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Preface

Economists have extensively been studying and designing well-functioning algorithmic al-

location (or matching) mechanisms where rank ordered lists are used in place of price (or

willingness to pay). For example, public schools are “free” for students to attend, so many of

the public school systems (Barcelona, Beijing, Boston, Denver, Ghana, New York City, and

etc.) around the world adopted these mechanisms to allocate students to their public schools.

In both theoretical and empirical literature, efforts to evaluate various implementations have

been growing. This paper contributes to this literature and study the implementation of one

of the most popular matching algorithm–the Deferred Acceptance algorithm.

The first chapter investigates the New York City high school matching market. As re-

quested by the New York City Department of Education, Abdulkadiroglu et al. (2005) have

chosen the Deferred Acceptance (DA, henceforth) algorithm to be the allocation mechanism

for its promising theoretical properties. The allocation, when all the assumptions are satisfied,

is stable, which means that there exist no student-school pair (or any coalition of students and

schools) that can exchange their match outcome and end up with better allocation. Adding to

this positive result, DA produces an allocation with optimal student welfare among all other

stable allocations. Moreover, the mechanism induces strategy-proofness, where it is weakly

dominant strategy for students to report their true preference when submitting their rank

order list. Unfortunately, many of the assumptions required for such properties are not met

in practice. Departures from the theoretic assumptions are: (1) schools do not strictly rank

all of its applicants2, (2) students do not rank all of their choices in the main round3, and

(3) DA is run twice4. Due to these violations, theoretical results mentioned above are no

longer guaranteed, creating both instability and incentive to make strategic choices in the

first round. I investigate the market data (including student choices and matching result) to
2? shows that the tie-breaking rule (to break weak ranking) currently used by schools in NYC creates

inefficiency.
3Calsamiglia et al. (2010) provide evidence from the laboratory experiment that constraint on rank order

list resulted in manipulation of their preferences.
4Dur et al. (2018)shows multi-stage DA in such setting (allowing students participation in the later rounds

with changed rank order list) usually results in breaking of all positive properties. They also suggest a solution,
a modified DA, and conditions required to achieve those properties in multi-stage setting.
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build accurate picture. In particular, I find that there is a systematic relationship between

student rank order choices (specifically, rank order list lengths) and matching outcomes (i.e.

acceptance probabilities).

The second and the third chapter modifies the Deferred Acceptance algorithm to accom-

modate some of the market features introduced in the first chapter. In the second chapter,

I develop a version of the Deferred Acceptance algorithm to allow schools to address multi-

dimensional diversity concern (such as affirmative action based on race, test scores, and etc.)

while respecting their preference rankings. I show that, in general, diversity considerations

makes students non-substitutes, which makes the matching non-stable. If a school consid-

ers the diversity goals lexicographically, then I prove that such choice rule yields the best

student-optimal matching and preserves strategy proofness.

In the third chapter, I develop another version of the Deferred Acceptance algorithm to

combine two rounds. Inexplicably, most (including the New York City high school matching

market) of such implementations feature an additional matching round (often called supple-

mentary or scramble round) where students can re-participate in another matching round for

leftover seats. This chapter first shows, using a simple example, that the current two-round

implementation does not preserve any of the desirable characterizations of Deferred Accep-

tance algorithm. Then, the paper quantifies that 17-44% of the allocations have incentive to

deviate (more precisely, justified envy) under the current two-round implementation in the

NYC high school matching market. Finally, the paper designs a two (or multi)-round DA

algorithm which preserves stability, strategy-proofness, and student optimality across two

rounds.

In the fourth chapter, I recover student valuations for each school when it is assumed that

parents game the system. To handle rank order list data with extremely large choice set, a

computationally efficient, nonparametric estimation strategy is used for acceptance probabil-

ities and valuations. The model produce closed form representation of student preferences

where low acceptance probabilities increases valuations. Given that students with low so-

cioeconomic status, on average, have lower acceptance probabilities to their top choice(s),
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those students have higher valuations for their top choice(s) compared the students with high

socioeconomic status.

Literature Review

This dissertation contributes to both theoretical, behavioral and empirical literature on match-

ing markets in the context of school choice. Seminal paper by Abdulkadiroglu and Sonmez

(2003) have initiated taking mechanism design approach in a school choice setting, and Ab-

dulkadiroglu et al. (2005) records the implementation of Deferred Acceptance algorithm to

the New York City high school matching market. Implementation to the real-world school

choice setting introduced many practical challenges. Many schools do not provide strict

ranking of students; Erdil and Ergin (2008); Abdulkadiroglu et al. (2009); Kesten (2010);

Abdulkadiroglu et al. (2011) have studied different methods to break ties. Many schools have

to satisfy diversity rule (i.e., affirmative actions); Hafalir et al. (2013); Ehlers et al. (2014);

Echenique and Yenmez (2015) studies such issues. The mechanism has centralized public

schools only, and theoretical analysis of outside options (such as private schools) is limited;

Feigenbaum et al. (2018) provides solutions to late attrition due to private or charter schools.

The allocation algorithm is run twice; Pereyra (2013); Kennes et al. (2014) have studied a

form of dynamic matching algorithms. Complementing such efforts, Chapters 2 and 3 of this

dissertation provide solution to these challenges. Chapter 2 develops an algorithm and its de-

sirable characterizations (similar to the format used in Echenique and Yenmez (2015)) when

the diversity concern is multi-dimensional. Chapter 3 develops an algorithm and its desirable

characterizations when the two (or more)-round Deferred Acceptance is run with changing

preferences from student side. The dissertation also provides Julia code of these algorithms.

Despite the theoretical proof on the strategy-proofness of the Deferred Acceptance, there

has been increasing number of papers questioning such behavior. Calsamiglia et al. (2010) has

shown that constraining rank order list length can leads students to manipulate their choices

in a laboratory setting. Fack et al. (ming) rejects that student choices are truth-telling using

administrative data from Paris. Luflade (2018), using the sequential structure of the matching

8



mechanism, provide evidence that students behave strategically when forming application lists

using administrative data from Tunisia. Chapters 1 and 3 provide empirical and theoretical

evidence for rejecting the assumption that students truthfully report. Chapter 1, comparing

submissions from the two rounds, notices that rank order lists are not consistent across the

rounds negating truthful reporting assumption, and suggests relationship between rank order

list choices and matching outcome (i.e., acceptance probabilities). Chapter 3 provides cases

and examples where violating truthful reporting is dominating strategy for students in case

of two-round Deferred Acceptance.

Literature on estimating cardinal demand (or willingness to pay) from rank ordered list

(also known as empirical matching literature) has been increasing. Many empirical methodolo-

gies have been used to overcome computational challenges posed by the rank ordered structure

of discrete choice data. Since school choice markets are often large in number of participants,

estimation procedure is often accompanied by large computational cost. In efforts to overcome

computational burden, recent literature have come up with creative solutions: Calsamiglia

et al. (2018) analogize the rank order list submission process as a dynamic discrete choice prob-

lem where each slot is considered as a time period; Abdulkadiroglu et al. (2017); Agarwal and

Somaini (2018) uses Gibb’s sampling when estimating parameter maximizing the likelihood

function; Ajayi and Sidibe (2017) modeled the choice procedure as the stochastic portfolio

choice problem of Chade and Smith (2006). Complementing this literature, I estimate the

model using conditional choice probabilities (CCP) estimation, an arguments developed by

Hotz and Miller (1993).
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1 The New York City High School Matching Market

This chapter studies implementations of Deferred Acceptance in New York City high school

matching market. The main finding is that there are many evidence against the claim that the

submitted rank order lists are complete and truthful ordering of their preferences, contrary to

the assumptions on the current empirical literature on this market. The chapter starts with

describing participating students and schools, and records how Deferred Acceptance algorithm

is implemented (Section 1.1). Then this chapter organizes theoretical (non-) characterizations

of the modified Deferred Acceptance algorithm which are applicable for the described market

(Section 1.2). Lastly, this chapter provide novel empirical evidence that there exist a rela-

tionship between length of student rank ordered lists are matching outcomes or acceptance

probabilities (Section 1.3). These empirical and theoretical findings also motivates the rest

of the chapters (Chapters 2 and 3 suggests improvements on the current implementation of

the algorithm and the framework to analyze student choice in Chapter 4 is motivated by the

findings from this chapter).

1.1 Why New York City High School Matching Market?

There are no shortage of centralized matching markets to study. The New York City high

school matching market stands out due to its unique advantages, and among many are: size,

diverse student population schools. New York City high school matching market is the largest

market that has been studied in the matching market literature. Within the city, housing

price (a proxy for socioeconomic status) ranges from lower than lower than 100,000 USD to a

few millions; all races reside within the city with no one race consisting more than 50% of the

population; and standardized test scores also varies across all possible points. High schools,

mirroring the diverse student population, shows great differences in quality and selection rules.

Having such large sample with various backgrounds makes this market a very attractive for

both empirical and policy analysis.
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1.1.1 Size

Every year there are more than 80,000 8th graders are waiting to be matched to one of more

than 700 high school programs in New York City. In some cities (Boston and New York

City), each school is divided further into program(s), and students apply to programs within

the schools. For the purpose of understanding this paper, readers can think of schools and

programs as same concept.

Compared to the other frequently studied markets such as Cambridge, Boston who has

about 400 students every year, sheer number of participants itself makes this market enticing

to study. Table 1 lists a few markets that has been empirically studied in the centralized

school choice literature. Charlotte-Mecklenburg market seems large but it is a combination of

4 grades, which shows that for each grade, there are less than 10,000 students participating.

For a single year matching market, the New York City high school is by far the largest

system. Fortunately, the data includes all participants to the public high school matching

market eliminating any concerns about sampling bias.

Table 1: School Choice Markets and Size

Market No. Students No. Schools/Programs

Cambridge, Boston (Elementary) 470 25
Beijing (Middle) 914 4
Barcelona 11,817 159
Charlotte-Mecklenburg (4th-8th) 36,887 Unknown
New York City 80,000+ 700+

1.1.2 Students

8th grade student population in New York City are diverse in location of their residency,

socioeconomic class, ethnicity and their academic achievements. For each student, zipcode5,
5I match median housing price be found in the US Census Bureau to each students zipcode as a proxy

for socioeconomic class. Zip code indicates a location measure, which is later used in relation to the chosen
schools.
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ethnicity, standardized test scores6, and number of absent days are observed7. Descriptive

statistics shown in Tables 3 and 2 provide distributions for the demographic information. New

York City is largely Hispanic and Black population combined make 70% of the population

(Table 2). Median housing price ranges from less than 33,400 USD to a few million USD

(Table 3)8. With these extremes, the distribution looks normal with long tail on the right

(few places with very high housing price) (Figure 1.1a). Average absent days are high, but

largely driven by students with chronic absence (Figure 1.1b).

Table 2: Ethnic Composition of Student Population

School Year Asian Black Hispanic Other White

2011-12 0.14 0.28 0.36 0.01 0.12
2012-13 0.14 0.27 0.37 0.01 0.12
2013-14 0.15 0.26 0.36 0.01 0.13
2014-15 0.14 0.26 0.37 0.01 0.13
2015-16 0.15 0.25 0.37 0.01 0.13

Table 3: Student Popoulation Information Descriptive Statistics

Statistic N Mean St. Err. Min Max

HousingPrice 405,612 484,371 177,311 33,400 2,000,000
readingScore percentile 352,203 0.512 0.290 0.0001 1
mathScore percentile 356,505 0.509 0.288 0.012 1
daysAbsent 396,246 10 14 0 180

I look closer geographically and find that these variables are highly correlated. Each

neighborhoods in the city has distinctive characterization of a representative students. The

best way to illustrate this point is through maps. Before I introduce pockets of neighborhoods

(and their distinct characteristics), I first divide the city into boroughs. Neighborhoods divided

by their distinct characteristics doesn’t perfectly coincide with the boroughs, but boroughs
6Standardized test scores data is transformed into percentiles every year, since difficulty of the test changes

the distribution of the scores in some years. What matters in the matching market is relative scores to the
student population each year, so the percentile measure is used to create comparable measure across the years.

7To give a rough idea on days absent measure, there are 180 school days in a year. 18 days of absence
(either excused or unexcused) is considered chronic absence and can be in danger of not advancing to the next
level.

8I replace all values higher than 2 million to 2 million
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(a) Distribution of Median Housing Price
of Student Residency Zipcode

(b) Distribution of Absent Days

Figure 1.1: Student Information Distribution

(a) New York City by Borough (b) Student Population Density Map

Figure 1.2: New York City Map and Student Population Density

are a good high level geographic segmentation for labeling purposes. There are 5 boroughs:

Stanton Island, Brooklyn, Queens, Manhattan, and the Bronx (Figure 1.2a). Figure 1.2b

shows density of the student residencies by zip code and show that majority of the student

population reside in Bronx and Brooklyn bordering Queens.

Representing student demographic information using maps reveals that New York City is

divided into neighborhoods with distinct and highly correlated characteristics. Figures 1.3

and 1.4 represent the student information geographically. Figure 1.3a looks at median housing

price by zip code and Figure 1.3b racial composition for the corresponding region9. In Figure

1.4, each of the map corresponds to performance in standardized test score (the map shows
9Student data is only available upto zipcode level, so racial composition chart was taken from here:

https://www.nytimes.com/interactive/2015/07/08/us/census-race-map.html. Each dot represents 6,000 p eo-
ple from Census data.
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(a) Housing Price (in millions) by Zipcode (b) Racial Composition of New York City Residents
(not only Student Population) Neighborhoods

Figure 1.3: Neighborhood Characteristics: Racial Composition and Housing Price

(a) Standardized Test Score (English) (b) Days Abent

Figure 1.4: Median Academic Performance of Student Population by Zipcode
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English score but math score has similar shading) and absent days. Majority (70%) of the

student population reside in neighborhood with the following characteristics: high density of

Black and Hispanic residents, lower housing price, and lower academic performance. These

neighborhoods (Orange and Blue regions in Figure 1.3), located in Bronx and (farther away

from Manhattan) parts of Brooklyn and Queens, are characterized with lower housing price

and lower academic performance. On the other hand, areas with lower student density, located

in Manhattan coastal parts of Brooklyn nearing Manhattan and far east of Queens, are largely

populated with White and Asian residents, has higher housing price, and is characterized with

higher academic performance. One can profile a student based on each neighborhood. For

example, a student residing in Manhattan is likely to be White, perform above average on

standardized tests, is not absent from classes, and reside in expensive house. On the other

hand, a student residing in Bronx, is likely to be either Black or Hispanic, have poor academic

performance, and reside in relatively inexpensive house. Interesting neighborhood is the far

east of Queens (Flushing and neighboring parts). A student from here is likely to be Asian,

perform extremely well in standardized test, almost never misses classes, and reside in house

with slightly above average price. Next section introduce schools to see if school qualities

mirror the student characteristics of the neighborhood.

1.1.3 Schools (and Programs)

School qualities also vary in terms of the academic achievement, selection criteria and etc.

within commute providing favorable arguments for students having choices in high school

selection. Table 4 describes variables used, and Table 5 presents summary statistics. I tried

to use most variables from academic year 2013-2014, which is right in the middle of all

available years of data, except for data on crimes and SAT scores. For crime data, years

2014-2015 had the least number of missing data. For SAT data, information from 2013-2014

was not available. Data on school quality (such as graduation rate and median SAT score)

are available for more schools than data on crime rate.

Continuing with gaining insight geographically, I convert information from Table 5 into

15



Table 4: School Information Variables

Variable Description

On Track Year1 Denotes the percentage of 9th grade students who were on track to
graduate in four years by earning ten credits or more in core subjects at
end of 2013 school year.

Graduation Rate Denotes the percent of students who graduated ”on time” by earning a
diploma four years after they entered 9th grade at end of 2013 school
year.

College Career
Rate

At the end of the 2012-13 school year, the percent of students who grad-
uated from high school four years after they entered 9th grade and then
enrolled in college, a vocational program, or a public service program
within six months of graduation.

SAT Scores Mean SAT score of graduating class of 2012.

(Type of) Crimes Since 1998, the NYPD has been taked with the collection and mainte-
nance of crime data for incidents occur in a building where NYC public
schools are located during the school year of 2014-2015.

Total Student Total number of students enrolled in the school as of the audited register
in October 2013

Table 5: High School Summary Statistics

Statistic N Mean St. Dev. Min Max

On Track Year 1 400 0.81 0.12 0.31 1.00
Graduation Rate 355 0.73 0.17 0.20 1.00
College Career Rate 339 0.55 0.20 0.06 1.00
Reading Score (SAT) 293 412.00 60.70 291 674
Math Score (SAT) 293 423.00 68.80 316 735
Writing Score (SAT) 293 406.00 62.20 285 678
Major Crimes 212 2.94 1.80 2 12
Other Crimes 212 9.79 9.51 2 27
Non Criminal Crimes 212 13.10 15.70 2 56
Property Crimes 212 7.23 6.68 2 22
Violent Crimes 212 4.42 3.92 2 17
Total Students 426 166.00 87.30 1 325

16



Figure 1.5: Total Number of Students Enrolled in Schools by Zipcode

Figure 1.6: Median Graduation Rate of Schools by Zipcode

Figure 1.7: Total Number of Crimes in School Buildings
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maps. First, I look at the the number of students enrolled per zip code in Figure 1.5. Next, I

look at the quality of schools by areas in Figure 1.6.10 Highest performing schools (Figure 1.4)

are scattered throughout, although low in student enrollment count (Figure 1.5). Crime rates

are related to the enrollment size rather than any other student demographic information

(Figure 1.7).

Enrollment data supports the argument for school choice that students choose to move

away from their neighborhood to attend high school. Comparing Figure 1.2b to Figure 1.5

shows that population dense areas aren’t always the most enrolled area. Manhattan and

coastal regions of Brooklyn and Queens near Manhattan has lower density in student popula-

tion but enrolls rather larger proportion of students. Possibly because schools in these areas

have higher academic qualities than other neighboring schools (Figure 1.6).

Programs. School choice often creates competition for the seats. To look at the com-

petition, we have to look at application information, which is at the program level. So far

we have focused on school level information, largely because the data available from “Open

Data Law” is at the school level. However, in this market, students apply to a program and

get matched to a program within a school. Any application information will be at a program

level. For the purpose of this paper, readers can interchange the term program and the term

school without any loss of meaning. Table 6 shows that there exist competition for the high

school seats and the competition is quite steep (on average, programs have a little bit over

30% acceptance rate).

Table 6: Program Summary Statistics (Year 2013-2014)

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

applicant 679 300.4 485.1 10 62 325.5 4,046
admit 679 102.0 102.2 10 40 124 1,139

Given that there are some competitions, it is natural to ask how schools are admitting
10All other quality measure of schools are highly correlated with the graduation rate, so I only included one

map. There are many zip codes without any information on public high schools, likely because there is no
school in that zip code. In all maps, 0 represents zip codes without any information on public schools.
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some students and not the others, and the admission method seem to be a good indicator for

how competitive a seat at a particular seat is. Unlike other public high school markets where

there is one selection rule for all schools 11, in New York City, each program uses different

selection rules; there are 6 different admission methods across all programs. Descriptions of

these different types of selection method schools are provided below:

1. Audition programs rank students based on student’s performance in an audition.

2. Screened programs tank students based on their criteria including final report card,

standardized test scores, and attendance.

3. Educational Option (Ed. Opt.) programs admit student based on distribution of student

demographic (16% from the high reading level, 68% from middle reading level , and the

rest 16% from the lower reading level). To further prevent bias selection, only half of the

students matched to Ed. Opt. programs will be selected based on their rankings from

the school, and the other half will be selected through randomized computer program.

One thing to note is that if a student scored top 2% on ELA reading exam, and his/her

first choice school is Ed. Opt. program, that student is guaranteed a position in the

program.

4. Limited Unscreened programs give priority to students who showed interest in the school

by attending information sessions or open house events.

5. Unscreened programs select randomly.

6. Zoned Priority schools prefer students who live in the zoned area of the high school, and

Zoned Guarantee programs guarantee admissions to students live in the zoned area of

the high school.

The above description already hints that programs which select student based on audition

result or screen students based on academic records will likely to have more competition that

those with zoned and unscreened selection rule. To see whether this hypothesis is true, I
11For example, Cambridge, Boston chooses students with siblings and residing in close proximity first.
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Table 7: Selection Method Summary Statistics

method SeatProp AdmitProp
Audition 0.05 0.37
EdOpt 0.23 0.87
LimitedUnscreened 0.32 0.88
Screened 0.28 0.36
Screened For Language 0.02 0.51
Unscreened 0.01 0.97
Zoned 0.09 0.90

further investigate on average admission rates of programs by selection rules. Table 7 records

(1) number of seat allocated for programs with each of the selection rules proportional to

the total student population (“SeatProp”) and (2) median admit proportion of each program

calculated by dividing number of admitted students by number of applicants (“AdmitProp”).

This proves that Audition and Screened programs tend to be more competitive and zoned

and unscreened schools almost do not have any competition.

Tables 6 and 7 have shown that there exist a significant level of competition for large

proportion of the seats. To allocate the students to schools in this situation, New York City

implemented a version of Deferred Acceptance matching algorithm. Next section describes

the allocation process through a centralized matching algorithm.

1.2 Allocation Procedure and Mechanism

This section records that many of the desired properties found in static, unconstrained (rank

order list length) Deferred Acceptance algorithm do not hold in the current implementation

(two-stage, constrained DA). I introduce the current implementation of Deferred Acceptance,

list theoretical properties (and assumptions required) of Deferred Acceptance, identify re-

quired assumptions which are violated in this market, and revisit theoretical properties when

these assumptions are relaxed as it is in the current implementation.
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1.2.1 Allocation Procedure

There has been different information on how the New York City implemented the Deferred

Acceptance. This section gives the most recent information based on conversations with the

New York City Department of Education. First thing to note is that the allocation process

has 4 stages. The first and the last round is decentralized, and the middle two rounds run two

separate Deferred Acceptance algorithms to allocate students to high schools. The following

is timeline for the entire process, which takes almost a year:

1. The Specialized Round: A small subset of 8th graders who are applying to Specialized

High Schools (including Stuyvesant, Bronx Science, and LaGuardia) collects informa-

tion about the Specialized High School, take Specialized High School Admissions Test

(SHSAT), and/or audition. Note that all students who are applying to this round also

goes the rest of the process. This round is an extra step for all for those wish to ap-

ply. For the entire set of 8th graders, the centralized rounds proceeds in the following

sequence:

2. The Main Round:

(a) Information Reveal for the Main Round: At the beginning of the 8th grade school

year, all students (including the students who will be applying to the Specialized

Round) receive information about available high school programs. At this stage,

NYCDOE releases 600+ page directory of all available public high schools in the

NYC. There also exist high school fairs and information sessions. The booklet has

detailed information about (1) how each of the program chooses their students and

(2) applicant to admitted student ratio. Figure 1.8 is a page from the booklet

which contains information about all available schools. The booklet is over 600

pages.

(b) Action for the Main Round: By December, students submit their rank order list;

students can rank upto 12 choices. High school programs receive a list of the Main

round applicants and can create rank order among the Main round applicants.

21



Figure 1.8: A Page from 2017 NYC High School Directory
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(c) Result for the Main Round: By March, match results from the main (and the

Specialized High School) are revealed to students. For the subset of students who

received both the Main and the Specialized High School round admission, they

have to choose one.

3. The Supplementary Round:

(a) Information Reveal for the Supplementary Round: Subset of high school program

participates in the Supplementary round posts their seat availability for this round.

There also exist high school fairs and information sessions for this subset of par-

ticipating high school programs.

(b) Action for the Supplementary Round: Students decide whether to participate in

this round, and submits their rank order list for this round; students can rank up

to 12 choices. High school programs receive a list of the Supplementary round

applicants and can create rank order among the Supplementary round applicants.

(c) Result for the Supplementary Round: Match results from the supplementary round

are revealed to students. Note: If one gets matched to the Supplementary round,

the Supplementary round results are the final match. If one did not get matched

to the Supplementary round, one can keep their Main round match. If one does

not get matched from either the Main or the Supplementary round, one is assigned

to a program with vacancy.

4. The Appeals Round: There is no formal structure (like the last two rounds) to this

round. This round exist for students who is qualified to appeal due to health or other

reasons that the matched high school is not suited for his/her situation. The application

process is decentralized.

Each year, there are more than 80,000 students, and Table 8 shows fraction of 8-th graders

who are matched in each round:

23



Table 8: Proportion of Population and Their Match

No Particip Main (& Spec.) Supplementary Appeals Total N.
2011-12 0.07 0.75 0.16 0.02 81,879
2012-13 0.07 0.75 0.16 0.02 80,833
2013-14 0.05 0.78 0.16 0.01 82,282
2014-15 0.04 0.80 0.14 0.02 80,609
2015-16 0.04 0.80 0.14 0.02 80,609

1.2.2 Allocation Algorithm

For this market, a student proposing Deferred Acceptance algorithm was chosen. Abdulka-

diroglu et al. (2005) describes a rationale for the design choices that the resulting allocation

properties for student proposing DA are stability, best welfare properties for students, and

student strategy-proofness (it is a dominant strategy for students to state true preferences)12.

In this subsection, I first describe how the student proposing DA works and formally define

the aforementioned allocation properties associated with the algorithm.

Student Proposing Deferred Acceptance Algorithm

Step 1. Each student applies to her more preferred school. Each school tenta-

tively admits students according to their preference and total capacity and

permanently rejects the rest.

...

Step k. Similar to the first step, each student who was rejected at step k − 1

applies to her next preferred school. Each school considers union of tentatively

admitted students from step k − 1 and applicants from step k. From this

set, each school again tentatively admits a set of students according to their

preference and total capacity, and permanently rejects the rest.

Step End. the algorithm stops when there are no rejections.
12The paper mentions that the properties hold in sufficiently simple environments, and that of course imple-

mentation faced some complications and introduced them.
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At the end of the algorithm, if a student is unmatched, then one of the following happened:

1. A student never submitted rank order list.

2. A student was rejected from all schools in their list.

Allocation Properties (and required assumptions) of Student Proposing Deferred

Acceptance Algorithm I formally define and state the properties of student-proposing

DA algorithms studied from previous literature. The definition and theorems introduced in

this paper are from the Roth and Sotomayor (1992). I didn’t include the proof in this section

since only the properties are of interest for this paper, but could easily be found in the book

(Roth and Sotomayor (1992)).

Definition 1. A matching (or allocation) is pairwise stable if it is not blocked by any indi-

vidual agent or any student-school (program) pair. A matching is group stable if it is not

blocked by any coalition.

Theorem 2. A matching is group stable if and only if it is pairwise stable.

Definition 3. A matching is student-optimal if it is stable and there does not exist a stable

matching that has better allocation for some students and no worse allocation for all students.

Theorem 4. For any submitted lists of strict preferences, the matching of the student-

proposing deferred acceptance algorithm yields the student-optimal stable matching.

Definition 5. If a matching is weakly Pareto optimal, then there is no individually rational

matching such that there exist a strictly better allocation for all students.

Theorem 6. When the preferences are strict, the student-optimal stable matching is weakly

Pareto optimal for the students.

Definition 7. A mechanism is strategy-proof if truth-telling is a weakly dominant strategy

equilibrium of the induced preference revelation game.

Theorem 8. A stable matching procedure that yields the student-optimal stable matching

makes it a weakly dominant strategy for all students to state their true preferences.
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In short, under the assumption that every agent is submitting a full list of strict prefer-

ences, a student-proposing static Deferred Acceptance algorithm is strategy-proof and results

in student-optimal (or weak Pareto optimal) among stable allocation.

1.2.3 Relaxed Assumptions In Practice and Its Impact on Properties

This section revisits theoretical properties when some of the assumptions are relaxed. When

theory is implemented in practice, often the assumptions required are not met. In the New

York City high school matching, due to its large size, students and schools do not submit

strict and complete preferences; students are restricted to list up to 12 schools (but most of

the students submit even less choices); schools are not required to strictly rank its applicants

(in fact about half of the schools either group rank students or do not rank). Because the

ranking is not complete, there exists unmatched students at the end of the allocation; for

those who are unmatched (and also open to those who are not satisfied with their choice),

another round of allocation process is conducted.

Restriction on Student Rank Ordered List Length. Calsamiglia et al. (2010) has

studied student behaviors when students are restricted to rank only few schools in an lab

setting, and they find that restricting the rank order list has negative effect in truth-telling

property. Suppose that students are allowed to rank up to M schools. Haeringer and Klijn

(2009) studies student behavior once the schools to be listed are selected. Student cannot

do better than submitting the true ordering among the selected M schools. Luflade (2018)

claims that if there is a school that has garanteed admission among the top M schools, then

students can do no better than reporting their top M schools.

Proposition 9. (Calsamiglia et al. (2010)) Using the experiments designed, constraining rank

order list reduces proportion of students preserving the original ranking, incurs less truncated

truth telling strategy (submitting a choice list whose first M choices coincide with the true

preference), and finally increases proportion of individuals exhibiting biases (Small School

Bias: lowering the position of a more competitive school in the submitted list; District School

Bias: raising the ranking of the district school in the submitted list).
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(Haeringer and Klijn (2009)) If a student finds at most M schools acceptable, then she

can do no better than submitting her true preference. If a student finds more than M schools

acceptable, then she can do no better than employing a strategy that selects M schools among

the acceptable schools and ranking them according to her true preferences.

(Luflade (2018)) If a student has a perceived eligibility (or acceptance) probability 1 for (at

least) one of her M most preferred programs, then students do not misreport their preferences

over their choice set.

Such results shed some light into the submitted rank order lists, but do not paint a

complete picture on how students choose to rank. Propositions suggest that once M schools

to be ranked are selected, students will do no better than ranking them according to their

preferences. However, it is not known how students are choosing to select the few schools to

rank out of large choice set.

Schools’ Non-Strict Rank Orderings. Some schools receive thousands of application

and is only able to rank subset of the application, and others receive applications fewer than

the capacity so do not rank students. There is no school that rank all of its applicants. For

those who are not ranked, current practice breaks these unrecorded rank ties by randomly

assigning a number to a student. If random tie-breaking ordering is not in accordance of

students valuations (which is likely), there exist inefficiency.

Proposition 10. Deferred Acceptance algorithm will result in student welfare maximizing

(among other stable allocations) allocation if ties are broken using students’ cardinal

preference, or willingness to pay.

Proof. Suppose schools without preference over individual applicants are ordered based on

students’ cardinal preference. The resulting allocation from DA is denoted µ. Further suppose

there exists an ordering (tie-breaking), which generated stable matching with higher student

welfare. I denote this matching µ′. Under µ′, there must exist at least one school s which

admitted at least one student with higher willingness to pay called i. This cannot be the case

since i would have been admitted under µ, which is a contradiction.
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From the above proposition, it is shown that unless ties are broken according to applicants’

cardinal valuations, the allocation can be improved. Because the matching market can only

ask ordinal rankings of the choices, eliciting cardinal valuations from the ranking data requires

an extra econometric step.

Multi-round. As described in the timeline, there are two rounds of DA. Even though a

seat at the current school is guaranteed, not every student participates in the second round

(Table 8). Decision to not participate could be the case that a more preferred school is not

available in the second round or there could be another reason for not participating in the

second round. If for some reason (possibly due to the cost of going through the allocation

process) a part of the student body decides not to participate, then there is an incentive for

some to not report his/her true preference.

Example 11. (Dur et al. (2018)) Let C = {c1, c2, c3} be schools and S = {s1, s2, s3} be stu-

dents and seats available for each school is q = (1, 1, 1). I further assume that the preferences

doesn’t change, and a student 1 (s1) decides not to participate in the second round. The

round invariant preferences are given as follows:

c2 �s1 s1 �s1 c1 s3 �c1 s2 �c1 s1

c1 �s2 c2 �s2 c3 s2 �c2 s1 �c2 s3

c2 �s3 c3 �s3 c1 s3 �c3 s1 �c3 s2

If s3 reports her true preference in the first round, then the allocation is µ1 = 〈(s1, c2) , (s2, c1) , (s3, c3)〉.

There is no incentive for s1 and s2 to participate in the second round, so the matching stays.

Now suppose s3 submits non-truthful report in the first round: c2 �1
s3 c1 �1

s3 c3. Then,

µ1 = 〈(s1, s1) , (s2, c2) , (s3, c1)〉. q2
c3 = 1, since no one was matched to c3 and s3 prefers c3

to c1, s3applies. Since the second round is the last round, s3 submits true preference. Sup-

pose only s2 and s3 participates, since this is the last round, both participate with their true

preference. µ2 = 〈(s2, c1) , (s3, c2)〉, and µF = 〈(s1, s1) , (s2, c1) , (s3, c2)〉.
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Figure 1.9: Properties of Deferred Acceptance Allocation Revisited

Stable Strategy-Proof
Optimal

(among stable
all.)

All Assumptions Satisfied O O O

Student: Restricting Length
(Propositions 9) X X X

School: Non-Strict Rank
(Proposition 10) O O X

Multi-round
(Example 11) X X X

Thus, the allocation is not only strategy-proof, and no longer stable or optimal (student s1

and school c2 can form a block). The scenario of a student calculating to strategize for a seat

in the second round is unlikely in this large market. However, it is worth noting that current

practice is not guaranteed strategy-proof for students, not stable, and also not efficient.

Table 1.9 summarizes violated assumptions and its consequences on the desired properties

in Deferred Acceptance algorithm. Combining all three violations, the current allocation is

no longer guaranteed to be strategy-proof, stable, nor optimal. There also has been growing

evidence of possible strategic behaviors in a market using strategy-proof algorithms (Fack

et al. (ming); Luflade (2018)). In the next section, I investigate the relationship between

student choices and the matching outcome rather than taking the submitted list as true and

complete ranking of the choice set.

1.3 Student Choices and Matching Outcome

First part of this section serves as an empirical counterpart to Section 1.2.3 and records all

inconsistencies if student choices are assume to be complete and truthful. Then, it focuses on

one aspects of New York City high school matching data is that majority of the students sub-

mit only few choices (Table 9). Literature (Abdulkadiroglu et al. (2017); Luflade (2018)) has

assumed that shortening behavior indicates that only those listed are acceptable to students;

students prefers outside option to all the unlisted schools. However, I provide evidence that

suggests otherwise. Utilizing the two-round structure of this market, I suggest anomalies in
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the data if the submitted rank order lists are truthful and complete. I find answers to rank

order list shortening behavior in matching outcome.

Table 9: Proportion of Student with ROL Length N

0 1 2 3 4 5 6 7 8 9 10 11 12
0.05 0.07 0.04 0.07 0.08 0.10 0.11 0.09 0.08 0.06 0.05 0.05 0.14

1.3.1 Inconsistencies In the Rank Order Lists Between the Two Rounds

Two round Deferred Acceptance set up allows for the comparison between the rank order

choices of each student. I find several anomalies when when comparing evidences that con-

trasts the claim of truthful rank order list submission behavior in markets using Deferred

Acceptance algorithm. First, students who has submitted short list do not prefer outside

options to all of the other schools; second, rather than applying only to rejected schools in

the supplementary round, majority (80%) apply to new schools; third, students do not fill

their main round ROL, even though the student would have had higher chance of acceptance

to the “newly added schools in the supplementary round” schools; fourth, majority of stu-

dents do not apply to the rejected schools even though they are available in the second (or

supplementary) round.

Most rejected students do not take the outside option, but rather re-submit the

list in the supplementary round. If main round rank is complete, then all rejected

students should take the outside option. However, the data tells us that it is not the case.

When looking at the final allocation, majority of the rejected students do not take the outside

option and participate again in the second (or supplementary) round. Table 10 records final

allocation round for the rejected students (rejected students are 9% of the population). When

looking at the “Supplementary R” column, the majority (67%) of the rejected students decide

to participate in the supplementary round.

Most of the schools listed in the second (or supplementary) round are new schools.

If students had submitted complete and truthful rank order list of the schools, then in the
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Table 10: Final Allocation Round for Proportion of Rejected Students

Opt Out Specialized HS Supplementary R Appeals R
.20 .05 .67 .07

Table 11: Examples of Strong and Weak Preference Change

Main Round Supplemental Round Supplemental Round
A C A
B D C
C B

D
Weak Change Strong Change

supplementary round, the data should show that students only participate to apply to rejected

schools. Suppose that a student ranked A, B, and C on his supplementary rank order list.

Further suppose that the same student had been rejected from A in the main round, and

schools B and C were not recorded in his main round rank order lists. Then, for this student,

33.3% of the supplementary rank order list consists of rejected schools and 66.6% consists of

the new schools. For the measure above, I took all individual percentages and looked at the

average. The data reveals that only 10% of the supplementary rank order lists are rejected

schools and 80% of the rank order lists are new schools.

I also check whether there has been a reverse in ordering from the first (or the main) round.

I compare student rank order list from the main round and the supplementary round. If a

student reversed ordering given in the main round, I define such change as strong change; if a

student did not reverse the ordering in the main round, I define such change as weak change

(Table 11). Looking at the data, reversing the rank order list from the first round almost

never happens (strong change happens less than 5% of the supplementary participants). Since

students mostly add new schools in the supplementary round, it is more likely scenario that

students are listing new schools.

Even though students had leftover slots in the main round, students did not use it

to list those new schools. If there is no cost associated with filling out additional schools,

it is beneficial for students to record these new schools (recorded in the supplementary round)
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in the main round. However, 85% of the students who has slots left in the main round decided

not to use those slots.

Moreover, had students applied to these schools in the main round, the likelihood of

acceptance would have been higher. To estimate the acceptance probability, I look at the

applicants’ observed characteristics and their match outcome using the following equation for

each school j:

q̂ (accepted to j|x) =
∑
i∈Aj

∑
y

 k
(
xiy−x
h

)
∑
i′∈Aj

∑
y′ k

(
xi′y′−x

h

)
 · 1 (accepted to j) (1.1)

where Aj13 is set of applicants and x is an index representation of arbitrary student char-

acteristics. I used Gaussian kernel with Silverman’s rule bandwidth. Figure 1.10 looks at

the acceptance probability difference between the two rounds for the same school; for each

choices recorded in the supplementary round, conditional acceptance probability from the

main round minus acceptance probability in the supplementary round is calculated. Each bar

in the Figure 1.10 represents a distribution of such measure in each slots. One can see that

acceptance probabilities in the main round is higher (the distribution is largely above the 0

line) than the ones in the supplementary round.

Students do not re-apply to the rejected schools even when they are available in

the supplementary round. If one of the rejected schools are available in the supple-

mentary round, then it is beneficial for students to participate in the supplementary round

and re-apply to the rejected schools. However, majority (94%) of students do not re-apply. I

calculated number of rejected students whose school is available (their estimated acceptance

probability is higher than 0.114) at the second round. Then, out of those students, I counted

proportion of students who had re-applied to their rejected schools.

To the best of my knowledge, Narita (2018) is the only paper which focuses on comparing
13In student proposing Deferred Acceptance algorithm, a student is considered by the schools only applies

upto the school that he or she applies. For example, suppose an individual i’s rank order list looks like the
following: (1, 2, 3). Suppose that at the end of the algorithm i is matched to school 2. In this case, an individual
i ∈ A1, A2 but i /∈ A3.

14I can change the number around from .2 to .01 and proportion stays robust to these changes
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Figure 1.10: Acceptance Probability Difference to Choice N Schools

the rank order lists from the two rounds. In his paper, the self-reported reasons for changes

in rank order lists are largely due to the new information or learning. Combined with the

finding that majority choices in the supplementary list are new schools, it seems that the rank

order lists submitted for the main round isn’t complete. The next section investigates why

students truncate their rank order list.

1.3.2 Rank Order List Stopping Choice and Acceptance Probabilities

Here, I argue that students decide to stop the ranking when one has high probability (or

confidence) of being accepted to one of the previous choices. From Figure 1.8, one can find

detailed information about the schools, programs, and its admission statistics. This ensures

that students at least have a rough estimates on their probability of acceptance. Moreover, I

find statistically significant relationship between the probability of acceptance, socioeconomic

factors, and the list length.

Students with shorter lists (compared to those with longer list in the same quantile) are

associated with higher socioeconomic factors; students with shorter lists reside in a higher

housing price areas, have higher test scores, and are associated with being White. Figure

1.11 represents an empirical cumulative distributional functions for a group of student with
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(a) Housing Price

(b) Reading Score

Figure 1.11: Empirical CDF of a Student Characteristic Grouped by Students with Length
N ROL

different rank order list length. Rainbows in the graph shows that distributionally speaking,

students with shorter lists reside in higher housing price zipcode and scores better on the

standardized reading test.

Students with shorter list have higher probability of being accepted to their top choice(s).

Table 12 records proportion of students matched to their n-th choice conditional on their rank

order list length. Each row represents student groups with length N, and each of the column

represents slot within the rank order list. For example, when looking at the first row, 90%

of the students who has submitted one choice gets matched to that choice. When looking at

the second row, 51% of the students who has submitted two choices gets matched to their

first choice, 32% gets matched to their second choice, and 17% doesn’t receive any match.

The row continues down with the similar logic. The first few columns indicate that students
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with shorter rank order list is almost guaranteed to be matched up to their top choice(s).

Final allocation data reveals that regardless of their ROL length, majority (more than 90%)

of the students are matched with one of their submitted choices. Furthermore, using the

expected acceptance probability calculated from Equation 1.1, I calculate the accumulated

expected probabilities up to slot N. Denote qij as an expected acceptance probability for

student i for school j. Suppose a student i has listed A, B, and C as her rank order list.

Then, the accumulated acceptance probability up to B (slot 2) is qiA + (1− qiA) qiB, and the

accumulated acceptance probability up to C (slot 3) is qiA + (1− qiA) (qiB + (1− qiB) qiC).

Table 13 records mean of such measures by rank order list length. As expected from Table

12, students with longer list have smaller accumulated acceptance probabilities. The decision

to stop the list happens once the accumulated acceptance probabilities are very high (90%).

Table 12: Proportion of Students Matched to Slot N Conditional on ROL Length

1 2 3 4 5 6 7 8 9 10 11 12 sum
1 0.90 0.90
2 0.51 0.32 0.83
3 0.49 0.17 0.18 0.84
4 0.47 0.17 0.10 0.12 0.85
5 0.45 0.17 0.10 0.07 0.08 0.87
6 0.44 0.18 0.10 0.07 0.05 0.05 0.89
7 0.43 0.17 0.11 0.07 0.05 0.04 0.04 0.91
8 0.42 0.17 0.11 0.07 0.05 0.04 0.03 0.03 0.92
9 0.40 0.18 0.11 0.07 0.05 0.04 0.03 0.02 0.02 0.93

10 0.40 0.17 0.11 0.07 0.05 0.04 0.03 0.03 0.02 0.02 0.94
11 0.40 0.17 0.11 0.08 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.95
12 0.41 0.18 0.11 0.07 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.96

Students’ decision to stop the list is related to high accumulated acceptance probabilities

from the previous choices (Tables 12 and 13 ). To separately measure impact of acceptance

probabilities, I run a Probit regression of stopping decision (at all slots) on student characteris-

tics and accumulated acceptance probabilities. Student characteristics, especially log housing

price, are included as covariates to control for possibility of having an attractive outside op-

tion; the logic here is that wealthier students may have an attractive private school option,

which may affect the decision to stop the list. In fact, Table 14 shows that high housing price
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Table 13: Mean Estimated Accumulated Acceptance Probabilities Up to Slot N Conditional
on ROL Length

1 2 3 4 5 6 7 8 9 10 11 12
1 0.77
2 0.48 0.82
3 0.46 0.67 0.86
4 0.44 0.64 0.76 0.88
5 0.42 0.62 0.75 0.83 0.90
6 0.40 0.61 0.74 0.82 0.88 0.92
7 0.39 0.60 0.72 0.81 0.86 0.90 0.94
8 0.38 0.59 0.71 0.80 0.85 0.90 0.93 0.95
9 0.37 0.57 0.70 0.79 0.85 0.89 0.92 0.94 0.96

10 0.37 0.57 0.70 0.78 0.84 0.88 0.91 0.94 0.95 0.97
11 0.37 0.58 0.70 0.79 0.85 0.89 0.92 0.94 0.95 0.96 0.98
12 0.38 0.58 0.71 0.79 0.85 0.89 0.92 0.94 0.95 0.96 0.97 0.98

predicts higher probability of stopping. More importantly, controlling for the wealth, students

decision to stop the list is positively correlated with accumulated acceptance probabilities. In

summary, students associated with low socioeconomic status have higher uncertainty to be

matched to their top choice(s), which could be a possible reason for elongated list.

Table 14: Probit Regression of Stopping Decision on Student Characteristics

Dependent variable:
Stop

Accum. Accept. Prob. 1.166∗∗∗ (0.005)
log(HousingPrice) 0.071∗∗∗ (0.003)
readingScore (percentile) −0.026∗∗∗ (0.006)
mathScore(percentile) −0.024∗∗∗ (0.007)
daysAbsent −0.0005∗∗∗ (0.0001)
ethnicityBLACK −0.311∗∗∗ (0.003)
ethnicityHISP −0.207∗∗∗ (0.003)
Constant −2.825∗∗∗ (0.042)

Observations 2,134,631
Log Likelihood −757,160.000
Akaike Inf. Crit. 1,514,336.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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1.4 Conclusion

This chapter investigated the New York City high school matching market and concluded

that the current implementation of Deferred Acceptance algorithm does not guarantee the

desired characteristics: namely, stable matching, student strategy-proofness, and student-

optimal matching among students. Motivated by the practical challenges seen in the current

implementation, Chapters 2 and 3 provide modified versions of algorithm to improve the

allocation outcome. This chapter concluded that the submitted rank ordered list cannot be

considered as a complete and truthful list. The first question then is whether we could elicit

true preferences from the submitted rank ordered list, and Chapter 4 attempts to recover the

preferences from the submitted rank ordered list.
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2 Lexicographic Choice Rule for Multi-dimensional Choice Rule

with Welfare Maximizing Tie-Breaking

Note. Westcamp (2013) has similar content on development and characterization of lexico-

graphic reserve choice rule (but not on tie-breaking with student preferences). In that paper,

when the author uses a term “procedural”, it is exchangeable for the term “lexicographic” in

my paper. I have found the paper after I have completed this project.

One of the practical challenges in school choice application is that schools want to maintain

certain distributions of students while admitting students according to their preferences. For

example, in Cambridge, Botson, regulation encourages schools to reach 34% of the student

population to be free/subsidized lunch eligible. Moreover, all schools want to reserve as many

seats as they can for students with priority. Suppose a student is qualified for free/subsidized

lunch and has highest priority to a school. Can this student be considered to fill seats for

both distributional criteria? How should schools admit students (i.e., choice rule) in this

case? This chapter studies different choice rules for schools to incorporate multi-dimensional

distributional goals, and suggest a restrictive choice rule that results in stable, strategy-proof,

and student optimal (among stable allocations) allocation.

Another practical challenge in school choice application is that a large subset of schools

do not rank individual students, but rather group rank students. Currently students with

same group ranking score are given randomly generated numbers (after the rank order list

submission) to break ties. Tie-breaking rules are ex-ante stable, but can result in student

non-optimal allocations. With increasing efforts in empirical matching literature (which aims

to recover cardinal preferences from the observed rank ordered list), section 2.3 introduces

that the cardinal preferences are available and can be used to break ties, resulting in student

welfare maximizing tie-breaking rule. Using available data (or economy) from Agarwal and

Somaini (2018), student welfare can be improved by 2% in Cambridge, Boston.
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2.1 Deferred Acceptance in Controlled School Choice Setting: Axioms and

Theorems

This section sets up a matching economy and introduces a choice rule where student can be

identified with multiple type space (to be exact, T dimensions). Then it axiomizes condi-

tions needed for choice rules to satisfy to achieve stable allocation after Deferred Acceptance

algorithm is run.

First, I define the economy with notations. Notable departure from a traditional setting

is introduction of choice rules of schools. Choice rule takes both ordinal preference ordering

and distributional concern. It then outputs the admitted subset of students. With this

definition of choice rule, I list axioms for a choice rule to satisfy in order to achieve stable,

student-optimal, and strategy-proofness matching when used within DA algorithm.

2.1.1 Set Up

Notations in this paper follow closely to those of Echenique and Yenmez (2015).

Let S be a nonempty finite set of all students.

A priority, or a (strict) preference, on S is complete, transitive, and antisymmetric.

A choice rule is a function C : S\ {∅} → S that maps nonempty set (of applicants) to a

subset (of admitted students).

There exist type spaces T1, . . . TT . Each of the type space Tt consists of a vector of

different attributes within the type space Tt = {. . . ., k, . . . } and |Tt| <∞. A type function

τ : S → T1× · · · × TT maps a students to his or her attributes in each type spaces. Examples

of type spaces are gender and race. Examples of attributes are male, female, Asian, and etc.

Mathematically, Tgender = {male, female}, Trace = {Asian,Black,Hispanic,White}. A male

Asian student s can be denoted with type function: τ (s) = (male,Asian). Since attributes

are not overlapping across type space, I use k for arbitrary attribute from all type space:

k ∈ T1 ∪ · · · ∪ TT .

Let Sk ≡ {s ∈ S : τ (s) = {·, k, ·}} be a set of students with attribute k. For the simplicity

of notation, Similarly, let Sk ≡ {s ∈ S : τ (s) = {·, k, ·}} be a set of student in subset S with
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attribute. In other words, Sk ≡ S ∩ Sk.

A matching market is a tuple
〈
C,S, (�s)s∈S , (Cc, qc)c∈C

〉
where C is a finite set of schools;

S is a finite set of students; �s is a strict preference ordering over C ∪{s} where {s} is outside

option for student s; and Cc is a choice rule over S.

A matching (or an assignment) µ is a function on the set of agents such that

1. µ (c) ⊆ S for all c ∈ C ad µ (s) ∈ C ∪ {s} for all s ∈ S;

2. s ∈ µ (c) if and only if µ (s) = c for all c ∈ C and s ∈ S;

3. |µ (c) | ≤ qc and µ (c) ⊆ S where qc is the total capacity of school c.

A matching is stable (or fair) if every student prefers to be assigned to any school, rather

than being unassigned and there exist no student-school pair, (s, c), such that s prefers c to

her assignment and c prefers to give seat to s. Formally,

1. (individual rationality) Cc (µ (c)) = µ (c) for all c ∈ C, µ (s) �s {s} for all s ∈ S; and

2. (no blocking, or no justifiable envy) @ (c, s) such that s /∈ µ (c), c �s µ (s) and s ∈

Cc (µ (c) ∪ {s}).

A matching is optimal among stable matching (or student-optimal) if there is no other

stable matching that results in higher allocation for some students and no worse allocation

for all others.

A mechanism Φ is group strategy-proof for students if for any group of students

S̃ ⊆ S and for any student profile preference ordering (�s)s∈S , there exist no other profile

preference ordering (�̃s)s∈S̃ such that

Φ
(
(�̃s)s∈S̃ , (�s)s∈S\S̃

)
�s Φ

(
(�s)s∈S

)

Informally, there is no coalition of students where they can jointly manipulate their preferences

and result in better matching. Sufficient condition for group strategy-proofness for students

is also studied.
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2.1.2 Axioms

The most crucial characteristic for a choice rule studied in controlled school choice literature

is gross substitute (GS). Starting with Kelso and Crawford (1982) many scholars have prove

that GS is sufficient condition for the existence of stable matching for Gale-Shapley’s deferred

acceptance algorithm. Theorem 1 in the next subsection will elaborate more. For now, I

formally restate the property.

Gross Substitute (GS) Choice rule C satisfies gross substitute (GS) if s ∈ S ⊆ S′ and

s ∈ C (S) imply that s ∈ C (S′).

Interpretation of this axiom is that if a student survived competition among the bigger

set, then that student should also be admitted for a smaller pool of applicants. It says that

no student should be chosen or rejected because he or she complements another student.

Unfortunately, in multi-dimensional case, GS is only satisfied to lexicographic reserve rule

(proof is in the next subsection). Quota and different versions of reserve violates this condition,

and thus stable matching is not guaranteed. No further characterization can be done, since

existence of a stable matching cannot be guaranteed. Next property, unlike GS, is always

satisfied as long as a choice function follows reserve rule.

Acceptance (A) Choice rule C satisfies acceptance if C (S) = S when |S| ≤ q and|C (S) | =

q when |S| > q.

Acceptance condition ensures that a school is accepting students to its full capacity. If

there is an empty seat, then a school is obligated to accept students until there is no empty

seat. Now, the following two properties can follow from the two mentioned above. The proof

is given in result section (Section 4.2) as lemma 2. Both of these two rules that I am about

to mention plays crucial role in establishing important properties of the DA algorithm.

Law of Aggregate Demand (LAD) Choice rule C satisfies the law of aggregate demand

if S ⊆ S′ implies |C (S) | ≤ |C (S′) |.

This axiom means that excluding some students should not increase the number of chosen
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students. The next property states that rejected students does not affect a set of already

chosen students.

Irrelevance of Rejected Students (IRS) Choice rule C satisfies irrelevance of rejected

students if C (S′) ⊆ S ⊆ S′ then C (S) = C (S′).

The multiple dimension choice rule (lexicographic reserve) that we study in this paper (see

Section 4 for details) satisfies the above four axioms. The importance of satisfying the four

axioms are given in the next subsection; a choice rule that satisfies the four above guarantee

stability and strategy proof-ness.

2.1.3 Theorems

Roth and Sotomayor (1992), in their book, identifies conditions for the existence of a student-

optimal stable matching. The book introduces the matching problem between the firm and

the workers, so I paraphrase the theorem and put into the school choice context.

Theorem 12. (Roth and Sotomayor, 1992, Theorem 6.8) If a choice function of a school

satisfies gross substitute (GS) and irrelevance of rejected students (IRS) with strict prefer-

ence, then student-proposing deferred acceptance algorithm produces a student-optiomal stable

matching.

Hatfield and Kojima (2008) identifies conditions for group strategy-proofness of the mech-

anism.

Theorem 13. (Hatfield and Kojima, 2008, Theorem 1) Suppose that a choice rule of a school

satisfies gross substitute (GS) and law of aggregate demand (LAD). Then the student-optimal

stable matching is group strategy-proof.

This section summarized axiomatic conditions needed to achieve first stable resulting allo-

cation when deferred acceptance is used. Sections 2.2 and 2.2.2 each describes an assumptions

which has been violated in practice, and provide a solution.
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2.2 Lexicographic Reserve Choice Rules

One of the key assumptions needed for an existence of a stable allocation is that schools’ choice

rules must satisfy gross substitute condition. The complication can arise because schools

almost always have distributional goals for incoming admitted student sets, and moreover,

often times the distributional goals are in multi-dimensional type space. In this section, I first

discuss the distributional concern in multi-dimensional type space. I, then, provide conditions

for a choice rule (also can be used as a guideline given to schools when implementing the

algorithm) and finally define and prove the lexicographic choice rule for a DA algorithm

resulting in a stable, student optimal, and strategy-proof allocation.

2.2.1 Distributional Concern: Violation of Substitute

When schools have distributional concern, a student can become complimentary to another

admitted student. For example, suppose a school has the following preferences: sW1 � sW2 �

sB1 � sB2 . W stands for a student who is White and B stands for a student who is Black. The

school has distributional goal to admit 50% Black and 50% White students and can admit up

to 2 students. If a school chooses sW1 then sB1 becomes a complimentary student to achieve.

Student sW2 is preferred, but will not be chosen.

This concept has first introduced by Kelso and Crawford (1982) and by Echenique and

Yenmez (2015) in the school choice context that gross substitute is sufficient condition for the

existence of stable matching from Gale-Shapley Deferred Acceptance algorithm. Echenique

and Yenmez (2015) has already studied a few choice rules that satisfy gross substitute (and

a few other axioms needed to satisfy the desirable properties of DA) when a student can be

identified to fill a spot for at most one dimension of the distributional concern.

In practice, however, many schools have distributional goals such that a student can be

qualified to fill more than one spot in the distributional goal. In New York City, “Educational

Option” schools want to maintain 16% of high performing (in standardized test) student and

also wants to admit as many students who reside in the same zipcode (priority 1) as the

school as a school can. A student can be qualified for a high performance seat and also for a
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priority 1 seat. In Boston, all schools aim for 34% free lunch students all the while prioritizing

students with enrolled sibling and residence in close proximity. Like these case, if a student

is considered to fill more than one slots designated to satisfy distributional concern, does

that choice rule satisfy gross substitute? Unfortunately, as Appendix B.1 shows, many of the

intuitive choice rules fail to achieve gross substitute.

Fortunately, Section 2.2.2 provides positive result that if some restrictions are posed on

how schools can define their distributional concern, there exist a choice rule that satisfies gross

substitute (and other axioms).

2.2.2 Solution to Distributional Concern: Lexicographic Reserve Choice Rules

When students can belong to more than one diversity dimension (for example, a student who

is considered in “Educational Option” school can be considered to fill both high reading score

category but also belong to priority 1), substitute fails for most of the choice rules introduced

(and studied) in Ehlers, Hafalir, Yenmez, and Yildirim (2014). Below, I develop a choice rule

which satisfies substitute condition – and in turn results in stable matching – by considering

characteristics of students lexicographically.

Before I formally introduce the choice rule in algorithmic form, I have to first mention

conditions (or restrictions) that a schools have to abide. Firstly, a student can be identified

with (or can fill) at most one slot reserved for school’s distributional goals. For example,

suppose a school wants 34% free lunch student and as many students with enrolled siblings

as they can hold. The student who is both eligible for free lunch and have a enrolled sibling

can only fill one spot, either a free lunch spot of a sibling spot. Secondly, schools, when

indicating their distributional goals, have to order their of the distributional concern priorities.

Continuing with the same example, a school has to indicate that it wants to first look to fill

34% free lunch slots and then look to fill remaining percentage with sibling students.

Formally, a choice rule is generated by lexicographic reserves if there exists a vector with

length
∑T
t=1 |Tt| where elements of the vector is number of seats reserved for all attributes at

all type spaces such that for any S ⊆ S,
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1. there exist a strict priority � over S;

2. |C
(
Sk
)
| ≥ qk ∧ |Sk|15 for all k ∈ T1 ∪ · · · ∪ TT ;

3. if τ (s) = τ (s′), s ∈ C (S), and s′ ∈ S\C (S), then it must be the case that s � s′; and

4. if ∅ 6= S\C (S), then |C (S) | = q

Algorighmically,

Step 1: Check reserved seats for the students’ attribute for the first type. For

example, suppose the school wants to consider racial diversity first, and the

most preferred student is an Asian. Check if reserved seats for Asian are filled.

Then, follow the process below:

1. If the reserve seats are not filled, then admit the student and go to the next student

(Step 2).

(a) If the reserve seats are filled, go to the students’ attribute for the next type space

and repeat the process. For example, suppose the school wants to consider gender

diversity next, and the most prefereed student is a female. Check if reserved seats

for female. Repeat the process.

(b) If reserved seats for all attributes of the student are filled, then do not accept the

student, and go to the next student (Step 2).

Step 2: Repeat the same process (Step 1) for the second more preferred student.

...

Step M: Repeat the same process until all the reserve requirements for all attributes

for all the type space are filled, and then go to (Step End).
15x ∧ y ≡ (min {x1, y1} , . . . ,min {xd, yd})
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Step End: Excluding all the students already chosen, re-order the remaining stu-

dents. Accept the students from the top until the capacity of the school is

reached.

The restriction that a student can be identified with at most one type space is necessary to

achieve substitute condition. Alternative rules which consider students with more than one

type space violates substitute. Those alternative rules with counterexamples are introduced

in Appendix B.1.

It may seem constraining, but the definition of type space generic enough that the type

space can be constructed such that multiple characteristics of students can be considered.

Again with the same example scenario, students who is eligible for free lunch and have siblings

and have proximity to a school is considered type (or priority group) 1, and reserve 34% of

the seat for priority 1. Students who has siblings but not eligible for free lunch (or priority

group) 2, and so on. As long as schools clearly state what composition of student with certain

characteristics (or combinations of characteristics) are wanted, this choice rule can be used in

many settings.

Note that the reserve seats do not have to be point identified, that is a school doesn’t

always have to indicate percentage of desired distribution. A school can say “as many of this

type of students as the remaining seat”. In Ehlers, Hafalir, Yenmez, and Yildirim (2014), this

concept is called soft floor.

The two theorems below states that the lexicogrphic reserve choice rule can result in

stretegy-proof, student optimal, stable matching.

Theorem 14. The lexicographic reserve choice rule satisfies GS, Acceptance (by definition),

LAD and IRS.

Proof. To show GS is satisfied, suppose there exist two sets of students: S, S′ such that S ⊆ S′.

Lemma 15. Let sm denote m-th preferred student, where m ∈ {1, . . . ,M}, M = |S′|, and

τ (sm) = (k1, . . . , kT ). At all m stages, denote r′kt (sm) as remaining reserve seats to be filled

for a set S′; similarly, rkt (sm) for a set S. Then, r′kt (sm) ≤ rkt (sm) for all t ∈ {1, . . . , T}.

46



Proof. At the beginning, since non of the reserves are filled, so r′kt (sm) ≤ rkt (sm) for all

t ∈ {1, . . . , T} trivially holds. At step m:

1. Case where sm ∈ S′ and sm /∈ S. Trivially, r′kt (sm) ≤ rkt (sm) for all t ∈ {1, . . . , t}.

2. Case where sm ∈ S ⊆ S′. Suppose r′kt (sm) = r′kt (sm−1) − 1, which implies that

r′k1 = · · · = r′kt−1 = 0, then r′k1 (sm) ≤ rk1 (sm) , · · · , r′kt−1 (sm) ≤ rkt−1 (sm). As-

sume by contradiction that rkt+1 (sm) = rkt+1 (sm−1)− 1, which implies that rk1 (sm) =

· · · = rkt (sm) = 0, then, from the line abve (r′k1 (sm) ≤ rk1 (sm) , · · · , r′kt−1 (sm) ≤

rkt−1 (sm)), r′k1 (sm) = · · · = r′kt (sm) = 0. This is a contradiction.

Supose s ∈ C (S′) and τ (s) = (k1, . . . , kT ). I denote a set of students who are chosen from

set S (or S′) to fill one of the reserved seats C (S)reserve (or C (S′)reserve ).

1. Case where s ∈ C (S′)reserve (if s is selected to fill one of the reserve seats).
∑T
t=1 r

′kt > 0

and Lemma 15 imply that
∑T
t=1 r

kt > 0. Resulting in s ∈ C (S)reserve. This also implies

C (S′)reserve ⊆ C (S)reserve.

2. Case where s ∈ C (S′) \C (S′)reserve (if s is selected after the reserve seats are filled). I

use contrapositive argument. Suppose s /∈ C (S) \C (S′)reserve , then there are at least

|C (S) \C (S′)reserve | preferred students from the set S\C (S)reserve. Since we know

S\C (S)reserve ⊆ S\C (S′)reserve ⊆ S′\C (S′)reserve , the same |C (S) \C (S′)reserve | pre-

ferred students are in this set S′\C (S′)reserve . This results in s /∈ C (S′) \C (S′)reserve .

From GS, C (S′) ⊆ C (S) and from Acceptance, |C (S) | ≤ |C (S′) |. Resulting in IRS: C (S′) =

C (S). Combining GS, Acceptance and IRS implies LAD: |C (S′) | ≤ |C (S) |

Given the characterization of the choice rule generated by lexigographic reserve, we know

the following:

Corollary 16. The choice rule generated by lexigographic reserve produces the student-optimal

stable matching.
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from Theorem 12

Corollary 17. The choice rule generated by lexigographic reserve is group strategy proof for

students.

from Theorem 13.

This section introduced the choice rule that can produce an allocation with all the desirable

characteristics consistent with choice rule without student characteristic composition concern

under DA. One of the key assumptions needed to arrive at this results is strict preference

from schools. Section 2.2.2 provides solutions when such assumption is violated.

2.3 Student Welfare Maximizing Tie-breaking

2.3.1 Violation of Strict Preference

Often schools do not indicate any preferences across individual students. Literature on solu-

tion methods for this problem is called “tie-breaking”. Although somewhat extensively stud-

ied, current solution methods to break ties are rather arbitrary. These random tie-breaking

can result in student welfare loss16. There have been efforts (Erdil and Ergin (2008), Ashlagi,

Nikzad, and Romm (2016), and Abdulkadiroglu, Che, and Yasuda (2011)) to improve welfare

using different tie-breaking rules, however, none guarantee maximum student welfare. Arbi-

trary tie-breaking rules are suggested because researchers only looked at at submitted ordinal

rank order lists.

2.3.2 Solution to Non-Strict Preference: Student Welfare Maximizing Tie-breaking

In almost all economic settings, individual’s actual preferences are not publicly observable.

Researchers, hence, have to “elicit unobserved actual preferences of individual” as Mas-Colell,

Whinston, and Green puts it. There has been increasing effort to map submitted rank or-

der list (observed submission) into actual cardinal preferences, or willingness to pay, much

like auction literature. In matching markets, where money isn’t a mode of exchange, what
16When talking about welfare concern in school choice setting, welfare concern is in perspective of students.
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agents are willing to “pay” requires some flexible interpretation. Agarwal and Somaini (2018)

estimates the preference, or willingness to pay, as miles to which a student is willing to trevel.

When this limitation of not having cardinal information on preference is lifted, we can

have simpler and cleaner welfare analysis.

In school choice literature, mechanisms are often designed and selected to maximize welfare

of student17. When the cardinal preference of students are recovered and a school is indifferent

among a subset of applicants, then it is clear that the tie should be broken using students’

cardinal preferences. In other words, the school slots should be assigned to a student who

values the school most. The following theorem formally argues this point.

Theorem 18. Deferred Acceptance algorithm will result in student welfare maximizing (among

other stable allocations) allocation if ties are broken using students’ cardinal preference,

or willingness to pay.

Proof. Suppose schools without preference over individual applicants are ordered based on

students’ cardinal preference. The resulting allocation from DA is denoted µ. Further suppose

there exists an ordering (tie-breaking), which generated stable matching with higher student

welfare. I denote this matching µ′. Under µ′, there must exist at least one school s which

admitted at least one student with higher willingness to pay called i. This cannot be the case

since i would have been admitted under µ, which is a contradiction.

There has been increasing effort to estimate students’ revealed preference (or willingness

to pay) in the literature. In Section 2.4, I take Cambridge school choice market estimated

by Agarwal and Somaini (2018) to quantify welfare gains from using student preference as

tie-breaking rule.

2.4 Application: Cambridge, Boston High School Matching Market

Effort to recreate matching market economy has been increasing in the last decade since the

data from matching algorithm implementation started to emerge. One of the first publications
17Knuth (1976) proved that the best outcome for one side of market is the worst for the other when all

agents have strict preferences.
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of this effort is by Agarwal and Somaini (2018), who replicate Cambridge Public School

(CPS) economy where each year about 470 students to 13 schools are being allocated. Using

this replicated market as an application, I quantify welfare gains from using student welfare

maximizing tie-break introduced in Section 2.2.2. Welfare gain in this market is estimated

around 2%.

2.4.1 Replicated Cambridge, Boston Economy

For this exercise, I use data provided by Agarwal and Somaini (2018) with their publication

for a 2004 school year. In this economy, there are 430 students being allocated to 13 schools.

Each student has a valuation to each of the schools denoted vij where i indexes students

and j indexes schools. Student preferences are interpreted as normalized (to an option to be

unmatched) miles willing to travel for each of the schools. All schools have the same distribu-

tional goals and no school provided strict preference to applications. The distributional goal

for all school is:

1. Students with siblings and proximity priority18 gets priorities.

2. Students with siblings only gets priorities

3. Students with proximity only gets priorities

In this economy, regulation encourages schools to have students who are eligible paid lunch to

consist of 34% of the school’s population. Agarwal and Somaini (2018) treats this regulation

the following way. The provided data contains separate seat capacities for paid lunch students

and students without lunch benefits. For example, in 2004, Graham & Perks school has 18

seats available for students without lunch benefits and 9 seats available for paid lunch students.

I do not deviate from this set up.19

18Each school gives priority to students who resides within some pre-determined boundary. The proximity
priority is known to student.

19If each school only wants to admit the fixed number of paid lunch students, possibly because of the
limitation on funding available for paid lunch students, my algorithm can admit more than the designated
number of seats.
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Welfare Mean (S.D.) Welfare Mean in %
Student Preference Tie Breaking 884.82 100

Random Single Tie Breaking 870.53 (2.84) 98 (.32)
Random Multiple Tie Breaking 870.59 (2.75) 98 (.31)

Table 15: Performance of Lexicographic Choice Rule under Student Preference Tie Breaking
Rule with 250 Simulations

2.4.2 Welfare Analysis

From Theorem 18, it is known that welfare using students’ cardinal preference is going to be

optimal. Here, I quantify the welfare gain. Before I dive into welfare analysis, I first define

welfare: ∑
i

vTi Qi

where vi ∈ RJ is a vector of student preferences for all j schools and Qi ∈ {0, 1}J is a vector

where an element Qij indicates 1 if a student i is matched to a school and 0 for all other

schools (
∑
j Qij ≤ 1).

To run this counterfactual exercise, I incorporated the lexicographic reserve choice rule

describe in Section 2.2 within Deferred Acceptance algorithm.20 From the distributional goal

describe above, each student (or applicant) is mutually exclusively identified with a type 1, 2,

or 3, respectively, and the seats for each types are available in the following manner: as many

of type 1 students, then if available seats remain, as many of type 2, and so on. No school

has preferences, so the ties can be broken in the following ways: (1) using student valuations

to each school (described in Section 2.2.2), (2) single tie-breaking (each student is randomly

assigned a number and that assigned number is used to break ties for all schools), or (3)

multiple tie-breaking (each student is randomly assigned a number and the random number

is newly drawn for each schools).

Table 15 presents the result that using student cardinal preferences, student valuation

(willingness to travel to the assigned to school in miles) is 884.82 for the market. When using

single or multiple tie breaking, the welfare values are 2% lower than the optimal measure.
20The code is available online, and Appendix ?? provides descriptions to use the code, if one wishes.
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2.5 Conclusion

This chapter looks into two common complications arisen from schools during the implemen-

tation of Deferred Acceptance to achieve stable allocation. Section 2.2 provides conditions

(or guidelines) for schools to define their distributional goals in a way that the lexicographic

choice rule can guarantee stable, student-optimal, and strategy-proof matching. With the

help of increasing effort to estimate student valuations from submitted rank order lists, Sec-

tion 2.2.2 provides student welfare maximizing way to resolve the issue that schools do not

provide strict preferences. As the literature on estimating student preferences develops on

other markets using Deferred Acceptance algorithm, the algorithm provided in this chapter

can be used for welfare analysis.
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3 Two-Stage Deferred Acceptance with Passive Participants

(with Umut Dur and Onur Kesten)21

When matching algorithms are implemented, many markets (including NYC and Denver

public school choice market) add a separate round, often called a round 2 or a supplementary

round. This paper investigates such phenomenon and asks the following questions: Why is the

supplementary round needed? Is the current implementation stable and/or strategy-proof?

If not, is there a way to fix it? We use the administrative data from the New York City high

school matching market to find answers.

Every year in New York City, 15% of the student population in the New York City high

school matching market submit the supplementary round (round 2) preference list. Majority

(58%) of the supplementary round participants have matches from the main round (or round

1), yet re-submit rank order lists for the supplementary round. Moreover, when comparing

the rank ordered lists from the main round to the supplementary round, majority (78%) of

the supplementary rank ordered list consists of new (unlisted in the main round) schools. The

supplementary round not only gives rejected students another chance of school choice, but

also allows matched students to update their rank ordered list with new schools.

Currently, the main and the supplementary rounds are run separately, which causes the

final allocation to be not stable and (theoretically) manipulable. Suppose there is a rejected

student (student 1) from a school A in the main round. The rejected student decide not

to participate in the supplementary round. In the supplementary round, another student

(student 2), who happens to be less preferred to the rejected student (student 1) is by school

A, becomes accepted. These students are called justified-envy in matching literature, and

existence of justified envy students implies that the final allocations are not stable. In New

York City, at least 3% of the student population is classified as justified envy students. More-

over, unlike the static Deferred Acceptance algorithm, the current implementation does not

guarantee strategy-proofness to students. We provide a simple example to illustrate such

point.
21Any error in this draft is all mine.

53



Example 19. Let C = {c1, c2, c3} be schools and S = {s1, s2, s3} be students and seats

available for each school is q = (1, 1, 1). I further assume that the preferences doesn’t change.

The round invariant preferences are given as follows:

c2 �s1 s1 �s1 c1 s3 �c1 s2 �c1 s1

c1 �s2 c2 �s2 c3 s2 �c2 s1 �c2 s3

c2 �s3 c3 �s3 c1 s3 �c3 s1 �c3 s2

If s3 reports her true preference in the first round, then the allocation is µ1 = 〈(s1, c2) , (s2, c1) , (s3, c3)〉.

There is no incentive for s1 and s2 to participate in the second round, so the matching stays.

Proof. Now suppose s3 submits non-truthful report in the first round: c2 �1
s3 c1 �1

s3 c3.

Then, µ1 = 〈(s1, s1) , (s2, c2) , (s3, c1)〉. q2
c3 = 1, since no one was matched to c3 and s3 prefers

c3 to c1, s3applies. Since the second round is the last round, s3 submits true preference.

Suppose only s2 and s3 participates, since this is the last round, both participate with their

true preference. µ2 = 〈(s2, c1) , (s3, c2)〉, and µF = 〈(s1, s1) , (s2, c1) , (s3, c2)〉.

Finally, the paper defines an economy where subset of students are allowed to update their

rank order list and combines the two (but can be extended to multiple) rounds of Deferred

Acceptance algorithm in such a way that preserves stability, student-optimality (among stable

match), and strategy-proofness.

3.1 Two- Stage Deferred Acceptance in New York City

This section motivates the need for a study of an dynamic Deferred Acceptance algorithm

allowing rank order lists for students to evolve. Another round of Deferred Acceptance algo-

rithm is often added at the end for a subset of students and schools to re-match (e.g., NYC,

Denver, and the Scramble round in Economics PhD job market organized by the American

Economics Association). By investigating administrative data from the New York City high
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school matching market, we find that significant proportion of students (or proposing side)

submit new set of schools in their supplementary round rank order lists as the application

process evolves. One of the functions of supplementary round is to allow changes in rank

order lists.

We then assume the following: for the supplementary round non-participants, the rank

order lists from the main round are in alignment with their preferences; for the supplementary

round participants, the rank order lists from the supplementary round are in alignment with

their preferences; and school’s preferences do not change from the main round submission.

Although the strategy-proofness can no longer be guaranteed, we do not see an incentive to lie

on the final submission of the rank order lists for students. Under such assumption, is the final

allocation under the current implementation (two-separate Deferred Acceptance algorithm)

stable? The answer is no. We quantify that 3% of the student population have been rejected

from a school who admitted students less preferred. In matching literature, this is labeled

as existence of justified envy students. In the rest of the paper, we define the economy that

allows changes in student rank order lists, provide the modified Deferred Acceptance algorithm

(called passive DA), and characterize the algorithm and the final allocation.

3.1.1 Changing Students’ Rank Order Lists

As described in Section 1.2.1 New York City currently runs two separate rounds of Deferred

Acceptance algorithm. In the main round, every student and every school participates. At

the end of the main round, all participating students receives at most one match. Before the

supplementary round starts, students keep collecting information about (1) available seats for

the public schools at the supplementary round (2) private or charter school options, and (3)

details (including other matching outcome of others for the main round) on public schools.

Then, students decide to (not) participate in the supplementary round. Finally, the final

match is revealed at the end of the supplementary round. The final outcome for those who

are not matched in the supplementary round are assigned by the enrollment office. There are

few (less than 5%) cases where students can appeal to be considered for a seat, but this is
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rather rare cases (such as medical reasons) and this paper does not focus on this step.

Possibly due to the information collected in between the main and the supplementary

round, majority of the supplementary round participants re-submit their rank ordered lists

with different set of schools even though they have a match from the main round. Table 16

records that 58% of the supplementary round participants have a match from the main round,

in a school year 2015-2016. Moreover, the supplementary round rank order list mostly adds

unlisted (in the main round) schools rather than re-applying to the rejected school. If the

supplementary round rank order list switch the order of the main round rank order list, we

label that the student has a strong change in rank ordered list; if the supplementary round rank

order list do not switch the order of the main round rank order list, we label that the student

has a weak change. As seen in Table 17, the second column is labeled as a weak change since

the order of A prefer to B prefer to C has not been disrupted. However, in the last column,

a student is labeled to have strong change because he/she prefers B to C in the main round,

but he/she prefers C to B in the supplementary round. Only 6% of the supplementary round

participants strongly change their preferences; 25% of the supplementary round participants

applied again to one of their rejected schools; and 90% of the supplementary round participants

include new (unlisted in the main round) schools. We conclude that one of the major functions

for the supplementary round is to allow students to change (mostly to add new schools in)

their rank ordered lists during the matching process. In Section 3.2, we define an economy

where there are evolving (or changing) preferences of students.

Table 16: Allocation from the Main Round for the Supplementary Round Participants (2015-
2016 School Year)

Main R Allocation N % Total N
Rejected (from all) 4,291 33 12,965

Matched 7,503 58 12,965
Didn’t Participate 1,171 9 12,965
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Table 17: Examples of Strong and Weak Change in their Rank Ordered List

Main Round Supplemental Round Supplemental Round
A C A
B D C
C B

D
Weak Change Strong Change

3.1.2 Existence of Justified Envy Students

Because the matching process of the main round and the supplementary round is completely

separate, for some schools, it is possible that the admitted student pool in the supplementary

round can be less preferable than the main round. In such cases, there could be some rejected

students from the main round who may be preferred to the admitted students in the supple-

mentary round. We call such students jusified-envy from the main round, and it is defined as

follows:

Definition (Justified-envy from the main round). If the student is rejected from

a school in the Main round and there exist a student who is less preferred and is admitted

from the school in the Supplementary round, then the rejected student from the Main round

is called justified-envy from the main round.

Existence of jusified-envy from the main round students indicate that the final allocation is

not stable. We find that there are many (at least 3% of the student population) jusified-envy

from the main round. We make several assumptions to arrive at such conclusions. First, we

assume that for the supplementary round non-participants, the rank order lists from the main

round are in alignment with their preferences, and for the supplementary round participants,

the rank order lists from the supplementary round are in alignment with their preferences.

Second, school’s preferences are in alignment with the main round submission. Under such

assumption, we conservatively count jusified-envy from the main round if a student satisfies

the following conditions:

1. there exist an admitted student from the supplementary round who has strictly lower

(better) priority score; or
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2. there exist a student who has (1) rejected from the Main round and (2) admitted from

the Supplementary round, and the rejected-admitted student has either

(a) strictly lower (better) priority score; or

(b) same priority score and strictly lower (better) rank score

3. does not change preference in the second round

The second case leaves only 10% of the school programs (84 programs), since there aren’t

many rejected-admitted students. It is possible that there could be more jusified-envy from

the main round students for schools who does not have such rejected-admitted students. Even

though we count the second case for only 10% of the schools, we found that there are at least

2,647 students (3.2% of the population) who are justified envy from the main round.

By investigating administrative data from the New York City high school matching market,

we find that there exist demand for an algorithm which (1) allows students (proposing side)

to change rank order lists (from the proposing side) and (2) combines the two (or more)

rounds so that the final allocation is stable (, student-optimal, and strategy-proof). The

next sections define the economy that allows changes in student rank order lists, provide the

modified Deferred Acceptance algorithm (called Two (or Multi)-Round Deferred Acceptance

with Passive Participants), and characterize the algorithm and the final allocation.

3.2 The Dynamic Matching Market

Static matching model is denoted similarly to that in the previous section. The only different

notation is that the schools’ choice rules from the previous section have been replaced with a

strict preference orderings, �c ∀c ∈ C.

A set of students are denoted, {s1, . . . , sN} and a set of schools are denoted, {c1, · · · , cJ}.

A maximum capacity of the schools are denoted qcj∀j. �s is a preference relation of student

i over all schools including unassignment, ∅. �c is the strict preference ordering of agents for

school c. The economy (matching market) consists of tuple
〈
C, S, (�s)s∈S , (�c, qc)c∈C

〉
where

C is a finite set of schools; S is a finite set of students; �s is a strict preference ordering over
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C∪{s} where {s} is outside option for student s; and �c is a strict preference ordering over S.

Definitions of matching, mechanism, stability, Pareto efficiency, strategy proofness are similar

to those in Section 2.1.1.

Since there are two rounds, components of each matching round is denoted with superscript

t = {1, 2}, and final matching result super scripted with F . Participating students in the later

rounds are subsets of the student population, St ⊆ S, and they can change their preferences:(
�1
s

)
s∈S2 6=

(
�2
s

)
s∈S2 or

(
�1
s

)
s∈S2 =

(
�2
s

)
s∈S2 , but all schools do not change their preferences:(

�1
c

)
c∈C =

(
�2
c

)
c∈C .

Notable feature of this market is that preference of students can vary across rounds. We

additionally assuming that students do not expect anyone’s preference to vary across rounds,

supported by Narita (2018) using learning argument.

A final matching (or an assignment) µF is a function on the set of agents such that

1.
(
µ1 (c) \S2)∪µ2 (c) ⊆ S for all c ∈ C and

(((
µ1 (s)

)
s∈S \

(
µ1 (s)

)
s∈S2

)
∪
(
µ2 (s)

)
s∈S2

)
∈

C ∪ {s} for all s ∈ S;

2. s ∈ µ (c) if and only if µ (s) = c for all c ∈ C and s ∈ S;

The final matching is first round match for those who did not participate in the second round

and second round match for those who participated in the second round. Mathematically,(
µ1 (c) \S2) ∪ µ2 (c) and

(((
µ1 (s)

)
s∈S \

(
µ1 (s)

)
s∈S2

)
∪
(
µ2 (s)

)
s∈S2

)
.

A final matching is stable (or fair) if every stuent prefers to be assigned to any school,

rather than being unassigned and there exist no student-school pair, (s, c), such that s prefers

c to her assignment and c prefers to give seat to s. Formally,

1. (individual rationality) Cc
(
µF (c)

)
= µF (c) for all c ∈ C, µF (s) �1

s {s} for all s ∈ S\S2,

µF (s) �2
s {s} for all s ∈ S2; and

2. (non-wasteful)|µF (c) | ≤ qc and µF (c) ⊆ S where qc is the total capacity of school c.

3. (no blocking, or no justifiable envy) @ (c, s) such that s /∈ µF (c), c �2
s

(
µF (s) ∪ {s}

)
for all s ∈ S2, c �1

s

(
µF (s) ∪ {s}

)
for all s ∈ S\S2, and s �c µ (c).
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A mechanism Φ is group strategy-proof for all stages if for any group of students S̃ ⊆ S

at any stage and for the following preference ordering �s≡
〈(
�1
s

)
s∈S\S2 ,

(
�1
s

)
s∈S2

〉
, there

exist no other profile preference ordering (�̃s)s∈S̃ at any stage such that

Φ
(
(�̃s)s∈S̃ , (�s)s∈S\S̃ , q

)
�s Φ

(
(�s)s∈S , q

)

Informally, there is no coalition of students where they can jointly manipulate their preferences

and result in better matching. Sufficient condition for group strategy-proofness for students

is also studied.

3.3 Multi Round DA with Passive Participation Algorithm

In this section, we introduce the Multi Round Deferred Acceptance with Passive Participation

algorithm. This algorithm combines multiple rounds of Deferred Acceptance. By allowing the

non-participants to passively participate and ensuring their match from the previous round,

the resulting final allocation is stable, student-optimal, and strategy-proof. We first introduce

the algorithm.

Algorithm: The Main Round:

Step 1. Each student applies to her most preferred school. Each school tenta-

tively admits students according to their preference and total capacity and

permanently rejects the rest.

...

Step k. Similar to the first step, each student who was rejected at step k − 1

applies to her next preferred school. Each school considers union of tentatively

admitted students from step k − 1 and applicants from step k. From this

set, each school again tentatively admits a set of students according to their

preference and total capacity, and permanently rejects the rest.
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Step End. the algorithm stops when there are no rejections.

The Supplementary Round:

Step 1. (Schools’ Preference Update) The schools give the highest priorities to the

students with the main round match to guarantee the main round allocation

seat.

Step 2. (Students’ Preference Update) For the participating students, add the

main round matched school at the end of their rank order list. Then, partici-

pating student applies to new most preferred school. Each school tentatively

admits students according to their preference and total capacity and perma-

nently rejects the rest.

...

Step k. Similar to the first step, each student who was rejected at step k − 1

applies to her next preferred school. Each school considers union of tentatively

admitted students from step k − 1 and applicants from step k. From this

set, each school again tentatively admits a set of students according to their

preference and total capacity, and permanently rejects the rest.

Step End. the algorithm stops when there are no rejections.

3.3.1 Characterization

In the supplementary round, active participants are students who submitted new preference

list and passive participants are students who did not submit the preference list. Following

the multi round DA with passive participants, the following theorems ensure that the final

allocation is stable and student-optimal; moreover, the algorithm is strategy-proof.

Theorem 20. Let Φ =
(
φMain, φSupplementary

)
be a system where all students participate (both

actively and passively), and schools guarantee passive participants’ first round match seats in

61



the second, or Supplementary, round. If the two round uses DA-DA, then, Φ is the unique

roundwise stable system satisfying immune both within round and across round manipulation.

Proof. We know that static DA mechanism is strategy-proof, so Ψ is immune to manipulation

at each round. Hence, we only need to prove Ψ is immune to across round manipulation.

Suppose there exist a student si who can be better off by manipulating in the main round.

DenoteµF (si) = c as a match outcome from the main round under truth-telling in the first

round and µ̌F (si) = c′as a match outcome from the main round under manipulative report

in the first round, and c′ �si c. We only prove the case where
(
�2
s

)
s∈S =

(
�1
s

)
s∈S , since the

assumption of this setting is that at the initial stage (ex-ante) students do not know that the

future preference will change.

For this proof, we use McVitie-Wilson version of the DA algorithm when there is at most N

iteration, since the algorithm doesn’t move to i+1 student unless all the students before i has

been assigned. Consider a problem where φ
((
�1
s

)
s∈S\si , (�c |S\si)c∈C , q

)
where �c |S\si is

school preference of all c excluding si from the list and remaining everything else equal. Denote

the outcome of this mechanism as v. Consider a problem where φ
((
�1
s

)
s∈S\si ,

(
�c |µ̌1)

c∈C , q
)

where �c |µ̌1 is school preference of all c with priority given to matched students from µ̌1

and µ̌1 is a first round match result using manipulated preference from student si and true

preference from all other students. The resulting match outcome is called v̌.

Claim 21. v (sj) = v̌ (sj) for all sj ∈ S\si. In words, if si, the manipulator, is excluded from

the algorithm, the resulting algorithm for both truthful reporting algorithm and manipulated

reporting algorithm are the same for all sj 6= si.

Proof. If a is rejected from a school c in the following problem: φ
((
�1
s

)
s∈S\si , (�c |S\si)c∈C , q

)
if and only if she is also rejected from school c in the following problem: φ

((
�1
s

)
s∈S\si ,

(
�c |µ̌1)

c∈C , q
)

at any step.

(=⇒)If a student was rejected from a school c in the following problem: φ
((
�1
s

)
s∈S\si , (�c |S\si)c∈C , q

)
then the student doesn’t have any priority from φ1

((
�1
s

)
s∈S\si ,

(
�c |µ̌1)

c∈C , q
)

which means

that the student has to compete for the seat that are left from the main round. However,

there are no leftover seats, since there exists qc students that c prefers in the system already.
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(⇐=)If a student is rejected from school c from the following problem: φ
((
�1
s

)
s∈S\si ,

(
�c |µ̌1)

c∈C , q
)

, then automatically he or she is rejected from this problem: φ
((
�1
s

)
s∈S\si , (�c |S\si)c∈C , q

)
.

Case I: sj �c′ si for all sj ∈ v−1 (c′).

There are at least qc′ preferred students already taking all the seats at c′. Hence, si will

not be admitted to c′, even if si deviates to �̌1
si .

Case II: ∃sj ∈ v−1 (c′) such that si �c′ sj

From the above claim, we know that relative school preferences remain preserved from

the truth telling and manipulative rounds excluding si. This means that once the rejection

cycle starts because si took over the least preferred sj at c′. The rejection cycle will be the

same as the one in the truth-telling one. In other words, si cannot be assigned to c′ after a

manipulation in the first round, because the same rejection cycle from the truth-telling will

reject si.

3.4 Conclusion

This chapter motivates the need for a combined algorithm when the students are allowed to

change their rank order list, and hence the market adds another round of Deferred Acceptance

algorithm for students with changed rank order list. Because the two rounds are fun separately

in New York City, the final matching is not stable, and at the first round submission is not

guaranteed to be strategy proof. To remedy this, we provide provide a modified algorithm

called, the Multi Round Deferred Acceptance with Passive Participant. The final allocation

for this algorithm is stable, student-optimal, and not manipulable in any round.
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4 Student Rank Order List Choice Model: A Dynamic Dis-

crete Choice

This section models how students fill his/her rank ordered list considering not only his/her

valuation for schools but also acceptance probabilities. As shown in Section 1.3, accumulated

acceptance probabilities across the rank order list sums up to be close to 1 for students;

regardless of whether a student listed 1 or 12 schools, a student is almost likely to be matched

to one of her choices. By adopting dynamic discrete choice framework and using the rejection

probability as a discount factor in this framework, I build a empirically tractable model for

discrete rank order list behavior incorporating acceptance probabilities. Building such model

is not a simple task, especially when the choice set is large. In New York, students can choose

rank order list of any length out of 700+ high school programs. The number of possible

choices becomes quickly uncountable. In fact, 80% of the submitted rank order list choice

is a unique list. In the literature, Hastings et al. (2009) have used a method of exploded-

mixed-logit model and Abdulkadiroglu et al. (2017) and Agarwal and Somaini (2018) have

used Gibb’s sampling method. However, both methods are computationally expensive in

this market. The exploded-mixed-logit method uses maximum likelihood method and Gibb’s

Sampling with large choice set requires extremely large number of samples. For computational

efficiency and tractability, the rank order list structure is re-imagined as a discrete dynamic

choice problem (Calsamiglia et al. (2018)) where each slot in the rank order list is analogous

to a time period in the literature.

From the model, the student valuations for schools (or the parameters of interest) can be

represented as a simple and intuitive function of conditional acceptance and choice probabili-

ties (McFadden (1978); Rust (1987); Hotz and Miller (1993)). Exploiting such representation,

I apply this model to the New York City data. The estimation is done in two steps. In the

first step, the conditional acceptance and choice probabilities are calculated using choice and

outcome data. The second step uses the estimates from the first stage to calculate valuations.

This estimation method not only reduces computation time, but also provides tractability in

terms of how each of the first step estimates interacts with the valuation.
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Finally, the estimates are used to predict student choices without the influence of school

selections. This empirical exercise yields the following result. In order to demonstrate the

role of acceptance probabilities in student choices, acceptance probabilities are set to 1 for all

schools (when students choose based on their valuations only). I find that majority (65%) of

the students change their first slot choices; only about 35% student choices are robust to this

change in acceptance probabilities.

4.1 Model

In this economy, there exist I students and J schools are to be allocated. An arbitrary student

is indexed by i ∈ {1, . . . , I} ⊆ I and an arbitrary school is indexed by j ∈ J ≡ {1, . . . , J}∪{0}

where 0 is choosing default option. Each student i is endowed with a vector of characteristics,

Xi. Each school j is endowed with a seat capacity ωj ∈ [0, 1] which represents the maximum

fraction of the population that school j can admit. The total capacity of all schools has a

lower bound that is equal to the total number of students in the market (i.e.
∑
j Iωj ≥ I).

Each student submits a rank order list of schools. Each school has a selection rule,

which creates a ranking among the applicants. Given the three elements: (1) rankings from

the students, (2) school selection rules, and (3) the capacity at each school, the centralized

Deferred Acceptance algorithm determines how students and schools are matched. At the

end of the process, every student has to be matched to at least and at most one school.

Additionally, there exist a default school for each student that the student is guaranteed to

be matched if the student is not matched to a school on his or her rank order list.

4.1.1 Endowments

Each student i is endowed with a vector of characteristics, Xi ∈ X . A student’s vector

of characteristics includes their academic record (standardized test scores and attendance),

ethnicity, and location of their residential zip code.

Student i’s valuation for a school j is conditional on the student’s characteristics, and is

denoted µj (Xi), or simply µij . One thing to mention here is that two students with same
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characteristics and location will have the same valuation for each school j. In other words,

µij = µi′j ∀j, if Xi = Xi′ . Additionally, for each student i, his or her valuation for the default

school is denoted µi0, and normalized to 022. There also exists an unobserved component of

utility which is denoted εijt.23.

4.1.2 Acceptance Probability

Each school receives applicants which are only a subset of the population. I denote applicants

to a program j as Aj ⊆ I. Under Deferred Acceptance algorithm, a student isn’t necessarily

an applicant to every program in their rank order list. For example, suppose an individual

i’s rank order list has length 3 and looks like the following: (1, 2, J). Suppose that at the end

of the algorithm i is matched to school 2. In this case, an individual i ∈ A1, A2 but i /∈ AJ .

Given applicants, each school j has a selection rule, denoted Sj : X |Aj |×R→ {0, 1}|Aj |. Each

selection rule Sj inputs characteristics of all applicants (including the distance between the

student and a school j) and the seat capacity, and it outputs admission decision.

Students do not have full information on other student individual choices, but rather know

the distribution of applicant characteristics for each program j. The distribution of applicant

characteristics for program j is denoted as FXAj . I assume that FXAj is stationary over slot t

(and also over all market years), since DA defers its admission decision until all the applicants

(hence slots) are considered.

Beliefs over competitor characteristics distribution and selection rule allow a student to

estimate acceptance probability for the school, denoted as follows:

qij =
∫
Sj
(
Xi, ξij |FXAj , Iωj

)
dG (ξij) (4.1)

where Sj (Xi, ξij |Aj , Iωj) is selection rule for student i with characteristic xi for program j

22Please refer to the identification section.
23Students face an unobserved utility shock for choosing a school j at a slot t. Allowing ε to vary not only

across schools, but also across slots serves a practical purpose. A student can choose any permutation of school
with any length. In the case of NYC, there are J = 800+ and T ∈ {1, . . . , 12}, which makes the cardinality
of the choice set uncountable. To solve this problem, I represent the rank order list choice process as dynamic
discrete choice model (Calsamiglia et al. (2018)), and εijt allows the dynamic representation.
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given Aj as the applicants and Iωj as seat capacity. ξij is an unknown to students but the

distribution of ξ is known.24

The assumption here is that an an atomless student’s choice of school has little affect

on the outcome of the matching. This seems like a plausible assumption given the number

of players (students) in this market. Therefore, I am assuming for the rest of the paper

that students know their acceptance probability (from knowing applicant distribution, seat

capacity, and selection rule for each school) and take it as given when they make there rank

order lists.

4.1.3 Student Problem

Given the above endowments, students fill out rank order lists sequentially. Student choice

procedures consistently follow the assignment mechanism. Student Proposing Deferred Ac-

ceptance algorithm sequentially goes through student rank order lists and only moves down

the lists only if students are rejected from the previous choices. At every slot, if a student i

is matched to her choice, dt, out of a choice set at time t, Ct. The student’s per period utility

is µi,dt + εi,dt,t ; if a student i is rejected, her per period utility is εi,dt,t + Vt+1 where Vt+1 is

a continuation value. I recursively represent this procedure for a student (index i omitted):

Vt (X, εt) = max
dt

{
1 (accepted to dt)µdt∈Ct + 1 (rejected to dt)Vt+1 + εdt,t

}

A student is guaranteed to be accepted to their default school, so there is no continuation

value once the default school is chosen. In other words, if a student i fills his or her list up to

T , then µi,diT+1 = µi,0. The optimal decision is denoted as:

δt = arg max Vt

When the choice is being made, however, students do not know whether they will be either
24To justify the existence of this shock, the result section shows that conditional on the student characteristics,

acceptance probabilities are mostly not close to 0 or 1. This shock could come from random selection criteria
for some of the schools or there exist a more structured criteria but unobserved by students.
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accepted or rejected, because ξij introduced at Equation 4.1 is unknown. Thus, indicator

function for acceptance is replaced by acceptance probabilities, qij from Equation 4.1. Given

that students take acceptance probabilities as given, they face the following recursive value

function:

Vt (X, εt|%t) = max
dt
{qdtµdt + εdt,t + (1− qdt)Vt+1} (4.2)

where

%t = Πt−1
τ=1 (1− qδτ ) (4.3)

At each period, students come into the period with their endowed characteristics and proba-

bility of being rejected from all choices before (state space). At period 1, everyone has same

probability of being rejected from previous choice (which is none). Then, given this state and

realized idiosyncratic preference shock, εt, a student chooses dt which maximizes Equation

4.2. Moreover, every student has a default school with acceptance probability of 1 at the end

of the list.

The value function of a rank order list with arbitrary length T can be written in a matrix

form below: 

qd1

%2qd2

...

%T+1 · 1


⊗



µd1

µd2

...

µ0


+



εd1,1

εd2,2
...

εdT+1,T+1


(4.4)

where ⊗ and + indicates element-wise operations. A vector on the left indicates overall

expected probability of being matched to a school at choice t, dt, a vector in the middle

is valuation for those choices, and the last vector is additively separable (by assumption)

idiosyncratic parts of the utilities. Such formation forces students tho choose the rank order

list given that the sum of all expected allocation to all the choices are 1; sum of the elements

in the vector is 1 for all students.
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4.2 Identification

In this section, I provide closed form representation of student valuations for schools, denoted

µ. At each slot, the value function consists of the expected utility of being matched to the

current choice and the expected utility of continuing to fill out more schools. The expected

utility of being matched to the current choice is acceptance probability of the current choice

multiplied by valuation of the current choice plus idiosyncratic preference shock. Expected

utility of continuing to fill out more school(s) is expected rejection probability of the cur-

rent choice (1- acceptance probability of the current choice) multiplied by expected future

valuation, also known as continuation value. In other words,

Vt (dt, εdt |X, %t) = qdtµdt + εdt + (1− qdt) ¯Vt+1 (X, %t+1)

To arrive at the closed form representation of µ ≡ [µ1, . . . , µJ ]′, results from Hotz and

Miller (1993) are used. Some notations need to be introduced first.25 Ex-ante (before εt is

realized) value function, V̄t (X, %t), is denoted as

V̄t (X, %t) ≡
∫
Vt (X, %t) dF (εt) (4.5)

An ex-post conditional value function, vt (dt|X, %t), is denoted as:

vt (dt|X, %t) ≡ qdtµdt + (1− qdt) ¯Vt+1 (X, %t+1) (4.6)

With an assumption on distribution on the error term,ε ∼ GEV , the ex-ante value function

and the conditional value function can further be represented as:

V̄t (X, %t) = − ln [p (d∗t |X, %t)] + vt (d∗t |X, %t) + γ (4.7)
25Notation used here are similar to those used in Arcidiacono and Ellickson (2011), and derivations can be

found in the paper.
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where d∗t can be any arbitrary choice. The right hand side can be interpreted as: a value

function of choosing d∗t , vt (d∗t |X, %t) , a nonnegative adjustment term for choosing d∗t ,

− ln [p (d∗t |X, %t)] , and the mean of the type 1 extreme value distribution, γ.

Normalizing vt (0|X, %t) = 0 for all t26 and selecting d∗t+1 as choice of selecting the default

school, the ex-post conditional value function for choosing dt is:

vt (dt|X, %t) = qdtµdt + (1− qdt)
[
− ln

[
p
(
d∗t+1|X, %t+1

)]
+ vt+1

(
d∗t+1|X, %t+1

)
+ γ

]
= qdtµdt + (1− qdt) [− ln [p (0|X, %t+1)] + γ]

This structure is analogous to an optimal stopping problems. By choosing d∗t+1 to be the

default (or “exit”) choice which does not have any future value term, vt (dt|X, %t) can be

expressed in terms of static utility and one period ahead default choice probability.

With the assumption that ε’s are drawn from GEV distribution, closed-form expression

for the conditional choice probabilities are:

pt (dt|X, %t) = exp (vt (dt|X, %t))∑
d
′
t
exp

(
vt
(
d
′
t|X, %t

))
and the log difference in the conditional choice probabilities simplifies to:

ln [pt (dt|X, %t)]− ln [pt (0|X, %t)] = vt (dt|X, %t)− vt (0|X, %t) (4.8)

= qdtµdt + (1− qdt) [− ln [pt+1 (0|X, %t+1)] + γ]− 0 (4.9)

Finally, we arrive at the closed form representation of student valuation:

µdt = µdt (qdt , pt (dt|X, %t) , pt (0|X, %t) , pt+1 (0|X, %t+1))

= ln [pt (dt|X, %t)]− ln [pt (0|X, %t)]− (1− qdt) (− ln [pt+1 (0|X, %t+1)] + γ)
qdt

(4.10)

26Note that in our set up, normalizing vt (Ct, X, 0) for all t is equivalent to µ0 = 0 since conditional value
function for the terminal choice is student valuation for the default school: vt (Ct, X, 0) = q0 · µ0 = 1 · µ0.

70



For intuition, Equation 4.10 can be broken down into three parts:

µdt = (1)− (1− (3)) (2)
(3)

where

(1) = ln [pt (dt|X, %t)]− ln [pt (0|X, %t)]

(2) = − ln [pt+1 (0|X, %t+1)] + γ (4.11)

(3) = qdt

(1) in Equation 4.11 is the normalized value function for choice dt, (2) is the continuation value,

and (3) is the acceptance probability to dt. This equation intuitively shows how valuations

change depending on different values of (1), (2), and (3). Notice that such valuation units

(in utils) doesn’t have an interpretation, and this paper doesn’t further parameterize the

valuations in order to remain fully nonparametric.

4.3 Estimation

As shown in Section 4.2, the optimized choice (probability) can be represented as a function of

the acceptance and choice probabilities, which can easily be retrieved from the data. Hence,

the estimation is done in two-steps: in the first step, all choice probabilities are calculated

using choice and outcome data; in the second step, the probabilities in in Equation 4.10 is

replaced with the estimates from the first step to solve for valuations. This strategy is known

as the two-step estimator, and it not only reduces computational burden of value function

iteration but also provide tractability of each estimates.

For the rest of this section, I describe the process of how the two-step estimator is used

for this model, using the following data:

data = {Xi,y, di,j,t,y, ai,j,y}i∈I,j∈J,t∈{1,...,13},y∈{2011,...,2016}
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where Xi is student characteristics (ethnicity, latitude and longitude of residential zip code,

standardized test score percentiles, and number of absent days), di,j,t ∈ {0, 1} is student i’s

choice of school j at slot t, and finally ai,j ∈ {0, 1,NA} is whether or not a student has been

admitted to school j (NA when i has not applied to school j).

4.3.1 First Stage: Conditional Probabilities

In the first stage, conditional on student characteristics (and additional state variable), (1)

probabilities of being accepted to a school j for all j and (2) probabilities of choosing a school

j at slot t are estimated. For conditional acceptance probabilities, given observed student

characteristics, the probability of acceptance is calculated using the sample of applicants

for the school j. For conditional choice probabilities, given observed student characteristics

and the rejection probabilities up to t (or probability of reaching slot t), the probabilities of

choosing a school j for all j and the probability of stopping the list are calculated using the

sample of students who has rank order list length of at least t− 1.

Given such large sample of 300,000+ students, nonparametric estimation method is used

to calculate conditional probabilities. For the consistency of the estimates, Nadaraya-Watson

estimator with Gaussian Kernel is used. Rather than incurring computational burden of

choosing bandwidth using data, I use a Silverman’s rule of thumb.

Conditional Acceptance Probabilities In the student proposing Deferred Acceptance

algorithm, a student is not considered by all of the schools in the rank order list. The student

applies to schools in the rank order list only up to the school to which (s)he is matched. For

example, suppose an individual i’s rank order list looks like the following: (1, 2, 3). Suppose

that at the end of the algorithm i is matched to school 2. In this case, an individual has only

applied to schools 1 and 2, or i ∈ A1, A2 but i /∈ A3. The estimation, thus, uses applicants in

the sample.

Selection rules and acceptance probabilities are calculated using the following equation:
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q̂ (j|X) =
∑
i∈Aj

∑
yK

(
Xiy−X

h

)
· aijy∑

i∈Aj
∑
yK

(
Xiy−X

h

)
where Aj is set of applicants and h is a bandwidth. For student characteristics that are

continuous, I smooth over those states using Gaussian kernel and Silverman’s rule of thumb

bandwidth. For a student characteristic that is not continuous, in this case ethnicity, I use

simple bin estimators. Notice that acceptance probabilities, qij for all i and j, are stationary,

and hence not indexed by t.

Conditional Choice Probabilities Conditional choice probabilities are calculated for each

slot. At different slots, two components of input change: one is additional conditioning

variable, the rejection probabilities (%t), and the other is the sample of students used at each

slot. As one goes down the slots, both the rejection probabilities, %t, and number of students

who has rank order length of at least t− 1 in the data diminish.

Conditional choice probabilities are calculated similarly using the following equation:

p̂t (j|X, %t) =

∑
i∈I\(∪i{di0τy=1}t−1

τ=1)
∑
yK

(
Xiy−X

h

)
· 1 (dijty = 0)∑

i∈I\(∪i{di0τy=1}t−1
τ=1)

∑
yK

(
Xiy−X

h

) (4.12)

Here, I denote all conditional variables as X to simplify the notation. At the first slot, the

conditional choice probabilities are calculated conditional on student characteristics only. At

the second (and on) slot(s), the conditional choice probabilities are additionally conditioned

on rejection probabilities, %t and only the students with their rank order list length at least

as long as t− 1, are included.

4.3.2 Second Stage: Valuations

Valuations are calculated using Equation 4.10. Exploiting the structure of optimal stopping

problem, the valuations are calculated using the following equationusing only q̂ (j|Xi) = q̂ij ,
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p̂1 (j|X, %t), and p̂2 (j|X, %t):

µij = ln [p̂1 (j|X1)]− ln [p̂1 (0|X1)]− (1− q̂ij) (− ln [p̂2 (0|Xi, (1− q̂ij))] + γ)
q̂ij

∀i, j

The formula follows from Equation 4.10 and insights follows from Equation 4.11.

4.4 Application to NYC

In this section, I take the data from the New York City high school matching market to

the model with a specific goal of disentangling the role of acceptance probabilities in student

choices. To do so, I need estimates for acceptance probabilities and student valuations. From

the first stage estimates, acceptance probabilities are introduced not only to provide infor-

mation about student choices, but also to build intuition for the valuations, the second stage

estimate. Then, the second stage estimates are used to conduct an empirical exercise to see

how student choices change in the absence of acceptance probabilities. Rest of the section

describes the results at each step in detail (including model fit at each stage).

4.4.1 First Stage Estimates

Equation 4.11 provides intuitions for how valuations are constructed from the model. A stu-

dent values a school (normalized to taking an outside option) higher if conditional choice

probabilities are higher, conditional acceptance probabilities are lower, and conditional choice

probability of choosing default school next period is lower. Each of the estimates (probabili-

ties) play an important role in building valuations for the school, and are described in detail

in this section.

Conditional acceptance probabilities not only explain large part of valuation27, as expected

from Equation 4.11, but also construct the weight that each choice carries in the value function

(Equation 4.4). In the model specified in Section 4, the conditional acceptance probabilities

measure the percentage by which each choice in the rank order list occupies utility. On
27Since acceptance probability is the denominator for the valuation function, valuation exponentially increase

with low probability.
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average, the first choice carries more than 50% of the weight and the weights for later choices

decrease exponentially, indicating that the first choice is taken seriously by students.

From conditional choice probabilities, I select frequently chosen schools and call this set

of schools a consideration set. If the conditional choice probability for a school is higher

than choosing an outside option (if a school is chosen less frequently by students with similar

characteristics than the default school option), then I select the school to the consideration set.

Since valuations for the schools in this set are positive, in an event of changing acceptance

probabilities (in the next section), these schools are considered as alternative choices. On

average, there are about 25 schools in this set.

Acceptance Probability There are I × J number of such measure, so I present the result

by different student groups. Continuing with the partitioning students by ROL length (simi-

larly to Section ??), Table 18 represents the mean acceptance probabilities for schools chosen

by each group at each slot. Rows indicate groups with different rank order list length and

columns indicate the schools chosen at each slot. Recall that students with longer list is, dis-

tributionally speaking, associated with lower housing price and lower academic performance,

and etc. Students with longer list lengths tend to apply to schools that are more out of reach

than those with shorter lists. Although school choice has opened up opportunities to apply

to any schools in the city, 18 shows that admission (and thus final allocation) opportunities

differ significantly across different student groups.28

Conditional acceptance probabilities are used to determine how each student values each

schools. The conditional acceptance probabilities, which ranges from 0 to 1, is inversely

related to (the denominator of the valuation function) valuation. In other words, if a student

has chosen to use up the slot even if the acceptance probabilities are small, then it must mean

that the student values the school highly. Following the logic, students with longer lists, also

associated with lower socioeconomic status, tend to value their first choice schools highly

compared to students with shorter lists, also associated with higher socioeconomic status.
28Media has paid close attention to such allocation result and Harris and Fessenden (2017) (in New York

Times) is one of the most notable articles written.
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Notice that valuations are in relation to the default option. A student with a default school

which is not desirable will have many schools with comparatively high valuation. For those

schools, even if the acceptance probabilities are low, a student will choose to apply.

Table 18: Estimated Acceptance Probabilities (Mean)

1 2 3 4 5 6 7 8 9 10 11 12
1 0.77
2 0.48 0.66
3 0.46 0.45 0.60
4 0.44 0.42 0.44 0.55
5 0.42 0.41 0.43 0.44 0.53
6 0.40 0.40 0.41 0.43 0.44 0.51
7 0.39 0.39 0.40 0.42 0.43 0.44 0.50
8 0.38 0.38 0.39 0.41 0.42 0.43 0.45 0.49
9 0.37 0.37 0.39 0.39 0.41 0.42 0.43 0.45 0.49

10 0.37 0.37 0.39 0.39 0.40 0.42 0.42 0.44 0.45 0.49
11 0.37 0.38 0.39 0.40 0.41 0.43 0.43 0.44 0.45 0.46 0.51
12 0.38 0.38 0.39 0.40 0.41 0.43 0.43 0.44 0.45 0.46 0.47 0.51

In the model specified in Section 4, acceptance probabilities play one other important

function: to determine how important each slot choice is in a student’s overall utility. Suppose

a student has submitted rank order list length of 4 and the student’s acceptance probability

for the first choice is .80. The later 3 choices only consist of at most 20% of the overall utility

for a student, and hence will play much smaller role. Table 19 calculates such measures,

mean acceptance probabilities (Equation 4.3) of receiving slot t choice. This measure can be

interpreted as a utility weight for which a choice at slot t is responsible. As one goes down

the slots at any length, probabilities of reaching to that point and being admitted is quickly

converging to 0. Of course this is expected since the rejection rates from the previous slots

are multiplied. However, it is worth noting that the rate at which the later choices loses its

weight in one’s utility functions is exponential. It seems that only the first few choices will

have significant weight on a student’s utility. 29

I focus on the measures from the first slot only for a practical reason for the rest of the
29This provides additional support for using optimal stopping estimation methods using conditional choice

probability estimates from the first two choices.
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Table 19: Estimated Expected Probability of Receiving Slot N Allocation (Mean)

1 2 3 4 5 6 7 8 9 10 11 12
1 0.77
2 0.48 0.34
3 0.46 0.21 0.19
4 0.44 0.20 0.12 0.11
5 0.42 0.21 0.13 0.08 0.07
6 0.40 0.21 0.13 0.08 0.06 0.05
7 0.39 0.21 0.13 0.08 0.06 0.04 0.03
8 0.38 0.20 0.13 0.08 0.06 0.04 0.03 0.02
9 0.37 0.20 0.13 0.09 0.06 0.04 0.03 0.02 0.02

10 0.37 0.20 0.13 0.08 0.06 0.04 0.03 0.02 0.02 0.01
11 0.37 0.20 0.13 0.09 0.06 0.04 0.03 0.02 0.02 0.01 0.01
12 0.38 0.20 0.13 0.08 0.06 0.04 0.03 0.02 0.02 0.01 0.01 0.01

section.30 This paper aims at a particular exercise: to evaluate how much of student choices

are driven by school side (i.e. acceptance probabilities). To see if a student choice changes

when school side effect on decision making process is eliminated, acceptance probabilities for

all schools are set to 1. Since a student only moves down the list when the student is rejected

from the previous choices, when acceptance probabilities for the first slot is set to 1, the future

value zeroes out. I only need estimates for the first slot.

Conditional Choice Probabilities: Construction of Consideration Sets When pre-

dicting whether a student will make a different choice given different acceptance probabilities,

it is unlikely that students consider all 700+ available schools. I select a subset of schools

with positive valuation, called a consideration set. Interpretation for this set is the following.

For the first slot, a student looks around the neighborhood and see where students apply. If

enough of the “neighbors” (students with similar characteristics) apply, I put the school in my

consideration set.31 In model terms, if the numerator of the Equation 4.10, then the school

is in the consideration set. A student considers about 25 schools with standard deviation of

about 25. Table 20 records the median and standard errors of the size of consideration set.

This set is used in the next section.
30The model can estimate the rest of the slots.
31As more “neighbors” apply to a particular school, valuation for that school also increases.
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Table 20: Median (Standard Deviation) Size of Consideration Set at Slot 1

Group by ROL Length |Consid. Set at t = 1|
1 22 (25)
2 24 (22.7)
3 24 (22.9)
4 26 (24.1)
5 27 (25)
6 28 (25.9)
7 28 (26.1)
8 29 (26.7)
9 29 (26.4)
10 29 (27)
11 28 (27)
12 28 (27.6)

Note that in the model, slot 2 (and on) conditional choice probabilities, conditional ac-

ceptance probabilities, and hence consideration set resets. At slot t, depending on rejection

probabilities from the previous choices,%t, all of the estimates differ. It is possible for a student

to choose one school from a consideration set of 22 at t = 1 and choose to stop the list at

t = 2.

4.4.2 Second Stage Estimates

Intuition for how the valuations look like can be deduced from Equation 4.11. For each

student, the valuation are higher for the schools with higher conditional choice probabilities

and lower acceptance probabilities. Valuations are in units of abstract utilities, called a

util or utils, and is in relation to the default school of each student. For interpretability,

economist often further parameterize this value. However, for the purpose of this exercise

(with a specific goal of disentangling the role of acceptance probabilities in student choices),

rather than interpreting individual student valuation, I simply use these valuations to arrive

at the result for Section 4.4.4.
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4.4.3 Model Fit

For acceptance probabilities, the model fit is calculated using Deferred Acceptance algorithm

allocation outcome. In the model, since acceptance probabilities indicate selection rule for

each schools, I consider acceptance probabilities as an estimate for how schools rank students.

As inputs for Deferred Acceptance algorithm, student rank order list data and acceptance

probabilities are used. The resulting allocation matched 83% of the data. For conditional

choice probabilities, I select the school with the highest estimated conditional choice proba-

bilities for the first choice, and it matches the first slot choice data with 81%. Finally, using

the valuation and future values (conditional choice probability of choosing default school in

the next period), the model’s first slot choice matches the first slot data with 79%.

4.4.4 Student Choice to Changed Acceptance Probabilities

Finally, I ask the following question: how many students will change their choices if schools

are not allowed to rank students? To answer the question, for each student, acceptance

probabilities for all school are set equal (to 1).32 I, then, compare to the model outcome

(student choices) before manipulation of acceptance probabilities to the student choice after

the manipulation.

I predict that most of the students (65%) change their first choices. In other words, about

35% of the population applied to their highest valued schools, or reported truthfully. Table

21 shows the result by partitioning students by their rank order list length from the data.

Student groups with shorter list, especially students who only submits one school, respond

much more sensitively (81% of the students changed their choice with ROL length 1) than

student group with longer list respond (62% the students changed their choice with ROL

length 12). Students who have submitted only one choice (in the data) seem to have already

considered acceptance probabilities and reported their best response at the first slot. For other
32Exercise of setting all acceptance probabilities to 1 may sound naive and perhaps Utopian. However, this

paper is not aimed at conducting aggregate welfare analysis. Instead, this paper focuses on student demand
under a partial equilibrium setting. To make a claim on welfare, a full general equilibrium model considering
both student demand and school demand has to be evaluated and aggregate welfare analysis is out of scope of
this paper. Although out of scope of this paper, the model in Section 4 can be extended and the equilibrium
is defined in Appendix.
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Table 21: Proportion of Students Changing the Choice when Acceptance Probabilities

Group by ROL Length % Change (Mean) % Change (Std)
1 .85 .295
2 .735 .412
3 .719 .426
4 .706 .431
5 .704 .433
6 .701 .439
7 .698 .440
8 .701 .439
9 .704 .439
10 .697 .444
11 .684 .453
12 .682 .454

groups with longer lists, although larger proportion about 35% of the population is predicted

to not change their choices even when they are allowed to be admitted to any schools that

they want, indicating that this is their true preference, majority for these groups will still

likely to change their choices when acceptance probabilities are not a concern.

4.5 Conclusion

This paper provides thorough description of the New York City high school matching market,

documents systematic relationship between student rank order list choices and the matching

outcomes, develops a model that captures this relationship, and finally applies model to the

NYC to separate student choice driven by student demand from school’s selection.

To receive a seat at the desired high school, students are allowed choose (take a shot

at receiving an admission) up to 12 schools of their choice, but most rank fewer schools.

Moreover, when not matched to one of the listed choices, students neither take an outside

option nor are allocated randomly, and instead show clear preferences for the leftover schools.

This paper attributes the reason for short rank order lists to acceptance probabilities based on

the empirical finding that regardless of the rank order list, most (90%) students are matched

to one of their choices. Since failing to account for the effect of acceptance probabilities

on student choices can lead to under or over estimation of student valuation, I develop a
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computationally tractable model that captures this relationship.

Applying such model to the data, at the first slot, (1) a student considers about 25 schools

on average (a result from the choice probabilities); (2) valuations of the schools that a student

considers are inversely related to his or her acceptance probabilities (a result from solving

the model); and (3) finally, in a scenario where schools are not allowed to rank, 65% of the

population would respond differently (a result from a counterfactual analysis). Moreover, the

student group with rank order list of length 1 responds the most sensitively to the acceptance

probability change.

This exercise provides the intuition that a student who has chosen to apply to one school

with a high acceptance probability, who is associated with high socioeconomic characteristics,

are the most sensitive to acceptance probability for their first-choice school. It is important

to understand student choice sensitivity in response to the change in school admission policy,

especially since such policy change is discussed by the current Mayor of New York City, Bill

de Blasio. Findings from the paper show that the response (in student rank order list choices,

which ultimately result in the final allocation) to such policy change can differ greatly across

various student groups.
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Figure A.1: Student Information Conditioned by Race

A Appendix for Chapter 1

A.1 Data

Data consists of students’ zipcode (and corresponding median housing price), standardized

test scores (math and English), and their attendance rate (number of absent days), and

ethnicity.

Using the zipcode information, I match each student with median housing price (or median

income) for his or her zipcode from the United States Census.

Travel time between students’ zipcode to school was calculated using Google Maps at

7:30am using public transportation method.

For ease of interpretation, I have converted the standardized test scores of students into

percentiles. For days absent, there are 180 school days in each school year. One of the

requirements for passing to the next grade is 90% attdance (days absent 18 days or less).

Median days absent for the market is 2, and mean is 10.

A.2 Figures

Below are list of figures not included in the main section of the paper:
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Figure A.2: A Page from NYC High School Directory Booklet
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Figure A.3: Characteristics of Programs Chosen at Slot N.

Characteristics of Slot N Choices. I look further into the rank order lists by investigating

characteristics of programs applied at slot N. Figure A.3 presents distribution of program

characteristics chosen at slot N (I additionally divided by race). Application behavior divided

by slots show that all students prefer to go to quality schools (earlier slots have higher college

ready rate and decreases for later slots), but school quality of later choices for Whites and

Asians doesn’t decrease as sharply. Predicted acceptance probability to the top choices are

slightly higher for White than the rest of the population. Lastly, all choices have around 40

minutes of travel time, on average.
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B Appendix for Chapter 2

B.1 Alternative Choice Rules (Quota & Reserves)

This section examines more intuitive choice rules for quota and reserves in multi-dimensional

case. However, it is found that those choice functions fail to satisfy GS, which is required for

a stable matching. I will introduce those choice rules, and counter-examples to GS.

B.1.1 Quota

Each school chooses the highest-ranked students conditional on not exceeding any of the

quotas. In this case, qk is upper bounds on the number of students of type k.

Formally, choice function, C, is generated by quotas if there exists a vector with length∑T
t=1 |Tt| where elements of the vector is number of quota seats for all attributes at all type

spaces such that for any S ⊆ S,

1. there exist a strict priority � over S;

2. |C
(
Sk
)
| ≤ qk for all k ∈ T1 ∪ · · · ∪ TT ;

3. if s ∈ C (S), s′ ∈ S\C (S), and s’�s, then it must be the case that τ (s) 6= τ (s′); and

|C
(
Sτ(s′)

)
| = qτ(s′) for all attributes in τ (s′) in each type spaces; and

4. if s ∈ S\C (S), then either |C (S) | = q or |C (S)τ(s) | = qτ(s)for at least one attribute in

τ (s).

If a choice function, C, is generated by quotas defined above, then I can find counterexamples

where GS fails.

Counterexample. Suppose there are three students: {s1, s2, s3}, and their types are:
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τ (s1) = (female,White)

τ (s2) = (male,White)

τ (s3) = (male,Black)

and a school’s preference is s1 � s2 � s3. Capacity of school is 2; q = 2. Quota for each types

are given as follows: qmale = qfemale = qWhite = qBlack = 1.

Let S = {s2, s3} and S′ = {s1, s2, s3}.

Then,C (S) = {s2} and C (S′) = {s1, s3}. s3 ∈ C (S′) but s3 /∈ C (S), which proves that

GS is not satisfied.�

B.1.2 Diversity-Focused Reserve

A choice function, C, is generated by diversity-focused reserve if there exists a vector with

length
∑T
t=1 |Tt| where elements of the vector is number of seats reserved for all attributes at

all type spaces such that for any S ⊆ S,

1. there exist a strict priority � over S;

2. |C
(
Sk
)
| ≥ qk ∧ |Sk|33 for all k ∈ T1 ∪ · · · ∪ TT ;

3. if s ∈ C (S), s′ ∈ S\C (S), and s’�s, then it must be the case that τ (s) 6= τ (s′) and∑
k∈τ(s) I (k) >

∑
k∈τ(s′) I (k) where

Ik (k) =


1 if |C

(
Sk
)
| ≤ qk

0 otherwise

; and

4. if ∅ 6= S\C (S), then |C (S) | = q

33x ∧ y ≡ (min {x1, y1} , . . . ,min {xd, yd})
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If a choice function, C, is generated by (diversity-focused version of) reserves defined above,

then GS fails.

Counterexample. Suppose there are four students: {s1, s2, s3, s4}, and their types are:

τ (s1) = (male,White)

τ (s2) = (female,White)

τ (s3) = (male,Black)

τ (s4) = (female,Black)

and a school’s preference is s1 � s2 � s3 � s4. Capacity of school is 2; q = 2. Reserve for

each types are given as follows: qmale = qfemale = qWhite = qBlack = 1.

Let S = {s2, s3, s4} and S′ = {s1, s2, s3s4}.

Then,C (S) = {s2, s3} and C (S′) = {s1, s4}. s4 ∈ C (S′) but s4 /∈ C (S), which proves

that GS is not satisfied.�

B.1.3 Preference-focused Reserve

A choice function, C, is generated by preference-focused reserve if there exists a vector with

length
∑T
t=1 |Tt| where elements of the vector is number of seats reserved for all attributes at

all type spaces such that for any S ⊆ S,

1. there exist a strict priority � over S;

2. |C
(
Sk
)
| ≥ qk ∧ |Sk|34 for all k ∈ T1 ∪ · · · ∪ TT ;

3. if s ∈ C (S), s′ ∈ S\C (S), and s’�s, then it must be the case that τ (s) 6= τ (s′) and

|C
(
Sτ(s)

)
| ≤ qτ(s) for at least one τ (s); and

4. if ∅ 6= S\C (S), then |C (S) | = q

34x ∧ y ≡ (min {x1, y1} , . . . ,min {xd, yd})
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If a choice function, C, is generated by (preference-focused version of) reserves defined above,

then GS fails.

Counterexample. Suppose there are five students: {s1, s2, s3, s4, s5}, and their types are:

τ (s1) = (male,Black, low)

τ (s2) = (male,White, high)

τ (s3) = (female,White, high)

τ (s4) = (female,Black, high)

τ (s4) = (female,White, low)

and a school’s preference is s1 � s2 � s3 � s4 � s5. Capacity of school is 3; q = 3. Reserve

for each types are given as follows: qmale = qBlack = qlow = 1.

Let S = {s2, s3, s4, s5} and S′ = {s1, s2, s3s4, s5}.

Then,C (S) = {s2, s4, s5} and C (S′) = {s1, s2, s3}. s3 ∈ C (S′) but s1 /∈ C (S), which

proves that GS is not satisfied.�
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