
provides benefits to this population. For instance, amputees accus-
tomed to walking with passive prostheses show significantly altered
hip kinematics [Jaegers et al., 1995], which could affect the control
behavior. However, the proposed control should be able to properly
adapt to these behavior differences, as the Gaussian process models
are trained for specific users. Second, although trips during swing
are one of the most common failure modes we encounter with our
powered prostheses, these events are still rare and many hours of
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normal walking are required to observe a sufficient number of trips
and compare controllers. As a result, we actively induced trips by
sudden drops in hip height during swing, which does not exactly
reflect the situations in which trips occur. Specifically, trips can hap-
pen due to subtle changes in leg kinematics, and it remains to be seen
in experiments if our approach can avoid trips in these more subtle
situations.

At the implementation level, there is also room for further explo-
ration. To keep the computational costs low, and due to the ease
of implementation in the prosthesis’ Simulink Real-TimeTM envi-
ronment, we plan trajectories using quadratic programs that iterate
between finding solutions for the ankle and knee joints. While this
iterative approach is fast when compared to trajectory optimization
methods that deal with multiple joints simultaneously, the iterations
occasionally get stuck when the planner for one joint trajectory can-
not find a solution based on the assumed fixed trajectory of the other
joint. Moreover, if a solution cannot be found, the current approach
simply reuses the last identified trajectory, rather than moving the
trajectory to be more safe, even if it cannot fully satisfy the bounds.
It seems worthwhile to investigate whether non-convex trajectory
optimization methods such as CHOMP [Ratliff et al., 2009], in which
the bounds are represented as soft rather than hard constraints, can
help solve for the knee and ankle trajectories simultaneously without
sacrificing computational speed.

In addition, several technical simplifications can be considered
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to bring this technology closer to commercialization. We used an
accurate and expensive laser distance sensor, eyeing future research
in obstacle scanning and avoidance capabilities. However, for simple
ground plane avoidance, inexpensive infrared distance sensors such
as those used by Scandaroli et al. [2009] are likely sufficient. It may
also be possible to simplify the trajectory planning phase by, for
example, forgoing formal guarantees on satisfying bounds and
instead relying on heuristics to increase knee and ankle flexion and
adjust timing in response to decreased hip height during swing.



9
Robust and Adaptive Stance Control via Extended Kalman
Filter-based Gait Phase Estimation

Material in this section based on Thatte et al. [2019a]1 1 Nitish Thatte, Tanvi Shah, and Hart-
mut Geyer. Robust and adaptive lower
limb prosthesis control via extended
kalman filter-based gait phase estima-
tion. In Intelligent Robots and Systems
(IROS 2019), 2019 IEEE/RSJ International
Conference on. IEEE, 2019a

9.1 Introduction

In chapter 7 we compared the neuromuscular and impedance con-
trollers. The results showed that there were reasons for falls with
the impedance controller that did not occur with neuromuscular
control. Chief among the types of falls that occurred with impedance
control were knee collapses caused by premature transitions to the
third phase of stance and swing trips, which were often preceded
by a missed transition to the third phase of stance. In contrast, the
neuromuscular control did not suffer from this issue, likely due to its
smooth torque output.

In the neuromuscular controller, the phase of gait is implicitly
captured in the muscle states that emerge from the interplay between
multi-segment limb dynamics, muscle dynamics, and reflexes. A
downside to this approach, however, is that it relies on many param-
eters that may be difficult to tune, thus limiting clinical applicability.
An alternative approach to achieving smooth phase estimation dur-
ing stance is the controller proposed by Quintero et al. [2016]. This
controller explicitly derives a continuous phase estimate by compar-
ing the hip angle to its integral. However, as we show in section 9.2
this approach may be sensitive to step-to-step changes in gait due
as it relies on the integral of the hip angle over a gait cycle. Recently,
Rezazadeh et al. [2018] eliminated the reliance on the hip integral
by re-introducing discrete state transitions based on thigh angle and
velocity thresholds. However, this approach could face similar ro-
bustness issues as the previously described finite-state impedance
control.
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Therefore, in this chapter, we propose a new control strategy for
lower limb prostheses that is built on a robust and smooth estimate
of the phase of gait and parameterizes the control outputs in an inter-
pretable manner. We start by presenting our attempt at implementing
the phase-based controller proposed by Quintero et al. [2016] (sec-
tion 9.2). In section 9.3, we present an Extended Kalman Filter (EKF)
that estimates the phase and its rate of change during the stance
portion of gait based on a multitude of sensor measurements. We
then use sparse Gaussian Process (GP) observation models to learn
relationships between phase and sensor measurements for specific
users and to choose the appropriate control actions for the pros-
thesis. In section 9.4, we evaluate the performance of the proposed
controller with experiments on able-bodied subjects and a single
amputee subject. Finally, in section 9.5 we discuss the results and
highlight potential limitations of this study as well as avenues for
future research.

9.2 Phase Based Control Implementation

In the experiment presented in this chapter 7, we compared neuro-
muscular control to the commonly used impedance control strategy.
Our original intent, however, was to also compare both controllers
to the continuous phase-based controller proposed by Quintero et al.
[2016], which we described briefly in section 2.2. Here we show the
results obtained with an implementation of this controller on our
prosthesis.

In this control strategy the desired knee and ankle angles are
parameterized with respect to a continuous phase variable, which
should increase monotonically from zero at heel strike to one at the
next heelstrike. To estimate phase, we draw phase portrait by plotting
the hip angle f(t) on the x-axis and integral of hip angle over a step
F(t) on the y-axis. The phase angle is then computed as

u(t) = atan2 (�z(F(t) + G),�(f(t) + g)) , (9.1)

where G, and g are shift parameters that center the phase portrait
about the origin, and z is a scaling parameter that makes the phase
portrait circular. Specifically,

z =
fmax � fmin
Fmax �Fmin

(9.2)

g = �1
2

(fmax + fmin) (9.3)

G = �1
2

(Fmax + Fmin) (9.4)
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where fmax, fmin, Fmax, Fmin are the estimated max and min hip
angle and hip angle integral over the past few gait strides. In our
implementation, we used the median max/min hip angle/angle
integral over the past five steps to estimate these values. To avoid
discontinuities in the phase angle estimate, the max/min hip angle
terms are only allowed to update when the phase angle crosses 0� or
180� while the max/min hip angle integral terms are only allowed to
update when the phase angle crosses 90� or 270�.

In addition to estimating the above parameters, we must also
estimate the average hip angle over a stride. This is because in order
for the hip angle to integrate to zero, its average must be zero as well.
The hip angle integral term is then computed as the integral of hip
angle minus its average

F(t) =
Z t

0

�
f(t)� µf

�
dt. (9.5)

For the average hip angle over a stride, µf we use the median value
over the last five strides.

Figure 9.1 shows an example phase portrait from an eight-second
walking bout. From this figure, we see that towards the latter end of
the trial, the integral term tends to drift towards the end of stance
before being reset to zero at heel strike. These irregularities step from
the sensitivity of the integral term to the hip angle trajectory and
cause the phase angle to trace form a nonlinear curve in time.

Therefore, to prevent excessively unnatural phase trajectories,
we also implemented time based upper and lower bounding of the
phase. In this scheme, the normalized phase,

ū(t) =
u(t)� u(0)

2p
, (9.6)

is lower and upper bound by third order polynomial functions of
time. The lower bound polynomial intersects three points: f(t =

0) = 0, f(t = T/2) = 1/4 and f(t = T) = 1 while the upper
bound polynomial intersects: f(t = 0) = 0, f(t = T/2) = 3/4 and
f(t = T) = 1. The stride duration T was estimated as the median
of the last five steps. Finally, the constrained phase variable estimate
was low pass filtered by a 2nd order Butterworth filter with a cut off
frequency of 10 Hz.

The phase estimate was used to look up the desired knee and
ankle angles. PID control was then used to calculate the desired
torque for the actuators which was then achieved by the low level
torque control (section 3.2).

Row 1 of fig. 9.2 shows the unconstrained and constrained phase
estimates in blue and purple respectively and the lower and upper
bounds in black. The phase estimate only remained within the
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bounds for the first step. After that, the phase estimate needed to
be constrained by the upper bound earlier and earlier in each step.

The hip angle plot in the second row shows there is significant
variability in the hip angle trajectory from step to step. Consequently,
the hip angle integral (row 3) does not reach zero at the beginning
of each stance (stance phase designated by the grey shaded regions).
The drift in the integral term occurs despite updates to the shifted
hip angle (purple row 2) and zero-mean hip angle (green row 2).

The resultant control action on the prosthesis seemed to drive a
positive feedback loop wherein increased phase angle in late stance
drives knee flexion and ankle push-off leading into swing. Increased
knee flexion torque and ankle plantarflexion also flex the hip more,
which further drives the phase estimate forward. Consequently, the
gait was driven faster and faster, as shown by the decreasing dura-
tion of stance (grey shaded regions). Also, a potential contributor to
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this positive feedback loop was an over-reliance on integral action
in the ankle, which is slow to build up the required plantarflexion
torque; a feedforward torque term might be helpful for generat-
ing torque as a function of phase. The changing duration of stance
also caused variation in hip integral leading to more gait instability.
Due to these issues, we were not able to achieve hands free-walking
for any duration of time and only managed walking with handrail
support for a few seconds at a time.

While these problems could be rectified with tighter bounds on the
phase, this would make the controller closer to a time-based strategy,
which would make volitional control impossible. Therefore, in the
following sections, we propose using a more established method of
state estimation, an extended Kalman filter, to estimate the phase
during gait. Using a Kalman allows us to specify dynamics for
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the phase, which help keep its trajectory smooth. Furthermore, it
allows us to incorporate information from multiple sources while
considering the intrinsic variation of each signal.

9.3 Methods

The proposed prosthesis controller consists of two components. The
first is an Extended Kalman Filter (EKF) that estimates the gait phase,
defined as the percent of stance completed so far (section 9.3.1). Ide-
ally, the phase estimate starts at zero at heel strike and reaches one
precisely at toe-off. The second component is a set of control surfaces,
which are functions of phase and phase velocity, that provide de-
sired knee and ankle angles, velocities, and feedforward torques for
generating the prosthesis stance behavior (section 9.3.2).

9.3.1 GP-EKF for estimating phase

In contrast to the previously described phase variable approach for
phase estimation in prostheses [Quintero et al., 2016], which uses
a single source of information, we take a sensor-fusion approach
and combine angle and velocity information from the hip, knee, and
ankle joints of the prosthetic limb. An IMU mounted to the thigh por-
tion of our powered knee-and-ankle prosthesis provides information
about the user’s hip motion, and encoders on the prosthesis provide
information about the knee and ankle joints. We use these observa-
tions in an Extended Kalman filter (EKF) to estimate the phase and
phase velocity during stance. The EKF assumes the linear, discrete
time phase dynamics

xt =

"
ft

ḟt

#
=

"
1 Dt
0 1

# "
ft�1
ḟt�1

#
+ wt (9.7)

= Axt�1 + wt,

where f is the phase, ḟ is the rate of change of phase, Dt is the inte-
gration time step and wt ⇠ N (0, Q). We set

Q =

"
0 0
0 s2

ḟ

#
, (9.8)

with s2
ḟ

= 1e�7. These dynamics encode the assumption that phase
should evolve continuously, at a roughly constant rate.

Observations of the prosthesis-side hip, knee, and ankle angles
and velocities inform the evolution of the above dynamics. For the
joint angles, the observation models are of the form

z
qj
t = hqj(xt) + v

qj
t = GP

qj
µ (ft) + v

qj
t , (9.9)
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where GP
qj
µ is the mean of a learned Gaussian Process (GP) model of

the angle of joint j as a function of the phase f and v
qj
t ⇠ N

⇣
0, GP

qj
s2(ft)

⌘
.

Here, GP
qj
s2 is the variance of the same learned GP model.

Similarly, for the joint velocities we use an observation model of
the form

z
dqj/df

t = hdqj/df(xt) + v
dqj/df

t ḟt

=
⇣

GP
dqj/df
µ (ft) + v

dqj/df

t

⌘
ḟt

(9.10)

where GP
dqj/df
µ is the mean of a Gaussian Process model of the ve-

locity of joint j (in units of dqj/df) as a function of f. In addition,
v

dqj/df

t ⇠ N
⇣

0, GP
dqj/df

s2 (ft)
⌘

, where GP
dqj/df

s2 is the variance of the
same learned GP model for joint velocity.

To train the GP observation models, the algorithm maintains a
training data set of stance gait data. The training data set includes
the joint angles and velocities (in units of dqj/df) sampled at 100 Hz as
well as the actual corresponding phases and phase velocities during
stance. We assume that, in hindsight, the actual phase increased
linearly from zero at heel strike to one at toe-off and that the actual
phase velocity was constant during stance and equal to 1/Tn, where
Tn is the duration of the completed stance phase. We retrain the
GP models using this gait data after every five completed steps. To
ensure that the test-time performance of the Gaussian Process models
does not degrade as more training data accumulates, we employ the
fully independent training conditional (FITC) approximation of the
GP [Snelson and Ghahramani, 2007]. This approximation represents
the GP using a fixed-size active set of training points. We use 25
points in our approximation.

With the learned GP observation models, we follow the GP-EKF
procedure proposed by Ko and Fox [2009] to obtain an estimate of
phase and phase velocity. In this procedure, we first predict the next
state distribution by propagating the mean x̂t�1|t�1 and covariance
St�1|t�1 of the state using the dynamics model provided by eq. (9.7),

x̂t|t�1 = Ax̂t�1|t�1 (9.11)

St|t�1 = ASt�1|t�1 AT + Q. (9.12)

Next, we update the state distribution estimate given measurements
zt of the joint angles and velocities using the following equations and
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the GP observation models ht(xt).

Kt = St|t�1HT
t

⇣
HtSt|t�1HT

t + MtRMT
t

⌘�1
(9.13)

x̂t|t = x̂t|t�1 + Kt

⇣
zt � h

⇣
x̂t|t�1

⌘⌘
(9.14)

St|t = (I � Kt Ht) St|t�1 (9.15)

where,

h(xt) =

2
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Mt =
∂h
∂vt

����
x̂t|t�1

=

"
I3⇥3 0

0 ḟt I3⇥3

#
(9.18)

Rt = blkdiag
⇣

GPqh
s2(ft), GPqk

s2(ft), GPqa
s2(ft),

GPdqh/df

s2 (ft), GPdqk/df

s2 (ft), GPdqa/df

s2 (ft)
⌘ (9.19)

Due to the linearity of Gaussian processes and differentiation, we
can analytically obtain derivatives required by eq. (9.17) using the
methods provided by Solak et al. [2003].

Finally, we reset the state distribution at heel strike to

x̂0 =

"
0

1/Tn�1

#
, S0 = 02⇥2, (9.20)

where Tn�1 is the duration of the previous stance.
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9.3.2 Control Surfaces

We use the mean estimates of the phase f and phase velocity ḟ as
the inputs into learned control surfaces that provide the desired knee
and ankle angles, velocities, and feedforward torques (Fig. 9.3). The
final desired torques applied to the prosthesis are then given by

td = kp (qd(f, ḟ)� q) + kd
�
q̇d(f, ḟ)� q̇

�
+ tff(f, ḟ), (9.21)

where qd, q̇d, and tff are the learned control surfaces as functions of
the estimated phase and phase velocity, kp and kd are proportional
and derivative gains, and q and q̇ are the actual joint angle and
velocity.

We learned the control surfaces qd, q̇d and tff, by regressing the
gait data provided by Moore et al. [2015] for several subjects walking
at three speeds, 0.8, 1.2, and 1.6 m/s. We were able to learn the control
surfaces using the data from nine subjects. For each subject, we split
the gait data into individual stance phases and extracted the knee
and ankle angles, velocities, and joint torques. We also assumed that
during each stance, the actual phase increased linearly from zero at
heel strike to one at toe-off and the phase velocity during stance was
constant and equal to 1/T, where T is the duration of stance. We
again used sparse GP regression with the FITC approximation to
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regress the knee and ankle angles, velocities, and torques versus the
phase and phase velocity. In this case, we used 100 active vectors to
approximate each GP.

The gait data spans the whole range of phases ([0, 1]) but not
the whole range of physiological phase velocities, as the gait speed
only varies between 0.8 and 1.6 m/s. To ensure the control surfaces
generate smooth behaviors at slower speeds and when standing still
(ḟ = 0), we additionally trained the GPs on a grid spanning f 2 [0, 1]

and ḟ 2 [0, min(ḟdata set)] with virtual training values derived from
interpolating between the average trajectory at 0.8 m/s and desired
values at ḟ = 0. When ḟ = 0, the desired joint angles, velocities and
torques were set to 5 deg, 0 deg/s, and 0 N-m, respectively, thereby
creating a smooth transition to a standing mode. Figure 9.3 shows
examples of the resulting control surfaces derived from one subject’s
data.

9.3.3 Experimental Protocol

IMU

Knee SEA
Spring

Ankle SEA
Spring

Knee
Encoder

Ankle
Encoder

Figure 9.4: Powered prosthesis
attached to amputee’s personal
socket

We evaluated the naturalness of gait and the robustness of our pro-
posed controller in experiments conducted with seven able-bodied
subjects and an amputee subject. We additionally present data from
an experienced user of the prosthesis (thesis author), whose gait
characteristics induced a different response from the prosthesis. All
subjects provided informed consent to IRB-approved protocols. The
amputee subject used the powered prosthesis prototype through
his personal socket adapter, as shown in fig. 9.4, while able-bodied
subjects used a shortened version of the prosthesis attached to an
L-shaped able-bodied adapter. All subjects had at least six hours of
prior practice walking on the prosthesis. The able-bodied subjects
walked without assistance from handrails, while the amputee subject
used the handrails for balance.

We compared our proposed control method to a stance control
based on a neuromuscular model of human neurophysiology [Thatte
et al., 2018] and to finite state impedance control [Lawson et al., 2014].
For these controllers, we generated parameter sets by fitting control
parameters to the same nine subjects’ gait data used to generate
the control surfaces described in section 9.3.2. For neuromuscular
control, we used the black-box CMA-ES optimizer [Hansen, 2006]
to fit the control parameters as described in [Thatte et al., 2018]. For
impedance control, we used robust RANSAC linear regression [Fis-
chler and Bolles, 1981] to fit the stiffness, damping, and angle offset
parameters within the three discrete phases of stance. The transi-
tion between phases 1 and 2 was based on the knee angle crossing
a threshold, while the transition between phases 2 and 3 was based
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on the ankle angle crossing a threshold. We set these thresholds so
that 95% of steps in the gait data transition through all three phases.
Prior to beginning the experiments, subjects walked with each of
the nine control surfaces (parameter sets) for each controller and
indicated their preferred settings. All three stance control strategies
were paired with the same swing control strategy, in which minimum
jerk trajectories for the knee and ankle are generated at toe-off and
tracked with PD-feedback combined with a model-based feedfor-
ward term as in [Lenzi et al., 2014b]. In total, we conducted four
experiments:

(1) A test of the ability of each control strategy to reproduce a
normal walking gait pattern. Able-bodied subjects walked with-
out the use of handrails 0.8 m/s and the amputee subject used the
handrails and walked at 0.6 m/s. All subjects walked with their pre-
ferred parameters for each controller for one minute. We compared
the resulting prosthesis knee and ankle kinematics and kinetics to
able-bodied gait data [Bovi et al., 2011] to determine the naturalness
of gait.

(2) A comparison of the robustness of the three controllers to
ground height disturbances. We simulated a ground disturbance
by having subjects step on 3 cm blocks placed on the treadmill. We
tested the controllers in a random order in an ABCCBA sequence. In
each trial, the subjects stepped on blocks 20 times. We recorded the
number of falls, defined as instances when subject needed support
from either the handrails or a ceiling mounted harness to regain
balance.

(3) A test of the adaptability of the phase estimate. To test the
adaptability, we had subjects use the proposed GP-EKF control while
the treadmill speed varied sinusoidally between 0.4 and 1.2 m/s with
a 20 s period. We compared the phase and phase velocity estimates
given by the EKF filter to the true phase, assumed to increase linearly
from zero at heel strike to one at toe off, and the true phase velocity,
assumed to equal 1/Tn, where Tn is the duration of the current
stance. As a baseline, we compared the EKF to time-based phase and
phase velocity estimates, which assume the duration of the current
stance will be the same as the previous stance, resulting in the phase
and phase velocity estimates

ftime based = tn/Tn�1 (9.22)

ḟtime based = 1/Tn�1, (9.23)

where tn is the time after heel strike of the current stance and Tn�1 is
the duration of the last stance.

(4) Finally, a test of the ability of the GP-EKF control to respond
to sudden treadmill stops. If the subject stops his or her gait, then
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Figure 9.5: Ability to reproduce
normal walking characteris-
tics. Average knee angle (row
1), ankle angle (row 2), knee
moment (row 3), and ankle
moment (row 4) for the GP-EKF
controller (column 1), neuro-
muscular controller (column 2),
and impedance controller (col-
umn 3). Black traces and gray
shaded areas show the mean
and two standard deviations
for very slow human walking
data (from [Bovi et al., 2011]).
Colored lines show individual
subject data. Amputee gait data
indicated by dashed lines and
experienced user data indicated
by dash-dot lines.

the phase estimate should stabilize and the phase velocity should
trend towards zero. The corresponding desired joint angles should
approach 5 deg as shown in fig. 9.3.

We assess significant differences between conditions via the two-
sided paired Wilcoxon signed rank test [Gibbons and Chakraborti,
2011]. Experienced subject data was not considered for significance
testing.

9.4 Results

9.4.1 Ability to Reproduce Normal Walking

Figure 9.5 shows the average knee and ankle angles as well as the
corresponding joint moments generated by the prosthesis controllers
during undisturbed walking at 0.8 m/s. All three control strategies
produce knee angle trajectories that are similar to the able-bodied
data (first row). The neuromuscular (NM) control, however, seems to
suffer more from knee overextension during mid-stance and less knee
flexion at the end of stance. For some able-bodied subjects, and to a
substantial degree for the amputee subject, the knee overextension
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Figure 9.6: Average kinematic
(a,b) and kinetic (c,d) errors
produced by the three differ-
ent controllers compared to
able-bodied data. GP-EKF
produces significantly more
natural knee angles than NM
or IMP control, but slightly
less natural ankle angles and
joint torques. Grey bars show
median of subject data, circle
markers indicate able-bodied
subject data, triangle markers
indicate amputee data, and
square markers indicate expe-
rienced able-bodied user data.
⇤ : p < 0.05, ⇤⇤ : p < 0.01.

causes the joint to engage the mechanical hard-stop on the prosthesis.
This triggers a sudden rise in knee torque. Figure 9.6a summarizes
the root-mean-squared (RMS) error between the mean able-bodied
knee kinematics and the median knee kinematics of each subject. The
GP-EKF control strategy produces significantly more kinematically
natural knee angle trajectories, whereas the NM control produces the
least kinematically natural knee trajectories.

The second row of fig. 9.5 shows the average ankle trajectories for
each control strategy. In this case, the GP-EKF control produced the
least accurate trajectories. As shown in fig. 9.6b, this trend reached
statistical significance compared to impedance (IMP) control, which
produced the most natural ankle angle trajectories. The unnatural-
ness of the GP-EKF control ankle trajectories is largely due to (1) a
lack of plantar flexion in the push-off phase and (2) a lack of dorsi-
flexion during mid-stance for 3 out of 8 subjects, who all chose the
same control surface set.
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Finally, the third and fourth rows of fig. 9.5 show the knee and
ankle moments for the three controllers. IMP control produced
the most natural knee moments by a significant margin (fig. 9.6c),
whereas the GP-EKF and NM controllers performed comparably.
Although the GP-EKF control produced the least natural ankle
moments, the absolute differences were small (fig. 9.6d).

9.4.2 Robustness to Ground Height Disturbances
GP-EKF NM IMP
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Figure 9.7: Robustness to
ground height disturbances.
Number of falls accrued for
each controller during ground
height disturbance trials. GP-
EKF control significantly re-
duced the number of falls
compared to IMP control.
⇤ : p < 0.05.

Figure 9.7 shows the number of times able-bodied subjects fell with
each control strategy when stepping on blocks. The grey bars show
the median of the inexperienced able-bodied subjects’ data, the circle
markers indicate inexperienced able-bodied subject data points,
and the square markers indicate experienced able-bodied user data.
Inexperienced subjects fell significantly more often with the IMP
control compared to either the GP-EKF or NM controllers. However,
when using the neuromuscular control the experienced user fell 8
times, more than any other subject in any condition.

9.4.3 Adaptability of Phase Estimate
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Figure 9.8: Adaptability of
phase estimate. Mean phase
error of EKF versus time-based
phase estimation when walk-
ing with sinusoidally varying
treadmill speed. The EKF signif-
icantly improves phase tracking
compared to the time-based
estimate. **: p < 0.01.

The adaptability of the phase estimate was tested by sinusoidally
varying the treadmill speed during walking. Figure 9.8 shows the
average RMS errors of the EKF-based phase estimate and time-based
phase estimate compared to the ground-truth phase obtained in
hindsight. The grey bars show the median of the inexperienced
able-bodied subjects’ data, the circle markers indicate inexperienced
able-bodied subject data points, and the square markers indicate
experienced able-bodied user data. For all subjects, the EKF tracked
the true phase significantly more accurately than did the time-based
phase estimate.

For a more specific example, fig. 9.9 shows the phase estimates
during the treadmill speed variation experiment for a single subject.
Because the initial conditions of the EKF and the time-based phase
estimates are identical (compare eq. (9.20) and eq. (9.23)), the phase
estimates are similar in early stance. As the treadmill speed changes
from one step to the next, the time-based phase estimate diverges
significantly from the true phase. The EKF, on the other hand, is
able to recover to the true phase towards the end of stance and more
accurately predicts the toe-off event.

9.4.4 Response to Sudden Treadmill Stops

Finally, fig. 9.10 shows the phase (a), and phase velocity (b) estimates
when the treadmill is suddenly stopped halfway through the stance
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based phase estimation (red)
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Due to step-to-step speed varia-
tions caused by the sinusoidally
varying treadmill speed, the
time-based phase estimation
accrues significant errors. In
contrast, the EKF-based phase
estimate is able to respond
to changes in gait within the
gait cycle, thus reducing phase
estimation errors.

phase. The EKF phase estimates (solid lines) reflect the fact that the
gait cycle has halted, as they do not continue to progress to one.
Moreover, when the treadmill stops, the knee (c) and ankle angles (d)
approach 5 deg as desired for standing (compare fig. 9.3). In contrast,
the time-based phase estimates (dashed lines in panels (a) and (b))
continue at their initial rate, with the phase reaching one.

9.5 Discussion

We proposed a new approach for the control of powered transfemoral
prostheses. The approach uses a robust estimate of the gait phase
derived from an EKF that integrates multiple sensor measurements to
determine the desired knee and ankle angles, velocities and torques
from trained control surfaces. The proposed approach improved
knee kinematics over NM and IMP control, matched NM control and
improves upon IMP control in terms of gait robustness to ground
height disturbances, and adapted the phase estimate to both gradual
and abrupt changes in speed more quickly than a time-based phase
estimate.

We believe the robustness improvements of the proposed GP-EKF
control scheme and the NM control over IMP control stem from the
smoothness of the phase estimation in these two controllers. In NM
control, the phase estimation is implicit and encoded in the internal
states of virtual muscles, which are modulated by musculoskeletal
dynamics and reflexes. In the proposed control presented here, the
EKF directly infers a robust estimate of phase from multiple measure-
ments. In either case, the resulting control commands are smooth
and do not normally change abruptly from one moment to the next.
In contrast, IMP control splits the stance phase into three discrete
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Figure 9.10: Response to sud-
den treadmill stops. Estimated
phase (a) and phase velocity (b),
and the measured knee (c) and
ankle (d) angles when the tread-
mill is suddenly stopped half
way through stance. When gait
stops, the EKF-estimated phase
stabilizes to a constant value
(solid traces), phase velocity
falls to zero, and the joint an-
gles approach 5 deg as desired
by the control surfaces (com-
pare fig. 9.3). The time-based
phase estimate fails to respond
(dashed lines). Vertical black
dotted line indicates heel strike
of final stance phase.

phases that are triggered by joint angle thresholds. Consequently, in
the ground height disturbance experiments, subjects were occasion-
ally caught off-guard by unexpected transitions, triggered by abnor-
mal kinematics when stepping on a block, which then caused large,
sudden changes in torque. Unexpected phase transitions between the
mid-stance and late-stance phases were especially consequential, as
in the late-stance phase, knee torque trends towards zero to allow for
passive knee flexion, while the ankle plantarflexes. If a user’s center
of mass is positioned incorrectly, this combination of joint torques can
cause a sudden collapse of the knee, which was the cause for many
of the observed falls with IMP control.

NM control too can result in unexpected falls due to incor-
rect phase estimation. The experienced user fell a total of eight
times when stepping on blocks with the NM control (see square
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marker fig. 9.7). These falls were the result of a modeled reflex that
reduces knee extensor muscle stimulation in late stance in proportion
to ankle plantarflexion, thereby allowing for passive knee flexion
leading into swing. In contrast to less experienced subjects, the ex-
perienced user was able to control the knee over-extension during
stance and achieve more normal knee flexion in late-stance during
normal walking (see fig. 9.5 row 1, column 2), However, this in-
creased knee flexion during normal walking may have increased the
prosthesis’ susceptibility to premature knee collapse when disturbed.
While the modeled neuromuscular reflexes seem to work well during
steady-state walking and during disturbed walking for inexperienced
users, the large increase in falls for the experienced user exposes
the difficulty of relying on heuristic reflexes to obtain robust control
across a range of gait characteristics. In contrast, the proposed EKF
approach takes a principled approach to phase estimation and thus
resulted in the fewest falls.
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Figure 9.11: GP-EKF phase con-
trol with fixed control surfaces
and increased ankle impedance.

Some improvements can be made in the implementation of the
proposed control. The normal walking experiments show that the
ankle trajectories produced by the GP-EKF control are less natu-
ral than those produced by NM or IMP control (see fig. 9.6b). The
GP-EKF ankle trajectories in fig. 9.5 show that peak ankle flexion is
achieved later in stance and that the ankle insufficiently plantarflexes
at toe-off. There were two reasons for these issues. First, in hindsight,
the cutoff between stance and swing in the data used to train the
control surfaces was set too early in the gait cycle. Second, the ankle
impedance, especially in the push off phase was too low. Figure 9.11
shows the trajectories for all 9 control surfaces with corrected control
surfaces and with an ankle stiffness (kp eq. (9.21)) that is roughly dou-
ble of that used for the previous results. These changes substantially
improve the ankle kinematics in the push off phase.

However, increasing the ankle stiffness throughout stance may
make an overly ridged controller that does not comply with rough
terrain. Recent research has investigated how impedance varies
continuously throughout gait [Lee et al., 2016]. These results could
be used to parameterize impedance as a function of phase. Taking
this step could help improve the naturalness of the knee and ankle
torques produced by the GP-EKF controller, which currently trail
those produced by the NM and IMP controllers (see figs. 9.6c and d).

There are several other avenues for future research to expand
the proposed control approach. First, we only used prosthesis joint
angles and velocities for the observation models. It is worth inves-
tigating if additional measurements such as ground reaction forces,
accelerations, and EMG signals improve the state estimate. Second,
we used a simple, two-state model to represent the entirety of the
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coupled human-prosthesis state during stance. Adding additional
state variables may help capture important behaviors such as balance
recovery actions taken by the upper body. To this end, dimensionality
reduction techniques could help identify better state representations
from gait data. New state representations need to satisfy two con-
straints that our current model satisfies: (1) The evolution of the state
needs to approximately abide by some Markov dynamics model so
we can perform the predict step of the EKF (eqs. (9.11) and (9.12)).
(2) The evolution of state throughout stance should be knowable in
hindsight after a step is completed so that the observation model can
be learned online. Finally, with more advanced state and observation
models, more advanced forms of state estimation may be necessary,
including unscented Kalman filters or particle filters such as the
one proposed by Dhir et al. [2018], which allows for continuous gait
phase estimation using discrete heel and toe contact sensors.



10
Conclusion

This thesis began with the goal of improving the robustness of gait
with transfemoral prostheses so as to reduce amputees’ risk of falling
and increase their quality of life. Towards this goal, we started by
comparing a proposed neuromuscular strategy for transfemoral
prosthesis control to the established impedance control strategy. We
attempted to make this comparison as objective as possible by build-
ing a robotic prosthesis capable of accurate torque control (chapter 3)
and developing methods that employ the user’s feedback to select
prosthesis control parameters (chapter 6). While the experiment com-
paring neuromuscular and impedance control did not confirm our
hypothesis that neuromuscular control would lead to a significant
reduction in falls (chapter 7), it did clarify the importance of state
estimation in prosthesis control. This insight motivated the devel-
opment of swing and stance controllers with state estimation via an
extended Kalman filter (EKF) at the core of each (chapters 8 and 9).
The proposed swing controller uses an EKF to estimate the position
and orientation of the hip, which is then used to plan knee and ankle
swing trajectories that avoid trips. The proposed stance controller
uses an EKF to estimate the gait phase during stance. This phase
estimate made the gait robust to ground height disturbances and able
to adapt to both sudden and gradual changes in gait speed.

In performing the work in this thesis, we have assembled a sub-
stantial amount of practical knowledge and suggestions for future re-
search in the field. First, when it comes to prosthesis design, in hind-
sight, we likely put too much emphasis on prosthesis performance
and did not consider enough whether the user would actually be able
to make use of the performance. In our experiments, able-bodied
users wore the prosthesis through an L-shaped adapter (fig. 3.12)
while amputees used their own socket (fig. 9.4). Both of these inter-
faces are not very secure, limiting the weight of the prosthesis and
the dynamism of movements. Therefore, while our prosthesis design,
at 6.8 kg, is of comparable mass to a biological limb, it is too heavy
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to use comfortably for an extended period of time. Future prosthesis
designs should be mindful of the constraint the interface places on
useable torque and comfortable prosthesis mass. One solution for a
transfemoral prosthesis design for research purposes, which achieves
high performance and keeps weight to a minimum, is to create a
knee-ankle prosthesis emulator, similar to the ankle emulator created
by Caputo and Collins [2013].

A difficulty faced when conducting this research was the substan-
tial time spent implementing various controllers from the literature
on our transfemoral prosthesis prototype. This challenge would be
significantly reduced with standardization of the interface between
the low-level controls and the mid-level behavior controls. Standard-
izing this interface would more easily allow researchers to share code
and try controllers on their own prostheses. Standardizing the hard-
ware design would also help in this effort and substantially decrease
the time required to make progress in this field. The recent develop-
ment of open source knee and ankle prosthesis designs should help
significantly in this regard [Azocar et al., 2018].

Another development that would help decrease the time required
to improve prosthesis controls is better simulations of amputees and
their interactions with hardware. In chapter 5, we presented results
from one such simulation that predicted more falls for impedance
control than neuromuscular control when walking on rough ground.
Based on the experimental results on the real prosthesis that we
have gathered, it seems these simulations may have overstated the
potential improvement in gait robustness offered by neuromuscu-
lar control. We may be able to improve these sorts of simulations
to better predict real-world results in two ways. First, through the
course of conducting this research, we have recorded large amounts
of motion capture data of users walking on the prosthesis. This data
could be used to improve the neuromuscular model to better capture
actual subject responses to disturbances. Second, in chapter 5, we
used the shooting method and a genetic algorithm [Hansen, 2006] to
optimize the control parameters of the prosthesis. These optimiza-
tions often required days to converge on a solution. In future work,
more advanced simulation/trajectory optimization techniques should
be considered such as using symbolic differentiation to derive the
change in the control action with respect to parameters and using
nonlinear programming and collocation to directly solve the optimal
control problem [Hargraves and Paris, 1987].

A limitation of the studies we performed comparing the neuro-
muscular and impedance controllers (chapter 7) and comparing our
proposed GP-EKF control to the neuromuscular and impedance con-
trollers (chapter 9) is that we only allowed participants to select pa-
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rameters for the different controllers from a discrete library of choices
generated by fitting controllers to set of able-bodied walking data.
Using a discrete set of parameters had the advantage of ensuring
that the parameters were sampled from the subspace that produces
reasonable and safe walking gaits. This is important on a prosthetic
device especially, as a poor combination of parameters can cause the
prosthesis to behave erratically and fail to provide support for the
user. Moreover, it allowed us to circumvent performing optimizations
in the high dimensional space of controller parameters. However, it
is also possible that better parameters for each controller exist and
that they may have changed the outcomes of our comparisons had
we used them.

A potential solution for this limitation is to treat the able-bodied
gait data we use to generate parameters as a set of basis gaits. We
could then perform continuous optimization of controller param-
eters in the gait space spanned by this basis. For example, given
N basis gaits q = [q1, q2, . . . , qN ]T , where each qn is a collection of
data for a specific gait, we could optimize over a vector of weights
w = [w1, w2, . . . , wN ]T . These weights would synthesize a new gait as
qnew = wTq from which we could derive parameters using the meth-
ods discussed in sections 7.2.1 and 9.3.2. These parameters could
then be evaluated on the prosthesis. Performing the optimization in
this way could ensure that the optimization procedure selects param-
eters from a safe subspace spanned by actual gait data and would
reduce the dimensionality of the optimization to N, which could be
selected to be feasible for the chosen optimization algorithm. This
proposed optimization approach would be feasible for the impedance
and GP-EKF controllers as we can generate parameters for these two
controllers from gait data in fractions of a second. However, it would
not be feasible with the neuromuscular controller as it can take many
hours to find neuromuscular parameters to match gait data.

Finally, an innovation provided by the planning-based swing con-
trol described in sections 8.5 to 8.8 is that it considers environmental
information in real-time within the mid-level controller. The environ-
mental information directly and precisely impacts the trajectories the
controller generates during swing. In contrast, previous prosthesis
controllers that have considered environmental information have
primarily only done so at the high-level for gait mode recognition
(see section 2.3). These high-level strategies switch the mid-level
control parameters within a discrete set of options. Similarly, the
phase-based stance control described in sections 8.5 to 8.8 can use
information in real-time from multiple sensors on the prosthesis to
reason about the appropriate control action to take. These results
motivate further research into mid-level controllers that can directly
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act on more sources of information. Doing so may allow prostheses
to adapt more appropriately to the user and environment and take a
broader range of actions that are better suited to the specific situation
at hand.

10.1 Final Thoughts

This dissertation moved the field forward by performing the first
direct comparison of prosthesis controllers on identical prosthesis
hardware to explore the pros and cons of different control methods.
By performing this comparison, we gained important insights that
motivated further development of prosthesis controllers that can
proactively avoid trips and robustly estimate the gait phase, thereby
enabling rapid adaptation to changes in gait. Future researchers
should continue to attempt to compare prosthesis controllers di-
rectly, despite the difficulties of implementing multiple prosthesis
controllers and comparing them objectively. Doing so will ensure that
future control developments continue to advance the state-of-the-art.

In section 1.1 we detailed the difficulties faced by amputees using
passive prostheses including their high energy consumption [Waters
et al., 1976], abnormal gait [Jaegers et al., 1995], and increased rate
of falls [Miller et al., 2001]. While the work presented in this thesis
has improved upon previously proposed powered prosthesis con-
trols, it remains unclear whether the proposed powered prosthesis
controllers can improve amputees’ gait deficits compared to existing
passive prostheses. Therefore, future work should also try to com-
pare powered prostheses to their mechanically-passive counterparts.
With such comparisons, we can begin to evaluate whether powered
prostheses are finally fulfilling their potential ability to fully replace
the lost biological limb.
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