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Abstract

There is a famous tale in computer vision: Once, a graduate student asked the famous
computer vision scientist Takeo Kanade: “What are the three most important problems
in computer vision?” Takeo replied: “Correspondence, correspondence, correspondence!”
Indeed, even for the most commonly applied Convolutional Neural Networks (ConvNets),
they are internally learning representations that lead to correspondence across objects or
object parts. The way these networks learn is via human annotations on millions of static
images. For example, humans will label images as dog, car, etc. However, this is not how
we humans learn. The visual system of an infant develops in a dynamic and continuous
environment without using semantics until much later in life.

In this thesis, I will argue that we need to go beyond images and exploit the massive
amount of correspondence in videos. In videos, we have millions of pixels linked to each
other by time. I will discuss how to learn correspondence from continuous observations in
videos without any human supervision. Once the correspondence is given, it can be utilized
as supervision in training the ConvNets, eliminating the need for manual labels. Besides
supervision, capturing long-range correspondence is also the key to video understanding as
well as interaction reasoning. The effectiveness of these ideas will be demonstrated on tasks
including object recognition, tracking, action recognition, affordance and physical property
estimation.
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Chapter 1

Introduction

In recent years, the field of computer vision has been completely transformed by the success
of deep neural networks. A key ingredient behind this success is human annotations on
millions of static images. Unfortunately, this key ingredient also turns out to be the biggest
bottleneck: the number of labels is limited by the high cost of human labor. As computer
vision works towards more difficult and structured Al tasks, it becomes more challenging
for humans to provide training supervision. Given this situation, we ask the question: is
there any information in the data we have not fully utilized to guide learning?

To solve this problem, we need to go beyond images and exploit the structure in videos
across space and time. The key is that our visual world is continuous and smoothly-varying
over time. This leads to the spatio-temporal stability in videos, which is thought to play an
important role in the development of biological vision. For example, Wood [354] performed
studies on newborn chicks in different controlled environments, and observed that when
the chicks were raised in a visual environment where the object is not temporally smooth,
their object recognition abilities were severely impaired.

Figure 1.1: Visual correspondence between pixels in time.

How do we utilize this stability and continuity in the visual world to help us in learning
visual representations? In this thesis, we focus on the visual correspondence in time. There
is unlimited amount of correspondence in videos: Since the visual world is continuous in the
video, there is inherent correspondence between observations in different time steps. These
observations can be represented by pixels (Figure 1.1), objects or scenes. Correspondence is
the glue that connects disparate visual percepts into persistent entities. In fact, finding the



correspondence is one of the first capabilities that develops in infants'.

Inspired by these observations, we have explored correspondence for learning visual
representations in three directions in this thesis: (i) I will first discuss how to learn corre-
spondence and utilize correspondence as the supervisory signal in training deep networks,
which eliminates the need for human annotations; (ii) Besides using correspondence for
supervision, we can explicitly model the correspondence in videos via relationship reasoning
for human action recognition; (iii) Going beyond recognition, correspondence is also the key
for understanding common sense including the affordance of the scene and the physical
properties of objects. I will explain these three directions in the following sections.

1.1 Self-supervised Learning

To break the limitations of human supervision, we have been working on utilizing the
correspondence as the supervisory signals to train deep networks. We will first introduce how
to learn correspondence automatically from the videos without human supervision [347].
Once we have the correspondence, we can perform visual tracking to obtain pairs of object
patches with different views and perform similarity learning for deep representations [341,
345].

In Chapter 2, we developed a self-supervised framework for learning deep spatial features
that enable finding dense correspondence between frames separated far in time (i.e., long-
range flow). Note that this is extremely difficult for human to label, because annotating
which pixel in one frame corresponds to a pixel in another frame is labor intensive. Our
model learns to track spatial features back and forth through time, relying on the inherent
cycle-consistency of events in time for self-supervision (i.e., consistency of the starting query
and ending result). The acquired representations can be applied across a wide range of visual
correspondence tasks (e.g., tracking segmentation and pose) without any further training on
the target dataset. This is a fundamental component in this thesis.

Once we learn to track and find correspondence
in videos, we can use the correspondence as the su-
pervisory signal to train deep networks. In Chapter 3,
we download 100K YouTube videos and obtain 4 mil-
lion tracks of object patches from them. With these
visual tracks, we train an AlexNet architecture net-
work with a ranking loss function: two patches in the
same track should have similar deep feature repre-
sentations given that they might be the same object
with different views or deformations. Surprisingly, even without any labels, we observe that
semantics actually emerge after training with this ranking objective. This is one of the first
works showing that we can train a ConvNet with a standard architecture in a self-supervised
manner. Moving ahead, we have also worked on combining the tracking signal with another
self-supervised signal in Chapter 4. Our results show that the self-supervised representation
can not only be transferred to object detection tasks, but also perform better than supervised
learning (with human annotations) in 3D understanding. These observations suggest the
great potential of the generalization ability of self-supervised representations.

1h’ctp: / /www.aoa.org/patients-and-public/good-vision-throughout-life / childrens-vision/infant-vision-
birth-to-24-months-of-age



1.2 Video Understanding

Most current approaches for visual tasks feed all the raw data into a simple deep network
and attempt to learn everything (including the structure) implicitly. While this has brought
us many successes, this thesis has shown that explicit reasoning through correspondence in
videos [335,338,344] leads to improved performance in video understanding.

In neural networks, both convolutional and recurrent operations can only process one
local neighborhood at a time. In order to overcome this, we have introduced non-local
operations as neural network modules in Chapter 5, which capture the long-range depen-
dencies between corresponding and correlated patterns in videos. Specifically, this non-local
operation updates the feature at a position as a weighted sum of the related or similar
features at all positions across space and time. By embedding the non-local operations in
neural networks (namely, Non-local Neural Networks), the model achieved state-of-the-art
performance in the task of human action recognition. Motivated by this work, in Chapter 6,
we have also built a method that uses a space-time region graph, which takes object regions
as nodes and connects them across space and time. By reasoning with graph neural networks
on object level concepts in an explicit way, it not only leads to better performance but also
makes the model more explainable.

In Chapter 7, we argue that the essence of an action lies in the changes it brings to the
environment. For example, the action of “kicking a ball” is defined by the state changes of
the ball caused by the player. Thus, we model action as the transformation from the state of
environment before the action (precondition) to the state after the action occurred (effect).
In the experiments, we show state-of-the-art performance on action recognition tasks. More
interestingly, the model can also be applied to visual prediction task: Given the precondition
state and the transformation (action), the model can retrieve the corresponding video of the
effect state which is visually consistent with the precondition state.

1.3 Interaction Reasoning

One of the long-term goals of computer vision is to integrate it with robotics. This requires
us to learn a intellectual system which not only is able to perceive the world, but also
interact with the world. In this thesis, I will introduce my efforts on understanding and
reasoning with visual interaction. Specifically, I have focused on designing neural networks
to understand scene affordance [337] and the physical properties of the objects [377], with
visual correspondence as the key component.

In Chapter 8, we study the scene affordance. Af-
fordance is first proposed by James J. Gibson in late
seventies, where he describes affordances as opportu-
nities for interactions in a scene or environment. We
design a system to watch TV sitcoms and find cor-
respondence between the frames of the same scene
but across different videos. We perform human pose
estimation and collect all the human poses appeared
in the same scene together. By collecting this data,
we can train a network to understand the interaction between the human poses and the
scene.




Besides observing the interaction between humans and scenes. We also propose to
understand the physical properties of the objects by watching the interaction between two
different objects in Chapter 9. We train a predictive neural network model from the given
interaction videos. By creating a bottleneck in the network, we show that we can learn
disentangled representations for different physical properties. The key of training this
predictive model is: instead of directly predicting the pixels in the future frame, we predict
the correspondence (represented by optical flow) between the current frames and the future
frame.

Following is the relevant publication list for each chapter.

1. Chapter 2 - Learning Correspondence from the Cycle-consistency of Time [347] (CVPR
2019)

2. Chapter 3 - Unsupervised Learning of Visual Representations using Videos [341] ICCV
2015)

3. Chapter 4 - Transitive Invariance for Self-supervised Visual Representation Learn-
ing [345] (ICCV 2017)

Chapter 5 - Non-local Neural Networks [338] (CVPR 2018)
Chapter 6 - Videos as Space-Time Region Graphs [344] (ECCV 2018)
Chapter 7 - Actions ~ Transformations [335] (CVPR 2016)

N o e

Chapter 8 - Binge Watching: Scaling Affordance Learning from Sitcoms [337] (CVPR
2017)

8. Chapter 9 - Interpretable Intuitive Physics Model [377] (ECCV 2018)
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Chapter 2

Learning Correspondence from
the Cycle-consistency of Time

Input Pose

Input Texture (e) Texture Propagation

Figure 2.1: We propose to learn a representation for visual correspondence from raw video.
Without any fine-tuning, the acquired representation generalizes to various tasks involving
visual correspondence, allowing for propagation of: (a) Multiple Instance Masks; (b) Pose;
(c) Semantic Masks; (d) Long-Range Optical Flow; (e) Texture.

It is an oft-told story that when a young graduate student asked Takeo Kanade what are
the three most important problems in computer vision, Kanade replied: “Correspondence,
correspondence, correspondence!” Indeed, most fundamental vision problems, from optical
flow and tracking to action recognition and 3D reconstruction, require some notion of
visual correspondence. Correspondence is the glue that links disparate visual percepts into
persistent entities and underlies visual reasoning in space and time.

Learning representations for visual correspondence, from pixel-wise to object-level,
has been widely explored, primarily with supervised learning approaches requiring large
amounts of labelled data. For learning low-level correspondence, such as optical flow,
synthetic computer graphics data is often used as supervision [65,133,247,299], limiting



Figure 2.2: A Cycle in Time. Given a video, tracking along the sequence formed by a cycle
in time can be self-supervised: the target is simply the beginning of the cycle. The yellow
arrow between the start and end represents the differentiable learning signal.

generalization to real scenes. On the other hand, approaches for learning higher-level seman-
tic correspondence rely on human annotations [117,312,334], which becomes prohibitively
expensive at large scale. In this work, our aim is to learn representations that support reason-
ing at various levels of visual correspondence (Figure 2.1) from scratch and without human
supervision.

A fertile source of free supervision is video. Because the world does not change abruptly,
there is inherent visual correspondence between observations adjacent in time. The problem
is how to find these correspondences and turn them into a learning signal. In a largely
static world observed by a stationary camera, such as a webcam trained on the Eiffel Tower,
correspondence is straightforward because nothing moves and capturing visual invariance
(to weather, lighting) amounts to supervised metric learning. In the dynamic world, how-
ever, change in appearance is confounded by movement in space. Finding correspondence
becomes more difficult because capturing visual invariance now requires learning to track,
but tracking relies on a model of visual invariance. This chapter proposes to learn to do both
simultaneously, in a self-supervised manner.

The key idea is that we can obtain unlimited supervision for correspondence by tracking
backward and then forward (i.e. along a cycle in time) and using the inconsistency between
the start and end points as the loss function (Figure 2.2). We perform tracking by template-
matching in a learned deep feature space. To minimize the loss —i.e. to be cycle-consistent —
the model must learn a feature representation that supports identifying correspondences
across frames. As these features improve, the ability to track improves, inching the model
toward cycle-consistency. Learning to chain correspondences in such a feature space should
thus yield a visual similarity metric tolerant of local transformations in time, which can then
be used at test-time as a stand-alone distance metric for correspondence.

While conceptually simple, implementing objectives based on cycle-consistency can be
challenging. Without additional constraints, learning can take shortcuts, making correspon-
dences cycle-consistent but wrong [395]. In our case, a track that never moves is inherently
cycle-consistent. We avoid this by forcing the tracker to re-localize the next patch in each
successive frame. Furthermore, cycle-consistency may not be achievable due to sudden
changes in object pose or occlusions; skip-cycles can allow for cycle-consistency by skipping
frames, as in Figure 2.3 (right). Finally, correspondence may be poor early in training, and
shorter cycles may ease learning, as in Figure 2.3 (left). Thus, we simultaneously learn from
many kinds of cycles to induce a natural curriculum and provide better training data.
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Figure 2.3: Multiple Cycles and Skip Cycles. Cycle-consistency may not be achievable due
to sudden changes in object pose or occlusions. Our solution is to optimize multiple cycles
of different lengths simultaneously. This allows learning from shorter cycles when the full
cycle is too difficult (left). This also allows cycles that skip frames, which can deal with
momentary occlusions (right).

The proposed formulation can be used with any differentiable tracking operation, pro-
viding a general framework for learning representations for visual correspondence from
raw video. Because the method does not rely on human annotation, it can learn from the
near infinite video data available online. We demonstrate the usefulness of the learned
features for tasks at various levels of visual correspondence, ranging from pose, keypoint,
and segmentation propagation (of objects and parts) to optical flow.

2.1 Background

Temporal Continuity in Visual Learning. Temporal structure serves as a useful signal for
learning because the visual world is continuous and smoothly-varying. Spatio-temporal
stability is thought to play a crucial role in the development of invariant representations in
biological vision [196,354,355,378]. For example, Wood [354] showed that for newborn chicks
raised in a visual world that was not temporally smooth, object recognition abilities were
severely impaired. Computational approaches for unsupervised learning have sought to
leverage this continuity, such as continuous transformation learning [74,322], “slow” feature
learning [141,353,403] and information maximization between neighbouring patches in
time [313]. Our work can be seen as slow feature learning with fixation, learned end-to-end
without supervision.

Self-supervised Representation Learning from Video. Learning representations from video
using time as supervision has been extensively studied, both as future prediction task [95,215,
219,290] as well as motion estimation [2,141,199,209,309]. Our approach is most related to
the methods of Wang et al. [342,346] and Pathak et al. [234], which use off-the-shelf tools for
tracking and optical flow respectively, to provide supervisory signal for training. However,
representations learned in this way are inherently limited by the power of these off-the-shelf
tools as well as their failure modes. We address this issue by learning the representation and
the tracker jointly, and find the two learning problems to be complementary. Our work is
also inspired by the innovative approach of Vondrick et al [319] where video colorization is
used as a pretext self-supervised task for learning to track. While the idea is very intriguing,
in Section 2.3 we find that colorization is a weaker source of supervision for correspondence
than cycle-consistency, potentially due to the abundance of constant-color regions in natural
scenes.



Tracking. Classic approaches to tracking treat it as a matching problem, where the goal is to
find a given object/patch in the next frame (see [66] for overview), and the key challenge is
to track reliably over extended time periods [1,151,270,356]. Starting with the seminal work
of Ramanan et al. [246], researchers largely turned to “tracking as repeated recognition”,
where trained object detectors are applied to each frame independently [5,117,152,194,312,
334,362]. Our work harks back to the classic tracking-by-matching methods in treating it as
a correspondence problem, but uses learning to obtain a robust representation that is able to
model wide range of appearance changes.

Optical Flow. Correspondence at the pixel level - mapping where each pixel goes in the next
frame — is the optical flow estimation problem. Since the energy minimization framework
of Horn and Schunck [128] and coarse-to-fine image warping by Lucas and Kanade [213],
much progress has been made in optical flow estimation [20, 65, 133,223, 247,298, 299].
However, these methods still struggle to scale to long-range correspondence in dynamic
scenes with partial observability. These issues have driven researchers to study methods
for estimating long-range optical flow [19,193,251,252,257,265]. For example, Brox and
Malik [19] introduced a descriptor that matches region hierarchies and provides dense and
subpixel-level estimation of flow. Our work can be viewed as enabling mid-level optical flow
estimation.

Mid-level Correspondence. Given our focus on finding correspondence at the patch level,
our method is also related to the classic SIFT Flow [206] algorithm and other methods for
finding mid-level correspondences between regions across different scenes [107,156,394].
More recently, researchers have studied modeling correspondence in deep feature space [110,
157,182,254,255,310]. In particular, our work draws from Rocco et al. [254,255], who propose
a differentiable soft inlier score for evaluating quality of alignment between spatial features
and provides a loss for learning semantic correspondences. Most of these methods rely
on learning from simulated or large-scale labeled datasets such as ImageNet, or smaller
custom human-annotated data with narrow scope. We address the challenge of learning
representations of correspondence without human annotations.

Forward-Backward and Cycle Consistency. Our work is influenced by the classic idea of
forward-backward consistency in tracking [1,151,270,356], which has long been used as
an evaluation metric for tracking [151] as well as a measure of uncertainty [1]. Recent
work on optical flow estimation [140, 217,222, 315, 349] also utilizes forward-backward
consistency as an optimization goal. For example, Meister et al. [222] combines one-step
forward and backward consistency check with pixel reconstruction loss for learning optical
flows. Compared to pixel reconstruction, modeling correspondence in feature space allows
us to follow and learn from longer cycles. Forward-backward consistency is a specific case
of cycle-consistency, which has been widely applied as a learning objective for 3D shape
matching [132], image alignment [394,395,397], depth estimation [92,379,393], and image-to-
image translation [7,399]. For example Zhou et al. [395] used 3D CAD models to render two
synthetic views for pairs of training images and construct a correspondence flow 4-cycle. To
the best of our knowledge, our work is the first to employ cycle-consistency across multiple
steps in time.

2.2 Approach

An overview of the training procedure is presented in Figure 2.4(a). The goal is to learn a
feature space ¢ by tracking a patch p; extracted from image I; backwards and then forwards



O]
30x80 af: ex10x10

ol ex10x10
" B‘ @ ‘_'
| reshape | meale Bllmear
240x240 ? ‘)Uﬂx Tmmfonn Sampler

7_'
Iy

Figure 2.4: Method Overview. (a) On the left: During training, the model learns a feature
space encoded by ¢ to perform tracking using tracker 7. By tracking backward and then
forward, we can use cycle-consistency to supervise learning of ¢. Note that only the initial
patch p; is explicitly encoded by ¢; other patch features along the cycle are obtained by
localizing image features. (b) On the right: We show one step of tracking back in time from ¢
to t — 1. Given input image features z/_, and query patch features 27, 7 localizes the patch

x}_, in z!_,. This operation is performed iteratively to track along the cycle in (a).

in time, while minimizing the cycle-consistency loss ly (yellow arrow). Learning ¢ relies
on a simple tracking operation 7, which takes as inputs the features of a current patch
and a target image, and returns the image feature region with maximum similarity. Our
implementation of 7 is shown in Figure 2.4(b): without information of where the patch
came from, 7 must match features encoded by ¢ to localize the next patch. As shown in
Figure 2.4(a), 7 can be iteratively applied backwards and then forwards through time to
track along an arbitrarily long cycle. The cycle-consistency loss lg is the euclidean distance
between the spatial coordinates of initial patch p; and the patch found at the end of the cycle
in I;. In order to minimize /g, the model must learn a feature space ¢ that allows for robustly
measuring visual similarity between patches along the cycle.

Note that 7 is only used in training and is deliberately designed to be weak, so as to place
the burden of representation on ¢. At test time, the learned ¢ is used directly for computing
correspondences. In the following, we first formalize cycle-consistent tracking loss functions
and then describe our architecture for mid-level correspondence.

2.21 Cycle-Consistency Losses

We describe a formulation of cycle-consistent tracking and use it to succinctly express loss
functions based on temporal cycle-consistency.

Recurrent Tracking Formulation

Consider as inputs a sequence of video frames I;_y.; and a patch p; taken from I;. These

pixel inputs are mapped to a feature space by an encoder ¢, such that #! , ., = ¢(I;_.;) and
p_

zy = ¢(pt)-

Let 7 be a differentiable operation x!

x 2 + 2, where s and t represent time steps. The

role of 7 is to localize the patch features 7P in image features x! that are most similar to 7.

We can apply 7T iteratively in a forward manner i times from ¢t — i to ¢t — 1:
Ty, a?) = Ty, T(xp g, T (w_,2"))
By convention, the tracker 7 can be applied backwards i times from time ¢t — 1 to ¢ — 4

T(ii) (xtI—lv xP) = T(ItI—iv T(z{—i+17 "'T(ItI—lv zP)))

10

h(")

transpose.
¢ .‘
g :t,’,,: cx30x30



Learning Objectives

The following learning objectives rely on a measure of agreement ly(z7, 2} ) between the
initial patch and re-localized patch (defined in Section 2.2.2).

Tracking: The cycle-consistent loss £j , is defined as

;ong
;:ong = le (xi)’ TO) ($1{7i+1, T(_1) (.17{71, l‘f)))

The tracker attempts to follow features backward and then forward i steps in time to re-arrive
to the initial query, as depicted in Figure 2.4(a).

Skip Cycle: In addition to cycles through consecutive frames, we also allow skipping
through time. We define the loss on a two-step skip-cycle as £%;; :
ikip =1y (:L‘f, T(${7 T(.’E,{,i, :Ef)))

This attempts longer-range matching by skipping to the frame i steps away.

Feature Similarity: We explicitly require the query patch 2} and localized patch
T(zl_;,27) to be similar in feature space. This loss amounts to the negative Frobenius
inner product between spatial feature tensors:

‘Cizm = 7<I;f7 T(xtl—iv 1’?»

In principle, this loss can further be formulated as the inlier loss from [255]. The overall
learning objective sums over the k possible cycles, with weight A = 0.1:

k
‘C = Z ‘Ciim + )‘Eikip + )“C?ong'
i=1

2.2.2 Architecture for Mid-level Correspondence

The learning objective thus described can be used to train arbitrary differentiable tracking
models. In practice, the architecture of the encoder determines the type of correspondence
captured by the acquired representation. In this work, we are interested in a model for
mid-level temporal correspondence. Accordingly, we choose the representation to be a
mid-level deep feature map, coarser than pixel space but with sufficient spatial resolution to
support tasks that require localization. An overview is provided in Figure 2.4(b).

Spatial Feature Encoder ¢

We compute spatial features with a ResNet-50 architecture [114] without res; (the final 3
residual blocks). We reduce the spatial stride of res, for larger spatial outputs. Input frames
are 240 x 240 pixels, randomly cropped from video frames re-scaled to have min(H, W) = 256.
The size of the spatial feature of the frame is thus 30 x 30. Image patches are 80 x 80,
randomly cropped from the full 240 x 240 frame, so that the feature is 10 x 10. We perform
l2 normalization on the channel dimension of spatial features to facilitate computing cosine
similarity.
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Differentiable Tracker T

Given the representation from the encoder, we perform tracking with 7. As illustrated in
Figure 2.4(b), the differentiable tracker is composed of three main components.

Affinity function f provides a measure of similarity between coordinates of spatial features

xf and xP. We denote the affinity function as f(z!,2?) := A, such that f : Re*30%30 x
REX10x10 _y 900X 100_

A generic choice for computing the affinity is the dot product between embeddings,
referred to in recent literature as attention [314,339] and more historically known as normal-
ized cross-correlation [65,194]. With spatial grid j in feature ! as 2! (j) and the grid i in 2P
as zP (i),
exp (! (j)Ta? (1))

2 exp (¢! () TaP (i)

where the similarity A(j,4) is normalized by the softmax over the spatial dimension of x/,
for each z”(i). Note that the affinity function is defined for any feature dimension.

A(j, 1) = (2.1)

Localizer g takes affinity matrix A as input and estimates localization parameters ¢ corre-
sponding to the patch in feature 2/ which best matches 2”. g is composed of two convolu-
tional layers and one linear layer. We restrict g to output 3 parameters for the bilinear sam-
pling grid (i.e. simpler than [136]), corresponding to 2D translation and rotation: g(A) := 0,
where g : R990x100 _, R3_ The expressiveness of g is intentionally limited so as to place the
burden of representation on the encoder (see Appendix B).

Bilinear Sampler /. uses the image feature =/ and @ predicted by g to perform bilinear
sampling to produce a new patch feature h(x!, #) which is in the same size as z”, such that
h: Rex30x30 o R3 - Rex10x10

End-to-end Joint Training

The composition of encoder ¢ and 7 forms a differentiable patch tracker, allowing for
end-to-end training of ¢ and 7T

ol a? = ¢(1), ¢(p)
T(a',2") = h(z',g(f(a",2")).

Alignment Objective Iy is applied in the cycle-consistent losses £;,,,, and L%, , measuring
the error in alignment between two patches. We follow the formulation introduced by [254].
Let M (0,») correspond to the bilinear sampling grids used to form a patch feature z?

from image feature z!. Assuming M (6,») contains n sampling coordinates, the alignment
objective is defined as:

oI
10<m£a (Ef) = ﬁ Z ||M(015)1 - M(Qif)lug
=1

2.3 Experiments
We report experimental results for a model trained on the VLOG dataset [70] from scratch;

training on other large video datasets such as Kinetics gives similar results (see Appendix
A.3). The trained representation is evaluated without fine-tuning on several challenging
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Figure 2.5: Vlsuahzatlons of our propagatlon results. Given the labels as input in the first
frame, our feature can propagate them to the rest of frames, without further fine-tuning. The
labels include (a) instance masks in DAVIS-2017 [241], (b) pose keypoints in JHMDB [143],
(c) semantic masks in VIP [392] and even (d) texture map.

video propagation tasks: DAVIS-2017 [241], JHMDB [143] and Video Instance-level Pars-
ing (VIP) [392]. Through various experiments, we show that the acquired representation
generalizes to a range of visual correspondence tasks (see Figure 2.5).

2.3.1 Common Setup and Baselines

Training. We train the model on the VLOG dataset [70] without using any annotations or
pre-training. The VLOG dataset contains 114K videos and the total length of the videos
is 344 hours. During training, we set the number of past frames as k = 4. We train on a
4-GPU machine with a mini-batch size of 32 clips (8 clips per GPU), for 30 epochs. The
model is optimized with Adam [158] with a learning rate of 0.0002 and momentum term
B1 = 0.5, By = 0.999.

Inference. At test time, we use the trained encoder’s representation to compute dense
correspondences for video propagation. Given initial labels of the first frame, we propagate
the labels to the rest of the frames in the video. Labels are given by specified targets for the
first frame of each task, with instance segmentation masks for DAVIS-2017 [241], human pose
keypoints JHMDB [143], and both instance-level and semantic-level masks for VIP [392]. The
labels of each pixel are discretized to C' classes. For segmentation masks, C' is the number
of instance or semantic labels. For keypoints, C' is the number of keypoints. We include a
background class. We propagate the labels in the feature space. The labels in the first frame
are one-hot vectors, while propagated labels are soft distributions.

Propagation by k-NN. Given a frame I; and a frame I;_; with labels, we compute their
affinity in feature space: A;_1; = f(¢(Li—1), ¢(1;)) (Eq. 2.1). We compute label y; of pixel

in I; as
Yi = Z At—l,t (.]7 i)yja (22)
J
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where A;_1 +(j, ) is the affinity between pixels ¢ in I; and j in I;_;. We propagate from the
top-5 pixels with the greatest affinity A;_; ;(j, ) for each pixel i. Labels are propagated from
I;_1.+—k, as well as I;, and averaged. Finally, we up-sample the label maps to image size.
For segmentation, we use the argmax of the class distribution of each pixel. For keypoints,

we choose the pixel with the maximum score for each keypoint type.
Baselines. We compare with the following baselines:

o Identity: Always copy the first frame labels.

e Optical Flow (FlowNet2 [133]): A state-of-the-art method for predicting optical flow
with neural networks [133]. We adopt the open-source implementation which is
trained with synthetic data in a supervised manner. For a target frame I;, we compute
the optical flow from frame I;_; to I; and warp the labels in I;_; to I;.

e SIFT Flow [206]: For a target frame I;, we compute the SIFT Flow between I; and its
previous frames. We propagate the labels in K frames before I; and the first frame via
SIFT Flow warping. The propagation results are averaged to compute the labels for ;.

e Transitive Invariance [346]: A self-supervised approach that combines multiple ob-
jectives: (i) visual tracking on raw video [342] and (ii) spatial context reasoning [47].
We use the open-sourced pre-trained VGG-16 [280] model and adopt our proposed
inference procedure.

e DeepCluster [25]: A self-supervised approach which uses a K-means objective to
iteratively update targets and learn a mapping from images to targets. It is trained on
the ImageNet dataset without using annotations. We apply the trained model with
VGG-16 and adopt the same inference procedure as our method.

e Video Colorization [319]: A self-supervised approach for label propagation. Trained
on the Kinetics [154] dataset, it uses color propagation as self-supervision. The archi-
tecture is based on 3D ResNet-18. We report their results.

e ImageNet Pre-training [114]: The conventional setup for supervised training of ResNet-
50 on ImageNet.

e Fully-Supervised Methods: We report fully-supervised methods for reference, which
not only use ImageNet pre-training but also fine-tuning on the target dataset. Note
that these methods do not always follow the inference procedure used with method,
and labels of the first frame are not used for JHMDB and VIP at test time.

2.3.2 Instance Propagation on DAVIS-2017

We apply our model to video object segmentation on the DAVIS-2017 validation set [241].
Given the initial masks of the first frame, we propagate the masks to the rest of the frames.
Note that there can be multiple instances in the first frame. We follow the standard metrics
including the region similarity 7 (IoU) and the contour-based accuracy F. We set K =7,
the number of reference frames in the past.

We show comparisons in Table 2.1. Comparing to the recent Video Colorization ap-
proach [319], our method is 7.3% in J and 6.7% in F. Note that although we are only 4.4%
better than the DeepCluster baseline in .7, we are better in contour accuracy F by 6.2%.
Thus, DeepCluster does not capture dense correspondence on the boundary as well.

For fair comparisons, we also implemented our method with a ResNet-18 encoder, which
has less parameters compared to the VGG-16 in [25,346] and the 3D convolutional ResNet-18
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model Supervised | J(Mean) F(Mean)
Identity 22.1 23.6
Random Weights (ResNet-50) 12.4 12.5
Optical Flow (FlowNet2) [133] 26.7 25.2
SIFT Flow [206] 33.0 35.0
Transitive Inv. [346] 32.0 26.8
DeepCluster [25] 37.5 33.2
Video Colorization [319] 34.6 32.7
Ours (ResNet-18) 40.1 38.3
Ours (ResNet-50) 41.9 394
ImageNet (ResNet-50) [114] v 50.3 49.0
Fully Supervised [24,371] v 55.1 62.1

Table 2.1: Evaluation on instance mask propagation on DAVIS-2017 [241]. We follow the
standard metric on region similarity [ and contour-based accuracy F.

in [319]. We observe that results are only around 2% worse than our model with ResNet-50,
which is still better than the baselines.

While the ImageNet pre-trained network performs better than our method on this task,
we argue it is easy for the ImageNet pre-trained network to recognize objects under large
variation as it benefits from curated object-centric annotation. Though our model is only
trained on indoor scenes without labels, it generalizes to outdoor scenes.

Although video segmentation is an important application, it does not necessarily show
that the representation captures dense correspondence.

2.3.3 Pose Keypoint Propagation on JHMDB

To see whether our method is learning more spatially precise correspondence, we apply
our model on the task of keypoint propagation on the split 1 validation set of JHMDB [143].
Given the first frame with 15 labeled human keypoints, we propagate them through time.
We follow the evaluation of the standard PCK metric [372], which measures the percentage
of keypoints close to the ground truth in different thresholds of distance. We set the number
of reference frames same as experiments in DAVIS-2017.

As shown in Table 2.2, our method outperforms all self-supervised baselines by a large
margin. We observe that SIFT Flow actually performs better than other self-supervised
learning methods in PCK@.1. Our method outperforms SIFT Flow by 8.7% in PCK@.1 and
9.9% in PCK@.2. Notably, our approach is only 0.7% worse than ImageNet pre-trained
features in PCK@.1 and performs better in PCK@.2.

2.3.4 Semantic and Instance Propagation on VIP

We apply our approach on the Video Instance-level Parsing (VIP) dataset [392], which is
densely labeled with semantic masks for different human parts (e.g., hair, right arm, left arm,
coat). It also has instance labels that differentiate humans. Most interestingly, the duration
of a video ranges from 10 seconds to 120 seconds in the dataset, which is much longer than
aforementioned datasets.

We test our method on the validation set of two tasks in this dataset: (i) The first task is
to propagate the semantic human part labels from the first frame to the rest of the video, and
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model Supervised | PCK@.1 PCK@.2
Identity 43.1 64.5
Optical Flow (FlowNet2) [133] 45.2 62.9
SIFT Flow [206] 49.0 68.6
Transitive Inv. [346] 439 67.0
DeepCluster [25] 43.2 66.9
Video Colorization [319] 45.2 69.6
Ours (ResNet-18) 57.3 78.1
Ours (ResNet-50) 57.7 78.5
ImageNet (ResNet-50) [114] v 58.4 78.4
Fully Supervised [285] v 68.7 92.1

Table 2.2: Evaluation on pose propagation on JHMDDB [143]. We report the PCK in different
thresholds.

model Supervised | mloU AP,
Identity 13.6 4.0
Optical Flow (FlowNet2) [133] 16.1 8.3
SIFT Flow [206] 21.3 10.5
Transitive Inv. [346] 194 5.0
DeepCluster [25] 21.8 8.1
Ours (ResNet-50) 28.9 15.6
ImageNet (ResNet-50) [114] v 34.7 16.1
Fully Supervised [392] v 37.9 24.1

Table 2.3: Evaluation on propagating human part labels in Video Instance-level Parsing (VIP)
dataset [392]. We measure Semantic Propagation with mloU and Part Instance Propagation in
AP;

vol*

evaluate with the mean IoU metric; (ii) In the second task, the labels in the first frame are
given with not only the semantic labels but also the instance identity. Thus, the model must
differentiate the different arms of different human instances. We use the standard instance-
level human parsing metric [197], mean Average Precision, for overlap thresholds varying
from 0.1 to 0.9. Since part segments are relatively small (compared to objects in DAVIS-2017),
we increase the input image size to 560 x 560 for inference, and use two reference frames,
including the first frame.

Semantic Propagation. As shown with the mloU metric in Table 2.3, our method again
exceeds all self-supervised baselines by a large margin (a [319] model is currently not
available). ImageNet pre-trained models have the advantage of semantic annotation and
thus do not necessarily have to perform tracking. As shown in Figure 2.5(c), our method is
able to handle occlusions and multiple instances.

Part Instance Propagation. This task is more challenging. We show the results in mean
AP} in Table 2.3. Our method performs close to the level of ImageNet pre-trained features.
We show different radial thresholds for average precision (AP;;) in Table 2.4. ImageNet pre-
trained features performs better under smaller thresholds and worse under larger thresholds,
suggesting that it has an advantage in finding coarse correspondence while our method is
more capable of spatial precision.
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ToU threshold
model 0.3 05 07

Ours (ResNet-50) 15.6 23.0 127 54

ImageNet (ResNet-50) [114] 16.1 ‘ 242 119 48

| ar;

vol

Table 2.4: A more detailed analysis of different thresholds for Part Instance Propagation on
the VIP dataset [392].

I Flow from I; to I I Warping I; to I

Figure 2.6: Given Iy, I¢ which have 5-frame gap, we compute the long-range flows between
them with our representation. This flow can be used to warp I; to generate image similar to
Is.

2.3.5 Texture Propagation

The acquired representation allows for propagation of not only instance and semantic labels,
but also textures. We visualize texture propagation in Figure 2.5 (d); these videos are samples
from DAVIS-2017 [241]. We “paint” a texture of 6 colored stripes on an the object in the first
frame and propagate it to the rest of the frames using our representation. We observe that
the structure of the texture is well preserved in the following frames, demonstrating that the
representation allows for finding precise correspondence smoothly though time. See the
project page for video examples.

2.3.6 Video Frame Reconstructions

Though we do not optimize for pixel-level objectives at training time, we can evaluate how
well our method performs on pixel-level reconstruction. Specifically, given two images I
and I, distant in time in a video, we compute coordinate-wise correspondences under the
acquired representation and generate a flow field for pixel movement between I, and I;.
We then upsample the flow field to the same size as the image and warp it on Image I, to
generate a new image I; (as shown in Figure 2.6). We compare the L1 distance between I}
and I; in RGB space and report the reconstruction errors in Table 2.5.
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model | 5F | 10-F

Identity 82.0 97.7
Optical Flow (FlowNet2) [133] 62.4 90.3
ImageNet (ResNet-50) [114] 64.0 79.2
Ours (ResNet-50) 60.4 76.4

Table 2.5: We compute the long-range flow on two frames and warp the first one with the
flow. We compare the warped frame with the second frame in L1 distance. The gaps are 5 or
10 frames.

For fair comparison, we perform this experiment on the DAVIS-2017 validation set,
which none of the reported methods have seen. We experiment with two time gaps, 5
and 10 frames. For the smaller gap, FlowNet2 [133] performs reasonably well, whereas
reconstruction degrades for larger gaps. In both cases, our method performs better than
FlowNet2 and the ImageNet pre-trained network. This is encouraging: our method is not
trained with pixel-level losses, yet out-performs methods trained with pixel-level tasks and
human supervision.

2.4 Discussion

While in principle our method should keep improving with more data, in practice, learning
seems to plateau after a moderate amount of training (i.e. 30 epochs). An important next
step is thus how to better scale to larger, noisier data. A crucial component is improving
robustness to occlusions and partial observability, for instance, by using a better search
strategy for finding cycles at training time. Another issue is deciding what to track at training
time. Picking patches at random can result in issues such as stationary background patches
and tracking ambiguity — e.g. how should one track a patch containing two objects that
eventually diverge? Jointly learning what to track may also give rise to unsupervised object
detection. Finally, incorporating more context for tracking both at training and test time may
be important for learning more expressive models of spatial-temporal correspondence.

We hope this work is a step toward learning from the abundance of visual correspondence
inherent in raw video in a scalable and end-to-end manner. While our experiments show
promising results at certain levels of correspondence, much work remains to cover the full
spectrum.
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Chapter 3

Self-supervised Learning with
Visual Tracking

In the last chapter, we have explored a way to learn correspondence from the videos with
self-supervised learning. In this chapter, we want to see if self-supervision can also lead to
a general representation for many different vision applications, ranging from mid-level to
high-level tasks.

What is a general visual representation and how can we learn it? At the start of this
decade, most computer vision research focused on “what” and used hand-defined features
such as SIFT [211] and HOG [39] as the underlying visual representation. Learning was
often the last step where these low-level feature representations were mapped to seman-
tic/3D/functional categories. However, the last three years have seen the resurgence of
learning visual representations directly from pixels themselves using the deep learning
and ConvNets [146,171,187]. At the heart of ConvNets is a completely supervised learning
paradigm. Often millions of examples are first labeled using Mechanical Turk followed
by data augmentation to create tens of millions of training instances. ConvNets are then
trained using gradient descent and back propagation. But one question still remains: is
strong-supervision necessary for training these ConvNets? Do we really need millions of
semantically-labeled images to learn a good visual representation? It seems humans can
learn visual representations using little or no semantic supervision but our current learning
approaches still remain completely supervised.

In this chapter, we explore the alternative: how we can exploit the unlabeled visual data on
the web to train ConvNets (e.g. AlexNet [171])? In the past, there have been several attempts
at unsupervised learning using millions of static images [183,289] or frames extracted from
videos [225,304,404]. The most common architecture used is an auto-encoder which learns
representations based on its ability to reconstruct the input images [15,231,248,316]. While
these approaches have been able to automatically learn V1-like filters given unlabeled data,
they are still far away from supervised approaches on tasks such as object detection. So,
what is the missing link? We argue that static images themselves might not have enough
information to learn a good visual representation. But what about videos? Do they have
enough information to learn visual representations? In fact, humans also learn their visual
representations not from millions of static images but years of dynamic sensory inputs. Can
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Figure 3.1: Overview of our approach. (a) Given unlabeled videos, we perform unsupervised
tracking on the patches in them. (b) Triplets of patches including query patch in the initial
frame of tracking, tracked patch in the last frame, and random patch from other videos
are fed into our siamese-triplet network for training. (c) The learning objective: Distance
between the query and tracked patch in feature space should be smaller than the distance
between query and random patches.

we have similar learning capabilities for ConvNets?

We present a simple yet surprisingly powerful approach for unsupervised learning
of ConvNets using hundreds and thousands of unlabeled videos from the web. Visual
tracking is one of the first capabilities that develops in infants and often before semantic
representations are learned’. Taking a leaf from this observation, we propose to exploit
visual tracking for learning ConvNets in an unsupervised manner. Specifically, we track
millions of “moving” patches in hundreds of thousands of videos. Our key idea is that
two patches connected by a track should have similar visual representation in deep feature
space since they probably belong to same object. We design a Siamese-triplet network
with ranking loss function to train the ConvNet representation. This ranking loss function
enforces that in the final deep feature space the first frame patch should be much closer to the
tracked patch than any other randomly sampled patch. We demonstrate the strength of our
learning algorithm using extensive experimental evaluation. Without using a single image

1http: / /www.aoa.org/patients-and-public/good-vision-throughout-life / childrens-vision/infant-vision-
birth-to-24-months-of-age
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from ImageNet [259], just using 100K unlabeled videos and VOC 2012 dataset, we train
an ensemble of AlexNet networks that achieves 52% mAP (no bounding box regression)
. This performance is similar to its ImageNet-supervised counterpart, an ensemble which
achieves a mAP of 54.4%. We also show that our network trained using unlabeled videos
also achieves similar performance to its completely supervised counterpart on other tasks
such as surface normal estimation. To the best of our knowledge, the results reported in this
chapter come closest to standard supervised ConvNets approaches (which use millions of
semantically-labeled images) among unsupervised approaches.

3.1 Background

Unsupervised learning of visual representations has a rich and diverse history starting from
original auto-encoders work of Olhausen and Field [231] and early generative models. Most
of the work in the area of unsupervised learning can be broadly divided into three categories.
The first class of unsupervised learning algorithms focus on learning generative models
with strong priors [122,295,351]. These algorithms essentially capture co-occurence statistics
of features. The second class of algorithms use manually defined features such as SIFT
or HOG and perform clustering over training data to discover semantic classes [262,284].
Some of these recent algorithms also focus on learning mid-level representations rather than
discovering semantic classes themselves [45,46,283].

The third class of algorithms and more related to our chapter is unsupervised learning of
visual representations from the pixels themselves using deep learning approaches [14,57,120,
183,189,214,269,289,302,316]. Starting from the seminal work of Olhausen and Field [231], the
goal is to learn visual representations which are (a) sparse and (b) reconstructive. Olhausen
and Field [231] showed that using this criteria they can learn V1-like filters directly from the
data. However, this work only focused on learning a single layer. This idea was extended by
Hinton and Salakhutdinov [120] to train a deep belief network in an unsupervised manner
via stacking layer-by-layer RBMs. Similar to this, Bengio et al. [15] investigated stacking
of both RBMs and autoencoders. As a next step, Le et al. [183] scaled up the learning of
multi-layer autoencoder on large-scale unlabeled data. They demonstrated that although
the network is trained in an unsupervised manner, the neurons in high layers can still have
high responses on semantic objects such as human heads and cat faces. Sermanet et al. [269]
applied convolutional sparse coding to pre-train the model layer-by-layer in unsupervised
manner. The model is then fine-tuned for the pedestrian detection task on the labeled
datasets.

However, it is not clear if static images is the right way to learn visual representations.
Therefore, researchers have started focusing on learning representations using videos [96,
185,225,291,304,404]. Early work such as [404] focused on inclusion of constraints via video
to autoencoder framework. The most common constraint is the smoothing constraints which
enforces learned representations to be temporally smooth. Similar to this, Goroshin et al. [96]
proposed to learn auto-encoders based on the slowness prior. Other approaches such as
Taylor et al. [304] trained convolutional gated RBMs to learn latent representations from
pairs of successive images. This was extended in a recent work by Srivastava et al. [291]
where they proposed to learn a LSTM model in an unsupervised manner. Given a few
consecutive frames, their optimization goal for LSTM model includes reconstructing the
given frames and predicting the future frames. Our work differs from this body of work
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Figure 3.2: The process of patch mining in videos. Given the video about buses (the “bus’
label are not utilized), we perform IDT on it. On the top three pairs of images, red points
represents the SURF feature points, green represents the trajectories for the points. We reject
the frames with small motions (middle pairs) as well as frames with large camera motion as
the camera zoom in (right pairs). Given the selected frame, we perform sliding window on
it to find the bounding box containing most of the moving SURF points. As illustrated in
the bottom line, given the initial bounding box in the frame, we perform tracking along the
video for 30 frames. The query patch in the first frame and tracked patch in the last frame
are collected as one pair of training samples.

in two aspects: (a) We train our model with patches obtained from tracking; (b) Instead
of training auto-encoders, we train a deep ConvNet which can be transferred to different
challenging vision tasks.

Finally, our work is also related to metric learning via deep networks [33, 93,105,126,
207,328]. For example, Chopra et al. [33] proposed to learn convolutional networks in a
siamese architecture for face verification. Wang et al. [328] introduced a deep triplet ranking
network to learn fine-grained image similarity. However, all these methods required labeled
data. Our work is also related to [201], which used ConvNets pre-trained on ImageNet
classification and detection dataset as initialization, and performed semi-supervised learning
in videos to solve object detection in target domain. However, in our work, we propose an
unsupervised approach instead of semi-supervised algorithm.

3.2 Overview

Our goal is to train convolutional neural networks using hundreds and thousands of un-
labeled videos from the Internet. We follow the AlexNet architecture [171] to design our
base network. However, since we do not have labels, it is not clear what should be the loss
function and how we should optimize it. But in case of videos, we have another supervisory
information: time. For example, we all know that the scene does not change drastically
within a short time in a video and same object instances appear in multiple frames of the
video. So, how do we exploit this information to train a ConvNet-based representation?

We sample millions of patches in these videos and track them over time. Since we are
tracking these patches, we know that the first and last tracked frames correspond to the
same instance of the moving object or object part. Therefore, any visual representation
that we learn should keep these two data points close in the feature space. But just using
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Figure 3.3: Examples of patch pairs we obtain via patch mining in the videos.

this constraint is not sufficient: all points can be mapped to a single point in feature space.
Therefore, for training our ConvNet, we sample a third patch which creates a triplet. For
training, we use a loss function [328] that enforces that the first two patches connected by
tracking are closer in feature space than the first one and a random one.

But training a network with such triplets converges fast since the task is easy to overfit to.
One way is to increase the number of training triplets. However, after initial convergence
most triplets satisfy the loss function and therefore back-propagating gradients using such
triplets is inefficient. Instead, analogous to hard-negative mining, we select the third patch
from multiple patches that violates the constraint (loss is maximum). Selecting this patch
leads to more meaningful gradients for faster learning.

3.3 Patch Mining in Videos

The first step in our learning procedure is to extract training instances from videos. In
our case, every training instance for learning the deep network consists of three patches.
The loss function enforces the pairs of patches connected by tracks to have more similar
representations as compared to any other two randomly selected patches. But what do these
patches that are tracked correspond to? Since our videos are unlabeled, the location and
the extent of the objects in the frame are unknown. Therefore, instead of trying to extract
patches corresponding to semantic objects, we focus on using motion information in the
video to extract moving image patches. Note that these patches might contain objects or
part of an object as shown in Figure 3.2. These patches are then tracked over time to obtain a
second patch. The initial and tracked patches are then grouped together. The details are
explained below.

Given a video, we want to extract patches of interest (patches with motion in our case)
and track these patches to create training instances. One obvious way to find patches of
interest is to compute optical flow and use the high magnitude flow regions. However,
since YouTube videos are noisy with a lot of camera motion, it is hard to localize moving
objects using simple optical flow magnitude vectors. Thus we follow a two-step approach:
in the first step, we obtain SUREF [11] interest points and use Improved Dense Trajectories
(IDT) [323] to obtain motion of each SURF point. Note that since IDT applies a homography
estimation (video stabilization) method, it reduces the problem caused by camera motion.
Given the trajectories of SURF interest points, we classify these points as moving if the flow
magnitude is more than 0.5 pixels. We also reject frames if (a) very few (< 25%) SURF interest
points are classified as moving because it might be just noise; (b) majority of SURF interest

23



points (> 75%) are classified as moving as it corresponds to moving camera. Once we have
extracted moving SURF interest points, in the second step, we find the best bounding box
such that it contains most of the moving SURF points. The size of the bounding box is set
as h x w, and we perform sliding window with it in the frame. We take the bounding box
which contains the most number of moving SURF interest points as the interest bounding
box. In the experiment, we set h = 227, w = 227 in the frame with size 448 x 600.

Tracking. Given the initial bounding box, we perform tracking using the KCF tracker [118].
After tracking along 30 frames in the video, we obtain the second patch. This patch acts as
the similar patch to the query patch in the triplet. Note that the KCF tracker does not use
any supervised information except for the initial bounding box.

3.4 Learning Via Videos

In the previous section, we discussed how we can use tracking to generate pairs of patches
where the first patch (query) is initialized based on motion and the second patch is obtained
after tracking the query patch for 30 frames. We use this procedure to generate millions of
such pairs (See Figure 3.3 for examples of pairs of patches mined). We now describe how we
use these as training instances for our visual representation learning.

Siamese Triplet Network

Our goal is to learn a feature space such that the query patch is closer to the tracked patch
as compared to any other randomly sampled patch. To learn this feature space we design a
Siamese-triplet network. A Siamese-triplet network consist of three base networks which
share the same parameters (see Figure 3.4). For our experiments, we take the image with
size 227 x 227 as input. The base network is based on the AlexNet architecture [171] for the
convolutional layers. Then we stack two full connection layers on the pool5 outputs, whose
neuron numbers are 4096 and 1024 respectively. Thus the final output of each single network
is 1024 dimensional feature space f(-). We define the loss function on this feature space.

Ranking Loss Function

Given the set of patch pairs S sampled from the video, we propose to learn an image similarity
model in the form of ConvNet. Specifically, given an image X as an input for the network,
we can obtain its feature in the final layer as f(X). Then, we define the distance of two image
patches X1, X, based on the cosine distance in the feature space as,

f(X0) - f(X)
1A XD (X2

We want to train a ConvNet to obtain feature representation f(-), so that the distance between
query image patch and the tracked patch is small and the distance between query patch and
other random patches is encouraged to be larger. Formally, given the patch set S, where X;
is the original query patch (first patch in tracked frames), X; is the tracked patch and X is
a random patch, we want to enforce D(X;, X; ) > D(X;, X;).

D(X1,X5)=1-

(3.1)

Given a triplet of image patches X;, X;", X, as input, where X;, X;" is a tracked pair
and X is obtained from a different video, the loss of our ranking model is defined by hinge
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Figure 3.4: Siamese-triplet network. Each base network in the Siamese-triplet network share
the same architecture and parameter weights. The architecture is rectified from AlexNet by
using only two full connection layers. Given a triplet of training samples, we obtain their
features from the last layer by forward propagation and compute the ranking loss.

loss as,
L(Xi,X;F,X;) = max{O,D(Xi,Xj) - D(X;, X, )+ M}, (3.2)

where M represents the gap parameters between two distances. We set A/ = 0.5 in the
experiment. Then our objective function for training can be represented as,

N
A 2 + .
min | W5 + E max{0, D(X;, X;") - D(X;,X; )+ M}, (3.3)

i=1

where W is the parameter weights of the network, i.e., parameters for function f(-). N is the
number of the triplets of samples. A is a constant representing weight decay, which is set to
A = 0.0005.

Hard Negative Mining for Triplet Sampling

One non-trivial part for learning to rank is the process of selecting negative samples. Given
a pair of similar images X;, X;", how can we select the patch X;, which is a negative match
to X, from the large pool of patches? Here we first select the negative patches randomly,
and then find hard examples (in a process analogous to hard negative mining).

Random Selection: During learning, we perform mini-batch Stochastic Gradient Descent
(SGD). For each X;, X;, we randomly sample K negative matches in the same batch B, thus
we have K sets of triplet of samples. For every triplet of samples, we calculate the gradients
over three of them respectively and perform back propagation. Note that we shuffle all the
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Figure 3.5: Top regions for the pool5 neurons for the base network trained in unsupervised
manner. The receptive field for the pool5 neurons is 195 x 195 pixels. We use the red boxes
to represent the receptive regions giving the neuron high responses. We show regions with
top responses for 5 neurons in 5 rows.

images randomly after each epoch of training, thus the pair of patches X;, X;" can look at
different negative matches each time.

Hard Negative Mining: While one can continue to sample random patches for creating
the triplets, it is more efficient to search the negative patches smartly. After 10 epochs of
training using negative data selected randomly, we want to make the problem harder to
get more robust feature representations. Analogous to hard-negative mining procedure in
SVM, where gradient descent learning is only performed on hard-negatives (not all possible
negative), we search for the negative patch such that the loss is maximum and use that patch
to compute and back propagate gradients.

Specifically, the sampling of negative matches is similar as random selection before,
except that this time we select according to the loss(Eq. 3.2). For each pair X;, X", we
calculate the loss of all other negative matches in batch B, and select the top K ones with
highest losses. We apply the loss on these K negative matches as our final loss and calculate
the gradients over them. Notice that since the feature of each sample is already computed
after the forward propagation, we only need to calculate the loss over these features, thus
the extra computation for hard negative mining is very small. For the experiments in this
chapter, we use K = 4.

Adapting for Supervised Tasks
Given the ConvNet learned by using unsupervised data, we want to transfer the learned

representations to the tasks with supervised data. In our experiments, we apply our model
to two different tasks including object detection and surface normal estimation. In both tasks
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we take the base network from our Siamese-triplet network (which is based on AlexNet
architecture) and adjust the full connection layers and outputs accordingly. We introduce
two ways to fine-tune and transfer the information obtained from unsupervised data to
supervised learning.

One straight forward approach is directly applying our ranking model as a pre-trained
network for the target task. More specifically, we use the parameters of the convolutional
layers in the base network of our triplet architecture as initialization for the target task. For
the full connection layers, we initialize them randomly. This method of transferring feature
representation is very similar to the approach applied in RCNN [83]. However, RCNN uses
the network pre-trained with ImageNet Classification data. In our case, the unsupervised
ranking task is quite different from object detection and surface normal estimation. Thus,
we need to adapt the learning rate to the fine-tuning procedure introduced in RCNN. We
start with the learning rate with e = 0.01 instead of 0.001 and set the same learning rate for
convolutional layers and full connection layers. This setting is crucial since we want the
pre-trained features to be used as initialization of supervised learning, and adapting the
features to the new task.

In this chapter, we explore one more approach to transfer/fine-tune the network. Specifi-
cally, we note that there might be more juice left in the millions of unsupervised training data
(which could not be captured in the initial learning stage). Therefore, we use an iterative
fine-tuning scheme. Given the initial unsupervised network, we first fine-tune using the
PASCAL VOC data. Given the new fine-tuned network, we use this network to re-adapt to
ranking triplet task. Here we again transfer convolutional parameters for re-adapting. Fi-
nally, this re-adapted network is fine-tuned on the VOC data yielding a better trained model.
We show in the experiment that this circular approach gives improvement in performance.
We also notice that after two iterations of this approach the network converges.

Model Ensemble

We proposed an approach to learn ConvNets using unlabeled videos. However, there is
absolutely no limit to generating training instances and pairs of tracked patches (YouTube has
more than billions of videos). This opens up the possibility of training multiple ConvNets
using different sets of data. Once we have trained these ConvNets, we append the fc7
features from each of these ConvNets to train the final SVM. Note that the ImageNet trained
models also provide initial boost for adding more networks (See Table 3.1).

Implementation Details

We apply mini-batch SGD in training. As the 3 networks share the same parameters, instead
of inputting 3 samples to the triplet network each time, we perform the forward propaga-
tion for the whole batch by a single network and calculate the loss based on the output
feature. Given a pair of patches X;, X;", we randomly select another patch X;” € B which is
extracted in a different video from X;, X,;'. Given their features from forward propagation
f(X,), f(X;5), f(X;), we can compute the loss according to Eq. 3.2.

For learning, we download 100K videos from YouTube using the URLs provided by [201].
By performing our patch mining method on the videos, we obtain 8 million image patches.
We train three different networks separately using 1.5M, 1.5M and 5M training instances.
Therefore, we report number based on these three networks. To train our siamese-triplet
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(b) Fine-tuned

Figure 3.6: Convl filters visualization. (a) The filters of the first convolutional layer of the
siamese-triplet network trained in unsupervised manner. (b) By fine-tuning the unsupervised
pre-trained network on PASCAL VOC 2012, we obtain sharper filters.

networks, we set the batch size as |B| = 100, the learning rate starting with ¢y = 0.001. For
the dataset with 1.5M and 5M patches, we first trained our network with random negative
samples with this learning rate for 150K iterations, and then we apply hard negative mining
based on it. For training on 1.5M patches, we reduce the learning rate by a factor of 10 at
every 80K iterations and train for 240K iterations. For training on 5M patches, we reduce the
learning rate by a factor of 10 at every 120K iterations and train for 350K iterations.

3.5 Experiments

We demonstrate the quality of our learned visual representations with qualitative and
quantitative experiments. Qualitatively, we show the convolutional filters learned in layer 1
(See Figure 3.6). Our learned filters are similar to V1 though not as strong. However, after
fine-tuning on PASCAL VOC 2012, these filters become quite strong. We also show that
the underlying representation is reasonable by showing what the neurons in Pool5 layers
represent (See Figure 3.5). We use the red bounding boxes to represent the receptive field
with top responses for five different neurons(one neuron each line). We can see the clusters
represented by these neurons are quite reasonable and correspond to semantic parts of
objects. For example, the first neuron represents animal heads, second represents potted
plant, etc.
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VOC 2012 test external | aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv |mAP
scratch 0 66.1 58.1 327 230 218 545 564 508 21.6 422 318 492 498 616 521 251 526 313 500 49.1| 440
unsup + ft 1.5M 68.8 62.1 347 253 26,6 577 59.6 563 220 426 338 523 503 656 539 258 515 323 51.7 51.8| 46.2
unsup + ft 5M 69.0 64.0 37.1 236 246 587 589 59.6 223 46.0 351 533 53.7 66.9 541 254 529 312 519 518|470
unsup + ft (2 ensemble) | 6.5M 724 662 413 264 268 610 619 631 253 51.0 387 581 583 700 562 286 561 385 559 543|505
unsup + ft (3 ensemble) 8SM 735 67.8 435 289 279 623 62.6 649 273 51.5 41.6 59.1 60.0 71.8 583 29.7 56.1 39.1 58.6 55.6| 52.0
unsup + iterative ft 5M 67.7 640 413 253 273 588 603 60.2 243 467 344 536 538 682 557 264 51.1 343 534 523|480
RCNN 70K 727 629 493 311 259 562 530 700 233 49.0 38.0 69.5 60.1 682 464 175 572 462 50.8 54.1| 50.1
RCNN 70K (2 ensemble) 753 68.3 53.1 352 277 59.6 547 734 265 53.0 422 731 661 710 485 217 592 50.8 552 58.0 | 53.6
RCNN 70K (3 ensemble) 746 68.7 549 357 294 610 544 740 284 53.6 43.0 74.0 661 72.8 503 205 60.0 51.2 579 58.0| 544
RCNN 200K (big stepsize) 733 671 463 317 30.6 594 61.0 679 273 531 391 641 605 709 572 261 590 40.1 562 549|523

Table 3.1: mean Average Precision (mAP) on VOC 2012. The second column “external”
represents the number of patches used to pre-train the model in the unsupervised manner.

For quantitative evaluations, we evaluate our approach by transferring the feature repre-
sentation learned in unsupervised manner to the tasks with labeled data. We focus on two
challenging problems: object detection and surface normal estimation.

Object Detection

For object detection, we perform our experiments on PASCAL VOC 2012 dataset [59]. We
follow the detection pipeline introduced in RCNN [83], which borrowed the ConvNets
pre-trained on other datasets and fine-tuned on it using the VOC data. The fine-tuned
ConvNet was then used to extract features followed by training SVMs for each object class.
However, instead of using ImageNet pre-trained network as initialization in RCNN, we use
our ConvNets trained in the unsupervised manner. Note that the network architecture is
based on AlexNet. We fine-tune our network with the trainval set (11540 images) and train
SVMs with the same images. Evaluation is performed in the standard test set (10991 images).

At the fine-tuning stage, we change the output to 21 and initialize the convolutional
layers with our unsupervised pre-trained network. To fine-tune the network, we start with
learning rate as ¢ = 0.01 and reduce the learning rate by a factor of 10 at every 80K iterations.
The network is fine-tuned for 200K iterations. Note that for all the experiments, no bounding
box regression is performed.

We compare our method with the model trained from scratch as well as using ImagNet
pre-trained network. Notice that the results for VOC 2012 reported in RCNN [83] are obtained
by only fine-tuning on the train set without using the val set. The mAP for VOC 2012 reported
in [83] is 49.6%. For fair comparison, we fine-tuned the ImageNet pre-trained network with
VOC 2012 trainval set. Moreover, as the step size of reducing learning rate in RCNN [83] is
set to 20K and iterations for fine-tuning is 70K, we also try to enlarge the step size to 50K and
fine-tune the network for 200K iterations. We report the results for both of these settings.

Single Model. We show the results in Table 3.1. As a baseline, we train the network
from scratch on VOC 2012 dataset and obtain 44% mAP. Using our unsupervised network
pre-trained with 1.5M pair of patches and then fine-tuned on VOC 2012, we obtain mAP
of 46.2% (unsup+ft, external data = 1.5M). By looking into more data, using 5M patches
in pre-training and then fine-tune, we can achieve 47% mAP (unsup+ft, external data =
5M). These results indicate that our unsupervised network provides a significant boost as
compared to the scratch network. More importantly, when more unlabeled data is applied,
we can get better performance ( 3% boost compared to training from scratch).

Model Ensemble. As looking at more external data in unsupervised pre-training gives
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(Lower Better) (Higher Better)
Mean Median 11.25° 22.5° 30°

scratch 38.6 26.5 33.1 46.8 525
unsup + ft 35.2 232 349 494 558
ImageNet + ft ~ 33.3 20.8 36.7 51.7 58.1
UNFOLD [69] 35.1 19.2 376 53.3 589
Discr. [176] 32.5 224 274 502 60.2
3DP (MW) [68] 36.0 205 359 52.0 57.8

Table 3.2: Results on NYU v2 for per-pixel surface normal estimation, evaluated over valid
pixels.

the boost in performance, we also try combining different models using different unlabeled
data in pre-training. By ensembling two fine-tuned networks which are pre-trained using
1.5M and 5M patches, we obtained a boost of 3.5% comparing to the single model, which
is 50.5%(unsup+ft (2 ensemble)). By moving one step forward, we ensemble all three
different networks pre-trained with different sets of data, whose size are 1.5M, 1.5M and 5M
respectively. We get another boost of 1.5% and reach 52% mAP(unsup-+ft (3 ensemble)).

Baselines. We also compare our approach with RCNN [83] which uses ImageNet pre-
trained models. Following the procedure in [83], we obtain 50.1% mAP (RCNN 70K) by
setting the step size to 20K and fine-tuning for 70K iterations. To generate a model ensemble,
three ConvNets are first trained on the ImageNet dataset separately, and then they are
fine-tuned with the VOC 2012 dataset. The result of ensembling two of these networks is
53.6% mAP (RCNN 70K (2 ensemble )), and ensembling three of these networks gives 0.8%
improvement, leading to 54.4% mAP (RCNN 70K (3 ensemble )). For fair of comparison,
we also fine-tuned the ImageNet pre-trained model with larger step size(50K) and more
iterations(200K). The result is 52.3% mAP (RCNN 200K (big stepsize)). Note that while
ImageNet network shows diminishing returns with ensembling since the training data
remains similar, in our case since every network in the ensemble looks at different sets of
data, we get huge performance boosts.

Exploring a better way to transfer learned representation. Given our fine-tuned model
using 5M patches in pre-training (unsup-+ft, external = 5M), we use it to re-learn and re-adapt
to the unsupervised triplet task. After that, the network is re-applied to fine-tune on VOC
2012. We repeat this iterative approach twice in our experiment and find it converges very
quickly. The final result for this single model is 48% mAP (unsup + iterative ft), which is 1%
better than the initial fine-tuned network.

Surface Normal Estimation

To illustrate that our unsupervised representation can be generalized to different tasks, we
adapt the unsupervised ConvNet to the task of surface normal estimation from a RGB image.
In this task, we want to estimate the orientation of the pixels. We perform our experiments
on the NYUvV2 dataset [274], which includes 795 images for training and 654 images for
testing. Each image is has corresponding depth information which can be used to generate
groundtruth surface normals. For evaluation and generating the groundtruth, we adopt the
protocols introduced in [68] which is used by different methods [68,69,176] on this task.
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Figure 3.7: Surface normal estimation results on NYU dataset. For visualization, we use
green to represent horizontal surface, blue representing facing right and red representing
facing left, i.e., blue — X; green — Y; red — Z.

To apply deep learning to this task, we followed the same form of outputs and loss
function as the coarse network mentioned in [336]. Specifically, we first learn a codebook
by performing k-means on surface normals and generate 20 codewords. Each codeword
represents one class and thus we transform the problem to 20-class classification for each
pixel. Given a 227 x 227 image as input, our network generates surface normals for the
whole scene. The output of our network is 20 x 20 pixels, each of which is represented by a
distribution over 20 codewords. Thus the dimension of output is 20 x 20 x 20 = 8000.

The network architecture for this task is also based on the AlexNet. To relieve over-fitting,
we only stack two full connection layers with 4096 and 8000 neurons on the pool5 layer.
During training, we initialize the network with the unsupervised pre-trained network. We
use the same learning rate 1.0 x 1076 as mentioned in [336] and fine-tune the network with
10K iterations given the small number of training data. Note that unlike [336], we do not
utilize any data from the videos in NYU dataset for training.

For comparisons, we also trained networks from scratch as well as using ImageNet pre-
trained. We show our results in Table 3.2. Compared to the recent results which do not use
external data [68,69,176], we show that we can get reasonable results even using this small
amounts of training data. Our approach(unsup + ft) is generally 2 ~ 3% better than network
trained from scratch in 5 different metrics. We show a few qualitative results in Figure 3.7.
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Chapter 4

Transitive Invariance for
Self-supervised Learning

In Chapter 3, we have introduced a self-supervised method for learning deep representation
which is invariant to object viewpoint and deformation changes. This type of visual invari-
ance is actually a core issue in learning visual representations. Modern deep representations
are capable of learning high-level invariance from large-scale data [259] , e.g., viewpoint,
pose, deformation, and semantics. These can also be transferred to complicated visual
recognition tasks [84,210].

In the scheme of supervised learning, human annotations that map a variety of examples
into a single label provide supervision for learning invariant representations. For example,
two horses with different illumination, poses, and breeds are invariantly annotated as a
category of “horse”. Such human knowledge on invariance is expected to be learned by
capable deep neural networks [170,188] through carefully annotated data. However, large-
scale, high-quality annotations come at a cost of expensive human effort.

Unsupervised or “self-supervised” learning (e.g., [48,199,234,239,343,384,385]) recently
has attracted increasing interests because the “labels” are free to obtain. Unlike supervised
learning that learns invariance from the semantic labels, the self-supervised learning scheme
mines it from the nature of the data. We observe that most self-supervised approaches
learn representations that are invariant to: (i) inter-instance variations, which reflects the
commonality among different instances. For example, relative positions of patches [48] (see
also Figure 4.3) or channels of colors [384,385] can be predicted through the commonality
shared by many object instances; (ii) intra-instance variations. Intra-instance invariance is
learned from the pose, viewpoint, and illumination changes by tracking a single moving
instance in videos (Chapter 3). However, either source of invariance can be as rich as that
provided by human annotations on large-scale datasets like ImageNet.

Even after significant advances in the field of self-supervised learning, there is still a
long way to go compared to supervised learning. What should be the next steps? It seems
that an obvious way is to obtain multiple sources of invariance by combining multiple
self-supervised tasks, e.g., via multiple losses. Unfortunately, this naive solution turns out to
give little improvement (as we will show by experiments).

We argue that the trick lies not in the tasks but in the way of exploiting data. To leverage
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Figure 4.1: We propose to obtain rich invariance by applying simple transitive relations.
In this example, two different cars A and B are linked by the features that are good for
inter-instance invariance (e.g., using [48]); and each car is linked to another view (A’ and
B’) by visual tracking [343]. Then we can obtain new invariance from object pairs (A, B),
(A', B), and (A’, B') via transitivity. We show more examples in the bottom.

both intra-instance and inter-instance invariance, in this chapter we construct a huge affinity
graph consisting of two types of edges (see Figure 4.1): the first type of edges relates “different
instances of similar viewpoints/poses and potentially the same category”, and the second
type of edges relates “different viewpoints/poses of an identical instance”. We instantiate
the first type of edges by learning commonalities across instances via the approach of [48],
and the second type by unsupervised tracking of objects in videos [343]. We set up simple
transitive relations on this graph to infer more complex invariance from the data, which are
then used to train a Triplet-Siamese network for learning visual representations.

Experiments show that our representations learned without any annotations can be well
transferred to the object detection task. Specifically, we achieve 63.2% mAP with VGG16 [281]
when fine-tuning Fast R-CNN on VOC2007, against the ImageNet pre-training baseline of
67.3%. More importantly, we also report the first-ever result of un-/self-supervised pre-
training models fine-tuned on the challenging COCO object detection dataset [205], achieving
23.5% AP comparing against 24.4% AP that is fine-tuned from an ImageNet pre-trained
counterpart (both using VGG16). To our knowledge, this is the closest accuracy to the
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ImageNet pre-training counterpart obtained on object detection tasks.

4.1 Background

Unsupervised learning of visual representations is a research area of particular interest.
Approaches to unsupervised learning can be roughly categorized into two main streams:
(i) generative models, and (ii) self-supervised learning. Earlier methods for generative
models include Anto-Encoders [184, 190, 231, 317] and Restricted Boltzmann Machines
(RBMSs) [15,58,121,303]. For example, Le et al. [184] trained a multi-layer auto-encoder on
a large-scale dataset of YouTube videos: although no label is provided, some neurons in
high-level layers can recognize cats and human faces. Recent generative models such as
Generative Adversarial Networks [94] and Variational Auto-Encoders [160] are capable of
generating more realistic images. The generated examples or the neural networks that learn
to generate examples can be exploited to learn representations of data [51,53].

Self-supervised learning is another popular stream for learning invariant features. Visual
invariance can be captured by the same instance/scene taken in a sequence of video frames
[2,141,199,219,234,292,320,343]. For example, Wang and Gupta [343] leverage tracking
of objects in videos to learn visual invariance within individual objects; Jayaraman and
Grauman [141] train a Siamese network to model the ego-motion between two frames in
a scene; Mathieu et al. [219] propose to learn representations by predicting future frames;
Pathak et al. [234] train a network to segment the foreground objects where are acquired via
motion cues. On the other hand, common characteristics of different object instances can
also be mined from data [48,384,385]. For example, relative positions of image patches [48]
may reflect feasible spatial layouts of objects; possible colors can be inferred [384, 385] if the
networks can relate colors to object appearances. Rather than rely on temporal changes in
video, these methods are able to exploit still images.

Our work is also closely related to mid-level patch clustering [45,46,283] and unsupervised
discovery of semantic classes [262,284] as we attempt to find reliable clusters in our affinity
graph. In addition, the ranking function used in this chapter is related to deep metric
learning with Siamese architectures [34,93,106,127,329].

Analysis of the two types of invariance. Our generic framework can be instantiated by any
two self-supervised methods that can respectively learn inter-/intra-instance invariance. In
this chapter we adopt Doersch et al.’s [48] context prediction method to build inter-instance
invariance, and Wang and Gupta’s [343] tracking method to build intra-instance invariance.
We analyze their behaviors as follows.

The context prediction task in [48] randomly samples a patch (blue in Figure 4.3) and
one of its eight neighbors (red), and trains the network to predict their relative position,
defined as an 8-way classification problem. In the first two examples in Figure 4.3, the
context prediction model is able to predict that the “leg” patch is below the “face” patch of
the cat, indicating that the model has learned some commonality of spatial layout from the
training data. However, the model would fail if the pose, viewpoint, or deformation of the
object is changed drastically, e.g., in the third example of Figure 4.3 — unless the dataset is
diversified and large enough to include gradually changing poses, it is hard for the models
to learn that the changed pose can be of the same object type.

On the other hand, these changes can be more successfully captured by the visual tracking
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Figure 4.2: Illustrations for our graph construction. We first cluster the object nodes into
coarser clusters (namely “parent” clusters) and then inside each cluster we perform nearest-
neighbor search to obtain “child” clusters consisting of 4 samples. Samples in each child
cluster are linked to each other with the “inter-instance” edges. We add new samples via
visual tracking and link them to the original objects by “intra-instance” edges.

method presented in [343], e.g., see (A, A") and (B, B’) in Figure 4.1. But by tracking an
identical instance we cannot associate different instances of the same semantics. Thus we
expect the representations learned in [343] are weak in handling the variations between
different objects in the same category.

4.2 Overview

Our goal is to learn visual representations which capture: (i) inter-instance invariance
(e.g., two instances of cats should have similar features), and (ii) intra-instance invariance
(pose, viewpoint, deformation, illumination, and other variance of the same object instance).
We have tried to formulate this as a multi-task (multi-loss) learning problem in our initial
experiments (detailed in Table 4.2 and 4.3) and observed unsatisfactory performance. Instead
of doing so, we propose to obtain a richer set of invariance by performing transitive reasoning
on the data.

Our first step is to construct a graph that describes the affinity among image patches. A
node in the graph denotes an image patch. We define two types of edges in the graph that
relate image patches to each other. The first type of edges, called inter-instance edges, link
two nodes which correspond to different object instances of similar visual appearance; the
second type of edges, called intra-instance edges, link two nodes which correspond to an
identical object captured at different time steps of a track. The solid arrows in Figure 4.1
illustrate these two types of edges.

Given the built graph, we want to transit the relations via the known edges and associate
unconnected nodes that may provide under-explored invariance (Figure 4.1, dash arrows).
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Figure 4.3: The context prediction task defined in [48]. Given two patches in an image, it learns
to predict the relative position between them.

Specifically, as shown in Figure 4.1, if patches (A, B) are linked via an inter-instance edge
and (A, A’) and (B, B’) respectively are linked via “intra-instance” edges, we hope to enrich
the invariance by simple transitivity and relate three new pairs of: (4’, B’), (A, B’), and
(A', B) (Figure 4.1, dash arrows).

We train a Triplet-Siamese network that encourages similar visual representations be-
tween the invariant samples (e.g., any pair consisting of A, A’, B, B’) and at the same time
discourages similar visual representations to a third distractor sample (e.g., a random sample
C'unconnected to A, A’, B, B). In all of our experiments, we apply VGG16 [281] as the back-
bone architecture for each branch of this Triplet-Siamese network. The visual representations
learned by this backbone architecture are evaluated on other recognition tasks.

4.3 Graph Construction

We construct a graph with inter-instance and intra-instance edges. Firstly, we apply the
method of [343] on a large set of 100K unlabeled videos (introduced in [343]) and mine
millions of moving objects using motion cues (Sec. 4.3). We use the image patches of them
to construct the nodes of the graph.

We instantiate inter-instance edges by the self-supervised method of [48] that learns
context predictions on a large set of still images, which provide features to cluster the nodes
and set up inter-instance edges (Sec. 4.3). On the other hand, we connect the image patches
in the same visual track by intra-instance edges (Sec. 4.3).

Mining Moving Objects

We follow the approach in [343] to find the moving objects in videos. As a brief introduction,
this method first applies Improved Dense Trajectories (IDT) [324] on videos to extract SURF
[12] feature points and their motion. The video frames are then pruned if there is too much
motion (indicating camera motion) or too little motion (e.g., noisy signals). For the remaining
frames, it crop a 227 %227 bounding box (from ~600x400 images) which includes the most
number of moving points as the foreground object. However, for computational efficiency,
in this chapter we rescale the image patches to 96 x 96 after cropping and we use them as
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Figure 4.4: Some example clustering results. Each row shows the 4 examples in a child
cluster (Sec. 4.3).

inputs for clustering and training.

Inter-instance Edges via Clustering

Given the extracted image patches which act as nodes, we want to link them with extra
inter-instance edges. We rely on the visual representations learned from [48] to do this.
We connect the nodes representing image patches which are close in the feature space. In
addition, motivated by the mid-level clustering approaches [45, 283], we want to obtain
millions of object clusters with a small number of objects in each to maintain high “purity”
of the clusters. We describe the implementation details of this step as follows.

We extract the pool5 features of the VGG16 network trained as in [48]. Following [48], we
use ImageNet without labels to train this network. Note that because we use a patch size of
96 %96, the dimension of our pool5 feature is 3x3x512=4608. The distance between samples
is calculated by the cosine distance of these features. We want the object patches in each
cluster to be close to each other in the feature space, and we care less about the differences
between clusters. However, directly clustering millions of image patches into millions of
small clusters (e.g., by K-means) is time consuming. So we apply a hierarchical clustering
approach (2-stage in this chapter) where we first group the images into a relatively small
number of clusters, and then find groups of small number of examples inside each cluster
via nearest-neighbor search.

Specifically, in the first stage of clustering, we apply K-means clustering with K = 5000
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Object A
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Tracked
Object B’

Figure 4.5: Examples used for training the network. Each column shows a set of image
patches {A, B, A’, B'}. Here, A and B is linked by an inter-instance edge, and A’/B’ is
linked to A/ B via intra-instance edges.

on the image patches. We then remove the clusters with number of examples less than
100 (this reduces K to 546 in our experiments on the image patches mined from the video
dataset). We view these clusters as the “parent” clusters (blue circles in Figure 4.2). Then
in the second stage of clustering, inside each parent cluster, we perform nearest-neighbor
search for each sample and obtain its top 10 nearest neighbors in the feature space. We
then find any group of samples with a group size of 4, inside which all the samples are
each other’s top-10 nearest neighbors. We call these small clusters with 4 samples “child”
clusters (green circles in Figure 4.2). We then link these image patches with each other inside
a child cluster via “inter-instance” edges. Note that different child clusters may overlap, i.e.,
we allow the same sample to appear in different groups. However, in our experiments we
find that most samples appear only in one group. We show some results of clustering in
Figure 4.4.

Intra-instance Edges via Tracking

To obtain rich variations of viewpoint and deformation changes of the same object instance,
we apply visual tracking on the mined moving objects in the videos as in [343]. More
specifically, given a moving object in the video, it applies KCF [119] to track the object for
N = 30 frames and obtain another sample of the object in the end of the track. Note that the
KCF tracker does not require any human supervision. We add these new objects as nodes to
the graph and link the two samples in the same track with an intra-instance edge (purple in
Figure 4.2).

38



2 conv

(4,A4,C) (AB,0) Zcon;
conv 4096 1024
3conv  3.4ny

/7

7 I sharing

e a

I sharing

3,/
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4.4 Learning with Transitions in the Graph

With the graph constructed, we want to link more image patches (see dotted links in Fig-
ure 4.1) which may be related via the transitivity of invariance. Objects subject to different
levels of invariance can thus be related to each other. Specifically, if we have a set of nodes
{4, B, A’, B’} where (A, B) are connected by an inter-instance edge and (A, A") and (B, B’)
are connected by an intra-instance edge, by assuming transitivity of invariance we expect the
new pairs of (A, B'), (A’, B), and (A, B') to share similar high-level visual representations.
Some examples are illustrated in Figure 4.1 and 4.5.

We train a deep neural network (VGG16) to generates similar visual representations if the
image patches are linked by inter-instance/intra-instance edges or their transitivity (which
we call a positive pair of samples). To avoid a trivial solution of identical representations,
we also encourage the network to generate dissimilar representations if a node is expected
to be unrelated. Specifically, we constrain the image patches from different “parent” clusters
(which are more likely to have different categories) to have different representations (which
we call a negative pair of samples). We design a Triplet-Siamese network with a ranking loss
function [329,343] such that the distance between related samples should be smaller than
the distance of unrelated samples.

Our Triplet-Siamese network includes three towers of a ConvNet with shared weights
(Figure 4.6). For each tower, we adopt the standard VGG16 architecture [281] to the convolu-
tional layers, after which we add two fully-connected layers with 4096-d and 1024-d outputs.
The Triplet-Siamese network accepts a triplet sample as its input: the first two image patches
in the triplet are a positive pair, and the last two are a negative pair. We extract their 1024-d
features and calculate the ranking loss as follows.

Given an arbitrary pair of image patches A and B, we define their distance as: D(A, B) =
1- % where F(-) is the representation mapping of the network. With a triplet
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Query (a) Context Prediction Network (b) Our Network (c) ImageNet Pre-trained Network

Figure 4.7: Nearest-neighbor search on the PASCAL VOC dataset. We extract three types
of features: (a) context prediction network from [48], (b) network trained with our self-
supervised method, and (c) the network pre-trained in the annotated ImageNet dataset. We
show that our network can represent a greater variety (e.g., viewpoints) of objects of the
same category.

of (X, X ™, X ™) where (X, X") is a positive pair and (X, X 7) is a negative pair as defined
above, we minimize the ranking loss:

L(X, X, X7) =max{0,D(X,X) = D(X,X ")+ m},

where m is a margin set as 0.5 in our experiments. Although we have only one objective
function, we have different types of training examples. As illustrated in Figure 4.6, given the
set of related samples {A, B, A’, B’} (see Figure 4.5) and a random distractor sample C' from
another parent cluster, we can train the network to handle, e.g., viewpoint invariance for the
same instance via £(A, A’, C') and invariance to different objects sharing the same semantics
via L(A, B',C).

Besides exploring these relations, we have also tried to enforce the distance between
different objects to be larger than the distance between two different viewpoints of the
same object, e.g., D(A, A’) < D(A, B’). But we have not found this extra relation brings any
improvement. Interestingly, we found that the representations learned by our method can
in general satisfy D(A, A") < D(A, B’) after training.

4.5 Experiments

We perform extensive analysis on our self-supervised representations. We first evaluate
our ConvNet as a feature extractor on different tasks without fine-tuning . We then show
the results of transferring the representations to vision tasks including object detection and
surface normal estimation with fine-tuning,.

Implementation Details. To prepare the data for training, we download the 100K videos
from YouTube using the URLs provided by [202,343]. By mining the moving objects and
tracking in the videos, we obtain ~10 million image patches of objects. By applying the
transitivity on the graph constructed, we obtain 7 million positive pairs of objects where
each pair of objects are two different instances with different viewpoints. We also randomly
sample 2 million object pairs connected by the intra-instance edges.
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Figure 4.8: Top 6 responses for neurons in 6 different convolutional units of our network,
visualized using [391].

We train our network with these 9 million pairs of images using a learning rate of 0.001
and a mini-batch size of 100. For each pair we sample the third distractor patch from a
different “parent cluster” in the same mini-batch. We use the network pre-trained in [48] to
initialize our convolutional layers and randomly initialized the fully connected layers. We
train the network for 200K iterations with our method.

Qualitative Results without Fine-tuning

We first perform nearest-neighbor search to show qualitative results. We adopt the pool5
feature of the VGG16 network for all methods without any fine-tuning (Figure 4.7). We do
this experiment on the object instances cropped from the PASCAL VOC 2007 dataset [60]
(trainval). As Figure 4.7 shows, given an query image on the left, the network pre-trained
with the context prediction task [48] can retrieve objects of very similar viewpoints. On the
other hand, our network shows more variations of objects and can often retrieve objects with
the same class as the query. We also show the nearest-neighbor results using fully-supervised
ImageNet pre-trained features as a comparison.

We also visualize the features using the visualization technique of [391]. For each convo-
lutional unit in conv5_3, we retrieve the objects which give highest activation responses and
highlight the receptive fields on the images. We visualize the top 6 images for 6 different
convolutional units in Figure 4.8. We can see these convolutional units are corresponding
to different semantic object parts (e.g., fronts of cars or buses wheels, animal legs, eyes or
faces).
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method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv
from scratch | 39.7 51.7 558 21.7 240 105 587 59.2 41.1 182 329 356 334 604 573 455 197 292 308 610 473
Vid-

Edge [199]

Context [48] = 61.5 70.8 721 547 49.7 31.0 723 769 708 446 61.1 598 670 746 725 683 294 585 669 751 543
Track-

ing [343]

Ours 63.2 | 68.4 746 571 49.6 341 735 769 732 458 633 663 68.6 749 742 695 319 574 703 759 59.3
ImageNet 673 | 744 780 659 544 397 764 786 825 48.6 733 672 784 773 757 722 322 658 668 752 624

442 544 582 39.6 308 125 587 619 510 220 414 474 415 632 584 475 172 276 454 59.8 454

60.2 657 732 554 464 309 740 769 678 409 580 609 650 741 716 671 315 550 61.8 739 53.8

Table 4.1: Object detection Average Precision (%) on the VOC 2007 test set using Fast R-CNN [81] (with
selective search proposals [311]): comparisons among different self-supervised learning approaches.

method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv
Ours 632 684 746 57.1 49.6 341 735 769 732 458 633 663 686 749 742 695 319 574 703 759 59.3
Multi-Task 62.1 70.0 742 572 484 330 736 776 70.7 450 615 648 672 740 729 683 324 566 641 741 575
Ours 615 70.3 741 533 47.1 335 746 77.1 677 433 581 655 658 752 722 676 316 555 656 746 572
(15-frame)

Ours (HOG) 60.4 65.8 734 547 477 302 756 77.1 67.6 420 58.8 632 653 741 720 672 299 544 621 729 539

Table 4.2: More ablative studies on object detection on the VOC 2007 test set using Fast R-CNN [81]
(with selective search proposals [311]).

Analysis on Object Detection

We evaluate how well our representations can be transferred to object detection by fine-
tuning Fast R-CNN [81] on PASCAL VOC 2007 [60]. We use the standard trainval set for
training and test set for testing with VGG16 as the base architecture. For the detection
network, we initialize the weights of convolutional layers from our self-supervised network
and randomly initialize the fully-connected layers using Gaussian noise with zero mean and
0.001 standard deviation.

During fine-tuning Fast R-CNN, we use 0.00025 as the starting learning rate. We reduce
the learning rate by 1/10 in every 50K iterations. We fine-tune the network for 150K iterations.
Unlike standard Fast R-CNN where the first few convolutional layers of the ImageNet pre-
trained network are fixed, we fine-tuned all layers on the PASCAL data as our model is
pre-trained in a very different domain (e.g., video patches).

We report the results in Table 4.1. If we train Fast R-CNN from scratch without any
pre-training, we can only obtain 39.7% mAP. With our self-supervised trained network as
initialization, the detection mAP is increased to 63.2% (with a 23.5 points improvement).
Our result compares competitively (4.1 points lower) to the counterpart using ImageNet
pre-training (67.3% with VGG16).

As we incorporate the invariance captured from [343] and [48], we also evaluate the
results using these two approaches individually (Table 4.1). By fine-tuning the context
prediction network of [48], we can obtain 61.5% mAP. To train the network of [343], we
use exactly the same loss function and initialization as our approach except that there are
only training examples of the same instance in the same visual track (i.e., only the samples
linked by intra-instance edges in our graph). Its results is 60.2% mAP. Our result (63.2%) is
better than both methods. This comparison indicates the effectiveness of exploiting a greater
variety of invariance in representation learning.

Is multi-task learning sufficient? An alternative way of obtaining both intra- and inter-
instance invariance is to apply multi-task learning with the two losses of [48] and [343]. Next
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All >cl >2 >3 >4 >cb

Context [48] 62.6 61.1 609 57.0 49.7 38.1
Tracking [343] 622 615 622 614 589 395
Multi-Task [48,343] 62.4 63.2 635 629 58.7 27.6
Ours 65.0 645 63.6 604 557 43.1

ImageNet 709 711 711 702 703 643

Table 4.3: Object detection Average Precision (%) on the VOC 2007 test set using joint training Faster
R-CNN [249].

we compare with this method.

For the task in [343], we use the same network architecture as our approach; for the task
in [48], we follow their design of a Siamese network. We apply different fully connected
layers for different tasks, but share the convolutional layers between these two tasks. Given
a mini-batch of training samples, we perform ranking among these images as well as context
prediction in each image simultaneously via two losses. The representations learned in
this way, when fine-tuned with Fast R-CNN, obtain 62.1% mAP (“Multi-task” in Table 4.2).
Comparing to only using context prediction [48] (61.5%), the multi-task learning only gives
a marginal improvement (0.6%). This result suggests that multi-task learning in this way is
not sufficient; organizing and exploiting the relationships of data, as done by our method, is
more effective for representation learning.

How important is tracking? To further understand how much visual tracking helps,
we perform ablative analysis by making the visual tracks shorter: we track the moving
objects for 15 frames instead of by default 30 frames. This is expected to reduce the view-
point/pose/deformation variance contributed by tracking. Our model pre-trained in this
way shows 61.5% mAP (“15-frame” in Table 4.2) when fine-tuned for detection. This number
is similar to that of using context prediction only (Table 4.1). This result is not surprising,
because it does not add much new information for training. It suggests adding stronger
viewpoint/pose/deformation invariance is important for learning better features for object
detection.

How important is clustering? Furthermore, we want to understand how important it is
to cluster images with features learned from still images [48]. We perform another ablative
analysis by replacing the features of [48] with HOG [40] during clustering. The rest of the
pipeline remains exactly the same. The final result is 60.4% mAP (“HOG” in Table 4.2). This
shows that if the features for clustering are not invariant enough to handle different object
instances, the transitivity in the graph becomes less reliable.

Object Detection with Faster R-CNN

Although Fast R-CNN [81] has been a popular testbed of un-/self-supervised features, it
relies on Selective Search proposals [311] and thus is not fully end-to-end. We further evaluate
the representations on object detection with the end-to-end Faster R-CNN [249] where the
Region Proposal Network (RPN) may suffer from the features if they are low-quality.

PASCAL VOC 2007 Results. We fine-tune Faster R-CNN in 8 GPUs for 35K iterations
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AP AP AP™® AP° APM AP*

from scratch 205 401 190 5.6 225 327
Context [48] 227 435 212 6.6 249 365
Tracking [343] 226 428 216 63 250 36.2
Multi-Task [48,343] 22.0 423 21.1 6.6 245 35.0

Ours 235 444 226 71 259 373
ImageNet (shorter) 23.7 44.5 235 72 269 374
ImageNet 244 464 231 79 274 381

Table 4.4: Object detection Average Precision (%, COCO definitions) on COCO minival using joint
training Faster R-CNN [249]. “(shorter)” indicates a shorter training time (fewer iterations, 61.25K)
used by the codebase of [249].

with an initial learning rate of 0.00025 which is reduced by 1/10 after every 15K iterations.
Table 4.3 shows the results of fine-tuning all layers (“All”) and also ablative results on freezing
different levels of convolutional layers (e.g., the column >c3 represents freezing all the layers
below and including conv3_x in VGG16 during fine-tuning). Our method gets even better
results of 65.0% by using Faster R-CNN, showing a larger gap compared to the counterparts
of [48] (62.6%) and [343] (62.2%). Noteworthily, when freezing all the convolutional layers
and only fine-tuning the fully-connected layers, our method (43.1%) is much better than
other competitors. And we again find that the multi-task alternative does not work well for
Faster R-CNN.

COCO Results. We further report results on the challenging COCO detection dataset
[205]. To the best of our knowledge this is the first work of this kind presented on COCO
detection. We fine-tune Faster R-CNN in 8 GPUs for 120K iterations with an initial learning
rate of 0.001 which is reduced by 1/10 after 80k iterations. This is trained on the COCO
trainval35k split and evaluated on the minivalbk split, introduced by [13].

We report the COCO results on Table 4.4. Faster R-CNN fine-tuned with our self-
supervised network obtains 23.5% AP using the COCO metric, which is very close (<1%) to
fine-tuning Faster R-CNN with the ImageNet pre-trained counterpart (24.4%). Actually, if
the fine-tuning of the ImageNet counterpart follows the “shorter” schedule in the public
code (61.25K iterations in 8 GPUs, converted from 490K in 1 GPU)!, the ImageNet super-
vised pre-training version has 23.7% AP and is comparable with ours. This comparison also
strengthens the significance of our result.

To the best of our knowledge, our model achieves the best performance reported to date
on VOC 2007 and COCO using un-/self-supervised pre-training.

Adapting to Surface Normal Estimation

To show the generalization ability of our self-supervised representations, we adopt the
learned network to the surface normal estimation task. In this task, given a single RGB
image as input, we train the network to predict the normal/orientation of the pixels. We
evaluate our method on the NYUv2 RGBD dataset [275] dataset. We use the official split
of 795 images for training and 654 images for testing. We follow the same protocols for

Ihttps://github.com/rbgirshick/py-faster-rcnn

44


https://github.com/rbgirshick/py-faster-rcnn

Mean Median 11.25° 22.5° 30°
(lower is better)  (higher is better)

from scratch 31.3 25.3 242 456 56.8
Context [48] 29.0 21.6 288 515 619
Tracking [343] 27.8 21.8 274 511 625
Ours 26.0 18.0 33.9 57.6 67.5
ImageNet 27.8 21.2 29.0 523 634

Table 4.5: Results on NYU v2 for per-pixel surface normal estimation, evaluated over valid
pixels.

generating surface normal ground truth and evaluations as [68,69,176].

To train the network for surface normal estimation, we apply the Fully Convolutional
Network (FCN 32-s) proposed in [210] with the VGG16 network as base architecture. For
the loss function, we follow the design in [336]. Specifically, instead of direct regression to
obtain the normal, we use a codebook of 40 codewords to encode the 3-dimension normals.
Each codeword represents one class thus we turn the problem into a 40-class classification
for each pixel. We use the same hyperparameters as in [210] for training and the network is
fine-tuned for same number of iterations (100K) for different initializations.

To initialize the FCN model with self-supervised nets, we copy the weights of the convo-
lutional layers to the corresponding layers in FCN. For ImageNet pre-trained network, we
follow [210] by converting the fully connected layers to convolutional layers and copy all
the weights. For the model trained from scratch, we randomly initialize all the layers with
“Xavier” initialization [91] .

Table 4.5 shows the results. We report mean and median error for all visible pixels (in
degrees) and also the percentage of pixels with error less than 11.25, 22.5 and 30 degrees.
Surprisingly, we obtain much better results with our self-supervised trained network than
ImageNet pre-training in this task (3 to 4% better in most metrics). As a comparison, the
network trained in [48,343] are slightly worse than the ImageNet pre-trained network. These
results suggest that our learned representations are competitive to ImageNet pre-training
for high-level semantic tasks, but outperforms it on tasks such as surface normal estimation.
This experiment suggests that different visual tasks may prefer different levels of visual
invariance.

4.6 Discussion

In this chapter, we propose a self-supervised method for learning visual representations
handling multiple invariations in data. Instead of doing multi-task learning, we propose
to use multiple sources to organize and relate data points for training. Our learned repre-
sentations achieve the best performance reported to date on VOC 2007 and COCO using
un-/self-supervised pre-training. On the challenging COCO detection dataset, we present a
surprisingly small gap of self-supervised pre-training to the powerful, prevalent ImageNet
pre-training counterpart.
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Part 11

Video Understanding with
Correspondence
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Chapter 5

Non-local Neural Networks

In the previous chapters, we have introduced how can we use correspondence to provide a
supervisory signal to train deep networks. Besides supervision, in this chapter, we will illus-
trate that correspondence is also the key in designing modern neural network architectures.

Capturing long-range dependencies is of central importance in deep neural networks. For
sequential data (e.g., in speech, language), recurrent operations [124,258] are the dominant
solution to long-range dependency modeling. For image data, long-distance dependencies
are modeled by the large receptive fields formed by deep stacks of convolutional operations
[73,188].

Convolutional and recurrent operations both process a local neighborhood, either in
space or time; thus long-range dependencies can only be captured when these operations
are applied repeatedly, propagating signals progressively through the data. Repeating
local operations has several limitations. First, it is computationally inefficient. Second, it
causes optimization difficulties that need to be carefully addressed [114,124]. Finally, these
challenges make multi-hop dependency modeling, e.g., when messages need to be delivered
back and forth between distant positions, difficult.

In this chapter, we present non-local operations as an efficient, simple, and generic com-
ponent for capturing long-range dependencies with deep neural networks. Our proposed
non-local operation is a generalization of the classical non-local mean operation [21] in
computer vision. Intuitively, a non-local operation computes the response at a position as a
weighted sum of the features at all positions in the input feature maps (Figure 5.1). The set of
positions can be in space, time, or spacetime, implying that our operations are applicable for
image, sequence, and video problems.

There are several advantages of using non-local operations: (a) In contrast to the pro-
gressive behavior of recurrent and convolutional operations, non-local operations capture
long-range dependencies directly by computing interactions between any two positions,
regardless of their positional distance; (b) As we show in experiments, non-local operations
are efficient and achieve their best results even with only a few layers (e.g., 5); (c) Finally,
our non-local operations maintain the variable input sizes and can be easily combined with
other operations (e.g., convolutions as we will use).

We showcase the effectiveness of non-local operations in the application of video classifi-
cation. In videos, long-range interactions occur between distant pixels in space as well as
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Figure 5.1: A spacetime non-local operation in our network trained for video classification.
A position x;’s response is computed by the weighted average of the features of all positions
x; (only the highest weighted ones are shown here). In this example computed by our model,
note how it relates the ball in the first frame to the ball in the last two frames. More examples
are in Figure 5.3.

time. A single non-local block, which is our basic unit, can directly capture these spacetime
dependencies in a feedforward fashion. With a few non-local blocks, our architecures called
non-local neural networks are more accurate for video classification than 2D and 3D convo-
lutional networks [306] (including the inflated variant [27]). In addition, non-local neural
networks are more computationally economical than their 3D convolutional counterparts.
Comprehensive ablation studies are presented on the Kinetics [154] and Charades [273]
datasets. Using RGB only and without any bells and whistles (e.g., optical flow, multi-scale
testing), our method achieves results on par with or better than the latest competitions
winners on both datasets.

To demonstrate the generality of non-local operations, we further present object detec-
tion/segmentation and pose estimation experiments on the COCO dataset [205]. On top of
the strong Mask R-CNN baseline [112], our non-local blocks can increase accuracy on all
three tasks at a small extra computational cost. Together with the evidence on videos, these
image experiments show that non-local operations are generally useful and can become a
basic building block in designing deep neural networks.

5.1 Background

Non-local image processing. Non-local means [21] is a classical filtering algorithm that
computes a weighted mean of all pixels in an image. It allows distant pixels to contribute
to the filtered response at a location based on patch appearance similarity. This non-local
filtering idea was later developed into BM3D (block-matching 3D) [37], which performs
filtering on a group of similar, but non-local, patches. BM3D is a solid image denoising
baseline even compared with deep neural networks [22]. Block matching was used with
neural networks for image denoising [23,191]. Non-local matching is also the essence of
successful texture synthesis [55], super-resolution [90], and inpainting [9] algorithms.

Graphical models. Long-range dependencies can be modeled by graphical models such as
conditional random fields (CRF) [168,177]. In the context of deep neural networks, a CRF
can be exploited to post-process semantic segmentation predictions of a network [31]. The
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iterative mean-field inference of CRF can be turned into a recurrent network and trained
[28,111,208,268,388]. In contrast, our method is a simpler feedforward block for computing
non-local filtering. Unlike these methods that were developed for segmentation, our general-
purpose component is applied for classification and detection. These methods and ours are
also related to a more abstract model called graph neural networks [267].

Feedforward modeling for sequences. Recently there emerged a trend of using feedfor-
ward (i.e., non-recurrent) networks for modeling sequences in speech and language [78,232,
367]. In these methods, long-term dependencies are captured by the large receptive fields
contributed by very deep 1-D convolutions. These feedforward models are amenable to
parallelized implementations and can be more efficient than widely used recurrent models.

Self-attention. Our work is related to the recent self-attention [314] method for machine
translation. A self-attention module computes the response at a position in a sequence (e.g.,
a sentence) by attending to all positions and taking their weighted average in an embedding
space. As we will discuss in the next, self-attention can be viewed as a form of the non-local
mean [21], and in this sense our work bridges self-attention for machine translation to the
more general class of non-local filtering operations that are applicable to image and video
problems in computer vision.

Interaction networks. Interaction Networks (IN) [10,350] were proposed recently for model-
ing physical systems. They operate on graphs of objects involved in pairwise interactions.
Hoshen [129] presented the more efficient Vertex Attention IN (VAIN) in the context of multi-
agent predictive modeling. Another variant, named Relation Networks [266], computes a
function on the feature embeddings at all pairs of positions in its input. Our method also
processes all pairs, as we will explain (f(x;,x;) in Eq.(5.1)). While our non-local networks
are connected to these approaches, our experiments indicate that the non-locality of the
model, which is orthogonal to the ideas of attention/interaction/relation (e.g., a network
can attend to a local region), is the key to their empirical success. Non-local modeling, a
long-time crucial element of image processing (e.., [21,55]), has been largely overlooked in
recent neural networks for computer vision.

Video classification architectures. A natural solution to video classification is to combine
the success of CNNs for images and RNNs for sequences [52,381]. In contrast, feedforward
models are achieved by 3D convolutions (C3D) [144,306] in spacetime, and the 3D filters can
be formed by “inflating” [27,62] pre-trained 2D filters. In addition to end-to-end modeling
on raw video inputs, it has been found that optical flow [279] and trajectories [326,330] can
be helpful. Both flow and trajectories are off-the-shelf modules that may find long-range,
non-local dependency. A systematic comparison of video architectures can be found in [27].

5.2 Non-local Neural Networks

We first give a general definition of non-local operations and then we provide several specific
instantiations of it.
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Formulation

Following the non-local mean operation [21], we define a generic non-local operation in
deep neural networks as:

yi= ﬁ S F (i %5)9(x5). (5.1)
vj

Here i is the index of an output position (in space, time, or spacetime) whose response is to
be computed and j is the index that enumerates all possible positions. x is the input signal
(image, sequence, video; often their features) and y is the output signal of the same size
as x. A pairwise function f computes a scalar (representing relationship such as affinity)
between i and all j. The unary function g computes a representation of the input signal at
the position j. The response is normalized by a factor C(x).

The non-local behavior in Eq.(5.1) is due to the fact that all positions (V) are considered
in the operation. As a comparison, a convolutional operation sums up the weighted input in
a local neighborhood (e.g., i —1 < j <i+ 1ina 1D case with kernel size 3), and a recurrent
operation at time i is often based only on the current and the latest time steps (e.g., j = % or
i—1).

The non-local operation is also different from a fully-connected (fc) layer. Eq.(5.1) com-
putes responses based on relationships between different locations, whereas fc uses learned
weights. In other words, the relationship between x; and x; is not a function of the input
data in fc, unlike in non-local layers. Furthermore, our formulation in Eq.(5.1) supports
inputs of variable sizes, and maintains the corresponding size in the output. On the contrary,
an fc layer requires a fixed-size input/output and loses positional correspondence (e.g., that
from x; to y; at the position 7).

A non-local operation is a flexible building block and can be easily used together with
convolutional /recurrent layers. It can be added into the earlier part of deep neural networks,
unlike fc layers that are often used in the end. This allows us to build a richer hierarchy that
combines both non-local and local information.

Instantiations

Next we describe several versions of f and g. Interestingly, we will show by experiments
(Table 5.2a) that our non-local models are not sensitive to these choices, indicating that the
generic non-local behavior is the main reason for the observed improvements.

For simplicity, we only consider g in the form of a linear embedding: g(x;) = Wyx;,
where W, is a weight matrix to be learned. This is implemented as, e.g., 1x1 convolution in
space or 1x1x1 convolution in spacetime.

Next we discuss choices for the pairwise function f.

Gaussian. Following the non-local mean [21] and bilateral filters [305], a natural choice of f
is the Gaussian function. In this chapter we consider:

T
X

fxi,x;) =79, (5.2)

Here x!'x; is dot-product similarity. Euclidean distance as used in [21,305] is also applicable,
but dot product is more implementation-friendly in modern deep learning platforms. The
normalization factor is set as C(x) = >y f(xi,%;).
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Embedded Gaussian. A simple extension of the Gaussian function is to compute similarity
in an embedding space. In this chapter we consider:

Fxi,%;) = e0x)Th(x;) (5.3)

Here 0(x;) = Wpx; and ¢(x;) = Wyx; are two embeddings. As above, we set C(x) =
S, F0s %),

We note that the self-attention module [314] recently presented for machine translation is a
special case of non-local operations in the embedded Gaussian version. This can be seen from the
fact that for a given ¢, ﬁ f(xi,x;) becomes the softmax computation along the dimension j.
So we have y = softmax(x” W] W4x)g(x), which is the self-attention form in [314]. As such,
our work provides insight by relating this recent self-attention model to the classic computer
vision method of non-local means [21], and extends the sequential self-attention network
in [314] to a generic space/spacetime non-local network for image/video recognition in
computer vision.

Despite the relation to [314], we show that the attentional behavior (due to softmax) is
not essential in the applications we study. To show this, we describe two alternative versions
of non-local operations next.

Dot product. f can be defined as a dot-product similarity:
Fxi,%5) = 0(xi)" b (x;)- (54)

Here we adopt the embedded version. In this case, we set the normalization factor as
C(x) = N, where N is the number of positions in x, rather than the sum of f, because it
simplifies gradient computation. A normalization like this is necessary because the input
can have variable size.

The main difference between the dot product and embedded Gaussian versions is the
presence of softmax, which plays the role of an activation function.

Concatenation. Concatenation is used by the pairwise function in Relation Networks [266]
for visual reasoning. We also evaluate a concatenation form of f:

f(xi,x5) = ReLU(W [0(x;), 6(x;)])- (5.5)

Here [, -] denotes concatenation and w is a weight vector that projects the concatenated
vector to a scalar. As above, we set C(x) = N. In this case, we adopt ReLU [228] in f.

The above several variants demonstrate the flexibility of our generic non-local operation.
We believe alternative versions are possible and may improve results.

Non-local Block

We wrap the non-local operation in Eq.(5.1) into a non-local block that can be incorporated
into many existing architectures. We define a non-local block as:

z; = W.y; + X, (5.6)

where y; is given in Eq.(5.1) and “+x;” denotes a residual connection [114]. The residual
connection allows us to insert a new non-local block into any pre-trained model, without
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Figure 5.2: A spacetime non-local block. The feature maps are shown as the shape of
their tensors, e.g., T'x H x W x1024 for 1024 channels (proper reshaping is performed when
noted). “®” denotes matrix multiplication, and “&” denotes element-wise sum. The softmax
operation is performed on each row. The blue boxes denote 1x1x1 convolutions. Here
we show the embedded Gaussian version, with a bottleneck of 512 channels. The vanilla
Gaussian version can be done by removing ¢ and ¢, and the dot-product version can be
done by replacing softmax with scaling by 1/N.

breaking its initial behavior (e.g., if W, is initialized as zero). An example non-local block is
illustrated in Figure 5.2. The pairwise computation in Eq.(5.2), (5.3), or (5.4) can be simply
done by matrix multiplication as shown in Figure 5.2; the concatenation version in (5.5) is
straightforward.

The pairwise computation of a non-local block is lightweight when it is used in high-level,
sub-sampled feature maps. For example, typical values in Figure 5.2 are T'=4, H = W = 14
or 7. The pairwise computation as done by matrix multiplication is comparable to a typical
convolutional layer in standard networks. We further adopt the following implementations
that make it more efficient.

Implementation of Non-local Blocks. We set the number of channels represented by W,
Wy, and W, to be half of the number of channels in x. This follows the bottleneck design
of [114] and reduces the computation of a block by about a half. The weight matrix W, in
Eq.(5.6) computes a position-wise embedding on y;, matching the number of channels to
that of x. See Figure 5.2.

A subsampling trick can be used to further reduce computation. We modify Eq.(5.1) as:
Vi = ﬁ > vj f(xi,%;)g(R;), where % is a subsampled version of x (e.., by pooling). We
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layer output size
convy 7x7,64,stride 2,2, 2 16x112x112
pooly 3x3x3 max, stride 2, 2, 2 8x56x56
[ 1x1,64 ]
ress 3x3, 64 X3 8x56x56
| 1x1,256 |
poola | 3x1x1max,stride2,1,1 4x56x56
[ 1x1,128 ]
ress 3x3,128 | x4 4x28x%x28
| 1x1,512 |
1x1,256
resy 3x3, 256 X6 4x14x14
| 1x1,1024 |
[ 1x1,512
ress 3x3,512 X3 4x7%x7
| 1x1,2048 |
global average pool, fc 1x1x1

Table 5.1: Our baseline ResNet-50 C2D model for video. The dimensions of 3D output
maps and filter kernels are in TxHxW (2D kernels in HxW), with the number of channels
following. The input is 32x224x224. Residual blocks are shown in brackets.

perform this in the spatial domain, which can reduce the amount of pairwise computation
by 1/4. This trick does not alter the non-local behavior, but only makes the computation
sparser. This can be done by adding a max pooling layer after ¢ and g in Figure 5.2.

We use these efficient modifications for all non-local blocks studied In this chapter.

5.3 Video Classification Models

To understand the behavior of non-local networks, we conduct comprehensive ablation ex-
periments on video classification tasks. First we describe our baseline network architectures
for this task, and then extend them into 3D ConvNets [27,306] and our proposed non-local
nets.

2D ConvNet baseline (C2D). To isolate the temporal effects of our non-local nets vs. 3D
ConvNets, we construct a simple 2D baseline architecture in which the temporal dimension
is trivially addressed (i.e., only by pooling).

Table 5.1 shows our C2D baseline under a ResNet-50 backbone. The input video clip
has 32 frames each with 224 x224 pixels. All convolutions in Table 5.1 are in essence 2D
kernels that process the input frame-by-frame (implemented as 1xkxk kernels). This model
can be directly initialized from the ResNet weights pre-trained on ImageNet. A ResNet-101
counterpart is built in the same way.
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Figure 5.3: Examples of the behavior of a non-local block in res; computed by a 5-block
non-local model trained on Kinetics. These examples are from held-out validation videos.
The starting point of arrows represents one x;, and the ending points represent x;. The 20
highest weighted arrows for each x; are visualized. The 4 frames are from a 32-frame input,
shown with a stride of 8 frames. These visualizations show how the model finds related
clues to support its prediction.

The only operation involving the temporal domain are the pooling layers. In other words,
this baseline simply aggregates temporal information.

Inflated 3D ConvNet (I3D). As done in [27,62], one can turn the C2D model in Table 5.1
into a 3D convolutional counterpart by “inflating” the kernels. For example, a 2D & xk kernel
can be inflated as a 3D ¢ x kxk kernel that spans ¢ frames. This kernel can be initialized from
2D models (pre-trained on ImageNet): each of the ¢ planes in the ¢ x & xk kernel is initialized
by the pre-trained k x k weights, rescaled by 1/t. If a video consists of a single static frame
repeated in time, this initialization produces the same results as the 2D pre-trained model
run on a static frame.

We study two cases of inflations: we either inflate the 3x3 kernel in a residual block
to 3x3x3 (similar to [27]), or the first 1x1 kernel in a residual block to 3x1x1 (similar
to [62]). We denote these as I3D3y3x3 and I3D3y 1« 1. As 3D convolutions are computationally
intensive, we only inflate one kernel for every 2 residual blocks; inflating more layers shows
diminishing return. We inflate conv; to 5x7x7.

The authors of [27] have shown that I3D models are more accurate than their CNN+LSTM
counterparts.

Non-local network. We insert non-local blocks into C2D or I3D to turn them into non-local
nets. We investigate adding 1, 5, or 10 non-local blocks; the implementation details are
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described in the next section in context.

Implementation Details

Training. Our models are pre-trained on ImageNet [260]. Unless specified, we fine-tune
our models using 32-frame input clips. These clips are formed by randomly cropping out 64
consecutive frames from the original full-length video and then dropping every other frame.
The spatial size is 224 <224 pixels, randomly cropped from a scaled video whose shorter side
is randomly sampled in [256, 320] pixels, following [282]. We train on an 8-GPU machine
and each GPU has 8 clips in a mini-batch (so in total with a mini-batch size of 64 clips). We
train our models for 400k iterations in total, starting with a learning rate of 0.01 and reducing
it by a factor of 10 at every 150k iterations (see also Figure 5.4). We use a momentum of 0.9
and a weight decay of 0.0001. We adopt dropout [123] after the global pooling layer, with a
dropout ratio of 0.5. We fine-tune our models with BatchNorm (BN) [134] enabled when it
is applied. This is in contrast to common practice [114] of fine-tuning ResNets, where BN
was frozen. We have found that enabling BN in our application reduces overfitting.

We adopt the method in [113] to initialize the weight layers introduced in the non-local
blocks. We add a BN layer right after the last 1x1x1 layer that represents W ; we do not add
BN to other layers in a non-local block. The scale parameter of this BN layer is initialized
as zero, following [97]. This ensures that the initial state of the entire non-local block is an
identity mapping, so it can be inserted into any pre-trained networks while maintaining its
initial behavior.

Inference. Following [282] we perform spatially fully-convolutional inference on videos
whose shorter side is rescaled to 256. For the temporal domain, in our practice we sample 10
clips evenly from a full-length video and compute the softmax scores on them individually.
The final prediction is the averaged softmax scores of all clips.

5.4 Experiments on Video Classification

We perform comprehensive studies on the challenging Kinetics dataset [154]. We also report
results on the Charades dataset [273] to show the generality of our models.

Experiments on Kinetics

Kinetics [154] contains ~246k training videos and 20k validation videos. It is a classification
task involving 400 human action categories. We train all models on the training set and test
on the validation set.

Figure 5.4 shows the curves of the training procedure of a ResNet-50 C2D baseline vs. a
non-local C2D with 5 blocks (more details in the following). Our non-local C2D model is
consistently better than the C2D baseline throughout the training procedure, in both training
and validation error.

Figure 5.1 and Figure 5.3 visualize several examples of the behavior of a non-local
block computed by our models. Our network can learn to find meaningful relational clues
regardless of the distance in space and time.
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model, R50 top-1 top-5 model, R50 | top-1 top-5 model top-1 top-5
C2D baseline 71.8 89.7 baseline | 71.8 89.7 baseline | 71.8 89.7
Gaussian 725 90.2 ress 72.7 90.3 R50 1-block | 72.7 90.5
Gaussian, embed | 72.7 90.5 ress 729 90.4 5-block | 73.8 91.0
dot-product 729 903 resy 72.7 90.5 10-block | 74.3 91.2
concatenation 72.8 90.5 ress 72.3 90.1 baseline | 73.1 91.0

1-block | 743 913
5-block | 75.1 91.7
10-block | 75.1  91.6

(a) Instantiations: 1 non-local (b) Stages: 1 non-local (c) Deeper non-local models:
block of different types is added block is added into differ- we compare 1, 5, and 10 non-
into the C2D baseline. All entries  ent stages. All entries are local blocks added to the C2D

R101

are with ResNet-50. with ResNet-50. baseline. We show ResNet-50
(top) and ResNet-101 (bottom) re-
sults.
model top-1 top-5 model, R101 | params FLOPs | top-1 top-5
baseline 71.8 89.7 C2D baseline 1x 1x 73.1 910
R50 space-only | 729  90.8 13D3%3x3 1.5x% 1.8x | 741 912
time-only | 73.1 90.5 I3D3%1x1 1.2x 1.5x%x 744 91.1
spacetime | 73.8 91.0 NL C2D, 5-block | 1.2x 1.2x | 751 917

baseline 731 910
space-only | 744 913
time-only | 744 90.5
spacetime | 751 91.7

R101

(d) Space vs. time vs. spacetime: (e) Non-local vs. 3D Conv: A 5-block non-local C2D
we compare non-local operations vs. inflated 3D ConvNet (I3D) [27]. All entries are
applied along space, time, and with ResNet-101. The numbers of parameters and
spacetime dimensions respectively. FLOPs are relative to the C2D baseline (43.2M and
5 non-local blocks are used. 34.2B).
model top-1 top-5 model top-1 top-5
C2D baseline | 71.8  89.7 C2D baseline | 73.8 91.2
R50 13D 733  90.7 R50 13D 749 917
NL I3D 749 916 NL I3D 76.5 92.6
C2D baseline | 73.1  91.0 C2D baseline | 75.3 91.8
R101 I3D 744 911 R101 I3D 764 927
NL I3D 76.0 92.1 NL I3D 77.7 93.3
(f) Non-local 3D ConvNet: 5 non-local (g) Longer clips: we fine-tune and test
blocks are added on top of our best I3D the models in Table 5.2f on the 128-
models. These results show that non- frame clips. The gains of our non-local
local operations are complementary to operations are consistent.

3D convolutions.

Table 5.2: Ablations on Kinetics action classification. We show top-1 and top-5 classification
accuracy (%).

Table 5.2 shows the ablation results, analyzed as follows:

Instantiations. Table 5.2a compares different types of a single non-local block added to the
C2D baseline (right before the last residual block of res;). Even adding one non-local block
can lead to ~1% improvement over the baseline.

Interestingly, the embedded Gaussian, dot-product, and concatenation versions perform
similarly, up to some random variations (72.7 to 72.9). As discussed in Sec. 5.2, the non-
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Figure 5.4: Curves of the training procedure on Kinetics for the ResNet-50 C2D baseline
(blue) vs. non-local C2D with 5 blocks (red). We show the top-1 training error (dash) and
validation error (solid). The validation error is computed in the same way as the training
error (so it is 1-clip testing with the same random jittering at training time); the final results
are in Table 5.2c (R50, 5-block).

local operations with Gaussian kernels become similar to the self-attention module [314].
However, our experiments show that the attentional (softmax) behavior of this module is not
the key to the improvement in our applications; instead, it is more likely that the non-local
behavior is essential, and it is insensitive to the instantiations.

In the rest of this chapter, we use the embedded Gaussian version by default. This version
is easier to visualize as its softmax scores are in the range of [0, 1].

Which stage to add non-local blocks? Table 5.2b compares a single non-local block added
to different stages of ResNet. The block is added to right before the last residual block of a
stage. The improvement of a non-local block on res,, ress, or res, is similar, and on ress is
slightly smaller. One possible explanation is that ress has a small spatial size (7x7) and it
is insufficient to provide precise spatial information. More evidence of a non-local block
exploiting spatial information will be investigated in Table 5.2d.

Going deeper with non-local blocks. Table 5.2c shows the results of more non-local blocks.
We add 1 block (to resy), 5 blocks (3 to res, and 2 to ress, to every other residual block), and
10 blocks (to every residual block in ress and res,) in ResNet-50; in ResNet-101 we add them
to the corresponding residual blocks. Table 5.2c shows that more non-local blocks in general
lead to better results. We argue that multiple non-local blocks can perform long-range multi-
hop communication. Messages can be delivered back and forth between distant positions in
spacetime, which is hard to do via local models.

It is noteworthy that the improvement of non-local blocks is not just because they add
depth to the baseline model. To see this, we note that in Table 5.2c the non-local 5-block
ResNet-50 model has 73.8 accuracy, higher than the deeper ResNet-101 baseline’s 73.1.
However, the 5-block ResNet-50 has only ~70% parameters and ~80% FLOPs of the ResNet-
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model backbone modality top-1  top-5
13D in [27] Inception RGB 7117 89.37
2-Stream 13D in [27] Inception RGB + flow 742t 913t
RGB baseline in [16] Inception-ResNet-v2 | RGB 73.0 90.9
16

16

16
ResNet-50 RGB 765 926
NL I3D [ours] ResNet-101 RGB 777 933

Table 5.3: Comparisons with state-of-the-art results in Kinetics. Numbers with  were
reported on the test set; otherwise on the validation set. We include the Kinetics 2017
competition winner’s results [16], but their best results exploited audio signals (marked
in ) so were not vision-only solutions. ': individual top-1 or top-5 numbers are not
available from the test server at the time of submitting this manuscript.

101 baseline, and is also shallower. This comparison shows that the improvement due to
non-local blocks is complementary to going deeper in standard ways.

We have also tried to add standard residual blocks, instead of non-local blocks, to the
baseline models. The accuracy is not increased. This again shows that the improvement of
non-local blocks is not just because they add depth.

Non-local in spacetime. Our method can naturally handle spacetime signals. This is a nice
property: related objects in a video can present at distant space and long-term time interval,
and their dependency can be captured by our model.

In Table 5.2d we study the effect of non-local blocks applied along space, time, or space-
time. For example, in the space-only version, the non-local dependency only happens within
the same frame: i.e., in Eq.(5.1) it only sums over the index j in the same frame of the index i.
The time-only version can be set up similarly. Table 5.2d shows that both the space-only and
time-only versions improve over the C2D baseline, but are inferior to the spacetime version.

Non-local net vs. 3D ConvNet. Table 5.2e compares our non-local C2D version with the
inflated 3D ConvNets. Non-local operations and 3D convolutions can be seen as two ways
of extending C2D to the temporal dimensions.

Table 5.2¢e also compares the number of parameters and FLOPs, relative to the baseline.
Our non-local C2D model is more accurate than the I3D counterpart (e.g., 75.1 vs. 74.4), while
having a smaller number of FLOPs (1.2x vs. 1.5x). This comparison shows that our method
can be more effective than 3D convolutions when used alone.

Non-local 3D ConvNet. Despite the above comparison, non-local operations and 3D con-
volutions can model different aspects of the problem: 3D convolutions can capture local
dependency. Table 5.2f shows the results of inserting 5 non-local blocks into the I3D3 1 x1
models. These non-local I3D (NL I3D) models improve over their I3D counterparts (+1.6
point accuracy), showing that non-local operations and 3D convolutions are complementary.

Longer sequences. Finally we investigate the generality of our models on longer input
videos. We use input clips consisting of 128 consecutive frames without subsampling. The
sequences throughout all layers in the networks are thus 4 x longer compared to the 32-frame
counterparts. To fit this model into memory, we reduce the mini-batch size to 2 clips per GPU.
As a result of using small mini-batches, we freeze all BN layers in this case. We initialize
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model modality trainfval  trainval/test
2-Stream [271] RGB + flow 18.6 -
2-Stream +LSTM [271] | RGB + flow 17.8 -
Asyn-TF [271] RGB + flow 224 -
13D [27] RGB 329 344
13D [ours] RGB 35.5 37.2
NL I3D [ours] RGB 37.5 39.5

Table 5.4: Classification mAP (%) in the Charades dataset [273], on the train/val split and the
trainval/test split. Our results are based on ResNet-101. Our NL I3D uses 5 non-local blocks.

this model from the corresponding models trained with 32-frame inputs. We fine-tune
on 128-frame inputs using the same number of iterations as the 32-frame case (though the
mini-batch size is now smaller), starting with a learning rate of 0.0025. Other implementation
details are the same as before.

Table 5.2g shows the results of 128-frame clips. Comparing with the 32-frame counter-
parts in Table 5.2f, all models have better results on longer inputs. We also find that our NL
I3D can maintain its gain over the I3D counterparts, showing that our models work well on
longer sequences.

Comparisons with state-of-the-art results. Table 5.3 shows the results from the I3D authors
[27] and from the Kinetics 2017 competition winner [16]. We note that these are comparisons
of systems which can differ in many aspects. Nevertheless, our method surpasses all the
existing RGB or RGB + flow based methods by a good margin. Without using optical flow and
without any bells and whistles, our method is on par with the heavily engineered results of the
2017 competition winner.

Experiments on Charades

Charades [273] is a video dataset with ~8k training, ~1.8k validation, and ~2k testing videos.
It is a multi-label classification task with 157 action categories. We use a per-category sigmoid
output to handle the multi-label property.

We initialize our models pre-trained on Kinetics (128-frame). The mini-batch size is set
to 1 clip per GPU. We train our models for 200k iterations, starting from a learning rate of
0.00125 and reducing it by 10 every 75k iterations. We use a jittering strategy similar to that
in Kinetics to determine the location of the 224 x224 cropping window, but we rescale the
video such that this cropping window outputs 288 x288 pixels, on which we fine-tune our
network. We test on a single scale of 320 pixels.

Table 5.4 shows the comparisons with the previous results on Charades. The result
of [27] is the 2017 competition winner in Charades, which was also fine-tuned from models
pre-trained in Kinetics. Our 13D baseline is higher than previous results. As a controlled
comparison, our non-local net improves over our I3D baseline by 2.3% on the test set.

5.5 Extension: Experiments on COCO

We also investigate our models on static image recognition. We experiment on the Mask
R-CNN baseline [112] for COCO [205] object detection/segmentation and human pose esti-
mation (keypoint detection). The models are trained on COCO train2017 (i.e., trainval3bk
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method | APPX APH% APhgx | Apmask Apmask  ppmask
baseline[ 380 59.6 410 | 346 564 365
+INL | 39.0 611 419 | 355 580 374
baseline | 395 614 429 | 360 581 383
+INL | 40.8 631 445 | 371 599 392
baseline | 441 664 484 | 397 632 422
+INL | 450 67.8 489 | 403 644 428

R50

R101

X152

Table 5.5: Adding 1 non-local block to Mask R-CNN for COCO object detection and instance
segmentation. The backbone is ResNet-50/101 or ResNeXt-152 [365], both with FPN [204].

model AP APEP APKP
R101 baseline 65.1 86.8 704
NL, +4 in head 66.0 87.1 71.7
NL, +4 in head, +1 in backbone | 66.5 87.3 72.8

Table 5.6: Adding non-local blocks to Mask R-CNN for COCO keypoint detection. The
backbone is ResNet-101 with FPN [204].

in 2014) and tested on val2017 (i.e., minival in 2014).

Object detection and instance segmentation. We modify the Mask R-CNN backbone by
adding one non-local block (right before the last residual block of resy). All models are fine-
tuned from ImageNet pre-training. We evaluate on a standard baseline of ResNet-50/101
and a high baseline of ResNeXt-152 (X152) [365]. Unlike the original paper [112] that adopted
stage-wise training regarding RPN, we use an improved implementation with end-to-end
joint training similar to [250], which leads to higher baselines than [112].

Table 5.5 shows the box and mask AP on COCO. We see that a single non-local block
improves all R50/101 and X152 baselines, on all metrics involving detection and segmen-
tation. AP is increased by ~1 point in all cases (e.g., +1.3 point in R101). Our non-local
block has a nice effect complementary to increasing the model capacity, even when the model
is upgraded from R50/101 to X152. This comparison suggests that non-local dependency has
not been sufficiently captured by existing models despite increased depth/capacity.

In addition, the above gain is at a very small cost. The single non-local block only adds
<5% computation to the baseline model. We also have tried to use more non-local blocks to
the backbone, but found diminishing return.

Keypoint detection. Next we evaluate non-local blocks in Mask R-CNN for keypoint detec-
tion. In [112], Mask R-CNN used a stack of 8 convolutional layers for predicting the keypoints
as 1-hot masks. These layers are local operations and may overlook the dependency among
keypoints across long distance. Motivated by this, we insert 4 non-local blocks into the
keypoint head (after every 2 convolutional layers).

Table 5.6 shows the results on COCO. On a strong baseline of R101, adding 4 non-local
blocks to the keypoint head leads to a ~1 point increase of keypoint AP. If we add one extra
non-local block to the backbone as done for object detection, we observe an in total 1.4 points
increase of keypoint AP over the baseline. In particular, we see that the stricter criterion of
APr75 is boosted by 2.4 points, suggesting a stronger localization performance.
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5.6 Discussion

We presented a new class of neural networks which capture long-range dependencies via
non-local operations. Our non-local blocks can be combined with any existing architectures.
We show the significance of non-local modeling for the tasks of video classification, object
detection and segmentation, and pose estimation. On all tasks, a simple addition of non-local
blocks provides solid improvement over baselines. We hope non-local layers will become an
essential component of future network architectures.
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Chapter 6

Videos as Space-Time Region
Graphs

We have shown encouraging results in action recognition in videos with Non-local operator
in the last chapter. However, the Non-local operator is applied in every pixel in the feature
space (from low layers to higher layers), which makes it inefficient and redundant. Moreover,
the non-local operator does not process any temporal ordering information. To solve these
two problems, we propose to model the videos as space-time region graphs, and perform
reasoning on top.

Consider a simple action such as “opening a book” as shown in Fig. 6.1. When we
humans see the sequence of images, we can easily recognize the action category; yet our
current vision systems (with hundreds of layers of 3D convolutions) struggle on this simple
task. Why is that? What is missing in current video recognition frameworks?

Let’s first take a closer look at the sequence shown in Fig. 6.1. How do humans recognize
the action in the video corresponds to “opening a book”? We argue that there are two key
ingredients to solving this problem: First, the shape of the book and how it changes over time
(i.e., the object state changes from closed to open) is a crucial cue. Exploiting this cue requires
temporally linking book regions across time and modeling actions as transformations. But
just modeling temporal dynamics of objects is not sufficient. The state of objects change after
interaction with human or other objects. Thus we also need to model human-object and
object-object interactions as well for action recognition.

However, our current deep learning approaches fail to capture these two key ingredients.
For example, the state-of-the-art approaches based on two-stream ConvNets [281,333] are
still learning to classify actions based on individual video frame or local motion vectors.
Local motion clearly fails to model the dynamics of shape changes. To tackle this limitation,
recent work has also focused on modeling long term temporal information with Recurrent
Neural Networks [50, 195,224,381] and 3D Convolutions [27, 306,308, 366]. However, all
these frameworks focus on the features extracted from the whole scenes and fail to capture
long-range temporal dependencies (transformations) or region-based relationships. In fact,
most of the actions are classified based on the background information instead of capturing
the key objects (e.g., the book in “opening a book”) as observed in [272].

On the other hand, there have been several efforts to specifically model the human-
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Similarity Relations ~  ------ Spatial-Temporal Relations

Figure 6.1: How do you recognize simple actions such as opening book? We argue action
understanding requires appearance modeling but also capturing temporal dynamics (how
shape of book changes) and functional relationships. We propose to represent videos as
space-time region graphs followed by graph convolutions for inference.

object or object-object interactions [103,374]. This direction have been recently revisited
with ConvNets in an effort to improve object detection [88, 130, 376], visual relationship
detection [212] and action recognition [87], etc. However, the relationship reasoning is still
performed in static images failing to capture temporal dynamics of these interactions. Thus,
it is very hard for these approaches to capture the changes of object states over time as well
as the causes and effects of these changes.

In this chapter, we propose to perform long-range temporal modeling of human-object
and object-object relationships via a graph-based reasoning framework. Unlike existing
approaches which focus on local motion vectors, our model takes in a long range video
sequence (e.g., more than 100 frames or 5 seconds). We represent the input video as a
space-time region graph where each node in the graph represent region of interest in
the video. Region nodes are connected by two types of edges: appearance-similarity and
spatio-temporal proximity. Specifically, (i) Similarity Relations: regions which have similar
appearance or semantically related are connected together. With similarity relations, we can
model how the states of the same object change and the long range dependencies between
any two objects in any frames. (ii) Spatial-Temporal Relations: objects which overlap in
space and close in time are connected together via these edges. With spatial-temporal
relations, we can capture the interactions between nearby objects as well as the temporal
ordering of object state changes.

Given the graph representation, we perform reasoning on the graph and infer the action
by applying the Graph Convolution Networks (GCNs) [162]. We conduct our experiments in
the challenging Charades [273] and 20BN-Something-Something [98] datasets. Both datasets
are extremely challenging as the actions cannot be easily inferred by the background of
the scene and the 2D appearance of the objects or humans. Our model shows significant
improvements over state-of-the-art results of action recognition. Especially in the Charades
dataset, we obtain 4.4% boost.

Our contributions include: (a) A novel graph representation with variant relationships
between different objects in a long range video; (b) A graph convolutional network model

63



for reasoning with multiple relation edges; (c) state-of-the-art performance with a significant
gain in action recognition in complex environments.

6.1 Background

Video Understanding Models. Spatio-temporal reasoning is one of the core research areas
in the field of video understanding and action recognition. However, most of the early work
has focused on using spatio-temporal appearance features. For example, a large effort has
been spent on manually designing the video features [41,165,179-181,236,264,326,348,398].
Some of the hand-designed features such as the Improved Dense Trajectory (IDT) [326]
are still widely applied and show very competitive results in different video related tasks.
However, instead of designing hand-crafted features, recent researches have focused towards
learning deep representations from the video data [153, 186,281,304, 331,333,335, 390]. One
of the most popular model is the two-Stream ConvNets [281] where temporal information
is model by a network with 10 optical flow frames as inputs (< 1 second). To better model
longer-term information, a lot of work has been focused on using Recurrent Neural Networks
(RNNs) [16,50,77,195,233,293,297,364,381] and 3D ConvNets [27,62,145,244,307,308,365].
However, these frameworks focus on extracting features from the whole scenes and can
hardly model the relationships between different object instances in space and time.

Visual Relationships. Reasoning about the pairwise relationships has been proven to be
very helpful in a variety of computer vision tasks [103,175,263,374,375]. For example, object
detection in cluttered scenes can be significantly improved by modeling the human-object
interactions [374]. Recently, the visual relationships have been widely applied together with
deep networks in the area of visual question answering [266], object recognition [88,130,376]
and intuitive physics [10,350]. In the case of action recognition, a lot of effort has been made
on modeling pairwise human-object and object-object relationships [86,216,230]. However,
the interaction reasoning framework in these efforts focus on static images and the temporal
information is usually modeled by a RNN on image level features. Thus, these approaches
still cannot capture how a certain object state changes or rather transformations over time.

Graphical Models. The long range relationships in images and videos are usually cap-
tured by graphical models. One popular direction is using the Conditional Random Fields
(CRF) [168,177]. In the context of deep learning, especially for semantic segmentation,
the CRF model is often applied on the outputs of the ConvNets by performing mean-field
inference [28,31,111,169,268,388]. Instead of using mean-field inference, variant simpler feed-
forward graph based neural network have been proposed recently [162,200,208,218,267,370].
In this chapter, we apply the Graph Convolutional Networks (GCNs) [162] which was orig-
inally proposed for applications in Natural Language Processing. Our GCN is built by
stacking multiple layers of graph convolutions with similarity relations and spatial-temporal
relations. The outputs of the GCNs are updated features for each object node, which can be
used to perform classification.

Our work is also related to video recognition with object cues [4,115,363] and object
graph models [17,30, 138, 380]. For example, Structural-RNN [138] is proposed to model
the spatial-temporal relations between objects (adjacent in time) for video recognition tasks.
Different from these works, our space-time graph representation encodes not only local
relations but also long range dependencies between any pairs of objects across space and
time. By using graph convolutions with long range relations, it enables efficient message
passing between starting states and ending states of the objects. This global graph reasoning
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Figure 6.2: Model Overview. Our model uses 3D convolutions to ek#faét visual features
followed by RolAlign extracting d-dimension feature for each object proposal. These features
are provided as inputs to the Graph Convolutional Network which performs information
propagation based on spatiotemporal edges. Finally, a d-dimension feature is extracted and
appended to another d-dimension video feature to perform classification.

framework provides significant boost over the state-of-the-art.

6.2 Overview

Our goal is to represent the video as a graph of objects and perform reasoning on the graph
for action recognition. The overview of our model is visualized in Figure 6.2. Our model
takes inputs as a long clip of video frames (more than 5 seconds) and forward them to a 3D
Convolutional Neural Network [27,340]. The output of this 3D ConvNet is a feature map
with the dimensions T x H x W x d, where T represents the temporal dimension, H x W
represents the spatial dimensions and d represents the channel number.

Besides extracting the video features, we also apply a Region Proposal Network (RPN) [249]
to extract the object bounding boxes (We have not visualized the RPN in Figure 6.2 for simplic-
ity). Given the bounding boxes for each of the T feature frames, we apply RolAlign [81,112]
to extract the features for each bounding box. Note that the RolAlign is applied on each
feature frame independently. The feature vector for each object has d dimensions (first
aligned to 7 x 7 x d and then maxpooled to 1 x 1 x d). We denote the object number as N,
thus the feature dimension is N x d after RolAlign.

We now construct a graph which contains N nodes corresponding to N object proposals
aggregated over T frames. There are mainly two types of relations in the graph: similarity
relations and spatial-temporal relations. For simplicity, we decompose this big graph into
two sub-graphs with the same nodes but two different relations: the similarity graph and
the spatial-temporal graph.

With the graph representations, we apply the Graph Convolutional Networks (GCNs) to
perform reasoning. The output for the GCNs are in the same dimension as the input features
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layer output size
convy 5x7x7,64,stride1,2,2 32x112x112
pooly 1x3%x3 max, stride 1, 2, 2 32x56x56
[ 1x1,64 7
ress 3x3,64 | %3 32x56x56
| 1x1,256 |
poola | 3x1x1max,stride2,1,1 16x56x56
[ 1x1,128 T
ress 3x3,128 | x4 16x28x28
| 1x1,512 |
1x1,256
res4 3x3,256 X6 16x14x14
| 1x1,1024 |
[ 1x1,512
ress 3x3,512 x3 16x14x14
| 1x1,2048 |
global average pool, fc 1x1x1

Table 6.1: Our baseline ResNet-50 I3D model. We use TxHxW to represent the dimensions
of filter kernels and 3D output feature maps. For filter kernels, we also have number of
channels following TxH xW. The input is in 32 x224 x224 dimensions and the residual blocks
are shown in brackets.

which is N x d. We perform average pooling over all the object nodes to obtain a d-dimension
feature. Besides the GCN features, we also perform average pooling on the whole video
representation (T x H x W X d) to obtain the same d-dimension feature as a global feature.
These two features are then concatenated together for video level classification.

We will introduce the details of each component in the following sections. We introduce
the process of feature extraction and graph representations in Section 4 and the Graph
Convolutional Networks (GCNs) in Section 5.

6.3 Graph Representations in Videos

In this section, we will first introduce the feature extraction process for our model with
3D ConvNets and then describe the construction of the similarity graph as well as the
spatial-temporal graph.

6.3.1 Video Representation

Video Backbone Model. Given a long clip of video (around 5 seconds), we sample 32 video
frames from it with the same temporal duration between every two frames. We extract the
features on these frames via a 3D ConvNet. Table 6.1 shows our backbone model based
on the ResNet-50 architecture, which are motivated by the model architecture mentioned
in [340]. The model takes input as 32 video frames with 224 x 224 dimensions and the output
of the last convolutional layer is a 16 x 14 x 14 feature map (i.e., 16 frames in the temporal
dimension and 14 x 14 in the spatial dimension). The baseline method in this chapter adopts
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Figure 6.3: Similarity Graph G*™. Above figure shows our similarity graph not only captures
similarity in visual space but also correlations (similarity in functional space). The query
box is shown in orange, the nearest neighbors are shown in blue. The transparent green
boxes are the other unselected object proposals.

the same architecture, and the classification is simply performed by using a global average
pooling on the final convolutional features and then following by a fully connected layer.

This backbone model is called Inflated 3D ConvNet (I3D) [27,62,340] as one can turn
a 2D ConvNet into a 3D ConvNet by inflating the kernels during initialization. That is, a
3D kernel with ¢ x k x k dimensions can be inflated from a 2D k x k kernel by copying
the weights ¢ times and rescaling by 1/¢. Please refer to [27,62,340] for more initialization
details.

Region Proposal Network. We apply the Region Proposal Network (RPN) in [85,249]
to generate the object bounding boxes of interest on each video frame. More specifically,
we use the RPN with ResNet-50 backbone and FPN [204]. The RPN is pre-trained with the
MSCOCO object detection dataset [205] and there is no weight sharing between the RPN
and our I3D video backbone model. Note that the bounding boxes extracted by the RPN are
class-agnostic.

To extract object features on top of the last convolutional layer, we project the bounding
boxes from the 16 input RGB frames (which are sampled from the 32 input frames for I3D,
with the sampling rates of 1 frame every 2 frames) to the 16 output feature frames. Taking
the video features and projected bounding boxes, we apply RolAlign [112] to extract the
teature for each object proposal. Note that RolAlign is similar to RoIPooling [81] which crops
and rescales the object features into the same dimensions. In RoIAlign, each output frame is
processed independently. The RolAlign generates a 7 x 7 x d output features for each object
which is then max-pooled to 1 x 1 x d dimensions.

6.3.2 Similarity Graph

We measure the similarity between objects in the feature space to construct the similarity
graph. In this graph, we connect pairs of semantically related objects together. More
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specifically, we will have a high confidence edge between two instances which are: (i) the
same object in different states in different video frames or (ii) highly correlated for recognizing
the actions. Note that the similarity edges are computed between any pairs of objects.

Formally, assuming we have the features for all the object proposals in the video as
X = {x1,X2, ..., xn }, where N represents the number of object proposals and each object
proposal feature x; is a d dimensional vector. The pairwise similarity or the affinity between
every two proposals can be represented as,

F(Xz‘,Xj) = ¢(X¢)T¢/(Xj)» (6.1)

where ¢ and ¢’ represents two different transformations of the original features. More
specifically, we have ¢(x) = wx and ¢'(x) = w’x. The parameters w and w’ are both
d x d dimensions weights which can be learned via back propagation. By adding the
transformation weights w and w’, it allows us to not only learn the correlations between
different states of the same object instance across frame, but also the relations between
different objects. We visualize the top nearest neighbors for the object proposals in Figure 6.3.
In the first example, we can see the nearest neighbors of the laptop not only include the
other laptop instances in other frames, but also the human who is operating it.

After computing the affinity matrix with Eq. 6.1, we perform normalization on each row
of the matrix so that the sum of all the edge values connected to one proposal ¢ will be 1.
Motivated by the recent works [314,340], we adopt the softmax function for normalization
as,

simn exp F'(x;,%;)
Gim ) (62)

N
Zj:l exp F'(x;, x;)

The normalized G**™ is taken as the adjacency matrix representing the similarity graph.

6.3.3 Spatial-Temporal Graph

Although the similarity graph captures even the long term dependencies between any two
object proposals, it does not capture the relative spatial relation between objects and the
ordering of the state changes. To encode these spatial and temporal relations between objects,
we propose to use spatial-temporal graphs, where objects in nearby locations in space and
time are connected together.

Given a object proposal in frame ¢, we calculate the value of Intersection Over Unions
(IoUs) between this object bounding box and all other object bounding boxes in frame ¢ + 1.
We denote the IoU between object ¢ in frame ¢t and object j in frame ¢ + 1 as o;;. If 0y; is
larger than 0, we will link object i to object j using a directed edge ¢ — j with value o;;.
After assigning the edge values, we normalize the graph so that the sum of the edge values
connected to proposal ¢ will be 1 by

glromt = 94 (6.3)
i N )
! > j=10ij

where G/7°" is taken as the adjacency matrix for a spatial-temporal graph. We visualize
some of the object proposals and the trajectories in Figure 6.4.

Besides building the forward graph which connects objects from frame ¢ to frame ¢ + 1,
we also construct a backward graph in a similar way which connect objects from frame ¢ 4 1
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Figure 6.4: Spatial-Temporal Graph G/™"*. Highly overlapping object proposals across
neighboring frames are linked by directed edge. We plot some example trajectories with
blue boxes and the direction shows the arrow of time.

to frame t. We denote the adjacency matrix of this backward graph as G***. Specifically,
for the overlapping object 7 in frame ¢ and object j in frame ¢ 4 1, we construct an edge i < j
and assign the values to G%°* according to the IoU values. By building the spatial-temporal
graphs in a bidirectional manner, we can obtain richer structure information and enlarge the
number of propagation neighborhoods during graph convolutions.

6.4 Convolutions on Graphs

To perform reasoning on the graph, we apply the Graph Convolutional Networks (GCNs)
proposed in [162]. Different from standard convolutions which operates on a local regular
grid, the graph convolutions allow us to compute the response of a node based on its
neighbors defined by the graph relations. Thus performing graph convolutions is equal
to performing message passing inside the graphs. The outputs of the GCNs are updated
features of each object node, which can be aggregated together for video classification.
Formally, we can represent the one layer of graph convolutions as,

Z = GXW, (6.4)

where G represents one of the adjacency graph we have introduced (G*™, G/7o" or Gback)
with N x N dimensions, X is the input features of the object nodes in the graph with
N x d dimensions, and W is the weight matrix of the layer with dimension d x d in our
case. Thus the output of one graph convoltuional layer Z is still in N x d dimensions. The
graph convolution operation can be stacked into multiple layers. After each layer of graph
convolutions, we apply two non-linear functions including the Layer Normalization [6] and
then ReLU before the feature Z is forwarded to the next layer.

Connecting GCN and Non-local Net. We would also like to draw the connections
between the Graph Convolutional Networks with the Similarity Graph (G*™) and the recent
proposed Non-local Neural Networks [340]. If we apply the non-local operation on the
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region proposals, it can be represented as,
Y = G*img(X), (6.5)

where g is a function with a convolutional layer. The non-local block in [340] can be further
formulated as, }
Z=YW+X=G""g(X)W + X, (6.6)

which is very similar to the graph convolution operation in Eq. 6.4. Inspired by this, we
modify the graph convolution operations by adding a convolutional operator on the input
X = g(X) for the first layer (note that G*' is still computed based on the features before
applying g). We also add a residual connection in every layer of GCN, which extends Eq. 6.4
as,

Z = GXW +X. (6.7)

Combining Multiple Graphs. To combine multiple graphs in GCNs, we can simply
extend Eq. 6.7 as,

Z=) GXW,;+X, (6.8)
where G; indicates different types of graphs, and the weights for different graphs W, are
not shared. Note that in this way, each hidden layer of the GCN is updated though the
relationships from different graphs. However, we find that the direct combination of 3
graphs (G*'™, G/ and G®*°*) with Eq. 6.8 actually hurts the performance compared to
the situation with a single similarity graph.

The reason is that our similarity graph G*""" contains learnable parameters (Eq. 6.1) and
requires back propagation for updating, while the other two graphs do not require learning.
Fusing these graphs together in every GCN layer increases the optimization difficulties.
Thus we create two branches of graph convolutional networks, and only fuse the results from
two GCNss in the end: one GCN adopts Eq. 6.4 with G**™ and the other GCN adopts Eq. 6.8
with G779 and G*?°*. These two branches of GCNs perform convolutions separately for
layers and the final layer features are summed together, which is in N x d dimensions.

Video Classification. As illustrated in Figure 6.2, the updated features after graph
convolutions are forwarded to an average pooling layer, which calculates the mean of all the
proposal features and leads to a 1 x d dimension representation. Besides the GCN features,
we also perform average pooling on the whole video level representation and obtain the
another 1 x d dimensions of global features. These two features are then concatenated
together for video classification. The classification training loss is defined depending on the
tasks (multi-label or single label classifications).

6.5 Experiments

We perform the experiments on two recent challenging datasets: Charades [273] and
Something-Something [98]. We first introduce the implementation details of our approach
and then the evaluation results on these datasets.

6.5.1 Implementation Details

Training. The training of our backbone models involves pre-training on 2 different datasets
following [27,340]. The model is first pre-trained as a 2D ConvNet with the ImageNet
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dataset [260] and then inflated into a 3D ConvNet (i.e., I3D) as [27]. We then fine-tuned the
3D ConvNet with the Kinetics action recognition dataset [154] following the same training
scheme for longer sequences (around 5 second video) in [340]. Given this initialization, we
now introduce how to further fine-tune the network on our target datasets (e.g. Charades or
Something-Something) as following.

As specified in Table 6.1, our network takes 32 video frames as inputs. These 32 video
frames are sampled in the frame rate of 6fps, thus the temporal length of the video clip
is around 5 seconds. The spatial dimensions for input is 224 x 224. Following [282], the
input frames are randomly cropped from a randomly scaled video whose shorter side is
sampled in [256, 320] dimensions. To reduce the number of GCN parameters, we add one
more 1 x 1 x 1 convolutional layer on top of the I3D baseline model, which reduces the output
channel number from 2048 to d = 512. Since both Charades and Something-Something
dataset are in similar scales in number of video frames, we adopt the same learning rate
schedule for both datasets.

Our baseline I3D model is trained with a 4-GPU machine where each GPU has 2 video
clips in a mini-batch. Thus the total batch size is 8 clips during training. Note that we freeze
the parameters in all Batch Normalization (BN) layers during training. Our model is trained
for 100K iterations in total, with learning rate 0.00125 in the first 90K iterations and it is
reduced by a factor of 10 during training the last 10K iterations. Dropout [123] is applied on
the last global pooling layer with a ratio of 0.3.

We set the layer number of our Graph Convolutional Network to 3. The parameters of
the convolutional operations ¢, ¢’ and g are initialized with Gaussian distribution having
standard deviation of 0.01. The parameters of kernels in graph convolutions W are initialized
as zero inspired by [97]. To train the GCN together with the I3D backbone, we propose to
apply stage-wise training. We first finetune the I3D model as mentioned above, then we
apply RolAlign and GCN on top of the final convolutional features as shown in Figure 6.2.
We fix the I3D features and train the GCN with the same learning rate schedules as for
training the backbone. Then we train the I3D and GCN together end-to-end for 30K more
iterations with the reduced learning rate.

Task specific settings. We apply different loss functions when training for Charades and
Something-Something datasets. For Something-Something dataset, we can simply apply the
softmax loss function. For Charades, we apply binary sigmoid loss, one for each action class,
to handle the multi-label property. We also extract different numbers of object bounding
boxes with RPN in two different datasets. As for Charades, the scenes are more cluttered
and we extract 50 object proposals for each frame. However, for Something-Something, there
is usually only one or two objects in the center of video frame and one hand is interacting
with it. We find that extracting 10 object proposals each frame is enough for the Something-
Something dataset.

Inference. We perform fully-convolutional inference in space as [282,340] during inference.
Note that we rescale the shorter side of each video frame to 256 while maintaining the aspect
ratios. To perform inference on one whole video, we sample 10 clips for Charades and 2 clips
for Something-Something according to the average video length in two different datasets.
Results from multiple clips are aggregated together by Max-Pooling over the scores.
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model, R50, I3D mAP model, R50, I3D mAP
baseline 31.8 baseline 31.8
Proposal+AvgPool 32.1 Non-local 33.5
Spatial-Temporal GCN | 34.2 Joint GCN 36.2
Similarity GCN 35.0 Non-local + Joint GCN| 37.5
Joint GCN 36.2

(a) We perform ablation studies (b) We first compare our ap-

with GCN using the ResNet-50, proach with Non-local Net and

13D backbone. then combine Non-local Net
with our model.

Table 6.2: Ablations on Charades. We show the mean Average Precision (mAP%).

6.5.2 Experiments on Charades

In the Charades experiments, following the official split, we use the 8K training videos
to train our model and perform testing on the 1.8K validation videos. The average video
duration is around 30 seconds. There are 157 action classes and multiple actions can happen
at the same time.

How much each graph helps? We first perform analysis on each component of our frame-
work, with the backbone of ResNet-50 I3D, as illustrated in Table 6.2a. We first show that
the result of I3D baseline without any proposal extractions and graph convolutions is 31.8%
mAP on the validation set.

One simple extension on this baseline is: obtain the region proposals with RPN, extract
the features for each proposal and perform average pooling over them as an extra feature.
We concatenate the video level feature and the proposal feature together for classification.
However, we can only obtain 0.3% boost with this approach. Thus, a naive aggregation of
proposal features does not help much.

We then perform evaluations by applying GCNs with the similarity graph and the spatial-
temporal graph individually. We observe that our GCN model with only spatial-temporal
graph can obtain a boost of 2.4% over the baseline model and achieve 34.2%. With the
similarity graph, we can achieve a better performance of 35.0%. By combining two graphs
together and train GCNs with multiple relations, our method achieves 36.2% mAP which is
a significant boost of 4.4% over the baseline.

Robustness to Proposal Numbers. Besides studying on each sub-graph, we also analyze
how the number of object proposals generated by the RPN affect our method. Note that the
baseline achieves 31.8% and our method achieves 36.2% with extracting 50 object proposals
per video frame. If we reduce the number of object proposals and extract 25 proposals per
frame, the mAP of our method is 35.9%. If we increase and double the number of object
proposals to 100 proposals per frame, the performance of our method is 36.1% mAP. Thus
our approach is actually very stable with the changes of RPN.

Model Complexity. Given this large improvement in performance, the extra computation
cost of the GCN over the baseline is actually very small. In the Charades dataset, our graph is
defined based on 800 object nodes per video (with 16 output frames and 50 object proposals
per frame). The computations of GCN with an 800-node graph is very small. The FLOPs
of the baseline I3D model is 153 x 10? and the total FLOPs of our model (I3D + Joint GCN)
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Figure 6.5: Error Analysis. We compare our approach against baseline I3D approach across
three different attributes. Our approach improves significantly when action is part of se-
quence, involves interaction with objects and has high pose variance.

is 158 x 10°. Thus there is only around 3% increase in FLOPs. In fact, we barely observe
training and inference time difference between baseline and our model.

Comparing to the Non-local Net. One of the related work is the recent proposed Non-local
Neural Networks [340], where they propose to perform non-local operations on different
layers of feature maps for spatial-temporal reasoning. The comparisons between Non-local
Nets and our approach is shown in Table 6.2b. We can see that the Non-local operations
gives 1.7% improvements over the baseline and our approach performs 2.7% better than
the Non-local Net. We also show that these two approaches are actually complementary to
each other. By replacing the I3D backbone with Non-local Net, we have another 1.3% boost,
leading to 37.5%.

Error analysis Given this significant improvements, we will also like to find out in what
cases our methods improve over the baselines most. Following the attributes set up in [272],
we show 3 different situations where our approach get more significant gains over the
baselines in Figure 6.5. More specifically, for each video in Charades, besides the action class
labels, it is also labeled with different attributes (e.g., whether the actions are happening in
a sequence? Is the pose variant a lot though the actions? Is the action involving objects?).

Part of A Sequence? This attribute specifies whether an action category is part of a sequence
of actions. For example, “holding a cup” and then “sitting down” are usually in a sequence of
actions, while “running” often happens in isolation. As shown in the left plots in Figure 6.5,
the baseline I3D method fails dramatically when an action is part of a sequence of actions,
while our approach is more stable. If an action is not happening in isolation, we have actually
more than 5% gain over the baseline.

Pose Variances. This attribute is computed by averaging the Procrustes distance [155]
between any two poses in an action category. If the average distance is large, it means the
poses change a lot in an action. As visualized in the middle plots in Figure 6.5, we can see
that our approach has similar performance as the baseline when the pose variance is small.
However, the performance of the baseline drops dramatically again as the variance of pose
becomes larger (from 0.68 to 0.73) in the action, while the slope of our curve is much smaller.
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model backbone modality mAP
2-Stream [271] VGG16 RGB + flow 18.6
2-Stream +LSTM [271] | VGG16 RGB + flow 17.8
Asyn-TF [271] VGG16 RGB + flow | 224
MultiScale TRN [390] Inception RGB 25.2
13D [27] Inception RGB 329
13D [340] ResNet-101 | RGB 355
NL I3D [340] ResNet-101 | RGB 375
NL I3D + GCN ResNet-50 RGB 375
13D + GCN ResNet-101 | RGB 39.1
NL I3D + GCN ResNet-101 | RGB 39.7

Table 6.3: Classification mAP (%) in the Charades dataset [273]. NL is short for Non-Local.

The performance of both approaches improve as the pose variability reaches 0.83, where
our approach has around 8% ~ 9% boost over the baseline.

Involves Objects? This attribute specifies whether an object is involved in the action. For
example, “drinking from a cup” involves the object cup while “running” does not require
interactions with objects. As shown in the right plots in Figure 6.5, we can see the baseline
perform worse when the actions require interactions with objects. Interestingly, our approach
actually performs slightly better when objects are involved.

As a short summary, our approach is better in modeling a long term sequence of actions
and actions that require object interactions. Our approach is also more robust to pose changes
and is able to utilize the motion from poses.

Training with a larger backbone. Besides the ResNet-50 backbone architecture, we also
verify our method on a much larger backbone model which is applied in [340]. This backbone
is larger than our baseline in 3 aspects: (i) instead of using ResNet-50, this backbone is based
on the ResNet-101 architecture; (ii) instead of using 224 x 224 spatial inputs, this backbone
takes in 288 x 288 images; (iii) instead of sampling 32 frames with 6fps, this backbone
performs sampling more densely by using 128 frames with 24fps as inputs. Note that the
temporal output dimension of both our baseline model and this ResNet-101 backbone are
still the same (16 dimensions). With all the modifications on the backbone architecture, the
FLOPs are 3 times as many as our ResNet-50 baseline model.

We show the results together with all the state-of-the-art methods in Table 6.3. The
Non-local Net [340] with ResNet-101 backbone achieves the mAP of 37.5%. We can actually
obtain the same performance with our method by using a much smaller ResNet-50 backbone
(with around 1/3 FLOPs). By applying our method with the ResNet-101 backbone, our
method (I3D+GCN) can still give 3.6% improvements and reaches 39.1%. This is another
evidence showing that our method is modeling very different things from just increasing
the spatial inputs and the depth of the ConvNets. By combining the non-local operation
together with our approach, we obtain the final performance of 39.7%.

6.5.3 Experiments on Something-Something

In the Something-Something dataset, there are 86K training videos, around 12K validation
videos and 11K testing videos. Each video has the duration ranging from 3 seconds to 6
seconds. The total number of classes is 174.

The data in the Something-Something dataset is very different from the Charades dataset.
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val test

model backbone | top-1 top-5 | top-1
C3D [98] C3D [306] - - 27.2
MultiScale TRN [390] Inception 344 63.2 33.6
I3D ResNet-50 | 41.6 722 -
I3D + Spatial-Temporal GCN | ResNet-50 | 42.8 74.7 -
I3D + Similarity GCN ResNet-50 | 42.7 74.6 -
I3D + Joint GCN ResNet-50 | 43.3 75.1 -
NL I3D ResNet-50 | 44.4 76.0 -
NL I3D + Joint GCN ResNet-50 | 46.1 76.8 45.0

Table 6.4: Classification accuracy (%) in the Something-Something dataset [98]. NL is short
for Non-Local.

In the Charades dataset, most of the actions are performed by agents in a cluttered indoor
scenes. However, in the Something-Something dataset, all videos are object centric and there
is usually only one or two hands interacting with the center objects. The background in the
Something-Something dataset is also very clean in most cases.

We report our results in Table 6.4. The evaluations are performed on both validation
set and testing set. The baseline I3D approach achieves 41.6% in top-1 accuracy and 72.2%
in top-5 accuracy. By applying our method with the I3D backbone (I3D + Joint GCN), we
achieve 1.7% improvements in the top-1 accuracy. We observe that the improvement of top-1
accuracy here is not as huge as the gains we have in the Charades dataset. The reason is
mainly because the videos are already well calibrated with objects in the center of the frames.
But interestingly, we still have a relative larger boost 2.9% on the top-5 metric compared
to the top-1 metric. We have also studied the performance of each sub-graph. If we only
use spatial-temporal graph we obtain 42.8% top-1 accuracy. With only similarity graph, we
obtain 42.7% accuracy.

We have also combined our method with the Non-local Net. As shown in Table 6.4,
the Non-local I3D method achieves 44.4% in top-1 accuracy. By combining our approach
with the Non-local Net, we achieve another 1.7% gain in top-1 accuracy, which leads to the
state-of-the-art results 46.1%. We also test our final model on the test set by submitting to
the official website. By using a single RGB model, we achieve the best result 45.0% in the
leaderboard.

6.6 Discussion

We propose a novel graph based network to model the long range relationships in videos
for action recognition. Large performance gain over state-of-the-art demonstrate the effec-
tiveness of our framework. But more importantly, our error analysis shows how our model
is doing better in capturing the object interactions, pose changes and actions in a sequence.
This shows that our model has a large potential in not only video classification, but also
variant tasks including detection and tracking in videos.
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Chapter 7

Modeling Actions as
Transformations

Besides recognizing the action by taking a video as a space-time cube. In this chapter, we
propose an alternative representation to understand human action. Consider the “soccer
kicking” action shown in Figure 7.1. What is the right representation for the recognition of
such an action? Traditionally, most research in action recognition has focused on learning
discriminative classifiers on hand-designed features such as HOG3D [165] and IDT [327].
Recently, with the success of deep learning approaches, the focus has moved from hand-
designed features to building end-to-end learning systems. However, the basic philosophy
remains the same: representing action implies encoding the appearance and motion of the
actor. But are actions all about appearance and motion?

We argue that the true essence of an action lies in the change or the transformation an
action brings to the environment and most often these changes can be encoded visually. For
example, the essence of “soccer kicking” lies in the state change of the ball (acceleration)
caused by the leg of the player. What if we try to represent actions based on these changes
rather than appearance and motion?

In this chapter, we propose representing actions as transformations in the visual world.
We argue that current action recognition approaches tend to overfit by focusing on scene
context and hence do not generalize well. This is partly because of the lack of diversity in
action recognition datasets compared to object recognition counterparts. In this chapter, we
overcome this problem by forcing a representation to explicitly encode the change in the
environment: the inherent reason that convinced the agent to perform the action. Specifically,
each action is represented as a transformation that changes the state of the environment
from what it was before the action to what it will be after it. Borrowing the terminology
from NLP, we refer to the state before the action as the precondition state and the state
after the action as the effect state, as Fig. 7.1 illustrates. We build a discriminative model
of transformation by using a Siamese network architecture (similar to [18,35]) where the
action is represented as a linear transformation between the final fully connected layers of
the two towers representing the precondition and effect states of an action.

Our experimental evaluations show that our representation is well suited for classical
action recognition and gives state of the art results on standard action recognition dataset
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PRECON. x ACTION = EFFECT

(d) Action prediction

Figure 7.1: We represent actions as the transformations from precondition to effect. (a) For example, the
precondition of kicking is the player running towards the ball and the effect is the ball flies away. By using this
representation, we can (b) perform action recognition given the training data on long jump, and (c) generalize the
classifier to high jump in testing. (d) Moreover, we can perform visual prediction given the precondition.

such as UCF101 [288]. However, in order to test the robustness of our representation, we also
test our model for cross-category generalization. While overfitted representations would
perform competitively on current action recognition datasets (due to lack of diversity), the
true test lies in their ability to generalize beyond learned action categories. For example,
how would a model learned on “opening a window” generalize to recognize “opening
the trunk of the car”? How about generalizing from a model trained on climbing a cliff to
recognize climbing a tree? Our experimental evaluations show that our representation allows
successful transfer of models across action categories (Fig. 7.1 (c)). Finally, our transformation
model can also be used to predict what is about to happen (Fig. 7.1 (d)).

Our contributions include: (a) a new representation of actions based on transformations
in visual world; (b) state of the art performance on an existing action recognition dataset:
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UCF101; (c) addressing the cross-category generalization task and proposing a new dataset,
ACT, consisting of 43 categories of actions, which can be further grouped to 16 classes, and
11234 videos; (d) results on prediction task for our ACT dataset.

7.1 Background

Action recognition has been extensively studied in computer vision. Lack of space does not
allow a comprehensive literature review (see [242] for a survey).

Hand-crafted representations have been conventionally used to describe patches cen-
tered at Space Time Interest Points (STIP) [180]. Most successful examples are 3D Histogram
of Gradient (HOG3D) [165], Histogram of Optical Flow (HOF) [181], and Motion Boundary
Histogram [41]. Mid- to high-level representation are also used to model complex actions
[137,178,264,287,348,398]. More recently, trajectory based approaches [149,179,221,235,236,
325,327] have shown significant improvement in action recognition.

Learned representations with deep learning have recently produced state of the art
results in action recognition [89,145,153, 186,279,304,307,331, 368]. Karpathy et al. [153]
proposed to train Convolutional Neural Networks (ConvNets) for video classification on
the Sports-1M dataset. To better capture motion information in video, Simonyan et al. [279]
introduced a Two Stream framework to train two separate ConvNets for motion and color.
Based on this work, Wang et al. [331] extracted deep feature and conducted trajectory
constrained pooling to aggregate convolutional feature as video representations. In this
chapter, we also train the networks taking RGB frames and optical flows as inputs.

Temporal structure of videos have also been shown effective in action recognition [63,
135,256,296,301]. For example, Tang et al. [301] proposed an HMM model to model the
duration as well as the transitions of states in event video. Fernando et al. [63] learned
ranking functions for each video and tried to capture video-wide temporal information for
action recognition. Recurrent Neural Networks have also been used to encode temporal
information for learning video representations [49, 229,293,297, 300, 364]. Srivastava et
al. [293] proposed to learn video representations with LSTM in an unsupervised manner.
Ng et al. [229] proposed to extract features with a Two Stream framework and perform LSTM
fusion for action recognition. However, these HMM, RNN and recent LSTM approaches
model a sequence of transformation across frames or key frames; whereas in our framework
we model action as a transformation between precondition and effect of action. Note that
the location of these frames are latent in our model.

The most similar work to ours is from Fathi et al. [61] where the change in the state
of objects are modeled using hand-crafted features in ego-centric videos of 7 activities.
We differ from [61] in that we learn representations which enable explicit encoding of
actions as transformations. Our representations not only produce state of the art generic
action recognition results, but also allow predictions of the outcome of actions as well as
cross-category model generalization. To model the transformation, we apply a Siamese
network architecture in this chapter, which is also related to the literature using deep metric
learning [105,125,131,142,276,341].

7.2 Dataset

To study action recognition, several datasets have been compiled. Early datasets (e.g. Weiz-
mann, KTH, Hollywood2, UCF Sports, UCF50) are too small for training ConvNets. Recently,
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Figure 7.2: Samples in our ACT dataset. The action classes are arranged in a two-layer hierarchy. For each class,
we collected hundreds of video clips with large diversities.

a few large-scale video datasets have been introduced (e.g. CCV [150], Sports-1M [153],
ActivityNet [116], THUMOS [148] and FGA-240 datasets [297]). Unfortunately, some of these
datasets have untrimmed videos without localization information for short term actions.
The most commonly studied datasets are UCF101 [288] and HMDB51 [173]. The UCF101
dataset lacks the desired diversity among videos in each class. The HMDB51 dataset does
not have enough videos compared to UCF101, and some of the videos are hard to recognize.
But more importantly, none of these datasets is suitable for our task of examining cross
category generalization of actions.

In this chapter, we argue for cross-category generalization as a litmus test for action
recognition. We believe that the cross-category recognition task should not allow approaches
to overfit to action classes based on contextual information. For this task, we propose a
dataset, namely ACT dataset. In this dataset, we collected 11234 video clips with 43 classes.
These 43 classes can be further grouped into 16 super-classes. For example, we have classes
such as kicking bag and kicking people, they all belong to the super-class kicking; swinging
baseball, swinging golf and swinging tennis can be grouped into swinging. Thus, the
categories are arranged in a 2-layer hierarchy. The higher layer represents super-classes of
actions such as kicking and swinging. Each super-class has different sub-categories which
are the same action under different subjects, objects and scenes. During the dataset collection,
we also ensured that we only consider high resolution and diverse videos.

Dataset collection. To collect our dataset we used YouTube videos. We used 50 keywords
to retrieve videos which belong to one of the 43 classes. For each keyword, we downloaded
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Figure 7.3: Siamese network architecture. Given a video, we feed the precondition state frames to the top
network and effect state frames to the bottom network. Each tower of the ConvNet computes the feature for each
frame independently, and aggregates the features via average pooling. The pooling results are fully connected to
512-D embedding outputs. We apply n transformations (actions) on the precondition embedding and compare
with the effect embedding to decide the action class.
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around 500 high quality videos which have length within 15 minutes. The videos were
labeled by a commercial crowd-sourcing organization. We asked the workers to label the
starting and ending frames for actions in the video. For each action class, we provided
a detailed description and 3 annotation examples from different videos. To increase the
diversity of actions, we required the workers to label no more than 8 action clips in each
video, and between each clips there should be a temporal gap of at least 40 frames. We also
set temporal length limitations that each annotated clip should have at least 1 second and at
most 10 seconds. As Figure 7.2 illustrates, our dataset has large intra-class diversities.

Task design. We design two tasks for our ACT dataset. The first task is standard action
classification over 43 categories. The split used for this task included 65% of videos as
training and the rest as testing data, resulting in 7260 training videos and 3974 for testing
in total. The second proposed task for this dataset is cross-category generalization. For
each of the 16 super-classes, we consider one of its sub-category as testing and the other
sub-categories are used for training. For example, for super-class “swinging”, we want to see
if the model trained on swinging baseball and swinging golf can recognize swinging tennis
as “swinging”. We create 3 different random splits for the second task. There are around
7000 training samples and 4000 testing samples on average. Our dataset can be downloaded
from the project website'.

7.3 Modeling Actions as Transformations

Given an input video X consisting of ¢ frames, we denote each frame as z; and the whole
video as X = {x1,z9,...,7¢}. We make an assumption that the precondition state of an
action corresponds to the first z, frames and the effect of the action can be seen after from
2z, until the end. We denote precondition and effect frames as: X, = {z;...z.,} and
Xe = {x,, ...2:}. Note that we do not manually define how many frames are used of
representing precondition and effect. Therefore z, and z. are treated as latent variables,
which will be inferred automatically by our model during training and testing.

Instead of representing the precondition and effect by pixels and modeling the transfor-

Ihttp://www.cs.cmu.edu/~xiaolonw/actioncvpr.html

80


http://www.cs.cmu.edu/~xiaolonw/actioncvpr.html

mation in pixel space, we want to represent them using higher-level semantic features (e.g.,
the last fully connected layer of a ConvNet). The action then corresponds to transformation
in higher-level feature subspace. This can be modeled via a Siamese ConvNet as shown
in Figure 7.3. Given the video frames for the precondition and effect states, we feed the
frames of precondition state X, as inputs for the ConvNet on the top and the frames of effect
state X, are fed to the ConvNet on the bottom. For each tower of ConvNet, it computes the
features for each frame independently, and then the features are aggregated via average
pooling. We add a final d-dimensional fully connected layer after average pooling which
represent the feature space where precondition, effect and the transformation between the
two are modeled. Formally, we use f, (X)) to represent the d-dimension embedding for the
precondition state generated from the network on the top (in Figure 7.3) given input X,,. For
the network on the bottom, we represent the embedding for the effect state as f.(X.) with
the same dimension d given input X..

Finally, we model the action as the transformation between these two states. Specifically,
we use a linear transformation matrix to model this. For a dataset with n categories of
actions, we have a set of n corresponding transformation matrices {11, ..., T}, } to represent
them. Each T} is a d x d dimensions matrix. At the training time, given an input video X
that belongs to action category i, we first obtain the embedding for the precondition and
effect states of the action as f,(X,) and f.(X.). We then apply the transformation matrix
T; on the embedding of the precondition state as T; f,(X,,), which is also a d-dimension
vector. The objective of learning is making the distance D(T; f,,(X,,), fe(Xe)) between the two
embeddings small. Note that while training, the gradients are back propagated throughout
the Siamese networks; thus we learn both the embedding space and the transformation
simultaneously.

Network Architecture We applied the VGG-16 network architecture [277] for both sides
of our Siamese network. The VGG-16 network is a 16-layer ConvNet with 13 convolutional
layers and 3 fully connected layers. As we mentioned before, we perform forward prop-
agation for each video frame independently. We extract the feature of the second-to-last
fully connected layer for each frame, which is a 4096-D vector. In each side of our model,
the features are aggregated via average pooling, and we use a final fully connected layer on
these pooling outputs. The dimension of the last embedding layer outputs is d = 512. In
our model, we do not share the model parameters between two ConvNets. Intuitively, we
want to learn different semantic representations for precondition and effect of actions.

Two Stream Siamese: RGB and Optical Flow as Inputs. For each input frame, we
rescale it by keeping the aspect ratio and make the smaller side 256 pixels. To represent the
video frames, we follow the same strategy as [279], which represents the frames with RGB
images as well as optical flow fields. We train two separate models for RGB and optical flow
fields as inputs. For the model using RGB images as inputs, the input size is 224 x 224 x 3.
For the model using optical flow as inputs, we represent each frame by stacking 10 optical
flow fields extracted from 10 consecutive frames in the video starting from the current one.
The optical flow field can be represented by a 2-channel image including horizontal and
vertical flow directions. Therefore, the input size is 224 x 224 x 20 as mentioned in [279].

Implementation Details. During training and testing, we re-sample the videos to be 25
frames in length (¢t = 25) as [279]. Note that the optical flow fields are still computed in the
original video without re-sampling. We also constrain the latent variables z, and z., which
are the indexes for the end frame of the precondition state and start frame of the effect state

such that: z, € [3¢, 3t) and z. € (5t, 3t].
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Training

We now introduce the training procedure for our model. Suppose we have a dataset of
N samples with n categories {(X;,v:)}Y,, where y € {1,...,n} is the label. Our goal is
to optimize the parameters for the ConvNets and transformation matrices {T;}} ;. We
also need to calculate the latent variables z, and z. for each sample. Thus, we propose an
EM-type algorithm, which performs a two-step procedure in each iteration: (i) learning
model parameters and (ii) estimating latent variables .

(i) Learning model parameters. We first discuss the optimization of model parameters
given the latent variables. Our objective is to minimize the distance between the embedding
of the precondition state after transformation and the embedding of the effect state computed
by the second ConvNet. This can be written as:

min D(T, f,(Xp), fe(Xe)), (7.1)

where T}, is the transformation matrix for the ground truth class y, f,(X,) is the embedding
for the precondition of the action and f.(X.) is the embedding for the effect of the action.
We use cosine distance here such that D(vy,v5) = 1 — quil\l'rljiz\l between any two vectors
V1, V2.

To make our model discriminative, it is not enough to minimize the distance between
two embeddings given the corresponding transformation 7. We also need to maximize
the distances for other incorrect transformations T;(: # y), which equals to minimize the
negative of them. Thus, we have another term in the objective,

min Y max(0, M — D(T; f,(X,), fe(Xe))), (7.2)
i#y
where M is the margin so that we will not penalize the loss if the distance is already larger
than M. In our experiment, we set M/ = 0.5. By combining Eq.(7.1) and Eq.(7.2), we have
the final loss for training. It is a contrastive loss given sample (X, y) and latent variables z,
and z. as inputs. We train our model with back-propagation using this loss.

(ii) Estimating latent variables. Given the model parameters, we want to estimate the
end frame index z, of the precondition state and start frame index z. of the effect state. That
is, we want to estimate the latent variables to give a reasonable temporal segmentation for
the input video. Since the latent variable only depends on the ground truth action category;
we only use the first term in the loss function, Eq.(7.1), to estimate z, and z. as follows:

(z;, z) = argmin(zp,ze)D(Tyfp(Xp)a fe(Xe)), (7.3)

where (z;, z) are the estimation results given current model parameters. To estimate these
latent variables, we use a brute force search through the space of latent variables. For
computation efficiency, we first compute features for all frames, and then a brute force search

only requires the average pooling step to be redone for each configuration of (z,,, z)
Model pre-training. We first initialize the ConvNets using ImageNet [261] pre-training
and adapt them to action classification with fine-tuning as [332]. We transfer the convolu-
tional parameters to both ConvNet towers and randomly initialize the fully connected layers
in our model.
Training detail discussions. During training, we have not explicitly enforced the rep-
resentations of f,(X,) and f.(X.) to be different. We have tried to use Softmax loss to
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classify precondition and effect as two different classes. We found it does not help improve
the performance. The reason is that the two towers of networks are learned on different
data with different parameters (no sharing) and initialization, which automatically leads to
different representations.

Inference

During inference, given a video X and our trained model, our goal is to infer its action class
label y and segment the action into the precondition and effect states at the same time. The
inference objective can be represented as,

yglngD(Tyfp(Xp)afe(Xe))- (7.4)
More specifically, we first calculate the ConvNet feature before the average pooling layer
for all the frames. Note that the first half of the frames are fed into the network for the
precondition state and the second half of the frames are fed into the network for the effect
state. We do a brute force search over the space of (y, z,, ze) to estimate the action category
and segmentation into precondition and effect. We visualize reasonable segmentation results
for precondition and effect states during inference as Figure 7.4.

Model fusion. We perform the inference with the models using RGB images and optical
flow as inputs separately. For each video, we have n distance scores from each model. We
fuse these two sets of scores by using weighted average. As suggested by [332] we weight
the flow twice as much as the RGB ConvNet.

7.4 Experiment

In this section, we first introduce the details of the datasets and our experimental settings.
Then we provide quantitative and qualitative results on different datasets.

Datasets. We evaluate our method on three datasets, including UCF101 [288], HMDB51 [173]
and our ACT dataset. UCF101 dataset contains 13320 videos with 101 classes. The HMDB51
dataset is composed of 6766 videos with 51 action categories. For both datasets, we follow
the standard evaluation criteria using 3 official training/testing splits. Our ACT dataset has
11234 video clips from 43 action classes and 16 super-classes. For this dataset, we conduct
our experiments on two tasks. The first task is standard action classification of 43 categories.
The second task is to test the generalization ability of our model. We conduct the experi-
ments using 3 training/testing splits for 16-class classification. For each super-class, one
sub-category is used for testing and the others for training.

Implementation Details. We first pre-train our networks using Softmax loss on action
classification as the Two Stream baseline [332] and then transfer the convolutional parameters
to our model. For HMDB51 dataset, as the number of training videos are relatively small
(around 3.6K), we borrowed the ConvNet trained on UCF101 dataset with Softmax loss to
initialize our model as [279,331]. For the ACT dataset, we did not use UCF101 or HMDB51
during pre-training. Note that there are two types of inputs for our model: RGB and optical
flow. We trained two different models for different inputs. For the model using RGB images
as input, we set the initial learning rate as 10~ and reduce it by 10 times after every 10K
iterations and stop at 30K iterations. For the model using optical flow, the initial learning
rate is set to 107°. We reduce learning rate by order of 10 for every 20K iterations and stop
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Figure 7.4: Temporal segmentation results after inference. z, and z. are the latent variables indexing the end

frame for precondition and start frame for effect. Our model can provide reasonable temporal alignment of states
between different videos in the same category.

Method RGB | Optical Flow | Fusion

Two Stream [279] 73.0% 83.7% 88.0%
Two Stream (VGG16) [332] | 78.4% 87.0% 91.4%
Ours 80.8% 87.8% 92.4%

Table 7.1: Average accuracies on UCF101 over 3 splits.

at 50K iterations. We set the size of the batch to 50 videos. To compute the optical flow, we
apply the TVL1 optical flow algorithm [382] and discretize the values to the range of [0, 255].

7.4.1 Experimental Results.

UCF101 dataset. The accuracies over 3 training/testing splits of UCF101 are shown in
Table 7.1. The Two Stream [279] method using an 8-layer CNNs achieves 88.0%. By replacing
the base network with VGG-16 architecture, [332] obtains 91.4% accuracy. We use [332] as
a baseline for comparisons. Our model outperforms both models using RGB images and
optical flow fields. After fusion of two models, we achieve state of the art performance at
92.4%. See Table 7.4 for more comparisons.

To further analyze our results and factor out the contributions of the appearance of
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Method (for splitl) RGB | Optical Flow | Fusion
Two Stream (VGG16) [332] | 79.8% 85.7% 90.9%
Two Stream First Half 80.0% 84.7% 90.0%

Two Stream Second Half | 79.5% 84.8% ’
Ours 81.9% 86.4% 92.0%

Table 7.2: Comparing method training different networks for different parts of the videos on UCF split1.

Method RGB | Optical Flow | Ave Fusion
Two Stream [279] 40.5% 54.6% 58.0%
Two Stream (VGG16) | 42.2% 55.0% 58.5%
Ours 44.1% 57.1% 62.0%

Table 7.3: Average accuracies on HMDB51 over 3 splits.

the precondition and effect segments, we perform an ablative analysis on the first split of
UCF101. We train different networks using Softmax loss for different segments of the videos
independently. For each video, we cut it by half and train one network using the first half
of frames and another network is trained using the second half. In total we train 2 RGB
ConvNets and 2 optical flow ConvNets. For model fusion, we average the results from these
4 networks. We show the results in Table 7.2. Compared to the baseline method [332], we
find that the performance decreases most of the time and the fusion model is 0.9% worse
than the Two Stream baseline. This is mainly because decreasing the number of training
samples leads to over-fitting. This analysis shows that modeling the precondition and effect
separately does not work as well as the baseline, but modeling the transformations between
them is 1.1% better than the Two Stream baseline.

HMDB51 dataset. For HMDB51, we also report the average accuracies over 3 splits in
Table 7.3. As a baseline, we apply Two Stream method [279, 332] with VGG-16. The baseline
method is better than [279] with average fusion. However, it is not as good as the best results
(59.4%) in [279] using SVM for model fusion. We show that our method has 1.9% gain for
models using RGB images and 2.1% gain for model using optical flow. After model fusion,
our method reach 62% accuracy, which is 3.5% better than the baseline.

More interestingly, we show that our method and the Two Stream method are compli-
mentary to each other by combining the classification results from two methods. Since our
outputs are distances and the Two Stream outputs are probabilities, we convert the distances
outputs to probabilities. To do this, we extract the precondition embedding after ground
truth transformation and the effect embedding on training data. We concatenate the two
embeddings and train a Softmax classifier. In testing, we apply the same inference method
as before and use the newly trained Softmax classifier to generate the probabilities, which
gives the same performance as before. We average the outputs from two methods with
equal weights as our final result. As Table 7.4 shows, by combining our method and the
Two Stream method we have 1.4% boost, which leads to 63.4% accuracy. However, the state
of the art results in this dataset are based on Improved Dense Trajectories (IDT) and Fisher
vector encoding (63.7% [63] and 66.8% [236]).

ACT dataset. We evaluate on two tasks in this dataset as proposed in the Dataset
section. Motivated by the recent literature [49,229,364] in using LSTM to model the temporal
information of videos, we also conduct experiments using the LSTM as another baseline
for comparison. All the ConvNets are based on the VGG-16 architecture. For this LSTM
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| HMDB51 | UCF101 |

STIP+BoW [173] 23.0% | STIP+BoW [288] 43.9%

DCS+VLAD [139] 52.1% | CNN [153] 65.4%

VLAD Encoding [361] 56.4% | IDT+FV [327] 85.9%

IDT+FV [327] 57.2% | IDT+HSV [235] 87.9%

Two Stream [279] 59.4% | Two Stream [279] 88.0%

IDT+HSV [235] 61.1% | LSTM with 88.6%
Two Stream [229]

TDD+FV [331] 63.2% | TDD+FV [331] 90.3%

Two Stream 58.5% | Hybrid LSTM [364] 91.3%

(VGG16) by us

Ours 62.0% | Two Stream 91.4%
(VGG16) [332]

Ours+Two Stream 63.4% | Ours 92.4%

Table 7.4: Comparison to state of the art results.

Method RGB | Optical Flow | Fusion

Two Stream 66.8% 71.4% 78.7%
LSTM+Two Stream | 68.7% 72.1% 78.6%
Ours 69.5% 73.7% 80.6%

Table 7.5: Accuracies for the first task on ACT dataset.

approach, we first perform forward propagation with Two Stream model on each of the 25
frames and extract the feature from the fully connected layer before the classification outputs.
The features are fed into LSTM to generate the classification scores. During training, we
train the LSTM and Two Stream models jointly.

The first task is the standard action classification over 43 classes. As Table 7.5 illustrates,
the LSTM method is better than the Two Stream method given RGB and optical flow inputs
individually, however the results after fusion are very close. On the other hand, our method
reach 80.6%, 1.9% higher than the baseline.

For the second task, we examine the cross category generalization ability of our model.
We perform 16-class classification on 3 different splits. For each class, one sub-category is
left out for testing and the other sub-categories are used for training. As Table 7.6 shows,
compared to the Two Stream baseline, we have 1.9% improvements in models using RGB
images as inputs and 3.7% improvements using optical flow fields as inputs in average. After
fusing the two models with different inputs, we have 65.5% accuracy, 2.3% higher than the
baseline. From these results, we can see that modeling actions as transformations leads to
better category generalization. To explain why our model works better, we perform several

RGB Optical Flow Fusion
Model Splitl | Split2 | Split3 | Average | Splitl | Split2 | Split3 | Average | Splitl | Split2 | Split3 | Average
Two Stream 48.3% | 53.2% | 49.7% | 50.4% | 53.7% | 56.6% | 56.3% | 55.5% | 59.5% | 67.6% | 62.2% | 63.2%
LSTM+Two Stream | 47.8% | 53.6% | 50.2% | 50.5% | 55.6% | 57.0% | 57.4% | 56.7% | 59.9% | 67.3% | 61.1% | 62.8%
Ours 49.3% | 54.8% | 52.5% | 52.2% | 57.6% | 59.5% | 60.4% | 59.2% | 62.4% | 68.7% | 65.4% | 65.5%

Table 7.6: Accuracies over 3 splits for the second task on ACT dataset.
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Figure 7.5: Nearest neighbor test. Given the query videos on the left, our method can retrieve semantically
related videos in the middle while the Two Stream method retrieves videos with similar appearance and motion on
the right.

visualizations in the following section.

7.4.2 Visualization

Just showing quantitative results does not give a full understanding of our method. What is
our model learning? In which way our model is doing better? To answer these questions,
we perform several visualization tasks on our ACT dataset.

Nearest neighbor test. In this experiment, we want to visualize in what cases our method
is doing better via nearest neighbor on the features, which are extracted by the models trained
in the second task of the ACT dataset. To extract the feature with our model, we perform
inference on the video and concatenate the precondition embedding after transformation
with the effect embedding. For the baseline Two Stream method, we extract the second-to-
last fully connected layer feature and compute the average feature over the frames in the
video. For both methods, we extract the feature for the RGB and optical flow models and
then average them. As shown in Figure 7.5, given the query from testing samples on the left,
we show the retrieved videos from the training videos. In the middle is our result and the
retrieval results of the Two Stream method are on the right. For instance, on the first row,
the query is a baby pushing a cart, we can retrieve the video in which a man is pushing a car,
while the Two Stream method gets the baby crawling on the floor as the nearest neighbor.
As the Two Stream method tries to match videos with similar appearance and motions,
modeling the actions as transformations give us more semantically related retrieval results.
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Precondition Two Stream (RGB) Ours Effect Two Stream (RGB) Ours

Figure 7.6: Given the precondition and effect frames as inputs, we visualize the magnitude of gradients via
back-propagation. While the network trained with RGB images in Two Stream method are sensitive to the object
and scenes, our model focus more on the changes.

Precondition Effect (same class) Effect (different class)

Figure 7.7: Prediction results. Given the precondition frames of test videos on the left, we retrieve the effect
frames of training samples. In the middle are the retrieval results with the same class as the query, on the right are
results from different classes.

Visualization of what the models focus on. In this experiment, we visualize what the
models focus on during inference using similar techniques as [76,278]. We select one frame
from the precondition state and another frame from the effect state, we feed these two RGB
images into two towers of our model. We calculate the transformation loss given the video
label and perform back-propagation. We visualize the magnitude of the gradients passed
to the input image. This visualization shows which parts of the image force the network
to decide on an action class. We visualize the RGB network from the Two Stream method
(using Softmax loss) in the same way. As Figure 7.6 shows, given the precondition and effect
frames, our model focuses more on the changes happening to the human while the RGB
network from the Two Stream method performs classification based on the entire scene. In
the first row, our model focus on the man and the ball when the ball is flying towards to
him. As the man catches the ball, our model has high activations on the man with the ball.
In the second row, our model can also capture locations where the ball is flying towards the
man. In both cases, the direct classification model fires on the whole scene.

Visual prediction. Given the precondition embedding after transformation on the testing
video, we retrieve the effect embedding from the same or different classes among the training
data. We use the model trained on the first task of the experiment on the ACT dataset (43-class
classification). If our model is actually learning the transformation, then it should be able to
find effects frames that are similar to what we expect from applying the transformation to
the precondition frames. We visualize the results in Figure 7.7. In each row, the first two
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images are the beginning and ending frames of precondition segments of testing videos.
The two images in the middle are the retrieval results with the same label as query. The
two images on the right are the retrieval results with different class label as query. We show
that our method can retrieve reasonable and smooth prediction results. For example, when
our model is asked to predict what is going to happen when a man jumps from a diving
board, it retrieves getting into the pool as the within-category result, and getting into the
lake as the cross-category result. This is another information showing that our model is in
fact learning actions as transformations from preconditions to effects.

7.5 Discussion

We propose a novel representation for action as the transformation from precondition to
effect. We show promising action recognition results on UCF101, HMDB51 and ACT datasets.
We also show that our model has better ability in cross category generalization. We show
qualitative results which indicate that our method can explicitly model an action as the
change or transformation it brings to the environment.
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Chapter 8

Binge Watching for Affordance
Learning

Going beyond recognition tasks in the previous chapters, one of the long-term goals of
computer vision, as it integrates with robotics, is to translate perception into action. While
vision tasks such as semantic or 3D understanding have seen remarkable improvements in
performance, the task of translating perception into actions has not seen any major gains.
For example, the state of the art approaches in predicting affordances still do not use any
ConvNets with the exception of [71]. Why is that? What is common across the tasks affected
by ConvNets is the availability of large scale supervisions. For example, in semantic tasks,
the supervision comes from crowd-sourcing tools like Amazon Mechanical Turk; and in
3D tasks, supervision comes from structured light cameras such as the Kinect. But no such
datasets exist for supervising actions afforded by a scene. Can we create a large-scale dataset
that can alter the course in this field as well?

There are several possible ways to create a large-scale dataset for affordances: (a) First
option is to label the data: given empty images of room, we can ask mechanical turkers
to label what actions can be done at different locations. However, labeling images with
affordances is extremely difficult and an unscalable solution. (b) The second option is to
automatically generate data by doing actions themselves. One can either use robots and
reinforcement learning to explore the world and the affordances. However, collecting large-
scale diverse data is not yet scalable in this manner. (c) A third option is to use simulation:
one such example is [71] where they use the block geometric model of the world to know
where human skeletons would fit. However, this model only captures physically likely
actions and does not capture the statistical probabilities behind every action. For example,
it allows predictions such as humans can sit on top of stoves; and for the open space near
doors it predicts walking as the top prediction (even though it should be reaching the door).

In this chapter, we propose another alternative: watch the humans doing the actions and
use those to learn affordances of objects. But how do we find large-scale data to do that?
We propose to binge-watch sitcoms to extract one of the largest affordance datasets ever.
Specifically, we use every episode and every frame of seven sitcoms ! which amounts to

How I Met Your Mother, Friends, Two and a Half Men, Frasier, Seinfield, The Big Bang Theory, Everybody
Loves Raymond
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Figure 8.1: We propose to binge-watch sitcoms to extract one of the largest affordance
datasets ever. We use more than 100M frames from seven different sitcoms to find empty
scenes and same scene with humans. This allows us to create a large-scale dataset with
scenes and their affordances.

processing more than 100 Million frames to extract parts of scenes with and without humans.
We then perform automatic registration techniques followed by manual cleaning to transfer
poses from scenes with humans to scenes without humans. This leads to a dataset of 28882
poses in empty scenes.

We then use this data to learn a mapping from scenes to affordances. Specifically, we
propose a two-step approach. In the first step, given a location in the scene we classify
which of the 30 pose classes (learned from training data) is the likely affordance pose. Given
the pose class and the scene, we then use the Variational Autoencoder (VAE) to extract
the scale and deformation of the pose. Instead of giving a single answer or averaging the
deformations, VAE allows us to sample the distribution of possible poses at test time. We
show that training an affordance model on large-scale dataset leads to a more generalizable
and robust model.
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8.1 Background

The idea of affordances [79] was proposed by James J. Gibson in late seventies, where he
described affordances as “opportunities for interactions” provided by the environment.
Inspired by Gibson’s ideas, our field has time and again fiddled with the idea of functional
recognition [253,294]. In most cases, the common approach is to first estimate physical
attributes and then reason about affordances. Specifically, manually-defined rules are used
to reason about shape and geometry to predict affordances [294,352]. However, over years,
the idea of functional recognition took backstage because these approaches lacked the ability
to learn from data and handle the noisy input images.

On the other hand, we have made substantial progress in the field of semantic image
understanding. This is primarily due to the result of availability of large scale training
datasets [43,205] and high capacity models like ConvNets [172,187]. However, the success
of ConvNets has not resulted in significant gains for the field of functional recognition. Our
hypothesis is that this is due to the lack of large scale training datasets for affordances. While
it is easy to label objects and scenes, labeling affordances is still manually intensive.

There are two alternatives to overcome this problem. First is to estimate affordances by
using reasoning on top of semantic [32,38,113] and 3D [8, 56,80, 359] scene understanding.
There has been a lot of recent work which follow this alternative: [101,164] model relationship
between semantic object classes and actions; Yao et al. [373] model relationships between
object and poses. These relationships can be learned from videos [101], static images [373] or
even time-lapse videos [42]. Recently, [402] proposed a way to reason about object affordances
by combining object categories and attributes in a knowledge base manner. Apart from using
semantics, 3D properties have also been used to estimate affordances [36,67,99,102,386].
Finally, there have been efforts to use specialized sensors such as Kinect to estimate geometry
followed by estimating affordances as well [147,166,167,400].

While the first alternative tries to estimate affordances in low-data regime, a second
alternative is to collect data for affordances without asking humans to label each and every
pixel. One possible way is to have robots themselves explore the world and collect data for
how different objects can used. For example, [240] uses self-supervised learning to learn
grasping affordances of objects or [3,238] focus on learning pushing affordances. However,
using robots for affordance supervision is still not a scalable solution since collecting this data
requires a lot of effort. Another possibility is to use simulations [227]. For example, Fouhey
et al. [71] propose a 3D-Human pose simulator which can collect large scale data using 3D
pose fitting. But this data only captures physical notion of affordances and does not capture
the statistical probabilities behind every action. In this work, we propose to collect one of
the biggest affordance datasets using sitcoms and minimal human inputs. Our approach
sifts through more than 100M frames to find high-quality scenes and corresponding human
poses to learn affordance properties of objects.

8.2 Sitcom Affordance Dataset

Our first goal towards data-driven affordances is to collect a large scale dataset for affordances.
What we need is an image dataset of scenes such as living rooms, bedrooms etc and what
actions can be performed in different parts of the scene. In this chapter, inspired by some
recent work [104], we represent the output space of affordances in terms of human poses.
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Figure 8.2: Some example images from Sitcom Affordance dataset. Note that our images are
quite diverse and we have large samples of possible actions per image.

But where can we find images of the same scene with or without people in it?

The answer to the above question lies in exploiting the TV Sitcoms. In sitcoms, characters
share a common environment, such as a home or workplace. A scene with exact configuration
of objects appears again and again as multiple episodes are shot in it. For example, the living
room in Friends appears in all the 10 seasons and 240 episodes and each actor labels the
action space in the scene one by one as they perform different activities.

We use seven such sitcoms and process more than 100M frames of video to create the
largest affordance dataset. We follow a three-step approach to create the dataset: (1) As a
first step, we mine the 100M frames to find empty scenes or sub-scenes. We use an empty
scene classifier in conjunction with face and person detector to find these scenes; (2) In the
second step, we use the empty scenes to find the same scenes but with people performing
actions. We use two strategies to search for frames with people performing actions and
transfer the estimated poses [26] to empty scenes by simple alignment procedure; (3) In the
final step, we perform manual filtering and cleaning to create the dataset. We now describe
each of these steps in detail.

Extracting Empty Scenes

We use a combination of three different models to extract empty scenes from 100M frames:
face detection, human detection and scene classification scores. In our experiment, we find
face detection [203] is the most reliable criteria. Thus, we first filter out scenes based on
the size of the largest face detected in the scenes. We also applied Fast-RCNN to detect
humans [82] in the scene. We reject the scenes where humans are detected. Finally, we have
also trained a CNN classifier for empty scenes. The positive training data for this classifier
are scenes in SUN-RGBD [286] and MIT67 [245]; the negative data are random video frames
from the TV series and Images-of-Groups [75]. The classifier is finetuned on PlaceNet [389].
After training this classifier, we apply it back on the TV series training data and select 1000
samples with the highest prediction scores. We manually label these 1000 images and use
them to fine-tuned the classifier again. This “hard negative” mining procedure turns out to
be very effective and improve the generalization power of the CNN across all TV series.
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Matching Image Transferred Pose

(b) Local Matching

Figure 8.3: We propose to use two approaches to transfer poses. In global matching approach,
we match an empty scene to all the images in the sitcom. Sometimes the matches occur in
different seasons. Given these matches, we transfer poses to the image. In the local matching
approach, we use the next 5-10 sec of video to transfer poses via optical-flow registration
scheme.

People Watching: Finding Scenes with People

We use two search strategies to find scenes with people. Our first strategy is to use image
retrieval where we use empty scenes as query images and all the frames in the TV-series
as retrieval dataset. We use cosine distance on the pool5 features extracted by ImageNet
pre-trained AlexNet. In our experiments, we find the pool5 features are robust to small
changes of the image, such as the decorations and number of people in the room, while still
be able to capture the spatial information. This allows us to directly transfer human skeletons
from matching images to the query image. We show some examples of data generated using
this approach in the top two rows of Fig. 8.3.

Besides global matching of frames across different episodes of TV shows, we also transfer
human poses within local shots (short clips at most 10 seconds) of videos. Specifically, given
one empty frame we look into the video frames ranging from 5 seconds before this frame
to 5 seconds after it. We perform pose estimation on every frame. We then compute the
camera motions of each frame with respect to the empty frame by accumulating the optical
flows. Given these motion information, we can map the detected poses to the empty frame,
as shown in the bottom two rows in Fig. 8.3.

Manual Annotations

Our goal is to use the automated procedure above to generate valid

hypothesis of possible poses in empty scenes. However, the alignment Source _#Datapoints

procedure is not perfect by any means. Thus, we also need human  HIMYM 3506
annotators to manually adjust pose joints by scaling and translating. In TBBT 3997
this way, the pose in the empty scene can be aligned with the human in Friends 3872
the image where the pose is transferred from. In cases where the poses ~ TAAHM 3212
are not fitting with the scene, due to occlusions or incorrect matching, ELR 5210
we remove such poses. The final dataset we obtain contains 28882 Frasier 6018
human poses inside 11449 indoor scenes. The detailed statistics of how  Seinfeld 3067
many poses for each TV series are summarized in the right table. Total 28882
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Figure 8.4: Our Affordance Prediction Model. The encoder and decoder in VAE share the
weights which are highlighted as green. All fully connected layers have 512 neurons unless
it is specified in the figure.

8.3 VAEs for Estimating Affordances

Given an indoor scene and the location, we want to predict what is the

most likely human pose. One naive approach is training a ConvNet with the image and the
location as input, predict the heat maps for each joint of the pose as state-of-the-art pose
estimation approaches [26]. However, our problem is very different from standard pose
estimation, since we do not have the actual human which can provide the pose structure
and regularize the output.

We explore an alternative way: we decompose the process of predicting poses into two
stages: (i) categorical prediction: we first cluster all the human poses in the dataset into 30
clusters, and predict which pose cluster is most likely given the location in the scene; (ii)
given the pose cluster center, we predict its scale as well as the deformations for pose joints
such that it fits into the real scene.

8.3.1 Pose Classification

As a first step, given an input image and a location, we first do a categorical prediction of
human poses. But what are the right categories? We use a data-driven vocabulary in our
case. Specifically, we use randomly sampled 10K poses from the training videos. We then
compute the distances between each pair of poses using procrustes analysis over the 2D
joint coordinates, and cluster them into 30 clusters using k-mediod clustering. We visualize
the centers of the clusters as Fig. 8.5.

In the first stage of prediction, we train a ConvNet which uses the location and the scene
as input and predict the likely pose class. Note that multiple pose classes could be reasonable
in a particular location (e.g. one can stand before the chair or sit on the chair), thus we are
not trying to regress the exact pose class. Instead we predict a probability distribution over
all classes and select the most likely one. The selected pose center can be further adjusted to
fit in the scene in the second stage.

Technical Details: The input to the ConvNet is the image and the location where to predict
likely pose. To represent this point in the image, we crop a square patch using it as the center
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Figure 8.5: Cluster centers of human poses in sitcom dataset. These clusters are used as
pose categories predicted by classification network.

and the side length is the height of the image frame. We also crop another patch in a similar
way except that the length is half the height of the image. As illustrates in Fig. 8.4 (a), the red
dots on the input images represent the location. The two cropped patches can offer different
scales of information and we also take the whole image as input. The 3 input images are all
re-scaled to 227 x 227.

Given the 3 input images, they are forwarded to 3 ConvNets which share the weights
between them. We apply the AlexNet architecture [172] for the ConvNet here and concatenate
the 3 fc7 outputs. The concatenated feature is further fully connected to 30 outputs, which
represents 30 pose classes. During training, we apply SoftMax classification loss and the
AlexNet is pre-trained with ImageNet dataset [44].

8.3.2 Scale and Deformation Estimation

Given the pose class and scene, we need to predict the scale and the deformations of each
joint to fit the pose into the scene. However, the scale and deformations of the pose are
not deterministic and there could be ambiguities. For example, given an empty floor and
a standing pose class, it could be a child standing there (which corresponds to a smaller
scale) or an adult standing there (which corresponds to a larger scale). Thus instead of
directly training a ConvNet to regress the scale and deformations, we apply the conditional
Variational Auto-Encoder (VAE) [161,321] to generate the scale and deformations conditioned
on the input scene and pose class.

Formulations for the conditional VAE. We applied the conditional VAE to model the
scale and deformations of the estimated pose class. For each sample, we define the defor-
mations and scale as y, the conditioned input images and pose class as z, and the latent
variables sampled from a distribution @) as z. Then the standard variational equality can be
represented as,

log P(ylx) — KL[Q(z|z,y)||P(z]z,y)]
= E.~qllog P(ylz, x)] = KL[Q(z]x, y)||P(z[x)], (8.1)

where KL represents the KL-divergence between the distribution Q(z|z,y) and the dis-

tribution P(z|z). Note that in VAE, we assume P(z|z) is a normal distribution A/(0, 1).
The distribution @ is another normal distribution which can be represented as Q(z|z,y) =

97



Q(z|u(z,y),0(x,y)), where u(z,y) and o(x,y) are estimated via the encoder in VAE. The
log-likelihood log P(y|z, x) is modeled by the decoder in VAE. The details are explained as
below.

Encoder. As Fig. 8.4(b) illustrates, the inputs of model include 3 images which are
obtained in the same way as the classification network, a 30-d binary vector indicating
the pose class (only one dimension is activated as 1), and a 36-d vector representing the
ground truth scale and deformations. The images are fed into the AlexNet model and we
extract the fc7 feature for each of them. The pose binary vector and the vector of scale and
deformations are both forwarded though two fully connected layers. Each fully connected
layer has 512 neurons. The outputs for each components are then concatenated together and
fully connected to the outputs. The dimension of the outputs is 30 x 2 which are two vectors
of mean yu(x,y) and variance o(z,y) of the distribution Q.

We calculate the ground truth scale for the height of pose sy, as the actual pose height
divided by the normalized height (ranging from 0 to 1) of cluster center. The ground truth
scale for the width s,, is calculated in a similar way. Given the ground truth (s, s,,), we can
re-scale the cluster center and aligned it to the input location. The deformation for each joint
is the spatial distance (dz, dy) between the scaled center and ground truth pose. Since we
have 17 pose joints (dX,dY) = (dz1,dy1, ..., dx17, dy17), there are 34 outputs representing
the deformations. Together with the scale s;, s,,, the outputs of the generator are 36 real
numbers.

Decoder. As Fig. 8.4(c) shows, the decoder has a similar architecture as the encoder.
Instead of taking a vector of scale and deformations as input, we replace it with the latent
variables z. The output of the network is changed to a 36-d vector of scale and deformations
whose groundtruth is identical to the 36-d input vector of the encoder. Note that we share
the feature representations for the conditional variables (images and classes) between the
encoder and decoder.

Training. As indicated by Eq. 8.1, we have two losses during training the VAE model.
To maximize the log-likelihood, we apply a Euclidean distance loss to minimize distance
between the estimated scale and deformations y* and the ground truths as,

Ly = |ly* —yl%. (82)

And the other loss is to minimize the KL-divergence between the estimated distribution Q)
and the normal distribution A/(0, 1) as,

Ly = KL[Q(ZLLL(I,y),O’(I,y))HN(O,1)} (83)

Note that the first loss L, is applied on top of the decoder model, and its gradient is
backpropagated though all the layers. To do this, we follow the reparameterization trick
introduced in [159]: we represent the latent variables as z = p(x,y) + o(z,y) - o, where «
is a variable sampled from N(0, 1). In this way, the latent variables z is differentiable with
respect to y and o.

8.3.3 Inference

Given the trained models, we want to tackle two tasks: (i) generating poses on an empty
location of a scene and (ii) estimate if a pose fits the scene or not.
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(b) Comparing to Ground Truth

Figure 8.6: Qualitative results of generating poses: We show qualitative results on scenes
from Friends dataset. (a) As we can see the human poses generated seem very reasonable.
(b) We also compare the poses generated using our approach with the ground truth poses.

For the first task, given an image and a point representing the location in the image, we
first perform pose classification and obtain the normalized center pose of the corresponding
class. The classification scores, together with the latent variables z sampled from A/ (0, 1)
and images are forwarded to the VAE decoder model (Fig. 8.4 (c)). We scale the normalized
center with the inferred scale (s;, s;,) and align the pose with the input point. Then we
adjust each joint of the pose by adding the deformations (dX*,dY™).

For the second task, we want to estimate whether a given pose fits the scene or not. To do
this, we first perform the same estimation of the pose given an empty scene as the first task,
then we compute the euclidean distance D between the estimated pose and the given pose.
To ensure the robustness of the estimation, we repeat this procedure by sampling different =
for m = 10 times, and calculate the average distance % ZT D; as the final result. If the final
distance is less than a threshold J, then the given pose is taken as a reasonable pose.
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8.4 Experiments and Results

We are going to evaluate our approach on two tasks: (i) affordance prediction: given an
input image and a location, generate the likely human pose at that location; (ii) classify
whether a given pose in a scene is possible or not.

We train our models using data collected from the TV series of “How I Met Your Mother”,
“The Big Bang Theory”, “Two and A Half Man”, “Everyone Loves Raymond”, “Frasier” and
“Seinfeld”. The models are tested on the frames collected from “Friends”. For training data,
we have manually filtered and labeled 25010 accurate poses over 10009 different scenes.
For testing data, we have collected 3872 accurate poses over 1490 different scenes and we
have also artificially generated 9572 poses in the same scenes which are either physically
impossible or very unlikely to happen in the real world.

During training, we initialize the AlexNet image feature extractor with ImageNet pre-
training and the other layers are initialized randomly. We apply the Adam optimizer during
training with learning rate 0.0002 and momentum term g; = 0.5, 82 = 0.999. To show that
large scale of data matters, we perform the experiments on different size of the dataset.

We also evaluate the performance of our approach as the training dataset size increases.
Specifically, we randomly sample 2.5K and 10K of data for training, and compare these
models with our full model which uses 25K data for training.

Baseline We compare our VAE approach to a heatmap regression based baseline. Essentially,
we represent the human skeletons as a 17-channel heatmap, one for each joint. We train a
three-tower AlexNet (upto conv5) architecture, where each tower looks at a different scale of
the image around the given point. The towers have shared parameters and are initialized
with ImageNet. The outputs are concatenated across the towers and passed through a
convolution and deconvolution layer to produce a 17 channel heatmap, which is trained
with euclidean loss.

8.4.1 Generating poses in the scenes

As we mentioned in the approach, we generate the human pose via estimating the pose class
and the scale as well as deformations.

Qualitative results. We show our prediction results as Fig. 8.6(a). We have shown that our
model can generate very reasonable poses including sitting on a coach, closing the door and
reaching to the table, etc. We also compare our results with the ground truth as Fig. 8.6(b).
We show that we can generate reasonable results even though it can be very different from
the ground truth poses. For example, in the 3rd column of the 2nd row, we predict a pose
sitting on a bed while the ground truth is standing in front of the bed.

We have also visualized the results given different noise z as inputs to the VAE Decoder
during testing. For the same scene and location, we can generate different poses as Fig. 8.7.

Quantitative results. To show that the generated poses are in reasonable, we first evaluate
the performance of our pose classification network. Note that there could be multiple
reasonable poses in a given location, thus we show our 30-class classification accuracies
given top 1 to top 5 guesses. We test our model on the 3872 samples from “Friends”, the
results is shown in Table 8.1. We compare models trained on three different sizes of our
dataset (2.5K, 10K and 25K). We show that the more data we have, the higher accuracies
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Figure 8.7: Affordance results for VAE with different noise inputs. Each column includes
two predictions results for the same inputs. Given the human pose class, we show how VAE
can be used to sample multiple scale and deformations.

Figure 8.8: Negative samples added in the test dataset. 71% of the test data is such images
and 29% is positive examples.

we can get. For the heatmap baseline, we use the inner product of the predicted heatmap
to assign the output to the cluster centers. We obtain the top-5 assignments and standard
evaluation as above for classification performance. As the numbers show, our approach
clearly outperforms this heatmap based baseline.

Human evaluation. We also perform human evaluation on our approach. Given the ground
truth pose and predicted pose in the same location of the same image, we ask human which
one is more realistic. We find that 46% of the time the turkers think our prediction is more
realistic. Note that a random guess is 50%, which means our prediction results are almost as
real as the ground truth and the turkers can not tell which is generated by our model.

8.4.2 Classifying given poses in the scenes

Given a pose in a location of the scene, we want to estimate how likely the pose is using
our model. We perform our experiments on 3872 positive samples from “Friends” and 9572
negative samples in the same scenes. We show some of the negative samples as Fig. 8.8.
Note that although we use negative data in testing, but there is no negative data involved
in training. We show the Precision-Recall curve as Fig. 8.9. Among all of our approaches,
we find that training with 25K data points give best results, which is consistent with the
first task. For the heatmap baseline, we again score each sample as the inner product of

Method Top-1 | Top-2 | Top-3 | Top-4 | Top-5
HeatMap (Baseline) | 8.4% | 19.9% | 30.1% | 39.1% | 47.3%
Training with 2.5K | 11.7% | 21.9% | 29.7% | 36.1% | 41.8%
Training with 10K | 13.3% | 23.7% | 32.3% | 39.7% | 46.8%
Training with 25K | 14.9% | 26.0% | 36.0% | 43.6% | 50.9%

Table 8.1: Classification results on the test set.
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Figure 8.9: PR curve for our second experiment: given an image and pose, we produce a
score on how probable it is. We use these scores to compute the recall-precision graph.

predicted heatmap with a heatmap representation of the labeled pose. We observe that the
baseline does better than our approach in high-recall regimes, which can be explained by
the fact that training with euclidean loss generates an averaged-out output, which is less
likely to miss a pose.

8.5 Discussion

In this chapter, we present one of the biggest affordance dataset. We use 100 Million frames
from seven sitcoms to extract diverse set of scenes and how actors interact with different
objects in those scenes. Our dataset consist of more than 10K scenes and 28K ways humans
can interact with these 10K images. We also propose a two step approach to predict affor-
dance pose given an input image and the location. In the first step, we classify which of the
30 pose classes is the likely affordance pose. Given the pose class and the scene,we then
use Variational Autoencoder (VAE) to extract the scale and deformation of the pose. VAE
allows us to sample the distribution of possible poses at test time. Our results indicate that
the poses generated by using our approach are quite realistic.
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Chapter 9

Interpretable Intuitive Physics
Model
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Figure 9.1: Interpretable Physics Models. Consider the sequences shown above. Not only we
can predict the future frames of collisions but we can also predict the underlying factors that
lead to such an inference. For example, we can infer the mass of cylinder is much higher in
second sequence and therefore it hardly moves in the image. Our ability to infer meaningful
underlying latent factors inspires us in this chapter to learn an interpretable intuitive physics
model.

Besides studying on the interactions between human and the scene, in this chapter, we
want to focus on the physical interactions between objects. Consider the collision image
sequences shown in Figure 9.1. When people see these images, they not only recognize the
shapes and color of objects but also predict what is going to happen. For example, in the
first sequence people can predict that the cylinder is going to rotate while in the second
sequence the ball will bounce with no motion on cylinder. But beyond visual prediction,
we can even infer the underlying latent factors which can help us explain the difference in
visual predictions. For example, a possible explanation of the behavior between the two
sequences, if we knew the ball’s mass didn’t change, is that the first sequence’s cylinder was
lighter than the ball whereas in the second sequence the cylinder was heavier than the ball.
Beyond this we can deduce that the cylinder in the first sequence was much lighter than the
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one in the second.

Humans demonstrate the profound ability to understand the underlying physics of the
world [108,109] and use it to predict the future. We use this physical commonsense for not
only rich understanding but also for physical interactions. The question arises as to whether
this physical commonsense is just an end-to-end model with intermediate representations
being a black-box, or explicit and meaningful intermediate representations? For humans,
the answer appears to be the latter. We can predict the future if some underlying conditions
are changed. For example, we can predict that if we throw the ball in the second sequence
with 10x initial speed then the cylinder might rotate.

In this chapter, we focus on learning an intuitive model of physics [10,192,227]. Unlike
some recent efforts, where the goal is to learn physics in an end-to-end manner with little-to-
no constraints on intermediary layers, we focus on learning an interpretable model. More
specifically, the bottleneck layers in our network model physical properties such as mass,
friction, etc.

Learning an interpretable intuitive physics model is, however, quite a challenging task.
For example, Wu et al. [358] attempts to build a model but the inverse graphics engine infers
physical properties such as mass and friction. These properties are then used with neural
physics engine or simulators for prediction. But can we really infer physical properties
from the few frames of such collisions? Can we separate friction from mass, restitution by
observing the frames? The fact is most of these physical factors are so dependent that it is
infeasible to infer the exact values of physical properties. For example we can determine
ratios between properties but not the precise values of both (e.g., we can determine the
relative mass between two objects but not the exact values for both). This is precisely why in
[358] only one factor is inferred from motion and the other factor is directly correlated to
the appearance. Furthermore, the learned physics model is domain-specific and will not
generalize—even across different shapes.

To tackle these challenges, we propose an interpretable intuitive physics model, where
specific dimensions in the bottleneck layers correspond to different physical properties. The
bottleneck layer models the distribution rather than infer precise values of mass, speed
and friction. In order to demonstrate that our system models these underlying physical
properties, we train our model on collision of different shapes (cube, cone, cylinder, spheres
etc.) and test on collisions of unseen combinations of shapes altogether. We also demonstrate
the richness of our model by predicting the future states under different physical conditions
(e.g., how the future frames will look if the friction is doubled).

Our contributions include: (a) an intuitive physics model that disentangles different
physical properties in an interpretable way; (b) a staggered training algorithm designed to
distinguish the subtleties between different physical quantities; (c) generalization to different
shapes and physical quantity combinations; most importantly, (d) the ability to adapt future
predictions when physical environments change. Note (d) is different from generalization:
the hallucination/prediction is done for a physical scene completely different from the
observed first four frames.

9.1 Background

Physical reasoning and learning physical commonsense has raised a lot of interest in recent
years [3,54,226,227,237,383,387,401]. There has been multiple efforts to learn implicit and
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explicit models of physics commonsense. The underlying goal of most of these systems is to
use physics to predict what is going to happen next [64,72,100,192,198,357,360]. The hope
is that if the model can predict what is going to happen next after interacting with objects, it
will be forced to understand the physical properties of the objects. For example, [192] tries to
learn the physical properties by predicting whether a tower of blocks will fall. [72] proposed
to learn a visual predictive model for playing billiards.

However, the first issue is what is the right data to learn this physics model. Researchers
have tried a wide spectrum of approaches. For example, many researchers have focused
on the task of visual prediction using real-world videos, based on the hypothesis that the
predictive model will contain some underlying physical properties [220,318,321]. While
videos provide realistic data, there is little to no control on how the data is collected and
therefore the implicit models end up learning dynamic models of texture. In order to force
physical commonsense learning, people have even tried using videos of physical interactions.
For example, Physics101 dataset [357] collects sequences of collisions for this task. But most
of the learning still happens passively (random batches). In order to overcome that, recent
approaches have tried to learn physics by active interaction using robots [3,64,237]. While
there is more control in the process of data collection, there are still issues with lack of diverse
data due to most experiments being performed in lab setting with few objects. Finally, one
can collect data with full control over several physical parameters using simulation. There
has been lot of recent efforts in using simulation to learn physical models [72,192,226,227].
One limitation of these approaches, in terms of data, is the lack of diversity during training,
which forces them to learn physics models specific to particular shapes such as blocks,
spheres etc. Furthermore, none of these approaches use the full power of simulation to
generate a dense set of videos with multiple conditions. Most importantly, none of these
approaches learn an interpretable model.

Apart from the question of data, another core issue is how explicit is the representation
of physics in these models. To truly understand the object physical properties, it requires
our model to be interpretable [10,29,174,350,358]. That is, the model should not only be
able to predict the futures, but the latent representations should also indicate the physical
properties (e.g., mass, friction and speed) implicitly or explicitly. For example, [10] proposed
an Interaction Network which learns to predict the rigid body dynamics of gravitational
systems. [358] proposed to explicitly estimate the physical object states and forward this
state information to a physics engine for prediction. However, we argue exact values of these
physical properties might not be possible due to entanglement of various factors. Instead of
estimating the physics states explicitly, our work focuses on separating the dimensions in
the bottleneck layer.

Our work is mostly related to the Inverse Graphics Network [174]. It learns a disentangled
representation in the graphics code layer where different neurons are encouraged to represent
different transformations including pose and light. The system can be trained in an end-to-
end manner without providing an explicit state value as supervisions for the graphics code
layer. However, unlike the Inverse Graphics Network, where pose and light can be separately
inferred from the input images, the dynamics are dependent on the joint set of physical
properties in our model (mass, friction and speed), which confound future predictions.

Our model is also related to the visual prediction models [163,220,243,293,321,369,396] in
computer vision. For example, [293] proposed to directly predict a sequence of video frames
in raw pixels given a sequence of former frames as inputs. Instead of directly predicting the
pixels, [321] proposed to predict the optical flows given an input image and then warp the
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Figure 9.2: Our dataset includes 2 object collisions with a variety of shapes. Unlike existing
physics datasets which have only one type of shape, our dataset is diverse in terms of different
shapes and physical properties of objects.

flows on the input images to generate future frames. However, the optical flow estimation is
not always correct, introducing errors in the supervisions for training. To tackle this, [396]
proposed a bilinear sampling layer which makes the warping process differentiable. This
enables them to train their prediction model from pixels to pixels in an end-to-end manner.

9.2 Dataset

We create a new dataset for our experiments in this chapter. The advantage of our proposed
dataset is that we have rich combinations of different physical properties as well as different
object appearances for different types of collisions (falling over, twisting, bouncing, etc.).
Unlike previous datasets, the physical properties in our dataset are independent from the
object shapes and appearance. In this way, we can train models which force estimation of
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scaley | scaleg | scaleg | scaleq | scales
Mass 100 200 300 400 500
Speed 10000 | 20000 | 30000 | 40000 | 50000
Friction | 0.01 0.02 0.03 0.04 0.05

Table 9.1: Dataset Settings

physical properties by observing the collisions. More importantly, our testing sets contain
novel combinations of object shapes or physical properties that are unseen in the training
set. The details of dataset generation is illustrated as following.

We generate our data using the Unreal Engine 4 (UE4) game engine. We use 11 different
object combinations with 5 unique basic objects: sphere, cube, cylinder, cone, and wedge.
We select 3 different physical properties including mass of static object, initial speed of
colliding object and friction of floor. For each property, we choose 5 different scales of values
as shown in Table 9.1. For simplicity, we specify a certain scale of parameter by the format
{parameter name} ¢,cqicy (€.g., mass, friction,, speeds). We simulate all the 5 x 5 x 5 = 125
sets of physical combinations. For each set of physical property combination, there are 11
different object combinations and 15 different initial rotation and restitution. Thus in total
there are 125 x 15 x 11 = 20625 collisions. Each collision is represented by 5 sample frames
with 0.5s time intervals between them.

The diversity in our dataset is highlighted in Figure 9.2. For example, our dataset has
cones toppling over; cylinders falling down when hit by a ball and rolling cylinders. We
believe this large diversity makes it one of the most challenging datasets to learn and
disentangle physical properties.

For training, we use 124 sets of physics combination with 9 different object combinations
(16740 collisions). The remaining data are used for two types of testing: (i) parameter
testing and (ii) shape testing. The parameter testing set contains 135 collisions with unseen
physical parameter combinations (masss, speeds, frictions) but seen object shape combinations.
The shape testing set on the other hand, contains 3750 collisions with 2 unseen shape
combinations yet seen physical parameter combinations. We show the generalization ability
of our physics model on both testing conditions.

9.3 Interpretable Physics Model

Our goal is to develop a physics-based reasoning network to solve prediction tasks, e.g.,
physical collisions, while having interepretable intermediate representations.

9.3.1 Visual Prediction Model

As illustrated in Figure 9.3, our model takes in 4 RGB video frames as input and learns to
predict the future 5th RGB frame after the collisions. The model is composed with two parts:
an encoder for extracting abstract physical representations and a decoder for future frame
prediction.

Encoder for physics representations. The encoder is designed to capture the motion of
two colliding objects, from which the physical properties can be inferred. Given 4 RGB frames
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Figure 9.3: Model Architecture: we follow an encoder-decoder framework. The encoder
takes 4 frames of a collision (2 before collision, 1 during collision, and 1 after collision).
All inputs are first passed through a pre-trained Alexnet. The Alexnet features are further
appended along channels and are sent to two convolution layers and four fully-connected
layers. The resulting physics vector is passed through a decoder consisting of one fully-
connected layer and six up-sampling convolution layers to produce an optical flow. The
number on the convolution layers and transpose convolution layers stands for the kernel
size of corresponding layer. The last bilinear grid sampling layer takes the optical flow and
the 4" input frame to produce future prediction.

as inputs, they are first forwarded to a ConvNet with AlexNet architecture and ImageNet
pre-training. We extract the pool5 feature for each video frame and concatenate the features
together as a representation for the input sequence. This feature is then forwarded to two
convolutional layers and four fully connected layers to obtain the physics representation.

The physics representation is a 306 dimensional vector, which contains disentangled
neurons of mass (dimensions 1 to 25), speed (dimensions 26 to 50), friction (dimensions 51
to 75), and other intrinsic information (dimensions 76 to 306), as shown in Figure 9.3. Note
that although the vector is disentangled, there is no explicit meanings for each neuron value.

Decoder for future prediction. The physics representation is forwarded to a decoder
for future frame prediction. Our decoder contains one fully-connected layer followed by
six decovolutional layers. Inspired by [321,396], our decoder uses optical flow fields as
the output representation instead of directly outputing the RGB raw pixel values. The
optical flow is then used to perform warping on the last input frame by a bilinear sampling
layer [396] to generate the future frame. Since the bilinear sampling layer is differentiable, the
network can be trained in an end-to-end manner with the 5th frame for direct supervision.

There are two major advantages of using optical flow as outputs: (i) it can force the model
to learn the factors that cause the changes between two frames; (ii) it allows the model to
focus on the changes of the foreground objects.

9.3.2 Learning Objective
Formally, we define the encoder as a function f and the decoder as a function g. Given an

image sequence z as inputs (4 frames), our encoder transforms the images into a physically
meaningful and disentangled representation z = f(x) and then the decoder transforms this
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representation into a future frame y = g(z).

The disentangled representation z can be formulated as z = (¢™, ¢°, ¢’ ¢") where
(-,+) denotes concatenation. The first part (¢™, ¢*, ) denotes the combination physics
variable, which encodes the physical quantities (m, s, f stands for mass, speed, and friction
respectively). The second part ¢’ is the intrinsic variable, representing all the other intrinsic
properties in the scene (e.g., colors, shapes and initial rotation).

In this chapter, we study the effect of varying the values of physical quantities in a two-
object collision scenario. Following the strategy in [174], we group our training sequence
samples into mini-batches. Inside one mini-batch, only one physical property changes across
all the samples and other physical properties remain fixed. We denote B? = {(zy, yx)}3_;
as one mini-batch with 5 sequences, where the only changing property is p (i.e., we use p as
a variable to represent either mass, speed or friction).

For each mini-batch B? during training, we encourage only the dimensions corresponding
to the property p to change in z. For example, when training with a mini-batch where only
mass is changing, we force the network to have different values in the dimensions for ¢™
and same values for the rest of the dimensions in z. For simplicity, we further denote the
dimensions which relevant to p in z as ¢} and the rest of the dimensions as ¢}, for example k.

We train our prediction model with this constraint. Assuming we are training with one
batch B? = {(x, yx)}3_;. In a maximum likelihood estimation (MLE) framework, this can
be formulated as maximizing the log-probabilities under the desired constraints:

5

maximize log(P(yx|zk))
;;1 kImk 9.1)

subjectto ¥ = ¢, V1 <i,j <5

where ¢? contains both the intrinsic variable inferred from image sequence = and inferred
physics variables, except for the changing parameter.

In our auto-encoder architecture, the objective function is equivalent to minimizing the
11 distance between the predicted images g, and the ground truth future images yj:

Acmle = Z H:gk - yk“l' (92)
k

The constraints in Eq. 9.1 can be satisfied via minimizing the loss between ¢! and the
mean of them within the mini-batch ¢» = £ 37, ¢/ as,

£ave = Z Hggi - Qgp”% (93)
k

We apply both losses jointly during training our model with a constant A balancing
between them as,

L = Lite + ALave. (9.4)

In practice, we set the A dynamically so that both gradients are maintained in the same
magnitude. The value of A is around le — 6.
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9.3.3 Staggered Training

Although we follow the training objective proposed in [174], it is actually non-trivial to
directly optimize with this objective. There is a fundamental difference between our problem
and the settings in [174]: the physical dynamics are dependent across the set of properties,
which confounds training. The same sequence of inputs and output ground-truth might
infer different combinations of the physical properties. For example, both large friction
and slow speed can lead to small movements of the second object after collision. Thus
modifications on training method is required to handle this multi-modality issue.

We propose a staggered training algorithm to alleviate this problem. We first divide
the entire training set D into 3 different sets { D?}, where p indicates one of the physics
properties( mass, speed or friction). Each DP contains different mini-batches of B?, inside
which the only changing property is indicated by p.

The idea is: instead of training with all the physics properties at the same time in the
beginning, we perform curriculum learning. We first train the network with one subset D”
and then progressively add more subsets with different properties into training. In this way,
our training set becomes larger and larger through time. By learning the physics properties
in this sequential manner, we force the network to recognize new physical properties one by
one while keeping the learned properties. In practice, we observe that in the first training
session, the network behaves normally. For the following training sessions, the loss will
increase in the beginning, and will decrease to roughly the same level as the previous session.

9.4 Experiments

We now demonstrate the effectiveness and generalization of our model. We will perform
two sets of experiments with respect to two different testing sets in our dataset. One tests on
unseen physical property combinations but seen shape combinations, and the other tests on
unseen shape combinations with seen physical properties. Before going into further analysis,
we will first describe the implementation details of our model and the baseline method.

Implementation details In total, we trained for 319 epochs. We used ADAM for optimization,
with initial learning rate 10~°. During training, each mini-batch mentioned above has 5
sequences. During the training for the first physical quantity, each batch contains 3 mini-
batches, which means 15 data in total. For the second round of staggered training, each
batch contains 2 mini-batches, one for each physical quantity; similarly, in the third round of
training, each batch contains 3 mini-batches, one for each physical quantity.

Baseline model Our baseline model learns intuitive physics in an end-to-end manner and
post-hoc obtains the dimensions that correspond to different physical properties. We need
the disentagled representation because we want to test the generalization when the physical
properties are different from input video: e.g., what happens if friction is doubled? What
happens if the speed is 1/10th?

For the baseline, we use the same network architecture. Different from our approach, we
do not add any constraints on the bottleneck representation layer as in Eq. 9.1 in the baseline
model. However, we still want to obtain the disentangled representation from this baseline
for comparison. Recall that we have a subset D? for each property p (mass, friction or speed).
The examples in each mini-batch inside D? specify the change of property p. We compute
the variances for each neuron in the bottleneck representation for each D?, and select 25
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Figure 9.4: Prediction results for unseen parameters but seen shapes.

dimensions with top variances as the vector indicating property p.

9.4.1 Visual prediction

Unseen Parameters: First we evaluate if we can predict future pixels when we see a novel
combination of physical parameters. Specifically, our model has never seen in training a
combination of mass=3, friction=3 and speed=3. Figure 9.4 shows our interpretable model
generalizes well and produces high quality predictions.

Unseen Shape Combinations: Next, we want to explore if our visual prediction model
generalizes to different shape combinations using two unseen sets: (a) cone and cuboid;
(b) cuboid and sphere. To demonstrate that our model understands each of these physical
properties, we show contrasted prediction results for two different values. For example,
we will use different friction values (1, 5) but same mass and speed. Comparing these two
outputs should highlight how our approach understands the underlying friction values.

As shown in Figure. 9.5, our predicted future frame has high quality compared to the
ground-truth. We show that our model can generalize the physics reasoning to unseen
objects and learn to output different collisions results given different physical environments.
For example in the second condition, when the mass of sphere is high (5), our approach
can predict it will not move and instead the cube will bounce back. We also compare our
approach to baseline quantitatively: our approach has pixel error of 87.3, while baseline has
pixel error of 95.6.The results clearly indicate our interpretable model tends to generalize
better than an end-to-end model when test conditions are very different.

In addition to the baseline, we also compare our model with two other methods based on
optical flow. First, we trained another prediction network using the optical flow computed
between the 4th and the 5th frame as direct supervisions, instead of using the pixels of the
5th frame. For testing, we apply the predicted optical flows on the 4th frame to generate the
future frame. The loss between the future frame and the ground-truth 5th frame is 118.8.
Second, we computed 3 optical flows of first 4 frames, using which to find a linear model to
generate the future optical flow. We apply this optical flow on the 4th frame and compare
the result to the ground-truth 5th frame. The error reaches to 292.5. The result shows that
our method achieves high precision than using optical flow directly.
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Figure 9.5: 4 input frames, the predicted 5th frame and ground-truth for collisions with
unseen shape combinations. Contrast the predictions as one of physical property changes.
For example, to show our approach understand these shapes, we predict for two different
friction values in first case (keeping mass and speed same). The less motion in 2nd case
shows that our approach understands the concept of friction.

9.4.2 Physical Interpolation

To show our model has actually learnt physics properties, we perform a series of interpola-
tions on the bottleneck representation.

Interpolating physics representation within a mini-batch. We first show that the learned
bottleneck layer is meaningful and smooth. To demonstrate this, we interpolate between
different physical properties and compare our result with the ground-truth. The experiment
is conducted in the following way. Let’s take mass as an example: given a mini-batch where
only mass changes, we use the encoder to get the physics vector z, = (¢7", 5, ¢7, ) from
mass; data and z5 = (¢F", 63, ¢g.f ,¢%) from mass; data. To estimate the physics vector for
mass,, we interpolate a new mass variable ¢7* = (1 — 0.25¢) - ¢* + 0.25i - ¢2* and use this to
create a new physics vector 2; = (¢, ¢5, ¢7, ¢1). We pass the new vector to the decoder to
predict the optical flows, which are warped to the 4th image in sequence i via the bilinear
sampling layer, and generate the future frame.
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Figure 9.6: Interpolation results for physical quantity with different values. Our interpolation

results are shown with blue frames. Images with red frame in last column represents the
interpolation results for baseline when physical quantities equal to 4.

Groundtruth
Speed =1

Ground truth  Interpolation

Friction =2 Friction=3  Friction=4  Baseline Friction =4

Groundtruth
Friction =1

Ground truth  Interpolation

We perform the same set of experiments for the baseline model. Quantitatively, we
evaluate the prediction using the sum of mean square error for each pixel, as shown in
Table 9.2, which shows that our method is significantly better than the baseline. We also
visualized the results in Figure 9.6. Interestingly, our interpolation results are also very
close to the ground-truth. On the other hand, baseline models failed easily when there is a
dramatic change during interpolations.

We also trained another model which takes physics parameters and the optical flows of
first 4-frame as inputs, and predicts the future frame. This model performs much worse
than our model in the interpolation test as shown in Figure 9.6. We believe a ground-truth
physics parameter based approach focuses on classification instead of learning an intuitive
physics model. In interpolation experiments, the model cannot separate physics information
from the optical flow features.

From these comparison, we can see that only by learning interpretable representations,
we can generate reasonable prediction results after interpolations.

Changing physical properties. In this experiment, we show that physics variables learned
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Method shape 2 | shape 3 | shape 4 | shape5 || parameter 3
Baseline 117.76 | 130.41 | 154.78 | 173.80 299.88
Flow + Physics 272.02 317.79 328.06 336.54 671.51
Ours 110.93 119.73 131.70 138.04 154.09

Table 9.2: Interpolation Result. The numbers are pixel prediction errors
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Figure 9.7: Prediction by learning double, triple ratio relation for different physical entities.
Top: the result with unseen shapes. Bottom: result with unseen parameters.

by our model are interpretable by finding a mapping between different scale of the same
physical property. Specifically, we want to see: can we predict the future if the mass is
doubled while all other physics conditions remain the same? For each physical quantity p,
we train two networks F¥ and F} which learns to double or triple the scale of a physical
property. For example, we can project the physics representation of mass; to masss by
using the network F}. The network architecture for both F} and F} is a simple 2-layer fully
connected network with 256 hidden neurons per layer. These two networks can be trained
using the physical representations inferred by our encoder with the training data.

In testing time, we apply the similar interpolation as the last experiment. The only
difference is that instead of using an interpolation between two relevant representations,
we use the fully connected network to generate the new representations. We again evaluate
the quantitative results by computing the mean square error over the pixels. As shown
in Table 9.3, we have a larger performance gain in this setting compared to the baseline.
Figure 9.7 shows the prediction results of our model when the physics property is enlarged
from scale 1 to 2 and 3, which are all very close to the ground-truth. This is another evidence
showing our physics representation is interpretable and generalizes significantly better.

Switching between the object shapes. In experiments above, we interpolate the physics
representation and apply them to the same object shape combinations. In this experiment,
for a physical property p, we replace the corresponding variable ¢ of one collision with the
variable from another collision with different objects but the same p value. We visualize
the results in Figure 9.8, where the first line shows the predictions when we replace current
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Method || shape ratio 2 (1) | shape ratio 3 (]) || parameter ratio 3 ()

Baseline 345.60 310.37 490.92
Ours 110.79 124.00 157.10

Table 9.3: Ratio Result. Comparing visual prediction when underlying physical parameters
are changed by a factor

Friction =1 Friction =2 Friction =3 Friction =4 Friction=5

Groudtruth  Original Output Switch Result

Figure 9.8: Prediction when physical property vector from one shape combination is applied
to a different shape combinations. The first row shows switched result; the second row
shows the prediction without switching; the third row shows ground-truth.

¢P with one from another shape combination. The results are almost same as the original
prediction and the ground-truth, which means that the physical variable of same value can
be transferred among different shape combinations. It also shows that the dimensions of
physics and other dimensions are independent and can be appended easily.

9.5 Discussion

In this chapter, we demonstrated an interpretable intuitive physics model that generalizes
across scenes with different underlying properties and object shapes. Most importantly, our
model is able to predict the future when physical environment changes. To achieve this we
proposed a model where specific dimensions in the bottleneck layers correspond to different
physical properties. However, often physical properties are dependent and intertangled,
so we introduced a training curriculum and generalized loss function that was shown to
outperform the baseline approaches.
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Chapter 10

Discussion and Conclusion

In this thesis, we explored the spatio-temporal structure in videos for learning visual rep-
resentations. We focused on the correspondence in time and showed its important role in
different research applications. However, much work remains to be done and we believe
it would be beneficial to summarize the observations, lessons and point out the potential
future directions below.

Self-supervised learning. Going beyond the limits of semantic supervision, I believe self-
supervised learning has a great potential to produce richer representation and allow for
learning at a much larger scale. I see two possible goals for self-supervised learning.

e Obtain a universal representation. We can utilize multiple sources of structure infor-
mation in data as signals to learn a universal representation, which can be generalized
to every task. One initial attempt is mentioned in Chapter 4 in this thesis. Another
potential way is to combine different signals from low levels (e.g., motion and bound-
ary) to high levels (e.g., physical and functional properties) with curriculum learning.
Intuitively, the high-level structure would be easier to learn given the emergence of
low-level representation.

o Obtain task specialized representations. The goal is to learn representation for tasks where
human annotations are hard to come by. There are already encouraging results in this
direction (e.g., our work on finding dense correspondence in Chapter 2). However,
the applications are still restricted to a few areas. One potential future direction is
to explore task-specific, self-supervised learning on a large range of visual problems.
Across these tasks, we believe there will be a shared principle in algorithm design.

Video representation learning. While we have shown some encouraging developments
in video understanding in Chapter 5, Chapter 6 and Chapter 7 in this thesis, we have
also observed two problems in the field: (i) first, the supervision from classification is not
necessarily correct in capturing temporal information—for example, to classify the action
“swimming,” the model does not need to capture the motion but recognize the water; (ii)
second, the scale of training examples is much smaller than image datasets, due to the cost
of labels. These problems require us to search for other supervisions. One future direction is
looking for training signals for learning spatial-temporal representation in a self-supervised
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manner, which has been rarely explored so far. The other direction is to re-define the problem
itself. We can design a dataset which requires the model to reason about the cause and effect
of the action through time to solve the task. One possible approach is to disentangle the
appearance from the target tasks in the dataset. In this way, the network will be forced to
learn better abstraction beyond semantics.

Active interaction. One goal of this thesis is to make Al system to have a deeper under-
standing of how objects can be used and the functionality of scenes and how humans interact
with them. As a first step, I have studied on scene affordance (Chapter 8) and object physical
properties (Chapter 9) by learning from videos passively.

However, the process of acquiring this common sense knowledge should not only be in
a passive manner. One future direction is to create an agent to move around and perform
interactions actively. By reasoning with the interactions, new knowledge can be absorbed.
Three potential future goals in active interaction would be: (i) First, when the agents are
interacting with the environment, they should not only rely on semantic information of
the scene but also on richer knowledge including affordances and physical properties of
the objects. (ii) After interacting with the environment and observing the changes, we will
allow the agent to update its knowledge base. Potentially, the updated knowledge base can
then offer better guidance for future interactions. We can integrate the knowledge updates
and the evolution of actions into an iterative learning procedure. (iii) Most importantly, the
ultimate goal is to make this agent work in the real world beyond simulations.

Summary. This thesis is not the end, but rather the starting steps of my aim for research: To
build an Al system that can scale up its learning ability beyond human supervision, acquire
common sense knowledge, and interact with the world using the knowledge it has learned.

117



Bibliography

[1] Recurrent Tracking using Multifold Consistency. CVPR Workshop on PETS, 2007. 9
[2] P. Agrawal, J. Carreira, and J. Malik. Learning to see by moving. In ICCV, 2015. 8, 34

[3] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine. Learning to poke by poking: Experiential
learning of intuitive physics. In Neural Information Processing Systems (NIPS), 2016. 93, 104, 105

[4] J.-B. Alayrac, J. Sivic, I. Laptev, and S. Lacoste-Julien. Joint discovery of object states and
manipulation actions. In ICCV, 2017. 64

[5] M. Andriluka, S. Roth, and B. Schiele. People-tracking-by-detection and people-detection-by-
tracking. In CVPR, 2008. 9

[6] J. L. Ba,]. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.
69

[7] A.Bansal, S. Ma, D. Ramanan, and Y. Sheikh. Recycle-gan: Unsupervised video retargeting. In
ECCV,2018. 9

[8] A. Bansal, B. Russell, and A. Gupta. Marr revisited: 2d-3d alignment via surface normal
prediction. In CVPR, 2016. 93

[9] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman. Patchmatch: A randomized
correspondence algorithm for structural image editing. In Proceedings of SIGGRAPH, ACM
Transactions on Graphics, 2009. 48

[10] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, et al. Interaction networks for learning about
objects, relations and physics. In Neural Information Processing Systems (NIPS), 2016. 49, 64, 104,
105

[11] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust features. In ECCV, 2006. 23
[12] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust features. In ECCV, 2006. 36

[13] S. Bell, C. L. Zitnick, K. Bala, and R. Girshick. Inside-outside net: Detecting objects in context
with skip pooling and recurrent neural networks. arXiv, 2015. 44

[14] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives.
TPAMI, 35(8):1798-1828, 2013. 21

[15] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep
networks. In NIPS, 2007. 19, 21, 34

[16] Y. Bian, C. Gan, X. Liu, F. Li, X. Long, Y. Li, H. Qi, J]. Zhou, S. Wen, and Y. Lin. Revisiting the
effectiveness of off-the-shelf temporal modeling approaches for large-scale video classification.
arXiv:1708.03805, 2017. 58, 59, 64

[17] W. Brendel and S. Todorovic. Learning spatiotemporal graphs of human activities. In ICCV,
2011. 64

[18] J. Bromley, I. Guyon, Y. LeCun, E. Sackinger, and R. Shah. Signature verification using a
aAlJsiameseaAl time delay neural network. NIPS, 1993. 76

118



[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

T. Brox, C. Bregler, and J. Malik. Large displacement optical flow. In CVPR, 2009. 9

T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based
on a theory for warping. In ECCV, 2004. 9

A. Buades, B. Coll, and ].-M. Morel. A non-local algorithm for image denoising. In Computer
Vision and Pattern Recognition (CVPR), 2005. 47, 48, 49, 50, 51

H. C. Burger, C. J. Schuler, and S. Harmeling. Image denoising: Can plain neural networks
compete with BM3D? In Computer Vision and Pattern Recognition (CVPR), 2012. 48

H. C. Burger, C. J. Schuler, and S. Harmeling. Image denoising with multi-layer perceptrons,
part 2: training trade-offs and analysis of their mechanisms. arXiv:1211.1552, 2012. 48

S. Caelles, K. Maninis, J. Pont-Tuset, L. Leal-Taixé, D. Cremers, and L. Van Gool. One-shot video
object segmentation. In CVPR, 2017. 15

M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for unsupervised learning of
visual features. In ECCV, 2018. 14, 15, 16

J. Carreira, P. Agrawal, K. Fragkiadaki, and ]. Malik. Human pose estimation with iterative error
feedback. In arXiv preprint arXiv:1507.06550, 2015. 94, 96

J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset. In Computer Vision and Pattern Recognition (CVPR), 2017. 48, 49, 53, 54, 56, 58, 59, 62, 64,
65,67,70,71,74

S. Chandra, N. Usunier, and I. Kokkinos. Dense and low-rank Gaussian CRFs using deep
embeddings. In International Conference on Computer Vision (ICCV), 2017. 49, 64

M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum. A compositional object-based
approach to learning physical dynamics. In International Conference on Learning Representations
(ICLR), 2017. 105

C.-Y. Chen and K. Grauman. Efficient activity detection with max-subgraph search. In CVPR,
2012. 64

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image seg-
mentation with deep convolutional nets and fully connected CRFs. arXiv:1412.7062, 2014. 48,
64

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. CoRR,
abs/1606.00915, 2016. 93

S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with applica-
tion to face verification. In CVPR, 2005. 22

S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with applica-
tion to face verification. In CVPR, 2005. 34

S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with applica-
tion to face verification. CVPR, 2005. 76

S.T. D. Xie and S. Zhu. Inferring aAYdark matteraAZ and 4AYdark energyéAZ from videos. In
ICCV, 2013. 93

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-d transform-
domain collaborative filtering. Transactions on Image Processing (TIP), 2007. 48

J. Dai, Y. Li, K. He, and J. Sun. R-FCN: object detection via region-based fully convolutional
networks. CoRR, abs/1605.06409, 2016. 93

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
19

119



[40] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
43

[41] N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented histograms of flow and
appearance. In ECCV, 2006. 64, 78

[42] V. Delaitre, D. Fouhey, I. Laptev, ]. Sivic, A. Efros, and A. Gupta. Scene semantics from long-term
observation of people. In ECCV, 2012. 93

[43] ]J. Deng, W. Dong, R. Socher, L.-]. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR, 2009. 93

[44] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR, 2009. 97

[45] C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual element discovery as discriminative
mode seeking. In NIPS, 2013. 21, 34, 37

[46] C.Doersch, A. Gupta, and A. A. Efros. Context as supervisory signal: Discovering objects with
predictable context. In ECCV, 2014. 21, 34

[47] C.Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context
prediction. In ICCV, 2015. 14

[48] C.Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context
prediction. In ICCV, 2015. 32, 33, 34, 36, 37, 40, 41, 42, 43, 44, 45

[49] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and
T. Darrell. Long-term recurrent convolutional networks for visual recognition and description.
In CVPR, 2015. 78, 85

[50] J. Donahue, L. A. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadarrama, K. Saenko, and
T. Darrell. Long-term recurrent convolutional networks for visual recognition and description.
In Computer Vision and Pattern Recognition (CVPR), 2015. 62, 64

[51] J. Donahue, P. Krdhenbiihl, and T. Darrell. Adversarial feature learning. arXiv, 2016. 34

[52] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and
T. Darrell. Long-term recurrent convolutional networks for visual recognition and description.
In Computer Vision and Pattern Recognition (CVPR), 2015. 49

[53] V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropietro, and A. Courville.
Adversarially learned inference. arXiv, 2016. 34

[54] M. Edmonds, F. Gao, X. Xie, H. Liu, S. Qi, Y. Zhu, B. Rothrock, and S.-C. Zhu. Feeling the force:
Integrating force and pose for fluent discovery through imitation learning to open medicine
bottles. 2017. 104

[55] A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling. In International
Conference on Computer Vision (ICCV), 1999. 48, 49

[56] D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels with a common
multi-scale convolutional architecture. In ICCV, 2015. 93

[57] S.M. A. Eslami, N. Heess, and J. Winn. The shape boltzmann machine: a strong model of object
shape. In CVPR, 2012. 21

[58] S. M. A. Eslami, N. Heess, and J. Winn. The shape boltzmann machine: a strong model of object
shape. In CVPR, 2012. 34

[59] M. Everingham, L. V. Gool, C. K. Williams, J. Winn, , and A. Zisserman. The pascal visual object
classes (voc) challenge. IJCV, 88(2):303-338, 2010. 29

[60] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The Pascal Visual
Object Classes (VOC) Challenge. IJCV, 2010. 41, 42

120



[61]
[62]

[63]

[64]

[65]

[66]
[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]
[76]

[77]

(78]

[79]
(80]

(81]
(82]
(83]

(84]

[85]

A. Fathi and J. M. Rehg. Modeling actions through state changes. In ICCV, 2013. 78

C. Feichtenhofer, A. Pinz, and R. Wildes. Spatiotemporal residual networks for video action
recognition. In Neural Information Processing Systems (NIPS), 2016. 49, 54, 64, 67

B. Fernando, E. Gavves, ]. O. M., A. Ghodrati, and T. Tuytelaars. Modeling video evolution for
action recognition. In CVPR, 2015. 78, 85

C. Finn, I. Goodfellow, and S. Levine. Unsupervised learning for physical interaction through
video prediction. In Neural Information Processing Systems (NIPS), 2016. 105

P. Fischer, A. Dosovitskiy, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van der Smagt, D. Cremers,
and T. Brox. Flownet: Learning optical flow with convolutional networks. arXiv, 2015. 6,9, 12

D. A. Forsyth and J. Ponce. Computer Vision - A Modern Approach, Second Edition. Pitman, 2012. 9

D. F. Fouhey, V. Delaitre, A. Gupta, A. A. Efros, 1. Laptev, and J. Sivic. People watching: Human
actions as a cue for single-view geometry. In ECCV, 2012. 93

D. F. Fouhey, A. Gupta, and M. Hebert. Data-driven 3D primitives for single image understanding.
In ICCV, 2013. 30, 31, 45

D. F. Fouhey, A. Gupta, and M. Hebert. Unfolding an indoor origami world. In ECCV, 2014. 30,
31,45

D. F. Fouhey, W. Kuo, A. A. Efros, and J. Malik. From lifestyle vlogs to everyday interactions. In
CVPR,2018. 12,13

D. F. Fouhey, X. Wang, and A. Gupta. In defense of the direct perception of affordances. CoRR,
abs/1505.01085, 2015. 91, 93

K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik. Learning visual predictive models of physics
for playing billiards. In International Conference on Learning Representations (ICLR), 2016. 105

K. Fukushima and S. Miyake. Neocognitron: A self-organizing neural network model for a
mechanism of visual pattern recognition. In Competition and cooperation in neural nets. Springer,
1982. 47

P. FAtldiAgk. Learning Invariance from Transformation Sequences. Neural Computation, 3(2):194—
200, June 1991. 8

A. Gallagher and T. Chen. Understanding groups of images of people. In CVPR, 2009. 94

C. Gan, N. Wang, Y. Yang, D.-Y. Yeung, and A. G. Hauptmann. Devnet: A deep event network
for multimedia event detection and evidence recounting. CVPR, 2015. 88

C. Gan, T. Yao, K. Yang, Y. Yang, and T. Mei. You lead, we exceed: Labor-free video concept
learning by jointly exploiting web videos and images. In CVPR, 2016. 64

J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional sequence to
sequence learning. In International Conference on Machine Learning (ICML), 2017. 49

J. Gibson. The ecological approach to visual perception. Boston: Houghton Mifflin, 1979. 93

R. Girdhar, D. Fouhey, M. Rodriguez, and A. Gupta. Learning a predictable and generative
vector representation for objects. In ECCV, 2016. 93

R. Girshick. Fast R-CNN. In ICCV, 2015. 42, 43, 65, 67
R. Girshick. Fast r-cnn. In ICCV, 2015. 94

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. In CVPR, 2014. 27, 29, 30

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. In CVPR, 2014. 32

R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollar, and K. He. Detectron. https://github.com/
facebookresearch/detectron, 2018. 67

121


https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron

[86] G. Gkioxari, R. Girshick, and J. Malik. Actions and attributes from wholes and parts. In ICCV,
2015. 64

[87] G. Gkioxari, R. Girshick, and J. Malik. Contextual action recognition with r*cnn. In ICCV, 2015.
63

[88] G. Gkioxari, R. Girshick, P. Dolldr, and K. He. Detecting and recognizing human-object intarac-
tions. CVPR, 2018. 63, 64

[89] G. Gkioxari and J. Malik. Finding action tubes. In CVPR, 2015. 78

[90] D. Glasner, S. Bagon, and M. Irani. Super-resolution from a single image. In Computer Vision and
Pattern Recognition (CVPR), 2009. 48

[91] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural
networks. In AISTATS, 2010. 45

[92] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised monocular depth estimation with
left-right consistency. In CVPR, 2017. 9

[93] Y. Gong, Y. Jia, T. K. Leung, A. Toshev, and S. Ioffe. Deep convolutional ranking for multilabel
image annotation. In ICLR, 2014. 22, 34

[94] 1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In NIPS, 2014. 34

[95] R. Goroshin, J. Bruna, J. Tompson, D. Eigen, and Y. LeCun. Unsupervised learning of spatiotem-
porally coherent metrics. ICCV, 2015. 8

[96] R. Goroshin, J. Bruna, J. Tompson, D. Eigen, and Y. LeCun. Unsupervised learning of spatiotem-
porally coherent metrics. ICCV, 2015. 21

[97] P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and
K. He. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv:1706.02677,2017. 55, 71

[98] R. Goyal, S. E. Kahou, V. Michalski, J]. Materzynska, S. Westphal, H. Kim, V. Haenel, I. Friind,
P. Yianilos, M. Mueller-Freitag, F. Hoppe, C. Thurau, I. Bax, and R. Memisevic. The “something
something” video database for learning and evaluating visual common sense. arXiv:1706.04261,
2017. 63,70, 75

[99] H. Grabner, J. Gall, and L. van Gool. What makes a chair a chair? In CVPR, 2011. 93

[100] R. Grzeszczuk, D. Terzopoulos, and G. Hinton. Neuroanimator: Fast neural network emulation
and control of physics-based models. In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pages 9-20. ACM, 1998. 105

[101] A.Gupta and L. S. Davis. Objects in action: An approach for combining action understanding
and object perception. In CVPR, 2007. 93

[102] A. Gupta, S. Satkin, A. Efros, and M. Hebert. From 3D scene geometry to human workspace. In
CVPR, 2011. 93

[103] A.Gupta, A. Kembhavi, and L. S. Davis. Observing human-object interactions: Using spatial and
functional compatibility for recognition. Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2009. 63, 64

[104] A. Gupta, S. Satkin, A. A. Efros, and M. Hebert. From 3d scene geometry to human workspace.
In Computer Vision and Pattern Recognition(CVPR), 2011. 93

[105] R.Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant mapping.
In CVPR, 2006. 22,78

[106] R.Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant mapping.
In CVPR, 2006. 34

[107] B. Ham, M. Cho, C. Schmid, and ]J. Ponce. Proposal flow. In CVPR, 2016. 9

122



[108] J. Hamrick, P. Battaglia, and ]. B. Tenenbaum. Internal physics models guide probabilistic
judgments about object dynamics. In Proceedings of the 33rd Annual Conference of the Cognitive
Science Society, 2011. 104

[109] J. B. Hamrick, P. W. Battaglia, T. L. Griffiths, and J. B. Tenenbaum. Inferring mass in complex
scenes by mental simulation. Cognition, 2016. 104

[110] K. Han, R. S. Rezende, B. Ham, K.-Y. K. Wong, M. Cho, C. Schmid, and J. Ponce. Scnet: Learning
semantic correspondence. ICCV, 2017. 9

[111] A. Harley, K. Derpanis, and I. Kokkinos. Segmentation-aware convolutional networks using
local attention masks. In International Conference on Computer Vision (ICCV), 2017. 49, 64

[112] K. He, G. Gkioxari, P. Dollédr, and R. Girshick. Mask R-CNN. In International Conference on
Computer Vision (ICCV), 2017. 48, 59, 60, 65, 67

[113] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In International Conference on Computer Vision (ICCV),
2015. 55,93

[114] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Computer
Vision and Pattern Recognition (CVPR), 2016. 11,14, 15, 16,17, 18, 47,51, 52, 55

[115] E. C.Heilbron, W. Barrios, V. Escorcia, and B. Ghanem. Scc: Semantic context cascade for efficient
action detection. In CVPR, 2017. 64

[116] F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles. Activitynet: A large-scale video
benchmark for human activity understanding. CVPR, 2015. 79

[117] D. Held, S. Thrun, and S. Savarese. Learning to track at 100 fps with deep regression networks.
In ECCV, 2016. 7,9

[118] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-speed tracking with kernelized
correlation filters. TPAMI, 2015. 24

[119] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-speed tracking with kernelized
correlation filters. TPAMI, 2015. 38

[120] G.E.Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313:504-507, 2006. 21

[121] G.E.Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 2006. 34

[122] G.E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The” wake-sleep” algorithm for unsupervised
neural networks. Science, 268(5214):1158-1161, 1995. 21

[123] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Improving
neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580, 2012. 55, 71

[124] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 1997. 47

[125] E.Hoffer and N. Ailon. Deep metric learning using triplet network. CoRR, /abs/1412.6622, 2014.
78

[126] E.Hoffer and N. Ailon. Deep metric learning using triplet network. CoRR, /abs/1412.6622, 2015.
22

[127] E. Hoffer and N. Ailon. Deep metric learning using triplet network. arXiv, 2015. 34
[128] B. K. Horn and B. G. Schunck. Determining optical flow. Artificial intelligence, 1981. 9

[129] Y. Hoshen. Multi-agent predictive modeling with attentional commnets. In Neural Information
Processing Systems (NIPS), 2017. 49

[130] H. Hu, J. Gu, Z. Zhang, J. Dai, and Y. Wei. Relation networks for object detection. In Computer
Vision and Pattern Recognition (CVPR), 2018. 63, 64

123



[131] J. Hu, J. Lu, and Y.-P. Tan. Discriminative deep metric learning for face verification in the wild.
In CVPR, June 2014. 78

[132] Q.-X.Huang and L. Guibas. Consistent shape maps via semidefinite programming. In Proceedings
of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry Processing, 2013. 9

[133] E.Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox. Flownet 2.0: Evolution of
optical flow estimation with deep networks. In CVPR, 2017. 6,9, 14, 15, 16, 18

[134] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning (ICML), 2015. 55

[135] H. Izadinia and M. Shah. Recognizing complex events using large margin joint low-level event
model. ECCV, 2012. 78

[136] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial transformer networks.
CoRR, abs/1506.02025, 2015. 12

[137] A.]Jain, A. Gupta, M. Rodriguez, and L. S. Davis. Representing videos using mid-level discrimi-
native patches. In CVPR, 2013. 78

[138] A.Jain, A.R.Zamir, S. Savarese, and A. Saxena. Structural-rnn: Deep learning on spatio-temporal
graphs. In CVPR, 2016. 64

[139] M.]Jain, H. Jegou, and P. Bouthemy. Better exploiting motion for better action recognition. CVPR,
2013. 86

[140] J.Janai, F. Gliney, A. Ranjan, M. Black, and A. Geiger. Unsupervised learning of multi-frame
optical flow with occlusions. In ECCV, 2018. 9

[141] D.Jayaraman and K. Grauman. Learning image representations tied to egomotion. In ICCV,
2015. 8, 34

[142] D.Jayaraman and K. Grauman. Learning image representations tied to ego-motion. In ICCV,
2015. 78

[143] H.Jhuang,]. Gall, S. Zuffi, C. Schmid, and M. J. Black. Towards understanding action recognition.
In ICCV,2013. 13,15, 16

[144] S.Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks for human action recognition.
In International Conference on Machine Learning (ICML), 2010. 49

[145] S.Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks for human action recognition.
TPAMI, 2013. 64,78

[146] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell.
Caffe: Convolutional architecture for fast feature embedding. CoRR, /abs/1408.5093, 2014. 19

[147] H.Jiang and J. Xiao. A linear approach to matching cuboids in RGBD images. In CVPR, 2013. 93

[148] Y.-G.Jiang,]. Liu, A. R. Zamir, G. Toderici, I. Laptev, M. Shah, and R. Sukthankar. Thumos chal-
lenge: Action recognition with a large number of classes. http: // crcv. ucf. edu/ THUMOS14/,
2014. 79

[149] Y.-G. Jiang, Q. Dai, X. Xue, W. Liu, and C.-W. Ngo. Trajectory-based modeling of human actions
with motion reference points. In ECCV, 2012. 78

[150] Y.-G. Jiang, G. Ye, S.-F. Chang, D. Ellis, and A. C. Loui. Consumer video understanding: A
benchmark database and an evaluation of human and machine performance. In ICMR, 2011. 79

[151] Z.Kalal, K. Mikolajczyk, and J. Matas. Forward-backward error: Automatic detection of tracking
failures. In ICPR, 2010. 9

[152] Z.Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-detection. TPAMI, 2012. 9

[153] A.Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video
classification with convolutional neural networks. In CVPR, 2014. 64, 78,79, 86

124


http://crcv.ucf.edu/THUMOS14/

[154] W. Kay, ]J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola, T. Green,
T. Back, P. Natsev, et al. The kinetics human action video dataset. arXiv:1705.06950, 2017. 14, 48,
55,71

[155] D.G. Kendall. A survey of the statistical theory of shape. Statistical Science, pages 87-99, 1989. 73

[156] J. Kim, C. Liu, F. Sha, and K. Grauman. Deformable spatial pyramid matching for fast dense
correspondences. In CVPR, 2013. 9

[157] S.Kim, D. Min, B. Ham, S. Jeon, S. Lin, and K. Sohn. Fcss: Fully convolutional self-similarity for
dense semantic correspondence. In CVPR, 2017. 9

[158] D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv, 2014. 13
[159] D.P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014. 98
[160] D. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014. 34

[161] D. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014. 97

[

162] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017. 63, 64, 69

[163] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert. Activity forecasting. In European
Conference on Computer Vision (ECCV), 2012. 105

[164] H. Kjellstrom, J. Romero, D. Martinez, and D. Kragic. Simultaneous visual recognition of
manipulation actions and manipulated objects. In ECCV, 2008. 93

[165] A.Klaser, M. Marszalek, and C. Schmid. A spatio-temporal descriptor based on 3d-gradients.
In BMVC, 2008. 64, 76, 78

[166] H. Koppula and A. Saxena. Physically-grounded spatio-temporal object affordances. In ECCV,
2014. 93

[167] H. Koppula and A. Saxena. Anticipating human activities using object affordances for reactive
robotic response. TPAMI, 2015. 93

[168] P. Krdhenbiihl and V. Koltun. Efficient inference in fully connected crfs with gaussian edge
potentials. In Neural Information Processing Systems (NIPS), 2011. 48, 64

[169] P. Krdhenbiihl and V. Koltun. Efficient inference in fully connected crfs with gaussian edge
potentials. In NIPS, 2011. 64

[170] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In NIPS, 2012. 32

[171] A.Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In NIPS, 2012. 19, 22, 24

[172] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In NIPS, 2012. 93, 97

[173] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T.Serre. Hmdb: A large video database for
human motion recognition. In ICCV, 2011. 79, 83, 86

[174] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum. Deep convolutional inverse graphics
network. In Neural Information Processing Systems (NIPS), 2015. 105, 109, 110

[175] M. P. Kumar and D. Koller. Efficiently selecting regions for scene understanding. In CVPR, 2010.
64

[176] L. Ladicky, B. Zeisl, and M. Pollefeys. Discriminatively trained dense surface normal estimation.
In ECCV, 2014. 30, 31, 45

[177] J. Lafferty, A. McCallum, and F. C. Pereira. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In International Conference on Machine Learning (ICML),
2001. 48, 64

125



[178] T.Lan, Y. Zhu, A. R. Zamir, and S. Savarese. Action recognition by hierarchical mid-level action
elements. In ICCV, 2015. 78

[179] Z. Lan, M. Lin, X. Li, A. G. Hauptmann, and B. Raj. Beyond gaussian pyramid: Multi-skip
feature stacking for action recognition. In CVPR, 2015. 64, 78

[180] I Laptev. On space-time interest points. IJCV, 64, 2005. 64, 78

[181] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic human actions from
movies. In CVPR, 2008. 64, 78

[182] D. Larlus and A. Vedaldi. Anchornet: A weakly supervised network to learn geometry-sensitive
features for semantic matching. In CVPR, 2017. 9

[183] Q. V. Le, M. A. Ranzato, R. Monga, M. Devin, K. Chen, G. S. Corrado, J. Dean, and A. Y. Ng.
Building high-level features using large scale unsupervised learning. In ICML, 2012. 19, 21

[184] Q. V. Le, M. A. Ranzato, R. Monga, M. Devin, K. Chen, G. S. Corrado, J. Dean, and A. Y. Ng.
Building high-level features using large scale unsupervised learning. In ICML, 2012. 34

[185] Q.V.Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng. Learning hierarchical invariant spatio-temporal
features for action recognition with independent subspace analysis. In CVPR, 2011. 21

[186] Q.V.Le, W.Y. Zou, S. Y. Yeung, and A. Y. Ng. Learning hierarchical invariant spatio-temporal
features for action recognition with independent subspace analysis. In CVPR, 2011. 64, 78

[187] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Handwritten digit recognition with a back-propagation network. In NIPS, 1990. 19, 93

[188] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural computation, 1989. 32, 47

[189] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representations. In ICML, 2009. 21

[190] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representations. In ICML, 2009. 34

[191] S. Lefkimmiatis. Non-local color image denoising with convolutional neural networks. In
Computer Vision and Pattern Recognition (CVPR), 2017. 48

[192] A. Lerer, S. Gross, and R. Fergus. Learning physical intuition of block towers by example. In
International Conference on Machine Learning (ICML), 2016. 104, 105

[193] J. Lezama, K. Alahari, J. Sivic, and I. Laptev. Track to the future: Spatio-temporal video segmen-
tation with long-range motion cues. In CVPR, 2011. 9

[194] B.Li,J. Yan, W. Wu, Z. Zhu, and X. Hu. High performance visual tracking with siamese region
proposal network. In CVPR, 2018. 9, 12

[195] F. Li, C. Gan, X. Liu, Y. Bian, X. Long, Y. Li, Z. Li, J. Zhou, and S. Wen. Temporal modeling
approaches for large-scale youtube-8m video understanding. arXiv preprint arXiv:1707.04555,
2017. 62, 64

[196] N. Li and ]J. J. DiCarlo. Unsupervised natural experience rapidly alters invariant object rep-
resentation in visual cortex. Science (New York, N.Y.), 321(5895):1502-1507, September 2008.
8

[197] Q.Li, A. Arnab, and P. H. Torr. Holistic, instance-level human parsing. arXiv, 2017. 16

[198] W.Li, S. Azimi, A. Leonardis, and M. Fritz. To fall or not to fall: A visual approach to physical
stability prediction. arXiv:1604.00066, 2016. 105

[199] Y. Li, M. Paluri, J]. M. Rehg, and P. Dolldr. Unsupervised learning of edges. In CVPR, 2016. 8, 32,
34, 42

126



[200] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural networks. In
ICLR, 2016. 64

[201] X. Liang, S. Liu, Y. Wei, L. Liu, L. Lin, and S. Yan. Computational baby learning. CoRR,
abs/1411.2861, 2014. 22,27

[202] X. Liang, S. Liu, Y. Wei, L. Liu, L. Lin, and S. Yan. Computational baby learning. arXiv, 2014. 40

[203] Z.Liang, S.Ding, and L. Lin. Unconstrained facial landmark localization with backbone-branches
fully-convolutional networks. In arXiv:1507.03409, 2015. 94

[204] T.-Y.Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid networks
for object detection. In Computer Vision and Pattern Recognition (CVPR), 2017. 60, 67

[205] T. Lin, M. Maire, S. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C. L. Zitnick. Microsoft COCO: common objects in context. arXiv, 2014. 33, 44, 48,
59, 67,93

[206] C.Liu,]. Yuen, and A. Torralba. Sift flow: Dense correspondence across scenes and its applica-
tions. TPAMI, 2011. 9, 14, 15, 16

[207] S. Liu, X. Liang, L. Liu, X. Shen, J. Yang, C. Xu, X. Cao, and S. Yan. Matching-cnn meets knn:
Quasi-parametric human parsing. In CVPR, 2015. 22

[208] S. Liu, S. De Mello, J. Gu, G. Zhong, M.-H. Yang, and J. Kautz. Learning affinity via spatial
propagation networks. In Neural Information Processing Systems (NIPS), 2017. 49, 64

[209] S.Liu, G. Zhong, S. De Mello, J. Gu, M.-H. Yang, and ]. Kautz. Switchable temporal propagation
network. ECCV, 2018. 8

[210] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation.
In CVPR, 2015. 32, 45

[211] D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. IJCV, 60(2):91-110, 2004.
19

[212] C. Lu, R. Krishna, M. Bernstein, and L. Fei-Fei. Visual relationship detection with language
priors. ECCV, 2016. 63

[213] B. D. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. IJCAI, 1981. 9

[214] P.Luo, X. Wang, and X. Tang. Hierarchical face parsing via deep learning. In CVPR, 2012. 21

[215] Z. Luo, B. Peng, D.-A. Huang, A. Alahi, and L. Fei-Fei. Unsupervised learning of long-term
motion dynamics for videos. CVPR, 2017. 8

[216] C.-Y. Ma, A. Kadav, I. Melvin, Z. Kira, G. AlRegib, and H. P. Graf. Attend and interact: Higher-
order object interactions for video understanding. In CVPR, 2018. 64

[217] D. Mahajan, F.-C. Huang, W. Matusik, R. Ramamoorthi, and P. Belhumeur. Moving gradients:
A path-based method for plausible image interpolation. In Proceedings of SSIGGRAPH, ACM
Transactions on Graphics, 2009. 9

[218] K. Marino, R. Salakhutdinov, and A. Gupta. The more you know: Using knowledge graphs for
image classification. In CVPR, 2017. 64

[219] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale video prediction beyond mean square
error. arXiv, 2015. 8, 34

[220] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale video prediction beyond mean square
error. In International Conference on Learning Representations (ICLR), 2016. 105

[221] P. Matikainen, M. Hebert, and R. Sukthankar. Trajectons: Action recognition through the motion
analysis of tracked features. In ICCV Workshops, 2009. 78

127



[222] S.Meister, J. Hur, and S. Roth. Unflow: Unsupervised learning of optical flow with a bidirectional
census loss. AAAI, 2018. 9

[223] E. Mémin and P. Pérez. Dense estimation and object-based segmentation of the optical flow
with robust techniques. IEEE Transactions on Image Processing, 1998. 9

[224] A. Miech, L. Laptev, and J. Sivic. Learnable pooling with context gating for video classification.
arXiv preprint arXiv:1706.06905, 2017. 62

[225] H. Mobabhi, R. Collobert, and J. Weston. Deep learning from temporal coherence in video. In
ICML, 2009. 19, 21

[226] R. Mottaghi, H. Bagherinezhad, M. Rastegari, and A. Farhadi. Newtonian scene understanding:
Unfolding the dynamics of objects in static images. In CVPR, 2016. 104, 105

[227] R. Mottaghi, M. Rastegari, A. Gupta, and A. Farhadi. “what happens if...” learning to predict the
effect of forces in images. In ECCV, 2016. 93, 104, 105

[228] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In
International Conference on Machine Learning (ICML), 2010. 51

[229] ].Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici. Beyond
short snippets: Deep networks for video classification. In CVPR, 2015. 78, 85, 86

[230] B. Ni, X. Yang, and S. Gao. Progressively parsing interactional objects for fine grained action
detection. In CVPR, 2016. 64

[231] B. A. Olshausen and D. ]. Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision research, 1997. 19, 21, 34

[232] A. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior,
and K. Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv:1609.03499, 2016. 49

[233] P.Pan, Z. Xu, Y. Yang, F. Wu, and Y. Zhuang. Hierarchical recurrent neural encoder for video
representation with application to captioning. In CVPR, 2016. 64

[234] D. Pathak, R. Girshick, P. Dollar, T. Darrell, and B. Hariharan. Learning features by watching
objects move. In CVPR, 2017. 8, 32, 34

[235] X.Peng, L. Wang, X. Wang, and Y. Qiao. Bag of visual words and fusion methods for action
recognition: Comprehensive study and good practice. CoRR, /abs/1405.4506, 2014. 78, 86

[236] X.Peng, C. Zou, Y. Qiao, and Q. Peng. Action recognition with stacked fisher vectors. In ECCV,
2014. 64,78, 85

[237] L. Pinto, D. Gandhi, Y. Han, Y.-L. Park, , and A. Gupta. The curious robot: Learning visual
representations via physical interactions. In European Conference on Computer Vision (ECCV),
2016. 104, 105

[238] L. Pinto, D. Gandhi, Y. Han, Y.-L. Park, and A. Gupta. The curious robot: Learning visual
representations via physical interactions. In ECCV, 2016. 93

[239] L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700
robot hours. In ICRA, 2016. 32

[240] L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700
robot hours. In ICRA, 2016. 93

[241] ]. Pont-Tuset, F. Perazzi, S. Caelles, P. Arbeldez, A. Sorkine-Hornung, and L. Van Gool. The 2017
davis challenge on video object segmentation. arXiv:1704.00675, 2017. 13, 14,15, 17

[242] R. Poppe. A survey on vision-based human action recognition. Image and vision computing,
28(6):976-990, 2010. 78

[243] S.Qi, B.Jia, and S.-C. Zhu. Generalized earley parser: Bridging symbolic grammars and sequence
data for future prediction. In International Conference on Machine Learning (ICML), 2018. 105

128



[244]

[245]
[246]

[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[259]

[260]

[261]

[262]

[263]

[264]

Z.Qiu, T. Yao, and T. Mei. Learning spatio-temporal representation with pseudo-3d residual
networks. In ICCV, 2017. 64

A. Quattoni and A.Torralba. Recognizing indoor scenes. In CVPR, 2009. 94

D. Ramanan, D. A. Forsyth, and A. Zisserman. Strike a pose: Tracking people by finding stylized
poses. In CVPR, 2005. 9

A. Ranjan and M. Black. Optical flow estimation using a spatial pyramid network. In CVPR,
2017. 6,9

M. A. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun. Unsupervised learning of invariant
feature hierarchies with applications to object recognition. In CVPR, 2007. 19

S. Ren, K. He, R. Girshick, and ]. Sun. Faster R-CNN: Towards real-time object detection with
region proposal networks. In NIPS, 2015. 43, 44, 65, 67

S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with

region proposal networks. Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2017.
60

J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Epicflow: Edge-preserving interpolation
of correspondences for optical flow. In CVPR, 2015. 9

J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deepmatching: Hierarchical deformable
dense matching. IJCV, 2016. 9

E. Rivlin, S. Dickinson, and A. Rosenfeld. Recognition by functional parts. In CVIU, 1995. 93

I. Rocco, R. Arandjelovi¢, and J. Sivic. Convolutional neural network architecture for geometric
matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
9,12

I. Rocco, R. Arandjelovic, and J. Sivic. End-to-end weakly-supervised semantic alignment. In
CVPR, 2018. 9,11

M. Rohrbach, M. Regneri, M. Andriluka, S. Amin, M. Pinkal, and B. Schiele. Script data for
attribute-based recognition of composite activities. ECCV, 2012. 78

M. Rubinstein, C. Liu, and W. T. Freeman. Towards longer long-range motion trajectories. BMVC,
2012. 9

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating
errors. Nature, 1986. 47

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recognition challenge. IJCV,
2015. 21, 32

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (I[CV), 2015. 55, 71

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
IICV, 115(3):211-252, 2015. 82

B. C. Russell, A. A. Efros, J. Sivic, W. T. Freeman, and A. Zisserman. Using multiple segmentations
to discover objects and their extent in image collections. In CVPR, 2006. 21, 34

B. C. Russell, W. T. Freeman, A. A. Efros, J. Sivic, and A. Zisserman. Using multiple segmentations
to discover objects and their extent in image collections. In CVPR, 2006. 64

S. Sadanand and J. J. Corso. Action bank: A high-level representation of activity in video. In
CVPR, 2012. 64,78

129



[265] P. Sand and S. Teller. Particle video: Long-range motion estimation using point trajectories.
ICCV, 2008. 9

[266] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, and T. Lillicrap. A
simple neural network module for relational reasoning. In Neural Information Processing Systems
(NIPS), 2017. 49, 51, 64

[267] F.Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network
model. IEEE Transactions on Neural Networks, 2009. 49, 64

[268] A. G. Schwing and R. Urtasun. Fully connected deep structured networks. arXiv preprint
arXiv:1503.02351, 2015. 49, 64

[269] P.Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun. Pedestrian detection with unsupervised
multi-stage feature learning. In CVPR, 2013. 21

[270] I. K. Sethi and R. Jain. Finding Trajectories of Feature Points in a Monocular Image Sequence.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9(1):56-73, January 1987. 9

[271] G. A. Sigurdsson, S. Divvala, A. Farhadi, and A. Gupta. Asynchronous temporal fields for action
recognition. In Computer Vision and Pattern Recognition (CVPR), 2017. 59, 74

[272] G. A. Sigurdsson, O. Russakovsky, and A. Gupta. What actions are needed for understanding
human actions in videos? In ICCV, 2017. 62,73

[273] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev, and A. Gupta. Hollywood in homes:
Crowdsourcing data collection for activity understanding. In European Conference on Computer
Vision (ECCV), 2016. 48, 55, 59, 63, 70, 74

[274] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference
from RGBD images. In ECCV, 2012. 30

[275] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference
from RGBD images. In ECCV, 2012. 44

[276] E.Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, and F. Moreno-Noguer. Fracking deep convolu-
tional image descriptors. CoRR, /abs/1412.6537,2014. 78

[277] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recog-
nition. ICLR, 2015. 81

[278] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising
image classification models and saliency maps. CoRR, /abs/1312.6034, 2013. 88

[279] K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in
videos. In NIPS, 2014. 49, 78, 81, 83, 84, 85, 86

[280] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recog-
nition. arXiv, 2014. 14

[281] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recog-
nition. arXiv, 2014. 33, 36, 39, 62, 64

[282] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recog-
nition. In International Conference on Learning Representations (ICLR), 2015. 55, 71

[283] S.Singh, A. Gupta, and A. A. Efros. Unsupervised discovery of mid-level discriminative patches.
In ECCV,2012. 21, 34,37

[284] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Freeman. Discovering objects and
their location in images. In ICCV, 2005. 21, 34

[285] J. Song, L. Wang, L. Van Gool, and O. Hilliges. Thin-slicing network: A deep structured model
for pose estimation in videos. In CVPR, 2017. 16

[286] S.Song, S. Lichtenberg, and J. Xiao. Sun rgb-d: A rgb-d scene understanding benchmark suite.
In CVPR, 2015. 94

130



[287] Y. Song, L.-P. Morency, and R. Davis. Action recognition by hierarchical sequence summarization.
In CVPR, 2013. 78

[288] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101 human actions classes from
videos in the wild. CoRR, /abs/1212.0402,2012. 77,79, 83, 86

[289] N. Srivastava and R. R. Salakhutdinov. Multimodal learning with deep boltzmann machines. In
NIPS, 2012. 19, 21

[290] N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video representa-
tions using LSTMs. arXiv, 2015. 8

[291] N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video representa-
tions using Istms. CoRR, abs/1502.04681, 2015. 21

[292] N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video representa-
tions using LSTMs. arXiv, 2015. 34

[293] N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video representa-
tions using Istms. CoRR, /abs/1502.04681, 2015. 64, 78, 105

[294] L. Stark and K. Bowyer. Achieving generalized object recognition through reasoning about
association of function to structure. In PAMI, 1991. 93

[295] E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S. Willsky. Describing visual scenes using
transformed dirichlet processes. In NIPS, 2005. 21

[296] C.Sun and R. Nevatia. Active: Activity concept transitions in video event classification. ICCV,
2013. 78

[297] C.Sun, S. Shetty, R. Sukthankar, and R. Nevatia. Temporal localization of fine-grained actions in
videos by domain transfer from web images. In ACM Multimedia, 2015. 64,78, 79

[298] D.Sun, S. Roth, and M. J. Black. Secrets of optical flow estimation and their principles. In CVPR,
2010. 9

[299] D.Sun, X. Yang, M.-Y. Liu, and J. Kautz. Pwc-net: Cnns for optical flow using pyramid, warping,
and cost volume. In CVPR, 2018. 6, 9

[300] L. Sun, K. Jia, D.-Y. Yeung, and B. E. Shi. Human action recognition using factorized spatio-
temporal convolutional networks. In ICCV, 2015. 78

[301] K. Tang, L. Fei-Fei, and D. Koller. Learning latent temporal structure for complex event detection.
In CVPR, 2012. 78

[302] Y. Tang, R. Salakhutdinov, and G. Hinton. Robust boltzmann machines for recognition and
denoising. In CVPR, 2012. 21

[303] Y. Tang, R. Salakhutdinov, and G. Hinton. Robust boltzmann machines for recognition and
denoising. In CVPR, 2012. 34

[304] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convolutional learning of spatio-temporal
features. In ECCV, 2010. 19, 21, 64,78

[305] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In International
Conference on Computer Vision (ICCV), 1998. 50

[306] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features
with 3d convolutional networks. In International Conference on Computer Vision (ICCV), 2015. 48,
49,53,62,75

[307] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features
with 3d convolutional networks. In ICCV, 2015. 64, 78

[308] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri. A closer look at spatiotemporal
convolutions for action recognition. In CVPR, 2018. 62, 64

131



[309] H.-Y. Tung, H.-W. Tung, E. Yumer, and K. Fragkiadaki. Self-supervised learning of motion
capture. In NIPS, 2017. 8

[310] N. Ufer and B. Ommer. Deep semantic feature matching. In CVPR, 2017. 9

[311] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object recognition.
IJCV,2013. 42,43

[312] J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, and P. H. Torr. End-to-end representation
learning for correlation filter based tracking. In CVPR, 2017. 7,9

[313] A.van den Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748, 2018. 8

[314] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin. Attention is all you need. In Neural Information Processing Systems (NIPS), 2017. 12, 49,
51,57, 68

[315] S. Vijayanarasimhan, S. Ricco, C. Schmid, R. Sukthankar, and K. Fragkiadaki. Sfm-net: Learning
of structure and motion from video. arXiv, 2017. 9

[316] P.Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Extracting and composing robust features
with denoising autoencoders. In ICML, 2008. 19, 21

[317] P.Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Extracting and composing robust features
with denoising autoencoders. In ICML, 2008. 34

[318] C. Vondrick, H. Pirsiavash, and A. Torralba. Generating videos with scene dynamics. In Neural
Information Processing Systems (NIPS), 2016. 105

[319] C. Vondrick, A. Shrivastava, A. Fathi, S. Guadarrama, and K. Murphy. Tracking emerges by
colorizing videos. ECCV, 2018. 8, 14, 15, 16

[320] J. Walker, C. Doersch, A. Gupta, and M. Hebert. An uncertain future: Forecasting from variational
autoencoders. In ECCV, 2016. 34

[321] J. Walker, C. Doersch, A. Gupta, and M. Hebert. An uncertain future: Forecasting from variational
autoencoders. In European Conference on Computer Vision, 2016. 97, 105, 108

[322] G. Wallis. Spatio-temporal influences at the neural level of object recognition. Network: Computa-
tion in Neural Systems, 9(2):265-278, January 1998. 8

[323] H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013. 23
[324] H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV/, 2013. 36

[325] H. Wang, A. Klaser, C. Schmid, and L. Cheng-Lin. Action recognition by dense trajectories. In
CVPR, 2011. 78

[326] H. Wang and C. Schmid. Action recognition with improved trajectories. In International Conference
on Computer Vision (ICCV), 2013. 49, 64

[327] H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013. 76, 78, 86

[328] J. Wang, Y. Song, T. Leung, C. Rosenberg, ]. Wang, J. Philbin, B. Chen, and Y. Wu. Learning
fine-grained image similarity with deep ranking. In CVPR, 2014. 22, 23

[329] J. Wang, Y. Song, T. Leung, C. Rosenberg, J]. Wang, J. Philbin, B. Chen, and Y. Wu. Learning
fine-grained image similarity with deep ranking. In CVPR, 2014. 34, 39

[330] L. Wang, Y. Qiao, and X. Tang. Action recognition with trajectory-pooled deep-convolutional
descriptors. In Computer Vision and Pattern Recognition (CVPR), 2015. 49

[331] L. Wang, Y. Qiao, and X. Tang. Action recognition with trajectory-pooled deep-convolutional
descriptors. In CVPR, 2015. 64, 78, 83, 86

[332] L. Wang, Y. Xiong, Z. Wang, and Y. Qiao. Towards good practices for very deep two-stream
convnets. CoRR, /abs/1507.02159, 2015. 82, 83, 84, 85, 86

132



[333] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool. Temporal segment
networks: Towards good practices for deep action recognition. In ECCV, 2016. 62, 64

[334] N. Wang and D.-Y. Yeung. Learning a deep compact image representation for visual tracking. In
NIPS, 2013. 7,9

[335] X.Wang, A. Farhadi, and A. Gupta. Actions ~ Transformations. In CVPR, 2016. 3, 4, 64

[336] X. Wang, D. F. Fouhey, and A. Gupta. Designing deep networks for surface normal estimation.
In CVPR, 2015. 31, 45

[337] X. Wang, R. Girdhar, and A. Gupta. Binge watching: Scaling affordance learning from sitcoms.
In CVPR, 2017. 3,4

[338] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural networks. CoRR, 2017. 3, 4
[339] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural networks. In CVPR, 2018. 12

[340] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural networks. In CVPR, 2018. 65, 66,
67,68,69,70,71,73,74

[341] X. Wang and A. Gupta. Unsupervised learning of visual representations using videos. In ICCV,
2015. 2, 4,78

[342] X. Wang and A. Gupta. Unsupervised learning of visual representations using videos. In ICCV,
2015. 8, 14

[343] X. Wang and A. Gupta. Unsupervised learning of visual representations using videos. In ICCV,
2015. 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45

[344] X. Wang and A. Gupta. Videos as space-time region graphs. In ECCV, 2018. 3, 4

[345] X. Wang, K. He, and A. Gupta. Transitive invariance for self-supervised visual representation
learning. In ICCV, 2017. 2, 4

[346] X. Wang, K. He, and A. Gupta. Transitive invariance for self-supervised visual representation
learning. In ICCV, 2017. 8, 14, 15, 16

[347] X. Wang, A. Jabri, and A. A. Efros. Learning correspondence from the cycle-consistency of time.
In CVPR, 2019. 2,4

[348] Y. Wang and G. Mori. Hidden part models for human action recognition: Probabilistic vs.
max-margin. TPAMI, 2011. 64, 78

[349] Y. Wang, Y. Yang, and W. Xu. Occlusion aware unsupervised learning of optical flow. In CVPR,
2018. 9

[350] N. Watters, A. Tacchetti, T. Weber, R. Pascanu, P. Battaglia, and D. Zoran. Visual interaction
networks. In Neural Information Processing Systems (NIPS), 2017. 49, 64, 105

[351] M. Weber, M. Welling, and P. Perona. Unsupervised learning of models for recognition. In
ECCV,2000. 21

[352] P. Winston, T. Binford, B. Katz, and M. Lowry. Learning physical description from functional
definitions, examples and precedents. In MIT Press, 1984. 93

[353] L. Wiskott and T. J. Sejnowski. Slow feature analysis: unsupervised learning of invariances.
Neural Computation, 14(4):715-770, April 2002. 8

[354] J. N. Wood. A smoothness constraint on the development of object recognition. Cognition,
153:140-145, 2016. 1, 8

[355] J.N. Wood and S. M. W. Wood. The development of newborn object recognition in fast and slow
visual worlds. Proceedings. Biological Sciences, 283(1829), April 2016. 8

[356] H. Wu, A. C. Sankaranarayanan, and R. Chellappa. In Situ Evaluation of Tracking Algorithms
Using Time Reversed Chains. In 2007 IEEE Conference on Computer Vision and Pattern Recognition,
pages 1-8, June 2007. 9

133



[357] J. Wu, ]. J. Lim, H. Zhang, ]. B. Tenenbaum, and W. T. Freeman. Physics 101: Learning physical
object properties from unlabeled videos. In BMVC, 2016. 105

[358] J. Wu, E. Lu, P. Kohli, W. T. Freeman, and J. B. Tenenbaum. Learning to see physics via visual
de-animation. In Neural Information Processing Systems (NIPS), 2017. 104, 105

[359] J. Wu, T. Xue, J. J. Lim, Y. Tian, J. B. Tenenbaum, A. Torralba, and W. T. Freeman. Single image
3d interpreter network. In European Conference on Computer Vision (ECCV), 2016. 93

[360] J. W, 1. Yildirim, J. J. Lim, W. T. Freeman, and J. B. Tenenbaum. Galileo: Perceiving physical
object properties by integrating a physics engine with deep learning. In Neural Information
Processing Systems (NIPS), 2015. 105

[361] J. Wu, Y. Zhang, and W. Lin. Towards good practices for action video encoding. CVPR, 2014. 86
[362] Y. Wy, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In CVPR, 2013. 9

[363] Z. Wu, Y. Fu, Y.-G. Jiang, and L. Sigal. Harnessing object and scene semantics for large-scale
video understanding. In CVPR, 2016. 64

[364] Z. Wu, X. Wang, Y.-G. Jiang, H. Ye, and X. Xue. Modeling spatial-temporal clues in a hybrid
deep learning framework for video classification. In ACM Multimedia, 2015. 64, 78, 85, 86

[365] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He. Aggregated residual transformations for deep
neural networks. In Computer Vision and Pattern Recognition (CVPR), 2017. 60, 64

[366] S. Xie, C. Sun, J. Huang, Z. Tu, and K. Murphy. Rethinking spatiotemporal feature learning for
video understanding. In arXiv:1712.04851, 2017. 62

[367] W.Xiong, ]. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, and G. Zweig. The Microsoft
2016 Conversational Speech Recognition System. In International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), 2017. 49

[368] Z. Xu, Y. Yang, and A. G. Hauptmann. A discriminative cnn video representation for event
detection. CVPR, 2015. 78

[369] T. Xue, J. Wu, K. L. Bouman, and W. T. Freeman. Visual dynamics: Probabilistic future frame
synthesis via cross convolutional networks. In Neural Information Processing Systems (NIPS), 2016.
105

[370] S. Yan, Y. Xiong, and D. Lin. Spatial temporal graph convolutional networks for skeleton-based
action recognition. In AAAI, 2018. 64

[371] L. Yang, Y. Wang, X. Xiong, J. Yang, and A. K. Katsaggelos. Efficient video object segmentation
via network modulation. arXiv, 2018. 15

[372] Y. Yang and D. Ramanan. Articulated human detection with flexible mixtures of parts. TPAMI,
2013. 15

[373] B. Yao and L. Fei-Fei. Modeling mutual context of object and human pose in human-object
interaction activities. In CVPR, 2010. 93

[374] B. Yao and L. Fei-Fei. Modeling mutual context of object and human pose in human-object
interaction activities. In Computer Vision and Pattern Recognition (CVPR), 2010. 63, 64

[375] ]. Yao, S. Fidler, and R. Urtasun. Describing the scene as a whole: Joint object detection, scene
classification and semantic segmentation. In CVPR, 2012. 64

[376] M. Yatskar, L. Zettlemoyer, and A. Farhadi. Situation recognition: Visual semantic role labeling
for image understanding. In CVPR, 2016. 63, 64

[377] T. Ye, X. Wang, J. Davidson, and A. Gupta. Interpretable intuitive physics model. In ECCV, 2018.
3,4

[378] D.J.Yi, N. B. Turk-Browne, J. I. Flombaum, M.-S. Kim, B. ]. Scholl, and M. M. Chun. Spatiotem-
poral object continuity in human ventral visual cortex. Proceedings of the National Academy of
Sciences, 105(26):8840-8845, July 2008. 8

134



[379] Z.Yin and J. Shi. Geonet: Unsupervised learning of dense depth, optical flow and camera pose.
In CVPR, 2018. 9

[380] Y. Yuan, X. Liang, X. Wang, D.-Y. Yeung, and A. Gupta. Temporal dynamic graph Istm for
action-driven video object detection. In ICCV, 2017. 64

[381] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici.
Beyond short snippets: Deep networks for video classification. In Computer Vision and Pattern
Recognition (CVPR), 2015. 49, 62, 64

[382] C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime tv-11 optical flow. 29th
DAGM Symposium on Pattern Recognition, 2007. 84

[383] R.Zhang, J. Wu, C. Zhang, W. T. Freeman, and J. B. Tenenbaum. A comparative evaluation of
approximate probabilistic simulation and deep neural networks as accounts of human physical
scene understanding. In Proceedings of the 38th AnnualConference of the Cognitive Science Society,
2016. 104

[384] R.Zhang, P. Isola, and A. A. Efros. Colorful image colorization. In ECCV, 2016. 32, 34

[385] R.Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised learning by cross-
channel prediction. In CVPR, 2017. 32, 34

[386] Y.Zhao and S. Zhu. Scene parsing by integrating function, geometry and appearance models.
In CVPR, 2013. 93

[387] B. Zheng, Y. Zhao, J. Yu, K. Ikeuchi, and S.-C. Zhu. Scene understanding by reasoning stability
and safety. International Journal of Computer Vision (IJCV), 2015. 104

[388] S.Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. H. Torr.
Conditional random fields as recurrent neural networks. In International Conference on Computer
Vision (ICCV), 2015. 49, 64

[389] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene
recognition using places database. In NIPS, 2014. 94

[390] B.Zhou, A. Andonian, and A. Torralba. Temporal relational reasoning in videos. arXiv, 2017. 64,
74,75

[391] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Object detectors emerge in deep
scene cnns. In ICLR, 2015. 41

[392] Q.Zhou, X. Liang, K. Gong, and L. Lin. Adaptive temporal encoding network for video instance-
level human parsing. In ACM MM, 2018. 13, 15,16, 17

[393] T.Zhou, M. Brown, N. Snavely, and D. G. Lowe. Unsupervised learning of depth and ego-motion
from video. In CVPR, 2017. 9

[394] T.Zhou, Y. Jae Lee, S. X. Yu, and A. A. Efros. Flowweb: Joint image set alignment by weaving
consistent, pixel-wise correspondences. In CVPR, 2015. 9

[395] T. Zhou, P. Krahenbuhl, M. Aubry, Q. Huang, and A. A. Efros. Learning dense correspondence
via 3d-guided cycle consistency. In CVPR, 2016. 7, 9

[396] T.Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros. View synthesis by appearance flow. In
European Conference on Computer Vision (ECCV), 2016. 105, 106, 108

[397] X.Zhou, M. Zhu, and K. Daniilidis. Multi-image matching via fast alternating minimization. In
ICCV, 2015. 9

[398] J. Zhu, B. Wang, X. Yang, W. Zhang, and Z. Tu. Action recognition with actons. In ICCV, 2013.
64,78

[399] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. ICCV, 2017. 9

135



[400] Y. Zhu, Y. Zhao, and S. Zhu. Understanding tools: Task-oriented object modeling, learning and
recognition. In CVPR, 2015. 93

[401] Y. Zhu, C. Jiang, Y. Zhao, D. Terzopoulos, and S.-C. Zhu. Inferring forces and learning human
utilities from videos. In Computer Vision and Pattern Recognition (CVPR), 2016. 104

[402] Y. Zhu, A. Fathi, and L. Fei-Fei. Reasoning about object affordances in a knowledge base
representation. In ECCV, 2014. 93

[403] W.Zou, S. Zhu, K. Yu, and A. Y. Ng. Deep Learning of Invariant Features via Simulated Fixations
in Video. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pages 3203-3211. Curran Associates, Inc., 2012. 8

[404] W.Y. Zou, S. Zhu, A. Y. Ng, and K. Yu. Deep learning of invariant features via simulated fixations
in video. In NIPS, 2012. 19, 21

136



