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Abstract 

Optimal decision-making processes represent the key component of everyday life and can 

be found everywhere, from the atomic level in nature, to the emerging technologies that are 

becoming increasingly dependent on various Machine Learning algorithms and Artificial 

Intelligence. Consequently, finding the mathematical modeling formulations and algorithms for 

solving these decision-making problems now represents one of the significant, on-going research 

topics in science. Most importantly, after the publication of the so-called “No Free Lunch” (NFL) 

theorems that proves existence of no algorithm that can efficiently and robustly solve all classes 

of optimization problems, it became clear that the algorithms and mathematical modeling of the 

optimization problems have to take into the consideration all of the available domain specific 

knowledge in order to achieve the best efficiency, robustness and scalability.  

The primary focus of this thesis is to develop a novel generic framework for continuous 

network optimization problems. Our approach, Equivalent Circuit Programming (ECP), 

incorporates all of the available domain knowledge and translates it into the efficient and robust 

simulation algorithms. Inspired by the NFL theory and circuit simulation algorithms developed 

around the state-of-art circuit simulator SPICE, we first address the key issues of applying the 

generic local optimization algorithms to network optimization problems. To that effect, we 

generalize the adjoint circuit theory to include the nonlinear network models and show that the 

complete set of optimality conditions of a network optimization problem can be represented by a 

combination of the network and its uniquely defined adjoint circuit. With the circuit representation 

of the considered class of optimization problems established, we next embed the domain-specific 

knowledge within the existing optimization heuristics to develop a completely new set of 

algorithms to ensure a more efficient, robust and scalable solution process.  

To prove the concept and demonstrate the significant improvements in simulation 

efficiency, scalability and robustness, the proposed Equivalent Circuit Programming framework is 

applied to power system optimization problems. This is achieved by first introducing a generalized 
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methodology for modeling the power grid steady-state response in terms of equivalent circuit 

equations that further allows us to incorporate them within the ECP framework. The examined 

power system optimization problems include the newly introduced Power Flow Feasibility 

analyses, AC Optimal Power Flow (AC-OPF) and Security Constrained AC Optimal Power Flow 

(SC-OPF) problems. Optimization results are compared with the existing state-of-art local 

optimization algorithms for available network examples that include various realistic-size power 

system test cases of up to the 80k buses (nodes). 
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Contributions 

1. This thesis develops a novel Equivalent Circuit Programming (ECP) framework for 
continuous optimization of network steady-state operating point. 

2. To that end, an important contribution represents the generalization of the adjoint 
network theory for nonlinear network elements and its extension to modeling the network 
optimization problems. 

3. Furthermore, the thesis develops a set of novel heuristic algorithms for solving the ECP 
optimization problems based on an extension of both circuit simulation step-limiting 
algorithms and exact line search optimization approaches to ensure the robust and 
efficient convergence properties. 

4. Finally, it introduces a generalized methodology for modeling of electrical power system 
simulation and optimization problems that facilitates their incorporation within the ECP 
framework. 
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Chapter 1 Introduction and Motivation 

An optimization is a systematic and quantitative process of searching for the best choice 

that satisfies the desired criterion among numerous possibilities, and as such, it represents an 

important component embedded almost everywhere in the world around us. Various processes 

governed by physical laws that continuously occur in nature can be explain in terms of 

optimization processes. For instance, as a molten metal cools, its particles tend to arrange in low 

energy states [1]. Similarly, the current flowing in an electric network (circuit) follows the path of 

the least resistance that minimizes the losses in the system [2]. Therefore, all of these processes 

can be classified in clusters corresponding to a particular law of physics, which can be now also 

seen as the “solution methodology” used to obtain an “optimal solution” for a respective cluster. 

From the perspective of science and engineering, all of the emerging technologies and 

experimental procedures are becoming increasingly dependent on various Machine Learning (ML) 

algorithms [3], [4] and Artificial Intelligence (AI) [5] that, again, represent nothing more but 

different frameworks that solve the optimization problems in their background. Most importantly, 

all of these processes can be defined in terms of mathematical models and further incorporated 

within the field of mathematical optimization, which consequently became one of the most 

important fields of study in engineering and science in general [3], and remains an on-going 

research topic. 

Finding the algorithm that can efficiently and robustly solve a general mathematical 

optimization has been one of the most prominent problems since the early days of research in this 

area, particularly as the size of a problem increases. A closed form solution of a mathematical 

optimization does not exist in general [3], and hence an optimal solution has to be obtained through 

the use of some of the numerical methods [3],[6]-[7]. It is important to emphasize that most of the 

proposed and used numerical algorithms consider mimicking and embedding the knowledge of 
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natural optimization processes. Notably, all of the gradient based methods [3] use the idea that the 

fastest way to go down or up the hill, i.e. reach an optimal solution, is to take the steepest descent. 

Furthermore, some of the more recently introduced metaheuristics consider the more exact 

mimicking of the natural processes, such as the Simulated Annealing algorithm [1],[6] that is found 

in the heating and controlled cooling in metallurgy, while the Evolutionary algorithms (EA) [1],[8] 

use the idea of biological evolution and survival of the fittest as a base for finding the global 

optimal solution of a mathematical optimization problem. Interestingly, as it is the case in natural 

optimization processes where the “solution methodology” depends on a law of physics that 

governs the process, the fact that there doesn’t exist an algorithm that can efficiently work for all 

of the mathematical optimization problems is proven by so-called “No Free Lunch” (NFL) 

theorems in [9]. Moreover, by examining the connection between the effective algorithms and 

problems they are solving, the authors from [9] demonstrated that if no domain-specific knowledge 

of a problem is incorporated within the algorithm, all of the algorithms should perform the same 

in average once applied to the complete spectrum of problems. Therefore, it became clear that in 

order to obtain an efficient and robust methodology for solving a particular class of optimization 

problems, all of the known domain specific information has to be taken into the account, 

particularly if we deal with the optimization of physical systems. 

Utilizing the physical characteristics and domain specific knowledge of network analysis 

and simulation problems has been already shown to facilitate powerful theorem proofs and solution 

methodologies, long before the introduction of NFL theory. Namely, one of the main theorems 

that defines the conservation of energy within a network, Tellegen’s Theorem [10], has been 

proven by the Kirchhoff Current and Voltage Laws (KCL and KVL), while the electronic circuit 

simulator SPICE [11]-[16] and its many derivatives have been shown to enable the simulation of 

the highly nonlinear circuit problems with even billions of variables [17]. Furthermore, it was 

recently demonstrated [18]-[30] that the same physics-based simulation methodology can be 

extended and applied to power system simulation problems, thereby enabling robust and efficient 

convergence properties for any size realistic power grid simulation problem [31]-[33]. 

Inspired by the NFL theorems and algorithms developed around the state-of-art circuit 

simulator SPICE, this thesis introduces a novel Equivalent Circuit Programming (ECP) framework 

for modeling and solving the continuous network optimization problems. The perspective of 

SPICE algorithms is first used to address the key components that prevent the efficiency, 
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scalability and robustness of a solution process, when generic heuristics implemented within the 

state-of-art optimization toolboxes is applied without utilizing any of the additional domain 

specific information provided by the problem itself. This lack of efficiency and robustness is 

further addressed and compared to the introduced ECP framework in all of the applications 

examined in the second part of the thesis. It is then demonstrated that the Adjoint Network theory 

that was first proposed for electrical circuit noise analysis [34]-[36] in SPICE, can be generalized 

and extended to nonlinear network models and further represents a fundamental connection 

between the network (circuit) simulation and optimization problems. Importantly, this extension 

of the Adjoint Network theory allows for representing the complete set of optimality conditions in 

terms of coupled system and adjoint networks, and further provides the additional domain specific 

knowledge needed to develop a new set of SPICE-like algorithms that now include all of the 

domain specific information embedded within the existing optimization heuristics. More 

importantly, it allows for the circuit simulation-like approach [14]-[15] for obtaining an optimal 

solution of an Equivalent Circuit Program that is demonstrated to result in robust and efficient 

convergence properties for large scale network optimization problems. 

The second part of this thesis considers the application of the proposed ECP framework to 

power system simulation and optimization problems. It is important to emphasize that the scalable 

and reliable power dispatch and operation of an electrical power system is of the utmost importance 

to a country’s economy and the well-being of its citizens [37]. In the U.S., the electricity-based 

services are considered an essential service [38], a lack of which can result in significant societal 

chaos [38]. Presently, the decisions on the electrical power dispatch and system operation are 

determined by a solution to a set of different power system simulation and optimization problems. 

In this thesis, we demonstrate that the proposed ECP framework can incorporate the existing 

problems required for the operation and planning of an electrical power system, as well as allows 

for introduction of new problems, such as the Feasibility Power Flow analysis discussed in Chapter 

6. First, it is demonstrated that the generalized nonlinear network formulation introduced in 

Chapter 3 of the thesis can be applied to modeling the power grid steady-state response in terms 

of current, voltage and admittance state variables. With the equivalent circuit representation of a 

power grid established, its simulation and optimization can be included and solved as an ECP. The 

examined power system optimization problems include the newly introduced Power Flow 

Feasibility analyses, as well as AC Optimal Power Flow (AC-OPF) and Security Constrained AC 
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Optimal Power Flow (SC-OPF) problems discussed in Chapter 7. To validate the framework and 

demonstrate the efficiency, robustness and scalability, the optimization results obtained from the 

ECP framework are compared with the existing state-of-art local optimization algorithms for 

considered network examples that include various power system of up to the 80k buses, as well as 

real-life cases of transmission networks that include 75k+ nodes test cases representing the U.S. 

Eastern Interconnection high-voltage grid. Lastly, the thesis concludes with guidelines for the 

future work and provides ideas regarding possible extensions to the other power system 

optimization problems as well as other fields of engineering such as circuit design problems. 
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Chapter 2 Background 

Inspired by the algorithms developed around the state-of-art circuit simulator SPICE [13]-

[15] and results of NFL theorems [9], the main idea behind the Equivalent Circuit Programming 

(ECP) framework is that of embedding domain-specific knowledge of the network within the 

optimization framework in order to build the new set of algorithms that can ensure more robust 

and scalable solution processes. This chapter provides a background on important preliminaries 

and state-of-art algorithms related to the field of continuous mathematical optimizations, and 

discusses the state-of-art simulation algorithms and homotopy methods utilized within circuit 

simulation community. The chapter concludes with the drawbacks of the existing optimization 

algorithms from the perspective of circuit simulation problems.  

2.1. Constrained Continuous Optimization Problem 

A generalized continuous optimization problem can be defined as finding an optimization 

variable 𝒙 that minimizes a smooth objective function:  

min
𝒙∈0

ℱ(𝒙) (2.1) 

among all possible 𝒙 ∈ ℝ# that belong to the objective function domain and are further included 

within an additional continuous set of conditions, i.e. 𝒙 ∈ 𝐶: 

𝐶 = 5𝒙|	𝑔*(𝒙) = 0, 𝑖 = 1,… ,𝑚, ℎ@(𝒙) ≤ 0, 𝑗 = 1,… , 𝑘D (2.2) 

Next, we provide basic definitions and preliminaries that will be used through the thesis. 
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2.1.1. Important Mathematical Definitions and Preliminaries 

Definition 1. Convex set [3]. A set 𝐶 is convex if the line segment between any two points that 

belong to the set 𝐶, lies in the set, i.e. if for any 𝑥E,	𝑥F ∈ 𝐶 and any 𝜃 with 0 ≤ 𝜃 ≤ 1 we have 

𝜃𝑥E + (1 − 𝜃)𝑥F ∈ 𝐶 (2.3) 

In other words, as it can be seen from Figure 2.1., every point in a convex set can be seen by every 

other point along an unobstructed path between them that lies completely in the set. 

 

Figure 2.1. Examples of a nonconvex (a) and a convex (b) set. 

Definition 2. Convex function [3]. A function 𝑓:	ℝ# ⟶ ℝ is convex if 𝐝𝐨𝐦	𝑓 is a convex set and 

if for all 𝑥E,	𝑥F ∈ 𝐝𝐨𝐦	𝑓, and 𝜃 with 0 ≤ 𝜃 ≤ 1 we have 

𝑓(𝑥E𝜃 + (1 − 𝜃)𝑥F) ≤ 𝜃𝑓(𝑥E) + (1 − 𝜃)𝑓(𝑥F) (2.4) 

Geometrically, inequality in (2.4) implies that the line segment between two points, (𝑥E, 𝑓(𝑥E)) 

and (𝑥F, 𝑓(𝑥F)) lies above the graph of 𝑓, as shown in Figure 2.2., for a function 𝑓$(𝑥). In contrast, 

an example of a nonconvex function is given by the function 𝑓#$(𝑥). 

 

Figure 2.2. Examples of a nonconvex (𝑓#$(𝑥)) and a convex (𝑓$(𝑥)) function.  

!" !"

!#
!#

(a) (b)
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Definition 3. The domain of an optimization problem [3]. Consider a generalized optimization 

problem given by (2.1). The domain of an optimization problem represents the set of all points 

for which the objective function and all constraint functions given by the set 𝐶 are defined.  

𝒟 = 𝐝𝐨𝐦	ℱ(𝒙) ∩Q𝐝𝐨𝐦
R

*SE

𝑔*(𝒙) ∩Q𝐝𝐨𝐦
T

@SE

ℎ*(𝒙) (2.5) 

It is important to note that a solution to a problem (2.1) may not exist if there does not exist any 

point 𝒙 that belongs to 𝒟, i.e. 𝒟 = ∅, in which case the optimization problem is over-constrained 

and an optimal solution to the problem does not exist.  

Definition 4. An optimal solution 𝒙∗ [3]. An optimal solution to the optimization problem from 

(2.1) is a point in the domain 𝒟 that minimizes the objective function ℱ(𝒙). Moreover, in general 

optimization problems there may exist more than one optimal solution. Hence, an optimal set 𝑋XYZ 

[3] can be defined as a set that contains all optimal points: 

𝑋XYZ = {𝒙|	𝒙 ∈ 𝐶, ℱ(𝒙) = 𝑝∗} (2.6) 

where 𝑝∗ stands for an optimal objective function value that can be defined as: 

𝑝∗ = inf{ℱ(𝒙)|	𝒙 ∈ 𝐶} (2.7) 

One of the well-known approaches used to determine a point that minimizes the objective 

function ℱ(𝒙) while taking all of the additional constraints into the consideration, represents the 

augmentation of the objective function with a weighted sum of constrains within a Lagrangian 

function whose definition follows. 

Definition 5. Lagrangian Function [3],[7]. Lagrangian, ℒ:	ℝ# × ℝR 	× ℝT → ℝ for the problem 

(2.1) is defined as: 

ℒ(𝒙, 𝝀, 𝝁) = ℱ(𝒙) + 𝝀d𝑔(𝒙) + 𝝁dℎ(𝒙) (2.8) 

where the vectors of dual variables or Lagrange multipliers  𝝀 ∈ ℝR and 𝝁 ∈ ℝT represent 

“optimal weights” associated equality and inequality sets of constraints respectively, while the 

domain of ℒ is defined by 𝐝𝐨𝐦	ℒ = 𝒟 × ℝR × ℝT. 
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With the basic optimization problem definitions and terminology introduced and under the 

assumption of differentiable and continuous objective function and constraints as stated by (2.1), 

the reminder of the section discusses the optimality conditions that are required to be satisfied in 

order to ensure the optimality of the solution to the optimization problem. 

2.1.1.1 First order Necessary optimality conditions (KKT conditions) 

First order optimality or Karush-Kuhn-Tucker (KKT) conditions are usually postulated and 

proven from the Lagrange duality theorem, details of which can be found in [3],[7]. Moreover, for 

a given pair of primal and dual optimal points (𝒙∗, 𝝀∗, 𝝁∗), the final result can be expressed as a set 

of conditions derived from a gradient of Lagrangian function from (2.8) with respect to primal and 

dual variables that must vanish at an optimal point. Therefore, the KKT optimality conditions for 

a problem defined in  (2.1) can be written as: 

∇fℒ(𝒙∗, 𝝀∗, 𝝁∗):	∇fℱ(𝒙∗) + ∇f𝑔(𝒙∗)𝑻𝝀∗ + ∇fℎ(𝒙∗)𝑻𝝁∗ = 𝟎 (2.9) 

∇iℒ(𝒙∗, 𝝀∗, 𝝁∗): 𝑔(𝒙∗) = 𝟎	 (2.10) 

∇jℒ(𝒙∗, 𝝀∗, 𝝁∗):	𝝁∗ ⊙ ℎ(𝒙∗) = 𝟎 (2.11) 

𝝁∗ ≽ 𝟎 (2.12) 

ℎ(𝒙∗) ≼ 0 (2.13) 

Notably, in addition to the gradient of Lagrangian function that defines the dual (2.9), primal (2.10) 

and complementary slackness (2.11) problems, the dual and primal feasibility conditions from 

(2.12)-(2.13) need to be satisfied as well [3]. Importantly, when the optimization problem is 

convex, i.e. defined by convex objective function and constraints, and the Slater’s condition [3] is 

satisfied, the KKT conditions provide necessary and sufficient conditions to guarantee the 

optimality of the point for which they hold, and the point represents a global optimal solution. In 

the generalized case that can include nonconvex objective and/or constraints, the KKT conditions 

only represent necessary conditions and the second order sufficient condition has to be satisfied in 

order to claim the optimality of a point for which they hold. 
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2.1.1.2 Second order (Sufficient) optimality conditions  

In contrast to the convex optimization problems for which the hold of KKT conditions 

represents a sufficient condition for a global optimality of the obtained point, a generalized 

optimization problem, as the one defined in (2.1), can have many local minima, maxima and even 

non-optimal saddle points. Therefore, in order to ensure the optimality of a point for which the 

KKT conditions hold, the Hessian of the Lagrangian function, ∇ffF ℒ(𝒙∗, 𝝀∗, 𝝁∗) evaluated at that 

point has to be positive-definite on a step size 𝝉: 

𝝉d∇ffF ℒ(𝒙∗, 𝝀∗, 𝝁∗)𝝉 > 0, ∀(𝝉 ≠ 𝟎) ∈ 𝑇s∗  (2.14) 

where 𝑇t∗	represents the tangent linear sub-space at 𝒙∗[7]. 

However, the hold of second order condition from (2.14) does not provide the information about 

global optimality of the point, but rather guarantees its optimality that can be local and is 

sometimes as valuable information to have particularly in real-life problems. Furthermore, the 

second order conditions can be only verified posteriori, and cannot be directly used within the 

solution process, as is the case with KKT conditions that are in general numerically solved in order 

to obtain the point candidate for an optimal solution. Lastly, it should be emphasized that many 

algorithms for optimization can be interpreted or are conceived as methods for solving the KKT 

optimality conditions, as it is discussed in the following sections. 

2.1.2. Solving continuous mathematical optimization problems 

One of the most common approaches for finding a solution to a continuous constrained 

optimization problem consists of formulating and solving its set of first order KKT optimality 

conditions for an optimal point candidate. However, finding an analytical solution to a set of 

optimality conditions can be only done in rare cases, and the different numerical methods need to 

be utilized to iteratively obtain a solution. This situation has served as an inspiration for developing 

the numerical algorithms from the early days of research in mathematical optimizations [3],[6]. 

Next, we provide a discussion on different state-of-art approaches for handling the constrained 

optimization problems.  
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2.1.2.1. Generalized Equality Constrained optimization problem 

Consider a generalized continuous optimization problem of minimizing an objective 

function over a set of equality constraints 𝐶x: 

min
𝒙∈0y

ℱ(𝒙) 

𝐶x = {𝒙|	𝑔(𝒙) = 0} 
(2.15) 

In order to obtain the KKT optimality conditions that can be used to find a candidate for an optimal 

point, the Lagrangian function is defined 

ℒ(𝒙, 𝝀) = ℱ(𝒙) + 𝝀d𝑔(𝒙) (2.16) 

and further differentiated as: 

𝜃(𝒚) = 	 {∇fℱ(𝒙) + ∇f𝑔(𝒙)
𝑻𝝀

𝑔(𝒙)	 = 𝟎 (2.17) 

where a new vector of respective primal and dual variables is introduced as 𝒚 = [𝒙𝑻, 𝝀𝑻]. 

Note that the convexity of the problem in (2.15) is not assumed, and the set of equations 𝜃(𝒚) can 

be nonlinear and non-convex in general. Therefore, as one of the methods with local quadratic 

convergence, Newton Raphson (NR) method, whose infeasible start version [3] is presented in 

Algorithm 2.1., can be applied in order to find a solution to a system of nonlinear equation from 

(2.17) numerically. 

The main idea behind the Newton Raphson method is to linearize the nonlinear set of 

equations by means of first order Taylor expansion:  

𝜃(𝒚T|E) = 𝜃(𝒚T) + ∇}𝜃(𝒚T)Δ𝒚 ≈ 𝟎 (2.18) 

From Algorithm 2.1., the set of equations linearized at a given initial starting point (𝒙𝟎,	𝝀𝟎) is 

iteratively solved for NR-steps Δ𝒚 that are further used to update the gradient of the 

problem	∇}𝜃(𝒚T) and its residual 𝜃(𝒚T) in the next iteration, until the desired convergence 

criterion is satisfied. Moreover, due to the line search algorithm based on residual norm from step 

2, this version of NR doesn’t require feasibility of dual variables initial guess [3], which can be 
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sometimes challenging to determine due to the nonlinearity of the problem [3]. However, it can be 

shown that in comparison to the “feasible start” NR, frequently used in solving the convex 

optimization problems [3], the NR method discussed here has very similar performance [3], and 

only differs in the form of applied line search in step 2. of the algorithm. 
 

Algorithm 2.1. NR method for solving an equality constrained optimization problem.  

Initialize: starting point 𝒙𝟎 ∈ 𝐝𝐨𝐦	ℱ(𝒙), 𝝀𝟎, tolerance 𝜖 > 0, counter 𝑘 = 0 

Repeat:  
1. Compute primal and dual Newton Raphson steps 
2. Apply a form of line search on ‖𝜃(𝒚T + 𝑡𝚫𝒚	)‖F 
3. Update NR step: 𝒙T|E = 𝒙T + 𝑡𝚫𝒙, 𝝀T|E = 𝝀T + 𝑡𝚫𝝀 
4. Increase counter 𝑘 → 𝑘 + 1 

Until: �𝜃�𝒚𝒌|𝟏	��
F
≤ 𝜖 

2.1.2.2. Solution to a line search problem  

From the NR algorithm discussed above, as well as most of the other iterative algorithms 

used in mathematical optimizations, solving a line search problem represents an important 

component of an algorithm, applied to determine a constant 𝑡 that limits the obtained step size such 

that the desired norm of the residual or the objective function value is sufficiently decreased. 

Importantly, this feature is also used to ensure the global convergence of algorithms for certain 

class of problems, such as the ones in convex optimizations [3]. Considering the criterion given in 

the step 2 of the Algorithm 2.1. herein, we discuss the two ways of solving the line search problem, 

namely a Backtracking and Exact line search approaches. 

Solving an Exact Line search problem corresponds to finding a step limiting factor 𝑡 that 

attains the minimum of the following one-dimensional optimization problem. 

𝑡 = argmin
Z∈[�,E]

‖𝜃(𝒚T + 𝑡𝚫𝒚	)‖FF (2.19) 

Moreover, due to the nonlinearities of the system 𝜃(𝒚	), this problem can be as challenging to 

solve as the original problem, and hence this version of line search algorithm is currently preferred 
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only when the cost of computing the constant factor 𝑡 from (2.19) is low; i.e. can be either solved 

analytically or efficiently, comparing to computing the search direction itself [3]. 

To circumvent the problem of computational cost introduced by the exact line search, most 

line searches used in practice are inexact, such that the step length constant 𝑡 is chosen to 

approximately minimize the desired criterion or even just reduce it “enough” to keep going [3]. 

One of the algorithms represents the Backtracking line search that is presented in Algorithm 2.2. 

As it can be seen, for a given set of tuning parameters 𝛼 and 𝛽, the value of step length 𝑡 is 

iteratively decreased until the required condition of problem residual is decreased “enough.” 

Algorithm 2.2. Backtracking Line search algorithm. 

Given: 𝒙T, 𝚫𝒙,	𝝀T, 𝚫𝝀, 𝛼 ∈ (0,0.5) and 𝛽 ∈ (0,1) 

 𝑡 = 1 

while ‖𝜃(𝒙T + 𝑡Δ𝒙, 𝝀T + 𝑡Δ𝝀)‖F > (1 − 𝛼𝑡)‖𝜃(𝒙T, 𝝀T)‖F 

 𝑡 → 𝛽𝑡 
 

In general, however, for problems that are not convex, not every iterative step of the 

convergence process will provide a positive definite ∇}𝜃(𝒚T) matrix [3],[7], which can result in 

saturation and failing of line search algorithms. Specifically, there may not exist a constant 𝑡 that 

decreases the desired condition from the step 2 of Algorithm 2.1. This scenario particularly 

amplifies with the introduction of inequality constraints within the nonlinear optimization 

problem. 

2.1.2.3. Generalized Constrained optimization problem 

The last piece of continuous mathematical optimization “algorithmic puzzle” represents 

the addition of inequality constraints within the optimization problem. Therefore, herein we 

discuss a set of algorithms needed for solving the generalized optimization problem from (2.1). 

 As it can be seen from the first order KKT optimality conditions (2.9)-(2.13), the addition 

of inequality constraints within the optimization problem significantly increases the complexity of 

solving the KKT conditions to obtain an optimal solution candidate. This impediment is mainly 

introduced by the set of complementary slackness (CS) conditions (2.11) that represent the 
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nonsmooth disjunctive functions that are not differentiable and thereby prevent the use of 

derivative based algorithms (such as those discussed in the previous section). 

Handling the problem of non-smoothness of complementary slackness condition and its 

incorporation within the existing derivative based algorithms has paved the way to the new class 

of algorithms, namely Interior Point Method (IPM) algorithms [3],[7], [39]-[42]. It should be 

emphasized that the main idea behind IMP methods is the approximation of complementary 

slackness conditions by the addition of a small constant 𝜀 that now corresponds to the allowed 

complementary slackness violation, as shown in (2.20). Most importantly, the conditions are now 

differentiable, and the existing derivative based methods can be applied without loss of generality.  

𝝁⊙ ℎ(𝒙) = −𝜀 (2.20) 

Note, however, that as the CS violation parameter approaches zero, the problem becomes more 

and more steep, as it can be seen from Figure 2.3, and hence is prone to cause the numerical 

instability issues of an iterative methods [43].  

 
Figure 2.3. Improving the exactness of complementary slackness approximation by decreasing the 𝜀 parameter. 

To that end, the IPM algorithms can be classified into two main categories [3],[7] based on the 

approach of handling the decreasing of 𝜀 parameter within the solution process. 

1. Long-step IPMs – Barrier or Path Following Methods [3]-[7] 

2. Short-step IPMs – Primal-Dual Interior Point Methods [39]-[42] 
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Consider the Lagrangian function of a generalized optimization problem from (2.8), and 

the respective set KKT optimality conditions with introduced complementary slackness 

approximation given as: 

𝜃�𝒛(𝜀)� = 	�
∇fℱ(𝒙) + ∇f𝑔(𝒙)𝑻𝝀

𝑔(𝒙)	
𝝁⊙ ℎ(𝒙) + 𝜀

= 𝟎 (2.21) 

where vector 𝒛(𝜀) represents 𝒛(𝜀) = [𝒙(𝜀)𝑻, 𝝀(𝜀)𝑻, 𝝁(𝜀)𝑻] that is also a function of 

complementary slackness violation parameter 𝜀. 

To highlight the main difference between the long and short step IPMs in solving the set 

of equations from (2.21), refer to the Algorithm 2.3. and Algorithm 2.4. respectively. As it can be 

seen, the Long-step IPM, homotopically varies the complementary slackness violation parameter 

𝜀. Namely, for a fixed initial 𝜀{�}, the set of 𝜃�𝒛(𝜀)� is solved on the same way as described in the 

Algorithm 2.1, while additionally ensuring the strict feasibility of iterates, as defined by (2.12)-

(2.13). The 𝜀 parameter is then decreased, and the problem is resolved by using an optimal solution 

from the problem with previous 𝜀 as an initial starting point. The algorithm is terminated once the 

𝜀 is decreased sufficiently enough, as prespecified by the tolerance parameter 𝜖. 

 

Algorithm 2.3. Basic Long-step Interior Point Method (Path Following Method). 

Given: strictly feasible 𝒛𝟎,	𝜅 = 0, 𝜀 = 𝜀{�} > 0, 0 < 𝜎 < 1and tolerance 𝜖 > 0 
Repeat: 

1. Centering step: Solving the set of 𝜃 �𝒛�𝜀{�}�� equations according to Algorithm 2.1. 

2. Update: 𝒛�|𝟏 = 𝒛∗�𝜀{�}� 
3. Stopping criterion. Quit if 𝜀{�} < 𝜖 
4. Decrease ε: 𝜀{�|E} → 𝜎𝜀{�} 
5. Increase counter: 𝜅 → 𝜅 + 1 

 

On the other side, the Short-step IPMs handle the decreasing of 𝜀 parameter within the 

inner Newton Raphson loop that is described in Algorithm 2.1, and there is no distinction between 

the inner and outer loop as in the Long-step IMPs. 
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Algorithm 2.4. Basic Short-step Interior Point Method (Primal-Dual IPM). 

Given: 𝒙𝟎 that satisfies ℎ(𝒙) < 𝟎, 𝝁 > 𝟎, 0 < 𝜎 < 1 and tolerance 𝜖 > 0,	𝛼 ∈ (0,0.5) and 𝛽 ∈
(0,1) 
Repeat:  

1. Determine 𝜀. Set 𝜀 = −𝜎ℎ�𝒙𝒌�d𝝁𝒌 
2. Compute primal and dual Newton Raphson steps, Δ𝒛 
3. Apply a form of line search on �𝜃�𝒛T + 𝑡Y�𝚫𝒛	��F 

- Compute the largest positive 𝑡Y�R�f, not exceeding 1 that ensures 𝝁 > 𝟎: 𝑡Y�R�f =

min {1,min {− j�
�

�j
|	Δ𝜇* < 0�� 

- Start backtracking with 𝑡Y� → 0.99𝑡Y�R�f as described in Algorithm 2.2. by 𝑡Y� →
𝛽𝑡Y� until all of the inequality constraints are satisfied, i.e. ℎ�𝒙T + 𝑡Y�𝚫𝒙� < 𝟎 

- Continue Line search algorithm until the residual condition is satisfied. 
4. Update NR step: 𝒙T|E = 𝒙T + 𝑡Y�𝚫𝒙, 𝝀T|E = 𝝀T + 𝑡Y�𝚫𝝀, 𝝁T|E = 𝝁T + 𝑡Y�𝚫𝝁 
5. Increase counter: 𝑘 → 𝑘 + 1 

Until: �𝜃�𝒛𝒌|𝟏	��
F
≤ 𝜖 and 𝜀 ≤ 𝜖 

Lastly, it is extremely important to emphasize that all of the algorithms based on a solution 

of some version of line search problems use a single factor for limiting the complete NR vector 

step size. In the following sections, it will be shown from circuit simulation perspective that this 

represent the major drawback of the existing state-of-art algorithms, particularly as the size of the 

formulated nonlinear problems increases. 

2.2. Circuit (Network) simulation problem 

The second main ingredient that is embedded within the Equivalent Circuit Programming 

framework represents the circuit simulation approach towards solving the network problems, as 

well as the algorithms behind the state-of-art circuit simulator SPICE [11]-[16]. Therefore, this 

part of chapter provides a definition of a steady-state circuit simulation problem and discusses the 

algorithms and homotopy methods that facilitate efficient and robust large-scale simulations within 

SPICE. 
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Representation of a complex system by an equivalent circuit (network) has been utilized 

throughout the fields of science and engineering. For example, other than in electrical engineering, 

equivalent circuits have been used to represent mechanical systems [44], as well as biological [45] 

and chemical processes [46]. Specifically, such representation can apply for any system governed 

by the properties that ensure the conservation of energy, also defined by Tellegen’s Theorem [10]:  

1. There exists a conservation of flow of extensive quantity (Kirchhoff Current Law-KCL) 

2. There exists a uniqueness of potentials at the network nodes (Kirchhoff Voltage Law-KVL)  

3. The effect of radiation doesn’t exist or is not significant and can be neglected 

Consider an equivalent circuit defined by the set of nodes 𝒱 and the set of branches ℰ, such 

that each branch is identified with a pair of nodes (𝜐*, 𝜐@). One of the well-known ways of 

formulating a set of governing equivalent circuit equations is by expressing them in terms of KCL 

and voltage state variables at each of the circuit nodes, as done in Modified Nodal Analysis (MNA) 

[15]. Moreover, current state variables are added  [15] if required to define the additional KVL 

relationships between the circuit nodes or other dependencies or nonlinearities within the circuit.  

In general, a set of equivalent circuit governing equations that further define its steady-

state operating point (response) can be expressed in terms of a set of algebraic MNA equations 

with voltage and current state variables 𝑽𝑵 and 𝑰𝑩	as follows: 

𝛪©0ª(𝑽𝑵, 𝑰𝑩) = 𝟎 

𝐹(𝑽𝑵, 𝑰𝑩) = 𝟎 
(2.22) 

where the first set (𝛪©0ª) of equations correspond to KCL defined at each node of the circuit, while 

the second set of equations stands for the additional constraints on the circuit branch voltages or 

other nonlinearities that can be introduced by various network device models. To provide more 

detailed definitions corresponding to the set of equivalent circuit equations defined in (2.22), we 

next introduce a definition of a steady-state network response as well as discuss the different types 

of circuit steady-state analyses. 
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2.2.1. Steady-state circuit response and the linear AC analysis  

The steady-state response of an equivalent circuit (network) defines its behavior after an 

external excitation (turning ON/OFF, disturbance, etc.) occurs and when the network reaches its 

steady condition. In general, due to the independence of time, the steady-state is often modeled 

and analyzed in the frequency domain.  

• Linear AC Steady-State response  

Linear AC analysis considers the networks whose response remains of the same harmonic 

frequency as its excitation input, but changes in magnitude and phase. Such networks can be 

exactly modeled in terms of complex sources and admittances obtained by the application of 

Fourier transformation to the time domain governing equations for each of the linear circuit 

elements, as shown in (2.23)-(2.27). 

 
Figure 2.4. Mapping of linear circuit elements from time to frequency domain. 

𝑖¬(𝑡) =
1
𝑅 𝑣¬

(𝑡) 			
ℱ
→ 			𝐼¬(𝑗𝜔) =

1
𝑅 𝑉¬

(𝑗𝜔) (2.23) 

𝑣ª(𝑡) = 𝐿
𝑑𝑖ª(𝑡)
𝑑𝑡 			

ℱ
→			𝑉ª(𝑗𝜔) = 𝑗𝜔𝐿𝐼ª(𝑗𝜔) ≡ 𝑗𝑋ª𝐼ª(𝑗𝜔) (2.24) 

𝑖0(𝑡) = 𝐶
𝑑𝑣0(𝑡)
𝑑𝑡 			

ℱ
→			𝐼0(𝑗𝜔) = 𝑗𝜔𝐶𝑉0(𝑗𝜔) ≡ 𝑗𝑋0𝑉0(𝑗𝜔) (2.25) 

𝑣µ(𝑡)			
ℱ
→			𝑉µ(𝑗𝜔) = 𝑉¶µ (2.26) 

𝑖µ(𝑡)			
ℱ
→			𝐼µ(𝑗𝜔) = 𝐼·µ (2.27) 
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Where 𝑖s(𝑡), 𝑣s(𝑡), 𝐼s(𝑗𝜔) and 𝑉s(𝑗𝜔) stand for the time and frequency domain element currents 

and voltages respectively, while the placeholder 𝑋 ∈ {𝑅, 𝐿, 𝐶, 𝑆} indicates the type of linear circuit 

element.  

The generalized set of linear circuit equations that defines a steady-state response of a linear 

RLC network as the one presented in Figure 2.5 can be then written as: 

𝑌¬ª0º (𝑗𝜔)𝑽»º + 𝑰¶𝑺 + 𝐸º𝑰¶ = 𝟎 

𝐸º𝑽»𝑵 − 𝑽»𝑺 = 𝟎 
(2.28) 

where 𝑌¬ª0º (𝑗𝜔) represent the linear node admittance matrix defining the RLC circuit elements, 

while 𝐸º corresponds to the matrix that “connects” current variables to the respective circuit nodes 

whose voltage is to be controlled.  

 

Figure 2.5. RLC circuit example. Note that the linear complex admittances can only cause the magnitude and angle 
change of the voltage across R. 

2.2.1.1. Linear Adjoint Network Theory 

With the introduction of linear AC network response and its circuit representation in the 

frequency domain, it is important to mention the notion of adjoint networks that was first proposed 

for electrical circuit noise analysis [34]-[36] in SPICE. Moreover, as it will be shown in the 

following chapters, the adjoint networks serve as a fundamental link between network governing 

equations and equivalent circuit representation of the ECP optimality conditions. Hence, herein 

we discuss mapping from the original linear network elements to the respective adjoint equivalents 

that can be derived and are governed by Tellegen’s Theorem [10].  

For a given a network 𝜂 and its topologically equivalent adjoint 𝜂̂ in steady-state with 

𝑰¶𝑩,	𝑽»𝑩, 𝕿»  and 𝝀¶  representing network and adjoint network complex branch currents and voltages 
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respectively, the Tellegen’s Theorem implies that the conservation of energy within both networks 

has to hold, i.e. 

𝑰¶𝑩Á𝑽»𝑩 = 0 

𝝀¶Á𝕿» = 0 
(2.29) 

where 𝐻 represents a complex transpose operator.  

Due to the topological equivalence of two networks, it can be further shown [14] that the 

Tellegen’s Theorem also implies the following relationship: 

𝝀¶Á𝑰¶𝑩 − 𝕿»Á𝑽»𝑩 = 0 (2.30) 

Next, let the original network governing steady-state equations have a form of KCL 

equations given in (2.28). To establish the relationship between the original and adjoint network 

elements, we perturb the admittance in each network branch 𝑌¬ª0 → 𝑌¬ª0 + 𝛿𝑌¬ª0  such that the 

network response is perturbed; i.e. 𝑽»𝑩 → 𝑽»𝑩 + 𝛿𝑽»𝑩 ,𝑰¶𝑩 → 𝑰¶𝑩 + 𝛿𝑰¶𝑩 and 𝑰¶ → 𝑰¶ + 𝛿𝑰¶. Hence, the 

vector that defines currents in each branch of the network from (2.28), as well as Tellegen’s 

Theorem expression from (2.30) have a form of: 

(𝑌¬ª0 + 𝛿𝑌¬ª0)�𝑽»𝑩 + 𝛿𝑽»𝑩� + 𝐸Ä�𝑰¶ + 𝛿𝑰¶� + 𝑰¶𝑺 = 𝑰¶𝑩 + 𝛿𝑰¶𝑩 

𝐸Ä�𝑽»𝑩 + 𝛿𝑽»𝑩� − 𝑽»𝑺 = 𝟎 
(2.31) 

𝝀¶Á�𝑰¶𝑩 + 𝛿𝑰¶𝑩� − 𝕿»Á�𝑽»𝑩 + 𝛿𝑽»𝑩� = 0 (2.32) 

Equations (2.31) and (2.32) can be then further simplified with the assumption that the terms 

𝛿𝑌¬ª0𝛿𝑽»𝑩 are negligibly small: 

𝛿𝑌¬ª0𝑽»𝑩 + 𝑌¬ª0𝛿𝑽»𝑩 + 𝐸Ä𝛿𝑰¶ = 𝛿𝑰¶𝑩 + 𝑰¶𝑩 − �𝑌¬ª0𝑽»𝑩 + 𝐸Ä𝑰¶ + 𝑰¶𝑺 + 𝛿𝑌¬ª0𝛿𝑽»𝑩� ≈ 𝛿𝑰¶𝑩 

𝐸Ä𝛿𝑽»𝑩 = 𝑽»𝑺 − 𝐸Ä𝑽»𝑩 = 𝟎 
(2.33) 

𝝀¶Á𝛿𝑰¶𝑩 − 𝕿»Á𝛿𝑽»𝑩 = −𝝀¶Á𝑰¶𝑩 + 𝕿»Á𝑽»𝑩 = 0 (2.34) 
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Note that constant sources within the network, e.g. 𝑰¶𝑺, as well as the voltage perturbations of the 

branches corresponding to a voltage source are not affected by the admittance perturbation within 

the network, and hence their contributions do not affect the further derivations.  

By substituting the expression for 𝛿𝑰¶𝑩 from (2.33) to (2.34) we obtain: 

𝝀¶Á𝛿𝑌¬ª0𝑽»𝑩 + �𝝀¶Á𝑌¬ª0 − 𝕿»Á�𝛿𝑽»𝑩 + 𝝀¶Á𝐸Ä𝛿𝑰¶ = 0 (2.35) 

Therefore, for Tellegen’s Theorem to remain satisfied, the adjoint branch currents 𝕿» , as well as 

the adjoint voltages related to a network branch defined by a voltage source have to correspond to: 

𝕿» = 𝑌¬ª0Á 𝝀¶  

𝝀¶Á𝐸Ä = 0 
(2.36) 

which indicates that the adjoint branch current is proportional to the Hermitian of the network 

admittance, while the adjoint voltages that correspond to a network branches governed by a voltage 

source are shorted. Element-wise, it is implied that an admittance is defined by its complex 

conjugate in the adjoint network. Lastly, the excitation sources of the original network do not affect 

its adjoint equivalent, and therefore, are turned off in the adjoint network. The generalized 

relationship between the original and adjoint network elements is given in Table 2.1: 

Table 2.1:Defining the mapping from an original to the adjoint network elements 
Original Network  Adjoint Network 

Independent current source → open 
Independent voltage source → short 

Capacitor → Inductor 
Resistor → Resistor 
Inductor → Capacitor 

2.2.1.2 Nonlinear circuit elements 

Similar to the case of solving the nonlinear equations that arise from formulating the 

optimization problem optimality conditions, Newton Raphson method represents one of the 

frequently used numerical algorithms utilized for solving circuit simulation problems. Herein, we 

show that once applied to a circuit problem, each of the terms from generalized NR formulation, 

as the one presented in Algorithm 2.1., can be mapped to the linearized equivalent circuit, thereby 
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providing the additional knowledge of problem physical characteristics. This domain-specific 

knowledge can be now utilized to develop the set of algorithms that replace the line search problem 

in step 2 of the Algorithm 2.1., which represents the most important difference between the 

generalized optimization solver that uses the NR and the circuit simulator. In other words, a 

constant damping factor 𝑡 obtained by solving the line search problem is now replaced by a vector 

of limiting factors for each of the circuit variables obtained based on the understanding of physical 

characteristics of the problem. 

To demonstrate the mapping of Newton Raphson method to an equivalent circuit, consider 

a nonlinear diode model from Figure 2.6 (a), whose governing equation is given by: 

𝐼(𝑉) = 𝐼Å�Z Æ𝑒
t
tÈ − 1É (2.37) 

where 𝐼Å�Z represents a diode saturation current while a constant 𝑉d represents the diode thermal 

voltage.  

As it is the case in (2.18), the first order Taylor expansion is applied to linearize the nonlinear 

diode current, 𝐼(𝑉)	around the (𝑘 + 1)ZÊ iteration as: 

𝐼(𝑉T|E	) = 𝐼(𝑉T	) −
𝑑𝐼(𝑉)
𝑑𝑉 Ë

T
𝑉T +

𝑑𝐼(𝑉)
𝑑𝑉 Ë

T
𝑉T|E ≡ 𝐼xÌT + 𝐺xÌ𝑉T|E (2.38) 

Next, by grouping the constant terms known from previous iteration (𝐼xÌT ), it can be seen that diode 

current at next NR iteration 𝐼(𝑉T|E	) represents sum of a constant term and the term proportional 

to its voltage sensitivity. Hence it can be mapped to a constant current source 𝐼xÌT  and a 

conductance 𝐺xÌ as shown in Figure 2.6 (b). 

 
Figure 2.6: Nonlinear Diode model (a) and the linearized equivalent circuit model of a diode (b).  
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2.2.2. Solving a circuit simulation problem  

As it can be seen from the previous section, each of the nonlinear circuit devices can be 

linearized with the first order Taylor expansion and mapped to an equivalent circuit model of a 

device by following the same methodology as presented on a diode example. The complete 

equivalent circuit representation of a problem is then obtained by hierarchically combining 

(connecting) the derived linear and linearized equivalent circuit models, as defined by the circuit 

(network) topology. Importantly, the hierarchical building of the circuit representation, also called 

stamping [15], corresponds to an efficient, modular construction of the Jacobian matrix and 

constant vector that defines the Newton-Raphson (NR) values during the iteration process. 

Once the complete equivalent circuit is built, its set of governing circuit equations 

correspond to the linearized set of equations that are updated at each step of NR, as it is presented 

in Algorithm 2.5. For the equivalent circuit approach to NR, only circuit elements (Jacobian terms) 

that are dependent on the values from the previous iteration are recomputed, while the linear parts 

are only computed and stamped once at the beginning of the simulation. This approach was shown 

to represent an extremely efficient formulation and solution method for solving the nonlinear 

circuit problems [15]. As emphasized above, the main difference between the circuit simulation 

and traditional NR method, however, is the domain-specific knowledge obtained from the circuit 

representation of the problem. This provides important information that allows for developing 

efficient heuristics for limiting the Newton step, thereby ensuring robust and efficient convergence 

properties [11],[14]-[15],[43].  
 

Algorithm 2.5. Newton Raphson method for solving a circuit simulation problem  

Initialize: starting point 𝑽𝟎, tolerance 𝜖 > 0, counter 𝑘 = 0 

Stamp Linear circuit elements 
Repeat:  

1. Stamp linearized circuit elements evaluated at 𝑽Tand compute NR step 𝚫𝑽 by solving a 
linearized circuit 

2. Apply circuit simulation NR-step limiting heuristics 
3. Update NR step: 𝑽T|E = 𝑽T + 𝑻⨀𝚫𝑽 
4. Increase counter 𝑘 → 𝑘 + 1 

Until: ‖𝚫𝑽‖Ï ≤ 𝜖 



Background 
 

 

23 

2.2.2.1 NR-step limiting circuit simulation methods  

As a major and most important difference between the generic NR algorithm and the one 

applied in circuit simulations, herein we discuss three well-known NR-step limiting approaches, 

all of which were inspired by limiting the voltage step of a diode model, and further generalized 

to the complete domain of circuit simulation problems.  

1. Fixed step junction limiting heuristics [11]-[12],[14]-[15] 

One of the simplest and yet most effective step-limiting heuristics is based on placing a 

fixed bound on the NR-step size depending on the physical regions of a device model, as 

introduced by Nagel in [12], and summarized in Algorithm 2.6. As can be seen, for the given 

vectors of voltages from previous NR iteration 𝑽𝒌 and newly obtained ones 𝑽Ð, as well as a set of 

bounding parameters,	𝛼Ñ and 𝛽Ñ, for the voltage less than 𝛽Ñ, no step limiting is used, while for 

voltages greater than 𝛽Ñ, the NR steps are limited to 𝑽𝒌 ± 𝛼Ñ. It should be noted that the set of 

parameters 𝛼Ñ and 𝛽Ñ is determined from the characteristics of a model, where for instance 𝛼Ñ =

2𝑉d and 𝛽Ñ = 10𝑉d are chosen for the diode model discussed above. Most importantly it was 

found that the general value for 𝛽Ñ can be near optimally picked as the value of a maximum 

curvature point of the nonlinear device model, which is for diode model from (2.37) approximately 

equal to 10𝑉d. Lastly, the graphical representation of the NR convergence on a diode model as 

well as the fixed step junction limiting which inspired the generalization of this heuristics is 

presented in Figure 2.7. 
 

Algorithm 2.6. Fixed step junction limiting heuristics  

Given: 𝑽𝒌, 𝑽Ð, 𝛼Ñ and 𝛽Ñ 

For each pointwise element of 𝑽𝒌 and	𝑽Ð: 

Condition (if): Action: 

Ô𝑉Õ* − 𝑉*TÔ ≤ 𝛼Ñ 𝑉*T|E = 𝑉Õ* 

𝑉Õ* ≤ 𝛽Ñ	&	𝑉T ≤ 𝛽Ñ 𝑉*T|E = 𝑉Õ* 

𝑉Õ* ≤ 𝑉*T	&	𝑉*T ≥ 𝛽Ñ 𝑉*T|E = 𝑉*T − 𝛼Ñ 

𝑉*T ≤ 𝑉Õ*	&	𝑉Õ* ≥ 𝛽Ñ 𝑉*T|E = maxÙ𝛽Ñ, 𝑉*T + 𝛼ÑÚ 
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Figure 2.7. graphical representation of NR iterations on a diode model (a), and representation of a fixed step junction 

limiting heuristics.  

2. Hyperbolic tangent fixed bound diode limiting 

The second fixed bound approach proposed in [14],[43] uses the hyperbolic tangent 

function to limit the voltage step as: 

𝑉T|E	 = 𝑉T + 𝛽Ñ tanh Ý
𝑉Õ − 𝑉T

𝛽Ñ
Þ (2.39) 

Moreover, the hyperbolic tangent function ranges from −1 to +1, and hence the maximum voltage 

step is limited by 𝛽Ñ, whereas for the small steps 𝑉T|E	 = 𝑉Õ , since the slope of the function for a 

small argument approaches 1. In contrast, as the magnitude of a step approaches 𝛽Ñ, it becomes 

more and more damped. Lastly, the limiting is embedded within the continuous function and hence 

no special cases need to be considered as in the previously discussed step limiting.  

3. Alternating basis auxiliary function diode limiting 

Contrary to the fixed step size heuristics, the last considered NR step limiting heuristic is 

based on introduction of auxiliary function proposed by Colon and Nagel in [13]. The expression 

for alternating basis updates is obtained by equating the nonlinear diode function evaluated at 𝑉T|E 

𝐼(𝑉T|E) = 𝐼Å�Z ß𝑒
t�àá
tÈ − 1â (2.40) 

with the current obtained from the linearized diode equations from (2.38): 
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𝐼�𝑉Õ� = 𝐼(𝑉T	) −
𝑑𝐼(𝑉)
𝑑𝑉 Ë

T
𝑉T +

𝑑𝐼(𝑉)
𝑑𝑉 Ë

T
𝑉Õ  (2.41) 

Then solving the obtained expression for 𝑉T|E, which consequently results in: 

𝑉T|E = 𝑉T	 + 𝑉d log Ý
𝑉Õ − 𝑉T	

𝑉d
− 1Þ (2.42) 

The voltage update from (2.42) is only applied if the NR step is positive as well as if 𝑉Õ  exceedes 

the value of the critical curvature point of the nonlinear function, which for the diode model above 

is precisely: 

𝑉0¬åd = 𝑉d log Ý
𝑉d

√2𝐼Å�Z
Þ (2.43) 

Lastly, as it can be seen from the step limiting techniques discussed above, the circuit 

simulation problems replace the line search optimization solved within the generalized NR 

algorithm by the step limiting heuristics whose parameters are tuned depending on the 

characteristics of the nonlinear models. More importantly, even though none of them ensures that 

the residual of the problem is decreased at every iteration, these approximated trust region 

techniques based on the “physics” of the problem were shown to work quite effectively for 

nonlinear circuit simulations. One of the reasons supporting this is the nonconvex nature of most 

of the circuit simulation problems that could most likely cause the line search algorithms with a 

constant step length parameter 𝑡 to saturate, and hence preventing the monotonic decrease of 

residual throughout the simulation. However, the aforementioned step limiting techniques may not 

be sufficient to enable the robust convergence properties of the extremely large-scale circuit 

simulations, and homotopy methods were subsequently developed. 

2.2.2.2 Homotopy methods to improve simulation robustness 

Exploring and applying path tracing homotopy methods for solving nonlinear circuit 

problems has been attracting research interest from the early days of circuit simulation research. 

In general, a homotopy method can be mathematically defined as: 
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𝐻(𝒙, 𝜆Á) = (1 − 𝜆Á)𝐹(𝒙) + 𝜆Á𝐺(𝒙),			𝜆Á ∈ [0,1] (2.44) 

where 𝐹(𝒙) is an original nonlinear problem defined in terms of a vector of state variables 𝒙, while 

𝐺(𝒙) represent the initial homotopy problem for which the solution can be trivially obtained. The 

𝜆Á is a homotopy factor that is varied, usually dynamically [43], in discrete steps from 1 to 0 while 

the homotopy problem 𝐻(𝒙, 𝜆Á) is iteratively resolved by using the solution from the previous 

homotopy step as an initial guess. 

 It is important to emphasize that all of the circuit simulation homotopy methods are 

developed from the physical perspective, namely, by embedding homotopy factor within the 

circuit elements. Therefore, the three well known circuit simulation homotopy methods are:  

1. Source/Power stepping [15],[43]: Embeds the homotopy factor within the circuit 

excitation sources. The initial homotopy problem then represents a circuit with all of the 

sources turned OFF and its solution is trivial, namely equal to zero. The solution to the 

original problem is then obtain by homotopically turning ON the excitation sources, while 

using the previously obtained homotopy solution as an initial start. 

2. G-min stepping [47]: Shorts the complete circuit by connecting a large conductance from 

each node to the ground. The initially shorted operating point is then trivial, and the 

solution of the original circuit is obtained by gradually relaxing these added conductances. 

3. Artificial Source homotopy [48]: Connects a voltage source through a small source 

resistor at every node of the circuit. Therefore, the initial homotopy solution is trivially 

obtained, and is governed by the voltage sources. Next, the sources are sequentially 

disconnected by embedding the homotopy factor within the source resistances, and the 

problem is continuously resolved until the “artificially” added voltage sources are 

completely removed. The authors in [48] also provide the sufficient conditions for which 

this homotopy method is globally convergent.  
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2.3. Drawbacks of existing optimization algorithms from the 
perspective of circuit simulations 

Solving a nonlinear constrained optimization problem can be a very challenging task that 

is prone to divergence, very slow convergence or convergence to a nonoptimal saddle points. With 

the employed commercial optimization toolboxes, formulating and solving an optimization 

problem sometimes represents more an art in tuning the correct solver parameters than the 

technology [3]. These challenges can arise due to: 

1. The initial starting point that is crucial and can greatly affect the efficiency and the quality 

of the obtained solution.  

2. Inefficiency of handling the problem nonlinearities.  

3. Modeling of inequality constraints that introduces an additional level of complexity; i.e. 

requires the use of Interior Point Methods and additional damping of NR step. 

It is important to emphasize that from the perspective of solving a circuit simulation 

problem, which, as it will be shown in the following chapters, a network optimization problem can 

be represented as, the three major challenges mentioned above have one thing in common. That is 

a constant step length parameter obtained as a solution to some form of a line search problem. 

Moreover, since the first introduction of the SPICE-like simulators [11]-[13], it has been shown 

that damping the complete solution vector of a nonlinear simulation has two serious drawbacks 

[11]. First, if the iterative solutions are in vicinity of the correct solution, the convergence process 

can be unnecessarily slowed down. Second, if the solutions of two consecutive iterations differ 

widely, the problem may diverge or oscillate.  

Returning back to the three main sources of challenges emphasized above. First, with a 

single step limiting factor, a bad initial starting point amplified with the nonlinearities introduced 

by problem constraints can cause the line search problem to allow only a very small NR step size 

that can barely reduce the residual of the function. Moreover, due to the nonlinearities of the 

problem, the line search may not even have a feasible solution, in which case it saturates, and only 

the increase of residual can allow for the future convergence of the iterative process. The problem 

of small step sizes is amplified even more with the introduction of inequality constraints that 

require the additional damping of a step size with a factor that ensures the primal and dual 

feasibility of each constraint in the problem. This means that the bigger problem gets in terms of 
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variable count, the worse the result, since one step size can possibly affect and saturate the whole 

solution vector. Finally, and most importantly, this unnecessary damping of certain variables from 

a complete solution vector can force the iteration process to remain stuck in the local area, thereby 

increasing the chances of converging to a local solution or a saddle point, as demonstrated from 

the drawing in Figure 2.8. 

 
Figure 2.8. Emphasizing the drawbacks of a single step limiting factor within the optimization solution space. 

Conversely, the circuit simulation techniques and algorithms employ the knowledge of the 

problem’s physical characteristics in order to limit NR step size, which means that each of the 

variables is treated and limited separately. However, this may not necessarily decrease the residual 

at every iteration, which can be a blessing as well as a curse. If not limited properly, the 

convergence process can take a step from which it cannot recover, causing the future divergence. 

Hence, the drawing from Figure 2.8 highlights the best case for vectorizing the step size limiting 

factors, assuming that they are obtained purely from the knowledge of physical characteristics of 

the problem. Therefore, this thesis focuses on utilizing the equivalent circuit representation of the 

ECP problem in order to merge the best of the two approaches together and develop a new set of 

heuristics that can allow more scalable and efficient solution process. Furthermore, this approach 

can potentially improve the solution quality by ensuring that the vectorized damping of a NR step 

ensures more optimal residual decrement at each iteration.
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Chapter 3 Generalization of Steady-State Network 

Modeling and Nonlinear Adjoint Network Theory 

Presently, network theory recognizes four well-established types of modeling the network 

steady-state response, namely responses defined by Linear and Nonlinear DC and AC analyses in 

terms of voltage and current state variables. While the modeling of first three network responses 

is covered in Chapter 2, the fourth one, Nonlinear AC or Harmonic Balance analysis [49], defines 

an AC network for which the response is distorted due to the device nonlinearities, and hence is 

not of the same harmonic frequency as its excitation input. This type of analysis is mostly used in 

radio frequency (RF) circuit simulations [50] and is represented in the frequency domain in terms 

of 𝑛 coupled harmonic circuits, one for each harmonic defined by Discrete Fourier transformation 

to approximate the distorted time domain response at the steady-state. Herein, we only mention it 

for completion and emphasize that it can be incorporated within the ECP framework without any 

loss of generality.  

In order to obtain the modeling framework that is differentiable and compatible with any 

network steady-state optimization problem, this chapter generalizes the network response 

modeling to include the Nonlinear AC analysis at the fixed frequency, by introducing the 

additional set of admittance state variables. It is shown that the nonlinearities within this type of 

AC analysis do not introduce the distortion to the time domain response, as in the case of Harmonic 

Balance analysis, but rather represent the additional constraints on the linear AC network steady-

state response. Moreover, in order to enable the analyticity of the network models, we further 

introduce the equivalent split-circuit approach for handling the nonlinear systems in frequency 

domain. Lastly, the chapter is concluded by extending the nonlinear AC analysis at the fixed 

frequency to generalize the Adjoint circuit theory, by providing the mapping of admittance state 

variables to the adjoint domain. 
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3.1 Constraining the linear network AC response by introduction 
of admittance state variables 

Consider a linear AC network with excitation sources of a single frequency defined by the 

set of nodes 𝒱 and the set of branches ℰ, such that each branch is identified with a pair of nodes 

(𝜐*, 𝜐@), and whose set of complex governing equations characterizes its steady-state response in 

terms of phasor branch currents and voltages given for the input excitation frequency. Moreover, 

as it could be seen from Chapter 2, an additional phasor current variable is added to the set of KCL 

equations (2.28) in order to constrain the phasor voltage across a particular branch. In general, 

however, the constraints on a steady-state response can be nonlinearly related, and even non-

analytically related, to the network phasor currents and voltages. For instance, it could be required 

to constrain the voltage magnitude of a particular node but not its angle, or a magnitude of current 

flowing in a circuit branch, in which case the addition of a complex variable to control a particular  

magnitude or phase within the network may not be sufficient and is even not analytic since it 

doesn’t satisfy the Cauchy-Riemann conditions [51]. Therefore, in addition to phasor current state 

variables, it is required to introduce a new set of variables that can be compatible with constraining 

only a certain component of another phasor. 

Herein, it is important to emphasize the notion of a driving point admittance [52], which 

can perfectly characterize the phasor relationship between the current and voltage signals at a 

specific frequency, as the ones presented in Figure 3.1. Additionally, by Ohm’s Law, an admittance 

can also affect magnitude and angle of current and voltage signals by changing its real and 

imaginary components, namely conductance (𝐺) and susceptance (𝐵), which is exactly the 

characteristic of a variable needed in order to constrain only a specific component of a signal in 

phasor domain. 

Therefore, we generalize the linear AC steady-state network modeling by adding a set of 

admittance (conductance and susceptance) state variables in order to ensure the capability of 

modeling the generalized constraints on its response. Furthermore, as it was the case with addition 

of phasor current variables, the newly introduce conductance and susceptance variables also 

provide an intuitive physical explanation behind them. For instance, adding a susceptance variable 

to constrain the voltage magnitude of a particular circuit node can be seen as solving for a capacitor 

susceptance that maintains the voltage magnitude level at a given set point specified by the network 
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design, etc. Hence, the definition of linear AC network governing equations from (2.28) can be 

extended to include the admittance state variables, 𝒀𝑮𝑩 = 𝑮 + 𝑗𝑩, for which an additional set of 

network steady-state response constraints, 𝑓�𝑽», 𝑰¶𝑽, 𝒀𝑮𝑩�, can be included.  

�𝑌¬ª0 + Τdiag(𝒀𝑮𝑩)�𝑽» + 𝑰¶𝑺 + 𝐸º𝑰¶𝑽 = 𝟎 

𝐸º𝑽» − 𝑽»𝑺 = 𝟎 

𝑓(𝑽», 𝑰¶𝑽, 𝒀𝑮𝑩) = 𝟎 

(3.1) 

Where 𝑰¶𝑽 represents a set of current variables added to constrain the respective node voltages and 

matrix Τ relates the introduced admittance variables to the corresponding network branches.  

 
Figure 3.1. Current and voltage signals in time and phasor domain. 

Notably, the introduction of admittance state variables also represents an introduction of 

nonlinearities within the previously linear set of equations that do not cause the distortion in a 

network signal, but rather enforce the desired constraints on its response while maintaining 

network feasibility (satisfied KCL and KVL). Even though the bilinear terms are analytic, and 

their derivative exists in complex domain [51], the additional constraints on a network response 

may not be in general. Therefore, we next discuss the methodology behind the split-circuit concept 

[18]-[22] and demonstrate that the challenges introduced by the nonanalyticity of complex 

functions can be successfully overcome by splitting the complex network into two mutually 

coupled real and imaginary sub-networks.  
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3.2. Splitting the nonlinear complex circuit to ensure problem 
analyticity  

In order to remove the nonanalyticity of nonlinear complex functions that constrain the 

network steady-state response, the main idea behind the split-circuit approach is to separate the 

complex governing network equations into their real and imaginary components and further 

represent them in terms of the two mutually coupled sub-circuits, namely real and imaginary 

circuits. Recalling that each of the complex current, voltage and admittance state variables, as well 

as the network admittances can be defined in cartesian coordinates, we first rewrite the set of 

governing network equations in terms of respective real and imaginary components: 

Ù𝐺¬ª0 + Τdiag(𝑮) + 𝑗�𝐵¬ª0 + Τdiag(𝑩)�Ú(𝑽𝑹 + 𝑗𝑽𝑰) + 𝑰𝑺𝑹 + 𝐸º𝑰𝑽𝑹 + 𝑗(𝑰𝑺𝑰 + 𝐸º𝑰𝑽𝑰) = 𝟎 

𝐸º𝑽𝑹 − 𝑽𝑺𝑹 + 𝑗(𝐸º𝑽𝑰 − 𝑽𝑺𝑰) = 𝟎 

𝑓ï(𝑽𝑹, 𝑽𝑰, 𝑰𝑽𝑹, 𝑰𝑽𝑰, 𝑮, 𝑩) = 𝟎 

𝑓Ä(𝑽𝑹, 𝑽𝑰, 𝑰𝑽𝑹, 𝑰𝑽𝑰, 𝑮, 𝑩) = 𝟎 

(3.2) 

The real-valued set of algebraic equations from (3.3) that governs a split-circuit equivalent of an 

original problem is then obtained by separating the respective complex governing equations to 

their real and imaginary components. Most importantly, the split-circuit equations are now 

differentiable, and the NR can be applied without loss of generality.  

[𝐺¬ª0 + Τdiag(𝑮)]𝑽𝑹 − [𝐵¬ª0 + Τdiag(𝑩)]𝑽𝑰 + 𝑰𝑺𝑹 + 𝐸º𝑰𝑽𝑹 = 𝟎 

[𝐺¬ª0 + Τdiag(𝑮)]𝑽𝑰 + [𝐵¬ª0 + Τdiag(𝑩)]𝑽𝑹 + 𝑰𝑺𝑰 + 𝐸º𝑰𝑽𝑰 = 𝟎 

𝐸º𝑽𝑹 − 𝑽𝑺𝑹 = 𝟎 

𝐸º𝑽𝑰 − 𝑽𝑺𝑰 = 𝟎 

𝑓ï(𝑽𝑹, 𝑽𝑰, 𝑰𝑽𝑹, 𝑰𝑽𝑰, 𝑮, 𝑩) = 𝟎 

𝑓Ä(𝑽𝑹, 𝑽𝑰, 𝑰𝑽𝑹, 𝑰𝑽𝑰, 𝑮, 𝑩) = 𝟎 

(3.3) 

Next, to map a set of equations from (3.3) to an equivalent circuit that is iteratively solved 

as discussed in Chapter 2, we consider each of the network elements separately, map their 

governing equations to the respective split-circuit models, linearize them if needed, and then 
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hierarchically combine them in order to build a set of network equations that now correspond to a 

linearized problem from (3.3). 

Consider a network admittance element (𝐺 + 𝑗𝐵), whose governing equation is defined by 

Ohm’s Law in terms of phasor current (𝐼ïÄ,¬ + 𝑗𝐼ïÄ,å) and voltage (𝑉ïÄ,¬ + 𝑗𝑉ïÄ,å) variables given 

in rectangular coordinates as: 

𝐼ïÄ,¬ + 𝑗𝐼ïÄ,å = (𝐺 + 𝑗𝐵)�𝑉ïÄ,¬ + 𝑗𝑉ïÄ,å� (3.4) 

The equations that govern a split-circuit representation of an admittance are then obtained by 

splitting (3.4) to its real and imaginary current components as:  

𝐼ïÄ,¬ = 𝐺𝑉ïÄ,¬ − 𝐵𝑉ïÄ,å 

𝐼ïÄ,å = 𝐺𝑉ïÄ,å + 𝐵𝑉ïÄ,¬ 
(3.5) 

As it can be seen from (3.5), the terms where the real and imaginary admittance currents are 

proportional to the respective real and imaginary voltages can be, by Ohm’s Law, mapped to 

conductances, while the terms that relate the real current to the imaginary voltage as well as 

imaginary current to the real voltage represent the coupling between the two sub-circuits and 

govern the voltage controlled current sources. Therefore, the split-circuit representation of an 

admittance from (3.4) corresponds to a conductance (𝐺) in parallel with a voltage controlled 

current source, as shown in Figure 3.2. Additionally, all of the remaining network models that can 

be encountered in defining the linear AC network response represent linear current and voltage 

sources that can be trivially mapped to the split-circuit domain (separating real and imaginary 

components), as it is presented in Figure 3.2. 
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Figure 3.2. Mapping the network models defining the linear AC response to the split-circuit domain. 

It should be noted that the unknown admittance variables introduce the bilinear 

nonlinearities to the split-circuit governing equations from (3.5) and, therefore, have to be 

linearized by means of first order Taylor expansion around the (𝑘 + 1)ZÊ iteration, together with 

the additional constraint functions. The linearized unknown admittance currents and the respective 

constraints added can then be simplified to obtain: 

𝐼ïÄ,¬T|E = 𝐺T𝑉ïÄ,¬T|E − 𝐵T𝑉ïÄ,åT|E + 𝐺T|E𝑉ïÄ,¬T − 𝐵T|E𝑉ïÄ,åT − 𝐺T𝑉ïÄ,¬T + 𝐵T𝑉ïÄ,åT  

𝐼ïÄ,åT|E = 𝐺T𝑉ïÄ,åT|E + 𝐵T𝑉ïÄ,¬T|E + 𝐺T|E𝑉ïÄ,åT + 𝐵T|E𝑉ïÄ,¬T − 𝐺T𝑉ïÄ,åT − 𝐵T𝑉ïÄ,¬T  

𝑓ï�𝑋ïT� + ∇𝑓ïd�𝑋ïT��𝑋ïT|E − 𝑋ïT� = 0 

𝑓Ä�𝑋ÄT� + ∇𝑓Äd�𝑋ÄT��𝑋ÄT|E − 𝑋ÄT� = 0 

(3.6) 

Referring to the linearized real and imaginary currents from (3.6), the terms where the real and 

imaginary currents (𝐼ïÄ,¬T|E  and 𝐼ïÄ,åT|E) are proportional to the real and imaginary voltages (𝑉ïÄ,¬T|E  and 

𝑉ïÄ,åT|E) by Ohm’s Law, and represent conductance. In this case the 𝐺T from previous NR iteration, 

while the legacy terms known from the previous NR iteration represent a constant current source. 

All other components correspond to the coupling terms and can be mapped to the controlled current 

sources, as presented in Figure 3.3. Furthermore, the additional linearized constraints are added 

directly to the set of circuit equations for the introduced admittance state variables. 
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Figure 3.3. Linearized split-circuit representation of an unknown admittance.  

The derivation of the linearized split-circuit model of an admittance allows for the 

additional constraints on a linear AC response, and concludes the generalized split-circuit 

modeling and its extension to the adjoint domain follows in the next section. 

3.3. Generalization of Adjoint Circuit theory 

Consider a network 𝛾 modeled in terms of the generalized formulation for defining its 

steady-state response and its topologically equivalent adjoint 𝛾,ñ  with 𝑰¶,	𝑽», 𝕿»  and 𝝀¶  representing 

network and adjoint network steady-state branch currents and voltages in phasor domain 

respectively. Since the network state is now also represented in terms of admittance state variables, 

i.e. 𝒀𝑮𝑩 = 	𝑮 + 𝑗𝑩, let 𝝀𝒀 be a new set of adjoint admittance variables 𝝀𝒀 ∈ [𝝀𝑮,𝝀𝑩] that are 

introduced for each of the additional constraints on the network steady state response, 𝑓ï(∙) 

and	𝑓Ä(∙). 

As is the case with the linear network model discussed in Chapter 2, Tellegen’s Theorem 

defined by (2.29)-(2.30) must hold. However, due to the nonlinearities within the generalized 

modeling formulation, Tellegen’s Theorem only holds at the operating point (solution), and it is 

further expected that the nonlinearities introduced in the original network 𝛾 also translate to its 
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adjoint. Moreover, inspired by Tellegen’s Theorem and under the assumption that the set of 

additional constraints on network response is defined in terms of differentiable real valued 

functions, namely 𝒇𝒀(∙), we can additionally define a third equation that relates the adjoint 

admittance variables with the respective constraints as: 

𝝀¶Á𝑰¶ = 0 

𝕿»Á𝑽» = 0 

𝝀𝒀d𝒇𝒀(∙) = 0 

(3.7) 

Notably, since 𝒇𝒀(∙) vanishes at the solution, the third equation from (3.7) holds without loss of 

generality. Moreover, prior to perturbing the network admittances 𝑌¬ª0 → 𝑌¬ª0 + 𝛿𝑌¬ª0  and 

admittance states 𝒀𝑮𝑩 → 𝒀𝑮𝑩 + 𝛿𝒀𝑮𝑩 to establish the generalized relationship between the 

original and adjoint network elements, we first obtain the small-signal model [14]-[15] for the 

additional set of constraints on network steady state response. Namely, for a small network 

perturbance, the set of equations 𝒇ô𝒀(𝑿 + 𝛿𝑿) follows: 

𝒇ô𝒀(𝑿 + 𝛿𝑿) = 𝒇𝒀(𝑿) + ∇d𝒇𝒀𝛿𝑿 ≡ ∇d𝒇𝒀𝛿𝑿 (3.8) 

where 𝑿 defines a vector of network split circuit state variables, i.e. 𝑿 = [𝑽𝑹d	𝑽𝑰d	𝑮d	𝑩d]. 

The network is then perturbed; i.e. 𝑽» → 𝑽» + 𝛿𝑽» and 𝑰¶ → 𝑰¶ + 𝛿𝑰¶, in order to obtain a 

governing equation for each of the network branch currents as the ones given in (3.9), where Υ =

𝑌¬ª0 + Τdiag(𝒀𝑮𝑩), 𝛿Υ = 𝛿𝑌¬ª0 + Τdiag(𝛿𝒀𝑮𝑩) and Υ = Υ÷ + 𝑗Υø. It is important to note that as 

in the case of independent current sources 𝑰¶𝑺, relating the linear voltage sources to the adjoint 

domain is trivial, namely turning OFF, and hence they are omitted from the further derivations.  

[Υ + 𝛿Υ]�𝑽» + 𝛿𝑽»� + 𝑰¶𝑺 = 𝑰¶ + 𝛿𝑰¶ ⟹ 

Υ𝛿𝑽» + 𝛿Υ𝑽» ≈ 𝛿𝑰¶ ⟹ 

Υ÷𝛿𝑽𝑹 − ΥÄ𝛿𝑽𝑰 + 𝛿Υ÷𝑽𝑹 − 𝛿ΥÄ𝑽𝑰 = 𝛿𝑰𝑹 

Υ÷𝛿𝑽𝑰 + ΥÄ𝛿𝑽𝑹 + 𝛿Υ÷𝑽𝑰 + 𝛿ΥÄ𝑽𝑹 = 𝛿𝑰𝑰 

(3.9) 
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The perturbed expressions obtained from Tellegen’s Theorem are then given in complex 

and split-circuit domains as: 

𝝀¶Á�𝑰¶ + 𝛿𝑰¶� ≡ 𝝀¶Á𝛿𝑰¶ ≡ 𝝀𝑹d𝛿𝑰𝑹 + 𝝀åd𝛿𝑰𝑰 = 0 

𝕿»Á�𝑽» + 𝛿𝑽»� ≡ 𝕿»Á𝛿𝑽» ≡ 𝕿𝑹
d𝛿𝑽𝑹 + 𝕿å

d𝛿𝑽𝑰 = 0 

𝝀𝒀d[𝒇𝒀(𝑿) + ∇𝒇𝒀𝛿𝑿] ≡ 𝝀𝒀d∇d𝒇𝒀𝛿𝑿 = 0 

(3.10) 

Furthermore, since all three equations from (3.10) hold at the perturbed solution, the following 

should also be true: 

𝝀𝑹d𝛿𝑰𝑹 + 𝝀åd𝛿𝑰𝑰 − 𝕿𝑹
d𝛿𝑽𝑹 − 𝕿å

d𝛿𝑽𝑰 + 𝝀𝒀d∇d𝒇𝒀𝛿𝑿 = 0 (3.11) 

which represents a basis for obtaining the elementwise mapping of the original generalized 

network elements to the respective adjoint ones. 

 Next, by substituting the real and imaginary current sensitivities from (3.9) to (3.11), 

expanding the last term of (3.11) and further grouping the similar sensitivities, the expression from 

(3.11) translates to: 

Ù𝝀𝑹dΥ÷ + 𝝀ådΥÄ + 𝝀𝑮d∇𝑽𝑹
d 𝒇𝑮 + 𝝀𝑩d∇𝑽𝑹

d 𝒇𝑩−𝕿𝑹
dÚ𝛿𝑽𝑹

+ Ù𝝀ådΥ÷ − 𝝀𝑹dΥÄ + 𝝀𝑮d∇𝑽𝑰
d 𝒇𝑮 + 𝝀𝑩d∇𝑽𝑰

d 𝒇𝑩−𝕿å
dÚ𝛿𝑽𝑰

+ [𝝀𝑹d𝛿Υ÷ + 𝝀åd𝛿ΥÄ]𝑽𝑹 + [𝝀åd𝛿Υ÷ − 𝝀𝑹d𝛿ΥÄ]𝑽𝑰
+ [𝝀𝑮d∇𝑮d𝒇𝑮 + 𝝀𝑩d∇𝑮d𝒇𝑩]𝛿𝑮 + [𝝀𝑮d∇𝑩d𝒇𝑮 + 𝝀𝑩d∇𝑩d𝒇𝑩]𝛿𝑩 = 0 

(3.12) 

A simplification to the expression in (3.12) is then made by factoring the real and imaginary 

adjoint currents (𝕿𝑹,𝕿𝑰) in terms of sum of branch current vectors that correspond to the network 

admittance elements (𝕿𝑹𝑳, 𝕿𝑰𝑳) and the vectors that define the current flow through the real and 

imaginary branches of admittance states 𝕿𝑹𝒀,𝕿𝑰𝒀. Furthermore, we enforce the relationships 

obtained in Chapter 2 for network admittances, i.e. (2.36). 
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Ùdiag(𝑮)𝑇d𝝀𝑹 + diag(𝑩)𝑇d𝝀𝑰 + ∇𝑽𝑹𝒇𝑮𝝀𝑮 + ∇𝑽𝑹𝒇𝑩𝝀𝑩−𝕿𝑹𝒀Ú
d𝛿𝑽𝑹

+ Ùdiag(𝑮)𝑇d𝝀𝑰 − diag(𝑩)𝑇d𝝀𝑹 + ∇𝑽𝑰𝒇𝑮𝝀𝑮 + ∇𝑽𝑰𝒇𝑩𝝀𝑩−𝕿𝑰𝒀Ú
d𝛿𝑽𝑰

+ [diag(𝑽𝑹)𝑇d𝝀𝑹 + diag(𝑽𝑰)𝑇d𝝀𝑰 + ∇𝑮𝒇𝑮𝝀𝑮 + ∇𝑮𝒇𝑩𝝀𝑩]d𝛿𝑮

+ [diag(𝑽𝑹)𝑇d𝝀𝑰 − diag(𝑽𝑰)𝑇d𝝀𝑹 + ∇𝑩𝒇𝑮𝝀𝑮 + ∇𝑩𝒇𝑩𝝀𝑩]d𝛿𝑩 = 0 

(3.13) 

In order for Tellegen’s Theorem defined in (3.13) to remain satisfied, the following four 

relationships that govern the mapping of the admittance states and respective constraints on 

network steady-state response to the adjoint domain have to hold: 

𝕿𝑹𝒀 = diag(𝑮)𝑇d𝝀𝑹 + diag(𝑩)𝑇d𝝀𝑰 + ∇𝑽𝑹𝒇𝑮𝝀𝑮 + ∇𝑽𝑹𝒇𝑩𝝀𝑩 

𝕿𝑰𝒀 = diag(𝑮)𝑇d𝝀𝑰 − diag(𝑩)𝑇d𝝀𝑹 + ∇𝑽𝑰𝒇𝑮𝝀𝑮 + ∇𝑽𝑰𝒇𝑩𝝀𝑩 

diag(𝑽𝑹)𝑇d𝝀𝑹 + diag(𝑽𝑰)𝑇d𝝀𝑰 + ∇𝑮𝒇𝑮𝝀𝑮 + ∇𝑮𝒇𝑩𝝀𝑩 = 𝟎 

diag(𝑽𝑹)𝑇d𝝀𝑰 − diag(𝑽𝑰)𝑇d𝝀𝑹 + ∇𝑩𝒇𝑮𝝀𝑮 + ∇𝑩d𝒇𝑩𝝀𝑩 = 𝟎 

(3.14) 

By examining the adjoint split-circuit governing equations from (3.14), it can be shown 

that as it was the case with network admittance derived in Chapter 2, an admittance state is defined 

by its complex conjugate translated to the adjoint split-circuit domain; i.e., first two terms of the 

real and imaginary adjoint current equations. Interestingly, in addition to the complex conjugate 

admittance, the second part of the adjoint current governing equations represents adjoint 

conductance and susceptance controlled by the gradient of the additional constraints on network 

steady-state response. Elementwise, governing equations for mapping an admittance state variable 

to adjoint split-circuit domain, as shown in Figure 3.4, can be written as: 

𝔗¬ü = 𝐺𝜆¬ + 𝐵𝜆å +ý
∂𝑓ï,*
∂𝑉¬

𝜆ï,*

|ÿ!|

*SE

+ý
∂𝑓Ä,*
∂𝑉¬

𝜆Ä,*

|ÿ"|

*SE

 

𝔗åü = 𝐺𝜆å − 𝐵𝜆¬ +ý
∂𝑓ï,*
∂𝑉å

𝜆ï,*

|ÿ!|

*SE

+ý
∂𝑓Ä,*
∂𝑉å

𝜆Ä,*

|ÿ"|

*SE

 

(3.15) 
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Figure 3.4. Adjoint split-circuit of an admittance state variable with respective constraints on network response. 

Additionally, the second two equations from (3.14) correspond to the equations added for 

adjoint conductance and susceptance variables, and are elementwise given as: 

𝑓i!(∙) ≡ 𝑉¬𝜆¬ + 𝑉å𝜆å +ý
∂𝑓ï,*
∂𝐺 𝜆ï,*

|ÿ!|

*SE

+ý
∂𝑓Ä,*
∂𝐺 𝜆Ä,*

|ÿ"|

*SE

= 0 

𝑓i"(∙) ≡ 𝑉¬𝜆å − 𝑉å𝜆¬ +ý
∂𝑓ï,*
∂𝐵 𝜆ï,*

|ÿ!|

*SE

+ý
∂𝑓Ä,*
∂𝐵 𝜆Ä,*

|ÿ"|

*SE

= 0 

(3.16) 

With the mapping of generalized steady-state network modeling to the adjoint domain 

established, Table 2.1 from Chapter 2 can be extended to include the relationship between the 

original and adjoint circuit representation of a conductance and susceptance state variables as 

presented in Table 3.1: 

Table 3.1:Generalizing the mapping from an original to the adjoint network elements 

Original Network  Adjoint Network 
Independent current source L → open L 
Independent voltage source L → short L 

Network Conductance L → Network Conductance L 
Network Susceptance L → Conjugate Network Susceptance L 

Conductance State + 𝒇𝑮 NL → Conductance State + Controlled 
Adjoint admittance NL 

Susceptance State + 𝒇𝑩 NL → Conjugate Susceptance + Controlled 
Adjoint admittance NL 

*Where superscript (L) stands for linear models, while (NL) marks models that introduce nonlinearities within the generalized formulation 

It is important to note from Table 3.1 that the excitation sources of the original network are turned 

off in the adjoint circuit, and hence its response will still be trivial, namely zero.  
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Lastly, as expected from the beginning, the nonlinearities introduced in the original 

network 𝛾 also translate to its adjoint, and hence need to be linearized as it was previously done in 

Section 3.2. with the bilinear nonlinearities introduced by admittance state variables. Therefore, 

we first linearize the adjoint real and imaginary currents from (3.15) as: 

𝔗¬üT|E = 𝐺T𝜆¬T|E + 𝐵T𝜆åT|E + 𝐺T|E𝜆¬T + 𝐵T|E𝜆åT + ∇𝜙¬,Td ξT|E + 𝑖¬üT  

𝔗åüT|E = 𝐺T𝜆åT|E − 𝐵T𝜆¬T|E + 𝐺T|E𝜆åT − 𝐵T|E𝜆¬T + ∇𝜙å,Td ξT|E + 𝑖åüT  
(3.17) 

where 𝑖¬üT  and 𝑖åüT  correspond to the constant historic terms known from previous NR iteration, 

while ξ is a vector placeholder for state variable defining network and adjoint network responses, 

i.e. 𝛏 = [𝑉¬	𝑉å	𝐺	𝐵	𝜆ï	𝜆Ä]d. 

 Referring to (3.17), the terms that relate the real and adjoint imaginary currents (𝔗¬üT|E and 

𝔗åüT|E) to the real and imaginary voltages (𝜆¬T|E and 𝜆åT|E) by Ohm’s Law represent conductance, 

while the legacy terms known from the previous NR iteration represent a constant current source. 

All other components correspond to the coupling terms and can be mapped to the controlled current 

sources as presented in Figure 3.5. 

 
Figure 3.5. Linearized adjoint split-circuit representation of an admittance state. 
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The remaining two equations that correspond to the adjoint conductance and susceptance 

variables from (3.16) are expanded by means of first order Taylor expansion, and are directly 

included within the set of linearized split-circuit equations for the introduced adjoint admittance 

variables: 

𝑓i!�𝝃
𝒌� + ∇𝑓i!

d �𝝃𝒌��𝝃𝒌|𝟏 − 𝝃𝒌� = 0 

𝑓i"�𝝃
𝒌� + ∇𝑓i"

d �𝝃𝒌��𝝃𝒌|𝟏 − 𝝃𝒌� = 0 
(3.18) 

 In conclusion, with developed generalized and differentiable framework for modeling the 

linear AC network response and its unique mapping to the corresponding elements within the 

adjoint domain, all of the components required for the introduction of an Equivalent Circuit 

Program and its circuit representation are established. Therefore, the next chapter addresses the 

importance of further introduction of coupling between the original and its adjoint network, as well 

as the addition of new excitation sources within the adjoint circuit whose response is, as shown in 

this chapter, otherwise trivial. 
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Chapter 4 Equivalent Circuit Programming 

Throughout the years, researchers and scientists have developed various different 

perspectives of interpreting the duality theory and the respective optimality conditions, which 

range from geometric to game-and-price interpretations, as discussed in [3]. Thus far, we have 

addressed the most important optimization and circuit simulation concepts, as well as introduced 

the generalized and differentiable framework for modeling the linear AC steady-state response, all 

of which represent fundamental components that further lead to our Equivalent Circuit 

Programming (ECP) problem.  

This chapter provides an interpretation for optimality conditions of a network optimization 

problem from the perspective of equivalent circuits and conservation of energy within a system. It 

is demonstrated that for a given network and its uniquely defined adjoint, the additional excitation 

of adjoint network corresponds to embedding the optimization objective to the circuit problem, 

whose simulation now coincides with solving the KKT optimality conditions to obtain a candidate 

for an optimal solution. Most importantly, understanding the physical characteristics of dual 

problem from the equivalent circuit perspective is shown to provide a new insight regarding ECP 

problem feasibility and allows for introduction of new algorithms, such as the one discussed at the 

end of this chapter that is inspired by LASSO regularization. We further show that this formulation 

can be now applied to efficiently localize the infeasibilities within an ECP problem. 

4.1. Defining an Equivalent Circuit Program (ECP) 

Consider a network 𝛾 modeled in terms of the generalized formulation for defining its 

steady-state response within a split-circuit domain as given by (3.3), and let 𝑿𝑳 and 𝑿𝑼 represent 

the vectors of predefined network operational and performance upper and lower limits 

corresponding to each of the state variables as well as the additional constraints; i.e. 𝑓ï(∙) and 
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𝑓Ä(∙). Moreover, since each of the additional constraints define a particular physical quantity 

within the network, namely voltage or current magnitude, power, etc., for simplicity we can further 

introduce a set of slack variables 𝒑𝒔 and 𝒒𝒔 such that: 

𝑓ï(∙) − 𝒑𝒔 = 𝟎 

𝑓Ä(∙) − 𝒒𝒔 = 𝟎 
(4.1) 

It is important to emphasize that the slack variables now correspond to the constrained physical 

quantities and can be bounded instead of 𝑓ï(∙) and 𝑓Ä(∙), without loss of generality. Finally, let 

𝒞$TZ represent a set of network governing equations from (3.3) with additional slack variables as 

given in (4.2). 

𝒞$TZ(𝒙𝒔) =

⎣
⎢
⎢
⎢
⎢
⎡
ℐ¬
ℐå
𝒱¬
𝒱å
𝒫
𝒬 ⎦
⎥
⎥
⎥
⎥
⎤

=

⎩
⎪
⎨

⎪
⎧
[𝐺¬ª0 + Τdiag(𝑮)]𝑽𝑹 − [𝐵¬ª0 + Τdiag(𝑩)]𝑽𝑰 + 𝑰𝑺𝑹 + 𝐸º𝑰𝑹
[𝐵¬ª0 + Τdiag(𝑩)]𝑽𝑹 + [𝐺¬ª0 + Τdiag(𝑮)]𝑽𝑰 + 𝑰𝑺𝑰 + 𝐸º𝑰𝑰

𝐸º𝑽𝑹 − 𝑽𝑺𝑹
𝐸º𝑽𝑰 − 𝑽𝑺𝑰
𝑓ï(𝒙) − 𝒑𝒔
𝑓Ä(𝒙) − 𝒒𝒔

= 0 (4.2) 

where 𝒙 = Ù𝑽𝑹𝑻, 𝑽𝑰𝑻, 𝑰𝑹𝑻 , 𝑰𝑰𝑻, 𝑮𝑻, 𝑩𝑻Ú, and 𝒙𝒔 = [𝒙𝑻,𝒑𝒔𝑻,𝒒𝒔𝑻]. 

For the network 𝛾 whose steady-state response is modeled by (4.2), an Equivalent Circuit 

Program is defined as a problem of optimizing a network performance or operating condition: 

min
𝒙𝑺∈0y9:

ℱ(𝑽𝑹, 𝑽𝑰, 𝑮, 𝑩,𝒑𝒔,𝒒𝒔) (4.3) 

subject to the set of network governing equations, as well as the operational and performance limits 

represented by a set 𝐶x0;: 

𝐶x0; = {𝒙𝒔|𝒞$TZ(𝒙𝒔) = 𝟎, 𝑿𝑳 < 𝒙𝒔 < 𝑿𝑼} (4.4) 
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4.2. Equivalent Circuit Perspective for Interpreting ECP 
Optimality Conditions 

With the generalized definition of an ECP introduced, we next analyze its set of necessary 

and sufficient optimality conditions and further demonstrate their relation to the equivalent split-

circuit representation of a network and its respective adjoint circuit. 

4.2.1. Necessary KKT optimality conditions 

We start the derivation of necessary KKT optimality conditions by defining the Lagrangian 

function of an ECP problem from (4.3) as: 

ℒ(∙) = ℱ(∙) + 𝝀𝑹dℐ¬ + 𝝀𝑰dℐå + 𝕿𝑹
d𝒱¬ + 𝕿𝑰

d𝒱å + 𝝀𝑮d	𝒫 + 𝝀𝑩d 	𝒬 + 𝝁𝑳d(𝑿𝑳 − 𝒙𝒔)

+ 𝝁𝑼d (𝒙𝒔 − 𝑿𝑼) 
(4.5) 

where 𝝀𝑹,	𝝀𝑰,	𝕿𝑹,	𝕿𝑰,	𝝀𝑮,	𝝀𝑩,	𝝁𝑳 and 𝝁𝑼 represent dual variables related to the respective network 

governing equations as well as upper and lower operational and performance bounds. 

Prior to discussing each of the three components that define the set of KKT optimality 

conditions, namely, primal and dual problems as well as complementary slackness conditions, it 

is important to emphasize the resemblance of the terms related to the set of network constraints 

from (4.5), with the expression of Tellegen’s Theorem that characterizes the conservation of 

energy within the network, as defined in Chapter 3 (3.11). 

4.2.1.1. Primal problem – governing network split-circuit equations 

As the first component of the KKT conditions, the primal problem that also corresponds to 

a set of network governing equations within the split-circuit domain, is obtained by differentiating 

the Lagrangian function from (4.5) with respect to dual variables related to the set of network 

equations, namely 𝝀𝑹,	𝝀𝑰,	𝕿𝑹,	𝕿𝑰,	𝝀𝑮,	𝝀𝑩: 

𝒞$TZ(𝒙𝒔) = 𝟎 (4.6) 

Moreover, from the perspective of solving a circuit simulation problem, the primal problem from 

(4.6) can be obtained by elementwise linearization of the nonlinearities within the network 
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governing equations, as discussed in Chapter 3, and hierarchical building of linearized set of split-

circuit equations that is now iteratively solved together with the other two components of KKT 

conditions.  

4.2.1.2. Dual problem – Adjoint network split-circuit equations with 

additional excitations 

Contrary to the primal problem that is trivially mapped to the equivalent split-circuit 

domain, an equivalent circuit representation of the dual problem is a little bit more interesting and 

is governed by the idea of the adjoint networks. To highlight this relationship, the governing 

equations of an ECP dual problem are obtained by differentiating the Lagrangian function from 

(4.5) with respect to the primal network state variables as: 

∇𝑽𝑹ℒ(∙) ≡ [𝐺¬ª0 + diag(𝑮)𝑇d]𝜆¬ + [𝐵¬ª0 + diag(𝑩)𝑇d]𝜆å + 𝐸ºd𝕿𝑹 + ∇𝑽𝑹𝑓ï(∙)𝝀𝑮

+ ∇𝑽𝑹𝑓Ä(∙)𝝀𝑩 + ∇𝑽𝑹ℱ(∙) + 𝝁𝑼,𝑽𝑹 − 𝝁𝑳,𝑽𝑹 = 𝟎 (4.7) 

∇𝑽𝑰ℒ(∙) ≡ [𝐺¬ª0 + diag(𝑮)𝑇d]𝜆å − [𝐵¬ª0 + diag(𝑩)𝑇d]𝜆¬ + 𝐸ºd𝕿𝑰 + ∇𝑽𝑰𝑓ï(∙)𝝀𝑮

+ ∇𝑽𝑰𝑓Ä(∙)𝝀𝑩 + ∇𝑽𝑰ℱ(∙) + 𝝁𝑼,𝑽𝑰 − 𝝁𝑳,𝑽𝑰 = 𝟎 (4.8) 

∇𝑮ℒ(∙) ≡ 	diag(𝑽𝑹)𝑇d𝝀𝑹 + diag(𝑽𝑰)𝑇d𝝀𝑰 + ∇𝑮𝒇𝑮𝝀𝑮 + ∇𝑮𝒇𝑩𝝀𝑩 + ∇𝑮ℱ(∙) + 𝝁𝑼,𝑮
− 𝝁𝑳,𝑮 = 𝟎 (4.9) 

∇𝑩ℒ(∙) ≡ 	diag(𝑽𝑹)𝑇d𝝀𝑰 − diag(𝑽𝑰)𝑇d𝝀𝑹 + ∇𝑩𝒇𝑮𝝀𝑮 + ∇𝑩𝒇𝑩𝝀𝑩 + ∇𝑩ℱ(∙) + 𝝁𝑼,𝑩
− 𝝁𝑳,𝑩 = 𝟎 

(4.10) 

∇𝑰𝑹ℒ(∙) ≡ 𝐸ºd𝝀𝑹 = 𝟎 (4.11) 

∇𝑰𝑰ℒ(∙) ≡ 𝐸ºd𝝀𝑰 = 𝟎 (4.12) 

∇𝒑𝒔ℒ(∙) ≡ −𝝀𝑮 + ∇𝒑𝒔ℱ(∙) + 𝝁𝑼,𝒑𝒔 − 𝝁𝑳,𝒑𝒔 = 𝟎 (4.13) 

∇𝒒𝒔ℒ(∙) ≡ −𝝀𝑩 + ∇𝒒𝒔ℱ(∙) + 𝝁𝑼,𝒒𝒔 − 𝝁𝑳,𝒒𝒔 = 𝟎 (4.14) 

After taking a closer look, particularly at (4.7)-(4.12), it can be seen that they exactly 

correspond to the adjoint split-circuit governing equations derived in Chapter 3 (3.14), with one 
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major difference. Namely, a given set of adjoint split-circuit equations from (3.14) that can be 

further written in the form of: 

𝒜$TZ(𝒙, 𝝀𝑹, 𝝀𝑰, 𝕿𝑹, 𝕿𝑰, 𝝀𝑮, 𝝀𝑩) = 𝟎 (4.15) 

does not have excitation sources and hence its response is trivial. To that end, it should be noted 

that (4.11)-(4.12) constrain the adjoint voltages of a voltage source network branch to zero, thereby 

turning it OFF, as defined in Table 3.1. Contrary to (4.15), the adjoint circuit defined within the 

dual ECP problem is excited by the gradient of objective function and the additional set of dual 

(adjoint) variables related to the upper and lower operational and performance bounds, which only 

provides an additional excitation in the case a bound becomes active  (bounded variable is at the 

limit). Moreover, (4.13)-(4.14) represent a set of equations that are added for the slack variables 

introduced to further control the additional constraints on the network steady-state response. 

Therefore, for the vector of excitation sources 𝛙𝐒 = ∇ℱ𝒙𝒔(𝒙𝑺) + 𝝁𝑼 − 𝝁𝑳, we can further define 

a set of excited adjoint split-circuit equations as: 

𝒜̅$TZ(∙) = 𝒜$TZ(𝒙, 𝝀𝑹, 𝝀𝑰, 𝕿𝑹, 𝕿𝑰, 𝝀𝑮, 𝝀𝑩) +𝛙𝐒 = 𝟎 (4.16) 

Lastly, by following the same methodology used to derive the linearized adjoint split-

circuit in Chapter 3, the linearized form of an adjoint network from (4.16) is hierarchically built 

by connecting the split-circuit models for each of the network devices and iteratively solving it 

together with the primal problem, while ensuring the primal and dual feasibility at each iteration.  

4.2.1.3. Complementary Slackness (CS) conditions – Diode Controlled 

circuits  

The third component of the KKT optimality conditions represent the complementary 

slackness equations that enforce the bounds on the respective network state variables. As is the 

case in the Interior Point methods discussed in Chapter 2, the CS conditions are approximated by 

introducing a vector of small constants 𝜺 such as: 

𝝁𝑳⨀(𝑿𝑳 − 𝒙𝒔) = −𝜺 

𝝁𝑼⨀(𝒙𝒔 − 𝑿𝑼) = −𝜺 
(4.17) 



Equivalent Circuit Programming 
 

 

48 

It is important to note that each of the CS equations from (4.17) represent the steep “switch-like” 

nonlinearities that resemble diodes in circuit simulation problems, as shown in Figure 4.1. Namely, 

after a certain voltage point across a diode is exceeded, it starts conducting current. Similarly, in 

the case of a CS condition, as the bounded state variable approaches its limit, an adjoint current 

𝝁𝑳 or 𝝁𝑼 “activates” and becomes nonzero. These current values are precisely governed by the 

amount of current needed to excite the adjoint circuit such that a respective variable remains at the 

limit, while ensuring the problem feasibility (KCL and KVL in both network and its adjoint).  

              
Figure 4.1. Representation of upper and lower CS conditions for a fixed small CS violation parameter 𝜀. 

Importantly, when it comes to algorithms applied to solving the problems with CS 

conditions, the traditional state-of-art Interior Point methods usually handle the steepness of CS 

nonlinearities by some form of a path tracing homotopy, which once combined with a single step 

limiting line-search algorithms, can significantly slow down the solution process as well as become 

stuck within the infeasible regions from which it cannot recover. In contrast, as discussed in 

Chapter 2, the circuit simulation community has developed several efficient diode-limiting 

techniques that when included with the other simulation methods allow for robust and efficient 

large-scale circuit simulations with millions of variables. Therefore, instead of homotopically 

varying the CS violation parameter 𝜀, we fix it directly to the preset small value ranging from 10-

6 to 10-12. From a set of new algorithms developed based on physical characteristics of the ECP 

problem that is inspired by the idea of diode limiting, we have developed a new algorithm solely 

for the purpose of handling the CS constraints, whose detailed description is provided in the 

following chapter.  
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4.2.2. Second order Sufficient optimality conditions  

Followed by simulating a circuit whose governing equations correspond to the first order 

KKT optimality condition of an ECP problem from (4.3), the obtained operating point represents 

an optimal solution to the problem in the local surrounding area only if the second order sufficient 

condition is met. Namely, there does not exist a small perturbation to the circuit operating point 

𝛿𝒙𝒔 that will further decrease the value of objective function, or as given in Chapter 2, the second 

order sensitivity of the Lagrangian function evaluated at optimal solution,	∇ffF ℒ(∗)	has to be 

positive definite for small feasible perturbations around an optimal point given as: 

𝛿𝒙𝒔d∇ffF ℒ(∗)𝛿𝒙𝒔 > 0, ∀[𝛿𝒙𝒔 ≠ 𝟎] ∈ Null�∇𝒙𝒔𝐶x0;� (4.18) 

To obtain a physical interpretation of the sufficient condition from (4.18), it is important 

to highlight the equivalence of its expression to the one defined in terms of perturbations of adjoint 

excitation sources (gradient of objective function), and the other primal network-controlled adjoint 

currents,	𝕿𝑿: 

𝛿𝒙𝒔𝑻Ù∇𝒙𝒔𝛙𝐒(∗) + ∇𝒙𝒔𝕿𝑿(∗)Ú𝛿𝒙𝒔 ≡ 𝛿𝒙𝒔𝑻[𝛿𝛙𝐒 + 𝛿𝕿𝑿] > 0 (4.19) 

Hence, we postulate the following Lemma to reformulate the sufficient condition from (4.18) in 

terms of conservation of energy within the adjoint circuit. 

Lemma 4.1. Passivity of the adjoint circuit. An operating point of the coupled network and its 

respective additionally excited adjoint is said to be an optimal operating point and a solution to the 

ECP problem if the adjoint circuit remains passive [53] for all small feasible perturbations around 

its operating point. 

Proof. Recall the Tellegen’s Theorem defined for the adjoint circuit: 

𝒙𝒔𝑻[𝛙𝐒 +𝕿𝑿 + 𝕿𝑳] = 0 (4.20) 

where 𝕿𝑳 correspond to the linear adjoint currents not dependent on primal network response (e.g. 

linear RLC network in adjoint domain). 

After applying the small feasible perturbation from (4.18) to the network operating point 𝒙𝒔 →

𝒙𝒔 + 𝛿𝒙𝒔, the adjoint circuit responds and the respective adjoint excitation and currents within the 
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adjoint network are perturbed, namely, 𝛙𝐒 → 𝛙𝐒 + 𝛿𝛙𝐒, 𝕿𝑿 → 𝕿𝑿 + 𝛿𝕿𝑿 and 𝕿𝑳 → 𝕿𝑳 +

𝛿𝕿𝑳	such that the conservation of energy within a system holds and thus (4.20) can be rewritten 

and further simplified with enforcing the Tellegen’s theorem as: 

(𝒙𝒔 + 𝛿𝒙𝒔)d[𝛙𝐒 + 𝛿𝛙𝐒 +𝕿𝑿 + 𝛿𝕿𝑿 + 𝕿𝑳 + 𝛿𝕿𝑳] ≡ 

𝛿𝒙𝒔d[𝛿𝛙𝐒 + 𝛿𝕿𝑿] + 𝛿𝒙𝒔d𝛿𝕿𝑳 = −𝒙𝒔d[𝛿𝛙𝐒 + 𝛿𝕿𝑿 + 𝛿𝕿𝑳] 
(4.21) 

Finally, due to the passivity of linear network elements (absorb the power) 𝛿𝒙𝒔d𝛿𝕿𝑳 > 0 and 

therefore the sufficient condition is met if and only if 𝛿𝒙𝒔d[𝛿𝛙𝐒 + 𝛿𝕿𝑿] > 0 or from (4.21): 

−𝒙𝒔d𝛿𝛙𝐒 > 𝒙𝒔d[𝛿𝕿𝑿 + 𝛿𝕿𝑳] (4.22) 

Namely, for a given ECP problem such as the one from (4.3), and by following the reference or 

passive sign direction of current flows [15], the additional power supplied by the adjoint excitation 

sources due to the applied perturbation (𝒙𝒔d𝛿𝛙𝐒) has to be greater than the power supplied by the 

rest of adjoint circuit. Most importantly, this condition represents a well-defined characteristic in 

circuit theory and is known as passivity of the circuit [53]. ∎ 

As it is demonstrated, an equivalent circuit perspective to the ECP problem and its respective 

optimality conditions provides the new intuition on understanding the physical characteristics of 

the problem. Moreover, solving an ECP optimization corresponds to solving a circuit simulation 

problem of coupled network and its additionally excited adjoint, whose passivity around the 

operating point further guarantees its optimality. Lastly, before introducing the set of algorithms 

and techniques for solving an ECP problem that are obtained by utilizing its physical 

characteristics, the last part of the chapter provides a discussion on the ECP problem feasibility. 

4.3. On Feasibility of an ECP from the equivalent circuit 
perspective 

So far, we have presented the equivalent circuit representation of the ECP problem KKT 

optimality conditions, as well as derived the sufficient conditions based on circuit theoretic 

principles that can be used as a check for the optimality of an operating point. However, the 

complete physical interpretation of the adjoint circuit variables in reference to the network steady-
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state operating point is still to be discussed. To that end, this section provides an interpretation of 

the adjoint circuit variables from the perspective of analyzing an ECP problem feasibility and the 

conservation of energy within a system.  

 Notably, a completely defined equivalent circuit response governed by KCL and KVL 

equations represents a natural optimization problem, where the current follows the path of the least 

resistance that minimizes the losses in the system. As demonstrated in the previous chapter and 

under the assumption of no illegal connections that violate the conservation of energy within the 

circuit [15], a linear AC network response is always feasible and its uniquely defined adjoint exists 

with a trivial response, namely equal to zero. Most importantly, once incorporated within the 

optimization problem, the operating point of the completely defined circuit represents an optimal 

solution independently of the objective function. Such steady-state operating point can be then 

additionally constrained to enforce the specific performance conditions with the introduction of 

admittance state variables that are now controlled in order to prevent the violation of KCL and 

KVL within a circuit. However, the introduced nonlinearities in modeling the network can result 

in over-constraining of its response, for which there doesn’t exist an operating point that satisfies 

the set of governing circuit equations while preserving the conservation of energy within a system 

as given by Tellegen’s Theorem. It follows that, the corresponding adjoint circuit cannot be 

defined. 

 In order to demonstrate that the infeasibility of the network equations can be utilized and 

“redirected” as an excitation to the adjoint circuit, we consider the following ECP problem: 

min
𝒙𝑺,𝝋𝒔∈0y9:,E

1
2
‖𝒘⊙𝝋𝒔‖FF (4.23) 

where 𝒘 = Ù𝒘𝑰𝑹
d 	𝒘𝑰𝑰

d 	𝒘𝑽𝑹
d 	𝒘𝑽𝑰

d 	𝒘𝒑
d	𝒘𝒒

dÚ represents a vector of weights on the respective 

infeasibility variables 𝝋𝒔 = [𝑰𝚫𝑹d 	𝑰𝚫𝑰d 	𝑽𝚫𝑹d 	𝑽𝚫𝑰d 	𝒑𝚫d	𝒒𝚫d] related to the network response modeled in 

terms governing equations and bounds 𝐶x0;,ÿ: 

𝐶x0;,ÿ = {𝒙𝒔,𝝋𝒔|𝒞$TZ(𝒙𝒔) +𝝋𝒔 = 𝟎,𝑿𝑳 < 𝒙𝒔 < 𝑿𝑼} (4.24) 

The KKT optimality conditions are then obtain by defining the Lagrangian function for 𝝀 

being a vector of adjoint variables, i.e. 𝝀 = [𝝀𝑹d 	𝝀𝑰d	𝕿𝑹
d 	𝕿𝑰

d	𝝀𝑮d	𝝀𝑩d ]: 
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ℒ(∙) =
1
2
‖𝒘⊙𝝋𝒔‖FF + 𝝀d(𝒞$TZ(𝒙𝒔) +𝝋𝒔) + 𝝁𝑳d(𝑿𝑳 − 𝒙𝒔) + 𝝁𝑼d(𝒙𝒔 − 𝑿𝑼) (4.25) 

and differentiating it to come up to the original and adjoint network governing equations as given 

by (4.6) and (4.16), as well as a set of CS conditions. Lastly, (4.26) represents the final set of 

additional KKT equations corresponding to the introduced vector of network infeasibility variables 

𝝋𝒔, and will further provide with an interpretation of the relationship between the adjoint and the 

network state variables: 

𝒘⊙𝝋𝒔 + 𝝀 = 𝟎 ≡ 𝝋𝒔 = −𝒎⊙𝝀 (4.26) 

Where 𝒎 corresponds to a vector that is inversely proportional to the vector of weights in 

pointwise sense, 𝑚* =
E
H�

,	∀𝑖 ∈ [1, |𝑤*|], and can be also written as 𝒎 =

Ù𝒎𝑰𝑹
d 	𝒎𝑰𝑰

d 	𝒎𝑽𝑹
d 	𝒎𝑽𝑰

d 	𝒎𝒑
d	𝒎𝒒

dÚ. 

The set of equations from (4.26) can be also written in terms of the infeasibility variables 

related to each of the respective components of 𝝋𝒔, namely: 

𝑰𝚫¬ = −𝒎𝑰𝑹 ⊙ 𝝀𝑹, 𝑰𝜟𝑰 = −𝒎𝑰å ⊙ 𝝀𝑰 

𝑽𝚫¬ = −𝒎t𝑹 ⊙ 𝕿𝑹, 𝑽𝜟𝑰 = −𝒎tå ⊙ 𝕿𝑰 

𝒑𝚫 = −𝒎𝒑⊙𝝀𝑮 

𝒒𝚫 = −𝒎K ⊙𝝀𝑩 

(4.27) 

and further used to eliminate the infeasibility variables by replacing them with the respective scaled 

adjoint ones, which now corresponds to introducing the coupling between the network and its 

adjoint circuit as: 

𝒞$TZ(𝒙𝒔) −𝒎⊙𝝀 = 𝟎 (4.28) 

From the equivalent circuit perspective, this coupling corresponds to addition of new 

sources within the original network that are now controlled by the respective points from adjoint 

circuit. Moreover, considering that the adjoint network is still not excited, its response will remain 

trivial as long as the network is feasible. However, if the set of network governing equations 
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becomes over-constrained and there doesn’t exist an operating point that preserves the 

conservation of energy within a system, the excess or deficiency of energy is redirected to the 

adjoint circuit, and now represents a source of adjoint excitations that will act in order to minimize 

the energy transfer between the network and its adjoint. This corresponds to minimizing the L2-

norm of the problem infeasibilities as given by (4.23). 

 Next, by further examination of the relationships between the network and adjoint state 

variables from (4.27), it can be seen that they follow a quite interesting pattern. Namely, once 

connected to the network through the coupling sources as in (4.28), adjoint voltages represent the 

additional current sources within the network KCL equations. Therefore, it can be said that the 

voltages of the adjoint circuit provide the necessary information related to the current infeasibility 

of the network, the information that once additionally included within the network equations tends 

to decrease the adjoint voltage to zero. Oppositely, the coupled adjoint currents “act” like the 

additional voltage sources within the network KVL equations, thereby carrying the information 

about the voltage infeasibility of the network.  

The relationship between adjoint admittance variables and their respective representation 

within the network is, however, dependent on the introduced constraints 𝑓ï(∙) and 𝑓Ä(∙). For 

instance, if the additional constraints define the relationship between the power supplied/absorbed 

by the admittance state variables, then the adjoint admittances can be seen as “power sources”, and 

hence contain the information about the power excess/deficiency within the network. Lastly, it can 

be shown that the same perspective also holds for adjoint variables introduced for the set of 

complementary slackness conditions (𝝁𝑳 and 𝝁𝑼). If a controlled network state variable 

approaches its limit and the CS constraint becomes active, its respective adjoint variable 𝜇ª or 𝜇L 

will be related to the quantity that carries the information about the network infeasibility due to 

the bounded variable. Namely, it is proportional to the difference of the bounded variable and its 

value for the unbounded network response.  

4.4. Localizing ECP infeasibility inspired by L1-norm 
regularization (LASSO) 

As it can be seen from the previous section, the network infeasibility, i.e. nodes where the 

laws of conservation of energy cannot be satisfied, can be captured and quantified by the addition 
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of extra coupling between the network and its adjoint. For a given network defined in terms of a 

set of nodes 𝒱 and the set of branches ℰ, it can be shown that in the most of realistic scenarios, the 

sources of infeasibility are sparsely distributed within the network and are introduced by the 

additional constraints on one of the network steady-state variables. Hence, the coupling of the 

network with its adjoint uses this excess/deficiency of energy and turns it into the excitation of the 

adjoint network at its respective node, which now ensures that the infeasibility is optimally 

allocated corresponding to L2-norm minimization problem. However, since the adjoint circuit as 

well as its respective network represents an interconnected system, the excitation of a particular 

node within the adjoint circuit causes the current to flow in the area around, which can further 

provide the additional excitation to the network nodes/branches that are not truly infeasible. 

Therefore, in this concluding section we introduce an algorithm inspired by the L1-norm 

regularization (LASSO), and demonstrate that its application can be used to efficiently quantify 

the correct spots of the network infeasibility, while removing the ones that are not truly infeasible, 

and thereby increasing the sparsity of the infeasible locations within the network. 

 In order to obtain the intuition behind the application of traditional L1 regularization to our 

ECP problem, such as the one defined in (4.23), we introduce the L1 regularization term for the 

vector of infeasibility variables 𝝋𝒔 as given by the ECP problem below: 

min
𝒕𝑳𝟏,𝒙𝑺,𝝋𝒔∈0N

1
2
‖𝒘⊙𝝋𝒔‖FF + 𝜷d𝒕𝑳𝟏  (4.29) 

Where the set 𝐶ª represent the extended set from (4.24) that now includes the additional constraints 

on the regularization vector 𝒕𝑳𝟏 as: 

𝐶ª = 5𝒕𝑳𝟏, 𝒙𝒔,𝝋𝒔|𝒞x0;,ÿ(𝒙𝒔,𝝋𝒔), −𝒕𝑳𝟏 < 𝝋𝒔 < 𝒕𝑳𝟏D (4.30) 

The additional regularization corresponds to adding the extra terms to the Lagrangian 

function from (4.25) that is now augmented: 

ℒªE(∙) = ℒ(∙) + 𝜷d𝒕𝑳𝟏 + 𝝁|
d�𝝋𝒔 − 𝒕𝑳𝟏� + 𝝁P

d�−𝒕𝑳𝟏 −𝝋𝒔� (4.31) 

and the respective KKT conditions related to the vector of infeasibility variables 𝝋𝒔, as well as the 

additional set of equations for the regularization variable 𝒕𝑳𝟏 can be obtained as: 
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∇𝝋𝒔ℒªE(∙) ≡ 𝒘⊙𝝋𝒔 + 𝝀 + 𝝁| − 𝝁P = 𝟎 ⇒ 𝝋𝒔 = −𝒎⊙𝝀+ 𝝁P − 𝝁| = 𝟎 

∇𝒕𝑳𝟏ℒªE(∙) ≡ 𝜷− (𝝁P + 𝝁|) = 𝟎 (4.32) 

As can be seen from (4.32), adding the L1 regularization of the 𝝋𝒔, contributes with the additional 

terms to the set of equations that defines the network infeasibility variables, which is an indicator 

that for a good choice of 𝜷 the places of nonzero adjoint variables that correspond to the network 

nodes that are not truly infeasible can be corrected. However, the key word here is “a good choice 

of 𝜷”, which cannot be known in advance.  

Therefore, instead of solving the traditional L1-regularization problem with the hope that 

a we can somehow correctly guess the 𝜷, we first take a closer look at the conditions from (4.32) 

by solving for 𝝁|from the second set of equations and substituting it in the KKT conditions that 

define the infeasibility variables as: 

𝝋𝒔 = −𝒎⊙𝝀+ 𝟐𝝁P − 𝜷 (4.33) 

Due to the dual feasibility conditions that have to be ensured, it can be shown that the values of 

now redefined vector of infeasibility variables can only be within the range of:  

𝝋𝒔 = −𝒎⊙𝝀± 𝜷 (4.34) 

This even more strongly highlights the importance of 𝜷 vector. Since if the 𝑖ZÊ component of 𝝋𝒔 

corresponds to falsely quantified infeasibility, the optimal pick for 𝛽* would be the value that 

cancels the corresponding infeasibility. 

From the perspective of an equivalent circuit, and considering that (4.34) also defines the 

coupling sources between the network and its adjoint, the vector 𝜷 represents a set of additional 

sources that are added to “correct” the respective falsely quantified infeasibilities within the 

network. Moreover, for the initial feasibility problem of solving the coupled network and its 

adjoint, the value of 𝜷 is not known, and can be therefore initially set to zero. Next, depending on 

the predefined condition for quantifying and locating the infeasibilities within the network, e.g. 

only allowed at particular nodes, the respective components of 𝜷 are chosen as the negative values 

of coupling infeasibility sources. These values are added to the system model that will now tend 
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to decrease the respective adjoint variables of a particular network node after resolving the ECP 

problem. The iterative process of this algorithm inspired by LASSO and presented in Algorithm 

4.1. is then repeated until one of the predefined stopping criteria based on the increased sparsity of 

the 𝝋𝒔vector is met.  

Algorithm 4.1. Greedy LASSO algorithm for infeasibility sparsification within an ECP problem. 

Given: maximum iteration count 𝑘R�f, infeasible ECP problem with existing network nodes 

whose infeasibility may be corrected, rounding tolerance indicating infeasibilities 𝜖åºS ∈ ℤE 

Initialize: counter 𝑘 = 0, 𝜷{T} = 𝟎 

• Based on desired criterion determine the set of network nodes ℭVWW whose infeasibility may 
be corrected 

Repeat:  

1. For 𝑖 = 1:mod(𝒎)  
If 𝑖 ∈ ℭVWW, then 𝛽{T|E}(𝑖) =𝒎⊙𝝀{𝒌} − 𝛽{T}(𝑖) 
Else 𝛽{T|E}(𝑖) = 𝛽{T}(𝑖) 

2. Resolve an ECP equivalent circuit given by adjoint circuit from (4.16), respective CS 
conditions and the set of network equations coupled to the adjoint circuit as: 

𝒞$TZ(𝒙𝒔) −𝒎⊙𝝀+ 𝜷{T|E} = 𝟎 

3. Compute new vector of infeasibilities: 𝝋{T|E} = round�−𝒎⊙𝝀{𝒌|𝟏} + 𝜷{T|E}, 𝜖åºS� 

4. Recompute the set of network nodes ℭVWW, whose infeasibilities needs correction 

5. Stopping criterion. Quit if [ℭVWW = ∅] or X�𝝋{T|E}	�
𝟎
≥ �𝝋{T}	�

𝟎
&	�𝝋{T|E}�

𝟐
𝟐
≥

	�𝝋{T|E}�
𝟐
𝟐
Y or [𝑘 = 𝑘R�f] 

6. Increase counter: 𝑘 → 𝑘 + 1 
 

In conclusion, this chapter provides the new equivalent circuit perspective on 

understanding a network optimization problem and its optimality conditions, as well as further 

demonstrating the connection between the problem physical characteristics and the mathematical 

optimization theory. Moreover, the theoretic background behind the concept of ECP, which also 

represents the first part this thesis, is completed in the next chapter that introduces the newly 

developed circuit simulation techniques that can be applied to ensure the robust and efficient 

solution process of an ECP problem. 
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Chapter 5 Solving an Equivalent Circuit Program  

From the physical perspective, solving an Equivalent Circuit Program for an optimal 

solution candidate corresponds to simulating the response of a circuit consisting of a joint split-

circuit representation of the network and its additionally excited adjoint. The further introduction 

of coupling between them ensures the simulation feasibility and provides the sparse locations of 

infeasibilities within the network. Moreover, if the adjoint circuit remains passive for all small 

perturbations around the obtained operating point, the point also represents an optimal solution to 

the simulated ECP problem. Having this in mind, and further inspired by the advantages of 

optimization and circuit simulation methods, this chapter introduces a new set of ECP simulation 

techniques obtained by fully exploiting the physical representation of an ECP problem and further 

merging the best features of both optimization and circuit simulation techniques together. To that 

end, a set of developed algorithms includes: 

1. Constant Diode limiting  

2. Dynamical Diode Limiting  

3. Voltage Pre-Filtering Technique 

4. Optimal Limiting  

5. Sequential Optimal Limiting  

6. Variable Post-Filtering Technique 

To start the discussion on simulating an ECP circuit, let Cx0; represents its set of governing 

equations defined by the three subsets, namely a set of split-circuit network equations 𝒞$TZ, a set 

of additionally excited adjoint circuit equations 𝒜̅$TZ, as well as a set of complementary slackness 

conditions (diode control circuits) 𝒟$TZ given by (5.1) 
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Cx0;(𝒙𝒔, 𝝀, 𝝁) = �
𝒞$TZ(𝒙𝒔, 𝝀)

𝒜̅$TZ(𝒙𝒔, 𝝀, 𝝁)
𝒟$TZ(𝒙𝒔, 𝝁)

= 𝟎 (5.1) 

Similarly, as in the case of other circuit simulation problems from Chapter 2, we can further 

formulate the NR algorithm as given in Algorithm 5.1. It is, however, important to note a that the 

main difference now represents the applied circuit heuristics in Step 2, whose flowchart is further 

presented in Figure 5.1, that represents the main topic covered in the rest of the chapter.  
 

Algorithm 5.1. NR solution process for simulating an ECP equivalent circuit. 

Initialize: 

- Starting point 𝚼𝑬𝑪𝑷𝟎 , tolerance 𝜖 > 0, counter 𝑘 = 0 
- Apply constant diode limiting to ensure primal feasibility of bounded variables only 

Stamp Linear circuit elements 
Repeat:  

5. Stamp linearized ECP - circuit elements evaluated at 𝚼𝑬𝑪𝑷𝒌  and compute NR step 𝚫𝚼𝐄𝐂𝐏 by 
solving a linearized circuit 

6. Apply ECP simulation techniques obtain a vectorized step-limit 𝑻 (see Figure 5.1) 
7. Update NR step: 𝚼𝑬𝑪𝑷𝒌|𝟏 = 𝚼𝑬𝑪𝑷𝒌 + 𝑻⨀𝚫𝚼𝐄𝐂𝐏 
8. Increase counter 𝑘 → 𝑘 + 1 

Until: ‖𝑻⨀𝚫𝚼𝐄𝐂𝐏‖Ï ≤ 𝜖 and ‖Cx0;(𝒙𝒔T, 𝝀T, 𝝁T)‖FF ≤ 𝜖 

As can be seen from Algorithm 5.1, for a given initial starting point that only needs to be 

feasible for the bounded primal and respective adjoint variables, the linearized equivalent circuit 

is hierarchically built and iteratively solved while applying the ECP simulation techniques, until 

convergence. Moreover, in referring to the Figure 5.1, the diode-like CS conditions represent the 

steepest nonlinearities within the circuit, and hence a set of diode heuristics (1)-(2) plays an 

important role and is applied before any other developed technique. Next, followed by the 

application of diode limiting, the voltages of both network and its adjoint are pre-filtered (3). 

Namely, inspired by the fixed-step limiting from the circuit simulation community, the voltages 

below a certain threshold are passed to the next iteration and are not further affected by the 

following applied techniques. However, contrary to the fixed-step limiting approaches, the voltage 

steps that exceed the threshold are not set to a fixed point but are rather passed further to the 
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optimal limiting technique (4) that represents the 3D version of exact line search problem, which 

is generally allowed due to the nature of nonlinearities within the network. 

 
Figure 5.1. Flowchart of simulation techniques applied to limit the NR-step within the ECP solution process. Note 

the additional input that represents a set of heuristic parameters (ℋx0;) this time obtained from the physical 
characteristics of ECP problems. 

Most importantly, if the Optimal Limiting fails to find the three step limiting factors that can 

decrease the ECP circuit residual, the algorithm further attempts to solve it within the two stages 

(5). In the first one, the exact line search is applied to minimize the residual of network equations 

only, and the obtained optimal step limiting factors are then used in attempt to further decrease the 

residual of the adjoint circuit. Lastly, in the worst case scenario, when the Sequential Optimal 

Limiting fails, we cannot count on optimally decreasing the circuit residual anymore, and the last 

technique applies the filtering of solution vector (6) purely based on the understanding of physical 

characteristics of the problem, as is currently done in SPICE.  
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Next, we provide a detailed discussion on each of the techniques briefly mentioned above.  

5.1. Constant Diode Limiting 

As it is well known and discussed in Chapter 2, the steep diode-like nonlinearities tend to 

cause the simulation overflow if not handled properly. Moreover, for a considered pair of 

complementary slackness conditions that enforce the limits on a particular network variable, it is 

important to ensure that during the NR iterations, the respective bounded primal and adjoint 

variables never exceed these implicitly modeled limits, and are always kept within the physically 

meaningful region of the solution search-space. Furthermore, in contrast to the traditional 

optimization IPMs that tend to find a single largest constant that ensures the feasibility of all 

variables, inspired by the circuit simulation approach we can further obtain the step limiting factor 

per each of the bounded variables. For instance, let 𝑥Å,* be a network state with the respective 

adjoint variables related to its upper and lower bounds 𝜇L,* and 𝜇ª,*. The step limiting factors that 

strictly ensure their feasibility can be then computed as given by (5.2)-(5.4) for 𝛼ÑSµ = 1. 

𝜏fd,* =

⎩
⎪
⎨

⎪
⎧min Ý1, 𝛼ÑSµ

𝑋L,* − 𝑥Å,*T

Δ𝑥Å,*
Þ  if	 Δ𝑥Å,* > 0

min Ý1, 𝛼ÑSµ
𝑋ª,* − 𝑥Å,*T

Δ𝑥Å,*
Þ 	if	Δ𝑥Å,* < 0

 (5.2) 

𝜏je,* = �min Ý1, 𝛼ÑSµ
𝜇R*#,* − 𝜇L,*T

Δ𝜇L,*
Þ if	Δ𝜇L,* < 0

1																															 else
 (5.3) 

𝜏jN,* = �min Ý1, 𝛼ÑSµ
𝜇R*#,* − 𝜇ª,*T

Δ𝜇ª,*
Þ if	Δ𝜇ª,* < 0

1																																 else
 (5.4) 

where 𝜇R*#,* is lowest possible value of the adjoint variable due to the CS approximation: 

𝜇R*#,* =
𝜀

𝑋L,* − 𝑋ª,*
> 0 (5.5) 

However, if the bounded variable is set strictly at its limit, the problem will still overflow, and 

therefore, as in the case of fixed-step technique discussed in Chapter 2, the main idea behind this 
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diode limiting technique is to limit the rate on which the particular variable approaches its limit by 

reducing the damping factor 𝛼ÑSµ, as graphically presented in Figure 5.2. 

 
Figure 5.2. Graphical representation of a constant diode limiting technique.  

For instance, as it can be seen from Figure 5.2, setting 𝛼ÑSµ = 0.5 ensures that if a variable 

approaches its upper limit, the respective NR step is limited to the half way between the previous 

NR solution and the limit. Furthermore, after the rate of approaching the limit is damped, the step 

size limiting factor can be obtained from (5.2)-(5.4) for each of the variables separately and further 

used to update the solution vector as: 

𝑥Å,*T|E = 𝑥Å,*T + 𝜏fd,*Δ𝑥Å,* (5.6) 

𝜇L,*T|E = 𝜇L,*T + 𝜏je,*Δ𝜇L,* (5.7) 

𝜇ª,*T|E = 𝜇ª,*T + 𝜏jN,*Δ𝜇ª,* (5.8) 

As it is highlighted in Algorithm 5.1., this diode limiting technique is applied during the 

initialization process in order to ensure the primal feasibility of the bounded variables. Therefore, 

by using the midpoint between the upper and lower bounds as an 𝑥Å,*T  value, and letting the initial 
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guess be 𝑥Å,*T|E, we can further compute the required step limiting factor by (5.2), and use it to 

“correct” the initial guess if needed, as given by (5.6). 

Lastly, it is important to emphasize that the general idea behind diode limiting techniques 

corresponds to applying the damping of respective NR steps to ensure that the CS conditions are 

completely satisfied only at the convergence of the entire circuit. Interestingly, a similar idea can 

be found behind the traditional IPMs that homotopically modify the complementary slackness 

violation parameter 𝜀, and hence the CS function steepness, in order to reach the same goal; 

Namely, CS conditions are satisfied at the final problem convergence. Furthermore, with the 

constant diode limiting technique and a constant parameter 𝛼ÑSµ that is independent of circuit 

residual, the CS decrement cannot be always as efficiently controlled. Hence, the algorithm may 

require tuning of 𝛼ÑSµ in order to prevent the scenarios of a badly conditioned NR matrix way 

before the convergence of the remainder of the circuit, which can further result in significant 

slowing down of the convergence process due to the saturation of optimal limiting algorithms. 

Therefore, the ECP heuristics only uses constant diode limiting within the initialization process, 

in part to ensure strict feasibility before the actual damping of the rate at which CS is decreased 

within the residual dependent Dynamical Diode limiting.  

5.2. Dynamical Diode Limiting  

In order to ensure the stable control of the CS decrement that approaches the value of CS 

violation parameter 𝜀 concurrently with the convergence of the ECP circuit, we need to ensure that 

for some set of parameters, 𝜌R�f,* and 𝜌R*#,*, the following two conditions hold: 

𝜇L,*T|E�𝑋L,* − 𝑥Å,*T|E� > Ù1 − 𝜌R�f,*Ú𝜇L,*T �𝑋L,* − 𝑥Å,*T � 

𝜇ª,*T|E�𝑥Å,*T|E − 𝑋ª,*� > Ù1 − 𝜌R*#,*Ú𝜇ª,*T �𝑥Å,*T − 𝑋ª,*� 
(5.9) 

The CS violation at the (𝑘 + 1)ZÊ	NR iteration should decrease by no more than as set by 

parameters 𝜌R�f,* and 𝜌R*#,*, and have the following characteristics: 

- Dependence on the initial CS violation: the smaller initial CS violation is, the smaller 

values of 𝜌R�f,* and 𝜌R*#,*. Primal and adjoint variables should be more damped in 

order to wait for the convergence of the rest of the ECP circuit.  
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- Dependence on the ECP circuit L2 residual: inversely proportional to the residual 

of the circuit – smaller 𝜌R�f,* and 𝜌R*#,*, with increase in L2 residual– more damping 

in order to catch up with the rest of the circuit, and vice versa. 

- Dependence on the initial ECP circuit L2 residual: should be a function of initial 

residual in order to make it generic for any size problem – normalized by the initial L2 

residual of the circuit. 

Hence, we propose a function presented in Figure 5.3 that satisfied the following characteristics: 

𝜌(𝜒*) = 𝜌R�f,* = 𝜌R*#,* =

⎩
⎪
⎨

⎪
⎧log 𝜒*
g𝜒*

		if		𝜒* > 𝑒F

2
𝑒
											 else

 (5.10) 

where 𝜒* is further defined in terms of the three predefined characteristics of CS decrement control: 

𝜒* =

⎩
⎪⎪
⎨

⎪⎪
⎧ ‖Cx0;(𝑥ÅT, 𝜆T, 𝜇T)‖FF

min h𝑒P
ij
j�, 𝜇L,*� �𝑋L,* − 𝑥Å,*� �k ‖Cx0;(𝑥Å�, 𝜆�, 𝜇�)‖FF

	for upper bound

‖Cx0;(𝑥ÅT, 𝜆T, 𝜇T)‖FF

min h𝑒P
ij
j�, 𝜇ª,*� �𝑥Å,*� − 𝑋ª,*�k ‖Cx0;(𝑥Å�, 𝜆�, 𝜇�)‖FF

	for lower bound
 (5.11) 

Importantly, there are several things that should be emphasized from Figure 5.3 and (5.10)-(5.11): 

1. For the first iteration, the ratio of residuals from (5.11) is equal to 1, which means that the 

initial starting point of 𝜌R�f,* and 𝜌R*#,* is chosen based on the initial CS violation, as 

predefined by the CS control characteristics. 

2. Independently on the CS control conditions, the initial 𝜌R�f,* and 𝜌R*#,* cannot be larger 

than the ones defined by the maximum curvature point of function from (5.10), namely the 

function given for the value of 𝜒$W*Z = 𝑒
no
op, so they can exhibit the dynamical variations 

with the change in ECP circuit residual.  

3. The definition of the function (5.10) is purely based on the intuition of how the CS 

decrement should behave and was further inspired by diode limiting techniques (some of 

which are discussed in Chapter 2). 
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Figure 5.3. Dynamical Diode Limiting function that defines the amount of CS decrement for a given 𝜒*. 

Note that the vertical line indicates the point of maximum function curvature that also represents the 
highest initial CS decrement. The green dots further correspond to the possible initial starts that depend on 

the initial CS violation and are further varied as a function of normalized ECP L2 residual. 

With the function that defines the desired behavior of 𝜌R�f,* and 𝜌R*#,* introduced, let 𝑥Å,* 

again be a network state with the respective adjoint variables related to its upper and lower bounds 

𝜇L,* and 𝜇ª,*. Hence, the step limiting factors ensure the controlled CS decrement as given by the 

conditions from (5.9) can be obtained by solving for variable-wise step limiting factors 𝜏je,*, 𝜏jN,* 

and 𝜏fd,* from (5.12), while following the same logic as that used in Constant Diode limiting under 

the assumption of strict primal and dual feasibility that is ensured by the Constant Diode limiting.  

�𝜇L,*T + 𝜏je,*Δ𝜇L,*��𝑋L,* − 𝑥Å,*
T − 𝜏fd,*Δ𝑥Å,*� > Ù1 − 𝜌R�f,*T Ú𝜇L,*T �𝑋L,* − 𝑥Å,*T � 

�𝜇ª,*T + 𝜏jN,*Δ𝜇ª,*��𝑥Å,*
T + 𝜏fd,*Δ𝑥Å,* − 𝑋ª,*� > Ù1 − 𝜌R*#,*T Ú𝜇ª,*T �𝑥Å,*T − 𝑋ª,*� 

(5.12) 

The exact solution recipe for determining the limiting factors 𝜏je,*, 𝜏jN,* and 𝜏fd,* is further 

provided in Algorithm 5.2. 
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Algorithm 5.2. Dynamical Diode Limiting for a pair of upper and lower CS conditions  

Given: 𝜌R�f,*T ,	𝜌R*#,*T , 𝑋L,*, 𝑋ª,*, 𝜇L,*T , 𝜇ª,*T , 𝑥Å,*T  and strictly feasible Δ𝑥Å,*,	Δ𝜇L,*,	Δ𝜇ª,* 

If Δ𝑥Å,* > 0 

If Δ𝜇L,* > 0 

𝜏je,* = 1, 𝜏fd,* = min Ý1,
�𝑋L,* − 𝑥Å,*T ��𝜌R�f,*T 𝜇L,*T + Δ𝜇L,*�

Δ𝑥Å,*�𝜇L,*T + Δ𝜇L,*�
Þ (5.13) 

 Elseif Δ𝜇L,* < 0 
𝜏je,* = 𝜏fd,* = 𝜏L  

𝜏L = min

⎣
⎢
⎢
⎡
1,0.5 q

𝑋L,* − 𝑥Å,*T

Δ𝑥Å,*
−
𝜇L,*T

Δ𝜇L,*
−rß

𝑋L,* − 𝑥Å,*T

Δ𝑥Å,*
−
𝜇L,*T

Δ𝜇L,*
â
F

+
4𝜌R�f,*T 𝜇L,*T �𝑋L,* − 𝑥Å,*T �

Δ𝑥Å,*Δ𝜇L,*
t

⎦
⎥
⎥
⎤
 (5.14) 

 End 

𝜏jN,* = min Ý1,
𝜇ª,*T �𝜌R*#,*T �𝑥Å,*T − 𝑋ª,*�	 + 𝜏fd,*Δ𝑥Å,*�

Δ𝜇ª,*�𝑥Å,*T + 𝜏fd,*Δ𝑥Å,* − 𝑋ª,*�
Þ (5.15) 

End  
If Δ𝑥Å,* < 0 

If Δ𝜇ª,* > 0 

𝜏jN,* = 1, 𝜏fd,* = min Ý1,
�𝑋ª,* − 𝑥Å,*T ��𝜌R*#,*T 𝜇ª,*T + Δ𝜇ª,*�

Δ𝑥Å,*�𝜇ª,*T + Δ𝜇ª,*�
Þ (5.16) 

 Elseif Δ𝜇ª,* < 0 
𝜏jN,* = 𝜏fd,* = 𝜏ª 

𝜏ª = min

⎣
⎢
⎢
⎡
1,0.5 q

𝑋ª,* − 𝑥Å,*T

Δ𝑥Å,*
−
𝜇ª,*T

Δ𝜇ª,*
−rß

𝑋ª,* − 𝑥Å,*T

Δ𝑥Å,*
−
𝜇ª,*T

Δ𝜇ª,*
â
F

+
4𝜌R*#,*T 𝜇ª,*T �𝑋ª,* − 𝑥Å,*T �

Δ𝑥Å,*Δ𝜇ª,*
t

⎦
⎥
⎥
⎤
 (5.17) 

 End 

𝜏juvw = min Ý1,
𝜇L,*T �𝜌R�f,*T �𝑋𝑈,𝑖 − 𝑥Å,*T �	 − 𝜏𝑥𝑠,𝑖Δ𝑥𝑠,𝑖�

Δ𝜇L,*�𝑋𝑈,𝑖 − 𝑥Å,*T − 𝜏𝑥𝑠,𝑖Δ𝑥𝑠,𝑖�
Þ (5.18) 

End  
Output: 𝜏je,*, 𝜏jN,* and 𝜏fd,* 

Finally, after the dynamically varied diode limiting is applied to each of the respective pairs of 

bounded primal and adjoint variables, the solution vector is updated as specified in (5.6)-(5.8), 

while the linearized circuit should have the significantly better conditioning, and the algorithm and 

our discussion further moves towards the other techniques, starting with Voltage Pre-Filtering.  
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5.3. Voltage Pre-Filtering Technique  

Inspired by the idea of a widely used circuit simulation technique, fixed-step limiting, 

Voltage Pre-Filtering technique represents a simple technique that has been empirically proven to 

be effective for improving the simulation efficiency by decreasing the iteration count of the NR 

solution process. Namely, for the predefined “trusted NR step size”, the network and adjoint circuit 

voltage steps are allowed to pass unaffected through the limiting heuristics at the current NR 

iteration. Moreover, as was the case in diode fixed-step limiting, where the allowed step-size was 

corresponding to 2𝑉d, the “trusted step size” in an ECP circuit can be related to the physically 

meaningful quantity that is trusted not to do any harm on the iterative process and usually varies 

around ±1, to ±2.5% NR step change difference. However, contrary to the traditional circuit 

simulation methods, the voltage quantities above the predefined threshold are not capped to a 

particular value but are rather passed further through the set of additional ECP heuristics, starting 

with the Optimal Limiting. Finally, the Voltage Pre-Filtering Technique, whose pseudo code is 

given in Algorithm 5.3, can be justified particularly in the line search based algorithms, as is the 

Optimal Limiting, due to the fact that a circuit usually doesn’t converge equally at all locations, 

and hence, some of the “trusted” NR steps may be unnecessarily damped thereby causing slower 

convergence in general. 
 

Algorithm 5.3. Voltage Pre-Filtering Technique  

Given: vectors of real and imaginary network and adjoint circuit voltages, 𝑽T|E,𝑽T, 𝝀T|Eand 𝝀T 

as well as predefined thresholds 𝜈t and 𝜈i 

𝑽T = |
𝑉*T|E  if	 Ô𝑉*T|E − 𝑉*TÔ < 𝜈t
𝑉*T 					if	Ô𝑉*T|E − 𝑉*TÔ > 𝜈t

 (5.19) 

𝝀T = |
𝜆*T|E  if	 Ô𝜆*T|E − 𝜆*TÔ < 𝜈i
𝜆*T 					if	Ô𝜆*T|E − 𝜆*TÔ > 𝜈i

 (5.20) 

Output: 𝑽T|E,𝑽T, 𝝀T|Eand 𝝀T 
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5.4. Optimal Limiting  

Contrary to the development of previous techniques that are all inspired by the circuit 

simulation methods, the Optimal Limiting represents an application of exact line search solved in 

mathematical optimization problems, as discussed in Chapter 2, but with two significant 

differences: 

1. Instead of traditionally solving a one-dimensional problem, the exact line search in 

Optimal Limiting is defined in three dimensions, one per set of conductance and 

susceptance states with corresponding slack variables, and the third one for the rest of 

the ECP circuit response (voltages, etc.) 

2. Not all of the terms that contribute to the ECP circuit residual are considered. Namely, 

the set of CS constraints, 𝒟$TZ(𝒙𝒔, 𝝁), is not included within the search problem due to 

the fact the CS decrement is already sufficiently ensured within the Dynamical Diode 

Limiting. 

Therefore, considering a set of network and respective adjoint circuit governing equations defined 

in (5.1), we can now introduce the 3D exact search problem in terms of the three step limiting 

factors 𝜏t, 𝜏ï, 𝜏Ä as: 

min
}~,}!,}"∈[�,E]

‖𝒞$TZ(𝒗T + 𝜏tΔ𝒗,𝒈T + 𝜏ïΔ𝒈,𝒃T + 𝜏ÄΔ𝒃)‖FF

+ ‖𝒜̅$TZ(𝒗T + 𝜏tΔ𝒗,𝒈T + 𝜏ïΔ𝒈,𝒃T + 𝜏ÄΔ𝒃)‖FF 
(5.21) 

where vectors 𝒈 and 𝒃 correspond to the set of admittance state variables (𝑮 and 𝑩) that can also 

include the additionally added slack variables (𝒑𝒔 and 𝒒𝒔), while vector 𝒗 included all other 

network and adjoint circuit variables. 

Importantly, based on the nature of network governing equations and physically 

meaningful constraints that can be enforced on a network response, it can be assumed that for the 

fixed circuit voltages, governing equations that model its steady-state response become linearly 

defined by the rest of the circuit states. That is, if we know every voltage within the network, we 

can trivially solve for all the other states. Hence, each component of the ECP set of governing 

equations can be further written in terms of a function that is linear in 𝜏ï  and 𝜏Ä, and whose 
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coefficients are further given as a function of 𝜏t. For instance, consider the set of real network 

currents 𝓘𝑹 from 𝒞$TZ(𝒙𝒔, 𝝀) in (5.1) written as a function of three limiting factors: 

𝓘𝑹 = [𝐺¬ª0 + Τdiag(𝑮T + 𝜏ï𝚫𝑮)]�𝑽𝑹T + 𝜏t𝚫𝑽𝑹�

− [𝐵¬ª0 + Τdiag(𝑩T + 𝜏Ä𝚫𝐁)]�𝑽𝑰T + 𝜏t𝚫𝑽𝑰� + 𝑰𝑺𝑹 + 𝐸º�𝑰𝑹T + 𝜏t𝚫𝑰𝑹� 
(5.22) 

By grouping all the terms related to 𝜏ï  and 𝜏Ä, (5.22) can be further rewritten as: 

𝓘𝑹 = 𝑰𝑺𝑹 + 𝐸º�𝑰𝑹T + 𝜏t𝚫𝑰𝑹� + [𝐺¬ª0 + Τdiag(𝑮T)]�𝑽𝑹T + 𝜏t𝚫𝑽𝑹�

− [𝐵¬ª0 + Τdiag(𝑩T)]�𝑽𝑰T + 𝜏t𝚫𝑽𝑰� + 𝜏ïΤdiag(𝚫𝑮)�𝑽𝑹T + 𝜏t𝚫𝑽𝑹�

− 𝜏ÄΤdiag(𝚫𝐁)�𝑽𝑰T + 𝜏t𝚫𝑽𝑰� 

(5.23) 

Or in a more compact way: 

𝓘𝑹 = 𝓘𝑹𝒌 + 𝓘𝑹𝑽(𝜏t) + 𝜏ï𝓘𝑹𝑮(𝜏t) + 𝜏Ä𝓘𝑹𝑩(𝜏t) (5.24) 

where 𝓘𝑹𝒌  represents a vector contribution of the ECP circuit residual from previous NR iteration, 

while vectors 𝓘𝑹𝑽(𝜏t),	𝓘𝑹𝑮(𝜏t) and 𝓘𝑹𝑩(𝜏t) are function of 𝜏t given as: 

𝓘𝑹𝑽(𝜏t) = 𝜏t𝐸º𝚫𝑰𝑹 + 𝜏t[𝐺¬ª0 + Τdiag(𝑮T)]𝚫𝑽𝑹 − 𝜏t[𝐵¬ª0 + Τdiag(𝑩T)]𝚫𝑽𝑰 

𝓘𝑹𝑮(𝜏t) = Τdiag(𝚫𝑮)�𝑽𝑹T + 𝜏t𝚫𝑽𝑹� 

𝓘𝑹𝑩(𝜏t) = −Τdiag(𝚫𝐁)�𝑽𝑰T + 𝜏t𝚫𝑽𝑰� 

(5.25) 

Therefore, the 3D search problem from (5.21) can be now expressed in the following form: 

min
}~,}!,}"∈[�,E]

Χ��(𝜏t, 𝜏ï, 𝜏Ä) = �𝐂𝑬𝑪𝑷𝒌 + 𝚼𝐨𝐥(𝜏t) + τ÷𝚪𝐨𝐥	(𝜏t) + τÄ𝚩𝐨𝐥(𝜏t)	�	FF (5.26) 

Next, by differentiating (5.26) with respect to 𝜏ï  and 𝜏Ä, i.e. 

∇}!Χ�� = 𝚪𝐨𝐥d(𝜏t)Ù𝐂𝑬𝑪𝑷𝒌 + 𝚼𝐨𝐥(𝜏t) + τ÷𝚪𝐨𝐥	(𝜏t) + τÄ𝚩𝐨𝐥(𝜏t)Ú = 0 (5.27) 

∇}"Χ�� = 𝚩𝐨𝐥d (𝜏t)Ù𝐂𝑬𝑪𝑷𝒌 + 𝚼𝐨𝐥(𝜏t) + τ÷𝚪𝐨𝐥	(𝜏t) + τÄ𝚩𝐨𝐥(𝜏t)Ú = 0 (5.28) 

the values of 𝜏ï  and 𝜏Ä can be analytically computed as functions of 𝜏t 
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τï =
𝚪𝐨𝐥d(𝜏t)Ù𝐂𝑬𝑪𝑷𝒌 + 𝚼𝐨𝐥(𝜏t)Ú‖𝚩𝐨𝐥(𝜏t)‖FF − 𝚩𝐨𝐥d (𝜏t)Ù𝐂𝑬𝑪𝑷𝒌 + 𝚼𝐨𝐥(𝜏t)Ú𝚪𝐨𝐥d(𝜏t)𝚩𝐨𝐥(𝜏t)

�𝚪𝐨𝐥d(𝜏t)𝚩𝐨𝐥(𝜏t)�
𝟐
− ‖𝚪𝐨𝐥	(𝜏t)‖FF‖𝚩𝐨𝐥(𝜏t)‖FF

 (5.29) 

τÄ =
𝚩𝐨𝐥d (𝜏t)Ù𝐂𝑬𝑪𝑷𝒌 + 𝚼𝐨𝐥(𝜏t)Ú‖𝚪𝐨𝐥	(𝜏t)‖FF − 𝚪𝐨𝐥d(𝜏t)Ù𝐂𝑬𝑪𝑷𝒌 + 𝚼𝐨𝐥(𝜏t)Ú𝚪𝐨𝐥d(𝜏t)𝚩𝐨𝐥(𝜏t)

�𝚪𝐨𝐥d(𝜏t)𝚩𝐨𝐥(𝜏t)�
𝟐
− ‖𝚪𝐨𝐥	(𝜏t)‖FF‖𝚩𝐨𝐥(𝜏t)‖FF

 (5.30) 

By utilizing the property of a network problem that for a given set of voltages any other 

state can be trivially determined, as well as under the assumption that the 𝜏t dependent vectors 

from (5.26) can be expressed in terms of a 𝑛ZÊ order polynomial of 𝜏t, we next discuss two 

important facts that will lead us to the introduction of Optimal Limiting algorithm. 

• For a fixed 𝜏t*  sampled from a domain of (5.26), 𝜏t ∈ [0,1], the respective values of τï*  and τÄ*  

can be computed from (5.29)-(5.30), projected back to the domain of (5.26), as demonstrated 

in Algorithm 5.4., and further used to compute the residual Χ��* �𝜏t* , 𝜏ï* , 𝜏Ä* �. 

Algorithm 5.4. Projection of 𝜏ï*  and 𝜏Ä*  to the domain of 3D search function 

Given:	𝜏t* , 𝜏ï*  and 𝜏Ä*  as well as the set of upper and lower bounds that define the domain of (5.26), 
𝜏ïe,	𝜏ïN,	𝜏Äe and 	𝜏ÄN. 

If 	�𝜏ï* > 𝜏ïe ∨ 𝜏ï
* < 𝜏ïN� ∧ 	 �𝜏Ä

* > 𝜏Äe ∨ 𝜏Ä
* < 𝜏ÄN� 

𝜏ï* = |
𝜏ïe 	if	𝜏ï

* > 𝜏ïe
𝜏ïN 	if	𝜏ï

* < 𝜏ïN
  𝜏Ä* = |

𝜏Äe 	if	𝜏Ä
* > 𝜏Äe

𝜏ÄN 	if	𝜏Ä
* < 𝜏ÄN

 

Elseif  �𝜏ï* < 𝜏ïe ∧ 𝜏ï
* > 𝜏ïN� 	∧ 	 �𝜏Ä

* > 𝜏Äe ∨ 𝜏Ä
* < 𝜏ÄN� 

𝜏Ä* = |
𝜏Äe 	if	𝜏Ä

* > 𝜏Äe
𝜏ÄN 	if	𝜏Ä

* < 𝜏ÄN
		𝜏ï* =

−𝚪𝐨𝐥d�𝜏t* �Ù𝐂𝑬𝑪𝑷𝒌 + 𝚼𝐨𝐥�𝜏t* �Ú − 𝚪𝐨𝐥d�𝜏t* �𝚩𝐨𝐥�𝜏t* �𝜏Ä*

�𝚪𝐨𝐥	�𝜏t* ��F
F → 𝜏ï* = �

𝜏ïeif	𝜏ï* > 𝜏ïe
𝜏ïNif	𝜏ï* < 𝜏ïN
𝜏ï* 													else

 

Elseif �𝜏ï* > 𝜏ïe ∨ 𝜏ï
* < 𝜏ïN� 	∧ 	 �𝜏Ä

* < 𝜏Äe ∧ 𝜏Ä
* > 𝜏ÄN� 

𝜏ï* = |
𝜏ïe 	if	𝜏ï

* > 𝜏ïe
𝜏ïN 	if	𝜏ï

* < 𝜏ïN
		𝜏Ä* =

−𝚩𝐨𝐥d �𝜏t* �Ù𝐂𝑬𝑪𝑷𝒌 + 𝚼𝐨𝐥�𝜏t* �Ú − 𝚩𝐨𝐥d �𝜏t* �𝚪𝐨𝐥�𝜏t* �𝜏ï*

�𝚩𝐨𝐥�𝜏t* ��F
F → 𝜏Ä* = �

𝜏Äe 	if	𝜏Ä
* > 𝜏Äe

𝜏ÄN 	if	𝜏Ä
* < 𝜏ÄN

𝜏Ä* 															else
 

Output: bounded 𝜏ï*  and 𝜏Ä*  
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•  Under the assumption that the vectors 𝚼𝐨𝐥(𝜏t), 𝚪𝐨𝐥	(𝜏t) and 𝚩𝐨𝐥(𝜏t) can be expressed in terms 

of 𝑛 polynomial components of 𝜏t, which represents a good assumption for network 

optimization problems, the respective components need to be computed only once per NR 

iteration, which doesn’t represent an additional computational burden on the solution process. 

The approach is, however, generic for any function with the caveat of increased simulation 

complexity, since the terms from vector components that are not polynomial in nature need to 

be recomputed for every 𝜏t sample. 

Finally, by considering the two previously discussed facts, we introduce the Optimal 

Limiting algorithm.  The pseudocode is presented in Algorithm 5.5. that represents a process of 

generating 𝑁�ª uniform samples of 𝜏t, solving for the respective bounded 𝜏ï  and 𝜏Ä factors as 

given by Algorithm 5.4, and from evaluating the 3D search function and picking up the 

combinations of 3 optimal limiting factors that minimize function the most. 

Algorithm 5.5. Optimal Limiting  

Given: number of samples 𝑁�ª 

Initialize: 𝜏t∗ = 𝜏ï∗ = 𝜏Ä∗ = 0 and Χ��∗ = ∞ 

For 𝑖 = 0:𝑁�ª 

 𝜏t* =
*

º�N
 

 Compute 𝜏ï*  and 𝜏Ä*  as given by Algorithm 5.4. 

 Evaluate 3D search function for Χ��* �𝜏t* , 𝜏ï* , 𝜏Ä* � 

 If  Χ��* �𝜏t* , 𝜏ï* , 𝜏Ä* � < Χ��∗  → 5Χ��∗ = Χ��* �𝜏t* , 𝜏ï* , 𝜏Ä* �, 𝜏t∗ = 𝜏t* , 𝜏ï∗ = 𝜏ï* , 𝜏Ä∗ = 𝜏Ä* D 

 End 

Output: 𝜏t∗ , 𝜏ï∗  and 𝜏Ä∗ , Χ��∗  

It is important to emphasize that as can be seen from Algorithm 5.5., the Optimal Limiting 

represents a sampled evaluation of 3D search function, and as such, it does not introduce 

significant additional overhead in computational complexity, as will be shown in chapters that 

follow. Lastly, if we recall that admittance state variables introduced the nonconvexities within the 

modeling of linear AC network response, it intuitively makes sense to assign a separate limiting 

factor for each of the two sets of variables and remove some burden from 𝜏t factor. Namely, by 
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expanding the exact line search problem to the 3D solution space, we introduce the larger degree 

of freedom for the residual minimization, as well as allow some of the three limiting factors to 

saturate during a NR iteration, which is not possible with a single limiting factor.  

5.5. Sequential Optimal Limiting 

Along with the application of the Voltage Pre-Filtering technique, as well as the additional 

degrees of freedom introduced by the 3D search problem, the Optimal Limiting can still enforce 

the small step sizes in order to further decrease the residual, particularly with ‖𝚼𝐨𝐥(𝜏t∗ )‖FF ≫

𝚼𝐨𝐥d(𝜏t∗ )𝐂𝑬𝑪𝑷𝒌 . Hence, in order to ensure the efficiency of the NR solution process, and considering 

that the 𝜏t corresponds to the “main” optimal step size, we further define a threshold, e.g. 𝜏t∗ <

0.1, below which the algorithm doesn’t continue with the NR iterations. For such occurrences, the 

algorithm rather moves further with the application of limiting techniques, as described in Figure 

5.1. Therefore, if 𝜏t∗  is below the tolerance, the algorithm tries to obtain the new voltage step-size 

that will further minimize the ECP circuit residual by removing the contribution of adjoint circuit 

equations within the 3D search problem, and instead trying to determine a new set of limiting 

factors by applying the two stage Optimal Limiting, such as Sequential Optimal Limiting. 

 The idea of Sequential Optimal Limiting is inspired by the algorithm discussed in [54], 

where the authors attempt to apply the backtracking line search on the primal problem only, if the 

backtracking on the residual of complete set of KKT conditions fails. After the residual of a primal 

problem is decreased, the NR step sizes of dual variables are simply set to zero [54] and the 

iteration process is continued. The authors provided the proof of global convergence of such 

algorithm under the certain assumptions [54]. However, beside the idea of solving the line-search 

on the primal problem only, the Sequential Optimal Limiting widely differs in everything else in 

reference to the algorithm presented in [54]. First, the primal or our network problem is solved by 

using the 3D search incorporated within the Voltage Limiting algorithm as described in the section 

above. Second, simply setting all the adjoint NR steps to zero can be really dangerous, particularly 

because it significantly increases the chances of convergence to some of the nonoptimal saddle 

points in the solution space. Therefore, after the application of Optimal Limiting to the original 

network, the linear 3D search is solved to further determine the set of three adjoint step limiting 
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parameters that minimize the adjoint circuit residual with already limited primal network variables. 

The discussion on both stages of Sequential Optimal Limiting algorithm follows. 

 As already outlined above, the first stage of Sequential Optimal Limiting algorithm solves 

a version of a 3D search problem from (5.21) with removed contributions of the adjoint circuit 

equations: 

min
}~,}!,}"∈[�,E]

‖𝒞$TZ(𝒗T + 𝜏tΔ𝒗,𝒈T + 𝜏ïΔ𝒈,𝒃T + 𝜏ÄΔ𝒃)‖FF (5.31) 

If the coupling between the network and its adjoint is considered to ensure the problem feasibility, 

the coupling sources are assigned to the optimal limiting factors by respecting the nature of the 

quantity they represent. Namely, adjoint admittances are assigned to 𝜏ï  and 𝜏Ä respectively, while 

the other couplings represent the feasibility current and voltage sources and are, therefore, assigned 

to 𝜏t factor. It is also important to emphasize that the respective vectors that define the problem 

from (5.31) were already generated within the Optimal Limiting  algorithm, (5.26) and hence the 

terms related to the network equations can be reused here and do not have to be rebuilt again.  

 Next, the Voltage Limiting algorithm described by Algorithm 5.4 and Algorithm 5.5 is 

applied to obtain the optimal factors of (5.31): 

[𝜏t∗ , 𝜏ï∗ , 𝜏Ä∗ ] = argmin
}~,}!,}"∈[�,E]

‖𝒞$TZ(𝒗T + 𝜏tΔ𝒗,𝒈T + 𝜏ïΔ𝒈,𝒃T + 𝜏ÄΔ𝒃)‖FF (5.32) 

However, if the coupling between the network and its adjoint was considered, before going to the 

second stage and trying to further minimize the adjoint circuit residual, we need to first make sure 

that a set of three new adjoint limiting factors, 𝜏i, 𝜏i! , 𝜏i" , does not increase the already minimized 

residual of the network equations from the first stage. Therefore, to ensure that the adjoint circuit 

residual is minimized while preserving (or even improving) the residual minimization of the 

original network, the bounds on 𝜏i, 𝜏i! , 𝜏i" can be computed from the condition: 

‖ℐ(𝜏t∗ , 𝜏ï∗ , 𝜏Ä∗ ) + 𝜏�Δ𝝀‖FF < ‖ℐ(𝜏t∗ , 𝜏ï∗ , 𝜏Ä∗ ) + 𝜏∗Δ𝝀‖FF (5.33) 

Where ℐ(𝜏t∗ , 𝜏ï∗ , 𝜏Ä∗ ) represents a set of network equations that are coupled with respective adjoint 

variables Δ𝝀, while 𝜏� stands for one of the three new adjoint limiting factors �𝜏i, 𝜏i! , 𝜏i"�, and 𝜏∗ 
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corresponds to an optimal limiting factor obtained in the stage 1 for which was the adjoint coupling 

source assigned. From (5.33), the upper and lower bounds on 𝜏� correspond to:  

𝜏�e = min Ý1,max Ý𝜏∗, −𝜏∗ −
ℐ(𝜏t∗ , 𝜏ï∗ , 𝜏Ä∗ )dΔ𝝀

‖Δ𝝀‖FF
ÞÞ (5.34) 

𝜏�N = max Ý0,min Ý𝜏∗, −𝜏∗ −
ℐ(𝜏t∗ , 𝜏ï∗ , 𝜏Ä∗ )dΔ𝝀

‖Δ𝝀‖FF
ÞÞ (5.35) 

 With proper bounds on adjoint limiting factors computed, we can next define the second 

stage linear 3D search problem whose solution can be trivially obtained. This solution provides 

the set of three adjoint limiting factors that reduce the adjoint circuit residual, while preserving the 

minimized residual of the network equations:  

min
}�.}�!,}�"∈𝒫

�𝒜̅$TZ�𝒙𝒔 + 𝜏∗Δ𝒙𝒔, 𝝀𝒗T + 𝜏iΔ𝝀𝒗, 𝝀𝑮T + 𝜏i!Δ𝝀𝑮, 𝝀𝑩
T + 𝜏i"Δ𝝀𝑩��F

F (5.36) 

Where 𝝀𝒗 represents a set of all adjoint variables other than the adjoint admittances and set 𝒫 

defines the bounds on 𝜏i. 𝜏i!,𝜏i" obtained from (5.34)-(5.35). 

5.6. Variable Post-Filtering Technique 

Thus far we have introduced new sets of techniques and algorithms inspired by and 

conceived from the notion of embedding the “domain specific knowledge” techniques developed 

around the state-of-art circuit simulator SPICE within the continuous optimization algorithms. 

Furthermore, as discussed in Chapter 2, the circuit simulation algorithms usually do not guarantee 

the residual decrement at each NR iteration, but are really efficient and robust in general. This can 

sometimes, particularly if the current NR iterate gets stuck within some really bad region, provide 

an advantage over the algorithms based on decreasing the circuit residual that would start 

saturating, and thereby slowing down the iteration process. Therefore, if after the Sequential 

Optimal Limiting is solved, 𝜏t or 𝜏i are still less than predefined threshold, all the respective NR 

steps that correspond to the saturated limiting factors are passed through the Post-Filtering 

technique, as presented in Algorithm 5.6. The saturation of optimal limiting factors indicates that 

the residual cannot be minimized at the current NR iteration, and the pure circuit simulation 
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heuristics based on the “trusted” step limiting factors have to be applied before continuing the 

iteration process. 

Algorithm 5.6. Variable Post-Filtering Technique  

Given: vectors of variables that correspond to the saturated optimal limiting factors, 𝒙T|E,𝒙T, as 

well as predefined thresholds, 𝜈ZÊ, defined based on the physical characteristics of the problem 

𝒙T = |
𝑥*T|E  if	 Ô𝑥*T|E − 𝑥*TÔ < 𝜈ZÊ
𝑥*T 					if	Ô𝑥*T|E − 𝑥*TÔ > 𝜈ZÊ

 (5.37) 

Output: 𝒙T|E,𝒙T 

 In conclusion, this chapter provided the final piece of the puzzle related to solving an ECP 

problem based on developing techniques and algorithms inspired by of the combination of 

mathematical optimization techniques and circuit simulation methods. Most importantly, with the 

introduction of developed ECP heuristics, the theoretic as well as algorithmic part of the thesis and 

the ECP framework in general is concluded, and the following chapters focus solely on application 

of these algorithms to power system simulation and optimization problems. 
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Chapter 6 Power System Modeling and Analysis 

within the Equivalent Circuit Programming 

Framework 

Pioneered by Nikola Tesla and George Westinghouse, an electrical AC power system 

corresponds to an electro-mechanical circuit consisting of interconnected generation plants and 

load demands, and is considered one of the most important inventions of 20th century. Electrical 

power systems represent critical infrastructure of every country in the world. Notably, from the 

early days of power grid expansion, the reliable, safe and efficient operation of a power system 

represented one of the key factors in political and public debates [55]. Hence, accurate and realistic 

power grid analyses became, and still remains, one of primary research topics. 

Presently, the decisions on the electrical power dispatch and system operation are 

determined within an Energy Management System (EMS) comprised of a set of computer aided 

tools used to monitor, control and optimize the performance of a power grid. Namely, these tools 

correspond to solvers for several different power system simulation and optimization problems 

that are required to be ran by the operators, sometimes executed several times per hour, in order to 

ensure the reliable grid operation. Moreover, an electrical power grid continuously evolves, 

particularly with the integration of renewable energy sources and other emerging grid 

technologies, and hence the need for their accurate and more expansive modeling within the 

existing simulation and optimization framework. However, the inherent nonlinearities of the 

existing standard power-mismatch formulations [56]-[57] used to model and solve the problems 

within most of the EMS tools already struggle with robustness for large-scale simulations [58]-

[59]. Therefore, the additional incorporation of new, more complex models, as well as the other 

realistic constraints consequently creates additional challenges with robustness and efficiency.  
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The second equally important challenge for the accuracy and efficiency of EMS tools is 

the significant discrepancy between the research performed within the largest portion of the power 

system simulation and optimization academic community, and the industry desired solutions to 

the realistic scale power grid problems. There are dozens of papers published every month on 

various convexification algorithms and techniques applied to “large-scale” cases of 14 to 500 bus 

systems, which were considered as large-scale by the founders of power-mismatch formulation 

half a century ago. However, the incorporation of a complete set of realistic industry constraints 

can result in nonlinear problems of over several million of variables. This forces the industry to 

use less accurate but convex models and rely on the generalized convex optimization toolboxes 

that can suffer from efficiency problems at scales of millions of variables. Finally, to circumvent 

the problem of less accurate solutions, the grid operators mastered the “art of tuning” the nonlinear 

algorithms based on their experience and physical characteristics of the grid in order to produce 

the meaningful results that can be used to determine the decisions on power system operation. 

Most importantly, due to the fact that most of the real-life problems are nonconvex in nature, a 

local optimal solution that considers all realistic, in this case power grid constraints, is better than 

a global one that does not. Therefore, the tendency of both academia and industry for convexifying 

and relaxing the power grid problems can be explained by the lack of robust, efficient and scalable 

nonlinear optimization toolboxes capable of providing an optimal solution that satisfies all of the 

desired constraints.  

To address the lack of nonlinear solvers for robust and scalable power grid simulation and 

optimization problems, the rest of the thesis applies the proposed ECP framework to power system 

analyses. It is demonstrated that a power grid steady-state response can be, without loss of 

accuracy, modeled by the generalized formulation for representing a network response introduced 

in Chapter 3, and as such included within the ECP framework. Most importantly, beside the 

capability of robustly and efficiently solving the traditionally postulated power grid problems, the 

ECP framework is demonstrated to further facilitate the incorporation of a full set of real-life 

constraints and device characteristics within the power grid analysis. Therefore, the rest of this 

chapter focuses on a Power Flow problem as one of the main components of every EMS. First, a 

revisited history on the origin of power flow is provided together with a comparison between its 

solutions obtained using the ECP compatible formulation with respective algorithms, and the other 

existing formulations from the literature. Furthermore, we discuss power flow feasibility as well 
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as operational limits and device characteristics that are required to obtain a realistic power flow 

solution. From this, we can theorize that a real-life power flow problem indeed corresponds to a 

generalized nonlinear optimization, rather than a “simple” simulation problem, which can be now 

robustly and efficiently solved within the ECP framework. 

6.1. Evolution of analyzing the power system steady-state response 

Characterizing and analyzing a power grid steady-state response in terms of power-

mismatch formulation and phasor voltage state variables has been widely accepted as a standard, 

particularly in transmission level grid analyses. Importantly, as any other electrical circuit, an 

electrical power system is governed by physical conservation laws that are naturally defined in 

terms of current and voltage state variables related by KVL and KCL. Thus, the same circuit 

formalism developed within the circuit simulation community has to be directly compatible with 

the power grid analysis, without loss of generality. It is, however, not often discussed why, when 

and how the power system and circuit simulation analyses took the disparate paths in defining the 

respective network response problems. Therefore, before showing that a power grid response can 

be naturally incorporated within the generalized network modeling framework developed in 

Chapter 3, it is important to revisit the history of origins of analyzing the grid steady-state response. 

 As found from the first papers written on the topic of power system steady-state analysis 

in 1940s and 50s [60]-[61], the original formulations for analyzing the grid response utilized 

current and voltage state variables. Moreover, such KCL and KVL based formulations remained 

used at the early beginning of the new era that started with the introduction of first digital 

computers, and hence also represent the first formulation implemented on a digital computer by 

Ward and Hale in 1956 [61]-[62]. However, beside the natural and probably more intuitive way of 

modeling a power grid response at that time, the original current and voltage formulations suffered 

from the two serious drawbacks: 

1. Macro-modeling the steady-state response of induction and synchronous machines as well as 

bulk demand loads by constraining their supplied/absorbed AC power introduces nonlinearities 

within the governing power system KCL and KVL equations, hence requiring iterative 

schemes to be applied in order to obtain the desired steady-state set point of the grid.  
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2. The sparsity of the network problems was not utilized. Moreover, the solution to a sparse 

matrix problem was yet to be found. 

As it can be noticed, the common denominator of both drawbacks represents a significant 

computational burden for early digital computers. Namely, the first applied iterative schemes can 

be characterized as the ‘derivative-free” fixed point iteration methods, and Newton Raphson was 

still infeasible to implement due to high computational complexity, particularly when combined 

with full matrix representation of network problems that are significantly sparse in nature.  

 To address the problem of memory requirements for power flow simulation as well as slow 

convergence of the power system steady-state simulators from that era, leading Bonneville Power 

Administration engineer William Tinney [56],[63]-[64] introduced a Newton method for solving 

a power flow problem in terms of power mismatch equations. The structure of a power flow 

network admittance matrix further served as an inspiration for developing a sparse NR solver, 

which was soon demonstrated to represent one of the first generalized solutions to a sparse matrix 

problem, capable of solving large-scale cases of that era, with systems ranging from 500-1000 

buses on a 32K core memory. Soon after, the efficiency of sparse NR power flow formulation led 

Hermann Dommel [57] to attempt implementing the originally used formulations based on KCL 

[60], which did not seem like a promising path to pursue, particularly due to the problems in 

modeling the voltage controlling machines [31]. It was later proven [65] that the Jacobian matrix 

of a power flow problem defined within the power mismatch formulation remains positive definite, 

while the modeling of voltage-controlled nodes in all other formulations introduces the negative 

eigenvalues, and hence it is more prone to cause convergence instabilities if not handled properly.  

Beside the significant increase of additional inherent nonlinearities in using the power 

conservation law to characterize the power system steady-state response (particularly linear RLC 

transmission network) and diverging from the unified models that can be used for both time 

domain and steady-state analyses, the power mismatch formulation was shown to efficiently 

handle the initially examined large scale simulations and was appealing for the memory 

requirements of the existing digital computers. Thereafter, the steady-state analysis of the power 

grid took a disparate direction from the other circuit analysis in terms of characterizing the 

electrical circuit steady-state response. 
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 However, the solution to the sparse matrix problem is completely independent from a NR 

convergence process, and the positive definiteness of a Jacobian matrix does not guarantee 

convergence. Therefore, as the computing power of early computers increased, it was realized that 

as in the case with any other generic NR algorithm, the convergence of power mismatch-based 

power flow is dependent on the initial starting point, particularly with the increase in size of the 

test cases [58]-[59]. In the meantime, significant research in the electronic circuit simulation space 

led to the development of SPICE [11]-[17]. It was demonstrated that the NR method, once 

combined with physical characteristics of the equivalent circuit models derived from first 

principles, allows for robust and efficient circuit simulation that today scales to circuits with over 

a billion nodes. Moreover, the equivalent circuit models used in SPICE often feature significantly 

steeper and more severe nonlinearities compared to those introduced by power system macro-

models. The inherent nonlinearities of power mismatch formulation for characterizing the steady-

state response of a power system, however, made the application of a similar circuit formalism 

impractical for the simulation of power flow. 

The last recently introduced step in the evolution of power flow steady-state analysis that 

is graphically shown in Figure 6.1, represents the equivalent split-circuit formulation and 

representation of the power flow problem in terms of current and voltage state variables as initially 

explored by Dommel [57]. Notably, even though this now called Current Injection formulation 

[31] mathematically corresponds to the previously examined current-voltage formulations, the 

equivalent circuit perspective to the problem was demonstrated [11]-[17] to allow the extension of 

SPICE equivalent circuit formalism to power system simulation problems. The application of 

developed circuit simulation techniques and homotopy methods was shown to overcome the 

challenges introduced in modeling the voltage-controlled PV nodes, and therefore allow the robust 

simulations of industry size power flow problems. However, due to the nonlinear current injection 

bus models [31] that define the AC power constraints, various homotopy methods [31]-[33] were 

required to improve convergence robustness while sometimes significantly increasing the iteration 

count, thereby decreasing the efficiency of the solution process. Most importantly, even though 

the current-injection based split-circuit formulation represented a first step towards model 

unification while allowing the large-scale simulations, the current injection nonlinearities are not 

practically compatible with the optimal limiting algorithms from the perspective of the ECP 

framework due to the inversely proportional voltage terms. In the following section we conclude 
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the evolutionary process of power flow modeling by incorporating it within the generalized 

network framework introduced in Chapter 3. We further utilize the conductance and susceptance 

state variables to constrain the respective bus power injections of traditionally defined power flow 

models.  

 

Figure 6.1. Evolution of the power grid steady-state analysis. 

6.2. Generalized network formulation for modeling a power flow 
problem 

Consider a power system whose steady-state response is characterized in terms of phasor 

voltages and currents (𝑉¶*T = 𝑉¬,*T + 𝑗𝑉å,*T and 𝐼·*T = 𝐼¬,*T + 𝑗𝐼å,*T) at a fundamental frequency, and 

further governs the relationships between a set of generators 𝒢Ä and load demands 𝒟Ä, 

interconnected by a set of transmission network elements, 𝒯s. It is important to emphasize that 

from the perspective of currents and voltages in the network, and under the assumptions set by the 

traditionally postulated power flow problem [56],[62], the nonlinearities in modeling the power 

system response are introduced to constrain the powers injected to the network as well as certain 

bus voltage magnitudes, hence are locally related to each bus. Furthermore, all of the transmission 
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network elements are linear and correspond to RLC circuit models, and hence the basic modeling 

components that define a power flow problem can be classified into two categories as: 

1. Linear Elements 

• Transmission lines 

• Fixed shunt devices 

• Slack generator (Reference) bus 

• Transformers 

2. Nonlinear Elements 

• PQ loads 

• Voltage Regulation (VR) devices 

• PV generators 

The first category defines linear power flow equivalent circuit models presented in Figure 

6.2 that can be mapped to the equivalent split-circuit domain, as discussed in Chapter 3. More 

details can be also found in [18]-[33]. Moreover, in terms of the input parameters to the 

traditionally postulated power flow problem, the linear power flow elements are represented within 

a bus admittance matrix, and therefore, the respective adjoint split-circuit component can be 

defined by its transpose, or elementwise, as given in Chapter 2. 

 

Figure 6.2. Complex equivalent circuit models for linear power flow elements. 

Notably, the linear power flow split-circuits directly correspond to the models defined within the 

Current Injection formulation, and hence are only included here for completeness. The 

fundamental difference from Current Injection formulation, however, is the modeling of nonlinear 

elements for which we focus our further discussion.  

In order to relate the nonlinear power flow elements to the generalized network formulation 

introduced in Chapter 3, it is important to emphasize and fully understand their behavior within 
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the power flow problem. As can be seen from Figure 6.3, a PQ load model represents a network 

device that supplies the pre-specified real and reactive powers (𝑃ª and 𝑄ª) that is further 

independent of any other voltage or current within the power grid. On the other side, the PV 

generator, as well as any other VR device (a subset of PV generator models with generated real 

power, 𝑃ï  set to zero), in addition to the fixed real power, adjust the reactive power in order to 

maintain the voltage magnitude of its own or another bus within the system to a particular 

prespecified value. 

 
Figure 6.3. Schematic representation of nonlinear element characteristics within a power flow problem. 

As can be seen from Figure 6.3, the nonlinear power flow devices exhibit the exact network 

response characteristics that require the introduction of conductance and susceptance state 

variables from Chapter 3. Therefore, if we recall the generalized governing network response 

equations from (3.3) with the Τ matrix set to be an identity matrix due to the locally related 

nonlinear elements within a power flow problem, 

[𝐺¬ª0 + diag(𝑮)]𝑽𝑹 − [𝐵¬ª0 + diag(𝑩)]𝑽𝑰 + 𝐸º𝑰𝑺𝑩,𝑹 = 𝟎 

[𝐺¬ª0 + diag(𝑮)]𝑽𝑰 + [𝐵¬ª0 + diag(𝑩)]𝑽𝑹 + 𝐸º𝑰𝑺𝑩,𝑰 = 𝟎 

𝐸º𝑽𝑹 − 𝑽𝑺𝑩,𝑹 = 𝟎 

𝐸º𝑽𝑰 − 𝑽𝑺𝑩,𝑰 = 𝟎 

𝑓ï(𝑽𝑹, 𝑽𝑰, 𝑮, 𝑩) = 𝟎 

𝑓Ä(𝑽𝑹, 𝑽𝑰, 𝑮, 𝑩) = 𝟎 

(6.1) 

Where the additional set of equations 𝑓ï(𝑽𝑹, 𝑽𝑰, 𝑮, 𝑩) and 𝑓Ä(𝑽𝑹, 𝑽𝑰, 𝑮, 𝑩) correspond to the 

constraints required to enforce the desired behavior on powers and voltage magnitudes within the 

system. Namely, for the given bus admittance matrices that define the linear network elements, 

𝐺¬ª0  and 𝐵¬ª0 , as well as prespecified slack bus voltages 𝑽𝑺𝑩,𝑹 and 𝑽𝑺𝑩,𝑰, a set of shunt connected 
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conductance and susceptance states is added to model a net power network injection at each bus 

in the system. 

 As shown in Figure 6.4, modeling the nonlinear power flow elements can be further seen 

in terms of a generalized GB bus model that is added to the system model, consisting of linear 

circuit elements from Figure 6.2. that enforce the desired grid device behaviors. Then, for a given 

bus 𝑖 and a pair of conductance and susceptance state variables (𝐺* and 𝐵*), a set of constraints is 

added to enforce that the real and reactive power absorbed by the admittance states correspond to 

the net power difference between the 𝑁ï  generators and 𝑁ª loads connected at the respective bus: 

 

𝑓ï,*�𝑉¬,*, 𝑉å,* , 𝐺*, 𝐵*�: 

 

𝑓Ä,*�𝑉¬,*, 𝑉å,* , 𝐺*, 𝐵*�: 

											𝐺*�𝑉¬,*F + 𝑉å,*F � −ý𝑃ª,T

ºN

TSE

+ ý 𝑃ï,R

º!

RSE

= 0 

											𝐵*�𝑉¬,*F + 𝑉å,*F � +ý𝑄ª,T

ºN

TSE

− 𝑄ï,* = 0 

												𝑉¬,@F + 𝑉å,@F − |𝑉Å|F = 0	 

(6.2) 

Where 𝑄ï,* corresponds to the total generated reactive power needed to maintain the predefined 

voltage magnitude of bus 𝑗, and therefore, represents an additional slack variable added to enforce 

the respective voltage magnitude constraint. Notably, the first two additional constraints can be 

now seen as the locally defined power mismatch equations given for every bus, which further 

highlights the generality of the GB bus model to include all forms of laws of conservation of energy 

within a power system. 

Finally, with the GB bus introduced, the new generalized power flow formulation is fully 

compatible with the ECP framework, and hence can be utilized to model the network constraints 

within the power grid optimization problems. However, instead of now solving the optimization 

problems, we first demonstrate the applicability of developed the ECP framework, namely the 

Voltage and Post filtering as well as Optimal limiting techniques, for improving the efficiency and 

robustness of simulation problems. For the chosen sample of 20 power flow test cases ranging 

from 1354 to 70k buses [66]-[68] that include the grid representations of Polish, French and 

European grids, as well as synthetic cases of US grid including the Eastern Interconnection whose 
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specifications are shown in Table 6.1, we analyze simulation results obtained by solving the power 

flow problem defined in terms of the following formulations and solution methodologies: 

 
Figure 6.4. Mapping the nonlinear power flow elements to a generalized GB bus model. 

1. Power mismatch formulation in polar coordinates (Polar PQV) [56] 

2. Power mismatch formulation in rectangular coordinates (Rectangular PQV) [69] 

3. Current Injection formulation in polar coordinates (Polar I-V) [68] 

4. Current Injection formulation in rectangular coordinates (Rectangular I-V) [70] 

5. Rectangular Current Injection formulation solved within SUGAR [31] 

6. Generalized GB power flow formulation solved with ECP heuristics within SUGAR 

The power flow solutions for the first four formulations are obtained within the MATPOWER 

open source grid simulation and optimization toolbox [68], while the Current Injection formulation 

with circuit simulation heuristics is solved within the Python prototype version of SUGAR [31]. 

Lastly, the solution to the ECP compatible GB formulation is obtained within the implemented 

ECP prototype solver in MATLAB that will be also used to obtain all the other optimization results 

throughout the remainder of the thesis, unless specified otherwise. The iteration count comparisons 

between all six formulations, initialized both by a flat voltage start and the initial guess, are 

provided from the input files and presented in Table 6.2. All the simulations were run on a 

MacBook Pro 2.9 GHz Intel Core i7 for the same convergence criterion of 𝜖 = 10P� on an absolute 

variable step difference. 
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Table 6.1. Device specification of examined power flow test cases. 

As can be seen from Table 6.2, the convergence profiles for all of the six examined 

formulations behave as expected and described at the end of Section 6.1: 

1. Utilizing the physical characteristics of the problem and further embedding the domain 

knowledge within the set of algorithms used to control the NR step, as done in SPICE, 

resulted in a significant improvement over the traditionally implemented formulations 

solved within MATPOWER simulator. This is particularly evident when the good initial 

start is not provided. 

2. Furthermore, the additional combining of the optimization and circuit simulation 

approaches within the ECP framework results in the most robust and efficient simulations 

in terms of iteration count. 

3. In referring to the formulations solved within MATPOWER only, the initial starting point 

played a significant role in the convergence process. As can be seen, most of the cases 

converged when initialized with the good starting point that also usually represents a start 

Device # Gen. TxLine Xfmr Fixed 
Shunt Load Description case 

1354pegase 259 1751 240 1082 673 Part of European high-voltage system 
1888rte 280 2122 409 45 1000 French very-high voltage trans. network 
1951rte 357 2106 490 24 1015 French very-high voltage trans. network 
2383wp 326 2726 170 0 1826 Polish system during winter 1999-00 peak  
2736sp 238 3102 167 1 2048 Polish system during summer 2004 peak 
2746wp 369 3110 169 0 2024 Polish system during winter 2003-04 peak  
2848rte 418 3212 564 48 1511 French very-high voltage trans. network 
2868rte 464 3196 612 33 1551 French very-high voltage trans. network 

2869pegase 509 4077 505 2197 1491 Part of European high-voltage system 
3012wp 297 3371 201 9 2271 Polish system during winter 2007-08 peak  
3120sp 247 3487 206 9 2314 Polish system during summer 2008 peak 
3375wp 391 3778 383 9 2434 Polish system during winter 2007-08 peak 
6468rte 342 7667 1333 97 3661 French high voltage trans. network 
6470rte 633 7659 1346 73 3670 French high voltage trans. network 
6515rte 562 7657 1380 102 3673 French high voltage trans. network 

9241pegase 1444 14715 1334 7327 4895 European high-voltage system 
ACTIVSg10k 1454 11731 975 281 4170 Synthetic footprint of US West Interconnect 
13659pegase 4091 14738 5729 8754 5544 European system 
ACTIVSg25k 2752 29131 3098 741 8096 Synthetic footprint of US North East. grid 
ACTIVSg70k 5894 83126 5081 3477 32460 Synthetic footprint of US East. Interconnect 
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really close to the actual solution. Moreover, the lack of robustness when the good initial 

guess is not provided is particularly emphasized as the size of the cases increase. 

4. By further comparing the first four formulations solved without utilizing any of the domain 

specific knowledge, the overall performance of Polar PQV formulation with provably [65] 

positive definite Jacobian matrix is slightly better in reference to the other three 

formulations. The positive definite Jacobian, however, doesn’t guarantee the convergence, 

and therefore, it can be seen that there are some cases that converge with other formulations 

while not converging with a Polar PQV. 

Table 6.2. Power Flow Simulation Iteration Count Comparison. It was validated that all of the formulations (if 
converge) converged to the identical power flow solutions. Importantly, the comparison is based on the best- and 

worst-case scenarios of initial starting points, in order to emphasize the robustness that can be achieved within 
SUGAR. 

Formulation Polar PQV Rectangular 
PQV Polar I-V Rectangular 

I-V 
SUGAR 
Rect. I-V 

SUGAR 
ECP GB 

case Flat Input  Flat Input  Flat Input  Flat Input  Flat Input  Flat Input  
1354pegase 5 4 6 4 ∞ 4 ∞ 4 5 1 4 1 

1888rte ∞ 2 ∞ 2 ∞ 2 ∞ 2 10 2 5 1 
1951rte ∞ 3 ∞ 3 ∞ 3 ∞ 3 14 2 5 1 
2383wp 5 6 5 ∞ 6 5 6 5 6 2 3 2 
2736sp 6 4 ∞ 4 ∞ 4 ∞ 4 5 2 3 2 
2746wp 6 5 ∞ 5 ∞ 4 ∞ 4 5 1 3 1 
2848rte 10 3 ∞ 3 ∞ 3 ∞ 3 5 2 2 1 
2868rte ∞ 5 ∞ 5 16 4 21 4 10 2 5 1 

2869pegase 5 7 8 6 ∞ 4 ∞ 4 6 1 4 1 
3012wp ∞ 3 ∞ 3 ∞ 3 ∞ 3 7 1 3 1 
3120sp 6 6 ∞ ∞ 8 8 ∞ ∞ 6 2 3 2 
3375wp ∞ 2 ∞ 2 ∞ 2 14 2 7 2 4 1 
6468rte ∞ 3 ∞ 3 ∞ 3 ∞ 3 5 2 3 1 
6470rte ∞ 3 ∞ 3 ∞ 3 ∞ 3 7 2 4 1 
6515rte ∞ 3 ∞ 3 ∞ 3 ∞ 3 8 2 5 1 

9241pegase 7 6 ∞ 6 ∞ 4 ∞ 4 8 1 4 1 
ACTIVSg10k ∞ 5 ∞ 5 ∞ 5 ∞ 5 14 2 5 2 
13659pegase ∞ 6 ∞ 6 ∞ 5 ∞ 5 9 2 5 2 
ACTIVSg25k 6 5 ∞ 5 ∞ 4 ∞ 4 17 2 5 1 
ACTIVSg70k ∞ 6 ∞ 8 ∞ 5 ∞ 5 72 2 7 2 
∞-indicates the divergence of the simulation 

It is also important to emphasize that the solutions for these test cases were all obtained by solving 

the most basic form of power flow analysis, which did not include any of the network operational 

limits, such as limits on generator reactive powers. Incorporating operational limits in existing 

industry standard simulators is not done implicitly and requires the addition of the outer simulation 
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loops around the NR solver [24], [31]. These outer loops heuristically adjust the controlled power 

flow variables while rerunning the NR solver until all of the desired states are bounded, or if the 

maximum outer loop iteration count is reached. However, due to the primitiveness of these 

approaches that can cause the significant increase in total iteration counts and are prone to 

divergence and oscillations [31],[71], they are only mentioned here for completeness. We next 

explore the optimization nature of the power flow problem by showing that the operational, as well 

as any other grid performance limits, can be naturally included within the ECP optimization 

problems discussed in the rest of the chapter.  

Lastly, even when the real and reactive powers supplied by the slack bus are unbounded, 

and the operational and performance limits are not incorporated, it is still possible that no feasible 

power flow solution exists [30],[72]. Therefore, as already emphasized in Chapters 3 and 4, simply 

constraining the powers injected to a network can cause the infeasibility of the simulation problem, 

and by itself calls for solving an optimization problem to identify the power flow infeasibilities.  

6.3. Evaluating Power Flow feasibility through ECP 

Incorporating the domain specific knowledge within the power flow simulations drastically 

improves the problem convergence profile, thus making it less volatile to the choice of initial 

starting point. However, the “simplistic” macro-modeling of nonlinear elements in terms of 

constant power constraints, as well as their independency on the power system operational 

frequency (that is sometimes modeled), creates the possibility of no feasible power flow solution 

that satisfies the conservation of energy within the system. Moreover, since divergence cannot be 

avoided when the power flow problem is infeasible, it is difficult to distinguish systems that have 

diverged due to “lack of simulation robustness” from those that are “truly infeasible.” For instance, 

consider the simulation profile of the ill-conditioned 11-bus test case [73] shown in Figure 6.5, 

which was demonstrated to fail by both circuit simulation techniques and the ECP algorithms. 

Importantly, even though our intuition suggests the problem infeasibility due to the characteristics 

of divergence and saturation of OL algorithms, we cannot still claim it with full certainty. 
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Figure 6.5. Power flow convergence profile for the ill-conditioned 11 bus test case. 

To tackle the problem of simulation infeasibility, it is important to recall that for a power 

flow network defined by (6.1), there exists a uniquely defined adjoint circuit that, as shown in 

Chapter 4, can be used to indicate, quantify and localize the simulation problem infeasibility. 

Furthermore, by introducing the coupling between the network and its adjoint, the power flow 

infeasibilities are “redirected” to excite the adjoint circuit that will now ensure the optimally 

minimized energy exchange between them. Importantly, we can further define the types of 

coupling between the network and its adjoint that can be solely or interchangeably used to preserve 

the energy conservation within the system as follows:  

a) Coupling the set of KCL equations by the respective adjoint voltages. 

b) Coupling the set of local power mismatch and voltage magnitude equations by the 

respective adjoint admittances. 

By referring to the definition of the ECP feasibility problem from Chapter 4, the power flow 

feasibility problem can be also defined in the standard optimization form as given by (6.3), and as 

such, used for validation and comparisons between the ECP approach for obtaining its solution 

and the traditional state-of-art optimization algorithms.  

Standard Optimization Form of a Power Flow Feasibility ECP: 

min
…

1
2
‖𝒘𝑹 ⊙ 𝑰𝚫𝑹‖FF +

1
2
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[𝐺¬ª0 + diag(𝑮)]𝑽𝑹 − [𝐵¬ª0 + diag(𝑩)]𝑽𝑰 + 𝐸º𝑰𝑺𝑩,𝑹 = 𝑰𝚫𝑹	 

[𝐺¬ª0 + diag(𝑮)]𝑽𝑰 + [𝐵¬ª0 + diag(𝑩)]𝑽𝑹 + 𝐸º𝑰𝑺𝑩,𝑰 = 𝑰𝚫𝑰 

𝐸º𝑽𝑹 − 𝑽𝑺𝑩,𝑹 = 𝟎 

𝐸º𝑽𝑰 − 𝑽𝑺𝑩,𝑰 = 𝟎 

𝑓ï(𝑽𝑹, 𝑽𝑰, 𝑮, 𝑩) = 𝚫𝒑 

𝑓Ä(𝑽𝑹, 𝑽𝑰, 𝑮, 𝑩,𝑸𝑮) = 𝚫𝐪 

Solving an ECP. All of the following experiments that correspond to solving a problem from (6.3) 

are performed within the developed ECP MATLAB prototype, executed on a MacBook Pro 2.9 

GHz Intel Core i7, and following the methodology discussed in Chapters 4 and 5. The default 

convergence criterion was set to 𝜖 = 10P� for the absolute variable step difference and the problem 

residual, while the objective function weights are all set to 1. 

6.3.1. Simulation and analysis of the infeasible 11 bus network 

As demonstrated in [73], the 11-bus distribution test case is genuinely ill-conditioned 

beyond a maximum loading factor of 99.82%. Hence, numerical error or the choice of convergence 

criterion can cause the difference between infeasibility (divergence of the numerical algorithm) or 

convergence to the operating solution as demonstrated by Figure 6.5. In this study, the power flow 

feasibility problem is solved for slight loading factor increments to locate and examine the 

appearance and evolution of infeasible regions within the test case. The simulation results 

representing the network topology for four different loading factors (three of which are provably 

infeasible) are presented in Figure 6.6 (left). Referring to Figure 6.6, after the known point of 

collapse is reached, the system first becomes infeasible (indicated by the heatmap around the 

infeasible bus) furthest from the slack generator (bus 11). As the loading factor keeps increasing, 

the infeasibility, which represents the amount of additional current needed to prevent the violation 

of KCL at each bus, evolves throughout the system. 

Finally, since the bus 11 initially causes the problem infeasibility, the LASSO-like 

algorithm from Chapter 4 can be further applied to localize the infeasibility to that bus only. The 

sparse infeasibility information can be now used to determine the value of a capacitor that can be 

“installed” at bus 11 in order to prevent power flow infeasibility for all of the four examined 

loading factors as shown in Figure 6.6 (right). 
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Figure 6.6. Evaluating the feasibility of ill-conditioned 11 bus test case. The magnitude of infeasibility current is 

normalized with respect to the highest one encountered throughout the simulation of all four cases. 

6.3.2. N-1 contingency analysis on a Synthetic representation of the power 
grid of entire USA 

The scalability of the ECP framework is further tested by analyzing the feasibility of a 

synthetic test case representing the entire US grid [67] for an N-1 contingency. The N-1 

contingency we applied represented disconnecting the branch between buses 23510 (SENECA 71) 

and 23515 (SENECA76) within the Oconee Nuclear station, near Seneca, SC. The ECP simulation 

converged in 10 iterations and the results indicate that this contingency represents an infeasible 

system, with the local area of infeasibility shown in Figure 6.7 (left). Furthermore, after analyzing 

the affected infeasible area and replacing the fixed shunt capacitor connected at the most infeasible 

bus (SENECA 7.1) with a variable shunt device as presented in Figure 6.7(right), the system 

becomes feasible again. 

As shown by the simulation results so far, the coupling between the power flow network 

and its adjoint can inform various corrective actions or planning decisions in addition to simply 

locating the power flow infeasibilities. For instance, the 11-bus test case presents an application 

toward optimal capacitor placement, while, placing the coupling sources at nodes of critical 

infrastructure within the grid model can allow optimal planning for a new corrective device that 

would ensure N-1 contingency criteria required by NERC are met [74].  
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Figure 6.7. Detecting infeasibility due to the contingency in synthetic test case representation of USA grid. Note that 
replacing the fixed shunt capacitor at bus 23515 with a variable capacitor restores the feasibility of the power flow. 

6.3.3. Comparisons with the existing optimization algorithms 

So far, we have presented results obtained from the ECP framework that indicate the 

significant improvements in power flow simulation robustness in comparison with the existing 

solution methodologies. More importantly, with the capability of solving the infeasible power flow 

cases, the initial doubt of understanding the source of simulation divergence is dispelled. Now, 

divergence of coupled simulation of power flow and its respective adjoint circuit indicates 

problems with the algorithms used to control the NR step, and further helps to fine-tune those 

algorithms.  

The first step in demonstrating the efficiency of ECP framework is to compare it with the 

existing state-of-art optimization algorithms, starting from the equality constrained optimization 

problems, as is the power flow feasibility problem from (6.3). Therefore, in order to have a fair 

comparison between the two, and considering the efficiency of circuit simulation approach for 

building the Hessian and Jacobian matrices, we have developed the prototype circuit simulator in 

MATLAB, where the Gradient and Hessian information are built on the same way as in the ECP 

circuit simulator, and the only difference represents the respective set of existing optimization 

algorithms applied to control the NR step size. Moreover, the algorithm used for comparisons 

through the rest of the thesis is implemented within the FMINCON MATLAB toolbox, and can 
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be generally described as a Primal-Dual Interior Point Method combined with a trust region 

approach [39]-[42] as implemented in most of the large-scale state-of-art optimization toolboxes. 

Thus, the purpose of the following experiment based on the power flow feasibility problem is to 

provide a comparison between the two solution methodologies. Namely, the one behind the 

traditional mathematical optimization algorithms based on the one-dimensional line search 

problem, and the set of solution methodologies implemented within the ECP framework based on 

Variable Filtering and Optimal Limiting algorithms. 

 Consider the following five realistic-size power flow cases whose description and detailed 

specifications are provided in Table 6.1. 

1. Case3375wp 

2. Case9241pegase 

3. CaseACTIVSg10k 
4. CaseACTIVSg25k 
5. CaseACTIVSg70k 

In order to test the robustness and efficiency of the ECP framework, the power flow feasibility 

problem from (6.3) is solved with the current feasibility sources coupled to the set of KCL system 

equations (corresponding to minimizing the L2 norm of KCL infeasibilities) for the 3 operating 

conditions. Namely, for the nominal loading condition as provided within the input file, as well as 

conditions simulating the additional OFF and ON peak scenarios by respectively decreasing and 

increasing the system generation and demand by 25%. Furthermore, each of the three conditions 

is run within ECP as well as the traditional framework implemented within FMINCON when 

initialized from both a flat voltage start, and the information provided within the test case input 

file. Lastly, as in all of the previous experiments, the simulations were performed on a MacBook 

Pro 2.9 GHz Intel Core i7, while the obtained results depicting the simulation runtime comparisons 

are presented in Figure 6.8-Figure 6.10. 
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Figure 6.8. Power flow feasibility problem simulation runtime comparisons between ECP and traditional 
optimization algorithms, OFF-peak loading scenario (-25% load and generation decrement). 

 

Figure 6.9. Power flow feasibility problem simulation runtime comparison between ECP and traditional 
optimization algorithms, nominal loading scenario. 

 

Figure 6.10. Power flow feasibility problem simulation runtime comparisons between ECP and traditional 
optimization algorithms, ON-peak loading scenario (+25% load and generation decrement). 
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As presented in Figure 6.8-Figure 6.10, the simulation runtime profiles behave according to our 

intuition and discussion provided in Chapter 2: 

i. It can be said that the two smaller-size test cases performed equally well with both ECP 

and traditional heuristics for all scenarios and initializations. This can be further explained 

by the initial starting points of the examined equality constrained optimization problems 

being in the vicinity of the respective optimal solutions. 

ii. As the size of problem increases and the initial starting points move away from the 

optimization solutions (increased loading, flat start, etc.), the traditionally based heuristics 

start slowing down the convergence process due to the single step line-search methodology 

that limits all of the NR steps with a single constant factor. 

iii. In contrast to the traditional optimization heuristics, however, the heuristics based on 

physical characteristics of the problem incorporated within the ECP solver significantly 

overperforms the traditional optimization heuristics. 

iv. Finally, the experiments performed also indicate the importance of robust and efficient 

simulation and optimization framework during the analyses for which the good 

initialization is not known, such as for contingency and other planning analyses. The 

preliminary results indicate the significant correlation between the “goodness” of the 

initialization and the traditional simulator efficiency, which is particularly highlighted as 

the size of cases increases.  

It is important to note that even though the power flow feasibility problem defined in (6.3) 

can indicate and quantify the original power flow infeasibilities, the obtained results can be still 

far from the realistic solutions, since none of the operational and performance limits are 

considered. To analyze the impact of not enforcing these limits to the examined test cases, we first 

consider the set of three operational limits: 

1. The reactive power 𝑄ï  supplied by each of the PV generators, as well as other VR 

devices, has to be between the device operational limits. 

2. The bus voltages within the power grid need to be bounded to ensure the proper voltage 

levels within the grid. 

3. In most realistic cases, there is more than one generator that picks up the slack power 

within the system in order to ensure the stable operation, and the whole process is 
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significantly more complicated [31],[75]. Moreover, it can be seen as a distribution of 

slack power among more generators in the grid, which is in stark contrast to a single 

generator scenario in traditional power flow problems. Therefore, we examine the 

percent capacity of real power on which the slack bus generator operates. 

The simple power grid device violations for the 5 examined test cases are presented in Table 6.3. 

Table 6.3 Documenting the number of operational constraint violations of the examined set of 5 power flow test 
cases solved within the ECP framework. Note that the generator bounds are also scaled with the loading factor. 

Load. Factor Nominal -25% Nominal Nominal +25% 

case # 𝑄ï  
violations 

# 𝑉� 
violations 

Slack 
Gen (%) 
Capacity 

# 𝑄ï  
violations 

# 𝑉� 
violations 

Slack 
Gen (%) 
Capacity 

# 𝑄ï  
violations 

# 𝑉� 
violations 

Slack 
Gen (%) 
Capacity 

3375wp 164 80 74 184 35 100 207 26 129 
9241pegase 295 64 14.3 151 0 60 451 165 115.5 

ACTIVSg10k 897 9 72.5 776 0 107 807 3 149.5 
ACTIVSg25k 1627 8 -98.7 1396 0 99.9 1787 0 330.2 
ACTIVSg70k 3418 1243 -234.4 2952 2 92 3522 699 107.5 

As it can be seen from Table 6.3:  

- There are generators (including VR devices) in every case and operating condition that 

violate the respective operational limits.  

- In comparing the bus voltage violations, it can be seen that 3 out of 5 cases have the voltage 

levels within the predefined operational bounds for the nominal operation, while there exist 

buses with violated voltage limits in all other cases and scenarios. 

- Slack bus generators operate within the predefined capacity limits for most of the cases 

operating during the nominal loading conditions, while the capacity limits are significantly 

exceeded, in On and Off-peak scenarios. Moreover, the negative percent capacity indicates 

that the generator needs to act as a load in order to ensure the preservation of energy within 

the grid, which is not realistic in actual, and further highlights the non-physical nature of a 

slack bus. 

In conclusion, even though a “simple” solution to the feasibility problem can be robustly and 

efficiently obtained within the ECP framework, it is not enough, and we have to dig deeper into 

the domain of constrained optimizations to incorporate the more realistic power grid constraints. 
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This will also further provide the answer about the “true nature” of a power flow problem and 

show that a realistic power flow analysis is an optimization rather than a simulation problem. 

6.4. True nature of real-world power flow problems 

To incorporate the operational limits within the power flow feasibility problem from (6.3), 

it is important to fully understand the power system device characteristics and behavior at the 

steady-state grid condition under which the operational limits hold. Therefore, we start with a brief 

discussion of control characteristics for the Automatic Voltage Regulation (AVR) and Automatic 

Generator Control (AGC) that have to be considered while embedding the operational limits within 

the respective power flow models.  

6.4.1. Automatic Generator Regulation (AVR) and Automatic Generator 
Control (AGC) Characteristics  

Referring to the model of VR devices and PV generators, note that the reactive power 

represents a variable that is adjusted (solved for) in order to control the desired bus voltage 

magnitude as given by (6.2). However, as can be seen from the previously examined power flow 

results, the reactive power is not bounded, and hence can often exceed the predefined operational 

limits. Most importantly, since the reactive power controls the voltage magnitude, once the 

operational limit is approached, the device can no longer control the desired voltage which results 

in disjunctive characteristics, as shown in Figure 6.11 (left). Mathematically, this disjunctive 

behavior can be defined for 𝑗ZÊ VR device as: 

�
𝑄�åº,@ < 𝑄ï,@ < 𝑄��s,@ 	∧ 	𝑉¬F + 𝑉åF = |𝑉µ|F

𝑄ï,@ = 𝑄��s,@ 	∧ 	𝑉¬F + 𝑉åF < |𝑉µ|F

𝑄ï,@ = 𝑄�åº,@ 	∧ 	𝑉¬F + 𝑉åF > |𝑉µ|F
� (6.4) 

 Conversely, when represented within the power flow analysis, the AGC corresponds to 

nothing more but the distribution of the real slack power among the generators in the system. 

Moreover, system slack real power Δµ is not assigned to a single generator, as in the case of 

traditional power flow analysis, but is rather distributed by a specified participation factor 𝜋*, 
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among the generators that now “participate” in AGC. This causes their real power to become an 

additional variable defined as: 

𝑃ï�,� = 𝑃ï,* + 𝜋*Δµ (6.5) 

However, since the real generated power is not a constant anymore, the respective operational 

limits has to be taken into the consideration too. If the operational real power limit is approached, 

the generator can no longer participate in AGC, which again results in a disjunctive characteristics, 

as shown in Figure 6.11 (right), or in terms of this mathematical representation for the 𝑖ZÊ 

generator: 

�
𝑃�åº,* < 𝑃ï�,� < 𝑃��s,* 	∧ 	𝑃ï�,� = 𝑃ï,* + 𝜋*Δµ

𝑃ï�,� = 𝑃��s,* 	∧ 	𝑃ï�,� < 𝑃ï,* + 𝜋*Δµ
𝑃ï�,� = 𝑃�åº,* 	∧ 	𝑃ï�,� > 𝑃ï,* + 𝜋*Δµ

  (6.6) 

 

Figure 6.11. Automatic Voltage Regulation (AVR) and Automatic Generator Control (AGC) characteristics. 

Considering that the respective disjunctive behavior is often modeled in terms of integer variables, 

it becomes very clear why the traditional formulations attempt in modeling the device control 

within the outer loops around power flow NR simulation. Notably, the traditional solvers already 

suffer from the robustness issues with quadratic like nonlinearities, and the addition of steep and 

discontinuous nonlinearities would further strain the robustness of those nonlinear solvers.  
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6.4.2. Understanding the AVR and AGC from the perspective of ECP 
feasibility problem 

To understand the disjunctive AVR and AGC characteristics from the perspective of 

conservation of energy within the power system, refer to Figure 6.11 and the four points shown on 

the respective nonlinear functions. It is important to note that the real and reactive power values 

corresponding to the points 2 and 3 are determined by the network response itself, and not the 

nonlinear functions from (6.4) and (6.6). Similarly, if the real and/or reactive powers are 

approaching the respective operational limits, as in the case of points 1 and 4, the voltage 

magnitude as well as the real slack power Δµ are driven by the network response and not the 

adjunctive functions themselves. These respective values now correspond to the operating point 

for which the energy conservation laws hold within the power grid. 

Therefore, if we simply enforce all of the operational constraints within the power flow 

feasibility problem from (6.3) that also include bounds on the voltage magnitudes given for the 𝑗ZÊ 

bus as 𝑉�åº,@F  and 𝑉��s,@F : 

𝑄�åº,* < 𝑄ï,* < 𝑄��s,* 

𝑉¬,@F + 𝑉å,@F − 𝑣Å,@ = 0 

𝑣Å,@ − |𝑉Å|F = 0 

𝑉�åº,@F < 𝑣Å,@ < 𝑉��s,¡F  

(6.7) 

𝑃�åº,* < 𝑃ï�,* < 𝑃��s,* 

𝑃ï�,* − 𝑃ï,* − 𝜋*Δµ = 0 
(6.8) 

There are two possible scenarios that can happen: 

a) If there exists an operating point that satisfies all of the constraints, great! The optimization 

problem will converge, and the operating point will now take into the consideration all of 

the considered operational limits.  

b) If, however, the network drives the operating point that satisfies the conservation of energy 

under the enforced operational limits within the system, but further violates some of the 

additional constraints, set voltage, distributed power, etc., then there doesn’t exist a point 
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that satisfies all of the constraints and the optimization problem will be infeasible. 

Furthermore, the problem infeasibility can be also quantified by the existence of variables 

Δ𝑣 and Δ𝑝µ that now correspond to the difference between the network operating point and 

the additionally enforced constraints. Moreover, the optimization problem feasibility can 

be recovered if for some given	Δ𝑣 and Δ𝑝µ constraints in (6.9) hold. 

𝑣Å,@ − |𝑉Å|F = Δ𝑣@ 

𝑃ï�,* − 𝑃ï,* − 𝜋*Δµ = Δ𝑝µ� 
(6.9) 

The additional constraints from (6.9) can be also seen in terms of an ECP feasibility problem, 

where the Δ𝑣 and Δ𝑝µ correspond to the couplings between the network and its adjoint circuit 

introduced to ensure the problem feasibility. Namely, if the problem is infeasible due to its 

contradicting constraints, the infeasibilities will be redirected as an excitation to the adjoint circuit 

that now ensures that the network operating points maintains the energy conservation laws 

satisfied. Most importantly, as in any other ECP problem, an optimal solution is driven by the 

conservation of energy within the system, and therefore, the nonzero values of the coupling 

feasibility sources correspond to the differences between the network operating point and the 

additional constraints enforced by the problem.  

 In terms of a standard mathematical optimization form, the power flow feasibility problem 

enhanced with the additional operational limits from (6.14) is obtained by appending the set of 

constraints from (6.7)-(6.8) to the ECP problem in (6.3). However, contrary to (6.3), the couplings 

(infeasibility variables that are to be minimized) must be chosen more carefully in order to prevent 

contradicting objectives. Namely, 

i) A bus with only load demand connected to it can have either feasibility power or current 

variables that are to be minimized, as was the case in (6.3): 

{[𝐺¬ª0 + diag(𝑮)]𝑽𝑹 − [𝐵¬ª0 + diag(𝑩)]𝑽𝑰}¢ = 𝐼�¬,¢ 

{[𝐺¬ª0 + diag(𝑮)]𝑽𝑰 + [𝐵¬ª0 + diag(𝑩)]𝑽𝑹}¢ = 𝐼�£,¢ 
(6.10) 

Or  
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𝐺¢�𝑉¬,¢F + 𝑉å,¢F � −ý𝑃ª,T

ºN

TSE

= Δ𝑝¢ 

𝐵¢�𝑉¬,¢F + 𝑉å,¢F � +ý𝑄ª,T

ºN

TSE

= Δ𝑞¢ 

(6.11) 

ii) A bus 𝑔�with a connected generator that participates in AGC requires the presence of only 

infeasibility variables related to modeling the AGC and AVR response (Δ𝑣@ and Δ𝑝µ�). This 

can be intuitively explained due to the fact that the reactive power is bounded, and hence 

adding the extra current or reactive power infeasibilities can introduce the conflicts in the 

objectives. 

{[𝐺¬ª0 + diag(𝑮)]𝑽𝑹 − [𝐵¬ª0 + diag(𝑩)]𝑽𝑰}¥¦ = 0 

{[𝐺¬ª0 + diag(𝑮)]𝑽𝑰 + [𝐵¬ª0 + diag(𝑩)]𝑽𝑹}¥¦ = 0 

𝐺¥¦�𝑉¬,¥¦
F + 𝑉å,¥¦

F � −ý 𝑃ª,T

ºN

TSE

+ ý 𝑃ï�,R

º!

RSE

= 0 

𝐵¥¦�𝑉¬,¥¦
F + 𝑉å,¥¦

F � +ý𝑄ª,T

ºN

TSE

− 𝑄ï,¥¦ = 0 

𝑣Å,@ − |𝑉Å|F = Δ𝑣@ 

𝑃ï�,R − 𝑃ï,¥u − 𝜋RΔµ = Δ𝑝µ,R						∀𝑚 ∈ 𝑔� 

(6.12) 

iii) A bus 𝑔º	with a generator that doesn’t participate in AGC, can have the feasibility real 

power only, in addition to the feasibility variable related to AVR, Δ𝑣@, since everything 

else will be conflicting with bounded reactive power at a bus: 

{[𝐺¬ª0 + diag(𝑮)]𝑽𝑹 − [𝐵¬ª0 + diag(𝑩)]𝑽𝑰}¥§ = 0 

{[𝐺¬ª0 + diag(𝑮)]𝑽𝑰 + [𝐵¬ª0 + diag(𝑩)]𝑽𝑹}¥§ = 0 
(6.13) 
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𝐺¥§�𝑉¬,¥§
F + 𝑉å,¥§

F � −ý 𝑃ª,T

ºN

TSE

+ ý 𝑃ï,R

º!

RSE

= Δ𝑝¢,¥§ 

𝐵¥§�𝑉¬,¥§
F + 𝑉å,¥§

F � +ý𝑄ª,T

ºN

TSE

− 𝑄ï,¥§ = 0 

𝑣Å,@ − |𝑉Å|F = Δ𝑣@ 

Standard Optimization Form of a Power Flow Feasibility ECP with Operational Limits: 

min
…

1
2
‖𝒘𝑹 ⊙ 𝑰𝚫𝑹‖FF +

1
2
‖𝒘𝑰 ⊙ 𝑰𝚫𝑰‖FF +

1
2 �𝒘𝒑⊙𝚫𝒑�

F
F +

1
2 �𝒘𝒒⊙𝚫𝒒�

F
F 

such that 

[𝐺¬ª0 + diag(𝑮)]𝑽𝑹 − [𝐵¬ª0 + diag(𝑩)]𝑽𝑰 + 𝐸º𝑰𝑺𝑩,𝑹 = 𝑰𝚫𝑹	 

[𝐺¬ª0 + diag(𝑮)]𝑽𝑰 + [𝐵¬ª0 + diag(𝑩)]𝑽𝑹 + 𝐸º𝑰𝑺𝑩,𝑰 = 𝑰𝚫𝑰 

𝐸º𝑽𝑹 − 𝑽𝑺𝑩,𝑹 = 𝟎 

𝐸º𝑽𝑰 − 𝑽𝑺𝑩,𝑰 = 𝟎 

𝑓ï(𝑽𝑹, 𝑽𝑰, 𝑮, 𝑩,𝑷𝑮𝚫,𝑸𝑮,𝒗𝒔) = 𝚫𝒑 

𝑓Ä(𝑽𝑹, 𝑽𝑰, 𝑮, 𝑩,𝑷𝑮𝚫,𝑸𝑮,𝒗𝒔) = 𝚫𝒒 

𝑸𝑴𝑰𝑵 < 𝑸𝑮 < 𝑸𝑴𝑨𝑿 

𝑷𝑴𝑰𝑵 < 𝑷𝑮𝚫 < 𝑷𝑴𝑨𝑿 

𝑽𝑴𝑰𝑵𝟐 < 𝒗𝒔 < 𝑽𝑴𝑨𝑿𝟐  

(6.14) 

where 𝑓ï(∙) and 𝑓Ä(∙) now also include the additional equality constraints from (6.7)-(6.8), while 

the respective infeasibility sources are chosen as defined by (6.10)-(6.13). 

With the operational limits and the respective device characteristics modeled and 

incorporated within the power flow feasibility problem from (6.14), we can finally perform the 

experiments and fully compare the solution methodologies that support the ECP framework 

against the traditional optimization algorithms incorporated within FMINCON MATLAB 

optimization toolbox. Consider again the five test cases examined in Section 6.3.3, operating at 

the nominal loading conditions and now incorporating operational limits and respective device 
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AGC and AVR characteristics. Each of the five test cases is run within both ECP and the circuit 

simulator that runs FMNCON algorithms for both flat voltage and input file starting point and the 

results are presented in Figure 6.12 and Figure 6.13. Moreover, since the data on AGC participation 

factors was not provided, we applied the following recipe for calculating the participation for each 

of the generators in the system: 

- If the set generator real power already exceeds, or is at the upper operational limit, its power 

is kept constant and it doesn’t participate in AGC 

- The participation factors for all of the other generators are chosen according to their real 

power capacity with the formula for 𝑖ZÊ generator given as: 

𝜋* =
𝑃��s,* − 𝑃�åº,*
‖𝑷𝑴𝑨𝑿 − 𝑷𝑴𝑰𝑵‖E

 (6.15) 

Next, as it was the case in solving (6.3), the weights for the basic set of feasibility variables are set 

to 1 for simplicity, while the newly introduced weights associated with modeling the AGC and 

AVR response are chosen as 100 in order to prioritize the minimized variables. Lastly, the 

maximum complementary slackness (CS) violation parameter for diode models within ECP is set 

to 𝜀 = 10PEE, which also represents the convergence tolerance that is applied to the ECP circuit 

(KKT optimality conditions) residual. All the problems were solved on MacBook Pro 2.9 GHz 

Intel Core i7. 

 
Figure 6.12. Power flow feasibility problem within incorporated operational constraints total iteration comparison 

between ECP and traditional optimization algorithms. 
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Figure 6.13. Power flow feasibility problem within incorporated operational constraints simulation runtime 

comparison between ECP and traditional optimization algorithms. 

Before discussing the accuracy of modeling the disjunctive device characteristics by using 

the set of feasibility variables, we first refer to the comparison given in Figure 6.12 and Figure 

6.13. As can be seen, the presented comparisons follow the same trend as demonstrated in Section 

6.3.3, with one significant difference. Notably, with the incorporated set of inequality constraints 

within the optimization problem, even the smaller cases performed worse under the traditional 

algorithms. This is the behavior that is expected and elaborated in Chapter 2 and can be attributed 

to the conservative limiting techniques applied to ensure feasibility of variables within the IPMs. 

The conservativeness of limiting the NR-step is additionally highlighted in the cases of 

initialization from a flat voltage start, which now required significantly more iterations and thereby 

affected the runtime and efficiency of the solution process. In contrast, the diode limiting 

techniques incorporated within the ECP framework treats each of the step sizes separately and 

further adjusts the amount of damping based on the convergence of the ECP circuit. This was 

demonstrated to provide a significant boost in efficiency of the solution methodology. Most 

importantly, the correlation between the initial start and the simulation efficiency is significantly 

reduced.  

 Finally, in order to test whether the devices that take part in AVR and AGC modeled with 

the use of ECP feasibility approach behave as desired, we first need to recall that a power system, 

just as any other network, represents an interconnected system, and hence some of the 

infeasibilities that capture the constraint violations within the AGC and AVR responses can also 

affect the respective buses in the area around them. Namely, we counted on the “redirection” of 
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infeasibilities to excite the adjoint circuit, however, due to the network topology this excitation 

can further backfire and provide some additional input to the places in power flow network model 

where it should not, which can be also seen as a “relaxation error.” For instance, there may be a 

generator that approached its reactive power limit, and as such, affects the other buses in the local 

area around it. Hence, the application of regularization algorithm introduced in Chapter 4 may be 

required after an optimal solution to (6.14) is obtained, in order to reduce the impact of these 

relaxation errors. However, we first focus on the optimization results obtained from solving the 

ECP in (6.14) for the five examined test cases. Table 6.4 presents the following: 

i. Number of AVR participating devices that are at the operational limit, and hence cannot 

maintain the control of the desired voltage magnitudes in the system, but properly follow 

the AVR characteristics as given by the disjunctive function from (6.4).  

ii. Number of AGC participating devices that are at the operational limit, and further properly 

follow the AGC characteristics as given by the disjunctive function from (6.5).  

iii. Number of AVR devices that violate the desired characteristics defined by (6.4). Namely, 

even though the respective reactive power bounds are not approached, the voltage 

magnitude changed due to the relaxation error. 

iv. Number of AGC devices that violate the desired characteristics defined by (6.5). The 

relationship between the generated real power and the distributed system slack defined by 

the respective participation factors is not maintained, as a result of relaxation error. 

v. Real Slack Power Δµ distributed among the generators participating in AGC. 

vi. L2-norm of system infeasibility sources that do not include the respective AGC and AVR 

ones and hence serve as a further indicator of the problem infeasibility. 

Table 6.4. Quantifying the exactness of AGC and AVR behavioral models. It is important to note that due to the 
enforced tolerances, every variable that is in √𝜀 vicinity to the bound is called as bounded. Lastly, the same criterion 

was used to determine the violations of AVR and AGC characteristics. 

case # 𝑸𝑮@ a 
limit 

# 𝑷𝑮𝚫@ a 
limit 

AVR 
violation 

AGC 
violation 𝚫𝑺 ‖F‖𝟐. 

3375wp 90 116 3 0 6.66E-05 3.22E-10 
9241pegase 178 1 50 1 -5.1863 0.3527 

ACTIVSg10k 644 0 0 0 -0.0217 5.19E-10 
ACTIVSg25k 1144 0 0 0 2.8950 9.09E-09 
ACTIVSg70k 2039 1 0 0 -0.0935 1.32E-08 
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As seen from Table 6.4, the feasibility based modeling of AVR and AGC characteristics, 

performs extremely well considering the nonlinearity of disjunctive functions models that are now 

replaced with a quadratic objective function that are obtained from understanding the physical 

conservation laws within the network and its adjoint. Moreover, the solutions to the three largest 

cases do not even require further regularization and now correspond to the realistic network power 

flows that take into the consideration the operational limits with incorporated AGC and AVR 

characteristics. Interestingly, these solutions that often traditionally [76]-[78] required the use of 

integer variables, or outer loops around NR solver in modeling the nonlinear device characteristics, 

are obtained for the same cost as solving a continuous optimization problem that can be now 

efficiently done within the ECP framework. Lastly, the regularization algorithm from Chapter 4 is 

further applied in order to reduce the impact of the relaxation errors to the two smaller test cases. 

The results that include the number of additional NR iterations taken by the regularization 

algorithm as well as successfully “corrected” number of AVR and AGC violations are presented 

in Table 6.5. 

Table 6.5. Correcting the AGC and AVR relaxation errors by means of LASSO-like regularization algorithm. Note 
that the correction of respective relaxation errors results in all five feasible cases whose power flows satisfy the 

desired operational limits while ensuring the proper device characteristics.  

case # 𝑸𝑮@ 
a limit 

# 𝑷𝑮𝚫@ 
a limit 

AVR 
violation 

AGC 
violation 𝚫𝑺 ‖F‖𝟐. Extra NR 

iterations 
3375wp 89 116 0 0 4.08E-05 5.16E-10 4 

9241pegase 161 2 0 0 -5.3295 1.66E-05 13 
ACTIVSg10k 644 0 0 0 -0.0217 5.19E-10 0 
ACTIVSg25k 1144 0 0 0 2.8950 9.09E-09 0 
ACTIVSg70k 2039 1 0 0 -0.0935 2.37E-10 0 

Lastly, it is important to emphasize the conditions used to initialize the corrections within 

the LASSO-like regularization algorithm. Notably, the system infeasibilities are considered to be 

a relaxation errors if one of the following three conditions is satisfied: 

1. Basic nonzero network infeasibilities are considered for correction if one of the respective 

bounds on a bus voltage magnitude is approached. 

2. Nonzero AVR voltage infeasibility is considered for correction if the reactive power of an 

AVR participating device is not in vicinity to the respective operational limit. 

3. Nonzero AGC infeasibility is considered for correction if the real power of an AGC 

participating generator is not in vicinity to the respective operational limit. 
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In conclusion, the power flow problem for characterizing and analyzing a power system 

steady-state response has taken a long journey from its introduction and sparse implementation 

that also represented one of the first general solutions to a sparse matrix problem. Now with its 

incorporation within a circuit simulation framework in SUGAR, a more realistic power flow 

solution can take into consideration the operational limits and respective device characteristics that 

define a problem as an optimization rather than a simulation problem.  

As demonstrated in this chapter, the larger size power flow problems that include the 

realistic operational limits and device characteristics incorporated within the traditional 

optimization algorithms become intractable to solve during the operationally required timeframe, 

particularly when the good initialization cannot be provided. By referring to the discussion from 

Chapter 2, this can be attributed to the conservativeness of the traditional NR-step limiting 

algorithms that are applied without taking the physical characteristics of the problem into the 

consideration. Furthermore, it also most likely stands for one of the key reasons why the more 

realistic power flow analyses are still not widely applied for large-scale systems.  

Finally, the preliminary power flow results obtained within the ECP framework 

demonstrate the significant improvements in runtime efficiency, while preserving the robustness 

previously achieved by the application of circuit simulation methods. Most importantly, the large-

scale power flow “simulation” within SUGAR can now efficiently incorporate the realistic 

operational constraints as well as highly nonlinear grid device characteristics, while further 

providing the feasible power flow solution. Lastly, it is worth noting that if for an incorporated set 

of realistic operational limits, a power flow problem indicates infeasibility, the reliable grid 

operation may be affected. Therefore, one possible future remedy is solving a new optimization 

problem to determine the generation redispatch that changes the grid operational point, which is 

the focus of the next chapter. 
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Chapter 7 Optimizing Electrical Power Dispatch 

within the Equivalent Circuit Programming 

Framework  

The capability of efficiently incorporating the realistic operational limits and respective 

power grid device characteristics within the power flow problem provides a more detailed picture 

of the grid response, as well as the reliability of its operation. However, what should the grid 

operator do if such picture clearly indicates the infeasibility of power flows within the grid? The 

answer to this question is not as simple as one would initially think. Notably, the power flow 

operating point is governed by the set of dispatched base generation and load demands, and 

therefore, the infeasibility of problem whose modeling approaches the realistic grid behavior can 

be worrisome. Moreover, it indicates that the power grid set point modeled within a power flow 

problem may not be secure for the analyzed scenario or operating condition. In addition, it is also 

important to note that traditional power flow does not incorporate the frequency information and 

uses primitive macro-modeling abstractions for representing the generation and load demand. 

Therefore, the answer to the above asked question is “maybe, it depends!” If the simulated scenario 

represents the present or upcoming operating grid condition, it may be already too late to worry, 

and blackout could occur. At a minimum, the chances for this scenario to happen is significantly 

increased. If, however, the analyzed scenario represents a contingency simulation for some of the 

grid planning cases, there is definitely more time to make the necessary changes and decisions.  

In considering the bigger picture, the solution that represents a good remedy for the 

problem described above, which also eliminates the significant work stress of our grid operator, is 

to determine the grid operating point that reduces the scenarios of power flow infeasibility to a 

bare minimum. This can be done by incorporating them as the additional set of constraints within 
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the power dispatch optimization problems. It, however, turns out that this is way easier said than 

done, and obtaining such operating point from the solution of an optimization problem has been 

traditionally shown as quite challenging due to the highly nonlinear problem constraints as well as 

scalability of existing solution methodologies. Most notably, the financial market is defined by 

nonlinear pricing, and the electrical power flow problem exhibits the nonlinear characteristics in 

modeling the generators and loads. Both combined with additional security constraints create a 

daunting large-scale optimization problem, and therefore, in practice, the utility industry has relied 

upon approximations and good engineering judgment to obtain the best possible, rather than most 

optimal, power flow solutions. Notably, FERC has reported [79] that today’s “approximate-

solution techniques may unnecessarily cost tens of billions of dollars per year” and “result in 

environmental harm from unnecessary emissions and wasted energy.”  

Meanwhile, the larger portion of academic research in power flow optimization is still 

devoted towards finding a global optimal solution [80]-[82] to the basic optimal power flow 

dispatch that does not model any of the additional contingencies and operational scenarios. The 

solution would most likely not be used by grid operators since it doesn’t guarantee the grid security 

in terms of robustness during the contingency scenarios. In fact, it can be said that contrary to the 

global optimal power flow solution for the basic problem, finding any optimal point that will 

ensure the grid security during the set of examined contingencies would be a more desirable 

solution. 

This chapter focuses on electrical power dispatch optimization problems. If we recall the 

preliminary findings presented in the previous chapter, the efficiency of solution process can be 

significantly decreased with the less conservative ECP NR-step limiting algorithms that now also 

consider the physical problem characteristics in addition to traditionally based optimization 

techniques. This physical modeling framework further preserves the simulation robustness, as is 

the case with circuit simulation problems, and thereby makes the ECP framework more suitable 

for possible extremely large-scale optimizations, such as the realistic optimal power dispatch 

problem.  

The reminder of this chapter first demonstrates that even obtaining an optimal solution to 

the full realistic base AC-OPF problem can be quite challenging, particularly with the increase in 

problem size. Next, the further consideration of different operating scenarios, and more periods in 
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future, results in a more realistic optimal dispatch solution, but can drastically increase the size of 

the optimization problem, and adds overhead to the solution process of the already challenging 

problem. To that effect, we provide the extensive comparison on base AC-OPF solutions obtained 

within the ECP framework as well as the traditional used formulations and optimization solvers. 

The sample of various existing large-scale test cases is considered in addition to the recently 

introduced OPF cases used in currently ongoing grid optimization competition sponsored by 

ARPA-E [76]. Furthermore, by running the realistic power flow simulations discussed in Chapter 

6, we provide the analysis on number of cases that remain truly infeasible if only the solution to 

the base AC-OPF problem is considered. Lastly, it is demonstrated that the additional 

consideration of those problematic scenarios within the AC-OPF problem reduces their 

infeasibilities and further provides a promising problem that can be now solved within the ECP 

circuit framework, as done in existing circuit simulators that operate on problems of extreme scale. 

7.1. Base AC Optimal Power Flow (AC-OPF) problem 

Consider a power system such as those introduced in Chapter 6, whose steady-state 

response is characterized in terms of phasor voltages and currents (𝑉¶*T = 𝑉¬,*T + 𝑗𝑉å,*T and 𝐼·*T =

𝐼¬,*T + 𝑗𝐼å,*T) at a fundamental frequency, and further governs the relationships between a set of 

generators 𝒢Ä and load demands 𝒟Ä, interconnected by a set of transmission network elements, 

𝒯s. A traditionally defined AC-OPF problem is based on finding an optimal solution to a cost of 

generated real power dispatch, often modeled in terms of a quadratic objective function ℱ(𝑷𝑮) 

that is subjected to the power flow network model, as well as other operational constraints. 

Moreover, in terms of the generalized network formulation for modeling a power grid steady-state 

response introduced in Chapters 3 and 6, an AC-OPF problem can be further stated in standard 

optimization form as: 

min
𝑷𝑮,…	

ℱ(𝑷𝑮) = 𝑎ï +ý𝑏ï*𝑃ï,* + 𝑐ï,*𝑃ï,*
F

º!

*SE

 

such that 

[𝐺¬ª0 + diag(𝑮)]𝑽𝑹 − [𝐵¬ª0 + diag(𝑩) + 𝐸ÅÊ𝑩𝒔𝒉]𝑽𝑰 = 𝟎	 

(7.1) 
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[𝐺¬ª0 + diag(𝑮)]𝑽𝑰 + [𝐵¬ª0 + diag(𝑩) + 𝐸ÅÊ𝑩𝒔𝒉]𝑽𝑹 = 𝟎 

𝐹ï�𝑽𝑹, 𝑽𝑰, 𝑮, 𝑩,𝑷𝑮,𝑸𝑮,𝒗𝒔, 𝒊𝒕𝒙, 𝒔𝒙𝒇𝒎𝒓� = 𝟎 

𝐹Ä(𝑽𝑹, 𝑽𝑰, 𝑮, 𝑩,𝑷𝑮,𝑸𝑮,𝒗𝒔, 𝒊𝒕𝒙, 𝒔𝒙𝒇𝒎𝒓) = 𝟎 

𝑷𝑴𝑰𝑵 < 𝑷𝑮 < 𝑷𝑴𝑨𝑿 

𝑸𝑴𝑰𝑵 < 𝑸𝑮 < 𝑸𝑴𝑨𝑿 

𝑽𝑴𝑰𝑵𝟐 < 𝒗𝒔 < 𝑽𝑴𝑨𝑿𝟐  

𝑩𝑴𝑰𝑵 < 𝑩𝒔𝒉 < 𝑩𝑴𝑨𝑿 

𝒊𝒕𝒙 < 𝑰𝑴𝑨𝑿𝟐  

𝒔𝒙𝒇 < 𝑺𝑴𝑨𝑿𝟐  

Where 𝑏ï* and 𝑐ï* are the cost coefficients corresponding to an 𝑖ZÊ generator, 𝑎ï  represents a fixed 

generation cost, while the operational limits stand for the bounds on generated real and reactive 

powers (𝑷𝑮 and 𝑸𝑮), as well as bus voltage magnitudes and variable shunt device limits (𝒗𝒔 and 

𝑩𝒔𝒉). The last two performance limits, that are additional to the set of constraints defined in 

Chapter 6, correspond to congestion limits depicting the maximum current flows in transmission 

lines and the transformer apparent power limits. It is important to note that the AC-OPF problem 

is solved in order to obtain the grid operating point for a given optimal generation dispatch, and 

hence, there is no need to incorporate the AGC and AVR characteristics yet. These characteristics 

will have to be, however, considered in modeling the contingency scenarios. Finally, the set of 

additional constraints on power system steady-state response 𝐹ï(∙) and 𝐹Ä(∙),	that are also bounded 

by the operational and performance limits, include: 

a) Locally modeled power mismatch equations in terms of conductance and susceptance 

states, as well as the constraints on voltage magnitude of, now, every bus in the network, 

which for 𝑖ZÊbus are given as: 

𝐺*�𝑉¬,*F + 𝑉å,*F � −ý 𝑃ª,T

ºN

TSE

+ ý 𝑃ï,R

º!

RSE

= 0 (7.2) 
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𝐵*�𝑉¬,*F + 𝑉å,*F � +ý𝑄ª,T

ºN

TSE

− 𝑄ï,* = 0 

𝑉¬,*F + 𝑉å,*F − 𝑣Å,* = 0 

b) Transmission line ‘from’ and ‘to’- side, current magnitude constraints that relate the system 

voltages to the congestion limits and can be written for 𝑛ZÊ transmission line 𝜋-model in 

terms of ‘from’ and ‘to’-side real and imaginary voltages (𝑉¬S, 𝑉¬d, 𝑉åS and 𝑉åd) as: 

𝐼¬S,#F �𝑉¬S,#, 𝑉åS,#, 𝑉¬d,#, 𝑉åd,#� + 𝐼åS,#F �𝑉¬S,#, 𝑉åS,#, 𝑉¬d,#, 𝑉åd,#� − 𝑖ZfS,# = 0 

𝐼¬d,#F �𝑉¬S,#, 𝑉åS,#, 𝑉¬d,#, 𝑉åd,#� + 𝐼åd,#F �𝑉¬S,#, 𝑉åS,#, 𝑉¬d,#, 𝑉åd,#� − 𝑖Zfd,# = 0 
(7.3) 

c) Transformer ‘from’ and ‘to’-side, apparent power constraints that relate the system 

voltages to the congestion limits and can be written for 𝑚ZÊ transformer branch model 

[31],[68],[76] in terms of ‘from’ and ‘to’-side real and imaginary voltages (𝑉¬S, 𝑉¬d, 𝑉åS 

and 𝑉åd) as: 

�𝑉¬S,RF + 𝑉åS,RF �Ù𝐼¬S,RF (∙) + 𝐼åS,RF (∙)Ú − 𝑠fÿS,R = 0 

�𝑉¬d,RF + 𝑉åd,RF �Ù𝐼¬d,RF (∙) + 𝐼åd,RF (∙)Ú − 𝑠fÿd,R = 0 
(7.4) 

Lastly, the additional coupling between the network and its adjoint can be added in order to ensure 

the feasibility of the problem; however, this time with greater caution, due to the fact that we need 

to first ensure the solution doesn’t  find the operating point where it is cheaper to “generate” power 

from infeasibility sources than the optimized generator dispatch. Hence, a good pick for the weight 

can be a million times the largest linear cost coefficient from the generator cost objective function. 

With the base AC-OPF problem introduced in (7.1), it is important to emphasize that even 

though it was first formulated over half of a century ago [83]-[84], today’s powerful nonlinear 

solvers cannot robustly obtain the optimum for the problem as it has been traditionally formulated, 

nor do they solve the problem fast enough for control of the grid. Therefore, our first experiment 

considers a sample of ten (10) power flow test cases previously examined in Chapter 6. First, the 

AC-OPF problem is solved within the open source grid simulation and optimization solver 
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MATPOWER 7.0. while considering the 4 existing formulations for modeling the power flow 

response: 

1. Power mismatch formulation in polar coordinates (Polar PQV) [84] 

2. Power mismatch formulation in rectangular coordinates (Rectangular PQV) [68],[79]  

3. Current Injection formulation in polar coordinates (Polar I-V) [68],[79] 

4. Current Injection formulation in rectangular coordinates (Rectangular I-V) [68],[79] 

Next, each of the considered test cases presented in Table 7.1 is initialized for a different pair of 

flat voltage starting conditions with generator real and reactive power set by: 

- A trivial flat start (equal to zero),  

- Values provided within the input file, 

The problem is run within three of the available optimization toolboxes, namely, internal 

MATPOWER – MIPS solver, FMINCON as well as commercial optimization toolbox - KNITRO. 

Finally, the results are compared with the AC-OPF problem defined in terms of generalized 

network formulation for modeling the power grid response that is solved within ECP framework.  

In terms of optimization parameters used, the maximum complementary slackness (CS) 

violation parameter for diode models within ECP is set to 𝜀 = 10PEE, which also represents the 

convergence tolerance that is applied to the ECP circuit (KKT optimality conditions) residual. As 

in the previous experiments performed, all the problems were solved on MacBook Pro 2.9 GHz 

Intel Core i7. Lastly, it is important to emphasize and recall that the gradient of the objective 

function represents an excitation to the adjoint circuit. Moreover, since a quadratic AC-OPF 

objective function can have any values set for its cost coefficients, we further introduced the adjoint 

per unit normalization of the adjoint excitation sources within ECP formulation in order to improve 

the conditioning of the adjoint circuit. Importantly, scaling of the cost function by a positive 

constant doesn’t affect its minima and the accuracy of the problem is preserved, hence we can 

obtain the base-factor that normalizes the objective function as: 

𝑏�Y± = max[max(𝒃𝑮, 2𝒄𝑮)] (7.5) 

 The comparison demonstrating the best-case simulation results obtained for two different 

initialization scenarios within the MATPOWER solver, in reference to the AC-OPF solution 
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obtained within the ECP framework, is presented in Table 7.1. It is important to emphasize that 

the commercial KNITRO optimization toolbox provided the best performance in terms of iteration 

count, as well as that all of the presented results converged to the same optimal solutions that are 

further reported in Table 7.1.  

Table 7.1. Iteration count comparison between the best-case results obtained within MATPOWER by solving the 
AC-OPF problem defined in terms of traditional formulations and GB formulation implemented within ECP solver. 

Notably, the criterion for choosing the best-case results was first the objective function value followed by the 
iteration count performance. Moreover, the reported iteration counts for KNITRO only indicate the full NR 

iterations, and the additional Conjugate Gradient iteration count performed within each of the NR iterations are not 
reported. 

case 

MATPOWER: Flat PQ 
start 

MATPOWER: Input PQ 
start 

ECP solver and 
GB formulation Cost [$/hr.] Iteration 

# Formulation Iteration 
# Formulation Iteration 

# - Flat 
Iteration 
# - Input 

1354pegase 28 Polar IV 24 Polar IV 15 13 74064.2 
2383wp 32 Polar PQV 31 Polar PQV 22 16 1863597.5 
2736sp 23 Polar PQV 22 Polar PQV 19 18 1307998.3 

2869pegase 27 Polar PQV 26 Polar PQV 19 17 133993.5 
3012wp 31 Polar IV 31 Polar IV 24 19 2584033.9 
6468rte 35 Polar IV 37 Polar IV 22 18 87139.7 

9241pegase 56 Polar IV 56 Polar IV 26 20 315902.5 
ACTIVSg10k 80 Polar IV 65 Polar IV 25 20 2488650.0 
ACTIVSg25k 48 Polar PQV 45 Polar PQV 24 25 6019821.2 
ACTIVSg70k 138 Polar PQV 132 Polar PQV 34 39 16538287.9 

As can be seen from Table 7.1, the polar PQV and IV formulations generally performed better 

among the traditional formulations considered within the MATPOWER solver. Most importantly, 

a trend that indicates a dependency of the problem size to the total iteration count is continued as 

in the preliminary results from the previous chapter. Namely, the larger a problem gets, the more 

inequality constraints, and therefore, the larger impact of conservativeness introduced by the 

traditionally used NR step limiting techniques. In contrast, the dependency between the problem 

size and the performance of the solution process is not as strongly indicated for the results obtained 

within the ECP framework, which again demonstrates the advantages of treating each of the NR 

step sizes more independently and based on their physical characteristics. Lastly, it is important to 

highlight that even though the best-case results provide a decent comparison to the generalized 

network (GB) formulation solved within the ECP framework, we can further confirm the large 

variance of the obtained AC-OPF results, both in terms of iteration counts as well as the objective 
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function values, that varied depending on the formulation as well as the optimization toolbox used 

within MATPOWER. 

The second data set that is examined consists of a sample of 10 different network cases 

ranging from 500 to 10k buses that was recently introduced for the Grid Optimization (GO) 

competition sponsored by ARPA-E [76] and used for the initial testing of the competing solution 

methodologies. The more detailed description of the examined GO competition test cases follows: 

Table 7.2. Device specification of examined GO- competition test cases. 

Network 
Model Bus # Gen. # Load # Branch # Transformer # Fixed 

Shunts # 
Switched 
Shunts # 

1 500 90 200 468 131 0 17 
3 793 210 568 769 143 49 50 
6 2000 384 1010 2743 896 32 141 
7 2312 617 1529 2156 857 121 201 
8 3013 865 1793 2836 1290 129 405 
81 3288 379 4236 3421 1455 0 23 
84 4601 408 3501 5135 2180 0 17 
9 4918 1340 3070 4412 2315 246 486 
12 9591 365 6659 10927 4988 0 122 
13 10000 2089 3982 10819 2374 99 434 

For each of the ten provided networks, we have examined three different scenarios that are publicly 

available [85] and correspond to the different network configurations, which thus make a total 

number of examined test cases equal to 30.  

 Furthermore, the basic AC-OPF problem, as defined in (7.1), is solved within the ECP 

framework for each of the 30 test cases modeled by the generalized network (GB) formulation and 

while considering the two different initial conditions: 

- Real-Time initial condition that corresponds to the initial guess resembling a power flow 

solution provided within the input file 

- Offline initial condition that corresponds to the flat voltage start with trivially initialized real 

and reactive generation powers and variable shunt values (equal to zero) 

All of the simulations were performed on a MacBook Pro 2.9 GHz Intel Core i7 for the 

same default parameters that were discussed in the previous experiment. The results demonstrating 
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the iteration count comparisons among the three different network scenarios and the types of 

initializations are presented in Figure 7.1 and Figure 7.2 respectively, while the corresponding 

minimized generation cost values are reported in Table 7.3. 

Table 7.3. Minimized generator dispatch cost values. 

Network 
Model 

Scenario 1 [$/hr.] Scenario 2 [$/hr.] Scenario 3 [$/hr.] 
Real Time Offline Real Time Offline Real Time Offline 

1 24,519.0 24,519.0 6,246.0 6,246.0 116,446.0 116,446.0 
3 901.7 901.7 1,028.9 1,028.9 1,302.9 1,302.9 
6 507,556.5 507,556.5 620,066.0 620,066.0 945,947.0 945,947.0 
7 3,610.0 3,610.0 4,206.0 4,206.0 5,658.6 5,658.6 
8 4,944.5 4,944.5 5,093.1 5,093.1 6,061.3 6,061.3 
81 535,622.5 535,622.5 587,984.8 587,984.8 2,573,922.0 2,573,922.0 
84 777,814.0 777,814.0 777,814.0 777,814.0 1,026,483.0 1,026,483.0 
9 5,060.9 5,060.9 5,206.0 5,206.0 6,236.0 6,236.0 
12 1,009,044.3 1,009,044.3 1,036,114.4 1,036,114.4 1,207,061.0 1,207,061.0 
13 1,193,330.9 1,193,330.9 1,460,350.0 1,460,350.0 2,076,476.0 2,076,476.0 

 
Figure 7.1. AC-OPF iteration count comparisons among the three scenarios of 10 examined GO-competition 

networks obtained within ECP SUGAR for the real time initialization. 

 
Figure 7.2. AC-OPF iteration count comparisons among the three scenarios of 10 examined GO-competition 

networks obtained within ECP SUGAR for the offline initialization. 
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Referring to the AC-OPF results, note that independent of a starting point used to initialize 

the solver, all of the examined problems converged to the same respective optimal solutions. 

Moreover, as expected, the better initial starts consequently result in more efficient solution 

processes in terms of iteration counts. Most importantly, however, the problem efficiency is not as 

dependent on its size as it is the “conditioning” of the optimized networks. For instance, it can be 

verified that most of the cases that were considered “more difficult to converge” contain 

unreasonably small series line impedances that almost approach the models of “superconductive” 

transmission lines, which is not a physical reality. In terms of a matrix problem, the small line 

impedances result in the huge conductance values that are stamped into the admittance matrix. 

This can be also explained from the perspective of Ohm’s Law, which indicates the sensitivity of 

current flowing through the large conductance branch to a small voltage change, particularly if 

that current is limited, as in the case of optimal power flow problems.  

The insertion of a small series impedance is well known in power flow modeling for use 

in “measuring” the branch current, but this is primarily due to the lack of an ideal ammeter model, 

namely, a zero valued voltage source, which is applied for circuit simulation problems in SPICE 

and in general. Consequently, a small line impedance can prolong the convergence process, as well 

as cause the oscillations in corner cases, where the two controlled devices connected by a 

“superconductive” transmission line may start oscillating throughout the NR iterations. This 

further highlights the advantage of a physical model for the optimization problem that can be now 

utilized to allow for more efficient handling of such non-physical corner cases.  

Finally, with the decreased dependency between a solution process and the problem size 

that is achieved by embedding the problem physical characteristics within the respective solution 

methodologies, we next devote our focus towards analyzing the impact of the base AC-OPF 

solutions to the robustness of grid operation during contingencies scenarios. We further propose a 

framework for ensuring the grid feasibility by means of solving the Security Constrained AC 

Optimal Power flow problem. 
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7.2. Towards a Fully Secured Optimal Power Dispatch – Security 
Constrained Optimal Power Flow problem (SC AC- OPF) 

With preliminary results indicating the robustness and efficiency of the proposed ECP 

framework in solving for the basic optimal power dispatch, as well as the realistic power flows, 

the question of analyzing the robustness of grid operating point remains. Namely, can we use the 

feasibility analysis postulated and solved in Chapter 6 to examine how many cases are “truly” 

infeasible given the basic optimal power dispatch. 

Toward this goal, for our next experiment, we consider the sample of 30 GO-competition 

test cases for which basic power dispatch was determined as described in the previous section. We 

run the realistic power flow analysis from (6.14) with addition of congestion constraints on a set 

of contingency scenarios that were provided to analyze the robustness of the obtained generation 

dispatches. All of the simulations were performed for the same default parameters that were used 

in the previous experiments with one important difference. Considering the large amount of 

simulations that are fully parallelizable, as well as the increasing scale of these optimization 

problems, the results are obtained using a commercial version of SUGAR-ECP cloud-based 

platform, courtesy of Pearl Street Technologies. The results are presented in Table 7.4. 

Table 7.4. Quantifying the number of “truly” infeasible contingency scenarios at the base AC-OPF power dispatch 
in reference to the total number of contingencies considered for each of the examined GO–cases given. 

Network 
Model 

Scenario 1  Scenario 2 Scenario 3  
# of Infeasible 
Contingencies 

# of Infeasible 
Contingencies 

# of Infeasible 
Contingencies 

1 22/386 25/407 65/416 
3 9/86 19/90 16/97 
6 4/2594 31/2608 37/2618 
7 34/953 35/973 34/953 
8 3/1959 9/1957 42/1968 
81 73/4650 87/4649 76/4649 
84 48/7075 48/7075 25/7084 
9 17/5065 17/5066 54/5085 
12 62/4377 62/4377 66/4377 
13 70/9519 370/9519 421/9622 

As can be seen from Table 7.4, and in contrast to the previously performed realistic power 

flow simulations in Chapter 6, almost all of the considered networks exhibited the cases of 
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infeasibility within a number (~4% in average) of the examined contingency scenarios. 

Importantly, it can be verified that most of the infeasible cases correspond to the loss of a generator. 

This intuitively makes sense considering that a case of a generator outage occurs in an area with 

low percent of generation units available. Moreover, due to the strictly enforced line congestions 

in the analysis performed, the demand in the affected area may not be satisfied, thus causing the 

infeasibilities to appear. 

 Finally, enforcing the full set of realistic power grid operational and performance limits 

significantly decreases the solution space in terms of the problem feasibility, and hence results in 

non-robust operating points when determined by simply considering the basic AC-OPF problem. 

To further improve to the robustness, however, requires consideration of all of the respective 

contingency scenarios within the optimization problem.  

In terms of the equivalent circuit framework, one way of determining a more robust optimal 

dispatch set point is by coupling the ECP representation of a base AC-OPF problem with the 

corresponding circuits that model the realistic power flow scenarios during the considered 

contingencies, as presented in Figure 7.3. Mathematically, this equates to appending of the 

additional  constraints defined in (6.14) for each of the contingency scenarios to the base AC-OPF 

problem in (7.1). Moreover, these constraints now define the network responses during 

contingencies and are further coupled with the base case set of governing equations through the 

generator real power and voltage variables. Notably, the solution to such SC AC-OPF problem 

now provides the operating set point that takes the contingency cases into consideration. 

 

Figure 7.3. Circuit representation of the proposed way for solving the SC AC-OPF problem. 
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of a 10k bus network model 13 from the GO-competition dataset contains approximately 171k 

variables. The total number of variables corresponding to a particular SC AC-OPF problem, as 

discussed above, will then correspond to the size of the base case with addition to its size multiplied 

by the number of contingencies. Therefore, if we only consider the contingency cases that are 

infeasible for a given basic AC-OPF dispatch in Scenario 1, the number of variables rises to ~72 

million. However, such an obtained operating point does not ensure that some of the other 

contingency case will not become infeasible for the new optimal set point, particularly considering 

that the total set of contingency cases result in an incredibly large ~1.6 billion variable problem. 

Most importantly, the circuit simulation problems approaching this, and the corresponding 

matrix sizes that exhibit the Bordered Block Diagonal (BBD) form shown in Figure 7.4, are 

performed today [17] with distributed sparse LU solver implementations. A schematic diagram of 

our proposed system is presented in Figure 7.5. 

 
Figure 7.4. The Bordered Block Diagonal (BBD) sparsity pattern of Network 1 model with the addition of 10 

contingency circuits. 
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Figure 7.5. The idea behind the SUGAR-ECP approach developed by Pearl Street Technologies.  

The distributed matrix computation, however, is not considered to fall under the scope of 

this thesis, and herein we only seek to analyze the dependency between the increase of problem 

size within the SC AC-OPF formulation and the developed set of ECP algorithms. Hence, a set of 

previously examined GO competition test cases is considered again, this time with addition of the 

first 10 contingency cases. The SC AC-OPF problem is formulated as an ECP, initialized in the 

same way as was done for the base AC OPF case, and further solved on a MacBook Pro 2.9 GHz 

Intel Core i7 for the same default parameters from the previous experiments. The simulation results 

depicting the required NR iteration counts are presented in Figure 7.6 and Figure 7.7. 

 
Figure 7.6. SC AC-OPF (first 10 contingency cases) iteration count comparisons among the three scenarios of 10 

examined GO-competition networks obtained within ECP for the Real-time initialization. 
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Figure 7.7. SC AC-OPF (first 10 contingency cases) iteration count comparisons among the three scenarios of 10 
examined GO-competition networks obtained within ECP for the Offline initialization. 

In referring to the presented preliminary results in Figure 7.6 and Figure 7.7, the iteration 

counts closely match the ones obtained while running the basic AC-OPF problems, and further 

follow the same trends as discussed in the previous section. The better initial start results in a more 

efficient solution process, while the flat start initialization does not represent significant additional 

burden on the efficiency in terms of iteration count. These preliminary results further highlight the 

aforementioned advantages regarding an ECP set of algorithms; namely that the efficiency of the 

solution process is more dependent on the network conditioning than the problem size. In the case 

of SC AC-OPF in particular, the additional constraints correspond to the same network under 

different scenarios, and therefore, the total iteration count should not significantly vary from the 

ones obtained by solving the base case only. 

In conclusion, this chapter provides the additional insight into the realistic power flow 

analyses and the optimal generation dispatch problems in particular. As indicated by the 

preliminary results, utilizing the problem characteristics from the perspective of equivalent circuits 

and the laws of physics provides one with a complete picture on the optimization problem and its 

solution process. Furthermore, with ECP set of algorithms introduced, the relationship between 

the solution process and the problem size is not as strongly dependent, which with the efficient 

implementation of large distributed matrix solvers, can facilitate scalability to problems of over 1 

billion variables, such as those presently accommodated in the circuit simulation field. 
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Chapter 8 Conclusions and Future Work 

The field of mathematical optimization reached a steady-state in terms of progress two 

decades ago, but is presently being explored possibly more than ever. Similarly, circuit simulation 

research plateaued after the development of SPICE [11]-[12] and its numerous derivatives and 

advancements [13]-[16], but has seen a recent resurgence as well for solving problems on the scale 

of billions of nodes. Circuit simulation has been such a longstanding success because of how it 

utilized the physical properties of the problem to produce powerful solution methodologies that 

scale to extremely large-size nonlinear systems. In this thesis, inspired by the solution 

methodologies developed within the circuit simulation community, as well as the indications 

provided by NFL theorems [9], we have introduced a generic Equivalent Circuit Programming 

(ECP) framework for continuous network optimization problems.  

The chapters of this thesis were structured within the two main parts as follows. The first 

part established the required theory and algorithms that are generally applicable to any continuous 

network optimization problem. To that effect, Chapter 3 generalized the modeling of a network 

steady-state response by introducing an additional set of network states, namely admittance state 

variables, that are added to the system model to constrain the particular components of network 

response required. The chapter concluded with the extension of generalized network steady-state 

modeling to the Adjoint circuit theory, a linear version of which is presently utilized within SPICE 

for noise analyses [34]-[36].  

With the generalization of steady-state response modeling and its respective representation 

within the Adjoin circuit domain, Chapter 4 connected the dots between the network theory and 

the fundamentals of mathematical optimizations. It demonstrated that the Adjoint circuits represent 

a fundamental connection between circuit simulation and the optimality conditions of a network 

optimization problem. Notably, a new physical perspective that can be further utilized to obtain 

the complete understanding of physical characteristics behind the problem optimality conditions 
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was established. Hence, the solution process of a network optimization can be now seen as 

simulating the response of a circuit consisting of a joint equivalent circuit model and its excited 

adjoint. Further introduction of coupling between them ensures the simulation feasibility and 

provides the sparse locations of infeasibilities within the network. Moreover, if the adjoint circuit 

remains passive for all small perturbations around the obtained operating point, it was shown that 

the point also represents an optimal solution to the simulated ECP problem. 

Followed by the establishment of fundamental connections, as well as mapping of a 

network optimization to the circuit simulation problem, Chapter 5 introduced a new set of 

simulation techniques for solving ECP optimization problems. These techniques were inspired by 

the circuit simulation methods developed within SPICE, and were further merged with aspects of 

the optimization solution methodologies that are utilized within the existing state-of-art 

algorithms. Therefore, newly introduced techniques such as Dynamical Diode Limiting, or 

Optimal Limiting algorithms can be now used to eliminate the existing homotopy based Interior 

Point Methods while ensuring the more robust, scalable and efficient solution processes. 

The second part of this thesis makes the developed theory behind ECP and respective sets 

of simulation algorithms useful and focuses on the applications found within the power system 

simulation and optimization problems. Chapter 6 demonstrated that a power grid steady-state 

response modeled by a power flow problem can be, without loss of generality or accuracy, 

represented in terms of generalized network theory introduced in Chapter 3. Hence it is fully 

applicable and can be efficiently solved within the ECP framework. This was demonstrated by the 

preliminary results that indicated the superior convergence properties from an arbitrary initial 

point, as well as the scalability and efficiency in comparison to the existing formulations. Most 

importantly, building on the circuit representation of a power flow problem and its incorporation 

within a circuit simulation ECP framework within SUGAR, Chapter 6 concluded by demonstrating 

that a more realistic power flow solution can now take into consideration the operational limits 

and respective device characteristics that make a power flow problem more of an optimization 

than a simulation. The preliminary power flow results obtained within the ECP framework 

demonstrated the significant improvements in runtime efficiency in reference to the existing 

optimization state-of-art algorithms while preserving the robustness. We further postulated that 

the large-scale power flow “simulation” within SUGAR can now efficiently incorporate the 
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realistic operational constraints, as well as the highly nonlinear grid device characteristics, while 

producing a feasible power flow solution. 

Finally, the thesis concluded with consideration of the electrical power dispatch problems 

solved within the AC-OPF and Security Constrained AC-OPF analyses. It was demonstrated that 

in addition to overperforming the existing state-of-art formulations and optimization toolboxes, 

particularly as the scale of a problem increases, the introduced physical characteristics embedded 

within a set of ECP techniques significantly reduces the dependency between an optimization 

problem size and the efficiency in terms of iteration count. More notably, preliminary results 

indicated that the prolonged iteration processes are shown to be more likely caused by the 

conditioning of optimized networks than its size in term of variable count. 

 In terms of the guidelines for the future work and further extensions of the proposed ECP 

framework to the other power system optimization problems, as well as to other fields of 

engineering where the ECP framework can be applied, it is important to highlight the following. 

The results and problems considered in the second part of the thesis represent a small number of 

possible applications, even just within the domain of power system optimization problems. First, 

there is a huge potential for advancement of static, as well as dynamic, state estimation (SE) 

problems. Furthermore, as was recently demonstrated in [86]-[88], power system measurement 

data can be naturally included within the circuit-based framework, which thereby makes the SE 

problems corresponding to a fully observable grid trivial to solve; with inclusion of both Phasor 

Measurement units (PMU) and Remote Terminal Units (RTU) components. SE exploration is also 

a path toward solving the problems of bad data detection and networks that are only partially 

observable, where the additional knowledge of the complete physical characteristics provided by 

an ECP framework can be of great benefit. 

Another potential direction for research is toward incorporation of more detailed models 

within the power flow simulation and optimization problems. Notably, the ECP framework can 

efficiently incorporate nonlinear device characteristics such as the ones used for modeling AGC 

and AVR grid responses. To that end, the feasibility-based modeling methodology introduced in 

Chapter 6 can be further extended to include the more realistic generation plant models and remote 

voltage control devices that presently introduce the most challenges within the power flow 

analysis. A third direction for further research is to address problems of size and complexity that 



Conclusions and Future Work 
 

 

126 

previously been considered unimaginable. This includes Multi-Periodic analyses such as SC AC-

OPF, as well as the introduction (if needed) of integer variables within the ECP framework.  

In terms of other fields of engineering, the ECP framework can accommodate any network 

optimization problem, and a natural direction for exploration would be electronic circuit design 

problems. Since any design problem is essentially an optimization problem, “simulating” the 

circuits to obtain the optimal design values and parameters is a seemingly promising direction. 

Lastly, exploring the embedding of physical properties of a problem within the mathematical 

optimizations in general, if applicable, could advance optimization methods research dramatically.  
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