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Introduction 

 The functional organization of the visual processing system effectively serves to solve 

difficult recognition and classification problems. Given a large amount of information, the visual 

processing system is able to retrieve critical bits and produce a salient understanding of the 

world. This impressive, calculated ability is supported by neural substrates that have been well 

defined through extensive research. The seemingly spontaneous recognition of objects and 

classification of scenes results from a series of computations through the visual pathway. In 

order to understand how these complex abilities are supported by neural substrate, research must 

target the individual abilities and contributions of regions that process visual information. 

Understanding the functionality of areas in the visual processing stream will elucidate the 

computational mechanisms of recognition and classification.  

Background: Visual Pathways 

Starting in the retina, visual information passes through the optic nerve after which the 

optic tract carries information to the lateral geniculate nucleus (LGN) (Remington, 2014). From 

the LGN visual information is passed into the visual cortex of the occipital lobe. Functional 

analysis of the primary visual cortex has revealed that V1 neurons are orientation and direction 

selective (Lee, 2003). This means that they have strong responses to lines, bars, or edges of a 

specific orientation. In addition, V1 neurons are direction selective and respond strongly to 

certain lines, bars, and edges moving in a preferred direction. After primary visual cortex are 

about thirty secondary visual areas that are hypothesized to have functional specialization. This 

hypothesis follows that specific brain areas perform specific visual functions. The fusiform face 

area (FFA) for example is hypothesized to be specialized for faces, the extrastriate body area 

(EBA) specialized for human bodies, and parahippocampal place area (PPA) specialized for 
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places and scenes (Peelen et al., 2005). Defining these visual areas and their functions has been 

accomplished through a variety of physiological and functional magnetic resonance imaging.  

The computational and neural mechanisms that support categorization and recognition 

however are still greatly debated upon. Some researchers claim that the visual system is 

comprised of category-specific modules that perform a specialized computation for a class of 

stimuli, such as faces (Dailey, 1999). A wealth of neuropsychological and neuroimaging 

evidence has been put forth in favor of the modular organization with ventral visual pathway 

specialization for high-level perceptual analysis of faces, objects, places, bodies, and words 

(Kanwisher, 2010). Proponents of this school of thought often use lesioned patients such as 

prosopagnosics to corroborate their argument. Acquired prosopagnosics have a bilateral or right 

occipitotemporal cortex lesion, causing severe face processing impairments (Behrmann, 2011; 

Duchaine et al., 2005). While this may point to a discrete categorical face impairment, further 

investigation reveals that prosopagnosics suffer from a degree of object processing damage as 

well. Prosopagnosia could be then defined as a manifest of an underlying visual computational 

deficit as opposed to the theory that face processing is a special mechanism, which is broken in 

prosopagnosia. This points to a more distributed organization wherein cortical regions are only 

partially specialized, allowing for a more connectionist perspective on the visual processing 

system. Neuroimaging research corroborates this viewpoint by demonstrating graded 

representations of stimuli and the shared cortical activation of supposed specialized regions such 

as the OFA (objects) and FFA (faces) (Plaut & Behrmann, 2011). This question of a distributed 

versus modular organization lends to the question of how connections in each step of the visual 

pathway build categorization of visual input and support visual object recognition. It has been 

proposed that the ventral temporal cortex is involved in categorization (Grill-Spector et al., 
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2014). Specifically, it has been argued that a spatial representational hierarchy of visual 

information enables access to levels of categorization. The lateral occipital complex is an integral 

substrate in this process and is the focus of this study. 

Lateral Occipital Complex 

Functional brain imaging research has clarified that the lateral occipital complex (LOC), 

which is functionally defined as a region within the occipital and temporal cortex, plays a central 

role in human object recognition (Grill-Spector, 2001). An early study that began to clarify the 

role of LOC compared activation in this cortical region for different types of stimuli (Malach, 

1995). It was found that the LOC responded more strongly when subjects were viewing 

photographs of common objects compared to when they looked at visual textures that did not 

have discrete, defined shape interpretations (Malach et al., 1995). Furthermore, LOC 

demonstrated a lack of preference for familiar versus unfamiliar objects. The magnitude of 

response in this region was no different for objects that were known, such as a dog, and objects 

that were not known (e.g. Henry Moore sculpture). This phenomenon was further explored by 

Allison, Puce, Spencer, & McCarthy (1999), using event-related potentials recorded from 

electrodes that were placed on the cortical surface of patients before surgery. Similar to the 

previous studies conducted, there was a distinct difference in waveforms for objects compared to 

non-objects. The studies found object-specific waveforms with a higher activation for categories 

of objects such as cars, flowers, butterflies etc. when compared to the activation for scrambled 

control stimuli that did not have a defined 3-D structure. Selective activation of LOC for the 

Gestalt cue of surroundedness has also been found by fMRI studies, alluding to the computation 

that supports object-level processing (Appelbaum et al., 2010). The spatial configuration of the 

object as well as the larger background selectively activates LOC.  
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Functional specificity in this region for object identification however cannot be assumed 

since activation could be due to visual attention, arousal, figure-ground segmentation, or other 

visual factors. On the other hand, neuropsychological research has found that lesions to this 

cortical region result in a variety of recognition deficits (Moscovitch et al., 1999).  

The complexity of object recognition considering viewpoint changes, illumination, 

viewing angles, and categorization makes it difficult to understand, and that much more 

impressive. The visual recognition system’s diverse capabilities leads to the question of how 

representations of objects of certain categories are generated to allow generalization and fine 

discrimination. While many studies have concluded that the LOC plays a significant role in 

object recognition it is unclear in what capacity and to what degree object recognition is 

accomplished (Grill-Spector, 2001). Specifically, it is of interest to understand what role LOC 

plays in subordinate categorization of visual input and whether category specific mechanisms 

exist. Given a certain category of object input, does LOC generalize across the category or 

perform finer discrimination? 

In order to appropriately classify category-selectivity within LOC, it is important to 

consider the nature of defined category-selective regions in the cortex in terms of functionality 

and anatomy. Categories such as faces have been extensively studied with the conclusion that the 

fusiform face area responds more strongly to face stimuli when compared to nonface control 

stimuli. Kanwisher (2010) argues for localization of detection and recognition of faces in the 

FFA based on behavioral, neuropsychological, and neuroimaging evidence. The PPA is another 

seemingly category-selective region of the cortex that responds strongly to a diverse spread of 

stimuli that depict places or spatial layouts including outdoor scenes, indoor scenes, and houses 

(Walther et al., 2009). Aside from functionality, it is important to note the anatomical features of 
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these category-specific regions in relation to LOC. The PPA is clearly discrete anatomically from 

LOC, however the fusiform face area is in close proximity to and partially overlapping with the 

anterior part of the LOC (K. Grill-Spector et al., 2001). Grill-Spector speculates that this overlap 

however does not discount the selectivity of the FFA, and the preference for objects to scrambled 

objects in the LOC. Rather, this overlap reveals the issue with functionally defining cortical 

regions and the challenges they pose for interpretation. Many regions within the ventral visual 

pathway have been classified in terms of selectivity but the LOC has not exhibited specificity for 

a certain category, which lends to the prediction that the LOC serves as a region for a general-

purpose mechanism for objects. The specific information that is leveraged as well as the 

computation that occurs in the LOC is unclear and requires further investigation.  Another 

hypothesis is that the pattern of activity observed across the ventral visual stream, which includes 

the LOC, FFA and PPA, forms a distributed network that supports object recognition (Mur et al., 

2012). In order to decode the computation that supports object recognition through the 

distributed or modular approach it is important to investigate the role that LOC plays.  

Present Experiment 

To address this gap in knowledge the BOLD5000 data set was used to analyze neural 

activity for patterns across categories in specific regions of interest (Chang et al., 2018). Slow 

event-related functional MRI data was collected for almost 5,000 distinct images that depict real-

world scenes. The large scale of the dataset as well as the image diversity provide the unique 

opportunity to explore a wide range of categories. The goal behind this neural dataset was to 

integrate biological data with computer vision advances such that a strong relationship between 

visual input and specific brain responses can be developed. The mechanisms and computations 

behind neural activity can be challenging to understand, which is where high-performing 
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computer vision models come into play. The BOLD5000 uses standard computer vision datasets 

in order to bridge the gap between stimuli used on a small scale in most human neuroimaging 

studies and computer vision models. Images from the Scene Understanding (SUN), Common 

Objects in Context (COCO), and ImageNet datasets were used, enabling a detailed exploration 

into the neural representation of a wide range of objects and scenes.  To explore the effect of 

image repetition, 113 of the 5000 images were randomly selected to be shown four times to the 

participant. One-fifth of the images selected were scenes images, two-fifths were COCO images, 

and two-fifths were ImageNet images. This spread allowed for a diverse set of categories to be 

pulled out from this pool of repeated images. Within the scope of this project, eighteen of the 

repeated images were classified as belonging to a unique category such as “beach” or “dog”. 

Each category was then built with the repeated images as well as exemplars of that category 

within the non-repeated pool of stimuli in the BOLD5000 stimulus set. In all this resulted in 18 

categories with a mix of repeated and non-repeated images such that neural activity between 

these two could be compared in various regions of interest. Early visual cortex, LOC, and PPA 

were the main regions of interest such that meaningful comparisons could be drawn between 

regions that are at different levels of the ventral visual stream. Early visual cortex performs 

preliminary visual computations, whereas PPA is more downstream and has been found to be 

selective for scenes (Lee, 2003; Epstein et al., 2003). Given that the level and type of 

computation at LOC is of interest, these ROIs serve as good comparisons. We predicted that a 

pattern would emerge from the neural activity showing that LOC does not modulate based on 

subordinate category. This means that the overall category of the stimulus is of interest to LOC 

as opposed to the specific exemplar within the category. This generalization of categorical 
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stimuli would be supported by a pattern of activity where neural activation correlation is no 

higher between the repeated images compared to all of the images in the category set.  

 

Methods 

Stimulus Selection and Data  

Three image datasets comprise the subset of images used in this study from the 

BOLD5000 (Chang et al., 2018). Three main considerations were taken into account by the 

researchers that built the image set for the BOLD5000 – size, diversity, and image overlap. 

Neural studies often use around a hundred distinct images, which is much more constrained. This 

narrow set of images consequently restricts the variety of images that can be included. The 

volume of images in this dataset allows for a diverse set of categories to be included such that 

object recognition can be explored in a wide range of scenes. The last consideration, image 

overlap, pertains to overlap across stimuli in computer vision datasets. The BOLD5000 neural 

dataset can be compared to computer vision model representations of visual input because of the 

image overlap. This is advantageous for the overall advancement of visual cognition research. Of 

the total 5,254 images (4,196 unique images) the image breakdown is: 1,000 images of indoor 

and outdoor scenes from the SUN dataset, 2,000 images with multiple frequently interacting 

objects embedded in a realistic context from the COCO dataset, and 1,916 images with a single 

object as the focus from the ImageNET dataset (Figure 1). See the BOLD5000 paper for more 

detail on how stimuli were chosen from each of the datasets (Chang et al., 2018). Slow event-

related fMRI was conducted for four participants where each participant viewed all 5,254 

images, but 113 randomly selected images were selected to be shown four times to the 

participant in order to investigate the effect of image repetition. One fifth of the images were 
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SUN images, two fifths were COCO images, and two fifths of the images were ImageNET 

images. Participants were scanned over 16 MRI scanning sessions. Scanning was conducted with 

a slow event-related design so that the blood oxygen level dependent (BOLD) signal for each 

individual image trial could be isolated. When each stimulus image was presented, the 

participant performed a valence judgement task. During the nine second interval between 

stimulus presentations the participant responded with to what degree they liked the stimulus 

using the scale: “like”, “neutral”, “dislike”.  

 For the purpose of this study a subset of the BOLD5000 neural data was selected so that 

categorization could be investigated. The repeated images were classified by category such that 

stimuli lists could be built by category. Within the scope of this project 18 of the repeated images 

were analyzed. In the future all 113 should be analyzed in order to take full advantage of the size 

of the BOLD50000 dataset. Once each repeated image was classified by category, exemplars of 

that category were searched for using Google Photos, where all the BOLD5000 stimuli images 

are stored. To ensure the quality and generalizability of the exemplar to the category, various 

factors were considered when selecting images. Using Google Photos’ search feature, the 

category (ex. “dog”) was searched for so that all images falling under the category were shown. 

If there were enough exemplars within the category, 10 images were selected. For some 

categories the number of exemplars was more limited. To select the 10 “best” images competing 

factors, strength of categorization, and viewpoint were taken into consideration. We predicted 

that there is a hierarchy of information in a visual scene. Thus, depending on the centricity of an 

object, the competing factors, and attention-grabbing features of the image, perception of the 

scene can differ in terms of categorization (Yantis, 2002). For example, an image with a dog in it 

would not be selected for the dog category if there were multiple people in the image or other 
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animals in the image. Images with a stronger, clearer categorization were selected. For categories 

that had ample exemplars, viewpoint was also taken into consideration so that the images could 

be standardized on that feature as well. In addition to the categories built based on the repeated 

images, a set of “mixed” images was created such that meaningful comparisons could be made 

between images of the same category and images of many different categories. The stimuli in 

this “mixed” category include a random selection of 10 images from the selected categories. 

Image categories were separated into object and scene categories such that relevant ROIs could 

be separately investigated as well.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Sample images from the three computer vision datasets from which experimental 
image stimuli were selected (Tarr et al., 2018).  

Figure 2. Categories consist of four repeated images (I), which have the highest amount of 
similarity and 10 non-repeated image stimuli (S) that are within the same category. The mixed 
category is made of 10 images (C) from all different categories.  
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Data Processing  

See Scaling Up Neural Datasets: A public fMRI dataset of 5000 scenes (Chang et al., 

2018), for a detailed explanation of the fMRI data analysis and pre-processing that was 

completed. All of the data was loaded and analyzed using Python. Since the hemodynamic 

response function (HRF) activity peaked across TR3 and TR4, TR3 was chosen when conducting 

analyses. Given that the first participant (CSI1) completed all sessions, this data was chosen for 

analysis.  

Category Correlation  

 The voxel data for each image within every category was retrieved and built into an array 

where the rows were the images. The first four images in the array are the four instances of the 

repeated image. The rest of the rows are the other image exemplars within that category that 

were not repeated. Using the array with neural data for each category, the correlation between 

the images was computed using NumPy and was visualized using Matplotlib. This visualization 

is a representational similarity analysis (RSA), which is used to analyze the response similarity 

between evoked fMRI responses in selected regions of interest (Kriegeskorte, 2008). In this 

study the RSA framework quantitatively relates neural activity for early visual cortex, LOC, and 

PPA.  This resulted in a matrix of correlations (R-values) between each image within the 

category. For categories that have ten non-repetition exemplars the matrix manifested as a 14x14 

matrix where the first 4x4 was of the repetitions. The visualizations of these matrices for each 

category reveal to what degree repetitions were similar to each other compared to the non-

repeated images. This was carried out for all categories in three ROIS – Early visual cortex, 

LOC, and the PPA such that comparisons could be drawn in regard to level of visual processing. 

 



                                                                   Mahableshwarkar  
 
12 

Differences between Correlation Means  

 In order to quantify the variation in correlation within the exemplars and repeated images 

in each category, the average correlation was computed. Specifically, the three calculations were: 

the mean correlation for all images in the category, the mean correlation for all non-repeated 

images, and the mean correlation for all repeated images. This relays how similar brain 

activation is for the subsets of stimuli within the categories. This calculation was also carried out 

for the mixed category as a “baseline” for complete dissimilarity (Figure 2).  

Image feature correlations vs. Brain activation correlations 

 The previous calculations resulted in brain activation correlations for the presented 

images, however it is also important to consider the similarity within the image features 

themselves. A convolutional neural network was used as a fixed feature extractor for the images 

so that image feature similarity could be computed 9. Specifically, the VGG-19 convolutional 

neural network with batch normalization, pretrained on ImageNet was used. After being pre-

trained on ImageNet the last completely connected layer was removed so that the rest of the 

layers of the ConvNet could be treated as a fixed feature extractor for the dataset of images used 

in this investigation. This was used to build an array with feature information for the images 

within the selected categories. In the same way that brain activation correlation was computed, 

the correlation between the image features was also calculated and visualized in a matrix.   

 

Discussion: Data Analyses Results 

Category Correlation  

Each category of stimuli consists of four repeated images and up to ten non-repeated 

exemplars of the category. As explained above, the neural data for each image was retrieved and 



                                                                   Mahableshwarkar  
 
13 

Early Visual Cortex PPA 

the correlation between the brain activation of each image was computed. This representational 

similarity analysis of neural activation correlation (r) was visualized using Matplotlib and was 

created for every category, and each ROI. In all, three matrices were created for each category – 

one corresponding to Early Visual Cortex activation, one for LOC activation, and one for PPA 

activation (Figure 3 &4). This covers different depths in the visual processing stream from early 

processing to later processing. The scale used for each matrix is a color bar from dark blue (low 

correlation) to yellow (high correlation). Given that the diagonal in the middle is a correlation 

between the same image presentation’s neural activity, it has a correlation of one, which is why it 

is completely yellow. The 4x4 matrix (0-3 by 0-3) within the whole matrix represents the 

correlation between the repeated images.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

LOC 

Figure 3. Representational Similarity Analysis for “Dog” in three ROIS – Early visual cortex, LOC, and PPA.  
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Research has shown that the early visual cortex acts as a first stage of processing, but still has a 

wide variety of visual computations (Lee, 2003). Neurophysiological evidence has been 

presented demonstrating that early visual cortex supports computation and representation of 

perceptual contours, surface shapes, object saliency, and possibly medial axis of forms (Lee, 

2003). Local features are extracted, but the revised hypothesis is that various stages of processing 

might occur through a recurrent feedforward/feedback connection model. Given this 

understanding of the role of early visual cortex, the matrices of neural activation correlation for 

each category can be interpreted. Since the visual information is still at a feature level, and the 

number of examples is small, it makes sense that correlation is relatively random. A major 

constraint here is the number of examples within the category. Since there are only 14 examples 

total, the statistical probability of there being some correlation between the features is at chance. 

For this reason, the early visual cortex correlations are distributed across the spectrum.  

Early Visual Cortex LOC PPA 

Figure 4. Representational Similarity Analysis for “Grocery Store” in three ROIS – Early visual cortex, LOC, 
and PPA.  
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At the level of the lateral occipital complex (LOC), it was predicted that specificity in 

processing was at a categorical level, meaning that just the general category is extracted as 

opposed to fine-grained processing. In contrast, it is hypothesized that at later areas such as PPA 

each image is recognized as a specific exemplar within a category. The matrices for LOC in 

general are in the middle of the correlation spectrum – not completely correlated but not 

extremely discrete (dark blue). This pattern demonstrates that generalization within the category 

may be occurring in the LOC. In fact, since the repeated image neural data (4x4 matrix) is not 

highly correlated with each other it can be inferred that the LOC does not perform subordinate 

categorization. Rather, just the general category is extracted and stored.  

At the level of the PPA it was predicted that the 4x4 matrix of repeated image activation 

correlations would have r values nearer to 1 (i.e. yellow squares). This however was not the case 

as seen in Figure 3 & 4. Given the variability in image features in the stimuli, it is possible that 

during each presentation of the image different aspects of the image were attended to. The 

experimental design of the study had participants merely completing a valence judgement task, 

therefore attention was not targeted to one aspect of the image. This can contribute to variability 

in response. For the rest of the matrix, given that PPA is later in the processing stream, it was 

predicted that subordinate categorization would occur. The low correlation (dark blue) between 

the image activation in PPA can be inferred to represent subordinate categorization. The within 

category correlations may be low because each image is recognized as a unique scene as opposed 

to a general exemplar within a category.    

Differences between Correlation Means  

While the RSA’s were informative per category, the overall pattern between categories was 

less clear. For this reason, the average correlation within the repeated image activation, non-
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repeated image activation, and total image activation was calculated and visualized for each 

category (Figure 5).  

 

 

 

 

 

 

 

 
 
 
 

 
 
 
 
 
 
 
 

 
 

The graph shows that for each category: Mean Reps < Mean Total < Mean Non-reps. Essentially, the 

average correlation for repeated image activations are the lowest across all categories and the 

average correlation for the non-repeated image activations are the highest across all categories. 

The only anomaly is the mixed category, which was included as a between-categories 

comparison. The mixed category was included as a baseline comparison since all the images are 

from different categories. The responses for images within the mixed category are low and 

stable, corroborating the hypothesis that LOC responses are category selective. This distinct 

Figure 5. Average correlations of neural activation in LOC across categories 
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difference between the pattern of activation for the mixed category and all the other categories 

demonstrates that categorical information is of importance in LOC. The mean correlation for the 

repeated images is the lowest, which can be explained by adaptation. Repeated exposure to the 

same image can result in a diminished signal in LOC (Grill-Spector et al., 2006). This reduction 

in activation culminates in a lower average response for repeated images in the LOC. The higher 

mean correlation for non-repeated images on the other hand has implications for the role of LOC. 

It can be inferred that neural responses in the LOC are better driven at a categorical level, 

meaning that the non-repeated images within a category generated the strongest signal.  For the 

future, all 113 repeated image categories should be analyzed as such so that this pattern can be 

confirmed across a larger set of data. While this pattern remained relatively consistent, it was not 

clear how similar the degree of difference is between categories. Thus, the standard deviation 

was computed for the three differences between the calculated means: Total-Nonrep = 0.02679, 

Total-Rep = 0.02642, Nonrep-Rep = 0.03650. The low standard deviation for each mean 

difference indicates that across categories the difference between the total image activation, non-

repeated image activation, and repeated image activations is relatively consistent. Regardless of 

the type of category, responses in the LOC are higher at the categorical level as opposed to 

specific exemplars. It is important to note the variability within categories when analyzing this 

data. Many of the images selected were COCO stimuli, meaning multiple objects interacting in a 

context. Therefore, while the overall category may be salient there may be competing factors in 

the images such as people or other objects. This leads to the question – how invariant are neural 

responses to variability in these category exemplars? Despite significant variability, neural 

activation in LOC is higher for the non-repeated exemplars compared to the repeated images, 

which have no variability. The variability in exemplars therefore further points towards 
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responses in LOC being tuned for the categorical level of the stimulus as opposed to the specific 

image.  

Since the PPA is known for recognition of scenes, the categories that pertain to scenes 

were extracted and analyzed separately (Figure 6).  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
The pattern within the PPA is of particular interest when comparing it to the LOC since it is 

more downstream in the visual processing system. Just as in the LOC, Figure (6) shows that for 

each category: Mean Reps < Mean Total < Mean Non-reps, except for “banquet hall”. This may be due 

to the fact that this category only had four non-repeated exemplars. The variability within the 

category as well as limited number of exemplars may have skewed the pattern. Since the PPA is 

hypothesized to perform subordinate categorization, it was predicted that the correlation mean 

Figure 6. Average correlations of neural activation in LOC across scene categories 
 

Average Correlations in PPA for Scene Categories 
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for repeated images would be higher. Activation gets sparser at higher levels of processing. In 

early processing areas voxels are feature selective, so many voxels are activated (Lee, 2003). In 

later processing areas however one voxel may be selective for a specific object. For this reason, 

the overall activation is much sparser due to the selectivity of the voxels. In multiple 

presentations of the same image it is possible that different objects were attended to, which 

would create discrete neural representations in the brain in higher processing areas (Yantis, 

2002). The images can have multiple objects or subjects, and since subjects were performing a 

valence judgement task, their attention was not forced to a certain aspect of the image. On each 

presentation of the image, different aspects could have been attended to which could explain why 

neural activity was varied between the repeated images. To investigate this possibility, 

correlations between image features was later computed.  

In order to substantiate the claim that LOC selectively responds at a categorical level, 

activation for non-repeated images was compared between LOC and PPA. Figure 7 compares the 

neural activity for non-repeated images within scene categories in the LOC and PPA. The 

general pattern found is that activation in the LOC is higher than activation in the PPA at a 

categorical level. The clear difference in level of activation between LOC and PPA supports the 

hypothesis that while LOC is driven by visual input at a categorical level, PPA responses are not.  

Research using fMRI adaptation paradigms have also shown that the PPA responds just as 

strongly to viewpoint changes as it does to scene changes (Epstein et al., 2003). Since PPA does 

not represent scenes in a viewpoint-invariant manner, it is important to consider the variability in 

scene category exemplars in terms of viewpoint. The “beach” category for example shows 

beaches from various views such as an aerial view or ground-level view. The effect of viewpoint 

changes coupled with the finding that PPA neural activations are lower for exemplars within the 
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same category, lends to the conclusion that the PPA is not invariant to variability in the 

appearance of category exemplars.  LOC on the other hand has been found to show a preference 

for object changes over spatial changes and shows higher average correlations for exemplars 

within the same category (Epstein et al., 2003; Appelbaum et al., 2010). This draws a distinction 

between the LOC and PPA in terms of the response to specific categories vs. specific images, 

respectively. Research has shown that PPA is selective for places and scenes and that LOC is 

more object selective, but it should be noted that the gist of a scene provides context for object 

detection (Bar, 2004). It therefore may be the case that top-down signals from PPA modulate 

activity in LOC and that bottom-up signals from LOC modulate PPA. For instance, a beach 

umbrella might be an indication of a beach scene. In the context of the pattern found in the 

BOLD5000 data, it is evident that in terms of categorization the two ROIs have varying degrees 

of selectivity. These findings in all suggest that a hierarchy of regions including LOC and PPA 

support categorization of visual input. 

 

 

 

 

 

 

 

 

 

 

Figure 7. Average correlations of non-repeated image brain activation in PPA and LOC for scene 
categories 
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Image feature correlations vs. Brain activation correlations 

 Due to the variability in images within each category, image feature correlations were of 

interest. Convolutional neural network features for the images were used to build an array where 

the images again were the rows 9. In the same way that brain activation correlation was 

computed, the correlation between the image features was also computed and visualized in a 

matrix (Figure 8).  This matrix was made in order to see if image feature correlation patterns 

matched the neural activation. Thus, the role of image similarity can be elucidated.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dog for example, has low image feature similarity as evidenced by the low correlations (dark 

blue). The RSA’s showed that image variability could contribute to the variability in brain 

activation response, however further analysis was needed.  

 Image feature correlations were averaged for all of the images within a category and were 

compared to the mean non-repeated brain image activation for each category (Figure 9). 

Figure 8. Matrix of image similarity correlations for “Dog” and “Surfing”  
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Repeated image data was not compared since their image features are identical. It was observed 

that the total image feature correlation means were higher than the non-repeated image brain 

activation means, except for two categories (dog and squirrel). The variability among the images 

in each category could be contributing to the variability in brain activation. To quantify to what 

degree image similarity predicted neural activity the correlation between the image feature 

similarity and the brain activation was calculated. The r value was found to be -0.13662642. This 

moderately negative relationship between image similarity and brain activation was skewed by 

two categories – “Dog” and “squirrel”. These two categories demonstrate a pattern reversal since 

the brain activation average correlation is higher than the image feature average. For all of the 

other categories the opposite is true. This reversal in pattern can be attributed to variance in 

image selection. “dog” and “squirrel” images were much more constrained in the image selection 

process. Due to stimuli limitations, the “squirrel” category in fact only had 4 non-repeated image 

exemplars, all of which were similar in sizing and viewpoint. Images in the “dog” category were 

also very similar in content. Each exemplar had a dog of a different breed; but viewpoint, sizing, 

and distracting factors were all constant. In contrast, the other categories often had many more 

competing factors in the image such as a person in the background, or variance in viewpoint. 

Aside from these two categories however, plotting the image feature correlations and brain 

activation average correlations reveals an interesting pattern (Figure 10). The moderately 

positive relationship between image similarity and brain activation found could account for some 

of the variability in brain activation within categories. To a certain degree image feature 

similarity is correlated with brain activation for non-repeated images within categories. Some of 

the variability in neural activation found within LOC therefore could be attributed to this 

moderately positive relationship.  
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Figure 9. Average correlations of non-repeated image brain activation in LOC compared to 
average image feature correlations 

Figure 10. Average image feature correlations vs. Average correlations of non-repeated image 
brain activation in LOC. The red data points represent “Dog” and “Squirrel”. The blue data points 
represent the rest of the categories.  
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Conclusion 
 
 In this paper we present fMRI evidence that can elucidate the visual computation 

performed in order to support visual object/scene recognition and categorization. The specific 

organization that supports complex recognition capabilities relies on various regions in the brain. 

This study focused specifically on the mid-level lateral occipital complex, as well as early visual 

cortex and PPA as upstream and downstream comparisons respectively. Preliminary analysis 

supports the hypothesis that the LOC acts as a mid-level processing system for object recognition 

and consequently does not perform subordinate categorization. Analysis showed that compared 

to Early Visual Cortex and PPA, responses in the LOC are driven at a category level. Exemplars 

are represented generally in terms of the overall category rather than on an individual level. 

Further analysis of the 113 repetition categories needs to be carried out such that the effect of 

repetition and categorization can be analyzed on a larger scale. Understanding the role of LOC 

implicates the network of activation that supports object recognition overall and can help 

elucidate the neural computation that supports complex recognition tasks (Walther, 2009). The 

larger debate of a modular vs. distributed organization particularly can be clarified. Given that 

the role of LOC may not be specialized for a specific category or have fine-grained 

representations, the data lends to a distributed model of visual processing. Further analysis of the 

BOLD5000 data and the many diverse categories represented should be conducted to understand 

the functional organization of visual input computation in the brain.  
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