
DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
INDUSTRIAL ADMINISTRATION

(OPERATIONS RESEARCH)

Titled

“Modern Methodologies for Practical Discrete Optimization”

Presented by

Ryo Kimura

Accepted by

Willem-Jan van Hoeve 5/2/2019
___ _________________
Chair: Prof. Willem-Jan van Hoeve Date

Approved by The Dean

Robert M. Dammon 5/6/2019
___ _________________
Dean Robert M. Dammon Date

Modern Methodologies for
Practical Discrete Optimization

Ryo Kimura

May 2, 2019

Tepper School of Business

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Willem-Jan van Hoeve

John Hooker

Benjamin Moseley

J. Christopher Beck

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in Operations Research

Contents

1 Introduction 3

2 A Logic-based Benders Approach for Home Healthcare Scheduling 5
2.1 Introduction . 5
2.2 Previous Work . 7
2.3 The Model . 9
2.4 Logic-Based Benders Decomposition 11
2.5 Subproblem . 13
2.6 Master Problem . 14
2.7 Branch and Check . 15
2.8 Subproblem Relaxation . 16

2.8.1 Time Window Relaxation . 16
2.8.2 Assignment Relaxation . 17
2.8.3 Multicommodity flow relaxation 18

2.9 Computational Results . 18
2.9.1 Hospice Care Instances . 18
2.9.2 Implementation . 19
2.9.3 Results for Hospice Care Instances 20
2.9.4 Modified Hospice Care Instances 22
2.9.5 Rasmussen Instances . 23

2.10 Conclusions and Future Work . 26

3 Robust Scheduling with Combinatorial Uncertainty Sets 27
3.1 Introduction . 27
3.2 Related Work . 28

3.2.1 Robust Scheduling . 28
3.2.2 Robust Job-shop Problem . 30

3.3 Robust Scheduling . 30
3.3.1 Scenario Generation . 31
3.3.2 Heuristic Scenario Generation 32

3.4 Example: Robust Job-Shop Scheduling 33
3.4.1 Problem Statement . 33

1

3.4.2 Special case: Makespan with 1 delay (CMAX1) 34
3.4.3 Model . 35
3.4.4 Scenario Generation . 36
3.4.5 Upper/Lower Bounds and Termination 38

3.5 Experimental Results for Robust Job-Shop 39
3.5.1 Effect of Multiple Delays/Objectives on Schedule Robustness . 40
3.5.2 Larger Instances . 42
3.5.3 Heuristic Parameters . 44

3.6 Example: Robust Unrelated Parallel Machine Scheduling 44
3.6.1 Problem Statement . 44
3.6.2 Model . 45
3.6.3 Scenario Generation . 46
3.6.4 Computational Results . 47

3.7 Conclusion and Discussion . 49

4 Post-Optimality Analysis of Mixed Integer Linear Programming Pro-
blems Using Decision Diagrams 51
4.1 Introduction . 51
4.2 Related Work . 52

4.2.1 Postoptimality for LP . 52
4.2.2 Postoptimality for ILP and MILP 53
4.2.3 Miscellaneous . 54

4.3 Decision Diagrams . 55
4.4 Sound Decision Diagrams for ILP . 57
4.5 Representing Continuous Variables 60
4.6 Explicit Representation . 61
4.7 Implicit Representation . 64

4.7.1 Sound Decision Diagrams for MILP 65
4.7.2 Building Sound Diagrams for MILP 66
4.7.3 Sound Reduction . 73
4.7.4 Identifying Equivalent States 77
4.7.5 Bottom-Up Processing . 80
4.7.6 Using the MIP Solver Solution Pool 83

4.8 Performing Post-Optimality Analysis 86
4.9 Computational Experiments . 86
4.10 Conclusion . 94

5 Conclusion and Future Research Directions 96

2

Chapter 1

Introduction

Modern discrete optimization problems, especially those motivated by practice, con-
tinue to grow in complexity and scale. The development of modern methodologies
to address such problems is of paramount importance, and even more so given that
advanced analytical tools become increasingly widespread among businesses. This
dissertation consists of three projects, commonly aligned in the pursuit of solving
and analyzing larger, more complex optimization problems involving discrete varia-
bles.

In the first project (Chapter 2), we consider the home healthcare problem, inspired
by a real-world hospice care firm’s operational need to perform weekly updates to a
rolling visitation schedule of patients by home health aides. The need to jointly
perform assignment and routing of aides combined with scheduling constraints makes
this problem especially challenging. We propose an exact method based on logic-based
Benders decomposition (LBBD) that allows the assignment and routing aspects of
the problem to be treated independently and show that it is superior to a monolithic
MILP model for all but a few instances. We also find that a variation of the standard
LBBD method, called Branch-and-Check (B&C), performs better for the instances
tested. Thus, the contributions of this chapter are

• an exact method for solving the home healthcare problem based on logic-based
Benders decomposition (LBBD),

• experimental verification that the method can find provably optimal solutions
to realistic size instances of the problem within one hour, and

• a direct computational comparison of standard LBBD and Branch-and-Check
on a class of problems derived from real-world data.

In the second project (Chapter 3), we propose a generic framework for robust sche-
duling problems where the uncertainty set has a “combinatorial” structure that can
be efficiently queried. This contrasts with many robust scheduling problems where
the uncertainty set is assumed to be polyhedral, or more generally, convex. The idea

3

is to avoid including the whole uncertainty set in the model by dynamically genera-
ting the scenarios to only include those that correspond to the “worst-case”, which
are often fewer in number. We apply our framework to the robust job shop schedu-
ling problem with machine breakdowns and the robust parallel machine scheduling
problem with machine breakdowns and show that we can indeed compute a robust
optimal solution by only considering a fraction of the entire uncertainty set. Thus,
the contributions of this chapter are

• a generic algorithm for solving robust discrete optimization problems with com-
binatorial uncertainty sets, and

• experimental verification that, for certain robust machine scheduling problems,
we can guarantee robustness to the entire uncertainty set by only considering a
small percentage of the scenarios.

In the third project (Chapter 4), we consider post-optimality analysis of mixed
integer linear programming (MILP) problems, where the goal is to provide a syste-
matic method of analyzing the set of near-optimal solutions. Following a line of work
initiated by [HH06] and extended by [HS17], we use the notion of sound reduction
and sound decision diagrams as a compact and transparent representation of the set
of near-optimal solutions. We also propose a novel method for handling continuous
variables with decision diagrams and report preliminary results on some MIPLIB in-
stances to investigate the practicality of our procedure. Thus, the contributions of
this chapter are

• two novel approaches for representing solutions involving continuous variables
with a decision diagram,

• extension of the notions of sound decision diagrams and sound reduction to the
mixed integer linear programming case, and

• preliminary computational evidence for the viability of a decision-diagram based
approach for MILP post-optimality analysis.

4

Chapter 2

A Logic-based Benders Approach
for Home Healthcare Scheduling

2.1 Introduction

Home healthcare is one of the world’s most rapidly growing industries, due primarily
to cost advantages and aging populations. The number of home healthcare aides in
the United States, for example, has doubled in the last decade [Spa16]. Home care is
not only less expensive than institutional care but offers other advantages. It allows
patients to be treated in the comfortable and familiar surroundings of home, which are
less stressful than an institutional environment. It reduces the risk of acquiring drug-
resistant infections that may spread in hospitals and nursing homes. The increasing
availability of portable equipment and online consultation makes home care feasible
for a growing range of conditions. Hospice care, which provides palliative rather
than curative treatment, is particularly suited for the home. It may consist of a
variety of services, including assistance in everyday tasks, nursing care, psychological
counseling, physical therapy, religious/spiritual support, and bereavement services for
the family.

The cost-effectiveness of home healthcare depends critically on the efficient assign-
ment, scheduling and routing of healthcare aides, whom we call aides for short. Aides
typically start their work shift at home or a central office, travel directly from one
patient to the next, and return to home or office at the end of the shift. Aides must
be qualified to service patients to whom they are assigned, and the schedule must
observe a number of constraints imposed by the availability of aides, patient needs,
work rules, and legal and regulatory requirements. These include time windows for
each patient visit and each aide’s departure from and return to home base.

We propose an exact method for solving the home healthcare problem that relies
on logic-based Benders decomposition (LBBD). While many heuristic methods have
been proposed for the problem, an exact method is particularly useful when it is
necessary to determine what level and type of staffing are adequate to meet existing

5

or projected patient needs. By maximizing the number of patients that can be served
by a given set of aides, one can determine with certainty whether these aides are
adequate, or additional aides must be hired and trained. Maximizing the population
served also tends to result in less travel time and idle time for aides. The method can
be modified to accommodate other objectives as well.

Logic-based Benders decomposition [Hoo00; HO03a] is well suited for this ap-
plication because the problem naturally decomposes into an assignment task and a
scheduling task. The assignment portion of the problem becomes the Benders mas-
ter problem, leaving the routing and scheduling for the Benders subproblem, which
further decouples into a separate problem for each aide. While classical Benders
decomposition requires that the subproblem be a linear or nonlinear programming
problem [Ben62; Geo72], LBBD generalizes the classical method to accommodate an
arbitrary subproblem, such as the scheduling subproblem posed by home healthcare.
A variant of LBBD, branch and check (B&C), has the same characteristics, but sol-
ves the master problem once rather than repeatedly as in standard LBBD (S-LBBD;
[Hoo00; Tho01]). It can be advantageous when the master problem is much harder
to solve than the subproblem. We apply both standard LBBD and branch and check
to the home healthcare problem.

A logic-based Benders approach has two additional advantages. The subproblem
decouples into small scheduling problems that remain roughly the same size as the
overall problem grows in size, allowing the algorithm to scale up to real-world appli-
cations. In addition, the master problem and subproblem can be solved with methods
that are best suited for each. We solve the master problem with mixed integer li-
near programming (MILP), which is well suited for computing optimal assignments,
while we solve the subproblem with the powerful scheduling algorithms in a constraint
programming (CP) solver.

Our research was occasioned by a project undertaken for a major home hospice
care organization. In this and in many other contexts, a weekly schedule is required,
in which each patient is visited a specified number of times each week. The task is
to determine which aide serves each patient, on which days of the week, and at what
time of day. We therefore formulate a model that schedules patient visits over a given
time horizon, with multiple visits per patient if so mandated by the patient care plan.
While our model can accommodate patient vists requiring two or more different types
of aides and a limited number of temporal dependencies, we did not test LBBD on
problem instances with such constraints since we did not explicitly need them for our
setting.

Due to the nature of hospice (where eligible patients have a life expectancy of six
months or less if the illness runs its normal course), the patient population is very
dynamic. The problem presented to us was to update an existing aide schedule in
response to projected changes in the patient population, as this allows the organiza-
tion to anticipate staffing needs. We therefore focus primarily on the computation of
a rolling schedule, a task that arises in many other applications as well. This means

6

that when newly admitted patients replace some existing patients in the population,
we find aides and visit times for the new patients while allowing the visit times of
patients in service to be rescheduled. To maintain continuity of service – a key contri-
butor to quality of service and patient satisfaction – we require that existing patients
be served by the same aides on the same days as before. Other types of continuity
constraints are easily incorporated into the model.

LBBD is especially well suited for computation of a rolling schedule, because
the structure of the decomposition makes the problem much easier to solve when a
subset of patients is replaced, even though the visit times are scheduled for the entire
population. However, to test LBBD on a problem with very different characteristics,
we also applied it to a Danish home care scheduling problem originally studied by
[Ras+12]. This application requires solving the problem from scratch rather than on
a rolling basis.

We found that LBBD can solve instances of realistic size to optimality, with
solution times ranging from a few seconds to a few minutes on nearly all instances,
depending on the number of new patients. Branch and check proved to be significantly
faster than standard LBBD on the hospice care instances, as might be expected,
because the master problem is much harder to solve than the subproblem. Branch
and check is also far superior to MILP except on some instances with narrow time
windows. Both forms of LBBD are dramatically faster than MILP on the instances
from [Ras+12]. The master problem is easier to solve than the subproblem in some
of these instances, and for these, standard LBBD tends to outperform branch and
check.

The paper is organized as follows. After a review of previous work in Section 2.2
below, we formulate the home healthcare problem in Section 2.3, along with options
for modifying the model. Section 2.4 provides a brief description of LBBD and its
application to the home care problem. Section 2.5 states the scheduling subproblem
and indicates how Benders cuts are generated and strengthened. Section 2.6 states
the master problem and indicates how the Benders model can be altered to accom-
modate different objective functions. Section 2.7 indicates how branch and check
differs from standard LBBD. A key element in the success of LBBD is the inclusion
of a subproblem relaxation in the master problem, and we describe three possible
relaxations in Section 2.8. Computational results are reported in Section 2.9, which
is followed by conclusions and suggestions for future research.

2.2 Previous Work

Due to the difficulty of solving life-sized home healthcare delivery problems, nearly
all existing methods are heuristic algorithms. Recent studies have used tabu se-
arch [HL09; RH16], pattern or column generation [All+13; CS15], variable neighbor-
hood search [TH11; MMB14], variable neighborhood search combined with scatter
search and other heuristics [Hie+15], constraint programming combined with heuris-

7

tics [NSS12; Ren+12], an inexact Benders method [CH12], and separate solution of
the rostering and scheduling components of the problem [Yal+14].

There are relatively few exact methods. [Red+12] formulated the home healthcare
problem with an MILP model but solved only small instances (15 patients). [Cha+09]
used a specialized branch-and-bound algorithm to schedule home chemotherapy, but
again tested it only on a very small instance (8 patients).

[Ras+12] scaled up to problem instances of realistic size by solving an MILP model
of the problem with column generation and a specialized branching scheme. However,
only some of the smaller instances (20–80 patients) were solved to optimality within
an hour. The remainder were solved after grouping visits into clusters, so as to
reduce the number of visits in the model (clustering can, of course, be used in LBBD
if desired). This sacrifices optimality, but the authors report that the solutions are
optimal or close to optimal on smaller instances that could also be solved optimally.

The results of [Ras+12] show that a column generation method is a viable ap-
proach to exact solution of the home care problem, at least for smaller real-world
instances. A direct comparison with the results we report is difficult, due to differen-
ces in the problem solved. They compute a schedule for one day and one visit per
patient, while we schedule multiple visits per patient over a time horizon of several
days. On the other hand, we reschedule on a rolling basis, and their problem instances
include temporal dependencies between visits.

Benders decomposition was introduced by [Ben62] and extended to accommodate
nonlinear programming subproblems by [Geo72]. Logic-based Benders decomposi-
tion was developed by [Hoo95; Hoo00] and [HO03a]. The computational advantages
of LBBD have since been demonstrated in a wide range of applications, partially
surveyed by [Hoo12] and [CÇH15]. Guidelines for applying LBBD can be found in
these references and [Hoo07]. [CF06] developed a method based on combinatorial
Benders cuts that is closely related to LBBD and applies to the specific case of an
MILP subproblem. [Rah+17] provide an excellent survey of recent developments in
Benders decomposition, including LBBD.

Branch and check was introduced by [Hoo00] and first applied by [Tho01], who
coined the term “branch and check.” The method has received much less attention
than standard LBBD, but [Sad04; Sad08] uses it to minimize the weighted number
of late jobs on a single machine, and [LV16] use it for vehicle routing on a congested
network. [Bec10] compares performance with standard LBBD on several different
problems, as well as presenting a variation of branch and check that avoids solving
the subproblems under certain circumstances.

This paper is based on methodology presented in a conference paper by [HH16]
but goes significantly beyond it. It modifies the decomposition to allow the option of
requiring that a patient’s visits occur at the same time each day. It further develops
the time window relaxation described in the earlier paper, experiments with assig-
nment and multicommodity flow relaxations, and compares standard LBBD with
branch and check. It is also based on a new implementation that uses SCIP and

8

Gecode as MILP and CP solvers, respectively, rather than commercial solvers.

2.3 The Model

We define the home healthcare problem over d days. Each patient j must be visited on
vj days during this time period by an assigned aide having a set Qj of qualifications.
Each visit has a duration of pj time units and must take place within a time window
[rj, dj].

We will let binary variable yijk = 1 if aide i is assigned to visit patient j on day k.
If there are restrictions on which days patients can be visited, we indicate this with
the generic constraint y ∈ K. For example, in a weekly schedule (d = 7), patient j
may require two visits that must be scheduled on Tuesday and Thursday or Tuesday
and Friday. There may be separation constraints to ensure that the visits are spaced
evenly throughout the time horizon, particularly when the schedule is cyclic. For
example, in a schedule with vj = 2, we may require that the visits be separated
by at least two days in the cycle, so that visits on Monday and Saturday would be
infeasible.

Each aide i has a set Q′i of qualifications. On any given day k, aide i begins at
a starting location bi, travels to the home of each assigned patient, and returns to
the terminal location b′i (normally bi = b′i). The travel time between aide/patient
locations j and j′ is tjj′ time units, based on an optimal route that is calculated in
advance. Aide i must leave location bi during the time window [rbi , dbi] and return
to location b′i during [rb′i , db′i]. In addition, aide i cannot be on duty more than Ui
time units during the scheduling horizon. We will suppose that the aide “clocks in”
on arrival at the first patient of the day and “clocks out” on departure from the last
patient, but this can be altered if desired.

The remaining variables of the model are as follows. We let binary variable δj = 1
if patient j is assigned an aide, and binary variable xij = 1 if aide i is assigned to
patient j. We also let integer variable πikν denote the νth patient visited by aide
i on day k, and real variable sj denote the time that the visit to patient j starts
on each day it occurs. We are therefore supposing that visits to patient j occur at
the same time, because this simplifies notation and reflects the real-world situation
we modeled. This assumption can easily be relaxed by adding a day index k to the
variables sj and modifying the model in the obvious way.

9

The problem can be stated as follows:

max
∑
j

δj (2.1)∑
i

xij = δj,
∑
i,k

yijk = vjδj, ∀j (2.2)

yijk ≤ xij, ∀i, j, k (2.3)

xij = 0, ∀i, j with Qj 6⊆ Q′i (2.4)

yibik = yib′ik = 1, ∀i, k (2.5)

y ∈ K (2.6)

δj, xij, yijk ∈ {0, 1}, ∀i, j, k (2.7)

nik =
∑
j

yijk, all-different{πikν | ν = 1, . . . , nik}, ∀i, k (2.8)

πikν ∈ {j | yijk = 1}, ∀i, k, and ν = 1, . . . , nik (2.9)

πik1 = bi, πiknik = b′i, ∀i, k (2.10)

rj ≤ sj ≤ dj − pj, ∀i, j (2.11)

sπikν + pπikν + tπikνπik,ν+1
≤ sπik,ν+1

, ∀i, k, and ν = 1, . . . , nik − 1 (2.12)∑
k

(
sπik,nik−1

+ pπik,nik−1
− sπik2

)
≤ Ui, ∀i (2.13)

sj ∈ R, for all j; πikk′ ∈ Z, ∀i, k, k′ (2.14)

The objective (2.1) is to maximize the number of patients served. Other objectives
are possible, as discussed in Section 2.6. Constraint (2.2) defines δj and ensures that
patients are visited the required number of times by their assigned aide. Constraint
(2.3) says that patients are only visited by aides who are assigned to them. Constraint
(2.4) prevents patients from being served by aides without the proper qualifications.
Constraint (2.5) ensures that aides visit their starting and ending locations. Con-
straint (2.6) enforces restrictions on which days visits may be scheduled.

The remainder of the model schedules the aides. This part of the model will appear
in the subproblem, which will be solved by constraint programming (CP). Several of
the constraints have a form that is peculiar to CP models, which typically contain
“global constraints,” or high-level constraints that convey information to the solver
about special structure in the problem. Constraint (2.8) defines nik, the number of
patients visited by aide i on day k. It also uses the all-different global constraint to
require the variables πikν to take on distinct values. Constraint (2.9) ensures that
the patients who are sequenced for a given aide on a given day are in fact assigned
to that aide. Constraint (2.10) requires aides to visit their starting location first and
ending location last. Note that the variable π has another variable nik as one of
its indices, a standard feature of CP models. Constraint (2.11) ensures visits occur
within the required time windows. Constraint (2.12) ensures there is enough time to

10

travel between locations, and constraint (2.13) enforces the maximum work time for
aides. These two constraints likewise contain variable indices.

When a patient requires visits from two or more aides, the model can represent
the patient as two or more distinct patients with different requirements. If there are
temporal dependencies between the visits, they must be enforced by constraints on the
start times. For example, if two aides must be present at the same time to perform a
task together, we regard the patient as two patients j and j′ and add the constraint
sj = sj′ . If one aide must pick up where the other left off, we can add the constraint
sj + pj = sj′ . If the two visits should not overlap, we can give them nonoverlapping
time windows (e.g., by asking the patient for more specific time preferences), in which
case no temporal constraints are necessary. Alternatively, if we want the windows to
overlap but not the visits, we can impose a nonoverlapping constraint for the visits –
a standard option in CP solvers.

As patients are frequently admitted or discharged from service, it is often de-
sirable to modify the schedule to include the newly admitted patients and remove
the discharged patients while rescheduling patients remaining in service as little as
possible. The schedule may also be adjusted at the beginning of the day to reflect
unavailability of aides or other contingencies. Such updates are easily accommoda-
ted by adding constraints to the above model. Suppose that patient j is currently
scheduled to be serviced by aide i at time t on days k for k ∈ Kj. To retain this
arrangement, we merely set yijk = 1 for k ∈ Kj in the model and modify the time
window [rj, dj] to [t, t+ pj]. To allow flexibility in the time of day, we leave the time
window unchanged. To fix the aide assignment but not the day of the week, we set
xij = 1 in the model and leave yijk unfixed. We can also require that only certain
aides take on new patients (or patients whose aides are unavailable). We need only
add the constraint xij = 0 for each of the remaining aides i and all new patients j.

2.4 Logic-Based Benders Decomposition

Logic-based Benders decomposition (LBBD) applies to optimization problems of the
form min{f(x, y) | C(x, y), C(x)}, where C(x, y) is a constraint set containing varia-
bles x and y, and C(x) a constraint set containing only x. Fixing x to a value x̄ that
satisfies C(x) defines the subproblem min{f(x̄, y) | C(x̄, y)}. In many applications,
including the present one, the subproblem decouples into smaller problems that can
be solved separately.

The subproblem is solved to obtain an optimal value v∗, which indicates that cost
cannot be less than v∗ when x is fixed to x̄. We therefore have the bound f(x̄, y) ≥ v∗

for any y. The solution of the subproblem is analyzed to obtain a Benders cut, which
is a more general bound f(x, y) ≥ βx̄(x) that applies for any value of x. The Benders
cut is added to a master problem, which is solved to obtain the next value x̄ to which

11

x is fixed. The kth master problem is

min
{
v
∣∣ C(x); v ≥ βxi(x), i = 1, . . . , k − 1

}
where x1, . . . , xk−1 are the solutions of the first k − 1 master problems. The optimal
value vk of the master problem is a lower bound on the optimal value of the original
problem, and each βxi(x

i) is an upper bound. The algorithm terminates when vk =
min{βxi(xi) | i = 1, . . . , k − 1}.

In principle, a Benders cut is found by examining the proof that v∗ is optimal in
the subproblem. The proof can be regarded as a solution of the inference dual of the
subproblem. The same proof may yield a useful bound βx̄(x) for values of x other
than x̄. In the special case of a linear programming problem, the inference dual is the
linear programming dual. The proof takes the form of dual multipliers, which form
the basis for a classical Benders cut. These concepts are discussed further in [Hoo00;
Hoo07; Hoo12; HO03a].

In the present application, the objective function depends only on the master
problem variables x, so that the problem has the form min{f(x) | C(x, y), C(x)}.
The subproblem becomes a feasibility problem, which may simply be written C(x̄, y).
When the subproblem is feasible, the Benders algorithm terminates with an optimal
solution. When it is infeasible, the proof of infeasibility may establish infeasibility
for values of x other than x̄, giving rise to a Benders cut in the form of a constraint
Bx̄(x) that must be satisfied by any feasible x. One can always use a simple no-good
cut x 6= x̄, but it is desirable to find stronger cuts. The master problem now has the
form min{f(x) | C(x); Bxi(x), i = 1, . . . , k − 1}.

When the proof of infeasibility is not directly accessible from the solver, a Benders
cut must be inferred in some other manner. One approach is to tease out the nature of
the infeasibility proof by checking heuristically if the subproblem remains infeasible
when some of the premises xj = x̄j are dropped. For example, if the subproblem
remains infeasible when xj is fixed to x̄j only for j = 1, . . . , q, we have the Benders
cut (x1, . . . , xq) 6= (x̄1, . . . , x̄q), which excludes more solutions than x 6= x̄. This
strategy has proved successful in several contexts and will be used here [CÇH15;
Hoo05; Hoo06; Hoo07]. A second approach is to deduce from the structure of the
subproblem an analytical Benders cut (i.e., a nontrivial Benders cut whose validity is
justified in part by non-algorithmic means) that strengthens the no-good cut. Such
analytical cuts have been used in a wide variety of applications, such as [TBB07;
Hoo07; FB09; PT09; ÇH13].

We decompose the home healthcare problem by assigning aides and visit days
to patients in the master problem and visit times in the subproblem. Because the
objective function depends only on master problem variables, the subproblem beco-
mes a feasibility problem. In previous work, [HH16] decoupled the subproblem into a
separate scheduling problem for each aide and each day. However, it is often useful in
practice to require a patient’s visits on different days to occur at the same time. This
couples the daily scheduling problems for each aide, but we nonetheless obtained bet-

12

ter computational results than in the earlier paper, perhaps due to a better treatment
of subproblem symmetry since the visits on different days are now synchronized.

When there are temporal dependencies between visits, the scheduling problems
for the aides performing the visits must be coupled. Since each solution of the master
problem may assign different aides to patients, the subproblem may decouple diffe-
rently in each Benders iteration. LBBD is most effective when relatively few visits
are subject to temporal dependencies, because this allows most of the aides to be
scheduled separately.

2.5 Subproblem

The subproblem normally decouples into a separate scheduling problem for each aide.
Each scheduling problem checks whether there is a schedule that observes the time
windows while taking account of visit durations, travel times, and simultaneity con-
straints. If not, a Benders cut is generated as described below.

The subproblem formulation consists of the scheduling constraints (2.8)–(2.13)
after the daily assignment variables yijk are fixed to the values ȳijk they receive in the
solution of the previous master problem. The scheduling problem Si for each aide i
is

all-different {πkν | ν = 1, . . . , n̄k} , ∀k
πk1 = bi, πkn̄k = b′i, ∀k
rj ≤ sj ≤ dj − pj, ∀j ∈

⋃
k

Pik

sπkν + pπkν + tπkνπk,ν+1
≤ sπk,ν+1

, ∀k and ν = 1, . . . , n̄k − 1∑
k

(
sπk,n̄k−1

+ pπk,n̄k−1
− sπk2

)
≤ Ui, ∀i

πkν ∈ Pik, ν = 1, . . . , n̄k

where Pik = {j | ȳijk = 1} and n̄k = |Pik|. If the scheduling problem for two or
more aides must be coupled, the variables πkν become πikν as in the main model,
and the above constraints are repeated for each of the aides i that must be coupled.
Constraints are added to reflect temporal dependencies as described earlier.

The number of variables in the subproblem is limited by the fact that an aide can
service only a limited number of patients in a day, say L, regardless of the overall
size of the problem instance. Suppose that there are m aides and n patients, and
there is no coupling of aides. Then there are at most n variables sj and at most dL
variables πkν in each of the m scheduling problems, which are solved separately. The
number of variables in the subproblem therefore increases linearly with the number
of patients.

13

If scheduling problem Si is infeasible, we initially generate a no-good cut∑
k

∑
j∈Pik

(1− yijk) ≥ 1

that prevents the same set of patients from being assigned to aide i on their corre-
sponding days in subsequent assignments. To strengthen the cut, we re-solve Si for
subsets of Pik using the following heuristic. For each k, we initially set P̄ik = Pik, and
for each j ∈ P̄ik we do the following: remove j from P̄ik, re-solve Si, and restore j to
P̄ik if the modified Si is feasible. By replacing Pik with P̄ik in the no-good cut, we
obtain a Benders cut that results in significantly better performance.

Note that lifting a Benders cut for one aide to other aides is difficult in general
because there are many other constraints that influence scheduling feasibility (e.g.,
aide’s starting location, fixed patient assignments, time windows, aide-patient com-
patibility). However, for instances in which aides can be roughly categorized into a
few homogeneous classes and there are not many fixed patient assignments, it may
be possible to lift a Benders cut for one aide to a Benders cut for another aide with
similar characteristics.

2.6 Master Problem

The basic master problem consists of constraints (2.1)–(2.7) of the original problem
and the Benders cuts generated in all previous iterations, as described above. Because
the problem is solved by MILP, the constraints (2.6) on days assignments must be
encoded as linear inequality constraints. This is usually not difficult and will be
illustrated in Section 2.9.

The master problem contains mnd variables yijk, mn variables xij, and n variables
δj. The number of variables therefore increases linearly with the number of patients,
as in the subproblem. Furthermore, when a rolling schedule is computed, many of
the variables yijk and xij effectively drop out of the problem because they are fixed
to 0 or 1.

We augment the master problem with a relaxation of the subproblem, because
computational experience in [CÇH15] and elsewhere indicates that including such a
relaxation is crucial to obtaining good performance. Normally, the relaxation would
contain only master problem variables yijk, xij and δj rather than variables in the sub-
problem. This is quite different from a classical relaxation, which contains variables
from the problem being relaxed. We present a time window relaxation, described in
Section 2.8.1 below, that contains only the variables yijk. A number of time window
relaxations for other types of problems are described in [Hoo12].

In an effort to find stronger subproblem relaxations, we also experimented with
relaxations that contain variables from the subproblem. In particular, we used the
classical assignment relaxation and a multicommodity flow relaxation, described in

14

Sections 2.8.2 and 2.8.3, respectively. The solution values of the subproblem variables
are discarded after the master problem is solved, and new solution values obtained
when the subproblem is solved.

The decomposition can be modified to accommodate other objective functions,
including those defined in terms of subproblem variables. In the latter case, the sub-
problem becomes an optimization problem, and the Benders cuts become inequalities
as described in Section 2.4. Cuts of this kind can be constructed in analogy with
the no-good cuts used here. Suppose, for example, that the hourly wage for aide i is
ci, and we wish to minimize total wages. We can convert Ui in the subproblem to a
variable, and the scheduling problem for aide i now has an objective of minimizing
ciUi. If z∗i is the minimum cost found for aide i’s schedule, the Benders cut consists
of the inequalities

zi ≥ z∗i
∑
k

∑
j∈Pik

(1− yijk), ∀i

and the master problem has the objective function
∑

i zi, where zi is the cost of aide
i. This cut imposes the lower bound z∗i on the cost of aide i if the same patients are
assigned to the aide on the same days. The cut can be strengthened heuristically by
re-solving the scheduling problems. Heuristics and subproblem relaxations for various
objective functions are described, for example, in [Hoo06; Hoo07; Hoo12].

2.7 Branch and Check

Branch and check can be useful when the master problem is much harder to solve
than the subproblem. It solves the master problem only once with a branch-and-
bound procedure, rather than repeatedly as in standard LBBD. Each time a feasible
solution is found at a node of the branching tree, the current values of the master
problem variables are sent to the subproblem, and the resulting subproblem is solved.
Feasible solutions generated by primal heuristics may also be sent to the subproblem.
If the subproblem is infeasible, one or more Benders cuts are generated, and they are
enforced throughout the remainder of the branching process.

We will find that the scheduling subproblem generally solves much more rapidly
than the master problem in the hospice care instances, which suggests that branch
and check may be preferable to standard LBBD for these instances. In fact, branch
and check could benefit from relaxations stronger than the time window relaxation,
since it may be advantageous to invest more time in solving a master problem that
better reflects the original problem. We test these hypotheses in the computational
experiments (Section 2.9.3).

15

2.8 Subproblem Relaxation

We now describe the three subproblem relaxations we investigated for use in the
standard LBBD and branch and check algorithms.

2.8.1 Time Window Relaxation

The time window relaxation generalizes a similar relaxation presented in an earlier
version of this work [HH16], though the general concept is much older (e.g., [Sav85]).
It is based on the idea that the total duration of visits and travel assigned to an aide
must be no greater than the length of a time interval into which the visits must fit.

For each aide i and day k, define a set {[rbi , αik`] | ` ∈ Lik} of backward intervals
that begin with the start of the aide’s shift, and a set {[βik`, db′i] | ` ∈ L′ik} of forward
intervals that end with the termination of the shift. The time window relaxation
requires that the visits that are assigned to aide i on day k, and whose time windows
lie inside a given backward interval, must have a total duration that fits in that
interval. There is a similar requirement for forward time intervals. In the case of
backward intervals, the minimum travel time from the previous visit is included in
the visit duration, and in the case of forward intervals, the minimum travel time to
the next visit is included.

To state the relaxation more precisely, let J [t, t′] be the set of patients whose
time windows lie in the interval [t, t′], so that J [t, t′] = {j | [rj, dj] ⊆ [t, t′]}. Let
the backward augmented duration p′ijk for a patient j, aide i and day k be the visit
duration pj plus the minimum travel time from the previous visit, which may be the
aide’s origin base. The forward augmented duration p′′ijk is pj plus the minimum travel
time to the next visit, which may be the aide’s terminal base. So we have

p′ijk = pj + min
{
tbij, min

j′∈Jik
{tj′j}

}
, p′′ijk = pj + min

{
min
j′∈Jik

{tjj′}, tjb′i
}

where Jik is the set of patients that are already assigned aide i on day k, or that
have not yet been assigned to an aide. Thus the backward augmented duration is a
lower bound on the time required to reach and carry out a visit, and similarly for the
forward augmented duration.

We now observe that the sum of the backward augmented durations of visits in
J [rbi , αik`] must be at most the width of the backward interval [rbi , αik`], and a similar
observation holds for any forward interval:∑

j∈J [rbi ,αik`]

p′ijkyijk ≤ αik` − rbi , ` ∈ Lik;
∑

j∈J [βik`,db′
i
]

p′′ijkyijk ≤ db′i − βik`, ` ∈ L′ik (2.15)

This is because the visits and travel to each visit must fit between the beginning
of the aide’s shift and the end of the backward interval, and similarly for a forward

16

interval. Inequalities (2.15), collected over all aides i and days k, comprise a time
window relaxation.

To obtain tighter inequalities (2.15), the backward and forward intervals should
be chosen to have a large density. That is, the visits that can take place within them
should have a large total duration relative to the width of the interval. To accomplish
this, we need only consider the backward intervals [rbi , dj] and the forward intervals
[rj, db′i] for all patients j. The corresponding densities are

ρj =
1

dj − rbi
∑

j′∈J [rbi ,dj]

p′ij′k, ρ′j =
1

db′i − rj
∑

j′∈J [rj ,db′
i
]

p′′ij′k

respectively. We now let the set Lik of backward intervals contain those intervals
[rbi , dj] for which ρj is sufficiently large, and similarly for the set L′ik of forward
intervals.

The inequalities (2.15) are still fairly weak when scheduling all patients from
scratch, because the shortest travel time from the last (or next) visit is a weak bound
on the actual travel time. However, they are more effective when scheduling on a
rolling basis, because the shortest travel time is computed only over patients who are
already assigned aide i on day k or are unassigned.

Additionally, we add the following relaxation of the “no overtime” constraint,
which states that the combined duration of all patients visited by an aide cannot
exceed the aide’s work limit: ∑

j

vjpjxij ≤ Ui, ∀i (2.16)

2.8.2 Assignment Relaxation

The second relaxation we considered is based on the assignment relaxation of the
traveling salesman problem. We define a new binary variable wijj′k = 1 if aide i visits
patient j immediately prior to patient j′ on day k. We add the constraints

wijb′ik +
∑
j′ 6=j

wijj′k = wibijk +
∑
j′ 6=j

wij′jk = yijk, ∀i, j, k (2.17)

wibijk +
∑
j′ 6=j

wij′jk = wijb′ik +
∑
j′ 6=j

wijj′k, ∀i, j, k (2.18)

plus similar constraints in which j and/or j′ is a home base. In addition, we include
a simple feasibility constraint based on the total hours spent traveling/working in a
day ∑

j

(
tbijwibijk + tjb′iwijb′ik + pjyijk +

∑
j′ 6=j

tjj′wijj′k

)
≤ db′i − rbi , ∀i, k (2.19)

17

a strengthened version of the inequalities (2.15) from the time window relaxation∑
j∈Ji`

(
tbi,jwibijk + pjyijk +

∑
j′∈Ji`
j′ 6=j

tj′jwij′jk

)
≤ αi` − rbi , ` ∈ Li

∑
j∈J ′i`

(
pjyijk + tjb′iwijb′ik +

∑
j′∈J ′i`
j′ 6=j

tjj′wijj′k +
)
≤ db′i − βi`, ` ∈ L′i

(2.20)

as well as a strengthened version of the inequalities (2.16)∑
j,k

pjyijk +
∑
j′ 6=j

tjj′wijj′k ≤ Ui, ∀i (2.21)

2.8.3 Multicommodity flow relaxation

The third relaxation is based on the well-known multicommodity flow model for
the vehicle routing problem with time windows [CL06]. In addition to including all
variables and constraints of the assignment relaxation, we include the variables sijk
and the constraints

sij′k ≥ sijk + pj + tjj′ −Mjj′(1− wijj′k), ∀i, j, j′, k (2.22)

rj ≤ sijk ≤ dj − pj, ∀i, j, k (2.23)

plus similar constraints in which j and/or j′ is a home base. Here Mjj′ = max{0, dj +
pj + tjj′ − rj′}. The inequalities (2.19) and (2.20) are also strengthened slightly, by
replacing rbi with sibik and db′i with sib′ik.

If we constrain the variables wijj′k to be binary (rather than continuous), the mul-
ticommodity flow relaxation becomes an MILP formulation of the original problem.

2.9 Computational Results

We tested standard LBBD (S-LBBD) and branch and check (B&C) on three datasets.
One consists of real-world data provided by a major hospice care organization, one
is obtained by modifying these data, and one consists of Rasmussen instances. We
solved instances in the first two datasets on a rolling basis, and the instances in the
third from scratch.

2.9.1 Hospice Care Instances

The task presented to us was to update an existing schedule so as to accommodate
projected changes in the patient population. In particular, management wished to
determine whether a given staff was adequate to serve the new population while

18

meeting all requirements. We therefore maximized the number of patients that can
be served by a specified work force with specified qualifications, for a particular mix
of patient requirements. The aide assignments and scheduled days of the week were
fixed for patients in service, but the time of day could be rescheduled.

The organization maintains a weekly schedule for each region it serves; some
regions provide service seven days per week while others offer aide visits on weekdays
only. In our dataset, visits are scheduled on weekdays only. The patients required
multiple visits per week, in accordance with their plan of care; per patient request,
these were all scheduled at exactly the same time of day. When there are two visits
per week, consecutive visits should be separated by at least two days, and when there
are three visits per week, these visits should be separated by at least one day. This
was enforced in the master problem by replacing the generic constraint (2.6) with

yijk + yij,k+τ ≤ 1, ∀i, j with vj ∈ {2, 3}, ∀τ, k with 1 ≤ τ ≤ 4− vj, 1 ≤ k ≤ 5

When formulating the time window relaxation, we noted that almost all the time
windows either span most of the morning or most of the afternoon. It was therefore
natural to use one backward interval ending at noon, and one forward interval be-
ginning at noon, for each aide i. Thus we set Li = L′i = {1} and αi1 = βi1 = noon
for each i. This choice of α and β turns out to yield the highest-density non-trivial
backward and forward interval for almost every aide i, where density is defined as in
Section 2.8.1, and a nontrivial interval is one that includes and excludes at least one
visit.

To obtain an initial schedule, we ran a greedy heuristic on an 80-patient population
using 20 aides. Since the heuristic could only schedule 48 patients, we ran the standard
LBBD algorithm on 60 of these patients, including 40 pre-scheduled by the greedy
heuristic and 20 treated as new patients. They collectively required 270 visits, since
the patients required between 2 to 5 visits per week. LBBD scheduled all of the new
patients using 18 aides. The resulting 60-patient schedule was used as a starting
point for computational tests. It is better than a heuristic schedule but worse than
an optimal one, as one might expect when scheduling on a rolling basis.

We ran the tests for different rates of patient turnover in the 60-patient popu-
lation. One instance was generated for each number n = 8, . . . , 25 of new patients,
where the new patients are assumed to be the last n patients in the list of 60. We
designated 8 of the 18 aides as available to cover the new patients (along with their
pre-assigned patients), because a minimum of 9 aides was required in nearly every in-
stance. This allowed us to test computational performance near the phase transition
for the problem. We set a maximum time limit of one hour.

2.9.2 Implementation

We implemented the algorithms using SCIP version 3.2.1 [Ach09] and the CP solver
Gecode version 4.4.0 [Gec16]. The master problem was solved by SCIP, and the

19

scheduling subproblems by Gecode. The SCIP presolver removes variables in the
master problem that are fixed to 0 or 1 by preassignments. The scheduling problems
were formulated with a combination of Hamiltonian path constraints, unary resource
constraints, and element constraints. The problems were solved with branch-and-
bound search, first branching on sequence variables and then on start-time variables.
We implemented S-LBBD via a custom dialog (for SCIP), which made calls to SCIP
and Gecode to solve the master problem and solve the subproblem/generate Benders
cuts, respectively.

We implemented B&C by incorporating into the master problem an additional
constraint that enforced feasibility of the subproblems. We implemented a custom
constraint handler for this constraint, which made calls to Gecode to determine fe-
asibility of the subproblem and generated Benders cuts accordingly. We generated
cuts for feasible solutions found by primal heuristics, as well as for those obtained in
the branching process, because this proved to accelerate solution significantly. The
solvers were run in Arch Linux on a laptop with an Intel Core i5 processor and 7.75
GB RAM.

We formulated an MILP model for the problem by modifying the well-known mul-
ticommodity flow model for the vehicle routing problem with time windows [Des+88;
DL91; Cor+07]. The model consists of (2.1)–(2.7), (2.17)–(2.18), and (2.22)–(2.23).
Because there are mn2d variables wijj′k, the number of variables increases quadra-
tically with the number of patients. This remains the case for a rolling schedule,
because all patient visits can be resequenced even when many staff and day assign-
ments are fixed. Thus while preassignments in a rolling schedule make the Benders
master problem significantly smaller, they have relatively little effect on the size of
the MILP model, in which most of the variables are sequencing variables wijj′k.

SCIP uses reliability branching and pseudocosts by default [Ach09]. However,
we turned off reliability branching for the B&C master problem, because in this
context, SCIP 3.2.1 occasionally attempts to branch on a variable whose value has
become fixed, throwing an error. This is likely due to the pseudocost calculations
becoming invalid over time as B&C generates global cuts. The removal of reliability
branching for B&C appears otherwise to be of little consequence, because the results
are very similar with and without reliability branching on instances where no error is
generated.

2.9.3 Results for Hospice Care Instances

Computational results for the hospice care instances appear in Table 2.1. The table
shows the number of new patients in each problem instance, as well as the number
of patients covered in the optimal solution. Computation times are indicated for all
three methods, as well as the number of Benders iterations for S-LBBD. Although we
tested the Benders methods using all three relaxations, Table 2.1 shows results for
the time-window relaxation only, because it proved to be by far the most effective.

20

Table 2.1: Solution times for 60-patient hospice care instances requiring 270 visits

New New Patients MILP S-LBBD B&C
patients visits covered Time (s) Iters Time (s) Time (s)

8 40 60 43.6 7 3.17 0.63
9 45 59 41.0 13 5.99 0.71

10 50 59 46.6 7 3.27 0.74
11 55 59 53.3 11 5.63 0.70
12 60 59 53.2 12 6.49 1.30
13 65 59 63.0 21 12.3 1.11
14 70 58 113 84 72.3 9.28
15 75 58 223 86 77.0 9.78
16 80 58 844 91 98.5 43.5
17 85 59 1591 93 106 31.1
18 90 58 3017 116 202 62.0
19 95 58 1189 119 388 90.0
20 100 57 1016 124 1251 600
21 105 58 923 168 1272 380
22 110 58 * 217 951 523
23 115 58 264 * 2092
24 120 *

∗Computation time exceeded one hour.

Computation times for MILP are those obtained by SCIP.
Both S-LBBD and B&C are faster than MILP on nearly every instance, and

B&C is consistently superior to S-LBBD. In fact, B&C is almost always between
one and two orders of magnitude faster than MILP. These results indicate that a
Benders method can scale up to problem instances of realistic size. Patient records
indicate that a 5–8% turnover per week is typical in practice. Therefore B&C allows
staff planning as much as 6 weeks in advance for 60 patients collectively requiring
270 visits, with computation times ranging from less than a second to ten minutes,
depending on the number of new patients. This is adequate for many if not most
hospice care situations.

As indicated by Table 2.2, solution of the subproblem consumes less that one
percent of the S-LBBD solution time for the hospice care instances. The superior
performance of B&C over S-LBBD is therefore consistent with our hypothesis that
B&C may benefit from fast solution of the subproblem.

We also hypothesized that B&C may benefit from including tighter relaxations
in the master problem, such as the assignment and multicommodity flow relaxations
discussed earlier. Table 2.3 compares the performance of these two relaxations with
the time window relaxation. The tighter relaxations lead to much worse performance,
refuting the hypothesis. This might be explained by the fact that the tighter relaxati-
ons result in many fewer Benders cuts, and in fact none at all for the multicommodity

21

Table 2.2: Percent of solution time devoted to subproblem

S-LBBD B&C
Instances Avg Max Avg Max
Original 60-patient instances 0.1 0.2 1.4 3.9
Narrow time windows 0.1 0.1 2.8 6.0
Fewer visits per patient 0.0 0.1 1.7 3.5
Rasmussen, weighted objective 0.4 0.8 6.3 13.6
Rasmussen, covering objective 1.2 1.5 85.6 99.7

flow relaxation. Since a cut is generated at each feasible node of the search tree at
which the subproblem is infeasible, this indicates that the search discovers fewer fe-
asible nodes when the relaxation is tighter. This is presumably because the tighter
bound allows backtracking at a higher level in the tree. Because there are fewer cuts,
less information is obtained from the subproblem, and in fact no information in the
case of the multicommodity flow relaxation. Evidently, the reduced information flow
results in poorer performance.

Given these results, one might question whether even the time window relaxation is
helpful, especially when patient time windows span half a day as in the test instances.
Table 2.4 reveals that the time window relaxation yields a significant, if not dramatic,
reduction in computation time. It should therefore be included in the master problem.
Table 2.4 also shows the advantage of generating cuts from feasible solutions obtained
by primal heuristics, rather than solely from those obtained in the branching process.

2.9.4 Modified Hospice Care Instances

To clarify further the effect of problem structure on the performance of S-LBBD and
B&C, we solved two modifications of the hospice care problem.

The first modification uses much narrower patient time windows. We replaced
the original time windows with time windows centered around each patient’s visit as
scheduled in the initial heuristic solution. We then set the length of the time window
to be twice that of the visit duration.

The second modification is inspired by the fact that over 80% of patients require
five visits per week in the original dataset. This was the situation as presented by the
company, but one might ask how performance differs when there are fewer visits per
week. We therefore changed the number of required visits per week for each patient
to a uniformly drawn random number from 1 to 5, with the duration of each visit is
kept the same. We ran the greedy heuristic to produce a new initial schedule.

The results appear in Table 2.5. For the instances with narrow time windows,
the pure MILP formulation actually outscales S-LBBD and B&C. This is perhaps
not surprising, because the time windows are so narrow that their position already

22

Table 2.3: Performance of branch and check with three types of relaxation

New Time window relaxation Assignment relaxation Multicommodity flow relax.
patients # nodes # cuts Time (s) # nodes # cuts Time (s) # nodes # cuts Time (s)

8 1 5 0.63 45 3 35.8 30 0 56.6
9 2 14 0.71 35 0 30.9 16 0 61.0

10 2 16 0.74 18 0 29.4 37 0 64.3
11 1 19 0.70 38 2 30.3 125 0 159
12 120 57 1.30 788 9 36.2 244 0 208
13 38 50 1.11 304 3 37.1 292 0 459
14 7691 202 9.28 19103 36 181 * * *
15 7976 221 9.78 16866 52 254
16 44197 290 43.5 70486 52 1394
17 20316 332 31.1 59337 51 3073
18 51890 467 62.0 * * *
19 65085 520 89.6
20 481199 789 600
21 217671 745 380
22 348012 860 523
23 1010641 1386 2092
24 * * *

∗Computation time exceeded one hour.

determines the schedule to a great extent, and because scheduling is the more difficult
task for MILP.

The instances with fewer visits per week are less constrained and therefore further
from the phase transition. To correct for this, we reduced the number of available
aides to 6, which is enough to cover all but one patient in the optimal solutions. B&C
is far superior to MILP on these instances, and it remains faster than S-LBBD as
well.

These results suggest that the advantage of Benders methods is robust, except
when time windows become narrow enough to severely constrain the schedule.

2.9.5 Rasmussen Instances

[Ras+12] provided us four real-world instances obtained from two Danish munici-
palities. The task is to assign a given set of crews, each containing members with
specific skills, to a population of patients who require certain skills. The municipali-
ties did not provide temporal dependencies with the instances, as they were handled
on an ad-hoc basis, but [Ras+12] added a set of dependencies to test their algorithm
adequately. We did not include them because our method is designed for problems
without temporal dependencies. [Ras+12] solved the problem over a time horizon
of a single day, while we solved an equivalent 5-day problem that requires that each

23

Table 2.4: Effect of time window relaxation and primal heuristic cuts (PHC) on
computation time (seconds)

New S-LBBD B&C
patients No relax Relax No relax No PHC Relax & PHC

8 19.4 3.17 0.95 0.61 0.63
9 11.4 5.99 1.00 0.90 0.71

10 24.2 3.27 1.03 1.19 0.74
11 20.8 5.63 1.29 1.44 0.70
12 16.8 6.49 1.64 1.18 1.30
13 41.1 12.3 3.01 5.50 1.11
14 132 72.3 26.1 28.2 9.28
15 161 77.0 24.3 50.2 9.78
16 232 98.5 52.2 119 43.5
17 128 106 30.5 153 31.1
18 604 202 265 517 62.0
19 957 388 165 632 90.0
20 1185 1251 2378 2998 600
21 4200 1272 3522 1938 380
22 * 951 2033 1190 523
23 * 3045 * 2092
24 * *

∗Computation time exceeded one hour.

patient be visited every day at the same time.
The original objective of the Rasmussen instances is to minimize a weighted sum

of travel cost, matching costs, and number of uncovered patients. The weights are
adjusted so that as many patients as possible are covered, after which matching costs
are minimized, followed by travel costs. The matching costs are indicated by giving
each crew-patient pair a cost (positive for an undesirable match and negative for a
desirable one). We solved each instance twice: once while minimizing a weighted sum
of the matching cost and number of uncovered patients, and again while maximizing
the number of patients covered.

For the time window relaxation, we explicitly found the best forward interval and
best backward interval for each problem instance during the pre-processing phase
via an exhaustive search over all reasonable breakpoints (i.e., the ends and starts of
task/patient time windows).

The number of patients in the four instances hh, ll1, ll2, and ll3 are 150, 107,
60, and 61, respectively. We found that MILP could not come close to solving any
of these, and the MILP model for hh was in fact too large to load into the solver.
To allow a meaningful comparison with MILP, we reduced the number of patients
to 30 in each instance, keeping the number of crews the same. At this point, MILP
could solve two of the instances with the weighted objective within an hour, albeit

24

Table 2.5: Solution time (s) for modified hospice care instances

New Patients Narrow time windows New Patients Fewer visits per week
patients covered MILP S-LBBD B&C patients covered MILP S-LBBD B&C

8 60 53.1 10.1 1.37 12 58 58.9 17.0 0.91
9 59 40.0 11.3 1.13 13 58 58.6 20.5 1.05

10 59 40.5 17.9 1.44 14 58 71.3 30.6 1.33
11 59 41.8 22.6 1.75 15 58 123 80.0 1.32
12 59 43.4 28.8 1.11 16 58 167 259 1.94
13 59 42.3 28.3 1.41 17 58 253 521 1.79
14 59 45.2 62.8 2.97 18 58 3357 472 3.45
15 59 47.0 69.0 5.25 19 58 2364 710 3.23
16 59 59.5 96.5 3.67 20 59 1518 519 5.36
17 59 106 233 11.0 21 59 1811 759 4.52
18 58 127 349 69.1 22 59 3636 717 5.29
19 58 137 425 164 23 60 * 767 3.87
20 57 153 557 160 24 60 1990 3.48
21 57 171 993 437 25 60 2040 91.6
22 57 254 997 1818 26 60 2577 4.57
23 58 524 * * 27 60 2693 376
24 58 903 28 60 4200 3834
25 58 2369 29 60 * *
26 * *

∗Computation time exceeded one hour.

Table 2.6: Solution time (s) for modified Rasmussen instances

Weighted objective Covering objective
Instance Patients Crews MILP S-LBBD B&C MILP S-LBBD B&C

hh 30 15 * 3.16 1.41 * 23.3 441
ll1 30 8 * 1.74 0.43 * 108 1.41
ll2 30 7 2868 1.56 0.32 * 1.38 6.45
ll3 30 6 1398 2.16 0.30 * 3.07 5.98

∗Computation time exceeded one hour.

none with the covering objective. As Table 2.6 indicates, the Benders methods are
dramatically superior to MILP, easily solving all 8 instance-objective combinations.
Here, standard LBBD is usually faster than B&C when the covering objective is
used. This is again consistent with the hypothesis that B&C is preferable to S-LBBD
only when the subproblem solves rapidly, because in these instances, the subproblem
consumes a much larger fraction of solution time than in other instances (Table 2.2).

25

2.10 Conclusions and Future Work

We developed an exact solution method for the home healthcare problem using logic-
based Benders decomposition (LBBD). We formulated the problem so as to maximize
the number of patients served by a given staff with given qualifications, while taking
into account patient requirements, travel time, and scheduling constraints. We create
a schedule spanning several days during which patients may receive multiple visits
from the same healthcare aide, or visits from multiple aides. Unlike most competing
methods developed for this problem, LBBD computes an optimal schedule and there-
fore allows planners to determine with certainty whether a given work force can serve
a given patient population. We tested both standard LBBD and a variant of LBBD
(branch and check) that solves the master problem only once.

Based on computational tests in a real-world setting, we conclude that LBBD, and
in particular branch and check, can solve a problem of realistic size when scheduling
on a rolling basis and there are no temporal dependencies between visits. By contrast,
mixed integer linear programming does not scale up, due to growth in the size of the
model, except when time windows are so narrow that their position largely determines
the schedule. LBBD has the advantage that the scheduling component of the problem
breaks down into small scheduling problems that remain roughly constant in size as
the overall problem size increases. In addition, LBBD is particularly well suited to
computing a rolling schedule, because the structure of the decomposition makes the
problem much easier to solve when only a subset of the patient population is replaced.
In one real-world context, however, LBBD easily solved instances from scratch that
were intractable for MILP.

Branch and check is faster than standard LBBD on most of the instances tested.
However, when the subproblem is harder to solve than the master problem, standard
LBBD tends to be faster. Branch and check also benefits from Benders cuts generated
from feasible solutions found by primal heuristics. An issue for future research is
whether such cuts could accelerate standard LBBD.

Even though branch and check solves the master problem only once, it does not
benefit from adding variables to the master problem to create a tighter relaxation
of the subproblem. The reason for this appears to be that an overly tight relaxa-
tion results in the creation of fewer Benders cuts during the branching process, and
therefore too little information flow from the scheduling subproblem to the master
problem. This observation could have implications for future applications of branch
and check.

26

Chapter 3

Robust Scheduling with
Combinatorial Uncertainty Sets

3.1 Introduction

Many operational problems take place in an uncertain environment. For example, in
machine scheduling problems we need to allocate jobs to machines over time, where
job durations, machine availability, and demand may all be uncertain. Similarly, in
routing problems we need to determine a sequence of locations to visit and service,
where travel time and service time may be uncertain. There are various ways to
handle the uncertainty when designing solutions to such problems. In the context
of combinatorial optimization, two common approaches are stochastic programming
and robust optimization. Stochastic programming dates back to the 1950s [Dan55],
and utilizes random variables with known or estimated distributions to represent
the uncertainty. Oftentimes, recourse models are added to evaluate the expected
outcome of the solution once a set of deterministic variables has been fixed. Stochastic
programming can therefore be used to find solutions that are optimal in expectation.

Robust optimization, on the other hand, aims to find solutions that offer pro-
tection against (disruptive) uncertain events. For example, in the context of machine
scheduling a robust solution may be desired to avoid a recourse action that would
require a substantial re-scheduling of jobs in case of an event such as a machine
breakdown.

In robust optimization, the uncertain data is represented by an uncertainty set,
which characterizes all possible realizations [BN02], or a subset thereof. For example,
we may create an uncertainty set whose possible realizations correspond to a 95%
service level. The goal is to find a feasible solution that achieves the best possible
objective value with respect to the worst-case realization in the uncertainty set. Much
of the robust optimization literature has focused on well-behaved uncertainty sets,
such as polyhedral uncertainty sets in the context of linear programming models. In
such situations, it is known that the original (LP) model can be transformed to a

27

robust version that is only a polynomial factor larger [BEN09]. As a consequence,
such robust models are often efficiently solvable in practice.

When the uncertainty set is combinatorial however, it is no longer possible (in
general) to derive a robust model of polynomial size. Practitioners therefore often
resort to heuristic robust approaches that may provide useful solutions, but for which
the quality cannot be assessed. Our goal in this work is to develop an alternative,
exact, approach to robust optimization with a combinatorial uncertainty set. Such
an exact approach can, e.g., validate the performance of other heuristic methods.
Moreover, we show in this work how we can deploy our exact method as a systematic
heuristic with provable bounds on its performance.

One immediate approach to solving robust optimization problems is to explicitly
add all possible realizations of the uncertainty set (or scenarios) to the model. Na-
turally, this is only practical for problems with a small number of scenarios. Instead,
our approach is based on a scenario-generation process. The underlying hypothesis
is that only a relatively small number of scenarios are required to find a provably
optimal solution, even if the uncertainty set contains a large number (perhaps expo-
nentially many) of scenarios. We use a logic-based Benders method [HO03b] in which
the master problem finds the best solution with respect to a subset of scenarios, and
the subproblems identify new worst-case scenarios to be added to the master’s subset.
We terminate when no scenario exists that deteriorates the current best solution.

As a case study, we consider the job-shop scheduling problem in which the ma-
chines are subject to uncertain breakdowns. The goal is to find a fixed sequence of
activities for each machine that provides the optimal solution with respect to the
worst-case machine breakdowns in the uncertainty set. As optimization criteria we
consider the minimum makespan (the completion time of the latest activity in the
schedule), and the sum of the weighted completion times, which are among the most
common objectives in scheduling.

Our experimental results do confirm that a fraction of scenarios, about 16% (and
in some cases much fewer) suffices to find the optimal robust solution and prove it is
optimal. Furthermore, we provide an analysis of the potential gains in practice. When
the objective is to minimize makespan the benefits of the robust solution relative to
the non-robust optimal solution are limited. For the sum of the weighted completion
times, however, the robust solutions can be up to 15% better than the non-robust
solutions in terms of worst-case objective.

3.2 Related Work

3.2.1 Robust Scheduling

Robust scheduling has been studied since the 1990s. Buttazzo and Stankovic [BS93]
developed a robust variant of the earliest-deadline-first policy for preemptible dynamic
scheduling. Daniels and Kouvelis [DK95] formalized worst-case robust single machine

28

scheduling for various levels of robustness and gave some of the first hardness results
for several robust scheduling problems. Both of these papers considered robustness
w.r.t. processing time uncertainty.

Since then, many solution methods have been proposed for solving robust sche-
duling problems, with the most attention focused on the case of a single machine
with processing time uncertainty. We can classify these methods into three broad
categories: (1) exact methods, which seek to find and prove the optimal solution to
the problem, (2) approximation methods, which seek to find good approximations to
an often intractable model of the problem, and (3) heuristic methods, which seek to
quickly find high quality solutions at the cost of abandoning formal guarantees on
optimality.

One of the most common exact methods utilized in the literature are branch-and-
bound methods. Most incorporate some bounding procedure into a branch-and-bound
tree which generates partial schedules. In fact, one of the first exact algorithms for
solving robust single machine problems was a branch-and-bound scheme given by
Daniels and Kouvelis [DK95]. A more sophisticated branch-and-bound procedure
utilizing the concept of dominance is proposed by Briand, La, and Erschler [BLE07].
Among more recent methods, Bertsimas and Sim develop a general robust optimiza-
tion framework for solving discrete optimization and network flow problems in [BS03]
and [BS04], which is then applied to robust project scheduling by Lin, Janak, and
Floudas [LJF04] and [JLF07].

Approximation methods first formulate an accurate but intractable model using a
fairly powerful modeling framework, then find tractable approximations to it. Integer
linear approximations to mixed-integer nonlinear programs seem to be particularly
useful: Pishevar and Tavakkoi-Moghaddam use this approach to solve a β-robust
parallel machine scheduling problem [PT14], while Anglani, Grieco, Guerriero, and
Musmanno [Ang+05] use it for the robust parallel machines with sequence-dependent
setup costs.

Heuristic methods are quite popular for their ability to quickly find reasonably
good solutions, often stemming from a key insight. They come in many forms, though
local search techniques are quite common. Lu, Lin, and Ying utilize a simulated
annealing heuristic to solve the robust single machine with uncertain processing times
and setup times [LLY14], while Singh and Mahapatra utilize quantum particle swarm
for flexible job shop scheduling with random machine breakdowns [SM13]. On the
other hand, not all heuristic methods fall under the local search paradigm; Yang and
Yu consider a heuristic dynamic programming approach for robust single machine
with interval uncertainty processing times [YY02].

Our methodology contributes to the literature of exact methods, by applying
scenario generation to mitigate the computational difficulty of handling robustness
with respect to combinatorial uncertainty sets.

29

3.2.2 Robust Job-shop Problem

Leon, Wu, and Storer [LWS94] were one of the first to extend the genetic algorithm
framework, which had been used to solve non-robust job-shop problems [YN97], to
the robust case with machine breakdowns, considering single disruptions and intro-
ducing various robustness measures. They then formulate a genetic algorithm which
seeks to maximize average slack time, and consider its effectiveness against both ma-
chine breakdowns and processing time uncertainty. Not long after, Mehta and Uzsoy
[MU98] consider a similar problem with maximum lateness objective, and develop
various heuristics involving the insertion of idle time between jobs, given the optimal
non-robust schedule.

Following [LWS94], genetic algorithms remain the dominant framework for solving
the robust job-shop problem with machine breakdowns. Jensen [Jen03] formulates
a genetic algorithm with robustness measures and rescheduling strategies based on
the N1 neighborhood (the set of schedules obtainable by a single swap of consecutive
jobs from the base schedule). Lei [Lei11] tailors the genetic algorithm for the case
where the breakdown sizes and frequency are distributed according to an exponential
distribution.

While heuristics based on genetic algorithms are by far the most common, they
are not the only solution method that has been investigated. Shafia, Aghaee, and
Jamili [SAJ11] provide one of the few MIP models for problems of this type, while
a tabu search approach is investigated by Nababan and Salim Sitompul [NS11] and
Goren, Sabuncuoglu, and Koc [GSK12].

Several authors have also considered the robust flexible job shop problem with
machine breakdowns [AE11] [HS13] [SM13] [XXC13]. Here too, genetic algorithms
have been dominant, although some authors have utilized other metaheuristics such
as tabu search, simulated annealing, and particle swarm optimization.

Our work differs from the existing literature by introducing a generic CP-based
solution method which, unlike most heuristic methods, is able to prove the optimality
of a solution while mitigating some of the scaling issues which have troubled prior
exact approaches.

3.3 Robust Scheduling

Stated most generally, we consider problems of the form

(P) = min
x∈X

{
max
q∈Q

f(x; q)

}
=

min v
s.t. x ∈ X

v ≥ f(x; q) ∀q ∈ Q

where f is an arbitrary objective function, X is a discrete set, and Q is a set of
scenarios. If Q has a “nice” structure (e.g., Q is convex, or even better, polyhedral),
the above problem may be transfomed into an efficiently solvable form via duality

30

theory (see [BS04]). However, ifQ is finite and discrete, no such explicit reformulation
may exist. For example, Q may represent a set of machine breakdowns where the
breakdown patterns of different machines are correlated. Nevertheless, even in such
cases the set of scenarios Q often has a combinatorial structure, in the sense that
for a fixed x ∈ X, we can solve maxq∈Q f(x; q) “reasonably efficiently”, even though
the problem may be (technically speaking) NP-hard. This is especially the case for
robust scheduling problems.

This suggests the use of decomposition methods to take advantage of the structure
of Q. In particular, given any subset Q ⊆ Q, the problem

(MPQ) =

min v
s.t. x ∈ X

v ≥ f(x; q) ∀q ∈ Q

provides a lower bound to the optimal solution of (P). Furthermore, if we find that the
optimal solution x∗ to (MPQ) with objective value v∗ satisfies v∗ ≥ maxq∈Q f(x∗; q),
then x∗ actually achieves robustness to the whole of Q, not just Q. If we can find
a small Q with this property, we can solve the original robust optimization problem
much more efficiently. Of course, finding such a Q is difficult in general; however, we
can try to systematically construct it via scenario generation.

3.3.1 Scenario Generation

We propose the scenario generation algorithm (SGA) as a method of iteratively ge-
nerating a small number of “representative scenarios” Q that allow us to solve the
original robust problem optimally. The idea is simple; start with Q = ∅ and solve
(MPQ) to obtain an optimal solution x∗ with objective value v∗. Then solve the
following scenario generation subproblem

(SPx∗) = max{f(x∗; q) | q ∈ Q}
and compare its optimal value v∗sub with v∗. If v∗sub ≤ v∗ then x∗ is robust to the
original uncertainty set Q and we are done. Otherwise, we add the optimal solution
of (SPx∗) (i.e., the worst-case scenario relative to x∗) to Q and re-solve (MPQ). This
is justified by the following simple lemma:

Lemma 1. Let (x∗, v∗) be an optimal solution to (MPQ) (with optimal value v∗) for
some Q ⊆ Q, and let (SPx∗) be its corresponding scenario generation subproblem with
optimal value v∗sub. If v∗sub ≤ v∗, then (x∗, v∗) is an optimal solution to (P).

Proof. Since (MPQ) is a relaxation of (P) by construction, it suffices to show that
(x∗, v∗) is feasible to (P). We know x∗ ∈ X since x∗ is feasible to (MPQ), and by our
assumption

v∗ ≥ v∗sub = max
q∈Q

f(x∗; q) ≥ f(x∗; q) ∀q ∈ Q

Hence, (x∗, v∗) is feasible (and therefore optimal) to (P).

31

SinceQ is finite, eventually Q = Q in which case (MPQ) ≡ (P). However, the hope
is that only a small number of iterations are required in order to achieve robustness
to all of Q. Algorithm 1 gives a more detailed description of SGA.

SGA may be viewed as an instance of logic-based Benders decomposition [HO03b];
in particular, in the context of minmax regret problems, it is equivalent to the gene-
ration of “regret cuts”, first introduced in [ML98].

Algorithm 1 Scenario Generation Algorithm (SGA)

t← 0, Q0 ← ∅
while not reached time/iteration limit do

Solve master problem (MPt) w.r.t. scenarios Qt

↪→ xt := optimal solution, vt := objective value
Solve subproblem (SPt)
↪→ qt := worst-case scenario w.r.t. xt

if f(xt, qt) ≤ vt then
Terminate with optimal solution xt

else
Qt+1 ← Qt ∪ {qt}
t← t+ 1

end if
end while
Terminated by limit, report best solution found so far

3.3.2 Heuristic Scenario Generation

SGA requires solving the subproblem to optimality every time we want to generate a
new scenario. However, this is not strictly necessary for correctness of the algorithm.
Indeed, we may improve the overall efficiency of the algorithm if we only search
for optimally bad scenarios some of the time, and we are satisfied with only finding
“sufficiently bad” scenarios most of the time, especially at the beginning of the search.

This idea yields a heuristic scenario generation algorithm (HSGA), which is iden-
tical to SGA but with the following alternative scenario generation scheme: Given
algorithm parameters α > 0 and β > 0, initialize α1 = α. Then, after we solve the
master problem on iteration t yielding solution xt with objective value vt, we first
attempt to find a scenario that achieves a minimum degradation factor of 1 +αt, i.e.,
a scenario qt such that Obj(xt, qt) ≥ (1 + αt)vt. If we find such a solution, we add
it to Qt, keep αt+1 = αt and re-solve the master problem. If we are unable to find
such a solution, we solve the subproblem optimally as before and find the worst-case
scenario and add it to Qt, decrease the minimum degradation to αt+1 = αt/β, and
re-solve the master problem. Algorithm 2 gives a more detailed description of HSGA.

32

Algorithm 2 Heuristic SGA (Params: α, β)

t← 0, Q0 ← ∅, α1 ← α
while not reached time/iteration limit do

Solve master problem (MPt) w.r.t. scenarios Qt

↪→ xt := optimal solution, vt := objective value
Search for scenario q̄t s.t. Obj(xt, q̄t) ≥ (1 + αt)vt

if q̄t exists then
↪→ qt := q̄t

αt+1 ← αt

else no such q̄t exists
Solve subproblem (SPt)
↪→ qt := worst-case scenario w.r.t. xt

αt+1 ← αt/β
end if
if f(xt, qt) ≤ vt then

Terminate with optimal solution xt

else
Qt+1 ← Qt ∪ {qt}
t← t+ 1

end if
end while
Terminated by limit, report best solution found so far

3.4 Example: Robust Job-Shop Scheduling

3.4.1 Problem Statement

To clarify the exposition, we first describe the standard job-shop problem, and then
our robust variant. In the standard job-shop problem, we are given a set of n jobs
J and m machines M, where each job j consists of a sequence of operations oij
characterized (1) the machine that processes it (machine i), and (2) its duration dij.
Our goal is to find a schedule (i.e., start times sij for each operation) with the optimal
objective value, where the schedule must satisfy the following constraints:

1. (capacity): each machine can run at most one operation at a time

2. (precedence): if operation oij comes before operation oi′j in the sequence asso-
ciated with job j, then we must finish oij before we can start oi′j; we shall refer
to these precedence constraints by the set P

Typically we aim to minimize the maximum completion time over all jobs (also called
the makespan, or CMAX) or the sum of weighted completion times (SWCT), where
the completion time of a job j is the time at which the last operation of j finishes

33

processing. For simplicity, we assume that each job requires exactly one operation
from each of the m machines.

Our problem is a robust variant of this standard job-shop problem. Here, in
addition to the standard data we are given a set of possible processing delays δij
for each operation, where δij ∈ [0, Dij] where Dij is the maximum possible delay of
operation oij. We assume that at most k of the δij’s are nonzero, and at most one
of the δij’s corresponding to operations on the same machine is nonzero. This allows
us to represent, for example, machine breakdowns with restart semantics by setting
Dij = D + dij − 1, where D is the (fixed, known) duration of a single breakdown.

It is worth elaborating on what is meant by “robustness” here. More specifically,
a solution to the robust job-shop problem is a sequencing Z of operations on each
machine, which implicity defines a set of schedules {s(Z, q) : q ∈ Q}, where Q is
the set of all feasible delay scenarios and s(Z, q) is the unique semi-active schedule
that respects the specified sequence Z (i.e., no operation can be started earlier while
still satisfying all precedence relations implied by Z), the job precedences P , and
the delays in q. This corresponds to a rescheduling policy where each operation is
scheduled “as early as possible” given all delayed operations are started immedia-
tely after the delay (i.e., AOR rescheduling, [AS97]). Thus Z is declared optimal
if: for any other sequence of operations Z ′, there is a delay scenario q′ ∈ Q such
that Obj(s(Z ′, q′)) ≥ maxq∈QObj(s(Z, q)) where Obj(s) is the objective value of the
schedule s. The solution concept used here is equivalent to that of a partial order
schedule presented by [Pol+07], interpreting the job-shop problem as a special case
of the resource-constrained project scheduling problem.

3.4.2 Special case: Makespan with 1 delay (CMAX1)

If our objective is makespan and we assume k = 1 delay, then the problem can be
simplified as follows: given any feasible schedule Z, let slackj(Z) denote the “slack
time” of operation j w.r.t. Z, i.e., the maximum amount of time j can be delayed
without increasing the makespan of Z. Then delaying operation j by δj increases
the makespan by exactly max{0, δj − slackj(Z)}. Since operation j can be delayed
by at most D + dj − 1 (by assumption), the worst case delay for Z is given by
δj∗ = D + dj∗ − 1, where j∗ maximizes dj − slackj(Z). Consequently, the problem
can be solved by adding a term v to the objective function, together with constraints
v ≥ D+ dj − 1− slackj for every operation j and constraints calculating the value of
slackj for every operation j.

Note that in case of k ≥ 2 delays, or when our objective is sum of weighted
completion times, this no longer applies since the effect (on the objective value) of
delaying operation j can depend on how the delay “propagates” to other operations
and/or how the operations are ordered on each machine.

34

3.4.3 Model

We use constraint programming models to represent our problems. In particular,
we make use of the interval variables, sequence variables, and scheduling constraints
provided IBM CP Optimizer ([Lab09]). We give a brief formal definition of these
constructs defined by IBM CP Optimizer, and then describe a CP model for the
robust job-shop problem that uses these constructs.

Intuitively, an interval variable represents an object that takes up some interval
of time. Formally, we define the set CPOInterval as

CPOInterval = {(`, u) ∈ Z2 | 0 ≤ ` ≤ u}

in which case an interval variable I is a variable that takes values in the set CPOInterval.
We write startOf(I) and endOf(I) to refer to the first and second components of I
respectively; in addition, we define lengthOf(I) := endOf(I)− startOf(I).

An interval variable may also be optional, which intuitively means that it may or
may not be instantiated in the solution. Formally, we define the set OptionalCPOIn-
terval := CPOInterval∪{∅}, where ∅ is an “empty interval” with lengthOf(∅) = 0.
We then define the expression presenceOf(I) to be 0 if I = ∅ and 1 otherwise.

Intuitively, a sequence variable over an ordered set (i.e., an array) of interval
variables I represents a total ordering of the intervals in I. Formally, we define the
set CPOSequence(I) by

CPOSequence(I) = {σ : I → {1, . . . , |I|} | σ is bijective}

in which case a sequence variable S = S(I) is a variable that takes values in the set
CPOSequence(I). We write σS to refer to the bijective mapping on I specified by S.

We also define the following constraints:

1. Let I, I ′ be intervals. The constraint endBeforeStart(I, I ′) requires that
endOf(I) ≤ startOf(I ′)

2. Let I be an array of intervals and I /∈ I an interval. The constraint span(I, I)
requires that startOf(I) = minI′∈I startOf(I ′) and endOf(I) = maxI′∈I endOf(I ′).

3. Let I be an array of intervals and S = S(I) a sequence variable over I. The
constraint noOverlap(S) requires that (i) the intervals ordered by S are non-
overlapping and (ii) the ordering imposed by S is consistent with the temporal
ordering of I. That is, for every pair of intervals I, I ′ ∈ I, (i) either endOf(I) ≤
startOf(I ′) or endOf(I ′) ≤ startOf(I), and (ii) endOf(I) ≤ startOf(I ′) if and
only if σS(I) < σS(I ′)

4. Let I and I ′ be arrays of intervals of the same cardinality k, and let S =
S(I) and S ′ = S ′(I ′) be sequence variables over I and I ′ respectively. The
constraint sameSequence(S, S ′) requires that the ordering imposed by S and

35

S ′ be the same modulo the “trivial” mapping between I = {I1, . . . , Ik} and
I ′ = {I ′1, . . . , I ′k}, i.e., for any pair (i, j) with 1 ≤ i < j ≤ k, σS(Ii) < σS(Ij) if
and only if σS′(I

′
i) < σS′(I

′
j)

We now describe the CP model for the robust-job-shop problem. Intuitively, our
model defines a separate standard job-shop model for each scenario, then links the
solutions of different scenarios together with the sameSequence constraint.

Let Q denote the set of possible delay scenarios. For each delay scenario q ∈ Q, let
oijq be the interval variable representing the operation that job j runs on machine i
realized in scenario q, and let Siq be the sequence variable corresponding to machine i
and scenario q. Let Cjq represent the completion of time job j, i.e., the time at which
the last operation of job j completes its processing, in scenario Q. For a machine i′,
let Oq(i′) = {oijq | i = i′} be the set of operations that run on machine i′ in scenario q.
Let Pq denote the precedence constraints on operations imposed by the job sequences,
applied to the operations of scenario q. Then the following is our model for the robust
job-shop problem:

min v (3.1)

s.t. v ≥ Obj(C1q, . . . , Cnq) ∀q ∈ Q (3.2)

Cjq ≥ endOf(oijq) ∀i ∈M,∀j ∈ J , ∀q ∈ Q (3.3)

sameSequence(Si1, Siq) ∀i ∈M, q ∈ Q (3.4)

noOverlap(Siq) ∀i ∈M,∀q ∈ Q (3.5)

endBeforeStart(o, o′) ∀(o, o′) ∈ Pq, ∀q ∈ Q (3.6)

lengthOf(oijq) = dij ∀i ∈M,∀j ∈ J , ∀q ∈ Q (3.7)

Cjq ≥ 0, Cjq ∈ Z ∀j ∈ J , ∀q ∈ Q (3.8)

oijq ∈ CPOInterval ∀i ∈M, ∀j ∈ J , ∀q ∈ Q (3.9)

Siq ∈ CPOSequence(Oq(i)) ∀i ∈M,∀q ∈ Q (3.10)

Constraints (3.1) and (3.2) express our objective: minimizing the worst case ob-
jective value over all breakdown scenarios in Q, while (3.4) ensures we utilize the
same sequence of operations for all scenarios. The constraints (3.5) and (3.6) impose
constraints associated with the standard job-shop problem, except each operation o
only interacts with other operations within the same scenario, and the sequencing of
the operations are communicated through Siq.

3.4.4 Scenario Generation

Since the size of the model given in the last section (and in particular, the number of
scenarios) grows with both the number of machines m and the number of jobs n, the
number of required scenarios can quickly become impractically large. We therefore
apply scenario generation to find a subset of scenarios representing the “worst cases”

36

the solution must consider, with the hope that we only need to generate a small
number of scenarios to arrive at an optimal solution to the original problem.

In particular, our master problem

(MPt) = min v

s.t. v ≥ Obj(C1q, . . . , Cnq) ∀q ∈ Qt

Cjq ≥ endOf(oijq) ∀i ∈M,∀j ∈ J ,∀q ∈ Qt

sameSequence(Si1, Siq) ∀i ∈M, q ∈ Qt

noOverlap(Siq) ∀i ∈M,∀q ∈ Qt

endBeforeStart(o, o′) ∀(o, o′) ∈ Pq,∀q ∈ Qt

lengthOf(oijq) = dij ∀i ∈M,∀j ∈ J ,∀q ∈ Qt

Cjq ≥ 0, Cjq ∈ Z ∀j ∈ J ,∀q ∈ Qt

oijq ∈ CPOInterval ∀i ∈M, ∀j ∈ J ,∀q ∈ Qt

Siq ∈ CPOSequence(Oq(i)) ∀i ∈M,∀q ∈ Qt

at iteration t is a relaxation of the full master problem where we only include a subset
Qt ⊆ Q of all possible delay scenarios. Thus, (MPt) finds the schedule with the lowest
worst-case objective, where we only consider the scenarios in Qt. Given a solution Zt

from (MPt), our subproblem

(SPt) = max Obj(C1, . . . , Cn) (3.11)

s.t. Cj = maxi∈M{endOf(oij)} ∀j ∈ J (3.12)

noOverlap(Si) ∀i ∈M (3.13)

startOf(oij)

= max(endOf(πZt(oij)), endOf(πP(oij))) ∀i ∈M,∀j ∈ J (3.14)

startOf(γij) = endOf(δij) ∀i ∈M,∀j ∈ J (3.15)

span(oij, {δij, γij}) ∀i ∈M,∀j ∈ J (3.16)

lengthOf(γij) = dij ∀i ∈M,∀j ∈ J (3.17)

lengthOf(δij) = Dij ∀i ∈M,∀j ∈ J (3.18)∑
j∈J presenceOf(δij) ≤ 1 ∀i ∈M (3.19)∑
i∈M,j∈J presenceOf(δij) ≤ k (3.20)

Cj ≥ 0, Cj ∈ Z ∀j ∈ J (3.21)

oij, γij ∈ CPOInterval ∀i ∈M,∀j ∈ J (3.22)

δij ∈ OptionalCPOInterval ∀i ∈M,∀j ∈ J (3.23)

Si ∈ CPOSequence(O′(i)) ∀i ∈M (3.24)

then finds the worst-case scenario qt ∈ Q w.r.t. Zt, i.e., the scenario that degrades
the objective value of Zt by the maximum possible amount. This worst-case scenario
qt is then added to Qt to form the subset for the next iteration Qt+1.

37

Here, the integer variable Cj represents the completion time of job j; the interval
variable oij represents job j’s possibly delayed operation on machine i, which consists
of its potential delay δij and its original duration γij (which are themselves interval
variables); and the sequence variable Si represents the ordering of jobs on machine
i. Constraints (3.12) and (3.13) calculate the completion times. Constraint (3.14)
enforces the sequencing implied by Zt and the precedence constraints P (where πZt(o)
denotes the operation ordered immediately before o w.r.t. Zt, and πP(o) denotes the
operation immediately preceding o w.r.t. P). Constraints (3.15)–(3.18) enforce the
interpretations of oij, δij, and γij. Constraints (3.19) and (3.20) enforce our assump-
tions on the processing delays. Note that (3.12) and (3.14) cannot be formulated as
inequalities because (SPt) has a maximizing objective.

The algorithm terminates when we either reach a prespecified time or iteration
limit, or we find the worst-case breakdown qt causes no degradation of the objective
value. In the latter case, we may conclude the current solution is optimal (see algo-
rithm 1 and lemma 1.)

Recall that in the statement of our algorithm, we only assume that (a) the set
Q can be characterized as a set of “scenarios” and (b) there is some method that
can (efficiently) find the “worst” scenario in Q relative to some feasible solution to
the master problem. Thus, although the uncertainty set for our particular problem
is rather simple, the algorithm is equipped to handle much more general uncertainty
sets. Thus our analysis will be focused less on computational efficiency (which cannot
be expected considering its generality) and more on the behavior of its upper/lower
bounds as the number of iterations increases.

3.4.5 Upper/Lower Bounds and Termination

The lower bounds at each iteration increase monotonically, since they are solutions to
increasingly stronger relaxations of the original problem. However, the upper bounds
at each iteration fluctuate non-monotonically, since they are derived from the worst-
case breakdown scenario specific to the solution found at that iteration, and thus
do not apply to solutions found at any other iteration. Nevertheless, since at each
iteration we obtain a feasible solution and its corresponding (worst-case) objective
value, taking the minimum over all solutions found so far gives a valid upper bound.

Note that if we continue to add new delays from Q to Qt (if we do not, then by
the definition of Zt and Qt we are done) and set no time/iteration limits, eventually
Qt = Q and the master problem will become equivalent to the original problem, and
the algorithm will terminate. Of course, the hope is that the algorithm will terminate
much sooner, since |Q| is often quite large, and the complexity of the master problem
increases exponentially with the number of scenarios.

Finally, note that solving (SPt) to optimality is not strictly required for scenario
generation; it is still valid even if we only require that each qt be a feasible solution to
(SPt), since Qt ⊆ Q is still true at each iteration. We can therefore use the following

38

Figure 3.1: Average Upper Bounds (dashed line) and Lower Bounds (solid line) for
CMAX/SWCT objectives with 3 delays, normalized to the optimal robust objective
value (dotted line); sgen (blue) corresponds to SG without the heuristic, and heur
(red) corresponds to SG with the heuristic (with α1 = 0.2, β = 2)

heuristic: in iteration 0, we solve (SP0) to optimality; in iteration 1, we initialize
a “minimum degradation level” α1 ≥ 0; then when solving (SPt) for t ≥ 1, if we
encounter a scenario q such that Obj(~s(Zt, q)) ≥ (1 + αt) · vt, we stop solving (SPt),
return q as our solution, and set αt+1 ← αt; if we prove that no such scenario q exists,
we return q that maximizes Obj(~s(Zt, q)), and set αt+1 ← αt/β, where β > 1 is some
reducing factor (see algorithm 2). The effect of this heuristic and parameters α1 and
β are investigated in our experiments.

3.5 Experimental Results for Robust Job-Shop

Our experiments serve three purposes. First, we wish to analyze the behavior of our
scenario-generation algorithm in terms of 1) number of iterations and bound conver-
gence, 2) sensitivity with respect to the objective and the number of breakdowns,
and 3) comparison with the non-robust optimal solutions in terms of worst-case and
best-case behavior. For this we use a large set of randomly generated instances each

39

of which can be solved relatively quickly. Second, we evaluate our approach on the
Lawrence test suite that consist of larger instances, to assess the current scalability of
our method. Third, we run the heuristic with different parameter values for α1 and
β to see its effect on the solving time and number of iterations required.

3.5.1 Effect of Multiple Delays/Objectives on Schedule Ro-
bustness

We first test our methodology on 100 randomly generated 5x5 instances (5 jobs, 5
machines), where the durations of operations were drawn from a uniform distribution
on {0, 1, . . . , 10}. We considered k = 1, 2, 3 possible delays with a duration of D =
5, with both makespan (CMAX) and sum of weighted completion times (SWCT)
objectives. For these experiments, we set α1 = 0.2 and β = 2 for our heuristic
parameters. The impact of different values for α and β will be discussed in a later
section.

Figure 3.1 shows the average bounding behavior over the 100 instances, with the
blue/red lines corresponding to the scenario generation (SG) algorithm without/with
the heuristic1 respectively. We see that on average, obtaining bounds for the CMAX
objective is easier than obtaining bounds for the SWCT objective, and both become
more difficult to compute as the number of delays k increases. Furthermore, the
bounds obtained by the algorithm with the heuristic are very similar to those obtained
by the algorithm without it. Thus, only partially solving the subproblem on each
iteration can be an effective way to reduce the computation time while still obtaining
reasonable bounds on the objective.

Figure 3.2 shows the relationship between the optimal non-robust solution (pro-
vided by the conventional deterministic CP model) and the optimal robust solution
(provided by our robust CP model) for each instance according to various metrics.
Here each point represents a single instance, and the axes are oriented so that points
closer to the lower right corner correspond to results in which our methodology
performs “well”. We provide comparisons for both the CMAX and SWCT (with
k = 1, 2, 3). More specifically:

• Figure 3.2a and 3.2b show the relationship between zdet, the worst case objective
value for the optimal non-robust solution and zrob, the worst case objective value
for the optimal robust solution. Here the points below the diagonal are those
instances where the robust solution provides a better worst-case guarantee than
the non-robust solution.

1Note that SG with the heuristic is still an exact procedure, since it solves every (restricted)
master problem to optimality; however, since it does not solve every subproblem to optimality,
when calculating upper bounds, we must only take the minimum over solutions whose subproblem
was solved to optimality.

40

(a) Worst case comparison for CMAX (b) Worst case comparison for SWCT

(c) Best case comparison for CMAX (d) Best case comparison for SWCT

(e) Worst-case gain vs. best-case
deterioration for CMAX

(f) Worst-case gain vs. best-case
deterioration for SWCT

Figure 3.2: Comparing Robust and Non-robust Optimal Solutions w.r.t. various me-
trics. For each figure we report instances with k = 1, 2, 3 breakdowns.

41

• Figure 3.2c and 3.2c compare zdet, the best case objective value (i.e., when
there are no breakdowns) for the non-robust optimal solution and zrob, the best
case objective value for the robust optimal solution. Here the points above the
diagonal are those instances where the robust solution performs worse than the
non-robust solution when there are no breakdowns.

• Figure 3.2e and 3.2f compare the worst-case gain (zdet−zrob) with the best-case
deterioration (zrob−zdet) of the objective. Here the points below the diagonal are
those instances where the robust solution achieves a better worst-case guarantee
without sacrificing performance when there are no breakdowns. Note that, by
construction, zdet ≤ zrob ≤ zrob ≤ zdet.

Figure 3.2 demonstrates that (1) the SWCT objective is much more sensitive to
uncertainty than the CMAX objective, and (2) there is a clear trade-off between the
worst-case protection and best-case deterioration offered by robust solutions.

To make the latter trade-off more explicit, Figure 3.3 represents each instance as
an interval, where the whole interval indicates the gap between zdet and zdet, while
the blue region indicates the gap between zrob and zrob. Note all values are normalized
to the deterministic objective value. We denote by CMAX1, CMAX2, and CMAX3
the problem with CMAX objective and k = 1, 2, 3 breakdowns, respectively; simi-
larly for SWCT1, SWCT2, and SWCT3. We observe that for CMAX, the robust and
non-robust solutions have similar best case/worst case behavior, suggesting that the
simplicity of the makespan objective “washes out” the robustness. By contrast, for
SWCT there is more variation between the robust and non-robust solutions. Natu-
rally, for some instances the worst-case gain is lower than the best-case deterioration.
However, the figure also demonstrates that the robust solution may provide much
better worst-case behavior with limited best-case objective deterioration.

3.5.2 Larger Instances

We next evaluate our methodology on the Lawrence test suite [Law84], a standard
set of JSP problem instances provided by the OR-library. We remark that despite
their relatively small size, finding exact robust solutions for these instances is very
challenging. For these tests, we used a delay duration of D = 10, again with CMAX
and SWCT objectives. In addition, we set a time limit of 1 hour to solve each problem
specification.

The results for CMAX objective are shown in Table 3.1; the three columns show
how many instances were solved to optimality, obtained bounds, or were unable to
obtain any bounds (due to not being able to complete the first iteration within the
time limit). We see that the problem becomes intractable even with 20 jobs on 10
machines when the number of breakdowns increases. With the SWCT objective, we
were not able to solve any of the instances within the specified time limit, and we

42

Figure 3.3: Best-worst intervals for all instances. CMAXk, resp. SWCTk, represents
the CMAX, resp. SWCT, objective with k delays, where k = 1, 2, 3. For each instance
the depicted interval represents the difference between the best-case and worst-case
objective. The red interval on the left represents the best-case deterioration while the
green interval on the right represents the worst-case gain of the robust solution w.r.t.
the non-robust solution.

could only compute trivial bounds (from the deterministic optimum) for instances
la01–05 and la16–la20.

43

CMAX, k = 1 CMAX, k = 2 CMAX, k = 3
instances size S B NB S B NB S B NB
la01-05 10x5 5 0 0 4 1 0 1 4 0
la06-10 15x5 5 0 0 4 1 0 0 5 0
la11-15 20x5 5 0 0 4 1 0 0 5 0
la16-20 10x10 5 0 0 0 5 0 0 5 0
la21-25 15x10 2 3 0 0 5 0 0 0 5
la26-30 20x10 3 2 0 0 3 2 0 0 5
la31-35 30x10 5 0 0 0 0 5 0 0 5
la36-40 15x15 1 4 0 0 5 0 0 0 5

Table 3.1: Results with CMAX Objective, and k = 1, 2, 3 breakdowns.
S = solved to optimality, B = obtained bounds, NB = no bounds obtained

3.5.3 Heuristic Parameters

We also explored the effect of changing the parameters of our heuristic. We tested
α1 = 0.01, 0.125, 0.25, 0.5, 1.0 for our initial minimum degradation level and β =
1.25, 1.5, 2.0, 4.0, 8.0 for the factor we divide by whenever we solve the subproblem
to optimality. For each pair of parameters (α1, β), we solved the first 10 of the 5x5
randomly generated instances from our first experiment using either CMAX or SWCT
objectives and k = 3 breakdowns.

Table 3.2 contains the results, showing the average solving time and average num-
ber of iterations. We see that larger values of α1 and smaller values of β both tend to
decrease the number of iterations, up to a certain point. On the other hand, the sol-
ving time can either increase or decrease depending on the type of objective, though
it appears to be affected more by α1 than by β. In particular, CMAX benefits from
running many iterations with α1 close to 0, while SWCT does best when α1 ≈ 0.5
and β ≈ 3.

3.6 Example: Robust Unrelated Parallel Machine

Scheduling

3.6.1 Problem Statement

Similarly to the job shop, let us first describe the standard unrelated parallel machine
scheduling problem, and then our robust variant. In the standard problem, we are
given a set of n jobs J and m machines M, where for each machine i and job j we
have a duration dij indicating how long it takes to run job j on machine i. Each job
also has a release time rj indicating that no machine can start working on job j until
after time rj. Our goal is to find a schedule (i.e., determine Jm, the set of jobs to
run on machine m, and sj, the start time of job j) with the optimal objective value,

44

Table 3.2: Effect of Heuristic Parameters (over 10 instances)

Avg Solve Time Avg Num Iterations
CMAX, k = 3 Reducing Factor (β) Reducing Factor (β)

1.25 1.5 2.0 4.0 8.0 1.25 1.5 2.0 4.0 8.0

In
it

D
eg

rd
L

ev
el

(α
1
)

0.01 35.59 35.60 35.58 35.61 35.61 10.5 10.5 10.5 10.5 10.5
0.125 70.64 64.60 58.47 53.00 51.90 6.9 6.9 7.0 7.7 8.5
0.25 86.82 76.39 68.70 60.56 52.56 5.9 5.9 6.1 6.8 6.7
0.5 108.41 94.79 78.08 64.64 54.92 6.3 6.3 5.6 6.2 6.9
1.0 113.53 109.79 89.81 73.28 63.46 6.4 6.4 6.3 6.4 7.7

Avg Solve Time Avg Num Iterations
SWCT, k = 3 Reducing Factor (β) Reducing Factor (β)

1.25 1.5 2.0 4.0 8.0 1.25 1.5 2.0 4.0 8.0

In
it

D
eg

rd
L

ev
el

(α
1
)

0.01 835.60 836.20 835.29 835.86 835.89 19.5 19.5 19.5 19.5 19.5
0.125 406.35 396.05 381.72 419.18 447.28 13.4 13.4 13.8 13.8 14.0
0.25 338.50 320.35 304.04 277.10 347.97 11.9 11.7 12.1 12.4 13.3
0.5 274.52 266.10 256.23 293.88 357.45 9.9 9.9 10.8 12.3 13.0
1.0 289.95 281.84 256.60 246.55 353.03 9.8 9.8 10.8 11.4 13.3

where the schedule satisfies the constraint that each machine can run at most one job
at a time and all jobs are started at or after their release time. Again, we consider
both CMAX (the maximum completion time over all jobs) and SWCT (the sum of
weighted complection times) as useful metrics.

Our problem is a robust version of this standard unrelated parallel machine sche-
duling problem. Again, for the robust problem we are also given a set of possible
processing delays δij ∈ [0, Dij], where Dij is the maximum possible delay of job j
on machine i. We assume that at most k of the δij’s are nonzero, and at most k
of the δij’s corresponding to the same machine is nonzero. We use the same notion
of robustness as with the robust job shop problem, except a solution Z specifies the
assignment of jobs to machines in addition to the sequencing of jobs on each machine.

3.6.2 Model

As before, we use constraint programming to model our problem.
Let Q denote the set of possible delay scenarios. For each delay scenario q ∈ Q,

let oijq be the interval variable representing running job j on machine i in scenario q,
and let Siq be the sequence variable corresponding to machine i and scenario q. Let
Cjq represent the completion of time job j, i.e., the time at which job j completes its
processing, in scenario Q. For a machine i′, let Oq(i′) = {oijq | i = i′} be the set of
operations that run on machine i′ in scenario q. Then the following is our model for

45

the robust unrelated parallel machine scheduling problem:

min v (3.25)

s.t. v ≥ Obj(C1q, . . . , Cnq) ∀q ∈ Q (3.26)

Cjq ≥ endOf(oijq) ∀i ∈M,∀j ∈ J ,∀q ∈ Q (3.27)

sameSequence(Si1, Siq) ∀i ∈M, q ∈ Q (3.28)

noOverlap(Siq) ∀i ∈M,∀q ∈ Q (3.29)∑
i∈M presenceOf(oijq) = 1, ∀j ∈ J ,∀q ∈ Q (3.30)

lengthOf(oijq) = dij ∀i ∈M, ∀j ∈ J ,∀q ∈ Q (3.31)

startOf(oijq) ≥ rj ∀i ∈M, ∀j ∈ J ,∀q ∈ Q (3.32)

Cjq ≥ 0, Cjq ∈ Z ∀j ∈ J ,∀q ∈ Q (3.33)

oijq ∈ OptionalCPOInterval ∀i ∈M, ∀j ∈ J ,∀q ∈ Q (3.34)

Siq ∈ CPOSequence(Oq(i)) ∀i ∈M,∀q ∈ Q (3.35)

The model is very similar to the one for robust-job shop. Constraints (3.25) and (3.26)
express our objective: minimizing the worst case objective value over all breakdown
scenarios in Q, while (3.28) ensures we utilize the same assignment (and possibly se-
quence) of jobs for all scenarios. The constraints (3.29) and (3.30) impose constraints
associated with the standard unrelated parallel machine scheduling problem, except
each job o only interacts with other jobs within the same scenario, and the sequencing
of the operations are communicated through Siq. Note that each interval oijq is now
an optional interval since (3.30) forces the job to be assigned to exactly one machine.

3.6.3 Scenario Generation

Following the same methodology as before, our solution algorithm has exactly the
same structure as with robust job-shop, except the master problem is now

(MPt) = min v

s.t. v ≥ Obj(C1q, . . . , Cnq) ∀q ∈ Q
Cjq ≥ endOf(oijq) ∀i ∈M,∀j ∈ J ,∀q ∈ Qt

sameSequence(Si1, Siq) ∀i ∈M, q ∈ Qt

noOverlap(Siq) ∀i ∈M,∀q ∈ Qt∑
i∈M presenceOf(oijq) = 1 ∀j ∈ J ,∀q ∈ Qt

lengthOf(oijq) = dij ∀i ∈M,∀j ∈ J ,∀q ∈ Qt

startOf(oijq) ≥ rj ∀i ∈M,∀j ∈ J ,∀q ∈ Qt

Cjq ≥ 0, Cjq ∈ Z ∀j ∈ J ,∀q ∈ Qt

oijq ∈ OptionalCPOInterval ∀i ∈M, ∀j ∈ J ,∀q ∈ Qt

Siq ∈ CPOSequence(Oq(i)) ∀i ∈M,∀q ∈ Qt

46

and our subproblem is

(SPt) = max Obj(C1, . . . , Cn) (3.36)

s.t. Cj = max
i∈M
{endOf(oij)} ∀j ∈ J (3.37)

noOverlap(Si) ∀i ∈M (3.38)

presenceOf(oij) = AZt(oij) ∀i ∈M,∀j ∈ J (3.39)

startOf(oij) = max(endOf(πZt(oij)), rij) ∀i ∈M,∀j ∈ J (3.40)

startOf(γij) = endOf(δij) ∀i ∈M,∀j ∈ J (3.41)

span(oij, {δij, γij}) ∀i ∈M,∀j ∈ J (3.42)

presenceOf(γij) = presenceOf(oij) ∀i ∈M,∀j ∈ J (3.43)

presenceOf(δij) ≤ presenceOf(oij) ∀i ∈M,∀j ∈ J (3.44)

lengthOf(γij) = dij ∀i ∈M,∀j ∈ J (3.45)

lengthOf(δij) = Dij ∀i ∈M,∀j ∈ J (3.46)∑
j∈J presenceOf(δij) ≤ 1 ∀i ∈M (3.47)∑
i∈M,j∈J presenceOf(δij) ≤ k (3.48)

Cj ≥ 0, Cj ∈ Z ∀j ∈ J (3.49)

oij, γij, δij ∈ OptionalCPOInterval ∀i ∈M,∀j ∈ J (3.50)

Si ∈ CPOSequence(O′(i)) ∀i ∈M (3.51)

Again, the integer variable Cj represents the completion time of job j; the interval
variable oij represents running job j on machine i, which consists of its potential
delay δij and its original duration γij (which are themselves interval variables); and
the sequence variable Si represents the ordering of jobs on machine i. Constraints
(3.37) and (3.38) calculate the completion times. Constraints (3.39) and (3.40) en-
force the assignment and sequencing of jobs on each machine specified by Zt (where
AZt(oij) = 1 if Zt assigns job j to machine i and 0 otherwise, and πZt(o) denotes the
operation ordered immediately before o w.r.t. Zt). Constraints (3.41)–(3.46) enforce
the interpretations of oij, δij, and γij. Constraints (3.47) and (3.48) enforce our as-
sumptions on the processing delays. Note that (3.37) and (3.40) cannot be formulated
as inequalities because (SPt) has a maximizing objective.

3.6.4 Computational Results

To test our methodology for the robust unrelated parallel machine scheduling pro-
blem, we generated 10 random instances with n = 10, 15, 20 jobs and m = 3, 5, 7
machines. The release times of jobs were drawn from a uniform distribution on

47

CMAX, k = 1 CMAX, k = 2 SWCT, k = 1
size S B NB S B NB S B NB
10x3 10 0 0 10 0 0 6 4 0
15x3 10 0 0 4 6 0 0 0 10
20x3 0 10 0 0 10 0 0 0 10
10x5 10 0 0 10 0 0 3 7 0
15x5 6 4 0 0 10 0 0 0 10
20x5 0 10 0 0 10 0 0 0 10
10x7 10 0 0 8 2 0 0 10 0
15x7 8 2 0 0 10 0 0 0 10
20x7 0 10 0 0 10 0 0 0 10

Table 3.3: Results for Randomly Generated Instances with CMAX Objective
k = 1, 2 breakdowns; SWCT Objective, k = 1 breakdown
S = solved to optimality, B = obtained bounds, NB = no bounds obtained

{0, 1, . . . , 49}, and the durations of jobs were drawn from the following distribution:

D =

11 if Z ≤ 11

round(Z) if 11 < Z < 99

99 if Z ≥ 99

where Z ∼ N

(
11 + 99

2
,

(
11 + 99

6

)2
)

i.e., Z is a normal distribution with mean 55 and standard deviation 55
3

. We set the
delay duration to D = 0 so that Dij = dij−1, and we considered the CMAX objective
k = 1, 2 possible delays and the SWCT objective with k = 1 delay. As before, we set
a time limit of 1 hour to solve each problem specification. Due to time constraints,
we only tested the original scenario generation algorithm here.

Table 3.3 shows the results; the three columns show how many instances were
solved to optimality, obtained bounds, or were unable to obtain any bounds (due to
not being able to complete the first iteration within the time limit). The results show
similar trends to the job shop case; we see that for the CMAX objective, we were able
to obtain bounds for all tested instances, though we were only able to solve instances
with up to 15 jobs to optimality. For the SWCT objective, even the smallest instance
with 10 jobs on 3 machines cannot always be solved to optimality.

Figure 3.4 shows the average bounding behavior over the instances which were
solved to optimality (i.e., n = 10 jobs; m = 3, 5, 7 machines; CMAX objective;
k = 1, 2 breakdowns). Again we see similar trends to the job shop case, though the
lower bounding behavior appears to be somewhat worse for the unrelated parallel
machine scheduling problem. Nevertheless, the number of iterations indicate that we
still do not need to generate the full set of scenarios in order to achieve robustness
for the entire uncertainty set.

48

Figure 3.4: Average Upper Bounds (dashed line) and Lower Bounds (solid line) for
CMAX objective with 1 and 2 delays, normalized to the optimal robust objective
value (dotted line)

3.7 Conclusion and Discussion

We introduced an exact solution method, based on scenario generation, for constraint-
based scheduling problems with combinatorial uncertainty sets. As specific case stu-
dies, we considered the robust job-shop scheduling problem and robust unrelated pa-
rallel machine scheduling problem with machine breakdowns. Our method provides
provable bounds on the worst-case objective value, and our experimental analysis sug-
gests that nontrivial bounds can be obtained even after a single iteration. Naturally,
robust solutions provide protection against unfavorable scenarios, at the potential
cost of objective efficiency when no such scenario occurs. Thus, if proving some per-
formance guarantee of the schedule is of paramount importance, our method can be
used to produce such robust solutions.

Even if we only need a small subset of scenarios to find and prove optimal ro-
bust solutions in many cases, the computation time may become prohibitively large
when the number of scenarios increases. Our robust CP method would benefit from
more effective bounding procedures which extend beyond single iterations, both for
providing theoretical guarantees and practical power for iterative procedures. While

49

a generic scalable approach to robust scheduling based on constraint programming
will likely require more sophisticated tools than the ones we have presented here, the
fact that such a generic approach to robust scheduling is even possible highlights the
benefits of using constraint programming as a promising framework to develop such
an approach.

50

Chapter 4

Post-Optimality Analysis of Mixed
Integer Linear Programming
Problems Using Decision Diagrams

4.1 Introduction

Mathematical optimization is used in a wide range of fields to make decisions, allo-
cate resources, and maximize performance for various problems. Depending on the
types of decisions made, the constraints of the problem and the objective function
under consideration, several different classes of optimization models may be used.
Integer linear programing (ILP) and mixed integer linear programming (MILP) mo-
dels are especially popular for their ability to express discrete decisions and/or logical
constraints. The rich mathematical structure arising from the interaction between
integrality and linear inequality constraints provides fertile ground for deep insights,
enabling theoretical advances that have translated to high quality solvers that can
find an optimal solution to most moderately sized models within a few hours.

However, in practice a single optimal solution to a MILP model may not be suffi-
cient for resolving the original problem. Often the model does not exactly represent
reality due to other considerations and restrictions which are not (and often cannot)
be incorporated into the model, or parameters whose exact values cannot be determi-
ned. Even if the model is an exact representation of reality, a single solution by itself
yields very little insight into what factors critically influence the final decision, which
may be just as important. What is needed is a methodology to gain more insight
into the nature of the optimal soltuion beyond being able to generate one. We refer
to this as post-optimality analysis.

To solve this problem, [HS17] suggest using decision diagrams to compactly encode
multiple optimal and near-optimal solutions. By considering multiple solutions that
are just as good or almost as good as an optimal one, this gives decision makers a
chance to incorporate considerations which could not be represented by the model.

51

Furthermore, decision diagrams allow one to effficiently make certain queries about
the set of solutions it represents. Finally, decision diagrams provide a compact way to
encode a large number of solutions; in fact, [HS17] consider a special kind of diagram
called a sound decision diagram to gain even greater compression.

In this work, we extend the framework of [HS17] from ILP models to MILP mo-
dels, which are more common in practice. In the process of extending the notion of
sound reduction to the MILP case, we also propose two broad approaches for repre-
senting solutions with both discrete and continuous parts within a decision diagram,
an inherently discrete object. Finally, we perform computational testing on the most
scalable approach, and show that a sound decision diagram can be compiled with a
reasonable amount of extra work in comparison to generating the solutions using a
MIP solver.

4.2 Related Work

Prior work that is related to our problem can be split into three categories: post-
optimality for linear programming (LP) problems, and post-optimality for integer
linear programming (ILP) and mixed integer linear programming (MILP) problems,
and miscellaneous.

4.2.1 Postoptimality for LP

To our knowledge, no previous study specifically addresses the question of how to
represent the set of near-optimal solutions of an LP problem in a compact and trans-
parent fashion. There is one study [Lee+00] that gives a sequential algorithm for
generating all optimal solutions of an LP problem in the context of metabolic en-
gineering. However, they do not consider solution representation and only perform
computational experiments for a single model.

That said, the set of near-optimal solutions of an LP problem is always a (convex)
polyhedron, so questions of representation and solution generation can be essentially
reduced to corresponding questions about polyhedra. Here, the long line of research
on vertex enumeration becomes relevant.

For general polyhedra, there are two major approaches: incremental and graph-
traversal. The classical double description method [Mot+53; Che65; FP95] is a prime
example of the incremental approach; it iteratively builds a double description pair
(i.e., a pair of matrices (A,R) such that Ax = 0 ⇐⇒ ∃λ ≥ 0 s.t. x = Rλ) of the po-
lyhedron by considering the inequalities that describe the polyhedron one by one. By
contrast, the reverse search method [Bal61; Dye83; AF92; Avi00] is a graph-traversal
approach; it starts with a feasible vertex and performs pivoting operations to explore
neighboring vertices, much like the simplex algorithm. A theoretical and computati-
onal comparison by [ABS97] of the two approaches shows that incremental methods
are often immune to degeneracy but scale poorly, whereas graph-traversal methods

52

tend to scale well but have trouble with degeneracy. Alternative approaches based
on backtracking [FLM97; BL98] as well as the the dual problem of facet enumeration
[Swa85; FR94; Bar+96; BFM98; Jos03] have also been studied.

Interestingly, the complexity of vertex enumeration for general polytopes is still
an open problem, while for general polyhedra [Kha+08] proves that it is NP-hard.
Vertex enumeration for 0/1-polytopes can be done in polynomial time and space
[BL98] (in fact, it is strongly P-enumerable [FLM97]), while for 0/1-polyhedra no
output-polynomial time algorithm exists unless P = NP [Bor+11]. As always, there
exist many special cases that can be done in polynomial time [Pro94; ADP03; Bor+09;
Mur09]

We consider the question of representing the set of near-optimal solutions to LP
problems. In particular, we propose representing basic feasible solutions based on
which inequalities are part of the basis, and incorporate the cost of these basic solu-
tions via a weighted decision diagram.

4.2.2 Postoptimality for ILP and MILP

To our knowledge, no previous study (other than direct predecessors of this work)
addresses the issue of how to represent near-optimal solutions of ILP problems in a
compact and transparent fashion.

A few papers have proposed methods for generating a diverse set of multiple so-
lutions. [GLW00] utilizes scatter search to generate near-optimal solutions for 0–1
MILPs that roughly maximizes Hamming distance among different solutions. Howe-
ver, since it is a heuristic method, it does not obtain an exhaustive set of solutions for
any given optimality tolerance. Diverse solutions of a MILP problem have also been
obtained by solving a sequence of MILP models, beginning with the given problem,
in which each seeks a solution different from the previous ones. [Gre+08] explicitly
compares this approach to a much larger model that obtains multiple solutions si-
multaneously. However, neither method is scalable, as there may be a large number
of near-optimal solutions.

Other papers focus on ways to utilize the branch-and-bound tree to efficiently
generate multiple optimal solutions. The one-tree method of [Dan+07] generates a
collection of optimal or near-optimal solutions of a MILP problem by extending a
branching tree that is used to solve the problem. While possible, the collection is not
intended to be exhausive, and there is no indication of how to represent the collection
compactly or query more easily. [AHK08] presents an extension of branch-and-bound
called branch-and-count to enumerate all feasible solutions of an ILP problem, based
on the identification of unrestricted subtrees of the branching tree. These are subtrees
in which all values of the unfixed variables are feasible. While the method can be
extended to MILP, the paper only tests pure integer programs, and does not explicitly
take the objective value into account, only feasibility.

The one-tree method is used by CPLEX [IBM19] as part of its “solution pool”

53

feature which was introduced in CPLEX 11.0 [10]. Branch-and-count is used by SCIP
[Gle+18] for solution counting, which was introduced for pure ILPs in SCIP 1.1 [08]
and for mixed ILPs in SCIP 2.0 [11]. By contrast, post-optimality software based on
decision diagrams operates independently of the solution method. It also differs by
organizing an exhaustive set of near-optimal solutions in a decision diagram that is
convenient for post-optimality analysis, as opposed to heuristically considering quality
and/or diversity.

Integer programming sensitivity analysis has been investigated for some time,
as for example in [Bow72; GN77; Wol81; HK84; SW85; DH00]; the mixed integer
programming case has been studied in [Roo74; Wil89; Cre95; Pac04; GR07]. However,
our main interest here is in probing the near-optimal solution set that results from the
original problem data, rather than analyzing parameter sensitivity by investigating
perturbations of the problem data.

Decision diagrams were first proposed for ILP post-optimality analysis in [HH06],
and the concept of a sound diagram was introduced in [HH07]. [HS17] proves several
properties of sound diagrams, introduces the sound reduction operation, and proves
that sound reduction yields a sound diagram of minimum size. It also presents al-
gorithms for generating sound-reduced diagrams for ILP problems and conducting
post-optimality analysis on these diagrams, as well as reporting computational tests
on the representational efficiency of the diagrams. Binary decision diagrams have also
been used in [BE07] to implement a fast vertex enumeration method for the special
case of 0-1 ILP problems.

The present work extends [HS17] by allowing variables to be continuous. We
propose several ways to construct sound diagrams for MILP problems, and show
that a modified version of sound reduction can still be done. We also implement the
most promising approach and report results on the representational efficiency of the
diagrams.

4.2.3 Miscellaneous

Our problem has some similarities with that of product configuration, which considers
the process of specifying a product consisting of a set of components, where different
components can only be combined in certain predefined ways. In particular, in both
cases we want a systematic method to analyze the set of near-optimal/valid solutions
to some fixed optimization/configuration model.

One approach used in product configuration is to represent the set of valid con-
figurations in a form that allows various queries to be performed very quickly. The
process of computing such a representation is known as knowledge compilation. While
initial papers use deterministic finite automata (DFA) [AFM02] and binary decision
diagrams (BDD) [Had+04; AHP10] as their target representation, many others in-
cluding AND/OR multivalued decision diagrams (AND/OR MDD) [MMD07], Tree-
of-BDDs (ToB) [Sub05], and boolean satisfiability (SAT) instances [SKK03; Jan10]

54

have also been considered. However, all of them are restricted to configuration models
with only discrete variables. While there are a few papers that consider product con-
figuration models with continuous variables [Ald+03; GF03; XHK05], none of them
consider the task of knowledge compilation.

A completely different line of work initiated by [Hoe+99] considers the use of de-
cision diagrams in the context of stochastic dynamic programming. Here the value
function of a Markov Decision Process (MDP) is represented as an algebraic decision
diagram (ADD) [Bah+97], a generalization of a BDD that is designed to represent
a pseudo-boolean function. By using an ADD that compactly captures both the re-
crusive and disjunctive structure of the value function, value iteration can be perfor-
med very efficiently. [SDB11] extends this to continuous state MDPs by generalizing
ADDs to extended algebraic decision diagrams (XADD) where each node represents a
polynomial inequality/equality/disequality, and its two outgoing arcs corresponding
to whether the condition is satisfied or not. [ZSF12] further extend this approach
to MDPs with continuous state and action spaces by restricting the conditions to
non-negated linear inequalities and possibly negated boolean variables. However, the
ADD/XADD approach does not readily extend to our setting since most MILPs do
not have a compact recursive formulation.

Most recently, in the relatively new area of decision diagram methods for optimi-
zation, [Lin17] proposes an extension of MDD-based branch-and-bound [Ber13] that
incorporates Benders cuts into the compilation of relaxed and restricted diagrams.
This allows the method to handle MILP problems by treating the continuous part as
the Benders subproblem. In this case, feasibility cuts pose no issues, but objective
cuts require the use of cost tuples, which associates a tuple to every node of the MDD
to track the intermediate righthand side value of all objective cuts. In particular, the
cost tuples are incompatible with reduced diagrams since the righthand side values
arising from different prefixes may not be identical. Nevertheless, cost tuples can still
be used during top-down compilation to eliminate suboptimal solutions, and exten-
sive computational results are reported for variations of the maximum independent
set problem and the adapted market share split problem.

4.3 Decision Diagrams

A decision diagram D is a directed multigraph that represents an indicator function
h(x1, . . . , xn) in which each xj has a finite domain Sj. The node set of D is partitioned
into subsets or layers U1, . . . , Un+1, with U1 containing only the root node r. Every
arc a of D is directed from a node u ∈ Uj to a node in layer Uj+1. Each arc a leaving
u ∈ Uj has a label xj(a) ∈ Si that represents the assignment of value xj(a) to variable
xj. The arcs leaving u must have distinct labels. If at most two arcs leave each node,
D is a Binary Decision Diagram (BDD), and otherwise it is a Multivalued Decision
Diagram (MDD).

Decision diagrams classically have two terminal nodes in layer Un+1, representing

55

x1 x2 x3 h(x)
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

tr...
x1 = 0 1

...t...

t...
x2 = 1 0 1

...t...

...

t...
0x3 = 0 1

t
t

(a)

tr...

...

...

...

f1(x1) = 0 4

..t...

...

...

...

f2(x2) = 3

t...
0

...

3

t...

...

...

...

f3(x3) = 0

...

1

t...
0

t
t

(b)

tr...

...

...

...

...

x1 = 0 1

t t...

1

...

...

...

...

...

1x2 = 0

t..

..

..

..

..

x3 = 0 1

t
t

(c)

Figure 4.1: (a) Decision diagram representing the Boolean function on the left. Arc
labels are shown. (b) Decision diagram representing problem (4.1). Arc weights are
shown. The heavy path represents the optimal solution. (c) Sound relaxation of
the same decision diagram. The heavy path corresponds to an additional path with
weight exceeding those of paths from the other diagram.

true and false outcomes for the indicator function. For our purposes, it suffices to have
a single terminal node t for true. A path p in D from r to t represents an assignment
of values to x = (x1, . . . , xn), which we will denote by x(p). The diagram represents
function h if its r–t paths represent precisely the values of x for which h(x) = 1. For
example, the binary decision diagram of Fig. 4.1(a) represents the Boolean function
h shown.

Decision diagrams can represent the solutions of any optimization problem with
finite-domain variables and a separable objective function; that is, any problem of
the form

min
{ n∑

j=1

fj(xj)
∣∣∣ x ∈ S} (P)

where S ⊆ S1 × · · · × Sn and Sj is finite for all j. If we define h(x) to be 1 if and
only if x ∈ S, then decision diagram D represents problem P when D represents h(x),
and each arc a leaving a node in layer Uj is given weight fj(xj(a)). For example, the
diagram of Fig. 4.1(b) represents the optimization problem

min
{

4x1 + 3x2 + x3

∣∣∣ 2x1 + 2x2 + x3 ≥ 2, x1 + x2 + x3 ≤ 2, x ∈ {0, 1}3
}

(4.1)

The weight of any r–t path p in D is the cost
∑

i fj(xj(p)) of the corresponding
solution x(p). Furthermore, any shortest r–t path p defines an optimal solution x(p)
of P. This is illustrated by the heavy arcs in Fig. 4.1(b).

56

It is convenient to let Sol(D) be the set of solutions represented by diagram D.
We also define for each node u ∈ Uj the set PreD(u) of prefixes of u, which are the
assignments to (x1, . . . , xj−1) that correspond to r-u paths in D. We similarly define
SufD(u) to be the set of suffixes of u, or assignments to (xj, . . . , xn) corresponding to
u-t paths.

Many different decision diagrams can represent a given feasible set S. Yet for a
given variable ordering, there is a unique reduced diagram that represents P [Bry86].
A diagram D is reduced if no two nodes in a layer have the same suffixes. That is,
for every layer Uj and every pair of distinct nodes u, v ∈ Uj, SufD(u) 6= SufD(v).
For example, the diagram of Fig. 4.1(a) is reduced for the variable ordering x1, x2, x3.
The reduced diagram can be viewed as a compact representation of the complete
branching tree for P.

Our primary interest is in representing near-optimal solutions of P. Let P (∆) be
the set of feasible solutions with cost within ∆ of the optimal cost z∗, which we refer
to as ∆-optimal solutions. Thus

P(∆) =
{
x ∈ S

∣∣∣ ∑
j

fj(xj) ≤ z∗ + ∆
}

A diagram D exactly represents P(∆) if its r–t paths correspond exactly to the
∆-optimal solutions of P; that is, Sol(D) = P(∆).

4.4 Sound Decision Diagrams for ILP

A decision diagram is sometimes smaller when it contains more paths, which implies
that certain relaxations of the solution set can be encoded more concisely. As defined
by [HH07], sound decision diagrams take advantage of this by allowing paths that
correspond to “costly” solutions (i.e., solutions that are worse than ∆-optimal) to be
included in order to obtain a more compact diagram.

More formally, we say that a solution is ∆-costly if its cost is greater than z∗+ ∆,
and ∆-cheap otherwise. A ∆-optimal solution is then a solution that is both ∆-cheap
and feasible; conversely, a ∆-fake solution is a solution that is both ∆-cheap and
infeasible. Given these definitions, we say that a diagram D is sound for P(∆) if

1. every ∆-optimal solution of P is represented by an r–t path of D, and

2. no r–t path of D represents a ∆-fake solution; i.e., every r–t path of D either
represents a ∆-optimal solution or a ∆-costly solution.

A proper sound diagram contains at least one path that is not ∆-optimal.
Fig. 4.1(c) shows how a sound relaxation can be smaller than an exact diagram.

All r–t paths in Fig. 4.1(b) weight from 3 to 7, whereas the heavy path in Fig. 4.1(c)
weights 8.

57

One can easily check if a prefix is relevant (i.e., potentially forms part of a near-
optimal solution) in a sound relaxation. This is done by pre-computing the shortest
path from each node to the terminal and using that value to check if some path from
r can be extended to a near-optimal solution. In the example above, consider z∗ = 3
and ∆ = 4. Since the first two arcs in the heavy path weight 7, only the arc for
x3 = 0 can be used next.

The following basic properties of sound diagrams were first stated by [HH07]:

Lemma 2. If decision diagram D is sound for P(∆) and 0 ≤ ∆′ ≤ ∆, then D is
sound for P(∆′).

Lemma 3. When ∆→∞, the only sound diagrams for P(∆) are those that exactly
represent P.

Since we are interested in small sound diagrams, we wish to remove any arcs and
nodes that are not needed to represent ∆-optimal solutions. We therefore focus on
minimal sound diagrams for P(∆), which are those in which every node lies on some
r–t path with weight at most z∗ + ∆, and similarly for every arc. Minimality is a
necessary condition for a sound diagram to have minimum size.

Interestingly, soundness is not useful when one is only concerned with optimal
solutions. In that case, introducing suboptimal paths into the diagram cannot result
in a smaller sound diagram. This is a consequence of the following [HS17], which
plays a central role in what comes after:

Theorem 1. No proper sound diagram for P(0) is minimal.

Proof. Suppose to the contrary that diagram D is a minimal sound diagram for P(0)
and contains a suboptimal r–t path p. For any given node u in p, let π(u) be the
portion of p from r to u and σ(u) the portion from u to t (Fig. 4.2). Select the node u∗

in p that maximizes the number of arcs in π(u∗) subject to the condition that π(u∗) is
part of some shortest r–t path in D. Let p∗ be such a shortest path, where p∗ consists
of π(u∗) and σ∗. We note that u∗ 6∈ Un+1, since otherwise p∗ = π(u∗) = p would be
a shortest r–t path, and thus u∗ is succeeded in path p by node u′ through arc a.
Furthermore, u∗ 6∈ U1 since otherwise arc a would prevent D from being minimal.
Now since D is minimal, arc a belongs to some shortest r–t path p′, which we may
suppose consists of π′, a, and σ′. Since both p∗ and p′ are shortest r–t paths, π(u∗)
and π′ must be shortest r-u∗ paths, which means that the path consisting of π(u∗), a,
and σ′ is also a shortest r–t path. But this implies that π(u∗) a, a prefix of the node
u′ which contains one more arc than π(u∗), is part of a shortest r–t path, contrary to
the definition of u∗.

Corollary 1. Given any sound diagram D for P(0), some diagram at least as small
as D exactly represents P(0).

58

π(u∗) π ′

a

σ(u′) σ ′
σ∗

tr...

...tu∗

..t
u′
...

...

...t
t

Figure 4.2: Illustration of the proof of Theorem 1.

Proof. If D is improper, it already represents P(0) exactly. Otherwise, D is not
minimal, and at least one arc or node can be removed to yield a sound diagram for
P(0). The process can be repeated until the resulting sound diagram is improper and
therefore exactly represents P(0). �

Theorem 1 is also a key to understand when soundness makes diagrams smaller.
The contradiction in the proof would fail if ∆ > 0 and the weight of r–u path π(u)
exceeded that of π′. In that case, there would be suffixes of u that work with π′ but
are too expensive when combined with π(u). Hence, we denote as sound reduction a
generalization of the reduction operation by which we remove a node and redirect its
incoming arcs to some other node while preserving soundness. Due to the following
results from [HS17], we know that it suffices to find sound relaxations of minimum
size. These results use the concept of sufficient suffix set, which for a node u in a
diagram D consists of the subset of suffixes SufD(u) ⊆ SufD(u) which result in a
near-optimal solution when combined with some prefix in PreD(u).

Theorem 2. In a minimal sound diagram D for P(∆), a node u ∈ Ui can be sound
reduced into another node v ∈ Ui if and only if

(i) SufD(u) ⊆ SufD(v)

(ii)
∑i

j=1 fj(pj) +
∑n

j=i+1 fj(sj−i) > z∗ + ∆ ∀p ∈ PreD(u), s ∈ SufD(v) \ SufD(u)

Theorem 3. In a minimal sound diagram D for P(∆) with a node u ∈ Ui that cannot
be sound-reduced into the other nodes of Ui, any sound diagram D′ for P(∆) has a
node u′ ∈ U ′i such that SufD(u) = SufD′(u

′).

Corollary 2. A sound diagram D for P(∆) has minimum number of nodes and arcs
if and only if D is minimal and sound reduction cannot be further applied.

59

4.5 Representing Continuous Variables

We now consider the question of how to construct sound decision diagrams for MILP
problems. With little loss of generality, we consider MILP problems in which the
integer variables are bounded:

min
{
cx+ dy

∣∣∣ Ax+By ≥ b, x ∈ S, y ≥ 0
}

(M)

Here S ⊆ S1 × · · · × Sn and each Sj has the form {xj ∈ Z | αj ≤ xj ≤ βj}. We
assume that (M) has an optimal solution (x∗, y∗) with a finite optimal value z∗; this
is reasonable because post-optimality analysis, by definition, is not applicable unless
this is the case.

A major challenge of our problem is deciding how to modify the representation
scheme of decision diagrams to accommodate continuous variables. Broadly speaking,
we would like the representation to accomplish three things:

1. The set of possible assignments to the continuous variables must be “discretized”
in some way, since a decision diagram cannot natively handle variables with
infinite domains.

2. The representation should try to maximize the number of nodes that have equi-
valent suffixes, since such nodes can be merged when constructing the reduced
diagram; otherwise the diagram will provide little benefit over a straightforward
branching tree representation.

3. The weight of a path p in the decision diagram that corresponds to a solution
x should ideally be equal to the cost of x. If not, the weight should at least
provide a lower bound on the cost if x is feasible, and an upper bound if x
is infeasible. Otherwise, there is no way to define a notion of reduction that
preserves soundness, since the diagram cannot reliably distinguish ∆-optimal
solutions from ∆-costly solutions based on the cost of their corresponding paths.

Additionally, it is worth noting that a MILP problem may have infinitely many
optimal solutions, and almost always has infinitely many near-optimal solutions. In
particular, if there are two optimal solutions which only differ in the continuous
variables, then any convex combination of the two is also optimal. Thus, the set of
near-optimal solutions of a MILP is the union of finitely many polyhedra. This is in
contrast to ILP problems whose set of near-optimal solutions is always a finite set.
Thus, for a MILP problem it may be impossible to exhaustively enumerate the set of
optimal solutions even in principle.

With this in mind, we consider two major approaches for the representation
scheme: explicit representation, where arcs corresponding to continuous variables
appear in the diagram, and implicit representation, where the diagram only contains
arcs corresponding to discrete variables. We will primarily focus on the implicit

60

representation approach, due to several advantages over the explicit representation
approach in our setting.

4.6 Explicit Representation

The explicit representation approach incorporates some discretized representation of
the set of possible assignments to the continuous variables into the decision diagram.
Since the set of near-optimal solutions of a MILP is a union of finitely many polyhedra,
it cannot be exhaustively enumerated in general. However, standard LP theory shows
that when optimizing linear functions over (a union of) polyhedra, it suffices to only
consider the extreme points and extreme rays. Thus, for the remainder of this section
we restrict our attention to the extreme points of the set of near-optimal solutions as
our representation target.

One approach to evaluating decision diagram representations is to consider how
the labeling of the arcs is determined. Recall that for discrete variables, each variable
xj is associated with the set of outgoing arcs from a layer of nodes Uj, and the label
`j(a) of an arc a leaving a node u ∈ Uj represents assignment of value `j(a) to variable
xj. To extend this to continuous variables, we could try something as follows:

1. One option is to use the same labeling system as for discrete variables. That
is, each continuous variable yj is associated with the set of outgoing arcs from
a layer of nodes Uj, and the label `j(a) of an arc a leaving a node u ∈ Uj
represents assignment of value `j(a) to variable yj.

The advantage of this method is that the arcs corresponding to continuous va-
riables have exactly the same interpretation as they do for discrete variables,
making it easy to extend results from the ILP case. However, it suffers from
two major issues. First, it is difficult to determine apriori the set of possible
labels (i.e., the domain of the variable); too few values and the solution lacks
precision, too many value and the diagram suffers from the curse of dimensio-
nality. Further, even if we are able to find a suitable set of labels, the diagram is
very unlikely to allow for node merging, since most solutions will take different
values in the continuous variables, corresponding to arcs with different labels
(and therefore inequivalent suffixes).

2. Another option is to use an interval instead of a single number as the label.
That is, each continuous variable yj is associated with the set of ougoing arcs of
a layer of nodes Uj, and the label `j(a) = [α, β] of an arc leaving a node u ∈ Uj
represents assignment of some value in the interval [α, β] to variable yj.

This method allows a single path in the diagram to encompass multiple soluti-
ons, potentially enabling nontrivial node merging. Further, while an r–t path
in the diagram does not immediately yield an exact value of the continuous
variable, the exact values may be obtained by solving a linear program. On the

61

other hand, we still have the problem of determining appropriate endpoints for
each interval label. In addition, the interval representation naturally imposes
a “rectangular” structure on the set of represented solutions, which may not
provide a good approximation of the set of near-optimal solutions which may
be the finite union of arbitrary polyhedra.

The problem with both of these methods is that each continuous variable is treated
separately, whereas the variables defining the set of near-optimal solutions typically
interact linearly (i.e., they lie in some affine subspace). Thus, we propose a met-
hod that discretizes the continuous part of the problem collectively by enumerating
the extreme points according to their corresponding “bases”. In particular, recall
that for LP problems extreme points of the feasible region correspond to basic fea-
sible solutions, which satisfy sufficiently many linearly independent constraints with
equality. This concept can be extended to MILP problems to yield a discretization
of the feasible region, where the values of all continuous variables in the model are
simultaneously determined by the basis matrix of the continuous part of the problem.

Formally, recall our MILP problem of the form

min
{
cx+ dy : Ax+By ≥ b, xj ∈ Sj ∀j, y ≥ 0

}
(M)

where x ∈ Zn, y ∈ Rp, and each Sj has the form {xj ∈ Z | αj ≤ xj ≤ βj}. Let

F (x) := {y : By ≥ b− Ax, y ≥ 0} = {y : B′y ≥ b′ − A′x} (4.2)

be the set of feasible y ∈ Rp corresponding to a feasible x ∈ Zn, where

B′ =

(
B
Ip×p

)
, b′ =

(
b

0p×1

)
, A′ =

(
A

0p×n

)
(note B′ is a (m + p) × p matrix, b′ is a (m + p)-dimensional vector, and A′ is a
(m+ p)× n matrix). We call (x̄, ȳ) a basic feasible solution (BFS) of (M) if

1. x̄j ∈ Sj for all j

2. ȳ ∈ F (x̄), and

3. ȳ satisfies p linearly independent constraints in F (x̄) with equality

Analogously to a BFS in linear programming, a BFS of (M) is associated with a basis
matrix B′bas, which is the non-singular p × p submatrix of B′ formed by selecting
the p linearly independent rows specified by the above definition. ȳ then satisfies
B′basȳ = b′bas−A′basx̄ (where b′bas and A′bas are the corresponding subvector/submatrix
of b′ and A′), and therefore ȳ = (B′bas)

−1(b′bas − A′basx̄). Hence, we can write the cost
of the BFS (x̄, ȳ) as

cx̄+ dȳ = cx̄+ d(B′bas)
−1(b′bas −A′basx̄) = [c− d(B′bas)

−1A′bas]x̄+ d(B′bas)
−1b′bas (4.3)

62

where the last expression is affine in x̄.
To represent a BFS as a path in a decision diagram, we use n arc layers to represent

what value is assigned to each discrete variable and p arc layers to represent which
rows of B′ are chosen to form the basis matrix B′bas. In particular, we define p new
variables z1, . . . , zp, each with domain {1, . . . ,m + p}, where the assignment zk = v
corresponds to setting row k of B′bas to be equal to row v of B′. As before, each
variable zk corresponds to the outgoing arcs from a layer of nodes Uk, and the label
`k(a) of an arc leaving a node u ∈ Uk represents assignment of value k to variable zk.

Alternatively, we could define m+p new variables ẑ1, . . . , ẑm+p, each with domain
{0, 1}, where zv = 1 if row v of B′ is selected to be part of the basis and 0 otherwise.
However, this formulation creates an arc layer in the diagram for every row of B′,
which may be inefficient if B′ has a large number of redundant rows.

In principle, the discrete layers (i.e., layers of the diagram corresponding to an
assignment of the discrete variables) could either come before or after the continuous
layers (i.e., layers of the diagram corresponding to a choice of basis matrix). To
compare the two options, consider a branching tree representation of Feas(M) using
our scheme, where the n discrete layers appear before the p continuous layers, and
consider a node u ∈ Un+1 (i.e., after we have traversed all of the discrete layers). Then
the subtree rooted at u represents the polyhedron F (xu) = {y : By ≥ b−Axu, y ≥ 0}
where xu is the unique prefix of u in the tree, so merging nodes in the subsequent
continuous layers requires reasoning about polyhedra and their corresponding basis
matrices. On the other hand, if the n discrete layers appear after the p continuous
layers, the the subtree rooted at a node u ∈ Up+1 represents the discrete set G(yu) :=
{x : Ax ≥ b−Byu, x ∈ S}, where yu is the unique prefix of u in the tree. Thus, merging
nodes in the subsequent layers can be done according to standard MDD reduction
techniques, and it is for this simplicity that we choose to put the continuous layers
before the discrete layers.

We are now ready to describe how to construct an exact MDD representation of
the feasible region of (M). Recall that in the continuous layers, each arc represents
a selection of one of the m + p rows of B′ to be part of the basis matrix B′bas. To
avoid symmetry, we require the index of the selected row to increase as we traverse
the layers; this can be enforced by maintaining the index of the last chosen row at
every node, and only allowing outgoing arcs to have labels larger than this index. In
addition, we exclude any choices that result in linear dependence among the selected
constraints; this can be enforced by forming the partial basis matrix and computing
its rank at every node. Arcs in the continuous layer all have 0 cost except for the
last layer, where the arc has cost d(B′bas)

−1b′bas where B′bas is the basis resulting from
the selection specified by the arcs. In the subsequent discrete layers, each arc still
represents setting its corresponding discrete variable to a certain value, but now the
cost of setting the variable to value v is modified from cjv to (c− d(B′bas)

−1A′[bas)jv.

By (4.3), this ensures that the weight of a root-terminal path in the MDD is equal to
the cost of the corresponding BFS.

63

This approach has the advantage of allowing the weight of a path in the MDD
to be exactly equal to the cost of the corresponding solution. Furthermore, the
discretization of the continuous variables only depends on the size of the constraint
matrices rather than their entries. However, there are still a few drawbacks:

1. Node merging is still difficult because arcs with the same label will typically
have different weights, preventing them from being merged.

2. The diagram can quickly become very large for practical instances, since the
diagram has layers for both continuous and discrete variables.

Finally, for many problems, analyzing the exact values of the continuous variables
may not be particularly relevant. For example, for parallel machine scheduling, we
may care about what machine each job is assigned to, but not about when each
individual job starts running, since this is fixed once the assignments are known. In
fact, most MILP solvers (CPLEX, SCIP, Gurobi) only generate multiple solutions
with respect to the discrete variables, i.e., two solutions which have the same value
in the discrete variables but are different in the continuous variables are considered
to be equivalent. Therefore, for the remainder of this work we focus our attention on
the other approach: implicit representation.

4.7 Implicit Representation

The implicit representation approach is to interpret the diagram as a projection on
the integer variables, in resemblance to what happens at a branching tree. Hence,
we will conduct search and post-optimality analysis only with respect to the integer
variables x = (x1, . . . , xn). We therefore suppose that for any given value of x, the
continuous variables y take optimal values. It is convenient to let z∗(x̄) be the optimal
value of the linear programming problem that results when x is fixed to x̄ in (M).
Thus

z∗(x̄) = min
{
cx̄+ dy

∣∣∣ By ≥ b− Ax̄, y ≥ 0
}

(4.4)

A solution x = x̄ belongs to the projection when 4.4 is a feasible problem.
We say that an r–t path in decision diagram D represents a point in the x-

projection of (M) when x ∈ Sol(D). Diagram D represents the x-projection of (M)
when (a) Sol(D) contains all and only feasible points in the x-projection of (M), and
(b) each arc a leaving a node in Uj has weight cjxj(a). While the weight of an r–t
path p is cx(p), we define the cost of p to be the optimal value z∗(x(p)) of (M) when
x is fixed to x(p).

When diagram D represents (M), the optimal value z∗ of (M) is the minimum
of z∗(x(p)) over all r–t paths p. A minimum cost solution may not correspond to a
shortest path since arc weights reflect only the cost of integer variables.

64

tr...
x1 = 1 0

...t t...

x2 = 0

...

1

...

0

t
t

D

tr...
x1 = 1

...

0

t...
x2 = 1

...

0

t
t

D′

Figure 4.3: Counterexample to the extension of Theorem 1 to MILP problems. Arc
labels are shown.

We similarly define ∆-optimal solutions by supposing that y is set to an optimal
value. Thus we say that x = x̄ is the projection of a ∆-optimal solution of (M) when
z∗(x̄) ≤ z∗ + ∆. We also define M(∆) to be the x-projection of ∆-optimal solutions
of (M). An r–t path p of a decision diagram D represents the x-projection of a ∆-
optimal solution when x(p) is ∆-optimal. Diagram D exactly represents M(∆) if its
r–t paths represent all and only points in M(∆).

4.7.1 Sound Decision Diagrams for MILP

A diagram D is sound for M(∆) when every ∆-optimal solution of (M) is represented
by an r–t path of D, and every r–t path either represents a ∆-optimal solution or a ∆-
costly solution. (Recall that a solution is ∆-costly if its cost is greater than z∗+∆, and
∆-cheap otherwise, and among ∆-cheap solutions the feasible and infeasible solutions
are called ∆-optimal and ∆-fake respectively.)

Lemmas 2 and 3 clearly carry over to the MILP case. However, the proof of
Theorem 1 breaks down. In fact, a proper sound diagram for M(0) can be minimal,
and it can be more compact than a reduced diagram that represents M(0) exactly.
This means that sound diagrams can be beneficial for representing optimal solutions
of MILPs, as well as for representing suboptimal solutions.

This can be seen in a small counterexample to Theorem 1. Consider the MILP

min
{
x1 + x2 + y1

∣∣∣ y1 ≥ 1− x1 − x2, x1, x2 ∈ {0, 1}, y1 ≥ 0
}

The reduced diagram D in Fig. 4.3 exactly represents M(0). Each of the three feasible
integer solutions has cost 1, and each is therefore optimal. The diagram D′ in the
figure is sound, proper, and minimal for ∆ = 0. It is sound because it contains
paths that represent the three optimal solutions, and the remaining path represents a
solution with cost greater than 1. It is proper because this fourth path is suboptimal.

65

It is minimal because every node and every arc is part of a minimum-cost path.
Diagram D′ therefore refutes Theorem 1. Furthermore, it is more compact than
diagram D.

4.7.2 Building Sound Diagrams for MILP

We now lay the groundwork for construction of sound decision diagrams using top-
down compilation. The diagrams are built in much the same way as a branching tree,
except that nodes are merged along the way, based on state information, resulting in a
directed acyclic graph rather than a tree. It is assumed that the original optimization
problem (M) has been solved by some method and the optimal value z∗ is known. No
other information from the solution is used.

The state of a node u in layer Uj is a pair (b̄, v), where b̄ is interpreted as a right-
hand side (RHS) of the MILP constraint set that can result from fixing variables
x1, . . . , xj−1, and v is the length of a shortest r-u path. Thus b̄ is the RHS of a
constraint set of the form

A[j]x[j] +By ≥ b̄ (4.5)

where x[j] = (xj, . . . , xn) and matrix A[j] consists of columns j, . . . , n of A. We will
refer to b̄ as the RHS state and to v as the length state. At the terminal node, x[n+1]

is the tuple of length 0, and similarly for A[n+1], so that b̄ is interpreted as the RHS
of the linear system By ≥ b̄.

The RHS state b̄ defines a set of feasible suffixes in SufD(u); that is, a set of
suffixes x[j] for which

A[j]x[j] +By ≥ b̄, x[j] ∈ S[j], y ≥ 0 (4.6)

is satisfied by some y, where S[j] = S1 × · · · × Sn. At the terminal node, the set of
feasible suffixes is a singleton containing the 0-length tuple x[n+1] if By ≥ b̄, y ≥ 0 is
feasible, and is the empty set otherwise. The RHS state also defines a lower bound
Lj(b̄) on the cost of any feasible suffix, namely the optimal value of the LP relaxation
of (M) with variables x1, . . . , xj−1 removed and the RHS set to b̄. Thus

Lj(b̄) := min
{
c[j]x[j] + dy

∣∣∣ A[j]x[j] +By ≥ b̄, x[j] ∈ S[j], y ≥ 0
}

(4.7)

where S[j] is the convex hull of Sj, which is a closed interval [αj, βj] for some αj ≤
βj. Setting xj = δj at a node with state (b̄, v) creates a transition to a new state
(b̄− Ajδj, v + cjδj).

We can build a sound decision diagram D by branching on the possible values δj
of xj at each node in each layer Uj. Each branch creates a transition to a new state
(b̄−Ajδj, v+cjδj). If the bound Lj+1(b̄−Ajδj) at the new state satisfies the bounding
test

v + cjδj + Lj+1(b̄− Ajδj) > z∗ + ∆ (4.8)

66

there is no need to create an arc that leads to this state. In this case, the left-hand
side of (4.8) is, as shown below, a lower bound on the cost of any r–t path containing
a. If the bounding test is failed, we create an arc a with label δj that runs from u to
any node on the next layer that has RHS state b̄− Ajδj.

When two arcs transition to the same RHS state, they can lead to the same node or
to distinct nodes with the same RHS state but different length states. Distinguishing
nodes with different length states has the advantage that the resulting length states
are generally larger, and the bounding test is satisfied more often, leading to fewer
arcs being created that will not be part of a ∆-optimal solution. On the other hand,
identifying nodes with the same RHS state can help prevent an explosion in the size of
the decision diagram. Even this may be inadequate to prevent an explosion, because
most of the RHS states are likely to be different.

To deal with this problem, we take advantage of the fact that an entire range
of RHS states b̄ can result in the same set of feasible suffixes and can therefore be
regarded as equivalent states. For example, suppose that (M) is the small problem
instance

min
{

4x1 + 5x2 − y1

∣∣∣ x1 + 3x2 − y1 ≥ 3, x1, x2 ∈ {0, 1, 2, 3}, y1 ≥ 0
}

(4.9)

The optimal solution is (x1, x2, y1) = (0, 1, 0), with optimal value z∗ = 5. In layer 2 of
a sound diagram for this problem, inequality (4.5) is 3x2−u1 ≥ b̄, and all RHS states
in the interval [ε, 3] are equivalent (where ε > 0 is an arbitrarily small number). The
set of feasible suffixes for any b̄ ∈ [ε, 3] is {1, 2, 3, . . .} because, for any such b̄, y1 ≥ 0
implies that 3x2 − y1 ≥ b̄ is satisfiable precisely when x2 ∈ {1, 2, 3, . . .}.

We therefore allow an arc with label δj from RHS state b̄ to lead to any RHS state
that is equivalent to b̄ − Ajδj. This can result in fewer nodes in the next layer of
the diagram. For instance, suppose that while creating a sound diagram for example
(4.9) we branch on x1 at the root node r, as shown in Fig. 4.4(a). The four branches
transition to RHS states 3, 2, 1, and 0, respectively. However, the first three RHS
states are equivalent, and the corresponding arcs can lead to the same node. This
results in two nodes rather than four in layer U2.

When multiple arcs lead to the same node, the RHS state of the node is the
smallest of the RHS states that result from the corresponding transitions. Similarly,
the length state of the node is the smallest of the length states that result from the
transitions. This ensures that the bounding mechanism is valid. The leftmost three
arcs in Fig. 4.4(a) therefore lead to a node with state (1, 0), where the RHS state 1 is
the minimum of the RHS states 3, 2, and 1, and the length state 0 is the minimum
of the three arc lengths 0, 4, and 8.

Figure 4.4(b) shows a sound diagram for problem (4.9) when ∆ = 4. The three
leftmost branches at the the root create transitions to states (3, 0), (2, 4), and (1, 8),
respectively. The corresponding bounds are L2(3) = 5, L2(2) = 31

3
, and L2(1) = 12

3
.

The first two branches fail the bounding test (4.8), but the third passes because
v + 2c1 + L2(1) = 0 + 8 + 12

3
> 5 + 4 = z∗ + ∆. The corresponding arc is therefore

67

tr (3,0)..

x1 = 0
b̄ = 3

...

1
2

..

2
1

...

3
0

t
(1,0)

t
(0,12)

(a)

tr (3,0)..

x1 = 0
b̄ = 3

c1x1 +L1(b̄) = 5

...

1
2

7 1
3

.............
.............
.............

.............
.............

.............
..

2
1

9 2
3

.............
.............

.............
.............

.............
.............

.............
.............

.............

3
0

12

t(2,0)
..........................

.............
.............

.............
.............
.............
.............
.............

.............
.............

.............

x2 = 0

b̄ = 2

c2x2 +L2(b̄) = ∞

...

1
−1

4

...

2
−4

6

..

3
−7

8

(−7,5) t

t
(0,12)

t
(b)

Figure 4.4: (a) Branches at the root node for a small MILP instance. Three branches
lead to equivalent RHS states. Each arc shows its label and the corresponding RHS
state. (b) Sound decision diagram for the same instance with ∆ = 4 (solid arcs).
Dashed arcs are are not generated, due to failure of the bounding test. Each arc
shows its label, RHS state, and cost bound.

omitted (and shown as a dashed line). The branches corresonding to x1 = 0 and
x1 = 1 generate arcs that lead to the same node, because the corresponding RHS
states 3 and 2 are equivalent. This node has state (2, 0), because its RHS state is the
minimum of 3 and 2, and its length state is the minimum of the length states 0 and 4.
The branch corresponding to x1 = 3 passes the bounding test, and no arc is created.
Finally, one of the four branches at state (2, 0) pass the bounding test, leaving three
arcs to the terminus.

Four of the r–t paths in the resulting diagram represent solutions (x1, x2, y1) =
(0, 1, 0), (0, 2, 3), (1, 1, 1), (0, 3, 6) which have values 5, 7, 8, and 9 respectively.
These are precisely the 4-optimal solutions of (4.9). The other two solutions, na-
mely (x1, x2, y1) = (1, 2, 4) and (1, 3, 7) which have value 10 and 12 respectively,
represent solutions that are 4-costly. These solutions must be discarded as paths in
the diagram are enumerated.

The basic theorem that justifies top-down compilation is stated below. In the-
ory, a sound diagram can admit paths that represent infeasible solutions, but the
equivalency requirement for RHS states results in feasible solutions only.

Theorem 4. Consider a decision diagram D with layers U1, . . . , Un+1 and problem
(M) with optimal value z∗. Suppose that each node u ∈ Uj of D (j = 1, . . . , n + 1)
is associated with a state (b̄, v), where the root node r is associated with state (b, 0).
Suppose further than for each δj ∈ Sj for which v + cjδj + Lj(b̄) ≤ z∗ + ∆, there is
exactly one arc from u to a node in Ui+1 with state (b′, v′), where b′ is equivalent to
b̄ − Ajδj, b′ ≤ b̄ − Ajδj, and v′ ≤ v + cjδj. Then D is sound for M(∆). Moreover,
every r–t path of D represents a feasible solution of (M).

68

Proof. We begin by showing that for any node u ∈ Uj in D with state (b̄, v), v+Lj(b̄)
is a lower bound on the cost z∗(x(p)) of any r–t path p that contains u. Let δ = x(p).
We know that

min
{ j−1∑
j′=1

cj′δj′ + c[j]x[j] + dy
∣∣∣ A[j]x[j] +By ≥ b−

j−1∑
j′=1

Aj′δj′ , x[j] ∈ S[j], y ≥ 0
}

≤ min
{
cδ + dy

∣∣∣ By ≥ b− Aδ, y ≥ 0
}

= z∗(x(p))

(4.10)
because the minimization problem on the right of the inequality is a restriction of the
one on the left. By construction of the states, we have that

v ≤
j−1∑
j′=1

cj′δj′ and b̄ ≤ b−
j−1∑
j′=1

Aj′δj′

These and (4.10) imply

min
{
v + c[j]x[j] + dy

∣∣∣ A[j]x[j] +By ≥ b̄, x[j] ∈ S[j], y ≥ 0
}
≤ z∗(x(p))

By definition of Lj(b̄), this implies v + Lj(b̄) ≤ z∗(x(p)), as desired.
To show that D is sound, we first show that any ∆-optimal solution x = δ of (M)

is represented by an r–t path p of D. It suffices to show, by induction on layers, that
for each layer Uj, there is an r-u path π for which u ∈ Ui and x(π) = (δ1, . . . , δj−1).
The claim is trivially true for layer U1. We therefore assume that the claim is true
for layer Uj and show that there is an r-u′ path π′ for some u′ ∈ Uj+1 for which
x(π′) = (δ1, . . . , δj). It suffices to show that there is an arc a leaving u with label δj,
because we can let u′ be the node at the other end of a. If (b̄, v) is the state at node u,
we know that setting xj = δj transitions to state (b̄−Ajδj, v+cjδj). As shown above,
the associated bound Lj+1(b̄−Ajδj) satisfies v+cjδj+Lj+1(b̄−Ajδj) ≤ z∗(x(p)). But
since it is given that z∗(x(p)) ≤ z∗ + ∆, we have v + cjδj + Lj+1(b̄−Ajδj) ≤ z∗ + ∆,
and arc a with label δj therefore occurs in D, by construction.

We must now show that every r–t path p in D either represents a ∆-optimal
solution or a ∆-costly solution of (M). We will show that p in fact represents a
feasible solution of (M). Thus if its cost is at most z∗ + ∆, p represents a ∆-optimal
solution, and otherwise it is ∆-costly. This proves the theorem.

Let δ = x(p). We first show that the RHS state b̄ of any node u ∈ Uj on path p
is equivalent to state b−∑j−1

j′=1Aj′δj′ . This is trivially true for j = 1. We therefore
suppose it is true for layer Uj and show that it is true for the node u′ of path p in
layer Uj+1. That is, we wish to show that the RHS state b′ of u′ is equivalent to
state b−∑j

j′=1Aj′δj′ . Because b̄ is equivalent to b−∑j−1
j′=1 Aj′δj′ by the induction

69

hypothesis, we have{
x[j] ∈ S[j]

∣∣ A[j]x[j] +By ≥ b̄ for some y ≥ 0
}

={
x[j] ∈ S[j]

∣∣ A[j]x[j] +By ≥ b−
j−1∑
j′=1

Aj′δj′ for some y ≥ 0
} (4.11)

Also state b′ is equivalent to b̄− Ajδj by construction of D, which means{
x[j+1] ∈ S[j+1]

∣∣ A[j+1]x[j+1] +By ≥ b′ for some y ≥ 0
}

={
x[j+1] ∈ S[j+1]

∣∣ A[j+1]x[j+1] +By ≥ b̄− Ajδj for some y ≥ 0
} (4.12)

To show that state b′ is equivalent to b−∑j
j′=1Aj′δj′ , we show that X1 = X2, where

X1 =
{
x[j+1] ∈ S[j+1]

∣∣∣ A[j+1]x[j+1] +By ≥ b′ for some y ≥ 0
}

X2 =
{
x[j+1] ∈ S[j+1]

∣∣∣ A[j+1]x[j+1] +By ≥ b−
j∑

j′=1

Ajδj for some y ≥ 0
}

Suppose first that x̄[j+1] ∈ X1. Then A[j+1]x̄[j+1] + By′ ≥ b′ for some y′ ≥ 0. Due to
(4.12), this implies

A[j+1]x̄[j+1] +Bȳ ≥ b̄− Ajδj
for some ȳ ≥ 0. This implies Ajδj + A[j+1]x̄[j+1] + Bȳ ≥ b̄, which implies by (4.11)
that

Ajδj + A[j+1]x̄[j+1] +Bŷ ≥ b−
j−1∑
j′=1

Ajδj

for some ŷ ≥ 0. This implies A[j+1]x̄[j+1] +Bŷ ≥ b−∑j
j′=1Ajδj, which means that

x̄[j+1] ∈ X2. A similar argument shows that if x̄[j+1] ∈ X2, then x̄[j+1] ∈ X1, and we
conclude that X1 = X2.

We have shown that the RHS state of any node in Uj on path p is equivalent to

b−∑j−1
j′=1Ajδj. Thus, in particular, the terminal node t has an RHS state b̂ that is

equivalent to b−Aδ. Now consider the node u of p in layer Un, which we may assume
has state (b̄, v). Setting xn = δn at u transitions to the RHS state b̄−Anδn. Since the
corresponding arc occurs in D, b̄−Anδn is equivalent to b̂, which in turn is equivalent
to b− Aδ. We also have from (4.8) that

v + cnδn + Ln(b̄− Anδn) ≤ z∗ + ∆ (4.13)

Now if δ is infeasible, RHS state b − Aδ has no feasible suffixes, which means that
the equivalent state b̄−Anδn has no feasible suffxes. This implies that Ln(b̄−Anδn)
is infinite, which is inconsistent with (4.13). We conclude that δ is feasible, and p
represents a feasible solution.

70

〈8, 0〉

〈8, 0〉

x1 = 0

(∆b,∆v) = (0, 0)

L = 2

〈5, 5〉

1

(-3,5)

4

u 〈2, 10〉

2

(-6,10)

6

〈−1, 15〉

3

(-9,15)

8

〈6, 0〉

x2 = 0

(0,0)

2

1

(-1,4)

5

2

(-2,8)

8

〈2, 5〉

0

(0,0)

4

1

(-1,4)

7

0

(0,0)

6

〈−1, 15〉

0

(0,0)

8

〈−16, 6〉

x3 = 2

(-10,6)

2

3

(-15,9)

0

1

(-5,3)

5

2

(-10,6)

3

3

(-15,9)

1

3

(-15,9)

8

Figure 4.5: A MILP-SDD with z∗ = 2 and ∆ = 6. Although every path through node
u has cost > z∗ + 3, it cannot be eliminated by bounding tests

While this construction yields a valid sound decision diagram for M(∆), it does
not yield a particularly strong bounding test because the RHS state and length state
are updated independently of each other. As an example, consider min{5x1 + 4x2 +
3x3 − y1 : 3x1 + x2 + 5x3 − y1 ≥ 8, x1, x2, x3 ∈ {0, 1, 2, 3}, y1 ≥ 0}. The optimal
solution is (x1, x2, x3, y1) = (0, 0, 3, 7) with value 2. Figure 4.5 shows a reduced sound
decision diagram with ∆ = 6. Here each arc is labeled with the value of xj, the
change in righthand side and objective value (∆b and ∆v respectively), and the lower
bound given by the LP relaxation L = v + cjxj + Lj+1(b−∆b). Now suppose δ = 3;
then every solution through node u has cost at least 6 > z∗ + δ, so we would like to
eliminate it. But the tightest lower bound we can obtain is

w(r, u) + w(u, t) + LP(u) = 10 + 3 + min{−y1 : −y1 ≥ 8− 6− 15} = 0

where w(r, u) is the length of the minimum weight r–u path, and similarly for w(u, t);
since 0 ≤ 5 = z∗ + 3, we cannot eliminate u using the bounding test. Intuitively,
this is because the diagram does not exactly represent the cost of a given path, and
therefore may strictly under-approximate the cost of a given solution. In fact, the
lower bound on z∗ we obtain from the terminal node t (based on its node state) is
−10, which is quite far from the actual optimal value z∗ = 2.

To improve the lower bounds, we change how we define the node state when
multiple arcs lead to the same node. In particular, the RHS state and length state of
a node u ∈ Uj are set to the those resulting from the incoming prefix with the lowest

71

LP-based bound, i.e., the one that minimizes the lower bound v+cjδj +Lj+1(b−Ajδj)
on the cost of any path that goes through u. Intuitively, this corresponds to keeping
track of the “most promising” prefix at each node, in the sense that it has the weakest
corresponding LP-based lower bound among all other prefixes of that node (and
therefore is more likely to extend to a near-optimal solution). Perhaps surprisingly,
this also yields a valid sound decision diagram for M(∆):

Theorem 5. Consider a decision diagram D with layers U1, . . . , Un+1 and problem
(M) with optimal value z∗. Suppose that each node u ∈ Uj of D (j = 1, . . . , n+ 1) is
associated with a state (b̄, v), where the root node r is associated with the state (b, 0).
Suppose further that for each δj ∈ Sj for which v+cjδj+Lj+1(b̄−Ajδj) ≤ z∗+∆, there
is exactly one arc from u to a node u′ ∈ Uj+1 with state (b−A(j+1)δ

∗
(j+1), c(j+1)δ

∗
(j+1)),

where b − A(j+1)δ
∗
(j+1) is equivalent to b̄ − Ajδj and δ∗(j+1) is the prefix of u′ that

minimizes c(j+1)δ(j+1) +Lj+1(b−A(j+1)δ(j+1)). Then D is sound for M(∆). Moreover,
every r-t path of D can be extended to a feasible solution to (M).

Proof. We begin by showing that for any node u ∈ Uj in D with state (b̄, v), v+Lj(b̄)
is a lower bound on the cost z∗(x(p)) of any r-t path p that contains u. Let δ = x(p).
Then by definition of Lj

c(j)δ(j) + Lj(b− A(j)δ(j))

= min
{
c(j)δ(j) + c[j]x[j] + dy | A[j]x[j] +By ≥ b− A(j)δ(j), x[j] ∈ S[j], y ≥ 0

}
≤ min {cδ + dy | By ≥ b− Aδ, y ≥ 0} = z∗(x(p))

because the minimization problem on the right of the inequality is a restriction of
the one on the left. On the other hand, v + Lj(b̄) = c(j)δ

∗
(j) + Lj(b − A(j)δ

∗
(j)) ≤

c(j)δ(j) + Lj(b− A(j)δ(j)) where δ∗(j) by definition minimizes the rightmost expression

among all prefixes δ̂(j) of u. Hence v + Lj(b̄) ≤ z∗(x(p)).
To show that D is sound, we first show that any ∆-optimal solution x = δ of (M)

is represented by an r-t path of D. It suffices to show, by induction on layers, that for
each layer Uj, there is an r-u path π for which u ∈ Ui and x(π) = (δ1, . . . , δj−1). The
claim is trivially true for U1. We therefore assume that the claim is true for layer Uj
and show that there is an r-u′ path π′ for some u′ ∈ Uj+1 for which x(π′) = (δ1, . . . , δj).
It suffices to show that there is an arc a leaving u with label δj, because we can let
u′ be the node at the other end of a.

If (b̄, v) is the state at node u, we know that setting xj = δj transitions to a
state (b′, v′) equivalent to (b̄−Ajδj, v+ cjδj). As shown above, the associated bound
v + Lj+1(b′) ≤ z∗(x(p)). But since it is given that z∗(x(p)) ≤ z∗ + ∆, we have
v + cjδj +Lj+1(b̄−Ajδj) ≤ z∗ + ∆, and therefore arc a with label δj occurs in D, by
construction.

We must now show that every r-t path p in D either represents a ∆-optimal
solution or a ∆-costly solution of (M). We will show that p in fact represents a

72

feasible solution of (M). Thus if its cost is at most z∗ + ∆, p represents a ∆-optimal
solution, and otherwise it is ∆-costly. This proves the theorem.

Let δ = x(p). We first show that the RHS state b̄ of any node u ∈ Uj on path p is
equivalent to b − A(j)δ(j). This is trivially true for j = 1. We therefore suppose it is
true for layer Uj and show that it is true for the node u′ of path p in layer Uj+1. That
is, we wish to show that the RHS state b′ of u′ is equivalent to state b−A(j+1)δ(j+1).
Notationally, we want to show Xj+1(b′) = Xj+1(b− A(j+1)δ(j+1)), where

Xj(b̄) =
{
x[j] ∈ S[j] | A[j]x[j] +By ≥ b̄ for some y ≥ 0

}
is the set of “feasible suffixes” of a node in layer Uj with RHS state b̄.

Because b̄ is equivalent to b−A(j)δ(j) by the induction hypothesis, we have Xj(b̄) =
Xj(b−A(j)δ(j)). This implies that Xj+1(b̄−Ajξj) = Xj+1(b−A(j)δ(j)−Ajξj) for any
ξj corresponding to an outgoing arc of u, because they are precisely the suffixes
in each set whose first component is ξj. In particular, we have Xj+1(b̄ − Ajδj) =
Xj+1(b − A(j)δ(j) − Ajδj) = X(j+1)(b − A(j+1)δ(j+1)). Also state b′ is equivalent to
b̄ − Ajδj by construction of D, which means Xj+1(b′) = X(j+1)(b̄ − Ajδj). Together
these imply X(j+1)(b

′) = X(j+1)(b− A(j+1)δ(j+1)).
We have shown that the RHS state of any node in Uj on path p is equivalent

to b − A(j)δ(j). Thus, in particular, the terminal node t has an RHS state b̂ that is
equivalent to b−Aδ. Now consider the node u of p in layer Un, which we may assume
has state (b̄), v). Setting xn = δn at u transitions to the RHS state b̄−Anδn. Since the
corresponding arc occurs in D, b̄−Anδn is equivalent to b̂, which in turn is equivalent
to b− Aδ. We also have from the bounding test that

v + cnδn + Ln(b̄− Anδn) ≤ z∗ + ∆

Now if δ is infeasible, RHS state b−Aδ has no feasible suffixes, which means that the
equivalent state b̄ − Anδn has no feasible suffixes. This implies that Ln(b̄ − Anδn) is
infinite, which is inconsistent with the bounding test. We conclude that δ is feasible,
and p represents a feasible solution.

4.7.3 Sound Reduction

Similar to the ILP case, we can define a notion of sound reduction for MILP. Spe-
cifically, given distinct nodes u 6= v ∈ Uj, we say that we reduce node u into node
v when we redirect all incoming arcs of u to v, remove all outgoing arcs of u, and
remove u. We say that we can sound-reduce u into v when we can reduce u into v
while maintaining the soundness property of the diagram, i.e.,

1. (Preservation) The reduction does not eliminate any ∆-optimal solutions (i.e.,
feasible solutions with cost at most z∗ + ∆).

73

2. (Validity) The reduction does not introduce any ∆-fake solutions (i.e., infeasible
solutions with cost less than or equal to z∗ + ∆).

Note that the validity condition is equivalent to ensuring that every newly introduced
solution is either ∆-optimal or ∆-costly (i.e., has cost greater than z∗ + ∆).

The following theorem, which generalizes Theorem 2 from [HS17], gives necessary
and sufficient conditions for sound-reducing one node into another node in fairly
general terms:

Theorem 6. Suppose we have a sound decision diagram containing nodes u 6= v ∈ Uj
for some j. Then u can be sound-reduced into v if and only if

min
π∈Pre(u)

σ∈Suf(u)	Suf(v)

{
c(j)x(π) + c[j]x(σ) + LPy(x(π, σ))

}
> z∗ + ∆

where Pre(u) is the set of prefixes of u, Suf(u) is the set of suffixes of u, 	 denotes
symmetric difference (i.e., A	B := (A \B) ∪ (B \ A)), and

LPy(x) = min
y≥0
{dy : By ≥ b− Ax}

Proof. We will show that the stated condition is equivalent to the combination of the
preservation and validity conditions.

(Preservation): The solutions which are eliminated as a result of reduction are
precisely those consisting of a prefix of u together with a suffix of u that is not a
suffix of v, i.e., x(π, σ) such that π ∈ Pre(u) and σ ∈ Suf(u) \ Suf(v). To say that no
such solutions are ∆-optimal is equivalent to saying that all such solutions have cost
greater than z∗ + ∆ (since infeasible solutions have cost +∞ due to the LPy term
and therefore always have cost greater than z∗ + ∆), i.e.,

min
π∈Pre(u)

σ∈Suf(u)\Suf(v)

{
c(j)x(π) + c[j]x(σ) + LPy(x(π, σ))

}
> z∗ + ∆

(Validity): The solutions which are created as a result of reduction are precisely
those consisting of a prefix of u that is not a prefix of v, together with a suffix of v that
is not a suffix of u, i.e., x(π, σ) such that π ∈ Pre(u)\Pre(v) and σ ∈ Suf(v)\Suf(u).
By construction of the decision diagram, Pre(u) ∩ Pre(v) = ∅, so it is equivalent to
consider π ∈ Pre(u). Furthermore such an x(π, σ) cannot be ∆-optimal, since this
would imply that the diagram prior to sound-reduction was not sound (since it was
missing this newly created ∆-optimal solution), contrary to assumption. Hence it is
equivalent to ensure that all such x(π, σ) has cost greater than z∗ + ∆, i.e.,

min
π∈Pre(u)

σ∈Suf(v)\Suf(u)

{
c(j)x(π) + c[j]x(σ) + LPy(x(π, σ))

}
> z∗ + ∆

Combining the two conditions gives us the stated condition.

74

The relationship to Theorem 2 becomes clearer when we note that the preservation
condition can also be stated as

Suf∆(u) ⊆ Suf(v)

where Suf∆(u) denotes the set of suffixes of u that are part of some ∆-optimal solution.
To see why, note that the solutions which are eliminated as a result of reduction are
precisely those involving suffixes of u that are not suffixes of v, and the set of such
suffixes with cost at most z∗ + ∆ is precisely Suf∆(u) \ Suf(v). To say that this set
is empty is equivalent to saying that Suf∆(u) ⊆ Suf(v).

The following corollaries of Theorem 6 provide more concrete sufficient conditions
for sound reduction:

Corollary 3. Suppose we have a sound decision diagram containing nodes u 6= v ∈ Uj
for some j. Suppose we have a function f : Rn → R such that

f(x) ≤ cx+ LPy(x) for all xj ∈ Sj, j = 1, . . . , n

Then the following is a sufficient condition for sound-reducing u into v:

min
π∈Pre(u)

σ∈Suf(u)	Suf(v)

f(x) > z∗ + ∆

In particular, if f(x) =
∑n

i=1 fi(xi) for fi : R→ R (i.e., f(x) is separable), then the
sufficient condition can be written as

min
π∈Pre(u)

∑
i∈(j)

fi(x(π)) + min
σ∈Suf(u)	Suf(v)

∑
i∈[j]

fi(x(σ)) > z∗ + ∆

Proof. Since f(x) is a lower bound on cx + LPy(x), the stated condition is even
stronger than the condition of theorem 6.

Corollary 4. Let F := {λ : BTλ ≤ d, λ ≥ 0}. Then for any λ ∈ F , the following is
a sufficient condition for sound-reducing u into v:

(c− λTA)x(π, σ) + λT b > z∗ + ∆ ∀π ∈ Pre(u), σ ∈ Suf(u)∆ Suf(v)

Proof. We first show that F is non-empty, and therefore such λ’s do exist. As such,
suppose for contradiction that F is empty, i.e., the system of inequalities BTλ ≤
d, λ ≥ 0 is infeasible. By general theorems of alternative (e.g., [Gal89]), this implies
the existence of r ≥ 0 such that Br ≥ 0 and dT r < 0. By assumption, (M) has an
optimal solution (x∗, y∗) with some finite optimal value. Then for any t > 0,

Ax∗ +B(y∗ + tr) = Ax∗ +By∗ + tBr ≥ b y∗ + tr ≥ 0

cx∗ + d(y∗ + tr) = cx∗ + dy∗ + t · dr < cx∗ + dy∗

75

and therefore y∗ + tr is a feasible solution of (M) with lower objective value than
(x∗, y∗), a contradiction.

We now proceed with the proof. By LP duality and the non-emptiness of F ,

cx+ LPy(x) = cx+ min
y
{dy : By ≥ b− Ax, y ≥ 0}

= cx+ max
λ
{λT (b− Ax) : BTλ ≤ d, λ ≥ 0}

= cx+ max
λ
{λT (b− Ax) : λ ∈ F}

≥ cx+ λT (b− Ax) = (c− λTA)x+ λT b ∀λ ∈ F
Hence, (c− λTA)x+ λT b ≤ cx+ LPy(x) for all feasible x, and the result follows from
corollary 3.

Suppose the suffixes of u and v all exist as paths in the diagram with arc weights
given by f(x) = (c − λTA)x + λT b, and for every node u the minimum cost path
from u to the terminal node t is known and given by w(u, t). Then this test can be
implemented reasonably efficiently by recursively computing the least cost-differing
suffix LCDSj(u, v), defined as the minimum cost suffix of u that is not a suffix of v,
using the following recursion:

LCDSn+1(u, v) = +∞

LCDSj(u, v) = (c− λTA)jxj + min
a=(u,u+)

{
LCDSj+1(u+, v+) ∃a′ = (v, v+) s.t. `(a) = `(a′)

λT b+ w(u+, t) otherwise

where a = (u, u+) is an outgoing arc of u with head node u+, a′ = (v, v+) is an
outgoing arc of v with head node v+, and `(a) and `(a′) are the labels (i.e., the value
assigned to xj when traversing the arc) of arcs a and a′ respectively.

Lemma 4. Suppose we have a sound decision diagram containing nodes u 6= v ∈ Uj
for some j. Let α(u) be the minimum cost among all prefixes of u and let βi(u) be
the weakest RHS value of constraint i among all prefixes of u, i.e.,

α(u) = min
π∈Pre(u)

c(j)x(π), βi(u) = max
π∈Pre(u)

A(j),ix(π) ∀i

and let β(u) = (β1(u), . . . , βm(u)) be the vector of βi(u)’s. Then the following is a
sufficient condition for sound-reduction u into v:

α(u) + min
σ∈Suf(u)	Suf(v)

y≥0

{
c[j]x(σ) + dy : A[j]x(σ) +By ≥ b− β(u)

}
> z∗ + ∆

Proof. Observe that

min
π∈Pre(u)

σ∈Suf(u)\Suf(v)

{
c(j)x(π) + c[j]x(σ) + LPy(x(π, σ))

}
≥ min

π∈Pre(u)

{
c(j)x(π)

}
︸ ︷︷ ︸

=α(u)

+ min
π∈Pre(u)

σ∈Suf(u)\Suf(v)

{
c[j]x(σ) + LPy(x(π, σ))

}
,

76

where

min
π∈Pre(u)

σ∈Suf(u)\Suf(v)

{
c[j]x(σ) + LPy(x(π, σ))

}
= min

π∈Pre(u)
σ∈Suf(u)\Suf(v)

y≥0

{
c[j]x(σ) + dy : By ≥ b− A(j)x(π)− A[j]x(σ)

}
≥ min

σ∈Suf(u)\Suf(v)
y≥0

{
c[j]x(σ) + dy : A[j]x(σ) +By ≥ b− β(u)

}
.

Thus the lefthand side of the stated condition is a lower bound on cx + LPy(x) and
the result follows from corollary 3.

4.7.4 Identifying Equivalent States

In general, it is an NP-hard problem to check whether two RHS states are equivalent.
We therefore develop some easily checked sufficient conditions for equivalence that
can be used in practice. For this purpose, it is convenient to associate with each
RHS state b̄ an equivalency range [φ(b̄), ψ(b̄)], where φ(b̄) = (φ1(b̄), . . . , φm(b̄)) and
ψ(δ) = (ψ1(b̄), . . . , ψm(b̄)). An equivalency range is actually a tuple of m ranges, and
we say that b̂ ∈ [φ(b̄), ψ(b̄)] when b̂i ∈ [φi(b̄i), ψi(b̄i)] for all i. The equivalency range
has the property that every b̂ ∈ [φ(b̄), ψ(b̄)] is an equivalent RHS state for (4.6). The
range may not be maximal with respect to this property, and in fact it is generally
hard to compute a maximal range. Nonetheless, we will see that nonmaximal ranges
can be useful in practice.

As an example, we identified for problem instance (4.9) the equivalency range [ε, 3]
in layer U2. Since there is only one constraint, the range is a single interval. Thus
[φ(b̄), ψ(b̄)] = [ε, 3] for any b̄ ∈ [ε, 3]. This is a maximal equivalency range.

Whenever a RHS state b̄ is created in layer j, we check whether b̄ belongs to an
equivalency range that has already been created. If not, we create an equivalency
range [φ(b̄), ψ(b̄)]. Because it is difficult to analyze equivalency ranges for an entire
constraint set, we seek rules that allow us to derive them from equivalency ranges
for individual constraints or small subsets of constraints. Let I index a subset of the
constraints (4.6), and let b̄I be the corresponding RHS. We will say that subset I is
separable if the problem of finding equivalency ranges for the entire constraint set can
be decomposed into finding ranges for I and its complement I ′ separately. That is,
if RI is an equivalency range for I, and RI′ an equivalency range for the remainder
of the constraint set, then (RI , RI′) is an equivalency range for the entire constraint
set. The following will be a basic tool for this type of analysis

Lemma 5. If subset I of the constraints (4.6) have no continuous variables in com-
mon with the set I ′ of the remaining constraints, then I is separable.

77

Proof. Let S(b̄I) be the set of feasible suffixes for subset I of constraints (4.6)
and RHS state b̄I in layer Uj. Let RI be an equivalency range for I, and similarly
for RI′ . We wish to show that R = (RI , RI′) is an equivalency range for I ∪ I ′. We
therefore show that for any two states b̄, b̂ ∈ R, S(b̄) = S(b̂). For this it suffices to
show that if x[j] ∈ S(b̄) then x[j] ∈ S(b̂), because the converse follows by symmetry.

Because b̄, b̂ ∈ R, we have b̄I , b̂I ∈ RI and b̄I′ , b̂I′ ∈ RI′ , which implies S(b̄I) = S(b̂I)
and S(b̄I′) = S(b̂I′). So since x[j] ∈ S(b̄) ⊂ S(b̄I), we have x[j] ∈ S(b̂I), which means
that

AI[j]x[j] +BIy ≥ b̄I (4.14)

for some y ≥ 0. Here AI consists of the rows of A corresponding to constraint set I,
and similarly for BI . Since x[j] ∈ S(b̄) ⊂ S(b̄I′), we have x[j] ∈ S(b̂I′), which means
that

AI
′

[j]x[j] +BI′y ≥ b̄I′ (4.15)

for some y ≥ 0. Since (4.14) and (4.15) have no continuous variables in common,
we can partition y into tuples y′, y′′ so that (4.14) contains only variables in y′ and
(4.15) contains only variables in y′′. Thus (4.14) and (4.15) simultaneously hold for
some y = (y′, y′′). This implies that (4.6) holds for some y ≥ 0, so that x[j] ∈ S(b̂),
as desired. �

We immediately infer

Corollary 5. A constraint that contains no continuous variables is separable.

We can therefore analyze separately each constraint i that contains only integer
variables. A maximal equivalency range for such a constraint can be computed within
the decision diagram framework, but this incurs a substantial computational burden.
We therefore use a simple rule. When all coefficients of the integer variables in
constraint i are nonnegative and b̄i ≤ 0, then the constraint is necessarily satisfied by
all suffixes, and the same is true if b̄i is replaced by any nonpositive RHS. We therefore
have an equivalency range [φi(b̄i), ψi(b̄i)] = [−∞, 0]. Similarly, if all coefficients of
integer variables are nonpositive and b̄ ≥ 0, we have the equivalency range [0,∞].

We can also derive a rule for a subset I of constraints that have continuous vari-
ables, provided none are shared with other constraints. Suppose every component of
BIy can go to infinity simultaneously, for suitably chosen y ≥ 0. Then the constraints
in I are satisfiable by every suffix, because the left-hand side can be made arbitrarily
large without changing the values of the integer variables. To check whether BIy is
unbounded in all components, we solve the LP

max
{
β
∣∣ βe ≤ BIy, y ≥ 0

}
(4.16)

where e is a tuple of |I| ones.

Corollary 6. Suppose I indexes a subset of constraints (4.6) that share no continuous
variables with other constraints. If (4.16) is unbounded, then [−∞,∞] is a equivalency

78

range for the constraints indexed by I, where ∞ denotes a tuple (∞,∞) of length
|I|. The constraints indexed by I can be ignored when computing equivalency ranges
for the entire constraint set (4.6).

The constraints can be ignored because they are separable (by Lemma 5) and have
an equivalency range that places no restriction on the RHS.

We next state a simple rule for a constraint set that may share continuous variables
with other constraints.

Lemma 6. If a continuous variable yj′ has a negative coefficient in no constraint of
(4.6), then the subset I of constraints that contain yj′ with a positive coefficient have
the equivalency range [−∞,∞]. These constraints can be ignored when computing
equivalency ranges for (4.6).

This is because the left-hand sides of the constraints indexed by I can go to infinity
simultaneously without affecting any constraints outside I.

If the decision diagram grows too large despite these rules for detecting equivalent
RHS states, an additional strategy is available. If the equivalency ranges of two RHS
states differ in one or more components, then we can add an artificial variable y0

(with a coefficient of one) to the constraints corresponding to these components. We
also introduce the term My0 to the objective function of (M), where M is a large
positive number. We refer to this procedure as dualizing the constraints. This may
introduce infeasible solutions to the sound diagram, but they will be screened out
when ∆-optimal solutions are extracted from the diagram.

Corollary 7. Dualized constraints can be ignored when computing equivalency ranges
for the entire constraint set. Moreover, for sufficiently large M , any path of the re-
sulting decision diagram that represents a solution in violation of a dualized constraint
will have cost greater than z∗ + ∆.

Proof. Suppose I indexes the dualized constraints. Since these are precisely
the constraints that contain y0, Lemma 6 implies that they can be ignored when
computing equivalency ranges. Now let p be any path in the decision diagram for
which x̄ = x(p) violates one or more constraints indexed by I. Add the term My0 to
the objective function of the LP in (4.4), which defines the cost of p. For sufficiently
large M , any basic solution with positive y0 of this LP will have value greater than
z∗ + ∆. The cost of p therefore exceeds z∗ + ∆. �

Naturally, no more constraints should be dualized than necessary to obtain a de-
cision diagram of reasonable size, because dualization results in a larger number of
spurious solutions that must be discarded. In addition, nodes with the same RHS
state (due to dualization) should not be identified unless necessary, because identi-
fication of nodes results in smaller length states and therefore a stronger bounding
test for discarding undesirable solutions.

79

4.7.5 Bottom-Up Processing

A sound diagram can generally be simplified in a bottom-up pass, because at this
point an entire diagram is at hand. The first step is to obtain a reduced diagram,
using well-known methods [Bry86; Ber+16]. This is followed by arc deletion and then
by contraction.

Arc deletion is more effective than in the top-down pass, because the bounding test
at a node is stronger when we know all paths to the terminus as well as all paths from
the root. We associate a top-down state (∆b↓, v↓) and a bottom-up states (∆b↑, v↑)
with each node u. The top-down RHS state ∆b↓ reflects how much the RHS must
be changed due to variables fixed along paths from r to u, while the bottom-up RHS
state reflects how variables are fixed along paths from u to t. We compute (∆b↓, v↓)
recursively in a top-down fashion as follows. At r, we have (∆b↓, v↓) = (0, 0). Let δqj
for q ∈ Q be the labels of arcs coming into u, and let (∆bq↓, v↓q) be the corresponding
states of nodes from which the arcs come. Then the state (∆b↓, v↓) at node u is given
by

∆b↓i = min
q∈Q

{
∆bq↓i − Aijδq

}
, all i; v↓ = min

q∈Q

{
v↓q + cjδq

}
To check whether an arc a from node u ∈ Uj to node u′ can be deleted, let (∆b↓, v↓)

be the top-down state at node u, and (∆b↑, v↑) the bottom-up state at node u′. Let
δj be the label of a. Solve an LP to compute the bound

LP = min
{
dy
∣∣ By ≥ b+ ∆b↓ − Ajδj + ∆b↑, y ≥ 0

}
(4.17)

Then arc a can be deleted if it satisfies the bounding test

LP + v↓ + cjδj + v↑ > z∗ + δ (4.18)

because, in this case, arc a can be part of no ∆-optimal solution.
As an example, Fig. 4.6(a) shows the sound diagram generated as above for pro-

blem (4.9) with ∆ = 5. The top-down and bottom-up state at each node are indicated.
The arc with label x1 = 2 satisfies the bounding test (4.18) and can be deleted. The
remaining arcs fail the test. The resulting sound diagram appears in Fig. 4.6(b).

Theorem 7. Soundness is preserved by deleting arcs that satisfy test (4.18).

Proof. Let a be an arc that satisfies test (4.18), where a connects node u ∈ Uj
with node u′ ∈ Uj+1. It suffices to show that any path p that contains a has cost
greater than z∗ + ∆. Let (∆b↓, v↓) be the top-down state at u, and (∆b↑, v↑) the
bottom-up state at u′. Let δ = x(p), so that cδ is the length of p. The cost of p is

z∗(x(p)) = cδ + min
{
dy
∣∣ By ≥ b− Aδ, y ≥ 0

}
(4.19)

By definition of the states, v↓ + cjδj + v↑ ≤ cδ and b + ∆b↓ − Ajδj + ∆b↑ ≤ b − Aδ.
This and (4.19) imply that z∗(x(p)) ≥ v↓+ cjδj +v↑+ LP > z∗+ ∆, where the second

80

tr (∆b↓,v↓) = (0,0)
(∆b↑,v↑) = (−5,5)

..

x1 = 0 ...

1
..

2

LP = min{−y1 | − y1 ≥−1, y1 ≥ 0}=−1
LP+0+8+5 > 10 = z∗+∆t(∆b↓,v↓) = (−2,0)

(∆b↑,v↑) = (−3,5)
...

x2 = 1
LP = min{−y1 | − y1 ≥−2, y1 ≥ 0}=−2
LP+0+5+0≤ 10 = z∗+∆

t
(∆b↓,v↓) = (−5,5)
(∆b↑,v↑) = (0,0)

t
(a)

tr..

x1 = 0 ...

1

t...

x2 = 1

t
t

(b)

Figure 4.6: (a) Sound diagram for problem (4.9) with ∆ = 5, showing top-down and
bottom up states at each node, and the bounding test for two of the arcs. (b) Sound
diagram after arc deletion.

inequality follows from the fact that a satisfies test (4.18). Path p therefore has cost
greater than z∗ + ∆. �

Arc contraction is another device that may simplify a sound diagram, but it differs
in that it introduces long arcs into the diagram. An arc a is a long arc when it skips
layers, meaning that it runs from a node in Uj to node in Uk with j + 1 < k. A
long arc represents multiple variable assignments, namely assignments of the form
(xj, xj+1, . . . , xk−1) = (xj(a), δj+1, . . . , δk−1) for all (δj+1, . . . , δk−1) ∈ Sj+1×· · ·×Sk−1.
Other types of long arcs occur in zero-suppressed and one-suppressed diagrams, and
the contraction procedure given here can be modified for these types of diagrams.

Because arc contraction can be applied repeatedly, it must be defined for a diagram
that may already have long arcs. Suppose that all the arcs leaving node u lead to the
same node u′, and let `(a) be the length of arc a. The arcs {aq | q ∈ Q} leaving u
are contracted by shrinking them to a point, which means that any arc a from a node
û ∈ Ui to u becomes a longer arc a′ from û to u′. The longer arc a′ has the same
label xi(a) but has length `(a) + minq∈Q{`(aq)}. The node u and the arcs leaving it
are deleted (Fig. 4.7).

Arc contraction can introduce additional paths to the decision diagram, but it
preserves soundness when these paths have cost greater than z∗ + ∆. To assess their
cost, we define top-down and bottom-up states essentially as before for nodes u and u′

and define LP as in (4.17). The top-down states are computed recursively as follows.
Let {aq | q ∈ Q} be the arcs coming into node u. Let uq ∈ Uj(uq) be the node from
which arc aq originates, and let (∆b↓(uq), v

↓(uq)) be the top-down state of u. Let
δqj = xj(aq). Then the root node has state (0, 0), and the state (∆b↓, v↓) of node u is
given by

∆b↓i = min
q∈Q

{
∆b↓i (uq)− αiq

}
, all i; v↓ = min

q∈Q

{
v↓(uq) + `(aq)

}
81

t..

tû ∈Ui
..

a

tu ∈U j...

a1

...

a2

t
u′ ∈Uk

(a)

t..

tû ∈Ui
...

a′

t
u′ ∈Uk

(b)

Figure 4.7: Contraction of arcs a1 and a2. (a) Before contraction. (b) After con-
traction.

The reduction αiq in the RHS is defined by

αiq = Aij(uq)δqj + max
δ′∈S′

{ j−1∑
j′=j(uq)+1

Aij′δ
′
j′

}
where S ′ = Sj(uq)+1 × · · · × Sj−1. The bottom-up states are similarly defined.

Now assume that all the arcs leaving u ∈ Uj arrive at u′ ∈ Uk. To check whether
these arcs can be contracted, we let S̄j be the set of values in Sj that do not occur as
labels on the arcs leaving u. Let (b↓, v↓) be the top-down state at u and (b↑, v↑) the
bottom-up state at u′. For each δj ∈ S̄j, we solve the LP problem

LP(δj) = min
{
dy
∣∣ By ≥ b+ ∆b↓ − α(δj) + ∆b↑, y ≥ 0

}
The RHS reduction α(δj) is given by

αi(δj) = Aijδj + max
δ′∈S′

{ k−1∑
j′=j+1

Aij′δ
′
j′

}
, all i

where S ′ = Sj+1× · · · ×Sk−1. Let a(δj) be the missing arc from u to u′ with label δj.
The arcs from u to u′ can be contracted if the following holds:

LP(δj) + v↓ + `(a(δj)) + v↑ > z∗ + δ, all δj ∈ S̄j (4.20)

The condition is vacuously satisfied if all possible arcs from u are present, because in
this case S̄j is empty.

The proof of the following is similar to the proof of Theorem 7.

Theorem 8. Soundness is preserved by contracting the arcs that connect two nodes
u and u′, provided all the arcs leaving u arrive at u′, and (4.20) is satisfied.

82

tr..

x1 = 0 ...

1

tu
...

x2 = 1

u′ = t
t

(a)

tr (∆b↓,v↓) = (0,0)
(∆b↑,v↑) = (−4,5)

..

x1 = 0 ...

1

tu
(∆b↓,v↓) = (−1,0)
(∆b↑,v↑) = (−3,5)

.............
.............

.............
.............
.............
.............
.............

.............
.............

.............

δ2 = 0
a(0)

LP(δ2) = ∞

...

1

.............
.............
.............
.............
.............
.............
.............
.............

.............
....

2
a(2)

−4

.............
.............

.............
.............
.............
.............
.............

.............
.............

.............
.............

3
a(3)

−7

u′ = t
t (∆b↓,v↓) = (−4,5)

(∆b↑,v↑) = (0,0)

(b)

Figure 4.8: (a) Sound diagram for problem (4.9) with ∆ = 4. (b) Contraction test
for 3 arcs (dashed lines). Only arc a(0) satisfies the test, and there is no contraction.

As an example, consider the sound diagram in Fig. 4.6(b) for ∆ = 5, reproduced in
Fig. 4.8(a). We wish to determine whether the arc from u to u′ = t can be contracted.
Figure 4.8(b) shows the same diagram with the missing arcs from u to u′ added as
dashed lines. These are the arcs a(0), a(2), a(3) with labels in S̄2 = {0, 2, 3}. The
states are shown, as well as LP(δ2) for each δ2 ∈ S̄2. Arc a(0) clearly satisfies the
inequality in (4.20), because LP(0) = ∞. However, arc a(2) violates the inequality,
because

LP(2) + v↓ + `(a(2)) + v↑ = −4 + 0 + 10 + 0 = 6 ≤ 10 = z∗ + ∆

Arc a(3) likewise violates the inequality, and the existing arc from u to u′ cannot be
contracted.

4.7.6 Using the MIP Solver Solution Pool

So far, we have presented a method for performing post-optimality analysis for MILP
problems that only requires the optimal objective value z∗ to be given (in addition
to the problem data), which requires us to generate the set of near-optimal soluti-
ons. However, some modern MIP solvers like CPLEX and Gurobi can generate an
exhaustive list of the set of near-optimal solutions [IBM19; Opt19] via the solution
pool feature using algorithms like the one-tree method of [Dan+07]. In these cases,
multiple solutions are often generated only with respect to the discrete variables, i.e.,
two solutions which have the same value for the discrete variables but different values
for the continuous variables are considered equivalent. We can leverage the solution
pool feature by using the solver to generate the set of near-optimal solutions. This
allows us to focus only on the task of representing the set of near-optimal solutions
as compactly as possible.

83

We associate each feasible assignment to the integer variables with its best at-
tainable objective value. This can now be treated as a set of feasible solutions to
an integer nonlinear programming problem (in particular, the objective is piecewise-
linear and convex) together with its objective value, which is closer to the setting of
[HS17]. The arc weights are set according to the canonical arc cost calculation of
[Hoo13], which in general results in arc weights that are non-separable, i.e., two arcs
with the same label in the same layer may have different associated weights.

More formally, recall that we have a MILP problem

min{cx+ dy | Ax+By ≥ b, x ∈ S, y ≥ 0} (M)

with optimal value z∗, and we pick some tolerance ∆ ≥ 0. Note that by first fixing
the discrete variables, (M) can equivalently be written as

(M) = min
x

{
cx+ min

y
{dy : By ≥ b− Ax, y ≥ 0}

∣∣∣∣ x ∈ S} = min
x
{Λ(x) | x ∈ S}

where

Λ(x) = cx+ min
y
{dy : By ≥ b− Ax, y ≥ 0} (4.21)

= cx+ max
λ
{λT (b− Ax) : BTλ ≤ d, λ ≥ 0} (4.22)

and therefore Λ(x) is a convex piecewise-linear function (since it is the sum of a linear
function and a maximum of affine functions). Thus (M) can equivalently be written
as a pure integer nonlinear program with a convex piecewise-linear objective. Since
this formulation only has integer variables, the theory from [HS17] extends almost
directly with three major differences:

1. In [HS17] the objective function is linear and, more importantly, separable,
which enables the compilation of separable (sound) decision diagrams (i.e., arcs
with the same label in the same layer have the same cost). In our case, the
objective function is no longer separable and in general we can only compile
non-separable (sound) decision diagrams (i.e., arcs with the same label in the
same label may have different costs).

2. In [HS17], the cost of an arc in layer j with label a directly corresponds to
the coefficient of xj in the objective, which allows them to do some limited
sensitivity analysis. In our case, we determine the arc costs canonically based
on the path weights according to [Hoo13], and therefore we lose the direct
connection between arc costs and objective function coefficients.

3. In [HS17], the cost of any path added as a result of sound reduction is also equal
to the cost of its corresponding solution. In our case, the cost of paths added
as a result of sound reduction are based on canonical arc costs of the original

84

set of paths, and therefore have no relation with the cost of the corresponding
solutions of those added paths. However, soundness is still maintained, since
sound reduction only adds ∆-costly paths which can be filtered out based on
cost. Nevertheless, we can no longer guarantee minimality of the sound diagram
for M(∆).

We now describe our method in more detail. First, we ask the MIP solver, typically
using the Solution Pool feature, to generate M(∆) (i.e., the set of all ∆-optimal
solutions of (M)). The MIP solver then returns us these solutions in the form of
tuples (x,Λ(x)), where x is feasible to (MIP) and Λ(x) is defined as before and
satisfies Λ(x) ≤ z∗ + ∆.

Next we compile a decision diagram that exactly represents M(∆). This can
be done using the framework of [Hoo13]. Namely, we first create a tree containing
precisely the paths in M(∆) and we assign the cost Λ(x) to the arc in the last layer
of each corresponding path. Then we modify the arc costs layer by layer according
to the following procedure:

Algorithm 3 Converting arc costs to canonical arc costs

for i = n− 1, n− 2, ..., 2 do
for all node u on layer i do

Let cmin = minu′∈Uout{cuu′} . Uout is the set of child nodes of u
for all u′ ∈ Uout do

Let cuu′ ← cuu′ − cmin

end for
for all u′ ∈ Uin do . Uin is the set of parent nodes of u

Let cu′u ← cu′u + cmin

end for
end for

end for

It is known that the decision diagram created in this way is the smallest possible
decision diagram that exactly represents M(∆), though it obviously may not be the
smallest possible sound decision diagram for M(∆).

Finally, we apply sound reduction of nodes as many times as possible. The LCDS
scheme from [HS17] works with one major difference: since the arc costs are not
separable, we must check that both the label and the weight are the same before
recursing. The recursion is therefore stated as follows:

LCDSn+1(u, v) = +∞

LCDSj(u, v) = min
a=(u,u+)

w(a) +

LCDSj+1(u+, v+) ∃a′ = (v, v+) s.t.
`(a) = `(a′)

w(a) = w(a′)

w(u+, t) otherwise

85

where LCDSj(u, v) is the minimum cost of a suffix of u that is not a suffix of v, w(a)
and `(a) are the weight and label of arc a, (u, u+) is an outgoing arc of u, and (v, v+)
is an outgoing arc of v.

4.8 Performing Post-Optimality Analysis

The most basic post-optimality task is to retrieve all feasible solutions whose cost is
within a given distance of the optimal cost. That is, we wish to retrieve all δ-optimal
solutions from a diagram D that is sound for M(∆) for a desired δ ∈ [0,∆]. This is
accomplished by enumerating the paths in a bottom-up pass while filtering out paths
that have high cost. It is also easy to impose additional constraints on the solutions
that we want to retrieve during enumeration since in bottom-up passes we have access
to the whole path.

Another task the sound decision diagram supports is to determine the values that
a given variable can take such that the resulting minimum cost is within δ of the
optimum. We refer to this as the δ-optimal domain of the variable. To calculate the
δ-optimal domain for a variable xj, we need only scan the arcs leaving layer j and
observe which ones are part of at least one path with cost at most z∗ + ∆; this can
be done by precomputing the shortest r–u and u–t path for every node u.

4.9 Computational Experiments

While we performed preliminary testing for all of the methods proposed, the only
one that is scalable to larger instances is the method from Section 4.7.6 where we use
the MIP solver to generate the ∆-optimal solutions; thus, we only present structured
computational results for this method. We selected 30 MILP instances from the
MIPLIB2017 benchmark which were classified as “easy” instances, had at least one
continuous variable, and had the smallest number of discrete variables. Table 4.1 lists
the MIPLIB instances used and some of their characteristics.

We used CPLEX 12.8.0 to generate the near-optimal solutions, where we used the
Solution Pool feature [10] to exhaustively enumerate all solutions within ∆̂ percent

of the optimal value (i.e., ∆ = ∆̂|z∗|), up to a maximum of 2,000,000,000 unique
solutions. We imposed a time limit of 6 hours on the solution generation procedure
and used a server with 16 cores and 125GB of memory. We conducted the experiment
in three phases:

1. For the 30 instances, generate a sound decision diagram for M(0) (i.e., only
the optimal solutions). Most problems either have a single optimal solution,
in which case the sound reduction is trivial. But for some problems, CPLEX
cannot generate all optimal solutions within the 6 hour time limit. We found 7
such models and we exclude them from further testing. The results are shown
in Table 4.2, Figure 4.9, and Figure 4.10.

86

InstanceName BinVar IntVar CntVar Constr ObjVal
markshare 4 0 30 0 4 4 1.000
istanbul-no-cutoff 30 0 5252 20346 204.0817
fastxgemm-n2r6s0t2 48 0 736 5998 230.0000
neos5 53 0 10 63 15.0000
pk1 55 0 31 45 11.0000
neos-2978193-inde 64 0 20736 396 -2.3881
dano3 3 69 0 13804 3202 576.3446
pg5 34 100 0 2500 225 -14339.3535
pg 100 0 2600 125 -8674.3426
neos-1122047 100 0 5000 57791 161.0000
rmatr100-p10 100 0 7259 7260 423.0000
dano3 5 115 0 13758 3202 576.9249
assign1-5-8 130 0 26 161 212.0000
map10 146 0 164401 328818 -495.0000
map16715-04 146 0 164401 328818 -111.0000
mas74 150 0 1 13 11801.1857
mas76 150 0 1 12 40005.0540
n5-3 0 150 2400 1062 8105.0000
binkar10 1 170 0 2128 1026 6742.1999
timtab1 77 94 226 171 764772.0000
cost266-UUE 171 0 3990 1446 25148940.5600
mad 200 0 20 51 0.0268
graphdraw-domain 180 20 54 865 19686.0000
rmatr200-p5 200 0 37616 37617 4521.0000
supportcase12 0 200 799416 166781 -7559.5331
mik-250-20-75-4 75 175 20 195 -52301.0000
exp-1-500-5-5 250 0 740 550 65887.0000
ran14x18-disj-8 252 0 252 447 3712.0000
n9-3 0 252 7392 2364 14409.0000
neos-3046615-murg 240 16 18 498 1600.0000

Table 4.1: MIPLIB Instances Used

87

2. For the other 23 instances, generate a sound diagram for M(0.01|z∗|). Divide the
instances into “easy” if CPLEX finishes within the time limit, “hard” otherwise.
We found 13 of the models were easy and the other 10 were hard. The results
are shown in Table 4.3, Figure 4.11, and Figure 4.12.

3. For the easy instances, generate a sound diagram for M(0.1|z∗|). For the hard
instances, generate a sound diagram for M(0.001|z∗|). The results for easy
instances are shown in Table 4.4, Figure 4.13, and Figure 4.14. The results for
hard instances are shown in Table 4.5, Figure 4.15, and Figure 4.16.

In order to clearly see the effect of sound reduction specifically, we do not incorporate
any conditions for identifying equivalent states or arc-deletion/arc-contraction via
bottom-up processing as part of our testing.

For each phase, there are two result graphs, where the instances are ordered
according to the number of near-optimal solutions generated by CPLEX and the
vertical axes are shown in log-scale. One graph shows the time taken (in seconds) to
compile the sound decision diagram for each instance, which consists of four parts:

• MIPSolveTime: time to generate the list of ∆-optimal solution using CPLEX,
which we denote VM(∆)

• TreeCompTime: time to generate a branching-tree representation of VM(∆)

• ExactCompTime: time to reduce the branching-tree representation to an
exact reduced decision diagram representation of VM(∆)

• SoundCompTime: time to apply sound reduction as much as possible to the
exact reduced decision diagram to obtain a sound decision diagram for VM(∆)

The other graph shows the size of the resulting representations of the set of near-
optimal solutions in terms of the number of nodes:

• TreeNumNodes: size of branching-tree representation

• ExactNumNodes: size of exact reduced decision diagram representation

• SoundNumNodes: size of sound decision diagram representation

The computational results show that compiling the list of solutions into a sound
decision diagram almost never takes more time than generating the solutions, and
often takes much less time. On the other hand, the size of the sound decision dia-
gram representation is often not much smaller than the branching-tree representation;
however, we note that the number of paths encoded in the diagram is quite small for
most of the instances.

88

Figure 4.9: Time to Compile Sound Decision Diagram with ∆̂ = 0

Figure 4.10: Size of Decision Diagram Representations with ∆̂ = 0

89

Figure 4.11: Time to Compile Sound Decision Diagram with ∆̂ = 0.01

Figure 4.12: Size of Decision Diagram Representations with ∆̂ = 0.01

90

Figure 4.13: Time to Compile Sound Decision Diagram with ∆̂ = 0.1

Figure 4.14: Size of Decision Diagram Representations with ∆̂ = 0.1

91

Figure 4.15: Time to Compile Sound Decision Diagram with ∆̂ = 0.001; Here the
rightmost instance neos5 ran out of memory during the sound reduction phase

Figure 4.16: Size of Decision Diagram Representations with ∆̂ = 0.001; Here the
rightmost instance neos5 ran out of memory during the sound reduction phase

92

instanceName Paths MIPSolveTime TreeCompTime ExactCompTime SoundCompTime TreeNodes ExactNodes SoundNodes
istanbul-no-cutoff 1 31.85802698 0.003074884 0.000142097 0.000311136 31 31 31
neos5 1 5378.256864 0.004070997 0.000309944 0.001055956 54 54 54
pk1 1 11.6641171 0.002839088 0.000386953 0.001108885 56 56 56
dano3 3 1 80.39648795 0.001842022 0.000232935 0.000762939 70 70 70
pg5 34 1 78.64459181 0.002030849 0.000285149 0.000983 101 101 101
pg 1 6.020258904 0.002194881 0.000298023 0.000962973 101 101 101
rmatr100-p10 1 7.007212162 0.004667044 0.000371218 0.001480103 101 101 101
dano3 5 1 187.3480401 0.002327919 0.000328064 0.001061916 116 116 116
map10 1 319.2726209 0.005108118 0.00081706 0.002771854 147 147 147
mas74 1 7774.87802 0.005494833 0.000897169 0.002518177 151 151 151
mas76 1 22.6823101 0.002924204 0.000413179 0.001446962 151 151 151
n5-3 1 8.250102997 0.004635096 0.000672817 0.00219512 151 151 151
binkar10 1 1 2.16109395 0.002701998 0.000696182 0.001489878 171 171 171
timtab1 1 195.8134489 0.007610083 0.000916958 0.002885103 172 172 172
cost266-UUE 1 685.737154 0.003551006 0.000454187 0.001650095 172 172 172
rmatr200-p5 1 3280.212475 0.008337021 0.001076937 0.003909111 201 201 201
mik-250-20-75-4 1 9.600122929 0.005438089 0.000653028 0.002276897 251 251 251
exp-1-500-5-5 1 5.81605792 0.008642912 0.001107931 0.006142855 251 251 251
ran14x18-disj-8 1 104.408813 0.003838062 0.000564098 0.002034903 253 253 253
markshare 4 0 2 34.39960122 0.001003027 0.000347853 0.000797033 60 56 56
n9-3 2 15270.23117 0.006546974 0.001577854 0.00335288 280 254 254
map16715-04 3 629.9044662 0.003711939 0.000957012 0.001643896 173 155 155
fastxgemm-n2r6s0t2 1150 891.238754 0.450829029 0.617268085 6.449658155 30570 3939 3939
neos-2978193-inde 0 21625.24041 NA NA NA NA NA NA
neos-1122047 0 21619.81191 NA NA NA NA NA NA
assign1-5-8 0 21616.65221 NA NA NA NA NA NA
mad 0 22227.16135 NA NA NA NA NA NA
graphdraw-domain 0 21601.17329 NA NA NA NA NA NA
supportcase12 0 21677.52053 NA NA NA NA NA NA
neos-3046615-murg 0 21621.34891 NA NA NA NA NA NA

Table 4.2: Table of Results for ∆̂ = 0

instanceName Paths MIPSolveTime TreeCompTime ExactCompTime SoundCompTime TreeNodes ExactNodes SoundNodes
istanbul-no-cutoff 1 35.40369701 0.003133059 0.000123978 0.000274897 31 31 31
pk1 1 17.85193014 0.002689123 0.000334978 0.001025915 56 56 56
markshare 4 0 2 39.36630988 0.001055956 0.000391006 0.000887871 60 56 56
map16715-04 3 674.6803269 0.015972137 0.003809929 0.005210161 173 155 155
rmatr100-p10 7 14.70442414 1.430439949 0.037547112 2.379997015 565 336 336
map10 7 409.2945349 0.022800207 0.008388042 0.011033058 399 280 280
rmatr200-p5 9 6096.051809 0.035429001 0.015745163 0.058043003 1393 1077 1077
n5-3 16 15.91614079 0.010217905 0.008308887 0.052429199 924 552 538
ran14x18-disj-8 24 1445.110785 0.094877005 0.118139029 0.570495129 4711 2693 2663
mas76 50 5331.386539 1.507452965 0.05841589 1.053275108 5666 4155 4155
timtab1 329 331.3341088 0.609101772 0.089138031 2.679023027 8014 5337 5089
fastxgemm-n2r6s0t2 1152 1576.072292 0.431755066 0.607537031 6.393348932 30616 3932 3932
exp-1-500-5-5 1337 48.5034771 4.461433887 4.769818068 26.996418 112611 15822 12578
neos5 0 21629.97203 NA NA NA NA NA NA
dano3 3 0 21668.24568 NA NA NA NA NA NA
pg5 34 0 21638.73401 NA NA NA NA NA NA
pg 0 21639.97958 NA NA NA NA NA NA
dano3 5 0 21642.61049 NA NA NA NA NA NA
mas74 0 21626.04941 NA NA NA NA NA NA
binkar10 1 0 21676.41203 NA NA NA NA NA NA
cost266-UUE 0 21644.49908 NA NA NA NA NA NA
mik-250-20-75-4 0 21783.75266 NA NA NA NA NA NA
n9-3 0 21619.53444 NA NA NA NA NA NA

Table 4.3: Table of Results for ∆̂ = 0.01

instanceName Paths MIPSolveTime TreeCompTime ExactCompTime SoundCompTime TreeNodes ExactNodes SoundNodes
markshare 4 0 2 36.6132381 0.005554914 0.001462936 0.004102945 60 56 56
pk1 4 32.45357299 0.013266087 0.003823996 0.021386147 213 199 199
map16715-04 13 848.581403 0.008041143 0.007266998 0.006934881 652 352 352
istanbul-no-cutoff 776 49.07613301 0.088376999 0.122344017 0.962555885 7397 1567 1413
fastxgemm-n2r6s0t2 3456 4117.874002 1.775875092 2.112369061 103.6205142 92336 15449 15449
rmatr100-p10 14830 4152.188039 22.6640532 47.60716796 5187.308354 571303 130592 120574
map10 0 21651.28558 NA NA NA NA NA NA
mas76 0 21674.54793 NA NA NA NA NA NA
n5-3 0 21696.26481 NA NA NA NA NA NA
timtab1 0 21652.62161 NA NA NA NA NA NA
rmatr200-p5 0 21626.44729 NA NA NA NA NA NA
exp-1-500-5-5 0 21744.88075 NA NA NA NA NA NA
ran14x18-disj-8 0 21680.50462 NA NA NA NA NA NA

Table 4.4: Table of Results for ∆̂ = 0.1

93

4.10 Conclusion

We presented a novel decision-diagram based approach for post-optimality analysis
of MILP problems by extending the framework of [HS17]. To incorporate continuous
variables, we considered two broad approaches: explicit representation, in which we
discretize the continuous part using basic feasible solutions, and implicit representa-
tion, where the continuous part is implicitly enforced by keeping track of the RHS
and partial cost within the node states. We then presented an extension of sound
reduction to our setting, sufficient conditions for identifying equivalent node states,
and arc deletion/contraction strategies for further reducing the diagram. Finally, we
performed computational tests to see how our framework works for realistic MILP
problems, and showed that a sound decision diagram representation of the set of
near-optimal solutions can be obtained without significantly more time compared to
the time required to generate the solutions.

94

instanceName Paths MIPSolveTime TreeCompTime ExactCompTime SoundCompTime TreeNodes ExactNodes SoundNodes
mas74 1 9044.992402 0.012527943 0.000584126 0.001803875 151 151 151
mik-250-20-75-4 4 13.04642081 0.006618023 0.002384186 0.006876945 441 401 401
n9-3 4 20551.30065 0.01078701 0.005583048 0.007652998 441 361 361
pg 11 18.09140992 0.048659086 0.011086941 0.031275988 708 509 509
cost266-UUE 39 945.7149749 0.046290159 0.016383171 0.111884832 1897 1209 931
dano3 3 73 312.793139 0.018094063 0.018083096 0.076301098 1743 799 751
binkar10 1 90 5.13025403 0.095981836 0.127208948 1.003798962 10147 4206 4089
pg5 34 239 13136.73549 0.179249048 0.12211585 0.939352036 8740 2973 2625
dano3 5 631 2014.288355 0.280895948 0.291321993 4.04116106 19646 5741 5456
neos5 56466 7646.846363 61.62535405 170.1040699 NA 1559206 132936 NA

Table 4.5: Table of Results for ∆̂ = 0.001

95

Chapter 5

Conclusion and Future Research
Directions

In this dissertation, we considered three projects aimed at developing techniques and
methodologies to handle larger, more complex discrete optimization models. In the
first project, we utilized logic-based Benders decomposition (LBBD) to effectively
solve practically sized instances of the home healthcare problem, and also gained
insights into the differences between different implementations of the decomposition
scheme. In the second project, we proposed a simple generic framework for solving
robust scheduling problems with combinatorial uncertainty sets, and tested the frame-
work on robust job shop scheduling and robust unrelated parallel machine scheduling
as proofs-of-concept. In the third project, we proposed decision diagrams as a method
to enable postoptimality analysis of MILP problems, focusing on how to extend the
sound reduction framework to models with continuous variables.

Each work has several interesting future research directions. For example, there
are other exact solution methods besides LBBD that can take advantage of the struc-
ture of the home health care problem; column generation strategies like branch-and-
price are especially promising given their success in similar problems (e.g., [Ras+12]),
and may have different trade-offs compared to constraint generation strategies like
LBBD, providing further insight into the nature of home healthcare scheduling. The
LBBD-based approach itself can be further developed to better handle temporal con-
straints; for example, synchronized visits involving more than one aide may be handled
by deriving more sophisticated Benders cuts that take the visit schedules of multiple
aides into account. The broader question of how the performance of different decom-
position strategies (e.g., LBBD vs branch-and-check) is affected by problem structure
is also worth investigating for a wider class of problems. The effect of relaxations
in the master problem and the relative difficulty of the subproblem are especially
intriguing components for LBBD-based approaches.

For the robust scheduling problem, the concept of combinatorial uncertainty sets
(CUSs) is ripe for more systematic investigation, both theoretically and practically.

96

For example, are there exponential-size CUSs for which a polynomial-size “repre-
sentative subset” (i.e., guaranteeing robustness over the “representative subset” also
guarantees robustness over the whole uncertainty set) always exists? Is there a rela-
tionship between such CUSs and those which have polyhedral representations? Are
there cases where the ability to “search” a CUS (i.e., find a worst-case scenario) in
polynomial time translates to polynomial or sub-exponential time solvability of the
robust problem? Are there practically relevant CUSs whose particular structure can
be exploited to accelerate scenario generation? The answers to these questions could
help organize and clarify approaches for handling CUSs that extend beyond generic
scenario generation.

For the work on postoptimality for MILPs, the decision diagram approach has
many opportunities for improvement. For example, the sound reduction scheme could
more explicitly incorporate the relationship between the cost of a solution and the
weight of its corresponding path in the diagram, perhaps by maintaining another data
structure that captures the convex piecewise-linear structure of Λ(x) (Equation 4.21).
Another idea is to use a second decision diagram with the reverse variable ordering
to maintain the set of suffixes of each node, which may make optimizing over the
symmetric difference of suffix sets (which appears in Theorem 6) more tractable. On a
different note, the compilation step of the implicit representation approach essentially
involves solving a multi-parametric LP problem, which has been well-studied [GN72;
Gal75; BBM03; Fil04; SGB05; JM06; Hla10] and could potentially provide ideas for
improving the efficiency of the procedure. It is also worth investigating the complexity
and fundamental limits of compactly representing sets of (near-)optimal solutions,
perhaps using tools from the knowledge compilation literature.

Overall, incorporating the structure of the problem into the solution scheme is
often the key step for efficiently solving large, complex discrete optimization models.
That structure may be incorporated algorithmically, as with logic-based Benders de-
composition and scenario generation, or graphically, as with decision diagrams. The
challenge with decomposition methods then is to strive for generic applicability while
still capturing problem specific features. Investigating decomposition methods that
strike the right balance will aid tremendously in pushing the boundaries of the scope
and range of problems that can be tackled by discrete optimization, both in theory
and in practice.

97

Bibliography

[08] Release notes for SCIP 1.1. https://scip.zib.de/doc-6.0.1/html/
RN11.php. 2008.

[10] IBM Support: Using CPLEX to examine alternate optimal solutions. https:
//www-01.ibm.com/support/docview.wss?uid=swg21399929. 2010.

[11] Release notes for SCIP 2.0. https://scip.zib.de/doc-6.0.1/html/
RN20.php. 2011.

[ABS97] David Avis, David Bremner, and Raimund Seidel. “How good are convex
hull algorithms?” In: Computational Geometry 7.5-6 (1997), pp. 265–301.

[Ach09] T. Achterberg. “SCIP: Solving constraint integer programs”. In: Mathe-
matical Programming Computation 1 (2009), pp. 1–41.

[ADP03] Sammani D Abdullahi, Martin E Dyer, and Les G Proll. “Listing vertices
of simple polyhedra associated with dual LI (2) systems”. In: International
Conference on Discrete Mathematics and Theoretical Computer Science.
Springer. 2003, pp. 89–96.

[AE11] Nasr Al-Hinai and T.Y. ElMekkawy. “Robust and stable flexible job shop
scheduling with random machine breakdowns using a hybrid genetic algo-
rithm”. In: International Journal of Production Economics 132.2 (2011),
pp. 279–291.

[AF92] David Avis and Komei Fukuda. “A pivoting algorithm for convex hulls
and vertex enumeration of arrangements and polyhedra”. In: Discrete &
Computational Geometry 8.3 (1992), pp. 295–313.

[AFM02] Jérôme Amilhastre, Hélene Fargier, and Pierre Marquis. “Consistency
restoration and explanations in dynamic CSPs–application to configura-
tion”. In: Artificial Intelligence 135.1-2 (2002), pp. 199–234.

[AHK08] Tobias Achterberg, Stefan Heinz, and Thorsten Koch. “Counting solu-
tions of integer programs using unrestricted subtree detection”. In: In-
ternational Conference on Integration of Artificial Intelligence (AI) and
Operations Research (OR) Techniques in Constraint Programming. Sprin-
ger. 2008, pp. 278–282.

98

https://scip.zib.de/doc-6.0.1/html/RN11.php
https://scip.zib.de/doc-6.0.1/html/RN11.php
https://www-01.ibm.com/support/docview.wss?uid=swg21399929
https://www-01.ibm.com/support/docview.wss?uid=swg21399929
https://scip.zib.de/doc-6.0.1/html/RN20.php
https://scip.zib.de/doc-6.0.1/html/RN20.php

[AHP10] Henrik Reif Andersen, Tarik Hadzic, and David Pisinger. “Interactive
cost configuration over decision diagrams”. In: Journal of Artificial Intel-
ligence Research 37 (2010), pp. 99–139.

[Ald+03] Michel Aldanondo, Khaled Hadj-Hamou, Guillaume Moynard, and Jac-
ques Lamothe. “Mass customization and configuration: Requirement ana-
lysis and constraint based modeling propositions”. In: Integrated Computer-
Aided Engineering 10.2 (2003), pp. 177–189.

[All+13] H. Allaoua, S. Borne, L. Létocart, and R. W. Calvo. “A matheuristic
approach for solving a home health care problem”. In: Electronic Notes
in Discrete Mathematics 41 (2013), pp. 471–478.

[Ang+05] Alfredo Anglani, Antonio Grieco, Emanuela Guerriero, and Roberto Mus-
manno. “Robust scheduling of parallel machines with sequence-dependent
set-up costs”. In: European Journal of Operational Research 161.3 (2005),
pp. 704–720.

[AS97] R. J. Abumaizar and J.A. Svestka. “Rescheduling job shops under random
disruptions”. In: International Journal of Production Research 35.7 (1997),
pp. 2065–2082.

[Avi00] David Avis. “A revised implementation of the reverse search vertex enu-
meration algorithm”. In: Polytopes–combinatorics and computation. Sprin-
ger. 2000, pp. 177–198.

[Bah+97] R Iris Bahar, Erica A Frohm, Charles M Gaona, Gary D Hachtel, En-
rico Macii, Abelardo Pardo, and Fabio Somenzi. “Algebric decision dia-
grams and their applications”. In: Formal methods in system design 10.2-3
(1997), pp. 171–206.

[Bal61] Michel L Balinski. “An algorithm for finding all vertices of convex poly-
hedral sets”. In: Journal of the Society for Industrial and Applied Mathe-
matics 9.1 (1961), pp. 72–88.

[Bar+96] C Bradford Barber, David P Dobkin, David P Dobkin, and Hannu Huh-
danpaa. “The quickhull algorithm for convex hulls”. In: ACM Transacti-
ons on Mathematical Software (TOMS) 22.4 (1996), pp. 469–483.

[BBM03] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. “Geometric
algorithm for multiparametric linear programming”. In: Journal of opti-
mization theory and applications 118.3 (2003), pp. 515–540.

[BE07] Markus Behle and Friedrich Eisenbrand. “0/1 vertex and facet enumera-
tion with BDDs”. In: 2007 Proceedings of the Ninth Workshop on Algo-
rithm Engineering and Experiments (ALENEX). SIAM. 2007, pp. 158–
165.

99

[Bec10] J. C. Beck. “Checking-up on branch and check”. In: Principles and Practice
of Constraint Programming (CP 2010). Ed. by D. Cohen. Vol. 6308. Lec-
ture Notes in Computer Science. New York: Springer, 2010, pp. 84–98.

[BEN09] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Prin-
ceton University Press, 2009.

[Ben62] J. F. Benders. “Partitioning procedures for solving mixed-variables pro-
gramming problems”. In: Numerische Mathematik 4 (1962), pp. 238–252.

[Ber+16] David Bergman, Andre A Cire, Willem-Jan Van Hoeve, and John Hooker.
Decision diagrams for optimization. Vol. 1. Springer, 2016.

[Ber13] David Bergman. “New techniques for discrete optimization”. PhD thesis.
PhD thesis, Tepper School of Business, Carnegie Mellon University, 2013.

[BFM98] David Bremner, Komei Fukuda, and Ambros Marzetta. “Primal–dual
methods for vertex and facet enumeration”. In: Discrete & Computati-
onal Geometry 20.3 (1998), pp. 333–357.

[BL98] Michael R Bussieck and Marco E Lübbecke. “The vertex set of a 01-
polytope is strongly P-enumerable”. In: Computational Geometry 11.2
(1998), pp. 103–109.

[BLE07] Cyril Briand, H. Trung La, and Jacques Erschler. “A robust approach for
the single machine scheduling problem”. English. In: Journal of Schedu-
ling 10.3 (2007), pp. 209–221.

[BN02] A. Ben-Tal and A. Nemirovski. “Robust optimization – methodology and
applications”. In: Mathematical Programming 92.3 (2002), pp. 453–480.

[Bor+09] Endre Boros, Khaled Elbassioni, Vladimir Gurvich, and Kazuhisa Ma-
kino. “Generating Vertices of Polyhedra and Related Problems of Mo-
notone Generation”. In: CRM Proceedings and Lecture Notes. Vol. 48.
2009.

[Bor+11] Endre Boros, Khaled Elbassioni, Vladimir Gurvich, and Hans Raj Ti-
wary. “The negative cycles polyhedron and hardness of checking some
polyhedral properties”. In: Annals of Operations Research 188.1 (2011),
pp. 63–76.

[Bow72] V Joseph Bowman Jr. “Sensitivity analysis in linear integer program-
ming”. In: AIIE Transactions 4.4 (1972), pp. 284–289.

[Bry86] R.E. Bryant. “Graph-Based Algorithms for Boolean Function Manipula-
tion”. In: IEEE Transactions on Computers C-35.8 (1986), pp. 677–691.

[BS03] Dimitris Bertsimas and Melvyn Sim. “Robust discrete optimization and
network flows”. English. In: Mathematical Programming 98.1-3 (2003),
pp. 49–71.

100

[BS04] Dimitris Bertsimas and Melvyn Sim. “The Price of Robustness”. English.
In: Operations Research 52.1 (2004), pp. 35–53.

[BS93] Giorgio C. Buttazzo and John A. Stankovic. “RED: Robust Earliest Dead-
line Scheduling”. In: Proc. of 3rd International Workshop On Responsive
Computing Systems. 1993, pp. 100–111.

[CÇH15] A. Ciré, E. Çoban, and J. N. Hooker. “Logic-based Benders decomposition
for planning and scheduling: A computational analysis”. In: COPLAS
Proceedings. Ed. by R. Barták and M.A. Salido. 2015, pp. 21–29.

[CF06] G. Codato and M. Fischetti. “Combinatorial Benders’ cuts for mixed-
integer linear programming”. In: Operations Research 54 (2006), pp. 756–
766.

[CH12] A. Ciré and J. N. Hooker. “A heuristic logic-based Benders method for
the home health care problem”. Presented at Matheuristics 2012, Angra
dos Reis, Brazil. 2012.

[ÇH13] E. Çoban and J. N. Hooker. “Single-facility scheduling by logic-based
Benders decomposition”. In: Annals of Operations Research 210 (2013),
pp. 245–272.

[Cha+09] S. Chahed, E. Marcon, E. Sahin, D. Feillet, and Y. Dallery. “Exploring
new operational research opportunities within the home care context: The
chemotherapy at home”. In: Health Care Management Science 12 (2009),
pp. 179–191.

[Che65] NV Chernikova. “Algorithm for finding a general formula for the non-
negative solutions of a system of linear inequalities”. In: USSR Compu-
tational Mathematics and Mathematical Physics 5.2 (1965), pp. 228–233.

[CL06] J.-F. Cordeau and G. Laporte. “Modeling and optimization of vehicle rou-
ting and arc routing problems”. In: Handbook on Modelling for Discrete
Optimization. Ed. by G. Appa, L. Pitsoulis, and H. P. Williams. Springer,
2006, pp. 151–191.

[Cor+07] J.-F. Cordeau, G Laporte, M.W.P. Savelsbergh, and D. Vigo. “Vehicle
routing”. In: Handbook in Operations Research and Management Science.
Ed. by C. Barnhart and G. Laporte. Vol. 14. Elsevier, 2007, pp. 367–428.

[Cre95] Alejandro Crema. “Average shadow price in a mixed integer linear pro-
gramming problem”. In: European Journal of Operational Research 85.3
(1995), pp. 625–635.

[CS15] P. Cappanera and M. G. Scutellà. “Joint assignment, scheduling and rou-
ting models to home care optimization: A pattern-based approach”. In:
Transportation Science 49 (2015), pp. 830–852.

101

[Dan+07] Emilie Danna, Mary Fenelon, Zonghao Gu, and Roland Wunderling. “Ge-
nerating multiple solutions for mixed integer programming problems”. In:
International Conference on Integer Programming and Combinatorial Op-
timization. Springer. 2007, pp. 280–294.

[Dan55] G. B. Dantzig. “Linear programming under uncertainty”. In: Management
Science 1.3–4 (1955), pp. 197–206.

[Des+88] M. Desrochers, J. K. Lenstra, M. W. P. Savelsbergh, and F. Soumis.
“Vehicle routing with time windows: Optimization and approximation”.
In: Vehicle Routing: Methods and Studies. Ed. by B. L. Golden and A. A.
Assad. Amsterdam: North-Holland, 1988, pp. 65–84.

[DH00] MW Dawande and John N Hooker. “Inference-based sensitivity analy-
sis for mixed integer/linear programming”. In: Operations Research 48.4
(2000), pp. 623–634.

[DK95] Richard L. Daniels and Panagiotis Kouvelis. “Robust Scheduling to Hedge
Against Processing Time Uncertainty in Single-Stage Production”. In:
Management Science 41.2 (1995), pp. 363–376.

[DL91] M. Desrochers and G. Laporte. “Improvements and extensions to the
Miller-Tucker-Zemlin subtour elimination constraints”. In: Operations Re-
search Letters 10.1 (1991), pp. 27–36.

[Dye83] Martin E Dyer. “The complexity of vertex enumeration methods”. In:
Mathematics of Operations Research 8.3 (1983), pp. 381–402.

[FB09] M. M. Fazel-Zarandi and J. C. Beck. “Solving a location-allocation pro-
blem with logic-based Benders decomposition”. In: Principles and Practice
of Constraint Programming (CP 2009). Ed. by I. P. Gent. Vol. 5732. Lec-
ture Notes in Computer Science. New York: Springer, 2009, pp. 344–351.

[Fil04] Carlo Filippi. “An algorithm for approximate multiparametric linear pro-
gramming”. In: Journal of optimization theory and applications 120.1
(2004), pp. 73–95.

[FLM97] Komei Fukuda, Thomas M Liebling, and François Margot. “Analysis of
backtrack algorithms for listing all vertices and all faces of a convex po-
lyhedron”. In: Computational Geometry 8.1 (1997), pp. 1–12.

[FP95] Komei Fukuda and Alain Prodon. “Double description method revisited”.
In: Franco-Japanese and Franco-Chinese Conference on Combinatorics
and Computer Science. Springer. 1995, pp. 91–111.

[FR94] Komei Fukuda and Vera Rosta. “Combinatorial face enumeration in con-
vex polytopes”. In: Computational Geometry 4.4 (1994), pp. 191–198.

[Gal75] Tomas Gal. “Rim multiparametric linear programming”. In: Management
Science 21.5 (1975), pp. 567–575.

102

[Gal89] David Gale. The theory of linear economic models. University of Chicago
press, 1989.

[Gec16] Gecode Team. Gecode: Generic Constraint Development Environment.
Available from http://www.gecode.org. 2016.

[Geo72] A. M. Geoffrion. “Generalized Benders decomposition”. In: Journal of
Optimization Theory and Applications 10 (1972), pp. 237–260.

[GF03] Esther Gelle and Boi Faltings. “Solving mixed and conditional constraint
satisfaction problems”. In: Constraints 8.2 (2003), pp. 107–141.

[Gle+18] Ambros Gleixner, Michael Bastubbe, Leon Eifler, Tristan Gally, Gerald
Gamrath, Robert Lion Gottwald, Gregor Hendel, Christopher Hojny, Thorsten
Koch, Marco E. Lübbecke, Stephen J. Maher, Matthias Miltenberger,
Benjamin Müller, Marc E. Pfetsch, Christian Puchert, Daniel Rehfeldt,
Franziska Schlösser, Christoph Schubert, Felipe Serrano, Yuji Shinano,
Jan Merlin Viernickel, Matthias Walter, Fabian Wegscheider, Jonas T.
Witt, and Jakob Witzig. The SCIP Optimization Suite 6.0. Technical
Report. Optimization Online, July 2018.

[GLW00] Fred Glover, Arne Løkketangen, and David L Woodruff. “Scatter search
to generate diverse MIP solutions”. In: Computing Tools for Modeling,
Optimization and Simulation. Springer, 2000, pp. 299–317.

[GN72] Tomas Gal and Josef Nedoma. “Multiparametric linear programming”.
In: Management Science 18.7 (1972), pp. 406–422.

[GN77] Arthur M Geoffrion and R Nauss. “Exceptional Paper–Parametric and
Postoptimality Analysis in Integer Linear Programming”. In: Manage-
ment Science 23.5 (1977), pp. 453–466.

[GR07] Menal Guzelsoy and Theodore K Ralphs. “Duality for mixed-integer li-
near programs”. In: International Journal of Operations Research 4.3
(2007), pp. 118–137.

[Gre+08] Peter Greistorfer, Arne Løkketangen, Stefan Voß, and David L Woodruff.
“Experiments concerning sequential versus simultaneous maximization of
objective function and distance”. In: Journal of Heuristics 14.6 (2008),
pp. 613–625.

[GSK12] Selcuk Goren, Ihsan Sabuncuoglu, and Utku Koc. “Optimization of sche-
dule stability and efficiency under processing time variability and random
machine breakdowns in a job shop environment”. In: Naval Research Lo-
gistics (NRL) 59.1 (2012), pp. 26–38.

[Had+04] Tarik Hadzic, Sathiamoorthy Subbarayan, Rune M Jensen, Henrik R An-
dersen, Jesper Møller, and Henrik Hulgaard. “Fast backtrack-free product
configuration using a precompiled solution space representation”. In: Or-
ganisational aspects of Product Configuration Systems 10.1 (2004), p. 133.

103

http://www.gecode.org

[HH06] Tarik Hadzic and John Hooker. “Postoptimality analysis for integer pro-
gramming using binary decision diagrams”. In: GICOLAG Workshop
(Global Optimization: Integrating Convexity, Optimization, Logic Pro-
gramming, and Computational Algebraic Geometry), Vienna. Technical
report, Carnegie Mellon University. 2006.

[HH07] T. Hadžić and J. N. Hooker. “Cost-Bounded Binary Decision Diagrams
for 0–1 Programming”. In: Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems (CPAIOR).
Ed. by P. Van Hentenryck and L. Wolsey. Springer, 2007, pp. 84–98.

[HH16] A. Heching and J. N. Hooker. “Scheduling home hospice care by logic-
based Benders decomposition”. In: CPAIOR Proceedings. Ed. by C.-G.
Quimper. Vol. 9676. Lecture Notes in Computer Science. Springer, 2016,
pp. 187–197.

[Hie+15] G. Hiermann, M. Prandtstetter, A. Rendl, J. Puchinger, and G. Raidl.
“Metaheuristics for solving a multimodal home-healthcare scheduling pro-
blem”. In: Central European Journal of Operations Research 23 (2015),
pp. 89–113.

[HK84] S Holm and D Klein. “Three methods for postoptimal analysis in integer
linear programming”. In: Sensitivity, Stability and Parametric Analysis.
Springer, 1984, pp. 97–109.

[HL09] A. Hertz and N. Lahrichi. “A patient assignment algorithm for home
care service”. In: Journal of the Operational Research Society 60 (2009),
pp. 481–495.

[Hla10] Milan Hlad́ık. “Multiparametric linear programming: support set and op-
timal partition invariancy”. In: European Journal of Operational Research
202.1 (2010), pp. 25–31.

[HO03a] J. N. Hooker and G. Ottosson. “Logic-based Benders decomposition”. In:
Mathematical Programming 96 (2003), pp. 33–60.

[HO03b] J.N. Hooker and G. Ottosson. “Logic-based Benders decomposition”. En-
glish. In: Mathematical Programming 96.1 (2003), pp. 33–60.

[Hoe+99] Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier. “SPUDD:
Stochastic planning using decision diagrams”. In: Proceedings of the Fif-
teenth conference on Uncertainty in artificial intelligence. Morgan Kauf-
mann Publishers Inc. 1999, pp. 279–288.

[Hoo00] J. N. Hooker. Logic-Based Methods for Optimization: Combining Optimi-
zation and Constraint Satisfaction. New York: Wiley, 2000.

[Hoo05] J. N. Hooker. “A hybrid method for planning and scheduling”. In: Con-
straints 10 (2005), pp. 385–401.

104

[Hoo06] J. N. Hooker. “An integrated method for planning and scheduling to
minimize tardiness”. In: Constraints 11 (2006), pp. 139–157.

[Hoo07] J. N. Hooker. “Planning and scheduling by logic-based Benders decom-
position”. In: Operations Research 55 (2007), pp. 588–602.

[Hoo12] J. N. Hooker. Integrated Methods for Optimization, 2nd ed. Springer, 2012.

[Hoo13] John N Hooker. “Decision diagrams and dynamic programming”. In: In-
ternational Conference on AI and OR Techniques in Constriant Program-
ming for Combinatorial Optimization Problems. Springer. 2013, pp. 94–
110.

[Hoo95] J. N. Hooker. “Logic-based Benders decomposition”. In: INFORMS Na-
tional Meeting (INFORMS 1995). 1995.

[HS13] Wei He and Di-hua Sun. “Scheduling flexible job shop problem subject to
machine breakdown with route changing and right-shift strategies”. Eng-
lish. In: The International Journal of Advanced Manufacturing Technology
66.1-4 (2013), pp. 501–514.

[HS17] J.N. Hooker and T. Serra. “Compact Representation of Near-Optimal
Integer Programming Solutions”. In: Submitted (2017).

[IBM19] IBM. IBM ILOG CPLEX optimization studio CPLEX user’s manual,
Version 12 Release 9. 2019.

[Jan10] Mikoláš Janota. “SAT solving in interactive configuration”. PhD thesis.
Citeseer, 2010.

[Jen03] Mikkel T. Jensen. “Generating robust and flexible job shop schedules
using genetic algorithms”. In: Evolutionary Computation, IEEE Tran-
sactions on 7.3 (June 2003), pp. 275–288.

[JLF07] Stacy L. Janak, Xiaoxia Lin, and Christodoulos A. Floudas. “A new ro-
bust optimization approach for scheduling under uncertainty: II. Uncer-
tainty with known probability distribution”. In: Computers & Chemical
Engineering 31.3 (2007), pp. 171–195.

[JM06] Colin N Jones and Manfred Morrari. “Multiparametric linear comple-
mentarity problems”. In: Proceedings of the 45th IEEE Conference on
Decision and Control. IEEE. 2006, pp. 5687–5692.

[Jos03] Michael Joswig. “Beneath-and-beyond revisited”. In: Algebra, Geometry
and Software Systems. Springer, 2003, pp. 1–21.

[Kha+08] Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, and
Vladimir Gurvich. “Generating All Vertices of a Polyhedron Is Hard”. In:
Discrete & Computational Geometry 39.1 (2008), pp. 174–190.

105

[Lab09] Philippe Laborie. “IBM ILOG CP Optimizer for Detailed Scheduling Il-
lustrated on Three Problems”. English. In: Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization
Problems. Ed. by Willem-Jan van Hoeve and John N. Hooker. Vol. 5547.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009,
pp. 148–162.

[Law84] S. R. Lawrence. Resource constrained project scheduling: an experimen-
tal investigation of heuristic scheduling techniques (Supplement). Report,
Graduate School of Industrial Administration, Carnegie-Mellon Univer-
sity, Pittsburgh, PA, USA. 1984.

[Lee+00] Sangbum Lee, Chan Phalakornkule, Michael M Domach, and Ignacio E
Grossmann. “Recursive MILP model for finding all the alternate optima
in LP models for metabolic networks”. In: Computers & Chemical Engi-
neering 24.2-7 (2000), pp. 711–716.

[Lei11] Deming Lei. “Scheduling stochastic job shop subject to random break-
down to minimize makespan”. English. In: The International Journal of
Advanced Manufacturing Technology 55.9-12 (2011), pp. 1183–1192.

[Lin17] Koos van der Linden. “Decision diagrams for decomposed mixed integer
linear programs”. MA thesis. Delft University of Technology, Aug. 2017.

[LJF04] Xiaoxia Lin, Stacy L. Janak, and Christodoulos A. Floudas. “A new ro-
bust optimization approach for scheduling under uncertainty:: I. Boun-
ded uncertainty”. In: Computers & Chemical Engineering 28.6-7 (2004),
pp. 1069–1085.

[LLY14] Chung-Cheng Lu, Shih-Wei Lin, and Kuo-Ching Ying. “Minimizing worst-
case regret of makespan on a single machine with uncertain processing and
setup times”. In: Applied Soft Computing 23.0 (2014), pp. 144–151.

[LV16] E. Lam and P. Van Hentenryck. “A branch-and-price-and-check model
for the vehicle routing problem with location congestion”. In: Constraints
21 (2016), pp. 394–412.

[LWS94] V. Jorge Leon, S. David Wu, and Robert H. Storer. “Robustness Measures
and Robust Scheduling for Job Shops”. In: IIE Transactions 26.5 (1994),
pp. 32–43.

[ML98] Helmut E. Mausser and Manuel Laguna. “A new mixed integer formula-
tion for the maximum regret problem”. In: International Transactions in
Operational Research 5.5 (1998), pp. 389–403.

[MMB14] D. S. Mankowska, F. Meisel, and C. Bierwirth. “The home health care
routing and scheduling problem with interdependent services”. In: Health
Care Management Science 17 (2014), pp. 15–30.

106

[MMD07] Robert Mateescu, Radu Marinescu, and Rina Dechter. “AND/OR multi-
valued decision diagrams for constraint optimization”. In: International
Conference on Principles and Practice of Constraint Programming. Sprin-
ger. 2007, pp. 498–513.

[Mot+53] T.S. Motzkin, H. Raiffa, G.L. Thompson, and R.M. Thrall. “The double
description method”. In: Contibutions to the Theory of Games. Ed. by
Harold William Kuhn and Albert William Tucker. Vol. 2. Princeton, NJ:
Princeton University Press, 1953, pp. 51–74.

[MU98] Sanjay V. Mehta and Reha M. Uzsoy. “Predictable scheduling of a job
shop subject to breakdowns”. In: Robotics and Automation, IEEE Tran-
sactions on 14.3 (June 1998), pp. 365–378.

[Mur09] Katta G Murty. “A problem in enumerating extreme points, and an effi-
cient algorithm for one class of polytopes”. In: Optimization Letters 3.2
(2009), pp. 211–237.

[NS11] Erna Budhiarti Nababan and Opim SalimSitompul. “Manipulating Tabu
List to Handle Machine Breakdowns in Job Shop Scheduling Problems”.
In: AIP Conference Proceedings 1337.1 (2011), pp. 224–228.

[NSS12] S. Nickel, M. Schröder, and J. Steeg. “Mid-term and short-term planning
support for home health care services”. In: European Journal of Operati-
onal Research 219 (2012), pp. 574–587.

[Opt19] Gurobi Optimization. “Gurobi optimizer reference manual, 2019”. In:
URL: http://www. gurobi. com (2019).

[Pac04] Elena V Pachkova. “Duality in MIP”. In: Nordic MPS 2004. The Ninth
Meeting of the Nordic Section of the Mathematical Programming Society.
014. Linköping University Electronic Press. 2004.

[Pol+07] Nicola Policella, Amedeo Cesta, Angelo Oddi, and Stephen F. Smith.
“From Precedence Constraint Posting to Partial Order Schedules: A CSP
Approach to Robust Scheduling”. In: AI Commun. 20.3 (Aug. 2007),
pp. 163–180.

[Pro94] J Scott Provan. “Efficient enumeration of the vertices of polyhedra asso-
ciated with network LP’s”. In: Mathematical Programming 63.1-3 (1994),
pp. 47–64.

[PT09] B. Peterson and M. Trick. “A Benders’ approach to a transportation
network design problem”. In: CPAIOR Proceedings. Ed. by W.-J. van
Hoeve and J. N. Hooker. Vol. 5547. Lecture Notes in Computer Science.
New York: Springer, 2009, pp. 326–327.

[PT14] Akram Pishevar and Reza Tavakkoi-Moghaddam. “β-Robust Parallel Ma-
chine Scheduling with Uncertain Durations”. In: Universal Journal of In-
dustrial and Business Management 2.3 (2014), pp. 69 –74.

107

[Rah+17] R. Rahmaniani, T. G. Crainic, M. Gendreau, and W. Rei. “The Benders
decomposition algorithm: A literature review”. In: European Journal of
Operational Research 259 (2017), pp. 801–817.

[Ras+12] M. S. Rasmussen, T. Justesen, A. Dohn, and J. Larsen. “The home care
crew scheduling problem: Preference-based visit clustering and temporal
dependencies”. In: European Journal of Operational Research 219 (2012),
pp. 598–610.

[Red+12] R. Redjem, S. Kharraja, X. Xie, and E. Marcon. “Routing and schedu-
ling of caregivers in home health care with synchronized visits”. In: 9th
International Conference of Modeling, Optimization and Simulation. Bor-
deaux, France, 2012, pp. 06–08.

[Ren+12] A. Rendl, M. Prandtstetter, G. Hiermann, J. Puchinger, and G. Raidl.
“Hybrid heuristics for multimodal homecare scheduling”. In: CPAIOR
Proceedings. Ed. by N. Beldiceanu, N. Jussien, and E. Pinson. Vol. 7298.
Lecture Notes in Computer Science. Springer, 2012, pp. 339–355.

[RH16] K.-D. Rest and P. Hirsch. “Daily scheduling of home health care services
using time-dependent public transport”. In: Flexible Services and Manu-
facturing Journal 28 (2016), pp. 495–525.

[Roo74] Gary M Roodman. “Postoptimality analysis in integer programming by
implicit enumeration: The mixed integer case”. In: Naval Research Logis-
tics Quarterly 21.4 (1974), pp. 595–607.

[Sad04] R. Sadykov. “A hybrid branch-and-cut algorithm for the one-machine
scheduling problem”. In: CPAIOR Proceedings. Ed. by J. C. Régin and
M. Rueher. Vol. 3011. Lecture Notes in Computer Science. Springer, 2004,
pp. 409–415.

[Sad08] R. Sadykov. “A branch-and-check algorithm for minimizing the weighted
number of late jobs on a single machine with release dates”. In: European
Journal of Operational Research 189 (2008), pp. 1284–1304.

[SAJ11] M. A. Shafia, M. Pourseyed Aghaee, and A. Jamili. “A new mathemati-
cal model for the job shop scheduling problem with uncertain processing
times”. In: International Journal of Industrial Engineering Computations
2.2 (2011), pp. 295–306.

[Sav85] Martin WP Savelsbergh. “Local search in routing problems with time
windows”. In: Annals of Operations research 4.1 (1985), pp. 285–305.

[SDB11] Scott Sanner, Karina Valdivia Delgado, and Leliane Nunes de Barros.
“Symbolic Dynamic Programming for Discrete and Continuous State MDPs”.
In: Proceedings of the Twenty-Seventh Conference on Uncertainty in Arti-
ficial Intelligence. UAI’11. Barcelona, Spain: AUAI Press, 2011, pp. 643–
652.

108

[SGB05] Sanjeet Singh, Pankaj Gupta, and Davinder Bhatia. “On multiparametric
sensitivity analysis in minimum cost network flow problem”. In: Internati-
onal Conference on Computational Science and Its Applications. Springer.
2005, pp. 1190–1202.

[SKK03] Carsten Sinz, Andreas Kaiser, and Wolfgang Küchlin. “Formal methods
for the validation of automotive product configuration data”. In: Ai Edam
17.1 (2003), pp. 75–97.

[SM13] Manas Ranjan Singh and Siba Sankar Mahapatra. “A Quantum Beha-
ved Particle Swam Optimization for Flexible Job Shop Scheduling with
Random Machine Breakdowns”. In: In proceedings of the 2013 Internati-
onal Conference on Smart Technologies for Mechanical Engineering, 25 -
26 October 2013, New Delhi, India. Oct. 2013, pp. 526–532.

[Spa16] P. Span. “Wages for home health care lag as demand grows”. In: New
York Times (2016). September 23.

[Sub05] Sathiamoorthy Subbarayan. “Integrating CSP decomposition techniques
and BDDs for compiling configuration problems”. In: International Con-
ference on Integration of Artificial Intelligence (AI) and Operations Rese-
arch (OR) Techniques in Constraint Programming. Springer. 2005, pp. 351–
365.

[SW85] Linus Schrage and Laurence Wolsey. “Sensitivity analysis for branch and
bound integer programming”. In: Operations Research 33.5 (1985), pp. 1008–
1023.

[Swa85] Garret Swart. “Finding the convex hull facet by facet”. In: Journal of
Algorithms 6.1 (1985), pp. 17–48.

[TBB07] D. Terekhov, J. C. Beck, and K. N. Brown. “Solving a stochastic queueing
design and control problem with constraint programming”. In: Procee-
dings of the 22nd National Conference on Artificial Intelligence (AAAI
2007). Vol. 1. AAAI Press, 2007, pp. 261–266.

[TH11] A. Trautsamwieser and P. Hirsch. “Optimization of daily scheduling for
home health care services”. In: Journal of Applied Operational Research
3 (2011), pp. 124–136.

[Tho01] E. Thorsteinsson. “Branch and check: A hybrid framework integrating
mixed integer programming and constraint logic programming”. In: Prin-
ciples and Practice of Constraint Programming (CP 2001). Ed. by T.
Walsh. Vol. 2239. Lecture Notes in Computer Science. Springer, 2001,
pp. 16–30.

[Wil89] AC Williams. “Marginal values in mixed integer linear programming”. In:
Mathematical Programming 44.1-3 (1989), pp. 67–75.

109

[Wol81] Laurence A Wolsey. “Integer programming duality: Price functions and
sensitivity analysis”. In: Mathematical Programming 20.1 (1981), pp. 173–
195.

[XHK05] H Xie*, P Henderson, and M Kernahan. “Modelling and solving engineer-
ing product configuration problems by constraint satisfaction”. In: Inter-
national Journal of Production Research 43.20 (2005), pp. 4455–4469.

[XXC13] Jian Xiong, Li-ning Xing, and Ying-wu Chen. “Robust scheduling for
multi-objective flexible job-shop problems with random machine break-
downs”. In: International Journal of Production Economics 141.1 (2013),
pp. 112–126.

[Yal+14] S. Yalçındağ, A. Matta, E. Şahin, and J. G. Shanthikumar. “A two-stage
approach for solving assignment and routing Problems in home health
care services”. In: Proceedings of the International Conference on Health
Care Systems Engineering. Ed. by A. Matta, J. Li, E. Sahin, E. Lanzarone,
and J. Fowler. Vol. 61. Proceedings in Mathematics and Statistics. New
York: Springer, 2014, pp. 47–59.

[YN97] Takeshi Yamada and Ryohei Nakano. “Job-shop scheduling”. In: Gene-
tic algorithms in engineering systems. Ed. by Peter J. Fleming and Ali
M. S. Zalzala. Vol. 55. IEE Control Engineering Series. The Institution
of Engineering and Technology, 1997, pp. 134–160.

[YY02] Jian Yang and Gang Yu. “On the Robust Single Machine Scheduling
Problem”. English. In: Journal of Combinatorial Optimization 6.1 (2002),
pp. 17–33.

[ZSF12] Zahra Zamani, Scott Sanner, and Cheng Fang. “Symbolic Dynamic Pro-
gramming for Continuous State and Action MDPs”. In: Proceedings of
the Twenty-Sixth AAAI Conference on Artificial Intelligence. AAAI’12.
Toronto, Ontario, Canada: AAAI Press, 2012, pp. 1839–1845.

110

	DISSERTATION
	Titled
	Presented by
	Accepted by
	Approved by The Dean

	rkimura_Tepper_2019.pdf
	Introduction
	A Logic-based Benders Approach for Home Healthcare Scheduling
	Introduction
	Previous Work
	The Model
	Logic-Based Benders Decomposition
	Subproblem
	Master Problem
	Branch and Check
	Subproblem Relaxation
	Time Window Relaxation
	Assignment Relaxation
	Multicommodity flow relaxation

	Computational Results
	Hospice Care Instances
	Implementation
	Results for Hospice Care Instances
	Modified Hospice Care Instances
	Rasmussen Instances

	Conclusions and Future Work

	Robust Scheduling with Combinatorial Uncertainty Sets
	Introduction
	Related Work
	Robust Scheduling
	Robust Job-shop Problem

	Robust Scheduling
	Scenario Generation
	Heuristic Scenario Generation

	Example: Robust Job-Shop Scheduling
	Problem Statement
	Special case: Makespan with 1 delay (CMAX1)
	Model
	Scenario Generation
	Upper/Lower Bounds and Termination

	Experimental Results for Robust Job-Shop
	Effect of Multiple Delays/Objectives on Schedule Robustness
	Larger Instances
	Heuristic Parameters

	Example: Robust Unrelated Parallel Machine Scheduling
	Problem Statement
	Model
	Scenario Generation
	Computational Results

	Conclusion and Discussion

	Post-Optimality Analysis of Mixed Integer Linear Programming Problems Using Decision Diagrams
	Introduction
	Related Work
	Postoptimality for LP
	Postoptimality for ILP and MILP
	Miscellaneous

	Decision Diagrams
	Sound Decision Diagrams for ILP
	Representing Continuous Variables
	Explicit Representation
	Implicit Representation
	Sound Decision Diagrams for MILP
	Building Sound Diagrams for MILP
	Sound Reduction
	Identifying Equivalent States
	Bottom-Up Processing
	Using the MIP Solver Solution Pool

	Performing Post-Optimality Analysis
	Computational Experiments
	Conclusion

	Conclusion and Future Research Directions

