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Chapter 1

Introduction

1.1 Background

In the past 20 years, more and more traditional human traders have been replaced by
automatic trading platforms. A recent report [27] estimates that 70 percent of global
currencies trading volume was executed through electronic systems in 2013. Instead
of gesturing and yelling to each other on the trading floor, traders use computers to
accomplish trading through sending “orders” to the exchange, such as NYSE-ARCA,
BATS or NASDAQ, and these orders wait to be executed in the “limit order book”(LOB).

Usually, orders are characterized by direction (buy or sell), price, amount (number
of shares), and type (limit or market). Prices are multiples of the tick size, which is
usually one cent. A limit order is an order to buy or sell a certain number of shares at
a specified price, and it may not be executed if the given price cannot be met. Limit
orders are accumulated in the LOB, which keeps a record of the quantities of limit orders
at each price level. A market order is an order to buy or sell a certain number of shares
immediately at the best available price in the LOB, and the LOB is updated once a market
order is executed.

We can picture the LOB as a histogram where the horizontal axis indicates price ticks
and each bar represents the number of limit order shares waiting at the corresponding
price tick. We call a price the best bid price if it is the highest price at which there exists
at least one limit buy order. Similarly, we call a price the best ask price if it is the lowest
price at which there exists at least one limit sell order.

In real markets, besides market orders and limit orders, there are more complicated
types of orders such as “iceberg” orders and “stop” orders. Iceberg orders are popular
with investors who submit a large volume order. In order to avoid anticipatory action
from other market participants, investors could conceal the full size of their orders by
submitting iceberg orders which only publicly display a specified portion of the total
order size. A stop order is an order to buy or sell an asset when its price surpasses a
specified threshold, known as the stop price. In a liquid market, a stop order ensures
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that investors achieve a predetermined entry or exit price, limiting their loss or locking in
profit. For example, an investor bought one share of stock A at $10 and now the stock is
trading at $20. The investor can place a sell-stop order with stop price $15 to guarantee
a profit of approximately $5 in case the price of stock A drops below $15.

In this thesis, we assume that the market only contains limit orders and market
orders. For limit orders we only consider two-level arrivals: a Level I limit buy order is
a limit buy order arriving at the price one tick below the best ask price, and a Level I
limit sell order is a limit sell order arriving at the price one tick above the best bid price.
Similarly, a Level II limit buy order is a limit buy order arriving at the price two ticks
below the best ask price, and a Level II limit sell order is a limit sell order arriving at the
price two ticks above the best bid price.

In modern financial markets, we usually see two different matching principles for
order allocation: price-time priority and price/pro rata matching. In price-time priority,
orders are automatically sorted according to price and time-of-entry criteria. Orders with
the best possible prices always take precedence in the matching process over other orders
with worse prices, and orders placed at the same price are executed according to the time
of entry (i.e., first-in-first-out). In price/pro rata matching, the best priced orders in the
book are still traded first, and when there are multiple orders at the best price, pro rata
allocation allocates quantity of the incoming market order amongst all limit orders at the
best price in the LOB. The allocation is proportional to the size of each limit order, and
all limit orders at the best price are taken into account.

Given a certain amount of money, an investor might be interested in coming up
with a strategy to maximize the expected value of his portfolio at the end of a pre-fixed
time horizon, which is called an optimal execution problem. Obviously, the matching
principle will be crucial since investors usually want their orders to get executed as soon
as possible. We will not discuss the optimal execution problem in this document, and
hence the priority of limit orders at individual prices does not matter now.

Another important feature of the LOB is that market participants are able without
penalty to cancel their existing limit orders at any time before a match is made. According
to Hautsch and Huang [13], more than 80% of all limit orders are cancelled before getting
executed at NASDAQ. Because of its importance in real markets, cancellations occur in
our limit order book model.

1.2 Our Contribution

The nature of the LOB’s execution mechanism calls for a reasonable stochastic model
which is consistent with statistical observations of the LOB in real markets. Since limit
orders will wait in the queue at the specified price until they are executed against op-
posite market orders or are cancelled, we adapt queueing theory methodology to study
the evolution of the LOB. We consider a “zero-intelligence Poisson” model, where “zero-
intelligence” means there is no strategic play by the agents submitting orders, and “Pois-
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son” refers to the fact that arrivals of market orders and limit orders are governed by
Poisson processes. Moreover, we assume exponentially distributed waiting times before
cancellations.

Our LOB model is a discrete-event system, and our goal is to approximate the discrete
system by a system of Brownian Motions. Enlightened by heavy traffic theory, we can
take a diffusion scaling of our zero-intelligence Poisson model, and take a limit to find the
approximating system. In particular, at each price tick, we will define a process which
refers to the number of orders at this price. Then we scale the process by accelerating
time by a factor n, and dividing volume by

√
n, then pass to the limit as n → ∞. We

want to consider the simplest nontrivial model so that we can develop this methodology.

In our zero-intelligence Poisson model, we assume Poisson arrivals of limit orders
and market orders with constant rates. All orders have the same size, which we set to
be 1. Moreover, cancellations will occur two or more ticks away from the best available
price. In particular, we assume that cancellations of limit buy orders come with Poisson
arrival rate θb/

√
n per order in the nth pre-limit model, where θb is a constant cancellation

intensity. Similarly, cancellations of limit sell orders come with Poisson arrival rate θs/
√
n

per order, where θs is a constant cancellation intensity.

Figure 1.1 is an example of a state of our LOB model in which positive queues
represent limit buy orders and negative queues represents limit sell orders. Labels S to Y
indicate the number of orders at corresponding prices. From the configuration in Figure
1.1, we see that the best bid price is at the V − tick and the best ask price is at the
W − tick. Therefore, according to the assumptions of our model, market buy orders will
arrive at the W − tick with a constant intensity λ0; Level I limit buy orders will arrive
at the V − tick with a constant intensity λ1; Level II limit buy orders will arrive at the
U − tick with a constant intensity λ2. Similarly, market sell orders and two-Level limit
orders will arrive at the V − tick, W − tick, and X − tick with constant intensities µ0,
µ1, and µ2, respectively. Finally, cancellations of limit buy orders will happen at the
S− tick and T − tick, which are two or more ticks below the best bid price V − tick, and
cancellations of limit sell orders will be at the Y − tick.

In order to obtain a diffusion-scaled limit, the arrival rates for market orders and limit
orders must satisfy some appropriate technical conditions which will be explained later.
Our study shows that the limiting LOB model has a two-tick spread at Lebesgue-almost-
all time, i.e., there is always a price tick between the best bid price and the best ask price.
Also, the queue at the best bid price and the queue at the best ask price are Brownian
Motions. The convention in our model is that queues with buy orders have positive sign
and queues with sell orders have negative sign, and with this sign convention, the queue
at the best bid and queue at the best ask have positive correlation. The absolute values
of these queues have negative correlation. Moreover, the queues which are adjacent to the
best bid and the best ask are nailed at constant levels, and queues that are further away
will be killed at zero level. See Figure 1.2.

The proof comes from ideas in queueing theory with a delicate analysis involving
weak convergence in corresponding cádlág space with M1 and sometimes J1 topology.
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Figure 1.1: Limit-order book
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Also, the proof of the uniqueness of the limiting process uses a theorem that if a process
and its absolute value are governed by two independent Brownian motions with a certain
formula, then this process is unique in distribution. We will discuss this theorem and
prove it later.

The limiting model is an approximation to the pre-limit model, so we should fit the
LOB data to pre-limit models. To be precise, in Figure 1.2, the queue at the V ∗ − tick
having length zero means that in pre-limit models, the number of limit orders at this
price is relatively small compared to the the number of orders at adjacent queues, but the
number of limit orders at the V ∗ − tick is not necessarily zero. For instance, suppose we
want to use our limiting model to approximate the 100th pre-limit model. Then

√
n = 10

and V ∗ = 0 means that the number of orders at V ∗ − tick in the pre-limit model has a
smaller order of magnitude than the number of orders at U∗ − tick and W ∗ − tick, i.e.,
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S∗T ∗U∗V ∗
W ∗X∗Y ∗Z∗

Figure 1.3: Renewal State

there might exist two or three limit buy orders at the V ∗ − tick and 20 limit sell orders
at the W ∗− tick. Therefore, even though in the limiting model there is a two-tick spread
almost all the time, the limit of the amount of time that there is a one-tick spread in the
pre-limit models is not zero, which will be proved in (3.44).

Since both U∗ and W ∗ are Brownian Motions, from the configuration shown in Figure
1.2, the limiting model will eventually reach a configuration in which either U∗ or W ∗

hits zero. At this moment, the limiting model has a three-tick spread. The configuration
in Figure 1.3 shows the this state when W ∗ vanishes before U∗. Following this moment,
the process U∗ will jump from its current position to a fixed level instantaneously, which
will be proved later. We call this state a “renewal state” because this state will appear
repeatedly in the limiting model. As in Figure 1.3, the system has a three-tick spread
and the queues at the best bid price and the next best bid price are fixed at a constant
level. Similarly, the queues at the best ask price and the next best ask price are fixed at
another constant level, and all queues which are two or more ticks away from the best
price are nailed at zero.

Starting from the renewal state in Figure 1.3, W ∗ might go on a negative excursion
and U∗ will behave like a Brownian motion positively correlated with W ∗. If U∗ reaches
zero before W ∗ returns to zero, we will come to the state shown on the left of Figure 1.4.
Similarly, starting from Figure 1.3, V ∗ has a chance to go on a positive excursion and
X∗ will behave like a Brownian motion positively correlated with V ∗. If X∗ reaches zero
before V ∗ returns to zero, we will come to the state shown on the right of Figure 1.4.
Hence, the limiting model will eventually reach one of the two adjacent renewal states. We
say the process has a leftward renewal state transition if the process moves from Figure
1.3 to the left configuration in Figure 1.4, and it has a rightward renewal state transition
if it moves to the right configuration in Figure 1.4. By applying Poisson random measure
theory, we calculate the probability the limiting model makes a leftward transition and
the probability of a rightward transition.

When the limiting model is not in a renewal state, the system will have a configuration
like the one shown in Figure 1.2. Using Metzler [23], we are able to compute the joint
density of the first passage times of U∗ and W ∗ to zero given such a configuration. In
particular, we can derive the density function of the waiting time from any intermediate

9



Frozen at some level

Frozen at some level

S∗T ∗U∗V ∗
W ∗X∗Y ∗Z∗

Frozen at some level

Frozen at some level

S∗T ∗U∗V ∗
W ∗X∗Y ∗Z∗

Figure 1.4: Two adjacent renewal states

Brownian
motion

Frozen at
some level

Brownian
motion

Frozen at
some level

Frozen
at 0

Frozen
at 0

S∗T ∗U∗V ∗
W ∗X∗Y ∗Z∗

Figure 1.5: Limiting model 2

state to the next renewal state. Furthermore, by extending Metzler’s result, we can
also compute the characteristic function of the waiting time between two renewal states
conditioned on the system making a leftward transition or rightward transition. This
result shows that the process of renewal states is a semi-Markov process because the
length of each queue in the renewal state is fixed (not dependent on the path of the
process) and the waiting time between renewal states is not exponentially distributed.

Starting from the configuration in Figure 1.3, if we focus on the evolution of the
process U∗, we can see that U∗ behaves like a Brownian motion while W ∗ is nonzero, as
shown in Figure 1.2, and it will jump from its current position to some fixed level whenever
W ∗ reaches zero (renewal state). On the other hand, if V ∗ has positive orders, U∗ will
remain at that fixed level until V ∗ vanishes and W ∗ again becomes negative, see Figure
1.5. Eventually, we can show that the system will switch between these two configurations
infinitely many times immediately following the moment the system reaches the renewal
state shown in Figure 1.3. Therefore, we will see infinitely many jumps in U∗, and we
shall see that those jumps are not absolutely summable. A consequence of this is that the
process U∗ is not a semi-martingale; the jumps cannot be embedded in a finite variation
part nor a local-martingale part of a decomposition of U∗.
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1.3 Related Literature

The need for modeling the LOB is recent since the earliest electronic trading platform
was launched only twenty years ago. The literature on LOBs has grown rapidly as a have
deeper understanding of the LOB trading process has developed. However, there is still
no model that fully captures all significant features of electronic trading. Zero-intelligence
models assume that order arrivals and cancellations are governed by stochastic processes
whose parameters can be estimated directly from historical data. These are widely used
because the falsifiable hypotheses can be tested through the comparison between the
models’ output and real data. One of the earliest work regard this is Garman [11], who
uses a Poisson model to describe arrivals of buy and sell orders. In the second part of
the paper, a LOB is constructed when there is no market maker. Under the assumption
of Poisson arrivals of buy and sell orders, Luckock [22] constructs a continuous double
auction model which yields a steady-state probability distribution for best bid and best
ask. Smith, Farmer, Gillmemot, & Krishnamurthy [25] assumes exponential waiting time
before cancellations and make testable predictions for basic properties of markets, such as
price volatility, market depth, and bid-ask spread by using simulation. On a higher level,
their work suggestes that a zero-intelligence model is useful to make strong predictions
about the market. The idea of using a zero-intelligence model for LOB is also examined
and checked against statistical analysis of historical data by Gould et al [12].

Two very closely related papers to ours are that of Cont, Stoikov, & Talreja [8]
and Cont & Larrard [7]. Under the same setting of [25], [8] models the LOB as a finite-
dimensional continuous time Markov chain and uses Laplace transforms to compute prob-
abilities of basic events, such as the mid-price movement, and the execution of a market
order before the best price moves. [7] proposes a simpler model in which there is always a
one-tick spread and limit orders arrive only at the best available price. Their system has
a price change once one of two queues at a best price is depleted, and the system shifts
in the appropriate direction by one tick before the book is reinitialized. By applying the
heavy traffic theory, they derive the diffusion-scaled limit of the LOB. We will use similar
queueing theory techniques to develop a diffusion limit of the LOB. However, in contrast
to [7], our model will work under a more general setting in which limit orders have 2-level
depth and we do not have any assumption on the width of the spread. Moreover, our
model does not reinitialize when the system reaches a renewal state.

Note that our LOB model assumes a discrete price grid, and we choose to scale the
arrival rates and volumes of both standing and incoming orders. Alternatively, there
are some literature which establishes the joint convergence of prices and volumes. Horst
and Kreher [14] prove a scaling limit for a full LOB. Under their choice of scaling, the
dynamics of volumes converge to two non-linear PDEs coupled with two non-linear ODEs
which describe the limit of prices. The same technique is also used in papers by Horst
with coauthors Kreher [15], Paulsen [16], and Xu [17]. Lakner, Reed, and Stoikov [21]
and Lakner, Reed, and Simatos [20] assume limit orders are placed on the book according
to a distribution which varies depending on the current best price, and they derive the
limit of scaled measure-valued LOB process in the high frequency regime. Despite the
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fact that Poisson dynamics are widely used to model order flow in LOB, exceptions to this
are papers by Abergel and Jedidi [1], where Hawkes-type dynamics are used, and Yang
and Zhu [28], where Cox processes are used for arrivals and cancellations at the best bid
and ask and the intensities depend on the order book imbalance. Another paper related
to our work is Avellaneda, Reed, and Stoikov [3], where they use a modified model of
[7] and assume that there is hidden liquidity at the best bid and ask because of iceberg
orders or liquidity present at other exchanges. Through diffusion scaling technique, they
derive closed-form solutions for the probability of a price uptick conditional on the sizes
of best bid and ask.

Besides the zero-intelligence order book modeling, some have proposed a microeco-
nomic approach, which models the evolution of the LOB as a result of interactions between
rationally behaving agents. Instead of acting randomly, each agent makes decision strate-
gically to maximize his own utility function. Follmer and Schweizer [10] first derives the
diffusion approximation for stock prices by applying an invariance principle to a sequence
of discrete-time-models resulting from market equilibrium. On top of a microstructure
model, Bayraktar, Hoerst, & Sircar [4] adds inert investors to the market and shows that
their presence creates long-range dependence in the macro model.

The work most closely related to our model is the thesis of Christopher Almost [2].
Following a simplified specification of the dynamics proposed in [8] where orders arrive
according to Poisson processes whose intensities depend on the relative distance between
price of arriving and opposite best price, [2] shows that the heavy-traffic scaled sequence
of LOB models converges to a simple model where the scaled number of orders at each
price level follows either a diffusion or a jump-diffusion process. In particular, by applying
the “crush” argument of Peterson [24], [2] proves that the limiting model has a “two-tick”
bid-ask spread, i.e., the distance between best bid and best ask is two price ticks, and
the processes of best bid and best ask follow a pair of correlated Brownian motions. One
assumption [2] makes during the derivation is that the model is symmetric where buy and
sell orders of the same types arrive at the same rate. Moreover, the ratio of arrival rate of
market order to that of limit order is assumed to be fixed in order to get the limit. This
work is a generalization and extension of [2]. We first relax the “symmetric” assumption to
the “asymmetric” case in which the model takes six parameters for arrival rates of market
buys and market sells, as well as limit buys and limits sells on both Level-I and Level-II.
We prove that the model allows three degrees of freedom among the six parameters in
order to get a diffusion-scaled limit. We follow the same ”crushing” technique used in
[2] to derive the limit of both interior queues and bracketing queues. Different from [2]
in which the interior queues of LOB converge to a split Brownian motion, we show that
in the asymmetric LOB model, they converge to a split two-variance Brownian motion
which is defined and closely studied in Chapter 4. We then extend [2] by discussing the
waiting time between two different renewal states, which results in a price change in the
limiting model. By applying P.Lévy’s theory of Brownian local time, we calculate the
probability of upward price movement and then derive the distribution of waiting time
between two different renewal states.
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Chapter 2

The zero-intelligence Poisson model

In this section we provide a detailed a description of our zero-intelligence Poisson model
and state the the main results of its diffusion-scaled limit.

2.1 Arrivals of orders and their cancellations

In our model prices are multiples of the tick size, and we assume the model has a doubly
infinite price tick grid. We also assume there are four types of orders: market buys, market
sells, limit buys and limit sells, and each of these orders is of size 1. The state of the LOB
is determined by the number of limit orders queued at each price tick. We use a set of
histograms over price ticks to represent the state of the book: positive bars indicating the
number of limit buys waiting to be executed at corresponding price ticks and negative
bars indicating the number of limit sells waiting to be executed at corresponding price
ticks. The limit buys are queued at strictly lower price ticks than the limit sells. The
reason for this is that we assume investors are reasonable and they will not send a limit
buy at a price higher than or equal to the price at which someone wants to sell. We call
a price the best bid price if it is the highest price at which there exists at least one limit
buy order. Similarly, we call a price the best ask price if it is the lowest price at which
there exists at least one limit sell order.

We assume agents in the market do not engage in strategic play when submitting
orders, and the arrivals of orders are Poisson processes. In particular, we assume the
arrivals of market orders and limit orders are governed by the following rules until the
LOB does not contain any limit buys or limit sells. The rate and the direction are
indicated by parameters and arrows in Figure 2.1.

• Market buys: These orders arrive at the best ask price and arrivals occur at the
jump times of a Poisson process with intensity λ0 > 0. The arrival of a market buy
order executes a limit sell order queued at the best ask price and thereby increases
the queue length (reduces the number of limit sell orders in the queue, which is the
absolute value of the queue length) at the best ask price by one unit.
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Figure 2.1: Limit-order book

• Level-I limit buys: These orders arrive at one tick below the best ask price and
arrivals occur at the jump times of a Poisson process with intensity λ1 > 0. These
orders queue for later execution or cancellation. They increase the queue length at
the price tick where they arrive.

• Level-II limit buys: These orders arrive at two ticks below the best ask price and
arrivals occur at the jump times of a Poisson process with intensity λ2 > 0. These
orders queue for later execution or cancellation. They increase the queue length at
the price tick where they arrive.

• Market sells: These orders arrive at the best bid price and arrivals occur at the
jump times of a Poisson process with intensity µ0 > 0. The arrival of a market sell
order executes a limit buy order queued at the best bid price and thereby decreases
the queue length at the best bid price by one unit.

• Level-I limit sells: These orders arrive at one tick above the best bid price and
arrivals occur at the jump times of a Poisson process with intensity µ1 > 0. These
orders queue for later execution or cancellation. They decrease (make more negative)
the queue length at the price tick where they arrive.

• Level-II limit sells: These orders arrive at two ticks above the best bid price and
arrivals occur at the jump times of a Poisson process with intensity µ2 > 0. These
orders queue for later execution or cancellation. They decrease (make more negative)
the queue length at the price tick where they arrive.

• The six Poisson processes controlling the arrivals of market and limit buy and sell
orders are independent.

In addition to arrivals of these four types of orders the state of the LOB might change
by cancellations. When each limit order arrives, it is assigned an exponentially distributed
patience random variable. Whenever a limit buy order is two or more ticks below the best
bid price, its cancellation clock runs and if the cancellation clock reaches the value of
the patience random variable for that order, the order is cancelled and therefore removed

14



from the LOB. Similarly, whenever a limit sell order is two or more ticks above the the
best ask price, its cancellation clock runs and if the cancellation clock reaches the value of
the patience random variable for that order, the order is cancelled and therefore removed
from the LOB. In particular, the cancellations are governed by the following rule, and
they are indicated by the arrows labelled with “c” in Figure 2.1 in which the directions
of the arrows show show the movement of the LOB.

• Cancellations of limit buys: The patience random variable associated to limit buys is
exponentially distributed with mean 1/θb where θb is a positive constant cancellation
rate for limit buys.

• Cancellations of limit sells: The patience random variable associated to limit sells is
exponentially distributed with mean 1/θs where θs is a positive constant cancellation
rate for limit sells.

• The patience random variables associated with different limit orders are independent
of one another and also independent of six Poisson random processes controlling the
arrivals of market orders and limit orders.

2.2 A sequence of pre-limit models

Our goal is to find a diffusion-scaled limit of the LOB. We consider a sequence of LOB
models indexed by positive integers n = 1, 2, . . . .. In the nth model, arrivals of market or-
ders and two-level limit orders are still governed by the six independent Poisson processes,
and each of the orders is of size 1. However, the cancellation rates for limit buys and limit
sells are scaled down by a factor of 1/

√
n. In particular, the mean of the patience random

variable for limit buys is
√
n/θb, and the mean of the patience random variable for limit

sells is
√
n/θs. To perform the diffusion scaling, we scale the nth pre-limit model by ac-

celerating the time by a factor n, and dividing the volumes by
√
n, then pass to the limit

as n→∞. In order to obtain a diffusion-scaled limit for the sequence of pre-limit models
just described, we need the following assumption on the parameters of order arrivals.

Assumption 2.2.1 There are two numbers a > 1 and b > 1 satisfying a + b > ab such
that

λ1 = (a− 1)λ0,

λ2 = (a+ b− ab)λ0,

µ1 = (b− 1)µ0,

µ2 = (a+ b− ab)µ0,

aλ0 = bµ0.

An immediate property of Assumption 2.2.1 that we shall use repeatedly is

c := µ0 − λ1 = λ0 − µ1 = (a+ b− ab)λ0

b
> 0. (2.1)
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Figure 2.2: Initial configurations of our model

2.3 Interior queues and bracketing queues

Although the price ticks are doubly infinite, we focus on the price ticks centering at the
best bid price and the best ask price. We assume that in the nth pre-limit model, the
LOB has initial configurations like those shown in Figure 2.2. Here, Ocl and o indicate
the usual big O and little o notations and we denote the number of orders queued at
these ticks at time t by Sn(t), T n(t), Un(t), V n(t), W n(t), Xn(t), and Y n(t). In the left
configuration, we see few limit buy orders sitting at the best bid price, and significantly
more orders at the next best bid price and the best ask price. Similarly in the right
configuration, there are few limit sell orders at the best ask price, and many more orders
at the next best ask price and the best bid price. In both configurations we see an obvious
difference between the number of orders at the best bid price and the number of orders
at the best ask price, and we call this difference the imbalance of the LOB. Real markets
frequently exhibit imbalances in the LOB. Therefore it is natural to assume that our
model starts from one of these two configurations. We want to study the evolution of the
LOB within a period when the best bid price is higher than or equal to the price tick
of T n and the best ask price is lower than or equal to the price tick of Xn. We observe
that the dynamics of the LOB is determined by the locations of the best bid price and
the best ask price. According to the rule of arrivals of orders we previously mentioned,
the best bid price should be strictly lower than the best ask price. Hence, there are ten
possible scenarios where the best bid price and the best ask price could be, and these are
shown in Figure 2.3. The arrows indicate the directions of queues’ movements while the
parameters indicate the rates of arrivals.

Within each scenario shown in Figure 2.3, T n, Un, V n, W n, and Xn have the same
dynamics. From the previous description of our model, we see that there are six indepen-
dent, unit-intensity Poisson processes governing the arrivals of market orders and limit
orders. We label these six Poisson processes by NMB, NMS, NLB1, NLB2, NLS1, and NLS2,
where MB indicates “market buy”, MS indicates “market sell”, LB1 indicates “level-I
limit buy”, LB2 indicates “level-II limit buy”, LS1 indicates “level-I limit sell”, and LS2
indicates “level-II limit sell”. Moreover, the cancellations of both limit buy orders and
limit sell orders are governed by four independent Poisson processes, which are denoted by
NCB2, NCB3, NCS2 and NCS3 where CB2 indicates cancellations of limit buy orders which
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Figure 2.3: Ten possible dynamics for (T n, Un, V n,W n, Xn)
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are two ticks away from the best bid price, CB3 indicates cancellations of limit buy orders
which are three ticks away from the best bid price, CS2 indicates cancellations of limit sell
orders which are two ticks away from the best ask price, and CS3 indicates cancellations
of limit sell orders which are three ticks away from the best ask price. We also introduce
two stochastic processes pb : [0,∞) → {T, U, V,W,X} and pa : [0,∞) → {T, U, V,W,X}
where pb(t) tells where the best bid price is and ps(t) tells where the best ask price is at
time t ≥ 0. Then we can explicitly write down the dynamics for T n, Un, V n, W n, and
Xn as follow,

dT n(t) = d

(
1{pb(t)=T,ps(t)=U}NLB1 ◦ λ1t+ (1{pb(t)=T,ps(t)=V } + 1{pb(t)=U,ps(t)=V })NLB2 ◦ λ2t

−(1{pb(t)=T,ps(t)=U} + 1{pb(t)=T,ps(t)=V } + 1{pb(t)=T,ps(t)=W}
+1{pb(t)=T,ps(t)=X})NMS ◦ µ0t

−(1{pb(t)=V,ps(t)=W} + 1{pb(t)=V,ps(t)=X})NCB2 ◦
∫ t

0

θb√
n

(
T n(s)

)+
ds

−1{pb(t)=W,ps(t)=X}NCB3 ◦
∫ t

0

θb√
n

(
T n(s)

)+
ds

)
,

dUn(t) = d

(
1{pb(t)=T,ps(t)=U}NMB ◦ λ0t+ (1{pb(t)=T,ps(t)=V } + 1{pb(t)=U,ps(t)=V })NLB1 ◦ λ1t

+(1{pb(t)=T,ps(t)=W} + 1{pb(t)=U,ps(t)=W} + 1{pb(t)=V,ps(t)=W})NLB2 ◦ λ2t

−(1{pb(t)=U,ps(t)=V } + 1{pb(t)=U,ps(t)=W} + 1{pb(t)=U,ps(t)=X})NMS ◦ µ0t

−(1{pb(t)=T,ps(t)=U} + 1{pb(t)=T,ps(t)=V } + 1{pb(t)=T,ps(t)=W}
+1{pb(t)=T,ps(t)=X})NLS1 ◦ µ1t

−1{pb(t)=W,ps(t)=X}NCB2 ◦
∫ t

0

θb√
n

(
Un(s)

)+
ds

)
,

dV n(t) = d

(
(1{pb(t)=T,ps(t)=V } + 1{pb(t)=U,ps(t)=V })NMB ◦ λ0t

+(1{pb(t)=T,ps(t)=W} + 1{pb(t)=U,ps(t)=W} + 1{pb(t)=V,ps(t)=W})NLB1 ◦ λ1t

+(1{pb(t)=T,ps(t)=X} + 1{pb(t)=U,ps(t)=X} + 1{pb(t)=V,ps(t)=X}
+1{pb(t)=W,ps(t)=X})NLB2 ◦ λ2t

−(1{pb(t)=V,ps(t)=W} + 1{pb(t)=V,ps(t)=X})NMS ◦ µ0t

−(1{pb(t)=U,ps(t)=V } + 1{pb(t)=U,ps(t)=W} + 1{pb(t)=U,ps(t)=X})NLS1 ◦ µ1t

−(1{pb(t)=T,ps(t)=U} + 1{pb(t)=T,ps(t)=V } + 1{pb(t)=T,ps(t)=W}

+1{pb(t)=T,ps(t)=X})NLS2 ◦ µ2t

)
,
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dW n(t) = d

(
(1{pb(t)=T,ps(t)=W} + 1{pb(t)=U,ps(t)=W} + 1{pb(t)=V,ps(t)=W})NMB ◦ λ0t

+(1{pb(t)=T,ps(t)=X} + 1{pb(t)=U,ps(t)=X} + 1{pb(t)=V,ps(t)=X}
+1{pb(t)=W,ps(t)=X})NLB1 ◦ λ1t

−1{pb(t)=W,ps(t)=X}NMS ◦ µ0t− (1{pb(t)=V,ps(t)=W} + 1{pb(t)=V,ps(t)=X})NLS1 ◦ µ1t

−(1{pb(t)=U,ps(t)=V } + 1{pb(t)=U,ps(t)=W} + 1{pb(t)=U,ps(t)=X})NLS2 ◦ µ2t

+1{pb(t)=T,ps(t)=U}NCS2 ◦
∫ t

0

θs√
n

(
W n(s)

)−
ds

)
,

dXn(t) = d

(
(1{pb(t)=T,ps(t)=X} + 1{pb(t)=U,ps(t)=X} + 1{pb(t)=V,ps(t)=X}

+1{pb(t)=W,ps(t)=X})NMB ◦ λ0t− 1{pb(t)=W,ps(t)=X}NLS1 ◦ µ1t

−(1{pb(t)=V,ps(t)=W} + 1{pb(t)=V,ps(t)=X})NLS2 ◦ µ2t

+1{pb(t)=T,ps(t)=U}NCS3 ◦
∫ t

0

θs√
n

(
Xn(s)

)−
ds

+(1{pb(t)=T,ps(t)=V } + 1{pb(t)=U,ps(t)=V })NCS2 ◦
∫ t

0

θs√
n

(
Xn(s)

)−
ds

)
.

In nth pre-limit model, let us define the stopping time

σn := min{s ≥ 0 : Un(s) = 0 or W n(s) = 0}, (2.2)

which is the first time when either Un or W n hits zero. In chapter 3, we will study the
evolution of the nth pre-limit model before it reaches σn. In particular, we will derive the
diffusion scaled limit of (T n, Un, V n,W n, Xn) till σn. When this happens, we say the nth

pre-limit model reaches the second renewal state at σn.

In chapter 4, we will construct a stochastic process called two-variance Brownian
motion through Poisson random measures, and introduce some results about excursions
of Brownian motion, which will be applied in the proofs of following chapters.

Let us also define the stopping time

σ̃n := min{s > σ : Un(s) = 0 or W n(s) = 0}. (2.3)

Without loss of generality, we assume W n(σn) = 0, and between σn and σ̃n, we call
(Un, Xn) bracketing processes, and (V n,W n) interior processes. In chapter 5, we will first
study the evolution of the interior processes (V n,W n) between the first renewal state and
the second renewal state and prove the diffusion scaled interior processes weakly converge
under the J1 topology to a split two-variance Brownian motion. We then discuss the
convergence of the bracketing processes (Un, Xn) under the M1 topology. In Chapter
6 we study the distribution of the time between the first renewal state and the second
renewal state in the limiting model and compute the probability of leftward and rightward
price movement.
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Chapter 3

From initial state to the first renewal
state

In this chapter we study the evolution of the LOB from the initial time until time σn, the
first time Un or W n hits zero; see (2.2). Chapter 5 addresses the evolution of the LOB
after σn.

Recall that in the n-th pre-limit model, we assume the LOB has one of the two initial
configurations shown in Figure 2.2, i.e., T n(0), Un(0), W n(0) and Xn(0) are of size O(

√
n)

and V n(0) = o(
√
n). More precisely, we assume the initial condition is nonrandom and

lim
n→∞

1√
n
T n(0) = T ∗(0) > 0, lim

n→∞

1√
n
Un(0) = U∗(0) > 0, (3.1)

lim
n→∞

1√
n
V n(0) = V ∗(0) = 0, (3.2)

lim
n→∞

1√
n
W n(0) = W ∗(0) < 0, lim

n→∞

1√
n
Xn(0) = X∗(0) < 0. (3.3)

Starting from this initial configuration, the LOB will evolve following the dynamics
described in Figure 2.3. We study the evolution of (T n(t∧σn), Un(t∧σn), V n(t∧σn),W n(t∧
σn), Xn(t ∧ σn)) and derive its diffusion scaled limit. We note that before time σn there
are only three possible dynamics acting on (T n, Un, V n,W n, Xn), depending on the sign
of V n, and these are shown in Figure 3.1.

After σn the dynamics acting on the LOB are more complicated because they are
dependent on the locations of the bid and ask prices. To postpone consideration of these
more complicated dynamics until Chapter 5, in this chapter we define the five-tuple of
processes (T n,Un,Vn,Wn,X n) that agrees with (T n, Un, V n,W n, Xn) until time σn1 and
thereafter continues following the dynamics shown in the left, right or middle configuration
of Figure 3.1 depending on whether Vn is positive, negative, or zero, respectively. We
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Figure 3.1: Three possible dynamics for (T n, Un, V n,W n, Xn)

apply the diffusion scaling to both five-tuples, defining(
T̂ n(t), Ûn(t), V̂ n(t), Ŵ n(t), X̂n(t)

)
=

(
1√
n
T n(nt),

1√
n
Un(nt),

1√
n
V n(nt)

1√
n
W n(nt)

1√
n
Xn(nt)

)
, t ≥ 0,

σ̂n = inf{t ≥ 0 : Ûn(t) = 0 or Ŵ n(t) = 0} =
1

n
σn,(

T̂ n(t), Ûn(t), V̂n(t), Ŵn(t), X̂ n(t)
)

=

(
1√
n
T̂ n(nt),

1√
n
Ûn(nt),

1√
n
V̂n(nt),

1√
n
Ŵn(nt),

1√
n
X̂ n(nt)

)
, t ≥ 0. (3.4)

Because the stopping time σn1 plays no role in the evolution of the processes in (3.1), we

are able to identify a limit (T ∗,U∗,V∗,W∗,X ∗) of (T̂ n, Ûn, V̂n, Ŵn, X̂ n). We then define

σ∗ = inf{t ≥ 0 : U∗(t) = 0 or W∗(t) = 0},

and show that the limit of(
T̂ n(t ∧ σ̂n), Ûn(t ∧ σ̂n), V̂ n(t ∧ σ̂n), Ŵ n(t ∧ σ̂n), X̂n(t ∧ σ̂n)

)
, t ≥ 0,

is (
T ∗(t ∧ σ∗),U∗(t ∧ σ∗),V∗(t ∧ σ∗),W∗(t ∧ σ∗),X ∗(t ∧ σ∗)

)
, t ≥ 0;

see Theorem 3.7.5.

The behavior of the limit of the five-tuple of processes (3.4) as n → ∞ is shown to
be the following. Immediately after the initial time, T ∗ jumps to the value

κL :=
λ2µ1

θbλ1

(3.5)

and remains there. Likewise, immediately after time zero X ∗ jumps to the value

κR := −µ2λ1

θsµ1

(3.6)

and stays there. The convergence of T̂ n to T ∗ and of X̂ n to X ∗ are in the M1 topology
on

D[0−,∞) := R×D[0,∞),
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an extended version of D[0,∞) that allows for jumps at time zero; see Proposition 3.7.4.
The process V∗ is identically zero, and (U∗,W∗) is a pair of Brownian motions with zero

drift and covariance matrix given in Corollary 3.5.1. The convergence of (Ûn, V̂n, Ŵn)
to (U∗,V∗,W∗) is in the J1 topology. The simple structure of (U∗,W∗) enables us to
compute the joint distribution of the stopping times

τU∗ = inf{t ≥ 0 : U∗(t) = 0},
τW∗ = inf{t ≥ 0 :W∗(t) = 0},

and in particular, P{τU∗ < τW∗} and P{τU∗ > τW∗}; see Corollary 3.6.1. Of course,
σ∗ = min(τU∗,W∗).

In Section 3.1 we prepare for the determination of the limit of (Un,Vn,Wn) by chang-
ing the variables from the triple (Un,Vn,Wn) to a new triple of processes (Jn, Kn, Ln).

We scale these processes in Section 3.2 to obtain (Ĵn, K̂n, L̂n). Section 3.3 is devoted

to showing that K̂n =⇒ 0. In Section 3.4 we show that (Ĵn, L̂n) converges to a pair of
correlated Brownian motions (J∗, L∗). Applying the inverse of the transformation in Sec-
tion 3.1 to the limiting triple (J∗, 0, L∗), in Section 3.5 we obtain the triple (U∗,V∗,W∗)
described above as the limit of (Ûn, V̂n, Ŵn). The computation of the joint distribu-

tion of (τU∗ , τW ∗) is in Section 3.6. Section 3.7 shows the convergence of (T̂ n, X̂ n) to
(T ∗(0)I{0}(·) + κLI(0,∞)(·), X∗(0)I{0}(·) + κRI(0,∞)(·)).

3.1 Transformation of variables

Since there are three kinds of dynamics depending on the sign of Vn, we can define three
regions in R5,

R1 :=
{

(t, u, v, w, x) : v > 0},
R2 :=

{
(t, u, v, w, x) : v = 0},

R3 :=
{

(t, u, v, w, x) : v < 0},

and the dynamics acting on (T n,Un,Vn,Wn,X n) will be the same within each region.
Although there are six independent Poisson processes governing the arrivals of market or-
ders and limit orders, for convenience we will introduce twenty independent unit-intensity
Poisson processes to describe the evolutions of (T n,Un,Vn,Wn,X n). This is possible
because thinned Poisson processes are also Poisson processes. We denote these Poisson
processes by Ni,×,∗, where i = 1, 2, 3 indicates the region where (T n,Un,Vn,Wn,X n)
is, × ∈ {T ,U ,V ,W ,X} indicates which of the processes among (T n,Un,Vn,Wn,X n) is
affected by the Poisson process, and ∗ ∈ {+,−} indicates whether the Poisson process
increases(+) or decreases(−) the affected process. For i = 1, . . . , 3, we define Pi(t) to be
the time (T n,Un,Vn,Wn,X n) spends in region Ri up to time t. In particular, we have

Pi(t) =

∫ t

0

1{(T n(s),Un(s),Vn(s),Wn(s),Xn(s))∈Ri} ds, i = 1, 2, 3.
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Then, according to Figure 3.1, we have

T n(t) = T n(0)−N1,T ,−
( ∫ t

0

θb√
n

(T n(s))+dP1(s)
)

+N3,T ,+
(
λ2P3(t)

)
, (3.7)

Un(t) = Un(0) +N1,U ,+
(
λ2P1(t)

)
+N2,U ,+

(
λ2P2(t)

)
−N2,U ,−

(
µ0P2(t)

)
+N3,U ,+

(
λ1P3(t)

)
−N3,U ,−

(
µ0P3(t)

)
, (3.8)

Vn(t) = Vn(0) +N1,V,+
(
λ1P1(t)

)
−N1,V,−

(
µ0P1(t)

)
+N2,V,+

(
λ1P2(t)

)
−N2,V,−

(
µ1P2(t)

)
+N3,V,+

(
λ0P3(t)

)
−N3,V,−

(
µ1P3(t)

)
, (3.9)

Wn(t) = Wn(0) +N1,W,+

(
λ0P1(t)

)
−N1,W,−

(
µ1P1(t)

)
+N2,W,+

(
λ0P2(t)

)
−N2,W,−

(
µ2P2(t)

)
−N3,W,−

(
µ2P3(t)

)
, (3.10)

X n(t) = X n(0)−N1,X ,−
(
µ2P1(t)

)
+N3,X ,+

( ∫ t

0

θs√
n

(X n(s))−dP3(s)
)
. (3.11)

Recalling the positive constants a and b from Assumption 2.2.1, we define (Jn, Kn, Ln)
as the continuous piecewise linear transformation of (Un,Vn,Wn) given by

Jn(t) :=

{
Vn(t) +Wn(t) if

(
T n(t),Un(t),Vn(t),Wn(t),X n(t)) ∈ R1 ∪R2,

aVn(t) +Wn(t) if
(
T n(t),Un(t),Vn(t),Wn(t),X n(t)) ∈ R3.

(3.12)

Kn(t) := Vn(t), (3.13)

Ln(t) :=

{
Un(t) + bVn(t) if

(
T n(t),Un(t),Vn(t),Wn(t),X n(t)) ∈ R1,

Un(t) + Vn(t) if
(
T n(t),Un(t),Vn(t),Wn(t),X n(t)) ∈ R2 ∪R3.

(3.14)

Note that this transformation is invertible. Indeed, for i = 1, 2, 3, the image of Ri

under this transformation is R′i, where the R′i regions are defined by

R′1 :=
{

(j, k, l) : k > 0
}
,

R′2 :=
{

(j, k, l) : k = 0
}
,

R′3 :=
{

(j, k, l) : k < 0
}
,

and the inverse map is

Un(t) =

{
Ln(t)− bKn(t) if

(
Jn(t), Kn(t), Ln(t)

)
∈ R′1,

Ln(t)−Kn(t) if
(
Jn(t), Kn(t), Ln(t)

)
∈ R′2 ∪R′3,

(3.15)

Vn(t) = Kn(t), (3.16)

Wn(t) =

{
Jn(t)−Kn(t) if

(
Jn(t), Kn(t), Ln(t)

)
∈ R′1 ∪R′2,

Jn(t)− aKn(t) if
(
Jn(t), Kn(t), Ln(t)

)
∈ R′3.

(3.17)

It can be verified that the inverse transformation defined by (3.15), (3.16) and (3.17) is
continuous on R′ := ∪3

i=1R′i.
An increase of Vn by one unit when (T n,Un,Vn,Wn,X n) is in R2 increases Ln by

b units. An increase or decrease of Vn by one unit when (T n,Un,Vn,Wn,X n) is in R1

increases or decreases, respectively, Ln by b units. Similarly, a decrease of Vn by one unit
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when (T n,Un,Vn,Wn,X n) is in R2 decrease Jn by a units. An increase or decrease of
Vn by one unit when (T n,Un,Vn,Wn,X n) is in R3 increases or decreases, respectively,
Jn by a units. Otherwise, all increases or decreases in Un, Vn or Wn by one unit increase
or decrease Jn or Ln by one unit. It follows that

Jn(t) = Jn(0) +N1,V,+ ◦ λ1P1(t)−N1,V,− ◦ µ0P1(t) +N1,W,+ ◦ λ0P1(t)

−N1,W,− ◦ µ1P1(t) +N2,V,+ ◦ λ1P2(t)− aN2,V,− ◦ µ1P2(t)

+N2,W,+ ◦ λ0P2(t)−N2,W,− ◦ µ2P2(t) + aN3,V,+ ◦ λ0P3(t)

−aN3,V,− ◦ µ1P3(t)−N3,W,− ◦ µ2P3(t), (3.18)

Ln(t) = Ln(0) +N1,U ,+ ◦ λ2P1(t) + bN1,V,+ ◦ λ1P1(t)− bN1,V,− ◦ µ0P1(t)

+N2,U ,+ ◦ λ2P2(t)−N2,U ,− ◦ µ0P2(t) + bN2,V,+ ◦ λ1P2(t)

−N2,V,− ◦ µ1P2(t) +N3,U ,+ ◦ λ1P3(t)−N3,U ,− ◦ µ0P3(t)

+N3,V,+ ◦ λ0P3(t)−N3,V,− ◦ µ1P3(t). (3.19)

Since Kn = Vn, we have

Kn(t) = Kn(0) +N1,V,+ ◦ λ1P1(t)−N1,V,− ◦ µ0P1(t) +N2,V,+ ◦ λ1P2(t)

−N2,V,− ◦ µ1P2(t) +N3,V,+ ◦ λ0P3(t)−N3,V,− ◦ µ1P3(t). (3.20)

In the region R3, Kn is negative and a change in Kn results in a change in |Kn| of the
same magnitude but the opposite direction. In the region R2, Kn is zero and a unit
change in Kn results in a unit increase in |Kn|. Modifying (3.20) accordingly, we obtain∣∣Kn(t)

∣∣ =
∣∣Kn(0)

∣∣+N1,V,+ ◦ λ1P1(t)−N1,V,− ◦ µ0P1(t) +N2,V,+ ◦ λ1P2(t)

+N2,V,− ◦ µ1P2(t)−N3,V,+ ◦ λ0P3(t) +N3,V,− ◦ µ1P3(t). (3.21)

3.2 Diffusion scaling

Recall that the diffusion scaling of a sequence of processes Qn is defined by,

Q̂n(t) =
1√
n
Qn(nt).

Because each of the regionsRi, i = 1, 2, 3, is a cone, when we apply the diffusion scaling to
the processes T n, Un, Vn,Wn, X n, Jn, Kn and Ln in the piecewise linear transformations
(3.12), (3.13), and (3.14), we obtain the analogous formulas

Ĵn(t) :=

{
V̂n(t) + Ŵn(t) if

(
T̂ n(t), Ûn(t), V̂n(t), Ŵn(t), X̂ n(t)) ∈ R1 ∪R2,

aV̂n(t) + Ŵn(t) if
(
T̂ n(t), Ûn(t), V̂n(t), Ŵn(t), X̂ n(t)) ∈ R3.

(3.22)

K̂n(t) := V̂n(t), (3.23)

L̂n(t) :=

{
Ûn(t) + bV̂n(t) if

(
T̂ n(t), Ûn(t), V̂n(t), Ŵn(t), X̂ n(t)) ∈ R1,

Ûn(t) + V̂n(t) if
(
T̂ n(t), Ûn(t), V̂n(t), Ŵn(t), X̂ n(t)) ∈ R2 ∪R3.

(3.24)
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The inverse of this transformation is continuous. In fact, the inverse is given by
replacing Jn by Ĵn, Kn by K̂n, and Ln by L̂n in (3.15), (3.16) and (3.17),

Ûn(t) =

{
L̂n(t)− bK̂n(t) if

(
Ĵn(t), K̂n(t), L̂n(t)

)
∈ R′1,

L̂n(t)− K̂n(t) if
(
Ĵn(t), K̂n(t), L̂n(t)

)
∈ R′2 ∪R′3,

(3.25)

V̂n(t) = K̂n(t), (3.26)

Ŵn(t) =

{
Ĵn(t)− K̂n(t) if

(
Ĵn(t), K̂n(t), L̂n(t)

)
∈ R′1 ∪R′2,

Ĵn(t)− aK̂n(t) if
(
Ĵn(t), K̂n(t), L̂n(t)

)
∈ R′3.

(3.27)

The Continuous Mapping Theorem implies that we can determine the weak limit in the
J1 topology of (Ûn, V̂n, Ŵn) by determining the limit of (Ĵn, K̂n, L̂n).

We next center the twenty independent unit-intensity Poisson processes appearing in
(3.7) to (3.11), defining

Mi,×,∗(t) := Ni,×,∗(t)− t, t ≥ 0.

Each of these compensated Poisson processes is a martingale relative its own filtration,
and these martingale are independent. For n = 1, 2, . . . , their diffusion-scaled versions
are

M̂n
i,×,∗(t) :=

1√
n

(
Mi,×,∗(nt)− nt

)
, t ≥ 0, (3.28)

and each of these processes is likewise a martingale relative to its own filtration, and these
processes are independent. For i = 1, 2, 3 and n = 1, 2, . . . , we also define

P
n

i (t) :=
1

n
Pi(nt), t ≥ 0.

Replacing the Poisson processes in (3.18) and (3.19) by compensated Poisson pro-
cesses and applying the diffusion scaling, we obtain

Ĵn(t) = Ĵn(0) + M̂n
1,V,+ ◦ λ1P

n

1 (t)− M̂n
1,V,− ◦ µ0P

n

1 (t) + M̂n
1,W,+ ◦ λ0P

n

1 (t)

−M̂n
1,W,− ◦ µ1P

n

1 (t) + M̂n
2,V,+ ◦ λ1P

n

2 (t)− aM̂n
2,V,− ◦ µ1P

n

2 (t)

+M̂n
2,W,+ ◦ λ0P

n

2 (t)− M̂n
2,W,− ◦ µ2P

n

2 (t) + aM̂n
3,V,+ ◦ λ0P

n

3 (t)

−aM̂n
3,V,− ◦ µ1P

n

3 (t)− M̂n
3,W,− ◦ µ2P

n

3 (t), (3.29)

L̂n(t) = L̂n(0) + M̂n
1,U ,+ ◦ λ2P

n

1 (t) + bM̂n
1,V,+ ◦ λ1P

n

1 (t)− bM̂n
1,V,− ◦ µ0P

n

1 (t)

+M̂n
2,U ,+ ◦ λ2P

n

2 (t)− M̂n
2,U ,− ◦ µ0P

n

2 (t) + bM̂n
2,V,+ ◦ λ1P

n

2 (t)

−M̂n
2,V,− ◦ µ1P

n

2 (t) + M̂n
3,U ,+ ◦ λ1P

n

3 (t)− M̂n
3,U ,− ◦ µ0P

n

3 (t)

+M̂n
3,V,+ ◦ λ0P

n

3 (t)− M̂n
3,V,− ◦ µ1P

n

3 (t). (3.30)
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The drift terms that arise from the centering of the Poisson processes vanish in (3.29) and
(3.30) because, according to Assumption 2.2.1 and its consequence (2.1),

(λ1 − µ0 + λ0 − µ1)P
n

1 = 0,

(λ1 − aµ1 + λ0 − µ2)P
n

2 = 0,

(aλ0 − aµ1 − µ2)P
n

3 = 0,

(λ2 + bλ1 − bµ0)P
n

1 = 0,

(λ2 − µ0 + bλ1 − µ1)P
n

2 = 0,

(λ1 − µ0 + λ0 − µ1)P
n

3 = 0.

The filtration {Fn(t)}t≥0 we use for Ĵn and L̂n is the one generated by the sixteen time-

changed processes M̂n
1,V,+ ◦ λ1P

n

1 , . . . , M̂
n
3,V,− ◦ µ1P

n

3 appearing in (3.29) and (3.30), and

three occupation time processes P
n

1 , P
n

2 , and P
n

3 . These sixteen time-changed processes
are not independent because of the coupling of the time changes. However, they are each
martingales relative to the filtration {Fn(t)}t≥0, as are Ĵn and L̂n.

Replacing the Poisson processes in (3.20) and (3.21) by compensated Poisson pro-
cesses and applying the diffusion scaling, we obtain

K̂n(t) = K̂n(0) + M̂n
1,V,+ ◦ λ1P

n

1 (t)− M̂n
1,V,− ◦ µ0P

n

1 (t) + M̂n
2,V,+ ◦ λ1P

n

2 (t)

−M̂n
2,V,− ◦ µ1P

n

2 (t) + M̂n
3,V,+ ◦ λ0P

n

3 (t)− M̂n
3,V,− ◦ µ1P

n

3 (t)

+
√
n(λ1 − µ0)P

n

1 (t) +
√
n(λ1 − µ1)P

n

2 (t)

+
√
n(λ0 − µ1)P

n

3 (t), (3.31)

∣∣K̂n(t)
∣∣ =

∣∣K̂n(0)
∣∣+ M̂n

1,V,+ ◦ λ1P
n

1 (t)− M̂n
1,V,− ◦ µ0P

n

1 (t) + M̂n
2,V,+ ◦ λ1P

n

2 (t)

+M̂n
2,V,− ◦ µ1P

n

2 (t)− M̂n
3,V,+ ◦ λ0P

n

3 (t) + M̂n
3,V,− ◦ µ1P

n

3 (t)

+
√
n(λ1 − µ0)P

n

1 (t) +
√
n(λ1 + µ1)P

n

2 (t)

+
√
n(µ1 − λ0)P

n

3 (t). (3.32)

Since in nth pre-limit model, we assume that

Un(0)/
√
n→ u0, V n(0)/

√
n→ 0, W n(0)/

√
n→ w0,

where u0 is a positive constant and w0 is a negative constant, from (3.22), (3.23), and
(3.24), we have

Ĵn(0)→ w0, K̂n(0)→ 0, L̂n(0)→ u0.

Replacing the Poisson processes in (3.7) and (3.11) by compensated Poisson processes,
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applying the diffusion scaling, we obtain

T̂ n(t) = T̂ n(0)− M̂n
1,T ,−

( ∫ t

0

θb(T̂ n(s))+dP
n

1 (s)
)

+ M̂n
3,T ,+

(
λ2P

n

3 (t)
)

−
√
n

∫ t

0

θb(T̂ n(s))+dP
n

1 (s) +
√
nλ2P

n

3 (t), (3.33)

X̂ n(t) = X̂ n(0)− M̂n
1,X ,−

(
µ2P

n

1 (t)
)

+ M̂n
3,X ,+

( ∫ t

0

θs(X̂ n(s))−dP
n

3 (s)
)

−
√
nµ2P

n

1 (t) +
√
n

∫ t

0

θs(X̂ n(s))−dP
n

3 (s). (3.34)

3.3 Crushing K̂n

We denote by D([0,∞),Rd) the space of real-valued càdlàg functions from [0,∞) to Rd.
We shall use both the J1 and M1 topologies on this space; see Ethier and Kurtz [9] for
the former and Whitt [26] for both topologies. A sequence of càdlàg processes is said
to converge weakly-J1 or weakly-M1 if the measures induced on D([0,∞),Rd) converge

weakly under the J1 or M1 topologies, respectively. We denote these convergences by
J1=⇒

and
M1=⇒. In this section we identify the weak-J1 limit of the sequence {K̂n}∞n=1.

Definition 3.3.1 We say that a sequence of càdlàg processes {Xn}∞n=1 is bounded above
in probability if for every T > 0 and ε > 0, there exists a K and a positive integer N
such that

P

{
sup

0≤t≤T
Xn(t) > K

}
< ε ∀n ≥ N.

We say that {Xn}∞n=1 is bounded below in probability if {−Xn}∞n=1 is bounded above
in probability. We say that {Xn}∞n=1 is bounded in probability and write Xn = Ocl(1) if
{Xn}∞n=1 is both bounded above and bounded below in probability, and for every subsequence
{Xnk}∞k=1 of {Xn}∞n=1, there exists a sub-subsequence {Xnkp}∞p=1 such that

Xnkp
J1=⇒ X∗,

where X∗ ∈ C([0,∞),Rd). We say that Xn = o(1) if Xn J1=⇒ 0, or equivalently, if for all
T > 0,

sup
0≤t≤T

∣∣Xn(t)
∣∣ P→ 0 as n→∞.

Remark 3.3.2 A classical result is that the diffusion-scaled compensated Poisson pro-
cesses (3.28) converge weakly-J1 to independent Brownian motions. See Billingsley [5],
Section 17.3. This implies that these processes are Ocl(1). Since P

n

i (t) ≤ t and mono-
tonic for i = 1, . . . , 8 and all t ≥ 0, the time-changed diffusion-scaled compensated Poisson
processes appearing in (3.29)–(3.32) are also Ocl(1).
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Theorem 3.3.3 K̂n J1=⇒ 0.

Proof: We modify a proof due to Peterson [24]. For t ≥ 0, we define

τn(t) :=

{
sup

{
s ∈ [0, t] : K̂n(s) = 0

}
if
{
s ∈ [0, t] : K̂n(s) = 0

}
6= ∅,

0 if
{
s ∈ [0, t] : K̂n(s) = 0

}
= ∅.

Because K̂n(s) 6= 0 for s ∈ (τn(t), t], P
n

2 is flat on this interval, and we have

P
n

1 (t) + P
n

3 (t) = P
n

1

(
τn(t)

)
+ P

n

3

(
τn(t)

)
+ t− τn(t)

and
P
n

2 (t) = P
n

2

(
τn(t)

)
.

Substituting this into (3.32), we obtain

0 ≤
∣∣K̂n(t)

∣∣
=

∣∣K̂n
(
τn(t)

)∣∣+Ocl(1)− c
√
n
[
P
n

1 (t) + P
n

3 (t)− P n

1

(
τn(t)

)
− P n

3

(
τn(t)

)]
≤

∣∣K̂n
(
τn(t)

)∣∣+Ocl(1)− c
√
n
(
t− τn(t)

)
, (3.35)

where c is defined by (2.1). Since K̂n(τn(t))→ 0 if τn(t) = 0, and otherwise |K̂n(τn(t))| =
1/
√
n, (3.35) implies

√
n(e − τn) is bounded above and below, where e is the identify

process e(t) = t for all t ≥ 0. This implies

τn
J1=⇒ e, (3.36)

and thus
0 ≤ P

n

i − P
n

i ◦ τn ≤ e− τn = o(1). (3.37)

Because the limits of the processes M̂n
i,×,∗ are continuous, (3.37) implies that

M̂n
i,×,∗ ◦ αP

n

i − M̂n
i,×,∗ ◦ αP

n

i ◦ τn = o(1)

for any positive constant α. Therefore, we can upgrade the estimate in (3.35) to

0 ≤
∣∣K̂n(t)

∣∣ ≤ o(1) + o(1)− c
√
n
(
t− τn(t)

)
,

which implies √
n (e− τn) = o(1), (3.38)

and we finish the proof. �

Remark 3.3.4 From (3.31) and (3.32), we see that

√
nc(P

n

3 − P
n

1 ) +
√
n(λ1 − µ1)P

n

2 = Ocl(1), (3.39)

−
√
nc(P

n

3 + P
n

1 ) +
√
n(λ1 + µ1)P

n

2 = Ocl(1), (3.40)
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Dividing (3.39) and (3.40) by
√
n, we see that

c(P
n

3 − P
n

1 ) + (λ1 − µ1)P
n

2
J1=⇒ 0, (3.41)

−c(P n

3 + P
n

1 ) + (λ1 + µ1)P
n

2
J1=⇒ 0. (3.42)

If we multiply (3.39) by (λ1 + µ1), multiply (3.40) by −(λ1 − µ1), and sum the two, we
obtain √

n(λ1P
n

3 − µ1P
n

1 ) = Ocl(1). (3.43)

3.4 Convergence of Ĵn and L̂n

The proof of convergence of Ĵn and identification of the limit proceeds through several
steps. Along the way we identify the limits of the processes P

n

i , i = 1, . . . , 8.

Proposition 3.4.1

(Ĵn, L̂n)
J1=⇒ (J∗, L∗),

where (J∗, L∗) is a two-dimensional correlated Brownian motion with the covariance ma-
trix

Σ =

[
cJ cJL
cJL cL

]
,

where

cJ = 2aλ0
λ1

λ0 + λ1

+ (µ2 + a2µ1 + aλ0)
λ0 − µ1

λ0 + λ1

+ (µ2 + a2µ1 + a2λ0)
µ1

λ0 + λ1

= 2λ0(a2 − a2

b
+
a

b
),

cL = (b2λ1 + λ2 + b2µ0)
λ1

λ0 + λ1

+ (b2λ1 + λ2 + aλ0)
λ0 − µ1

λ0 + λ1

+ 2aλ0
µ1

λ0 + λ1

= 2λ0(ab− b+ 1),

cJL = (bλ1 + bµ0)
λ1

λ0 + λ1

+ (bλ1 + aµ1)
λ0 − µ1

λ0 + λ1

+ (aλ0 + aµ1)
µ1

λ0 + λ1

= 2λ0
2ab− a− b

b
.

Proof: Define

Ψ̂n
1 := M̂n

1,V,+ ◦ λ1e− M̂n
1,V,− ◦ µ0e+ M̂n

1,W,+ ◦ λ0e− M̂n
1,W,− ◦ µ1e,

Ψ̂n
2 := M̂n

2,V,+ ◦ λ1e− aM̂n
2,V,− ◦ µ1e+ M̂n

2,W,+ ◦ λ0e− M̂n
2,W,− ◦ µ2e,

Ψ̂n
3 := aM̂n

3,V,+ ◦ λ0e− aM̂n
3,V,− ◦ µ1e− M̂n

3,W,− ◦ µ2e,

Λ̂n
1 := M̂n

1,U ,+ ◦ λ2e+ bM̂n
1,V,+ ◦ λ1e− bM̂n

1,V,− ◦ µ0e,

Λ̂n
2 := M̂n

2,U ,+ ◦ λ2e− M̂n
2,U ,− ◦ µ0e+ bM̂n

2,V,+ ◦ λ1e− M̂n
2,V,− ◦ µ1e,

Λ̂n
3 := M̂n

3,U ,+ ◦ λ1e− M̂n
3,U ,− ◦ µ0e+ M̂n

3,V,+ ◦ λ0e− M̂n
3,V,− ◦ µ1e,
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so that Ĵn = Ĵn(0)+
∑3

i=1 Ψ̂n
i ◦P

n

i , and L̂n = L̂n(0)+
∑3

i=1 Λ̂n
i ◦P

n

i . Because [M̂n
i,×,∗, M̂

n
i,×,∗]

J1=⇒
e and these processes are independent, we have[

Ψ̂n
1 , Ψ̂

n
1

] J1=⇒ 2aλ0e =: A1,[
Ψ̂n

2 , Ψ̂
n
2

] J1=⇒ (µ2 + a2µ1 + aλ0)e =: A2,[
Ψ̂n

3 , Ψ̂
n
3

] J1=⇒ (µ2 + a2µ1 + a2λ0)e =: A3,[
Λ̂n

1 , Λ̂
n
1

] J1=⇒ (b2λ1 + λ2 + b2µ0)e =: B1,[
Λ̂n

2 , Λ̂
n
2

] J1=⇒ (b2λ1 + λ2 + aλ0)e =: B2,[
Λ̂n

3 , Λ̂
n
3

] J1=⇒ 2aλ0e =: B3,[
Ψ̂n

1 , Λ̂
n
1

] J1=⇒ (bλ1 + bµ0)e =: C1,[
Ψ̂n

2 , Λ̂
n
2

] J1=⇒ (bλ1 + aµ1)e =: C2,[
Ψ̂n

3 , Λ̂
n
3

] J1=⇒ (aλ0 + aµ1)e =: C3,

The other cross variations are zero. Returning to the equations (3.41) and (3.42) and the
obvious equation

P
n

1 + P
n

2 + P
n

3 = e,

we have

P
n

1
J1=⇒ λ1

λ0 + λ1

e, P
n

2
J1=⇒ λ0 − µ1

λ0 + λ1

e, P
n

3
J1=⇒ µ1

λ0 + λ1

e, (3.44)

We have

[
Ĵn, Ĵn

]
=

3∑
i=1

[
Ψ̂n
i , Ψ̂

n
i

]
◦ P n

i

J1=⇒ λ1

λ0 + λ1

A1 +
λ0 − µ1

λ0 + λ1

A2 +
µ1

λ0 + λ1

A3

= cJe,

[
L̂n, L̂n

]
=

3∑
i=1

[
Λ̂n
i , Λ̂

n
i

]
◦ P n

i

J1=⇒ λ1

λ0 + λ1

B1 +
λ0 − µ1

λ0 + λ1

B2 +
µ1

λ0 + λ1

B3

= cLe,

[
Ĵn, L̂n

]
=

3∑
i=1

[
Ψ̂n
i , Λ̂

n
i

]
◦ P n

i

J1=⇒ λ1

λ0 + λ1

C1 +
λ0 − µ1

λ0 + λ1

C2 +
µ1

λ0 + λ1

C3

= cJLe.
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Since Ĵn(0) → w0 and L̂n(0) → u0, we now apply [9], Theorem 1.4 of Section 7.1,

to the sequence of martingales {Ĵn}∞n=1 and {L̂n}∞n=1 relative to the filtrations {Fns }s≥0

to conclude that (Ĵn, L̂n) converges weakly-J1 to (J∗, L∗), which is a two-dimensional
correlated Brownian motion with the covariance matrix

Σ =

[
cJ cJL
cJL cL

]
.

�

3.5 Convergence of (Ûn, V̂n, Ŵn)

Corollary 3.5.1

(Ûn, V̂n, Ŵn)
J1=⇒ (U∗, 0,W∗),

where (U∗,W∗) is a two-dimensional correlated Brownian motion with the covariance
matrix

Σ =

[
cJ cJL
cJL cL

]
.

Proof: The proof simply follows from (3.25) to (3.27), Theorem 3.3.3 and Proposi-
tion 3.4.1. �

Since D[0,∞) under the J1 topology is separable, we can apply the Skorohod Rep-
resentation Theorem to build a probability space (Ω, F,P) and random variables (for the

convenience of the proof we do not relabel these), i.e., (U∗, 0,W∗), (Ûn, V̂n, Ŵ n)n≥1, on
this space such that we have pathwise convergence, i.e.,

(Ûn, V̂n, Ŵ n) −→ (U∗, 0,W∗)

almost surely. Let us define

τnU = inf{t > 0| Ûn(t) ≤ 0},
τnW = inf{t > 0| Ŵn(t) ≤ 0},
τU = inf{t > 0| U∗(t) ≤ 0},
τW = inf{t > 0| W∗(t) ≤ 0}.

Proposition 3.5.2 Under the probability space we mentioned above, we have

τnU → τU ,

τnW → τW .

Proof: The function Φ : C[0,∞)→ [0,∞] defined by

Φ(x) = min{t ≥ 0 : x(t) = 0} (3.45)
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is almost surely continuous under Wiener measure. Because τnU = Φ(Ûn) and Ûn → U∗
almost surely under the J1 topology, the continuous mapping theorem implies

τnU → Φ(U∗) = τU

almost surely. We can prove the other convergence by the exact same argument. �

Let us define,

σ̃n = τnU ∧ τnW ,
σ̃ = τU ∧ τW .

Corollary 3.5.3

(Ûn·∧σ̃n , V̂n·∧σ̃n , Ŵn
·∧σ̃n)

J1−→ (U∗·∧σ̃, 0,W∗·∧σ̃)

almost surely.

Proof: Because the mapping Θ : R2 → R defined by

Θ(α, β) = α ∧ β (3.46)

is continuous, from Proposition 3.5.2, we have

(Ûn, V̂n, Ŵn, τnU ∧ τnW)
J1−→ (U∗, 0,W∗, τU ∧ τW) (3.47)

almost surely. The mapping (x, t) 7→ x·∧t from C[0,∞) × [0,∞) to C[0,∞) is almost
surely continuous under Wiener measure, and so from (3.47) and the continuous mapping
theorem, we have

(Ûn·∧σ̃n , V̂n·∧σ̃n , Ŵn
·∧σ̃n)

J1−→ (U∗·∧σ̃, 0,W∗·∧σ̃)

almost surely. �

3.6 Properties of the first passage times τU and τW

Since (U∗,W∗) is a two-dimensional correlated Brownian motion starting at (w0, u0), and
(τU , τW) are their first passage times, we can apply [23] to get following corollary. Since
in [23], the two-dimensional Brownian motion (X1, X2) begins in the first quadrant (i.e.,
X1(0) > 0, X2(0) > 0) and has covariance matrix[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
,

and our correlated Brownian motion (U∗,W∗) begins in the fourth quadrant (i.e., u0 > 0,
w0 < 0) and has covariance matrix [

cJ cJL
cJL cL

]
,
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we identify U∗ with X1 and −W∗ with X2, so that, in the notation of [23],

X1(0) := u0, X2(0) := −w0,

σ1 :=
√
cJ , σ2 :=

√
cG,

ρ := − cGJ√
cJcG

< 0,

a1 :=
u0√
cJ
, a2 :=

−w0√
cG
.

From equations (2.4), (2.5), (3.2) and (3.3) in [23], we have

Corollary 3.6.1

P{τU < τW} =

∫ ∞
0

1

αr0

(r/r0)(π/α−1) sin(πθ0/α)

sin2(πθ0/α) + [(r/r0)π/α + cos(πθ0/α)]2
dr,

P{τU > τW} =

∫ ∞
0

1

αr0

(r/r0)(π/α−1) sin(πθ0/α)

sin2(πθ0/α) + [(r/r0)π/α − cos(πθ0/α)]2
dr,

where

α := tan−1
(
−
√

1− ρ2

ρ

)
,

r0 :=

√
a2

1 + a2
2 − 2ρa1a2

1− ρ2
,

θ0 := tan−1
(a2

√
1− ρ2

a1 − ρa2

)
.

Moreover, the joint density of (τU , τW) is given by

P{τU ∈ ds, τW ∈ dt} = f(s, t)ds dt,

where for s < t we have

f(s, t) =
π sinα

2α2
√
s(t− s cos2 α)(t− s)

exp
(
− r2

0

2s

t− s cos(2α)

(t− s) +
(
t− s cos(2α)

))
×
∞∑
n=1

n sin(
nπ(α− θ0)

α
)Inπ/2α

( r2
0

2s

t− s
(t− s) +

(
t− s cos(2α)

)),
and for s > t we have

f(s, t) =
π sinα

2α2
√
t(s− t cos2 α)(s− t)

exp
(
− r2

0

2t

s− t cos(2α)

(s− t) +
(
s− t cos(2α)

))
×
∞∑
n=1

n sin(
nπθ0

α
)Inπ/2α

(r2
0

2t

s− t
(s− t) +

(
s− t cos(2α)

)),
where Iν denotes the modified Bessel function of the first kind of order ν.
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3.7 Convergence of T̂ n and X̂ n

Theorem 3.7.1 The sequence of càdlàg processes {T̂ n}∞n=1 and {X̂ n}∞n=1 are bounded in
probability on compact time intervals.

It suffices to prove {T̂ n}∞n=1 is bounded in probability on compact time intervals.
The proof of this theorem is presented in Lemmas 3.7.2 and 3.7.3 below. For simplicity,
we write Xn = Ôcl(1) if {Xn}∞n=1 is both bounded above and below in probability.

Lemma 3.7.2 The sequence of processes {T̂ n}∞n=1 is bounded above in probability on
compact time intervals.

Proof: To simplify notation, we rewrite (3.33) as

T̂ n = T̂ n(0) + Y n
1 + Y n

2 + Y n
3 + Y n

4 , (3.48)

where

Y n
1 (t) = −M̂n

1,T ,−

(∫ t

0

θb
(
T̂ n(s)

)+
dP

n

1 (s)

)
, (3.49)

Y n
2 (t) = M̂n

3,T ,+
(
λ2P

n

3 (t)
)
, (3.50)

Y n
3 (t) = −

√
n

∫ t

0

θb
(
T̂ n(s)

)+
dP

n

1 (s), (3.51)

Y n
4 (t) =

√
nλ2P

n

3 (t). (3.52)

Then
Y n

2
J1=⇒ Y ∗2 , (3.53)

where Y ∗2 is a continuous process. We rewrite Y n
4 as

Y n
4 =

√
n
(
λ2P

n

3 (t)− λ2µ1

λ1

P
n

1 (t)
)

+
√
n
λ2µ1

λ1

P
n

1 (t).

From (3.43) we see that

√
n
(
λ2P

n

3 (t)− λ2µ1

λ1

P
n

1 (t)
)

= Ocl(1) = Ôcl(1),

so

Y n
4 =

λ2µ1

λ1

√
nP

n

1 + Ôcl(1). (3.54)

If N is a unit-intensity Poisson process, then −N(t) + 1
2
t is a supermartingale whose

supremum S∗ over t ≥ 0 is finite almost surely. Therefore,

− 1√
n

(
N(nt)− nt

)
−
√
n t =

1√
n

[
−N(nt) +

1

2
nt

]
− 1

2

√
n t ≤ 1√

n
S∗ − 1

2

√
n t,
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and hence by substituting N by N1,T ,− and t by
∫ t

0
θb
(
T̂ n(s)

)+
dP

n

1 (s), we obtain

Y n
1 (t) + Y n

3 (t) ≤ 1

2
Y n

3 (t) +
1√
n
Ôcl(1). (3.55)

Combining (3.53), (3.54), and (3.55) we obtain

T̂ n(t) ≤ 1

2
Y n

3 (t) +
λ2µ1

λ1

√
nP

n

1 + Y n
2 (t) + Ôcl(1)

=
√
n

∫ t

0

(
λ2µ1

λ1

− 1

2
θb
(
T̂ n(s)

)+
)
dP

n

1 (s) + Ôcl(1). (3.56)

Let us fix T > 0 and consider t ∈ [0, T ]. Either∫ t

0

(
λ2µ1

λ1

− 1

2
θb
(
T̂ n(s)

)+
)
dP

n

1 (s) ≤ 0, (3.57)

or else ∫ t

0

θb
(
T̂ n(s)

)+
dP

n

1 (s) ≤ 2
λ2µ1

λ1

P
n

1 (t) ≤ 2
λ2µ1

λ1

T. (3.58)

We define

τn(t) :=

{
t if (3.57) holds,

sup
{
s ∈ [0, t] : θb

(
T̂ n(s)

)+ ≤ 2λ2µ1
λ1

}
if (3.58) holds.

(3.59)

If (3.57) holds and τn(t) = t, T̂ n(t) is bounded by the Ôcl(1) term in (3.56). If (3.58)
holds, then

T̂ n(t) ≤ T̂ n
(
τn(t)

)
+

4∑
i=1

[
Y n
i (t)− Y n

i

(
τn(t)

)]
. (3.60)

We consider each of the four terms on the right-hand side of (3.60). Since the jumps in

T̂ n are of size 1√
n
, we must have

T̂ n
(
τn(t)

)
≤ 2

λ2µ1

λ1

1

θb
+

1√
n
. (3.61)

Because of the bound (3.58) on the argument of M̂n
1,T ,−, both Y n

1 (t) and Y n
1

(
τn(t)

)
are

Ôcl(1). Similarly, both Y n
2 (t) and Y n

2

(
τn(t)

)
are Ôcl(1). It follows that

T̂ n(t) ≤ Y n
3 (t)− Y n

3

(
τn(t)

)
+
√
n
λ2µ1

λ1

(
P
n

1 (t)− P n

1

(
τn(t)

))
+ Ôcl(1)

=
√
n

∫ t

τn(t)

(
λ2µ1

λ1

− θb
(
T̂ n(s)

)+
)
dP

n

1 (s) + Ôcl(1)

≤ −
√
n
λ2µ1

λ1

(
P
n

1 (t)− P n

1 (τn(t)
))

+ Ôcl(1), (3.62)

because θ(T̂ n(s))+ ≥ 2λ2µ1
λ1

for s ∈ [τn(t), t]. Again we have an upper bound on T̂ n. In

conclusion, {T̂ n}∞n=1 is bounded above in probability on compact time intervals. �
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Lemma 3.7.3 The sequence of processes {T̂ n}∞n=1 is bounded below in probability on com-
pact time intervals.

Proof: We return to (3.33) and note that because T̂ n is bounded above in probability on

compact time intervals and dP
n

1 ≤ dt, the sequence of processes {
∫ ·

0
θb(T̂ n)+ dP

n

1}∞n=1 is
bounded in probability on compact time intervals. Consequently, the sequence of processes{

M̂n
1,T ,− ◦

∫ ·
0

θb(T̂ n)+ dP
n

1

}∞
n=1

is bounded in probability on compact time intervals. In addition, the other process
M̂n

3,T ,+ ◦λ2P
n

3 on the right-hand side of (3.33) involving a scaled, centered Poisson process
is bounded in probability on compact time intervals. This permits us to write

T̂ n(t) =
√
n

[
−
∫ t

0

θb
(
T̂ n(s)

)+
dP

n

1 (s) + λ2P
n

3 (t)

]
+ Ôcl(1). (3.63)

We define
ρn(t) := sup

{
s ∈ [0, t] : T̂ n(s) ≥ 0

}
. (3.64)

Then T̂ n(s) < 0 for ρn(t) < s ≤ t and (3.64) implies

T̂ n(t) = T̂ n
(
ρn(t)

)
+
√
nλ2

(
P
n

3 (t)− P n

3

(
ρn(t)

))
+ Ôcl(1)

≥ T̂ n
(
ρn(t)

)
+ Ôcl(1). (3.65)

Because T̂ n(ρn(t)) ≥ − 1√
n
, we conclude that T̂ n ≥ Ôcl(1). �

We can rewrite (3.33) and (3.34) as

T̂ n(t) = T̂ n(0)− M̂n
1,T ,−

( ∫ t

0

θb(T̂ n(s))+dP
n

1 (s)
)

+ M̂n
3,T ,+

(
λ2P

n

3 (t)
)

−
√
n

∫ t

0

(
θb(T̂ n(s))+ − λ2µ1

λ1

)
dP

n

1 (s)

+
√
n
(
λ2P

n

3 (t)− λ2µ1

λ1

P
n

1 (t)
)
, (3.66)

X̂ n(t) = X̂ n(0)− M̂n
1,X ,−

(
µ2P

n

1 (t)
)

+ M̂n
3,X ,+

( ∫ t

0

θs(X̂ n(s))−dP
n

3 (s)
)

+
√
n

∫ t

0

(
θs(X̂ n(s))− − µ2λ1

µ1

)
dP

n

3 (s)

+
√
n
(µ2λ1

µ1

P
n

3 (t)− µ2P
n

1 (t)
)
. (3.67)

Because of Theorem 3.7.1 and (3.43), we obtain

T̂ n(t) = T̂ n(0)−
√
n

∫ t

0

(
θb(T̂ n(s))+ − λ2µ1

λ1

)
dP

n

1 (s) + Cn
T (t), (3.68)

X̂ n(t) = X̂ n(0) +
√
n

∫ t

0

(
θs(X̂ n(s))− − µ2λ1

µ1

)
dP

n

3 (s) + Cn
X (t), (3.69)
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where Cn
T = Ôcl(1) and Cn

X = Ôcl(1). In fact, Cn
T and Cn

X have continuous limits along
some subsequence.

Let D[0−, T ] = R × D[0, T ] denote the space of càdlàg functions from [0, T ] to R
augmented by a value at 0−. For x ∈ D[0−, T ], let the augmented graph of x be

Γx := {(z, t) ∈ R× [0, T ] : z ∈ [x(t−), x(t)]}.

A parametric representation of x is a continuous nondecreasing function (u, r) mapping
[0, 1] onto Γx. For the parametric representation, “nondecreasing” is with respect to the
usual order on the domain [0, 1] and order on the graph defined above. Let Π(x) be the
set of parametric representations of x, and define

d(x1, x2) := inf
(u1,r1)∈Π(x1),(u2,r2)∈Π(x2)

{‖u1 − u2‖ ∨ ‖r1 − r2‖},

where ‖ · ‖ is the supremum norm on [0, 1]. Then the topology induced by d will be the
M1 topology on D[0−, T ]. Once we have the topology on the compact domain, we can
construct the topology on D[0−,∞) as usual.

For convenience, we denote (D[0−,∞),M1) by DM [0−,∞). In the following propo-

sition, we will work under DM [0−,∞). For each pre-limit processes T̂ n and X̂ n, let

T̂ n(0−) := T̂ n(0), X̂ n(0−) := X̂ n(0).

Proposition 3.7.4

T̂ n =⇒ T ∗,
X̂ n =⇒ X ∗,

in DM [0−,∞), where

T ∗(0−) = t0, T ∗(t) =
λ2µ1

θbλ1

, for t ≥ 0,

X ∗(0−) = x0, X ∗(t) = −µ2λ1

θsµ1

, for t ≥ 0.

Proof: We appeal to Section 4.5 and 4.6 of [2]. Equation (4.51) in [2] considers the
process

V̂n(t) = V̂n(0) + Cn(t)−
√
n

∫ t

0

(
θ(V̂n(s))+ − 1

)
dP

n

1 (s),

where (Cn, n ≥ 0) converges in distribution to a continuous process. We have the anal-

ogous equation (3.68) for T̂ n. However, in [2], V̂n is modeulated by another process Ĵn

that takes positive and negative excursions. When Ĵn is on a positive excursion, there is a
positive queue Ŵn at the price tick adjacent to V̂n to the right; when Ĵn is on a negative
excursion, this price tick is empty and V̂n is at the bid price. In our setting, prior to the
stopping time σn, there is always a queue adjacent to T̂ n to the right, and we assume
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the dynamics of T̂ n are forever as they are prior to σn, According to Therorem 4.6.3 in
[2], V̂n converges in DM [0−,∞) to a process V∗ that is 1/θ on the positive excursions of

J ∗ = limn→∞ Ĵ
n and V∗(0−) = limn→∞ V̂n(0). This result in our setting establishes the

claimed convergence of T̂ n. The proof for X̂ n is similar. �

Let DJ [0,∞) be D[0,∞) with the J1 topology. We define

D = DM [0−,∞)×DJ [0,∞)×DJ [0,∞)×DJ [0,∞)×DM [0−,∞),

on which we use the product topology and the σ-algebra generated by this topology.

The processes

Ŝn := (T̂ n, Ûn, V̂n, Ŵn, X̂ n),

S∗ := (T ∗,U∗,V∗,W∗,X ∗),

take values in D. From Corollary 3.5.3 and Proposition 3.7.4, we see that there exists a
probability space on which we can define Ŝn and S∗ so that

• Ŝn → S∗ almost surely.

• Until the first time Ûn or V̂ n vanishes, the distribution of (T̂ n, Ûn, V̂ n, Ŵ n, X̂n) on

D agrees with the distribution of Ŝn on D.

More specifically, let us define σ : D→ [0,∞] by

σ(t, u, v, w, x) = inf{s ≥ 0 : u(s) = 0 or w(s) = 0}.

We define
Ŝn = (T̂ n, Ûn, V̂ n, Ŵ n, X̂n),

and

Ŝnstopped = (T̂ n·∧σ(Ŝn)
, Ûn
·∧σ(Ŝn)

, V̂ n
·∧σ(Ŝn)

, Ŵ n
·∧σ(Ŝn)

, X̂n
·∧σ(Ŝn)

),

Ŝnstopped = (T̂ n·∧σ(Ŝn)
, Ûn·∧σ(Ŝn)

, V̂n·∧σ(Ŝn)
, Ŵn

·∧σ(Ŝn)
, X̂ n
·∧σ(Ŝn)

),

S∗stopped = (T ∗·∧σ(S∗),U∗·∧σ(S∗),V∗·∧σ(S∗),W∗·∧σ(S∗),X ∗·∧σ(S∗)).

Ŝnstopped is defined on some probability space (Ω,F ,P). Ŝnstopped and S∗stopped are defined on
another probability space (Ω1,F1,P1).

Theorem 3.7.5 The measure Qn induced on D by Ŝnstopped is also the measure induced

on D by Ŝnstopped. Moreover,

Ŝnstopped → S∗stopped P1 almost surely.

Let Q∗ be the measure induced on D by S∗stopped. Then we have

Qn ⇒ Q∗.
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Chapter 4

Brownian motion preliminaries

In Chapter 3 we started the LOB with initial condition (3.1)–(3.3) and followed it until

either Un or W n hit zero, or equivalently, until either Ûn or Ŵn hit zero. In Chapter 5
we will assume without loss of generality that

σ∗ = τW∗ < τU∗ ,

i.e., W∗ reaches zero before V∗. Under this assumption,

lim
n→∞

Ûn(σn) = U∗(σ∗) > 0 lim
n→∞

V̂ n(σn) = V∗(σ∗) = 0,

lim
n→∞

Ŵ n(σn) =W∗(σ∗) = 0, lim
n→∞

X̂n(σn) = X ∗(σ∗) = κR < 0.

These convergences are joint weak convergence in the J1 topology, and by using the
Skorohod Representation Theorem, we can put all processes on a common probability
space so that the convergences are almost sure. In Chapter 5, we will reset the clock to
zero at time σn for the pre-limit processes and at time σ∗ for the limiting processes, and
hence we will study the evolution of (Un, V n,W n, Xn) beginning from the initial condition

U∗(0) := lim
n→∞

1√
n
Un(0) > 0, V ∗(0) := lim

n→∞

1√
n
V n(0) = 0, (4.1)

W ∗(0) := lim
n→∞

1√
n
W n(0) = 0, X∗(0) := lim

n→∞

1√
n
Xn(0) = κR < 0. (4.2)

Similarly to the construction in Chapter 3, in Chapter 5 we will define processes Ûn,
V̂n, Ŵn and X̂ n that agree with Ûn, V̂ n, Ŵ n and X̂n for an initial period of time (in this

case, until either Ûn or X̂n hits zero), but which continue to be governed by the same

dynamics after this time as before it. We will discover that the limiting processes for V̂n
and Ŵn constitute a split two-variance Brownian motion, defined by the formula

(V∗,W∗) =
(

max(G∗, 0),min(G∗, 0)
)
, (4.3)

where G∗ is a two-variance Brownian motion (see Definition 4.1.1 below) with variance
c+ per unit time on its positive excursions away from zero and variance c− per unit time
on its negative excursions away from zero.
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In fact, what we are able to show initially is that every subsequence of {(V̂n, Ŵn)}∞n=1

has a sub-subsequence that converges weakly to a pair of processes (V∗,W∗) satisfying

(4.3). To see that the full sequence {(V̂n, Ŵn)}∞n=1 converges, we must show that a two-
variance Brownian motion with given variances per unit time on positive and negative
excursions is unique in law. It turns out that we also need to know how occupations times
for the two variance Brownian motion are determined by Brownian motions used in its
construction. This chapter provides these results.

In particular, Section 4.1 defines two-variance Brownian motion and derives its ele-
mentary properties. We choose to define it in such a way that the uniqueness in law of
two-variance Brownian motion is immediate. We characterize it in the way that it will
appear in Chapter 5. This characterization, which involves a detour through Brownian
excursion theory, is developed in Section 4.2.

4.1 Two-variance Brownian motion

Definition 4.1.1 Assume B is a standard Brownian motion starting at b0, and c+ and
c− are two positive real numbers. We call Z a two-variance Brownian motion if

Z = B ◦ (
1

c+

P+
B +

1

c−
P−B )−1,

where

P±B (t) =

∫ t

0

1{±B(s)>0}ds.

We say Z has variance c+ per unit time on positive excursions and variance c− per unit
time on negative excursions.

Proposition 4.1.2 Assume Z is a two-variance Brownian motion, i.e.

Z = B ◦ (
1

c+

P+
B +

1

c−
P−B )−1.

Then
Z = B ◦ (c+P

+
Z + c−P

−
Z ), (4.4)

where

P+
Z (t) =

∫ t

0

1{Z(s)>0}ds,

P−Z (t) =

∫ t

0

1{Z(s)<0}ds.

Moreover, for t ≥ 0, we have
t = P+

Z (t) + P−Z (t).
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Proof: To prove (4.4), it suffices to show

(
1

c+

P+
B +

1

c−
P−B )−1 = (c+P

+
Z + c−P

−
Z ).

Note that

Z = B ◦ (
1

c+

P+
B +

1

c−
P−B )−1

implies

B = Z ◦ (
1

c+

P+
B +

1

c−
P−B ).

Let

u = (
1

c+

P+
B +

1

c−
P−B )(s).

then

B(s) = Z ◦ (
1

c+

P+
B +

1

c−
P−B )(s) = Z(u).

Together with the definition of P+
B and P−B , we have

du = d
( 1

c+

P+
B (s) +

1

c−
P−B (s)

)
= (

1

c+

1{B(s)>0} +
1

c−
1{B(s)<0})ds

= (
1

c+

1{Z(u)>0} +
1

c−
1{Z(u)<0})ds,

which also implies,
ds = (c+1{Z(u)>0} + c−1{Z(u)<0})du. (4.5)

Since B is a standard Brownian motion, we know that Lebesgue measure of the time it
spends at 0 till any time t > 0 is zero. Then through time change and (4.5), we have

t = P+
B (t) + P−B (t)

=

∫ t

0

(1{B(s)>0} + 1{B(s)<0})ds

=

∫ ( 1
c+
P+
B+ 1

c−
P−B )(t)

0

(c+1{Z(u)>0} + c−1{Z(u)<0})du

= c+P
+
Z ◦ (

1

c+

P+
B +

1

c−
P−B )(t) + c−P

−
Z ◦ (

1

c+

P+
B +

1

c−
P−B )(t)

= (c+P
+
Z + c−P

−
Z ) ◦ (

1

c+

P+
B +

1

c−
P−B )(t),

and this implies

(
1

c+

P+
B +

1

c−
P−B )−1 = (c+P

+
Z + c−P

−
Z ).
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Since 1
c+
P+
B + 1

c−
P−B is absolutely continuous, and B = Z ◦ ( 1

c+
P+
B + 1

c−
P−B ), we see that

1
c+
P+
B + 1

c−
P−B maps the Lebesgue measure zero set {s : B(s) = 0} to the Lebesgue zero

set {u : Z(u) = 0}, which proves the last equation in the proposition. �

Proposition 4.1.3 Assume there exists a process Z satisfying

Z = B ◦ (c+P
+
Z + c−P

−
Z ),

where B is a standard Brownian motion starting at b0, and

P+
Z (t) =

∫ t

0

1{Z(s)>0}ds,

P−Z (t) =

∫ t

0

1{Z(s)<0}ds,

t = P+
Z (t) + P−Z (t).

Then

Z = B ◦ (
1

c+

P+
B +

1

c−
P−B )−1,

where

P+
B (t) =

∫ t

0

1{B(s)>0}ds,

P−B (t) =

∫ t

0

1{B(s)<0}ds.

In particular, Z is a two-variance Brownian motion.

Proof: The proof is similar to the proof of Proposition 4.1.2. It suffices to show

(
1

c+

P+
B +

1

c−
P−B )−1 = (c+P

+
Z + c−P

−
Z ).

Let
s = (c+P

+
Z + c−P

−
Z )(u),

then
Z(u) = B ◦ (c+P

+
Z + c−P

−
Z )(u) = B(s).

Together with the definition of P+
Z and P−Z , we have

ds = d
(
c+P

+
Z (u) + c−P

−
Z (u)

)
= (c+1{Z(u)>0} + c−1{Z(u)<0})du

= (c+1{B(s)>0} + c−1{B(s)<0})du,

which also implies

du = (
1

c+

1{B(s)>0} +
1

c−
1{B(s)<0})ds. (4.6)
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Since t = P+
Z (t) + P−Z (t), through the time change and (4.6), we have

t = P+
Z (t) + P−Z (t)

=

∫ t

0

(1{Z(u)>0} + 1{Z(u)<0})du

=

∫ (c+P
+
Z +c−P

−
Z )(t)

0

(
1

c+

1{B(s)>0} +
1

c−
1{B(s)<0})ds

=
1

c+

P+
B ◦ (c+P

+
Z + c−P

−
Z )(t) +

1

c−
P−B ◦ (c+P

+
Z + c−P

−
Z )(t)

= (
1

c+

P+
B +

1

c−
P−B ) ◦ (c+P

+
Z + c−P

−
Z )(t),

and this implies

(
1

c+

P+
B +

1

c−
P−B )−1 = (c+P

+
Z + c−P

−
Z ),

which completes the proof. �

From Proposition 4.1.2, we see that when Z is positive, Z behaves like an accelerated
Brownian motion by factor c+, and when Z is negative, it behaves like an accelerated
Brownian motion by factor c−. This is why we call Z a two-variance Brownian motion. In
other words, each positive excursion of the standard Brownian motion B will be mapped
to a positive excursion of Z with length stretched by 1

c+
, and each negative excursion

of the standard Brownian motion B will be mapped to a negative excursion of Z with
length stretched by 1

c−
. This leads us to construct such a process through a Poisson

random measure. In particular, we want to build a Poisson random measure ν on H =
([0,∞)× C([0,∞))) with intensity measure λ such that

λ(ds, de) = ds ∗ n(de),

where e is the excursion starting at local time s, if there is such an excursion, and n is
the excursion measure. The first entry in H indicates the local time when there is an
excursion, and n(de) describes the distribution of this excursion. We want to define a
map from local time clock to chronological clock. Let L−1

B : [0,∞)→ [0,∞) be

L−1
B (θ) :=

∫ θ

0

∫
C([0,∞))

σ(es)ν(ds de),

where σ(e) represents the length of excursion e. Note that L−1
B is right-continuous and is

a strictly increasing, pure jump process. L−1
B (`) computes how much chronological time

has passed when the local time of B reaches `. Its inverse, which is continuous, is,

LB(t) := inf{θ ≥ 0 : L−1
B (θ) > t}.

From page 130 of [18], we can construct B as follows:

B(t) =

{
0, if L−1

B (LB(t)−) = L−1
B (LB(t)),

eLB(t)(t− L−1
B (LB(t)−)), if L−1

B (LB(t)−) 6= L−1
B (LB(t)).

(4.7)
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Note that L−1
B (LB(t)−) is the starting time of the current excursion if B is on a excursion.

Obviously, Z and B have their own clocks. Since

Z = B ◦ (
1

c+

P+
B +

1

c−
P−B )−1,

the map between the two clocks, β : Clock of Z → Clock of B, is

β(t) := (
1

c+

P+
B +

1

c−
P−B )−1(t) =: s. (4.8)

We also define
L−1
Z (`) := β−1 ◦ L−1

B (`).

Since β is a strictly increasing continuous function, the right-continuous inverse of L−1
Z is

LZ(t) = LB ◦ β(t).

Whenever Z is on an excursion, B is also on an excursion, and the ratio of the length of
excursion on Z to that of B is 1

c+
if the excursion is positive, and 1

c−
if the excursion is

negative. So for any t ≥ 0, let

êLZ(t)(u) :=

{
eLB(s)(c+u), if u ∈ [0,

σ(eLB(s))

c+
] and eLB(s)(c+u) > 0,

eLB(s)(c−u), if u ∈ [0,
σ(eLB(s))

c−
] and eLB(s)(c−u) < 0,

(4.9)

where s = β(t). Assume Z is on an excursion at time t. Then the time when this excursion
begins is

gstart(t) := β−1 ◦ L−1
B ◦ (LB(β(t))−)

= L−1
Z (LZ(t)−).

Now, we are ready to construct Z.

Proposition 4.1.4 Let us define a process Z as follows:

Z(t) =

{
0, if gstart(t) = L−1

Z (LZ(t)),

êLZ(t)(t− L−1
Z (LZ(t)−)), if gstart(t) 6= L−1

Z (LZ(t)),
(4.10)

where gstart, L
−1
Z , LZ, and êLZ are defined previously. Then Z is a two-variance Brownian

motion.

Proof: From Definition 4.1.1, it suffices to show B = Z ◦ ( 1
c+
P+
B + 1

c−
P−B ), where B is a

standard Brownian motion. From the definition of L−1
Z , LZ we have with s = β(t),

L−1
Z (LZ(t)−) = β−1 ◦ L−1

B ◦ (LB(β(t))−) = β−1 ◦ L−1
B ◦ (LB(s)−),

L−1
Z (LZ(t)) = β−1 ◦ L−1

B ◦ (LB(β(t))) = β−1 ◦ L−1
B ◦ (LB(s)).
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Since β is continuous and strictly increasing, we have with s = β(t)

L−1
Z (LZ(t)−) = L−1

Z (LZ(t))⇔ L−1
B ◦ (LB(s)−) = L−1

B ◦ (LB(s)). (4.11)

If L−1
Z (LZ(t)−) 6= L−1

Z (LZ(t)) and êLZ(t)(t− L−1
Z (LZ(t)−)) < 0, from (4.9), we have

êLZ(t)(t− L−1
Z (LZ(t)−)) = eLB(s)(c−(t− L−1

Z (LZ(t)−)))

= eLB(s)(c−(t− β−1 ◦ L−1
B (LB ◦ β(t)−)))

= eLB(s)(c−(β−1(s)− β−1 ◦ L−1
B (LB(s)−))). (4.12)

Note that β−1 = 1
c+
P+
B + 1

c−
P−B , and L−1

B (LB(s)−)) indicates the starting time (clock of

B) of the current excursion which is negative. Therefore

β−1(s)− β−1 ◦ L−1
B (LB(s)−)) =

1

c−
(s− L−1

B (LB(s)−)),

and (4.12) implies

êLZ(t)(t− L−1
Z (LZ(t)−)) = eLB(s)(s− L−1

B (LB(s)−)). (4.13)

Similarly, if L−1
Z (LZ(t)−) 6= L−1

Z (LZ(t)) and êLZ(t)(t− L−1
Z (LZ(t)−)) > 0, we see

êLZ(t)(t− L−1
Z (LZ(t)−)) = eLB(s)(c+(t− L−1

Z (LZ(t)−)))

= eLB(s)(c+(t− β−1 ◦ L−1
B (LB ◦ β(t)−)))

= eLB(s)(c+(β−1(s)− β−1 ◦ L−1
B (LB(s)−))). (4.14)

Since we are on a positive excursion of B, we have

β−1(s)− β−1 ◦ L−1
B (LB(s)−)) =

1

c+

(s− L−1
B (LB(s)−)),

and (4.14) implies

êLZ(t)(t− L−1
Z (LZ(t)−)) = eLB(s)(s− L−1

B (LB(s)−)). (4.15)

Finally from (4.11), (4.13), and (4.15), we can rewrite (4.10) as

Z ◦ (
1

c+

P+
B +

1

c−
P−B )(s) = Z ◦ β−1(s) = Z(t)

=

{
0, if L−1

B (LB(s)−) = L−1
B (LB(s)),

eLB(s)(s− L−1
B (LB(s)−)), if L−1

B (LB(s)−) 6= L−1
B (LB(s)).

= B(s),

which completes the proof. �
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4.2 Brownian excursion theory

4.2.1 Construction of mappings

We denote by Cr[0,∞) the set of continuous functions z : [0,∞)→ R such that z(0) = r.
We introduce the metric dr on Cr[0,∞) defined by

dr(x, y) =
∞∑
n=1

1

2n

(
1 ∧ sup

0≤t≤n

∣∣x(t)− y(t)
∣∣) .

Convergence under this metric is uniform convergence on compact sets. Let Br be
the Borel σ-algebra generated by this topology and Br1,r2 be the product σ-algebra on
Cr1 [0,∞)× Cr2 [0,∞).

Definition 4.2.1 We define the Skorohod map Γ: C[0,∞)→ C[0,∞) by

Γ(z)(t) = − min
0≤s≤t

(
z(s) ∧ 0

)
∀z ∈ C[0,∞). (4.16)

Remark 4.2.2 For z ∈ C[0,∞), Γ(z) is the unique nondecreasing function in C[0,∞)
with the following three properties:

(i) Γ(z)(0) = max{−z(0), 0},

(ii) z(t) + Γ(z)(t) ≥ 0 for all t ≥ 0, and

(iii) on intervals where z + Γ(z) is non-zero, Γ(z) is constant.

Given r ∈ R, define

Dr =
{

(z+, z−) ∈ Cr+ [0,∞)× Cr− [0,∞) : lim inf
t→∞

z+(t) = lim inf
t→∞

z−(t) = −∞}, (4.17)

where r+ = max{0, r} and r− = max{0,−r}. We show that Dr ∈ Br+,r− in Appendix A.
Given (z+, z−) ∈ Dr, we construct a function z ∈ Cr[0,∞) as follows. First set `± = Γ(z±)
so that z± + `± ≥ 0. By the definition of Dr, we have

lim
t→∞

`+(t) = lim
t→∞

`−(t) =∞. (4.18)

We define the mapping Φ+ and Φ− by

Φ+(z+, z−)(t) := sup
{
u ∈ [0, t] : `+(u) = `−(t− u)

}
,

Φ−(z+, z−)(t) := inf
{
u ∈ [0, t] : `−(u) = `+(t− u)

}
,

for t ≥ 0 where (z+, z−) ∈ Cr+ [0,∞)× Cr− [0,∞). Let

p+(t) = Φ+(z+, z−)(t), (4.19)

p−(t) = Φ−(z+, z−)(t). (4.20)
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Then define
z = Ψ(z+, z−) := z+ ◦ p+ − z− ◦ p−. (4.21)

We show that Ψ: Dr → Cr[0,∞) is measurable in the Appendix A.

We first develop properties of p± and then properties of z.

Lemma 4.2.3 The functions p± defined by (4.19) and (4.20) have zero initial condition
and are nondecreasing and continuous. In addition,

`+ ◦ p+ = `− ◦ p−, (4.22)

p+ + p− = e, (4.23)

where e is the identify function e(t) = t for all t ≥ 0.

Proof: Since z+(0) ≥ 0 and z−(0) ≥ 0, we have `+(0) = `−(0) = 0. It is obvious that
p± satisfy p±(0) = 0. Because `± is nondecreasing and continuous and `±(0) = 0, for
each t ≥ 0, there exists u1 such that `+(u1) = `−(t − u1) and there exists u2 (in fact,
we can take u2 = t − u1), such that `−(u2) = `+(t − u2). Therefore, p± takes values in
[0, t]. The maximum and minimum in (4.19) and (4.20) are obtained because both `+ and
`− are continuous. It is apparent that the maximum u1 for which `+(u1) = `−(t − u1)
corresponds to the minimum u2 = t− u1 for which `−(u2) = `+(t− u2), and hence (4.23)
holds. By construction, `+(p+(t)) = `−(t− p+(t)), and (4.23) implies (4.22).

To see that p+ is nondecreasing, let 0 ≤ t1 < t2 be given. Then

`+

(
p+(t1)

)
= `−

(
t1 − p+(t1)

)
.

If, in addition,
`+

(
p+(t1)

)
= `−

(
t2 − p+(t1)

)
,

then because p+(t2) is the maximum of all numbers satisfying `+(u) = `−(t2−u), we have
p+(t2) ≥ p+(t1). If instead

`+

(
p+(t1)

)
< `−

(
t2 − p+(t1)

)
,

then `+(p+(t2)) = `−(t2 − p+(t2)) implies p+(t2) > p+(t1).

Suppose now that tn ↓ t. Then

`+

(
p+(tn)

)
= `−

(
tn − p+(tn)

)
, n = 1, 2, . . . .

Letting n→∞ and using the continuity of `±, we obtain

`+

(
lim
n→∞

p+(tn)
)

= `−
(
t− lim

n→∞
p+(tn)

)
.

According to the definition of p+, this implies that p+(t) ≥ limn→∞ p(tn). Because p+

is nondecreasing, we also have p+(t) ≤ limn→∞ p+(tn), and hence p+ is right continuous.
Equation (4.23) implies that p− is right continuous as well.
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To see that p− is nondecreasing, let 0 ≤ t1 < t2 be given. Then

`−
(
p−(t2)

)
= `+(t2 − p−(t2)

)
.

If, in addition,
`−
(
p−(t2)

)
= `+(t1 − p−(t2)

)
,

then because p−(t1) is the minimum of all numbers satisfying `−(u) = `+(t1−u), we have
p−(t2) ≥ p−(t1). If instead

`−
(
p−(t2)

)
> `+(t1 − p−(t2)

)
,

then `−(p−(t1)) = `+(t1 − p−(t1)) implies p−(t2) > p−(t1).

Suppose now that tn ↑ t. Then

`−
(
p−(tn)

)
= `+

(
tn − p−(tn)

)
, n = 1, 2, . . . .

Letting n→∞ and using continuity of `±, we obtain

`−
(

lim
n→∞

p−(tn)
)

= `−
(
t− lim

n→∞
p−(tn)

)
.

According to the definition of p−, this implies that p−(t) ≤ limn→∞ p−(tn). Because p−
is nondecreasing, we also have p−(t) ≥ limn→∞ p−(tn), and hence p− is left continuous.
Equation (4.23) implies that p+ is left continuous as well. �

Lemma 4.2.4 For z defined by (4.21), we have

|z| = z+ ◦ p+ + z− ◦ p− + Γ(z+ ◦ p+ + z− ◦ p−), (4.24)

Γ(z+ ◦ p+ + z− ◦ p−) = `+ ◦ p+ + `− ◦ p− = 2`± ◦ p±. (4.25)

In addition, ∫ t

0

1{±z(s)>0}ds ≤ p±(t) ≤
∫ t

0

1{±z(s)≥0}ds, t ≥ 0. (4.26)

Proof: We can write

z = (z+ + `+) ◦ p+ − (z− + `−) ◦ p− (4.27)

as the difference of the nonnegative functions (z+ + `+) ◦ p+ and (z− + `−) ◦ p−. We first
show that at each t ≥ 0, we cannot have both (z+ + `+) ◦ p+(t) and (z− + `−) ◦ p−(t)
positive. Without loss of generality, let us assume (z+, z−) ∈ Dr where r ≥ 0. Then let

c = inf
{
s ≥ 0 : z+(s) = 0

}
.

From (4.17), we know c <∞ is well defined. Because `+ = Γ(z+), we have `+(s) = 0 for
all s ∈ [0, c]. Hence, by (4.19) and (4.20), we know that p+(s) = s and p−(s) = 0 for all
s ∈ [0, c], which implies

(z+ + `+) ◦ p+(s) ≥ 0,

(z− + `−) ◦ p−(s) = 0,
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for all s ∈ [0, c]. Moreover, (z++`+)◦p+(c) = 0. Therefore, we showed that (z++`+)◦p+(t)
and (z−+ `−) ◦ p−(t) cannot be both positive for t ≤ c. Next, assume for some t > c that

(z+ + `+) ◦ p+(t) > 0 (4.28)

and define

a = sup
{
s ∈ [c, t] : (z+ + `+) ◦ p+(s) = 0

}
, (4.29)

b = inf
{
s ∈ [t,∞) : (z+ + `+) ◦ p+(s) = 0

}
. (4.30)

Note that (z+ + `+) ◦ p+(c) = 0, we have a ∈ [c, t) and (z+ + `+) ◦ p+(a) = 0. We have
b ∈ (t,∞], and because p+ is nondecreasing, p+(b) is defined in [0,∞]. On the interval
or half-line (a, b), (z+ + `+) ◦ p+ is strictly positive, and Remark 4.2.2(iii) implies that
`+ ◦ p+ is constant and equal to `+(p+(a)). Note that p+(a) < p+(t).

For δ ∈ (0, p+(t)− p+(a)), we have

`+

(
p+(a) + δ)

)
= `+

(
p+(a)

)
= `−

(
a− p+(a)

)
, (4.31)

and we must also have

`−
(
a− p+(a)

)
> `−

(
a− p+(a)− δ

)
, (4.32)

or else u = p+(a) + δ would satisfy the equation

`+(u) = `−(a− u),

a contradiction to the definition of p+(a). We conclude that

`+

(
p+(a)

)
= `−

(
a− p+(a)

)
> `−(a− u) ∀u ∈

(
p+(a), a

]
. (4.33)

Now consider s ∈ [a, b). Because p+(a) ≤ p+(s) ≤ p+(b) and `+ is constant on
[p+(a), p+(b)), we have

p+(s) = max
{
u ∈ [0, s] : `+(u) = `−(s− u)

}
= sup

{
u ∈

[
p+(a), s ∧ p+(b)

]
: `+(u) = `−(s− u)

}
= sup

{
u ∈

[
p+(a), s ∧ p+(b)

]
: `+

(
p+(a)

)
= `−(s− u)

}
. (4.34)

Relation (4.33) shows that if u were not constrained from above, the supremum in (4.34)
would be attained when s− u = a− p+(a), i.e., at u = p+(a) + s− a. However, because
of the constraint, the supremum is attained instead at u = (p+(a) + s− a) ∧ p+(b), i.e.,

p+(s) =
(
p+(a) + s− a

)
∧ p+(b) ∀s ∈ [a, b). (4.35)

We wish to remove the term ∧p+(b) in (4.35). If p+(b) = ∞, this is trivial. If
p+(b) <∞ and b =∞, then whenever bn →∞ we have p+(bn)→ p+(b) <∞. But (4.19)
implies

`+

(
p+(bn)

)
= `−

(
bn − p+(bn)

)
,
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and the left-hand side converges to `+

(
p+(b)

)
<∞, whereas (4.18) implies that the right-

hand side converges to ∞. Because of this contradiction, we conclude that whenever
p+(b) <∞ then also b <∞, in which case (z+ + `+) ◦ p+(b) = 0 and (z+ + `+) ◦ p+(s) > 0
for s ∈ [t, b). But (4.35) implies that p+(s) = p+(b) for s ∈ [p+(b) − p+(a) + a, b), and
hence (z+ + `+) ◦ p+(s) = (z+ + `+) ◦ p+(b) = 0 for s in this interval. It follows that
b ≤ p+(b)− p+(a) + a, and consequently

p+(b) ≥ p+(a) + b− a. (4.36)

If p+(b) − p+(a) + a ≥ b, so the interval [p+(b) − p+(a) + a, b) is empty, we again have
(4.36). Inequality (4.36) permits us to remove the term ∧p+(b) in (4.30), and we conclude
that

p+(s) = p+(a) + s− a ∀s ∈ [a, b). (4.37)

For δ ∈ (0, t− a), we have from (4.37) that

p+(t− δ) = p+(t)− δ, (4.38)

and from the definition of p+ that

`+(p+(t)
)

= `−(t− p+(t)
)
.

We must also have
`−
(
t− p+(t)

)
> `−

(
t− δ − p+(t)

)
, (4.39)

or else u = p+(t) would satisfy the equation `+(u) = `−(t− δ − u), implying p+(t− δ) ≥
p+(t), a contradiction to (4.38). We rewrite (4.39) as

`−
(
p−(t)

)
> `−

(
p−(t)− δ

)
and conclude that `− is not constant in an open interval containing p−(t). According to
Remark 4.2.2(iii), (z− + `−) ◦ p−(t) = 0.

Because not both (z+ + `+) ◦ p+(t) and (z− + `−) ◦ p−(t) can be positive, from the
representation (4.27) we have

|z| = (z+ + `+) ◦ p+ + (z− + `−) ◦ p− = z+ ◦ p+ + z− ◦ p− + `+ ◦ p+ + `− ◦ p−.

Equation (4.22) implies that

`+ ◦ p+ + `− ◦ p− = 2`± ◦ p±.

Because `+ ◦p+ is constant on intervals where z is strictly positive and `− ◦p− is constant
on intervals where z is strictly negative, the nondecreasing process 2`± ◦ p± is constant
on intervals where |z| is nonzero. According to Remark 4.2.2(iii),

2`± ◦ p± = Γ(z+ ◦ p+ + z− ◦ p−).

50



Being open, the set

{t > 0 : (z+ + `+) ◦ p+(t) > 0} =
⋃
i∈I

(ai, bi)

is the union of disjoint nonempty open intervals, where the index set I if finite or countably
infinite and one of these intervals may be an open half-line. Equation (4.37) implies that

p+(t)− p+(ai) =

∫ t

ai

1
{z(s)>0

}ds ∀t ∈ [ai, bi). (4.40)

Since p+ is nondecreasing and p+(s) = s ∀s ∈ [0, c], we have

p+(t) ≥
∫ t

0

1{z(s)>0}ds, t ≥ 0. (4.41)

A symmetric argument shows that

p−(t) ≥
∫ t

0

1{z(s)<0}ds, t ≥ 0.

Therefore,

p+(t) = t−p−(t) ≤
∫ t

0

1{z(s)≥0}ds and p−(t) = t−p+(t) ≤
∫ t

0

1{z(s)≤0}ds. �

4.2.2 Disintegration of two-variance Brownian motion

Let Z be a two-variance Brownian motion defined in Definition 4.1.1, i.e.,

Z(t) := B ◦ (
1

c+

P+
B +

1

c−
P−B )−1(t),

where B is a standard Brownian motion on the probability space (Ω,F ,P). Define

A(t) := (
1

c+

P+
B +

1

c−
P−B )(t),

A−1(s) := inf{t ≥ 0 : A(t) > s}.
Then A is adapted to the filtration {Ft} generated by B. Because

{A−1(s) ≤ t} = {A(t) ≥ s} ∈ Ft,
A−1 is a stopping time of F . Let Gs = FA−1(s). By the Optional Sampling Theorem, Z is
a martingale with respect to the filtration {Gs}. We define

M±(s) = ±
∫ s

0

1{±Z(u)>0} dZ(u), (4.42)

P±Z (s) =

∫ s

0

1{±Z(u)>0}ds, (4.43)

(P±Z )−1(t) = inf
{
s ≥ 0 : P±Z (s) > t

}
, (4.44)

Z± = B±(0) +M± ◦ (P±Z )−1, (4.45)

L± = Γ(Z±), (4.46)
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where B+(0) = max{0, B(0)} and B−(0) = max{0,−B(0)}. Note that M+ and M− are
martingales relative to {Gs}s≥0 and 〈M+,M−〉 = 0.

Lemma 4.2.5
Z = B(0) +M+ −M− = Z+ ◦ P+

Z − Z− ◦ P
−
Z . (4.47)

Proof: Since Z(t) = Z(0) +
∫ t

0
dZ(u), and Proposition 4.1.2 implies

1{Z(u)>0} + 1{Z(u)<0} = 1 (4.48)

a.s. for all u ≥ 0, we have

Z(t) = Z(0) +

∫ t

0

1{Z(u)>0}dZ(u) +

∫ t

0

1{Z(u)<0}dZ(u)

= B(0) +M+ −M− = Z+ ◦ P+
Z − Z− ◦ P

−
Z ,

which completes the proof.

Lemma 4.2.6 The processes Z+ and Z− are independent Brownian motions (relative
to their own filtrations) with variances c+ and c− per unit time, i.e., there exists two
independent standard Brownian motions B+ and B− such that

Z+ = B+ ◦ c+e,

Z− = B− ◦ c−e,

where e(t) = t for t ≥ 0.

Proof: For each t ≥ 0, we define

B±(t) = Z±(t/c±) = B±(0) +M± ◦ (P±Z )−1(t/c±).

Let
T±(t) := inf{u ≥ 0 : 〈M±〉(u) > t}. (4.49)

We first show
T±(t) = (P±Z )−1(t/c±). (4.50)

By definition of M± and the time change u = ( 1
c+
P+
B + 1

c−
P−B )(s), we have

M±(t) = ±
∫ t

0

1{±Z(u)>0} dZ(u) = ±
∫ ( 1

c+
P+
B+ 1

c−
P−B )−1(t)

0

1{±B(s)>0} dB(s). (4.51)

Note that because du = ( 1
c+

1{B(s)>0} + 1
c−

1{B(s)<0})ds and Z(u) = B(s), we have

ds = (c+1{Z(u)>0} + c−1{Z(u)<0})du,
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so (4.51) implies

〈M±〉(t) =

∫ ( 1
c+
P+
B+ 1

c−
P−B )−1(t)

0

1{±B(s)>0} ds

= c±

∫ t

0

1{±Z(u)>0} du = c±P
±
Z (t), (4.52)

Hence from (4.52), we obtain

T±(t) = inf{u ≥ 0 : 〈M±〉(u) > t}
= inf{u ≥ 0 : c±P

±
Z (u) > t}

= inf{u ≥ 0 : P±Z (u) > t/c±} = (P±Z )−1(t/c±), (4.53)

which proves (4.50). According to (4.52), we have limt→∞〈M±〉(t) = ∞ almost surely.
Therefore, the result of the lemma follows from Knight’s Theorem, Theorem 3.4.13, p.
179 of [19]. �

To relate these processes to the construction in Subsection A.1, we need the following
result.

Lemma 4.2.7 The processes P±Z satisfy

P+
Z (t) = Φ+(Z+, Z−), (4.54)

P−Z (t) = Φ−(Z+, Z−), (4.55)

almost surely.

Proof: We first want to show that

L+ ◦ P+
Z = L− ◦ P−Z . (4.56)

Without loss of generality, let us assume Z(0) ≥ 0, and let

T+
1 := inf{t ≥ 0 : Z(t) ≤ 0}, T−1 := inf{t ≥ 0 : Z(t) ≥ 0} = 0.

Obviously, ∀t ≤ T+
1 , from Lemma 4.2.5 we have

0 ≤ Z(t) = Z+ ◦ P+
Z (t) = Z+(t).

Therefore L+(t) = 0 and P−Z (t) = 0, which implies

0 = L+ ◦ P+
Z (t) = L− ◦ P−Z (t) = 0,∀t ≤ T+

1 .

We observe that Z± + L± is a nonnegative process. For s ≥ T±1 , we define

U±(s) := max{v ∈ [T±1 , s] : −Z±(v) = L±(s)}
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so that U±(T+
1 ) = T+

1 and
− Z± ◦ U± = L±, (4.57)

on [T+
1 ,∞). Define also

τ±(t) := max{u ∈ [T±1 , t] : P±Z (u) = U± ◦ P±Z (t)}, t ≥ T±1 ,

so that P±Z ◦ τ± = U± ◦ P±Z , and hence, in light of (4.57),

Z± ◦ P±Z ◦ τ± = Z± ◦ U± ◦ P±Z = −L± ◦ P±Z ,

on [T±1 ,∞). Let t ≥ T±1 be given. At time τ+(t), either Z is on a negative excursion that
began at some time `(t) < τ+(t), or else Z(τ+(t)) ≥ 0. In the latter case,

0 ≤ Z
(
τ+(t)

)
= Z+ ◦ P+

Z ◦ τ+(t)− Z− ◦ P−Z ◦ τ+(t)

= −L+ ◦ P+
Z (t)− (Z− + L−) ◦ P−Z ◦ τ+(t) + L− ◦ P−Z ◦ τ+(t)

≤ −L+ ◦ P+
Z (t) + L− ◦ P−Z ◦ τ+(t)

≤ −L+ ◦ P+
Z (t) + L− ◦ P−Z (t).

In the event that Z is on a negative excursion at time τ+(t) that began at time `(t) < τ+(t),
we have P+

Z (`(t)) = P+
Z (τ+(t)), and hence

0 = Z
(
`(t)
)

= Z+ ◦ P+
Z ◦ `(t)− Z− ◦ P

−
Z ◦ `(t)

= Z+ ◦ P+
Z ◦ τ+(t)− Z− ◦ P−Z ◦ `(t)

= −L+ ◦ P+
Z (t)− (Z− + L−) ◦ P−Z ◦ `(t) + L− ◦ P−Z ◦ `(t)

≤ −L+ ◦ P+
Z (t) + L− ◦ P−Z ◦ `(t)

≤ −L+ ◦ P+
Z (t) + L− ◦ P−Z (t).

We conclude that L+ ◦P+
Z (t) ≤ L− ◦P−Z (t) for all t ≥ T+

1 . For the opposite inequality, we
note first that P−Z (T+

1 ) = 0, so τ−(T+
1 ) = T+

1 . Therefore, for t ≥ T+
1 , at τ−(t), either Z is

on a positive excursion that began at some time `(t) ∈ [T+
1 , τ−(t)), or else Z(τ−(t)) ≤ 0.

In the latter case

0 ≥ Z
(
τ−(t)

)
= Z+ ◦ P+

Z ◦ τ−(t)− Z− ◦ P−Z ◦ τ−(t)

= (Z+ + L+) ◦ P+
Z ◦ τ−(t)− L+ ◦ P+

Z ◦ τ−(t) + L− ◦ P−Z (t)

≥ −L+ ◦ P+
Z ◦ τ−(t) + L− ◦ P−Z (t)

≥ −L+ ◦ P+
Z (t) + L− ◦ P−Z (t).

In the event that Z is on a positive excursion at time τ−(t) that began at `(t) ∈ [T+
1 , τ−(t)

)
,
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we have P+
Z (`(t)) = P−Z (τ−(t)), and hence

0 = Z
(
`(t)
)

= Z+ ◦ P+
Z ◦ `(t)− Z− ◦ P

−
Z ◦ `(t)

= Z+ ◦ P+
Z ◦ `(t)− Z− ◦ P

−
Z ◦ τ−(t)

= (Z+ + L+) ◦ P+
Z ◦ `(t)− L+ ◦ P+

Z ◦ `(t) + L− ◦ P−Z (t)

≥ −L+ ◦ P+
Z ◦ `(t) + L− ◦ P−Z (t)

≥ −L+ ◦ P+
Z (t) + L− ◦ P−Z (t).

We conclude that L+ ◦ P+
Z (t) ≥ L− ◦ P−Z (t) for all t ≥ T+

1 . This completes the proof of
(4.56).

We denote Q+(t) = Φ+(Z+, Z−)(t) and Q−(t) = Φ+(Z−, Z+) so that

L+

(
Q+(t)

)
= L−

(
t−Q+(t)

)
, L−

(
Q−(t)

)
= L+

(
t−Q−(t)

)
, t ≥ 0. (4.58)

Because P+
Z (t) + P−Z (t) = t for all t ≥ 0, (4.56) implies

L+

(
P+
Z (t)

)
= L−

(
t− P+

Z (t)
)
, L−

(
P−Z (t)

)
= L+

(
t− P−Z (t)

)
, t ≥ 0.

The definition of Φ+ then implies that P±Z (t) ≤ Q±(t) and

t = P+
Z (t) + P−Z (t) ≤ Q+(t) +Q−(t). t ≥ 0.

To show that P±Z = Q±, it suffices to show that

Q+(t) +Q−(t) ≤ t, t ≥ 0, a.s. (4.59)

The Brownian motions Z± have variances c± per unit time that may differ from one.
The Brownian motions Z±/

√
c± are standard. For these standard Brownian motions, we

define stopping times

Sb± := inf{t ≥ 0 : −Z±/
√
c± > b}, T b± := inf{t ≥ 0 : −Z±/

√
c± = b}, b > 0.

Then

Sb± = inf{t ≥ 0 : L±/
√
c± > b}, T b± = inf{t ≥ 0 : L±/

√
c± = b}, b > 0.

Then L± is constant and equal to b
√
c± on the interval [T b±, S

b
±] if and only if T b± < Sb±. In

other words, L± has a “flat spot” at level b
√
c± if and only T b± < Sb±. According to [19],

Section 6.2D, there are Poisson random measures ν± on (0,∞), both with Lévy measure
d`/
√

2π`3, ` > 0, such that

Sb± =

∫
(0,∞)

`ν±
(
(0, b]× d`

)
, b > 0

Furthermore, it is apparent that

T b± =

∫
(0,∞)

`ν±
(
(0, b)× d`

)
b > 0.
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Because Z+ and Z− are independent, so are the Poisson random measures ν+ and ν−. A
Poisson random measure charges only countably many time points, i.e., there are only
countably many points b > 0 for which ν+({b} × (0,∞)) > 0. Because ν− is independent
of ν+, the probability that ν− charges

√
c+/
√
c− times one of the countably many points

charged by ν+ is zero. Therefore,

P
{

There exists c > 0 such that L+ and L− both have a flat spot at level c > 0.
}

= P
{

There exists c > 0 such that S
c/
√
c+

+ > T
c/
√
c+

+ and S
c/
√
c−

− > T
c/
√
c−

− .
}

= P
{

There exists c > 0 s. t. ν+

(
{c/√c+} × (0,∞)

)
> 0 and ν−

(
{c/√c−} × (0,∞)

)
> 0.

}
= 0. (4.60)

In other words, the probability that L+ and L− both have a “flat spot” at the same level
is zero.

Suppose Q+(t) + Q−(t) > t for some t ≥ 0. Then Q−(t) > t − Q+(t) ≥ 0 and
Q+(t) > t−Q−(t) ≥ 0. Using these inequalities and (4.58), we obtain

L+

(
Q+(t)

)
= L−

(
t−Q+(t)

)
≤ L−

(
Q−(t)

)
,

L−
(
Q−(t)

)
= L+

(
t−Q−(t)

)
≤ L+

(
Q+(t)

)
.

These two equations show that

c := L+

(
Q+(t)

)
= L+

(
t−Q−(t)

)
= L−

(
Q−(t)

)
= L−

(
t−Q+(t)

)
.

In other words, both L+ and L− have a “flat spot” at level c. According to (4.60), the
probability of this is zero. Hence, (4.59) holds almost surely for every rational t ≥ 0. But
Q+(t) + Q−(t) is continuous, so (4.59) holds almost surely for every t ≥ 0. This implies
(4.54). Because P+

Z (t) + P−Z (t) = t, we also have (4.55). �

Theorem 4.2.8 Let Z be a two-variance Brownian motion and let Z± be defined by
(4.45). Then Z = Ψ(Z+, Z−), where Ψ is defined by (4.21).

Proof: Combine Lemmas 4.2.5 and 4.2.6. �

4.2.3 Reconstruction of two-variance Brownian motion

Given r ∈ R, let Br
+,r−

Dr denote the trace σ-field of Br+,r− on Dr. Given any measure Q on

(Dr,Br
+,r−

Dr ), Ψ induces a measure Q ◦Ψ−1 on (Cr[0,∞),Br) defined by

Q ◦Ψ−1(A) = Q
{

(z+, z−) ∈ Dr : Ψ(z+, z−) ∈ A
}

= Q
(
Ψ−1(A)

)
, A ∈ Br.

Let Wc
r denote one-variance Wiener measure on (Cr[0,∞),B), under which the coordinate

mapping process is a Brownian motion with variance c per unit time starting at r, and
Wc1
r1
⊗ Wc2

r2
denote the product of two one-variance Wiener measures on (Cr1 [0,∞) ×

Cr2 [0,∞),Br1,r2) where r1 ≥ 0 and r2 ≥ 0. Note that (Wc1
r+ ⊗ Wc2

r−)(Dr) = 1. We let
Wc1
r+ ⊗ Wc2

r−|Dr denote Wc1
r+ ⊗ Wc2

r− restricted to Dr. Let Z be a two-variance Brownian
motion starting at r, we let Wc+,c−

r denote the measure induced by Z on
(
Cr[0,∞),B

)
,

and call this measure two-variance Wiener measure.
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Theorem 4.2.9 (Wc+
r+ ⊗Wc−

r− |Dr) ◦Ψ−1 = Wc+,c−
r .

Proof: Let Z be a two-variance Brownian motion on some probability space (Ω, ,P).
Then Z induces a two-variance Wiener measure on Cr[0,∞), i.e., P ◦ Z−1 = Wc+,c−

r .
Let Z± be defined by (4.45), so that (Z+, Z−) induces the product of one-variance Wiener

measure Wc+
r+⊗Wc−

r2
|Dr on (Dr,Br

+,r−

Dr ), i.e., P◦(Z+, Z−)−1 = Wc+
r+⊗Wc−

r2
|Dr . From Theorem

4.2.8 we have

Wc+,c−
r = P◦Z−1 = P◦(Z+, Z−)−1◦Ψ−1 = (Wc+

r+⊗Wc−
r2
|Dr)◦Ψ−1.

�

Corollary 4.2.10 Given r ∈ R, let Z+ and Z− be independent Brownian motions with
variances c+ and c− per unit time starting at r+ and r−. Then Z = Ψ(Z+, Z−) is a
two-variance Brownian motion (relative to its own filtration). Moreover

Z = Z+ ◦ P+
Z − Z− ◦ P

−
Z .

In particular, from Lemma 4.2.4 and Lemma 4.2.7, we have

|Z| = Z+ ◦ P+
Z + Z− ◦ P−Z + Γ(Z+ ◦ P+

Z + Z− ◦ P−Z ), (4.61)

Γ(Z+ ◦ P+
Z + Z− ◦ P−Z ) = L+ ◦ P+

Z + L− ◦ P−Z = 2L± ◦ P±Z . (4.62)

Proof: Because (Z+, Z−) induces the product of one-variance Wiener measure, Wc+
r+ ⊗

Wc−
r−|Dr , on (Dr,Br

+,r−

Dr ), and Ψ(Z+, Z−) induces a two-variance Wiener measure Wc+,c−
r

on (Cr[0,∞),Br), from Theorem 4.2.9, we have Z is a two-variance Brownian motion.
According to Proposition 4.1.2, we have t = P+

Z (t) + P−Z (t), which implies∫ t

0

1{±Z(s)>0}ds =

∫ t

0

1{±Z(s)≥0}ds.

Therefore, from Lemma 4.2.4, we obtain

Z = Ψ(Z+, Z−) = Z+ ◦ P+
Z − Z− ◦ P

−
Z .

�
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Chapter 5

From renewal state to the next
renewal state

From Theorem 3.7.5 in Chapter 3, we see that

(T̂ n·∧σ(Ŝn)
, Ûn
·∧σ(Ŝn)

, V̂ n
·∧σ(Ŝn)

, Ŵ n
·∧σ(Ŝn)

, X̂n
·∧σ(Ŝn)

) =⇒ (T ∗·∧σ(S∗),U∗·∧σ(S∗),V∗·∧σ(S∗),W∗·∧σ(S∗),X ∗·∧σ(S∗)),

under the topology on the space D, and the limiting model reaches the first renewal state
at time σ(S∗). Note that σ(S∗) is the first time when either U∗ or W∗ reaches zero.
Without loss of generality, in this chapter, we assume that W∗ reaches zero before U∗.
We are now interested in the evolution of (Un, V n,W n, Xn) after σn(Ŝn). According to
Corollary 3.5.3 and Proposition 3.7.4, we have

(Ûn
σ(Ŝn)

, V̂ n
σ(Ŝn)

, Ŵ n
σ(Ŝn)

, X̂n
σ(Ŝn)

) =⇒ (U∗σ(S∗), 0, 0,X ∗σ(S∗)),

where U∗σ(S∗) > 0 and X ∗σ(S∗) < 0. For convenience of our discussion, we reset the clock

of the nth pre-limit model at σn. In particular, the reset LOB has the following initial
condition,

Un(0)/
√
n → u0 > 0,

V n(0)/
√
n → 0,

W n(0)/
√
n → 0,

Xn(0)/
√
n → x0 < 0,

where Proposition 3.7.4 imples x0 = −µ2λ1
θsµ1

and u0 = λ2µ1
θbλ1

. Let us define

ηn := inf{t ≥ 0 |Un(t) ≤ 0 or Xn(t) ≥ 0}.

We call (Un, Xn) bracketing processes, and (V n,W n) interior processes until the LOB
reaches ηn. We are going to study the evolution of the stopped process (Un

·∧ηn , V
n
·∧ηn ,W

n
·∧ηn , X

n
·∧ηn)

and its diffusion scaled limit.
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Figure 5.1: Bracketing queues Un, Xn and interior queues V n, W n

5.1 The interior processes

To study the interior processes V n and W n, in Section 5.1.1 we change the variables
similarly to what we did in Section 3.1 to obtain new processes Gn and Hn. In Section
5.1.2 we then apply the diffusion scaling in order to obtain a process Ĝn that is a martingale
and a second process Ĥn that is shown in Section 5.1.3 to converge to zero. The limit of
Ĝn is shown in Section 5.1.4 to be a two-variance Brownian motion. In terms of the limits
of Ĥn and Ĝn, in Section 5.1.5 we provide the limits of V̂n and Ŵn. The convergences in
this section are weak convergence of probability measures in the J1 topology on D[0,∞).

In principle, V n can be either positive, zero, or negative and W n can be either
positive, zero, or negative. However, V n cannot be negative when W n is positive because
that would mean a limit sell order at a price below the price of a limit buy order, which is
impossible under the rule of order arrivals. Therefore, there are eight possibilities for the
pair (V n,W n) when Un and Xn are bracketing queues, and these are illustrated in Figure
5.1. In each of these eight configuration, the arrows indicate the directions of queues’
movement and the parameters show the locations and rates of arrivals of market and limit
orders or cancellations. For convenience, we only show cancellations on (Un, V n,W n, Xn).
We see from this figure that during the time when Un and Xn are bracketing processes,
(V n, Xn) is a two-dimensional Markov process on the two-dimensional integer lattice Z2
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Figure 5.2: Bracketing queues Un, Xn and interior queues V n, W n

intersected with
S :=

{
(v, w) : v ≥ 0

}
∪
{

(v, w) : w ≤ 0
}
.

In order to avoid here a discussion of the possibility that the bracketing queues Un and
Xn are no longer valid till certain time, i.e., either Un or Xn hits zero, we consider a pair
of processes (Vn,Wn) that has the same dynamics as (V n,W n) but is defined by these
dynamics for all time, not just during the period of time that Un and Xn are bracketing
processes. Figure 5.2 shows the transitions of this two-dimensional process, where the
rates and directions of transitions are indicated by arrows.

In order to make the dynamics of (Vn,Wn) more precise, we divide S into eight
regions

S1 :=
{

(v, w) : v ≥ 0, w > 0},
S2 :=

{
(v, w) : v > 0, w = 0

}
,

S3 :=
{

(v, w) : v > 0,−v < w < 0
}
,

S4 :=
{

(v, w) : v > 0,−v = w
}
,

S5 =
{

(v, w) : v = 0, w = 0
}
,

S6 :=
{

(v, w) : w < 0, 0 < v < −w
}
,

S7 :=
{

(v, w) : w < 0, v = 0
}
,

S8 :=
{

(v, w) : w ≤ 0, v < 0
}
.

From Figure 5.2 we see that the dynamics of (Vn,Wn) is the same within each of these
eight regions. On the other hand, the types of orders which affect Vn or Wn might
be different in different regions. Although there are six independent Poisson processes
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governing the arrivals of market orders and limit orders, for convenience we will thin
these Poisson processes according to the regions in which (Vn,Wn) is located in order to
obtain thirty independent unit-intensity Poisson processes to describe the evolutions of
(Vn,Wn). In particular, we denote these Poisson processes by Ni,×,∗, where i = 1, . . . , 8
indicates the region in which the Poisson process acts, × ∈ {V ,W} indicates which of the
processes Vn or Wn is affected by the Poisson process, and ∗ ∈ {+,−} indicates whether
the Poisson process increases(+) or decreases(−) the affected process. For i = 1, . . . , 8,
we define Pi(t) to be the time (Vn,Wn) spends in region Si up to time t. In particular,
we have

Pi(t) =

∫ t

0

1{(V(s),W(s))∈Si} ds, i = 1, . . . , 8.

Then

Vn(t) = Vn(0) +N1,V,+ ◦ λ2P1(t)−N2,V,− ◦ µ0P2(t) +N2,V,+ ◦ λ2P2(t)

−N3,V,− ◦ µ0P3(t) +N3,V,+ ◦ λ1P3(t)−N4,V,− ◦ µ0P4(t) +N4,V,+ ◦ λ1P4(t)

−N5,V,− ◦ µ1P5(t) +N5,V,+ ◦ λ2P5(t)−N6,V,− ◦ µ0P6(t) +N6,V,+ ◦ λ1P6(t)

−N7,V,− ◦ µ1P7(t) +N7,V,+ ◦ λ1P7(t)−N8,V,− ◦ µ1P8(t) +N8,V,+ ◦ λ0P8(t), (5.1)

Wn(t) = Wn(0)−N1,W,− ◦ µ0P1(t) +N1,W,+ ◦ λ1P1(t)−N8,W,− ◦ µ2P8(t)

−N2,W,− ◦ µ1P2(t) +N2,W,+ ◦ λ1P2(t)−N3,W,− ◦ µ1P3(t) +N3,W,+ ◦ λ0P3(t)

−N4,W,− ◦ µ1P4(t) +N4,W,+ ◦ λ0P4(t)−N5,W,− ◦ µ2P5(t) +N5,W,+ ◦ λ1P5(t)

−N6,W,− ◦ µ1P6(t) +N6,W,+ ◦ λ0P6(t)−N7,W,− ◦ µ2P7(t) +N7,W,+ ◦ λ0P7(t).(5.2)

5.1.1 Transformation of variables

Recalling the positive constants a and b from Assumption 2.2.1, we define (Gn, Hn) to be
the continuous piecewise linear transformation of (Vn,Wn) given by

Gn(t) :=


Vn(t) + bWn(t) if

(
Vn(t),Wn(t)

)
∈ S1 ∪ S2,

Vn(t) +Wn(t) if
(
Vn(t),Wn(t)

)
∈ S3 ∪ S4 ∪ S5 ∪ S6,

aVn(t) +Wn(t) if
(
Vn(t),Wn(t)

)
∈ S7 ∪ S8.

(5.3)

Hn(t) :=


Wn(t) if

(
Vn(t),Wn(t)

)
∈ S1 ∪ S2 ∪ S3,

Wn(t) = −Vn(t) if
(
Wn(t),V(t)

)
∈ S4 ∪ S5,

−Vn(t) if
(
Vn(t),Wn(t)

)
∈ S6 ∪ S7 ∪ S8.

(5.4)
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Note that this transformation is invertible. Indeed, for i = 1, . . . , 8, the image of S ′i under
this transformation is Si, where the S ′i regions are defined by

S ′1 :=
{

(g, h) : h > 0, g ≥ bh
}
,

S ′2 :=
{

(g, h) : h = 0, g > 0
}
,

S ′3 :=
{

(g, h) : h < 0, g > 0
}
,

S ′4 :=
{

(g, h) : h < 0, g = 0
}
,

S ′5 :=
{

(g, h) : g = h = 0
}
,

S ′6 :=
{

(g, h) : h < 0, g < 0
}
,

S ′7 :=
{

(g, h) : h = 0, g < 0
}
,

S ′8 :=
{

(g, h) : h > 0, g ≤ −ah
}
,

and the inverse map is

Vn(t) =


Gn(t)− bHn(t) if

(
Gn(t), Hn(t)

)
∈ S ′1 ∪ S ′2,

Gn(t)−Hn(t) if
(
Gn(t), Hn(t)

)
∈ S ′3,

−Hn(t) if
(
Gn(t), Hn(t)

)
∈ S ′4 ∪ S ′5 ∪ S ′6 ∪ S ′7 ∪ S ′8,

(5.5)

Wn(t) =


Hn(t) if

(
Gn(t), Hn(t)

)
∈ S ′1 ∪ S ′2 ∪ S ′3 ∪ S ′4 ∪ S ′5,

Gn(t) +Hn(t) if
(
Gn(t), Hn(t)

)
∈ S ′6,

Gn(t) + aHn(t) if
(
Gn(t), Hn(t)

)
∈ S ′7 ∪ S ′8.

(5.6)

It can be verified that the inverse transformation defined by (5.5) and (5.6) is continuous
on S := ∪8

i=1Si.
A decrease of Vn by one unit when (Vn,Wn) is in S5 ∪ S7 decrease Gn by a units.

An increase or decrease of Vn by one unit when (Vn,Wn) is in S8 increases or decreases,
respectively, Gn by a units. Similarly, an increase of Wn by one unit when (Vn,Wn) is
in S2 ∪ S5 increases Gn by b units. An increase or decrease of Wn by one unit when
(Vn,Wn) is in S1 increases or decreases, respectively, Gn by b units. Otherwise, all
increases or decreases in Vn or Wn by one unit increase or decrease Gn by one unit. It
follows that

Gn = Gn(0) +N1,V,+ ◦ λ2P1 − bN1,W,− ◦ µ0P1 + bN1,W,+ ◦ λ1P1

+N2,V,+ ◦ λ2P2 −N2,V,− ◦ µ0P2 −N2,W,− ◦ µ1P2 + bN2,W,+ ◦ λ1P2

+N3,V,+ ◦ λ1P3 −N3,V,− ◦ µ0P3 −N3,W,− ◦ µ1P3 +N3,W,+ ◦ λ0P3

+N4,V,+ ◦ λ1P4 −N4,V,− ◦ µ0P4 −N4,W,− ◦ µ1P4 +N4,W,+ ◦ λ0P4

+N5,V,+ ◦ λ2P5 − aN5,V,− ◦ µ1P5 −N5,W,− ◦ µ2P5 + bN5,W,+ ◦ λ1P5

+N6,V,+ ◦ λ1P6 −N6,V,− ◦ µ0P6 −N6,W,− ◦ µ1P6 +N6,W,+ ◦ λ0P6

+N7,V,+ ◦ λ1P7 − aN7,V,− ◦ µ1P7 −N7,W,− ◦ µ2P7 +N7,W,+ ◦ λ0P7

+aN8,V,+ ◦ λ0P8 − aN8,V,− ◦ µ1P8 −N8,W,− ◦ µ2P8. (5.7)

On the other hand, in the region S6∪S7∪S8, Gn is negative and a change in Gn results in
a change in |Gn| of the same magnitude but the opposite direction. In the region S4 ∪S5,
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Gn is zero and a change in Gn results in an increase in |Gn| of the same magnitude.
Modifying (5.7) accordingly, we obtain

|Gn| = |Gn(0)|+N1,V,+ ◦ λ2P1 − bN1,W,− ◦ µ0P1 + bN1,W,+ ◦ λ1P1

+N2,V,+ ◦ λ2P2 −N2,V,− ◦ µ0P2 −N2,W,− ◦ µ1P2 + bN2,W,+ ◦ λ1P2

+N3,V,+ ◦ λ1P3 −N3,V,− ◦ µ0P3 −N3,W,− ◦ µ1P3 +N3,W,+ ◦ λ0P3

+N4,V,+ ◦ λ1P4 +N4,V,− ◦ µ0P4 +N4,W,− ◦ µ1P4 +N4,W,+ ◦ λ0P4

+N5,V,+ ◦ λ2P5 + aN5,V,− ◦ µ1P5 +N5,W,− ◦ µ2P5 + bN5,W,− ◦ λ1P5

−N6,V,+ ◦ λ1P6 +N6,V,− ◦ µ0P6 +N6,W,− ◦ µ1P6 −N6,W,+ ◦ λ0P6

−N7,V,+ ◦ λ1P7 + aN7,V,− ◦ µ1P7 +N7,W,− ◦ µ2P7 −N7,W,+ ◦ λ0P7

−aN8,V,+ ◦ λ0P8 + aN8,V,− ◦ µ1P8 +N8,W,− ◦ µ2P8. (5.8)

An increase ofWn by one unit or a decrease of Vn by one unit when (Vn,Wn) is in S4∪S5

increases Hn by one unit. An increase or decrease of Wn by one unit when (Vn,Wn) is
in S1 ∪ S2 ∪ S3 increases or decreases Hn by one unit, respectively, and an increase or
decrease of Vn by one unit when (Vn,Wn) is in S6 ∪S7 ∪S8 decreases or increases Hn by
one unit, respectively. Other changes in Vn and Wn do not affect H. It follows that

Hn = Hn(0) +N1,W,+ ◦ λ1P1 −N1,W,− ◦ µ0P1 +N2,W,+ ◦ λ1P2 −N2,W,− ◦ µ1P2

+N3,W,+ ◦ λ0P3 −N3,W,− ◦ µ1P3 +N4,W,+ ◦ λ0P4 +N4,V,− ◦ µ0P4

+N5,W,+ ◦ λ1P5 +N5,V,− ◦ µ1P5 +N6,V,− ◦ µ0P6 −N6,V,+ ◦ λ1P6

+N7,V,− ◦ µ1P7 −N7,V,+ ◦ λ1P7 +N8,V,− ◦ µ1P8 −N8,V,+ ◦ λ0P8. (5.9)

In the region S3 ∪S4 ∪S6, Hn is negative and a change in Hn results in a change in |Hn|
of the same magnitude but the opposite direction. In the region S2 ∪ S5 ∪ S7, Hn is zero
and a unit change in Hn results in a unit increase in |Hn|. Modifying (5.9) accordingly,
we obtain

|Hn| = |Hn(0)|+N1,W,+ ◦ λ1P1 −N1,W,− ◦ µ0P1 +N2,W,+ ◦ λ1P2 +N2,W,− ◦ µ1P2

−N3,W,+ ◦ λ0P3 +N3,W,− ◦ µ1P3 −N4,W,+ ◦ λ0P4 −N4,V,− ◦ µ0P4

+N5,W,+ ◦ λ1P5 +N5,V,− ◦ µ1P5 −N6,V,− ◦ µ0P6 +N6,V,+ ◦ λ1P6

+N7,V,− ◦ µ1P7 +N7,V,+ ◦ λ1P7 +N8,V,− ◦ µ1P8 −N8,V,+ ◦ λ0P8. (5.10)

5.1.2 Diffusion scaling

Recall that the diffusion scaling of a sequence of processes Qn is defined by,

Q̂n(t) =
1√
n
Qn(nt).

Because each of the regions Si, i = 1, . . . , 8, is a cone, when we apply the diffusion scaling
to the processes Vn, Wn, Gn and Hn in the piecewise linear transformations (5.3) and
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(5.4) we obtain the analogous formulas

Ĝn(t) :=


V̂n(t) + bŴn(t) if

(
V̂n(t), Ŵn(t)

)
∈ S1 ∪ S2,

V̂n(t) + Ŵn(t) if
(
V̂n(t), Ŵn(t)

)
∈ S3 ∪ S4 ∪ S5 ∪ S6,

aV̂n(t) + Ŵn(t) if
(
V̂n(t), Ŵn(t)

)
∈ S7 ∪ S8.

(5.11)

Ĥn(t) :=


Ŵn(t) if

(
V̂n(t), Ŵn(t)

)
∈ S1 ∪ S2 ∪ S3,

Ŵn(t) = −V̂n(t) if
(
Ŵn(t), V̂n(t)

)
∈ S4 ∪ S5,

−V̂n(t) if
(
V̂n(t), Ŵn(t)

)
∈ S6 ∪ S7 ∪ S8.

(5.12)

The inverse of this transformation is continuous. In fact, the inverse is given by replacing
G by Ĝn and H by Ĥn in (5.5) and (5.6),

V̂n(t) =


Ĝn(t)− bĤn(t) if

(
Ĝn(t), Ĥn(t)

)
∈ R1 ∪R2,

Ĝn(t)− Ĥn(t) if
(
Ĝn(t), Ĥn(t)

)
∈ R3,

−Ĥn(t) if
(
Ĝn(t), Ĥn(t)

)
∈ R4 ∪R5 ∪R6 ∪R7 ∪R8,

(5.13)

Ŵn(t) =


Ĥn(t) if

(
Ĝn(t), Ĥn(t)

)
∈ R1 ∪R2 ∪R3 ∪R4 ∪R5,

Ĝn(t) + Ĥn(t) if
(
Ĝn(t), Ĥn(t)

)
∈ R6,

Ĝn(t) + aĤn(t) if
(
Ĝn(t), Ĥn(t)

)
∈ R7 ∪R8.

(5.14)

The Continuous Mapping Theorem implies that we can determine the weak limit in the
J1 topology of (V̂n, Ŵn) by determining the limit of (Ĝn, Ĥn).

We next center the thirty independent unit-intensity Poisson processes appearing in
(5.1), (5.2), defining

Mi,×,∗(t) := Ni,×,∗(t)− t, t ≥ 0.

Each of these compensated Poisson processes is a martingale relative its own filtration,
and these martingale are independent. For n = 1, 2, . . . , their diffusion-scaled versions
are

M̂n
i,×,∗(t) :=

1√
n

(
Mi,×,∗(nt)− nt

)
, t ≥ 0, (5.15)

and each of these processes is likewise a martingale relative to its own filtration, and these
processes are independent. For i = 1, . . . , 8 and n = 1, 2, . . . , we also define

P
n

i (t) :=
1

n
Pi(nt), t ≥ 0.

Replacing the Poisson processes in (5.7) by compensated Poisson processes and ap-
plying the diffusion scaling, we obtain ScGP
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Ĝn = Ĝn(0) + M̂n
1,V,+ ◦ λ2P

n

1 − bM̂n
1,W,− ◦ µ0P

n

1 + bM̂n
1,W,+ ◦ λ1P

n

1

+M̂n
2,V,+ ◦ λ2P

n

2 − M̂n
2,V,− ◦ µ0P

n

2 − M̂n
2,W,− ◦ µ1P

n

2 + bM̂n
2,W,+ ◦ λ1P

n

2

+M̂n
3,V,+ ◦ λ1P

n

3 − M̂n
3,V,− ◦ µ0P

n

3 − M̂n
3,W,− ◦ µ1P

n

3 + M̂n
3,W,+ ◦ λ0P

n

3

+M̂n
4,V,+ ◦ λ1P

n

4 − M̂n
4,V,− ◦ µ0P

n

4 − M̂n
4,W,− ◦ µ1P

n

4 + M̂n
4,W,+ ◦ λ0P

n

4

+M̂n
5,V,+ ◦ λ2P

n

5 − aM̂n
5,V,− ◦ µ1P

n

5 − M̂n
5,W,+ ◦ µ2P

n

5 + bM̂n
5,W,− ◦ λ1P

n

5

+M̂n
6,V,+ ◦ λ1P

n

6 − M̂n
6,V,− ◦ µ0P

n

6 − M̂n
6,W,− ◦ µ1P

n

6 + M̂n
6,W,+ ◦ λ0P

n

6

+M̂n
7,V,+ ◦ λ1P

n

7 − aM̂n
7,V,− ◦ µ1P

n

7 − M̂n
7,W,− ◦ µ2P

n

7 + M̂n
7,W,+ ◦ λ0P

n

7

+aM̂n
8,V,+ ◦ λ0P

n

8 − aM̂n
8,V,− ◦ µ1P

n

8 − M̂n
8,W,− ◦ µ2P

n

8 . (5.16)

The drift terms that arise from the centering of the Poisson processes vanish in (5.16)
because, according to Assumption 2.2.1 and its consequence (2.1),

(λ2 − bµ0 + bλ1)P
n

1 = 0,

(λ2 − µ0 − µ1 + bλ1)P
n

2 = 0,

(λ1 − µ0 − µ1 + λ0)P
n

3 = 0,

(λ1 − µ0 − µ1 + λ0)P
n

4 = 0,

(λ2 − aµ1 − µ2 + bλ1)P
n

5 = 0,

(λ1 − µ0 − µ1 + λ0)P
n

6 = 0,

(λ1 − aµ1 − µ2 + λ0)P
n

7 = 0,

(aλ0 − aµ1 − µ2)P
n

8 = 0.

The filtration {Fn(t)}t≥0 we use for Ĝn is the one generated by the thirty time-changed

processes M̂n
1,V,I ◦λ2P

n

1 , . . . , M̂
n
8,W,−◦µ2P

n

8 appearing in (5.16). These are not independent
because of the coupling of the time changes. However, they are each martingales relative
to the filtration {Fn(t)}t≥0, as is Ĝn.

Replacing the Poisson processes in (5.8), (5.9) and (5.10) by compensated Poisson
processes, applying the diffusion scaling, and using Assumption 2.2.1 to simplify, we obtain∣∣Ĝn

∣∣ =
∣∣Ĝn(0)

∣∣+ M̂n
1,V,+ ◦ λ2P

n

1 − bM̂n
1,W,− ◦ µ0P

n

1 + bM̂n
1,W,+ ◦ λ1P

n

1

+M̂n
2,V,+ ◦ λ2P

n

2 − M̂n
2,V,− ◦ µ0P

n

2 − M̂n
2,W,− ◦ µ1P

n

2 + bM̂n
2,W,+ ◦ λ1P

n

2

+M̂n
3,V,+ ◦ λ1P

n

3 − M̂n
3,V,− ◦ µ0P

n

3 − M̂n
3,W,− ◦ µ1P

n

3 + M̂n
3,W,+ ◦ λ0P

n

3

+M̂n
4,V,+ ◦ λ1P

n

4 + M̂n
4,V,− ◦ µ0P

n

4 + M̂n
4,W,− ◦ µ1P

n

4 + M̂n
4,W,+ ◦ λ0P

n

4

+M̂n
5,V,+ ◦ λ2P

n

5 + aM̂n
5,V,− ◦ µ1P

n

5 + M̂n
5,W,− ◦ µ2P

n

5 + bM̂n
5,W,− ◦ λ1P

n

5

−M̂n
6,V,+ ◦ λ1P

n

6 + M̂n
6,V,− ◦ µ0P

n

6 + M̂n
6,W,− ◦ µ1P

n

6 − M̂n
6,W,+ ◦ λ0P

n

6

−M̂n
7,V,+ ◦ λ1P

n

7 + aM̂n
7,V,− ◦ µ1P

n

7 + M̂n
7,W,− ◦ µ2P

n

7 − M̂n
7,W,+ ◦ λ0P

n

7

−aM̂n
8,V,+ ◦ λ0P

n

8 + aM̂n
8,V,− ◦ µ1P

n

8 + M̂n
8,W,− ◦ µ2P

n

8

+2aλ0

√
n(P

n

4 + P
n

5 ), (5.17)
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Ĥn = Ĥn(0) + M̂n
1,W,+ ◦ λ1P

n

1 − M̂n
1,W,− ◦ µ0P

n

1 + M̂n
2,W,+ ◦ λ1P

n

2 − M̂n
2,W,− ◦ µ1P

n

2

+M̂n
3,W,+ ◦ λ0P

n

3 − M̂n
3,W,− ◦ µ1P

n

3 + M̂n
4,W,+ ◦ λ0P

n

4 + M̂n
4,V,− ◦ µ0P

n

4

+M̂n
5,W,+ ◦ λ1P

n

5 + M̂n
5,V,− ◦ µ1P

n

5 + M̂n
6,V,− ◦ µ0P

n

6 − M̂n
6,V,+ ◦ λ1P

n

6

+M̂n
7,V,− ◦ µ1P

n

7 − M̂n
7,V,+ ◦ λ1P

n

7 + M̂n
8,V,− ◦ µ1P

n

8 − M̂n
8,V,+ ◦ λ0P

n

8

+(λ1 + µ1)
√
nP

n

5 + (λ0 + µ0)
√
nP

n

4 + c
√
n (P

n

3 + P
n

6 − P
n

1 − P
n

8 )

+
√
n (µ1 − λ1)(P

n

7 − P
n

2 ), (5.18)∣∣Ĥn
∣∣ =

∣∣Ĥn(0)
∣∣+ M̂n

1,W,+ ◦ λ1P
n

1 − M̂n
1,W,− ◦ µ0P

n

1 + M̂n
2,W,+ ◦ λ1P

n

2 + M̂n
2,W,− ◦ µ1P

n

2

−M̂n
3,W,+ ◦ λ0P

n

3 + M̂n
3,W,− ◦ µ1P

n

3 − M̂n
4,W,+ ◦ λ0P

n

4 − M̂n
4,V,− ◦ µ0P

n

4

+M̂n
5,W,+ ◦ λ1P

n

5 + M̂n
5,V,− ◦ µ1P

n

5 − M̂n
6,V,− ◦ µ0P

n

6 + M̂n
6,V,+ ◦ λ1P

n

6

+M̂n
7,V,− ◦ µ1P

n

7 + M̂n
7,V,+ ◦ λ1P

n

7 + M̂n
8,V,− ◦ µ1P

n

8 − M̂n
8,V,+ ◦ λ0P

n

8

+(λ1 + µ1)
√
n (P

n

5 + P
n

2 + P
n

7 )− c
√
n (P

n

1 + P
n

3 + P
n

6 + P
n

8 )

−(λ0 + µ0)
√
nP

n

4 , (5.19)

where c > 0 is defined by (2.1). Because (Ĝn, Ĥn) is adapted to {Fn(t)}t≥0 and for
i = 1, . . . , 8,

P
n

i (t) =

∫ t

0

1{(Ĝn(u),Ĥn(u))∈Ri}du, t ≥ 0, (5.20)

the time-change processes P
n

i are also adapted to {Fn(t)}t≥0. Consequently, |Ĝn| and

|Ĥn| are adapted to this filtration. According to the initial condition, we have

V̂n(0)→ 0, Ŵn(0)→ 0.

From (5.11) and (5.12), we have

Ĝn(0)→ 0, Ĥn(0)→ 0.

5.1.3 Crushing Ĥn

Theorem 5.1.1 Ĥn J1=⇒ 0.

Proof: This proof follows the same logic as the proof of Theorem 3.3.3. Because it is
notationally different, we give the details. For t ≥ 0, we define

τn(t) :=

{
sup

{
s ∈ [0, t] : Ĥn(s) = 0

}
if
{
s ∈ [0, t] : Ĥn(s) = 0

}
6= ∅,

0 if
{
s ∈ [0, t] : Ĥn(s) = 0

}
= ∅.

Because Ĥn(s) 6= 0 for s ∈ (τn(t), t], P
n

2 , P
n

5 , and P
n

7 are flat on this interval, and we
have

P
n

1 (t) + P
n

3 (t) + P
n

4 (t) + P
n

6 (t) + P
n

8 (t)

= P
n

1

(
τn(t)

)
+ P

n

3

(
τn(t)

)
+ P

n

4

(
τn(t)

)
+ P

n

6

(
τn(t)

)
+ P

n

8

(
τn(t)

)
+ t− τn(t)
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and
P
n

2 (t) + P
n

5 (t) + P
n

7 (t) = P
n

2

(
τn(t)

)
+ P

n

5

(
τn(t)

)
+ P

n

7

(
τn(t)

)
.

Substituting this into (5.19), we obtain

0 ≤
∣∣Ĥn(t)

∣∣
=

∣∣Ĥn
(
τn(t)

)∣∣+Ocl(1)− c
√
n
[
P
n

1 (t) + P
n

3 (t) + P
n

6 (t) + P
n

8 (t)

−P n

1

(
τn(t)

)
− P n

3

(
τn(t)

)
− P n

6

(
τn(t)

)
− P n

8

(
τn(t)

)]
−(λ0 + µ0)

√
n
[
P
n

4 (t)− P n(
τn(t)

)]
≤

∣∣Ĥn
(
τn(t)

)∣∣+Ocl(1)−min (c, λ0 + µ0)
√
n
(
t− τn(t)

)
. (5.21)

But Ĥn(τn(t)) → 0 if τn(t) = 0, and otherwise |Ĥn(τn(t))| = 1/
√
n, so (5.21) implies√

n(e− τn) = Ocl(1), where e is the identify process e(t) = t for all t ≥ 0. This implies

τn
J1=⇒ e, (5.22)

and thus
0 ≤ P

n

i − P
n

i ◦ τn ≤ e− τn = o(1). (5.23)

Because the limits of the processes M̂n
i,×,∗ are continuous, (5.23) implies that

M̂n
i,×,∗ ◦ αP

n

i − M̂n
i,×,∗ ◦ αP

n

i ◦ τn = o(1)

for any positive constant α. Therefore, we can upgrade the estimate in (5.21) to

0 ≤
∣∣Ĥn(t)

∣∣ ≤ o(1) + o(1)−min (c, λ0 + µ0)
√
n
(
t− τn(t)

)
,

which implies √
n (e− τn) = o(1). (5.24)

In particular, |Ĥn| = o(1). �

Remark 5.1.2 Dividing (5.18) and (5.19) by
√
n and passing to the limit, we see that

(λ1 + µ1)P
n

5 + (λ0 + µ0)P
n

4 + c(P
n

3 + P
n

6 − P
n

1 − P
n

8 ) + (µ1 − λ1)(P
n

7 − P
n

2 )
J1=⇒ 0,

(5.25)

(λ1 + µ1)(P
n

5 + P
n

2 + P
n

7 )− c(P n

1 + P
n

3 + P
n

6 + P
n

8 )− (λ0 + µ0)P
n

4
J1=⇒ 0.

(5.26)
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5.1.4 Convergence of Ĝn

The proof of convergence of Ĝn and identification of the limit proceeds through several
steps. Along the way we identify the limits of the processes P

n

i , i = 1, . . . , 8.

Lemma 5.1.3 Let ϕk : R→ [0,∞) be defined for k = 1, 2, . . . by

ϕk(ξ) =


0 if ξ ≤ − 1

k
,

kξ + 1 if − 1
k
≤ ξ ≤ 0,

−kξ + 1 if 0 ≤ ξ ≤ 1
k
,

0 if ξ ≥ 1
k
.

Define Fk, k = 0, 1, . . . , mapping D[0,∞) to [0,∞) by

F0(x) =

∫ ∞
0

e−s1{0}
(
x(s)

)
ds,

Fk(x) =

∫ ∞
0

e−sϕk
(
x(s)

)
ds, k = 1, 2, . . . .

For k = 1, 2, . . . , Fk is continuous in the Skorohod topology, and F0 = infk≥1 Fk is upper
semi-continuous.

Proof: Obviously, F0 = infk≥1 Fk, so it suffices to show that Fk is continuous for
k = 1, 2, . . . .

Let k ≥ 1 be given. We recall from [9], Section 3.5, that a metric for the Skorohod
topology on D[0,∞) is

d(x, y) := inf
λ∈Λ

[
γ(λ) ∨

∫ ∞
0

e−ud(x, y, λ, u) du

]
,

where

d(x, y, λ, u) := 1 ∧ sup
t≥0

∣∣x(t ∧ u)− y
(
λ(t) ∧ u

)∣∣,
γ(λ) := ess sup

t≥0

∣∣ log λ′(t)
∣∣

= sup
s>t≥0

∣∣∣∣log
λ(s)− λ(t)

s− t

∣∣∣∣ ,
and Λ is the set of all strictly increasing Lipschitz continuous functions λ mapping [0,∞)
onto [0,∞) with γ(λ) < ∞. Let xn → x in the Skorohod topology on D[0,∞). Then
there exists a sequence {λn}∞n=1 in Λ such that

lim
n→0

γ(λn) ∨
∫ ∞

0

e−ud(x, xn, λn, u) du = 0. (5.27)
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We compute

∣∣Fk(xn)− Fk(x)
∣∣ =

∣∣∣∣∫ ∞
0

e−s
[
ϕk
(
xn(s)

)
− ϕk

(
x(s)

)]
ds

∣∣∣∣
≤

∣∣∣∣∫ ∞
0

e−s
[
ϕk

(
xn(s)

)
− ϕk

(
x
(
λn(s)

))]
ds

∣∣∣∣
+

∣∣∣∣∫ ∞
0

e−s
[
ϕk

(
x
(
λn(s)

))
− ϕk

(
x(s)

)]
ds

∣∣∣∣ .
We consider the last two terms separately. Note that ϕk is bounded by 1 and is Lipschitz
with constant k. Moreover, from definition of γ and (5.27), for sufficiently large n, λn(s) ≤
s+ 1 for all s ≥ 0. Therefore, we have∣∣∣∣∫ ∞

0

e−s
[
ϕk

(
xn(s)

)
− ϕk

(
x
(
λn(s)

))]
ds

∣∣∣∣
≤

∫ ∞
0

e−s
(

2 ∧ k
∣∣xn(s)− x

(
λn(s)

)∣∣)ds
≤ 2k

∫ ∞
0

e−s
(

1 ∧ sup
t≥0

∣∣xn(t ∧ (s+ 1)
)
− x
(
λn(t) ∧ (s+ 1)

)∣∣)ds
≤ 2ke

∫ ∞
1

e−ud(xn, x, λn, u)du,

which has limit zero as n→ 0. Being Lipschitz, each λn is absolutely continuous, λn(0) =
0, λ′n is defined almost everywhere, and |λ′n− 1| is uniformly bounded by a constant that
goes to zero as n→∞. Therefore,∣∣∣∣∫ ∞

0

e−s
[
ϕk

(
x
(
λn(s)

))
− ϕk

(
x(s)

)]
ds

∣∣∣∣
=

∣∣∣∣∫ ∞
0

e−sϕk

(
x
(
λn(s)

))
ds−

∫ ∞
0

e−λn(t)ϕk

(
x
(
λn(t)

))
λ′n(t)dt

∣∣∣∣
≤

∫ ∞
0

e−s
∣∣1− es−λn(s)λ′n(s)

∣∣ds,
and this has limit zero as n→∞ because |1− es−λn(s)λ′n(s)| converges pointwise to zero
and is bounded by |1 − es/2| uniformly in s for sufficiently large n. This concludes the
proof that Fk is continuous for k = 1, 2, . . . . �

Proposition 5.1.4 The sequence of processes {Ĝn}∞n=1 is tight in the J1-topology, every
convergent subsequence of this sequence has a continuous limit, and the limit spends zero
Lebesgue time at the origin.
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Proof: Define

Ψ̂n
1 := M̂n

1,V,+ ◦ λ2e− bM̂n
1,W,− ◦ µ0e+ bM̂n

1,W,+ ◦ λ1e,

Ψ̂n
2 := M̂n

2,V,+ ◦ λ2e− M̂n
2,V,− ◦ µ0e− M̂n

2,W,− ◦ µ1e+ bM̂n
2,W,+ ◦ λ1e,

Ψ̂n
3 := M̂n

3,V,+ ◦ λ1e− M̂n
3,V,− ◦ µ0e− M̂n

3,W,− ◦ µ1e+ M̂n
3,W,+ ◦ λ0e,

Ψ̂n
4 := M̂n

4,V,+ ◦ λ1e− M̂n
4,V,− ◦ µ0e− M̂n

4,W,− ◦ µ1e+ M̂n
4,W,+ ◦ λ0e,

Ψ̂n
5 := M̂n

5,V,+ ◦ λ2e− aM̂n
5,V,− ◦ µ1e− M̂n

5,W,− ◦ µ2e+ bM̂n
5,W,+ ◦ λ1e,

Ψ̂n
6 := M̂n

6,V,+ ◦ λ1e− M̂n
6,V,− ◦ µ0e− M̂n

6,W,− ◦ µ1e+ M̂n
6,W,+ ◦ λ0e,

Ψ̂n
7 := M̂n

7,V,+ ◦ λ1e− aM̂n
7,V,− ◦ µ1e− M̂n

7,W,− ◦ µ2e+ M̂n
7,W,+ ◦ λ0e,

Ψ̂n
8 := aM̂n

8,V,+ ◦ λ0e− aM̂n
8,V,− ◦ µ1e− M̂n

8,W,− ◦ µ2e,

so that Ĝn = Ĝn(0) +
∑8

i=1 Ψ̂n
i ◦ P

n

i . Because [M̂n
i,×,∗, M̂

n
i,×,∗]

J1=⇒ e and these processes
are independent, we have[

Ψ̂n
1 , Ψ̂

n
1

] J1=⇒ (λ2 + b2λ1 + b2µ0)e =: A1, (5.28)[
Ψ̂n

2 , Ψ̂
n
2

] J1=⇒ (λ2 + b2λ1 + bµ0)e =: A2, (5.29)[
Ψ̂n

3 , Ψ̂
n
3

] J1=⇒ 2aλ0e =: A3, (5.30)[
Ψ̂n

4 , Ψ̂
n
4

] J1=⇒ (aλ0 + bµ0)e =: A4, (5.31)[
Ψ̂n

5 , Ψ̂
n
5

] J1=⇒ (λ2 + a2µ1 + µ2 + b2λ1)e =: A5, (5.32)[
Ψ̂n

6 , Ψ̂
n
6

] J1=⇒ 2bµ0e =: A6, (5.33)[
Ψ̂n

7 , Ψ̂
n
7

] J1=⇒ (µ2 + a2µ1 + aλ0)e =: A7, (5.34)[
Ψ̂n

8 , Ψ̂
n
8

] J1=⇒ (µ2 + a2µ1 + a2λ0)e =: A8. (5.35)

We next define

An =
8∑
i=1

Ai ◦ P
n

i , (5.36)

which is a strictly increasing, piecewise linear process with slope bounded between m :=
min{A′i : i = 1, . . . , 8} and M := max{A′i : i = 1, . . . , 8}. Let In be the inverse of An,
a strictly increasing, piecewise linear process whose slope is bounded between 1/M and
1/m. We observed using (5.20) that each P

n

i is {Fn(t)}t≥0-adapted. Therefore, for each
s ≥ 0, In(s) is a stopping time for the filtration {Fn(t)}t≥0. We have[

Ĝn ◦ In, Ĝn ◦ In
]

=
8∑
i=1

[
Ψ̂n
i , Ψ̂

n
i

]
◦ P n

i ◦ In

=
8∑
i=1

([
Ψ̂n
i , Ψ̂

n
i

]
− Ai

)
◦ P n

i ◦ In +
8∑
i=1

Ai ◦ P
n

i ◦ In

=
8∑
i=1

([
Ψ̂n
i , Ψ̂

n
i

]
− Ai

)
◦ P n

i ◦ In + e.
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Because P
n

i ◦ In ≤ 1
m
e, it follows from (5.28)–(5.35) that

8∑
i=1

([
Ψ̂n
i , Ψ̂

n
i

]
− Ai

)
◦ P n

i ◦ In
J1=⇒ 0,

or equivalently, [
Ĝn ◦ In, Ĝn ◦ In

] J1=⇒ e. (5.37)

Since Ĝn(0) → 0, we now apply [9], Theorem 1.4 of Section 7.1, to the sequence of

martingales {Ĝn ◦ In}∞n=1 relative to the filtrations {FnIn(s)}s≥0 to conclude that Ĝn ◦ In
converges weakly-J1 to a standard Brownian motion starting at zero, i.e.,

Ĝn ◦ In J1=⇒ B∗, (5.38)

where B∗ is a standard Brownian motion starting at zero. Since the time changes An

satisfy the uniform bound An ≤ Me, we conclude that the sequence {Ĝn}∞n=1 = {Ĝn ◦
In ◦ An}∞n=1 is tight.

We now show that the limit of every convergent subsequence of {Ĝn}∞n=1 is continuous.

We recall from Theorem 10.2, Section 3.10 of [9] that if Xn J1=⇒ X, then X is continuous

if and only if J(Xn)
J1=⇒ 0, where for t ≥ 0,

J(x)(t) := sup
0≤u≤t

∣∣x(u)− x(u−)
∣∣, x ∈ D[0,∞).

Given a convergent subsequence of {Ĝn}∞n=1, we have Ĝn◦In J1=⇒ B∗, where B∗ a standard
Brownian motion, hence a continuous process. We have

J(Ĝn)(t) = J(Ĝn ◦ In ◦ An)(t) ≤ J(Ĝn ◦ In)(Mt),

and hence J(Ĝn)
J1=⇒ 0 along the convergent subsequence of {Ĝn}∞n=1. Consequently, the

limit of this convergent subsequence is continuous.

Finally, we assume that G∗ is the limit of a convergent subsequence of {Ĝn}∞n=1 and
show that G∗ spends zero Lebesgue time at the origin. We have already shown that along
this subsequence, Ĝn◦In converges to a Brownian motion B∗, which spends zero Lebesgue
time at the origin. Therefore, given ε > 0, there exists K such that Fk(B

∗) < ε for k ≥ K,
where we are using the notation of Lemma 5.1.3. Consequently, there exists N such that
Fk(Ĝ

n ◦ In) < ε for k ≥ K and n ≥ N . Making the change of variable s = An(u), we see
that

m

∫ ∞
0

e−Muϕk
(
Ĝn(u)

)
du ≤

∫ ∞
0

e−sϕk
(
Ĝn ◦ In(s)

)
ds = Fk

(
Ĝn ◦ In

)
< ε.

Taking the limit as n → ∞ along the convergent subsequence of {Ĝn}∞n=1 and using the
continuity of Fk proved in Lemma 5.1.3, we see further that∫ ∞

0

e−Mu1{G∗(u)=0}du ≤
∫ ∞

0

e−Muϕk
(
G∗(u)

)
du ≤ ε/m.
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Because ε > 0 is arbitrary, we conclude that G∗ spends zero Lebesgue time at the origin.
�

Corollary 5.1.5 We have P
n

4
J1=⇒ 0 and P

n

5
J1=⇒ 0.

Proof: Again we use the notation of Lemma 5.1.3. Suppose {Pn}∞n=1 is a sequence
of measures on D[0,∞) converging weakly to a measure P. We have

lim sup
n→∞

∫
D[0,∞)

F0 dPn ≤ lim
n→∞

∫
D[0,∞)

Fk dPn =

∫
D[0,∞)

Fk dP.

Letting k →∞, we conclude that

lim sup
n→∞

∫
D[0,∞)

F0dPn ≤
∫
D[0,∞)

F0dP. (5.39)

Let Pn be the probability measure induced on D[0,∞) by the process Ĝn◦In in (5.38). In
the proof of Proposition 5.1.4, we showed that this sequence converges weakly to Wiener
measure. We have

mE
∫ ∞

0

e−Mu
(
dP

n

4 (u) + dP
n

5 (u)
)
≤ E

∫ ∞
0

e−A
n(u)
(
A′4(u)dP

n

4 (u) + A′5(u)dP
n

5 (u)
)

= E
∫ ∞

0

e−A
n(u)1{Ĝn(u)=0}dA

n(u)

= E
∫ ∞

0

e−s1{Ĝn◦In(s)=0}ds

=

∫
D[0,∞)

F0dPn.

By (5.39), the limit of this last expression is zero because Brownian motion spends zero
Lebesgue time at the origin. We conclude that P

n

4 + P
n

5 converges to zero uniformly on
compact time intervals in probability, which is equivalent to the convergence stated in the
corollary. �

We have shown in (5.38) that Ĝn ◦ In converges to Brownian motion, and we want to

identify the limit of Ĝn = Ĝn ◦ In ◦An. Thus we need to determine the limit of An given
by (5.36). To do this, we must determine the limits of the processes P

n

i , i = 1, . . . , 8. We
have just done that for P

n

4 and P
n

5 . For the other processes, we have the following result.

Proposition 5.1.6 Consider a convergent subsequence of {Ĝn}∞n=1 with limit G∗. Define

P
+

G∗(t) =

∫ t

0

1{G∗(s)>0}ds, P
−
G∗(t) =

∫ t

0

1{G∗(s)<0}ds, t ≥ 0, (5.40)

Then along the same subsequence of indices for which Ĝn =⇒ G∗, we have

(Ĝn, Ĥn, P
n

1 , . . . , P
n

8 )
J1=⇒ (G∗, 0, P 1, . . . , P 8), (5.41)
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where P 4 = P 5 = 0, and

P 1 =
λ1

λ0 + λ1

P
+

G∗ , P 2 =
λ0 − µ1

λ0 + λ1

P
+

G∗ , P 3 =
µ1

λ0 + λ1

P
+

G∗ , (5.42)

P 6 =
λ1

µ0 + µ1

P
−
G∗ , P 7 =

µ0 − λ1

µ0 + µ1

P
−
G∗ , P 8 =

µ1

µ0 + µ1

P
−
G∗ . (5.43)

Proof: For notational simplicity, we assume that Ĝn =⇒ G∗ along the full sequence.
Each P

n

i is nondecreasing and Lipschitz with Lipschitz constant 1. Moreover, P
n

i (0) =
0. This together with Theorem 5.1.1 and Proposition 5.1.4 implies that the sequence
{(Ĝn, Ĥn, P

n

1 , . . . , P
n

9 )}∞n=1 is tight. Given any subsequence of this sequence, there is a
sub-subsequence that converges weakly-J1 to a limit (G∗, H∗, P 1, . . . , P 8). We know from
Theorem 5.1.1, Proposition 5.1.4 and Corollary 5.1.5 that H∗ ≡ 0, G∗ is continuous, and
P 4 ≡ 0, P 5 ≡ 0. We also know that P 1, P 2, P 3, P 6, P 7 and P 8 are Lipschitz continuous
with Lipschitz constant 1. We show that these last six processes satisfy (5.42) and (5.43),
and hence they do not depend on the sub-subsequence. It will then follow that these are
the limits of the full sequence.

Substituting P 4 = P 5 = 0 into (5.25) and (5.26), we obtain

c
(
P 3 + P 6 − P 1 − P 8) + (µ1 − λ1)(P 7 − P 2) = 0, (5.44)

(λ1 + µ1)(P 2 + P 7)− c(P 1 + P 3 + P 6 + P 8) = 0. (5.45)

We also have
∑8

i=1 P
n

i = e, which implies

P 1 + P 2 + P 3 + P 6 + P 7 + P 8 = e. (5.46)

From (2.1), (5.45) and (5.46), we obtain

P 1 + P 3 + P 6 + P 8 =
λ1 + µ1

λ0 + λ1

e, (5.47)

P 2 + P 7 =
λ0 − µ1

λ0 + λ1

e. (5.48)

Adding (5.44) and (5.45), we see that

P 1 + P 8 =
λ1

c
P 2 +

µ1

c
P 7. (5.49)

Subtracting (5.45) from (5.44) yields

P 3 + P 6 =
µ1

c
P 2 +

λ1

c
P 7. (5.50)

We use the Skorohod representation theorem to put the pre-limit and the limit pro-
cesses on a common probability space so that the convergence of the subsequence of
(Ĝn, Ĥn, P

n

1 , . . . , P
n

8 ) to the continuous process (G∗, 0, P 1, . . . , P 8) is uniform on compact
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time intervals almost surely. Because each P i is Lipschitz, to identify P i it suffices to iden-
tify P

′
i for Lebesgue-almost every t ≥ 0. We identify P

′
i(t) for all t such that G∗(t) 6= 0,

a set of full Lebesgue measure by Proposition 5.1.4.

Assume first that G∗(t) > 0. Then for sufficiently large n, Ĝn is strictly positive

in a neighborhood of t. We see from (5.11) that in this neighborhood, (V̂n, Ŵn) is in
S1 ∪ S2 ∪ S3, which implies that P

n

6 , P
n

7 and P
n

8 are constant for sufficiently large n, and
consequently their limits P 6, P 7 and P 8 are constant in this neighborhood. In particular,

P
′
6(t) = P

′
7(t) = P

′
8(t) = 0 if G∗(t) > 0. (5.51)

Equation (5.48) implies

P
′
2(t) =

λ0 − µ1

λ0 + λ1

if G∗(t) > 0. (5.52)

Substitution of this into (5.49) yields

P
′
1(t) =

λ1

λ0 + λ1

if G∗(t) > 0. (5.53)

Substitution of this into (5.47) results in

P
′
3(t) =

µ1

λ0 + λ1

if G∗(t) > 0 (5.54)

An analogous argument for t such that G∗(t) < 0 yields

P
′
1(t) = P

′
2(t) = P

′
3(t) = 0 if G∗(t) < 0, (5.55)

and

P
′
6(t) =

λ1

µ0 + µ1

, P
′
7(t) =

µ0 − λ1

µ0 + µ1

, P
′
8(t) =

µ1

µ0 + µ1

if G∗(t) < 0. (5.56)

Integrating (5.51)–(5.56), we obtain (5.42) and (5.43). �

Corollary 5.1.7 Under the assumptions of Proposition 5.1.6, along the same subsequence
of indices for which Ĝn =⇒ G∗, the sequence of processes {An}∞n=1 defined by (5.36)
satisfies

An
J1=⇒ c+P

+

G∗ + c−P
−
G∗ (5.57)

and
G∗ = B∗ ◦ (c+P

+

G∗ + c−P
−
G∗). (5.58)

where

c+ = 2λ0(1 + ab− b) = cL,

c− = 2λ0(
a

b
+ a2 − a2

b
) = cJ ,

and cL and cJ are defined in Proposition 3.4.1.
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Proof: For (5.57), it suffices to verify that A1 ◦ P 1 + A2 ◦ P 2 + A3 ◦ P 3 = c+P
+

G∗

and A6 ◦P 6 +A7 ◦P 7 +A8 ◦P 8 = c−P
−
G∗ . This is a lengthy but direct computation using

Assumption 2.2.1, (5.28)–(5.35), (5.42) and (5.43).

Because (Ĝn◦In, An)
J1=⇒ (B∗, c+P

+

G∗+c−P
−
G∗) (see (5.38)) and the Brownian motion

B∗ is continuous, we can invoke the time-change lemma in Section 14 of [5] to obtain (5.58).
That lemma is stated for D[0, 1], but the modification of the proof to obtain the result
for D[0,∞) is straightforward. �

Theorem 5.1.8 Every weakly convergent subsequence of {Ĝn}∞n=1 converges to the same
limit, i.e., all limits induce the same probability measure on C[0,∞). In particular, the
limit is a two-variance Brownian motion defined in Definition 4.1.1.

Proof: From Corollary 5.1.7 and Proposition 4.1.3, we see that the limit of every
convergent subsequence of {Ĝn}∞n=1 is a two-variance Brownian motion. We want to point
out that in (5.58), B∗ is a standard Brownian motion whose measure is unique among all
convergent subsequences. From Proposition 4.1.3, we can rewrite (5.58) as

G∗ = B∗ ◦ (
1

c+

P+
B∗ +

1

c−
P−B∗)

−1,

where

P+
B∗(t) =

∫ t

0

1{B∗(s)>0}ds,

P−B∗(t) =

∫ t

0

1{B∗(s)<0}ds.

Since the probability measure induced by B∗ is the same among all weakly convergent
subsequences of {Ĝn}∞n=1, we complete the proof. �

5.1.5 Convergence of (V̂n, Ŵn)

Because of the inverse map defined in (5.13) and (5.14), applying Theorem 5.1.1 and
Theorem 5.1.8, we obtain the following result.

Corollary 5.1.9

(V̂n, Ŵn)
J1=⇒ (max{G∗, 0},min{G∗, 0}). (5.59)

We refer to the process on the right hand side of (5.59) as split two-variance Brownian
motion.
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5.2 The bracketing processes

The dynamics of the bracketing processes Ûn and X̂ n depend on the state of the interior
processes V̂n and Ŵn. We shall see that the diffusion-scaled bracketing processes converge
in the M1 topology on

D[0−,∞) := R×D[0,∞)

to snapped Brownian motions. More specifically, when G∗ is on a negative excursion, U∗,
the limit of Ûn, is a Brownian motion, but when G∗ is on a positive excursion, U∗ is frozen
at κL. Analogously, when G∗ is on a positive excursion, X ∗ is a Brownian motion, but
when G∗ is on a negative excursion, X ∗ is frozen at κR. To determine the dependence
between U∗ and the negative excursions of G∗, we decompose U∗ into two processes, one
of which is the excursion of G∗ itself and the other of which is independent of G∗. A
similar decomposition applies to X ∗ and the positive excursions of G∗.

To establish limits for Ûn and X̂ n, in Section 5.2.1 we first establish stochastic bound-
edness of the sequences {Ûn}∞n=1 and {X̂ n}∞n=1. The decomposition of U∗ when G∗ is on
a negative excursion into the negative excursion of G∗ and an independent process re-
quires a lengthy technical analysis, which is contained in Section 5.2.2. The analogous
decomposition of X ∗ when G∗ is on a positive excursion into the positive excursion of
G∗ and an independent process is then stated without proof. After that the convergence
of (Ûn, X̂ n) to (U∗,X ∗) is straightforward, and the proof is given in Section 5.2.3. To

conclude we need to establish that the stopping times when Ûn or X̂ n hits zero converge
to the stopping time when U∗ or X ∗ hits zero. This is the main content of Section 5.2.4.
This section completes the determination of the limit of the sequence of diffusion-scaled
limit-order books.

In order to avoid a discussion of the possibility that the bracketing processes are no
longer valid till a certain time, we consider a pair of processes (Un,X n) that has the same
dynamics as (Un, Xn) but is defined by these dynamics for all time, not just during the
period of time when Un and Xn are bracketing processes. Note that cancellations might
happen on Un or X n. Therefore the dynamics of the nth pre-limit model does depend
on n. The LOB has eight possible configurations depending on the locations of the best
bid price and the best ask price, as shown in Figure 5.1. Within each configuration, the
dynamics of Un and X n are the same, so we can use the same way to write down the
dynamics of Un and X n as what we did in previous subsection. In particular, we can
introduce eighteen independent unit-intensity Poisson processes Ni,×,∗, where i = 1, . . . , 8
indicates the region where V ,W is, × ∈ {U ,X} indicates which of the processes Un or X n

is affected by the Poisson process, and ∗ ∈ {+,−} indicates whether the Poisson process
increases(+) or decreases(−) the affected process. Hence, we have

dUn(t) = d
(
−N1,U ,−

( ∫ t

0

θb√
n

(Un(s))+ dP1(s)
)

+N3,U ,+ ◦ λ2P3(t)

+N4,U ,+ ◦ λ2P4(t)−N5,U ,− ◦ µ0P5(t) +N6,U ,+ ◦ λ2P6(t) +N7,U ,+ ◦ λ2P7(t)

−N7,U ,− ◦ µ0P7(t) +N8,U ,+ ◦ λ1P8(t)−N8,U ,− ◦ µ0P8(t)
)
, (5.60)
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dX n(t) = d
(
N8,X ,+

( ∫ t

0

θs√
n

(X n(s))− dP8(s)
)
−N6,X ,− ◦ µ2P6(t)

+N5,X ,+ ◦ λ0P5(t)−N4,X ,− ◦ µ2P4(t)−N3,X ,− ◦ µ2P3(t) +N2,X ,+ ◦ λ0P2(t)

−N2,X ,− ◦ µ2P2(t) +N1,X ,+ ◦ λ0P1(t)−N1,X ,− ◦ µ1P1(t)
)
. (5.61)

We next center the eighteen independent unit-intensity Poisson processes appearing in
(5.60), (5.61), defining

Mi,×,∗(t) := Ni,×,∗(t)− t, t ≥ 0.

Each of these compensated Poisson processes is a martingale relative its own filtration,
and these martingale are independent. For n = 1, 2, . . . , their diffusion-scaled versions
are

M̂n
i,×,∗(t) :=

1√
n

(
Mi,×,∗(nt)− nt

)
, t ≥ 0,

and each of these processes is likewise a martingale relative to its own filtration, and these
processes are independent. Replacing the Poisson processes in (5.60) and (5.61) by the
centered Poisson processes and applying the diffusion scaling, we obtain

Ûn(t) = Ûn(0)− M̂n
1,U ,−

( ∫ t

0

θb(Ûn(s))+ dP
n

1 (s)
)

+ M̂n
3,U ,+ ◦ λ2P

n

3 (t)

+M̂n
4,U ,+ ◦ λ2P

n

4 (t)− M̂n
5,U ,− ◦ µ0P

n

5 (t) + M̂n
6,U ,+ ◦ λ2P

n

6 (t) + M̂n
7,U ,+ ◦ λ2P

n

7 (t)

−M̂n
7,U ,− ◦ µ0P

n

7 (t) + M̂n
8,U ,+ ◦ λ1P

n

8 (t)− M̂n
8,U ,− ◦ µ0P

n

8 (t)

+
√
n
(
−
∫ t

0

θb(Ûn(s))+ dP
n

1 (s) + λ2P
n

3 (t) + λ2P
n

4 (t)− µ0P
n

5 (t)

+λ2P
n

6 (t)− (µ0 − λ2)P
n

7 (t)− (µ0 − λ1)P
n

8 (t)
)
, (5.62)

X̂ n(t) = X̂ n(0) + M̂n
8,X ,+

( ∫ t

0

θs(X̂ n(s))− dP
n

8 (s)
)
− M̂n

6,X ,− ◦ µ2P
n

6 (t)

+M̂n
5,X ,+ ◦ λ0P

n

5 (t)− M̂n
4,X ,− ◦ µ2P

n

4 (t)− M̂n
3,X ,− ◦ µ2P

n

3 (t) + M̂n
2,X ,+ ◦ λ0P

n

2 (t)

−M̂n
2,X ,− ◦ µ2P

n

2 (t) + M̂n
1,X ,+ ◦ λ0P

n

1 (t)− M̂n
1,X ,− ◦ µ1P

n

1 (t)

+
√
n
( ∫ t

0

θs(X n(s))− dP
n

8 (s)− µ2P
n

6 (t) + λ0P
n

5 (t)− µ2P
n

4 (t)

−µ2P
n

3 (t) + (λ0 − µ2)P
n

2 (t) + (λ0 − µ1)P
n

1 (t)
)
. (5.63)

5.2.1 Stochastic boundedness of (Ûn, X̂ n)

Proposition 5.2.1 We define the following processes

An
1 = N1,W,+ ◦ λ1P

n
1 −N1,W,− ◦ µ0P

n
1 +N2,W,+ ◦ λ1P

n
2 +N5,W,+ ◦ λ1P

n
5 ,

An
3 = N2,W,− ◦ µ1P

n
2 −N3,W,+ ◦ λ0P

n
3 +N3,W,− ◦ µ1P

n
3 −N4,W,+ ◦ λ0P

n
4 ,

An
6 = N7,V,+ ◦ λ1P

n
7 −N6,V,− ◦ µ0P

n
6 +N6,V,+ ◦ λ1P

n
6 −N4,V,− ◦ µ0P

n
4 ,

An
8 = N8,V,− ◦ µ1P

n
8 −N8,V,+ ◦ λ0P

n
8 +N7,V,− ◦ µ1P

n
7 +N5,V,− ◦ µ1P

n
5 .
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Obviously, from (5.9) and (5.10), we have

Hn = Hn(0) + An
1 − An

3 + An
8 − An

6 ,

|Hn| = |Hn(0)|+ An
1 + An

3 + An
8 + An

6 .

The scaled versions of An
1 , An

3 , An
6 , and An

8 are denoted by Ân
1 , Ân

3 , Ân
6 , and Ân

8 . Then

Ân
1

J1=⇒ 0, Ân
8

J1=⇒ 0, Ân
3 + Ân

6
J1=⇒ 0.

Proof: According to (5.18) and (5.19), we have

Ĥn = Ĥn(0) + Ân
1 − Ân

3 + Ân
8 − Ân

6 ,

|Ĥn| = |Ĥn(0)|+ Ân
1 + Ân

3 + Ân
8 + Ân

6 .

Since Ĥn(0)→ 0, from Theorem 5.1.1, we have

Ân
1 − Ân

3 + Ân
8 − Ân

6 = Ĥn − Ĥn(0)
J1=⇒ 0, (5.64)

Ân
1 + Ân

3 + Ân
8 + Ân

6 = |Ĥn| − |Ĥn(0)| J1=⇒ 0. (5.65)

Adding and subtracting (5.64) and (5.65), we obtain

Ân
1 + Ân

8
J1=⇒ 0, Ân

3 + Ân
6

J1=⇒ 0. (5.66)

We now show that we can separate the first convergence in (5.66) to obtain

Ân
1

J1=⇒ 0, Ân
8

J1=⇒ 0. (5.67)

We consider an interval of time [0, τ0] where

τ0 := inf{t ≥ 0 :
(
Gn(t), Hn(t)

)
6∈ S ′1}.

If τ0 = 0, An
1 (τ0) = An

1 (0) = 0. If τ0 > 0,
(
Gn(τ0), Hn(τ0)

)
∈ ∂S ′1 so Hn(τ0) = 0. Since

the jumps in Hn agree with the jumps in An
1 on [0, τ0) and An

1 (0) = 0, we have

An
1 (τ0) = An

1 (τ0)− An
1 (0) = Hn(τ0)−Hn(0) = −Hn(0). (5.68)

Then let us consider a sequence of subinterval [σi, τi]
∞
i=1 on [τ0,∞) such that [σi, τi] is the ith

positive excursion of Gn starting from τ0. Specifically, if τ0 > 0, and
(
Gn(τ0), Hn(τ0)

)
∈ S ′2

then σ1 = τ0 and
Gn(σ1) > 0 = Gn(τ1) = Gn(σi−) = Gn(τi),

for i ≥ 2. Otherwise, σ1 > τ0 and

Gn(σi−) = 0 = Gn(τi),

for i ≥ 1. For j between 1 and some finite number (which may be 0), let [σij, τij) be the
jth interval contained in [σi, τi) on which Gn is in S ′1. Specifically, σij is the jth time inside
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[σi, τi) when (Gn, Hn) moves from S ′5 ∪ S ′2 to S ′1, and τij is the first time after σij when
(Gn, Hn) moves from S ′1 back to S ′5 ∪ S ′2. For i ≥ 1 and j ≥ 1, there is a jump in either
N2,W,+ ◦ λ1P2 or N5,W,+ ◦ λ1P5 at time σij in order to move (Gn, Hn) from S ′5 ∪ S ′2 into
S ′1, so that ∆An

1 (σij) = ∆Hn(σij) = 1. Note that the jumps in Hn agree with the jumps
in An

1 on [σij, τij). Because Hn(σij−) = Hn(τij) = 0, we have

An
1 (τij)− An

1 (σij−) = 0.

We observe that on [σi, τi), A
n
1 only jumps on [σij, τij) for some j. Hence if τ0 > 0 and

(Gn(τ0), Hn(τ0)) ∈ R2 we have

An
1 (τ1)− An

1 (σ1) = 0, An
1 (τi)− An

1 (σi−) = 0,

for i ≥ 2. Because An
1 is constant on the complement of the union of the intervals [0, τ0)

and [σi, τi), from (5.68), we have

An
1 (τ0) = An

1 (σ1) = An
1 (τ1) = An

1 (σi−) = An(τi), (5.69)

for i ≥ 2. Otherwise, if τ0 = 0 or (Gn(τ0), Hn(τ0)) ∈ R5, we have

An
1 (τi)− An

1 (σi−) = 0,

and
An

1 (τ0) = An
1 (σi−) = An

1 (τi), (5.70)

for i ≥ 1.

Since P8, P7 and N5,V,− ◦ µ1P5 are constant on [σi, τi] and have no jump at σi, we
also have An

8 is constant on [σi, τi], which implies

An
8 (τi)− An

8 (σi−) = 0. (5.71)

Obviously if τ0 > 0, An
8 is zero on [0, τ0].

If τ0 > 0, and
(
Gn(τ0), Hn(τ0)

)
∈ S ′2, consider the process

Ãn(t) :=


An

1 (τ0) + An
8 (τ0), if 0 ≤ t < τ0,

An
1 (σ1) + An

8 (σ1), t ∈ [σ1, τ1),
An

1 (σi−) + An
8 (σi−), t ∈ [σi, τi), for i ≥ 2,

An
1 (t) + An

8 (t), otherwise.

According to (5.69), and (5.71), Ãn is continuous at τ0, σi and τi, and in fact, Ãn =
An

8 −Hn(0).

If τ0 > 0, and
(
Gn(τ0), Hn(τ0)

)
∈ S ′5, consider the process

Ãn(t) :=


An

1 (τ0) + An
8 (τ0), if 0 ≤ t < τ0,

An
1 (σi−) + An

8 (σi−), t ∈ [σi, τi), for i ≥ 1,
An

1 (t) + An
8 (t), otherwise.
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According to (5.70), and (5.71), Ãn is continuous at τ0, σi and τi, and in fact, Ãn =
An

8 −Hn(0).

If τ0 = 0, then consider the process

Ãn(t) :=

{
An

1 (σi−) + An
8 (σi−), t ∈ [σi, τi), for i ≥ 1,

An
1 (t) + An

8 (t), otherwise.

According to (5.70), and (5.71), Ãn is continuous at σi and τi, and in fact, Ãn = An
8 .

This shows that for any T > 0, we have

max
0≤t≤nT

∣∣An
8 (t)

∣∣ ≤ |Hn(0)|+ max
0≤t≤nT

∣∣Ã(t)
∣∣ ≤ |Hn(0)|+ max

0≤t≤nT

∣∣An
1 (t) + An

8 (t)
∣∣,

and since Hn(0)/
√
n→ 0, we have

lim sup
n→∞

max
0≤t≤T

∣∣Ân
8 (t)

∣∣ ≤ lim sup
n→∞

max
0≤t≤T

∣∣Ân
1 (t) + Ân

8 (t)
∣∣.

Because Ân
1 + Ân

8
J1=⇒ 0, we have Ân

8
J1=⇒ 0, and therefore Ân

1
J1=⇒ 0. �

We observe that

Ân
1 = M̂n

1,W,+ ◦ λ1P
n

1 − M̂n
1,W,− ◦ µ0P

n

1 + M̂n
2,W,+ ◦ λ1P

n

2 + M̂n
5,W,+ ◦ λ1P

n

5

+
√
n
[
(λ1 − µ0)P

n

1 + λ1P
n

2 + λ1P
n

5

]
, (5.72)

Ân
8 = M̂n

8,V,− ◦ µ1P
n

8 − M̂n
8,V,+ ◦ λ0P

n

8 + M̂n
7,V,− ◦ µ1P

n

7 + M̂n
5,V,− ◦ µ1P

n

5

+
√
n
[
(µ1 − λ0)P

n

8 + µ1P
n

7 + µ1P
n

5

]
. (5.73)

Since
M̂n

i,×,∗
J1=⇒ Bi,×,∗,

where Bi,×,∗ is a standard Brownian motion, also from Proposition 5.1.6 and Theorem
5.1.8, we have

M̂n
1,W,+ ◦ λ1P

n

1 − M̂n
1,W,− ◦ µ0P

n

1 + M̂n
2,W,+ ◦ λ1P

n

2 + M̂n
5,W,+ ◦ λ1P

n

5
J1=⇒

B1,W,+ ◦
λ2

1

λ0 + λ1

P
+

G∗ −B1,W,− ◦
µ0λ1

λ0 + λ1

P
+

G∗ +B2,W,+ ◦
λ1(λ0 − µ1)

λ0 + λ1

P
+

G∗ , (5.74)

M̂n
8,V,− ◦ µ1P

n

8 − M̂n
8,V,+ ◦ λ0P

n

8 + M̂n
7,V,− ◦ µ1P

n

7 + M̂n
5,V,− ◦ µ1P

n

5
J1=⇒

B8,V,− ◦
µ2

1

µ0 + µ1

P
−
G∗ −B8,V,+ ◦

λ0µ1

µ0 + µ1

P
−
G∗ +B7,V,− ◦

µ1(µ0 − λ1)

µ0 + µ1

P
−
G∗ . (5.75)

Substituting into (5.72) and (5.73), we conclude that

√
n
[
(λ1 − µ0)P

n

1 + λ1P
n

2 + λ1P
n

5

] J1=⇒

−B1,W,+ ◦
λ2

1

λ0 + λ1

P
+

G∗ +B1,W,− ◦
µ0λ1

λ0 + λ1

P
+

G∗ −B2,W,+ ◦
λ1(λ0 − µ1)

λ0 + λ1

P
+

G∗ ,(5.76)
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√
n
[
(µ1 − λ0)P

n

8 + µ1P
n

7 + µ1P
n

5

] J1=⇒

−B8,V,− ◦
µ2

1

µ0 + µ1

P
−
G∗ +B8,V,+ ◦

λ0µ1

µ0 + µ1

P
−
G∗ −B7,V,− ◦

µ1(µ0 − λ1)

µ0 + µ1

P
−
G∗ ,(5.77)

and, in particular, the processes on the left-hand sides of (5.76) and (5.77) have continuous
limits.

To simplify notation, we define

Θ̂n
1 := M̂n

1,W,+ ◦ λ1P
n

1 − M̂n
1,W,− ◦ µ0P

n

1 + M̂n
2,W,+ ◦ λ1P

n

2 , (5.78)

Θ̂n
2 := −M̂n

2,W,− ◦ µ1P
n

2 + M̂n
3,W,+ ◦ λ0P

n

3 − M̂n
3,W,− ◦ µ1P

n

3 , (5.79)

Θ̂n
3 := M̂n

1,V,+ ◦ λ2P
n

1 + M̂n
2,V,+ ◦ λ2P

n

2 − M̂n
2,V,− ◦ µ0P

n

2

+M̂n
3,V,+ ◦ λ1P

n

3 − M̂n
3,V,− ◦ µ0P

n

3 , (5.80)

Θ̂n
4 := −M̂n

8,W,− ◦ µ2P
n

8 − M̂n
7,W,− ◦ µ2P

n

7 + M̂n
7,W,+ ◦ λ0P

n

7

−M̂n
6,W,− ◦ µ1P

n

6 + M̂n
6,W,+ ◦ λ0P

n

6 , (5.81)

Θ̂n
5 := M̂n

7,V,+ ◦ λ1P
n

7 − M̂n
6,V,− ◦ µ0P

n

6 + M̂n
6,V,+ ◦ λ1P

n

6 , (5.82)

Θ̂n
6 := −M̂n

8,V,− ◦ µ1P
n

8 + M̂n
8,V,+ ◦ λ0P

n

8 − M̂n
7,V,− ◦ µ1P

n

7 , (5.83)

Θ̂n
7 := M̂n

4,W,+ ◦ λ0P
n

4 + M̂n
4,V,+ ◦ λ1P

n

4 + M̂n
4,W,− ◦ µ1P

n

4 + M̂n
4,V,− ◦ µ0P

n

4

+bM̂n
5,W,+ ◦ λ1P

n

5 + M̂n
5,V,+ ◦ λ2P

n

5 + M̂n
5,W,− ◦ µ2P

n

5

+aM̂n
5,V,− ◦ µ1P

n

5 , (5.84)

Θ̂n
8 := M̂n

4,W,+ ◦ λ0P
n

4 + M̂n
4,V,− ◦ µ0P

n

4 (5.85)

Θ̂n
9 := M̂n

5,W,+ ◦ λ1P
n

5 + M̂n
5,V,− ◦ µ1P

n

5 . (5.86)

Then from (5.17), (5.18), and (5.19), we obtain∣∣Ĝn
∣∣ = |Ĝn(0)|+ bΘ̂n

1 + Θ̂n
2 + Θ̂n

3 − Θ̂n
4 − Θ̂n

5 − aΘ̂n
6 + Θ̂n

7

+2aλ0

√
n(P

n

4 + P
n

5 ), (5.87)

Ĥn = Ĥn(0) + Θ̂n
1 + Θ̂n

2 − Θ̂n
5 − Θ̂n

6 + Θ̂n
8 + Θ̂n

9 +
√
n(λ1 + µ1)P

n

5 +
√
n(λ0 + µ0)P

n

4

+c
√
n(P

n

3 + P
n

6 − P
n

1 − P
n

8 ) +
√
n(µ1 − λ1)(P

n

7 − P
n

2 ), (5.88)∣∣Ĥn
∣∣ =

∣∣Ĥn(0)
∣∣+ Θ̂n

1 − Θ̂n
2 + Θ̂n

5 − Θ̂n
6 − Θ̂n

8 + Θ̂n
9 +
√
n(λ1 + µ1)(P

n

2 + P
n

7 + P
n

5 )

−c
√
n(P

n

1 + P
n

3 + P
n

6 + P
n

8 )−
√
n(λ0 + µ0)P

n

4 . (5.89)

Note in (5.87) that 2aλ0

√
n(P

n

4 +P
n

5 ) is a nondecreasing process that increases only when

the nonnegative process |Ĝn| is at zero. Because of uniqueness of the solution to the
Skorohod problem, we must have

2aλ0

√
n(P

n

4 + P
n

5 ) = Γ
(
|Ĝn(0)|+ bΘ̂n

1 + Θ̂n
2 + Θ̂n

3 − Θ̂n
4 − Θ̂n

5 − aΘ̂n
6 + Θ̂n

7

)
,

where Γ : D[0,∞)→ D[0,∞) is given by

Γ(x)(t) = − inf
0≤s≤t

(
x(s) ∨ 0

)
.
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Therefore, we can rewrite (5.87) as∣∣Ĝn
∣∣ = |Ĝn(0)|+ bΘ̂n

1 + Θ̂n
2 + Θ̂n

3 − Θ̂n
4 − Θ̂n

5 − aΘ̂n
6 + Θ̂n

7

+Γ
(
|Ĝn(0)|+ bΘ̂n

1 + Θ̂n
2 + Θ̂n

3 − Θ̂n
4 − Θ̂n

5 − aΘ̂n
6 + Θ̂n

7

)
. (5.90)

On Page 87, we will define {Θ∗i }6
i=1. From Proposition 5.1.6, we observe that

Θ̂n
1

J1=⇒ Θ∗1 ◦ P
+

G,

Θ̂n
2

J1=⇒ Θ∗2 ◦ P
+

G,

Θ̂n
3

J1=⇒ Θ∗3 ◦ P
+

G,

Θ̂n
4

J1=⇒ Θ∗4 ◦ P
−
G,

Θ̂n
5

J1=⇒ Θ∗5 ◦ P
−
G,

Θ̂n
6

J1=⇒ Θ∗6 ◦ P
−
G.

Since Ĝn(0)
J1=⇒ 0, we can take the limit of (5.90) to get∣∣G∗∣∣ = bΘ̃∗1+Θ̃∗2+Θ̃∗3−Θ̃∗4−Θ̃∗5−aΘ̃∗6+Θ̃∗7+Γ

(
bΘ̃∗1+Θ̃∗2+Θ̃∗3−Θ̃∗4−Θ̃∗5−aΘ̃∗6+Θ̃∗7

)
, (5.91)

where Θ̃∗i is the limit of Θ̂n
i for i = 1, . . . , 9. Also, from Theorem 5.1.1, (5.88), and (5.89),

we have

√
n(λ1 + µ1)P

n

5 +
√
n(λ0 + µ0)P

n

4 + c
√
n(P

n

3 + P
n

6 − P
n

1 − P
n

8 )

+
√
n(µ1 − λ1)(P

n

7 − P
n

2 )
J1=⇒ −(Θ̃∗1 + Θ̃∗2 − Θ̃∗5 − Θ̃∗6 + Θ̃∗8 + Θ̃∗9), (5.92)

√
n(λ1 + µ1)(P

n

2 + P
n

7 + P
n

5 )− c
√
n(P

n

1 + P
n

3 + P
n

6 + P
n

8 )

−
√
n(λ0 + µ0)P

n

4
J1=⇒ −(Θ̃∗1 − Θ̃∗2 + Θ̃∗5 − Θ̃∗6 − Θ̃∗8 + Θ̃∗9). (5.93)

If we multiply (5.92) by −1
2
(b + 1), multiply (5.93) by 1

2
(b − 1) and take the sum, we

obtain

√
n
[
((λ0 − µ1)P

n

1 + (bµ1 − λ1)P
n

2 − λ2P
n

3 − b(λ0 + µ0)P
n

4 − (µ1 + λ1)P
n

5

−λ2P
n

6 + (µ0 − λ2)P
n

7 + (λ0 − µ1)P
n

8

]
⇒ Θ̃∗1 + bΘ̃∗2 − bΘ̃∗5 − Θ̃∗6 + bΘ̃∗8 + Θ̃∗9, (5.94)

which will be used in the following proofs.

Theorem 5.2.2 The sequence of càdlàg processes {Ûn}∞n=1 and {X̂ n}∞n=1 are bounded in
probability on compact time intervals.

It suffices to prove {Ûn}∞n=1 is bounded in probability on compact time intervals. The
proof of this theorem is presented in Lemmas 5.2.3 and 5.2.4 below.
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Lemma 5.2.3 The sequence of processes {Ûn}∞n=1 is bounded above in probability on com-
pact time intervals.

Proof: To simplify notation, we rewrite (5.62) as

Ûn = Ûn(0) + Y n
1 + Y n

2 + Y n
3 + Y n

4 , (5.95)

where

Y n
1 (t) = −M̂n

1,U ,−

(∫ t

0

θb
(
Ûn(s)

)+
dP

n

1 (s)

)
, (5.96)

Y n
2 (t) = M̂n

3,U ,+
(
λ2P

n

3 (t)
)

+ M̂n
4,U ,+

(
λ2P

n

4 (t)
)
− M̂n

5,U ,−
(
µ0P

n

5 (t)
)

+M̂n
6,U ,+

(
λ2P

n

6 (t)
)

+ M̂n
7,U ,+

(
λ2P

n

7 (t)
)
− M̂n

7,U ,−
(
µ0P

n

7 (t)
)

+M̂n
8,U ,+

(
λ1P

n

8 (t)
)
− M̂n

8,U ,−
(
µ0P

n

8 (t)
)
, (5.97)

Y n
3 (t) = −

√
n

∫ t

0

θb
(
Ûn(s)

)+
dP

n

1 (s), (5.98)

Y n
4 (t) =

√
n
[
λ2P

n

3 (t) + λ2P
n

4 (t)− µ0P
n

5 (t) + λ2P
n

6 (t)

−(µ0 − λ2)P
n

7 (t)− (µ0 − λ1)P
n

8 (t)
]
. (5.99)

Then
Y n

2
J1=⇒ Y ∗2 , (5.100)

where Y ∗2 is a continuous process. We rewrite Y n
4 as

Y n
4 =

√
n(λ0 − µ1)P

n

1 +
√
n(bµ1 − λ1)P

n

2 −
√
n(b(λ0 + µ0)− λ2)P

n

4 −
√
n(µ1 + λ1 + µ0)P

n

5

+
√
n
[
− (λ0 − µ1)P

n

1 − (bµ1 − λ1)P
n

2 + λ2P
n

3 + b(λ0 + µ0)P
n

4 + (µ1 + λ1)P
n

5

+λ2P
n

6 − (µ0 − λ2)P
n

7 − (λ0 − µ1)P
n

8

]
=
√
n(λ0 − µ1)P

n

1 +
√
n(bµ1 − λ1)P

n

2 + Y n
5 , (5.101)

where

Y n
5 = −

√
n(b(λ0 + µ0)− λ2)P

n

4 −
√
n(µ1 + λ1 + µ0)P

n

5

+
√
n
[
− (λ0 − µ1)P

n

1 − (bµ1 − λ1)P
n

2 + λ2P
n

3 + b(λ0 + µ0)P
n

4 + (µ1 + λ1)P
n

5

+λ2P
n

6 − (µ0 − λ2)P
n

7 − (λ0 − µ1)P
n

8

]
. (5.102)

From (5.87), (5.90) and (5.91), we see that 2aλ0

√
n(P

n

4 + P
n

5 ) has a continuous limit,
and since both

√
nP

n

4 and
√
nP

n

5 are nondecreasing, they are bounded above in prob-
ability. Furthermore, the modulus of continuity of each of these processes is dominated
by the modulus of continuity of their sum. Therefore, both sequences {

√
nP

n

4}∞n=1 and
{
√
nP

n

5}∞n=1 are tight in C[0,∞), and we can choose a subsequence along which both
have a continuous limit. According to (5.94), the last term in (5.102) converges to
−Θ̃∗1 − bΘ̃∗2 + bΘ̃∗5 + Θ̃∗6 − bΘ̃∗8 − Θ̃∗9, a continuous process. Therefore taking limit along
the subsequence we have

Y n
5

J1=⇒ Y ∗5 ,
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where Y ∗5 is a continuous process.

From (5.76), (2.1), and the convergence of
√
nP

n

5 to a continuous limit, we conclude
that √

n[−(λ0 − µ1)P
n

1 + λ1P
n

2 )] = Ocl(1).

Thus,

√
n[(λ0 − µ1)P

n

1 + (bµ1 − λ1)P
n

2 ] = (λ0 − µ1)
bµ1

λ1

√
nP

n

1

+
bµ1 − λ1

λ1

√
n[−(λ0 − µ1)P

n

1 + λ1P
n

2 ]

= (λ0 − µ1)
bµ1

λ1

√
nP

n

1 +Ocl(1). (5.103)

Substituting this into (5.101), we obtain

Y n
4 = (λ0 − µ1)

bµ1

λ1

√
nP

n

1 + Y n
5 +Ocl(1) = (λ0 − µ1)

bµ1

λ1

√
nP

n

1 +Ocl(1). (5.104)

If N is a unit-intensity Poisson process, then −N(t) + 1
2
t is a supermartingale whose

supremum S∗ over t ≥ 0 is finite almost surely. Therefore,

− 1√
n

(
N(nt)− nt

)
−
√
n t =

1√
n

[
−N(nt) +

1

2
nt

]
− 1

2

√
n t ≤ 1√

n
S∗ − 1

2

√
n t,

and hence

Y n
1 (t) + Y n

3 (t) ≤ 1

2
Y n

3 (t) +
1√
n
Ocl(1). (5.105)

Combining (5.100), (5.104), and (5.105) we obtain

Ûn(t) ≤ 1

2
Y n

3 (t) + (λ0 − µ1)
bµ1

λ1

√
nP

n

1 +Ocl(1)

=
√
n

∫ t

0

(
(λ0 − µ1)

bµ1

λ1

− 1

2
θb
(
Ûn(s)

)+
)
dP

n

1 (s) +Ocl(1). (5.106)

Let us fix T > 0 and consider t ∈ [0, T ]. Either∫ t

0

(
(λ0 − µ1)

bµ1

λ1

− 1

2
θb
(
Ûn(s)

)+
)
dP

n

1 (s) ≤ 0, (5.107)

or else ∫ t

0

θb
(
Ûn(s)

)+
dP

n

1 (s) ≤ 2(λ0 − µ1)
bµ1

λ1

P
n

1 (t) ≤ 2(λ0 − µ1)
bµ1

λ1

T. (5.108)

We define

τn(t) :=

{
t if (5.107) holds,

sup
{
s ∈ [0, t] : θb

(
Ûn(s)

)+ ≤ 2(λ0 − µ1) bµ1
λ1

}
if (5.108) holds.

(5.109)
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If (5.107) holds and τn(t) = t, Ûn(t) is bounded by the Ocl(1) term in (5.106). If (5.108)
holds, then

Ûn(t) ≤ Ûn
(
τn(t)

)
+

4∑
i=1

[
Y n
i (t)− Y n

i

(
τn(t)

)]
. (5.110)

We consider each of the five terms on the right-hand side of (5.110). Since the jumps in

Ûn are of size 1√
n
, we must have

Ûn
(
τn(t)

)
≤ 2(λ0 − µ1)

bµ1

λ1

1

θb
+

1√
n
. (5.111)

Because of the bound (5.108) on the argument of M̂n
1,U ,−, both Y n

1 (t) and Y n
1

(
τn(t)

)
are

Ocl(1). Also, both Y n
2 (t) and Y n

2

(
τn(t)

)
are Ocl(1). It follows that

Ûn(t) ≤ Y n
3 (t)− Y n

3

(
τn(t)

)
+
√
n(λ0 − µ1)

bµ1

λ1

(
P
n

1 (t)− P n

1

(
τn(t)

))
+Ocl(1)

=
√
n

∫ t

τn(t)

(
(λ0 − µ1)

bµ1

λ1

− θb
(
Ûn(s)

)+
)
dP

n

1 (s) +Ocl(1)

≤ −
√
n(λ0 − µ1)

bµ1

λ1

(
P
n

1 (t)− P n

1 (τn(t)
))

+Ocl(1), (5.112)

because θ(Ûn(s))+ ≥ 2(λ0 − µ1) bµ1
λ1

for s ∈ [τn(t), t]. Recall from (2.1) that λ0 − µ1 > 0.

Again we have an upper bound on Ûn. In conclusion, {Ûn}∞n=1 is bounded above in
probability on compact time intervals. �

Lemma 5.2.4 The sequence of processes {Ûn}∞n=1 is bounded below in probability on com-
pact time intervals.

Proof: We return to (5.62) and note that because Ûn is bounded above in probability on

compact time intervals and dP
n

1 ≤ dt, the sequence of processes {
∫ ·

0
θb(Ûn)+ dP

n

1}∞n=1 is
bounded in probability on compact time intervals. Consequently, the sequence of processes{

M̂n
1,U ,− ◦

∫ ·
0

θb(Ûn)+ dP
n

1

}∞
n=1

is bounded in probability on compact time intervals. In addition, the other processes on
the right-hand side of (5.62) involving scaled, centered Poisson processes are bounded in
probability on compact time intervals. This permits us to write

Ûn(t) =
√
n

[
−
∫ t

0

θb
(
Ûn(s)

)+
dP

n

1 (s) + λ2P
n

3 (t) + λ2P
n

4 (t)− µ0P
n

5 (t) + λ2P
n

6 (t)

− (µ0 − λ2)P
n

7 (t)− (µ0 − λ1)P
n

8 (t)

]
+Ocl(1). (5.113)
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Note that
√
nP

n

4 = Ocl(1),
√
nP

n

5 = Ocl(1), and the left-hand-side of (5.94) is also
Ocl(1). We add the left-hand-side of (5.94) to (5.99) to get

Y n
4 =

√
n(λ0 − µ1)P

n

1 +
√
n(bµ1 − λ1)P

n

2 +Ocl(1).

From (5.104), we have

√
n(λ0 − µ1)P

n

1 +
√
n(bµ1 − λ1)P

n

2 = (λ0 − µ1)
bµ1

λ1

√
nP

n

1 +Ocl(1). (5.114)

We define
ρn(t) := sup

{
s ∈ [0, t] : Ûn(s) ≥ 0

}
. (5.115)

Then Ûn(s) < 0 for ρn(t) < s ≤ t, and (5.113) and (5.114) imply

Ûn(t) = Ûn
(
ρn(t)

)
+
√
n
[
λ2

(
P
n

3 (t)− P n

3

(
ρn(t)

))
+ λ2

(
P
n

4 (t)− P n

4

(
ρn(t)

))
−µ0

(
P
n

5 (t)− P n

5

(
ρn(t)

))
+ λ2

(
P
n

6 (t)− P n

6

(
ρn(t)

))
−(µ0 − λ2)

(
P
n

7 (t)− P n

7

(
ρn(t)

))
− (µ0 − λ1)

(
P
n

8 (t)− P n

8

(
ρn(t)

))]
+Ocl(1)

= Ûn
(
ρn(t)

)
+
√
n[(λ0 − µ1)

(
P
n

1 (t)− P n

1

(
ρn(t)

))
+ (bµ1 − λ1)

(
P
n

2 (t)− P n

2

(
ρn(t)

))
]

+
√
n
[
− (λ0 − µ1)

(
P
n

1 (t)− P n

1

(
ρn(t)

))
− (bµ1 − λ1)

(
P
n

2 (t)− P n

2

(
ρn(t)

))
+λ2

(
P
n

3 (t)− P n

3

(
ρn(t)

))
+ λ2

(
P
n

4 (t)− P n

4

(
ρn(t)

))
−µ0

(
P
n

5 (t)− P n

5

(
ρn(t)

))
+ λ2

(
P
n

6 (t)− P n

6

(
ρn(t)

))
−(µ0 − λ2)

(
P
n

7 (t)− P n

7

(
ρn(t)

))
− (µ0 − λ1)

(
P
n

8 (t)− P n

8

(
ρn(t)

))]
+Ocl(1)

= Ûn
(
ρn(t)

)
+ (λ0 − µ1)

bµ1

λ1

√
n
(
P
n

1 (t)− P n

1

(
ρn(t)

))
+
√
n
[
− (λ0 − µ1)

(
P
n

1 (t)− P n

1

(
ρn(t)

))
− (bµ1 − λ1)

(
P
n

2 (t)− P n

2

(
ρn(t)

))
+λ2

(
P
n

3 (t)− P n

3

(
ρn(t)

))
+ λ2

(
P
n

4 (t)− P n

4

(
ρn(t)

))
−µ0

(
P
n

5 (t)− P n

5

(
ρn(t)

))
+ λ2

(
P
n

6 (t)− P n

6

(
ρn(t)

))
−(µ0 − λ2)

(
P
n

7 (t)− P n

7

(
ρn(t)

))
− (µ0 − λ1)

(
P
n

8 (t)− P n

8

(
ρn(t)

))]
+Ocl(1)

≥ Ûn
(
ρn(t)

)
+
√
n
[
− (λ0 − µ1)

(
P
n

1 (t)− P n

1

(
ρn(t)

))
− (bµ1 − λ1)

(
P
n

2 (t)− P n

2

(
ρn(t)

))
λ2

(
P
n

3 (t)− P n

3

(
ρn(t)

))
+ λ2

(
P
n

4 (t)− P n

4

(
ρn(t)

))
−µ0

(
P
n

5 (t)− P n

5

(
ρn(t)

))
+ λ2

(
P
n

6 (t)− P n

6

(
ρn(t)

))
−(µ0 − λ2)

(
P
n

7 (t)− P n

7

(
ρn(t)

))
− (µ0 − λ1)

(
P
n

8 (t)− P n

8

(
ρn(t)

))]
+Ocl(1). (5.116)

From (5.94) and the convergence of
√
nP

n

4 and
√
nP

n

5 , we conclude that the second term
on the right-hand side of (5.116) is Ocl(1), and hence

Ûn(t) ≥ Ûn
(
ρn(t)

)
+Ocl(1).
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Because Ûn(ρn(t)) ≥ − 1√
n
, we conclude that Ûn ≥ Ocl(1). �

Remark 5.2.5 We recall (5.62):

Ûn(t) = Ûn(0)− M̂n
1,U ,−

( ∫ t

0

θb
(
Ûn(s)

)+
dP

n

1 (s)
)

+ M̂n
3,U ,+ ◦ λ2P

n

3 (t) + M̂n
4,U ,+ ◦ λ2P

n

4 (t)

−M̂n
5,U ,− ◦ µ0P

n

5 (t) + M̂n
6,U ,+ ◦ λ2P

n

6 (t) + M̂n
7,U ,+ ◦ λ2P

n

7 (t)

−M̂n
7,,U ,− ◦ µ0P

n

7 (t) + M̂n
8,U ,+ ◦ λ1P

n

8 (t)− M̂n
8,U ,− ◦ µ0P

n

8 (t)

+
√
n
(
−
∫ t

0

(
θb(Ûn(s)

)+ − (λ0 − µ1)
bµ1

λ1

) dP
n

1 (s)
)

+
√
n
[
− (λ0 − µ1)

bµ1

λ1

P
n

1 (t) + λ2P
n

3 (t) + λ2P
n

4 (t)− µ0P
n

5 (t) + λ2P
n

6 (t)

−(µ0 − λ2)P
n

7 (t)− (µ0 − λ1)P
n

8 (t)
]
. (5.117)

From (5.104) and using Y n
5

J1=⇒ Y ∗5 , we have

√
n
[
− (λ0 − µ1)

bµ1

λ1

P
n

1 (t) + λ2P
n

3 (t) + λ2P
n

4 (t)− µ0P
n

5 (t) + λ2P
n

6 (t)

−(µ0 − λ2)P
n

7 (t)− (µ0 − λ1)P
n

8 (t)
]

= −
√
n(λ0 − µ1)

bµ1

λ1

P
n

1 (t) + Y n
4 (t) = Ocl(1).

Therefore,

Ûn(t) = Ûn(0)−
√
n

∫ t

0

(
θb(Ûn(s))+ − (λ0 − µ1)

bµ1

λ1

)
dP

n

1 (s) + Cn
U(t)

= Ûn(0)−
√
n

∫ t

0

(
θb(Ûn(s))+ − λ2µ1

λ1

) dP
n

1 (s) + Cn
U(t), (5.118)

where Cn
U = Ocl(1). In fact, Cn

U has a continuous limit along subsequences of sequences.
Similarly, we can obtain

X̂ n(t) = X̂ n(0) +
√
n

∫ t

0

(
θs(X̂ n(s))− − µ2λ1

µ1

)
dP

n

8 (s) + Cn
X (t), (5.119)

where Cn
X = Ocl(1). In fact, Cn

X has a continuous limit along subsequences of sequences.

5.2.2 U∗ on negative excursions of G∗ and X ∗ on positive excur-
sions of G∗

In this section we identify the limit of Ûn on negative excursions of Ĝn, and by an analo-
gous argument, the limit of X̂ n on positive excursions of Ĝn. When Ĝn is on a negative

87



excursion, the terms dP
n

1 , dP
n

3 , dP
n

4 and dP
n

5 in formula (5.62) for Ûn are zero. Thus, on
such an excursion,

dÛn = d
(
M̂n

6,U ,+ ◦ λ2P
n

6 ) + d
(
M̂n

7,U ,+ ◦ λ2P
n

7 )− d
(
M̂n

7,U ,− ◦ µ0P
n

7

)
+ d
(
M̂n

8,U ,+ ◦ λ1P
n

8 )

− d
(
M̂n

8,U ,− ◦ µ0dP
n

8

)
+
√
n
(
λ2 dP

n

6 − (µ0 − λ2) dP
n

7 − (µ0 − λ1) dP
n

8

)
. (5.120)

The scaled centered Poisson processes M̂n
i,U ,∗ are independent of Ĝn and hence indepen-

dent of the beginning and ending times of the excursion. These processes converge to
independent Brownian motions. We have identified the limits of the scaled occupation
times P

n

i in Proposition 5.1.6 and Theorem 5.1.8. Thus, we can determine the limits of
the first five terms,

d
(
M̂n

6,U ,+ ◦ λ2P
n

6

)
+ d
(
M̂n

7,U ,+ ◦ λ2dP
n

7

)
− d
(
M̂n

7,U ,− ◦ µ0dP
n

7

)
+ d
(
M̂n

8,U ,+ ◦ λ1 dP
n

8

)
− d
(
M̂n

8,U ,− ◦ µ0 dP
n

8

)
(5.121)

on the right-hand side of (5.120) (see Proposition 5.2.12 below). The remaining term,
√
n
(
λ2 dP

n

6 − (µ0 − λ2) dP
n

7 − (µ0 − λ1) dP
n

8

)
(5.122)

is more difficult. It is not independent of Ĝn, and hence depends on the fact that we are
observing it during a negative excursion of Ĝn. We will see (Proposition 5.2.12 below)
that it convergences to a constant times the excursion itself plus a one variance Brownian
motion that is independent of the excursion and also independent of the limit of the first
five terms on the right-hand side of (5.120).

To set the stage for this analysis, we introduce six independent one variance Brownian
motions. To be consistent, we use the same notation that appeared in (5.91). Specifically,

since M̂n
i,×,∗

J1=⇒ Bi,×,∗, we define Θ∗i , where i = 1, . . . , 6, by

Θ∗1 := B1,W,+ ◦
λ2

1

λ0 + λ1

e−B1,W,− ◦
µ0λ1

λ0 + λ1

e+B2,W,+ ◦
λ1(λ0 − µ1)

λ0 + λ1

e,

Θ∗2 := −B2,W,− ◦
µ1(λ0 − µ1)

λ0 + λ1

e+B3,W,+ ◦
λ0µ1

λ0 + λ1

e−B3,W,− ◦
µ2

1

λ0 + λ1

e,

Θ∗3 := B1,V,+ ◦
λ1λ2

λ0 + λ1

e+B2,V,+ ◦
λ2(λ0 − µ1)

λ0 + λ1

e−B2,V,− ◦
µ0(λ0 − µ1)

λ0 + λ1

e

+B3,V,+ ◦
λ1µ1

λ0 + λ1

e−B3,V,− ◦
µ0µ1

λ0 + λ1

e,

Θ∗4 := −B8,W,− ◦
µ1µ2

λ0 + λ1

e−B7,W,− ◦
µ2(λ0 − µ1)

λ0 + λ1

e+B7,W,+ ◦
λ0(λ0 − µ1)

λ0 + λ1

e

−B6,W,− ◦
µ1λ1

λ0 + λ1

e+B6,W,+ ◦
λ0λ1

λ0 + λ1

e,

Θ∗5 := B7,V,+ ◦
λ1(λ0 − µ1)

λ0 + λ1

e−B6,V,− ◦
µ0λ1

λ0 + λ1

e+B6,V,+ ◦
λ2

1

λ0 + λ1

e,

Θ∗6 := −B8,V,− ◦
µ2

1

λ0 + λ1

e+B8,V,+ ◦
λ0µ1

λ0 + λ1

e−B7,V,− ◦
µ1(λ0 − µ1)

λ0 + λ1
e,
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and these are six independent one variance Brownian motions. We observe that

〈Θ∗1,Θ∗1〉 =
1

λ0 + λ1

(λ2
1 + µ0λ1 + λ0λ1 − λ1µ1)e =

2λ1

b
e, (5.123)

〈Θ∗2,Θ∗2〉 =
1

λ0 + λ1

(µ1λ0 − µ2
1 + λ0µ1 + µ2

1)e

=
1

λ0 + λ1

2µ1λ0e =
2µ1

a
e, (5.124)

〈Θ∗3,Θ∗3〉 =
1

λ0 + λ1

(λ1λ2 + λ0λ2 − µ1λ2 + µ0λ0 − µ0µ1 + λ1µ1 + µ0µ1)e

=
1

λ0 + λ1

(λ1λ2 + λ0λ2 − µ1λ2 + µ0λ0 + λ1µ1)e =
2λ0

b
e, (5.125)

〈Θ∗4,Θ∗4〉 =
1

λ0 + λ1

(µ1µ2 + λ0µ2 − µ1µ2 + λ2
0 − λ0µ1 + λ1µ1 + λ0λ1)e

=
1

λ0 + λ1

(λ0µ2 + λ2
0 − λ0µ1 + λ1µ1 + λ0λ1)e =

2λ0

b
e, (5.126)

〈Θ∗5,Θ∗5〉 =
1

λ0 + λ1

(λ1λ0 − µ1λ1 + µ0λ1 + λ2
1)e =

2λ1

b
e, (5.127)

〈Θ∗6,Θ∗6〉 =
1

λ0 + λ1

(µ2
1 + λ0µ1 + λ0µ1 − µ2

1)e

=
1

λ0 + λ1

2µ1λ0e =
2µ1

a
e. (5.128)

Based the From (5.16), (5.17), (5.91), and Proposition 5.1.6, we have

G∗ = (bΘ∗1 + Θ∗2 + Θ∗3) ◦ P+

G∗ + (Θ∗4 + Θ∗5 + aΘ∗6) ◦ P−G∗ , (5.129)

|G∗| = (bΘ∗1 + Θ∗2 + Θ∗3) ◦ P+

G∗ − (Θ∗4 + Θ∗5 + aΘ∗6) ◦ P−G∗
+Γ
(
(bΘ1 + Θ2 + Θ3) ◦ P+

G∗ − (Θ4 + Θ5 + aΘ6) ◦ P−G∗
)
. (5.130)

For the analysis of this section we will also need several correlated one variance
Brownian motions. For convenient reference, we collect their definitions and properties
here.
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Definition 5.2.6

Φ1 := bΘ∗1 + Θ∗2 + Θ∗3,

Φ2 := −Θ∗4 −Θ∗5 − aΘ∗6,

Φ3 := −Θ∗1 − bΘ∗2,
Φ̃3 := −Θ∗1 − aΘ∗2,

Φ4 := bΘ∗5 + Θ∗6,

Φ̃4 := aΘ∗5 + Θ∗6,

α :=
−b〈Θ∗1,Θ∗1〉 − b〈Θ∗2,Θ∗2〉

b2〈Θ∗1,Θ∗1〉+ 〈Θ∗2,Θ∗2〉+ 〈Θ∗3,Θ∗3〉
= −(b− 1)λ0 + λ1

λ0 + bλ1

,

β :=
−b〈Θ∗5,Θ∗5〉 − a〈Θ∗6,Θ∗6〉

〈Θ∗4,Θ∗4〉+ 〈Θ∗5,Θ∗5〉+ a2〈Θ∗6,Θ∗6〉
= − λ1 + µ1

µ0 + aµ1

,

α̃ :=
−b〈Θ∗1,Θ∗1〉 − a〈Θ∗2,Θ∗2〉

b2〈Θ∗1,Θ∗1〉+ 〈Θ∗2,Θ∗2〉+ 〈Θ∗3,Θ∗3〉
= − λ1 + µ1

λ0 + bλ1

,

β̃ :=
−a〈Θ∗5,Θ∗5〉 − a〈Θ∗6,Θ∗6〉

〈Θ∗4,Θ∗4〉+ 〈Θ∗5,Θ∗5〉+ a2〈Θ∗6,Θ∗6〉
= −(a− 1)µ0 + µ1

µ0 + aµ1

,

Φ5 := Φ3 − αΦ1 = −(1 + bα)Θ∗1 − (b+ α)Θ∗2 − αΘ∗3,

Φ̃5 := Φ̃3 − α̃Φ1 = −(1 + bα̃)Θ∗1 − (a+ α̃)Θ∗2 − α̃Θ∗3,

Φ6 := Φ4 − βΦ2 = βΘ∗4 + (b+ β)Θ∗5 + (1 + aβ)Θ∗6,

Φ̃6 := Φ̃4 − β̃Φ2 = β̃Θ∗4 + (a+ β̃)Θ∗5 + (1 + aβ̃)Θ∗6,

so that {Φi}i=1,...,6 and {Φ̃j}j=3,4,5,6 are one variance Brownian motions, and α, α̃, β, and
β̃ are constants.

Lemma 5.2.7 Following the definition above, we have

〈Φ5,Φ1〉 = 0, 〈Φ6,Φ2〉 = 0, (5.131)

〈Φ5,Φ2〉 = 0, 〈Φ6,Φ1〉 = 0, (5.132)

〈Φ̃5,Φ1〉 = 0, 〈Φ̃6,Φ2〉 = 0, (5.133)

〈Φ̃5,Φ2〉 = 0, 〈Φ̃6,Φ1〉 = 0, (5.134)

which implies
(
Φ5, Φ̃5,Φ6, Φ̃6

)
is independent of

(
Φ1,Φ2), which follows from the Levy’s

Theorem on Page 157 of [19]. Moreover,

〈Φ1,Φ1〉 = c+e,

〈Φ2,Φ2〉 = c−e,

where c+ and c− are defined in Corollary 5.1.7.

Proof: From Assumption 2.2.1 and (5.123)-(5.128), we can do a lengthy computation
to show that

〈Φ1,Φ1〉 = c+e, 〈Φ2,Φ2〉 = c−e.
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Since Φ1, Φ2, Φ5, Φ6, Φ̃5, and Φ̃6 are one variance Brownian motions, it suffices to show
(5.131)-(5.134). Following the definition of α, β and Φi where i = 1, . . . , 6, we have

〈Φ5,Φ1〉 = 〈Φ3 − αΦ1,Φ1〉 = 〈Φ3,Φ1〉 − α〈Φ1,Φ1〉
= −b〈Θ∗1,Θ∗1〉 − b〈Θ∗2,Θ∗2〉 − α(b2〈Θ∗1,Θ∗1〉+ 〈Θ∗2,Θ∗2〉+ 〈Θ∗3,Θ∗3〉)
= 0,

〈Φ6,Φ2〉 = 〈Φ4 − βΦ2,Φ2〉 = 〈Φ4,Φ2〉 − β〈Φ2,Φ2〉
= −b〈Θ∗5,Θ∗5〉 − a〈Θ∗6,Θ∗6〉 − β(〈Θ∗4,Θ∗4〉+ 〈Θ∗5,Θ∗5〉+ a2〈Θ∗6,Θ∗6〉)
= 0,

〈Φ5,Φ2〉 = 〈Φ3 − αΦ1,Φ2〉 = 〈Φ3,Φ2〉 − α〈Φ1,Φ2〉
= 0,

〈Φ6,Φ1〉 = 〈Φ4 − βΦ2,Φ1〉 = 〈Φ4,Φ1〉 − β〈Φ2,Φ1〉
= 0.

Similarly, following the definition of α̃, β̃ and Φ̃i where i = 1, . . . , 6, we have

〈Φ̃5,Φ1〉 = 〈Φ̃3 − α̃Φ1,Φ1〉 = 〈Φ̃3,Φ1〉 − α̃〈Φ1,Φ1〉
= −b〈Θ∗1,Θ∗1〉 − a〈Θ∗2,Θ∗2〉 − α̃(b2〈Θ∗1,Θ∗1〉+ 〈Θ∗2,Θ∗2〉+ 〈Θ∗3,Θ∗3〉)
= 0,

〈Φ̃6,Φ2〉 = 〈Φ̃4 − β̃Φ2,Φ2〉 = 〈Φ̃4,Φ2〉 − β̃〈Φ2,Φ2〉
= −a〈Θ∗5,Θ∗5〉 − a〈Θ∗6,Θ∗6〉 − β̃(〈Θ∗4,Θ∗4〉+ 〈Θ∗5,Θ∗5〉+ a2〈Θ∗6,Θ∗6〉)
= 0,

〈Φ̃5,Φ2〉 = 〈Φ̃3 − α̃Φ1,Φ2〉 = 〈Φ̃3,Φ2〉 − α̃〈Φ1,Φ2〉
= 0,

〈Φ̃6,Φ1〉 = 〈Φ̃4 − β̃Φ2,Φ1〉 = 〈Φ̃4,Φ1〉 − β̃〈Φ2,Φ1〉
= 0,

which finishes the proof. �

Lemma 5.2.8 According to Definition 5.2.6, we can write (5.129) and (5.130) as

G∗ = Φ1 ◦ P
+

G∗ − Φ2 ◦ P
−
G∗ , (5.135)

|G∗| = Φ1 ◦ P
+

G∗ + Φ2 ◦ P
−
G∗ + Γ(Φ1 ◦ P

+

G∗ + Φ2 ◦ P
−
G∗). (5.136)

Remark 5.2.9 Note that P
+

G∗ and P
−
G∗ are determined by Φ1 and Φ2 and hence they are

independent of any processes that are independent of Φ1 and Φ2. From Theorem 5.1.8,
we know G∗ is two-variance Brownian Motion, therefore, from Lemma 5.2.7 and Lemma

4.2.7, we obtain that Φ5, Φ̃5, Φ6 and Φ̃6 are independent of P
+

G∗, P
−
G∗ and G∗.
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From (5.18) and (5.19) and Theorem 5.1.1, we see that
√
n
[
(λ0 − µ1)(P

n

1 + P
n

8 )− (λ0 − µ1)(P
n

3 + P
n

6 ) + (µ1 − λ1)(P
n

2 − P
n

7 )

−(λ0 + µ0)P
n

4 − (λ1 + µ1)P
n

5

]
J1=⇒ (Θ∗1 + Θ∗2) ◦ P+

G∗ − (Θ∗5 + Θ∗6) ◦ P−G∗ , (5.137)
√
n
[
(λ0 − µ1)(P

n

1 + P
n

8 ) + (λ0 − µ1)(P
n

3 + P
n

6 )− (µ1 + λ1)(P
n

2 + P
n

7 )

+(λ0 + µ0)P
n

4 − (λ1 + µ1)P
n

5

]
J1=⇒ (Θ∗1 −Θ∗2) ◦ P+

G∗ + (Θ∗5 −Θ∗6) ◦ P−G∗ , (5.138)

According to Assumption 2.2.1, we can easily verify

bλ1 − µ1 = µ0 − λ2, aµ1 − λ1 = λ0 − µ2.

We multiply (5.137) by −1
2
(b+ 1), multiply (5.138) by 1

2
(b− 1), and sum to obtain

Πn J1=⇒ (−Θ∗1 − bΘ∗2) ◦ P+

G∗ + (bΘ∗5 + Θ∗6) ◦ P−G∗ . (5.139)

where

Πn :=
√
n
[
− (λ0 − µ1)P

n

1 − (bµ1 − λ1)P
n

2 + λ2P
n

3 + b(λ0 + µ0)P
n

4 + (µ1 + λ1)P
n

5

+λ2P
n

6 − (µ0 − λ2)P
n

7 − (λ0 − µ1)P
n

8

]
.

Similarly, we multiply (5.137) by −1
2
(a + 1), multiply (5.138) by 1

2
(a − 1), and sum to

obtain
Π̃n J1=⇒ (−Θ∗1 − aΘ∗2) ◦ P+

G∗ + (aΘ∗5 + Θ∗6) ◦ P−G∗ . (5.140)

where

Π̃n :=
√
n
[
− (µ0 − λ1)P

n

1 − (λ0 − µ2)P
n

2 + µ2P
n

3 + a(λ0 + µ0)P
n

4 + (µ1 + λ1)P
n

5

+µ2P
n

6 − (aλ1 − µ1)P
n

7 − (λ0 − µ1)P
n

8

]
.

From Definition 5.2.6, we may rewrite (5.139) and (5.140) as

Πn J1=⇒ Φ3 ◦ P
+

G∗ + Φ4 ◦ P
−
G∗ , (5.141)

Π̃n J1=⇒ Φ̃3 ◦ P
+

G∗ + Φ̃4 ◦ P
−
G∗ , (5.142)

The following lemma will be crucial in the identification of the limit of the term
(5.121).

Lemma 5.2.10 Since

Φ3 = αΦ1 + Φ5, Φ4 = βΦ2 + Φ6,

Φ̃3 = α̃Φ1 + Φ̃5, Φ̃4 = β̃Φ2 + Φ̃6,

we can rewrite (5.141) and (5.145) as

Πn J1=⇒ (αΦ1 ◦ P
+

G∗ + βΦ2 ◦ P
−
G∗) + Φ5 ◦ P

+

G∗ + Φ6 ◦ P
−
G∗ , (5.143)

Π̃n J1=⇒ (α̃Φ1 ◦ P
+

G∗ + β̃Φ2 ◦ P
−
G∗) + Φ̃5 ◦ P

+

G∗ + Φ̃6 ◦ P
−
G∗ . (5.144)
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After these preliminaries, we are ready to study the behavior of Ûn on a negative
excursion of Ĝn. To select such an excursion of Ĝn, we first select a negative excursion
of G∗ and appeal to Lemma 5.2.11 below. To do this, we use the Skorohod embedding
theorem to place all processes on a common probability space so that all weak convergence
results become almost sure convergence in the J1 topology. In particular, convergence to
a continuous limiting process is uniform convergence on compact time intervals.

Let ε > 0 and a positive integer k be given, and consider the k-th ε-long negative
excursion of G∗. This excursion has a left endpoint Λ and a right endpoint R. The
excursion itself is

E(t) = G∗
(
(t+ Λ) ∧R

)
, t ≥ 0.

In particular, E(0) = 0, E(t) < 0 for 0 < t < R − Λ, and E(t) = 0 for t ≥ R − Λ > ε.

Consider also the k-th ε-long negative excursion of Ĝn. Denote its left endpoint by Λn,
its right endpoint by Rn, and the excursion itself by

En(t) = Ĝn
(
(t+ Λn) ∧Rn

)
, t ≥ 0.

Then sufficiently large n, we have − 1√
n
≤ En(0) ≤ 0, En(t) < 0 for 0 < t < Rn−Λn, and

En(t) = 0 for t ≥ Rn − Λn.

Lemma 5.2.11 The excursions and excursion endpoints defined above satisfy

(i) Λn → Λ a.s.,

(ii) Rn → R a.s.

(iii) En → E.

Proof: For any x ∈ D[0,∞), let Lk : D[0,∞) → [0,∞] and Rk : D[0,∞) → [0,∞] be
defined by

Lk(x) := Left endpoint of kth ε-long negative excursion of x,

Rk(x) := Right endpoint of kth ε-long negative excursion of x.

Since Ĝn → G∗ almost surely, according to the Continuous Mapping Theorem, it suffices
to show Lk and Rk are almost surely continuous under the two-variance Wiener measure.
Given a path g of a two-variance Brownian motion and a sequence of paths {gn}∞n=1

converging to g, let {li, ri}i=1,...,k denote the left endpoints and right endpoints of the first
k ε-long negative excursions on g, and let {lni , rni }i=1,...,k denote the left endpoints and
right endpoints of the first k ε-long negative excursion on gn. Since gn → g in J1 and g
is continuous, we have uniform convergence on compact intervals. Our goal is to show
lnk → lk and rnk → rk.

Note that g is a path of two-variance Brownian motion, so g crosses zero at li and
ri for i = 1, . . . , k. Because of the uniform convergence of {gn}∞n=1, we can find l̂ni → li
and r̂ni → ri such that gn(t) < 0 for t ∈ (l̂ni , r̂

n
i ) and gn(l̂ni ) = gn(r̂ni ) = 0, for i = 1, . . . , k.

93



Therefore, for sufficiently large n, l̂nk and r̂nk are the left endpoint and right endpoint of at
least the kth ε-long negative excursion of gn, which means that {lnk}∞n=1 and {rnk}∞n=1 are

bounded and lnk ≤ l̂nk , rnk ≤ r̂nk .

It suffices to show every convergent subsequence of {lnk , rnk}∞n=1 converges to {lk, rk}.
Given any convergent subsequence (for convenience, we do not re-label it) {lnk , rnk}∞n=1, let
lnk → l̃k and rnk → r̃k. Since rnk − lnk > ε, we must have r̃k− l̃k ≥ ε. Moreover, since gn < 0
on (lnk , r

n
k ) and gn → g uniformly on [0, rk], we have g ≤ 0 on (l̃k, r̃k). Note that g is a path

of two-variance Brownian motion, g must be on a negative excursion on (l̃k, r̃k). Since the
probability that g has a negative excursion with length exactly equal to ε is zero, (l̃k, r̃k)
must be an ε-long negative excursion of g. Note that lnk ≤ l̂nk , rnk ≤ r̂nk , l̂nk → lk, and
r̂nk → rk, so we have l̃k ≤ lk and r̃k ≤ rk.

In order to show l̃k ≥ lk and r̃k ≥ rk, we can further choose a subsequence (for
convenience, we still let n denote the index) {lni , rni }∞n=1 such that lni → l̃i and rni → r̃i for
i = 1, . . . , k − 1. Similar to analysis above, for any i = 1, . . . , k − 1, since rni − lni > ε,
we must have r̃i − l̃i ≥ ε. Moreover, since gn < 0 on (lni , r

n
i ) and gn → g uniformly on

[0, rk], we have g ≤ 0 on (l̃i, r̃i). Note that g is a path of two-variance Brownian motion,
g must be on a negative excursion on (l̃i, r̃i). Since the probability that g has a negative
excursion with length exactly equal to ε is zero, (l̃i, r̃i) must be a ε-long negative excursion
of g. Therefore, (l̃i, r̃i)

k
i=1 are k ε-long negative excursions of g, which implies l̃k ≥ lk and

r̃k ≥ rk. �

Proposition 5.2.12 Note that M̂n
i,×,∗

J1=⇒ Bi,×,∗, let us define the one variance Brownian
motion

Φ7 := B6,U ,+ ◦
λ2λ1

λ0 + λ1

e+B7,U ,+ ◦
λ2(λ0 − µ1)

λ0 + λ1

e−B7,U ,− ◦
µ0(λ0 − µ1)

λ0 + λ1

e

+B8,U ,+ ◦
λ1µ1

λ0 + λ1

e−B8,U ,−
µ0µ1

λ0 + λ1

e.

Then

M̂n
6,U ,+ ◦ λ2P

n

6 + M̂n
7,U ,+ ◦ λ2dP

n

7 − M̂n
7,U ,− ◦ µ0dP

n

7

+M̂n
8,U ,+ ◦ λ1 dP

n

8 − M̂n
8,U ,− ◦ µ0 dP

n

8
J1=⇒ Φ7 ◦ P

−
G∗ ,

and

〈Φ7,Φ7〉 =
λ2λ1 + λ2λ0 − λ2µ1 + µ0λ0 − µ0µ1 + λ1µ1 + µ0µ1

λ0 + λ1

e

=
2λ0

b
e. (5.145)

Moreover, because the scaled centered Poisson processes M̂n
6,U ,+, M̂n

7,U ,+, M̂n
7,U ,−, M̂n

8,U ,+,

and M̂n
8,U ,− are independent of Ĝn, Φ7 is independent of G∗.
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On the interval [Λn, Rn], the processes P
n

1 , P
n

2 , P
n

3 , P
n

4 and P
n

5 are constant. Thus, for
0 ≤ t ≤ Rn − Λn, (5.62) implies

Ûn(Λn + t)− Ûn(Λn)

=
(
M̂n

6,U ,+ ◦ λ2P
n

6 (Λn + t)− M̂n
6,U ,+ ◦ λ2P

n

6 (Λn)
)

+
(
M̂n

7,U ,+ ◦ λ2P
n

7 (Λn + t)− M̂n
7,U ,+ ◦ λ2P

n

7 (Λn)
)

−
(
M̂n

7,U ,− ◦ µ0P
n

7 (Λn + t)− M̂n
7,U ,− ◦ µ0P

n

7 (Λn)
)

+
(
M̂n

8,U ,+ ◦ λ1P
n

8 (Λn + t)

−M̂n
8,U ,+ ◦ λ1P

n

8 (Λn)
)
−
(
M̂n

8,U ,− ◦ µ0P
n

8 (Λn + t)− M̂n
8,U ,− ◦ µ0P

n

8 (Λn)
)

+
√
n
[
(λ2P

n

6 (Λn + t)− λ2P
n

6 (Λn)
)
− (µ0 − λ2)

(
P
n

7 (Λn + t)− P n

7 (Λn)
)

−(µ0 − λ1)
(
P
n

8 (Λn + t)− P n

8 (Λn)
)]
.

Proposition 5.2.13 We have

√
n
[
(λ2

(
P
n

6 (Λn + t)− P n

6 (Λn)
)
− (µ0 − λ2)

(
P
n

7 (Λn + t)− P n

7 (Λn
)

−(µ0 − λ1)
(
P
n

8 (Λn + t)− P n

8 (Λn
)]

= Πn(Λn + t)− Πn(Λn)
J1=⇒ β

(
Φ2 ◦ P

−
G∗(Λ + t)− Φ2 ◦ P

−
G∗(Λ)

)
+
(
Φ6 ◦ P

−
G∗(Λ + t)− Φ6 ◦ P

−
G∗(Λ)

)
,

and (
Ûn
(
(Λn + ·) ∧Rn

)
− Ûn(Λn)

)
J1=⇒ (Φ7 + Φ6 − βE)

(
· ∧(R− Λ)

)
. (5.146)

Moreover, the increments Φ7 ◦P
−
G∗(Λ + t)−Φ7 ◦P

−
G∗(Λ), Φ2 ◦P

−
G∗(Λ + t)−Φ2 ◦P

−
G∗(Λ),

and Φ6 ◦ P
−
G∗(Λ + t)− Φ6 ◦ P

−
G∗(Λ) are independent.

Proof: The first convergence follows from (5.143) and Lemma 5.2.11. Proposition 5.2.12
then implies(
Ûn
(
(Λn + ·) ∧Rn

)
− Ûn(Λn)

)
J1=⇒

(
Φ7 ◦ P

−
G∗

(
(Λ + ·) ∧R

)
− Φ7 ◦ P

−
G∗(Λ)

)
+β
(

Φ2 ◦ P
−
G∗

(
(Λ + ·) ∧R

)
− Φ2 ◦ P

−
G∗(Λ)

)
+
(

Φ6 ◦ P
−
G∗

(
(Λ + ·) ∧R

)
− Φ6 ◦ P

−
G∗(Λ)

)
(5.147)

Because Φ2 and Φ6 are defined in terms of {Θ∗i }i=1,...,6, and these processes are independent
of the Brownian motions appearing in the definition of Φ7, Φ2 and Φ6 are independent of
Φ7. From Lemma 5.2.7, we also have Φ2 is independent of Φ6.

Since Φ7 is independent of G∗,

Φ7 ◦ P
−
G∗(Λ + t)− Φ7 ◦ P

−
G∗(Λ), 0 ≤ t ≤ R− Λ,
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has the same distribution as

Φ7(t), 0 ≤ t < R− Λ.

According to Remark 5.2.9, we see that Φ6 is independent of P
−
G∗ and G∗, and hence

independent of Λ and R, so the increment

Φ6 ◦ P
−
G∗(Λ + t)− Φ6 ◦ P

−
G∗(Λ), 0 ≤ t ≤ R− Λ,

has the same distribution as

Φ6(t), 0 ≤ t ≤ R− Λ.

The final component of the limit of Ûn(Λn + t) − Ûn(Λn) during the k-th ε-long

negative excursion of Ĝn is

β
(
Φ2 ◦ P

−
G∗(Λ + t)− Φ2 ◦ P

−
G∗(Λ)

)
.

From Lemma 5.2.8, we see that

(G∗)−(t) =
1

2
(|G∗| −G∗)(t)

= Φ2 ◦ P
−
G∗(t) +

1

2
Γ
(
Φ1 ◦ P

+

G∗ + Φ2 ◦ P
−
G∗

)
(t).

Also, from Lemma 4.2.4 we have

Γ
(
Φ1 ◦ P

+

G∗ + Φ2 ◦ P
−
G∗

)
= 2Γ

(
Φ2 ◦ P

−
G∗

)
,

which implies

(G∗)−(t) = Φ2 ◦ P
−
G∗(t) + Γ

(
Φ2 ◦ P

−
G∗

)
(t). (5.148)

Therefore k-th ε-long negative excursion of G∗ corresponds to the k-th ε-long excursion
of the reflected Brownian motion

Φ̃2(t) := Φ2(t) + Γ(Φ2)(t),

and this excursion has left endpoint(P
−
G∗)
−1(Λ) and right endpoint (P

−
G∗)
−1(R) = (P

−
G∗)
−1(Λ)+

R− Λ, where

(P
−
G∗)
−1(t) := min{s ≥ 0 : P

−
G∗(s) > t}.

Since E(t) = G∗
(
(t+ Λ) ∧R

)
, we have

E(t) = −Φ̃2

((
t+ (P

−
G∗)
−1(Λ)

)
∧ (P−G∗)

−1(R)
)
, t ≥ 0.

From Lemma 5.2.7, we have 〈Φ2,Φ2〉 = c−, which implies the distribution of E is the same
as the distribution of any ε-long negative excursion of a Brownian motion with variance

c− per unit time. In particular, −Φ2 ◦ P
−
G∗(Λ + t) + Φ2 ◦ P

−
G∗(Λ), 0 ≤ t ≤ R− Λ is equal
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to E(t) almost surely. Putting the three pieces together, we may rewrite the right hand
side of (5.147), thereby obtaining (5.146). �

From Definition 5.2.6 and Proposition 5.2.12, the total quadratic variation on the
right-hand side of (5.148) is

〈Φ6,Φ6〉+ 〈Φ7,Φ7〉+ β2c−e

= β2〈Θ∗4,Θ∗4〉+ (b+ β)2〈Θ∗5,Θ∗5〉+ (1 + aβ)2〈Θ∗6,Θ∗6〉+ 〈Φ7,Φ7〉+ β2c−e

= (2ab− 2b+ 2)λ0e

= c+e, (5.149)

which is exactly as expected.

Let ε > 0 and a positive integer k be given, and consider the k-th ε-long positive
excursion of G∗. This excursion has a left endpoint Λ̃ and a right endpoint R̃. The
excursion itself is

Ẽ(t) = G∗
(
(t+ Λ̃) ∧ R̃

)
, t ≥ 0. (5.150)

Following the same argument, we have(
X̂ n
(
(Λ̃n + ·) ∧ R̃n

)
− X̂ n(Λ̃n)

)
J1=⇒
(

Φ̃7 − Φ̃5 + α̃Ẽ
) (
· ∧(R̃− Λ̃)

)
, (5.151)

where

Φ̃7 := −B3,X ,− ◦
µ2µ1

λ0 + λ1

−B2,X ,− ◦
µ2(µ0 − λ1)

λ0 + λ1

+B2,X ,+ ◦
λ0(µ0 − λ1)

λ0 + λ1

−B1,X ,− ◦
µ1λ1

λ0 + λ1

+B1,X ,+
λ0λ1

λ0 + λ1

. (5.152)

and

〈Φ̃7, Φ̃7〉 =
2λ0

b
e. (5.153)

From Definition 5.2.6 and (5.153), the total quadratic variation on the right-hand side of
(5.151) is

〈X̂ n, X̂ n〉 = 〈Φ̃5, Φ̃5〉+ 〈Φ̃7, Φ̃7〉+ α̃2c+e

= 〈Θ∗1,Θ∗1〉+ a2〈Θ∗2,Θ∗2〉+ 〈Φ̃7, Φ̃7〉

=
(2a2b− 2a2 + 2a)

b
λ0e

= c−e, (5.154)

which is also as expected.

5.2.3 Convergence of (Ûn, X̂ n)

In this section, we want to enumerate the positive and negative excursions of G∗ like the
way they are defined in Section 4.2 of [2]. Following the same notation, we denote the
left and right endpoints of kth negative excursions by Λk,− and Rk,−; we denote the left
and right endpoints of kth positive excursions by Λk,+ and Rk,+.
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Proposition 5.2.14

Ûn =⇒ U∗,
X̂ n =⇒ X ∗,

in D[0−,∞), where U∗(0−) = u0, X ∗(0−) = x0, and

U∗(t) =


λ2µ1
θbλ1

, if t ∈ [Λk,+, Rk,+) for some k = 1, 2, . . . ,
λ2µ1
θbλ1

+ U∗k,−(t− Λk,−), if t ∈ [Λk,−, Rk,−) for some k = 1, 2, . . . ,
λ2µ1
θbλ1

, else.

X ∗(t) =


−µ2λ1
θsµ1

, if t ∈ [Λk,−, Rk,−) for some k = 1, 2, . . . ,

−µ2λ1
θsµ1

+ X ∗k,+(t− Λk,+), if t ∈ [Λk,+, Rk,+) for some k = 1, 2, . . . ,

−µ2λ1
θsµ1

, else.

Here,

U∗k,− := Ck,−
(
· ∧(Rk,− − Λk,−)

)
− βEk,−,

X ∗k,− := Ck,+
(
· ∧(Rk,+ − Λk,+)

)
+ α̃Ek,+,

where (Ck,−, k ≥ 1) is a sequence of independent Brownian motions that accumulate
quadratic variation at rate c+ − β2c− per unit time, (Ck,+, k ≥ 1) is a sequence of inde-
pendent Brownian motions that accumulate quadratic variation at rate c−− α̃2c+ per unit
time, and

Ek,− := G∗
(
(·+ Λk,−) ∧Rk,−

)
,

Ek,+ := G∗
(
(·+ Λk,+) ∧Rk,+

)
,

Proof: Note that we assume (Ûn, X̂ n) follow the same dynamic as those acting on

(Ûn, X̂n) when the bracketing processes are valid, so we can still use the result from [2].
From (5.118)-(5.119), (5.148)-(5.149), (5.151) and (5.154), the proof of Proposition 5.2.14
follows from Theorem 4.5.3 of [2]. �

5.2.4 Convergence of (Ûn, V̂n, Ŵn, X̂ n)

We have already proved that,

(Ûn, V̂n, Ŵn, X̂ n) =⇒ (U∗,V∗,W∗,X ∗)

where convergence is weak convergence and the probability measure is on
(
D[0−,∞) ×

D[0,∞)×D[0,∞)×D[0−,∞)
)

equipped with topology (M1 × J1 × J1 ×M1). Since M1

and J1 are separable, we can apply the Skorohod Representation Theorem to place all
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processes on a common probability space so that all weak convergences become almost
sure convergences in the the topology mentioned above. Let us define,

τnU = inf{t > 0|Ûn(t) ≤ 0},
τnX = inf{t > 0|X̂ n(t) ≥ 0},
τU = inf{t > 0|U∗(t) ≤ 0},
τX = inf{t > 0|X ∗(t) ≤ 0}.

Theorem 5.2.15

τnU → τU ,

τnX → τX ,

almost surely.

We will only prove τnU → τU , and the other convergence follows the same argument. Before
we start the proof, we want to introduce a lemma.

Lemma 5.2.16 For every δ > 0,

inf
0<t<0∨(τU−δ)

{U∗(t)} > 0, (5.155)

almost surely.

Proof: Note that before τU − δ, U∗ has infinitely many attempts to hit zero while W∗ is
on a negative excursion. Obviously, there are countably many such attempts, and let us
call these negative excursion intervals (ai, bi), and their lengths `i = bi−ai for i ≥ 1. Then
we can order these intervals by decreasing lengths. For simplicity, let {`i}i≥1 be ordered
sequence. Fix ε > 0. We can find sufficiently large N0 ∈ N such that

∑∞
i=N0

`i < ε.
Moreover, U∗ only jumps when W∗ reaches the right end point of a negative excursion,
and during a negative excursion of W∗, U∗ behaves like a Brownian motion correlated
withW∗. Among the finitely many excursion intervals indexed by i = 1, · · · , N0−1, there
is none on which the inft∈(ai,bi){U∗(t)} is zero because that would require an excursion
interval to end just as U∗ was reaching zero, which is a probability zero event. Therefore
U∗ is always strictly positive on negative excursions of W∗ that terminate before τU − δ.
In particular,

min
i≤N0

{
inf

t∈(ai,bi)
{U∗(t)}

}
> 0. (5.156)

For any i > N0, U∗ will start from λ2µ1
θbλ1

> 0 at the beginning of the ith negative excursion

of W∗. Let T i be the first passage time to λ2µ1
2θbλ1

of U∗ starting from beginning of the ith

excursion. Let θ = θbλ1
λ2µ1

. Then, by reflection principle,

P{T i > `i} = 2N(
1

2θ
√
c+`i

)− 1.
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Hence,

P
{

inf
0<t<0∨(τU−δ)

{U∗(t)} = 0
}
≤ P{∃i ≥ N0, T

i ≤ `i}

= 1− P{∀i ≥ N0, T
i > `i}

= 1− Π∞i≥N0
(2N(

1

2θ
√
c+`i

)− 1) (5.157)

Let xi = 1

2θ
√
c+`i

. Since
∑∞

i=N `i < ε, we have

∞∑
i=N

1

x2
i

< 4θ2c+ε. (5.158)

From Page 112, Problem 9.22 of [19], we have 1− e−
x2

2√
2πx
≤ N(x), and this implies

1−
√

2

π

e−
x2i
2

xi
≤ 2N(xi)− 1. (5.159)

Therefore, by possibly increasing N0, we have

Π∞i≥N0
(2N(

1

2θ
√
c+`i

)− 1) = Π∞i≥N0
(2N(xi)− 1) ≥ Π∞i≥N0

(1−
√

2

π

e−
x2i
2

xi
)

= exp{
∞∑

i≥N0

log(1−
√

2

π

e−
x2i
2

xi
)}

≥ exp{
∞∑

i≥N0

(−2

√
2

π

e
−x2i
2

xi
)} = exp{−2

√
2

π

∞∑
i≥N0

(
e−

x2i
2

xi
)}

= exp{−2

√
2

π

∞∑
i≥N0

(
xie
−x

2
i
2

x2
i

)} ≥ exp{−2

√
2

π

∞∑
i≥N0

(
1

x2
i

)}

> exp{−2

√
2

π
4θ2ε},

where the second inequality comes from −2x ≤ log(1 − x) for sufficiently small x, and

the third inequality comes from xe−
x2

2 ≤ 1 for all x, and the last inequality follows from
(5.158). Now from (5.157), we have,

P{ inf
0<t<0∨(τU−δ)

{U∗(t)} = 0} < 1− exp{−2

√
2

π
4θ2ε}.

By sending ε→ 0, we have proved that

inf
0<t<0∨(τU−δ)

{U∗(t)} > 0,
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almost surely. �

Proof of Theorem 5.2.15: Let us fix ω ∈ Ω, and for any t ≥ 0, let

fn(t) := Ûn(ω, t),

f(t) := U∗(ω, t),

and

Tn := τnU (ω) = inf{t > 0|fn(t) ≤ 0},
T := τU(ω) = inf{t > 0|f(t) ≤ 0}.

Our goal is to show |Tn− T | → 0. We can divide {Tn}n≥1 into two subsequence {Tnk}k≥1

and {Tnp}p≥1 such that

Tnk ≥ T, for all k ≥ 1, Tnp < T, for all p ≥ 1.

Of course, one of these sequences may be empty.

Case 1: Fix ε > 0, we want to show there exists N ∈ N such that Tnk − T < ε for all
k ≥ N .

Note that f is continuous at T because U∗ only jumps when W∗ reaches the right
end of a negative excursion, and the probability that these two events happen at the same
time is zero. In fact, we can find 0 < δ < ε such that f is continuous ∀t ∈ [T − δ, T + δ].
Also, we know that U∗ behaves like a Brownian motion between two consecutive jumps,
so we can define

0 > m := min
t∈[T− δ

2
,T+ δ

2
]
{f(t)},

tm := min{t ∈ [T − δ

2
, T +

δ

2
]|f(t) = m}.

Since fn → f in the M1 topology, from Theorem 12.5.1 of [26], we have

lim
r→0

lim
k→∞

v(fnk , f, tm, r) = 0,

where v is the uniform-distance function defined by

v(x1, x2, t, r) := sup
0∨(t−r)≤t1,t2≤(t+r)

{‖x1(t1)− x2(t2)‖}.

Therefore, there exists r0 > 0 such that

lim
k→∞

v(fnk , f, tm, r0) <
|m|
2
.

Note that
|fnk(tm)− f(tm)| ≤ v(fnk , f, tm, r0).
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Therefore, we have

lim
k→∞
|fnk(tm)− f(tm)| ≤ lim

k→∞
v(fnk , f, tm, r0) ≤ |m|

2
,

which implies that for sufficiently large k, we have

fnk(tm) ≤ m

4
< 0,

which implies Tnk < tm < T + ε.

Case 2: Fix ε > 0, we want to show there exists N ∈ N such that Tnp > T − ε for all
p ≥ N .

For convenience, we just label this subsequence as (Tn)n≥1. From Lemma 5.2.16, we
have

0 < m̃ := inf
0≤t≤T− ε

2

{f(t)}.

Also, let δ = m̃ ∧ ε
2
. Since fn → f in the M1 topology. Given x ∈ D[0,∞), let Γx denote

the graph of x. Specifically,

Γx := {(z, t) ∈ R× [0,∞) : z ∈ [x(t−), x(t)]},

where x(0−) = x(0). A parametric representation of x is a continuous nondecreasing
function (u, r) mapping [0,∞) onto Γx, and Π(x) denotes the set of parametric represen-
tations of x. Applying Theorem 12.9.3 of [26], we have for all sufficiently large n, there
exists (u, r) ∈ Π(f), (un, rn) ∈ Π(fn) such that

‖un − u‖t ∨ ‖rn − r‖t < δ, (5.160)

for each t > 0 where ‖ · ‖t denotes the supremum norm over [0, t]. By definition of (un, rn)
we can find s∗n ∈ [0,∞) satisfies

rn(s∗n) = Tn,

un(s∗n) = 0.

From (5.160), we have

r(s∗n) < Tn + δ ≤ Tn +
ε

2
. (5.161)

Meanwhile,
|u(s∗n)| = |un(s∗n)− u(s∗n)| < δ ≤ m̃,

which implies that r(s∗n) > T − ε
2
. Together with (5.161), we get Tn > T − ε. �

Corollary 5.2.17 Let

τnmin = τnU ∧ τnX ,
τmin = τU ∧ τX .

Then from Theorem 5.2.15, we have

τnmin → τmin,

almost surely.
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Corollary 5.2.18

(Ûn·∧τnmin , V̂
n
·∧τnmin

, Ŵn
·∧τnmin

, X̂ n
·∧τnmin

) −→ (U∗·∧τmin ,V
∗
·∧τmin ,W

∗
·∧τmin ,X

∗
·∧τmin)

almost surely under the topology (M1 × J1 × J1 ×M1).

Proof Since V∗ and W∗ are continuous and (V̂n, Ŵn)
J1−→ (V∗,W∗), following the same

argument as in Corollary 3.5.3, we can prove (V̂n·∧τnmin , Ŵ
n
·∧τnmin

)
J1−→ (V∗·∧τmin ,W

∗
·∧τmin). It

suffices to show (Ûn·∧τnmin , X̂
n
·∧τnmin

)
M1−→ (U∗·∧τmin ,X

∗
·∧τmin). Note that U∗ only jumps when

W∗ reaches the right end of a negative excursion, and the probability that U∗ reaches
zero when W∗ reaches the right end of a negative excursion is zero. Similarly X ∗ only
jumps when V∗ reaches the right end of a positive excursion, and the probability that X ∗
reaches zero when V∗ reaches the right end of a positive excursion is zero. Therefore U∗

and X ∗ are continuous at τmin almost surely. It suffices to show Ûn·∧τnmin
M1−→ U∗·∧τmin , and

the other convergence follows from the exact same argument.

Let us fix ω ∈ Ω, and for any t ≥ 0, let

fn(t) := Ûn(ω, t),

f(t) := U∗(ω, t),
Tn := τnmin(ω),

T := τmin(ω),

gn(t) := Ûn(ω, t ∧ Tn),

g(t) := U∗(ω, t ∧ T ).

It suffices to show gn
M1−→ g. From Theorem 12.5.1 of [26], it is equivalent to show for

each t /∈ Disc(g) where Disc(x) denotes the set of discontinuity points of x, we have

lim
δ→0

lim
n→∞

v(gn, g, t, δ) = 0,

where v is the uniform-distance function defined by

v(x1, x2, t, δ) := sup
0∨(t−δ)≤t1,t2≤(t+δ)

{‖x1(t1)− x2(t2)‖},

and for each t ∈ Disc(g),
lim
δ→0

lim
n→∞

w(gn, t, δ) = 0,

where w is defined by

w(gn, t, δ) := sup
0∨(t−δ)≤t1<t2<t3≤(t+δ)

{
‖gn(t2)− [gn(t1), gn(t3)]‖

}
,

where
‖x1 − [x2, x3]‖ := min

x∈[x2,x3]
{|x1 − x|}.
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Since fn
M1−→ f , we have for each t /∈ Disc(f),

lim
δ→0

lim
n→∞

v(fn, f, t, δ) = 0,

and for each t ∈ Disc(f),
lim
δ→0

lim
n→∞

w(fn, t, δ) = 0.

Case 1: t = T . Since g is continuous at T , we need to show limδ→0 limn→∞ v(gn, g, t, δ) =
0. Since Tn → T , fix any δ > 0. For sufficiently large n, we have |T − Tn| < δ, and this
implies

v(gn, g, t, δ) ≤ v(fn, f, t, δ),

which implies
lim
δ→0

lim
n→∞

v(gn, g, t, δ) = 0.

Case 2: t /∈ Disc(g) and t < T . Let δ0 = 1
2
(T − t). Then for sufficiently large n, we

have |T − Tn| < δ0, which implies

v(gn, g, t, δ) = v(fn, f, t, δ),

for any δ < δ0. Hence, we have

lim
δ→0

lim
n→∞

v(gn, g, t, δ) = 0.

Case 3: t /∈ Disc(g) and t > T . Let δ0 = 1
2
(t− T ). Then for sufficiently large n, we

have |T − Tn| < δ0, which implies

v(gn, g, t, δ) = |gn(Tn)− g(T )|,

for any δ < δ0. It suffices to show |gn(Tn)− g(T )| → 0. Fix ε > 0. Since

lim
δ→0

lim
n→∞

v(gn, g, T, δ) = 0,

there exists δ1 > 0 such that
lim
n→∞

v(gn, g, T, δ1) < ε.

For sufficiently large n, we have |T − Tn| < δ1, and hence

|gn(Tn)− g(T )| ≤ v(gn, g, T, δ1) < 2ε.

Case 4: t ∈ Disc(g). Since g is continuous after T , then t < T . Let δ0 = 1
2
(T − t).

For sufficiently large n, we have |T − Tn| < δ0, which implies

w(gn, t, δ) = w(fn, t, δ),

for any δ < δ0. Therefore,
lim
δ→0

lim
n→∞

w(gn, t, δ) = 0.

�
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Remark 5.2.19 Note that the dynamic acting on (Ûn, V̂ n, Ŵ n, X̂n) is the same as the

one acting on (Ûn, V̂n, Ŵn, X̂ n) till τnmin. Hence, from Corollary 5.2.17, we can find a
probability measure on

(
D[0,∞)×D[0,∞)×D[0,∞)×D[0,∞)

)
equipped with topology

(M1 × J1 × J1 ×M1), and under this probability measure we have

(Ûn
·∧τnmin

, V̂ n
·∧τnmin

, Ŵ n
·∧τnmin

, X̂n
·∧τnmin

) −→ (U∗·∧τmin ,V
∗
·∧τmin ,W

∗
·∧τmin ,X

∗
·∧τmin),

almost surely, where (U∗,W ∗) is the split two-variance Brownian motion defined in Corol-
lary 5.1.9.
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Chapter 6

Waiting time between two different
renewal states

In Chapter 3 we began with five queues at adjacent price ticks, labeled T n, Un, V n, W n

and Xn. We assumed the initial conditions

lim
n→∞

1√
n
T n(0) = t0 > 0, lim

n→∞

1√
n
Un(0) = u0 > 0,

lim
n→∞

1√
n
V n(0) = 0,

lim
n→∞

1√
n
W n(0) = w0 < 0, lim

n→∞

1√
n
Xn(0) = x0 < 0.

Therefore, the initial condition for the diffusion-scaled limit processes is

T ∗(0) = t0, U∗(0) = u0, V ∗(0) = 0, W ∗(0) = w0, X∗(0) = x0.

For the analysis, we replaced T ∗, U∗, V ∗,W ∗ and X∗ by processes T ∗,U∗,V∗,W∗ and X ∗
that agree with T ∗, U∗, V ∗,W ∗ and X∗ until the first time U∗ or W ∗ reaches zero. For
the moment, we discuss these processes only until the first time U∗ or W ∗ reaches zero,
and hence we dispense with the notation T ∗,U∗,V∗,W∗ and X ∗.

The results of Chapter 3 show that T ∗ is snapped to the value κL given by (3.5)
immediately after time zero, X∗ is snapped to κR given by (3.6) immediately after time
zero (Proposition 3.7.4), and both these processes thereafter remain constant. The process
V ∗ remains at zero (Corollary 3.5.3). We further saw in Corollaries 3.5.1 and 5.1.7 that
(U∗,W ∗) is a two-dimensional correlated Brownian motion, both components having zero
drift. The variance per unit time of U∗ is c+ and the variance per unit time of W ∗ is c−.

Eventually, one of the processes U∗ or W ∗ reaches zero. We assumed without loss of
generality at the beginning of Chapter 5 that W ∗ reaches zero before U∗. Resetting the
clock, we further assumed at the beginning of Chapter 5 that

U∗(0) = u0 > 0, V ∗(0) = 0, W ∗(0) = 0, X∗(0) = κR. (6.1)
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Proceeding from this configuration, we designated U∗ and X∗ the bracketing processes
and V ∗ and W ∗ the interior processes. In Chapter 5, as in Chapter 3, the analysis was
aided by considering processes U∗,V∗,W∗ and X ∗ that agree with U∗, V ∗,W ∗ and X∗

until the first time one of the bracketing processes reaches zero. We shall do that in this
chapter as well, but for the present discussion about the behavior of these processes prior
to the time that one of the bracketing processes vanishes, we continue with the notation
U∗, V ∗,W ∗ and X∗.

We showed in Chapter 5 that until one of the bracketing processes reaches zero, the
pair (V ∗,W ∗) is a split two-variance Brownian motion (Corollary 5.1.9). In particular,
Theorem 5.1.8 provides the existence of a two-variance Brownian motion (Definition 4.1.1)

G∗ = B∗ ◦
(

1

c+

P+
B∗ +

1

c−
P−B∗

)−1

, (6.2)

where B∗ is a standard Brownian motion and

P±B∗(t) =

∫ t

0

I{±B∗(s)>0} ds,

such that
(V ∗,W ∗) =

(
max{G∗, 0},min{G∗, 0}

)
. (6.3)

In every interval of time after the initial time and initial state given by (6.1), G∗

has both positive and negative excursions away from zero. When G∗ is on a negative
excursion, we are in the situation studied in Chapter 3, where U∗ takes positive values,
V ∗ is at zero, and W ∗ is negative. In this situation, U∗ is a Brownian motion with variance
c+ per unit time. On the other hand, when G∗ is on a positive excursion, V ∗ takes positive
values while W ∗ is zero and X∗ is negative. This is the situation studied in Chapter 3
translated right by one price tick, and rather than T ∗, now U∗ is snapped to κL and frozen
there. In conclusion, when G∗ takes a negative excursion away from zero, the bracketing
process U∗ has a chance to fall to zero, but if U∗ fails to reach zero before the negative
excursion of G∗ ends, U∗ is snapped back to κL. Analogously, when G∗ takes a positive
excursion, the bracketing process X∗ has a chance to rise to zero, but if X∗ fails to reach
zero before the positive excursion of G∗ ends, X∗ is snapped back to κR. On the negative
excursions of G∗, the bracketing process X∗ is frozen at κR, and on the positive excursions
of G∗, the bracketing process U∗ is frozen at κL

We refer to the configuration in (6.1) in which two adjacent queues are at zero as a
renewal state. In light of the discussion above, the positive value of U∗(0) and the negative
value of X∗(0) at the moment when V ∗(0) = W ∗(0) = 0 are irrelevant. Whatever their
values at this moment, a moment later U∗(0) will be snapped to κL and X∗(0) will be
snapped to κR.

In this chapter we compute the probability, given the initial condition (6.1), that the
next different renewal state reached is when U∗ = V ∗ = 0. This probability is provided
by (6.75). Let us call this a leftward renewal state transition. Of course, one minus the
probability of a leftward renewal state transition is the probability that the next renewal
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state reached is W ∗ = X∗ = 0. We call moving to this state a rightward renewal state
transition. A renewal state transition is a leftward or a rightward renewal state transition.
In this chapter we compute the characteristic function of the time to see a renewal state
transition, conditioned on the renewal state transition being leftward, conditioned on it
being rightward, and unconditionally.

At the moment of a renewal state transition, we must change our designation of
interior processes and bracketing processes, shifting all of them one tick to the left in the
case of a leftward transition or one tick to the right in the case of a rightward transition.
The processes then proceed as described above, but with these new designations. However,
for the analysis in this chapter, we need processes that agree with U∗, V ∗, W ∗ and X∗ up
to the time of a renewal state transition, but then continue on without reference to the
renewal state transition. For this purpose, we recall that the standard Brownian motion
B∗ in (6.2) is defined for all time, and that G∗ is defined by (6.2) likewise for all time.
We define U∗,V∗,W∗ and X ∗ as follows. First, we set

(V∗,W∗) =
(

max{G∗, 0},min{G∗, 0}
)
. (6.4)

Unlike (6.3), which is valid only up to the time of a renewal state transition, (6.4) is
valid for all time. Next, we take U∗ and X ∗ to be the càdlàg processes constructed in
Proposition 5.2.14. In particular U∗ is a Brownian motion with variance c+ per unit
time when G∗ is on a negative excursion and is equal to κL when G∗ is at zero or on a
positive excursion. Similarly, X ∗ is a Brownian motion with variance c− per unit time
when G∗ is on a positive excursion and is equal to κR when G∗ is at zero or on a negative
excursion. These descriptions are valid for all time, not just until the time of a renewal
state transition. We define

τU∗ := inf{t ≥ 0 : U∗(t) ≤ 0},
τX ∗ := inf{t ≥ 0 : X ∗(t) ≥ 0},
τmin := τU∗ ∧ τX ∗ . (6.5)

Then τmin is the time of a renewal state transition, and

(U∗, V ∗,W ∗, X∗) = (U∗,V∗,W∗,X ∗)

on [0, τmin]. We now undertake the computation of P{τU∗ < τX ∗}, P{τU∗ > τX ∗}, and the
joint probability density function of (τU∗ , τX ∗).

6.1 Conditional on the length of the excursion

In this section we compute the probability that U∗ hits zero when G∗ is on a negative
excursion of length `. Following the same strategy, we can compute the probability that
X ∗ hits zero when G∗ is on a positive excursion of length `, a formula we present without
proof. Following the derivation of these probabilities, in Section 6.2 we use P. Lévy’s
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theory of Brownian excursions to remove the conditioning on the length of the excursion
of G∗ to obtain the desired distribution of (τU∗ , τX∗).

For the computation of this section, we follow the notation of Proposition 5.2.14
in which the negative excursions of G∗ are enumerated. The k-th negative excursion is
denoted Ek,−, and its left and right endpoints are denoted Λk,− and Rk,−, respectively.
During the time interval [Λk,−, Rk,−], the process U∗ is given by

U∗(t+ Λk,−) = κL + Ck,−
(
t)− βEk,−(t), 0 ≤ t < Rk,

where (see Definition 5.2.6)

β = − λ1 + µ1

µ0 + aµ1

and where Ck,− is a Brownian motion independent of G∗ with variance c+−β2c− per unit
time. We set

D = κL + Ck,− − βEk,− on [0, Rk,− − Λk,−].

In this section we fix `, condition on Rk,− − Λk,− = `, and compute the conditional
probability that D reaches zero on [0, `]. The calculation proceeds in steps. In order to
avoid consideration of the entrance law for the excursion Ek,−, we let ε ∈ (0, `) be given
and restrict attention to paths of D that do not hit zero before time ε. On these paths, we
condition on (D(ε), E(ε)) = (x, y) and show that (D,E) is a correlated two-dimensional
Brownian motion conditioned on E first hitting zero at time `. For this analysis, it is
helpful to characterize E on [ε, `] as a Brownian motion absorbed at zero at time `. Under
these conditions, we can compute the probability that D reaches zero before time `. By
this device we not only obtain the probability that D reaches zero before the excursion
Ek,− ends at time `, but we also obtain the distribution of the time that D reaches zero
conditional on doing so before the excursion Ek,− ends at time `. Finally, we take ε down
to zero in the formulas thus obtained.

Note that on [0, Rk,− − Λk,−], we can rewrite D as

D(t) = κL + κC(t)− β√c−E(t),

where
κ :=

√
c+ − β2c−,

and C is a standard Brownian motion independent of E and E is an excursion of length
Rk,− − Λk,− of a standard Brownian motion. Let

τd := inf
{
t ≥ 0 |D(t) = 0

}
, (6.6)

τe := inf
{
t > 0 |E(t) = 0

}
. (6.7)

The conditional probability we want to compute is,

P
{
τd < τe

∣∣τe = `
}

= P
{
τd < `

∣∣τe = `
}
.
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6.1.1 The computation of conditional probability

We fix ` to be the length of the excursion, and let P` be a probability measure that is
restricted to the space of positive excursions of E that have length `. In particular, P` is
defined on W+ ∩ {w : β(w) = `}, where W+ is the space of positive excursions of E and
β(w) denotes the length of excursion w.

We take W to Wiener measure on C[0,∞), and define Q` = P` × W, a probability
measure on (W+ ∩ {w | β(w) = `}) × C[0,∞). Since C is independent of E, we re-
define D : (W+ ∩ {w | β(w) = `}) × C[0,∞) → C[0,∞) and E : (W+ ∩ {w | β(w) =
`})× C[0,∞)→ C[0,∞) by

D(w1, w2) :=
λ2µ1

θbλ1

+ κw2 − β
√
c−w1, (6.8)

E(w1, w2) := w1. (6.9)

Then we rewrite (6.6) as

τd(w1, w2) := inf
{
t ≥ 0 : D(w1, w2)(t) = 0

}
,

and the probability we wish to compute is

Q`{τd < `}. (6.10)

Instead of computing this probability directly, we consider the probability that D
hits zero before the excursion ends under the condition that we are already in the middle
of the excursion and D has not hit zero so far. In particular, fix ε ∈ (0, `), and define

Aε := {τd > ε},

τd,ε(w1, w2) :=

{
inf
{
t > ε |D(w1, w2)(t) ≤ 0

}
if(w1, w2) ∈ Aε,

+∞ if(w1, w2) ∈ Acε.

Since Q`{Aε} ↑ 1 as ε ↓ 0, and

Q`{τd < `} = Q`{(τd < `) ∩ Aε}+ Q`{(τd < `) ∩ Acε}
= Q`{τd,ε < `}+ Q`{Acε},

we have
Q`{τd < `} = lim

ε↓0
Q`{τd,ε < `}. (6.11)

Thus, it suffices to compute Q`{τd,ε < `}. Let us consider the pair of processes (E,D).
At time ε, from (6.8) and (6.9), we have

E(w1, w2)(ε) = w1(ε) > 0,

D(w1, w2)(ε) =
λ2µ1

θbλ1

+ κw2(ε)− β√c−w1(ε).
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Therefore, we can compute Q`{τd,ε < `} through

Q`
{
τd,ε < `

}
=

∫ ∞
y=−∞

∫ ∞
x=0

Q`
{
τd,ε < `

∣∣E(ε) = x,D(ε) = y
}

Q`
{
E(ε) ∈ dx,D(ε) ∈ dy

}
.

(6.12)
Note that D(ε) ≤ 0 implies D already hits zero before time ε, which means τd,ε = +∞.
We can upgrade (6.12) to

Q`
{
τd,ε < `

}
=

∫ ∞
y=0

∫ ∞
x=0

Q`
{
τd,ε < `

∣∣E(ε) = x,D(ε) = y
}

Q`
{
E(ε) ∈ dx,D(ε) ∈ dy

}
.

(6.13)
So our job is to compute

Q`
{
E(ε) ∈ dx,D(ε) ∈ dy

}
, (6.14)

and
Q`
{
τd,ε < `

∣∣E(ε) = x,D(ε) = y
}
, (6.15)

for x > 0 and y > 0. In the remainder of this subsection, we compute (6.14). We compute
(6.15) in Section 6.1.4 (see (6.37), (6.38) and (6.43)).

According to the formula at the bottom page 124 of Ikeda & Watanabe, we know

P`
{
E(ε) ∈ dx

}
=

√
π

2
`3K+(ε, x)K+(`− ε, x) dx, (6.16)

where

K+(t, x) =

√
2

πt3
xe−

x2

2t , t > 0, x ≥ 0.

We also have

W
{
w2(ε) ∈ dz

}
=

1√
2πε

e−
z2

2ε dz. (6.17)

Note that (
E
D

)
=

(
w1

λ2µ1
θbλ1

+ κw2 − β
√
c−w1

)
, (6.18)

which implies,

D ≤ y ⇔ w2 ≤
1

κ
(y − λ2µ1

θbλ1

+ β
√
c−w1).

So we have,

Q`
{
E(ε) ≤ x,D(ε) ≤ y

}
= Q`

{
w1(ε) ≤ x,w2(ε) ≤ 1

κ
(y − λ2µ1

θbλ1

+ β
√
c−w1(ε))

}
=

∫ x

0

∫ 1
κ

(y−λ2µ1
θbλ1

+β
√
c−u)

−∞
P`
{
w1(ε) ∈ du

}
W
{
w2(ε) ∈ dv

}
=

∫ x

0

√
π

2
`3K+(ε, u)K+(`− ε, u)

(∫ 1
κ

(y−λ2µ1
θbλ1

+β
√
c−u)

−∞

1√
2πε

e−
v2

2ε dv

)
du
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Thus,

Q`
{
E(ε) ∈ dx,D(ε) ∈ dy

}
=

(
d

dy

d

dx
(Q`
{
E(ε) ≤ x,D(ε) ≤ y

}
)

)
dxdy

=
1

κ

√
π

2
`3K+(ε, x)K+(`− ε, x)

1√
2πε

e−
( 1κ (y−λ2µ1

θbλ1
+β
√
c−x))

2

2ε dxdy

=
1

κπε2

√
(

`

`− ε
)3x2e−

x2

2ε
− x2

2(`−ε)−
(y−λ2µ1

θbλ1
+β
√
c−x)

2

2κ2ε dxdy. (6.19)

Remark 6.1.1 Let Bδ be the ball centered at (0, λ2µ1
θbλ1

) with radius δ > 0, then

lim
ε→0

∫
(x>0,y>0)∩Bcδ

Q`
{
E(ε) ∈ dx,D(ε) ∈ dy

}
=

∫
(x>0,y>0)∩Bcδ

lim
ε→0

Q`
{
E(ε) ∈ dx,D(ε) ∈ dy

}
= 0, (6.20)

where we have used the Monotone Convergence Theorem. Moreover, we claim that

lim
ε→0

∫
(x>0,y>0)

Q`
{
E(ε) ∈ dx,D(ε) ∈ dy

}
= 1. (6.21)

This is true because ∫ ∞
x=0

∫ ∞
y=−∞

Q`
{
E(ε) ∈ dx,D(ε) ∈ dy

}
= 1,

and

P{(E,D) reaches lower half of the plane at time ε}

=

∫ ∞
x=0

∫ 0

y=−∞
Q`
{
E(ε) ∈ dx,D(ε) ∈ dy

}
.

Obviously,

lim
ε→0

P{(E,D) reaches lower half of the plane at time ε} = 0.

6.1.2 Absorbed Brownian motion

We will show that the excursion E after time ε, assuming the length of the excursion is
greater than ε, is a Brownian motion absorbed at the origin. In this section, we derive
the properties of absorbed Brownian motion.
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Brownian motion absorbed at origin is defined to be

B0(t) = B(t ∧ τ0),

where B is a standard Brownian motion starting at B(0) = x0 ≥ 0 and

τ0 = inf
{
t ≥ 0 : B(t) = 0

}
.

This a Markov process. Strictly speaking it does not have a transition density because
mass accumulates at zero. However, it has a defective transition density, were defective
refers to the fact that it does not integrate to 1. This defective transition density is

p0(t, x, y) =
1√
2πt

[
exp

(
−(y − x)2

2t

)
− exp

(
−(y + x)2

2t

)]
, x > 0, y > 0, t > 0.

In fact, from Appendix B, we have∫ ∞
0

p0(t, x, y) dy = 1− 2√
2πt

∫ ∞
x

exp

(
−z

2

2t

)
dz. (6.22)

According to the reflection principle, for x > 0,

P
{
B0(t+ s) = 0

∣∣B0(s) = x
}

= P
{
τ0 ≤ t+ s

∣∣B0(s) = x}

=
2√
2πt

∫ ∞
x

exp

(
−z

2

2t

)
dz

= 1−
∫ ∞

0

p0(t, x, y) dy. (6.23)

For a Borel subset A of (0,∞) and x > 0,

P
{
B0(t+ s) ∈ A

∣∣B0(s) = x
}

=

∫
A

p0(t, x, y) dy. (6.24)

Of course,
P
{
B0(t+ s) = 0

∣∣B0(s) = 0
}

= 1. (6.25)

Equations (6.23)–(6.25) provide the transition probabilities for B0.

The defective transition density p0 has the semigroup property∫ ∞
0

p0(s, x, y)p0(t, y, z) dy = p0(s+ t, x, z), s > 0, t > 0, x > 0, z > 0, (6.26)

which we establish by direct calculation in Appendix B.
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6.1.3 Excursion starting at time ε

Now let t1 < t2 < · · · < tn < T1 < T2 be given and let A2, . . . , An be Borel subsets of
(0,∞). For x1 > 0, we have

P
{
B0(t2) ∈ A2, . . . , B

0(tn) ∈ An, T1 < τ0 ≤ T2

∣∣B0(t1) = x1

}
= P

{
B0(t2) ∈ A2, . . . , B

0(tn) ∈ An, B0(T1) > 0, B0(T2) = 0
∣∣B0(t1) = x1

}
=

∫
x2∈A2

· · ·
∫
xn∈An

∫ ∞
x=0

p0(t2 − t1, x1, x2) · · · p0(tn − tn−1, xn−1, xn)p0(T1 − tn, xn, x)

×
(

1−
∫ ∞

0

p0(T2 − T1, x, y) dy

)
dx dxn · · · dx2. (6.27)

We consider the inner-most integral in (6.27),∫ ∞
x=0

p0(T1 − tn, xn, x)

(
1−

∫ ∞
0

p0(T2 − T1, x, y) dy

)
dx

=

∫ ∞
0

p0(T1 − tn, xn, x) dx−
∫ ∞

0

∫ ∞
0

p0(T1 − tn, xn, x)p0(T2 − T1, x, y) dx dy

=

∫ ∞
0

p0(T1 − tn, xn, x) dx−
∫ ∞

0

p0(T2 − tn, xn, y) dy

=
2√

2π(T2 − tn)

∫ ∞
xn

exp

(
− z2

2(T2 − tn)

)
dz

− 2√
2π(T1 − tn)

∫ ∞
xn

exp

(
− z2

2(T1 − tn)

)
dz

= h(T2 − tn, xn)− f(T1 − tn, xn), (6.28)

where we have used the semigroup property (6.26), equation (6.22), and where

h(t, x) =
2√
2πt

∫ ∞
x

exp

(
−z

2

2t

)
dz =

2√
2π

∫ ∞
x/
√
t

exp

(
−w

2

2

)
dw. (6.29)

We substitute (6.28) into (6.27) to obtain

P
{
B0(t2) ∈ A2, . . . , B

0(tn) ∈ An, T1 < τ0 ≤ T2

∣∣B0(t1) = x1

}
=

∫
x2∈A2

· · ·
∫
xn∈An

p0(t2 − t1, x1, x2) · · · p0(tn − tn−1, xn−1, xn)

×
(
h(T2 − tn, xn)− f(T1 − tn, xn)

)
dxn · · · dx2. (6.30)

Because
∂

∂t
h(t, x) =

x√
2πt3

exp

(
−x

2

2t

)
, (6.31)
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we can also write (6.30) as

P
{
B0(t2) ∈ A2, . . . , B

0(tn) ∈ An, T1 < τ0 ≤ T2

∣∣B0(t1) = x1

}
=

∫
x2∈A2

· · ·
∫
xn∈An

p0(t2 − t1, x1, x2) · · · p0(tn − tn−1, xn−1, xn)

×
∫ T2

T1

xn√
2π(`− tn)3

exp

(
− x2

n

2(`− tn)3

)
d` dxn · · · dx2

=

∫ T2

T1

∫
x2∈A2

· · ·
∫
xn∈An

p0(t2 − t1, x1, x2) · · · p0(tn − tn−1, xn−1, xn)

×

√
(`− t1)3

(`− tn)3
· xn
x1

exp

(
− x2

n

2(`− tn)
+

x2
1

2(`− t1)

)
dxn · · · dx2

× x1√
2π(`− t1)3

exp

(
− x2

1

2(`− t1)

)
d`

=

∫ T2

T1

∫
x2∈A2

· · ·
∫
xn∈An

p0(t2 − t1, x1, x2) · · · p0(tn − tn−1, xn−1, xn)

×

√
(`− t1)3

(`− tn)3
· xn
x1

exp

(
− x2

n

2(`− tn)
+

x2
1

2(`− t1)

)
dxn · · · dx2

×P
{
τ0 ∈ d`

∣∣B0(t1) = x1

}
. (6.32)

We also have

P
{
B0(t2) ∈ A2, . . . , B

0(tn) ∈ An, T1 < τ0 ≤ T2

∣∣B0(t1) = x1

}
=

∫ T2

T1

P
{
B0(t2) ∈ A2, . . . , B

0(tn) ∈ An
∣∣τ0 = `, B0(t1) = x1

}
P
{
τ0 ∈ d`

∣∣B0(t1) = x1

}
.

Since {Ai}ni=1 are arbitrary Borel sets, with (6.32), we conclude that

P
{
B0(t2) ∈ A2, . . . , B

0(tn) ∈ An
∣∣τ0 = `, B0(t1) = x1

}
=

∫
x2∈A2

· · ·
∫
xn∈An

p0(t2 − t1, x1, x2) · · · p0(tn − tn−1, xn−1, xn)

×

√
(`− t1)3

(`− tn)3
· xn
x1

exp

(
− x2

n

2(`− tn)
+

x2
1

2(`− t1)

)
dxn · · · dx2. (6.33)

We can write this more intuitively as

P
{
B0(t2) ∈ dx2, . . . , B

0(tn) ∈ dxn
∣∣τ0 = `, B0(t1) = x1

}
= p0(t2 − t1, x1, x2) · · · p0(tn − tn−1, xn−1, xn)

×

√
(`− t1)3

(`− tn)3
· xn
x1

exp

(
− x2

n

2(`− tn)
+

x2
1

2(`− t1)

)
dx2 · · · dxn. (6.34)
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From page 124 of Ikeda & Watanabe, we see that P` appearing in Section 6.1.1 satisfies

P`
{
w(t2) ∈ dx2, . . . , w(tn) ∈ dxn

∣∣w(t1) = x1

}
=

h(0, 0; t1, x1)h(t1, x1; t2, x2) · · ·h(tn−1, xn−1; tn, xn) dx1 dx2 · · · dxn
h(0, 0; t1, x1) dx1

=
K+(`− t2, x2)

K+(`− t1, x1)
p0(t2 − t1, x1, x2)

K+(`− t3, x3)

K+(`− t2, x2)
p0(t3 − t2, x2, x3) · · ·

· · · K+(`− tn, xn)

K+(`− tn−1, xn−1)
p0(tn − tn−1, xn−1, xn) dx2 · · · dxn

= p0(t2 − t1, x1, x2)p0(t3 − t2, x2, x3) · · · p0(tn − tn−1, xn−1xn)

×K
+(`− tn, xn)

K+(`− t1, x1)
dx2 · · · dx3

= P
{
B0(t2) ∈ dx2, . . . , B

0(tn) ∈ dxn
∣∣τ0 = `, B0(t1) = x1

}
(6.35)

as in (6.34). We conclude that under the measure P`, once we condition on E(ε) = x,
the distribution of E(t), ε ≤ t ≤ `, is the same as a Brownian motion absorbed at zero
conditioned on taking the value x at time ε and first reaching zero at time `.

6.1.4 Replacing (E,D) by correlated Brownian motions

Our next goal is to compute Q`{τd,ε < `|E(ε) = x,D(ε) = y}. According to our observa-
tion from the previous two sections, we can replace (E,D) by two correlated Brownian
Motions starting from (x, y). In particular, we can consider a Brownian motion B1 with
initial condition

B1(0) = x,

and variance 1 per unit time. We have just seen that conditional on E(ε) = x, the law of
E(ε+t), 0 ≤ t ≤ `−ε, under P` is the same as the law of B1(t), 0 ≤ t ≤ `−ε, conditioned
on B1 first reaching zero at time ` − ε. We consider a second Brownian motion B2 with
initial condition

B2(0) = y,

with variance c+ per unit time, and such that

d〈B1, B2〉(t) = −β√c− dt,

or equivalently,

Corr(B1, B2) =
−β√c−√

c+

:= ρ < 0. (6.36)

From subsection 6.1.2 and 6.1.3, conditional on E(ε) = x and D(ε) = y, the law of(
E(ε+ t), D(ε+ t)

)
, 0 ≤ t ≤ `− ε,

under Q` is the same as the law of(
B1(t), B2(t)

)
, 0 ≤ t ≤ `− ε,
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conditional on B1 first reaching zero at time ` − ε. For convenience, let (B1, B2) to be
defined for all nonnegative times, and set

τ1 := inf
{
t ≥ 0 : B1(t) = 0

}
,

τ2 := inf
{
t ≥ 0 : B2(t) = 0

}
.

Then

Q`
{
τd,ε < `

∣∣E(ε) = x,D(ε) = y
}

= Px,y
{
τ2 < `− ε

∣∣τ1 = `− ε, τd > ε
}
, (6.37)

where Px,y is the probability measure on the two-dimensional Brownian motions (B1, B2)
starting at (x, y). We have

Px,y
{
τ2 < `− ε

∣∣τ1 = `− ε, τd > ε
}

=

∫ `−ε
0

f(`− ε, t2)dt2

p(x; `− ε)
, (6.38)

where f(s, t) is the joint density of (τ1, τ2) and p(x; `−ε) is the density of the first passage
time of a Brownian Motion starting from x to zero, so we have

p(x; `− ε) =
x√

2π(`− ε)3
e−

x2

2(`−ε) (6.39)

Then it suffices to evaluate
∫ `−ε

0
f(`− ε, t2)dt2.

The first step is to find a transformation that transforms (B1, B2) into a pair of
independent Brownian Motions. To this end, we define,

Ξ :=
1

√
c+

√
1− ρ2

( √
c+ −ρ
0

√
1− ρ2

)
. (6.40)

Then we define linear transformation T : R2 → R2 by

T (B1, B2) = Ξ

(
B1

B2

)
=

(
Z1

Z2

)
:= Z.

So

Z1 =
1√

1− ρ2
B1 −

ρ
√
c+

√
1− ρ2

B2,

Z2 =
1
√
c+

B2. (6.41)

We can easily verify (Z1, Z2) are independent Brownian Motions. Moreover, the horizontal
axis-B1 is invariant under transformation, while the vertical axis-B2 is mapped to the line

z2 = tan(α)z1, where α = tan−1(−
√

1−ρ2
ρ

). Also, the initial point (x, y) is mapped to

z0 := (z1
0 , z

2
0) whose polar coordinates are given by

r0 :=

√
a2

1 + a2
2 − 2ρa1a2

1− ρ2
,

θ0 := tan−1(
a2

√
1− ρ2

a1 − ρa2

), (6.42)
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where a1 = x, and a2 = y√
c+

. As such we define,

η2 := The first passage time of Z(t) to the horizontal axis.

η1 := The first passage time of Z(t) to the line z2 = tan(α)z1.

Obviously, after linear transformation T , we have

τ1 = η1,

τ2 = η2.

According to Page 282 of [23], the joint density of (η1, η2) in the region where η2 < η1 is
given by,

f(s, t) =
π sinα

2α2
√
t(s− t cos2 α)(s− t)

exp

(
−r

2
0

2t

s− t cos(2α)

(s− t) + (s− t cos(2α))

)
∞∑
n=1

n sin(
nπθ0

α
)Inπ

2α

(
r2

0

2t

s− t
(s− t) + (s− t cos(2α))

)
, 0 < t < s,(6.43)

where Iν denotes the modified Bessel function of the first kind of order ν. Now we have
all ingredients we need to compute (6.13). Before the computation, we observe that

Q`
{
τd,ε < `

}
=

∫ ∞
y=0

∫ ∞
x=0

Px,y
{
τ2 < `− ε

∣∣τ1 = `− ε, τd > ε
}

Q`
{
E(ε) ∈ dx,D(ε) ∈ dy

}
=

∫ ∞
y=0

∫ ∞
x=0

∫ `−ε

0

f(`− ε, t)
p(x; `− ε)

dtQ`
{
E(ε) ∈ dx,D(ε) ∈ dy

}
, (6.44)

Since f(`− ε, t)→ +∞ as t→ `− ε, in order to get away from the singularity, we want
to compute Q`

{
τd,ε < ` − δ

}
for some δ > 0, and then get Q`

{
τd < `

}
by sending δ to

zero. In particular,

Q`
{
τd < `

}
= lim

δ→0
Q`
{
τd < `− δ

}
= lim

δ→0

(
lim
ε→0

Q`
{
τd,ε < `− δ

})
. (6.45)

Then our goal is to compute

lim
ε→0

Q`
{
τd,ε < `− δ

}
= lim

ε→0

∫ ∞
y=0

∫ ∞
x=0

∫ `−ε−δ

0

f(`− ε, t)
p(x; `− ε)

dtQ`
{
E(ε) ∈ dx,D(ε) ∈ dy

}
.

(6.46)

Note that (
B1

B2

)
= Ξ−1

(
Z1

Z2

)
=

( √
1− ρ2Z1 + ρZ2√

c+Z2

)
.

Then under (Z1, Z2)-coordinates, we can rewrite (6.39) as

p(x; `− ε) =
(
√

1− ρ2z1
0 + ρz2

0)√
2π(`− ε)3

e−
(
√

1−ρ2z10+ρz
2
0)

2

2(`−ε) . (6.47)
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Then we switch to polar coordinates, where z1
0 = r0 cos θ0 and z2

0 = r0 sin θ0, and (6.47)
becomes

p(x; `− ε) =
(
√

1− ρ2r0 cos θ0 + ρr0 sin θ0)√
2π(`− ε)3

e−
(
√

1−ρ2r0 cos θ0+ρr0 sin θ0)
2

2(`−ε)

=: p(r0, θ0; `− ε). (6.48)

Lemma 6.1.2 Suppose limε→0

(
lim

x→0,y→λ2µ1
θbλ1

Q`
{
τd,ε < `− δ

∣∣E(ε) = x,D(ε) = y
})

ex-

ists. Then we have following,

limε→0

∫ ∞
y=0

∫ ∞
x=0

Q`
{
τd,ε < `− δ

∣∣E(ε) = x,D(ε) = y
}

Q`
{
E(ε) ∈ dx,D(ε) ∈ dy

}
= lim

ε→0

(
lim

x→0,y→λ2µ1
θbλ1

Q`
{
τd,ε < `− δ

∣∣E(ε) = x,D(ε) = y
})

. (6.49)

Proof: Let Bζ be the ball centered at (0, λ2µ1
θbλ1

) with radius ζ > 0. According to (6.20)

and (6.21), we have

limε→0

∫
(x>0,y>0)∩Bcζ

Q`
{
τd,ε < `− ζ

∣∣E(ε) = x,D(ε) = y
}

Q`
{
E(ε) ∈ dx,D(ε) ∈ dy

}
≤ lim

ε→0

∫
(x>0,y>0)∩Bcζ

Q`
{
E(ε) ∈ dx,D(ε) ∈ dy

}
= 0, (6.50)

and

lim
ε→0

∫
(x>0,y>0)∩Bζ

Q`
{
E(ε) ∈ dx,D(ε) ∈ dy

}
= 1. (6.51)

Thus from (6.50)

A := lim
ε→0

∫ ∞
y=0

∫ ∞
x=0

Q`
{
τd,ε < `− δ

∣∣E(ε) = x,D(ε) = y
}

Q`
{
E(ε) ∈ dx,D(ε) ∈ dy

}
= lim

ε→0

∫
(x>0,y>0)∩Bζ

Q`
{
τd,ε < `− δ

∣∣E(ε) = x,D(ε) = y
}

Q`
{
E(ε) ∈ dx,D(ε) ∈ dy

}
(6.52)

One can check that Q`
{
τd,ε < ` − δ

∣∣E(ε) = x,D(ε) = y
}

is continuous with respect to
(x, y). Then ∀γ > 0, ∃ξ > 0 such that ∀(x, y) ∈ Bξ

lim
x→0,y→λ2µ1

θbλ1

Q`
{
τd,ε < `− δ

∣∣E(ε) = x,D(ε) = y
}
− γ

≤ Q`
{
τd,ε < `− δ

∣∣E(ε) = x,D(ε) = y
}

≤ lim
x→0,y→λ2µ1

θbλ1

Q`
{
τd,ε < `− δ

∣∣E(ε) = x,D(ε) = y
}

+ γ, (6.53)
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which implies(
lim

x→0,y→λ2µ1
θbλ1

Q`
{
τd,ε < `− δ

∣∣E(ε) = x,D(ε) = y
}
− γ

)∫
(x>0,y>0)∩Bζ

Q`
{
E(ε) ∈ dx,D(ε) ∈ dy

}
≤

∫
(x>0,y>0)∩Bζ

Q`
{
τd,ε < `− δ

∣∣E(ε) = x,D(ε) = y
}

Q`
{
E(ε) ∈ dx,D(ε) ∈ dy

}
≤

(
lim

x→0,y→λ2µ1
θbλ1

Q`
{
τd,ε < `− δ

∣∣E(ε) = x,D(ε) = y
}

+ γ

)∫
(x>0,y>0)∩Bζ

Q`
{
E(ε) ∈ dx,D(ε) ∈ dy

}
.

(6.54)

Taking the limit as ε→ 0, using (6.51), we have

limε→0

(
lim

x→0,y→λ2µ1
θbλ1

Q`
{
τd,ε < `− δ

∣∣E(ε) = x,D(ε) = y
}
− γ

)

≤ A ≤ lim
ε→0

(
lim

x→0,y→λ2µ1
θbλ1

Q`
{
τd,ε < `− δ

∣∣E(ε) = x,D(ε) = y
}

+ γ

)
.(6.55)

Finally, send γ → 0, we get

A = lim
ε→0

(
lim

x→0,y→λ2µ1
θbλ1

Q`
{
τd,ε < `− δ

∣∣E(ε) = x,D(ε) = y
})

. (6.56)

�

Lemma 6.1.3 The limit

lim
ε→0

(
lim

x→0,y→λ2µ1
θbλ1

Q`
{
τd,ε < `− δ

∣∣E(ε) = x,D(ε) = y
})

exists.

Proof: The starting point (0, λ2µ1
θbλ1

) is mapped to

(
z1
s

z2
s

)
:= Ξ

(
0

λ2µ1
θbλ1

)
=

(
− ρ
√
c+
√

1−ρ2
λ2µ1
θbλ1

1√
c+

λ2µ1
θbλ1

)
, (6.57)

whose polar coordinates representation is (rs, α), where

rs =
λ2µ1

θbλ1
√
c+

√
1− ρ2

.
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Therefore we have following,

lim
x→0,y→λ2µ1

θbλ1

Q`
{
τd,ε < `− δ

∣∣E(ε) = x,D(ε) = y
}

= lim
r0→rs,θ0→α

∫ `−ε−δ

0

f(`− ε, t)
p(r0, θ0; `− ε)

dt (6.58)

Substituting (6.43) and (6.48) into (6.58), we have

lim
r0→rs,θ0→α

f(`− ε, t)
p(r0, θ0; `− ε)

= lim
r0→rs,θ0→α

π sinα

2α2
√
t((`− ε)− t cos2 α)(`− ε− t)

exp

(
−r

2
0

2t

(`− ε)− t cos(2α)

((`− ε)− t) + ((`− ε)− t cos(2α))

)
∑∞

n=1 n sin(nπθ0
α

)Inπ
2α

(
r20
2t

(`−ε)−t
((`−ε)−t)+((`−ε)−t cos(2α))

)
(
√

1−ρ2r0 cos θ0+ρr0 sin θ0)√
2π(`−ε)3

e−
(
√

1−ρ2r0 cos θ0+ρr0 sin θ0)
2

2(`−ε)

(6.59)

When θ0 → α, sin(nπθ0
α

)→ 0. We also see that tanα = −
√

1−ρ2
ρ

, which implies

(
√

1− ρ2r0 cos θ0 + ρr0 sin θ0)→ 0.

In order to apply Dominated Convergence Theorem, we are going to show f(`−ε,t)
p(r0,θ0;`−ε)

is bounded for θ0 in a neighborhood of α and r0 in a neighborhood of rs on t ∈ (0, `−ε−δ).
First, we show

π sinα

2α2
√
t((`− ε)− t cos2 α)(`− ε− t)

exp

(
−r

2
0

2t

(`− ε)− t cos(2α)

((`− ε)− t) + ((`− ε)− t cos(2α))

)
×
√

2π(`− ε)3 exp

(
(
√

1− ρ2r0 cos θ0 + ρr0 sin θ0)2

2(`− ε)

)
≤M1 <∞ (6.60)

for (r0, θ0) in a neighborhood of (rs, α) and t ∈ (0, `−ε− δ) where M1 is a finite constant.
Let us fix η1 > 0 and 0 < η2 <

rs
2

, obviously

√
2π(`− ε)3 exp

(
(
√

1− ρ2r0 cos θ0 + ρr0 sin θ0)2

2(`− ε)

)
≤ N1 <∞

for the neighborhood |θ0 − α| < η1 and |r0 − rs| < η2 where N1 is a finite constant. On
the other hand, for t ∈ (0, `− ε− δ), we have

π sinα

2α2
√
t((`− ε)− t cos2 α)(`− ε− t)

exp

(
−r

2
0

2t

(`− ε)− t cos(2α)

((`− ε)− t) + ((`− ε)− t cos(2α))

)
<

π sinα

2α2
√
tδδ

exp

(
−

( rs
2

)2

2t

δ

2(`− ε)

)
.
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Thus it suffices to show

π sinα

2α2
√
tδδ

exp

(
−

( rs
2

)2

2t

δ

2(`− ε)

)
≤ N2 <∞

for t ∈ (0, ` − ε − δ) where N2 is a finite constant. Since π sinα
2α2
√
tδδ

exp
(
− ( rs

2
)2

2t
δ

2(`−ε)

)
is

continuous on t, it is sufficient to show

lim
t→0

π sinα

2α2
√
tδδ

exp

(
−

( rs
2

)2

2t

δ

2(`− ε)

)
= N3 <∞,

where N3 is a finite constant. From L’Hospital’s rule, we have

lim
t→0

π sinα

2α2
√
tδδ

exp

(
−

( rs
2

)2

2t

δ

2(`− ε)

)
= lim

y→∞

y π sinα

2α2δ
3
2

1

exp
(

( rs
2

)2y2 δ
2(`−ε)

)
= lim

y→∞

π sinα

2α2δ
3
2

1

exp
(

( rs
2

)2y2 δ
2(`−ε)

)(
2( rs

2
)2y δ

2(`−ε)

) = 0,

which finishes the proof of (6.60).

Next, we are going to show

∞∑
n=1

n sin(nπθ0
α

)√
1− ρ2r0 cos θ0 + ρr0 sin θ0)

Inπ
2α

(
r2

0

2t

(`− ε)− t
(`− ε− t) + (`− ε− t cos(2α))

)
≤M2 <∞

for θ0 in a neighborhood of α and r0 in a neighborhood of rs where M2 is a finite constant.

Let us fix η1 = π
4
, and define

z0 :=
r2

0

2t

(`− ε)− t
(`− ε− t) + (`− ε− t cos(2α))

, zs :=
r2
s

2t

(`− ε)− t
(`− ε− t) + (`− ε− t cos(2α))

.

Then, there exists 0 < η2 ≤ rs
2

such that for any r0 such that |r0 − rs| ≤ η2, we have
|z0 − zs| ≤ zs

2
. We want to show

sup
0<|θ0−α|≤η1,|r0−rs|≤η2

{ ∞∑
n=1

∣∣∣ n sin(nπθ0
α

)√
1− ρ2r0 cos θ0 + ρr0 sin θ0)

Inπ
2α

(z0)
∣∣∣}

= N4 <∞, (6.61)

where N4 is a finite constant. We observe that
√

1− ρ2r0 cos θ0 +ρr0 sin θ0 = sinα cos θ0−
cosα sin θ0 = sin(α − θ0). By the Mean Value Theorem, there exists ζ between nπθ0/α
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and nπα/α such that

∣∣ n sin(nπθ0
α

)√
1− ρ2 cos θ0 + ρ sin θ0)

∣∣ =
n2π

α

∣∣sin(nπθ0
α

)− sin(nπα
α

)
nπθ0
α
− nπα

α

∣∣∣∣ θ0 − α
sin(θ0 − α)

∣∣
=

n2π

α

∣∣ cos ζ
∣∣∣∣sin(θ0 − α)

θ0 − α
∣∣−1

≤ n2π

α

∣∣sin(θ0 − α)

θ0 − α
∣∣−1

≤ n2π2

2
√

2α
,

for all 0 < |θ0 − α| ≤ η1 = π
4
. It suffices to show that

sup
|r0−rs|≤η2

∞∑
n=1

n2

r0

Inπ
2α

(z0) = N5 <∞, (6.62)

where N5 is a finite constant. We recall that

Iν(z) = (
z

2
)ν
∞∑
k=0

(
z2

4
)k

1

k!Γ(ν + k + 1)
(6.63)

is increasing for z > 0. Since |z0 − zs| ≤ zs
2

for |r0 − rs| ≤ η2, so the supremum in (6.62)
is attained at z := zs + zs

2
= 3zs

2
. Also because η2 ≤ rs

2
, we have r0 ≥ rs

2
> 0. Therefore,

it suffices to show

∞∑
n=1

n2Inπ
2α

(z) = N6 <∞, (6.64)

where N6 is a finite constant. It is sufficient to show the successive terms in the sum have
a ratio less than 1

2
. We use the fact that for any ν > 0, limx→∞

Γ(x)
Γ(x+ν)

= 0. Thus, let

us fix ν = π
2α

, there exists sufficiently large M ∈ N such that Γ(x)
Γ(x+ν)

< 1
2

1
(z/2)ν

for every

x ≥ M . Let N = dM/νe + 1, then for every n ≥ N we have nν > M . From (6.63), we
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have

I (n+1)π
2α

(z) = I(n+1)ν(z) = (
z

2
)(n+1)ν

∞∑
k=0

(
z2

4
)k

1

k!Γ((n+ 1)ν + k + 1)

= (
z

2
)nν

∞∑
k=0

(
z2

4
)k

( z
2
)ν

k!Γ((n+ 1)ν + k + 1)

= (
z

2
)nν

∞∑
k=0

(
z2

4
)k

( z
2
)ν

k!Γ(nν + k + 1)

Γ(nν + k + 1)

Γ((n+ 1)ν + k + 1)

<
1

2
(
z

2
)nν

∞∑
k=0

(
z2

4
)k

( z
2
)ν

k!( z
2
)νΓ(nν + k + 1)

=
1

2
(
z

2
)nν

∞∑
k=0

(
z2

4
)k

1

k!Γ(nν + k + 1)

=
1

2
Inν(z) =

1

2
Inπ

2α
(z), (6.65)

which proves (6.64). This implies (6.61).

By Dominated Convergence Theorem and L’Hospital’s rule, we get

lim
r0→rs,θ0→α

f(`− ε, t)
p(r0, θ0; `− ε)

=
π sinα

√
2π(`− ε)3

2α2
√
t((`− ε)− t cos2 α)(`− ε− t)

exp

(
−r

2
s

2t

(`− ε)− t cos(2α)

((`− ε)− t) + ((`− ε)− t cos(2α))

)
∞∑
n=1

(
lim

r0→rs,θ0→α

n2π
α

cos(nπθ0
α

)

−
√

1− ρ2r0 sin θ0 + ρr0 cos θ0

)
Inπ

2α

(
r2
s

2t

(`− ε)− t
((`− ε)− t) + ((`− ε)− t cos(2α))

)
=

π sinα
√

2π(`− ε)3

2α2
√
t((`− ε)− t cos2 α)(`− ε− t)

exp

(
−r

2
s

2t

(`− ε)− t cos(2α)

((`− ε)− t) + ((`− ε)− t cos(2α))

)
∞∑
n=1

n2π

αrs
(−1)n−1Inπ

2α

(
r2
s

2t

(`− ε)− t
((`− ε)− t) + ((`− ε)− t cos(2α))

)
. (6.66)

Since for t < `− ε− δ, limr0→rs,θ0→α
f(`−ε,t)

p(r0,θ0;`−ε) is well-defined, then we can use the Domi-
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nated Convergence Theorem to get

lim
ε→0

(
lim

r0→rs,θ0→α

∫ `−ε−δ

0

f(`− ε, t)
p(r0, θ0; `− ε)

dt

)
= lim

ε→0

(∫ `−ε−δ

0

lim
r0→rs,θ0→α

f(`− ε, t)
p(r0, θ0; `− ε)

dt

)
= lim

ε→0

∫ `−ε−δ

0

π sinα
√

2π(`− ε)3

2α2
√
t((`− ε)− t cos2 α)(`− ε− t)

exp

(
−r

2
s

2t

(`− ε)− t cos(2α)

((`− ε)− t) + ((`− ε)− t cos(2α))

)
∞∑
n=1

n2π

αrs
(−1)n−1Inπ

2α

(
r2
s

2t

(`− ε)− t
((`− ε)− t) + ((`− ε)− t cos(2α))

)
dt

=

∫ `−δ

0

π sinα
√

2π`3

2α2
√
t(`− t cos2 α)(`− t)

exp

(
−r

2
s

2t

`− t cos(2α)

(`− t) + (`− t cos(2α))

)
∞∑
n=1

n2π

αrs
(−1)n−1Inπ

2α

(
r2
s

2t

`− t
(`− t) + (`− t cos(2α))

)
dt. (6.67)

�

Therefore, by Lemma 6.1.2, 6.1.3 and (6.45), we have

Q`
{
τd < `

}
= lim

δ→0
Q`
{
τd < `− δ

}
= lim

δ→0

∫ `−δ

0

π sinα
√

2π`3

2α2
√
t(`− t cos2 α)(`− t)

exp

(
−r

2
s

2t

`− t cos(2α)

(`− t) + (`− t cos(2α))

)
∞∑
n=1

n2π

αrs
(−1)n−1Inπ

2α

(
r2
s

2t

`− t
(`− t) + (`− t cos(2α))

)
dt

=

∫ `

0

π sinα
√

2π`3

2α2
√
t(`− t cos2 α)(`− t)

exp

(
−r

2
s

2t

`− t cos(2α)

(`− t) + (`− t cos(2α))

)
∞∑
n=1

n2π

αrs
(−1)n−1Inπ

2α

(
r2
s

2t

`− t
(`− t) + (`− t cos(2α))

)
dt

=

∫ `

0

pU(t, l)dt =: pU(`). (6.68)

This finishes the computation of the conditional probability that U∗ hits zero before the
negative excursion of W∗ ends given that the length of the excursion equals `. Following
the same logic, we can show that the conditional probability that X ∗ hits zero before the
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positive excursion of V∗ ends given that the length of the excursion equals ` is

pX (`) :=

∫ `

0

pX (t, l)dt

=

∫ `

0

π sinα
√

2π`3

2α2
√
t(`− t cos2 α)(`− t)

exp

(
− r̂

2
s

2t

`− t cos(2α)

(`− t) + (`− t cos(2α))

)
∞∑
n=1

n2π

αr̂s
(−1)n−1Inπ

2α

(
r̂2
s

2t

`− t
(`− t) + (`− t cos(2α))

)
dt, (6.69)

where r̂ = µ2λ1

θsµ1
√
c−
√

1−ρ2
.

6.2 Waiting time between two consecutive renewal

states

6.2.1 P.Levy’s theory of Brownian local time

Now we want to relate our problem to Levy’s theory of Brownian local time. Let B be a
standard Brownian motion, let LB(t) denote the local time of B at zero up to time t, and
let L−1

B be its right-continuous inverse. It is well known that the Levy measure of L−1
B is

µ(d`) =
d`√
2π`3

,

and it tells us the frequency of the excursions of length `. In this section, we want
to distinguish positive and negative excursions, and since an excursion of a standard
Brownian motion has half chance to be a positive, and half chance to be a negative, we
can define Levy measures for positive excursions and negative excursions

µ+(d`) =
d`

2
√

2π`3
,

µ−(d`) =
d`

2
√

2π`3
,

and their corresponding Poisson random measures ν+ and ν−.

Now consider the standard Brownian motion B∗ appearing in (6.2). From (6.2), we
see that once B∗ is on a negative excursion with length `, G∗ is actually on a negative
excursion with length `/c−. Similarly, once B∗ is on a positive excursion with length `,
G∗ is actually on a positive excursion with length `/c+. In (6.74) and (6.75), we proved
that the probability of U∗ reaching zero before the negative excursion of W∗ ends given
the length of the excursion equals `/c− is pU( `

c−
), and the probability of X ∗ reaching

zero before the positive excursion of V∗ ends given the length of the excursion equals
`/c+ is pX ( `

c+
). This suggests construction of thinned measures over µ− that distinguish
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the negative excursions of W∗ on which U∗ hits zero from the negative excursions of
W∗ on which U∗ does not hit zero. We do the same thing for positive excursions of V∗,
distinguishing those on which X ∗ hits zero from those on which X ∗ does not reach zero.
In particular, we define

µ−◦ (d`) = pU(
`

c−
)

d`

2
√

2π`3
,

µ−×(d`) = (1− pU(
`

c−
))

d`

2
√

2π`3
,

µ+
◦ (d`) = pX (

`

c+

)
d`

2
√

2π`3
,

µ+
×(d`) = (1− pX (

`

c+

))
d`

2
√

2π`3
,

where µ−◦ is the Levy measure for negative excursions on which U∗ hits zero before the
negative excursion of B∗(and also G∗ and W∗) ends given the length of the excursion
equals `, µ−× is the Levy measure for negative excursions on which U∗ does not hit zero
before the excursion ends given the length of the excursion equals `. Similarly, µ+

◦ and
µ+
× represent the corresponding measures for positive excursions of B∗. Furthermore, we

denote the corresponding Poisson random measures as ν−◦ , ν−× , ν+
◦ , and ν+

× . Because they
are thinned independent Poisson random measures, ν−◦ , ν−× , ν+

◦ , and ν+
× are independent.

Lemma 6.2.1

AU := µ−◦
(
[0,∞)

)
=

∫ ∞
0

pU(
`

c−
)

d`

2
√

2π`3
<∞

and

AX := µ+
◦
(
[0,∞)

)
=

∫ ∞
0

pX (
`

c+

)
d`

2
√

2π`3
<∞.

Proof: We prove the first equation. The proof of the second is analogous. By a change
of variable, we see that∫ ∞

0

pU(
`

c−
)

d`

2
√

2π`3
=

1
√
c−

∫ ∞
0

pU(`)
d`

2
√

2π`3
.

We prove finiteness of the second integral. Note

pU(`) = P{τd < `|τe = `}

= P{max
0≤t≤`

(β
√
c−E(t)− κC(t)) ≥ λ2µ1

θbλ1

|τe = `}

≤ P{β√c− max
0≤t≤`

E(t) + κ max
0≤t≤`

(−C(t)) ≥ λ2µ1

θbλ1

|τe = `}

≤ P{β√c− max
0≤t≤`

E(t) ≥ λ2µ1

2θbλ1

or κ max
0≤t≤`

(−C(t)) ≥ λ2µ1

2θbλ1

|τe = `}

≤ P{β√c− max
0≤t≤`

E(t) ≥ λ2µ1

2θbλ1

|τx = `}+ P{max
0≤t≤`

(−C(t)) ≥ λ2µ1

2κθbλ1

}.
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Since

P{max
0≤t≤`

(−C(t)) ≥ λ2µ1

2κθbλ1

} ≤ 2P{C(`) ≥ λ2µ1

2κθbλ1

}

≤
(

2
4κ2θ2

bλ
2
1

λ2
2µ

2
1

EC2(`)
)
∧ 1

=
(8κ2θ2

bλ
2
1

λ2
2µ

2
1

`
)
∧ 1,

we have ∫ ∞
0

P{max
0≤t≤`

(−C(t)) ≥ λ2µ1

2κθbλ1

} d`

2
√

2π`3
≤
∫ ∞

0

((8κ2θ2
bλ

2
1

λ2
2µ

2
1

`
)
∧ 1
) d`

2
√

2π`3

≤
∫ 1

0

8κ2θ2
bλ

2
1

λ2
2µ

2
1

`
d`

2
√

2π`3
+

∫ ∞
1

d`

2
√

2π`3
<∞.

Now it remains to show∫ ∞
0

P{max
0≤t≤`

E(t) ≥ λ2µ1

2β
√
c−θbλ1

|τe = `} d`

2
√

2π`3
<∞. (6.70)

According to [6], Theorem 7, for ξ > 0, we have

P{max
0≤t≤`

E(t) ≥ ξ|τe = `} = 2
∞∑
n=1

(
4n2ξ2

`
− 1) exp{−2n2ξ2

`
}.

Thus, ∫ ∞
0

P{max
0≤t≤`

E(t) ≥ λ2µ1

2β
√
c−θbλ1

|τe = `} d`

2
√

2π`3

≤
∫ 1

0

∞∑
n=1

(
4n2ξ2

`
) exp{−2n2ξ2

`
} d`√

2π`3
+

∫ ∞
1

d`

2
√

2π`3
,

where ξ = λ2µ1
2β
√
c−θbλ1

. It suffices to show
∫ 1

0

∑∞
n=1(4n2ξ2

`
) exp{−2n2ξ2

`
} d`√

2π`3
<∞. From the

Monotone Convergence Theorem, we have∫ 1

0

∞∑
n=1

(
4n2ξ2

`
) exp{−2n2ξ2

`
} d`√

2π`3
=
∞∑
n=1

∫ 1

0

(
4n2ξ2

`
) exp{−2n2ξ2

`
} d`√

2π`3
.

Obviously,
∫ 1

0
(4n2ξ2

`
) exp{−2n2ξ2

`
} d`√

2π`3
<∞ for any n ≥ 1. Let

f(`) := (
4n2ξ2

`
) exp{−2n2ξ2

`
} 1√

2π`3
.

Then its first derivative is

f ′(`) =
4n2ξ2

√
2π

exp{−2n2ξ2

`
}`−

7
2 (−5

2
+

2n2ξ2

`
).
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This implies f(`) is increasing over (0, 4n2ξ2

5
). We can find sufficiently large M ∈ N such

that 4n2ξ2

5
> 1 for all n ≥M . Then∫ 1

0

(
4n2ξ2

`
) exp{−2n2ξ2

`
} d`√

2π`3

=

∫ 1

0

f(`)d` ≤ f(1) = (
4n2ξ2

√
2π

) exp{−2n2ξ2}.

Therefore

∞∑
n=M

∫ 1

0

(
4n2ξ2

`
) exp{−2n2ξ2

`
} d`√

2π`3

≤
∞∑

n=M

(
4n2ξ2

√
2π

) exp{−2n2ξ2} <∞,

which finishes our proof. �

6.2.2 Computation of the waiting time between two renewal
states

According to Lemma 6.2.1, we see that µ−◦ and µ+
◦ are a finite measures. Let us define

subordinators

H+
◦ (s) :=

∫ s

u=0

∫ ∞
`=0

`

c+

ν+
◦ (du× d`),

H+
× (s) :=

∫ s

u=0

∫ ∞
`=0

`

c+

ν+
×(du× d`),

H−◦ (s) :=

∫ s

u=0

∫ ∞
`=0

`

c−
ν−◦ (du× d`),

H−× (s) :=

∫ s

u=0

∫ ∞
`=0

`

c−
ν−×(du× d`).

H+
◦ (s) keeps track of the chronological time spent on positive excursions where X ∗ vanishes

accumulated up to local time s of B; H+
× (s) keeps track of the chronological time spent on

positive excursions where X ∗ does not vanish accumulated up to local time s of B; H−◦ (s)
keeps track of the chronological time spent on negative excursions where U∗ vanishes
accumulated up to local time s; H−× (s) keeps track of the chronological time spent on
negative excursions where U∗ does not vanish accumulated up to local time s.

Let us define

ζU := min{t > 0 :

∫ t

0

∫ ∞
0

ν−◦ (du× d`) > 0}, (6.71)

ζX := min{t > 0 :

∫ t

0

∫ ∞
0

ν+
◦ (du× d`) > 0}, (6.72)

129



so that ζU is the first time (in the local time clock) when U∗ vanishes on a negative
excursion, and ζX is the first time (in the local time clock) when X ∗ vanishes on a positive
excursion. We can compute ζU ’s cumulative distribution function by

P{ζU < t} = P{ν−◦ ([0, t]× [0,∞)) ≥ 1}
= 1− P{ν−◦ ([0, t]× [0,∞)) = 0}
= 1− e−λ([0,t]×[0,∞)),

where

λ([0, t]× [0,∞)) =

∫ ∞
0

µ−◦ (d`)t = AU t.

From Lemma 6.2.1, we have
AU <∞,

which implies
P{ζU ∈ dt} = AUe

−AU tdt. (6.73)

Similarly, we have
P{ζX ∈ dt} = AX e

−AX tdt. (6.74)

Obviously, ζU and ζX have the exponential distributions with parameter AU and AX . Since
ζU is determined by ν−◦ , and ζX is determined by ν+

◦ , we see that ζU and ζX are independent
because of the independence between ν−◦ and ν+

◦ . This implies that the minimum of these
two random variables has an exponential distribution, too. In particular,

ζmin := min{ζU , ζX} ∼ exp{AU + AX}.

Also, we can compute the probability that U∗ hits zero before X ∗ and vice versa. In
particular,

P(ζU < ζX ) =

∫ ∞
0

AX e
−AXx

∫ x

0

AUe
−AUududx

=

∫ ∞
0

AX e
−AXx(1− e−AUx)dx

= 1−
∫ ∞

0

AX e
−(AX+AU )xdx

= 1− AX
AU + AX

=
AU

AU + AX
. (6.75)

Recall definition in (6.5). Now we compute τmin, the chronological time until U∗ or X ∗
hits zero. We can define τmin conditional on either τU < τX (equivalently, ζU < ζX ) or
τX < τU (equivalently, ζX < ζU). We have

τmin :=


∫ ζmin
u=0

∫∞
`=0

`
c+

(ν+
◦ + ν+

×)(du× d`) +
∫ ζmin
u=0

∫∞
`=0

`
c−
ν−×(du× d`) +RU if ζmin = ζU

∫ ζmin
u=0

∫∞
`=0

`
c−

(ν−◦ + ν−×)(du× d`) +
∫ ζmin
u=0

∫∞
`=0

`
c+
ν+
×(du× d`) +RX if ζmin = ζX .
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When ζmin = ζU ,
∫ ζmin
u=0

∫∞
`=0

`
c+

(ν+
◦ + ν+

×)(du × d`) represents the time spent when W∗ is

on positive excursions,
∫ ζmin
u=0

∫∞
`=0

`
c−
ν−×(du× d`) represents the time spent when W∗ is on

negative excursions before the last excursion on which U∗ vanishes, and RU is the time
spent on the last excursion on which U∗ vanishes. Note that by (6.71) and (6.72), we have∫ ζmin

0

∫ ∞
0

ν+
◦ (du× d`) = 0, if ζmin = ζU ,∫ ζmin

0

∫ ∞
0

ν−◦ (du× d`) = 0, if ζmin = ζX ,

so we can rewrite τmin as

τmin :=


∫ ζmin
u=0

∫∞
`=0

`
c+
ν+
×(du× d`) +

∫ ζmin
u=0

∫∞
`=0

`
c−
ν−×(du× d`) +RU if ζmin = ζU

∫ ζmin
u=0

∫∞
`=0

`
c−
ν−×(du× d`) +

∫ ζmin
u=0

∫∞
`=0

`
c+
ν+
×(du× d`) +RX if ζmin = ζX .

In order to simplify the notation, we define,

H+
× (s) :=

∫ s

u=0

∫ ∞
`=0

`

c+

ν+
×(du× d`),

H−× (s) :=

∫ s

u=0

∫ ∞
`=0

`

c−
ν−×(du× d`).

Our goal is to compute the characteristic function of τmin conditional on ζU < ζX . From
the definition of τmin, we have

P{τmin = dt|ζU < ζX} = P{H+
× (ζU) +H−× (ζU) +RU = dt|ζU < ζX}.

Note that RU is independent of the excursions before time ζU . Thus it is independent of
H+
× (ζU), H−× (ζU). Also because ζU < ζX , the characteristic function of τmin satisfies

E[eiατmin |ζU < ζX ] = E[eiα(H+
×(ζU )+H−× (ζU )+RU )|ζU < ζX ]

= E[eiαRU ]E[eiα(H+
×(ζU )+H−× (ζU ))|ζU < ζX ]. (6.76)

We compute the two factors on the right-hand side of (6.76).

Since ζU and ζX are independent exponentially distributed random variables, we have

E[eiα(H+
×(ζU )+H−× (ζU ))|ζU < ζX ]

=
1

P{ζU < ζX}

∫ ∞
0

∫ ∞
u

E[eiα(H+
×(u)+H−× (u))]AUe

−AUuAX e
−AXxdxdu

=
AU + AX

AU

∫ ∞
0

E[eiα(H+
×(u)+H−× (u))]AUe

−(AU+AX )udu

=

∫ ∞
0

E[eiαH
+
×(u)]E[eiαH

−
× (u))](AU + AX )e−(AU+AX )udu.
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Now we use the Lévy-Hinčin formula to write∫ ∞
0

E[eiαH
+
×(u)]E[eiαH

−
× (u))](AU + AX )e−(AU+AX )udu

=

∫ ∞
0

exp

(
−u
∫ ∞

0

(1− ei
α
c+
`
)µ+
×(d`)

)
exp

(
−u
∫ ∞

0

(1− ei
α
c−
`
)µ−×(d`)

)
(AU + AX )e−(AU+AX )udu

=
AU + AX

AU + AX +
∫∞

0
(1− ei

α
c+
`
)µ+
×(d`) +

∫∞
0

(1− ei
α
c−
`
)µ−×(d`)

=
AU + AX

AU + AX +
∫∞

0
(1− ei

α
c+
`
)(1− pX ( `

c+
)) d`

2
√

2π`3
+
∫∞

0
(1− ei

α
c−
`
)(1− pU( `

c−
)) d`

2
√

2π`3

.

(6.77)

We can simplify the integral by the following calculation. Let θ = 1
2

√
|α|(1 −

sign(α)i), then Re(θ) > 0. Let W be a standard Brownian motion with W0 = 0. Define
the martingale

Mt = e2θWt−2θ2t = e2θWt+iαt.

Let Tb be the first passage time of W to b > 0. Then

1 = E[Mt∧Tb ] = E[e2θWt∧Tb+iα(t∧Tb)]. (6.78)

Because Re(θ) > 0 and Wt∧Tb is bounded above by b, |Mt∧Tb| ≤ b. We can thus let t→∞
in (6.78) and use the Dominated Convergence Theorem to conclude that

1 = E[e2θb+iαTb ],

i.e.
E[eiαTb ] = e−2θb. (6.79)

Now

Tb =

∫ ∞
0

` ν
(
[0, b]× d`

)
,

where ν(db d`) is the Poisson random measure with Lévy measure µ(d`) = d`√
2π`3

. (See,

e.g., [19], Page 411). The Lévy-Hinčin formula implies

E[eiαTb ] = exp
{
− b
∫ ∞

0

(1− eiα`)µ(d`)
}
. (6.80)

Comparing this with (6.79), we see that∫ ∞
0

(1− eiα`) d`√
2π`3

= 2θ. (6.81)
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In (6.77) we have ∫ ∞
0

(1− e
iα`
c± )

d`

2
√

2π`3

=
1
√
c±

∫ ∞
0

(1− eiαy) y

2
√

2πy3

=
1
√
c±
θ, (6.82)

where y = `
c±

. We can write (6.77) as

AU + AX
1√
c−

∫∞
0
eiα` pU (`)d`

2
√

2π`3
+ 1√

c+

∫∞
0
eiα` pX (`)d`

2
√

2π`3
+ ( 1√

c−
+ 1√

c+
)
(

1
2

√
|α|(1− sign(α)i)

) . (6.83)

Note for future reference that

E[eiα(H+
×(ζX )+H−× (ζX ))|ζX < ζU ]

=
AU + AX

1√
c−

∫∞
0
eiα` pU (`)d`

2
√

2π`3
+ 1√

c+

∫∞
0
eiα` pX (`)d`

2
√

2π`3
+ ( 1√

c−
+ 1√

c+
)
(

1
2

√
|α|(1− sign(α)i)

)
= E[eiα(H+

×(ζU )+H−× (ζU ))|ζU < ζX ]. (6.84)

We now turn to the other factor on the right-hand side of (6.76). Let ϑ be the length
of last excursion on which U∗ vanishes. Recall from (6.68), for t < `

c−
, we have

P{RU ∈ dt
∣∣ϑ = `} = P{RU ∈ dt

∣∣τe =
`

c−
} =

pU(t, `
c−

)

pU( `
c−

)
dt,

and

P{ϑ = d`} =
µ−◦ (d`)∫∞

0
µ−◦ (d`)

=
pU( `

c−
)

2AU
√

2π`3
d`.

The characteristic function of RU is

E[eiαRU ] = E
[
E[eiαRU

∣∣ϑ]
]

=

∫ ∞
0

∫ `
c−

0

eiαtP{RU ∈ dt
∣∣τB = `}P{τB = d`}

=

∫ ∞
0

∫ `
c−

0

eiαt
pU(t, `

c−
)

2AU
√

2π`3
dtd`. (6.85)
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Thus from (6.76), (6.77), and (6.85), we have

E[eiατmin |ζU < ζX ]

=
(AU + AX )

∫∞
0

∫ `
c−

0 eiαt
pU (t, `

c−
)

2AU
√

2π`3
dtd`

1√
c−

∫∞
0
eiα` pU (`)d`

2
√

2π`3
+ 1√

c+

∫∞
0
eiα` pX (`)d`

2
√

2π`3
+ ( 1√

c−
+ 1√

c+
)
(

1
2

√
|α|(1− sign(α)i)

)
=

AU+AX√
c−

∫∞
0

∫ `
0
eiαt pU (t,`)

2AU
√

2π`3
dtd`

1√
c−

∫∞
0
eiα` pU (`)d`

2
√

2π`3
+ 1√

c+

∫∞
0
eiα` pX (`)d`

2
√

2π`3
+ ( 1√

c−
+ 1√

c+
)
(

1
2

√
|α|(1− sign(α)i)

) .
Similarly we have

E[eiατmin |ζU > ζX ]

=

AU+AX√
c+

∫∞
0

∫ `
0
eiαt pX (t,`)

2AX
√

2π`3
dtd`

1√
c−

∫∞
0
eiα` pU (`)d`

2
√

2π`3
+ 1√

c+

∫∞
0
eiα` pX (`)d`

2
√

2π`3
+ ( 1√

c−
+ 1√

c+
)
(

1
2

√
|α|(1− sign(α)i)

) .
Therefore

E[eiατmin ]

= E[eiατmin1ζU<ζX ] + E[eiατmin1ζU>ζX ]

= P{ζU < ζX}E[eiατmin |ζU < ζX ] + P{ζU > ζX}E[eiατmin |ζU > ζX ]

=

AU√
c−

∫∞
0

∫ `
0
eiαt pU (t,`)

2AU
√

2π`3
dtd`

1√
c−

∫∞
0
eiα` pU (`)d`

2
√

2π`3
+ 1√

c+

∫∞
0
eiα` pX (`)d`

2
√

2π`3
+ ( 1√

c−
+ 1√

c+
)
(

1
2

√
|α|(1− sign(α)i)

)
+

AX√
c+

∫∞
0

∫ `
0
eiαt pX (t,`)

2AX
√

2π`3
dtd`

1√
c−

∫∞
0
eiα` pU (`)d`

2
√

2π`3
+ 1√

c+

∫∞
0
eiα` pX (`)d`

2
√

2π`3
+ ( 1√

c−
+ 1√

c+
)
(

1
2

√
|α|(1− sign(α)i)

)
=

1√
c−

∫∞
0

∫ `
0
eiαt pU (t,`)

2
√

2π`3
dtd`+ 1√

c+

∫∞
0

∫ `
0
eiαt pX (t,`)

2
√

2π`3
dtd`

1√
c−

∫∞
0
eiα` pU (`)d`

2
√

2π`3
+ 1√

c+

∫∞
0
eiα` pX (`)d`

2
√

2π`3
+ ( 1√

c−
+ 1√

c+
)
(

1
2

√
|α|(1− sign(α)i)

) .
(6.86)

6.3 Future work

In this thesis we followed a stylized stochastic LOB model proposed in [8], where the
occurrences of market orders, limit orders, and cancellations are governed by independent
Poisson processes. We assume that arrival rates of such market events are constant
parameters that depend on the relative distance between price of arriving and opposite
best price. The formulation of the model can be viewed using queueing theory and by
applying the idea of heavy-traffic scaling and the “crushing” argument from Peterson
[24], we derive the diffusion limit of scaled sequence of LOB models. In particular, the
limiting model has a “two-tick” wide bid-ask spread, and the processes of volumes on the
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best bid and best ask follow a pair of correlated Brownian motions. We then discuss the
evolution of the limiting LOB model and calculate the probability of upward/downward
price movement via P.Lévy’s theory of Brownian local time. We finish the thesis with the
derivation of the characteristic function of the waiting time between two different renewal
states, i.e., a price movement.

Taking into account a set of empirically observed properties of real LOB, desirable
extensions of this model are the following:

• The model assumes limit orders arrive within two-tick distance from the opposite
best price. It could be extended by allowing limit orders arrive at deeper price
levels.

• Given the fact that cancellations actually happen at any price level in a real LOB,
we can add cancellation to any price levels with non-zero volumes.

• The model uses six constant parameters for arrival rates of market and limit orders,
which have three degrees of freedom. We could consider more general arrival rates,
i.e., arrival rates with full freedom, time-dependent arrival rates or arrival rates
depending on the volumes at the arriving price levels.

• Since we calculate the probability the next mid-price move is up/down conditional on
the state of the LOB, and we compute the distribution of the waiting time between
two adjacent price move events, it is natural to consider the optimal execution
strategy for a large chunk of orders. One can study how to divide the large orders
into small pieces and when to submit them in LOB.

We hope the results derived in this thesis can provide a good starting point for the
development of more versatile LOB models.
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Appendix A

Measurability

A.1 Spaces

We denote by C[0,∞) the space of continuous functions from [0,∞) to R equipped with
the metric

d(x, y) :=
∞∑
n=1

1

2n
(
1 ∧ max

0≤t≤n
|x(t)− y(t)|

)
, x, y ∈ C[0,∞). (1.1)

Convergence in this metric is uniform convergence on compact subsets of C[0,∞).

Lemma 1.1 Under the metric (1.1), C[0,∞) is a complete separable metric space.

Proof: We first show that C[0,∞) is separable. For each finite T , the space C[0, T ]
under uniform convergence is a complete separable metric space. For each n, let Qn be a
countable dense subset of C[0, n]. Given ε, there exists N such that

∑∞
n=N+1

1
2n
< ε/2.

Given y ∈ C[0,∞), there exists xN ∈ QN such that max0≤t≤N |xN(t) − y(t)| ≤ ε/2. Let
x be the extension of xN to [0,∞) obtained by setting x(t) = xN(N) for t ≥ N . Then
d(x, y) < ε. It follows that the countable collection of continuous constant extensions of
functions in ∪∞n=1Qn is dense in C[0,∞).

To see that C[0,∞) is complete, let {xk}∞k=1 be a Cauchy sequence in C[0,∞). Then
for each n, {xk|[0,n]}∞k=1, the sequence obtained by restriction to [0, n], is Cauchy in C[0, n],
and consequently this sequence has a limit x∗n. It is obvious that x∗n(t) = x∗m(t) for
0 ≤ t ≤ n ∧ m, and this permits us to define x∗(t) = x∗dte(t) for 0 ≤ t < ∞, where dte
is the smallest integer greater than or equal to t. The sequence {xk}∞k=1 converges to x∗

uniformly on compact subsets of C[0,∞). �

For any topological space X, we denote by B(X) the Borel σ-algebra generated by
the open subsets of X. In particular, B(C[0,∞)) is the Borel σ-algebra in C[0,∞). This
σ-algebra is generated by the countable collection of open balls

Bx,q :=
{
y ∈ C[0,∞) : d(x, y) < q

}
, (1.2)
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where x ranges over a countable dense subset of C[0,∞) and q ranges over the set of
positive rational numbers. For r ∈ R, we define

Cr[0,∞) :=
{
x ∈ C[0,∞) : x(0) = r

}
, (1.3)

so that B(Cr[0,∞)) is the trace σ-algebra of B(C[0,∞)) on Cr[0,∞). Finally, we define

Dr :=
{

(z+, z−) ∈ Cr+ [0,∞)× Cr− [0,∞) : lim inf
t→∞

z+(t) = lim inf
t→∞

z−(t) = −∞
}

(1.4)

and denote by B(Dr) the trace σ-algebra of B(Cr+ [0,∞))⊗ B(Cr− [0,∞)) on Dr.

A.2 Mappings

For each t ≥ 0, we define the evaluation map Et : C[0,∞)→ R by

Et(x) = x(t), x ∈ C[0,∞). (2.1)

This map is continuous and hence B(C[0,∞))/B(R)-measurable.

Lemma 2.1 For each r ∈ R, the set Cr[0,∞) belongs to the σ-algebra B(C[0,∞)), and
the set Dr belongs to the product σ-algebra B(Cr+ [0,∞))⊗ B(Cr− [0,∞)).

Proof: The set Cr[0,∞) is the pre-image of {r} under the measurable mapping E0, and
hence belongs to B(C[0,∞)). Let Q denote the set of rational numbers, We have

{z ∈ C[0,∞) : lim inf
t→∞

z(t) = −∞
}

=
∞⋂
k=1

∞⋂
n=1

⋃
q∈Q∩[n,∞)

{z ∈ C[0,∞) : Eq(z) < −k} ,

which is thus a set in B(C[0,∞)). It follows thatDr belongs to B(Cr+ [0,∞))⊗B(Cr− [0,∞)).
�

We define the Skorkhod map Γ : C[0,∞)→ C[0,∞) by

Γ(x)(t) := − min
0≤u≤t

(
x(u) ∧ 0

)
, x ∈ C[0,∞), 0 ≤ t <∞. (2.2)

This map is continuous and hence B(C[0,∞))/B(C[0,∞))-measurable.

Given (z+, z−) ∈ Dr, we construct a function z ∈ Cr[0,∞) as follows. We first set
`± = Γ(z±). By the definition of Dr, we have

lim
t→∞

`+(t) = lim
t→∞

`−(t) =∞. (2.3)

We define the mappings Φ± from Dr to C[0,∞) (continuity is established in Lemma 4.2.3)
by the formulas

Φ+(z+, z−)(t) := sup
{
u ∈ [0, t] : `+(u) = `−(t− u)

}
, (2.4)

Φ−(z+, z−)(t) := inf
{
u ∈ [0, t]; `−(u) = `+(t− u)

}
, (2.5)

for all t ≥ 0. We then set p± = Φ±(z+, z−) and define

z = Ψ(z+, z−) := z+ ◦ p+ − z− ◦ p−. (2.6)

In the next subsection we show that Ψ: Dr → Cr[0,∞) is B(Dr)/B(Cr[0,∞))-measurable.
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A.3 Measurability

Lemma 3.1 The mapping Λ : [0,∞)× C[0,∞)→ R defined by

Λ(t, x) = x(t), t ∈ [0,∞), x ∈ C[0,∞)

is continuous, and hence B[0,∞)⊗ B(C[0,∞))/B(R)-measurable.

Proof: Let (tn, xn) converge to (t, x) ∈ [0,∞) × C[0,∞). For large enough n, we have
tn ≤ t+ 1 =: T , and∣∣Λ(tn, xn)− Λ(t, x)

∣∣ =
∣∣xn(tn)− x(t)

∣∣
≤
∣∣xn(tn)− x(tn)

∣∣+
∣∣x(tn)− x(t)

∣∣
≤ max

0≤t≤T

∣∣xn(t)− x(t)
∣∣+
∣∣x(tn)− x(t)

∣∣.
This last expression has limit zero as n→∞. �

Lemma 3.2 Let Ξ : Dr → C[0,∞) have the property that for every t ≥ 0, the map-
ping (z+, z−) → Ξ(z+, z−)(t) is B(Dr)/B(R)-measurable. Then Ξ is B(Dr)/B(C[0,∞))-
measurable.

Proof: It suffices to show that Ξ−1(Bx,q) ∈ B(Dr) for each of the open balls in (1.2).
But

Ξ−1(Bx,q) =
{

(z+, z−) ∈ Dr : d
(
x,Ξ(z+, z−)

)
< q
}

=

{
(z+, z−) ∈ Dr :

∞∑
n=1

1

2n
(
1 ∧ sup

t∈Q∩[0,n]

∣∣x− Ξ(z+, z−)(t)
∣∣) < q

}
,

which is in B(Dr) because of the assumption that the mapping (z+, z−)→ Ξ(z+, z−)(t) is
B(Dr)/B(R)-measurable for each t. �

Lemma 3.3 For every t ≥ 0, the mapping (z+, z−) → Φ±(z+, z−)(t) is B(Dr)/B(R)-
measurable, where Φ+ and Φ− are defined by (2.4) and (2.5).

Proof: For t ≥ 0 and u ∈ R, we have{
(z+, z−) ∈ Dr : Φ+(z+, z−)(t) ≥ u

}
=
{

(z+, z−) ∈ Dr : `+(u) ≤ `−(t− u)
}

=
{

(z+, z−) ∈ Dr : Γ(z+)(u) ≤ Γ(z−)(t− u)
}
.
(3.1)

Because Γ+ and Γ− are continuous and hence B(C[0,∞))/B(C[0,∞))-measurable, the
mapping

(z+, z−)→
(
Γ(z+)(u),Γ(z−)(t− u)

)
=
(
Eu ◦ Γ(z+), Et−u ◦ Γ(z−)

)
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is B(Dr)/B(R2)-measurable. Consequently, the set in (3.1) is in B(Dr). Because this is
the case for every u, for each fixed t the function (z+, z−)→ Φ+(z+, z−)(t) is B(Dr)/B(R)-
measurable. The proof that (z+, z−) → Φ−(z+, z−)(t) is B(Dr)/B(R)-measurable, which
uses the equivalence

Φ−(z+, z−) ≤ u⇐⇒ `−(u) ≥ `+(t− u),

is similar. �

Theorem 3.4 The mapping Ψ : Dr → Cr[0,∞) is B(Dr)/B(Cr[0,∞))-measurable.

Proof: We fix t ≥ 0 and decompose Ψ into the concatenation of mappings

(z+, z−)→
(
Φ+(z+, z−)(t), z+, z−,Φ−(z+, z−)(t)

)
(3.2)

→
(

Λ
(
Φ+(z+, z−)(t), z+

)
,Λ
(
Φ−(z+, z−)(t), z−

))
(3.3)

→ Λ
(
Φ+(z+, z−)(t), z+

)
− Λ

(
Φ−(z+, z−)(t), z−

)
(3.4)

= Ψ(z+, z−)(t).

The mapping in (3.2) is B(Dr)/B(R) ⊗ B(Dr) ⊗ B(R)-measurable by Lemma 3.3. The
mapping in (3.3) is B(R)⊗B(Dr)⊗B(R)/B(R2) measurable by Lemma 3.1. The mapping
in (3.4), which is subtraction in R2, is B(R2)/B(R)-measurable. Therefore, for every t ≥ 0,
the mapping

(z+, z−)→ Ψ(z+, z−)(t)

is B(Dr)/B(R)-measurable. It follows from Lemma 3.2 that Ψ is B(Dr)/B(C[0,∞))-
measurable. Since Ψ maps into Cr[0,∞), it is also B(Dr)/B(Cr[0,∞))-measurable. �
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Appendix B

Absorbed Brownian Motion

B.1 Proof of (6.22)

∫ ∞
0

p0(t, x, y) dy =
1√
2πt

∫ ∞
0

exp

(
−(y − x)2

2t

)
dy − 1√

2πt

∫ ∞
0

exp

(
−(y + x)2

2t

)
dy

=
1√
2πt

∫ ∞
−x

exp

(
−z

2

2t

)
dz − 1√

2πt

∫ ∞
x

exp

(
−z

2

2t

)
dz

=
2√
2πt

∫ x

0

exp

(
−z

2

2t

)
dz

= 2

(
1√
2πt

∫ x

−∞
exp

(
−z

2

2t

)
dz − 1

2

)
= 2

(
1√
2πt

∫ x

−∞
exp

(
−z

2

2t

)
dz − 1

)
+ 1

= 1− 2√
2πt

∫ ∞
x

exp

(
−z

2

2t

)
dz.
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B.2 Proof of (6.26)

We begin with the observation

p0(s, x, y)p0(t, y, z)

=
1

2π
√
st

[
exp

(
−(y − x)2

2s

)
− exp

(
−(y + x)2

2s

)]
×
[
exp

(
−(z − y)2

2t

)
− exp

(
−(z + y)2

2t

)]
=

1

2π
√
st

[
exp

(
−(y − x)2

2s
− (z − y)2

2t

)
− exp

(
−(y + x)2

2s
− (z − y)2

2t

)
− exp

(
−(y − x)2

2s
− (z + y)2

2t

)
+ exp

(
−(y + x)2

2s
− (z + y)2

2t

)]
=

1

2π
√
st

[
exp

(
−s+ t

2st

(
y − tx+ sz

s+ t

)2

− 1

2(s+ t)
(x− z)2

)

− exp

(
−s+ t

2st

(
y +

tx− sz
s+ t

)2

− 1

2(s+ t)
(x+ z)2

)

− exp

(
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