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Chapter 1

Introduction

1.1 Background

In the past 20 years, more and more traditional human traders have been replaced by
automatic trading platforms. A recent report [27] estimates that 70 percent of global
currencies trading volume was executed through electronic systems in 2013. Instead
of gesturing and yelling to each other on the trading floor, traders use computers to
accomplish trading through sending “orders” to the exchange, such as NYSE-ARCA,
BATS or NASDAQ), and these orders wait to be executed in the “limit order book” (LOB).

Usually, orders are characterized by direction (buy or sell), price, amount (number
of shares), and type (limit or market). Prices are multiples of the tick size, which is
usually one cent. A limit order is an order to buy or sell a certain number of shares at
a specified price, and it may not be executed if the given price cannot be met. Limit
orders are accumulated in the LOB, which keeps a record of the quantities of limit orders
at each price level. A market order is an order to buy or sell a certain number of shares
immediately at the best available price in the LOB, and the LOB is updated once a market
order is executed.

We can picture the LOB as a histogram where the horizontal axis indicates price ticks
and each bar represents the number of limit order shares waiting at the corresponding
price tick. We call a price the best bid price if it is the highest price at which there exists
at least one limit buy order. Similarly, we call a price the best ask price if it is the lowest
price at which there exists at least one limit sell order.

In real markets, besides market orders and limit orders, there are more complicated
types of orders such as “iceberg” orders and “stop” orders. Iceberg orders are popular
with investors who submit a large volume order. In order to avoid anticipatory action
from other market participants, investors could conceal the full size of their orders by
submitting iceberg orders which only publicly display a specified portion of the total
order size. A stop order is an order to buy or sell an asset when its price surpasses a
specified threshold, known as the stop price. In a liquid market, a stop order ensures



that investors achieve a predetermined entry or exit price, limiting their loss or locking in
profit. For example, an investor bought one share of stock A at $10 and now the stock is
trading at $20. The investor can place a sell-stop order with stop price $15 to guarantee
a profit of approximately $5 in case the price of stock A drops below $15.

In this thesis, we assume that the market only contains limit orders and market
orders. For limit orders we only consider two-level arrivals: a Level I limit buy order is
a limit buy order arriving at the price one tick below the best ask price, and a Level I
limit sell order is a limit sell order arriving at the price one tick above the best bid price.
Similarly, a Level II limit buy order is a limit buy order arriving at the price two ticks
below the best ask price, and a Level II limit sell order is a limit sell order arriving at the
price two ticks above the best bid price.

In modern financial markets, we usually see two different matching principles for
order allocation: price-time priority and price/pro rata matching. In price-time priority,
orders are automatically sorted according to price and time-of-entry criteria. Orders with
the best possible prices always take precedence in the matching process over other orders
with worse prices, and orders placed at the same price are executed according to the time
of entry (i.e., first-in-first-out). In price/pro rata matching, the best priced orders in the
book are still traded first, and when there are multiple orders at the best price, pro rata
allocation allocates quantity of the incoming market order amongst all limit orders at the
best price in the LOB. The allocation is proportional to the size of each limit order, and
all limit orders at the best price are taken into account.

Given a certain amount of money, an investor might be interested in coming up
with a strategy to maximize the expected value of his portfolio at the end of a pre-fixed
time horizon, which is called an optimal execution problem. Obviously, the matching
principle will be crucial since investors usually want their orders to get executed as soon
as possible. We will not discuss the optimal execution problem in this document, and
hence the priority of limit orders at individual prices does not matter now.

Another important feature of the LOB is that market participants are able without
penalty to cancel their existing limit orders at any time before a match is made. According
to Hautsch and Huang [13], more than 80% of all limit orders are cancelled before getting
executed at NASDAQ. Because of its importance in real markets, cancellations occur in
our limit order book model.

1.2 Owur Contribution

The nature of the LOB’s execution mechanism calls for a reasonable stochastic model
which is consistent with statistical observations of the LOB in real markets. Since limit
orders will wait in the queue at the specified price until they are executed against op-
posite market orders or are cancelled, we adapt queueing theory methodology to study
the evolution of the LOB. We consider a “zero-intelligence Poisson” model, where “zero-
intelligence” means there is no strategic play by the agents submitting orders, and “Pois-



son” refers to the fact that arrivals of market orders and limit orders are governed by
Poisson processes. Moreover, we assume exponentially distributed waiting times before
cancellations.

Our LOB model is a discrete-event system, and our goal is to approximate the discrete
system by a system of Brownian Motions. Enlightened by heavy traffic theory, we can
take a diffusion scaling of our zero-intelligence Poisson model, and take a limit to find the
approximating system. In particular, at each price tick, we will define a process which
refers to the number of orders at this price. Then we scale the process by accelerating
time by a factor n, and dividing volume by /n, then pass to the limit as n — oo. We
want to consider the simplest nontrivial model so that we can develop this methodology.

In our zero-intelligence Poisson model, we assume Poisson arrivals of limit orders
and market orders with constant rates. All orders have the same size, which we set to
be 1. Moreover, cancellations will occur two or more ticks away from the best available
price. In particular, we assume that cancellations of limit buy orders come with Poisson
arrival rate 6),//n per order in the n'* pre-limit model, where 6, is a constant cancellation
intensity. Similarly, cancellations of limit sell orders come with Poisson arrival rate 65//n
per order, where 6, is a constant cancellation intensity.

Figure 1.1 is an example of a state of our LOB model in which positive queues
represent limit buy orders and negative queues represents limit sell orders. Labels S to Y
indicate the number of orders at corresponding prices. From the configuration in Figure
1.1, we see that the best bid price is at the V — tick and the best ask price is at the
W — tick. Therefore, according to the assumptions of our model, market buy orders will
arrive at the W — tick with a constant intensity Ag; Level I limit buy orders will arrive
at the V' — tick with a constant intensity A;; Level II limit buy orders will arrive at the
U — tick with a constant intensity Ay. Similarly, market sell orders and two-Level limit
orders will arrive at the V' — tick, W — tick, and X — tick with constant intensities py,
11, and pg, respectively. Finally, cancellations of limit buy orders will happen at the
S —tick and T — tick, which are two or more ticks below the best bid price V' — tick, and
cancellations of limit sell orders will be at the Y — tick.

In order to obtain a diffusion-scaled limit, the arrival rates for market orders and limit
orders must satisfy some appropriate technical conditions which will be explained later.
Our study shows that the limiting LOB model has a two-tick spread at Lebesgue-almost-
all time, i.e., there is always a price tick between the best bid price and the best ask price.
Also, the queue at the best bid price and the queue at the best ask price are Brownian
Motions. The convention in our model is that queues with buy orders have positive sign
and queues with sell orders have negative sign, and with this sign convention, the queue
at the best bid and queue at the best ask have positive correlation. The absolute values
of these queues have negative correlation. Moreover, the queues which are adjacent to the
best bid and the best ask are nailed at constant levels, and queues that are further away
will be killed at zero level. See Figure 1.2.

The proof comes from ideas in queueing theory with a delicate analysis involving
weak convergence in corresponding cadlag space with M; and sometimes J; topology.
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Figure 1.1: Limit-order book
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Figure 1.2: Limiting model 1

Also, the proof of the uniqueness of the limiting process uses a theorem that if a process
and its absolute value are governed by two independent Brownian motions with a certain
formula, then this process is unique in distribution. We will discuss this theorem and
prove it later.

The limiting model is an approximation to the pre-limit model, so we should fit the
LOB data to pre-limit models. To be precise, in Figure 1.2, the queue at the V* — tick
having length zero means that in pre-limit models, the number of limit orders at this
price is relatively small compared to the the number of orders at adjacent queues, but the
number of limit orders at the V* — tick is not necessarily zero. For instance, suppose we
want to use our limiting model to approximate the 100" pre-limit model. Then /n = 10
and V* = 0 means that the number of orders at V* — tick in the pre-limit model has a
smaller order of magnitude than the number of orders at U* — tick and W* — tick, i.e.,
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there might exist two or three limit buy orders at the V* — tick and 20 limit sell orders
at the W* — tick. Therefore, even though in the limiting model there is a two-tick spread
almost all the time, the limit of the amount of time that there is a one-tick spread in the
pre-limit models is not zero, which will be proved in (3.44).

Since both U* and W* are Brownian Motions, from the configuration shown in Figure
1.2, the limiting model will eventually reach a configuration in which either U* or W*
hits zero. At this moment, the limiting model has a three-tick spread. The configuration
in Figure 1.3 shows the this state when W* vanishes before U*. Following this moment,
the process U* will jump from its current position to a fixed level instantaneously, which
will be proved later. We call this state a “renewal state” because this state will appear
repeatedly in the limiting model. As in Figure 1.3, the system has a three-tick spread
and the queues at the best bid price and the next best bid price are fixed at a constant
level. Similarly, the queues at the best ask price and the next best ask price are fixed at
another constant level, and all queues which are two or more ticks away from the best
price are nailed at zero.

Starting from the renewal state in Figure 1.3, W* might go on a negative excursion
and U* will behave like a Brownian motion positively correlated with W*. If U* reaches
zero before W* returns to zero, we will come to the state shown on the left of Figure 1.4.
Similarly, starting from Figure 1.3, V* has a chance to go on a positive excursion and
X* will behave like a Brownian motion positively correlated with V*. If X* reaches zero
before V* returns to zero, we will come to the state shown on the right of Figure 1.4.
Hence, the limiting model will eventually reach one of the two adjacent renewal states. We
say the process has a leftward renewal state transition if the process moves from Figure
1.3 to the left configuration in Figure 1.4, and it has a rightward renewal state transition
if it moves to the right configuration in Figure 1.4. By applying Poisson random measure
theory, we calculate the probability the limiting model makes a leftward transition and
the probability of a rightward transition.

When the limiting model is not in a renewal state, the system will have a configuration
like the one shown in Figure 1.2. Using Metzler [23], we are able to compute the joint
density of the first passage times of U* and W* to zero given such a configuration. In
particular, we can derive the density function of the waiting time from any intermediate
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Figure 1.5: Limiting model 2

state to the next renewal state. Furthermore, by extending Metzler’'s result, we can
also compute the characteristic function of the waiting time between two renewal states
conditioned on the system making a leftward transition or rightward transition. This
result shows that the process of renewal states is a semi-Markov process because the
length of each queue in the renewal state is fixed (not dependent on the path of the
process) and the waiting time between renewal states is not exponentially distributed.

Starting from the configuration in Figure 1.3, if we focus on the evolution of the
process U*, we can see that U* behaves like a Brownian motion while W* is nonzero, as
shown in Figure 1.2, and it will jump from its current position to some fixed level whenever
W* reaches zero (renewal state). On the other hand, if V* has positive orders, U* will
remain at that fixed level until V* vanishes and W* again becomes negative, see Figure
1.5. Eventually, we can show that the system will switch between these two configurations
infinitely many times immediately following the moment the system reaches the renewal
state shown in Figure 1.3. Therefore, we will see infinitely many jumps in U*, and we
shall see that those jumps are not absolutely summable. A consequence of this is that the
process U™ is not a semi-martingale; the jumps cannot be embedded in a finite variation
part nor a local-martingale part of a decomposition of U*.
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1.3 Related Literature

The need for modeling the LOB is recent since the earliest electronic trading platform
was launched only twenty years ago. The literature on LOBs has grown rapidly as a have
deeper understanding of the LOB trading process has developed. However, there is still
no model that fully captures all significant features of electronic trading. Zero-intelligence
models assume that order arrivals and cancellations are governed by stochastic processes
whose parameters can be estimated directly from historical data. These are widely used
because the falsifiable hypotheses can be tested through the comparison between the
models’ output and real data. One of the earliest work regard this is Garman [11], who
uses a Poisson model to describe arrivals of buy and sell orders. In the second part of
the paper, a LOB is constructed when there is no market maker. Under the assumption
of Poisson arrivals of buy and sell orders, Luckock [22] constructs a continuous double
auction model which yields a steady-state probability distribution for best bid and best
ask. Smith, Farmer, Gillmemot, & Krishnamurthy [25] assumes exponential waiting time
before cancellations and make testable predictions for basic properties of markets, such as
price volatility, market depth, and bid-ask spread by using simulation. On a higher level,
their work suggestes that a zero-intelligence model is useful to make strong predictions
about the market. The idea of using a zero-intelligence model for LOB is also examined
and checked against statistical analysis of historical data by Gould et al [12].

Two very closely related papers to ours are that of Cont, Stoikov, & Talreja [§]
and Cont & Larrard [7]. Under the same setting of [25], [8] models the LOB as a finite-
dimensional continuous time Markov chain and uses Laplace transforms to compute prob-
abilities of basic events, such as the mid-price movement, and the execution of a market
order before the best price moves. [7] proposes a simpler model in which there is always a
one-tick spread and limit orders arrive only at the best available price. Their system has
a price change once one of two queues at a best price is depleted, and the system shifts
in the appropriate direction by one tick before the book is reinitialized. By applying the
heavy traffic theory, they derive the diffusion-scaled limit of the LOB. We will use similar
queueing theory techniques to develop a diffusion limit of the LOB. However, in contrast
to [7], our model will work under a more general setting in which limit orders have 2-level
depth and we do not have any assumption on the width of the spread. Moreover, our
model does not reinitialize when the system reaches a renewal state.

Note that our LOB model assumes a discrete price grid, and we choose to scale the
arrival rates and volumes of both standing and incoming orders. Alternatively, there
are some literature which establishes the joint convergence of prices and volumes. Horst
and Kreher [14] prove a scaling limit for a full LOB. Under their choice of scaling, the
dynamics of volumes converge to two non-linear PDEs coupled with two non-linear ODEs
which describe the limit of prices. The same technique is also used in papers by Horst
with coauthors Kreher [15], Paulsen [16], and Xu [17]. Lakner, Reed, and Stoikov [21]
and Lakner, Reed, and Simatos [20] assume limit orders are placed on the book according
to a distribution which varies depending on the current best price, and they derive the
limit of scaled measure-valued LOB process in the high frequency regime. Despite the
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fact that Poisson dynamics are widely used to model order flow in LOB, exceptions to this
are papers by Abergel and Jedidi [1], where Hawkes-type dynamics are used, and Yang
and Zhu [28], where Cox processes are used for arrivals and cancellations at the best bid
and ask and the intensities depend on the order book imbalance. Another paper related
to our work is Avellaneda, Reed, and Stoikov [3], where they use a modified model of
[7] and assume that there is hidden liquidity at the best bid and ask because of iceberg
orders or liquidity present at other exchanges. Through diffusion scaling technique, they
derive closed-form solutions for the probability of a price uptick conditional on the sizes
of best bid and ask.

Besides the zero-intelligence order book modeling, some have proposed a microeco-
nomic approach, which models the evolution of the LOB as a result of interactions between
rationally behaving agents. Instead of acting randomly, each agent makes decision strate-
gically to maximize his own utility function. Follmer and Schweizer [10] first derives the
diffusion approximation for stock prices by applying an invariance principle to a sequence
of discrete-time-models resulting from market equilibrium. On top of a microstructure
model, Bayraktar, Hoerst, & Sircar [4] adds inert investors to the market and shows that
their presence creates long-range dependence in the macro model.

The work most closely related to our model is the thesis of Christopher Almost [2].
Following a simplified specification of the dynamics proposed in [8] where orders arrive
according to Poisson processes whose intensities depend on the relative distance between
price of arriving and opposite best price, [2] shows that the heavy-traffic scaled sequence
of LOB models converges to a simple model where the scaled number of orders at each
price level follows either a diffusion or a jump-diffusion process. In particular, by applying
the “crush” argument of Peterson [24], [2] proves that the limiting model has a “two-tick”
bid-ask spread, i.e., the distance between best bid and best ask is two price ticks, and
the processes of best bid and best ask follow a pair of correlated Brownian motions. One
assumption [2] makes during the derivation is that the model is symmetric where buy and
sell orders of the same types arrive at the same rate. Moreover, the ratio of arrival rate of
market order to that of limit order is assumed to be fixed in order to get the limit. This
work is a generalization and extension of [2]. We first relax the “symmetric” assumption to
the “asymmetric” case in which the model takes six parameters for arrival rates of market
buys and market sells, as well as limit buys and limits sells on both Level-I1 and Level-I1I.
We prove that the model allows three degrees of freedom among the six parameters in
order to get a diffusion-scaled limit. We follow the same ”crushing” technique used in
2] to derive the limit of both interior queues and bracketing queues. Different from [2]
in which the interior queues of LOB converge to a split Brownian motion, we show that
in the asymmetric LOB model, they converge to a split two-variance Brownian motion
which is defined and closely studied in Chapter 4. We then extend [2] by discussing the
waiting time between two different renewal states, which results in a price change in the
limiting model. By applying P.Lévy’s theory of Brownian local time, we calculate the
probability of upward price movement and then derive the distribution of waiting time
between two different renewal states.

12



Chapter 2

The zero-intelligence Poisson model

In this section we provide a detailed a description of our zero-intelligence Poisson model
and state the the main results of its diffusion-scaled limit.

2.1 Arrivals of orders and their cancellations

In our model prices are multiples of the tick size, and we assume the model has a doubly
infinite price tick grid. We also assume there are four types of orders: market buys, market
sells, limit buys and limit sells, and each of these orders is of size 1. The state of the LOB
is determined by the number of limit orders queued at each price tick. We use a set of
histograms over price ticks to represent the state of the book: positive bars indicating the
number of limit buys waiting to be executed at corresponding price ticks and negative
bars indicating the number of limit sells waiting to be executed at corresponding price
ticks. The limit buys are queued at strictly lower price ticks than the limit sells. The
reason for this is that we assume investors are reasonable and they will not send a limit
buy at a price higher than or equal to the price at which someone wants to sell. We call
a price the best bid price if it is the highest price at which there exists at least one limit
buy order. Similarly, we call a price the best ask price if it is the lowest price at which
there exists at least one limit sell order.

We assume agents in the market do not engage in strategic play when submitting
orders, and the arrivals of orders are Poisson processes. In particular, we assume the
arrivals of market orders and limit orders are governed by the following rules until the
LOB does not contain any limit buys or limit sells. The rate and the direction are
indicated by parameters and arrows in Figure 2.1.

e Market buys: These orders arrive at the best ask price and arrivals occur at the
jump times of a Poisson process with intensity \g > 0. The arrival of a market buy
order executes a limit sell order queued at the best ask price and thereby increases
the queue length (reduces the number of limit sell orders in the queue, which is the
absolute value of the queue length) at the best ask price by one unit.

13
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Level-I limit buys: These orders arrive at one tick below the best ask price and
arrivals occur at the jump times of a Poisson process with intensity A; > 0. These
orders queue for later execution or cancellation. They increase the queue length at
the price tick where they arrive.

Level-II limit buys: These orders arrive at two ticks below the best ask price and
arrivals occur at the jump times of a Poisson process with intensity Ao > 0. These
orders queue for later execution or cancellation. They increase the queue length at
the price tick where they arrive.

Market sells: These orders arrive at the best bid price and arrivals occur at the
jump times of a Poisson process with intensity po > 0. The arrival of a market sell
order executes a limit buy order queued at the best bid price and thereby decreases
the queue length at the best bid price by one unit.

Level-I limit sells: These orders arrive at one tick above the best bid price and
arrivals occur at the jump times of a Poisson process with intensity p; > 0. These
orders queue for later execution or cancellation. They decrease (make more negative)
the queue length at the price tick where they arrive.

Level-II limit sells: These orders arrive at two ticks above the best bid price and
arrivals occur at the jump times of a Poisson process with intensity s > 0. These
orders queue for later execution or cancellation. They decrease (make more negative)
the queue length at the price tick where they arrive.

The six Poisson processes controlling the arrivals of market and limit buy and sell
orders are independent.

In addition to arrivals of these four types of orders the state of the LOB might change

by cancellations. When each limit order arrives, it is assigned an exponentially distributed
patience random variable. Whenever a limit buy order is two or more ticks below the best
bid price, its cancellation clock runs and if the cancellation clock reaches the value of
the patience random variable for that order, the order is cancelled and therefore removed

14



from the LOB. Similarly, whenever a limit sell order is two or more ticks above the the
best ask price, its cancellation clock runs and if the cancellation clock reaches the value of
the patience random variable for that order, the order is cancelled and therefore removed
from the LOB. In particular, the cancellations are governed by the following rule, and
they are indicated by the arrows labelled with “c¢” in Figure 2.1 in which the directions
of the arrows show show the movement of the LOB.

e Cancellations of limit buys: The patience random variable associated to limit buys is
exponentially distributed with mean 1/6, where 6, is a positive constant cancellation
rate for limit buys.

e Cancellations of limit sells: The patience random variable associated to limit sells is
exponentially distributed with mean 1/6, where 6, is a positive constant cancellation
rate for limit sells.

e The patience random variables associated with different limit orders are independent
of one another and also independent of six Poisson random processes controlling the
arrivals of market orders and limit orders.

2.2 A sequence of pre-limit models

Our goal is to find a diffusion-scaled limit of the LOB. We consider a sequence of LOB
models indexed by positive integers n = 1,2, ..... In the n'* model, arrivals of market or-
ders and two-level limit orders are still governed by the six independent Poisson processes,
and each of the orders is of size 1. However, the cancellation rates for limit buys and limit
sells are scaled down by a factor of 1/4/n. In particular, the mean of the patience random
variable for limit buys is y/n /6y, and the mean of the patience random variable for limit
sells is y/n/f,. To perform the diffusion scaling, we scale the n'® pre-limit model by ac-
celerating the time by a factor n, and dividing the volumes by /n, then pass to the limit
as n — 00. In order to obtain a diffusion-scaled limit for the sequence of pre-limit models
just described, we need the following assumption on the parameters of order arrivals.

Assumption 2.2.1 There are two numbers a > 1 and b > 1 satisfying a + b > ab such
that

A1 = (a— 1),

Ao = (a+b—ab)),

= (b—1)pno,

pa = (a+b—ab)uo,
alg = buyp.

An immediate property of Assumption 2.2.1 that we shall use repeatedly is

A
c::uo—)\lz)\o—,ul:(a+b—ab)?0>O. (2.1)
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Figure 2.2: Initial configurations of our model

2.3 Interior queues and bracketing queues

Although the price ticks are doubly infinite, we focus on the price ticks centering at the
best bid price and the best ask price. We assume that in the n'* pre-limit model, the
LOB has initial configurations like those shown in Figure 2.2. Here, O and o indicate
the usual big O and little o notations and we denote the number of orders queued at
these ticks at time ¢ by S™(¢t), T"(t), U™(t), V"(t), W™(t), X™(t), and Y"(¢). In the left
configuration, we see few limit buy orders sitting at the best bid price, and significantly
more orders at the next best bid price and the best ask price. Similarly in the right
configuration, there are few limit sell orders at the best ask price, and many more orders
at the next best ask price and the best bid price. In both configurations we see an obvious
difference between the number of orders at the best bid price and the number of orders
at the best ask price, and we call this difference the imbalance of the LOB. Real markets
frequently exhibit imbalances in the LOB. Therefore it is natural to assume that our
model starts from one of these two configurations. We want to study the evolution of the
LOB within a period when the best bid price is higher than or equal to the price tick
of T™ and the best ask price is lower than or equal to the price tick of X™. We observe
that the dynamics of the LOB is determined by the locations of the best bid price and
the best ask price. According to the rule of arrivals of orders we previously mentioned,
the best bid price should be strictly lower than the best ask price. Hence, there are ten
possible scenarios where the best bid price and the best ask price could be, and these are
shown in Figure 2.3. The arrows indicate the directions of queues’ movements while the
parameters indicate the rates of arrivals.

Within each scenario shown in Figure 2.3, T, U™, V", W™ and X" have the same
dynamics. From the previous description of our model, we see that there are six indepen-
dent, unit-intensity Poisson processes governing the arrivals of market orders and limit
orders. We label these six Poisson processes by Nys, Nars, Nogi, N2, Nis1, and Npgo,
where M B indicates “market buy”, M.S indicates “market sell”, LB1 indicates “level-I
limit buy”, LB2 indicates “level-II limit buy”, LS1 indicates “level-1 limit sell”, and L.S2
indicates “level-II limit sell”. Moreover, the cancellations of both limit buy orders and
limit sell orders are governed by four independent Poisson processes, which are denoted by
Ne¢2, Neps, Neos2 and Ngogsz where C' B2 indicates cancellations of limit buy orders which
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are two ticks away from the best bid price, C B3 indicates cancellations of limit buy orders
which are three ticks away from the best bid price, C'S2 indicates cancellations of limit sell
orders which are two ticks away from the best ask price, and C'S3 indicates cancellations
of limit sell orders which are three ticks away from the best ask price. We also introduce
two stochastic processes py, : [0,00) — {T,U,V, W, X} and p, : [0,00) — {T,U,V, W, X'}
where py(t) tells where the best bid price is and p4(t) tells where the best ask price is at
time ¢t > 0. Then we can explicitly write down the dynamics for 7™, U™, V", W™, and
X™ as follow,

dT"(t) = d(l{pba)T,pS(t)U}NLBl o At + (Lipy()=Tpe ()=v} + Lipy(t)=Ups()=v}) NLB2 © Aot

—(Lp =T )=0} + Lipy)=Tip.)=v + Lipy)=Typs ()=}

+1{pb(t)=T,ps(t):X})NMs o ot
t

— (L ()=vip-(y=w} T Lipt)y=vips()=x3) Nepz © \/—(T"( s)) " ds

t

—L i t)=wps()=x3NCB3 © \/—(T”( s)" d3)7

dun(t) = d(l{pba)T,ps(t)U}NMB o Mol + (Lip,(0)=Tps )=V} T Lipy()=Ups()=v}) NLB1 © A1t

+ (Lo, 0)=Tps 0=} T Lipy)=Up. )=} + Lipy(1)=vipst)=w}) N2 © Aol
—(1{pb(t> —Upst)=V} T Ly ()=Up. ()=} + L )=Ups()=x}) Nazs © ot

_|_
|_\
_F
s}
o
=
I
N
s
w
=
T
S Il
=
N—
Z
wn
=
(@)
7;
=
~

Lo
—1ip()=wip.t)=xyNcp2 © \/b—(Un( )) ds)7

av'(t) = d((l{pb(t)ﬂps() v+ Ly 0)=Up.()=v}) Naup © Aot

+(Lipy=1ip. 0=} + Lip)=Upa)=w} + Lipy)=vipu=w}) Nrp1 © Ait
L p=rp: 0=} + Lipp)=Upa=x3 T Lipy()=vipu()=x}

1 0=Wpe()=x1) N2 © Aot

(L )=vipe)=w}y + Lipyoy=vipe()=x3) Nazs © piot

—(Lipy)=Ups=v} T Lpy)=Up =1} T Lip()=Upe(=x3) NLs1 © pat

— (Lo =Tp: =0} + Lipy)=Tipe (=} + Lipy)=Tipe()=w}

+1{pb(t)=T,ps(t)=X})NLS2 © M2t> )

18



dW"(t) = d((l{pb(t)T,ps(t)W} + Lipy()=Ups(t)=w} T 1{pb(t):V,ps(t):W})NMB o Aot
+ (L =rp.0=x3 + Lip0=Ups=x3 + Lipy()=vip.()=x3
+1{Pb(t):W,ps(t):X})NLBl oAt
_1{Pb(t)=W7ps(t):X}NMS o ot — (1{pb(t)=V,ps(t):W} + 1{pb(t)=V,ps(t):X})Nle oyt
—(Lpt)=Up.=v} T Lipy)=Upa)=w} + Lipy)=vipe()=x1) NLs2 © it

tg, _
L, ()=rp.)=vy Nos2 © /0 \/ﬁ(W"(s)) ds),

dX"(t) = d((l{pbu):T,ps(t):X} + L, @wy=up.=x1 + Lip,()=vp.)=x}

+ 1, ()=Wps ()=x}) N3 © Aot — Lip,(t)=wips(t)=x3 Nrs1 © pt
~ (L )=vipay=w} + Lipy)=vpa()=x}) Nrs2 © piot

t
Os / ons \—
+1{pb(t)T,ps(t)U}NCS3O/O \/E(X (8)) ds

t 05 . _
(L, ()=T s ()=v} T Lipyt)=Ups()=v}) Nes2 © / \/—(X () d8>-
0 n

In n'" pre-limit model, let us define the stopping time
o" :=min{s > 0:U"(s) =0 or W"(s) =0}, (2.2)

which is the first time when either U™ or W™ hits zero. In chapter 3, we will study the
evolution of the n'* pre-limit model before it reaches ¢”. In particular, we will derive the
diffusion scaled limit of (7™, U™, V™, W™, X") till ™. When this happens, we say the n'"
pre-limit model reaches the second renewal state at o”.

In chapter 4, we will construct a stochastic process called two-variance Brownian
motion through Poisson random measures, and introduce some results about excursions
of Brownian motion, which will be applied in the proofs of following chapters.

Let us also define the stopping time
" :=min{s > o : U"(s) = 0 or W"(s) = 0}. (2.3)

Without loss of generality, we assume W"(o™) = 0, and between o™ and ", we call
(U™, X™) bracketing processes, and (V" W™) interior processes. In chapter 5, we will first
study the evolution of the interior processes (V™, W) between the first renewal state and
the second renewal state and prove the diffusion scaled interior processes weakly converge
under the J; topology to a split two-variance Brownian motion. We then discuss the
convergence of the bracketing processes (U™, X™) under the M; topology. In Chapter
6 we study the distribution of the time between the first renewal state and the second
renewal state in the limiting model and compute the probability of leftward and rightward
price movement.
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Chapter 3

From initial state to the first renewal
state

In this chapter we study the evolution of the LOB from the initial time until time ", the
first time U™ or W™ hits zero; see (2.2). Chapter 5 addresses the evolution of the LOB
after o™.

Recall that in the n-th pre-limit model, we assume the LOB has one of the two initial
configurations shown in Figure 2.2, i.e., 7™(0), U™(0), W"™(0) and X™(0) are of size O(y/n)
and V™(0) = o(y/n). More precisely, we assume the initial condition is nonrandom and

nlggl(} TT”( )=T17(0) > 0, nhj& TU”( )=U"(0) >0, (3.1)
nll_>nolo TV"(O) = V*(0) =0, (3.2)
lim ——T7"(0) = W*(0) <0, lim —=X"(0) = X*(0) < 0. (3.3)

n—oo \/_ n—oo \/_

Starting from this initial configuration, the LOB will evolve following the dynamics
described in Figure 2.3. We study the evolution of (T"(tAc™), U (tAc™), V™ (tAc™), W™ (tA
o), X™(t A o™)) and derive its diffusion scaled limit. We note that before time ¢™ there
are only three possible dynamics acting on (7", U™, V™ W™ X™) depending on the sign
of V", and these are shown in Figure 3.1.

After ¢" the dynamics acting on the LOB are more complicated because they are
dependent on the locations of the bid and ask prices. To postpone consideration of these
more complicated dynamics until Chapter 5, in this chapter we define the five-tuple of
processes (7", U™, V", W™ X") that agrees with (7", U™, V" W" X™) until time o} and
thereafter continues following the dynamics shown in the left, right or middle configuration
of Figure 3.1 depending on whether V" is positive, negative, or zero, respectively. We
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Figure 3.1: Three possible dynamics for (77, U™, V" W™ X™)

apply the diffusion scaling to both five-tuples, defining
(T(t), U™ (1), V"(8), W (), X"(t))

R B UV
:(%T(nt),\/ﬁ NG NG

5" —inf{t > 0: O"(£) = 0 or Wh(t) = 0} — %0",
(T™(0), U™ (1), V"(£), W™ (1), X" (1))

e L Loue s L 1o e
= (R0, (00 =P ut) W ), =R ) 620, ()

Because the stopping time o} plays no role in the evolution of the processes in (3.1), we
are able to identify a limit (77*,U*, V*, W* X*) of (T™ U™, V", W™ X™). We then define

U™ (nt), =V (nt) W"(nt)ixn(nt)), >0,

vn

o =inf{t > 0:U"*(t) =0 or W*(t) =0},
and show that the limit of
(Tt AG™), Ut AG™), VI (E AT™), WP (E AT, X (EAG")), t>0,
is
(T*EA ), U EAT), V(ENT) W (ENTT), X (ENGY)), t>0;
see Theorem 3.7.5.

The behavior of the limit of the five-tuple of processes (3.4) as n — oo is shown to
be the following. Immediately after the initial time, 7* jumps to the value

. Aafiq

= 3.5
FLi= g (3.5)
and remains there. Likewise, immediately after time zero X* jumps to the value
M2
= — 3.6
i 98,“1 ( )

and stays there. The convergence of 7™ to T* and of X™ to X* are in the M, topology
on
D[0—,00) :==R x D[0,0),
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an extended version of D[0, 00) that allows for jumps at time zero; see Proposition 3.7.4.
The process V* is identically zero, and (U*, W*) is a pair of Brownian motions with zero

drift and covariance matrix given in Corollary 3.5.1. The convergence of (ﬁ”,ﬁ”,w\”)
to (U*,V*,W*) is in the J; topology. The simple structure of (U*,W*) enables us to
compute the joint distribution of the stopping times

- = inf{t >0 : U*(t) = 0},
Twe = inf{t > 0: W*(t) = 0},

and in particular, P{m~ < 7y} and P{my > ny«}; see Corollary 3.6.1. Of course,
o* = min (7 ).

In Section 3.1 we prepare for the determination of the limit of (U™, V", W") by chang-
ing the variables from the triple (U™, V", W") to a new triple of processes (J", K" L").
We scale these processes in Section 3.2 to obtain (JA”,IA(", E”) Section 3.3 is devoted
to showing that K" = 0. In Section 3.4 we show that (j”, Z”) converges to a pair of
correlated Brownian motions (J*, L*). Applying the inverse of the transformation in Sec-
tion 3.1 to the limiting triple (J*,0, L*), in Section 3.5 we obtain the triple (U*, V*, W*)
described above as the limit of (ﬁ",ﬁ”,f\/\") The computation of the joint distribu-
tion of (7y-,Tw-) is in Section 3.6. Section 3.7 shows the convergence of (7", X™) to

(T*(0)1 0y () + w2l 0,00y (), X*(0) 1103 () + KRN (0,00) (+))-

3.1 Transformation of variables

Since there are three kinds of dynamics depending on the sign of V", we can define three
regions in R?,

R, = {(t,u,v,w,x) cv > 0},
Ry = {(t,u,v,w,x) cv =0},
Rs = {(t,u,v,w,x):v <0},

and the dynamics acting on (7", U™, V", W" X™) will be the same within each region.
Although there are six independent Poisson processes governing the arrivals of market or-
ders and limit orders, for convenience we will introduce twenty independent unit-intensity
Poisson processes to describe the evolutions of (7™, U™ V" W™ X™). This is possible
because thinned Poisson processes are also Poisson processes. We denote these Poisson
processes by Nj .., where ¢ = 1,2,3 indicates the region where (77,U", V", W" X")
is, x € {T,U,V,W, X} indicates which of the processes among (7", U", V", W" X") is
affected by the Poisson process, and * € {4, —} indicates whether the Poisson process
increases(+) or decreases(—) the affected process. For i = 1,...,3, we define P;(t) to be
the time (77, U™, V", W" X™) spends in region R; up to time ¢. In particular, we have

t
Pi(t) =/ Li(n(s)un(s),vn(s)wn(s),an(s)er,) ds, i =1,2,3.
0
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Then, according to Figure 3.1, we have

t

T'(t) = T"(0) = Ni7—( \/—(T"( s))TdPi(s)) + Ns 71 (Ao P3(1)), (3.7)
U't) = U"0)+ Nyy+ ()\gpl( )) + Noy 4 ()\ng(t)) — Noy - (Mopg(t))
+ N3y (M Pa(t)) — Nag,— (o Ps(t)), (3-8)
Vi) = V0) + Nuys (MPLE) — Niy— (joPr(1)) + Noo (M Pa(t))
—Noy— (11 Po(t)) + N3y + (Mo Ps(t)) — Nay— (11 Ps(t)), (3.9)
W) = W*(0) + Niw+(AoPi(t) — Niw,— (1 Pi(t) + Noyw 4 (Ao Pa(t))
—N2W (12Pa(t)) — Naw,— (12 Ps(1)), (3.10)
X"(t) = X™(0) — Nyx—(uaPr(t)) +N3,X,+(/O 5%( (s))"dPs(s)).  (3.11)

Recalling the positive constants a and b from Assumption 2.2.1, we define (J", K™, L")
as the continuous piecewise linear transformation of (U™, V", W") given by

) e Vr(t) +Wr(t) if (T(E),U™(t), V" (t), W (1), X"(t)) € RiUR, 319

() = { AVR(E) + WR(H) (T, U (0), V() Wi (), A7(1)) € Ry L)

KMt) = V), (3.13)
n o un(t) + an(t) if Tn(t)vun(t)v Vn(t)7 Wn(t)7 Xn<t>> € Rlv

L = {L{”(t)JrV"(t) if ET”(t),L{”(t),V"(t),W"(t),X"(t)) € Ry UR, 1Y)

Note that this transformation is invertible. Indeed, for ¢+ = 1,2, 3, the image of R;
under this transformation is R}, where the R regions are defined by

Ry = {(.k1): k>0},
Ry = {(, k1) :k =0},
Ry = {(],k:,l).k:<0},

and the inverse map is

L) — L™(t) — bK™(t) if (J™(t),K™(t),L"(t)) € R},

® = { Lm(t) — K™(t) if (J"(t), K"(t), L"(t)) € Ry U RS,

Vi) = K"(t), (3.16)

Wil — Jr(t) — K"(t) if (JU(t), K™(t), L"(t)) € R} URS,
) = { Jn) — ak"(t) if (J7(), K (), L'(1)) € R},

(3.15)

(3.17)

It can be verified that the inverse transformation defined by (3.15), (3.16) and (3.17) is
continuous on R := U?_,; R/

An increase of V" by one unit when (77, U™, V" W" X™) is in R, increases L" by
b units. An increase or decrease of V" by one unit when (77,U™, V" W™ X") is in Ry

increases or decreases, respectively, L™ by b units. Similarly, a decrease of V" by one unit
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when (7",U™, V", W" X") is in Ry decrease J" by a units. An increase or decrease of
V" by one unit when (7",U", V", W" X") is in R3 increases or decreases, respectively,
J" by a units. Otherwise, all increases or decreases in U™, V" or W" by one unit increase
or decrease J" or L™ by one unit. It follows that

Tt = JY0) + Niyt o MPi(t) — Niy— 0 poPi(t) + Niywt 0 MoPi(#)
—Niw,— o i Pi(t) + Noy y 0 M Pa(t) —alNayy o i Po(t)
+Now s 0 Ao Pa(t) — Noyy— 0 paPa(t) + alNsy 4 0 A\gPs(t)
—aNsy,_ o py Ps(t) — Nayy — o e Ps(t), (3.18)

L"(t) = L"0)+ Nig+ o XPi(t) +bNyy oA Pi(t) —bNyy— o uoPi(t)
+Noys 4 0 XaPo(t) — Nagy— 0 poPa(t) + bNay 1 0 A Pa(t)
—Noy — 0 i Po(t) + Nagrq 0 M Ps(t) — Ny — o poPs(t)
+ N34 0 AoP3(t) — Nay,— o 1 Ps(1). (3.19)

Since K" = V", we have

K*(t) = K"(0)+ Niy+oMPi(t) = Niy o poPi(t) + Noy 4 0 MPa(t)
—Noy o Pa(t) + Nay 0 AoPs(t) — Nay,— o i P3(t). (3.20)
In the region R3, K™ is negative and a change in K™ results in a change in |K™| of the

same magnitude but the opposite direction. In the region Ry, K™ is zero and a unit
change in K™ results in a unit increase in |K™|. Modifying (3.20) accordingly, we obtain

|[K™(t)] = |K™(0)| 4+ Niy4 o AMPi(t) — Niy,— o poPi(t) + Noy i 0 M Pa(t)
+Noy,— 0 1 Pa(t) — Nay 4 0 A Pa(t) + Nay,— o u1 Ps(t). (3.21)

3.2 Diffusion scaling

Recall that the diffusion scaling of a sequence of processes Q)" is defined by,

N 1
"(t) = —=Q"(nt).
Q0= =Q"(n)
Because each of the regions R;, i = 1,2, 3, is a cone, when we apply the diffusion scaling to
the processes 7", U™, V™, W", X", J" K™ and L" in the piecewise linear transformations

(3.12), (3.13), and (3.14), we obtain the analogous formulas

V@ W) A (T, U (), V), W (), XAM(E) € Ry UR

T { (1) £ AN i (T (0,000, (0, W (0), (1) € Ry )

K"(t) = V"), (3.23)

Ty = WO (TN, V)0, RM0) € Ry g
' UH(t) +ve(t) if (T7(),U™t), YV (1), Wh(t), X"(t)) € RyURs.
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The inverse of this transformation is continuous. In fact, the inverse is given by
replacing J" by J", K™ by K", and L" by L™ in (3.15), (3.16) and (3.17),

~n o En(t) — b[?”(t) if (An(t),[?n(t),zn(t)) c Rll’
Uu't) = { In(t) — Kn(t) if (J(t), K™(t), I"(t)) € R, U RS, (3.25)
Vi = (3.26)

(3.27)

ak™(t) if (J(t), K™(t), (t))eR’

e [ TO-Rw i (0. B,
(t)
The Continuous Mapping Theorem implies that we can determine the weak limit in the
Ji topology of (U", V", W") by determining the limit of (J*, K", L").

We next center the twenty independent unit-intensity Poisson processes appearing in
(3.7) to (3.11), defining

M; i (t) == Nixo(t) —t, t>0.

Each of these compensated Poisson processes is a martingale relative its own filtration,
and these martingale are independent. For n = 1,2,..., their diffusion-scaled versions
are

Mzn x *( ) = %
and each of these processes is likewise a martingale relative to its own filtration, and these
processes are independent. For ¢ = 1,2,3 and n =1,2,..., we also define

(M; x +(nt) —nt), t>0, (3.28)

1
P, (t):= EPi(nt), t>0.

Replacing the Poisson processes in (3.18) and (3.19) by compensated Poisson pro-
cesses and applying the diffusion scaling, we obtain
Tty = T0) + My, o MPY(8) — My, _ o poPy (t) + My 0 APy (t)
_Mﬁw,f o Nlﬁ?(t) + Mg,v,Jr o )‘I?Z(t) - aM2,v,f o Mlpz(t>
+ My 0 XoPy(t) — M3y, _ o o Py (t) + aMy, o APy (t)
—aMgfvﬁ_ o ull_Dg(t) — M?zl,W,— o MQI_Dg(t), (3.29)
LMt) = L™0)+ My, oA ﬁf(t) + beV Lo MPY(t) — bM, _ o P, ()
+ M3y, 0 APy (t) — _omPy(t) + nger o A1 P (t)
—Mgy, o Py (t) + M, u+ o M Py (t) = My _ o pigPy(t)
5(t) — (t

+M3V+ 9 /\(] t _ o /,61P3 ) (330)
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The drift terms that arise from the centering of the Poisson processes vanish in (3.29) and
(3.30) because, according to Assumption 2.2.1 and its consequence (2.1),

(M — o+ Ao — )Py = 0,
(A — apy + Ao — Q)P; = 0,
(ao — apr — M2)P§ = 0,

(A2 + A1 — bpo) Py 0,

(A2 — po + by — 1)?2 = 0,
(M — o+ Ao — p1)Py = 0.

The filtration {F"(f)}:>0 we use for J“ and L" is the one generated by the sixteen time-
changed processes M1 Vg © MNP M _ o1 Py appearing in (3.29) and (3.30), and

three occupation time processes Pl, P2, and P These sixteen time-changed processes
are not independent because of the coupling of the time changes. However, they are each
martingales relative to the filtration {F"(t)};=o, as are J" and L".

Replacing the Poisson processes in (3.20) and (3.21) by compensated Poisson pro-
cesses and applying the diffusion scaling, we obtain
E™(t) = K"(0)+ My, o MP(t) = My, _ o poP(t) + My, , o M Py (1)
—M3y _o Mlﬁg(t) + Mgy, o )‘Oﬁg(t) — Mgy, _o Mlﬁg(t)
/(A = o) Py () + V(A — ) Py (1)

+v/n(Xo — ) P3(#), (3.31)
(K1) = [K"(O)] + M}y, 0 MPL(8) = My _ 0 P (t) + M, ;. 0 M Py (t)

+Mgy, - 0 Py (t) = My, 0 NP5 (t) + Mgy, o Py (1)
VA — )P + Vi + ) PL()
+v/nl = X0) P (1), (3:32)

Since in n'* pre-limit model, we assume that

U(0)/v/n — ug,  V(0)/v/m — 0, W™0)/vn — wo,

where ug is a positive constant and wy is a negative constant, from (3.22), (3.23), and
(3.24), we have

~

J*(0) = wo, K™(0) =0, L"(0) — uo.

Replacing the Poisson processes in (3.7) and (3.11) by compensated Poisson processes,
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applying the diffusion scaling, we obtain
) = 70 = Fip ([ T ) PI) + Ty (aP()

i [ BT AP )+ VP ), (3:33)
R = B0~ T (uaPh0) + ([ 0 () P

AP0+ Vi [ 08 () P (334

3.3 Crushing K"

We denote by D([0,0),R?) the space of real-valued cadlag functions from [0, 00) to R?.
We shall use both the J; and M; topologies on this space; see Ethier and Kurtz [9] for
the former and Whitt [26] for both topologies. A sequence of cadlag processes is said
to converge weakly-J; or weakly-M; if the measures induced on D([0, >),R?) converge

weakly under the J; or M; topologies, respectively. We denote these convergences by N
and =25 In this section we identify the weak-J; limit of the sequence {K™} .

Definition 3.3.1 We say that a sequence of cadlag processes { X"}, is bounded above
in probability if for every T > 0 and € > 0, there exists a K and a positive integer N
such that
P{ sup X"(t) >K} <e Vn>N.
0<t<T

We say that {X"}°, is bounded below in probability if {—X"}2, is bounded above
in probability. We say that { X"}, is bounded in probability and write X™ = O4(1) if
{X™}22 | is both bounded above and bounded below in probability, and for every subsequence
{ X732 of { X"}, there exists a sub-subsequence {X™*»}° | such that

X’n,kp Jl X*,

where X* € C([0,00),RY). We say that X" = o(1) if X" TN 0, or equivalently, if for all
T>0,

sup |X"(t)| 50 asn— .
0<t<T

Remark 3.3.2 A classical result is that the diffusion-scaled compensated Poisson pro-
cesses (3.28) converge weakly-J; to independent Brownian motions. See Billingsley [5],
Section 17.3. This implies that these processes are Oq(1). Since P, (t) < t and mono-
tonic fori =1,...,8 and allt > 0, the time-changed diffusion-scaled compensated Poisson
processes appearing in (3.29)-(3.32) are also Oy(1).
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Theorem 3.3.3 K" é 0.

Proor: We modify a proof due to Peterson [24]. For t > 0, we define

gy o [ {5 € 10,805 K7(5) =0} it {s €[0,1): K"(5) = 0} 20,
| 0 if {SE [0, ] :K"(s):o}:(z)'

Because [A(”(s) # 0 for s € (7"(¢),t], FZ is flat on this interval, and we have
Pt + Pylt) = P (7)) + P (7)) + ¢ = 7"(¢)

and
-—=n

Py(t) = Py (m"(t))-
Substituting this into (3.32), we obtain

0

IN

|K"(t

~—

= R (7" )] + Oul1) = ev/n [P (1) + P5(t) = Pl (7"(1) ~ Pi (7" (1)

< B (7 (0)| + Oua(l) — cv/n (t — (1)),

(3.35)

where ¢ is defined by (2.1). Since K™(7™(t)) — 0 if 7(¢) = 0, and otherwise | K™(r"(t))| =
1/y/n, (3.35) implies y/n(e — 7™) is bounded above and below, where e is the identify

process e(t) =t for all £ > 0. This implies

and thus B
0§P?—ﬁ?o7’”§6—7’"=0(1).
Because the limits of the processes ]\/ZZ"X* are continuous, (3.37) implies that
M oaﬁ?—]\/i” oaP; or" = o(1)

7, X% 2, X%

for any positive constant «. Therefore, we can upgrade the estimate in (3.35) to
0 <|K™t)| < o(1) +o(1) — cv/n(t — (1)),

which implies
\/ﬁ(e - Tn) = 0(1)a

and we finish the proof.
Remark 3.3.4 From (3.31) and (3.32), we see that

\/EC(F;Z - F;L) + \/ﬁ<)\l - ,ul)F; = 001(1)7
—v/ne(Py + Py) + (A + m)Py; = Ou(l),
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Dividing (3.39) and (3.40) by \/n, we see that

—n J1

C(Fg - FT) + (A1 — 1) Py

—n J1

—C(Fg + ?11) + (AL + 1) Py

0,
0.

(3.41)
(3.42)

If we multiply (3.39) by (M + 1), multiply (3.40) by —(\ — 1), and sum the two, we

obtain B
Vn(\Py = Py) = Oq(l).

3.4 Convergence of J" and L"

(3.43)

The proof of convergence of J" and identification of the limit proceeds through several
steps. Along the way we identify the limits of the processes Fj, 1=1,...,8.

Proposition 3.4.1
(T, L") = (I, 1),

where (J*, L*) is a two-dimensional correlated Brownian motion with the covariance ma-

triz
Y — C; CjL
ci, cr |’
where
c; = 2a) Al —1—(,u2+a2,u1+a)\0)>\0_u1—|—(u2+a2u1+a2)\0) e
Ao+ A Ao+ M\ Ao+ A1
2
— (2t e
0(a b_'_b)?
A1 Ao — [ H
= (B®X 4+ Ny + b° b\ + )\ A 204 \g———
e = (P Ao A bo) 3= o (A 4 Ao+ ado) 7 4 2adoTm

= 2X\(ab—b+1),

e = (b + bﬂo))\oi‘:)\l + (b + aul);z — ’;1 +(ado + aﬂl)kolﬁh

_ 2/\02ab—ba—b‘
PROOF: Define

(I\ﬂf = ]\//vaﬂ_ o\e— ]\/4\1"71,7_ o e + ]/\Z{fW,_F o M€ — ]/\/[\EW,— o e,
\ng = ]\/@fv,Jr o\e— a]\/j;v,f o e + ]\/@fw7+ o \pe — M\gw,f o fge,
\T/g = a]\//TngﬂL o \pe — a]\/@vv_ o€ — ]\/4\;1,\,7_ o lge,
/A\711 = ]\//71’}/”r o Age + b]\//va’Jr o\e— b]/W\{fV’_ o pe,
Ay = @fuar ° Age — ]\/erfu,f © fo€ + bM\;v,Jr oAe — M\zrfv,f © Hae,
Kg = ]\/4\32”’Jr o\e— ]\/4\;’“’_ o o€ + ]\/4\??’1;74_ o Npe — ]\/4\;%_ o l1€,
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so that J" = :]\”(O)—i-Z?:l UnoP; and L" = L"(0 327, AmoP. Because [Ml X ,MZ”X « =

e and these processes are independent, we have

[\f;?’ ‘T’ﬂ = 2aloe =: Ay,

[\TJ;‘, ‘1\'3] =L (g + aPpu + ado)e =: Ay,

[\ng, \ng] = (2 + @*py + a*Xg)e =: As,
[/A\?a /A\ﬂ =, (VA1 + Ag + b2 g)e =: By,
[/A\ga /szl] =L (UM + Ao +aXg)e =: By,

[/A\g, KQ} =2 2aMge =: Bs,

[0 A7) =2 (At bpo)e =: O,

[@37 /AXS] = (bA1 + apr)e =: Oy,

[@g’ Kg] = (aXo + apy)e =: Cs,

The other cross variations are zero. Returning to the equations (3.41) and (3.42) and the

obvious equation
P|+ P, + Py =e,

we have ) \
—=n Ji 1 —n Ji 0 — —=n J; [%51
! /\0+/\1€’ 2 /\o+)\1e, 3 )\o+)\1e7 (3:44)
We have
R 3
[T =y [, ]
=1
Ji A1 Ao — M1
= —— A+ Ay + A
YED Vi VD Wl >\0+>\1 3
== cje,
3 A
B = Y AR eF
i=1
J1 At Ao — 1 M1
- -+ By + B
Ao+ Mt YD Vit R VNS Wi
= cre
3 A~
P = Y[R
i=1
Ji )\ >‘0_,U/1
Ao + M\t 1+ X+ Ao )\0+)\1 3
= CJLE.
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Since J™(0) — wo and E"(O) — ug, we now apply [9], Theorem 1.4 of Section 7.1,
to the sequence of martingales {J"}>, and {L"}>, relative to the filtrations {F'}s>0
to conclude that (f”,Z”) converges weakly-J; to (J*, L*), which is a two-dimensional
correlated Brownian motion with the covariance matrix

Y — {CJ CJL]

¢jL CL

3.5 Convergence of (5{”,]7”,)7\/\”)

Corollary 3.5.1
@,V W) = U0, W),
where (U*,W*) is a two-dimensional correlated Brownian motion with the covariance

matrix
Y |:CJ CJL:| _

cjr CL

PRrROOF: The proof simply follows from (3.25) to (3.27), Theorem 3.3.3 and Proposi-
tion 3.4.1. 0J

Since D[0,00) under the .J; topology is separable, we can apply the Skorohod Rep-
resentation Theorem to build a probability space (€2, F,P) and random variables (for the

convenience of the proof we do not relabel these), i.e., (U*,0,W*), (ﬁn,ﬁn,ﬁ?n)nzl, on
this space such that we have pathwise convergence, i.e.,

U,V W) —s (U*, 0, W)
almost surely. Let us define
o= inf{t > 0] U™t) <0},
my = inf{t >0/ W"(t) <0},
e = inf{t >0 U*(t) <0},
mw = inf{t >0 W*(t) <0}

Proposition 3.5.2 Under the probability space we mentioned above, we have

n
Tu _> 7—]/{,

Ty — Tw.

PRrROOF: The function ® : C[0,00) — [0, 00] defined by

O(z) =min{t > 0: z(t) =0} (3.45)
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is almost surely continuous under Wiener measure. Because 7}; = @(ZJ”) and U™ — U*
almost surely under the J; topology, the continuous mapping theorem implies

= U) =1y
almost surely. We can prove the other convergence by the exact same argument. 0

Let us define,

. n n
= Ty N\ Ty,

o = TyuN\Tw.

Corollary 3.5.3
20 Hn An J1 * *
(u~/\&"7 V~/\&"7 W~/\&”) — (u~/\&7 0, W‘/\&)
almost surely.
PROOF: Because the mapping © : R? — R defined by
O(a,8)=aNnp (3.46)

is continuous, from Proposition 3.5.2, we have

U™V W A ) 2 (U0, W, T A T) (3.47)

almost surely. The mapping (z,t) — x.,; from C[0,00) x [0,00) to C[0,00) is almost
surely continuous under Wiener measure, and so from (3.47) and the continuous mapping
theorem, we have

Ui Vi Wikgn) = Ui, 0,Wi5)

almost surely. 0

3.6 Properties of the first passage times 7, and 7

Since (U*, W*) is a two-dimensional correlated Brownian motion starting at (wp, ug), and
(14, Tyy) are their first passage times, we can apply [23] to get following corollary. Since
in [23], the two-dimensional Brownian motion (X, X3) begins in the first quadrant (i.e.,
X1(0) > 0, X5(0) > 0) and has covariance matrix

O'% pPO102

poioy o5 |’

and our correlated Brownian motion (U*, W*) begins in the fourth quadrant (i.e., ug > 0,
wp < 0) and has covariance matrix

¢y CJL

¢ cr |’
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we identify U* with X; and —W* with X5, so that, in the notation of [23],

Xl(O) = U, XQ(O) = —Wo,
01 = 4/Cj, 09 :.:=,/Cqg,
CaJ
= — <0,
P veite
Uo —Wo
ay = — a9 =

From equations (2.4), (2.5), (3.2) and (3.3) in [23], we have

Corollary 3.6.1

© q (m/a—1) & 0
Pl <} — / L (r/ro) sin(mfy /) ar.
o argsin®(mly/a) + [(r/ro)™/® 4 cos(mby/c)]?
> 1 (r/r0)™/2=V) sin(7hy/r)
P{n, > = — d
{ne>mw} /0 arg sin?(mly /) + [(1 /o)™ — cos(mby /)] "
where
1_ 2
a := tan! <_—p ),
P
\/a% + a2 — 2payas
o = s
1—p?
/T — 2
0, = tan ! <u>
a1 — paz
Moreover, the joint density of (1, Tw) is given by
P{m € ds,ny € dt} = f(s,t)dsdt,
where for s <t we have
- 2
msina i t — scos(2a)
S,t = ex —
fs:1) 2a24/s(t — scos? a)(t — s) P < 25 (t—s)+ (t — SCOS(2&))>

Xinsm(wﬂnma(?’ t—s )’

— « 2s (t—s)+ (t — scos(20))
and for s >t we have
: 2
7 sin o g s — tcos(2a)
S,t = ex - =
fls:1) 2024 /t(s — tcos? a)(s —t) P ( 2t (s — t) + (s — tcos(2av)) )
S r2 s—t
- In7r al\ 4, 5
x;nsm( a Vo2 <2t(s—t)+(s—tcos(2a)))

where I, denotes the modified Bessel function of the first kind of order v.
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3.7 Convergence of 7" and X"

Theorem 3.7.1 The sequence of cadlag processes {'7’"}20:1 and {9?”};’1":1 are bounded in
probability on compact time intervals.

It suffices to prove {7A”"‘};L°°:1 is bounded in probability on compact time intervals.
The proof of this theorem is presented in Lemmas 3.7.2 and 3.7.3 below. For simplicity,
we write X" = Oy(1) if {X"}22, is both bounded above and below in probability.

Lemma 3.7.2 The sequence of processes {7A'"}$LO:1 is bounded above in probability on
compact time intervals.

ProoF: To simplify notation, we rewrite (3.33) as

T =T O) + Y0 + Y+ Y+ V] (3.48)
where
t
v = i, ([ ) ). (3.49)
V() = My, (MPy(t), (3.50)
t
V() = —vn | 6,(T"(s)" dP\(s), (3.51)
0
Y(t) = nlaoPy(t). (3.52)
Then
Yy =L vy, (3.53)

where Y5 is a continuous process. We rewrite Y, as

—n Ao fl1—n Ao fl1 —=n
Vi = V(P () = SEPL(0) + Vi PL()
From (3.43) we see that
—n )\2/14—71 . AT
\/ﬁ()\QPs(t) - A\ Pl (t>) - Ocl<1) - Ocl<1)’

S0 \

Yr = ;“1\/77,13’{ + 04(1). (3.54)

1

If N is a unit-intensity Poisson process, then —N(t) + %t is a supermartingale whose
supremum S* over t > 0 is finite almost surely. Therefore,

—%(N(nt) —nt) —v/nt= % [—N(nt) + %nt} — %\/ﬁt < %S* — %\/ﬁt,
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/\

al(l). (3.55)

and hence by substituting N by N; 7 _ and ¢ by fot 91,( ( ) s), we obtain
1

Y0 + Y3 () < SYR() +

T
Combining (3.53), (3.54), and (3.55) we obtain
~ 1
T < SV 2“1\/—" FYP(E) + Oa(1)
A
_ \/—/ < 201 —-eb 7 (s ) Ou(1). (3.56)
Let us fix 7' > 0 and consider ¢ € [0,7]. Either
t )\ 1 f —n,
/ < 2 —Qb(T"(s))+) dPy(s) <0, (3.57)
0 )\1 2
or else . \ \
/ 0,(T"(s))" dP;(s) < 222Dy (1) < 222 (3.58)
0 )\1 )\1
We define
. t if (3.57) holds,
() = sup {S € [0,¢] : Hb(?”(s))Jr < 2’\f\—‘1“} if (3.58) holds. (3.59)

If (3.57) holds and 77(t) = t, T™(¢) is bounded by the (5;(1) term in (3.56). If (3.58)
holds, then

Tr(t) < T (7 +Z[Y” v (1)) (3.60)

We consider each of the four terms on the right-hand side of (3.60). Since the jumps in

T” are of size we must have

7
~ n )\2/14 1
T (t"(1)) < 2=— oo T NG (3.61)

Because of the bound (3.58) on the argument of M{H—’_, both Y(t) and Y{*(7"(t)) are
O.(1). Similarly, both Y;(t) and Y (r"(t)) are Ou(1). It follows that

T < Y0 - () + VA (Pl - P () ) + Oa()

! Aofly —n ~
= Vn Tn(t)( A ~0(T7(5)) )dPI(S)JrOd(l)

<~V (Pl - Pl (1)) + Ol (3.62)

because 0(7"(s))* > 2%1& for s € [r"(t),t]. Again we have an upper bound on 7". In

conclusion, {'?” o, is bounded above in probability on compact time intervals. 0
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Lemma 3.7.3 The sequence of processes {%”}3":1 15 bounded below in probability on com-
pact time intervals.

PROOF: We return to (3.33) and note that because 7™ is bounded above in probability on
compact time intervals and dP] < dt, the sequence of processes { [; 0,(T") " dP}}22, is
bounded in probability on compact time intervals. Consequently, the sequence of processes

{A?{ff_o / eb(?”)+dﬁ?}
0 n=1

is_bounded in probability on compact time intervals. In addition, the other process
M3 T40 )\2P on the right-hand side of (3.33) involving a scaled, centered Poisson process
is bounded in probability on compact time intervals. This permits us to write

70 = va |- | (P () P (s) + WP + Gt (363)

We define R
p"(t) := sup {s € [0,¢] : T"(s) > 0} : (3.64)

Then 77 (s) < 0 for p"(t) < s <t and (3.64) implies
Tt = T("(0) + Vare(Pi(t) = Pa(o"(1))) + Oa()

> T"(p"(1) + Ou(l). (3.65)
Because T (p"(t)) > — f’ we conclude that 7" > Ocl( ). O

We can rewrite (3.33) and (3.34) as
T"(t) = T"(0)— My _( / Ou(T™ () dPY (s)) + My, (\P5 (1))
Vi [ (0T e 2P

V(P - 2P ), (3.66)

Rt) = AM0) — My (1Pr(t)) + My ( / 0.(X"(s))"dPL(s))

+v/n /0 (65(X"(s))™ — "QAl)dTDg(s)

k1
V(PP 6) — P (). (367)
Because of Theorem 3.7.1 and (3.43), we obtain
T = 70 - vi [ G(T0) - 2P+ e (o)
i) = ROV [ (0E) - AP+ Che. (369
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where C} = (5:[(1) and C% = @1(1). In fact, C% and C% have continuous limits along
some subsequence.

Let D[0—,T] = R x DI0,T] denote the space of cadlag functions from [0,7] to R
augmented by a value at 0—. For x € D[0—,T], let the augmented graph of x be
[, :={(zt) e Rx[0,T] : z € [x(t—),z(t)]}.

A parametric representation of x is a continuous nondecreasing function (u,r) mapping
[0,1] onto I',. For the parametric representation, “nondecreasing” is with respect to the
usual order on the domain [0, 1] and order on the graph defined above. Let II(z) be the
set of parametric representations of x, and define

d(x1, x9) 1= inf up — us|| V[lry —1r
(21, 22) rrnetie s e {H 1= ug V[rr = 7o},

where || - || is the supremum norm on [0, 1]. Then the topology induced by d will be the
M, topology on D[0—,T]. Once we have the topology on the compact domain, we can
construct the topology on D[0—, 00) as usual.

For convenience, we denote (D[0—, 00), M7) by Dy/[0—, 00). In the following propo-
sition, we will work under Dj;[0—, 00). For each pre-limit processes 7" and X™, let

Proposition 3.7.4

X" = X,

in Dp[0—, 00), where

A
TH0=) = to, T*(t) =221 fort >0,
O\

M2
05111

X (0-) = @, () =—7=—, for

PROOF: We appeal to Section 4.5 and 4.6 of [2]. Equation (4.51) in [2] considers the
process

D0 = D1(0) + (0 = v [ (056))* — 1)dPl),

where (C™,n > 0) converges in distribution to a continuous process. We have the anal-
ogous equation (3.68) for 7. However, in 2], V" is modeulated by another process Jn
that takes positive and negative excursions. When J"is on a positive excursion, there is a
positive queue W" at the price tick adjacent to V" to the right; when J"is on a negative
excursion, this price tick is empty and V" is at the bid price. In our setting, prior to the
stopping time ¢, there is always a queue adjacent to 7" to the right, and we assume
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the dynamics of T™ are forever as they are prior to ¢”, According to Therorem 4.6.3 in
[2], V" converges in Dy;[0—, 00) to a process V* that is 1/0 on the positive excursions of
J* = lim, .o, J" and V*(0—) = lim,, oo 17”(0) This result in our setting establishes the
claimed convergence of 7™, The proof for X" is similar. 0

Let D;[0,00) be D[0,00) with the J; topology. We define
D = Dy[0—,00) x D;[0,00) x D;[0,00) x D;[0,00) X Dyps[0—, 00),

on which we use the product topology and the o-algebra generated by this topology.

The processes

S\n e (7\’71’?;{\71’ ﬁn’Wn")?n)’
8* e (T*,Z/{*,V*,W*,X*>,

take values in D. From Corollary 3.5.3 and Proposition 3.7.4, we see that there exists a
probability space on which we can define 8™ and §* so that

e 8" — S* almost surely.

e Until the first time U™ or V" vanishes, the distribution of (f”, un,vn, we, )A(”) on
D agrees with the distribution of S™ on D.

More specifically, let us define o : D — [0, oc] by
o(t,u,v,w,z) =inf{s >0 : u(s) =0 or w(s) = 0}.

We define R L
St= (T Ut vt W X",
and
;fopped = (TCL\O(Sny Un Vn Wn Sny? .T/L\U(§n))a
ZSOPPEd - (T/T\LJ SOk u?\a 8ny’ V” WCL\U 8ny’ Xr/Z\J(S )>’
:topped = ( -7\0 S*)» -/\J(S*)? V~/\U(S*)7 W~/\G(S*)7 ‘/Y-/\U(S*))'
S;Ltopped is defined on some probability space (€2, F,P). Sr toppea a0 8% 4 are defined on

another probability space (Q!, F', P1).

Theorem 3.7.5 The measure Q" induced on D by S stopped 1S also the measure induced
on D by Sn

stopped- Moreover,

Sstopped — S, P! almost surely.

stopped

Let Q* be the measure induced on D by S Then we have

stopped*

Q"= Q"
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Chapter 4

Brownian motion preliminaries

In Chapter 3 we started the LOB with initial condition (3.1)-(3.3) and followed it until
either U™ or W™ hit zero, or equivalently, until either U™ or W hit zero. In Chapter 5
we will assume without loss of generality that

oF = nye < Ty,
i.e., W* reaches zero before V*. Under this assumption,
lim U"(o™) = U*(0*) > 0 lim V(o™ = V*(0*) = 0,
lim W”(J") =W*(o") =0, nlgg()f("(a") =X"(0") = kp < 0.

n—oo
These convergences are joint weak convergence in the J; topology, and by using the
Skorohod Representation Theorem, we can put all processes on a common probability
space so that the convergences are almost sure. In Chapter 5, we will reset the clock to
zero at time ¢” for the pre-limit processes and at time ¢* for the limiting processes, and
hence we will study the evolution of (U™, V", W™, X™) beginning from the initial condition

U(0) := nlggo TU”(O) >0, V*0):= nlggo TV"(O) =0, (4.1)

wW*(0) := nhjEO TW”(O) =0, X*(0):= nlg& TX (0) = kg < 0. (4.2)

Similarly to the construction in Chapter 3, in Chapter 5 we will define processes Z/l”
1% W" and X" that agree with un, v, W™ and X™ for an initial period of time (in this
case, until either U™ or X" hits zero), but which continue to be governed by the same
dynamics after this time as before it. We will discover that the limiting processes for yn
and W" constitute a split two-variance Brownian motion, defined by the formula

(V*, W*) = (max(G*,0), min(G*,0)), (4.3)

where G* is a two-variance Brownian motion (see Definition 4.1.1 below) with variance
cy per unit time on its positive excursions away from zero and variance c_ per unit time
on its negative excursions away from zero.
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In fact, what we are able to show initially is that every subsequence of {(ﬁ”, W\”)};’f’:l
has a sub-subsequence that converges weakly to a pair of processes (V*, W*) satisfying

(4.3). To see that the full sequence {(V", )7\/\")};0:1 converges, we must show that a two-
variance Brownian motion with given variances per unit time on positive and negative
excursions is unique in law. It turns out that we also need to know how occupations times
for the two variance Brownian motion are determined by Brownian motions used in its
construction. This chapter provides these results.

In particular, Section 4.1 defines two-variance Brownian motion and derives its ele-
mentary properties. We choose to define it in such a way that the uniqueness in law of
two-variance Brownian motion is immediate. We characterize it in the way that it will
appear in Chapter 5. This characterization, which involves a detour through Brownian
excursion theory, is developed in Section 4.2.

4.1 Two-variance Brownian motion

Definition 4.1.1 Assume B is a standard Brownian motion starting at by, and ¢y and
c_ are two positive real numbers. We call Z a two-variance Brownian motion if
1 1
Z=DBo(—P+—Pz)",
( ot 5)

where

t
P (t) :/ 1(+B(s)>01dS.
0

We say Z has variance cy per unit time on positive excursions and variance c_ per unit
time on negative ercursions.

Proposition 4.1.2 Assume Z is a two-variance Brownian motion, i.e.

1 1
Z=Bo(—P}+ —Pg)"".
Cq C_

Then
Z =Bo(cy P +c_Py), (4.4)

where
t
Pr(t) = /1{Z(s)>0}d37
0

t
Py(t) = /0 Liz(s)<oyds.

Moreover, fort > 0, we have
t=PF(t)+ P; ().
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PRroOOF: To prove (4.4), it suffices to show

1 1

(—Pg +—Pg)"" = (csPf +c_Py).
Cy C_
Note that 1 ]
Z =Bo(—P}+—Pg)"!
Cy C_
implies
1 1
B=Zo(—P}+—Pp).
Cy _
Let
( ! Ph + ! P5)(s)
u=(— — .
Cy B C_ B
then

1 1
B(s)=Zo(—Pj + —P5)(s) = Z(u).
Cy C_
Together with the definition of P and Pg, we have

du = d(-P(s)+ Py (o)

1 1
= (—LBe>0 + —LBs)<0})ds
C+ C_

1 1
= (—1zw>0 + —1zw<oy)ds,
C+ C_

which also implies,
ds = (C+1{Z(u)>0} + C_l{z(u)<0})du. (4.5)

Since B is a standard Brownian motion, we know that Lebesgue measure of the time it
spends at 0 till any time ¢ > 0 is zero. Then through time change and (4.5), we have

t = Pj(t)+ Pg(t)
t
= /(1{B(s)>0} + 1{B(s)<0})ds
0

/<;P§+£PB>@>

0

(cr1izwso0y + c~Lizw<oy)du

1 1 _ 1 1
= C+P;O<ZP§+ZPB)@)+C*PZO(Zpg—i_ZPB)(t)

oL L,
= (ePf e Py)o(Ph + = Pp)(0),

and this implies
1 1
(—Pg +—Pg)"" = (csPf +c_Py).
Cy C_
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Since _-Py + =Py is absolutely continuous, and B = Z o (- Py + L Pg), we see that
in + -- P maps the Lebesgue measure zero set {s : B(s) = 0} to the Lebesgue zero
set {u : Z(u) = 0}, which proves the last equation in the proposition. O

Proposition 4.1.3 Assume there exists a process Z satisfying
Z:BO(C_i_P;‘f—C_PZ_),

where B 1s a standard Brownian motion starting at by, and
t
Py(t) = / Liz(s)>0yds,
0

t

Py(t) = /1{Z(8)<0}d87
0

t = PF(t)+ Py(1).

Then ] ]
Z=DBo(—Pj+—Pg)",
C+ C_

where

t
PE(t) = /01{3(5)>0}d8,

t
Py(t) = / Lip(s)<oyds.
0
In particular, Z is a two-variance Brownian motion.

PROOF: The proof is similar to the proof of Proposition 4.1.2. It suffices to show
(—Pg +—Pg)" =(ct Py +c_Py).
Cy C_

Let
s = (cy Py +c_P;)(u),

then
Z(u) = Bo (¢ Py +c_P;)(u) = B(s).

Together with the definition of P; and P, , we have
ds = d(cyPf(u)+c Py (u))
= (C+1{Z(u)>0} + C—l{Z(u)<0})du
= (C+1{B(3)>0} + C—l{B(s)<0})du7

which also implies

1 1
du = (—1(B()>0y + —1{B(s)<0})ds. (4.6)
C+ C_
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Since t = P (t) + P, (t), through the time change and (4.6), we have
t = P7(t)+ P, ()
t
= / (Lizw>0y + Lizw<oy)du
0

(cyPF+c-PZ)(t) 1
/ (—1Bs)>0p + —1B(s)<0})ds
0 C+ C_

1 _ 1 __ _
= ZPEO (c+Pj +c_Py)(t) + C__PB o(cyPf +c_Py)(t)
1 1
= (—=Pg+ —Pg)o(cr Py +c Py)(1),
Cq C_
and this implies
1 1
(—Pg +—Pp)™" = (e P} +c_Py),
Cy c_
which completes the proof. U

From Proposition 4.1.2, we see that when Z is positive, Z behaves like an accelerated
Brownian motion by factor ¢, , and when Z is negative, it behaves like an accelerated
Brownian motion by factor c_. This is why we call Z a two-variance Brownian motion. In
other words, each positive excursion of the standard Brownian motion B will be mapped
to a positive excursion of Z with length stretched by i, and each negative excursion
of the standard Brownian motion B will be mapped to a negative excursion of Z with
length stretched by c% This leads us to construct such a process through a Poisson
random measure. In particular, we want to build a Poisson random measure v on H =
([0,00) x C([0,00))) with intensity measure A such that

A(ds, de) = ds x n(de),

where e is the excursion starting at local time s, if there is such an excursion, and n is
the excursion measure. The first entry in H indicates the local time when there is an
excursion, and n(de) describes the distribution of this excursion. We want to define a
map from local time clock to chronological clock. Let L' : [0,00) — [0, 00) be

15'0) = | 9 / o oleuldsde)

where o (e) represents the length of excursion e. Note that L' is right-continuous and is
a strictly increasing, pure jump process. Lgl(é) computes how much chronological time
has passed when the local time of B reaches ¢. Its inverse, which is continuous, is,

Lp(t) :=1inf{0 > 0: L3'(0) > t}.

From page 130 of [18], we can construct B as follows:

0, if L];l(LB(t)—) =
b= {eLBm(t LM (Ls)), i Ly (Ls(0)-) #
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Note that Lz'(Lg(t)—) is the starting time of the current excursion if B is on a excursion.
Obviously, Z and B have their own clocks. Since

1 1
Z=Bo(—P}+—Py),
Cq C_

the map between the two clocks, 3 : Clock of Z — Clock of B, is

p(t) == (LPE + in)_l(t) =: s. (4.8)
Cy c_
We also define
Lgl(f) =810 Lgl(ﬁ).

Since 3 is a strictly increasing continuous function, the right-continuous inverse of L' is
Lz(t) = LB o} ﬁ(t)

Whenever Z is on an excursion, B is also on an excursion, and the ratio of the length of
excursion on Z to that of B is i if the excursion is positive, and c% if the excursion is
negative. So for any ¢ > 0, let

erp(s)(cyu), ifuwe |0, U(ei—f(s))] and er,, (5 (cyu) > 0,

5 0 e e 4.9
LZ(t)< ) {GLB(S)(C—U)w ifue [07 %] and 6LB(5)<C_U) <0, ( )

where s = (). Assume Z is on an excursion at time ¢. Then the time when this excursion
begins is

gstart(t) = 6_1 © Lgl © (LB(B(t))_)
= Lz (Lz(t)-).

Now, we are ready to construct 7.

Proposition 4.1.4 Let us define a process Z as follows:

Z(t) _ {07 Zf gstart<t) - i

er,m(t— L (Lz()=)), if gstare(t) # (4.10)

where spart, Lgl, Ly, and ér,, are defined previously. Then Z is a two-variance Brownian
motion.

PROOF: From Definition 4.1.1, it suffices to show B = Z o (in + C%Pg), where B is a

standard Brownian motion. From the definition of L', L, we have with s = 3(t),

Ly'(Lz(t)=) = B oLy o(Lp(B(t)—)=p""oLy o(Lp(s)-),
L7'(Lz(t)) = B~ oLy o(Lp(B(t))) =p"oLy o(Lp(s)).
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Since 3 is continuous and strictly increasing, we have with s = S(t)
Lz (Lz(t)=) = Lz'(Lz(t)) & L' o (Lp(s)—) = Ly o (Ls(s)). (4.11)
If L;'(Lz(t)—) # L, (Lz(t)) and ér,4)(t — L;'(Lz(t)—)) < 0, from (4.9), we have

a0t = L7 (L2(0)-) = exale (= L7 (La(9)-)
— erpec(t— B o L (Lp 0 B(H)-)))
= eLp(e_(87(s) = B o L5 (La(s)-))). (4.12)

Note that 37! = iPE + L P;, and L' (Lp(s)—)) indicates the starting time (clock of
B) of the current excursion which is negative. Therefore

57(s) = 570 Ly (Lin(s)-)) = — (s — Lz (Ls(s)-),
and (4.12) implies
éryw(t — Lz (Lz(t)=)) = erps(s — Lp' (La(s)-)). (4.13)

Similarly, if L' (Lz(t)—) # L, (Lz(t)) and ér,,)(t — L, (Lz(t)—)) > 0, we see

er () (t — LEI(LZ(t)—)) = BLB(s)(C+(t — L, (Lz(t)-)))
= ey (et — B o L' (Lp o B(t)—)))
= eLy(s)(cr (871 (s) — ﬁ 10 L' (Lg(s)—)))- (4.14)

Since we are on a positive excursion of B, we have

B (s) =B o Ly (Lp(s)—)) = i(s — L' (Lp(s)-)),
and (4.14) implies
eyt — Lz (Lz(t)=)) = eru(s)(s — L (L(s)-))- (4.15)

Finally from (4.11), (4.13), and (4.15), we can rewrite (4.10) as

Zo (—Pf +—-Py)(s) = Zo57(5) = 200
_ {0, if L5 (Lo(s)=) = L5 (La(s)),
erp(s)(s — L (Lp(s)=)), if Lg'(Lp(s)—) # Ly (Lp(s))
= B(s),
which completes the proof. 0
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4.2 Brownian excursion theory

4.2.1 Construction of mappings

We denote by C..[0, 00) the set of continuous functions z: [0,00) — R such that z(0) = r.
We introduce the metric d, on C..[0, 00) defined by

o) =Y o (14 s [olt) 0]

0<t<n
n=1

Convergence under this metric is uniform convergence on compact sets. Let B" be
the Borel o-algebra generated by this topology and B be the product o-algebra on
Cy,[0,00) x C,,[0,00).

Definition 4.2.1 We define the Skorohod map I': C[0,00) — C[0, 00) by

['(z)(t) = — min (z(s) A 0) Vz € C[0, 0). (4.16)

0<s<t

Remark 4.2.2 For z € C[0,00), I'(2) is the unique nondecreasing function in C|0,00)
with the following three properties:

(1) T'(2)(0) = max{—z(0), 0},
(i) z(t) +(2)(t) >0 for allt >0, and

(iii) on intervals where z +1'(z) is non-zero, I'(z) is constant.

Given r € R, define

D" = {(24,2-) € Co+[0,00) x C,-[0,00) : li{n inf z, (¢) = liminf z_(t) = —oco}, (4.17)

—00 t—o00

where r* = max{0,r} and r~ = max{0, —r}. We show that D" € B"""" in Appendix A.
Given (z4, z_) € D", we construct a function z € C,.[0, 00) as follows. First set {1 = I'(zy)
so that z4 + ¢+ > 0. By the definition of D", we have

lim ¢, (t) = lim ¢_(t) = oo. (4.18)

t—o00 t—o00

We define the mapping ¢, and ¢_ by

D, (24,2 )(t) = sup {u € [0,t] : 4 (u) =L_(t — u)},
D_(2p,2-)(t) = inf{ue[0,t]:0_(u) =0l (t—u)},

for t > 0 where (21, z_) € C,+]0,00) x C,-[0,00). Let
p-&-(t) = (I)+(Z+7 Z—)(t)7 (4'19>
p(f) = D (2, 2 )(0). (4.20)
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Then define
z2=V(z4,2 )=z 0p, —z_op_. (4.21)

We show that ¥: D" — ([0, 00) is measurable in the Appendix A.
We first develop properties of p. and then properties of z.

Lemma 4.2.3 The functions p+ defined by (4.19) and (4.20) have zero initial condition
and are nondecreasing and continuous. In addition,

{iop.=/F_op_, (4.22)
Py +p-=e, (4.23)

where e is the identify function e(t) =t for all t > 0.

PROOF: Since z,(0) > 0 and z_(0) > 0, we have ¢, (0) = ¢_(0) = 0. It is obvious that
p+ satisfy p1(0) = 0. Because ¢4 is nondecreasing and continuous and ¢4(0) = 0, for
each t > 0, there exists u; such that ¢4 (uy) = ¢_(t — uy) and there exists uy (in fact,
we can take ug = t — uy), such that ¢_(ug) = €, (t — up). Therefore, py takes values in
0,¢]. The maximum and minimum in (4.19) and (4.20) are obtained because both ¢, and
(_ are continuous. It is apparent that the maximum wu; for which ¢, (u;) = 0_(t — uy)
corresponds to the minimum uy = ¢t — wy for which ¢_(us) = £ (t — uy), and hence (4.23)
holds. By construction, ¢ (p4(t)) = ¢—(t — p+(t)), and (4.23) implies (4.22).

To see that p, is nondecreasing, let 0 < ¢; < t5 be given. Then
£+ (p+(t1)) = gi (tl — p+(t1)) .

If, in addition,
Ui (py(t1)) = 0 (t2 — pi(t)),

then because p, (t2) is the maximum of all numbers satisfying ¢, (u) = ¢_(ty —u), we have
p+(t2) > pi(t1). If instead

Ce(pe(ty)) < L(t2 — ps(tr)),
then €. (py(t2)) = {-(t2 — p+(t2)) implies py(t2) > p4(t1).
Suppose now that ¢, | t. Then
€+(p+(tn>) :E_(tn—p_i_(tn)), n = 1,2,....

Letting n — oo and using the continuity of /1, we obtain

€+(7}i_{£10p+(tn)) =L (t — lim p+(tn)>-

n—oo

According to the definition of p,, this implies that p,(¢t) > lim, , p(t,). Because p,
is nondecreasing, we also have p, (t) < lim,_, p4(t,), and hence p, is right continuous.
Equation (4.23) implies that p_ is right continuous as well.
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To see that p_ is nondecreasing, let 0 < t; < t5 be given. Then

(- (p-(t2)) = Ls(ta — p-(t2)).
If, in addition,
(—(p-(t2)) = €1 (th — p_(t2)),

then because p_(t;) is the minimum of all numbers satisfying ¢_(u) = ¢ (t; —u), we have
p—(t2) > p—(t1). If instead

(—(p-(t2)) > 1 (th — p_(t2)),
then £_(p_(t1)) = (4 (t1 — p—(t1)) implies p_(ta) > p_(t1).
Suppose now that ¢, 1 t. Then
(_(p—(tn)) =l (tn —p—(tn)), n=1,2,....

Letting n — oo and using continuity of /., we obtain

(- Jim p_(ta)) = (- (t = lim p_(t,)).

n—oo

According to the definition of p_, this implies that p_(¢) < lim,, . p—(t,). Because p_
is nondecreasing, we also have p_(t) > lim, ., p_(t,), and hence p_ is left continuous.
Equation (4.23) implies that p, is left continuous as well. O

Lemma 4.2.4 For z defined by (4.21), we have

| =2 opy +2 op +T(zs0p, +2 0p),  (424)
[(zyopy+z_op )=Lyop, +{_op_ =2l op.. (4.25)
In addition, t .
/0 Litz(s)>0pds < pa(t) < /0 1ii.s)>03ds, t>0. (4.26)
PrRoOOF: We can write
z=(zy tli)opy — (- +L_)op_ (4.27)

as the difference of the nonnegative functions (z; + ¢4) op; and (z_ +¢_) op_. We first
show that at each ¢ > 0, we cannot have both (z; 4+ 1) o p,(t) and (z_ + ¢_) o p_(t)
positive. Without loss of generality, let us assume (z,,z_) € D" where r > 0. Then let

c=inf{s>0:2.(s) =0}.

From (4.17), we know ¢ < oo is well defined. Because ¢, = I'(z), we have £, (s) = 0 for
all s € [0,c]. Hence, by (4.19) and (4.20), we know that p,(s) = s and p_(s) = 0 for all
s € [0, ], which implies

v

(24 +£1) o p+(s)

0,
(240 )op(s)=0

I
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forall s € [0, ¢]. Moreover, (z+/4)op;(c) = 0. Therefore, we showed that (z 4 )op,(t)
and (z_ +¢_) op_(t) cannot be both positive for ¢t < ¢. Next, assume for some t > ¢ that

(24 + ) opi(t) >0 (4.28)

and define
a=sup{s € [ct]: (24 + ;) 0pi(s) = 0} (4.29)
b=inf {s € [t,00) : (24 + (1) opi(s) =0}. (4.30)

Note that (z; + 1) o py(c) = 0, we have a € [c,t) and (24 + 1) opy(a) = 0. We have
b € (t,00], and because p, is nondecreasing, p.(b) is defined in [0,00]. On the interval
or half-line (a,b), (24 + ¢4) o py is strictly positive, and Remark 4.2.2(iii) implies that
¢, o py is constant and equal to £, (ps(a)). Note that p,(a) < po(t).

For 6 € (0,py(t) — py(a)), we have

0o (pe(a) +0) = €4 (pi (@) = 0 (a = p. (a)), (4.31)

and we must also have
(_(a—pi(a)) > l_(a—ps(a) —9), (4.32)
or else u = py(a) + 6 would satisfy the equation
Cy(u) =L (a—u),
a contradiction to the definition of p(a). We conclude that

(i (p+(a)) =Cl_(a—pi(a)) > _(a—u) Yu€ (pi(a),al. (4.33)

Now consider s € [a,b). Because pi(a) < pi(s) < pi(b) and ¢, is constant on
[p+(a), p+(b)), we have

pi(s) =max{u € [0,s] : {y(u) =(_(s—u)}
= sup {u € [py(a),s Apr(D)] : £y (u) =€ (s —u)}
=sup {u € [p(a),s Api(D)] : - (ps(a)) = L (s —u)}. (4.34)

Relation (4.33) shows that if u were not constrained from above, the supremum in (4.34)
would be attained when s —u = a — py(a), i.e., at u = py(a) + s — a. However, because
of the constraint, the supremum is attained instead at u = (py(a) + s — a) A py(b), i.e.,

pi(s) = (p4(a) +5—a) Apy(b) Vs € [a,b). (4.35)

a

a

We wish to remove the term Ap.(b) in (4.35). If p,(b) = oo, this is trivial. If
p4+(b) < 0o and b = oo, then whenever b, — oo we have p, (b,) — p(b) < oo. But (4.19)
implies

£ (o1 (b)) = € (b = p0,).
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and the left-hand side converges to £, (p4(b)) < oo, whereas (4.18) implies that the right-
hand side converges to co. Because of this contradiction, we conclude that whenever
p+(b) < oo then also b < oo, in which case (z4 + ¢4 )op,(b) =0 and (24 +4)opi(s) >0
for s € [t,b). But (4.35) implies that p,(s) = p4(b) for s € [py(b) — py(a) + a,b), and
hence (z; 4+ ¢4) opi(s) = (24 + £4) o py(b) = 0 for s in this interval. It follows that
b < ps(b) —py(a)+ a, and consequently

p+(b) = py(a) +b—a. (4.36)

If pi(b) — pi(a) + a > b, so the interval [py(b) — ps(a) + a,b) is empty, we again have
(4.36). Inequality (4.36) permits us to remove the term Ap, (b) in (4.30), and we conclude
that

pi(s) =pi(a)+s—a Vs€[a,b). (4.37)

For ¢ € (0,t — a), we have from (4.37) that
po(t—08) = pelt) =&, (4.38)
and from the definition of p, that
Co(ps(t) = 0-(t = pa D).

We must also have
(_(t—ps(t) > L_(t =0 —pi(t)), (4.39)

or else u = p(t) would satisfy the equation ¢, (u) = ¢_(t — § — u), implying p. (t — ) >
p+(t), a contradiction to (4.38). We rewrite (4.39) as

(- (p-(t)) > £ (p-(t) = 9)

and conclude that ¢_ is not constant in an open interval containing p_(t). According to
Remark 4.2.2(iii), (z— +¢_) op_(t) = 0.

Because not both (zy + ¢1) o p,(t) and (z_ + £_) o p_(t) can be positive, from the
representation (4.27) we have

2| = (24 +ly)opy + (2ot )op =zy0p +z op +Llyop, +L op_.
Equation (4.22) implies that
E_,_ op+—|—€_op_ :2€:|: o Pp+.

Because ¢4 op, is constant on intervals where z is strictly positive and ¢_op_ is constant
on intervals where z is strictly negative, the nondecreasing process 2¢4 o py is constant
on intervals where |z| is nonzero. According to Remark 4.2.2(iii),

20y 0opy =T(z40py +2_o0p_).
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Being open, the set
{t>0: (1 + ) 0pe(t) >0} = J(ai,b)

iel
is the union of disjoint nonempty open intervals, where the index set I if finite or countably
infinite and one of these intervals may be an open half-line. Equation (4.37) implies that

¢
py(t) —pi(a;) = /al 1{Z(s)>0}ds Vit € [ai, b;). (4.40)

Since p, is nondecreasing and p, (s) = s Vs € [0, ¢], we have
t
pi(t) > / li>0pds, t=>0. (4.41)
0
A symmetric argument shows that

t
p—(t) > / 1{z(s)<0}dsa t>0.
0

Therefore,

t t
m@z#p@ﬁ/kwm%mﬂp@z%m@S/hwm@ 0
0 0

4.2.2 Disintegration of two-variance Brownian motion

Let Z be a two-variance Brownian motion defined in Definition 4.1.1, i.e.,
1
ey
where B is a standard Brownian motion on the probability space (€2, F,P). Define
AG) = (—Pg+ —PR)(0),

cy c_
A7l(s) = inf{t >0: A(t) > s}.

Then A is adapted to the filtration {F;} generated by B. Because
{A7H(s) <t} ={A(t) = s} € A,

A~ is a stopping time of F. Let G, = Fa-1(5). By the Optional Sampling Theorem, Z is
a martingale with respect to the filtration {G,;}. We define

2() = Bo (—Pf + - P) (),

Mi(s) =4+ /OS 1{iZ(u)>O} dZ(u), (442)
Py (s) = /OS 1l z(w>01ds, (4.43)
(P7) "' (t) =inf {s > 0: P;(s) > t}, (4.44)
Zy = B*(0) + Mo (Py)™, (4.45)

Ly =T(Zy), (4.46)
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where BT (0) = max{0, B(0)} and B~(0) = max{0, —B(0)}. Note that M, and M_ are
martingales relative to {Gs}s>o and (M, M_) = 0.

Lemma 4.2.5
Z:B(0)+M+—M_:Z+oP;—Z_oPZ_. (4.47)

PROOF: Since Z(t) = Z(0) + fg dZ(u), and Proposition 4.1.2 implies

lizws>o0r + Lizw<oy =1 (4.48)

a.s. for all u > 0, we have

t

t
Z(t) = Z(0) +/ 1izw>0ydZ (u) +/ 1(z(uw)<01dZ (u)
0 0
— BO)+M, - M._=2Z, 0P} —7Z oP;,

which completes the proof.

Lemma 4.2.6 The processes Zy and Z_ are independent Brownian motions (relative
to their own filtrations) with variances ¢y and c_ per unit time, i.e., there exists two
independent standard Brownian motions By and B_ such that

Z+ = B_|_ ocye,
Z_ = B_oc_e,

where e(t) =t fort > 0.

PrOOF: For each t > 0, we define
Bi(t) = Z(t/cx) = BF(0) + My o (Pg) 7 (t/cx).

Let
T=(t) = inf{u > 0: (My)(u) > t}. (4.49)

We first show
TH(t) = (P7) ' (t/cs). (4.50)

By definition of M. and the time change u = (in + L P5)(s), we have

(- PE+-Pp) M)
/ 1{:|:B(s)>0} dB(S). (4.51)

t
Mo(t) = + / Leesurooy dZ(u) = +
0 0

Note that because du = (il{B(st} + +1(p(s)<0})ds and Z(u) = B(s), we have

ds = (C+1{Z(u)>0} + C—l{Z(u)<0})du»
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so (4.51) implies

/<;P§+;PB>1@>
0

t
= Cj:/ Lisz(uy>0p du = cs Py (t), (4.52)
0

1iB(s)>0) ds

Hence from (4.52), we obtain

T=(t) = inf{u>0:(M)(u) >t}
= inf{u>0:ceP5(u) >t}
= inf{u>0:PF(u) >t/cx} = (PF) " (t/ce), (4.53)

which proves (4.50). According to (4.52), we have lim;,o.(M4)(t) = oo almost surely.
Therefore, the result of the lemma follows from Knight’s Theorem, Theorem 3.4.13, p.
179 of [19]. 0

To relate these processes to the construction in Subsection A.1, we need the following
result.

Lemma 4.2.7 The processes P;E satisfy

almost surely.

PrOOF: We first want to show that
LioPf=L_oP;. (4.56)
Without loss of generality, let us assume Z(0) > 0, and let
T =inf{t > 0: Z(t) <0}, T, :=inf{t>0:Z(t) >0} =0.
Obviously, vVt < T}, from Lemma 4.2.5 we have
0< Z(t)=Z, o P(t) = Z.(2).
Therefore L (t) =0 and P, (t) = 0, which implies
0=1L,oP;(t)=L_oP,(t)=0,Vt<Ty.
We observe that Z. + L. is a nonnegative process. For s > T, we define

Us(s) := max{v € [T, s] : —Z.(v) = L+(s)}
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so that Uy (T}") = T} and
— Zi o) Ui = Li7 (457)

on [T}, 00). Define also
72(t) = max{u € [T 1] : P5(u) = Uso P5(t)}, t>T5,
so that P o 7. = Uy o P, and hence, in light of (4.57),
ZyoPfory=2Zyo0Uso0Pf=—LioPf,

on [T, 00). Let t > T be given. At time 7, (t), either Z is on a negative excursion that
began at some time ((t) < 7, (t), or else Z(7,(t)) > 0. In the latter case,

0 < Z(74(1))

ZyoPjoti(t)—Z_ 0Py or.(t)

Lo PH(t)— (Z_+ L )o Py ori(t)+ L oP; ory(l)
Lo P + Lo Py ory(t)

—LioPS(t)+ L_oP,(t).

VANRVAN

In the event that Z is on a negative excursion at time 7, (¢) that began at time £(t) < 7, (),
we have P} (((t)) = P} (7. (t)), and hence

0 = Z(((@1))

= Z,oPJol(t)—Z_ o P, olt)
ZyoPfor (t)—Z_oP, ol(t)
Ly o PH() —(Z_+ L )o Py ol{t) + Lo Py o ({1
—LioPS(t)+ L_o P, ol(t)
—LioPJ(t)+L_oP,(t).

IAINA

We conclude that L, o P} (t) < L_o P, (t) for all t > T}". For the opposite inequality, we
note first that P, (7;") = 0, so 7_(T}") = T;". Therefore, for t > T}", at 7_(t), either Z is
on a positive excursion that began at some time £(t) € [T}, 7_(t)), or else Z(7_(t)) < 0.
In the latter case

0 > Z(7-(t))

ZyoPyor (t)—Z_oP, o7 ()

= (Zy+Ly)oPjor (t)—L,oPfor (t)+ L_oP,(t)
LyoPfor (4L oP; (1

—L o PS(t)+L_oP,(t).

AV

In the event that Z is on a positive excursion at time 7_(¢) that began at £(t) € [T}, 7_(¢)),
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we have P} (((t)) = P, (7_(t)), and hence

0 = Z((1))

ZyoPfol(t)—Z_oPy ol(t)

ZyoPyol(ty—Z_ oP,or (t)
(Zy+L)oPJol(t)—LyoP}ol(t)+ L_oP,(t)
—LioP}ol(t)+L_oP,(t)

—LyoPJ(t)+ L_oP,(t).

vV 1V

We conclude that Ly o P} (t) > L_o P, (t) for all t > T;". This completes the proof of
(4.56).

We denote Q1 (t) = . (Z;, Z_)(t) and Q_(t) = . (Z_, Z,) so that
Li(Qe(t) =L_(t—Q4(t), L_(Q-(t) =Li(t—Q-(t), t=>0. (4.58)
Because P} (t) + P, (t) =t for all t > 0, (4.56) implies
Li(PEW) = Lo(t - PE®). Lo (P7(0) = Ly (t— P; (1), t20.
The definition of ®, then implies that P (t) < Q(¢) and
t= PE(t) + P (1) < Qu(t) + Q_(1). >0
To show that PZjE = ()4, it suffices to show that

Q+(t)+Q-(t)<t, t>0, as. (4.59)

The Brownian motions Z1 have variances c4 per unit time that may differ from one.
The Brownian motions Z/,/ct are standard. For these standard Brownian motions, we
define stopping times

Sto=inf{t >0:—~Zy/\/cx > b}, T :=inf{t>0:-Zy/\/cx =b}, b>0.
Then
S8 =inf{t >0: Ly/\fex > b}, Te=inf{t>0:L.//cx =b}, b>0.

Then Ly is constant and equal to b,/cx on the interval [T, S4] if and only if 7% < S%. In
other words, Ly has a “flat spot” at level b,/cx if and only 7% < S%. According to [19],
Section 6.2D, there are Poisson random measures v, on (0,00), both with Lévy measure

dl/2me3, £ > 0, such that

st :/ (s ((0,8] x de),  b>0
(0.¢)

Furthermore, it is apparent that
Ty :/ lv ((0,b) x d€) b>0.
(0,00)
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Because Z, and Z_ are independent, so are the Poisson random measures v, and v_. A
Poisson random measure charges only countably many time points, i.e., there are only
countably many points b > 0 for which v ({b} x (0,00)) > 0. Because v_ is independent
of v, the probability that v_ charges ,/cy/,/c_ times one of the countably many points
charged by v, is zero. Therefore,

P{There exists ¢ > 0 such that L, and L_ both have a flat spot at level ¢ > O.}
= P{There exists ¢ > 0 such that Si/\/a > Ti/\/a and SV > Tf/ﬁ.}
= P{There exists ¢ > 0 s. t. v4 ({c/\/c+} x (0,00)) > 0 and v_({c/\/c_} x (0,00)) > 0.}
= 0. (4.60)

In other words, the probability that L, and L_ both have a “flat spot” at the same level
is zero.

Suppose Q4 (t) + Q_(t) > t for some ¢ > 0. Then Q_(t) >t — Q. (t) > 0 and
Q4+ (t) >t —Q_(t) > 0. Using these inequalities and (4.58), we obtain

Li(Qu(t) = L(t—Q4(t) < L(Q-(1)),
L (Q-(t) = Li(t—=Q-(t) < Li(Q4(1).

These two equations show that

c:= L+(Q+(t)) =Ly (t - Qf(t>) =L (Q,(t)) =L (t - Q+(t))-

In other words, both L, and L_ have a “flat spot” at level ¢. According to (4.60), the
probability of this is zero. Hence, (4.59) holds almost surely for every rational ¢ > 0. But
Q4+ (t) + Q_(t) is continuous, so (4.59) holds almost surely for every ¢ > 0. This implies
(4.54). Because P, (t) + P, (t) = t, we also have (4.55). O

Theorem 4.2.8 Let Z be a two-variance Brownian motion and let Zi be defined by
(4.45). Then Z =V (Z,,Z_), where V¥ is defined by (4.21).

Proor: Combine Lemmas 4.2.5 and 4.2.6. O

4.2.3 Reconstruction of two-variance Brownian motion

Given r € R, let B;;?’"_ denote the trace o-field of B”""" on D". Given any measure Q on
(D", By ), ¥ induces a measure Q o U1 on (C,[0, 00), B) defined by

QoU M (A) =Q{(z4,2-) €D": ¥(z4,2_) € A} =Q(V'(4)), AeB.

Let W¢ denote one-variance Wiener measure on (C,.[0,00), B), under which the coordinate
mapping process is a Brownian motion with variance ¢ per unit time starting at r, and
Wt @ W2 denote the product of two one-variance Wiener measures on (Cp, [0, 00) x
C,[0,00), B™"2) where r; > 0 and r, > 0. Note that (W} @ W™= )(D") = 1. We let
W ® W2 |pr denote W @ W2 restricted to D". Let Z be a two-variance Brownian
motion starting at r, we let Wé+¢~ denote the measure induced by Z on (C’r[(), 00), B),
and call this measure two-variance Wiener measure.
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Theorem 4.2.9 (Wii ® Wfi |pr) o UL = Were

PROOF: Let Z be a two-variance Brownian motion on some probability space (€2, ,P).
Then Z induces a two-variance Wiener measure on C.,[0,00), i.e., P o Z7! = Wére-,
Let Z4 be defined by (4.45), so that (Z,, Z_) induces the product of one-variance Wiener
measure W @ WS |pr on (D, Bi" ), ie., Po(Zy, 2. )t = W @ W< |pr. From Theorem
4.2.8 we have

W = PoZ ™! = Po(Zy, Z_) "ol = (WX @W], |pr)od ",

O

Corollary 4.2.10 Given r € R, let Z, and Z_ be independent Brownian motions with
variances ¢, and c_ per unit time starting at v+ and r—. Then Z = V(Z,,Z_) is a
two-variance Brownian motion (relative to its own filtration). Moreover

Z=Z,0Pf -7 oP,.
In particular, from Lemma 4.2.4 and Lemma 4.2.7, we have

|Z|=Z,0P; +Z oP, +T(Z, o P} +Z oP,), (4.61)

[(ZyoPf+Z oP;,)=L,oPf+L_ oP, =2L.0P}. (4.62)
PROOF: Because (Z;,Z_) induces the product of one-variance Wiener measure, ij ®
W’ |pr, on (DT,BE’F), and ¥(Z,Z_) induces a two-variance Wiener measure WS+~

on (C,[0,00),B"), from Theorem 4.2.9, we have Z is a two-variance Brownian motion.
According to Proposition 4.1.2, we have t = P (t) + P, (t), which implies

t t
/ Lxz(s)>0pds = / Lizz(5)20yds.
0 0
Therefore, from Lemma 4.2.4, we obtain

7 =W(7Z,,7.)=2Z,0PF —Z_oP;.
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Chapter 5

From renewal state to the next
renewal state

From Theorem 3.7.5 in Chapter 3, we see that

-~

(T 5 U (S")’V/\U(S")’Wn 5y X (@) = (Thaos) Unosm)s Vi) Wora(s7)r Xoro(s))s

under the topology on the space D, and the limiting model reaches the first renewal state
at time o(S*). Note that ¢(S*) is the first time when either U* or W* reaches zero.
Without loss of generality, in this chapter, we assume that VW* reaches zero before U*.
We are now interested in the evolution of (U™, V™ W™ X") after 0"(S™). According to
Corollary 3.5.3 and Proposition 3.7.4, we have

(U Ve W X

(§n)? Vg (Sn)? P 5 (Gn) n(sn)) (Z/{* 0 0 X*(S*))

where U;(S*) > (0 and X :( s < 0. For convenience of our discussion, we reset the clock

of the n'* pre-limit model at ¢™. In particular, the reset LOB has the following initial
condition,

ug > 0,
0,
0,
X™0)/vn — x4 <0,

B
Ll

where Proposition 3.7.4 imples z¢g = —%’1\11 and uy = 2—;%. Let us define
n" :=inf{t > 0|U"(t) <0 or X"(t) > 0}.
We call (U™, X™) bracketing processes, and (V™ W™) interior processes until the LOB

reaches . We are going to study the evolution of the stopped process (U s Vipans Win s X -nAn")
and its diffusion scaled limit.
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Figure 5.1: Bracketing queues U", X" and interior queues V", W"

5.1 The interior processes

To study the interior processes V™ and W™, in Section 5.1.1 we change the variables
similarly to what we did in Section 3.1 to obtain new processes G and H". In Section
5.1.2 we then apply the diffusion scaling in order to obtain a process G" that is a martingale
and a second process H" that is shown in Section 5.1.3 to converge to zero. The limit of
G" is shown in Section 5.1.4 to be a two-variance Brownian motion. In terms of the limits
of H™ and G™, in Section 5.1.5 we provide the limits of V* and W". The convergences in
this section are weak convergence of probability measures in the .J; topology on D]0, o).

In principle, V™ can be either positive, zero, or negative and W™ can be either
positive, zero, or negative. However, V" cannot be negative when W™ is positive because
that would mean a limit sell order at a price below the price of a limit buy order, which is
impossible under the rule of order arrivals. Therefore, there are eight possibilities for the
pair (V"™ W™) when U™ and X™ are bracketing queues, and these are illustrated in Figure
5.1. In each of these eight configuration, the arrows indicate the directions of queues’
movement and the parameters show the locations and rates of arrivals of market and limit
orders or cancellations. For convenience, we only show cancellations on (U™, V"™ W™ X™).
We see from this figure that during the time when U™ and X" are bracketing processes,
(V™ X™) is a two-dimensional Markov process on the two-dimensional integer lattice Z*
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Figure 5.2: Bracketing queues U", X™ and interior queues V", W"

intersected with
S:={(v,w):v>0}U{(v,w): w <0}

In order to avoid here a discussion of the possibility that the bracketing queues U™ and
X™ are no longer valid till certain time, i.e., either U™ or X™ hits zero, we consider a pair
of processes (V",W") that has the same dynamics as (V", W") but is defined by these
dynamics for all time, not just during the period of time that U™ and X" are bracketing
processes. Figure 5.2 shows the transitions of this two-dimensional process, where the
rates and directions of transitions are indicated by arrows.

In order to make the dynamics of (V™" W") more precise, we divide S into eight
regions

S = {(v,w):v>0,w>0},

Sy = {(U,’LU):U>O,U):O},

S = {(v,w):v>0,—v<w<0},
S, = {(v,w):v>0,—vzw},

Sy = {(v,w):v:O,w:O},

S = {(v,w):w<0,0<v<-w},
Sy {(v,w):w<0,1):0},

Ss {(v,w) :w <0,v<0}.

From Figure 5.2 we see that the dynamics of (V", W") is the same within each of these
eight regions. On the other hand, the types of orders which affect V" or W™ might
be different in different regions. Although there are six independent Poisson processes
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governing the arrivals of market orders and limit orders, for convenience we will thin
these Poisson processes according to the regions in which (V™ W") is located in order to
obtain thirty independent unit-intensity Poisson processes to describe the evolutions of
(V*, W"). In particular, we denote these Poisson processes by N; ., where : = 1,...,8
indicates the region in which the Poisson process acts, x € {V, W} indicates which of the
processes V" or W" is affected by the Poisson process, and * € {+, —} indicates whether
the Poisson process increases(+) or decreases(—) the affected process. For i = 1,...,8,
we define P;(t) to be the time (V" W") spends in region S; up to time ¢. In particular,
we have

t
B(t) = / 1{(V(s),W(s))€8i} dS, 1= 1, cee ,8.
0
Then

Vit) = V"0) 4+ N1y oXPi(t) — Nay— o poPa(t) + Nay 4 0 MaDPy(t)
—N3y_ o poPs(t) + N3y o M Ps(t) — Nay— o poPs(t) + Nay 4 o M Py(t)
—Nsy,— 0 Ps(t) + N5y 0 AaP5(t) — Ney,— 0 pioPs(t) + N+ 0 M Fs(t)
—N7y o Pr(t) + Nryy o M Pr(t) — Nsy— oy Ps(t) + Ny o M Bs(t),
Wrt) = W™0) — Niw.— o poPi(t) + Nt 0 MPi(t) — Ngyy.— o uaPs(t)
—Nayy,— 0 1 Po(t) + Nojyy 1+ 0 M Pa(t) — Ny — o 1 Ps(t) + N3y 4+ 0 Ao Ps(t)
—Nyw,— 0 1 Py(t) + Naw + 0 MoPu(t) — Ny — 0 o Ps(t) + N5y 4 0 A\ Ps(t)
—Negw,— 0 1 Ps(t) + New+ 0 MoFPs(t) — Neyy— 0 o Pr(t) + Nz 4+ 0 Ao Pr(t)

5.1.1 Transformation of variables

Recalling the positive constants a and b from Assumption 2.2.1, we define (G", H™) to be
the continuous piecewise linear transformation of (V" W™) given by

VI (t) + bW () Vr(t), Wr(t)) € S USs,

Gn(t) = Vn(t) + Wn(t) (t), Wn(t)) eS3US,US5U 86, (53)
aV'(t) + Wnr(t) i ( (), Wn(t)) € S; U Ss.
W (t) if (V(1), Wn(t)) € SIUS US;,

H'(t) = ¢ Wi(t) =-V"(t) if W (1), V(1)) € S4USs, (5.4)
—V(t) it (V(t), Wn(t)) € S US; U Ss.
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Note that this transformation is invertible. Indeed, for ¢ = 1,..., 8, the image of S/ under
this transformation is S;, where the S; regions are defined by

S, = {(g,h): h>0,9>bh},
Sy = {(g.h) :h=0,9>0},
S; = {(g,h):h<0,g>0},
Sy = {(g,h) :h<0,9=0},
St = {(g9,h): g=h=0},
S; = {(9,h) :h<0,9 <0},
Sy = {(g;h):h=0,9 <0},
S = {(g,h) : h>0,9 < —ah},

and the inverse map is

G"(t) - bH"( ) if (G™(t), H"(t)) € S;U S,
Vi) = q GM(t) - H"(t) if (G"(t), H"(t)) € S, (5.5)
—H"(1) if (G™(t),H"(t)) € S{USLUS{US; U S,
H™(t) if (G"(t),H"(t)) € S;USLUS,US U S,
WH(t) = ¢ GM(t)+H"(t) i (GM(t), H"(1)) € S, (5.6)
GM(t) + aH™(t) if (G"(t), H"(t)) € S, U S},

It can be verified that the inverse transformation defined by (5.5) and (5.6) is continuous
on S :=U% S,

A decrease of V" by one unit when (V*, W") is in S5 U S; decrease G™ by a units.
An increase or decrease of V" by one unit when (V" W") is in Sg increases or decreases,
respectively, G™ by a units. Similarly, an increase of W" by one unit when (V" W") is
in S; U S5 increases G™ by b units. An increase or decrease of YW" by one unit when
(V*, W) is in S; increases or decreases, respectively, G" by b units. Otherwise, all
increases or decreases in V" or W" by one unit increase or decrease G™ by one unit. It
follows that

G" = G"(0)+ NyyqoXPr —bNyw o pgPy +bNyyw oM P
+Noy 0 Xy — Noy 0 pgPo— Noyy — 0 11 Py +bNayy 1 0 AP
+N3y 0o MPs— N3y opugPs— Naw o1 Ps+ Naw oA
+Nyy oM Py — Nyy 0 poPy — Nyyy,— o 1 Py + Ny 4 0 APy
+N5y.4 0 X Ps —aNsy o 1 Ps — N5y — o pioPs + 0Nsyy 0 A Ps
+Nsy .+ 0 B — Noy,— 0 pols — Now,— 0 1 Ps + Now 4+ © A%
+Nry oM Py —aNzy o1 Pr— Ny~ o paPr + Ny o APy
+aNsy 4+ 0 NPy —aNgy o1 Ps — Ngyy — o s Ps. (5.7)

On the other hand, in the region S¢US;USg, G™ is negative and a change in G” results in
a change in |G"| of the same magnitude but the opposite direction. In the region S, USs,
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G™ is zero and a change in G™ results in an increase in |G™| of the same magnitude.
Modifying (5.7) accordingly, we obtain

|G"| = |G"(0)] + Nyy4 0 APy — DNy — o Py + bNyw o M Py
+Noy 1 0Py — Noy o polPs — Nayy — 0 i Py + bNayy 4 0 A1 P
+N3y 0 A Ps— N3y o pugPs — N3y oy Ps+ N3y o AP
+Nyy 1 0 APy + Nyy 0o pugPy+ Ny, 0 1 Py + Ny, 0 APy
+Ns5y4 0 A Ps +aNsy o1 Ps+ Nsyy,— 0 piaPs + 0Nsyy 0 A Ps
—Ne v+ 0 M BPs + Ney,— 0 poFs + New,— 0 p1FPs — Ne w4+ 0 AoDs
—NzyioMPr+aN7y — o Pr4+ Noyw — o paPr — Ny 4 0 APy
—aNgy 1+ o NFPs+aNgy o pui Py + Ngyy,— o paFs. (5.8)

An increase of WW" by one unit or a decrease of V" by one unit when (V", W") is in S4US;
increases H™ by one unit. An increase or decrease of W" by one unit when (V", W") is
in &1 U Sy U 83 increases or decreases H™ by one unit, respectively, and an increase or
decrease of V" by one unit when (V" W") is in Sg U S; U Sg decreases or increases H™ by
one unit, respectively. Other changes in V" and WW" do not affect H. It follows that

H" = Hn(o) +Niw s oMPr— Niw o pgPr + Noywy o MiPy — Noyy o Py
+N3w,+ 0 A3 — N3y, o1 Py + Nyyy 0 APy + Nyy o puohy
+Nsw+ 0 M Ps + N5y o piPs + Ngy— o poPs — Neyy o M Fs
+Nry_ 0 Pr— Noys o MPr+ Nev— 0 i1 Ps — Ny 0 AoPs. (5.9)

In the region S3US, USg, H™ is negative and a change in H™ results in a change in |H"|
of the same magnitude but the opposite direction. In the region Sy U S5 U S;, H™ is zero
and a unit change in H™ results in a unit increase in |[H"|. Modifying (5.9) accordingly,
we obtain

|H"| = [H"(0)] + Niw,+ o MPr— Nyw,— o poPr + Nayy 1 0 M Po+ Nojyy,— 0 jin P
—N3yw+ 0XgPs+ N3y 01 Ps — Ny 0 NPy — Nyy,— o pioPy
+Ns w4+ 0 A Ps+ N5y o1 Ps — Ney — o pols + Ney + 0 M Fs
+N7y o Pr+ Nyy oM Pr+ Ngy o By — Ngy 1 0 AgFs. (5.10)

5.1.2 Diffusion scaling

Recall that the diffusion scaling of a sequence of processes Q)" is defined by,

Q" (1) = %Q”(nt)-

Because each of the regions §;, 1 = 1,...,8, is a cone, when we apply the diffusion scaling
to the processes V", W™, G™ and H" in the piecewise linear transformations (5.3) and
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(5.4) we obtain the analogous formulas

[ Vn(t) + bW (t) it (V(t), W(E)) € S US,,

G'(t) = § V() +Wr(t) if (V(t), W"(t)) € SsUS USsUSs,  (5.11)
| aVn () + W) it (VM (), W' (t)) € Sr U Ss.
[ W) it (Vn(£), W (t)) € 81 US, U Ss,

H"(t) = { Wr(t) = —V*(t) if ((W(t), V(1)) € S1USs, (5.12)
| V() it (Vn(t), W™ (t)) € Ss U S7 U S

The inverse of this transformation is continuous. In fact, the inverse is given by replacing
G by G™ and H by H™ in (5.5) and (5.6),

( Gn(t) —bH"(t) if (G"(t), H"(1)) € Ry URy,
Vi(t) = & Gr(t)— Hr(t) i (GR(t), HY(t)) € Rs, (5.13)
—H"(t if (Gm(t), H"(t)) € RyURs URsUR7 U R,
N ﬁ”(t) if (Gn(t), H(t)) € Ry URyUR3 URy URs,
Wr(t) = & G"(t)+ H™(t) if (G"(t), H"(1)) € Rs, (5.14)
| G"(t) + aH"(t) if (G™(t), H'(t)) € Rr URs.

The Continuous Mapping Theorem implies that we can determine the weak limit in the
J1 topology of (V", Wn) by determining the limit of (G", H™).

We next center the thirty independent unit-intensity Poisson processes appearing in
(5.1), (5.2), defining
My (t) == Nix.(t)—t, t>0.

Each of these compensated Poisson processes is a martingale relative its own filtration,
and these martingale are independent. For n = 1,2,..., their diffusion-scaled versions

(t) := %(Mi,x,*(nt) —nt), t>0, (5.15)

and each of these processes is likewise a martingale relative to its own filtration, and these
processes are independent. Fort =1,...,8 and n =1,2,..., we also define

MTL

7, X,k

—n 1

Replacing the Poisson processes in (5.7) by compensated Poisson processes and ap-
plying the diffusion scaling, we obtain
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G" = G*(0) + My, 0 APy — DM}y, 0 11gPy +bMy, , o M P}
Mgy, 0 APy — M3y, _ 0 11gPy — Mgy, _ 0 ju Py + bM3y, , 0 A\ Py
F MGy 0 M Py — Miy, _ 0 j1gPy — Miyy _ 0 1 Py + Mgy, 0 APy
+ My, 0 MPy — My, _ 0 jigPy — MPy, _ 0 junPy + Mpyy, , 0 APy
+]/\4\£V7+ o )\Q?g - a]\/igvﬁ o ,ulﬁg — M\QW’+ o /,62?;1 + b]\/ngW77 o /\1Fg
F MGy, 0 M Py — Mgy, _ 0 11gPg — My _ 0 11 Py + My, . 0 APy
—H\/J\;fVﬂL o\ Py — a]\/f\;fv’_ o Py — A/f\;fm_ o o Py + ]\//T;fw7+ o NP5
+a]\7§fv,+ o NPy — a]\//fgfvﬁ o Py — ]\/jgfwﬁ o 12 Py. (5.16)

The drift terms that arise from the centering of the Poisson processes vanish in (5.16)
because, according to Assumption 2.2.1 and its consequence (2.1),

(Mg — bo + b\ P, =
(A2 = pro — pa +bA1) P
(A1 = po — p11 + Ao) Py
(M = po — p11 + Ao) P
(Ao —apy — p2 + b)\l)Pg =
)Pg
)
i2)

1
-=n
2

I
C oo o000 oo

(A1 — po — p1 + Xo) P
(M — apr — p2 + )Py =
P, =

(aXo — apy —

The ﬁltratlon {F™(t )}t>0 we use for G™ is the one generated by the thirty time-changed

processes Ml V) Io)\g 1see- M _o ugP appearing in (5.16). These are not independent
because of the coupling of the tlmg changes. However, they are each martingales relative
to the filtration {F"(t)}¢>0, as is G™.

Replacing the Poisson processes in (5.8), (5.9) and (5.10) by compensated Poisson
processes, applying the diffusion scaling, and using Assumption 2.2.1 to simplify, we obtain

|G| = |G™(0)] + M}y, 0 APy — bM'yy _ 0 o Py + bMy, , 0 M P
—H\/I\Z"V e )\QPH — ]\//Efv77 o ,uoP — ]\42 "W, © ulﬁn + bj/\j\gw Lo )\1?;
+Mgv+o)\1P ]\//_7" o,uoP — 0,u1P +M3W+O/\0?§

+M4v LoMPL+ M} v, 0 Py + M4,W,— o i Py + M4,W,+ o AP

+M5 vy © )\2P + aMgLV o /,Llﬁn + ]\/J\QW o MQF; + b]/\f\gfw’7 o Alﬁg
M6V+O)‘1P +M6v o 11Pg +M6w Oﬂlﬁg_ﬁgw,JrO/\Oﬁg
M?V +° MNP+ aM7v o Py + Mzw,— o pyP7 — M\;W# o NPy

—CLZ\/[&VHr o APy + aM&V’? oy Py + J/W\él,w,f o pa Py

+2aXov/n(Py + Pj), (5.17)
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H" = ﬁ["(O) + ]\/I\EW7+ o\ P — ]/\J\ﬁw77 o uo Py + ]\//EfW7+ o\ Py — M\QW77 o Py
+J/\4\3TL,W,+ o APy — M\:?,W,f o Py + M\ZW,Jr o APy + ]\/fo,v,f o jio Py
+]/W\E?,W,+ o )‘1?2 + ]\/4\;1/,— o Nlﬁg + A/Zg,v,— o Moﬁg - Mé‘,v,+ o )\1162
"H\/Z?,v,— omP; - M\;l,v& o\ P; + mv,— o i Py — M\s?,v,+ o APy
+(\1+ )V Py + (Ao + po) v/ Py + /i (Py + Pg — Py — P)
+v/n (1 — M)(P7 — Py), (5.18)

’ﬁn‘ - ]f]"(o)| T J/\/[\ﬁwﬁr o MNPy — MTW,— o o Py + M\QW,JF oM Py + M\;l,w,— o Py
_M\g,war o APy + ]\/Z:?,w,f o Py — ]\//-TZW,Jr o APy — ]‘/Zf,v,f o jio Py
+ M2y s 0 MPs 4+ Mgy, _ o i Py — Mgy, _ o j1gPg + Mgy, o M Py
—i-]\//ﬁfv,_ o Py + ]\/4\7TLJ;,Jr o\ Pl + M\QV,— o Py — ]/\J\QfVHr o Ao Py
+(M 4 )V (P + Py + Py) — ev/n (P} + Py + Py + Py)
—(Xo + po)v/'n Py, (5.19)

where ¢ > 0 is defined by (2.1). Because (G", H") is adapted to {F™(t)};>0 and for
i=1,....8,

-_n

t

the time-change processes P; are also adapted to {F"(t)}>o. Consequently, |G"| and
|H"™| are adapted to this filtration. According to the initial condition, we have

V(0) — 0, W"0) — 0.
From (5.11) and (5.12), we have

~ ~

G"(0) — 0, H"(0)—0.

5.1.3 Crushing H"

Theorem 5.1.1 H» % 0.

PRroor: This proof follows the same logic as the proof of Theorem 3.3.3. Because it is
notationally different, we give the details. For ¢ > 0, we define

iy o [ s €0 M) =0} i {5 €[0,8]: H'(5)
0 if {s€0,1]: Hn(s)

0} 40,
0} =0.
Because H"(s) # 0 for s € (r"(t),], Py, Ps, and Py are flat on this interval, and we
have
Py(t) + Py(t) + Py(t) + Pg(t) + Py(t)
= P (")) + P5(7"(t)) + P, (7"(t)) + Pg (7"(t)) + Ps (7"(t)) +t — 7"(¢)
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and
Py(t) + P5(t) + Pr(t) = Py (7"(t)) + P5 (7"(t)) + P (7" (1))

Substituting this into (5.19), we obtain

= B (m()| + Ou(1) - v/ [P{(t) + P(t) + Py (t) + P5(1)

0 < |H"(1)]

~(o+ o) | Pi(t) = P (7 (1)) |
< |H™ (7)) | + Ou(1) — min (¢, Ao + o) vV (t — 7"(t)). (5.21)

But ﬁ”(T”(t)) — 0 if 7(t) = 0, and otherwise |ﬁ]"(7"(t))| = 1/y/n, so (5.21) implies
Vvn(e —7") = Oy(1), where e is the identify process e(t) = ¢ for all ¢ > 0. This implies

=l e (5.22)
and thus B
0< P, —Plorm"<e—71"=0(1). (5.23)

Because the limits of the processes ]\Z”X* are continuous, (5.23) implies that

M, ,oaP; — M, ,oaP; o7" =o(l)

1, X %
for any positive constant «. Therefore, we can upgrade the estimate in (5.21) to
0< ‘f[”(t)! < o(1) + o(1) — min (¢, Ao + po) vn (£ — 7"(1)),

which implies
Vn(e—1") =o0(1). (5.24)

In particular, |H"| = o(1). O

Remark 5.1.2 Dividing (5.18) and (5.19) by \/n and passing to the limit, we see that

(M + Ml)fg + (Ao + MO)?Z + C(F; +FZ —ﬁ? - ?g) + (1 — >\1)<ﬁ771 —ﬁg) =L 0,
(5.25)

1+ ) (P5 + Py +Py) = (P} + Py + Py + ) — o+ mo) Py =5 0.
(5.26)
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5.1.4 Convergence of G"

The proof of convergence of G™ and identification of the limit proceeds through several
steps. Along the way we identify the limits of the processes F:-L, 1=1,...,8.

Lemma 5.1.3 Let pp: R — [0,00) be defined for k=1,2,... by

0 if§&<—1,
kE+1  if —L1<€<0,
er(§) = —kE+1 if0 §k§§ o
0 ife>1

Define Fy, k=0,1,..., mapping D[0,00) to [0,00) by
Fo(x) = / e Loy (2(s))ds,
0
Fy(z) = / e op(x(s))ds, k=1,2,....
0

For k =1,2,..., Fy is continuous in the Skorohod topology, and Fy = infy>; F}, is upper
semi-continuous.

Proor: Obviously, Fy = infy>; Fj, so it suffices to show that Fj, is continuous for
k=1,2,....

Let k£ > 1 be given. We recall from [9], Section 3.5, that a metric for the Skorohod
topology on D[0, 00) is

d(x,y>:::;gg[v<x>\/jﬁ e (2, y, M) du

where
d(x,y,\,u) = 1Asup ‘x(t Au) —y(AE) A,
>0
Y(A) = esssup|log X(t)|
1>0
As) —
= sup |log —<8) A ‘ ,
s>t>0 s—1

and A is the set of all strictly increasing Lipschitz continuous functions A mapping [0, co)
onto [0,00) with y(\) < co. Let x, — x in the Skorohod topology on D[0,c0). Then
there exists a sequence {\,}52, in A such that

lim v(\,) V / e d(x,xy, \p,u) du = 0. (5.27)
0

n—0

68



We compute

|Fk($n) — Fk(ﬂf)| =

/0°° e @i (zn(s)) — o (2(s))]ds
/OOO o= [apk (xn(8)> — ¥k (w()\n(s))ﬂ ds
/OOO =S [Qﬁk (a:(An(s))> — Yk <:1:(5)>} ds

We consider the last two terms separately. Note that ¢, is bounded by 1 and is Lipschitz
with constant k. Moreover, from definition of v and (5.27), for sufficiently large n, A, (s) <
s+ 1 for all s > 0. Therefore, we have

/OOO oS [gpk (xn(S)) — Pk <x(/\n(3))>} ds
< /OOO e (2 A k|za(s) — x(An(S))Dds

2k /000 e_5<1 Asup |z, (EA (s + 1)) —z(Aa(t) A (s + 1)) })ds

t>0

IN

+

IN

< Zke/ e “d(xp, x, A\, u)du,
1

which has limit zero as n — 0. Being Lipschitz, each A, is absolutely continuous, A, (0) =
0, A, is defined almost everywhere, and |\, — 1| is uniformly bounded by a constant that
goes to zero as n — oo. Therefore,

/OOO o5 [g@k (w(An(S))> — ¥ <x(s))]ds
/Ooo e <:c(>\n(s)))ds _ /OOO e, (x()\n(t))>)\;(t)dt‘

< /OO e *|1— es_’\"(s)/\;(s)‘ds,
0

and this has limit zero as n — oo because |1 — e*=*»(*) )/ (s)| converges pointwise to zero
and is bounded by |1 — e*2| uniformly in s for sufficiently large n. This concludes the
proof that F} is continuous for k =1,2,.... O

Proposition 5.1.4 The sequence of processes {é"};‘;l is tight in the Ji-topology, every
convergent subsequence of this sequence has a continuous limit, and the limit spends zero
Lebesgue time at the origin.
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\/I;? = ]/\4\1’3}7+ o \ge — b]/W\{fwy_ o ppe + b]\/f\{fw,+ o \e,

Uno= ]/\/f\;v,+ 0 A€ — M;v,f o ftpe — ]\@fw’, o pie + b]\/ZQW+ o A€,
\/I}gb = M\gv,-y o\e— ]\/Z??,V,— o ge — M\ng_ o e+ ]/\Zg,w7+ o A\oe,
\/I}Z = ]\//TZMJF o\e— ]\/IZV,— o pge — mw,— o e+ ]\/ZZW7+ o A\ope,
\Tlg = j/[\gan 0 Age — a]/W\;Vﬁ o e — M\;Wﬁ o ge + b]\/ngW,Jr o \e,
\ng = j/\/[\él,v,+ o\e— ]\//‘TéfV,— o flp€ — ]\/Zéfwv_ o e+ ]\/ZQW7+ o A\oe,
\/I}? = ]\//T?MJF o\e— a]\/f\?’v’_ o e — ]\//TQW,_ 0 g€ + ]/\/T;L,W,-‘r o \oe,
\Tlg = amv7+ o \pe — a]\/jg’vﬁ o [e— ]\/JQW,— o lge,

so that G = G"(0) + S U” o P;'. Because []\Z"X*, ]\//.Z”X*] 2 ¢ and these processes
are independent, we have

(07, 07] =5 (Mg + b\ + BPag)e =: Ay, (5.28)
(05, 05] =2 (Ao + b2\ + bug)e =: Ag, (5.29)
[\ngl, \T/g] L 2a)ge = A, (5.30)
[\TJZ, @Z] N (aXo + bug)e =: Ay, (5.31)
(02, 02] =2 A+ aPn + o+ by )e = As, (5.32)
[, 0] =2 2buge =: As, (5.33)
(02, 02] =2 (jo + Py + ado)e =: Ay, (5.34)
[\Tﬂg, ‘/I;S] 2 (2 + X + aPNo)e =1 As. (5.35)

We next define .
A*=3 A0 P}, (5.36)

=1

which is a strictly increasing, piecewise linear process with slope bounded between m :=
min{A4; : i =1,...,8} and M := max{A} : ¢ =1,...,8}. Let I" be the inverse of A",
a strictly increasing, piecewise linear process whose slope is bounded between 1/M and
1/m. We observed using (5.20) that each P; is {F"(t)}so-adapted. Therefore, for each
s >0, I"(s) is a stopping time for the filtration {F"(t)};>o. We have
8
[@" ol", G" o ["} = Z [CI\J?, :I\Jﬂ oP;olI"
i=1
8 8
Z ([{I\J?,\/I}ﬂ —Ai) oﬁ?o[”—l—ZAioF?o["
i=1 =1
8
S O([Up U] = A) o P ol" +e.

=1
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Because P; o I" < Le, it follows from (5.28)—(5.35) that

1
8
S ([0, 87] - A) o P01 2o
=1
or equivalently,
(G o I",G" o I"] s e (5.37)

Since @”( 0) — 0, we now apply [9], Theorem 1.4 of Section 7.1, to the sequence of

martingales {G™ o I"}>, relative to the filtrations {F" n(s)}s>0 to conclude that Groln
converges weakly-J; to a standard Brownian motion startlng at zero, i.e.,

G o " L B, (5.38)
where B* is a standard Brownian motion starting at zero. Since the time changes A"
satisfy the uniform bound A™ < Me, we conclude that the sequence {G"}7°, = {G" o
I" o A"}, is tight.
We now show that the limit of every convergent subsequence of {é”}j;o:l is continuous.
We recall from Theorem 10.2, Section 3.10 of [9] that if X™ 2y X, then X is continuous
if and only if J(X™) =2 0, where for ¢ > 0,
J(x)(t) := sup !:E(u) - x(u—)’, x € D[0,00).

0<u<t

-~ J
>, we have G"oI" =% B*, where B* a standard
Brownian motion, hence a continuous process. We have

J(GM)(t) = J(G" o I" o A™)(t) < J(G™ o I'") (M),

Given a convergent subsequence of {G"}°

and hence J(G™) =2 0 along the convergent subsequence of {G"}>,. Consequently, the
limit of this convergent subsequence is continuous.

Finally, we assume that G is the limit of a convergent subsequence of {G"}>%, and
show that G* spends zero Lebesgue time at the origin. We have already shown that along
this subsequence, G™ o I™ converges to a Brownian motion B*, which spends zero Lebesgue
time at the origin. Therefore, given € > 0, there exists K such that Fj(B*) < e fork > K,
where we are using the notation of Lemma 5.1.3. Consequently, there exists N such that
Fi(G"oI™) < e for k > K and n > N. Making the change of variable s = A™(u), we see
that

n [ @i [Tt (@ o P = B(@ o) <
0 0

Taking the limit as n — oo along the convergent subsequence of {@"};’f’:l and using the
continuity of F} proved in Lemma 5.1.3, we see further that

/ e_Mul{G*(u)zo}du S/ e_M“gok(G*(u))du <e/m.
0 0
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Because ¢ > 0 is arbitrary, we conclude that G* spends zero Lebesgue time at the origin.
O

Corollary 5.1.5 We have P, 2 0 and P SINGY

PROOF: Again we use the notation of Lemma 5.1.3. Suppose {P"}2° | is a sequence
of measures on D|0, 00) converging weakly to a measure P. We have

lim sup/ FydP™ < lim F,dP" = / F. dP.
DJ[0,00) DJ0,00) DJ[0,00)

n—o00 n—oo

Letting k — 0o, we conclude that

limsup/ FodP™ §/ FydP. (5.39)
DJ[0,00) DJ[0,00)

n—oo

Let P™ be the probability measure induced on D[0, c0) by the process Grol™in (5.38). In
the proof of Proposition 5.1.4, we showed that this sequence converges weakly to Wiener
measure. We have

mE/ e_M“(dFZ(u) —|—dﬁg(u)) < E/ e A" W) (Aﬁl(u)d?:f(u) —I-Ag(u)dﬁg(u))
0 0

_E /O AL oA ()

- EA e_sl{anoln(s)ZO}dS

= / FydP™.
DJ0,00)

By (5.39), the limit of this last expression is zero because Brownian motion spends zero
Lebesgue time at the origin. We conclude that _PZ + F? converges to zero uniformly on
compact time intervals in probability, which is equivalent to the convergence stated in the
corollary. 0

We have shown in (5.38) that Groln converges to Brownian motion, and we want to
identify the limit of G" = G" o I" o A", Thus we need to determine the limit of A" given
by (5.36). To do this, we must determine the limits of the processes F:, 1=1,...,8. We
have just done that for P, and P;. For the other processes, we have the following result.

Proposition 5.1.6 Consider a convergent subsequence of{@"};l’ozl with limit G*. Define
t t
_+ —_—
PG* (t) = / 1{@*(8)>0}d8, PG* (t) = / 1{G*(s)<0}d57 t Z 0, (540)
0 0

Then along the same subsequence of indices for which Gn = G*, we have

n

(G, H", P},... Py) = (G*,0,Py,..., Ps), (5.41)
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where P, = P5 =0, and

- M s+ 5 Ao st 5 M 5t
— P * P ER) P * 4 5.42
TN © DYV ST N+ N © (5:42)
— PV — — — A — — —
Po=—L P, P, =P P=-11 P (5.43)
Mo + H1 Mo + H1 Mo + Ha

PRroOF: For notational simplicity, we assume that G = G along the full sequence.
Each P, is nondecreasing and Lipschitz with Lipschitz constant 1. Moreover, P, (0) =
0. This together with Theorem 5.1.1 and Proposition 5.1.4 implies that the sequence
{(G",H",P},... Py)}>, is tight. Given any subsequence of this sequence, there is a
sub-subsequence that converges weakly-J; to a limit (G*, H*, Py, ..., Pg). We know from
Theorem 5.1.1, Proposition 5.1.4 and Corollary 5.1.5 that H* = 0, G* is continuous, and
P, =0, P; =0. We also know that Py, Py, P3, Pg, P7 and Pg are Lipschitz continuous
with Lipschitz constant 1. We show that these last six processes satisfy (5.42) and (5.43),
and hence they do not depend on the sub-subsequence. It will then follow that these are

the limits of the full sequence.

Substituting Py = P5 = 0 into (5.25) and (5.26), we obtain

C(?g _'_?6 — Fl — ?8) + (,Uq - >\1)<?7 - ?2> = 0, (544)
()\1 + ,1111)(?2 + ?7) — C(?l +?3 +?6 +?8> = 0. (545)

We also have 3% | P} = e, which implies
Fl +F2+F3+F6+F7+F8:6. (546)

From (2.1), (5.45) and (5.46), we obtain

B P LB LD AL+
P+ Ps+ P+ Py = 5.47
1+ 3+ e+ I8 ot €, (5.47)
- - Ao — Ml
Py+ P; = 5.48
2 ! Ao + )\1 ( )
Adding (5.44) and (5.45), we see that
— N -
P+ Pg = —P2 + = P7 (5.49)
Subtracting (5.45) from (5.44) yields
— — — A —
%+%:%%+5E. (5.50)

We use the Skorohod representation theorem to put the pre-limit and the limit pro-
cesses on a common probability space so that the convergence of the subsequence of

(@”, I/-j", ﬁ?, o ,ﬁg) to the continuous process (G*,0, Py, ..., Pg) is uniform on compact
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time _irlltervals almost surely. Because each P; is Lipschiiz/, to identify P; it suffices to iden-
tify P, for Lebesgue-almost every ¢ > 0. We identify P,(t) for all ¢ such that G*(t) # 0,

a set of full Lebesgue measure by Proposition 5.1.4.

Assume first that G*(¢t) > 0. Then for sufficiently large n, G™ is strictly positive
in a neighborhood of t. We see from (5.11) that in this neighborhood, (17”,)7\/\") is in
S1 U Sy U S3, which implies that Fg, F: and FQ are constant for sufficiently large n, and
consequently their limits Pg, P; and Pg are constant in this neighborhood. In particular,

/ -/

P (t) = Po(t) = Py(t) = 0 if G*(t) > 0.

Equation (5.48) implies

Ao —
P(t) = A2+ii if G*(t) > 0.

Substitution of this into (5.49) yields

-/

A
Pl(t): AO -

+ M\

it G*(t) > 0.

Substitution of this into (5.47) results in

Pl(t) = Ao/j:kl if G*(t) > 0

An analogous argument for ¢ such that G*(t) < 0 yields

/ -/

P (t) = P,(t) = Py(t) = 0 if G*(t) < 0,

and

_ A\ _ -\ _
Pg(t): 1 ’ Pl(t):'uo 1 Pl t): 451
Mo + 1

Integrating (5.51)—(5.56), we obtain (5.42) and (5.43).

, Pg if G*(t) <O.
o + o +

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

(5.56)

O

Corollary 5.1.7 Under the assumptions of Proposition 5.1.06, along the same subsequence
of indices for which G" = G*, the sequence of processes {A"}>2 | defined by (5.36)

satisfies
A" =Ly ¢ PL+ ¢ P
and
G* = B* o (c; Py + c_Pg.).
where

cr = 2X(l+ab—0b)=cyp,
a
b

and ¢y, and cy are defined in Proposition 3.4.1.

2
e = 2X( +a2—%):q},
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PRroor: For (5.57), it suffices to verify that A; o P+ Ayo Py+ Az 0 Py = c+?g*
and Ago Pg+ Ao P74+ Ago Py = C_Fg*. This is a lengthy but direct computation using
Assumption 2.2.1, (5.28)—(5.35), (5.42) and (5.43).

Because (Gmol™, A") N (B*, C+FJGF* +c_Pg.) (see (5.38)) and the Brownian motion
B* is continuous, we can invoke the time-change lemma in Section 14 of [5] to obtain (5.58).
That lemma is stated for D|0, 1], but the modification of the proof to obtain the result
for D[0, 00) is straightforward. O

Theorem 5.1.8 FEvery weakly convergent subsequence of {@”}j’;l converges to the same
limit, i.e., all limits induce the same probability measure on C[0,00). In particular, the
limit is a two-variance Brownian motion defined in Definition 4.1.1.

ProoF: From Corollary 5.1.7 and Proposition 4.1.3, we see that the limit of every
convergent subsequence of {G"}9°, is a two-variance Brownian motion. We want to point
out that in (5.58), B* is a standard Brownian motion whose measure is unique among all
convergent subsequences. From Proposition 4.1.3, we can rewrite (5.58) as

1 1
G*=DB"o(—P} +—Pg.) ",
© (c+ B+ o )

where
t
Pg.(t) = /1{3*(s)>0}d37
0

t
Pl;* (t) = /0 1{3*(s)<0}d8.

Since the probability measure induced by B* is the same among all weakly convergent
subsequences of {G"}>° |, we complete the proof. O

5.1.5 Convergence of (9”,)7\/\”)

Because of the inverse map defined in (5.13) and (5.14), applying Theorem 5.1.1 and
Theorem 5.1.8, we obtain the following result.

Corollary 5.1.9
V", W) =L (max{G*,0}, min{G*, 0}). (5.59)

We refer to the process on the right hand side of (5.59) as split two-variance Brownian
motion.
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5.2 The bracketing processes

The dynamics of the bracketing processes Ur and X depend on the state of the interior
processes V* and W". We shall see that the diffusion-scaled bracketing processes converge
in the M; topology on

D[0—, ) := R x DJ0, 0)

to snapped Brownian motions. More specifically, when G* is on a negative excursion, U*,
the limit of U™, is a Brownian motion, but when G* is on a positive excursion, U* is frozen
at k7. Analogously, when G* is on a positive excursion, X* is a Brownian motion, but
when G* is on a negative excursion, X is frozen at k. To determine the dependence
between U* and the negative excursions of G*, we decompose U* into two processes, one
of which is the excursion of G* itself and the other of which is independent of G*. A
similar decomposition applies to X* and the positive excursions of G*.

To establish limits for Z/{” and A" , in Section 5.2.1 we first establish stochastic bound-
edness of the sequences {Z/{”}OO , and {X "1oo .. The decomposition of U* when G* is on
a negative excursion into the negative excursion of G* and an independent process re-
quires a lengthy technical analysis, which is contained in Section 5.2.2. The analogous
decomposition of X* when G* is on a positive excursion into the positive excursion of
G* and an independent process is then stated without proof. After that the convergence
of (U™, X") to (U*, X*) is straightforward, and the proof is given in Section 5.2.3. To
conclude we need to establish that the stopping times when U™ or X" hits zero converge
to the stopping time when U* or A'* hits zero. This is the main content of Section 5.2.4.
This section completes the determination of the limit of the sequence of diffusion-scaled
limit-order books.

In order to avoid a discussion of the possibility that the bracketing processes are no
longer valid till a certain time, we consider a pair of processes (U™, X™) that has the same
dynamics as (U™, X™) but is defined by these dynamics for all time, not just during the
period of time when U™ and X™ are bracketing processes. Note that cancellations might
happen on U™ or X™. Therefore the dynamics of the n* pre-limit model does depend
on n. The LOB has eight possible configurations depending on the locations of the best
bid price and the best ask price, as shown in Figure 5.1. Within each configuration, the
dynamics of U™ and X™ are the same, so we can use the same way to write down the
dynamics of U™ and X" as what we did in previous subsection. In particular, we can
introduce eighteen independent unit-intensity Poisson processes N; x ., where i =1,...,8
indicates the region where V, W is, x € {U, X'} indicates which of the processes U™ or X"
is affected by the Poisson process, and * € {+, —} indicates whether the Poisson process
increases(+) or decreases(—) the affected process. Hence, we have

t
0
du™(t) = d( — Nig( /O \/—%(Z/{"(s)ﬁ dPi(s)) + Nay.+ 0 A Ps(1)
+N4’u7+ O /\2P4(t) — N5,u7_ O ,[,L0P5(t> —|— Nﬁ,l/{,—l— O /\2P6(t) —|— N7u + O )\2P7( )
—Nr7y,— 0 proPr(t) + Nggg 0 M Ps(t) — Ngy,— © Mops(t)) (5.60)
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t
Os  n/
ax(t) = d(Now . ( /0 LX) AP() = No- o 1Rl
+N5,X7+ o AOP5(t> — N4,X,— (@] /,L2P4(t) — NS,X,— O ,LLQ_P?)(t) + NQ,X,—}— (@] /\Opg(t)

—Nox 0 paPa(t) + Ny x 0o NPi(t) — Ny — o Py (L‘)> (5.61)

We next center the eighteen independent unit-intensity Poisson processes appearing in
(5.60), (5.61), defining
M; i (t) == Nix.(t)—t, t>0.

Each of these compensated Poisson processes is a martingale relative its own filtration,
and these martingale are independent. For n = 1,2,..., their diffusion-scaled versions
are

J\//Tﬁx,*(t) = L(]\/[i,x,*(mf) — nt), t>0,

vn
and each of these processes is likewise a martingale relative to its own filtration, and these
processes are independent. Replacing the Poisson processes in (5.60) and (5.61) by the
centered Poisson processes and applying the diffusion scaling, we obtain

@) = @0~ T ([ @) dP) + Ty o X500

My 0 APy (t) — M2y, _ 0 poPy () + Mgy . 0 M Pg(t) + My, . 0 APy (1)
— M2y o po Py (t) + My, 0 MPy(t) — Mgy, o 1Py (t)

(- [ B @ (5)) APL(5) + MPa(t) + AT H) — poPL(t)

+Xa P (1) — (110 — A2) P7 (1) — (110 — M) Pg (1)), (5.62)

A~ ~ —n —

t
Rt) = 20)+ M ([ 0.8 dP) ~ Wi, 0Py
A MZ sy 0 NPy (t) = Mys_ 0 Py () — My 0 psPy (1
My, o MQFZ(t) + My o )‘O?T(t) — My _o Mlﬁ?(t
t
Vi [ 0.07(6)" dPYs) = 1P 0) + 2P 1) = P )
0

—p2 Py (1) + (Ao — 12) Py () + (ho — 1) P (¢)). (5.63)

5.2.1 Stochastic boundedness of (Z:{\", 2/(\”)

Proposition 5.2.1 We define the following processes
AT = NiwroMP" — Niyw o poPl + Noyy 0o M Py + Ny 0o M Py,
A3 = Now—omPy — Nyw 0 APy + Nyw,— o1 P5' — Naw 4 0 Ao Py,
A = NoyvioMPy — Noy,— o poFg + Noy o MEg — Ny — o Py,
Ay = Nsy-_omPg — Ngy o XFg + Nry o b + N5y o By
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Obviously, from (5.9) and (5.10), we have

H™ = H"(0)+ A" — A7 + A7 — A,
\H"| = |[H"(0)] + A7 + A7 + A7 + AL

The scaled versions of AT, Ay, AL, and AZ are denoted by é\l’f, ﬁg, é\[g, and é\lg Then
Ar L0, AT Lo, A +Ar L 0.
PROOF: According to (5.18) and (5.19), we have

H* = H"0)+ AP — AL + AT — AL,
|H™| = [H™0)] + A7 + AL + A2 + A2

Since H™(0) — 0, from Theorem 5.1.1, we have

Ar — AT+ A2 —Ar = H™ — H*(0) =2 0, (5.64)
Ar 4+ AP + AT+ AT = |H"| — |[H"(0)] 2 0. (5.65)

Adding and subtracting (5.64) and (5.65), we obtain
Ar A7 =L 0, A7 4+ A L 0. (5.66)
We now show that we can separate the first convergence in (5.66) to obtain
Ar L 0, A =L 0, (5.67)
We consider an interval of time [0, 79] where
7o :=inf{t > 0: (G"(t), H"(t)) € S} }.

If 7o = 0, AP (10) = AT(0) = 0. If 75 > 0, (G™(70), H"(70)) € OS] so H"(75) = 0. Since
the jumps in H" agree with the jumps in 2} on [0, 79) and A7(0) = 0, we have

A (10) = A7 (10) —A7(0) = H"(70) — H"(0) = —H"(0). (5.68)

Then let us consider a sequence of subinterval [0, 7;]%°, on [7g, 00) such that [0}, 7;] is the i
positive excursion of G" starting from 7. Specifically, if 7o > 0, and (G™(10), H"(70)) € S}
then o7 = 19 and

G"(01) >0=G"(1) = G"(0;—) = G"(13),

for ¢ > 2. Otherwise, o1 > 75 and
Gn(O'l—) = O = Gn(Ti),

for i > 1. For j between 1 and some finite number (which may be 0), let [0;;, 7;;) be the
7' interval contained in [0, 7;) on which G™ is in Sj. Specifically, o;; is the j* time inside
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lo;,7) when (G", H") moves from S; U S} to S, and 7;; is the first time after ;; when
(G™, H™) moves from S} back to Sf US). For i > 1 and j > 1, there is a jump in either
Now.+ 0 APy or N5y 4 oA Ps at time oy; in order to move (G™, H") from S U S} into
S1, so that AU} (0;;) = AH™(0;;) = 1. Note that the jumps in H” agree with the jumps
in A} on |04, ;). Because H"(0;;—) = H"(71;;) = 0, we have

U7 (7i5) — A} (045—) = 0.

We observe that on [0y, 7;), A} only jumps on [0y, 7;;) for some j. Hence if 75 > 0 and
(G™(10), H"(10)) € Ro we have

AT (1) — A (01) =0, A (1) — AT (03—) =0,

for i > 2. Because 27 is constant on the complement of the union of the intervals [0, 79)
and [0y, 7;), from (5.68), we have

A (10) = AT (1) =AY (1) = A (03—) = A"(7), (5.69)
for ¢ > 2. Otherwise, if 7o = 0 or (G"(19), H"(10)) € R, we have
A (r) — Ay (0i—) =0,

and
Q‘?(To) = 9’[?(01'_> = Ql?(ﬁ)? (5-70)
for ¢+ > 1.

Since Py, Pr and Njy _ o iy P5 are constant on [0, 7;] and have no jump at o;, we
also have 2y is constant on [0}, 7;], which implies

Obviously if 7y > 0, Ag is zero on [0, 7).

If 75 > 0, and (G"(70), H"(79)) € S}, consider the process

Ql?(To)‘i‘mn(TQ) if0§t<7'0,
Q[n(t) - Ql?(o-l) + Q[n(0-1> le [017 7—1)7
' WAt (o;—) + A5 (0;—), t € [oy,7i),for i > 2,
A7 (¢) + A7 (1), otherwise.

According to (5.69), and (5.71), A" is continuous at 7y, o; and 7;, and in fact, An =
A7 — H™(0).

If 7 > 0, and (G"(70), H"(79)) € S%, consider the process

An(t) := Ql’f( —) + 22("(01—), t € oy, 1), for i > 1,
A7 (¢ )—I—ng(t), otherwise.
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According to (5.70), and (5.71), 2" is continuous at 7, o; and 7;, and in fact, A =
A2 — H™(0).

If 79 = 0, then consider the process

An(t) = At (o;—) + A5 (0;—), t € [0y, 7)), for i > 1,
LA + AR, otherwise.

According to (5.70), and (5.71), 2" is continuous at o; and 7;, and in fact, A" = AL
This shows that for any T' > 0, we have

max_[Ag(t)] < |H"(0)] + max ’é((t)’ < [H™(0)] + max |A7(t) + Az (t)],

0<t<nT 0<t<nT 0<t<nT

and since H"(0)/v/n — 0, we have

lim sup max ‘Eilg(t)‘ < limsup max ‘ﬁl?(t) + ﬁg(t)‘

msmo OSEET nsmo OSEET
Because A} + 27 == 0, we have 217 == 0, and therefore 2} == 0. O

We observe that

Sn /\n —n /\’I’L —n /\n —n /\n —n

+vn[(\ = o) Py + APy + M P, (5.72)
§l§ = ]\/4\5?,1/,7 © Nlﬁg - M\gv,+ © )‘Oﬁg + ]\//—7?,1;,7 © MIF? + ]/\4\;,,7, © Nlﬁg
+v/n[(p = Xo) Py + Py + mPs). (5.73)
Since
M. = B

where B, . . is a standard Brownian motion, also from Proposition 5.1.6 and Theorem
5.1.8, we have

—~ —

-n -n T -n T -n J

AN S+ poA1 —+ A1(Ao — 1)
_ P o P..+B o 210 T L)
Mo+ N € A VNI W VT TN N

Pl..(5.74)

o~ — o~ — o~ g
MSZV,— omPg — MEZV,+ o NPy + M?’v’_ omPr + MQM_ o 1 Py =L

2
T —— DY p— (o — A1) —=—
P.. —B o Pr.+By_o———"P... (575
Lo + 111 G 8,V,+ 0 ) G vV, Lo . G ( )

Substituting into (5.72) and (5.73), we conclude that

Vi[(A = o) Py + M Py + APy =L
2
- Al —+ )\1(/\0 - /M)—+
—Biwao—L Pl 4B ot BB,y o SR T KB (5 76
LW+ )\0 + )\1 G Lw, )\0 + )\1 G 2,W,+ )\0 +)\1 G ( )
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_BS,V,— ©

2 _ )\ _
ML P+ Byyoo 2 P By

. (o — A1)
o + {41 Ho + {41 Ho =+ fh1

P, (5.77)

and, in particular, the processes on the left-hand sides of (5.76) and (5.77) have continuous

limits.

To simplify notation, we define

an
Os
an
Oy

= —-—=n
29

M\{L,W7+ © AlP? - ]\//Tﬁwﬁ o ,UOFT + ]/W\;W’Jr oMP

_]\/4\;‘/\/7_ o ,ulﬁ; + MP?,W,-;— o /\0F§ — ]/\Z?:W,— o M1?§7

M\lnvvﬁ 0 APy + MZV& 0 APy — M\Qv,— o 1o Py
+]\//7§L,V,+ o\ Py — M\:?,v,f o jo Py,

_@W,f © N2ﬁg - M?,W,f o /~b2ﬁ: + J\/JQW7+ o )\0??
_]\//Tng— © 'ulﬁg + M\g,w,+ °© )\Oﬁga

MQVFF © )\1?? - Méﬁ%* © /,Loﬁg + mV,+ © )\1?{57

—]\/4\;;],77 ° ufg + 1\7;),7+ o )\0?2 — ]\77’2\,’7 o Mlﬁ?,

(5.80)

(5.81)
(5.82)
(5.83)

Mgy 4 0 APy + Mily 0 WPy + My, _ 0 uPy + My, _ o poP;

+b]\/4\gfw,+ o Alﬁg + ]/\4\;\,7+ o )\21_37; + ]\//TE?,W,— o MQF;
—HLZ\/Z;V’f o /Llﬁg;

M\ZW,+ o APy + M\f,v,— o poPy

]\//Tgl,w,Jr o\ Pj + ]\75?,1;,— o 11 Ps.

Then from (5.17), (5.18), and (5.19), we obtain

&)
_

H" =

| -

IG™(0)| + bO? + OF + OF — O — OF — aOF 4 O7
+2arov/n(Py + Py),

H™(0) 4+ O" + 07 —0F — 07 + O + 07 + vn(A + 1) Ps + V(Ao + 110) Py
+evn(Py + P — Py — Pg) + v/n(un — M) (P — Py),

[H"(0)] + 67 — O + 85 — 0F — 8% + 0 + v\ + ) (P + P} + )
—cy/n(P} + Py + Py + Pg) — v/n(Xo + 1) Py

Note in (5.87) that 2a\g/n(P) + Py ) is a nondecreasing process that increases only when

A~

(5.84)
(5.85)
(5.86)

(5.87)

(5.88)

(5.89)

the nonnegative process |G"| is at zero. Because of uniqueness of the solution to the
Skorohod problem, we must have

2a0v/n(Py + Py) = T(|G"(0)] + O} + OF + O} — 0% — O — aOp + 67),

where I' : D[0, 00) — D[0, c0) is given by

['(z)(t) = — inf (x(s) v 0).

0<s<t
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Therefore, we can rewrite (5.87) as

G"| = |G"(0)| +bO] + O + 6} — 6] — 6 — 1} + 67
+T(|G™(0)] + 6O} 4+ OF + 08 — O —OF —adp +01).  (5.90)

On Page 87, we will define {©;}%_,. From Proposition 5.1.6, we observe that

or L e 0P,
or L e;0P,,
or L er0P,,
or L ei0P,,
or L eroP,,
or L e:oP,.

Since G™(0) =2 0, we can take the limit of (5.90) to get

|G| = 07 +03+63—0;—0;—a0;+6:+T (b0;+03+63—0;—0; —a0;+6%), (5.91)

where ©7 is the limit of (:)? fori=1,...,9. Also, from Theorem 5.1.1, (5.88), and (5.89),
we have

n

Vvn( + m)ﬁg +vn(Xo + Mo)ﬁz + C\/ﬁ(ﬁg + Fg — qu — ]_38)
V(i = M)(Py = Py) = —(0; + 05 — 01 — 65 + 05+ 03),  (5.92)

V(A + ) (Py + P+ Py) — ev/n(Py + Py + Py + Py)
—Vn(Xo + 110) Py =2 (6] — 0 + 01 — 6; — 65 + 6}). (5.93)

If we multiply (5.92) by —i(b+ 1), multiply (5.93) by (b — 1) and take the sum, we
obtain

Vi [((Ao = )Py + (buy — M) Py = APy — b(Xo + p10) Py — (11 + M) P
—XaPg + (o — A2) Py + (Ao — 1) Py | = O} + 105 — bO; — 6 +b0; + 65, (5.94)

which will be used in the following proofs.

Theorem 5.2.2 The sequence of cadlag processes {U" °, and {X"}> | are bounded in
probability on compact time intervals.

It suffices to prove {Z;"}flo:l is bounded in probability on compact time intervals. The
proof of this theorem is presented in Lemmas 5.2.3 and 5.2.4 below.
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Lemma 5.2.3 The sequence of processes {ﬁ"};‘f:l 15 bounded above in probability on com-
pact time intervals.

ProoFr: To simplify notation, we rewrite (5.62) as

U =U"(0) + Y + Y + Y + Y], (5.95)
where
t
YRl = ( / 0,00 ()" dFT@)) , (5.96)
YR() = My, (MPs() + Miy, (3P (1) — M2y, (1P (t))
+]\4(75%1,1& <)‘2]—32<t)) + M7n,u,+ ()‘2~;l(t)) - M;L,u,— (Moﬁg(t»
+My, (M Pg (1) — My, (0P (1)), (5.97)
t
Vi) = Vi [ 6@(s) dPs) (5.98)
0
Yit) = Vr[XP5t) + \Py(t) — poPs(t) + APy (t)
—(pt0 — A2) P (t) — (10 — M) Py (1)]. (5.99)
Then
n Jl *
Yy =Y, (5.100)

where Y5 is a continuous process. We rewrite Y,* as

Y = V(o= m) Py + Vnlbus — M) Py — Vn(b(Xo + p10) — A2) Py — v/l + A + po) Py
v/ = (Mo = )Py = (bpn = M) Py + APy + (Ao + p10) Py + (11 + A1) Py
+A2 PG — (o — Ao) Py — (Ao — 1) Pg]

= V(Ao — )P} + V(b — M) Py + Y, (5.101)
where
Y9 = —v/n(b(Xo + o) = Ao) Py — vn(p + M+ p1o) Py
+vn[ = (Ao — )P} — (bun — M) Py + APy + b(Ao + 110) Py + (1 + A1) Py

From (5.87), (5.90) and (5.91), we see that 2a\gy/n(P; + Ps) has a continuous limit,
and since both /n P, and /n ﬁg are nondecreasing, they are bounded above in prob-
ability. Furthermore, the modulus of continuity of each of these processes is dominated
by the modulus of continuity of their sum. Therefore, both sequences {\/n P} }5°, and
{/nP;}22, are tight in C[0,00), and we can choose a subsequence along which both
have a continuous limit. According to (5.94), the last term in (5.102) converges to
—O} — O} + bO: + OF — bOE — O3, a continuous process. Therefore taking limit along
the subsequence we have
}/571 é ng’
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where Y;" is a continuous process.

From (5.76), (2.1), and the convergence of \/nP; to a continuous limit, we conclude

that B -
Vi[=(Xo = ) Py + M Py)] = Oa(1).
Thus,
— —n b n
V(o = )Py + (b = WP = (o= ) 3V}
b, — A —n —n
+%\/ﬁ[—0\0 — )Py + A Py]
1
. bﬂl 0
= (Ao — )~ Vb Oa(1). (5.103)
1

Substituting this into (5.101), we obtain

by
nPy + Y7 4+ 0a(1) = (Ao — ) —

Y/ =M\ —pu
4 (0 Al

)b>\1 WP O4(1).  (5.104)

If N is a unit-intensity Poisson process, then —N(¢) + %t is a supermartingale whose
supremum S* over ¢ > 0 is finite almost surely. Therefore,

—L(N(mf) —nt) —v/nt= = {—N(nt) + %nt} — %\/ﬁt < LS* — %\/ﬁt,

Vn vn vn
and hence ] ]
)+ Y1) < 5¥5' () + 70 Ou(1). (5.105)
Combining (5.100), (5.104), and (5.105) we obtain
N 1 b
ue) < ¥+ Mo — )= nP| + Oa(1)
! blfll n + =
= Vn (Ao — p1) SV 5917(” (s))" ) dPy(s) + Oa(1).  (5.106)
0 1
Let us fix T' > 0 and consider ¢ € [0, T]. Either
¢ b 1~ .
/ ((/\0 - m)% - §9b(u%s))+) dP}(s) <0, (5.107)
0 1
or else
£ - bitr—n b
/ O (5)) " AP () < 20 — i) 2P (1) < 2000 — ) 2T (5.108)
0 1 1
We define
) ; if (5.107) holds,
= s {s € 0,4]: 0,{U(5))" < 20N — ul)g%} if (5.108) holds.  (>109)



If (5.107) holds and 77(t) = ¢, U"(t) is bounded by the Oy (1) term in (5.106). If (5.108)
holds, then

Uty <u(r +Z [Y” Y (e ))] (5.110)

We consider each of the five terms on the right-hand side of (5.110). Since the jumps in
U™ are of size f’ we must have

U (r(t)) < 2(A0—u1)%l+i. (5.111)

Because of the bound (5.108) on the argument of M\ﬁu,—y both Y{*(t) and Y{"(7"(t)) are
Oq(1). Also, both Y3*(¢) and Y3'(7"(t)) are Oy(1). It follows that

@) < Vi)~ Y3 (7 (0) + Vil — m) 22 (PL(t) ~ P} (1)) + 0a(1)

- \/_/ (Ao—ul bA—’f—eb(un( ) >d?’f<s>+0cz<1>

< —f(Ao—m)";‘l(P() L)) + Oal) (5.112)

because OU™(s))T > 2(Ag — ,ul)bf—ll for s € [7"(t),t]. Recall from (2.1) that Ao — u1 > 0.

Again we have an upper bound on Ur. Tn conclusion, {I;{\”},ib‘ozl is bounded above in
probability on compact time intervals. O

Lemma 5.2.4 The sequence of processes {Z:l\”};’f:l is bounded below in probability on com-
pact time intervals.

PROOF: We return to (5.62) and note that because 4" is bounded above in probability on
compact time intervals and dP, < dt, the sequence of processes { Jo Ou(U™) T dP} ), is
bounded in probability on compact time intervals. Consequently, the sequence of processes

{]\//.T{fu’_o / 0 (i) dﬁ’f}
0 n=1

is bounded in probability on compact time intervals. In addition, the other processes on
the right-hand side of (5.62) involving scaled, centered Poisson processes are bounded in
probability on compact time intervals. This permits us to write

Ut) = vn {— / t 0,(U™(s)) " AP} (s) + Ao Py () + APy (t) — 1o Py (1) + Ao Py (1)

0

— (o — M) P (t) — (1o — M) Py (t) | + Ou(1). (5.113)
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Note that v/nP, = Ou4(1), v/nP; = Oq4(1), and the left-hand-side of (5.94) is also
Oa(1). We add the left-hand-side of (5.94) to (5.99) to get

Y =v/n(Xo — )Py + vn(bus — M) Py + Oul(1).
From (5.104), we have

—n b n
\/ﬁ()\o — /,LI)PI + \/E(b/il - )\1)P (/\0 — ,LLl) /<]Jl TLPI + Ocl(l) (5114)
1
We define R
p"(t) := sup {s € [0,t] - U"(s) > 0} : (5.115)

Then U"(s) < 0 for p"(t) < s < t, and (5.113) and (5.114) imply

Uy = u(p >)+\F[Az(_”<> P (p <>>)+A2<F‘Z<t>—FZ(p"<t>)>
—o(P(t) - < 1)) + 2 (Pi(0) - P ("))

~ (10 = Xa) (P (1) = P; (5" (1)) - uo—An(P<>—T3;3<p”<t>>>}+od<1>
— U (p" (1)) + vl( Ao—m(?t (

() — Py (p"(1)) + (bpr — M) (P5(t) — Py (p™(1)))]
V| = 0o = m) (PL®) = P ("(1))) = (b = M) (P (1) = P (6" (1)))
+Xo(Py(t) = Py (0" (1)) + X (Py(t) — Py (p"(1)))
—o(P5(t) = P5 (0" (1)) + 22 (P5 (1) — P (0"(1)))
(10 = 22) (P} () = P (p"(1))) = (10 = M) (Pi(t) = P (p"(1))) | + Ou(1)
= @) + Qo = i) EVA(PLO) - P 1)
V| = o = m) (PL() = PL(p" (1)) = (b = M) (Pa () = Pa (o"(1)))
+x2(P3(t) = P5 ("(1)) + X (Pi(t) = Pi (0"(1)))
—no(P5(t) = P5 (p"(1))) + ha(P5(t) — P (¢ (1))
(1o = ) (P} (1) = P (p"(1))) = (1o — M) (Ps(t) = P (p(1))) | + Ou(1)
> U (p" (1) + v/ | = o — ) (PT(1) = P} (0" (1)) = (b = M) (Pa () = P (6" (1))
A2(P5(t) = P5(p" (1)) + Ae(Pi (1) — Pi(p"(t)))
(1))

— 110 (P5 (t) — F;‘ (0"(1))) + A= (PG () = Pg (0" (1))
— (o — Ao) (P7(t) 7
+0O.4(1). (5.116)

From (5.94) and the convergence of v/nP, and \/ﬁ?g, we conclude that the second term
on the right-hand side of (5.116) is Oy(1), and hence

U(t) > U (p"(t)) + Oull).
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Because U™(p™(t)) > —% we conclude that U™ > Oy/(1). O
Remark 5.2.5 We recall (5.62):

t
n /i arn 7 + rn ik 1 D"
u't) = u"(0) - M1,u,—(/0 eb(u (5)) dpl(s)) + M3y 0 APy (t) + My 0 APy (1)
—M7 4y 0 o Py (t) + Mgy, 0 MPg(t) — Mgy _ o noPg(t)

+\/ﬁ<—/0t (B (s)) " (Ao—m)bﬁl)dp (s ))

V] = o = i) 2EPLE) + P 0) + P e) = poP (0) + P 1)
(0= M)PL(0) = (10 — M)PA(L)]. (5117)

From (5.104) and using Y* TN Y., we have

Vil = (o - m”;‘fp () + M Po(t) + MPo(t) — poPe(t) + MPo(t)

— (o — M) P7 (1) — (po — )\1)?;(75)]
— 0 — ) AP0 + Vi 0) = Ou(1).

Therefore,
(0 = B0 =i [ G ) = o= m) %) dPGs) + Gl
= O -V [ @) - P G, (Ga)

where Cjj = Oq4(1). In fact, Cjj has a continuous limit along subsequences of sequences.
Similarly, we can obtain

paA1
1

R0 = 20+ i [ (@)~ L) dP) + ), (5.119)

where C% = Oy(1). In fact, C% has a continuous limit along subsequences of sequences.

5.2.2 U* on negative excursions of G* and X* on positive excur-
sions of G*

In this section we identify the limit of U on negative excursions of CA?’/L\, and by an analo-
gous argument, the limit of X on positive excursions of G". When G" is on a negative
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excursion, the terms dP;, dPy, dP; and dP; in formula (5.62) for " are zero. Thus, on
such an excursion,

" = d(Mgy . © X Pg) + d(Mry, ;o X P7) — d(M7y o 1o P7) + d(Mgy, 4 © M Pg)
—d(Mgy_ o 11odPy) + v/n(Aa dPg — (st — Ao) dP7 — (o — M) dPg ). (5.120)
The scaled centered Poisson processes ]\//Z"u* are independent of G™ and hence indepen-
dent of the beginning and ending times of the excursion. These processes converge to
independent Brownian motions. We have identified the limits of the scaled occupation

times ﬁzn in Proposition 5.1.6 and Theorem 5.1.8. Thus, we can determine the limits of
the first five terms,

d(My. 0 MaPg) +d(Mpy, 0 ModPy) — d(Msy, _ o podPy)
+d(Mgy, o M dPy) — d(Mgy, _ o i dPy) (5.121)
on the right-hand side of (5.120) (see Proposition 5.2.12 below). The remaining term,
V(A dPg — (1o — X2) dP7 — (po — \1) dP%) (5.122)

is more difficult. It is not independent of CAJ”,A and hence depends on the fact that we are
observing it during a negative excursion of G". We will see (Proposition 5.2.12 below)
that it convergences to a constant times the excursion itself plus a one variance Brownian
motion that is independent of the excursion and also independent of the limit of the first
five terms on the right-hand side of (5.120).

To set the stage for this analysis, we introduce six independent one variance Brownian
motions. To be consistent, we use the same notation that appeared in (5.91). Specifically,

since ]\Z”X* i B, « «, we define ©}, where i =1,...,6, by
©1 = Biwso AO)_\EMG — Biw,-o )\53_)\3\16 + Bow,+ © %@
©; = —Byw,-o© %6 + Bsw,+ © )\;\[fl)\l@ — Bsyw,— o /\olf/\f’
©; = Bjyyo /\jfi\l e+ Byyyo —AQS\:—)\T) e—Byy_o —M0§\2\0+_)\/;1) e
©; = —Bgw_o )\ffil e— Bry o —Mz)(\jo_'__/\[;l) e+ Brw,+ o —)\0)(\/0\0+_/\’lf1) e
A1 Aot
—Dg,w,- © N+ )\164— 6,W,+ © me,
©; = Bry+ )\1/(\2\0_'__/\?1) — Bsy - /\5:_)\1)\16 + Bev,+ )\O)f)\l ;
O = By Aolfxle T s o )\j(fl)\l il mij(:;fl) :



and these are six independent one variance Brownian motions. We observe that

o 1 2
(e1,01) = Y (A2 + fioh1 4 Aot — Aijig)e = Tle, (5.123)
* * 1
(05,05 = (X0 — pif + Aopin + pii)e
Ao+ A1
1 2
= = = 124
NN 21 A€ ¢ (5.124)
1
(03,03 = Mo+ M (A1 A2 4+ XoAg — p11 X + poAo — fropin + Aipia + fofir)e
1 2o
== )\0 i )\1 (/\1/\2 + )\0)\2 — /11)\2 + Mo/\o + )\1,&1)6 == 76, (5125)
1
(0,0 = m(ulm + Aoplz — prapie + )\(2) — Aoftr + Ay + AoA)e
= = (Mokta + A5 — Aof1 + Aipn + AoAs) _ 2 (5.126)
= Mo+ M 0H2 0 oM 1M1 oA )€ = b e, .
o 1 2\
<@5, @5> = m()q)\o — ,LL1)\1 + ,u())\l + )\%)6 = 7167 (5127)
* * 1
(©5,05) = (1] + Ao + Aopa — pi)e
Ao+ A1
1 241
= = . 12
NN 211 Aoe patc (5.128)
Based the From (5.16), (5.17), (5.91), and Proposition 5.1.6, we have
G* = (bOF+ 05+ 0 0Pl + (0F + 05 +aBO) o P, (5.129)

G| = (b0 + O} + ©3) 0 Py — (0] + 6% + af) o Pg.
HT((bO) + O3 + O3) 0 P — (B4 + O5 + aOg) 0 Pg.).  (5.130)

For the analysis of this section we will also need several correlated one variance
Brownian motions. For convenient reference, we collect their definitions and properties
here.
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Definition 5.2.6

¢, = bO] + O; + O3,
Py = —0O) —O: — Oy,
o3 = —0O] — O,
d; = —Of — a3,
o, = 0O; + O,
o, = a®; + O,
o be1en-he3en (-1t
' b2<@i7 @T> + <@;7 @§> + <@§7 @E;) )\0 + b)\l ’
s hERE) —a©e) _ hrmw
. (©1, @D + <@j’;’ 6§> + a2<®€a @Z> Mo + apy ’
S benen -ae5e) _ Aim
b2<@I> @’1‘> + <@§? @§> + <®§7 @§> )\0 + b)\l 7
5 o= —a(03,03) —a(65, 05  (a—Dpo+m
<@flv @D + <@;7 @;> + a2<®é’ ®Z> Ho + afty
Q5 = P3—ad; =—(14+0ba)0] — (b+ )O; — O,
Oy = By—ad; = —(1+bd3)O; — (a+ @)} — 4O,
Pg = Dy — [Py =05+ (b+ B)O: + (1 + apf)Oy,
Bg = D4 — POy = O]+ (a+ B)O% + (1+af)Oy,

,,,,,

(B are constants.

Lemma 5.2.7 Following the definition above, we have

(@5,81) = 0, (Pg, D) =0, (5.131)
(®5,D9) = 0, (P, P1) =0, (5.132)
(D5, ®1) = 0, (B, 0o) =0, (5.133)
(D5, @5) = 0, (Dg,Py) =0, (5.134)

which implies (<I>5, 55,<I>6, 56) 1s independent of (@1, ®y), which follows from the Levy’s
Theorem on Page 157 of [19]. Moreover,

<®17®1> = (46,
<®2,(I)2> = cC_¢€,

where ¢y and c_ are defined in Corollary 5.1.7.
PRrROOF: From Assumption 2.2.1 and (5.123)-(5.128), we can do a lengthy computation
to show that

<(I>1, CI)1> = Cc1€, <(I>2, @2) = C_¢.
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Since &, $y, &5, P, <T>5, and &)6 are one variance Brownian motions, it suffices to show
(5.131)-(5.134). Following the definition of «, 5 and ®; where i = 1,...,6, we have

@5, ‘1)1> = <<I>3 — ady, CI)1> = <‘I)3, @1> - 04@1,‘1)1)
= —b(0],07]) —b(03,05) — a(b*(67,871) + (03,03) + (63, 6%))
pu— 07

<(I)67 (D2> = <<I)4 - ﬁq)Qa q)2> = <q)47 <D2> - ﬂ<®27 (I)2>
= —0(0%,03) — a(6;, 65) — ({0}, 65) + (0%, 03) +a*(6}, 7))

= 0,

<(b5a (I)2> = <<D3 —ady, <D2> = <@3> CI>2> - 04<<D1,q>2>
= 0,

<‘I’4 — B, ‘I)1> = <<I)4, ‘I)1> - 5<‘I)2, (1)1>

(g, P1) =

|
e

Similarly, following the definition of &, B and EIVDZ where 1 = 1,...,6, we have

(D5, D1) = (D3 — ady, 1) = (Dg, 1) — @(Dy, Py
= —b(O],07) — a(6%,05) — a(b*(07,07) + (03, 03) + (65, 05))
P— O’

(Dg, Dy) = (g — [y, Dy) = (By, By) — f(Dy, Dy)
= —a(0},05) — a(65,05) — B((8], 0]) + (6%, 0%) + a*(0F, 7))

p— O’
(B5,Dy) = (By— Ay, By) = (D, By) — @(Dy, By)
— 07
(P, @1) = (Ps— Py, Dy) = (Py, Py) — B(P2, D1)
— (),
which finishes the proof. O

Lemma 5.2.8 According to Definition 5.2.6, we can write (5.129) and (5.150) as

G* = ® 0P —®yo P, (5.135)
IG*| = ®1 0P +®y0Pp. +T(®y0Ph + P30 Pr). (5.136)

Remark 5.2.9 Note that F; and Pg. are determined by ®; and ®y and hence they are
independent of any processes that are independent of ®1 and ®5. From Theorem 5.1.8,
we know G* is two-variance Brownian Motion, therefore, from Lemma 5.2.7 and Lemma
4.2.7, we obtain that s, E135, dg and EI;G are independent of F;, FE;* and G*.
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From (5.18) and (5.19) and Theorem 5.1.1, we see that
Vi [(ho = m)(Py +Pg) = (o = 1) (Py + Pg) + (i1 = M) (P = P7)
—(Xo + 0) Py — (A1 + 1) P5]
Ly (©7 4+ 03) 0 P — (05 4+ 07) 0 P, (5.137)
Vi (o = ) (PY + Pg) + (Ao = ) (Py + Pg) = (pa + M) (P + Pr)
+(Xo + )Py — (A1 + 1) P5]
Ly (©F — 03) 0 Pru + (0% — OF) 0 P, (5.138)
According to Assumption 2.2.1, we can easily verify
bAL — 1 = o — A2, apr — Ay = Ao — pa.
We multiply (5.137) by —3(b+ 1), multiply (5.138) by (b — 1), and sum to obtain

" =2 (07 — b03) 0 P + (b0 + 03) o P (5.139)
where
0" = Vn[— (Ao —p1) P} — (b — M)Py + APy + b(Xo + o) Py + (11 + M) Py

+A2Pg — (110 — Aa) Py — (Ao — 1) Pg).

Similarly, we multiply (5.137) by —3(a + 1), multiply (5.138) by 3(a — 1), and sum to
obtain

" =2 (—0% — a0%) o Pr. + (aO} + %) o Pe.. (5.140)
where
I = vn[— (o — \)Py — (Ao — p2) Py + 2Py + a(Xo + o) Py + (1 + M) Py

+p2Pg — (ah — 1) Py — (Ao — ju) Pg].
From Definition 5.2.6, we may rewrite (5.139) and (5.140) as

" =2 ®y0P. +®40 P, (5.141)
" L &y0P. + &40 Pg, (5.142)

The following lemma will be crucial in the identification of the limit of the term
(5.121).

Lemma 5.2.10 Since
D3 = a®+ D5, Py = [Py + D,
D3 = a®+ D5, Py = [Py + e,
we can rewrite (5.141) and (5.145) as

" =2 (a®; 0 Ph + ;0 Pg.) + &5 0 Peu + ®g 0 P, (5.143)
" L (4D 0 Pl + BBy o Pa) + &5 0 Pl + B 0 P (5.144)

92



After these preliminaries, we are ready to study the behavior of U™ on a negative
excursion of G". To select such an excursion of G™, we first select a negative excursion
of G* and appeal to Lemma 5.2.11 below. To do this, we use the Skorohod embedding
theorem to place all processes on a common probability space so that all weak convergence
results become almost sure convergence in the J; topology. In particular, convergence to
a continuous limiting process is uniform convergence on compact time intervals.

Let ¢ > 0 and a positive integer k be given, and consider the k-th e-long negative
excursion of G*. This excursion has a left endpoint A and a right endpoint R. The
excursion itself is

E{t)=G*(t+A)AR), t=>0.
In particular, £(0) =0, E(t) < 0for 0 <t < R— A, and E(t) =0fort > R— A > «.

Consider also the k-th e-long negative excursion of G™. Denote its left endpoint by A",
its right endpoint by R", and the excursion itself by

E™t) =G"((t+ A") AR"), t>0.

Then sufficiently large n, we have —\/Lﬁ < E™0)<0,E"t)<0for0<t< R"— A", and
E™(t) =0 fort > R" — A"

Lemma 5.2.11 The excursions and excursion endpoints defined above satisfy

(i) A" — A a.s.,
(it) R" — R a.s.
(iii) E* — E.

PRrROOF: For any x € D|[0,00), let Ly : D[0,00) — [0,00] and Ry, : D[0,00) — [0, 00] be
defined by

Li(z) := Left endpoint of k" e-long negative excursion of z,

Ri(xz) := Right endpoint of k" e-long negative excursion of z.

Since G™ — G* almost surely, according to the Continuous Mapping Theorem, it suffices
to show Ly and Ry are almost surely continuous under the two-variance Wiener measure.
Given a path g of a two-variance Brownian motion and a sequence of paths {g,}>
converging to g, let {l;,7;};=1_ denote the left endpoints and right endpoints of the first
k e-long negative excursions on g, and let {II',r]'};—1, x denote the left endpoints and
right endpoints of the first k£ e-long negative excursion on g,. Since g, — ¢ in J; and g
is continuous, we have uniform convergence on compact intervals. Our goal is to show

I =l and 1} — 7y

Note that g is a path of two-variance Brownian motion, so g crosses zero at [; and
r; for i = 1,... k. Because of the uniform convergence of {g,}52;, we can find I} — [;
and 7 — r; such that g,(t) < 0 for t € (II',7F') and ¢,(II') = gn(7}') =0, fori =1,... k.

AR
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Therefore, for sufficiently large n, ZZ and 7} are the left endpoint and right endpoint of at
least the k' e-long negative excursion of g,, which means that {I}°2, and {rp}2, are
bounded and [} <[}, rp < 77.

It suffices to show every convergent subsequence of {I}', 7} }°, converges to {lx,r}.
Given any convergent subsequence (for convenience, we do not re-label it) {{}, r7}52,, let
I — l~k and r} — 7. Since r} — [} > ¢, we must have 7, — l~k > €. Moreover, since g, < 0
on (I, r7) and g, — ¢ uniformly on [0, 7], we have g < 0 on (i, 7). Note that g is a path
of two-variance Brownian motion, g must be on a negative excursion on (I, 7). Since the
probability that g has a negative excursion with length exactly equal to ¢ is zero, (l~k, k)
must be an e-long negative excursion of g. Note that [} < ZQ, ry < 7L, ZZ — i, and
Ty — Tk, SO we have l~k <[, and 7, < 71y

In order to show l~k > I, and 7 > 11, we can further choose a subsequence (for
convenience, we still let n denote the index) {I7,77}>°, such that I* — [; and r? — 7; for
1 =1,...,k — 1. Similar to analysis above, for any + = 1,...,k — 1, since r! —[I' > ¢,
we must have 7 — [; > . Moreover, since g, < 0 on (I?,7?) and g, — ¢ uniformly on
[0, 7], we have g < 0 on (ll, 7;). Note that ¢ is a path of two-variance Brownian motion,
g must be on a negative excursion on (l;, 7;). Since the probability that g has a negative
excursion with length exactly equal to ¢ is zero, (ll, 7;) must be a e-long negative excursion
of g. Therefore, (l;, 7;)¥_, are k e-long negative excursions of g, which implies lNk > I and

Tj > Tk O

Proposition 5.2.12 Note that Mr, =2 B « «, let us define the one variance Brownian

X%
motion
Ao Aq )\2()\0 - /M) ,Uo()\o - ,ul)
$, = B o e+ B o————e—B;yy_o———"¢
! SHA T N+ A TN+ M [ Ao+ Ay
A1pi okt
+B o e— _ e.
ST N+ M 720 + M
Then
Mgy 0 NPy + Mby, . 0 \dP; — MPy, _ 0 jigdPy
+ Mgy, 0 M dPy — Mgy, _ o 119 dPy =2 &7 0 P,
and
A1+ A2 Ao — Aapin + foAo — popn + Arpn + fopi
<‘I’7, ‘I)?> = €
Ao+ A1
2\
= Toe' (5.145)

o~ o~

Moreover, because the scaled centered Poisson processes Mgy, , Mz o, M7y, —, Mgy, .,
and Mgy, _ are independent of G™, ®7 is independent of G*.
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On the interval [A”, R"], the processes P;, Py, Py, P, and P, are constant. Thus, for
0<t<R"— A" (5.62) implies
U (A" +t) — U (A™)
= (]/W\GZ/H— 0 A Pg(A" +1) — ME?Z/{—&- 0 AP (An))

+(MEy, 0 APy (A" + 1) — M2y, 0 APy (A"

—(Mzy,— o poPy (A" +t) = M2y, _ o 1o Py (A"

J\Zm+ o M Py (A™)) — (Mg, _ o j1gPg (A" + 1

+V[(APg (A" + 1) = A Pg(A")) — (o — )\2)(? (A" + t) PL(A")
— (o — )q)(fg(/\" +1t)— Py (A")].

Proposition 5.2.13 We have

V[ (Py(8" +1) = Py(A") = (10 = Xa) (PF (A" 1) = PF(A")
_(Mo—)\l)( s(A"+t)—T3§(A")] = IM(A" +t) — II"(A)

L B(Dy0 Pgu(A+1) — ®y0 Py ()
+(®g 0 P (A + 1) — g 0 Pgu (M),
and
(a"((An +)ARM) - ﬁ”(m) e (07 + B — BE) (- N(R— A)). (5.146)

Moreover, the increments @70 P (A +1) — @70 Pru(A), @30 Pru(A+1) — Pyo Pru(A),
and ®g o P (A + 1) — &g o Pg.(A) are independent.

PROOF: The first convergence follows from (5.143) and Lemma 5.2.11. Proposition 5.2.12
then implies

(@ (A + ) AR~ T (A) 2 (970 P (A + ) A R) = @70 PG (A))
+3 <<I>2 o Pe((A+-)AR) — @y0 P (A))

+ (@6 o Pa((A+-)AR) — B0 Py, (A))
(5.147)

Because @5 and ®g are defined in terms of {7 },—1 ¢, and these processes are independent
of the Brownian motions appearing in the definition of ®;, ®, and ®¢ are independent of
®-. From Lemma 5.2.7, we also have ®, is independent of ®g.

Since ®7 is independent of G*,
®r0Pg(A+1t)—Pr0Pg(N), 0<t<R-—A,
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has the same distribution as
di(t), 0<t<R—A.

According to Remark 5.2.9, we see that ®4 is independent of Pg,. and G*, and hence
independent of A and R, so the increment

®g o P (A+1) — Bgo Pge(h), 0<t<R—A,
has the same distribution as

Oe(t), 0<t<R—A.

The final component of the limit of ﬁ”(A” +t) — ﬁ”(A”) during the k-th e-long
negative excursion of G" is

B(®y 0 Pgu(A + 1) — By 0 Pe.(A)).
From Lemma 5.2.8, we see that
@) () = 3016~
_ B0 P (t) + %r(cbl o Bl + B0 P5 ) (1),
Also, from Lemma 4.2.4 we have
[(®y 0 Pg + By 0 Pp.) = 2T (By 0 Pg.),

which implies

(G*)7(t) = Py 0 Piu(t) + T'(®2 0 Pga ) (). (5.148)

Therefore k-th e-long negative excursion of G* corresponds to the k-th e-long excursion
of the reflected Brownian motion

Dy (t) 1= y(t) + T(P2)(2),

and this excursion has left endpoint(P.) 1 (A) and right endpoint (Pg.) "} (R) = (Pg.) 1 (A)+
R — A, where
(Pge) '(t) == min{s > 0: Pg.(s) > t}.

Since E(t) = G*((t + A) A R), we have

B(t) = =®a((t + (Po) " (W) A (Pa) H(R)), ¢ =0,
From Lemma 5.2.7, we have (®,, ®3) = c_, which implies the distribution of E is the same
as the distribution of any e-long negative excursion of a Brownian motion with variance

c_ per unit time. In particular, —®y 0 Pg. (A +t) + @30 Pg.(A),0 <t < R — A is equal
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to E(t) almost surely. Putting the three pieces together, we may rewrite the right hand
side of (5.147), thereby obtaining (5.146). O

From Definition 5.2.6 and Proposition 5.2.12, the total quadratic variation on the
right-hand side of (5.148) is
(®g, Dg) + (D7, D7) + fc_e
= (401,05 + (b+5)*(03,05) + (1 +aB)*(65, 05) + (®7,P7) + fc_e
= (2ab—2b+ 2)\ge
= cye, (5.149)

which is exactly as expected.

Let € > 0 and a positive integer k be given, and consider the k-th e-long positive
excursion of G*. This excursion has a left endpoint A and a right endpoint R. The
excursion itself is

Et)=G*((t+A)AR), t>0. (5.150)
Following the same argument, we have
(;?"((K” +)ARM - z?n(xn)) EiN (57 ~ 3yt aE) (- AR = 1)), (5.151)
where
= fafiy p2(fto — A1) Ao(Ho — A1)
®; = —Bsy_ —Byy _o————=+B _
7 D T D YT S Ve S W
HiAL Ao
— _ 5.152
1,x,— © Mo + M 1,X,+>\0_'_)\1 ( )
and o)
(D, D7) = Toe. (5.153)

From Definition 5.2.6 and (5.153), the total quadratic variation on the right-hand side of
(5.151) is
<‘5Cv\n’ A?\n> = <&)57 (55> + <&>77 &57> + 652(3+e
= <@>{7 ®>{> + CL2<@§, @;> + <(I)7a (I)7>
(2a?b — 2a* + 2a)
= Oe

b
= c_e, (5.154)

which is also as expected.

5.2.3 Convergence of (Z;l\”,)/(\”)

In this section, we want to enumerate the positive and negative excursions of G* like the
way they are defined in Section 4.2 of [2]. Following the same notation, we denote the
left and right endpoints of k™ negative excursions by Ay _ and Ry _; we denote the left
and right endpoints of k™ positive excursions by Ay, and Ry ;.
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Proposition 5.2.14

U = ur,
Ar = X,

in D[0—, 00), where U*(0—) = up, X*(0—) = o, and

( %, ift € [Ag+, Ry 1) for some k=1,2,...,
Uust) = %juu,;,(t—/\k,_), ift € [Ag—, Ri—) for some k=1,2,...,
I
\ 95)\11, else.
( —Zf;‘;, ift € [Ag—, Ri—) for some k=1,2,...,
X*(t) = —%+X,§7+(t—Ak7+), if t € [Ak4, Ri4) for some k=1,2,...,
L else
\ Ospi1 :
Here,
Z/{*y_ = Ckﬁ( . /\(Rk,, - Ak,f)) - ﬁEk,,,
Xi = Cry (- ARy — Ary)) + @By 4,

where (Cy—,k > 1) is a sequence of independent Brownian motions that accumulate
quadratic variation at rate ¢, — B%c_ per unit time, (Cet,k > 1) is a sequence of inde-
pendent Brownian motions that accumulate quadratic variation at rate c_ — &’c,. per unit
time, and

Ek’_ = G*(( + Ak,—) VAN Rk,—)7
Ek7+ = G*(( + Ak7+) A Rk7+),

ProoF: Note that we assume (Z;",/'/V\ ") follow the same dynamic as those acting on
(U™, X™) when the bracketing processes are valid, so we can still use the result from [2].

From (5.118)-(5.119), (5.148)-(5.149), (5.151) and (5.154), the proof of Proposition 5.2.14
follows from Theorem 4.5.3 of [2]. O
5.2.4 Convergence of (ﬁ",ﬁn,fvn,f”)
We have already proved that,

U™ VWX = U, VWV X
where convergence is weak convergence and the probability measure is on (D[O—, 00) X

DJ0,00) x D[0,00) x D[0—, oo)) equipped with topology (M; x J; x J; x My). Since M;
and J; are separable, we can apply the Skorohod Representation Theorem to place all
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processes on a common probability space so that all weak convergences become almost
sure convergences in the the topology mentioned above. Let us define,

o= inf{t > 0jU"(t) < 0},
% = inf{t > 0|X"(t) > 0},
n = inf{t > 0lU*(t) < 0},
Ty = inf{t > 0|A"(t) < 0}.

Theorem 5.2.15

Ty — Tu,

T — Tx,

almost surely.

We will only prove 7} — 74, and the other convergence follows the same argument. Before
we start the proof, we want to introduce a lemma.

Lemma 5.2.16 For every § > 0,
inf {U*t)} >0, (5.155)

0<t<0V(Ty—9)

almost surely.

ProOF: Note that before 75, — d, U* has infinitely many attempts to hit zero while W* is
on a negative excursion. Obviously, there are countably many such attempts, and let us
call these negative excursion intervals (a;, b;), and their lengths ¢; = b; —a; for i > 1. Then
we can order these intervals by decreasing lengths. For simplicity, let {¢;};>1 be ordered
sequence. Fix € > 0. We can find sufficiently large Ny € N such that Z;ZNO l; < e
Moreover, U* only jumps when W* reaches the right end point of a negative excursion,
and during a negative excursion of W*, U* behaves like a Brownian motion correlated
with W*. Among the finitely many excursion intervals indexed by ¢ = 1,--- |, Ny —1, there
is none on which the infyc(q, 5,){U*(t)} is zero because that would require an excursion
interval to end just as U* was reaching zero, which is a probability zero event. Therefore
U* is always strictly positive on negative excursions of W* that terminate before 7, — 9.
In particular,

min { temf {U*(t )}} > 0. (5.156)

ZSNO (az»bz

For any i > Ny, U* will start from ’\2“1 > 0 at the beginning of the i negative excursion

of W*. Let T? be the first passage tlme to 2214 of If* starting from beginning of the it

20p A1
Gb)\l

excursion. Let 0 = . Then, by reflection principle,

1

P{T" > ¢} = 2N(————) — 1.
{ } <29 CJ@_)
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Hence,
P{ inf {Ut) = o} < P{3i>No.T' < 03}
0<t<0V (14 —9)
= 1—P{Vi> Ny, T" > (;}
1

= 1-TII2, (2N(— ) — 1 5.157
N -1 (G15)
R 1 : 00 ]
Let z; = Y Since ) .~ v ¢; < €, we have
2—2 < 46%cye. (5.158)
-~ i

22

From Page 112, Problem 9.22 of [19], we have 1 — £= < N(z), and this implies

V2rz —
22
2 i
1 \/je © < ON(z) - 1. (5.159)
™ X

Therefore, by possibly increasing Ny, we have

2
_ %
2

Sy (2N () 1) = TS (2N () — 1) > TS (1 \/ge )

20 C+€i

X

2
Z

= eXp{Zlog 1—\/26%2)}

’L>N()

_'Ti ?
> exp{z —)} = exp{- 2\/72 :
i>Nop i>No

xz
- 2[ S %)) s el NED e
>Ny i>No Li

> exp{—2\/i4926},
m

where the second inequality comes from —2z < log(1 — z) for sufficiently small z, and

the third inequality comes from xe_é < 1 for all z, and the last inequality follows from
(5.158). Now from (5.157), we have,

P{ inf {U(t)}=0}<1- exp{—Q\/gél@%}.

0<t<0V (1 —96)

By sending € — 0, we have proved that

inf  {U (1)} >0,

0<t<0V (14 —9)
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almost surely. O

PROOF OF THEOREM 5.2.15: Let us fix w € €2, and for any ¢t > 0, let

fn(t) = an(("-)?t)a
f(&) = U (w,1),

and

T, = 7,(w)=1inf{t > 0[f.(t)
T = my(w)=1inf{t > 0|f(¢)

0},
0}.

Our goal is to show |1}, —T'| — 0. We can divide {7}, },>1 into two subsequence {71}, }x>1
and {7}, },>1 such that

<
<

T, >T, forallk>1, T, <T, forallp>1.

Of course, one of these sequences may be empty.

Case 1: Fix € > 0, we want to show there exists NV € N such that 7;,, — T < ¢ for all
k> N.

Note that f is continuous at T because U* only jumps when W* reaches the right
end of a negative excursion, and the probability that these two events happen at the same
time is zero. In fact, we can find 0 < 6 < € such that f is continuous V¢ € [T'— §,T + ¢].
Also, we know that U* behaves like a Brownian motion between two consecutive jumps,
so we can define

0>m = min  {f(¢)},
te[T—3,1+3]
)
tm = min{t € [T — §,T+ §Hf(t) =m}.

Since f, — f in the M; topology, from Theorem 12.5.1 of [26], we have

lim m v(fo,, fytm,7) = 0,

r—0 k—o0

where v is the uniform-distance function defined by

v(w1, 2,1, 7) 1= sup {1 (1) — w2(t2) ]|}
OV(tf’r‘)Stl,tQS(tﬁ’T)

Therefore, there exists ro > 0 such that

lm v(fo,, frtm, 7o) < @

k—o0

Note that
‘fnk(tm) - f(tm>| S U(fnkafu 2fmyr(])~
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Therefore, we have

lim |fnk(tm> f(tm>| S lim U(fnk7f7tm7r0) S a

k—o0 k—o0 2

which implies that for sufficiently large k, we have
Forltm) < <0,

which implies T, <t,, <T +e.

Case 2: Fix € > 0, we want to show there exists N € N such that T;,, > T" — ¢ for all
p=>N.

For convenience, we just label this subsequence as (7},),>1. From Lemma 5.2.16, we
have
0<m:= inf {f(t)}.

0<I<T—5
Also, let § = m A 5. Since f, — f in the M, topology. Given z € D[0,00), let I'; denote
the graph of x. Specifically,
Dy o= {(2.t) €R x [0,00) : 2 € [a(t—), 2()]},

where 2(0—) = z(0). A parametric representation of = is a continuous nondecreasing
function (u,r) mapping [0, 00) onto I'y, and TI(z) denotes the set of parametric represen-
tations of z. Applying Theorem 12.9.3 of [26], we have for all sufficiently large n, there
exists (u,r) € II(f), (un,rn) € (f,) such that

lwn — wlle V||rn — 7l <6, (5.160)

for each t > 0 where || - ||; denotes the supremum norm over [0,¢]. By definition of (u,, r,)
we can find s} € [0, 00) satisfies

ra(sy) = T,
un(sy) = 0.
From (5.160), we have
r@m<7;+5gzz+§. (5.161)
Meanwhile,
u(s)] = lun(sy) — ulsy,)] <0 <m,
which implies that r(s};) > T — 5. Together with (5.161), we get T), > T —e. O

Corollary 5.2.17 Let

n o n n
T, = Ty N\ Ty,

Tmin — Tu N\ Tx.
Then from Theorem 5.2.15, we have
7_n

min

— Tmin ;

almost surely.

102



Corollary 5.2.18

(u7\7" 7V~7\T" 7W~7/l\7'” 7X7\7’” ) — (U*

min min min min “ATmin

Vi WE LX)

NTmin NTmin? ‘NTmin

almost surely under the topology (My x Jy x Jy x My).

PROOF Since V* and W* are continuous and (V" W) N (V*, W*), following the same
argument as in Corollary 3.5.3, we can prove (V% . ,W" . ) N Vg Wi ). It

NTmin

suffices to show (LAIT;Tn X N ) 24, U, . X, ). Note that U* only jumps when
W* reaches the rightmghd of Wz';"negative excursion, and the probability that U/* reaches
zero when W* reaches the right end of a negative excursion is zero. Similarly X* only
jumps when V* reaches the right end of a positive excursion, and the probability that X*

reaches zero when V* reaches the right end of a positive excursion is zero. Therefore U*

. -~ M
and X are continuous at 7, almost surely. It suffices to show U’} S Uu: and

ATmin?
the other convergence follows from the exact same argument.

Let us fix w € €2, and for any t > 0, let

falt) = U'(w,t),
&) = U (w,1),

T, = 70m(w),

T = TAmm(W),
gn(t) = U (w,tNT,),
g(t) = U (w,tAT)

It suffices to show g, RN g. From Theorem 12.5.1 of [26], it is equivalent to show for
each t ¢ Disc(g) where Disc(x) denotes the set of discontinuity points of x, we have

lim lim v(gn,g,t,0) =0,

6—0n—o0

where v is the uniform-distance function defined by

v(21, 29,1, 6) = sup w1 (t) — 22(t2)|l}
0V (t—0)<ty,t2<(t+96)

and for each t € Disc(g), _
lim lim w(g,,t,d) =0,

d—0n—o0
where w is defined by
w(gn,1,0) = sup {llgn(t2) = lgn(t), 9a(t:)] 1},
OV (t—0)<t1<ta<t3<(t+9)
where
l1 = [z, 23]l :== min {[z; —=[}.
T€[x2,23]
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Since f, -2 f, we have for each ¢ ¢ Disc(f),

lim lim v(f,, f,t,0) =0,

§—0n—oo

and for each t € Disc(f), _
lim lim w(f,,t, ) =0.

§—0 n—oo

Case 1: t = T Since g is continuous at T', we need to show lim;s_,o lim,, _,ec ¥(gn, g, ¢, ) =
0. Since T,, — T, fix any § > 0. For sufficiently large n, we have |T' — T,,| < ¢, and this
implies
U(Gns 9,,0) < v(f, f,1,9)
which implies
lim lim v(gn,g,t,6) = 0.

d—0n—oo

Case 2: t ¢ Disc(g) and t < T. Let §g = (T — t). Then for sufficiently large n, we
have |T'— T,| < dp, which implies

U(gn, 9,1, 5) = U(fm fa l 5)7
for any 0 < dy. Hence, we have

lim lim v(g,,g,t,6) = 0.

d—0n—oo

Case 3: t ¢ Disc(g) and t > T. Let §p = 3(t — T'). Then for sufficiently large n, we
have |T'— T,,| < &y, which implies

U(gnvgv t, 5) = |gn<Tn) o g(T)|7
for any § < dg. It suffices to show |g,(7,,) — g(T)| — 0. Fix € > 0. Since

lim lim v(g,,g,T,6) =0,

6—0n—o0

there exists d; > 0 such that o
lim v(gn,g,T,61) < €.
n—oo

For sufficiently large n, we have |T"— T,,| < d1, and hence

19:(T%) — 9(T)| < v(gn,9,T,01) < 2.

Case 4: ¢ € Disc(g). Since g is continuous after 7', then ¢ < T. Let dy = 5(T — ?).
For sufficiently large n, we have |T' — T,,| < dp, which implies

w(gm 2 5) = w(fTU t, 5)7
for any 6 < dp. Therefore, o
lim lim w(g,,t,0) = 0.

6—0n—oo
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Remark 5.2.19 Note that the dynamic acting on (U”,V”,W”,X’") 15 the same as the
one acting on (Z:{\”,lA/”,V/\?",?/(\”) til 0., Hence, from Corollary 5.2.17, we can find a
probability measure on (D[O, o0) x D[0,00) x D[0,00) x DI0, oo)) equipped with topology
(M x Jy x Jy x My), and under this probability measure we have

(UT/L\T"

min

n n vn *
7‘/-/\777”.”7 W/\T” 7X-/\T” ) — (Z/[

min min ATmin’ V ’ W ’

NTmin, NTmin? NTmin

almost surely, where (U*, W*) is the split two-variance Brownian motion defined in Corol-
lary 5.1.9.
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Chapter 6

Waiting time between two different
renewal states

In Chapter 3 we began with five queues at adjacent price ticks, labeled 7™, U™, V", W™
and X". We assumed the initial conditions

JggOTT()—twO, JE&TU()—“WO?

lim TV (0) =0,

lim —W”( )=wy <0, lim —X"( ) =1z < 0.

Therefore, the initial condition for the diffusion-scaled limit processes is
T*(O) = to, U*(O) = Uy, V*(O) = 0, W*(()) = Wy, X*(O) = 29.

For the analysis, we replaced T%, U*, V*,W* and X* by processes T *,U*, V*, W* and X'*
that agree with T U*, V* W* and X* until the first time U* or W* reaches zero. For
the moment, we discuss these processes only until the first time U* or W* reaches zero,
and hence we dispense with the notation 7*,U*, V*, W* and X*.

The results of Chapter 3 show that 7™ is snapped to the value k; given by (3.5)
immediately after time zero, X* is snapped to kg given by (3.6) immediately after time
zero (Proposition 3.7.4), and both these processes thereafter remain constant. The process
V* remains at zero (Corollary 3.5.3). We further saw in Corollaries 3.5.1 and 5.1.7 that
(U*, W*) is a two-dimensional correlated Brownian motion, both components having zero
drift. The variance per unit time of U* is ¢, and the variance per unit time of W* is c_.

Eventually, one of the processes U* or W* reaches zero. We assumed without loss of
generality at the beginning of Chapter 5 that W* reaches zero before U*. Resetting the
clock, we further assumed at the beginning of Chapter 5 that

U (0) =uy >0, V*0)=0, W0)=0, X*(0)=rn (6.1)
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Proceeding from this configuration, we designated U* and X* the bracketing processes
and V* and W* the interior processes. In Chapter 5, as in Chapter 3, the analysis was
aided by considering processes U*, V*, W* and X* that agree with U*, V* W* and X*
until the first time one of the bracketing processes reaches zero. We shall do that in this
chapter as well, but for the present discussion about the behavior of these processes prior
to the time that one of the bracketing processes vanishes, we continue with the notation
U*,V* W*and X*.

We showed in Chapter 5 that until one of the bracketing processes reaches zero, the
pair (V* W*) is a split two-variance Brownian motion (Corollary 5.1.9). In particular,
Theorem 5.1.8 provides the existence of a two-variance Brownian motion (Definition 4.1.1)

e e (1. 1 N\
G"=Bo|—PhL+—P5 ) (6.2)
Cy C_

where B* is a standard Brownian motion and

t
PBi*(t):/o I{:I:B*(s)>0} dS,

such that
(V*, W) = (max{G"*, 0}, min{G"*, 0}). (6.3)

In every interval of time after the initial time and initial state given by (6.1), G*
has both positive and negative excursions away from zero. When G* is on a negative
excursion, we are in the situation studied in Chapter 3, where U™ takes positive values,
V*is at zero, and W* is negative. In this situation, U* is a Brownian motion with variance
cy per unit time. On the other hand, when G* is on a positive excursion, V* takes positive
values while W* is zero and X* is negative. This is the situation studied in Chapter 3
translated right by one price tick, and rather than 7%, now U* is snapped to k1, and frozen
there. In conclusion, when G* takes a negative excursion away from zero, the bracketing
process U* has a chance to fall to zero, but if U* fails to reach zero before the negative
excursion of G* ends, U* is snapped back to ky. Analogously, when G* takes a positive
excursion, the bracketing process X* has a chance to rise to zero, but if X* fails to reach
zero before the positive excursion of G* ends, X™* is snapped back to kz. On the negative
excursions of G*, the bracketing process X* is frozen at kg, and on the positive excursions
of G*, the bracketing process U* is frozen at kp,

We refer to the configuration in (6.1) in which two adjacent queues are at zero as a
renewal state. In light of the discussion above, the positive value of U*(0) and the negative
value of X*(0) at the moment when V*(0) = W*(0) = 0 are irrelevant. Whatever their
values at this moment, a moment later U*(0) will be snapped to x, and X*(0) will be
snapped to Kg.

In this chapter we compute the probability, given the initial condition (6.1), that the
next different renewal state reached is when U* = V* = 0. This probability is provided
by (6.75). Let us call this a leftward renewal state transition. Of course, one minus the
probability of a leftward renewal state transition is the probability that the next renewal
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state reached is W* = X* = 0. We call moving to this state a rightward renewal state
transition. A renewal state transition is a leftward or a rightward renewal state transition.
In this chapter we compute the characteristic function of the time to see a renewal state
transition, conditioned on the renewal state transition being leftward, conditioned on it
being rightward, and unconditionally.

At the moment of a renewal state transition, we must change our designation of
interior processes and bracketing processes, shifting all of them one tick to the left in the
case of a leftward transition or one tick to the right in the case of a rightward transition.
The processes then proceed as described above, but with these new designations. However,
for the analysis in this chapter, we need processes that agree with U*, V*, W* and X* up
to the time of a renewal state transition, but then continue on without reference to the
renewal state transition. For this purpose, we recall that the standard Brownian motion
B* in (6.2) is defined for all time, and that G* is defined by (6.2) likewise for all time.
We define U*, V*, W* and X" as follows. First, we set

(V*,W*) = (max{G*, 0}, min{G*,0}). (6.4)

Unlike (6.3), which is valid only up to the time of a renewal state transition, (6.4) is
valid for all time. Next, we take U* and X* to be the cadlag processes constructed in
Proposition 5.2.14. In particular * is a Brownian motion with variance c; per unit
time when G* is on a negative excursion and is equal to k7, when G* is at zero or on a
positive excursion. Similarly, X'* is a Brownian motion with variance c_ per unit time
when G* is on a positive excursion and is equal to kg when G* is at zero or on a negative
excursion. These descriptions are valid for all time, not just until the time of a renewal
state transition. We define

Tyx 1= inf{t >0: X*(t) > 0}7

Tomin += Ty N\ Tax. (6.5)
Then 7,,;, is the time of a renewal state transition, and
(U*,V*’W*’X*) — (Z/{*’V*’W*’X*)

on [0, Tyin]. We now undertake the computation of P{7 < 7x+}, P{7+ > 7x+}, and the
joint probability density function of (7, T+ ).

6.1 Conditional on the length of the excursion

In this section we compute the probability that U* hits zero when G* is on a negative
excursion of length /. Following the same strategy, we can compute the probability that
X* hits zero when G* is on a positive excursion of length ¢, a formula we present without
proof. Following the derivation of these probabilities, in Section 6.2 we use P. Lévy’s

108



theory of Brownian excursions to remove the conditioning on the length of the excursion
of G* to obtain the desired distribution of (7, 7x+).

For the computation of this section, we follow the notation of Proposition 5.2.14
in which the negative excursions of G* are enumerated. The k-th negative excursion is
denoted Ej _, and its left and right endpoints are denoted A, _ and Ry _, respectively.
During the time interval [Ay _, Ry ], the process U* is given by

Z/[*(t + Ak7_) = K[ + Ck7_ (t) — 6Ek7_(t), 0<t< Ry,

where (see Definition 5.2.6)
B AL+

 po+am
and where Cj, _ is a Brownian motion independent of G* with variance ¢, — 3%c_ per unit

time. We set
D=kp+ Ck’_ - BEk,— on [0, Rk,_ — Ak,—]'

In this section we fix ¢, condition on Ry _ — Ay _ = ¢, and compute the conditional
probability that D reaches zero on [0, ¢]. The calculation proceeds in steps. In order to
avoid consideration of the entrance law for the excursion Ej _, we let € € (0,¢) be given
and restrict attention to paths of D that do not hit zero before time €. On these paths, we
condition on (D(g), E(¢)) = (z,y) and show that (D, E) is a correlated two-dimensional
Brownian motion conditioned on E first hitting zero at time ¢. For this analysis, it is
helpful to characterize F on [e, {] as a Brownian motion absorbed at zero at time ¢. Under
these conditions, we can compute the probability that D reaches zero before time ¢. By
this device we not only obtain the probability that D reaches zero before the excursion
Ej _ ends at time ¢, but we also obtain the distribution of the time that D reaches zero
conditional on doing so before the excursion Ej, _ ends at time /. Finally, we take ¢ down
to zero in the formulas thus obtained.

Note that on [0, R, — Ay _], we can rewrite D as

D(t) = w4+ rC(t) — B EL(1),

where
Kk =\/cy — %,

and C'is a standard Brownian motion independent of £ and E is an excursion of length
Ry, _ — Ay _ of a standard Brownian motion. Let

74 = inf{t>0|D(t) =0}, :
T = inf{t>0|E(t) = 0}. (6.7)

The conditional probability we want to compute is,

P{Td < Te‘Te = E} = P{Td < €|7’e = E}.
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6.1.1 The computation of conditional probability

We fix ¢ to be the length of the excursion, and let P* be a probability measure that is
restricted to the space of positive excursions of £ that have length ¢. In particular, P* is
defined on Wt N {w : f(w) = £}, where W is the space of positive excursions of E and
B(w) denotes the length of excursion w.

We take W to Wiener measure on C[0,c0), and define Q° = P’ x W, a probability
measure on (W' N {w|f(w) = £}) x C[0,00). Since C' is independent of E, we re-
define D: WT Nn{w|p(w) = €}) x C[0,00) — C[0,00) and E: Wt N {w|p(w) =
(}) x C[0,00) — C10,00) by

A

D(wy,wy) = 9251 + Kwy — [y/c_wr, (6.8)
b A1

E(wl,wg) = w. (69)

Then we rewrite (6.6) as
Td(’wl,U}Q) ;= inf {t Z 0: D(wl,wg)(t) = O},
and the probability we wish to compute is

Q{ra < 1}. (6.10)

Instead of computing this probability directly, we consider the probability that D
hits zero before the excursion ends under the condition that we are already in the middle
of the excursion and D has not hit zero so far. In particular, fix ¢ € (0, /), and define

Aa = {Td>€},

(wr, w02) inf {t > & | D(wy,wy)(t) <0} if(wy,ws) € A,
Td,e ) =
bt T +o0 if(wy, we) € AC.

Since Q{A.} 11 as € | 0, and

Q{ra<} = Q{(u<O)NA}+Q{(ra< )N A}
= QYra. < 0} +QY{A},

we have

Q'{ra < £} =limQ'{ra < €}, (6.11)

Thus, it suffices to compute Q{7;. < ¢}. Let us consider the pair of processes (FE, D).
At time ¢, from (6.8) and (6.9), we have

E(wl,wg)(s) = w1(€)>07

D(wy,wq)(e) = zjﬁ\? + Kwy(e) — By/c_ws(e).
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Therefore, we can compute Q*{74. < ¢} through

QYry- <} = /00 /OZ Q{74. <(|E(c) =x,D(e) = y}Q{ E(e) € dx, D(e) € dy}.
y=—o0 Jx=

(6.12)
Note that D(e) < 0 implies D already hits zero before time ¢, which means 7, = +o0.
We can upgrade (6.12) to

Q{rue <t} = /OOO /OOO Q{7u. < (|E(e) = 2, D(e) = y}Q'{ E(e) € dx, D(¢) € dy}.

(6.13)
So our job is to compute
Q{E(e) € dx, D(¢) € dy}, (6.14)
and
Q{74 < (|E(e) =x,D(e) =y}, (6.15)

for x > 0 and y > 0. In the remainder of this subsectlon, we compute (6.14). We compute
(6.15) in Section 6.1.4 (see (6.37), (6.38) and (6.43)).

According to the formula at the bottom page 124 of Ikeda & Watanabe, we know

PUB(E) € d} = |50 K (e.a) KH (U = 2,0) do, (6.16)

2 2
Kt(t,x) =/ —wze 2, t>02>0.
3

where

We also have ,

W{ws(e) € dz} = e % dz. (6.17)
2me
Note that
FE w1
_ 6.18
(D) (%—FHUJQ—B‘/C_UA)’ (6.18)
which implies,
1 Aofiy
D<y&ew <—(y-— + By/cZwy).
K 91;)\1

So we have,
Q{E(e) < z,D(e) <y}
1 A
= Q{w() Sz wa(e) < (v -+ Bvem(e)

A2

K =gt +ByEw)
— // " P {wn(e) € dulW{ws(c) € dv}

o . F—gEtsew) 1
= —€K e, u) K™ (0 —¢e,u / e 2 dv | du
| = [ —
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Thus,
Q{E(e) € dz, D(e) € dy}

= (dydx (Q{E(e) <z, D(e) < y}) )dxdy

(£ (v 921 +8,/o=))?
_ 1 zﬁK*(e,x)K*(f—s,x)Le’ I dxdy
K\ 2 V2me

1 \/T 9 —z2__ax? - 91;511 +8ye=)?
— 3 T2 2(—e) 2k2e d d . 619
— (€ — 5) rle ray ( )

Remark 6.1.1 Let Bs be the ball centered at (0 ™ 22 with radius § > 0, then

lim Q{E(e) € dz, D(¢) € dy}

e20 J(2>0,4>0)nBg

= / lim Q*{E(e) € dz, D(¢) € dy}
(z>0,y>0)NBg e—0

= 0, (6.20)

where we have used the Monotone Convergence Theorem. Moreover, we claim that

lim Q{E(c) € dx, D(e) € dy} = 1. (6.21)

€20 J(2>0,5>0)

This is true because

/OOO /yoo_oo Q{E(e) € da, D(¢) € dy} = 1,

and

P{(E, D) reaches lower half of the plane at time £}
[e's} 0
= / / Q{E(e) € dz, D(¢) € dy}.
z=0 Jy=—o00
Obviously,

lim P{(E, D) reaches lower half of the plane at time €} = 0.

e—0

6.1.2 Absorbed Brownian motion
We will show that the excursion E after time e, assuming the length of the excursion is

greater than e, is a Brownian motion absorbed at the origin. In this section, we derive
the properties of absorbed Brownian motion.
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Brownian motion absorbed at origin is defined to be
B%(t) = B(t A o),
where B is a standard Brownian motion starting at B(0) = 2o > 0 and
7o =inf {¢t > 0: B(t) = 0}.

This a Markov process. Strictly speaking it does not have a transition density because
mass accumulates at zero. However, it has a defective transition density, were defective
refers to the fact that it does not integrate to 1. This defective transition density is

o (<955 e (O2)] w000

Pt @,y) = !
T \ 27t

In fact, from Appendix B, we have

[o%e) 2 e’} 22
Ot z,y)dy =1 — / e (——) dz. 6.22
| ey =1-— ["ew (-5 (6.22)

According to the reflection principle, for = > 0,

P{B(t+s)=0|B°(s) =2} = P{r <t+s|B%s)=uz}
2 * 22
= \/%/x exp (_2_75) dz

= 1- / POt z,y) dy. (6.23)
0
For a Borel subset A of (0,00) and x > 0,
P{B(t+s) € A|B%(s) =a} = /Apo(t,:c,y) dy. (6.24)
Of course,
P{B(t+s) =0|B%(s) =0} = 1. (6.25)

Equations (6.23)-(6.25) provide the transition probabilities for B°.

The defective transition density p° has the semigroup property
[e.e]
/ (s, 2, )p°(t,y, 2)dy = p°(s +t,2,2), s>0,t>0,2>0,2>0, (6.26)
0

which we establish by direct calculation in Appendix B.
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6.1.3 Excursion starting at time ¢

Now let t; <ty < --- < t, < Ty < T; be given and let As,..., A, be Borel subsets of
(0,00). For z; > 0, we have

P{BO tz GAQ,...,BO( )eAn,T1<T0<T2|BO tl :xl}

= P{B(t2) € Ay, ..., B(t,) € A, B°(T1) > 0, B*(T3) = 0| B%(t1) = 21}
/ / / 2 - tlv Zy, .Tg) 4 (tn - tn—l>$n—laxn)p0(Tl - tna O .2?)
z2€A2 rn€A, Ja= 0
(1 - / Ty — Ty, z,y) dy) dx dzxy, - - - dxs. (6.27)
0

We consider the inner-most integral in (6.27),
/°° P(Ty — tn, @, @) (1 - /OO Ty — T, 2,9) dy) dx
2=0
= / P (Ty — tn, T, x dx—/ / UTy — ty, 2y, 2)p°(Ty — T, 2, y) do dy
0
= /OO Ty —tp, v, )dx—/ P (Ty — tn, T, y) dy
0 0

¢T7—t/ Xp( T;Q—w)dz

= h(T, - tn,xn)— f(T1 tn,:cn), (6.28)

where we have used the semigroup property (6.26), equation (6.22), and where

2 2 00 w2
h(t,x) ex dz = exp | —— | dw. 6.29
0= | o () o= 7 e () 629
We substitute (6.28) into (6.27) to obtain

P{Bot EAQ,..., ( )EATL,T1<7'0<TQ|B tl —Il}
/ / Oty — t1, 1, m2) -+ P (ty — tn1, Tpe1, Tn)
T2€A2 mneAn

Ty —tn,xn) — f(T1 — tn,xp)) day - - - das. (6.30)

Because 5 )

T T
—h(t = - 6.31
it = o (-3, (61
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we can also write (6.30) as

P{B"(t2) € Az,...,B"(tn) € Ay, Ty < 79 < T3|B°(t1) = x1}

= / / Oty — t1, @1, 29) P (tn — tnt, Tno1, )
x2€A2 xneA

2

T
= / / / to —t1,T1,29) -+ D (tn — 1, Tp_1,Tn)
ToEA2 Tn€An

(f — tl) Tp

X e — xi + xf d d
C—t)F o P\ 20—t T2t —t)) T

T

X ! e ( i ) dl
7T ex S S

= / / / tz — tl,xl,ﬂh) po(tn - 2fnflaxnfluxn)
T2€A2 Tn€Ap

X

(=t o (o} 3
C—t,)F o P\ 20

XP{TO S dﬁ}BO(tl) = 371}.

We also have

P{B0<t2) - AQ, cey B()(tn) € AnaTI < To S TQ’BO(tl) = I’l}

> dldx,, ---dzxs

—) z(e—m) dan - dry

(6.32)

Ty
= / P{Bo<t2) S AQ, e ,Bo<tn) < An|7'0 = g, Bo(tl) = $1}P{To S d£|B0(t1) = .1'1}.
T

Since {A;}! , are arbitrary Borel sets, with (6.32), we conclude that

P{BO t2 GAQ,...,BO( €A, ‘T0:£ Bo(tl :l‘l}

/ / tz — 11,21, T2) P (tn —tn1, Tp1, Tp)
x2€A2 Tn€An

2

_ 2
X ﬂ x”exp(—zwxn + ! )> dx, - - - dxs.

We can write this more intuitively as

P{Bo(tz) € dxs, ... ,Bo(tn) € dﬂi’n’To =/, Bo(tl) = 1‘1}
= p0<t2 - t1,$17$2> e p0<tn —tp_1,Tp-1, In)

(—t)3 z, 2 2
X (—1)~x—exp<— Tn + ! >dx2~~da:n.
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From page 124 of Ikeda & Watanabe, we see that P’ appearing in Section 6.1.1 satisfies

Pf{”IU(tQ) < dfﬂg, .. ,'LU(tn) I~ dl‘nlw(tl) = 351}
h(0,0;ty, z1)h(ty, x15te, @2) -+ - h(tn_1, Tp_1; tn, T,) doy dag - - - dy,
h(O, 0, tl, Il) dl’l

K+(€—t37l’3) 0
ta —t
K+(€—t2,x2)p (ts — ta, T2, 73)

K+(€—t2,I2> 0
= ty—t
K+(‘€—t1,x1)p ( 2 17:617'1;2)
Kl —t,,x,)
K+(£_tn—laxn—1)

= pta — t1, @1, 22)p"(ts — to, T2, x3) -+ Pty — Lyt Tn1n)

P (tn — tn1, Tn_1,T,) dvy - - - dwy,

KTl —t,,x,)
dro - --d
XK+(€—Z§1,I1) 2 o
= P{B’(t2) € dzs,...,B"(t,) € day|1o = {, B(t1) = 21} (6.35)

as in (6.34). We conclude that under the measure P?, once we condition on E(¢) = =,
the distribution of E(t),e <t < /¢, is the same as a Brownian motion absorbed at zero
conditioned on taking the value x at time € and first reaching zero at time ¢.

6.1.4 Replacing (F, D) by correlated Brownian motions

Our next goal is to compute Q*{7y. < ¢|E(¢) = z, D(¢) = y}. According to our observa-
tion from the previous two sections, we can replace (E, D) by two correlated Brownian
Motions starting from (z,y). In particular, we can consider a Brownian motion B; with
initial condition

Bl(O) =x,
and variance 1 per unit time. We have just seen that conditional on E(g) = z, the law of
E(e+t), 0 <t < {—¢, under P’ is the same as the law of B;(t), 0 <t < {—¢, conditioned
on By first reaching zero at time ¢ — . We consider a second Brownian motion By with
initial condition

BQ(O) =Y,
with variance c; per unit time, and such that

d(Bh BQ>(t) = —61/0_ dt,

or equivalently,

Corr(By, By) = —hve =p <0. (6.36)

From subsection 6.1.2 and 6.1.3, conditional on E(¢) = x and D(g) = y, the law of
(E(s+1t),D(e+1)), 0<t<{l—c¢,
under Q is the same as the law of

(Bi(t), Ba(t)), 0<t<l—c¢,
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conditional on Bj first reaching zero at time ¢ — . For convenience, let (Bj, Bs) to be
defined for all nonnegative times, and set

m = inf{t>0:B(t) =0},
79 = inf {t >0: By(t) = 0}.
Then
Q{74 <l|E(e)=z,D(e) =y} =P {n<l—c¢|n=0—e,1>¢}, (6.37)

where P™¥ is the probability measure on the two-dimensional Brownian motions (Bj, Bs)
starting at (z,y). We have

foé—e f(f — &, tg)dtg
p(z;l —¢)

where f(s,t) is the joint density of (71, 72) and p(x; ¢ —¢) is the density of the first passage
time of a Brownian Motion starting from z to zero, so we have

Px’y{TQ<£—5{71:€—5,Td>5}: ) (638>

T __a?
pz;l —€) = —27T(€ = 8)36 20=9) (6.39)
f(g — €, tQ)dtQ.

The first step is to find a transformation that transforms (B, By) into a pair of
independent Brownian Motions. To this end, we define,

szﬁ«/gj \/%[ﬂ)' (6.40)

Then we define linear transformation 7' : R> — R? by

_= By _ Zy .
rom==( 5 )= (%) =

Then it suffices to evaluate Oz—e

—_
—

So
7, = ———B

p
S — .

1—p? e/ 1= p? ?
1

Zy = ——=Bs. (6.41)

Vet
We can easily verify (Z;, Z,) are independent Brownian Motions. Moreover, the horizontal
axis-Bj is invariant under transformation, while the vertical axis- B, is mapped to the line

VP

20 = (23, 22) whose polar coordinates are given by

2y = tan(a)z;, where @ = tan™!(— . Also, the initial point (z,y) is mapped to

al + a3 — 2pajas
To = 1 B) )
—p
/1 — 2
Oy = tan(2V2 (6.42)
ay — pas



where a1 = x, and a; = —4. As such we define,

ver
ne = The first passage time of Z(t) to the horizontal axis.
m = The first passage time of Z(t) to the line 2o = tan(a)z;.

Obviously, after linear transformation 7', we have

T = 7]17
T2 = T2

According to Page 282 of [23], the joint density of (11,72) in the region where 1y < 1 is
given by,

7 sin o ( 2 s — tcos(2a) )

fls,t) = 202\/t(s — tcos? a)(s — t) TP\ (s =) + (s — t cos(2a))

- 0 2 —t

" nsin() L (T_O 5 ) . 0<t<s,(6.43)
a «

n=1

2t (s —t) + (s — tcos(2a))

where [, denotes the modified Bessel function of the first kind of order v. Now we have
all ingredients we need to compute (6.13). Before the computation, we observe that

QZ{Td,a<£} = / / Pm’y{TQ<€—E|71:€—6,Td>E}QZ{E<6) Edl’,D(S) Edy}
y=0 J z=0

— /yo/xo/“f:cﬁ— dtQ{E(e) € dx, D(¢) € dy}, (6.44)

Since f({ —e,t) — +oo ast — £ — ¢, in order to get away from the singularity, we want
to compute Qe{mE <l — (5} for some 0 > 0, and then get QZ{Td < E} by sending ¢ to
zero. In particular,

Q{7 < €} =limQ*{ry < ¢ — 6} = lim (1im Q{7 < ¢~ 6}). (6.45)

Then our goal is to compute

l—e—6
lim Q{7 < £ — 5}—11m/ // fM ;dtQZ{E ) € dz, D(e) € dy}.
y=0 J =0

e—0
(6.46)
Note that
By \ _ i %\ _ (V1= p*2Zi+pZs
B2 ZQ A /C+ZQ '
Then under (Z, Zs)-coordinates, we can rewrite (6.39) as
1= p221 2 (V1=p22}+p22)2
ple;l—e) = ( P+ sz)ef e (6.47)

21l —¢)3
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Then we switch to polar coordinates, where zé = rgcosfy and zg = 1o sinfy, and (6.47)
becomes
(10— ¢) (v/1 = p?rocosty + prosinfy) _/i=r2rg cos O +org s 60)*
plx;l —e) = e -
27(0 —¢)3
=: p(ro,00; ¢ — ). (6.48)

Lemma 6.1.2 Suppose lim._ <limxﬁoyy%25511 Q{74 <l—6|E(e) =2,D(e) = y}) ex-

1sts. Then we have following,

lim,_,¢ /OO /oo Q{74 <l —6|E(e) =x,D(c) = y}Q{E(e) € dx, D(¢) € dy}
y=0 J =0

e—0 Ag
0y )\

= lim ( lim Q7. < (- 5|E D(e) = y}) : (6.49)

PROOF: Let B be the ball centered at (0, zii‘;) with radius ¢ > 0. According to (6.20)
and (6.21), we have

lim,_, / Q{74 <l —(|E(e) = 2,D() = y}Q{E(e) € dz,D(e) € dy}
(z>0,y>0)NB<

< lim Q'{E(e) € dz, D(¢) € dy} =0, (6.50)
20 J(@>0,y>0)nB¢

and

lim Q{E(e) € dz, D(¢) € dy} = 1. (6.51)

e=0 (z>0,y>0)NB¢

Thus from (6.50)

A = }jliI(l)/; o/x ) Q{74 <l —6|E(e) ,D(e) = y}Q{E(e) € dz, D(¢) € dy}
= lim Q{74 <l—6|E(e) =x,D(c) = y}Q{E(e) € dx, D(¢) € dy}

(#>0,y>0)NB,

(6.52)

One can check that Q*{7,. < ¢ — 6|E(e) = x, D(e) = y} is continuous with respect to
(,y). Then Vy > 0, 3¢ > 0 such that V(z,y) € Be

lim QE{Td,g <€—(5|E(5)::U,D(€) =y} —n

x%O,yﬁzisll
< Qé{Td76<€—5’E )==x,D(e) = y}
< lim QY7 <(—0|E() =z,D(e) =y} +, (6.53)
z—0 y—> Gb)‘l
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which implies

< lim 1 Q{74 <l—6|E(e) =2,D(c) =y} — 7) /( N Q'{E(e) € dx, D(¢) € dy}
z>0,y>0)NB,

Agp
r—0,y— en

< / Q{74 <l —6|E(e) =x,D(e) = y}Q{E(¢) € dz, D(e) € dy}
(>0,y>0)NB¢

< ( lim Qg{Tdﬁ <l - (5’E(5) =uxz,D(e) = y} + ”y) /( QK{E(e) € dx,D(e) € dy}.

z—0,y— 321 >0,y>0)NB¢

(6.54)

Taking the limit as ¢ — 0, using (6.51), we have

lim._,q ( lim Qf{Td,g<£-5|E(5):x,D(e):y}—v>

Agp
z—0,y— 9 M

< A <lim ( lim  QYm. <l—6|E(e) == D(e) =y} +7> .(6.55)

e—0 Agp
z—0,y—
’ (7931

Finally, send v — 0, we get

A = lim lim  Q{r. <l—6|E(e)=x,D(c) =y} |. (6.56)
e—0 x—>0,y—>2§§11
0
Lemma 6.1.3 The limit
lim lim Q7. <l—6|E(e) =z,D(e) =y}
e—0 x—)O,y—>2§§11
er1sts.
PROOF: The starting point (0, ’g—i)’f—ll) is mapped to
21 0 - 2_2/\&
s = _ cr\/1-p? 1
(22)'_:<M)_< \/11/\2_211) )7 (6.57)
s O Vet A

whose polar coordinates representation is (7, a), where

)\2M1

BT

T's
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Therefore we have following,

lim  Q{7u. < —3|E(e) = x,D() = y}

z—0,y— 25;11
= lim / R {0 (6.58)
ro—rs,fo—a J p(ro, 00; ¢ — )

Substituting (6.43) and (6.48) into (6.58), we have

lim fll—e,t) _ - msina
ro=rabo—a p(ro, 0o; € — €)  ro=rabo—a 202 VIl —e) —tcos?a)(l —e —t)
g (0 —¢e) — tcos(2a)
P (‘27((@ —) O+ (((—e)— tcos(2a)))

2

no, g (L—e)—t
Zn 1TLS1H( O)I% <2t ((t—e)—t)+((t—e)— tcos(?a)))

(1/1=p2ro cos Bo+pro Sineo)e_(mm cos b0 terg sin 0g)2 (6.59)
\/2m(l—e)3
When 6y — a, sin(®2%) — 0. We also see that tana = \/1;77
(/1= p?rgcosby + prosinby) — 0.
ft—e,t)

In order to apply Dominated Convergence Theorem, we are going to show o do -3
is bounded for y in a neighborhood of o and rg in a neighborhood of s on t € (0, ¢ —e—9).

First, we show

7 sin o ra (0 —¢e) — tcos(2a)
202\/t(({ —e) —tcos?a)({ —e — 1) =P ( 26 ((l—e)—t)+((t—¢) - tCOS(QO‘)))

JI—p? in fy)?2
y /—27r(€—5)3exp<( p*ro cos Oy + prosin Oy) ) <My <oo  (660)

2(0 —¢)

for (19, 6p) in a neighborhood of (15, &) and t € (0,¢ —¢e —§) where M, is a finite constant.
Let us fix n; > 0 and 0 <n < %, obviously

/1_ 2 : 2
270 — e)3 exp <( Lor TO;(O;%);)_ prosin bo) > < N; < o0

for the neighborhood |0y — «| < my and |rg — rs| < 72 where N; is a finite constant. On
the other hand, for ¢t € (0,/ — e — 0), we have

7 sin « o _7“_8 (0 —¢) — tcos(2a)
202\/t(({ —¢) —tcos2a)(l —e —t) p< 275((6_5)_75)4“((6_5)_tCOS(%‘)))

_ 7sin . < (%)? ¢ >
——exp | 2 —— ).
20200 O\ 2t 2(l—¢)
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Thus it suffices to show

sin o (%) 9 )
——————exp | — < Ny < 00
NG A ( 2t 2(t—e)) =
for t € (0, —e¢ — J) where N, is a finite constant. Since 22231\1/1%6 exp <—(r§t)2 2(25—5)> is
continuous on ¢, it is sufficient to show
. wsina ()26
lim —————— -2 ) =N3<
120 902+ /108 P ( 2t 20 — 5)) S
where N3 is a finite constant. From L’Hospital’s rule, we have
T sin «v (%)? 9
im——— exp | —
90 90200 P\ T2t 2(0— )
Y T sin o 1
- HEO 253 T )
y— 201242 exp ((73)2y22(£76)>
— lim ”Z“f‘ . ! — =0,
—00 2 Ts Ts
B s o (at) (502
which finishes the proof of (6.60).
Next, we are going to show
00 : (nmby 2
sin{ =~ (—¢e)—t
nsin (%) [m<r_0 (L—¢) >§M2<OO
= /T — p?rgcos by + prosinby) ** \2t ({ —e —t) + (£ — e — tcos(2a))

for Ay in a neighborhood of o and r( in a neighborhood of r; where M, is a finite constant.

Let us fix n; = 7, and define

2 (0—¢e)—t r? (0—¢e)—t

=0 '_2_t(€—£—t)—|—(@—g—tcos(Qa))’Zs T2 (0 —e—t)+ ((—e—tcos(2a))

Then, there exists 0 < 1y < Z= such that for any rq such that |ro — rs| < 19, we have
U 2

|20 — 25| < 5. We want to show

s (nwh
nsin (22

sup { ‘ < ) IM(ZO)’}
0<|0—a|<n1,|ro—rs|<n2 ; V1= p?rgcosty + prosinby) **

= N, < o0, (661)

where NV, is a finite constant. We observe that /1 — p?rg cos 0y + prg sin 6y = sin v cos 6y —
cosasinfy = sin(a — 6p). By the Mean Value Theorem, there exists ¢ between nmf,/a
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and nra/a such that

‘ nsm(”“eo) ‘ B nzw’sm(m%) sm(”m)H 0y — |
V1= p2cosby + psiny) o "“790—% sin(fp — o)
n°m sin 90 _
= ——Jeos{||[——— 2

n 7r,sm(90 — ) ’_

IN

o Oy — «

n2m?
2\/50/

for all 0 < [0y — o <y = 7. It suffices to show that

IN

o 2

sup n—];%r(zo) = N5 < o0, (6.62)

|T0_7’s|§772 n=1 TO

where Nj is a finite constant. We recall that

L(:) = é)ykz_;(Z)kk!F(uik—k 0 (6.63)

is increasing for z > 0. Since |zp — 25| < % for |rg — 5| < 72, so the supremum in (6.62)
is attained at z := 2, + 5 = 32? Also because ne < %, we have rg > % > 0. Therefore,
it suffices to show

ZnQI%(z) = Ng < 00, (6.64)

where Nj is a finite constant. It is sufficient to show the successive terms in the sum have
1

a ratio less than 5. We use the fact that for any v > 0, lim, o F(F( +)V) 0. Thus, let
us fix v = =, there exists sufficiently large M € N such that F(x)y) <1 e /2 for every

x> M. Let N = [M/v] + 1, then for every n > N we have nv > M. From (6.63), w
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have

(o.9] 2 1
— n+1)v k
foge(2) = Ton(=) =3 ;;(Z) ET((n+ 1)y + k+1)

Z nv . 2 k (%)V

= ) g(Z> KID((n+ v+ k—+1)

2%, (%) C(nv+k+1)

0(Z> KT +k+DT((n+ v +k+1)
1 z nv - 22 k (%)V

< 32

(v +k+1)

k=0
1.2, =, 2%, 1
= 30 kZ:O(Z) KT (nv + k + 1)
1 1
= §["V<Z> = 5[72%(2), (6.65)

which proves (6.64). This implies (6.61).
By Dominated Convergence Theorem and L’Hospital’s rule, we get

)
lim —
ro—rs,00—o p(?"g, 80, l— 5)

_ WSlna\/m_ —— (_rg (0 — &) — tcos(2a) )

Oz2\/t —¢) —tcos?a)(l 2 (L —e) — 1)+ (({ — &) — tcos(20))

Z . T cos("2ih) / (rj (C—e)—t )
— ro—rs,0o—a — /1 — IO2T0 sin 90 + pPro COS 90 20 2t ((é — 5) — t) + ((e — 5) — tCOS(ZO&))
msinay/2m (0 — €)? exp ( r? (0 —¢e) — tcos(2a) >
frnd X —_—
—e—1)

2a2\/t —¢) —tcos?a)(l 2t (L —¢) —t) + ((€ — ) — tcos(2a))

o (7 ((—¢)—t
Z ars R <2t (—e)=t)+((t—¢) - tcos(2a))> ‘ (6.66)

n=1

Since for t < £ —¢e — 9, limy,—r, 9y—a % is well-defined, then we can use the Domi-
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nated Convergence Theorem to get

l—e—0
{—e,t
lim lim / Mdt
e=0 \ro—7s,00—a J p(To,Qo;é—g)

l—e—6 _
= ([ )
e— 0 ro—Ts, 0—>ap 7"07 0s¢ — g
o msinay/2m(0 — )3 exp ( r? (0 —¢) — tcos(2a) )
X

2 ((0—e)—t) + (€ —e) —tcos(2a))

= lim
e=0 /g 202\/t(({ —e) —tcos?a)({ —e — 1)

= n’r ) r? (0—e)—t
2:: ars (=" gz (ﬂ (l—e)—t)+((l—¢)— tcos(2a))> dt

n=1
/85 7 sin aV/ 27w l3 . ( 2 ¢ — tcos(2a) )
pu— X _ s
0o 2a2\/t({ —tcos?a)(l —t) Pl (0 —t)+ (¢ —tcos(2a))
= nr r2 /—¢
_1 n_l_[M ’s dt |
; ars U (275 (—t)+(— tcos(2a))> (6.67)

U
Therefore, by Lemma 6.1.2, 6.1.3 and (6.45), we have
Q{7 <t} =limQ{r < (-0}
A 7 sin av/ 27 l3 ( 2 { — tcos(2a) )
= lim exp | —=—
-0 Jo  2a2\/t(l —tcos?a)(l —t) 2t (€ — 1) + (¢ — tcos(2a))
= n’m - r? —t
nz:; ar, (=)™ (% (0—t)+ (L — tcos(2a))) dat
/é 7 sin aV/ 2w l3 . ( 2 ¢ — tcos(2a) )
= X —_
0 2a24/t(f —tcos?a)(l —t) Pl (¢ —1t) + (£ — tcos(2a))
= n’m - r? 0—t
; ar, (=)™ (% (0—t)+ (L — tcos(QOz))) dt
¢
_ / b 1)t = pu(0). (6.68)
0

This finishes the computation of the conditional probability that ¢* hits zero before the
negative excursion of W* ends given that the length of the excursion equals £. Following
the same logic, we can show that the conditional probability that X* hits zero before the
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positive excursion of V* ends given that the length of the excursion equals ¢ is

l
p;((ﬁ) = /0 p,\/(t, l)dt

/Z 7 sin v/ 2m(3 . ( 72 { — tcos(2a) )
= X —_
0 2a2\/t({ —tcos?a)(l —t) P\ (¢ —1t) + (€ — tcos(2a))

A

S n27r n—1 Ts g —t
Z o ST (27 (—t)+ (- tcos(2a))) dt, (6.69)

n=1

A _ 21
where r = —£221 |
Osp1/c—+/1—p?

6.2 Waiting time between two consecutive renewal
states

6.2.1 P.Levy’s theory of Brownian local time

Now we want to relate our problem to Levy’s theory of Brownian local time. Let B be a
standard Brownian motion, let Lg(t) denote the local time of B at zero up to time ¢, and
let L' be its right-continuous inverse. It is well known that the Levy measure of L3 is

ar
Vo3
and it tells us the frequency of the excursions of length ¢. In this section, we want
to distinguish positive and negative excursions, and since an excursion of a standard

Brownian motion has half chance to be a positive, and half chance to be a negative, we
can define Levy measures for positive excursions and negative excursions

dl
20/ 3’

dl
“(dl) = ——,
o (de) 24/ 273

and their corresponding Poisson random measures v+ and v~.

p(dl) =

p(de) =

Now consider the standard Brownian motion B* appearing in (6.2). From (6.2), we
see that once B* is on a negative excursion with length ¢, G* is actually on a negative
excursion with length ¢/c_. Similarly, once B* is on a positive excursion with length ¢,
G* is actually on a positive excursion with length ¢/c,. In (6.74) and (6.75), we proved
that the probability of U* reaching zero before the negative excursion of W* ends given
the length of the excursion equals ¢/c_ is py(--), and the probability of X* reaching
zero before the positive excursion of V* ends given the length of the excursion equals
l/cy is p,y(é). This suggests construction of thinned measures over p~ that distinguish
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the negative excursions of W* on which &* hits zero from the negative excursions of
W* on which U* does not hit zero. We do the same thing for positive excursions of V*,
distinguishing those on which A™* hits zero from those on which X* does not reach zero.
In particular, we define

14 al
- dg fry — ),
() = pul—)——
l al

pi(dl) = (1—pu(z))m,

14 dl
dl) = pe(—)—2
:uo( ) pX(ch)Q\/W
14 dl

+ _
P = (L= pal )
where pu, is the Levy measure for negative excursions on which U* hits zero before the
negative excursion of B*(and also G* and W?*) ends given the length of the excursion
equals ¢, u, is the Levy measure for negative excursions on which &* does not hit zero
before the excursion ends given the length of the excursion equals £. Similarly, u and
u¥ represent the corresponding measures for positive excursions of B*. Furthermore, we
denote the corresponding Poisson random measures as v, vy, v, and v}. Because they
are thinned independent Poisson random measures, v, vy, v+, and v} are independent.

Lemma 6.2.1 - ’ ”
Ay = pg ([0, = — <
U Mo ([ OO)) \/0 pM(C_)Q\/W &Y
and

e) de -
22703 '

PRrROOF: We prove the first equation. The proof of the second is analogous. By a change
of variable, we see that

/°° (Ly_d 1 /°° (0%
o M ovamE T e Sy M e

We prove finiteness of the second integral. Note

A = i ([0,00)) = / o

C+

pu(t) = Plra <(lr.=(}
= P{max(8/c_E(t) — C(t)) > %Ve =0}

0<t<t = O\
Aapin,
< P{Bve- max E(t) + ks max(—C(t)) 2 . 7. = 0}
< P{By/c- max E(t) > A2phy or k max(—C(t)) > A2fhn |7 = (}
- - 0<t<e — 20p)\ 0<t<t = 20, ¢

IN

Aol Ao
> = - =
POV i PO 2 90,5, 17 = O PO = g0 )
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Since

Plmax (~C(1)) > 20y < 9P(0(0) > 2y

0<t<t — 2K6 N\ KBy A
4&292/@ 9
<
< (2 2 EC (6)) Al
8K202\?
= (Sgr9n
/\2N1
we have
o )\2/11 dl 8%262/\% dl
P c(t)) > ) N1
/0 {53%( 1) = QHeb)\l}Q\/27T€3 <( A3t ) )2\/27r£3
/ 8&262)\2 / - o
o At 2\/27r£3 2213
Now it remains to show
o >\2,u1
P E(t )
Pl 202 g7 i = 05 < (6:70)
According to [6], Theorem 7, for £ > 0, we have
471252 252
> = = — _
P{max B(t) > £|re =} = 22 1) expf b
Thus,
* Aafiq ¢
P E(t =(}——
/ {53?3% )2 26\/_9;,A1| }2\/_27%3
/ 4n2£2 {_ 252 d
=P 14 \/27?63 27r€3
where £ = 25\;\54(1917/\1 It suffices to show fo > 1(41@2 )exp{—M}\/ﬁ < 0o. From the

Monotone Convergence Theorem, we have

4n2§2 2n?¢2 . Al [ An?E? 22 dl
/ o) e =3 [ e T

Obviously, fo 4” 5 ) exp{—22% 52}

m<ooforanyn21. Let

e 221

Then its first derivative is

F(0) = T exp(-

2n2§2 2n2§2

RS+ ),
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4n2¢2?

This implies f(¢) is increasing over (0, ). We can find sufficiently large M € N such

that 4”252 > 1 for all n > M. Then

U gn2e? 2022 dl
| E e
4n2€2

/ FOE < 1(1) = () exp(-2n°€?).

Therefore
4n2£2 2n2€2 dl
Z / ( }\/ﬁ
72\4 4\/2_52 exp{—2n%¢*} < oo,
which finishes our proof. 0

6.2.2 Computation of the waiting time between two renewal
states

According to Lemma 6.2.1, we see that us and pf are a finite measures. Let us define

subordinators
Hf(s) := / / F(du x db),
u=0 J¢=0 C+

H(s) = / /oC+ (du x dF),
H> (s) = /: /oC— (du x d?),
Ho(s) = /uo/oc_ (du x do).

H (s) keeps track of the chronological time spent on positive excursions where X* vanishes
accumulated up to local time s of B; H (s) keeps track of the chronological time spent on
positive excursions where X'* does not vanish accumulated up to local time s of B; H; (s)
keeps track of the chronological time spent on negative excursions where U* vanishes
accumulated up to local time s; H (s) keeps track of the chronological time spent on
negative excursions where U* does not vanish accumulated up to local time s.

Let us define

G/ = min{t>0: / / - (du x df) > 0}, (6.71)
Cy = min{t >0: / / F(du x dt) > 0}, (6.72)



so that @ is the first time (in the local time clock) when U* vanishes on a negative
excursion, and Cy is the first time (in the local time clock) when X'* vanishes on a positive
excursion. We can compute (3,’s cumulative distribution function by

P{G <t} = P{r ([0,] x[0,00)) =1}

— 1= Pz ([0,4] % [0,00)) = 0}
— 1 — e M0Ax[000).

where
A([0,t] x [0,00)) = / o (dO)t = Ayt.

From Lemma 6.2.1, we have

Ay < o0,
which implies
P{Cy € dt} = Aye !dL. (6.73)
Similarly, we have
P{Cx € dt} = Aye *¥'dt. (6.74)

Obviously, (;; and (x have the exponential distributions with parameter A;; and Ax. Since
Gy is determined by v7, and (y is determined by v, we see that (; and (y are independent
because of the independence between v, and v. This implies that the minimum of these
two random variables has an exponential distribution, too. In particular,

sz'n = min{Cu; CX} ~ eXP{Au + AX}

Also, we can compute the probability that &/* hits zero before A* and vice versa. In
particular,

P(u<Cx) = / Axe_A”/ Aye U dudr
0 0

_ / AyeAxe(1 = e Aur) g
0

= 1—/00 Ape~AxtAz g,
0

- 1— Ax
n Ay + Ax
Ay
= — 6.75
Ay + Ax ( )

Recall definition in (6.5). Now we compute 7,,;,, the chronological time until 4* or X*
hits zero. We can define 7,,;, conditional on either 7, < 7y (equivalently, (;; < (x) or
Ty < Ty (equivalently, (v < (). We have

e S v (du < d) + [ [ Evs (dux d) 4 Ry i Guan = G
Tmin =

emin (50 L vy ) (du x dE) 4 [ [ v (dux dl) + Ry if Gin = Ca.
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When Guin = G, UC:”O" pars ci (vd + v)(du x df) represents the time spent when W* is

on positive excursions, qu;"é" [,=y v (du x dl) represents the time spent when W* is on
negative excursions before the last excursion on which U* vanishes, and Ry, is the time
spent on the last excursion on which * vanishes. Note that by (6.71) and (6.72), we have

len

/ / F(du x dO) = 0, if Crin = Cu,
CTVL'LTL

/ / ~(du x dt) = 0, i Coin = Cs

SO we can rewrite 7,,;, as

Cmm min [0 _V (du x d) fc”“” Joo Zvsx(dux db) + Ry if Goin = Cu
Tmin

szn j‘é 0 dU, X dﬂ + mezn j‘g 0% —I/ (du X dg) + RX lf szn - CX

In order to simplify the notation, we define,

Hf(s) = /0/1{0@ (du x dF),

H (s) = /uo/eoc— (du x d?).

Our goal is to compute the characteristic function of 7,,;, conditional on (; < (x. From
the definition of 7,,;,, we have

P{Tmin = dt|Gu < Cx} = P{H () + H; () + Ry = dt|Gu < Cx}-

Note that Ry, is independent of the excursions before time (;. Thus it is independent of
HI(¢y), Hy (&) Also because ¢y < (v, the characteristic function of 7,,;, satisfies

E[eia-rmm Gy < CX] _ E[eia(Hi(Cu)—&-H;(Cu)—&-Ru)|<u < CX]

_ E[eiaRM]E[eia(H;r(Cu)+H;(Cu))‘CM < QX] (676)

We compute the two factors on the right-hand side of (6.76).

Since (;; and (y are independent exponentially distributed random variables, we have
Ele ia(H (Gu)+Hy, (Gu )|CM < Cx]

= ’O‘(H+ JFHW Ay e A e A% drdu
P{Cu <(x} / / u *

_ AZ/{ +AX/ E[eza(H+(u)+H ]A e —(Ay+Ax) “du
Au Jo

— / E[eiaHi(u)]E[eiaH;(u))](Au + Ax)e_(A“+AX)udu.
0
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Now we use the Lévy-Hincin formula to write

/ E[ezaHi'(u)]E[ ioH u))](AM+A ) (Ay+Ax) v du
0

= [Tew(-u [Ta- e uzian)

exp (—u/ (1-— eicag),u;(dﬁ)> (Ay + Ay)e~AutAxlugy,
0
Ay + Ay

Ay + Ax+ [2(1— e Yui(de) + (10— €= Yz (de)
Ay + Ax

AM+AX+IOOO(1_eiC+ )1 —pa(E )>2\/ﬁ+f0 (1—¢*

- pulL)) s
(6.77)

We can simplify the integral by the following calculation. Let # = % laf (1 —
sign(a)i), then Re(#) > 0. Let W be a standard Brownian motion with Wy = 0. Define
the martingale

M, = 629Wz—292t — 20Witiat
Let T}, be the first passage time of W to b > 0. Then
1 = E[Myng,] = E[e®Wern, TialtATh)] (6.78)

Because Re() > 0 and Wi,r, is bounded above by b, | M7, | < b. We can thus let t — oo
in (6.78) and use the Dominated Convergence Theorem to conclude that

1= E[626b+iaTb],

le.
E[e’Te] = 2. (6.79)
Now -
T, - / 0w([0,0] x d),
0
where v(dbdl) is the Poisson random measure with Lévy measure u(df) = \/;fw. (See,
e.g., [19], Page 411). The Lévy-Hincin formula implies
Ele*"] = exp { —b/ (1—e)u(de)}. (6.80)
0
Comparing this with (6.79), we see that
> - ae
1—e)— =26. 6.81
|- (6:51)



In (6.77) we have

| a-et——
et
0 2427103
_ / (1-— emy)—y
Vs Jo 24/ 2my3

1
= \/_c—f’ (6.82)
where y = —. We can write (6.77) as
Au + Ax . (6.83)
\/ii I emfgf’/(z%w = I em“;i‘/(?@# - (# \/%)(%\/E(l — sign(a)i))
Note for future reference that
E[eia(Hi(Cx)JrH;(Cx))KX < &
_ Ay + Ax
e et e [T e 4 (Gt ) (510 (1 — sign(a)i))
= E[eia(Hi(Cu)JrHQ(Cu))Ku < (x]. (6.84)

We now turn to the other factor on the right-hand side of (6.76). Let ¥ be the length
of last excursion on which U* vanishes. Recall from (6.68), for ¢t < -, we have

pul(t, =
P{Ry € di|9 = £} = P{Ry € dt|r, = —} = “(—ﬁdt,
C— pu(;)
and ,
ps(de)y  pul()

P{¥ =dl = al
t h= Jo us(dl)  24,v2r03

The characteristic function of Ry is

E[eiaRu] — E [E[eiaRu ‘19”

= / /‘C 6th{Ru < dt|TB = E}P{TB = df}

L
= / / ) )dtde. (6.85)
2Au 27T€3
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Thus from (6.76), (6.77), and (6.85), we have
Qu < Cx]
. U

L .
B (Au+ Ax) J7 Jo~ e mdzd(&

E [eiOéTmin

Ay+A t  pu(tl)
A [y ettt

it pu(f)dl © iarpx(O)de
= o e i v b e + (G + 78 (3v/Tal(L - sign(a)i))

1 ZO[ df
\/cffo e ¢ pu(f)de

Similarly we have

Ele"*™m |Gy > Ca]

A —‘rA 1ot tf
u * fO f[) 215){\/2 /3 dtde

ion 0)de .
2203 \/iTr fo € ng/% + (\/r_ \lﬁ)( V |a|(1 - 51gn( ) ))

1 fOO il Pu(£)de
v/c— JO

Therefore

E[eion'min]
= E[emin o] + Ele" ™1, 5] |
= P{G < (x}E[e" ™" [Qy < Cx] 4+ P{G > Cx}E[e" ™™ |y > Cx]

iat _pu(t,l)
B S5 Jy et et

) db . . .
et fo o206 4 (1 + —L) (5/]a](1 - sign(a)i)

1 il PU (Z)dé ialpx(O)de
NG Jo € €

fo fo iat PX(tE dtdg

Wl ﬁfo vz T (7= + ) (3 V]l (1 — sign(a)0))

+ \/H 2AxV2me3
0o 0)de 0)de
g o et e o e + (e + ) (51l (1 - sign(a)i)

[e's) (t,0 (t,0
\/%fo fo zat§u2 g) dtdg—i- _fo fo zaté?XQ g) dtdl

6.3 Future work

oo £)de 0)de . NN
L [y et a8 4 L [ eiet2elI 1 (1 + L) (3y/]al (1 — sign(a)i))

In this thesis we followed a stylized stochastic LOB model proposed in [8], where the
occurrences of market orders, limit orders, and cancellations are governed by independent
Poisson processes. We assume that arrival rates of such market events are constant
parameters that depend on the relative distance between price of arriving and opposite
best price. The formulation of the model can be viewed using queueing theory and by
applying the idea of heavy-traffic scaling and the “crushing” argument from Peterson
[24], we derive the diffusion limit of scaled sequence of LOB models. In particular, the
limiting model has a “two-tick” wide bid-ask spread, and the processes of volumes on the
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best bid and best ask follow a pair of correlated Brownian motions. We then discuss the
evolution of the limiting LOB model and calculate the probability of upward/downward
price movement via P.Lévy’s theory of Brownian local time. We finish the thesis with the
derivation of the characteristic function of the waiting time between two different renewal
states, i.e., a price movement.

Taking into account a set of empirically observed properties of real LOB, desirable
extensions of this model are the following:

e The model assumes limit orders arrive within two-tick distance from the opposite
best price. It could be extended by allowing limit orders arrive at deeper price
levels.

e Given the fact that cancellations actually happen at any price level in a real LOB,
we can add cancellation to any price levels with non-zero volumes.

e The model uses six constant parameters for arrival rates of market and limit orders,
which have three degrees of freedom. We could consider more general arrival rates,
i.e., arrival rates with full freedom, time-dependent arrival rates or arrival rates
depending on the volumes at the arriving price levels.

e Since we calculate the probability the next mid-price move is up/down conditional on
the state of the LOB, and we compute the distribution of the waiting time between
two adjacent price move events, it is natural to consider the optimal execution
strategy for a large chunk of orders. One can study how to divide the large orders
into small pieces and when to submit them in LOB.

We hope the results derived in this thesis can provide a good starting point for the
development of more versatile LOB models.
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Appendix A

Measurability

A.1 Spaces

We denote by C[0,00) the space of continuous functions from [0, c0) to R equipped with
the metric
=1
) = 32 0 (1A guax folt) —y(0)), .y € Cl0.00). (1)

n=1

Convergence in this metric is uniform convergence on compact subsets of C[0, 00).
Lemma 1.1 Under the metric (1.1), C[0,00) is a complete separable metric space.

Proof: We first show that C[0,00) is separable. For each finite T', the space C|0,T]
under uniform convergence is a complete separable metric space. For each n, let @), be a
countable dense subset of C[0,n]. Given €, there exists N such that > 7 . o= < £/2.
Given y € C[0,00), there exists zny € Qn such that maxo<i<y |y () — y(t)] < e/2. Let
x be the extension of xy to [0,00) obtained by setting x(t) = zn(N) for t > N. Then
d(xz,y) < e. It follows that the countable collection of continuous constant extensions of
functions in U, @, is dense in C[0, c0).

To see that C'[0, 00) is complete, let {z4}72; be a Cauchy sequence in C[0, 00). Then
for each n, {xk|j0,n}72,, the sequence obtained by restriction to [0, n], is Cauchy in C[0, n],
and consequently this sequence has a limit z*. It is obvious that xf(t) = a7 (t) for
0 < ¢ < nAm, and this permits us to define 2*(t) = 27,(t) for 0 < ¢ < oo, where [t]
is the smallest integer greater than or equal to t. The sequence {z;}?°, converges to z*
uniformly on compact subsets of C[0, c0). O

For any topological space X, we denote by B(X) the Borel o-algebra generated by
the open subsets of X. In particular, B(C[0, 00)) is the Borel o-algebra in C[0, c0). This
o-algebra is generated by the countable collection of open balls

By g = {y € C0,00) : d(z,y) < q}, (1.2)
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where x ranges over a countable dense subset of C[0,00) and ¢ ranges over the set of
positive rational numbers. For r € R, we define

C,[0,00) := {z € C[0,00) : 2(0) =1}, (1.3)
so that B(C,[0,00)) is the trace o-algebra of B(C|0,00)) on C,[0,00). Finally, we define
D" = {(z4,2-) € C+[0,00) x C,-[0, 00) : li{ninfzur(t) = hmmfz (t) = —o0} (1.4)

and denote by B(D") the trace o-algebra of B(C,+[0,00)) ® B(C,-[0,00)) on D".

A.2 Mappings

For each t > 0, we define the evaluation map E; : C[0,00) — R by
Ei(z) =x(t), =z € C|0,00). (2.1)
This map is continuous and hence B(C0, 00))/B(R)-measurable.

Lemma 2.1 For each r € R, the set C,[0,00) belongs to the o-algebra B(C|0,00)), and
the set D" belongs to the product o-algebra B(C,+[0,00)) @ B(C,-[0, 00)).

PROOF: The set C,[0,00) is the pre-image of {r} under the measurable mapping Fjy, and
hence belongs to B(C|0,00)). Let Q denote the set of rational numbers, We have

{z € Cl0,00) : hmmfz = —o0} = ﬂ m U {z € C0,00) : Ey(2) < —k},

k=1 n=1 geQn[n,c0)

which is thus a set in B(C|0, 00)). It follows that D" belongs to B(C,+ [0, 00))@B(C,- [0, 00)).
0J

We define the Skorkhod map I' : C[0, 00) — C[0, 00) by
D(x)(t) == — 021327: (z(u) AO), z€C[0,00), 0 <1< o0 (2.2)

This map is continuous and hence B(C10, 00))/B(C[0, 00))-measurable.

Given (zy,2_) € D", we construct a function z € C,[0,00) as follows. We first set
(4 =T'(z4). By the definition of D", we have

tlgglo 0, (t) = tli)rgo (_(t) = oc. (2.3)

We define the mappings ®.. from D" to C'[0, co) (continuity is established in Lemma 4.2.3)
by the formulas

D (24, 2-)(t) :=sup {u € [0,1] : {4 (u) = (_(t —u)}, (2.4)
(24, 2-)(t) :=1inf {u € [0,];0_(u) = l4(t —u)}, (2.5)
for all ¢ > 0. We then set p1 = &1 (24, 2_) and define
z2=V(z4,2 )=z 0p, —z_op_. (2.6)
In the next subsection we show that W: D" — C,.[0, 00) is B(D")/B(C.[0, c0))-measurable.
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A.3 Measurability

Lemma 3.1 The mapping A : [0,00) x C[0,00) — R defined by
Alt,z) =z(t), te]0,00), z € C|0,00)

is continuous, and hence B[0, 00) @ B(C0, 00))/B(R)-measurable.

PRrROOF: Let (t,,z,) converge to (t,z) € [0,00) x C[0,00). For large enough n, we have
t, <t+1=:T, and

|A(tn, ) — Alt,2)| = |xn(tn) - x(t)|

< |xn n) — )’ + |x(tn) - :L‘(t)‘
< Joax |xn —a(t)| + |z(tn) — x(t)].
This last expression has limit zero as n — co. 0

Lemma 3.2 Let = : D" — C|0,00) have the property that for every t > 0, the map-
ping (z4,2-) — Z(z4,2-)(t) is B(D")/B(R)-measurable. Then E is B(D")/B(C[0, 0))-

measurable.

PRrOOF: It suffices to show that =7*(B,,) € B(D") for each of the open balls in (1.2).
But

E N (Bug) = {(24,2-) € D" 1 d(2,E(24,2-)) < ¢}

:{(zJH _)eD: Zzln(l/\ sup |:1: E(Z+,Z)(t)‘)<Q};

—1 teQn[o,n]

which is in B(D") because of the assumption that the mapping (24, 2_) — Z(24,2-)(t) is
B(D")/B(R)-measurable for each ¢. O

Lemma 3.3 For every t > 0, the mapping (z4,2_) — PL(zy, 2 )(t) is B(D")/B(R)-
measurable, where ®, and ®_ are defined by (2.4) and (2.5).

PrROOF: For t > 0 and u € R, we have

{(z1,22) €D : 4 (24, 2)(t) > u} = {(24,2-) € D" : Ly (u) < L_(t —u)}

= {(= GDT'F( )() D(z-)(t —u)}.
(3.1)

Because I'y and I'_ are continuous and hence B(C0,00))/B(C[0,00))-measurable, the
mapping

(24,22) = (D(z)(u), T(-)(t = w) = (ByoT(z4), Bry 0 T(2.))
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is B(D")/B(R?)-measurable. Consequently, the set in (3.1) is in B(D"). Because this is
the case for every u, for each fixed ¢ the function (zy, z_) — @, (21, 2_)(t) is B(D")/B(R)-
measurable. The proof that (z;,2-) — ®_(z,2_)(¢) is B(D")/B(R)-measurable, which
uses the equivalence

O _(z4,2-) Su<=l_(u) >l (t —u),

is similar. H

Theorem 3.4 The mapping ¥ : D" — C,[0,00) is B(D")/B(C,[0,00))-measurable.

Proor: We fix t > 0 and decompose W into the concatenation of mappings

(Z+, Z—) - (CD-I—(Z-H Z—)(t)v Ry 2y (I)—(Z-H Z—)(t)) (32)
= <A((I>+(z+,z_)(t),z+),A(<I>_(z+,z_)(t),z_)> (3.3)
= APy (25, 20) (1), 24) — AP (24, 2-)(1), 2-) (3.4)
= U(zy, 2 )(t).

The mapping in (3.2) is B(D")/B(R) ® B(D") ® B(R)-measurable by Lemma 3.3. The
mapping in (3.3) is B(R) ® B(D") ® B(R)/B(R?) measurable by Lemma 3.1. The mapping
in (3.4), which is subtraction in R?, is B(R?)/B(R)-measurable. Therefore, for every ¢t > 0,
the mapping

(24, 2-) = W(zy, 2-)(F)
is B(D")/B(R)-measurable. It follows from Lemma 3.2 that U is B(D")/B(C0,c0))-
measurable. Since ¥ maps into C,[0,00), it is also B(D")/B(C,[0, c0))-measurable. [
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Appendix B

Absorbed Brownian Motion

B.1 Proof of (6.22)

[ eana = o [Tew( _@2) - ﬁ/ w () @

:ﬁ/fp( ( )dz
:2@%/ P z—t)d‘é)

W (
2 (v [ o (5) 1)
(

:é—m/P)

H—
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B.2 Proof of (6.26)

We begin with the observation

(s, 2, y)p°(t,y, 2)

-l (5) m(57)

e (5) o (5]

S
S—l—t/OO s+t tr + 52\ ° p
omst )P\ T 2st \Y T st Y
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and

s+t/°° s+t n
exp | ————
2rst /o P 2st 4

we can integrate (2.1) to obtain

/ PP (s, 2, y)p°(t, 2, 2) dy
0

tr —sz\’ + s+t "
exp| ———— | —
s+t P 2st Y

tr — sz
s+t

)]

[s+t /°° s+t
= exp | —
2mst J_ o P 2st

=1

?

= p’(s+t,m,2).
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