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ABSTRACT

Urban infrastructure monitoring is essential to ensure the safe and efficient func-

tioning of urban services. Recently, a lot of advanced sensing systems have been de-

veloped to improve the management and maintenance of urban infrastructure systems.

Timely and accurate information acquisition and learning for urban infrastructures,

such as structural health, traffic conditions, surrounding air quality, etc., is the main

goal of these urban sensing systems.

To learn the infrastructure information from these large set of sensing data, many

conventional data-driven approaches have been introduced using statistical models or

machine learning techniques. However, urban infrastructure monitoring systems often

have constrained sensing capabilities due to improper deployment conditions, budget

limits, or the complexity of physical infrastructure systems. The constrained sensing

capabilities include 1) noisy data from complex physical systems, 2) lack of labeled

data limiting the accuracy of data-driven models, 3) inefficient sensor deployment with

low sensing coverage, 4) a lack of proper sensors to be deployed in the target infras-

tructures to collect the target information from the infrastructures. These constrained

sensing capabilities reduce the quality of information acquisition, which may signifi-

cantly degrade the performance of information learning using conventional data-driven

methods.

To address these challenges, my research objective is to utilize physical knowledge

to acquire and learn high-fidelity urban infrastructure information. The physical inter-

actions between different physical components of infrastructure systems, between the

physical components of infrastructures and sensors, and between the physical com-

ponents of infrastructures and the ambient environment, are always governed by the

physical properties of the urban infrastructure systems and thus subjected to consis-
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tent physical principles. Such underlying physical knowledge provides an important

aspect to better understand the infrastructure systems and thus improve information

acquisition and learning under sensing constraints. Specifically, my research focuses

on the following four topics:

a) To address the challenge of noisy data in complex physical systems, I introduce

an information-theoretic approach to extract the changes of wave propagation

patterns between different physical components of infrastructures.

b) To address the challenge of lack of labeled data, I propose a new knowledge

transfer scheme across different infrastructures based on the physical understand-

ing of how sensing data changes with different infrastructures’ physical proper-

ties.

c) To address the challenge of inefficient deployment of sensors, I introduce an

incentivizing algorithm to optimize the sensing distribution considering vehicle

mobility and human mobility.

d) To address the challenge of lack of proper sensors, I introduce an indirect sensing

method to monitor the target infrastructures using ambient infrastructure sensing

systems.

The physical knowledge contains the understanding of the physical patterns that

urban infrastructure systems subject to. These physical patterns are governed by uni-

versal and classical laws of physics. The physical patterns are validated to reflect the

underlying physical processes happened inside urban infrastructure systems in pre-

vious studies, but difficult to be learned directly from the less informative data col-

lected under constrained sensing capabilities. Under sensing capabilities constraints,

the combination of physical knowledge helps to effectively acquire high-fidelity sens-

ing data and learn information from the collected sensing data for urban infrastructure

systems.
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Chapter 1

Introduction

1.1 Smart Urban Infrastructure Systems

In the current world, urban infrastructure systems play a vital role in the operation of the city.
Urban infrastructure systems refer to “the physical components of interrelated systems providing
commodities and services essential to enable, sustain, or enhance societal living conditions in
cities” [54], such as buildings and transportation systems. Nowadays, there are more than 2.9
billion people living in urban area. According to UN estimates, the urban populations will rise to
9.8 billion by 2050 [12]. The huge number of urban populations brings huge demand for living
space, mobility, and other urban services. These urban services are often provided by various
urban infrastructure systems, like residential buildings, roads, light rails, and etc. Without safe and
efficient functioning of urban infrastructure systems, the growth of urban populations might pose
a catastrophic risk to city management and the quality of human life.

Accurate and efficient monitoring of urban infrastructures is essential in the management and
maintenance of urban infrastructure systems. For example, infrastructure health monitoring sys-
tems monitor deterioration of infrastructures to ensure the safety of the human living environ-
ment [48, 133, 204], and traffic monitoring systems provide traffic congestion information improve
the efficiency of transportation system [6, 42]. Urban infrastructure monitoring provides governing
agencies daily information about the infrastructures and the ambient environment that infrastruc-
tures exist in and interact with (e.g., air quality, traffic states) [73]. Meanwhile, when disasters or
emergencies happen, these monitoring systems assist government and professional teams to better
assess the safety and operation conditions of infrastructures, which is important to help reduce the
human fatalities and economic cost [246].

Advanced sensing systems automate the processes of urban infrastructure monitoring and en-
able the development of smart urban infrastructure systems. Real-time data are acquired and fur-
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ther analyzed by embedding sensing systems into infrastructures or mobile sensor carriers which
infrastructure interacts with. From intelligent building structural health monitoring using vibra-
tions sensors [203], to autonomous traffic monitoring using mobility sensors [36], there are im-
mense improvements enabled by sensing technologies [5]. As pervasive sensing becomes more
feasible and affordable recently, our knowledge about the urban infrastructure systems and related
environment is enriched with previously uncharted real-time information.

The general framework of urban infrastructure sensing often includes 4 steps: sensor prepa-
ration, sensor deployment, data collection, and information learning from the collected data for
final tasks. Figure 1.1 gives an overview of the sensing process. In this process, people first se-
lect proper sensors which can acquire information about the target infrastructures. The sensors
might be mobile or static sensors, depending on the sensing tasks. This selection always involves
a trade-off among the economic cost, deployment constraints, and sensing quality. Then sensors
are deployed and installed on the target infrastructures or carriers in the target environments. After
deployment, the sensor system begins to collect real-time sensing data. Finally, people extract and
learn information from collected sensing data to infer the safety/efficiency/conditions of the target
infrastructure systems.

An important goal of the infrastructure sensing systems is to acquire and learn high-fidelity
real-time information from the complex infrastructure systems. Ideally, efficient information ac-
quisition obtains high-quality desired data related to the target infrastructure systems. Based on
a large set of acquired sensing data, there are many conventional pure-data drive approaches de-
veloped to learn the infrastructure information. For example, people develop structural damage
classification models using features from vibration signals and ground-truth damage state as la-
bels [164, 234]. These pure data-driven approaches often outperform physical models when there
are large sets of high-fidelity training data. However, in real-world practices, it is often difficult
to acquire the high-fidelity data due to constrained sensing capabilities introduced later. When the
collected sensing data is limited or not informative, e.g. noisy, lack of labels, not sufficient, or even
no data, the performance of pure data-driven methods is significantly reduced.

1.2 Constrained Sensing Capabilities in Smart Urban Infras-
tructure Systems

The sensing capabilities of the infrastructure sensing systems are often constrained due to deploy-
ment constraints, budget limit and the complexity of the infrastructure systems. In real-world
practices, the scale, structure, and functionality of infrastructure systems vary a lot, from city-scale
public transit systems, to high-rise residential buildings. The deployment and data collection of
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Figure 1.1: The general framework of urban infrastructure sensing and related sensing capability
problems.

sensing systems are constrained by various physical environment, which causes different types
of sensing capabilities constraints. These sensing capabilities constraints in different stages of
the sensing procedure. When learning information from the collected data, the data may contain
noise from complex physical systems. More severely, the collected data may lack of labels to in-
dicate the ground truth (e.g. structural damage states and etc.), which makes it difficult to learn
the infrastructure knowledge using pure data-driven method. Before data collection, the sensing
capabilities constraints may appear in the up-streaming stages. The instrumentation and configura-
tion of sensors may face the constraints of inefficient sensor deployment such that less informative
data are collected. Moreover, lack of proper sensors to collect the information we need for ur-
ban infrastructure monitoring would make the data-driven methods no longer be able to work.
As Figure 1.1 shows, we mainly consider these 4 main types of constrained sensing capabilities
including 1) noisy data from complex physical systems, 2) lack of labeled data, 3) inefficient sen-
sor deployment, and 4) lack of proper sensors. These 4 types of constrained sensing capabilities
are common in real world urban infrastructure systems and difficult to tackle with the existing
works [90, 136, 144, 231].

1.2.1 Noisy Data from Physical Systems

As the sensed data comes from the complex physical infrastructure systems, it is common that
the data contains much noise due to the complicated physical processes in the infrastructure and
the influence of uncertain environment. For example, in earthquake-induced building damage
diagnosis, the building vibration signals are noisy due to the non-structural components, the fast-
changing dynamics of earthquake excitation, and so on. The noise contained in infrastructure data
is irregular and often tangled with physical environment, which makes it difficult to filter out the
noise to extract high-fidelity information about the infrastructure systems.
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1.2.2 Lack of Labeled Data

It is possible that the collected data may lack of ground truth as labels due to the deployment
constraints, power supplies, and other issues. For example, data-driven approaches for building
structural health monitoring have been developed, but it is often difficult to obtain the ground truth
of the structural health state due to the high cost of sensors to measure the structural damages
[90, 144], especially in the post-disaster scenarios. Without enough labeled data, the accuracy of
data-driven approaches would be significantly reduced.

1.2.3 Inefficient Sensor Deployment

In urban infrastructure systems, the sensor nodes are deployed in the static or mobile manner, from
city-scale deployment to deployment inside a single infrastructure such as a bridge or a building.
Either way faces a problem of inefficient sensor deployment due to dynamically changing physical
environment. Inefficient sensor deployment often results in low sensing coverage and increases the
deployment cost significantly. For example, in mobile sensing systems, the mobility of sensor car-
riers poses the challenge to achieve optimal dynamic sensor deployment at each time point. If we
want to use this mobile sensing system to collect information (e.g. air quality, traffic congestion)
in different areas of the city, the sub-optimal sensor deployment would result in a lack of sufficient
data in those areas with few sensor carriers. The inefficient spatio-temporal sensor deployment
finally reduces the sensing quality and increases sensing cost.

1.2.4 Lack of Proper Sensors

Although sensing technologies become ubiquitous, it is common that people cannot find proper
sensors to collect the desired infrastructure information or can only prepare a limited number of
sensors for the target task because of the deployment constraints and cost. For example, dense
sensor deployment to monitor the conditions of the light rail tracks is often costly, and the most
common way to monitor the track health is manual inspection due to the lack of proper sensors.

The constrained sensing capabilities impair the quality of information acquisition and per-
formance of information learning. Conventional pure data-driven approaches often have the as-
sumptions on the collected dataset, such as that the collected data contains Gaussian noise or the
collected data are labeled, which is no longer fulfilled under sensing capability constraints. The
noisy sensing data may make the features extracted by statistical models ineffective for infras-
tructure information prediction or inference. The lack of labeled data violates the requirements
of supervised/semi-supervised machine learning techniques on training labels. Inefficient sensor
deployment causes a lack of important sensing information about the infrastructure systems. With-
out proper sensors, it would be difficult to obtain the data about the target infrastructure systems.
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Therefore, under sensing capability constraints, pure data-driven approaches hardly work.

1.3 Physics-guided Sensing and Learning in Smart Urban In-
frastructure Systems

A key characteristic of urban infrastructure systems is that as physical systems, they obey con-
sistent physical rules. As shown in Figure 1.2, a general urban infrastructure system includes the
infrastructures, sensors, and ambient environment. In this system, physical processes, such as
structural responses, human occupants’ movements, and air pollutants diffusion, happen in and/or
around the infrastructures when the physical components of the infrastructures interact with each
other, with sensors, or with the environment. We can see that, these physical processes are not
isolated, and they are always involved with the physical components of the infrastructures and
contain information about infrastructure conditions. Meanwhile, the physical processes inside dif-
ferent infrastructures share common physical principles. By combining the understanding of these
physical processes, we can use the underlying physical knowledge to guide the best utilization
of the constrained sensing capabilities and limited resources to acquire and learn more sufficient
information.

Figure 1.2: The overview of smart urban infrastructure systems. The infrastructure interacts with
the sensors, the environment. It also shares similar physical functionality/knowledge with other
infrastructures.

To address the aforementioned challenges induced by constrained sensing capabilities (Sec-
tion 1.2), it is important to have a holistic understanding of the physical processes inside infras-
tructure systems, between different infrastructure systems, between the infrastructure with the sen-
sors, and between the infrastructure and environment. The general philosophy is to systematically
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combine the understanding of the physical processes with the data-driven methodology develop-
ment. In this way, we can utilize the physical knowledge to complement and regularize the data-
driven models of which performance are limited by constrained sensing capabilities. As Figure 1.3
shows, combining the understanding of the physical processes inside infrastructures, I model the
wave propagation processes inside infrastructures using information theory, which allows the ex-
traction of information-theoretic features from noisy collected data to infer the health states of
infrastructures. By understanding the similarities and differences of the physical processes in dif-
ferent infrastructures, I transfer the implicit knowledge learned from the labeled data collected on
other infrastructures to complement the information learning for the target infrastructures without
labeled data. By discovering the physical mobility patterns of the sensor carriers, I present an effi-
cient sensors deployment algorithm to collect the most informative data. By observing the physical
interactions between the infrastructure and its environment, we can indirectly acquire information
about the target infrastructures from the environment without direct instrumentation of sensors on
the target infrastructures. Although the sensing capabilities are often constrained, the underlying
physical knowledge provides a basic but essential aspect to better understand the infrastructure
systems and thus improve the information acquisition and learning under sensing constraints.

Figure 1.3: The solution to combine physical knowledge to address the challenges of constrained
sensing capabilities.

1.4 Contributions

My research objective is to combine the classic physical knowledge with data-driven approaches
to acquire and learn high-fidelity information about urban infrastructure systems with constrained
sensing capabilities. Specifically, my research aims to integrate the physical understanding about

6



the generation, propagation and distortion of information to the process of urban infrastructure
sensing, and thus sufficiently acquire, extract and learn knowledge about the target infrastructure
systems under sensing capability constraints. My research has 4 main contributions:

1. For analyzing noisy sensing data from complex infrastructure systems, we model their phys-
ical properties using an information theoretic approach. This approach extracts the changes
of the causal relationships between different components of the infrastructures to infer the
infrastructures’ physical conditions. For example, the model represents the changes in vibra-
tion waveform distortion with information exchanges to reflect the structural damages. With
the physical understanding of the generation of structural damages, this method reduces the
influence of environmental noise in infrastructure information learning.

2. For the infrastructure with incomplete datasets, such as missing ground truth and training
samples for learning models, we transfer the knowledge learned from other infrastructures
to improve the information learning for the target infrastructure. We combine the effects of
physical properties of infrastructures on the sensing data distributions and adapt the models
learned from different infrastructures to help monitor the infrastructure with incomplete/very
limited datasets.

3. For efficient sensor deployment in mobile crowd sensing frameworks, we incentivize vehicle
mobility to match the collected sensing data distribution to the desired sensing distribution.
We propose an incentive mechanism considering human mobility and vehicle mobility to
optimize sensing coverage while ensuring the utility of vehicle agents. A new optimization
algorithm is also developed to efficiently obtain the incentive strategies.

4. For target infrastructures lacking proper sensors, we use indirect sensing through other sens-
ing systems. For example, We use traffic-induced building structural vibrations to monitor
nearby traffic events. We consider the influence of different types of traffic events on the
building vibration patterns and propose an information-theoretic approach to extract infor-
mation about traffic events using building vibrations.

1.5 Organization of the Thesis

This thesis proposal is organized as follows: In Chapter 2, we introduce an information-theoretic
approach to analyze the noisy sensing data from complex infrastructure systems. We validate the
proposed method in the context of post-disaster structural health monitoring. In Chapter 3, we
present a new knowledge transfer framework to adapt the knowledge learned across different in-
frastructures to to address the challenge induced by incomplete sensing data. The proposed method
embeds the fuzzy physical knowledge about the similarities between different infrastructure into a
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data-driven adversarial knowledge transfer model. We plan to validate our algorithm in the context
of post-disaster building damage diagnosis with incomplete vibration sensing datasets. In Chap-
ter 4, we study the problem of efficient sensor deployment in urban mobile crowd sensing systems.
We design a new incentive mechanism and optimization algorithm to match the distribution of
collected sensing data to the desired target distribution. The proposed algorithm is validated us-
ing a real-world spatio-temporal air quality monitoring system in Beijing City. In Chapter 5, we
show a new indirect sensing approach using ambient infrastructure sensing system to monitor the
target infrastructure systems. The developed method is implemented and evaluated in the sce-
nario of real-world traffic event monitoring using ambient building vibrations. The results show
that indirect sensing from related infrastructures can provide useful information about the target
infrastructures, which is a new perspective to improve information acquisition in the future.
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Chapter 2

Information Exchange Analysis on Noisy
Sensing Signals

2.1 Problem Overview

Accurate and timely building structural damage diagnosis is important to help save lives and re-
duce the reconstruction cost in post-earthquake scenarios. Damage diagnosis techniques can help
identifying safe shelters to temporally move in, assessing the building safety conditions for evac-
uation, and determining to rebuild/repair/reserve buildings in an earthquake zone. For example,
on the 2011 Tohoku earthquake, a lot of factories were damaged during earthquake [97]. A fast
and accurate inspection of these buildings is critical to accelerate the recovery process of factory
production.

Current practices of building structural damage diagnosis are mostly labour intensive, time
consuming, or error prone. For example, in the Tohoku earthquake, it took many experts more
than 1 year to get a full statistics on the overall building damage through visual inspection [97,
157]. Given the drawbacks of current post-earthquake reconnaissance practice, new sensor-based
techniques have been actively explored to automate the earthquake-induced building structural
damage diagnosis [135, 205].

Recently, people developed vibration-based structural damage diagnosis methods. Based on
automatically collected building vibrations during an earthquake, these methods provide the accu-
racy and speed needed to quickly evaluate the structural health of a building [37, 48, 85, 134]. Most
of the vibration-based methods fall into two categories: physics-based methods [24, 52, 196, 197]
and data-driven methods [92, 164, 234]. However, the physics-based methods require much prior
knowledge about the building structure (e.g. building geometry and material properties), which is
difficult to be obtained in the post-earthquake scenario. The data-driven methods utilize statistical
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models to learn a mapping from the collected vibrations to the structural damage states based on the
collected vibration data. But in post-earthquake scenario, the collected building vibration data con-
tains complex environmental noises introduced by the fast-changing seismic dynamics. Moreover,
conventional data-driven methods require dense sensor instrumentation for detailed and sufficient
information to detect the structural damages separately [111, 122], which is labor-intensive and
expensive.

To address these challenges, we introduce an information-theoretic approach to detect and
quantify the earthquake-induced building structural damage with sparsely deployed vibration sen-
sors and few prior knowledge about buildings. Our method is based on the premises that wave
propagation inside structures can be modeled as the process of information exchanges between ad-
jacent locations, and the structural damage will alter information exchange patterns between two
locations. By detecting this change, our method detects and quantifies the damage state of each
story inside the building. In this chapter, we collect vibration signals at each floor to detect story-
level damage states, but the method is generally applicable to any spatial granularity. We then
extract the information exchanges between the two vibration signals of the floor and the ceiling
of each story based on the principles of information theory. With the information exchanges as
features of each story, we estimated the damage state using machine learning techniques. Instead
of detecting damages of each location, the presented method detects the damages between sensor
pairs, which allows sparsely deployed sensors to infer the structural damages. This method does
not require prior knowledge about building. Besides, the bi-directional information exchanges be-
tween two collected vibration signals are extracted to provide higher-resolution information about
structural properties than conventional correlation-based features [164]. Moreover, we show the
analytical relationship between information exchanges and the structural damage of each story to
demonstrate that the information exchange is an effective indicator of the structural damage with
physical significance.

This work has 3 key contributions:

1. To best of our knowledge, we are the first to model the wave propagation inside the building
as information exchanges as defined in information theory, which allows the analysis of
groups of noisy vibration data and provides more detailed information about the structural
changes.

2. We present the physical insights of the data-driven information-theoretic approach and the
analytical relationship between the information exchanges and the structural properties, which
gives theoretical supports to using information exchanges to detect and quantify the struc-
tural damage state without prior knowledge of the structure.

3. We evaluate our algorithm using both simulation and experimental data of multiple buildings
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with varying heights subjected to a series of multiple earthquake excitations. As a result, our
approach achieves upto 15.49% improvement in the damage prediction accuracy.

In this chapter, we first discuss the related work in Section 2.2, and provide the physical insight
of representing the wave propagation process between adjacent floors as information exchanges
in Section 2.3. In Section 2.4, we present the analytical relationships between the story-level
structural properties and the extracted information exchanges. Then the algorithm of extracting
information exchanges as features to detect and quantify the structural damage state is introduced
in Section 2.5. In Section 2.6, we evaluate our algorithm with data from multiple buildings under
a series of earthquake excitations. Finally, Section 2.7 concludes the chapter.

2.2 Relate Work on Information Learning for Infrastructure
Health Monitoring

Feature extraction based on sensing data is one of the most important parts in Infrastructure Health
Monitoring. It is also challenging due to the complex physical process of structural response to
various dynamic loading. There are various feature extraction methods used in vibration-based
infrastructure health monitoring research.

Most conventional methods are focusing on finding changes in structural mode shapes by using,
for example, Hilbert-Huang Transform. [79] firstly introduced Hilbert-Huang transform (HHT)
to analyze signals. HHT generally includes two steps: empirical mode decomposition and then
Hilbert spectral transform. [128, 186] applied empirical mode decomposition and HHT for infras-
tructure damage detection. The ensemble empirical mode decomposition is introduced by [221] to
partially address the problem of mode mixing induced by intermittent frequencies in the empirical
mode decomposition method.

In recent years, people also developed various features which are believed to indicate the struc-
tural damage. Wavelet Transform becomes a hot spot in recent years since it can provide infor-
mation in time-frequency domain. Wavelet Transform has been widely applied in various fields
like image processing, robotics and etc. In the field of infrastructure health monitoring, there are
many features developed based on Wavelet Transform coefficients as indicator of structural dam-
ages [71, 77, 192]. Fourier Transform is another widely used feature extraction methods. By
extracting modal parameters, Fourier Transform has been applied in various types of infrastruc-
tures, including buildings, bridges and pipelines [33, 117, 237]. The drawback of Fourier Trans-
form is mainly on monitoring real structures under dynamic excitation since the collected signals
are highly non-linear and non-stationary. Statistical time-series models are also used to learn the
mathematical corresponding relationships between input signals and output. Many popular time-
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series models are applied for infrastructure monitoring, e.g. auto-regressive model, auto-regressive
moving average model, and auto-regressive integrated moving average model [23, 159]. Statistical
time-series models need to firstly identify the model orders and then estimate the coefficients of
models, which might be computationally expensive.

In our work, we proposed directed information as feature to quantify the causal relationship
between two stochastic processes (i.e., a sequence of random variables). Directed information
is developed based on the concept of entropy and mutual information in the field of information
theory [37, 47, 89, 94, 95, 142, 200]. In general, entropy quantifies the uncertainty (lack of in-
formation) of a random variable. As an example, let random variables X and Y represent the
number obtained by tossing a 4-side and 8-side dies, respectively. The entropy of Y will be higher
than X , since Y has lower predictability, which means Y has higher uncertainty. When there is
dependency relationship between two random variables, the two random variables share part of
uncertainties induced by the dependency relationship. Mutual information can quantify this shared
uncertainties [215]. This shared information can be computed by looking at the information gain
(or reduction in uncertainties) for one variable by knowing another related random variable. As a
special dependent relationship, causal relationship represents that one variable or process is part of
the reason (source of information) of the other variable or process. When there is causal relation-
ship between two random variables, directed information is an asymmetric measure that quantifies
the shared information with directionality [94, 95]. For example, the information shared from one
random variable to the other random variable.

2.3 Physical Insights of Information Propagation

This section provides the physical insights of representing the seismic wave propagation as a pro-
cess of information exchanges between floors inside a building. When the vibration wave propa-
gates from the floor to the ceiling of one story, the waveform is distorted due to energy dissipation
inside the story [210]. This wave distortion can be represented by information exchange. The
changes of information exchange reflect the changes of energy dissipation, which depends on the
changes of the structural properties. Therefore, by extracting this information, the altering of struc-
tural properties can be detected. We can further detect and quantify the structural damages inside
the building.

The process of wave propagation inside a building structural system is similar to the process
of information exchanges in communication systems [107, 142, 236]. As Figure 2.1 shows, when
earthquake happens, the seismic wave propagates from one location i to the adjacent location j
through the structure between the two locations. In this process, there is noise from the non-
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structural components or other sources which interfere the wave propagation. Similarly, in the
communication system, the information is encoded by a transmitter, and sent from the transmitter
to the receiver through the channel. In this communication process, the signal may be distorted by
the noise when passing through the channel. In structural systems, the structure between location
i and j corresponds to the communication channel. When the structure between the locations i
and j is damaged, the damage changes the distortion of wave propagation. That is, when the
structural damage happens, the information received at j, which is also the wave observed at j
will be different from before damage. The change of the information exchange pattern from i

to j indicates the structural damage. In the field of communication system, people developed
information theory to study the information exchanges process [107, 142]. Here we can model
and analyze the wave propagation process in the structural system using information theory. The
information exchanges are bi-directional between i and j. When structural property changes, the
information exchanges in two directions changes. The changes are different in different directions,
which is discussed in Section 2.4. Therefore, we introduced directed information to quantify the
directional information exchanges between two structural response signals.

Figure 2.1: The analogy between wave propagation inside the structural system and information
exchanges in the communication system.

When earthquake happens, the seismic wave propagates inside the building. In each story, the
seismic waves propagating through the building could be separated into two components: up-going
and down-going components. We consider a conceptual model as shown in Figure 2.2. Whenever
the up-going and down-going waves cross a floor interface, they are partly reflected and partly
transmitted into the next floor [210]. The transmitted wave would be attenuated along with the
propagation path with multiple times of transmissions and reflections. The reflected component
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would be partly reflected back and partly transmitted in the lower floor and finally attenuate as
well. Therefore, the waves observed in the floor and the ceiling are different from each other be-
cause the wave is distorted when passing through the structures between them. The wave distortion
depends on the properties of the structure that the seismic wave passes by. Meanwhile, the wave
distortion between two locations can be represented by information exchanges between two loca-
tions’ vibrations. Therefore, the structural information is embedded in the information exchanges
between the two sensing locations.

Figure 2.2: Seismic wave propagation inside the building structure. (a) In a N -story building, the
seismic propagate inside the building by pass from one story to the next. (b) The seismic wave
propagated inside the building can be decomposed into two parts: up-going component and down-
going component. At each interface of floor, the propagated wave will be transmit and reflected.
The ratio of transmission and reflection is related to the structure of the floor.

When there is earthquake-induced structural damage in some story, the structural properties of
the story change, which also change the information exchanges pattern between the ceiling and
the floor vibrations. Since the information about the structure is contained in the wave distortion,
the wave distortion between the floor and the ceiling change with different structural damages.
For example, given a story, suppose there is a crack appearing in one of the columns during the
earthquake. When the seismic wave passes through the column, the energy dissipation becomes
different from that in a well-conditioned column due to the crack. Compared to when there is no
damage in the column, the wave distortion between the ceiling and the floor carries changes, thus,
the information exchange between two the ceiling and the floor vibrations also changes.

By extracting the changes of the information exchanges inside each story, we can detect the
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changes of the structural properties of the story, and therefore detect and quantify the structural
damage state.

2.4 Analytical Interpretation of the Relationship between Di-
rected Information and Structural Parameters

In this section, we discuss the analytical relationship between the information exchanges and the
structural properties. We first introduce the concept of directed information to quantify the in-
formation exchanges between two vibration signals. For each story, the directed information is
extracted from the vibrations of the floor and the ceiling of the story. We present the physical rela-
tionship between the extracted directed information and structural properties of the corresponding
story.

2.4.1 Directed Information

The change of information exchange patterns between the vibration signals at two floors indicates
the change of structural properties between the two floors, as Section 2.3 discussed. Here we use
directed information from the field of information theory to quantify the information exchanges
between two vibration signals. The information theory is developed to model the information
(or uncertainties) contained in random variables (or processes), e.g. seismic wave-induced floor
vibrations [242]. Directed information is a concept developed in information theory to measure
the directional shared information between two signals.

Directed information is first introduced based on the concept of entropy and mutual information
in the field of information theory [89, 142]. In general, entropy quantifies the uncertainty (lack
of information) of a random variable. As an example, let random variables X and Y represent
the number obtained by tossing a 4-side and 8-side dies, respectively. The entropy of Y will be
higher than X , since Y has lower predictability, which means Y has higher uncertainty. When
there is dependency relationship between two random variables, the two random variables share
part of uncertainties induced by the dependency relationship [37, 47, 200]. Mutual information
quantifies this shared uncertainties. This shared information is computed as the information gain
(or reduction in uncertainties) for one variable by knowing another related random variable and
vice versa [16, 108]. As a natural counterpart, directed information depicts the causal influence
that one variable or process (source of information) has on the other variable or process [94, 95,
215]. When there is causal influence between two random variables, directed information is an
asymmetric measure that quantifies the shared information with directionality, for example, the
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information shared from one random variable to the other random variable. Therefore, compared
to the conventional correlation-based features merely focusing on the co-occurrence of two random
variables’ statistical characteristics, directed information is a more precise measurement providing
high-resolution information between two random variables/processes. The concept of directed
information has been widely applied in different fields, including identify the pairwise influence in
gene networks [195], neuroscience [218], and etc.

In our problem, we define two stochastic processes X i
t1:t2

and Xj
t1:t2 to represent building vi-

brations at two different floors i and j from the time point t1 to the time point t2, respectively. We
define the directed information between them using their joint probability density function (PDF).
If X i

t1:t2
and Xj

t1:t2 are independent, their joint distribution is equivalent to the product of their
marginal distributions,

P (X i
t1:t2

;Xj
t1:t2) = P (X i

t1:t2
)P (Xj

t1:t2). (2.1)

Then, the mutual information of X i
t1:t2

and Xj
t1:t2 (I(X i

t1:t2
;Xj

t1:t2)) is quantified as the distance
(or information discrepancy) between the joint PDF and the product of the marginals by using
the concept of Kullback-Leibler divergence (i.e., the mutual information measures the degree of
dependency). The distance here represents the information gain when we revise our belief from
that X i

t1:t2
and Xj

t1:t2 are independent to that X i
t1:t2

and Xj
t1:t2 are dependent:

I(X i
t1:t2

;Xj
t1:t2) = E[log

P (X i
t1:t2

;Xj
t1:t2)

P (X i
t1:t2)P (Xj

t1:t2)
]. (2.2)

Mutual information is always non-negative, and it becomes zero when X i
t1:t2

and Xj
t1:t2 are in-

dependent. This mutual information does not represent any directionality in information flow.
Hence, an alternative factorization in terms of the joint PDF has been introduced to represent the
directionality of information feedforward and feedback between X i

t1:t2
and Xj

t1:t2 [142]

P (X i
t1:t2

;Xj
t1:t2) =

←−
P (X i

t1:t2
|Xj

t1:t2)
−→
P (Xj

t1:t2 |X
i
t1:t2

), (2.3)

where
←−
P (X i

t1:t2
|Xj

t1:t2) =
∏t2

t=t1
P (X i

t+1|X i
t1:t;X

j
t1:t+1) and

−→
P (Xj

t1:t2 |X i
t1:t2

) =
∏t2

t=t1
P (Xj

t+1|X
j
t1:t;X

i
t1:t+1). If we consider X i

t1:t2
as an input and Xj

t1:t2 as
an output,

←−
P (X i

t1:t2
|Xj

t1:t2) and
−→
P (Xj

t1:t2|X i
t1:t2

) correspond to information feedback and feedfor-
ward, respectively.

Similar to the definition of the mutual information where we compare the true joint PDF to the
PDF computed as if the processes are partial dependent, the directed information from X i

t1:t2
to

Xj
t1:t2 is defined as the distribution divergence between the true joint distribution and the distribu-

tion computed as if X i
t1:t2

depends on Xj
t1:t2 but not vice versa. When Xj

t1:t2 does not depend on
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X i
t1:t2

,
−→
P (Xj

t1:t2|X i
t1:t2

) = P (Xj
t1:t2). Thus, the directed information is defined as:

I(X i
t1:t2
→ Xj

t1:t2) = E[log
P (X i

t1:t2
, Xj

t1:t2)←−
P (X i

t1:t2 |X
j
t1:t2)P (Xj

t1:t2)
]. (2.4)

The directed information is smaller than or equivalent to the mutual information. Note that
I(X i

t1:t2
→ Xj

t1:t2) 6= I(Xj
t1:t2 → X i

t1:t2
). By the definition of entropy and conditional entropy, the

directed information is expressed as follows:

I(X i
t1:t2
→ Xj

t1:t2) = H(Xj
t1:t2)−H(Xj

t1:t2||X
i
t1:t2

), (2.5)

where

H(Xj
t1:t2) =

t2∑
t=t1

H(Xj
t+1|X

j
t1:t)

H(Xj
t1:t2 ||X

i
t1:t2

) =

t2∑
t=t1

H(Xj
t+1|X

j
t1:t, X

i
t1:t+1).

The entropy H(Xj
t1:t2) and H(Xj

t1:t2||X i
t1:t2

) are functionals of the discrete distribution of vari-
ables Xj

t1:t2 and Xj
t+1|X

j
t1:t, X

i
t1:t+1 for t ∈ {t1, · · · , t2}. When estimating directed information,

we use Equation 2.5 for computational efficiency, instead of Equation 2.4 that involves estimating
the joint distribution. The entropy values are estimated using the minimax rate-optimal estimators
under l2 loss. The minimax estimator minimizes the maximum loss function between estimator
and functional of real distribution. The loss function is l2 norm of difference between estimator
and functional of real distribution. We use empirical D-tuple joint distribution based on the col-
lected data to estimate the functionals of real distribution, and it has been proved that empirical
joint distribution of D-tuple converges to the true joint distribution. The estimator converges faster
and has less mean square error than conventional MLE (Maximum Likelihood Estimator) [94, 95].

2.4.2 Relationship between Directed Information and Structural Properties
In this section, We show the analytical relationship between the physical properties of building
structure and the directed information at each story. The results indicate that directed informa-
tion extracted between adjacent floor accelerations reflects the structural properties (e.g. stiffness,
damping and mass) of the two adjacent two floors, and is a potential damage indicator.

Some assumptions are made to simplify the problem and highlight the important characteristics
of the relationship between directed information and structural physical properties. We model the
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building as a linear multi-degree of freedom system as shown in Figure 2.3. In the building, the
mass is concentrated at each floor. The stiffness of the building is determined by the massless walls
and columns.

Figure 2.3: Structural model of a building under the earthquake excitation Ẍg.

Given an N -story building, each story is composed of a floor and a ceiling. We collect the
earthquake-induced acceleration signal at each floor. We denote the collected acceleration at the
nth floor as Ẍn. Similarly, we denote the velocity and relative displacement at the nth floor as Ẋn

and Xn, respectively. Given a story n in the building, where 1 ≤ n ≤ N , the acceleration at the
ceiling of the nth story is also the acceleration at the floor of the (n + 1)th story. We assume the
floor acceleration at the base is the same as the ground motion acceleration, i.e. Ẍ1 = Ẍg, where
Ẍg is the earthquake-induced ground motion acceleration. We denote the mass, shear stiffness,
and damping coefficients for the nth story as mn, kn and cn, respectively, as shown in Figure 2.3.

Denote the mass, stiffness and damping matrices of the building as M,C, and K, and use X to
represent the displacement matrix, i.e. X = [X1, X2, · · · , XN ]T . The equation of motion is then

MẌ + CẊ + KX = −MIẌg, (2.6)

where I is a vector with all elements as 1. The details of the physical properties matrices are

M =


m1 0 · · · 0

0 m2
. . . ...

... . . . . . . 0

0 · · · 0 mN

 ,C =


c1 + c2 −c2 0 · · · 0

−c2 c2 + c3 −c3 · · · 0
... . . . . . . . . . ...
0 · · · −cN−1 cN−1 + cN −cN
0 · · · · · · −cN cN

 ,
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K =


k1 + k2 −k2 0 · · · 0

−k2 k2 + k3 −k3 · · · 0
... . . . . . . . . . ...
0 · · · −kN−1 kN−1 + kN −kN
0 · · · · · · −kN kN



Assume that there exists a zero-mean Gaussian noise V with positive definite covariance matrix
Q for floor vibrations. Assume the noises for different stories are independent, i.e. Q2n1,2n2 =

Q2n1+1,2n2 = Q2n1+1,2n2+1 = Q2n1,2n2+1 = 0, ∀n1 6= n2 (Qi,j refers to the element in the ith row

and jth column of Q). Denote Z =
[
X1, Ẋ1, · · · , XN , ẊN

]T
as a multivariate variable, we can

transform the Equation 2.6 into

Ż = AZ −MI∗Ẍg + V, (2.7)

where I∗ = [0, 1, · · · , 0, 1]T has dimension of 2N ×1, M has the size of 2N ×2N where M(2n−
1, 2n− 1) = M(2n, 2n) = mn (M(i, j) refers to the element in the ith row and jth column of M ),
and A is the coefficient matrix with size of 2N × 2N where

A =



0 1 0 0 0 0 · · · 0

−k1 + k2

m1

−c1 + c2

m1

k2

m1

c2

m1

0 0 · · · 0

0 0 0 1 0 0 · · · 0
k2

m2

c2

m2

−k2 + k3

m2

c2 + c3

m2

k3

m3

c3

m3

· · · 0

... . . . . . . . . . . . . . . . . . . ...

0
. . . . . . . . . 0 1 0 0

0 · · · kN−1

mN−1

cN−1

mN−1

−kN−1 + kN
mN−1

−cN−1 + cN
mN−1

kN
mN−1

cN
mN−1

0 · · · · · · · · · 0 0 0 1

0 · · · · · · · · · kN
mN

cN
mN

− kN
mN

− cN
mN



.

Discretizing the Equation 2.7, assuming zero-order hold for the ground motion Ẍg, gives

Zt+1 = AdZt +MdI
∗Ẍg,t + Vd, (2.8)
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where each time point represents a sample time of ∆t, Vd ∼ N(0, Qd), and

Ad = exp (A∆t); Md = −
(∫ τ=∆t

τ=0

exp (Aτ)dτ
)
M ; Qd =

∫ τ=∆t

τ=0

exp (Aτ)Q exp (AT τ)dτ.

For simplicity, we denote the structural responses at the nth floor at the time point of t + 1 as
Xn
t+1 = [Xn

t+1, Ẋ
n
t+1]T . Equation 2.8 shows that the structural responses depend on the structural

responses of adjacent stories at the previous time point t, i.e., (⇐⇒ refers to the dependency
relationship)

· · · ⇐⇒ Xn−1
t:t+1 ⇐⇒ Xn

t:t+1 ⇐⇒ Xn+1
t:t+1 ⇐⇒ · · · . (2.9)

With the dependency relationship described in 2.9, the dependencies between the structural re-
sponses can be described as

Xn−1
1:t ⊥⊥ Xi

1:t|Xn
1:t,∀i > n. (2.10)

2.10 represents that given the vibration at the nth floor, the vibration at the lower floor (< n) is
independent with the vibration at the higher floor (> n). Therefore, we have the lemma describing
the directed information from (n + 1)th floor to nth floor at the time point of t is independent of
other stories’ information:

Lemma 1. The directed information at time point of t from (n+ 1) floor to n floor is independent
with the information from other nonadjacent floors, i.e.

H(Xn
t+1|Xn

1:t)−H(Xn
t+1|Xn

1:t,X
n+1
1:t+1)

= H(Xn
t+1|Xn

1:t,X
n+2
1:t ,X

n−1
1:t )−H(Xn

t+1|Xn
1:t,X

n+1
1:t+1,X

n+2
1:t ,X

n−1
1:t ).

Proof. Based on the Bayes rule, we can expand the conditional entropy as

H(Xn
t+1|Xn

1:t,X
n+2
1:t ,X

n−1
1:t )−H(Xn

t+1|Xn
1:t,X

n+1
1:t+1,X

n+2
1:t ,X

n−1
1:t )

= H(Xn
t+1,X

n+2
1:t ,X

n−1
1:t |Xn

1:t)−H(Xn+2
1:t ,X

n−1
1:t |Xn

1:t)

− [H(Xn
t+1,X

n+2
1:t ,X

n−1
1:t |Xn

1:t,X
n+1
1:t+1)−H(Xn+2

1:t ,X
n−1
1:t |Xn

1:t,X
n+1
1:t+1)]

= H(Xn
t+1|Xn

1:t) +H(Xn−1
1:t |Xn

1:t+1) +H(Xn+2
1:t |Xn

1:t+1)−H(Xn−1
1:t |Xn

1:t)−H(Xn+2
1:t |Xn

1:t)

− [H(Xn
t+1|Xn

1:t,X
n+1
1:t+1) +H(Xn−1

1:t |Xn
1:t+1,X

n+1
1:t+1) +H(Xn+2

1:t |Xn
1:t+1,X

n+1
1:t )

−H(Xn−1
1:t |Xn

1:t,X
n+1
1:t+1)−H(Xn+2

1:t |Xn
1:t,X

n+1
1:t+1)]
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From the independence relationship in Equation 2.10, there isH(Xn+2
1:t |Xn

1:t)−H(Xn+2
1:t |Xn

1:t,X
n+1
1:t+1)

= H(Xn+2
1:t |Xn

1:t+1)−H(Xn+2
1:t |Xn

1:t+1,X
n+1
1:t+1) andH(Xn−1

1:t |Xn
1:t,X

n+1
1:t+1) = H(Xn−1

1:t |Xn
1:t). There-

fore, we can remove the terms with Xn+2
1:t and Xn−1

1:t to obtain

H(Xn
t+1|Xn

1:t,X
n+2
1:t ,X

n−1
1:t )−H(Xn

t+1|Xn
1:t,X

n+1
1:t ,X

n+2
1:t ,X

n−1
1:t )

= H(Xn
t+1|Xn

1:t)−H(Xn
t+1|Xn

1:t,X
n+1
1:t ).

With Lemma 1, we can obtain the directed information from (n+ 1)th floor to nth floor using
structural properties and the white noises. Given Ẍg,1:t, Vd ∼ N(0, Qd), and the starting states
Xn

0 ,∀n, since linear transform of a Gaussian variable is still Gaussian variable, Xn+1
t subjects to a

Gaussian distribution. Denote the (2n−1)th and 2nth rows of the matrixAd asAd(2n−1 : 2n, ·) =

[A1
d, · · · , ANd ], where And has size of 2× 2. Similarly, denote Md(2n− 1 : 2n, ·) = [M1

d , · · · ,MN
d ]

and I∗(2n− 1 : 2n, ·) = [I∗n, · · · , I∗N ]. Therefore, the conditional variables are expressed as

Xn
t+1|Xn

1:t,X
n+2
1:t ,X

n−1
1:t = AndX

n
t + An−1

d Xn−1
t + (An+1

d Xn+1
t |Xn

1:t,X
n+2
1:t ) +Mn

d I
∗
nẌg + V n

d

(2.11)

= AndX
n
t + An−1

d Xn−1
t +

(
An+1
d

)t
Xn+1

0 + f1(And , A
n+1
d , An+2

d ,Xn
1:t,X

n+2
1:t ) (2.12)

+
t−1∑
j=1

(
An+1
d

)j
V n+1
d +Mn

d I
∗
nẌg + V n

d , (2.13)

Xn
t+1|Xn

1:t,X
n+1
1:t+1,X

n+2
1:t ,X

n−1
1:t = AndX

n
t + An−1

d Xn−1
t + An+1

d Xn+1
t +Mn

d I
∗
nẌg + V n

d . (2.14)

where f1 is an implicit function involving with the influence of the structural vibrations at nth and
n+ 2th floor. And can be approximated as follows by Euler’s method:

And ≈

 1 ∆t

−kn + kn+1

mn

∆t 1− cn + cn+1

mn

T .
The variance matrices for the two conditional distributions are

V ar(Xn
t+1|Xn

1:t,X
n+2
1:t ,X

n−1
1:t ) = V ar

[
t−1∑
j=1

(
An+1
d

)j
V n+1
d

]
+ V ar(V n

d ) (2.15)

V ar(Xn
t+1|Xn

1:t,X
n+1
1:t+1,X

n+2
1:t ,X

n−1
1:t ) = V ar(V n

d ) = Qn
d , (2.16)
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where Qn
d refers to the covariance matrix for variable Xn = [Xn

t , Ẋ
n
t ], which is obtained from

Equation 2.8. Since it is assumed that the process noise for different floor responses are indepen-
dent, we can obtain

Qn
d =

∫ τ=∆t

τ=0

n+1∑
j=n−1

Aj,nd Qj(Aj,nd )Tdτ =

∫ τ=∆t

τ=0

An,nd Qn(An,nd )Tdτ +O(∆t3),

where

Aj,nd =

[
Ad(2n− 1, 2j − 1) Ad(2n− 1, 2j − 1)

Ad(2n, 2j) Ad(2n, 2j)

]
, Qn =

[
Cov(Ẋn, Ẋn) Cov(Ẍn, Ẋn)

Cov(Ẋn, Ẍn) Cov(Ẍn, Ẍn)

]
.

Let P n+1
t = V ar

[∑t−1
j=1

(
An+1
d

)j
V n+1
d

]
. P n+1

t depends and only depends on the structural
properties of the floor and the ceiling of the (n+1)th story and the Gaussian noise on the structural
responses of the ceiling of the nth story.

The entropy of multivariate Gaussian distribution with variance matrix of Q is

1

2
lndet(2πeQ). (2.17)

Given the definition of directed information in Equation 2.5, we have the directed information from
(n+ 1)th floor to nth floor as

I(Xn+1
1:T → Xn

1:T ) =
T∑
t=1

H(Xn
t+1|Xn

1:t)−H(Xn
t+1|Xn

1:t, X
n+1
1:t ) (2.18)

=
T∑
t=1

1

2
ln

det(P n+1
t +Qn

d)

detQn
d

. (2.19)

Similarly, we obtain the inverse directed information from nth floor to (n+ 1)th floor as

I(Xn
1:T → Xn+1

1:T ) =
T∑
t=1

H(Xn+1
t+1 |Xn+1

1:t )−H(Xn+1
t+1 |Xn+1

1:t , X
n
1:t) (2.20)

=
T∑
t=1

1

2
ln

det(P n
t +Qn+1

d )

detQn+1
d

. (2.21)

By the definition of P n
t , it can be found that the directed information from (n + 1)th floor to nth

floor mainly depends on the structural properties of (n+1)th floor and nth floor. If directly utilizing
the raw vibration signals, each Xn contains the influence of all the other stories’ vibrations and
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noise during the earthquake. The above proof shows that the directed information effectively help
reduce the noise induced by the structural changes in other nonadjacent locations compared to
raw vibration signals. Meanwhile, it can be seen that the directed information from the ceiling to
the floor of the nth story is different from the directed information in inverse direction. I(Xn

1:T →
Xn+1

1:T ) focuses more on the properties of the nth floor, while I(Xn+1
1:T → Xn

1:T ) focuses more on the
properties of the (n+ 1)th floor. In conventional methods, the information in the two directions is
combined and extracted as a feature to infer the changes of structural properties. But by differing
the information by directionality, the directed information provide more details and enable the
analysis of groups of vibration signals.

2.5 Information-theoretic Approach for Structural Damage Di-
agnosis

Based on the physical insight and analytical relationship, we propose an information-theoretic ap-
proach to detect and quantify the earthquake-induced structural damage using the structural vibra-
tion responses to earthquake excitations. In this chapter, for simplicity, the approach is explained
and implemented for story-level detection and quantification, but the method can be expanded to
various scales of detection and quantification, depending on the sensor density. As Figure 4.2
shows, our approach includes three steps: data collection, feature extraction, and damage model-
ing. In this section, we first describe the collection of the story-level seismic structural responses
and corresponding structural drift ratios. Then we describe how to extract directed and inverse
directed information between the accelerations of the floor and ceiling of each story and compute
the features. Finally, we train kernel-based support vector machine models for damage detection
and damage quantification.

Figure 2.4: The algorithm overview.
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2.5.1 Data Collection

We first collect structural responses to obtain sufficient data samples for damage modeling. In our
method, the accelerations at each floor are collected during the earthquake excitation. For example,
to extract the directed information as the feature of the nth story, we need the collected vibration
signals at nth floor and (n+ 1)th floor. The during-earthquake structural responses depend on the
dynamic earthquake excitations and the building structural properties, as shown in Section 2.4.

After the acceleration data are collected, we use sliding window to separate the vibration signal
for further feature extraction. As shown in Section 3, we assume that in a short time window T , the
structural properties are consistent. We use a sliding window with the size of T and the stride of 1

to separate the vibration signals into multiple pieces. In this way, each vibration signal is reshaped
as a matrix with the size of (l − T + 1) × T matrix, where l is the length of the vibration signal.
Then the directed information is extracted from each pair of pre-processed vibration data collected
from two adjacent floors.

2.5.2 Feature Extraction
The next step is to extract the directed information from a floor to the ceiling and from a ceiling
to the floor as features of the corresponding story. To ensure the computational efficiency, the

signals need to be quantized into S level with the principle of T ≈ SD+1

lnS
, where T is the short

time window, D is the order of the Markov process of seismic-induced vibrations, which is 1 in
our scenario based on our state-space model described in Section 2.4. The directed information is
extracted from each pair of sliding-window vibration signals, i.e. I(Xn

kT+1:(k+1)T → Xn+1
kT+1:(k+1)T )

and I(Xn+1
kT+1:(k+1)T → Xn

kT+1:(k+1)T ), ∀k ∈ {0, · · · , K − 1}, n ∈ {1, · · · , N − 1}. For simplicity,
for each story n, we define the directed information from the bottom floor to the ceiling as “directed
information” of the nth story, and the directed information from the ceiling to the bottom floor as
“inverse directed information” of the nth story. After computing the directed information and
inverse directed information for each sliding window, we obtain the final directed information as
well as inverse directed information sequences both with the size of K × 1. The extracted directed
information sequences contain the information about how the structural properties change with
time evolving.

Given the sliding-windowed vibration signals pair, Xn+1
kT+1:(k+1)T and Xn+1

kT+1:(k+1)T , we ex-
tend the context-tree weighting algorithm [94] to estimate the directed information. As defined
in Equation 2.5, to estimate the directed information I(Xn

1:T → Xn+1
1:T ), we separately estimate

H(Xn+1
1:T ) and H(Xn+1

1:T ||Xn
1:T ). After quantization, the random process becomes discrete. Define

P (Xn+1
t+1 |Xn+1

1:t ) as the conditional probability mass function for Xn+1
t+1 given Xn+1

1:t , which can be
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estimated from the vibration signals. We can estimate the entropy as

Ĥ(Xn+1
1:T ) =

1

T

T∑
t=1

∑
Xn+1

t+1

P (Xn+1
t+1 |Xn+1

1:t ) log
1

P (Xn+1
t+1 |Xn+1

1:t )
(2.22)

Ĥ(Xn+1
1:T ||X

n
1:T ) =

1

T

T∑
t=1

f(P (Xn
t+1, X

n+1
t+1 |Xn

1:t, X
n+1
1:t )), (2.23)

wheref(P ) = −
∑

x,y P (x, y) logP (y|x).

To obtain the entropy and conditional entropy estimators, we employ context-tree weighting
algorithm with fixed length of T and context tree depth ofD. In this algorithm, we initialize the di-
rected information estimator Î(Xn

1:T → Xn+1
1:T ) as 0. With the quantized sequences X̂n

1:T and X̂n+1
1:T ,

we define Yt = (Xn
t , X

n+1
t ), ∀t. Then ∀t ∈ {D + 1, T + 1}, in the context of Yt−D:t−1, we update

the context tree for every possible value of Yt and obtain the estimated probability mass function
P (Yt|Y1:t−1). Similarly, we can obtain the estimated probability mass function P (Xn+1

t |Xn+1
1:t−1)

based on the updated context tree for Xn+1
t−D:t−1. Every update ends with the updating of the di-

rected information estimator
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After iterating for T − D times, we obtain the final directed information by taking the average,

i.e. Î(Xn
1:T → Xn+1

1:T ) =
Î(Xn

1:T → Xn+1
1:T )

T −D
. Similarly, we can estimate the inverse directed

information using the same algorithm.

2.5.3 Damage Detection and Quantification

Given extracted directed information as features, we conduct supervised learning by training dif-
ferent kernel support vector machines for damage detection and quantification. Here, with directed
information quantifying the information exchanges between two locations, the task includes two
aspects: damage detection and damage quantification. The damage detection focuses on detect
whether there exists damages in each story. The damage quantification aims to quantifying the
damage severity, which includes classifying the damage into several levels (classification-based
quantification) and directly estimating the structural drift between two floors during the earthquake
(regression-based quantification).

Story drift ratio (SDR) is a common index for identifying structural damages [40, 103, 188,
194]. We utilize SDR as the ground truth indicator of structural damages. According to FEMA
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P695 [53], there are five damage states defined for the structure in terms of the peak absolute
SDR (max(|SDR|)) at each story, which are no damage (0% ≤ max(|SDR|) < 1%), slight
damage (1% ≤ max(|SDR|) < 2%), moderate damage (2% ≤ max(|SDR|) < 3%), severe
damage (3% ≤ max(|SDR|) < 6%), and collapse (6% ≤ max(|SDR|)). For the damage de-
tection, according to SDR level, we divide the structural damage state into two classes: damaged
(0% ≤ max(|SDR|) < 1%) and undamaged (max(|SDR|) ≥ 1%). For classification-based
quantification, we use the aforementioned 5 classes as the true label. For regression-based damage
quantification, we directly use SDR as the true label.

We use kernel support vector machine (SVM) to build the binary-class classification model to
detect the structural damage. Given a set of training examples, SVM builds a non-probabilistic
binary linear classifier. An SVM model is a mapping from data samples to a new feature represen-
tation space so that the examples of the separate classes are divided by a clear gap that is as wide as
possible. Kernel support vector machine here is applied for both damage detection and quantifica-
tion. Kernel support vector machine is good at dealing with the high-dimensional features of data
through dimensionality reduction [41, 199]. For damage detection, we use kernel SVM to train the
prediction model to detect the damage at each story. For classification-based quantification, we use
multi-class kernel SVM. While for regression-based quantification, we use kernel support vector
regression to estimate the values of the peak absolute story drift ratio.

2.6 Evaluation
In this section, we evaluate our approach with both simulated and experimental data. The simulated
data are collected from 5 buildings with different heights under 40 earthquake excitations. The ex-
perimental data are collected from a 4-story building under 4 incrementally scaled of earthquake
ground motions. To evaluate the performance of our features, we compare the performance of
the same SVM models trained with our information-theoretic features (DI-based features), raw vi-
bration signals (Signal-based features), and autoregression coefficients as features (AR coefficient-
based features), which is another widely used features for building damage diagnosis [143].

2.6.1 Simulated Data With Numerical Models

Data Collection

We collect the structural vibration data at each floor from 5 buildings subjected to 40 earthquake
excitations. The archetype of the buildings are located in urban California, United States [80]. The
simulation is implemented in an open platform OpenSEES.

There are five archetype steel frame buildings with perimeter steel moment-resisting frames
(MRFs). These buildings have 2, 4, 8, 12, and 20 stories respectively, with a first-story height
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of 4.6m and a typical story height of 4m. More details about archetype buildings’ design and
geometries are described in the record [147]. The two-dimensional model of each archetype steel
building considers the bare structural components of the MRFs. In the analytical model, the steel
beams are idealized with an elastic element and a concentrated flexural spring at the center to
represent the location of the reduced beam section. Under cyclic loading, the stiffness of steel
components and deterioration of flexural strength are captured by modeling the springs with the
modified Ibarra-Medina-Krawinkler model. For the first and third mode of all SMFs, Rayleigh
damping ratio is assigned with the value of 2%. The natural periods of buildings are recorded.

As specified by FEMA P695, the Far-Field ground motion set is recorded to evaluate the per-
formance of the building models. Horizontal ground-motions are scaled incrementally with respect
to the first mode, 5% damped, spectral acceleration Sa(T1, 5%) of the steel frame model through
collapse. The time histories of floor absolute acceleration and story drift ratio under each incre-
mental ground motion are recorded corresponding to each story of the 5 building models. As an
example, Figure 5.10a and 5.10b show the story drift ratio of the 1st story and accelerations at the
1st and 2nd floor of a 12-story building under the ground motion observed at the Las Palmas Ave.,
Glendale station during the 1994 Northridge earthquake.

Feature characterization

We then extract and characterize directed information as effective features to indicate the structural
damages. To extract the directed information, we first quantize the vibration signals. In our case,
the signals are quantized into S = 10 levels. In general, to effectively estimate the directed infor-
mation, a large number of quantization level is desirable. This is because with large quantization
levels, the signal amplitude range for each quantization level is small (i.e., higher signal resolution)
such that more information contained in signals can be extracted. However, this level cannot be too

large because of the limitation of T ∗ ≈ SD+1

lnS
. T ∗ is the sufficient sample number for calculating

directed information between two signals. The sufficient sample number needs to be guaranteed to
lower the estimation risk, i.e. T > T ∗, where T is the final sliding window size we select. With the
quantized vibration signals, we obtain the directed information and inverse directed information.
By aligning the directed information and inverse directed information, we obtain the feature for
each sample as a vector with length of 2(l − T + 1).

As an example, Figure 5.10c shows the extracted directed information and inverse directed
information between the 1st floor and the 2nd floor of a 12-story building under a ground motion
observed from the Northridge earthquake. We can find that between 3.75s and 7s, the absolute story
drift ratio increases significantly and a more severe damage happens to the 1st story, as shown in
Figure 5.10a. As shown in Figure 5.10b, it is difficult to observe the changes by comparing the
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Figure 2.5: The figures visualize the (a) story drift ratio at the 1st story, (b) raw vibration signals
at the 1st floor (blue) and the 2nd floor (red), and (c) directed information from the 1st floor to
the 2nd floor (blue), and inverse directed information from the 2st floor to the 1nd floor (red) of
a 12-story building under the ground motion observed at the Las Palmas Ave., Glendale station
during the 1994 Northridge earthquake.
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accelerations collected at the bottom floor and the ceiling. However, from Figure 5.10c, we observe
that at the time of 3.75s, the difference between the directed information and inverse directed
information suddenly increases and exhibit different trends. This shows that directed information
is an effective damage index for the structural health conditions.

(a) (b)

Figure 2.6: (a) The logarithmic correlation between the differences between the gradients of
accelerations at adjacent floors and the corresponding peak absolute story drift ratios in a 12-story
building. (b) The logarithmic correlation between the differences between the gradients of directed
information and inverse directed information on each story and the corresponding peak absolute
story drift ratios in a 12-story building

To validate the analytical relationship shown in Section 2.4, we investigate the correlation
between the directed information and story drift ratio from the collected data. From the Equa-
tions 2.19 and 2.21, we can obtain the difference between the gradients of the directed information
and inverse directed information as
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It is shown that the difference between the gradients is dominated by the structural properties
(P n

T at the nth story. To explore the correlation between the directed information and the struc-
tural damage indicator, i.e., story drift ratio, We plot the pair of peak absolute story drift ratio
verses difference of vibrations/directed information for each story in a 12-story building under
multiple earthquake ground motions, as shown in Figure 2.6.1. Figure 2.6.1 shows the correla-
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tion between the difference of the gradient of accelerations at two adjacent floors in each story.
It is shown that the logarithmic correlation between the difference between the gradients of ac-
celerations and the peak absolute story drift ratio is not strong with the correlation coefficient
ρ(log |∆Acc(1) −∆Acc(2)|, SDR) = 0.41. In contrast, the differences between the gradients of
directed information and inverse directed information have more significant correlation with the
story drift ratio with ρ(log |∆DI−∆invDI|, SDR) = 0.87. This is also higher than the correlation
coefficient ρ = 0.69 of wavelet-based features mentioned in the previous study [81]. Therefore,
combining the observations in Figure 5.10 and Figure 2.6, we validate our analytical results which
show the effectiveness of directed information as a more powerful feature to indicate the structural
damages.

Results and discussion

In this section, we use kernel support vector machine to detect and quantify the structural damage
state with the extracted directed information and inverse directed information as features. For the
benchmark features based on autoregressive time series modeling of structure’s acceleration re-
sponse, there are several conventional methods for damage sensitive feature extraction. Here, the
autoregressive coefficients are extracted by fitting vibration signals in each floor to the autoregres-
sive model, and the coefficients extracted from accelerations in the floor and the ceiling of each
story are combined as features for damage estimation. We use the binary-classification accuracy
to indicate the damage detection performance, and 5-class classification accuracy to measure the
performance of classification-based damage quantification. Meanwhile, to reduce the overfitting
of the model, we used cross-validation to calculate the accuracy of the model.

To obtain sufficient data samples, we conduct data augmentation. We use a high-level sliding
window with the length of 2000 and the stride of 50 data points to process each vibration signal.
The length of the high-level sliding window is decided by the duration it takes the worst damage to
happen from the starting time point. In each high-level sliding window, we extracted the directed
information and inverse directed information with a local sliding window length of 200 time points,
which is 1 second, as features of each story. Meanwhile, we label each samples according to
the peak story drift ratio. If the peak story drift ratio is less than 0.01, we label the sample as
undamaged, otherwise we label the sample as damaged. For the damage quantification, we label
the sample into 5 classes as introduced in Section 2.5.3. In this way, we get the training dataset
collected from the same story at different buildings.

Then we utilize kernel support vector machine to train the model and utilize cross-validation to
evaluate the performance of our approach. With the high-dimensional directed information-based
features, the problem of “curse of dimensionality” makes it difficult to optimize the damage model
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Figure 2.7: The accuracy of binary damage detection, 5-class damage quantification, and within
1 state damage quantification resulted by the DI-based feature(blue), signal-based feature(green),
and AR coefficient based feature(yellow). The results show that our directed information-based
features are more effective to predict the structural damages compared to other methods.

in the original feature space. The kernel trick is applied to reduce the dimensions of feature space to
solve it efficiently. Here we utilize radial basis function kernel-based support vector machine. Both
stochastic gradient descent (SGD) and limited-memory Newton algorithms (LBFGS) are applied
for computational efficiency. For the bandwidth and coefficient of regularization term, the optimal
values 5 and 0.02 are selected respectively using cross-validation. We use 5-fold cross-validation
to obtain the final prediction accuracy for different stories. To obtain the overall performance,
we take the weighted average across multiple stories according to the corresponding numbers of
samples.

Figure 2.7 shows the damage detection accuracy, damage quantification accuracy, and the
damage quantification accuracy within±1 damage state with DI-based features, Signal-based fea-
tures, and AR coefficient-based features. For our DI-based features, the damage detection accuracy
and damage quantification accuracy are 71.49%, 65.96% and 90.59%, respectively. It outperforms
by other features on all 3 types of tasks. Compared to the conventional features, our information-
theoretic approach achieve upto 9.8% improvement in the damage detection and 6.27% in the
5-class damage quantification. The accuracy of damage detection is higher than damage quantifi-
cation, showing that the difference between damaged state and undamaged state is easier to learn
by the model than the difference among 5 types of damage severity.

Figure 2.8 presents the damage detection accuracy at different stories. Our DI-based fea-
ture achieves higher damage detection accuracy compared to the signal-based method and AR
coefficient-based method except at story 15. Especially, at the 20th story, our method achieves
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Figure 2.8: The story level damage detection accuracy using the DI-based features (blue), signal-
based features (green), and AR coefficient based features (yellow).

15.48% improvement compared to the signal-based method. In lower story (1 ∼ 4), the damage
detection accuracy tends to be low. This may be because we combine the data from different build-
ings under different ground motions to train and test, which means that we assume these buildings’
damage patterns are similar. However, the vibration signals collected from buildings with different
heights under different ground motions may contain different noises introduced by the complex
physical environment. This violation of assumption constrains the ability of the supervised learn-
ing model. For higher story 19 ∼ 20 story, the data is only available for the 20-story building,
which avoids the assumption violation. Besides, it tends to be easier to predict the roof level dam-
age combining the results in Section 2.6.2. Although the general accuracy tends to be low in lower
stories, our method has the most significant improvements in accuracy in these levels, as shown in
Figure 2.8.

2.6.2 Experimental data

In this section, our approach is evaluated using experimental data collected from shake-table tests
of a 4 story moment-resisting frame. The data are used to analyze the response of directed infor-
mation of each story to various earthquake intensities and compare performances (SDR estimation
error) between our information-theoretic approach and benchmark methods.

Data collection

The data is collected from a 4-story steel moment-resisting frame under 1994 Northridge earth-
quake excitations. The experiment is conducted in State University of New York at Buffalo. The
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Figure 2.9: The frame of the four-story steel moment-resisting frame.

archetype of the frame is located at Los Angeles, CA and designed with reduced beam connections.
The ground motions are recorded at Canoga Park Station from the the 1994 Northridge earthquake.
Figure 2.9 shows the 1:8 scale model for the 4-story structure. At each floor, one accelerometer is
installed to collect the vibration signals in horizontal direction.

The shake-table test sequence includes 4 intensities through collapse using incremental dy-
namic analysis. The test sequence includes a service level earthquake (SLE, 40% of the unscaled
record), a design level earthquake (DLE, 100% of the unscaled record), a maximum considered
earthquake (MCE, 150% of the unscaled record), and a collapse level earthquake (CLE, 190%

of the unscaled record). The time history of accelerations at each floor under each earthquake
excitations are recorded for data analysis.

Feature characterization

Based on the collected structural vibration signals, the information exchanges in each story are
extracted using directed information and inverse directed information of each story are extracted as
features. Here quantization level is chosen as 10. The training set consists of the extracted directed
information features for each measurement sample and story drift ratio (SDR) as the corresponding
output.

The extracted directed information and inverse directed information are analyzed. Figures 2.6.2
and 2.6.2 show the time-series of directed information (red line) and inverse directed information
(blue line) for the 1st story and the 2nd story under 4 increasing intensities of earthquake excita-
tions (SLE, DLE, MCE, CLE), respectively. These figures show that 1) for different stories under
the same earthquake excitation, the values of directed information and inverse directed information
decrease with the increasing story number, which is due to the energy gradually dissipating as the
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(a)

(b)

Figure 2.10: (a) Extracted directed information and inverse directed information at 1st story of
the building under earthquake excitation with increasing intensities, (b) Extracted directed infor-
mation and inverse directed information at 2nd story of the building under a series of earthquake
excitations with increasing intensities.

wave propagates to the top story; 2) for the same story with different earthquake intensities, the
relative values of directed information and inverse directed information change corresponding to
various structural damage states shown in Figure 2.10. These characteristics of directed informa-
tion and inverse directed information show that correlations exist between information exchange
and structural damage in each story.

Results and Discussion

To explore the floor-level structural damages under earthquakes’ effects, a regression method is
applied to estimate the peak absolute SDR value during earthquake. When training the model,
cross validation is used to evaluate the performance of the model. With cross validation, the mean
square error is calculated to evaluate the accuracy of estimation. As shown in Figure 2.6.2, for
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directed information based features, the mean square error between final estimation value and
ground truth is 0.023. For the raw signal features, using the same training methods shown above,
the performance of alternative models resulted in the mean square error of 0.048, which is 2.5X
higher than the results of DI-based model. The mean square error for regression model based
on AR coefficients is 1.3X higher than the mean square error of DI-based model. More detailed
analysis results comparing the performance of the three approaches are shown in Figure 2.11. From
Figure 2.6.2, we can find that our DI-based feature outperforms than other features if calculating
the average mean squared error by the type of damage. From Figure 2.6.2, we can find that our
method performs the best in service level earthquake excitation. Meanwhile, it can be found that
DI-based model can estimate the SDR value with lowest mean square error in most stories (1st,
3rd and 4th) and its overall performance is the best among three models. In particular DI-based
model performs best in the top (4th) story of experimental frame due to less sensor noise on the
higher floors, as shown in Figure 2.6.2.

2.7 Conclusion

This chapter presents a new information-theoretic approach to diagnosing earthquake-induced
structural damage. In our method, the process of wave propagation inside the building structure
system is modeled as the process of information exchanges. We show both the physical insight
and analytical proof of the physical relationship between structural dynamic characteristics and
information exchanges. Extracted from structural vibration signals at each floor, the information
exchanges are used as features for damage detection and quantification in story-level.

Our information-theoretic approach is evaluated in both simulated structural vibration data
and experimental structural vibration data. As a result, our approach can achieve the accuracy of
71.49% in damage detection and 65.96% in damage quantification for the simulated data. Com-
pared to the benchmark methods, our information-theoretic approach achieves upto 15.48% im-
provement in damage detection. For the experimental data, the accuracy of damage detection
achieves 94%. In addition, estimation error for story drift ratio improved by factors of 1.3X
and 2.5X when compared with conventional methods. This information-theoretic approach does
not need to assume a particular structural model, or probability distribution of the vibration data.
Furthermore, our approach uses only during-earthquake data from sparsely deployed sensors for
detecting the existence of damage and estimating the actual story drift ratio at each story in a
computationally efficient way.
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Figure 2.11: (a) The root mean squared error of estimating the story drift ratio in all stories un-
der all earthquake excitation using our proposed DI-based features, signal-based features and AR
coefficient-based features. (b) The root mean squared error of estimating the story drift ratio under
multiple damage cases. (c) The root mean squared error of estimating the story drift ratio under
different earthquake intensities. (d) The root mean squared error of estimating the story drift ratio
from 1st to 4th story.
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Chapter 3

Knowledge Transfer Across Different
Infrastructures Without Labeled Data

3.1 Problem Overview

To accurately and timely diagnose structural damages, data-driven methods based on structural
vibration sensing are developed and have received many attentions [164, 234]. By combining
advanced machine learning techniques in a supervised fashion, these intelligent data-driven build-
ing damage diagnosis methods utilize historical vibration signals and corresponding true damage
state (label) to train statistical models for building damage diagnosis [66, 82, 168, 224]. With
the strength of modelling complex uncertainties and eliminating the need for explicit modeling of
structural properties, these methods perform well when there is massive historical data collected
from the same building of interest.

However, extensive collection of historical data, especially the true labels, is very difficult and
expensive, if not impossible, in real-world practices. One of the most common damage labeling
practices is to conduct visual inspections by trained human experts, which is labour-intensive, time-
consuming and dangerous for human experts. In recent years, people also utilize different types of
sensors to measure the structural damages as labels. But these sensors are either expensive to de-
ploy or have strict requirements on the operation conditions. For example, story drift ratio (SDR),
defined as the relative translational displacement between adjacent floors, is one of the commonly
utilized engineering damage parameters to indicate the true structural damage states [61, 214, 234].
But accurately measuring the structural drifts after earthquake requires high-resolution expensive
sensors (e.g. position sensitive sensors) [90, 144, 177]. It is costly to widely deploy these expen-
sive sensors on buildings in earthquake prone areas. Besides, the frequency of similar types of
earthquakes happening to the same building of interest is very low. Even though the costly sen-
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sors are deployed on target buildings, there is very limited number of labels available due to rare
earthquakes.

Meanwhile, it often results in low performance if we directly adopt the damage diagnosis model
learned from other buildings to estimate the damage states of the building of interest. Many existing
supervised learning methods are developed under the hidden assumption that the data used for con-
structing a model (training data) have the consistent input-label joint distribution as the data used
for damage diagnosis of the current structure of interest (test data) [174]. As Figure 3.1 shows, in
practices, different buildings often have distinct characteristics such as geometries, material proper-
ties, and foundation conditions, and thus their data distributions are characterized very differently.
Directly adopting models learned from other buildings to diagnose new buildings would violate
the aforementioned underlying assumptions. The violation of assumptions lowers the performance
of developed supervised data-driven approaches, and significantly constrains the wide applications
of data-driven building damage diagnosis in post-earthquake scenarios. Especially, directly com-
bining the historical data from multiple other buildings to train one model and applying it to the
building of interest may make the performance worse since the distributions across these buildings
are already quite distinct to fit into a single model.

Figure 3.1: The data distribution (features, damages) of building 1 under Earthquake 1 does not
equal to the distribution of building 2 under Earthquake 2 in real-world practices, which violates
the underlying assumptions of most current supervised learning methods that data distribution is
consistent across the training and test dataset.

To this end, the machine learning community has introduced domain adaptation techniques
to address these knowledge transfer problems [60, 69, 174, 176, 240]. We denote the buildings
which labelled data are collected with and the knowledge are learned from as “Source Domain,”
and the new building of interest without any labelled historical data as “Target Domain”. This
knowledge transfer problem is called multiple source domain adaptation when having the histor-
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ical data from multiple different buildings (multiple source domains) to learn. Previous domain
adaptation studies fall into several distinct categories such as instance-based [240] and feature
representation-based [60, 69, 176]. The key idea of domain adaptation techniques is to extract fea-
ture representations such that the extracted features across different domains subject to a consistent
distributions in the new space of representations. In this new space of representations, with consis-
tent training and test data distributions, we can adopt the model learned from other source domains
to diagnose damages of the target building. A successful domain adaptation should ensure the ex-
tracted feature representations of different buildings “domain-invariant” and “discriminative”. The
extracted features are called “domain-invariant” features if the distributions of feature representa-
tions across different domains are aligned. Meanwhile, the extracted feature representations need
to be “discriminative” with respect to structural damages to ensure the damage diagnosis accuracy
on the source buildings.

However, there are still challenges for knowledge transfer from source buildings to the target
building for earthquake-induced structural damage diagnosis. First, different buildings may suffer
from different earthquakes with various fast-changing dynamics and environmental noise, which is
coupled in building responses and hard to distinguish from building structural response. To extract
building-invariant features, we need to quantitatively eliminate the impact of different earthquake
characteristics. Conventional single floor-based input features (e.g. raw floor vibration signals, or
Fourier Transform of floor vibrations) does not contain sufficient information about the earthquake
excitations due to the complex wave propagation process inside structures.

Second, the changes of distributions between source domains and the target domain depend
on complicate structural and non-structural components. This makes it difficult to model the
distribution changes and extract feature representations which retain domain-invariance and dis-
criminativeness simultaneously. During the earthquake, the soil-structure interaction system is a
fast-changing highly dynamic time-variant system. Therefore, the damage patterns, i.e. the func-
tional mapping from the feature representations to the structural damages, vary from buildings to
buildings. Simply forcing the domain-invariance of feature representations would easily ignore
the domain-variant structural damage-related information contained in the original data, which
makes the extracted features poor predictors for structural damage. On the other hand, if we focus
on extracting discriminative features regardless of underlying distribution changes across differ-
ent buildings, it would be difficult to ensure the domain-invariance of extracted features, which
makes it difficult to transfer knowledge to the target building. Therefore, their trade-offs in the
earthquake-induced building damage diagnosis problem need to be investigated and resolved.

Last but not the least, the data from different source buildings may induce different levels of
biases to the learned model, which makes it difficult to best utilize the limited data from each
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source building to integrate the knowledge from multiple source buildings. Due to the aforemen-
tioned problem of costly label collection, each source building usually has very limited number
of data, and thus provides very limited information about earthquake-induced structural damage
patterns. One possible solution is to integrate and transfer the knowledge learned from the data
collected on multiple source buildings, which is called as “multiple source domain adaptation”. In
conventional multiple source domain adaptation methods, there exists an implicit assumption, that
is, all of the source domains have the equal importance to provide equally sufficient information to
learn domain-invariant features. However, in real-world practices, some source buildings data have
significantly different distributions from the target building data. That is, different source build-
ings have different levels of biases compared to the target building’s data distribution. This may
be induced by distinct physical properties or too limited dataset constraining sufficient statistical
estimations. Treating all source buildings the same important ignores this difference of bias levels,
which may introduce high biases to the diagnosis model from those source buildings with distinct
data distributions from the target building. This is because that the discriminativeness of extracted
features on the target building would be sacrificed to ensure the features’ domain-invariance on
those distinct source buildings, which finally reduces the performance of knowledge transfer.

To address these challenges, we introduce a new physics-guided modeling framework which
transfers the knowledge learned from multiple different source buildings to help diagnose the story-
wise healthy conditions of the target building structure without any labels. To eliminate the influ-
ences of earthquake types on building-invariant feature extraction, we design a new multi-channel
input features by combining the frequency information of ground motion, floor and ceiling re-
sponses as a tensor. This new input features help the statistical model better understand the local
correlations between ground motions and floor vibrations at different frequency bands. To ef-
fectively extract domain-invariant features while retaining the discriminativeness of the extracted
features, we present an adversarial modelling framework which integrates a feature extractor, a
domain discriminator, and a label predictor with deep neural network architectures. The feature
extractor is jointly optimized with the domain discriminator and label predictor in an adversarial
way to find the optimal trade-off which ensure that the extracted domain-invariant features are still
discriminative. The extracted domain-invariant features enables better understand the influences
of physical relationships between various building properties, earthquake excitation and damage
distributions. To eliminate the noise introduced by less similar/unrelated source buildings’ dis-
tributions, we design a new loss function for the joint optimization based on simple and fuzzy
prior physical knowledge, which is shown to significantly improve the performance in real-world
practices.

This work has four main contributions:
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1. To best of our knowledge, the framework we introduce is the first domain adaptation frame-
work for earthquake-induced building damage diagnosis without any labels of the target
building. This end-to-end framework integrates data augmentation, input feature extraction,
and domain adaptation for damage diagnosis tasks including damage detection and dam-
age quantification. Besides, this multiple source domain adaptation framework is flexible to
combine the information from multiple source buildings to help diagnose the target building.

2. We introduce a new adversarial training framework to learn and transfer the knowledge
from multiple heterogeneous source buildings. This framework ensures both the discrim-
inativeness and domain-invariance of the extracted features, which makes it robust to the
environmental noise and complicate distribution changes between different buildings and
earthquakes.

3. We design a new physics-guided loss based on fuzzy physical knowledge about buildings,
which eliminates the biases introduced by those source buildings with less physical similar-
ities to the target building. We prove that the proposed new physics-guided loss provides
a tighter upper bound for the damage prediction risk on the target domain compared to the
general loss without combining physical knowledge.

4. We characterize the performance of proposed framework using both numerical simulation
data and real-world experimental data, including 5 different buildings under more than 40
earthquakes for simulation and a real-world 4-story building.

This remainder of this chapter is organized as follows. Section 3.2 discussed related work
about the domain adaptation and its applications on structural health monitoring. Section 3.3
analyzes the domain adaptation challenges in earthquake-induced building damage diagnosis sce-
narios. Section 3.4 describes our proposed knowledge transfer framework for building damage
diagnosis, including the problem definition, model architectures, loss function design, and adver-
sarial domain adaptation training scheme. Section 3.5 evaluates our knowledge transfer framework
using both numerical simulation data and real-world experimental data. Section 3.6 concludes the
work and gives further discussions.

3.2 Related Work

Earthquake-induced building damage diagnosis is a challenging problem. In recent years, wide
deployment of vibration sensing systems on buildings provides rich building responses during
earthquakes and enables the applications of data-driven approaches for earthquake-induced build-
ing damage diagnosis [66, 92, 124, 168]. Statistical models or machine learning techniques, such
as multivariate linear regression [82], support vector machine [68], kernel regression [234], deep
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autoencoder [179], and deep convolutional neural networks [2], are utilized to extract damage in-
dicators from structural responses during earthquakes, either in frequency domain or time domain,
and then estimate the building damages [80, 82, 164, 234]. However in practices, many buildings
often have very limited or even no labels available for the collected structural responses data, which
makes it difficult to train the damage prediction model for the target building.

In machine learning communities, people introduced domain adaptation for knowledge trans-
fer between inconsistent training and testing data distributions. In domain adaptation, the input
data are in the same space for both source and target domains, and the learning tasks, e.g. damage
diagnosis, are the same across the source domain and target domain [44, 238, 244]. Especially,
unsupervised domain adaptation focuses more on the unsupervised learning tasks in the target do-
main [43, 217], which means that the target domain data has no labels. In practice, most structural
damage diagnosis tasks using other buildings’ data are domain adaptation problem, specifically,
unsupervised domain adaptation problem. This is because 1) the feature spaces are the same, al-
though the distributions of features may be different. For example, we have the same sensing
modality, e.g. floor vibration signals, for both source and target domains. 2) We have the same
damage prediction tasks for different buildings since the definition for building damage states usu-
ally subjects to a consistent standard. 3) We have no label on the target building.

Traditional domain adaptation includes 2 types of approaches: instances-based and feature
representation-based. Instances-based learning matches the joint distribution P (X, Y ) between
the source and target domain by re-weighting the labeled instances (X, Y ) from the source do-
mains, where X is the input feature and Y is the label. Feature representation-based methods
focus on learning a representation of the input X in a reproducing kernel Hilbert space (RKHS) in
which the feature representation distributions of different domains are close to each other (domain-
invariant). Our work falls into the feature representation-based class, which aims to first extract
domain-invariant feature representations and then then build an optimal damage classifier based
on the extracted feature representations. Especially, we need to learn domain-invariant feature
representations across multiple source domains and the target domain.

In recent years, feature representation-based domain adaptation has been widely studied in dif-
ferent areas, such as image recognition [174, 176], natural language processing [104], sentiment
analysis [18] and etc. Classic traditional methods include transfer kernel learning [132] (TKL),
geodesic flow kernel [63] (GFK), joint distribution adaptation [131] (JDA), and transfer component
analysis [175] (TCA). However, these methods mainly focus on learning shallow feature represen-
tations. Deep learning models are embedded to conduct more complex transformation to extract
feature representations [49, 62, 233]. Deep neural networks have stronger expressive power to ex-
tract robust domain-invariant feature representations disentangling underlying exploratory factors
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of variations and hierarchically combining features according to their correlation with invariant
factors. However, these methods often work with fixed feature representations, which makes it
difficult to ensure the extracted features both discriminative and domain-invariant.

To ensure the discriminativeness and domain-invariance of the extracted feature representa-
tions, researchers developed adversarial framework to embed domain adaptation into the process
of feature representation extraction. In the adversarial frameworks, a domain discriminator block is
added to distinguish between the samples from source domain and target domain, which provides
strong regularization to encourage the domain-invariance of the extracted feature representations
[56, 57, 212, 213]. Deep domain confusion loss is designed to encourage the data distributions
for the source domain and target domain are as close as possible [212]. The gradient reversal
algorithm is proposed to achieve adversarial training by reversing the gradient of domain discrimi-
nator during the back-propagation [56]. Adversarial discriminative domain adaptation is proposed
to alternately learn the feature representations and train the domain discriminator [213]. How-
ever, these frameworks all focus on single-source-single-target problem. When there are multiple
source domains, the distribution changes becomes more complicate. Naive applications of those
single-source-single-target methods would result in sub-optimal solutions.

Some existing multiple source domain adaptation approaches are mostly based on fixed feature
representation learning and can not utilize effective deep neural network models [55, 76]. Zhao et
al. introduced a deep adversarial domain adaptation method for multiple source domain adapta-
tion. This method combines multiple domain discriminators to extract domain-invariant features
across multiple source domains and the target domain [243]. New loss function is designed to
ensure extracted features’ discriminativeness for damage prediction on multiple source domains.
However, this method treats all domains with the same importance for domain-invariant feature
learning. The main goal of domain adaptation is to ensure the prediction performance on the target
domain without any labels. It is difficult to ensure each domain contains equally important infor-
mation for the target tasks in real-world practices. In this work, we introduce a new loss function
to focus on more informative source domains.

3.3 Domain Adaptation Challenges for Post-earthquake Build-
ing Damage Diagnosis

In this section, we first show the common challenges in domain adaptation for post-earthquake
building damage diagnosis scenarios. Then we characterize the data distribution changes with
different earthquakes and building types.

Domain adaptation is important for enabling wide applications of data-driven post-earthquake
building damage diagnosis in data-constrained scenarios. In general framework of data-driven
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approaches, structural response, e.g., the structural vibration signals, are collected as input x, the
respective structural damage states are label y, and a relation between x and y are defined as a
function F : x → y in a discriminative way or the joint distribution P (x, y) in a generative way.
A common underlying assumption for general supervised learning methods is that the marginal
distributions P (x) and P (y) and the joint distribution P (x, y) are consistent between the training
dataset and the test dataset.

However, in our scenario, this underlying assumption is often violated when using labelled
historical data from different buildings to predict the damages of the target unlabelled building.
Denote the building with labelled data which we would like to transfer the knowledge from as
source domain, i.e., s. Denote the building without any labelled data that we need to diagnose as
target domain, i.e., t. The structural response and damage states collected from the source domain
are Xs and ys, respectively, and those from the target domain are X t and yt, respectively. The
data distribution in the source domain does not equal to the data distribution in the target domain,
i.e., P (Xs, ys) 6= P (X t, yt). Figure 4.6(a) presents the 2 dimensional t-Distributed Stochastic
Neighbor Embedding (t-SNE) visualization [139] of structural vibration signals collected from a
2-story building (blue) and a 20-story building (red). The red dotted line refers to the true decision
boundary for damage detection of the 20-story building (red points). The performance of damage
detection for the 2-story building drops dramatically if the decision boundary learned from the
20-story building is used. Meanwhile, the data distributions of the same building under different
earthquake excitations are also different. Figure 4.6(b) shows the visualization of structural vibra-
tion signals collected from the 1989 Loma Prieta (LP) earthquake (blue) and the 1994 Nothridge
(NR) earthquake (red). The red dotted line represents the damage decision boundary for build-
ings under NR earthquake. Directly adopting the decision boundary learned from NR earthquake
results in inaccurate damage decision for LP earthquake.

3.3.1 Characterization Of Distribution Changes With Earthquakes And Build-
ings

The data distributions change with different earthquakes and buildings, which is mainly caused by
different of damage progression patterns inside the structures. The physical properties of earth-
quakes, including ground motion intensities, length, seismic waveform, significantly influence
the structural damage patterns. Meanwhile, the physical properties of buildings ( e.g. stiffness,
damping, structured design, and non-structural components) are closely related to the damage oc-
currence. Here we utilize the incremental dynamic analysis data simulated using 5 numerical
models of steel moment-resisting frames (MRFs) subjected to 40 ground motions to visualize and
give a basic understanding about the complicate distribution changes across different buildings and
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(a)

(b)

Figure 3.2: The 2D tSNE visualization of data distribution of different buildings under earth-
quakes changes significantly. The red points represent data sampled from the source domain, the
blue points represent data sampled from the target domain. The red dotted line shows the classifi-
cation decision boundary for source domain (red points). Diamond indicates damaged and square
indicates undamaged. (a) shows the difference of data distribution between 20-story building and
2-story building. (b) shows the difference of data distribution between 1994 Northridge earth-
quake and 1989 Loma Prieta earthquake. Both figures show that directly applying model trained
on source domain dataset (red) to diagnose structural damage on target domain (blue) will result
in low performance.
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earthquakes.

Impact Of Ground Motion Intensities

The previous research works show that the influence of earthquake excitations on structural damage
patterns is significant and difficult to accurately model [207, 211]. The process of damage occur-
rence and progression is highly non-linear time-variant involving complicated wave transmission
inside structures, which makes it difficult to quantitatively and accurately model the impact of
earthquakes. It has been shown that the correlation between damages and ground motion char-
acteristics are not consistent based on the observations in buildings in Mexico City [207]. There
exist many studies exploring load-deformation model relating the engineering ground motion pa-
rameters to the structural damages. For example, the ground motion intensity is discovered to be
related to hysteretic energy [178]. Destructiveness of seismic ground motions are also related the
seismic duration, maximum absolute ground acceleration and frequency content of the respective
strong ground motion [11]. Here we give examples to show that in a 12-story building, how data
distributions, including the distributions of peak absolute floor acceleration (PFAs) and peak story
drift ratio (SDRs) change with the ground motion intensities. Figure 3.3.1 shows the PFAs distri-
bution changes with different intensities of a seismic ground motion (the ground motion observed
in Station Gilroy Array #3 during 1989 Loma Prieta earthquake). Different scale factors for incre-
mental dynamic analysis indicate different ground motion amplitudes used for simulations. We use
normal distribution to fit the density estimation of PFAs. With intensity increasing, both mean and
variance of PFAs increases. Statistically, with intensity increasing, the support of PFA distribution
spreads and has more overlap with those distributions under low ground motion intensities. When
there are limited data which mostly fall into the overlapping supporting range, it would become
more difficult to distinguish the distribution changes. Figure 3.3.1 shows how the peak story drift
ratio changes with increasing ground motion intensities on each story of the 12-story building.
With ground motion intensity increases, the SDRs of middle stories first increase. When intensi-
ties become higher, the lower stories (1 ∼ 5 story) are severely damaged and finally collapse. This
transition trend indicates that under different ground motion intensities, the difficulty of knowledge
transfer at different story levels varies a lot.

In summary, Figure 3.3 shows that even with the same type of ground motions, the building
exhibit distinct response and damage patterns under different intensities. When different buildings
subjected to various types and intensities of earthquakes, the changes of their structural responses
and damage patterns become more complicated and hard to model. In conventional works, we
often use single-floor-vibration-based features as input to the story-wise damage diagnosis models
by assuming both training and test data are subjected to the same earthquake loading. But in
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Figure 3.3: The distributions of (a) peak absolute floor accelerations (PFAs) and (b) peak story
drift ratio (SDRs) changes with different ground motion intensities. The data is collected based
on incremental dynamic analysis of a 12-story building based on the ground motion observed in
Station Gilroy Array #3 during 1989 Loma Prieta earthquake. Note that the figures only show the
data collected from a single building under a single type of earthquakes. The real-world distribution
changes are much more complicated and intractable.
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the domain adaptation scenario, ignoring the earthquake loading information would mislead the
model in finding earthquake-invariant features. Therefore, seismic ground motions are important
information to extract building-invariant features.

Impact Of Building Heights

The structural damage pattern is closely related to various structural and non-structural compo-
nents, including the type of the structural frames, stiffness, damping, and height. These physical
properties influence the structural system’s elastic and elasto-plastic behaviour under earthquakes
and thus are key elements to determine the structural response-damage distributions [39, 160, 198].
This influences on building damage distributions are often complicated, implicit and difficult to ob-
tain during earthquake. For example, the input energy is not only related to the elastic period of
the structure, but also the viscous damping and the characteristics of the plastic response [39].
More importantly, we often lack of the detail prior knowledge about the building structures (e.g.
stiffness, damping) or quantify the physical knowledge (e.g. frame type) in earthquake scenario.
The lack of sufficient physical knowledge makes it impossible to directly learn the influences of
physical properties on structural damage patterns. Compared to aforementioned physical proper-
ties, building heights is a simple characteristics easier to be obtained. As an example, we show the
influence of building heights on data distributions of different buildings. We show under similar
ground motion intensities, how data distributions change with buildings with various heights in
Figure 3.4. We present the PFAs and mean SDRs of the 2nd story of 2-story, 4-story, 8-story, 12-
story and 20-story buildings with SMFs under the ground motions with similar intensities observed
in Canoga Park-Topanga Can station during 1994 Northridge earthquake. Figure 3.3.1 shows the
peak absolute floor acceleration distributions fitted with Log-Normal distributions. It is shown that
the distributions of structural responses are distinct from each other. The general trend is that at the
same story, high-rise building tends to have more spread structural responses. Figure 3.3.1 shows
the correlations between PFAs and corresponding peak SDRs of different buildings. It is shown
that low-rise buildings (e.g. 2-story and 4-story building) have larger SDRs, indicating more severe
damages. This is because the low-rise buildings tend to experience the largest increase in ductility
demands [9].

A general trend is that the buildings with similar heights tend to have similar damage pat-
terns given the same type of structural frame and the same ground motion. The similar physical
properties indicate similar responses and deformation patterns given consistent earthquake load-
ing. If we had all prior physical knowledge about different buildings and ground motions, we
can build transfer functions to learn the mapping from the structural responses to damage states.
However in practices, the detailed physical knowledge are often difficult to obtain. We may have
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(a) (b)

Figure 3.4: The distributions of (a) peak absolute floor accelerations (PFAs) and (b) correlations
between mean peak story drift ratio (SDRs) and peak absolute floor accelerations (PFAs) change
with different building heights. The data is collected based on incremental dynamic analysis of
2-story, 4-story, 8-story, 12-story and 20-story buildings based on the ground motion observed in
Canoga Park-Topanga Can. station during 1994 Northridge earthquake.

some approximated and simplified physical knowledge, e.g. building heights, story/height ratio,
strong-column/weak-beam (SCWB) ratios and etc. It is difficult to directly learn the distribution
transitions based on these simplified physical knowledge. But it is still meaningful to quantitatively
combine these fuzzy physical knowledge and let it guide and improve the training of powerful data-
driven models. In later sections, we will show how we combine the building heights into the design
of loss function for our data-driven model and the significant improvement.

3.4 Physics-guided Adversarial Domain Adaptation Framework
for Infrastructure Damage Diagnosis

In this chapter, we introduce a new intelligent building damage diagnosis model which transfers the
knowledge learned from multiple other buildings to predict and quantify the damage states of the
target building without any historical data. As Figure 3.5 shows, the proposed framework includes
several steps: data preprocessing, feature extraction, adversarial domain adaptation and damage di-
agnosis. Adversarial domain adaptation jointly train 3 neural networks, including domain-invariant
feature extractor (E), damage predictor (M) and domain discriminator (D). In damage diagnosis,
we directly input the extracted features for target domain data to well-trained damage predictor to
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finally diagnose the damage states of the target building to obtain 1) domain-invariant and discrim-
inative features, and 2) a well-trained damage predictor which maps from the extracted features to
damage states. In this section, we first define the problem of multiple source domain adaptation for
earthquake-induced building damage diagnosis. Then we introduce our new input features com-
bining the earthquake information and structural responses. Then we present the architecture of the
proposed framework, including the feature extractor, domain discriminator and damage predictor.
To train the complicate neural network combination, we present our new physical loss function.
Finally, we describe the adversarial training process for the proposed framework. With the adver-
sarial training process, we would obtain the final feature extractor and damage predictor for final
damage prediction and quantification.

Figure 3.5: Proposed adversarial framework for multiple source domain adaptation for building
damage diagnosis.

3.4.1 Problem Formulation

Our main objective is to learn and transfer the story-wise structural response-damages model ex-
tracted from multiple source buildings with labelled historical data to the target building without
any labelled historical data. Here the input is story-wise structural vibration response, and label
is the respective structural damage states. Denote the source domain as S and target domain as
T . Assume that we have n ≥ 2 buildings. Each of them has distinct data distribution. We denote
each source domain as Si ∈ S, i ∈ {1, · · · , n}. The training dataset in the each source domain Si
is composed of Si = {xSi

j , y
Si
j }

mSi
j=1 , where xSi

j , y
Si
j refers to the jth sample collected from the ith

source building, and mSi
refers to the number of samples from the ith source building. Assume

the labeled source data Si is drawn i.i.d from the distribution DSi
. For the target building, we have

a set of the collected earthquake-induced building floor vibration signal {xTj }
mT
j=1, where mT refers

to the number of instances we need to diagnose for the target domain. Their corresponding true
damage labels {yTj }

mT
j=1 are unknown. Denote the true data distribution on the target domain asDT .

Assume the unlabeled target sample T is drawn i.i.d from the marginal distribution of DT over X ,
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i.e. DX
T . Denote the sample space for ith domain as XSi

where xSi
j ∈ XSi

, and damage state space
for for ith domain as YSi

where ySi
j ∈ YSi

. Similarly, there is xTj ∈ XT and yTj ∈ YT for the target
domain T . In this work, we assume that mT �

∑n
i mSi

.

Our final goal is to predict {yTj }
mT
j=1 without any information about the labels on the target

domain. That is, our goal is to build a classifier a classifier η : XT → YT with a low target risk :

RDT
(η) = Pr(x,y)∼DT

(η(x) 6= y)

without any information about the labels of DT . In this problem, the data distribution varies be-
tween different source domains and from source domains to the target domain, i.e. P (XSi

,YSi
) 6=

P (XT ,YT )∀i. Let H denote the reproducing kernel Hilbert space (RKHS) for classifiers on X .
Define H-divergence between the marginal distributions of the source and target domain on X
as dH(DX

S ,DX
T ). Define the empirical H-divergence between two samples S ∼ (DX

S )mS and
T ∼ (DX

T )mT as dH(S, T ). H-divergence depicts the distance between two distributions on H.
Ben-David et.al proved that the final target classification risk is upper bounded by the combinations
of empiricalH-divergence d̂H(S, T ) and the empirical risk on source domain RS(η) [17].

Theorem 1. (Ben-David et al., 2006) Let H be a hypothesis class of VC dimension d. Given the
samples S ∼ (DX

S )m and T ∼ (DX
T )m, with probability 1− δ, for every function η ∼ H:

RDT
(η) ≤ RS(η) + d̂H(S, T ) +

√
4

m
(d log

2em

d
+ log

4

δ
) + 4

√
1

m
(d log

2m

d
+ log

4

δ
) + β

with β ≥ infη∗ [RS(η?) +RDT
(η?)].

Extending this theorem to multiple source domains where Si ∼ (DX
Si

)m and T ∼ (DX
T )m, Zhao

et.al [243] showed that ∀α ∈ R+,
∑

i αi = 1, with probability 1− δ and for every function η ∼ H,

RDT
(η) ≤

∑
i

αi

(
RSi

(η) + d̂H(Si, T )
)

+ βα +O
(√

1

m
(d log

m

d
+ log

k

δ
)

)
. (3.1)

In feature representation-based methods, the empirical risk on source domain RSi
(η) depicts the

discriminativeness of the extracted features on the source domain Si, and d̂H(Si, T ) depicts the
domain-invariance of the extracted features from the source data and the target data. To success-
fully ensure a successful prediction of η on the target domain, we need to minimize the target
risk RDT

(η). To minimize the target risk, we need to minimize the source risk RSi
(η) and the

distribution distance between Si and T on the input X . That is, to ensure a successful knowledge
transfer from multiple source domains to the target domain, we need to ensure the discriminative-
ness and the domain-invariance of the extracted features. Meanwhile, αi here represents a convex

51



combination of the risk upper bound from different source domains.

Figure 3.6: Proposed architecture

3.4.2 Data Preprocess

Given the labelled source dataDSi
and unlabelled target data {xTj }

mT
j=1, we need to do a preliminary

processing of the data and organize the data into a reasonable form for further learning and trans-
ferring tasks. The focus of the data preprocessing includes two key steps: 1) extract informative
preliminary input features, and 2) data augmentation.

Based on previous characterization in Section 3.3, we also know that the distance between the
data distributions of source domains and target domain is related to the earthquakes’ and build-
ings’ physical properties. Assume this underlying mapping function is G, there is dH(Si, T ) =

G(USi
,UT ,QSi

,QT ), where USi
,UT represents the corresponding building physical properties and

QSi
,QT refers to the respective earthquakes’ physical properties. It is obviously difficult to model

G if all of these information are unknown. Fortunately, in our problem, though USi
,UT are mostly

unknown, and QSi
,QT can be partially depicted by the collected ground motions. By properly

combine the ground motion information into the input, we can reduce the problem as to learn the
feature representations to depict the correlation dH(Si, T ) = GQSi

,QT
(USi

,UT ), to eliminate the
domain changes introduced by the earthquakes.

In conventional methods, people usually use raw floor vibration data or frequency spectrum
of floor vibration as input features. This is because they often assume those floor vibrations are
collected under the consistent ground motions. Here in our work, to diagnose the damage state of
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each story, we combine the information from ground motion, the floor vibration of the story, and
the ceiling vibration of the story. We first extract the frequency spectrum data for each vibration
signal. Compared to directly using raw vibration data, using frequency domain information has
less requirements on the consistent time length of each data sample (which is difficult to achieve in
real-world practice), and is more flexible for a wider application. The length of spectrum and fre-
quency resolution should be consistent across the three vibration signals. Then we concatenate the
frequency spectrums of the ground motion, the floor vibration and the ceiling vibration according
to the respective frequency band. Assume the length of each frequency spectrum is l, we would
have each sample’s input with size of 3× l× 1. By aligning the frequency information in this way,
the convolutional layers in later adversarial domain adaptation model can better understand the lo-
cal correlation between ground motion and floor acceleration to extract domain-invariant features.
In our experiment, we take the the spectrum with frequency lower than 26Hz, which corresponds
to a 1000 × 1 vector for each vibration signal. We choose lower frequency band since most fatal
structural damages are induced by powerful low-frequency seismic wave.

In real-world practice, the size of each domain’s dataset varies significantly, from tens to thou-
sands of samples. While training the deep neural network often needs a proper amount of data
to better utilize the expressive power of the deep architecture. To avoid over-fitting and better
eliminate part of the influence of environmental noise, we conduct data augmentation on the raw
datasets. We use varying-length sliding window on the raw vibration signals such that some infor-
mation before/after earthquake is removed/added, smooth the signals and then conduct the afore-
mentioned process to extract the input for domain adaptation.

3.4.3 Architectures of Feature Extractor, Domain Discriminator, and Dam-
age Predictor

The proposed deep adversarial domain adaptation framework includes 3 main components: feature
extractor (E), damage predictor (M ), and domain discriminator (D), as Figure 3.6 shows. With the
extracted frequency information of structural vibration responses, shown in Section 3.4.2, as input,
feature extractor projects the input to a high-dimensional space to obtain the domain-invariant
representations h of structural response. The extracted source features hSi

and target features hT

are input to both domain discriminator and label predictor. Damage predictor is used to learn
P (hSi

,YSi
) to predict structural damage states given extracted features. Domain discriminator

include n sub-classifiers. The ith sub-classifier focus on distinguish the difference between the
distribution of hSi

and hT . Our objective is 1) to find an optimal feature extractor such the extracted
features are domain-invariant as well as discriminative with respect to the source domain labels,
and 2) to find an optimal damage predictor with the extracted features as input. To achieve this, the
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goal of this framework is to learn a best feature extractor such that even best domain discriminator
cannot tell the difference between the extracted features across source and target domains, while
ensuring that the damage predictor estimates the structural damage state accurately. In this way,
we can find a best trade-off between the domain-invariance and discriminativeness of extracted
features, and thus successfully adapt the knowledge learned from other buildings to help diagnose
the target building of interest.

The architectures of feature extractor, domain discriminator and damage predictor are based
on deep convolutional neural network (CNN). In recent years, deep learning techniques benefit
many applications in engineering fields. By constructing neural networks with deep and special
architectures, we can approximate a wide range of highly non-linear and complex mapping func-
tions [113]. A variety of deep neural networks have been proved to be effective and powerful in
many real-world tasks, including computer vision [109], natural language processing [46], medical
imaging [202] and video game [152]. Some typical architectures of deep neural networks include
deep convolutional neural network (CNN) [109] and recurrent neural network [148]. Among these
architectures, deep convolutional neural network combines convolutional layers to understand the
local structures of features in various resolutions and thus becomes very powerful to learn effective
representations from complex data.

Table 3.1: Architecture for 5-class damage quantification

Networks Operation Kernel Strides Feature maps Activation

Feature Extractor

Input 3× 1000× 1
Convolution 81× 5× 1 2× 1 81× 499× 1 LeakyReLU
Convolution 81× 5× 1 2× 1 81× 248× 1 LeakyReLU
Convolution 81× 3× 1 2× 1 81× 124× 1 LeakyReLU
Convolution 81× 3× 1 2× 1 81× 61× 1

Damage Predictor

Convolution 243× 3× 1 2× 1 243× 30× 1 LeakyReLU
Convolution 81× 3× 1 1× 1 81× 29× 1 LeakyReLU
Convolution 27× 3× 1 1× 1 27× 28× 1 LeakyReLU

Flatten 756
Full connection 5 Softmax

The ith
Domain Discriminator

Flatten 4941
Full connection 2 Softmax

Feature Extractor: Feature extractor focus on extracting domain-invariant and discriminative
features for all source and target domains. The feature extractor take the concatenated frequency
information from the structural responses and respective ground motion as input. With 3 channels
including ground motion, floor and ceiling vibration in the input, we first enlarge the number of
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channel to discover the detailed local correlation between ground motion’s and floor vibrations’
frequencies. Then We use multiple convolutional layers with varying kernel size to extract the
combinations of frequency energy with varying resolutions. The output of feature extractor is
input to both the damage predictor and the domain discriminator.

The optimization of the feature extractor takes the gradient information from both domain dis-
criminator and damage predictor. This optimization is a trade-off between domain-invariance and
damage discriminativeness. On the one hand, the output of feature extractor should improve the
performance of the damage predictor, on the other hand, the extracted features should be highly
domain-invariant such that even optimal domain discriminator cannot distinguish which domain
they come from. We use the new designed physics-guided loss function to train the feature extrac-
tor, which will be introduced in Section 3.4.4.

Damage Predictor: The damage predictor regularizes the discriminativeness of the extracted
features. It is used to predict damage states based on the extracted domain-invariant features,
which takes the extracted features as input and classify the samples into different damage states.
The basic intuition for the damage predictor is to model the complicate mapping from extracted
features to the damage states. Meanwhile, a well-trained damage predictor would backpragate as
much sufficient information as possible to the feature extractor, such that the extracted features
can have better discriminativeness. When designing the damage predictor, we need ensure the
expressive power of the model. However, the damage predictor cannot be too deep either, otherwise
the vanishing gradient backpropagated to the feature extractor could no longer provide any valid
information about the damage patterns.

Domain Discriminator: Domain discriminator examines the domain-invaraince of the ex-
tracted features. Each domain discriminator Di only takes the extracted features from the source
domain Si and the target domain as input, and classify the samples into 2 classes: the sample
comes from source domain Si or the sample comes from the target domain T . There are multiple
source domains. Our goal is to reduce the distribution distance between each source domain and
the target domain to extract domain-invariant features. Therefore, we have multiple sub-classifiers
inside the domain discriminator. The domain discriminator is trained in an adversarial way to the
feature extractor to encourage the domain-invariance of the extracted features. The basic intuition
is that, even if the best discriminator cannot distinguish the domain-difference between the ex-
tracted features from the source domain and the target domain, the extracted features are mostly
domain-invariant.

The architectures may change with different knowledge transfer tasks. For example, if focusing
on binary damage detection task, the depth of feature extractor and damage predictor could be
reduced since the damage detection task is relatively easier than the damage quantification tasks.
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3.4.4 Physics-guided Loss Function for Adversarial Domain Adaptation

To best learn domain-invariant feature representations, we train the feature extractor and discrim-
inator in an adversarial way. The adversarial training is shown to be powerful for training a gen-
erative model without labels [65, 213]. The key of the adversarial framework is the loss function
design. In our architecture, we have different types of neural networks. Jointly optimizing these
non-convex complex networks with unknown landscape is a difficult task. We use a more general
notation F to represent the mapping function constructed by the deep neural networks. We de-
note FE(·; θe) : X → h be the feature extractor neural network with parameters θe. Similarly,
FM(·; θm) : h → Y refers to damage predictor M with parameters θm which map from extracted
features to damage states (we assume there are K damage states in total). And FDi

(·; θdi) : h→ C
refers to the ith domain discriminator Di with parameters θdi mapping from the extracted features
to domain labels. Di only takes extracted features from the source domain Si and the target domain
T . The domain label space C only have 2 labels: 1 represents the sample comes from the source
domain, 0 represents the sample is from the target domain.

In the adversarial framework, the main goal is to regularize the learning of domain-invariant
mapping to minimize the distribution distances between the source and target domains. The dam-
age predictor is trained using standard supervised loss function such as cross-entropy function
to ensure the model can learn the mapping from extracted feature representations to the damage
states. That is, the damage predictor aims at minimizing RSi

(η). Each classifier in domain dis-
criminator is a binary classifier. The training of domain discriminator aims to minimize the cross
entropy to best classify whether a data point is from the source or target domain. That is, the
domain discriminator aims at minimizing d̂H(Si, T ). The objective of training feature extractor is
two-fold: 1) to ensure the discriminativeness, the extracted features should minimize the loss of
damage predictor; 2) to ensure the domain-invaraince, the extracted features should maximize the
loss of domain discriminator.

Meanwhile, from the Inequation 3.1, we can find that an optimal αi combinations can ap-
proximate the tightest upper bound of the target risk. In previous work, people mostly set αi =

1/n where n is the number of the source domain [243]. However, we show find that set αi =

1/d̂H(Si, T )∑
i 1/d̂H(Si, T )

would result in a tighter bound.

Theorem 2. Given RS1(η) = · · · = RSn(η)∀i, αi =
1/d̂H(Si, T )∑
i 1/d̂H(Si, T )

is a tighter bound for the

target risk RDT
(η) than αi =

1

n
.

Proof. Given that RSi
(η) depends the expressive power of the shared damage classifier η =
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FM(FE(·; θe); θm), we assume that the classifier is optimally trained on the source data and the
source risks are equal, i.e. RS1(η) = · · · = RSn(η)∀i. Therefore, for d̂H(Si, T ) > 0,

∑
i

1/d̂H(Si, T )∑
i 1/d̂H(Si, T )

(
RSi

(η) + d̂H(Si, T )
)

=
∑
i

1/d̂H(Si, T )∑
i 1/d̂H(Si, T )

RSi
(η) +

n∑
i 1/d̂H(Si, T )

≤ RSi
(η) +

∑
i

1

n
d̂H(Si, T )∀i (based on Cauchy-Schwarz inequality)

=
∑
i

1

n
RSi

(η) +
∑
i

1

n
d̂H(Si, T ).

In Section 3.3 and 3.4.1, we show that the divergence between two buildings’ sample data
distribution d̂H(Si, T ) is related to the similarity between the two building’s physical properties
dHu(USi

,UT ), as discussed in Section 3.3. Therefore, when designing the loss function for the
framework, it is necessary to weight the loss of different domain unequally, and the optimal weight
for the ith domain,wi, should have the property that for some non-decreasing function f ,

wi ∝
f(1/dHu(USi

,UT ))∑
i f(1/dHu(USi

,UT ))
. (3.2)

Intuitively, the knowledge learned from the similar buildings should be 1) more sufficiently trans-
ferred to the target building, and 2) more informative and indicative for the damage prediction on
the target building. Therefore, we assign higher weights to the source domains which have more
similar physical properties in the loss design. We denote the weight assigned to the ith source
domain as wi where 1 ≤ i ≤ n. Denote USi

and UT as the known physical knowledge about the ith
source building and the target building T . We calculate wi by taking the reciprocal of the similarity
between USi

and UT , and then normalize wi across all source domains using softmax function as

wi =
exp [1/dist(USi

, UT )]∑
i exp [1/dist(USi

, UT )]
. (3.3)

By using softmax function, we can smooth the influence of the differences between physical prop-
erties. As mentioned in Section 3.3, it is a complex process about how the building physical prop-
erty influences the data distribution, especially when we have very limited physical knowledge.
Therefore the physical knowledge should be carefully combined to regularize the domain-invariant
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feature extraction. Note that the calculation of the similarities between different buildings’ physi-
cal properties is quite open depending on how many known parameters that can be obtained (e.g.
heights, the first three mode shapes, strong-column/weak-beam ratios). The key is the insight
that using physical similarities guides the optimization. For example, in our experiment, we have
very limited information about the building besides building height, combining the analysis in
Section 3.3, we define the similarity as a function of building heights

dist(USi
, UT ) = (1−HSi

/HT )2 + ε,

where HSi
and HT represents the heights of the source and target buildings, and ε is a smoothing

factor to avoid dist = 0.

We use λ as the factor to tune the trade-off between domain-invariance and discriminativeness
of the extracted features. With the weight defined as above, the trade-off the feature extractor,
damage predictor and domain discriminator are trained with the below loss function:

min
θe,θm

max
θd1 ,··· ,θdn

L =
n∑
i=1

wiLiM(θe, θm)−
n∑
i=1

wiLDi
(θe, θdi) (3.4)

where

LiM(θe, θm) = −E(x,y)∼DSi

K∑
k=1

I(y = k) logFM(FE(x)) (3.5)

LDi
(θe, θdi) = −Exs∼XSi

[log (FDi
(FE(xs)))]− Ext∼Xt [log (1− FDi

(FE(xt)))] (3.6)

LiM represents the cross-entropy loss of using extracted features to predict the damage states for
source domain Si. LDi

represents the cross-entropy loss of distinguishing the extracted features
from Si or T . This is a minimax problem. The goals between the feature extractor and domain
discriminator is opposite, we need to train them in an adversarial manner to find the saddle point
θ̂e, θ̂m, θ̂di such that

(θ̂e, θ̂m) = arg minL (3.7)

(θ̂d1 , · · · , θ̂dn) = arg maxL. (3.8)

In practice, to find a stationary point, the adversarial training is achieved by a trivial gradient-
reversal layer. As Figure 3.6 shows, the gradient-reversal layer connects between the feature ex-
tractor and the domain discriminator. In the forward-propagation process, the input is not changed.
But in back-propagation, it reverses the gradient by multiplying it by a negative scalar during
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back-propagation [57]. That is, during back-propagation, the neural networks follow the gradient
updates as:

θe ← θe − δ
∑
i

(
∂wiLiM
∂θe

− ∂wiLDi

∂θe

)
(3.9)

θm ← θm − δ
∑
i

(
∂wiLiM
∂θm

)
(3.10)

θdi ← θdi − δ
(
∂wiLDi

∂θdi

)
(3.11)

3.5 Evaluation

In this section, we evaluate the proposed framework on both simulation and real-world earthquake-
induced building vibration datasets. We first give a brief description about the dataset in Sec-
tion 3.5.1. Then we describe the baseline methods for comparison in Section 3.5.2 the knowledge
transfer performance on simulation data (Section 3.5.3) and real-world dataset (Section 3.5.4).
Finally, we characterize the training process and discuss the effect of hyperparameter λ.

3.5.1 Data Description

To evaluate the performance of our algorithm, we first transfer the knowledge between simulation
data, and then transfer the knowledge learned from simualtion data to diagnose the real-world
structural damages.

Simulation Data: To understand the building structural damage patterns under earthquakes,
people build the building response database using a wide range of archetype steel frame buildings
with MRFs [80, 82]. The archetypes we used include 2-story, 4-story, 8-story, 12-story and 20-
story building with a first-story height of 4.6m and a typical story height of 4m. The steel MRFs
of these archetypes are designed with three strong-column/weak-beam (SCWB) ratios of 1.0. The
researchers utilize a suite of ground motions with large moment-magnitude (6.5 ≤ Mw ≤ 7)
and short closest-to-fault-rupture distance (13km < Rrup < 40km). These ground motions
are collected from 40 observation stations during 5 previous earthquake events. To simulate the
building responses, people implement two-dimensional nonlinear model representations of all the
archetype MRFs in the Open System for Earthquake Engineering Simulation (OpenSEES) Plat-
form [82, 146]. Multiple incremental dynamic analysis (IDA) [214] are performed. The floor
vibrations and story drift ratios are recorded with sampling frequency of ∼200Hz for each ground
motion over a wide range of incremental factors.
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Real-world data: the data is collected based on a series of shake table tests of a 1:8 scale
model for a 4-story steel MRFs conducted at the State University of New York at Buffalo [124].
Researchers conduct a series of the scaled 1994 Northridge earthquake ground motions recorded
at the Canoga Park, CA, station. The scale factor ranges from 0.4 to 1.9. Accelerometers and
displacement meters, and strain gauges are instrumented on the structure to record the structural
responses and story drift ratios ∼128Hz.

True damage label determination: According to the current practice standard (FEMA P695) [40,
103, 188, 194], structural damage states are defined based on the ground-truth peak story drift ra-
tio at each story. For the damage detection task, we divide the damage state into no damage
(SDR ∈ [0, 0.01)) and damaged(SDR ∈ [0.01,+∞)). For the task of damage quantification,
there are 5 damage states: no damage (SDR ∈ [0, 0.01)), slight damage (SDR ∈ [0.01, 0.02)),
moderate damage (SDR ∈ [0.02, 0.03)), severe damage (SDR ∈ [0.03, 0.06)), and collapse
(SDR ∈ [0.06,+∞)).

3.5.2 Benchmark Methods

To sufficiently evaluate the performance of our framework, we compare our model with 5 different
other models, including MDAN [243], C-DANN, B-DANN, C-CNN, and TCA [175]. MDAN is
a multiple source adversarial domain adaptation algorithm, which is used here to compare the im-
provement by our new designed loss. The architecture of MDAN in our experiment is designed as
exactly same with the architecture for our proposed framework to ensure the fairness of compari-
son. C-DANN is to combine the data from all source domains as single source domain dataset, and
use single source adversarial domain adaptation method DANN [57] to transfer knowledge from
the source to the target domain. B-DANN is to transfer the knowledge from each source domain to
the target domain using DANN [57], and select the one with best performance to report. C-DANN
and B-DANN have exactly same feature extractor’s and damage predictor’s architectures with our
framework, the only difference is that they only have one classifier in domain discriminator due
to single source domain. C-CNN is to directly use deep convolutional neural network to train on
the combined source data and predict on the target domain. The architecture for C-CNN is the
combination of the architectures of the feature extractor and damage predictor in our framework
mentioned in Section 3.4. TCA is a classic two-stage single-domain adaptation method. When
implementing TCA on our dataset, we first combine the data from all source domains as single
source domain dataset, then use TCA to extract the domain-invariant features for both the source
and target domain, and finally use the support vector machine to train on the transformed source
data and predict on the transformed target data. Besides, we also evaluate the performance of
training on the target domain using deep convolutional neural network.
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(a)

(b)

Figure 3.7: (a), (b)compares the performance to transfer knowledge from other buildings to the 2,
4-story buildings by using our method and other approaches. The results include the performance
on binary damage detection (blue) and 5-class damage quantification tasks (yellow). We use the
dotted line to represent the damage prediction accuracy of directly training on the target domain as
reference.
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(a)

(b)

(c)

Figure 3.8: (a), (b), (c) compares the performance to transfer knowledge from other buildings to
the 8, 12, 20-story buildings by using our method and other approaches. The results include the
performance on binary damage detection (blue) and 5-class damage quantification tasks (yellow).
We use the dotted line to represent the damage prediction accuracy of directly training on the target
domain as reference.
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3.5.3 Knowledge Transfer Across Different Buildings on Simulation Data

(a)

(b)

Figure 3.9: (a) Confusion matrix of the 5-class damage quantification result for knowledge transfer
from other buildings to the 8-story building. (b) Confusion matrix of the 5-class damage quantifi-
cation result for knowledge transfer from other buildings to the 12-story building. The left of
each confusion map shows the density histogram of each damage class in the respective building’s
dataset.
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We explore the performance of our method on knowledge transfer across simulation data. Two
different tasks, binary damage detection and 5-class damage quantification are conducted to eval-
uate the performance of knowledge transfer.

To prepare the training and testing dataset for simulation data, we first conduct linear inter-
polation to align the timestamps between floor vibrations and impute the missing data for each
building. We then select the data collected under ground motions ranging from 0.18 to 1.2, which
covers most moderate earthquakes as Figure 3.3.1 shows. We also conducted data augmentation
as some buildings have very limited structural response datasets. Based on the observations on the
data, We take the sliding window length varying between t−2.5 seconds to t seconds where t is the
time length of the raw vibration signal. We take the stride of sliding the window as 0.25 seconds.
The vibration signals with too short ground motion duration are removed. Based on the selected
data, we conduct Fast Fourier Transform (FFT) on the ground motion, the floor acceleration and
the ceiling acceleration for each story-wise data sample. The peak story drift ratio is simultane-
ously quantified into damage class as ground-truth label. We organized the data for each building
by story level.

We conduct different experiments which transfer knowledge from other buildings to the 2, 4, 8,
12, and 20-story building separately. The domain adaptation is implemented in story level, which
is 2nd floor in our experiment. We choose to transfer knowledge across the 2nd floor of different
buildings based on 2 reasons: 1) all the 5 buildings have the 2nd floor, and 2) as Figure 3.3.1
and Figure 3.3.1 shows, the data distribution change in lower floor is more complicate than higher
level, which is a more difficult task. For the 2nd floor, the data size for 2, 4, 8, 12, 20-story building
is 2250, 750, 2200, 1350, and 600, respectively.

We design different architectures for binary damage detection task and 5-class damage quan-
tification task. The architecture for damage quantification is shown in Table 3.1 with ∼ 250K
parameters. Since damage detection is an easier task, we reduce the number of convolutional lay-
ers in feature extractor and damage predictor to 3 and 2 respectively. When training the model, we
use Adam as optimizer [102] with the momentum of 0.9 and the weight decay rate of 1e − 4. We
take λ as 0.2 ∼ 0.5 for damage quantification and λ as 0.01 ∼ 0.05 for damage detection. The
initial learning rate is set as 0.005 for damage quantification and 0.0002 for damage detection with
learning decay rate of 0.1.

Figure 3.7 and 3.8 shows the performance of our proposed framework on knowledge transfer
across 5 buildings’ 2nd floors for different damage diagnosis tasks. Figure 3.5.1, 3.5.1, 3.5.1, 3.5.1
and 3.5.1 show the results of knowledge transfer from other buildings to the 2, 4, 8, 12, 20-story
building, respectively. Blue bars refer to the results of binary damage detection and yellow ones
represent the results of 5-class damage quantification tasks. We use the dotted line to represent
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the damage prediction accuracy of directly training on the target domain as reference. Figure 3.9
shows the confusion matrix of damage quantification results for transferring knowledge to the 8-
story and the 12-story buildings. Since we do not have class 5 (collapse) for 12-story building data,
we mark it as 1 in the confusion matrix. It can be found that the damage quantification accuracy
achieves at 76% and 84.67% for the buildings, respectively. Besides, the±1 damage quantification
accuracy achieves at 97.41% and 100% respectively. Figure 3.10 show the performance of our
framework to transfer knowledge from other buildings to the 12-story building across the 2nd
story, 6th story and the roof story. The results on damage detection, damage quantification and ±1

damage quantification are presented.

Figure 3.10: Performance of our framework to transfer knowledge from other buildings to the 12-
story building across the 2nd story, 6th story and the roof story. The results on damage detection
(blue), damage quantification (yellow) and ±1 damage quantification (green) are presented.

Our framework achieve upto 68.76% improvement on damage detection and 86.37% improve-
ment on damage quantification compared to the benchmark methods other than directly training
on the target domain. We have several observations based on the results: 1) The ”no damage” and
”slight damage” data points, the ”moderate damage” and ”severe damage” are two groups difficult
to classify. 2) Except transferring to the 2-story building, our method can achieve comparable per-
formance or outperform by directly training on the target domain. This shows that our framework
is good at combining the information from different source domains to improve the knowledge
transfer. This is because that for some buildings with very few data, the information is too lim-
ited for directly training on the target domain. This makes the model easily overfit and reduce the
prediction performance. For the 2-story building, the 2nd story is the roof story, which may result
in a different damage pattern. 3) For most buildings, multiple source domain adaptation meth-
ods outperform than single domain adaptation methods. This is because multiple source domain
adaptation methods can utilize information from multiple buildings compared to baseline like B-
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DANN and TCA, and can better understand and extract these information compared to C-DANN
and C-CNN. 4) Low size of target inputs would limit the performance of knowledge transfer. For
example, the 8-story and the 12-story building can achieve relatively higher accuracy rather than
the 4-story and the 20-story building. This is because there are too few samples even after data aug-
mentation, few inputs make it difficult for the feature extractor to sufficiently learn the underlying
marginal distributions and conduct domain-invariant transform.

3.5.4 Knowledge Transfer Across Different Buildings From Simulation to
Real-world Diagnosis

Figure 3.11: This figure compares the domain adaptation performance between our method and
other approaches on binary damage detection (blue) and 5-class damage quantification tasks (yel-
low) on a real-world 4-story building. We use the dotted line to represent the damage prediction
accuracy of directly training on the target domain as reference.

Compared to the simulated non-linear building model, real-world structures often have more
complicate non-linear load-deformation model. However, real-world seismic structural responses
data is often difficult to acquire. Here we would like to validate the potential application to transfer
the knowledge from the simulation data to the real-world structure for earthquake-induced struc-
tural damage diagnosis.

For the data preprocessing, we follow the steps described for simulation data in Section 3.5.3.
The difference is that we have more dense sliding window with small striding to augment the data,
since the size of real-world building data is very limited. We finally obtain 1500 data points and
respective damage states as real-world structure dataset. Note the damage class distribution is very
imbalanced as Figure 3.12 shows, which is common in real-world data. We use the same architec-
ture as Table 3.1 for damage quantification. While for damage detection, a lighter-weight model
than the one used for simulation data’s damage detection is employed and shows a surprisingly
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good performance, which will be discussed later. We use Adam with the momentum of 0.9 and
the weight decay rate of 1e − 4 as optimizer [102]. For damage quantification, we found the per-
formance achieves the best when set λ = 1. We take λ as 0.01 ∼ 0.05 for damage detection. The
initial learning rate is set as 0.005 for damage quantification and 0.0002 for damage detection with
learning decay rate of 0.1.

Figure 3.12: Confusion matrix of the 5-class damage quantification result for knowledge transfer
from simulation data to a real-world 4-story building. The left of the confusion map shows the
density histogram of each damage class.

As a result, our framework can achieve 100% damage detection accuracy and 69.93% 5-class
damage quantification accuracy, as shown in Figure 3.11. In the task of damage detection, our
framework has the same performance as MDAN, and outperforms by other method, which vali-
dates that multiple source domain adaptation methods have their unique advantage on fusing the
information from different source domains. On the more difficult task of damage quantification,
our method outperforms by other methods, which show the importance of discovering and com-
bining the physical knowledge about the domains into the loss design. Figure 3.12 shows the
confusion matrix for the damage quantification result, which indicates a 100% ±1 damage quan-
tification accuracy. Since we do not have class 3 (moderate damage) and class 5 (collapse), we
mark them as 1 in the confusion matrix. Interestingly, the source dataset contains data points indi-
cating moderate damage and collapse, but the well-trained model only misclassifies a small group
of data points belonging to moderate damage into slight damage, and avoids to classify any points
into collapse.
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3.5.5 Characterizing The Training Process and Effect of λ

In this section, we characterize the training process, giving some lessons and experiences about
the optimization of the proposed framework. A key problem for adversarial framework is how to
find a stationary saddle point in minimax/maximin optimization. For our proposed framework, this
problem is more critical and difficult to resolve. Our framework combines three neural network
architectures, which makes it more difficult to guarantee a stationary saddle point. Here we visual-

ize the changes of the damage classification loss
1

n

∑n
i=1wiLiM(θe, θm) and domain discrimination

loss
1

n

∑n
i=1wiLDi

(θe, θdi), as Figure 3.13 shows. We can find that both loss keep fluctuating dur-
ing the training epochs due to adversarial training scheme. The damage prediction accuracy on the
target domain varies a lot at the early training stage, and finally converge a stable point. A basic
insight to stabilize the training is that, in architecture design, the sub-classifiers in domain discrim-
inator should be kept as light-weight nets but sufficiently powerful to conduct binary classification
on the extracted features. However, sometimes it would be difficult to find a saddle point for the
training framework. How to stabilize the training of adversarial frameworks needs to be resolved
in the future work.

Figure 3.13: The loss of domain discrimination loss, the loss of damage classification on the
source domains, and the accuracy of damage classification on the target domain change with train-
ing epochs.

The tuning of parameter λ is another key for the network optimization. λ controls the trade-off
between the discriminativeness and domain-invariance of the extracted features. In our experi-
ment, we found that different architectures have different optimal λ. If the architecture of damage
predictor is more complex, or if we have limited data or more noisy data, we need higher λ to
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ensure the domain-invariance of the extracted features.
We also visualized the kernel in the first convolutional layer of learned feature extractor. As

Figure 3.14 shows, there are 3 groups of 81 kernels with size of 5 × 1. The 3 groups focus
on extracting information from floor response frequency, ceiling response frequency, and ground
motion frequency. We can find that most kernels are active, which means our network parameters
are not redundant. It can be found that in some groups, the kernels focus on extracting information
in the same frequency band, while in some other groups, the kernels for floor and ceil responses
tend to focus on opposite frequency band to the kernel for ground motion information.

Figure 3.14: Visualized kernel for the first convolutional layer of the learned feature extractor
described in the Table 3.1. There are 3 groups of 81 kernels with size of 5× 1. The 3 groups focus
on extracting information from floor response frequency, ceiling response frequency, and ground
motion frequency, which is ordered from top to bottom in the figure.

3.6 Conclusion

In this work, we introduce a new modeling framework to adapt and transfer the knowledge learned
from different buildings to diagnose the earthquake-induced structural damages of another building
without any labelled data. The proposed adversarial domain adaptation approach extracts domain-
invariant and damage-discriminative feature representations of data from different buildings. To
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best of our knowledge, this is the first framework to address the multiple source domain adaptation
challenge in post-earthquake building damage diagnosis without any labels of the target building.
This end-to-end framework integrates data augmentation, input feature extraction, and domain
adaptation for damage detection and damage quantification. Besides, this framework is flexible
to combine as much available information in historical datasets from different other buildings as
possible to help diagnose the current building, which ensures its application practicalities. In this
framework, we propose a new input feature embedded with the ground motion information. We
design a new physics-guided loss based on fuzzy physical knowledge about buildings to eliminate
the uncertainties introduced by those source buildings with less physical similarities to the target
building. We prove that this new loss provides a tighter upper bound the damage prediction risk on
the target building.

As for evaluation, we evaluate the proposed framework using both simulation data and real-
world data, including 5 different buildings under more than 40 earthquakes for simulation and
a real-world 4-story building under incremental dynamic analysis. Our method achieves upto
90.13% damage detection accuracy and 84.66% damage quantification accuracy on simulation
data. We also successfully transfer the knowledge learned from the simulation data to the real-
world building with 100% damage detection accuracy and 69.93% damage quantification accuracy,
which outperforms by the state-of-the-arts frameworks.
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Chapter 4

An Efficient Sensor Deployment Mechanism
in Urban Mobile Crowd Sensing Systems

4.1 Problem Overview

To monitor urban infrastructures, an efficient sensor deployment is important to achieve an optimal
quality of sensing coverage and ensure the most informative data is collected from infrastructure
for further data analysis with limited budget. In urban infrastructure systems, the sensor nodes
are deployed in the static or mobile manner, from city-scale deployment to deployment inside a
single infrastructure such as a bridge or a building. One of the most challenging problem is how to
achieve efficient sensor deployment in city-scale mobile sensing systems for urban infrastructure
monitoring. Compared to static sensor deployment, mobile sensing systems need to account for
the mobility of sensor carriers. This makes the problem of optimal sensor deployment more com-
plicated and challenging, especially for a large city scale mobile sensor deployment. As discussed
in [136], the mobility of sensor carriers is a double-edged sword. On the one hand, sensor carri-
ers’ mobility prevents the cost of deploying many fixed sensors to collect data around a large city.
On the other hand, the sensor carriers’ stochastic and heterogeneous mobility makes it difficult to
guarantee a reliable quality of sensing coverage over time.

In this chapter, we introduce an efficient sensor deployment framework which optimizes the
quality of spatio-temporal sensing coverage by incentivizing sensor carriers in urban mobile crowd
sensing system. In recent years, mobile crowd sensing system, as a new type of mobile sensing
system, has attracted many attentions for urban infrastructure monitoring. Mobile crowd sensing
systems can reduce cost and energy consumption by utilizing the low-cost mobile sensors mounted
on non-dedicated individual mobile devices [50, 58, 74, 216, 227]. Vehicular crowd sensing sys-
tems are a typical example. Mobile sensors are pre-installed on individual vehicles to sense the tar-
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get data at different time and locations, which reduces the cost to deploy, manage and maintain the
mobile sensor system, and becomes more flexible to various short-term tasks [6, 15, 127, 162, 183].
However, since these vehicles are non-dedicated platform and change their locations dynamically,
it is difficult to ensure the sensors carried by vehicles always distribute in an optimal way. This
inefficient sensor deployment is a common challenge for these mobile crowd sensing systems. In
the following context, we first give a brief introduction of mobile crowd sensing systems, and then
present the common challenge of inefficient sensor deployment.

Typically, a vehicular crowd sensing system includes three components: a data request end,
a crowdsourcer, and vehicle agents. The data request end requests city-wide sensing data from
crowdsourcer for future data analysis. When requesting, the data request end also provides the
budget and a desired distribution of the collected data, which we call the target (sensing) distri-
bution. Note we name the distribution/density of the collected data in spatio-temporal domain as
the “sensing distribution” in the rest of the chapter. The target distribution generally depends on
the sensing objective of the data request end and consists of the desired information precision in
different regions. For example, if the sensing data is collected for general air quality monitoring,
the data request end usually expects the collected air pollution data to be uniformly distributed
over the city to obtain enough information in different regions for real-time monitoring and fore-
casting [15, 31, 185]; while when monitoring mobs in a large city, forest fires, factory pollution,
or special atmosphere activities during special dates or seasons, the data request end expects to
spend the most budget on collecting information in the crowded areas or specific neighborhoods
instead of uniformly across the city [7, 100, 119, 180, 239]. With rapidly increasing smart-city
applications of vehicular crowdsensing system, the demand of the data request end becomes more
diverse, which requires our crowdsourcer to be highly flexible to data requests with various target
distributions.

The vehicle agent refers to vehicles, e.g. taxis, drones, buses and etc., that have pre-mounted
sensors to collect specific types of data at a given sampling frequency while moving through a city.
The primary goal of each individual vehicle agent is to finish its original task, e.g. transporting
passengers or transporting goods, to make money. Mounting sensors on these non-dedicated ve-
hicles provides a more flexible and cheaper way to collect city-wide data for different application
scenarios. For example, taxis with air pollution sensors can monitor city-wide air quality while
serving passengers; and delivery drones with cameras can be used for cartography on the way to
deliver packages.

The crowdsourcer plans sensing data assignments for vehicle agents and organizes the col-
lected data for the data request end. By integrating all data points collected by all pre-mounted ve-
hicle agents during their movement, the crowdsourcer obtains the final sensing dataset. To satisfy
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the demand of the data request end, the crowdsourcer needs to 1) optimize the sensing distribution,
which ensures the sensing distribution and the target distribution as similar as possible; and 2) be
flexible to various desired target distributions of the data request end.

Figure 4.1: Incentivizing vehicle agents to achieve uniform distribution over spatial domain.

However, a vehicle agent such as a taxi has a different goal from that of the crowdsourcer.
Such inconsistency of goals often results in a sub-optimal sensor deployment and thus low quality
of sensing coverage. The goal of the vehicle agents is to look for more task requests to make
money, rather than to sense data, while the crowdsourcer prefers that the taxis distribute them-
selves according to a target distribution required by the data request end to optimize the sensing
quality. For example, to monitor the urban air quality, the data request end needs air pollution data
throughout the entire city and across different time intervals to ensure sufficient information for
every area [29, 247]. To satisfy the demand of the data request end, the crowdsourcer needs to
distribute the air quality measurements uniformly across the city. But taxi drivers spend most time
staying in the crowded areas of a city since those areas usually have more ride requests [42, 130].
As a result, few taxis appear in the large non-crowded areas, and the collected air pollution data
in these areas is limited. In this case, the sensing system is not able to provide sufficient informa-
tion about these areas for air pollution monitoring compared to the scenario where taxis distribute
uniformly across the city. With the increasing applications of mobile crowdsensing systems, the
demand of the data request end may become more and more diverse and not limited to a uniform
target distribution [7, 28, 30, 100, 119, 180, 239]. The inconsistency may become more severe
when the data request end requests a specifically designed non-uniform distribution. For example,
the data request end may request a Gaussian distribution concentrated in factory areas where few
taxis pass by. In this case, the difference between the collected data distribution and target distri-
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bution is larger than in the case of a uniform target distribution, which will significantly affect the
quality of sensing coverage.

A common approach to resolve this problem is to incentivize part of available vehicle agents to
new trajectories by offering money, or other forms of non-monetary incentive, e.g. higher probabil-
ities of getting a passenger at the destination, such that the overall distribution of all vehicle agents
approximates the target distribution. However, the budget provided by the data request end is often
too limited to incentivize all vehicle agents when there is a huge number of vehicle agents.

In this chapter, we aim to design a vehicle agent incentivizing algorithm for a crowdsourcer to
optimize the sensing distribution and make it close to the target distribution with a limited budget.
To optimize the sensing distribution, the key for the crowdsourcer is to figure out 1) which vehicle
agents to incentivize, 2) where the vehicle agents should be incentivized to go, and 3) how much
to pay for incentivizing each vehicle agent.

However, there are three challenges for this objective. 1) For generic target distributions, the
difficulty of selecting vehicle agents and their appropriate incentives increases with the complex-
ity of the target distributions. For example, with a uniform target distribution, one can intuitively
attempt to ensure equal numbers of vehicle agents in each location. Most previous studies focus
on a uniform distribution. When the target distribution dynamically changes over time and space,
however, it becomes difficult to decide how to incentivize these vehicle agents. 2) It is difficult to
design an incentive that mitigates the inconsistency of goals between the vehicle agents and the
crowdsourcer. On the one hand, the crowdsourcer needs to reduce the monetary cost for each vehi-
cle agent to better utilize the budget. On the other hand, the vehicle agents need enough incentives
to ensure at least the same profit from following the specified trajectories. 3) There is a large num-
ber of vehicle agents, and the number of their candidate trajectories increases exponentially with
the length of time, which makes it impossible to use an exhaustive search to obtain the optimal
incentive solution.

To address these challenges, our work introduces a multi-incentive vehicle agent dispatching
algorithm. Our algorithm has three major contributions:

• A novel modeling of the incentivizing problem: To our best knowledge, we are the first to
model the quality of sensing coverage as the KL-divergence between the target and sensed
data distributions and formulate the sensing coverage optimization problem. We further
prove that this formulation is a non-linear multiple-choice knapsack problem, which is NP-
complete and impossible to solve in polynomial time.

• A novel hybrid incentive design to reduce the incentivizing cost: We design a hybrid in-
centive for the vehicle agents, which combines the non-monetary incentive of potential task
requests at the vehicle agent destination (we call this a “hidden incentive”) and the monetary
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incentive. This combination of incentives allows us to better utilize the budget by decreasing
the average cost of incentivizing one vehicle agent.

• A novel and efficient algorithm to compute optimal the incentivizing strategy: We introduce
the algorithm iLOCuS, which incentivizes vehicLes to Optimize the sensing distribution in
a Crowd Sensing system. The algorithm finds the solution to reduce the dissimilarity in a
more efficient way than exhaustive search by a two-stage optimization method.

Figure 4.2: The diagram of the considered vehicular mobile crowd sensing system.

The rest of the chapter is organized as follows: Section 4.2 introduces related work in opti-
mizing the sensing distribution in mobile sensing networks. Section 4.3 formulates the problem.
Section 4.4 proposes an optimization algorithm to solve the formulated problem. Section 4.5 eval-
uates the proposed problem formulation and algorithm in simulation data. Section 4.6 summarizes
the results and concludes. The Appendix provides the proof of the theorems proposed in the chap-
ter.

4.2 Related Work

We outline the related work on spatio-temporal quality of sensing coverage optimization in mobile
sensing networks.

In a mobile sensing system, the quality of sensing coverage refers to a combination of the data
coverage, i.e., how many spatial grids and time spots the collected data covers [32, 86, 136, 235],
and the data balance level, i.e. whether the collected data has a similar distribution to a given
target distribution in the spatio-temporal domain [91, 206]. To achieve a good quality of sensing
coverage with a limited budget, most previous works in mobile crowd sensing select a subset of
vehicle agents to collect long-term sensory data in their current locations [86, 129, 235], or select
dispatching destinations for vehicle agents [206, 219, 235]. These methods mainly focus on static
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distributions of sensors at some time point, but ignore the influences of the vehicle agents’ dynamic
mobility on the quality of sensing coverage.

Recently, other works have begun to use the predictable vehicle mobility to improve the ve-
hicle selection in mobile crowd sensing scenario [1, 74, 91, 99, 216]. There are various settings,
assumptions, and objectives for these works. For example, [74] discussed how to incentivize vehi-
cles to maximize the total number of covered regions in all time slots or the covered time length in
all regions by selecting several vehicles with predicted mobility. [216] minimizes the incentiviz-
ing cost considering probabilistic and deterministic mobility models. [100] aims at identifying the
important vehicles for the whole network based on their historical mobility patterns, but without
considering the quality of spatio-temporal sensing coverage. [91] proposed a framework to opti-
mize the sensing quality in the spatial domain, which assumes the mobility of each user is known
and deterministic, and that all users volunteer to sense data without any incentive reward. [1]
proposed a reputation-aware framework considering the vehicle availability to select vehicles that
achieve target spatial coverage with budget constraints.

Our setup and objective are, in some aspects, different from previous work. In our work, sen-
sors are already pre-mounted on vehicle agents [29, 45, 138] to make it more convenient to collect
data, especially for driverless vehicle agents. For the objective, instead of only focusing on spatial
coverage or temporal coverage, we aim at the joint spatio-temporal sensing distribution. With this
objective, the crowdsourcer better controls the precision of sensing distribution in both time and
spatial domains to fulfill the data request end’s demand. Meanwhile, instead of directly optimizing
the coverage, we make the collected sensing data distribution as similar to the target distribution
as possible. In this way, our system is more efficient and flexible to the various demands of data
request end on the target distribution. During incentivizing, we not only select part of vehicles
from all equipped vehicles, but also decide trajectories for these selected vehicles. This is quite
different from previous works which only have vehicle selection but no trajectory selection. Since
we jointly optimize the spatio-temporal sensing distribution, every location that the vehicle agents
pass by matters in our objective function. On the one hand, being able to select trajectories for
some vehicle agents makes it more flexible to incentivize vehicle agents to different locations and
achieve better sensing coverage. On the other hand, the trajectory selection makes the problem
more computationally complex. This is because we need to select the best trajectory for each
vehicle from a huge number of candidate trajectories.

As for the incentive design, many incentivizing mechanisms are proposed based on auction
and game-theoretical models, such as reverse auction [118], Stackelberg game [226] and other
budget-feasible mechanisms [8, 87, 225, 250]. [167] summarized and compared different types
of incentivizing mechanisms for mobile crowdsensing systems. Generally the incentive could be
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monetary or non-monetary reward. A rule of the thumb of incentive designing is to ensure the value
of the incentive is not less than the cost of vehicle agent implementing the sensing assignments.

Figure 4.3: The flowchart of crowdsourcer’s planning process, which is part of the system de-
scribed in Figure 4.2.

4.3 Problem Formulation
Our goal is to incentivize taxi mobility so as to match the collected data distribution to the target
distribution with a limited budget and a limited number of vehicle agents. We first define key
components of this mobile crowd sensing problem in Section 4.3.1. Section 4.3.2 introduces the
objective function in detail, which is applicable to various target distributions. Then we describe
the design of customized incentives by combining non-monetary rewards to reduce the monetary
cost of incentivizing vehicle agents in Section 4.3.3. Finally, we formulate the problem with phys-
ical mobility and budget constraints in Section 4.3.4.

4.3.1 Background and Definitions

In this section, we define key components of our mobile crowd sensing system, as shown in Fig-
ure 4.2. To simplify the problem, the map of a city is discretized into a× b grids according to the
size of the target area and the desired spatial granularity specified by data request end. Time is
also discretized into T time slots, where T is the incentivizing period as defined in Section 4.3.1.
We denote the grid locations as (i, j), where 1 ≤ i ≤ a, 1 ≤ j ≤ b, and the current time point
is 1 ≤ t ≤ T . All vehicle agents are installed with sensors and assumed to run inside the a × b
map region. The data request end provides the budget, target distribution, and other requirements
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to the crowdsourcer. According to location and occupancy information, the crowdsourcer selects
vehicle agents to incentivize and plans trajectories for them. During a specific time period, vehi-
cle agents move inside the target region, either with their usual mobility patterns or following the
crowdsourcer’s specified trajectory. Data is automatically collected along with the traces of the
vehicle agents. The crowdsourcer collects and organizes the uploaded data from all vehicle agents
and sends the data to the data request end for further analysis.

Data request end
The data request end requests and analyzes the data. The crowd sensing system serves the needs
of the data request end. The data request end provides its requirements to the crowdsourcer: the
incentivizing period T , the budget B for incentivizing vehicle agents during T , and the target dis-
tribution O(i, j, t). Finally, the crowdsourcer returns the crowdsensed data back to the data request
end. The crowdsensed data is collected during T without exceeding budget B, and its distribution
over time and space is compared to O(i, j, t). If the data request end needs multiple incentivizing
periods, it should specify the respective budget and target distributions for each period.

Incentivizing period: denoted as T . At the beginning of each incentivizing period, the crowd-
sourcer plans and assigns the incentivizing strategies for the next T time points. The length of
the incentivizing period indicates how frequently we choose to incentivize a set of vehicles and
should be chosen appropriately. If it is too long, the accumulative error of mobility prediction
will increase with time and affect our algorithm’s performance. If it is too short, it will consume
intensive computational resources. If the data request end would like data collected for a longer
time span, we can directly incentivize multiple T s.

Budget: denoted as B, refers to the total amount of money provided by the data request end to
incentivize vehicle agents during one incentivizing period.

Target distribution: refers to the desired/expected distribution of data collected over time and
space. The target distribution, denoted as O, is a distribution over time and space. O(i, j, t) refers
to the percentage of sensing data collected in the location (i, j) at the time point t. Thus, we must
have

∑a
i=1

∑b
j=1

∑T
t=1O(i, j, t) = 1. The target distribution varies according to the goal of the

data analysis. For example, monitoring city-wide air quality requires air pollution data from all
regions of the city, and thus requires that the collected data be distributed uniformly over space and
time.

Crowdsourcer

The crowdsourcer incentivizes vehicle agents based on the provided information from the data
request end and current status of each vehicle agent within the incentivizing period. Figure 4.3
shows the details of the crowdsourcer’s planning process. The crowdsourcer takes as input location
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and occupancy information from the vehicle agents as well as the budget and target distribution
from the data request end. The planning process of the crowdsourcer includes three steps: 1)
selecting incentivized vehicle agents, where Ic denotes a binary decision to incentivize vehicle
agent c, 2) specifying the incentivized trajectory Dc, which will be introduced in Section 4.3.1,
for each incentivized vehicle agent c, and 3) designing the customized incentive B(c) to give each
incentivized vehicle agent c according to its assignment. After the planning process, if the selected
vehicle agents accept the incentive, they move according to the assignment. Meanwhile, no matter
whether the vehicle is selected or not, the pre-mounted sensors on the vehicle will automatically
collect and upload the sensing data. Finally, the crowdsourcer will organize the collected sensing
data from all vehicle agents within an incentivizing period, and send it to the data request end.

Figure 4.4: The 3-D matrix Dc, which represents the trajectory D of vehicle agent c.

Vehicle agent

Vehicle agent refers to an individual vehicle with sensors pre-mounted. The sensors generally
include a GPS sensor, an occupancy sensor, and sensors collecting requested information (e.g.,
air pollutant sensors). The GPS sensor collects location information about the vehicle agent at
each time point. The occupancy sensor shows whether the vehicle agent is unoccupied so that
crowdsourcer can incentivize it. Since the sensors are pre-mounted on the vehicle agents, it is
reasonable to assume that there is no new vehicle entering the system in the incentivizing period.

Status of the vehicle agent: At the beginning of each incentivizing period, all vehicle agents
have two possible statuses: unoccupied or occupied. If a vehicle agent is completing an original
task at a given time, we mark its status as “occupied” and not available for further incentivizing
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in its occupied duration. Otherwise, we mark the status of the vehicle agent as “unoccupied”.
After the incentivizing assignments are distributed, vehicle agents have three possible statuses:
free, incentivized or occupied. “Incentivized” vehicle agents follow the incentivized trajectories
distributed by the crowdsourcer. “Free” vehicle agents are neither occupied nor incentivized, and
cruise according to their usual mobility patterns. Note that since sensors are already installed on
the vehicle agents, information is still being collected when the vehicle agent is “occupied” or
“free”; however, for an “occupied” or “free” vehicle agent, where data is collected as determined
by its original task instead of the crowdsourcer.

Trajectory: denoted as Dc, refers to the mobility of a vehicle agent c during the current in-
centivizing period. As Figure 4.4 shows, Dc is a a × b × T matrix. Each element of Dc,
0 ≤ Dc(i, j, t) ≤ 1, represents the probability that the vehicle agent c appears in (i, j) at time
t, where

∑
i,j Dc(i, j, t) = 1. If Dc(i, j, t) = 1, the agent c has deterministic mobility at time t. At

the beginning of the incentivizing period, when the crowdsourcer plans the incentivizing strategies,
there are two different types of trajectory from the perspective of the crowdsourcer: original tra-
jectory for non-incentivized vehicle agents including occupied and free vehicle agent, incentivized
trajectory for incentivized vehicle agents.

• Original trajectory: represents the original trajectory of the non-incentivized vehicle agents.
Non-incentivized vehicle agents include “occupied” vehicle agents and “free” vehicle agents.
The original trajectory of an “occupied” vehicle agent is known to the crowdsourcer, since
it is determined by the vehicle agent’s original task and reported to crowdsourcer when the
task begins. For the “free” vehicle agent which is neither occupied nor incentivized, its
original trajectory is probabilistic for the crowdsourcer at the beginning of T . In a general
2-D map grid, there are 9 potential directions that the free vehicle agent can move to in the
next time point, which is the adjacent 8 grids and current grid itself (staying in the current
location). So the mobility of “free” vehicle agents are stochastic from the perspective of
the crowdsourcer. The mobility can be learnt from historical mobility data [137, 184]. So
a probabilistic mobility prediction model is employed to predict Prc(i, j, t), which refers to
the probability that a free vehicle agent c appears in the location of (i, j) at time of t. Some
empirical mobility prediction models include Markov Chain[27, 120, 156].

• Incentivized trajectory: denoted as Dc, refers to the trajectory that crowdsourcer assigns to
the incentivized vehicle agent c during T . The assignment is designed by the crowdsourcer so
as to achieve the target distribution of the collected data. If a vehicle agent accepts the
assignment and respective incentive, it becomes “incentivized” and is not allowed to take
tasks during the incentivizing period. The incentivized trajectory of each incentivized vehicle
agent c is usually selected from the set of candidate trajectories {Dkc

c : kc ∈ {1, · · · , Kc}}

80



given Kc deterministic candidate trajectories.

Task request distribution: denoted as Re(i, j, t), refers to the probability that one vehicle
agent could obtain at least one task request at a given spatial location (i, j) and time t. It is
approximated by the ratio of task request number over the number of unoccupied vehicle agents
inside the grid (i, j) at t. The task request probability is marked as 1 if the ratio is higher than 1.
Re can be learned and predicted from historical task request data by applying models discussed
in [110].

4.3.2 Objective Function: Dissimilarity between Collected Data Distribu-
tion and Target Distribution

The objective of our crowd sensing system is to optimize the sensing distribution such that suf-
ficient information is collected at each time and location. To achieve the objective, in this study,
we aim to incentivize the vehicle agents to make the sensing distribution achieve a given target
distribution. However, the target distribution may differ according to the demand of data request
end. To make the model generalized for heterogeneous target distributions, we define the qual-
ity of sensing distribution as how similar the collected data distribution is to the provided target
distribution. Therefore, to optimize the quality, we need to reduce the dissimilarity between these
two distributions. We measure the dissimilarity using Kullback-Leibler divergence from the the
collected data distribution to target distribution [110].

In the context of Bayesian inference, the Kullback-Leibler divergence from a distributionO to a
distribution P ,KL(P ||O), is a measure of the change of information when one revises beliefs from
the prior probability distribution O to the posterior probability distribution P [110]. Optimizing
the sensing distribution means minimizing the information changes from the target distribution O
to sensing distribution P , which is minimizing the Kullback-Leibler divergence.

In our problem, the target distribution O(i, j, t) over time t and space (i, j) is provided by the
data request end. The collected data distribution P (i, j, t) is obtained by integrating all vehicle
agents’ trajectories in the spatio-temporal domain. Without the loss of generality, we assume all
vehicle agents have the same sampling frequency, which is 1 data point per time point per vehicle
agent. With all vehicle agents’ trajectories {Dc : c ∈ {1, · · · , C}}, the amount of collected
sensing data at location (i, j) at t is

∑C
c=1Dc(i, j, t). The total amount of collected sensing data

by all vehicle agents during the whole incentivizing period T is CT . Therefore, given C vehicle
agents, the collected sensing data distribution P (i, j, t), which is also the the density of vehicle
agents at grid (i, j) at time point t, is calculated as

P (i, j, t) =

∑C
c=1Dc(i, j, t)

CT
.
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With the target distribution and collected sensing data distribution, the quality of sensing dis-
tribution is defined as the negative of the Kullback-Leibler divergence of P from O:

−KL(P ||O) =
∑
i,j,t

P (i, j, t) log
O(i, j, t)

P (i, j, t)
,

Therefore, optimizing the sensing distribution is equivalent to minimizing KL(P ||O).

For example, when the target distribution is a uniform distribution, which has probability mass
function O(i, j, t) = const, the quality of the sensing distribution can be simplified as

−KL(P ||O) =
∑
i,j,t

P (i, j, t) log
const

P (i, j, t)

= log const−
∑
i,j,t

P (i, j, t) logP (i, j, t)

The second term −
∑

i,j,t P (i, j, t) logP (i, j, t) is the entropy of the collected data distribution.
Previous work [91] utilizes the entropy to evaluate whether the collected data matches the target
uniform distribution. Thus, our definition of the sensing distribution quality matches this previous
work when the target distribution is uniform.

Furthermore, as opposed to entropy, our objective function, KL-divergence, directly measures
the dissimilarity between the target distribution and collected sensing data distribution, and thus is
more generally applicable to more complex target distributions such as Gaussian mixture distribu-
tion, etc.

4.3.3 Customized Incentives
Our incentivizing system assigns incentives to each vehicle agent to ensure that the vehicle agent is
willing to execute the assignments while the total amount of incentives stays within the budget
limit. We define the vehicle agent utility as the expected future revenue. Given the incentivizing
assignment Dc, the incentive B(c) should cover the possible loss of utility induced by switching
from rejectingDc to acceptingDc. Since the vehicle agents always tend to maximize their utilities,
this ensures that they accept the incentives.

Our incentive design’s key idea is to incorporate the probability of getting a new task request
in the destination of the vehicle agent. Since the primary objective of vehicle agents is to search
for potential tasks, if the assigned trajectory brings the vehicle agent to a destination with more
tasks compared to the vehicle agent’s original trajectory, this improvement is an additional hidden
incentive to motivate the vehicle agents accepting the assignment.

We define rmax as the utility from finishing the original task within the incentivizing period
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of T . The rmax may change over time, since in practice the price of finishing a task may change
according to the weather conditions or time of the day. We denote ru = rmax/T as the utility per
time point. We assume ru and rmax are constant during one incentivizing period T given a short T
(e.g. 10 min). Meanwhile, for all vehicle agents, there exists a lower bound rmin for the incentive
such that the incentive is not too small to be negligible for vehicle agents. Here we design the
incentive B(c) to incentivize the vehicle agent c accepting the assignment Dc as

B(c) = max(rmin,min(rmax, rmax − ru(Rc
ctrl −Rc

rand))). (4.1)

Rc
rand =

a,b∑
i,j

Re(i, j, T )Prc(i, j, T )

Rc
ctrl =

a,b∑
i,j

Re(i, j, T )Dc(i, j, T )

The task request distribution Re and probabilistic mobility distribution Prc are both distribu-
tions over the spatio-temporal domain. Rc

rand is the expected task request that vehicle agent c could
obtain at T by following her/his original trajectory. Rc

ctrl is the expected task request that c can
obtain in the destination of incentivized trajectory Dc at T .

B(c) is in the range of [rmin, rmax]. If the incentivizing assignment Dc helps the vehicle agent c
find more task requests, we will take this improvement of task request probability as the hidden
incentive and pay less than rmax. Otherwise we pay the vehicle agent as much as the utility obtained
from original task.

Theorem 3. B(c) always ensures that utility-maximizing vehicle agents are willing to accept the
incentivizing assignment.

We proved that when incorporating the hidden incentive, the overall utility of the vehicle agent c
accepting the incentivizing assignment is larger than the utility of the vehicle agent c rejecting the
assignment and running by herself/himself. The proof of Theorem 3 is shown in Appendix A. We
also note that B(c) is the minimum incentive that satisfies this property; thus, it is the minimum
incentive we can offer rational vehicle agents while ensuring that they will accept.

4.3.4 Putting It Together: Formulation of The Vehicle Incentivizing Prob-
lem In Crowd Sensing Systems

We formalize our incentivizing policy as the solution to a minimization problem by consider-
ing each vehicle agent’s physical mobility constraints and the overall budget constraint. For
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c ∈ {1, · · · , C}, t ∈ {1, · · · , T}, i ∈ {1, · · · , a}, j ∈ {1, · · · , b}, given the target distribution
O and budget limit B, our problem is to decide Ic: whether to incentivize vehicles from C, and
kc: the kcth candidate trajectory selected to be assigned to incentivized vehicle agent c for sensing
data collection, such that

min
I1,··· ,IC
k1,··· ,kC

KL(P ||O) (4.2)

subject to P (i, j, t) =

∑C
c=1Dc(i, j, t)

CT
(4.3)

C∑
c=1

B(c) · Ic ≤ B (4.4)

Dc(i, j, t) · Ic ∈ {0, 1} . (4.5)

Dc = Dkc
c where kc ∈ {0, 1, · · · , Kc} (4.6)

Note that B(c) is determined by Ic and kc and thus is not included as the optimization variable.
As Table 4.1 shows, given the whole map of a target area with longitude of a, latitude of b, and
assignment time length T , Ic is a binary indicator of whether the vehicle c is incentivized, and kc
specifies the trajectory assigned to vehicle c, kc = 0 is the probabilistic trajectory when c cruises
without incentivizing or passengers, and kc > 0 represents a deterministic incentivized trajectory.

In Section 4.3.2, we established that optimizing the sensing data distribution is equivalent to
minimizing the KL-divergence. The target distribution is provided as O. The resulting collected
sensing data distribution P should have minimal divergence fromO, which is the objective function
as Equation 4.2.

The constraints of this problem include budget constraints (Equation 4.4) and physical mobility
constraints (Equations 4.5, 4.6). The budget constraint ensures that the total incentive assigned to
all vehicle agents should not exceed the specified budget limit B. Section 4.3.3 shows how to
calculate the incentive B(c) to each vehicle c in Equation 4.1. To calculate the incentive, the
predicted task request distribution Re and predicted vehicle agent’s mobility Prc depend on the
specific application scenario. For example, in a taxi-based sensing platform in which vehicle agents
wish to obtain more ride requests, we utilize the model proposed by [88] to forecast the distribution
of ride requests. The mobility prediction model of the taxis can also be learned from historical
trajectories of vehicles, as in [27]. We discuss the impact of errors in the task request and mobility
prediction models in Section 4.5.

The physical constraints are generated from vehicle agents’ mobility. Due to limits on vehicle
velocity, each vehicle can either move to a neighboring grid or stay in the original grid within one
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time unit; it cannot move further. If the vehicle agent c is selected to be incentivized, that is, Ic = 1,
the incentivized trajectory Dc is specified by the solution, which requires that each element in the
matrix of Dc be either 0 or 1. Dc(i, j, t) · Ic = 1 means that in the solution, the vehicle agent c
is incentivized to pass through the location (i, j) at the time point t. Dc(i, j, t) · Ic = 0 means
that the incentivized vehicle agent should not pass through the grid (i, j) at t if Ic = 1, or the
vehicle agent c is not incentivized if Ic = 0. Meanwhile, whether vehicle agents are incentivized
or not, there is always

∑a,b
i,j Dc(i, j, t) = 1 for all t. Since each vehicle agent c can only collect one

sensing point at any given time point t, the summation of probability that a vehicle agent c appears
in different locations at t should be one.

In the next section, an optimization algorithm is introduced to solve the above problem.

4.4 Algorithm

In this section, we propose a new optimization algorithm, iLOCuS, to efficiently solve the problem
stated in Section 4.3.4. Given budget constraints, and vehicle mobility constraints, the algorithm
selects a set of vehicle agents and incentivizing trajectories to minimize the objective function.
However, the optimization problem is NP-complete, and thus cannot be solved in polynomial
time. In this section, we first characterize the hardness of the formulated problem in Section 4.4.1.
Then we propose an optimization algorithm to solve the formulated problem in Section 4.4.2. In
Section 4.4.3, we discuss the mathematical insights and complexity of the algorithm.

4.4.1 Problem Characterization

Lemma 2. This problem is a non-linear multiple-choice knapsack problem, with a convex non-
separable objective function and non-continuous variables.

We first characterize the problem in Lemma 2. The proof is shown in Appendix B. The problem
fits the basic form of a non-linear multiple-choice knapsack problem [21, 98]. The optimization
version of classic knapsack problem and quadratic knapsack problem are well-known to be NP-
hard. In our nonlinear multiple-choice knapsack problem, the objective function becomes the KL-
divergence between integrated data distribution and target distribution, which makes the problem
even harder than the classic linear knapsack problem.

To show that the optimization version of our problem is NP-hard, we first show the decision
version of the problem is NP-complete. The decision version of our problem is: Does there exist a
vehicle incentivizing solution such that the KL-divergence between collected sensing data distri-
bution and target distribution is smaller than a specific value h while the constraints are satisfied?

86



Theorem 4. The decision version of our problem is NP-complete.

We showed the proof of Theorem 4 in Appendix C. In Appendix C, we firstly show the decision
version of our problem can be verified in polynomial time, hence the problem is NP. Then to
prove the problem is NP-hard, we show that one special case of our decision-version problem is
equivalent to the decision version of the classic linear multiple-choice knapsack problem, which
is widely-known and already proved to be NP-hard [83, 84, 98]. Since the special case is already
NP-hard, the decision version of our problem is NP-hard. Therefore, the decision version of our
problem is NP-complete. From Theorem 4, since the decision version of our problem has been
proven to be NP-complete, it is reasonable to claim that the optimization version of our problem is
NP-hard, which is Corollary 1.

Corollary 1. The optimization version of our problem is NP-hard.

Based on Theorem 4 and Corollary 1, we show that the formulated problem is NP-hard, which
means it is impossible to find an exact optimal solution in a reasonably short time as the scale of the
problem increases. The brute-force algorithm has a complexity of O(9T ), which is not applicable
in real-world scenarios. Greedy algorithms can be employed to obtain a sub-optimal, approximated
solution. However, the objective function is non-separable with non-continuous variables, which is
said to be “much more difficult to solve than the separable problem” [21]. Therefore, it is important
to deal with the non-separable function with non-continuous variables where most of the existing
greedy algorithms [19, 20, 21, 64] do not apply.

4.4.2 Proposed Algorithm: iLOCuS

To solve the formulated non-linear knapsack problem, we proposed iLOCuS. The basic idea of
iLOCuS is that, instead of directly estimate the gradient of KL-divergence with respect to each
vehicle agent and its trajectories, we can decompose the non-separable objective function in two
stages, firstly by spatio-temporal grid level and then by vehicle agent level. In detail, iLOCuS does
the following steps in an iterative way: 1) find the time-location pair with the highest ratio between
the number of vehicle agents in current solution and the desired vehicle agents at the respective
time and location, and 2) dispatch part of passing vehicle agents in the found time-location pair to
different trajectories to decrease the KL-divergence.

Algorithm 1 describes the steps to keep improving the quality of sensing distribution. We
firstly initialize a feasible solution S under the constraints, which is implemented by randomly
selecting the vehicle agents until the budget is spent. The solution S includes the binary indicator
Ic and feasible assignment Dk∗

c for incentivized vehicle agent c. Then we iteratively update S such
that the objective function is minimized. During each iteration, we select the maximum value of
P (i, j, t)/O(i, j, t), which increases monotonously with the gradient of KL-divergence at P (i, j, t).
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Algorithm 1: iLOCuS
Input : Location and occupancy information for all vehicle agents
Output: An improved feasible solution S?

1 Initialize a feasible solution S = {Ic, Dk∗
c } and respective incentive {B(c)} for all

c ∈ {1, · · · , C};
2 set S? = S;
3 for i+ + ≤ MaxIter do
4 S = S∗;
5 Select (i∗, j∗, t∗) = argmaxi,j,t P (i, j, t)/O(i, j, t);
6 Select vehicle agents where Dk∗

c (i∗, j∗, t∗) > 0 and get the set tmp car;
7 c = tmp car → head;
8 while c! = null do
9 Get potential trace set {Dk

c} of vehicle agent c, where k ∈ {1, · · · , K};
10 if Total cost is less than B then
11 Select k = argmaxk V (c,Dk∗

c , D
k
c )

12 end
13 c = c→ next

14 end
15 Select (c′, k′) = argmaxc,k V (c,Dk∗

c , D
k
c );

16 if k′ > 0 then
17 Update S∗ as I ′c = 1 and Dk∗

c′ = Dk′

c′ ;
18 Update respective incentive B(c′)

19 else
20 Ic′ = 0, B(c′) = 0;
21 end
22 end
23 Output S? including Ic, Dc = Dk?

c , and respective incentive B(c).
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We can obtain the respective time and location pair

(i∗, j∗, t∗) = argmax
(i,j,t)

P (i, j, t)/O(i, j, t).

We need to adapt the number of vehicle agents in (i∗, j∗, t∗) to best decrease the KL-divergence. We
also defined V (c,Dk∗

c , D
k′
c ) to measure how much the KL-divergence will decrease when switching

the vehicle agent c from current k∗th trajectory to the new k′th trajectory, where

V (c,Dk∗

c , D
k′

c )

=
∑
i,j,t

(log
P (i, j, t)

O(i, j, t)
+ 1)(Dk∗

c (i, j, t)−Dk′

c (i, j, t)) (4.7)

The basic idea of designing the V (c,Dk∗
c , D

k′
c ) is to use the first-order gradient to approximate

the difference induced by switching the trajectory. Take (c, k′) as argmaxc,k′ V (c,Dk∗ , Dk′) from
all positive V belonging to vehicle agents in (i∗, j∗, t∗). We can decrease the KL-divergence ap-
proximately most by updating the trajectory of the vehicle agent c to Dk′ in the current solution
S. To distinguish different candidate trajectory for each vehicle agent, we use Dk

c to express the
kth possible trajectory of the vehicle agent c. When an unoccupied vehicle agent is not incen-
tivized, she/he follows the usual trajectory, which is a probabilistic trajectory learned from Prc,
and denoted as D0

c .
The time complexity of the algorithm is upper bounded byO(CT 4), where C is the total num-

ber of vehicle agents and T is the length of each incentivizing period. For each vehicle agent, it has
O(T 2) potential destinations. Therefore each vehicle agent can only travel in the graph constructed
by the O(T 2) vertices and the O(T 2) edges connecting those vertices. Using the Bellman-Ford al-
gorithm to find the trajectory with maximum value from all the candidate trajectories will cost
O(T 2 · T 2) = O(T 4). Therefore in the worst case, the overall time complexity for our algorithm
is upper bounded by O(CT 4).

4.4.3 Insights Behind iLOCuS
Our objective function is non-separable with respect to the variables Ic and Dc, since it cannot be
converted to the form

∑
q fq(Ic, Dc), i.e., a linear combination of a group of functions fq. Mean-

while, both Ic and Dc are not continuous variables. Therefore, it is difficult to use the conventional
gradient descent method with respect to the optimization variables Ic and Dc. However, the ob-
jective function is convex with respect to P (i, j, t). To minimize the objective function, we can
do gradient descent on each P (i, j, t) until the gradient is near 0, which is similar to the idea of
coordinate descent with respect to the variables {P (i, j, t) : ∀i, j, t}. Given a convex function
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f(x1, · · · , xn) for which it is difficult to simultaneously perform gradient descent with respect
to X = (x1, · · · , xn), coordinate descent performs gradient descent at x1, · · · , xn separately to
achieve the optimal solution with a much faster convergence rate [26, 161, 220]. The gradient of
the objective function with respect to P (i, j, t) is then

∂KL(P ||O)

∂P (i, j, t)
= log

P (i, j, t)

O(i, j, t)
+ 1

To accelerate the gradient descent at P (i, j, t), we need to select the steepest direction, which is
(i∗, j∗, t∗) = argmaxi,j,t logP (i, j, t)/O(i, j, t). Then at each iteration, we keep doing gradient
descent on each P (i∗, j∗, t∗) until the objective function converges. To decrease the gradient, we
need to remove some of the vehicle agents in (i∗, j∗, t∗). Whichever vehicle agent is removed, the
gradient with respect to current (i∗, j∗, t∗) always decreases by the same amount as log 1/(CT ·
O(i∗, j∗, t∗)) + 1.

However, the change in the objective function induced by switching the trajectory varies with
different vehicle agents. When removing one vehicle agent at (i∗, j∗, t∗), there must be some other
(i′, j′, t′) in which the number of vehicle agents increases. Different P (i, j, t) are no longer inde-
pendent with each other when changing Ic and Dk

c , since P (i, j, t) is respect to the overall vehicle
agents’ distribution, while Ic and Dk

c are respect to each vehicle agent’s mobility. Therefore, di-
rectly using the conventional coordinate descent method cannot solve our problem. It is important
to consider how to change Ic, Dk

c to realize the largest decrease of the objective function while
performing gradient descent with respect to P (i, j, t).

It is computationally expensive to directly calculate how much the objective function decreases
with switching a trajectory. We approximate this change using the product of the gradient and
changes of P (i, j, t). When switching the trajectory of one vehicle agent c, only the numbers of
vehicle agents at times and locations related to c’s old and new trajectories will change. Therefore,
only a few P (i, j, t) changes, and the computational efficiency is largely improved. We denote
the decreasing of the objective function due to switching vehicle agent c’s trajectory from Dk∗ to
Dk′ as V (c,Dk∗ , Dk′). If V > 0, the objective decreases. The larger V is, the more the objective
function decreases. We have

V (c,Dk∗ , Dk′)

∝
∑
i,j,t

(log
P (i, j, t)

O(i, j, t)
+ 1)(Dk∗

c (i, j, t)−Dk′

c (i, j, t)),

It is easy to compute V (c,Dk∗ , Dk′), since the deterministic trajectory Dk
c is a sparse matrix. Also,

when computing the gradient at the beginning of each iteration, we have stored the matrix of
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logP (i, j, t)/O(i, j, t) + 1. Denote C? as the set of vehicle agent c where Dk∗
c (i?, j?, t?) > 0. For

c ∈ C?, we firstly check whether a potential new trajectory Dk′
c satisfies the budget constraints and

store the respective incentive for late usage. The number of budget-feasible trajectories changes
with the amount of leftover budget in the current solution. It is generally much smaller than the
total number of candidate trajectories. For a budget-feasible trajectoryDk

c , we can use the dynamic
programming method like Bellman-Ford algorithm to obtain the best trajectory Dk′ for c to incen-
tivize to. If k′ = 0, it means the best solution is to let the vehicle agent c′ run as usual without
incentivizing. Otherwise, we will incentivize the vehicle agent c to the trajectory Dk′

c′ instead of its
original trajectory. The algorithm repeats the above steps until the KL-divergence converges or the
maximum number of iterations is achieved. We will output a final solution S?, which contains 1)
Ic: whether one vehicle agent is incentivized, 2) Dc, the trajectory the vehicle agent c is assigned,
and 3) respective incentives B(c) for all incentivized vehicle agents.

4.5 Evaluation

To evaluate our algorithm, we used a real mobile crowd sensing system based on taxis to collect
real-world historical data of taxis’ mobility and conduct experiments to show the performance. In
Section 4.5.2 and 4.5.3, we evaluate the impact of the number of vehicles, budget, target distri-
bution, incentive mechanism, and mobility prediction model accuracy on the KL-divergence. We
compare the performance of iLOCuS with no incentivizing, random incentivizing, random incen-
tivizing with the proposed incentives, and Greedy method to optimize the spatial coverage.

4.5.1 Experiment Setup

Experimental Dataset

This work uses real-world taxis’ trajectories to evaluate our algorithm design. The dataset includes
trips of 20, 067 taxis in one month in the city of Beijing, one of the biggest cities in China. Each
record in the dataset contains taxi id, time, location and occupancy status. The location is expressed
as longitude and latitude while the occupancy status represents whether the taxi is occupied by one
or more customers. Each taxi collects one record every minute whenever it is operating. We also
have the respective ride request information. The evaluation area occupies a size of 15km by 15km

and is discretized into a 15× 15 map grid, in which each grid has the size of 1× 1.
We predict the mobility of each vehicle agent using the method developed by [27] where the

spatio-temporal dynamics of taxi mobility are probabilistically encoded using a Markov model
to improve the prediction accuracy. As for the task request prediction, we utilize the time-space
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graphical model proposed by [88] and combine historical ride requests of Beijing taxis to forecast
the ride request distribution in Beijing city. By learning the temporal evolution and spatial property
of the constructed ride request topological graph, this model has been shown to be accurate on the
real-world dataset in [88].

We use the Beijing taxi trajectory dataset during November 2015. We discretize the map with
1km grids. We set the incentivizing period as T = 10min, which depends on the average distance
of a riding, 5km, and the average velocity of vehicle agents, 30km/h. We set the time resolution as
2min, which is the average time needed to run 1 grid. Due to the 2 USD flag-down fare of Beijing
taxi, we adopt ru = 2USD/min, rmin = 2USD and rmax = 20USD. The first 3 weeks’ data is used
for training mobility prediction and ride request prediction models, while the rest of the month is
used for testing our method. To simplify the problem, we consider the sampling frequency of each
vehicle agent as 1 data point per 2 minutes, which means in each grid, a taxi can collect 1 data
point. This can be expanded to a higher sampling frequency, but the sensing distribution will not
change. We assume that all vehicle agents stay inside the map where the crowdsourcer aims to
sense. In order to consider the temporal variations of taxi density, taxi mobility pattern, and ride
request density, we take data from multiple times of a day 0:00 am, 6:00 am, 9:00 am 12:00 pm
and 6:00 pm.

Benchmark Methods

We adopt three benchmark methods to compare our algorithm with and to validate our algorithm’s
ability to improve the sensing distribution quality.
• No Incentivizing (NA): This method does not incentivize taxis nor match ride requests. All

the taxis just follow their original trajectories. We can check the performance improvement
of our method by comparing with NA.

• Random Incentivizing (RND): This method randomly selects taxis and incentivizes them to
the sparsest areas with random trajectories within the given budget. RND always offers the
maximum monetary incentive rmax. By comparing this method with our method, we can
check the performance improvement brought by our customized incentive and optimization
scheme.

• Random Incentivizing with Ride Request Prediction (RND RQ): This method randomly in-
centivizes taxis and trajectories within the budget while offering the incentive B(c) as de-
scribed in Equation 4.1, which includes the ride request in the destination as a hidden incen-
tive. By taking the same incentive mechanism, we compare this method with our method to
show the performance improvement of optimizing the incentivizing decision Ic and assign-
ment trajectory Dc.
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Figure 4.5: This figure visualizes the incentivizing results with Ob dist 1 as target distribution.
The first row is the collected data distribution under no incentivizing, the second row is the dis-
tribution under random incentivizing, the third row is the collected data distribution using random
incentivizing with proposed incentive, and the fourth row is the incentivizing results under our
algorithm iLOCuS. The brighter the area is, the denser the vehicles/sensing data points are.
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• Greedy-SC: This method is from [74] discussed in Section 4.2. Greedy-SC is developed to
greedily choose vehicle agents that can maximize the Cost Effectiveness value to maximize
the number of covered region in all periods of time using predictable mobility of vehicle
agents.

Performance Metrics

We take the objective function, KL-divergence, as one of the quantitative evaluation metric. As
discussed in Section 4.3.2, small KL-divergence means high quality of sensing distribution. There-
fore, the algorithm minimizing KL-divergence performs the best.

To show how much the KL-divergence is decreased by algorithm algo? compared to benchmark
method algo, we define the divergence reducing percentage (DRP) as follows:

DRP (algo?, algo) =
KLalgo −KLalgo?

KLalgo?
.

DRP measures how much algo? decreases the KL-divergence compared to algo, which repre-
sents the improvement of the quality of sensing distribution by using the incentivizing policy from
algo?. The higher the DRP is, the better the algorithm performs.

4.5.2 Performance under Multiple Target Distributions

To show the performance under different target distributions, we investigated 4 target distributions
under the same budget (1000 USD), vehicle number (500):
• Ob dist 1 Uniform distribution over the temporal and spatial domain. For example, when

data request end needs the air pollution data over all regions [45, 91].

• Ob dist 2 Gaussian distribution over the spatial domain, where the probability mass func-
tion achieves the maximum at the grid (10, 10) with fixed variance at each time point. For
example, when data request end would like to focus on monitoring the factory neighborhood
all day [7, 180, 239].

• Ob dist 3 Gaussian mixture distribution over the spatial domain, where the probability mass
function is centered at the grid (5, 10) and (10, 5) with fixed variance at each time point. For
example, when data request end plans to focus on monitoring both the factory neighborhood
and center areas all day [180, 239].

• Ob dist 4 Gaussian distribution in spatial domain but the probability mass function achieves
the maximum at different grids at different time. For example, when data request end would
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like to monitor the factory neighborhood during daytime and center area during night [180,
239].

(a) Ob dist 1: Uniform distribution over the temporal and
spatial domains

(b) Ob dist 2: Gaussian distribution over the spatial do-
main

(c) Ob dist 3: Gaussian mixture distribution over the spa-
tial domain

(d) Ob dist 4: Gaussian distribution over space and peak
changes with time

Figure 4.6: This figure shows the KL-divergence under 4 different target distributions at the dif-
ferent time of a day. The figures compare the performance of iLOCuS (Square green line) with
multiple benchmark methods, including no incentivizing NA (Star blue line), random incentivizing
RND (Circle red line) and random incentivizing with the proposed incentive RND RQ (Triangle
black line).
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Figure 4.7: This figure shows the DRP of iLOCuS and baseline method Greedy-SC. It can be
found that since Greedy-SC is designed for a different objective function, using Greedy-SC to
incentivize vehicle agents will increase the dissimilarity between the collected data distribution
and target distribution compared to not incentivizing any vehicle agents.

Uniform distribution is one of the most common target distribution for sensing systems [91,
248, 249], which ensures the information is collected uniformly over the temporal and spatial
domain. Gaussian distribution and Gaussian mixture distribution over spatial domain consider two
common distributions. In these two distributions, the importance level of sensing data changes
with their spatial location, while keeping consistent over time. Using these two distributions aims
to test the performance of iLOCuS in the type of scenario where the data request end may focus
more on some specific area(s) and expect to obtain more information near the target spatial area(s).
A Gaussian distribution over temporal and spatial domains targets a more complicated distribution,
where the importance level of sensing data changes with both time and their spatial location. We
investigate the 4 different distributions to show the generalization of our algorithm. Figure 4.5
visualizes an example of the incentivizing results compared with a target uniform distribution.
The sensing distribution, which is also the taxi distribution, at the beginning of one incentivizing
period is shown in the column of t = 1. While from the next time point t = 2 to the end of the
incentivizing period, the sensing distribution of iLOCuS is much more uniform than the benchmark
methods. Figure 4.5 shows that the dark red and the dark blue areas in the results of no incentivizing
(NA), which indicate too much or too few taxis, disappear in the results of iLOCuS.
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(a) KL-divergence vs Iteration (b) Time vs Number of Vehicle

(c) Time vs Length of incentivizing period

Figure 4.8: This figure shows the convergence and time complexity with uniform target distribu-
tion. (a) shows the iLOCuS’s iteration number of convergence with different initialization. (b)
shows the computation time of both Greedy-SC and iLOCuS increases with the number of vehicles
and compares the time between Greedy-SC and iLOCuS. (c) shows the computation time iLO-
CuS increases much faster with the length of the incentivizing period T than Greedy-SC. The fast
increasing of iLOCuS’s time computation is mainly induced by selecting trajectories from expo-
nentially increasing candidate trajectories, while Greedy-SC does not allow trajectory selection.
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Observations

Figure 4.6 shows that iLOCuS always outperforms the benchmark methods, which proves the ro-
bustness of iLOCuS under different target distributions. Figure 4.6(a), 4.6(b), 4.6(c) and 4.6(d)
compare the performance of iLOCuS with benchmark methods under the Ob dist 1, Ob dist 2,
Ob dist 3, and Ob dist 4 at different time of a day. The results show that the KL-divergence of
iLOCuS is always smaller than the other benchmark methods under the 4 different target distri-
butions. Table 4.2 presents the divergence reduction percentage of each method compared to no
incentivizing. It is shown that under Ob dist 1, iLOCuS reduced the KL-divergence of 26.99% on
average compared to no incentivizing, which improves 19.76% and 19.82% compared to random
incentivizing and random incentivizing with proposed incentive, respectively.

Combining Figure 4.6 and Table 4.2, we make several observations that we elaborate below: 1)
The KL-divergence under no incentivizing (blue line) in Figure 4.6, mostly achieves the maximum
at 12:00 pm and the minimum at 0:00 am or 6:00 pm except Ob dist 2. 2) The KL-divergence ob-
tained by our algorithm iLOCuS has the similar trend with the KL-divergence under no incentiviz-
ing. 3) Our algorithm performs best on both KL-divergence and DRP under Ob dist 1, which
is uniform target distribution. 4) At most time, random incentivizing (random incentivizing and
random incentivizing with proposed incentive) performs better than no incentivizing.

For observation (1), at around 12:00 pm, people mostly work and travel in the central area. Thus
most taxis also gather in the central area to locate passengers and/or ride requests. This results in a
highly concentrated distribution, which is quite different from the target distributions. At 0:00 am,
there are few human activities in the central area, and the traffic is less congested. The drivers are
able to cruise in a larger area for finding passengers. At 6:00 pm, people head back to the residential
areas, which are mostly located on the border of the map. Therefore, at 0:00 am and 6:00 pm, the
taxis mostly head to the area which has few taxis at daytime (12:00 pm), which is similar with
common commuting pattern in large cities [245]. This makes the sensing distribution less different
from our target distributions compared to 12:00 pm. For Ob dist 2, the KL-divergence under
NA at 9:00 am is similar with 0:00 am. It may be because the taxis gather in the center area
closer to the grid of (10, 10) at 9:00 am. The difference between Ob dist 2 and Ob dist 4 may be
because Ob dist 4 has changing variance in time domain, while the Ob dist 2 requires uniform
distribution over the time domain.

For observation (2), our incentivizing algorithm is based on the mobility of all the taxis. There
are around 100 − 250 occupied taxis from the 500 total taxis. These occupied taxis are not able
to be incentivized, which means that the quality of sensing distribution will be significantly in-
fluenced if these taxis gather in the center area. Meanwhile, if the traffic conditions and weather
conditions influence the sensing distribution under no incentivizing, our incentivizing results will
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be changed in a similar way. Therefore, the performance of iLOCuS is closely correlated to the no
incentivizing sensing distribution.

For observation (3), compared to the uniform distribution, the three Gaussian distributions,
Ob dist 2, Ob dist 3 and Ob dist 4, are more concentrated. From Figure 4.6, we found the KL-
divergence under NA in uniform distribution ranges in [0.4, 0.7], which is much smaller than the
KL-divergence under NA in those Gaussian distributions which ranges in [1.1, 2.8]. This shows that
these Gaussian distributions diverge much more from the real vehicle distribution than uniform
distribution. Incentivizing vehicles to the three Gaussian distributions are more difficult than to
uniform distribution under the same conditions.

As for observation (4), in general, random incentivizing can make the distribution more uni-
form than no incentivizing since random incentivizing dispatches the taxis to the destinations where
there are fewer number of taxis. But the random incentivizing methods perform much worse than
iLOCuS, as shown in Table 4.2. This may be because those random incentivizing methods do not
consider the influence of trajectory on our objective function.

We compared iLOCuS with Greedy-SC as well. Figure 4.7 compares the DRP between
Greedy-SC and iLOCuS under 4 different target distributions in the same condition. It can be
found that directly using Greedy-SC will only increase the dissimilarity between the collected data
distribution and target distribution. This may be because 1) the objective of Greedy-SC only cares
about the coverage in the spatial domain, therefore not jointly optimizing the sensing distribution
on both temporal and spatial domains; 2) the objective of Greedy-SC only cares about the number
of covered grids instead of the exact density of collected data points at each grid. So the collected
data distribution by Greedy-SC is far from the target distribution considering both temporal and
spatial domains. The absolute DRP of Greedy-SC achieves the maximum for uniform distribu-
tion, which may be because the KL-divergence is sensitive to the changes of density in all grids in
uniform distribution but only center grids in Gaussian distributions.

Time Complexity

We also show the convergence of iLOCuS with Ob dist 1 as the target distribution at different
times of the day. Figure 4.8(a) shows that iLOCuS converges after around 20 − 60 iterations,
which shows the convergence. The variance of the converged value of KL-divergence is smaller
than the variance of KL-divergence based on the finally collected data in Figure 4.6(a). This is
because the crowdsourcer optimizes the policy based on the probabilistic mobility prediction of
each unoccupied vehicle agents but the vehicle agent will finally only choose one deterministic
trajectory during running in real scenarios. By improving the accuracy of mobility prediction, this
variation can be mitigated. Figures 4.8(b) and 4.8(c) compare the time complexity under different
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(a) (b)

(c) (d)

Figure 4.9: This figure shows the performance of iLOCuS at Ob dist 1 target distribution under
the different number of vehicle agents and budget. (a) presents how KL-divergence changes with
increasing number of vehicle agents; (b) shows the DRP comparing the average KL-divergence of
iLOCuS, RND, and RND RQ over time with the average of NA over time under the different num-
ber of vehicle agents. (c) presents how the average KL-divergence over different time of the day
changes with the amount of budget; (d) shows the DRP comparing the average KL-divergence of
iLOCuS, RND, and RND RQ over time with the average of NA over time under different budgets.
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Figure 4.10: This figure shows that under Ob dist 2, how the KL-divergence of iLOCuS changes
with number of cars and budget, respectively. The red line and axes represent the changing of KL-
divergence with number of cars. The black line and axes show the changing of KL-divergence with
budget.

numbers of vehicles and lengths of incentivizing period. The time of Greedy-SC increases faster
with the number of vehicles than iLOCuS, but slower with length of incentivizing period than iLO-
CuS. The complexity of Greedy-SC is O(C2T ) while iLOCuS is O(CT 4). Our iLOCuS depends
more on the length of incentivizing period is because that Greedy-SC only selects vehicle agents
but no trajectories while iLOCuS selects both vehicle agents and the trajectories for incentivized
vehicle agents.

Since iLOCuS and Greedy-SC have different optimization objective function, here we mainly
focusing on comparing their overall performance. In the following exploring influence factors on
our iLOCuS, we will no longer compare to Greedy-SC.

4.5.3 Influence Factors

In this section, we investigate the performance of iLOCuS under different influence factors, includ-
ing the number of vehicles, budget, incentives, the accuracy of mobility prediction, and vehicle’s
acceptance rate. We use Ob dist 1 as the target distribution for this analysis. The results show that
iLOCuS is robust to different setups and always outperforms the benchmark methods.
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Number of vehicles

With uniform target distribution, under different number of vehicles, iLOCuS always achieves the
lowest KL-divergence compared to benchmark methods as Figure 4.9 shows. With increasing
number of vehicles, there are more free vehicles available and thus the KL-divergence decreases in
all methods. Figure 4.10 shows a similar trend that the KL-divergence decreases with the number of
cars with the target distribution of Ob dist 2. For Figure 4.9(a), 4.9(b) and red line in Figure 4.10,
we fix the other influence factors as budget and take the average at different times of the day.

We also compare the averaged KL-divergence across different times of the day obtained by
different algorithms under uniform distribution. We get DRP (algo,NA). DRP (algo,NA) mea-
sures how much the KL-divergence is reduced by the algorithms (iLOCuS, RND, and RND RQ)
compared to no incentivizing (NA). It is shown that the DRP of iLOCuS outperforms other bench-
mark methods and achieves upto 31.35% improvement. All algorithms reach their maximums
when the number of vehicles is 200. When the number of vehicles is less than 200, more vehicles
improve the flexibility for the algorithm to incentivize and incentivize vehicles. So the DRP in-
creases with the number of vehicles increasing to 200, even though the reference KL-divergence in
no incentivizing keeps decreasing as Figure 4.9(a) shows. When vehicle number keeps increasing
from 200 with the fixed budget, it is possible that when the number of vehicles becomes larger,
more vehicles need to be incentivized to realize the same sensing distribution with that under a
small number of vehicles. Since all algorithms need to incentivize the vehicles, the budget con-
straint limits the ability to incentivize more vehicles to more sparse places to improve the sensing
quality, which makes the increasing more difficult.

Budget

Figure 4.9(c) shows that the KL-divergence obtained by all methods except no incentivizing de-
creases with increasing budget with uniform target distribution. Under different available budgets,
iLOCuS outperforms the benchmark methods. With more budget available, all methods can in-
centivize more vehicles except no incentivizing. Meanwhile, the KL-divergence obtained by iLO-
CuS decreases more quickly than the benchmark methods with budget increasing. This shows
that our algorithm utilizes the budget much more efficiently than other methods. Figure 4.10
shows similar trend that the KL-divergence decreases with the budget with the target distribution
of Ob dist 2. For Figure 4.9(c), 4.9(d) and black line in Figure 4.10, we fix the number of vehicles
as 500 and take an average at the different times of the day.

Meanwhile, as Figure 4.9(d) shows,DRP of iLOCuS increases as budget increases and achieves
around 154% when the budget is 8000. The difference between iLOCuS and benchmark methods
also increases. Compared to no incentivizing and random incentivizing, iLOCuS can reduce the
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(a) (b)

(c)

Figure 4.11: This figure shows the influence of the incentive design, mobility prediction accu-
racy, and acceptance rates on the performance of the algorithms. (a) shows the DRP of the KL-
divergence by using different incentives and different incentivizing algorithms under Ob dist 1 at
the different time. (b) shows the average KL-divergence changes with different mobility prediction
bias at 0:00 am. (c) shows the KL-divergence under different acceptance rates at the different time
in one of our experiments.
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cost of incentivizing vehicle agents using ride request as hidden incentives, and realized the same
performance (KL-divergence) with less budget. Compared to random incentivizing with proposed
incentive, iLOCuS selects and incentivizes the vehicles which can help reduce the objective value
the most, and thus better utilizes the budget.

Incentives

We then explore the application of our algorithm under different incentives. We test the perfor-
mance of our optimization method under fixed incentives rmax instead of B(c) defined in Equa-
tion 4.1. We denote Act GI as the policy obtained by using our optimization algorithm with all
the incentives of rmax. We get the divergence reducing percentage of each method compared to no
incentivizing. As Figure 4.11(a) shows, the DRP of all methods rank as iLOCuS > Act GI >

RND RQ ≈ RND, while all the methods outperform than no incentivizing.
The results show 2 points: 1) our optimization algorithm can help decreasing the KL-divergence suf-

ficiently with different incentive methods. 2) with our optimization method, the new customized
incentive can efficiently improve the performance of our crowd sensing system when comparing
iLOCuS andAct GI; We compared the performance of using our optimization method and general
constant incentive Act GI (magenta), with random incentivizing (red) and random incentivizing
with proposed incentive (black) in Figure 4.11(a). Even with constant incentives, our optimization
algorithm still reduces the divergence significantly.

Mobility prediction accuracy

We showed the robustness of our algorithm to the different accuracy levels of mobility predic-
tion. Here we need to take mobility prediction results for taxis with different accuracy. When
taking mobility distribution with varying bias, we first compute the Euclidean distance between a
candidate trajectory to the trajectory finally chosen by the taxi [78]. Taking the distance d as the
variable, we assign probability p(d) obtained from Gaussian distribution p(d) ∼ N(σ, µ2). If the
mobility prediction model is accurate, there should be σ = 0. Here, we set the bias of mobility
prediction model ranging in [0, 10]. With different configured Gaussian distribution bias, we can
obtain multiple mobility prediction models with varying accuracy level. As Figure 4.11(b) shows,
the smaller the error is, the more accurate the mobility prediction model is.

As Figure 4.11(b) shows, iLOCuS is robust to the different accuracy level of mobility predic-
tion model. Although KL-divergence increases when the prediction error is larger, iLOCuS always
outperforms the benchmark methods. The KL-divergence gradually increases with increasing pre-
diction error, and converges at around 8. The KL-divergence obtained at error of 0 is 71.57% of
the KL-divergence obtained at error of 10. The increasing pattern of KL-divergence is because
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the mobility prediction influences our estimation on each vehicle’s positions in future duration, on
which our incentivizing method is based. Thus, when the mobility prediction model has an error,
iLOCuS may also incentivize vehicles in an inefficient manner.

Vehicle’s acceptance rate

Theorem 3 proves that a driver can maximize the monetary utility by accepting the incentivizing
assignment. However, in practice, it is possible that some vehicle agents may reject the incen-
tivizing due to emergencies, lack of knowledge, or other preferences. We evaluate the effects of
the driver’s acceptance rate on the performance of iLOCuS. Assuming the acceptance rate r, after
getting the incentivizing policy, each vehicle agent has a probability of r to accept the assignments.
We conduct the accepting experiment 1000 times given each acceptance rate. Figure 4.11(c) shows
the performance of iLOCuS under acceptance rate in the range of [0.6, 1.0] at different times of the
day.

As Figure 4.11(c) shows, the KL-divergence obtained at the acceptance rate of 100% ranges be-
tween [88.01%, 91.17%] of that obtained at the acceptance rate of 60%, which shows the robustness
of iLOCuS to different acceptance rate. DRP (iLOCuS1, iLOCuS0.6) ranges in [9.68%, 13.62%],
where iLOCuSi means the algorithm with acceptance rate of i. The KL-divergence decreases lin-
early with the increasing acceptance rate. All the p-values of the linear regression are less than
0.001, which shows that the linear trends are significant. This figure also shows that if the accep-
tance rate ranges around [80%, 100%], we can ensure at least 93.69% of the performance compared
to the 100% acceptance rate using our algorithm iLOCuS.

Besides the problem of acceptance, it is also possible that some agent accepts the assignment
but does not adhere to the incentivized trajectory. There are two possible solutions to address this
adherence problem: 1) if a vehicle agent is subjective malicious, we could exclude it from our
vehicle pool. 2) for each candidate trajectory of the malicious vehicle agents, we can adjust the
trajectory matrix into a probabilistic format. Based on the adherence history, we can assign a prob-
ability to the potential grids that the malicious vehicle agent may deviate from current trajectory
to. Our algorithm will automatically evaluate the influence of this deviation to decide whether to
incentivize the malicious agents.

4.6 Conclusion

In this chapter, we introduce iLOCuS, a vehicle incentivizing method to realize a target sensing
distribution in mobile crowd sensing system using non-dedicated vehicle platforms. In mobile
crowd sensing systems, the inconsistency between the goal of the data request end and the vehicle
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agents results in the low quality of sensing distribution or requires a large budget. To this end,
we formulate the problem into a multiple-choice knapsack problem with a non-separable convex
objective function, by considering the budget constraints and physical mobility constraints. We
use the task requests at the destination of the incentivizing assignment as a “hidden incentive”
to reduce the cost of incentivizing vehicles. Since the formulated problem is NP-complete, we
proposed an optimization algorithm to find a solution based on the insight of coordinate descent.

To evaluate the algorithm, we use real Beijing taxi data to show that our system always out-
performs benchmark methods under different objective distributions, numbers of vehicles, budgets,
lengths of the incentivizing period, incentive mechanisms, mobility prediction accuracy, and incen-
tive acceptance rates. The results show that our algorithm can achieve up to 26.99% improvement
in the quality of the sensing distribution compared to not incentivizing the vehicle agents.

In our future work, we plan to better characterize the specific mobility and acceptance rate
patterns of each vehicle agent. To better learn the mobility and acceptance rate of taxis, we will
use geographical functional zones to discretize the spatial locations instead of directly dividing the
map into grids and then use history of acceptance behaviors to predict their future acceptance rate.
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Chapter 5

Indirect Traffic Monitoring Using Ambient
Building Vibration Sensing Systems

5.1 Problem Overview

Although sensing technologies become ubiquitous, it is often difficult to find proper sensors to
collect the desired infrastructure information or can only prepare a limited number of sensors
for the target task because of the deployment constraints and cost. For example, sensors like
laser scanner, which directly measure the geometric distortion of railway tracks, are expensive
and difficult to maintain for city-scale railway track health monitoring. In fact, for those city
scale urban infrastructure systems such as transportation systems, finding a cost-effective sensor to
deploy is especially difficult. This is because these transportation systems (e.g. railway systems,
road system, bridge systems and etc.) often spread widely inside a city, which makes it difficult and
costly to densely deploy sensors and maintain the sensing systems. For example, current practices
of traffic monitoring has relied on directly instrumented systems [29, 166, 189, 190, 191, 208, 241].
In particular, dedicated traffic sensors are developed and deployed in many cities (e.g. vehicle
detection loops, and traffic camera monitoring system are often used to monitor traffic events) [67,
105, 158]. However, these sensor-based methods require dense deployment of dedicated sensors
that are costly both for deployment and maintenance. The demand of these dedicated sensors will
increase with the increasing need to understand and optimize transportation systems. Furthermore,
these systems are designed as “silo” systems, requiring one system to monitor each aspect of traffic,
and thus further increasing costs.

One way to address this challenge is to conduct indirect sensing. The indirect sensing first uti-
lizes the sensors installed on other infrastructure systems to collect the data during the interactions
between the target infrastructure without sensors and other instrumented infrastructures. Then in-
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direct sensing infers the states (e.g. health, events) of the target infrastructures by extracting the
information related to the target infrastructures from the collected data. As an example, to address
the challenge of lack of proper sensors for traffic monitoring, we can utilize the traffic-induced
building vibrations collected from ambient building systems. With the increasing need of struc-
tural health monitoring, many of these buildings are being instrumented with vibration sensors to
monitor their health [48, 51, 59, 121, 133, 204]. Ambient traffic events will induce the vibration of
these buildings [93, 150, 151, 169, 170, 173]. Most information about the traffic events is carried
by vibrations on the roadway and thus coupled with the buildings through the ground.

In this chapter, we present an algorithm using the building vibrations to monitor the train traf-
fic around the buildings. In general, existing structural health monitoring systems collect building
vibrations with sampling rate around 100Hz to 1000Hz [133, 204]. Our algorithm is developed to
focus on the frequency range around 0-100 Hz, which falls within the typical structural vibration
monitoring range. Our algorithm and evaluation results show that it is feasible to monitor the train
traffic using ambient building vibration. By utilizing the existing building vibration monitoring
systems, the need (and thus costs) of dedicated traffic monitoring systems will be significantly
reduced. In general, this research provides an example showing the feasibility to expand the uti-
lization of building sensor systems for multiple purposes. With the development of smart cities,
more sensor systems will be deployed. This kind of multiple utilization will reduce the overall cost
of the smart city sensing systems and/or improve robustness through redundancy.

To monitor traffic events using building vibrations, we need to understand how buildings re-
spond to traffic events. We focus on two research challenges in this approach. First, the complexity
of propagation media makes it difficult to apply physics-based methods, e.g. modal analysis, which
requires detailed prior knowledge about the building. Second, the deployment of vibration sensor
systems on different buildings do not obey the same criterion. Finally, the data is very noisy be-
cause of effects from human activities, machinery inside the building, etc.

To address these challenges, our approach uses causality between the vibrations in various lo-
cations of a building to represent the building vibration pattern, then detects and infers the train
events around the building by looking at the response of the building vibration pattern to the
train events. Causal analysis characterizes causality between pairs of signals. Recent advances in
causal analysis show a new perspective to analyze the causality between signals in an information-
theoretic approach, and has been applied in data compression, economic analysis and neuroscience
[141, 181, 182, 193, 242]. The information-theoretic approach extracts the information exchanging
between two locations of sensors as features to depict the vibration patterns in the corresponding
physical interval. As a data-driven method, our approach eliminates the requirement for detailed
prior knowledge about the structure. Meanwhile, causal analysis can extract the direction and
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amount of information flow between pairs of vibration signals. Thus, we can detect the changes
in information flow between multiple sensor pairs to extract building’s response to ambient events.
This method also provides physical insights about the effects of the excitation events on building
vibration.

Our approach includes three steps: data collection, event detection and event inference. First,
we collect building vibration data from multiple sensors. Second, the time of traffic events, which
is the time interval when train pass by the building in our case, can be detected based on features
extracted by wavelet analysis, and is effective for decomposing non-stationary signals. Third, we
infer the types of traffic events, which is direction of train moving in our study, by causal analysis
using information theory and machine learning techniques.

We evaluate our results through the vibration sensing system deployed in the 11-story tall
building at Tsinghua University, Beijing, China, for over one month. This building experiences
periodic nearby passing trains that are the target of this study. In particular, we focus on both the
detection and the directional estimation accuracy of our algorithm under different conditions.

In this work, we have three key contributions as follows:
• We introduce a train event monitoring method using commonly deployed vibration sensors

for building health monitoring;

• We analyze noisy building vibration patterns using an information theoretic approach and
mining the information conveyed in the noisy vibration signals.

• We evaluate the algorithm through field experiments conducted for more than one month in
a 11-story real building under train events.

The rest of this chapter is organized as follows: Section 5.2 discussed the related work of
indirect sensing for urban infrastructure monitoring. Section 5.3 focuses on physical insights of
vibration propagation and information exchanges inside building. Section 5.4 introduces our al-
gorithm to detect when the train event happens and infer the direction of train in further steps.
Section 5.5 shows the implementation of sensor system, results and analysis of vibration signals
collected in a 11-floor building with periodic passing trains. Finally, Section 5.6 summarizes the
conclusion.

5.2 Related Work on Indirect Sensing for Urban Infrastruc-
ture Monitoring

The indirect sensing for infrastructure health monitoring is first proposed by [228, 230]. The work
extracted a beam natural frequency by using a model of spring mass travelling on the beam. The
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model was latter tested in real-world experiment where the researchers drove an pre-installed car
over a bridge to infer the bridge model parameters [126]. There are many following research
conducted since then. The general objective of researcher is to find useful information extraction
method for analyzing the indirect sensed data to detect the damage of the target infrastructure.

In the setup of indirect sensing, it is difficult to directly install sensors in the target infrastruc-
tures, e.g. a bridge/a light rail track. People instrument and sense the data from the infrastruc-
tures interacting with the target to acquire part of information about the target infrastructures. To
improve the performance of indirect sensing, researchers have developed various approaches to
model the interaction between the related infrastructures and target infrastructures, and extract key
indicators from the collected sensing data to infer the conditions of the target infrastructures.

Recently, the idea of indirectly monitoring transportation infrastructures become a hot topic [140].
[229] applied empirical mode decomposition on the vibration response of a passing vehicle to gen-
erate the intrinsic mode functions to extract bridge frequencies for higher modes. The proposed
method showed that the designed features can successfully extract the higher mode frequency of
the target bridges. [22] proposed a method to assess the damage states of the bridge deck using the
dynamic response of a vehicle passing through the bridge. The stiffness reduction in the bridge is
identified using dynamic response sensitivity analysis with a regularization on the measured vehi-
cle vibration signals. The method combined the vehicle acceleration noise, the roughness of bridge
road surface, and uncertainty of the models. The damage identification results are acceptable.
[145] investigated a simplified car-bridge interaction model for theoretical simulations to extract
the natural frequency of the bridge from the spectrum of vehicle vibration signals. The researchers
observed other structural properties like structural damping. [232] presented a new method of
bridge damage detection by analyzing the vertical dynamic response of a vehicle passing through
the bridge. This method utilized finite-element method to firstly simulate the interaction system,
and then approximate the vertical vibration interaction between the bridge and vehicle to identify
the damage indicator. The paper also discussed about the limitation of the proposed method. [201]
tried to separate the influence of the velocity of driving, the natural frequency of vehicles and
natural frequency of bridges to better identify the bridge damage state indirectly from the vehicle
vibration response. The authors firstly described an analytical formulation and the respective finite
element model to give some physical insights about the model. Then real-world experiments were
conducted revealing a reasonable accuracy estimation of first natural frequency of the bridge.

Except the physical-model based approach to monitor bridge infrastructure using vehicle pass-
ing by, [114, 115, 116] also proposed to use moving light-rail to monitor the damage state of the
light rail track. The researchers explored data-driven approach, instead of pure physical-model
based method, to monitor the railway infrastructure using the dynamic response of the train on-
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service. Instead of time-consuming and dangerous manual inspections, this work tried to find a
more economical way for track inspection. By detecting the changes of high frequency component
collected from the light-rail, the proposed method could provide preliminary information for the
dedicated inspection vehicles about which areas should be focused on. The authors using data-
driven approach to predict the rail infrastructure damage state. The results showed the accuracy of
detecting two types of track changes, replacement and tamping was in satisfactory level.

5.3 Physical Insight for Causal Analysis of Building Vibration

To better understand the problem, we discuss how building vibrations are induced by passing trains
and propagate inside building structures, and then explain how these vibrations can be analyzed as
information exchanges using information theoretic approaches. Here we assume that a train moves
with a constant speed when passing by the building, and dynamic characteristics of the building
structure remain constant (i.e., no damage is incurred by the train induced vibrations).

On the physical side of wave propagation, current studies on train-induced building vibration
have focused on analyzing and predicting the effects of train-induced excitations on building struc-
tures using two main approaches: physics-based methods and data-driven methods. Physics-based
methods use the physical principles of wave propagation to analytically or numerically analyze
the effects of train-induced vibrations on buildings [3, 4, 70, 96]. However, these methods often
make simplified assumptions to reduce the number of parameters (such as homogeneous propaga-
tion medium or require detailed prior knowledge about the ground and building structures). They
may not be suitable in practice due to complex urban space and building structure. Data-driven
methods are developed for analyzing structural response to train events based on historical train-
induced vibration data. These approaches do not require detailed priori structural information,
but may lack physical insights for observed phenomena (i.e. we can observe correlation but not
physical causation) [13, 222].

In our scenario, the train excitation, which is a moving load source (as Figure 5.1(a) shows),
generates Rayleigh waves in the ground that travel to nearby buildings [14, 34, 70, 72, 106, 125],
as shown in Figure 5.1(b). The waves propagate inside a building in both vertical and horizontal
directions. In each story, the vertical waves propagating through the building consist of two parts:
up-going and down-going components [13]. The vibration propagates through columns to the
adjacent stories, but there exists time difference between arrivals of waves from columns near the
train and away from the train. As soon as these shear waves arrive at the next story, the horizontal
waves begin to disperse through the floor from the column location. These waves are mixed with
the reflected waves from the boundaries. The amplitudes, frequencies, phases, and other dynamic
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features of these waves vary with the characteristics of train excitations and building structure
medium that they have traveled through. Similar inference techniques have been used in other
fields [114, 116, 153, 154, 155].

(a) (b)

Figure 5.1: (a) Train is passing by Rohm building (photo taken by the camera installed on the top
of Rohm building); (b) Physical insights of wave propagation from train to building

Thus, the wave propagation from one place to another can be interpreted as an information
exchange (or information flow) about building structures and train excitations between these two
places inside a building. If the characteristics of the train excitation change (e.g., direction), the
generated waves also change (e.g., time-frequency contents, phases, delays). Since different waves
have different properties (e.g., speed, attenuation, reflection), the corresponding information ex-
change pattern between the two locations may also change. As mentioned above, this study as-
sumes that the structural characteristics remain the same over time, and thus does not contribute to
the changes in information exchange.

This work exploits the idea of representing wave propagation as information exchanges to in-
troduce a new method that infers train event characteristics from building vibration response. This
method uses an information theoretic approach to characterize the information exchange relation-
ship between the wave signals collected from each pair of sensors, referred to as the causality
between the signals. In particular, the concept of directed information is introduced to quantify
the amount of exchanged information from one location to another, through investigating the wave
propagation between them. This work is the first work to infer ambient traffic conditions based on
building vibration response. This approach allows buildings to understand surrounding events in a
cost-effective way using vibration monitoring systems that commonly exist in buildings (e.g., for
seismic activity or serviceability monitoring). In addition, the advantages of data-driven approach
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Figure 5.2: Framework of the proposed indirect train event monitoring algorithm

lie in the less requirement of a priori knowledge about physical properties of building structure.
For different buildings, the absolute value of directed information between sensors will change
with different natural frequency and damping ratio. However, our method focuses on the changes
in the directed information value, instead of their absolute values, to infer train events. Thus, the
algorithm is robust across different buildings.

5.4 Causal Analysis based Train traffic monitoring Algorithm

We introduce an information-theoretic algorithm to infer ambient traffic events using the causal re-
lationship between vibration responses of building structures. This algorithm consists of three steps
as shown in Figure 5.2: 1) collect building vibration data from different locations (Section 5.4.1),
2) detect the time interval of a train passing by the building using wavelet features (Section 5.4.2),
and 3) infer the event characteristics based on directed information (Section 5.4.3).

5.4.1 Data Collection

In this section, building vibration responses are collected to characterize nearby train activities.
Vertical acceleration responses are measured using accelerometers installed at various locations of
building floors. We need at least two sensors for two reasons: 1) The algorithm for event detection
combines data from multiple sensors to mitigate the effect of noise from specific concentrated
areas; 2) The directed information represents the information exchanges between each pair of
signals. More sensors provide higher spatial resolution for information flow patterns, which lead
to more accurate and robust event inference. The locations of sensor deployment are suggested as:
1) deploy on the upper floors: upper floors tend to have stronger train-induced vibrations [222];
2) spread out sensors: this mitigates the noise from concentrated areas; and 3) avoid areas with
machines (e.g., elevator, fan) to reduce machine-induced vibration. Each measurement of sensor
i at time t is denoted as xi(t). These vibration signals are pre-processed by being quantized into
S levels for computational efficiency when calculating the directed information in Section 5.4.3.
The exchanged information between different locations of building are extracted from pairs of
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pre-processed vibration data.

5.4.2 Event Detection

To characterize the train event, the algorithm first detects the time interval during which a train
passes by the building, referred to as an event. The wavelet transform is used to capture the char-
acteristics of train-induced building vibration. We extract the features by combining the wavelet
coefficients of vibration signals collected from all sensors on each floor. Based on the wavelet-
based features, the train event is detected using machine learning techniques.

Extract Wavelet-Based Features

The building vibration signals are analyzed using wavelet transform to extract features that are
sensitive to train excitations. Train-induced building vibrations are often non-stationary in nature,
meaning that their statistical characteristics change over time. Thus, conventional signal analysis
methods such as Fourier transform and auto-regressive modeling are not suitable. In contrast,
wavelet transform uses wavelet bases that are localized in both time and frequency to represent
signals. This allows wavelet transform to represent the time evolution of the frequency contents of
the non-stationary signals. In addition, many classes of functions can be represented by wavelets
in a compact way [35]. This compactness results in easier event detection because fewer features
can represent the event of interest. Wavelet analysis has been widely applied as a promising tool
to extract structural dynamic characteristics in structural health monitoring [25, 75, 163, 164, 165,
209, 234]. Similarly, we use wavelet to extract structural dynamic characteristics that change with
train activities.

The wavelets are generated from a mother wavelet, Ψ(t), by scaling and time-shifting:

Ψs,τ (t) =
1√
s

Ψ(
t− τ
s

) (5.1)

where s is the scale factor and τ is the time-shift factor. Then the wavelet transform of the vibration
signal xi(t) with respect to the wavelet function Ψ(t) is defined as:

γ(s, τ) =

∫
xi(t)Ψ

∗
s,τ (t)dt (5.2)

where Ψ∗s,τ (t) represents the conjugate function of Ψs,τ (t)

Since the signals are oscillatory, the average of wavelet coefficients over a small time window
in each scale are used as features for each sensor data. For every time window, the feature is a
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vector with the length of the number of scales used for the analysis multiplied by the number of
sensors. The size of the time window and the number of scales are determined empirically and
discussed with more details in Section 5.5.2.

Detect Train Events

Machine learning algorithms are used to classify the extracted features at every time window as
train event or no event. In particular, we considered Support Vector Machine (SVM) and Random
Forest as classifiers. SVM maps the features in the original finite-dimensional space into a higher-
dimensional space, presumably making the classification easier in the new space when the decision
boundary is non-linear [38]. SVM is also robust to noise by allowing outliers to be misclassified
(i.e., ignore some data for classification if they are likely to be outliers). This allows us to classify
data while rejecting outliers at the same time without using additional outlier detection methods.
Random Forest is a decision tree style algorithm that uses randomized subsets of features to train
a forest of decision trees and chooses the mode of their outputs as classification result [123]. The
wavelet-based features of each time window are input to classifiers. The corresponding training
labels are whether the train events happen in each time window. The classifiers learn the mapping
between the features and the labels using the training dataset. Then with input feature of a new
testing sample, the classifiers determine whether the corresponding building response in the time
window is influenced by the train event.

5.4.3 Event Inference

When a train event is detected, directed information between each pair of sensor signals is used
for inferring the characteristics of the train event. The directed information quantifies information
exchange patterns or causality relationship among vibration signals at multiple locations in the
building as features. Then classification method is used to categorize the event characteristics.

Extract Directed Information Based Features

The causality relationship between vibrations at different sensor pairs represent the information
exchange patterns between these signals. Conventional vibration signal analysis methods often
extract vibration characteristics from each sensor individually. But these methods demand dense
implementation of sensors for fine-grained understanding of the structure and events [101, 133,
187, 223]. In contrast, the causal analysis extracts relational information between different sensors’
measurements, which provides richer information than that from only a single sensor measurement.
The causality inferred from vibration signal represents the directionality of wave propagation in
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the structure under various loading conditions. Analyzing the vibration data directly to infer wave
propagation information is difficult in practice due to a high level of noise. To this end, we utilize
information theory to quantify the causal relationship. The information theory is based on the
probabilistic modeling of information (or uncertainties) in random variables (or processes). Thus,
this approach is suitable for dealing with noisy vibration signals with high uncertainties.

Directed information quantifies the causality between two stochastic processes (i.e., a sequence
of random variables) using an information theoretic approach. A key measure in information
theory is entropy which quantifies the amount of uncertainties (or lack of information) in random
variables [10, 89]. For example, let X and Y be random numbers representing the numbers from
tossing fair 4-sided and 12-sided dies, respectively. X has higher predictability than Y . Thus,
the entropy of X is smaller than the entropy of Y . When the two random variables or processes
are dependent (i.e., knowledge of one process provides information about the other process and
vice versa), mutual information can quantify the shared information between them [37, 200]. For
example, let another random variable Z = 1 if Y = 1 and Z = 0 otherwise. Then knowing Y
increases the predictability of Z and vice versa because of the shared information between them.
This shared information is computed as the gained information (or reduction in uncertainties) about
one variable due to knowing the other variable, typically referred to as mutual information. Mutual
information is a symmetric measure (i.e., the gained information about Y by knowing Z is same
as the gained information about Z by knowing Y ). On the other hand, directed information is an
asymmetric measure that quantifies the directionality in the dependency between two stochastic
processes, quantitatively depicting the causality (or feedback) relationship between them [142].

In our problem, we define two stochastic processes Xi(t) and Xj(t) to represent building vi-
brations at sensor locations i and j, respectively, and then define the directed information between
them using their joint probability density function (PDF). If Xi(t) and Xj(t) are independent, their
joint PDF is equivalent to the product of their marginal distributions for all times n1, · · · , nN ,

P (Xi,n1:nN
;Xj,n1:nN

) = P (Xi,n1:nN
)P (Xj,n1:nN

), (5.3)

where Xi,n1:nN
and Xj,n1:nN

represent the collections of Xi(t) and Xj(t), respectively, for t =

n1, · · · , nN . Then, the mutual information of Xi and Xj (I(Xi;Xj)) is quantified as the distance
(or information discrepancy) between the joint PDF and the product of the marginals by using the
concept of Kullback-Leibler divergence [47, 215] (i.e., the mutual information measures the degree
of dependency). The distance here represents the information gain that we revised our belief from
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Xi and Xj are independent to that Xi and Xj are dependent:

I(Xi,n1:nN
;Xj,n1:nN

) = E[log
P (Xi,n1:nN

;Xj,n1:nN
)

P (Xi,n1:nN
)P (Xj,n1:nN

)
]. (5.4)

Mutual information is always non-negative. And mutual information will be zero when Xi(t) and
Xj(t) are independent. This mutual information does not represent any directionality in infor-
mation flow. To introduce directionality, an alternative factorization in terms of the joint PDF is
proposed. This factorization can represent the information feedforward and feedback [142]:

P (Xi,n1:nN
;Xj,n1:nN

) =
←−
P (Xi,n1:nN

|Xj,n1:nN
)
−→
P (Xj,n1:nN

|Xi,n1:nN
), (5.5)

where
←−
P (Xi,n1:nN

|Xj,n1:nN
) =

∏N
k=1 P (Xi,nk

|Xi,n1:nk−1
;Xj,n1:nk−1

) and
−→
P (Xj,n1:nN

|Xi,n1:nN
) =∏N

k=1 P (Xj,nk
|Xi,n1:nk

;Xj,n1:nk−1
).

Similar to the definition in Chapter 2, the directed information from Xi to Xj is defined as the
information discrepancy between the true joint PDF and the PDF computed as if Xi depends on
Xj but not vice versa. Thus, the directed information is defined as:

I(Xi,n1:nN
→ Xj,n1:nN

) = E[log
P (Xi,n1:nN

;Xj,n1:nN
)

←−
P (Xi,n1:nN

|Xj,n1:nN
)P (Xj,n1:nN

)
]. (5.6)

The directed information is smaller than or equivalent to the mutual information. When Xj

does not depend on Xi,
−→
P (Xj,n1:nN

|Xi,n1:nN
) = P (Xj,n1:nN

), and directed information is equal to
the mutual information. Note that I(Xi,n1:nN

→ Xj,n1:nN
) 6= I(Xj,n1:nN

→ Xi,n1:nN
). With trans-

form on equation (6), the directed information can also be expressed using entropy and conditional
entropy:

I(Xi,n1:nN
→ Xj,n1:nN

) = H(Xj,n1:nN
)−H(Xj,n1:nN

||Xi,n1:nN
) (5.7)

Where

H(Xj,n1:nN
||Xi,n1:nN

) =
N∑
k=1

H(Xj,nk
|Xnk−1

j,n1
, Xnk

i,n1
) (5.8)

The entropy H(Xj,n1:nN
) and H(Xj,nk

|Xnk−1

j,n1
, Xnk

i,n1
) here are functionals of the discrete distri-

bution of variablesXj,n1:nN
andXj,nk

|Xnk−1

j,n1
, Xnk

i,n1
for k ∈ {1, · · · , N}. When estimating directed

information, we use Equation (7) for computational efficiency, instead of Equation (6) that involves
estimating joint PDF. The entropy values are estimated using the minimax rate-optimal estimators
under l2 loss [94, 95]. The minimax estimator minimizes the maximum loss function between
estimator and functional of real distribution. The loss function is l2 norm of difference between
estimator and functional of real distribution. We use empirical D-tuple joint distribution based on
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the collected data to estimate the functionals of real distribution, and it has been proved that em-
pirical joint distribution of D-tuple converges to the true joint distribution [94, 95]. The estimator
converges faster and has less mean square error than conventional MLE (Maximum Likelihood
Estimator) [95].

Using the building vibration data collected from different locations, directed information be-
tween all the sensor measurement pairs are computed to obtain the causality between them. Based
on the known sensor locations, we can construct the building vibration pattern graph under dif-
ferent train events. The difference between the directed information from sensor i to j and their
inverse directed information (i.e., directed information from sensor j to i) is defined as feature.
If the feature has a high absolute value, the information exchange from sensor i to j has strong
directionality. The feature with value close to zero represents weak directionality.

Since the directed information is computed at every time point, the feature dimension is high
when data sampling frequency is high. Thus, we use windows to segment the original directed
information features and take an average value for each window. The window sizes are determined
empirically as investigated in Section 5.5.3.

Infer Train Event Characteristics

This work uses different train direction to illustrate the event characteristics. The train direction
is classified using the directed information based features extracted from multiple sensor measure-
ment pairs. Supervised machine learning approach is used for this purpose. The main challenge
of our problem is the high dimensionality of the directed information based feature. When the
number of training sample is relatively small, the classification algorithm performance may be-
come unstable. To address this challenge, we use kernel support vector machine for classification
[41, 199]. This method has an advantage in handling high-dimensional data.

5.5 Evaluation

In this section, we evaluate our algorithm by deploying our system in a 11-story building with a
light rail line running 100 meters away. During a three-month period, we collected approximately
10GB of vibration data, and 450 hours of video for ground truth. The vibration data are collected
from four groups of sensors deployed on the 11th floor of building. Then we extract wavelet based
features and use machine learning to detect the time interval of a passing train. Finally, with the
detected time interval, we extract the information exchanges inside building during train passing
to infer the directions of train.

119



Figure 5.3: Building, location of train track, and sensor deployment (vertical view)

5.5.1 Rohm Building Experiment Setup

We evaluate our algorithm for one month on a train-building system with nearby light rails. Here
we give a brief description of the data collection system.

The deployment is done in the newly completed Rohm building at the Tsinghua University
campus located in Beijing China. It is a 11-story building with 3 basement levels, totaling 350,000
square feet. The building houses of Electronic Engineering Department of Tsinghua, and about
1000 occupants work in the building. This building is located around 80 to 140 meters away from
a railway (10 trains per day) and Beijing light-rail line 13 (1 million daily riders, 5-11 minutes
between two trains) respectively. These lines provide a regular active excitation to the building.
The left side of Figure 5.3 shows a top down view of the deployed building. The center of the
figure shows the train track location and the right side of the figure shows the photos of the sensor
(top), light rail track (middle), and the outside view of the building (bottom).

The building is deployed with 40 high-quality accelerometers. These sensors are embedded in
the floor of the building to monitor vibrations. The network of accelerometers is distributed over
the building to record its vibration at different locations and directions. The accelerometers are
divided into 16 groups and deployed on the 1st, 5th, 8th and 11th (top) floor of the building, with
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4 groups on each floor. These sensors are deployed at the same location per floor (approximate
location shown on left side of Figure 5.3). Coaxial wires are used to connect the sensors to a
data collector on each floor, which sends the vibration data to a central server through local area
networks. In this experiment, we utilized only the 11th floor sensors as it gives the largest swing
and highest sensitivity to our measurements. We collected data on weekdays from June to August
in 2015.

The precision of our single-axis sensor is 10−5m/s2, with highest sample rate of 1024 samples
per second. In our experiments, we collected data at 200Hz totaling 400 million data points through
the period of the experiment due to storage limitations.

There are trains passing by building in two opposite directions daily: from North to South,
and from South to North. About 70 trains with heavy loadings including cargo and thousands of
passengers pass by the building daily. Throughout the experiment we observed roughly 1200 train
passes. These vibrations are not strong enough to be directly perceived by humans.

5.5.2 Event Detection Results and Discussion

This section presents the train event detection results. We first characterize the wavelet-based
features extracted from building vibration signals under different train events. Then we explain
how to find the ground truth for evaluation using camera data. Finally the accuracies of event
detection using two machine learning techniques are presented and discussed.

Characterization of Wavelet-Based Features

In this section, we show the characteristics of the data to better understand the signals. We first
show both the time and frequency domain of vibration signals through a train event. Then we
show our wavelet transform technique provides multi-resolution to show the existence of train
event around building by capturing characteristics of vibration.

We give an example of signal segment in Figure 5.4 to illustrate the general nature of the
captured signal. The data is collected from 4 sensor groups described above at the time when a
train is passing. Based on the camera data, we manually labeled the train passing time at 32 to 48
seconds. As Figure 5.4 shows, the measured vibration signals are quite noisy, and the train event
is not obvious well bellow the noise floor as to make it not immediately visible. This is due to the
high amount of environmental noise in the setting including outside traffic, heating and cooling
systems of the building, weather, building occupants, etc.

Figure 5.5 shows the same raw signals using Short-time Fourier Transform (STFT) with win-
dow length of 0.25 seconds. Although the general vibration frequency of current building is visible
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in this figure, the train event can not be seen from the time-frequency features. This is due to the
fact that short time Fourier Transform decomposes signals in fixed frequency resolution while the
train generates multiple frequencies. Note that although the low frequency area (around 10Hz) in
Fourier spectrum of sensor 3 signal shows high energy values indicating an event happening at
around 40 - 42s, using this feature would incur frequent false positives and negatives because 1)
the time duration of high energy area is short; 2) there exists many other peaks of similar mag-
nitude and durations; and 3) the high energy area does not appear in the spectrum of any other
three sensors. Although the window size for STFT may be tuned for each frequency to optimize
the visibility of the peak, it is difficult to apply different window size for different frequencies for
STFT, and it requires multiple parameter tunings which makes the algorithm inefficient.
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Figure 5.4: Vibration signals for 60 seconds collected from 4 sensors deployed on the 11th floor
as shown in Figure 5.3. The train passed by the building at 32 to 48 seconds (as red boxes show).
The building vibration due to train is not obviously visible due to the background noise.

Wavelet analysis results of two vibration data series produced by 4 sensors using Continuous
Wavelet Transform (CWT) are shown in Figure 5.6. Here we choose scale from 1 to 32, which
includes general frequency of Rohm building vibration of 10Hz to 80 Hz. The larger coefficients
indicate stronger similarity between the signal and the analyzing function. As Figure 5.6 shows, the
wavelet coefficient under the train event is significantly higher than wavelet coefficient at the time
with no passing trains (compared to the raw time-domain signal in Figure 5.4 and short Fourier
transform shown in Figure 5.5). In particular, the coefficient corresponding to the train passing
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event is most prominent from 8 to 24 in scale. The result shows the advantage of wavelet analysis
in detecting the train-induced slight changes of vibration signals.
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Figure 5.5: Short time Fourier Transform (STFT) of vibration signals shown in Figure 5.4. The
red boxes show the time duration of train passing. Similar to the vibration signal, the train event is
not obviously visible.

Train Event Labeling

To perform the evaluation, we need to properly label the segments of the vibration input using
ground truth (video). In our case, we recorded the train passing time as the time when the head
of train arrive at one side of building, until the time that the end of train leave the other side of
building. In our experiments, we observed that it took 12 to 20 seconds for a train to pass by the
building depending on its speed and length. This time interval recorded by visual inspection may
not represent the “true” time interval when the vibration excited by train will influence the building.
This is due to the difference of speed of visual light vs. ground vibration, and different strength
of influence due to the ground composition. We calculate and remove this time delay interval by
using cross correlation to calculate the delay time between when the train passed by the building
and when the building got affected.

To obtain the ground truth of the train passing, we recorded a total of 450 hours of usable
video (image capture shown in Figure 5.1(a)). Using the video, we obtained manually a binary
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Figure 5.6: Wavelet coefficients (scaled from 1 to 32) of the building vibration signals shown in
Figure 5.4. The red boxes show the time duration of train passing. The train event is clearly visible
in the data from all four sensors between 38 and 45 second.

observation sequence indicating whether the train pass by the building at each time fragment of one
second and its direction. Then, we divided the vibration data into fragments of the same length and
use average wavelet coefficients over scale 8 to 24 as the indicator, which contains the information
about the influence from train. Through calculating the cross-correlation between observation
sequence and influence sequence. The time shift with which the maximum cross-correlation value
appears is regarded as the maximum possible delay between the two sequences. Because of the
velocity and length of train changes, the total time of train passing by the building are also different.
Here, we calculated the ratio of delay time to total time length to see the distribution of delay time.
Figure 5.7 shows the histogram of delay time ratio’s distribution. Specifically, Figure 5.7(a) and
Figure 5.7(b) separately show the relationship between delay time and directions of the train. As
expected, the train from south to north tends to get positive delay time ratio and the train from
north to south tends to get negative delay time ratio. We can use these factors to calibrate the delay
time based on visual time and delay time, and get the ground truth about when the vibration of
building was affected by train.
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Figure 5.7: The histogram of 82 cases’ ratio of delay time to total time of train passing, which
is calculated by cross correlation. Y-axis represents the number of cases, X-axis represents the
ratio of delay time to total time length, red line is the pdf curve of corresponding fitting normal
distribution.
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Train Event Detection Results

Using the wavelet results, we input the extracted wavelet coefficient as features to classification
model to detect whether the train passed by or not at corresponding time interval.

After extracting the wavelet coefficient as features, we use supervised classification on time
fragment for train event detection. Here, we considered Support Vector Machine (SVM) and Ran-
dom Forest (RF) as classifiers.

The average of wavelet coefficients over different time fragments are calculated as features on
each scale and each sensor. For every time unit, we extracted the average wavelet coefficients over
scale 8 to scale 24 from each sensor. Thus, we will have t× 4 dimensional features, where t is the
number of time unit. For the training set, the output is a binary label sequence indicating whether
there is a train passing during corresponding time, or not.

As a baseline to our algorithm described in the previous section, we extract dynamic frequency
domain features to identify the effect from traffic events. This is extracted using Fourier analysis.
We analyzed the peak frequencies with a moving window of 1 second on the vibration data. We
calculate the corresponding power spectral density, and record the frequency and PSD of the 5
largest peaks.

Our dataset includes the vibrational data collected in the building and video ground-truth data.
The dataset was down selected to only include train passing through without light rail passing
within 1 minute before and after to simplify the problem. This includes 55 cases when there is a
passing train, and 60 cases when there is no passing train. 90 (45 train, 45 no train) samples are
used to train binary classification models, and the remaining 25 cases are used to test the accuracy
of classification models. We labeled the samples by combining collected visual data and delay
time.

With sample rate of 200 Hz and around 16s-long time series, the number of features is always
much higher than sample number, which is unbalanced and makes it difficult to train models. As
discussed in Section 5.4, we use a sliding time window to increase training accuracy. Figure 5.8
shows the classification accuracy of the two algorithms (SVM vs. RF) using both feature selection
methods (wavelet and Fourier) over time. The performance of random forest is better than that
of a tuned support vector machine. The optimal window length is around 0.25 seconds. We can
see that when we use all wavelet coefficients during train pass by as features, the accuracy is low
due to small number of training samples compared to number of feature. And when the window
length is too long (e.g. 1 second) the accuracy also decreases because at this window length some
information begins to be lost for event detection.

Figure 5.8 also compares the two feature selection methods, one is based on wavelet analy-
sis, another is based on Fourier analysis. We see that the accuracy of wavelet-based feature is

126



Table 5.1: The True Positive, True Negative, False Positive and False Negative of Train Event
Detection

Ground Truth
Train Pass No Train Pass

Prediction Result
Train Pass 93.3% 20.0%

No Train Pass 6.7% 80.0%

consistently higher than the accuracy to use Fourier-based feature. The highest accuracy (wavelet
with random forest) of 88% is achieved at window length of 0.25s based on features of wavelet
coefficient and Random Forest classification models.

We further present the confusion metric of the prediction result and ground truth in Table
5.1. From the table, we see that the train passing event is correctly classified 93.3% of the time,
corresponding to 6.7% false negative. Similarly, the no train is classified correctly 80% of the time,
corresponding to 20% false positive. This is likely due to the location of the testing building being
next to both rail and large roads. The effect of the train event is fairly similar to existence of other
large traffic. Thus, during training, we only identified tests that has effect and no train and did not
train the difference between other large traffic events (trucks, buses. etc.). This similarity raises
the false positive events.

To see the sensitivity of the detection due to the system, we also analyzed the effect of sample
rate on train event detection accuracy. By sub-sampling the vibration signals from a sample rate
of 200Hz, we simulate collecting vibration data with sample rate of 100Hz, 50Hz, 25Hz and 1Hz.
As Figure 5.9 shows, when the sample rate is low, e.g. 1Hz, the highest train event detection
accuracy is only about 56%, which is close to 50% accuracy baseline of blind classification. When
the sample rate increases to 25 Hz, the accuracy achieved 84%, which is 28% higher than the
accuracy on sample rate of 1Hz. However, with sample rate increases further to 50Hz and 100Hz,
the accuracy drops. This is likely due to that the majority of train vibration information exists in
the lower frequencies, i.e. near 25Hz. For example this could include general rumbling created by
the train, or a cart in the hallway. However, for increased accuracy, the distinctive features of the
train vs. no train passing is at higher frequencies. The initial drop in accuracy could be due to the
increased noise introduced initially at the mid frequencies.

5.5.3 Event Direction Inference Results and Discussion

In addition to the existence of the train events, we further explore the results of directional inference
of the train through the use of directed information between the multiple sensors.
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Figure 5.8: The figure shows how accuracy of different methods changes with increasing window
length. ”Wavelet+*” represents we use wavelet analysis to extract feature; ’Fourier+*’ represents
using Fourier analysis to extract feature; SVM and RF represents the classification method Support
Vector Machine and Random Forest.
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Figure 5.9: Accuracy under different sample rates based on (1) red line: wavelet coefficients as
features and Support Vector Machine as classification model; (2) blue line: wavelet coefficients as
features and Random Forest as classification model.

Characterization of Directed Information Features

In order to characterize beyond the existence of the train, we explore the directionality of the train
event. In this evaluation, we use the same 4 sensors on the 11th floor of the building recording
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(a) Train from South to North

(b) Train from North to South

Figure 5.10: (a) Directions of information propagation among 4 sensor groups on the 11th floor
when a train passes from South to North; (b) Directions of information propagation among 4 sensor
groups on the 11th floor when a train passes from North to South.
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vertical vibration to investigate their influence on each other (see Figure 5.3). These 4 sensors will
have 6 paired combinations (sensor 1 vs 2, sensor 1 vs 3, sensor 1 vs 4, sensor 2 vs 3, sensor 2 vs
4, sensor 3 vs 4). First, we found that the building vibration patterns without a passing train are
rather random and show no consistent patterns in directed information results. Thus, there is no
inherent bias in the information propagation without the train.

In our case, the signals will be quantized into 10 levels before calculating directed information.
The algorithm introduced in Section 5.4 can detect the time and duration of train events automat-
ically. Then we extract the vibration signals during train events and quantize these signals. In
general, to effectively estimate the directed information, a large number of quantization level is
desirable, since with large quantization levels, the signal amplitude range for each quantization
level is small (i.e., higher signal resolution) such that more information contained in difference
between signals can be extracted. However, this level cannot be too large because of the limitation

of m ≈ SD+1

lnS
. m is the sufficient sample number for calculating directed information between

two signals andm < n, where n is the total sample number. So we decided maximum quantization
level of 10 based our current total sample number and reorganized the data of sensor 1 and 2 into
two m · · · (n − m) matrix. The matrix will be input to calculate the directed information along
time series.
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Figure 5.11: Accuracy of train direction prediction; (a) red line: using directed information as
features; (b) blue line: using cross-correlation coefficients features.

We constructed the vibration pattern with train in two different directions, northbound and
southbound. Here, we use simple threshold to find the direction of information exchange between
sensor pairs based on the extracted directed information and inverse directed information. For
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example, given sensor 1 and sensor 2, if the absolute value of I(1 → 2) − I(1 → 2) is less than
threshold, we regard the case as no directionality in the information exchanges between sensor 1
and sensor 2. If I(1 → 2) − I(2 → 1) is large than the threshold, we regard the direction is from
sensor 1 to sensor 2; If I(2 → 1) − I(1 → 2) is larger than the threshold, the direction will be
from sensor 2 to sensor 1.

Figure 5.10 shows the dominant vibration patterns when there are trains passing by the building
in different directions. Figure 5.10(a) shows the north-bound train, and Figure 5.10(b) shows the
vibration pattern for the south-bound train. The arrow shows the direction of the propagation of
information using directed information. More than 40% N-S cases have the same pattern as Fig-
ure 5.10(a) shows, and more than 45% northbound cases have the same pattern as Figure 5.10(b).
Other patterns follow this general trend. For the north-bound trains, the vibration is first observed
from the southern end of the building (sensors 2, 3, and 4), and propagate to the northern part of
the building. For the south-bound trains, the vibration information propagates from east (sensor 2,
3) to west (sensor 4).

Over the whole train passing process, the building vibration is a very complex process with
coupling of excitation source and structure properties. In the process of wave propagation, the
reflection, interference and diffraction between wave and structures are very complicated. Besides,
the train here is a moving line excitation source, which make the vibration pattern extracted based
on the overall process of train passing more complex. It is hard to predict the vibration patterns
inside building intuitively by matching them with the train direction. However, since the time of
wave arrivals on different sensors varies with trains direction, we can conclude that the vibration
patterns are different under different directions of train passing by the building. The change of
pattern revealed in two causal graphs demonstrates not only the event’s influence on the building’s
vibration characteristics, but also how the building reacts to different kinds of vibration in different
ways.

Train Event Inference Results

Based on extracted directed information features, we used a classification model to predict the
directionality of train events. Here we label each sample using the direction of the passing train
during the corresponding time interval. We also need to decide the optimal window length of
generating samples: when the window length is too short, the uncertainty of value of directed
information will affect the extracted feature significantly; when the window length is too long, we
may lose the details about the response of information exchanges inside building to train events
during the time window. In our method, support vector machine is applied to classify the direction
based on the extracted directed information features.
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Figure 5.12: Accuracy of train direction prediction (a) under different environmental temperatures
between 66 and 96 ◦F; (b) at different time of day from 5am to 9pm

To evaluate our classification system, Figure 5.11 shows the accuracy to infer the direction
of train passing by the building using different sliding window lengths. The red line shows the
results of our directed information approach, while the blue line uses cross-correlation coefficients
between sensor pairs. The results show that the accuracy decreases with large window lengths.
That is because longer window length loses time resolution of features. Figure 5.11 also shows
that given the same classification method, our directed information based features achieve the
directional accuracy of up to 86.9%, compared to 66.9% when using the cross-correlation based
method. This correspond to a 2.5X reduction in error.

In this work, we evaluate the robustness of our algorithm to some factors (e.g. weather con-
dition, temperature, indoor people activity, other traffic noise, etc.), by collecting data on dif-
ferent days and different time of a day with various temperature, noise level, peoples activity,
and weather conditions, including rainy, sunny, and cloudy weather [112, 149, 171, 172]. Fig-
ures 5.12(a) and 5.12(b) show the algorithm accuracy for different temperature level and time of
the day, respectively. Although the temperature may cause changes on the physical properties of
building structure, we found that our algorithm is robust to temperature variations, as shown in Fig-
ure 5.12(a). In addition, the weather pattern was fairly consistent over a day and closely correlated
with temperature, which implies that our method is also robust to weather. For Figure 5.12(b),
the accuracy starts decreasing at the beginning of business hours around 7am and then starts in-
creasing around noon time and then reaches the maximum value around 5pm. This may be due
to indoor activity and outside traffic noise during business hours. On weekdays, indoor people
activities are very frequent during 9am to 5pm. the traffic on the road between Rohm building and
train track is particularly busy during the afternoon. There are several other factors may also affect
the performance of the algorithm, such as wind speed, which can be potential future work for this
project.
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5.6 Conclusion

In this work we present a method to detect and characterize the train events through an information
theoretic approach using a building’s vibration responses. We represent the vibration propagation
in the building structure as information exchanges in signals using directed information measure.
Our event detection method first identifies time of train passing using wavelet-based features. Then,
directed information estimators are used to to study the building’s vibration characteristics under
different train event conditions (southbound vs. northbound trains). We evaluated our method
using an 11-story building located near a light rail line and achieved 93% true positive rate and
80% true negative rates for train event detection. The directions of passing trains were inferred
with accuracy of 86.9%, which is a 2.5X reduction in error compared to conventional method.

The directed information based on causal analysis provides a new perspective in analyzing
building dynamics, with which traditional physics-based analysis can be coupled, for further im-
provement. While this work focuses on the passing of trains, it can similarly be applied to other
significant traffic events in the surrounding environment.
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Chapter 6

Conclusions

In conclusion, this thesis introduce a set of methodologies which combine physical knowledge
to acquire and learn high-fidelity information for urban infrastructure systems under constrained
sensing capabilities. These methodologies aim to address 4 common constrained sensing capabil-
ities in real-world urban infrastructure systems: 1) noisy data from complex physical systems, 2)
lack of labeled data, 3) inefficient sensor deployment, and 4) lack of proper sensors.

To address the challenges of constrained sensing capabilities, I combine the knowledge about
the physical processes inside infrastructure systems, between different infrastructure systems, be-
tween the infrastructure with the instrumented sensors, and between the infrastructure and envi-
ronment. In different stages of urban infrastructure sensing and learning shown in Figure 1.1,
the physical knowledge is utilized and embedded to best utilize the constrained sensing capabil-
ities and improve the performance of high-fidelity information sensing and learning. When the
data collected from complex physical systems is noisy, information-theoretic features are devel-
oped to model the wave propagation inside physical structures as information exchanges between
vibrations to eliminate the influence of noise and improve the performance of structural damage
diagnosis. To address the challenge of lack of labeled data, I introduce a physics-guided knowl-
edge transfer framework to first transfer the knowledge learnt from other buildings to diagnose a
building without any labeled data. To address the challenge of inefficient sensor deployment, I
propose a new incentivizing algorithm to efficiently and flexibly actuate and deploy mobile sen-
sor networks for various infrastructure monitoring tasks in the context of mobile crowd sensing
systems. To address the challenge of indirect sensing, I also present an indirect sensing frame-
work which combines the physical understanding of how traffic-induced vibrations propagate to
the buildings to infer the traffic events from building data in the context of traffic event monitoring.

The development of advanced sensing technologies and big data algorithms enable the smart ur-
ban infrastructure systems. However, the gap between the physical knowledge and the data-driven
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methods is obvious for smart urban infrastructure applications. It is undoubted that advanced sens-
ing technologies provide us huge data, and the power of machine learning techniques enables the
complex and highly nonlinear modeling of the collected data. But when it comes to the real-world
physical infrastructure systems, many universal assumptions of these methods are violated under
constrained sensing capabilities. It would be unreliable to entirely discard those classic physical
principles and blindly apply these data-driven methods.

This thesis provides a new perspective to incorporate the physical knowledge into different
sensing and learning stages to improve urban infrastructure monitoring. The future work of this
thesis includes the extension of the proposed methodologies to different types of urban infrastruc-
ture systems and different tasks of urban infrastructure monitoring. For example, the information-
theoretic building damage diagnosis and knowledge transfer framework to diagnose buildings
without labeled data in earthquake scenarios can be extended to daily structural health monitoring
and to bridge systems. The efficient sensor deployment scheme in urban crowd sensing systems
can be extended to different types of sensor carriers and to multiple tasks of urban infrastructure
monitoring. The indirect sensing framework can be extended to monitor different types of traffic
events in the ambient environment.
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Appendix A

Supplementary Information for Chapter 4

A.1 Proof of Theorem 1

Proof. The incentive B(c) is defined as follows

B(c) = max(rmin,min(rmax, rmax − ru(Rc
ctrl −Rc

rand))).

Where

Rc
rand =

a,b∑
i,j

Re(i, j, T )Prc(i, j, T )

Rc
ctrl =

a,b∑
i,j

Re(i, j, T )Dc(i, j, T ).

Case 1: When Rc
ctrl < Rc

rand, that is, when the incentivizing assignment does not improve the
probability of task request, we will pay B(c) = rmax. The rmax equals to the revenue obtained by
taking a general task request. In general situation, the amount of rmax is determined by the market
and represents the lower threshold that a vehicle agent is willing to take the task, which means that
the seller side and buyer side in the market, including the vehicle agent and the task request end
(e.g. passenger or the crowdsourcer), all agree to accept/pay rmax to finish the task for time length
of T .

Case 2: When Rc
ctrl ≥ Rc

rand, to simplify the problem, here we assume the vehicle agents
focus on the profit during incentivizing period T and the profit in the first time point after the
incentivizing period, T + 1. That is, from the perspective of vehicle agents, at the beginning time
point t = 1 before one incentivizing period, the estimation of the profit is based on the time period
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from t = 1 to t = T +1. If an unoccupied vehicle agent rejects the incentivizing assignment, since
there is no task nor assignment now, the profit is the expected revenue from t = 1 to t = T + 1

subtracting the cost. For each free vehicle agent, the expected revenue at time point t+ 1 is based
on the task request obtained at time t, which is

a,b∑
i,j

ruRe(i, j, t)Prc(i, j, t).

Meanwhile, from the perspective of vehicle agents, the importance of future revenue degrades with
time. We assume this degrading coefficient is γ, where 0 ≤ γ ≤ 1. The effect of future revenue
on current estimation of utility degrade in a multiplicative way. Thus, if rejecting the incentivizing
assignment Dc, the utility for vehicle agent c is

u(c rejects Dc)

=
T+1∑
t=1

a,b∑
i,j

γt−1ruRe(i, j, t− 1)Prc(i, j, t− 1).

For incentivized vehicle agents, B(c) is the revenue from the beginning to the end of incen-
tivizing period. Since during t = 1 to t = T , the revenue is deterministic and known, the expected
revenue from t = 1 to t = T is B(c)/T . After T , task request is no longer deterministic for the
vehicle agent, and the expected revenue depends on the destination of the incentivizing assignment
Dc. Thus, if accepting the incentivizing assignment, the utility of vehicle agent c is

u(c accepts Dc)

=
T∑
t=1

γt−1B(c)/T +

a,b∑
i,j

γT+1−1ruRe(i, j, T )Dc(i, j, T ).

Compared to rejecting the incentivizing assignment, the cost from the beginning of incentivizing
period does not change, which incurs regardless of accepting the assignment or not. Assuming all
vehicle agents are rational, a vehicle agent c will accept an incentivizing assignmentDc if and only
if

u(c rejects Dc) ≤ u(c accepts Dc). (A.1)

By substituting the definition of u(c rejects Dc) and u(c accepts Dc), the Inequation A.1 is equiv-
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alent to

B(c) · (
T∑
t=1

γt−1)/T

≥
T+1∑
t=1

a,b∑
i,j

γt−1ruRe(i, j, t− 1)Prc(i, j, t− 1)

−
a,b∑
i,j

γT ruRe(i, j, T )Dc(i, j, T )

=
T∑
t=1

a,b∑
i,j

γt−1ruRe(i, j, t)Prc(i, j, t) + γT ru(R
c
rand −Rc

ctrl).

Since ∀t, there is always

a,b∑
i,j

Prc(i, j, t) = 1, Re(i, j, t) ≤ 1.

Thus, we can have ∀t,

a,b∑
i,j

Re(i, j, t)Pr(i, j, t) ≤ 1

⇒
a,b∑
i,j

ruRe(i, j, t)Pr(i, j, t) ≤ ru

⇒
T∑
t=1

a,b∑
i,j

γt−1ruRe(i, j, t− 1)Pr(i, j, t− 1) ≤ ru

T∑
t=1

γt−1.

Also, since γ ∈ [0, 1], and T ≥ 1, there is ∀t ≤ T

γt−1 ≥ γT ⇒
T∑
t=1

γt−1 ≥ TγT ⇒ γT ≤ (
T∑
t=1

γt−1)/T
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Comparing with B(c),

T∑
t=1

a,b∑
i,j

γt−1ruRe(i, j, t)Prc(i, j, t) + γT ru(R
c
rand −Rc

ctrl)

≤ru
T∑
t=1

γt−1 + γT ru(R
c
rand −Rc

ctrl)

≤ruT · (
T∑
t=1

γt−1)/T + (
T∑
t=1

γt−1)/T · ru(Rc
rand −Rc

ctrl)

=[rmax − ru(Rc
ctrl −Rc

rand)] · (
T∑
t=1

γt−1)/T

≤B(c) · (
T∑
t=1

γt−1)/T when Rc
ctrl ≥ Rc

rand.

Therefore, when Rc
ctrl ≥ Rc

rand, the Ineuqation A.1 is always satisfied. That is, the utility obtained
by accepting the incentivizing assignment is always larger or equal to the utility obtained by re-
jecting the assignment. When the vehicle agent is rational, the vehicle agent will always choose to
accept the assignment.

A.2 Proof of Lemma 1
Proof. In the formal definition of multiple choice knapsack problem, there arem classesNl, · · · , Nm

of items to be packed into a knapsack of capacity β. Each item j ∈ Ni has a profit value vij and
a size Wij , and the problem is to choose exactly one item from each class such that the total
value

∑
i,j f(vij)xij is minimized/maximized without exceeding the capacity. The mathematical

formulation is

max
xij

m∑
i=1

Ni∑
j=1

f(vij)xij

s.t.

m∑
i=1

Ni∑
j=1

Wijxij ≤ β

Ni∑
j=1

xij = 1

xij ∈ {0, 1}
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In the classic linear multiple choice knapsack problem, the value function is linear which means
f(vij) = vij . If f(·) is a non-linear function of vij , the problem is a non-linear multiple choice
knapsack problem.

Similarly in our problem, the capacity constraint refers to the total budget B. We have C
classes, which is the C vehicle agents. Each class has Kc items, which belongs to the candidate
trajectories set {Dk

c : 1 ≤ k ≤ Kc}. If a vehicle agent c is occupied, its candidate trajectory
set only has one item, which is the trajectory determined by the passenger. If a vehicle agent c
is unoccupied, its candidate trajectory include deterministic trajectories given starting location
and incentivizing period and one probabilistic trajectory which is calculated based on the mobility
transition matrix and represents cruising without any passengers or incentivization. When a vehicle
agent is neither incentivized nor occupied, it still keeps sensing data. Therefore, choosing not to
incentivize an unoccupied vehicle agent is equivalent to choosing to let the vehicle agent run as
usual. Each item has a size B(c, k), which is the corresponding cost determined by the vehicle
agent c and respective trajectory k. B(c, k) is obtained by the costB(c) of incentivizing the vehicle
agent c to its kth trajectory. The value of each item is a vector vck

vck = [
Dk
c (i = 1, j = 1, t = 1)

CT
, · · · , D

k
c (i = a, j = b, t = T )

CT
]

Our problem can be stated as: given C classes, each class has Kc items, each item Dk
c ∈ {Dk

c :

1 ≤ k ≤ Kc} has a profit value vck and size B(c, k), under the capacity constraint B, selecting
exactly one item from each class to maximize the negative KL-divergence. The mathematical
formulation in the format of multiple choice knapsack problem is

max
xck

∑
i,j,t

P (i, j, t) log
O(i, j, t)

P (i, j, t)

where P (i, j, t) =
C∑
c=1

Kc∑
k=1

Dk
c (i, j, t)

CT
xck

s.t.

C∑
c=1

Kc∑
k=1

B(c, k)xck ≤ B

C∑
c=1

Kc∑
k=1

xck = 1

xck ∈ {0, 1}

Since different vehicle agent’s final selected trajectories can be overlapped, the objective function
is a non-separable nonlinear function with respect to each item Dk

c . Therefore, our problem is a
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non-linear multiple choice knapsack problem.

A.3 Proof of Theorem 2

Proof. The classic linear knapsack problem, quadratic knapsack problem, linear multiple-choice
knapsack problem are proved to be NP-complete. In our problem, the objective function involves
with integrated logarithmic of integrated variables, which makes it more difficult to prove the NP-
hardness. Although proving the NP-hardness is beyond our research scope in this study, here we
give a proof of the NP-completeness of the decision version of our problem. The decision version
of our problem can be stated as: Does there exist a vehicle incentivizing solution such that the
KL-divergence between integrated sensing data distribution and target distribution is smaller than
a specific value h while the constraints are satisfied? To show the NP-completeness, we firstly
showed that the problem is NP, then showed that it is NP-hard. The proof is as follows.

To show the problem is NP, given a vehicle incentivizing solution S for C vehicles, we can
validate the correctness of the solution in polynomial time. In detail, we can calculate the KL-
divergence by aggregating all vehicles’ trajectory to obtain the final collected data distribution and
thus get the KL-divergence with the time complexity of O(C).

To show the problem is NP-hard, we show a special case of the problem is equivalent to a
known NP-hard problem: linear multiple-choice knapsack problem. The special case is defined as:
in the given candidate trajectories, the trajectories of any two different vehicles are not overlapped
at any time point t where 1 ≤ t ≤ T . Mathematically, non-overlapping means that ∀c1, c2 with
the sets of candidate trajectories {Dk

1} and {Dk
2}, we have ∀Dk1

1 ∈ {Dk
1} and Dk2

2 ∈ {Dk
2}, and

∀1 ≤ i ≤ a, 1 ≤ j,≤ b, 1 ≤ t ≤ T ,

Dk1
1 (i, j, t) ·Dk2

2 (i, j, t) = 0

Since any two vehicles’ trajectories are non-overlapping, the objective function can now be sepa-
rable by different vehicle c, which means that,

KL(P ||O)

= −
∑
c

∑
i,j,t

Dc(i, j, t)

CT
[log(O(i, j, t) · CT )− logDc(i, j, t)]

The special case is much simpler to solve than our original problem where the candidate tra-
jectories could be overlapped. Meanwhile, this special case does belong to our original problem.
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Therefore, if we can prove the special case is NP-hard, it is reasonable to claim that our problem
is NP-hard.

In this special case, the problem is: Given C vehicles’ candidate trajectory sets {Dk
c : 1 ≤

k ≤ Kc} where c = 1, · · · , C, can we select exactly one trajectory from each set such that the
obtained KL-divergence between collected data distribution and target distribution is less than an
exact value h,

KL(P ||O) ≤ h

while satisfying the budget constraints.
This problem is equivalent to a classic multiple choice knapsack problem: given C classes

where each class has items {Dk
c : 1 ≤ k ≤ Kc}, each item in each class has a profit value vck

where,

vck =
∑
i,j,t

Dk
c (i, j, t)

CT
[log(O(i, j, t) · CT )− logDk

c (i, j, t)]

Meanwhile each item has its own size which is B(c, k), can we select one item from each class,
where selecting the item k of class c means xck = 1 and vice versa, such that the total value∑C

c=1

∑Kc

k=1 vckxck ≥ h while the total capacity
∑C

c=1

∑Kc

k=1 B(c, k)xck does not exceed B.
Note that the value vck of an item Dk

c is only determined by the given item and the given fixed
target distribution O(i, j, t). B(c, k) is also only determined by the class and the item itself, and
represents the cost B(c) of incentivizing the vehicle c to its kth trajectory in our problem.

The classic linear multiple choice knapsack problem is already proved to be NP-hard. Since
our problem under a special setting is equivalent to the classic linear multiple choice knapsack
problem, the general case of our problem is also NP-hard.

Therefore, the decision version of our problem is NP-complete.
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