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Abstract

The dissertation consists of three chapters studying theoretical to applied topics in

macroeconomics using stochastic overlapping generations models.

Chapter 1 studies the welfare effect of social security across heterogeneous households

who differ by education levels, saving propensities and lifecycle income in the U.S. I found

that the U.S. social security can benefit the rich more than the poor, unlike the policy’s

motivation when it was initiated after the Great Depression. The intuition is that there

is a channel, called a general equilibrium capital income effect, generating a significant

welfare gain to the rich, which dominates a welfare loss from redistribution. Crowding out

effect increases the interest rates and the value of the wealth of the rich rises more than the

poor. There are two important contributions to this paper. First, I show the importance

of household heterogeneities in the welfare analysis of social security. Without them at

all, I found a social security system will reduce the overall welfare. With only income

heterogeneity, social security benefits the poor the most. However, after incorporating

rich heterogeneities in saving propensities, I found the policy can rather benefit the rich,

unlike its purpose. In the calibration, I allow agents to live about 60-periods of lives

which requires an efficient and accurate algorithm to compute an equilibrium in this

large-scale lifecycle model under aggregate shocks. I developed my own algorithm which

has advantages in terms of accuracy and speed compared to the existing algorithm. This

algorithm can be used in other applied topics such as inequality, asset pricing, and portfolio

choices.

Chapter 2 examines the consumption risk of households when they face different prices

for identical goods. We found that household’s consumption volatility will increase under

vi



the price variation following the empirical observation that the poor pay more than the

rich for the same goods because of quantity premium. The rationale is that if those re-

ceiving high-income shocks face lower effective prices, then the double-lucky households

can purchase more goods than the economy with homogenous prices. Therefore, there is a

larger consumption gap across households and we observe a rise in consumption volatility.

This additional consumption risk generates a super-modular welfare loss. The result of

this paper implies that the previous studies ignoring the price heterogeneity might un-

derestimate the household consumption risk, and we need to consider the complementary

consumption risk from the interaction of incomplete market and imperfect competition

frictions.

Chapter 3 analyzes the singular invariant Markov distribution in stochastic overlap-

ping generations models. Interesting features of singular measures are: 1) they do not

permit density functions and 2) the support of the distribution has self-affinity. In this

chapter, we provide a sufficient condition for a singular measure to arise in a simple three-

period-lived log-monetary model to a general stochastic OLG model where households live

arbitrary periods, have general preferences and the Lucas-tree asset. We also both analyt-

ically and numerically characterize the set of economies satisfying our sufficient condition.

The contribution of our paper is to extend the theoretical knowledge for the stochastic

steady-state in stochastic OLG models beyond its existence, uniqueness, and stability. In

addition, we provide an economic mechanism/model which generates a fractal pattern in

its rational expectation equilibrium as observed in the time-series financial data on stock

prices.
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1 Preference Heterogeneity, Aggregate

Risk and the Welfare Effects of

Social Security

1.1 Introduction

There has been little research studying the distributional welfare implications of pay-as-

you-go social security systems between the rich and poor or the educated and uneducated

due to computational challenges.1 However, it is essential to identify who are welfare

winners and losers and which group obtains more welfare benefits than the other in eval-

uating the effects of social security policy when socio-economic groups are heterogeneous.

From a political economy perspective, distributional welfare analysis allows us to explain

who would support the sustainability of the welfare system. It can also answer whether

the policy indeed advantages the poor or uneducated groups, which was a major motiva-

tion for the establishment of the U.S. Social Security system after the great depression.

Empirical papers find that education levels are correlated with income and differences in

preferences, which in turn determine the overall welfare effects of a social security system.

Income profiles determine whether intragenerational redistribution by the policy gener-

ates benefits or costs. Preferences can affect the size of income effects from price changes

1 However, there is extensive research on the welfare effects of the policy using the model with repre-
sentative households (See İmrohoroglu et al. (1995); Conesa and Krueger (1999); Krueger and Kubler
(2006); Hasanhodzic and Kotlikoff (2013); Harenberg and Ludwig (2018)).
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1 Preference Heterogeneity, Aggregate Risk and the Welfare Effects of Social Security

induced by social security. The poor or uneducated group obtains welfare gains from the

intragenerational redistribution whereas the rich or educated group does not. However,

an increase in interest rates from crowding out by social security produces a larger income

effect for the latter group since they can save more, due to a higher marginal propen-

sity to save overall, and a stronger precautionary saving motive. These opposing welfare

effects require a quantitative analysis to determine the distributional welfare effects of

a pay-as-you-go social security system across education strata. The goal of this paper

is to pursue such a quantitative analysis by developing an efficient, accurate and stable

algorithm for solving a large-scale lifecycle model with ex-ante heterogeneous households

and aggregate shocks when state aggregation methods should be avoided due to their

large errors. This paper finds that there are both welfare winners and losers in its cal-

ibrated model. College educated groups and high-school dropouts obtain welfare gains

of 1.72% and 0.44% respectively in terms of certainty equivalent consumption variation

(CEV henceforth) between the laissez-faire baseline economy and the economy with a

social security system. However, the high-school graduates group receives a net welfare

loss of −0.51% in terms of the same measure. This quantitative result suggests that social

security does not necessarily generate advantages for the relatively poor groups.

The empirical literature has found that educated households are more patient and less

willing to substitute intertemporally than uneducated households, on average.2 In ad-

dition, the educated group has a uniformly higher income profile than its counterpart.

The introduction of social security systems provide i) old-age consumption insurance,

ii) change prices, and iii) implement redistributive intragenerational transfers. The het-

erogeneity in preferences and income profiles affects welfare through each of these three

channels.

2 Lawrance (1991) finds that time preference rates vary 2 percent between college-educated families and
families without a college education in the U.S., with income, age and race held constant. With the
PSID panels, Cagetti (2003) finds that the rate of time preference decreases with education and is
higher by 5% − 10% for college-educated families than for those in lower educational groups. The
risk-aversion coefficient also decreases with education in their estimation results. Alan and Browning
(2010) strongly reject the hypothesis of the homogeneity of the discount factor and the elasticity of
intertemporal substitution with the same data. Druedahl et al. (2017) exploit Danish longitudinal
register data and conclude that the estimated values of discount factors and CRRA utility coefficients
are shifted towards higher values for high-skilled households with at least a bachelor degree.

2



1.1 Introduction

For example, more risk-averse agents save more for self-insuring against volatile capital

income in retirement periods. Social security systems reduce the income risk of retirees

by providing transfers from the young’s labor income. The insurance given by social secu-

rity generates larger welfare benefits for more risk-averse households since they strongly

demand the stable consumption streams which can be achieved via the income-risk hedge.

More patient and risk-averse households experience large positive income effects when the

rate of return rises from crowding out by social security systems because they save a large

amount due to a high marginal propensity to save, and strong precautionary saving mo-

tives. The large income effects enhance the welfare of these households by increasing their

mean consumption levels. The social security system also generates substitution effects by

raising interest rates. Under a higher interest rate, agents shift their consumption to the

future. More patient households prefer such consumption shifting more than less patient

ones since they value future consumption highly. As a side effect of crowding out, wages

decrease and thus households experience negative income effects. In addition, there is

an intragenerational redistribution from high to low-income households via the linear tax

and lump-sum transfer incorporated into the pay-as-you-go social security system. Thus,

the income poor experience an increase in their lifetime income whereas the income rich

face a decrease.

In each channel mentioned above, social security systems generate different welfare

implications across groups with varying levels of education. Thus, the overall welfare

effects of social security systems can be unequal over such groups. However, we cannot tell,

a priori, which groups obtain more welfare than others and who get gains and losses from

the policy since there are opposing welfare effects for all educational groups. Specifically,

the educated group can obtain welfare gains from price changes induced by social security

if the positive income effects from increases in interest rates dominate the negative income

effects from decreases in wages. In contrast, the intragenerational redistribution offsets

such possible gains. For the uneducated group, the transfer from the income rich enhances

their welfare, but they can experience an overall welfare loss from the policy if the negative

income effects from wage decreases dominate the relatively smaller positive income effects

3
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from rises in interest rates.

Therefore, we need a quantitative analysis to determine the distributional welfare effects

of one of the largest components of government expenditure in many developed economies.

However, it is challenging to compute the equilibrium in a large-scale lifecycle model with

ex-ante heterogeneous and many-period-lived agents. State aggregation methods such as

the one in Krusell and Smith (1998) can be a solution to compute equilibria in such models,

as adopted, for example, in Storesletten et al. (2007). However, Krueger and Kubler (2004)

show that the state aggregation methods can generate large errors in individual optimal

choice problems if aggregate wage and asset return risks are imperfectly correlated due to

stochastic depreciation, which is present in the model of this paper, and needed to study

the insurance function of social security in pooling labor and capital income. For the

quantitative welfare analysis, then, large errors in individual choices should be avoided,

since they can lead to incorrect welfare implications.

In this paper, I provide an accurate, fast and reliable algorithm for computing equilibria

in a lifecycle model with rich heterogeneity and imperfectly correlated aggregate risk. I

also suggest how to computationally deal with the model with borrowing constraints and

multiple assets so as not to lose accuracy and speed of convergence. With this algorithm,

I study the distributional welfare implications of a pay-as-you-go social security system

across educational strata. In addition, I quantify the welfare effects of each of the three

channels mentioned above for each educational group through a welfare decomposition

analysis. This decomposition analysis indicates which channels produce welfare benefits

and costs among different educational groups.

1.1.1 Approach

I calibrate a lifecycle model with ex-ante heterogeneous households classified by their

educational levels, business cycle risk, and borrowing costs. There are three levels of

education: college graduates, high-school graduates, and high-school dropouts. The ed-

ucation level determines risk-aversion, time preference and permanent income profiles of

4



1.1 Introduction

households.3 In the baseline calibration, college graduates are the most patient and most

risk-averse, then high-school graduates, and high-school dropouts in order. Due to the

education premium, college educated groups have higher lifecycle income profiles than the

other two groups. In this model, I focus on the impact of aggregate risk as opposed to

idiosyncratic risk when there are ex-ante heterogeneous households. The financial market

is incomplete against business cycle risk because there are more states than assets – stocks

and bonds – in the model. In addition, an aggregate shock is modeled to affect both the

total factor productivity (TFP) and capital depreciation. In the calibrated model, TFP

and stochastic depreciation are imperfectly correlated to be consistent with data. Then,

the pay-as-you-go social security transfer can provide insurance on old-age consumption

by pooling wage and asset return risks, i.e. intergenerational risk sharing, in this setting.

The fact that consumption profiles track income profiles is suggestive evidence of the

presence of borrowing constraints (See Gourinchas and Parker (2002) and Fernández-

Villaverde and Krueger (2007)). Thus, I let households face a borrowing constraint in the

model. I introduce a soft borrowing constraint where all generations pay borrowing costs

which linearly increase in the amount borrowed. Thus, soft borrowing constraints imply

that there is a wedge between borrowing and lending rates, unlike the hard borrowing

constraint as done in Constantinides et al. (2002), where borrowing and lending rates are

the same but the young face limits on the amount borrowed. There are many reasons for

introducing soft borrowing constraints. First, it is more realistic to assume that agents can

borrow as much as they want if they accept high borrowing costs. For example, households

denied loans by banks or under credit card borrowing limits can access non-banking finan-

cial institutions such as payday loans at high cost. Second, the soft borrowing constraints

already nest hard borrowing constraints. For example, as linear borrowing cost param-

eters go to infinity, soft borrowing constraints degenerate to no-borrowing constraints.

A crucial practical reason for working with soft borrowing constraints is that they make

computation easier by allowing me to approximate the borrowing cost schedule with a

3 It is standard to estimate preference heterogeneity across different education groups, assuming homo-
geneity within groups in the empirical literature on preferences (See Lawrance (1991); Cagetti (2003);
Alan and Browning (2010); Cooper and Zhu (2016); Druedahl et al. (2017)).
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smooth function. The borrowing costs apply to the total amount borrowed, whether done

via trade in stocks or bonds, since real-world short-sale transactions on stock generally

involve a stock loan fee or stock borrowing fee from a brokerage firm.

The presence of borrowing constraints significantly affects the welfare implications of

social security. Under hump-shaped income profiles, young generations are borrowing

constrained because they have incentives to borrow against future income to increase

current consumption, but borrowing constraints prevent it. Social security systems lower

labor income by imposing a tax on wages and generating crowding out which reduces

wages. Thus, the marginal young households should decrease consumption even when

they are already borrowing constrained since their income mostly comes from supplying

labor. Therefore, social security systems generate welfare costs for all groups if borrowing

constraints prevent consumption smoothing in the early stages of life.

I develop an algorithm to compute the equilibrium in a large-scale lifecycle model

with ex-ante heterogeneity and an imperfectly correlated aggregate shocks. Since state

aggregation methods yield large errors in this environment, I instead use cash-on-hand

variables across all ages and types as state variables in the policy functions. The shocks

in the model are small, and thus the policy functions are well approximated by linear

functions of the state variables, which is justified by a routine application of stochastic

extensions of the Hartman-Grobman theorem for stochastic dynamic systems. Using linear

functions makes computation feasible and generates acceptable errors. However, it still

takes a long time to compute equilibria when there are multiple assets because one needs

to use Newton-type methods to solve non-linear optimality conditions. To resolve this

issue, I adopt the consumption policy functions from the economy with only risky capital

to simulate the economy with multiple assets. This computational strategy has several

advantages. First, it requires solving for only the Euler equations corresponding to risky

capital. One can transform such optimality conditions into a system of linear equations in

the coefficients of policy functions which is very easy to solve. Thus, it takes minimal time

to find policy functions in the economy with only risky capital. Surprisingly, there are

small errors in the optimality conditions evaluated at the simulation data which I generate
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by finding stock and bond shares in each simulation period given the consumption policy

functions from the single asset economy.4 To further increase accuracy, I solve the model

twice: on the first-order Smolyak grid and the simulated Ergodic set in the spirit of

Judd et al. (2011). Lastly, I approximate the soft borrowing cost schedule with a smooth

function to avoid having to solve for conditional optimality depending on whether or not

households borrow.

With the algorithm above, I compute an equilibrium in the laissez-faire baseline cali-

brated economy and the economy with a social security system. Then, I calculate certainty

equivalent consumption variation from the baseline economy to the economy with the pol-

icy in terms of the ex-ante expected utility to evaluate the welfare implications of social

security systems across educational groups in general equilibrium. I also consider a partial

equilibrium version of the model which restricts prices from changing to isolate how the

insurance and redistribution effects from the introduction of social security affect the wel-

fare of different agents. To compute the partial equilibrium, I find policy functions under

a social security system when rational agents expect future prices as in the baseline econ-

omy by injecting the law of motion from the baseline economy, and simulate these policy

functions while imposing the simulated prices from the baseline economy. I also compute

the CEVs from the baseline economy to the partial equilibrium economy. With the CEV

values, I run a welfare decomposition analysis to determine the channels of welfare benefits

and costs for each educational group among risk-sharing, limited consumption smoothing,

intragenerational redistribution, and general equilibrium effects.

4 As error measures, I use the average deviations of simulated data generated by approximated policy
functions from the perfect satisfaction of Euler equations. The incomplete market literature provides
a possible explanation behind the good approximations with only the capital asset. The results in the
literature imply that adding an asset will not change the existing incomplete markets equilibrium as
long as the new asset doesn’t complete the market (See Cass and Citanna (1998)).
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1.1.2 Findings

The calibrated model with heterogeneous agents in this paper generates different welfare

results from those obtained in the representative agent case. The latter model generates

a welfare loss as noted in the previous studies whereas the heterogeneous agent model

generates gains for certain educational groups from the social security system. In partial

equilibrium, high-school graduates and dropouts obtain welfare gains whereas college edu-

cated groups have welfare losses from the welfare system. Specifically, certainty equivalent

consumption variations are −1.68%, 1.01% and 2.36% for college graduates, high-school

graduates and high-school dropouts between the baseline calibrated economy and the

economy with a social security system but without price changes, respectively. The wel-

fare results are flipped in general equilibrium where high-school dropouts and college

educated groups are advantaged, while the high-school graduates group is disadvantaged

by the social security system. Corresponding certainty equivalent consumption variations

are 1.72%, −0.51% and 0.44% between the baseline calibrated economy and the economy

with a social security system.

The insurance provided by the social security system increases the welfare of all groups

because the intergenerational transfer reduces the consumption volatility in old-age peri-

ods by pooling imperfectly correlated risk in labor and capital income. Both high-school

graduates and dropouts obtain a welfare gain from intragenerational redistribution from

the college educated groups through the linear tax and lump-sum transfer structure of

the social security system. This channel mostly advantages the high-school dropouts

since they receive more than what they contribute to the system. On the other hand,

the college graduates group experience a welfare loss from such redistribution. The bor-

rowing costs lower the welfare of all groups under the social security systems because

this friction prevents consumption smoothing during the young periods. Social security

contribution lowers disposable income. Young households have the incentive to increase

current consumption by borrowing against their higher future incomes. However, the

amount borrowed is limited due to the borrowing costs and optimal intertemporal choices

cannot be achieved.
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In general equilibrium, increases in asset returns provide a substantial offsetting welfare

gain to the college educated group. College graduates are the most patient and risk-

averse in the calibrated model. Thus, they save more than the other groups because of a

higher marginal propensity to save and a stronger precautionary saving motive against the

possible loss of asset value due to the depreciation shocks. An increase in the rate of return

from crowding out generates a substantial income effect to the college graduates group and

lowers the price of future consumption. Thus, the college graduates group can increase

their mean consumption and purchase old-age consumption (that they value relatively

more highly than the other groups) at lower prices after the introduction of the social

security system. At the same time, the social security system reduces wages by crowding

out private saving. The wage reduction together with the labor income tax causes a larger

set of young households to be borrowing constrained by reducing their disposable income

more in general equilibrium than in partial equilibrium. Thus, the young consumption

will decrease and deviate further from the optimal intertemporal choice, which generates

a greater welfare cost. Therefore, the high-school graduates experience a welfare loss in

general equilibrium in the end.

The welfare cost from the borrowing constraints also has an effect in the economy

without the ex-ante heterogeneity. I find that there is a welfare loss in the economy with

representative households from the social security system in general equilibrium along

with the prior studies. However, unlike the previous studies, the social security system

yields a welfare loss even in partial equilibrium in the economy with borrowing constraints,

because costs from the friction dominate gains from old-age consumption insurance.

In the sensitivity analysis, I try several experiments to test the robustness of the results

in the baseline calibrated model. First, I increase the share of the college-educated group,

considering the growing number of college graduates in the U.S. recently. My model

suggests that a larger share of college graduates implies that average welfare rises for all

groups under social security, but the high-school graduates still obtain a welfare loss. The

reason is that an increase in the share of college graduates enlarges the amount of transfer

and thus strengthens both inter- and intragenerational redistribution between different
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groups and generations. Second, I expand the size of the social security systems because

the current U.S. social security contribution rate is much higher than the marginal rate

in the benchmark model. A moderate size social security system changes the quantitative

welfare results such that all groups obtain lower welfare than the benchmark case. The

welfare decrease is much more significant for high-school graduates and dropouts. It turns

out that the high-school dropouts group experience a welfare loss, unlike in the baseline

calibrated model. This result obtains because a larger social security system results in

a significant drop in wages which leads to very low young-age consumption for the poor

income group due to the limited consumption smoothing from borrowing constraints.

Finally, I consider how the volatility in capital income risk affects the distributional welfare

implications of social security by doubling the size of stochastic depreciation shocks to

make the equity premium and Sharpe ratio from the model closer to their empirical

counterparts. Under a larger shock, even high-school graduates have welfare gains because

of strengthened insurance via social security. These comparative statics analyses imply

that although the quantitative welfare results are affected, the key result remains the

same: the certainty equivalent consumption variation is the largest for college graduates,

then high-school dropouts, and high-school graduates in order.

1.1.3 Literature

The study of the welfare implications of social security dates back to Diamond (1977)

and Merton (1983). Those papers show how social security can partially insure against

aggregate shocks to increase economic welfare. Based on the insight that social security

can reduce consumption risk, many papers examine its welfare effect analytically in two-

period partial equilibrium models (See Gordon and Varian (1988), Shiller (1999), Bohn

(2001), Ball and Mankiw (2007), and Bohn (2009)). On the other hand, there are only a

few quantitative papers using general equilibrium models with aggregate risk and social

security. Krueger and Kubler (2006) is a representative example. They evaluate the

welfare effects of social security by comparing its partial risk-sharing benefit in incomplete
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markets with its welfare cost due to crowding out of capital accumulation. However, that

paper ignores household heterogeneity in preferences and age/income profiles.5 Therefore,

there are substantial differences in the welfare results. Krueger and Kubler (2006) conclude

that the introduction of a marginal social security system does not improve the welfare

of households in general equilibrium from an ex-interim welfare perspective although it

does in partial equilibrium. In my paper, certain groups can obtain welfare gains from

preferences and age/income profiles heterogeneity. Without these ex-ante heterogeneities,

the lifecycle model with borrowing constraints generates a welfare loss due to the limited

consumption smoothing in the early stage of life. Harenberg and Ludwig (2018) considers

both aggregate and idiosyncratic risks and study the insurance function of social security

against the amplified risk via interaction between the two shocks. However, their paper

does not consider ex-ante heterogeneity and borrowing constraints. Thus, they cannot

answer who is advantaged by social security systems and who is not.

In terms of computation, Hasanhodzic and Kotlikoff (2013) and Reiter (2015) provide

methods for solving large-scale lifecycle models. Hasanhodzic and Kotlikoff (2013) ex-

amine a lifecycle model with long-lived agents, multiple assets and imperfectly correlated

aggregate risk. They also approximate policy functions with linear functions without state

space reduction. Unlike their paper, my model adds ex-ante heterogeneity and borrowing

constraints which make computation more burdensome and generate different welfare im-

plications. To resolve the computational challenge, I use the strategy of adopting policy

functions from the single asset economy to the multiple assets one. Thus, I can reduce

computation time significantly by transforming the problem into a system of linear equa-

tions in the economy only with risky capital. I approximate borrowing constraints with

smooth functions so that I can compute equilibrium with smooth polynomials. Reiter

(2015) also considers global linear approximations to large-sized lifecycle models. In his

model, an imperfect correlation structure is not considered between wages and asset re-

turns, which is significant for the insurance role of social security. Reiter (2015) deals

with multiple assets through efficient implementation of quasi-Newton methods. I deal

5 Only Samwick (1998) and Hosseini and Shourideh (2017) consider preferences heterogeneity in the
discount factor, but their models do not have aggregate shocks.
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with the same issue by adopting the results from the single asset economy as discussed

above.

I organize this paper as follows. Section 2.2 describes the quantitative model. I present

the calibration in Section 1.3. Section 1.4 shows the main results of the quantitative

analysis. In Section 1.5, I check the robustness of the results. Section 2.1 concludes the

paper. The appendix provides the novel numerical algorithm of this paper.

1.2 The economic model

1.2.1 Aggregate shock and demography

The economy is closed. Time is discrete, labeled by t = 0, 1, . . . ,∞. An aggregate

shock zt arises at the beginning of each period in the economy. zt follows a first-order

Markov chain with a finite support Z and a nonnegative transition probability matrix πz,

where πz (zt+1 | zt) represents the probability of zt+1 given zt and zt = (z0, z1, . . . , zt) is

the history of shocks up to time t given the initial shock z0.

M types of agents are born in every period and live ad periods of lives. I denote the type

and age of agents by m = 1, . . . ,M and a = 1, . . . , ad. Nam,t represents the population

of age a and type m group in time t. Each group consists of a continuum of households.

There is exogenous population growth and the growth rate is given by n. The total

population at time t is denoted by N (zt) =
∑M

m=1

∑ad
a=1Nam (zt). I normalize the initial

population to be unity,
∑M

m=1

∑ad
a=1Nam (z0) = 1 where pm =

∑ad
a=1 Nam (z0) for the share

of group m in each generation and
N(a+1)m(z0)

Nam(z0)
= (1 + n) for ∀a = 1, . . . , ad − 1. Then, the

total population at time t is N (zt) = (1 + n)t. There is no mortality risk. Within an age

group, I assume there is a continuum of agents with a unit measure so that households

take prices as given.

12



1.2 The economic model

1.2.2 Heterogeneous preferences and labor productivity process

In the economy, there is initial condition heterogeneity. At birth, type m households

are endowed with different time discount factor βm and risk aversion γm. This initial

condition heterogeneity remains the same over their lifetime. Agents are endowed with

one unit of time per period and supply labor inelastically. Agents are also born with

different productivities, so I let θam denote the stationary age-type specific productivity

profile over the life-cycle. They retire exogenously at age aR < ad following the statutory

retirement age. Retirees do not provide labor supply. Hence, the labor supply is zero for

retirees.

1.2.3 Borrowing costs

I introduce a soft borrowing constraint where households can borrow as much as they

want and all generations face borrowing costs which increase in the amount borrowed.

With this constraint, there is a wedge between borrowing and lending rates. This is a

reasonable alternative to hard borrowing constraints where the young can face limits in the

amount borrowed and borrowing and lending rates are the same because we observe that

deposit rates are less than the interest rates on personal bank loans, and there are spreads

between the borrowing and lending rates in the data. Empirical papers also support the

fact that the risk-free saving interest rate is lower than the loan interest rates, which is

called dual interest rates(See Athreya et al. (2012)).

When there are both risky and risk-free assets, most previous studies impose a borrow-

ing constraint on bond holdings. However, even when investors short-sell stocks, there

is a stock loan fee or stock borrowing fee that a brokerage firm charges to investors who

borrow shares.6 Thus, one should consider a borrowing cost for not only bond borrow-

ing but also stock short-sale. When households borrow via bonds or investors short sell

6 In accordance with a Securities Lending Agreement, a stock loan fee must be completed before the
stock is borrowed by investors such as a hedge fund or retail investor.
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stocks, there are lower borrowing interest rates or low stock loan fees if there are collat-

eral requirements. For example, investors face low short-sale costs when they use their

bond holdings as a secured basis. Households get low borrowing interest rates if they use

their stock holdings as collateral. Thus, I consider a borrowing cost based on the total

amount of borrowing, not bond borrowing only. Therefore, a positive asset holding offsets

the amount of borrowing via the other asset when calculating borrowing costs. If house-

holds borrow with both bonds and stock, then the total amount borrowed determines the

borrowing cost.

The model’s borrowing costs are assumed as follows:

(1.1) f (sam + bam) =


−λ (sam + bam)

0

if (sam + bam) < 0

if (sam + bam) ≥ 0

where sam and bam are stock and bond holdings for households in age a within type m.

Here, λ is a linear borrowing cost parameter. The real borrowing costs are assumed to be

disposed of by banks or brokerage firms outside of the model.

The borrowing costs imply that there are no costs if the total saving is positive whereas

households face a linear borrowing cost if they are net borrowers no matter their portfolio

composition.

Without a borrowing constraint, the young agents borrow via bonds and invest in stock

markets under an imperfectly correlated shock between TFP and stochastic depreciation.

Since all households prefer current to future consumption, the lifecycle consumption pro-

files show downward slopes for all types. The downward trends of consumption profiles

are not consistent with data. As many empirical papers noted, consumption profiles also

have a hump along with labor income profiles and the location of the consumption peak

falls between ages 45 − 55 (See Gourinchas and Parker (2002) and Fernández-Villaverde

and Krueger (2007)).

In the economy with the borrowing constraint, there is a hump in the consumption

profiles. The reason is that agents borrow less and consume more in the early ages since

the effective interest rate considering borrowing costs is bigger than the time discount
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rate. Agents postpone their consumption to the future. Thus, consumption profiles show

an upward trend in the borrowing stage. When agents save, they consider the interest rate

on saving which is lower than the time discount factor. Then, agents prefer to consume

now than future which results in the downward trend of consumption profiles in the saving

stage.

1.2.4 Household problems

At any date-event zt, households in age a within type m are characterized by both

individual states – cash-on-hand variable xam – and aggregate states – the state of the

economy zt and the distribution of households over age, type, and cash-on-hand Γt.

Households in age a within type m consume a single good cam and save via stock and

bond, sam and bam, for tomorrow. The consumer’s problem is given as follows:

(1.2) Vam (xam; z, Γ ) = max
cam,sam,bam

cam
1−γm − 1

1− γm
+ βmE

[
V(a+1)m

(
x′(a+1)m; z′, Γ ′

)]
subject to

cam + sam + bam = xam,(1.3)

(1.4)

x′(a+1)m = (1− τ)w′θ(a+1)m + (1 + r′s) sam + (1 + rb) bam − f (sam + bam) if a+ 1 ≤ aR

x′(a+1)m = (1 + r′s) sam + (1 + rb) bam + T ′ − f (sam + bam) if a+ 1 > aR

,

(1.5) z′ ∼ πz (z′ | z) ,

and

(1.6) Γ ′ = H (Γ, z, z′)
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where Γ = {xam}am is the set of cash-on-hand across all age/type groups.

For the household problem, I assume a constant relative risk aversion (CRRA) utility

function. Here,τ is time-stationary social security contribution rate, w (zt) is the aggregate

wage, rs (zt) is the rate of the equity return at the date-event zt, and rb (zt−1) is the rate

of the bond return at time t which is pre-determined at the date-event zt−1. I denote the

social security transfer by T (zt) that retirees receive after age aR. The function H (·) is the

law of motion for the set of cash-on-hand over all age/type groups which is derived from

the exogenous shock processes and the households’ optimal choices. I assume households

are born with zero assets, i.e. s0m = b0m = 0.

1.2.5 Production, factor markets, and resource constraint

I assume there is a representative firm witha Cobb-Douglas production function with

capital share α and deterministic labor-augmenting productivity growth g. The rep-

resentative firm uses capital K (zt) and hires labor L (zt) to produce output Y (zt) =

A (zt)K (zt)
α (

(1 + g)t L (zt)
)1−α

where A (zt) is a multiplicative TFP shock. I normalize

the initial labor technology level to be 1. There is a stochastic depreciation shock δ (zt)

and thus the capital stock evolves following K (zt) = I (zt−1) + K (zt−1) (1− δ (zt−1)).

The production market is perfectly competitive.

I assume that the representative firm issues both stocks and bonds to fund the accu-

mulation of the capital stock, S (zt) and B (zt) , following the finance literature where

the leverage is incorporated to increase the volatility of equity returns. Thus, K (zt) =

S (zt) + B (zt) = S (zt) (1 + kf ). kf is an exogenous debt-equity ratio which is constant

over time and states, so that the firm only chooses the aggregate capital, not the capital

structure. This approach is also used in Harenberg and Ludwig (2018) to keep depreci-

ation shocks small in calibration, while allowing for stock return volatility. They argue

that introducing leverage is desirable since large depreciation shocks generate quite large

variations in real economic variables. Hasanhodzic and Kotlikoff (2013) also note this

fact.
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The firm’s problem generates the following prices:

(1.7) r
(
zt
)

= αA (zt)

(
K (zt)

(1 + g)t L (zt)

)α−1

− δ (zt) ,

and

(1.8) w
(
zt
)

= (1− α) (1 + g)tA (zt)

(
K (zt)

(1 + g)t L (zt)

)α

where r (zt) is the rental rate of capital and w (zt) is the aggregate wage per labor supply.

From the leverage structure, I can obtain the leveraged stock return as rs (zt) = r (zt)+

kf (r (zt)− rb (zt)). This equation means the return to equity is the investment return

plus the leverage ratio multiplied by the investment return net of borrowing costs via

bonds. The mean and stock return volatility are E (rs,t) = (1 + kf )E (rt)− kfE (rb,t) and

V ar (rs,t) = (1 + kf )
2 V ar (rt) respectively. Thus, the leverage increases mean and stock

return volatility.

The labor supply by the group with age a and type m is Lam (zt) = θamNam (zt).

Thus, L (zt) =
∑M

m=1

∑ad
a=1 Lam (zt) =

∑M
m=1

∑ad
a=1 θamNam (zt). Likewise, the total stock

investment is given by S (zt) =
∑M

m=1

∑ad−1
a=1 sam (zt−1)Nam (zt−1). sam (zt−1) is the stock

investment of age a and type m agents in time t−1 for time t. The total bond investment

or bond market clearing condition is given by B (zt) =
∑M

m=1

∑ad−1
a=1 bam (zt−1)Nam (zt−1),

where bam (zt−1) is the bond investment of age a and type m agents in time t.

The resource constraint in the date-event zt is given by:

(1.9) C
(
zt
)

+K
(
zt+1

)
+ Λ

(
zt
)

= Y
(
zt
)

+ (1− δ (zt))K
(
zt
)

where Λ (zt) = λ
∑M

m=1

∑ad−1
a=1 (sam (zt−1) + bam (zt−1)) I (sam (zt−1) + bam (zt−1) < 0)Nam (zt−1) ,

where I (sam (zt−1) + bam (zt−1) < 0) is an indicator function and equals one if sam (zt−1)+

bam (zt−1) < 0, and C (zt) =
∑M

m=1

∑ad
a=1 cam (zt)Nam (zt) is the aggregate consumption.
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1.2.6 Goverment budget constraint

I assume that the financial market is sequentially incomplete, although the newly born

generation and existing generations can share risk using the tradable assets. Thus, the

social security system can insure against the aggregate uncertainty and the birth risk

that an agent cannot insure against. The government runs a pay-as-you-go social security

system. There is no debt and thus the government runs a balanced budget. I assume

that the government operates lump-sum transfer following the social security literature

(See e.g. Conesa and Krueger (1999); Hasanhodzic and Kotlikoff (2013); Harenberg and

Ludwig (2018))

With these assumptions, the government budget constraint is given by:

(1.10) τw
(
zt
)
L
(
zt
)

= T
(
zt
)
P
(
zt
)

where T (zt) is the lump-sum transfer in history zt and P (zt) is the number of pensioners,

P (zt) =
∑M

m=1

∑ad
a=aR+1Nam (zt).

1.2.7 Equilibrium

In a competitive general equilibrium, households and firms optimize, all goods, factor

and financial markets clear and the government budget constraint is satisfied. I focus

on a recursive Markov equilibrium in the computational solution. Because of both tech-

nology and population growth, I normalize all aggregate varaibles with total labor effi-

ciency, (1 + g)t L (zt). Thus, the normalized aggregate variables are q (zt) =
Q(zt)

(1+g)tL(zt)

for Q ∈ {K,Y,C, I}. I also detrend individual variables with the level of technology:

õam (x̃am; zt, Γt) = oam(xam;zt,Γt)

(1+g)t
for o ∈ {c, s, b, x, w, T}. where the tilde denotes normal-

ized variables.

With these detrended variables, I can express the individual budget constraint as fol-
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lows:

c̃am + (1 + g) s̃am + (1 + g) b̃am = x̃am,(1.11)

and

(1.12)

x̃(a+1)m = (1− τ) w̃θ(a+1)m + (1 + r′s) s̃am + (1 + rb) b̃am − f
(
s̃am + b̃am

)
if a+ 1 ≤ aR

x̃(a+1)m = (1 + r′s) s̃am + (1 + rb) b̃am + T̃ ′ − f
(
s̃am + b̃am

)
if a+ 1 > aR

where w̃ (zt+1) = (1− α)A (zt+1) k (zt+1)
α
, T̃ (zt+1) =

τw̃(zt+1)L(zt+1)
P (zt+1)

and Γ̃t is the distri-

bution of households over age, type and the normalized cash-on-hand.

The Euler equations in the detrended variables can be written as:

(1.13) (c̃am) −γm = βmEt
[(

1 + rs
(
zt+1

)
− f ′

(
s̃am + b̃am

)) (
(1 + g) c̃(a+1)m

) −γm]

and

(1.14) 0 = Et
[(
rs
(
zt+1

)
− rb

(
zt
)) (

c̃(a+1)m

) −γm]
I can also express the capital per labor efficiency level as:

(1.15) k
(
zt
)

=

∑M
m=1

∑ad−1
a=1

{
s̃am (zt−1) + b̃am (zt−1)

}
Nam (z0)

(1 + n)
∑M

m=1

∑ad
a=1 θamNam (z0)

1.2.8 Computational solution

I compute an equilibrium in my model with globally linear approximations for the

policy functions without state space aggregation as done in Hasanhodzic and Kotlikoff

(2013) and Reiter (2015). I use the set of first-order Smolyak nodes as grids on which

I approximate the policy functions. I choose the lower and upper grid bounds using the
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maximum and minimum of deterministic steady-states assuming that each state of nature

continues. I re-approximate the policy functions on the simulated nodes generated by the

policy functions on the Smolyak nodes to improve accuracy. To reduce computation time,

I use a derivative-free iterative method similar to the endogenous grid method developed

by Carroll (2006) but based on the exogenous grids. One of the most interesting findings

in this paper is that the consumption policy functions from the economy only with capital

well approximates the equilibrium in the economy with both capital and bonds. Thus, I

find the consumption policy functions from the former economy and simulate the latter

economy with these policy functions by solving for bond holdings or shares in each period

instead of finding the bond holding or bond share policy functions explicitly. Lastly, I

approximate the soft borrowing cost schedule with a smooth function to avoid solving for

conditional optimality conditions depending on borrowing or not. The borrowing costs

on the total amount borrowed allow adopting the consumption policy functions from the

economy with only risky capital to simulate the economy with multiple assets because both

economies essentially have liquidity friction on the total amount borrowed. See Appendix

2.1 for the step-by-step numerical procedures of this algorithm and its computational

result.

1.2.9 Welfare criterion

Following Harenberg and Ludwig (2018), I employ the ex-ante expected utility of a

household at the start of economic life in each group to study the welfare implication of the

introduction of the PAYGO system across groups. To evaluate the expected lifetime utility

for each group, I calculate the unconditional average of households’ expected lifetime

utility on the stochastic steady-state. By appealing the Ergodic theorem, I regard the

simulation data truncated for certain initial periods to remove the initial condition effect

to represent the Markov distribution of the equilibrium.

I compare the welfare of economies with two different policies by calculating a certainty

equivalent consumption variation for each economy and finding its ratio between the two
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economies with different policies. I compare the long-run welfare effects of the introduc-

tion of the PAYGO system. Although I do not include the transition between the two

economies from no social security system to the PAYGO system, the introduction of the

PAYGO system will increase the welfare for each group if including the welfare effects

along the transition. The reason is that those generations on the transition experience

the full insurance benefits but partly avoid the long-run welfare costs of crowding out

moving from no social security system to the PAYGO system. Therefore, the welfare I

calculate provides a lower bound on the welfare effects by ignoring the transition path.

1.2.10 Decomposition analyses for welfare effects

In the quantitative analysis below, I compute the welfare change from the laissez − faire

economy to the economy with a marginal social security system with a contribution rate

of 2%, by comparing long-run equilibria in the two economies. To measure the welfare

change, I calculate the certainty equivalent (CE) consumption for the two economies

and obtain the certainty equivalent consumption variation from the two CE consumption

values.

I decompose the welfare effect of the introduction of a marginal social security system

into risk-sharing and crowding out effects. To isolate the risk-sharing effect, I calculate

a CE consumption in a partial equilibrium setting where a social security system is in-

troduced but prices such as wages and returns remain unchanged. In partial equilibrium,

agents expect a change in their income via the social security tax and transfer. Thus,

they alter their saving behaviors but there are no general equilibrium effects on prices due

to distortions in saving behavior.

For this analysis, I impute the sequence of prices and shocks and the law of motion

from general equilibrium in the economy without a social security system into an open

economy with a social security system where prices are given as imputed. Then, I find

policy functions for the open economy to simulate an equilibrium path with which I

calculate a CE consumption in a partial equilibrium. The CEV from the risk-sharing is
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1 Preference Heterogeneity, Aggregate Risk and the Welfare Effects of Social Security

derived by comparing the CE consumptions in a general equilibrium without a policy and

a partial equilibrium with a policy.

To infer the welfare effect of crowding out, I take the difference between the two CEVs:

CEV between two general equilibria with and without a social security system and CEV

between a general equilibrium without a policy and a partial equilibrium with a policy.

1.3 Calibration

I calibrate a set of parameters by taking their values from the literature or measuring

them from the data. These exogenously determined parameters are called the set of first-

stage parameters. Then, I calibrate the rest of the model’s parameters by jointly matching

the model-simulated moments to their corresponding moments in the data. I call this set

of parameters the second-state parameters.

I summarize the baseline calibration parameter values in Table 3.1. In Appendix 2.1, I

provide the numerical procedure of the endogenous calibration.

1.3.1 Demographics

There are three types of groups characterized by education levels: college graduates

(c), a group with high-school education but without a college degree (h), a group without

high-school education (d). I assume that adult age starts at age 24 for all households and

they retire at the statutory retirement age of 65 following Gourinchas and Parker (2002).7

I assume agents live for 58 periods up to age 81 following the life expectancy at birth

for employed women from the actuarial life table in the year 2013 from the U.S. Social

7 Less educated workers start working at an earlier age around 20 but they also retire 3 or 4 years earlier
than college graduates between 2000 and 2009 as shown in Rutledge et al. (2018). Hence, I assume
all households start and end working periods simultaneously in this model.
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1 Preference Heterogeneity, Aggregate Risk and the Welfare Effects of Social Security

Security Administration (SSA).8 Hence, in my model, one period corresponds to one year

in the real economy.

From the BLS current population survey (CPS) in year 2013, I calculated shares across

types using the number of employed workers within each group. The numbers are 0.49

for group (c), 0.43 for group (h) and 0.08 for group (d). I assume that the distribution

of each group is time-invariant and households within a group share common parameter

values across every cohort.

Population grows at a rate of 1.1% in the data from SSA which has been adopted in

many macroeconomics papers.9

1.3.2 Borrowing constraint

In the computation, I approximate the borrowing cost with a smooth function as sug-

gested in Hasanhodzic (2015) which is a variant of Chen and Mangasarian (1996). This

smooth approximation allows computing the consumption policy functions with smooth

polynomials. The smooth approximation of (3.1) is given by:

(1.16) f̂ (χ) = ψ1(−λ̃χ− 1 +
1

ψ2

ln
(

1 + eψ2λ̃χ+ψ2

)
)

where λ is a borrowing cost parameter to be calibrated to target the equity premium. ψ1

is an intercept term which decreases f (χ) value when χ < 0. ψ2 is a smoothing parameter

around χ = 0. As ψ2 increases, f (χ) rapidly increases as χ decreases below 0. Thus, a

low ψ1 and high ψ2 allow a more exact approximation for (3.1), but they make (3.16) less

smooth.

8 Wives tend to live longer in a household and household decisions should consider events until the death
of wives. I do not differentiate the life expectancy between groups and assume no mortality risk for
simplicity.

9 See e.g. Krueger and Kubler (2006); Conesa et al. (2009); Kitao (2014); Peterman and Sommer (2014);
Harenberg and Ludwig (2018).
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1.3 Calibration

Its derivative with respect to the total saving is given by:

(1.17) f̂ ′ (χ) = ψ1λ̃(−1 +
eψ2λ̃χ+ψ2

1 + eψ2λ̃χ+ψ2
)

Gourinchas and Parker (2002) have shown that household age-consumption profiles

exhibit a statistically significant hump after controlling both economic growth and family

size. The actual consumption increases during ages 20 − 40 and falls off during ages

50 − 70. The consumption peak occurs around age 45 in their estimates. Fernández-

Villaverde and Krueger (2007) also provide estimates for the household age-consumption

profiles for high and low education groups adjusted for age, cohort, time effects, and

household size. The high education group refers to households with at least some college.

The low education group is defined by households with a high school degree or less. In the

context of my paper, the high education group is consistent with college graduates group

and the low education groups is corresponding to high school graduates and dropouts.

Following Bullard and Feigenbaum (2007), I use the ratio of peak consumption to age 30

consumption as a metric that can be used to gauge the nature of the hump. In Fernández-

Villaverde and Krueger (2007), the ratio estimates are 1.34 for the high education group

and 1.17 for the low education group based on adult-equivalent non-durable consumption

data.

I set the value of ψ1 at 0.1 similar to Hasanhodzic (2015). I calibrate the parameters

ψ2 and λ̃ at 0.5 and 6 to match the ratios of consumption peak to age 30 consumption

for both high and low educations groups. For the ratio for the low education group, I

calculate a weighted average of such ratios for high school graduates and dropouts with

their population shares.

1.3.3 Households

There are many empirical papers which estimate time discount rates and risk-aversion

across education strata. (Gourinchas and Parker 2002; Cagetti 2003; Alan and Browning
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1 Preference Heterogeneity, Aggregate Risk and the Welfare Effects of Social Security

Table 1.2: Deterministic labor income process from Cocco et al. (2005)

c h d
constant –4.3148 –2.1700 –2.1361

Age 0.3194 0.1682 0.1684
Age2/10 –0.0577 -0.0323 -0.0353
Age3/100 0.0033 0.0020 0.0023

2010; Cooper and Zhu 2016). Among these, Cagetti (2003) provides the estimates of

time discount rates and risk-aversion under the assumption that preferences are CRRA,

by matching the simulated median wealth profiles in each education group with those

observed in the Panel Study of Income Dynamics and the Survey of Consumer Finances in

a life cycle model of wealth accumulation. Following Cagetti (2003), I also assume CRRA

preferences and adopt their time discount factor and risk-aversion parameter estimates for

each type as follows: (βc, βh, βd) = (0.989, 0.952, 0.948) and (γc, γh, γd) = (4.26, 3.27, 2.74).

Cooper and Zhu (2016) obtain similar estimates using the same dataset and Alan and

Browning (2010) derive a similar qualitative pattern for the preference parameters in

education although their numbers are quantitatively different. These preference parameter

values imply that more educated workers are more patient and more risk-averse. This

result fits with general intuition and abundant empirical evidence which shows that patient

and risk-averse youth are more likely to enter and graduate from college to realize high-

income profiles and low earnings volatility after entering the labor market (See e.g. Cadena

and Keys 2015).

I take the estimated values for deterministic age-type specific labor productivity from

Cocco et al. (2005) which uses the PSID. For this, they split data into three education

groups: c, h, and d. They control household fixed effects, household size, and marital

status. They fitted a third-order polynomial to the age dummies to obtain the age-

productivity profile for each group (looking at Figure 1 in their paper). I adopt their

hump-shaped deterministic age profiles for log (θam) in this paper as described in Table

3.2.
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1.3 Calibration

1.3.4 Technology

Based on the total factor productivity, the deterministic trend growth rate is set at

1.8% which is in line with other studies. I set the leverage in the firm sector at 0.66 as in

Rajan and Zingales (1995). The capital share of output equals 0.3 following the literature

(See e.g. Hubbard and Judd (1987)). This number is consistent with the direct estimates

of total compensation as a fraction of GDP using the NIPA data.

Following Krueger and Kubler (2006) and Harenberg and Ludwig (2018), I assume an

aggregate shock given by a four-state Markov chain with a transition matrix πz where

Z = {z1, z2, z3, z4}. This aggregate shock affects TFP and depreciation. z1 and z2 are

recession periods where wages are low and thus Az1 = Az2 = 1 − Ā where I normalize

average productivity level to unity. In boom periods, Az3 = Az4 = 1 + Ā assuming

symmetry on the size of the shock. Depreciation shocks δz1 = δz3 = δ0 + δ̄ and δz2 = δz4 =

δ0− δ̄ allow for an imperfect correlation between TFP and stochastic depreciation, where

δ0 denotes average depreciation rate.

I also introduce symmetry in the transition matrix in line with Harenberg and Lud-

wig (2018) as: πA = π
(
A′ = 1− Ā | A = 1− Ā

)
= π

(
A′ = 1 + Ā | A = 1 + Ā

)
and

1 − πA = π
(
A′ = 1 + Ā | A = 1− Ā

)
= π

(
A′ = 1− Ā | A = 1 + Ā

)
. Let πδ be the

probability of being in the high (low) depreciation state conditional on being in the

low (high) technology state. I also assume symmetric conditional probability given by

πδ = π
(
δ′ = δ0 + δ̄ | A′ = 1− Ā

)
= π

(
δ′ = δ0 − δ̄ | A′ = 1 + Ā

)
. Under these assump-

tions, I obtain the following transition matrix:

πz =



πAπδ πA (1− πδ) (1− πA) (1− πδ) (1− πA) πδ

πAπδ πA (1− πδ) (1− πA) (1− πδ) (1− πA) πδ

(1− πA)πδ (1− πA) (1− πδ) πA (1− πδ) πAπδ

(1− πA)πδ (1− πA) (1− πδ) πA (1− πδ) πAπδ



I set Ā = 0.029 and πA = 0.941 to match the standard deviation and autocorrelation
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1 Preference Heterogeneity, Aggregate Risk and the Welfare Effects of Social Security

of TFP of 0.029 and 0.88 from Harenberg and Ludwig (2018).10 I calibrate δ0 = 0.111

to produce the long run real return on 10 years the U.S. government bonds over the

period 1960− 2007 which was 2.3%. I set δ̄ at 0.032 to match the standard deviation of

consumption growth between 1947 and 2007, 0.017.11 Lastly, I set πδ = 0.883 to target

the correlation of the cyclical component of TFP with risky returns of 0.5 following the

estimate in Harenberg and Ludwig (2018).

1.4 Results

In this section, I analyze the effects of social security systems on aggregate variables

and welfare across different educational groups. Following Krueger and Kubler (2006) and

Harenberg and Ludwig (2018), I consider the marginal introduction of the PAYG social

security system with its initial contribution rate in the United States, 2%.

1.4.1 Aggregate effects and long-run welfare implication

In Table 3.3, I summarize the effects of introducing social security with a contribution

rate at 2% on aggregate capital, output, wages, returns, and welfare.

10 Note that the standard deviation of TFP is just Ā no matter what the transition matrix is and its
autocorrelation is

(
2πA − 1

)
given the structure of the Markov transition matrix.

11 I use the data on Robert Shiller’s website: http://www.econ.yale.edu//˜shiller/data.htm.
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1.4 Results

Table 1.3: The effects of the social security introduction on aggregate variables

Variable Change
Average capital k 4k/k = −15.30%
Average output y 4y/y = −4.84%

Average normalized wage w̃ 4w̃/w̃ = −4.84%
Average stock return rs 4rs = 1.66%
Average bond return rb 4rb = 1.66%

CEV GE
c 4CEGE

c /CEGE
c = 1.72%

CEV GE
h 4CEGE

h /CEGE
h = −0.51%

CEV GE
d 4CEGE

d /CEGE
d = 0.44%

- I denote capital and output per efficiency level.

- 4X/X = E(Xt|τ=2%)−E(Xt|τ=0%)
E(Xt|τ=0%)

- 4x = E (xt | τ = 2%)− E (xt | τ = 0%)

- CEV denotes certainty equivalent consumption variation for groups (c), (h) and (d).

The marginal introduction of social security leads to capital stock (per efficiency level)

reduction by 15.30% on average because the social security transfer leads households to

reduce total saving between age 40 and 80 as seen in Figure 3.1. In Figure 3.1, the

blue lines and red lines describe average total saving profiles in the economy without and

with the social security system, respectively.12 At the peak saving age 65, total saving

decreases by 11.24% for group (c), 18.89% for group (h), 23.54% for group (d) after the

introduction of a marginal social security system. The high-school dropout group reduces

their saving the most at the peak age because the replacement of the social security to

their private saving is the highest. Note that there is less change in the total saving before

age 40. The borrowing constraint causes agents to consume their cash-on-hand due to

the cost of borrowing to smooth consumption over the lifecycle. Thus, households start

saving after reaching the point that consuming cash-on-hand yields low enough marginal

utility around age 40 no matter their types. A social security tax reduces disposable labor

income, which affects households’ incentives to borrow but by a limited amount, and there

are less total saving changes after the system is established.

12 I take the average consumption simulation data conditional on age.
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1 Preference Heterogeneity, Aggregate Risk and the Welfare Effects of Social Security

Figure 1.1: Average total saving profiles
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The capital reduction leads to an average output (per efficiency level) reduction of

4.84% and thus the normalized wage decreases exactly up to 4.84%. The lower capital

stock increases the marginal productivity of capital which raises the stock return by 1.66%.

The average bond return also increases and its extent is 1.66% for two reasons. The social

security transfer lowers the bond saving along with total saving. The insurance provided

by the social security system causes households to increase their stock investment shares

in middle-age as seen in Figure 3.2. The reduction in bond demand decreases bond price

and increases its return.

Figure 1.2: Average stock shares from age 47
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Table 3.3 shows that the college educated group benefits the most from the marginal

social security introduction in the baseline calibrated model. The high-school dropout

group also benefits from the social security system. However, the high-school graduate

group experiences a welfare loss from the policy. I measure the welfare gain/loss with

the certainty equivalent consumption variation as discussed in Subsection 1.2.10. I first
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1.4 Results

calculate the certainty equivalent consumptions for the two economies with and without

the social security system which generate the same utility with the long-run equilibria in

each economy. Then, I compute the percentage change between the CE consumptions

after the marginal social security introduction. The values of CEV are 1.72% for college

graduates group, −0.51% for the group of high school graduates without a college degree

and a CEV of 0.44% for high school dropouts group.

One significant implication from the result is that the social security system separates

welfare winning and losing groups across education strata. Previous studies cannot iden-

tify specific policy implication for each educational group since they focus on ex-ante

identical agents. The quantitative welfare result in this paper can answer the questions

in the long-run: who is advantaged from the social security policy and is the welfare re-

sult according to the goal of such policy? Finally, from the perspective of a utilitarian

social planner, the changes indicated by the model would constitute an overall welfare

improvement from the introduction of the social security system.

1.4.2 Welfare effects from insurance versus crowding out

In this section, I dissect the welfare results in Table 3.3 into risk-sharing and crowding

out. I examine the welfare implication of the social security system in partial equilibrium

where I remove the effect of price changes on allocations by fixing prices at those in

the baseline economy without the social security system. To find the policy functions in

partial equilibrium, I let agents expect future wages and returns with the law of motion

from the baseline economy without a tax. Given the exogeneous law of motion, I compute

the households’ policy functions and simulate these function given the sequence of prices

from the baseline economy. Then, I calculate the CEV for partial equilibrium, CEV PE,

which represents the welfare gain/loss from the insurance function of the social security

system. I regard CEV GE − CEV PE as the welfare gain/loss from the crowding out,

CEV CO, because the difference considers price changes from the social security system.
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1 Preference Heterogeneity, Aggregate Risk and the Welfare Effects of Social Security

Table 1.4: Welfare effects from insurance versus crowding out

group (c) group (h) group (d)
CEV GE 1.72% −0.51% 0.44%
CEV PE −1.68% 1.01% 2.36%
CEV CO 3.41% −1.52% −1.92%

Table 3.4 shows the welfare effects of insurance and crowding out. For the college

graduates group, there is a welfare loss of 1.68% from the insurance function of the social

security system because the system implements an intragenerational redistribution from

the high-income group to the other lower income groups. However, the college graduates

group gets a large welfare benefit from the price changes induced by a social security

system. The welfare gain from crowding out is 3.41%. A social security system increases

the returns of both stocks and bonds. Since the college graduates group is patient, their

marginal propensity to save is higher than the other two groups and they weigh future

consumption highly. An increment in the rate of return enlarged the value of their savings

via an income effect and thus future consumption. Thus, this group faces a welfare benefit

from the price changes induced by the introduction of a social security system which

dominates the welfare loss from the intragenerational redistribution of the social security

system. This result suggests that the interplay of general equilibrium and risk-sharing

effects across heterogeneous groups can be significantly larger than those obtained in

homogeneous agent models, such as that examined by Henriksen and Spear (2012).

Both high school graduates and dropouts groups obtain welfare benefits in partial equi-

librium up to 1.01% and 2.36% respectively because of the intragenerational redistribution

from the college graduates group to these groups via the social security system. This wel-

fare benefit is much larger for the high school dropouts group because they experience the

most transfer benefit from their lowest income. In other words, they receive in old-age

transfers more than they contribute to the social security system during the working peri-

ods. However, both groups get welfare losses from the induced price changes by the social

security system of −1.52% and −1.92%, respectively. The reason is that these groups are

relatively impatient and thus save less and value current consumption more. An increase

in the rate of return is not favorable for these groups because they face lower income effects
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1.4 Results

from less saving. On the other hand, a wage reduction decreases their welfare by lowering

the value of their disposable labor incomes and consumption when young significantly

under the borrowing constraints.

In the subsequent sections, I dig further into the welfare results included in CEV PE

and CEV CO by examining changes in consumption allocations from several directions.

1.4.3 Partial equilibrium analysis

There are changes in partial equilibrium consumption with the social security policy

compared to the baseline economy in three dimensions: average lifecycle consumption

profiles, consumption volatility conditional on age, and mean consumption level. For

example, the intragenerational transfer increases the mean consumption level for the poor

income group at the cost of reducing consumption for the income rich group. The old-age

consumption volatility declines as the social security system pools the labor and capital

incomes under an imperfectly correlated shock. In the calibrated model, wage rates and

equity returns are weakly positively correlated, exhibiting a correlation coefficient close

to 0.2. Agents reduce their saving in the middle-aged periods and increase stock share

because the social security system partly secures old-age consumption. A higher stock

share can increase the mean consumption level.

To isolate the welfare gain from the insurance function of social security, I calculate the

certainty equivalent consumption variation using the certainty equivalent consumptions

computed with average lifecycle consumption profiles for each economy. I denote the

certainty equivalent consumption variation using average consumption data conditional

on age in partial equilibrium setting by DCEV PE. If CEV PE > DCEV PE, there is a

welfare gain from the social security system by reducing consumption variation. DCEV PE

represents changes in both mean consumption level from a tax/transfer and altered saving

patterns and average lifecycle consumption profiles.

The average lifecycle consumption profiles generated in the model yield DCEV PE
c =

−1.70% for the college graduates group, DCEV PE
h = 0.84% for the high-school gradu-
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ates group, and DCEV PE
h = 2.15% for the high-school dropouts group. These DCEV PE

values are lower than the CEV PE values, indicating that the social security system in-

creases the welfare of all groups by providing insurance against fluctuations in old-age

consumption.

Figure 3.3 shows the insurance role of the social security system. In the figure, I draw

the coefficient of variation profiles in the economy without the policy and the economy

with the policy without price changes. After retirement, all educational groups experience

reduced old-age consumption volatility from the social security transfer because it hedges

the private saving risk. The coefficient of variation profiles show a U-shaped curve. The

young consume most of their disposable labor income because of the borrowing constraint.

Thus, the consumption volatility is proportional to the disposable income for the young.

The old finance their consumption from saving. The stochastic depreciation can make both

the principal and the return on assets uncertain and households can lose their investement

principle. Thus, in the laixxez − faire environment old age consumption is highly volatile.

The middle-aged can hedge consumption risk by rebalancing investment portfolios over

time due to not being bound by liquidity constraints, and thus this age faces the lowest

consumption volatility.

Figure 1.3: The coefficient of variation profiles in partial equilibrium

40 60 80
age

6

8

10

12

14

16

C
V

(%
)

CV
c
 w/o tax

CV
c
 w/ tax PE

(a) Group (c)

40 60 80
age

6

8

10

12

14

16

C
V

(%
)

CV
h
 w/o tax

CV
h
 w/ tax PE

(b) Group (h)

40 60 80
age

5

10

15

20

C
V

(%
)

CV
d
 w/o tax

CV
d
 w/ tax PE

(c) Group (d)

The social security system implements an intragenerational redistribution among dif-

ferent educational groups. In the calibrated model, there is a wealth transfer from the

college educated group to the other two groups. This wealth transfer generates positive

DCEV PE for both high-school graduates and dropouts. Figure 3.4 shows that income
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poor groups consume more in the economy with a social security system in their middle-

aged and old periods. On the other hand, DCEV PE
c is negative for the income rich group

because their wealth ends up being transferred to the lower income groups. In addition,

disposable labor income decreases during working periods because of the social security

tax. The reduction in labor income decreases the young consumption before they start

saving around age 40 because young households want to borrow but the amount borrowed

is limited due to the borrowing cost (See Figure 3.4). These two effects significantly lower

the welfare of the college-educated groups in partial equilibrium.13

Figure 1.4: Average consumption profiles in partial equilibrium
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In Figure 3.4, the average consumption profile shows a hump because of the borrowing

constraint. One thing to note is that the consumption of the college-educated groups de-

creases rapidly during retirement in partial equilibrium. The insurance provided through

the social security system weakens the precautionary saving motive for this risk-averse

group and thus they reduce saving significantly as seen in Figure 1.5. Therefore, the

old-age consumption declines rapidly.

13 Hubbard and Judd (1987) also point out the welfare cost from borrowing constraints when a social
security system is introduced.
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Figure 1.5: Average total saving profiles including partial equilibrium
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1.4.4 Crowding out effect analysis

This section analyzes how lower wages and higher returns affect the consumption volatil-

ity, lifecycle consumption profiles and mean consumption level in general equilibrium.

As I did in the previous section, I also isolate the welfare gain from the insurance func-

tion of social security in general equilibrium environment by computing DCEV GE. Here,

DCEV GE is the certainty equivalent consumption variation using average consumption

data conditional on age from the economy without the social security policy to the econ-

omy with the policy in general equilibrium. If CEV GE > DCEV GE, there is a welfare

gain from the social security system by reducing the consumption variations in general

equilibrium. More importantly, if CEV GE − DCEV GE > CEV PE − DCEV PE, then

there is a stronger insurance effect in general equilibrium than in partial equilibrium.

With the simulation data, I find that DCEV GE
c = 1.14%, DCEV GE

h = −0.82%, and

DCEV GE
d = 0.15%. This result implies that CEV GE−DCEV GE > CEV PE−DCEV PE

holds and the difference is large for the college graduates, high-school graduates, and high-

school dropouts in order:
(
CEV GE −DCEV GE

)
−
(
CEV PE −DCEV PE

)
= 0.56%,

0.14% and 0.08% for groups (c) , (h) and (d) respectively.
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Figure 1.6: The coefficient of variation profiles
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Figure 1.6 shows that the college educated group experiences a large reduction in the

old-age consumption volatility in general equilibrium compared to the other groups. To

understand this, one should note that the total saving after retirement is larger in general

equilibrium environment than in partial equilibrium one because of the substitution and

income effects from an increase in the rate of return. A higher rate of return implies

cheaper future consumption and increases the value of saving which results in large total

saving as shown in Figure 1.5. More saving in general equilibrium than partial equilibrium

leads to higher old-age consumption (See Figure 1.7). This higher old-age consumption

causes a lower coefficient of variation in retirement periods. Since the college educated

groups are the most risk-averse, they obtain the most welfare gain in moving from partial

equilibrium to general equilibrium setting, where old-age consumption volatility decreases.

Figure 1.7: Average consumption profiles
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After shifting terms, I obtain
(
DCEV GE

c −DCEV PE
c

)
=
(
CEV GE

c − CEV PE
c

)
−0.56% =

2.85% for the college graduates group. Following the same approach,
(
DCEV GE

h −DCEV PE
h

)
=
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−1.66% and
(
DCEV GE

d −DCEV PE
d

)
= −2.00%. These results indicate that only the

college educated group experiences a welfare gain moving from the average consumption

profile in partial equilibrium setting to general equilibrium one. The reason is that there

is less welfare transfer from the college graduates group to the other two groups because of

a lower general equilibrium wage. The lower wage encourages this most risk-averse group

to save more due to the precautionary saving motive, as seen in Figure 1.5. In addition,

the college educates group is more patient than the other two groups. Thus, their total

saving is much larger than the other groups. If the rate of return increases, there are

larger income effects for this group from increased saving. The substitution effect from

an increase in returns also shifts consumption to the old-periods. The most patient group

values future consumption more than the other groups. Therefore, the college graduates

group receive a positive welfare effect from the general equilibrium effects induced by a

social security system (see Kuhle (2012) which provides an analytical demonstration of

this effect).

On the other hand, the high-school graduates and dropouts groups get a smaller overall

transfer due to the general equilibrium effect and relatively weaker income effects from

their lower saving. They also value current consumption more than the college educated

group. Thus, an increase in returns is not favorable to this group. More importantly, a

lower wage reduces consumption during the young periods under the borrowing constraint.

Since high-school graduates and dropouts groups already have low young consumption,

an additional decrease in young-age consumption lowers the welfare of those groups sig-

nificantly.

1.4.5 Welfare analysis with representative households

For this comparison, I assume there is no heterogeneity in either preferences and perma-

nent age/productivity profiles. I perform the same welfare analysis as above to highlight

the role of heterogeneous preference and income streams in the welfare implication of the

social security system. In the lifecycle model with representative households, I take the
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quarterly subjective discount factor 0.99 widely used in the literature. Then, the annual

discount factor is 0.96 for one-period in the model. Following Harenberg and Ludwig

(2018), I set the coefficient of relative risk aversion of the representative household at

3. I calculate the weighted income profiles using the income profiles for each group with

their employed population ratio in the year 2013 from the BLS CPS data. For the other

first-stage parameters, I take values from the heterogeneous model above and recalibrate

the parameters of mean depreciation rate, the standard deviation of depreciation, the

conditional probability of a depreciation shock on the TPF state and borrowing costs to

match the empirical targets discussed in Section 1.3. The consumption peak relative to

age 30 is 1.21 for the representative agent model following the estimates in Fernández-

Villaverde and Krueger (2007) using adult-equivalent non-durable consumption data for

the benchmark model without educational heterogeneity.

Table 1.5: The effects of the social security introduction on aggregate variables in the
representative agent model

Variable Change
Average capital k 4k/k = −12.16%
Average output y 4y/y = −3.81%

Average normalized wage w̃ 4w̃/w̃ = −3.81%
Average stock return rs 4rs = 1.41%
Average bond return rb 4rb = 1.41%

- I denote capital and output per efficiency level.

- 4X/X = E(Xt|τ=2%)−E(Xt|τ=0%)
E(Xt|τ=0%)

- 4x = E (xt | τ = 2%)− E (xt | τ = 0%)

Table 3.5 shows the effects of the marginal social security system on aggregate variables

in the lifecycle model without cohort heterogeneity. Compared to the heterogeneous agents

model, the aggregate capital level decreases less in the representative agent model than

in the heterogeneous agents model. In that model, the change in capital was4k/k =

−15.30%, while in the representative agent model it is −12.16%. This smaller reduction

in the aggregate capital leads to a smaller decrease in output and wage and a smaller

increase in the rate of return relative to the base model with preference and income

heterogeneity.

In both models, agents decrease private saving because the social security transfers
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guarantee old-age consumption and replace the role of private saving. In addition, the

insurance provided via the social security system weakens the precautionary saving motive

in private saving. The more risk-averse households are, the more they reduce saving.

The risk-aversion coefficient of the representative agent is lower than that of the high-

school graduates in the heterogeneous agents model. Thus, the precautionary saving

motive is relatively weaker in the representative agent model which leads to a smaller

decrease in aggregate saving. Other than the precautionary saving motive channel, there

are general equilibrium effects in the total saving amount. An increase in returns from

the crowding out generates a substitution effect. This effect causes agents to save more

for future consumption. Under the CRRA preferences, the elasticity of intertemporal

substitution is proportional to the inverse of the risk-aversion coefficient. Thus, less-risk

averse households raise saving more than more-risk averse ones when the rates of return

go up. This general equilibrium effect also contributes to a smaller decrease in the total

saving in the representative agent model.

Table 1.6: Welfare effects from insurance versus crowding out in the representative agent
model

Welfare change
CEV GE −1.19%
CEV PE −0.51%
CEV CO −0.68%

In Table 2.6, I summarize the welfare decomposition for the introduction of the social

security system in the representative agent case. In general equilibrium, there is a welfare

loss of 1.19% measured in CEV from the marginal social security system. This result is

consistent with the previous studies such as Krueger and Kubler (2006) and Harenberg

and Ludwig (2018) in which the introduction of a social security system results in a welfare

loss in the lifecycle model with only aggregate shocks.

Unlike the previous studies, introduction of a social security system generates a welfare

loss even in partial equilibrium setting, because of no intragenerational redistribution and

the borrowing constraint. The social security system lowers the disposable income of the

young from their labor supply. Under a hump-shaped income stream, young workers want
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to borrow to smooth consumption because the marginal utility of consumption is very

high if they just consume cash-on-hand from their disposable labor income. Under the

borrowing constraint, it is costly to smooth consumption over the lifecycle by borrowing.

The welfare cost from low consumption in the early periods of life can dominate the

welfare gain from the insurance on old-age consumption. Thus, the social security system

can yield a welfare loss even in partial equilibrium. If borrowing costs are reduced, then

CEV PE increases.

1.5 Sensitivity Analysis

1.5.1 Increasing the share of college graduates

In the population survey data, the share of the college-educated group has grown over

time mostly because more children tend to enter universities expecting higher future

income streams or lower earnings volatility. Thus, I ask how the growing population

of the income rich affects the implications of social security in aggregate variables and

welfare. With the BLS CPS in the year 2017, I reset the shares of each educational group

as 0.52 for college graduates group, 0.41 for high-school graduates group and 0.07 for

high-school dropouts group.

In Table 1.7 and 1.8, I summarize the comparative statics analysis results in aggregate

variables and households welfare respectively. Table 1.7 shows that a higher share of

the college-educated group decreases aggregate capital 0.2% more than in the benchmark

calibrated model. As a result, both output and wages decline 0.07% more and both stock

and bond returns increase by 0.01% more. In the comparative statics analysis, the share

of population shifts to the group with a higher risk aversion and a lower intertemporal

elasticity of substitution. The insurance provided by social security reduces the saving of

more risk-averse households more significantly than less risk-averse groups. In addition,

households with a low intertemporal elasticity of substitution increase their saving less
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in response to an increase in the rate of return from crowding out than ones with a high

intertemporal elasticity of substitution.

Table 1.7: The aggregate effects of social security under a higher share of the college-
educated group

Variable Change
Average capital k 4k/k = −15.50%
Average output y 4y/y = −4.91%

Average normalized wage w̃ 4w̃/w̃ = −4.91%
Average stock return rs 4rs = 1.67%
Average bond return rb 4rb = 1.67%

Table 1.8: Welfare effects under a higher share of the college-educated group

group (c) group (h) group (d)
CEV GE 1.96% −0.36% 0.60%
CEV PE −1.60% 1.18% 2.59%
CEV CO 3.56% −1.54% −1.99%

The welfare decomposition analysis is displayed in Table 1.7 for the economy with a

higher share of college graduates. In partial equilibrium, all groups obtain either more

welfare gains or less welfare losses compared to the benchmark case. The certainty equiv-

alent consumption variation in partial equilibrium increase by 0.08%, 0.17%, and 0.23%

for groups (c), (h) and (d), respectively. In the economy with more college graduates,

both high-school graduates and dropouts receive more intragenerational wealth trans-

fers from the income rich because of an increase in government tax revenue. A larger

amount of transfer reinforces the degree of insurance on the old-age consumption. This

intergenerational redistribution also improves the welfare of the college-educated group.

A further decrease in wages due to crowding out generates a larger welfare loss for high-

school graduates and dropouts groups under borrowing constraints than the benchmark

economy. However, more welfare gains from stronger intragenerational redistribution dom-

inate the welfare losses from the reduction in wages. Thus, the economy with more college

graduates enhances the welfare of groups (h) and (d) than the benchmark model. The

college-educated group experiences stronger income effects from the increase in returns,

which improves their welfare in this economy as well.
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1.5.2 Expanding the social security system

I increase the size of social security systems from the benchmark model by making the

contribution rate double at 4%. The tax rate increase will strengthen both the insurance

function and crowding out effects from social security.

Table 1.9 displays the aggregate effects of social security when the social security con-

tribution rate rises up to 4%. Compared to the benchmark case, aggregate capital drops

more significantly, by about 26%. The larger social security system provides stronger

insurance and replaces a larger part of private saving. Thus, all types of households de-

crease saving more than the benchmark case. The substantial capital crowding out also

changes prices markedly. Wages decline about 9% and both stock and bond returns rise

about 3%.

Table 1.9: The aggregate effects of social security under a higher contribution rate

Variable Change
Average capital k 4k/k = −26.10%
Average output y 4y/y = −8.64%

Average normalized wage w̃ 4w̃/w̃ = −8.64%
Average stock return rs 4rs = 3.17%
Average bond return rb 4rb = 3.17%

Table 1.10: Welfare effects under a higher contribution rate

group (c) group (h) group (d)
CEV GE 1.10% −2.62% −1.01%
CEV PE −2.67% 1.97% 4.23%
CEV CO 3.76% −4.59% −5.24%

In Table 1.10, I summarize the welfare decomposition analysis results in the economy

with a higher contribution rate. As expected, the larger social security system increases

the welfare of high-school graduates and dropouts in partial equilibrium relative to the

benchmark case by strengthening the wealth transfer from the income rich to the income

poor. Thus, the college graduates group experience more welfare losses.

Although groups (h) and (d) obtain more welfare gains in partial equilibrium, their

welfare in general equilibrium is lower than in the benchmark general equilibrium case. In

this larger social security system, the high-school dropouts indeed obtain welfare losses,
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unlike the benchmark case. There are two reasons behind the reversed welfare results.

First, there is a weaker intragenerational transfer in general equilibrium than in partial

equilibrium because of a lower amount of transfer due to a decrease in wages. In addition,

an almost 9% decrease in wages reduces the disposable income of the young significantly,

and they have stronger incentives to borrow. However, the borrowing constraint limits

the amount of consumption in the early lifetime periods. The welfare cost from the lim-

ited consumption smoothing dominates the welfare gain from stronger intergenerational

redistribution. For the college graduates, they also have substantial welfare costs from the

borrowing limits. Coupled with a higher tax rate, they face a welfare decrease in general

equilibrium from the benchmark case.

This comparative statics analysis implies a larger social security system can overturn

the results from the benchmark model that a pay-as-you-go social security can improve

the welfare of certain groups. In the economy with a high contribution rate, the income

poor high-school dropouts can have welfare losses from significantly reduced young-age

consumption under the borrowing constraint although they receive more welfare transfers.

College graduates might also experience welfare losses from stronger redistribution which

can dominate the positive income effects from increases in returns.

1.5.3 Double shocks model

In this section, I consider what happens to the welfare effects of social security when

shocks are made larger. The base calibrated model produces an equity premium of 0.21%

and a Sharpe ratio of 0.034 well below their empirical counterparts.14 These results are

consistent with other studies which calibrate a low risk-aversion with small-size aggre-

gate shocks to match consumption volatility (See Hasanhodzic and Kotlikoff (2013) and

Harenberg and Ludwig (2018)). Thus, I examine the economy with stochastic depreciation

shocks doubled.

14 From empirical studies, equity premiums range between 4% and 6% and Sharpe ratios range between
0.28 and 0.33.
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In Table 1.11, I show the effects of social security on the aggregate variables when

stochastic depreciation shocks are doubled. Aggregate capital decreases slightly more

than in the base model because households reduce their private saving more when they

hold more assets from strong self-insurance motives against large shocks. Average output

and wages decline up to 5.53%. The returns on stocks and bonds increase by 1.88% and

1.86% respectively.

Table 1.11: The aggregate effects of social security under double shocks

Variable Change
Average capital k 4k/k = −17.51%
Average output y 4y/y = −5.53%

Average normalized wage w̃ 4w̃/w̃ = −5.53%
Average stock return rs 4rs = 1.88%
Average bond return rb 4rb = 1.86%

Table 1.12: Welfare effects under double shocks

group (c) group (h) group (d)
CEV GE 3.44% 0.08% 0.93%
CEV PE −1.16% 1.53% 3.00%
CEV CO 4.60% −1.44% −2.07%

Table 1.12 summarizes the welfare decomposition analysis. I stress that all groups

obtain welfare gains in the economy with double shocks, unlike the benchmark case.

Insurance provided via social security enhances the welfare of households by significantly

reducing consumption volatility against large shocks. Thus, all groups experience higher

welfare in partial equilibrium in this economy than in the base one. In general equilibrium,

the welfare costs from wage decreases and borrowing constraints generate a larger negative

value of CEV CO for high-school dropouts. However, the gains from insurance against large

shocks surpass such costs. Thus, the high-school dropouts group obtains a welfare gain.

Interestingly, not only college graduates but also high-school graduates have higher values

of CEV CO. More asset holding from a strong precautionary saving motive generates

larger positive income effects even for the high-school graduates group. Hence, high-

school graduates have a slightly positive welfare gain in general equilibrium.

From this comparative statics analysis, I observe that the quantitative welfare results
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are substantially affected by the size of shocks. However, the qualitative results are quite

robust in the sense that certainty equivalent consumption variation is the largest for college

graduates, then high-school dropouts, and high-school graduates in order.

1.6 Conclusion

This paper studies the distributional welfare implications of a pay-as-you-go social se-

curity system across education strata. The ex-ante heterogeneous agent model generates

gains for certain educational groups from the social security system. In the baseline cal-

ibrated economy, I find that high-school dropouts and college educated groups obtain

welfare gains, while the high-school graduates group have welfare losses from the social

security system. The welfare advantages under social security for the high-school dropouts

group derive mostly from intragenerational redistribution. The general equilibrium effects

provide a substantial welfare gain to the college-educated groups. Borrowing constraints

strengthen the welfare cost from the social security system by preventing consumption

smoothing during the early stage of life. For high-school graduates, the cost from the

financial friction dominates gains from intragenerational redistribution and old-age con-

sumption insurance. The existence of welfare winners and losers provides an explanation

for why a pay-as-you-go social security system can still survive in developed countries

facing fiscal crises, even using ex-ante expected utility as the welfare criteria, unlike the

standard social welfare function in the political economy literature on social security,

which considers only the welfare of currently living generations. Moreover, the quantita-

tive analysis implies that social security can be more advantageous for the rich or educated

groups, in contrast to the original arguments made after the great depression to motivate

its adoption.

In this paper, I abstract from many potentially interesting features such as idiosyn-

cratic earning, health and mortality risks and preference heterogeneity within educational

groups. Incorporating these features might contribute to the literature in two directions.
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First, the model with substantial idiosyncratic risks and continuum of ex-ante heteroge-

nous households may significantly affect the distributional welfare effects of social security

systems. Second, solving such models will require the development of an advanced algo-

rithm to deal with the continuum of ex-ante heterogeneous agents. I also restrict policy

design experiments by focusing on insurance through certain taxes and transfers structures

in a balanced budget constraint. One can consider other policy schemes with different

policy structures and government debt to generate more policy implications in the model

with ex-ante heterogeneity. I leave these tasks for future research.
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1.7 Appendix

1.7.1 Computational Method

I approximate the Markov policy rules with globally linear functions on the set of cash-

on-hand across all types and ages. In other words, I use all the state variables information

without a state space reduction or using only low-order moments. The reason is that

Krueger and Kubler (2004) and Hasanhodzic and Kotlikoff (2013) show that there is an

inaccuracy issue when representing the Markov policy functions with low-order moments

if there is an imperfectly correlated TFP and depreciation shocks affecting the income of

the young and old differently. Cozzi (2011) argues that low-order moments cannot well

describe the law of motion under risk-aversion heterogeneity because different types of

households show a distinct marginal propensity to save and thus aggregation methods

cannot capture equilibrium dynamics in the economy inhabited by ex-ante heterogeneous

agents. To make computation feasible in a model of almost 80 periods in this paper, I

approximate the Markov policy rules with linear polynomials as done in Hasanhodzic and

Kotlikoff (2013) and Reiter (2015).

As a computational contribution, this paper finds that consumption policy functions in

an economy only with capital (or stock) well capture the equilibrium consumption path in

an economy with both stock and bond when cash-on-hand is used as state variables instead

of asset holdings. In other words, there are small Euler equation errors when I apply the

consumption policy rules from an economy only with capital into the simulation of the

economy with two assets by solving for bond and capital shares in each period given the

consumption rules. The order of error is almost the same as the error when one uses the

consumption policy functions from explicitly solving for the economy with two assets into

the simulation. One possible reason is that households keep a similar marginal propensity

to consume no matter the number of assets is. If one is given the same amount of cash-

on-hand, she spends a similar amount for consumption today between economies with

only capital or both. This similarity result has an important computational implication
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that one can reduce computation time when finding consumption policy functions by

solving for the economy with capital instead of the one with both stock and bond. The

former economy requires to solve equations (3.12) and (2.13) to find consumption policy

functions whereas the latter economy needs to solve only equation (3.12). Thus, using

the similarity result reduces one equation for all age/type groups in every grid which

facilitates computing the consumption policy functions.

Another advantage of solving for only equation (3.12) is that one can construct the

system of Euler equations across all age/type groups in every grid as a system of linear

equations in the coefficients of the globally linear policy functions. Thus, one can avoid

using a Newton-type non-linear equation solver and rather use a derivative-free iterative

method as in the endogenous grid method developed by Carroll (2006). However, I keep

using exogeneous grids in my computation with a technical trick to transform the problem

into a system of linear equations. A derivative-free iterative method reduces computation

time significantly.

I describe the algorithm in this paper step by step with details as follows. The algorithm

consists of inner and outer loops. In the inner loop, I solve for the Markov consumption

policy functions given a set of calibrated parameters. In the outer loop, I find calibrated

parameters values to match the target moments.

Inner loop.

(i) Construct linear policy functions for the Markov consumption rules with cash-on-

hand over all groups.

• The consumption policy functions are given by c̃am =

[
1, Γ̃

]
ηam for ∀am.

Γ is a row vector of normalized cash-on-hand across all types and age from 2 to

ad = 58 with an abuse of notation, i.e. Γ̃ = [x̃2c, . . . , x̃adc, x̃2h, . . . , x̃adh, x̃2d, . . . , x̃add]

. ηam is the coefficient of the policy function correponding to the constant and

state variables.
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(ii) Then, make an initial guess for the coefficients in the linear policy functions given

a set of calibrated parameters.

• To set a good initial guess for the coefficients of the policy functions, I find

out their first-order Taylor approximation at a deterministic steady state in

the economy only with capital using Dynare. As discussed above, I find out

consumption policy functions by solving for the economy with single asset

and apply the approximations into the simulation of the economy with two

assets. In a deterministic setting, solving for the economy with two assets

generates an indeterminacy issue because stock and bond are identical due to

no-arbitrage property. Thus, I obtain a local linear approximation in the single

asset economy.

• The result from Dynare shows the coefficients of a local linear approximation

for consumption on capital instead of cash-on-hand: c̃am = ¯̃cam+
(
K̃ − ¯̃K

)
φam

where ¯̃cam is the deterministic steady-state value of consumption for age a and

type m, K̃ is the vector of capital holdings of age 2 to ad for all types from the

previous period and ¯̃K is the vector of deterministic steady-state values for K̃.

Thus, one should transform the local linear approximation for consumption as

a function of cash-on-hand. As an example for the economy without a tax and

a borrowing cost,

¯̃cam+
(
K̃ − ¯̃K

)
φam = ¯̃cam+

(
Γ̃− w̃Θ

(1 + r)
− ¯̃K

)
φam =

(
¯̃cam −

w̃Θφam
(1 + r)

− ¯̃Kφam

)
+Γ̃

φam
(1 + r)

where the second equation comes from the budget constraint in a vector form,

Γ̃ = w̃Θ + (1 + r) K̃ in which Θ is the vector of θam across all types and age

from 2 to ad = 58. This transformation implies:

ηam =

 ¯̃cam − w̃Θφam
(1+r)

− ¯̃Kφam

φam
(1+r)
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(iii) Generate a set of grids on which I find the coefficients of consumption policy func-

tions satisfying the Euler equations, (3.12).

• There are 1 + M (ad − 1) = 1 + 3 × 57 = 172 coefficients. Thus, the number

of grids should be larger than 172. As a candidate, I generate the first-order

Smolyak grids in the space

[
−1, 1

]M(ad−1)

and transform them into the[
k̃1c,min, k̃1c,max

]
× . . . ×

[
k̃add,min, k̃add,max

]
. The number of first-order

Smolyak grids is 1 + 2M (ad − 1) = 1 + 6 × 57 = 343. Thus, there are more

nodes than are required.

• To obtain k̃am,min and k̃am,max for ∀am, I find the nonstochastic steady state

in the economy under each state z ∈ Z. Then, I calculate the maximum and

minimum values of
{

¯̃kam,z

}
z

for ∀am where ¯̃kam,z are the deterministic steady

state when state z continues. Under the stochastic environment, there is a

precautionary saving motive and thus the maximum and minimum values of

k̃am is not just the maximum and minimum values of
{

¯̃kam,z

}
z
. Thus, I properly

scale the maximum and minimum values among the deterministic steady states

to derive k̃am,min and k̃am,max. Given each node of capital holdings, I calculate

prices, transfer and cash-on-hand variables to calculate the next period capital

holding and current period consumption.

(iv) Find the coefficients of the consumption policy functions with a derivative-free iter-

ative method.

• I first find the value of c̃amin each grid by transforming the Euler equation,

(3.12) in the single asset economy as follows:

(1.18) (c̃am) −γm = βmE
[(

1 + r′ − f ′
(

ˆ̃kam

)){
(1 + g) ˆ̃c(a+1)m

}
−γm
]
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where ˆ̃kam =
(x̃am−ˆ̃cam)

1+g
=

(
x̃am−

[
1, Γ̃

]
ηam

)
1+g

and ˆ̃c(a+1)m =

[
1, ˆ̃Γ ′

]
ηam

where x̃am and ˆ̃x′am in ˆ̃Γ ′ are given by for the example without a tax and a

borrowing cost:

(1.19) x̃am = w̃θam + (1 + r) k̃am

and

(1.20) ˆ̃x′am = w̃′θam + (1 + r′) ˆ̃kam

in which w̃ = (1− α)Ak̃α, r = αAk̃α−1 − δ, w̃′ = (1− α)Aˆ̃kα and r′ =

αAˆ̃kα−1 − δ.

• Then, regress the set of {c̃am} corresponding to grids on

[
1, Γ̃

]
to update

ηam. When updating ηam, I use the dampening strategy. For example. ηi+1
am =

ση̂i+1
am + (1− σ) ηiam where ηiam is the coefficient parameter values in the i-

th iteration, η̂i+1
am is the regression coefficient above and σ is a dampening

parameter. The coefficient parameter values in the (i+ 1)-th iteration, ηi+1
am , is

determined as a convex combination of η̂i+1
am and ηiam.

• Iterate the steps above until convergence is achieved by satisfying:

(1.21) sup
∣∣∣{ˆ̃ci+1

am

}
am
−
{

ˆ̃ciam

}
am

∣∣∣ < ε

where
{

ˆ̃ciam

}
am

is the set of ˆ̃ciam for all ages and types in all grids and ε is a

predetermined convergence measure.

(v) Solve the model again based on the Ergodic set.

• Simulate the model with the consumption policy functions above and use the
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simulated nodes to reset the upper and lower bounds of grids. The simulated

nodes provide information about the Ergodic set where the stochastic steady-

state of the model exists.

Outer loop:

(i) Change the second stage parameters to match empirical moments in the data.

a) To obtain the model statistics, simulate the economy for with 11, 000 periods

the approximated consumption policy functions from above. Throw away the

first 1000 periods, so that 10, 000 simulation periods are left. Given the con-

sumption policy functions from the single asset economy, find the total saving

for the next period. Then, find bond holdings by solving the equation (2.13)

in each simulation period given the total saving.

b) Let T be the target statistics in the data and P be the second stage parameters.

From the simulation, I can calculate the simulated statistics T̂ (P). Then, I

solve for P as a root of T − T̂ (P) = 0.

(ii) Increase the social security contribution rate given the calibrated parameters and

find the new general equilibrium by repeating steps above.

The algorithm is well converged, it takes less than 1 minute to find the consumption

policy functions in the single asset economy. The computation time is about 30 minutes

to simulate 11, 000 periods in the economy with two assets. The average Euler equation

errors are less than 0.1%. I implement this algorithm using Matlab 2018 in a desktop

with Intel Core i7-6700K CPU @ 4.00GHz.
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2 Income, Price Dispersion and Risk
Sharing

2.1 Introduction

Most consumption risk-sharing papers assume that the commodity markets are com-

petitive where all agents buy identical goods at the same prices without having market

power on affecting prices. However, we can easily find some anecdotal evidence to show

that prices are dispersed over the income of buyers for the same goods because of bulk

discounts, bargaining power, and many other reasons. For example, investors can get

higher interest rates if they save a large amount of deposit and consumers can get price

discounts if they purchase more than a certain limit, as in the business models of Costco

or Walmart in the U.S.. Beyond the anecdotal evidence, there is ample empirical finding

that unit prices are heterogeneous across households according to their income in devel-

oping countries. With Indian villages data, Rao (2000) shows that the poor pay more for

the same goods than the rich because of quantity premiums that they have to pay when

buying goods in small quantities. He shows that the Gini coefficients of real incomes are

indeed greater than that of nominal incomes in the Indian villages economies if considering

the income-dependent price heterogeneity.

Under income-dependent heterogeneous prices, more consumptions will be allocated to

the group facing relatively lower prices. Thus, the imperfectly competitive good markets

can affect consumption inequality and risk-sharing. In this paper, we examine whether

imperfect competition will increase consumption volatility and reduce risk sharing under

the incomplete financial market compared to its counterpart, competitive economy. We

also check that additional consumption volatility from the imperfect competition generates

a significant welfare loss. In addition, we study government policy to improve long-run

welfare when both frictions are present and quantify its welfare effects.
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In the Permanent Income Hypothesis literature, it is well known that consumption and

income profiles closely parallel (see Carroll and Summers 1991; Carroll 1997 and many

others). There are two strands of models to explain this stylized fact. The first model

is the life-cycle model with liquidity constraints and precautionary saving motives. The

other one is the Keynesian model inhabited by impatient or hand-to-mouth consumers who

exhaust their disposable income in every period. Under imperfectly competitive markets,

overlapped cohorts can face different prices for identical goods due to the hump-shaped

life-cycle income profiles. In particular, the middle-aged generation might experience

lower prices than the young or retired. Hence, we also examine that a model incorporating

imperfect competition can give rise to the correlated consumption/income profiles over

the life-cycle without any other frictions.

To address these issues, we embed the Shapley-Shubik market game in a standard

stochastic overlapping generations (SOLG) model where agents use fiat money to save

and insure against endowment risk (see Shapley and Shubik 1977; Dubey and Shubik

1978 for more details about the Shapley-Shubik market game). We assume that agents

live three periods: youth, middle-aged and retired periods. This three-period SOLG model

remains tractable but still captures an inverse-U shape endowment structure consistent

with the life-cycle income profile in the data. In the Shapley-Shubik market game, players

trade with other anonymous players by making offers of consumption goods and bids of

money in a centralized trading post. Each player is allocated a proportion of the aggregate

commodity offer in the proportion that her bid bears to the aggregate bid. Similarly, she

is assigned a share of the aggregate money bid in the proportion that her offer has to

the aggregate offer of the good. The good price is defined by dividing the total money

bid by the total good supply. Under this trading mechanism, strategic agents can affect

the price of a good and its allocations via bidding process.1 Therefore, fiat money in

our model works not only as a store of value and a medium of exchange but also as an

instrument to hedge risk and to exercise market power over the good price when there are

1 The price of a good is the inverse of the price of money when there is a single perishable good. Thus,
if agents have market power in the commodity market, they have market power with respect to the
price of money as well.
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both incomplete market and imperfect competition frictions.

In this paper, we obtain that short memory equilibria do not exist in the SOLG model

with strategic interactions as Henriksen and Spear (2012) derive the same results under

perfect competition. Thus, we focus on the pure strategy Markov Nash equilibrium as

an equilibrium concept for numerical analysis.2 We show that this recursive equilibrium

can be generated by linear policy functions under a sufficiently small shock, similar to the

findings in Kim and Spear (2017b) which focuses on a perfectly competitive market.

We confirm that overlapped cohorts face different effective marginal prices for identical

goods in our model depending on market power characterized by household income.3 The

Shapley-Shubik market game mechanism generates a feedback effect that players return

a portion of their own bids by offering the good simultaneously. Players with large offers

experience high return rates which imply that they need to give up less saving to increase

current bid for an additional unit of the good. Therefore, those with large offers can

purchase identical goods at lower marginal prices. Under the sell-all strategy, the more

one has endowments, the more she will offer goods. Thus, the effective marginal prices

are distributed according to household income.

In the deterministic version of the model, we analytically show that perfect consumption

smoothing fails because the inverse-U shape endowment structure yields a price hetero-

geneity over one’s life-cycle. Agents face the lowest marginal prices in the middle-aged

period when they offer the largest amount of the good and have the highest return rate.

To intertemporally optimize, they transfer their lifetime wealth to the second period of

life to consume more at a cheaper price. Thus, one’s consumption flow will follow her

endowment stream in our model. This result indicates that a model with imperfect com-

petition provides a distinctive explanation for the correlated consumption/income profiles

on the top of the existing models with capital market constraints or impatient consumers.

The primary result of this paper is that imperfect competition increases consumption

2 The Markov equilibrium does not allow agents to monitor the past actions of others so that they
condition their decisions only on current states.

3 We introduce here the distinction between average prices – those given by dividing aggregate bids by
aggregate offers – and marginal or effective prices – which equal agents’ marginal rates of substitution
at any best response, because it is important for our analysis of the effects of imperfect competition.
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volatility and reduces risk sharing compared to its counterpart, competitive economy.

The consumption risk-sharing requires a transfer from high-income group to low-income

one under an idiosyncratic endowment shock. However, the rich income group faces a

lower marginal price than the poor one due to a larger endowment offer in our model.

This price inequality leads to skewed allocations to the high-income group relative to

the competitive economy. Hence, imperfect competition above the incomplete market

worsens risk sharing between agents against an idiosyncratic shock and increases their risk-

exposure of consumptions. In numerical analysis, we check that within-age consumption

volatility increases 4.0% for the young, 2.9% for the middle-aged and 2.6% for the old when

adding imperfect competition to the incomplete market. This additional consumption

volatility generates a complementary welfare loss. In other words, the welfare loss under

imperfect competition and the incomplete market is bigger than the sum of welfare loss

from each friction. As the size of shocks increases, the additional consumption volatility

and its supermodular welfare loss grow as well. Our numerical analysis implies that the

complementary welfare loss takes about 50% of the welfare loss solely from the incomplete

market friction.

To check the robustness of the results, we work with other parameter values for time

discount factor and risk aversion. Any changes in these parameters still induce the same

qualitative result of the complementary welfare loss from both frictions, although they

can attenuate such welfare loss quantitatively.

We find that the structure of an endowment shock matters for the size of the additional

consumption volatility. Unlike an idiosyncratic endowment shock, an aggregate endow-

ment shock generates small additional consumption volatility because endowments are

positively correlated across agents, and they experience similar movements in marginal

prices. Thus, there are no specific groups which can purchase identical goods at signifi-

cantly lower prices. The within-age consumption volatility increases only 1.52% for the

young, 0.47% for the middle-aged and 0.8% for the old under an aggregate shock in a

parametrized version of the model.

We analyze two types of government policies to improve social welfare. We measure
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social welfare in the ex-ante expected utility of an individual being born into an economy.

Expansionary monetary policy transfers new money to low-income group who faces a bad

endowment shock. This policy reduces consumption risk between states, but it does not

mitigate the welfare loss from the imperfect competition because of inability in adjust-

ing the effective marginal prices. When both frictions are present, the monetary policy

might rather decrease social welfare by generating more consumption variation over one’s

life-cycle via an intertemporal wedge although it decreases the within-age consumption

volatility.4 Therefore, we study fiscal policy with linear endowment tax and lump-sum

transfer. We show that this policy pools the consumption risk and weakens the welfare

loss from the imperfect competition by reducing the share of consumptions traded under

the strategic interactions. As income tax rates rise, there are more smooth consumptions

over the life-cycle and less volatility of consumption between states. Thus, the fiscal policy

can improve the social welfare even if both frictions are present. From this analysis, we

note that the introduction of imperfect competition generates an asymmetry between the

effects of fiscal and monetary policy actions, unlike the competitive economy.

We also consider a possible extension of the model by incorporating the search activity

of agents for a price discount opportunity. In this extended model, we assume that both

offering goods and exercising search effort reduce effective marginal prices. Whether

the imperfect competition increases or decreases consumption risk-exposure depends on

which effect dominates given the inverse relationship of search effort with income from

the opportunity cost of search such as wage.

We organize this paper as follows. Section 2.2 briefly describes the three-period SOLG

model incorporating the Shapley-Shubik market game. In this section, we show the short

memory equilibria do not exist. In Section 2.3, we examine how the imperfect competition

generates non-smooth consumption allocations over the life-cycle in the deterministic ver-

sion of the model. Section 2.4 runs diverse numerical analyses to study how the imperfect

competition increases consumption volatility additionally and calculate its welfare loss. In

Section 2.5, we check the robustness of our results. We examine two types of government

4 The imperfect competition already makes non-smooth consumptions over the life-cycle. Further con-
sumption variation over ages will reduce welfare significantly under a concave utility function.
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policies to improve social welfare in Section 2.6. In Section 2.7, we extend the model by

integrating the search behavior of agents. Finally, Section 2.1 concludes this paper. The

appendix provides proofs and numerical algorithms.

2.2 Model

In this section, we develop a pure exchange overlapping generation model incorporating

the Shapley-Shubik market game. Time is discrete and indexed by t from 1 to infinity. In

each period, n > 0 agents are born and live three-periods labeled as young, middle-aged

and old. There is no population growth. We assume that n agents within the same cohort

are identical in both preferences and endowments and thus, we focus on symmetric Nash

equilibria. In period 1, there are n middle-aged consumers who live in period 1 and 2 and

n old consumers who live only in period 1.

In every period, there are a single perishable commodity and fiat money. The initial

middle-aged and old carry money holdings ofm1,0 andm2,0 respectively where n (m1,0 +m2,0) =

nM . We assume that the aggregate supply of money is fixed at nM from period 1 onward

in the base model.

There is an exogenous shock with two states of nature, s ∈ {α, β}, which affects en-

dowments. The shock process is assumed to be independent and identically distributed

(IID) across time with the state probability given by 0 < πs < 1 for s ∈ {α, β}, where

πα + πβ = 1. Agents’ endowment profiles are given by a stochastic nonnegative vector

ωs =
(
ωs1, ω

s′
2 , ω

s′′
3

)
where ωs1 is endowment when young in state s, ωs

′
2 is endowment when

middle-aged in state s′ and ωs
′′

3 is endowment when old in state s′′. We assume ωsi � 0

for ∀i and ∀s. Note that endowments in each age depend only on the current realization

of an exogenous shock.

A consumption vectorcst =
(
cs1,t, c

s′
2,t+1, c

s′′
3,t+2

)
is for the representative agent born in

state s at time t. cs1,t is the first-period consumption given state s in time t, cs
′

2,t+1 is

the second-period consumption given state s′ in time t + 1, and cs
′′

3,t+2 is the last period
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consumption given state s′′ in time t + 2. Hereafter, we denote xsi,j as the value of x in

the i-th stage of an agent’s life given state s at time j.

The consumer preferences are given by a time-separable utility function U : R7
+ →

R ∪ {−∞} . U is specified by:

(2.1) U (cst) = u
(
cs1,t
)

+ δ
∑

s′∈{α,β}

πs
′
u
(
cs
′

2,t+1

)
+ δ2

∑
(s′,s′′)∈{α,β}2

πs
′
πs
′′
u
(
cs
′′

3,t+2

)

where the one-period utility function u : R+ → R ∪ {−∞} is C3, strictly increasing,

strictly concave, u′′′ (c) > 0 for ∀c > 0 and satisfies the Inada condition, and 0 < δ ≤ 1 is

the time discount factor.

Agents trade the single commodity with outside money in a central trading post un-

der strategic interactions. The identical agents born in state s at time t make the same

non-negative lifetime offers of goods qst =
(
qs1,t, q

s′
2,t+1, q

s′′
3,t+2

)
� 0 to receive money and

the same non-negative lifetime bids of money bst =
(
bs1,t, b

s′
2,t+1, b

s′′
3,t+2

)
� 0 to buy goods.

They also hold the same amount of money today and tomorrow to save for the next

period represented by ms
t =

(
ms

1,t,m
s′
2,t+1

)
. Therefore, {(qst , bst ,ms

t) ∈ R17 | ωs � 0} de-

notes the strategy set of the identical households born in state s at time t. We denote(
Qs

1,t, Q
s′
2,t+1, Q

s′′
3,t+2

)
=
(
nqs1,t, nq

s′
2,t+1, nq

s′′
3,t+2

)
and

(
Bs

1,t, B
s′
2,t+1, B

s′′
3,t+2

)
=
(
nbs1,t, nb

s′
2,t+1, nb

s′′
3,t+2

)
as the sum of identical lifetime offers and bids of n agents born in state s in period t.

The aggregate offer of good in time t is the sum of offers made in period t by all

consumers born in periods t − 2, t − 1 and t: Qs
t = Qs

3,t + Qs
2,t + Qs

1,t . Likewise, the

aggregate bid of money in time t is the sum of the bids made in period t by all consumers

born in periods t − 2, t − 1 and t: Bs
t = Bs

3,t + Bs
2,t + Bs

1,t. Given offers and bids, the

trading mechanism under the Shapley-Shubik market game allocates goods and money as

follows. Each consumer is allocated a proportion of the aggregate offer of the commodity

in the proportion that her bid bears to the aggregate bid. Similarly, each consumer is

assigned a share of the aggregate bid of money in the proportion that her offer has to the

aggregate offer.
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We write the budget constraints faced by identical agents born in time t and state s:

bs1,t +ms
1,t =

qs1,t
Qs
t

Bs
t

bs
′

2,t+1 +ms′

2,t+1 −ms
1,t =

qs
′

2,t+1

Qs′
t+1

Bs′

t+1(2.2)

bs
′′

3,t+2 −ms′

2,t+1 =
qs
′′

3,t+2

Qs′′
t+2

Bs′′

t+2

where
Bst
Qst

can be interpreted as the price of the single good in terms of the money in

period t and state s.

The identical households born in time t and state s consume goods as follows under the

trading mechanism of the market game:

cs1,t = ωs1 − qs1,t +
bs1,t
Bs
t

Qs
t

cs
′

2,t+1 = ωs
′

2 − qs
′

2,t+1 +
bs
′

2,t+1

Bs′
t+1

Qs′

t+1(2.3)

cs
′′

3,t+2 = ωs
′′

3 − qs
′′

3,t+2 +
bs
′′

3,t+2

Bs′′
t+2

Qs′′

t+2

We are interested in the pure strategy symmetric Nash equilibria and thus, we express

prices or the inverse of prices in (2.2) and (2.3) in terms of the offers and bids of other

agents. For this, we introduce new variables: Bs
t,−i = Bs

t − bsi,t and Qs
t,−i = Qs

t − qsi,t for

∀i ∈ {1, 2, 3}. With these notations, we can rewrite (2.2):

bs1,t +ms
1,t =

(
Bs
t,−1 −ms

1,t

Qs
t,−1

)
qs1,t

bs
′

2,t+1 +ms′

2,t+1 −ms
1,t =

(
Bs′
t+1,−2 −ms′

2,t+1 +ms
1,t

Qs′
t+1,−2

)
qs
′

2,t+1(2.4)

bs
′′

3,t+2 −ms′

2,t+1 =

(
Bs′′
t+2,−3 +ms′

2,t+1

Qs′′
t+2,−3

)
qs
′′

3,t+2

We obtain by equating the right-hand sides of (2.2) and (2.4):

(2.5)

Qs
t

Bs
t

=
Qs
t,−1

Bs
t,−1 −ms

1,t

,
Qs′
t+1

Bs′
t+1

=
Qs′
t+1,−2

Bs′
t+1,−2 −ms′

2,t+1 +ms
1,t

and
Qs′′
t+2

Bs′′
t+2

=
Qs′′
t+2,−3

Bs′′
t+2,−3 +ms′

2,t+1
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We get by substituting (2.4) and (2.5) into (2.3):

cs1,t = ωs1 −
(

Qs
t,−1

Bs
t,−1 −ms

1,t

)
ms

1,t

cs
′

2,t+1 = ωs
′

2 −

(
Qs′
t+1,−2

Bs′
t+1,−2 −ms′

2,t+1 +ms
1,t

)(
ms′

2,t+1 −ms
1,t

)
(2.6)

cs
′′

3,t+2 = ωs
′′

3 +

(
Qs′′
t+2,−3

Bs′′
t+2,−3 +ms′

2,t+1

)
ms′

2,t+1

The problem of identical agents is defined as given the offers and bids of all other agents:

max
(qst ,b

s
t ,m

s
t )
U (cst) = u

(
ωs1 −

(
Qs
t,−1

Bs
t,−1 −ms

1,t

)
ms

1,t

)
+ δ

∑
s′∈{α,β}

πs
′
u

(
ωs
′

2 −

(
Qs′
t+1,−2

Bs′
t+1,−2 −ms′

2,t+1 +ms
1,t

)(
ms′

2,t+1 −ms
1,t

))
(2.7)

+ δ2
∑

(s′,s′′)∈{α,β}2
πs
′
πs
′′
u

(
ωs
′′

3 +

(
Qs′′
t+2,−3

Bs′′
t+2,−3 +ms′

2,t+1

)
ms′

2,t+1

)

subject to (2.4)

The first order conditions with respect to ms
1,t and ms′

2,t+1 are respectively:

(2.8)

u′
(
cs1,t
)( Qs

t,−1

Bs
t,−1 −ms

1,t

+
Qs
t,−1(

Bs
t,−1 −ms

1,t

)2m
s
1,t

)

= δ
∑

s′∈{α,β}

πs
′
u′
(
cs
′

2,t+1

)( Qs′
t+1,−2

Bs′
t+1,−2 −ms′

2,t+1 +ms
1,t

+
Qs′
t+1,−2(

Bs′
t+1,−2 −ms′

2,t+1 +ms
1,t

)2

(
ms′

2,t+1 −ms
1,t

))

and

(2.9)

u′
(
cs
′

2,t+1

)( Qs′
t+1,−2

Bs′
t+1,−2 −ms′

2,t+1 +ms
1,t

+
Qs′
t+1,−2(

Bs′
t+1,−2 −ms′

2,t+1 +ms
1,t

)2

(
ms′

2,t+1 −ms
1,t

))

= δ
∑

s′′∈{α,β}

πs
′′
u′
(
cs
′′

3,t+2

)( Qs′′
t+2,−3

Bs′′
t+2,−3 +ms′

2,t+1

−
Qs′′
t+2,−3(

Bs′′
t+2,−3 +ms′

2,t+1

)2m
s′

2,t+1

)

Note that once the money demands are determined by (2.8) and (2.9), either the offers

or bids of agents are indeterminate in (2.4). In other words, a household’s net trade can
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be achieved in infinite combinations of offers and bids given other agents’ offers and bids

(see Peck et al. 1992). For example, when increasing offers more than one’s endowments,

raising bids buys back the additional offers so that (2.4) is satisfied. Thus, either offers

or bids should be exogenously determined to avoid the indeterminacy issue. Following

a standard assumption in the market game literature, we focus on the offer constrained

game in which agents must offer all their endowments, so-called sell-all strategy, for the

rest of the paper. As shown in Peck et al. (1992), the equilibria of the offer constrained

game would be those of the unconstrained game, as long as exogeneous offers yield interior

bids.

We summarize the offer constrained market game under sell-all strategy in SOLG mod-

els in the following definition.

Definition 1. The following elements describe the offer-constrained SOLG market game

with sell-all strategy.

(i) 3n players in each period

(ii) A finite set Φ = {α, β} of states of shocks. Shocks follow an independent and

identically distributed process with the state probability, 0 < πs < 1 for s ∈ {α, β}

where πα + πβ = 1

(iii) Stochastic endowments ωs =
(
ωs1, ω

s′
2 , ω

s′′
3

)
where (s, s′, s′′) ∈ {α, β}3 for all periods

(iv) The time-separable von Neumann-Morgenstern utility function U

(v) The strategy set {(qst , bst ,ms
t) ∈ R17 | ωs � 0}

(vi) Offers constrained at endowments, qst = ωs for ∀t

In this model, we are interested in symmetric Nash equilibria because we assume that

identical agents within the same cohort bid and save equal amounts. We further concen-

trate on monetary Nash equilibria where the price of money is positive. Thus, we assume
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2 Income, Price Dispersion and Risk Sharing

appropriate endowment profiles such that the resulting aggregate money demands are

positive.

We now define a monetary symmetric Nash equilibrium in an offer constrained market

game under sell-all strategy in SOLG models.

Definition 2. For the offer constrained market game under sell-all strategy in the three-

period SOLG models, a monetary symmetric Nash equilibrium in pure strategies is a

sequence of bids and money demands
(
bs12,1, b

s1
3,1, b

s2
3,2,m

s1
2,1, b

st
t ,m

st
t

)
t=1,2,...

such that:

(i) Offers are given at endowments
(
qs12,1, q

s1
3,1, q

s2
3,2, q

st
t

)
t=1,2,...

= (ωs12 , ω
s1
3 , ω

s2
3 ,ω

st)t=1,2,...

where st is the state realization in period t.

(ii) Every agent’s strategies
(
bs12,1, b

s1
3,1, b

s2
3,2,m

s1
2,1, b

st
t ,m

st
t

)
t=1,2,...

are the best response to

the actions of other agents taken as given.

(iii) For ∀t, n
(
mst

1,t +mst
2,t

)
= nM , where nM is the stock of fiat money from period 1

onward.

2.2.1 Short Memory and Recursive Equilibria

In this subsection, we show the non-existence of short memory monetary Nash equilib-

ria. Then, we prove the existence of recursive Markov monetary Nash equilibria under a

sufficiently small shock. We compute the latter equilibria when we implement the welfare

analysis below. For these proofs, we first simplify the parentheses in the consumption

good allocation rule in (2.6) and the first-order conditions in (2.8) and (2.9) with (2.5):

cs1,t = ωs1 −
Qs
t

Bs
t

ms
1,t

cs
′

2,t+1 = ωs
′

2 −
Qs′
t+1

Bs′
t+1

(
ms′

2,t+1 −ms
1,t

)
(2.10)

cs
′′

3,t+2 = ωs
′′

3 +
Qs′′
t+2

Bs′′
t+2

ms′

2,t+1
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(2.11)

u′
(
cs1,t
) Bs

t,−1

Qs
t,−1

(
Qs
t

Bs
t

)2

= δ
∑

s′∈{α,β}

πs
′
u′
(
cs
′

2,t+1

) Bs′
t+1,−2

Qs′
t+1,−2

(
Qs′
t+1

Bs′
t+1

)2

and

(2.12)

u′
(
cs
′

2,t+1

) Bs′
t+1,−2

Qs′
t+1,−2

(
Qs′
t+1

Bs′
t+1

)2

= δ
∑

s′′∈{α,β}

πs
′′
u′
(
cs
′′

3,t+2

) Bs′′
t+2,−3

Qs′′
t+2,−3

(
Qs′′
t+2

Bs′′
t+2

)2

where
Qst
Bst

,
Qs
′
t+1

Bs
′
t+1

and
Qs
′′
t+2

Bs
′′
t+2

are the inverses of good prices in time t, t+1 and t+2 respectively.

As the number of identical agents converges to infinity,
Bst,−1

Qst,−1
goes to

Bst
Qst

and it will be

canceled out with
Qst
Bst

in (3.11). Likewise,
Bs
′
t+1,−2

Qs
′
t+1,−2

and
Bs
′′
t+2,−3

Qs
′′
t+2,−3

will be canceled out with

Qs
′
t+1

Bs
′
t+1

and
Qs
′′
t+2

Bs
′′
t+2

in (3.11) and (3.12). Thus, the first-order conditions in an imperfectly com-

petitive economy degenerate to the usual optimality conditions in the perfect competition

model in the limit.

We call
Bst,−i
Qst,−i

(
Qst
Bst

)2

the effective marginal price of money for age i in time t and state

s and its inverse is the effective marginal price of the commodity that age-i agents pay

to purchase an additional good in time t and state s. The derivation of the effective

marginal price is straightforward from the allocation rule and individual budget con-

straints. In time t and state s, age-i agents should bid
4csi,t(Bst )2

QstB
s
t,−i−4csi,tBst

to get additional

consumptions up to 4csi,t from the allocation rule. The budget constraint implies that the

age-i agents return back their own bids partially via offers to their shares of the aggregate

offer,
qsi,t
Qst

. Thus, the age-i agents need to give up
Qst,−i
Qst

amount of money for saving to

increase the current bid by 1. From these results, we know that the age-i agents have

to reduce
(Bst )2

QstB
s
t,−i−4csi,tBst

Qst,−i
Qst

amount of saving to raise the current consumption by 1.

(Bst )2

QstB
s
t,−i−4csi,tBst

Qst,−i
Qst

=
Qst,−i
Bst,−i

(
Bst
Qst

)2 QstB
s
t,−i

QstB
s
t,−i−4csi,tBst

after some calculations. As 4csi,t −→ 0,

this expression reduces to
Qst,−i
Bst,−i

(
Bst
Qst

)2

which we call the effective marginal price of the

good for age i in time t and state s. We stress here that the offer-dependent return rates
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2 Income, Price Dispersion and Risk Sharing

are the main cause of the heterogeneous effective marginal prices across agents.

We now show the non-existence of short memory monetary Nash equilibria in the fol-

lowing proposition by counting the number of variables and equations in (3.10), (3.11)

and (3.12) assuming the short memory Nash equilibria.

Proposition 1. There are no short memory (or T-memory) monetary Nash equilibria for

an open and dense set of the offer constrained market game under sell-all strategy in the

three-period SOLG models.

Proof. See Appendix 2.9.1.

The non-existence of short memory monetary Nash equilibria implies that any rational

expectations equilibrium must include lagged endogenous state variables. Here, we take

the distribution of asset holdings across agents as the endogenous state variables. This

type of equilibrium is generally referred to as a recursive Markov equilibrium. We state

the definition of the recursive Markov equilibrium in our model below.

Definition 3. For the offer constrained market game under sell-all strategy in the three-

period SOLG models, recursive Markov monetary Nash equilibria in pure strategies consist

of policy functions for bids and money demands, {b1 (σt) , b2 (σt) , b3 (σt) ,m1 (σt) ,m2 (σt)},

which are the best responses to the actions of other agents taken as given and clear the

money market. σt =
[
m
st−1

1,t−1, st
]
∈ Σ ⊂ R×{α, β} represents the minimal state variables:

the lagged money holdings carried by the current middle-aged and the realization of a

current shock.

Note that the lagged money holdings of the current old can be ignored in the space of

the endogenous state variables by the money market clearing condition. In the Markov
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equilibrium, there is no trigger strategy monitoring the past actions of others so that

agents condition their decisions only on current states.

We now show that the recursive Markov equilibria can be generated by a set of linear

policy functions for the offer constrained market game under sell-all strategy in the three-

period SOLG economies if the exogenous shock is sufficiently small.5 For this proof, we

impose the following linear forecast functions:

(2.13)
m1

(
m
st−1

1,t−1, st
)

= m̄st
1 − γ

(
m
st−1

1,t−1 − m̄st
1

)
= G

(
m
st−1

1,t−1, st
)

b1

(
m
st−1

1,t−1, st
)

= b̄st1 + ρ
(
m
st−1

1,t−1 − m̄st
1

)
= H

(
m
st−1

1,t−1, st
)

for st ∈ {α, β}.

We stress that the affine coefficients in (2.13) are assumed to be independent of the

state of the current shock following the result in Kim and Spear (2017b) which shows

that homogeneous linear forecast functions can generate the recursive Markov equilibria

in a three-period competitive SOLG model. We do not consider the bid policy functions

of the middle-aged and old because they can be represented with mst
1,t and bst1,t from the

individual budget constraint as following:

(2.14) bst2,t = U
(
bst1,t,m

st
1,t,m

st−1

1,t−1

)
=
qst2,t

qst1,t

bst1,t +

(
1 +

qst2,t

qst1,t

)
mst

1,t −M +m
st−1

1,t−1

and

(2.15) bst3,t = V
(
bst1,t,m

st
1,t,m

st−1

1,t−1

)
=
qst3,t

qst1,t

(
bst1,t +mst

1,t

)
+M −mst−1

1,t−1

We now write the equilibrium conditions that the linear forecast functions should satisfy

as in the following form:

5 We measure the size of the exogenous shock by max
{∣∣∣ωαi − ωβi ∣∣∣}

i∈{1,2,3}
.
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m1

(
m
st−1

1,t−1, st
)

= m1

(
Bst
t,−1,

{
B
st+1

t+1,−2

}
st+1∈{α,β}

,
{
B
st+2

t+2,−3

}
(st+1,st+2)∈{α,β}2

)(2.16)

M = m1

(
m
st−1

1,t−1, st
)

+m2

(
B
st−1

t−1,−1,
{
Bst
t,−2

}
st∈{α,β}

,
{
B
st+1

t+1,−3

}
(st,st+1)∈{α,β}2

)

where the bid arguments inside the big parentheses in (3.16) represent the set of total

bids net of an agent’s bid in each age. One should consider such bids over all possible

paths of shocks after her birth. The bid arguements, Bst
t,−i for ∀t, st and i , are implicitely

expressed with b1

(
m
st−1

1,t−1, st
)
, U
(
bst1,t,m

st
1,t,m

st−1

1,t−1

)
and V

(
bst1,t,m

st
1,t,m

st−1

1,t−1

)
.

The first equation in (3.16) indicates that the linear forecast functions should equal the

optimal money holding. The second equation in (3.16) implies that the linear forecast

functions should clear the money market. One can derive optimal bids from the budget

constraint if optimal money demands are known. Thus, it is enough to show the consis-

tency of these two equilibrium conditions with the linear forecast functions in (2.13) to

conclude that those functions generate the recursive Markov equilibria.

We proceed two steps to show that the linear forecast functions satisfy (3.16) under a

sufficiently small shock. First, we check that such forecast functions can be a solution

to the equilibrium system at the deterministic steady states. This is the content of the

following lemma.

Lemma 1. The linear forecast functions in (2.13) satisfy (3.16) at the steady-states in the

deterministic case of the offer constrained OLG market game under the sell-all strategy.

Proof. See Appendix 2.9.2

With the result in Lemma 1, we apply the implicit function theorem (IFT) to show the

existence of linear forecast functions which generate the recursive Markov equilibrium in
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a neighborhood of the deterministic steady states if the exogenous shock is sufficiently

small. We present this result in the following proposition.

Proposition 2. There exist recursive Markov Nash equilibria generated by linear forecast

functions given by (2.13) in a neighborhood of the deterministic steady states for the

offer constrained market game under sell-all strategy in a three-period SOLG model with

sufficiently small shocks.

Proof. See Appendix 2.9.3

To prove Proposition 2, we do not specify particular deterministic steady states and

assumptions on structural parameters such as preferences, endowments, total money quan-

tities and shock processes. Thus, there exist linear forecast functions around all possible

deterministic steady states for a fairly broad set of economies as long as the shock is small

enough.

One of the limitations of the results in Proposition 2 is that the size of the shock should

be sufficiently small. However, we execute welfare analysis later on the recursive equi-

librium for not only small but also moderate sizes of shocks. Kubler and Polemarchakis

(2004) examine the existence of (stationary) Markov ε- equilibria in OLG economies which

clear the market and are within ε-bound of true utility maximizing choices. They show

that such Markov ε- equilibria exist for all ε > 0 and converge to competitive equilibria

as ε −→ 0. They stress out that only Markov ε- equilibria can be computed in numerical

work because of rounding and truncation errors. With the justification of Kubler and

Polemarchakis (2004), we focus on computing Markov ε- equilibria in the welfare analy-

sis. We numerically check that such Markov ε- equilibria can be found in our model with

strategic interactions under any sizes of shocks for any ε-error bounds.
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2 Income, Price Dispersion and Risk Sharing

2.3 Correlated consumption/income profiles

We analytically show that perfect consumption smoothing fails over the life-cycle and

one’s consumptions rather follow her endowment stream in the model with strategic in-

teractions. To show this argument more clearly, we focus on the deterministic version of

the model above with δ = 1.

Under these restrictions, we observe equal lifetime consumptions at the deterministic

steady-states if the good markets are competitive because overlapped cohorts face the

same marginal prices for identical goods. However, agents can experience a price hetero-

geneity across the life-cycle according to their income as seen in (3.11) and (3.12). Thus,

agents might consume more in a certain age which leads to unequal lifetime consumptions.

This is the main content of the following proposition.

Proposition 3. Perfectly smoothed consumptions cannot be the stationary allocations

in the deterministic OLG economy with δ = 1 if there are strategic interactions. Instead,

the steady-state allocations are characterized by more consumptions in ages with higher

endowments.

Proof. See Appendix 2.9.4.

The Shapley-Shubik market game mechanism generates a feedback effect that agents

return a portion of their own bids by offering the good at the same time. The rate of

return equals one’s share of the aggregate offer. Thus, there are higher return rates for

the ages with larger endowments under the sell-all strategy. A high return rate allows

agents to give up less saving to increase current bid for an additional unit of the good. This

result implies that households can purchase identical goods at lower marginal prices in the

periods with larger endowments. The intertemporally optimizing consumers transfer their

wealth to the ages with lower marginal prices to increase consumption. Hence, we observe

that consumption growth closely parallels income growth at the stationary equilibria.
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2.3 Correlated consumption/income profiles

The correlated consumption/income profiles lead to the failure of perfect consumption

smoothing in the model with strategic interactions. Even under equal lifetime incomes,

the perfectly smoothed consumptions cannot be the outcome of the steady states because

such allocations violate the money market clearing condition as noted in the proof of

Proposition 3.

To be consistent with data, we now restrict our attention to inverse-U shape lifetime

income profiles. We assume that agents retire in the old period and receive zero endow-

ments. The result in Proposition 3 indicates that the lifetime consumptions will also show

a hump-shaped distribution. In the following corollary, we summarize this finding and

other interesting features for the stationary allocations under the endowment structures

of interest.

Corollary 1. In the deterministic OLG economy with strategic interactions, the station-

ary consumption allocations are hump-shaped if the endowment structures are inverse-U

shaped. Assuming δ = 1 and ω3 = 0, the steady-states allocations satisfy the relationship

that c1 R 1
3

(ω1 + ω2), c2 >
1
3

(ω1 + ω2), and c3 <
1
3

(ω1 + ω2). c1 >
1
3

(ω1 + ω2) if ω1 is

smaller than but close enough to Ω
2n

. c1 <
1
3

(ω1 + ω2) if ω1 is larger than but sufficiently

close to Ω
3n

.

Proof. See Appendix 2.9.5.

This result implies that a model with imperfect competition provides a distinctive ex-

planation for the correlated consumption/income profiles even with patient consumers

and without capital market imperfections such as liquidity constraints and precaution-

ary saving motives. It is worth recognizing how the income-dependent prices produce

a welfare loss in the OLG market game economy. In the competitive economy, prices

adjust to balance the purchasing power of overlapped generations so that they face the

same marginal prices for identical goods. The income-neutral prices allow the perfect
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consumption smoothing. On the other hand, the price heterogeneity generates variations

in the life-cycle consumptions which leads to a welfare loss in the imperfectly competitive

economy.

2.4 Consumption Volatility and Risk Sharing

In this section, we examine how the exposure of consumption to endowment risk

strengthens when adding the imperfect competition on the top of the financial market

incompleteness. To be specific, we quantitatively study how and how much strategic in-

teractions reduce risk-sharing among overlapped generations by increasing consumption

volatility between states. We also calculate the welfare loss from the additional consump-

tion volatility compared to the benchmark, deterministic competitive economy.

We first consider an idiosyncratic shock across generations where the young and middle-

aged receive stochastic endowments in the opposite direction. We maintain the assumption

that δ = 1. These assumptions will make the welfare analysis clearer because the bench-

mark allocations in the frictionless economy will be the perfectly smoothed consumptions

over ages and states and one can identify the welfare loss by comparing the certainty

equivalent consumptions in the frictional economies with the benchmark ones. We also

consider an aggregate shock and a standard time discount factor from the macroeconomics

literature in the robustness check section.

For the numerical analysis, we assume the constant relative risk aversion utility function,

u (c) = c1−σ

1−σ where σ = 2. We assume that there is one representative agent born in

each generation – n = 1 – to highlight the effect of strategic interactions on the risk-

sharing. The total money quantity, M , is normalized to be 1. The total endowment is

also normalized to be 1 and the shares of the endowments are assumed to be 3
8
, 5

8
and 0 for

the young, the middle-aged and the retired in the deterministic economy: {ω1, ω2, ω3} ={
3
8
, 5

8
, 0
}

.

The idiosyncratic shock follows a simple IID Bernoulli process with πα = 0.5 and
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πβ = 0.5. In our base case, we consider the stochastic endowment streams given by

{ωα1 , ωα2 , ωα3 } =
{

5
16
, 11

16
, 0
}

and
{
ωβ1 , ω

β
2 , ω

β
3

}
=
{

7
16
, 9

16
, 0
}

where ωsi is the endowment of

age i in state s. Thus, the baseline idiosyncratic shock generates the standard deviation

of 1
16

for the stochastic endowments. The young cohort is advantaged in state β whereas

the middle-aged cohort is advantaged in state α because they receive more endowments

in such states than in the deterministic economy.

Given the parameters values above, we compute the recursive Markov Nash equilibria

for a welfare analysis in the three types of economies with only the incomplete market,

only the imperfect competition, and both frictions.6 We simulate the three economies for

21,000 periods and ignore the first 1000 periods to avoid the effect of initial conditions on

the results. Time averages and cross-sectional averages will be the same because of the

ergodicity in the recursive Markov equilibria.7 This property allows us to calculate the

ex-ante expected utility of the stochastic steady-states with the simulation data. Then,

we find certainty equivalent (CE) consumptions to achieve the ex-ante expected utility

in the frictional economies. The welfare loss from each friction is measured with the dif-

ference between its CE consumption and the benchmark perfect smoothing consumption

as the percentage of the benchmark allocation. One can view the welfare loss measure

or the CE consumption loss rate as a relative risk-premium. By comparing the welfare

losses in the three economies, we can identify the complementary welfare loss from the

additional consumption volatility via interactions between the incomplete market and im-

perfect competition. We define such supermodular welfare loss as the welfare loss in the

economy with both frictions net of the sum of the welfare losses in the other two economies

with each friction.

Table 3.1 summarizes the welfare analysis results for the three types of economy men-

tioned above relative to the benchmark economy under the baseline parameters values.

In the second and third columns, we display the mean of consumption simulation data for

each age conditional on the state of the current shock. The fourth column represents the

6 We describe the algorithm computing the recursive equilibria in Appendix 2.10.

7 The proof of this property can be obtained by a straightforward generalization of the technique
introduced by Duffie et al. (1994) for competitive Markov equilibria.
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Table 2.1: Welfare analysis under the base economy

Benchmark consumptions without frictions
Age State α State β Mean CV (%)

Young 0.3333 0.3333 0.3333 0.00%
Middle-aged 0.3333 0.3333 0.3333 0.00%

Old 0.3333 0.3333 0.3333 0.00%

Equilibrium consumptions only with imperfect competition
Age State α State β Mean CV (%)

Young 0.3286 0.3286 0.3286 0.00%
Middle-aged 0.4007 0.4007 0.4007 0.00%

Old 0.2707 0.2707 0.2707 0.00%

Equilibrium consumptions only with incomplete market
Age State α State β Mean CV (%)

Young 0.3146 0.3455 0.3301 4.68%
Middle-aged 0.3639 0.3064 0.3352 8.58%

Old 0.3214 0.3480 0.3347 3.98%

Equilibrium consumptions with both frictions
Age State α State β Mean CV (%)

Young 0.2975 0.3544 0.3260 8.72%
Middle-aged 0.4493 0.3567 0.4030 11.48%

Old 0.2532 0.2889 0.2711 6.58%

Welfare analysis

Benchmark
Imp.

Comp.
Inc. Mk. Both

CE consumption 0.3333 0.3249 0.3310 0.3214
CE consumption as (%)

of benchmark
100% 97.48% 99.29% 96.42%

- CV stands for the coefficient of variation which is the standard deviation of consumption

divided by its mean measured in %

- CE consumption represents certainty equivalent consumption
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average consumption level of each cohort without conditioning on the current shock state.

To express the consumption volatility faced by each generation, we use the coefficient

of variation (CV) in percentage. CV is calculated by dividing the standard deviation of

unconditional consumptions with its mean and then multiplying it with 100%. We write

the CV values of each cohort in the last column. In the last panel, we address CE con-

sumptions and their percentages out of the benchmark CE consumption for all economies

to evaluate the welfare loss from each friction.

In the economy only with imperfect competition, the lifetime consumption profile ex-

hibits a hump-shaped structure following the endowment profile which is consistent with

the implication in Corollary 2. The middle-aged face the lowest marginal prices because

of their highest offers. Thus, the young agents save more and the middle-aged save less

than what they do in the competitive economy to increase consumption in a period with

lower prices. This disparate saving behavior leads to a consumption variation across ages

observed in the inverse U-shaped consumption profile. Such a deviation from the per-

fectly smoothed consumptions generates a welfare loss of 2.52% in the economy with the

strategic interaction.

There is a very little variation on the lifetime consumption allocations in the economy

only with the incomplete market since overlapped generations face the same prices for the

identical goods. However, there exists a consumption volatility between states because the

fiat money alone cannot perfectly share the birth-date and successive exogenous risk. The

consumptions of the young are higher in state β than in state α whereas the middle-aged

consume more in state α than in state β because the young are advantaged in state β

and the middle-aged are advantaged in state α given the shock structure. Our numerical

analysis tells a welfare loss of 0.71% from the consumption volatility arising under the

financial market incompleteness.

In the economy with both frictions, the equilibrium consumptions are volatile across

both ages and states. One of the interesting results in this economy is that the consump-

tion volatility between states is much larger for all cohorts than that of the economy with

only the incomplete market friction. Specifically, the within-age consumption volatility
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increases by 4.04% for the young, 2.9% for the middle-aged, and 2.6% for the old. This

additional consumption volatility generates a supermodular welfare loss of 0.35% since the

total welfare loss is 3.58% in the economy with both frictions whereas the sum of welfare

losses from each friction is 3.23%.

The additional consumption volatility implies that the imperfect competition reduces

the risk sharing between states among overlapped generations on the top of the incom-

plete market. Indeed, the state-dependent marginal prices allocate more consumptions to

the advantaged generations – who receive a good shock – under the imperfect competi-

tion because the market game mechanism assigns lower marginal prices to those offering

more and thus, the advantaged cohort can consume at cheaper prices than the disadvan-

taged one. This biased allocation conflicts with the requirements for perfect risk-sharing

which necessitates a transfer from the advantaged cohort to the disadvantaged one. Thus,

the imperfect competition increases the risk-exposure of consumption to the endowment

shock.

Now, we consider two other shocks with standard deviations (SD) 2
16

and 3
16

to check how

the size of shocks affects the complementary welfare loss. In the former shock, the stochas-

tic endowment profile is described by {ωα1 , ωα2 , ωα3 } =
{

4
16
, 12

16
, 0
}

and
{
ωβ1 , ω

β
2 , ω

β
3

}
={

8
16
, 8

16
, 0
}

. For the latter shock, it is given by {ωα1 , ωα2 , ωα3 } =
{

3
16
, 13

16
, 0
}

and
{
ωβ1 , ω

β
2 , ω

β
3

}
={

9
16
, 7

16
, 0
}

.

Comparing Tables 3.1, 3.2, and 3.3, one can notice that the welfare loss from the

incomplete market increases as the size of shock increases: 2.88% for the shock with SD

2
16

and 6.73% for the shock with SD 3
16

. This is straightforward because larger shocks raise

the consumption volatility within ages. Here, an interesting finding is that the welfare

loss from the financial market incompleteness grows roughly by four or ten times although

we amplify the size of shock by two or three times from the base case due to the concavity

of the utility function.

We also stress that the larger the size of the shock, the higher the welfare loss from

the complementarity effect between imperfect competition and incomplete market: 1.47%

for the shock with SD 2
16

and 3.19% for the shock with SD 3
16

. As the size of shock
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Table 2.2: Welfare analysis under an idiosyncratic shock with SD 2
16

Age State α State β Mean CV (%)

Equilibrium consumptions only with incomplete market
Young 0.2884 0.3537 0.3211 10.17%

Middle-aged 0.3970 0.2834 0.3402 16.70%
Old 0.3147 0.3629 0.3388 7.11%

Equilibrium consumptions with both friction
Young 0.2612 0.3764 0.3188 18.07%

Middle-aged 0.5034 0.3167 0.4101 22.77%
Old 0.2354 0.3069 0.2712 13.18%

Benchmark
Imp.

Comp.
Inc. Mk. Both

CE consumption 0.3333 0.3249 0.3237 0.3104
CE consumption as (%)

of benchmark
100% 97.48% 97.12% 93.13%

- CV stands for the coefficient of variation which is the standard deviation of consumption

divided by its mean measured in %

- CE consumption represents certainty equivalent consumption

Table 2.3: Welfare analysis under an idiosyncratic shock with SD 3
16

Age State α State β Mean CV (%)

Equilibrium consumptions only with incomplete market
Young 0.2557 0.3606 0.3081 17.03%

Middle-aged 0.4326 0.2644 0.3485 24.14%
Old 0.3117 0.3750 0.3434 9.22%

Equilibrium consumptions with both friction
Young 0.2192 0.3973 0.3082 28.90%

Middle-aged 0.5618 0.2819 0.4219 33.17%
Old 0.2191 0.3208 0.2699 18.84%

Benchmark
Imp.

Comp.
Inc. Mk. Both

CE consumption 0.3333 0.3249 0.3109 0.2918
CE consumption as (%)

of benchmark
100% 97.48% 93.27% 87.54%

- CV stands for the coefficient of variation which is the standard deviation of consumption

divided by its mean measured in %

- CE consumption represents certainty equivalent consumption
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rises, the gap between effective prices across generations expands. Thus, the favored

cohort can buy goods at much cheaper prices under a larger shock than a smaller shock

which increases the additional consumption volatility. In the base case, the additional

consumption volatilities are about 4.04%, 2.9%, and 2.6% for the young, middle-aged and

old, respectively. When the size of shock doubles, those volatilities are 7.9%, 6.07%, and

6.07%. If the shock rises up to three times, the corresponding volatilities are 11.87%,

9.03%, and 9.62%. Therefore, the welfare loss from the supermodular effect is multiplied

as the size of shock increases. Lastly, we emphasize that the complementary welfare loss

takes about 50% of the welfare loss solely from the incomplete market in any sizes of

shocks as seen in comparing the results above.

2.5 Robustness Check of the Results

In this section, we change parameters to check the robustness of our results in this

paper. First, we set the time discount factor to be consistent with the literature. Then,

we consider the high risk-aversion case. Lastly, we examine a different shock structure.

2.5.1 Changing the Time Discount Factor

We set a new time discount factor at 0.54 because the annual subjective discount factor

is 0.97 from the literature and one period in our model takes 20 years in the real economy.

We keep other parameters as the base case above.

The stationary consumption allocations are decreasing in ages in the economy without

any frictions but a low time discount factor because agents prefer the present consumption

more than the future one. However, the middle-aged consume as much as the young in

an economy with imperfect competition due to facing the lowest effective prices as seen

above. Thus, the correlation between life-cycle consumptions and endowments is 0.88 at

the steady-state of this economy which is much larger than the one in the frictionless

economy, 0.52. This result supports that the strategic interaction makes consumptions

correlated with incomes over the life-cycle even with a realistic time discounting factor.
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Table 2.4: Welfare analysis under the economy with δ = 0.54

Age State α State β Mean CV (%)

Benchmark consumptions without frictions
Young 0.4396 0.4396 0.4396 0.00%

Middle-aged 0.3230 0.3230 0.3230 0.00%
Old 0.2374 0.2374 0.2374 0.00%

Equilibrium consumptions only with imperfect competition
Young 0.4071 0.4071 0.4071 0.00%

Middle-aged 0.3913 0.3913 0.3913 0.00%
Old 0.2016 0.2016 0.2016 0.00%

Equilibrium consumptions only with incomplete market
Young 0.4086 0.4572 0.4329 5.62%

Middle-aged 0.3648 0.2890 0.3269 11.60%
Old 0.2266 0.2538 0.2402 5.66%

Equilibrium consumptions with both friction
Young 0.3670 0.4375 0.4023 8.76%

Middle-aged 0.4468 0.3423 0.3946 13.25%
Old 0.1862 0.2202 0.2032 8.39%

Benchmark
Imp.

Comp.
Inc. Mk. Both

CE consumption 0.3539 0.3467 0.3500 0.3417
CE consumption as (%)

of benchmark
100% 97.96% 98.88% 96.53%

- CV stands for the coefficient of variation which is the standard deviation of consumption

divided by its mean measured in %

- CE consumption represents certainty equivalent consumption
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Looking at the welfare loss from each friction, there is an interesting finding that the

low time discount factor attenuates the welfare loss from imperfect competition, moving

it from 2.52% to 2.04%, but intensifies the welfare loss due to the incomplete market from

0.71% to 1.12%. One can get an intuition for these results by considering the extreme case

of δ = 0. In this extreme, agents care about consumption only in youth even under the

imperfectly competitive market. Thus, one’s saving behavior and consumption allocations

are not affected by the heterogenous effective prices across ages from the market game

mechanism. This result implies that there is a less room for the strategic interaction

to generate welfare losses. Hence, by continuity, a lower time discount factor yields a

relatively smaller welfare loss from imperfect competition.

If agents regard future consumption as being less valuable than current consumption

under a low δ, then it limits the amount of borrowing and saving among adjacent gen-

erations. For example, the middle-aged generation facing a bad shock cannot borrow

much from the young generation who discount future consumption significantly. Thus,

a low time discount factor reduces risk-sharing over one’s life-cycle and makes consump-

tion more volatile. The consumption inequality within each age indeed increases by 1-3%

compared to the base case. Therefore, the limited risk-sharing under a lower δ results in

a larger welfare loss from the incomplete market.

The additional consumption volatility between states is smaller for all ages under the

low time discount factor compared to the base case because consumption allocations

are less distorted by the strategic interaction as δ decreases as discussed above. Those

volatilities are roughly 3.14% for the young, 1.65% for the middle-aged, and 2.73% for the

old which are about 1% lower than the base case. Therefore, the complementary welfare

loss is 0.31% in the discounting economy which is smaller than 0.35% in the base case and

takes about 27% of the welfare loss solely from the incomplete market. This result implies

that the imperfect competition still increases the exposure of consumption to endowment

risk under a realistic time discount factor although its quantitative welfare effect can be

smaller.
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2.5.2 Changing the risk aversion

Now, we examine how the imperfect competition affects the consumption variation

across ages and states under a high-risk aversion, σ = 6. We also keep other parameters

as in the base case.

Table 2.5: Welfare analysis under the economy with σ = 6

Age State α State β Mean CV (%)

Equilibrium consumptions only with imperfect competition
Young 0.3321 0.3321 0.3321 0.00%

Middle-aged 0.3591 0.3591 0.3591 0.00%
Old 0.3088 0.3088 0.3088 0.00%

Equilibrium consumptions only with incomplete market
Young 0.3224 0.3373 0.3298 2.27%

Middle-aged 0.3546 0.3150 0.3348 5.91%
Old 0.3231 0.3477 0.3354 3.67%

Equilibrium consumptions with both friction
Young 0.3154 0.3410 0.3282 3.91%

Middle-aged 0.3894 0.3322 0.3608 7.93%
Old 0.2952 0.3268 0.3110 5.08%

Benchmark
Imp.

Comp.
Inc. Mk. Both

CE consumption 0.3333 0.3296 0.3303 0.3254
CE consumption as (%)

of benchmark
100% 98.89% 99.09% 97.64%

- CV stands for the coefficient of variation which is the standard deviation of consumption

divided by its mean measured in %

- CE consumption represents certainty equivalent consumption

After increasing the risk aversion, the life-cycle consumption profile becomes closer to

the perfectly smoothed one even under the strategic interaction, but we still observe the

correlated consumption/income life-cycle profiles. The consumption volatility between

states gets also lower compared to the base case. This less consumption variation across

both ages or states arises from the strong demand of more risk-averse households for

perfect risk sharing and smoothed consumptions.

The welfare losses show different patterns in each friction. Under a high risk-aversion,
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the welfare loss by the imperfect competition decreases from 2.52% to 1.01% whereas it

increases from 0.71% to 0.91% under the financial market incompleteness. To explain the

discrepancy in the welfare results, we should note that a high risk-aversion reinforces the

disutility against the consumption volatility although it decreases consumption variation

across both ages or states. The latter effect dominates the former one in the economy

only with the strategic interaction and thus, there is a less welfare loss. It is the opposite

when there exists only the incomplete market friction which results in a larger welfare

loss.

Under a high-risk aversion, the imperfect competition adds consumption volatility up

to 1.64% for the young, 2.02% for the middle-aged, and 1.41% for the old. These volatili-

ties are much smaller than in the base case because of the strong demand for perfect risk

sharing by more risk-averse households. However, since agents with a higher risk-aversion

experience more significant disutility to the same consumption variations, the complemen-

tary welfare loss is 0.34% which is comparable to 0.35% in the base case. Such welfare loss

takes roughly 37% of the welfare loss solely from the incomplete market. The results so

far support that the strategic interaction generates larger risk-exposure of consumptions

to the shock in a high-risk aversion as well.

2.5.3 Changing the Shock Structure

In this subsection, we examine how the structure of the endowment shocks matters

for the welfare implication of the imperfect competition. For this, we consider an ag-

gregate shock where the stochastic endowments streams are positively correlated be-

tween overlapped generations: {ωα1 , ωα2 , ωα3 , Ωα} =
{

5
16
, 9

16
, 0, 14

16

}
and

{
ωβ1 , ω

β
2 , ω

β
3 , Ω

β
}

={
7
16
, 11

16
, 0, 18

16

}
in which Ωs is the total endowment in state s. Other parameters set follow-

ing the base case. Note that this aggregate shock has the same SD with the idiosyncractic

shock in the base case from the viewpoints of each age.

From the welfare analysis, we find out that the strategic interaction reduces the risk-

sharing in a very limited manner if the exogenous uncertainty impacts overlapped gener-

82



2.5 Robustness Check of the Results

ations in the same direction.

Table 2.6: Welfare analysis under the economy with an aggregate shock

Age State α State β Mean CV (%)

Equilibrium consumptions only with incomplete market
Young 0.2939 0.3672 0.3306 11.09%

Middle-aged 0.3096 0.3499 0.3297 6.11%
Old 0.2715 0.4079 0.3397 20.07%

Equilibrium consumptions with both friction
Young 0.2850 0.3673 0.3262 12.61%

Middle-aged 0.3711 0.4234 0.3972 6.58%
Old 0.2188 0.3342 0.2765 20.87%

- CV stands for the coefficient of variation which is the standard deviation of consumption

divided by its mean measured in %

Under the aggregate shock, we also observe consumption variation and correlated con-

sumption/endowment profiles over the life-cycle if agents have market powers to the price.

However, the strategic interaction does not increase the consumption inequality in each

age as much as its counterpart idiosyncratic shock case. Indeed, the within-age consump-

tion volatility rises by 1.52% for the young, 0.47% for the middle-aged, and 0.8% for the

old when adding the imperfect competition on the top of the incomplete market. The in-

tuition behind these results is that the aggregate shock does not differentiate advantaged

and disadvantaged cohorts and thus overlapped generations experience similar changes in

their effective good prices under the shock. Hence, consumption allocations are not biased

toward a certain age which restricts the extent of the additional consumption volatility.

From Table 3.1 and 2.6, the consumption inequality defined by CV is larger for the

young and the old and smaller for the middle-aged under the aggregate shock than the

idiosyncratic shock, given the same SD. These different patterns in CV come mainly from

the distinct behaviors of price between the two models. In the model with an aggregate

shock, the value of money is volatile between states because the aggregate saving is low in

state α but high in state β. However, it is quite stable in the model with an idiosyncratic

shock since the aggregate saving is reliable across states due to the same total endowments.

83



2 Income, Price Dispersion and Risk Sharing

The young households save less in the good state when facing volatile prices than when

facing stable prices because of downward risk on the price of money in the next period.

On the other hand, they save more in the bad state under volatile prices than stable ones

due to the upward price risk of money. Thus, saving variation within the young is smaller

in the aggregate shock than the idiosyncratic shock which results in a larger consumption

variation for this age. The consumption variation of the old age group is solely determined

by the volatility in the value of money holdings because they receive zero endowments.

The large price fluctuations under the aggregate shock make the value of the old’s asset

holdings volatile although the saving of the middle-aged is stable. Therefore, we observe a

large consumption variation for this age under the aggregate shock than the idiosyncratic

shock. Since the young and old age groups absorb the risk-exposure of consumptions

to the endowment shocks, the middle-aged hedge the consumption risk significantly and

face a smaller consumption variation under the aggregate shock. It is the opposite in

the model with the idiosyncratic shock. The young and old households rather share the

consumption risk extensively and thus, the middle-aged absorb the largest portion of the

risk and show a larger consumption variation.

2.5.4 Further Discussion

In the robustness checks above, we do not consider an idiosyncratic shock within co-

horts because the welfare implications will be straightforward based on the results we have

derived so far. Ex-ante identical agents become ex-post heterogenous under this idiosyn-

cratic shock. Households receiving a good shock can purchase goods at a cheaper price

whereas those receiving a bad shock will pay more to buy the good in the imperfectly com-

petitive market. Therefore, the strategic interaction will also increase the consumption

volatility within ages under this type of shock.

We have concentrated on the symmetric shocks with equal probabilities. As long as

the exogenous uncertainty differentiates gaining and losing cohorts given a state, there

exists marginal price dispersion for identical goods over generations. Thus, the strategic
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interaction will add consumption volatility even under an asymmetric shock. However, the

asymmetry can affect the size of the welfare loss. For example, a probability distribution

skewed to one state has a small variance and then the imperfect competition generates a

less complementary welfare loss under a small size of shock as seen above.

2.6 Policy Analysis

In this section, we study monetary and fiscal policies to improve ex-ante expected utility

of the stationary equilibria in the base economy in Section 2.4. We measure the welfare

improvement by how much the CE consumption increases from the base economy to an

economy with policy interventions.

2.6.1 Monetary Policy

To improve welfare, we consider an expansionary monetary policy under which the

government issues new money and transfers it to the age group receiving a bad shock

among the young and middle-aged. We assume that the total money supply grows at a

constant rate in every period. This policy can improve social welfare by rebalancing the

amount of money holdings and promoting risk-sharing between the gaining and losing

cohorts. One can interpret this monetary policy as redistributing wealth implicitly from

those who get a good shock to their counterpart by inducing an inflation tax.

Under the active monetary policy, a new money market clearing condition is given by:

(2.17) Mt = Mt−1 +∆mt = (1 + g)Mt−1
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and the household budget constraints become:

b̂s1,t + m̂s
1,t =

qs1,t
Qs
t

B̂s
t +∆m̂tI

(
ωs1 = ωB1

)
b̂s
′

2,t+1 + m̂s′

2,t+1 −
m̂s

1,t

(1 + g)
=
qs
′

2,t+1

Qs′
t+1

B̂s′

t+1 +∆m̂t+1I
(
ωs
′

2 = ωB2

)
(2.18)

b̂s
′′

3,t+2 −
m̂s′

2,t+1

(1 + g)
=
qs
′′

3,t+2

Qs′′
t+2

B̂s′′

t+2

where Mt is the total money supply at time t, ∆mt denotes new money supply transferred

to the age facing a bad shock, and g is the growth rate of the total money supply. I (·)

is an indicator function and has one if the age i is in the bad endowment state, ωBi , and

zero otherwise. For computation, we normalize variables by dividing them with the total

money supply in their corresponding times and mark normalized variables with the hat

symbol, .̂ For example, b̂s1,t =
bs1,t
Mt

. From the equation (2.17), ∆m̂t = g
1+g

.

From the market game trading mechanism, a household born in time t obtains the

following consumption allocations:

cs1,t = ωs1 − qs1,t +
b̂s1,t

B̂s
t

Qs
t

cs
′

2,t+1 = ωs
′

2 − qs
′

2,t+1 +
b̂s
′

2,t+1

B̂s′
t+1

Qs′

t+1(2.19)

cs
′′

3,t+2 = ωs
′′

3 − qs
′′

3,t+2 +
b̂s
′′

3,t+2

B̂s′′
t+2

Qs′′

t+2

As in (2.4), we can rewrite (2.18) as:

b̂s1,t + m̂s
1,t =

(
B̂s
t,−1 − m̂s

1,t +∆m̂tI1

Qs
t,−1

)
qs1,t +∆m̂tI1

b̂s
′

2,t+1 + m̂s′

2,t+1 −
m̂s

1,t

(1 + g)
=

B̂s′
t+1,−2 − m̂s′

2,t+1 +
m̂s1,t

(1+g)
+∆m̂t+1I2

Qs′
t+1,−2

 qs
′

2,t+1 +∆m̂t+1I2

(2.20)

b̂s
′′

3,t+2 −
m̂s′

2,t+1

(1 + g)
=

B̂s′′
t+2,−3 +

m̂s
′

2,t+1

(1+g)

Qs′′
t+2,−3

 qs
′′

3,t+2
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where I1 = I
(
ωs1 = ωB1

)
and I2 = I

(
ωs
′

2 = ωB2
)

with a convenient abuse of notation.

By equating the right-hand sides of (2.18) and (2.20), we derive an equation similar to

(2.5):

(2.21)

Qs
t

B̂s
t

=
Qs
t,−1

B̂s
t,−1 − m̂s

1,t +∆m̂tI1

,
Qs′
t+1

B̂s′
t+1

=
Qs′
t+1,−2

B̂s′
t+1,−2 − m̂s′

2,t+1 +
m̂s1,t

(1+g)
+∆m̂t+1I2

,
Qs′′
t+2

B̂s′′
t+2

=
Qs′′
t+2,−3

B̂s′′
t+2,−3 +

m̂s
′

2,t+1

(1+g)

Substituting these equations with (2.20) into (2.19), we generate the following con-

sumption allocations presented by new money supply:

cs1,t = ωs1 −

(
Qs
t,−1

B̂s
t,−1 − m̂s

1,t +∆m̂tI1

)(
m̂s

1,t −∆m̂tI1

)
(2.22)

cs
′

2,t+1 = ωs
′

2 −

 Qs′
t+1,−2

(1 + g)
(
B̂s′
t+1,−2 − m̂s′

2,t+1 +∆m̂t+1I2

)
+ m̂s

1,t

((1 + g)
(
m̂s′

2,t+1 −∆m̂t+1I2

)
− m̂s

1,t

)

cs
′′

3,t+2 = ωs
′′

3 +

(
Qs′′
t+2,−3

(1 + g) B̂s′′
t+2,−3 + m̂s′

2,t+1

)
m̂s′

2,t+1

Under the expansionary monetary policy, the first-order conditions with respect to m̂s
1,t

and m̂s′
2,t+1 are given by:

(2.23)

u′
(
cs1,t
) B̂s

t,−1Q
s
t,−1(

B̂s
t,−1 − m̂s

1,t +∆m̂tI1

)2

= δ
∑

s′∈{α,β}

πs
′
u′
(
cs
′

2,t+1

) B̂s′
t+1,−2Q

s′
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B̂s′
t+1,−2 − m̂s′
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)
+
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)2

and

(2.24)
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) B̂s′
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Using the equation (2.21), one can simplify (3.22), (2.23) and (2.24) as follows:

cs1,t = ωs1 −
Qs
t

B̂s
t

(
m̂s

1,t −∆m̂tI1

)
cs
′

2,t+1 = ωs
′

2 −
Qs′
t+1

B̂s′
t+1

((
m̂s′

2,t+1 −∆m̂t+1I2

)
−

m̂s
1,t

(1 + g)

)
(2.25)
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′′

3,t+2 = ωs
′′

3 +
Qs′′
t+2

B̂s′′
t+2

m̂s′
2,t+1

(1 + g)

(2.26)
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) B̂s

t,−1

Qs
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(
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t

B̂s
t
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(
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) 1
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(
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and

(2.27)
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(
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′
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(
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t+2

)2

With the new equilibrium conditions we derived so far, we compute the recursive mon-

etary Nash equilibria under the active monetary policy. In the numerical exercises, we

keep other parameters but the growth rates of the total money supply as in the base case.

We test three different growth rates: 5%, 10%, and 20%. Three tables below summarize

the welfare results for each growth rate.

The monetary policy reduces consumption volatility between states by implicitly re-

distributing wealth from the endowment rich cohort to the poor cohort via an inflation

tax. However, it increases consumption variation over the lifetime by generating a declin-
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Table 2.7: Welfare analysis under the economy with g = 5%

Age State α State β Mean CV (%)

Equilibrium consumptions only with incomplete market
Young 0.3260 0.3522 0.3391 3.87%

Middle-aged 0.3585 0.3105 0.3345 7.17%
Old 0.3156 0.3373 0.3264 3.33%

Equilibrium consumptions with both friction
Young 0.3066 0.3591 0.3329 7.88%

Middle-aged 0.4443 0.3604 0.4024 10.43%
Old 0.2490 0.2805 0.2648 5.94%

Benchmark Inc. Mk. Both
CE consumption 0.3333 0.3316 0.3212

CE consumption as (%)

of benchmark
100% 99.48% 96.35%

- CV stands for the coefficient of variation which is the standard deviation of consumption

divided by its mean measured in %

- CE consumption represents certainty equivalent consumption

Table 2.8: Welfare analysis under the economy with g = 10%

Age State α State β Mean CV (%)

Equilibrium consumptions only with incomplete market
Young 0.3370 0.3584 0.3477 3.08%

Middle-aged 0.3540 0.3139 0.3340 6.01%
Old 0.3090 0.3277 0.3183 2.94%

Equilibrium consumptions with both friction
Young 0.3150 0.3636 0.3393 7.17%

Middle-aged 0.4394 0.3638 0.4016 9.40%
Old 0.2457 0.2726 0.2591 5.19%

Benchmark Inc. Mk. Both
CE consumption 0.3333 0.3318 0.3207

CE consumption as (%)

of benchmark
100% 99.53% 96.21%

- CV stands for the coefficient of variation which is the standard deviation of consumption

divided by its mean measured in %

- CE consumption represents certainty equivalent consumption
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Table 2.9: Welfare analysis under the economy with g = 20%

Age State α State β Mean CV (%)

Equilibrium consumptions only with incomplete market
Young 0.3568 0.3702 0.3635 1.84%

Middle-aged 0.3453 0.3203 0.3328 3.75%
Old 0.3095 0.2979 0.3037 1.91%

Equilibrium consumptions with both friction
Young 0.3302 0.3720 0.3511 5.94%

Middle-aged 0.4305 0.3702 0.4004 7.53%
Old 0.2393 0.2578 0.2485 3.73%

Benchmark Inc. Mk. Both
CE consumption 0.3333 0.3311 0.3191

CE consumption as (%)

of benchmark
100% 99.33% 95.72%

- CV stands for the coefficient of variation which is the standard deviation of consumption

divided by its mean measured in %

- CE consumption represents certainty equivalent consumption

ing consumption-age profile. The expansionary monetary policy yields an intertemporal

wedge on saving because the new money supply in every period increases the good price

tomorrow compared to today and thus decreases gross interest rates. This wedge discour-

ages household to save which brings about the declining consumptions over the life-cycle.

Compared to the base case, the active monetary policy improves long-run social welfare

for all money growth rates by promoting risk-sharing when there is only the incomplete

market friction. 10% growth rate advances welfare most and then 5% and 20 % in order.

The larger the growth rate, the more risk-sharing but larger consumption variation over

the life-cycle. Thus, the welfare improvement can be worst when the money growth rate

is 20% because such a high rate will generate the largest intertemporal wedge among the

three rates which dominates the benefit of mitigating the consumption volatility between

states.

If both frictions are present, all expansionary monetary policies worsen long-run social

welfare compared with the base economy. Imperfect competition already induces con-

sumption variation over the life-cycle as seen in the correlated consumption/endowment

profile. Further consumption variation generated by the intertemporal wedge will drop

welfare significantly under a concave utility function. Thus, the expansionary monetary
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policy can decrease the social welfare under both frictions although it reduces the con-

sumption volatility between states. For this reason, 5% money growth rate generates the

least welfare loss from the base case among the three rates by distorting the life-cycle

consumptions least.

In this numerical analysis, we do not study the role of the monetary policy in the

economy only with the imperfect competition because there is no consumption volatility

between states that the policy should reduce and the policy cannot adjust the effective

prices which are solely determined by offers. We can easily conjecture that introducing the

monetary policy will aggravate welfare in this case by producing intertemporal wedges.

One can consider another type of monetary policy which transfers a constant fraction

of new money supply to the old in both states. At first glance, this policy seems to flatten

the declining life-cycle consumption trend by increasing the old-age consumption. In fact,

this policy is ineffective because households react to the policy by crowding out savings

for the old-period due to the money transfer. The new monetary policy still generates

an intertemporal wedge and is less effective in shrinking the consumption volatility be-

tween states because of a less transfer to the endowment poor than the previous policy.

Therefore, transferring new money supply to the old is not a good policy option.

2.6.2 Fiscal Policy

In the previous section, we showed that monetary policy enhances the inter-generational

risk-sharing against the idiosyncratic risk. However, it does not reduce the welfare

loss from the strategic interaction because it cannot adjust the heterogeneous effective

marginal prices. More importantly, the active monetary policy produces an intertemporal

wedge and further distorts consumption variation over the life-cycle if both frictions are

present. Thus, the social welfare can actually decrease.

Therefore, in this section, we propose a fiscal policy to improve welfare even when both

frictions are present. We focus on a time-invariant linear endowment tax and lump-sum

transfer to all living generations. The government balances its budget constraint. We

assume that households offer only the after-tax endowments, not the transfer. Thus, the
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timeline is as follows: the government collects tax revenue first, agents offer all endowments

left under the sell-all strategy, and then they receive a transfer.

Under the fiscal policy, there are no changes in the individual budget constraints, and

the consumption allocation rules take the form:

cs1,t = (1− τ)ωs1 − qs1,t +
bs1,t
Bs
t

Qs
t + T s

cs
′

2,t+1 = (1− τ)ωs
′

2 − qs
′

2,t+1 +
bs
′

2,t+1

Bs′
t+1

Qs′

t+1 + T s
′

(2.28)

cs
′′

3,t+2 = (1− τ)ωs
′′

3 − qs
′′

3,t+2 +
bs
′′

3,t+2

Bs′′
t+2

Qs′′

t+2 + T s
′′

where τ is a time-invariant proportional tax and T s = τΩs

3n
denotes a lump-sum transfer in

state s. The after-tax offers are given by qsi,t = (1− τ)ωsi and Qs
t = (1− τ)Ωs for ∀ (i, s).

We can transform the consumption allocations above into:

cs1,t = (1− τ)ωs1 −
(

Qs
t,−1

Bs
t,−1 −ms

1,t

)
ms

1,t + T s

cs
′

2,t+1 = (1− τ)ωs
′

2 −

(
Qs′
t+1,−2

Bs′
t+1,−2 −ms′

2,t+1 +ms
1,t

)(
ms′

2,t+1 −ms
1,t

)
+ T s

′
(2.29)

cs
′′

3,t+2 = (1− τ)ωs
′′

3 +

(
Qs′′
t+2,−3

Bs′′
t+2,−3 +ms′

2,t+1

)
ms′

2,t+1 + T s
′′

It is well-known in the market game literature that allowing wash-sales decreases the

welfare loss from the strategic interaction by equating the effective marginal prices among

households with different levels of endowments (see Peck and Shell (1990)).8 However, if

wash-sales are prohibited because of commitment issues or other exogenous constraints,

then a linear endowment tax and transfer can be an alternative. This fiscal policy reduces

the amount of goods traded in the imperfect market. Thus, it limits the extent of distortion

by the strategic interaction. In addition, the fiscal policy can share the idiosyncratic risk

8 When agents trade under the heterogeneous marginal prices, they optimize decisions at different
marginal rates of substitution. Thus, Pareto-improving allocations can exist for the equilibrium
under the market game. If the wash-sales are allowed, then households can offer more than their
endowments. If they increase offers, the return rates of bidding will get closer between households.
In the limit, the effective marginal prices will be identical, and thus the market game allocations will
converge to Pareto-efficient ones.
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by intergenerational redistribution and reduce the consumption volatility between states.

We check the conjecture that the fiscal policy can increase the social welfare even if both

frictions are present via numerical exercises. For this, we compute the recursive monetary

Nash equilibria under the tax/transfer policy with the new consumption allocation rules

above. We keep parameter values as in the base economy. We examine three different

tax rates: 10%, 20%, and 30%. In the following three tables, we summarize the welfare

results from different tax rates.

Table 2.10: Welfare analysis under the economy with τ = 10%

Age State α State β Mean CV (%)

Equilibrium consumptions only with imperfect competition
Young 0.3289 0.3289 0.3289 0.00%

Middle-aged 0.3991 0.3991 0.3991 0.00%
Old 0.2720 0.2720 0.2720 0.00%

Equilibrium consumptions only with incomplete market
Young 0.3160 0.3452 0.3306 4.42%

Middle-aged 0.3613 0.3086 0.3350 7.86%
Old 0.3227 0.3462 0.3344 3.51%

Equilibrium consumptions with both friction
Young 0.3000 0.3538 0.3269 8.24%

Middle-aged 0.4437 0.3587 0.4012 10.59%
Old 0.2563 0.2874 0.2719 5.72%

Benchmark
Imp.

Comp.
Inc. Mk. Both

CE consumption 0.3333 0.3253 0.3313 0.3223
CE consumption as (%)

of benchmark
100% 97.58% 99.39% 96.69%

- CV stands for the coefficient of variation which is the standard deviation of consumption

divided by its mean measured in %

- CE consumption represents certainty equivalent consumption

In the tables above, consumption variations fall across both ages and states as tax rates

rise. Thus, the fiscal policy decreases the welfare loss from each friction. Moreover, the

social welfare goes up when both frictions exist. These results confirm our predictions
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Table 2.11: Welfare analysis under the economy with τ = 20%

Age State α State β Mean CV (%)

Equilibrium consumptions only with imperfect competition
Young 0.3293 0.3293 0.3293 0.00%

Middle-aged 0.3973 0.3973 0.3973 0.00%
Old 0.2735 0.2735 0.2735 0.00%

Equilibrium consumptions only with incomplete market
Young 0.3173 0.3448 0.3310 4.16%

Middle-aged 0.3582 0.3110 0.3346 7.06%
Old 0.3245 0.3442 0.3344 2.95%

Equilibrium consumptions with both friction
Young 0.3023 0.3532 0.3278 7.75%

Middle-aged 0.4372 0.3608 0.3990 9.57%
Old 0.2605 0.2860 0.2732 4.67%

Benchmark
Imp.

Comp.
Inc. Mk. Both

CE consumption 0.3333 0.3257 0.3317 0.3233
CE consumption as (%)

of benchmark
100% 97.71% 99.50% 96.98%

- CV stands for the coefficient of variation which is the standard deviation of consumption

divided by its mean measured in %

- CE consumption represents certainty equivalent consumption
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Table 2.12: Welfare analysis under the economy with τ = 30%

Age State α State β Mean CV (%)

Equilibrium consumptions only with imperfect competition
Young 0.3297 0.3297 0.3297 0.00%

Middle-aged 0.3950 0.3950 0.3950 0.00%
Old 0.2753 0.2753 0.2753 0.00%

Equilibrium consumptions only with incomplete market
Young 0.3189 0.3442 0.3315 3.82%

Middle-aged 0.3555 0.3134 0.3344 6.30%
Old 0.3256 0.3424 0.3340 2.52%

Equilibrium consumptions with both friction
Young 0.3049 0.3523 0.3286 7.20%

Middle-aged 0.4303 0.3625 0.3964 8.55%
Old 0.2852 0.2647 0.2750 3.72%

Benchmark
Imp.

Comp.
Inc. Mk. Both

CE consumption 0.3333 0.3262 0.3320 0.3243
CE consumption as (%)

of benchmark
100% 97.86% 99.60% 97.28%

- CV stands for the coefficient of variation which is the standard deviation of consumption

divided by its mean measured in %

- CE consumption represents certainty equivalent consumption
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above that the fiscal policy mitigates the welfare loss from the strategic interaction and

incomplete market by shrinking the volume of goods transacted in the trading post and

redistributing wealth from the rich cohort to the poor one. However, we should stress out

that there is no distortion from the linear tax in the endowment economy. Thus, taxing

all endowments and distributing equally to living generations can achieve the stationary

allocations in the frictionless economy. It is natural to derive the result that the higher the

tax rates, the closer to the benchmark allocation and the higher the welfare improvement.

If labor supply is elastic and taxed, then there will be an upper bound for the tax rate

to advance the long-run ex-ante expected utility because of an efficiency cost in the labor

supply distortion. However, the labor income tax will not generate an intertemporal

wedge unlike the monetary policy and still smooth consumptions over the life-cycle as

the endowment tax. Thus, a labor distorting tax/transfer policy also has an asymmetric

welfare effect with the monetary policy under the strategic interaction.9

We have assumed that households offer only the endowments net of taxes under the

sell-all strategy. Even if we allow them to offer the transfer as well, the results will remain

the same. The fiscal policy redistributes wealth from the working ages to the retired

and the rich to the poor. Thus, it smoothes offers across ages and states if the offers

include both after-tax endowment and transfer. Then, there will be a less gap between

the effective marginal prices of different generations. Hence, the fiscal policy, in this case,

will also reduce the consumption variations over both ages and states.

2.7 Extension

In developing economies, the effective prices largely depend on the income of buyers

due to the quantity premium as seen in Rao (2000). However, Aguiar and Hurst (2007)

9 The fiscal policy does not affect the consumption-age profile in a perfectly competitive economy because
there is a limited distortion to reduce over the life-cycle. However, it reduces the consumption variation
over age under the imperfect competition whereas the monetary policy increases it. We regard this
discrepancy as the asymmetric welfare effects of fiscal and monetary policy actions
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show that the low-income group can pay less for identical goods than its counterpart in

developed countries because of their intensive search to find better prices under the low

opportunity cost of search from their low wage. Hence, the welfare implication of this

paper should be carefully applied to the developed economies.

In this section, we extend the current model to incorporate the effect of searching

activity on the marginal prices to obtain the implications of the imperfect competition

to the developed economies. For simplicity, one can assume that the searching effort

is exogenously given as the good endowment. The distributions of search endowment

can be set consistent with the opportunity cost of searching activity across types and

ages following the results in Aguiar and Hurst (2007). For example, low-wage workers

receive a large search endowment whereas high-wage earners take a small one. One can

think of a reduced form model where both offering consumption goods and conducting

search behavior drop the effective marginal prices. Thus, we write new individual budget

constraints in which both price-adjusting factors affect the return rates of bids as follows:

bs1,t +ms
1,t =

(
λ
qs1,t
Qs
t

+ (1− λ)
ss1,t
Sst

)
Bs
t

bs
′

2,t+1 +ms′

2,t+1 −ms
1,t =

(
λ
qs
′

2,t+1

Qs′
t+1

+ (1− λ)
ss
′

2,t+1

Ss
′
t+1

)
Bs′

t+1(2.30)

bs
′′

3,t+2 −ms′

2,t+1 =

(
λ
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′′

3,t+2

Qs′′
t+2

+ (1− λ)
ss
′′

3,t+2

Ss
′′
t+2

)
Bs′′

t+2

where we assume that agents offer all their good and search endowments. Note that the

shares out of total bids for each agent linearly depend on both good offer and search effort.

The weight parameter λ determines the significance of quantity premium compared to the

search effort on the returns rates and marginal prices.

After some calculations, one can derive the following new marginal prices that genera-

tion i faces in time t: (
1− λ q

s
i,t

Qst
− (1− λ)

ssi,t
Sst

)
Qs
tB

s
t,−i(

csi,t −Qs
t

)2(2.31)

From this equation, one can note that more one offers goods and search endowment,
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lower their effective prices are. Under the negative correlation between the good and

search endowment distributions, we obtain similar results as derived above if λ is high

enough. On the other hand, if λ is low enough then the search activity is a more significant

factor than the income effect. In this case, the life-cycle price heterogeneity will be more

favorable toward low wage earners because they can consume the same goods at cheaper

prices and thus, the imperfect competition rather advances the consumption risk-sharing.

Whether the search effect dominates the income effect is an empirical question that we

do not pursue in this paper. One can apply our model to data to estimate the parameter λ

to answer this question. Instead of the linear form, one can use a more general non-linear

share formula given by f
(
qsi,t, s

s
i,t;Q

s
t , S

s
t

)
, where f increases in both individual good and

search endowments offers.

2.8 Conclusion

In this paper, we study how imperfect competition can increase consumption variation

across states and ages by interacting with the incomplete financial market. We show that

income-dependent prices for identical goods under imperfect competition might bias con-

sumptions toward agents who receive high-income shocks and thus mitigate risk-sharing

by generating additional consumption volatility. We quantify the additional consumption

volatility and its welfare loss in a parameterized version of the model. Our numerical anal-

ysis states that the complementary welfare loss adds about 50% of the welfare loss solely

from the incomplete market. We also find that the price heterogeneity across the life-cycle

in our model can break down the perfect consumption smoothing result and rather brings

about the correlated consumption/income profiles without other frictions such as capital

market imperfection or impatient consumers. To check the robustness of our results, we

try other values for the time discount factor and risk-aversion parameters and different

shock structures. We observe that the implication of imperfect competition on welfare

remains the same qualitatively, but the quantitative welfare implications can vary accord-

ing to the parameters values. From a policy analysis, we find that both monetary and

fiscal policy shrinks consumption volatility between states. However, monetary policy

98



2.8 Conclusion

increases consumption variation over the lifetime by generating an intertemporal wedge,

but fiscal policy decreases it by reducing the share of goods traded under the strategic in-

teractions. Thus, the introduction of the imperfect competition results in an asymmetric

welfare effect between fiscal and monetary policy, unlike the competitive models.
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2.9 Appendix1: Proofs

2.9.1 Proposition 4

We prove the non-existence of strongly stationary monetary Nash equilibria (no-recall

equilibria) with the method of contradiction. It is straightforward to extend this result

to short memory monetary Nash equilibria following arguments in Citanna and Siconolfi

(2007) and Henriksen and Spear (2012).

We assume that there is a strongly stationary monetary Nash equilibrium where bids

and money holdings only depend on the state of the current shock. Then, we can write

the consumption allocations, the first-order conditions and the market clearing condition

under this type of equilibria:

cs1 = ωs1 −
(

Qs
−1

Bs
−1 −ms

1

)
ms

1
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′
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′

2 −

(
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−2
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2 +ms
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)(
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2 −ms
1

)
(2.32)
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(2.35)
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where s ∈ {α, β}.

(2.37) (ms
1 +ms

2) = M for s ∈ {α, β}

where s ∈ {α, β}.

The equations above have the following implications. The young age consumptions

depend on only the current shock state whereas the middle-aged and old period con-

sumptions resort to both the current and lagged shock realizations because agents’ money

holdings are affected by the state in which the asset was purchased. One interesting

finding is that the right-hand-sides of the first-order conditions of the middle-aged in

(2.35) and (2.36) are independent of the lagged state, s. Thus, cαα2 = cβα2 = cα2 and

cαβ2 = cββ2 = cβ2 which implies that the middle-aged period consumptions also depend

only on the current shock realizations. The good market clearing condition requires that

cs1 + cs2 + cs
′s

3 = ωs1 + ωs2 + ωs3 for {s′, s} ∈ {α, β}2. Therefore, we also obtain that

cαα3 = cβα3 = cα3 and cαβ3 = cββ3 = cβ3 .

We now demonstrate that the money holdings must be state-independent. We derive

the following equations by imposing the results that cαs2 = cβs2 and cαs3 = cβs3 for s ∈ {α, β}

on (2.32):

ωs2 −
(

Qs
−2

Bs
−2 −ms

2 +mα
1

)
(ms

2 −mα
1 ) = ωs2 −

(
Qs
−2
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2 +mβ
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)(
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2 −m
β
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)
(2.38)
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and

ωs3 +

(
Qs
−3

Bs
−3 +mα

2

)
mα

2 = ωs3 +

(
Qs
−3

Bs
−3 +mβ

2

)
mβ

2(2.39)

To satisfy these equations, mα
1 = mβ

1 = m1 and mα
2 = mβ

2 = m2. The state-independent

money holdings simplify the budget constraints faced by the overlapped generations:

bs1 +m1 =
qs1
Qs
Bs

bs2 +m2 −m1 =
qs2
Qs
Bs(2.40)

bs3 −m2 =
qs3
Qs
Bs

where s ∈ {α, β}.

The three equations in (3.40) are linearly dependent on each other since we obtain an

identical equation by summing these equations and multiplying both sides with n:

nbs1 + nbs2 + nbs3 =
nqs1
Qs

Bs +
nqs2
Qs

Bs +
nqs3
Qs

Bs = Bs(2.41)

where s ∈ {α, β}.

In summary, there is a system of 15 equations: 6 equations from the consumption

allocation rule, 4 equations from the first-order conditions, 4 equations from the budget

constraints and 1 equation from the money market clearing condition. However, there are

14 variables: cα1 , c
β
1 , c

α
2 , c

β
2 , c

α
3 , c

β
3 , b

α
1 , b

β
1 , b

α
2 , b

β
2 , b

α
3 , b

β
3 ,m1 and m2. There are more equations

than variables and thus, the strongly stationary monetary Nash equilibria do not exist

generically following the arguments in Spear (1985) and Citanna and Siconolfi (2007).

2.9.2 Lemma 1

We write the optimal money holding of young agents born in time t− 1 as:

(2.42) m1,t−1 = m1 (Bt−1,−1, Bt,−2, Bt+1,−3)
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The money market clearing condition is in time t:

(2.43) m1 (Bt,−1, Bt+1,−2, Bt+2,−3) +m2 (Bt−1,−1, Bt,−2, Bt+1,−3) = M

At the deterministic steady states, equations (2.42) and (3.43) reduce to:

(2.44) m̄1 = m1

(
B̄−1, B̄−2, B̄−3

)
and

(2.45) m1

(
B̄−1, B̄−2, B̄−3

)
+m2

(
B̄−1, B̄−2, B̄−3

)
= M

where m̄1 and B̄−i for ∀i are the money holding for the young and the total bid net of the

bid of an individual in cohort i at the steady-states, respectively.

We now replace the bids arguments in (2.42) and (3.43) with b2,t = U (b1,t,m1,t,m1,t−1)

and b3,t = V (b1,t,m1,t,m1,t−1) and plug the two linear forecast functions into m1,t and b1,t

by properly adjusting the time subscripts to obtain:

G (m) = m1


(n− 1)H (m) + nU (H (m) , G (m) ,m) + nV (H (m) , G (m) ,m) ,

nH (G (m)) + (n− 1)U
(
H (G (m)) , G2 (m) , G (m)

)
+ nV

(
H (G (m)) , G2 (m) , G (m)

)
,

nH
(
G2 (m)

)
+ nU

(
H
(
G2 (m)

)
, G3 (m) , G2 (m)

)
+ (n− 1)V

(
H
(
G2 (m)

)
, G3 (m) , G2 (m)

)


(2.46)

and

G2 (m) +m2


(n− 1)H (m) + nU (H (m) , G (m) ,m) + nV (H (m) , G (m) ,m) ,

nH (G (m)) + (n− 1)U
(
H (G (m)) , G2 (m) , G (m)

)
+ nV

(
H (G (m)) , G2 (m) , G (m)

)
,

nH
(
G2 (m)

)
+ nU

(
H
(
G2 (m)

)
, G3 (m) , G2 (m)

)
+ (n− 1)V

(
H
(
G2 (m)

)
, G3 (m) , G2 (m)

)
 = M

(2.47)

where m = m1,t−2, G2 (m) = G ◦G (m) and G3 (m) = G ◦G ◦G (m).
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Equations (3.46) and (2.47) always hold at m = m̄1 because they reduce to:

m̄1 = m1

(
(n− 1) b̄1 + nb̄2 + nb̄3, nb̄1 + (n− 1) b̄2 + nb̄3, nb̄1 + nb̄2 + (n− 1) b̄3

)(2.48)

⇐⇒ m̄1 = m1

(
B̄−1, B̄−2, B̄−3

)
and

m̄1 +m2

(
(n− 1) b̄1 + nb̄2 + nb̄3, nb̄1 + (n− 1) b̄2 + nb̄3, nb̄1 + nb̄2 + (n− 1) b̄3

)
= M

(2.49)

⇐⇒ m̄1 +m2

(
B̄−1, B̄−2, B̄−3

)
= M

which hold true from (2.44) and (3.45).

Hence, the two linear forecast functions can be the solution to the equilibrium conditions

at the steady-states in the deterministic case of the offer constrained OLG market game

under the sell-all strategy.

2.9.3 Proposition 2

As we did in the deterministic case, we replace the bids arguments and plug the linear

forecast functions in the equilibrium conditions under the exogenous shocks.

This procedure re-writes the optimal money holding of young agents born in time t− 1
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as:

(2.50) G (m, st−1)

= m1



(n− 1)H (m, st−1) + nU (H (m, st−1) , G (m, st−1) ,m) + nV (H (m, st−1) , G (m, st−1) ,m) ,

nH (G (m, st−1) , h) + (n− 1)U (H (G (m, st−1) , h) , G (G (m, st−1) , h) , G (m, st−1))

+nV (H (G (m, st−1) , h) , G (G (m, st−1) , h) , G (m, st−1)) ,

nH (G (m, st−1) , l) + (n− 1)U (H (G (m, st−1) , l) , G (G (m, st−1) , l) , G (m, st−1))

+nV (H (G (m, st−1) , l) , G (G (m, st−1) , l) , G (m, st−1)) ,

nH (G (G (m, st−1) , h) , h) + nU (H (G (G (m, st−1) , h) , h) , G (G (G (m, st−1) , h) , h) , G (G (m, st−1) , h))

+ (n− 1)V (H (G (G (m, st−1) , h) , h) , G (G (G (m, st−1) , h) , h) , G (G (m, st−1) , h)) ,

nH (G (G (m, st−1) , h) , l) + nU (H (G (G (m, st−1) , h) , l) , G (G (G (m, st−1) , h) , l) , G (G (m, st−1) , h))

+ (n− 1)V (H (G (G (m, st−1) , h) , l) , G (G (G (m, st−1) , h) , l) , G (G (m, st−1) , h)) ,

nH (G (G (m, st−1) , l) , h) + nU (H (G (G (m, st−1) , l) , h) , G (G (G (m, st−1) , l) , h) , G (G (m, st−1) , l))

+ (n− 1)V (H (G (G (m, st−1) , l) , h) , G (G (G (m, st−1) , l) , h) , G (G (m, st−1) , l)) ,

nH (G (G (m, st−1) , l) , l) + nU (H (G (G (m, st−1) , l) , l) , G (G (G (m, st−1) , l) , l) , G (G (m, st−1) , l))

+ (n− 1)V (H (G (G (m, st−1) , l) , l) , G (G (G (m, st−1) , l) , l) , G (G (m, st−1) , l))


for st−1 ∈ {α, β} where m = m1,t−2.

The money market clearing condition in time t becomes:

(2.51) M −G (G (m, st−1) , st)

= m2



(n− 1)H (m, st−1) + nU (H (m, st−1) , G (m, st−1) ,m) + nV (H (m, st−1) , G (m, st−1) ,m) ,

nH (G (m, st−1) , h) + (n− 1)U (H (G (m, st−1) , h) , G (G (m, st−1) , h) , G (m, st−1))

+nV (H (G (m, st−1) , h) , G (G (m, st−1) , h) , G (m, st−1)) ,

nH (G (m, st−1) , l) + (n− 1)U (H (G (m, st−1) , l) , G (G (m, st−1) , l) , G (m, st−1))

+nV (H (G (m, st−1) , l) , G (G (m, st−1) , l) , G (m, st−1)) ,

nH (G (G (m, st−1) , h) , h) + nU (H (G (G (m, st−1) , h) , h) , G (G (G (m, st−1) , h) , h) , G (G (m, st−1) , h))

+ (n− 1)V (H (G (G (m, st−1) , h) , h) , G (G (G (m, st−1) , h) , h) , G (G (m, st−1) , h)) ,

nH (G (G (m, st−1) , h) , l) + nU (H (G (G (m, st−1) , h) , l) , G (G (G (m, st−1) , h) , l) , G (G (m, st−1) , h))

+ (n− 1)V (H (G (G (m, st−1) , h) , l) , G (G (G (m, st−1) , h) , l) , G (G (m, st−1) , h)) ,

nH (G (G (m, st−1) , l) , h) + nU (H (G (G (m, st−1) , l) , h) , G (G (G (m, st−1) , l) , h) , G (G (m, st−1) , l))

+ (n− 1)V (H (G (G (m, st−1) , l) , h) , G (G (G (m, st−1) , l) , h) , G (G (m, st−1) , l)) ,

nH (G (G (m, st−1) , l) , l) + nU (H (G (G (m, st−1) , l) , l) , G (G (G (m, st−1) , l) , l) , G (G (m, st−1) , l))

+ (n− 1)V (H (G (G (m, st−1) , l) , l) , G (G (G (m, st−1) , l) , l) , G (G (m, st−1) , l))


for (st−1, st) ∈ {α, β}2 where m = m1,t−2.
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The equilibrium conditions in (2.50) and (3.51) are a system of six equations in the six

variables,
{
m̄α

1 , m̄
β
1 , b̄

α
1 , b̄

β
1 , γ, ρ

}
. If we denote the equilibrium system by Z : R6

++ → R6
++,

we want to show that the Jacobian matrix, DZ, has a full rank, i.e. Z t 0, at the steady

states under no exogenous shocks since we know that the linear forecast functions can

be the solution to the equilibrium system in this case by Lemma 1. Then, the IFT will

guarantee the existence of linear forecast functions in a neighborhood of the deterministic

steady states in the offer constrained OLG market game under the sell-all strategy with

a sufficiently small shock.

We now calculate the rank of DZ. To simplify the calculations, we allow the total

money quantities to vary over each state, which we denote by Mα and Mβ respectively.

We include these variables in the rank calculation. Then, the transversal density theorem

infers that Z t 0 or the IFT applies for almost all money quantities. We introduce the

following variables to describe the Jacobian matrix evaluated at the deterministic steady

states where m = m̄α
1 = m̄β

1 = m̄1 and b̄α1 = b̄β1 = b̄1:

Aαα =1− γ2 +m2,1

(
−ρ
(
Q− q1

q1

)
+ (1 + γ)

Q

q1

)
(2.52)

+m2,2α

(
ργ

(
Q− q2

q1

)
+
(
1− γ2

)(Q− q1 − q2

q1

)
− (1 + γ)

)
+m2,2β

(
ρ (1 + γ)

(
Q− q2

q1

)
−
(
γ + γ2

)(Q− q1 − q2

q1

)
− (1 + γ)

)
+m2,3αα

((
−ργ2 +

(
1 + γ3

))(Q− q3

q1

)
+
(
1− γ2

))
+m2,3αβ

((
ρ
(
1− γ2

)
−
(
γ − γ3

))(Q− q3

q1

)
+
(
1− γ2

))
+m2,3βα

((
−ρ
(
1 + γ + γ2

)
+
(
1 + γ + γ2 + γ3

))(Q− q3

q1

)
−
(
γ + γ2

))
+m2,3ββ

((
−ργ (1 + γ) +

(
γ2 + γ3

))(Q− q3

q1

)
−
(
γ + γ2

))
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Aαβ =− γ − γ2 +m2,1

(
−ρ
(
Q− q1

q1

)
+ (1 + γ)

Q

q1

)
+m2,2α

(
ργ

(
Q− q2

q1

)
+
(
1− γ2

)(Q− q1 − q2

q1

)
− (1 + γ)

)
+m2,2β

(
ρ (1 + γ)

(
Q− q2

q1

)
−
(
γ + γ2

)(Q− q1 − q2

q1

)
− (1 + γ)

)
+m2,3αα

((
−ργ2 +

(
1 + γ3

))(Q− q3

q1

)
+
(
1− γ2

))
+m2,3αβ

((
ρ
(
1− γ2

)
−
(
γ − γ3

))(Q− q3

q1

)
+
(
1− γ2

))
+m2,3βα

((
−ρ
(
1 + γ + γ2

)
+
(
1 + γ + γ2 + γ3

))(Q− q3

q1

)
−
(
γ + γ2

))
+m2,3ββ

((
−ργ (1 + γ) +

(
γ2 + γ3

))(Q− q3

q1

)
−
(
γ + γ2

))
Aβα =1 + γ +m2,2α

(
−ρ
(
Q− q2

q1

)
+ (1 + γ)

(
Q− q1 − q2

q1

))
+m2,3αα

((
ργ +

(
1− γ2

))(Q− q3

q1

)
+ (1 + γ)

)
+m2,3αβ

((
ρ (1 + γ)−

(
γ + γ2

))(Q− q3

q1

)
+ (1 + γ)

)
+m2,3βα (−ρ+ (1 + γ))

(
Q− q3

q1

)
Aββ =m2,2α

(
−ρ
(
Q− q2

q1

)
+ (1 + γ)

(
Q− q1 − q2

q1

))
+m2,3αα

((
ργ +

(
1− γ2

))(Q− q3

q1

)
+ (1 + γ)

)
+m2,3αβ

((
ρ (1 + γ)−

(
γ + γ2

))(Q− q3

q1

)
+ (1 + γ)

)
+m2,3βα (−ρ+ (1 + γ))

(
Q− q3

q1

)
Bαα =m2,2β

(
−ρ
(
Q− q2

q1

)
+ (1 + γ)

(
Q− q1 − q2

q1

))
+m2,3αβ (−ρ+ (1 + γ))

(
Q− q3

q1

)
+m2,3βα

((
ρ (1 + γ)−

(
γ + γ2

))(Q− q3

q1

)
+ (1 + γ)

)
+m2,3ββ

((
ργ +

(
1− γ2

))(Q− q3

q1

)
+ (1 + γ)

)
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Bαβ =1 + γ +m2,2β

(
−ρ
(
Q− q2

q1

)
+ (1 + γ)

(
Q− q1 − q2

q1

))
+m2,3αβ (−ρ+ (1 + γ))

(
Q− q3

q1

)
+m2,3βα

((
ρ (1 + γ)−

(
γ + γ2

))(Q− q3

q1

)
+ (1 + γ)

)
+m2,3ββ

((
ργ +

(
1− γ2

))(Q− q3

q1

)
+ (1 + γ)

)
Bβα =− γ − γ2 +m2,1

(
−ρ
(
Q− q1

q1

)
+ (1 + γ)

Q

q1

)
+m2,2α

(
ρ (1 + γ)

(
Q− q2

q1

)
−
(
γ + γ2

)(Q− q1 − q2

q1

)
− (1 + γ)

)
+m2,2β

(
ργ

(
Q− q2

q1

)
+
(
1− γ2

)(Q− q1 − q2

q1

)
− (1 + γ)

)
+m2,3αα

((
−ργ (1 + γ) +

(
γ2 + γ3

))(Q− q3

q1

)
−
(
γ + γ2

))
+m2,3αβ

((
−ρ
(
1 + γ + γ2

)
+
(
1 + γ + γ2 + γ3

))(Q− q3

q1

)
−
(
γ + γ2

))
+m2,3βα

((
ρ
(
1− γ2

)
−
(
γ − γ3

))(Q− q3

q1

)
+
(
1− γ2

))
+m2,3ββ

((
−ργ2 +

(
1 + γ3

))(Q− q3

q1

)
+
(
1− γ2

))
Bββ =1− γ2 +m2,1

(
−ρ
(
Q− q1

q1

)
+ (1 + γ)

Q

q1

)
+m2,2α

(
ρ (1 + γ)

(
Q− q2

q1

)
−
(
γ + γ2

)(Q− q1 − q2

q1

)
− (1 + γ)

)
+m2,2β

(
ργ

(
Q− q2

q1

)
+
(
1− γ2

)(Q− q1 − q2

q1

)
− (1 + γ)

)
+m2,3αα

((
−ργ (1 + γ) +

(
γ2 + γ3

))(Q− q3

q1

)
−
(
γ + γ2

))
+m2,3αβ

((
−ρ
(
1 + γ + γ2

)
+
(
1 + γ + γ2 + γ3

))(Q− q3

q1

)
−
(
γ + γ2

))
+m2,3βα

((
ρ
(
1− γ2

)
−
(
γ − γ3

))(Q− q3

q1

)
+
(
1− γ2

))
+m2,3ββ

((
−ργ2 +

(
1 + γ3

))(Q− q3

q1

)
+
(
1− γ2

))
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Fα =m2,1 +m2,2α

(
Q− q2

q1

)
+m2,3αα

(
Q− q3

q1

)
+m2,3βα

(
Q− q3

q1

)
Fβ =m2,2β

(
Q− q2

q1

)
+m2,3αβ

(
Q− q3

q1

)
+m2,3ββ

(
Q− q3

q1

)
Gα =m2,2α

(
Q− q2

q1

)
+m2,3αα

(
Q− q3

q1

)
+m2,3βα

(
Q− q3

q1

)
Gβ =m2,1 +m2,2β

(
Q− q2

q1

)
+m2,3αβ

(
Q− q3

q1

)
+m2,3ββ

(
Q− q3

q1

)
Lα =0

Lβ =0

Mαα =0

Mαβ =0

Mβα =0

Mββ =0

Hα =1 + γ −m1,1

(
−ρ
(
Q− q1

q1

)
+ (1 + γ)

Q

q1

)
−m1,2α

(
ργ

(
Q− q2

q1

)
+
(
1− γ2

)(Q− q1 − q2

q1

)
− (1 + γ)

)
−m1,2β

(
ρ (1 + γ)

(
Q− q2

q1

)
−
(
γ + γ2

)(Q− q1 − q2

q1

)
− (1 + γ)

)
−m1,3αα

((
−ργ2 +

(
1 + γ3

))(Q− q3

q1

)
+
(
1− γ2

))
−m1,3αβ

((
ρ
(
1− γ2

)
−
(
γ − γ3

))(Q− q3

q1

)
+
(
1− γ2

))
−m1,3βα

((
−ρ
(
1 + γ + γ2

)
+
(
1 + γ + γ2 + γ3

))(Q− q3

q1

)
−
(
γ + γ2

))
−m1,3ββ

((
−ργ (1 + γ) +

(
γ2 + γ3

))(Q− q3

q1

)
−
(
γ + γ2

))
Hβ =−m1,2α

(
−ρ
(
Q− q2

q1

)
+ (1 + γ)

(
Q− q1 − q2

q1

))
−m1,3αα

((
ργ +

(
1− γ2

))(Q− q3

q1

)
+ (1 + γ)

)
−m1,3αβ

((
ρ (1 + γ)−

(
γ + γ2

))(Q− q3

q1

)
+ (1 + γ)

)
−m1,3βα (−ρ+ (1 + γ))

(
Q− q3

q1

)
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Iα =−m1,2β

(
−ρ
(
Q− q2

q1

)
+ (1 + γ)

(
Q− q1 − q2

q1

))
−m1,3αβ (−ρ+ (1 + γ))

(
Q− q3

q1

)
−m1,3βα

((
ρ (1 + γ)−

(
γ + γ2

))(Q− q3

q1

)
+ (1 + γ)

)
−m1,3ββ

((
ργ +

(
1− γ2

))(Q− q3

q1

)
+ (1 + γ)

)
Iβ =1 + γ −m1,1

(
−ρ
(
Q− q1

q1

)
+ (1 + γ)

Q

q1

)
−m1,2α

(
ρ (1 + γ)

(
Q− q2

q1

)
−
(
γ + γ2

)(Q− q1 − q2

q1

)
− (1 + γ)

)
−m1,2β

(
ργ

(
Q− q2

q1

)
+
(
1− γ2

)(Q− q1 − q2

q1

)
− (1 + γ)

)
−m1,3αα

((
−ργ (1 + γ) +

(
γ2 + γ3

))(Q− q3

q1

)
−
(
γ + γ2

))
−m1,3αβ

((
−ρ
(
1 + γ + γ2

)
+
(
1 + γ + γ2 + γ3

))(Q− q3

q1

)
−
(
γ + γ2

))
−m1,3βα

((
ρ
(
1− γ2

)
−
(
γ − γ3

))(Q− q3

q1

)
+
(
1− γ2

))
−m1,3ββ

((
−ργ2 +

(
1 + γ3

))(Q− q3

q1

)
+
(
1− γ2

))
Jα =−m1,1 −m1,2α

(
Q− q2

q1

)
−m1,3αα

(
Q− q3

q1

)
−m1,3βα

(
Q− q3

q1

)
Jβ =−m1,2α

(
Q− q2

q1

)
−m1,3αα

(
Q− q3

q1

)
−m1,3βα

(
Q− q3

q1

)
Kα =−m1,2β

(
Q− q2

q1

)
−m1,3αβ

(
Q− q3

q1

)
−m1,3ββ

(
Q− q3

q1

)
Kβ =−m1,1 −m1,2β

(
Q− q2

q1

)
−m1,3αβ

(
Q− q3

q1

)
−m1,3ββ

(
Q− q3

q1

)
Nα =0

Nβ =0

Oα =0

Oβ =0

where mi,1 = ∂mi
∂B

st
t,−1

, mi,2s = ∂mi
∂B

st+1
t+1,−2|st+1=s

, and mi,3ss′ = ∂mi
∂B

st+2
t+2,−3|(st+1,st+2)=(s,s′)

for ∀i, s

and s′.
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We note the following relationships among variables above: Aαα −Aαβ = Aβα −Aββ =

Bαβ − Bαα = Bββ − Bβα = 1 + γ, Aαβ − Aββ = Bββ − Bαβ, Fα − Fβ = Gβ −Gα = mm1,

Hα −Hβ = Iβ − Iα and Jβ − Jα = Kα −Kβ = my1.

With the notations above, we write the Jacobian matrix with respect to the parameters

in the linear forecast functions and the total money quantity parameters evaluated at the

deterministic steady states:

(2.53) DZ =

∂m̄α
1 ∂m̄β

1 ∂b̄α1 ∂b̄β1 ∂ρ ∂γ ∂M̄α ∂M̄β

Aαα Bαα Fα Gα Lα Mαα −1 0

Aαβ Bαβ Fα Gα Lα Mαβ 0 −1

Aβα Bβα Fβ Gβ Lβ Mβα −1 0

Aββ Bββ Fβ Gβ Lβ Mββ 0 −1

Hα Iα Jα Kα Nα Oα 0 0

Hβ Iβ Jβ Kβ Nβ Oβ 0 0



We can re-write this matrix as:

(2.54) DZ =



Aαα Bαα Fα Gα 0 0 −1 0

Aαβ Bαβ Fα Gα 0 0 0 −1

Aβα Bβα Fβ Gβ 0 0 −1 0

Aββ Bββ Fβ Gβ 0 0 0 −1

Hα Iα Jα Kα 0 0 0 0

Hβ Iβ Jβ Kβ 0 0 0 0



We reduce this matrix via row and column operations. Subtract the second and fourth

rows from the first and third rows, respectively. Then, subtract the first row with the
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third row and clear the third row to get:

(2.55) DZ =



0 0 0 0 0 0 0 0

Aαβ Bαβ Fα Gα 0 0 0 −1

0 0 0 0 0 0 −1 0

Aββ Bββ Fβ Gβ 0 0 0 −1

Hα Iα Jα Kα 0 0 0 0

Hβ Iβ Jβ Kβ 0 0 0 0



Subtract the fourth row from the second row and the sixth row from the fifth row and

then, clear the fourth row to obtain:

(2.56) DZ =



0 0 0 0 0 0 0 0

Aαβ − Aββ Bαβ −Bββ mm1 −mm1 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

Hα −Hβ Iα − Iβ −my1 my1 0 0 0 0

Hβ Iβ Jβ Kβ 0 0 0 0



Add the second and fourth columns to the first and third columns, respectively. Then,

clear the last row to derive:

(2.57) DZ =



0 0 0 0 0 0 0 0

0 Bαβ −Bββ 0 −mm1 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

0 Iα − Iβ 0 my1 0 0 0 0

1 0 0 0 0 0 0 0
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The following submatrix in DZ has rank 2:

(2.58)

 Bαβ −Bββ −mm1

Iα − Iβ my1


Therefore, the reduced Jacobian matrix is given by:

(2.59) DZ =



0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0


which has rank 5.

There is, however, a functional dependency between γ and ρ, since

mst
1,t − m̄st

1

bst1,t − b̄st1
= −γ (m− m̄st

1 )

ρ (m− m̄st
1 )

= −γ
ρ

(2.60)

⇐⇒ γ = −ρ

(
mst

1,t − m̄st
1

bst1,t − b̄st1

)

which implies that we have at most five independent equations in five variables.

Thus, the IFT applies from the rank calculation and there exist recursive Markov Nash

equilibria generated by linear forecast functions in a neighborhood of the deterministic

steady states for the offer constrained OLG market game under sell-all strategy with

sufficiently small shocks.

2.9.4 Proposition 3

We show that perfect consumption smoothing cannot be the outcome of the steady

states in the deterministic OLG market game with δ = 1 using the method of contradic-

tion.
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Thus, we start assuming that the perfectly smoothed consumptions are stationary al-

locations, i.e. c1 = c2 = c3. Then, b1 = b2 = b3 at the steady states by the consumption

allocation rule under the sell-all strategy. The first-order conditions require q1 = q2 = q3

for the equal lifetime consumptions to be individual optimal choices. The relationships

among consumptions, bids and offers indicate m1 = m2 = 0 from the budget constraints

which is contradictory to the money market clearing condition where m1 +m2 = M > 0.

Therefore, the perfect consumption smoothing does not hold at the steady states for any

endowment streams in the deterministic OLG economy with δ = 1 if there are strategic

interactions.

The steady-states consumptions rather vary over ages since agents consume more in a

certain age depending on their income as follows. We first write the Euler equations at

the stationary allocations under the sell-all strategy:

(2.61) u′
(
b1

B
Ω

)
B−1

Ω−1

= u′
(
b2

B
Ω

)
B−2

Ω−2

= u′
(
b3

B
Ω

)
B−3

Ω−3

where Ω = n (ω1 + ω2 + ω3) and Ω−i = Ω − ωi for i ∈ {1, 2, 3}.

Without the loss of generality, we normalize the total bid to be unity. Then, (2.61)

becomes:

(2.62)
u′ (b1Ω) (1− b1)

Ω−1

=
u′ (b2Ω) (1− b2)

Ω−2

=
u′ (b3Ω) (1− b3)

Ω−3

u′ (xΩ) (1− x) is strictly decreasing in x for ∀x ∈ [0, 1] under the standard assumptions

on the utility function. We focus on the cases where households’ bids are positive to

consume normal goods. 1
Ω−i

is proportional to the endowment of age i. Thus, bi should

be larger for ages with higher endowments to satisfy (2.62). This relationthip results in

larger consumptions in ages with higher endowments.

Intuitively speaking, agents face lower marginal prices when offering more and thus,

they transfer their wealth to ages with large endowments to purchase more goods cheaper.

Therefore, the consumption stream parallels the income streams at the stationary equi-

libria under the strategic interactions.
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2.9.5 Corollary 2

According to Proposition 3, consumptions are proportional to endowments at the sta-

tionary equilibria. Thus, when ω2 > ω1 > ω3 = 0, we obtain that c2 > c1 > c3. We

first consider the case that c2 ≤ 1
3

(ω1 + ω2), then c1 <
1
3

(ω1 + ω2) and c3 <
1
3

(ω1 + ω2)

because of the order of the lifetime consumptions. This case violates the good market

clearing condition because c1 + c2 + c3 < ω1 + ω2. Therefore, c2 >
1
3

(ω1 + ω2). Likewise,

c3 < 1
3

(ω1 + ω2). If not, the good market clearing condition will be violated. Unlike

c2 and c3, c1 can be larger than, equal to or smaller than 1
3

(ω1 + ω2) which depends on

endowment ratios between the young and the middle-aged and utility functions.

To characterize the condition for c1 to be lager than 1
3

(ω1 + ω2), we consider the en-

dowment structure with ω1 = ω2 = Ω
2n

. In this case, the first equality in (2.62) becomes

u′ (b1Ω) (1− b1) = u′ (b2Ω) (1− b2). To satisfy this equation, b1 = b2 since u′ (xΩ) (1− x)

is strictly decreasing in x. This result implies that c1 = c2 >
1
3

(ω1 + ω2). By continuity,

c1 >
1
3

(ω1 + ω2) if ω1 is smaller than but close enough to Ω
2n

.

The endowment structure with ω1 = Ω
3n

and ω2 = 2Ω
3n

transforms (2.62) to:

(2.63)
u′ (b1Ω) (1− b1)

3n− 1
=
u′ (b2Ω) (1− b2)

3n− 2
=
u′ (b3Ω) (1− b3)

3n

This equation indicates that u′ (b1Ω) (1− b1) = u′(b2Ω)(1−b2)+u′(b3Ω)(1−b3)
2

. u′ (xΩ) (1− x)

is strictly convex in x from the assumption that u′′′ (·) > 0. Then, by Jensen’s inequality,

b1 <
b2+b3

2
. From this result, we know that b1 <

B
3n

and thus, c1 <
1
3

(ω1 + ω2). Hence, if

ω1 is larger than but sufficiently close to Ω
3n

, c1 <
1
3

(ω1 + ω2) by continuity.

2.10 Appendix2: Algorithm

In this appendix, we explain how to compute the symmetric recursive Markov Nash

equilibria in the three period SOLG models with the Shapley-Shubik market game. We

adopt the projection method to approximate the equilibrium policy functions with high-

degree Chebyshev polynomials. It is enough to interpolate the young’s money demand
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function and the bidding functions for all ages because the money demands of the middle-

aged are redundant with the young’s ones from the money market clearing condition.

We use the young’s money holdings as a unique endogenous state variable. We apply

a Newton-type nonlinear equation solver to find the coefficients of the policy functions

satisfying the equilibrium conditions.

We summarize the algorithm in step by step as follows.

(i) Define the type of polynomials to approximate the equilibrium policy functions.

• In this paper, we use the Chebyshev polynomials of which domain is [−1, 1].

(ii) Set the degree of polynomials, N , for the unique endogenous state variable in the

policy functions.

• We use the same degree of polynomials for all approximated functions, {Tk (·)}Nk=0.

• {θm1,s
k }Nk=0 and

{
θbi,sk

}N
k=0

are the coefficients of the policy functions for the

young’s money holding and the bidding in age i in state s.

• The total number of coefficients is (# of policy functions) × (# of states) ×

(N + 1) = 4× 2× (N + 1).

(iii) Generate (N + 1) nodes to apply the projection method.

• We produce (N + 1) Chebyshev grids in [−1, 1].

(iv) Approximate the policy functions as follows.
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(2.64) m̂s
1 =

N∑
k=0

θm1,s
k Tk (m̃1,−1)

(2.65) b̂si =
N∑
k=0

θbi,sk Tk (m̃1,−1) for i ∈ {1, 2, 3}

where m̃1,−1 is the young’s money holding in the previous period which is trans-

formed into [−1, 1] using an appropriate interval for the unique endogenous state

variable, [m1,min,m1,max].

(v) Solve for the state-dependent coefficients satisfying the equilibrium conditions on

the grids from Step (iii).

• In this problem, the equilibrium conditions consist of two first-order conditions

for the young and the middle-aged combined with the consumption allocation

rule and two independent individual budget constraints. Note that the last

budget constraint is linearly dependent on the other two.

• We construct a system of non-linear equations by evaluating the policy func-

tions on each grid and inserting them into the equilibrium conditions. Then,

we use a Newton-type solver to find the state-dependent coefficients at once.
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3 Singular Invariant Markov

Equilibrium in Stochastic Overlapping

Generations Models

3.1 Introduction

The multi-period stochastic overlapping generations (SOLG) model, extending the work

of Samuelson (1958), has been widely used in macroeconomics, finance, and policy-making

as an important workhorse model. Despite its importance, theoretical results in this

model have been restricted to the existence, uniqueness, and stability of the stochastic

steady state equilibria in the literature (see Grandmont and Hildenbrand 1974; Laitner

1981; Spear and Srivastava 1986; Wang 1993; Duffie et al. 1994; Wang 1994; Morand and

Reffett 2007 and many others).

The steady state in a stochastic model generates an invariant distribution over a fixed

subset of the space of state variables. The deterministic OLG model, as a special case by

collapsing a shock to a certain state, has the simplest invariant measure which concentrates

on a single point with probability one.1 Due to their simplicity, it is acceptable to limit

attention to the properties described above when examining the deterministic steady

1 Benhabib and Day (1982) discuss the possibility of deterministic OLG models generating continuous
invariant measures if erratic paths exist. However, the invariant measure of interest in this paper is
one generated by iterating a dynamical system where the contraction mapping principle is applied.
Such an invariant measure in deterministic OLG models should be a degenerate probability measure
on a stationary point.
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states.

In contrast to deterministic OLG models, the steady state of a SOLG model is more

complicated in the sense that the support of the invariant measure can be an uncountable

subset of the state space even under a small aggregate shock.2 In very simple stochastic

models, such as that originally examined by Lucas (1972), one can generally find equi-

libria in which prices only depend on the contemporaneous aggregate shock, which we

call strongly stationary equilibria. Spear (1985), however, showed that these strongly

stationary, or short memory equilibria do not exist in SOLG models where two-period

lived agents trade multiple goods and have intertemporally non-separable preferences.3

Citanna and Siconolfi (2007) and Henriksen and Spear (2012) obtain the same result for

two-period lived OLG models with time-separable utilities and cohort heterogeneity, and

three-period lived OLG models populated by representative agents, respectively.

For general SOLG models without these kinds of stochastic equilibria, Duffie et al.

(1994) showed that there will exist stationary Markov equilibria once one includes an

appropriate set of lagged endogenous state variables. Citanna and Siconolfi (2010) showed

that it was generically sufficient to consider recursive equilibria, in which the endogenous

state variables are taken as the wealth distribution.

The exclusion of the memoryless equilibria and the existence of the Markov equilibria

imply uncountable support for an invariant measure in general SOLG models. However,

neither of these papers provides any characterizations of the nature of the continuous in-

variant measure. Therefore, an important question arises as to the nature of the invariant

measure of the Markov equilibria as the stochastic steady-state equilibria.

By the Lebesgue decomposition theorem, measures on a Euclidean space can be de-

composed into the sum of two measures, one absolutely continuous with respect to the

Lebesgue measure, and the other singular. The singular continuous distribution is defined

as a probability measure which assigns probability one to a Lebesgue measure zero set.

2 In our model, aggregate uncertainty has a finite number of states. A small aggregate shock, in this
case, means a short distance between the realized values of stochastic fundamentals in each state.

3 The short memory equilibria depend on a finite history of shocks. As a special case of the equilibria,
the strongly stationary equilibria is only affected by the current exogenous shock. Therefore, the
cardinality of the support of the short-memory equilibria is finite.
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A probability measure is absolutely continuous with respect to the Lebesgue measure if

it assigns a positive probability to Lebesgue measure non-zero sets. It is well-known that

a simple shock process such as a symmetric Bernoulli distribution can produce either a

singular or an absolutely continuous invariant measure in a stochastic model (see Mitra

et al. 2003 for instance).

To complete the theoretical characterizations of the steady-state equilibria in SOLG

models, we study the continuity properties of their invariant distributions. Examining

this feature is theoretically interesting since there exists a bifurcation into the two types

of the measure continuity, depending on the parameters of the models for small deviations

from a deterministic model. Knowing the continuity features of an invariant measure can

help determine the existence of its density function. Specifically, an absolutely continuous

measure has a density with respect to the Lebesgue measure whereas a singular continuous

measure does not. One needs only know the parameters identifying its density function

to describe an absolutely continuous measure. On the other hand, representing a singular

continuous measure requires a large set of information: the value of the distribution for

every point in its support.

Despite its significance, there has been little attention, in the literature, paid to the

problem of characterizing the continuity features of invariant measures in stochastic mod-

els. (Exceptions are Mitra et al. (2003) and Mitra and Privileggi (2009).) A key reason

for the paucity of research is that researchers lack knowledge of the equilibrium process

in these stochastic models. Even in models where one makes specific assumptions about

preferences and other primitives, characterizing the equilibrium law of motion for the

stochastic economy can be daunting. Furthermore, even if one is aware of the functional

form of an equilibrium mapping, it can be difficult to determine under what conditions

singular or absolutely continuous measures arise, and how they depend on economic en-

vironments unless the mapping is of a simple form.

Therefore, another main goal of this paper is to study whether there exists a simple form

for the equilibrium mappings in SOLG models. We then provide a sufficient condition for

the invariant measure of the equilibrium mapping to be singular. We also investigate under
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what economic parameter values the equilibrium mapping generates a singular invariant

measure by satisfying the sufficient condition.

We approach the study of continuity properties by working from a simple OLG model to

a general one, step by step. For analytical tractability, we first study a monetary model

where agents live three periods, have logarithmic preferences, consume a single good,

and save via accumulations of money holdings. There is an independent and identically

distributed (I.I.D.) shock to the total amount of money which follows a simple Bernoulli

process. This tractable model yields a closed form equilibrating process. One noticeable

point is that the law of motion for the state variable, the money holding of the young, is

linear in the lagged state variable as long as the aggregate shock is sufficiently small. The

price of the single good is also linear in the state variable. Therefore, a linear iterated

function system (LIFS) can represent the dynamics of Markov equilibria (ME).4

The closed form solution, in this case, states that the slope parameter of the LIFS is

only affected by the endowment ratio between ages, not the total amount of endowment,

the size of money shock or the probability of shocks. The Lipschitz constant of the LIFS

belongs to
(
0, 1

2

)
. A one-dimensional LIFS with this scaling factor satisfies the so-called

“no-overlap” property. A non-overlapped LIFS creates a Cantor-like invariant distribution

whose support is a Cantor-like invariant set. The Cantor-like invariant distribution is

singular with respect to the Lebesgue measure if generated by a LIFS and the Cantor-

like attractor shows fractal self-affinity.5 Therefore, the log-linear monetary model has a

singular continuous Markov measure under small aggregate shocks. This example shows

that a multi-period SOLG model can generate fractal patterns in the rational expectation

equilibrium.

In a three-period SOLG model with a simple Lucas tree asset and general preferences,

we cannot obtain a closed-form solution as in the log-linear monetary model. Hence, we

4 The Markov equilibria of interest in this paper are also called ’simple Markov equilibria’ to contrast
with generalized Markov equilibria where the state space adds variables such as the last period’s
marginal utility or a Lagrange multiplier (Kydland and Prescott, 1980), asset prices and individual
consumption (Duffie et al., 1994), and continuation utilities (Feng et al., 2014). We avoid the possibility
of multiple solutions issue given the minimal state variables by restricting to the equilibria around the
deterministic steady state of interest instead of expanding the state space.

5 A self-affine object is invariant under an anisotropic transformation (non-uniform scaling).
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apply the implicit function theorem (IFT) to infer that a LIFS can generate ME around

a deterministic steady state for small shocks. We show that the slope parameters of the

LIFS correspond to the eigenvalues of the Jacobian matrix for the locally linearized price

dynamics evaluated at the deterministic steady state as long as the aggregate shock is

small enough. Based on this relationship, we numerically study how structural parameters

affect the Lipschitz constant and thus determine an open set of economies where the no-

overlap property holds and hence, a singular invariant measure arises. We find that a

model with low risk-aversion and small dividend income share can generate a singular

Markov measure. This result highlights why there can exist a unique singular measure in

the monetary model above, which is characterized by a zero dividend and risk-aversion

set at one.

Finally, we extend the model to a more realistic version by allowing agents to live

many-period lives, introducing permanent heterogeneity and letting the number of states

of nature be arbitrary but finite. As in the simpler models, we show the existence of a

simple but high-dimensional LIFS in a neighborhood of the deterministic steady state as

long as the aggregate shocks are sufficiently small. We provide a condition under which

the LIFS has identical affine matrices across states. As we did in the three-period model,

we find a relationship between the affine matrices of the LIFS and the stable eigenvalues

of the locally linearized price dynamics for both determinate and indeterminate equilib-

ria. We give a weak sufficient condition for the model to generate the singular invariant

measure. This condition is closely related to the size of the spectral radius of the affine

matrices. We numerically check a similar relation between the largest eigenvalue and

structural parameters as in the three-period model. Lastly, we produce some examples

where multi-dimensional singular Markov measures appear when satisfying our weak suf-

ficient condition for singularity.

The empirical relevance of our theoretical results can be found in the literature on frac-

tal phenomena observed in financial data. The self-affinity aspect of stock prices was one

of the topics studied in both the non-linear dynamics and time-series econometrics litera-

ture for over a decade between the mid-1980’s and ’90’s. In the former literature, earlier
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researchers analyzed low-dimensional deterministic dynamic systems as data generating

processes since the attractors of the chaotic dynamic systems can have self-affinity features.

They claimed to have found evidence for the existence of low-dimensional chaotic attrac-

tors in the time-series stock prices data (see Baumol and Benhabib 1989; Scheinkman

and Lebaron 1989). However, later work with large data sets concluded that the previous

results were misderived due to the paucity of data (see Vassilicos et al. 1993). The consen-

sus now is that there is very little evidence for low-dimensional deterministic systems as

stock price generating processes (see Vassilicos et al. 1993; LeBaron 1994). These results,

then, require (at a minimum) high-dimensional chaotic systems or stochastic systems to

account for the empirical features of stock prices.

In the econometrics literature, many stochastic models have been developed based on

the theory of fractal measure and fractional Brownian motion processes pioneered by

Mandelbrot (1963) and Mandelbrot (1967). The time-series econometrics models capture

the self-affinity properties observed in the financial time-series data. However, they lack

an economic mechanism behind the data-generating processes. To fill this gap, our paper

shows how stochastic economic models can generate the self-affine features in their rational

expectation equilibria via high-dimensional recursive policy functions.

This paper contributes to the literature on several dimensions. On the theoretical

side, as far as we know, this is the first paper to study the continuity property of an

invariant measure in multi-period SOLG models by providing mechanisms and conditions

for singular measures to appear. This paper also identifies the set of economies satisfying

these conditions. This, in turn, extends the theoretical characterization of SOLG models

beyond the well-known results on existence, uniqueness, and convergence.

There are a few papers in the literature which also examine singular invariant distri-

butions in dynamic general equilibrium models. Mitra et al. (2003) characterizes the

invariant Markov distribution in terms of singularity versus absolute continuity in a one-

sector stochastic growth model with logarithmic preferences and Cobb-Douglas production

functions. Thus, the stylized model has an explicit law of motion. On the other hand, we

study not only a tractable monetary OLG model and but also a general model without
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preference specifications. Hence, we have to deal with the equilibrating process described

by a system of implicit difference equations. We show simple linear policy functions can

generate ME under certain conditions via an application of the IFT.

Mitra and Privileggi (2009) shows similar results with ours in the sense that they pro-

vide the characteristics of structural parameters to generate a singular invariant measure

without parametric assumptions. One main difference is their paper analyzes a one-sector

growth model whereas this paper deals with SOLG models. More importantly, we spec-

ify the high-dimensional law of motion explicitly even for general preferences and shock

processes, so that we examine the continuity property of a multi-dimensional invariant

measure.

Gardini et al. (2009) shows the existence of a Cantor-like limiting distribution of

forward-looking equilibria in OLG models. However, their paper concentrates on two-

period deterministic OLG models and thus, the invariant measure of interest in their pa-

per is essentially for sunspot equilibria when multiple equilibria exist due to a backward

bending offer curve. The nature of the equilibria in this paper is different in terms of di-

mensionality and the cause of stochasticity. This paper treats high-dimensional stochastic

steady state generated by an intrinsic shock such as a shock to the endowment, dividend

and asset quantity.

Another theoretical contribution of the paper is to explicitly show that the LIFS takes

the eigenvalues of its corresponding full price dynamic system as its own in multi-period

OLG models with cohort heterogeneity. Thus, given information on the eigenvalues of

price dynamics, one can infer the contractivity and singularity property of the LIFS. To

the best of our knowledge, this is the first paper to clearly show how the two systems are

related via eigenvalues in general OLG models.

The results in this paper also have computational implications from the existence of

a LIFS as the equilibrating process for SOLG models with heterogeneous agents. Re-

searchers can simply adopt the structure of the LIFS and iterate this functional spec-

ification to convergence to find Markov policy rules. Since the LIFS requires only the

first-order term for each endogenous state variable in the approximated policy functions,
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it will make computing very long-period lived SOLG models feasible by reducing a lot of

unknown coefficients.

Since we prove the existence of a LIFS for an arbitrary shock process, a linear form

approximation for the equilibrium process can be accurate even under an imperfectly

correlated shock between labor and capital incomes. Under this type of shock, quasi-

aggregation methods such as Krusell and Smith (1998) might generate large approximation

errors since the marginal propensity to save can vary greatly by age. Therefore, our results

offer the foundation of an alternative algorithm to deal with the limitations of existing

ones in computing equilibrium in SOLG models.

3.2 Log-Linear Monetary Model

We first study a standard three-period SOLG model with fiat money under logarithmic

preferences. Time is discrete labeled by t = 0, 1, 2, . . .. Agents live three periods: youth,

middle-aged and retired denoted by y, m, and r respectively. They consume a single good

and can save via accumulations of the fiat money.

We assume an aggregate shock has a two states of support and follows an I.I.D. process

with the probability of state s occurring equally to πs where 0 < πs < 1 for s ∈ {h, l}

and πh + πl = 1. The history of the aggregate shocks given the initial shock realization,

s0, is represented by St = {s1, s2, . . . , st | s0} ∈ Σt = {h, l}t where we let l represent the

low shock and h the high shock. We let (St, st+1)st+1∈{h,l} denote the set of nodes for one

period after the histroy St. We make (St, st+1, st+2)st+1,st+2∈{h,l}2 denote the set of nodes

for two periods after the histroy St. The total money supply in time t is stochastic in the

amount M st which depends only on the realization of the current shock.

If the economy moves from the low state to the high state, the total money supply

increases. In the opposite case, the total money supply decreases. In these changes of

the total money supply, we assume the government sells lump sums of the new money

or buys lump sums of the old money by trading with the single good. If the government

increases or decreases the money holding of existing agents proportionately, we recover the

strong stationary equilibrium in parallel to the results in Lucas (1972). To have history
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dependent equilibria, we need the lump sum transaction mechanism which generates a

real effect as above.

Agents are endowed with non-stochastic consumption goods in the amounts (ωy, ωm, 0).

The consumption plan of the representative household born in time t and history St

is denoted by c (St) =
(
cy (St) , (cm (St, st+1))st+1∈{h,l} , (cr (St, st+1, st+2))st+1,st+2∈{h,l}2

)
where cy (St) is consumption when young in node St, cm (St, st+1) is consumption when

middle-aged in node (St, st+1), and cr (St, st+1, st+2) is the old period consumption in

node (St, st+1, st+2). Similarly, the money holdings of the household is given by m (St) =(
my (St) , (mm (St, st+1))st+1∈{h,l}

)
where my (St) and mm (St, st+1) denote money hold-

ings when young and middle-aged in node St and (St, st+1), respectively.

Lifetime preferences are additively time-separable logarithmic given by a von Neumann-
Morgenstern utility function U : R7

+ → R. U is specified by:

(3.1) EtU
(
c
(
S
t
))

= ln
(
cy

(
S
t
))

+
∑

st+1∈{h,l}
π
st+1

ln
(
cm

(
S
t
, st+1

))
+

∑
st+2∈{h,l}

π
st+2 ln

(
cr

(
S
t
, st+1, st+2

))

where the discount factor sets at one, β = 1, for analytical tractability. Sequential budget
constraints are given by:

cy

(
S
t
)

= ωy − p̃
(
S
t
)
my

(
S
t
)

cm

(
S
t
, st+1

)
= ωm + p̃

(
S
t
, st+1

)
my

(
S
t
)
− p̃

(
S
t
, st+1

)
mm

(
S
t
, st+1

)
for st+1 ∈ {h, l}(3.2)

cr

(
S
t
, st+1, st+2

)
= p̃

(
S
t
, st+1, st+2

)
mm

(
S
t
, st+1

)
for

(
st+1, st+2

)
∈ {h, l}2

where p̃ (St), p̃ (St, st+1) and p̃ (St, st+1, st+2) are the price of the fiat money in terms of

the single good in node St, (St, st+1) and (St, st+1, st+2), respectively. Note that we do

not specify the problems of the initial middle-aged and old generations in time 0 since we

focus on the stochastic steady state in all models analyzed in this paper.

Agents maximize the expected utility subject to the sequential budget constraints. This

yields the following three first-order conditions (FOC):

(3.3)
p̃ (St)

cy (St)
=
πhp̃ (St, h)

cm (St, h)
+
πlp̃ (St, l)

cm (St, l)
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and

(3.4)
p̃ (St, st+1)

cm (St, st+1)
=
πhp̃ (St, st+1, h)

cr (St, st+1, h)
+
πlp̃ (St, st+1, l)

cr (St, st+1, l)

for st+1 ∈ {h, l}.

The money market clearing condition requires:6

(3.5) M st = my

(
St
)

+mm

(
St
)

for st ∈ {h, l}.

Since there is a change in the total money supply between periods, the current money

supply can be rewritten with the previous money supply as:

(3.6) M st = my

(
St
)

+mm

(
St
)

= M st−1 +4Mt−1,t = my

(
St−1

)
+mm

(
St−1

)
+4Mt−1,t

where M st−1 is the total money supply in time t − 1 under state st−1, M st is the one in

time t under state st, and 4Mt−1,t denotes a change in the total money supply between

time t− 1 and t.

With the notations above, we define two equilibrium concepts for this monetary model:

the competitive equilibrium and the recursive ME.

Definition 4. The competitive equilibrium in the monetary model is a sequence of the

money holdings, consumption and asset prices in all nodes starting in time 0: {m (St) , c (St) , p̃ (St)}

for ∀St and t ≥ 0. The competitive equilibrium requires:

• Individuals maximize their expected utility under budget constraints given the se-

quence of the price of the fiat money.

• The money market clears and the aggregate resource constraint holds.

6 By Walras’s law, we can ignore the market clearing for the consumption good.
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The existence of a competitive equilibrium can be verified using a standard truncation

method used in Balasko and Shell (1981).

Definition 5. The recursive ME is defined by time-homogeneous policy functions for

money holdings, consumption and asset prices: {my (χ) ,mm (χ) , cy (χ) , cm (χ) , cr (χ) , p̃ (χ)}

which solve the household problem and clear the money and consumption markets. χ =

[my,−1, s] ∈ Σ̂ ⊂ R2 represents the minimal state variables: the lagged money holdings of

the young and the realization of the current aggregate uncertainty.

For the recursive ME, we can re-write the equilibrium conditions as follows:

(3.7)
p̃ (my,t−1, st)

cy (my,t−1, st)
=
πhp̃ (my,t, h)

cm (my,t, h)
+
πlp̃ (my,t, l)

cm (my,t, l)

(3.8)
p̃ (my,t, st+1)

cm (my,t, st+1)
=
πhp̃ (my,t+1, h)

cr (my,t+1, h)
+
πlp̃ (my,t+1, l)

cr (my,t+1, l)

for st+1 ∈ {h, l} and

(3.9) M st = my (my,t−1, st) +mm (my,t−1, st)

We impose the following two linear functions for prices and money holdings that the

agents use to forecast future variables:

(3.10)
my (my,t−1, st) = m̄st − γst (my,t−1 − m̄st)

q (my,t−1, st) = q̄st + ρst (my,t−1 − m̄st)

for st ∈ {h, l} where q = 1
p̃
, i.e. the price of the consumption good in terms of the fiat

money. The first and second equations in (3.10) are the forecast functions for the money

holding of the young and the price of the single good respectively given the lagged money

holding of the young and the realization of the current shock. By plugging these forecast
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3.2 Log-Linear Monetary Model

functions into the FOCs and combining them with the market clearing condition, we

can solve this monetary model and get a LIFS generating ME as long as the size of the

aggregate shock measured by Mh −M l is sufficiently small. We summarize these results

in the following proposition.

Proposition 4. In a three-period monetary OLG model with u (c) = ln (c) and β = 1,

there will be ME for the model generated by a LIFS given by (3.10) for sufficiently small

shocks. The slope parameters in (3.10) are parallel between states : γ = γh = γl and

ρ = ρh = ρl. A closed form solution for γ and ρ is given by:

(3.11) γ = −1

2
− ωy
ωm

+

√(
1

2
+
ωy
ωm

)2

+
ωy
ωm

and

(3.12) ρ =
2γ − 1

ωm

Proof. See Appendix 2.1

The policy functions for the money holding for the young determine the LIFS in the

monetary model. The closed form solution for the Lipschitz constant of the LIFS, γ,

is only affected by the endowment ratio between the young and the middle-aged, not

the total amount of endowment. On the other hand, the slope of the price function is

influenced by the total endowment because there is ωm in the denominator of the closed

form solution for ρ. Likewise, the state-contingent stationary points for the money holding

function, {m̄s}, are independent of the total amount of endowment but dependent on the

endowment ratio while the ones for the price function, {q̄s}, are affected by the total

endowment. (see the proof of Proposition 4 in Appendix 2.1.)

The intuitions behind these results are as follows. Since the logarithmic utility function

is inter-temporally homothetic, optimal consumption allocations are proportional to the

wealth of agents. When the total endowment changes but the endowment ratio between
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3 Singular Invariant Markov Equilibrium in Stochastic Overlapping Generations Models

generations remains constant, the equilibrium price will move in proportion to the total

endowment variation. Thus, the same money holding across generations can attain the

optimal consumption choice. However, the money holding demands will alter if there are

any variations in the endowment ratio between generations since some generations want

more money and others not. Therefore, only the ratio of endowment matters for the

money holding demand whereas both the total endowment and its ratio affect the price

of consumption.

The slope parameters defined by (3.11) and (3.12) do not depend on the total money

supply in each state and the probability distribution of shocks at least if the shock process

is I.I.D. The money supply and probabilities do, however, affect the state-contingent

intercept parameters. These findings imply that the rates of variations in the current

money holding for the young and the price in response to variations in the lagged money

holding for the young are constant whatever the size of the stochastic money supply and

its probability distribution. These results accord closely with the findings in Mitra et al.

(2003) that the amplitude of an exogenous shock and its probability distribution do not

have an effect on the Lipschitz constant of the LIFS in a one-sector stochastic growth

model with a logarithmic utility function and a Cobb-Douglas production function.

With the closed form solution above, we know the slope of the LIFS is increasing in the

endowment ratio, ωy
ωm

. The slope converges to 0 as the endowment ratio goes to 0 and it

converges to 1
2

as the endowment ratio goes to infinity. Under this range of the Lipschitz

constant, the images of two parallel functions in the LIFS on the smallest open interval

containing its attractor have an empty intersection set. Hence, the law of motion in the

monetary model always satisfies the no-overlap property. This result is presented in the

following corollary.

Corollary 2. The Lipschitz constant of the LIFS, γ, is between 0 and 1
2

for the entire set of

economies in the monetary model. Hence, both contractivity and no-overlap property hold

always so that there exists a unique Markov measure which is a Cantor-like distribution.

Proof. From the well-known results for the one-dimensional homogeneous LIFS with
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3.2 Log-Linear Monetary Model

two states.

A one-dimensional non-overlapped LIFS creates a unique Cantor-like invariant distribu-

tion of which support is a unique Cantor-like invariant set. The Cantor-like invariant

distribution is singular with respect to the Lebesgue measure if it is generated by a LIFS

because the images of the iterates of the LIFS decreases proportionally by a factor of

(1− 2γ) and the limiting set has Lebesgue measure zero. Therefore, there exists a unique

singular Markov measure for the entire economies in the log-linear monetary model un-

der a small aggregate shock. Moreover, the monetary example here shows a multi-period

SOLG model can generate fractal patterns in the rational expectation equilibrium since

the Cantor-like invariant set or attractor has a self-affine structure. (see Appendix 2.1 to

see how a one-dimensional non-overlapped generates a singular invariant distribution in

detail.)

Finally, the fact that money holdings are a sufficient statistic for the history of shocks

is particularly apparent here given that the Cantor set is itself homeomorphic to the

space of the history of shocks from the minus infinity to the present. We denote this

space of infinite histories by Σ. From the results in Woodford (1986), we also know the

price and savings will be given by a unique function of the histories of shocks at least

for small shocks. One can define a function, known as the coding map, π (S) where

S ∈ Σ, which maps infinite histories into the realizations of allocations. By the results

on the contractive LIFS in Atkins et al. (2010), one can also show that the lagged asset

holdings in the model will remain sufficient statistics for the history of shocks even in

cases where the LIFS doesn’t satisfy the no-overlap condition and the invariant measure

is absolutely continuous. Their result implies that the coding map is point fiber when a

LIFS is contractive and thus, there is a unique history of shocks leading to points in the

attractor. This in turn tells us that the prices generated in the stochastic equilibrium can

be written as πq (S−1s) = q (m−1, s) = q (πm (S−1) , s) where πq and πm are coding maps

for the price and money holdings respectively, the money holdings coding map is point

fiber, S−1 is the history of shocks up to the previous period and s denote the state of
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3 Singular Invariant Markov Equilibrium in Stochastic Overlapping Generations Models

the current shock. (see Appendix 2.1 for the definitions of the coding map and fiber in

detail.)

3.3 Lucas-Tree Model

In this section, we replace the fiat money with a Lucas-tree to study an invariant

Markov measure in a more general setting. Thus, agents save via accumulations of equity

shares in a tree asset. We keep the assumption that aggregate uncertainty is given by two

states of nature, s ∈ {h, l}. However, we assume here that the shock follows a first-order

Markov process with a transition probability matrix
∏

=

 πhh πhl

πlh πll

 where πss
′ ≥ 0

for (s, s′) ∈ {h, l}2 and πsh + πsl = 1 for s ∈ {h, l}. The tree asset in time t delivers

dividends stochastically in the amount δst which depend only on the current shock.

Agents born in time t and history St are endowed with stochastic consumption goods in

the amounts
(
ωsty , ω

st+1
m , ωst+2

r

)
which also depends only on the current shock. The lifetime

asset portfolio of the representative households is given by e (St) =
(
ey (St) , (em (St, st+1))st+1∈{h,l}

)
where ey (St) is equity holding when young in node St and em (St, st+1) is equity holding

when middle-aged in node (St, st+1).

Lifetime preferences are additively time-separable given by a von Neumann-Morgenstern

utility function U : R7
+ → R. U is specified by:

(3.13)

EtU
(
c
(
St
))

= u
(
cy
(
St
))

+β
∑

st+1∈{h,l}

πstst+1

u (cm (St, st+1

))
+ β

∑
st+2∈{h,l}

πst+1st+2u
(
cr
(
St, st+1, st+2

))
where β ∈ (0, 1]. We assume utility functions u(·) satisfy regular conditions: u′ (c) > 0,

u′′ (c) < 0, and u′ (0) = +∞.
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Sequential budget constraints are given by:

cy
(
St
)

= ωsty − p
(
St
)
ey
(
St
)

cm
(
St, st+1

)
= ωst+1

m +
(
p
(
St, st+1

)
+ δst+1

)
ey
(
St
)
− p

(
St, st+1

)
em
(
St, st+1

)
for st+1 ∈ {h, l}(3.14)

cr
(
St, st+1, st+2

)
= ωst+2

r +
(
p
(
St, st+1, st+2

)
+ δst+2

)
em
(
St, st+1

)
for (st+1, st+2) ∈ {h, l}2

where p (St), p (St, st+1) and p (St, st+1, st+2) are the price of the equity in terms of the

single good in node St, (St, st+1) and (St, st+1, st+2), respectively. Agents maximize ex-

pected utility subject to the sequential budget constraints. This yields the following three

first-order conditions conditional on the shock history:

(3.15) p
(
St
)
u′
(
cy
(
St
))

= β
∑

st+1∈{h,l}

πstst+1
(
p
(
St, st+1

)
+ δst+1

)
u′
(
cm
(
St, st+1

))

and

(3.16)

p
(
St, st+1

)
u′
(
cm
(
St, st+1

))
= β

∑
st+2∈{h,l}

πst+1st+2
(
p
(
St, st+1, st+2

)
+ δst+2

)
u′
(
cr
(
St, st+1, st+2

))

for st+1 ∈ {h, l}.

Under standard assumptions on preferences and endowments, Eq. (3.15) and (3.16)

yield asset demand functions:

(3.17) ey
(
St
)

= ey
(
P t+2
t

(
St
))

and

(3.18) em
(
St, st+1

)
= em

(
P t+2
t

(
St
)

; st+1

)
for st+1 ∈ {h, l} where P t+2

t

(
St
)

=
{
p
(
St
)
,
(
p
(
St, st+1

))
st+1∈{h,l} ,

(
p
(
St, st+1, st+2

))
st+1,st+2∈{h,l}2

}
.

The demands for the equity are the functions of P t+2
t (St). We let (p (St, st+1))st+1∈{h,l}

denote the set of equity prices that agents should expect over all possible paths of shock

histories one period after St. We make (p (St, st+1, st+2))st+1,st+2∈{h,l}2 denote the one two
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periods after St. Thus, P t+2
t (St) is the set of all equity prices that agents born in time t

and node St have to forecast over their lifetime. The equity demand functions are indexed

by the possible history of shocks realized after the first age in the lifetime. For example,

we index em
(
P t+2
t (St) ; st+1

)
by st+1.

The market-clearing condition then requires that:7

(3.19) ey
(
P t+2
t

(
St
))

+ em
(
P t+1
t−1

(
St−1

)
; st
)

= 1

When convenient, we will also allow the total number of assets to vary stochastically,

so that the market-clearing condition becomes:

(3.20) ey
(
P t+2
t

(
St
))

+ em
(
P t+1
t−1

(
St−1

)
; st
)

= āst

With the notations above, we define two equilibrium concepts as in the monetary model.

Definition 6. The competitive equilibrium in the Lucas-tree model is a sequence of the eq-

uity holdings, consumptions and asset prices in all nodes starting in time 0, {e (St) , c (St) , p (St)}

for ∀St and t ≥ 0, such that:

• Individuals maximize their expected utility under budget constraints given the se-

quence of the price of the equity.

• The asset market clears and the aggregate resource constraint holds.

We can show the existence of a competitive equilibrium using a standard method as stated

in the monetary model.

Definition 7. The recursive ME is defined by time-homogeneous policy functions for the

equity holdings, consumptions and asset prices: {ey (χ) , em (χ) , cy (χ) , cm (χ) , cr (χ) , p (χ)}

7 By Walras’s law, we also ignore the market clearing for the consumption good here.
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3.3 Lucas-Tree Model

which solve the household problem and clear both the asset and consumption markets.

χ = [ey,−1, s]∈ Σ̂ ⊂ R2 represents the minimal state variables: the lagged equity holdings

of the young and the realization of the current aggregate uncertainty.

For the recursive ME, we write the following equilibrium conditions:

ey
(
P t+2
t

(
St
))

= ey (ey,t−1, st)(3.21)

1 = ey (ey,t−1, st) + em
(
P t+1
t−1

(
St−1

)
; st
)

where the first equation represents the optimality condition for the household problem

and the second one is the asset market clearing condition.

The analysis we are undertaking hereafter is parallel to that of Woodford (1986), par-

ticularly with respect to Theorem 2 of his paper. This paper looks at a two-period lived

model with multiple commodities and shows, via a functional application of the IFT that

for a SOLG economy with small shocks, there is a unique equilibrium price function which

depends on the infinite history of shocks to endowments. We will use a similar functional

application of the IFT to show the existence of a LIFS as the ME mapping where the

lagged endogenous state variables are, in fact, sufficient statistics for the shock history

around the deterministic steady-states under small aggregate shocks.

For this analysis, we impose the following linear forecast functions:

(3.22)
ey (ey,t−1, st) = ēst − γ (ey,t−1 − ēst) = G (ey,t−1, st)

p (ey,t−1, st) = p̄st + ρ (ey,t−1 − ēst) = H (ey,t−1, st)

for st ∈ {h, l}. Note that we let the affine coefficients in (3.22) be independent of the

state of the current shock according to the result in Proposition 4.

To show that the recursive ME can be implemented by (3.22), we will proceed two

steps. First, we show that the linear forecast functions in a three-period deterministic

OLG model will be the steady-state values of the equity holding for the young and the

equity price when evaluated at the steady states. This is the content of the following
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lemma.

Lemma 2. In a three-period deterministic OLG model with a single long-lived asset, the

linear forecast functions will be the steady-state values of ey and p when ey,−1 = ē. , i.e.

G (ey,−1) = ē− γ (ey,−1 − ē) = ē and H (ey,−1) = p̄+ ρ (ey,−1 − ē) = p̄ at ey,−1 = ē.

Proof. See Appendix 2.1

With the result in Lemma 2, we apply the IFT to show the existence of a LIFS in

this three-period SOLG model in a neighborhood of the deterministic steady state if the

aggregate shock is sufficiently small. This result is presented in the following proposition.

Proposition 5. In a three-period SOLG model with a single long-lived asset, there will

be ME generated by a LIFS given by (3.22) in a neighborhood of the deterministic steady

state for sufficiently small shocks.

Proof. See Appendix 2.1

To prove Proposition 5, we do not specify any particular deterministic steady states in ap-

plying the IFT. Thus, there exists a LIFS around all possible deterministic steady states.

Proposition 5 does not essentially need any specific assumptions on structural parameters

such as preferences, endowments, dividends, total asset quantities and the Markov shock

processes other than the size of the shock measured by max
[{∣∣ωhi − ωli∣∣}i∈{y,m,r} , ∣∣δh − δl∣∣].

The transversal density theorem in the proof of Proposition 5 indicates that the result

in this proposition holds for almost all asset quantities. Thus, the results in Proposition

5 apply for a fairly broad set of economies in a three-period SOLG model with a single

long-lived asset.

To study the continuity property of an invariant Markov measure, we first have to

examine the characteristics of reduced form parameters in the linear forecast functions, γ

and ρ. By the IFT results in Proposition 5, the slope parameters of a LIFS in a stochastic
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model are close to the corresponding ones in a deterministic model by continuity as long

as the size of an exogenous shock is sufficiently small. Here, we show that the slopes of

the LIFS correspond to the stable eigenvalues of the Jacobian matrix at the steady state

for the underlying price dynamics in the deterministic model. We show this relationship

by constructing a first-order forecast function. (as in Kehoe and Levine (1985) which

restricts the forward dynamics to the stable manifold of the steady-state equilibrium.)

This will then guarantee that the LIFS derived in Proposition 5 is contractive and that

the resulting equilibrium stochastic process is not transient.

To demonstrate this relationship, we first note that, generically, the underlying price

dynamics for the three-period deterministic OLG model in a neighborhood of the steady

state will take the form:

(3.23) pt+1 = z (pt, pt−1, pt−2)

This is determined from the solutions for pt+1 in the following equilibrium conditions

by applying the IFT under the generic assumption that ∂ey
∂pt+1

6= 0:

(3.24) ey (pt−1, pt, pt+1) + em (pt−2, pt−1, pt) = 1

Letting q̂t = (pt, pt−1, pt−2), we can write the third-order equilibrium law of motion for

the prices as the first-order vector system:

(3.25) q̂t+1 = ẑ (q̂t) =


z (pt, pt−1, pt−2)

pt

pt−1


The Jacobian matrix for this system at the steady-state, q̄ = [p̄, p̄, p̄], takes the form:

(3.26) Dq̂ẑ = Z =


z1 z2 z3

1 0 0

0 1 0
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where zi = ∂z
∂pt+1−i

|q̂t=q̄ for ∀i ∈ {1, 2, 3}. The local stability of the steady state (equiv-

alently, the determinacy of the steady-state) depends on the eigenvalues of the matrix

Z.

We obtain the first-order forecast function following Kehoe and Levine (1985) by re-

quiring that:

(3.27) pt+1 = f (pt)

Given such a forecast function, we let:

(3.28) êy (pt) = ey (pt, f (pt) , f ◦ f (pt))

Then, we define:

(3.29) ê′y =
∂ey
∂pt

+
∂ey
∂pt+1

f ′ +
∂ey
∂pt+2

f ′2 |pt=p̄

With these notations, we can derive the model-consistent specification of the values of

−γ and % which we summarize in the following proposition.

Proposition 6. In a three-period deterministic OLG model with a single long-lived asset,

the slope parameter of the LIFS, −γ, coincides with the stable eigenvalue of Z at the

corresponding steady-states. The slope parameter of the equity price function, ρ, is defined

by:

(3.30) % =
−γ
ê′y

Proof. See Appendix 2.1

The main implication of Proposition 6 is that the stable eigenvalue of the Jacobian ma-

trix for the price dynamics system determines the slope parameter of the LIFS in the
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neighborhood of the steady-state.

According to the conditions in Blanchard and Kahn (1980), one can characterize the

local determinacy and stability of equilibrium dynamics around steady-states. In a three-

period OLG model, there are three eigenvalues for Z and one predetermined price variable.

Thus, if the number of the stable eigenvalues of Z, whose moduli lie inside the unit

circle, is exactly one, then the equilibrium dynamics converging to the steady state is

locally determinate. This locally unique equilibrium is called saddle-path stable. Locally

indeterminate equilibrium arises when there are more than one stable eigenvalues for Z.

In this case, there are a continuum of equilibria converging to the steady-states.

For the determinate case, there is one contractive LIFS and thus there exists a unique

invariant measure around the deterministic steady states by the contraction mapping

theorem as long as the size of a shock is small. On the other hand, for the indeterminate

case, there can be multiple contractive LIFSs taking different stable eigenvalues as their

Lipschitz constant. Since each contractive LIFS generates a unique invariant measure,

this result implies there are possibly multiple invariant measures for an indeterminate

steady state under a small shock.

If we don’t impose the stability restriction to the LIFS, we can end up generating

an equilibrium stochastic process which is transient in the sense that under repeated

shocks, the forward equilibrium trajectory eventually leaves any open neighborhood of

the deterministic steady-state.

If there are no stable eigenvalues, then the equilibrium is called explosive in the sense

that it diverges from the deterministic steady-states unless it starts at the stationary

points. In this case with potential bubbles, there can be a stable equilibrium trajectory

via the backward dynamics of the model rather than the forward dynamics.

Since the stable eigenvalues of Z determine the no-overlap property of the one-dimensional

LIFS as well, we now use eigenvalues information on Z to classify economies with the Lu-

cas tree as having singular or absolutely continuous measures instead of finding a LIFS

explicitly. We also find a relationship between the structural parameters in this model

and the slope of the LIFS. Since this problem is not analytically tractable, we instead
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use a numerical analysis under certain parametric specifications. We introduce a constant

relative risk aversion (CRRA) utility function, u (c) = c1−σ

1−σ , where σ is the coefficient of

relative risk aversion. We normalize ωy + ωm + δ to be 1. Lastly, we assume a symmetric

I.I.D. shock with the two states, i.e. πh = πl = 0.5.

In this three-period Lucas-tree OLG model with the parametric assumptions above,

we numerically find that there exists a unique steady state where the equity price is

positive in the set of parameters of interest. For the unique steady-state, there exist one

real eigenvalue inside the unit circle and two complex eigenvalues outside the unit circle.

Following the Blanchard-Kahn eigenvalue condition, we can classify this unique steady

state as a determinate or locally saddle-path stable equilibrium. We restrict the LIFS to

the real eigenvalue of the unique steady state since we want the equilibrium mapping to

generate a stable unique invariant measure.

For the case where the aggregate shock has two states with equal probability, the no-

overlap condition will hold if γ < 1/2. Since −γ sets equal to the real eigenvalue of Z, we

classify the set of economies where the absolute value of the real eigenvalue is less than 1/2

as singularly continuous and the rest of economies as absolutely continuous. We should

emphasize that there can exist a singular continuous measure even when the no-overlap

property is not satisfied, i.e. γ ∈ (1/2, 1). The set of γ values in (1/2, 1) generating

such essentially singular measure has Lebesgue measure zero relative to R. These results

justify classifying the economies where γ ∈ (1/2, 1) as being absolutely continuous in our

numerical analysis. (We refer the interested readers to Appendix 2.1 for more details

about the essentially singular measure.)

Figure 3.1 shows the classification of economies into the two types. From all panels

in the figure, we observe that γ increases as δ increases. This means that the current

young’s equity holding drops more sharply as the lagged equity holding rises under a higher

dividend share. As δ and ey,t−1 rise, the change in capital income for the middle-aged can

be seen in (pt + δ +4δ) (ey,t−1 +4ey,t−1) from the middle-aged budget constraint. The

interaction term4δ ·4ey,t−1 indicates the current middle-aged takes a larger income share

out of the total resource as ey,t−1 increases under a higher δ. Thus, the middle-aged asset
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demand increases which makes the slope of the equity policy function steeper.

Figure 3.1 also implies γ increases as ω1 rises when ω1 is high enough. This result can be

explained by a price change accompanied by a change in the endowment structure. As ω1

increases, the aggregate demand for equity increases and thus, the equity prices will rise.

Unlike the hump-shaped endowment structure where young agents might want to borrow,

both the young and the middle-aged will save under the decreasing endowment structure

with ω1 > ω2 > ω3 = 0. From the budget constraint for the middle-aged, an increment

in the equity price can be reflected in this way: (pt +4pt + δ) (ey,t−1 +4ey,t−1). The

interaction term 4pt · 4ey,t−1 implies the current middle-aged get a larger income share

in the decreasing endowment structure due to the price hike for their previous equity

holdings. Thus, γ increases, just as it does for an increase in δ.

Another interesting result is that an increase in ω1 rather leads to a decline in γ when ω1

is low enough. In this hump-shaped endowment structure, the young agents can borrow

via short-selling the equity asset, assuming there are no borrowing constraints. As above,

an increase in ω1 still leads to a price hike as the demand for the equity by the middle-aged

increases whereas the young short-sells the equity less. Under a higher equity price, the

middle-aged’s income share rises more sharply as their previous equity holdings increase

by4ey,t−1 and thus, they are willing to buy more assets. However, the current equilibrium

asset holdings of the middle-aged might not grow faster, since the young agents short-sell

the equity less under a higher ω1. The higher equity price further reduces the amount of

short-sales by the young since they can consume as much as they want even with a lower

amount of short-sales under that price. Therefore, γ decreases even when ω1 increases if

ω1 is low enough.

By the comparison of two panels with the same relative risk aversion but different time

discount factors, we see that the area for the singular measure contracts from the right

but expands to the left. For the contraction, the mechanism is quite close to the one in

the case with an increase in ω1 when ω1 is already large because both the young and the

middle-aged are willing to save more as β goes up. Thus, the equity price will rise, making

the middle-aged wealthier as their previous equity holdings increase. For the expansion,

141



3 Singular Invariant Markov Equilibrium in Stochastic Overlapping Generations Models

Figure 3.1: The invariant Markov measure for different parameter configurations
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we can borrow the intuition from the case with an increase in ω1 when ω1 sets low enough

since the young will borrow less whereas the middle-aged will demand more in a higher

β. The equity price will rise as well in this case, which raises the value of the previous

equity holdings of the middle-aged and thus they demand more assets. However, they

cannot buy more assets in equilibrium because the young short-sells the asset less when β

is higher. Hence, γ goes up as β increases when ω1 is high enough whereas it is in reverse

when ω1 is sufficiently low.

As the relative risk aversion increases, the set of parameters for the singular invariant

measure shrinks from both the left and right sides. For the right side contraction, as

σ goes up, both the young and the middle-aged demand the equity more because of a

strong consumption smoothing motivation. Thus, the equity price will be higher relative

to the case with a lower σ under the same ω1. The wealthier middle-aged will increase

its demand for the asset resulting in a higher γ. For the left side contraction, as σ goes

up, the young will borrow more to smooth consumption, requiring more short-sales. This

allows the middle-aged to purchase more equity in equilibrium and thus γ becomes higher.

In summary, we find that a low δ and σ expand the area for the singular measure. This

result sheds light on why the unique Markov measure in the monetary model is singular

since the dividend and relative risk aversion degenerate to 0 and 1, respectively. An

increase in ω1 and β converts a singular measure into an absolutely continuous measure

when ω1 is high enough. On the other hand, when ω1 is low enough, a rise in ω1 and

β converts an absolutely continuous measure into a singular measure. The U-shape of

γ in ω1 means the singular measure is likely to arise under a hump-shaped endowment

structure.

We run a simulation for a three-period SOLG model with the Lucas tree to verify the

implications of the results in Figure 3.1. For this simulation, we approximate the policy

functions with high-order Chebyshev polynomials. As the numerical analysis above, we

use the CRRA utility function and set σ = 2 following Henriksen and Spear (2012). We

let β = 0.54 = 0.9760/3 where a one-year time-discount factor is 0.97 as commonly used in

the applied macroeconomic literature and we regard one period in this model as 20 years.
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In the deterministic version of the model, we assume the total endowment is 1. The labor’s

share of the total endowment, ω, is 2
3

and the ratio of labor income between the young and

the middle-aged ωy
ωm

= 3
5
. Hence, δ = 1

3
, ωy = 1

4
and ωm = 5

12
. The total asset quantity

is assumed to be 1. We introduce shocks on the dividend and the total asset quantity

which follow a symmetric I.I.D. Bernoulli process with two states. The realizations on

the two stochastic parts are perfectly correlated as next:
{
δl, δh

}
= {0.99, 1.01} and{

al, ah
}

= {0.99, 1.01}8.

Proposition 5 and Figure 3.1 imply that the invariant Markov distribution can be gen-

erated by a LIFS under a small shock and it should be singular under these parameter

values. Figure 3.2 graphically shows that the LIFS is indeed the equilibrium mapping

under the small shock we set above. Its slope in this example is less than 1/2. Therefore,

the ergodic distribution of this numerical model is a Cantor-like distribution as seen in

Figure 3.3.

Figure 3.2: The equity policy function in the three-period SOLG economy with a single
asset
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8 These shocks are multiplicative. For example, the realized total dividend is 1.01× 1
3 = 0.3367 in the

high state.

144
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Figure 3.3: The invariant measure of the three-period SOLG economy with a single asset
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Finally, it is natural to ask if there is an intuitive reason why the ME should be im-

plementable via a LIFS. From the mathematics of the model, it is clear that the LIFS

gives us enough variables to solve the model’s equilibrium equations. It is also clear that

the LIFS will generate the correct equilibrium relationships between the history of shocks

and prices/allocations. Furthermore, any equivalent (possibly non-linear) policy functions

would necessarily have to deliver the same relationships, since the results in Woodford

(1986) imply that equilibrium prices as functions of the histories of shocks are locally

unique for small shocks around the steady state. Thus, in this sense, the linear system

is the simplest mechanism for allowing the lagged endogenous state variables to act as

sufficient statistics for the infinite histories. In the simple exchange setting, the pertur-

bations of asset holdings generated by the equilibrium will have no effect on the overall

resources of the economy given the state, and so will only have an impact on welfare via

allocative effects. Since we already know that the competitive equilibria in these models

are not Pareto optimal (see Henriksen and Spear 2012), there would seem to be nothing

to be gained by working with more general policy functions. This is indeed what comes

out of the simulations of the model when we allow for flexible functional forms.
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3.4 Generalized Model

In this section, we extend the model to be more realistic by allowing an arbitrary

lifetime, heterogeneity, and a general shock process. The goal of this section is to show

the existence of a simple but high dimensional LIFS and then study the invariant Markov

measure in the complicated model with the help of the LIFS.

Agents live L-period lives (say L = 70 as in Ŕıos-Rull (1996)) from the youngest age 1

to the oldest age L, with M ≥ 1 different types of agents born each period who differ in

terms of preferences and endowments. We assume there is a continuum of each type of

agent, and thus they take prices as given.

For generality, there are S > 1 states of exogenous shocks, st ∈ {z1, . . . , zS}. The

aggregate shock follows the first-order Markov process with a stationary Markov chain
∏

with support s ∈ {z1, . . . , zS} under which π (s′ | s) ≥ 0 for (s, s′) ∈ {z1, . . . , zS}2 and∑
s′∈{z1,...,zS}

π (s′ | s) = 1 for ∀s ∈ {z1, . . . , zS}. π (s′ | s) denotes the probability that state

s′ occurs given state s in the previous time. π (Sτ | St) implies the probability that the

node Sτ occurs in time τ conditional on the node St in time t.

We maintain the assumption that there is only one asset, either money or a tree asset.

Individuals consume a single good, and can save via accumulations of the single asset.

The total asset quantity varies stochastically in the amount āst for st ∈ {z1, . . . , zS}. The

single asset delivers dividends stochastically in the amount δst for st ∈ {z1, . . . , zS} if the

single asset is the Lucas tree. Note that both the total asset quantity and the dividend

depend only on the realization of the current shock.

The single asset delivers dividends stochastically in the amount δst for st ∈ {z1, . . . , zS}

if the single asset is the Lucas tree.

Type-j agents born in time t are endowed with stochastic consumption goods in the

amounts ωj =
{
ω
st+i−1

i,j

}L
i=1

where ω
st+i−1

i,j is the endowment of the type-j agent in age

i in time t + i − 1 which depends only on the current shock realization st+i−1. The

consumption stream of a type-j agent born in time t and history St is denoted by

cj (St) =
{(
ci,j
(
St, St+i−1

t+1

))
St+i−1
t+1

}L
i=1

where ci,j
(
St, St+i−1

t+1

)
is the consumption of a type-
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j agent in age i given a path of shocks for (i− 1) periods after the history St, St+i−1
t+1 =

(st+1, . . . , st+i−1) for i ≥ 1. When i = 1, we define c1,j

(
St, Stt+1

)
= c1,j (St). Similarly, the

lifetime portfolio of a type-j household is denoted by ej (St) =
{(
ei,j
(
St, St+i−1

t+1

))
St+i−1
t+1

}L−1

i=1

where ei,j
(
St, St+i−1

t+1

)
is the equity holding of a type-j agent in age i in node St+i−1. As

above, we define e1,j

(
St, Stt+1

)
= e1,j (St). Note that households do not save in the last

age, L.

The lifetime expected utility for a type-j individual is given by a von Neumann-

Morgenstern utility function U : R(SL−1)/(S−1)

+ → R:

(3.31) EtUj
(
cj
(
St
))

= EtUj

({(
ci,j
(
St, St+i−1

t+1

))
St+i−1
t+1

}L
i=1

)

where the certainty utility function satisfies the following regularity conditions, U ′j(·) > 0,

U ′′j (·) < 0, and U ′j(·) = +∞ for all arguments.

Type-j agents maximize the lifetime expected utility subject to a sequence of budget

constraints as follows:

c1,j

(
St
)

= ωst1,j − p
(
St
)
e1,j

(
St
)

(3.32)

ci,j
(
St, St+i−1

t+1

)
= ω

st+i−1

i,j +
(
p
(
St, St+i−1

t+1

)
+ δst+i−1

)
e(i−1),j

(
St, St+i−2

t+1

)
−p
(
St, St+i−1

t+1

)
ei,j
(
St, St+i−1

t+1

)
for ∀St+i−1

t+1 and i ∈ {2, . . . , L− 1}

cL,j

(
St, St+L−1

t+1

)
= ω

st+L−1

L,j +
(
p
(
St, St+L−1

t+1

)
+ δst+L−1

)
e(L−1),j

(
St, St+L−2

t+1

)
for ∀St+L−1

t+1

where p
(
St, St+i−1

t+1

)
= p (St+i−1) is the price of the equity in terms of the single good in

node St+i−1.

Solving the optimization problem for type-j agents yields asset demand functions:

(3.33) ei,j
(
St, St+i−1

t+1

)
= ei,j

(
P t+L−1
t

(
St
)

;St+i−1
t+1

)
for ∀St+i−1

t+1 and i ∈ {1, . . . , L− 1} where P t+L−1
t (St) =

{
p (St) , . . . ,

(
p
(
St, St+L−1

t+1

))
St+L−1
t+1

}
.

The equity demand functions are indexed by the history of shocks realized after the first

period in the lifetime, St+i−1
t+1 for i > 1. When i = 1, we define e1,j (St) = e1,j

(
P t+L−1
t (St)

)
.
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For the extended model, the asset market-clearing at time t and node St requires that:9

(3.34)
L−1∑
i=1

M∑
j=1

ei,j
(
P t+L−i
t+1−i

(
St+1−i) ;Stt+2−i

)
= āst

With the notations above, we define two equilibrium concepts as in models above.

Definition 8. The competitive equilibrium in the generalized model is a sequence of the

asset holdings and consumptions for all types and asset prices in all nodes starting in time

0,
{
{ej (St) , cj (St)}j , p (St)

}
for ∀St and t ≥ 0, satisfying:

• Individuals maximize their expected utility under budget constraints given the se-

quence of asset prices.

• The asset market clears and the aggregate resource constraint holds.

We can show the existence of a competitive equilibrium for this generalized model using

a standard truncation method as well.

For the recursive ME that we will define below, we take all but one of the asset demand

quantities as the lagged endogenous state variables via the asset market clearing condition.

For specificity, we exclude the asset demand of the type-M agent in the second oldest

cohort with age L− 1 and let the set of the lagged state variables in time t:

(3.35) ξt−1 =
{
{ei,j,t−1}j=1,...,M

}
i=1,...,L−1

\
{
e(L−1),M,t−1

}
With an abuse of notation, we also denote ξt−1 as the ((L− 1)M − 1) vector of the

lagged endogenous state variables in time t.

Definition 9. The recursive ME is defined by time-homogeneous policy functions for the

asset holdings, consumptions and asset prices:
{
{ej (χ) , cj (χ)}j , p (χ)

}
which solve the

9 By Walras’s law, we ignore the market clearing for the consumption good here as well.
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household problem and clear both the asset and consumption markets. χ = [ξ−1, s] ∈ Σ̂ ⊂

R(L−1)M represents the minimal state variables: the lagged asset holdings distribution and

the realization of the current aggregate uncertainty.

For the recursive ME, we re-write the equilibrium conditions as follows:

E
(
St
)

= ξ (ξt−1, st)(3.36)

āst = ιT ξ (ξt−1, st) + e(L−1),M

(
P t+1
t−L+2

(
St−L+2

)
;Stt−L+3

)
where ι is an ((L− 1)M − 1) vector of ones to sum the asset holdings distribution except

for the demand by the type-M and age-(L− 1) agent and

(3.37) E
(
St
)

=



{
e(L−1),j

(
P t+1
t−L+2

(
St−L+2

)
;Stt−L+3

)}
j=1,...,M−1{

e(L−2),j

(
P t+2
t−L+3

(
St−L+3

)
;Stt−L+4

)}
j=1,...,M

...{
e1,j

(
P t+L−1
t (St)

)}
j=1,...,M


is the ((L− 1)M − 1) vector of demand functions for all but the second oldest type-M

agents in node St.

As we did in Section 2.1, we show the existence of a LIFS as the ME mapping around

the deterministic steady-states under small aggregate shocks in this generalized model via

a functional application of the IFT.

For this analysis, we specify the law of motion for the endogenous state variables as:

(3.38) ξ (ξt−1, st) = ξ̄st + Γst
(
ξt−1 − ξ̄st

)
= G (ξt−1, st)

for st ∈ {z1, . . . , zS} where Γst is a ((L− 1)M − 1) × ((L− 1)M − 1) coefficient matrix

given state st in time t with ρ (Γst) – the spectral radius of Γst – less than one by focusing

on either determinate or indeterminate case as discussed later.
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Next, we let the law of motion for prices be:

(3.39) p (ξt−1, st) = p̄st + (Λst)T
(
ξt−1 − ξ̄st

)
= H (ξt−1, st)

for st ∈ {z1, . . . , zS} where Λst is a ((L− 1)M − 1) coefficient vector given state st in

time t. Note that we allow the affine matrices, Γst and Λst , to vary over the state since

we allow an arbitrary number of states which can be more than two in this generalized

model.

As the analysis in the three-period SOLG model above, we first show in Lemma 3 that

when the shocks are zero, the linear forecast functions satisfy the equilibrium conditions

for the extended model at the steady states.

Lemma 3. In a general deterministic OLG model with a single long-lived asset, the

linear forecast functions will be the steady-state values of ξ and p when ξ−1 = ξ̄, i.e.

G (ξ−1) = ξ̄ + Γ
(
ξ−1 − ξ̄

)
= ξ̄ and H (ξ−1) = p̄+ ΛT

(
ξ−1 − ξ̄

)
= p̄ at ξ−1 = ξ̄.

Proof. See Appendix 2.1

With Lemma 3, we apply the functional version of the IFT to show the existence of a high-

dimensional LIFS in this extended SOLG model in a neighborhood of the deterministic

steady state under a small aggregate shock. This is the main content of the following

proposition.

Proposition 7. In a general SOLG model with a single long-lived asset, there will be ME

generated by a LIFS given by (3.38) and (3.39) in a neighborhood of the deterministic

steady state for sufficiently small shocks.

Proof. See Appendix 2.1

As in the three-period model, we do not specify the deterministic steady states to prove

Proposition 7. Thus, there exists a LIFS around all possible deterministic steady states.
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Proposition 7 also does not require any specific assumptions on structural parameters

other than the size of the shock.10 Therefore, the results in Proposition 7 apply to an

extensive set of economies in a general SOLG model with a single long-lived asset.

We now numerically check the assertion of Proposition 7. For this analysis, we simulate

four different multi-period SOLG models with high-degree Chebyshev polynomials: four-

period lived agents model, five-period lived agents model, six-period lived agents model

and four-period lived and two types of agents model. These four different models have

two, three, four and five lagged endogenous state variables, respectively.

In these simulations, we keep using the CRRA preference. σ = 5 and β = 0.9760/L

for one period. There is an I.I.D. imperfectly correlated multiplicative shock between

endowment and dividend as follows: {δz1 , ωz1} = {0.95, 0.95}, {δz2 , ωz2} = {1.05, 0.95},

{δz3 , ωz3} = {0.95, 1.05}, {δz4 , ωz4} = {1.05, 1.05} where the probability πs = 0.25 for

s ∈ {z1, z2, z3, z4}. Since each model has a different number of overlapping generations

and types within a cohort, we set a different distribution of endowment shares across ages

and types for each model. The endowment distributions are summarized in Table 3.1.

Table 3.1: Distributions of endowment shares in simulated models

(1) (2) (3) (4)

4pd1type 5pd1type 6pd1type 4pd2type

age age age age type

ω1 0.1833 0.1487 0.1233 0.1833 (0.5609, 0.4391)

ω2 0.2400 0.1753 0.1493 0.2400 (0.5716, 0.4284)

ω3 0.2433 0.1847 0.1560 0.2433 (0.5363, 0.4637)

ω4 0 0.1580 0.1253 0 -

ω5 - 0 0.1127 - -

ω6 - - 0 - -

Sum 2
3

2
3

2
3

2
3

- The subscript numbers in the leftmost column indicate age.

- The endowment profiles set for each model to be hump-shaped following data.

- The parentheses denote the endowment ratio between types in each age.

- The endowments across ages sum up to the labor’s share of the total endowment, 2
3

.

It is worth noting that for the four-period lived and two types of agents model, we

let the endowment ratio between types in a cohort changes as the cohort ages to reflect

10 The size of a shock is measured by max(s,s′)

[{∣∣ωzsi,j − ωzs′i,j

∣∣}
(i,j)

, |δzs − δzs′ | , |āzs − āzs′ |
]
.
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the kind of income mobility observed in data. Otherwise, a constant endowment ratio

between types over ages gives rise to linear dependence between the asset holdings of

heterogeneous agents in each generation because of the inter-temporally homothetic utility

function. Under this type of preference, consumption allocations are proportional to the

agents’ endowment shares, and thus excess good demands as well. Since excess good

supplies imply the agents’ saving via holding assets, the agents’ asset holdings are also in

proportion to their endowment shares. Therefore, the asset holdings as lagged endogenous

state variables are linearly dependent on each other under the constant endowment ratio

between types across ages if preferences are described by the CRRA utility function.

To check the linearity property of the equilibrium laws of motion, we run a standard

ordinary least square (OLS) regression on the simulated data from the four different

models. For each model, we simulate the economy for 21,000 periods and ignore the first

1000 periods to avoid the effect of initial conditions on the results and make sure the

data used in the regression analysis lies on the equilibrium attractor. Tables 3.2 – 3.5

summarize the results by regressing the equilibrium allocations on the lagged endogenous

state variables for each state of nature in the four distinct models with the corresponding

simulated data. Tables 3.2 and 3.3 show respectively the R-squared value and the standard

deviation of the error from the regression of the equity holdings of the age-2 group on the

lagged endogenous state variables.11 Tables 3.4 and 3.5 display R2 and σ̂ respectively from

the regression of the equity price on the lagged state variables. In the four tables, rows

and columns represent states and models, respectively. As Proposition 7 indicates, these

numerical results show that the LIFS can represent the recursive ME in a neighborhood

of a deterministic steady state because R2 and σ̂ are almost 1 and 0, respectively.

11 One can get similar regression results for the equity holdings of other age groups in all models examined
here.

152



3.4 Generalized Model

Table 3.2: R2 from equity holdings of age-2 group on endogenous state variables

(1) (2) (3) (4)
{δ, ω} 4pd1type 5pd1type 6pd1type 4pd2type

{0.95, 0.95} 1.0000 1.0000 1.0000 1.0000
{1.05, 0.95} 1.0000 1.0000 1.0000 1.0000
{0.95, 1.05} 1.0000 1.0000 1.0000 1.0000
{1.05, 1.05} 1.0000 1.0000 1.0000 1.0000

Endogenous variables are all significant with the p value of 0.001.

Table 3.3: σ̂ from equity holdings of age-2 group on endogenous state variables

(1) (2) (3) (4)
{δ, ω} 4pd1type 5pd1type 6pd1type 4pd2type

{0.95, 0.95} 0.0000 0.0000 0.0000 0.0000
{1.05, 0.95} 0.0001 0.0000 0.0000 0.0000
{0.95, 1.05} 0.0000 0.0000 0.0000 0.0000
{1.05, 1.05} 0.0000 0.0000 0.0000 0.0000

Endogenous variables are all significant with the p value of 0.001.

Table 3.4: R2 from equity price on endogenous state variables

(1) (2) (3) (4)
{δ, ω} 4pd1type 5pd1type 6pd1type 4pd2type

{0.95, 0.95} 0.9997 0.9996 0.9995 0.9997
{1.05, 0.95} 0.9997 0.9996 0.9995 0.9997
{0.95, 1.05} 0.9997 0.9996 0.9995 0.9997
{1.05, 1.05} 0.9997 0.9996 0.9994 0.9997

Endogenous variables are all significant with the p value of 0.001.

Table 3.5: σ̂ from equity price on endogenous state variables

(1) (2) (3) (4)
{δ, ω} 4pd1type 5pd1type 6pd1type 4pd2type

{0.95, 0.95} 0.0001 0.0001 0.0001 0.0001
{1.05, 0.95} 0.0001 0.0001 0.0001 0.0001
{0.95, 1.05} 0.0001 0.0001 0.0001 0.0001
{1.05, 1.05} 0.0001 0.0001 0.0002 0.0001

Endogenous variables are all significant with the p value of 0.001.

Another purpose of the numerical analysis is to check the extent of an aggregate shock

under which an economy can have a system of linear functions as the equilibrating process.
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We stress that structural parameters can affect the bounds of the shock support needed

to achieve the linearity result. A higher σ generates a smaller R2 fixing the size of the

shock due to imposing more curvatures in the problem. In other words, a smaller size of

shock is required for a model with a high σ to achieve the same level of R2 in a model

with a low σ. Similarly, a lower β generates a smaller R2 fixing the shock size. These

results imply that the extent of an aggregate shock enlarges in models with a lower σ and

a higher β.

Our numerical results indicate that we can observe an acceptable linear law of motion

determined by an OLS regression in all the four different models with a high relative

risk aversion – σ = 5 – and a moderate size of imperfectly correlated shock. In the

applied macro literature, widely used values of the relative risk aversion are between 1

and 5. Existing estimates using micro-level data support this range since they report the

elasticity of intertemporal substitution lies between 0.2 and 2 which implies the relative

risk aversion is between 0.5 and 5 assuming the CRRA utility function (see Havránek

2013). We indeed find many examples adopting a small aggregate shock and σ ≤ 5 for

calibration in the macro literature (see Krusell and Smith 1998; Storesletten et al. 2007;

Hasanhodzic and Kotlikoff 2013).

Thus, one can adopt the algorithm based on the structure of the LIFS to compute

equilibria in a broad set of SOLG models with an aggregate shock with a finite support.12

The algorithm has some important advantages. First, it will generate small approximation

errors under a moderate size of imperfectly correlated shock between labor and capital

incomes as the linearity results hold under this type of shock. Moreover, the algorithm

will make computing a very long-period lived SOLG model with heterogeneity feasible

since it needs to include only the first-order term for each endogenous state variable in

approximating functions, not any higher orders or interaction terms between endogenous

variables.13

12 Note that there are many papers in the insurance, asset pricing, and social security literature which
use SOLG models with a discrete shock (see Ŕıos-Rull 1994; Ŕıos-Rull 1996; Storesletten et al. 2007;
Krueger and Kubler 2006 and others).

13 To show this point, one would examine how the projection method based on the structure of the
LIFS reduces the number of unknown polynomial coefficients compared to the standard one with
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Therefore, this algorithm will resolve the issue that arises in applying the algorithm

of Krusell and Smith (1998) to the long-period lived SOLG models with heterogeneity

where generations are affected disparately by an imperfectly correlated shock. Their

algorithm exploits low-order moments including aggregate wealth or the mean of wealth

distribution over age and type to predict future prices. However, the low-order moments

are not the sufficient statistics to summarize agents’ choice when marginal propensities to

save are distinct across generations and types due to different effects on labor and capital

incomes from the imperfectly correlated shock. Thus, the forecasts based on the low-order

moments deviate substantially from the actual equilibrium in this case so that the Krusell

and Smith algorithm might generate relatively large approximation errors (see Krueger

and Kubler (2004)).

Our findings show that very accurate forecasts might require information about the

wealth for each age and type since different generations and types exhibit heterogeneous

saving behaviors under the imperfectly correlated shock. Tracing the asset holdings of all

ages and types seems to resurrect the curse of dimensionality issue. However, this issue

can be partly avoided by the fact that the ME can be generated by the simple LIFS,

and thus it is enough to perform the first-order approximation in the projection method.

We stress that our results do not contradict the Krusell and Smith method, but rather

complement their work by providing a possible alternative in certain circumstances under

which their algorithm does not provide a good approximation.

We now analyze the condition under which there exists a homogeneous LIFS as seen in

the three-period model with the Lucas-tree. This is the main argument of the following

proposition.

Corollary 3. In a general SOLG model with a single long-lived asset, there will be ME

generated by a homogeneous LIFS with Λs = Λ and Γs = Γ for ∀s in a neighborhood of the

tensor products. The standard projection method requires (L− 1)MS ((L− 1)M − 1)
d+1

unknowns
where d is the degree of the approximating polynomials, whereas the LIFS structure requires only
((L− 1)M)

2
S number of unknowns. As an example, think about a SOLG model where a representa-

tive agent lives10 periods and there are two states. In this case, the LIFS algorithm and the standard
one yield 162 and 9216 numbers of unknowns respectively, assuming d = 2.
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deterministic steady state for sufficiently small shocks, if S ≤ (L− 1)M ((L− 1)M − 1)+

1.

Proof. See Appendix 2.1

According to Corollary 3, one can find a LIFS having constant affine matrices over states if

S ≤ (L− 1)M ((L− 1)M − 1)+1. In the three-period lived SOLG model with s ∈ {h, l}

above, L = 3 and M = 1, and thus S = 2 < (L− 1)M ((L− 1)M − 1) + 1 = 3. Hence,

there exists a homogeneous LIFS in this model.

Next, we study the continuity property of an invariant Markov measure in this general-

ized model. We first examine the characteristics of reduced form parameters in the linear

law of motion. As we did for the three-period model, we restrict our attention to the case

where a homogeneous LIFS exists. By the IFT results in Proposition 7 and Corollary 3,

the affine matrices of a LIFS in a stochastic model are close to the corresponding ones in

a deterministic model by continuity if the size of an aggregate shock is sufficiently small.

In the deterministic model, we show that the affine matrices take a subset of the stable

eigenvalues of the Jacobian matrix of the price dynamics at the steady state as their own.

As with the three-period model, the key to showing the dynamic consistency of the

ME is the construction of a forecast function which is lower order than the full price

dynamic forecast. We first obtain the full price dynamic system by applying the IFT

to the asset market clearing conditions in a neighborhood of the steady state for the

generalized deterministic OLG model:

(3.40) pt+1 = z (q̂t)

where q̂t = (pt, . . . , pt−2L+4).
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Then, we can write this as the first-order vector system:

(3.41) q̂t+1 = ẑ (q̂t) =



z (q̂t)

pt
...

pt−2L+5


where ẑ : R2L−3

++ → R2L−3
++ .

We consider general forecasts which depend on the (L− 2) predetermined price vari-

ables at time t+ 1, qt = (pt, . . . , pt−L+3). We denote these forecast functions as:

(3.42) pt+1 = f (qt)

These forecasts restrict the forward dynamics of the prices to the stable manifold of the

steady state as we will show later. Similar to ẑ (q̂t), we define:

(3.43) qt+1 = f̂ (qt) =



f (qt)

pt
...

pt−L+4


where f̂ : RL−2

++ → RL−2
++ .

Let Z and F be given by:

(3.44) Z =

 Dz

J(2L−3)

 and F =

 Df

J(L−2)


where Z is the Jacobian matrix of ẑ (q̂t) with respect to q̂Tt and F is the Jacobian matrix

of f̂ (qt) with respect to qTt evaluated at the steady state. Dz = ∂z(q̂t)

∂q̂Tt
and Df = ∂f(qt)

∂qTt
at

the steady state. Jn =

[
In−1 0

]
where In−1 is a (n− 1) dimensional identity matrix

and 0 is a (n− 1) dimensional zero column vector.

For the model without heterogeneity, let the vector of the asset holdings for ages from
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1 to (L− 2) in time t+ 1 be:

(3.45) ξ (pt+L, . . . , pt+1, pt, . . . , pt−L+4) = ξ (q̂t+L)

Given the general forecast function, one can write this asset holdings vector as:

(3.46) ξ̂ (qt+1) = ξ (f (qt+L−1) , . . . , f (qt+1) , qt+1)

We define the derivative of (3.46) with respect to qTt+1 evaluated at the steady state:

(3.47) Ξ̂ =
∂ξ̂ (qt+1)

∂qTt+1

=
∂ξ (q̂t+L)

∂q̂Tt+L

∂q̂t+L
∂qTt+1

= ΞK

where Ξ̂ is the derivative of ξ̂ (qt+1) with respect to qTt+1, Ξ is the derivative of ξ (q̂t+L)

with respect to q̂Tt+L, and K is the derivative of q̂t+L with respect to qTt+1 evaluated at the

steady state. These matrices are given by:

(3.48) Ξ =



∂ξ1
∂pt+L

∂ξ1
∂pt+L−1

· · · ∂ξ1
∂pt−L+4

∂ξ2
∂pt+L

∂ξ2
∂pt+L−1

· · · ∂ξ2
∂pt−L+4

...
...

. . .
...

∂ξL−2

∂pt+L

∂ξL−2

∂pt+L−1
· · · ∂ξL−2

∂pt−L+4


and K =



DfFL−2

...

DfF

Df

I(L−2)


(see Kim and Spear (2017a) for the derivation of the matrix K in detail.)

For the model with heterogeneity, one can define Ξ̂ similar with the one without het-

erogeneity but it is a ((L− 1)M − 1) × (L− 2) matrix in the heterogeneity case since

there are ((L− 1)M − 1) lagged asset holdings as the endoegenous state variables.

With these notations, we can examine a relationship between the eigenvalues of Γ and

Z matrices for both the determinate and indeterminate cases in the general model. We

also find a functional relationship between Γ and Λ. These results are summarized in the

following proposition.
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Proposition 8. In a general deterministic OLG model with a single long-lived asset with

and without cohort heterogeneity, Γ takes a subset of the stable eigenvalues for the Z

matrix as a part of its eigenvalues. There is a functional relationship between Γ and Λas:

(3.49) ΛT = DfF−1Ξ̂−1Γ

for the model without heterogeneity and

(3.50) DfF = ΛTΓΞ̂

for the model with heterogeneity.

Proof. See Appendix 2.1

As we noted in the three-period model, we can also classify the general model as locally

determinate, indeterminate and explosive cases based on the Blanchard and Kahn condi-

tion. In the determinate case, there are the same number of stable eigenvalues for Z with

the predetermined variables. One can find stable eigenvalues for Z more than the number

of the predetermined variables in the indeterminate case. Lastly, the explosive case lacks

the stable eigenvalues and thus its number is less than the number of the predetermined

variables.

For the model without heterogeneity, the eigenvalues of Γ can exactly match the stable

eigenvalues of Z in the determinate case since Γ is a (L− 2)× (L− 2) matrix and there

are (L− 2) stable eigenvalues for Z. Thus, there is one contractive LIFS which generates

a unique invariant measure around the deterministic steady states by the contraction

mapping theorem as long as the size of a shock is small.

For the indeterminate case in the model without heterogeneity, the number of the stable

eigenvalues of Z is more than (L− 2). Γ can take a subset of the stable eigenvalues as

its own. Thus, one can construct multiple contractive LIFSs. This result indicates there

are possibly multiple invariant measures for an indeterminate steady state under a small

shock.
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Finally, in the explosive case, there are fewer than (L− 2) stable eigenvalues for Z.

One cannot find a LIFS of which Γ has all eigenvalues inside the unit circle. In this case,

one can find a stable equilibrium trajectory by working in the backward dynamics of the

model, as we noted in the three-period model.

For the model with heterogeneity, the stable eigenvalues of Z determine only a subset

of the eigenvalues of Γ in all cases since the cohort heterogeneity expands the dimension

of Γ.

A strong sufficient condition for a high-dimensional LIFS in a general model to generate

a singular invariant distribution is that the spectral radii of the affine matrices {Γs}s are

sufficiently close to zero. Figure 3.2 provides an intuition behind how the no-overlap

property can be satisfied when the spectral radius or the Lipschitz constant is small

enough in a one-dimensional LIFS. As the spectral radius goes to zero, the linear maps

in Figure 3.2 become flatter and the images of the LIFS are less likely to be overlapped.

Analogously, for the high-dimensional LIFS, as the spectral radiuses of {Γs}s converge

to zero, open sets containing the images of individual functions in the LIFS shrink and

degenerate to
{
ξ̄s
}
s

in the limit case. Therefore, the high-dimensional LIFS will be non-

overlapped.

However, although the images of individual functions in the high-dimensional LIFS

have both overlap and gaps, its attractor can be a Lebesgue measure zero set as long as

there are gaps in the images of the LIFS when first iterating on an open set containing

its attractor. Through iterations, the gaps fill out the open set and thus, the attractor of

the LIFS will be a Lebesgue measure zero set and its invariant measure will be singular

in the limit (see Jorgensen et al. 2007).

Based on this result, we study a relatively weak sufficient condition for a high-dimensional

LIFS to generate a singular invariant measure. For this analysis, we assume that Γs is

diagonalizable with linearly independent eigenvectors, {esi}
(L−1)M−1
i=1 , for ∀s. With this

assumption, we can transform the high-dimensional LIFS, Gs : R(L−1)M−1 → R(L−1)M−1
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for s ∈ {z1, . . . , zS}, into the following system:

(3.51)

(L−1)M−1∑
i=1

θie
s
i =

(L−1)M−1∑
i=1

(
θ−1,i − θ̄si

)
λsie

s
i +

(L−1)M−1∑
i=1

θ̄si e
s
i

where λsi is the i-th eigenvalue of Γs for i ∈ {1, . . . , (L− 1)M − 1}.

Since we focus on the set of orthogonal eigenvectors, the coefficients of each eigenvector

in both sides of (3.51) should be equivalent. Thus, the system in (3.51) reduces to:

(3.52) θ = λs
[
θ−1 − θ̄

s]
+ θ̄

s

where θ =



θ1

θ2

...

θ(L−1)M−1


, θ−1 =



θ−1,1

θ−1,2

...

θ−1,(L−1)M−1


, θ̄

s
=



θ̄s1

θ̄s2
...

θ̄s(L−1)M−1


and λs is a

diagonal matrix with eigenvalues as entries. For the homogeneous LIFS, Γs = Γ for ∀s

and thus, the superscript for the eigenvalues drops out, i.e. λsi = λi for ∀s and ∀i.

Lastly, let us define Si as the number of distinct i-th row elements in
{
θ̄
s}

s
. For

example, θ̄
z1 =

 0

0

,θ̄
z2 =

 0

1

,θ̄
z3 =

 1

2

 when S = 3. In this case, S1 = 2 -

{0, 1} - and S2 = 3 - {0, 1, 2}.

With these notations, we can define a weak sufficient condition for the system of maps

{Gs}s to generate a singular invariant measure. We summarize this condition in the

following proposition.

Proposition 9. The attractor of a high-dimensional LIFS is a Lebesgue measure zero set

and its corresponding invariant measure is singular with respect to the Lebesgue measure

if the following conditions are satisfied: i) S ≤ (L− 1)M − 1 or ii) if S > (L− 1)M − 1,

there exists i such that maxs {λsi} < 1
Si

for the heterogeneous LIFS and there exists i such

thatλi <
1
Si

for the homogeneous LIFS.

Proof. See Appendix 2.1
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As for the three-period model, we analyze a relationship between the structural parameters

and the existence of a singular invariant measure in this general model via the weak

sufficient condition in Proposition 9. The weak sufficient condition also implies that the

spectral radii of the affine matrices are the single most important measure for determining

singularity, as the affine coefficient is in the three-period model. Thus, we examine the

effects of the structural parameters on the spectral radiuses which we can find by rather

calculating the stable eigenvalue of Z in the general model due to the result in Proposition

8.

In this general model, it is hard to classify entire economies into having singular or

absolutely continuous measures even when assuming the CRRA preference since a longer

lifetime increases the number of endowment parameters which enlarges the dimension of

the parameters to be analyzed. Instead, we select a subset of economies enough to check

the relationship between the structural parameters and the spectral radii.

Via the numerical analysis of this sample, we find a similar relationship as in the three-

period model. Specifically, an increase in δ increases the spectral radius. The spectral

radius is small under a hump-shaped endowment profile no matter what the lifetime length

is. A lower σ leads to a smaller maximal eigenvalue. Hence, a singular measure will arise

in a general model with a low δ and σ under a hump-shaped endowment because the LIFS

in the model can satisfy the weak sufficient condition in Proposition 9 which needs small

spectral radii.

We provide an intuition for how a high δ leads to a large maximal eigenvalue as follows.

One can find similar intuitions for how other parameters affect the spectral radius. Addi-

tional lagged equity holdings for other ages reduce an individual’s current asset holdings

more sharply under a higher δ since other ages become wealthier and can purchase more

assets. On the other hand, additional lagged equity holdings for an agent rather raises

her current asset holdings more sharply in this case because she now gets wealthier and

can buy more assets. Thus, a high δ increases the absolute values of all elements in the

affine matrices which makes the spectral radius larger.

Now, we study invariant measures in two four-period lived representative agent models
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with the CRRA utility functions to illustrate the results in Proposition 9. The first model

has two states of nature whereas the second one has four states of nature. Both models

satisfy the condition in Corollary 3 because (L− 1)M ((L− 1)M − 1) + 1 = 7. Thus,

there exists a homogenous LIFS in all these models. The first model has a singular

invariant measure since the number of states is two which is equal to the dimension of the

affine matrix. We call this measure a trivial singular measure. On the other hand, the

second model has a singular measure by satisfying the eigenvalues condition in Proposition

9 given that the number of states is greater than the dimension of the affine matrix. We

call this measure a non-trivial singular measure.

For the model generating a trivial singular measure, we set σ = 2, β = 0.9760/4,

δ = 1
3

and ω = 2
3
. The lifetime endowment stream is denoted by {ω1, ω2, ω3, ω4} =

ω ×
{

1
4
, 1

2
, 1

4
, 0
}

. For this model, we assume an I.I.D. shock with two states having an

equal probability. This multiplicative shock affects the dividend and total asset quantity

and its realizations in each state are given by {δz1 , az1} = {0.95, 0.95} and {δz2 , az2} =

{1.05, 1.05}.

For the model generating a non-trivial singular measure, we use the logarithmic prefer-

ence, set the dividend share very small – δ = 1
10

– and make the endowment profile quite

hump-shaped – {ω1, ω2, ω3, ω4} = ω×
{

1
16
, 10

16
, 5

16
, 0
}

– to obtain a low spectral radius which

can satisfy the eigenvalues condition in Proposition 9. We maintain the same time discount

factor with the first model. In this model, we introduce an I.I.D. shock with four states

having an equal probability. This shock is also multiplicative and affects the dividend and

total asset quantity. Its realizations in each state are defined by {δz1 , az1} = {0.95, 0.95},

{δz2 , az2} = {1.05, 0.95}, {δz3 , az3} = {0.95, 1.05}, {δz4 , az4} = {1.05, 1.05}.

Figures 3.5a and 3.5b show the attractor set for each trivial and non-trivial singular

measure in the two four period-lived SOLG models.14 The attractor sets in these figures

are sparse in the two-dimensional state space for the lagged asset holdings because the

attractor of any singular measures is a Lebesgue measure zero set. As seen in the three-

14 To draw these attractor sets, we plot the simulation data from the two different models into the
state space ignoring the first 1000 periods of observations. Based on the ergodic theorem, the set of
time-series data generated by equilibrium mappings represents their invariant set.
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period model, the attractors in these models also exhibit fractal self-affinity.

Figure 3.4: The attractor sets of two four-period lived SOLG models
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3.5 Conclusion

This paper studies the invariant Markov distribution associated with the rational expec-

tations equilibrium in diverse SOLG models under pure exchange: a log-linear monetary

model, a three-period model with a Lucas tree asset, and a generalized model with cohort

heterogeneity. We are especially interested in the singular measure in these models since

the support of this distribution exhibits self-affinity which is consistent with the fractal

patterns observed in macro-finance data. We prove that the local ME in all the models of

this paper can be generated by a LIFS under arbitrary shock processes if the aggregate

shock is sufficiently small. Therefore, we examine the continuity property of the invariant

measure by characterizing the sufficient conditions on the LIFS for its distribution to be

singular with respect to the Lebesgue measure.

For the log-linear monetary model, we derive a closed form solution for the slope pa-

rameters of the LIFS under a small shock. This form implies that only the endowment

ratio between ages matters and the absolute value of the Lipschitz constant is less than

1/2 for the entire parameter space. Thus, the LIFS in this model under small aggregate
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shocks is non-overlapped and generates a Cantor-like invariant distribution all the times.

The attractor of the LIFS is a Cantor-like invariant set showing fractal self-affinity.

In the three-period model with a long-lived asset and general preferences, we demon-

strate that the slope parameters of the LIFS correspond to the stable eigenvalues of the

Jacobian matrix for the price dynamics evaluated at the deterministic steady state if

the aggregate shock is small. Based on this relationship, we numerically examine how

structural parameters affect the stable eigenvalues of the price system and under what

parameters values they have an absolute value less than 1/2. Assuming a CRR prefer-

ence, we find that a decrease in risk-aversion and dividend income share decreases the

absolute value of the stable eigenvalues. Thus, the LIFS will be non-overlapped and its

invariant Markov distribution can be a Cantor-like distribution for a model inhabited by

low risk-averse agents with a low dividend share.

We extend the results above to the general model with a longer lifespan and hetero-

geneity. Similar to the three-period model, we show that the affine matrices of the LIFS

take, as their own eigenvalues, the stable eigenvalues of the Jacobian matrix for the price

dynamics evaluated at the steady states under the small aggregate shocks. We provide a

sufficient condition for the high-dimensional LIFS to generate a singular measure which

is closely related to the spectral radius of the affine matrices. Thus, information on the

stable eigenvalues of the price systems can allow one to infer the singularity property of

the invariant measures generated by the LIFS. The sufficient condition implies that we

can find a trivial singular measure if the dimension of the essential state space for policy

functions is larger than or equal to the number of states of nature. To obtain a non-trivial

singular measure, the number of the shock states should be larger than the dimension

of the state space and the eigenvalues of the affine matrices should be small enough.

We numerically find a similar relationship between the largest eigenvalue and structural

parameters in this general model as in the three-period model. Thus, it requires a low

risk-aversion and a low dividend share in total income to produce a non-trivial singular

measure in the general model.

The existence of the LIFS implies that an algorithm based on this structure allows
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computing equilibria in a very long-period SOLG models with heterogeneous agents at

least for small aggregate shocks, thus avoiding the well-known curse of dimensionality.

Since we prove the existence of the LIFS under arbitrary shock processes, an approxima-

tion adopting the LIFS structure might work well under an imperfectly correlated shock

between labor and capital incomes as an alternative to quasi-aggregation methods which

might generate large approximation errors in this case.

Finally, we should note that our results have some limitations that merit further re-

search. First, we do not provide a necessary and sufficient condition for a singular measure

to arise from a linear stochastic equilibrium mapping. Studying such conditions for a high-

dimensional LIFS is a very difficult problem well-known in the dynamic system literature.

As next, the invariant Markov measure of interest in this paper is one generated by the

models under small aggregate shocks. To examine the continuity property of the invariant

measure under a large size shock, one should study a possibly non-linear IFS since the

existence of a LIFS as the equilibrium mapping will not hold in this case. We deal with the

possibility of multiple solutions issue given the minimal state variables by restricting to

the equilibria around the deterministic steady state of interest. To avoid such restriction,

one can study sunspot-like equilibria where a sunspot variable picks one of the multiple

solutions. Otherwise, one should provide conditions for the equilibria given the minimal

state space to be unique. We also leave the question to develop and test the algorithm

based on the implication of the LIFS. Since our analytical findings hold under small aggre-

gate shocks, it is worth analyzing the size and types of shocks where algorithms adopting

the LIFS structure generate acceptable approximation errors.

3.6 Supplementary Material

One can find the proofs of propositions, lemmas, and corollaries, background on iterated

function system, and numerical algorithm for computing equilibria in the models of this

paper in supplementary material related to this article. The supplementary material is

uploaded online at https://doi.org/10.1184/R1/5881105.v1.
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