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Abstract

The scalar glueball and Kπ scattering are studied using Markov-chain-based Monte Carlo com-

putations with quantum chromodynamics (QCD) formulated on a space-time lattice. Lattice

QCD offers an ab initio, systematically improvable framework in which to probe the low-lying,

non-perturbative spectrum of QCD using numerical calculations. Here the finite-volume spec-

trum of the notoriously challenging scalar sector of QCD is studied on an anisotropic 243 × 128

lattice with spacing as ∼ 0.12 fm and mπ ∼ 390 MeV. Mixing effects between quark-antiquark,

meson-meson, and glueball states are included for the first time. With the inclusion of a scalar

glueball interpolating operator, no additional finite-volume states are observed below ∼ 2 GeV.

Furthermore, only two states in this region are observed to be created predominantly by quark-

antiquark interpolating operators which can be associated with the σ and f0(980) resonances.

The extraction of infinite-volume scattering amplitudes from finite-volume two-particle energies

is then addressed. Following an earlier calculation, a simultaneous extraction of elastic s- and

p-wave Kπ scattering amplitudes is presented, using an isotropic ensemble of 483 × 128 gauge field

configurations with spacing a ∼ 0.064 fm generated by the CLS effort. Breit-Wigner resonance

parameters for the vector K∗(892) meson along with the s-wave Kπ scattering length are determined

for (mπ,mK) = (280, 460) MeV.
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Chapter 1

Introduction

With the invention of bubble chambers and spark chambers in the 1950’s and 1960’s, experimental

particle physics saw the discovery of an abundance of new particles, which were called hadrons.

Such a large number of particles suggested some unknown substructure. These new states were

classified first by charge and isospin, then by strangeness, until in 1964 Gell-Mann [1] and Zweig [2,3]

independently proposed that hadrons were comprised of fractionally-charged particles called quarks

(although Zweig called them aces). In this quark model, the lightest hadrons could be classified

according to an SU(3) symmetry involving a property of quarks known as “flavor”. The flagship

result from this quark model was the successful prediction of the Ω− (sss) baryon, discovered in

1964 [4]. This and states like the ∆++ (uuu) led to the introduction of an additional SUc(3) “colour”

symmetry for the quarks, which in 1973, was proposed as the gauge symmetry underpinning the

strong interaction, and the resulting theory was known as Quantum Chromodynamics (QCD) [5].

QCD describes the strong interactions between the quarks and gluons, the fundamental particles

that make up all hadronic matter, in an SUc(3) Yang-Mills theory with 6 flavours of colour-charged

fermions (the quarks).

Today, QCD is well established as the gauge theory of the strong interaction; asymptotic

freedom [6, 7] allows for perturbative expansions in the gauge coupling at high energies1 (q2 ≈ m2
Z)

which reproduce various experimental results with great accuracy; and at low energies (q2 ≈ m2
π),

chiral effective theories based on the symmetries of QCD are successful at reproducing a range

of experimental results. However, it is in the intermediate energy regime (q2 ≈ 1 GeV2) that

difficulties arise. Here the QCD coupling is too large for a perturbative expansion (see fig. 1.1),

while the energy is large enough for many excited hadron states to form. Hence a non-perturbative

approach in this regime is required. Lattice QCD provides the only non-perturbative, first-principles,

systematically improvable approach to calculations at this energy scale, wherein the dynamics of

QCD are simulated numerically on a discrete Euclidean space-time lattice.

Despite numerous advances in the experimental, phenomenological, and theoretical approaches

1Note that for certain processes involving hadrons, e.g. deep inelastic scattering, factorisation theorems exist for

factoring cross sections into subsets which are independently perturbatively and non-perturbatively calculable [8].
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Figure 1.1: Running of the QCD coupling αS as a function of the energy scale Q. The respective

degree of QCD perturbation theory used in the extraction is indicated in the brackets. Figure from

Ref. [9].

to studying hadronic physics, the rich spectrum of QCD remains poorly understood. For example,

the first excited state of the nucleon, the Roper resonance, is difficult to study in lattice QCD

with three-quark operators only, and it lies below the lightest negative parity nucleon, in direct

contradiction to most quark models [10]. The light scalar mesons (mesons with JPC = 0++

containing only u, d, and s valence quarks) are notoriously challenging in lattice QCD due to

disconnected quark diagrams and signal-to-noise problems, and their mass orderings are, in a simple

qq quark model, inverted as compared to the experimental observations [11]. Similarly, throughout

the low-lying spectrum of QCD there are numerous open questions as to the nature of, or even

existence of, non-conventional hadronic states such as glueballs (purely gluonic states), tetraquarks

(qqqq), hybrid mesons (mesons with exotic/non-qq quantum numbers), etc.

Lattice QCD is currently the best method to tackle many of these problems in hadron spec-

troscopy. Considerable progress has been made in recent years in extracting the excited state

spectrum of QCD due to both the increased amount of computational resources and a multitude of

new numerical techniques, some of which we describe and employ here. Our approach focuses on

extracting the stationary states of QCD in a finite-volume from matrices of two-point temporal

2



correlation functions using correlation matrix methods [12–14]. Central to our approach is the use

of the stochastic LapH method [15] for estimating the computationally daunting quark lines/Wick

contractions that arise in hadronic correlation functions. With these tools, we are able to study the

finite-volume eigenstates of QCD using large and carefully designed interpolating operator bases.

With the stochastic LapH method, the inclusion of multi-particle interpolating operators in our

calculation is practical. By identifying the qq dominated stationary states in a given symmetry

sector, we can compare to the experimental resonances expected in that sector, in order to shed

some light on the gaps in our current understanding of the QCD spectrum.

As lattice calculations are necessarily restricted to a finite volume, it is important to connect to

the infinite-volume physics of the real world. This is possible through a formalism first discussed

by Lüscher [16], and then expanded upon by numerous others, for relating finite-volume stationary

state energies to the infinite-volume scattering matrix. The finite volume is exploited using the

Lüscher quantisation condition to sidestep the no-go theorem of Maiani and Testa [17] which

prevents the direct extraction of Minkowski space-time scattering information from Euclidean

correlation functions. This approach has proved to be very successful for elastic meson-meson

scattering (see Refs. [18–20] for some results from our collaboration), and has recently also been

applied to elastic meson-baryon scattering [21].

The usefulness of lattice QCD extends far beyond hadron spectroscopy, and it is in fact one

of the most powerful non-perturbative probes of strongly-interacting gauge theories in physics

today. Cutting edge lattice calculations are used today, for example, in precision determinations

of fundamental parameters of the Standard Model, such as the strong coupling constant, and in

predicting hadronic contributions to the anomalous magnetic moment of the muon, gµ − 2. In a

series of whitepapers released this year [22–28] the USQCD collaboration summarises the current

status and outlines some of the upcoming opportunities for lattice calculations in several physics

areas, including hadron spectroscopy, quark and lepton flavour physics, searches for physics beyond

the Standard Model (BSM), and more.

In this thesis we will first outline the basics of the lattice discretisation of QCD in chapter 2,

discussing the difficulties in formulating the theory in a discrete space-time, along with some details

on how Monte Carlo techniques are used to generate configurations of gauge field ensembles in

evaluating correlation functions using the path integral formulation of quantum field theory (QFT).

After this groundwork has been set, we then describe in chapter 3 our method of constructing

large sets of hadronic interpolating operators with the appropriate transformation properties to

extract as much of the low-lying spectrum as possible. Chapter 4 then contains the details of

how we estimate correlation functions of such operators using the stochastic LapH method [15],

followed by the application of correlation-matrix techniques to extract the finite-volume spectrum

in chapter 5. We present the Lüscher quantisation condition for relating finite-volume energies to

the infinite-volume scattering matrix in chapter 6, along with our implementation of the formalism

and the introduction of the quantity we call the box matrix [29]. Finally, in chapters 7 and 8 we

present the main results of this work, a first study of the scalar glueball in which the contributions
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from qq and meson-meson states are included in full QCD, and a study of elastic Kπ scattering

where we extract the s- and p-wave scattering amplitudes to study both the well-established vector

K∗(892) meson, and probe the contentious scalar K∗0(700) resonance2.

The Scalar Glueball

The three-gluon and four-gluon coupling terms in the QCD Lagrangian suggest the existence of

composite states consisting solely of gluons, called glueballs. Such states are of great interest

especially as they are distinct from the prototypical qq and qqq hadronic states predicted by

constituent quark models. Even in an era where searches for beyond the standard model (BSM)

physics draw more and more attention, incontrovertible experimental evidence for their existence

remains elusive. Experimentally there are several candidates for the lightest scalar glueball, the

f0(1370), f0(1500), and f0(1710) states. However, none have yet been unambiguously identified as

a glueball state [30]. To identify which of the three is most likely a glueball or gluon-dominated

state, model independent, first principles lattice calculations are required (see, e.g. Ref. [31]).

The glueball spectrum in pure Yang-Mills gauge theory has been extensively mapped out [32–34].

The lowest-lying scalar and tensor glueballs have previously been studied in quenched QCD, but

the quenched approximation3 makes such studies unreliable. For the scalar glueball, quenched

calculations yield a glueball mass in the range 1.5− 1.7 GeV, potentially suggesting the exclusion of

the f0(1370) as a glueball candidate. Again, the quenched approximation makes such conclusions

unreliable.

More recent studies have included the effects of sea quarks on glueballs [35–40], giving largely

compatible results with each other, and with quenched calculations in the scalar, and tensor sectors,

though the presence of the UA(1) anomaly in the pseudoscalar sector complicates matters, meaning

that contributions from the η′ meson must be understood further. The most important takeaway

from these studies is that the mixing between glueball and conventional meson states has been

neglected thus far. The full inclusion of meson and meson-meson states is crucial for any definitive

conclusions about the nature, or even existence of such glueball states. This is highlighted for

instance in the recent calculation in Ref. [40] where, for the scalar glueball, the authors find the

ground state energy extracted from gluonic correlation functions to be ∼ 1.4− 1.5 GeV, close to the

ground state of correlation functions involving quark bilinears (i.e. qq operators). This indicates,

at least at the quite heavy pion masses used in Ref. [40], that the mixing between flavour singlet

meson (and meson-meson) states and glueball states is critical to studies of glueball states.

Furthermore, while quenched calculations exhibit stable glueball states, in QCD the hypothetical

states will most likely manifest as unstable resonances, as their expected masses lie well above

2Sometimes known as the κ resonance.
3In early lattice calculations, the computationally expensive effects of dynamical sea quarks were neglected by

setting the fermion determinant to unity, i.e. setting detD = 1 in eq. (2.91). Nowadays quenched calculations are

largely unnecessary, though a wealth of computational hurdles remain in unquenched glueball calculations. These

are discussed further in chapter 7.
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various two-hadron thresholds. This necessitates the calculation of infinite-volume scattering

amplitudes for these states. Hence, while we lack the required precision for rigorous determinations

of the scattering matrix using the methods of chapter 6, we present in chapter 7 the next step

towards such a calculation, the inclusion of fully dynamical qq and two-meson states in the low-lying

scalar glueball sector of QCD.

Elastic Kπ Scattering

As will be detailed in chapter 6, the restriction to finite, Euclidean spacetime in lattice QCD

prevents the direct extraction of real-time hadronic scattering amplitudes [17]. Instead, this

difficulty can be circumvented using an approach first developed by Lüscher [13], in which such

amplitudes can be inferred from the deviations of finite-volume interacting two-particle energies

from their non-interacting values. The development of this program for extracting scattering data

from finite-volume energies, and a brief derivation of the all-important quantisation condition for

relating the two are outlined in chapter 6. Our approach, as described in sections 6.2 and 6.3 has

previously been applied successfully to a number of scattering processes [18, 20, 21], including a

recent study of elastic Kπ scattering on an anisotropic lattice, similar to the one used in chapter 7

but at a lighter pion mass in Ref. [19].

Elastic I = 1
2
Kπ scattering has been well studied on the lattice to date [19,41–45], with the

majority of those studies focused on extracting resonance parameters from the p-wave scattering

amplitude for the vector K∗(892) resonance. In fig. 6 of Ref. [19], the K∗(892) resonance parameters

are compared from a subset of these studies, showing a general agreement across differing pion

masses. In Ref. [45] s- and p-wave amplitudes are extracted on a set of ensembles with pion masses

ranging from ∼ 240 MeV to ∼ 400 MeV, showing the movement of the K∗ pole mass from a bound

state at the heaviest pion mass, to a genuine resonance as the pion mass is lowered.

The analysis presented here is an early part in a larger effort to map out the s- and p-wave

amplitudes using a set of the CLS ensembles described shortly, following the non-traditional quark

mass trajectory described in section 2.3.3. Our aim is to study the behaviour of these amplitudes

along the TrMq = const. quark mass trajectory, both to examine the quark mass dependence of

these amplitudes, and to provide high precision s-wave scattering data for the amplitude analysis

community to study properties of the poorly understood scalar K∗0(700) resonance.
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Chapter 2

Lattice QCD

Lattice QCD [46] is a non-perturbative approach to calculations where QCD is regulated in such

a way as to facilitate numerical evaluation. By restricting spatial and temporal coordinates to

discrete values (xµ = naµ, n = 0, 1, . . . , where aµ is the lattice spacing in the µ direction.), an

ultraviolet cutoff (Λ ∼ 1
a
) is naturally introduced, regularising the theory. Typically, an isotropic

lattice is used in which the aµ = a in each direction are all taken to be the same. Another common

situation is an anisotropic lattice in which the three spatial directions are taken to have the grid

size with the temporal spacing being smaller. The discretisation is performed in such a way as to

recover the continuum QCD action in the continuum limit, a→ 0. Discretising spacetime in this

manner results in an action that is no longer invariant under the full Poincaré group of rotations,

translations, and boosts, but one that is invariant under a subgroup corresponding to allowed

rotations, translations, and boosts on a hyper-cubic lattice.

This chapter will outline the basics of lattice QCD and set up the groundwork that allows us to

calculate observables within the theory (see for example, Refs. [47,48]). Constructing continuum

QCD is briefly reviewed, with a discussion on how to represent the theory in imaginary time. Then

in section 2.2, the issue of discretisation is discussed. SQCD may be represented as the continuum

limit of a large class of discrete lattice actions, which will differ at most by irrelevant operators that

vanish in the continuum limit. A key issue that must be addressed by our choice of lattice action is

that of fermion doubling, a phenomenon in which additional (degenerate) fermionic modes appear

that do not exist in the continuum. Our choice of fermion action that alleviates this issue will lead

to chiral symmetry breaking, an unavoidable consequence of the Nielson-Ninomiya theorem [49].

We follow this in section 2.3 with a discussion detailing how a given discretisation of SQCD can

be systematically improved to address the leading order errors due to discretisation. There we

also outline various properties of the two classes of gauge ensembles that are used in this work,

namely the anisotropic HadSpec ensemble used in the scalar glueball study in chapter 7, and the

CLS ensembles used in the Kπ scattering analysis in chapter 8.

Then, in section 2.4 we outline our primary aim of calculating hadronic two-point correlation

functions in order to extract the stationary state spectrum of QCD in finite-volume. Finally, we

6



close out the chapter in section 2.5 with a brief outline of the Monte Carlo integration techniques

used to generate field ensembles for the gauge fields, including effects from dynamical quarks.

2.1 QCD Lagrangian

To build a field theory that describes the strong interaction between quarks and gluons we take the

colour charge of the strong interaction and form a non-abelian gauge theory with SUc(3) as the

gauge symmetry group [46]. Our total QCD Lagrangian density is

L[ψ, ψ,G] =

Nf∑

f=1

ψ
(f)

aα (iγµαβDµab −m(f)δαβδab)ψ
(f)
bβ −

1

4
Ga
µνG

µν
a , (2.1)

where γµ are the Dirac gamma matrices which satisfy

{γµ, γν} = 2gµν , γ†µ = γ0γµγ0, γ5 ≡ iγ0γ1γ2γ3. (2.2)

The fermionic quarks are represented by massive Dirac spinors

ψ(f)
aα (x), ψ

(f)

aα (x), (2.3)

with colour indices a = 1, 2, 3, Dirac indices α = 1, 2, 3, 4 and quark flavour indices f = 1, 2, . . . , Nf .

These fields transform under the fundamental (3) and anti-fundamental (3) representations of

SUc(3). Though we could imagine the theory with any number of flavours, in nature Nf = 6. In

our simulations, we deal only with Nf = 2 + 1, that is, two degenerate light quarks and a strange

quark. In treating the up and down quarks as degenerate (mu = md), the reduced isospin symmetry

SUI(2) is exact1.

The gauge-covariant derivative Dµ has been defined as

Dµ = ∂µ + igAµ, (2.4)

where g will denote the coupling strength of the gauge fields, Aµ, to the quarks, generally taken to be

6= 0. The gluon fields describe a vector boson that transforms under the adjoint (8) representation

of SUc(3)

Aµ(x) = Aaµ(x)
λa
2
, (2.5)

where λa, a = 1, 2, . . . , 8 are the Gell-Mann matrices which generate the Lie group SUc(3). The

Gell-Mann matrices are given by

λ1 =




0 1 0

1 0 0

0 0 0


 , λ2 =




0 −i 0

i 0 0

0 0 0


 , λ3 =




1 0 0

0 −1 0

0 0 0


 , λ4 =




0 0 1

0 0 0

1 0 0


 ,

λ5 =




0 0 −i
0 0 0

i 0 0


 , λ6 =




0 0 0

0 0 1

0 1 0


 , λ7 =




0 0 0

0 0 −i
0 i 0


 , λ8 =

1√
3




1 0 0

0 1 0

0 0 −2


 .

(2.6)

1In nature mu ∼ md are on the order of a few MeV while ms ≈ 95 MeV.

7



These span all traceless Hermitian matrices and obey the relations

[λa, λb] = 2i
8∑

c=1

fabcλc, Tr(λaλb) = 2δab, (2.7)

where the structure constants fabc are fully antisymmetric. The gluon field strength tensor, Gµν , is

defined in terms of these gluon fields as

Gµν(x) =
1

2
Ga
µνλa

≡ − i
g

[Dµ,Dν ]

= ∂µAν − ∂νAµ + ig[Aµ,Aν ]

=
1

2
λa(∂µAaν − ∂νAaµ − gfabcAbµAcν).

(2.8)

An important property of the Lagrangian in eq. (2.1) is its invariance under a local SU(3) gauge

transformation, under which the quark and gluon fields transform according to

ψ(x)→ ψ′(x) = Ω(x)ψ(x), (2.9a)

ψ(x)→ ψ
′
(x) = ψ(x)Ω†(x), (2.9b)

Aµ(x)→ A′µ(x) = Ω(x)Aµ(x)Ω†(x) + i (∂µΩ(x)) Ω†(x), (2.9c)

where Ω(x) ∈ SUc(3). A CP violating term θ 1
32π2G

a
µνG

a
ρσε

µνρσ should also be included in our

Lagrangian, though as experimental evidence suggests that θ is negligible [50], we will not include

it here.

2.1.1 Imaginary Time

Observables in lattice QCD are obtained by evaluating correlation functions of relevant quantum

mechanical operators in the theory via Feynman path integrals. However, the oscillating path

integral weight eiSM , where SM is the action defined in Minkowski spacetime, is complex, and

thus unsuitable for importance sampling in our Monte Carlo calculations. Rotating to imaginary

time, t→ −iτ , yields a positive weighting factor e−S, where S is the action defined in Euclidean

spacetime, that is suitable for our numerical calculations. The Euclidean theory is defined such

that the action is invariant under all symmetries of Euclidean spacetime and all Green’s functions

of the theory are identical to the Green’s functions of the Minkowski theory, analytically continued

to imaginary time, t→ −iτ .

We define the following relationships between coordinates and derivatives in Minkowski and

Euclidean spacetime, where a subscript or superscript M denotes Minkowski spacetime:

x4 = x4 = ix0
M = ixM0 , xj = xj = xjM = −xMj , (2.10a)

∂4 = ∂4 = −i∂0
M = −i∂M0 , ∂j = ∂j = −∂jM = ∂Mj . (2.10b)
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From the definition of the covariant derivative, the Euclidean gluon fields are defined by

A4 = A4 = −iA0
M = −iAM0 , Aj = Aj = −AjM = AMj , (2.11)

from which we obtain the Euclidean gluon field strength tensors

GM
0k = −G0k

M = iG4k = iG4k, GM
ij = Gij

M = Gij = Gij. (2.12)

Finally, we define the Euclidean γ matrices,

{γµ, γν} = 2δµν , γ†µ = γµ, γ5 = γ4γ1γ2γ3, (2.13)

with the following relationship to the Minkowski γM matrices,

γ4 = γ4 = γ0
M = γM0 ,

γk = γk = −iγkM = iγMk ,

γ5 = γ5 = γ5
M .

(2.14)

Unless stated otherwise, we use the Dirac-Pauli representation given by

γk =

(
0 −iσk
iσk 0

)
, γ4 =

(
1 0

0 −1

)
, γ5 =

(
0 1

1 0

)
, (2.15)

where σk are the Pauli spin matrices. In the Dirac-Pauli representation, the γ matrices also have

the following properties:

γT1 = −γ1, γT2 = γ2, γT3 = −γ3, γT4 = γ4. (2.16)

Using this plethora of definitions, we can Wick rotate the action from Minkowski to Euclidean

spacetime. Suppressing flavour, spin, and colour indices then,

iSM = i

∫
dx0

M

∫
d3xM

[
ψ(iγ0

MDM0 + iγjMDMj −m)ψ − 1

4
GM
µνG

µν
M

]

= i

∫
(−idx4)

∫
d3x
[
ψ(iγ4(iD4) + i(iγj)Dj −m)ψ − 1

4
GµνGµν

]

= −
∫

d4x
[
ψ(γµDµ +m)ψ +

1

4
GµνGµν

]

≡ −S.

(2.17)

For the spin-1
2

fermion fields, the Wick rotation involves some subtleties [51,52]. Simultaneously

requiring invariance under Euclidean transformations and equivalence of the two-point function in

Euclidean spacetime with the two-point function in Minkowski spacetime analytically continued

to imaginary time rules out the identification of ψ = ψ†γ4 or ψ = ψ. Since, from a path integral

viewpoint, we consider ψ and ψ as independent Grassmann integration variables, there is no

issue with not having any particular relationship between the two. While the action is no longer
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Hermitian2, there is no issue with the physical interpretation of the theory as it has been engineered

to reproduce the Green’s function of the physically-sensible Minkowski theory, analytically continued

to imaginary time. This point will be revisited in section 2.4.1.

Rescaling the gauge field for convenience:

Aµ(x)→ 1

g
Aµ(x), (2.18)

since we will not consider the theory in which g = 0, the final form of the QCD action in Euclidean

spacetime is

S[ψ, ψ,G] =

∫
d4x

[ Nf∑

i=f

ψ
(f)

aα

(
(γµ)αβ(Dµ)ab +m(f)δαβδab

)
ψ

(f)
bβ +

1

4g2
Ga
µνG

a
µν

]
(2.19)

where now

Dµ = ∂µ + iAµ, (2.20a)

Gµν = −i[Dµ,Dν ] = ∂µAν − ∂νAµ + i[Aµ,Aν ]. (2.20b)

2.2 Discretising Spacetime

Now we must discuss how to restrict the theory to a finite cubic lattice to facilitate numerical

methods. Such a lattice can be represented by

Λ ≡ {n = (n1, n2, n3, n4) | n1, n2, n3 = 0, 1, . . . , Ns − 1; n4 = 0, 1, . . . , Nt − 1} (2.21)

where Ns is the number of sites in the spatial directions, and Nt is the number of sites in the

temporal direction. In general, these numbers need not be the same, and in fact the lattice spacing

in the spatial, as, and temporal, at, directions also need not be the same. Without loss of generality,

we can take the lattice to be isotropic (as = at ≡ a,Ns = Nt ≡ N) for the following discussion of

discretisation, though later it will prove useful to introduce a different spacing in the temporal

direction.

In Fourier space3, the finite lattice spacing a naturally acts as a momentum cutoff or regulator

for the theory, restricting momenta to the first Brillouin zone

pµ ∈
(−π
a
,
π

a

]
. (2.22)

The finite volume periodic boundary conditions restricts the momenta to be discrete

p =
2π

L
n, (2.23)

2γ5-Hermiticity of D (D† = γ5Dγ5) in S = ψDψ + Sg guarantees that detD is real, since det γ5 = 1.
3See for example Appendix A.3 in Ref. [48] for a description of the Fourier transform on a hypercubic lattice.
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where L is the spatial extent of the lattice, and n is a vector of integers: n = (n1, n2, n3), ni ∈ Z.

A point on the spacetime lattice is given by x = an, so, to define the QCD action on the lattice

we begin with the following replacements

x→ n, (2.24a)

∫
d4x→ a4

∑

n∈Λ

. (2.24b)

Crucially, the lattice discretisation must be performed in such a way as to recover the continuum

theory in the limit a→ 0. Additionally, we require that the theory remain gauge invariant under

the same gauge transformations as the continuum theory. For QCD, this amounts to SUc(3) gauge

invariance, a property that is spoiled by simply applying eq. (2.24). Thus, care must be taken when

formulating the lattice theory, ensuring that none of these properties are spoiled in the process.

We will begin with a näıve description of the fermionic sector of the theory which we then

augment in such a way as to mitigate lattice artefacts. Importantly, we will see how the introduction

of gluon fields differs on the lattice with respect to the continuum. On the lattice the gluon fields

will appear as elements of the gauge group and not as elements of the algebra as in the continuum.

The purely gluonic part of the action will then be discussed, also with improvements that help to

minimise discretisation effects. Finally, specific details about how bare parameters for the theory

are tuned to extract physics are outlined with some remarks on scale setting.

2.2.1 Näıve Discretisation of Fermions

In the continuum theory, it is the enforcement of local gauge invariance that prompts the introduction

of gauge fields via the covariant derivative in eq. (2.4). Similarly, here we start from a discretised

free fermion action S0
F , and the appropriate gauge fields naturally emerge from the requirement

of local gauge invariance under SUc(3) transformations. Suppressing quark field indices, the free

Euclidean fermionic action in the continuum is

S0
F [ψ, ψ] =

∫
d4x ψ(x) (γµ∂µ +m)ψ(x). (2.25)

Discretising the integral as in eq. (2.24) and the partial derivatives with the symmetric finite

difference

∂µψ(x)→ 1

2a
(ψ(n+ µ̂),−ψ(n− µ̂)) (2.26)

we arrive at a lattice version of the free fermion action

S0
F [ψ, ψ] = a4

∑

n∈Λ

ψ(n)

[
4∑

µ=1

γµ
ψ(n+ µ̂)− ψ(n− µ̂)

2a
+mψ(n)

]
. (2.27)

This however is not gauge invariant, so to make a locally gauge invariant action we need to use a

gauge covariant version of the finite-difference operator. This gives us the following gauge invariant
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n n+ µ̂

Uµ(n)

n n+ µ̂

U−µ(n) = U †µ(n− µ̂)

Figure 2.1: Graphical representation of the gauge link variables, defined in eqs. (2.30) and (2.33).

action

SF [ψ, ψ, U ] = a4
∑

n∈Λ

ψ(n)

[
4∑

µ=1

γµ
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2a
+mψ(n)

]
, (2.28)

where Uµ(n) is an SUc(3) matrix associated with the gluon field on the link starting at lattice

site n, and ending at n+ µ̂, as shown in fig. 2.1. Under a local SUc(3) gauge transformation, the

fermion fields and the so-called link variables Uµ transform according to

ψ(n)→ ψ ′ = Ω(n)ψ(n), (2.29a)

ψ(n)→ ψ ′ = ψ(n)Ω†(n), (2.29b)

Uµ(n)→ Ω(n)Uµ(n)Ω†(n+ µ̂), (2.29c)

where Ω(n) is an element of SUc(3) chosen on each site n. For notational convenience we define

the link variables pointing in the negative µ direction as

U−µ(n) ≡ U †µ(n− µ̂), (2.30)

also shown in fig. 2.1. These reversed link variables transform as

U−µ(n)→ Ω(n)U−µ(n)Ω†(n− µ̂). (2.31)

To ensure our discretised action produces a correct continuum action in the limit a→ 0, we

first associate our link variables with the gauge transporter [53]

U(x, y) = P exp

(
i

∫

Cxy
A(s) · ds

)
(2.32)

where P denotes path-ordering and Cxy is some path connecting the points x and y. Each link

variable is given in terms of the gluon field by

Uµ(n) ≈ exp (iaAµ(n)) . (2.33)

Expanding in the spacing a gives

Uµ(n) ≈ 1 + iaAµ(n) +O(a2), (2.34a)

U−µ(n) ≈ 1− iaAµ(n− µ̂) +O(a2), (2.34b)

12



so that eq. (2.28) becomes

SF [ψ, ψ, U ] = a4
∑

n∈Λ

ψ(n)

[
4∑

µ=1

γµ

[
ψ(n+ µ̂)− ψ(n− µ̂)

2a

+
iaAµ(n)ψ(n+ µ̂) + iaAµ(n− µ̂)ψ(n− µ̂)

2a

]
+mψ(n) +O(a)

]
,

= a4
∑

n∈Λ

ψ(n)

[
γµ
(
∂µ + iAµ(n)

)
ψ(n) +mψ(n) +O(a)

]
,

(2.35)

which in the continuum limit becomes

lim
a→0

SF [ψ, ψ, U ] = lim
a→0

a4
∑

n∈Λ

ψ(n)

[
γµ
(
∂µ + iAµ(n)

)
ψ(n) +mψ(n) +O(a)

]
,

=

∫
d4x

[
ψ(x)

(
γµDµ +m

)
ψ(x) +O(a)

]
.

(2.36)

The näıve fermion action then reproduces the continuum action in the limit a→ 0 with discretisation

errors of O(a). It is important to note at this stage that while the näıve fermion action (eq. (2.28))

seems to fulfil our basic requirements, the choice of discretised action is not unique, and in fact this

näıve form has a serious weakness that requires careful fixing.

2.2.2 Fermion Doubling

Consider a generic fermion action with the following form,

SF [ψ, ψ, U ] = ψD[U ]ψ (2.37)

where fermion indices are suppressed and we refer to D[U ] now as the Dirac matrix. With the full

complement of quark indices, the Dirac matrix for the näıve lattice action (eq. (2.28)) is

Daα;bβ(n|m) = a4

4∑

µ=1

(γµ)αβ
Uµ,ab(n)δn+µ̂,m − U−µ,ab(n)δn−µ̂,m

2a
+ a4mfδαβδabδnm, (2.38)

where mf is the mass of quarks with flavour f , and all quark indices are defined in section 2.1. The

free lattice quark propagator then is obtained by setting Uµ(n) = 1 everywhere and inverting M .

In Fourier space then,

D̃0(p) = a4

4∑

µ=1

iγµ
sin(apµ)

a
+ a4mf , (2.39)

so that the free lattice propagator then is given by

a4D̃0(p)−1 =
−ia∑µ γµ sin(apµ) + a2mf∑

µ sin2(apµ) + a2m2
f

. (2.40)

As we would expect, there is a pole in this propagator at p2 = m2. However the sin2(apµ) term

gives 2d − 1 extra poles, referred to as fermion doublers, at the edges of the first Brillouin zone. If
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for example we consider the case of massless fermions (m = 0), the lattice propagator will contain

these unphysical modes at

pµ = (π/a, 0, 0, 0), (0, π/a, 0, 0), . . . , (π/a, π/a, π/a, π/a). (2.41)

Since the lattice action need only match the continuum QCD action for vanishing lattice spacing,

we are free to add any number of terms to alleviate the doubling problem so long as they vanish as

a→ 0. The particular choice of solution is not unique, and will belong to a larger class of additions

to the action that we generically call improvements4.

One such solution to the doubling problem was proposed by Wilson [54], where the so-called

Wilson term is added to the fermionic action:

D(n|m)→ D(n|m)− a4

4∑

µ=1

a
Uµ(n)δn+µ̂,m − 2δn,m + U−µ(n)δn−µ̂,m

2a2
. (2.42)

This term is a discretised version of −a
2
∂µ∂µ, with the correct insertions of gauge links to preserve

local gauge invariance. This term manifests in Fourier space as

D̃(p)→ D̃(p) + a4

4∑

µ=1

1− cos(apµ)

a
. (2.43)

For each momentum component with pµ 6= 0, the Wilson term acts like an additional mass term

that is maximised for any momentum component with pµ = π
a
. The total mass of the doublers

then is m+ 2l
a

, where l is the number of momentum components equal to π
a
. In the limit a→ 0

the doublers become very heavy and will decouple from the theory so that only the physical pole

(p2 = m2) will then remain in the corresponding momentum space propagator.

Unfortunately, this solution to the problem of the doubler states is not without its own drawbacks.

Notice that even for the massless theory, (mf = 0), where we would usually expect chiral symmetry

in the QCD action, the Wilson term transforms like 1 in Dirac space. This explicitly breaks chiral

symmetry by acting as a mass term in the (massless) theory. Furthermore, one might think that the

Wilson term is simply a flawed solution to the doubler problem, yet in 1981 Nielson & Ninomiya

proved a no-go theorem for regularising chiral fermions [49]. The theorem states that for lattice

regularisations which respect Hermiticity, locality, and (lattice) translational invariance, it is not

possible to lift the doubler degeneracy without breaking the chiral symmetry present in the QCD

Lagrangian at vanishing bare quark mass. There exist several attempts to navigate the issue, though

none can fully maintain chiral symmetry and solve the doubling problem concurrently. Examples

include Staggered fermions [55–57], Overlap fermions [58,59], Domain-Wall fermions [60,61], and

Twisted-Mass fermions [62–64]. In both the scattering and hadron spectrum analyses performed

here, Wilson fermions have been used5, with some systematic improvements to be discussed shortly.

4This freedom to add any irrelevant operators will be exploited beyond the doubling problem. For further details

see section 2.3.
5On the CLS ensembles used in the scattering analysis, a small twisted-mass term is added to the action during

the generation of gauge configurations to help to avoid instabilities in the simulations. See section 2.3.2 for details.

14



2.2.3 Gauge Action

At this stage it still remains to determine the purely gluonic part of the lattice action. The gauge

link variables, Uµ, have already been established as the fundamental quantities with which we

represent the gluon fields on the lattice, so it seems reasonable to consider gluon actions that

depend only on those variables. As with the fermionic sector, the gluon action must be constructed

in such a way as to maintain local gauge invariance, in addition to reproducing the continuum

gluon action in the limit as a→ 0.

Consider first the product of k connected link variables that form a path P connecting lattice

sites n and m

P (n|m) = Uµ0(n)Uµ1(n+ µ̂0) . . . Uµk−1
(m− µ̂k−1) ≡

∏

(n,µ)∈P

Uµ(n). (2.44)

This product of links will transform under a gauge transformation as

P (n|m)→ Ω(n)P (n|m)Ω†(m), (2.45)

so that a gauge invariant quantity can be formed by taking two quark fields at any two sites

connected by P :

ψ(n)P (n|m)ψ(m). (2.46)

Alternatively, consider a closed loop L of such a product of gauge links and take the trace

L[U ] = Tr


 ∏

(n,µ)∈L

Uµ(n)


 , (2.47)

where the trace ensures the object is gauge invariant. Such closed loops can serve many purposes

as physical observables and we will use them in construction of the gauge action. Depending on

the particular path chosen, these objects are sometimes called Wilson loops or Polyakov loops.

The smallest non-trivial closed loop we can construct is the plaquette:

Uµν ≡ Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂),

= Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν(n).
(2.48)

Similarly to the closed loop above, taking the trace of the plaquette will result in a gauge invariant

object. Wilson presented the first discretisation of the gauge action using a collection of all

plaquettes [46]

SG[U ] =
β

3

∑

n∈Λ

∑

µ<ν

Re Tr [1− Uµν(n)] , (2.49)

where β = 2Nc/g
2 = 6/g2. The continuum limit can be checked by first looking at small a expansion

of the plaquette in terms of gauge fields

Uµν(n) = exp
(
ia2Gµν(n) +O(a3)

)
,

a→0−−→ 1 + ia2Gµν(n)− 1

2
a4G2

µν(n) +O(a6),
(2.50)
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so that in the continuum limit, the Wilson gauge action reproduces the continuum gluon action

in eq. (2.1) with leading discretisation errors of O(a2). It is important to remember that this

choice of discretised gauge action is not unique, and in fact many different discretisations exist

that improve on discretisation errors over Wilson’s construction. Our choice of action in both the

fermionic and gluonic sectors with some discussion of discretisation errors will be discussed next.

2.3 Action Improvement and Scale Setting

When introducing the QCD action on the lattice we stressed that the particular discretisation of

the continuum theory is not unique, and we can add any terms to the action that will vanish in

the continuum limit. The Symanzik improvement program [65–67] is a systematic implementation

of such additions that aims to reduce discretisation errors both in the action used and in the

observables themselves. For example, consider the kinetic term in the action for a real scalar

field [68],

∫
dDx ∂µφ ∂µφ =

∫
dDx ∂µ (φ ∂µφ)−

∫
dDx φ ∂2

µφ = −
∫

dDx φ ∂2
µφ. (2.51)

A näıve discretisation of this term would invoke the Taylor expansion of the second derivative,

f ′′(x) = a−2 (f(x+ a) + f(x− a)− 2f(x)) +O(a2), (2.52)

whereas a simple improvement one could make is to use a higher order approximation like

f ′′(x) = a−2

(
4

3
(f(x+ a) + f(x− a))− 1

12
(f(x+ 2a) + f(x− 2a))− 5

2
f(x)

)
+O(a4). (2.53)

While perhaps an obvious or trivial way to remove the leading O(a2) correction, using this finite

difference expression is essentially equivalent to using a tree-level O(a2) Symanzik improved action.

For a less trivial theory the improvement program is significantly more involved, yet the basic aim

of constructing a lattice action with an improved continuum limit remains the same. By adding

some number of terms that vanish in the continuum limit, the leading order corrections in a can be

treated. For a quantum field theory, this must be done with care. Quantum corrections must be

accounted for in the coefficients attached to each improvement term. Hence, such coefficients can

be determined either order-by-order in perturbation theory (e.g. cSW, defined below in eq. (2.54), is

calculated to one loop order in Ref. [69]), or non-perturbatively (e.g. see Ref. [70] where cSW is

determined non-perturbatively for Nf = 3 lattice QCD).

As the gauge field ensembles used in the two sets of analyses in this thesis differ somewhat, we

will outline the action improvements for each separately; first in some detail for the anisotropic

ensemble used in chapter 7, followed by the isotropic ensembles used in the scattering analysis

in chapter 8.
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2.3.1 Anisotropic HadSpec Ensembles

For the glueball spectrum study in chapter 7, we use an anisotropic ensemble generated by the

Hadron Spectrum (HadSpec) collaboration [71,72]. Here, we detail the improvements to the standard

Wilson action of eqs. (2.42) and (2.49). In the fermionic sector, we add the Sheikholeslami-Wohlert

clover term [73,74],

acSW

∑

µ<ν

ψ(n)
i

4
σµνF̂µν(n)ψ(n), (2.54)

where σµν = 1
2i

[γµ, γν ], and F̂µν is a lattice representation of the gluon field strength tensor [75].

The coefficient cSW can then be determined non-perturbatively, for example as in Ref. [70], though

the tree-level estimate of Ref. [74] is used for the anisotropic ensembles. In addition to improving

the O(a) convergence of the fermionic action, this term also seems to partially alleviate the

chirality-breaking effects of Wilson fermions [76].

In the gauge sector, explicit O(a) convergence is treated, though we must also make mod-

ifications to deal with contributions from tadpole diagrams6 that arise in lattice perturbation

theory [77]. Tadpole improvement is implemented by rescaling the gauge links using tuneable

tadpole improvement factors

U → U

u
, where u =

〈
1

3
Re TrUµν

〉1/4

. (2.55)

Lattice artefacts in the gauge sector are dealt with by introducing additional 2× 1 planar Wilson

loops Rµν , where µ is the direction of length 2, ν the direction of length 1.

Positivity of the lattice transfer matrix is an important point that we must keep in mind

throughout the construction of the lattice action. A positive definite transfer matrix will guarantee

a Hermitian Hamiltonian, which is vital in the variational analysis we employ to extract excited

hadronic states [33]. We must ensure that positivity is maintained in the action while reducing

the effects of lattice artefacts as much as possible. To do this, the action must not contain terms

which extend more than a single site in the temporal direction [78, 79]. For example, only 2× 1

planar Wilson loops Rµν that contain length-two gauge links in a spatial direction will be used.

This restriction on temporal gauge links will also need to be taken into account when we discuss

gauge field smearing and operator construction in chapter 3.

Temporal correlation functions, the primary observable we use for spectrum extraction, generally

have signal-to-noise ratios that decrease as the time separation increases. A large at will therefore

reduce the number of viable data points before the time separation at which noise takes over

is reached. The obvious solution is simply to use a lattice spacing that is very small. However,

for smaller lattice spacing, the computational cost of the calculations grows rapidly. In order to

circumvent this issue, increase the temporal resolution of correlation functions, and further reduce

6These are generated by the expansion of eiagAµ where higher order terms in the expansion contain additional

factors that generate ultraviolet divergences which precisely cancel the additional powers of a.
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temporal lattice artefacts while maintaining positivity, we employ an anisotropic lattice [33, 80]

with anisotropy ξ ≡ as/at > 1.

Let’s now summarise the final form of the anisotropic action used here. For the gauge ac-

tion, we use a Symanzik-improved Lüscher-Weisz action [67,81] with tree-level tadpole-improved

coefficients [33,71,72,80]

SξG[U ] =
β

3γg

{∑

x,i 6=j

[
5

6u4
s

ΩPij(x)− 1

12u6
s

ΩRij(x)

]

+
∑

x,i

γ2
g

[
4

3u2
su

2
t

ΩPit(x)− 1

12u4
su

2
t

ΩRit(x)

]}
,

(2.56)

where ΩW = Re Tr(1−W ), P is a plaquette, and Rµν is the 2× 1 planar Wilson loop defined above.

The parameters us and ut are the spatial and temporal tadpole coefficients, indices i, j ∈ {x, y, z}
always run over the spatial directions, and γg is the bare gauge anisotropy. This action has leading

discretisation error at O(a4
s, a

2
t , g

2a2
s), and has a positive definite transfer matrix since no length-two

gauge links in time are used. In the fermionic sector we use the anisotropic clover-improved

action [74], which for some number of quark flavours f is given by

SξF [U, ψ, ψ] = a3
sat
∑

f

∑

x

ψ(x)Dξ
W (m0,f )ψ(x), (2.57)

with the tree-level clover-improved, anisotropic Wilson Dirac matrix

Dξ
W (m0) =

1

ũt

{
ũtm̂0 + γtŴt +

1

γf

∑

i

γiŴi

− 1

2

[
1

2

(
γg
γf

+
1

ξ

)
1

ũtũ2
s

∑

i

σtiF̂ti +
1

γf

1

ũ3
s

∑

i<j

σijF̂ij

]} (2.58)

where ũs and ũt are the spatial and temporal tadpole factors for the fermion action, m̂0 is the

dimensionless bare quark mass, γf is the bare fermion anisotropy, ξ = as/at is the renormalised

anisotropy, and

Ŵµ = ∇µ −
aµ
2
γµ∆µ, (2.59a)

∇µf(x) =
1

2aµ

[
Uµ(x)f(x+ µ)− U †µ(x− µ)f(x− µ)

]
, (2.59b)

∆µf(x) =
1

a2
µ

[
Uµ(x)f(x+ µ) + U †µ(x− µ)f(x− µ)− 2f(x)

]
. (2.59c)

This action has leading discretisation error at O(g2as, g
2at, a

2
s, a

2
t ).
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2.3.2 Isotropic CLS Ensembles

For the Kπ scattering analysis in chapter 8, we use a subset of isotropic ensembles generated by

the Coordinated Lattice Simulations (CLS) initiative, initially presented in Refs. [82, 83]. Like the

anisotropic HadSpec ensemble described in the previous section, in the gauge sector the tree-level

improved Lüscher-Weisz gauge action [67,81] is used, given by (cf. eq. (2.56))

SCLS
G [U ] =

β

6

(
c0

∑

P

Tr(1− P) + c1

∑

R

Tr(1−R)

)
, (2.60)

where the plaquette and rectangle coefficients are c0 = 5/3 and c1 = −1/12 respectively, and the

sums run over all plaquettes P, and rectangles R contained in the lattice. In the fermion sector,

the same Sheikholeslami-Wohlert clover term [73] is added to the Wilson action, though here with

the coefficient cSW determined non-perturbatively in Ref. [70]. The fermion action is then given by,

for any number of quark flavours f (cf. eq. (2.57))

SCLS
F [U, ψ, ψ] = a4

∑

f

∑

x

ψf (x)DW (m0,f )ψf (x), (2.61)

with clover-improved Wilson Dirac matrix (cf. eq. (2.58))

DCLS
W (m0) = m0 +

1

2

3∑

µ=0

{γµ(∇∗µ +∇µ)− a∇∗µ∇µ}+ acSW

3∑

µ,ν=0

i

4
σµνF̂µν . (2.62)

While the choice of action is relatively standard, there are additional improvements included in the

simulation of these ensembles, most notably the use of open temporal boundary conditions, and

twisted-mass reweighting in the fermion determinant. Other improvements, including a reweighting

factor that compensates for the RHMC approximation, see section 2.5.2, are detailed in Ref. [82].

Twisted-Mass Reweighting

As the Wilson Dirac matrix is not protected against having zero eigenvalues, during the Monte

Carlo simulation such zeros can lead to numerical instabilities. Lüscher and Palombi suggested in

Ref. [84] to add a small twisted-mass [62] term to the light quark action during the Monte Carlo

simulation, and then to compensate by reweighting the measured observables. The details of the

implementation by the CLS effort are outlined in Ref. [82, 85], so here we review the basic idea

behind reweighting in the context of a Monte Carlo simulation.

Generally, reweighting is a method for “extending” the results from an original simulation,

say at inverse temperature β, to any other β′ sufficiently close to the simulation point without

performing any additional simulations. The idea stems from the fact that the canonical probability

of a configuration φ at inverse temperature β, pβ(φ), is easily related to the distribution at β′:

pβ′(φ) ∝ e−β
′Eφ = Ce−(β′−β)Eφpβ(φ), (2.63)
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where Eφ is the total energy for configuration φ, C depends on β and β′, and is generally unknown.

For some operator O(φ) then

〈O〉β′ ≡
1

Zβ′

∫
dφO(φ) pβ′(φ)

=
C

Zβ′

∫
dφO(φ)e−(β′−β)Eφ pβ(φ)

=
Zβ
Zβ′

C〈O e−(β′−β)E〉β.

(2.64)

If we look at the trivial observable O(φ) = 1, we get the ratio of partition functions

Zβ′

Zβ
= C〈e−(β′−β)E〉β, (2.65)

so that the final result is

〈O〉β′ =
〈O e−(β′−β)E〉β
〈e−(β′−β)E〉β

. (2.66)

In principle then, we should be able to get the expectation value of an observable at inverse

temperature β′ given a simulation at inverse temperature β. In reality, the finite statistics of a real

simulation becomes a limiting factor. For a Monte Carlo simulation at coupling β that gives us a

(finite) series of configurations φ1, . . . , φN , and measurements of some observable Oi = O(φi), the

reweighting formula becomes

〈O〉β′ =

∑
iOi e−(β′−β)Ei

∑
i e
−(β′−β)Ei

=
〈O e−(β′−β)E〉β
〈e−(β′−β)E〉β

, (2.67)

where Ei and Oi are measured on the same configuration at inverse temperature β. This is the

exact procedure that is followed when treating observables from the CLS ensembles; the expectation

values of some primary observable A in the target theory (e.g. without the twisted-mass term) can

be computed from expectation values in the theory with the modified action 〈. . . 〉W , according to

〈A〉 =
〈AW 〉W
〈W 〉W

, (2.68)

where the reweighting factor W in this case contains ratios of fermion determinants and is described

in Ref. [82].

Temporal Boundary Conditions

The gauge field configurations we integrate over when calculating observables in QCD (see section 2.5)

can be classified according to their topological charge [86]. Since in lattice QCD we randomly

generate a representative set of such gauge configurations using Monte Carlo methods, it is

crucial to sample field configurations from many different topological sectors (i.e. regions with

different topological charge) to avoid biasing the calculations [87]. For smaller and smaller lattice
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spacings (i.e. towards the continuum limit) however, these simulations tend to get “trapped” in

the topologically frozen sectors of field space7, potentially biasing the results [88,89]. In practical

simulations, the emergence of such topological sectors can induce very long autocorrelation times

in certain observables, e.g. the global topological charge. To combat this, the CLS effort has

enforced open boundary conditions as follows [89]. As the description of the boundary conditions is

independent of lattice discretisation, we will proceed in the continuum theory. At time 0 and T ,

i.e. the temporal boundary, the conditions imposed on the gauge potential Aµ(x) are

G0k(x)|x0=0 = G0k(x)|x0=T = 0, ∀ k = 1, 2, 3, (2.69)

where the gauge field strength tensor Gµν(x) is defined in eq. (2.8). Note that since these conditions

preserve the gauge symmetry of the action, and therefore do not constrain the gauge field degrees

of freedom, we have not fixed the gauge here. For the quark and anti-quark fields, imposing the

temporal boundary conditions requires

P+ψ(x)|x0=0 = P−ψ(x)|x0=T = 0, P± =
1

2
(1± γ0), (2.70a)

ψ(x)P−|x0=0 = ψ(x)P+|x0=T = 0. (2.70b)

The primary concern in choosing these boundary conditions, from our point of view, is the

influence on the finite-temporal-extent effects in the temporal correlation functions we calculate [20,

82,85,90]. Detailed in section 5.2, the use of open temporal boundary conditions limits the number

of time slices that we can use for source and sink times in our correlation functions, as times

sufficiently far away from the boundary are needed to avoid corrections due to boundary effects.

Thankfully, the temporal extent of these lattices is relatively large, and this restriction, while

limiting, does not preclude us from proceeding in our scattering studies. Importantly, in [82] for

example, the accuracy of hadron mass results using these boundary conditions is comparable to

studies where periodic boundary conditions are used, with the leading boundary effects shown to

be parametrically similar to e−mπL, where mπ is the mass of the pion (i.e. the lightest state in/the

inverse correlation length of the theory), the leading order finite-volume correction.

2.3.3 Tuning the Action and Scale Setting

To wrap up our discussion on the lattice discretisation of QCD and set the stage for a discussion

on Monte Carlo integration, we now discuss the tuning of bare lattice parameters and scale setting.

The bare masses, anisotropies, and gauge coupling β must all be tuned by imposing some set of

renormalisation conditions on the parameters, done by matching to some desired physical results.

The Schrödinger functional formalism [91] allows for efficient simulations at small quark masses,

allowing for such tuning to remain computationally feasible.

7i.e. regions where the topological charge does not fluctuate.

21



Anisotropic HadSpec Ensembles

Both of the bare anisotropies, γg and γf , are set by adjusting their values until the desired

renormalised anisotropy ξ ≈ 3.5 is achieved. For the bare gauge anisotropy, the following ratios of

Wilson loops are measured

Rii(x, y) =
Wii(x, y)

Wii(x+ 1, y)
, (2.71a)

Rit(x, y) =
Wit(x, t)

Wit(x+ 1, t)
, (2.71b)

where Wµν(xµ, xν) = 〈0|Tr Cµν(xµ, xν)|0〉 is the expectation value of the trace of a product of link

variables around a rectangle of length xµ in the µ̂-direction and xν in the ν̂-direction. For a given

desired renormalised anisotropy ξ then we require Rii(x, y) = Rit(x, ξt). The fermion anisotropy is

tuned by imposing for the pseudoscalar and vector mesons the dispersion relation

a2
tE

2(p) = a2
tm

2 +
a2
sp

2

ξ2
. (2.72)

The bare light and strange quark masses, ml,ms, are tuned by requiring the dimensionless

ratios of hadron masses

sΩ =
9 (2m2

K −m2
π)

4m2
Ω

, lΩ =
9m2

π

4m2
Ω

, (2.73)

are close to their physical values. These ratios are inspired by expanding the pseudoscalar meson

masses to leading order in chiral perturbation theory [72].

Often in Nf = 2 + 1 lattice QCD simulations with two degenerate light quarks and a heavier

strange quark, the strange quark mass is kept approximately fixed to its physical value, while

reducing the light quark masses towards their physical value. Hence, on the HadSpec ensemble

that we use in chapter 7, the kaon and pion masses are heavier than their physical values, but the

omega (sss) baryon mass is taken to have its physical value. The correlation length of the system

is given by the lightest state in the theory which for QCD is mπ. In order to mitigate finite volume

effects that appear suppressed by factors of e−mπL, where L is the length of the lattice in the spatial

directions, we require that mπL is at the very least greater than one. In lattice QCD, a general rule

of thumb is to keep mπL & 4. While it might seem straightforward to use bare parameters such

that the pion mass is at its physical value and increase L, we will see later that when calculating

quark propagators, smaller pion masses lead to a higher likelihood of ill-conditioned Dirac matrices.

The renormalisation group equations tell us that the gauge coupling β is a function of the cutoff

scale of the theory, or more specifically, that the gauge coupling has non-trivial dependence on the

lattice spacing. The lattice spacing then can be set by tuning β. A continuum limit extrapolation

would then seem straightforward, changing β towards its continuum value should allow for probing

smaller a. For spectroscopy however, this is not a very big issue. The temporal lattice spacing at

cancels in any mass ratios that we extract and the leading discretisation error is at O(a2). Hence, we

require β to be tuned such that we are insensitive to the difference between lattice and continuum

dispersion relations.
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Isotropic CLS Ensembles

The general tuning and scale setting strategies employed by the CLS effort are detailed in full in

Refs. [82, 90], so we shall just summarise them here. For the tuning of lattice parameters, the scale

is set using t0, defined by the Wilson flow [92], as described in sec. (6.1) of Ref. [82]. As t0 is not

an experimentally accessible observable however, lattice calculations must be used for comparison.

Furthermore, the quantity is observed to have significant flavour content dependence [93, 94], so in

fact comparing our Nf = 2 + 1 simulation to a calculation with the same flavour content is not only

desirable, but necessary. Each of the ensembles we use then is determined to have lattice spacing

a ≈ 0.064 fm for β = 3.55.

The particular subset of CLS ensembles that we use employ a somewhat unusual quark mass

trajectory, proposed in Ref. [95], in which

trMq = mu +md +ms = 2ml +ms = const., (2.74)

where Mq is the bare quark mass matrix, i.e. Mq = diag(mu,md,ms). The authors of Ref. [95]

advocate for this trajectory as many observable quantities, such as the centre of meson/baryon

mass multiplets, depend much more strongly on the trace of the mass matrix than on ms −ml.

As seen in Ref. [90] however, it should be noted that this is not equivalent to fixing the sum of

renormalised quark masses. There, an extra Taylor expansion is used to slightly shift the quark

masses such that φ4 = 8t0(m
2
K + 1

2
m2
π) = const, though we do not do this here. As discussed in

Ref. [20], this small deviation from the desired chiral trajectory is presumed to have little effect on

the observables we consider. At the SU(3) flavour symmetric point, i.e. mu = md = ms, particle

masses are determined to be mπ = mK ≈ 420 MeV, so that as the light quark/pion mass is lowered

towards the physical point, the strange quark/kaon mass will increase towards its physical mass.

Again, this is unlike what is traditionally done (e.g. the HadSpec anisotropic lattice) where the

kaon is held at its physical value while the pion mass is lowered.

2.4 Euclidean Two-Point Functions

Throughout this thesis, we focus on the computation of Euclidean time ordered two-point temporal

correlation functions of the form

C(t) = 〈0|T O(t+ t0)O(t0)|0〉, (2.75)

where O(t),O(t) are hadronic creation and annihilation operators respectively, and T is the time

ordering operator. In what follows, time ordering will always be assumed so the time ordering

symbol is suppressed for brevity. Designing, calculating, and analysing matrices of such correlation

functions will saturate many of the subsequent chapters in this document; in chapter 3 we discuss

designing the interpolating operators O(t),O(t), then in chapter 4 our method of stochastically

estimating these functions is presented, followed by the extraction of stationary state energies from

large matrices of these functions in chapter 5.
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To motivate the usefulness of these temporal correlation functions for spectroscopy, consider

the spectral decomposition of eq. (2.75) by inserting a complete set of energy eigenstates

C(t) =
∑

n

〈0|O(t+ t0)|n〉〈n|O(t0)|0〉

=
∑

n

〈0|eH(t+t0)O(0)e−H(t+t0)|n〉〈n|eHt0O(0)e−Ht0|0〉

=
∑

n

eE0(t+t0)〈0|O(0)|n〉e−En(t+t0)eEnt0〈n|O(0)|0〉e−E0t0

=
∑

n

〈0|O(0)|n〉〈n|O(0)|0〉e−∆Ent,

(2.76)

where ∆En ≡ En − E0, and we assume the energies are ordered such that En+1 > En. We can

also assume that the spectrum is appropriately shifted such that E0 = 0, so that we can replace

∆En with En without any loss of generality. Note that since we are in finite-volume with periodic

boundary conditions, the insertion of a complete set of energy eigenstates contains a discrete

sum of states rather than an integral over a continuous energy variable. Since the finite-volume

energies, En, are the observables we wish to extract, we define the effective energy/mass through

the logarithmic derivative

Eeff(t) ≡ − 1

∆t
ln

(C(t+ ∆t)

C(t)

)
, (2.77)

where ∆t is some time-step, usually taken to be ∆t ≤ 3at. For large times then

lim
t→∞

Eeff(t) = E1, (2.78)

so that if we plot eq. (2.77), the function should plateau to E1 at some (large) t, giving some measure

of the excited state contamination of the particular operator used in the correlation function. As the

signal-to-noise ratio for these correlators quickly deteriorates for large time separations, carefully

designed interpolating operators are vital in ensuring accurate energy determinations.

One could, in principle, perform a fit to eq. (2.75) using some number, k, of decaying exponentials,

over some time range (tmin, tmax) for which tmin is large enough that the terms with n > k have

died off. This, however, is largely impractical for a number of reasons. For any given interpolating

operator, the overlaps onto the low-lying energy eigenstates 〈0|O|n〉 may be small compared to the

overlaps for higher-lying states, increasing the risk of a fit “missing” the energy associated with

that low-lying level. To avoid this problem, we consider matrices of these correlation functions

using large bases of various interpolating operators with similar symmetry properties. Using these

then, we solve a generalised eigenvalue problem [12–14], from which we can confidently extract the

low-lying states in the spectrum. This is discussed in detail in chapter 5.

2.4.1 Hermiticity

In section 2.1.1, we saw that the action in Euclidean spacetime is no longer Hermitian, but stressed

that this does not have an adverse impact on the physical interpretation of results from our theory.
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In fact, we only require that any Euclidean space Green’s functions of our theory reproduce the

physically sensible Minkowski space functions analytically continued to imaginary time. Ultimately,

while the action may be non-Hermitian it is important for us to construct correlation matrices that

are Hermitian, or perhaps even real-symmetric. This is not a physically mandated restriction, but

it greatly simplifies the analysis needed to extract finite-volume energies and leads to somewhat

improved statistics.

Whether a correlation function is Hermitian or not will depend on the operators used, and so we

will now see what must be done to ensure Hermiticity. Consider a correlation matrix in Minkowski

space

Cij(t) = 〈0|Oi(t)O†j(0)|0〉
=
∑

n

〈0|Oi|n〉〈n|O†j |0〉∗e−iEnt.
(2.79)

Provided that the operators {Oi} all behave in the expected way under time reversal

TOt(t)T † = Oi(−t), (2.80)

where the anti-linear time reversal operator T satisfies unitarity, TT † = 1, then we can show that

the correlation matrix is Hermitian. Assuming T †|0〉 = |0〉,

Cji = 〈0|Oj(t)O†i (0)|0〉
= 〈0|T Oj(t)TT †O†i (0)T †|0〉
= 〈0|Oj(−t)O†i (0)|0〉
= 〈0|e−iHtOj(0)eiHtO†i (0)|0〉
=
∑

n

〈0|Oj(0)|n〉〈n|O†i (0)〈0|ei(En−E0)t

=

(∑

n

〈0|Oj(0)|n〉∗〈0|Oi(0)〈n|e−i(En−E0)t

)∗

= Cij(t)∗.

(2.81)

Then, provided our operators transform as above under time reversal, the correlation matrices

should remain Hermitian.

Additionally, we must take care to ensure that in the Wick rotation to Euclidean spacetime,

the Euclidean correlation matrix remains Hermitian. For example, consider meson annihilation and

creation operators in Minkowski space given by

M (M)(t) = δab ψ
†
aα(x)ψbβ(x)

= δab ψaα′(x)γ0
α′α ψbβ(x),

(2.82a)

M (M)†(t) = δab ψ
†
bβ(x)ψaα(x)

= δab ψbβ′(x)γ0
β′β ψaα(x),

(2.82b)

25



where flavour indices have been suppressed, and we have used ψ ≡ ψ†γ0, which is true in Minkowski

space. Then, in the Wick rotation to imaginary time:

ψ → ψ

ψ → ψ

γ0 → γ4.

(2.83)

Hence, to ensure that our Euclidean space operators lead to Hermitian correlation matrices, each ψ

field must be accompanied by a γ4. For convenience, we do this by defining the field χ ≡ ψγ4. We

do this in the following chapter on operator design by defining our basic building blocks in terms of

the ψ and χ fields.

2.5 Monte Carlo Integration

The path integral approach to Quantum Field Theory (QFT) expresses connected vacuum expecta-

tion values as a weighted sum over histories, that is, as a sum over field configurations. A Euclidean

correlation function can then be expressed as

〈O〉T =
1

ZT

∫
D[ψ, ψ]D[U ]O[ψ, ψ, U ] e−S[ψ,ψ,U ], (2.84)

where O is some generic operator or product of operators, the subscript T denotes the finite

temporal extent of length T , and the partition function ZT is given by

ZT =

∫
D[ψ, ψ]D[U ] e−S[ψ,ψ,U ]. (2.85)

Note that the measures

D[ψ, ψ] ≡
∏

n∈Λ

∏

f,α,a

dψ(f)
aα (n) dψ

(f)

aα (n), (2.86a)

D[U ] ≡
∏

n∈Λ

4∏

µ=1

dUµ(n), (2.86b)

are a product of all integration measures for the quark field variables at all points n,m of the

lattice Λ, and the product of integration measures for all link variables respectively and should

not be confused with the gauge-covariant derivative defined in eq. (2.4). Using a convenient

parameterisation of a general SU(3) matrix in terms of 8 real Euler angles αb [96]

U(α) = eiλ3α1eiλ2α2eiλ3α3eiλ5α4eiλ3α5eiλ2α6eiλ3α7eiλ8α8 , (2.87)

where the λi’s are the Gell-Mann matrices defined in eq. (2.6), the Haar measure is found to be

dU =
1

2
sin(2α2) sin(2α6) sin(2α4) sin2(α4) dα8 dα7 dα6 dα5 dα4 dα3 dα2 dα1, (2.88)
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where the ranges of integration are

0 ≤ α1, α5 ≤ π, 0 ≤ α3, α7 ≤ 2π, 0 ≤ α2, α4, α6 ≤
π

2
, 0 ≤ α8 ≤

√
3π. (2.89)

The group volume is found to be
√

3π5. Euler-angle parametrisations for SU(N) elements can also

be found in Ref. [96].

Recall that while constructing the lattice action, we only considered fermionic actions that were

quadratic in the quark fields. Since these fermionic degrees of freedom must anti-commute with one

another and as such are represented by Grassmann variables, the integration over the quark fields

may be performed exactly if the action is quadratic in those fields. Then for an action of the form

S[ψ, ψ, U ] = ψD[U ]ψ + SG[U ], (2.90)

where D[U ] is the improved Dirac matrix, and SG[U ] is the improved gauge action, the integration

over the Grassmann degrees of freedom yields

〈O〉T =

∫
D[U ]F (D−1[U ]) detD[U ] e−SG[U ]

∫
D[U ] detD[U ] e−SG[U ]

, (2.91)

where F is some function of D−1 resulting from the Wick contractions required in evaluating O.

We are now left with the integration over the gauge link variables. However, there is no way

to do this exactly and we need some method to represent the integral numerically. Standard

quadrature techniques for approximating integrals numerically become exponentially impractical

for high dimensional integrals. Thus, we resort to Monte Carlo methods for evaluating the integrals

over gauge link variables.

While Monte Carlo methods vary wildly in their use and implementation, the main result that

we need is the estimate for a highly-multidimensional integral of the form

Ig =

∫
D[U ] p(U) g(U), (2.92)

where U is a collection of variables, p(U) is a probability density, and g(U) is some function

of the integration variables U . For an ensemble of the variables U sampled according to p(U),

{U1, U2, . . . , UNC} consisting of NC configurations, an estimate for Ig can be given by

Ig ≈
1

NC

NC∑

k=1

g(Uk). (2.93)

By the central limit theorem the error in this estimate is given by

σI =

√
Var(g(U))

NC

, (2.94)

where Var(g(U)) is the variance of g with respect to the probability density p.
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By setting

p(U) =
detD[U ] e−SG[U ]

∫
D[U ′] detD[U ′] e−SG[U ′]

, (2.95)

we can put the integrals over gauge link variables, eq. (2.91), in the form of eq. (2.92). To evaluate

these integrals then we need some method for generating an ensemble of gauge link configurations.

While the configurations could be generated according to a uniform probability distribution, this

however is very inefficient when evaluating the integral due to a large number of gauge configurations

that will lead to exponentially suppressed contributions. Specifically, field configurations that are

associated with particularly large actions are effectively irrelevant. The estimate can be improved

by using a process known as importance sampling where a non-uniform probability density is used

in order to pick out configurations that contribute most.

In order to generate gauge link configurations according to eq. (2.95) we use a Markov chain

method. The idea of a Markov chain is to stochastically generate a sequence of configurations in

which the current element in the chain is obtained by making a random change to the previous

element. The process requires some transition probability T (Uj|Ui) to go from configuration Ui to

Uj. Provided that this transition probability satisfies detailed balance

p(Ui)T (Uj|Ui) = p(Uj)T (Ui|Uj), ∀ i, j (2.96)

then it can be shown that the transition probability will generate configurations that approach

the desired distribution p(U) for each update in the chain [97]. Then, by performing sufficient

number of updates until the Markov chain has reached equilibrium, subsequent configurations in

the chain will be distributed according to p(U). Performing an initial set of such updates in order

to approach the limiting stationary distribution is referred to as thermalisation of the ensemble.

Many methods exist for practically constructing a Markov chain that approaches a given

probability distribution, each with their advantages and disadvantages depending on the distribution

in question. One such method that is simple to both implement and understand is the Metropolis-

Hastings algorithm [98,99] which proposes an accept-reject step for each proposed new configuration.

Generally the method involves proposing local changes to the system configuration so that the

probability of acceptance does not become too low. Due to the non-local nature of the fermion

determinant (detD) however, an algorithm that uses global updates to the gauge configuration at

each step is preferred. In addition, the extremely large dimension of the Dirac matrix D makes

recalculating this determinant prohibitively expensive after each proposal step. Instead, the quark

determinant is written as an integral over pseudofermion fields

detD =

∫
D[φ†]D[φ]e−φ

†D−1φ, (2.97)

where φ is a complex valued (non-Grassmann) field with the same indices as the quark fields.

The fermion determinant dependence has then been eliminated by introducing an additional field

with a non-local action. The mass-degenerate light u and d quark determinants can then be

straightforwardly combined and simulated using the Hamiltonian/Hybrid Monte Carlo (HMC)
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algorithm [100], while the strange quark poses additional difficulties that are addressed with the

Rational Hamiltonian/Hybrid Monte Carlo (RHMC) algorithm [101,102].

2.5.1 Hybrid Monte Carlo

For an even number of mass-degenerate quark flavours, the HMC (Hamiltonian/Hybrid Monte

Carlo) algorithm addresses the additional care that the fermion determinant requires, using global

updates, in which all elements of U and φ are changed simultaneously. The method uses the

evolution of an artificially introduced set of Hamiltonian equations to propose such global changes

to the gauge and pseudofermion fields, akin to molecular dynamics simulations. First, let’s combine

the light quark determinants. Exploiting the γ5-Hermiticity of the (Euclidean) Dirac matrix we

can write the up (u) and down (d) quark fermion determinants as

detD(u) detD(d) = det[D(l)†D(l)],

=

∫
D[φ(l)†]D[φ(l)]e−φ

(l)†[D(l)†D(l)]−1φ(l)

,
(2.98)

where the up and down quarks are treated as two degenerate light (l) quarks. We can then rewrite

the integrand of eq. (2.95) by introducing an effective action

Seff [U, φ(l)†, φ(l)] = φ(l)†[D(l)†D(l)]−1φ(l) + SG[U ]. (2.99)

Now, an integral over a momentum field πµ(x), canonically conjugate to the gauge links Uµ(x), is

introduced with gaussian integrand. In other words, a clever unity factor is introduced for each

link. We obtain the fictitious Hamiltonian

H[U, φ(l)†, φ(l)] =
1

2

∑

x,µ

π†µ(x)πµ(x) + Seff [U, φ(l)†, φ(l)], (2.100)

and the gauge links and momenta are now updated according to Hamilton’s equations of motion

df

dτ
= {f,H}, (2.101)

where f = (U, π), and τ is a fictitious time coordinate, sometimes referred to as molecular dynamics

time, using some symplectic integration scheme. While the process is intended to change U and π

such that the Hamiltonian H is conserved, to mitigate errors due to the finite time step-size δτ , a

Metropolis-Hastings accept-reject step is included after evolving for some fixed length in τ with

acceptance probability

Pacc = min(1, e−δH) (2.102)

where δH is the change in H after the new configuration is proposed. To guarantee ergodicity,

where it is possible to eventually get from every state to every other state with positive probability,

the conjugate momenta also need to be changed periodically; this is achieved by updating the

momenta from a Gaussian distribution after each update [103]. Note that conjugate momenta for

the pseudofermion fields φ are not introduced and they must be refreshed periodically just as the

conjugate momenta are. This is achieved by drawing a vector η from a Gaussian distribution with

variance 1
2

and then calculating φ = D†η for the refreshed pseudofermion field.
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2.5.2 Rational Hybrid Monte Carlo

Since the HMC method assumes an even number of degenerate quarks, we need to adjust our

method when including the strange quark. We use the RHMC (Rational Hamiltonian/Hybrid Monte

Carlo) method that extends HMC to single quarks [101,102]. For the strange quark determinant

we write
detD(s) = det[D(s)†D(s)]

1
2 ,

=

∫
D[φ(s)†]D[φ(s)] e−φ

(s)†[D(s)†D(s)]−1/2φ(s)

.
(2.103)

Note that this is only valid if detD(s) is positive. Since the physical strange quark mass is relatively

high, the strange sector of the Dirac matrix is relatively well conditioned and the negative fluctuation

of its eigenvalues is not an issue. We are then fortunate that in nature the u and d quark masses are

so similar and that treating them as degenerate is a good approximation since simulating a single

light quark is incredibly difficult. Their small masses lead to Dirac matrices that are at risk of

being ill-conditioned, making the RHMC method inapplicable. The extension of the HMC method

is in treating the [D(s)†D(s)]−1/2 term, for which a low-order rational approximation is made

[
D(s)†D(s)

]−1/2 ≈ α01 +
∑

i

αi
[
D(s)†D(s) + βi

]−1
, (2.104)

where the coefficients αi, βi specify the particular rational approximation. To refresh the pseudo-

fermion fields, a vector η is again drawn according to a Gaussian distribution with variance 1
2

and φ = [D†D]1/4η is calculated. The rest of the algorithm proceeds much the same way as the

HMC algorithm. Note that in the generation of the CLS ensembles used in the scattering analysis

in chapter 8, a reweighting factor has been included in the strange sector where RHMC is used [82].
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Chapter 3

Constructing Hadron Operators

Careful construction of hadronic interpolating operators for use in correlation matrices proves to

be a crucial step in the extraction of excited states from lattice QCD. There are a number of

considerations to be made when constructing such objects. First, to extract the low-lying states in

the theory, operators which couple minimally to high-lying modes of the theory should be used. By

smearing the quark fields and gauge links, mixing with higher frequency modes of the theory can

be dramatically reduced. As hadron resonances are expected to be large objects, spatially extended

operators can be included to capture the orbital and radial structure of such states. Then, having

settled on the base components for constructing operators, we ensure that the operators we use

transform appropriately under irreducible representations (irreps) of the relevant symmetry groups

categorising the states of interest.

In this chapter we outline our approach to the above considerations; first discussing the basic

building blocks with which we design hadron operators. The meson and baryon elemental operators

are then summarised, including our procedure for obtaining linearly independent sets of these

operators. Then, the role of symmetry transformations is discussed, first with an outline of the

general transformation properties for operators under the irreps of a given symmetry group, followed

by properties of the symmetry group of a finite, cubic lattice, and the projection of our hadron

operators onto irreps of that group. Since a significant number of two hadron states lie below

the resonant states of interest, the inclusion of two hadron interpolating operators is essential for

our calculations. Finally, following the construction of two-hadron operators, the construction of

some exotic operators will be discussed, including the scalar glueball operator that will be used

in chapter 7. Much of the discussion here follows Ref. [104].

3.1 Basic Building Blocks

We begin by describing the basic building blocks to be used in constructing all of our hadronic

operators. Since hadrons are composite objects of quarks and gluons, quark fields and gauge

links make up these basic components. At this level both smearing and quark displacements are
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performed. Smearing involves replacing a field at a given point with a carefully tuned local average

of neighbouring fields in such a way as to preserve all of the symmetries of the original field. Note

that any operator we create must remain a gauge invariant object.

3.1.1 Gauge Link Smearing

Gauge-link smearing is important not just in operator construction, but is also used for improving

the gauge links in the QCD action. In operator construction for example, it has a dramatic effect

in reducing the statistical uncertainty for displaced operators, while also reducing the mixing from

high frequency modes in the theory. In both our operator construction and improved lattice action,

we employ stout smearing as described in Ref. [105]. This method has the advantage of being an

analytic method of link smearing in which the stout smeared links remain in SU(3), retaining the

differentiability that is often lost is other forms of smearing.

Let Cµ(x) denote the following weighted sum of perpendicular staples beginning at x, and

terminating at x+ µ̂:

Cµ(x) =
∑

ν 6=µ

ρµν
(
Uν(x)Uµ(x+ ν̂)U †ν(x+ µ̂) + U †ν(x)Uµ(x− ν̂)Uν(x− ν̂ + µ̂)

)
, (3.1)

where µ̂, ν̂ represent vectors in directions µ, ν respectively, with length of one lattice spacing in that

direction, and the weights ρµν are real, tuneable parameters. Our choice of these parameters is

ρjk = ρ, ρ4µ = ρµ4 = 0, (3.2)

yielding a scheme in which only the spatial links are smeared. We define then the following matrix

Qµ(x) =
i

2

(
Ω†µ(x)− Ωµ(x)

)
− i

2N
Tr
(
Ω†µ(x)− Ωµ(x)

)
, (3.3a)

Ωµ(x) = Cµ(x)U †µ(x), (no summation over µ), (3.3b)

which is Hermitian and traceless, and hence, is an element of su(N) (so then eiQµ(x) is an element

of SU(N)). We define with this an iterative, analytic smearing process in which the link U
(n)
µ (x) at

step n is mapped to U
(n+1)
µ (x) using

U (n+1)
µ (x) = exp

(
iQ(n)

µ (x)
)
U (n)
µ (x), (3.4)

with closure ensuring that U
(n+1)
µ (x) remains in SU(N). This fuzzing is iterated nρ times to produce

the so-called stout links denoted by Ũµ(x):

U → U (1) → U (2) → · · · → U (nρ) ≡ Ũ . (3.5)

Since we only smear the spatial links and leave the links in the temporal direction unsmeared, we

ensure that the transfer matrix remains positive definite [71].
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3.1.2 Quark Field Smearing

The goal in smearing the fermionic quark fields is to reduce the excited state contamination to

our correlation functions. We want the smeared fields to have the same symmetry properties as

the original fields. A natural choice for such a symmetry preserving smoothing function is the

three-dimensional covariant Laplacian, defined on the lattice as follows:

∆̃ab
xy(Ũ) =

3∑

k=1

{
Ũab
k (x)δx+k̂,y + Ũ †abk (y)δx−k̂,y − 2δx,yδ

ab
}
, (3.6)

where we note the dependence on smeared gauge links, Ũ , and lack of dependence on Dirac spin

indices. We now must find an appropriate way to use this operator to smear our quark fields. First,

let’s consider the popular covariant form of Gaussian smearing [106]

ψ̃(x) =

(
δx,y +

σ2
s

4nσ
∆̃xy

)nσ
ψ(y), (3.7a)

χ̃(x) = χ(y)

(
δy,x +

σ2
s

4nσ
∆̃yx

)nσ
, (3.7b)

where σs and nσ are parameters used to tune the smearing. Looking at the covariant Laplacian, it

is straightforward to show that, under this smearing scheme, the quark fields retain their original

gauge transformation properties. The effect of using this smearing scheme (along with stout smeared

gauge links), is shown in fig. 3.1, where the dramatic reduction of excited state contamination

from quark field smearing is clear. Now, as we seek a simpler strategy for quark field smearing, by

expressing the smearing operators of eq. (3.7) in terms of the eigenvalues and eigenvectors of ∆̃, we

can glean a deeper understanding of the smearing process.

From eq. (3.7), define the smearing operator

Kab(x, y) =

(
δx,y +

σ2
s

4nσ
∆̃ab
xy

)nσ
. (3.8)

Using the properties of the gauge links, it is straightforward to show that the covariant Laplacian

is Hermitian, and hence, that its eigenvalues are real and that the eigenvectors can be chosen to be

orthonormal. As it can also be shown that −∆̃ is positive semi-definite, we denote its (non-negative)

eigenvalues by λ(k), where λ(k+1) ≥ λ(k) ≥ · · · ≥ 0. Writing the eigenvectors of −∆̃ as v(k), we have

∑

j

∆̃ijv
(k)
j = −λ(k)v

(k)
i , (3.9)

where the Latin indices i, j span the initial spatial and colour indices. The smearing operator can

then be decomposed in terms of these eigenvectors as

Kab(x, y) = δx4,y4

∑

k

(
1− σ2

s

4nσ
λ(k)

)nσ
v(k)
a (x) v

(k) ∗
b (y). (3.10)
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By taking the limit nσ → ∞, the action of this smearing operator becomes clear; the larger

eigenmodes of −∆̃ are suppressed by the Gaussian in

lim
nσ→∞

Kab(x, y) = δx4,y4

∑

k

e−
1
4
σ2
sλ

(k)

v(k)
a (x) v

(k) ∗
b (y). (3.11)

Now that we have established how smearing the quark fields reduces excited state contamination,

the form of eq. (3.11) leads to considering a more straightforward alternative: simply exclude the

exponentially suppressed eigenmodes in the sum over k. This idea was introduced in Refs. [15, 107]

and is referred to as Laplacian Heaviside (LapH) smearing. Aside from the smearing properties we

discuss here, the method offers an additional crucial advantage for correlator estimation that we

will discuss in chapter 4. Define now the smearing kernel

Sab(x, y) = Θ
(
σ2
s + ∆̃

)

= V∆̃ Θ
(
σ2
s + Λ∆̃

)
V∆̃
†,

(3.12)

where Λ∆̃ is the diagonal matrix, diagonalised by V∆̃, whose entries are the eigenvalues of ∆̃,

i.e. ∆̃ = V∆̃Λ∆̃V∆̃
†, and the Heaviside function ensures that S includes only the eigenmodes

satisfying λ(k) < σ2
s . As in eq. (3.9), we write the eigendecomposition

Sab(x, y) ≈ δx4,y4

Nv∑

k=1

v(k)
a (x) v

(k) ∗
b (y), (3.13)

where the number of retained eigenvectors, Nv, will depend on the value chosen for σs. For constant

Nv this expression for S is approximate as we do not expect Nv to remain constant across gauge

configurations. Also, since S is block-diagonal in time, each eigenvector is non-zero only on a single

time slice, meaning that Nv may also vary across different times. Thankfully, explicit calculations

with a number of values for Nv show that these variations are quite small and that using a constant

value for Nv has a negligible effect on any final results [107]. Similarly, the numerical value for σs

was chosen by considering the effective energy of nucleon operators for different values of σs [15].

Assuming that errors in using a constant value for Nv are negligible, we find

S =
(
VsV

†
s

)
⊗ Id4 , (3.14)

where Vs is the matrix whose columns are the eigenvectors corresponding to the Nv lowest eigenmodes

of −∆̃ on each time slice, and Id4 is the identity matrix in the Dirac spin subspace; so that the

smearing matrix does not act on the quark field spin indices. This is the final form of the smearing

operator that we use in our calculations. Finally, note that Vs has dimension N3
sNtNc × NvNt,

where Ns is the number of spatial sites in each direction, Nt the number of temporal sites/time

slices, and Nc = 3 is the number of colours. The NvNtNd vectors that comprise Vs ⊗ Id4 form what

we call the LapH subspace, where Nd = 4 is the number of Dirac spin indices. We will revisit

the importance of the LapH subspace in chapter 4 when we show the significant computational

advantage of working solely in this much smaller subspace.
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Figure 3.1: Effective masses M(t) for unsmeared (black circles) and smeared (red triangles)

nucleon operators with different covariant displacements. Top row: only quark-field smearing

(see eq. (3.7)) is used. Middle row: only link-variable smearing (see eq. (3.5)) is used. Bottom row:

both quark and link smearing are used, dramatically improving the signal for all three operators.

Results are based on 50 quenched configurations on a 123 × 48 anisotropic lattice using the Wilson

action with as ∼ 0.1 fm, as/at ∼ 3.0. Figure from Ref. [103].
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3.1.3 Covariant Displacements

Since many of the hadron resonances we want to study are expected to be large objects, it is

important that we include spatially extended operators in our calculations. Orbital structure can be

probed by displacing the quarks in different directions, whereas radial structure is captured by using

displacements over various distances [108]. As we require our operators to remain gauge invariant,

covariant displacements are constructed using the (smeared) gauge link variables. Therefore, if, for

simplicity, we restrict the displacements to the six directions along the axes of the cubic lattice, the

p-link gauge-covariant displacement operator in the jth direction is given by [103,108,109]

D(j)(x, x′) = Ũj(x)Ũj(x+ ĵ) . . . Ũj(x+ (p− 1)ĵ) δx′,x+pĵ, (3.15)

where j = 0,±1,±2,±3, so that D(j=0)(x, x′) = δx,x′ corresponds to no displacement.

We can now write the final form for the basic building blocks used in the construction of all our

hadron operators. The gauge covariantly displaced, LapH-smeared quark and anti-quark fields are

defined by

qAaαj ≡ D(j)ψ̃(A)
aα , qAaαj ≡ χ̃(A)

aα D
(j)†, (3.16)

where A is a flavour index, a is the colour index, α is the Dirac spin index, and recall that χ ≡ ψγ4

is used to ensure Hermiticity of our correlation matrices. We will occasionally use, instead of a

flavour index, explicit symbols for the different quarks, e.g. u = qu, d = qd, etc. In sections 3.2

and 3.5 we will show then how these building blocks are assembled into the single- and multi-hadron

interpolating operators we use.

3.2 Single-Hadron Operators

Now that the basic building blocks have been identified, we can construct sets of linearly independent,

gauge-invariant elemental hadron operators. Each operator set will be identifiable by hadron type

(i.e. meson, baryon, etc.), flavour structure, and displacement type. Imposing the desired behaviour

under various symmetry transformations is then the final step; within each set of elemental operators,

appropriate linear combinations of the basis elemental operators can be used to form operators

that transform irreducibly under rotations of the lattice symmetry group. Here, we consider the

construction of such elemental operator sets for single meson and baryon type operators.

3.2.1 Flavour Structure: Isospin, and G-Parity

In our simulations we work in the approximation mu = md, giving an exact SU(2) flavour symmetry,

also known as isotopic spin or isospin symmetry. Hence, we base the flavour structure of our

operators on SU(2) flavour irreps such that we avoid mixing between states of definite isospin. The

u and d quarks can be viewed as two states of an SU(2) multiplet, with I3 = +1
2

and I3 = −1
2

respectively. As the s (and c, b, and t) quark(s) have vastly different masses from those of the u
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and d quarks, and from each other, this is the only flavour symmetry we need to consider. We then

demand the following transformation properties of our creation and annihilation operators under

an isospin rotation Rτ

URτOII3S(t)U †Rτ = OII′3S(t)D
(I)

I′3I3
(Rτ )

∗ (3.17a)

URτO
II3S

(t)U †Rτ = OII
′
3S(t)D

(I)

I′3I3
(Rτ ), (3.17b)

where I is the isospin, I3 its projection onto the z-axis in isospin space, S is the strangeness, and

D(R) are the Wigner D-matrices. Also, as the exact isospin symmetry means the spectrum must

be independent of isospin projection I3, the operators we construct are chosen to have maximal

total I3 = I.

Defining the generators, τ1, τ2, and τ3, of isospin by [τi, τj] = iεijkτk, an annihilation operator

O(I)
I3

transforms appropriately under the isospin irrep I if it satisfies

[
τ3,O(I)

I3

]
= −I3O(I)

I3
, (3.18a)

[
τ+,O(I)

I3

]
= −

√
(I − I3)(I + I3 + 1)O(I)

I3+1, (3.18b)
[
τ−,O(I)

I3

]
= −

√
(I + I3)(I − I3 + 1)O(I)

I3−1, (3.18c)

where τ± = τ1 ± iτ2. These relations also imply

[
τ3,
[
τ3,O(I)

I3

]]
+

1

2

[
τ+,
[
τ−,O(I)

I3

]]
+

1

2

[
τ−,
[
τ+,O(I)

I3

]]
= I(I + 1)O(I)

I3
, (3.19)

with similar relations for the creation operators. For the barred quark fields, we have the following

commutation relations

[τ3, u] =
1

2
u, [τ3, d] = −1

2
d, [τ3, s] = 0,

[τ+, u] = 0, [τ+, d] = u, [τ+, s] = 0,

[τ−, u] = d, [τ−, d] = 0, [τ−, s] = 0,

(3.20)

with similar relations for the un-barred fields. Then by writing down all relevant combinations of

quark fields, and applying all of the commutation relations above, we end up with the elemental

operators for a given isospin channel. Explicit examples of the flavour structure for some baryonic

states are given in table 3.1.

Now that we have introduced isospin as a good symmetry, we can introduce for bosonic systems

with zero strangeness an additional symmetry, G-parity, resulting from a generalisation of C-

parity for multiplets of particles. Charge conjugation, or C-parity, is a good symmetry for some

electrically/flavour neutral states, e.g. C|π0〉 = +|π0〉. In fact, the symmetry gives us a good

quantum number for any electrically/flavour neutral meson state1. However, since QCD alone

1Since baryons are comprised of three quarks, charge conjugation is not a good symmetry; C acting on |qqq〉 will

produce an anti-baryon state |qqq〉.
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is blind to electric charge, the strong interaction does not distinguish among π+, π0, and π−. It

is natural then to generalise C-parity such that it applies to all of the charged states of a given

multiplet with average charge zero. We are led to the symmetry known as G-parity, whose operation

is defined by

UG = Ce−iπτ2 , (3.21)

where C is the charge conjugation operator, and τ2 is the second component of the isospin op-

erator. G-parity is then simply a combination of charge conjugation and a particular rotation

in isospin space. The transformation properties of the basic building blocks under G-parity are

straightforward to deduce from the transformation of the quark fields and gauge links under

charge conjugation, combined with isospin rotations using the Wigner D-matrix in the I = 1/2

representation in eq. (3.17). With explicit flavour labels then

UGuaαjU
†
G = −ΓGαβdaβj, UGuaαjU

†
G = −daβjΓGβα,

UGdaαjU
†
G = ΓGαβuaβj, UGdaαjU

†
G = uaβjΓ

G
βα,

UGsaαjU
†
G = −ΓGαβsaβj, UGsaαjU

†
G = −saβjΓGβα,

(3.22)

where the ΓG matrices are representation dependant, and ΓG = γ2 in the Dirac-Pauli, Weyl, and

DeGrand-Rossi conventions.

3.2.2 Elemental Baryons

Having established the basic building blocks, we now turn to explicit forms for the gauge-invariant

elemental baryon operators. Annihilation operators with definite three-momentum p consist of

flavour combinations of

ΦABC
αβγ;ijk(p, t) =

∑

x

e−ip·xεabc q
A
aαi(x, t) q

B
bβj(x, t) q

C
cγk(x, t), (3.23)

that transform appropriately for a given isospin irrep. The corresponding elemental creation

operators take the form

Φ
ABC

αβγ;ijk(p, t) =
∑

x

eip·xεabc q
C
cγk(x, t) q

B
bβj(x, t) q

A
aαi(x, t), (3.24)

where, for both operators, gauge invariance is assured using the colour space Levi-Civita tensor εabc.

The different displacement patterns we use for these operators are shown in fig. 3.2, and flavour

structures for the different hadron annihilation operators are listed in table 3.2.

Assembling the final operator sets involves taking the appropriate linear combinations of these

elemental basis operators that transform appropriately under isospin transformations and under

the lattice symmetry group (see section 3.4). Such linear combinations take the form

Bl(t) = c
(l)
αβγΦ

ABC
αβγ (p, t), (3.25a)

Bl(t) = c
(l)∗
αβγΦ

ABC

αβγ (p, t), (3.25b)
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Table 3.1: Flavour combinations of three quarks (baryons) with definite isospin I, isospin projection

I3, and strangeness S.

I I3 S SU(2) flavour

1
2

1
2

0
√

1
2
(|udu〉 − |duu〉)

1
2

1
2

0
√

1
6
(2|uud〉 − |udu〉 − |duu〉)

1
2
−1

2
0
√

1
2
(|udd〉 − |dud〉)

1
2
−1

2
0
√

1
6
(−2|ddu〉+ |udd〉+ |dud〉)

3
2

3
2

0 |uuu〉
3
2

1
2

0
√

1
3
(|uud〉+ |udu〉+ |duu〉)

3
2
−1

2
0
√

1
3
(|ddu〉+ |dud〉+ |udd〉)

3
2
−3

2
0 |ddd〉

0 0 −1
√

1
2
(|uds〉 − |dus〉)

0 0 −1
√

1
2
(|usd〉 − |dsu〉)

0 0 −1
√

1
2
(|sud〉 − |sdu〉)

I I3 S SU(2) flavour

1 1 −1 |uus〉
1 1 −1 |usu〉
1 1 −1 |suu〉
1 0 −1

√
1
2
(|uds〉+ |dus〉)

1 0 −1
√

1
2
(|usd〉+ |dsu〉)

1 0 −1
√

1
2
(|sud〉+ |sdu〉)

1 −1 −1 |dds〉
1 −1 −1 |dsd〉
1 −1 −1 |sdd〉
1
2

1
2
−2 |uss〉

1
2

1
2
−2 |sus〉

1
2

1
2
−2 |ssu〉

1
2
−1

2
−2 |dss〉

1
2
−1

2
−2 |sds〉

1
2
−1

2
−2 |ssd〉

0 0 −3 |sss〉

where l is a compound label including the momentum p, little group irrep Λ, irrep row λ, isospin

I, isospin projection I3, strangeness S, and an identifier labelling the different operators in each

symmetry channel.

Time Reversal

As a final remark on our baryon operators, we note that the creation operators will create a particle

state with a given parity P , and annihilate an anti-particle state with the same parity P (likewise

for the annihilation operators). Then, in the temporal correlation functions containing baryon

operators, we create a baryon state with given parity that propagates forward in time, while also

creating an anti-baryon state that propagates backwards in time. Since baryons are fermions,

and hence have opposite parity to their corresponding anti-fermion, the backwards propagating

anti-baryon state in the correlator is not the anti-baryon of the forward propagating baryon. Instead,

the backwards propagating state is the antiparticle of the parity partner of the forward propagating

baryon state of interest [108]. Moreover, the masses of the two states propagating in opposite

temporal directions differ due to chiral symmetry breaking. We can take advantage of this fact by

39



uuu uu u uu u u
u

u
single-site singly-displaced doubly-displaced-I doubly-displaced-L

u u
u �

�u
u

u
triply-displaced-T triply-displaced-O

Figure 3.2: The displaced baryon operators we use. In the illustrations, the smeared quarks fields

are depicted by solid circles, solid line segments indicate covariant displacements, and each box

indicates the location of a colour εabc coupling. For simplicity, the displacements all have the same

length in each operator. Figure from Ref. [103].

relating correlators of opposite parity to one another in order to increase statistics. This works by

first constructing the odd-parity operators from the even-parity operators using charge conjugation

such that the correlators are related by

Cg
ij(t) = Cu

ij(Nt − t)∗, (3.26)

where Nt is the temporal extent of the lattice, and g, u label even- and odd-parity respectively. We

can then average over the even- and odd-parity correlators using

C̄
g/u
ij (t) =

1

2

(
C
g/u
ij (t) + C

u/g
ij (Nt − t)∗

)
(3.27)

to increase statistics. This procedure works only for correlators of baryons at-rest, since parity is

no longer well-defined for baryons with non-zero momentum. We will revisit the issue of backwards

propagating states both in the following discussion on meson operators, and in the discussion on

temporal wrap-around effects in section 5.2.

3.2.3 Elemental Mesons

For a meson consisting of a quark field and “barred” anti-quark field, there is one way to construct

a locally gauge-invariant object: using a Kronecker δab to contract the colour indices. Hence, the

elemental annihilation and creation operators are formed from appropriate flavour combinations

(see table 3.2) of

ΦAB
αβ;ijk(p, t) =

∑

x

e−ip·(x+ 1
2

(dα+dβ))δab q
A
aαi(x, t) q

B
bβjk(x, t), (3.28a)

Φ
AB

αβ;ijk(p, t) =
∑

x

eip·(x+ 1
2

(dα+dβ))δab q
B
bβjk(x, t) q

A
aαi(x, t), (3.28b)

where dα and dβ denote the spatial displacements for the quark/anti-quark fields from x. These

spatial displacements are included in the phase factor for the momentum projection to ensure
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Table 3.2: Flavour structure of the elemental hadron operators we use. Each is characterised

by total isospin I, maximal I3 = I, strangeness S, and G-parity where applicable. UG denotes a

G-parity transformation. Table from Ref. [109].

Hadron I = I3 S G Annihilation Operators

∆++ 3
2

0 Φuuu
αβγ

Σ+ 1 −1 Φuus
αβγ

N+ 1
2

0 Φuud
αβγ − Φddu

αβγ

Ξ0 1
2

−2 Φssu
αβγ

Λ0 0 −1 Φuds
αβγ − Φdus

αβγ

Ω− 0 −3 Φsss
αβγ

f, f ′, η, η′ 0 0 1
Φuu
αβ + Φdd

αβ + UG
(
Φuu
αβ + Φdd

αβ

)
U †G

Φss
αβ + UGΦ

ss
αβU

†
G

h, h′, ω, φ 0 0 −1
Φuu
αβ + Φdd

αβ − UG
(
Φuu
αβ + Φdd

αβ

)
U †G

Φss
αβ − UGΦss

αβU
†
G

b+, ρ+ 1 0 1 Φdu
αβ + UGΦ

du
αβU

†
G

a+, π+ 1 0 −1 Φdu
αβ − UGΦdu

αβU
†
G

K+, K∗+ 1
2

1 Φsu
αβ

K̄0, K̄∗0 1
2

-1 Φds
αβ

correct behaviour of the meson operators under G-parity. Note also that one of the fields carries

two displacement direction indices, this is required to account for the different meson displacement

patterns that we consider, illustrated in fig. 3.3.

The final meson operator sets then are formed in much the same way as the baryon operator

sets, so that the linear combinations of elemental meson operators that transform irreducibly under

irreps of the lattice symmetry group (along with isospin, G-parity, etc.) take the form

Ml(t) = c
(l)
αβΦAB

αβ (p, t), (3.29a)

M l(t) = c
(l)∗
αβ Φ

AB

αβ (p, t), (3.29b)

where l now includes G-parity when relevant. Note that the operator coefficients here serve the

purpose of both ensuring our operators transform irreducibly under irreps of the lattice and now

under G-parity transformations in the isoscalar and isovector sectors.

Time Reversal

The treatment of our meson operators under time reversal proves to be similar, but more straight-

forward, than for the baryons. As bosons, the meson states share the same intrinsic parity with

their corresponding anti-meson states, and hence, the backwards propagating states have the same
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Figure 3.3: The displaced meson operators we use. In the illustrations, the smeared quarks fields

are depicted by solid circles, each hollow circle indicates a smeared “barred” antiquark field, and

the solid line segments indicate covariant displacements. For simplicity, the displacements all have

the same length in each operator. Figure from Ref. [103].

energy as those that propagate forward in time. This allows for an increase in statistics if we design

our meson operators such that

Cij(t) = Cij(Nt − t), (3.30)

which is easily guaranteed for meson operators satisfying

Mi(t) = ηMi(Nt − t), for |η|2 = 1. (3.31)

This restricted behaviour under time reversal turns out to only offer a statistically significant

improvement to the lightest meson states for which temporal wrap-around effects are non-negligible.

This will be discussed in more detail in section 5.2.

3.3 Symmetry Channels

Before we discuss the role that rotational symmetry plays in the construction of our operators, it is

useful to discuss some general transformation properties of our operators, and of the correlation

matrices we compute. Since hadronic states can be identified by their momentum p, total spin

J , spin projection, parity P , and their flavour structure, we can group these quantum numbers

together and refer to such a set of quantum numbers that a set of states may share generically

as a symmetry channel. To create states in a given channel then, we demand that our operators

transform under the irreps corresponding to the quantum numbers of that channel. Denoting our

creation and annihilation operators by OΛλF

i (t) and OΛλF
i (t) respectively, where Λ denotes the irrep

of the symmetry group, λ is the row of the Λ representation, F labels all other quantum numbers,

and i labels the different operators in this ΛλF symmetry sector. Under a symmetry operation R,

much like for isospin transformations in eq. (3.17), these operators transform like

UROΛλF
i (t)U †R =

∑

µ

OΛµF
i (t)Γ

(Λ)
µλ (R)∗, (3.32a)

UROΛλF

i (t)U †R =
∑

µ

OΛµF

i (t)Γ
(Λ)
µλ (R), (3.32b)

where UR is the quantum operator for the symmetry transformation R, and Γ
(Λ)
µλ (R) is a Λ

representation matrix for R. The importance of using operators that transform under the irreps
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of the symmetry groups of our system can be seen by looking at correlation functions containing

these operators:

〈0|T OΛλF
i (t)OΛ′λ′F

j (0)|0〉 =
1

gG

∑

R∈G

〈0|T UROΛλF
i (t)U †RURO

Λ′λ′F

j (0)U †R|0〉

=
1

gG

∑

R∈G

∑

µµ′

Γ
(Λ)
µλ (R)∗Γ

(Λ′)
µ′λ′(R)〈0|T OΛµF

i (t)OΛ′µ′F

j (0)|0〉

=
∑

µµ′

1

dΛ

δΛΛ′δλλ′δµµ′〈0|T OΛµF
i (t)OΛ′µ′F

j (0)|0〉

= δΛΛ′δλλ′
∑

µ

1

dΛ

〈0|T OΛµF
i (t)OΛµF

j (0)|0〉,

(3.33)

where G is the symmetry group, gG is the order of G, we require the vacuum to be invariant under

all relevant transformations, and the so-called great orthogonality theorem is used:

1

gG

∑

R∈G

Γ
(Λ)
µλ (R)∗Γ

(Λ′)
µ′λ′(R) =

1

dΛ

δΛΛ′δλλ′δµµ′ . (3.34)

As eq. (3.33) shows that the correlation matrix elements must vanish unless Λ = Λ′ and λ = λ′, we

are motivated to divide our calculations into different symmetry sectors/channels. Furthermore, we

can label our correlation functions using the irrep and irrep row:

CΛλF
ij (t) ≡ 〈0|T OΛλF

i (t)OΛλF

j (0)|0〉. (3.35)

Finally, we can arrive at another useful relation between correlators labelled by different irrep rows

using the orthogonality of eq. (3.33), and the invariance of the vacuum:

CΛλF
ij (t) = 〈0|T OΛλF

i (t)OΛλF

j (0)|0〉
= 〈0|T UROΛλF

i (t)U †RURO
ΛλF

j (0)U †R|0〉
=
∑

µµ′

Γ
(Λ)
µλ (R)∗Γ

(Λ)
µ′λ(R)〈0|T OΛµF

i (t)OΛµ′F

j (0)|0〉

=
∑

µµ′

Γ
(Λ)
µλ (R)∗Γ

(Λ)
µ′λ(R) δµµ′C

ΛµF
ij (t)

=
∑

µ

|Γ(Λ)
µλ (R)|2CΛµF

ij (t).

(3.36)

This result will be used shortly to show how we can enforce equivalence of correlators across irrep

rows to increase statistics.

3.4 Rotational Symmetry on the Lattice

As states in infinite-volume are generally classified by their spin/total angular momentum, one may

be inclined to design hadron operators that transform irreducibly under the spin irreps of SU(2)
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i.e. operators with definite total angular momentum J . For continuum operators in infinite-volume,

this strategy is the norm, and naturally works well, so we might seek to begin with these continuum

operators, and then discretise them for use in lattice QCD. However, this strategy has several

shortcomings: efficiently constructing spin states with large values of J quickly becomes unwieldy;

imposing these continuum transformation properties for extended hadron operators also quickly

becomes tedious; and, most importantly, since we are restricted to the reduced rotational symmetry

of the hypercubic box, the discretised operators will mix different values of J . We are naturally led

then to construct our operators so that they transform irreducibly under irreps of the rotational

symmetry group of our lattice, the octahedral point group, which we denote by O1
h. This group

consists of the semidirect product of the Abelian group of allowed translations on a simple cubic

lattice and the orthogonal point group Oh, which itself contains the proper spatial rotations of a

cube, O, and a spatial inversion element Is, such that Oh = O ⊗ {E, Is}, where E is an identity

element. In what follows we shall provide an overview of how such transformation properties are

imposed on our operators, leaving most of the details to Ref. [109], and references therein.

3.4.1 The Octahedral Group and Point Group

First we discuss the group of rotations that leave a three-dimensional, spatially isotropic cube

invariant, the octahedral group O. The group has 24 elements, occurring in five conjugacy classes,

for which we use the standard notation:

E = identity element

Cnj = proper rotation through an angle
2π

n
about the axis Oj

Is = spatial inversion (see point group Oh)

(3.37)

with the rotation axes Oj illustrated in fig. 3.4. Following the Mulliken convention [110,111], we label

the (single-valued) irreps of O by A1, A2, E, T1, T2, which have dimension 1, 1, 2, 3, 3 respectively.

The incorporation of spatial parity leads to the cubic point group Oh, which is accomplished by

taking the direct product Oh = O ⊗ {E, Is}, doubling the number of conjugacy classes, and hence

number of irreps. As such, we add an additional label (g/u) to the (single-valued) irreps indicating

behaviour under spatial inversions:

A1g/u, A2g/u, Eg/u, T1g/u, T2g/u, (3.38)

where again, the subscripts g, u indicate even and odd parity respectively2. Where relevant, we will

use the superscripts +, − to denote even and odd G-parity respectively.

So far, since these representations are all single-valued, we have only accounted for integer values

of spin. We can construct spinorial (double-valued) representations by extending the group elements

to form to so-called “double octahedral group” OD and “double point group” OD
h . This is done

2These labels come from the German words gerarde and ungerade for even and odd.
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Figure 3.4: The rotation axes corresponding to the group elements Cnj of O. Figure from

Ref. [109].

by introducing a new generator, denoted by E, which represents a rotation by 2π about any axis.

This doubles the number of group elements since, for each element G of the original group O, there

is an extra element G = EG. Hence, OD now has 48 group elements, in eight conjugacy classes,

yielding three extra irreps which we label G1, G2, H, with dimension 2, 2, 4 respectively. These

single-valued representations of OD then include both the single- and double-valued representations

we need of the original group O. When we include parity, we consider the double point group

OD
h = OD ⊗ {E, Is}, which has 96 elements, and six extra irreps:

G1g/u, G2g/u, Hg/u, (3.39)

where we use the notation of ref [112]. For a good reference discussing the properties of these

crystallographic space groups, see Ref. [113]. We refer to table XI of Ref. [109] for our choices for

the representation matrices of the single- and double-valued irreps.

Ultimately, since we are interested in infinite-volume, continuum physics, the obvious question

one asks is, which J irreps of the SO(3) continuous group of rotations map into which irreps of

O? Since O is a subgroup of SO(3), we can answer this by looking at the subduction of the SO(3)

irreps onto the irreps of O. The number of times nJΓ that the irrep Γ of O appears in the reducible

subduction of the J irrep of SO(3) is given by

nJΓ =
1

gO

∑

p

Npχ
J
↓O(Cp)χΓ(Cp)∗, (3.40)

where gO is the order of the group O, the sum is over the classes Cp of the group, Np is the number

of elements in class p, χJ↓O is the character vector for the J irrep of SO(3) subduced to O, and

χΓ is the character vector for the irrep Γ of O. The same procedure, changing O → OD and

SO(3)→ SU(2), is used for the half-integer J representations of SU(2) subduced to OD, with the

results for all J < 8 shown in table 3.3.
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Table 3.3: The number of times, nJΓ, that the irrep Γ of O occurs in the reducible subduction of

the J irrep of SO(3)/SU(2) for J < 8.

J nJA1
nJA2

nJE nJT1
nJT2

0 1 0 0 0 0

1 0 0 0 1 0

2 0 0 1 0 1

3 0 1 0 1 1

4 1 0 1 1 1

5 0 0 1 2 1

6 1 1 1 1 2

7 0 1 1 2 2

J nJG1
nJG2

nJH
1
2

1 0 0
3
2

0 0 1
5
2

0 1 1
7
2

1 1 1
9
2

1 0 2
11
2

1 1 2
13
2

1 2 2
15
2

1 1 3

3.4.2 Moving Frames

For operators with non-zero momentum p, the symmetry group we must consider is the little group

of rotations that leaves p invariant. To simplify matters, we only consider three classes of momenta:

on-axis poa = (0, 0,±n); planar-diagonal ppd = (0,±n,±n); and cubic-diagonal pcd = (±n,±n,±n)

momentum directions. The three little groups we must consider then are: C4v for on-axis momenta,

C2v for planar-diagonal momenta, and C3v for cubic-diagonal momenta. Again, conjugacy classes

and representation matrices for these little groups are given in Ref. [109].

When designing an operator to create/annihilate a particular particle state of interest, particle

identification at-rest is reasonably straightforward using table 3.3 along with the other (flavour, etc.)

relevant quantum numbers. For creating states with non-zero momentum however, the identification

for each little group irrep is not quite as straightforward. We can make this identification easier for

moving frames by considering the subductions of the OD
h irreps onto the little group in question.

These subductions are listed in table 3.4.

3.4.3 Projection onto Symmetry Groups

We will now outline the procedure that we use for obtaining a set of linearly independent operators

that transform according to a particular symmetry channel. This essentially amounts to computing

the coefficients in eqs. (3.25) and (3.29), following the procedure detailed in [108]. The key part of

this process involves projecting a set of operators with given quantum numbers, which initially

transform reducibly under the little group, to a set of operators that transform irreducibly under

that little group. The key formula for projecting an operator OFi , where F denotes all other relevant
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Table 3.4: The subductions of the single- and double-valued irreps of OD
h onto the irreps of the

little groups C4v, C3v, and C2v. Table from Ref. [109].

Λ(Oh) ↓ C4v ↓ C3v ↓ C2v

A1g A1 A1 A1

A1u A2 A2 A2

A2g B1 A2 B2

A2u B2 A1 B1

Eg A1 ⊕B1 E A1 ⊕B2

Eu A2 ⊕B2 E A2 ⊕B1

T1g A2 ⊕ E A2 ⊕ E A2 ⊕B1 ⊕B2

T1u A1 ⊕ E A1 ⊕ E A1 ⊕B1 ⊕B2

T2g B2 ⊕ E A1 ⊕ E A1 ⊕ A2 ⊕B1

T2u B1 ⊕ E A2 ⊕ E A1 ⊕ A2 ⊕B2

G1g/u G1 G G

G2g/u G2 G G

Hg/u G1 ⊕G2 F1 ⊕ F2 ⊕G 2G

quantum numbers, to row λ of the irrep Λ of the little group G is

OΛλF
Pi (t) =

dΛ

gG

∑

R∈G

Γ
(Λ)
λµ (R)UROFi (t)U †R, (3.41)

where R denotes the elements of G, dΛ is the dimension of the Λ representation, gG is the order of

G, UR is the operator which effects the symmetry transformation corresponding to group element

R, Γ
(Λ)
ij (R) is a Λ unitary representation matrix for element R, and the subscript P specifies that

the operator has been projected onto the Λ irrep. Where relevant, projections for definite G-parity

can also be done. Note that the choice of index µ on Γ
(Λ)
λµ is somewhat arbitrary, so we choose

µ = λ such that the projection itself remains idempotent (i.e. P 2 = P ). This can be seen by

applying the projection formula twice, observing that for µ 6= λ the operator will vanish. It is also

straightforward to convince ourselves that the projected operators do in fact transform as desired
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by transforming such a projected operator by a group element G ∈ G:

UGOΛλF
Pi (t)U †G =

dΛ

gG

∑

R∈G

Γ
(Λ)
λµ (R)UGUROFi (t)U †RU

†
G

=
dΛ

gG

∑

GR∈G

Γ
(Λ)
λµ (G−1GR)UGROFi (t)U †GR

=
dΛ

gG

∑

R∈G

Γ
(Λ)
λµ (G−1R)UROFi (t)U †R

=
dΛ

gG

∑

λ′

∑

R∈G

Γ
(Λ)
λλ′(G

−1)Γ
(Λ)
λ′µ(R)UROFi (t)U †R

=
∑

λ′

Γ
(Λ)
λλ′(G

−1)OΛλ′F
Pi (t)

=
∑

λ′

OΛλ′F
Pi (t) Γ

(Λ)
λ′λ(G)∗,

(3.42)

showing that the projected operators OΛλF
Pi (t) do in fact transform appropriately according to the

irreps of the little group G.

Since eq. (3.41) does not uniquely fix the normalisations and overall phase factors for a given

operator, and where a given irrep occurs more than once in the basis set of operators {OFi }, it does

not uniquely specify relative weights, we cannot use this formula to construct operators for all rows

of a given irrep Λ. Instead, we construct operators for only one of the rows, then construct partner

operators for the remaining irrep rows, µ, using the transfer operation

OΛµF
Pi (t) =

dΛ

gG

∑

R∈G

Γ
(Λ)
µλ (R)UROΛλF

Pi (t)U †R. (3.43)

In the absence of any external applied fields, the stationary state energies should not depend on the

row λ of a given irrep Λ (cf. Zeeman effect: splitting of mj degenerate energy levels of the hydrogen

atom in a static magnetic field). Using eq. (3.36) and the particular representation matrices Γ(Λ)

chosen in Ref. [109], it can be shown that our correlation matrices satisfy

CΛλF
ij (t) = CΛµF

ij (t), (3.44)

for all irrep rows λ, µ. Therefore, we have an economic way to increase statistics on each gauge

configuration by averaging correlation functions over irrep row. Finally, the numerical implemen-

tation of the above ideas for determining the coefficients in eqs. (3.25) and (3.29) using software

written in Maple is detailed explicitly in section V of Ref. [108].

3.5 Multi-Hadron Operators

As the majority of hadron resonant states we wish to study will lie above two-particle thresholds,

it is crucial to include two-hadron operators in our basis. Since we find only stationary states in
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finite-volume with periodic boundary conditions, many of the low-lying states can be what we

refer to as mixed states (i.e. linear combinations of single- and two-particle states). Additionally,

when we wish to study infinite-volume hadron-hadron scattering using the formalism described

in chapter 6, it is vital that we include the finite-volume energies corresponding to two-particle

stationary states. The construction of multi-particle operators involves the same procedure as the

single-hadron operators, except the basic building blocks are now single-hadron operators rather

than the elemental three-quark and quark-antiquark operators for the baryons and mesons. These

two-hadron basis operators take the form

OIaI3aSapaΛaλaia
OIbI3bSbpbΛbλbib

, (3.45)

where a and b distinguish between the two constituent hadrons, and i consists of all other relevant

labels (e.g. displacement type and index). The process for constructing the final two-hadron

operators then proceeds using the same methods as we used for the single-hadrons. First, appropriate

linear combinations of these building blocks are found that transform irreducibly under isospin

using eqs. (3.18) and (3.19), then the group theoretical projections described in section 3.4.3 are

used to ensure that the two-hadron operators transform irreducibly under a given irrep of the little

group of p = pa + pb, along with a projection for definite G-parity where appropriate.

Local Two-Hadron Operators

A key feature of our two-hadron operators is the need for all-to-all quark propagators (quark

propagators from all spatial lattice sites to all other spatial lattice sites) in the calculation of

correlation functions. This is due the loss of the ability to use translational invariance to remove a

sum over the spatial lattice sites. This is in contrast to the so-called “local” two-hadron operators

in which both constituent hadrons individually do not have definite momentum but are instead

located together at a single lattice site. For local two-hadron operators, we could take advantage of

translational invariance and use the significantly cheaper point-to-all quark propagators (quark

propagators from a single site to all other spatial lattice sites). This presents some practical

issues as, for example in section V and fig. 4 of Ref. [109], the excited state contamination we

wish to avoid is seen to be much more severe in the local two-hadron operators compared to our

operators with definite constituent momenta. Additionally, for many of our calculations, the use

of all-to-all quark propagation is completely unavoidable (e.g. isoscalar mesons), and so we are

doubly incentivised to seek out computational techniques that facilitate the efficient computation

of all-to-all quark propagation. Thankfully then, we are able to use the stochastic LapH method

(described in chapter 4), which provides a very efficient way to include all-to-all quark propagators,

and therefore multi-particle operators with definite constituent momenta.
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3.6 Exotic Operators

So far, we have only considered gauge invariant objects comprised of a covariantly displaced

quark and antiquark, known as mesons, and three covariantly displaced quarks, known as baryons.

However, there is no reason for there not to exist gauge invariant states containing greater numbers

of valence (anti)quarks, or even, gauge invariant combinations of gluon fields and no valence

(anti)quarks. Here, we will very briefly discuss the operators we use to study two types of these

exotic objects, for both of which there exist multiple experimental candidates.

3.6.1 Tetraquarks

After discussing meson and baryon states, with two and three valence (anti)quarks respectively,

it is natural to then consider what sort of gauge invariant combinations we can form using four

(anti)quarks. Consider then combining four SU(3) colour vectors together; the various Clebsch-

Gordan series are

3⊗ 3⊗ 3⊗ 3 = 3⊕ 3⊕ 3⊕ 6⊕ 6⊕ 15⊕ 15⊕ 15⊕ 15, (3.46a)

3⊗ 3⊗ 3⊗ 3 = 3⊕ 3⊕ 3⊕ 6⊕ 6⊕ 6⊕ 15⊕ 15⊕ 24, (3.46b)

3⊗ 3⊗ 3⊗ 3 = 1⊕ 1⊕ 8⊕ 8⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27. (3.46c)

The only way to form a gauge invariant object (1 colour vector) out of four colour vectors then is

with two 3 vectors and two 3 vectors, i.e. with two quarks (3 representation) and two antiquarks

(3 representation). For colour vectors p, q, r, s in the fundamental 3 representation, p∗, q∗, r∗, s∗ will

transform in the 3 representation. It is straightforward to show then that the following two linear

combinations of these colour vectors are gauge invariant:

TS = (δacδbd + δadδbc)p
∗
a(x)q∗b (x)rc(x)sd(x), (3.47a)

TA = (δacδbd − δadδbc)p∗a(x)q∗b (x)rc(x)sd(x). (3.47b)

Since these are linearly independent, we have exhausted the gauge invariant combinations of two

quarks and two antiquarks. Note that these differ slightly from the meson-meson operators described

in section 3.5 as the individual gauge invariant quark-antiquark objects in eq. (3.47) are not required

to transform irreducibly under any symmetry transformation other than gauge symmetry. We

will of course project the final operators to transform irreducibly under all appropriate symmetry

groups. The elemental tetraquark operators (including displacements) we consider then are

ΦABCD±
αβµν;ijkl(p, t) =

∑

x

e−ip·x(δabδcd ± δadδbc) qAaαi(x, t) qBbβj(x, t) qCcµk(x, t) qDdνl(x, t), (3.48a)

Φ
ABCD±
αβµν;ijkl(p, t) =

∑

x

eip·x(δabδcd ± δadδbc) qDdνl(x, t) qCcµk(x, t) qBbβj(x, t) qAaαi(x, t), (3.48b)

with the displacement types we include shown in fig. 3.5. At the time of writing, calculations in

which we include these operators in the light, scalar meson sectors in search of “missing” tetraquark

dominated levels are underway and will appear in an upcoming publication [114].
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SS DDIa DDIb

QDXbQDXa

Figure 3.5: The tetraquark operator displacements we plan to use, consisting of two gauge-

covariantly displaced quarks (open circles) and two displaced antiquarks (solid circles). Hollow

boxes denote colour couplings of the form δabδcd ± δadδbc.

3.6.2 Glueballs

The gluon self-coupling in QCD suggests the existence of glueballs, states which consist primarily

of bound gluons, having no valence quarks. Experimental evidence for such states is sparse and

ambiguous, with many candidate states significantly mixing with and difficult to distinguish from

hadronic resonances and hadron-hadron scattering states. These issues will be discussed further

in chapter 7, where we motivate the need for lattice studies of glueball candidates and present the

first study of the light scalar glueball including the mixing with meson and meson-meson states

using fully dynamical quarks. Here we will discuss the gluonic operators that are used to probe

glueball states non-perturbatively in lattice QCD, including our construction of a scalar glueball

operator used in the aforementioned analysis in chapter 7.

As objects consisting solely of bound gluons, glueball operators are usually constructed using

sums of gauge invariant loops of smeared spatial gauge link variables on a single time slice (i.e. the

Wilson loops defined in eq. (2.47)), which are invariant under translations, rotations, and charge

conjugation. See for example, Ref. [80], where various closed-loop operators are constructed to

transform irreducibly under different representations of Oh to study various glueball states in SU(3)

pure gauge theory. However, presumably any purely gluonic quantity with the same symmetry

properties could be used to probe potential glueball states. For example, the eigenvalues of the

gauge covariant spatial Laplacian ∆̃ are invariant under rotations and gauge transformations, and

so, are seemingly appropriate for a scalar glueball operator. As the LapH quark-field smearing that

we use involves ∆̃, a scalar glueball operator constructed from its eigenvalues is a natural choice for

us to use. This idea was proposed in section VI of Ref. [109] where it was found that essentially

any combination of the low-lying eigenvalues worked well for studying the scalar glueball. Two

such operators were considered, the so-called TrLapH operator:

G∆ = −Tr[Θ(σ2
s + ∆̃)∆̃], (3.49)
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Figure 3.6: Comparison of the effective masses, meff(t) using ∆t = 3, for three different scalar

glueball operators on the (243|390) ensemble described in chapter 7. (a) The leftmost plot shows

the effective mass using an operator defined by a sum of 3× 3 Wilson loops of smeared gauge link

variables that is rotationally and translationally invariant. (b) The middle plot uses the TrLapH

glueball operator G∆, defined in eq. (3.49). (c) The rightmost plot shows the results using the

weighted TrLapH glueball operator GW , defined in eq. (3.50). One observes very little difference

between these plots, suggesting that these operators are comparable in usefulness for studying

the scalar glueball. Each effective mass eventually tends toward the energy of two pions at rest,

demonstrating non-negligible coupling of these operators to ππ states. Figure from Ref. [109].

and the so-called weighted TrLapH operator

GW = −Tr[Θ(σ2
s + ∆̃)∆̃ exp(−W ∆̃2)], (3.50)

where W is a weighting factor used so that only a certain number of the low-lying eigenvalues

contribute. Using W = 64 for the weighted operator, the effective mass for both of these operators

were obtained on the same 243 × 128 ensemble we use in chapter 7, and compared to that obtained

using a standard glueball operator consisting of a sum of 3× 3 Wilson loops. As is shown in fig. 3.6,

there is very little difference between the three effective masses, suggesting the comparable usefulness

of each for studying the scalar glueball. This motivates our use of the TrLapH operator (eq. (3.49))

for studying the scalar glueball and the mixing between glueball and meson-meson states in finite-

volume. Since we calculate the low-lying eigenvalues of the covariant spatial Laplacian for smearing

the quark fields, we obtain this operator without additional cost by computing the eigenvalues of ∆̃.
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Chapter 4

Stochastic Estimation of Correlation

Functions

Recall from section 2.4 that in order to extract the finite-volume spectrum of QCD (or any other

theory) we need to calculate two-point temporal correlation functions. Such correlation functions

are easily written in terms of Euclidean path integrals over quark fields and gauge link variables:

〈Oi(t+ t0)Oj(t0)〉 =
1

Z

∫
D[χ, ψ]D[U ]Oi(t+ t0)Oj(t0)e−χΩ[U ]ψ−SG[U ], (4.1)

where χ = ψγ4, Ω = γ4D, and D is the Dirac matrix. As the action is quadratic in the quark fields,

the Grassmann fields χ, ψ can be integrated exactly (see eq. (2.91)), resulting in the integration over

gauge link variables that we describe in section 2.5, and some number of fermion propagators, which

we describe in section 4.1. Calculating these propagators involves products of the inverse of the

Dirac matrix Ω−1 which, as Ω is very large, are prohibitively expensive to perform exactly. Hence,

for computing these matrix inversions, we use the stochastic LapH method [15], in which quark lines

are estimated using diluted noise vectors in the so-called LapH subspace, defined in section 4.1.1.

We will describe this method for matrix inversion in section 4.2, followed by the application to

quark line estimates in section 4.3, defining the crucial quark source and sink functions. Then

we close out the chapter by showing in section 4.4 how the temporal correlation functions we are

ultimately interested in can be factorised into the quark source/sink functions which themselves

are expressed in terms of stochastically estimated quark lines.

4.1 Quark Lines

While we will refer the reader to their favourite field theory textbook for more detail on the

integration of Grassmann variables in the context of fermion integration, we recall here some

illustrative results. For the Grassmann valued fields ψa, ψb:
∫
D[ψ, ψ]ψaψb exp

(
ψ
T
Dψ
)

= D−1
ab detD, (4.2)
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where for Dirac matrix D, we can identify the Feynman propagator D−1
ab . A typical meson correlation

function then would look (schematically) like

〈ψaψbψcψd〉 =

∫
D[ψ, ψ]ψaψbψcψd exp

(
ψ
T
Dψ
)

=
(
D−1
adD

−1
bc −D−1

ac D
−1
bd

)
detD,

(4.3)

where we have suppressed the integration over gauge fields (i.e. the above result holds for a single

gauge configuration)1. Now, since we use (anti)quark fields that are both smeared and spatially

displaced, we need integrals in the following form

∫
D[χ, ψ]

∑

cd

facψcχdgdb exp
(
−χTΩψ

)
=
∑

cd

facΩ
−1
cd gdb det Ω, (4.4)

where fac and gdb are c-number coefficients, and we have replaced ψ with χ in the interest of

ensuring Hermiticity. For each coupling (i.e. Wick contraction) of a ψ and χ field, the integration

over quark fields leads to a factor of Ω−1. We will refer to each such coupling as a quark line which

can be drawn as a directed line originating at the χ field, and terminating at the ψ field. We

can then classify the three different types of such quark lines that appear in hadronic correlation

functions by the relative time ordering of their beginning and end:

- forward-time: quark line starting (χ) at early time t0 and ending (ψ) at later time t (i.e. t0 < t),

- backward-time: quark line starting (χ) at later time t0 and ending (ψ) at earlier time t

(i.e. t0 > t),

- same-time: quark line starting (χ) and ending (ψ) at the same time, either t or t0 (i.e. t0 = t).

These different types of quark lines are illustrated in fig. 4.1.

Let’s now write the quark-antiquark contraction for a single quark line in eq. (4.4) more explicitly.

Including the smearing and displacement of the two fields, and using a single compound index to

denote colour, spin, flavour, space, and time a forward-time line looks like

(Dj)abSbcΩ−1
ch Shg(D†k)gf =

(
DjSΩ−1SD†k

)
af
, (4.5)

which, for convenience we denote by Q:

Qjk(t, t0) = DjSΩ−1(t, t0)SD†k. (4.6)

An important integral where this appears then is

∫
D[χ, ψ]

(
DjSψ

)
a
(t)
(
χSD†k

)
b
(t0) exp

(
−χTΩψ

)
= Qjk(t, t0)ab det Ω. (4.7)

1Recall that the fermion determinant detD is included in the Monte Carlo integration over the gauge fields, so

we need not worry about it here.
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Figure 4.1: The three types of quark lines we must consider in the evaluation of hadronic temporal

correlation functions. A quark line stares at an antiquark (χ) field and ends at a quark (ψ) field. In

the above diagrams, time t0 is assumed to be the early time (source) and t is the later time (sink),

i.e. t > t0.

Same-time quark lines occur when the two time indices are identical, i.e.Qjk(t, t), and backward-time

lines can be written as

Qjk(t, t0) = (γ5γ4Qjk(t, t0)γ4γ5)∗ . (4.8)

Any given correlation function then can be decomposed into these quark lines, each of which

contains computationally expensive Dirac matrix inverses Ω−1.

Translational Invariance

Before moving on with our discussion, it is important here to stress the importance of efficient

computational techniques for evaluating quark lines, in particular for same-time lines. Performing

the necessary Dirac matrix inversions can be very computationally expensive, so many calculations

are designed to avoid directly inverting the matrix by solving the linear system of equations Dx = y

for a practical number of source vectors y. Consider the temporal correlator for a single hadron

operator at rest

C(t) = 〈0|O(p = 0, t+ t0)O(p = 0, t0)|0〉

=
1

V 2

∑

x,y

1

Nt0

∑

t0

〈0|φ(x, t+ t0)φ(y, t0)|0〉. (4.9)

As written, the above correlator requires the evaluation of the quark propagator from all spatial

sites y at t = 0 to all spatial sites x at time t, a so-called all-to-all propagator. A drastic reduction

in the number of inversions required can be achieved by exploiting translational invariance to

remove one of the spatial sums. The correlator will then look like

C(t) =
1

V

∑

x

〈0|φ(x, t)φ(0, 0)|0〉, (4.10)

where we have assumed only one source time t0 (more of course can be used to increase statistics).

Now, the quark propagator from the origin at time t = 0 to all spatial sites x at time t is required,
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reducing the number of inversions (for a single t0) by a factor of V . These are referred to as

point-to-all propagators.

Consider however, the temporal correlator for an isoscalar meson operator. Such operators

will require same-time quark lines (i.e. internal loops/disconnected diagrams) for contractions on

a single time slice. While we can still use translation invariance to fix the source operator at

the origin, the sink operator must be summed over all lattice sites. Hence, the same-time quark

lines for all spatial sites at the sink time to the same site at the sink time must be calculated, a

significant number of Dirac matrix inversions (essentially the diagonal elements of Ω−1). Even if we

restrict ourselves to the flavour non-singlet sectors however, our use of two-hadron operators with

definite constituent momenta necessitates the evaluation of all-to-all quark propagators. A typical

two-hadron operator of total momentum zero then has the form

O1(p, t)O2(−p, t) =
1

V 2

∑

x,y

φ1(x, t)φ2(y, t)e−ip·(x−y). (4.11)

With operators of this form, it is impossible to use translation invariance to remove all summations

over spatial sites on the source time slice, and so all-to-all time slice propagators must be used.

Local multi-particle operators of the form

(O1O2)(p = 0, t) =
1

V

∑

x

φ1(x, t)φ2(x, t), (4.12)

circumvent this issue, allowing for the exploitation of translation invariance to remove all summations

over all spatial sites on the source time slice, and hence the use of point-to-all propagators. However,

as stated in section 3.5, the excited state contamination present in these local two-hadron operators

is significantly more troublesome than in our operators with definite constituent momentum.

4.1.1 The LapH Subspace

Inverting the Dirac matrix exactly is impractical for all but very small lattices2. Recall however

from section 3.1.2 that, since we are ultimately interested in the low-lying spectrum/modes of QCD,

we smear the quark fields by projecting into the subspace containing only these low-lying modes,

the so-called LapH subspace. The subspace is that spanned by the Nv lowest eigenvectors of the

covariant Laplacian on each time slice, forming the columns of the matrix Vd ⊗ Id4 . Using eq. (3.14)

for the smearing matrices, the Dirac matrix inverses in a quark line are replaced with

SΩ−1S = Vs
(
V †s Ω−1Vs

)
V †s , (4.13)

where, for the ease of notation, factors of the identity in Dirac space Id4 have been suppressed.

The term in parenthesis, V †s Ω−1Vs, is referred to as a perambulator [107], and describes quark

2The Dirac matrix is of rank N3
sNtNdNc, where Ns is the spatial extent, Nt the temporal extent, Nd the number

of Dirac spin indices (usually 4), and Nc is the number of colour indices (usually 3). Then, for a typical lattice used

in this work, the N200 CLS ensemble (Ns = 48, Nt = 128) say, the Dirac matrix has size ∼ 108 × 108.
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propagation in the LapH subspace. This matrix then is significantly smaller than Ω−1, and so

inverting it in the calculation of quark lines is significantly easier. To solve for the inverse exactly,

now NvNtNd linear systems are required compared to N3
sNtNd for Ω−1. In Ref. [107] the so-called

distillation method for evaluating these perambulators exactly was proposed, the feasibility of which

clearly relies on the size of Nv, shown to grow proportional to the spatial volume of the lattice

in Ref. [15]. This then motivates finding an alternative method for application to larger spatial

volumes. Since we approximate the path integral over gauge fields using the Monte Carlo method,

evaluating the quark lines exactly proves to be quite wasteful. We need only determine the quark

lines to within the precision of the Monte Carlo estimates, i.e. within the gauge noise limit. Hence,

we explore the use of stochastic methods for such matrix inversion in the following sections.

4.2 Stochastic Matrix Inversion

For a large, albeit sparse, N ×N matrix Ω, calculating exactly the inverse is impractical. Typical

Dirac matrices in modern lattice calculations can contain on the order of ∼ 1014 − 1018 elements,

growing proportional to the lattice volume. Therefore, computing, and even just storing in memory,

the inverse of Ω exactly is impractical. Any matrix inverse Ω−1 can be estimated stochastically

by introducing a set of NR random noise vectors η(r), and solving the linear system of equations

ΩX(r) = η(r) for each X(r), to get X(r) = Ω−1η(r). If the noise vectors are chosen such that their

expected values are given by E(ηi) = 0, and E(ηiη
∗
j ) = δij, then the elements of the matrix inverse

Ω−1
ij are given by

E(Xiη
∗
j ) = E

(∑

k

Ω−1
ik ηkη

∗
j

)

=
∑

k

Ω−1
ik E(ηkη

∗
j )

=
∑

k

Ω−1
ik δkj

= Ω−1
ij .

(4.14)

We can then find a Monte Carlo estimate of Ω−1
ij using

Ω−1
ij ≈ lim

NR→∞

1

NR

NR∑

r=1

X
(r)
i η

(r)∗
j . (4.15)

However, this approximation only becomes exact in the limit NR →∞, yet the linear system can be

solved exactly using point sources with only N solution vectors. Therefore, we require a modification

of this stochastic method to produce estimates of the quark propagators with drastically reduced

variances.

We can significantly reduce the variance in the above estimate by projecting the noise vectors

into distinct subspaces in a process known as noise dilution [115–117]. A given dilution scheme
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proceeds as follows: for a complete set of projection operators P (b), define ηr[b] = P (b)ηr, and Xr[b]

as the solution of ΩXr[b] = ηr[b]. Then, a much better Monte Carlo estimate of the matrix inverse

Ω−1
ij is given by

Ω−1
ij ≈

1

NR

NR∑

r=1

∑

b

X
r[b]
i η

r[b]∗
j . (4.16)

The projection ensures exact zeros for many of the E(ηiη
∗
j ) elements rather than estimates that

are only statistically zero. This results in the dramatic reduction in the variance in the estimates

of Ω−1. Fully diluting the noise vectors should completely eliminate the variance in the matrix

inverse estimate; this corresponding to the set of projectors P
(r)
ij = δirδjr, which when applied to

the noise vectors will return a set of basis vectors, i.e. an exact inversion scheme. A smaller set of

projectors then allows for a reduction in computation time in exchange for increasing the variance

in the estimates of Ω−1. Different dilution schemes that we consider will be discussed shortly.

We can achieve a significant cost reduction by considering a smaller subspace in which to

perform the dilution [15], i.e. we do not necessarily need to dilute the noise vectors in the full

spin-colour-space-time vector space. Our use of LapH smeared quark fields suggests an alternative:

noise vectors ρ that are introduced only in the LapH subspace, having only spin, time, and Laplacian

eigenmode number as their indices, the last of which replaces the spatial and colour indices, found

after diagonalising ∆̃. The dilution projectors P (b) are then matrices in the LapH subspace.

4.2.1 Dilution Schemes

The dilution projectors we use are products of time, spin, and LapH eigenvector dilution projectors.

The compound projector index can then be written as the triplet b = (bT , bS, bL) of projector indices

for time, spin, and LapH eigenvector. More explicitly, the projectors have the form

P
(b)
tαn;t′α′n′ = P

(bT )
t;t′ P

(bS)
α;α′P

(bL)
n;n′ , (4.17)

where t, t′ denote time slices, α, α′ are Dirac spin incides, and n, n′ are LapH eigenvector indices.

The dilution schemes considered then are [15]:

P
(b)
ij = δij, b = 0, (no dilution) (4.18a)

P
(b)
ij = δijδbi, b = 0, . . . , N − 1, (full dilution) (4.18b)

P
(b)
ij = δijδb,bJi/Nc, b = 0, . . . , J − 1, (block−J) (4.18c)

P
(b)
ij = δijδb,imod J , b = 0, . . . , J − 1, (interlace−J) (4.18d)

where N = Nt for time dilution, N = Nd = 4 for spin dilution, and N = Nv for LapH eigenvector

dilution, and N/J is assumed to be an integer. Explicit comparisons between the different schemes

are studied in Ref. [15] on 163 and 203 lattices. We will often use the shorthand triplet (T,S,L) to

denote a particular choice of dilution schemes, e.g. full time and spin dilution with interlace-16

LapH eigenvector dilution would be denoted by (TF,SF,LI16).
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4.3 Stochastic Estimates of Quark Lines

Let’s now collate these ideas and look at the factorisation of the all-important quark lines into

distinct source and sink functions. In the stochastic LapH method, a quark line is evaluated on

each gauge configuration by inserting the noise vectors described in the previous section as follows:

Q = DjSΩ−1SD†k
= DjSΩ−1VsV

†
s D
†
k

=
∑

b

DjSΩ−1VsP
(b)P (b)†V †s D

†
k

=
∑

b

DjSΩ−1VsP
(b)E(ρρ†)P (b)†V †s D

†
k

=
∑

b

E
(
DjSΩ−1VsP

(b)ρ
(
DkVsP

(b)ρ
)†)

.

(4.19)

We define then the all-important displaced-smeared-diluted quark source and sink vectors by

%[b](ρ) ≡ DjVsP
(b)ρ, (4.20a)

ϕ[b](ρ) ≡ DjSΩ−1VsP
(b)ρ, (4.20b)

so that each quark line on a given gauge configuration can be estimated using

QABuv ≈
1

NR

δAB

NR∑

r=1

∑

b

ϕ[b]
u (ρr)%[b]

v (ρr)∗, (4.21)

where u, v are compound indices including space, time, colour, spin, and displacement type, B is

the flavour of the source field, and A is the flavour of the sink field. As an aside, note that the

above estimate takes the form of an outer product expansion. Similar estimates are often used in

the processing/compression of digital images [118,119], and so, the stochastic LapH estimate can

be viewed as a lossy compression of the quark propagation [15].

When computing some quark lines needed for meson operators, it can sometimes be useful to

exploit the γ5-Hermiticity of the Dirac matrix. Recall from section 2.1.1 that D† = γ5Dγ5, and

hence (D−1)† = γ5D
−1γ5, so that the quark lines can also be estimated by

QABuv ≈
1

NR

δAB

NR∑

r=1

∑

b

%̄[b]
u (ρr)ϕ̄[b]

v (ρr)∗, (4.22)

where

%̄ ≡ −γ5γ4%, ϕ̄ ≡ γ5γ4ϕ. (4.23)

This allows us to swap the quark source and sink by reversing a given quark line in what we call

γ5-Hermiticity mode. To see how this can be useful, first recall that we will need to calculate quark

line estimates for same time (sink-to-sink and source-to-source) lines on (essentially) every time
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slice (we sometimes refer to these as relative quark lines), requiring some temporal dilution to make

the calculation feasible. On the other hand, many of the quark lines we need to estimate are from

a source time t0 to a different sink time t, and so we can use instead a smaller, manageable set of

source times (we refer to these as slice-to-slice or fixed quark lines), and so we can use full time

dilution for these. However, for a typical meson correlator for example, consider the contractions

shown on the left in fig. 4.3. One of the quark lines needed begins on the meson source time and

ends on the meson sink time, while the other line begins on the meson sink time and ends on the

meson source time. Since we want only a manageable set of source times for our quark lines using

the γ5-Hermiticity mode formula above to swap the quark source and sink allows us to group all

of the quark sinks at the meson sink time, and all of the quark sources at the meson source time,

simplifying the computation and storage requirements.

4.4 Correlation Function Factorisation

We are now able to show how the quark source and sink functions can be used to evaluate hadronic

temporal correlation functions via the stochastic LapH method. Following Ref. [15], here we will

describe baryon-to-baryon, and meson-to-meson correlations in some detail, along with a brief

discussion on how we generalise the procedure to more complicated correlations involving multiple

hadrons at the source and/or sink times.

4.4.1 Baryon-to-Baryon Correlations

Recall from section 3.2.2 that our baryon source and sink operators are linear combinations of

three-quark elemental operators of the form

Bl(t) = c
(l)∗
αβγΦ

ABC

αβγ (p, t), (4.24a)

Bl(t) = c
(l)
αβγΦ

ABC
αβγ (p, t), (4.24b)

where l is a compound index including the baryon three-momentum p, transformation under an irrep

Λ of the lattice symmetry group, irrep row λ, any relevant flavour quantum numbers (e.g. isospin,

G-parity, etc.), and an identifier labelling the different operators in each symmetry channel; and

the elemental operators Φ,Φ, are defined in eqs. (3.23) and (3.24). Temporal correlation matrix

elements are then given by

Cll̄(tF − t0) =
1

Nt

∑

t0

〈Bl(tF )B l̄(t0)〉

= c
(l)
αβγc

(l̄)∗
ᾱβ̄γ̄
〈ΦABC

αβγ (tF )Φ
ĀB̄C̄

ᾱβ̄γ̄ (t0)〉

= c
(l)
αβγc

(l̄)∗
ᾱβ̄γ̄

∑

xx̄

εabcεāb̄c̄ e
−ip·(x−x̄)

× 〈qAaα(x, tF )qBbβ(x, tF )qCcγ(x, tF ) qĀāᾱ(x, t0)qB̄b̄β̄(x, t0)qC̄c̄γ̄(x, t0)〉,

(4.25)
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where 〈. . . 〉 denotes the vacuum expectation value, and in the second line we have replaced the

sum over source times by a single source time t0 to simplify notation (we of course still compute

the correlation functions for multiple source times to increase statistics), and have exploited time

translation invariance. Evaluating the integration over quark fields then yields the rather unwieldy

sum over products of quark lines:

Cll̄(t) = c
(l)
αβγc

(l̄)∗
ᾱβ̄γ̄

∑

xx̄

εabcεāb̄c̄ e
−ip·(x−x̄)

×
〈
Q(AA)
aα;āᾱQ(BB)

bβ;b̄β̄
Q(CC)
cγ;c̄γ̄ −Q(AA)

aα;āᾱQ(BC)
bβ;c̄γ̄Q

(CB)

cγ;b̄β̄

−Q(AB)

aα;b̄β̄
Q(BA)
bβ;āᾱQ

(CC)
cγ;c̄γ̄ −Q(AC)

aα;c̄γ̄Q(BB)

bβ;b̄β̄
Q(CA)
cγ;āᾱ

+Q(AC)
aα;c̄γ̄Q(BA)

bβ;āᾱQ
(CB)

cγ;b̄β̄
+Q(AB)

aα;b̄β̄
Q(BC)
bβ;c̄γ̄Q

(CA)
cγ;āᾱ

〉
U
,

(4.26)

where time and spatial labels have been omitted, and 〈. . . 〉U denotes the expectation value over

the gauge fields only (i.e. eq. (2.91)). Each term in eq. (4.26) corresponds to one of the possible

Wick contractions between a baryon creation and annihilation operator, shown diagrammatically

in fig. 4.2. Remember that each quark line Q connecting the source site x̄ to sink site x also

connects the colour and spin components between the sites, resulting in the summation over x, x̄

being very costly to evaluate for every combination of baryon creation and annihilation operators.

A dramatic simplification, central to the stochastic LapH method, comes from instead express-

ing eq. (4.26) in terms of the quark source and sink vectors that make up our quark lines estimates.

A key component of this is the following quantity:

B[b1b2b3]
l (ϕ1, ϕ2, ϕ3; t) = c

(l)
αβγ

∑

x

e−ip·xεabcϕ
[b1]
aαxt(ρ1)ϕ

[b2]
bβxt(ρ2)ϕ

[b3]
cγxt(ρ3), (4.27)

where bi are noise dilution projector indices, and the short-hand notation ϕk ≡ ϕ(ρk) has been

introduced. The matrix element estimate of eq. (4.26) is then given by

Cll̄(tF − t0) =
〈
B[b1b2b3]
l (ϕ1, ϕ2, ϕ3; tF )

×
(
δABCABCB[b1b2b3]

l̄
(%1, %2, %3; t0)− δACBABCB[b1b3b2]

l̄
(%1, %3, %2; t0)

− δBACABCB[b2b1b3]

l̄
(%2, %1, %3; t0)− δCBAABCB[b3b2b1]

l̄
(%3, %2, %1; t0)

+ δCABABCB[b2b3b1]

l̄
(%2, %3, %1; t0) + δBCAABCB[b3b1b2]

l̄
(%3, %1, %2; t0)

)∗〉
U,ρ
,

(4.28)

where δDEFABC ≡ δADδBEδCF , and 〈. . . 〉U,ρ denotes the expectation value taken over the gauge field U

and over any noise vectors ρk. To increase statistics, the six different permutations of the 1, 2, 3

noises (which we will refer to as noise orderings) can be calculated, and if the quark masses for

each of the lines are the same, this doesn’t require any more Dirac matrix inversions.

An important feature of eq. (4.28) is the complete factorisation of the baryon correlator into

a function associated only with the sink time slice tF , and another function associated only with

the source time slice t0. The summations over colour, spin, and spatial sites at the source have
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Figure 4.2: A diagrammatic depiction of eq. (4.28) for a baryon-to-baryon correlation function with

source time t0 and sink time tF . Each box denotes a baryon function as defined in eq. (4.27), with

the constituent quark source and sink functions connected by quark lines, indicating a summation

over the dilution projector indices. Any line connecting quarks of different flavour gives zero.

Each diagram corresponds to one of the possible Wick orderings for a baryon-to-baryon correlator.

Diagram from Ref. [15].

been completely separated from the colour, spin, and spatial summations at the sink. The major

advantage of this factorisation, and a key feature of the stochastic LapH method, is that for a large

set of hadron operators, we can calculate the source and sink functions for each operator and then

“tie them together” (i.e. contract over the relevant indices) as needed to form the final correlation

matrix elements.

4.4.2 Meson-to-Meson Correlations

Factorising meson-to-meson correlation functions into hadron sources and sinks is done in the same

way as for the baryon-to-baryon correlators. For the meson source and sink operators defined

in eq. (3.29) in terms of the elemental meson operators defined in eq. (3.28), meson-to-meson

correlation matrix elements are given by

Cll̄(tF − t0) =
1

Nt

∑

t0

〈Ml(tF )M l̄(t0)〉

= c
(l)
αβc

(l̄)∗
ᾱβ̄
〈ΦAB

αβ (tF )Φ
ĀB̄

ᾱβ̄ (t0)〉

= c
(l)
αβc

(l̄)∗
ᾱβ̄

∑

xx̄

e−ip·(x+ 1
2

(dα+dβ))eip·(x̄+ 1
2

(dα+dβ))

× 〈qAaα(x, tF )qBaβ(x, tF ) qB̄āβ̄(x, t0)qĀāᾱ(x, t0)〉,

(4.29)
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Figure 4.3: A diagrammatic depiction of eq. (4.32) for a meson-to-meson correlation function with

source time t0 and sink time tF . Each box denotes a meson function as defined in eq. (4.31), with

the constituent quark source and sink functions connected by quark lines, indicating a summation

over the dilution projector indices. The second term, containing only same-time quark lines/meson

internal lines, contributes only for isoscalar/flavour singlet mesons. Diagram from Ref. [15].

where again, l, l̄ are taken to be compound indices, and the three-momenta associated with each is

assumed to be the same p. Then, following the integration over Grassmann fields, we obtain an

expression in terms of quark lines:

Cll̄(t) = c
(l)
αβc

(l̄)∗
ᾱβ̄

∑

xx̄

e−ip·(x+ 1
2

(dα+dβ))eip·(x̄+ 1
2

(dα+dβ))

× 〈−Q(AA)
āᾱ;aαQ(BB)

aβ;āβ̄
+Q(BA)

aβ;aαQ
(AB)

āᾱ;āβ̄
〉U ,

(4.30)

where t = tf − t0, and time and spatial labels have been omitted. As discussed in section 4.3, it is

advantageous to use the γ5-Hermiticity mode expression in eq. (4.22) for the B quark line, and the

regular form in eq. (4.21) for the A line.

Define now the meson function:

M[b1b2]
l (%1, ϕ2; t) = c

(l)
αβ

∑

x

e−ip·(x+ 1
2

(dα+dβ))%
[b1]
aαxt(ρ1)∗ϕ

[b2]
aβxt(ρ2), (4.31)

so that the factorised meson correlator is given by

Cll̄(tF − t0) =
〈
−δABABM[b1b2]

l (ϕ1, ϕ2; tF )M[b1b2]

l̄
(%1, %2; t0)∗

+δBB
AA
M[b1b1]

l (%1, ϕ1; tF )M[b2b2]

l̄
(ϕ2, %2; t0)∗

〉
U,ρ
,

(4.32)

where δCDAB ≡ δACδBD. This expression is depicted diagrammatically in fig. 4.3, with the second

term contributing only for isoscalar/flavour singlet mesons.

4.4.3 More Complicated Correlation Functions

As we consider correlations involving more and more hadrons, writing down expressions for such

correlation functions quickly becomes cumbersome. Using the diagrammatic representation of

baryon and meson correlation functions in figs. 4.2 and 4.3 allows us to straightforwardly generalise

our approach to more complicated correlation matrix elements involving multi-hadron operators.
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Figure 4.4: A diagrammatic depiction of the temporal correlation between a two-meson source

at time t0 and a single-meson sink at time tF . Each box denotes a meson function as defined

in eq. (4.31), with the constituent quark source and sink functions connected by quark lines,

indicating a summation over the dilution projector indices. Boxes with an internal line contribute

only for isoscalar/flavour singlet mesons. Swapping the sources and sinks also yields the same

results for a single-meson source at time t0 to a two-meson sink at tF . Diagram from Ref. [15].

To evaluate a matrix of correlation functions, first the various hadron source and sink functions

must be identified and calculated using eqs. (4.27) and (4.31). The factorisation of the correlation

functions allows these to be evaluated for a large set of operators, and then stored on disk. For a

given matrix element then, the appropriate diagrams (i.e. Wick contractions) must be determined,

and then evaluated by contracting over the hadron functions over dilution indices. An example

meson to two-meson correlator is shown in fig. 4.4.
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Chapter 5

Extracting the Finite-Volume Spectrum

In section 2.4 we showed how the finite-volume energies are represented in a two-point Euclidean

temporal correlation function by inserting a complete set of energy eigenstates. Here, we will

discuss the process of extracting such a finite-volume energy spectrum from matrices of correlation

functions, the estimation of which was outlined in chapter 4. First, in section 5.1 we discuss the

analysis of a temporal correlation matrix, and how a generalised eigenvalue problem (GEVP) is

solved in order to extract the lowest N energies from an N ×N matrix. Then we will look at how

thermal effects due to the finite temporal extent are accounted for in section 5.2, followed by the

fit ansätze we use in section 5.3. Finally, we refer to appendix A for a discussion on how we fit

correlated Monte Carlo data and the different resampling schemes used for error estimation.

5.1 Correlator Matrix Analysis

Looking at the spectral decomposition in eq. (2.76), we can see that all of the information about the

finite-volume spectrum is contained within a given temporal correlation matrix. However, extracting

the finite-volume energies directly from a matrix of such correlation functions is impractical. Instead,

we use a variational method, proposed in Ref. [13], and studied further in Ref. [14], for extracting

the stationary state energies and the overlaps of our interpolating operators onto the finite-volume

energy eigenstates. In what follows, effects due to the finite temporal extent of the lattice are

neglected, though will be addressed later on in section 5.2.

Consider then the matrix of temporal correlation functions

Cij(t) = 〈0|Oi(t+ t0)Oj(t0)|0〉, (5.1)

where an average over many source times t0 is implicit, and the operators are designed such that

Cij is Hermitian (see section 2.4.1). To lessen the effects of differing normalisations among the

operators, we rescale the correlation matrix by

Cij(t) ≡
Cij(t)√

Cii(τN)Cjj(τN)
, (5.2)
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where the normalisation time τN is taken at an early time, usually τN = 1, 2, 3. Following

from eq. (2.76), a spectral decomposition can be written as

Cij(t) =
∑

n

〈0|Oi|n〉〈n|Oj|0〉e−Ent, (5.3)

where the Hermiticity of C(t) implies that

〈0|Oi|n〉∗ = 〈n|Oi|0〉. (5.4)

Then, defining the overlap amplitudes (often referred to as Z-factors)

Z
(n)
j ≡ 〈0|Oj|n〉, (5.5)

we have

Cij(t) =
∑

n

Z
(n)
i Z

(n)∗
j e−Ent, (5.6)

where the spectrum has been shifted such that E0 = 0. As we expect degeneracies to rarely occur

in the presence of interactions, the spectrum is assumed to be non-degenerate and the energies

ordered according to En+1 > En. Note also that, since the eigenvectors of C(t) are defined only to

within a constant, there is some ambiguity in the determination of the overlap Z-factors. While

normalisation of the eigenvectors is fixed in the spectral decomposition, their phase is not. Hence,

the matrix elements are invariant up to an arbitrary phase:

Z
(n)
i → Z

(n)
i eiφn , (5.7)

and we can determine only the magnitudes |Z(n)
i | of the overlap factors.

5.1.1 The Generalised Eigenvalue Problem

The idea of using variational methods to compute energy levels in lattice gauge theory dates back to

the early days of the field [120]. First applied to finding the ground state in a particular symmetry

channel, an approach which is equivalent to finding the largest eigenvalue in a generalised eigenvalue

problem (GEVP). Following Refs. [13, 14], we will present this GEVP and how it is used to extract

not only the ground state but also many excited energy eigenstates from a matrix of temporal

correlation functions. To begin consider the following theorem from Ref. [13]:

Theorem. For every t ≥ 0, let λn(t) be the eigenvalues of an N ×N Hermitian correlation matrix

C(t), ordered such that λ0 ≥ λ1 ≥ · · · ≥ λN−1. Then,

lim
t→∞

λn(t) = bne
−Ent

(
1 +O(e−t∆n)

)
, bn > 0, ∆n = min

m 6=n
|En − Em|. (5.8)

This gives us a basis for the determination of the energies En from a Hermitian correlation

matrix C(t). However, simply diagonalising C(t) at large times proves to be impractical. The
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correlation matrix elements are difficult to determine accurately for large times, and so the leading

error O(e−t∆n) is often not negligible for the time range where the statistical errors on C(t) are

manageable. Alternatively, in Ref. [13] Lüscher and Wolff propose solving the following GEVP,

which they show to have smaller leading errors:

C(t)vn(t, τ0) = λn(t, τ0)C(τ0)vn(t, τ0), n = 1, . . . , N − 1, t > τ0, (5.9)

where τ0 is fixed and referred to as the metric time. Excited state energies can then be systematically

determined using the effective mass:

Eeff
n (t, τ0) ≡ 1

∆t
ln

(
λn(t+ ∆t, τ0)

λn(t, τ0)

)
, (5.10)

where the time-step ∆t is generally taken ∆t ≤ 3at This is motivated by truncating the sum

in eq. (5.6) to contain only the N lowest terms, giving eigenvalues that are exactly

λ(0)
n (t, τ0) = e−En(t−τ0). (5.11)

This however neglects contributions from states with E ≥ EN . The authors of Ref. [14] address

this by taking a perturbative expansion of the correlation functions, finding that if τ0 ≥ t/2,

the leading order corrections to λ
(0)
n (t, τ0) are of order O(e−(EN−En)t), a significant improvement

over eq. (5.8) for the low-lying states. We are therefore motivated to solve the GEVP rather than

simply diagonalise C(t) to extract the spectrum, while crucially keeping N and τ0 large in order to

reduce systematic errors. As the leading correction grows as n→ N , we find it is often important

to keep N larger than the number of states you wish to extract, using N ∼ 3
2
n, where n is the

number of desired levels, as a rough guide (see fig. 5.1(c)).

It is straightforward to see that solving the GEVP is equivalent to diagonalising

G(t) ≡ C−1/2(τ0)C(t)C−1/2(τ0), (5.12)

where we emphasise the difference between metric time τ0 and the normalisation time τN used

in eq. (5.2). The eigenvalues of G(t) then obey [14]

lim
t→∞

λn(t) = |Z ′n|2 e−Ent, (5.13)

with the overlap factors approximated by

Z
(n)
j ≈ Cjk(τ0)1/2Vkn(t)Z ′n, (5.14)

where V (t) is the unitary matrix containing the orthonormal eigenvectors of G(t) as its columns.

This expression becomes exact as t and τ0 become large, with non-negligible contributions from

states with n ≥ N appearing otherwise. To illustrate the importance of the GEVP, in fig. 5.1 we

show the effective energies for a 12× 12 correlator matrix using the methods described above for a

toy model whose energies are given by

E0 = 0.20, En = En−1 +
0.08√
n
, n = 1, . . . , N − 1. (5.15)
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Figure 5.1: (a) Effective energies associated with the diagonal elements of the original raw

correlator matrix C(t) of the toy model, whose energies are defined in eq. (5.15). (b) Effective

energies associated with the GEVP eigenvalues of the original correlator matrix C(t). (c) Effective

energies associated with the GEVP eigenvalues of C(τ0)−1/2C(t)C(τ0)−1/2 for τ0 = 1. Dashed blue

lines indicate exact values for the lowest 12 energies.

Note the significant improvement gained by rescaling the correlation matrix via eq. (5.2). The

highest lying levels in fig. 5.1(c) also give an indication that in order to reliably extract n levels,

we require matrices with N > n operators. Increasing N is much more effective than increasing t,

especially as statistical errors grow significantly with t.

5.1.2 The Single Pivot

From the assumption of Hermiticity and eq. (5.13), we expect both C(t) and G(t) to be positive

definite matrices. However, if the N operators used create N states that are not sufficiently distinct

from one another, statistical noise in the correlator estimates can cause the matrices to become

ill-conditioned by having eigenvalues very close to zero, or even to have negative eigenvalues,

spoiling the assumed positive definiteness. While a careful pruning of the operator set is a crucial

step in maintaining well-conditioned correlator matrices, this can be an imprecise process, and a

method of tackling the GEVP for initially ill-conditioned matrices, but that ultimately produces a

well-conditioned matrix, is desirable.

The condition number of a matrix gives a measure of how well- (or ill-)conditioned a matrix is.

Given by the ratio of the largest and smallest eigenvalues of the matrix

ξcn =

∣∣∣∣
λmax

λmin

∣∣∣∣ , (5.16)

where λmax, λmin are the largest and smallest eigenvalues respectively, a matrix is said to be ill-

conditioned if ξcn is too high (for us, generally this means > 100− 200), and well-conditioned if it

is low enough (i.e. below ∼ 100). Since the eigenvalues are expected to be asymptotically of the

form in eq. (5.13), the largest eigenvalues will correspond to the lowest energies, and so, it is the
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smallest eigenvalues we will look to discard when the correlator matrix is ill-conditioned. Then,

we set the threshold for the lowest eigenvalue by choosing a maximum accepted condition number

ξcn
max, so that at time t

λ
(t)
thres =

λ
(t)
max

ξ
cn(t)
max

, (5.17)

where 1/ξ
cn(t)
max is generally chosen to be on the order of the statistical error in C(t). Then, we form

the N ×N0 matrix P0 that contains the N0 ≤ N eigenvectors of C(τ0) with eigenvalues larger than

λ
(τ0)
thres. Using this, we define

C̃(t) = P †0 C(t)P0, (5.18)

with which we can form G̃(t):

G̃(t) = C̃−1/2(τ0)C̃(t)C̃−1/2(τ0), (5.19)

where we note that C̃(τ0) is a diagonal matrix. Next, using the Np ≤ N0 eigenvectors of G̃(τD)

with eigenvalues larger than λ
(τ0)
thres to form the N0 ×Np matrices Ṽ (τD), where τD is referred to as

the diagonalisation time1. Finally then, we form the Np ×Np diagonal matrix

D̃(t) = Ṽ †(τD)G̃(t)Ṽ (τD), (5.20)

whose diagonal elements will tend to λn ∝ e−Ent (i.e. eq. (5.13)). Thus, by fitting the diagonal

elements, we can obtain estimates for En and |Z̃ ′n|. Note that, for the full ensemble of gauge

configurations D̃(τ0) = 1, and D̃(τD) is diagonal. On different bootstrap/jackknife resamplings this

may not be true, and at later times, D̃(t) may not be diagonal. We must then check for non-zero

off-diagonal elements of D̃(t), and adjust the parameters τ0, and τD until none remain.

We call this the single pivot method for solving the GEVP, as the diagonalisation is performed

only for one choice of metric time τ0, and only one other time t = τD. The main advantage of

performing the diagonalisation in this way is the avoidance of diagonalising the correlator matrix at

large times, which, due to the increased statistical errors, can lead to a significant bias in the final

results. Additionally, alternative methods which require significantly more diagonalisations require

the use of the cumbersome and time-consuming eigenvector pinning. As no significant differences

in the final spectrum determination are seen using other techniques, we exclusively use the single

pivot method in our analyses.

5.2 Temporal Wrap-Around Effects

At this point, we will take a brief aside to consider the effects of the finite temporal extent of the

lattice. While there are two scenarios to consider here, distinguished by the differing temporal

boundary conditions used on the HadSpec and CLS gauge ensembles (see sections 2.3.1 and 2.3.2),

1A single diagonalisation time is chosen satisfying τ0 < τD ≤ 2τ0, following the findings of Ref. [14] in which they

find the leading order corrections to the eigenvalues of the GEVP are O(e−(En−En)t) for τ0 ≥ t/2.
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we will begin with a general discussion assuming periodic boundary conditions (used on the HadSpec

ensembles), followed by some comments on the subtleties involved with the open temporal boundary

conditions (used on the CLS ensembles).

In Euclidean space and finite-volume with periodic boundary conditions, the path integral

expressions that we compute are in fact equivalent to quantum statistical mechanical expectation

values, at a temperature given by the inverse temporal extent. Explicitly, for finite temporal extent

T (not to be confused with temperature), and assuming periodic boundary conditions

Cij = 〈Oi(t)Oj(0)〉T

=
1

ZT
Tr
[
e−HTOi(t)Oj(0)

]

=
1

ZT

∑

n

〈n|e−H(T−t)Oi(0)e−HtOj(0)|n〉

=
1

ZT

∑

n,m

e−En(T−t)e−Emt〈n|Oi(0)|m〉〈m|Oj(0)|n〉,

(5.21)

where H|n〉 = En|n〉, we assume the energies have been shifted such that E0 = 0, and the partition

function is given by

ZT ≡ Tr e−HT

=
∑

n

〈n|e−HT |n〉

=
∑

n

e−EnT .

(5.22)

For large T , the contributions from n = 0 will dominate (as the energies are assumed to be

ordered En+1 > En), with contributions from n > 0 states existing solely due to the finite time

extent. We refer to such extraneous states as thermal states. Taking the large time limit then,

i.e. T →∞, the Euclidean correlation function of eq. (5.21) will approach the vacuum expectation

value 〈0|Oi(t)Oj(0)|0〉.
The effects of these thermal states are generally small, but often non-negligible and so must be

accounted for. For bosonic correlation functions (e.g. the mesonic correlators considered in this

work), the backwards (in time) propagating modes associated with the thermal states, e−En(T−t)

in the last line of eq. (5.21), have the same energy as the forwards propagating modes. We took

advantage of this when designing our mesonic operators in section 3.2.3, and so in these cases use a

fit form that is symmetric under time reversal, or simply add a constant term, to take the thermal

effects into account. Such fit forms are discussed in more detail in the next section. For baryon

correlation functions the energy of the backwards propagating modes is not the same as for the

propagating modes but in fact corresponds to the parity partner of the forwards propagating mode

(see section 3.2.2). Thankfully, these thermal effects are, in general, quite small and appear in a

statistically significant fashion only for the lightest states, suppressed by the finite temporal extent

of the lattice. Hence, we observe thermal effects only on the 243 × 128 anisotropic lattice used in

the glueball study, and there only in the correlation functions for a single pion or kaon.
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Adopted to reduce autocorrelation times of the global topological charge [89], the open temporal

boundaries employed in the CLS gauge configurations influence the finite temporal extent effects in

a different manner that must be considered carefully (see section 2.3.2 and references therein for

more details). Here, for large T , and if both the source and sink time (t0, tF ) are sufficiently far

from the boundaries, the correlation functions have the form [20] (cf. eq. (5.21))

lim
T→∞

t0,(T−tF )→∞

CT (t0, tF ) = C(tF − t0)×
(
1 +O(e−E

vac
0 tbnd)

)
, (5.23)

where CT (t0, tF ) = 〈O(tF )O(t0)〉T is the Euclidean correlation function with open temporal boundary

conditions, C(t) = 〈0|O(t)O(0)|0〉 is the correlator in the T →∞ limit, Evac
0 is the lightest state

with vacuum quantum numbers, and tbnd = min(t0, T − tF ) is the minimum distance from one of

the interpolating operators to the temporal boundary. Since we roughly expect Evac
0 ≈ 2mπ, at least

on this subset of CLS ensembles, if we choose source and sink times such that mπtbnd ≥ 2, then

the corrections in eq. (5.23) are similar to the exponentially suppressed finite-volume effects that

contribute to single-hadron states. These effects are discussed in more detail in Ref. [20], including

a check for discrepancies between source times that may indicate a loss of Hermiticity in correlation

matrices. Ultimately in the correlator construction for the scattering analysis in chapter 8, we use

only source and sink times such that mπtbnd ≥ 2 so that these effects are negligible.

5.3 Fitting Diagonal Correlators

Once the elements of D̃(t) have been determined, we are ready to fit the diagonal correlator elements

to extract the energy spectrum and operator overlaps. The large time behaviour (eq. (5.13)) suggests

the simplest fit ansatz we consider, a single “time-forward” exponential

C(t) = Ae−Et, (5.24)

with fit parameters A and E. This can also be symmetrised in time, following the discussion in the

previous section, to include the thermal effects of backwards propagating (bosonic) modes, giving

the “time-symmetric” single exponential fit form:

C(t) = A
(
e−Et + e−E(T−t)) , (5.25)

where T is the temporal extent of the lattice, and no new fit parameters are introduced. In the

absence of temporal wrap-around effects, the time-forward and time-symmetric fit forms should

produce the same results, offering a simple check for such effects. Additionally, we can add an extra

constant (in time) fit parameter to both fit forms to account for potential higher lying contributions

that vary slowly in time. In the context of thermal effects, such a constant term is only seen to be

non-zero for lattices with a small temporal extent where we have high statistics.

A single exponential fit form of course assumes negligible contributions from excited state

contamination that we see for early times, even after solving the GEVP. We must then use eqs. (5.24)
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and (5.25) only over time ranges for which eq. (5.10) is seen to plateau to a constant value. The

significant increase in statistical noise at later times leads us to also seek out fit forms that are

valid also for early times. We introduce then a time-forward two exponential fit form:

C(t) = Ae−Et
(

1 +Be−∆2t
)
, (5.26)

with fit parameters A,B,E,∆2, where we use ∆2 to ensure a positive decay constant. The aim here

is that the second term will parameterise the effects of the leading order excited state contributions.

We can then also make this form time-symmetric, and add a constant term where we expect thermal

effects to contribute. Another fit ansatz for capturing excited state contamination that we consider

is the time-forward geometric series:

C(t) = Ae−Et
(

1 +Be−∆2t +B2e−∆4t + . . .
)

=
Ae−Et

1−Be−∆2t
, (5.27)

with fit parameters A,B,E,∆2, and can also be made time-symmetric.

A comparison of the different methods for accounting for the thermal effects on the 243 × 128

anisotropic ensemble is shown in fig. 5.2, including the time-subtracted correlator

Csub(t) ≡ C(t+ 1)− C(t). (5.28)

This serves as an alternative to adding an additional constant (in time) fit parameter that proves

to be useful not just in removing thermal effects, but also in the subtraction of vacuum expectation

values (VEVs) in symmetry channels with vacuum quantum numbers. The presence of thermal

effects is apparent in the time-forward effective mass points in fig. 5.2a where, for large time

separations, the effective mass drops below the plateau seen at earlier times. We find in our

analyses that, when thermal effects are non-negligible, using eq. (5.28) increases the statistical

errors somewhat, especially for later times, and so is used sparingly.

72



5 10 15 20 25 30 35
t

0.06

0.07

0.08

0.09

0.1

a tE
ef

f(t
)

a
t
E

fit
 = 0.06798(23)

E
fit

/E
ref

 = 0.6987(20)

χ2/dof = 2.22

π(0)
SS0

A1um

(a) C(t): Time Forward

5 10 15 20 25 30 35
t

0.07

0.08

0.09

0.1

a tE
ef

f(t
)

a
t
E

fit
 = 0.07093(44)

E
fit

/E
ref

 = 0.7290(44)

χ2/dof = 0.85

π(0)
SS0

A1um

(b) C(t): Time Forward + C

5 10 15 20 25 30 35
t

0.05

0.1

0.15

0.2

a tE
ef

f(t
)

a
t
E

fit
 = 0.07120(40)

E
fit

/E
ref

 = 0.7318(39)

χ2/dof = 0.93

π(0)
SS0

A1um

(c) Csub(t): Time Forward

5 10 15 20 25 30 35
t

0.07

0.08

0.09

0.1

a tE
ef

f(t
)

a
t
E

fit
 = 0.06932(18)

E
fit

/E
ref

 = 0.7125(14)

χ2/dof = 0.88

π(0)
SS0

A1um

(d) C(t): Time Symmetric

5 10 15 20 25 30 35
t

0.07

0.08

0.09

0.1

a tE
ef

f(t
)

a
t
E

fit
 = 0.06990(51)

E
fit

/E
ref

 = 0.7185(51)

χ2/dof = 0.86

π(0)
SS0

A1um

(e) C(t): Time Symmetric + C

5 10 15 20 25 30 35
t

0.05

0.1

0.15

0.2

a tE
ef

f(t
)

a
t
E

fit
 = 0.07205(36)

E
fit

/E
ref

 = 0.7405(35)

χ2/dof = 1.02

π(0)
SS0

A1um

(f) Csub(t): Time Symmetric

Figure 5.2: Comparison of two exponential (eq. (5.26)) fits to a single pion at rest correlator on a

243 × 128 anisotropic ensemble with mπ ≈ 390 MeV. The fit plateaus are overlaid on the effective

energies for C(t) and Csub(t) = C(t+ 1)−C(t) using tmin = 7, tmax = 35 and bootstrap resampling.

Where a time symmetric fit form and/or an added constant fit parameter is used an appropriately

time symmetrised and/or constant shifted version of eq. (5.10) is used to determine the effective

energy points. Recall that we fit to the correlator itself and so the fits are overlaid here to guide

the eye only. The reference energy used is the kaon mass, i.e. Eref = mK .

73



Chapter 6

Scattering Observables from the Lattice

At this point, it is important for us to think about what observable physics we can extract from

lattice calculations. The discrete, finite-volume to which we are necessarily restricted must be

carefully distinguished from the continuous, infinite-volume of the physical world. Even solely

within QCD, most of the excited hadrons we want to study are unstable resonances, manifesting

as complex poles in a scattering amplitude. In finite-volume with periodic boundary conditions,

the allowed momenta are restricted such that the eigenstates of a Hamiltonian will be discrete.

Diagonalising this Hamiltonian will then give access to these discrete stationary states. In infinite-

volume, a continuum of momenta are allowed and unstable excited states decay into multi-hadron

asymptotic states. In finite-volume however, there are no decays; instead there is only quantum

mechanical mixing between Fock states. Additionally, even in an infinite-volume calculation, it is

now well known that on-shell scattering amplitudes away from threshold cannot be obtained from

the asymptotic temporal separation of infinite-volume Euclidean correlation functions. That is,

simply taking the infinite-volume limit of the Euclidean correlation functions that we calculate in

lattice QCD is insufficient for the study of scattering phenomena. In this chapter we will look at

a formalism for embracing the finite-volume restriction, by relating the finite-volume stationary

states to infinite-volume scattering amplitudes, from which resonance parameters can be extracted.

6.1 Quantisation Condition

The idea that finite-volume energies can be related to infinite-volume scattering processes is not

a new one, dating back to the 1950’s [121,122]. Beginning in the 1980’s, Lüscher first suggested

applying this idea to gauge field theories in Ref. [123]. In Refs. [124,125] Lüscher then studied for

massive quantum field theories, the volume dependence of stable particle states and of scattering

states. This culminated in [16] where Lüscher found, in the case of two identical spinless particles

with zero total momentum interacting via a central potential, relationships between finite-volume

energies and infinite-volume scattering phase shifts. Rummukainen and Gottlieb in 1995 then

generalised Lüscher’s result to frames with non-zero total momentum [126]. While these results
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were all obtained from a relativistic quantum mechanical approach, the calculations were revisited

in 2005 using an entirely field theoretic approach in a seminal work by Kim, Sachrajda, and

Sharpe [127]. This work focuses on the case of a single channel with the scattering of identical,

spinless particles. While numerical applications to that point had been restricted to simplified

models, such as a scalar theory in the Ising limit in Refs. [68,126], as lattice QCD computations

matured to the stage where it is now possible to calculate scattering phase shifts with reasonable

accuracy, the results of Ref. [127] were generalised in Refs. [128–134], among others, to include

multiple decay channels, different particles masses, and non-zero spin.

A key limitation of this formalism is the restriction to energies that lie below the three or more

particle thresholds. Development of a formalism to treat three-body scattering channels is currently

underway [135–146], with the first application to QCD appearing in Ref. [147]. Once this formalism

is fully developed, it will then be possible to calculate scattering amplitudes below four-particle

thresholds. From the point of view of future directions, it’s also important to keep in mind the

increasing difficulty of using these methods with the developments made in cutting-edge lattice

calculations. A current concern is the lowering of the relevant three- and four-particle thresholds as

we progress towards physical particle masses, resulting in smaller energy ranges in which scattering

amplitudes can be extracted. More critical however, is the trend towards larger and larger spatial

volumes. In a large spatial volume, the determination of individual finite-volume energies quickly

becomes cumbersome. For example, on one ensemble with mπL = 6.1 used in the ππ scattering

analysis in Ref. [20], 43 energies are determined. While this is manageable, various groups are

generating ensembles with mπL ≥ 10, resulting in very dense low-lying spectra at close to physical

quark masses. Hence, alternative methods for extracting scattering amplitudes, for example from

finite-volume spectral functions [148], have been proposed, though most are still in the very early

stages of development.

6.1.1 Quantum Mechanics in One Dimension

Before diving into deriving the full field theoretic quantisation condition, it is useful to think

about a more pedagogical example of how a finite-volume interacting spectrum can be related to

infinite-volume scattering phase shifts. To this end, consider a system consisting of two identical

(non-relativistic) bosons in one dimension. In the absence of interactions, the total energy is given

by

Enon =
k2

1

2m1

+
k2

2

2m2

. (6.1)

Introducing a finite-range, separation dependent potential

V (|x1 − x2|) ≡ V (x)

V (x) = 0 for |x| > R,
(6.2)

at a given separation x, the wave-function can be written

ψ(x) = A
(
e−ikx + ei(kx+2δ(k))

)
, (6.3)
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where the outgoing/scattered wave has been shifted by δ(k), the scattering phase shift. Restricting

to a finite-volume L, where L > 2R, then with periodic boundary conditions (such that ki = 2π
L
ni,

where ni ∈ Z)

ψ(x+ L) = ψ(x), (6.4)

imposing continuity of the wavefunction and its derivative yields

B

A
= e−ikL ⇒ e2iδ = e−ikL, (6.5)

giving us the quantisation condition

δ(k) +
kL

2
+ nπ = 0. (6.6)

The finite-volume energy spectrum for the interacting system with identical particles is then given

by

Eint
n =

k2
n

m
, kn =

2π

L

(
n− δ

πL

)
, (6.7)

so that the interaction energy is

∆En ≡ Eint
n − Enon

n

=
1

m

(
2π

L

)2
[(

n− δ

πL

)2

− n2

]

=
δ

πLm

(
2π

L

)2(
δ

πL
− 2n

)
,

(6.8)

yielding a direct relationship between the interaction energies in finite-volume, ∆En, and the

infinite-volume scattering phase shifts, δ. In fig. 6.1 we show the interacting and non-interacting

energies as a function of box size L for a typical weak interaction, δ(k) = ak, −1 < a < 0.

L

E

Enon
n

E int
n

Figure 6.1: Typical interacting and non-interacting energy levels as a function of volume L for a

weak interaction: δ(k) = ak, −1 < a < 0. At smaller L, the energy difference due to interactions,

∆E, is more pronounced, and so with finite statistics, easier to resolve.
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The relation in eq. (6.7) gives us an indication of how the finite-volume to which we are

necessarily restricted in lattice QCD may be exploited to study infinite-volume phenomena. In

fact, if we look at the large-L behaviour in fig. 6.1, we can see that there will be a sweet spot in

which the finite-volume is best used; for small L finite-volume corrections will tend to be large, and

so energy determination is difficult, but also for very large L the shift ∆E of the energies away

from their non-interacting values becomes smaller and smaller, and so more difficult to resolve

with finite statistics. This leads us to consider a method which is more rigorous, yet in the same

vein, for extracting observable infinite-volume physics from a finite-volume calculation that takes

advantage of the finite-volume.

6.1.2 Lüscher Quantisation Condition - Overview

The infinite-volume scattering matrix S can be related to finite-volume stationary state energies

with total momentum P by

det[1 + F (P )(S − 1)] = 0, (6.9)

where F (P ) is a known function of energy, defined shortly in eq. (6.13) and derived in section 6.1.3.

This determinant allows for a relationship between the S-matrix and each discrete finite-volume

energy1. In the case of a single scattering channel in a single partial wave, the matrices F and

S are one dimensional and the scattering amplitude is uniquely defined at each finite-volume

energy. Including multiple decay channels, and/or multiple partial waves however, S is no longer

1 × 1 and contains multiple independent elements, so each finite-volume energy gives a single

condition to the entire matrix. Hence, some parameterisation of S is required with some number of

parameters that can be determined using a fit to a set of finite-volume energies. The details of the

scattering amplitude parameterisation and fit procedures we use are detailed in sections 6.2 and 6.3

respectively.

Each finite-volume energy, Elab, determined in the “lab” frame from a correlator matrix analysis

at some total momentum P , is boosted to the centre-of-momentum frame using a continuum

dispersion relation2

Ecm =
√
E2

lab − P 2, (6.10)

where the total momentum takes only discrete values given by P = 2π
L
d, where d is a vector

of integers and L3 is the spatial volume of the lattice. Note also that for anisotropic lattices, a

determination of the lattice anisotropy ξ = as/at is also required here. We label open two-particle

scattering channels with the index a, with the spins and masses of the scattered particles denoted

by sia and mia, with i = 1, 2, respectively. In each channel we then define the following kinematic

1Keeping in mind the relevant many-particle thresholds.
2We assume here that discretisation effects that manifest in the dispersion relation are negligible. If this were not

the case, one needs only use a modified “lattice” dispersion relation, for example as in [126].
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quantities

u2
a =

L2q2
cm,a

(2π)2
, sa =

(
1 +

(m2
1a −m2

2a)

E2
cm

)
d, γ =

Elab

Ecm

, (6.11a)

q2
cm,a =

1

4
E2

cm −
1

2
(m2

1a +m2
2a) +

(m2
1a −m2

2a)

4E2
cm

, (6.11b)

where qcm is a solution to

Ecm,a =
√
q2

cm,a +m2
1a +

√
q2

cm,a +m2
1a. (6.12)

In the typical JLS basis, we can write an explicit expression for F (P ). Each basis state will be

labelled by |JmJLSa〉, where J is the total angular momentum of the two particles, with mJ its

projection onto the z-axis, L (not to be confused with the lattice length) is the orbital angular

momentum in the centre-of-momentum frame, S is the total spin of the scattering particles (not to

be confused with the S-matrix), and a is an index containing all other necessary labels: particle

species, individual intrinsic spins, isospin, isospin projection, G-parity (where relevant), etc. In this

basis elements of F (P ) are given by

〈J ′mJ ′L
′S ′a′|F (P )|JmJLSa〉 = δa′aδS′S

1

2

[
〈J ′mJ ′|L′mL′SmS〉〈LmLSmS|JmJ〉W (P )

L′mL′ ;LmL

+ δJ ′JδmJ′mJ δL′L

]
,

(6.13)

where 〈LmLSmS|JmJ〉 are Clebsch-Gordan coefficients. The matrix W
(P )
L′mL′ ;LmL

is given by

−iW (P a)
L′mL′ ;LmL

=
L′+L∑

l=|L′−L|

l∑

m=−l

Zlm(sa, γ, u
2
a)

π3/2γul+1
a

√
(2L′ + 1)(2l + 1)

(2L+ 1)

× 〈L′0, l′0|L0〉〈L′mL′ , lm|LmL〉,
(6.14)

where Zlm are the Rummukainen-Gottleib-Lüscher (RGL) shifted zeta functions [16,126], known

but numerically complex functions of the finite-volume energies. Our method of evaluating these

functions is described briefly in Ref. [29].

The above relations apply for both distinguishable and indistinguishable particles, since the

associated symmetry factors cancel in the quantisation condition in general [131]. The only difference

that occurs with indistinguishable particles is that certain combinations of L and S cannot occur.

In the absence of isospin, L+ S must be even for identical particles. For identical particles with

isospin I1, L+ S + I − 2I1 must be even, where I is the total isospin.

6.1.3 Lüscher Quantisation Condition - Derivation

We will in this section sketch out a derivation of the Lüscher quantisation condition, mainly

following the field theoretic presentation from Refs. [127,131]. Analogous to the QM example in

section 6.1.1, we focus on the difference between correlation functions in finite- and infinite-volume.
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L

Figure 6.2: Diagrammatic expansion of CL(P ) in terms of Bethe-Salpeter kernels iK (eq. (6.16))

connected by fully dressed propagators, and the two-body interpolators σ. The dashed rectangles

indicate finite-volume loop momentum sums. Initial and final states are on the right and left

respectively.

Typically the differences between such quantities fall into two broad classes: those that fall off

slowly with some power of 1/L, and those that are exponentially suppressed as e−L/r where the

finite-volume theory is defined in an L3 cubic spatial volume and r is the range of interactions

in the theory, here the interactions between hadrons. Here, we assume that L � r such that

e−L/r corrections can be neglected. Additionally, note that while we shall assume periodic spatial

boundary conditions for the fields, ψ(x+ nL) = ψ(x) for n ∈ Z3, others such as twisted boundary

conditions, ψ(x + nL) = eiθ·nψ(x) for 0 ≤ θj ≤ 2π, can instead be used3. Finally, we restrict

ourselves to energies and momenta below all three- and four-particle thresholds.

Consider the two-body interpolating operator σ(x), that couples to all open two-body channels.

The operator need not be local, though we must be able to associate it with a single spatial site x

(e.g. it could be spatially extended). Define then

CL(P ) ≡
∫

L

d4x ei(Ex0−P ·x)〈0|σ(x)σ†(0)|0〉, (6.15)

where P = (E,P ) is the total four-momentum of the system, and the spatial integration is over

the L3 cubic volume. In infinite-volume, C∞(P ) will have branch-cuts where each two-particle

threshold begins, but the quantisation of momenta in finite-volume means that these cuts will

be replaced by a series of poles. The poles in CL(P ) will correspond to stationary states in the

finite-volume spectrum that couple to σ(x), so that the condition that CL(P ) diverges will be

central to the quantisation condition we are after.

We rewrite CL(P ) in terms of the Bethe-Salpeter kernel K (not to be confused with the

3On the CLS ensembles used for the Kπ scattering analysis presented in chapter 8, open temporal boundary

conditions are imposed. For further discussion, see section 2.3.2 and Refs. [88, 89].
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scattering K-matrix), as illustrated in fig. 6.2,

CL(P ) =
1

L3

∑

q

∫
dq0

2π
σa(q)B

L
a (q)σ†a(q)

+
1

L6

∑

q,q′

∫
dq0

2π

dq′0

2π
σa(q)B

L
a (q)iKab(q, q

′)BL
b (q′)σ†b(q

′) + · · · ,
(6.16)

where a, b label two-particle channels, and σa(q) and σ†a(q) are related to the Fourier transforms

of σ(x) and σ†(x) and describe the coupling of the operators to the two-particle channel a. Their

exact form is not important, all that is necessary is that they are regular functions of q. Note that

tensor indices that appear when the scattering particles have non-zero spin have been suppressed.

In each momentum sum the allowed momenta for periodic boundary conditions are q = (2π/L)n.

If the two hadrons in channel a are a1 and a2, then

BL
a (q) = ζa[za1(q)∆a1(q)][za2(P − q)∆a2(P − q)], (6.17)

where ζa is a symmetry factor, and zα(q)∆α(q) is the fully dressed propagator for particle of type

α:

zα(q)∆α(q) =

∫
d4x eiq·x〈φα(x)φ†α(0)〉, (no summation over α), (6.18a)

∆α(q) =
i

q2 −m2
α + iε

. (6.18b)

Here, φα is an interpolating field for hadron type α, chosen such that zα = 1 when the hadron

is on-shell. In eq. (6.16) both the Bethe-Salpeter kernels, iK, and residues, zα, can be shown to

have exponentially decaying finite-volume corrections which we assume are negligible [124,125]. We

can therefore replace these quantities with their infinite-volume counterparts. The finite-volume

loop momentum sums however cannot be replaced by momentum integrals in infinite-volume, the

finite-volume corrections having a power-law dependence on the finite volume. To make this more

explicit we write BL = B∞ + F , where F captures the finite-volume corrections to BL, shown

diagrammatically in fig. 6.3. Using this then we can write the difference between our correlation

function in finite- and infinite-volume as

Csub(P ) ≡ CL(P )− C∞(P )

= AF
∞∑

n=0

(iMF)nA′,
(6.19)

where

A ≡ σ

∞∑

n=0

(BiK)n , A′ ≡
∞∑

n=0

(iKB)n σ†, (6.20)

and iM is the usual infinite-volume scattering amplitude, here defined by

iM≡ iK

∞∑

n=0

(BiK)n . (6.21)
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= +

F

Figure 6.3: The finite-volume momentum sum/integration (indicated by the dashed rectangle)

over the two single-particle fully-dressed propagators (shown on the left) equals the infinite-volume

integration (first term on right with no dashed rectangle) plus a finite-volume correction F (the

second term on the right).

These definitions are all represented diagrammatically in fig. 6.4.

Recall that the poles of CL(P ) correspond to the finite-volume spectrum of interest, so then

Csub(P ) must also contain these poles, as well as cuts which must cancel those in C∞(P ). These

poles can then be used to find the infinite-volume scattering amplitude at each of the discrete

finite-volume energies. Noticing the appearance of a geometric series we can write

Csub(P ) = AF
∞∑

n=0

(iMF)nA′

= AF (1− iMF)−1A′

= A
(
F−1 − iM

)−1
A′.

(6.22)

Now, the value of M that makes Csub singular for each energy in the finite-volume spectrum gives

us the relationship between finite-volume energies and the infinite-volume amplitude M. Since the

factors A and A′ do not contain any singularities and have no finite-volume corrections [127], the

poles in Csub will correspond to the zero eigenvalues of F−1− iM. This condition can be written as

det[F−1 − iM] = 0. (6.23)

This is equivalent to the determinant in eq. (6.9) where F and F (P ) are related by a multiplicative

kinematic factor:

F (P ) = −16π2Ecm√
q2

cm

F . (6.24)

What remains is to find an explicit expression for calculating F by isolating the finite-volume

corrections to the loop summations appearing in fig. 6.2, the explicit details of which are contained

in Ref. [127]. From eqs. (6.16) to (6.18), we can convince ourselves that F will involve integrals/sums

of the form

I ≡ 1

L3

∑

k

∫
dk0

2π

f(k0,k)

(k2 −m2
1 + iε)((P − k)2 −m2

2 + iε)
, (6.25)

where f is a function containing no singularities for real k, and has appropriate ultraviolet behaviour

as to render the integral and sum convergent. By replacing certain momentum sums with integrals,
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Figure 6.4: Diagrammatic expansion of Csub(P ) ≡ CL(P ) − C∞(P ) in terms of the quantities

A,A′, iM, and F .
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etc. and ignoring contributions of O(e−mL), where m is the (lowest) mass scale of the theory/mass

gap (in QCD this is the pion mass), these integrals can be written in the form

I = I∞ + IFV. (6.26)

Now that the finite-volume corrections have been isolated we can write F in terms of expressions

like IFV in which appear the RGL shifted zeta functions introduced in section 6.1.2.

6.2 Box Matrix and Block Diagonalisation

The quantisation condition as written in eqs. (6.9) and (6.23) gives us a direct relationship between

the infinite-volume scattering matrix S and energies in a finite-volume spectrum. However, this

only gives us a single relation between the entire scattering matrix and an energy E determined

in finite-volume. In the limited case of a single scattering channel with a single partial wave we

can directly extract the scattering phase shift for each energy. When multiple partial waves/decay

channels are included, this single relation is not sufficient. In this case then, the S-matrix must be

parameterised using some physically motivated functions of E, with some number of parameters

that can be determined using a fit using a large set of finite-volume energies4. Historically, lattice

calculations of scattering phase shifts avoided this by restricting to processes where the S matrix

has a single entry. The canonical example is of I = 1 ππ scattering to study resonance parameters

of the ρ resonance, where waves other than ` = 1 are neglected; our analysis of which is contained

in Ref. [18]. In a subsequent publication [29], we outlined our implementation of the Lüscher

quantisation condition with a practical procedure for estimating the scattering matrix for multiple

partial waves and decay channels, and as a first test revisited the study of ρ-meson decay including

for the first time, ` = 3 and ` = 5 partial waves. We shall now highlight some details of that

publication, in particular our use of the scattering K-matrix and the introduction of a quantity we

call the box matrix.

6.2.1 The K-Matrix and Box Matrix

As the S-matrix is dimensionless and unitary, and it is usually easier to parameterise a real

symmetric matrix than a unitary one, using the real and symmetric K-matrix is often preferred.

Before introducing K, we shall review some properties of S. In a standard angular momentum

basis,

〈J ′mJ ′L
′S ′a′|S|JmJLSa〉 = δJJ ′δmJmJ′s

(J)
L′S′a′;LSa(E), (6.27)

4Note that since (usually) we are ultimately interested in the extraction of resonance parameters, decay

masses/widths, etc., at some stage a parameterisation of the scattering amplitudes is unavoidable, even in the case

of a 1× 1 S-matrix.
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where s(J)(E) is unitary, and SO(3) rotational invariance has been assumed. Assuming invariance

under spatial parity implies

s
(J)
L′S′a′;LSa(E) = 0 if ηP1aη

P
1a′η

P
2aη

P
2a′(−1)L+L′ = −1, (6.28)

where ηPia is the intrinsic parity of scattering particle i in channel a. For a single elastic scattering

channel involving spinless particles then, S is diagonal in J/L and typically parameterised by

s(J) = s(L) = e2iδL(E), (6.29)

where δL is the scattering phase shift for the L-th partial wave. Including a second channel of

spinless particles leads to three parameters being needed to describe S. A typical parameterisation

looks like

s(L) =

(
ηe2iδ

(L)
a i

√
1− η2ei(δ

(L)
a +δ

(L)
b )

i
√

1− η2ei(δ
(L)
a +δ

(L)
b ) ηe2iδ

(L)
b

)
, (6.30)

where δi is the scattering phase shift for channel i, and η ∈ [0, 1] is an inelasticity parameter.

Clearly, the parameterisation of S quickly becomes tedious with the inclusion of more channels and

partial waves. Also, recall that with more than one decay channel and partial wave, each of the

parameters in S cannot be exactly determined from the quantisation condition. Additionally, these

parameters (phase shifts, inelasticities, etc.) are often not the physical quantities that we wish to

extract (resonance masses, decay widths, scattering lengths, etc.). Hence, we are incentivised to

seek an alternative that simplifies the parameterisation.

Defining the transition operator T using S = 1 + iT , the K-matrix [149,150] can be defined by

K = (2T−1 + i)−1, K−1 = 2T−1 + i, (6.31)

so that

S = (1 + iK)(1− iK)−1 = (1− iK)−1(1 + iK), (6.32)

where the unitarity and invariance under time reversal of S implies that K is real and symmetric.

Similar to the S-matrix, K is invariant under rotations

〈J ′mJ ′L
′S ′a′|K|JmJLSa〉 = δJ ′JδmJ′mJK

(J)
L′S′a′;LSa(E), (6.33)

and under parity

K
(J)
L′S′a′;LSa(E) = 0 if ηP1aη

P
1a′η

P
2aη

P
2a′(−1)L+L′ = −1. (6.34)

Following eq. (6.32) then, in the case of single channel, elastic scattering of particles without spin

K(J) = K(L) = tan δL, (6.35)

so that the pole at δL = π
2

is indicative of a resonance. For a short-ranged potential one can derive

the so-called effective range expansion [151]

q2L+1
cm cot δL(qcm) = q2L+1

cm K−1
L =

∑

n=0

c2nq
2n
cm = − 1

aL
+
rL
2
q2

cm +O(q4
cm), (6.36)
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where qcm =
√
q2

cm, the constants aL are referred to as scattering lengths5, and rL as the effective

ranges. The generalisation to multiple channels [152, 153] and the way in which K−1 appears

in eq. (6.36) suggests the convenience of writing

K−1
L′S′a′;LSa(Ecm) =

(
qcm,a′

mref

)−L′− 1
2

K̃−1
L′S′a′;LSa(Ecm)

(
qcm,a

mref

)−L− 1
2

, (6.37)

where K̃−1(Ecm) is a real, symmetric, and analytic function of the centre-of-momentum energy

Ecm, and mref is some reference mass, typically the pion mass, used to make K̃−1 dimensionless.

Note the normalisation of K̃−1 here differs from eq. (19) of Ref. [29] and instead follows that of

Ref. [19] where dependence on the dimension of the finite-volume, L, has been replaced by mref .

Using the new normalisation, the K̃ matrix does not pick up a dependence on any finite-volume

quantity, and a Breit-Wigner parameterisation for example will take its canonical form.

With these definitions, it is then straightforward to show that the quantisation condition

of eqs. (6.9) and (6.23) can be written as

det[1−B(P )K̃] = det[1− K̃B(P )] = 0, (6.38)

where we define the box matrix by

〈J ′mJ ′L
′S ′a′|B(P )|JmJLSa〉 ≡ −iδa′aδS′S

(
qcm,a

mref

)L+L′+1

W
(P )
L′mL′ ;LmL

× 〈J ′mJ ′ |L′mL′SmS〉〈LmLSmS|JmJ〉.
(6.39)

Again, note the slight change in normalisation from Ref. [29] to ensure that K̃ contains no

dependence on the finite-volume. When det K̃ 6= 0, which is generally true in the presence of

interactions, the quantisation can also be written as

det[K̃−1 −B(P )] = 0. (6.40)

Since the box matrix B(P ) is Hermitian for real q2
cm,a, and K̃ is real and symmetric for real q2

cm,a

ensures that each of these determinants are real. Note that since K̃ and B(P ) do not always

commute, 1−B(P )K̃ and 1− K̃B(P ) will not be Hermitian. Despite this, it is straightforward to

show that each of their determinants must be real.

6.2.2 Block Diagonalisation

So far, the matrices F (P ) and B(P ) have been expressed in terms of the orthonormal centre-of-

momentum frame |JmJLSa〉 basis states. This presents difficulties when evaluating the determinants

in eqs. (6.9), (6.23), (6.38), and (6.40) as the matrices in each of these expressions are of infinite

dimension. If we can transform to a basis in which both B(P ) and K̃ are block diagonal, then

5Despite only the s-wave constant a0 having units of length!
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Table 6.1: Relationship between box matrix irrep ΛB and full symmetry irrep Λ when ηP1aη
P
2a = −1.

When ηP1aη
P
2a = 1, ΛB = Λ. Recall that subscript g and u denote even and odd parity respectively.

“LG” below denotes little group.

d LG ΛB relationship to Λ when ηP1aη
P
2a = −1

(0, 0, 0) Oh Subscript g ↔ u

(0, 0, n) C4v A1 ↔ A2; B1 ↔ B2; E,G1, G2 unchanged

(0, n, n) C2v A1 ↔ A2; B1 ↔ B2; G unchanged

(n, n, n) C3v A1 ↔ A2; F1 ↔ F2; E,G unchanged

the determinant can be considered separately in each block6. Each block will still have infinite

dimension, but we can truncate each block in orbital angular momentum, keeping only basis states

with L ≤ Lmax, so that each truncated block is finite and reasonably sized for our computations.

An additional important motivation is that the finite-volume energies we extract are in a basis

diagonal in irreps of the lattice symmetry group. Hence, to block diagonalise B(P ), we apply the

unitary change of basis

|ΛλnJLSa〉 =
∑

mJ

cJη;Λλn
mJ

|JmJLSa〉, (6.41)

where Λ and λ label the irrep and irrep row of the little group of P , n is an integer identifying

each occurrence of the irrep Λ in the |JmJLSa〉 reducible representation, and η = (−1)L. Our

procedure for computing the transformation coefficients is outlined in Ref. [29].

In this new basis then, the box matrix is diagonal in Λ, λ, but not in the occurrence index n,

and takes the following form

〈Λ′λ′n′J ′L′S ′a′|B(P )|ΛλnJLSa〉 = δΛ′Λδλ′λδS′Sδa′aB
(PΛBSa)
J ′L′n′;JLn(E). (6.42)

The box matrix depends on a only through the kinematic quantities ua and sa. Note that in eq. (6.42)

the irrep label ΛB is used instead of Λ to label the matrix elements of B(P ). This distinction arises

because the box matrix is insensitive to the intrinsic parities of the scattering particles in a given

scattering channel a, whereas we include intrinsic parity in our choice of Λ irreps. If ηP1aη
P
2a = 1,

then ΛB = Λ, however if ηP1aη
P
2a = −1 then this is in general not true. The relationships between

ΛB and Λ in this case for various momenta P are summarised in table 6.1. Software to evaluate

the box matrix elements for total momentum P = (0, 0, 0), (0, 0, n) with L ≤ 6, S ≤ 2 and for

P = (0, n, n), (n, n, n) with L ≤ 6, S ≤ 3
2

is available [154] and described in Ref. [29].

Now we need to express the K̃ matrix in the new basis. One can show that

〈Λ′λ′n′J ′L′S ′a′|K̃|ΛλnJLSa〉 = δΛ′Λδλ′λδn′nδJ ′JK̃
(J)
L′S′a′;LSa(Ecm), (6.43)

6Since det

(
A1 0. . .
0 An

)
= detA1 . . . detAn, the quantisation condition is satisfied whenever any of the individual

blocks has a zero determinant.
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for η = η′ where η = (−1)L and η′ = (−1)L
′
. If η = −η′ the situation is much more complicated,

but in QCD, we should never need such matrix elements. Since all meson-meson and baryon-baryon

states of potential interest have ηP1aη
P
2a = 1, and meson-baryon states of interest have ηP1aη

P
2a = −1,

and in QCD we should never need 2-to-2 K-matrix elements between states with differing products

of intrinsic parities, the expression above is sufficient for our purposes. In other field theories, it

may occur that ηP1aη
P
2a = −ηP ′1aη

P ′
2a , in which case eq. (6.43) must be generalised.

Finally, note that while the box matrix is diagonal in total spin S and channel a, K̃ allows

mixing between different spins and channels. Hence, the block structure of the box matrix alone

differs from that of 1− B(P )K̃ and K̃−1 − B(P ). Looking at eqs. (6.42) and (6.43) we can show

that, for a given P , we can label the quantisation blocks of 1 − B(P )K̃ and K̃−1 − B(P ) in the

|ΛλnJLSa〉 basis solely by the irrep label Λ, where Λ is the irrep associated with the K-matrix.

6.3 Fitting the K-Matrix

To close off this chapter, we now discuss some important details in implementing the quantisation

condition of eqs. (6.9), (6.23), (6.38), and (6.40) for determining best fits to a given K̃-matrix

parameterisation. Two methods of fitting the elements of K̃ are presented in Ref. [29], one of

which we advocate for and use in our calculations. The main point stressed in this section is the

impact that different choice of residuals can have in a χ2 minimisation. If the model used has some

dependence on the data (observables), then the covariance between the residuals which depend on

model parameters must be computed. During the minimisation process then, as the fit parameters

are adjusted, these covariances must be recomputed and the covariance matrix needs to be inverted.

This can very quickly become computationally intensive, and so we seek models with no dependence

on the observables so that the covariance matrix doesn’t need to repeatedly be recomputed. For a

review of correlated χ2 fitting see section A.2.

Since the Lüscher quantisation condition relates a finite-volume spectrum to the infinite-volume

K̃-matrix, one may be inclined to choose as residuals the difference between the observed energy

levels from a lattice calculation, and the predicted energies given by a particular parameterisation

of K̃. Explicitly,

rk = E
(obs)
cm,k − E

(model)
cm,k , (k = 1, . . . , NE), (6.44)

where E
(obs)
cm,i are the measured energies determined from the lattice, and E

(model)
cm,i are energies

determined by inverting the quantisation condition for a given parameterisation of K̃. We describe

in detail this method, and a trick in the spirit of Lagrange multipliers for making the implementation

slightly easier in Ref. [29]. However, as we outline in that paper, the complicated root finding

involved in inverting the quantisation condition means that using this “spectrum method”, while

properly considering all covariances, remains quite an onerous task. As such, we are led to seek out

a different choice of residuals for which the minimisation process may be more straightforward.
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6.3.1 Determinant Residual Method and the Ω Function

In this alternative method, we introduce the quantisation determinant itself as the residual. The

determinant uses the observed box matrix elements, containing the observed values for finite-volume

energies, scattering particle masses, box size, and where relevant, the lattice anisotropy.

Recall from eqs. (6.22) and (6.23) that expressing the quantisation condition in terms of a

vanishing determinant is just a convenient way of stating the appearance of a zero eigenvalue. In

the case of very large matrices, the magnitude of the determinant can become very large, making it

more difficult to find zeroes. This leads us to propose the following function of matrix A, with real

determinant, and some scalar µ 6= 0:

Ω(µ;A) ≡ det(A)

det[(µ2 + AA†)
1
2 ]
. (6.45)

When A has a zero eigenvalue this function will also be zero, replicating the quantisation condition.

The advantage of using Ω is that, when the determinant is real, it should be bounded between −1

and 1. Therefore we can choose the residuals to be

rk =





Ω
(
µ, 1−B(P )(E

(obs)
cm,k )K̃(E

(obs)
cm,k )

)
,

or

Ω
(
µ, K̃−1(E

(obs)
cm,k )−B(P )(E

(obs)
cm,k )

)
,

(k = 1, . . . , NE), (6.46)

where µ can be chosen to optimise the numerical χ2 minimisation. Since here the model predictions

remain dependent on the observables, so the covariances between residuals must be recomputed

and inverted during the minimisation as the fit parameters are adjusted. Despite this, the method

remains much simpler than the root finding involved in the spectrum method above. The advantage

lies in the box matrix elements being treated as observables; the complicated RGL zeta functions

contained within need not be recomputed as the model parameters are adjusted. In Ref. [29]

numerical tests of this determinant residual method are presented for I = 1 ππ scattering with

the first inclusion of partial wave mixing up to ` = 5. There we show the insensitivity in best fit

parameters to choice of residual and for the Ω-function, to tuning of µ.
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Chapter 7

The Scalar Glueball

In this chapter, we present the first of the two analyses in this thesis, a study of the low-lying

hadronic spectrum in the scalar isoscalar zero-strangeness sector, with the main goal of addressing

the issue of the scalar glueball. This is the first study to include the mixing between glueball,

meson, and meson-meson operators in dynamical QCD. In chapter 1 we gave an overview of the

current experimental and theoretical status of glueballs. In particular, since glueball spectroscopy

in pure gauge theories is one of the first major successes of lattice field theory, we highlight the

progress that has been made in lattice studies to date, along with the technical difficulties in making

the jump from pure Yang-Mills theories to full QCD, including the effects of dynamical quarks.

Details of the analysis are outlined then in section 7.1, followed by the spectrum results and further

discussion in section 7.2.

7.1 Analysis Details

Correlation functions involving glueball operators are notoriously difficult to measure in lattice

QCD, requiring prohibitively large computational resources to achieve even modest statistical

precision. The signal-to-noise ratio for these quantities falls extremely rapidly with increasing

separation between source and sink as the relevant interpolating operators have rather large vacuum

expectation values. This prohibits the lattice from being too large, as the magnitude of these

vacuum fluctuations will scale with the lattice volume. On the other hand, due to the large masses

of these states, lattice studies of glueballs require very fine temporal lattice spacings so that a

reliable signal can be measured. As both of these considerations have a significant effect on the

required computational resources, we confront this difficulty by using an anisotropic lattice that

is spatially coarse and temporally fine [80]. In this section we discuss the particular anisotropic

ensemble of gauge configurations we use, along with discussions on the operators used, and on the

subtleties of correctly dealing with the large vacuum fluctuations in the scalar sector.
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Table 7.1: Details of the anisotropic ensemble used in the scalar glueball study. The anisotropy

ξ = as/at has been determined by enforcing the relativistic dispersion relation for the pion

(eq. (2.72)), though the value is insensitive to the hadron used.

(L/as)
3 × (T/at) Ncfgs as ξπ atmπ atmK mπL

243 × 128 551 0.12 fm 3.4464(71) 0.06901(17) 0.09689(15) 5.7

7.1.1 Ensemble Info

For this study we use a single anisotropic ensemble of Nf = 2 + 1 Wilson clover fermions generated

by the Hadron Spectum collaboration [71,72], described in detail in sections 2.3.1 and 2.3.3. Various

ensemble properties are listed in table 7.1. The dynamical quark parameters chosen, atml = −0.084

and atms = −0.0743, result in unphysically heavy hadron masses, with mπ ∼ 390 MeV, and

mK ∼ 550 MeV. Our results will primarily be presented as dimensionless ratios using a reference

mass, mref = 2mK . Note that this ensemble has been used in a previous study of the isoscalar ππ

scattering in Ref. [155]. This will be discussed again in section 7.2 where we identify a stable σ

meson state at these heavy quark masses.

7.1.2 Correlator Matrix Construction

The finite-volume stationary state energies are determined from a matrix of temporal correlation

functions, Cij(t) = 〈0|Oi(t)Oj(0)|0〉, using the methods described in chapter 5. The construction

of operators Oi is described in chapter 3 and Ref. [109], here designed to transform irreducibly in

the at-rest, isoscalar A+
1g irrep of the octahedral symmetry group and with zero total momentum.

In order to include both the isoscalar single-hadron operators with disconnected quark annihilation

diagrams, and two-hadron operators with definite constituent momenta, we need to calculate

expensive all-to-all quark propagators between each spacetime point on the lattice. We use the

stochastic LapH method [15] described in chapter 4 to evaluate these all-to-all quark propagators,

allowing us to include for the first time meson and meson-meson operators with glueball operators.

Here, using the stochastic LapH method also has the advantage of giving us a scalar glueball

operator with no added cost as described in section 3.6.2.

The operator basis used is chosen such that as many single- and two-particle states < 2 GeV

are extracted as possible. For the isoscalar single-hadron qq operators, we use operators with

flavour structures ss̄ and (uū+ dd̄), including one of each for every expected qq level we wish to

extract. This is detailed in Ref. [19] where, to extract the η meson mass, we include both ss̄ and

(uū+ dd̄) interpolators in a 2× 2 GEVP and identify the ground and first excited eigenstates as the

η and η′ meson respectively. This is in contrast to using definite SU(3)f eigenstates1, though we

expect our spectrum determination to be insensitive to this choice as solving the GEVP with either

set of operators should yield the correct finite-volume eigenstates. We include ππ, ηη, and KK

1Singlet: O1 = 1√
3

(
uū+ dd̄+ ss̄

)
, Octet: O8 = 1√

6

(
uū+ dd̄− 2ss̄

)
.
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two-hadron operators with various definite back-to-back momenta for each of the allowed two-body

decay channels in this sector. Note that we do not include any 4π operators in our calculation. The

inclusion of ηη interpolating operators introduces further computational complexity as additional

diagrams containing internal loops (e.g. diagrams 3-6 in fig. 4.4) for each constituent isoscalar η

meson increase the computational cost of, and statistical noise in our calculation.

Finally, we include the so-called TrLapH scalar glueball operator, described in section 3.6.2,

constructed using the eigenvalues of the covariant Laplacian:

G∆ = −Tr[Θ(σ2
s + ∆̃)∆̃]. (7.1)

While any purely gluonic quantity (with the appropriate transformation properties) could be used

to describe the scalar glueball, in order to reliably extract a signal we must use optimal operators

for which a signal is seen before being overwhelmed by statistical noise. Thankfully the TrLapH

operator is shown in Ref. [109], and in fig. 3.6, to be comparable in usefulness to a standard 3× 3

Wilson loop operator.

7.1.3 Correlator Matrix Analysis

We extract the low-lying spectrum of finite-volume stationary state energies by solving the GEVP

in eq. (5.9) using the single pivot method detailed in chapter 5. We fit the diagonal elements

of D̃(t) to single- or multi-exponential forms that tend to Ane
−Ent for large times to obtain the

finite-volume energies, En, and operator overlap Z-factors, |Z(n)
j | ≡ 〈0|Oj|n〉. Jackknife resampling

is used throughout to estimate errors on any fitted energies and Z-factors.

As the operators that transform irreducibly in the at-rest A+
1g irrep share quantum numbers

with the vacuum, they are expected to have (sometimes very large) non-zero vacuum expectation

values (VEVs). These must be subtracted when doing our analysis:

Cij(t)→ 〈0|Oi(t)Oj(0)|0〉 − 〈0|Oi(t)|0〉〈0|Oj(0)|0〉. (7.2)

The need to subtract the vacuum expectation values 〈0|Oi|0〉 presents an additional difficulty when

the glueball operator is included in the correlation matrix. Even in the moderately sized volume we

employ here, the magnitude of 〈0|OG∆
|0〉 is very large, and there is significant statistical noise in any

of the correlation functions of G∆. For example, before VEV subtraction, the glueball correlation

function at a time separation of t = 5at is C(5) = 4459(25), whereas subtracting the VEV as

in eq. (7.2) gives C(5) = 0.00540(21). To decrease computational costs, the gauge configurations

used here were generated using single precision. We have checked that the VEV-subtracted glueball

correlator can still be reliably estimated for temporal separations up to t = 10at or so. The large

statistical uncertainties which result upon including a glueball operator require us to use aggressive

noise reduction techniques in order to reliably extract a signal.

Symmetry arguments tell us that the correlation matrix we are estimating should be real and

symmetric. Our stochastic estimates of the matrix elements show that the imaginary parts are all
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statistically consistent with zero, rather than exactly zero. Consider for example, the off-diagonal

matrix elements with the glueball operator at the source/sink in fig. B.3. Here there are two

important features of note. First, there is significant statistical noise in most of these matrix

elements, and second there are some matrix elements (e.g. 〈OG∆
Oπ(2)π(2)〉) for which the mean

value of our estimate of the imaginary part is systematically shifted away from zero. This hints

at the difficulty in accurately estimating the VEVs for some of these operators. We find that in

order to maintain a correlation matrix that is positive semi-definite when the glueball operator

is included, we must explicitly set the imaginary parts of the correlation matrix to be zero. We

observe that when the glueball operator is omitted, the finite-volume spectrum is unaffected by

explicitly setting the imaginary components to be zero.

The significant statistical noise present in the VEV-subtracted correlators presents an additional

problem when using the single pivot method described in section 5.1.2. As the diagonalisation is

only performed on the full sample estimate of the correlator matrix (i.e. the matrix Ṽ in eq. (5.20)

used to diagonalise the correlator matrix), statistical noise in the matrix elements is not taken

into account here. This is usually not a problem since the single pivot is done at time separations

where the statistical errors are very small, but in the presence of a glueball operator, even pivots

done at small time separations can be adversely affected by the dramatically increased noise.

See for example the 〈OG∆
OV V 〉 matrix elements in figs. B.2b and B.2c, where OV V is one of the

vector-vector two-particle operators. We found that bias in the pivot from a few exceptionally noisy

matrix elements could be prevented by setting these three 〈OG∆
OV V 〉 matrix elements that are

statistically zero to be exactly zero for our analysis.

Identifying a glueball state from a finite-volume study presents a major challenge for a number

of reasons. First, as only a select few hadrons are stable under the strong force (i.e. π,K,N , etc.),

any potential glueball or qq state in this sector would in infinite-volume manifest as an unstable

resonance. We usually find that we can associate a “precursor” stationary state in finite volume

with an infinite-volume quark-antiquark resonance, whereas with hadron-hadron molecular-type

resonances this is not the case. This suggests that if a well-defined glueball resonance exists in

infinite volume, we might expect the occurrence of an associated precursor state in finite volume

predominantly created by a glueball operator, but given our lack of understanding of gluonic states,

such an expectation cannot be fully justified. For a rigorous confirmation of a glueball resonance,

an in-depth scattering analysis (see chapter 6) is required, but such calculations are currently not

feasible. Furthermore, identifying the hadronic content of a particular finite-volume eigenstate

is often difficult, in particular when we look at excited states in a given channel. In regions

where finite-volume energies are expected to be shifted significantly from their non-interacting

counterparts, i.e. where interactions are strong, we find the mixing between states to be more

pronounced. This is seen in the operator overlap Z-factors, where multiple operators can create

states with significant overlaps onto some of the same stationary states. Nevertheless, such mixing

still offers a qualitative insight into the nature of potential resonant states. For example, a state

with significant overlaps with those created by both qq and ππ interpolators might indicate a
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Table 7.2: The single- and two-hadron interpolating operators we use in this study. Total integer

momentum-squared for each individual hadron is shown in parentheses. Superscripts, where

applicable, indicate displacement type for the individual hadrons, shown in fig. 3.3. Subscripts

denote which irrep of the appropriate little group each individual hadron of definite momentum

transforms under. We follow the notation established in chapter 3. The single-hadron operators

listed in red are used only the operator pruning in fig. 7.1 for reasons discussed in the text.

Single-Hadron Operators Two-Hadron Operators

G∆(0)A+
1g

π(0)SS0
A−1u
− π(0)SS0

A−1u

(ūu+ d̄d )(0)SS0
A+

1g
π(1)SS1

A−2
− π(1)SS1

A−2

s̄s (0)SS0
A+

1g
π(2)SS0

A−2
− π(2)SS0

A−2

(ūu+ d̄d )(0)SD2
A+

1g
ρ(0)SS0

T+
1u
− ρ(0)SS0

T+
1u

s̄s (0)SD2
A+

1g
ρ(1)SS1

A+
1
− ρ(1)SS1

A+
1

K(0)SS0A1u
−K(0)SS0A1u

K(1)SS1A2
−K(1)SS1A2

η(0)SS0
A+

1u
− η(0)SS0

A+
1u

η(1)SS1
A+

2
− η(1)SS0

A+
2

ω(0)SS0
T−1u
− ω(0)SS0

T−1u

resonance which in infinite-volume decays to two pions (e.g. ρ→ ππ).

7.2 Results

As our aim is to study the mixing between glueball, conventional hadron, and hadron-hadron states,

we will first look at the low-lying finite-volume spectrum obtained using only qq, and meson-meson

interpolating operators in the correlator matrix. We begin with a two-hadron operator for each

expected two-hadron state in this sector, adding additional operators with various flavour, etc.

structures until no new finite-volume states appear in the energy region of interest (i.e. below

∼ 2mref). Single-hadron qq operators are chosen in a similar way, including one of each isoscalar

flavour structure with various displacement types until the extra states lie well above the energy

range of interest. We find that only two qq operators are necessary (one of each flavour type), as

including any additional operators produce finite-volume states well outside the energy region of

interest. This is shown in fig. 7.1 where the finite-volume levels from a 4 × 4 correlator matrix

of qq operators produce only two states below ∼ 2mref . We therefore need only include two qq

operators in the final operator set. This has also been confirmed by adding a variety of additional

qq operators to the 13 × 13 correlation matrix and observing no new finite-volume levels below

∼ 2mref .
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Figure 7.1: Finite-volume energies in the I = 0, S = 0, A+
1g channel for levels with significant

overlap onto states produced only by quark-antiquark operators. A 4 × 4 correlation matrix,

including only qq operators, is used to extract these levels, with using the single-hadron operators

listed in table 7.2. 1σ uncertainties are denoted by the box heights. Levels are coloured indicating

the operator flavour type with maximal overlap onto that state. The solid horizontal black line

indicates the 4π threshold. mref = 2mK . These energies do not change appreciably when other qq

operators are included in a larger correlation matrix with meson-meson operators and the glueball

operator.

The final chosen operator set, including the glueball operator that we initially omit, is listed

in table 7.2. Throughout, we normalise the correlator matrices using eq. (5.2), choosing τN = 3.

The severity of noise at early time separations in the ηη operators (and also in the glueball operator)

necessitates rather early GEVP metric and diagonalisation times of (τ0, τD) = (3, 6). We have

also used various combinations of times including τ0 = 3, 4, τD = 4, 5, 6, 7, 8 to check that the

results do not change. With these choices, the matrices remain well conditioned, with the condition

numbers of C(τ0) and G̃(τD) being 3.53 and 2.42 respectively, and the off-diagonal elements of the

resultant rotated correlator matrix D̃(t) being statistically consistent with zero for t > τD. Fit

results excluding the glueball operator are then listed in table 7.3, with effective mass plots for each

level with best-fit curves overlaid shown in fig. 7.2. Overlap Z-factors are shown in fig. 7.3, and

then the spectrum is shown in the staircase plot in fig. 7.6.

We then include a scalar glueball operator in the operator basis and extract the spectrum

using the same GEVP parameters, (τ0, τD) = (3, 6). We find the condition numbers of C(τ0) and

G̃(τD) to be 4.37 and 2.50 respectively, crucially indicating that the correlation matrix remains

94



Table 7.3: Fit results for a 12× 12 correlation matrix in the A+
1g channel excluding the glueball

operator. Exponential fit forms are assumed to be time-forward, as described in section 5.3, unless

otherwise stated. mref = 2mK .

Level Model tmin tmax atEfit Efit/mref χ2/d.o.f.

0 2-exp 3 25 0.1273(24) 0.657(13) 1.18

1 2-exp 4 25 0.1467(24) 0.757(12) 2.01

2 2-exp 4 25 0.2024(15) 1.0445(82) 1.61

3 1-exp 14 25 0.2090(27) 1.079(14) 2.05

4 1-exp 11 24 0.2350(37) 1.213(19) 1.20

5 2-exp 4 25 0.2647(30) 1.366(15) 1.22

6 1-exp 7 19 0.299(17) 1.545(87) 2.05

7 1-exp 5 20 0.323(28) 1.66(15) 1.20

8 1-exp 9 20 0.336(20) 1.73(10) 0.59

9 2-exp 3 14 0.3481(61) 1.797(31) 1.36

10 2-exp 4 20 0.3492(35) 1.802(19) 0.95

11 1-exp+C 9 20 0.3641(25) 1.879(13) 0.72

well-conditioned with the addition of the noisy glueball operator. Fit results are listed in table 7.4,

with effective mass plots for each level including best-fit curves overlaid shown in fig. 7.4. Overlap

Z-factors for each operator in the basis are shown in fig. 7.5, and the spectrum is shown in the

staircase plot in fig. 7.7.

Looking first at the states below 4π in figs. 7.6 and 7.7, indicated by the horizontal dashed line,

with the exception of some increased statistical noise, the spectrum below 4π is insensitive to the

addition of the glueball operator. The overlap factors in figs. 7.3 and 7.5 show that there is minimal

mixing in this region and so level identification is relatively straightforward and is indicated by the

colouring of the energy levels. The overlap factors for the (uu+ dd) SS0 quark-antiquark operator

in fig. 7.5(e) show that this operator very predominantly creates level 0. Scanning all of the other

overlap factor plots, one sees that only the ss SS0 quark-antiquark operator in fig. 7.5(f) and,

remarkably, the glueball operator in fig. 7.5(a) produce appreciable overlaps with level 0. Since

level 0 is predominantly created by the (uu+ dd) SS0 quark-antiquark operator, we interpret this

state as the finite-volume counterpart of the σ resonance. This is consistent with the ππ scattering

study of Ref. [155] where a bound state σ meson is found below the ππ threshold. Similarly, from

figs. 7.5(b) and 7.5(f), levels 1 and 2 are created by the π(0)π(0) and ss SS0 quark-antiquark

operators, respectively, where the integers indicate the square of the hadron momentum, in units of

2π/L. As level 2 is predominantly created by a qq interpolating operator, we identify level 2 as the

finite-volume counterpart of the f0(980) resonance, just above the KK̄ threshold.

Making our way above the 4π threshold, we can assess the influence that the inclusion of the

scalar glueball operator has on the spectrum. Note that the levels in this region have been reordered
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Figure 7.2: Effective masses for diagonal elements of the rotated A+
1g correlation matrix, excluding

the glueball operator. Recall that we fit to the temporal correlator directly. Best-fit plateaus are

overlaid to guide the eye. Eref = 2mK .
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Figure 7.3: Overlaps |Z(n)|2 for the operators used in the A+
1g correlation matrix excluding the

scalar glueball operator.
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Figure 7.4: Effective masses for diagonal elements of the rotated A+
1g correlation matrix, including

the scalar glueball operator. Recall that we fit to the temporal correlator directly. Best-fit plateaus

are overlaid to guide the eye. Eref = 2mK .
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Figure 7.5: Overlaps |Z(n)|2 for the operators used in the A+
1g correlation matrix including the

scalar glueball operator.
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Figure 7.6: Finite-volume stationary state energies in the I = 0, S = 0, A+
1g channel extracted

using a 12 × 12 correlation matrix, excluding the scalar glueball operator. 1σ uncertainties are

denoted by the box heights. If a level is created predominantly by a single operator, the level is

colored to indicate the flavor content of that operator. If a level is created predominantly by more

than one operator, a hatched box is used to denote the presence of operator overlaps within 75% of

the maximum, indicating significant mixing. Level numbers indicate order in terms of increasing

mean energy, but the levels have been rearranged horizontally to highlight the area of interest for

the glueball operator we include in fig. 7.7. Note that these finite-volume energies should not be

directly compared to the spectrum of experimental resonance states, in particular the two-hadron

dominated levels. See text for further discussion. Short black lines indicate the non-interacting

two-hadron levels, and the dashed horizontal black line indicates the 4π threshold. mref = 2mK .
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Figure 7.7: Finite-volume stationary state energies in the I = 0, S = 0, A+
1g channel extracted

using a 13 × 13 correlation matrix, including the scalar glueball operator. 1σ uncertainties are

denoted by the box heights. If a level is created predominantly by a single operator, the level

is colored to indicate the flavor content of that operator. If a level is created predominantly by

more than one operator, a hatched box is used to denote the presence of operator overlaps within

75% of the maximum, indicating significant mixing. Level numbers indicate order in terms of

increasing mean energy, but the levels have been rearranged horizontally to highlight the area

of interest involving the glueball operator. Note that these finite-volume energies should not be

directly compared to the spectrum of experimental resonance states, in particular the two-hadron

dominated levels. See text for further discussion. Short black lines indicate the non-interacting

two-hadron levels, and the dashed horizontal black line indicates the 4π threshold. mref = 2mK .
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Table 7.4: Fit results for a 13×13 correlation matrix in the A+
1g channel including a scalar glueball

operator. Exponential fit forms are assumed to be time-forward, as described in section 5.3, unless

otherwise stated. mref = 2mK .

Level Model tmin tmax atEfit Efit/mref χ2/d.o.f.

0 2-exp 3 25 0.1265(46) 0.653(24) 0.82

1 2-exp 4 25 0.1448(30) 0.747(15) 1.09

2 2-exp 5 25 0.2022(25) 1.043(13) 1.95

3 2-exp 3 25 0.2108(31) 1.088(16) 1.54

4 2-exp 3 25 0.2335(43) 1.205(22) 1.02

5 1-exp 9 25 0.274(12) 1.415(60) 0.58

6 1-exp 5 20 0.316(35) 1.63(18) 1.21

7 1-exp 7 15 0.332(29) 1.72(15) 1.30

8 1-exp 9 18 0.341(21) 1.76(11) 0.83

9 2-exp+C 3 20 0.3424(56) 1.767(29) 0.70

10 1-exp+C 8 25 0.349(22) 1.80(11) 0.94

11 1-exp 11 23 0.3499(19) 1.810(11) 0.95

12 1-exp 5 15 0.385(19) 1.989(97) 0.77

slightly on the staircase plots. Hence, when referencing a particular level number, we are referring

to the level numbers shown on the x-axis in fig. 7.7. From figs. 7.5(k-m) we can identify the

rightmost three states as being predominantly created by the vector-vector operators, ρ(0)ρ(0),

ρ(1)ρ(1), and ω(0)ω(0). With the exception of, again an increase in statistical noise, and a slight

reordering, these states too are unaffected by the addition of the glueball operator. A similar

behaviour is seen in levels 6 and 8 which, based on figs. 7.5(i) and 7.5(j), are created dominantly by

the η(0)η(0) and η(1)η(1) operators, respectively. Note however the significant shifts of these levels

from their non-interacting levels, in particular as compared to the shifts of the lower-lying states.

The remaining finite-volume states have been highlighted in figs. 7.6 and 7.7 using the vertical

dashed lines. Figure 7.5(a) shows that the glueball operator mainly creates levels 0, 7, and 12.

Remarkably, it does not create a single new state near 1.5-1.7mref . When the glueball operator is

included, there are two effects: the uncertainty in level 7 is greatly increased and an additional

state appears at a very high energy. Based on both fig. 7.3(c) and fig. 7.5(d) we can identify

level 7 as being dominantly created by the π(2)π(2) operator before the addition of the glueball

operator. When the glueball operator is included, it has significant overlap with this state. More

notable is that the additional state we extract with the enlarged operator basis lies above all of

the states extracted in fig. 7.6. This indicates that we have saturated the spectrum in this region

without a glueball operator, with the exception of states dominated by three or more hadrons.

Hence, we identify no finite-volume energy eigenstate predominantly created by a scalar glueball

operator below ∼ 1.9mref . Again, we emphasise that since this new energy occurs in a high region
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above where our operator set is designed to create states, this level appears most likely just as a

consequence of the enlarged operator basis. We cannot conclude that a pure glueball state has been

created.

While these finite-volume results are insufficient to make any definitive statements regarding the

infinite-volume resonances in this channel, we can make some qualitative comparisons to experiment.

In finding only qq dominated states below 2mref , we have observed no clearly identifiable counterpart

finite-volume states to the f0(1370), f0(1500), or f0(1710) resonances in this region. This suggests

thatthese resonances are not predominantly conventional qq states and are likely molecular in

nature. Another important result is the absence of a state below 2 GeV predominantly created by a

glueball operator in Nf = 2 + 1 QCD in finite-volume. While lattice calculations to date have long

determined a scalar glueball mass near 1.7 GeV, these studies have exclusively used glueball-type

interpolating operators in their analyses. Our result indicates, via the significant coupling of the

glueball operator to the π(2)π(2) and σ finite-volume states, that more extensive operator bases

are crucial to a proper determination of the excited state spectrum in this sector of QCD.

In order to form definite conclusions regarding these states in infinite-volume, a rigorous

determination of the coupled-channel scattering amplitudes in the scalar sector is required. Such

calculations will be extremely challenging, requiring very large computational resources and the

(ongoing) extension of the Lüscher formalism detailed in chapter 6 to amplitudes above the four-

particle threshold. Correlator matrices including three- and four-hadron operators will need to be

used. This has been done for example in Ref. [156] where the stochastic LapH method is used to

compute correlation functions of three pion operators with maximal isospin. Additionally, as is now

standard in scattering analyses, moving frames will need to be considered in order to accurately

map out the scattering amplitudes. Partial wave mixing due to the finite volume will need to

be accounted for here, requiring calculations in multiple volumes, especially when multiple decay

channels are involved. Finally, in order to reliably compare such amplitudes to experimental results

calculations at the physical quark masses are needed, increasing the difficulty of these calculations

significantly.
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Chapter 8

Kπ Scattering

In this penultimate chapter, we will use the technology outlined in chapter 6 to connect finite-volume

energies determined on the lattice to infinite-volume scattering amplitudes for elastic Kπ scattering.

As part of a larger project to map out s- and p-wave I = 1
2
Kπ scattering amplitudes, presented

here is the finite-volume spectrum, and extraction of elastic scattering amplitudes on a single

ensemble generated by the Coordinated Lattice Simulations (CLS) effort. This analysis is an early

step in that project.

8.1 Analysis Details

The methods used for all stages of this analysis have been described in detail in previous chapters,

so here they will only be briefly reviewed. Much of the analysis also follows Ref. [19], with the

exception of not employing the so-called ratio fits used there to determine the finite-volume energy

shifts due to interactions.

8.1.1 Ensemble Info

We employ here a single isotropic ensemble of N = 2 + 1 Wilson clover fermions generated by

the CLS consortium, described in detail in sections 2.3.2 and 2.3.3. Various properties for the

N200 ensemble used here are listed in table 8.1. Also listed in table 8.1 are details of the other

ensembles intended to be used in the final amplitude analysis. On the N203 ensemble in particular,

the low amount of statistics available at this time requires us to calculate correlation functions on

a larger number of gauge configurations, currently underway on each of the three ensembles. We

note also that the open temporal boundary conditions on these ensembles (see section 2.3.2 for

details) restrict us to using source times in our temporal correlation functions that are sufficiently

far away from the temporal boundary. As a result, we use only two source times in our correlation

functions, t0 = 32, 53.
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Table 8.1: Details of the isotropic ensemble used in the Kπ scattering study. After the ensemble

ID in the first column, we list the gauge coupling, lattice spacing and dimensions, pseudoscalar

meson masses, and number of gauge configurations used. Listed in red are the other ensembles

which are not used in this thesis, which will be used in the future amplitude extraction.

ID β a (fm) L3 × T mπ, mK (MeV) Ncfgs

N200 3.55 0.064 483 × 128 280, 460 427

N203 3.55 0.064 483 × 128 340, 440 189

D200 3.55 0.064 643 × 128 200, 480 1100

Table 8.2: Irreps Λ of the appropriate little group for various total momenta ptot = (2π/L)d

(where d is a vector of integers) considered in this work. We consider Kπ systems at rest as well as

those with non-zero total on-axis, planar-diagonal, and cubic-diagonal momenta. These momentum

classes are listed in the first column, where n ∈ Z.

d Λ `

(0, 0, 0) A1g 0, 4, . . .

T1u 1, 3, . . .

(0, 0, n) A1 0, 1, 2, . . .

E 1, 2, 3, . . .

(0, n, n) A1 0, 1, 2, . . .

B1 1, 2, 3, . . .

B2 1, 2, 3, . . .

(n, n, n) A1 0, 1, 2, . . .

E 1, 2, 3, . . .

8.1.2 Spectrum Determination

Using the stochastic LapH method [15] outlined in chapter 4, we evaluate temporal correlation

matrices in each of the irreps listed in table 8.2. We use an operator basis in each irrep composed of

single- and two-hadron interpolating operators (described in chapter 3), including 1-4 Kπ operators

with various constituent momenta corresponding to the expected non-interacting energies in the

elastic region, and 1-2 single-hadron, qq-type operators allowing for the presence of a narrow

K∗(892) resonance along with the possibility of an additional s-wave resonance. The final operator

set used is listed in table 8.3, and we find the finite-volume spectrum in the elastic region insensitive

to the inclusion of additional operators.

The finite-volume spectrum is then extracted using the methods outlined in chapter 5. We

solve the GEVP of eq. (5.9) using the single pivot method detailed in section 5.1.2. The diagonal

elements of the rotated correlation matrix are then fit using single- or two-exponential fit forms

that tend to Ane
−Ent for large times to obtain the finite-volume energies En. Bootstrap resampling

105



Table 8.3: Single- and two-hadron operators included in the correlation matrix for each irrep. The

single-hadron “kaon” operators are specified with a displacement type (i.e. SS = single-site), and a

spatial identification number, with K referring only to the flavour structure. Integer momentum

squared is shown in units of 2π/L in parenthesis.

d2 Λ operators

0 A1g K(0)SS0, K(0)π(0), K(1)π(1)

T1u K(0)SS1, K(1)π(1), K(2)π(2)

1 A1 K(1)SS2, K(0)π(1), K(1)π(0), K(1)π(2), K(2)π(1)

E K(1)SS2, K(1)π(2), K(2)π(1)

2 A1 K(2)SS3, K(0)π(2), K(1)π(1), K(2)π(0), K(3)π(1)

B1 K(2)SS1, K(3)π(1)

B2 K(2)SS3, K(1)π(1), K(2)π(2)

3 A1 K(3)SS0, K(3)SS3, K(0)π(3), K(1)π(2), K(2)π(1), K(3)π(0)

E K(3)SS1, K(1)π(2), K(2)π(1)

4 A1 K(4)SS2, K(0)π(4), K(1)π(1), K(2)π(2), K(4)π(0)

E K(4)SS2, K(2)π(2)

is used to estimate uncertainties on the energies, using 1000 resamplings throughout.

8.1.3 K-Matrix Fits

Once the interacting finite-volume energies have been determined, we can use the formalism

outlined in chapter 6 to extract the infinite-volume scattering K-matrix. The quantisation condition

in eq. (6.40) gives us a relationship between each finite-volume energy and the K̃-matrix, which for

the scattering of spinless particles is given by

K̃−1
` (Ecm) =

(
qcm

mπ

)2`+1

K−1
` (Ecm) =

(
qcm

mπ

)2`+1

cot δ`(Ecm). (8.1)

When employing the quantisation condition to the irreps listed in table 8.2, care must be taken to

account for the partial wave mixing induced by the reduced rotational symmetry of the finite, cubic

volume. Here, we will neglect all partial waves with ` ≥ 2, justified by the analysis of Ref. [19]

where d-wave contributions to Kπ scattering in the elastic region were shown to be negligible.

After truncating the quantisation condition in `, there are a number of irreps for which the box

matrix element is one-dimensional, yielding a one-to-one relationship between energies in those

irreps and scattering phase shift points. However, only the A1g irrep at zero total momentum

provides this direct relationship for s-wave amplitude points, and hence we proceed by fitting the

energies across all listed irreps to determine both amplitudes simultaneously. For this we use the

determinant residual method [29] described in section 6.3.1.
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We now turn to the parameterisations of the K̃−1 for the s- and p-wave amplitudes. Since we

expect a narrow p-wave K∗(892) resonance, we use the relativistic Breit-Wigner

(K̃−1
1 )BW(Ecm) =

6πEcm

g2
K∗Kπmπ

(
m2
K∗

m2
π

− E2
cm

m2
π

)
, (8.2)

with two non-negative fit parameters m2
K∗/m

2
π and g2

K∗Kπ. We explore a variety of parameterisations

for the s-wave amplitude. Motivated by the analyticity of K̃−1 at threshold in both Ecm and

s = E2
cm [29], we consider polynomials in Ecm:

(K̃−1
0 )lin(Ecm) = alin + blinEcm, (8.3a)

(K̃−1
0 )quad(Ecm) = aquad + bquadE

2
cm, (8.3b)

with unconstrained fit parameters a and b, along with a constant parameterisation, representing

the lowest order effective range expansion:

(K̃−1
0 )ERE(Ecm) = − 1

mπa0

, (8.4)

with unconstrained fit parameter mπa0, where a0 is known as the scattering length. Additionally,

we allow for the presence of an s-wave resonance, employing an ` = 0 relativistic Breit-Wigner

(K̃−1
0 )BW(Ecm) =

6πmπEcm

g2
K∗0 Kπ

m2
K∗0

(
m2
K∗0

m2
π

− E2
cm

m2
π

)
, (8.5)

with non-negative fit parameters m2
K∗0
/m2

π and g2
K∗0 Kπ

.

8.2 Results

With the operator bases listed in table 8.3, we find the extracted energies to be largely insensitive

to the choice of GEVP parameters, and so in each correlation matrix, we choose (τ0, τd) = (12, 24).

Plots showing fitted energies for different values of tmin, but the same tmax are shown for each of the

extracted levels in section C.1. These tmin-plots are helpful in determining the time separations for

which a given fit ansatz best captures the signal, e.g. the time range over which a single exponential

dominates. The finite-volume energies in the elastic scattering region (i.e. below the Kη threshold),

boosted to the centre-of-mass frame, are shown in fig. 8.1 for total momenta d2 ≤ 4. Note that,

due to the quark mass trajectory used, the lighter than physical kaon mass results in the inelastic

threshold on this ensemble being the Kη threshold, rather than the three-particle threshold (Kππ)

where the Lüscher formalism breaks down. As the s- and p-wave amplitudes we wish to study

should lie in this elastic region, we consider only energies for which Ecm < mK +mη.

Based on the operator overlap factors, |Z(n)
j | ≡ 〈0|Oj|n〉, extracted from the rotated correlation

matrix, the energies in fig. 8.1 are coloured to give a qualitative indication of the content of

each level. Looking then at the irreps in which we expect only p-wave contributions (neglecting
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` ≥ 2), a qq dominated finite-volume state is seen around 3 − 3.2 mπ, perhaps indicative of a

finite-volume counterpart to the K∗(892) resonance. The finite-volume energies below the inelastic

threshold are listed in table 8.4, along with their corresponding diagonal ` = 0, 1 box matrix

elements B``′ = B00, B11. In irreps in which only a single partial wave is assumed to contribute, the

quantisation condition is exactly solvable, and these matrix elements are equal to (qcm/mπ) cot δ0

and (qcm/mπ)3 cot δ1, respectively. We find 6 of the extracted energies, listed in italics in table 8.4

are not determined with sufficient accuracy to resolve their shifts away from the non-interacting

energies. This is apparent in the box matrix elements for these levels which feature very large

uncertainties, statistically consistent with zero. This occurs for energies that are very close to

the non-interacting energies as the RGL zeta function contained in B diverges at each of the

finite-volume non-interacting energies. Hence, these energies are excluded from the final amplitude

fits.

We now proceed with fitting the s- and p-wave partial wave amplitudes simultaneously following

the procedure outlined in section 8.1.3. The p-wave amplitude is parameterised by the relativistic

Breit-Wigner in eq. (8.2), and we explore a variety of parameterisations for the s-wave amplitude.

Best-fit parameters for each of these fits are listed in table 8.5. It is clear from these results that

the p-wave K∗(892) resonance parameters are insensitive to the particular s-wave parameterisation

chosen. Additionally, the s-wave scattering length determined by interpolating a given s-wave

parameterisation to the Kπ threshold,

lim
qcm→0

(
qcm

mπ

)
cot δ0 = − 1

mπa0

, (8.6)

is similarly insensitive to the parameterisation chosen. The p-wave amplitude and phase shift from

the LO ERE fit are shown in figs. 8.2 and 8.3, respectively, along with points from irreps in which

there is no ` = 0 contribution which are seen to be consistent with the fit.

With mπ = 280 MeV here, our Breit-Wigner mass for the K∗(892) resonance is mK∗ ≈ 848 MeV,

lighter than the experimental, physical point value, but also lighter than the results from various

lattice calculations at both heavier and lighter pion masses, see e.g. fig. 6 from Ref. [19]. This can

be attributed to the lighter than physical kaon/strange quark mass due to the atypical quark mass

trajectory, in contrast to the more standard trajectory in which ms, the strange quark mass, is

fixed to its physical value as the light quark mass is lowered to the physical point. As such, a chiral

extrapolation to the physical quark masses using amplitude analyses from the D200 and N203

ensembles listed in table 8.1 is desired (cf. fig. 6 of Ref. [20]). The coupling gK∗Kπ = 5.75+25
−35 is

somewhat comparable to the physical value of gK∗Kπ ≈ 5.39 [9], though again, a chiral extrapolation

is required.

Lattice calculations of the s-wave scattering length mπa0 are considerably more numerous than

those of K∗(892) resonance parameters [157–160]. As these calculations generally involve both a

continuum and physical point extrapolation, a comparison with our result would be premature.

Additionally, the relatively large uncertainties on our determination of mπa0 indicate the need for

improvement of these results. Certainly, in addition to amplitude determinations on the D200 and
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Table 8.4: Finite-volume two-hadron energies in the center-of-mass frame with corresponding box

matrix diagonal elements, for ` < 2. A vanishing matrix element is denoted by a dash. Levels in

italics are not used in the final K-matrix fits.

d2 Λ level Ecm/mπ q2
cm/m

2
π B00 B11

0 A1g 0 2.5576(99) -0.0731(71) 1.22(21) –

T1u 0 3.055(21) 0.595(29) – -0.257(10)

1 A1 0 2.733(12) 0.147(11) 1.01(17) 0.92(12)

1 2.915(14) 0.392(15) -0.70(16) -0.19(16)

2 3.170(29) 0.769(43) -1.06(19) -1.96(25)

E 0 3.034(20) 0.563(27) – -0.3158(53)

2 A1 0 2.840(15) 0.289(16) 0.65(11) 0.83(12)

1 3.016(29) 0.537(41) -1.3(51) -2.2(69)

2 3.254(17) 0.900(23) 4.4(67) 6(19)

3 3.307(34) 0.986(53) 0.4(13)×102 -0.1(16)×102

B1 0 3.104(25) 0.668(35) – -0.3342(87)

B2 0 2.928(41) 0.411(56) – 0.171(89)

1 3.387(24) 1.117(37) – -6.7(29)

3 A1 0 2.883(24) 0.348(32) 0.32(10) 0.49(12)

1 3.061(28) 0.604(40) 0.1(83)×102 0.0(15)×103

2 3.354(32) 1.062(50) 1.60(57) 0.72(86)

E 0 2.928(50) 0.412(70) – -0.046(43)

4 A1 0 2.615(29) -0.004(36) 1(51) 0.3(74)

1 2.982(27) 0.488(37) -0.08(11) 0.50(16)

2 3.219(40) 0.845(62) -2(71) -0.1(16)×102

E 0 3.147(38) 0.734(56) – -0.232(34)

N203 ensembles and a chiral extrapolation, increased statistics are needed here to improve the

s-wave amplitude determination. With an increase in statistics, and results at both lighter and

heavier pion masses, a careful analytic continuation of the amplitude can be performed, with the

aim of searching for hints of a K∗0(700) resonance. Such calculations are currently ongoing.
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Figure 8.1: Finite-volume energies in the elastic regions in each of the irreps relevant for Kπ

scattering, boosted to the centre-of-mass frame. The allowed angular momenta that will appear

in each irrep are listed in table 8.2. In each column, the statistical uncertainty is denoted by the

height of the boxes, solid black lines indicate the non-interactive Kπ energies, and the relevant

thresholds delineating the elastic scattering region are denoted by the dashed grey lines. Levels are

coloured according to maximal operator overlap factors: orange levels are created predominantly

by qq-type operators, green levels are created mainly by two-hadron Kπ operators, and blue levels

feature significant mixing between single- and two-hadron operators.

Table 8.5: K̃-matrix fit results for the p-wave K∗(892) resonance parameters and the s-wave

scattering length mπa0 from simultaneous fits to both amplitudes. In each fit, the p-wave amplitude

is described using the Breit-Wigner form in eq. (8.2), with the varyious s-wave parameterisations

listed in the first column defined in eqs. (8.3) to (8.5). In all fits, the Ω function of eq. (6.45) with

µ = 20 is used as the residual.

s-wave mK∗/mπ gK∗Kπ mπa0 χ2/d.o.f.

lin 3.027+16
−15 5.74+29

−56 −0.93+14
−20 2.05

quad 3.028+16
−15 5.74+28

−56 −0.93+14
−20 2.05

LO ERE 3.027+16
−13 5.75+25

−35 −0.93+15
−19 1.89

BW 3.028+16
−15 5.75+26

−59 −0.92+14
−20 2.04

110



2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5

ECM/mπ

−10

−8

−6

−4

−2

0

2

( q
C

M
/m

π

) 3
co

t
δ 1

T1u(0)

E(1)

B1(2)

B2(2)

E(3)

E(4)

Figure 8.2: (qcm/mπ)3 cot δ1 as a function of Ecm/mπ using the LO ERE fit from row 3 of table 8.5,

with µ = 20. All bootstrap resamplings for energies from irreps which do not mix the s- and

p-waves are shown along with 1σ principal error bars to indicate the correlated uncertainty between

the scattering phase shifts and finite-volume energies. We stress that the amplitude is constrained

not just by these energies, but by the 15 energies listed in table 8.4. The black line indicates the

best fit curve with the grey bands indicating ±68% asymmetric confidence intervals. The zero

crossing where cotπ/2 = 0 indicates the presence of a K∗(892) resonance at 3.027+16
−13 mπ.

111



2.6 2.8 3.0 3.2 3.4

ECM/mπ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

δ 1

T1u(0)

E(1)

B1(2)

B2(2)

E(3)

E(4)

Figure 8.3: δ1 as a function of Ecm/mπ using the LO ERE fit from row 3 of table 8.5, with µ = 20.

All bootstrap resamplings for energies from irreps which do not mix the s- and p-waves are shown

along with 1σ principal error bars to indicate the correlated uncertainty between the box scattering

phase shifts and finite-volume energies. We stress that the amplitude is constrained not just by

these energies, but by the 15 energies listed in table 8.4. The black line indicates the best fit curve

with the grey bands indicating ±68% asymmetric confidence intervals. The procession through π/2

indicates the presence of a K∗(892) resonance at 3.027+16
−13 mπ.
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Chapter 9

Conclusions

We have presented here two studies in hadron spectroscopy using lattice QCD: the scalar channel

below 2 GeV with an emphasis on the scalar glueball, and elastic, I = 1/2, Kπ scattering. Applying

Monte Carlo methods to sample the space of gluon field configurations and the stochastic LapH

method for efficiently treating quark propagation, we were able to explore the excited-state spectrum

of QCD in finite-volume with first-principles numerical calculations. In chapters 2 to 5 we described

the framework required to perform such calculations, beginning with an introduction to the lattice

regularisation of QCD, a description of the careful construction of optimal hadronic interpolating

operators, the stochastic estimation of temporal correlation functions, statistical analysis of said

correlation functions, followed by, in chapter 6, a formalism that allows for the extraction of

infinite-volume scattering amplitudes from finite-volume stationary state energies.

The Scalar Glueball

In chapter 7 we tackled the notoriously troublesome scalar sector of QCD with vacuum quantum

numbers, with the aim of assessing the glueball content of the spectrum below ∼ 2 GeV. For the first

time in lattice QCD, we studied the low-lying spectrum including quark-antiquark, meson-meson,

and glueball interpolating operators so that we could capture the mixing patterns of finite-volume

single- and two-hadron dominated states. Using first a basis of exclusively quark-antiquark

interpolating operators, we found two low-lying finite-volume levels identifiable as finite-volume

counterpart states to the σ and f0(980) mesons, but no further states below 2 GeV. Considering

then the full operator basis listed in table 7.2, we extracted the finite-volume spectrum for two

cases, with and without a glueball-type interpolating operator. The large vacuum expectation

values associated with correlation functions of the glueball operator required much care to be taken

in their removal, as their statistical errors were large. The spectrum in each scenario is shown

in figs. 7.6 and 7.7, respectively. Our most striking observation was the absence of any additional

finite-volume states below ∼ 2 GeV with the inclusion of the glueball operator. As the spectrum

in this region is, up to an increase in statistical noise, insensitive to the addition of the glueball

operator (and additional meson-meson, and quark-antiquark operators), we concluded that we have
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sufficiently saturated the spectrum below ∼ 2 GeV, except for states dominated by three or more

hadrons. In particular, we have not included any 4π interpolating operators.

These findings in finite-volume suggested that, in Nf = 2 + 1 fully dynamical QCD at mπ ∼
390 MeV, there is no pure scalar glueball below ∼ 2 GeV. Additionally, considering the leading

experimental glueball candidates in this region, the f0(1370), f0(1500), and f0(1710), we found no

quark-antiquark dominated levels identifiable as finite-volume counterpart to these states, indicating

that these states are likely to be molecular in nature. Forming definite infinite-volume conclusions

about these states will require the determination of scattering amplitudes using the formalism

detailed in chapter 6, along with extensions for determining amplitudes above the 4π threshold.

Such computations will require very large computing resources and new calculational techniques,

in particular as the physical point is approached. Additionally, moving frames will need to be

considered.

Elastic Kπ Scattering

In chapter 8 we presented an early study as part of a larger effort to map out elastic s- and p-wave

Kπ scattering amplitudes at varying quark masses from lattice QCD. Using an isotropic lattice with

(mπ,mK) = (280, 460) MeV generated by the CLS consortium, we first mapped out the finite-volume

spectrum of two-particle Kπ states in the elastic region at total zero and non-zero momenta. Then,

using the formalism in chapter 6 pioneered by Lüscher, we related those finite-volume stationary

state energies to infinite-volume Kπ scattering phase shifts. Despite the limited set of statistics

available at this time, we were able to determine with reasonable accuracy, the K∗(892) resonance

mass and the K∗(892)→ Kπ coupling, along with the s-wave Kπ scattering length:

mK∗

mπ

= 3.027+16
−13 , gK∗Kπ = 5.75+25

−35 , mπa0 = −0.93+15
−19 . (9.1)

Efforts are ongoing to increase the statistics available on this ensemble, and on the two additional

ensembles listed in table 8.1 with the same lattice spacing, but different quark masses. The end

goal of this project is to map out these amplitudes on the atypical quark mass trajectory used in

generating these lattices in which the trace of the quark mass matrix is kept constant, followed by

a chiral extrapolation along this trajectory to the physical point, somewhat in the spirit of Ref. [20].

With this we hope to provide not just a high precision determination of resonance parameters of

the well-established vector K∗(892) meson, but also to provide an insight into the nature of the

poorly understood scalar K∗(700) meson.

At this point, calculations of these meson-meson scattering amplitudes from lattice QCD have

matured significantly, and we are beginning to turn to more complicated processes, including meson-

baryon scattering [21], baryon-baryon scattering [161], and the insertion of external currents [20].

With the advent of Exascale computing, and the continual development of improved algorithmic

techniques, tackling yet more complicated nuclear processes is on the horizon.
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Appendix A

Extracting Observables from Monte

Carlo Data

The observable quantities we deal with can be classed into two categories; simple and non-simple

observables. A simple observable is one that can be measured on a single configuration of gauge

fields, or equivalently, one that coincides with the integrand of a single path integral. Estimates of

such simple observables can then be estimated using standard Monte Carlo formulae: for a set of

simple observables {bi}, where b
(C)
i is the value of bi on a single configuration UC , the sample mean

and covariance are given by

〈bi〉 =
1

NC

NC−1∑

C=0

b
(C)
i , (A.1a)

cov(bi, bj) =
1

NC − 1
〈(bi − 〈bi〉)(bj − 〈bj〉)〉 =

〈bibj〉 − 〈bi〉〈bj〉
NC − 1

, (A.1b)

where NC is the number of gauge configurations. Note that we have used the factor 1/(NC − 1)

rather than 1/NC as the former removes the bias due to estimating the mean by 〈bi〉, though

the difference is generally imperceptible. Additionally, to be pedantic, what we define here is the

covariance for our estimates of bi, bj , i.e. the sample covariance, rather than the “true” or population

covariance.

As the name may suggest, a non-simple observable is then any observable that is not simple.

For non-simple observables the above formulae cannot be used, and so we need some way to

estimate such quantities, and more importantly, the error in their estimates. In certain elementary

cases, one could use a simple propagation of uncertainty, though for example in determining the

error on parameters from a fit, it is unclear how to do this properly. Therefore we advocate the

use of statistical resampling schemes for estimating the errors on our non-simple observables. In

the following section, we will define the two resampling techniques that we use, followed by a

description of the correlated χ2 fitting procedure used to obtain best-fit estimates for the relevant

model parameters we wish to extract.
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A.1 Resampling Techniques

A resampling scheme involves determining a set of resamplings for an observable, where each

resampling contains an estimate of the observable. We consider two schemes, the jackknife and

bootstrap procedures [162]. In jackknife resampling, the n-th resampling is determined by taking an

average for the observable over all configurations, omitting the n-th configuration, given by

〈bi〉jack
n =

1

NC − 1

∑

C 6=n

b
(C)
i . (A.2)

From this, the so-called jackknife mean and covariance are then given by

〈bi〉jack =
1

NC

NC−1∑

n=0

〈bi〉jack
n , (A.3a)

covjack(bi, bj) =
NC − 1

NC

NC−1∑

n=0

(〈bi〉jack
n − 〈bi〉)(〈bj〉jack

n − 〈bj〉), (A.3b)

and it can be shown that 〈bi〉 = 〈bi〉jack and cov(bi, bj) = covjack(bi, bj).

Alternatively, in bootstrap resampling, each resampling for a given observable is determined from

an average of the values of that observable on NC randomly chosen configurations with replacement

(i.e. any configuration can be chosen multiple times). The total number of bootstrap resamplings

NB can then be set to any value, though if chosen too small we do not expect a good estimate for

the covariances between observables. Hence, NB should be chosen large enough that adding any

further bootstrap resamplings does not effect the results significantly. The estimate for the n-th

bootstrap resampling is then given by

〈bi〉boot
n =

1

NC

C−1∑

α=0

b
(C

(n)
α )

i , (A.4)

where C
(n)
α denotes the α-th randomly chosen configuration for the n-th bootstrap resampling.

Given a sufficiently large number NB of these estimates, the bootstrap mean and covariance are

then given by

〈bi〉boot =
1

NB

NB−1∑

n=0

〈bi〉boot
n , (A.5a)

covboot(bi, bj) =
1

NB − 1

NB−1∑

n=0

(〈bi〉boot
n − 〈bi〉)(〈bj〉boot

n − 〈bj〉). (A.5b)

Note finally that the jackknife scheme is simply a linear approximation to the bootstrap resampling

procedure. Hence, since the bootstrap scheme provides information about the entire sampling

distribution, for sufficient large values of NB, should give either an equivalent or better estimate of

the covariances. This is seen for example in App. A and Fig. 14 of Ref. [163] where, in studying
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D̄D scattering in lattice QCD, the authors show how the non-linear nature of the phase shift

analysis can result in a severe underestimation of errors when using jackknife resampling. Therefore,

we choose to use bootstrap resampling in the scattering analysis in chapter 8.

A.2 Correlated χ2 Fitting

Since the gauge configurations on which we measure our observables are generated using a Markov

chain, there will be some residual correlations between observables on different configurations. We

use autocorrelations as a measure of this correlation, and at various stages make efforts to reduce

such correlations, so that we can assume at the fitting stage that autocorrelations are negligible.

However, the correlations between different measurements must be accounted for when we fit a

model function to our data. More concretely, the residual functions used in a fit minimisation are

not statistically independent, having been measured on the same set of gauge configurations, and

so their covariances should be included in the likelihood function we minimise.

Given a set of observables {bi}, say a temporal correlation function C(t), which constitute the

components of the vector b, and a set of best-fit parameters which constitute the components of

the vector α, we denote the model function which we use to describe the data by M(α, b). We

determine the best-fit estimates of the α parameters as the values which minimise the correlated-χ2

given by

χ2 =
∑

i,j

〈ri〉σ−1
ij 〈rj〉, (A.6)

where the vector of residuals is given by r = b−M(α, b), and σij = cov(ri, rj). Note that if the

model function does not depend on the observables, i.e. M = M(α), then it can be shown that

cov(ri, rj) = cov(bi, bj). This will then greatly simplify the minimisation as the covariance matrix

needs only to be calculated once at the beginning of the minimisation. Otherwise, each time that

one of the fit parameters in α is changed, σ−1 needs to be recalculated.

While most minimisation software will often provide statistical uncertainties in the best-fit

parameters, these generally assume Gaussian statistics. A better alternative, as alluded to in the

previous sections, is the use a resampling scheme to solve the problem and calculate the covariances

between best-fit parameters. To do this, we minimise

χ2
k =

∑

i,j

〈ri〉kσ−1
ij 〈rj〉k, (A.7)

for each resampling k, and then obtain the covariances of the fit parameters cov(αi, αj) using

either eq. (A.3b) or eq. (A.5b), depending on the resampling scheme used.
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Appendix B

Correlator Matrices

Shown here are the normalised correlation matrix elements (eq. (5.2)) for the 13× 13 matrix used

in the scalar glueball study in chapter 7. Plots are arranged as shown in fig. B.1.

(a) (b)
(c)

(d)

(e)

(f)

Figure B.1: The layout used here to display each element of the 13× 13 symmetric correlation

matrix. Labels in each block indicate the relevant subfigure where that block is shown in the rest

of this appendix.
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(a) ReCAB(t) for block (a) of the A+
1g correlation matrix.
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(b) ReCAB(t) for block (b) of the A+
1g correlation matrix.
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(c) ReCAB(t) for block (c) of the A+
1g correlation matrix.
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(d) ReCAB(t) for block (d) of the A+
1g correlation matrix.
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(e) ReCAB(t) for block (e) of the A+
1g correlation matrix.

123



5 10 15 20 25 30 35
0

0.5

1

1.5

2

A=pi1pi1

5 10 15 20 25 30 35

-0.4

-0.2

0

0.2

0.4 A=pi2pi2, B=pi1pi1

5 10 15 20 25 30 35

-0.4

-0.2

0

0.2

0.4 A=rho0rho0, B=pi1pi1

5 10 15 20 25 30 35

-0.4

-0.2

0

0.2

0.4 A=rho1rho1, B=pi1pi1

5 10 15 20 25 30 35
0

0.5

1

1.5

2

A=pi2pi2

5 10 15 20 25 30 35

-0.4

-0.2

0

0.2

0.4 A=rho0rho0, B=pi2pi2

5 10 15 20 25 30 35

-0.4

-0.2

0

0.2

0.4 A=rho1rho1, B=pi2pi2

5 10 15 20 25 30 35
0

0.5

1

1.5

2

A=rho0rho0

5 10 15 20 25 30 35

-0.4

-0.2

0

0.2

0.4 A=rho1rho1, B=rho0rho0

5 10 15 20 25 30 35
0

0.5

1

1.5

2

A=rho1rho1

(f) ReCAB(t) for block (f) of the A+
1g correlation matrix.

Figure B.2: Real part of each matrix element of the 13×13 correlation matrix used in the analysis

in chapter 7.
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(a) ImCAB(t) for block (a) of the A+
1g correlation matrix.
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(b) ImCAB(t) for block (b) of the A+
1g correlation matrix.
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(c) ImCAB(t) for block (c) of the A+
1g correlation matrix.
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(d) ImCAB(t) for block (d) of the A+
1g correlation matrix.
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(e) ImCAB(t) for block (e) of the A+
1g correlation matrix.
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(f) ImCAB(t) for block (f) of the A+
1g correlation matrix.

Figure B.3: Imaginary part of each matrix element of the 13× 13 correlation matrix used in the

analysis in chapter 7.
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Appendix C

tmin-Plots

Shown here are tmin-plots for the Kπ scattering analysis in chapter 8. Each plot shows the best-fit

values for the energy for a given level for many tmin with a fixed tmax. The colouring of each point

gives a qualitative indication of the best-fit χ2 per degree of freedom for each tmin. Red points

indicate χ2/d.o.f. > 1, black points χ2/d.o.f. ≈ 1, and green points χ2/d.o.f. < 1. A particular

tmin is chosen based on reduced χ2 and stability to variations in tmin and tmax. Chosen tmin is

indicated by the solid (central value) and dotted (1σ errors) blue lines. Fit forms used are described

in section 5.3.
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C.1 Kπ Scattering

P 2 = 0, A1g Irrep

12 14 16 18 20 22 24 26
tmin

0.237

0.238

0.239

0.240

0.241

a
tE

fi
t

1-exp

1 2 3 4 5 6 7
tmin

2-exp

1 2 3 4 5 6 7
tmin

Geometric

(a) Level 0

Figure C.1: tmin-plots for the P 2 = 0, A1g irrep on the N200 ensemble.
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P 2 = 0, T1u Irrep
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Figure C.2: tmin-plots for the P 2 = 0, T1u irrep on the N200 ensemble.
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P 2 = 1, A1 Irrep
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Figure C.3: tmin-plots for the P 2 = 1, A1 irrep on the N200 ensemble.
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P 2 = 1, E Irrep
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Figure C.4: tmin-plots for the P 2 = 1, E irrep on the N200 ensemble.
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P 2 = 2, A1 Irrep
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Figure C.5: tmin-plots for the P 2 = 2, A1 irrep on the N200 ensemble.

138



P 2 = 2, B1 Irrep
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Figure C.6: tmin-plots for the P 2 = 2, B1 irrep on the N200 ensemble.

139
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Figure C.7: tmin-plots for the P 2 = 2, B2 irrep on the N200 ensemble.
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Figure C.8: tmin-plots for the P 2 = 3, A1 irrep on the N200 ensemble.
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Figure C.9: tmin-plots for the P 2 = 3, E irrep on the N200 ensemble.
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P 2 = 4, A1 Irrep
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Figure C.10: tmin-plots for the P 2 = 4, A1 irrep on the N200 ensemble.
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Figure C.11: tmin-plots for the P 2 = 4, E irrep on the N200 ensemble.
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Appendix D

Computational Details and

Approximations

In this appendix the computational resources used to perform the calculations in chapters 7 and 8

are described, followed by a synopsis of the various approximations that are made in this work.

D.1 Computational Details

The same set of computational steps are required to perform both of the calculations presented here.

First, the gauge configurations are generated using the Hybrid Monte Carlo and Rational Hybrid

Monte Carlo techniques described in section 2.5. The anisotropic configurations used in chapter 7

were generated using the Chroma software suite developed by the USQCD collaboration [164]. These

calculations were performed on the Jaguar machine at Oak Ridge National Laboratory and Kraken at

the University of Tennessee using approximately 50 million core-hours. The isotropic configurations

used in chapter 8 were generated by the CLS consortium [82] using the openQCD code [165]. These

calculations were performed on the SuperMUC machine at the Leibniz Supercomputing Centre

using approximately 350,000 core-hours.

Next, utilising the Chroma LapH software written in C++ for applying the stochastic LapH

method described in chapter 4, the quark source and sink functions (see section 4.3) are calculated

and used to form the hadron source and sink functions described in section 4.4. The Dirac matrix

inversions required here are very expensive, requiring approximately 25 million Kraken and 1.1

million Mogon II/HIMster II core-hours for the results in chapters 7 and 8, respectively. The final

step is the calculation of temporal correlation functions using the hadron source and sink functions

as described in section 4.4. For correlation functions involving meson and meson-meson operators,

the computational cost for this step is comparatively minimal. These calculations were performed

on the Ranger machine at the Texas Advanced Computing Center for the analysis in chapter 7,

and using the Mogon II and HIMster II machines at the Johannes Gutenberg University Mainz,

primarily to support the HVP determination of Ref. [166]. Note that the majority of the calculations
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involved in the analysis in chapter 7 were performed as early as 2008, which accounts for the larger

number of core hours.

D.2 Approximations

Here we list the various approximations and systematic uncertainties that are present in this thesis.

- Finite lattice spacing: Discretisation errors associated with the finite lattice spacing are

assessed partially in our calculations by checking for deviations of hadron dispersion relations

from the continuum expressions (see eq. (6.10)). We find these to be negligible compared to

statistical errors. In future calculations, continuum extrapolations of the form a→ 0 can also

be performed. This will require significant computational efforts as the computational costs

increase dramatically as the lattice spacing decreases.

- Finite volume effects: Finite-volume effects of the form e−mπL are neglected, where mπ is

the correlation length of the system, for example when applying the quantisation condition

derived in chapter 6. In order to mitigate these effects, we follow the general rule-of-thumb

where we ensure that mπL & 4. See section 2.3.3.

- Unphysical quark masses: The use of unphysically heavy light quark masses results in

the simulation of a theory that should not be compared directly with QCD at the physical

point. Hence, in order to fully connect with experimental results, e.g. the K∗(892) resonance

parameters determined in chapter 8, extrapolations to the physical point using lattice

calculations with various quark masses must be performed. In each of the analyses presented

here such extrapolations must yet be performed, requiring significant computational resources.

- 3- and 4-particle states: In this thesis the effects of three- and four-hadron states have

been neglected throughout. As we restrict ourselves to energies below the Kππ threshold

in chapter 8, this is only a relevant concern for the analysis performed in chapter 7. There we

stress that we have extracted only the finite-volume spectrum of states which are created

dominantly by single- and two-hadron interpolating operators. As we consider the spectrum

above the 4π threshold, we cannot conclude that we have saturated the spectrum in this region.

With the inclusion of such operators, we may see the appearance of additional finite-volume

energies above the 4π threshold. This will be required in future studies of the scalar sector

when determinations of infinite-volume scattering amplitudes are performed.

- Exact zeros in C(t): In the analysis in chapter 7, certain matrix elements in the temporal

correlation matrix are set exactly to zero in an effort to reduce some of the statistical

noise in the calculation. We justify this decision by performing the analysis both with and

without setting the matrix elements in question to zero. We observe little change to the final

qualitative results, yet an increase in statistical precision when the matrix elements are set to

zero. See section 7.1.3 for more details.
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- Correlator matrix analysis: When we apply the correlation matrix analysis methods

described in chapter 5, there are some systematic uncertainties to address. Systematic error in

the choice of diagonalisation times (τ0, τD) is assessed by performing the analysis for multiple

choices of these parameters, where we observe no statistically significant deviation in our

finite-volume energies. We must also ensure that we are not susceptible to errors arising from

the finite operator bases used to construct the correlation matrices. To do this the operator

basis is enlarged by adding additional operators until the spectrum in the region of interest

does not change. This is discussed in section 5.1.1.
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