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Abstract

This thesis studies problems in computational social choice and fair division.
Computational social choice asks how to aggregate individual votes and

opinions into a joint decision. Participatory budgeting enables the allocation
of public funds by collecting and aggregating individual preferences over pro-
posed infrastructure projects; it has already had a sizable real-world impact.
We analytically compare four preference elicitation methods through the lens
of implicit utilitarian voting, and find that threshold approval votes are qual-
itatively superior. This conclusion is supported by experiments using data
from real participatory budgeting elections. We also conduct a human sub-
ject experiment on Amazon Mechanical Turk to study the cognitive burden
that different elicitation formats impose on voters.

Under implicit utilitarian voting we attempt to maximize a utilitarian
objective in the presence of uncertainty about voter utility functions. Next,
we take a very different approach, and assume votes are noisy estimates of an
unknown ground truth. We build on previous work which replaced structural
assumptions on the noise with a worst-case approach, and minimize the ex-
pected error with respect to a set of feasibly true rankings. We derive mostly
sharp analytical bounds on the expected error and find that our approach
has useful practical properties.

Fair division problems involve allocating goods to heterogeneous agents.
Motivated by the problem of a food bank allocating donations to their bene-
ficiaries without knowledge of future arrivals, we study the online allocation
of indivisible items. Our goal is to design allocation algorithms that min-
imize the maximum envy, defined as the maximum difference between any
agent’s overall value for items allocated to another agent and to herself. An
algorithm has vanishing envy if the ratio of envy over time goes to zero as
time goes to infinity. We find a polynomial-time, deterministic algorithm
that achieves vanishing envy, and show the rate at which envy vanishes is
asymptotically optimal.

Finally, we consider the problem of gerrymandering. We start with an
impartial protocol and derive a notion of fairness which provides guidance
about what to expect from an impartial districting. Specifically, we propose
that a party should win a number of districts equal to the midpoint between
what they win in their best and worst districtings. We show that this notion
of fairness has close ties to proportionality yet, in contrast to proportionality,
there always exists a districting satisfying our notion of fairness.
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Chapter 1

Introduction

Over the past decade we have seen many traditional problems in economics
have a significant real world impact. Game theoretic equilibria are used by
the US Coast Guard to protect important ports, and by national parks to
protect against poachers. Matching algorithms are used to allocate organs
to transplant patients and children to schools. Auction theory underlies the
massive ad auction industry. In this dissertation I will focus on applications
of two other areas in economics: computational social choice and dynamic
fair division.

As algorithms start affecting more parts of society, there is a growing
awareness that making responsible decisions in dynamic and complex en-
vironments requires novel frameworks that balance notions of equality and
fairness with efficiency. For example, a growing part in the machine learning
community works on how to eliminate forms of bias from machine learning
algorithms. In the problems we study fairness is an explicit objective, we
construct algorithms to allocate goods or divide resources subject to specific
notions of fairness. As an example, imagine the problem faced by a food
bank who receives infrequent donations and must allocate those donations
to heterogeneous beneficiaries while having incomplete information about
future arrivals. An objective for the food bank is to treat all its beneficia-
ries equally. Another problem we study is political redistricting, or how to
partition a state into districts so that each party wins their fair number of
districts.

Our social structures of democracy and collaborative decision making also
give rise to interesting questions about how to design interactions to elicit
truthful and informative opinions from participants. The field of computa-
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tional social choice studies how to aggregate these opinions or preferences
into outcomes or decisions. A compelling modern application of social choice
is participatory budgeting in which citizens vote over proposed infrastructure
projects and these votes are aggregated to form a budget. We ask how this
setting affects the voting format (what a vote looks like) and the voting rule
(what we do with the votes).

Several of these problems are of a political nature. Computational so-
cial choice provides many of the tools we need to adapt our structures of
governance to a world where we are more connected and (hopefully) better
informed than every before, and where casting a vote can happen with the
click of a button.

1.1 Outline of work

As mentioned, this dissertation consists of two main sections, dealing with
problems in computational social choice and fair division respectively.

Computational social choice Social choice theory studies how to aggre-
gate individual opinions and preferences into collective decisions. Modern
social choice theory was kick-started by Arrow’s celebrated impossibility re-
sult [10]. In this approach properties are identified that good voting rules
must exhibit (axioms), and it is asked whether voting rules exist that simul-
taneously satisfy subsets of these axioms. Research in computational social
choice leverages tools like approximation algorithms and complexity theory
to shed new light on traditional social choice problems, often by avoiding the
axiomatic approach in favor of assumptions about distance functions, voter
utilities or statistical noise models.

One stream of research, labeled implicit utilitarian voting [44] assumes
that the vote a voter casts is consistent with his utility function and asks
to what extent the social welfare maximizing outcome can be approximated
using only these proxies (the votes) instead of the voters’ actual underlying
utility functions.

In chapter 2, we study perhaps the most exciting application of compu-
tational social choice, participatory budgeting, through this lens of implicit
utilitarian voting. In the participatory budgeting framework a city decides
how to spend its budget after allowing the residents of the city to vote over a
set of alternatives. Each alternative has a cost and the objective is to maxi-
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mize social welfare subject to a budget constraint. We make an assumption
that voter utilities are additive and analytically compare four preference elic-
itation methods — knapsack votes, rankings by value or value for money, and
threshold approval votes — and find that threshold approval votes are quali-
tatively superior. This conclusion is supported by computational experiments
using data from real world-participatory budgeting instances. This problem
is challenging because asking voters to report their exact utility functions
would be too burdensome, so instead we have to make do with easy-to-cast
proxies. We study the cognitive burden associated with each input format
through an human subject experiment conducted on Amazon Mechanical
Turk. In chapter 3, we extend our results on rankings by value to a more
general setting with subadditive utility functions where, instead of returning
a set of alternatives satisfying the budget, the task is to return a ranking
of the alternatives. The work in these chapters appeared in [20, 21, 24] and
is joint work with Ariel D. Procaccia, Nisarg Shah, Swaprava Nath, Mingda
Qiao and Ya’akov Gal.

A second stream of research in computational social choice views votes
as estimators of some objective ground truth under some noisy process. In-
stead of maximizing social welfare as before, the objective is to recover this
unknown ground truth. This is often done by making structural assump-
tions about the noise model which allows you return a maximum likelihood
estimator.

In chapter 4, we tackle this problem while avoiding assumptions about
noise models, symmetric noise and large sample sizes which are common in
the literature. Following the worst-case approach in Procaccia et al. [109],
our only assumption is that the average voter is at bounded distance from
the ground truth under some distance metric. This assumption leads to a
space of feasible solutions, each of which has the potential to be the ground
truth. We deviate from previous work by minimizing the average error with
respect to the set of feasible ground truth rankings instead of the worst-case
error. We derive (mostly sharp) analytical bounds on the expected error and
establish the practical benefits of our approach through experiments. This
chapter is based on [19] and is joint work with Anson Kahng and Ariel D.
Procaccia.

Fair division In fair division problems, a set of agents must be assigned a
set of divisible or indivisible goods. In contrast to the traditional assignment
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problems, the objective is not some measure of cost or profit, instead, the aim
is to ensure that the allocation is fair with respect to the agents’ heterogenous
preferences, under a suitable notion of fairness. The classical example of
fair division is the problem of dividing a cake (a continuous good) between
different agents. A popular notion of fairness is envy-freeness, where one
agent is said to envy another if they value the bundle of goods that the other
agent received higher than their own bundle. In problems with indivisible
goods, envy-free allocations need not exist (imagine a single indivisible good
and two agents who have positive value for that good) so we must make do
with minimizing envy.

In chapter 5, motivated by the application of distributing donations re-
ceived at food banks, we study envy in a dynamic setting where indivisible
goods arrive over time. Our goal is to design allocation algorithms that min-
imize the maximum envy, defined as the maximum difference between any
agent’s overall value for items allocated to another agent and to herself. We
say that an algorithm has vanishing envy if the ratio of envy over time goes
to zero as time goes to infinity. We design a polynomial-time, deterministic
algorithm that achieves vanishing envy, and show the rate at which envy
vanishes is asymptotically optimal. We also derive tight (in the number of
items) bounds for a more general setting where items arrive in batches. This
chapter is based on [22] and is joint with Aleksandr Kazachkov, Alexandros
Psomas and Ariel D. Procaccia.

Finally, in chapter 6, we study the problem of political redistricting from
the perspective of fair division. Political redistricting involves partitioning a
state into districts, each of which elects a representative to Congress. Despite
the existence of guidelines specifying, for example, that congressional districts
must be contiguous and contain the same number of people, the redistrict-
ing process is controversial and fraught with opportunity for abuse. Federal
courts have recently redrawn districtings found to be unconstitutional, and
many different metrics have been proposed for evaluating whether a district-
ing is partisan.

We come up with our own notion of fairness in the context of redistrict-
ing which assigns every party a target number of districts derived from an
impartial protocol. This target reduces to proportionality in the absence of
geographic constraints, but is more sensitive to the distribution of voters in
a state. We find that, when you model voters as points on plane, it is always
possible to find a districting in which every party wins their target number of
districts. A case study on Pennsylvania show some of the implications of this
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result. We conclude with a novel exact model of the redistricting problem
based on a modeling the contiguity constraints recursively. The work in this
chapter is joint with Ariel D. Procaccia, John Hooker and Margot Stewart.

Excluded work For the sake of brevity and coherence not all of the au-
thor’s research appears in this dissertation. The excluded work includes
work on deriving bounds from the branching dual of a discrete optimization
problem [18] and stratification in the context of sortition [23].
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Chapter 2

Participatory budgeting

2.1 Introduction

A central societal question is how to consolidate diverse preferences and
opinions into reasonable, collective decisions. Classical voting theory takes
an axiomatic approach which identifies desirable properties that the aggrega-
tion method should satisfy, and studies the (non-)existence and structure of
such rules. A celebrated example of this is Arrow’s impossibility result [10].
By contrast, the field of computational social choice [35] typically attempts
to identify an appealing objective function and design aggregation rules to
optimize this objective.

One of the best-studied problems in computational social choice deals
with aggregating individual preferences over alternatives — expressed as
rankings — into a collective choice of a subset of alternatives [44, 108, 119].
Nascent social choice applications, though, have given rise to the harder,
richer problem of budgeted social choice [91], where alternatives have associ-
ated costs, and the selected subset is subject to a budget constraint.

Our interest in budgeted social choice stems from the striking real-world
impact of the participatory budgeting paradigm [39], which allows local gov-
ernments to allocate public funds by eliciting and aggregating the preferences
of residents over potential projects. Indeed, in just a few years, the Partici-
patory Budgeting Project1 has helped allocate more than $300 million dollars
to more than 1 600 local projects, primarily in the US and Canada (including
New York City, Chicago, Boston, and San Francisco).

1See http://www.participatorybudgeting.org.
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Paraticipatory budgeting has also attracted attention globally. A 2007
study by the World Bank [116] reports instances of participatory budgeting
in locations as diverse as Guatemala, Peru, Romania and South Africa. In
Europe, the push for participatory budgeting is arguably led by Madrid and
Paris: Madrid spent e24 million through participatory budgets in 2016 and
Paris e100 million[78, 87]. Notably, a participatory budgeting application is
also included in the Decide Madrid open-source tool for civic engagement,
providing a framework to simplify the hosting and management of participa-
tory budgeting elections around the world.

In the first formal analysis of this paradigm, Goel et al. [2016] — who have
facilitated several participatory budgeting elections as part of the Stanford
Crowdsourced Democracy Team2 — propose and evaluate two participatory
budgeting approaches. In the first approach, the input format — the way in
which each voter’s preferences are elicited — is knapsack votes : Each voter
reports his individual solution to the knapsack problem, that is, the set of
projects that maximizes his overall value (assuming an additive valuation
function), subject to the budget constraint. The second component of the
approach is the aggregation rule; in this case, each voter is seen as approving
all the projects in his knapsack, and then projects are ordered by the number
of approval votes and greedily selected for execution, until the budget runs
out. The second approach uses value-for-money comparisons as input format
— it asks voters to compare pairs of projects by the ratio between value and
cost. These comparisons are aggregated using variants of classic voting rules,
including the Borda count rule and the Kemeny rule.

In a sense, Goel et al. [2016] take a bottom-up approach: They define
novel, intuitive input formats that encourage voters to take cost — not just
value — into account, and justify them after the fact. By contrast, we wish
to take a top-down approach, by specifying an overarching optimization goal,
and using it to compare different methods for participatory budgeting.

2.1.1 Our Approach and Results

Following Goel et al. [2016], we assume that voters have additive utility
functions and vote over a set of alternatives, each with a known cost. Our
goal is to choose a subset of alternatives which maximize (utilitarian) social
welfare subject to a budget constraint.

2See http://voxpopuli.stanford.edu.

8

http://voxpopuli.stanford.edu


This reduces to a knapsack problem when we have access to the utility
functions; the problem is challenging precisely because we do not. Rather, we
have access to votes, in a certain input format, which are consistent with the
utility functions. This goal — maximizing social welfare based on votes that
serve as proxies for latent utility functions — has been studied for more than
a decade [6, 8, 9, 31, 41, 106]; it has recently been termed implicit utilitarian
voting [44].

Absent complete information about the utility functions, clearly social
welfare cannot be perfectly maximized. Procaccia and Rosenschein [2006]
introduced the notion of distortion to quantify how far a given aggregation
rule is from achieving this goal. Roughly speaking, given a vote profile (a set
of n votes) and an outcome, the distortion is the worst-case ratio between
the social welfare of the optimal outcome, and the social welfare of the given
outcome, where the worst case is taken with respect to all utility profiles that
are consistent with the given votes.

Previous work on implicit utilitarian voting assumes that each voter ex-
presses his preferences by ranking the alternatives in order of decreasing
utility. By contrast, the main insight underlying our work is that

... the implicit utilitarian voting framework allows us to decouple
the input format and aggregation rule, thereby enabling an an-
alytical comparison of different input formats in terms of their
potential for providing good solutions to the participatory budget-
ing problem.

This decoupling is achieved by associating each input format with the dis-
tortion of the optimal (randomized) aggregation rule, that is, the rule that
minimizes distortion on every vote profile. Intuitively, the distortion asso-
ciated with an input format measures how useful the information contained
in the votes is for achieving social welfare maximization (lower distortion is
better).

In Section 2.3, we apply this approach to compare four input formats.
The first is knapsack votes, which (disappointingly) has distortion linear in
the number of alternatives, the same distortion that one can achieve in the
complete absence of information. Next, we analyze two closely related in-
put formats: rankings by value, and rankings by value for money, which ask
voters to rank the alternatives by their value and by the ratio of their value
and cost, respectively. We find that for both of these input formats the dis-
tortion grows no faster than the square root of the number of alternatives,
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which matches a lower bound up to logarithmic factors. Finally, we examine
a novel input format, which we call threshold approval votes : each voter is
asked to approve each alternative whose value for him is above a threshold
that we choose. We find tight bounds showing that the distortion of threshold
approval votes is essentially logarithmic in the number of items. To summa-
rize, our theoretical results show striking separations between different input
formats, with threshold approval votes coming out well on top.

It is worth noting that these results may also be interpreted as approxima-
tion ratios to the optimal solution of the classical knapsack problem, where
we are given only partial information about voter utilities (a vote profile,
in some format) and an adversary selects both the vote profile and a utility
profile consistent with the votes, which is used to evaluate our performance.

While our theoretical results in Section 2.3 bound the distortion, i.e., the
worst-case ratio of the optimal social welfare to the social welfare achieved
over all instances, it may be possible to provide much stronger performance
guarantees on any specific instance. In Section 2.4, we design algorithms to
compute the distortion-minimizing subset of alternatives (when considering
deterministic aggregation rules), and distribution over subsets of alternatives
(when considering randomized aggregation rules) for a specific instance. We
observe that the running times of these distortion-minimizing rules scale
gracefully to practical sizes.

In Section 2.5 we use these algorithms to compare different approaches
to participatory budgeting using the average-case ratio of the optimal social
welfare, and the social welfare achieved by our aggregation rules. Specifically,
we experimentally evaluate approaches that use the input formats we study in
conjunction with their respective optimal aggregation rules, which minimize
the distortion on each profile, and compare them to two approaches currently
employed in practice. (Note that these rules are not guaranteed to achieve the
optimal performance in our experiments as we measure performance using
the average-case ratio of the optimal to the achieved social welfare rather
than the (worst-case) distortion. Nonetheless, such rules perform extremely
well.) We use data from two real-world participatory budgeting elections
held in Boston in 2015 and 2016. The experiments indicate that the use of
aggregation rules that minimize distortion on every input profile significantly
outperforms the currently deployed approaches, and among the input formats
we study, threshold approval votes remain superior, even in practice.

However, if efficiency was our only concern we would simply elicit voters’
full preferences. Of course, this is not possible and place a high cognitive
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burden on voters [40]. The second dimension on which our input formats
must be evaluated is usability – how easy to learn, understand and use is
an input format. In Section 2.6 we conduct a user study through Amazon
Mechanical Turk to compare different input formats along this axis.

2.1.2 Related Work

Let us first describe the theoretical results of Goel et al. [2016] in slightly
greater detail. Most relevant to our work is a theorem that asserts that knap-
sack voting (i.e., knapsack votes as the input format, coupled with greedy
approval-based aggregation) actually maximizes social welfare. However, the
result strongly relies on their overlap utility model, where the utility of a voter
for a subset of alternatives is (roughly speaking) the size of the intersection
between this subset and his own knapsack vote. In a sense, the viewpoint
underlying this model is the opposite of ours, as a voter’s utility is derived
from his vote, instead of the other way around. One criticism of this model
is that even if certain alternatives do not fit into a voter’s individual knap-
sack solution due to the budget constraint, the voter could (and usually will)
have some utility for them. Goel et al. [2016] also provide strategyproof-
ness results for knapsack voting, which similarly rely on the overlap utility
model. Finally, they interpret their methods as maximum likelihood estima-
tors [54, 135] under certain noise models. In addition to these theoretic re-
sults, Goel et al. also perform an empirical analysis of voter behaviour. One
experiment provides timing data for knapsack votes, k-approval votes and
pairwise value-for-money comparisons, where it is noted that “the knapsack
interface is not much more time consuming than the k-approval interface.”
Our user study performs similar and perhaps more extensive experiments.

As our work applies the implicit utilitarian voting approach [31, 44] to
a problem in the budgeted social choice framework [91], it is naturally re-
lated to both lines of work. Lu and Boutilier [91] introduce the budgeted
social choice framework, in which the goal is to collectively select a set of
alternatives subject to a budget constraint. Their framework generalizes the
participatory budgeting problem studied herein as it allows the cost of an
alternative to also depend on the number of voters who derive utility from
the alternative. However, their results are incomparable to ours because
they assume that every voter’s utility for an alternative is determined solely
by the rank of the alternative in the voter’s preference order — specifically,
that the utilities of all voters follow a common underlying positional scoring
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rule — which is a common assumption in the literature on resource allo-
cation [16, 32]. This makes the elicitation problem trivial because eliciting
ordinal preferences (i.e., rankings by value) is assumed to accurately reveal
the underlying cardinal utilities. By contrast, we do not impose such a re-
striction on the utilities, and compare the rankings-by-value input format
with three other input formats.

Previous work on implicit utilitarian voting focuses exclusively on the
rankings-by-value input format. Boutilier et al. [2015] study the problem
of selecting a single winning alternative, and provide an upper and lower
bounds on the distortion achieved by the optimal aggregation rule. Their
setting is a special case of the participatory budgeting problem where the
cost of each alternative equals the entire budget. Consequently, their lower
bound applies to our more general setting, and our upper bound for the
rankings-by-value input format generalizes theirs (up to a logarithmic factor).
Caragiannis et al. [2016] extend the results of Boutilier et al. [2015] to the
case where a subset of alternatives of a given size k is to be selected (only
for the rankings-by-value input format); this is again a special case of the
participatory budgeting problem where the cost of each alternative is B/k.
However, our results are incomparable to theirs because we assume additive
utility functions — following previous work on participatory budgeting [75]
— whereas Caragiannis et al. assume that a voter’s utility for a subset of
alternatives is his maximum utility for any alternative in the subset.

The core idea behind implicit utilitarian voting — approximating utili-
tarian social welfare given ordinal information — has also been studied in
mechanism design. Filos-Ratsikas et al. [69] present algorithms for finding
matchings in weighted graphs given ordinal comparisons among the edges
by their weight; Krysta et al. [85] apply this notion to the house allocation
problem; and, Chakrabarty and Swamy [47] study this notion in a general
mechanism design setting, but with the restriction borrowed from Lu and
Boutilier [91] that the utilities of all agents are determined by a common
positional scoring rule.

A line of research on resource allocation focuses on maximizing other
forms of welfare such as the egalitarian welfare or the Nash welfare [see,
e.g., 97]. Maximizing the Nash welfare has the benefit that it is invariant to
scaling an agent’s utility function, and thus does not require normalizing the
utilities. In addition, it is known to satisfy non-trivial fairness guarantees in
domains that are similar to or generalize participatory budgeting [57, 66]. It
remains to be seen whether maximizing the Nash welfare subject to votes that
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only partially reveal the underlying utilities can preserve such guarantees.

2.2 The Model

Let [k] , {1, . . . , k} denote the set of k smallest positive integers. LetN , [n]
be the set of voters, and A be the set of m alternatives. The cost of alternative
a is denoted ca, and the budget B is normalized to 1. For S ⊆ A, let
c(S) ,

∑
a∈S ca. Define Fc , {S ⊆ A : c(S) ≤ 1 ∧ c(T ) > 1, ∀S ( T ⊆ A}

as the inclusion-maximal budget-feasible subsets of A.
We assume that each voter has a utility function vi : A → R+ ∪ {0},

where vi(a) is the utility that voter i has for alternative a, and that these
utilities are additive, i.e., the utility of voter i for a set S ⊆ A is defined as
vi(S) =

∑
a∈S vi(a). Finally, to ensure fairness among voters, we make the

standard assumption [41, 31] that vi(A) = 1 for all voters i ∈ N . We call the
vector ~v = {v1, . . . , vn} of voter utility functions the utility profile. Given the
utility profile, the (utilitarian) social welfare of an alternative a ∈ A is defined
as sw(a,~v) ,

∑
i∈N vi(a); for a set S ⊆ A, let sw(S,~v) ,

∑
a∈S sw(a,~v).

The utility function of a voter i is only accessible through his vote ρi,
which is induced by vi. The vector ~ρ , {ρ1, . . . , ρn} is called the input
profile. Let ~v B ~ρ denote that utility profile ~v is consistent with input
profile ~ρ. We study four specific formats for input votes. Below, we describe
each input format along with a sample question that may be asked to the
voters to elicit votes in that format. The voters can be induced to think
of their utilities for the different alternatives (i.e., projects) in a normalized
fashion by asking them to (mentally) divide a constant sum of points — say,
1000 points — among the alternatives based on how much they like each
alternative.

� The knapsack vote κi ⊆ A of voter i ∈ N represents a feasible subset of
alternatives with the highest value for the voter. We have viBκi if and
only if c(κi) ≤ 1 and vi(κi) ≥ vi(S) for all S ∈ Fc. If the total budget
is $100,000, the voters may be asked: “Select the best set of projects
according to you subject to a total budget of $100,000.”

� The rankings-by-value and the rankings-by-value-for-money input for-
mats ask voter i ∈ N to rank the alternatives by decreasing value for
him, and by decreasing ratio of value for him to cost, respectively. For-
mally, let L , L(A) denote the set of rankings over the alternatives.
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For a ranking σ ∈ L, let σ(a) denote the position of alternative a in
σ, and a �σ b denote σ(a) < σ(b), i.e., that a is preferred to b under
σ. Then, we say that utility function vi is consistent with the ranking
by value (resp. value for money) of voter i ∈ N , denoted σi, if and
only if vi(a) ≥ vi(b) (resp. vi(a)/ca ≥ vi(b)/cb) for all a �σi b. To
elicit such votes, the voters may be asked: “If you had to divide 1000
points among the projects based on how much you like them, rank the
projects in the decreasing order of the number of points they would
receive (divided by the cost).”

� For a threshold t, the threshold approval vote τi of voter i ∈ N consists
of the set of alternatives whose value for him is at least t, i.e., vi B τi
if and only if τi = {a ∈ A : vi(a) ≥ t}. To elicit threshold approval
votes with a threshold t = 1/10, the voters may be asked: “If you had
to divide 1000 points among the projects based on how much you like
them, select all the projects that would receive at least 100 points.”

For the purposes of our user study in Section 2.6, we will also consider k-
approval votes, which are the most widely used input format in practice, for
example, 4-approval votes were used in Boston, MA, in 2015, and 5-approval
votes in Greensboro, NC, in 2016.

� A k-approval vote of voter i is a binary vector αi ∈ {0, 1}m with∑
a∈A αi(a) ≤ k. This represents the voter’s k most preferred alter-

natives. We say that αi is consistent with utility function vi if, for all
a, a′ ∈ A, αi(a) > αi(a

′) implies vi(a) ≥ vi(a
′).

In our setting, a (randomized) aggregation rule f for an input format
maps each input profile ~ρ in that format to a distribution over Fc. The rule
is deterministic if it returns a particular set in Fc with probability 1.

In the implicit utilitarianism framework, the ultimate goal is to maximize
the (utilitarian) social welfare. Procaccia and Rosenschein [2006] use the no-
tion of distortion to quantify how far an aggregation rule f is from achieving
this goal. The distortion of f on a vote profile ~ρ is given by

dist(f, ~ρ) , sup
~v:~vB~ρ

maxT∈Fc sw(T,~v)

E[sw(f(~ρ), ~v)]
.

The (overall) distortion of a rule f is given by dist(f) , max~ρ dist(f, ~ρ).
The optimal (randomized) aggregation rule f ∗, which we term the distortion-
minimizing aggregation rule, selects the distribution minimizing distortion on
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each input profile individually, that is,

f ∗(~ρ) , arg min
p∈∆(Fc)

sup
~v:~vB~ρ

maxT∈Fc sw(T,~v)

E[sw(p,~v)]
,

where ∆(Fc) is the set of distributions over Fc. Needless to say, f ∗ achieves
the best possible overall distortion. Similarly, the deterministic distortion-
minimizing aggregation rule f ∗det is given by

f ∗det(~ρ) , arg min
S∈Fc

sup
~v:~vB~ρ

maxT∈Fc sw(T,~v)

sw(S,~v)
.

Finally, we say that the distortion associated with an input format (i.e.,
elicitation method) is the overall distortion of the (randomized) distortion-
minimizing aggregation rule for that format; this, in a sense, quantifies the
effectiveness of the input format in achieving social welfare maximization.
In a setting where deterministic rules must be used, we say that the distor-
tion associated with deterministic aggregation of votes in an input format is
the overall distortion of the deterministic distortion-minimizing aggregation
rule for that format. Observe that we always mention deterministic aggrega-
tion explicitly, and the “distortion associated with an input format” allows
randomized aggregation by default.

2.3 Theoretical Results

In Section 2.3.1, we present theoretical results for the distortion associated
with different input formats when no constraints are imposed on the aggrega-
tion rule, i.e., when randomized aggregation rules are allowed. Subsequently,
in Section 2.3.2, we study the distortion associated with deterministic aggre-
gation under these input formats.

2.3.1 Randomized Aggregation Rules

We begin by making a simple observation that holds for (randomized) ag-
gregation of votes in any input format.

Observation 2.1. The distortion of any input format is at most m.
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Proof of Observation 2.1. Consider the rule that selects a single alternative
uniformly at random; this is clearly budget-feasible. Due to the normalization
of utility functions, the expected welfare achieved by this rule is (1/m) ·∑

i∈N
∑

a∈A vi(a) = n/m. On the other hand, the maximum welfare that
any subset of alternatives can achieve is at most n. Hence, the distortion of
this rule, which does not require any input, is at most m.

Knapsack Votes.

We now present our analysis for knapsack votes — an input format advocated
by Goel et al. [2016].

Theorem 2.2. For n ≥ m, the distortion of knapsack votes is Ω(m).

Proof of Theorem 2.2. Consider the case where every alternative has cost 1
(i.e., equal to the budget). Consider the input profile ~κ, in which voters
are partitioned into m subsets {Na}a∈A of roughly equal size; specifically, let
na = |Na| and enforce bn/mc ≤ na ≤ dn/me for all a ∈ A. For every a ∈ A
and i ∈ Na, let κi = {a}.

Consider a randomized aggregation rule f . There must exist an alter-
native a∗ ∈ A such that Pr[f(~κ) = {a∗}] ≤ 1/m. Now, construct a utility
profile ~v such that i) for all i ∈ Na∗ , we have vi(a

∗) = 1, and vi(a) = 0
for a ∈ A \ {a∗}; and ii) for all a ∈ A \ {a∗} and i ∈ Na, we have
vi(a) = vi(a

∗) = 1/2, and vi(b) = 0 for b ∈ A \ {a, a∗}.
Note that ~v is consistent with the input profile ~κ, i.e., ~vB~κ. Moreover, it

holds that sw(a∗, ~v) ≥ n/2, whereas sw(a,~v) ≤ na ≤ n/m+1 for a ∈ A\{a∗}.
It follows that

dist(f) ≥ dist(f,~κ) ≥ n/2
1
m
· n+ m−1

m
· ( n

m
+ 1)

≥ m

6
,

as desired.

In light of Observation 2.1, this result indicates that the distortion as-
sociated with knapsack votes is asymptotically indistinguishable from the
distortion one can achieve with absolutely no information about voter pref-
erences, suggesting that knapsack votes may not be an appropriate input
format if the goal is to maximize social welfare. Our aim now is to find
input formats that achieve better results when viewed through the implicit
utilitarianism lens.
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Rankings by Value and by Value for Money.

Goel et al. [2016] also advocate the use of comparisons between alternatives
based on value for money, which, like knapsack votes, encourage voters to
consider the trade-off between value and cost. We study rankings by value
for money as an input format; observe that such rankings convey more in-
formation than specific pairwise comparisons.

In addition, we also study rankings by value, which are prevalent in the
existing literature on implicit utilitarian voting [6, 8, 9, 31, 41, 106]. Rankings
by value convey more information than k-approval votes, in which each voter
submits the set of top k alternatives by their value — this is the input format
of choice for most real-world participatory budgeting elections [75].

Boutilier et al. [2015] prove a lower bound of Ω(
√
m) on distortion in

the special case of our setting where all alternatives have cost 1, the input
format is rankings by value, and n ≥

√
m. This result carries over to our

more general setting, not only with rankings by value, but also with rankings
by value for money, as both input formats coincide in case of equal costs. Our
goal is to establish an almost matching upper bound.

We start from a mechanism of Boutilier et al. [2015] that has distor-
tion O(

√
m logm) in their setting. It carefully balances between high-value

and low-value alternatives (where value is approximately inferred from the
positions of the alternatives in the input rankings). In our more general par-
ticipatory budgeting problem, it is crucial to also take into account the costs,
and find the perfect balance between selecting many low-cost alternatives and
fewer high-cost ones. We modify the mechanism of Boutilier et al. precisely
to achieve this goal. Specifically, we partition the alternatives into O(logm)
buckets based on their costs, and differentiate between alternatives within
a bucket based on their (inferred) value. Our mechanism for rankings by
value for money requires more careful treatment as values are obfuscated in
value-for-money comparisons.

At first glance our setting seems much more difficult, distortion-wise,
than the simple setting of Boutilier et al. [2015]. But ultimately we obtain
only a slightly weaker upper bound on the distortion associated with both
rankings by value and by value for money. In other words, to our surprise,
incorporating costs and a budget constraint comes at almost no cost to social
welfare maximization.

Theorem 2.3. The distortion associated with rankings by value and rankings
by value for money is O(

√
m logm).
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Proof of Theorem 2.3. We first present the proof for rankings by value for
money as it is trickier, and later describe how an almost identical proof works
for rankings by value.

Let us begin by introducing additional notation. For a ranking σ and an
alternative a ∈ A, let σ(a) denote the position of a in σ. For a preference
profile ~σ with n votes, let the harmonic score of a in ~σ be defined as sc(a, ~σ) ,∑n

j=1 1/σj(a). Finally, given a set of alternatives S ⊆ A, let σ|S (resp. ~σ|S)
denote the ranking (resp. preference profile) obtained by restricting σ (resp.
~σ) to the alternatives in S.

For ease of exposition assume m is a power of 2. Let ~σ denote the input
profile consisting of voter preferences in the form of rankings by value for
money. Let ~v denote the underlying utility profile consistent with ~σ. Let S∗ ,
arg maxS∈Fc sw(S,~v) be the budget-feasible set of alternatives maximizing the
social welfare.

Let `0 = 0 and u0 = 1/m. For i ∈ [logm], set `i = 2i−1/m and ui = 2i/m.
Let us partition the alternatives into logm+ 1 buckets based on their costs:
S0 , {a ∈ A : ca ≤ u0} and Si , {a ∈ A : `i < ca ≤ ui} for i ∈ [logm].
Note that for i ∈ {0} ∪ [logm], selecting at most 1/ui alternatives from Si is
guaranteed to be budget-feasible.

Next, let us further partition the buckets into two parts: for i ∈ {0} ∪
[logm], let S+

i consist of the
√
m · (1/ui) alternatives from Si with the largest

harmonic scores in the reduced profile ~σ|Si , and S−i , Si \ S+
i . When |Si| ≤√

m · (1/ui), note that S+
i = Si and S−i = ∅. Note that S+

0 = S0. Let
S+ , ∪logm

i=0 S+
i and S− , A \ S+.

We are now ready to define our randomized aggregation rule, which ran-
domizes over two separate mechanisms.

� Mechanism A: Select a bucket Si uniformly at random, and select a
(1/ui)-size subset of S+

i uniformly at random.

� Mechanism B: Select a single alternative uniformly at random.

Our aggregation rule executes each mechanism with an equal probability
1/2. We now show that this rule achieves distortion that is O(

√
m logm).

First, note that mechanism A selects each bucket Si with probability
1/(logm + 1), and when Si is selected, it selects each alternative in S+

i

with probability at least 1/
√
m. (This is because the mechanism selects 1/ui

alternatives at random from S+
i , which has at most

√
m ·(1/ui) alternatives.)

Hence, the mechanism selects each alternative in S+ (and therefore, each
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alternative in S∗ ∩ S+) with probability at least 1/(
√
m(logm + 1)). In

other words, the expected social welfare achieved under mechanism A is
O(
√
m logm) approximation of sw(S∗ ∩ S+, ~v).

Finally, to complete the proof, we show that the expected welfare achieved
under mechanism B is an O(

√
m logm) approximation of sw(S∗∩S−, ~v). Let

us first bound sw(S∗ ∩ S−, ~v). Recall that S−0 = ∅. Hence,

sw(S∗ ∩ S−, ~v) =

logm∑
i=1

sw(S∗ ∩ S−i , ~v).

Fix i ∈ [logm] and a ∈ S−i . One can easily check that∑
b∈Si

sc(b, ~σ|Si) = n ·H|Si| ≤ n ·Hm,

where Hk is the kth harmonic number. Because S+
i consists of the

√
m/ui

alternatives in Si with the largest harmonic scores, we have

sc(a, ~σ|Si) ≤
n ·Hm√
m · (1/ui)

=
n · (1 + logm)√

m ·m/2i
. (2.1)

Next, we connect this bound on the harmonic score of a to a bound on its
social welfare. For simplicity, let us denote ~γ , ~σ|Si . Due to our definition
of the partitions, we have

ca ≤ 2 · cb, ∀b ∈ Si. (2.2)

Further, fix a voter j ∈ [n]. For each alternative b such that b �γj a, we
also have vj(b)/cb ≥ vj(a)/ca. Substituting Equation (2.2), we get

vj(a) ≤ 2vj(b),∀j ∈ [n], b ∈ Si s.t. b �γj a. (2.3)

Taking a sum over all b ∈ Si with b �γj a, and using the fact that the values
of each voter j sum to 1, we get vj(a) ≤ 2/γj(a) for j ∈ [n], and taking a
further sum over j ∈ [n], we get

sw(a,~v) ≤ 2 · sc(a, ~σ|Si). (2.4)

Combining this with Equation (2.1), we get

sw(a,~v) ≤ 2 · n · (1 + logm)√
m ·m/2i

,∀a ∈ S−i .
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Note that S∗ can contain at most 2/ui = m/2i−1 alternatives from Si
while respecting the budget constraint. Hence,

sw(S∗ ∩ S−, ~v) =

logm∑
i=1

sw(S∗ ∩ S−i , ~v) ≤ (m/2i−1) · 2 · n · (1 + logm)√
m ·m/2i

= 4 · n · (1 + logm)/
√
m. (2.5)

Because the utilities sum to 1 for each voter, the expected social welfare
achieved under mechanism B is (1/m) ·

∑
i∈N
∑

a∈A vi(a) = n/m, which is
an O(

√
m logm) approximation of sw(S∗ ∩ S−, ~v) due to Equation (2.5).

This completes the proof of O(
√
m logm) distortion associated with rank-

ings by value for money. The proof for rankings by value is almost identical.
In fact, one can make two simplifications.

First, the factor of 2 from Equation (2.3), and therefore from Equa-
tion (2.4) disappears because the rankings already dictate comparison by
value. This leads to an improvement in Equation (2.5) by a factor of 2.

Second, Equation (2.3) not only holds for b ∈ Si such that b �γj a, but
holds more generally for b ∈ A such that b �σj a. Hence, there is no longer a
need to compute the harmonic scores on the restricted profile ~σ|Si ; one can
simply work with the original input profile ~σ.

Threshold Approval Votes.

Approval voting — where voters can choose to approve any subset of alter-
natives, and a most widely approved alternative wins — is well studied in
social choice theory [33]. In our utilitarian setting we reinterpret this input
format as threshold approval votes, where the principal sets a threshold t,
and each voter i ∈ N approves every alternative a for which vi(a) ≥ t.

We first investigate deterministic threshold approval votes, in which the
threshold is selected deterministically, but find that it does not help us (sig-
nificantly) improve over the distortion we can already obtain using rankings
by value or by value for money. Specifically, for a fixed threshold, we are al-
ways able to construct cases in which alternatives have significantly different
welfares, but either no alternative is approved or an extremely large set of
alternatives are approved, providing the rule little information to distinguish
between the alternatives, and yielding high distortion.

Theorem 2.4. The distortion associated with deterministic threshold ap-
proval votes is Ω(

√
m).
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Proof of Theorem 2.4. Imagine the case where ca = 1 for all alternatives a ∈
A. Recall that the budget is 1. Let f denote a randomized aggregation rule.
(While we study deterministic and randomized threshold selection, we still
allow randomized aggregation rules. Section 2.3.2 studies the case where the
aggregation rule has to be deterministic.) It must return a single alternative,
possibly chosen in a randomized fashion. We construct our adversarial input
profile based on whether t ≤ 1/

√
m. Let A , {a1, . . . , am}.

Suppose t ≤ 1/
√
m. Fix a set of alternatives S ⊆ A such that |S| =√

m/2 + 1 (assume for ease of exposition
√
m is an even integer). Construct

the input profile ~τ such that τi = S for all i ∈ N . Now, there must exist
a∗ ∈ S such that Pr[f(~τ) = {a∗}] ≤ 1/(

√
m/2+1). Construct the underlying

utility profile ~v such that for each voter i ∈ N , vi(a
∗) = 1/2, vi(a) = 1/

√
m

for a ∈ S \{a∗}, and vi(a) = 0 for a ∈ A\S. Note that this is consistent with
the input profile given that t ≤ 1/

√
m. Further, sw(a∗, ~v) = n/2 whereas

sw(a,~v) ≤ n/
√
m for all a ∈ A \ {a∗}. Hence,

E[sw(f(~τ), ~v)] ≤ 1√
m/2 + 1

· n
2

+

√
m/2√

m/2 + 1
· n√

m
= O

(
n√
m

)
.

Because the optimal social welfare is Θ(n), we have that dist(f) = Ω(
√
m),

as required.
Now suppose that t > 1/

√
m. Construct an input profile ~τ in which τi = ∅

for every voter i ∈ N . In this case, there exists an alternative a∗ ∈ A such
that Pr[f(~τ) = a∗] ≤ 1/m. Let us construct the underlying utility profile ~v as
follows. For every voter i ∈ N , let vi(a

∗) = 1/
√
m, and vi(a) = (1−1/

√
m)/m

for all a ∈ A \ {a∗}. Note that this is consistent with the input profile
given that t > 1/

√
m. Clearly, the optimal social welfare is achieved by

sw(a∗, ~v) = n/
√
m. In contrast, we have

E[sw(f(~τ), ~v)] ≤ 1

m
· n√

m
+

(
1− 1√

m

)
· 1− 1/

√
m

m
= O

( n
m

)
.

Hence, we again have dist(f) = Ω(
√
m), as desired.

For specific ranges of the threshold, it is possible to derive stronger lower
bounds. However, the Ω(

√
m) lower bound of Theorem 2.4 is sufficient to

establish a clear asymptotic separation between the power of deterministic
and randomized threshold approval votes.

Under randomized threshold approval votes, we can select the threshold in
a randomized fashion. Technically, this is a distribution over input formats,
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one for each value of the threshold. Before we define the (overall) distortion
of a rule that randomizes over input formats, let us recall the definition of
the overall distortion of a rule for a fixed input format:

dist(f) , max
~ρ

sup
~v:~vB~ρ

maxT∈Fc sw(T,~v)

E[sw(f(~ρ), ~v)]
= sup

~v

maxT∈Fc sw(T,~v)

E[sw(f(~ρ), ~v)]
.

Here, ~ρ(~v) denotes the input profile induced by utility profile ~v. In the case
of randomized threshold approval votes, rule f specifies a distribution D over
the threshold t, as well as the aggregation of input profile ~ρ(~v, t) induced by
utility profile ~v and a given choice of threshold t. We define the the (overall)
distortion of rule f as

dist(f) , sup~v Et∼D
maxT∈Fc sw(T,~v)

E[sw(f(~ρ(~v, t)), ~v)]
.

Interestingly, observe that due to the expectation over threshold t, which
affects the induced input profile ~ρ(~v, t), we can no longer decompose the
maximum over ~v into a maximum over ~ρ followed by a maximum over ~v such
that ~v B ~ρ, in contrast to the case of a fixed input format.

This flexibility of randomizing the threshold value allows us to dramati-
cally reduce the distortion.

Theorem 2.5. The distortion associated with randomized threshold approval
votes is O(log2m).

Proof of Theorem 2.5. For ease of exposition, assume m is a power of 2. Let
I0 , [0, 1/m2], and Ij , (2j−1/m2, 2j/m2], `j = 2j−1/m2, and uj = 2j/m2 for
j = 1, . . . , 2 logm.

Let ~v denote a utility profile that is consistent with the input profile. For
a ∈ A and j ∈ {0, . . . , 2 logm}, define naj , |{i ∈ N : vi(a) ∈ Ij}| to be the
number of voters whose utility for a falls in the interval Ij. We now bound
the social welfare of a in terms of the numbers naj . Specifically,

sw(a,~v) =
∑
i∈N

vi(a) ≤
2 logm∑
j=0

∑
i∈N

I{vi(a) ∈ Ij} · uj =

2 logm∑
j=0

naj · uj,

where I indicates the indicator variable. A similar argument also yields a
lower bound, and after substituting `0 = 0, u0 = 1/m2, and na0 ≤ n, we get

2 logm∑
j=1

naj · `j ≤ sw(a,~v) ≤ n

m2
+

2 logm∑
j=1

naj · uj. (2.6)
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Next, divide the alternatives into 1+2 logm buckets based on their costs,
with bucket Sj , {a ∈ A : ca ∈ Ij}. Note that selecting at most 1/uj
alternatives from Sj is guaranteed to satisfy the budget constraint.

Let S∗ , arg maxS∈Fc sw(S,~v) be the feasible set of alternatives maxi-

mizing the social welfare. For j, k ∈ {0, . . . , 2 logm}, let n∗j,k ,
∑

a∈S∗∩Sk n
a
j .

Using Equation (2.6), we have

2 logm∑
j=1

n∗j,k · `j ≤ sw(S∗ ∩ Sk, ~v) ≤ |S∗ ∩ Sk| ·
n

m2
+

2 logm∑
j=1

n∗j,k · uj. (2.7)

We now construct three different mechanisms; our final mechanism will
randomize between them.

Mechanism A: Pick a pair (j, k) uniformly at random from the set T ,
{(j, k) : j, k ∈ [2 logm]}. Then, set the threshold to `j, and using the
resulting input profile, greedily select the 1/uk alternatives from Sk with the
largest number of approval votes (or select Sk if |Sk| ≤ 1/uk). Let Bj,k denote
the set of selected alternatives for the pair (j, k). Because we have j > 0 and
k > 0,

sw(Bj,k, ~v) ≥
∑
a∈Bj,k

(
2 logm∑
p=j

nap

)
· `j ≥

1

4
·

(
2 logm∑
p=j

n∗p,k

)
· uj ≥

1

4
· n∗j,k · uj,

(2.8)

where, in the first transition, we bound the welfare from below by only con-
sidering utilities that are at least `j, and the second transition holds because
uj = 2`j, |S∗ ∩ Sk| ≤ 2|Bj,k|, and Bj,k consists of greedily-selected alterna-
tives with the highest number of approval votes. Thus, the expected social
welfare achieved by mechanism A is

1

(2 logm)2

2 logm∑
j=1

2 logm∑
k=1

sw(Bj,k, ~v) ≥ 1

4 · (2 logm)2

2 logm∑
j=1

2 logm∑
k=1

n∗j,k · uj

≥ 1

16 log2m

(
sw(S∗\S0, ~v)− |S∗\S0| ·

n

m2

)
≥ 1

16 log2m

(
sw(S∗\S0, ~v)− n

m

)
,

where the first transition follows from Equation (2.8), and the second tran-
sition follows from Equation (2.7).
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Mechanism B: Select all the alternatives in S0. Because each alternative in
S0 has cost at most 1/m2, this is clearly budget-feasible. The social welfare
achieved by this mechanism is sw(S0, ~v) ≥ sw(S∗ ∩ S0, ~v).

Mechanism C: Select a single alternative uniformly at random from A. This
is also budget-feasible, and due to normalization of values, its expected social
welfare is n/m.

Our final mechanism executes mechanism A with probability
16 log2m/(2 + 16 log2m), and mechanisms B and C each with probability
1/(2 + 16 log2m). It is easy to see that its expected social welfare is at least
sw(S∗, ~v)/(2 + 16 log2m). Hence, its distortion is O(log2m).

We also show that at least logarithmic distortion is inevitable even when
using randomized threshold approval votes.

Theorem 2.6. The distortion associated with randomized threshold approval
votes is Ω(logm/ log logm).

Proof of Theorem 2.6. Imagine the case where ca = 1 for all a ∈ A. Recall
that the budget is 1. Let f denote a rule that elicits randomized threshold
approval votes and aggregates them to return a distribution over A (as only
a single project can be executed at a time). Note that f is not simply
the aggregation rule, but the elicitation method and the aggregation rule
combined.

Divide the interval (1/m, 1] into dlogm/ log (2 logm)e sub-intervals: For
j ∈ [dlogm/ log (2 logm)e], let

Ij ,

(
(2 logm)j−1

m
,min

{
(2 logm)j

m
, 1

}]
,

note that the minimum in the upper bound only affects the last interval.
Let uj and `j denote the upper and lower end points of Ij and observe that
uj ≤ 2 logm · `j for all j ∈ [dlogm/ log (2 logm)e].

Let t denote the threshold picked randomly by f . There must exist k ∈
[dlogm/ log (2 logm)e] such that Pr[t ∈ Ik] ≤ log (2 logm)/ logm. Fix a
subset S ⊆ A of size logm, and let V = uk/2 + (logm− 1) · `k. Construct a
(partial) utility profile ~v such that for each voter i ∈ N , vi(a) ∈ Ik for a ∈ S,∑

a∈S vi(a) = V , and vi(a) = (1− V )/(m− logm) for a ∈ A \ S. First, this
is feasible because

V =
uk
2

+ (logm− 1) · `k ≤
1

2
+

logm− 1

2 logm
≤ 1.
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Second, this partial description completely dictates the induced input profile
when t /∈ Ik. Because f can only distinguish between alternatives in S
when t ∈ Ik, there must exist a∗ ∈ S such that Pr[f returns a∗|t /∈ Ik] ≤
1/ logm. Suppose the underlying utility profile ~v satisfies, for each voter
i ∈ N , vi(a

∗) = uk/2 and vi(a) = `k for a ∈ S \ {a∗}. Observe that this is
consistent with the partial description provided before.

In this case, the optimal social welfare is given by sw(a∗, ~v) = n · uk/2,
whereas sw(a,~v) ≤ n · `k for all a ∈ A \ {a∗}. The latter holds because
`k > (1− V )/(m− logm). The expected social welfare achieved by f under
~v is at most

Pr[t ∈ Ik] ·
n · uk

2
+ Pr[t /∈ Ik]

(
1

logm
· n · uk

2
+

logm− 1

logm
· n · `k

)
≤ log (2 logm) + 2

logm
· n · uk

2
,

where the final transition holds because uk ≤ 2 logm·`k. Thus, the distortion
achieved by f is Ω(logm/ log logm), as desired.

Our proof of Theorem 2.6 establishes a lower bound of Ω(logm/ log logm)
on the distortion associated with randomized threshold approval votes by
only using the special case of the participatory budgeting problem in which
ca = 1 for each a ∈ A, i.e., exactly one alternative needs to be selected.
This is exactly the setting studied by Boutilier et al. [2015]. On the other
hand, Theorem 2.5 establishes a slightly weaker upper bound of O(log2m)
for the general participatory budgeting problem. For the restricted setting of
Boutlier et al. [2015], one can improve the general O(log2m) upper bound to
O(logm), thus leaving a very narrow gap from the Ω(logm/ log logm) lower
bound. This proof is similar to the proof of Theorem 2.5, whose O(log2m)
bound is the result of a randomization over O(logm) partitions of the al-
ternatives based on their cost and O(logm) possible values of the threshold.
When costs are identical there is no need to partition based on cost, reducing
the partitions by a logarithmic factor.

Theorem 2.7. If ca = 1 for all a ∈ A, the distortion associated with ran-
domized threshold approval votes is O(logm).

Proof of Theorem 2.7. For j ∈ [logm], let `j = 2j−1/m and uj = 2 · `j.
Consider the rule which chooses j ∈ [logm] uniformly at random, elicits
approval votes with threshold t = `j, and returns an alternative with the
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greatest number of approval votes. We show that the distortion of this rule
is O(logm).

Let ~v denote the underlying utility profile, and a∗ , arg maxa∈A sw(a,~v)
be the welfare-maximizing alternative. If there exists j ∈ [logm] such that
our rule returns a∗ when it sets the threshold t = `j (which happens with
probability 1/ logm), we immediately obtain O(logm) distortion. Let us
assume that our rule never returns a∗. For a ∈ A and j ∈ [logm], let naj
denote the number of approval votes a receives when the threshold t = `j,
and let aj ∈ A be the alternative returned by our rule when t = `j. Because
our rule returns an alternative with the greatest number of approval votes,
we have

∀j ∈ [logm],

logm∑
k=j

n
aj
k ≥

logm∑
k=j

na
∗

k ≥ na
∗

j . (2.9)

Now, the expected social welfare achieved by our rule is at least

logm∑
j=1

Pr[t = `j] · sw(aj, ~v) ≥ 1

logm

logm∑
j=1

`j

(
logm∑
k=j

n
aj
k

)

≥ 1

2 logm

logm∑
j=1

uj · na
∗

j ≥
1

2 logm
· sw(a∗, ~v),

where the first transition follows from Equation (2.9), and the second tran-
sition holds because `j = uj/2. Hence, the distortion of our rule is O(logm),
as desired.

2.3.2 Deterministic Aggregation Rules

We next study the distortion that can be achieved under different input
formats if we are forced to use a deterministic aggregation rule. Recall that
the distortion associated with deterministic aggregation of votes under an
input format is the least distortion a deterministic aggregation rule for that
format can achieve. Specifically, we study the distortion associated with
deterministic aggregation of knapsack votes, rankings by value and value
for money, and deterministic threshold approval votes. We omit randomized
threshold approval votes as the inherent randomization involved in elicitation
makes the use of deterministic aggregation rules hard to justify.
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We find that rankings by value achieve Θ(m2) distortion, which is signif-
icantly better than the distortion of knapsack votes (exponential in m) and
that of rankings by value for money (unbounded). This separation between
rankings by value and value for money in this setting stands in stark contrast
to the setting with randomized aggregation rules, where both input formats
admit similar distortion. One important fact, however, does not change with
the use of deterministic aggregation rules: using threshold approval votes
still performs at least as well as using any of the other input formats con-
sidered here. Specifically, we show that setting the threshold to be t = 1/m
results in O(m2) distortion. The choice of the threshold is crucial as, for ex-
ample, setting a slightly higher threshold t > 1/(m−1) results in unbounded
distortion.

Knapsack Votes.

Our first result is an exponential lower bound on the distortion associated
with knapsack votes when the aggregation rule is deterministic. While our
construction requires the number of voters to be extremely large compared
to the number of alternatives, we remark that this is precisely the case in
real participatory budgeting elections, in which a large number of citizens
vote over much fewer projects.

Theorem 2.8. For sufficiently large n, the distortion associated with deter-
ministic aggregation of knapsack votes is Ω(2m/

√
m).

Proof of Theorem 2.8. Imagine a case where every alternative has cost 2/m
(recall that the budget is 1). It follows that no more than bm/2c alternatives
may be selected while respecting the budget constraints. Let S1, . . . , S( m

bm/2c)
denote the

(
m
bm/2c

)
subsets of A of size bm/2c.

Assume n ≥
(

m
bm/2c

)
. Partition voters into

(
m
bm/2c

)
sets N1, . . . , N( m

bm/2c)
,

each consisting of roughly n/
(

m
bm/2c

)
voters; specifically, ensure that

bn/
(

m
bm/2c

)
c ≤ ni ≤ dn/

(
m
bm/2c

)
e, where ni , |Ni|, for all i ∈ [

(
m
bm/2c

)
]. Con-

struct an input profile of knapsack votes ~κ, where κi , Sk for all k ∈ [
(

m
bm/2c

)
]

and i ∈ Nk.
Let f denote a deterministic aggregation rule. We can safely assume that

|f(~κ)| = bm/2c as otherwise we can add alternatives to f(~κ), which can only
improve the distortion. Let f(~κ) , Sk∗ .
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Construct a utility profile ~v consistent with the input profile ~κ as follows.
Fix b ∈ Sk∗ , and for all i ∈ Nk∗ , let vi(b) = 1 and vi(a) = 0 for all a ∈ A\{b}.
Note that these valuations are consistent with the votes of voters in Nk∗ .

Next, fix a∗ ∈ A\Sk∗ . Our goal is to make a∗ an attractive alternative that
f(~κ) missed. Note that a∗ appears in about half of the bm/2c-sized subsets of
A. For all k ∈ [

(
m
bm/2c

)
] such that a∗ ∈ Sk, and all voters i ∈ Nk, let vi(a

∗) = 1

and vi(a) = 0 for all a ∈ A \ {a∗}. This ensures sw(a∗, ~v) ≥ n · bm/2c
m
≥ n/3

(for m ≥ 2).
For k ∈ [

(
m
bm/2c

)
] \ {k∗} such that a∗ /∈ Sk, and all voters i ∈ Nk, let

vi(a
′) = 1 for some a′ ∈ Sk \ Sk∗ , and vi(a) = 0 for all a ∈ A \ {a′}.
Observe that all voters who do not belong to Nk∗ assign zero utility to

all the alternatives in Sk∗ , yielding sw(f(~κ), ~v) ≤ nk∗ ≤ n/
(

m
bm/2c

)
+ 1. By

assumption, n ≥
(

m
bm/2c

)
, so we have

dist(f,~v) ≥ n/3

n/
(

m
bm/2c

)
+ 1

=
1

6
·
(

m

bm/2c

)
= Ω

(
2m√
m

)
,

as required.

We next show that an almost matching upper bound can be achieved by
the natural “plurality knapsack” rule that selects the subset of alternatives
submitted by the largest number of voters.

Theorem 2.9. The distortion associated with deterministic aggregation of
knapsack votes is O(m · 2m).

Proof of Theorem 2.9. Let ~v denote the underlying utility profile, and let
S∗ ⊆ A be the set of alternatives reported by the largest number of voters.
Due to the pigeonhole principle, it must be reported by at least n/2m voters.
Further, each voter i who reports S∗ must have vi(S

∗) ≥ 1/m because there
must exist a ∈ A such that vi(a) ≥ 1/m, and vi(S

∗) ≥ vi(a).
Hence, we have sw(S∗, ~v) ≥ (n/2m) · 1/m, whereas the maximum welfare

any set of alternatives can achieve is at most n. Hence, the distortion of the
proposed rule is at most m · 2m.

Rankings by Value and by Value for Money.

While rankings by value and by value for money have similar distortion in
case of randomized aggregation rules, deterministic aggregation rules lead to
a clear separation between the distortion of the two input formats.

28



We first show that deterministic aggregation of rankings by value for
money cannot offer bounded distortion. Our counterexample exploits the
uncertainty in values induced when alternatives have vastly different costs.

Theorem 2.10. The distortion associated with deterministic aggregation of
rankings by value for money is unbounded.

Proof of Theorem 2.10. Fix a, b ∈ A. Let ca , ε > 0, and ck = 1 for
all k ∈ A \ {a}. Recall that the budget is 1. Hence, every deterministic
aggregation rule must select a single alternative.

Construct an input profile ~σ in which each input ranking has alternatives
a and b in positions 1 and 2, respectively. Let f be a deterministic aggregation
rule.

If f(~σ) ∈ A \ {a}, the utility profile ~v in which every voter has utility 1
for a, and 0 for every alternative in A\{a} ensures dist(f) ≥ dist(f,~v) =∞.

If f(~σ) = a, the utility profile ~v in which every voter has utility ε for a,
1 − ε for b, and 0 for every alternative in A \ {a, b} ensures that dist(f) ≥
dist(f,~v) = (1− ε)/ε.

Hence, in either case, dist(f) ≥ (1 − ε)/ε. Because ε can be arbitrarily
small, the distortion is unbounded.

We now turn our attention to rankings by value. Caragiannis et al. [2016]
study deterministic aggregation of rankings by value in the special case of
our setting where the cost of each alternative equals the entire budget, and
establish a lower bound of Ω(m2) on the distortion, which carries over to our
more general setting.

Theorem 2.11 (Caragiannis et al. [44]). For n ≥ m − 1, the distortion
associated with deterministic aggregation of rankings by value is Ω(m2).

Caragiannis et al. [2016] also show that selecting the plurality winner —
the alternative that is ranked first by the largest number of voters — results
in distortion at most m2. We show that this holds true even in our more
general setting, giving us an asymptotically tight bound on the distortion.

Theorem 2.12. The distortion associated with deterministic aggregation of
rankings by value is O(m2).

Proof of Theorem 2.12. Due to the pigeonhole principle, the plurality win-
ner, say a ∈ A, must be ranked first by at least n/m voters, each of which
must have utility at least 1/m for a. Hence, the social welfare of a is at
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least n/m2, while the maximum social welfare that any set of alternatives
can achieve is at most n, yielding a distortion of at most m2.

Threshold Approval Votes.

We now turn our attention to threshold approval votes. As mentioned ear-
lier, our use of deterministic aggregation rules makes randomized threshold
selection less motivated; we thus focus on deterministic threshold approval
votes. First, we show that for some choices of the threshold, the distortion
can be unbounded.

Theorem 2.13. For a fixed threshold t > 1/(m−1), the distortion associated
with deterministic aggregation of deterministic threshold approval votes is
unbounded.

Proof of Theorem 2.13. Suppose ca = 1 for each a ∈ A. Recall that the
budget is 1. Let f denote a deterministic aggregation rule for threshold
approval votes. Suppose the rule receives an input profile ~τ in which no
voter approves any alternative. Without loss of generality, let f(~τ) = a∗.

We construct an underlying utility profile such that for each voter i ∈ N ,
vi(a) = 1/(m−1) for a ∈ A\{a∗}, and vi(a

∗) = 0. Note that this is consistent
with ~τ . Now, the optimal social welfare is n · 1/(m− 1), whereas the welfare
achieved by f is zero, yielding an unbounded distortion.

We next show that slightly reducing the threshold to 1/m reduces the
distortion to O(m2), which is at least as good as the distortion associated
with any other input format.

Theorem 2.14. For the fixed threshold t = 1/m, the distortion associated
with deterministic aggregation of deterministic threshold approval votes is
O(m2).

Proof of Theorem 2.14. Let ~τ denote an input profile, and ~v the under-
lying utility profile. Let S∗ ∈ Fc denote the feasible set of alternatives
with the highest number of total approvals. The set S ∈ Fc is returned
by the following algorithm: label the alternatives in order of the num-
ber of approvals received to cost, where a1 has the greatest ratio. Return
whichever of {a1, . . . , ak−1} and {ak} has more approvals, with k chosen so
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that {a1, . . . , ak−1} ∈ Fc and {a1, . . . , ak} 6∈ Fc. Let P ∗ and P denote the
total number of approvals received by alternatives in S∗ and S, respectively.

Consider a knapsack problem where the value of an alternative is the
number of approvals it receives under ~τ . Then, P ∗ is the optimal knapsack
solution, whereas P is the solution quality achieved by the greedy algorithm.
Using the fact that this algorithm achieves a 2-approximation of the (un-
bounded) knapsack problem [58], we have

P ≥ (1/2) · P ∗.

We can now establish an upper bound on the distortion of our rule. Let
T be the feasible set of alternatives maximizing the social welfare. Then, T
achieves at most P ∗ total approvals under ~τ . Each approval of an alternative
in T by a voter can contribute at most 1 to the welfare of T , and each non-
approval of an alternative in T by a voter can contribute at most 1/m to the
welfare of T . Hence, we have

sw(T,~v) ≤ P ∗ · 1 + (n ·m− P ∗) · (1/m).

Using a similar line of argument, we also have

sw(S,~v) ≥ P · (1/m).

Hence, the distortion of f is at most

P ∗ + (n ·m− P ∗)/m
P/m

≤ 2 · 1 + (n ·m/P ∗ − 1)/m

1/m

= 2 ·
(
m+

n ·m
n/m

− 1

)
= O(m2),

where the first transition follows from P ≥ P ∗/2. For the second transition,
note that with the threshold being 1/m, each voter must approve at least
1 alternative. Hence, there must exist an alternative with at least n/m
approvals, implying that P ∗ ≥ n/m.

2.4 Computing Worst-Case Optimal Aggre-

gation Rules

Our theoretical results focus on the best worst-case (over all input profiles)
distortion we can achieve using different input formats. However, specific
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input profiles may admit distortion much better than this worst case bound.
In practice, we are more interested in the deterministic or randomized aggre-
gation rule that, on each input profile, returns the feasible set of alternatives
or a distribution thereover which minimizes distortion, thus achieving the op-
timal distortion on each input profile individually. The optimal deterministic
aggregation rule is given by

f ∗(~ρ) , arg min
S∈Fc

max
~vB~ρ

maxT∈Fc sw(T,~v)

sw(S,~v)
, ∀~ρ,

and the optimal randomized aggregation rule is given by

f̄ ∗(~ρ) , arg min
p∈∆(Fc)

max
~vB~ρ

maxT∈Fc sw(T,~v)

E[sw(p,~v)]
, ∀~ρ,

where ∆(X) denotes the set of distributions over the elements of X.
While these profile-wise optimal aggregation rules dominate all other ag-

gregation rules, they may be computationally difficult to implement, because
they optimize a non-linear objective function (a ratio) over a complicated
space.

We now turn our attention to designing practical generic algorithms for
computing the deterministic and randomized profile-wise optimal aggregation
rules for the input formats we study. Throughout this section, we assume that
it is practically feasible to explicitly enumerate the collection of inclusion-
maximal feasible sets of alternatives Fc. This assumption is justified given
that real-world participatory budgeting problems typically involve up to 20
alternatives [75].

2.4.1 Deterministic Rules

Let V (~ρ) , {~v : ~vB ~ρ} denote the set of utility profiles consistent with input
profile ~ρ. We are interested in computing

arg min
S∈Fc

max
~v∈V (~ρ)

maxT∈Fc sw(T,~v)

sw(S,~v)
= arg min

S∈Fc
max
T∈Fc

{
max
~v∈V (~ρ)

sw(T,~v)

sw(S,~v)

}
.

An algorithm is self-evident: compute

d(~ρ, S, T ) , max
~v∈V (~ρ)

sw(T,~v)

sw(S,~v)
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for every pair S, T ∈ Fc, and return arg minS∈Fc maxT∈Fc d(~ρ, S, T ).
For the input methods we study in this paper, we can describe the set of

consistent utility profiles V (~ρ) using linear constraints. Observe that V (~ρ) =
V (ρ1)×· · ·×V (ρn), where V (ρi) , {v ≥ 0 : vBρi} is the set of m-dimensional
utility functions consistent with voter i’s input ρi. It is therefore sufficient
to describe each V (ρi) using linear constraints.

For a ranking by value σi, we use:

V (σi) =

{
vi ∈ Rm

+

∣∣∣∣ ∑a∈A vi(a) = 1,
vi(σ

−1
i (k)) ≥ vi(σ

−1
i (k + 1)), ∀k ∈ [m− 1]

}
.

For a ranking by value for money σi, we use:

V (σi) =

{
vi ∈ Rm

+

∣∣∣∣∣ suma∈Avi(a) = 1,
vi(σ

−1
i (k))

c
σ−1
i

(k)

≥ vi(σ
−1
i (k+1))

c
σ−1
i

(k+1)

,∀k ∈ [m− 1]

}
.

For a knapsack vote κi, we use:

V (κi) =

{
vi ∈ Rm

+

∣∣∣∣ ∑a∈A vi(a) = 1∑
a∈κi vi(a) ≥

∑
a∈S vi(a), ∀S ∈ Fc

}
.

For a threshold approval vote τi elicited using threshold t, we use:

V (τi) =

vi ∈ Rm
+

∣∣∣∣∣∣
∑

a∈A vi(a) = 1,
vi(a) ≥ t, ∀a ∈ τi,
vi(a) ≤ t, ∀a ∈ A \ τi

 .

Note that the polytope for knapsack votes has exponentially many con-
straints, while the other polytopes have a polynomial number. When nec-
essary, heuristics may be devised to approximate V (κi), however, in our ex-
periments with real data we only encountered instances with m ≤ 20, where
it was possible to enumerate the constraints in V (κi).

This polytope V (ρi) is the only part of our generic algorithm that is
dependent on the input format. Generically, let A(~ρ) ~v ≤ b(~ρ) be the set of
linear constraints describing V (~ρ).

Our next goal is to use this characterization of V (~ρ) to compute d(~ρ, S, T )
for specific S, T ∈ Fc. Recall that sw(S,~v) ,

∑
a∈A x

S(a)
∑

i∈[n] vi(a),

where xS is the characteristic vector for the set of alternatives S, and that
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d(~ρ, S, T ) , max{ sw(T,~v)
sw(S,~v)

: A(~ρ) ~v ≤ b(~ρ)}. This is a standard linear-fractional

program, which can be converted to a linear program LP (~ρ, S, T ) using the
famous Charnes-Cooper transformation [49].

The complete algorithm for resolving the deterministic optimal aggrega-
tion rule on an input profile ~ρ is given as Algorithm 1.

Algorithm 1: Computing the worst-case optimal deterministic rule

Data: Input profile ~ρ
Result: A set S ∈ Fc yielding the least distortion

1 dist[S] = 0, ∀S ∈ Fc
2 for S ∈ Fc do
3 for T ∈ Fc, T 6= S do
4 dist[S] = max(dist[S], LP (~ρ, S, T ))

5 return arg minS∈Fc dist[S]

2.4.2 Randomized Rules

Using a similar line of argument as before, observe that the optimal random-
ized aggregation rule returns the following distribution p over feasible sets of
alternatives:

arg min
p∈∆(Fc)

max
T∈Fc

max
~v∈V (~ρ)

sw(T,~v)∑
S∈Fc p(S) · sw(S,~v)

.

We introduce an additional continuous variable z representing the optimal
distortion, and reformulate the problem as

min
p,z

z

s.t. sw(T,~v)− z ·
∑
S∈Fc

p(S) · sw(S,~v) ≤ 0, ∀T ∈ Fc, ~v ∈ V (~ρ) (2.10)

p ∈ ∆(Fc).

At this point, it is possible to handle the constraints in (2.10) by formulating
the problem in terms of the vertices of the polytope V (~ρ). Instead, we turn
to a constraint-generation approach.

Our algorithm performs a binary search on z, the optimal distortion. For
a fixed value of z, say z̃, an iterative two-stage procedure determines whether
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there exists a distribution p whose distortion on the input profile ~ρ is at most
z̃. If such a distribution p exists, then z̃ serves as an upper bound on the
smallest distortion; otherwise, it serves as a lower bound. After adjusting the
bounds on the optimal distortion, the value of z̃ is updated as in traditional
binary search.

We now describe the iterative two-stage procedure that ascertains the
existence of a distribution p with distortion at most z̃. This procedure al-
ternately finds a distribution satisfying a limited subset of the constraints in
(2.10), then attempts to add omitted constraints from (2.10) which are vio-
lated by the current distribution. At iteration t, a set of constraints defined
by Ct−1 have been added and we check the feasibility of

sw(T,~v)− z̃ ·
∑

S∈Fc p
t(S) · sw(S,~v) ≤ 0, ∀(~v, T ) ∈ Ct−1

pt ∈ ∆(Fc)

}
CF(z̃, Ct−1).

If no feasible distribution pt exists, z̃ is the new lower bound on the
optimal distortion, and we proceed to the next step in our binary search over
z. If a feasible pt exists, we check whether it violates any constraint from
(2.10) by solving the following linear program (which serves as an oracle) for
every T ∈ Fc:

max sw(T,~v)− z ·
∑
S∈Fc

pt(S) · sw(S,~v)

s.t. ~v ∈ V (~ρ)

LP(T, z, pt, ~ρ).

If the objective value of LP(T, z, pt, ~ρ) exceeds 0, a violated constraint is found
and (~v∗, T ) is added to Ct−1 to form Ct, where ~v∗ is the optimal solution to
LP(T, z, pt, ~ρ). The algorithm then returns to solving CF(z̃, Ct). If no violated
constraints are found, the current distribution pt indeed has distortion at
most z̃, and establishes an upper bound on the optimal distortion.

This complete procedure is summarized in Algorithm 2. A finite number
of violated constraints can be added for each z̃, so we may conclude that
Algorithm 2 will terminate.

2.4.3 Scaleability of computing distortion-minimizing
sets

We evaluate the practicality of this approach by comparing the running times
of computing deterministic voting rules, averaged over 10 trials, on data from
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Algorithm 2: Computing the optimal randomized aggregation rule

Data: Input profile ~ρ, tolerance TOL, Fc
Result: A probability distribution in ∆(Fc), the optimal distortion

1 z− = 1, z+ = 100, z̃ = (z− + z+)/2
2 while z− − z+ > TOL do
3 C0 = ∅, t = 0
4 robustFeasibleFlag ← false
5 while robustFeasibleFlag is false do
6 robustFeasibleFlag ← true
7 t← t+ 1
8 if CF(z̃, Ct−1) is feasible then
9 pt ← optimal solution of CF(z̃, Ct−1)

10 for T ∈ Fc do
11 Ct = Ct−1

12 if optimum of LP(T, z, pt, ~ρ) exceeds 0 then
13 ~v∗ ← optimal solution of LP(T, z, pt, ~ρ)
14 Ct ← Ct ∪ (~v∗, T )
15 robustFeasibleFlag ← false

16 if robustFeasibleFlag then
17 z+ = z̃

18 else
19 z− = z̃

20 z̃ = (z+ + z−)/2

21 return pt, z+

participatory budgeting elections held in Boston in 2016. Voters were asked
to choose from 10 alternatives; 4,430 votes were cast.

Our discussions with officials from several cities have revealed a hesitance
to use randomized voting rules, so we are particularly interested in the perfor-
mance of the determinstic rules. (Our computational results in the following
section also show that deterministic worst case rules typically perform better
in terms of average welfare ratio than randomized rules.)

Figure 2.1 summarizes the average time to compute the deterministic
worst-case optimal set of alternatives on a log-log scale. The experiments
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Figure 2.1: Average running time of the deterministic voting rules on the
Boston 2016 dataset.

were run on an 8-core Intel(R) Xeon(R) CPU with 2.27GHz processor speed
and 50GB memory. We observe that the running time scales gracefully with
the number of agents. When sampling 500 voters, computing the determin-
istic distortion minimizing set for threshold approval votes and rankings by
value takes less than 5 minutes, indicating the practicality of these methods
for the participatory budgeting elections at the scale of those in Boston, MA
[75]. We also note that, due to the once-off nature of participatory budget-
ing elections, it is conceivable to use an aggregation algorithm which takes
several days or even weeks to compute the optimal set of alternatives.

2.5 Empirical Results

Our theoretical results in Section 2.3 characterize how well we can optimize
distortion on an observed input profile. Recall that distortion is the worst-
case ratio of the optimal social welfare to the social welfare achieved, where
the worst case is taken over all utility profiles consistent with the observed
input profile. In practice we care about this ratio according to the actual
underlying utility profile. Thus, a distortion-minimizing aggregation rule is
not guaranteed to be optimal in practice. This is why an empirical study is
called for.

In this section, we compare the performance of different approaches to
participatory budgeting, where the performance is measured by the average-
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case ratio of the optimal and achieved social welfare, and the average is
taken over utility profiles drawn to be consistent with input profiles from
two real-world participatory budgeting elections.

Datasets: We use data from participatory budgeting elections held in 2015
and 2016 in Boston, Massachusetts. Both elections offered voters 10 alterna-
tives. The 2015 dataset contains 2600 4-approval votes (voters were asked to
approve their four most preferred alternatives) and the 2016 dataset contains
4430 knapsack votes.

For each dataset, we conduct three independent trials. In each trial,
we create r sub-profiles, each consisting of n voters drawn at random from
the population. For each sub-profile, we draw k random utility profiles ~v
consistent with the sub-profile, and use these to analyze the performance of
different approaches. We use the real costs of the projects throughout. The
choices of parameters (r, n, k) for the three trials are (5, 10, 10), (8, 7, 10),
and (10, 5, 10). We choose this experimental design to yield sufficiently many
samples to verify statistical significance of the results while completing in a
reasonable amount of time.

Approaches: We use the utility profile ~v drawn to create an input profile in
four input formats we study. For each format, we use the deterministic as
well as randomized distortion-minimizing aggregation rule. The non-trivial
algorithms we devise for these rules are presented in Section 2.4. These eight
approaches are referred to using the type of aggregation rule used (“Det” or
“Ran”), and the type of input format (“Knap”, “Val”, “VFM”, or “Th Ap”).

Unlike the other input formats, threshold approval votes are technically a
family of input formats, one for each value of the threshold. While randomiz-
ing over the threshold is required to minimize the distortion (the worst-case
ratio of the optimal and achieved social welfare), as is our goal in the the-
oretical results of Section 2.3, minimizing the expected ratio of the two can
be achieved by a deterministic threshold. In our experiments, we learn the
optimal threshold value based on a holdout set that is not subsequently used.
This learning approach is practical as it only uses observed input votes rather
than underlying actual utilities. This choice likely gives threshold approval
votes an edge — but arguably it is an advantage this input format would
also enjoy in practice.

In addition to our eight approaches, we also test two approaches used in
real-world elections [75]: greedy 4-approval (“Gr 4-Ap”), and greedy knap-
sack (“Gr Knap”). The former elicits 4-approval votes, and greedily selects
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Figure 2.2: Average welfare ratio of different approaches to participatory
budgeting based on data from Boston 2015 and 2016 elections (lower is bet-
ter).

the most widely-approved alternatives until the budget is depleted. The lat-
ter is almost identical, except for interpreting a knapsack vote as an approval
for each alternative in the knapsack.

As the performance measure for the ten approaches, we use the average
ratio of the optimal and the achieved social welfare according to the actual
utility profile used to induce the input profiles — termed average welfare
ratio — where the average is taken across the entire experiment.

Results: Figure 2.2 shows the average welfare ratio of the different approaches
with 95% confidence intervals, sorted from best to worst. The differences in
performance between all pairs of rules — except between Det Knap and Ran
Val, and between Ran VFM and Gr Knap — are statistically significant [83]
at a 95% confidence level.

A few comments are in order. First, deterministic distortion-minimizing
aggregation rules generally outperform their randomized counterparts. This
is not entirely unexpected. While randomized rules do achieve better distor-
tion, there always exists a deterministic rule minimizing the average welfare
ratio objective; although, it is not necessarily the deterministic distortion-
minimizing aggregation rule.

Second, approaches based on deterministic rules are able to limit the loss
in social welfare due to incomplete information about voters’ utility functions
to only 2%–3%. Among these approaches, the one using threshold approval
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votes incurs the minimum loss.
Third, knapsack votes consistently lead to higher distortion than alterna-

tive input formats. This, together with the poor theoretical guarantees for
knapsack votes, suggests that it may not be worthwhile to ask voters to solve
their personal NP-hard knapsack problems before casting vote.

2.5.1 Is It Useful to Learn the Threshold?

In our experiments, when using threshold approval votes, we use the thresh-
old that achieves the best performance on a holdout/training set, to evaluate
the performance of threshold approval votes on the test set.

After sampling a random utility profile consistent with an input vote in
the training set, we generate threshold approval votes for all the thresholds in
[0, 1] at intervals of 0.05, and compute the average distortion (per threshold)
across multiple samples. (This step will not be required in practice once
sufficiently many real votes are elicited).

We select the threshold value that achieves the least average distortion.
Importantly, note that we use distortion — which is only a function of the in-
put profile — rather than the average distortion to select the optimal thresh-
old value. Hence, this method is robust, and does not use any knowledge of
the distribution of utility profiles that we later use in evaluating performance.

This optimal threshold value when evaluating the performance (average
distortion) of threshold approval votes, in conjunction with both the deter-
ministic and the randomized distortion-minimizing aggregation rules.

While threshold approval votes with deterministic aggregation rule
achieves excellent performance with this method of threshold selection, it
is not immediately clear whether the threshold selection was useful. Indeed,
learning a threshold is only useful if the optimal threshold value remains rea-
sonably consistent across the instances. We now investigate the usefulness
of threshold selection in multiple ways.

First, Figure 2.3 shows the average distortion achieved by different values
of the threshold on the training instances, when used in conjunction with the
deterministic and the randomized distortion-minimizing aggregation rules.
Recall that the final threshold value we select is the one that minimizes this
measure. For every threshold value on the x-axis, the error bars indicate the
range that contains the distortion on 95% of the training instances. We do
not plot threshold values above 0.4 as the distortion is non-decreasing beyond
this point.
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Figure 2.3: (Left) Average distortion achieved by different threshold values
in threshold approval votes; (Right) Empirical distribution of the optimal
threshold under deterministic and randomized aggregation.

We observe that the thresholds values that lead to the smallest aver-
age distortion are exactly those with the smallest variation across instances.
Interestingly, the average distortion of different values of the threshold is
wildly different under the deterministic aggregation rule, but rather similar
under the randomized aggregation rule. This effect perhaps manifests itself
in the improved performance of threshold approval votes with deterministic
aggregation than with randomized aggregation in all of our experiments; see
Figure 2.2.

Next, we measure the usefulness of training the threshold value in a dif-
ferent way. In Figure 2.3 (right) we plot the empirical distribution of the
optimal threshold value, i.e., for each threshold value, we plot the percent-
age of training instances in which that value led to the smallest distortion.
For both deterministic and randomized aggregation rules, the distribution of
the optimal threshold value is (quite strongly) centered at 0.1. In fact, the
optimal threshold value was in [0.075, 0.15] in more than 80% of the training
instances.

The consistency with which a single threshold value (0.1) remains the
optimal value suggests that learning this value from the holdout set is very
likely to be valuable.

Finally, we note that the datasets we used contain votes over 10 alter-
natives. That is, m = 10. Interestingly, this makes the empirically optimal
threshold value 1/m, which is precisely the value for which we achieve the best
performance in the worst case in our theoretical results (see Theorem 2.14).
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2.6 User study

We conduct experiments based on data collected from more than 1200 voters
on Amazon Mechanical Turk. Voters were asked to vote over items to take
to a desert island. In the first of our two studies, voters were asked to cast
a vote in a single input format, or report utilities. In the second, they were
asked to both cast a vote and report utilities, as well as to answer several
questions about their subjective experience.

To evaluate whether the different input formats lead to outcomes with
high social welfare, we aggregate a sample of votes and evaluate the outcome
on a random sample of submitted utility profiles. The aggregation happens
by finding the distortion-minimizing budget-feasible subset of alternatives as
described in Section 2.4. A key insight behind the experimental design is that
we can measure the social welfare of an outcome selected by one group of
voters using the utilities submitted by a different group, because the average
utility of each item would be consistent across the groups by the law of large
numbers (the effect of which is present at the scale of our experiments).

We find that for most input formats distortion-minimizing aggregation
leads to outcomes that are quite close to the welfare-maximizing outcome,
even without access to the underlying utility profile. Moreover, we can see
significant differences between different input formats, and some really shine.
Most impressively, our results indicate that the k-approval and ranking by
value for money input formats lead to outcomes that are essentially optimal.

Turning to usability, we consider two types of indicators. Objective in-
dicators, which are computed from data, include consistency and response
time. Subjective indicators, which are based on ratings reported by voters,
include ease of use, likability, and expressiveness.

Consistency refers to the relation between a voter’s utility function and
her vote. For example, if we use k-approval as the input format, we expect
a voter to approve the k alternatives for which she has the highest utility. If
other alternatives are approved, it means that the voter may have misunder-
stood the instructions, or the cognitive burden imposed by the task was too
high to perform it accurately. We find that k-approval by far leads to the
highest degree of consistency, followed by threshold approval and knapsack.
For response time, we find that k-approval again excels in terms of both time
to learn and time to vote. By contrast, ranking by value for money does
badly in both objective measures.

Finally, the subjective usability indicators generally favor ranking by
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Item Cost Utility Item Cost Utility

Mirror 10 5.8 Compass 5 9.4
Top coat 20 2.3 Raincoat 10 5.4
Water 3 29.3 First aid kit 10 14.9
Map 8 9.5 Pistol 30 6.7
Pocket knife 5 14.8 Sunglasses 25 1.9

Table 2.1: The 10 items used in the experiment, their costs, and voters’
reported mean utilities. The budget is $65.

value for money, especially in terms of how expressive it is perceived to be by
voters. By contrast, k-approval is seen as the least expressive input format.

2.6.1 Experimental Setup

We recruited more than 1200 voters on Amazon Mechanical Turk for our
experiments, and asked them to evaluate a hypothetical scenario. Voters
were told that they are stranded on a desert island, there is a set of items
which may increase their chances of survival, each item has a cost, and there
is a budget of $65. The list of items is shown in Table 2.1, along with voters’
reported mean utility for each item.

This abstract task is inspired by studies of group decision making [79],
and asks for a choice from a set of items, as in participatory budgeting. It
was selected to eliminate biases based on voters’ locations. For example, if
we were to confront voters with a more traditional participatory budgeting
setting in which one potential project involves upgrading a park, one may
expect voters’ utilities to vary drastically based on the health of their city’s
existing park system. This effect would be missing in real-world participatory
budgeting elections, in which voters are typically residents of the same city.

In our experiments, voters are asked to report their preferences over the
items in one of the five input formats described in Section 2.2 and/or report
their numerical utilities for the different items. Votes in each input format
(and utilities) are elicited using a dedicated user interface. Figure 2.4 shows
the user interface for knapsack, in which voters use checkboxes to select items.
Below, we describe how votes are elicited through each interface.

� Knapsack vote: Voters are shown the interface of Figure 2.4. The task
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is: “You need to select which items to take based on your carrying
capacity of 65 pounds.”

� Ranking by value: Voters are shown the list of items in a drag-and-drop
interface. The task is: “Rank the items from the most important to
the least important according to your best judgment.”

� Ranking by value for money : Voters are shown the list of items and
their weights in a drag-and-drop interface. The task is: “If you had to
divide 100 points among the items based on how much you like them,
rank the items in the decreasing order of the number of points they
would receive divided by the cost.”

� Threshold approval : Voters are shown a list of items with checkboxes.
The task is: “If you had to divide 100 points among the items based
on how much you like them, select all the items that would receive at
least 10 points.”

� 5-approval : Voters are shown a list of items with checkboxes. The task
is: “You need to select up to 5 items from a list of 10 items according
to your best judgment.”

� Utilities : Voters are shown a list of items and sliders that control the
number of points given to each. The task is: “You need to distribute
100 points among 10 items. The more points you assign to an item,
the more important you think the item is to your survival.”

We conducted two studies, which we refer to as A and B. In study A, 720
voters were recruited; each voter was randomly assigned one of the above
input formats and cast a single vote in this format. This yields 120 votes in
each format. The dataset from this study is used in the experiments detailed
in Sections 2.6.2 and 2.6.3.

In study B, an additional 500 voters were recruited, and engaged in a
two-stage process. In the first stage, half of the voters were asked to vote
using one of the five input formats (randomly assigned). In the second stage,
these voters were asked to specify their utility for each item. After each step,
the voters were asked to rate how easy they found the activity, and how
much they liked the user interface. To control for ordering effects, the other
half of the voters were asked to perform the two stages in the reverse order
(i.e., specify utilities in the first stage, and vote in a given input format in
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Figure 2.4: Screenshot of the knapsack interface.

the second stage). The dataset from this study is used for the experiments
detailed in Sections 2.6.3 and 2.6.3.

In both studies, participation is contingent on voters reading a short
tutorial, passing a pre-task quiz which verifies voters’ comprehension of the
interface, and passing a post-task quiz which asks voters questions about
their votes to ensure that the votes received at least some consideration. For
example, the post-task quizzes in the ranking by value and ranking by value
for money formats ask voters whether top coat was positioned higher than
water in their ranking. Voters were paid 20 cents for completing the tutorial
and the pre-task quiz, and a bonus of 10 cents for completing the post-task
quiz.

2.6.2 Efficiency

Given the underlying utility functions ~v of the voters, our goal is to choose
an optimal (welfare-maximizing) budget-feasible set of alternatives:

S∗ ∈ arg max{sw(S,~v) : S ∈ Fc},
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where
Fc , {S ⊆ A : c(S) ≤ B}

is the collection of all budget-feasible sets of alternatives. When choosing a
suboptimal set S ∈ Fc, we face an efficiency loss defined as

EL(S,~v) , 1− sw(S,~v)

maxT∈Fc sw(T,~v)
.

In words, an efficiency loss of 0.05 (5%) means that the set chosen achieves
95% of the optimal welfare.

When votes are cast in an input format, we have access only to the votes
~ρ, and not to the utility profile ~v. While ~ρ provides partial information
regarding ~v (specifically, that ~v B ~ρ), some efficiency loss is inevitable.

As before, we advocate for using distortion-minimizing aggregation rules,
which in the notation introduced here means finding the deterministic aggre-
gation rule f ∗ which returns

f ∗(~ρ) ∈ arg min
S∈Fc

sup
~v:~vB~ρ

EL(S,~v).

In our efficiency experiment, we want to evaluate and compare the ef-
ficiency loss of the distortion-minimizing set chosen based on votes in each
input format. Instead of evaluating the efficiency loss in the worst case, we
want to evaluate it using the underlying utility profile. Specifically, we take
the dataset from study A, sample 60 voters for each input format, compute
the distortion-minimizing set for the corresponding vote profile, and evaluate
its efficiency loss using the utility profile of another sample of 60 voters who
were asked to submit their utility functions.

A crucial insight behind this experiment, which is necessary for its valid-
ity, is that the average utility of an item, according to the utility profile of
the second set of voters, closely approximates its average utility according to
the first set of voters. This is intuitively true by the law of large numbers,
and is confirmed by our experiments in Section 2.6.3. For this reason, we
can accurately estimate the social welfare of a subset of items with respect
to the first set of voters, without asking these voters to report both utilities
and votes.

Figure 2.5 reports the average efficiency loss (in percent) across 1 000 rep-
etitions of this experiment. The Mann-Whitney U test found a statistically
significant difference in performance (at the p = 0.05 level) between every
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Figure 2.5: The average efficiency loss for each input format. Lower is better.

pair of input formats except between k-approval and ranking by value for
money. Both k-approval and ranking by value for money perform incredi-
bly well and achieve social welfare within 0.5% of optimal, suggesting that
they capture sufficient information about voter preferences to allow compu-
tation of near-efficient outcomes. The worst performance is demonstrated by
ranking by value, which incurs an 8% efficiency loss on average.

2.6.3 Usability

For an input format to be viable for deployment in participatory budgeting
elections, we expect it to allow voters to accurately and quickly express their
preferences, while also being easy to understand and use. To that end, we
measure the usability of an input format through both objective and sub-
jective indicators. While the objective indicators of usability are computed
from data, the subjective indicators are self-reported by the voters.

We focus on two objective indicators. First, we want to ensure that the
votes cast by voters in an input format are consistent with the utility func-
tions expressed by the (same or different) voters. We call this consistency.
Second, we record the amount of time it takes for voters to complete the
tutorial and cast their vote, which is an indicator of the cognitive burden.
We call this response time.

We additionally ask voters about their experience of casting a vote in their
assigned input format, and record three subjective indicators of usability:
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how easy it is to cast a vote, how much they like the user interface, and how
well the input format allows them to express their preferences.

Objective Indicators

As noted earlier, we measure two objective indicators of usability: consis-
tency between votes and utility functions, and time taken by voters.

Consistency. Intuitively, consistency measures whether voters’ reported
utility functions induce their votes cast in a given input format. If an input
format allows voters to accurately express their preferences, we may expect
a high level of consistency. We measure consistency in two forms.

For internal consistency, we call a voter consistent if the voter’s reported
utility function is consistent with that same voter’s vote in the assigned input
format (i.e., the utility function induces the vote, up to any ties). For each
input format, we report the percentage of consistent voters.

Recall that we chose the desert island setting with the assumption that
it minimizes the effect of voters’ contextual background. If this assumption
holds, we should expect consistency even between the votes and the utility
functions reported by different sets of voters. We refer to this as external
consistency. For this, we use data from study A, and from the first stage
of study B. For each input format, the submitted votes form a vote profile
~ρ, and the submitted utilities functions form a utility profile ~v. We measure
the fraction of votes induced by ~v that match with votes in ~ρ. Formally, to
account for ties, we create a bipartite graph with votes from ~ρ on one side and
utility functions from ~v on the other, and add an edge between vote ρi and
utility function vj when vj B ρi. We report the percentage of matched votes,
or the cardinality of the maximum matching divided by 170 (the number of
vertices on each side).

The results are provided in Figure 2.6. k-approval is comfortably the best
in terms of both internal and external consistency (both above 50%). We
find the internal consistency of knapsack to be surprisingly high: more than
a third of the voters can report exact solutions to their personal knapsack
problem, the computational hardness of the knapsack problem and the sheer
number of budget-feasible subsets of alternatives notwithstanding. Ranking
by value for money and ranking by value perform poorly in both forms of
consistency. It is tempting to claim that this is due to the space of possi-
ble rankings being exponentially large, but as noted above, knapsack votes
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Figure 2.7: Average time taken (in seconds) to complete the pre-task tutorial
and to cast a vote in each input format. Lower is better.

perform well despite this obstacle.

Finally, we remark that the high degree of similarity between internal and
external consistency for each input format is yet another strong indication
that the utility profile of one set of voters serves as a good substitute for the
utility profile of another set of voters, which is a foundational assumption for
the validity of our between-user study.

Response time. The response time to complete a task is recognized as
a proxy for the objective difficulty (or cognitive load) associated with the
task [112]. For each input format, we report, in Figure 2.7, the average
amount of time it took to learn how to vote in the format (complete the
tutorial and pass the quiz) and to cast a vote in the format.
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In terms of the difficulty of learning an input format, k-approval and
ranking by value are the easiest (the difference between them is not statisti-
cally significant), followed by knapsack and threshold approval. Ranking by
value for money is the most difficult by a wide margin.

In terms of the time taken to cast a vote, k-approval is also by far the
fastest input format, at 45 seconds on average. Knapsack and ranking by
value take about 70 seconds, while ranking by value for money is again the
slowest by a wide margin, at almost 3 minutes.

For reference, we also report how long it takes for voters to submit their
utility functions. At 96 seconds, this is slower than every input format except
ranking by value for money. This largely supports the belief that it is taxing
for voters to report their exact utility functions.

Summary. The objective indicators of usability overwhelmingly point to
k-approval. It is distinctively the best at allowing voters to quickly learn
the format and cast a vote, and results in votes that are by far the most
consistent with the voters’ utility functions. By contrast, ranking by value
for money performs miserably. It takes voters more than three times longer
to vote using this format than under k-approval, and the resulting votes have
little in common with the voters’ utility functions.

Subjective Indicators

In addition to computing objective indicators of usability, we asked 500 vot-
ers in study B to report their experiences with different input formats, and
measured various subjective indicators of usability. When we say below that
a result is statistically significant, we are referring to the Mann-Whitney and
Wilcoxon signed-rank tests at the p < 0.05 level.

Ease of use. We asked voters to report how easy they found the voting task
on a scale of 0 to 5 (5 being the easiest). The perceived (subjective) difficulty
is reported in Figure 2.8(a). Ranking by value for money is significantly worse
than every other input format, while the differences between the other input
formats are not statistically significant.

User interface. We also asked voters to report how much they liked the
user interface on a scale of 0 to 5 (5 being the most liked). As seen in
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Figure 2.8: How easy to use each input format is, and how liked its user
interface is, based on the subjective reports of the voters on a scale of 0 to
5, 5 being the best.

Figure 2.8(b), ranking by value and knapsack are the most liked interfaces,
followed by k-approval and threshold approval (with no significant difference
between each pair). Ranking by value for money was again the least liked.

We believe that this is somewhat correlated with the inherent difficulty
of an input format because our choice of user interface was standard in most
cases. However, the results are subject to change with design of better user
interfaces.

Perceived Expressiveness. We asked voters to report how well their as-
signed input format captured their preferences on a scale of 0 to 5. As seen in
Figure 2.9, ranking by value is reported to be much more expressive than any
other input format (by a statistically significant margin), while k-approval
and threshold approval votes are the least expressive. Although voters dis-
like using ranking by value for money, they still feel that it captures their
preferences well.

Summary. In terms of subjective indicators, ranking by value seems the
most preferred input format: voters feel that it best captures their prefer-
ences, and no other input format is more easy to use or liked (in a statistically
significant manner). Ranking by value for money is again the most difficult
to use and least liked, although voters feel it captures their preferences fairly
well.
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Figure 2.9: Voters’ perceived expressiveness of different input formats.
Higher is better.

2.6.4 Discussion of user study

Our results shed light on the efficiency and usability of five input formats used
in participatory budgeting. Somewhat surprisingly, the most popular — and
arguably the simplest — input format, k-approval, outperforms every other
input format in terms of efficiency (welfare loss) and objective indicators of
usability (consistency of votes and response time). In terms of the subjective
indicators, no input format is statistically easier to use than k-approval, while
the user interfaces of ranking by value and knapsack are only somewhat more
liked than that of k-approval.

The results for the third subjective indicator, namely expressiveness, are
the only ones that prevent k-approval from being dominant across the board.
Indeed, voters feel that k-approval is the worst in capturing their preferences,
while ranking by value is the best. Our efficiency experiments reveal that, in
fact, the exact opposite is true: k-approval contains information that leads to
the most efficient outcomes, while ranking by value leads to the least efficient
ones. This highlights the distinction between what voters feel is important
when casting a vote, and what is needed to enable efficient aggregation.

Ranking by value performs well in terms of subjective indicators of us-
ability, and somewhat worse in terms of the objective indicators. However,
it is especially concerning that it leads to outcomes that have relatively low
social welfare.

Knapsack performs reasonably on all indicators, including surprisingly
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good response times, which corroborate the results of [75]. Based on our
discussions with practitioners in Europe, it seems that the fact that this input
format encourages voters to directly reason about the government’s budget
constraints is also seen as an advantage, which could potentially outweigh
some of the disadvantages shown by our results.

The subjective and objective indicators agree that voters find ranking by
value for money to be difficult to use and that these votes rarely reflect voters’
true utility functions (but mysteriously lead to efficient outcomes). This
cautions strongly against the use of ranking by value for money, although it is
less clear what the implications are for pairwise value for money comparisons
as advocated by [75].

Finally, we acknowledge several limitations of our study, and point to
directions for future work. First, our efficiency results use the distortion-
minimizing aggregation method for each input format. While this provides a
consistent choice across input formats, it would be interesting to use more re-
alistic (e.g., greedy) aggregation methods to better understand the efficiency
loss in practice. Second, our results are closely tied to our choice of user
interfaces for eliciting voter preferences. Arguably, a better user interface
can lead to increased measures of usability, including votes that are more
consistent with voters’ utility functions, which in turn can lead to greater
efficiency. Hence, the design of improved, more intuitive user interfaces is an
important direction for future research.

Next, in all of our experiments, except in the measurement of internal
consistency, we only used data generated by asking voters to vote in a single
input format. This choice was based on the assumption that asking voters
to vote in multiple formats would not only be tiring, but can also affect
the votes themselves. This was partially confirmed by our measurements of
internal consistency. We observed that if we ask voters to report their utility
functions and cast their votes using an input format, voters are generally far
less consistent when utility functions are reported first. However, there is a
need for more thorough experiments to identify and understand the effects
of asking voters to report their preferences in multiple forms.

We note that our desert island setting uses 10 items (alternatives), while
real participatory budgeting elections may require voters to compare more
items. We limited the number of items to allow voters to accurately report
their utility functions, which was necessary to measure consistency and effi-
ciency loss. An important direction for future work is to study voter behavior
when evaluating more than 10 items, which may require indirectly measuring
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consistency and efficiency loss without access to the utility functions.
More broadly, while our desert island setting provides a good abstrac-

tion of participatory budgeting and reduces the effect of voters’ contextual
background, it makes the voters a bit too homogeneous. In our setting, it is
likely that all voters have similar preferences. By contrast, in participatory
budgeting, it is likely that voter preferences are clustered based on factors
such as personal interests and geographical location. Studying the structure
of voter preferences and its effect on the choice of efficient outcomes in real
participatory budgeting elections is perhaps the most compelling direction
for future research.

2.7 Discussion

Our theoretical results indicate that threshold approval votes should receive
serious consideration as the input format of choice for participatory bud-
geting. However, our user study does not point to one format being clearly
superior, although it does lead to useful conclusions, for example, rankings by
value for money is extremely difficult to use. We expect that further human
experiments will be required to determine which input formats strike thebest
balance between being user-friendly and leading to efficient outcomes.

Whatever the best approach to participatory budgeting is, now is the
time to identify it, before various heuristics become hopelessly ingrained.
We believe that this is a grand challenge for computational social choice,
especially at a point in the field’s evolution where it is gaining real-world
relevance by helping people make decisions in practice.
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Chapter 3

Low-distortion rankings

3.1 Introduction

Classic social choice theory typically approaches the design of voting rules
from an axiomatic viewpoint, that is, researchers formulate attractive prop-
erties, and ask whether there are voting rules that satisfy them. By contrast,
research in computational social choice [35] is often guided by optimization,
in that researchers specify quantitative measures of the desirability of differ-
ent alternatives, and construct voting rules that optimize them.

One such approach is known as implicit utilitarian voting [31, 46, 106]. In
a nutshell, the idea is that each voter i has a utility function ui that assigns
a value to each alternative. However, these utility functions are implicit,
in the sense they cannot be communicated by the voters (because they are
unknown or difficult to pin down). Instead, voters report rankings of the
alternatives that are consistent with the underlying utility functions, that is,
each voter sorts the alternatives in non-increasing order of utility. The goal
is to choose an alternative a that maximizes (utilitarian) social welfare —
the sum of utilities

∑
i ui(a) — using the reported rankings as a proxy for

the latent utility functions.

From that viewpoint, the best voting rule is the one that minimizes a
measure called distortion, defined by Procaccia and Rosenschein [106] as
the ratio between the social welfare of the best alternative, and the social
welfare of the alternative selected by the rule, in the worst case over all
utility functions that are consistent with the observed rankings. Put another
way, this is the approximation ratio to the welfare-maximizing solution, and
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the need for approximation stems from lack of information about the true
utilities.

In recent years, implicit utilitarian voting has emerged as a practical
approach for helping groups of people make joint decisions. In particular,
optimal voting rules, based on the implementation of Caragiannis et al. [46],
are deployed on the not-for-profit website RoboVote.org for the case where
the desired output is a single alternative or a subset of winning alternatives.

However, RoboVote also has a third output type, a ranking of the al-
ternatives, and for this case the website currently does not take the same
approach — instead it uses the well-known Kemeny rule [55, 59]. Indeed, it
is unclear how to even view the problem of returning a ranking through the
lens of implicit utilitarian voting — if a voter has a utility for each alterna-
tive, what is his utility for a ranking of the alternatives? One could assume
that a voter i has a weight wi,j for each position j, so his utility for the
ranking (a1, a2, . . . , am) would be

∑m
j=1 wi,jui(aj); but any particular choice

of weights would be ad hoc.

3.1.1 Our Approach and Results

The insight underlying our approach is that the worst-case perspective also
extends to the choice of weights. That is, when we measure the social welfare
of an output ranking given reported input rankings, we consider the worst
case over both utility functions and weights.

Of course, this is a very conservative approach, and one might worry
that it would lead to massive distortion. But our main theoretical result
is that the distortion of optimal voting rules is asymptotically identical to
the case where only a single alternative is selected (and there are no weights
whatsoever), up to a polylogarithmic factor — in both cases it is Θ̃(

√
m),

where m is the number of alternatives.
In fact, we establish a significantly stronger result, as we allow voters

to have combinatorial utility functions over subsets of alternatives, and we
measure the utility of a voter for a ranking as the weighted sum of his utilities
for prefixes of that ranking; the foregoing distortion bound holds when the
utility functions are monotonic and subadditive. We find it striking that it is
possible to formulate the problem in such generality with no tangible increase
in distortion.

Our computational results demonstrate that it is practical to compute
deterministic distortion-minimizing rankings for instances with up to 10 al-
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ternatives. This constraint on the instance size is not unreasonable, as 98.3%
of RoboVote instances have 10 or fewer alternatives. For larger instances we
test several heuristics and find that the Borda and Kemeny rules typically
lead to low distortion and near-optimal social welfare.

3.1.2 Related Work

Generally speaking, the implicit utilitarian voting literature can be parti-
tioned into two complementary strands of research. One does not constrain
the structure of voters’ utility functions [20, 31, 41, 46, 106]. The other (which
is more recent) assumes that utility functions are derived from an underlying
metric space, naturally leading to smaller distortion [7, 9, 67, 76, 77]. Our
setup is consistent with the former line of work.

On a technical level, two of the foregoing papers are most closely related
to ours. The first is by Boutilier et al. [31], who study the distortion mini-
mization problem when the output is a distribution over winning alternatives.
They prove an upper bound of O (

√
m · log∗m) on the distortion of optimal

voting rules, and a lower bound of Ω(
√
m). Their setting coincides with ours

when wi,1 = 1 for each voter i, because in that case social welfare depends
only on the utility of each voter for the top-ranked alternative. Achieving
low distortion is much more difficult in our setting, and, in particular, their
lower bound directly carries over (whereas their upper bound clearly does
not).

The second paper, by Benadè et al. [20], studies distortion-minimizing
rules for the participatory budgeting problem, where each alternative has a
cost, and the goal is to choose a subset of alternatives that satisfies a budget
constraint. Voters are assumed to have additive utility functions. Their
results are incomparable to ours — their problem is “harder” in that they
have to deal with (known) costs and budget constraints, but “easier” in that
they choose a single subset, whereas we, in a sense, choose m nested subsets
(the m prefixes of our ranking), which are weighted according to unknown
weights. Furthermore, our results hold for richer (subadditive) combinatorial
utility functions.
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3.2 The Model

Our setting involves a set of voters [n] = {1, . . . , n}, and a set of alternatives
[m] = {1, . . . ,m}. We are interested in the set Sm of rankings, or permuta-
tions, over [m]. We think of a ranking τ ∈ Sm as a function from positions
to alternatives, i.e., τ(j) is the alternative in position j in τ , and τ−1(j) is
the position in which τ places alternative j.

The preferences of each voter i are represented as a ranking σi ∈ Sm. A
preference profile is a vector ~σ = (σ1, . . . , σn) of the rankings of all voters.

A (randomized) social choice function is a function f : (Sm)n → ∆([m]),
which takes a preference profile as input, and returns a distribution over
winning alternatives. In this paper we focus on (randomized) social welfare
functions, whose range is instead ∆(Sm), i.e., they also take a preference
profile as input, but return a distribution over rankings.

A novel component of our model is that we assume that each voter i ∈ [n]
is associated with a combinatorial utility function ui : 2[m] → R+ and a weight
vector wi ∈ Rm

+ . Following previous work [41, 31, 46, 20], both are assumed
to be normalized, that is, for all i ∈ [n], ui(∅) = 0 and

∑m
j=1 ui({j}) =∑m

j=1wi,j = 1. Moreover, our results make use of the following properties of
utility functions:

� Monotonicity: ui(S) ≤ ui(T ) for all S ⊆ T ⊆ [m].

� Subadditivity: ui(S) + ui(T ) ≥ ui(S ∪ T ) for all S, T ⊆ [m].

The utility of voter i for a ranking τ ∈ Sm is given by the weighted sum
of his utilities for the prefixes of τ , that is,

ui(τ) =
m∑
j=1

wi,j · ui({τ(1), τ(2), . . . , τ(j)}).

We remark that even additive utility functions are able to capture the simpler
setting discussed in Section 3.1, which can be formalized by assigning each
voter a utility function u′i : [m]→ R+ and weights such that w′i,j ≥ w′i,j+1 for
all j ∈ [m− 1], and letting u′i(τ) =

∑m
j=1 w

′
i,j · u′i(τ(j)).

We assume that each voter reports a ranking that is consistent with
his utility function, which, in our general formulation with combinatorial
utilities, we take to mean that voter i reports σi only if

ui({σi(1)}) ≥ ui({σi(2)}) ≥ · · · ≥ ui({σi(m)}).

58



We denote this notion of consistency by ui . σi, and, when σi is consistent
with ui for all i ∈ [n], ~u . ~σ.

Our goal is to optimize (utilitarian) social welfare, that is, the sum of
utilities voters have for the output ranking. Formally,

sw(τ) ,
n∑
i=1

ui(τ).

However, since we only observe the given preference profile, we cannot
directly optimize social welfare. To measure how far a social welfare function
is from maximizing this objective, we adapt the concept of distortion [106].
Formally, the distortion of a social welfare function f on a preference profile
~σ is

dist(f, ~σ) , max
~u: ~u.~σ

max
~w

maxτ∈Sm sw(τ)

Eµ∼f(~σ)[sw(µ)]
.

In words, distortion measures the ratio between the social welfare of the
welfare-maximizing ranking, and the expected social welfare of the distribu-
tion over rankings produced by f , in the worst case over all possible weights
~w = (wi,j)i∈[n],j∈[m], and all possible utility profiles that are consistent with
the given preference profile. Finally, the distortion of f is the worst case
distortion over all possible preference profiles: dist(f) , max~σ dist(f, ~σ).

3.3 Distortion Bound

In this section we establish a tight (up to polylogarithmic factors) bound on
the distortion of optimal social welfare functions. As noted in Section 3.1.2,
Boutilier et al. [31] prove a lower bound of Ω(

√
m) on the distortion of optimal

social choice functions, which carries over to our setting. Therefore, to show
that optimal social welfare functions have distortion Θ̃(

√
m), it is sufficient

to prove the following theorem, which is our main result.

Theorem 3.1. Under the monotonicity and subadditivity assumptions, there

exists a randomized social welfare function with distortion O
(√

m ln3/2m
)

.

The construction of our social welfare function relies on the harmonic
scoring function [31], defined as follows. Recall that σ−1

i (j) denotes the
position of alternative j in the ranking of voter i. The harmonic score of
alternative j is score(j) ,

∑n
i=1 1/σ−1

i (j).
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We will make use of the following two properties of the harmonic scoring
function.

Lemma 3.2. For any m ≥ 2,
∑m

j=1 score(j) ≤ 3n lnm.

Proof of Lemma 3.2. By definition,

m∑
j=1

score(j) =
m∑
j=1

n∑
i=1

1/σ−1
i (j) =

n∑
i=1

m∑
j=1

1/j

≤ n(lnm+ 1) ≤ 3n lnm.

Lemma 3.3. Under the subadditivity assumption, for any S ⊆ [m] it holds
that

∑n
i=1 ui(S) ≤

∑
j∈S score(j).

Proof of Lemma 3.3. For any voter i ∈ [n] and alternative a ∈ [m],

1 =
m∑
j=1

ui(σi(j)) ≥
σ−1
i (a)∑
j=1

ui(σi(j)) ≥ σ−1
i (a) · ui({a}).

Thus, ui({a}) ≤ 1/σ−1
i (a). Moreover, by the subadditivity of ui, ui(S) ≤∑

j∈S ui({j}). It follows that

n∑
i=1

ui(S) ≤
n∑
i=1

∑
j∈S

ui({j}) ≤
∑
j∈S

n∑
i=1

1/σ−1
i (j)

=
∑
j∈S

score(j).

We require one other lemma that is quite technical; its proof is relegated
to the appendix.1 In the lemma, and throughout the theorem’s proof, we

denote by T
k←− S the experiment of drawing a subset T of size k from S

uniformly at random.

1An anonymous appendix containing the proof of Lemma 3.4 is available via
http://www.filedropper.com/442appendix. Please note that this is allowed according
to the IJCAI’18 CFP, see https://www.ijcai-18.org/FAQ/#q6.
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Lemma 3.4. Suppose A ⊆ B∩C and k ≤ |B| ≤ |C|. Function g : 2A → R+

satisfies the monotonicity and subadditivity conditions. Then

|B| · E
T

k←−B
[g(T ∩ A)] ≤ 4|C| · E

T
k←−C

[g(T ∩ A)].

We are now ready to prove the theorem.

Proof of Theorem 3.1. We construct a randomized social welfare function
that, given a preference profile ~σ, proceeds as follows.

� Sort the alternatives into a ranking ν with score(ν(1)) ≥ score(ν(2)) ≥
· · · ≥ score(ν(m)).

� Let tmax = dlog2me and α =
√
m lnm. Draw t uniformly at random

from [tmax] and set m′t = min (b2tαc ,m).

� With probability 1/2, return a uniformly random permutation of [m].
Otherwise, shuffle the first m′t elements of ν uniformly at random, and
return the resulting ordering.

The rest of the proof analyzes the distortion of the foregoing function.
By the monotonicity of utility functions, the social welfare of every ranking
τ ∈ Sm is at least

sw(s) =
n∑
i=1

m∑
j=1

wi,j · ui({τ(1), τ(2), . . . , τ(j)})

≥
n∑
i=1

m∑
j=1

wi,j · ui({τ(1)}) =
n∑
i=1

ui({τ(1)}),

where the last transition follows from
∑m

j=1wi,j = 1.
If the mechanism decides to return a random permutation τ , τ(1) is uni-

formly distributed in [m], and thus the expected social welfare is at least

1

m

m∑
τ(1)=1

n∑
i=1

ui({τ(1)}) =
1

m

n∑
i=1

m∑
j=1

ui({j}) =
n

m
.

On the other hand, consider the case where the mechanism randomly
shuffles the first m′t elements in ν. Let mt , min{2t,m}, and define Rt ,
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{ν(1), ν(2), . . . , ν(m′t)}. The resulting expected social welfare is at least

n∑
i=1

mt∑
j=1

wi,j · E
T

j←−Rt
[ui(T )].

Let SOLt denote the expected social welfare conditioning on the value of
t. Then the above discussion implies that

SOLt ≥
n

2m
+

1

2

n∑
i=1

mt∑
j=1

wi,j · E
T

j←−Rt
[ui(T )]. (3.1)

Let µ∗ denote the welfare-maximizing ranking. Let St ,
{µ∗(1), µ∗(2), . . . , µ∗(mt)}, and

OPTt ,
n∑
i=1

mt∑
j=1

wi,j E
T

j←−St
[ui(T )].

In the following, we show that

tmax∑
t=1

OPTt ≥
sw(µ∗)

2
, (3.2)

and for any t ∈ [tmax],

SOLt ≥
OPTt

12
√
m lnm

. (3.3)

Inequalities (3.2) and (3.3) directly imply that the expected social welfare
obtained by the mechanism is at least

1

tmax

tmax∑
t=1

SOLt ≥
1

dlog2me

tmax∑
t=1

OPTt

12
√
m lnm

≥ sw(µ∗)

O
(√

m ln3/2m
) ,

which concludes the proof.

Proof of Equation (3.2). Note that for any t ∈ [tmax] and j ∈ [mt/2,mt],
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E
T

j←−St
[ui(T )] ≥ E

T
mt/2←−−−St

[ui(T )] ≥ E
T

mt←−St
[ui(T )] · 1

2

= ui(St) ·
1

2

≥ ui({µ∗(1), µ∗(2), . . . , µ∗(j)}) · 1

2
, (3.4)

where the first transition follows from the monotonicity of ui, the second
from its subadditivity, the third from |St| = mt, and the last again from
monotonicity. Therefore,

tmax∑
t=1

OPTt ≥
tmax∑
t=1

n∑
i=1

mt∑
j=mt/2

wi,j · E
T

j←−St
[ui(T )]

≥ 1

2

n∑
i=1

tmax∑
t=1

mt∑
j=mt/2

wi,j · ui({µ∗(1), . . . , µ∗(j)})

≥ 1

2

n∑
i=1

m∑
j=1

wi,j · ui({µ∗(1), . . . , µ∗(j)})

=
sw(µ∗)

2
,

where the second inequality follows from Equation (3.4), and the third holds
because m1/2 = 1 and mtmax = m.

Proof of Equation (3.3). Let S+
t = St∩Rt and S−t = St\Rt. The subadditivity

of ui implies that for any T ⊆ St, ui(T ) ≤ ui(T ∩ S+
t ) + ui(T ∩ S−t ). Thus,

we can derive an upper bound on OPTt as follows:

OPTt =
n∑
i=1

mt∑
j=1

wi,j · E
T

j←−St
[ui(T )]

≤
n∑
i=1

mt∑
j=1

wi,j · E
T

j←−St

[
ui(T ∩ S+

t ) + ui(T ∩ S−t )
]

=
n∑
i=1

mt∑
j=1

wi,j · E
T

j←−St

[
ui(T ∩ S+

t )
]
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+
n∑
i=1

mt∑
j=1

wi,j · E
T

j←−St

[
ui(T ∩ S−t )

]
. (3.5)

We establish upper bounds on the two terms on the right hand side of
Equation (3.5) separately. For the first term, note that S+

t ⊆ St ∩ Rt and
|St| = mt ≤ m′t = |Rt|. For any i ∈ [n] and j ∈ [mt], applying Lemma 3.4
with g = ui, k = j, A = S+

t , B = St and C = Rt gives

|St| E
T

j←−St

[
ui(T ∩ S+

t )
]
≤ 4|Rt| E

T
j←−Rt

[
ui(T ∩ S+

t )
]
.

It follows that

E
T

j←−St

[
ui(T ∩ S+

t )
]
≤ 4m′t

mt

E
T

j←−Rt

[
ui(T ∩ S+

t )
]

≤ 4α E
T

j←−Rt

[
ui(T ∩ S+

t )
]
.

Summation over i and j yields

n∑
i=1

mt∑
j=1

wi,j · E
T

j←−St

[
ui(T ∩ S+

t )
]

≤ 4α
n∑
i=1

mt∑
j=1

wi,j · E
T

j←−Rt

[
ui(T ∩ S+

t )
]

≤ 8α · 1

2

n∑
i=1

mt∑
j=1

wi,j · E
T

j←−Rt
[ui(T )] .

(3.6)

We next bound the second term on the right hand side of Equation (3.5).
Note that

n∑
i=1

mt∑
j=1

wi,j · E
T

j←−St

[
ui(T ∩ S−t )

]
≤

n∑
i=1

mt∑
j=1

wi,j · ui(S−t ) ≤
n∑
i=1

ui(S
−
t ) ≤

∑
j∈S−t

score(j).

Here the first step is due to the monotonicity of ui, the second step holds
since

∑mt
j=1 wi,j ≤

∑m
j=1wi,j = 1, while last step applies Lemma 3.3. For each
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alternative a ∈ S−t , it follows from Lemma 3.2 that

3n lnm ≥
m∑
j=1

score(j) ≥
m′t∑
j=1

score(ν(j)) ≥ m′t · score(a),

so score(a) ≤ 3n lnm/m′t for any a ∈ S−t . Therefore, we have

n∑
i=1

mt∑
j=1

wi,j · E
T

j←−St

[
ui(T ∩ S−t )

]
≤ 3n lnm · |S

−
t |
m′t

.

Recall that m′t = min (b2tαc ,m), and S−t = St \Rt = St \ {ν(1), . . . , ν(m′t)}.
If m′t = m, we have S−t = ∅ and |S−t |/m′t = 0. When m′t < m, it holds that
m′t = b2tαc ≥ 2t−1α and mt = 2t. Thus, |S−t |/m′t ≤ mt/m

′
t ≤ 2/α. In either

case,

n∑
i=1

mt∑
j=1

wi,j · E
T

j←−St

[
ui(T ∩ S−t )

]
≤ 3n lnm · |S

−
t |
m′t

≤ 3n lnm · 2

α

=
n

2m
· 12α. (3.7)

Putting everything together, we have that

OPTt ≤
n∑
i=1

mt∑
j=1

wi,j · E
T

j←−St

[
ui(T ∩ S+

t )
]

+
n∑
i=1

mt∑
j=1

wi,j · E
T

j←−St

[
ui(T ∩ S−t )

]
≤ 8α · 1

2

n∑
i=1

mt∑
j=1

wi,j · E
T

j←−Rt
[ui(T )] + 12α · n

2m

≤ 12α · SOLt = 12
√
m lnm · SOLt,

where the first inequality follows from Equation (3.5), the second from (3.6)
and (3.7), and the third from (3.1). This proves Equation (3.3) and completes
the proof of the theorem.
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We remark that some restriction on the combinatorial structure of the
valuation functions, beyond monotonicity, is necessary to achieve sublinear
distortion. Indeed, in the following example we construct non-subadditive
utility functions such that any social welfare function must have distortion
Ω(m).2

Example 3.5. Consider the following utility function: for two distinct al-
ternatives a, b ∈ [m],

ua,b(S) =

{
1, {a, b} ⊆ S,

|S|/m, otherwise.

Note that ua,b is monotonic. Moreover, the function is consistent with any
ranking of [m], so we can assume that a voter with utility function ua,b reports
the same ranking σ regardless of a and b.

Let there be a single voter with weight vector (0, 1, 0, 0, . . .). The utility
of a ranking τ is given by ua,b({τ(1), τ(2)}). In order to achieve a utility of
1 (rather than 2/m), it is necessary to place a and b in the top two slots.
Any randomized welfare function has two alternatives that, given σ as input,
are placed in the first two positions with probability at most 2/m(m − 1).
By choosing these two alternatives to be a and b, we can guarantee that the
function achieves expected social welfare at most

2

m(m− 1)
· 1 +

(
1− 2

m(m− 1)

)
· 2

m
,

whereas the optimum is 1. The ratio is Ω(m).

3.3.1 Proof of Lemma 3.4

Before proving Lemma 3.4, we introduce two lemmas that establish some
properties of monotonic and subadditive functions. The following lemma
states that, given a monotonic utility function defined on set S, when a
subset of size k is drawn from S uniformly at random, the expected utility
of the resulting subset is non-decreasing in k.

2 Ranking the alternatives uniformly at random achieves distortion O (m). Thus, in
such cases we cannot significantly outperform a random guess.
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Lemma 3.6. Suppose function g : 2S → R+ satisfies the monotonicity con-

dition. Define (ak)
|S|
k=0 as ak , E

T
k←−S[g(T )]. Then,

a0 ≤ a1 ≤ · · · ≤ a|S|.

Proof of Lemma 3.6. Fix integer k between 1 and |S|. Suppose we draw

X
k←− S, choose x from X uniformly at random, and then let Y = X \ {x}.

Note that X and Y are uniformly (yet not independently) distributed in all
subsets of S of size k and k−1, respectively. Since Y ⊆ X, the monotonicity
of g implies that g(Y ) ≤ g(X). Taking the expectation yields ak−1 ≤ ak.

We now show that the sequence (ak)
|S|
k=0, defined in Lemma 3.6, is subad-

ditive, assuming the subadditivity of function g.

Lemma 3.7. Suppose function g : 2S → R+ satisfies the subadditivity con-
dition. Let ak = E

T
k←−S[g(T )]. Then for any integers n,m ≥ 0 that satisfy

n+m ≤ |S|,
an + am ≥ an+m.

Proof of Lemma 3.7. Draw X
n←− S and Y

m←− S \ X. Clearly, X and Y
are uniformly distributed among all subsets of S with n elements and m
elements, respectively. Moreover, X∪Y is also a uniformly random subset of
size n+m. For each realization of X and Y , it follows from the subadditivity
of g that

g(X) + g(Y ) ≥ g(X ∪ Y ).

Taking the expectation over the randomness in (X, Y ) yields

an + am ≥ an+m.

Proof of Lemma 3.4. Fix set A, integer k, and function g : 2A → R+ that
satisfies the monotonicity and subadditivity conditions. For n ≥ max(k, |A|),
define f(n) as

f(n) , n · E
T

k←−Sn
[g(T ∩ A)] ,

where Sn is a superset of A with n elements.3 It suffices to prove that
f(n) is approximately non-decreasing in the sense that for any n1 ≤ n2,
f(n1) ≤ 4f(n2).

3 Any such set Sn gives the same definition of f(n).
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Define aj , E
T

j←−A[g(T )] for 0 ≤ j ≤ |A|, and let aj = a|A| for j > |A|.

Sequence (aj)
∞
j=0 is monotonic and subadditive. Lemma 3.6 implies that the

finite sequence (a0, a1, . . . , a|A|) is non-decreasing. Since aj = a|A| for any
j > |A|, the complete sequence (aj)

∞
j=0 is also non-decreasing. Moreover, we

claim that 2ak ≥ a2k for any 1 ≤ k ≤ |A|. In fact, if 2k ≤ |A|, the inequality
directly follows from Lemma 3.7. If 2k > |A|, by Lemmas 3.6 and 3.7,

2ak ≥ ak + a|A|−k ≥ a|A| = a2k.

Approximation of (aj/j)
|A|
j=1. For each j ∈ [|A|], define bj as bj , aj′/j

′, where

j′ = 2dlog2 je. Moreover, let b|A|+1 = 0. We show that (bj)
|A|
j=1 is non-increasing

and approximates (aj/j)
|A|
j=1.

By construction,

(bj)
|A|
j=1 =

(a1

1
,
a2

2
,
a4

4
,
a4

4
,
a8

8
, . . .

)
.

Since 2ak ≥ a2k for any k ∈ [|A|], we have

a1

1
≥ a2

2
≥ a4

4
≥ · · ·

This proves that (bj)
|A|
j=1 is non-increasing.

Let j′ = 2dlog2 je. Since j ≤ j′ ≤ 2j, it follows from the monotonicity and
subadditivity of {aj} that aj ≤ aj′ ≤ a2j ≤ 2aj. Therefore,

aj
2j
≤ aj′

j′
≤ 2aj

j
,

i.e., bj approximates aj/j up to a factor of 2.

Compute f(n). Fix n ≥ max(k, |A|). Recall that

f(n) = n · E
T

k←−Sn
[g(T ∩ A)] .

For 0 ≤ j ≤ |A|, let Ej denote the event that |T ∩A| = j. When conditioning
on Ej, T ∩ A is uniformly distributed among all subsets of size j in A, i.e.,
E[g(T ∩ A)|Ej] = aj. Moreover,

Pr[Ej] =

(|A|
j

)(
n−|A|
k−j

)(
n
k

) .
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By the law of total expectation,

f(n) = n

|A|∑
j=0

Pr[Ej] · E[g(T ∩ A)|Ej]

= n

|A|∑
j=1

(|A|
j

)(
n−|A|
k−j

)(
n
k

) · aj

= n

|A|∑
j=1

|A|
j

(|A|−1
j−1

)(
n−|A|
k−j

)
n
k

(
n−1
k−1

) · aj

= k|A|
|A|∑
j=1

(|A|−1
j−1

)(
n−|A|
k−j

)(
n−1
k−1

) · aj
j
,

where the second equality holds because a0 = g(∅) = 0, and the third because(
n

m

)
=

n

m

(
n− 1

m− 1

)
for 1 ≤ m ≤ n.

Let

pn,j =

(|A|−1
j−1

)(
n−|A|
k−j

)(
n−1
k−1

)
and qn,j =

∑j
l=1 pn,l. Recall that b|A|+1 = 0. Using summation by parts, we

have

f(n) = k|A|
|A|∑
j=1

pn,j ·
aj
j

≤ 2k|A|
|A|∑
j=1

pn,j · bj

= 2k|A|
|A|∑
j=1

(bj − bj+1) qn,j.

Similarly, we have

f(n) ≥ 1

2
k|A|

|A|∑
j=1

(bj − bj+1) qn,j.
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In the following, we show that for any j ∈ [|A|], (qn,j)
∞
n=max(k,|A|) is

non-decreasing in n. This completes the proof of the lemma, as for any
max(k, |A|) ≤ n1 ≤ n2, we have

f(n1) ≤ 2k|A|
|A|∑
j=1

(bj − bj+1) qn1,j

≤ 2k|A|
|A|∑
j=1

(bj − bj+1) qn2,j

≤ 4f(n2).

Monotonicity of (qn,j). Fix set A, j ∈ [|A|] and k. Recall that

pn,j =

(|A|−1
j−1

)(
n−|A|
k−j

)(
n−1
k−1

)
and qn,j =

∑j
l=1 pn,l. For every n ≥ max(k, |A|), define random variable

Tn
k−1←−− [n− 1], i.e., Tn is a random subset of size k − 1 drawn from [n− 1].

It can be verified that

pn,j = Pr[|Tn ∩ [|A| − 1]| = j − 1],

and thus,
qn,j = Pr[|Tn ∩ [|A| − 1]| < j].

To show that (qn,j)
∞
n=max(k,|A|) is non-decreasing in n, we consider the

following experiment:

� Draw X
k−1←−− [n].

� Let Y = X if n /∈ X; otherwise, let Y = X \ {n} ∪ {x}, where x is
drawn uniformly from [n− 1] \X.

By construction, the marginal distributions of X and Y are identical to those
of Tn+1 and Tn, respectively. Moreover, as Y is either equal to X, or obtained
from X by replacing n with a smaller element, we have

|X ∩ [|A| − 1]| ≤ |Y ∩ [|A| − 1]|.
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Therefore,
I [|X ∩ [|A| − 1]| < j] ≥ I [|Y ∩ [|A| − 1]| < j] ,

where I [·] denotes the indicator function.
Taking the expectation over the randomness in (X, Y ) yields

Pr[|Tn+1 ∩ [|A| − 1]| < j] ≥ Pr[|Tn ∩ [|A| − 1]| < j],

i.e., qn+1,j ≥ qn,j. This proves the monotonicity of (qn,j), and thus completes
the proof of the lemma.

3.4 Empirical Results

For our computational experiments we focus on deterministic social welfare
functions, and on additive utility functions — but we generalize the position-
weighted model slightly. Let voter i ∈ [n] have ranking σi consistent with the
utility matrix U i ∈ Rm×m, where U i

ap is the utility voter i has for alternative
a appearing in position p. As before, voter i’s preferences impose constraints
on U i. Specifically, higher ranked alternatives have utility at least as large as
lower ranked alternatives, for any specific position, that is, U i

σi(p),j
≥ U i

σi(p+1),j

for all p ∈ [m − 1], j ∈ [m], and U i
a,p ≥ U i

a,p+1 for all a ∈ [m], p ∈ [m − 1].
Utilities are normalized to have

∑
a∈[m]

∑
p∈[m] U

i
ap = 1. The utility profile is

~U = (U1, . . . , Un).
Let us represent a ranking τ by a permutation matrix X(τ) ∈ Πm. The

social welfare of a ranking τ is
∑

i∈[n]〈U i, X(τ)〉, where 〈A,B〉 =
∑

ij AijBij

is the Frobenius inner product. We can now write the mathematical program
that finds the (deterministic) ranking X with minimum distortion z given an
input profile ~σ as

min
z,τ∈Sm

z

z ≥
∑n
i=1〈U i,X(ρ)〉∑n
i=1〈U i,X(τ)〉 ∀ ~U . ~σ , ρ ∈ Sm (3.8)

This formulation has intractably many constraints in Equation (3.8). But
these constraints may be omitted and added as needed, by solving the sub-
problem

min
~U.~σ,ρ∈Sm

z̄ ·
n∑
i=1

〈U i, X(τ̄)〉 −
n∑
i=1

〈U i, X(ρ)〉
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Figure 3.1: Runtime (in seconds) for increasing instance size, on an a machine
with an Intel Core i5-4200U CPU and 8 GB RAM.

where z̄, τ̄ are the current optimal solutions to the master problem. A vio-
lated cut is found if the objective function value of the subproblem is strictly
less than 0. The procedure terminates with the optimal z, τ when no violated
cuts are found.

The subproblem is nonconvex even when the integrality constraints are
relaxed, and, therefore, finding violated cuts is computationally expensive.
Nevertheless, Figure 3.1 shows that it is currently practical to compute
distortion-minimizing rankings exactly for instances with up to 10 alterna-
tives within a couple of minutes. We expect that this will be sufficient for
the vast majority of instances seen in practice. Indeed, 98.3% of the in-
stances submitted to RoboVote (as of January 19, 2018) have 10 or fewer
alternatives.

For larger instances, we evaluate the performance of the following, more
scalable, heuristics:

1. Kemeny : Return the ranking that minimizes the total number of dis-
agreements on pairs of alternatives with the input profile.

2. Borda: Rank alternatives by their Borda scores, defined as
∑n

i=1(m−
σ−1
i (a)).

3. Plurality : Rank alternatives based on the number of times they are
ranked first. Break ties by considering subsequent positions.
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Figure 3.2: Average distortion of heuristic and exact methods.

4. Harmonic: Return a ranking according to Theorem 3.1.

5. Iterative: Iteratively find and remove the alternative that minimizes
distortion for the problem of returning a single alternative with maxi-
mum social welfare.

We evaluate these heuristics on instances with n = 10 andm ∈ {3, . . . , 30}.
Every alternative a is assigned a quality ca, and ui({a}) is drawn from a trun-
cated normal distribution around ca. Vector ui = (ui({a}))a∈[m] induces σi.
Position weights wi are drawn uniformly at random in [0, 1], and ordered.
Voter i’s utility matrix U i = wiui is normalized.

Every social welfare function f only has access to ~σ and is evaluated
on two metrics: the distortion of the returned ranking ρ = f(~σ), and the

social welfare ratio maxτ∈Sm sw(τ, ~U)/sw(ρ, ~U). Note that the latter measure
estimates the average case with respect to utility profiles.

The distortion and social welfare ratios of the proposed heuristics are
shown in Figures 3.2 and 3.3. Distortion is reported for m ≤ 10, where it
is possible to compare to the optimal distortion, and 100 repetitions; social
welfare for m ≤ 30 and 200 repetitions.

The distortion of Borda, Kemeny and especially Iterative compares well
with the optimal distortion. Kemeny and Borda also lead to very high effi-
ciency, with average social welfare within 1% of optimal.
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Figure 3.3: Average social welfare ratio of different heuristics.

3.5 Discussion

Much like previous papers on implicit utilitarian voting [46, 20], there is
a certain gap between the theoretical and empirical results, in the sense
that the theoretical distortion bound of Theorem 3.1 holds for randomized
social welfare functions, whereas the empirical results of Section 3.4 hold
for deterministic functions. The value of theoretical distortion bounds is
that they tell us whether rankings inherently provides useful information for
optimizing social welfare. The fact that the bound is essentially no worse
than for the case of a single winner means that the implicit utilitarian voting
approach does extend to the design of social welfare functions.

On a practical level, our empirical results suggest that classic methods like
the Kemeny rule (which is currently deployed on RoboVote) and Borda count
provide near-optimal performance from the viewpoint of implicit utilitarian
voting. Alternatively, it is possible to compute the distortion-minimizing
social welfare function if instances are restricted to at most ten alternatives.
Although almost all instances arising from small-group decisions (of the type
made on RoboVote) are of that size, some high-stakes decisions, such as
ranking applicants for a job or candidates for a PhD program, involve a
much larger number of alternatives, and motivate the development of faster
algorithms.
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Chapter 4

Aggregating noisy estimates of
a ground truth

4.1 Introduction

The field of computational social choice [35] has been undergoing a transfor-
mation, as rigorous approaches to voting and resource allocation, previously
thought to be purely theoretical, are being applied to group decision making
and social computing in practice [52]. RoboVote.org, a not-for-profit social
choice website launched in November 2016, gives a compelling (and unques-
tionably recent) example. Its short-term goal is to facilitate effective group
decision making by providing free access to optimization-based voting rules.
In the long term, Procaccia [2016] argue that RoboVote and similar appli-
cations of computational social choice can change the public’s perception of
democracy.

RoboVote distinguishes between two types of social choice tasks: aggre-
gation of subjective preferences, which was the topic of chapter 2, and aggre-
gation of objective opinions. Examples of the former task include a group
of friends deciding where to go to dinner or which movie to watch; family
members selecting a vacation spot; and faculty members choosing between
faculty candidates. In all of these cases, there is no single correct choice —
the goal is to choose an outcome that makes the participants as happy as
possible overall.

By contrast, the latter task involves situations where some alternatives
are objectively better than others, i.e., there is a true ranking of the alterna-
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tives by quality, but voters can only obtain noisy estimates thereof. The goal
is to aggregate these noisy opinions, which are themselves rankings of the
alternatives, and uncover the true ranking. For example, consider a group of
engineers deciding which product prototype to develop based on an objective
metric, such as projected market share. Each prototype, if selected for de-
velopment (and, ultimately, production), would achieve a particular market
share, so a true ranking of the alternatives certainly exists. Other examples
include a group of investors deciding which company to invest in, based on
projected revenue; and employees of a movie studio selecting a movie script
for production, based on projected box office earnings.

In this chapter, we focus on the second setting — aggregating objective
opinions. This is a problem that boasts centuries of research: it dates back
to the work of the Marquis de Condorcet, published in 1785, in which he
proposed a random noise model that governs how voters make mistakes when
estimating the true ranking. He further suggested — albeit in a way that
took 203 years to decipher [135] — that a voting rule should be a maximum
likelihood estimator (MLE), that is, it should select an outcome that is most
likely to coincide with the true ranking, given the observed votes and the
known structure of the random noise model. Condorcet’s approach is the
foundation of a significant body of modern work [54, 56, 65, 64, 133, 132, 90,
108, 12, 13, 14, 93, 42, 45, 131].

While the MLE approach is conceptually appealing, it is also fragile.
Indeed, it advocates rules that are tailor-made for one specific noise model,
which is unlikely to accurately represent real-world errors [93]. Recent
work [45, 42] circumvents this problem by designing voting rules that are
robust to large families of noise models, at the price of theoretical guaran-
tees that only kick in when the number of voters is large — a reasonable
assumption in crowdsourcing settings. However, here we are most interested
in helping small groups of people make decisions — on RoboVote, typical
instances have 4–10 voters — so this approach is a nonstarter.

4.1.1 The Worst-Case Approach

In recent work, Procaccia et al. [109] have taken another step towards ro-
bustness (we will argue shortly that it is perhaps a step too far). Instead
of positing a random noise model, they essentially remove all assumptions
about the errors made by voters. To be specific, first fix a distance metric
d on the space of rankings. For example, the Kendall tau (KT) distance
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between two rankings is the number of pairs of alternatives on which they
disagree. We are given a vote profile and an upper bound t on the average
distance between the input votes and the true ranking. This induces a set
of feasible true rankings — those that are within average distance t from
the votes. The worst-case optimal voting rule returns the ranking that min-
imizes the maximum distance (according to d) to any feasible true ranking.
If this minimax distance is k, then we can guarantee that our output ranking
is within distance k from the true ranking. The most pertinent theoretical
results of Procaccia et al. are that for any distance metric d, one can always
recover a ranking that is at distance at most 2t from the true ranking, i.e.,
k ≤ 2t; and that for the four most popular distance metrics used in the social
choice literature (including the KT distance), there is a tight lower bound of
(roughly) k ≥ 2t.

Arguably the more compelling results of Procaccia et al. [109], though,
are empirical. In the case of objective opinions, the measure used to evaluate
a voting rule is almost indisputable: the distance (according to the distance
metric of interest, say KT) between the output ranking and the actual true
ranking. And, indeed, according to this measure, the worst-case approach
significantly outperforms previous approaches — including those based on
random noise models — on real data [93]; we elaborate on this dataset later.

Based on the foregoing empirical results, the algorithms deployed on
RoboVote for aggregating objective opinions implement the worst-case ap-
proach. Specifically, given an upper bound t on the average KT distance
between the input votes and the true ranking,1 the algorithm computes the
set of feasible true rankings (by enumerating the solutions to an integer pro-
gram), and selects a ranking that minimizes the KT distance to any ranking
in that set (by solving another integer program).

RoboVote also supports two additional output types: single winning al-
ternative, and a subset of alternatives. When the user requests a single
alternative as the output, the algorithm computes the set of feasible true
rankings as before, and returns the alternative that minimizes the maximum
position in any feasible true ranking, that is, the alternative that is guaran-
teed to be as close to the top as possible. Computing a subset is similar,
with the exception that the loss of a subset with respect to a specific feasible

1This value is set by minimizing the average distance between any input vote and the
remaining votes. This choice guarantees a nonempty set of feasible true rankings, and
performs extremely well in experiments.
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true ranking is determined based on the top-ranked alternative in the subset;
the algorithm selects the subset that minimizes the maximum loss over all
feasible true rankings. In other words, if this loss is s then any feasible true
ranking has an alternative in the subset among its top s alternatives.

4.1.2 Our Approach and Results

To recap, the worst-case approach to aggregating objective opinions has
proven quite successful. Nevertheless, it is very conservative, and it seems
likely that better results can be achieved in practice by modifying it. We
therefore take a more “optimistic” angle by carefully injecting some random-
ness into the worst-case approach.

In more detail, we refer to the worst-case approach as “worst case” be-
cause the errors made by voters are arbitrary, but there is actually another
crucial aspect that makes it conservative: the optimization objective — min-
imizing the maximum distance to any feasible true ranking when the output
is a ranking, and minimizing the maximum position or loss in any feasible
true ranking when the output is a single alternative or a subset of alter-
natives, respectively. We propose to modify these objective functions, by
replacing (in both cases) the word “maximum” with the word “average”.
Equivalently, we assume a uniform prior over the set of all rankings, which
induces a uniform posterior over the set of feasible true rankings, and replace
the word “maximum” with the word “expected”.2 Note that this model is
fundamentally different from assuming that the votes are random: as we
mentioned earlier, it is arguable whether real-world votes can be captured by
any particular random noise model, not to mention a uniform distribution.3

By contrast, we make no structural assumptions about the noise, and, in fact,
we do not make any new assumptions about the world; we merely modify the
optimization objective with respect to the same set of feasible true rankings.

In Section 4.3, we study the case where the output is a ranking. We
find that for any distance metric, if the average distance between the vote
profile and the true ranking is at most t, then we can recover a ranking whose
average distance to the set of feasible true rankings is also t. We also establish
essentially matching lower bounds for the four distance metrics studied by
[109]. Note that our relaxed goal allows us to improve their bound from

2Our positive results actually work for any distribution; see Section 4.6.
3That said, some social choice papers do analyze uniformly random vote profiles [125,

103] — a model known as impartial culture.
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2t to t, which, in our view, is a qualitative improvement, as now we can
guarantee performance that is at least as good as the average voter. While
we would like to outperform the average voter, this is a worst-case (over noisy
votes) guarantee, and, as we shall see, in practice we indeed achieve excellent
performance.

In Section 4.4, we explore the case where the output is a subset of al-
ternatives (including the all-important case of a single winning alternative).
This problem was not studied by [109], in part because their model does not
admit nontrivial analytical solutions (as we explain in detail later) — but
it is just as important in practice, if not even more so (see Section 4.1.1).
We find significant gaps between the guarantees achievable under different
distance metrics. Our main technical result concerns the practically signif-
icant KT distance and the closely related footrule distance: If the average
distance between the vote profile and the true ranking is at most t, we can
pinpoint a subset of alternatives of size z, whose average loss — that is, the
average position of the subset’s top-ranked alternative in the set of feasible
true rankings (smaller position is closer to the top) — is O(

√
t/z). We also

prove a lower bound of Ω(
√
t/z), which is tight for a constant subset size z

(note that z is now outside of the square root). For the maximum displace-
ment distance, we have asymptotically matching upper and lower bounds of
Θ(t/z). Interestingly, for the Cayley distance and z = 1, we prove a lower
bound of Ω(

√
m), showing that there is no hope of obtaining positive results

that depend only on t.

In Section 4.5, we present empirical results from real data. Our key
finding is that our methods are robust to overestimates of the true average
level of noise in the vote profile — significantly more so than the methods
of [109], which are currently deployed on RoboVote. We believe that this
conclusion is meaningful for real-world implementation.

4.2 Preliminaries

Let A be a set of alternatives with |A| = m. Let L(A) be the set of possible
rankings of A, which we think of as permutations σ : A → [m], where
[m] = {1, . . . ,m}. That is, σ(a) gives the position of a ∈ A in σ, with σ−1(1)
being the highest-ranked alternative, and σ−1(m) being the lowest-ranked
alternative. A ranking σ induces a strict total order �σ, such that a �σ b if
and only if σ(a) < σ(b). A vote profile π = (σ1, . . . , σn) ∈ L(A)n consists of
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n votes, where σi is the vote of voter i.
We next introduce notations that will simplify the creation of vote profiles.

For a subset of alternatives A1 ⊆ A, let σA1 be an arbitrary ranking of A1.
For a partition A1, A2 of A, A1 � A2 is a partial order of A which specifies
that every alternative in A1 is preferred to any alternative in A2. Similarly,
A1 � σA2 is a partial ordering where the alternatives in A1 are preferred to
those in A2 and the order of the alternatives in A2 is specified to coincide with
σA2 . An extension of a partial order P is any ranking σ ∈ L(A) satisfying
the partial order. Denote by F(P) the set of possible extensions of P . For
example, |F(A1 � A2)| = |A1|! · |A2|! and |F(A1 � σA2)| = |A1|!.

Distance metrics on permutations play an important role in the paper.
We pay special attention to the following well-known distance metrics:

� The Kendall tau (KT) distance, denoted dKT , measures the number of
pairs of alternatives on which the two rankings disagree:

dKT (σ, σ′) , |{(a, b) ∈ A2| a �σ b and b �σ′ a}|.

Equivalently, the KT distance between σ and σ′ is the number of swaps
between adjacent alternatives required to transform one ranking into
the other. Some like to think of it as the “bubble sort” distance.

� The footrule distance, denoted dFR, measures the total displacement
of alternatives between two rankings:

dFR(σ, σ′) ,
∑
a∈A

|σ(a)− σ′(a)|.

� The maximum displacement distance, denoted dMD, is the largest ab-
solute displacement of any alternative between two rankings:

dMD(σ, σ′) , max
a∈A
|σ(a)− σ′(a)|.

� The Cayley distance, denoted dCY , measures the number of pairwise
swaps required to transform one ranking into the other. In contrast to
the KT distance, the swapped alternatives need not be adjacent.

We also require the following definitions that apply to any distance metric
d. For a ranking σ ∈ L(A) and a set of rankings S ⊆ L(A), define the average
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distance between σ and S in the obvious way,

d(σ, S) ,
1

|S|
∑
σ′∈S

d(σ, σ′).

Similarly, define the average distance between two sets of rankings S, T ⊆
L(A) as

d(S, T ) ,
1

|S| · |T |
∑
σ∈S

∑
σ′∈T

d(σ, σ′).

Finally, let d↓(k) be the largest distance allowed under the distance metric d
which is at most k, i.e.,

d↓(k) , max{s ≤ k : ∃σ, σ′ ∈ L(A) s.t. d(σ, σ′) = s}.

4.3 Returning the Right Ranking, in Theory

We first tackle the setting where our goal is to return an accurate ranking.
We assume that there is an objective ground truth ranking σ∗, and that n
voters submit a vote profile π of noisy estimates of this true ranking. As in
the work of Procaccia et al. [109], an individual vote is allowed to deviate
from the ground truth in any way, but we expect that the average error
is bounded, that is, the average distance between the vote profile and the
ground truth is no more than some parameter t. Formally, for a distance
metric d on L(A), we are guaranteed that

d(π, σ∗) =
1

n

∑
σ∈π

d(σ, σ∗) ≤ t.

There are several approaches for obtaining good estimates for this upper
bound t; we return to this point later.

A combinatorial structure that plays a central role in our analysis is the
“ball” of feasible ground truth rankings,

Bt(π) , {σ ∈ L(A) : d(π, σ) ≤ t}.

If this ball were a singleton (or empty), our task would be easy. But it
typically contains multiple feasible ground truths, as the following example
shows.
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Example 4.1. Suppose that A = {a, b, c} and the vote profile consists of 5
votes, π = {(a � b � c), (a � b � c), (b � c � a), (c � a � b), (a � c � b)}.
For each distance metric, let the bound on average error equal half of the
maximum distance allowed by the distance metric; in other words, tKT =
1.5, tFR = 2, tMD = 1 and tCY = 1. The set of feasible ground truths for the
vote profile π under the respective distance metrics may be found in Table 4.1.

Table 4.1: The set of feasible ground truths in Example 4.1 for various dis-
tance metrics.

d t Bt(π)

KT 1.5 {(a � b � c), (c � a � b), (a � c � b)}
FR 2 {

(a � b � c),
(a � c � b)

}
MD 1
CY 1

Procaccia et al. [109] advocate a conservative approach — they choose a
ranking that minimizes the maximum distance to any feasible ground truth.
By contrast, we are concerned with the average distance to the set of feasible
ground truths. In other words, we assume that each of the feasible ground
truths is equally likely, and our goal is to find a ranking that has a small
expected distance to the set of feasible ground truths Bt(π).

Our first result is that is it always possible to find a ranking σ ∈ π that
is close to Bt(π).

Theorem 4.2. Given a profile π of n noisy rankings with average distance
at most t from the ground truth according to some distance metric d, there
always exists a ranking within average distance t from the set of feasible
ground truths Bt(π) according to the same metric.

Proof. For any σ ∈ Bt(π), d(σ, π) ≤ t. It follows from the definitions that

d(π,Bt(π)) =
1

n · |Bt(π)|
∑
σ′∈π

∑
σ∈Bt(π)

d(σ, σ′) =
1

|Bt(π)|
∑

σ∈Bt(π)

1

n

∑
σ′∈π

d(σ, σ′)

=
1

|Bt(π)|
∑

σ∈Bt(π)

d(σ, π) ≤ t.
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To conclude the proof, observe that if the average distance from π to Bt(π) is
no more than t, then there certainly exists σ′′ ∈ π with d(σ′′,Bt(π)) ≤ t.

This result holds for any distance metric. Interestingly, it also generalizes
to any probability distribution over Bt(π), not just the uniform distribution
(see Section 4.6 for additional discussion of this point).

We next derive essentially matching lower bounds for the four common
distance metrics introduced in Section 4.2.

Theorem 4.3. For d ∈ {dKT , dFR, dMD, dCY }, there exists a profile π of n
noisy rankings with average distance at most t from the ground truth, such
that for any ranking, its average distance (according to d) from Bt(π) is at
least d↓(2t)/2.

The proof of this theorem relies heavily on constructions that appear in
Procaccia et al. [109] and the following four technical lemmas established by
Procaccia et al. [109, Theorem 5].

Lemma 4.4. For d = dKT and t ≤ (m/12)2, there exists a partition of A
into A1, A2, A3, A4, and a vote profile consisting of n/2 copies of each of the
rankings

σ = σA1 � σA2 � σA3 � σA4

σ′ = σA1
rev � σA2

rev � σA3
rev � σA4 ,

for which Bt(π) = F(A1 � A2 � A3 � σA4) and b2tc =
∑3

i=1

(
mi
2

)
, where

mi , |Ai| for i ∈ [4].

Lemma 4.5. For d = dFR and t ≤ (m/8)2, there exists a partition of A
into A1, A2, A3, A4, and A5, and a vote profile π ∈ L(A)n consisting of n/2
copies of each of the following rankings,

σ = σA1 � σA2 � σA3 � σA4 � σA5

σ′ = σA1
rev � σA2

rev � σA3
rev � σA4

rev � σA5 ,

for which

Bt(π) =

ρ ∈ L(A)

∣∣∣∣∣∣
ρ(aji ), ρ(a2mi+1−j

i )} = {σ(aji ), σ(a2mi+1−j
i )}

for i ∈ [4], j ∈ [2mi],

ρ(aj5) = σ(aj5) = σ′(aj5) for j ∈ [m5]

 ,
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where 2mi = |Ai| for i ∈ [4], m5 = |A5|, and

d↓FR(2t) =
4∑
i=1

⌊
(2mi)

2

2

⌋
.

Lemma 4.6. For d = dCY and t such that 2b2tc ≤ m, there exists a vote
profile π consisting of n/2 copies of each of the following rankings,

σ = (a1 � · · · � a2b2tc � a2b2tc+1 � · · · � am)

σ′ = (a2b2tc � · · · � a1 � a2b2tc+1 � · · · � am),

for which

Bt(π) =

{
ρ∈L(A)

∣∣∣∣ {ρ(ai), ρ(a2b2tc+1−i)} = {i, 2b2tc+ 1− i} for i∈ [b2tc],
ρ(ai) = i for i > 2b2tc

}
.

We will need a similar result for maximum displacement.

Lemma 4.7. For d = dMD and t such that 2b2tc ≤ m, there exists a vote
profile π consisting of n/2 copies of each of the following rankings,

σ = (a1 � · · · � ab2tc) � (ab2tc+1 � · · · � a2b2tc) � σA
′

σ′ = (ab2tc+1 � · · · � a2b2tc) � (a1 � · · · � ab2tc) � σA
′
,

where A′ = A \ {a1, . . . , a2b2tc}, for which Bt(π) = {σ, σ′}.

Proof. It is easy to see that σ ∈ Bt(π) and σ′ ∈ Bt(π), as d(σ, σ′) = b2tc. We
therefore need to show that Bt(π) does not contain any other rankings.

Let ρ ∈ Bt(π), and consider its first-ranked alternative, a = ρ−1(1). It
holds that σ(a) ≥ b2tc + 1 or σ′(a) ≥ b2tc + 1, because the two rankings
place disjoint subsets of alternatives in the first b2tc positions. Suppose first
that the former inequality holds; then

d(ρ, σ) ≥ σ(a)− ρ(a) ≥ b2tc.

If ρ 6= σ′ then d(ρ, σ′) ≥ 1, and therefore

d(ρ,Bt(π)) =
d(ρ, σ) + d(ρ, σ′)

2
≥ b2tc+ 1

2
> t.

It follows that ρ = σ′. Similarly, if the latter inequality holds, then ρ = σ.
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We are now in a position to prove Theorem 4.3.

Proof of Theorem 4.3. We address each distance metric separately.

The Kendall tau distance. Let π and Bt(π) have the structure specified
in Lemma 4.4. For all ρ ∈ L(A) and i ∈ [3], and every pair of alternatives
a ∈ Ai, b ∈ Ai \ {a}, we can divide the rankings in Bt(π) into pairs that are
identical except for swapping a and b. Note that for each pair, one ranking
agrees with ρ on a and b, and one does not. Therefore,

d(ρ,Bt(π)) ≥
∑3

i=1

(
mi
2

)
2

=
b2tc

2
≥ d↓(2t)

2
.

The footrule distance. Let π and Bt(π) have the structure specified in
Lemma 4.5. For all ρ ∈ L(A) and i ∈ [4], and for every alternative aji ∈ Ai,
we can divide the rankings in Bt(π) into pairs that are identical except for
swapping aji and a2mi+1−j

i . Note that for each such pair σ and σ′, |σ(aji ) −
σ′(aji )| = 2mi + 1− 2j, and using the triangle inequality,

|ρ(aji )− σ(aji )|+ |ρ(aji )− σ′(a
j
i )| ≥ 2mi + 1− 2j.

Furthermore, by the structure of Bt(π), we know that

2mi∑
j=1

2mi + 1− 2j =

⌊
(2mi)

2

2

⌋
.

By summing over all j ∈ [2mi] and i ∈ [4], we get

d(ρ,Bt(π)) ≥
∑4

i=1

∑2mi
j=1 2mi + 1− 2j

2
=

∑4
i=1

⌊
(2mi)

2

2

⌋
2

=
d↓(2t)

2
.

The Cayley distance. Let π and Bt(π) have the structure specified in
Lemma 4.6. For all ρ ∈ L(A), and every pair of alternatives {ai, a2b2tc+1−i}
for i ∈ [b2tc], we can divide the rankings in Bt(π) into pairs τi and τ ′i that are
identical except for swapping a and b. Note that for each pair, one ranking
agrees with ρ on a and b, and one does not. Since each swap places at most
two alternatives in their correct positions, each of the b2tc pairs adds at least
1/2 to d(ρ,Bt(π)) because d(ρ, τi) + d(ρ, τ ′i) ≥ 1. Overall we have

d(ρ,Bt(π)) ≥ b2tc
2
≥ d↓(2t)

2
.
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The maximum displacement distance. Let π and Bt(π) have the structure
specified in Lemma 4.7. Consider any ranking ρ ∈ L(A). Let a ∈ A be
the alternative ranked first in ρ, i.e., a = ρ−1(1). If a ∈ {a1, . . . , ab2tc},
then d(ρ, σ′) ≥ b2tc. Similarly, if a ∈ {a2t+1, . . . , a2b2tc} then d(ρ, σ) ≥ b2tc.
Therefore,

d(ρ,Bt(π)) =
d(ρ, σ) + d(ρ, σ′)

2
≥ b2tc

2
≥ d↓(2t)

2
.

4.4 Returning the Right Alternatives,

in Theory

In the previous section, we derived bounds on the expected distance of the
ranking closest to the set of feasible ground truth rankings. In practice, we
may not be interested in eliciting a complete ranking of alternatives, but
rather in selecting a subset of the alternatives (often a single alternative) on
which to focus attention, time, or effort.

In this section, we bound the average position of the best alternative in
a subset of alternatives, where the average is taken over the set of feasible
ground truths as before. This type of utility function, where the utility of
a set is defined by its highest utility member, is consistent with quite a few
previous papers that deal with selecting subsets of alternatives in different
social choice settings [48, 96, 107, 91, 108, 46]. For example, when selecting
a menu of movies to show on a three hour flight, the utility of passengers
depends on their most preferred alternative. From a technical viewpoint, this
choice has the advantage of giving bounds that improve as the subset size
increases, which matches our intuition. Of course, in the important special
case where the subset is a singleton, all reasonable definitions coincide.

Formally, let Z ⊆ A be a subset of alternatives; the loss of Z in σ is
`(Z, σ) , mina∈Z σ(a), and therefore the average loss of Z in Bt(π) is

`(Z,Bt(π)) ,
1

|Bt(π)|
∑

σ∈Bt(π)

`(Z, σ).

For given average error t and subset size z, we are interested in bounding

max
π∈L(A)n

min
Z⊆A s.t. |Z|=z

`(Z,Bt(π)).
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In words, we wish to bound the the average loss of the best Z (of size z) in
Bt(π), in the worst case over vote profiles.

Let us return to Example 4.1. For the footrule, maximum displacement,
and Cayley distance metrics, it is clear from Table 4.1 that selecting {a}
when z = 1 guarantees average loss 1, as Bt(π) only contains rankings that
place a first. For the KT distance, the set {a} has average loss 4/3, and the
set {a, c} has average loss 1.

We now turn to the technical results, starting with some lemmas that are
independent of specific distance metrics. Throughout this section, we will
rely on the following lemma, which is the discrete analogue of selecting a set
of z numbers uniformly at random in an interval and studying their order
statistics. No doubt someone has proved it in the past, but we include our
(cute, if we may say so ourselves) proof, as we will need to reuse specific
equations.

Lemma 4.8. When choosing z elements Y1, . . . , Yz uniformly at random
without replacement from the set [k], E[mini∈[z] Yi] = k+1

z+1
.

Proof. Let Ymin = mini∈[z] Yi be the minimum value of the z numbers chosen
uniformly at random from [k] without replacement. It holds that

Pr[Ymin = y] =

(
k−y
z−1

)(
k
z

) ,

and therefore

E[Ymin] =
k∑
y=1

y

(
k−y
z−1

)(
k
z

) =
1(
k
z

) k∑
y=1

y

(
k − y
z − 1

)
=

1(
k
z

) k−z+1∑
y=1

y

(
k − y
z − 1

)
. (4.1)

We claim that
k−z+1∑
y=1

y

(
k − y
z − 1

)
=

(
k + 1

z + 1

)
. (4.2)

Indeed, the left hand side can be interpreted as follows: for each choice of
y ∈ [k − z + 1], elements {1, . . . , y} form a committee of size y. We have y
possibilities for choosing the head of the committee. Then we choose z − 1
clerks among the elements {y + 1, . . . , k}. We can interpret the right hand
side of Equation (4.2) in the same way. To see how, choose z + 1 elements
from [k + 1], and sort them in increasing order to obtain s1, . . . , sz+1. Now
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s1 is the head of the committee, y = s2 − 1 is the number of committee
members, and s3 − 1, . . . , sz+1 − 1 are the clerks.

Plugging Equation (4.2) into Equation (4.1), we get

E[Ymin] =

(
k+1
z+1

)(
k
z

) =
k + 1

z + 1
.

Our strategy for proving upper bounds also relies on the following lemma,
which relates the performance of randomized rules on the worst ranking in
Bt(π), to the performance of deterministic rules on average, and is reminis-
cent of Yao’s Minimax Principle [134]. This lemma actually holds for any
distribution over ground truth rankings, as we discuss in Section 4.6.

Lemma 4.9. Suppose that for a given Bt(π), there exists a distribution D
over subsets of A of size z such that

max
σ∈Bt(π)

EZ∼D [`(Z, σ)] = k.

Then there exists Z∗ ⊆ A of size z whose average loss in Bt(π) is at most k.

Proof. Let U be the uniform distribution over rankings in Bt(π). Then clearly

EZ∼D,σ∼U [`(Z, σ)] ≤ k,

as this inequality holds pointwise for all σ ∈ Bt(π). It follows there must
exist at least one Z∗ such that

`(Z∗,Bt(π)) = Eσ∼U [`(Z∗, σ)] ≤ k,

that is, the average loss of Z∗ in Bt(π) is at most k.

Finally, we require a simple lemma of Procaccia et al. [109].

Lemma 4.10. Given a profile π of n noisy rankings with average distance
at most t from the ground truth according to a distance metric d, there exists
σ ∈ L(A) such that for all τ ∈ Bt(π), d(σ, τ) ≤ 2t.
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4.4.1 The KT and Footrule Distances

We first focus on the KT distance and the footrule distance. The KT dis-
tance is by far the most important distance metric over permutations, both
in theory, and in practice (see Section 4.1.1). We study it together with
the footrule distance because the two distances are closely related, as the
following lemma, due to Diaconis and Graham [61], shows.

Lemma 4.11. For all σ, σ′ ∈ L(A), dKT (σ, σ′) ≤ dFR(σ, σ′) ≤ 2dKT (σ, σ′).

Despite this close connection between the two metrics, it is important to
note that it does not allow us to automatically transform a bound on the
loss for one into a bound for the other.

The next upper bound is, in our view, our most significant theoretical
result. It is formulated for the footrule distance, but, as we show shortly,
also holds for the KT distance.

Theorem 4.12. For d = dFR, given a profile π of n noisy rankings with
average distance at most t from the ground truth, and a number z ∈ [m],
there always exists a subset of size z whose average loss in the set of feasible
ground truths Bt(π) is at most O(

√
t/z).

At some point in the proof, we will rely on the following (almost trivial)
lemma.

Lemma 4.13. Given two positive sequences of k real numbers, P , and Q,
such that P is non-decreasing, Q is strictly decreasing and

∑k
i=1 Pi = C, the

sequence P that maximizes S =
∑n

i=1 PiQi is constant, i.e., Pi = C/k for all
i ∈ [k].

Proof. Assume for contradiction that P maximizes S and contains consec-
utive elements such that Pj < Pj+1. Now moving mass from Pj+1 and dis-
tributing it to all lower positions in the sequence will strictly increase S.
Concretely, if Pj+1 = Pj + ε, we can subtract jε/(j + 1) from Pj+1 and add
ε/(j + 1) to Pi for all i ∈ [j]. Because Q is strictly decreasing, this increases
S by(

j∑
i=1

Qiε

j + 1

)
− Qj+1jε

j + 1
>

(
j∑
i=1

Qjε

j + 1

)
− Qj+1jε

j + 1
=

jε

j + 1
(Qj −Qj+1) > 0,

contradicting the assumption that P maximizes S. We may conclude that P
is constant.
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Proof of Theorem 4.12. By Lemma 4.9, it is sufficient to construct a ran-
domized rule that has expected loss at most O(

√
t/z) on any ranking in

Bt(π). To this end, let σ ∈ L(A) such that d(σ, τ) ≤ 2t for any τ ∈ Bt(π);
its existence is guaranteed by Lemma 4.10. Let k =

√
tz, and assume for

ease of exposition that k is an integer. For y = 1, . . . , k, let ay = σ−1(y).
Our randomized rule simply selects z alternatives uniformly at random from
the top k alternatives in σ, that is, from the set T , {a1, . . . , ak}. So, fix-
ing some τ ∈ Bt(π), we need to show that choosing z elements uniformly
at random from the worst-case positions occupied by T in τ has expected
minimum position at most O(

√
t/z).

Let Y σ
min be the minimum position in σ of a random subset of size z from

T . By Lemma 4.8 and Equation (4.1), we have

E[Y σ
min] =

k∑
y=1

y

(
k−y
z−1

)(
k
z

) =
k + 1

z + 1
.

However, we are interested in the positions of these elements in τ ∈ Bt(π),
not σ. Instead of appearing in position y, alternative ay appears in position
py , τ(ay). Therefore, the expected minimum position in τ is

E[Y τ
min] =

k∑
y=1

py

(
k−y
z−1

)(
k
z

) .

We wish to upper bound E[Y τ
min]. Equivalently, because E[Y σ

min] is fixed and
independent of τ , it is sufficient to maximize the expression

E[Y τ
min]− E[Y σ

min] =
k∑
y=1

py

(
k−y
z−1

)(
k
z

) − k∑
y=1

y

(
k−y
z−1

)(
k
z

)
=

k∑
y=1

(py − y)

(
k−y
z−1

)(
k
z

) .

(4.3)

Let us now assume that py < py+1 for all y ∈ [k − 1], that is, τ and σ
agree on the order of the alternatives in T ; we will remove this assumption
later. Since the original positions of the alternatives in T were {1, . . . , k} it
follows that py ≥ y for all y ∈ [k]. Moreover, because(

k−y
z−1

)(
k
z

) >

(
k−(y+1)
z−1

)(
k
z

) ,
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the sequence of probabilities

Q =

{(
k−y
z−1

)(
k
z

) }
y∈[k]

is strictly decreasing in y. Additionally, the sequence P = {py − y}y∈[k] is
non-decreasing, because py+1 > py, coupled with the fact that both values
are integers, implies that py+1 ≥ py + 1.

In light of these facts, let us return to Equation (4.3). We wish to maxi-
mize

E[Y τ
min]− E[Y σ

min] =
k∑
y=1

(py − y)

(
k−y
z−1

)(
k
z

) =
k∑
y=1

PyQy.

By Lemma 4.13, py − y is the same for all y ∈ [k], that is, all alternatives in
T are shifted by the same amount from σ to form τ . Moreover, we have that

k∑
y=1

(py − y) ≤ d(σ, τ) ≤ 2t.

Using k = |T | =
√
zt, we conclude that py − y ≤ 2

√
t/z for all y ∈ [k].

Therefore, in the worst τ ∈ Bt(π), we have that the alternatives in T occupy
positions 2

√
t/z + 1 to 2

√
t/z +

√
tz in τ . By Lemma 4.8, the expected

minimum position of T in τ is

2

√
t

z
+

√
tz + 1

z + 1
= O

(√
t

z

)
.

To complete the proof, it remains to show that our assumption that py <
py+1 for all y ∈ [k − 1] is without loss of generality. To see this, note that
since we are selecting uniformly at random from T , Y τ

min only depends on
the positions occupied by T in τ . Moreover, if τ does not preserve the order
over T , we can find a ranking τ ′ that has the following properties:

1. d(σ, τ ′) ≤ 2t.

2. T occupies the same positions: {τ(a1), . . . , τ(ak)}={τ ′(a1), . . . , τ ′(ak)}.

3. τ ′ preserves the order over T : τ ′(ay) < τ ′(ay+1) for all y ∈ [k − 1].
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Now all our arguments would apply to τ ′, and E[Y τ
min] = E[Y τ ′

min].
In order to construct τ ′, suppose that τ(ay) > τ(ay+1), and consider τ ′′

that is identical to τ except for swapping ay and ay+1. Then

d(τ ′′, σ) = d(τ, σ) + |τ ′′(ay)− y|+ |τ ′′(ay+1)− (y + 1)|
− |τ(ay)− y| − |τ(ay+1 − (y + 1)|

≤ d(τ, σ) ≤ 2t.

By iteratively swapping alternatives we can easily obtain the desired τ ′.

We next formulate the same result for the KT distance. The proof is very
similar, so instead of repeating it, we just give a proof sketch that highlights
the differences.

Theorem 4.14. For d = dKT , given a profile π of n noisy rankings with
average distance at most t from the ground truth, and a number z ∈ [m],
there always exists a subset of size z whose average loss in the set of feasible
ground truths Bt(π) is at most O(

√
t/z).

Proof sketch. The proof only differs from the proof of Theorem 4.14 in two
places.

First, the footrule proof had the inequality

k∑
y=1

(py − y) ≤ dFR(σ, τ) ≤ 2t.

In our case,

k∑
y=1

(py − y) ≤ dFR(σ, τ) ≤ 2 · dKT (σ, τ) ≤ 4t,

where the second inequality follows from Lemma 4.11.
Second, if τ does not preserve the order over T , we needed to find a

ranking τ ′ that has the following properties:

1. d(σ, τ ′) ≤ 2t.

2. T occupies the same positions: {τ(a1), . . . , τ(ak)}={τ ′(a1), . . . , τ ′(ak)}.

3. τ ′ preserves the order over T : τ ′(ay) < τ ′(ay+1) for all y ∈ [k − 1].
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To construct τ ′ under d = dKT , we use the same strategy as before: Sup-
pose that τ(ay) > τ(ay+1), and consider τ ′′ that is identical to τ except for
swapping ay and ay+1. We claim that d(τ ′, σ) ≤ d(τ, σ) ≤ 2t. Indeed, notice
that all a ∈ T precede all b ∈ A \ T in σ. Therefore, holding all else equal,
switching the relative order of alternatives in T will not change the number
of pairwise disagreements on alternatives b ∈ T , b′ ∈ A\T , nor will it change
the number of pairwise disagreements on alternatives b, b′ ∈ A \ T . It will
only (strictly) decrease the number of disagreements on alternatives in T .

Our next result is a lower bound of Ω(
√
t/z) for both distance metrics.

Note that here z is outside the square root, i.e., there is a gap of
√
z between

the upper bounds given in Theorems 4.12 and 4.14, and the lower bound.
That said, the lower bound is tight for a constant z, including the important
case of z = 1.

Theorem 4.15. For d ∈ {dFR, dKT}, z ∈ [m], and an even n, there exist
t = O(m2) and a profile π of n noisy rankings with average distance at most
t from the ground truth, such that for any subset of size z, its average loss
in the set of feasible ground truths Bt(π) is at least Ω(

√
t/z).

Proof. We first prove the theorem for the KT distance, that is, d = dKT . For
any k ≥ 1, let t =

(
k
2

)
/2; equivalently, let

k =
1 +
√

1 + 16t

2
= Θ

(√
t
)
.

Let σ = (a1 � · · · � am), and let σR(k) = (ak, ak−1, . . . , a1, ak+1, . . . , am)
be the ranking that reverses the first k alternatives of σ. Consider the vote
profile π with n/2 copies of each ranking σ and σR(k).

Let Ak = {a1, . . . , ak} and denote by σ−k the ranking of A \ Ak ordered
as in σ. We claim that Bt(π) = F(Ak � σ−k), i.e., exactly the rankings that
have some permutation of Ak in the first k positions, and coincide with σ in
all the other positions. Indeed, consider any τ ∈ L(A). This ranking will
disagree with exactly one of σ and σR(k) on every pair of alternatives in Ak,
so

d(τ, π) ≥
(
k
2

)
2

= t.

It follows that if τ ∈ Bt(π) then τ must agree with σ−k on the remaining
alternatives.
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Now let Z be a subset of z alternatives. Note that for every a ∈ A\Ak and
τ ∈ Bt(π), τ(a) > k, so it is best to choose Z ⊂ Ak. We are interested in the
expected loss of Z under the uniform distribution on Bt(π), which amounts
to a random permutation of Ak. This is the same as choosing z positions
at random from [k]. By Lemma 4.8, the expected minimum position of a

randomly chosen subset of size z is k+1
z+1

. Since k = 1+
√

1+16t
2

, it holds that

E[Ymin] =
1+
√

1+16t
2

+ 1

z + 1
= Ω

(√
t

z

)
.

For d = dFR, the construction is analogous to above, with one minor
modification. For any k ≥ 1, we let t = bk2/2c/2, because the footrule
distance between σ and σR(k) is bk2/2c, instead of

(
k
2

)
as in the KT case.

Now, the proof proceeds as before.

An important remark is in order. Suppose that instead of measuring the
average loss of the subset Z in Bt(π), we measured the maximum loss in any
ranking in Bt(π), in the spirit of the model of Procaccia et al. [109]. Then
the results would be qualitatively different. To see why on an intuitive level,
consider the KT distance, and suppose that the vote profile π consists of n
copies of the same ranking σ. Then for any a ∈ A, Bt(π) includes a ranking
σ′ such that σ′(a) ≥ t (by using our “budget” of t to move a downwards in
the ranking). Therefore, for z = 1, it is impossible to choose an alternative
whose maximum position (i.e., loss) in Bt(π) is smaller than t. In contrast,
Theorem 4.12 gives us an upper bound of O(

√
t) in our model.

4.4.2 The Maximum Displacement Distance

We now turn to the maximum displacement distance. Here the bounds are
significantly worse than in the KT and footrule settings. On an intuitive
level, the reason is that two rankings that are at maximum displacement dis-
tance t from each other can be drastically different, because every alternative
can move by up to t positions. Therefore, Bt(π) under maximum displace-
ment would typically be larger than under the distance metrics we previously
considered. Indeed, this is the case in Example 4.1 if one sets tMD ≥ 1.5.

Theorem 4.16. For d = dMD, given a profile π of n noisy rankings with
average distance at most t from the ground truth, and a number z ∈ [m],
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there always exists a subset of size z whose average loss in the set of feasible
ground truths Bt(π) is at most O(t/z).

Proof. By Lemma 4.9, it is sufficient to construct a randomized rule that
has expected loss at most O(t/z) on any ranking in Bt(π). To this end, let
σ ∈ L(A) such that d(σ, τ) ≤ 2t for any τ ∈ Bt(π); its existence is guaranteed
by Lemma 4.10. For y = 1, . . . , 3t, let ay = σ−1(y). Our randomized rule
selects z alternatives uniformly at random from the top 3t alternatives in σ,
that is, from the set T , {a1, . . . , a3t}.

Let T ′ be the top t alternatives in a ranking τ ∈ Bt(π). Since d(σ, τ) ≤ 2t,
we know that T ′ ⊂ T . Moreover, for any ay ∈ T , we have that py , τ(ay) ≤
5t. Assume without loss of generality that py ≤ py+1 for all y ∈ [3t− 1]; then
we have that the vector of positions (p1, . . . , p3t) is pointwise at least as small
as the vector (1, 2, . . . , t, 5t, 5t, . . . , 5t). Using Lemma 4.8 and Equation (4.1),
we conclude that the minimum position in τ when selecting z alternatives
uniformly at random from T , denoted Y τ

min, satisfies

E[Y τ
min] =

3t∑
y=1

py

(
3t−y
z−1

)(
3t
z

) =
t−1∑
y=1

py

(
3t−y
z−1

)(
3t
z

) +
3t∑
y=t

py

(
3t−y
z−1

)(
3t
z

)
≤

t−1∑
y=1

y

(
3t−y
z−1

)(
3t
z

) +
3t∑
y=t

5t

(
3t−y
z−1

)(
3t
z

)
≤ 5 ·

3t∑
y=1

y

(
3t−y
z−1

)(
3t
z

) = 5 · 3t+ 1

z + 1
= Θ

(
t

z

)
.

We next establish a lower bound of Ω(t/z) on the average loss achievable
under the maximum displacement distance. Note that this lower bound
matches the upper bound of Theorem 4.16.

Theorem 4.17. For d = dMD, given k ∈ N and z ∈ [m], there exist t = Θ(k)
and a vote profile π of k! noisy votes at average distance at most t from the
ground truth, such that for any subset of size z, its average loss in the set of
feasible ground truths Bt(π) is at least Ω(t/z).

Proof. Let π = F(Ak � σA\Ak), where |Ak| = k. For some τ ∈ π, let
t = d(τ, π). By symmetry, τ ′ ∈ Bt(π) for all τ ′ ∈ π.
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We first claim that t = Ω(k). Indeed, t is the average distance between
τ and π. Letting U be the uniform distribution over π, we have that t =
Eτ ′∼U [d(τ, τ ′)]. Now consider the top-ranked alternative in τ , a , τ−1(1).
Because U amounts to a random permutation over Ak, it clearly holds that
Eτ ′∼U [τ ′(a)] = (k + 1)/2, and therefore

t = Eτ ′∼U [d(τ, τ ′)] = Eτ ′∼U
[
max
b∈A
|τ ′(b)− τ(b)|

]
≥ Eτ ′∼U [τ ′(a)− τ(a)] =

k + 1

2
− 1 = Ω(k).

Now, suppose that we have shown that Bt(π) = π; we argue that the
theorem follows. Let Z ⊆ A be a subset of alternatives of size z. We can
assume without loss of generality that Z ⊆ Ak, as Ak is ranked at the top
of every τ ∈ Bt(π). But because Bt(π) consists of all permutations of Ak,
`(Z,Bt(π)) is equal to the expected minimum position when z elements are
selected uniformly at random from the positions occupied by Ak, namely [k].
That is, we have that

`(Z,Bt(π)) =
k + 1

z + 1
= Ω

(
t

z

)
.

Therefore, it only remains to show that Bt(π) = π. Indeed, let τ /∈ π,
then there exists a ∈ Ak such that τ(a) > k. Without loss of generality
assume a is unique and let τ(a) = k+1. There must then be some b ∈ A\Ak
with τ(b) ≤ k. Recall that the alternatives in A\Ak remain in fixed positions
in π, and, again without loss of generality, suppose that σ(b) = k + 1 for all
σ ∈ π. We wish to show that d(τ, π) > d(σ, π) for all σ ∈ π.

Let τ ′ be τ except that a and b are swapped, so τ ′(a) = τ(b) and τ ′(b) =
τ(a). Observe that τ ′ ∈ π since a is unique. By definition, d(τ ′, π) = d(σ, π)
for all σ ∈ π. It is therefore sufficient to show that d(τ ′, π) < d(τ, π).

To this end, we partition the rankings σ ∈ π \ {τ ′} into two sets, analyze
them separately, and in both cases show that d(τ ′, σ) ≤ d(τ, σ).

1. σ(a) ≤ τ ′(a) (see Figure 4.1): In this case, we have that |σ(a)−τ(a)| ≥
|σ(a)−τ ′(a)|. Also, because σ and τ ′ agree on the position of b ∈ A\Ak,
0 = |σ(b)− τ ′(b)| ≤ |σ(b)− τ(b)|. We conclude that d(τ ′, σ) ≤ d(τ, σ).

2. σ(a) > τ ′(a) (see Figure 4.2): It again holds that 0 = |σ(b) − τ ′(b)| ≤
|σ(b) − τ(b)|, so if d(τ ′, σ) > d(τ, σ) then d(τ ′, σ) is determined by a
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σ(a)

τ(b)

τ ′(a) τ(a)

σ(b) = τ ′(b)
|σ(a)− τ ′(a)|

|σ(a)− τ(a)|

Figure 4.1: Illustration of Case 1 of the proof of Theorem 4.17.

τ ′(a)

τ(b)

σ(a) τ(a)

σ(b) = τ ′(b)

|σ(a)− τ ′(a)| |σ(a)− τ(a)|

|σ(b)− τ(b)|

Figure 4.2: Illustration of Case 2 of the proof of Theorem 4.17.

(i.e., a has the maximum displacement). Assume for contradiction that
d(τ ′, σ) > d(τ, σ). It follows that

d(τ ′, σ) = |σ(a)− τ ′(a)|
≤ |σ(a)− τ ′(a)|+ |σ(a)− τ(a)| = |σ(b)− τ(b)| ≤ d(τ, σ),

a contradiction. We may conclude that d(τ ′, σ) ≤ d(τ, σ).

Since d(τ ′, σ) ≤ d(τ, σ) for all σ ∈ π \ {τ ′}, and d(τ ′, τ ′) = 0 < d(τ, τ ′) we
may conclude that d(τ, π) > d(τ ′, π) = t. It follows that Bt(π) = π, thereby
completing the proof.

4.4.3 The Cayley Distance

In the previous sections, we have seen that our bounds are very different
for different distance metrics. Still, all those bounds depended on t. By
contrast, we establish a lower bound of Ω(

√
m) on the average loss of any

subset with z = 1 (i.e., the average position of any alternative) under the
Cayley distance. We view this as a striking negative result: Even if the votes
are extremely accurate, i.e., t is very small, the ball Bt(π) could be such that
the average position of any alternative is as large as Ω(

√
m).
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Theorem 4.18. For d = dCY and every k ∈ [
√
m/3], there exists t = Θ(k)

and a vote profile π with

n = k!

(√
m

k

)2

noisy rankings at average distance at most t from the ground truth, such that
for any single alternative, its average position in the set of feasible ground
truths Bt(π) is at least Ω(

√
m).

The theorem’s proof appears in the full version of the paper. Note that
the delicate construction is specific to the case of z = 1. It remains open
whether the theorem still holds when, say, z = 2, and, more generally, how
the bound decreases as a function of z.

Proof. Suppose for ease of exposition that
√
m ∈ Z. Let σ = (a1 � a2 �

. . . � am) be a ranking and let L = {1, 2, . . . ,
√
m}, M = {

√
m+ 1, . . . ,m−√

m} and R = {m−
√
m+ 1, . . . ,m}. Define the ranking σij for i ∈ L, j ∈ R

to have σij(ai) = σ(aj) and σij(aj) = σ(ai) while σij(ac) = σ(ac) for all
c ∈ [m] \ {i, j}. In other words, σij is exactly σ with element i ∈ L and
element j ∈ R swapped.

Construct a vote in π by selecting S ⊆ L, T ⊆ R with |S| = |T | = k,
then selecting a perfect matching M : S → T , and finally swapping each ai
for i ∈ S with aj for j = M(i). We have such a vote for every choice of S and
T , and every perfect matching between them. This results in a vote profile
of cardinality

n = |π| = k!

(√
m

k

)2

.

Let t = k + 1 − 2k
m

. By construction d(τ, σ) = k for all τ ∈ π. It follows
that d(π, σ) = k ≤ t, and therefore σ ∈ Bt(π).

We next claim that

d(σij, π) ≤ k + 1− 2k

m
= t.

It suffices to consider two classes of rankings τ ∈ π. First, if τ(ai) = j =
σij(ai) and τ(aj) = i = σij(aj), then d(σij, τ) ≤ k − 1, since reversing the
other k − 1 pairwise swaps changes τ into σij. There are

n̂ =

(√
m− 1

k − 1

)2

· (k − 1)!
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such rankings in π. Second, for all other τ ∈ π, we have d(σij, τ) ≤ k + 1,
since it is always possible to reverse the k pairwise exchanges that changed σ
into τ ∈ π, and then perform one additional exchange to put ai and aj into
the correct positions. It follows that for all i ∈ L, j ∈ R,

dCY (σij, π) ≤ 1

|π|
(k − 1)n̂+

1

|π|
(k + 1)(|π| − n̂)

= (k + 1) +
(k − 1)n̂− (k + 1)n̂

|π|
= (k + 1)− 2n̂

|π|

= (k + 1)− 2 ·
(√

m−1
k−1

)2
· (k − 1)!

|π|
= k + 1− 2k

m
.

We conclude that {σ} ∪ {σij : i ∈ L, j ∈ R} ⊆ Bt(π).
We next show that this, in fact, fully describes Bt(π). To show this,

we must use the Hamming distance, denoted dHM , which is defined as the
number of positions at which two rankings of the same length differ. In
particular, we use the relationship dCY (τ, τ ′) ≥ 1

2
dHM(τ, τ ′) between the

Cayley and Hamming distance metrics for all τ, τ ′ ∈ L(A). This is a direct
result of the fact that a single swap can place at most two alternatives in
their correct positions.

For an arbitrary τ ′ ∈ L(A) we can decompose the Hamming distance
metric as

dHM(τ ′, π) =
1

|π|
∑
τ∈π

dHM(τ ′, τ) =
1

|π|
∑
τ∈π

∑
i∈[m]

I[τ(ai) 6= τ ′(ai)]

=
∑
i∈[m]

1

|π|
∑
τ∈π

I[τ(ai) 6= τ ′(ai)] =
∑
i∈[m]

qi(π, τ
′), (4.4)

where

qi(π, τ
′) ,

1

|π|
∑
τ∈π

I[τ(ai) 6= τ ′(ai)]

is the average penalty that ai incurs in τ ′ with respect to π under the Ham-
ming distance metric.

Consider qi(π, τ
′) for i ∈ L. If τ ′(ai) = i, then qi(π, τ

′) = k/
√
m since ai

is swapped with an alternative in the right endpoint in a k/
√
m fraction of

the rankings in π. If τ ′(ai) ∈ (L\{i})∪M , then a penalty is incurred in every
τ ∈ π, so qi(π, τ

′) = 1. If τ ′(ai) ∈ R, then qi(π, τ
′) = 1− (k/

√
m)(1/

√
m) =

99



1 − k/m. The analysis for qi(π, τ
′), i ∈ R is identical. For qi(π, τ

′), i ∈ M,
observe that τ(ai) = i for all τ ∈ π, so qi(π, τ

′) = 0 if τ ′(ai) = i and 1
otherwise.

It is clear from the decomposition and above discussion that τ ′ = σ is the
unique ranking minimizing dHM(τ ′, π). We partition the rankings τ ′ ∈ L(A)
according to their Hamming distance from σ and analyze which rankings can
appear in Bt(π).

1. dHM(τ ′, σ) = 1: The Hamming distance metric does not allow rankings
at distance 1 from each other.

2. dHM(τ ′, σ) = 2: We have shown that σij ∈ Bt(π). If τ ′ 6∈ {σij : i ∈
L, j ∈ R}, then d(τ ′, τ) = k+ 1 for all τ ∈ π and thus τ ′ 6∈ Bt(π). This
is because the Cayley distance between σ and any τ ∈ π is exactly k
due to the k pairwise disjoint swaps described above, and τ ′ involves
an additional swap that is not allowed when transforming σ into τ ∈ π.

3. dHM(τ ′, σ) ≥ 3: For every ranking τ ′ ∈ L(A) at Hamming distance
at least 3 from σ, it holds that τ ′(ai) 6= i for at least three values of
i, and therefore at least three of the penalties in Equation (4.4) are
not minimal, meaning that they are at least 1 − k/m. Moreover, the
minimal penalty for i ∈ L ∪R is k/

√
m. It follows that

dCY (τ ′, π) ≥ 1

2
dHM(τ ′, π)

≥ 1

2

[
k√
m

(2
√
m− 3) + 3

(
1− k

m

)]
= k +

3

2
− 3k

2m
− 3k

2
√
m

= k + 1− 2k

m
+

(
1

2
+

k

2m
− 3k

2
√
m

)
≥ k + 1− 2k

m
+

(
1

2
+

k

2m
− 1

2

)
= k + 1− 2k

m
+

k

2m
> k + 1− 2k

m
,

where the fifth transition follows from the assumption that k ≤
√
m/3.

We conclude that Bt(π) = {σ} ∪ {σij : i ∈ L, j ∈ R} and thus that
|Bt(π)| = m+ 1.
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To complete the proof, we show that every alternative has average posi-
tion at least Ω(

√
m) in Bt(π). For every ai with i ∈ L, ai appears in position

j ∈ R in
√
m of the m + 1 rankings in Bt(π). Therefore the average loss of

ai over Bt(π) is at least

m+ 1−
√
m

m+ 1
· 1 +

√
m

m+ 1
· m

2
= Ω(

√
m).

For i ∈ M , alternative ai never appears in position smaller than
√
m + 1 in

Bt(π) and clearly has average position Ω(
√
m). Finally, for j ∈ R, alternative

aj appears in position j in at least m+ 1−
√
m of the rankings in Bt(π), and

also has average position at least Ω(
√
m).

4.5 Making the right decisions, in practice

We have two related goals in practice, to recover a ranking that is close to
the ground truth, and identify a subset of alternatives with small loss in
the ground truth. We compare the optimal rules that minimize the aver-
age distance or loss on Bt(π), denoted AVGd, which we developed, to those
that minimize the maximum distance or loss, denoted MAXd, which were
developed by Procaccia et al. [109]. Importantly, at least for the case where
the output is a ranking, Procaccia et al. [109] have compared their methods
against a slew of previously studied methods — including MLE rules for fa-
mous random noise models like the one due to Mallows [92] — and found
theirs to be superior. In addition, their methods are the ones currently used
in practice, on RoboVote. Therefore we focus on comparing our methods to
theirs.

Datasets. Like Procaccia et al. [109], we make use of two real-world datasets
collected by Mao et al. [93]. In both of these datasets — dots and puzzle —
the ground truth rankings are known, and data was collected via Amazon
Mechanical Turk. Dataset dots was obtained by asking workers to rank four
images containing different numbers of dots in increasing order. Dataset puz-
zle was obtained by asking workers to rank four different states of a puzzle
according to the minimal number of moves necessary to reach the goal state.
Each dataset consists of four different noise levels, corresponding to levels of
difficulty, represented using a single noise parameter. In dots, higher noise
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corresponds to smaller differences between the number of dots in the images,
whereas in puzzle, higher noise entails ranking states that are all a constant
number of steps further from the goal state. Overall the two datasets contain
thousands of votes — 6367, to be precise.

Experimental design When recovering complete rankings, the evaluation
metric is the distance of the returned ranking to the actual (known) ground
truth. We reiterate that, although MAXd is designed to minimize the max-
imum distance to any feasible ground truth given an input profile π and an
estimate of the average noise t, that is, it is designed for the worst case, it is
known to work well in practice [109]. Similarly, AVGd is designed to optimize
the average distance to the set of feasible ground truths; our experiments will
determine whether this is a useful proxy for minimizing the distance to an
unknown ground truth.

When selecting a subset of alternatives, the evaluation metric is the loss
of that subset in the actual ground truth. As discussed above, the current
implementation of RoboVote uses the rule MAXd that returns the set of al-
ternatives that minimizes the maximum loss in any feasible true ranking. As
in the complete ranking setting, the rule AVGd returns the set of alternatives
that minimizes the average loss over the feasible true rankings.

It is important to emphasize that in both these settings, MAXd and
AVGd optimize an objective over the set of feasible ground truths, but are
evaluated on the actual known ground truth. It is therefore impossible to
predict in advance which of the methods will perform best.

Our theoretical results assume that an upper bound t on the average error
is given to us, and our guarantees depend on this bound. In practice, though,
t has to be estimated. For example, the current RoboVote implementation
uses tRV = minσ∈π d(σ, π)/|π|, or the minimum average distance from one
ranking in π to all other rankings in π.

In our experiments, we wish to study the impact of the choice of t on the
performance of AVGd and MAXd. A natural choice is t∗ , d(π, σ∗), where π
is the vote profile and σ∗ is the actual ground truth. That is, t∗ is the average
distance between the vote profile and the actual ground truth. In principle
it is an especially good choice because it induces the smallest ball Bt(π) that
contains the actual ground truth. However, it is also an impractical choice,
because one cannot compute this value without knowing the ground truth.
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We also consider

tKEM , min
σ∈L(A)

d(σ, π)

(named after the Kemeny rule) — the minimum possible distance between
the vote profile and any ranking.

In order to synchronize results across different profiles, we let t̂ be the
estimate of t that we feed into the methods, and define

r =
t̂− tKEM
t∗ − tKEM

.

Note that because tKEM is the minimum value that allows for a nonempty
set of feasible ground truths, we know that t∗ − tKEM ≥ 0. For any profile,
r = 0 implies that t̂ = tKEM , r < 1 implies that t̂ < t∗, r = 1 implies that
t̂ = t∗, and r > 1 implies that t̂ > t∗. In our experiments, as in the work of
Procaccia et al. [109], we use r ∈ [0, 2].

Results and interpretation Our results for three output types — rank-
ing, subset with z = 1 (single winner), and subset with z = 2 — can be
found in Figures 4.3, 4.4, and 4.5, respectively. Each has two subfigures, for
the KT distance, and the Cayley distance. All Figures show r on the x axis.
In Figure 4.3, the y axis shows the distance between the output ranking and
the actual ground truth. In Figures 4.4 and 4.5, the y axis shows the loss
of the selected subset on the actual ground truth. All figures are based on
the dots dataset with the highest noise level (4). The results for the puzzle
dataset are similar (albeit not as crisp), and the results for different noise
levels are quite similar. The results differ across distance functions, but the
conclusions below apply to all four, not just the two that are shown here.

It is interesting to note that, while in Figure 4.3 the accuracy of each
distance metric is measured using that metric (i.e., KT is measured with
KT and Cayley with Cayley), in the other two figures the two distances are
measured in the exact same way: based on position or loss in the ground
truth. Despite the dismal theoretical results for Cayley (Theorem 4.18), its
performance in practice is comparable to KT.

More importantly, we see that although MAXd and AVGd perform simi-
larly on low values of r, AVGd significantly outperforms MAXd on medium
and high values of r, and especially when r > 1, that is, t̂ > t∗. This is true
in all cases (including the two distance metrics that are not shown), except
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Figure 4.3: Dots dataset (noise level 4), ranking output.
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Figure 4.4: Dots dataset (noise level 4), subset output with z = 1.

for the ranking output type under the KT distance (Figure 4.3a) and the
footrule distance (in the full version of the paper), where the performance of
the two methods is almost identical across the board (values of r, datasets,
and noise levels).

These results match our intuition. As r increases, so does t̂, and the set
Bt̂(π) grows larger. When this set is large, the conservatism of MAXd be-
comes a liability, as it minimizes the maximum distance with respect to
rankings that are unlikely to coincide with the actual ground truth. By con-
trast, AVGd is more robust: It takes the new rankings into account, but does
not allow them to dictate its output.
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Figure 4.5: Dots dataset (noise level 4), subset output with z = 2.

The practical implication is clear. Because we do not have a way of
divining t∗, which is often the most effective choice in practice, we resort to
relatively crude estimates, such as the deployed choice of tRV discussed above.
Moreover, underestimating t∗ is often risky, as the results show, because the
ball Bt̂(π) does not contain the actual ground truth when t̂ < t∗. Therefore
in practice we try to aim for estimates such that t̂ > t∗, and robustness to
the value of t̂ is crucial. In this sense AVGd is a better choice than MAXd.

4.6 Discussion

We wrap up with a brief discussion of several key points.

Non-uniform distributions All of our upper bound results, namely The-
orems 4.2, 4.12, 4.14, and 4.16, apply to any distribution over Bt(π), not just
the uniform distribution (when replacing “average” distance/loss with “ex-
pected” distance/loss). To see why this is true for the latter three theorems,
note that their proofs construct a randomized rule and leverage Lemma 4.9,
which easily extends to any distribution. While this is a nice point to make,
we do not believe that non-uniform distributions are especially well motivated
— where would such a distribution come from? By contrast, the uniform dis-
tribution represents an agnostic viewpoint.
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Computational complexity We have not paid much attention to com-
putational complexity. In our experiments there are only four alternatives,
so we can easily compute Bt(π) by enumeration. For real-world instances,
integer programming is used, as we briefly discussed in Section 4.1.1. While
those implementations are for rules that minimize the maximum distance
or loss over Bt(π) [109], they can be easily modified to minimize the aver-
age distance or loss. Therefore, at least for the purposes of applications like
RoboVote, computational complexity is not an obstacle.

Real-world implications As noted in Section 4.5, our empirical results
suggest that minimizing the average distance or loss has a significant ad-
vantage in practice over minimizing the maximum distance or loss. We are
therefore planning to continue refining our methods, and ultimately deploy
them on RoboVote, where they will influence the way thousands of people
around the world make group decisions.
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Chapter 5

Dynamic fair division of
indivisible goods

5.1 Introduction

We consider the setting of fairly allocating indivisible goods to agents who
have additive valuations. Our goal is to have a strong mathematical guaran-
tee of the interpersonal fairness of the resulting allocation. An allocation is
a partition of the goods into bundles, such that each agent is assigned one
bundle. Such assignment problems are not only frequently encountered in
a myriad of operations research domains, but also often require the imposi-
tion of additional fairness conditions, such as in organ transplantation [27]
and nurse shift scheduling [95]. A variety of fairness constraints are used in
practice, but arguably the gold standard of fairness is envy freeness, which
requires that each agent is at least as happy with her own allocation as the
allocation of any other agent.

Envy-free solutions indeed always exist in well-studied fair division set-
tings that involve divisible goods or a numéraire, such as cake cutting [34, 104]
and rent division [71, 123]. When items are divisible, one strategy for finding
a fair allocation is the competitive equilibrium from equal incomes (CEEI)
solution of Varian [127]. In the equilibrium allocation, agents use assigned
(equal) budgets to purchase their preferred bundles of goods at virtual prices,
and the market clears (all goods are allocated). This solution is envy free
[70] and coincides with the solution that maximizes the Nash social welfare
[11], that is, the solution which maximizes the product of agent utilities.
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By contrast, with indivisible goods, envy is clearly unavoidable in general
— consider a single (indivisible) item that is desired by two agents. That is
why recent papers [43, 89] focus on the relaxed notion of envy-freeness up to
one good (EF1), in which envy may exist, but for any bundle that an agent
prefers over her own, there exists a single good whose removal eliminates
that envy. With indivisible goods, the approximate-CEEI solution [37] and
the solution which maximizes the Nash social welfare are both EF1. In fact,
EF1 is quite easy to guarantee, e.g., by allocating the items in a round-robin
fashion where each agent in her turn picks her favorite item among those
that are still available.

Our point of departure is that we allow items to arrive online, that is,
we must choose how to allocate an item immediately and irrevocably at the
moment it arrives, without knowing the values of items that will arrive in
the future. This setup mirrors common decision-making scenarios in human-
itarian logistics. A paradigmatic example is that of food banks [5], which
receive food donations, and deliver them to nonprofit organizations such as
food pantries and soup kitchens. Indeed, items are often perishable, which is
why allocation decisions must be made quickly, and donated items are typi-
cally leftovers, leading to lack of information about items that will arrive in
the future.

As noted, in the static setting there exists an EF1 solution for any num-
ber of items, but this requires complete information about values upfront.
In contrast, in the online setting, one would expect the maximum envy to
increase with the number of items. Nevertheless, we can hope to control the
rate at which envy grows over time. Specifically, we aim to design algorithms
with vanishing envy — algorithms that lead to envy growing sublinearly in
the number of items allocated. Our primary research question is:

Are there online allocation algorithms with vanishing envy, and,
if so, at what rate does envy vanish?

5.1.1 Our Results

We mainly focus on the full information version of the problem, where the
algorithm sees the agent valuations for an item before assigning that item.
In Section 5.3.1, we study randomized algorithms. The most natural candi-
date is the “random allocation” algorithm: allocate each item to an agent
chosen uniformly at random. We analyze this algorithm against an adaptive
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adversary that chooses the agent values for an arriving item after seeing the
(realised) allocations of all the previous items. We show that the optimal
strategy for an adaptive adversary (against random allocation) is, in fact,
nonadaptive. This enables us to use standard concentration inequalities for
bounding the overall envy. Our first result, Theorem 5.3, asserts that this
algorithm has vanishing envy.

One may hope that it would be possible to do better than allocating
blindly. Surprisingly, we show in Theorem 5.14 that the random allocation
algorithm causes envy to vanish at an asymptotically optimal rate (up to
logarithmic factors). However, despite its theoretical optimality, the random
allocation algorithm is intuitively unappealing. We therefore turn our atten-
tion to deterministic algorithms in Section 5.3.2, and discover that natural,
greedy schemes like allocating items to minimize envy fail miserably.

Nevertheless, as we prove in Theorem 5.7, there exists a deterministic
polynomial-time algorithm with the same envy bound as the random alloca-
tion algorithm (up to logarithmic factors). The former algorithm is the result
of derandomizing the latter with the method of pessimistic estimators [111].
Specifically, we define a potential function which is essentially a penalty func-
tion exponential in each of the pairwise envies, and show that allocating each
item so as to minimize this potential function leads to asymptotically optimal
envy.

Having completed the picture for the setting in which one item arrives at
a time, we proceed to study a more general model in Section 5.4. Suppose, as
before, that items with adversarially chosen values arrive over time. Instead
of arriving one by one, as assumed in Section 5.3, items now arrive in batches.
To motivate this, note that in the food bank setting it is reasonable to wait
until the end of the day before allocating all food donations that arrived that
day. When a batch arrives, the algorithm learns the values of all the items
in the batch for all agents, and must allocate these items immediately and
irrevocably, before the next batch arrives.

Since the allocation algorithm is less myopic in this setting, it is natural
to expect stronger performance guarantees than when items arrive one by
one. For example, in the extreme case where all items arrive simultaneously,
there exist algorithms that are EF1, giving a constant bound on the envy. To
realize this intuition, we leverage a result from the literature on continuous
cake cutting, which allows us to show, for each batch, the existence of a
fractional allocation that is entirely envy free and can be written as a convex
combination of integral allocations with constant pairwise envy. We then
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use ideas from the derandomization employed in Section 5.3.2 to give, in
Theorem 5.17, a deterministic algorithm for the batch setting, and find a
nearly matching lower bound (Theorem 5.27).

In Section 5.5, we study a partial information model, a natural variant
of the full information model where item values are only revealed to the
algorithm after that item has been allocated. The randomized upper bound
of Theorem 5.3 carries over, because the algorithm ignores the values shown
to it. So does the lower bound of Theorem 5.14, because it holds even against
more powerful algorithms. However, the game between the algorithm and the
adversary is now an extensive-form game of incomplete information, where
randomization may help. This turns out to be the case, and we show in
Theorem 5.29 that deterministic algorithms cannot have vanishing envy in
this setting.

5.1.2 Related Work

Conceptually our paper is related to the growing literature on online or
dynamic fair division [4, 5, 84, 100, 128]. In particular, motivated by ap-
plications to the food bank domain, Aleksandrov et al. [5] introduce and
analyze a closely related setting where indivisible items arrive online. How-
ever, they generally assume that all values are binary, i.e., each agent “likes”
or “dislikes” every item. They introduce two simple mechanisms, Like and
Balanced Like; the former allocates the current item uniformly at ran-
dom among agents who like it, whereas the latter allocates the current item
uniformly at random among agents who like it and have so far received the
fewest items. The analysis of these mechanisms focuses on properties such
as strategyproofness, envy-freeness, and impact on welfare. Most relevant to
us is the observation that Balanced Like is EF1. This also highlights the
technical differences between our setting and theirs, because, as noted above,
with general values EF1 is impossible.

This work is also related to the vast body of work on online learning [36].
In the quintessential setting, experts learning (with full-information feed-
back), at each time step, the algorithm chooses to follow the advice of one of
several experts. Then, the value of each expert is revealed, and the algorithm
gains the value of the expert whose advice it chose to follow. The algorithm’s
regret is the difference between the total value accumulated by the best ex-
pert in hindsight and the value it itself has accumulated; a no-regret learning
algorithm has the property that the ratio between regret and time goes to

110



zero (vanishing regret may have been a more accurate term). Similarly, we
are also interested in the difference in value accumulated over time. However,
to the best of our knowledge the two problems are technically unrelated. To
appreciate the difference, note that in our setting the values of the current
item to all agents are known to the algorithm. But if the values of the dif-
ferent experts were known in the expert learning setting, the problem would
be trivial — the algorithm would simply choose the expert with maximum
value. Nevertheless, some of our notation was chosen to be consistent with
that used in the online learning literature.

Finally, we can make a technical connection to the literature on vector
balancing games [120]. At each time step, the adversary picks a vector and
the algorithm chooses to either add or subtract this from a running partial
sum vector. In one version of this game, the goal of the algorithm is to
minimize the maximum entry of the partial sum vector, while the adversary
wishes to maximize that quantity. When there are only two agents and items
arrive one by one, our setting can be reduced to a version of vector balancing
games equipped with a weaker adversary. This means that the upper bound
of Spencer [120] applies to our setting (and matches our results). Conversely,
our lower bound for the two agent setting matches the lower bound from
that paper, indicating that the ostensibly weaker adversary that we consider
— restricted to picking values from just one orthant — has roughly the
same strength as the stronger adversary of Spencer [120]; consequently, our
lower bound is significantly more involved. For more than two agents, the
two problems appear unrelated, and, moreover, the batch setting has no
equivalent in the vector balancing games literature.

5.2 Model

We consider a set [n] , {1, . . . , n} of agents, and a set of T items. Each
agent i ∈ [n] assigns a (normalized) value vit ∈ [0, 1] to each item t ∈ [T ]; for
a bundle of items S, the value of agent i is vi(S) ,

∑
t∈S vit. The values are

chosen by an adaptive adversary. An allocation is a partition of the items
into bundles A1, . . . , An, where Ai is assigned to agent i ∈ [n]. The allocation
is said to be envy free if vi(Ai) ≥ vi(Aj) for all i, j ∈ [n]. The allocation is
EF1 when vi(Ai) ≥ vi(Aj)−maxt∈Aj vit for all i, j ∈ [n].

When items arrive one at a time, an item t arrives at every step, where
t = 1, . . . , T . The allocation decisions made by an algorithm at each step
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induce an allocation A1, . . . , An at the end of step T . For i, j ∈ [n], let

EnvyijT , max {vi(Aj)− vi(Ai), 0}

be the envy of agent i towards j. This measure of cumulative envy increases
by vit if item t is allocated to j (which places it in Aj), and decreases by vit
if item t is allocated to i (which places it in Ai). Moreover, let

EnvyT , max
i,j∈[n]

EnvyijT

be the maximum envy. We say that an algorithm has vanishing envy when
EnvyT ∈ o(T ), equivalently, when limT→∞EnvyT/T = 0.

We later consider the setting in which items arrive instead in batches of
size m ≥ 1 at a time, in which all m items need to be assigned when they
arrive. We will use EnvyT,m to denote the envy after the allocation of T items
arriving in batches of size m, with the convention that EnvyT,1 = EnvyT .

In the full information setting, the agents’ values for items are revealed
to the algorithm prior to allocation (and thus inform the algorithm’s deci-
sion); in the partial information model of Section 5.5, they are revealed after
allocation (so the algorithm only knows the current pairwise envies).

5.3 Single Arrivals under Full Information

In this most basic setting exactly one item arrives at each time step, and its
value is revealed to the algorithm before the allocation is made.

For intuition, we begin with an example analyzing the performance of a
greedy policy that may be utilized in practical dynamic fair division settings,
such as at a food bank. Namely, when a good arrives, it is allocated to the
agent who needs it most, i.e., to the most envious agent. We show that this
policy does not lead to vanishing envy.

Example 5.1. Consider the algorithm that at step t allocates the item to
the agent with the maximum envy (if she has positive value for the item, and
otherwise, say, allocates to the agent with the highest value for the item). We
claim that this algorithm leads to EnvyT ∈ Ω(T ) when items arrive one by
one under the full information model.

We construct an example where each agent envies the other after the
second item is allocated. For t ≥ 3, whenever agent i has maximum envy,
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Table 5.1: Blindly allocating item t to the agent with the highest envy after
t− 1 allocations leads to constant per-round envy.

t 1 2 3 4 5 · · ·

Value of agent 1 1/2 1 ε 1 ε · · ·
Value of agent 2 1/2 1/4 1 ε 1 · · ·

Envy of agent 1 −1/2 1/2 1/2− ε 3/2− ε 3/2− 2ε · · ·
Envy of agent 2 1/2 1/4 5/4 5/4− ε 9/4− ε · · ·

we present an item with value ε for her, and value 1 for the other agent.
Table 5.1 summarizes the analysis, the agent who receive an item has her
valuation highlighted.

For t ≥ 2, the envy of each agent increases by 1 every two steps. There-
fore, the maximum envy at step 2t is approximately t, and EnvyT/T ap-
proaches 1/2 as T goes to infinity.

It turns out that it is nontrivial to find a deterministic algorithm for
allocating the items in a manner that achieves vanishing envy. For instance,
one might consider allocating every item in a way that minimizes the current
maximum envy. The next example shows that this also leads to linear (or,
equivalently, constant per-round) envy.

Table 5.2: Assigning item t so as to minimize the maximum envy after t
allocations does not lead to vanishing envy.

t 1 2 3 4 5 6 · · ·

Value of agent 1 1/2 1 ε 1/2 1 ε · · ·
Value of agent 2 1/2 1/4 1/4− ε 1/2 1/4 1/4− ε · · ·

Envy of agent 1 −1/2 1/2 1/2− ε −ε 1− ε 1− 2ε · · ·
Envy of agent 2 1/2 1/4 1/2− ε 1− ε 3/4− ε 1− 2ε · · ·

Example 5.2. Consider the algorithm that at step t allocates the item in a
way that the maximum envy after allocation is as small as possible. We claim
this algorithm leads to EnvyT ∈ Ω(T ). Table 5.2 summarizes the instance
which proves this bound.
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The envy of each agent increases by 1
2
− ε every three steps. Therefore,

the maximum envy at step 6t is approximately t, and EnvyT/T approaches
1/6 as T goes to infinity.

As a result, we begin our analysis with an algorithm achieving vanishing
envy that utilizes randomness, and this ultimately leads us to a deterministic
algorithm with asymptotically optimal envy guarantees.

5.3.1 Upper bound via Random Allocation

A natural randomized algorithm for the case where items arrive one by one
is to allocate each item to an agent selected uniformly at random; we refer
to this as the random allocation algorithm. We analyze the random alloca-
tion algorithm by first characterizing the adversary’s optimal strategy. We
prove that for an adaptive adversary who maximizes E [EnvyT ], where the
expectation is with respect to the randomness of the algorithm, the optimal
strategy is integral, that is, all values are in {0, 1}. Using this, we show that
the optimal strategy, in fact, assigns vit = 1 for all i ∈ [n], t ∈ [T ]. This
optimal adversary strategy is nonadaptive, and therefore, since all the ran-
domness is coming from the algorithm, the random variables for the envy
between agents i and j at times t and t′ are independent. Standard concen-
tration inequalities for the envy between any pair of agents, combined with a
union bound over all such pairs, gives an upper bound on the expected envy.

Theorem 5.3. Suppose that T ≥ n log T , where log is the natural loga-
rithm. Then the random allocation algorithm guarantees that E [EnvyT ] ∈
O(
√
T log T/n).

Note that the assumption of T ≥ n log T is innocuous, as otherwise we
can give each agent at most log T items to achieve EnvyT ≤ log T .

Proof of Theorem 5.3. Typically we would think of an extensive-form game
with nodes associated with the algorithm or the adversary, and arcs cor-
responding to actions (allocation of the current item in the case of the al-
gorithm, value vector in the case of the adversary). However, because we
consider a fixed algorithm, it is convenient to imagine an unusual, adversary-
oriented game tree.

Consider a game tree with nodes on T + 1 levels. Every node on level
1, . . . , T has n outgoing arcs labeled 1, . . . , n. The leaf nodes on level T + 1
are labeled by the maximum envy for the corresponding path. Let Ω be the
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set of all paths from the root to a leaf node, so |Ω| = nT . Equivalently, Ω is
the set of all possible allocations of the T items. For an allocation ω ∈ Ω,
denote by ωt ∈ [n] the agent to whom item t ∈ [T ] was allocated by ω.

A fully adaptive strategy s for the adversary is defined by labeling every
internal node u with a value vector s(u), where s(u)i is the value of agent
i for the item corresponding to node u. The algorithm’s strategy consists
of selecting an outgoing edge, corresponding to an allocation of the item
with valuation s(u), at every node u. The adversary’s strategy is allowed to
depend on the allocations and valuations so far, i.e., the path from the root
to u.

For a given adversary strategy s and an allocation ω, let Envyij(s, ω)
denote the envy of agent i for agent j. Denote with

Envy(s, ω) , max
i,j∈[n]

Envyij(s, ω)

the maximum envy experienced by any agent under adversary strategy s and
allocation ω. The objective of the adversary is to choose a strategy s that
maximizes the expected envy E[Envy(s, ω)], where the expectation is taken
over allocating every item uniformly at random.

We consider the algorithm that allocates every item uniformly at random.
This is equivalent to picking a random outgoing edge at each node u. The fol-
lowing two lemmas show that the adversary labels every internal node of this
tree with the vector 1n. These lemmas are inspired by the work of Sanders
[114] on load balancing. The next result follows from the fact that under any
allocation algorithm, for every agent’s valuation of any item, it is possible
to compute whether that item increases or decreases the maximum envy (in
expectation). If it increases (resp. decreases) the maximum envy, the adver-
sary benefits by increasing (resp. decreasing) the corresponding valuation to
1 (resp. to 0).

Lemma 5.4. The adversary has an optimal adaptive strategy that labels every
internal node of the game tree with a vector in {0, 1}n.

Proof of Lemma 5.4. Assume for the sake of contradiction that the adversary
does not have an optimal strategy which assigns integral vectors to the nodes
of the (adversary-centric) game tree. Let s be the optimal strategy with the
smallest number of fractional values. Without loss of generality, let u be
a node on layer ` ∈ [T ] for which the value assigned to player i ∈ [n] is
fractional, i.e., 0 < s(u)i < 1. The values ` and i are fixed for the remainder
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of this proof. Define alternative strategies s′ and s′′ identical to s, except
that s′(u)i = 1 and s′′(u)i = 0. We wish to arrive at the contradiction that
E [Envy(s, ω)] ≤ E[Envy(s∗, ω)] for s∗ = s′ or s′′, where the expectation is
over the randomness of the allocation algorithm. Denote with Ωu all paths
passing through u. The envy associated with paths in Ω \ Ωu is unaffected
by the move from s to s′ or s′′ and may be safely ignored.

When agent i is not the unique agent with maximum envy, it holds that
Envy(s, ω) ≤ Envy(s′, ω) and Envy(s, ω) ≤ Envy(s′′, ω) as desired (recall
that changing agent i’s valuation for an item does not affect other agents’
envy). It remains to consider the set of paths

Ω+
u ,

{
ω ∈ Ω : max

j∈[n]
Envyij(s, ω) > max

j∈[n]\{i}
max
k∈[n]

Envyjk(s, ω)

}
,

in which agent i is the unique agent with maximum envy (and this envy
is strictly positive). We can further partition Ω+

u according to which agent
receives item `; let Ω+,j

u be the set of paths in Ω+
u in which agent j ∈ [n] gets

item `, and for any J ⊆ [n], set Ω+,J
u , ∪j∈JΩ+,j

u . We analyze three different
cases: (1) whether the player that gets item ` is player i, (2) a player j∗ for
whom player i has maximum envy, or (3) another player. Define

J∗ ,

{
j∗ ∈ [n] : Envyij

∗
(s, ω) = max

j∈[n]
Envyij(s, ω)

}
.

Also, for convenience, set f , s(u)i and J< , [n] \ {J∗ ∪ {i}}.
We first look at s′. The three cases are:

1. For ω ∈ Ω+,i
u : Envy(s, ω)− (1− f) ≤ Envy(s′, ω) ≤ Envy(s, ω).

2. For ω ∈ Ω+,J∗
u : Envy(s′, ω) = Envy(s, ω) + (1− f).

3. For ω ∈ Ω+,J<

u : Envy(s, ω) ≤ Envy(s′, ω) ≤ Envy(s, ω) + (1− f).

The only outcomes where envy can decrease when changing the adversary’s
strategy from s to s′ are those in Ω+,i

u . We can compute the effect of changing
s to s′ on the expected maximum envy as

E[Envy(s, ω)] =
∑
ω∈Ω

Pr[ω] ·Envy(s, ω)
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=
1

nT

 ∑
ω∈Ω+,i

u

Envy(s, ω) +
∑

ω∈Ω+,J∗
u

Envy(s, ω) +
∑

ω∈Ω+,J<
u

Envy(s, ω)


≤ 1

nT
·
∑
ω∈Ω+,i

u

(Envy(s′, ω) + (1− f)) +
1

nT
·
∑

ω∈Ω+,J∗
u

(Envy(s′, ω)− (1− f))

+
1

nT
·
∑

ω∈Ω+,J<
u

Envy(s′, ω)

= E[Envy(s′, ω)] +
1− f
nT

(∣∣Ω+,i
u

∣∣− ∣∣Ω+,J∗

u

∣∣) .
If
∣∣Ω+,i

u

∣∣ ≤ ∣∣Ω+,J∗
u

∣∣, it follows that E[Envy(s, ω)] ≤ E[Envy(s′, ω)]. Assume
therefore that

∣∣Ω+,i
u

∣∣ > ∣∣Ω+,J∗
u

∣∣. An identical analysis for s′′ shows that

1. For ω ∈ Ω+,i
u : Envy(s′′, ω) = Envy(s, ω) + f .

2. For ω ∈ Ω+,J∗
u : Envy(s, ω)− f ≤ Envy(s′′, ω) ≤ Envy(s, ω).

3. For ω ∈ Ω+,J<

u : Envy(s, ω) = Envy(s′′, ω).

Expanding the computation of the expected value as before shows

E[Envy(s, ω)] ≤ E[Envy(s′, ω)] +
f

nT
(
−
∣∣Ω+,i

u

∣∣+
∣∣Ω+,J∗

u

∣∣) .
By assumption

∣∣Ω+,i
u

∣∣ > ∣∣Ω+,J∗
u

∣∣, so E[Envy(s, ω)] ≤ E[Envy(s′′, ω)], con-
cluding the proof.

While the previous result holds for any allocation strategy, the following
lemma leverages specific properties of the random allocation algorithm.

Lemma 5.5. The adversary has an optimal adaptive strategy that labels every
internal node of the game tree with the vector 1n.

Proof of Lemma 5.5. By Lemma 5.4, the adversary has an optimal strategy
that labels every internal node with a vector in {0, 1}n. Let s be such an
optimal strategy with the smallest number of zeros, and suppose (for the sake
of contradiction) that there exist internal nodes that are not labeled 1n. Let
u on layer ` ∈ [T ] be the node closest to a leaf node for which s(u) contains a 0
and s(u′) = 1n for all descendants u′ of u. Without loss of generality assume
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s(u)i = 0, so agent i has value 0 for item ` at node u. Define a strategy s′

identical to s except that s′(u)i = 1. Let j(ω) ∈ arg maxj∈[n] Envy
ij(s, ω).

For any fixed ω ∈ Ω, changing s to s′ only changes the envy of agent i
and only for paths that go through u. In particular, if ω` 6= i, the envy of
agent i toward agent ω` increases by 1, which only helps the adversary. By
contrast, if ω` = i, the envy of agent i decreases by 1, toward every agent j
such that Envyij(s, ω) > 0; the maximum envy, Envy(s, ω), is only affected
if Envy(s, ω) = Envyi,j(ω)(s, ω).

Thus, let ω ∈ Ω be an arbitrary path going through u with ω` = i
and satisfying Envy(s, ω) = Envyi,j(ω)(s, ω) > 0. Since agent i may not
have been the unique agent having envy equal to Envy(s, ω), Envy(s′, ω) ≥
Envy(s, ω) − 1. Now consider the path ω′ that is identical to ω except
that ω` = j(ω). Observe that Envy(s′, ω′) = Envy(s, ω′) + 1. Hence, any
decrease in envy due to allocating item ` to agent i on ω is compensated for
(in the calculation of expected envy) along ω′. Since ω was picked arbitrarily
and the mapping ω 7→ ω′ is injective, it follows that the expected envy
under s′ is at least the expected envy under s, and s′ has fewer zeros than s,
contradicting our assumption on s.

The fact that the adversary is adaptive naturally introduces a dependence
in the change in any pairwise envy from one arrival to the next. The value of
Lemma 5.5 lies is that it allows us to circumvent this dependence as though
we are dealing with a nonadaptive adversary and express any pairwise envy
as the sum of independent random variables.

Specifically, given this adversary strategy, define independent random
variables

X ij
t ,


−1, with probability 1/n,

0, with probability 1− 2/n,

1, with probability 1/n

for all t ∈ [T ], i, j ∈ [n]. Clearly, EnvyijT = maxi,j∈[n]{
∑T

t=1X
ij
t , 0}. For

each X ij
t , E[X ij

t ] = 0, E[(X ij
t )2] = 2/n and |X ij

t | ≤ 1. We use a version of
Bernstein’s inequality to bound the probability of having large envy between
any pair of agents i and j.

Lemma 5.6 ([26]). Let X1, . . . , XT be independent variables with E [Xt] = 0
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and |Xt| ≤M almost surely for all t ∈ [T ]. Then, for all λ > 0,

Pr

[
T∑
t=1

Xt > λ

]
≤ exp

(
−

1
2
λ2∑T

t=1 E [X2
t ] + 1

3
Mλ

)
.

When applying this result to EnvyijT (which equals
∑T

t=1 X
ij
t when envy

exists), it follows that

Pr
[
EnvyijT ≥ λ

]
= Pr

[
T∑
t=1

X ij
t ≥ λ

]

≤ exp

(
−

1
2
λ2

2T
n

+ 1
3
λ

)
= exp

(
− 3nλ2

12T + 2λn

)
.

Let λ = 10
√
T log T/n. Taking a union bound gives

Pr [EnvyT ≥ λ] = Pr
[
∃i, j ∈ [n] such that EnvyijT ≥ λ

]
≤ n2 exp

(
− 300T log T

12T + 20
√
nT log T

)
≤ 1

T
,

where the last inequality uses the assumption that T ≥ n log T . Since the
maximum possible envy is T , the desired bound on expected envy directly
follows, completing the proof of Theorem 5.3.

5.3.2 Derandomization with Pessimistic Estimators

The problem of finding an allocation algorithm against an adaptive adversary
induces an extensive-form game of complete information between the algo-
rithm and the adversary. In such games, randomization does not provide any
benefit to either agent, as the backward induction solution is optimal [17].
This implies that there exists a deterministic algorithm with the same envy
guarantee as the random allocation algorithm, i.e., EnvyT ∈ Õ(

√
T/n).

However, it is a priori unclear whether this can be achieved in polynomial
time. In fact, Examples 5.1 and 5.2 showed that even though a simple ran-
domized algorithm is optimal and there exists a deterministic algorithm with
the same guarantee, natural and interpretable deterministic algorithms may
not come with any useful performance guarantees.
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Nevertheless, we are able to match the randomized bound of Theorem 5.3
by derandomizing the random allocation algorithm with the method of pes-
simistic estimators Raghavan [1988]. The outcome is an intuitively pleasing,
polynomial-time, deterministic algorithm that at each step minimizes a po-
tential function, which is essentially a penalty function exponential in each
of the pairwise envy expressions.

Theorem 5.7. Suppose that T ≥ n log n. Then there exists a polynomial-
time, deterministic algorithm that achieves EnvyT ∈ O(

√
T log n/n).

The rest of this section is devoted to the proof of Theorem 5.7.

The Algorithm

We will define a potential function φ(t) that depends on n, T , the values of
the first t items, and as their allocations. When item t arrives, we allocate it
to the agent for which the value of φ(t) is minimized. Call this algorithm A∗.
Since our algorithm is deterministic, an adversary that wants to maximize
EnvyT does not gain from being adaptive. It therefore suffices to analyze
our algorithm for an arbitrary choice of item values.

Theorem 5.7 follows from choosing φ(t) in a way that satisfies three par-
ticular properties, stated in the following three lemmas. Given t ∈ [T ], let
At be the algorithm that, for all ` ∈ [t], allocates the item ` to an agent for
which φ(`) is minimized, and the remaining items t + 1, . . . , T uniformly at
random. Let EnvyijT (At) be the envy of agent i for agent j at the end of the
execution of At.

Lemma 5.8. φ(t) ≥
∑

i,j∈[n] Pr
[
EnvyijT (At) > 10

√
T log n/n

]
.

Lemma 5.9. For all t ∈ [T − 1], φ(t+ 1) ≤ φ(t).

Lemma 5.10. For T ≥ n log n, φ(0) < 1.

Proof of Theorem 5.7. Notice that AT is exactly the same as the algorithm
A∗. Lemmas 5.9 and 5.10 imply that φ(T ) < 1. Combining with Lemma 5.8,
we get that for any choice of item values, and therefore for the optimal
adversary strategy,

Pr

[
∃i, j ∈ [n] : EnvyijT (AT ) > 10

√
T log n

n

]
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≤
∑
i,j∈[n]

Pr

[
EnvyijT (AT ) > 10

√
T log n

n

]
≤ φ(T ) < 1.

Since AT is deterministic — all items have been allocated after time T
— the inequality above implies that, for the allocation of items by AT , there
is no i, j ∈ [n] such that EnvyijT > 10

√
T log n/n, and we conclude that

EnvyT = max
i,j∈[n]

EnvyijT ≤ 10

√
T log n

n
∈ O

(√
T log n

n

)
.

Setup

We now define φ(t) and prove that it satisfies the desired properties from
Lemmas 5.8, 5.9, and 5.10. For i, j, k ∈ [n] and t ∈ [T ], let yijtk be a helper
variable for the effect on envy between agents i and j when item t goes to
agent k, i.e.,

yijtk ,


−1, if k = i,

0, if k 6= i, j,

1, if k = j,

and let yijt be the same but with the dependence on k implicit (as k is exactly
determined given an allocation). Denote with fij(t) ,

∑t
`=1 y

ij
` vi` the net

value agent i has for agent j’s allocation with respect to her own at time
t. Notice that Envyijt = max{fij(t), 0}. Let C , (1 + (es + e−s − 2)/n),
where s is a damping parameter that depends only on T and n. We use s =√

2 log
(
1 + n logn

T

)
, and let λ , 10

√
T log n/n be the target maximum envy

that the algorithm allows. Define the potential function at time t as φ(t) ,∑
i,j∈[n]:i 6=j φij(t), where for i, j ∈ [n], φij(t) = CT−t · exp (s (fij(t)− λ)) .

The Proofs

We are now in a position to prove Lemmas 5.8, 5.9 and 5.10. Lemma 5.8
follows after exponentiating and applying Markov’s inequality in the style of
classical proofs of concentration inequalities.
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Proof of Lemma 5.8. For all ` ∈ [t], item ` has been allocated in order to
minimize φ(`). It suffices to show that at any time t ≤ T , for any pair of
agents i, j, with λ = 10

√
T log n/n,

Pr

[
fij(t) +

T∑
`=t+1

X ij
` vi` > λ

]
≤ φij(t), (5.1)

where X ij
` is a random variable that takes values −1 and 1 with probabil-

ity 1/n each, and it takes value 0 with probability 1 − 2/n. Notice that
EnvyijT (At) = max{fij(t) +

∑T
`=t+1X

ij
` vi`, 0}; summing up over all pairs i, j

proves the lemma. Equation (5.1) follows from

Pr

[
fij(t) +

T∑
`=t+1

X ij
` vi` > λ

]
= Pr

[
es(fij(t)+

∑T
`=t+1X

ij
` vi`) > esλ

]
≤ e−sλ · E

[
es(fij(t)+

∑T
`=t+1X

ij
` vi`)

]
(Markov’s ineq.)

= es(fij(t)−λ) · E

[
T∏

`=t+1

esX
ij
` vi`

]

= es(fij(t)−λ)

T∏
`=t+1

E
[
esX

ij
` vi`
]

(independence)

= es(fij(t)−λ)

T∏
`=t+1

(
1− 2

n
+
esvi`

n
+
e−svi`

n

)

≤ es(fij(t)−λ)

T∏
`=t+1

(
1− 2

n
+
es

n
+
e−s

n

)
= φij(t).

The second inequality follows from the fact that ex + e−x is nondecreasing
for x ≥ 0.

For Lemma 5.9, it suffices to compute the change in potential due to
a uniformly random allocation, and show that such an allocation does not
increase the potential.

Proof of Lemma 5.9. Denote with φk(t+ 1) the potential function after giv-
ing item t + 1 to agent k. We show that (1/n)

∑
k∈[n] φk(t + 1) ≤ φ(t),
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which implies the desired result, as by definition of A∗ we have φ(t + 1) =
mink∈[n] φk(t+1). Recall that, for distinct i, j, k ∈ [n], yijtk takes values −1, 1,
and 0 depending on whether item t was allocated to agent i, j, or k. Thus,
fij(t+ 1) = fij(t) + yijt+1,kvi,t+1.

1

n

∑
k∈[n]

φk(t+ 1) =
1

n

∑
k∈[n]

∑
i,j∈[n]:i 6=j

es(fij(t)+y
ij
t+1,kvi,t+1−λ)CT−(t+1)

=
1

n
CT−(t+1)

∑
i,j∈[n]:i 6=j

es(fij(t)−λ)
∑
k∈[n]

esy
ij
t+1,kvi,t+1

=
1

n
CT−(t+1)

∑
i,j∈[n]:i 6=j

es(fij(t)−λ)

es·(1)·vi,t+1 + es·(−1)·vi,t+1 +
∑

k∈[n]\{i,j}

1


= CT−(t+1)

∑
i,j∈[n]:i 6=j

es(fij(t)−λ) · 1

n
·
(
esvi,t+1 + e−svi,t+1 + n− 2

)
≤ CT−(t+1)

∑
i,j∈[n]:i 6=j

es(fij(t)−λ) · C = φ(t).

Finally, we are in a position to prove Lemma 5.10.

Proof of Lemma 5.10. We can bound φ(0) by expanding it’s definition and
using the fact that fij(0) = 0.

φ(0) =
∑

i,j∈[n]:i 6=j

φij(0) =
∑

i,j∈[n]:i 6=j

CT esfij(0)−sλ < n2CT e−sλ = e−sλ+2 logn+T logC .

We want φ(0) < 1 or, equivalently, sλ−2 log n−T logC > 0. Using 1+x ≤ ex

implies that

C = 1 +
es + e−s − 2

n
≤ e(es+e−s−2)/n = e2(cosh(s)−1)/n.

Furthermore, cosh(x) ≤ exp (x2/2), so that C ≤ exp (2(exp (s2/2)− 1)/n).
Therefore,

sλ− 2 log n− T logC

≥ sλ− 2 log n− 2T

n

(
es

2/2 − 1
)
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= 10

√
2 log

(
1 +

n log n

T

)
T log n

n
− 2 log n− 2T

n
· n log n

T

=

(
5√
2

√
T

n log n
log

(
1 +

n log n

T

)
− 1

)
4 log n.

We factored out 4 log n for convenience; it remains to show the parenthetical
expression is positive. The function

√
x log(1 + 1/x) is increasing for all

x ≥ 0. Set x = T/(n log n), and note that the assumption T ≥ n log n
implies x ≥ 1. Observing that 5

√
log(2)/2 > 1 completes the proof.

5.3.3 Lower Bound

In this section, we show an adversary can guarantee EnvyT ∈ Ω((T/n)r/2)
for any r < 1. It follows that the deterministic algorithm we presented in
Section 5.3.1 is optimal (up to a logarithmic factor). We first prove the bound
for n = 2, followed by the case of an arbitrary number of agents.

Lower Bound for Two Agents

Lemma 5.11. For n = 2 and any r < 1, there exists an adversary strategy
for setting item values such that any algorithm must have EnvyT ∈ Ω(T r/2).

Proof. Proof. Label the agents L and R, and let {v0 , 1, v1, v2, . . .} be a
decreasing sequence of values that we specify later, satisfying vd − vd+1 <
vd′ − vd′+1 for all d′ < d. The adversary keeps track of the state of the
game, and the current state defines its strategy for choosing the agents’
valuations. The adversary strategy that implies the lower bound is illustrated
in Figure 5.1. Start in state 0, which we will also refer to as L0 and R0, for
which the adversary sets the value of the arriving item as (1, 1). To the left
of state 0 are states labeled L1, L2, . . .; in state Ld, the item that arrives has
value (1, vd). To the right of state 0 are states labeled R1, R2, . . .; in state
Rd, an item will arrive with value (vd, 1). Whenever the algorithm allocates
an item to agent L (resp. R), which we will refer to as making an L (resp.
R) step, the adversary moves one state to the left (resp. right) to determine
the value of the next item.

We construct the optimal allocation algorithm against this adversary, and
show that for this algorithm the envy at some time step t ∈ [T ] will be at
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(1, 1)

0

(v1, 1)

R1

(v2, 1)

R2

· · ·(1, v1)

L1

(1, v2)

L2

· · ·

(1,−v3) (1,−v2) (1,−v1) (1,−1) (v1,−1) (v2,−1)

(−v3, 1)(−v2, 1)(−v1, 1)(−1, 1)(−1, v1)(−1, v2)

Figure 5.1: Adversary strategy for two-agent lower bound. In state Ld, an
item valued (1, vd) arrives, while in state Rd, an item valued (vd, 1) arrives.
The arrows indicate whether agent L or agent R is given the item in each
state. The arrows are labeled by the amount envy changes after that item is
allocated.

least Ω(T r/2) for the given r < 1. This immediately implies Lemma 5.11: if
the envy is sufficiently large at some time step t the adversary can guarantee
the same envy at time T by making all future items valued at zero by both
agents.

The intuition for the adversary strategy we have defined is that it forces
the algorithm to avoid entering state Ld or Rd for high d, as otherwise the
envy of some agent will grow to v0 + v1 + · · ·+ vd, which will be large by our
choice of {vd}. At the same time, if an L step is taken at state Ld, followed
by a later return to state Ld, the envy of R increases by at least vd−vd+1; we
choose {vd} so that this increase in envy is large enough to ensure that any
algorithm which spends too many time steps close to state 0 incurs a large
cost.

By the pigeonhole principle, either the states to the left or to the right of
state 0 are visited for at least half the time. For the rest of this section, we
assume, without loss of generality, that our optimal algorithm spends time
T ′ , dT/2e in the ‘left’ states (L0, L1, . . .), and that T ′ is an even number.
We prove that the envy of agent R grows large at some time step t. We ignore
any time the algorithm spends in the states Rd, d ≥ 1. To see why this is
without loss of generality, consider first a cycle spent in the right states that
starts at R0 with an item allocated to R and eventually returns to R0. In
such a cycle, an equal number of items are allocated to both agents. All of
these items have value 1 to agent R, yielding a net effect of 0 on agent R’s
envy. (We ignore agent L completely, as our analysis is of the envy of agent
R.) The other case is when the algorithm starts at R0 but does not return
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to R0. This scenario can only occur once, which means that the algorithm
has already taken T ′ steps on the left side; the allocation of these items does
not affect our proof.

Let K be an integer such that K ≤
√
T ′/2, which we will show is without

loss of generality. Denote by OPT(K) the set of envy-minimizing allocation
algorithms that spend the T ′ steps in states L0, . . . , LK (and reach LK). Note
that the algorithm aims to minimize the maximum envy at any point in its
execution. Let A∗(K) be the following algorithm, starting at L0: Allocate
the first K items to agent L, thus arriving at state LK . For the next T ′−2K
items, alternate between allocating to agents R and L, thereby alternating
between states LK−1 and LK . Allocate the remaining K items to agent R.
We show A∗(K) belongs to OPT(K).

Lemma 5.12. A∗(K) ∈ OPT(K).

Proof of Lemma 5.12. An algorithm that starts at state 0 and spends T ′

steps in the left states can be described as a sequence of choices st ∈ {L,R}
for t ∈ [T ′] such that s1 = L, and at every t ∈ [T ′], agent L has received
at least as many of the first t items as agent R (to avoid entering the right
states). We refer to the state at time t as the state after the algorithm choice
st.

Consider any A(K) ∈ OPT(K). We show that the corresponding se-
quence of allocations satisfy: (1) at time T ′ the state is L0, so agent L
receives the same number of items as agent R; and (2) there is exactly one
R move at states L1, . . . , LK−1. This proves the lemma, since A∗(K) is the
only algorithm that satisfies these two conditions. We utilize the fact that
the envy of an allocation sequence can be calculated from the number of L
and R moves in every state: at state Ld, an L move increases the envy of
agent R by vd while an R move decreases it by vd.

We start with the first property: suppose that the state at time T ′ is not
0. Let t be the last index such that st = L. Allocating st = R instead (and
s` = R for the remaining steps ` > t) reduces the envy of agent R without
entering state R1, a contradiction.

For the second property, it suffices to show that if st = L and st+1 = R,
then it must be that at step t the state is LK−1 (and therefore at step t+ 1
the state is LK). Assume this is not the case, and we have such a t where

the algorithm is in state LK̂−1, K̂ < K. Let ` be a step in which the
algorithm is in state LK−1, which exists by the definition of A(K). Assume
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that ` > t + 1 (an analogous argument can be applied to the case that
` < t). We divide T ′ into three phases: (1) the first t − 1 items, (2) the
next ` − (t + 1) items, and (3) the last T ′ − ` + 2 items and consider s′ ,
s1, . . . , st−1, st+2, . . . , s`, st, st+1, s`+1, . . . , sT ′ . Notice that s′ is s, except the
alternating allocations L then R are now made at state LK−1 instead of at
LK̂−1. By construction, sequence s′ never goes past state LK . We now prove
that, using s′, the envy decreases with respect to s at each time step after
t− 1, contradicting the assumption A(K) ∈ OPT(K).

In phase (1), the envy is unchanged. For phase (2), when using A(K), the
pair of moves st and st+1 increases envy by vK̂−vK̂−1. Hence, in comparison,
s′ has that much less envy during each time step of phase (2). At the start
of phase (3) in s′, the alternating allocations are performed at state LK−1,
increasing envy (in s′) by vK−1 − vK < vK̂ − vK̂+1. At all remaining steps in
(3), the envy is smaller in s′ (compared to s) by (vK̂ − vK̂+1)− (vK−1− vK).
This completes the proof that A(K) must satisfy both properties; the lemma
follows.

We analyze the envy of A∗(K) as a function of K before optimizing K.
Agent R’s maximum envy is realized at step T ′−K, right before the sequence
of R moves. EnvyT ′−K has two terms: the envy accumulated to reach state
LK , and the envy from alternating R and L moves between states LK and
LK−1, so

EnvyT ′−K =
K−1∑
d=0

vd +
T ′ − 2K

2
· (vK−1 − vK) .

Given r < 1, define vd , (d + 1)r − dr. Notice that
∑K−1

d=0 vd = Kr. This

validates the initial assumption that K ≤
√
T ′/2, as otherwise

∑K−1
d=0 vd ≥

(T ′/2)r/2 ∈ Ω(T r/2). We require the following lemma (which will be proved
at the end of this section) to continue.

Lemma 5.13. vK−1 − vK ≥ r(1− r)Kr−2.

Applying Lemma 5.13 and distributing terms yields

EnvyT ′−K ≥ Kr−r(1−r)Kr−1+
T ′

2
r(1−r)Kr−2 ≥ 1

2

(
Kr + T ′r(1− r)Kr−2

)
where the second inequality uses the fact that r(1 − r) ≤ 1/4 < 1/2 and
assumes K > 1 (otherwise the envy would be linear in T ′). To optimize K,
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noting that the second derivative of the above bound is positive for K ≤√
T ′/2, we find the critical point where the derivative is zero

∂

∂K

(
Kr + T ′r(1− r)Kr−2

)
= rKr−1 − T ′r(1− r)(2− r)Kr−3 = 0

=⇒ K =
√
T ′(1− r)(2− r).

Define C1 ,
√

(1− r)(2− r) and substitute into the bound on EnvyT ′−K
to complete the proof

EnvyT ′−K ≥
1

2

(
Cr

1(T ′)r/2 + T ′r(1− r)Cr−2
1 (T ′)r/2−1

)
∈ Ω(T r/2).

We conclude this subsection with a proof of Lemma 5.13.

Proof of Lemma 5.13. Observe that vK−1 − vK = Kr − (K − 1)r − (K +
1)r +Kr = 2Kr− (K− 1)r− (K + 1)r. Using Newton’s generalized binomial
theorem, with (r)k , r(r − 1) · · · (r − k + 1), we can expand (K + 1)r and
(K − 1)r as

(K + 1)r = Kr + rKr−1 +
(r)2

2!
Kr−2 +

(r)3

3!
Kr−3 +

(r)4

4!
Kr−4 + · · · , and

(K − 1)r = Kr − rKr−1 +
(r)2

2!
Kr−2 − (r)3

3!
Kr−3 +

(r)4

4!
Kr−4 − · · · .

Combining these identities with the fact that (r)k is negative when r < 1 for
all even k, it follows that

vK−1 − vK = −2

(
(r)2

2!
Kr−2 +

(r)4

4!
Kr−4 +

(r)6

6!
Kr−6 + · · ·

)
= r(1− r)Kr−2 + 2

(
|(r)4|

4!
Kr−4 +

|(r)6|
6!

Kr−6 + · · ·
)

≥ r(1− r)Kr−2.
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Lower Bound for Any Number of Agents

Theorem 5.14. For any n ≥ 2 and r < 1, there exists an adversary strat-
egy for setting item values such that any algorithm must have EnvyT ∈
Ω((T/n)r/2).

Proof of Theorem 5.14. We augment the instance of Figure 5.1 in the follow-
ing way. In addition to the first two agents, L and R, we have n − 2 other
agents. Each of these other agents will not value any of the items that ar-
rive; hence, the nonzero values remain the same as before. State transitions
work as follows. If the algorithm allocates an item to agent L or agent R,
the transitions are the same as when n = 2. Otherwise, the adversary will
remain in the same state.

Let T0 be the number of items allocated to either agent L or R. We
break the analysis into two cases. First, if T0 ∈ Ω(T/n), then, EnvyT ∈
Ω((T/n)r/2) by the analysis of Lemma 5.11. Otherwise, T0 ∈ o(T/n) and
therefore T − T0 ∈ Θ(T ), i.e., agents 3 through n receive many items. This
implies that there exists an agent i ∈ [3, n] that is allocated Ω(T/n) items.
Without loss of generality, at least half these items were allocated in the left
states, in which agent L values each item at 1, so that agent L has Ω(T/n)
value for the items received by agent i. The value of agent L for her own
allocation is at most O(T0), i.e., o(T/n). Therefore, the envy of agent L for
agent i is at least Θ(T/n)− o(T/n) ∈ Θ(T/n).

5.4 Batch Arrivals under Full Information

In this section, we study the more general setting where items arrive in
batches of size m, and the values of all items in a batch are revealed simul-
taneously. We assume m divides T for convenience.

5.4.1 Upper Bound

The upper bound of Theorem 5.3 when m = 1 may be interpreted as the
expected distance from the origin of a random walk that remains stationary
with probability 1 − 2/n, and increases or decreases by 1, each with proba-
bility 1/n. The “step size” of 1 is the maximum change in the envy between
any pair of agents after the allocation of a single item; the number of non-
stationary steps is expected to be 2T/n. This informs our approach when
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items arrive in batches: It is easy to find an EF1 allocation for every batch of
items (round-robin suffices). Under such an allocation the maximum change
in any pairwise envy due to a single batch remains 1; however, the value of
an agent’s bundle is likely to change with every batch. Since there are T/m
batches (“steps” in the random walk), we may expect a bound of the form
EnvyT,m ∈ Õ(

√
T/m). Indeed, our main result for this setting, given in

Theorem 5.17, is a deterministic algorithm that achieves this bound.
To realize this intuition, we first need to overcome a technical obstacle.

Even though it is easy to find an allocation with small pairwise envy for
a given batch, it is not obvious how to find allocations with low pairwise
envy such that randomly outputting one of them results in an (ex ante)
envy-free allocation. In the random walk interpretation, we need to keep
the envy between agents i and j stationary in expectation, while at the
same time maintaining a small step size. Note that in the one-by-one setting
uniform random allocation trivially satisfies this property. When items arrive
in batches, we rely on a result from the literature on the division of divisible
goods.

Lemma 5.15 (Stromquist 122). Suppose n agents have valuation functions
over the interval [0, 1], such that an agent’s value for a subinterval is the
integral of her value density function. Then there exists an envy-free division
of the interval where every agent receives one contiguous interval.

It will be convenient to think of the n contiguous allocations as created
by n − 1 cuts on the interval [0, 1]. In the context of indivisible goods with
additive valuations, this result implies that, if the items are placed on a
line (in any order), there exists a fractional envy-free allocation in which
no agent receives more than 2 fractional items. Every item corresponds
to an interval of size 1/m, and every agent’s valuation in that interval is
constant and proportional to her valuation for that item. Given the solution
guaranteed to exist by Lemma 5.15, every agent’s allocation is between at
most two cuts and therefore contains no more than 2 fractional items. Such
a near-integral envy-free allocation is useful, since any integral allocation
found by randomized rounding is guaranteed to have small envy ex post, as
the following lemma shows.

Lemma 5.16. Given m items, there exists an envy-free fractional allocation
A = A1, . . . , An, such that every agent receives at most 2 fractional items.
Furthermore, if xi` ∈ [0, 1] is the fraction of item ` allocated to agent i, then
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randomly giving each item ` to each agent i with probability xi` results in an
integral allocation A′ where for all i, j ∈ [n], vi(A

′
i) ≥ vi(A

′
j)− 4.

Proof. Proof of Lemma 5.16. The first part of the statement, that there exists
an envy-free allocation A in which each agent receives at most 2 fractional
items, follows from the previous discussion. For the second part, notice that
the worst-case scenario for an agent i is to not get either of the fractional
items allocated to her in A. Furthermore, some other agent j might get both
of her fractional items from A. In this scenario, the envy of agent i for agent
j is maximized and is at most 4 (since the value for every item is at most
1).

In Section 5.3, before giving a deterministic algorithm, we first analyzed
the performance of the random allocation algorithm. Crucially, we showed
the optimal strategy for an adaptive adversary against the random allocation
algorithm is in fact nonadaptive. This allowed us to use standard concentra-
tion inequalities. Such a characterization is much trickier here. Fortunately,
we can bypass this step and directly “derandomize” the algorithm that at
each step outputs the (randomly-rounded) allocation of Lemma 5.16, even
though we are unable to analyze its performance.

Theorem 5.17. Suppose that T ≥ m log n. Then there exists a deterministic
algorithm that achieves EnvyT,m ∈ O(

√
T log n/m).

Again, the assumption of T ≥ m log n is very weak, otherwise there are
at most T/m ≤ log n batches, and we can use an EF1 algorithm in each to
achieve EnvyT,m ≤ log n. The remainder of this section is devoted to the
proof of Theorem 5.17, which has a very similar structure to the proof of
Theorem 5.7.

The Algorithm

We define a potential function φ(t) that depends on n, T , the values of the
items in the first t batches, as well as their allocations. When batch t + 1
arrives, we first find the near-integral envy-free allocation At+1 (of the items
in batch t+ 1) guaranteed to exist by Lemma 5.16 (we address computation
below). This fractional allocation is then rounded to an integral allocation
in a way that φ(t + 1) is minimized. Call this algorithm A∗. Since our
algorithm is deterministic, an adversary that wants to maximize EnvyT,m
does not gain from being adaptive. Therefore, there exists some optimal
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(for the adversary) choice of values for items 1 through T . We analyze our
algorithm for an arbitrary choice of item values.

Similarly to our algorithm from Section 5.3.2, we rely on three properties
of φ. Given t ∈ [T/m], let At be the algorithm that rounds A` (the allocation
in batch `) in a way that φ(`) is minimized, for all ` ∈ [1, t], and rounds the
remaining A` for ` = t+1, . . . , T/m randomly. Let EnvyijT,m(At) be the envy
of agent i for agent j at the end of the execution of At.

Lemma 5.18. φ(t) ≥
∑

i,j∈[n] Pr
[
EnvyijT (At) > 100

√
T log n/m

]
.

Lemma 5.19. For all t ∈ [T/m− 1], φ(t+ 1) ≤ φ(t).

Lemma 5.20. For T ≥ m log n, φ(0) < 1.

Proof of Theorem 5.17. Notice that AT/m is exactly the same as the algo-
rithm A∗. Lemmas 5.19 and 5.20 imply that φ(T ) < 1. Combining this with
Lemma 5.18, we get that for any item valuations,

Pr [∃i, j ∈ [n] : EnvyijT (A∗) > 100

√
T log n

m

]

≤
∑
i,j∈[n]

Pr

[
EnvyijT (A∗) > 100

√
T log n

m

]
≤ φ(T ) < 1.

Since A∗ is deterministic, the inequality above implies that there is no i, j ∈
[n] such that EnvyijT > 100

√
T log n/m, and we conclude that EnvyT,m ≤

100
√
T log n/m ∈ O(

√
T log n/m).

Setup

In batch t, define At , At1, . . . , A
t
n as the envy-free fractional solution of

Lemma 5.16, in which no agent receives more than 2 fractional items.
Let Ât = Ât1, . . . , Â

t
n be an integral rounding of At; Ât is the actual

allocation used in batch t. Define

∆t
ij(Â

t) ,
(
vi(Â

t
j)− vi(Âti)

)
+
(
vi(A

t
i)− vi(Atj)

)
and let fij(t, Â

1, . . . , Ât) ,
∑t

`=1 ∆t
ij(Â

t). To simplify notation, we write

fij(t) when the allocation is clear from context. Notice that EnvyijT,m ≤
fij(T ); this is an inequality because ∆t

ij is centered to have zero mean, while
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vi(Â
t
j) − vi(Âti) may have mean less than zero. Also, observe that Ât is not

random. However, if we were to randomly round At to an integral allocation
B̂t, then the resulting random variable ∆t

ij(B̂
t) has zero mean and satisfies

|∆t
ij(B̂

t)| ≤ 4, by Lemma 5.16.

Let λ , 100
√
T log n/m and s , 1

4
log(1 + λm

4T
). For i, j ∈ [n], de-

fine the potential function at time t for i with respect to j as φij(t) ,
exp

(
sfij(t)− sλ+

(
T
m
− t
)

(e4s − 4s− 1)
)
, and define the overall potential

function as φ(t) ,
∑

i,j∈[n]:i 6=j φij(t).

The Proofs

We rely on the following property of bounded, centered random variables.

Lemma 5.21. Let X be a random variable with E [X] = 0 and |X| ≤ 4.
Then for all v ∈ [0, 1] it holds that E

[
esXv

]
≤ exp (e4s − 4s− 1).

Proof of Lemma 5.21. Taking the Taylor expansion of ex at 0 we have:

E
[
esX
]

= E

[
1 + sXv +

∞∑
k=2

sk (X)k

k!

]
≤ 1 + 0 +

∞∑
k=2

skE
[
(X)k

]
k!

≤ 1 +
∞∑
k=2

4ksk

k!
= 1 +

(
e4s − 4s− 1

)
≤ exp

(
e4s − 4s− 1

)
.

The proof of Lemma 5.18 is very similar to the corresponding proof in
Section 5.3.2, it is restated here in the interest of completeness.

Proof of Lemma 5.18. For all ` ≤ t, the fractional allocation A` in the `-th
batch was rounded to the allocation Â` which minimizes φ(`). Recall that,
since our algorithm is deterministic, it suffices to analyze an arbitrary, but
fixed choice of items. Let B̂`

1, . . . , B̂
`
n be the (random) allocation that comes

from a randomized rounding of A`, for all ` ∈ [t+ 1, T/m].

Let δtij = vi(A
t
j) − vi(A

t
i) for all i, j ∈ [n], t ∈ [T/m]. Note that all

δtij ≤ 0 since the allocation is envy free. Define random variables Y `
ij =

vi(B̂
`
j) − vi(B̂`

i ) − δ`ij. These variables have zero mean and satisfy |Y `
ij| ≤ 4
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(Lemma 5.16). It suffices to show that at any time t ≤ T , for any pair of
agents i, j, for λ = 100

√
T log n/m,

Pr
[
EnvyijT (A) > λ

]
≤ Pr

fij(t) +

T/m∑
`=t+1

Y `
ij > λ

 ≤ φij(t), (5.2)

where the first inequality results from the fact that the Y variables are cen-
tered and that fij(t) ≥ Envyijt . Summing up over all pairs i, j proves the
claim. Equation 5.2 follows from

Pr

fij(t) +

T/m∑
`=t+1

Y `
ij > λ


= Pr

[
e
s
(
fij(t)+

∑T/m
`=t+1 Y

`
ij

)
> esλ

]
≤ e−sλ · E

[
esfij(t)+s

∑T/m
`=t+1 Y

`
ij

]
(Markov’s ineq.)

= esfij(t)e−sλ · E

 T/m∏
`=t+1

esY
`
ij


= esfij(t)e−sλ

T/m∏
`=t+1

E
[
esY

`
ij

]
(independence)

≤ esfij(t)e−sλ
T/m∏
`=t+1

exp
(
e4s − 4s− 1

)
(Lemma 5.21)

= esfij(t)e−sλe(
T
m
−t)(e4s−4s−1) = φij(t).

We are now in a position to prove Lemma 5.19.

Proof of Lemma 5.19. We prove that there exists a rounding Â∗ of the frac-
tional allocation At+1 of batch t+1 so that allocating according to Â∗ results
in φ(t + 1) ≤ φ(t). Let xt+1

i` be the fraction of item ` in batch t + 1 allo-
cated to agent i in At+1. We show that allocating every item ` to agent i
with probability xt+1

i` makes the expected value of φ(t+ 1) at most φ(t). We
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can immediately conclude that there exists an integral allocation for which
φ(t+ 1) ≤ φ(t).

Let B̂t+1 be a possible (rounded) integral allocation, with corresponding
probability p(B̂t+1), and let D be the distribution where allocation B̂t+1

appears with probability p(B̂t+1). Finally, let φB̂t+1(t+1) be the value of the

potential function after allocating batch t + 1 according to B̂t+1. Note that
fij(t+ 1, Â1, . . . , Ât, B̂t+1) = fij(t) + ∆t+1

ij (B̂t+1).

EB̂t+1∼D [φB̂t+1(t+ 1)]

=
∑
B̂t+1

p(B̂t+1) ·

e−sλe( T
m
−t−1)(e4s−4s−1)

∑
i,j∈[n]:i 6=j

esfij(t+1,Â1,...,Ât,B̂t+1)


=
∑
B̂t+1

p(B̂t+1) ·

e−sλe( T
m
−t−1)(e4s−4s−1)

∑
i,j∈[n]:i 6=j

esfij(t)+s∆
t+1
ij (B̂t+1)


= e−sλe( T

m
−t−1)(e4s−4s−1)

∑
i,j∈[n]:i 6=j

esfij(t) ∑
B̂t+1

p(B̂t+1) es∆
t+1
ij (B̂t+1)


≤ e−sλe( T

m
−t−1)(e4s−4s−1)

∑
i,j∈[n]:i 6=j

(
esfij(t) EB̂t+1∼D

[
es∆

t+1
ij (B̂t+1)

])
.

∆t+1
ij (B̂t+1) is a random variable (B̂t+1 is random) that satisfies the conditions

of Lemma 5.21, so

EB̂t+1∼D [φB̂t+1(t+ 1)] ≤ e−sλe( T
m
−t−1)(e4s−4s−1)

∑
i,j∈[n]:i 6=j

esfij(t)ee
4s−4s−1

= e−sλe( T
m
−t)(e4s−4s−1)

∑
i,j∈[n]:i 6=j

esfij(t) = φ(t).

We conclude with the proof of Lemma 5.20 which is very similar to the
corresponding proof in Section 5.3.2.

Proof of Lemma 5.20.

φ(0) =
∑

i,j∈[n]:i 6=j

φij(0)
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=
∑

i,j∈[n]:i 6=j

exp

(
sfij(0)− sλ+

T

m

(
e4s − 4s− 1

))

< n2 exp

(
−sλ+

T

m

(
e4s − 4s− 1

))
= n2 exp

(
− T
m

(
1 + 4s

(
1 +

λm

4T

)
− e4s

))
= n2 exp

(
− T
m

(
1 +

(
1 +

λm

4T

)
log

(
1 +

λm

4T

)
−
(

1 +
λm

4T

)))
= n2 exp

(
− T
m

((1 + x) log (1 + x)− x)

)
,

where x , λm
4T

. The function h(x) = (1 + x) log (1 + x) − x satisfies h(x) ≥
x2/(2 + 2x/3). Therefore,

φ(0) < n2 exp

− T
m

 (λm
4T

)2

2 +
2(λm

4T
)

3

 = n2 exp

(
− 3mλ2

96T + 8λm

)

= exp

(
2 log n− 3mλ2

96T + 8λm

)
.

Substituting in λ = 100
√
T log n/m gives

φ(0) ≤ exp

(
2 log n− 30000T log n

96T + 800
√
Tm log n

)
,

which is strictly less than 1 for T ≥ m log n.

Discussion

Lemma 5.16, just like Lemma 5.15, is existential and leaves unanswered the
question of finding the nearly-integral envy-free allocation for every batch.
We partially address this, at least from a practical point of view, by formu-
lating a mixed-integer program (MIP) to compute such an allocation.

Let xi` be the fraction of item ` given to agent i. Binary variables x0
i` and

x1
i` will sum to 0 when xi` is fractional, and sum to 1 otherwise. Lemma 5.15

implies that the following MIP is feasible:
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m∑
`=1

vi`(xi` − xj`) ≥ 0, ∀i, j ∈ [n] (5.3)

n∑
i=1

xi` = 1, ∀` ∈ [m] (5.4)

m∑
`=1

(x0
i` + x1

i`) ≥ m− 2, ∀i ∈ [n] (5.5)

x0
i` ≤ xi` ≤ 1− x1

i`, ∀i ∈ [n], ` ∈ [m] (5.6)

xi` ∈ [0, 1], ∀i ∈ [n], ` ∈ [m] (5.7)

x0
i`, x

1
i` ∈ {0, 1}, ∀i ∈ [n], ` ∈ [m]. (5.8)

Constraint (5.3) ensures that the allocation is envy free, while Con-
straint (5.4) ensures every item is fully allocated. Constraint (5.6) ensures
that x0

i` and x1
i` sum to 0 when xi` is fractional, and sum to 1 otherwise (using

the fact that these variables are binary, by Constraint (5.8)). Constraint (5.5)
guarantees at most 2 fractional items per agent. These constraints may be
coupled with any objective function to find a near-integral fractional solution.

Unfortunately, solving a MIP is unlikely to be computationally efficient
in general. Furthermore, known hardness results for related problems [60]
suggest that producing an envy-free (or approximately envy-free) and con-
tiguous fractional allocation in our setting might be difficult. This does not
rule out a polynomial time algorithm for finding an allocation with the prop-
erties of Lemma 5.16, i.e., a fractional envy-free allocation where each agent
gets at most a constant number of fractional items. The general problem is
left open.

Another step that may seem problematic (from a computational view-
point) is rounding the fractional allocation in a way that minimizes the
potential function. However, since the potential function is convex in the
allocation, this can be done efficiently.

5.4.2 Polynomial-Time Special Cases

In general, the allocation algorithm which achieves envy as prescribed by
Theorem 5.17 requires solving an integer program. We now explore two
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special cases where polynomial time algorithms can be leveraged to guaran-
tee EnvyT,m ∈ O(

√
T log n/m). There also exists a fully polynomial time

algorithm with EnvyT,m ∈ O(n2 ·
√
T log n/m), which gives the desired

asymptotic bound when n is a constant.

Identical preference orderings

Random serial dictatorship (RSD), or random priority [30], is a mechanism
for dividing indivisible goods where agents are ordered at random, and agents
sequentially select their most preferred item until no items remain. Executing
RSD independently for every batch performs well in certain settings.

Theorem 5.22. If n = 2, or when all agents have the same preference or-
dering for every batch, executing RSD for every batch guarantees EnvyT,m ∈
O(
√
T log n/m) in polynomial time.

Proof. We first focus on the n = 2 case. Refer to the two agents as 1 and 2.
Let A12 be the allocation of an arbitrary batch resulting executing RSD in
the order 1, 2 (where agent 1 first selects an item, followed by agent 2, etc.);
define A21 similarly. Let v1(X1), v1(X2) be the value that agent 1 has for her
own and agent 2’s goods under allocation X.

The following lemma formalizes the idea that if agent 1’s envy towards 2
increases when 2 selects first, then agent 1’s envy towards 2 decreases by at
least as much when 1 selects first.

Lemma 5.23. v1(A12
1 )− v1(A12

2 ) ≥ v1(A21
2 )− v1(A21

1 ).

Proof. Let α = v1(A21
1 )− v1(A21

2 ). It is known that round-robin, or RSD, is
envy free up to one good (EF1) for additive valuations, so α ≥ −1. When
item valuations are known, the procedure takes time polynomial in n, T and
m.

For ease of exposition assume there are m = 2k items in the batch. Label
the items in the order they are selected when doing round robin with the
permutation 2, 1. In other words, agent 2 selects items 1, 3, . . . , 2k − 1 and
agent 1 selects 2, 4, . . . , 2k when performing RSD with the permutation 2, 1.

Let v2,` (v1,`) be the value of agent B (A, respectively) for item `. Then

v1(A21
1 ) =

∑k
`=1 v1,2`. Since each agent selects her most preferred item among

the remaining items at each step, we observe that

v2,1 ≥ v2,`, ` = 2, . . . , 2k
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v2,3 ≥ v2,`, ` = 4 . . . , 2k

...

v2,2k−1 ≥ v2,2k,

and similarly

v1,2 ≥ v1,`, ` = 3, . . . , 2k

...

v1,2(k−1) ≥ v1,`, ` = 2k − 1, 2k.

Note that we have inequalities for the oddly indexed items for agent 2, and for
the even ones for agent 1 since these are the items selected by the respective
agents. The following lemma establishes that when agent 1 selects her r-th
item under permutation 1, 2, she is able to choose an item she values at at
least v1,2r−1 (the value of agent 2’s r-th pick under permutation 2, 1). This
will directly imply that v1(A12

1 ) ≥ v1(A21
2 ).

Lemma 5.24. When agent 1 is about to select her r-th item under permuta-
tion 1, 2 (after 2(r−1) items have been selected) , either items {1, . . . , 2(r−1)}
or {1, . . . , 2(r − 1)− 1, 2(r − 1) + 1} have been selected.

Proof. By induction on r. Base case: r = 1 is trivial, consider r = 2: For
agent 1’s first pick she selects item 1 or 2. If she selects 2, then agent 2
selects item 1 (her most preferred item). If agent 1 selects item 1, agent 2
selects either item 2 or 3, since v2,3 ≥ v2,` for all ` = 4, . . . , n. In either case
we obtain the required property.

Assume as induction hypothesis that whenever agent 1 is about to se-
lect her r-th item under permutation 1, 2, either items {1, . . . , 2(r − 1)} or
{1, . . . , 2(r − 1) − 1, 2(r − 1) + 1} have been selected for all r up to and
including s.

Suppose that when agent 1 makes her s-th pick, items {1, . . . , 2(s − 1)}
have been selected. Now agent 1 selects either 2(s − 1) + 1 or 2s, since
v1,2s ≥ v1,2s+` for all integer ` > 0. Assume agent 1 picks 2(s− 1) + 1, then
agent 2 will select either 2s or 2s + 1, since v2,2s+1 ≥ v2,2s+1+` for ` ∈ Z+.
In either case, the induction hypothesis holds. Assume instead that agent 1
selects 2s, leaving agent 2 to pick 2(s− 1) + 1 since v2,2(s−1)+1 ≥ v2,2(s−1)+1+`

for ` ∈ Z+. The induction hypothesis holds.
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Assume now that when agent 1 is about to make her s-th pick, items
{1, 2, . . . , 2(s−1)−1, 2(s−1)+1} have been selected. Agent 1 selects 2s, since
v1,2s ≥ v1,2s+` for ` ∈ Z+. Agent 2 selects next, after items 1, . . . , 2(s− 1) + 1
have been selected. This case has been analyzed already, and we conclude
that the induction hypothesis holds for agent 1’s (s+ 1)-th selection.

Let v1 be the total value that agent A has for all items in the batch, so

v1(A12
1 ) + v1(A12

2 ) = v1 = v1(A21
1 ) + v1(A21

2 ). (5.9)

It follows from the Lemma 5.24 that the item that A selects with his
r-th pick under the permutation AB has value at least vA,2(r−1)+1. This,
together with (5.9), implies that v1(A12

1 ) ≥ v1(A21
2 ) and v1(A12

2 ) ≤ v1(A21
1 ).

We conclude that

v1(A12
1 )− v1(A12

2 ) ≥ v1(A21
2 )− v1(A21

1 ) = −α

Lemma 5.23 states that whatever increase in envy an agent may experi-
ence when placed last in the permutation is more than compensated for when
that agent is placed first. The required bound for n = 2 may be obtained
by derandomizing the selection of a permutation in every batch in a similar
way as in Theorems 5.7 and 5.17.

Suppose now that all agents have the same preference ordering for the
items in every batch. In this case the items allocated to a specific agent de-
pends only on that agent’s position in the ordering. Any decrease in the envy
of agent i towards agent j is when placed in positions k and `, respectively,
is offset by an identical increase in envy when agent i is in position ` and
agent j in position k. A result analogous to Lemma 5.23 may be established
under these assumptions. Since round-robin allocations are EF1, we can de-
randomize as before and conclude that that EnvyT,m ∈ O(

√
T log n/m).

Unfortunately, it is possible to construct an example with three agents
where this algorithm leads to a linear growth in envy.

We remark that it is also possible to obtain the preceding result by writing
bi-hierarchical envy-freeness constraints on a matrix X in the spirit of [38],
where entry Xij is the probability that agent i receives item j. These con-
straints end up being essentially totally unimodular when n = 2 or agents
have identical preference orders for every batch, but do not have enough
structure to enable positive results in general.
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Constant Number of Agents

It is possible to find an envy-free fractional allocation with no more than n2

fractional variables in polynomial time. Randomly rounding this allocation
will yield an integral allocation with envy O(n2) per batch, leading to the
following result after derandomization.

Theorem 5.25. There exists a polynomial-time, deterministic algorithm that
guarantees EnvyT,m ∈ O(n2 ·

√
T log n/m). When n is constant this reduces

to EnvyT,m ∈ O(
√
T/m).

We rely on the following lemma, which plays the role of a weaker version of
Lemma 5.15, and shows how to find an ‘almost integral’ envy-free allocation
in polynomial time. To the best of our knowledge this result first appeared
in [130], and the proof we present here is due to Noga Alon.

Lemma 5.26. Given m items and n agents, where vi,j is the value that agent
i has for item j, there exists an envy-free fractional allocation with no more
than n2 fractional variables.

Proof. Label a batch of m items 1, . . . ,m arbitrarily. Let Vit =
∑t

`=1 vi` for
i ∈ [n] and ` ∈ [m]. After ` of the k items have been processed, the algorithm
has maintains a fractional solution xi` for i ∈ [n], ` ∈ [m] so that:

1. For all i, j ∈ [n],
∑m

`=1 vi`xi` = Vim/n;

2. For all ` ∈ [m],
∑n

i=1 xi` = 1 for all ` ∈ [m], and 0 ≤ xi` ≤ 1.

3. The number of non-integral variables is at most 2n2.

If variables satisfying these properties are retained until all items have been
processed, they represent a fractional allocation with no more than O(n2)
fractional variables. This fractional allocation is not only envy free but also
‘balanced’, meaning that every agent values all n bundles identically.

The fact that there are no more than 2n2 fractional variables imply that
at most n2 items are allocated fractionally.

The algorithm starts with xi,1 = 1/n for all i ∈ [n]. Assume that variables
xi` have already been assigned values that satisfy the above properties for
some ` < m. We show how to update them and allocate item `+ 1 to satisfy
the properties, without changing any integral variable.
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When processing item ` + 1, set xi,`+1 = 1/n for all i ∈ [n]. It is now
possible that the third property is violated and there are more than 2n2

fractional variables.

If the number of fractional variables r > 2n2, consider the system of
linear equations consisting of the n2 equations in (1), and the equations in
(2) for those items ` which are fractionally assigned in the current solution.
Note that there are no more than r/2 equations of this form. Fix all integral
variables. This leaves a system of equations with r free variables and n2 +
r/2 < r equations. Since there are more variables than equations, there is a
line of solutions x′i` = xi` + λci`, where (i, `) runs over the indices of the free
variables, some ci` 6= 0 and λ is a scalar. λ = 0 is a valid solution, and we can
increase λ until the first fractional variable becomes either 0 or 1. Picking
this λ decreases the number of fractional variables by 1. The process can
now be repeated with the new system of equations until no more than 2n2

variables are fractional, which concludes the processing of item `+ 1.

Using the same techniques as in the proofs of Theorems 5.7 and 5.17, we
can derandomize the algorithm which randomly rounds every near-integral
envy-free allocation found by Lemma 5.26 to find a deterministic algorithm
with EnvyT,m ∈ O(n2 ·

√
T log n/m).

5.4.3 Lower Bound

Our last result for the batch setting is a lower bound, which is asymptotically
tight in T/m, but does leave a gap in terms of the dependence on the number
of agents.

Theorem 5.27. For any n ≥ 2 and r < 1, there exists an adversary strat-
egy for setting item values such that any algorithm must have EnvyT ∈
Ω(( T

mn
)r/2).

Proof. Proof. The theorem follows almost directly from Theorem 5.14. In-
deed, assume that in each batch there are m− 1 items that are worthless to
all agents. In this case the batch setting reduces to the one-by-one setting,
and we obtain the lower bound given by Theorem 5.14, with a total number
of items equal to the number of batches, i.e., T ′ = T/m.
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5.5 Single Arrivals under Partial Information

In the full information setting, the allocation algorithm knows the value of
each agent for every item. In the partial information setting, these values
are only revealed after allocation. Here, as in Section 5.3, we assume items
arrive one at a time.

Under partial information, the upper bound of Theorem 5.3 for the ran-
dom allocation algorithm carries over directly. However, in contrast to the
full information setting, where there is no distinction between determinis-
tic and randomized algorithms, allowing randomization in this setting gives
the allocation algorithm significant power. In particular, under partial in-
formation, we find that deterministic allocation mechanisms are unable to
guarantee vanishing envy.

5.5.1 Randomized Algorithms

The lower bound in Theorem 5.14 shows that an adversary can ensure es-
sentially Envy(T ) ∈ Ω(

√
T/n) against a randomized algorithm that knows

the item valuation before making the allocation. A weaker allocation al-
gorithm cannot improve over this. Allocating incoming items uniformly
at random does not make use of item valuations and was shown to have
Envy(T ) ∈ O(

√
T log T/n) in Theorem 5.3. The next result immediately

follows from Theorems 5.3 and 5.14.

Corollary 5.28. Uniform random allocation guarantees that E [EnvyT ] ∈
O(
√
T log T/n) even in the partial information setting. On the other hand,

there exists an adversary strategy for setting item values such that any algo-
rithm must have EnvyT ∈ Ω((T/n)r/2) for any r < 1.

5.5.2 Deterministic Algorithms

Consider the extensive-form game tree in the partial information case. Nodes
on odd layers 2`− 1 belong to the adversary, who chooses an outgoing edge
corresponding to the values v1`, . . . , vn` for item `. Nodes on the even layer
2` belong to the algorithm, which selects an outgoing edge corresponding to
assigning item ` to one of the agents.

Let u be a node on the odd layer 2` − 1 and c(u) its children. In the
partial information setting, c(u) are all in the same information set. In other
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words, the algorithm is unable to distinguish between being at any of the
nodes v ∈ c(u), since the value of item ` is hidden, and therefore selects the
same allocation a(u) at every node v ∈ c(u). It is easy for the adversary to
exploit this to create highly imbalanced allocations.

Theorem 5.29. An adaptive adversary can ensure EnvyT ∈ Ω(T/n) against
a deterministic algorithm under partial information, while an allocation al-
gorithm can guarantee EnvyT ∈ O(T/n).

Proof. We first show the lower bound. Let u be a node of the game tree be-
longing to the adversary and denote with a(u) the allocation of the algorithm
in information set c(u).

An allocation algorithm is defined by selecting an agent to allocate to
in each of its information sets. Once the algorithm’s strategy is fixed, it is
not hard for the adversary to adapt and ensure high envy: At each node
u on level 2` − 1 belonging to the adversary, select the edge corresponding
to the assignment of values va(u),` = 0 and vi` = 1 for all i ∈ [n] \ {a(u)}.
Consequently, every agent values her bundle at time T at 0, yet has value 1
for every item she did not receive. Since some agent received at least T/n
items, it follows that Envy(T ) ≥ T/n.

For the upper bound, observe that allocating items in a round-robin man-
ner gives every agent at most dT/ne items. It follows that Envy(T ) ≤
dT/ne.

5.6 Discussion

We conclude with a discussion of two issues that have not yet been addressed.
First, we have assumed that agents have additive valuations for bundles

of items. This common assumption is typically considered strong. But for
the purpose of defining envy in our online setting we consider it to be very
natural. Indeed, in an online setting, the allocated items would typically be
used independently of each other. Consequently, we can interpret the envy of
i for j,

∑
t∈Ai vit −

∑
t∈Aj vit, as

∑T
t=1 vit(It∈Ai − It∈Aj). Notice that this is a

sum over per-round envy. In other words, the additivity assumption actually
amounts to envy being additive over time.

Finally, we have focused with single-minded determination on a single
goal — that of minimizing envy. A possible concern is that low envy, in
and of itself, is not sufficient to lead to intuitively fair outcomes, as has
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been observed in various contexts [71, 43]. Be that as it may, even if one is
interested in a combination of low envy and other properties (Pareto efficiency
comes to mind), our results establish a baseline for what one could hope for,
and are therefore a crucial first step in any such investigation.
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Chapter 6

Political districting

6.1 Introduction

In the United States, representatives to the House of Congress and many
other bodies like state legislatures, city councils etc., are elected by dividing a
region, or state into disjoint geographical areas called districts. Each district
typically elects a representative via a plurality election. A partition of the
space into a set of districts is called a districting. We will focus on districting
in the context of electing representatives to the House of Congress.

A valid congressional districting must satisfy several constraints, some
prescribed at a federal level, others at the state level. These codify the
principle of ‘one person, one vote’, by requiring that districts contain the
same number of people. Most states require contiguity — it must possible
to move from any point in a district to any other without leaving it. Many
states’ constitutions also contain wording to the effect that districts must be
compact and/or retain ‘communities of interest.’ Finally, the Voter Rights
Act demands minority groups be given equal opportunity to participate in
the democratic process, this is often interpreted as requiring districts in which
the will of a minority group determines the outcome of the election.

Despite these guidelines, what constitutes a valid redistricting is open
for interpretation. For example, is a district contiguous when two distant
geographical regions are joined by a strip of highway or a railroad? Does
‘one person, one vote’ mean that the total number of people in every district
should be the same, or is it referring to the number of people of a voting
age? Because of this, the process of redistricting, which happens every ten
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years based on the most recent census data, is a contentious issue. The
most recent round of redistrictings, in 2010, saw several districtings accepted
which seemed to benefit one political party over the other. The process of
establishing a political advantage through redistricting is called (partisan)
gerrymandering. Other forms of gerrymandering exist, for example racial
gerrymandering, but we will focus on districtings with partisan bias.

Gerrymandering has been a part of the public discourse since at least
1812, when the infamous ‘Gerry-mander’ cartoon [124] appeared (see Fig-
ure 6.1), satirizing a salamander-shaped district signed off on by then gov-
erner of Massachusetts, Elbridge Gerry. However, federal courts have been
reticient to participate in the discussion of what makes a districting parti-
san, citing the lack of an appropriate constitutional standard against which
to evaluate districtings. In the wake of Gill v. Whitford [1], where a Dis-
trict Court used a metric called the efficiency gap to evaluate claims of a
partisan gerrymander, there have been several rulings in similar cases, no-
tably in Maryland, North Carolina and Pennsylvania, where the Pennsyl-
vania Supreme Court redraw the state’s districting after the original was
deemed unconstitutional [2].

Figure 6.1: The infamous salamander shaped district that Elbridge Gerry
signed off on, immortalised in cartoon form by Elkanah Tisdale [124]

In an attempt to avoid future gerrymanders, several states have given the
power to redistrict to independent bodies. But the question remains: how
should such a body evaluate a proposed districting to evaluate whether it is
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partisan? Given the geographical and political differences between states, is
it even possible to come up with a notion of fairness in this context which
can always be satisfied? We propose such a notion.

6.1.1 Our approach and results

We begin by discussing proportionality, the property that a party should win
a fraction of the available congressional seats that best reflects its overall frac-
tion of support. Unfortunately, we will see in section 6.2 that it is impossible
to guarantee proportionality. In its stead many metrics for fairness have
been proposed, each striving to capture a different aspect of idealised and
impartial districtings. We briefly review several before proposing our own.

Our guiding question is an issue central to the functioning of independent
districting committees: what does a fair districting look like, and how many
districts may a party expect to win in such an impartial districting? We
start from an impartial protocol: flip a fair coin and give the party who
wins the coin flip complete control over the redistricting process. We claim
that the number of districts a party wins in expectation under this protocol
is a reasonable representation of what they may expect from an impartial
districting. Interestingly, in the absence of geographic constraints, this notion
of fairness reduces to a party’s proportional share of the districts. A part
of the appeal of this target lies in the fact that it remains reasonable when
proportionality does not, for example, if a party with 45% of the statewide
support wins 0 districts in every feasible districting, then their target number
of districts is 0, which is far from their proportional share of the districts.
We show in Section 6.3.1 that, in a model of districting where voters are
points on a plane, it is always possible to find a districting in which every
party wins their target number of districts (up to rounding). The result
relies on an extension of the ‘ham sandwich theorem’ which states that given
two colored sets of points on a plane, it is possible to divide the plane into
convex regions each containing the same number of points of every color.
This result is extended to more general models of the districting problem
under mild conditions.

We believe this result may be a tool for independent redistricting commit-
tees: every proposed districting can be evaluated in light of the existence of a
districting satisfying this particular notion of fairness. It may also open the
door to more nuanced computational approaches to districting: the existence
result says that adding fairness constraints to an optimization program that
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returns, say, the most compact districting does not impact the feasibility of
the program. In Section 6.3.2 we heuristically study the effect that adding
such constraints have on various objectives in Pennsylvania using data from
the 2016 presidential elections.

Finally, in Section 6.4, we examine exact models for computing optimal
districtings. We propose a recursive model which breaks symmetry by num-
bering precincts and letting the lowest numbered precinct in a district be its
root. Contiguity constraints are modeled recursively and exploit the struc-
ture of the underlying graph to decrease the maximum level of recursion.
Preliminary experimental results are promising.

6.1.2 Related work

Redistricting has been studied from the perspective of fair division before.
Pegden et al. [101] proposed a ‘I-cut-you-freeze’ protocol for coming up with
a valid districting as an extension of the traditional ‘I-cut-you-choose’ pro-
tocol for cake-cutting. In round 1 party A proposes a valid districting, and
party B freezes (fixes) one of the districts in this districting. Frozen districts
remain unchanged throughout the remainder of the protocol. In round 2
party B proposes a districting of the unfrozen part of the state, after which
party A freezes one district. Parties alternately propose and freeze districts
until every district is fixed. Pegden et al. [101] show that in the absence of
geographic constraints, this protocol has the fairness property that a party
with the minority of the votes will not win a majority of the districts. They
also find that neither party has the power to unilaterally create a district
which protects one of their incumbents. Their analysis does not extend to
the case where there are geographic constraints, but conceptually the proto-
col shows that a competitive process between two parties can balance their
conflicting interests.

Our fair target property is perhaps most similar to the geometric target
of Landau et al. [86]. They propose a protocol with two political parties and
an independent body. The independent body splits the state into two and
ask the parties which part they would prefer to divide. As soon as the parties
agree to an allocation, they may redistrict their part of the state as they wish.
If the parties do not agree to an allocation, the independent body retries
with a new split. Landau et al. argue that, upon completion, every party is
guaranteed to win at least as many districts as the midpoint between their
best and worst possible outcomes subject to the location of the dividing line.

150



Our fair target is similarly defined as the midpoint between a party’s extreme
outcomes but it is more general in that we do not require the existence of an
arbitrary dividing line. Furthermore, Landau et al.’s protocol may lead to
districtings where each half of the state is districted in an extremely biased
way toward one party. We do not focus on a protocol, instead we guarantee
that a districting satisfying our fairness target always exists. This allows us
to optimize a secondary objective subject to this fairness constraint.

Finally, we propose an exact model for redistricting. The first exact
method may have been the two-stage approach of Garfinkel and Nemhauser
[72], in which they generate all possible districts in stage 1 and solve a set
partitioning problem in stage 2 to minimize population deviations. Mehrotra
et al. [94] use column-generation to solve a similar two-stage problem and
incorporate the compactness of a district into the objective function of the
set partioning problem. Oehrlein and Haunert [99] extend Shirabe’s model
for spatial unit allocation [117, 118] and formulate a multi-commodity flow
network that captures contiguity and population equality as well as a form
of compactness. Li et al. [88] formulate a quadratic model to essentially
minimize the sum of the inter-precinct distances for precincts assigned to the
same district. The model captures population equality and this flavour of
compactness, but does not model contiguity constraints.

6.2 Districting metrics

The recent push towards independent committees for redistricting raises the
question of how such a body is to evaluate whether a proposed districting
is impartial, fair or reasonable. Intuitively, the most natural property a dis-
tricting should satisfy proportionality — the fraction of districts a party wins
should closely reflect its statewide support. Of course, some amount of round-
ing is inevitable, since states have relatively few districts, but unfortunately
the problem with proportionality reaches much deeper than this.

Imagine that every household (alternatively precinct, census block or
voter tabulation district) contains 2 people who support party A, and 1 who
supports party B. No matter how these households are assigned to districts,
party B will never win a district despite having 33% of the statewide support.
It is not hard to make this more extreme, in the worst case the minority party
may win 50− ε% of the votes yet win 0 districts in any districting.

Although this example is discouraging, we may hope that real-world voter
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distributions do not give rise to such degenerate instances. Unfortunately,
they do: In the 2016 presidential election in Massachusetts the Republican
party won 32.8% of the votes compared to the Democrats’ 60%, yet they
won 0 of the 9 available congressional districts. Duchin et al. [63] show that
this was not due to gerrymandering: there exists no districting satisfying
Massachusetts’ districting requirements in which the Republican party would
have won any congressional seats.

Because of these types of examples, using proportionality to evaluate the
fairness of a districting plan is unreasonable and we turn to other approaches
for measuring fairness in districtings, each focusing on a different aspect of
‘ideal’ districtings, for example, impartiality, compactness, and a sensitivity
to shifts in the political landscape.

6.2.1 Seats-votes curve

The seats-votes curve is a simple visualization which represents how respon-
sive a districting is to changes in the voting population’s preferences. Two
important metrics are immediately visible from a seats-votes curve: the frac-
tion of seats that a party wins with 50% of the votes, and the fraction of
votes required for the party to win 50% of the congressional seats.

Seat-vote curves have been an integral part of the discussion on gerry-
mandering at least since Tufte [126] analysed nationwide seat-vote curves to
study the relationship partisan districtings and swing-ratios. Existing dis-
trictings may be evaluated by simulating uniform (or proportional) shifts in
voter preferences. The discrete nature of congressional seats naturally give
rise to a piecewise constant seat-vote curve. Recent work takes a more nu-
anced view of district outcomes by modelling the probability that a party
wins a district as a probit or logit function [50, 129], yielding smooth curves.
See, for example, Nagle [98] for a recent analysis of the seat-vote curves of
various districting plans proposed in Pennsylvania.

6.2.2 Efficiency gap

Stephanopoulos and McGhee [121] proposed the efficiency gap as a simple,
numerical measure of whether a districting is partisan. The idea is that an
impartial districting would cause both parties to waste an equal amount of
votes. All the votes received by the minority party in a district is declared to
be wasted; for the majority party every vote beyond the 50 + ε% threshold
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required to secure victory is wasted. Formally, the efficiency gap is defined
as

EF (D) =
|wa(D)− wb(D)|

total votes

where D is a districting and wx(D) is the number of wasted votes for party
x in districting D.

A small efficiency gap is preferable. In practice, a threshold of 8% was
proposed by Stephanopoulos and McGhee [121]. Curiously, this defines a
region of acceptable districtings in the seat-vote curve which will actively
reject proportional outcomes, as shown in Figure 6.2. Also notice that for
states where one party receives more than 80% of the vote it is impossible
to come up with a districting with an efficiency gap smaller than 8%. The
efficiency gap also promotes districts where parties waste the same number of
votes, in other words, districts where party support is split 75%-25%. Other
shortcomings of the efficiency gap is discussed in Bernstein and Duchin [25],
including the fact that it does not discourage cracking and packing nor say
anything about competitiveness or compactness.
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Figure 6.2: Assuming equal turnout in districts, the region of outcomes
deemed acceptable with an absolute efficiency gap below 0.08 excludes many
proportional outcomes.
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Despite these concerns, efficiency gap analysis have played a part in sev-
eral high-profile court cases, including Gill v. Whitford [1], which marked the
first time in 30 years that a partisan gerrymandering case was successfully
brought before a federal court [25].

6.2.3 Compactness measures

Thanks to the famous gerrymandering cartoon above, compactness is often
one of the first districting criteria that jump to mind. At least 18 states
have compactness as a formal requirement for congressional districts, how-
ever, there is little guidance about what constitutes a compact districting.
For example, the Constitution of Illinois only says ‘Legislative districts shall
be compact’, while Arizona requires that ‘Districts shall be geographically
compact and contiguous to the extent practicable.’

Because of the lack of formal guidelines, compactness have had a compli-
cated legal history. For example, it has been said that “reapportionment is
one area where appearances do matter,” [3] and also that the “Constitution
does not guarantee regularity of district shape” [3]. Although there exists
concerns about using mathematical measures of compactness in the absence
of providing end-to-end technical guidance [15], many notions of compact-
ness have been proposed and some have impacted legal interpretations of
valid districtings. Most attempt to capture some notion of dispersion or ir-
regularity in shape, but no one measure has been widely accepted as the gold
standard. Proposed measures include

� Length-width ratio: The ratio of the length to the width of the mini-
mum bounding rectangle [80];

� Convex hull: The ratio of the area of the district to the area of its
convex hull;

� Reock: The ratio of the area of the district to its minimum bounding
circle [113], Gärtner [73] describes how to find such bounding circles;

� Polsby-Popper: The ratio of the area of the district to the area of the
circle with the same perimeter [102, 115].
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6.2.4 Distributional approaches

A recent approach is to compare the characteristics of a given districting to
those that arise ‘naturally’, given the political geography of a state. This is
done through Markov Chain Monte Carlo approaches [62, 51, 82, 68]. Given
a graph representing the, say, precincts of a state, define a valid districting
to be a partition of the vertices into subsets, so that the subgraph induced
by each subset is contiguous and satisfies the necessary compactness and
population constraints.

Every node in the Markov chain will represent a valid districting. One
may transition from on districting to a neighbour by performing a random
‘move’, for example, by reassigning a precinct which currently exists on the
boundary between two districts. The idea is that over the course of millions
of random steps through the space of valid districtings, we may observe the
distribution of certain properties of the districting, for example, the number
of seats won by a specific party. A specific districting may now be evaluated
in light of this distributional information by seeing whether it is an outlier
and therefore likely to be highly engineered.

To the best of my knowledge there are currently no results about the con-
vergence of such Markov chains, but techniques to make rigorous statistical
claims do exist [53]. At a more basic level, it is questionable whether the
‘natural’ or distributionally average districtings are desirable, for example,
the optimal solution of any optimization procedure which finds districtings
will, by its very nature, be an outlier.

Despite the lack of supporting theoretical results, this approach have
strong proponents and have played a part in expert testimonies [2].

6.3 Fair target property

We now consider the case with n districts and two parties, called A and B.
Let D be the set off all districtings that are allowable given a state’s rel-
evant laws concerning population equality, compactness, minority-majority
districts, etc. Let D+

a ∈ D (D+
b ∈ D) denote a districting in which party A

(B) wins the largest number of districts, and denote this quantity by a(D+
a )

(b(D+
b ), respectively). Denote with D−a a districting where A wins the least

number of districtings. Notice that a(D−a ) = n− b(D+
b ) when there are only

two parties. D−b is defined similarly.
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We propose that an impartial districting should strive to let each party
win a target number of districts, with the respective targets given by

ta =
a(D+

a ) + a(D−a )

2
, tb =

b(D+
b ) + b(D−b )

2
= n− ta.

In other words, we claim an impartial outcome is one in which a party wins
a number of seats equal to the midpoint between what they win in their best
and worst outcomes. Notice that a party’s popularity does not influence how
heavily each of their extremes are weighed, as any difference in popularity
will already be reflected in the number of seats they win in their extreme
outcomes.

As an example, recall the case of the 2016 presidential election in the
state of Massachussettes, where the republican party won 32% of the general
vote, yet no districting allowed them to win a congressional seat. Here our
target number of districts for the republican party is 0 since b(D+

b ) = 0.
One argument for this target is the following: Imagine a procedure in

which a fair coin is flipped, and whichever party wins the coin flip is given
absolute power to redistrict a state as they wish, subject to a specified set
of laws. Even though this procedure leads to extremely biased districtings,
it is certainly impartial, as no party is inherently favoured. We propose as
target the expected number of districts that a party wins under this impartial
procedure.

How does this target compare to better-known measures of fairness? In
the absence of geographic constraints, in other words, when voters in a state
may be arbitrarily partitioned into districts, our target reduces to propor-
tionality.

Theorem 6.1. Suppose an supporters of party A and bn supporters of party
B is to be partitioned into n districts, each with size a+ b. In the absence of
geographic constraints ta → a

a+b
· n and tb → b

a+b
· n as a+ b→∞.

Proof. Without loss of generality, assume party A is the minority party.
Since ta + tb = n it is sufficient to show ta → a

a+b
as a+ b→∞. For ease of

exposition assume a+ b is odd.
Since party A is the minority, it wins 0 districts when every district

consists of a supporters of A and b supporters of B.
Party A wins the largest number of districts by having exactly (a+b+1)/2

supporters in as many districts as possible. It follows that party A can win
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at most

x · a+ b+ 1

2
= an⇒ x = 2 · a

a+ b+ 1
· n = 2 · a

a+ b
· a+ b

a+ b+ 1
· n

districts. We may conclude that ta = a
a+b

( a+b
a+b+1

)n→ a
a+b
·n as a+b→∞.

Whatever deviation the factor a+b
a+b+1

causes from exact proportionality
is minuscule at the scale of practical districting problems. For example, in
Pennsylvania each district contains approximately 700 000 people, so a+b

a+b+1
=

0.9999985. A second interpretation of this target is that it is proportionality,
to the extent possible given the political geography of a state.

A benefit of this target is that it provides a layer of abstraction with a
lot a flexibility to incorporate any future constitutional or structural changes
to how districtings are drawn. Any new constraints that may be imposed
on districtings only changes the set of feasible districtings, the definition and
interpretation of the target remains unaffected.

Despite the attractive properties of our fair target, the question remains
whether it is possible to find a districting in which both parties win their
target number of seats (up to rounding down, since the target may be frac-
tional).

6.3.1 Guaranteeing targets on a plane

In this section, we prove that in a specific model of elections, it is possible to
guarantee that there always exists a districting in which every party wins at
least their target number of districts (rounded down). The model we consider
represents voters as points on a plane, each labeled according to which party
they support.

Suppose a set of points V = A ∪ B are spread on a subset of the plane,
say on P = [0, 1]2. Assume no three voters are colinear, and that points
(voters) in A (B) support party A (B, respectively). Let n be the number of
districts to partition P (and V ) into. A valid districting D is a partition of
the voters into districts d1, . . . , dn each defined by the voters in the district.
A district di ⊆ V is assigned an area Ad ⊆ P. For X ⊆ V,A ⊆ P we say
that X ∈ int(A) if x ∈ int(A) for all x ∈ X. We require that d ∈ Ad, in
other words, no points (voters) lie on the boundary of a district. For a valid
districting D = {d1, . . . , dn} it is possible to assign areas Adi for each di ∈ D
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such that Adi ∩ Adj = ∅ for all i 6= j ∈ [n] and P = ∪i∈[n]Adi . We say that
party A wins district di when |di ∩ A| > |di ∩B|.

Assume that |A| = an and |B| = bn. The equal population constraint
requires that each district must contain a+b points. We require a fairly mild
assumption that a < b−1, in other words, that party B has a clear majority.
For the state of Pennsylvania, this assumption translates into requiring the
majority party to receive 36 more votes than the minority party, out of the
more than 6 million votes cast.

The result relies on a generalization of the ‘ham sandwich theorem’.

Theorem 6.2 ([28]). Given two sets of points A,B with |A| = an and |B| =
bn on a plane, there exists a division of the plane into convex regions so that
every region contains a points from A and b points from B.

According to Thm 6.2, we can find a districting in which B, the majority
party, wins every district. In other words, there exists a districting in which
A wins no districts. It follows that party A’s target is half the number of
districts they win in their best districting. We now show that this target is
always achievable.

Theorem 6.3. There exists a districting in which party A wins at least btac
districts, and B at least btbc.

Proof. If btac = 0, then we are done since Theorem 6.2 guarantees a district-
ing in which party A wins 0 districts. Assume btac > 0.

LetDA be the districting in which A wins the greatest number of seats, say
k. Let D∗A ⊂ DA be any bk/2c of the districts that A wins in DA. Intuitively,
we will fix these districts to ensure that party A wins the required number
of districts. Practically, find a set of spanning trees T (D∗A) = {T (d) : d ∈
D∗A} ⊆ P by treating the voters as vertices and including the necessary edges
in such a way that none of the spanning trees intersect.

We now have to divide the remaining points V ′ = V \ ∪{d}d∈D∗A into
n − btac regions, each containing a + b points, in such a way that party B
wins every region. Denote with A′, B′ the voters supporting party A (B) in
V ′.

Consider [0, 1]2, with the points V ′. If |A′| is divisible by n − btac, then
Theorem 6.2 outputs a districting of V ′ in which party B wins every district.
It remains to handle divisibility issues.
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Suppose |A′| is not divisible by n − btac. Then |A′| = a′(n − btac) + ra
and |B′| = b′(n − btac) + rb, for some integer 0 < ra, rb < n − b1/2c. Note
that ra + rb = n− btac and a+ b = a′ + b′ + 1.

By assumption, a ≤ b−2, so |B|−|A| ≥ 2n. Since party A had a majority
in each of the districts in D∗A, |B′| − |A′| ≥ |B| − |A|+ btac. It follows that

2n+ btac ≤ b′(n− b1/2c) + rb − (a′(n− btac) + ra)

= (b′ − a′)(n− btac) + rb − ra
< (b′ − a′)(n− btac) + (n− btac)

⇒ n < (b′ − a′)(n− btac)
n

n− btac
< (b′ − a′).

Since btac > 0 and b′ − a′ ∈ Z, we conclude b′ − a′ ≥ 2.
By Theorem 6.2, we can now find a valid districting DB on V ′ in which B

wins every district. Specifically, for an arbitrary subset X ⊂ B′ with |X| =
rb, pretend the voters in X support party A. We now satisfy the conditions of
Theorem 6.2, since |A′ ∪X| = (a′+ 1)n, which yields a set of convex regions
R1, . . . , Rn−btac, each containing a set of n points d′1, . . . , d

′
n−btac each with

(a′ + 1)n points for party A and b′n points for B. Recall that a′ + 1 < b′, so
party B wins all the districts in DB.

It is possible that R1, . . . , Rn−btac overlap some of the spanning trees
in T (D∗a). Instead of using these regions are areas, find for each di, i ∈
{1, . . . , n− btac} an embedded spanning tree T (di) which does not intersect
any of the spanning trees in T (D∗a). Since we are only interested in an em-
bedding in P , the edges of the spanning tree does not have to be straight,
ensuring that it is always possible to find such a simultaneous embedding.
Among the possible embeddings, it is possible to select a specific one, for ex-
ample to encourage the spanning trees to be as far apart as possible, however,
this is not required for a proof of existence.

We have n districts D∗ = D∗A ∪ {d1, . . . , dn−btac} where party A wins btac
of the districts and party B wins n − btac ≥ btbc. It remains to assign each
district d ∈ D∗ an area Ad ⊂ P such that x ∈ Ad ∀x ∈ d, ∪d∈D∗Ad = P and
Ad ∩ Ad′ = ∅ for d, d′ ∈ D∗.

Denote with T ∗ = T (D∗a) ∪ T (DB) the embeddings of all the spanning
trees on P . Let ε′ = min{dist(x, y) : x ∈ T ; y ∈ T ′;T 6= T ′;T, T ′ ∈ T },
where dist(x, y) is the euclidean distance between x, y ∈ P , be the smallest
distance between any two spanning trees and set ε = ε′/4.
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For d ∈ D∗, set A′d = {x ∈ P : dist(x, y) < ε, y ∈ T (D)}. By choice
of ε, A′d1 ∩ A

′
d2

= ∅ for all d1, d2 ∈ D∗ and d ∈ A′d. We now have a set of
disjoint regions in P , one for every district in D∗. All that remains is to
assign P̄ = P \ ∪d∈D∗A′d, but this can be done arbitrarily since P̄ does not
contain any voters. For example, assign every x ∈ P̄ to its closest region.

When we treat voters as points on a plane, this result shows that we
can always find a districting guaranteeing that each party wins their target
number of districts. Real districts are made up of precincts or voter tabula-
tion districts, so it is natural to ask whether this guarantee extends to more
realistic models. The following observation addresses this concern.

Observation 6.4. Suppose there exists a districting D with a(D) = z for
every z ∈ Z, a(D−A) ≤ z ≤ a(D+

A). Then there exists a districting in which
party A wins at least btac districts and party B wins btbc.

In other words, as long as it is possible to transition ‘smoothly’ between
a party’s most extreme districtings, there exists a districting satisfying each
party’s target. Due to the granularity and scale of real-world districting
instances this is an innocuous assumption.

Finally, this observation can also be framed as an approximation result.
For an instance I (a distribution of voters on a geography) and a districting
D in the space of valid districtings D consisting of n districts (satisfying
whatever constraints apply), let

φ(I) = max
D∈D

min

{
a(D)

ta
,
b(D)

tb

}
denote the fairness ratio on I. This fairness ratio represents the fraction of
the worst-off party’s target that can be guaranteed in the best districting
(with respect to this objective) in D. One may ask what fairness ratio can
be guaranteed for all instances, or what is

φ = min
I∈I

φ(I)

where I is the space of districting instances, and D(I) is the set of valid dis-
trictings for instance I. Let D−a (I), D+

a (I) denote the districtings on instance
I where party A wins the least and most number of districtings respectively.

Theorem 6.5. Suppose for every instance I ∈ I and z ∈ Z, a(D−A(I)) ≤
z ≤ a(D+

A(I)) there exists a districting D with a(D) = z. Then φ ≥ n−1
n

.
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Proof. Fix an instance I ∈ I. For ease of presentation we suppress the
dependence on I.

Suppose ta ∈ Z. Then a(D−A) ≤ ta ≤ a(D+
A), and by assumption there

exists a districting D with a(D) = ta. Since n = ta + tb, b(D) = tb and
φ(I,D) = 1.

Suppose ta 6∈ Z. Then ta = k+ 1
2
, for some k ∈ [a(D−A), a(D+

A)), k ∈ Z, and
tb = n− k − 1

2
. By assumption there exists a districting D1 with a(D1) = k,

and D2 with a(D2) = k + 1. We show that the best of these districtings is
good enough to achieve the result.

� For D1, a(D1)
ta

= k
k+ 1

2

while b(D1)
tb
≥ 1.

� For D2, a(D2)
ta
≥ 1 and b(D2)

tb
= n−k−1

n−k− 1
2

= k′

k′+ 1
2

In other words, φ(I) = max{ k
k+1/2

, k′

k′+1/2
}, for k′ = n − k − 1. The fairness

ratio for every instance in I is characterised by the value of k. Since k′ ranges
over {0, . . . , n− 1} as k ranges over {0, . . . , n− 1},

φ ≥ min
(n−1)/2≤k≤n−1

k

k + 1/2
=

n−1
2

n−1
2

+ 1
2

=
n− 1

n
.

Proving a lower bound on φ requires fixing a model and giving a family
of instances on which it is impossible to achieve a better fairness ratio. The
proof of Theorem 6.5 shows us that such a family of instances should have
odd n and ta = n−1

2
+ 1

2
.

Observation 6.4 says that there always exists a districting in which each
party wins at least their target number of districts, rounded down. This
gives independent districting committees something to compare proposed
districts against. Another implication of this result is that we may add
fairness constraints to whatever optimization program is used to construct
districtings without impacting feasibility. For example, if compactness is the
desired objective, we may safely restrict our search to the most compact
districting satisfying our fairness constraints.

6.3.2 Case study

We now investigate the effect of optimizing a property like compactness or
efficiency gap subject to our fairness constraint. Finding a party’s target

161



requires knowing the most and least number of districts won by that party in
any districting. Unfortunately, exact models for redistricting do not currently
scale to real-world situations, so we turn to heuristics for this evaluation.

We use the open-source gerrychain package developed by the Metric Ge-
ometry and Gerrymandering Group1. This facilitates running a Markov chain
from a starting districting. We begin by creating a graph representation of
a state where every node in the graph corresponds to a Voter Tabulation
District (VTD) and is associated with the properties of that VTD including
its population, area, perimeter, number of democratic and republican voters
in various elections, etc.

Moving from one state of the Markov chain (a valid districting) to an
adjacent one can be done with one of two types of moves: an edge flip, which
reassigns a single VTD currently on the boundary between two districts,
or a recombination (called ReComb in the gerrchain documentation), which
merges two adjacent districts before splitting them into two again by finding
a cut which satisfies the population constraints.

Before accepting any move, it is verified whether the resulting district-
ing satisfies the remaining constraints. We impose contiguity contraints, a
maximum population deviation across districts of 2% as in [74], and a com-
pactness constraint which limits the number of cut edges between districts
to be within a factor of 2 of the starting districting (it’s also possible to
impose more explicit compactness constraints, for example on the average
Polsby-Popper score or maximum perimeter).

For the results presented here a chain length of 20 000 recombination
moves was used. This was found to be a sufficient number of moves to
erase the impact that the starting districting may have had on subsequent
districtings [74]. Note that if you perform only edge flips significantly it is
suggested that you perform 10 000 000 moves [74]. We also experimented
with a mix of edge flips and recombination moves and the results were not
significantly different from those presented here.

At every node in the Markov chain we note the number of districts won by
every party. A party’s fair target number of districts is the midpoint between
their best and worst districtings observed in the Markov chain. Additionally,
we keep track of the following potential objectives:

1See http://mggg.org for more information about the Metric Geometry and Gerry-
mandering Group. The gerrychain python package is available at https://github.com/
mggg/GerryChain.
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� Polsby-Popper score: A compactness metric defined as
∑

d 4π·aread/p
2
d,

where d ranges over all the districts in the districting and pd is the
perimeter of district d. More compact districtings have higher Polsby-
Popper scores.

� The efficiency gap, which attempts to measure if a districting is par-
tisan by comparing the number of wasted votes for every party (see
section 6.2.2) .

� The percentage of the statewide vote that the democratic party re-
quires to win 50% of the districts. This is calculated by performing
proportional shifts in voter sentiment in every district until the required
outcome is achieved.

� The number of competitive districts, defined as districts where the
majority party wins less than 54% of the votes.

Pennsylvania

We evaluate the outcomes under different districtings using the 2016 presi-
dential election data on a VTD level. Note that congressional elections are
separate from presidential elections, so our results are not exactly represen-
tative of the 2016 congressional elections. However, congressional elections
typically show a very high level of correlation with the presidential election,
and the data for the presidential election was more readily available.

The number of seats won by the democratic party over the course of the
run may be seen in Figure 6.3. As a result we set the target number of
districts to be 7 for the democratic party and 11 for the republican party.

The efficiency gap and percentage votes that the democratic party re-
quired to win 50% of the districts (9) may be seen in Figure 6.4. Suppose we
are minimizing the absolute efficiency gap to ensure an impartial districting.
The minimum absolute efficiency gap observed was 0.012 at the districting
shown in Figure 6.5. The democrats won 8 districts in this districting, which
means that the republican party did not achieve their target number of dis-
tricts. Imposing the fairness constraint that every party must win at least
their target number of districts leads to a minimum absolute efficiency gap
of 0.069, the corresponding districting is shown in Figure 6.5. Adding the
fairness constraint has a significant impact on the objective, however, this
is not always the case, for example, the maximum number of competitive
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Figure 6.3: The number of districts won by Democrats in PA across the
30 000 steps in the Markov chain.

districts observed is 8, while it is possible to retain 7 competitive districts
subject to the fairness constraints.

Figure 6.4: The efficiency gap (left) and percentage votes the democrats need
to win 9 districts (right) across the 30 000 steps in the Markov chain.

6.4 An exact model for redistricting

In the previous section we used a heuristic to determine the largest number
of districts that a party can win in any feasible districting. We now attempt
to develop an integer programming model for this which avoids symmetry.

Suppose that districts are composed of precincts (this may in reality be
VTDs or census blocks). To remove symmetry, we suppose that each district
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Figure 6.5: The districting which minimizes the absolute efficiency gap (left)
alongside the solution subject to our fairness constraint (right) across the
30 000 steps in the Markov chain.

contains a root, which is the precinct in the district with the smallest index.
Let binary variable xij = 1 for i < j when precinct j is assigned to precinct
i, meaning that j belongs to the district with root i. We let xii = 1 when i
is a root. A districting must satisfy∑

i
i≤j

xij = 1, all j (a)

xij ≤ xii, all i, j with i < j (b)

(6.1)

where constraint (a) requires every precinct to be assigned to some district,
and constraint (b) ensures precincts are only assigned to roots.

We can specify that the districting must have m districts by writing∑
i

xii = m.

Population constraints can be enforced with

Lxii ≤
∑
j
j≥i

pjxij ≤ U, all i

where pj is the population of precinct j. Bounds of
∑

j pj/m · (1 ± ε) for
ε = 0.02 is often used in the literature. Similar constraints can control the
number of minority voters in a district to comply with the voter rights act.
This constraint can be strengthened to a convex hull formulation by rewriting
it as

Lxii ≤
∑
j
j≥i

pjxij ≤ Uxii, all i. (6.2)
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This inequality is derived by writing the constraint as a disjunction
L ≤

∑
j≥i

pjxij ≤ U

xij ≥ 0, all j
xii = 1

 ∨

∑
j≥i

pjxij = 0

xij ≥ 0, all j
xii = 0


The two polyhedra have the same recession cone (namely, the origin), since
their feasible sets are bounded. The standard convex hull model of this
disjunction is therefore

Lxii ≤
∑

j≥i pjx
1
ij ≤ Uxii∑

j>i pjx
2
ij = 0

xij = x1
ij + x2

ij, all j

Substituting x2
ij = xij − x1

ij, this becomes

Lxii ≤
∑

j≥i pjx
1
ij ≤ Uxii∑

j>i pjx
1
ij =

∑
j>i pjxij

which simplifies to (6.2).
The contiguity constraints are the hardest part of the model. Existing

approaches enforce contiguity with multicommodity flow formulations or by
deleting edges from a spanning tree of the dual graph. We model contiguity
recursively. A root is connected to itself. A precinct is connected to its root if
it is adjacent to a precinct which is assigned to the same root and connected
with it. Every precinct must be connected to its root for a districting to be
contiguous.

Let binary variable yijd = 1 when precinct j is assigned to root i and they
are connected in the dth level of the recursion. The constraints are

yii0 = xii, all i (a)

yik0 = 0, all i, k with i < k (b)

yikd ≤ xik, all i, k with i < k, d = 1, . . . , D (c)

yikd ≤
∑

j∈Nk
j>i

yij,d−1, all i, k with i < k, d = 1, . . . , D (d)

yijD ≥ xij, all i, j with i ≤ j (e)

where Nk is the set of precincts adjacent to precinct k, and D is the maximum
number of precincts through which a precinct can be connected to its root.
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Constraint (a) says a root is connected to itself, and constraint (b) says that
these are the only precincts connected on level 0 of the recursion. Constraint
(c) prevents a precinct from being connected to a root which is not his own.
Constraint (d) says that if none of a precincts neighbours are connected to its
root on level d− 1 of the recursion, then that precinct can not be connected
to its root by level d. Finally, constraint (e) says every precinct must be
connected to its root by level D.

This model contains triply subscripted variables, but the hope is that D
is relatively small compared to the number of precincts, otherwise we may
have too long and thin districts. For example, the maximum possible D on
an n × n grid is 2n, so we may expect D ∈ O(

√
|V |) where V is the set of

vertices of the graph (precincts).
Preprocessing may also remove some xij variables from the model along

with their corresponding y-variables. For example, we may observe that two
precincts are extremely far apart in the graph, or that there is no way to let
them be a part of the same district without violating population constraints.

6.4.1 Modeling the Objective Function

We can add an objective to this model, for example, maximize the number
of districts won by a specific party. Let binary variable wi = 1 if the party
A wins the district rooted at precinct i, with wi = 0 if precinct i does not
root a district or roots a districts which party A loses. The objective is
maxw,x,y

∑
iwi. Then wi might be defined by the constraint

Uwi ≥
∑
j>i

(aj − 1
2
pj)xij (6.3)

where aj is the number of voters for party A in precinct j and U is an upper
bound on the district population. The constraint ensures that if party A has
the support of more than half the voters in district i, then wi = 1. This is a
weak model which can be strengthened to a convex hull model.

To simplify notation, we temporarily replace
∑

j>i(bj −
1
2
pj)xij with the

new variable yi. We next write the constraint as a disjunction:(
yi ≥ 1
wi = 1

)
∨
(
yi ≤ 0
wi = 0

)
This disjunction cannot be modeled as an MILP because the recession cones
of these two disjuncts differ. The first recession cone is the ray yi ≥ 1, and
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the second is the ray yi ≤ 0. To equalize the recession cones, we require that
yi lie in the interval [−U,U ]. This yields the disjunction yi ≥ 1

yi ≤ U
wi = 1

 ∨
 yi ≤ 0

yi ≥ −U
wi = 0


The standard convex hull model of the disjunction is

wi ≤ y1
i ≤ Uwi

−U(1− wi) ≤ y2
i ≤ 0

yi = y1
i + y2

i

Substituting y2
i = yi − y1

i and writing y1
i as zi, we obtain

wi ≤ zi ≤ Uwi
yi ≤ zi ≤ yi + U(1− wi)

Finally, we can substitute the definition of yi and obtain a convex hull model
for the original constraint:

wi ≤ zi ≤ Uwi∑
j>i

(bj − 1
2
pi)xij ≤ zi ≤

∑
j>i

(bj − 1
2
pi)xij + U(1− wi)

The model can also be written

wi ≤ zi ≤ Uwi

zi − U(1− wi) ≤
∑
j>i

(bj − 1
2
pi)xij ≤ zi

It introduces a continuous variable zi for each tract. It may be advantageous
to project out the zi and obtain the model

Uwi ≥
∑
j>i

(aj − 1
2
pi)xij

(U + 1)wi ≤ U +
∑
j>i

(aj − 1
2
pi)xij.

(6.4)
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6.4.2 Other valid inequalities

We can find additional valid inequalities by making simple inferences about
the number of districts a party can win in the absence of geographic con-
straints.

Suppose ai (bi) is the number of voters in district i which support party
A (B), and pi the population of district i. Let m be the number of districts,
and p̄ =

∑
i pi/m the average number of voters per district. Under exact

population equality we may infer that∑
i

wi ≤
⌊ ∑

i ai
dp̄+ 1/2e

⌋
since dp̄ + 1/2e votes are required to win a single districting. The same
constraint from party B’s perspective provides a lower bound on

∑
iwi:∑

i

(1− wi) ≤
⌊ ∑

i bi
dp̄+ 1/2e

⌋
⇐⇒

∑
i

(1− wi) ≤
⌊∑

i(pi − ai)
dp̄+ 1/2e

⌋
.

These constraints can be adapted when exact population equality is not
required.

6.4.3 Preliminary computational results

We test this model through some small scale experiments on n×n grid graphs
for n ∈ {5, . . . , 13}. Every vertex in the grid consists of one voter who is
randomly assigned to either support party A or party B. In each instance
the number of districts required is m = n and we enforce exact population
equality. For example, we must partition a 5 × 5 grid with 25 vertices into
5 districts each with 5 vertices. We test three versions of the problem: The
first version has a dummy objective function and only attempts to find a
feasible districting (Feas). The other two maximize the number of district
won by party A, first using (6.3) (denoted by Max), then using the stronger
constraints in (6.4) and the valid inequalities in Section 6.4.2 (Max+S+VE).
Instances are given a time limit of one hour we perform ten repetitions for
every instance size.

Table 6.1 reports the average time taken for the solved instances, the
number of instances that did not solve to optimality within the time limit is
indicated in parenthesis.
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Table 6.1: Time (in seconds) to solve the recursive districting model on an
n × n grid. The number of instances out of ten that timed out in one hour
is shown in parentheses.

n Feas Max Max+S+VE

5 0.5 4.61 2.67
6 1.10 5.98 2.24
7 1.72 244.90 (7) 221 (5)
8 8.82 396.88 101.99
9 75.49 (5) – 3286.9 (9)
10 457.42 – –
11 889.05 – –
12 3247.8 (?) – –
13 – (10) – –

We see that feasible districtings can be found within an hour for graphs
with up to 140 vertices. When maximizing the number of districts a party
wins, graphs with up to 80 vertices can be handled within the time limit.
We also observe that the stronger formulations and valid inequalities speed
up solution times by a significant margin.

For context, Pennsylvania has 67 counties, 14 of which are split across
districts in the most recent districting. One may imagine a model of PA
which splits these 14 large counties into 3 – 5 pieces each and keeps the
remaining counties intact. The resulting graph will have around 100 vertices.
This approach introduces its own difficulties, for example, the method is no
longer exact, since there may be feasible districtings which split some of the
other counties. It also becomes harder to impose strong bounds on D when
different parts of the graph represent geographic areas of very different sizes.

It is conceivable that, with refinements like additional valid inequalities,
such a model will be solvable, especially since redistricting only happens
once every ten years. It remains to be seen to what degree optimality can be
recovered when the problem is partially modeled at a county level instead of
at VTD level.
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Chapter 7

Conclusion

We studied computational social choice problems in which human factors,
for example the cognitive load involved with eliciting utility functions and
the fact that we expect certain systems to be impartial, played a central role.
These new paradigms for voting and fairness not only lead to rich technical
questions, but may also influence how we make decisions in the future.

Websites like RoboVote1 and Spliddit2 enable groups of any size to use
state of the art voting and fair division mechanisms. This impact is not
limited to individuals. The proliferation of participatory budgeting shows
that there is a willingness to change how we make decisions as a society.
We are more connected today than ever before — this creates the potential
for a more direct or participative democracy in which citizens have a say in
state decisions on a day–to–day basis. The mechanisms that manage such
interactions will have to be designed to respect many of the same principles
we considered when we studied participatory budgeting.

On a different front, increasing automation threatens jobs in many tra-
ditional industries. There is the real possibility that a large portion of the
current work force will no longer be needed or able to work. How does our
wage-based society change if this happens? Whatever the solution, it will
have to carefully weigh fairness at an individual level with societal consider-
ations like efficiency.

We conclude with more immediate concerns: avenues of investigation
raised or left unexplored by this work.

1www.robovote.org
2 www.spliddit.org
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Participatory Budgeting. In discussions with officials in charge of de-
signing the Barcelona participatory budgeting systems, one of the main con-
cerns of the distortion-based approach in Chapter 2 was that distortion-
minimizing aggregation methods are complex and it may be hard to explain
the outcomes to the public, leading to a perceived lack of transparency. Cur-
rent greedy aggregation methods lean to far in the other direction and may
lead to extremely poor outcomes. An important avenue of research is finding
voting rules that lead to outcomes with provably high social welfare that can
also be easily explained.

After publication of our initial paper, Bhaskar et al. [29] studied threshold
approval voting and observed that, for a large enough set of voters, randomiz-
ing the threshold independently for every voter leads to distortion approach-
ing 1. Intuitively, the probability that a voter approves an alternative is
equal to his utility for it, so the expected number of approvals an alternative
receives equals its social welfare. Bhaskar et al. [29] also find that a variation
of the voting rule used in Theorem 2.3, which used a harmonic scoring rule,
is truthful and retains distortion O(

√
m logm).

Though these results are theoretically interesting, we expect manipulat-
ing an election at this scale to be a daunting task. Instead of demanding
truthfulness, a more practical alternative is to strive for outcomes that sat-
isfy a version of proportional fairness. An outcome is said to be in the core of
a participatory budgeting problem if there is no coalition of voters who can
benefit if they are allowed to unilaterally spend their proportional fraction
of the budget. This approach does not circumvent any of the elicitation con-
cerns raised in Chapter 2, but it does provide a compelling fairness guarantee
which may be easier to motivate to public officials. It is currently unknown
whether the core of a participatory budgeting problem is always non-empty.

Fair division of indivisible goods. In Chapter 5 we studied envy in a
setting where items arrive dynamically over time, and are irrevocably as-
signed to agents upon arrival. Subsequently, He et al. [81] studied a version
of the problem in which it is allowed to reassign previously assigned items
when necessary. They bound the number of assignments need maintain an
EF1 solution after a batch of arrivals.

Another issue that Chapter 5 highlighted is that envy-minimizing algo-
rithms are not necessarily efficient. Recall that uniform random assignment
was essentially optimal in terms of envy. Consider an example where one
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agent values every item at 1, and every other agent values all items at 0, it is
easy to see that random allocation may lead to outcomes with social welfare
that is a factor of n (where n is the number of agents) less than optimal. We
can measure efficiency in terms of approximate Pareto-optimality, a solution
is α-Pareto optimal if multiplying the utility point by 1/α gives an infeasible
utility point (a point outside the Pareto frontier). Psomas and Zeng [110]
study this trade-off between efficiency and fairness in a model where the ad-
versary picks a distribution over instances. They show that it is impossible
to find an algorithm which simultaneously has vanishing envy and leads to
allocations in which agents’ utilities are ( 1

n
+ ε)-Pareto optimal.

One interpretation of this trade-off between efficiency and fairness is that
it is the cost (in terms of social welfare) of considering envy as an objective.
envy. One may also ask what is the monetary cost of requiring truthful
mechanisms to be envy-free in a setting where you are allowed to allocate both
money and goods to agents. This line of research may highlight interesting
connections between revenue maximizing auctions and fair division problems.

Political redistricting. Although political redistricting is one of the old-
est problems studied in the integer programming literature, existing models
either do not capture the full complexity of redistricting, or do not scale to
real-world sizes. The development of scalable algorithms for redistricting will
enable legislatures to transparently optimize for properties that they deem
to be desirable.

Perpendicular to drawing districtings, is evaluating existing or proposed
districtings for bias. One very important characteristic of an impartial dis-
tricting is that it is sensitive to voters changing their political affiliation.
For example, if the statewide support for a party shifts from 45% to 51%,
then this should be reflected in the outcome of the congressional elections.
Our fairness property (and the Markov chain-based approaches) evaluates a
districting based on actual votes cast in a specific election, but fails to say
anything about how good the districting would be if voters shift in some
direction. It is important to model uncertainty about voter preferences if we
wish to study a districting in a wide variety of possible outcomes. A simple
way to do this has already been used to construct seats-votes curves. The
way it works is to look at the votes cast in a single election, and assign a
party a probability of winning a district based on their fraction of support
instead of a binary victory or loss. It is possible that an approach similar to
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that of robust optimization is more useful for modeling the uncertainty about
voter preferences, and it remains to be explored what theoretical guarantees
we can provide for districtings in the presence of this uncertainty.
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