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Abstract

Precise time and location are at the core of many Cyber Physical Systems (CPS)
applications, as can be seen by the impact of the Global Positioning System. Indoor
localization systems will enable applications ranging from navigation, asset tracking
and secure device interaction to mixed reality experiences and emergency support
(e911). However, indoor environments are full of barriers, which attenuate and scat-
ter signals that make it challenging to provide high coverage in a cost-effective and
reliable manner at scale. In this dissertation, we will show steps towards designing
scalable indoor localization systems in a systematic manner that perform effectively
across unpredictable environments and are compatible with several emerging tech-
nologies. Specifically, we focus on the class of range-based beacon technologies be-
cause (1) they can provide accurate ranges given line-of-sight, (2) they can instantly
determine a location without requiring devices to move long distances and (3) there
are growing standards for range-based technologies such as 802.11mc, BLE5 and
ultra-wideband. Unfortunately, installing and mapping beacons is both expensive
and time consuming, which continues to hinder adoption. Further, acquiring location
from ranges in realistic settings can be inaccurate and slow when a low density of
beacons and non-line-of-sight signals are encountered. While having an abundance
of beacons increases accuracy and decreases the time to acquire the initial location,
it also increases the cost of the system. This thesis aims to lower the barrier to
adoption of range-based beacon technologies by reducing the infrastructure required
while maintaining high performance in terms of accuracy and time taken to acquire
the location and orientation. Our approach leverages additional sources of location
information, like geometrical constraints from floor plans to acquire location with a
reduced number of beacons, magnetic sensing to rapidly acquire orientation and vi-
sual inertial odometry for setup and continuous tracking. We present techniques for
location estimation and system provisioning, including beacon placement and map
generation, and show how these techniques apply to CPS applications like mobile
augmented reality and first-responder localization.
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Chapter 1

Introduction

The ability to localize people and things indoors will impact diverse application domains rang-
ing from search and rescue in disasters to next-generation augmented reality headsets. Indoor
localization has been a long-standing challenge because no technology meets the requirements
of being accurate, instant, compatible with existing infrastructure and inexpensive to install. Sys-
tems that produce accurate and instant estimates often require dedicated infrastructure to be set
up and are not compatible with existing commodity devices like smartphones, tablets or headsets.
Systems that currently do leverage existing infrastructure and devices are either not accurate or
require an elaborate surveying process, which is expensive. Fundamentally, there is a trade-off
between cost and performance across indoor localization solutions.

1.1 Indoor localization paradigms
We can better understand this trade-off by analyzing the localization paradigms that have emerged
in the past three decades. For any indoor localization system, either the building environment
or the target object to be localized requires some active or passive sensing capability. We refer
to the instrumentation in buildings as infrastructure in short for localization infrastructure, and

Infrastructure

Device

(a) Device-based
infrastructure-based

Device

(b) Device-based
infrastructure-free

Infrastructure

(c) Device-free
infrastructure-based

Figure 1.1: Indoor localization paradigms
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refer to a target object with sensing capabilities as a device. Based on where the sensing ca-
pabilities lie, localization systems fall into three paradigms shown in Figure 1.1: device-based
infrastructure-based, device-based infrastructure-free and device-free infrastructure-based. In
addition to sensing, most localization systems need some prior information (that we refer to as
map) to meaningfully convert the measured signals to location. To understand the performance-
cost trade-off of a localization system, we should also consider the ease or difficulty of generating
the maps required by the system.

Device-based and infrastructure-based indoor localization systems:
In this paradigm, infrastructure nodes are used as a reference and signaling between infrastruc-
ture nodes and a device is used to localize the device. Satellite-based positioning (e.g., GPS,
GLONASS, Galileo) is an example of this paradigm in an outdoor setting. Indoors, the infrastruc-
ture can be either existing instrumentation in buildings (e.g., overhead LED lights, WiFi Access
Points) or custom hardware deployed for localization. Examples of device-based infrastructure-
based indoor localization include WiFi-based localization using signal strength [16, 100] or time-
of-flight [133], ultrasonic or acoustic-based localization using time-of-flight or time-difference-
of-arrival [65, 67], ultra-wideband-based localization using time-of-flight or time-difference-of-
arrival [58, 59, 91], LED lights-based localization [63, 101, 102], and backscatter-based local-
ization with RF [77, 84, 92]. These localization systems either require a precise map of the
infrastructure nodes, or a map of the spatial variation of signals from the infrastructure. For in-
stance, time-of-flight-based systems require the location of the infrastructure nodes, and signal
strength-based systems either require the location of the infrastructure nodes along with a model
of signal propagation or they require a prior map of the signal strength across different locations.
The key advantage of these systems is that they can provide accurate localization given a high
density of infrastructure. However, these systems are expensive due to infrastructure cost, as
well as time and effort taken to set up, install and map environments. Further, a hindrance to
adoption is often the lack of compatibility of these technologies with off-the-shelf commodity
devices such as smartphones and tablets.

Device-based and infrastructure-free indoor localization systems:
In the second paradigm, a device localizes itself using on-board sensors such as camera, iner-
tial measurement unit, magnetometer and microphone. Examples of this type of localization
include systems that fuse inertial tracking with floor plan [141], systems that localize with the
electromagnetic-field radiation from power lines [76] and most popularly, systems that localize
using vision and depth sensors [32, 60, 73]. These systems are appealing since they do not require
any additional infrastructure in the environment. However, they require maps of the measured
signals across locations to compare against in order to localize. Generating these maps can be a
labor-intensive process, and further, these maps have to be repeatedly updated if the environment
changes. A single mode of sensing is often not sufficient to produce a unique location estimate,
and these systems rely on mobility over time in order to capture enough data to uniquely localize.

Device-free and infrastructure-based indoor localization systems:
In the final paradigm, the object itself does not have sensing or control capability, but its presence
impacts signals sensed by infrastructure nodes, which localize the object based on the sensed
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signals. The infrastructure can be passive, for instance “outside-in” systems that localize using
Kinect [46] or cameras [31]. In active systems, an RF transceiver might estimate an object’s
location based on changes in the wireless channel due to the presence or location of the object
[12, 139, 144]. Recently, mmWave-based tracking and identification of persons [145] has been
shown feasible in controlled environments. These systems are promising, since the object to be
localized does not require any sensing and control capability. However, the RF-based methods
are not yet robust to the unpredictabilities and dynamics of indoor environments and so far have
been shown feasible in controlled lab environments, but not in realistic scenarios. These systems
are also expensive due to cost of infrastructure, as well as the time and effort taken to set up,
install and map environments. Compared to the infrastructure-based device-based localization
systems, they require more resources in terms of the infrastructure and mapping. For instance,
Amazon Go [4, 96] has shown accurate tracking of users in publicly accessible stores using
cameras covering the ceiling.

1.2 Heterogenous opportunistic localization in the future

This wide variation in localization solutions is welcome given the variation in the application
requirements, environment constraints, available sensors and semantics of indoor spaces. Un-
like outdoors, where satellite-based positioning with inertial tracking is universally adopted for
civilian applications, no single solution appears to solve all indoor localization problems. This
dissertation advocates that in the future, multiple localization technologies will co-exist and de-
vices will opportunistically localize based on the available infrastructure and sensors. This will
require new tools and paradigms in order to bring structure to what is currently a haphazard and
chaotic design process.

1.3 Range-based localization

In future opportunistic heterogenous localization ecosystems, infrastructure nodes will play a
key role as they act as location references. In this dissertation, we focus on infrastructure-based
device-based localization, with a focus on infrastructure nodes that are capable of ranging to
target devices. We refer to these reference infrastructure nodes as range-based beacons and
refer to these localization systems as range-based localization systems. Range-based localization
systems estimate distance by measuring time of signal propagation between beacons and target
devices using time-of-flight, time-difference-of-arrival or round-trip-time-of-flight.

1.3.1 Motivation

Range-based beacon systems are promising for several reasons. First, the accuracy expected from
the range measurements is predictable under line-of-sight conditions. The accuracy is character-
ized by the signal bandwidth, the resolution of time stamping, clock-synchronization accuracy
and other hardware factors [7, 108, 109], and is not environment or deployment-dependent. This
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Localization technology Smartphone
compatible?

Acquisition
<1sec?

Accuracy
<1m?

WiFi y y/n n
IMU y n y/n
UWB (range-based) n y y
Lidar (range-based) n y/n y
BLE y y n
Acoustic/
Ultrasonic (range-based) y y y

Table 1.1: Suitability of current technologies for accurate location acquisition on smartphones

makes range-based localization systems predictable, and they have the potential to be accurate,
if sufficient bandwidth and accurate time-stamping is available.

Second, range-based systems are capable of instant location acquisition. For example, if a
device receives range measurements from a sufficient number of beacons at an instance of time,
we can compute the location. In contrast, several other types of localization systems require
the user to walk around until sufficient information is gathered from the sensors to compute
the location. This is seen in Table 1.1, which compares suitability of various technologies for
accurate location acquisition.

Third, range-based localization is applicable to a variety of physical layer technologies such
as acoustic, UWB, BLE and WiFi, and hence encompass a broad class of devices and infras-
tructure. Ultrasonic beacons have been shown to provide accurate localization [66] on unmod-
ified mobile devices. RF technologies are slowly finding their way into commodity devices.
For instance, WiFi 802.11mc which supports round-trip-time-of-flight ranging [9] is currently
implemented in Android Pie and is rolling out in some of the newer WiFi Access Points. Ultra-
Wideband (UWB) ranging technologies have recently become popular for indoor localization
due to readily available and highly accurate chipsets. Further, recent modifications to the physical
layer are making UWB ranging secure with standards such as 802.15.4z [8, 10, 107]. Emerging
modifications to the Bluetooth Low Energy (BLE) stack with support for time-of-flight rang-
ing hold promise for prevalent peer-to-peer ranging among devices due to BLE’s low power
consumption and compatibility with commodity devices. Further, these emerging range-based
technologies are reducing in price and power consumption, reducing the barrier to adoption.

1.3.2 Challenges

Though promising, in practice, range-based localization systems face a trade-off between cost
and performance. This trade-off spans multiple layers of the system design process: beacon
placement, mapping and localization. First, the system installer has to select the number of
beacons to deploy. This is challenging, as a higher beacon density improves the localization
performance but it also increases the system cost. The placement of beacons also impacts the
localization accuracy, and there aren’t systematic approaches to select beacon placements. Sec-
ond, the system installer has to set up the beacons and create maps of the beacon locations, floor
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plan and any other spatially varying signatures used for localization. While on one hand, an ac-
curate map is essential for good localization performance, on the other hand it is expensive (due
to manual time, effort and the need for specialized surveying instruments) to accurately survey
and map beacons and the environment. Further it is expensive to re-map the system regularly
when beacons move or fail, or when new beacons are introduced. Finally, beacon-based systems
face challenges in location estimation due to the nature of real-world indoor environments. In
realistic environments, signals from line-of-sight beacons can be blocked and signals from non-
line-of-sight beacons that reflect off walls are received. These result in either insufficient data to
estimate location or inaccurate location estimates. To overcome this, the target device has to be
moved around the building to gather more measurements, which increases the time-to-acquire
location. In practice, beacons are over-deployed to improve acquisition time.

1.4 Contributions of this dissertation
This dissertation proposes a methodology for fusing additional sources of information to improve
range-based indoor localization systems by reducing the infrastructure required while maintain-
ing high performance in terms of accuracy and time-to-acquire the location and orientation.

This dissertation makes contributions to location and orientation solving, beacon placement and
beacon mapping for range-based localization systems. This is represented in Figure 1.2 and elab-
orated below:

Beacon placement:
Challenge: Beacon placement in the real world faces the conflicting objectives of reducing the
number of beacons (for cost reduction) and increasing system coverage, accuracy and resilience.
Due to the lack of quantitative approaches to compare and evaluate beacon placements, current
methods to deploy beacons either require domain experts who leverage intuition and heuristics,
or over-provision indoor spaces with more beacons than required.
Contribution: We present a systematic approach to integrate the floor plan geometry and beacon
coverage models to reduce the number of beacons while maintaining localization coverage. We
define a metric to quantify the ability of a beacon placement to Uniquely Localize a floor plan.
We build on this and introduce an indoor GDOP metric to quantify the localization accuracy of a
beacon placement. We incorporate these metrics and design beacon placement algorithms [103]
in an open source toolchain available to system designers.

Pedestrian-aided mapping:
Challenge: Range-based localization systems require a map as a reference to localize. The map
includes the beacon locations and can include the floor plan as well as spatially varying vectored
signals. Typically, the mapping is performed either by a robotic system or expensive surveying
instrumentation, and the maps do not adapt to changing environments. This hinders the adoption
of range-based technologies.
Contribution: We present a crowdsourced pedestrian-aided mapping process that simply requires
users to walk around with phones that can be held in any orientation. We fuse visual inertial
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Figure 1.2: Overview of this dissertation. This dissertation proposes a methodology for fusing
additional sources of information to improve range-based indoor localization systems by re-
ducing the infrastructure required while maintaining high performance in terms of accuracy and
time-to-acquire the location and orientation. This dissertation proposes solutions to the problems
associated with deployment (beacon placement, mapping) and estimation (location acquisition
and orientation acquisition).
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odometry (VIO) on phones with beacon ranges to accurately track the phone’s pose with respect
to the beacons as users move around. The accurate tracking aids in mapping beacons, the floor
plan and spatially varying signals in the environment.

Location acquisition:
Challenge: In realistic environments, LOS beacons are often blocked, and inaccurate range mea-
surements are received from NLOS beacons. These under-defined scenarios result in inaccurate
location estimates. Common solutions to cope with this either over-deploy beacons or rely on
mobility and take time to converge on an estimate.
Contribution: We present a location solver that integrates the floor plan geometry and beacon
coverage models to localize robustly in under-defined scenarios. The proposed location solver
(1) considers feasible hypotheses of LOS and NLOS beacons among the received ranges and
solves for locations under each hypothesis, (2) checks for consistency between the estimated
location and the assumed hypothesis against the predetermined coverage information and (3) se-
lects the most likely hypothesis-location pair. In addition, for most deployments, our approach
guarantees that the localization accuracy does not degrade with the presence of any amount of
NLOS measurements, as long as the expected LOS range measurements are received [104].

Orientation acquisition:
Challenge: Device orientation is important for applications such as wayfinding and mobile aug-
mented reality, but range-beacon-based systems do not provide any orientation information. Ori-
entation is acquired on mobile devices using visual features, but vision-based approaches often
fail due to lack of texture, changes in lighting or changes in the location of objects in the envi-
ronment, like moving furniture or people.
Contribution: We leverage accurate VIO trajectories to provide full vector magnetic field map-
ping that can be collected and used with devices placed in any orientation. We use the beacon
ranges, VIO and magnetic field maps to acquire device orientation. This has the side effect of
enabling multi-user (even cross-platform) applications that require users to be localized with re-
spect to a common global reference without any sharing of visual feature maps [105].

1.5 Motivating applications
We motivate the approaches presented in this dissertation with two applications that require high-
accuracy location as well as orientation, and have constrains on beacon placement and mapping:
mobile augmented reality and firefighter localization.

1.5.1 Application 1: Persistent mobile augmented reality
Recent advances in VIO and Simultaneous Localization and Mapping (SLAM) on devices rang-
ing from headsets to smartphones have made AR an easily accessible commodity on an exciting
number of platforms. Mobile AR APIs, like those found in Apple’s ARKit and Android’s AR-
Core, currently provide (1) VIO-based tracking, (2) scene understanding and (3) realistic ren-
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dering based on features and lighting from the environment. This can support applications like
gaming and product visualization, where the user interacts with the virtual objects for a single
session. For instance, the IKEA Place app allows users to experiment with different furniture
layouts by rendering virtual furniture in their home. Advanced mobile AR and platforms such as
Microsoft Hololens and Magic Leap are even able to support virtual content to persist across ses-
sions (power cycles of the device) and across users (if the stored features are shared). Persistence
of data on mobile devices opens up a variety of applications where users could now annotate
items in large areas, like an office space with virtual signage and navigation instructions, or pro-
vide contextual control panels for things like projectors and automation equipment. Imagine
adding live AR content to theaters, concert venues and sporting events where additional effects
and information can be commonly broadcast to each viewer, even though they are at different
vantage points in the space.

The key to seamlessly supporting persistent content between two AR sessions is that devices
need to instantly and accurately relocalize themselves in six-degrees-of-freedom (6DOF) in a
reference frame that is fixed and external to the devices. In state-of-art systems, this relocalization
is achieved by comparing current camera data with stored visual features. While extremely
promising, vision always suffers in environments devoid of visual features, with lack of texture,
with changes in lighting and when the scenery changes over time due to moving furniture or
people. As a result, in many cases, this relocalization process either takes an extended period of
time or fails. In addition, visual relocalization in large areas requires searching through many
candidate feature matches, which can become expensive if an initial location estimate is not
provided. It is often the case that the user must walk around and view several areas of a scene
before visual relocalization is able to take effect. We are optimistic that vision will continue
to improve, but there are certain environments like office cubicles, hospitals or parts of airport
terminals where even humans have trouble figuring out their location without exploring.

To overcome the limitations of a purely vision-based approach, we advocate using a local-
ization infrastructure of range-based beacons which do not drift over time, are robust to environ-
ment dynamics and are based in a global reference frame that is not device- or session-dependent.
Building on various approaches presented in this dissertation, we demonstrate multi-user persis-
tent augmented reality on mobile devices by fusing data from beacon ranges, magnetic field and
VIO to instantly and accurately relocalize mobile devices. Figure 1.3a illustrates the idea and
Figure 1.3b shows the architecture for enhancing mobile AR [105]. Here, devices share persis-
tent AR data through the cloud. This AR data is represented in an external fixed reference frame
defined by the beacons. Each device reads/writes the AR data from/to the cloud and locally rep-
resents it in its own AR reference frame. Each AR session assumes a reference frame (AR frame)
upon startup of an AR app, and the pose is locally tracked in this reference frame. In order to
convert AR data between the AR frame and the external fixed frame, each device continuously
estimates its transformation between its local AR frame and the external fixed reference frame
and applies this transformation on the objects.

Figure 1.3b shows the process for estimating and applying this transformation, by building
on various concepts introduced in this dissertation. We build and demonstrate this application
with ultrasonic beacons described in Section 2.1. First, we set up beacons using the placement
toolchain described in Section 3.6. The result of this process is the beacon map. As users walk
around the environment, the magnetic field is mapped using the process described in Section 6.2,
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Figure 1.3: Improving mobile augmented reality using range-based beacons
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(a) AR annotation of spaces (b) Find-a-friend application

Figure 1.4: Augmented reality demonstration applications

to generate the magnetic map by fusing beacon ranges, VIO and the magnetic field data. When
users initiate the AR app, we incorporate the concepts from the floor-plan aware solver, described
in Section 4.2, to initialize the location using beacon ranges. The orientation is acquired using
VIO and the magnetic field. Subsequently, as users move around, the location and orientation
are tracked by fusing VIO and beacon ranges. We estimate the transformation between the AR
frame and the beacon frame using the process described in Section 6.2. This transformation is
applied on the AR objects as they are transferred between the cloud and the AR API for scene
rendering and display. The system continues to update the magnetic field map and the beacon
map while updating the transformation in real-time.

Figure 6.11 demonstrates two persistent AR apps. In Figure 1.4a, two users are looking
at a virtual solar system that is stationary in the environment. This app is representative of
applications where indoor environments are annotated with AR content tied to physical locations.
Figure 1.4b shows a user seeing two other users in AR in real-time. The user’s device shows the
location of the other users in red and cyan color augmented points. This is representative of a
find-a-friend application. These apps present a proof-of-concept for using beacons integrated
with VIO to provide persistent AR on mobile devices.

In the future, our approach could easily be integrated with low-level visual relocalization to
support areas with sparse or no beacon coverage. Given a high-confidence location and orien-
tation, the search space for visual relocalization can be dramatically reduced and the tolerance
for matches can be relaxed. Though demonstrated on a mobile AR platform, this same approach
would easily apply to headsets or similar localization platforms that require full pose information.

1.5.2 Application 2: An infrastructure-free localization for firefighters

Tracking the location of firefighters and search and rescue teams is critical for both safety and
efficiency. Currently, firefighters often rely on either rope search or sectored sweep coverage
strategies that can be both dangerous and slow. Given the hostile nature of burning structures
and the time-critical nature of missions, we require a system that can track firefighters without
any pre-installed internal and limited external infrastructure, and without assuming knowledge
of the structures layout. For a system to be practically adopted at scale, it also needs to be
low-cost and extremely simple to configure and deploy.
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Figure 1.5: Architecture for infrastructure-free firefighter localization

To solve this problem, we propose an approach that combines time-of-flight Ultra-Wide Band
(UWB) ranging radios and inertial measurement units. The system architecture is shown in Fig-
ure 1.5. We envision a system consisting of a small number of external beacons present on
emergency service vehicles that drive up to the building perimeter and a small wearable unit
attached to each firefighter’s belt or air pack. Each external beacon would have a GPS receiver,
sub-GHz LoRa radio, UWB radio and air pressure sensors. The wearable unit on each firefighter
would have similar hardware with the addition of an IMU.

Next, we describe how the concepts introduced in this dissertation apply to the infrastructure-
free localization system. Since we cannot rely on pre-existing infrastructure in the building, the
beacons on the emergency vehicles act as a reference for localization. As firefighters exit the
vehicles and move towards the buildings, we begin to perform simultaneous localization of the
firefighters and mapping of the beacons by applying the concepts that we introduce in Section 5.4.
To aid in quicker convergence of the orientation, we use the magnetic field information and
rely on the compass outdoors to acquire a coarse orientation upon startup, as in Section 6.2.
As firefighters move into the building, we continue to track their location by combining the
UWB ranges and inertial sensor data by building on the concepts in Section 5.2. Over time,
by combining the inter-device ranges and the mobility data from sensors, the joint location of
firefighters over time form a virtual dense network; the location of the nodes of the network can
be solved by graph realization techniques. In the prototype system that we built, we (1) localize
the mobile devices by ranging to beacons, (2) relay this information in real-time to an external
console, representative of the safety chief’s display, (3) allow the safety chief to provide inputs
through a GUI on the location of hazards and (4) use augmented reality to overlay the hazard
information and the location of other mobile devices on each mobile device’s display. Figure 1.6
shows the snapshot of our prototype system. The display on the left shows the safety chief’s
interface. The red and blue dots are tracking the real-time position of two mobile devices. The
safety chief places fire hazards (shown in orange triangle), based on information conveyed by
a part of the team. This information is relayed in real-time to the mobile device (shown on the
right) and displayed in augmented reality to the rest of the team. In the future, we can build on
concepts in mobile network localization [115] and also leverage drones to expand the localization
coverage. We also envision that firefighters’ self-contained breathing apparatus (SCBA) face
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Figure 1.6: Snapshot of the prototype system for infrastructure-free firefighter localization sys-
tem

12



masks can be provisioned with a smart display that allows visual information such as the location
of other firefighters and the presence of hazards to be overlaid on the display. Being able to
precisely estimate location and orientation of all devices instantly in the same frame of reference
is key to enabling this application.

1.6 Organization of this dissertation
This dissertation is organized as follows. In Chapter 2, we describe two ranging platforms on
which we implement and evaluate our approaches. Then we ask the question, “Where should
one place the beacons?” This question is answered in Chapter 3, and we provide a toolchain
that system designers can use to experiment with beacon placement strategies. Then we answer
the question, “How should one estimate the location accurately and instantly?” In Chapter 4, we
present a solver for location acquisition. In Chapter 3 and Chapter 4, we do not consider user
mobility. In Chapter 5 and Chapter 6, we consider user mobility. In Chapter 5, we use mobility
to create a map of the floor plan and the beacons. We build on this in Chapter 6 to create a map
of spatially varying signals, in particular the magnetic field, which we then use for orientation
acquisition. We conclude with future directions in Chapter 7.
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Chapter 2

Range-Based Beacon Platforms

The methods presented in this dissertation are implemented and evaluated against two rang-
ing platforms: an ultrasonic ranging platform that we designed and an ultra-wideband (UWB)
ranging platform that is commercially available. The ultrasonic ranging platform localizes un-
modified phones and the UWB platform localizes other UWB tags.

2.1 Ultrasonic ranging platform

The ultrasonic platform performs ranging to unmodified phones and is elaborated on in [65, 66,
67, 104]. Figure 2.1 shows the system architecture and the hardware design of our beacons and
gateway board. The platform, shown on the left, is based on a multi-standard BLE and IEEE
802.15.4 SoC (TI CC2650) connected to a 192kHz audio codec (running at 48kHz), a MEMS
microphone (for inter-beacon ranging or for future uses like ultrasonic motion detection) and an
array of speakers connected to two Class D speaker amplifiers. The hardware can transmit two
arbitrary sound waveforms up to 80kHz from one to four speakers simultaneously. The gateway
board, shown on the right, contains similar hardware with the addition of a IEEE 802.15.4/BLE
power amplifier and an FTDI USB-to-serial interface for connecting with a computer. The bea-
con nodes are synchronized using IEEE 802.15.4 from the gateway devices and then broadcast
BLE packets that can be used to trigger normal Bluetooth proximity services on mobile phones,
as shown in Figure 2.1a. These wakeup signals can in turn begin decoding ultrasound for im-
proved accuracy. We adapt the signal and demodulation approach from [66] that utilized ultra-
sonic chirps that are just above human hearing range, but can still be detected by mobile devices
like smartphones, tablets and computers. Since upchirps and downchirps are primarily orthog-
onal, we can transmit both at the same time without interference. Each chirp in our system is
sized to be 110ms in length with 2.6ms between successive chirps. To support four sectors, we
can shift one pair of up/down transmissions in time with a neighboring beacon. Each beacon is
given a unique time slot that is 350ms in length to transmit its ranging signal. It is also worth
noting that the overlapping transmissions are not only orthogonally coded, but also transmitted
in opposite directions in the horizontal plane.
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Figure 2.1: Ultrasonic ranging: System architecture and platform design
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Figure 2.2: Achieving ToF ranging from TDoA by estimation of timing offset between target
device and beacons

2.1.1 Time synchronization

As seen in Figure 2.1a, the beacons are synchronized using 802.15.4 packets. However, the
phones are not capable of being synchronized with 802.15.4. With the beacons synchronized to
each other but not to the phone, we can perform localization using TDoA. However, if we recover
the clock from the network of beacon on the phone, we can perform ToF ranging which requires
one less beacon than TDoA. As is often the case with range-based systems, time synchronization
between beacons and the smartphone is challenging due to the timing uncertainties in the smart-
phone. To overcome this challenge and synchronize the phone to the beacons, we propose two
approaches below that allow us to recover the global clock on the device being tracked.

Approach 1: TDoA to ToF

In an early version of the system, we synchronized the phone to beacons by performing TDoA
localization when sufficient beacons were in LOS, then estimated the timing offset between the
beacons and phone, and used this timing offset to synchronize the phone to the beacons to sub-
sequently perform ToF ranging. This process is described below:

Figure 2.2 shows the layout of three transmitters and a receiver in 2D space, and their cor-
responding notions of time. We consider the receiver’s clock to be offset by Toffset from the
transmitter’s clock. Synchronization is achieved by estimating this offset. Typically this time
offset is not estimated, since the TDoA equations are used to directly estimate the position of
the receiver [56]. However, the time offset can be obtained easily once the position has been
estimated, as explained below.

(Xi, Yi) denotes the position of transmitter i for i = 1, 2, 3 and is assumed to be known.
The position of the receiver (x, y) is unknown. di is the distance between transmitter i and the
receiver and is given by:

di(x, y) =
√

(Xi − x)2 + (Yi − y)2
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The ToF of the audio signal from transmitter i to the receiver is given by:

TOFi =
di(x, y)

V

where V is the speed of sound.
The corresponding arrival time of the signal measured by the receiver is the TOAi, given by:

TOAi = TOFi + Toffset

TOAi =
di(x, y)

V
+ Toffset

The receiver needs to estimate Toffset given TOAi and (Xi, Yi) for i = 1, 2, 3. To estimate the
Toffset, we first estimate the position of the receiver. To estimate (x, y), we use the standard
multilateration technique [56] by eliminating Toffset and arrive at the TDoA equations. We then
find the (x, y) that minimizes the sum of squares of error (ξ) in TDoA.

Measured TDOAij =TOAi − TOAj

True TDOAij =
di(x, y)− dj(x, y)

V

ξTDOAij
(x, y) =[TOAi − TOAj −

di(x, y)− dj(x, y)

V
]2

(x̂, ŷ) = argmin
x,y

∑
(i,j)

1≤j≤N
j 6=i

ξTDOAij
(x, y)

We next estimate Toffset from (x̂, ŷ) and the TOA by:

ˆToffset =
1

3

( 3∑
i=1

(
TOAi −

di(x̂, ŷ)

V

))
In this manner, as part of the TDoA calculation, it is possible to estimate the instant when

each signal was originally transmitted, and we can use this to synchronize the audio stream
with respect to global time. This can then be used as a reference for application-level time-
stamping. Time-stamping of audio events based on their position in a buffer completely removes
any sources of delay from the operating system or networking stack. Given the relatively small
amount of jitter seen when sampling audio, it also stands as a reasonable alternative for synchro-
nizing other events, e.g., to perform cooperative ranging between two mobile phones.

Approach 2: BLE-based time synchronization

In the second approach, we do not rely on TDoA-based positioning at startup. Instead, the
system supports ToF upon startup. We use controlled BLE advertisement packet arrival timing
to tightly synchronize between an application running on a smartphone and beacons. We design
a software Phase Loop Lock (PLL) that is able to recover the clock from our beacons after just
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(a) UWB beacon (b) UWB tag with tablet

Figure 2.3: UWB platform based on Decawave used for evaluation

a few cycles [104]. Using this approach, the resulting error during the steady state of our clock
synchronization scheme is well under 1ms, and 96% is within [−200, 200]µs. According to
data from [67], the clocks on iPhones are stable enough that they can remain synchronized to
below one millisecond for tens of minutes. We use this platform for evaluating the proposed
algorithms and for demonstrating the multi-user persistent mobile augmented reality system and
applications.

We use this platform for the models used in beacon placement in Chapter 3, for evaluating
the location acquisition in Chapter 4, for evaluating the floor plan mapping in Chapter 5 and for
building a prototype of the multi-user persistent augmented reality applications presented earlier
in Chapter 1.

2.2 Ultra-wideband (UWB) platform
We built a prototype ToF RF ranging system using Decawave UWB radios. In contrast to acoustic
ranging, RF signals penetrate surfaces more easily, representing another common signal prop-
agation model. Decawave currently has a small UWB and BLE module [6] that can be easily
attached to phones in order to range with UWB and provide position information over Bluetooth.
In our prototype, we use a DWM1000 module connected to a Raspberry Pi Zero W shown in
Figure 2.3a. The UWB hardware is identical for beacons and tags. For the mobile receiver, we
stuck a UWB tag to a smartphone/tablet shown in Figure 2.3b. In our implementation, we used
three-way ranging between beacons and tags. For debugging and simplicity, the beacon sensor
data and the VIO data from the mobile devices are published to a MQTT topic. The solver
subscribes to this topic and estimates the location.

We use this platform for evaluating the beacon mapping in Chapter 5, the pose acquisition in
Chapter 6 and for building a prototype of the infrastructure-free localization system for firefight-
ers presented earlier in Chapter 1.
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Chapter 3

Beacon Placement

In this chapter, we answer the question - For a range-based localization system, given the floor
plan, where should the beacons be placed? [103]

3.1 Introduction

Beacon placement in the real world faces the conflicting objectives of reducing the number of
beacons (for cost reduction) and increasing system coverage, accuracy and resilience. Current
methods to deploy beacons in order to ensure comprehensive localization coverage either require
domain experts who leverage intuition and heuristics, or over-provision indoor spaces with more
beacons than required. Minimizing the number of beacons is particularly important as these sys-
tems transition from small deployments, mainly used for demonstration purposes, to commercial
ones across large real-world spaces such as airports, museums, malls and industrial buildings. In
these environments, a systematic beacon placement methodology will have a significant impact
in terms of cost savings, thus facilitating adoption of emerging range-based localization tech-
nologies. In this chapter, we aim to examine the beacon placement problem, with a focus on
practical implications while optimizing for coverage and beacon count.

First, we attempt to reduce the number of beacons. Existing approaches for trilateration
require three or more beacons (in 2D) to determine a unique location solution. However, it
becomes expensive to provision all regions in a building with three or more beacons. To reduce
the beacons, our key insight is that it is possible to compute a unique location estimate without
ambiguity with only two beacons by leveraging prior knowledge of the map and a model of the
beacon coverage. To translate this idea to a beacon placement strategy, first we describe a way to
compute whether a location is Uniquely Localizable by a beacon configuration. Then we define
a new metric that quantifies the beacon configuration quality based on the Unique Localization
coverage it provides for a floor plan. With this basis, we design a beacon placement strategy that
aims to minimize the number of beacons required, while maximizing the localization coverage.

Next, we quantify the localization accuracy provided by a particular beacon placement. For
this, we adopt the Geometric Dilution of Precision (GDOP) metric from the GPS literature.
GDOP, a unitless quantity, is an analytical function of the geometry between the beacons and the
target. It bounds the location accuracy attainable based on the geometry of the satellites [81].
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While we could adopt the GDOP metric from outdoors to indoors, there are differences due to
the symmetric deployment of satellites around the earth and the rather asymmetric deployment
required of beacons indoors due to barriers and signal attenuation through walls. As a result,
in low beacon density areas indoors, multiple ambiguous solutions produce errors, which are
unfortunately not reflected by the GDOP. Further, under certain poor beacon geometries, the
standard GDOP metric can grow towards infinity, making it difficult to incorporate it to quan-
titatively compare beacon configurations. To overcome these problems, we define a modified
indoor GDOP metric that first incorporates whether a location is Uniquely Localizable and then
computes the Cumulative Distribution Function of the indoor GDOP over the regions that are
localizable. This directly allows us to compare the localization quality across beacon configura-
tions. The localization quality is an indication of the beacon configuration quality. This guides
us to design a beacon placement strategy that aims to minimize the number of beacons required,
while maximizing the localization accuracy in addition to coverage.

We then integrate these metrics and insights into a beacon placement algorithm. The algo-
rithm uses the coverage of candidate beacon locations to segment the floor plan into disjoint
zones, each of which is covered by a unique candidate set. Then, it iteratively selects a beacon
among the ones that cover the largest unlocalized zone. The selection criteria is greedy; the bea-
con that maximizes the improvement in the beacon configuration quality is selected. The beacon
configuration quality can be specified by the system designer to be based on either coverage or
accuracy.

We also have to consider several practical factors while solving this problem. First, bea-
con coverage depends on the physical technologies, which vary in their maximum range and
signal permeability through walls. For instance, acoustic/ultrasonic signals are confined to
walls, while RF signals exhibit high penetration. Second, physical factors constrain the de-
ployment. For instance, one may prefer to place beacons with convenient access to power out-
lets or where they do not disrupt the aesthetics of the space. Third, indoor spaces have rich
semantics that lead to different localization accuracy requirement across different areas. For
instance, room-level accuracy might be sufficient in certain areas, while sub-meter accuracy
within a room might be required for audio guides in museums. To accommodate these practi-
cal constraints, we designed a MATLAB-based toolchain where users can provide a floor plan
and specify the beacon range and potential locations to place beacons. We have implemented
the beacon placement algorithms in the toolchain. The toolchain is open source and available at
https://github.com/WiseLabCMU/BeaconPlacementToolchain.git.

This chapter is organized as follows. In Section 3.2, we describe the related work in beacon
placement. In Section 3.3, we formulate the beacon placement problem and describe the model
and our assumptions. In Section 3.4, we propose a method to integrate the floor plan informa-
tion with beacon coverage. We introduce our approach of localizing with two beacons and the
concept of unique localizability in Section 3.4.2. In Section 3.5, we build on this to design an
indoor-GDOP metric that accounts for localization accuracy in addition to coverage. We incor-
porate these metrics to design a beacon placement algorithm that we describe in Section 3.6.
Finally, in Section 3.7, we illustrate the MATLAB-based toolchain which allows users to specify
deployment inputs and suggests beacon locations based on the proposed algorithms. We present
the results of the beacon placement approaches in Section 3.8.
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3.2 Related work
In this section, we first discuss prior work in beacon placement that ensures coverage across
all regions in a building, and then discuss prior work in beacon placement that accounts for
localization accuracy.

Beacon placement for coverage

Mathematically, the problem of beacon selection for unique localization is closely related to
the classical Art Gallery problem in computational geometry [90]. The goal of the Art Gallery
problem is to find the minimal set of guards such that every region in a floor plan is covered
by at least one guard. The Art Gallery problem is NP-hard even for simple polygons [69].
For any simple polygon P with n vertices, it has been proven that bn/3c guards are always
sufficient [27] and sometimes necessary. For a polygon P with h holes, it was shown that P can
be guarded with dn+h

3
e guards [20, 50]. This problem has been proved to be APX-hard [36],

implying that it is unlikely that any approximation ratio better than some fixed constant can be
found. In [43], it is shown that a logarithmic approximation may be achieved by discretizing the
input polygon into convex subregions. Also related to our work is the k-coverage set problem
where the goal is to find the minimum set that covers all the points at least k times. The k-
coverage problem is NP-hard as well, but several approximation algorithms have been proposed
for this class of problems. Cormen [30] applied a greedy approach for the k-coverage problem
with a O(k log n)-approximation solution, where n is the number of points. The ε-net technique
was introduced for this problem when the sets have constant VC-dimensions and was shown to
achieve approximation factor O(log OPT), where OPT is the optimal solution.

Our problem is not the Art Gallery problem or the k-coverage problem, because each point
in the domain has to be Uniquely Localized, which can be achieved by two or three beacons,
depending on geometry.

Beacon placement for localization

In order to find beacon configurations that minimize the localization error at a given target lo-
cation, several authors have studied optimal beacon geometries that minimize the Cramér-Rao
bound (CRB) [57] or the GDOP [94, 121]. For N ≥ 3 beacons, optimal placement can be ob-
tained when the adjacent beacons subtend an angle of 2π

N
or π

N
about the target, and for N = 2

beacons, optimal placement is when the two beacons subtend an angle of π
2

about the target
[18, 113].

Though the optimal placement for a single target is well understood, the optimal placement
for multiple target locations, a target trace and a target area for range-only systems are still open
problems. [128] shows that the generalized sensor placement problem is at least as hard as
the k-center problem, which is NP-complete. They present a solution based on integer linear
programming for a triangulation-based system, but the complexity for trilateration is similar.
Due to the complexity of the problem, most proposed solutions involve designing heuristics
and utilizing optimization techniques. [13] explores computational-geometry-based heuristics
for determining the location of beacons given a predefined trace of a robot by defining a utility
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metric that is a function of the number of beacons in range and the convex hull of beacons. The
quality of a configuration is evaluated using the integral of the utility function. Our work is
similar in the respect that we also account for the coverage of the beacons, but differs since the
metric they propose is purely based on coverage and not accuracy. [142] proposes a heuristic
for Quality of Trilateration that is based on the probability that a location estimate is within a
given radius of the true location. However, this approach is for a network of nodes where a
node localizes itself with respect to three other nodes given a prior distribution on the expected
inter-node distances. [70] and [110] propose beacon placement algorithms based on their own
metrics to quantify the quality of a beacon placement, which is a function of the GDOP over the
desired localization area and ratio of the area which cannot be localized. [70] classifies areas
that are localizable based on whether the GDOP is above or below a threshold and use a genetic
algorithm approach for placement. [110] considers the average GDOP over the areas that are
localizable and implements a meta-heuristic optimization strategy. [62] looks at the problem of
beacon placement while localizing with range-based beacons with a limited field of view. They
propose a heuristic based on the GDOP being below a certain threshold and propose a placement
algorithm for the same, but they consider only a single room case wherein the beacons are placed
on the periphery of the room, avoiding any ambiguity in solution. These approaches are similar
to our work, but do not consider the minimal beacon count placement for areas and require three
or more beacons to provide coverage.

3.3 Problem formulation

The beacon placement problem is as follows: Given a floor plan and a set of candidate beacons,
our goal is to select the smallest beacon configuration that can localize all points in a floor plan.

3.3.1 Definitions

We define the following terms:
Definition 3.1. (Floor plan X): The floor plan represents the regions or points to be localized.
We represent the floor plan as a polygon. Any permanent walls and obstructions inside are
modeled as holes in the polygon. We discretize the polygon to a set of points xi, where xi
represents the (x, y) coordinates of the ith point.

X = {xi|1 ≤ i ≤ NX} (3.1)

Definition 3.2. (Candidate beacons P ): The set of locations where we can place a beacon are
called the candidate beacons. We represent this set as P . Each element pi represents the (x, y)
coordinates of the candidate location. The beacons are placed inside the floor plan.

P = {pi|1 ≤ i ≤ NP , pi ∈ X,NP ≤ NX} (3.2)
P ⊆ X (3.3)
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Definition 3.3. (Beacon configuration B): Any subset of candidate beacons form a beacon
configuration B.

B = {bi, |1 ≤ i ≤ NB, NB ≤ NP} (3.4)
B ⊆ P (3.5)

(3.6)

The problem of localizing all regions is solvable only if the set P localizes all X . For example,
if we place beacons at all candidate locations, all floor plan points are localized. When this
condition is meet, we can have several possible configurations that localize the entire floor plan.
Our goal is to find a minimum setB such that all points inX are localized by the beacons located
at B.

3.4 Coverage-aware beacon placement

Key to our approach is leveraging the beacon coverage. Below, we define the terms associated
with coverage. The coverage map is the mapping between beacons and the locations covered by
the beacons, or vice versa.
Definition 3.4. Locations in coverage of a beacon CB(b), b ∈ B: Set of all locations in the
floor plan that are covered by the beacon b.

CB(b) ⊆ X (3.7)

Definition 3.5. Beacons in coverage of a location CX(x), x ∈ X: The individual beacon’s
coverages are combined to get the set of beacons in coverage of a point.

CX(x) ⊆ B (3.8)

Definition 3.6. Zone zi : Given all points in the floor plan X and the set of candidate locations
B with the coverage map, the floor plan gets partitioned into disjoint regions such that all points
in the same regions are covered by exactly the same set of beacons. We call these disjoint regions
“zones.”

Z = z1 ∪ z2 ∪ · · · ∪ zNZ
(3.9)

∀zi, zj, i 6= j, zi ∩ zj = ∅ (3.10)
zi = {xi ∈ X|CX(xi) = CX(xj), xj ∈ X} (3.11)
CZ(zi) = CX(xi), xi ∈ zi (3.12)

Now that we have defined coverage, next we describe how to generate the coverage models.
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(a) Ray tracing

CB(b1) b1

(b) Ray tracing with
limited range

CB(b1)

b1

(c) Unit disk

CB(b1) b1

(d) Finite penetration
through walls

Figure 3.1: Types of beacon coverage models

3.4.1 Models and assumptions

In this section, we elaborate on the models and assumptions of our proposed placement technique
that leverages beacon coverage models and knowledge of the floor plan. First, we assume that
the floor plan impacts and determines the beacon coverage. We elaborate on this in Section 3.4.1.
Among the possible coverage types, we assume the ray-tracing coverage for our analysis. This
is elaborated on in Section 3.4.1. We also make assumptions on the LOS noise model while
incorporating localization accuracy into the placement algorithm. The experimental validation
of the LOS noise model is discussed in Section 3.4.1. Finally, in Section 3.4.1, we discuss the
validity of our assumption of a 2D world rather than 3D.

Floor-plan based beacon coverage

Beacon coverage is determined by the interaction of the signals from the beacons with the floor
plan. Figure 3.3 shows four types of coverage models. Figure 3.1a shows a ray tracing cover-
age model common to acoustic/ultrasonic ranging systems. Here, the signal does not penetrate
through walls. This model can be extended to RF-ranging systems where low-level signal prop-
erties can distinguish between a direct LOS signal and a NLOS signal through a wall. As a
result, we can detect and eliminate the NLOS signals and hence reduce the signal propagation to
a ray-tracing model. Figure 3.1b shows a ray tracing coverage model with limited beacon range.
Typically the ranging technology would be designed to report ranges only if the SNR is above a
certain threshold. This results in a limited beacon range in large spaces. Figure 3.1c shows an
arbitrary coverage model where the range reduces when the signal penetrates through walls, as
is common for several RF-based technologies. However, modeling this type of coverage given a
floor plan is hard, as the signal penetration depends on the properties of the barriers. Figure 3.1d
shows a unit disk coverage model that is commonly used for analysis, but in practice it is rare
to have this type of coverage. Contrary to the other models, this model assumes that the signal
penetration is unaltered through walls. In our implementation, we assume the ray tracing model
with and without limited range (Figure 3.1a-Figure 3.1b).
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Figure 3.2: Experimental characterization of coverage and range error for ultrasonic beacons

Ray tracing model

The ray tracing beacon coverage model assumes that floor plan limits beacon coverage. As a
result, out-of-coverage locations do not receive range measurements from beacons, and loca-
tions in coverage receive measurements with low error. In reality, while the system is in use,
we receive non-line-of-sight (NLOS) signals (due to signals reflecting off walls or penetrating
through walls). We cope with NLOS signals while estimating location. In Chapter 4, we dis-
cuss a location solver that can localize using range measurements from low-density LOS and
high-density NLOS beacons, with knowledge of the floor plan. With a high enough density of
LOS, we can cope with NLOS without using the floor plan by checking for consistency among
the LOS measurements [72, 137]. When we have access to other sources of information, such
as the low-level properties of the physical signal, other schemes can be used for detecting NLOS
range measurements, which we elaborate on in Section 4.1.2. Our ray tracing model is motivated
by the fact that in practice the LOS signals are predictable, but the NLOS signal paths are not
predictable. We recommend designing the beacon placement for LOS coverage and coping with
NLOS signals while estimating location.
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LOS ranging noise model

The ray-tracing coverage model determines the regions in and out of the coverage of beacons.
In an ideal world, locations in coverage of a beacon would receive range measurements with no
error. In reality, range measurements are noisy. For our analysis, we assume that LOS range
measurements have zero mean constant variance additive Gaussian noise, and that NLOS range
measurements have an additive noise that is positively biased (expected value higher than zero).
Figure 3.2c and Figure 3.2d show the distribution of the LOS and NLOS ranges of an ultrasonic
ranging system [66] on two floor plans, for 5-6 beacons with at least 500 range measurements
taken uniformly across all regions in the floor plan. We observe that when the beacons are in
LOS, the range measurements have nearly zero bias and almost constant variance. There is no
appreciable change in variance of the range measurements with distance up to 10m. This is
likely due to the SNR being sufficiently high that the distance from the beacon does not affect
the ranging accuracy.

Two-dimensional beacon placement

We solve the beacon placement problem in 2D, but in practice, we deploy beacons in 3D space.
The natural question that arises is, “Does the 2D beacon placement strategy apply for a 3D
deployment?” The proposed approach and concepts extend from 2D to 3D space, allowing the
same strategy and tools to be applied for 3D beacon placement. In our experience of deploying
these systems in the real world, we see that indoor spaces typically vary in the x-y plane rather
than the z plane. If we deploy beacons close to the ceiling and the target device is held by a
user nominally around 1m from ground, a 2D model holds as most temporary obstructions in the
environment, e.g., chairs and tables, would not impact the direct signal between the beacon and
target device. However, the 2D model assumption would not hold for a 3D deployment when
beacons are deployed at floor level and blocked by objects, or when beacons are deployed at
ceiling level and tall obstructions such as cubicle partitions block the target device held from
the beacon. For practical purposes, the beacons can be deployed at ceiling level in most public
spaces such as airports, museums and malls, and the 2D coverage will be applicable. The choice
of whether to solve for beacon placement in 3D or to solve in 2D and deploy beacons at the
ceiling should be made based on whether the end-application requires 2D positioning accuracy
or 3D positioning accuracy. For instance, if accuracy in the z-axis is important, the beacons
should be well spread out along the z-axis to improve the diversity. However, for applications
such as wayfinding indoors, where z accuracy is not critical, a 2D beacon placement approach
will suffice.

3.4.2 Unique localization with reduced beacons

Consider the two-beacon scenario in Figure 3.3a, with beacons b1 and b2, with the receiver’s true
location as a. The location a′ also receives the same range measurements and thus we cannot
disambiguate between a and a′. However, by making use of beacon coverage information, it is
possible to disambiguate between the two locations under the condition that the set of beacons
providing coverage is different for a and a′. Applying the coverage model of the beacons across
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Figure 3.3: Localizing with two beacons based on beacon coverage. (a) Localization ambiguity
with two beacons (b) Ideal ray-tracing: Infinite range, permeability=0 (c) Unit disk coverage:
Fixed finite range, permeability=1 (d) Arbitrary coverage: 0<Permeability<1
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Class Color	code Coverage	 Uniquely	
Localizable

1 #CX(x)	≥ 3 1
2 #CX(x)	= 2,	CX(x’)	= {} 1
3 #CX(x)	= 2,	CX(x’) ≠	CX(x), CX(x’)	≠	{} 1
4 #CX(x)	= 2,	CX(x’)	= CX(x) 0
5 #CX(x)	= 1 0
6 #CX(x)	= 0 0

Table 3.1: Legend for different coverage classes based on number of beacons in range and unique
localization

the floor plan partitions the floor plan into distinct zones, each covered by a unique set of beacons,
shown in Figure 3.3. Figure 3.3b shows ideal ray-tracing coverage. In Figure 3.3b(i), with the
ray-tracing coverage model, we see that the zone inside the floor plan has CZ = {b1, b2} and the
zone outside the floor plan has CZ = {}. If the true location is a and the ranges from b1 and b2
are received, we can disambiguate the location a from a′, since a′ cannot receive measurements
from b1 and b2. Effectively, a and a′ are located in different zones. In Figure 3.3b(ii), both
zones z1 and z2 are covered by b1 and b2, and in addition, z2 is covered by b3. Here, though
both a and a′ receive the same ranges from b1 and b2, we can disambiguate them since a′ would
receive a range measurement from b3 as well. In both Figure 3.3c (with unit disk coverage) and
Figure 3.3d (with arbitrary coverage), we can resolve the location a from a′, and d from d′, since
the two ambiguous locations have a different beacon coverage, i.e., they are located in different
zones. In this manner, if the localization solver incorporates the coverage information of the
beacons, we can localize using two beacons, instead of three. Though a simple concept, this is
the key insight that results in an approximately 33% reduction in the number of beacons required
across a building floor plan by using our approach for beacon placement.
Definition 3.7. Uniquely Localizable: We define a location to be Uniquely Localizable if
in the absence of noise, it can be localized without any ambiguity, when range measurements
are received from the beacons that provide coverage to the location. We define the function
UL(x,CX(x)) ∈ {0, 1}, which has a binary output, as:

UL(x,CX(x)) =


1,#CX(x) ≥ 3

1,#CX(x) = 2, CX(x) 6= CX(x′)

0,#CX(x) = 2, CX(x) = CX(x′)

0,#CX(x) ≤ 1

where #CX denotes the cardinality of the set CX and x′ is the reflection of x about the line
joining the two beacons in the set CX(x). Note that x′ is only defined when #CX(x) = 2. We
subsequently use the notation UL(x) instead of UL(x,CX(x)).

Table 3.1 shows the color coding for the beacon coverage that we have used in Figure 3.4.
The fourth column shows the value of the binary UL function. Note that the algorithm does not
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distinguish between Class 2 and 3 points, but they are shown here for visual purposes. Class
2 points have the ambiguous location outside of the floor plan, and Class 3 points have the
ambiguous location inside but covered by different beacons. We see from the second column
of Figure 3.4a that configurations 1, 2, 4 and 5 have all locations Uniquely Localizable either
due to coverage by three beacons, or in the case of two beacons, the ambiguous location is
outside of the floor plan. In the case of Figure 3.4b, configuration 3 has all locations Uniquely
Localizable. In ideal scenarios, any of the configurations that Uniquely Localize the entire floor
plan would provide exact location estimates, and the configurations with fewer beacons then
would naturally be desirable. However, in realistic scenarios, these configurations would not all
provide the same location accuracy across the floor plan. When range measurements are noisy,
the location accuracy is dependent on the error in ranging as well as geometry between beacons
and the receiver, as elaborated on in the next section.

3.5 Incorporating localization accuracy with Geometric Dilu-
tion of Precision (GDOP)

A useful guideline to quantify the location accuracy is the Cramér-Rao Bound (CRB), the lower
bound on the variance in the location that can be achieved by an unbiased location estimator [57].
The results presented in this section are derived from [121], [94] and [93]. For 2D trilateration
systems, it has been shown in [121] that with an unbiased estimator, the CRLB variance of the
positional error σ2(x) at location x, as defined by σ2(x) = σ2

x(x) + σ2
y(x) is given by:

σ2(x) =

∑Nc

k=1 σ
−2
r,i∑Nc−1

k=1

∑Nc
j=k+1 σ

−2
r,kσ

−2
r,jA

2
kj

Akj = |sin(θk − θj)|

where σ2
r,k is the variance in range measurement of beacon k, Nc is the number of beacons in

CX(x) and θk is the angle between bk and x.
Under the assumption that the range measurements are independent and have zero-mean

additive Gaussian noise with constant variance σ2
r , this reduces to:

σ(x) = σr ×
√

Nc∑Nc−1
k=1

∑Nc

j=k+1Akj

σ(x) = σr ×GDOP (x)

The GDOP [81] is a function of the angles between the target x and beacons CX(x), and is
given by :

GDOP (x) =

√
Nb∑Nb−1

k=1

∑Nc

j=k+1Akj
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The CRB is directly proportional to the GDOP, and as seen in Section 3.2, several authors
have used GDOP to quantify the location accuracy. We are using the notation GDOP (x) instead
of GDOP (x,CX(x)). The third column GDOP in Figure 3.4 shows a GDOP map of six repre-
sentative floor plans. The GDOP is the worst (highest) along the line joining two beacons, and is
in general better (lower) when the regions are covered by more beacons. As a numeric example,
for a ranging system with standard deviation of the range measurements of 10cm, if two beacons
subtend an angle of 90◦ at a target location, the resulting GDOP is 1.414 and the 2D location
estimate would have a standard deviation of 14.14cm.

3.5.1 A modified GDOP metric for indoors
We now formalize our modified GDOP metric to use Unique Localizability, which is given by:

GDOPUL(x) =

{
GDOP (x), UL(x) = 1

NaN, UL(x) = 0

The fourth column of Figure 3.4 shows the GDOPUL metric. For most configurations, it
is the same as the GDOP metric. But for configuration 3 of Figure 3.4a and configuration 2 of
Figure 3.4b, where there exist Class 4 locations with the two-beacon ambiguity problem, the
GDOPUL is not defined where Unique Localization cannot be achieved. These cases are now
numerically handled to avoid providing a confidence on the location estimate when ambiguity
exists in the solution.

3.5.2 Quality of a beacon configuration (Q)
With our modified GDOP metric, we can now compare beacon configurations like those found in
Figure 3.4a and Figure 3.4b. We utilize this in our toolchain which has two modes of operation,
where it can either optimize for Unique Localizability or optimize for both Unique Localizability
and GDOP.

Case 1: UL-based metric QUL: In this case, we attempt to place beacons such that all
regions in the floor plan are Uniquely Localizable without considering the localization accu-
racy. This could be required in an ideal scenario with no ranging noise where the geometry of
the beacons does not affect the localization accuracy, or when the location estimate is averaged
over a large number of measurements, resulting in low variance. We define the quality of the bea-
con configurationB across the floor planX , as the percentage of area that is Uniquely Localized.

QUL(X,B) =

∑Nx

i=1 UL(xi)

#X
× 100

where UL(xi) is the binary function that indicates if a location xi is Uniquely Localizable when
covered by the beacons CX(xi), as defined in Section 3.4, and #X is the cardinality of set X or
number of points in the floor plan.

In Figure 3.4a, QUL is 100% for configurations 1, 2, 4 and 5 and 28.7% for configuration 3.
In Figure 3.4b, configurations 1, 2 and 3 have QUL as 74.6%, 48.3% and 100% respectively.

Case 2: UL and GDOP-based metric QGDOPUL: TheGDOPUL metric in Section 3.5.1 is
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Figure 3.5: Comparing configurations using quality of beacon configuration QGDOPUL for the
configurations in Figure 3.4

defined for a single location. In order to quantify the quality of the beacon configuration across
all locations in the floor plan, we use a heuristic based on the Cumulative Distribution Function
(CDF) of the GDOPUL curve across all locations, as shown in Figure 3.5. For instance, to
compare configuration 1 and configuration 2 of the rectangular room, where both configurations
have three beacons, we see from Figure 3.5a that 60% of the floor plan has a GDOP less than
1.7 under configuration 1, and a GDOP less than 3.0 under configuration 2. Alternately, 100%
of the floor plan has a GDOP under 3.0 in configuration 1 but only 60% of the floor plan has a
GDOP less than 3.0 under configuration 2. Hence configuration 1 is better, since it has a lower
overall GDOP than configuration 2. For configuration 3, where a large part of the floor plan is
not Uniquely Localizable, we can see from the CDF plot that only around 27% of the floor plan
is Uniquely Localized. We can see from these curves that configuration 1 is better than config-
uration 2 which is better than configuration 3. However, it is not obvious how configuration 4
and configuration 5 compare since the CDF curves intersect. If the goal is to have 60% of the
floor plan with lower GDOP, configuration 5 is better, but if the goal is to have 90% of the floor
plan with lower GDOP, then configuration 4 is better. In our toolchain, the designer can specify
the requirement, but by default we define QGDOPUL as the area under the GDOPUL CDF curve.
To compute the area, we need to provide an upper limit on the GDOP. For the plots shown, the
upper limit is conservatively chosen to be 8.0, which corresponds to an angle of 1.8◦ between
two beacons and a target. This is equivalent to considering the regions with GDOP worse than
8.0 to not be localizable. For the L-shaped room in Figure 3.4b, we see from Figure 3.5b that
among the configurations with two beacons, configuration 1 is better than configuration 2 even
though configuration 2 has better coverage, and configuration 3 with three beacons outperforms
both these configurations. The same metric can be used even if the target area is a predefined
path or a finite set of locations across the floor plan. In these cases, the CDF would be computed
only over the desired target locations.
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Figure 3.6: Step-by-step results of the beacon placement process (Legend for coverage plots is
in Table 3.1)
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3.6 Beacon placement algorithm
In this section, we present a beacon placement algorithm based on the concepts described in
Section 3.4 and Section 3.5. The inputs provided are the floor plan, the coverage model of the
beacons and the set of candidate beacon locations. The floor plan and obstacles are represented as
multiple polygons. The implementation is illustrated by Figure 3.6 for a floor plan that represents
two rooms connected by a corridor. Figure 3.6(a) shows the floor plan with candidate beacon
locations shown by black circles. We also designed a tool where the user can draw floor plans
and mark candidate beacon locations to aid in prototyping.

The algorithm has two modes of operation, based on whether we want to optimize based
on QUL or QGDOPUL . Our tool provides several design options to the user, such as placing
beacons until a finite number of beacons are placed or placing beacons until some stop criteria is
satisfied. This stop criteria could be in the form of accuracy requirements across the floor plan,
for instance GDOP ≤ 4.0 in 90% of the region. The stop criteria we have used for both modes
of the algorithm is achieving Unique Localization across the entire floor plan. We describe the
algorithm below.
Step 1: Initialization
• Discretize the floor plan to generate X .
• Apply the beacon coverage model for each candidate location bj to generate the coverage

of the beacon configuration.
• Partition the floor planX into zones zi such that all xi that have the same beacon coverage,
CX(xi), belong to one zone zi.

• For each zone, assign:

Localization Status = 0

Size = number of points in the zone
• Initialize Selected Beacons = {}

Figure 3.6(b) shows the zones generated by ideal ray-tracing coverage with five of the largest
zones labeled.
Repeat Steps 2-4 until Localization Status of all zones=1. In every iteration, one beacon is
placed.
Step 2: Select zone
Among the zones with Localization Status = 0, select the zone with largest Size
Step 3: Select subset of candidate locations
Among all candidate beacon locations P , select the subset CX(xi), where xi is any point in the
zone. Note that all points in the zone are covered by the same candidates.
Step 4: Among the subset of candidates, select the candidate that maximizes the criteria
given below:
• The selection criteria depends on whether we are optimizing for UL orGDOPUL. Further,

since these metrics are not defined for single-beacon cases, we have a different criteria
when Nb, the number of beacons already covering the zone, is zero.

(1) UL and Nb=0: Select the candidate with maximum coverage.
(2) GDOPUL and Nb=0: In order to provide good geometry, select the candidate with the max-
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imum average distance from other beacons for this zone, that are present in Selected Beacons.
(3) UL and Nb 6= 0: Select the candidate that maximizes the quality of beacon configuration
QUL or the percentage of area Uniquely Localized. To compute this, use the beacons in Selected
Beacons.
(4) GDOPUL and Nb 6= 0: Select the candidate that maximizes the quality of beacon config-
uration QGDOPUL or the area under the CDF of the GDOPUL curve. To compute this, use the
beacons in Selected Beacons.
• Add selected candidate beacon location to the set Selected Beacons.

Figure 3.6(c) shows the placement of beacons in the UL mode with the coverage classes shown,
and Figure 3.6(d) shows the placement of beacons in the GDOPUL mode with the GDOPUL

values shown. As can be seen, the selection of the first beacon (to localize the zone labeled 1 in
Figure 3.6(b)) and subsequent beacons is different for both the algorithms.
Step 5: Re-evaluate zones
• It is possible that a zone is partially localized by the ambiguity being resolved when the

new beacon is placed. In that case, split it into two zones before the next step. Assign Size
and Localization Status for the new zones.

• For all zones: If all the points in the zone satisfy the stop criteria (achieving Unique Lo-
calizability), assign Localization Status of zone=1.

As we can see from Figure 3.6(c), the entire floor plan is localized with only four beacons
while optimizing for Unique Localization. However, the beacons are clustered close together
and the GDOP of the final beacon placement, shown in Figure 3.6(e), is poor. On the other hand,
Figure 3.6(d) shows the placement while optimizing for GDOP as well, and places two additional
beacons. The final configuration has a good GDOP and coverage across the floor plan, as seen
in Figure 3.6(d) and Figure 3.6(f) respectively. If the design requirement was to only place four
beacons, the first four beacons would have been placed, with the corridor area not localizable but
with good GDOP in the two rooms.

3.7 Beacon placement prototyping toolchain
We implemented the proposed algorithms in a MATLAB-based toolchain. We considered differ-
ent approaches to generate floor plans, select initial location candidates and implement beacon
placement algorithms.
(1) Floor plan generation: We implemented these types of floor plans:
• User drawn floor plan through our GUI on MATLAB
• Randomly generated simple polygon with user-defined number of vertices
• A pre-defined floor plan. This option is for providing real-world floor plans as inputs.

(2) Candidate beacons: The toolchain allows the user to select parameters of the candidate
beacons. The first parameter is the beacon range. The range can be infinite (Inf ), in which case
it is only limited by the floor plan boundaries, or can be finite, specified in meters. The second
parameter is the beacon location. The beacon locations can be vertices or interior points. The
interior points can further be randomly generated or user-specified through the MATLAB GUI.
(3) Beacon placement algorithms: We implemented these placement schemes in the toolchain:
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Floor Plan Beacon Placement Method
3-beacon
Minimal

UL
Minimal

UL
Algorithm

GDOPUL

Algorithm
Rectangle 3 2 2 2
L-shape 4 3 3 3
Spokes 5 2 2 2
Two-rooms 6 4 4 6
Multi-room 9 6 8 8
Multi-corridor 7 5 5 5
Map 1 11 8 8 9
Map 2 12 8 9 10
Map 3 9 7 7 8
Map 4 21 15 16 16

Table 3.2: Performance of proposed algorithms in terms of number of beacons placed

• User can select beacon locations through GUI
• UL Algorithm: Proposed approach for coverage optimization.
• GDOPUL Algorithm: Proposed approach for accuracy optimization.
• UL minimal: This is the optimal that our algorithm aims to achieve. We obtain this by

searching through all possible solutions.
• 3-beacon minimal: Optimal solution where any points in the domain are covered by at

least three beacons. This represents the best-case scenario with typical state-of-the-art
placement methodology.

3.8 Evaluation

We evaluated our beacon placement algorithm in simulations on 10 floor plans, which are listed
in Table 3.2. The first five are smaller floor plans constructed to represent different geometries
that could occur within larger floor plans. The next four are real-world floor plans in buildings
on our university campus, and the last is a floor plan drawn using our toolchain. The Rectangle
and L-shape floor plans are shown in Figure 3.4, the Two-rooms floor plan is shown in Figure 3.6
and the remaining seven floor plans are shown in Figure 3.7.

The first column of Table 3.2, 3-beacon (Minimal) denotes the minimal number of beacons if
all regions are to be covered by at least three beacons as required by trilateration. The second col-
umn UL (Minimal) denotes the minimal number of beacons required under the proposed scheme
where we localize with two beacons. The results for both of these columns are obtained using
brute-force by iterating through every possible beacon configuration. Note that this is not prac-
tical for larger floor plans. We see that the proposed scheme results in reducing the number of
beacons by 22-60% (33% on average) across these floor plans as compared to typical approaches
that provide three-beacon coverage in all areas. The most significant improvement is seen for the
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Figure 3.8: Validation of algorithm design choices (a) greedy approach and (b) stop criteria

Spokes floor plan, shown in Figure 3.7. This is not typical of indoor spaces, but we selected this
to show when the proposed scheme is most effective. The floor plan is generated such that all
points are in LOS of the left bottom and right bottom corners. We can extend this floor plan to
generate infinite spokes, and the 3-beacon scheme would require infinite beacons, whereas the
proposed UL scheme would require only two beacons.

The third column shows the number of beacons placed while optimizing for UL and the fourth
column shows the number of beacons placed while optimizing for theGDOPUL. We see that the
UL algorithm places the same number of beacons as the minimal in most cases, with one or two
additional beacons in some cases (on average 5% more beacons than minimal). The GDOPUL

algorithm usually places the same number of beacons as UL, in worst-case it places two more
beacons. In Figure 3.7, we show the resulting GDOP map of the final beacon placement with the
algorithm in the GDOPUL mode. We have not shown the minimal beacon placement and result
of UL algorithm for these seven floor plans, but the number of beacons for both are shown in
Table 3.2.

Figure 3.8a validates the greedy approach we have adopted, where we iteratively select bea-
cons to localize the largest zone. For each of the floor plans, we can see the % of area Uniquely
Localized as an additional beacon is added. For instance, in Map 4, 90% of the area is localized
with 11 beacons and an additional five beacons are required for the remaining 10% of the area.
For practical purposes, it may be sufficient to have coverage in 90% of the region, since often
tracking or filtering would be used in the location solver. Figure 3.8b shows the final CDF of the
GDOPUL when the algorithm is in the GDOPUL mode. The final quality of beacon configu-
ration varies across floor plans, since the stop criteria is all regions being Uniquely Localizable.
We could also have specified a different criteria based on GDOP, such as 90% of the floor plan
having a GDOP less than 4.0. We see that across the floor plans, the Multi-room floor plan has the
overall highest quality of beacon configuration, but our algorithm placed two beacons more than
the minimal number required. The worst quality of beacon configuration is for the multi-corridor
floor plan, and we can see from Figure 3.7 that the two end corridors have a high GDOP.
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In summary, the proposed scheme based on Unique Localizability places between 22% to
60% (33% on average) fewer beacons than a typical trilateration-based scheme. The proposed
algorithm in UL mode usually achieves the minimal placement and on average places 5% more
beacons than minimal, but 29% fewer beacons than typical. The proposed algorithm inGDOPUL

mode places on an average 14% more beacons than minimal, 23% fewer beacons than typical,
and provides a much better quality (GDOP) of beacon placement. The final quality of beacon
placement and the number of beacons required varies with the floor plan geometry. The quanti-
tative results apply even for larger floor plans at building-scale since they can be represented as
a union of smaller floor plans.

3.9 Summary
This chapter addressed the problem of beacon placement for range-based localization systems.
We formulated a new concept of Unique Localization for range-based systems and designed new
metrics for quantifying the quality of a beacon placement. We used this metric to design a beacon
placement algorithm, which is part of a MATLAB-based open-source toolchain. The proposed
placement method reduces the number of beacons on average by 33% while maintaining the
same coverage.
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Chapter 4

Location acquisition

In Chapter 3, we discussed strategies for placing beacons to support range-based localization. In
this chapter, we present a location solver for range-based systems that is robust to low-beacon
density and a high amount of NLOS signals [104].

Though localization with range-based beacons is fairly well understood, prior work in general
makes an assumption that there is a high density of beacons and sufficient number of good range
measurements. Figure 4.1(a) shows an example deployment with high beacon density and pure
LOS that is an ideal scenario often assumed where trilateration is used to estimate location.
At lower densities, beacon-based ranging systems struggle to perform accurately due to errors
from NLOS signals. Figure 4.1(b) shows a more realistic scenario with NLOS ranges where
typical location solvers will fail to produce the correct location estimate. Common solutions
to deal with low beacon density and NLOS fuse the information from beacons with inertial
sensors or constrain the motion within the floor plan using particle-filters or similar approaches.
Unfortunately, these approaches require the user to walk around and explore the space before
they can acquire an accurate lock. In many applications such as augmented reality, way-finding
and targeted advertising, quick location acquisition is critical for keeping users engaged with the
application.

In this chapter, we present an approach that leverages the geometry of the floor plan to both
reduce the density of beacons required and to localize in the presence of NLOS. The floor plan
information along with the coverage model of the beacons gives us information about which
beacons we expect to be in LOS and NLOS in different regions of the building. The proposed
location solver (1) considers feasible hypotheses of LOS and NLOS beacons among the received
ranges and solves for locations under each hypothesis, (2) checks for consistency between the
estimated location and the assumed hypothesis against the predetermined coverage information
and (3) selects the most likely hypothesis-location pair. Our approach guarantees that if all ex-
pected signals from the LOS beacons are received, then we can maintain the same accuracy even
with additional NLOS signals, except in rare deployment geometries. The intuition is that NLOS
ranging errors caused by reflected signals are positively biased, and if the location is estimated
assuming the hypothesis that an NLOS measurement from a beacon is an LOS measurement, the
location will likely be out of the LOS coverage of the beacon, producing an inconsistency with
the LOS assumption used to estimate the location. Likewise, a true hypothesis would produce a
location estimate that is consistent with the coverage information.
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Figure 4.1: Motivation for a robust location solver

The main improvement of our approach over state-of-the-art systems is that we leverage the
coverage information of beacons derived from the floor plan to localize with range-based beacons
in the presence of NLOS and low beacon density, thus enabling accurate location acquisition.
Our floor-plan aware techniques can be applied to localization systems that have LOS and NLOS
error models similar to acoustic systems (zero mean for LOS, positively biased for NLOS), which
is the case for multiple emerging TOF RF ranging systems. In support of this approach we design
a floor-plan aware solver that is capable of working with low-density beacon deployments and
improving robustness to NLOS signals. We also show the design and evaluation of an enhanced
ultrasonic speaker array platform that can provide coarse angle information and further prune
down the search space and aid the floor-plan aware solver.

In Section 4.1, we cover the background and related work in solvers for range-based localiza-
tion. This is followed by Section 4.2, where we present the proposed floor-plan aware location
solver which is robust to low beacon density and NLOS. We evaluate the approach extensively
with real-world experiments and present the results in Section 4.3.

4.1 Background and related work
In Section 4.1.1, we describe existing techniques for trilateration or location acquisition. Next, in
Section 4.1.2, we describe techniques to cope with NLOS signals. Since our proposed approach
leverages the floor plan information, in Section 4.1.3 we discuss existing work in floor plan
integration.

4.1.1 Location acquisition

Trilateration is a well-known process of determining a location by using distance measurements
from three (or more) reference points at known locations. [23, 40, 42, 79, 99, 114, 120, 122].
While solving the trilateration problem is non-trivial, due to the non-linear nature of the math-
ematical problem and practical issues arising from errors in the ranging measurements and ge-
ometrical arrangement of the points [41], many algorithms have been developed to determine
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solutions to this problem and to estimate error [41, 78, 85, 140, 147, 148]. We can generally
classify trilateration solvers into closed-form solvers and numerical algorithms. The former
[78, 140, 148] have the advantage of a lower computational complexity, and their performance
is easier to analyze. However, they do not deal well with errors in the measurements that can
cause the solver to fail to find a solution. In the presence of measurement errors, it is usually
necessary to perform estimates of the location, based on a numerical algorithm [41, 85, 147].
As a baseline to compare with while evaluating our proposed solver, we implement trilateration
using two approaches. In the first approach, which we refer to as grid-search, we search for
the location with Minimum Mean Square Error (MMSE) with respect to received range mea-
surements. We discretize occupied regions of the floor plan, first performing a coarse search
and then further discretizing the region around the estimated location to perform a finer search.
The second approach we use is solving for the MMSE location estimation problem by using
gradient descent. However, these techniques assume we have a sufficient number of good LOS
measurements and cannot detect and eliminate NLOS measurements. Table 4.1 compares vari-
ous acoustic/ultrasonic localization systems to give us an idea about the beacon density typically
assumed and the mechanisms used to cope with NLOS signals. Most of the systems have been
demonstrated to work in single room setups and assume a deployment and scenario as shown
in Figure 4.1(a), where all regions are covered by three or more beacons. In practice, covering
all regions of a building with three or more beacons can render installation and maintenance
prohibitively expensive. A low-density deployment where regions are covered by one or two
beacons is desirable, but we can no longer uniquely perform trilateration. In addition, these sys-
tems suffer from NLOS measurements in multi-room setups as shown in Figure 4.1(b), where
there are two LOS measurements and two inaccurate NLOS measurements. If all beacons are
assumed to be in LOS, the estimated location would be incorrect if conventional location solvers
are used. In contrast, we solve the problem of estimating location using a single set of range
measurements from beacons, which can include NLOS ranges.

4.1.2 Coping with NLOS signals
The last column of Table 4.1 shows various techniques adopted by acoustic ranging systems for
combating NLOS. Among the approaches in Table 4.1, [45, 95] use variants of peak detection
based on empirical methods that worked well for their system in terms of detecting LOS and
NLOS. These approaches use the received signal time series. Another approach to the NLOS
problem is to extract statistics from a full Channel Impulse Response (CIR) waveform like Kur-
tosis, RMS delay spread and mean excess delay [74, 119]. Unfortunately, these statistics are
highly dependent on the environment. Filtering of measurements over time can be performed,
but significantly increases acquisition times and message passing overhead. In contrast, our so-
lution does not assume that the ranging technology has access to the entire CIR or that several
measurements are averaged over time.

Residue-based approaches attempt to detect and mitigate NLOS purely based on the range
measurements [17, 26, 72]. They iterate through all possibilities of signals and estimate the
locations as a function of the residual error derived from each possibility. Examples of functions
include the location with least residue, or average of the locations weighed by the residue. Each
of these approaches require three or more LOS beacons or the number of LOS ranges to be
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System
year (20xx)

Ranging
type

Commodity
phone?

Multi
room?

Number
beacons
for 2D loc.

NLOS resistance

Bat[11] ’01
Cricket[97] ’05 TOF no yes 3

Limited range,
high density
outlier in time

BeepBeep[95] ’07 TOF yes (audible) no 3
Empirical,
system specific

SpiderBat[87] ’11 TOF + AOA no no 1 Angle consistency
[65] ’12, [75] ’13 TDOA yes no 4 None
Guoguo[74] ’13 TDOA yes no 9 Channel stats

ALPS[66] ’15
TDOA first,
TOF
subsequently

yes yes
4 for first fix,
3 later

Machine learning
BLE, acoustic
signal statistics

ASSIST[37] ’15 TDOA yes no 4 None

[45] ’15 TOF no no 6
Empirical,
peak finder
system specific

[138] ’16 TDOA yes no 4 None

Proposed TOF yes yes
1 for corridors,
2 otherwise Using floor plan

Table 4.1: Comparison of the conditions under which existing acoustic/ultrasonic localization
approaches are evaluated, along with methods to cope with NLOS signals
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much higher than NLOS in order for only the true location to produce the least residue. They
fail in low beacon density deployments with high NLOS. This motivates the need to develop
location solving techniques to cope with localizing in scenarios such as the case in Figure 4.1(b),
where all received range measurements are treated with equal confidence. In contrast to these
approaches, we cope with NLOS signals by integrating the floor plan geometry to prune out
incorrect locations.

4.1.3 Integration of floor plan into location solvers
Several prior works have integrated building floor plans into localization systems. They broadly
do so with Bayesian estimation methods by eliminating possible hypotheses of locations over
a period of time as the user traverses the indoor space. They exploit the asymmetric nature of
indoor spaces and traces walked. For instance, a particle-filter based approach that integrates
the information of walls and doors can eliminate unlikely positions of the user [48]. Another
approach is to discretize the floor plan, apply a probabilistic model for transitioning between
two locations in the floor plan and integrate the motion with a particle filter [49, 141]. These
approaches are not suitable for the acquisition problem since they converge on a location estimate
over extended periods of time. In contrast, the problem we are solving is estimating location
using a single set of range measurements from beacons without having the user walk.

Another class of floor-plan based schemes use complex 3D ray-tracing (accounting for direct,
reflected, transmitted, diffracted path, dielectric constant of materials) to model the signal prop-
agation [53, 54, 127]. In contrast, in our work, we use ray-tracing to determine the likelihood of
location being in direct LOS or not direct LOS (NLOS) from a beacon. When a NLOS signal is
received, the signal can reflect off any of the walls, the floor or ceiling or any other obstruction
not modeled by the floor plan. We do not make assumptions on the path of the reflected signal,
only when a NLOS path has a positive bias error.

4.2 Coverage-aware location solver
In this section, we describe how the floor plan information can be integrated with the location
solver in order to localize in the presence of low beacon density and NLOS signals. The acquisi-
tion problem is defined as follows: Given a set of range measurements
[Br = {bi, bj, ..bk}, R = {ri, rj, ..rk}], where ri is the range received from beacon bi, we need to
estimate the location of the device receiving ranging signals. For instance, in the two scenarios
shown in Figure 4.1, we are given the set of range measurements from the four beacons and must
determine the most likely location of the receiver.

4.2.1 Model and Assumptions
Assumptions:

This section builds on the model and assumptions defined in Section 3.4.1 of Chapter 3,
with a key difference. In Chapter 3, while designing a beacon placement strategy, we assumed a
perfect ray-tracing model where LOS ranges are received for locations in coverage and no ranges
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Figure 4.2: Ray-tracing coverage model applied across a deployment
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are received at out-of-coverage locations. In this chapter, we relax the assumption and account
for NLOS ranges received at out-of-coverage locations. Further, we account for LOS beacons
being blocked and as a result our solver copes with missing range measurements from beacons
that are expected to be in LOS. Figure 4.2a illustrates the simple ray-tracing coverage model
we assume. The beacons are labeled as bi, and the walls are represented by solid lines. The
coverage information is generated automatically by a ray-tracing algorithm operating on floor
plans represented in the form of polygons with holes. The algorithm assigns a point to be in
LOS with a beacon if the line joining the beacon and the point does not intersect the floor plan
polygon. Figure 4.2c validates the ray-tracing model experimentally using data from real-world
environments. It shows the distributions of the ranging error between beacons and test points
where each range measurement is classified as LOS or NLOS based on the assumed coverage
model. In general, as expected, the LOS errors are about zero and the NLOS errors are positively
biased and environment-dependent. The model is not perfect and we see some inaccuracy. First,
we see that in the LOS case, there is a slight positive bias in the error due to not capturing all
obstructions in the environment, such as cubicle partitions, that are not in the floor plan. Second,
in the NLOS case, we see that there are locations with close to zero error since we have not
accounted for diffraction around doorways and corners. These differences in the real world and
our assumptions reflect in our experimental results and we elaborate on this in Section 4.3.5. In
future work, we would like to take into account a more realistic modeling of the environment,
but for now this model is simple and closely resembles the true coverage of the beacons.

In summary, we assume the following model:
• A NLOS measurement has a positive error. This is because NLOS signals are caused by

reflections which always take a longer path than the true path, as experimentally validated in
Figure 4.2(b).

• A LOS measurement has zero-mean error.
• The beacon coverage model is deterministic. A location is either in LOS or NLOS of a beacon.

We extend this ray-tracing model to a multi-beacon deployment by combining the coverage
information of the individual beacons. As a result, we get the mapping between all the regions
of the floor plan and the beacons in LOS of these regions. Figure 4.2b illustrates the resulting
coverage. We see that the floor plan gets partitioned into six disjointed zones based on which
beacons are in coverage. For example, the blue color shaded region marked with z3 with h3 =
{L : b3, b4;N : b1, b2, b5} is the region where b3 and b4 are in LOS and b1, b2 and b5 are in NLOS.
This partitioning of the floor plan into zones was introduced in in Equation 3.9-Equation 3.12.
However, earlier, while defining zones, we defined a zone only in terms of the LOS beacons as
we used only the LOS beacons for beacon placement. In this chapter, our modified definition
of a zone also accounts for the NLOS beacons, as we use both the LOS and NLOS beacons
for location acquisition. Here, we introduce the concept of a hypothesis. A hypothesis is a
partitioning of the beacon set into LOS and NLOS beacons. Though the number of hypotheses
possible for a deployment with Nb beacons is 2Nb , only the hypotheses that correspond to a zone
are valid for a given deployment. A hypothesis hi corresponds to the beacons in LOS of zi being
in LOS, and the beacons in NLOS of zi being in NLOS. For instance, in Figure 4.2b, we can see
that the hypothesis hi = {L : b3, b1;N : b2, b3, b4} does not correspond to any zone and hence
does not correspond to any valid region of the floor plan.
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4.2.2 Intuition for proposed approach

We illustrate our approach with two example scenarios in Figure 4.3, where we are required
to localize in low beacon density in the presence of NLOS. This floor plan has a combination
of hallways covered by single beacons and open areas covered by two beacons. In the first
scenario in Figure 4.3a, two LOS and two NLOS ranges are received. In the second scenario
in Figure 4.3b, one LOS and one NLOS range are received. The true location xtrue and the
minimum means square error location assuming all received ranges are LOS signals, xminerr, are
marked on the figures. We can clearly see that utilizing all the ranges as LOS results in incorrect
location estimates in both scenarios.

The intuition behind leveraging the floor plan information is that we can check for consis-
tency between the received measurements and the beacon coverage information. In the scenario
in Figure 4.3a, the resulting location estimate assuming all the beacons are in LOS is xminerror.
However, xminerr is in NLOS of b3 and b4.This produces an inconsistency with the hypothesis
that yielded this location estimate. Another hypothesis we can consider is that b1 and b3 are in
LOS and b2 and b4 are in NLOS. However, according to the coverage information, there is no
region of the floor plan that is in LOS of both b1 and b3, and hence we can dismiss this hypoth-
esis. Next, say there exists some hypothesis that results in the location being estimated at the
point marked as x4. We see that the distance between x4 and b2 is much higher than the range
received from b2, and b2 is in NLOS of x4. This implies that the NLOS range measurement has a
negative error. This is highly unlikely, given that NLOS measurements have a positively biased
error. Hence the hypothesis that estimating x4 as the true location generates an inconsistency.
In the remainder of this section, we show a systematic approach for integrating the coverage
information by checking and validating multiple hypotheses to yield a location estimate.

4.2.3 Localization algorithm preliminaries

In this section, we define the notation, state our assumptions and then discuss the conditions that
the algorithm uses for checking for coverage consistency.

Notation:

• B: Set of all beacons in the floor plan
• Br: Set of beacons from which measurements are received
• B̃r: Set of beacons from which measurements are not received Br ∪ B̃r = B

• BL(x): Set of beacons in LOS of location x
• BN(x): Set of beacons in NLOS of location x
• hi: Hypothesis i. A hypothesis is a partition of the beacons into a set of LOS and NLOS

beacons.
hi : B = hi(B

L) ∪ hi(BN)

• hi(BL): Set of LOS beacons in hypothesis hi
• hi(BN): Set of NLOS beacons in hypothesis hi
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Figure 4.3: Examples to illustrate coverage-aware solver

• zi: Set of all locations in a floor plan that have the exact same set of LOS and NLOS beacons
as the partition under hypothesis hi

• xminerror: The minimum mean square error estimated location assuming all beacons are in
LOS

• xtrue: The true location of the receiver

Conditions for satisfying consistency:
If xi is a location estimated under a hypothesis hi, in order for this hypothesis-location pair to
produce consistency between the beacon coverage model and the received range measurements,
the following conditions should be satisfied.

• C1: Consistency with beacon coverage
hi(B

L) ∩Br ⊆ BL(xi)
hi(B

N) ∩Br ⊆ BN(xi)

• C2: Consistency with NLOS error model
∀k: bk ∈ hi(BN) ∩Br, [rk− ‖ bk − xi ‖> 0]

The first two conditions under C1 check that the LOS/NLOS beacons as assumed by the hypoth-
esis are in LOS/NLOS of location xi. Since we only receive measurements from the set Br, we
perform an intersection with this set. There can be additional beacons in LOS or NLOS of xi
from which no range measurements are received, hence we use subset and not strict equality in
these two conditions. The second condition under C2 checks that the NLOS errors are positively
biased, as per our assumption. We check this condition for all the beacons from which a range is
received that are also in NLOS according to the hypothesis hi.
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Final location estimateEliminatedLegend:

Figure 4.4: Step-by-step results of proposed CA-all solver for the two scenarios in Figure 4.3.
The hypotheses are enumerated in Figure 4.2b

4.2.4 Localization algorithm

We describe two location solver algorithms for implementing the approach. The first coverage-
aware location solving algorithm evaluates all feasible hypotheses (CA-all) and then selects the
most likely location-hypothesis pair among the ones that are consistent with the beacon coverage
model. While evaluating all hypotheses, in general the hypotheses that assume the short-range
beacons to be in NLOS get eliminated. This motivates our second algorithm that ranks all the
hypotheses such that a hypothesis with a shorter range LOS beacon gets a higher rank. It then
iteratively checks the ranked hypotheses in sequence until one of them satisfies a likelihood
criteria. We refer to this as the CA-short algorithm, since it prioritizes shorter ranges over longer
ranges and evaluates fewer hypotheses, and as a result, is shorter than the CA-all algorithm.
Algorithm 1: CA-all:
• Step 1: Enumerate all feasible hypotheses.

The first step is to find all feasible hypotheses. Any hypothesis that includes at least one of the
received range measurements as an LOS beacon is a feasible hypothesis. For Scenario 1, since
measurements are received from four beacons, b1-b4, among the six possible hypotheses, all
except h6 are feasible. For Scenario 2, any hypothesis that includes b3 or b5 as an LOS beacon
is feasible. The hypotheses h3, h4, h5 and h6 are selected for Step 2.

• Step 2: For each hypothesis in Step 1, find the most likely location that is consistent with the
coverage model.
We then estimate the most likely location for each hypothesis. The location has to satisfy
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consistency with the coverage model (consistency check C1). For each hypothesis, the mea-
surements from the beacons in LOS as per this hypothesis are used to estimate the location with
minimum error. While solving under hypothesis hi, we only need to evaluate the locations that
belong to the set zi. For example, in Step 2 of Scenario 1, while solving for hypothesis h3,
which has only b3 and b4 in LOS, any location outside the blue region marked by h3 would
not satisfy either C1 or C2. In other words, each location in the floor plan is evaluated only
once, i.e., if and when the hypothesis that it satisfies is being evaluated. For hypothesis hi, the
minimum error location estimated is

xi = argmin
x

(
1

N

∑
k

(rk− ‖ bk − x ‖)
)

∀k : bk ∈ hi(BL) ∩Br, x ∈ zi

The black diamond-shaped markers in Figure 4.3 show the most likely estimate for each hy-
pothesis.

• Step 3: For each location estimated in Step 2, check if it is consistent with the NLOS error
model. Then, we check for consistency with the NLOS error model (consistency check C2).
In Scenario 1, consider the location x4 under hypothesis h4. It violates the consistency check
with respect to beacon b2 since b2 ∈ h4(BL)∩Br and the received range measurement R2 =‖
b2−xtrue ‖ is less than the distance between x4 and b2 ie. ‖ b2−x4 ‖. In the same manner, x2,
x3 and x5 are also eliminated. In Scenario 2, at Step 3, hypothesis h6 with location estimate
x6 and hypothesis h5 with location estimate x5 are eliminated.

• Step 4: If more than one hypothesis is consistent after Step 3, select the most likely hypothesis
based on a likelihood that is a function of the residue LOS error and number of LOS beacons
from which no measurements were received.
Practically, the probability of missing a measurement from an LOS beacon is very low. It
would occur if the beacon was temporarily blocked, or if the range packet from the beacon
was dropped. Though it depends on the system, we can safely assume that the probability of
missing a range from an LOS beacon is lower than the probability of receiving a range from an
LOS beacon. Though we cannot estimate this probability since it depends on the environment,
we introduce a metric p(missingLOS) and assign it a low value to penalize a location with a
higher number of missing LOS measurements. We use the number of missing LOS measure-
ments #missingLOS , which is found by the number of beacons in the set hi(BL) ∩ B̃r for
hypothesis hi. We empirically assign p(missingLOS) a value of 0.1 in our implementation.
This implies that a location estimate with two missing LOS beacons is assigned a likelihood
0.01 times that of another location with no missing LOS beacons. The second empirical metric
we introduce is the residue LOS error. The residue error for location xi, which is estimated
under hypothesis hi, is:

residueLOS(xi) =
1

N

∑
k

(rk− ‖ bk − xi ‖)

∀k : bk ∈ hi(BL) ∩Br
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We assign the likelihood of a location x as being proportional to e−residue
2
LOS(x), which is

equivalent to assuming that the true residue is drawn from a zero-mean Gaussian process. This
is the empirical metric we adopt to weigh the LOS residual error and the number of missing
LOS beacons. Ideally, the number of beacons used for estimation, the geometry of beacons,
the likelihood of a beacon being blocked based on distance from beacon and the environmental
factors should be taken into account for accurate modeling.
At the end of Step 3, if we have more than one consistent hypothesis, we assign a likelihood
for the locations and select the hypothesis-location pair with highest likelihood:

L(x) = exp−residueLOS
2(x)×#missingLOS(x)p(missingLOS)

In Scenario 2, by the end of Step 3, we have two consistent hypotheses x3 and x4. Both
have zero residue error. Among them, x3 is less likely since it has a missing LOS range
measurement from b4, and hence we select x4.

Next, we elaborate on the implementation of the algorithm with the examples in Figure 4.3a
and Figure 4.3b. The tables in Figure 4.4a and Figure 4.4b show the results of the algorithm after
each of the four steps.

Algorithm 2: CA-short:
The second algorithm we propose is a variant that is motivated by the observation that several
hypotheses get eliminated during Step 3. In Figure 4.3a, we see that beacon b2 has the shortest
range and the four hypotheses that got eliminated in Step 3 were due to producing an inconsis-
tency with this range measurement. This motivates us to sort the hypotheses based on the range
measurements, since the hypotheses with the shortest range beacon in LOS are more likely than
the hypotheses with the longest range beacon to be in LOS. In terms of computational com-
plexity, we have the additional step of sorting the hypotheses, but we end up evaluating fewer
hypotheses for Step 2 and this algorithm is shorter than CA-all.

• Step 1a: Enumerate all feasible hypotheses.
• Step 1b: Rank them based on received ranges. We sort the hypotheses such that the hypothesis

with the shortest range beacon in LOS has the highest rank. Among them, the hypothesis with
second shortest range beacon in LOS has the highest rank, and this repeats. However, we do
end up with multiple hypotheses with the same rank. Among them, we give higher rank to the
hypothesis with the least number of LOS beacons not in the received range set. The intuition
for this is, the locations with a higher number of missing LOS beacons get penalized while
estimating the likelihood. Hence, we use this criterion while sorting.

• Step 2: For highest rank hypothesis, solve for location.
• Step 3: For the location estimated in Step 2, check if it is consistent with the NLOS error

model and satisfies the likelihood criteria. If not, then go to Step 2 and evaluate the hypothesis
next in rank, and iterate until the stop criteria satisfied. In our implementation, we assigned a
value of L(x) = 0.91 as a stop condition, since a location with 30cm residue and no missing
LOS beacons gives a likelihood of 0.91 based on our likelihood function L(x).
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According to hT , bk ∈ According to hF , bk ∈ Constraint
hT (BL) hF (BL) ‖ bk − xT ‖=‖ bk − xF ‖
hT (BL) hF (BN) ‖ bk − xT ‖<‖ bk − xF ‖
hT (BN) hF (BL) ‖ bk − xT ‖>‖ bk − xF ‖
hT (BN) hF (BN) ‖ bk − xF ‖> rk, ‖ bk − xT ‖> rk

Table 4.2: Conditions for a false location to be consistent. Both {hT , xT} and {hF , xF} should
be consistent for the beacons in range

4.2.5 On the robustness of the algorithm

Next, we analyze the robustness of the solver to NLOS signals, under the condition that all
expected LOS ranges are received.

We denote the true hypothesis, true location pair as {hT , xT}. To simplify the illustration,
we assume zero LOS error. In the presence of LOS error, the same analysis holds with some
probability across a set of locations. The true location xT would be consistent with the beacon
coverage corresponding to the true hypothesis hT by definition. This implies:

∀k : bk ∈ hT (BL) ∩Br, [rk− ‖ bk − xT ‖= 0] (4.1)

∀k : bk ∈ hT (BN) ∩Br, [rk− ‖ bk − xT ‖> 0] (4.2)

In order for a false hypothesis and false location pair such as {hF , xF} to be consistent and
have the quality to be a feasible solution, the location xF should produce a consistency between
the received measures and the beacon coverage. This implies:

∀k : bk ∈ hF (BL) ∩Br, [rk− ‖ bk − xF ‖= 0] (4.3)

∀k : bk ∈ hF (BN) ∩Br, [rk− ‖ bk − xF ‖> 0] (4.4)

We want to analyze the conditions under which {hF , xF} is consistent, given that {hT , xT}
is consistent. We receive measurements only from a subset of beacons Br. For our analysis,
we consider only the beacons from which range measurements are received, as the beacons
from which no range measurements are received do not provide us information for this analysis.
Among the beacons in range, each beacon is either in LOS or NLOS according to hypotheses hT
and hF , i.e., under a hypothesis hi, each either belongs to hi(BL) or hi(BN). Based on which
set it belongs to, a constraint is imposed on the location, given by Equation 4.3-Equation 4.4.
For both {hT , xT} and {hF , xF} to be consistent, Table 4.2 lists the conditions to be satisfied
in the Constraint column ∀k : bk ∈ Br. We illustrate the geometrical implications of this with
Figure 4.5. In Figure 4.5a, the true location of the device is xT . There exists another location
xF such that b3, which is in LOS of both locations, is equidistant from there. Further, though b1
provides coverage to xT , xT is further away from b1 than a location xF which is in NLOS but is
physically closer to b1. If b2 produces a NLOS at xT , another feasible solution is that the receiver
is at xF and in LOS of b2 and NLOS of b1.

If two more beacons are in LOS of a location XT , then in practice, the constraints on the
physical geometry imposed by bk ∈ HT (BL) make it almost impossible for a false consistent
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Figure 4.5: Illustration of rare scenarios where the solver fails

hypothesis to occur. Figure 4.5a shows an example where this could be possible. Here, xT is the
true location that has received LOS ranges r1 and r3 from b1 and b3 and an NLOS range r2 from
b2. Given this, the following conditions are satisfied:

r1− ‖ b1 − xT ‖= 0 (4.5)
r3− ‖ b3 − xT ‖= 0 (4.6)
r2− ‖ b2 − xT ‖> 0 (4.7)

However, there is another location xF which satisfies the following criteria:

‖ b1 − xF ‖=‖ b2 − xT ‖ (4.8)
‖ b2 − xF ‖=‖ b1 − xT ‖ (4.9)
‖ b3 − xF ‖=‖ b3 − xT ‖ (4.10)

(4.11)

Given this, xF is consistent with beacon coverage models, as well as the LOS and NLOS noise
models under the assumption that b2 and b3 are in LOS and b1 is in NLOS. Another example is
shown in Figure 4.5b, where the true location is xT with b1, b2 and b3 in LOS and b4, b5 and b6
in NLOS. As is shown, the beacons in LOS of xT are further away from xT than the beacons in
NLOS. Under the rare geometry condition that the range received by xT from b1-b3 is exactly
the same as the distances from xF to b4-b6 respectively and vice versa, xF also qualifies as a
consistent solution. However, these rare failure conditions can be identified during deployment,
and we can position the beacons to avoid these cases. A general guideline for placing beacons
is to avoid placing them such that they provide LOS coverage to areas much further away from
them, while there are large areas close-by in NLOS.
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4.3 Evaluation

In this section, we evaluate the performance (localization accuracy and the accuracy of detecting
NLOS) of the floor-plan aware solver in real-world deployments. We also discuss practical as-
pects related to the proposed approach, such as the trade-off between increasing LOS range and
decreasing the amount of NLOS, the number of hypotheses evaluated and the effect of environ-
mental factors.
Description of deployments: The experimental setup is shown in Figure 4.6. The nodes were
installed below ceiling tiles and the phone was placed on a tripod. We deployed up to seven ultra-
sonic nodes in four different environments on Carnegie Mellon University’s campus. Figure 4.7
shows the four environments (labeled F1-F4) with their floor plan, the position of the beacons
(green circles) and test locations (red dots).

The modeled floor plan is outlined by solid grey lines, and the regions with low beacon den-
sity (one or two beacons) are shaded in grey. The beacon locations were determined manually.
We applied the previously presented beacon placement approach to optimize for high coverage,
good geometry and low number of beacons. Table 4.3 shows some of the characteristics of the
deployments, which inform us about the complexity of the floor plan, beacon coverage density
and amount of NLOS. F1 includes an open lounge and kitchen area (in the center), a large class-
room (on the right) and open areas leading to offices and hallways. Among the floor plans, F1
has the maximum number of beacons, leading to the maximum number of feasible hypotheses.
It also has a high amount of NLOS (33%). F2 has four connected hallways with low geometrical
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Figure 4.7: Deployments for evaluating coverage-aware solver

complexity and as few as seven feasible hypotheses. Among the floor plans, this has the highest
beacon coverage density, and all regions could be localized without ambiguity in the absence of
NLOS. F3 has long hallways that are mostly covered by a single beacon and includes a kitchen
area which had areas of two or three beacon coverage. Among the floor plans, F3 has the least
beacon density. Floor plan F4 includes a large conference room and open broad hallways around
it on two sides.
Solvers evaluated: We evaluate and compare the following solvers:
(1) GD: Gradient Descent: This is a common method to estimate location and is most efficient
in terms of computation.
(2) GS: Grid Search: This solver estimates the minimum mean square error location in a rectan-
gular box surrounding the floor plan. This serves as our baseline solver in the absence of floor
plan information.
(3) FP: Grid Search in Floor Plan: This approach searches for the minimum error solution within
the floor plan. This is the baseline for comparing against using the floor plan to constrain the lo-
cation without using the beacon coverage information.
(4) CA-all: Proposed coverage-aware solver which checks for all hypotheses and then selects
one.
(5) CA-short: Proposed coverage-aware solver that sorts the hypotheses based on the ranges.

Characteristics of real-world deployments NLOS detection performance

Env # vertices # beacons # feasible
hyp. % NLOS CA-all CA-short

TP TN TP TN # hyp.
eval.

F1 33 7 39 33 0.94 0.86 0.88 0.95 23
F2 10 6 7 24 0.96 0.97 0.82 0.99 2
F3 73 5 19 20 0.83 0.91 0.56 0.98 5
F4 23 5 17 22 0.93 0.88 0.83 0.99 5

Table 4.3: Geometrical parameters of the test environment floor plans and performance of the
coverage-aware solver in detecting NLOS, with characteristics of the deployments. (Legend: #:
Number of; hyp. eval.:Hypothesis evaluated)
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Figure 4.8: Localization performance in real-world deployments
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4.3.1 Localization accuracy

Figure 4.8 shows the Cumulative Distribution Function (CDF) of the localization accuracy of
each solver across all floor plans. Overall, using the floor plan to confine the solutions (FP)
improves the performance over not using the floor plan (GD, GS), and integrating the coverage
information (CA-all and CA-short) outperforms the other solvers across all deployments. Some
key observations are:

(1) The coverage-aware solver is able to maintain 80th-percentile error of 1m under different
environments. This can be seen in the four CDFs.

(2) Under high-NLOS conditions, the coverage-aware solver significantly improves perfor-
mance. F1 has wide open areas with beacons located around corners, resulting in a third of the
measurements to be in NLOS, as seen in Table 4.3. We see that the 80-percentile localization
accuracy improved from 6m to 1m by integrating the coverage information.

(3) In low-density deployments, the coverage-aware solver significantly improves perfor-
mance. Among the floor plans, F3 has the lowest beacon density and most areas cannot be
localized without ambiguity even under pure-LOS conditions. We see that the 80th-percentile
localization performance improved from 8m to 1m with the coverage-aware solver.

(4) Under low NLOS and sufficient beacon density to localize with LOS without ambiguity,
the coverage-solver may not provide much improvement over using only the floor plan. We ob-
serve that F4 did not benefit much from the coverage-aware solver as compared to using only
the floor plan. This is because it had few NLOS measurements in reality. The classification of
22% of measurements as NLOS is due to inaccuracy in our ray-tracing model by not accounting
for diffraction around corners. This floor plan has two thin partitions that we modeled as solid
walls; the NLOS measurements through these had low error, the FP solver benefited from using
them and the coverage-aware solvers eliminated these measurements.

4.3.2 NLOS/LOS detection accuracy

The TP and TN columns of Table 4.3 show the accuracy of detecting NLOS and LOS correctly.
The CA-all solver has a TP of 91.5% and a TN of 90.5% on average. The CA-short solver is
biased towards a higher TN of 97.8% at the expense of a lower TP of 77%. This is because the
CA-short solver checks for the hypotheses in iteration by giving higher weight to hypotheses that
have a higher number of LOS beacons. Hence, it is biased towards detecting signals as LOS.
We also observe that the performance of CA-short is sometimes better than CA-all, which is
unexpected since CA-all evaluates all hypotheses and CA-short evaluates only a subset of the
hypotheses. This happens when both approaches have selected an incorrect hypothesis. This
occurs when (1) there is only one LOS beacon in range located around a corner, such there is a
NLOS region closer to the beacon than the LOS location and (2) an NLOS signal from another
beacon diffracts around a corner/doorway causing NLOS range error close to zero. In these

57



situations, the CA-short is biased towards misclassifying the NLOS as LOS, which provides
lower error than CA-all, which converges on a consistent hypothesis with close to zero residue
by misclassifying the LOS range as NLOS, discarding it and localizing with a single NLOS
beacon. These cases tend to be rare in practice, and their occurrence can be reduced with better
placement of beacons.

4.3.3 Trade-off between LOS and NLOS performance
In this section, we discuss the practical trade-off between increasing LOS range and decreasing
the amount of NLOS signals. Several range-based systems estimate the time-of-arrival (TOA) in
either the received channel impulse response or the result of matched filtering of received signal
with transmitted signal. The TOA is estimated by selecting a peak in the received signal based
on the RSSI using algorithms such as first peak above noise floor, highest peak above noise floor,
first peak within a window before the highest peak, etc. A detailed survey of the approaches
can be found in [37, 74, 118]. However, a persistent challenge is to determine the threshold of
RSSI for peak detection. This is illustrated in Figure 4.9a with three types of channels. Channel
A represents a short range LOS path. Channel B represents an NLOS path of the same range.
Channel C represents a long range LOS path and has comparable signal strength to Channel B. If
a high threshold for peak detection is selected, the NLOS signal in Channel B and the long range
LOS signal in Channel C would not be detected. On the other hand, if a low RSSI threshold is
selected, we would detect both signals. Hence there is a trade-off between the amount of NLOS
signals detected and the maximum range of LOS signals that are detectable. Figure 4.9b shows
this trade-off from real-world data collected using our beacon platform in several environments.
If the threshold is set to be high, we can eliminate most of the NLOS, but the LOS range is
limited. Since our localization system is robust to NLOS signals under the assumption that
NLOS signals are positively biased, we set the threshold to a low value of 1 and allow NLOS
signals in order to have a long range of 25m for LOS. Allowing for higher LOS range reduces
beacon density as it allows us to cover a larger area with fewer beacons.

4.3.4 Complexity and number of hypotheses
We first make a distinction between the number of hypotheses feasible for a deployment and the
number of hypotheses evaluated while solving for location. The number of feasible hypotheses
for a floor plan grows with the number of beacons and is highly dependent on the geometry
of the floor plan. If we consider all combinations of N beacons, we can get a maximum of
2N combinations of hypotheses. The number of feasible hypotheses is much lower due to the
structured nature of floor plans. As a comparison, the floor plan in Figure 4.3 has five beacons,
and hence 32 possible hypotheses, but the number of feasible hypotheses for the floor plan is
six. For large, building-scale floor plans, the number of feasible hypotheses can be high, but
among the feasible hypotheses, only the hypotheses containing one of the beacons in range to
be in LOS will be evaluated. The last column of Table 4.3 shows the number of hypotheses
evaluated on average across all test points for CA-short before the algorithm converged. If we
notice the difference between this and the total number of hypotheses feasible for this floor plan
(fourth column), we see that the CA-short approach evaluates fewer hypotheses. The cost of
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Figure 4.10: Impact of people’s presence on received ranges

considering a hypothesis is the cost of computing the mean square error across all locations in
that hypothesis. The complexity at worst compares with performing a grid search (min mean
square error estimation) which in practice works well even on large floor plans.

4.3.5 Environmental effects

Our ray-tracing model assumes that the NLOS signals are caused by signals reflecting off walls.
Two environmental factors that challenge this assumption are the presence of doors (doors can
be open or closed but the ray-tracing model is deterministic) and the presence of people (people
move around and reflect/obstruct signals). In this section, we discuss the impact of these factors.

Effect of doors: For the system to work in a region when a door is closed, a sufficient number
of beacons should be deployed to provide coverage assuming the scenario of the door being
closed irrespective of the localization approach. During ray-tracing, we model the path between
a location and a beacon across a doorway as LOS. If the door is closed, the true hypothesis is
penalized for having a missing LOS range. However, this hypothesis would still rank higher
than the others, since sufficient LOS beacons would be in range even without the range from the
beacon across the doorway. When the door is open, we receive a LOS range from the beacon
which is utilized for localization and the hypothesis assuming this is a LOS beacon will be
selected. If a door is generally left open when the environment is in use, we recommend assuming
the doorway is always open in order to deploy fewer beacons.
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Figure 4.11: Leveraging ultrasonic sectored speakers for improving coverage information

Effect of people: To study the impact of people in the environment on the received signals
from the beacons, we performed an experiment in the environment shown in Figure 4.6 with the
help of 10 participants. A stationary person would hold the test device in hand. In the first test
scenario, the participants were crowded around the test device, either standing still or walking,
within a 0.5m radius. In the second test scenario, the participants were walking around the test
device within a 4m radius. The error in range measurements from four beacons deployed in
the test area is shown in Figure 4.10. We have shown the median error and the 85 percentile
error. When people are walking around, there is little impact because the beacons are deployed
at ceiling level and people are unlikely to block the signals unless they are very close to the
device. The performance degrades when people are crowded around the phone. Though the
ranging error increases due to the diffraction of sound around people, they do not completely
block the direct path and the errors are less pronounced compared to wall obstructions.

4.3.6 Improving localization accuracy with sectored transmitters

So far, we have assumed that the beacon coverage is omnidirectional and confined by the floor
plan. In this section, we discuss how coarse angle information from a beacon can improve
the localization in extremely low beacon density environments. The intuition is that the coarse
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angle provides finer grained coverage information than an omnidirectional beacon transmitter
and this coverage information can be incorporated into the location solver. Though this section is
specific to the design of our ultrasonic beacon platform (introduced in Section 2.1), the concepts
can be applied to other beacons with angular information. We are able to obtain coarse angle
information by using a circular array of speakers at a beacon. Each speaker has a direction beam
pattern approximately confined to a cone. We use a sectored array to solve two problems: (1)
we can more easily generate uniform ultrasonic coverage and (2) we can accurately estimate the
coarse direction to the beacon just based on signal strength metrics.

Figure 4.11b shows the horizontal beam pattern of one of our speakers (Figure 4.11a) ob-
tained from testing in an anechoic chamber (Figure 4.11c). The beam pattern shows the receiver
correlation magnitude of the ultrasonic chirps transmitted at various angles in the horizontal
plane to the microphone. This particular speaker was selected for its wide beam patterns across
our desired frequency range supporting approximately a 90-degree sector. Upon testing, we real-
ized that transmitting the same signal causes interference (combing) between adjacent speakers,
which significantly distorts the signal at boundaries. This indicated that we needed to orthogo-
nally code or time multiplex neighboring speakers to avoid potential interference. For this rea-
son, selecting four sectors in our array provides the best uniform coverage with enough angular
resolution to enable hypothesis pruning while maximizing update rate.

There are multiple ways to use the individual speakers’ RSSI for inferring sectors or angles.
For selecting or eliminating among multiple hypotheses, we can use the speaker with highest
RSSI. Figure 4.11d evaluates the performance of detecting the sectors in a real-world deployment
with six beacons. The test points are marked in grey, and are connected to the sector-beacon pair
with the highest RSSI. We see that in general it selects the closest sector of the beacon. We
observe that due to variation in RSSI with angle of sector, it does not always select the closest
beacon. If we assume a 90◦ sector beam pattern and detect the sector based on the speaker with
highest RSSI, the performance of the sector detection scheme is shown by the green D line in
Figure 4.11e. When tested uniformly across all angles, we accurately selected the correct 90◦

sector 80% of the time.
The second approach is to compare RSSI from the two dominant speakers to estimate the

angle with respect to the beacon. Here, we assume that all speakers have an identical beam
pattern with a maximum width of 180◦. Under this assumption, at any angle we ideally should
receive signals from only two speakers, and the sum of amplitudes from the two speakers should
be constant at all angles. To translate this model to practice, we only consider the RSSI from
the two dominant speakers. The accuracy of angle estimation is shown by the red E line in
Figure 4.11e. Using RSSI from the two dominant speakers, we were able to estimate the angle
within 90◦ for 72% of the test measurements and to within 120◦ of the center of the correct sector
84% of the test measurements.

Another approach to incorporate the sector information into the solver without altering the
localization algorithm is to partition each beacon’s coverage further into disjoint zones based
on the individual sectors. Though the total number of feasible hypotheses increases, since the
sectors of a beacon are disjoint, a much smaller region of the floor plan will be searched while
estimating the location. Subsequently, we only need to consider the hypothesis corresponding
to the LOS coverage of that sector. Finally, we also use the sector purely for disambiguating
between possible locations. However, while localizing, we first detect the sector based on the
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Figure 4.12: Localization using single beacon with sector-based coverage

highest RSSI among the four speakers. The benefit of sectors can be seen in deployments much
sparser than the deployments we have shown. For instance, small rooms or long hallways would
only require a single beacon placed in the center of the room. Figure 4.12 shows an example
where the sectors can help in determining which hallway the mobile device is in, hence a single
beacon is able to localize two hallways, rather than requiring three beacons in each hallway. It
also shows the chirps transmitted by each of the sectors at the bottom left.

4.4 Summary
In this chapter, we presented a solver that localizes robustly in the presence of low beacon density
and high NLOS signals by integrating the floor plan geometry and beacon coverage models. The
proposed solver shifts the 80% accuracy point from 48m to 1m as compared to solvers that do
not use the floor plan information, for the same beacon density. We are able to detect and remove
NLOS signals with 91.5% accuracy without requiring additional infrastructure.
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Chapter 5

Mapping

In Chapter 3, we addressed the question of where to place beacons given a floor plan, and in
Chapter 4, we discussed how to solve for locations given range from beacons, beacon locations
and the floor plan. In this chapter, we cover the creation of beacon maps and maps of the floor
plan. Key to our mapping approach is that we leverage mobility of devices over time, which
effectively provides us additional sensor information that we can use for mapping. In Chapter 6,
we build on the approaches presented in this chapter to build maps of spatially varying signals,
specifically the magnetic field, that we use subsequently for acquiring the device orientation.

First, we elaborate on the difference between beacon placement, described in Chapter 3,
and beacon mapping, which we present in this chapter. Beacon placement strategies determine
locations at which beacons should be placed. However, we might not always have control over
placing beacons. In the future, we envision that WiFi access points, IoT devices and other smart
devices with ranging capabilities would act as beacons. In these scenarios, devices that are
deployed in the environment are opportunistically used as beacons, and we have to estimate their
locations; this is the beacon mapping process. As seen, beacon mapping is complementary to
beacon placement. In real-world deployments, either one of the problems could be applicable or
they both can coexist. For example, some beacons are strategically placed, and the opportunistic
beacons that find their way into the localization environment are mapped. Here, the beacons
placed beforehand at known locations can improve the mapping accuracy of the opportunistic
beacons. Another key difference between the beacon placement and beacon mapping problems
is the role of floor plans. In the beacon placement problem, we place beacons given a floor
plan. In the beacon mapping problem, on the other hand, we can treat the floor plan map and the
beacon map independently. For range-based localization systems, though the floor plan maps are
not necessary, knowledge of the floor plan can make the localization robust, as elaborated on in
Chapter 4. Finally, whether a system designer adopts a beacon placement or a beacon mapping
process is also a matter of cost. The beacon placement problem is motivated by placing the
fewest beacons required. If beacon cost is not a major constraint, then one can opt to first deploy
beacons at convenient locations and then automatically map them.

Mapping beacons and the floor plan is typically a labor-intensive process or requires expen-
sive robotics systems. In contrast, we solve the mapping problem by using data from pedestrian-
held mobile devices that range to beacons. We track the locations of the mobile devices by fusing
data from inertial sensors, cameras and beacons.
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In Section 5.1, we discuss related work in beacon mapping and floor plan mapping. Our
mapping techniques are built on approaches for tracking the mobile device accurately using
sensor fusion. First, we present two approaches for tracking mobile devices. In Section 5.2, we
present the first approach to tracking: fusion of beacon ranges and VIO using a Particle Filter.
Next, in Section 5.3, we present the second approach to tracking: fusion of beacon-based location
estimates with pedometer data using an Extended Kalman Filter. Given these two approaches,
we tend to use the first when we have low beacon density and when the camera data is available
for fusion, and tend to use the second when we have a sufficiently high beacon density and
cannot rely on the camera data for VIO. In Section 5.4, we build on the PF-based fusion and
present a beacon mapping technique that we implement and evaluate with UWB beacons. In
Section 5.5, we present a floor-plan mapping technique that we implement and evaluate with
ultrasonic beacons.

5.1 Background and related work
In this section, we cover the background and related work in the area of mapping beacons and
indoor floor plans.

5.1.1 Beacon mapping
Several approaches exist for mapping range-based beacons. The suitability of a mapping ap-
proach is determined by the inter-beacon ranging capability and the density of beacons. If the
beacons range to each other and form a globally rigid graph, then the beacon ranges alone are
enough to uniquely map the beacons with respect to each other. The requirements for a topol-
ogy to be rigid are well understood [14, 38, 83], and several techniques exist to solve for the
beacon locations under a rigid topology [15, 19, 44, 51, 83, 112]. However, if the network is
not globally rigid, the same inter-beacon ranges can produce multiple realizations of the beacon
locations. Further, in many cases, we may not have inter-beacon ranges. In these cases, we use
mobile devices, and fuse the range between the devices and the beacons and inertial sensors of
the device to map the beacons. In real-world indoor deployments, due to the limited range of
beacons and the signal attenuation through walls, we expect this to be the case rather than having
a fully connected rigid network. Hence, to solve the mapping problem, we leverage mobile de-
vices in the environment that range to beacons. Effectively, mobility creates multiple instances of
a device over time in different locations and provides more sensor information than is available
from a single snapshot of time.

The problem of simultaneously localizing a mobile device and mapping range-only beacons
is referred to as Range-Only SLAM (RO-SLAM). There are many solutions in the robotics litera-
ture for RO-SLAM. The algorithms include approaches based on Extended Kalman Filter-SLAM
[15, 19, 34, 55, 64, 86, 89], GraphSLAM [52], Spectral Learning algorithms and Particle Filters
[15, 64, 86]. RO-SLAM is challenging since the problem is under-defined, i.e., we only have
the distance between beacons and a target device. This leads to multiple feasible hypotheses for
beacon locations, and as a result, typical linear and Gaussian approximations of measurement
models do not fit the measurements. To solve this problem, we adopt the Rao-Blackwellized
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Particle Filter (RBPF) approach [35, 131]. The RBPF uses particles to represent the posterior
over the mobile target location, along with other parametric probability distribution functions to
represent the beacon locations. While the probability distribution of the mobile device is repre-
sented by particles, the probability distribution of the beacons can be represented by an Extended
Kalman Filter [33, 82, 124], a Sum of Gaussian-based EKF [21, 24, 39] or Particle Filters [22].
In specific, we adopted the algorithm proposed in [22] where both beacons and the mobile de-
vice are represented as particles. This gives us the flexibility to cope with NLOS measurements,
initialize beacons at different times and represent the probability distribution of beacons more
accurately than EKFs since we do not have to fit the distribution to a Gaussian. Our work dif-
fers from these systems in robotics as we implement and evaluate indoor ranging-beacon SLAM
captured by a pedestrian walking around with a hand-held mobile phone, rather than a robotic
system.

5.1.2 Mapping floor plans

Often we may not have the floor plans from buildings where we wish to deploy a localization
system. Even if we have the floor plans, it is possible that they are outdated. Floor plan re-
construction techniques leverage acoustic, laser scanning, LIDAR and camera sensing systems.
Acoustic-based systems that reconstruct floor plans by estimating the location of walls from
echoes [106, 116, 129] are promising given that smart speakers are becoming common in indoor
environments. However, these approaches have mostly been shown for single room deployments
and require the speaker and microphone setup to be moved to all regions of the building to truly
reconstruct the floor plans. Robots mounted with 3D laser range finders or LIDAR systems
[125, 130] are often used to map commercial spaces. These systems produce 3D point clouds,
from which we can extract the 2D floor plan, as shown in [88]. A more detailed survey of map-
ping algorithms can be found in [132]. Recently, camera-based mapping of spaces has been
shown to be feasible [47, 126, 143] and is promising given that pedestrians can scan environ-
ments with their mobile devices to create the maps. Google’s project Tango and sensors like
Occipital’s Structure use depth sensors to scan and map 3D environments.

Our work augments these techniques, but also differs from them, as we present a pedestrian-
guided mapping process where a pedestrian simply walks around and touches the corners of the
indoor environment that they wish to be part of the map. This does not require any expertise or
expensive instrumentation. Rather than using an automated system that detects all obstacles in
the environment, in our approach, the system installer can decide which parts of the environment
to include in the map. For instance, for acoustic beacons deployed at the ceiling level, if there are
no tall obstacles such as cubicle partitions that block the beacons from users, then it is sufficient
to map only the corners of the rooms. The simplicity of our mapping process makes it easy for
users to quickly re-map the environment if it changes or if new barriers are introduced.
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Figure 5.1: Estimation problem for beacon ranges and VIO fusion. Beacon ranges are measured
in reference frame FBEAC and VIO is measured in reference frame FAR. We are required to
estimate the transformation between the reference frames, i.e., Tx, Ty, θ.

5.2 Tracking approach 1: Fusion of beacon ranges and Visual
Inertial Odometry using a Particle Filter

In this section, we present an approach for precise tracking of a mobile device in a frame of ref-
erence fixed and defined by the beacons. We fuse asynchronous ranges from beacons (measured
in the frame of reference defined by the beacon locations, FBEAC) and VIO data (measured in an
AR reference frame, FAR) using a Particle Filter. Range from beacons provides absolute loca-
tion estimates and VIO provides tracking at a high accuracy and high update-rate. We fuse both
these sensor inputs to accurately track the six-degrees-of-freedom pose of the mobile device in
the beacon reference frame [105].

The notations we use are:
• FBEAC : Beacon frame of reference that is fixed over time across users.
• FAR: AR frame of reference that is fixed for an AR session on a single mobile device.
• XAR : 3D VIO position, i.e., x,y,z values of the device in FAR.
• XBEAC : 3D position of the device in FBEAC .
We show the 2D (x-y) view of these reference frames in Figure 5.1. We use FBEAC as the

external fixed frame in which we represent all maps and locations. The device is tracked by
VIO in an AR frame of reference, FAR. A location XBEAC in the beacon coordinate frame is
represented as XAR in the AR coordinate frame. For the estimation problem, we have to find
the six-degrees-of-freedom transformation between the beacon frame FBEAC to FAR, or equiv-
alently between XBEAC and XAR. FAR and FBEAC have one axis parallel to the gravity vector.
Though this is provided to us by ARKit, if that is not the case, we can compute the gravity vector
by filtering the accelerometer data when the phone motion is low [146]. Having this axis aligned,
we reduce the six-degrees-of-freedom frame conversion problem to a three-degrees-of-freedom
translation and a one-degree-of-freedom rotation. Figure 5.1 shows the translation in 3D and the
rotation.
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XBEAC = R(θAR→BEAC).XAR + TAR→BEAC (5.1)

where

R(θ) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (5.2)

and
TAR→BEAC = [Tx, Ty, Tz]

T (5.3)

Ideally, if there is no drift in VIO and no noise in VIO or range measurements, (T, θ)AR→BEAC

would be time-invariant. However, in reality, the transformation is time-varying, and for ac-
curate rendering we have to continuously update (T, θ)AR→BEAC(t). The Particle Filter fusion
algorithm estimatesXBEAC(t) and θ(t). We readXAR from the VIO API and use these estimated
quantities with Equation 5.1 to compute (T, θ)AR→BEAC .

Next, we characterize the VIO tracking in Section 5.2.1 and describe the sensor fusion in
Section 5.2.2.

5.2.1 ARKit Visual Inertial Odometry
In this section, we characterize the tracking performance of VIO from Apple’s ARKit framework.
We evaluated ARKit 1 with iPhone 8 and iPad Pro 2018 devices. At the time of testing, this was
the best performing VIO available on commodity devices. Motion tracking is performed by
fusing tracked visual feature points with inertial sensor motion data. In most implementations of
VIO, relocalization or loop closure is performed, where in addition to tracking, the location is
corrected when previously acquired visual features in the environment are revisited. The output
of VIO is the position and orientation of the device with respect to the AR reference frame at
startup. Below, we characterize ARKit tracking and then characterize the VIO performance.

Frames of reference

ARKit provides three options for setting the coordinate system using the WorldAlignment param-
eter in ARConfiguration [5], and in all cases, the coordinate system is right-handed. (1) Camera:
the frame of reference is fixed with respect to camera, i.e., it moves with the device; (2) Grav-
ity: the origin is the location of the device upon startup of session. The +y axis is parallel to
gravity pointing up and the -z axis points in the direction in which the rear camera points upon
startup; (3) Gravity And Heading: this is similar to gravity except that the -z axis points towards
true north, as measured by the device upon startup. In reality, the magnetic field inside build-
ings varies drastically, and this frame is typically only useful outdoors, but not indoors. ARCore
follows a similar convention. In our work, we use the Gravity configuration with the (z, x) co-
ordinates of ARKit for horizontal positioning and the y-axis for vertical positioning (to keep the
vertical axis aligned with gravity and right-handedness). Figure 5.2(a) shows the VIO positions
of the device in the horizontal plane for two different AR sessions. The true trace in world frame
is shown in black. We see that the VIO trace has the same shape as the true trace but starts at
(0,0) and has an arbitrary rotation with respect to the true trace.
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VIO tracking performance

To characterize the tracking performance of ARKit, we marked ground truth test points with
known locations on the floor in multiple environments. Multiple users walked traces connecting
the test points with a device held in hand. Below, we characterize key parameters of VIO track-
ing.
Update rate: The update rate of VIO is a function of the frame rate of the camera and the sam-
pling rate of the sensors. The highest update rate on current devices is 60Hz [1, 2].
Drift: Figure 5.2(b) shows a 200m trace of VIO, where the overall drift is 5m. The drift is due
to cumulative errors in the angle estimates, which are higher when the user makes turns while
walking. To account for this drift, we assume the error in angle between two position updates
separated by time δt is drawn from N (0, δt · σ2

θ) where σθ is empirically evaluated.
Distance estimation: Figure 5.2(c) shows the VIO tracking over a rectangular trace of perimeter
100m in an office environment. We observe that the VIO traces are scaled to different extents
as compared to the ground truth trace (shown by the black dots). This error in scale is due to
incorrect distance estimation, which often occurs when a single camera is used and depth cannot
be estimated correctly. Across all the experiments we conducted in real-world settings with trace
lengths ranging from 10m to 300m, we estimated the error in VIO distance estimation, shown in
Figure 5.2(d). This data implies that when the position changes by δd, the distance as estimated
by VIO is drawn from a distribution N (0.98δd, (0.05δd)2).
Errors in relocalization: Figure 5.2(e) shows two scenarios where there are abrupt jumps in po-
sition due to incorrect relocalization or loop closure. In the scenario on the left, we placed a
phone on a cart and rotated the cart without any translation movement. In the scenario on the
right, we walked through a hallway facing identical cubicles in periodic intervals and saw jumps
due to different physical locations being visually identical. However, we do not observe abrupt
jumps in longer traces, since there is a limited time-memory for the features, and relocalization
requires the features in memory to match currently visible features. This also highlights some of
the challenges and limitations of heavily vision-based localization.

Although the errors in VIO are specific to the hardware and algorithms on-device, we assume
that VIO provides sufficient relative positioning to support AR applications.

5.2.2 Sensor fusion

We chose a Particle Filter (PF) approach for our state estimation for the following reasons: it (1)
can run in real-time on phones and only requires the previous state of the filter, (2) allows us to
accommodate for arbitrary noise models used to describe VIO and beacon range errors, (3) can
continue to work in under-defined cases with as few as one to two beacons and (4) is agnostic to
update rate and allows us to handle asynchronous ranges from the beacons without requiring us
to receive synchronous ranges and perform trilateration.

The state of the device at time t is represented by N 5-dimensional particles (x, y, z, θ, s),
with weights wit, i ∈ [1, N ], where (x, y, z) is the 3D position of the device in FBEAC , θ is the
rotation of AR frame with respect to world frame and s is the scaling factor of AR distance as
compared to true distance. The intuition behind this formulation is that the particles with θ closer
to the true value will be updated to the true locations when VIO provides motion updates, and
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subsequently they will be weighed higher with ranges from beacons since they will be at the
correct location and hence consistent with the range measurements.

The general PF algorithm has four functions: initialization, motion model update, measure-
ment update and resampling [131], which we describe below in context of our approach:

Initialization:
We initialize the particles based on the first few range measurements to overcome poor initial-
ization in case NLOS range measurements are received during initialization. The five states
(x, y, z, θ, s) are initialized as:
• Draw z from nominal user height z ∼ U(0.7, 1.3).

If we assume arbitrary starting height, we would have to initialize particles on a sphere.
This makes it challenging to run the PF in real-time on the current devices, since our state
estimation has five dimensions. So our implementation initializes the z state uniformly
distributed about a nominal holding height of 1m. The particles at the incorrect (x, y, z)
will be weighed lower when we receive additional beacon ranges.

• Draw [x, y] from measurement model of beacon ranges, the 3D location of the beacon, the
range measurement from the beacon and z.

• Draw s from N (0.98, (0.05)2), based on Distance Estimation characterization in Sec-
tion 5.2.1.

• Draw θ from p(θ|x, y), based on the magnetic field map. When the map has no measure-
ment at (x, y), θ is drawn with uniform probability in [0, 2π]. We describe the magnetic
map in detail in Chapter 6.

Update of states based on motion model:
The input ut to the Particle Filter is the change in VIO position of the device. ut = [∆x,∆y,∆z]T

where [∆x,∆y,∆z] =XAR(t)−XAR(t−1). We assign Σxyz
t , the covariance matrix correspond-

ing to noise in VIO position, to be proportional to the distance change, with a constant σxyz
determined empirically, where Σxyz

t = I3×3.(∆x
2
t + ∆y2t + ∆z2t ).σ

2
xyz Making the covariance

value proportional to the change in distance enables us to recover from scenarios where there is
an incorrect loop closure in VIO tracking. In this scenario, the change in distance during loop
closure is high, increasing the uncertainty in the location of the particles after the VIO update.
Every VIO input updates the state of the particles as:
• Draw [x, y, z]t from N ([x, y, z]Tt−1 + st−1 · R(θt−1) · ut,Σxyz

t ) where R(θ) is defined in
equation 5.1. Each particle gets updated in a direction, based on its belief of θ. Eventually
the particles with θ close to the true value will be weighed higher, as they will be closer to
the true location and will be weighed higher when a range measurement is received.

• Draw θ from N (θt−1, σ
2
θ), to account for the error as described in the ARKit drift charac-

terization.
• Draw s from N (st−1, (∆x

2
t + ∆y2t + ∆z2t ).σ

2
s)

Update of weights based on measurement model:
The measurement to the filter is a range from a single beacon. When a range update is received,
we update the weight of the particles wit from the measurement model. The measurement model
is specific to the beacon technology and ranging error model.
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Resampling:
We perform resampling if the effective sample size is < 0.5 and add some noise to perturb the
state of particles to introduce diversity as described in [131].
Finally, we estimate the state of the filter by taking the weighted mean of all the particles and
estimating the uncertainty in location from the weighted standard deviation of all particles.

In summary, the states are updated from VIO measurement XAR, and the weights are up-
dated from the range measurement. During initialization, the location (x, y, z) is initialized from
the range measurement. If the magnetic field map is available, the angle θ is initialized from
the map. Otherwise, the angle is initialized by drawing particles uniformly from [0, 2π]. With
motion inputs, each particle gets updated in the direction indicated by its belief of θAR→BEAC .
Eventually, particles with θAR→BEAC close to the true value will be closer to the true location and
hence weighed higher when a range measurement is received. As per Equation 5.1, we estimate
TAR→BEAC from θAR→BEAC , XBEAC which we get from the states x, y, and from XAR, which
is the location of the device in FAR gotten by reading the VIO data.

5.3 Tracking approach 2: Fusion of beacon-based location es-
timates and pedometer data using an Extended Kalman
Filter

When we have a high density of beacons and do not have access to visual inertial odometry data,
we implement an Extended Kalman Filter to fuse location estimates from beacons with pedome-
ter and heading data from inertial sensors to track the location of the user. In our implementation
of the EKF, we localize the device using beacon ranges and filter the location estimates of a mo-
bile user by utilizing the phone’s IMU sensors for tracking. We implemented and evaluated this
with ultrasonic ranging beacons and an iPhone as the mobile device receiver [66]. We use the
step count from the iPhone’s accelerometer and the direction from the compass, which already
fuses the magnetometer with the rate gyros. The details of our process model and measurement
model for the EKF are given below.

Our objective is to estimate the 2D position (xt, yt) of the mobile device at time t. We define
the state vector as:

Xt =

[
xt
yt

]
∼ N (µt,Σt)

where µt is the expected value of Xt and Σt is the uncertainty in the state. The EKF generates
estimates of µt and Σt based on the prediction from the previous state Xt−1 and the process
model, and then updates this estimate based on measurement Zt and the measurement model. A
time step of t = 1 is the time a person takes for one step while walking.
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5.3.1 Process model

The input ut to this system is given by:

ut =

[
∆Dt

θt

]
with noise vt such that:

vt =

[
vDt
vθt

]
∼ N (0,Mt)

Mt =

[
σ2
D 0
0 σ2

θ

]
∆Dt is the step length of the mobile device and θt is the heading. The step length and heading
of the mobile device can be estimated from its IMU sensors and are used as input to the filter.
σ2
D and σ2

θ are the variance in the step length and heading respectively. The focus of our work is
not on implementing an accurate step length and heading estimation method, so for our model
with the ultrasonic platform we conservatively assumed that 2σD is 10cm and 2σθ is 45◦. (For a
normal distribution, 95.45% of the values lies within 2σ of the mean.)

The process model is given by[
xt
yt

]
=

[
xt−1
yt−1

]
+

[
(∆Dt + vDt ) cos(θt + vθt )
(∆Dt + vDt ) sin(θt + vθt )

]
The process model is linearized and µt and Σt are updated as:

µt = g(µt−1, ut)

Σt = GtΣt−1G
T
t +Rt

where

g(µt−1, ut) = Gtµt−1 +

[
∆Dt cos(θt)
∆Dt sin(θt)

]
Gt =

[
1 0
0 1

]
Rt = VtMtV

T
t

Vt =
∂g(µt−1, ut)

∂ut

Vt =

[
cos(θt) −∆Dt sin(θt)
sin(θt) ∆Dt cos(θt)

]
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Beacon	  1	   Beacon	  2	   Beacon	  3	  Phone	  

Area	  A	   Area	  B	   Area	  C	  Wall	  1	   Wall	  2	  

Figure 5.3: Panorama of automatically configured kitchen area using three beacons

5.3.2 Measurement model

Though the actual measurements from our system are the ToF range values from beacons, these
can not be directly used with an EKF due to the linear approximation of the ToF equations.
Instead, we first estimate the position using the range measurements, and use this estimate as our
measurement. Our measurement model is given by:

Zt =

[
xt
yt

]
+ wt

wt ∼ N (0, Qt)

where Zt = [x̂t, ŷt]
T is obtained by multilateration. We assume that the errors in the x̂t and ŷt

are uncorrelated and for our ultrasonic system, assign Qt = σzI where σz = 30cm.
In case one or more beacons are blocked, or if the phone detects that one of the signals from

the beacons is a NLOS signal, it does not update its measurement Zt. In this case, we assign
Qt = σnI where σn is a large number, such that the filtering effectively updates the estimate of
the location based purely on tracking.

5.3.3 Evaluation

We evaluated our EKF-based tracking in half a dozen areas: a kitchen and lounge space, a lab
and four office areas. The largest space in terms of area and number of corners was a lounge and
kitchen space, as shown in Figure 5.3, with a total area of around 775 sq ft. and 10 corners. In
each test, a user held an iPhone 5S and took approximately 30 steps in the area. We collected
data from the compass and read step values. Range measurements were collected from ultra-
sonic beacons. Results from our largest scenario (the kitchen area) are presented in Figure 5.4.
The Localization line refers to position estimated based on only the ranges from the beacons, the
Pedestrian Dead Reckoning line refers to position estimates purely based on the IMU sensors
and the motion model and the Localization and Tracking line refers to the output of the EKF ex-
plained above. Figure 5.4b shows that tracking does not improve the accuracy much as compared
to using only localization, since the localization is much more accurate (error less than 30cm 90%
of the time) than the estimates from the motion model. We then simulated situations when the
user blocks one transmitter by removing some of the range measurements from a beacon in the
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0 50 100 150 200 250 300
0

20

40

60

80

100

Position error (cm)

P
er

ce
nt

ag
e 

of
 e

st
im

at
ed

 lo
ca

tio
ns

 (
%

)

 

 

Localization
Dead Reckoning
Localization and Tracking

(c) Localization accuracy with obstacles

Figure 5.4: Tracking performance in the kitchen with and without obstructions.

dataset. The Localization line in Figure 5.4a shows the localization estimates under this case.
The location does not update when insufficient measurements are received. We observe that in
such cases, the system benefits from tracking, as seen in Figure 5.4c, and the error is less than
50cm for 90% of the measurements.

5.4 Beacon mapping
In this section, we describe the beacon mapping algorithm and present the experimental results
with UWB beacons.

5.4.1 Approach
The beacon mapping process utilizes the Particle Filter-based sensor fusion approaches described
in Section 5.2. In order to map the beacons with respect to each other, we draw upon existing
work in RBPF-based SLAM where the beacon locations are conditionally independent given
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the location of the receiver. This approach has multiple advantages: (1) the complexity of the
algorithm grows linearly with the number of beacons, (2) subsets of beacons can be updated
simultaneously – for large indoor spaces, the beacons in various zones can be estimated inde-
pendently by small traces of users walking through each zone and (3) it is a multiple-hypothesis
approach which can accommodate non-linear motion models and non-Gaussian noise models. A
particle filter is used to represent the belief of the mobile device where each beacon can be rep-
resented by any probabilistic distribution, such as a single Gaussian distribution, a Particle Filter
or Sum-of-Gaussians. We adopted a purely probabilistic approach and represent each beacon’s
belief by a Particle Filter, as in [22]. While prior work has demonstrated the mapping perfor-
mance with robotics systems, we implement and evaluate the mapping with a pedestrian-held
mobile device by leveraging the accurate tracking provided by VIO. As an output of SLAM, we
get the coordinates of the beacons with respect to each other and the VIO trace. The very first
time the mapping is done, a preliminary beacon map is obtained, which can be used as a basis
for adding and removing beacons over time. We use the same motion and measurement models
described in Section 5.2 for fusion of beacon ranges and VIO. The main difference between the
implementation of tracking and SLAM is that in SLAM, each particle that represents the mobile
device has a belief of the beacons. The belief of beacons is initialized using the first few range
measurements (this overcomes the problem of incorrect initialization when the first measurement
is a NLOS range). Since low-range measurements are unlikely to be NLOS and can be trusted
more than higher range measurements, when we get low range measurements (less than 3m in
our implementation), we spawn a fraction of new particles. This helps in scenarios where the
beacon belief is incorrect due to repeated NLOS signals.

5.4.2 Evaluation
To evaluate the beacon mapping process, we use Decawave UWB beacons. However, any of the
various emerging TOF ranging technologies could work. We assume a ring-type of noise model,
where the measured range is drawn from a uniform distribution of radius +/ − 30cm about the
true range. As part of the noise model, we allow a 50% likelihood that any particular range
measurement is in error. This helps to account for erroneous range measurements resulting from
noise or NLOS effects. For more complex noise models, an interested reader can refer to [3].
For each round of message exchange between the beacons and the tag, each beacon computes
a range estimate between itself and the attached tag. For debugging and simplicity, the ranges
are published by the beacons to a MQTT topic by each internet-connected beacon. The mobile
device subscribes to this topic to collect the ranges and then runs the estimation algorithms
locally. We evaluated our system in two environments: (1) a Cafe of size 145m2 (1560ft2),
shown in Figure 5.5a, which had five UWB beacons deployed, with most of the regions in the
Cafe being in LOS and (2) an Office area of size 400m2(4300ft2), shown in Figure 5.5b, with 10
beacons deployed. All beacons were deployed inside the cubicles and all were in NLOS given
the walkable areas. Test points and beacon locations were mapped accurately using a total station
for ground truth. Four different users (of different heights and holding patterns) held a device in
hand and walked at normal pace (4-5km/hr), clicking a button while crossing each test point.

Figure 5.6 shows the result of the beacon mapping algorithm in the Cafe environment based
on data from multiple traces. The individual traces vary in length from 30-250m in the Cafe. Fig-
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(a) Cafe environment

Beacon

Beacon

(b) Office environment

Figure 5.5: Environments for testing beacon mapping and magnetic-field based orientation ac-
quisition.
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Figure 5.6: Beacon mapping performance

ure 5.6a shows the result of beacon mapping from the individual traces, and the estimate from
combining all the traces. Next, we show the effect of distance walked by the user on the beacon
mapping accuracy. We take combinations of the individual traces, and for each combination,
estimate the total length of the traces and the mean beacon locations across traces. Figure 5.6b
shows the beacon mapping performance for varying lengths of traces. Our algorithm achieved
90% error of 0.45m and 0.30m with 200m and 1800m of walking in the LOS Cafe environment,
respectively. We see that longer trace lengths give better mapping performance, but the improve-
ment is not significant after the user walks beyond 500m, which takes about seven minutes at
normal walking pace. In the Office environment, where all the beacons were in NLOS from the
walking paths, we were able to map with 90% error of 0.47m and 0.33m with 400m and 2400m
of walking. We expect that in LOS conditions, where we expect a finite variance but no bias in
the range measurements and hence the location estimates, the beacon locations would eventually
converge to the true locations with sufficient mapping data. The initial beacon map can be built
by an installer and subsequently improved by users in a crowdsourced manner.
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5.5 Floor plans mapping
In this section, we present an approach for mapping the floor plans using a mobile device and
range data from beacons. We map floor plans by using beacons to localize a mobile device, which
a user places at key landmarks such as corners. The corners define the floor plan, and we can
either interpolate between the corners to create the floor plan or track the device continuously to
trace out the floor plan. This process can be performed by a non-expert user in a few minutes for
a single area and has been adopted by companies like Estimote for their ultra-wideband mapping.

5.5.1 Procedure
The process for mapping three beacons with inter-beacon ranging in a single area is given below.
The approach can be extended to more beacons in a single area and, conceptually, also multiple
areas. To extend the process to more beacons, we have to first map the beacons with respect to
each other. Our process below includes the mapping of the three beacons in a single coordinate
frame. We developed a mobile app that guides the user through these steps:

1. Deploy the three beacons such that they provide good coverage of the area and are in LOS
of each other.

2. Identify three points on the floor such that all three beacons are visible from each point.
Place the phone at each location, and select the ground reference point option.

3. Walk around the room and go to each corner and select the corner reference points. You
can either choose to interpolate between corners, i.e., generate the floor plan using line seg-
ments between the corner points, or use device mobility and device tracking to create the
floor plan regions between the corners. In our implementation, we opted for line segments
between corner points.

4. Specify an origin and the orientation of the x− y coordinate space. One way to do this is
to select one of the corners as the origin and an adjacent corner to be on the x- or y-axis.

5.5.2 Algorithm
The basic principle of the 3D mapping process is that we make use of the following types of
information to uniquely solve for the beacon positions and create the floor plan: (a) inter-beacon
ranging, (b) ranging between beacons and a mobile device, (c) inertial tracking (optional), (d)
estimation of z − plane using the three ground measurement points and (e) user specified x− y
plane origin and orientation. The mapping algorithm for a scenario with three beacons is as
follows:

1. Given inter-node ranges r12, r23 and r13 between the three beacons B1, B2 and B3, define
a 3D coordinate system R3

a such that the three beacons are on the z = 0 plane, B1 is the
origin [0, 0, 0], and B2 is along the x-axis [r12, 0, 0]. Coordinates of B3 can be obtained as
[r13 cos(α), r13 sin(α), 0], where α = arccos(

r212+r
2
13−r223

2r12r13
).

2. Estimate the coordinates of the three ground reference points with respect to the beacons
in R3

a.
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Figure 5.7: Qualitative results for beacon and floor plan mapping

3. Define a new coordinate system R3
b such that the plane that contains the three ground points

is the new z = 0 plane in R3
b .

4. The x − y plane of R3
b can be defined by its origin and one of the axes. The axes can be

chosen arbitrarily, since we would re-assign the x− y plane after generating the floor plan.
In our implementation, we did the following: The projection of B1 on the x − y plane is
assigned as the origin (0, 0, 0) of R3

b . The projection of B2 on this plane is assigned to lie
on the y-axis of the new plane. The x-axis of R3

b is found to be normal to the y and z axes.

5. Estimate the location of all the corner reference points in R3
b using trilateration.

6. If line-segment interpolation between corner points is not desired, and the user wishes to
create the floor plan lines in between the corner points, use a tracking method to create the
segments between the corners.

7. The x − y coordinates of the required 2D coordinate system are specified by the user
during the calibration process. Either apply an affine transformation on R3

b to get the final
coordinate system, or for better accuracy, apply non-linear transformations to minimize
error across all reference points if more than two reference points are available.
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Beacon Error (cm) Corner Error (cm)
Setup Avg. x y z Avg. Max

Kitchen 13.9 2.2 1.4 13.4 26.8 43.6
Lab 18.2 5.4 3.6 13.6 13.0 25.2

Office 1 17.5 4.6 3.5 15.0 10.7 13.9
Office 2 17.2 5.0 1.6 15.1 22.8 34.0
Office 3 15.5 2.3 1.7 11.1 18.9 40.9
Office 4 14.1 3.4 3.1 12.9 26.5 31.4
Overall 16.1 3.8 2.5 13.5 19.8 43.6

Table 5.1: Performance of beacon and floor plan mapping

5.5.3 Evaluation
Here, we present the results of the floor plan mapping process in the same environments de-
scribed in Section 5.3.3. While mapping the floor plan using the proposed approach, we also
map the beacons. We present the beacon mapping results as well. The generated map is shown
in Figure 5.7. Note that this process requires all the corners to be in LOS of the three beacons.
Some of the boundaries in Figure 5.7 were not physical walls but were either 1.5m tall parti-
tions or were chosen to ensure all corners are in LOS. The results of the mapping process for the
kitchen setup and averaged across all six experimental setups are shown in Table 5.1. Our sys-
tem can determine three-dimensional beacon location with a Euclidean distance error of 16.1cm
averaged over the three beacons, and can generate maps with room measurements with a two-
dimensional Euclidean distance error of 19.8cm averaged over all the corners. We observe that
while mapping the beacons, the overall error in the height is around 13.5cm, while the error in
the x or y coordinate is less than 4cm. This is because the height of the beacons were within 1m
of each other, whereas they were well separated in the x − y plane. Hence the height is more
sensitive to errors.

5.6 Summary
In this chapter, we presented approaches to fuse mobility data from phone sensors (inertial and
camera) with beacon ranges for accurate tracking of a mobile device. We leverage this mobility
for mapping beacons and mapping the floor plan information. With the ultrasonic platform, we
mapped floor plans with an average two-dimensional Euclidean distance error of 19.8cm and
beacons with an error of 16.1cm in the x-y plane. We demonstrated mapping of UWB beacons
with range-only SLAM using VIO to a 90% accuracy of 0.45m and 0.30m with traces of length
200m and 1800m respectively, by a pedestrian walking in a LOS environment.

We believe that creating maps in an easy, cost-effective manner by crowdsourcing data from
pedestrian-held phones will reduce the barrier to adoption of range-based beacon technologies.
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Chapter 6

Orientation acquisition

In Chapter 4, we presented a robust location acquisition solver for the real world. For several
applications, in addition to instant accurate location, we also require an instant accurate orienta-
tion estimate. However, range-based beacons do not provide any orientation information. In this
chapter, we build on the mapping techniques presented in Chapter 5 and present a method to fuse
beacon ranges, VIO and the magnetic field for rapid orientation acquisition on mobile devices
[105].

Orientation acquisition outdoors can easily be accomplished using a magnetometer; since
the earth’s magnetic field generally points in a constant direction outdoors, it can be used as
a global orientation reference. However, indoor magnetic fields tend to fluctuate wildly across
space due to the metallic materials in the building structure and objects inside. We show that with
accurate six-degrees-of-freedom tracking from VIO, we now have enough information to map
the 3D magnetic field vector at a fine enough granularity to act as a calibration system for future
users. Existing works that have constructed such maps of the magnetic field direction typically
employ a robotic system with the sensor mounted at a known orientation, as well as accurate
wheel odometry. These techniques are not practical for building-scale, due to the cost and effort
involved. Leveraging accurate VIO, our approach is the first that is able to determine the full
vector magnetic field map such that it can be used to calibrate a mobile phone or a compass
mounted on a smart device held in any orientation. Our system maps the magnetic field by having
users simply walk around wearing or holding the device normally. Subsequently, devices can
instantly localize themselves using the beacons and instantly estimate their orientation using the
on-board magnetic sensor and the previously obtained magnetic field map to drastically reduce
vision-based search uncertainty. We demonstrate the accurate location and orientation obtained
by our system with augmented reality applications that do not rely on visual point clouds for
mapping.

In this chapter, we present a method for rapid pose acquisition that uses crowdsourced vec-
tored (pose invariant) magnetic field maps. We experimentally show the performance of this
approach across a variety of environments and over time. We present an end-to-end system im-
plementation of accurate location and orientation acquisition using beacons and magnetic field,
and apply this towards multi-user augmented reality applications.
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6.1 Background and related work
In this section, we first describe the state-of-art approaches for relocalization using vision, then
discuss approaches that use magnetic field for location and orientation estimation, and finally
discuss prior work in creating spatially varying signal maps indoors.

6.1.1 Vision-based relocalization
Relocalization, also referred to as pose acquisition or registration, using vision based approaches
is performed by matching features in the field of view with pre-mapped visual features. Several
research studies have shown accurate relocalization using machine learning techniques [29, 60]
and by fusing additional sensing modalities such as WiFi and magnetic field [28]. Most of
these approaches have demonstrated accurate and efficient relocalization on datasets, but are
computationally intensive for mobile devices. However, ARKit 2 by Apple and ARCore by
Google have shown persistent AR by performing relocalization using pre-stored maps. Vision-
based relocalization is promising, since it does not rely on external infrastructure. However,
vision will always suffer in environments devoid of features, with changes in lighting, and where
the scenery changes over time. In addition, vision-based relocalization in large areas requires
searching through many candidate feature matches, which can become expensive if an initial
location estimate is not provided. It is often the case that the user must walk around and view
several areas of a scene before visual relocalization is able to take effect. We are optimistic that
vision will continue to improve, but there are certain environments like office cubicles, hospitals
or parts of airport terminals where even humans have trouble figuring out their location without
exploring. Due to the limitations of a purely vision-based approach, we advocate combining
visual approaches with range-based beacons.

6.1.2 Magnetic field sensing
Several prior works leverage the spatial variation and temporal stability of the magnetic field
inside buildings for estimating location [25, 117, 123, 134, 136]. These approaches map the
magnetic field magnitude as a function of location during the system setup and subsequently
use it as a signature to estimate location. Since the magnetic field signature is not unique, it is
integrated with other sensors or matched against a time series pattern as the user walks around
[111, 117, 135, 136]. Our work differs from these approaches since we localize using beacons,
and use the mapped magnetic field direction to estimate orientation.

Prior work has shown that orientation can be estimated using magnetic field by looking for
opportunities when the change in orientation from the magnetometer is consistent with the gyro-
scope, indicating that the field is stable in that region [146]. The authors found on average two
opportunities per minute when the field is stable. This requires the user to walk around and is not
suitable for instant orientation acquisition. Robotic systems with sensors mounted in a known
fixed orientation and accurate odometry use the magnitude and the direction of the magnetic field
[61], but robots are neither affordable nor flexible enough for all applications. The closest to our
work is [68], which presents a pedestrian-held system for magnetic field mapping. However, it
relies on the phone being rigidly held and carried along a specific pre-determined route through
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the room. Our approach obtains the vectored magnetic field maps in any indoor space with a
phone, where the user is free to walk through the room at any speed and any walking pattern.

6.1.3 Mapping spatially varying vectors indoors

Several algorithms for mapping spatially varying signals indoors overlap with the algorithms
for creating indoor floor plan maps, as both aim to map features in the environment. The most
common signatures mapped indoors are WiFi signal strength and magnetic field. One class of
mapping systems uses robots or backpacks with sensors such as laser scanners, camera, inertial
units and depth cameras to create maps of signal variation with locations [61, 71, 80, 98]. Our
approach differs from these systems as we perform the mapping with phones held by pedestrians
in any orientation. We are able to achieve this by fusing data from range-based beacons and VIO.
VIO provides accurate pose tracking and the beacons provide global localization and correct for
errors that accumulate over long distances with VIO.

6.2 Magnetic field mapping and orientation acquisition

Our goal is to acquire the orientation of the device in an external fixed frame defined by the
beacons. We solve this estimation problem by fusing data from beacons, VIO and the magnetic
field. In Section 5.2, we described the process of fusing data from beacons and VIO to estimate
the six-degrees-of-freedom pose of the device in the beacon reference frame. We build on this
estimation technique to create magnetic field maps (the approach also applies to any other signal
map that varies with locations) when the user is mobile. While estimating the pose of the device,
as described in Section 5.2, if the user starts at a location that has no prior magnetic map, the
state estimation starts off with a belief that the orientation is uniformly distributed in [0, 2π].
Eventually, when the user has moved around and the particle filter converges, we can rely on the
estimate of θ, or the rotation between the AR and beacon frames. We start building the magnetic
field map at the locations that the user covers while walking by using the continuously estimated
values of mobile device, θ, the magnetic field sensor data and the VIO orientation and position
data. Subsequently, when the user is stationary and starts up the localization or augmented reality
application, we use the beacon ranges to acquire the device location and use the magnetic field
data and VIO orientation to acquire θ, the device orientation.

Our architecture for both mapping the magnetic field and subsequently using the mapped
field to acquire orientation is shown in Figure 6.1. In addition to the two reference frames intro-
duced earlier, namely FBEAC and FAR, we introduce a third reference frame, FDEV , which is the
frame of reference in which the inertial sensors are logged, i.e., it moves with the device. These
three frames are shown in Figure 6.2.

We add to the notations in Section 5.2 to define:

• FBEAC : Beacon frame of reference that is fixed over time across users.
• FAR: AR frame of reference that is fixed for an AR session on a single mobile device.
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Figure 6.1: Architecture for fusion of beacon ranges, VIO and magnetic field

• FDEV : Device frame of reference that moves with the device.
• MDEV : Magnetic field vector in FDEV .
• MAR: Magnetic field vector in FAR.
• MBEAC : Magnetic field vector in FBEAC .
• XAR : 3D VIO position, i.e., x,y,z values of the device in FAR.
• φAR: 3D VIO orientation, i.e., yaw, pitch, roll values of device in FAR.
• XBEAC : 3D position of the device in FBEAC .
There is overlap between the steps to map the magnetic field and the steps to acquire the

orientation. First, we describe the steps to map the magnetic field and then reuse the presented
steps while describing the orientation acquisition process.

Step 1: Reading the magnetic field sensor

In this step, we simply read the 3D magnetic field MDEV in the device frame of reference FDEV .
This frame is fixed with respect to the device as shown in Figure 6.2a.

Step 2: Converting the field from device frame FDEV to AR frame FAR

When the device moves in an AR session, the AR frame of reference FAR remains constant but
the device frame of reference FDEV changes. In order to convert the magnetic field vector to
an AR frame, we make use of the VIO orientation φAR. The VIO orientation gives us the roll,
pitch and yaw of the device with respect to the AR frame. We transform the 3D magnetic field
vector in device frame MDEV by φAR to obtain the 3D magnetic field vector in AR frame MAR.
The result of this process is shown in Figure 6.3 with a view of the 3D magnetic field. When
the device is completely stationary, we see that the magnetic field is mapped to a different vector
from the device to AR frame. When the device is rotated about 360◦ in all orientations, the
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magnetic field measured in the device frame rotates about a sphere but the magnetic field in the
AR frame is fixed. In this manner we convert from MDEV to MAR.

Step 3: Converting the magnetic field from AR frame FAR to beacon frame FBEAC

We convert the magnetic field from the AR frame MAR to the beacon frame MBEAC using
the estimated θ, which provides the rotation between the two frames of references about the
z-axis. We project the magnetic field MAR to 2D on the x− y plane and then apply this rotation:
MBEAC = 2D projected (MAR) − θ. This process is illustrated in Figure 6.4a. The fusion
estimates the rotation between the AR and beacon frame. This rotation is applied to the magnetic
field to generate a vectored magnetic map. Several traces can be combined together over time as
shown on the right in Figure 6.4a.
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Step 4: Building the magnetic field map

Once we convert the magnetic field to the beacon frame in Step 3, we get the mapping between
locations and the 3D magnetic field vector in the beacon frame. We store the map as a function
of 2D locations. We evaluate the variation in height from 0.7 to 1.8m above ground (the height
of standing and holding the device with arms outstretched down and holding it up) and found
the z-variation to be within 10◦ at worst in a lab/cubicle space where there were monitors, metal
cabinets, tables, chairs and devices. We elaborate on this in Section 6.3.1. Hence we store
the map in 2D for it to be more tractable. We combine the field from multiple traces to build
the map. The map at a location (x, y) is represented as the circular mean Mµ

BEAC(x, y) angle
and circular standard deviation angle Mσ

BEAC(x, y) of all the magnetic angles logged at location
(x, y). Figure 6.4b shows an example of the real-world map of the magnetic field generated in
an office floor of a building.

Orientation acquisition from the magnetic field map

To acquire the orientation upon startup, we use the previously generated magnetic field maps.
The acquisition process differs from the mapping process only in the initialization of the state
θ of the particles. First, the magnetic field is read in the device frame and converted to the AR
frame using Steps 1-2 described above, to getMAR. Then the magnetic field is read from the map
at locations where the particles are initialized, i.e., we read Mµ

BEAC(x, y),Mσ
BEAC(x, y). While

initializing particles, if no magnetic field information is available, we draw θ with uniform prob-
ability in [0, 2π]. Once the magnetic field information is available, we draw θ from a distribution
based on the mean and variance of the mapped magnetic field at that location:

θ ∼ N
(
Mµ

BEAC(x, y)−MAR,M
σ
BEAC(x, y)

)
(6.1)

where (x, y) refers to the location of the particle at initialization. Each particle’s θ dimension is
initialized independently of other particles.

6.3 Evaluation
The experimental setup and environments for evaluating the magnetic field mapping and orien-
tation acquisition are the same as described in Section 5.4.2. We used Decawave beacons and
evaluated the system in the previously described Cafe and Office environments. First, we present
the experimental evaluation of the feasibility of using the magnetic field for orientation acquisi-
tion. The magnetic field’s spatial and temporal variation determines its feasibility for orientation
acquisition.

6.3.1 Spatial variation
The spatial variation of the magnetic field along with the localization accuracy impacts the accu-
racy of the orientation acquisition. For instance, if the average localization error is 10cm, and the
magnetic field varies by around 50◦ for locations that are 10cm apart, then this spatial variation
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of the magnetic field along with the localization error could result in a 50◦ error in orientation
acquisition. To test the spatial variation, we experimentally evaluated the magnetic field variation
along the vertical (parallel to gravity vector) and horizontal axes. Figure 6.5a shows the variation
along the z-axis for device height of 0.7m to 1.8m above ground (1m about nominal standing
height) across four environments (office, lobby, bookstore, cafe). Since the z-deviation is gen-
erally within 5◦, we store the magnetic field map in 2D, rather than 3D, to keep the map size
tractable without losing significant accuracy. Next, we characterize the variation over horizontal
distance in several environments, including outdoors, garage, mall, cafe and airports. We first
compute the magnetic field angle difference between all pairs of locations that are a fixed dis-
tance apart. This captures the spatial variation for different distances. We then compute the CDF
of the spatial variation for a fixed distance and extract the 50% spatial variation (representative of
general case, shown in Figure 6.5b) and the 95% spatial variation (representative of worst case,
shown in Figure 6.5c) for distances from 0 − 12m. For instance, the Cafe line in Figure 6.5c
shows that across all location pairs that are 1m apart, 95% have a field difference of less than
40◦. As one might expect, with a larger change in distance, there is a higher change in field
across all locations. However, beyond a certain distance, these changes are random. The change
in magnetic field for a distance corresponding to 30cm (the approximate positioning error from
UWB localization system), is within 3◦ for 50% and varies from around 3− 12◦ for the different
environments for 95%. This reinforces the notion that the magnetic field can be highly variable
indoors and that certain measurements generalize well across recorded paths while other areas
need dense recordings.

6.3.2 Temporal variation
Since orientation acquisition relies on matching with a previously acquired map, the rate of
change of field over time (temporal variation) impacts the orientation acquisition accuracy. Fig-
ure 6.6 shows the temporal variation over 10 weeks across four environments (book store, office
floor, underground parking garage, outdoors). As expected, the outdoor environment has the least
variation. The garage has the highest variation, due to cars (large metallic objects). In the two
indoor environments, most regions have temporal standard deviations of less than 4◦. In some
environments, like stores with moving metal shelves, the magnetic field will often change after
a reconfiguration. Through crowdsourcing, our approach can continuously update and average
magnetic field values from multiple users to adapt over time.

6.3.3 Localization accuracy
Before we acquire the orientation,we first acquire the device’s location. Figure 6.7 shows the
localization accuracy of the mobile device in both environments, Cafe with LOS and NLOS
signals, and Office with only NLOS signals, by fusion of beacon ranges and VIO. Users walked
continuously between test points, stopping for at least one second at each test point and pressing
a button on the app. Since the users held the device in hand above the test point marked on
ground, this introduced 10 − 15cm error between the device’s true location and the test point
that our experiment is limited by. In the Office environment and Cafe, we measure 80% error of
46cm and 27cm respectively.
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Figure 6.6: Temporal variation over 10 weeks. The plots show the histogram of the circular
standard deviation across time for all locations in the environment
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Figure 6.8: Magnetic field map captured in the two deployments. Office Space (a-b) and a Cafe
(c-d)
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Figure 6.9: Orientation acquisition accuracy

6.3.4 Magnetic field orientation accuracy
Figure 6.8 shows the magnetic field map in the two environments. The map is represented by the
mean and standard deviation of the magnetic field. For the Office space, the standard deviation is
2◦ and 10◦ for 50% and 95% of the locations, respectively. For the Cafe, the standard deviation is
5.3◦ and 20.3◦ for 50% and 95% of the locations respectively for a grid size of 30cm. As can be
seen from Figure 6.5c, this Cafe has very high spatial variation compared to typical environments.

Figure 6.9 shows the accuracy of the magnetic-field based orientation for maps of varying
spatial density. The Magnetic: 30cm grid map and Magnetic: 3m grid map show the angle error
for two different grid sizes. The Magnetic: constant field map shows the performance if we
assume the entire map has the same field, for which we used the mean of the field across the
map. This is effectively equivalent to representing the map by a single sample. In the Office
environment, we observe that the 80% point for a 30cm grid is 12.5◦ and with a constant field is
30◦. In the Cafe environment, we observe that the 80% point for a 30cm grid is 11.0◦ and with
a constant field is 54◦. Across both environments, the 80% error is 11.7◦ for a 30cm grid. We
also see that the 3m grid performance is closer to assuming a constant field than using a 30cm
grid which highlights the utility of our approach in areas with high spatial variation. To reduce
map storage, regions of the environment with high spatial variation should have a fine grid, while
other regions can have a coarser grid. We also do not require complete coverage of a map, since a
recorded trajectory can be extrapolated to support other nearby starting points with a confidence
derived from the typical spatial variance captured in that area. We leave the compression of
magnetic field maps to future work.

6.3.5 Distance moved to acquire orientation
In Section 6.3.4, we evaluated the accuracy of the orientation acquired upon startup. When the
device moves, the orientation estimate is updated and over time (and distance) it converges to
the correct orientation. In this section we answer the question, “How much does the device need
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Figure 6.10: Orientation convergence with distance
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to move before the orientation and location converge to the true values?” We answer this ques-
tion in two parts: first, in simulation where we show the angle (orientation) convergence for two
different localization error models with mobility but without magnetic field, and next, by exper-
imentally showing the orientation convergence with and without magnetic field.

Theoretically, a device needs to move only between two unique locations in order to estimate
the orientation using the approach with beacons and mobility. The accuracy of the angle estima-
tion of the device is a function of the localization accuracy, which depends on several factors,
including (1) the ranging error, (2) geometry of beacons, (3) the accuracy of the beacon locations
and (4) frequency of beacon updates. The relationship between the location accuracy, ranging
error and geometry of beacons for perfect beacon locations and synchronous beacon updates is
captured by the Geometric Dilution of Precision (GDOP) metric [94, 121, 128]. We abstract
away all of these parameters and assume that all locations have independent and identically dis-
tributed localization error. Consider a device that has moved between two locations that are at
distance d apart. In the first model, we consider that the Worst case localization error at each
location is given r. When the device moves by a distance d, the worse case angle error is de-
termined by the tangent to the two circles of radius r separated by d/2 distance. This is given
by sin−1 2r

d
. In the second model, the Expected value of the location error is drawn from a 2D

zero mean Gaussian distribution with noise in each dimension being uncorrelated and standard
deviation in each dimension as r. For this model, we generate the expected value of angle er-
ror through simulation by computing the mean angle error from randomly generated locations
drawn from this distribution. The worst case and expected values are for different models, but
for simplicity, we have shown the results of both in Figure 6.10a for different values of r. This
gives a sense for how the performance would change with different localization technologies.

Figure 6.10b and Figure 6.10c show the performance of our system experimentally across
several traces in both the test environments. We estimated the convergence time for each trace
with error bars showing the distribution across all traces. Since the magnetic field-based orienta-
tion acquisition has a lower angle error at startup, it requires a lower distance from the mobility
to achieve the same angle error, as compared to without the magnetic field. The implication
of this is that a device instantly acquires an orientation, and when it moves a short distance it
converges on the true orientation quicker than without using the magnetic field. Across both
environments, we were able to get within 9◦ accuracy by moving the device 1m. In theory, this
could be achieved by waving the device around with a hand, in scenarios where a person holding
the device is stationary at a location and requires a high orientation accuracy. We wish to point
out here that the rate of convergence is also dependent on the parameters of the particle filter im-
plementation, such as when resampling is performed, how frequently and when new particles are
spawned and how much time/how many range measurements are required to initialize the filter
upon startup. Nonetheless, using the magnetic field results in a faster convergence than without
using the magnetic field.
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6.3.6 Demonstration application
We built the end-to-end system and demonstrate it with an AR applications. As previously de-
scribed in Section 1.5.1 of Chapter 1, we built mutli-user persistent AR applications with ultra-
sonic beacons. We also described the infrastructure-free firefighter localization in Section 1.5.2.
We combine these to demonstrate a firefighter localization prototype system with augmented re-
ality built with UWB beacons. Though we have demonstrated with mobile augmented reality, we
envision that this approach could be incorporated into augmented reality displays worn by fire-
fighters in future. A snapshot of the prototype system is shown in Figure 6.11. Our setup has four
beacons deployed at fixed locations. Two persons representative of firefighters walk around with
mobile devices attached to UWB tags. The devices are localized with respect to the beacons, and
the real-time location pose information is available on an external console with a user interface.
Figure 6.11a shows an application where both mobile devices are able to share persistent AR
content that corresponds to the other device’s location. We see that mobile device A is able to
see the mobile device B in real-time in AR (with a red blob located around the mobile device
B). This is representative of firefighters being able to see other virtually, through the building
walls and smoke. Figure 6.11b shows the location of both devices made available on an external
console. We see that a user is able to click at locations on the user interface (shown as orange
triangles) and the mobile device is able to see new virtual content (fire) pop up in real-time at
the user-defined locations. This is representative of a scenario where a fire hazard information is
conveyed in real-time from a safety chief located outside the building, to firefighters’ augmented
reality headset displays. This prototype demonstrates the sharing of persistent AR content among
the two mobile devices and the external system.

6.4 Summary
In this chapter, we presented a methodology to fuse beacon ranges, VIO and magnetic field to
track the full pose of a mobile device, allowing us to record the full magnetic field vector and
not just magnitude. This enables us to acquire the device orientation indoors in addition to the
location. We show that with UWB ranging, we can acquire location with 80th percentile 3D
accuracy of 27cm in LOS and 46cm in NLOS, and our magnetic field mapping approach can
instantly estimate orientation with 80th percentile accuracy of 11.7◦.
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Chapter 7

Conclusion

This dissertation presented a systematic methodology to integrate various sources of informa-
tion to overcome the challenges faced by range-based localization systems, while trying achieve
high performance at low cost. We implemented our approaches with two ranging platforms: an
ultrasonic ranging platform and an ultra-wideband ranging platform.

This dissertation makes the following contributions:

1. Beacon placement: We present a systematic approach to integrate the floor plan geometry
and beacon coverage models to reduce the number of beacons while maintaining localiza-
tion coverage. We quantify the quality of beacon placements and use it to design beacon
placement algorithms in an open source toolchain available to system designers. Our ap-
proach reduces the number of beacons on average by 33%.

2. Mapping: We present a crowdsourced pedestrian-aided mapping process that simply re-
quires users to walk around with phones that can be held in any orientation. With the
ultrasonic platform, we mapped floor plans with a two-dimensional Euclidean distance er-
ror of 19.8cm and beacons with an error of 16.1cm in the x-y plane. We demonstrated
mapping of UWB beacons with range-only SLAM using VIO to a 90% accuracy of 0.45m
and 0.30m with traces of length 200m and 1800m respectively, by a pedestrian walking in
a LOS environment.

3. Location acquisition: We present a location solver that integrates the floor plan geometry
and beacon coverage models to localize robustly in under-defined scenarios. Our solver
shifts the 80% accuracy point from 48m to 1m as compared to solvers that do not use
the floor plan information. We are able to detect and remove NLOS signals with 91.5%
accuracy.

4. Orientation acquisition: We present a method to acquire device orientation in addition to
location, by fusing beacon ranges, VIO and the magnetic field sensor data. We show that
with UWB ranging, we can acquire location with 80th percentile 3D accuracy of 27cm in
LOS and 46cm in NLOS, and our magnetic field mapping approach can instantly estimate
orientation with 80th percentile accuracy of 11.7◦.
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7.1 Future directions
Looking ahead, several challenges remain to be solved for range-based localization systems. This
dissertation has assumed that devices receive range measurements from beacons with known
identity and location. In the future, we envision that with the emerging standards for ranging
technologies, WiFi access points, mobile devices, smart home appliances and internet-of-things
devices would be capable of ranging to each other. For these systems to range to a large number
of devices in a single collision domain, we require time synchronization between the devices. For
RF ranging technologies, devices require time synchronization on the order of nanoseconds. Fur-
ther, multiple access and device discovery is non-trivial with heterogeneous ranging technologies
in an ecosystem where devices’ identities are not known.

In this dissertation, we have performed sensor fusion at an algorithmic level. We gather the
available sensor data and generate map and location estimates. In the future, it may well be
possible to integrate the sensor data at a lower level where we only sense when required. For
instance, we can take a cross-layer approach where the quality of localization service requested
by the application determines when to sense and what data to sense. The goal would be to
minimize on-device resources (e.g., energy, computation) while meeting the requested quality of
location service.

In order for indoor localization to be successful at scale, we need to design human-in-the-
loop mapping processes where users get feedback on the quality of maps and are guided in order
to reduce the uncertainty in the mapping process. A possible direction is to use augmented reality
to provide the user visual feedback on the quality of the maps by overlaying the estimated map
on the real world. We also require tools that can continuously detect if beacons have failed or
moved and give system installers and users feedback about the performance in real-time.

In this dissertation, we have assumed a non-adversarial setting. We have assumed that the
infrastructure and devices trust each other. In round-trip-time-of-flight ranging systems such
as ultra-wideband, we have also assumed that the devices and infrastructure are aware of each
other’s identities. However, attacks on the ranging systems can reduce and enlarge range mea-
surements. Here, the challenge is that the attacks may be indistinguishable from noise. A possi-
ble approach to overcome this could be to fuse different sensors’ information to be more robust
to attacks.

Finally, what we require is a unifying framework for indoor localization that accommodates
current and future technologies, where various maps, real-time sensor data and models are in-
tegrated to provide various quality of services for localization based on the available sensing,
power and compute resources. Devices in the environment should be able to subscribe to se-
cure location services in a manner that preserves their privacy. This dissertation has taken a step
towards this by contributing to a framework for range-based localization systems.
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[37] A. Ens, F. Höflinger, J. Wendeberg, J. Hoppe, R. Zhang, A. Bannoura, L. M. Reindl,
and C. Schindelhauer. Acoustic self-calibrating system for indoor smart phone tracking.
International Journal of Navigation and Observation, 2015, 2015. 43, 58

[38] T. Eren, O. Goldenberg, W. Whiteley, Y. R. Yang, A. S. Morse, B. D. Anderson, and
P. N. Belhumeur. Rigidity, computation, and randomization in network localization. In
INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Com-
munications Societies, volume 4, pages 2673–2684. IEEE, 2004. 65

[39] F. R. Fabresse, F. Caballero, I. Maza, and A. Ollero. Undelayed 3d ro-slam based on
gaussian-mixture and reduced spherical parametrization. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1555–1561. IEEE, 2013. 66

[40] B. T. Fang. Simple solutions for hyperbolic and related position fixes. IEEE transactions
on aerospace and electronic systems, 26(5):748–753, 1990. 41

[41] W. H. Foy. Position-location solutions by taylor-series estimation. IEEE Transactions
on Aerospace and Electronic Systems, 12:187–194, Mar. 1976. doi: 10.1109/TAES.1976.
308294. 41, 42

[42] M. Geyer and A. Daskalakis. Solving passive multilateration equations using bancroft’s
algorithm. In 17th DASC. AIAA/IEEE/SAE. Digital Avionics Systems Conference. Pro-
ceedings (Cat. No. 98CH36267), volume 2, pages F41–1. IEEE, 1998. 41

[43] S. K. Ghosh. Approximation algorithms for art gallery problems in polygons. Discrete
Applied Mathematics, 158(6):718–722, 2010. 21

[44] D. K. Goldenberg, P. Bihler, M. Cao, J. Fang, B. Anderson, A. S. Morse, and Y. R. Yang.
Localization in sparse networks using sweeps. In Proceedings of the 12th annual inter-
national conference on Mobile computing and networking, pages 110–121. ACM, 2006.
65

102



[45] F. Hammer, M. Pichler, H. Fenzl, A. Gebhard, and C. Hesch. An acoustic position estima-
tion prototype system for underground mining safety. Applied Acoustics, 92:61–74, 2015.
42, 43

[46] J. Han, L. Shao, D. Xu, and J. Shotton. Enhanced computer vision with microsoft kinect
sensor: A review. IEEE transactions on cybernetics, 43(5):1318–1334, 2013. 3

[47] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. Rgb-d mapping: Using kinect-style
depth cameras for dense 3d modeling of indoor environments. The International Journal
of Robotics Research, 31(5):647–663, 2012. 66

[48] J. Herrera, A. Hinkenjann, P. Ploger, and J. Maiero. Robust indoor localization using
optimal fusion filter for sensors and map layout information. In Indoor Positioning and
Indoor Navigation (IPIN), 2013 International Conference on, pages 1–8. IEEE, 2013. 44

[49] S. Hilsenbeck, D. Bobkov, G. Schroth, R. Huitl, and E. Steinbach. Graph-based data
fusion of pedometer and wifi measurements for mobile indoor positioning. In Proceedings
of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing,
pages 147–158. ACM, 2014. 44

[50] F. Hoffmann, M. Kaufmann, and K. Kriegel. The art gallery theorem for polygons with
holes. In Foundations of Computer Science, 1991. Proceedings., 32nd Annual Symposium
on, pages 39–48. IEEE, 1991. 21

[51] L. Hu and D. Evans. Localization for mobile sensor networks. In Proceedings of the
10th annual international conference on Mobile computing and networking, pages 45–57.
ACM, 2004. 65

[52] J. Huang, D. Millman, M. Quigley, D. Stavens, S. Thrun, and A. Aggarwal. Efficient,
generalized indoor wifi graphslam. In Robotics and Automation (ICRA), 2011 IEEE In-
ternational Conference on, pages 1038–1043. IEEE, 2011. 65

[53] Y.-H. Jo, J.-Y. Lee, D.-H. Ha, and S.-H. Kang. Accuracy enhancement for uwb indoor
positioning using ray tracing. In Position, Location, and Navigation Symposium, 2006
IEEE/ION, pages 565–568. IEEE, 2006. 44

[54] J. Jung and H. Myung. Indoor localization using particle filter and map-based nlos ranging
model. In Robotics and Automation (ICRA), 2011 IEEE International Conference on,
pages 5185–5190. IEEE, 2011. 44

[55] G. Kantor and S. Singh. Preliminary results in range-only localization and mapping. In
Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE International Conference
on, volume 2, pages 1818–1823. IEEE, 2002. 65

[56] E. Kaplan and C. Hegarty. Understanding GPS: principles and applications. Artech
house, 2005. 16, 17

[57] S. M. Kay. Fundamentals of statistical signal processing, volume i: estimation theory.
1993. 21, 30

[58] B. Kempke, P. Pannuto, and P. Dutta. Polypoint: Guiding indoor quadrotors with ultra-
wideband localization. In Proceedings of the 2nd International Workshop on Hot Topics
in Wireless, pages 16–20. ACM, 2015. 2

103



[59] B. Kempke, P. Pannuto, B. Campbell, and P. Dutta. Surepoint: Exploiting ultra wideband
flooding and diversity to provide robust, scalable, high-fidelity indoor localization. In
Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-
ROM, pages 137–149. ACM, 2016. 2

[60] A. Kendall, M. Grimes, and R. Cipolla. Posenet: A convolutional network for real-time
6-dof camera relocalization. In Proceedings of the IEEE international conference on com-
puter vision, pages 2938–2946, 2015. 2, 83

[61] H.-S. Kim, W. Seo, and K.-R. Baek. Indoor positioning system using magnetic field map
navigation and an encoder system. Sensors, 17(3):651, 2017. 83, 84

[62] N. Kirchhof. Optimal placement of multiple sensors for localization applications. In In-
door Positioning and Indoor Navigation (IPIN), 2013 International Conference on, pages
1–10. IEEE, 2013. 22

[63] Y.-S. Kuo, P. Pannuto, K.-J. Hsiao, and P. Dutta. Luxapose: Indoor positioning with mo-
bile phones and visible light. In Proceedings of the 20th annual international conference
on Mobile computing and networking, pages 447–458. ACM, 2014. 2

[64] D. Kurth, G. Kantor, and S. Singh. Experimental results in range-only localization with
radio. In Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ
International Conference on, volume 1, pages 974–979. IEEE, 2003. 65

[65] P. Lazik and A. Rowe. Indoor pseudo-ranging of mobile devices using ultrasonic chirps.
In Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems, pages
99–112. ACM, 2012. 2, 14, 43

[66] P. Lazik, N. Rajagopal, O. Shih, B. Sinopoli, and A. Rowe. Alps: A bluetooth and ultra-
sound platform for mapping and localization. In Proceedings of the 13th ACM conference
on embedded networked sensor systems, pages 73–84. ACM, 2015. 4, 14, 26, 43, 72

[67] P. Lazik, N. Rajagopal, B. Sinopoli, and A. Rowe. Ultrasonic time synchronization and
ranging on smartphones. In 21st IEEE Real-Time and Embedded Technology and Appli-
cations Symposium, pages 108–118. IEEE, 2015. 2, 14, 18

[68] E. Le Grand and S. Thrun. 3-axis magnetic field mapping and fusion for indoor local-
ization. In Multisensor Fusion and Integration for Intelligent Systems (MFI), 2012 IEEE
Conference on, pages 358–364. IEEE, 2012. 83

[69] D.-T. Lee and A. K. Lin. Computational complexity of art gallery problems. Information
Theory, IEEE Transactions on, 32(2):276–282, 1986. 21

[70] T. Leune, T. Wehs, M. Janssen, C. Koch, and G. von Colln. Optimization of wireless locat-
ing in complex environments by placement of anchor nodes with evolutionary algorithms.
In Emerging Technologies & Factory Automation (ETFA), 2013 IEEE 18th Conference on,
pages 1–6. IEEE, 2013. 22

[71] P. Levchev, M. N. Krishnan, C. Yu, J. Menke, and A. Zakhor. Simultaneous fingerprinting
and mapping for multimodal image and wifi indoor positioning. In 2014 International
Conference on Indoor Positioning and Indoor Navigation (IPIN), pages 442–450. IEEE,
2014. 84

104



[72] X. Li. An iterative nlos mitigation algorithm for location estimation in sensor networks.
Proceedings of the15 th IST Mobile and Wireless Communications Summit, pages 1–5,
2006. 25, 42

[73] H. Liu, G. Zhang, and H. Bao. Robust keyframe-based monocular slam for augmented
reality. In Mixed and Augmented Reality (ISMAR), 2016 IEEE International Symposium
on, pages 1–10. IEEE, 2016. 2

[74] K. Liu, X. Liu, and X. Li. Guoguo: Enabling fine-grained indoor localization via smart-
phone. In Proceeding of the 11th annual international conference on Mobile systems,
applications, and services, pages 235–248. ACM, 2013. 42, 43, 58

[75] K. Liu, X. Liu, L. Xie, and X. Li. Towards accurate acoustic localization on a smartphone.
In INFOCOM, 2013 Proceedings IEEE, pages 495–499. IEEE, 2013. 43

[76] C. X. Lu, Y. Li, P. Zhao, C. Chen, L. Xie, H. Wen, R. Tan, and N. Trigoni. Simultaneous
localization and mapping with power network electromagnetic field. In Proceedings of
the 24th Annual International Conference on Mobile Computing and Networking, pages
607–622. ACM, 2018. 2

[77] Z. Luo, Q. Zhang, Y. Ma, M. Singh, and F. Adib. 3d backscatter localization for fine-
grained robotics. In 16th {USENIX} Symposium on Networked Systems Design and Im-
plementation ({NSDI} 19), pages 765–782, 2019. 2

[78] D. E. Manolakis. Efficient solution and performance analysis of 3-d position estimation by
trilateration. IEEE Transactions on Aerospace and Electronic Systems, 32(4):1239–1248,
Oct 1996. ISSN 0018-9251. doi: 10.1109/7.543845. 42

[79] I. A. Mantilla-Gaviria, M. Leonardi, G. Galati, J. V. Balbastre-Tejedor, and E. d. L. R.
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