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Abstract 
The Heating, Ventilation and Air-Conditioning (HVAC) system plays a key role in shaping 

building performances. Effective and efficient HVAC operations not only achieve energy savings 

but also create a more comfortable indoor environment for occupants. Moreover, compared to the 

private office environment, the open-plan office environment has become a trend in most office 

buildings since it not only creates opportunities for employees to communicate with one another 

and improves productivity but also reduces construction cost. However, the open-plan office 

building layout is also faced with problems such as interruptions from other people and 

unsatisfactory shared indoor temperature and humidity levels. Therefore, it is of great importance 

to develop a new paradigm for the HVAC system framework so that everyone can work under 

their preferred thermal environment while also achieving improved energy performance. But how 

can we achieve personal thermal comfort and energy efficiency without being intrusive?	

This dissertation proposes a new integrative task-ambient cooling control featuring 

personal comfort models with non-intrusive sensing techniques for open-plan office spaces. The 

research mainly consists of four parts:	

•       Development of a personalized cooling control to create a comfortable local thermal 

environment automatically with non-intrusive sensing techniques and machine learning 

algorithms. The sensing system consists of an indoor air temperature sensor, relative humidity 

sensor DHT22, and an infrared temperature sensor AMG8833.	

•       Quantification of the energy savings of the proposed task-ambient cooling system by 

cooling set-point optimization of the ambient conditioning system and the automatic operations 

of the task conditioning systems with personal thermal comfort models. 	

•       Development of a data-driven approach with CFD simulator to analyze the benefits of 

energy savings in a typical office space while maintaining acceptable thermal comfort with the 

proposed task-ambient cooling system.	

•       Development of an energy co-simulation with the proposed task-ambient cooling system 

to analyze the benefits of energy savings in a typical shared office space while maintaining 

acceptable thermal comfort with comfort database I & II.	

As a result, in terms of energy savings, five 3-hour sessions in the field study have shown that 

the proposed system can achieve 9.6% in HVAC energy savings on average compared with 
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baseline system. Moreover, the energy co-simulation study has shown the energy performances 

with the proposed task-ambient cooling system could be optimized to save HVAC electric demand 

power by 5.3% on average compared with baseline system.	

Additionally, in terms of thermal comfort, the performances in the field study have shown the 

recall scores of the thermal sensation model and the thermal satisfaction model with data from all 

female subjects are 84.7% and 76.5%, respectively. Meanwhile, the recall scores of the thermal 

sensation and the thermal satisfaction model with data from all male subjects are 87% and 82.5%, 

respectively.  Furthermore, an automated feedback collection mechanism was implemented to 

update personal comfort models by collecting override actions by occupants (collecting the 

information of thermal environment conditions when occupants manually change on/off 

overriding the programmed automation system). As a result, participants were more satisfied with 

updated personal comfort models.  

Overall, the proposed task-ambient cooling system featuring personal thermal comfort and 

non-intrusive sensing techniques not only optimizes energy performance, but also provides a more 

comfortable thermal environment in open plan office spaces.	

 Keywords: Adaptive and personal thermal comfort; Non-intrusive infrared sensing; Task-

ambient cooling system. 
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1.1 Overview of occupant thermal comfort 

Most people spend 90% of their time indoors (Bratman et al., 2012) since buildings can 

provide satisfactory environments for human beings. Indoor environment quality (IEQ) is always 

used to evaluate the quality of the built environments created with different building systems such 

as acoustic quality, air quality, spatial quality, visual quality and thermal quality. As one of the 

key building systems, Heating, ventilation and air-conditioning (HVAC) system affects all of these 

qualities, particularly indoor air quality (IAQ) and indoor thermal quality. The effective and 

efficient HVAC operations not only achieve energy savings but also create a more comfortable 

environment for occupant indoors. Nowadays, open-plan offices have become a trend since it 

increases the communications but also reduces construction cost. However, open-plan office 

building is also faced with problems like unsatisfactory shared indoor temperature and humidity 

due to different thermal preferences. Therefore, a great solution to satisfy individual thermal 

comfort is to develop personal comfort models so as to predict occupant thermal comfort level and 

take it into consideration for the operations of occupant-responsive HVAC system in real open-

plan offices.  

As defined by ANSI/ASHRAE 55 (ASHRAE, 2013) and ISO7730 (Roelofsen, 2011), thermal 

comfort is the condition of mind that expresses satisfaction with the thermal environment and is 

assessed by subjective evaluation. Therefore, thermal comfort is the combined result of physical 

environment and psychological activities. In the course of thermal comfort theory, static thermal 

comfort and adaptive thermal comfort have become two main categories. In terms of static thermal 

comfort, predicted mean vote (PMV) and predicted percentage of dissatisfied (PPD) developed by 

Fanger (Fanger, 1970) are the most widely accepted thermal model, as shown in Figure 1-1. PMV 

and PPD have six variables applied to be the indicators of thermal comfort, which are indoor air 

temperature, indoor relative humidity, indoor air velocity, mean radiant temperature, clothing 

insulation and metabolic rate. Moreover, since PMV predicts the average vote of a large group of 

people based on 7-point thermal sensation scale, it describes the overall thermal sensation of 

multiple occupants in a shared thermal environment. However, since PMV was derived from 

strictly controlled climate chamber, which was different from real office buildings, the 

performances of thermal comfort prediction needs improving.  
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Figure 1-1 Relationship between PMV and PPD (ASHRAE 55, 2010) 

In order to overcome the disadvantages of static thermal comfort, adaptive thermal comfort 

aims to provide insights in highlighting interactions between occupants and buildings, which 

increases opportunities for personal and responsive control, thermal comfort enhancement, energy 

consumption reduction and climatically responsive and environmentally responsible building 

design (De Dear et al., 1998). The adaptive model is premised that the occupant is no longer a 

passive recipient of the given thermal environment. Instead, the occupant is able to interact with 

all levels of the person-environment system via feedback loops in the real thermal environment. 

Meanwhile, in adaptive thermal comfort, researchers believe thermal comfort is not only affected 

by physical environment but also affected by factors such as gender, age and nationality. One of 

the milestone projects of adaptive thermal comfort is the ASHRAE RP-884 database (Comfort 

database I) consisting of 22,000 samples, which aims to test the adaptive thermal comfort 

hypothesis and develop an adaptive thermal comfort model. Moreover, a newly released dataset 

called ASHRAE global thermal comfort database II (Comfort database II) consisting of 81,846 

samples intends to support diverse inquiries about adaptive thermal comfort in field settings 

(Földváry et al., 2018). These two databases have been widely used to investigate various adaptive 

thermal models, which have the potential to be integrated into personalized HVAC controls. With 

comfort database I, Lee et al. (2017) proposed a method for learning thermal preference profiles 
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by formulating a combined classification and inference problem with 5-cluster model. Moreover, 

the thermal preference of a new user is inferred by mixture of sub-models for each cluster where 

clusters are used to group occupants with similar thermal preferences characteristics. In addition, 

instead of predicting 7-point thermal sensation described in ASHRAE 55, the paper predicts 

thermal preferences with 3 classes, namely “want cooler”, “want warmer” and “no change”. 

Besides, Auffenberg et al. (2015) proposed a personalized thermal model using Bayesian network 

to learn and adapt to a user’s individual preferences by predicting thermal sensation of occupants 

within a specific area, such as San Francisco with ASHRAE RP-884 dataset. However, the results 

were not promising that the highest accuracy of the model was only 30%. In addition, Wang et al. 

(2019) has proposed to use k-nearest neighbor (KNN) and multivariate Gaussian distributions to 

detect outliers with different thermal acceptability and thermal preferences from majority votes 

with the comfort database I & II. Besides, Gao et al. (2019) adopted a deep neural network based 

approach for predicting the occupants’ thermal comfort with comfort database I, and then adopted 

Deep Deterministic Policy Gradient (DPPG) for learning the temperature and humidity control 

policy. The results have shown better prediction performances for thermal comfort and achieved 

higher thermal comfort and energy efficiency than baseline. Moreover, Lu et al. (2019) has 

developed personalized thermal comfort models with KNN, support vector machine (SVM) and 

random forest (RF) to predict thermal sensations based on comfort database I and conducted a Q-

learning based temperature set-point controller with the personalized thermal models. However, 

since the majority vote in the database regarding thermal sensation is neutral, the thermal sensation 

prediction was hard to detect other states.  

However, even if comfort databases I&II have provided good opportunity to study adaptive 

thermal comfort, since each occupant has few samples in the databases and they aim to develop a 

generic adaptive thermal comfort model based on large populations, it may not be suitable for 

personal thermal comfort predictions and for fine-grained individual thermal comfort management 

by differentiating individual thermal comfort differences. Therefore, researchers have proposed a 

new category of thermal comfort model named personal comfort model, which predicts an 

individual's thermal comfort responses (Kim et al., 2018). Meanwhile, for both adaptive thermal 

comfort and personal thermal comfort, three response types were common to use, as shown in 

Figure 1-2. 
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            (a) 7-point thermal sensation                         (b) 5-point thermal satisfaction 

 

 
              (c) 3-point thermal preference 

Figure 1-2 Three types of thermal comfort metrics 

Besides making the most of existing comfort databases, researchers on thermal comfort also 

proposes skin temperature to indicate thermal comfort inspired by thermoregulation theory. 

Thermoregulation is a dynamic equilibrium with the environment where body regulates its internal 

core temperature in terms of heat generation and heat exchange with the environment (Jazizadeh 

et al., 2018). In detail, if the ambient temperature is below skin temperature, heat is dissipated from 

the body by radiation and convection. On the other hand, if the skin temperature is lower than 

ambient temperature, heat will be absorbed by the body so that the skin temperature increases. 

Even if heat exchange also occurs due to the metabolic process of the human body, since occupants 

usually sit or walk without too much metabolic heat production in office buildings, whether the 

individual is thermally comfortable or not is more related to skin temperature. 

Motivated by this, many researchers have proposed thermal comfort models with mean skin 

temperature or the most representative local skin temperature. Liu et al. (2015) used mean skin 

temperature of 10 measurement locations, including forehead, chest, upper arm, back, abdomen, 

elbow, hand, thigh, calf and foot to evaluate thermal comfort for a person in a sleeping posture 

under steady thermal environment. The results turned out that the mean skin temperature at the 

three different thermal comfort levels was statistical significant. In terms of local skin temperature, 

Choi (2010) tested skin temperatures of 10 body locations to select the best location for thermal 

comfort inference, including forehead, upper arm, belly, wrist, hand, thigh, calf and foot. The 
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results turned out that wrist was the most responsive area to infer thermal comfort with the lowest 

p-value. Moreover, Sim et al. (2016) established multiple linear regression models to estimate 

thermal sensations with variables based on skin temperature. As a result, the models using 

temperatures of the fingertips and wrist showed the highest accuracy. Wei Li et al. (2018) also 

proposed multiple linear regression models to estimate thermal sensation under various active 

states using wrist skin temperature-related variables. The study indicated skin temperature, its time 

differential and heart rate could be used for estimating individual thermal sensation. Even if these 

empirical thermal sensation models achieved high accuracy, the studies were only conducted in a 

steady-state thermal environment.  

In addition, most of the existing thermal comfort models have been based on regression at 

present. However, thermal comfort predictions can also be seen as classification problem where 

various classification algorithms can be implemented. A recent research on thermal comfort 

inference utilized the wearable device of a pair of eyeglass with infrared (IR) arrays, and 

demonstrated that 82.8% of prediction accuracy for detecting uncomfortable conditions was 

obtained with hidden markov model (HMM) (Ghahramani et al., 2018). Moreover, Huang et al. 

(2015) used wearable devices like wearable fitness trackers to measure physical movements, sweat 

level and skin temperature so as to infer individual thermal comfort with machine learning 

algorithms including random forest (RF) and support vector machine (SVM). In addition, Dai et 

al. (2017) implemented SVM to predict thermal demands using skin temperature collected from 

various locations with wearable sensors. As a result, SVM classifiers with linear kernel were 

preferred to Gaussian kernel, which achieved over 90% accuracy. Based on the literature review, 

classification models have performed so well as regression models.  

Besides different methods of thermal comfort models, the development of sensing technique 

has also promoted the development of adaptive and personal thermal comfort. The current sensing 

technique used for thermal comfort inference can be mainly divided into two categories. One is 

wearable sensing devices and the other is contactless sensing devices. For wearable devices, wrist 

band has been the most popular one (Choi, 2010; Sim et al., 2016; Li et al., 2018; Ghahramani et 

al., 2018; Huang et al., 2015; Dai et al., 2017). For instance, Ghahramani et al. (2016) proposed a 

wearable infrared eyeglass frame to measure skin temperature at different points of the skin, 

including nose, front face, back of ear and cheekbone so as to infer thermal preferences.   
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Even if wearable devices can directly measure variables like skin temperature to indicate 

thermal comfort, the major disadvantage is intrusiveness. Therefore, contactless measurement 

methods have drawn much more attention nowadays, especially infrared (IR) thermography. IR 

thermography utilizes the emitted infrared radiation to measure surface temperature of an object. 

In order to measure surface temperature with IR thermography correctly, emissivity of the object 

has to be known since most of actual objects are grey bodies. Nowadays, IR thermography has 

been widespread and applied into various functions, such as building diagnostics in HVAC 

industry, fault detection as well as thermal comfort analysis. An empirical study utilized an 

infrared (IR) sensor called Lepton to estimate occupant thermal comfort level by measuring skin 

temperature measured from different face regions. The results have shown that ears, nose and 

cheeks are most indicative to thermal comfort (Li et al., 2018). In addition, Ranjan and Scott (2016) 

have used IR camera to dynamically detect and predict thermal comfort. They classified thermal 

preferences based on skin temperature of forehead, cheeks, jaws, upper neck, lower neck, palm 

core, palm and back of hand, and found that the face outperformed other body regions. Moreover, 

Han et al. (2017) utilized infrared imaging to measure skin temperature and control the indoor 

environment with self-learning algorithms. As a result, 98% of the occupants’ feedback 

demonstrated the control system was able to achieve satisfactory thermal environments.  

In addition to infrared camera, other types of camera can also be implemented to measure skin 

temperature-related variables like RGB camera and depth camera. A recent study has proposed a 

red-green-blue-depth-temperature (RGB-DT) framework consisting of a thermographic camera, a 

depth-sensor and a color camera to measure body temperatures at different body parts, including 

hand, elbow, shoulder, chest as well as left and right heads (Cosma et al., 2018). A feedback form 

was used to collect thermal comfort information from different subjects. Moreover, Jazizadeh and 

Jung (2018) have used RGB camera with Photo plethysmography (PPG) technique to amplify 

subtle variations of blood perfusion of human face in different temperature ranges. However, the 

proposed system was not evaluated in a regular temperature range between 20℃ and 30℃ in a real 

office building.  

To summarize, contactless sensing technique can solve the issue of intrusiveness while 

maintain high performance of thermal comfort inference. Moreover, the adaptive and personal 

thermal comfort are more realistic to the actual indoor environment than static thermal comfort 

and the performances can be enhanced with machine learning algorithms. Therefore, developing 
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adaptive and personal thermal comfort models with contactless sensing techniques has become an 

interesting research area recently. However, most of the current contactless sensors such as vision-

based sensors are much more expensive than conventional sensors such as temperature/humidity 

sensors. Hence, it is unlikely to spread the sensing system in a large-scale office environment.  

1.2 Overview of occupant-responsive HVAC system 

With profound studies on relations between building energy performances and human 

dimensions that occupant behaviors actually play a significant role in energy consumption in the 

buildings (D’Oca et al., 2018), the occupant-responsive HVAC system has been seen as future 

trend for developing the intelligent building systems due to the outstanding performances of energy 

savings and occupant comfort improvement in both field studies and building simulations.  

Among various occupant-responsive HVAC control system, task-ambient conditioning (TAC) 

system has drawn much more attention than before. Task ambient conditioning (TAC) system is 

defined as any space conditioning system that allows thermal conditions in small, localized zones 

to be individually controlled by building occupants, while still automatically maintaining 

acceptable environmental conditions in the ambient space of the building (Bauman et al., 1996). 

Since TAC system not only takes individual thermal preferences into account but also maintains 

the overall acceptable thermal environment, it has become one of the most promising air-

conditioning systems in open-plan office buildings. Moreover, due to rapid development of 

building automation system (BAS), many researchers have investigated advanced control 

strategies so as to operate advanced HVAC system effectively in the open-plan office buildings. 

Zhang et al. (2010) developed a task-ambient system that heated only the feet and hands, and 

cooled only the hands and face, to provide comfort in a wide range of ambient environment. The 

simulated annual heating and cooling energy savings with such TAC system was as much as 40%. 

In addition, as one of the most popular personalized cooling devices, personalized fan such as 

desktop fan and ceiling fan has several advantages. Firstly, fans offer a straight-forward, economic, 

and independently operable technique to increase movement of air so as to ultimately improve 

thermal comfort in a room (Sekhar, 1995). Moreover, when operated with Air-conditioning (AC) 

system, the downwash propelled by foil (rotating) drives the supply air to blend with the existing 

air, mitigating the uncomfortable thermal stratification. Lastly, since the energy consumption of 

the distributed personalized fans are lower than centralized air-conditioning system (Anderson et 
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al., 2015), fans contribute to improve energy efficiency of task-ambient conditioning system (TAC) 

by elevating temperature set-point dead band of the ambient conditioning system.  

Shetty et al. (2019) have developed desk fan usage preference models, including fan state and 

fan speed with tree-based methods among six users. The results have shown 97.73% accuracy have 

been achieved in predicting fan state with the test set and importance of different features vary 

among different individuals. In addition, Makhoul et al. (2013) conducted a computational fluid 

dynamic (CFD) simulation to study the enhancement of ceiling mounted personalized ventilation 

(PV) when assisted by desktop fans to reduce thermal plume. Thermal comfort models were 

developed based on skin temperature, core temperature, as well as sensible and latent heat flux 

calculated with multi-segmented bioheat model. The bioheat model were co-simulated with CFD 

model by exchanging data related to thermal environment, including mean radiant temperature, air 

temperature and air velocity. The simulation results have shown the desk-mounted fans were able 

to reduce the convection plumes around the occupant and achieved energy saving by up to 13% 

when compared with conventional mixing ventilation systems. In addition, PV aims to deliver 

conditioned air directly to the indoor spaces with various ambient conditioning systems such as 

underfloor air distribution (UFAD) (Sekhar & Zheng, 2018) so as to reduce energy consumption 

and improve individual thermal comfort. Sekhar & Zheng proposed an integrated personalized 

ventilation and local fan-induced active chilled beam (PV-ACB) air conditioning system and was 

analyzed based on thermal stratification with CFD. However, even if CFD simulations have 

revealed improvements in thermal comfort, both of them have used static thermal models such as 

PMV, which may not be appropriate to evaluate thermal comfort in real office environment.  

Moreover, personal comfort system (PCS) is an innovation to integrate low-energy PCS to 

create micro-zones into centralized HVAC operations in open plan office environments (Anderson 

et al., 2015). The project has invented the low-energy heated and cooled chairs with wireless 

internet connectivity and tested the performances in different real office environments in 

California. The PCS adjusts the local thermal environment based on occupant behavioral models 

of changing heating/cooling set-points of the chair. Meanwhile, the whole framework gets further 

optimized with communication between chairs and the centralized HVAC system. However, due 

to variation of how this building is operated, the field measurement of the whole HVAC energy 

consumption did not conclusively show whether PCS saved energy or not.  
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For most of existing TAC systems, the control of the task component is partially or entirely 

decentralized and completely under the control of the occupants. As a result, TAC system cannot 

be fully optimized since the task system states are not responsive to dynamic thermal environment 

and occupant thermal comfort until the occupant takes action on his/her own. On the contrary, the 

performances of TAC system have great potential to be optimized by connecting the distributed 

task components with the ambient component such as PCS.  

In the well-connected TAC system where the individual thermal preferences based on 

interactions with the task conditioning system are transmitted to the ambient conditioning system 

wirelessly, the ambient conditioning system plays a role in coordinating individual task 

conditioning system and optimizing the overall thermal environment. So far, there are mainly two 

strategies to optimize ambient conditioning system. One is to create a group thermal comfort model 

based on individual thermal models and the other is to implement advanced control strategies such 

as multi-agent control.  

Zhao et al. (2014) proposed a group thermal model by taking the convex hull of the individual 

complaint regions of the group people as the group complaint regions and using the compliment 

set of the complaint regions as the comfort zone of the group. Moreover, Xu et al. (2014) also 

proposed a group thermal model by combining multiple thermal models, which are probability 

distributions for different thermal comfort levels, into a single probability distribution. Even if the 

group thermal model simplifies the dynamic ambient conditioning control, it may cause larger 

prediction biases on the group thermal model if the individual thermal model has biases.  

In artificial intelligence, agents are physical or virtual entities that intelligently interact in an 

environment by both perceiving and affecting it. In multi-agent system (MAS), agents can 

additionally communicate and coordinate with each other as well as with their environment 

(Dounis & Caraisco, 2009). Hence, in multi-agent framework, the most important components are 

agents and the coordinator. Among various control logics applied in the framework of multi-agent 

control system, fuzzy control, model predictive control (MPC) and reinforcement learning (RL) 

control have been widely investigated. Moreover, for building control system, many researchers 

have applied multi-agent framework in the occupant-centric HVAC system. Klein et al. (2012) 

proposed a multi-agent comfort and energy system (MACES) to simulate the energy savings and 

occupant thermal comfort improvements in an office building. MACES was tested with multiple 

actual schedules and constructed agents representing building devices, occupants and meetings. 
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The simulation has shown 12% energy reduction and 5% comfort improvements. In addition, 

Ghahramani et al. (2014) introduced a knowledge-based approach for improving HVAC system 

operations through coupling personalized thermal comfort preferences and energy consumption 

patterns. In their approach, zone temperature set points were selected through solving a constrained 

optimization problem for energy, with comfort, indoor air quality, and system performance 

constraints. The agents were represented with multiple occupant discomfort profiles and 

coordinated by solving the optimization with iterative relaxing algorithm. Moreover, Zhao (2015) 

conducted building simulations to optimize both energy performances and occupant thermal 

comfort with MPC where the occupant behavior models were developed to predict energy 

consumption and PMV data was collected from real subjective feedbacks. With the occupant 

behavior models and subjective feedbacks, occupant behaviors can be represented as agents. In 

addition, Dalamagkidis et al. (2007) developed a RL controller taking into account user 

preferences as agents in order to achieve energy savings, high comfort and indoor air quality. 

Lastly, besides centralized HVAC system, as mentioned before, multi-agent control system can 

also be applied into TAC system. Jain et al. (2018) investigated the impact of occupancy prediction 

errors on thermal comfort and energy consumption with MPC control system. The results have 

shown that with the task conditioning system, the controller was more robust to prediction errors.   

To summarize, multi-agent control system is one of the most suitable systems for building 

energy and thermal comfort management. Moreover, with the development of better thermal 

models and more robust inter-connected network, the benefits in terms of thermal comfort from 

multi-agent control in TAC system will be increased.  

1.3 Motivations 
Based on literature review on thermal comfort research and occupant-responsive HVAC 

control system, it can be concluded that the recent studies related to thermal comfort have been 

focused on development of different sensing techniques to develop adaptive personal thermal 

comfort models, as well as integration of such models into occupant-responsive HVAC system. 

Kim et al. (Kim et al., 2018) presented a unified framework for personal comfort models and 

discussed challenges for applications of personal comfort models in the real world. It was found 

that most recent adaptive and personal thermal comfort research is focused on developing 

statistical thermal comfort models by collecting data and implement various machine learning 

algorithms to achieve higher prediction accuracy. However, few studies on adaptive and personal 
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thermal comfort further apply the models into advanced HVAC controls such as reinforcement 

learning control. Moreover, compared to sensing approaches like wearable devices, contactless 

sensing devices such as IR camera are much less intrusive and have drawn much more attention 

than before. However, it is expensive to use IR camera in a large-scale office buildings. Therefore, 

this dissertation proposes and evaluates a new task-ambient cooling system featuring personal 

comfort models with non-intrusive sensing techniques for open-plan office buildings with field 

studies, CFD and energy simulations. Table 1-1 shows the skin temperature measurement method 

benchmark for thermal comfort inference and performance benchmark based on three metrics, 

including intrusiveness, privacy and cost-effectiveness. Moreover, with field studies in real open-

plan offices, the proposed system was evaluated based on actual feedback from users. In addition, 

with CFD and energy simulations, the proposed system was evaluated with more detailed analysis 

on thermal comfort in terms of airflow patterns, temperature distribution and energy consumption. 

Finally, it will bring about more insightful suggestions on the task-ambient cooling system before 

real deployment in large-scale.  

       Table 1-1 Skin temperature measurement method and performance benchmark 

 
1.4 Research hypotheses 

Moreover, this dissertation aims to validate the following main hypothesis with three sub-

hypotheses: 

§ Main Hypothesis: An interactive task-ambient cooling system will provide higher energy 

savings than a conventional air-conditioning (ambient only) system, while maintaining 

thermal comfort in open-plan office buildings. 
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§ Sub-hypothesis 1: Task conditioning system can be operated automatically based on the 

personal thermal comfort models. 

§ Sub-hypothesis 2: Personal thermal comfort model can be continuously improved by 

collecting occupant override actions. 

§ Sub-hypothesis 3: An interactive task-ambient cooling system can be optimized by 

minimizing sensible cooling loads with the constraints of individual thermal comfort.  

1.5 Chapter overview 
The whole dissertation can be mainly divided into three parts. In addition to introduction, the 

whole dissertation consists of the development of the non-intrusive task conditioning system and 

the evaluation of the task-ambient cooling controls, which are discussed with the following 

chapters in detail. All of these chapters have made contributions to the development of the 

interactive task-ambient cooling system, as shown in Figure 1-3. In all, the whole methodology 

includes a controlled experiment, a field study to develop personal thermal comfort model and 

evaluate the task-ambient cooling control using machine learning as well as two simulation studies 

using CFD and energyplus, respectively.  

 

Figure 1-3 Overview of the whole dissertation 

In addition to overview of each chapter, Table 1-2 shows the deliverables of each chapters and 

the correspondent algorithms, baseline models as well as software used.  
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Table 1-2 Project deliverables for each research chapter 

 

Chapter 2: Data-driven simulation of a thermal comfort-based temperature set-point control 

with comfort database I. This chapter aims to develop the data-driven thermal comfort model with 

comfort database I and the second part is to develop a Q-learning based temperature set-point 

controller based on combination of thermal comfort predictions from the thermal comfort model 

and some domain knowledge from ASHRAE 55. 

Chapter 3: Comfort-based and non-intrusive personalized model in office buildings. This 

chapter aims to develop personal comfort models with three different feature sets trained with two 

machine learning algorithms. In order to collect occupant data, an experimental study was 

conducted in an open-plan office in Shanghai with the non-intrusive sensing system consisting of 

indoor air temperature and relative humidity sensor DHT22 and an IR camera. 

Chapter 4: A case study of the interactive task-ambient conditioning cooling control in 

Shanghai. This chapter aims to develop personal comfort models with machine learning algorithms 

by collecting data from a sensing system consisting of indoor air temperature and relative humidity 

sensor called DHT22, an infrared temperature sensor called AMG8833 (GridEye) and a micro-

controller called ESP8266 with WIFI module. Moreover, the performances of the proposed 

personalized cooling system controlled with personal thermal models were also enhanced in an 

open-plan office in Shanghai during the cooling season by optimization of the whole TAC system. 
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Chapter 5: Data-driven personal comfort models combined with CFD simulation for the local 

fan-induced air-conditioning system. This chapter aims to conduct CFD simulations with the best 

adaptive thermal models developed with based on the data from both comfort database II as well 

as an empirical study in an open-plan office at the end of August in Tongji University, Shanghai. 

Chapter 6: Energy co-simulation study of the task-ambient cooling control based on synthetic 

thermal preference distributions. This chapter aims to conduct energy co-simulations to evaluate 

energy savings based on the optimization of the ambient conditioning system with constraints of 

thermal preference predictions with synthetic thermal preference distributions based on comfort 

database II in an open plan office room.  

1.6 Related thesis publications 
Academic journals 

[J1] Lu, S., Wang, W., Lin, C., & Cochran Hameen, E. (2019). Data-driven simulation of a 

thermal comfort-based temperature set-point control with ASHRAE RP884. Building and 

Environment, 156, 137-146. 

[J2] Lu, S., Wang, W., Wang, S., & Cochran Hameen, E. (2019). Thermal Comfort-Based 

Personalized Models with Non-Intrusive Sensing Technique in Office Buildings. Applied 

Sciences, 9(9), 1768. 

International conferences 

[C1] Lu, S., Wang, S., Cochran Hameen, E., Shi, J., & Zou, Y. Comfort-based integrative HVAC 

system with non-intrusive sensing in office buildings. Computer-aided Architectural design 

research in Asia, CAADRIA 2019, Wellington, New Zealand, April 2019. 

[C2] Lu, S., Cochran Hameen, E., Zou, Y. An interactive building control for the integrative 

HVAC system featuring personalized cooling in office buildings. ASHRAE annual conference, 

Kansas City, Missouri, June 2019. 

[C3] Lu, S., Cochran Hameen, E. Simulation Study of Individual Thermal Comfort with the 

Integrated Personalized Fan and VAV System. Building simulation, Rome, Italy, September 

2019. 
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Table 2-1 Nomenclature� 
Abbreviation Description 

ASHRAE RP884 ASHRAE RP-884 Adaptive model project 

ASHRAE 55 ASHRAE Thermal environmental conditions for 
human occupancy 

ASH ASHRAE thermal sensation scale 

PMV predicted mean vote 

comfort database Global thermal comfort database II 

TAC task ambient conditioning 

SVM support vecor machine 

RF random forest 
KNN k-nearest neighbor 

GMM gaussian mixture model 

BIC Bayesian information criteria 

MDP markov decision process 
RL reinforcement learning 
DP dynamic programming 

MC monte carlo 
TD learning temporal difference learning 

Q-learning off-policy TD learning 
SARSA on-policy TD learning 

 

This chapter aims to propose a reinforcement-learning based temperature set-point controller 

based on statistical personalized thermal comfort models developed with the subset of RP884 

database where data were selected from office buildings in three major climates. Moreover, it has 

provided the comprehensive understanding of adaptive thermal comfort in the real environment. 

This chapter has mainly two contributions. The first contribution is to implement various machine 

learning algorithms beyond common methods such as regressions, including k-nearest neighbor 

(KNN) (Altman, 1992), support vector machine (SVM) (Smola et al., 2004), random forest (RF) 

(Liaw & Wiener, 2002) to develop thermal comfort models over multiple climate zones and 

compare with PMV regarding the performances of predicting thermal comfort with 7-point 

ASHRAE sensation scale (ASH) (ASHRAE 55, 2013). The second contribution is to implement 



	

	 18	

and evaluate the model-free reinforcement learning-based temperature set-point controller with 

the statistical thermal comfort model in a simplified data-driven simulator. 

With the sub-hypothesis 2 that adaptive thermal comfort model can improve the performances 

of occupant-responsive HVAC control in terms of thermal comfort, the methodology can be 

divided into two parts. The first part is to develop the data-driven thermal comfort model with 

ASHRAE RP884 database and the second part is to develop a tabular Q-learning based 

temperature set-point controller based on combination of thermal sensation predictions from the 

adaptive thermal comfort model and some domain knowledge from ASHRAE 55 (2013). Both 

parts were implemented in Python. 

2.1 Development of the thermal comfort model with ASHRAE RP884 database 
Figure 2-1 describes the development of thermal comfort models. The classification follows 

the standard machine learning pipeline, including data preprocessing, classification model 

selection, classification model training, and model testing. Besides classification, an unsupervised 

clustering was also implemented to identify the thermal sensation distribution under different 

indoor thermal conditions.   

 
Figure 2-1 Thermal comfort model pipeline 

2.1.1 Data description and preprocessing 

The dataset used in the project is the subset of ASHRAE RP884 database, which was collected 

from various studies on thermal comfort and reformatted into the same structure across the world. 

The original dataset includes 22000 instances. However, the subset used in the paper was truncated 
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and well cleaned based on the major climates and air-conditioned office buildings during summer 

and winter, including Mediterranean, humid subtropical and west coast marine climates. Therefore, 

the total number of instances of the subset is 5530. Moreover, the original RP884 database collects 

over 80 attributes under different office environments. However, most of features have large 

amount of missing data and lack of consistency, including physical factors such as gender and age. 

Therefore, as shown in Table 2-2, features from sensor measurements plus clothing insulation are 

extracted from the original codebook and Figure 2-2 shows ASH scale used as prediction labels in 

the study. Moreover, the extracted features were ranked with feature selection algorithm based on 

tree-based feature selection to analyze the most important factor to thermal comfort.  

 
Figure 2-2 ASHRAE thermal sensation scale 

 

Table 2-2 The extracted features from the original feature space 

Feature name Description 

TAAV Average of three heights' air temperature [oC] 

RH Relative humidity [%] 

Dayav_ta Outdoor average of min/max air temp on day 
of survey [oC] 

Dayav_rh outdoor average min/max relative humidity on 
day of survey [%] 

MET Average metabolic rate of subject [met] 

INSUL Clothing plus upholstery insulation [clo] 

TRAV Average of three heights’ mean radiant 
temperature [oC] 
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VELAV Average of three heights’ air speed [m/s] 

 

2.1.2 Clustering: 

Before developing a temperature set-point controller such that the system could automatically 

adapt the comfortable environment for occupants, it is important to have an overview over the 

indoor thermal environment conditions (i.e. indoor air temperature, relative humidity) among 

different open-plan office buildings and how occupants’ thermal sensations distribute across the 

world. In order to see how distinctive thermal conditions are in the dataset, similar thermal 

environments were grouped into a cluster. Unsupervised clustering is a learning method where the 

parameters are learned with unlabeled data. Among unsupervised clustering, the most two 

common yet efficient algorithms are K-means (Faber, 2004) and Gaussian mixture model (GMM) 

(Reynolds, 2015). K-means clusters the dataset with hard assignments that each cluster has a 

unique centroid point and each data point belongs to only one cluster. However, GMM clusters 

the dataset with soft assignments that each data point is assigned to a mixture of clusters where the 

mean and variance matrix of each cluster, the probability that a data point belongs to a cluster 

" # $%&'()* = , 	and the mixture proportion of a cluster "($%&'()* = ,)  are generated. The 

clustering process follows the conditional probability as below: 

p # cluster = i ~N µ, σ   (2-1) 

p # = p x cluster = i p(cluster? = i) (2-2) 

where x(@A, @B…,@D)  is an instance in the feature space consisting of all environment-related 

features and the dataset can be estimated with k clusters. As shown above, since each cluster 

follows normal distribution, the probability density of the whole dataset " # 	can be estimated 

with the sum of weighted clusters.  

Moreover, during testing, the new data point is assigned to a cluster with the highest 

probability that the data point belongs to. Since GMM is a better clustering method to approximate 

a general distribution and clusters may overlap with each other, instead of K-means clustering, 

GMM was implemented that each cluster is assigned with a mean and a co-variance matrix in this 

study.  

In addition, since GMM algorithm clusters the data as appropriately as possible by conducting 

maximum likelihood estimation to get parameters of each cluster, the optimal number of cluster 

has to be determined further. Bayesian information criterion (BIC) (Schwarz, 1978) is also a model 
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selection method to find out suitable parameters. In this study, the best number of cluster was 

selected with Bayesian information criterion (BIC) where the optimal k could get the lowest BIC 

score, which aims to find the true model with high probability and it is assumed one of the models 

is the true model. In this study, when selecting the number of cluster, the one with the lowest BIC 

is preferred. Suppose we formulate a collection of candidate models, EA,EB …ED.	 The 

mathematical formula of BIC for each candidate model is shown as below: 

BIC = −2%LM N|@A, @B …@D + Q%L(L)   (2-3) 

where L is likelihood function, N is the number of cluster, x is the data, k is the dimension of the 

feature space and n is the number of data. 

2.1.3 Classification algorithms: 

After clustering, several classification algorithms have been implemented to train and evaluate 

the prediction performances of thermal comfort models with the best parameters by model 

selection. Cross-validation is one of the common methods of model selection, which aims to find 

the model that gives the best prediction. It can be used for both parametric models and non-

parametric models. In general, the data are split into a training set and a test set. The models fit on 

the training set and are used to predict the test set. Usually, many such splits are used and the result 

are averaged over splits. In other words, n-fold cross-validation means that the original dataset is 

split into n folds where one-fold is used as test set and the rest is used as training set. Then, the n 

models are developed with different training sets and the final classification result is the average 

of results of all n models on the test sets. Based on the specific dataset, 5-fold cross-validation was 

implemented in this study for tuning parameters of each classifier to select the best model.  

Besides, since the feature space is high-dimensional, K-nearest neighbor (KNN), support 

vector machine (SVM) and random forest (RF) were implemented to train the classifiers as 

supervised learning methods. In addition, 90% of normalized dataset was separated into training 

set and the rest of the data was for development set and test set. Moreover, even if neutral sensation 

doesn’t necessary mean thermal comfort, it is a precondition of comfort (Auliciems & Szokolay, 

1997). Therefore, in this study, we conformed to the conclusion occupant feels thermally 

comfortable when they feel the thermal environment is neutral. In other words, occupant is 

considered to be comfortable if the voted sensation is 0. 

2.1.3.1 K-nearest neighbor 
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KNN is one of the simplest machine learning algorithms. It follows voting scheme and is a 

non-parametric method for classification and regression where k is a tuning parameter, indicating 

the number of training data used for predicting the label. With smaller k, the bias will be lower 

while the variance will be higher. On the contrary, with larger k, the bias will be higher while the 

variance will be lower. The pseudocode of KNN is shown below: 

Inputs:	RSTUVD: training data with all features; WSTUVD: thermal sensation labels of RSTUVD; RSXYS: 
testing data with all features 

for @V ∈ RSTUVD	do 

Compute the distance d(RSXYS, RSTUVD) 
End for 

Construct set I containing indices of	WSTUVD where the corresponding RSTUVD has k smallest 

distances d(RSXYS, RSTUVD) among all training data. 

Return the majority label of WV	[ℎ)*)	,	 ∈ ] 
2.1.3.2 Support vector machine 

Besides KNN, SVM can be used to develop supervised classification models with high-

dimensional and non-linear data. Similar to GMM, since the data is unlikely to be separated 

linearly, with SVM classification, soft margin usually performs better than hard margin. Moreover, 

compared to quadratic programming to solve the optimization problem, kernelized SVM can be 

computed much more efficiently. The optimization function with soft margin is shown in the 

following equation, which can be further kernelized (Guo & Niedermeier, 2007). 

Inputs: S={(@A, ^A), (	@B, ^B)…,(	@D, D̂)}, where @V ∈ RSTUVD and ^V ∈ WSTUVD 

Obj. argminc,de,df…dg	| [ |B + h iV	V  (2-4) 

s.t. ^V[ ∗ @V ≥ 1−iV	 (2-5) 

		iV	 ≥ 0 (2-6) 

where n is a weight vector, C is a penalty parameter controlling how much you want to avoid 

misclassifying each training example and iV	  is a slack variable indicating if the sample is 

misclassified. With larger C, the optimization will select smaller margin of the hyper plane while 

with smaller C, the optimization will select larger margin of the hyperplane. 

Moreover, the above constrained optimization problem can be converted into minimization of 

the unconstrained optimization problem with hinge-based loss function, as shown below: 

argminc	| n |B + h max	(0, 1 − ^o(@V	))V  (2-7) 
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where pq@	(0, 1 − ^o @V ) is the loss function. 

Even if the above optimization problem with many features can be solved with quadratic 

programming, the computational cost is higher. Therefore, the optimization problem can be further 

kernelized by replacing the term (1 − ^o @V ) in the loss function with various kernel functions 

with the form of r(s, sV) where q and	sV are the combination of y and x. In this study, linear kernel, 

polynomial kernel and Gaussian kernel were implemented to select the best model.  

2.1.3.3 Random forest  

Unlike KNN and SVM, random forest is an ensemble learning method that averaging the 

accuracy of a number of decision trees constructed with bootstrapping sampling at training time. 

However, random forest adds additional randomness to the model that it looks for the most 

important feature among a random subset of features and random subset of the whole dataset 

instead of all features and the whole dataset while splitting the node. Compared to building deep 

decision trees with high-dimensional feature space, owing to randomness, RF builds several 

smaller trees, thus suffering less from overfitting. As a result, it generally can develop better model 

than decision trees.  

Moreover, since RF has the ability to measure the relative importance of each feature 

according to information gain, it can also be used for feature selection. Equation 2-8 shows the 

information gain formula. Since the larger the information gain is, the more important the feature 

will be, the feature with highest conditional entropy has the highest importance. Therefore, as 

mentioned before, RF was not only implemented for developing statistical thermal comfort models 

but also was used for feature importance ranking in preprocessing. During model selection, the 

hyper-parameters of the number of trees and the tree depth are selected with cross-validation.   

I Y, RV = u W − u(W|RV)   (2-8) 

where  

I Y, RV  is information gain of Y given the	feature	RV; 
H(Y) is entropy of a random variable Y; 

u(W|RV) is entropy of a random variable given the feature RV. 
2.1.3.4 Model evaluation metrics 

Confusion matrix is used to describe the performance of a classification model. The confusion 

matrix of binary classification is shown in Table 2-3: 
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Table 2-3 Confusion matrix 

  Predicted: Negative Predicted: Positive 
Actual: 
Negative True negative False positive 
Actual: 
Positive False negative True positive 

 

Each cell in the table is the number of the testing samples with the correspondent prediction 

and the actual results. Besides confusion matrix, recall is used to give a comprehensive evaluation 

over the statistical thermal comfort models. Based on the table, the calculation formula is shown 

in Equation (8). Recall measures the ability of a model to find all correctly classified instances 

within a dataset. 

Recall = True	positive
True	positive+False	negative   (2-9) 

2.2 Thermal comfort-based temperature set-point controller 
The goal is to develop a controller which learns to take the right action so that the thermal 

sensation state can reach the optimal state. Therefore, a tabular Q-learning based algorithm were 

implemented to get the optimal policy by maximizing the accumulative sum of state values. Figure 

2-3 shows the whole framework of the intelligent control system with the statistical thermal 

comfort model. As shown in the figure, the temperature set-point is determined by Q-learning 

controller with the input of thermal comfort prediction and sensor data in the simulated 

environment. Moreover, in the real application, the new sensor data could be further stored to 

update the thermal comfort model after a certain period of time. 
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Figure 2-3 The framework of the reinforcement learning-based temperature set-point controller 

 2.2.1 Q-learning algorithm: 

Reinforcement learning (RL) is a markov decision process (MDP) consisting of states, actions, 

reward function, state transition probability matrix and a discount factor and RL control aims to 

find the optimal policy consisting of an action sequence to gain the maximum value, which is the 

expected value of the cumulative future rewards from a start state to the terminal state (Sutton & 

Barto, 2018). The general diagram of reinforcement learning is shown below. As shown in Figure 

2-4, the state and the reward will change at every step after selecting an action. In this study, the 

agent is trained with episodic environment, which means the agent is trained with multiple 

episodes with random start state so that it can explore completely.  

 
Figure 2-4 The general diagram of reinforcement learning 
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In order to ensure the value will converge and maximized ultimately, the value function under 

policy π	is defined as: 

~� ' = Ä� ÅS ÇS = ' = Ä�[ ÑÖÜSáÖáA|ÇS = 'à
Öâä ] (2-10) 

where Ñ is discount factor, G is actual return, R is reward and S is state. 

Alternatively, maximizing state-action value Q, which is the value of taking action a in state 

s under policy π can also find out the optimal policy. Therefore, the mathematical formula of state-

action value function is defined as: 

s� ', q = Ä� ÅS ÇS = ', åS = q	 = Ä�[ ÑÖÜSáÖáA|ÇS = ',à
Öâä 	åS = q	] (2-11) 

where Ñ is discount factor, G is actual return, R is reward, S is state and A is action.  

Moreover, there are three major categories of reinforcement learning, which are dynamic 

programming (DP), Monte-Carlo (MC) and temporal-difference (TD) learning (Sutton & Barton, 

2018). Among these three categories, TD learning is the combination of DP and MC to update the 

value or state-action at time t. The simplest TD method is defined as: 

V ÇS ≔ 	V ÇS + è[ÜSáA + Ñê ÇSáA − ê(ÇS)]  (2-12) 

where è is the learning rate, ÜSáA + Ñê ÇSáA  is called TD target and ÜSáA + Ñê ÇSáA − ê(ÇS) 
is called TD error.  

Meanwhile, TD learning can be further categorized into on-policy TD learning called SARSA 

and off-policy called Q-learning. On-policy means the value update is dependent on the current 

policy followed in the training. On the other hand, off-policy is the term meaning that the value 

update is independent with the policy being followed. It can guarantee to learn the optimal policy 

regardless of the current situations. Compared to SARSA, Q-learning can get optimal policy while 

SARSA can only get near-optimal policy, particularly in the simulated environment with low cost 

and fast iterations. Therefore, in order to develop the comfort-based controller based on thermal 

comfort model, Q-learning is selected to be the controller algorithm. The pseudocode of Q-learning 

controller is shown below: 

Initialize ë ', q 	arbitrarily and Q (terminate-state, *) = 0 in the Q-table 

Repeat (for each episode): 

  Initialize start state S 

  Repeat (for each step of episode): 

Choose action A from S using policy derived from Q (i.e. e-greedy) 

Take action A, observe R, Çí 
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													ë	(Ç, å) ∶= 	ë(Ç, å) + 	è[Ü	 + 	Ñpq@Uë Çí, q − ë(Ç, å)] 
													Ç ∶= Çí 

  Until S is terminal 

During evaluation process, the optimal policy consisting of a series of actions is determined 

with the trained Q-table by selecting the action with highest Q-value under a specific state.  

2.2.2 Data-driven simulation setup: 

In order to evaluate the reinforcement learning-based controller before deployment, the data-

driven simulator is developed based on the statistical thermal comfort model built with RP884 

dataset in the paper. Since the radiant temperature data is similar to the indoor air temperature data 

according to the dataset, the radiant temperature is approximated with indoor air temperature. 

Therefore, the state space is designed to be a tabular state space and each state consists of clothing 

insulation, indoor air temperature and relative humidity, which are top features to predict thermal 

sensations with the trained classifier. Meanwhile, the indoor air temperature is assumed to be 

within the range between 15 oC and 31 oC. Moreover, since the controller is only focused on 

temperature set-point, the action space consists of increasing 1 oC, no change and decreasing 1 oC.  

Among different components in reinforcement learning, reward function is the most important 

one since it determines what policy the agent can get the most incentives or the hardest penalties. 

In this study, since the statistical thermal comfort model may predict incorrectly when the actual 

thermal sensations are not neutral, the reward function is designed with the combination of the 

predicted thermal sensation as well as some rules. The rules are designed with domain knowledge 

based on thermal comfort zone graph defined in ASHRAE 55 (2013) where for clothing insulation 

being 0.5 clo, the comfortable air temperature range is between 24 oC and 26 oC while for that 

being 1 clo, the comfortable air temperature range is between 23 oC and 25 oC. The reward function 

is shown below:  

• With clothing insulation being 0.5 clo: 

r s, a =

− "*)î − 1000													,o	()p" < 16
− "*)î − 1 ∗ 24 − ()p" 	,o	()p"	 ∈ [16,23]
− "*)î + 10																											,o	()p"	 ∈ [24,26]
− "*)î − 1 ∗ ()p" − 26 	,o	()p"	 ∈ [27,31]

− "*)î − 1000													,o	()p" > 31

 (2-13) 

 
• With clothing insulation being 1 clo: 
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r s, a =

− "*)î − 1000														,o	()p" < 16
− "*)î − 1 ∗ 23 − ()p" 	,o	()p"	 ∈ [16,22]
− "*)î + 10																												,o	()p"	 ∈ [23,25]
− "*)î − 1 ∗ ()p" − 25 	,o	()p"	 ∈ [26,31]

− "*)î − 1000													,o	()p" > 31

 (2-14) 

where  

r(s, a) is the state-action reward. 

pred is the prediction result of thermal comfort models. 

temp is the indoor air temperature 

Since the controller is only for temperature set-point, relative humidity is assumed to be 

always in a comfort range (i.e. 40-60%), thus not being included in the reward function. Moreover, 

since the indoor air temperature changes behind the temperature set-point due to thermal mass, it 

is assumed that the temperature set-point will not change until the indoor air temperature reaches 

the set-point for each step. 

2.3 Result analysis of RP884 database 
2.3.1 Clustering: 

Table 3 shows the ranking score of all features with feature selection. As shown in the table, 

the top four features are indoor radiant temperature, indoor air temperature, relative humidity and 

clothing insulation.  

Table 3 Ranking score of all features 

 

Moreover, Figure 2-5 (a)-(c) show the thermal sensation vote distribution classified into less 

than zero, zero and larger than zero with those top features of indoor air temperature, indoor 

relative humidity and clothing insulation collected in the subset. The results have shown among 

1496 human subjects, the non-neutral sensation votes cannot be ignored since the number of 

neutral sensation vote is 2782 while that of non-neutral sensation vote is 2848.  

INSUL TRAV TAAV RH VELAV Dayav_ta MET 
Dayav_

rh 
17% 15.30% 14.70% 13.80% 13.60% 9.40% 9.20% 7.10% 
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              (a) sensation < 0                                                                  (b) sensation > 0 

 

 

 

 

 

 

 

(c) Sensation = 0 

Figure 2-5 Thermal sensation distribution in subset of RP884 database  

Meanwhile, seven clusters were selected based on BIC score with GMM clustering, as shown 

in Figure 2-6. In addition, Figure 2-7 showing the thermal sensation distribution within each cluster 

illustrate each cluster has similar thermal sensation distribution where most of participants have 

thermal sensation votes as neutral. To summarize, the subset of ASHRAE RP884 database 

collected much fewer instances of uncomfortable conditions than those of comfortable states in 

regular office environments.  
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2.3.2 Classification: 

With model selection, the k was selected as 100 in KNN, C was selected as 1 in SVM with 

Gaussian kernel and a total of 50 trees were ensemble in RF with tree depth of 3.  

Table 2-4 shows the evaluation results with the proposed classifiers and performance 

benchmark with PMV. As shown in the table, there is little distinction among all classifiers, which 

indicates the selected classifiers have almost same performances with the imbalanced RP884 

dataset. Moreover, the proposed classifiers outperform PMV in terms of recall score. This indicates 

that the model has predicted around 50% of testing data with correct labels. However, it is also 

necessary to see how the prediction results distribute among all labels. 

Table 2-4 Evaluation performances of the proposed classifiers and PMV 

Classifier Recall 
KNN 49.30% 

Figure 2-7 Thermal sensation distribution of the seven clusters 

Figure 2-6 BIC score over different number of clusters 
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SVM 48.70% 
Random forest 48.70% 

PMV 43% 
 

Figure 2-8 (a)-(b) show the confusion matrices of all three classifiers and PMV. As mentioned 

before, due to the imbalance of the data that the number of instances with label of neutral sensation 

is much higher than those with other labels, the classifiers tend to predict all different sensations 

to neutral sensation. As a result, confusion matrices of the three classifiers are almost same as each 

other. However, unlike the proposed classifiers, even if PMV has much lower accuracy in 

predicting neutral sensation, the prediction accuracies of other sensations increase. This makes 

sense since all classifiers are built with data-dependent machine learning algorithms, the 

predictions are also affected by how the training data looks like. Therefore, all of the proposed 

classifiers aiming to minimize the number of misclassified instances will be biased to the neutral 

sensation with testing data. As a result, the statistical thermal comfort models need to be coupled 

with domain knowledge in the temperature set-point controller.  

 

Figure 2-8 Confusion matrix of sensation prediction with (a) proposed classifier (b) PMV 

2.3.3 Reinforcement learning based temperature set-point control: 

As mentioned in the methodology, the state consists of indoor air temperature, indoor relative 

humidity, clothing insulation. During training, the agent learns to reach the comfortable 

temperature set-point by choosing the action with e-greedy algorithm. During testing, the agent 

chooses the optimal action based on the trained Q-table. Figure 2-9(a)-(b) show the optimal 

(b)  (a)  
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temperature set-point policy during evaluation with the start states of (15 oC, 60%, 0.5 clo) and (31 
oC, 60%, 1 clo) after training 1000 episodes, respectively. As shown in Figure 9(a), the temperature 

set-point increase 1 oC at every step according to the Q-table until it reaches 24 oC where the 

temperature set-point no longer needs changing. Moreover, Figure 9(b) shows the temperature set-

point decreases 1 oC at every step until it reaches 25 oC since it reaches the optimal state. Instead 

of using a set of knowledge-based rules to control the set-point, the agent is able to learn the 

optimal policy after training with the appropriate reward function. 

 

Figure 2-9 Optimal policy starting at (a) 15 oC (b) 31oC 

Last but not least, the performances of 6 different starting states were evaluated. Table 2-5 

shows the starting state conditions and the temperature set-point of the end-state by Q-learning 

based controllers trained with 10, 50, 100 episodes, respectively. As shown in the table, if the 

controller is trained with 10 or 50 episodes, for start state with indoor air temperature of 15 oC and 

30 oC, the generated Q-table is not guaranteed to provide the optimal policy reaching the 

comfortable state. This is because if the agent is not trained with enough episodes, some of the 

states cannot be explored, thus Q-table is not fully developed.  

Table 2-5 Terminal states with trained Q-table based on different number of episodes 

indoor air 
temperature of start 

state[C] 

indoor 
relative 

humidity [%] 

clothing 
insulation 

[clo] 
indoor air temperature of end state[oC] 

      10 episodes 100 episodes 1000 episodes 
18 60 0.5 18 15 24 
18 60 1 18 15 23 
30 60 0.5 30 31 26 
30 60 1 30 31 25 
24 60 0.5 24 24 24 
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24 60 1 24 24 24 
 

2.4 Discussions of adaptive thermal comfort models with RP884 database 
   This paper has implemented a reinforcement learning-based controller with statistical 

thermal comfort models with the subset of RP884 dataset. As reinforcement learning has drawn 

much more attention than before, particularly in robotic control, it has potential to be used for 

thermal comfort-based HVAC control as well. With the implementation of reinforcement learning 

controller, the results have shown that the thermal comfort-based controller can control the set-

point to the optimal state with any start state after a certain number of episodes for training. Even 

if the current learnt policy in Q-learning is as simple as rule-based control policy, it has advantages 

of rule-based control when the state space is more complex than the current tabular state space 

such as continuous or infinite state space. Moreover, compared to rule-based control, 

reinforcement learning-based control is able to learn more complex logics.  

In addition, a general thermal comfort model with the subset of RP884 database was developed 

for reward function design of the controller. As a result, due to imbalanced dataset where the 

majority vote is neutral sensation, the highest recall of 49.3% was achieved by training KNN 

classifier. Compared to the state-of-art thermal comfort model such as PMV, the statistical thermal 

comfort models outperform by 6% on average. However, the prediction performance is still limited. 

Resampling methods like over-sampling and under-sampling were both implemented. However, 

the results have shown that over-sampling and under-sampling decreased the recalls. Since for 

most of time in the real environment, occupants feel comfortable while only a few times occupants 

may have some complaints, it is better to have relatively higher recall and update the thermal 

comfort models by collecting interactions (i.e. occupants overriding the system) between the 

system and the users to update the thermal comfort model offline in real deployment. In addition, 

6-point thermal comfort scale was also used for developing thermal comfort models. However, 

due to missing data, the recall scores with the proposed algorithms were much lower than those 

with 7-point thermal sensation scale. Even if thermal sensation is just the pre-condition of thermal 

comfort, since it is better predicted by measurable and objective variables, thermal sensation 

prediction is more suitable for the proposed controller with RP884 dataset, especially considering 

the real deployment. Moreover, as mentioned before, since the number of instances for occupants 

with very different thermal preferences from the majority is too few to build the thermal comfort 
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models, the performances could benefit from a newly released dataset called ASHRAE global 

thermal comfort database II (Comfort Database) [30]. It includes approximately 81846 complete 

sets of objective indoor climatic observations in the field setting collected since 2004. Based on 

some preliminary analysis of thermal satisfaction, occupants are more sensitive towards the indoor 

thermal conditions than those in the 1990s, which brings about more variant data. Therefore, it is 

expected that thermal comfort models using the new dataset will outperform those using RP884.  

The proposed thermal comfort-based controller could be further deployed into the real 

building. In order to implement the system into the real office building, it is important to design a 

feedback strategy which will not be too interruptive to the occupants. Moreover, during 

deployment, the statistical thermal comfort model needs to be calibrated with new users’ feedback 

so that the controller is able to take the optimal action after training in a more accurate simulator. 

In addition, besides implementing multiple personalized controller within the context of 

conventional centralized HVAC system, task-ambient conditioning system (TAC) [31] could also 

make the use of such personalized controllers. Last but not least, current controller only takes 

occupant thermal comfort into consideration. However, optimizing energy performance while 

maintaining thermal comfort could be realized by using different reward functions in 

reinforcement learning-based controller.  

2.5 Conclusions:  
In this study, a data-driven simulation of comfort-based temperature set-point control system 

with tabular Q-learning has been conducted. The proposed controller uses the subset of ASHRAE 

RP884 database to develop a thermal comfort model and some domain knowledge to design a 

reward function. In addition, the thermal comfort model is a classification model with machine 

learning methods of KNN, SVM and RF to predict thermal sensation and indicate thermal comfort. 

Compared to baseline of PMV, the recall of the thermal comfort model with the three algorithms 

has increased 6.3%, 5.4% and 5.4%, respectively. Moreover, most of correct predictions are those 

instances labelled as neutral due to imbalanced dataset.  

Besides the statistical thermal comfort models, the reinforcement learning-based controller 

with tabular Q-learning control can reach the optimal comfort state after training with 100 episodes 

and generate the optimal policy from whatever start state in terms of indoor thermal environment. 

However, there are some limitations and simplifications in the controller design and more work 

could be done to improve the performances of thermal comfort models. In addition, more work 
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could also be done to implement reinforcement learning control with the integrated reward 

function of the statistical thermal comfort model and energy savings as well as the joint control of 

temperature and humidity set-points.  

This study contributes to adaptive thermal comfort field by developing statistical thermal 

comfort models with various machine learning algorithms as well as implementing and evaluating 

a model-free reinforcement learning-based temperature set-point controller with the statistical 

thermal comfort model in a simplified data-driven simulator. However, since the database has a 

limitation that few instances were collected from each individual subject, the performances of 

thermal sensation prediction were limited for personal thermal comfort. Therefore, with more data 

from empirical studies shall be collected and the proposed personal comfort control system could 

be deployed into the real building systems.  
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Chapter 3: Comfort-based non-intrusive personalized 

models in office buildings 
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Table 3-1 Nomenclature 
 

 

With a comprehensive understanding of adaptive thermal comfort with ASHRAE RP884 

database (comfort database I), it can be concluded that in real office environment, most occupants 

feel comfortable while only a few feels uncomfortable. Moreover, RP884 database only collected 

few instances for each subject. Therefore, it is of importance to study a more fine-grained personal 

thermal comfort management in the real office environment. In order to do so, occupant-related 

sensing techniques have to be developed so that thermal models can be developed in the real 

environment and occupants will not feel interruptive and intrusive during the work. Compared to 

sensing approaches like wearable devices, contactless vision-based occupancy sensors such as IR 

camera are much less intrusive and have drawn much more attention than before. However, most 

of recent studies using IR camera for thermal comfort use regression analysis with only skin 

temperature, which may not have high accuracy when predicting occupant thermal comfort. 

Therefore, this chapter aims to develop adaptive thermal models with three different feature sets 

trained with RF and SVM. In order to collect occupant data, an experimental study was conducted 

in an open-plan office in Shanghai with the non-intrusive sensing system consisting of indoor air 

Abbreviation Description 

ASHRAE RP884 ASHRAE RP-884 Adaptive model project 

ASHRAE 55 ASHRAE Thermal environmental conditions for human 
occupancy 

ASH ASHRAE thermal sensation scale 

PMV predicted mean vote 

TAC task ambient conditioning  

SVM support vecor machine 

RF random forest 

DHT22 temperature/humidity sensor 
AMG8833 infrared temperautre sensor 

IR infrared thermography 

ESP8266 micro-controller with 2.4GHz WIFI module 
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temperature and relative humidity sensor DHT22 and an IR camera. The study contributes to the 

field of the personalized thermal comfort by proposing new feature sets and prediction algorithms 

to develop adaptive thermal models, which could further be integrated into personalized system 

control as well as TAC system in open-plan offices. The model development part was implemented 

in Python while the data collection part was implemented in C++ with ESP8266 microcontroller.  

3.1 Experimental Setup 
Since part of this dissertation research aims to develop individual thermal models which 

capture the fine-grained differences between different people, instead of developing a generic 

thermal model, it makes more sense to develop individual thermal models. Moreover, for machine 

learning algorithms, the performance will increase with more amount of data. However, even if 

the common dataset like RP884 collected data from large group of participants, only less than 10 

instances were collected for each individual. Therefore, unlike RP884, in this study, thermal 

models were developed based on a six-day experimental study to collect certain amount of data 

with two healthy subjects in their mid-twenties (one male and one female) between 3/11/2018 and 

3/16/2018 in an office building in Tongji University, Shanghai. 

Based on the design of non-intrusive sensing system and the literature review of principle 

factors to thermal comfort, the measured variables are shown in the following Table 3-1. The 

interval of data collection is 5 minutes, which corresponds with the survey responses. The 

experiment used the IR camera to measure the side face temperature and clothing surface 

temperature by manually selecting the face area and clothing area in the high-resolution thermal 

images, and then calculating the average surface temperature of those areas, respectively. Figure 

3-1(a)-(b) show the participants’ status in the experimental study and the correspondent 

thermographic photos, respectively. Before each session, the participants’ clothes were reported 

and heart rates were measured by a free mobile app called Instant Heart Rate so as to ensure the 

participants have similar thermal status in the beginning. Lastly, clothing insulation was manually 

estimated based on ASHRAE 55 and was used for calculating PMV values. In order to get the 

accurate skin temperature, the emissivity was set to be 0.98.  
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          (a) The RGB image of the two subjects          (b) The IR image of the two subjects 

                                         Figure 3-1 The experimental status of the two subjects 
 

Table 3-1 Measured variables and sensor tools 

Variable Sensor tool Resolution Operating Range 
Skin temperature [�] FLIR B8400 320x240 

pixels 
-20℃~120℃ 

Clothing surface temperature 
[�] 

FLIR B8400 320x240 
pixels 

-20℃~120℃ 

Indoor air temperature [�] DHT22 0.1℃ -40℃-80℃ 
Indoor relative humidity [%] DHT22 0.1℃ -40℃-80℃ 

Clothing insulation [clo] Manually identify the 
insulation with 
ASHRAE 55 

  

 

As mentioned before, even if neutral sensation doesn’t necessarily mean thermal comfort, it 

is a precondition of comfort. Therefore, the statement that occupant feels thermally comfortable 

when they feel the thermal environment is neutral was in this study, and 7-point thermal sensation 

scale as classification labels was used, as shown in Table 3-2. 

Table 3-2 ASHRAE Thermal-sensation scale 

Thermal sensation vote (TSV) Meaning 

-3 very cold 

-2 cold 

-1 cool 

0 neutral 
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1 warm 

2 hot 

3 very hot 

 

In order to create different thermal environment conditions, an overhead air conditioner and 

four convective heaters were controlled in transient conditions where the air temperature increases 

no more than 0.2℃/min on average, as shown Figure 3-2. Moreover, Figure 3-3 shows the 

floorplan of the testbed where two subjects were seated in two separate desks and the camera has 

two locations to take photos of each subject, respectively. In addition, there were a total of 14 

different sessions and each session last for at least 2 hours. Table 3-3 shows the temperature 

changes during each session. Since the participants attended the study for all sessions, all levels of 

thermal sensations were reported at least once by participants even if the majority votes belonged 

to neutral sensation. 

 
Figure 3-2 Experimental Setup. (a) Heaters (b) FLIR B400 IR camera (c) Air-conditioning 

terminal 
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Figure 3 Floorplan of the test bed 

 
Table 3-3 Temperature changes during each session 

Date Start 
time 

Transitio
n time 

End 
time 

Start 
temperature 

(�) 

Transitional 
Temperature 

(�) 

End 
temperature 

(�) 

3/11 
9:50 11:00 11:50 17.4 29.3 22.3 
13:45 15:20 16:45 22.6 29 24.3 
19:30 21:45 22:30 19.3 28.5 20.9 

3/12 10:10 11:10 11:30 17.7 29.5 25.3 
13:40 14:55 15:30 21.2 28.4 24.4 

3/13 
9:35 11:20 12:00 19 28.9 24.1 
13:40  17:30 29.9  18.5 
19:40 21:05 22:35 21.2 28.5 24.3 

3/14 
9:30 10:50 11:35 20.8 29 26.5 
13:35 16:50 17:35 17.3 29.3 23.8 
20:00 20:45 22:30 20.9 28 18.7 

3/15 9:35 11:05 11:40 19.5 29.5 24 
13:30 14:50 16:30 21.5 30 18.1 

3/16 8:50 9:00 10:20 16.1 14.4 26.2 
 

3.2 Development of personal comfort models   
The development of thermal models follows the typical machine learning pipeline, as shown 

in Figure 3-4. In this study, three different feature sets were used for developing the thermal 

models, as shown in Table 3-4.  
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Table 3-4 Feature sets benchmark 

Base feature set Feature set A Feature set B 

air temperature air temperature air temperature 

relative humidity relative humidity relative humidity 

side face skin temperature side face skin temperature side face skin temperature 

 clothing surface temperature 
side face skin temperature 

difference 
 

As to baseline, PMV was used to compare with the two classification models. However, 

several assumptions were set when calculating PMV. Firstly, since the mean radiant temperature 

(MRT) and indoor air velocity were not measured and the experimental environment avoided 

direct radiation, MRT was approximated with indoor air temperature when calculating PMV and 

the indoor air velocity was calculated as 0.1 m/s since there was no draft risk. In addition, since 

the subjects were seated during the whole study, the metabolic rate was calculated as 1 met and 

there was no external work.   

      
Figure 3-4 The development of thermal model pipeline 

The whole dataset was split into two parts where 80% of data is the training set and 20% is 

the testing data. In addition, before training the best model, the hyper-parameters used in the best 

models were selected with 5-fold cross-validation, as shown in Table 3-5.  In addition, in terms of 

classification algorithms, SVM and RF were implemented for classification since they can perform 

well with such relatively small-scale dataset. Same as chapter 1, before training the best model, 
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the hyper-parameters including the kernel function of SVM, tree depth and the number of trees of 

RF were tuned with 5-fold cross-validation.  

Moreover, the prediction results of SVM and RF were compared with PMV model. Besides 

recall score mentioned in Chapter 1, all thermal models were also evaluated with precision and F1 

scores (Kohavi, 1995), which were calculated with the confusion matrix (Table 3-6). Precision 

score describes how precise the model is out of the predicted results, which is the ratio between 

true positives and all predicted positives. Lastly, F1 score is used for seeking balance between 

recall and precision, which is harmonic mean of recall and precision. Precision and F1 scores can 

be computed with the following equations. 

Table 3-5 The parameters of SVM and RF to be tuned with cross-validation 

 Algorithms  Parameters  
SVM Penalty parameter C 1,10 

 Kernel type Gaussian, linear 
RF Tree depth 3,4 

 Number of trees 50,100 
 
 

Table 3-6 Confusion matrix 
 Predicted Negative Predicted Positive 

Actual Negative True negative False positive 

Actual Positive False negative True positive 
 

Precision = True	positive
True	positive+False	positive  (3-1) 

 

										F1 = 2 ∗ ùûü†?°?¢£∗§ü†•¶¶
ùûü†?°?¢£á§ü†•¶¶        (3-2) 

3.3 Result analysis 
The raw data has a total of 775 instances, among which the male subject had 413 instances 

and the female subject had 362 instances. Moreover, Table 3-7 shows the number of instances 

collected from each thermal sensation. As shown in the table, the distribution is imbalanced where 

the neutral sensation is the majority vote. 

 

 



	

	 44	

Table 3-7 Data distribution over different sensations 
 Very 

cold 
(-3) 

Cold 
(-2) 

Cool 
(-1) 

Neutral 
(0) 

Warm 
(1) 

Hot 
(2) 

Very 
hot (3) 

female 3 16 29 168 73 58 15 

male 7 13 24 188 100 58 23 
 
3.3.1 Relationships between occupant-related variables and TSVs 

In this study, two occupant-related variables were selected as features. One is side face skin 

temperature and the other is clothing surface temperature. Before developing the thermal models, 

the relationship between skin temperature and TSVs as well as the relationship between clothing 

surface temperature and thermal sensation were investigated. Figure 3-5(a)-(d) show the 

relationships based on the data collected with the two subjects. As a result, for female subject, the 

correlation coefficient between skin temperature and TSVs is 0.747 while that between clothing 

surface temperature and TSVs is 0.768. In addition, for male subject, the correlation coefficient 

between skin temperature and TSVs is 0.688 while that between clothing surface temperature and 

TSVs is 0.763. Therefore, clothing surface temperature has higher correlation with TSVs for both 

subjects.   

          
                                 (a)                                                                 (b) 

        
                                 (c)                                                                  (d) 
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Figure 3-5 Relationships between thermal sensations and (a) skin temperature of female subject 

(b) clothing surface temperature of female subject (c) skin temperature of male subject (d) 

clothing surface temperature of male subject. 

3.3.2 Classification: 

Based on 5-fold cross-validation with both female and male data, Table 3-8 shows the recall 

scores with cross-validation based on different parameter values of SVM and RF, respectively. As 

shown in the table, in terms of SVM model configuration, SVM with linear kernel has much better 

performance than Gaussian kernel with feature set A while there are few differences among all 

SVM configurations with the base feature set and feature set B for both subjects. Meanwhile, in 

terms of RF model configuration, there are few differences among all combinations of RF 

configurations and features sets. Since larger penalty number will result in slower SVM model and 

larger tree depth and number of trees will also result in slower RF model, SVM with linear kernel 

and penalty number of 1 were selected as SVM best model configuration and RF with maximum 

depth of 3 and 50 trees were selected as RF best model configuration.  

Table 3-8 Best parameters selected with model selection 

Model configuration Average Recall score 
 Female Male 
 Base A B Base A B 

SVM, C=1, kernel = linear 0.65 0.98 0.65 0.62 0.96 0.57 
SVM, C=1, kernel = Gaussian 0.62 0.68 0.57 0.61 0.78 0.59 
SVM, C=10, kernel = linear 0.62 0.98 0.6 0.6 0.96 0.6 

SVM, C=10, kernel = Gaussian 0.62 0.82 0.52 0.6 0.88 0.58 
RF, Max_depth=3, number of tree=50 0.6 0.96 0.6 0.68 0.95 0.59 
RF, Max_depth=3, number of trees=100 0.6 0.96 0.59 0.58 0.96 0.61 
RF, Max_depth=4, number of tree=50 0.63 0.97 0.59 0.57 0.99 0.62 
RF, Max_depth=4, number of tree=100 0.62 0.99 0.59 0.6 0.98 0.6 

 

Meanwhile, Table 3-9 and Table 3-10 show the performance benchmark among the thermal 

models of the two subjects with the three feature sets trained by SVM, RF and PMV, respectively. 

As a result, for the female subject, precision, recall and F1 scores of PMV on test data are 48.6%, 

48.6% and 48.3%, respectively. Compared to the baseline of PMV, SVM and RF have better 

performances with all three different feature sets. Among the three feature sets, feature set A 

comprised of indoor air temperature, relative humidity, side face skin temperature and clothing 

surface temperature has 100% recall, precision and F1 score with SVM, which significantly 

outperforms the baseline. This may be because the effect of clothing insulation on thermal comfort 
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has been taken into account since the dynamic clothing insulation can be estimated with clothing 

surface temperature and skin temperature, and the causal effect analysis also illustrates the clothing 

surface temperature has higher correlation with thermal sensations than the skin temperature. In 

addition, SVM performs better than RF with all three feature sets.  

For the male subject, precision, recall and F1 score of PMV on test data is only 35%, 33% and 

31.8%, respectively. Moreover, even if outperforming the baseline with recall score, both SVM 

and RF have much worse performances in predicting thermal sensation of the male subject with 

the base feature set and the feature set B than those of female subject. This indicates individual 

differences on thermal comfort such as gender, thus the personalized heating and cooling system 

being important to develop. However, for the feature set A, SVM still achieves high precision, 

recall and f1 scores which indicates that SVM can be the best classifier with the feature set 

consisting of indoor air temperature, relative humidity, skin temperature and clothing surface 

temperature for both the female and male subject. Therefore, such combination is recommended 

to be the thermal model for real-time prediction for automatic personalized heating and cooling 

system in open-plan offices.  

Table 3-9 Performance benchmark among the thermal models of the female subject 

 Base Feature set Feature set A Feature set B 
 P[%] R[%] F1[%] P[%] R[%] F1[%]  P[%] R[%] F1[%] 

SVM 62.3 62.9 62 100   100    100 69.2 64.7 65.1 
RF 57.7 48.6 48.6 91.6 91.4 91 49 47 46.3 

PMV 48.6 48.6 48.3 48.6 48.6 48.3 48.6 48.6 48.3 
 

 
Table 3-10 Performance benchmark among the thermal models of the male subject 

 Base Feature set Feature set A Feature set B 
 P[%] R[%] F1[%]     P[%]   R[%] F1[%] P[%] R[%] F1[%] 

SVM 33.5 42.5 35.8 97.5 95 96.1 32.1 43.6 34.5 
RF 28.8 40 33.1 90.4 92.5 91.4 26.8 38.5 30.7 
PMV 35 33 31.8 35 33 31.8 35 33 31.8 

 

Moreover, Figure 3-6 and Figure 3-7 show the normalized confusion matrices on test data 
with the three feature sets for the two subjects by using SVM and RF, respectively. The 
normalization equation is shown below: 

																										@DßT®_V™ = 	
´¨≠

´¨ÆÆØ∞
ÆØe

                                   (3-3) 
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where @DßT®_V± is the normalized value of cell @V±, which is the element in the ith row and jth 
column. In addition, m is the number of the column of the confusion matrix.  

As to female subject, the test data with neutral label has the highest accuracy for each feature 

set. With both SVM and RF, for base feature set, the test data with cold (-2) label has the lowest 

accuracy while for feature set B, the test data with cool (-1) label has the lowest accuracy. As to 

male subject, same as female subject, the test data with neutral label has the highest accuracy for 

each feature set. Moreover, as shown in Table 5, the number of uncomfortable sensations is much 

smaller than that of neutral sensation. Therefore, it is more difficult to predict uncomfortable 

thermal sensations, including cold/hot (-2/2) and very cold/very hot (-3/3) than neutral sensation. 

However, as shown in the figures, SVM performs better on predicting uncomfortable thermal 

sensations than RF for both subjects.  

 
 

(a) Base Feature set with SVM    (b) Feature set A with SVM    (c) Feature set B with SVM 
 

 
 

(d) Base Feature set with RF    (e) Feature set A with RF      (f) Feature set B with RF 

Figure 3-6 Normalized confusion matrix of the female subject 
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  (a) Base Feature set with SVM  (b) Feature set A with SVM      (c) Feature set B with SVM 

 

 
(d) Base Feature set with RF      (e) Feature set A with RF        (f) Feature set B with RF 

Figure 3-7 Normalized confusion matrix of the male subject 

3.4 Discussions of the preliminary study 
In order to realize occupant-responsive system, it is of great significance to study individual 

thermal comfort. Compared to theoretical physical models, the data-driven approaches to studying 

thermal comfort have emerged to mitigate the difficulty in developing complex models and still 

maintain high accuracy. Meanwhile, compared to wearable sensing techniques, non-intrusive 

sensing technique has drawn more attention for occupant-related factors to thermal comfort. This 

paper proposes to use the non-intrusive infrared camera in combination with temperature and 

humidity sensors to infer individual thermal comfort in real-time with two classification algorithms 

of SVM and RF. The results have shown the model on testing data of the female subject performs 

much better than that of the male subject with the base feature set and the feature set B. This reveals 

individual differences on thermal comfort and indicates it is necessary to update the thermal 

models with more data in real-time when adapting new users. 
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Compared to existing methods, besides skin temperature, the proposed method also takes 

clothing surface temperature and skin temperature difference into consideration. Moreover, unlike 

ASHRAE RP884 where only a few instances were collected for each individual, the proposed 

experimental study collected over 300 instances for each individual so that the amount of data is 

enough for those classification algorithms. Additionally, besides using machine learning 

algorithms for thermal comfort inference like existing literature, this study also conducted a causal 

analysis with correlation coefficient to interpret the machine learning classification results. The 

results have shown the model with the feature set consisting of indoor air temperature, indoor 

relative humidity, side face skin temperature and clothing surface temperature perform best for 

both subjects. This can be explained by the fact that the correlation coefficient between clothing 

surface temperature and thermal sensation is higher than that between skin temperature and 

thermal sensation. Additionally, the model performance of female subject is much better than that 

of the male subject with the base feature set and the feature set B, which reveals individual 

differences and indicates it is necessary to update the individual thermal models with more data in 

real-time when adapting new users. 

However, since the current infrared camera is expensive to use, it may not be ideal for the real 

application in terms of thermal comfort. Therefore, more cost-effective sensing technique shall be 

investigated. AMG8833 is an 8x8 temperature infrared sensor used for occupancy detection where 

each pixel measures a surface temperature. Since AMG8833 is not only much more cost-effective 

than the infrared camera but also more easily integrated with temperature and humidity sensor 

such as DHT22, it has great potential to be used as a non-intrusive sensing system for the 

personalized HVAC system in different scenarios in the open-plan office buildings.  

3.5 Conclusions:  
This chapter has conducted a non-intrusive sensing technique, which consists of temperature, 

humidity sensor called DHT22, and an infrared camera named FLIR B8400. Two statistical 

thermal models for female subject and male subject were developed with SVM and RF based on 

a 6-day experimental study conducted in Shanghai, respectively.  

A total of three different feature sets were selected to develop individual thermal models with 

the labels based on 7-point thermal sensation scale. As a result, all proposed feature sets have 

achieved much better performances than the baseline of PMV model. In addition, the model trained 

with the feature set consisting of indoor air temperature, indoor relative humidity, side face skin 
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temperature and clothing surface temperature, and with linear kernel SVM has achieved the best 

performances. The precision, recall and f1 scores of the best model was 100% on test data of 

female subjects and 97.5%, 96.1%, 95% on that of male subjects, respectively. Besides 

classification, the causal analysis has also shown that clothing surface temperature has higher 

correlation coefficient with thermal sensations than side face skin temperature for both subjects, 

which explains why the individual thermal models with feature set containing clothing surface 

temperature has the best performances. Last but not least, the individual difference in thermal 

comfort indicates the importance of personalized heating and cooling systems. On top of that, the 

proposed sensing system could be improved further by using smaller-sized infrared sensor such as 

AMG8833 to realize large-scale real deployment in the open-plan office buildings.  
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Table 4-1 Nomenclature 
Abbreviation Description 

ASHRAE RP884 ASHRAE RP-884 Adaptive model project 

ASHRAE 55 ASHRAE Thermal environmental conditions for human occupancy 

ASH ASHRAE thermal sensation scale 

PMV predicted mean vote 

TAC task ambient conditioning  

SVM support vector machine 

RF random forest 

DHT22 temperature/humidity sensor 

AMG8833 infrared temperature sensor 

IR infrared thermography 

ESP8266 micro-controller with 2.4GHz WIFI module 

Wemo  wireless plug 

Ouimeaux open source Wemo control 
Thingspeak cloud-based database 

 
With the preliminary study regarding individual thermal models for two subjects, it is of 

significance to investigate further regarding thermal comfort in open-plan offices where multiple 

occupants are working at the same time. Moreover, since in the preliminary study, side face 

temperature was measured with infrared camera, which is expensive to use in reality, a more cost-

effective infrared temperature sensor was proposed. Therefore, taking cost-effectiveness into 

account, this chapter aims to develop personal thermal models with SVM by collecting data from 

a sensing system consisting of an indoor air temperature and relative humidity sensor called 

DHT22, an infrared temperature sensor called AMG8833 and a micro-controller called ESP8266 

with WIFI module. Moreover, the performance of the proposed personalized cooling system 

controlled with thermal comfort models was also enhanced in an open-plan office in Shanghai 

during the cooling season by optimization of the whole TAC system. Since the study aims to 
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evaluate the proposed TAC system has higher energy efficiency than baseline while maintaining 

personal thermal comfort, it contributes to the field of personalized thermal comfort by proposing 

a new cost-effective sensing system to develop adaptive thermal models, and further integrating 

the models into personalized system control as well as TAC system in the regular open-plan office 

building.  

4.1 Overview of the proposed TAC system 
Figure 4-1 shows the 3D visualization and the real field study testbed in an open plan office. 

As shown in the figure, each participant is provided with a personalized device while an air-

conditioner is used to control the overall thermal environment. The proposed task conditioning 

system realizes the automatic adjustments of the local thermal environment around the occupants 

while still allows the user to override the automatic actions from the controller. Since the proposed 

system aims not only to improve occupant thermal comfort but also increase energy savings by 

widening the temperature set-point dead band with the centralized HVAC system, the proposed 

integrative system has higher energy efficiency than the centralized system.  

 
Figure 4-1 The proposed TAC system in an open-plan office 

The field study with a total of 14 sessions was conducted in a 2.56x3.5x4.3 m3 office room in 

Shanghai from July to early September 2018 during the cooling season. In the office environment, 

an air-conditioner was operated when the space was occupied. Moreover, the radiation effect on 

thermal comfort was avoided by using curtains to prevent direct sunlit through windows. For each 

session, 5 participants attended the study for at least continuous 3 hours. Meanwhile, a total of 9 

healthy female and 11 healthy male participants at the age between 20 to 40 attended the study.  
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4.2 Development of task conditioning system 
4.2.1 Non-intrusive sensing system 

In order to predict personal comfort in real-time, a personalized sensing system has been 

implemented for each individual. Table 4-2 shows the specification of each component in the 

sensing system. As shown in the table, inspired by advantages of contactless sensing device, a 

contactless temperature array called AMG8833 (Grideye) was used to measure the side face skin 

temperature. 

Table 4-2 Components in the non-intrusive sensing system 

Variable Sensor Unit Resolution Accuracy Operating range 

Air temperature DHT22 ℃ 0.1℃ ±0.5℃ -40-80℃ 

Relative humidity DHT22 % 0.1% ±2% 0-100% 

Skin temperature(calibrated) AMG8833 ℃ 0.01℃ ±0.5℃ 0-80℃ 

 

AMG8833 is a temperature array sensor for temperature detection. It has two-dimensional area 

with 8x8 pixels. The typical application of the sensor includes occupancy detection, energy savings, 

digital signage and home appliances. However, it has potential to be used for skin temperature 

measurement. Compared to infrared camera like Lepton 2.5, AMG8833 has much lower price as 

$64. In addition, the accuracy of the sensor will be ±0.5℃ after calibration (Abbas M., 2015), 

which is higher than that of Lepton being ±2.5℃.	Moreover, unlike infrared temperature sensor 

called MLX90614, AMG8833 measures temperature distribution of an area at a time instead of a 

single temperature spot. The calibration process of AMG8833 is shown as below: 

       Cool or warm the object covered with electric tape whose emissivity is 0.95 (the calibrated  

object needs have high emissivity close to 1) uniformly so that the object temperature can be 

distinguished from the environment temperature and the electric tape has the uniform surface 

temperature distribution.    

1) Use Infrared camera to take the photo of the object (Figure 4-2(a)) and measure the average 

temperature Tû•≥ of the tape surface with the camera at 0.5-meter distance. 

2) Measure the temperature of the tape surface (Figure 4-2(b)) with AMG8833 at the same 

distance and make sure that all pixels (TAA, TBA …T¥¥)	only measure the surface temperature of the 

electric tape. 



	

	 55	

3) Calibrate the temperature of all pixels with Tû•≥. For instance, ∆tAA = TAA − Tû•≥. 

 
Figure 4-2(a) IR image of electric tapes (emissivity=0.95). 

 
Figure 4-2(b) RGB image of electric tapes (emissivity=0.95). 

Moreover, in order to measure side face temperature correctly, the sensor is designed to be 

installed 0.5 m away from the user so as to avoid the error due to distance. Since the view angle 

of AMG8833 is around 7.5°	and the distance between the sensor and the user is 0.5 m, part of the 

pixels may measure the background temperature (i.e. temperature of the object surface behind the 

user) instead of side face temperature. Since in regular office buildings, the radiative surface 

temperature in the background is always lower than that of occupant face skin temperature, in 

order to ensure only the radiative temperature of the side face area is captured, a simple yet 

effective skin temperature extraction is proposed such that the side face temperature is estimated 

as the mean of 3x3 largest temperatures among these 64 pixels. Figure 4-3 shows an example of 

skin temperature detection.   
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Figure 4-3 An example of skin temperature detection 

In addition, a micro-controller called ESP8266 with WIFI module was used for data collection 

with sample frequency of 1 sample every 5 minutes so as to correspond the survey feedback 

interval described below. The sensing system and each part is shown in Figure 4-4.  

 
Figure 4-4 The non-intrusive sensor board 

Besides sensing system, the personalized cooling system also includes an 8’ desktop mini-fan 

(the supply direction can be adjusted so that the air velocity towards each occupant is controlled 

without draft risk by validating from participants’ responses). Compared to conventional air-

conditioning system, TAC system with fan has several advantages. Firstly, fans offer a straight-

forward, economic, and independently operable technique to increase movement of air so as to 

ultimately improve thermal comfort in a room (S.C. Sekhar, 1995). Moreover, when operated with 

AC system, the downwash propelled by foil (rotating) drives the warm air downwards to blend 

with the cold air, countering the impacts of buoyancy (Li, W., 2016). 

4.2.2 Development of personal comfort models 
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The development of personal comfort models consists of two phases. The first phase was to 

collect sensor data used as features and thermal comfort feedback used as labels from various 

participants. Personal comfort models were trained by varying the temperature set-point from 22℃ 

to 30℃ slowly. However, it was not guaranteed that same people would attend all the sessions in 

both phases. During each session, they were asked to report their thermal sensation and thermal 

satisfaction with 7-point thermal sensation and 5-point thermal satisfaction scale every 5 minutes, 

as shown in Table 4-3. 

Table 4-3 Thermal sensation scale and thermal satisfaction scale 

Thermal 

sensation vote  
Meaning 

Thermal 

satisfaction vote  
Meaning 

-3 very cold 4 unsatisfactory 

-2 cold 3 A bit unsatisfactory 

-1 cool 2 A bit satisfactory 

0 neutral 1 satisfactory 

1 warm 0 Very satisfactory 

2 hot   

3 very hot   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5 describes the development of personal comfort models in the first phase. The 

classification follows the standard machine learning pipeline, including feature extraction, feature 

selection, classification and validation. Even if the baseline uses the same machine learning 

pipeline, only air temperature is used for thermal sensation and thermal satisfaction prediction, 

respectively. Since the study was conducted in a real shared office, parameters such as metabolic 

rate, clothing insulation, mean radiant temperature are difficult to measure. Hence, PMV model 

may not be suitable to be used as baseline. Since models trained with SVM in Chapter 2 have 

achieved the best performances, in this study, SVM was used for developing personal comfort 

models, including thermal sensation and thermal satisfaction prediction in the first phase. 

Moreover, same as Chapter 2, recall score was also used to evaluate the performances of personal 

comfort models.  
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Figure 4-5 Personal comfort model pipeline in the first phase 

The second was to update personal comfort models by observing the thermal environment 

when individuals overrode the actuations of the fan controlled with personal comfort models. Due 

to the fact that some participants in the first phase did not attend the second phase and some 

participants in the second phase had insufficient data from the first phase to get well-developed 

personal comfort models, the initialized personal comfort model for each female individual 

participating in the second phase was developed with all female data, and so was the initialized 

personal comfort model for males. The second phase was conducted with a group of five 

participants for a two-day comparison study at the end of August. For each of the two days, a total 

of 18 fan actuations based on thermal sensation predictions were made. 

In addition, in this study, the task conditioning system was designed to control the duration of 

the mini-fan operation based on personal comfort model predictions by wireless plug called Wemo 

insight with an open source Wemo control package called Ouimeaux (McCracken I., 2014). Based 

on performance benchmark between thermal satisfaction models and thermal sensation models in 

the first phase, the mini-fan was controlled based on thermal sensation predictions in the second 

phase. Since the plug can only be controlled on/off, the fan was designed to be turned off when 

the sensation prediction was negative (uncomfortably cool) or neutral while being turned on when 

it was positive (uncomfortably warm). However, the user still had the right to override the control, 

and the system recorded the overridden actuations. During all of these phases, data from all 

participants, including sensor data and plug status were stored in a remote server using an open-
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source platform called ThingSpeak (Mathworks, 2015). The proposed close-loop task conditioning 

system diagram used in the second phase is shown in Figure 4-6. 

 
Figure 4-6 Closed-loop task system diagram of the task conditioning system 

Moreover, instead of interrupting occupants by asking them to respond surveys in the second 

phase, personal comfort models were updated with dynamic rule-based logics by taking override 

actions into account so as to construct a closed-loop task conditioning system. The reason for that 

was because it took a long time to get enough amount of data for retraining personal comfort 

models since the override actions happened infrequently. Figure 4-7 shows an example updating 

the personal comfort model with the rule-based control logics. The example assumes the 

participant overrides the fan actuation from turning on into turning off on the first day with the 

indoor air temperature t0 and skin temperature tsk.  
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Figure 4-7 An example updating the personal comfort model 

4.2.3 Development of ambient conditioning system 

For ambient conditioning system, since widening the set-point dead band reduces sensible 

loads, the energy consumption can be reduced. Therefore, besides personal comfort model 

experiments for task conditioning system evaluation, a five-day experiment was conducted at the 

end of July and the beginning of September for ambient condition system evaluation. In order to 

conduct energy consumption benchmark, two energy meters with the resolution of 0.001 kWh 

were used for measuring energy consumption between the room with the proposed system and the 

room with the baseline at the same time for five sessions. Meanwhile, the energy consumption of 

the fans as well as the fan statuses were also monitored by Wemo insight. In addition, the outdoor 

temperature was measured with the average of three Type K thermocouples, as shown in Figure 

4-8. Lastly, based on participant feedback in the first phase as well as the fact that the effect of the 

mini-fan on personal comfort is much faster than that of temperature set-point due to thermal mass, 

the interval for the personalized cooling control is 10 minutes while that for the temperature set-

point control is 15 minutes. 
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The system diagram of the proposed TAC system is shown in Figure 4-8. As shown in the 

figure, the initial temperature set-point is 22℃. Moreover, the coordinator controller is designed 

with the objective of minimizing temperature difference between the outdoor temperature and the 

average indoor air temperature with the constraints of the thermal sensation prediction of each 

participant and the number of fans operated. The baseline was created in an office room next to 

the occupied test room with the same orientation, the same floorplan, and the same type of air-

conditioner whose temperature set-point is always 22℃. The two office rooms were separated by 

a well-insulated door so that there was little heat transfer between these two rooms.  

 
Figure 4-8 The overall TAC system diagram 

The state space includes local indoor air temperature Tit, local indoor relative humidity RHit, 

individual skin temperature Tis, individual thermal sensation prediction senit, personalized fan 

status Fit where i=1,2,3,4,5, outdoor air temperature Tot, and average indoor air temperature ∑. On 

the other hand, the action space includes the actuation of the local fan (on/off based on prediction 

or overriding events) as well as temperature set-point Ts control of the ambient conditioning system 

(increasing/no change/decreasing the set-point).   

As to control law of the temperature set-point, instead of developing a group thermal model, 

this study implements a multi-agent control system with the constrained optimization on ambient 

conditioning system, as shown in the following equations.  
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VâA          (4-3) 

    22℃< Ts <30℃       (4-4) 

The reason for using temperature difference between the average indoor air temperature and 

the outdoor air temperature as objective function is because the major part of the sensible cooling 

loads is caused by the temperature difference between the outdoor air temperature and indoor air 

temperature. Since in summer, compared to sensible cooling loads, latent cooling loads can be 

negligible in regular open-plan offices in Shanghai. Moreover, without direct radiation, sensible 

cooling loads monotonously decrease as the temperature difference decreases. Therefore, 

minimization of the objective function will minimize sensible cooling loads globally, thus reducing 

energy consumption.  

The constraints are designed based on the sum of individual thermal sensation predictions. 

However, since the prediction may not be accurate, the actual number of fans operated shall not 

be more than four so that at least 80% of occupants feel thermally comfortable. Moreover, since 

fans help reduce air stratification so that the supply air could flow into the occupied zone and mixes 

with the warm air more quickly, it brings about cooler environment for occupants. However, if the 

temperature set-point is too high, the fan may increase the discomfort since the fan cannot reduce 

the actual amount of heat indoors. Therefore, besides constraints due to thermal comfort 

requirements, the temperature set-point shall not be higher than 30℃. 

4.3 Result analysis 
4.3.1 Analysis between objective thermal environment conditions and subjective thermal comfort   

Even if 20 participants attended the study in the first phase, some of them did not have enough 

amount of data for training. Therefore, only 12 personal comfort models were developed. Hence, 

throughout the field study, a total of 488 instances collected from female subjects and a total of 

770 instances collected from male subjects were used for developing thermal models. Figure 4-

9(a) shows the distribution among neutral sensation and non-neutral sensation votes. Moreover, 

Figure 4-9(b) shows the distribution among satisfaction and dissatisfaction votes. As shown in the 

figure, among all feedbacks from the first phase, the number of votes for neutral sensation is much 
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larger than that for non-neutral sensation. Similarly, the number of votes for satisfaction is much 

larger than that for dissatisfaction. This indicates that in regular office environment, it is more 

difficult to detect discomfort states than comfort states. Moreover, in order to realize more fine-

grained thermal comfort management, it is of great significance to operate localized and 

personalized control so as to reduce individual discomfort as much as possible.  

 
Figure 4-9(a) Comparison between votes for neutral and non-neutral sensation 

 
Figure 4-9(b) Comparison between votes for satisfaction and dissatisfaction 

Moreover, Figure 4-10(a)-(h) show the boxplots between thermal environment conditions and 

thermal sensation and thermal satisfaction. Figure 4-10(a)-(b) show the box plots of indoor air 

temperature to thermal sensation of the female and male subjects. As shown in the figures, both 
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female and male subjects perceive warmer as the indoor air temperature increases. Meanwhile, the 

air temperature is 29℃ when participants feeling neutral, which indicates it has potential to save 

energy consumption by increasing standard indoor air temperature of 26℃ in such climate [42].  

     
(a) air temperature vs sensation of females   (b) air temperature vs sensation of males 

Figure 4-10(c)-(d) show the box plots of skin temperature to thermal sensation of the female 

and male subjects. Unlike the relation between air temperature and thermal sensation, the relation 

between skin temperature and thermal sensation of female subjects differ from that of male 

subjects. As to female subject, the median skin temperatures are 31.31℃, 31.11℃, 31.52℃ and 

31℃, respectively, which vary little among different thermal sensations while as to male subjects, 

the median skin temperatures are 31.47℃, 31.53℃, 32.22℃, 32.88℃, which vary over 1℃ when 

thermal sensation is above 0. This indicates that female subjects are more sensitive than male 

subjects. Moreover, since relative humidity was not strictly controlled, the thermal sensation of 

participants is likely to be affected by skin wetness.  

         
    (c) skin temperature vs sensation of female      (d) skin temperature vs sensation of males 

Figure 4-10(e)-(f) show the box plots of indoor air temperature to thermal satisfaction of the 

female and male subjects. As shown in the figures, the air temperature differences among different 

thermal sensations of female subjects is much smaller than those of male subjects. Moreover, 
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compared to male subjects, the female subjects are more satisfied under the thermal environment 

with higher air temperature than the male subjects. In addition, considering thermal sensation 

distribution, the female subjects prefer warm environment while the male subjects prefer cold 

environment, which indicates even if thermal sensation is the precondition of thermal satisfaction 

(Auliciems, A, 1997), it may not be the same as thermal satisfaction all the time.  

      
  (e) Air temperature vs satisfaction of females       (f) Air temperature vs satisfaction of males 

Lastly, Figure 4-10(g)-(h) show the box plots of skin temperature to thermal comfort of the 

female and male subjects. The results also illustrate the female subjects are very satisfied thermally 

with higher skin temperature while male subjects are very satisfied thermally with lower skin 

temperature. Moreover, similarly to thermal sensation, thermal satisfaction is also likely to be 

affected by skin wettedness.   

           
(g) skin temperature vs satisfaction of females   (h) skin temperature vs satisfaction of males 

Figure 4-10 Relations between air/skin temperature and thermal sensation/satisfaction 

3.2 Performances of personal comfort models 

Table 4-4 shows the performance benchmark of the personal thermal sensation and satisfaction 

models with recall score. As shown in the table, compared to baseline models, the personal thermal 

sensation models and the thermal satisfaction models developed with data of all female subjects 
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outperform by 2% and 3%, respectively. In addition, thermal sensation models and thermal 

satisfaction models developed with data of all male subjects have similar performances to the 

baseline models. However, performances vary from 61.5% to 100% among different individuals 

and the highest recall score improvement was 25% for both sensation and satisfaction predictions.  

Moreover, among all personal comfort models for female subjects, 80% of thermal sensation 

models and 100% of thermal satisfaction models with the proposed features has no worse 

performances than those with baseline features, respectively. Meanwhile, for male subjects, all 

thermal sensation and thermal satisfaction models with proposed features have no worse 

performances than those with baseline features. Therefore, personal comfort models with air 

temperature, skin temperature and relative humidity outperform those with air temperature only. 

Moreover, compared to thermal satisfaction predictions, 11 out of 12 subjects have better 

performances in thermal sensation predictions. Therefore, thermal sensation models were applied 

into task conditioning control for each participant.  

Table 4-4 Performance benchmark of the thermal models with recall scores 

Gender 

Sensation 
prediction with 
baseline model 

Sensation 
prediction with 
proposed model  

Satisfaction 
prediction with 
baseline model 

Satisfaction 
prediction with 
proposed model 

All_fe
male 82.65% 84.7% 73.5% 76.5% 

All_ma
le 87% 87% 81.2% 82.5% 
F 93.0% 88.0% 83.0% 84.0% 
F 90.9% 91.0% 63.6% 77.3% 
F 84.6% 85.0% 84.6% 84.6% 
F 50.0% 75.0% 50.0% 75.0% 
F 61.5% 61.5% 84.6% 84.6% 
M 92.3% 94.9% 82.1% 82.0% 
M 86.7% 90.0% 80.0% 87.0% 
M 83.3% 83.3% 83.3% 83.3% 
M 94.7% 94.7% 89.5% 90.0% 
M 100.0% 100.0% 100.0% 100.0% 
M 100.0% 100.0% 100.0% 100.0% 
M 61.5% 61.5% 46.1% 46.1% 
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Moreover, Figure 4-11 shows the comparison regarding the proportion of the override actions 

among all actuations between the two days in the second phase. Since both experiments were 

conducted under the same outdoor climates with same type of air-conditioner, the override actions 

can be used to indicate if fans make occupants thermally comfortable. As shown in the figure, 60% 

of the subjects have fewer override actions with the updated thermal sensation models than the 

initialized personal comfort models. Moreover, for those participants providing override actions 

on the first day achieved a reduction of 11-27% based on override actions. This indicate the rule-

based updating mechanism does help improve the performances of personal comfort models.  

 
Figure 4-11 The comparison between initial and updated thermal comfort models  

Last but not least, Figure 4-12 shows the energy performance benchmark between the proposed 

optimization framework and the baseline. As shown in the figure, the proposed system can save 

energy consumption 9.6% on average while maintaining individual thermal comfort. Moreover, 

the savings are varied among the five comparative tests due to different outdoor climates as well 

as the individual usage of the personalized fans.  
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Figure 4-12 Energy performance benchmark between the proposed system and the baseline 

4.4 Discussions of the proposed task-ambient conditioning system 
In order to evaluate the proposed inter-connected TAC system under the constrained 

optimization framework, this study has conducted a field study showing the energy savings while 

maintaining individual thermal comfort with the proposed TAC system in an open-plan office. In 

addition, instead of using expensive IR camera, this study has proposed a cost-effective sensing 

system featuring non-intrusive infrared temperature array called AMG8833 as well as air 

temperature and relative humidity sensor called DHT22 to develop personal comfort models, 

including individual thermal sensation and thermal satisfaction predictions. Moreover, personal 

comfort models were further updated with the feedback mechanism by collecting the override 

actions of the personalized fans.  

As one of the key components in the system, personal comfort models are proposed and 

evaluated for real-time task conditioning control. As shown in the results, even if the recall scores 

of the initialized comfort models developed with data from all female subjects or all male subjects 

are above 80%, the performances of personal comfort models developed with individual data only 

vary among different individuals. This is not only because individual differences but also because 

the amount of data from some individuals are not sufficient enough to train personal comfort 

models. Therefore, an initialized personal comfort model with large amount of data from various 

occupants is a good start point and the individual thermal models can be updated continuously via 

the interactions with the personalized cooling system in real-time. Besides personal comfort 

models for task conditioning systems, the current optimization framework of the ambient system 

is designed to optimize the energy savings while maintaining individual thermal comfort by 
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maximizing the cooling set-point. As a consequence, the proposed TAC could achieve up to 14% 

energy savings than baseline. In addition, the current sensing system for personal comfort 

prediction consists of DHT22 and AMG8833. With non-intrusive infrared temperature array, 

occupants no longer need to wear any devices to measure skin temperature. Moreover, compared 

to existing non-intrusive skin temperature measurement method, the proposed AMG883 is more 

cost-effective.  

However, there still exists some limitations to be improved. Firstly, since the objective 

function is based on the simplification that latent cooling loads shall be neglected, it may not be 

applicable in other climates. Therefore, the decision variable shall be further decided to take both 

sensible cooling loads and latent cooling loads into account. Secondly, even if the current 

experimental testbed consists of only a split air-conditioner in a thermal zone and occupants can 

interacted with personal fans with only on/off operation, since the system is only for temperature 

set-point control and task devices can be designed with more options for personal comfort control, 

the proposed framework can also be easily implemented in more complex HVAC systems such as 

VRF.  

4.5 Conclusions  
This study has conducted a field study to evaluate an integrative TAC system featuring non-

intrusive sensing technique and automatic control with personal comfort models developed with 

SVM in an open-plan office room. The temperature set-point of ambient conditioning system was 

then maximized with constraints of individual thermal sensations and the number of operated fans. 

This study also evaluates the feedback collection mechanism to calibrate personal comfort models 

by observing interactions between personalized systems and occupants instead of interrupting 

occupants with surveys. As a result, the performances of personal comfort models with features 

consisting of indoor air temperature, relative humidity and face skin temperature were better than 

those with baseline feature consisting of indoor air temperature only. Moreover, the performances 

of thermal sensation models were better than satisfaction models. Moreover, five 3-hour sessions 

have shown that the proposed system could achieve average 9.6% of energy savings compared 

with the baseline. The study contributes to the development of TAC system to maximize energy 

performances while maintaining individual thermal comfort in the regular shared office space. In 

the future, the proposed TAC system shall be applied into larger open-plan office buildings with 

multiple thermal zones and the personalized cooling of task systems shall be developed with more 



	

	 70	

fine-tuned thermal comfort management for individuals. However, since field studies have limited 

scenarios, more comprehensive and detailed studies shall be conducted with CFD simulations as 

well as energy simulations.  
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Chapter 5 Data-driven personal comfort models 

combined with CFD simulator for the local fan-induced 

air conditioning system 
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Table 5-1 Nomenclature 

Abbreviation Description 

SVM support vector machine 

RF random forest 

DHT22 temperature/humidity sensor 

AMG8833 infrared temperature sensor 

IR infrared thermography 

ESP8266 micro-controller with 2.4GHz WIFI module 

comfort database Global thermal comfort database 

CFD computational fluid dynamics 

kw SST K-omega SST turbulence model 

SIMPLE Semi-implicit method for pressure linked equations 
 
5.1 Overview of CFD simulation for the local fan-induced air-conditioning system 

Even if recent studies on adaptive and personal thermal comfort benefit a lot from field studies 

by developing adaptive and personal thermal comfort models with various machine learning 

algorithms, it is still necessary to study thermal comfort in CFD simulations since they provide 

more theoretical explanations on effects of proposed air-conditioning system on individual thermal 

comfort in terms of airflow patterns, temperature and humidity distributions. However, most 

studies on adaptive and personal thermal comfort have utilized field studies and simulations 

separately. Therefore, in order to evaluate effects of the proposed TAC system, which can also be 

referred as local fan-induced air-conditioning system, on individual thermal comfort more 

realistically, CFD simulations have been conducted with the best personal thermal comfort models 

developed with support vector machine (SVM) and random forest (RF) based on the data from 

both comfort database II as well as an empirical study in an open-plan office at the end of August 

in Tongji University, Shanghai.  

This research mainly has two contributions. The first contribution is to use machine learning 

algorithms to develop adaptive and personal thermal comfort models based on comfort database 

II as well as an empirical study where real-time monitoring was realized with the non-intrusive 
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sensing system described in chapter 4. The second contribution is to propose and evaluate effects 

of the integrated local fan-induced air-conditioning system on thermal comfort with CFD 

simulation. In addition, instead of conducting field studies and CFD simulations separately, this 

research proposes to apply personal thermal comfort models from field studies into CFD 

simulations so as to get more insights into individual thermal comfort differences and system 

design optimization such as ambient conditioning cooling set-point. 

Figure 5-1 shows the diagram of the simulation and empirical study. As shown in the figure, 

the personal thermal comfort models with SVM and RF were developed based on a six-day 

empirical study in an open-plan office in Shanghai. Meanwhile, a CFD simulation with the same 

building configurations, including floorplan, envelopes, air-conditioning system and occupancy 

schedules as the test bed used in the empirical study were conducted to analyze airflow patterns, 

thermal stratifications as well as effects of increasing temperature set-point dead band on 

individual thermal comfort with the personal thermal comfort models. 

 
Figure 5-1 The diagram of the method for the proposed local fan-induced air-conditioning 

5.2 Development of adaptive and personal thermal comfort models 
5.2.1 Adaptive thermal comfort with Global Thermal comfort database II 

The classification follows the standard machine learning pipeline, including feature selection, 

model selection, model training and prediction. The dataset used is the subset of comfort database 
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II, which was collected from the air-conditioned office buildings during summer season. The total 

number of instances of the subset is 4664. In addition, similar to chapter 1, since most of features 

have large amount of missing data and lack of consistency, including physical factors such as 

gender and age, common environment-related and occupancy-related were extracted from the 

original codebook is shown in Table 5-2. Moreover, the tree-based estimator was also implemented 

to rank the importance of the extracted features (Guyon & Elisseeff, 2003).  

Table 5-2 The feature extracted from comfort database II 

Feature name Description 
Air temperature Average air temperature [℃] 
Relative humidity Relative humidity [%] 
Air velocity Average air velocity [m/s] 
Clo Clothing insulation [clo] 
Radiant temperature Mean radiant temperature [℃] 
Met Metabolic rate [met] 

Additionally, instead of thermal sensation scale, thermal preference scale is used as labels, 

including cooler, warmer and no change. Moreover, SVM and RF with 5-fold cross-validation 

were also implemented to develop adaptive thermal comfort models with comfort database II and 

personal comfort model from the empirical study. Table 5-3 shows the parameters of SVM and 

RF tuned with cross-validation. Meanwhile, the thermal comfort models were also evaluated based 

on recall, precision and F1 scores.  

Table 5-3 Parameters tuned in the algorithms 
Algorithms Parameters Values 

SVM Penalty parameter C 1,10 
Kernel type Gaussian, linear 

RF Tree depth 3,4 
Number of trees 50,100 

 
5.2.2 Personal thermal comfort with the empirical study 

As mentioned before, the comfort database is not suitable for developing personal thermal 

comfort models since the number of instances of each individual is limited. Therefore, in order to 

develop personal thermal comfort models capturing the fine-tuned differences among different 

individuals, a six-day empirical study were conducted to collect certain amount of data for each of 

the two healthy subjects in their mid-twenties (one male and one female) between 8/21/2018 and 
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8/27/2018 in an open-plan office building in Tongji University, Shanghai. A total of 171 instances 

were collected from a male subject and 151 instances were collected from a female subject. Last 

but not least, the models were developed with Python and the data collection system were written 

in C++. 

5.2.2.1 Experimental setup 

 Figure 5-2 shows the 4.8 x 3 x 3.2 m3 test bed setup and the correspondent interior 3D 

model where an air-conditioner is used to control the thermal environment. In addition, since the 

whole study was conducted in the evening, the effects of solar radiation is avoided. Moreover, in 

order to create different thermal environment conditions, the overhead air conditioner was 

controlled where the air temperature increases no more than 0.04℃/min on average. Before each 

session, the participants were asked to be seated for half an hour so as to ensure they have neutral 

thermal sensation in the beginning. Moreover, they were also asked to change the location to avoid 

draft risk due to supply air.  

 

Figure 5-2 The open-plan office in the empirical study 

Same as chapter 3, the experiment used the calibrated AMG8833 to measure the side face skin 

temperature as well as DHT22 for air temperature and relative humidity. Meanwhile, the micro-

controller called ESP8266 with WIFI module was used to transmit data to a remote database 

platform called Thingspeak. The interval of data sampling from the sensor board is 5 minutes, 

which corresponds with the occupant feedback responses. In addition, even if the initial votes were 

collected with 7-point thermal sensation scale, in order to compare performances of the adaptive 

thermal comfort models developed with thermal comfort database II, thermal sensation votes were 
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converted to thermal preferences votes, including cooler, no change and warmer were collected. 

According to participants’ responses, thermal sensation votes larger than 1 are cooler while 

thermal sensation votes less than -1 are warmer. Moreover, Figure 5-3(a) shows a participant status 

in the empirical study where there was a desktop fan on the shelves in the occupied zone. The fan 

was operated with on/off actions and can be rotated before the experiments started so as to avoid 

draft risk in the occupied zone. In addition, Figure 5-3(b) shows the proposed sensor board.  

 

 
                         (a) participant status                      (b) the proposed sensor board 

Figure 5-3 An experiment in the empirical study and the proposed sensor board 

 
In addition, there were a total of 6 different sessions and each session last for at least 2 hours. 

Table 5-4 shows the temperature changes from the sensors during each session. Since the 

participants attended the study for all sessions, all levels of thermal sensations were reported at 

least once by participants and the majority vote belonged to “no change”.  

Table 5-4 Indoor air temperature change during each session 

Date Start 
time  

End 
time  

Start 
temperature (�)  

End 
temperature (�)  

8/21 19:45 22:00 23 30 
8/23 19:35 22:00 24 30 
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8/24 19:45 22:00 25 30 
8/25 19:00 22:00 24 30 
8/26 20:00 22:00 25 30 
8/27 19:00 22:00 24 30 

 
5.2.2.2 Adaptive and personal thermal comfort models 

In order to validate the two subjects are not outliers and their personal thermal comfort models 

can be representative, the data collected in the experiments were used as test set of the model 

trained with the comfort database II before classification. Since the thermal environment 

conditions in the experiment were within the range of those collected in the comfort database II 

where the climate is selected as “Humid subtropical”, if test performances with the field data are 

similar to that achieved with the test set of comfort database II, it means the model trained with 

comfort database II is not overfitting or under-fitting on the field dataset. In other words, the two 

subjects have similar patterns among large group of occupants in the open-plan office buildings 

collected in the comfort database II. However, since skin temperature is not included as one of the 

features in the comfort database II, indoor air temperature and relative humidity are used for 

performance benchmark between the comfort database II and the field data. Last but not least, the 

same model configurations were used for developing individual thermal comfort models with field 

data where the feature set consists of indoor air temperature, indoor relative humidity and side face 

skin temperature. Additionally, in order to evaluate the adaptive individual thermal comfort 

models, the field dataset was also split into 80% for training and 20% for testing. Figure 5-4 

describes the development of adaptive thermal comfort model with comfort database II and data 

from the empirical study.  
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Figure 5-4 The adaptive thermal comfort model development pipeline 

5.3 Development of Computational Fluid Dynamic Simulation 
In order to analyse effects of the personalized cooling system on the overall indoor thermal 

environments and individual thermal comfort, a computational fluid dynamic (CFD) simulation 

was conducted to study airflow patterns and thermal stratification with the proposed fan-induced 

air-conditioning system in an open-plan office. The simulation was conducted with Ansys Icepak 

18.2, which provides powerful electronic cooling solutions utilizing ANSYS Fluent solver for 

thermal and fluid flow analyses. Figure 5-5 shows the 4.8 x 3 x 3.2 m3 3D model where a fan is 

located on the plane above the occupant while the overall thermal environment was controlled with 

the supply air and the workstation is built in the middle of the room left side. 
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Figure 5-5 3D model in the CFD simulation 

As mentioned before, a personalized fan disturbs airflow around the occupant, thus increasing 

forced convection between the indoor and outdoor as well as evaporation from human skin. As a 

consequence, the local indoor air temperature and skin temperature decrease and the occupant feels 

cooler with the operation of the fan. However, if the supply air temperature of the air-conditioning 

system is too high, it also results in discomfort since the temperature difference between indoor 

and outdoor is too small so that the forced convection may even increases the warm air flows into 

the local occupied zone. Therefore, the supply air temperature set-point shall not be too high so as 

to increase energy savings while compromise occupant thermal comfort. In Icepak, the object of a 

2D internal circular fan with the diameter of 30 cm is installed 1.8 m above the floor with the fixed 

air velocity being 2.5m/s in order to avoid draft risk in the occupied zone, which is defined as the 

region within an occupied space between 75 and 1800 mm above the floor and more than 600 mm 

from the walls or fixed air-conditioning equipment. Additionally, the air temperature set-point 

changes from 24�to 30� so as to analyze the changes of air flow patterns and thermal 

stratifications inside the room. In addition, the boundary conditions were designed based on the 

empirical study so that the simulations can be validated, as shown in Table 5-5.  Lastly, Figure 5-

6 and Figure 5-7 show the cross-sections where the temperature distributions and the thermal 

preference predictions were compared, respectively. 

Table 5-5 The boundary conditions 

Boundary conditions Values 
Supply air velocity 5 m/s 
Supply air temperature 24�, 26�, 28�, 30� 
Relative humidity 50% 
Internal heat rate 100 W 
Outdoor air(Ambient) temperature 30 � 
Wall  Adiabatic 
Window Opening with ambient temperature 
Fan velocity 2.5 m/s 
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                   Figure 5-6 z=2.4 m                                         Figure 5-7 x=0.5 m                           

Moreover, k-w SST turbulence model and Semi-Implicit Method for Pressure Linked 

Equations (SIMPLE) algorithm was used to solve Navier-Stokes equations. Meanwhile, the 

hexahedral unstructured mesh was generated. Meanwhile, the mesh quality was evaluated with 

skewness, which is defined as how close the face or cell is to be equilateral or equiangular. Besides 

CFD simulation, with the individual thermal comfort models developed with the empirical study, 

the thermal comfort distribution with or without fans in the occupied zone can be simulated and 

compared. However, since the skin temperature cannot be simulated in the model and the relative 

humidity is set to be constant, the adaptive thermal comfort models used in the post-processing 

analysis of CFD simulation were developed with the air temperature only. Moreover, the 

simulation was validated with the empirical study by averaging the steady air velocities after 

continuous measurement for 1 minute with Swema EMP3500 anemometer around 0.8 m above 

the floor in several spots behind the seats without the fan operation when the temperature set-point 

was 24℃. In addition, the spot measurement map is shown in Figure 5-8. Among all spots, spot 2 

and 3 were the workstations where the two participants were seated.  
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Figure 5-8 The spot measurement map for velocity 

5.4 Result analysis 
5.3.1 Adaptive and personal thermal comfort model performances 

In terms of feature importance ranking, Table 5-6 shows the ranking score of all features in 

the comfort database II. As shown in the table, top three features are indoor air temperature, indoor 

mean radiant temperature, relative humidity. Since the empirical study was conducted in the 

evening, mean radiant temperature can be estimated to be the same as air temperature, the top 

features except clothing insulation related to thermal preferences are measured with the sensor 

board in the empirical study.  

Table 5-6 Ranking score of all features 

Air 
temperature 

Radiant 
temperature 

Relative 
humidity 

Clo Air velocity Met 

0.187 0.175 0.172 0.172 0.153 0.141 
 

Meanwhile, Table 5-7 shows the average scores with cross-validation based on different 

parameter values of SVM and RF, respectively. As shown in the table, SVM with Gaussian kernel 

and the penalty number of 10 have the best performance. In addition, the prediction performance 

of the best model trained with training set of the comfort database II shows that the recall score on 
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the test set of comfort database II and the field data from the female and male subjects are 65.5%, 

66%, 66%, respectively. Therefore, the performances with field dataset is similar to those with the 

comfort database II. In other words, the two subjects participating in the empirical study can be 

seen as representative subjects in the open-plan office buildings.  

Table 5-7 Cross-validation benchmark among different model configurations 

Model configuration Average recall score 
SVM, C=1, kernel = linear 66.4% 
SVM, C=1, kernel = Gaussian 66.7% 
SVM, C=10, kernel = linear 66.5% 
SVM, C=10, kernel = Gaussian 67.8% 
RF, Max_depth=3, number of tree=50 66.8% 
RF, Max_depth=3, number of trees=100 66.8% 
RF, Max_depth=4, number of tree=50 67.4% 
RF, Max_depth=4, number of tree=100 66.5% 

 
Moreover, Table 5-8 shows the performance benchmark between the individual thermal 

comfort models with the proposed feature set for both male and female subjects in the empirical 

study. As a result, models achieve high performances for both subjects with the proposed feature 

set. However, since the majority thermal preference vote in the empirical study is “no change”, 

most of the predictions are “no change”, which results in false positive classifications. Therefore, 

even if it is less regular to have thermal preference of “cooler” or “warmer” in the real air-

conditioned open-plan office than “no change”, it is necessary to collect “cooler” or “warmer” 

preference feedbacks from occupants by expanding temperature range in the empirical study so as 

to collect a balanced dataset for the development of adaptive individual thermal comfort. Moreover, 

since such data-driven approach heavily relies on the data quality, it is better to develop semi data-

driven adaptive thermal comfort models by combining the prediction results with machine learning 

algorithms and the results with domain knowledge (i.e. ASHRAE standards).  

Table 5-8 Prediction performance with test set of field data 

 Precision Recall F1 
Female 81% 90% 85.3% 
Male 94.2% 97% 95.6% 

 
5.3.2 Results of CFD simulation 

Figure 5-9 shows the validation results of the average air velocities between simulations and 

measurements. The standard deviation of the spot measurement and the simulation result 
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difference is 0.04, which indicates the simulated indoor thermal environment matches the 

empirical study and the thermal environment can be used to predict individual thermal comfort. 

Moreover, compared to ASHRAE Handbook-Fundamental that the velocity in the occupied zone 

should be lower than 0.25m/s so as to avoid discomfort due to draft risk (ASHRAE, 2013). 

However, even if the fan-induced air-conditioning system used in the study has higher velocity 

than 0.25 m/s in the occupied zone, since participants reported that they did not have draft 

discomfort during each session, the empirical study was still focused on the development of 

adaptive thermal comfort models with indoor air temperature, relative humidity and skin 

temperature only.  

 

Figure 5-9 Velocity validation between the actual measurement and simulation values 

 
Figure 5-10(a)-(h) show the air temperature distribution of the cross-section at z=2.4 m with 

or without the fan operation under different temperature set-points of supply air. As shown in the 

figures, the air temperature in the occupied zones increases as the temperature set-point increases. 

Moreover, when the air temperature set-point is no more than 28℃, the supply air is induced in 

the occupied zone so as to overcome thermal plumes with the help of the fan. However, when the 

temperature set-point increases further, there is no difference in the air temperature distribution 

with or without fan. Therefore, with the operation of the fan, the temperature set-point dead band 

can be increased so that more energy savings can be achieved by increasing temperature set-point 

without the compromise of individual thermal comfort.  
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      (a) fan = on, set-point = 24℃                (b) fan = off, set-point = 24℃ 

 

      (c) fan = on, set-point = 26℃                (d) fan = off, set-point = 26℃ 

     

               (e) fan = on, set-point = 28℃           (f) fan = off, set-point = 28℃               
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  (g) fan = on, set-point = 30℃                       (h) fan = off, set-point = 30℃ 
Figure 5-10 The air temperature distribution with or without the fan operation under different 

temperature set-points of supply air 

Figure 5-11 shows the air temperature change along the fan axis from 0 to 1.5m height in the 

occupied zone, which further validates the advantage of using personalized fan. As shown in the 

figure, when the height is larger than 0.75 m and the temperature setpoint is no more than 28℃, 

under the same temperature setpoint, the air temperature without fan operation is higher than that 

with fan operation at the same height level. Moreover, the temperature difference with or without 

fan increases as the temperature setpoint decreases. As a result, there is little difference with or 

without fan operation when the temperature setpoint increases to 30℃. Moreover, the temperature 

differences between the ankle and neck under different temperature set-points are all less than 3℃ 

to ensure thermal comfort while the temperature gradient increases suddenly at the height of 0.8 

m due to the heat generation of occupants.  
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Figure 5-11 The air temperature change along the fan axis from 0 to 1.5m height in the occupied 

zone 

In addition, Figure 5-12 (a)-(h) show the thermal preference distribution in the occupied zone 

for both female and male subjects. As mentioned before, even if the accuracy of both adaptive 

individual thermal comfort models is high, most of the prediction results are “no change” due to 

imbalanced dataset in the empirical study. According to Nie et al. (2011), when the clothing 

insulation is 0.3 clo and subjects have sedentary activity, the upper limit of thermal neutral 

temperature is 29℃ . Therefore, a combination of the data-driven approach and rule-based 

approach was implemented as follow: 

Thermal	preference = 

              
cooler if	temperature < 24	or	pred = cooler

no	change if	23 < temperature < 29	or	pred = no	change
warmer temperarture > 28	or	pred = warmer

       (5-1) 

As a result, when the temperature setpoint is lower than 28℃ , even if the temperature 

distribution differs with various setpoints, there is little difference with or without fan operation. 

Moreover, most of the area in the occupied zone is classified as “no change”, which means the 

occupants are satisfied with the thermal environment. In addition, when the temperature setpoint 

increases to 28℃, the area in the occupied zone classified as “cooler” with fan operation is smaller 

than that without fan operation. However, there is no difference with or without fan operation 
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when the temperature setpoint is 30℃. Therefore, in terms of individual thermal preferences, the 

temperature setpoint can be increased to 28℃  but no more than 30℃  in order to maintain 

individual thermal comfort.  

          

        (a)  fan = on, set-point = 24℃                              (b) fan = off, set-point = 24℃ 

             

          (c) fan = on, set-point = 26℃                                (d) fan = off, set-point = 26℃ 

        

              (e) fan = on, set-point = 28℃                       (f) fan = off, set-point = 28� 
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    (g) fan = on, set-point = 30�                           (h) fan = off, set-point = 30� 

Figure 5-12 the thermal preference distribution in the occupied zone 

5.5 Discussions 
This research aims to evaluate the benefits of thermal comfort improvements with the 

proposed local-fan induced air-conditioning system by applying data-driven adaptive thermal 

comfort models into a CFD simulation. In addition, two machine learning classification methods: 

SVM and RF were implemented to develop adaptive thermal comfort models with comfort 

database II as well as the data collected from an empirical study conducted in an open-plan office 

in Shanghai. As a result, with comfort database II, the adaptive thermal comfort models developed 

with SVM outperform those developed with RF. Moreover, since the local fan helps induce the 

supply air into the occupied zone, the thermal preference prediction being “no change” has larger 

proportion in the occupied zone with fan operation than that without fan operation when the supply 

air temperature set-point is increased to 28�. However, there is no significant difference between 

the thermal preference distribution with or without the fan operation when the supply air 

temperature set-point has increased to the same as the outdoor air temperature. The proposed 

method could be further applied to study adaptive thermal comfort of different individuals under 

different HVAC systems.  

 The combination of data-driven approach and simulation used in the study realizes the 

thermal preference distribution analysis in the occupied zone with different temperature set-points. 

Even if CFD simulation is slow to converge with complex models, it provides an opportunity to 

do parametric analysis spatially and temporally in a more fine-grained way. In addition, compared 

to static thermal comfort models implemented with CFD simulations in the previous work such as 
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PMV, adaptive thermal comfort models are more realistic to describe thermal comfort. However, 

since the empirical study was conducted with the temperature set-point range between 24� and 

30�, the dataset collected based on the empirical study was very imbalanced where the majority 

vote is “no change”. As a result, the predictions misclassify other thermal preferences. Hence, the 

empirical study should be conducted with larger temperature set-point range to make the dataset 

more balanced and the combination of the data-driven model and the domain knowledge shall be 

integrated to enhance prediction performances. Moreover, since effects of radiation and velocity 

on thermal comfort are not investigated in the study, the models can only be used to predict thermal 

comfort in the core zone of the space with acceptable air velocity. Therefore, future study could 

also be conducted to take radiation and velocity into account.  

5.6 Conclusions 
In order to evaluate the benefits of thermal comfort improvements with the proposed local-fan 

induced air-conditioning system, this study has conducted a six-day empirical study in an open-

plan office in Shanghai. Additionally, the machine learning algorithms of SVM and RF were used 

for the development of adaptive thermal preference models with the comfort database II and the 

field data. Moreover, the models were applied into a CFD simulation for performance benchmark 

on thermal preference distribution in the occupied zone with or without the fan operation.   

As a result, with the feature set of indoor air temperature, indoor relative humidity and skin 

temperature, the precision, recall and F1 score of the prediction models for the female subject are 

81%, 90% and 85.3%, respectively. Meanwhile, the precision, recall and F1 score of the prediction 

models for the female subject are 94.2%, 97% and 95.6%, respectively. In addition, based on CFD 

simulation results, since the fan helps induce the supply air into the occupied zone when the supply 

temperature set-point is no more than 28℃, the proportion of the area in the occupied zone where 

the thermal preference prediction is “no change” with fan operation is larger than that without fan 

operation. In future, more balanced dataset for the development of thermal preference prediction 

models should be collected. Meanwhile, the proposed method of combining data-driven models 

and simulation models could be applied into developing different individuals and evaluating 

effects of different HVAC systems on thermal comfort in future.  
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Chapter 6 Energy co-simulation study of the task-

ambient cooling control based on synthetic thermal 

preference distributions 
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Table 6-1 Nomenclature 

Abbreviation Description 

GMM Gaussian mixture model 

KDE Kernel density estimation 

BIC Bayesian information criterion 

comfort database Global thermal comfort database 

CFD Computational fluid dynamics 

DX cooling coil Direct expansion cooling coil unit 
 
6.1 Overview of energy simulation for the task-ambient cooling system 

The CFD simulation has illustrated that the proposed task-ambient cooling system could 

benefit from energy savings while still maintaining thermal comfort when temperature set-point is 

no more than 28℃. Besides CFD simulation, energy simulation of the proposed task-ambient 

cooling system was conducted with adaptive thermal comfort models developed with the comfort 

database. Unlike CFD simulation focused only on a single person, the energy co-simulation aims 

to evaluate energy savings based on the optimization of the ambient conditioning system with 

constraints of thermal comfort levels in an open plan office room. Moreover, same as CFD 

simulation, thermal preferences were used for describing occupant thermal comfort.  

6.2 The development of thermal preference distribution used in Energyplus 
Even if individuals have different thermal preferences under the same thermal environment in 

air-conditioned open-plan offices, most of the thermal preference distributions can be 

approximated as Gaussian distributions where the majority are satisfied while only a few of 

occupants vote for either being uncomfortably warmer or uncomfortably cooler. Therefore, in 

order to simulate different thermal preferences in a shared space, Figure 6-1 shows the diagram of 

developing the synthetic thermal preference distributions with the comfort database. As shown in 

the figure, the pipeline is comprised of clustering of the thermal environments in the database, 

thermal preference distribution synthesis and sampling.  
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Figure 6-1 The diagram of developing the synthetic thermal preference distributions 

The subset of the comfort database was used where a total of 2354 instances were collected. 

In the subset, both the task-ambient cooling system consists of ceiling fans and the centralized 

cooling and the conventional centralized cooling system were operated. Among them, 815 

instances were collected with the task-ambient cooling system while 1539 instances were collected 

with the conventional centralized cooling system.  

Since the indoor environments is expected to vary a bit in the database, the unsupervised 

clustering is implemented so as to cluster the similar thermal environments into a single cluster 

and see the histogram of thermal preference in each cluster. Moreover, same as clustering method 

in chapter 2, similar thermal environment conditions, including air velocity, air temperature and 

relative humidity were clustered with GMM where the number of clusters were selected based on 

BIC score. After clustering, the histogram of thermal preference under each cluster was developed 

so that in the energy model, the number of occupants for each thermal preference can be sampled 

from the synthetic thermal preference distribution with kernel density estimation (KDE) under the 

given cluster. Moreover, since Energyplus cannot simulate the thermal environment changes after 

fans were operated, the subset without fan operations and the subset with fan operations were 

clustered, respectively.  

6.2.1 Thermal preference synthesis algorithms: 

As mentioned before, the synthetic thermal preference distributions were approximated with 

Gaussian distribution. Therefore, kernel density estimation (KDE) was implemented based on the 

dataset. Kernel K(x; h) is a function controlled by the bandwidth parameter h, which can be seen 

as smoothing parameter controlling the tradeoff between bias and variance in the result. Given the 

kernel form, the density estimate at a point y within a group of points @V; i=1..N is given by  

∆« ^ = r(»…´¨ )À
VâA    (6-1) 

where h is bandwidth. 
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Same as previous chapter, the bandwidth is tuned with 5-fold cross-validation from 5 candidate 

values between 0.1 and 1.  

6.3 Co-simulation with the proposed optimization framework 
The energy simulation was implemented with the co-simulation between energyplus and 

python. The one-story small office building was simulated in Shanghai from July 1st to August 

31st. The total ground floor area is 512 m2 and 5 thermal zones are built. Moreover, the cooling is 

supplied with packaged DX cooling coil and the heating is supplied with gas heating coil. The 3D 

rendering and floor plan are shown in Figure 6-2 and Figure 6-3. The co-simulation framework 

was developed in (Zhang et al., 2018). 

               
Figure 6-2 3D rendering of the reference building    Figure 6-3 Thermal zones of the building 

 

The baseline simulation and optimized simulation were both conducted with dual setpoint 

schedule where the heating set-point is constant to be 21 � while the cooling set-point differs over 

a day. The baseline cooling set-point schedule is the default schedule where the cooling set-point 

is predetermined and fixed to be 22� (Figure 6-4) while the proposed cooling set-point schedule 

is based on the optimization framework. Moreover, Figure 6-5 shows the occupancy schedules 

used in the simulations.  

          
Figure 6-4 The fixed temperature set-point schedule      Figure 6-5 The occupancy schedules 
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Besides baseline set-point schedule, Figure 6-6 shows the flow diagram of the proposed 

optimization framework. As shown in the diagram, two histogram models were implemented to 

simulate the conditions when the personalized fan is operated or not, respectively. Moreover, the 

initial cooling set-point is 24� and the setpoint is increased by 1℃	or no change when the space 

is occupied at each time step. However, it is assumed that the reason for turning on fans is only 

because of feeling warm. Meanwhile, it is also assumed that all the fans will be turned off when 

determining a new set-point. 

 
Figure 6-6 Flow diagram of the proposed optimization framework 

 

Meanwhile, the control law of the proposed optimization framework is shown below: 
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As shown in the control law, the cooling set-point is controlled every 30 minutes since the 

indoor air temperature and relative humidity always change slower than set-points due to thermal 

mass. In addition, since the objective function of sensible cooling loads is monotonously 

decreasing when cooling set-point is increasing, it will reach the optimal state under the constraints 

after several time steps in the end. Meanwhile, if constraints are not satisfied that the number of 

occupants feeling warm exceeds the threshold or the setpoint exceeds the boundary, the updating 

will decrease 1� for this time step. The threshold can be tuned with benchmark of multiple 

simulations. 

6.4 Result analysis 
6.4.1 Synthetic thermal preference distributions 

With comfort database, 7 clusters were selected for the subset without fans and 6 clusters were 

selected for the subset with fans on according to the lowest BIC scores. Table 6-1 shows the mean 

of each cluster and the correspondent best bandwidth for KDE. Figure 6-7 shows the histogram of 

thermal preference distribution within each cluster for the subset without fans, respectively. As 

shown in the table, except cluster 1, different clusters have similar indoor air temperature and 

indoor air velocity. Since no fans were deployed for the system, the air velocity is smaller than 0.2 

m/s. However, relative humidity varies a lot among different clusters. This may result from lack 

of humidity control in common office buildings. In addition, except cluster 1, thermal preference 

histograms have shown that the majority vote is “no change” in different clusters. Moreover, 

compared to thermal preference vote of “want cooler”, all clusters but cluster 1 have more votes 

for “want warmer”. This may be because of low air temperature. Therefore, there is a potential to 

increase cooling set-point to save energy while maintaining occupant thermal comfort.  

 

Objective function: 

min. Sensible cooling loads 

subjective to: 

% of occupants feeling warm < δ (6-2) 

20 � < cooling set-point t < 30 � (6-3) 
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Table 6-2 The centroid of each cluster and the correspondent optimal bandwidth 

Velocity[m/s] Temperature [℃] Relative humidity [%] Optimal 
bandwidth 

0.56 25.78 58.65 1 
0.11 23.76 63.34 0.18 
0.16 23.96 56.12 0.56 
0.12 22.59 67.19 0.56 
0.13 23.7 38.1 1 
0.12 23.91 58.6 0.18 
0.12 23.13 48.85 0.18 

 

 
Figure 6-7 The histogram of thermal preference distribution  

In addition, Table 6-3 shows the means of the clusters and Figure 6-8 shows the histograms 

of the thermal preference distribution within each cluster for the subset with fans on, respectively. 

As shown in the table, the mean air velocity of each cluster is higher than those in most of clusters 

without fans, which is because of the operation of fans. Meanwhile, the table has illustrated the 

average value of the mean air temperature in each cluster with fans on is larger than that without 

fans. In addition, the figure has illustrated that the majority votes within each cluster is “no change”, 

which means such task-ambient cooling system has potential to increase air temperature to save 

energy while still maintaining high thermal comfort level.  
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Table 6-3 The centroid of each cluster and the correspondent optimal bandwidth 

Velocity[m/s] Temperature [℃] 
Relative humidity 

[%] 
Optimal  

bandwidth 
0.31 25.98 66.24 0.56 
0.34 26.72 58 0.32 
0.47 25.85 63.09 0.32 
0.28 24.83 75.68 0.32 
0.17 23.5 44.54 0.56 
0.19 25.36 63.27 0.32 

 

 
Figure 6-8 The histogram of thermal preference distribution 

6.4.2 Energy benchmark of the proposed optimization framework 

In terms of energy benchmark between baseline control and the proposed control framework, 

HVAC electric demand power was used to evaluate the energy performances. Meanwhile, the 

percentage of occupants feeling warm is controlled within 10%. As a result, Figure 6-9 shows the 

comparisons of HVAC electric demand power between baseline models and the proposed models 

with different occupancy schedules. As shown in the figure, the proposed framework has achieved 

5%, 5.3% and 5.6% demand power reduction compared to baseline models with 90% of occupants 

are comfortable when the number of occupants are 15, 20 and 25, respectively. Therefore, it is 

meaningful to develop the task-ambient system which not only creates comfortable local 

environment for each occupant but also improves the overall energy performance. 
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Figure 6-9 HVAC electric demand power between baseline and the proposed models  

6.5 Discussions of the proposed framework through energy models 
The simulation study has evaluated the energy performances of the task-ambient cooling 

system consisting of ceiling fans and the centralized cooling system. In order to simulate 

individuals, have different thermal preferences in a shared office space, the synthetic thermal 

preference distributions have been developed so as to generate “virtual” occupants with various 

thermal preferences in the same thermal environments. The results have validated that the 

proposed optimization framework could achieve 5.3% of HVAC electric demand power savings 

on average without the compromise of occupant thermal comfort. However, there are still 

limitations in the energy models. Firstly, due to lack of data, instead of local fans such as desktop 

fans, this energy simulation has applied comfort database where the task-ambient cooling system 

is comprised of ceiling fans and the ambient conditioning system. Since ceiling fans cannot be 

seen as task conditioning system, the thermal preference distributions based on comfort database 

may be different from those based on the experiments. In addition, same as the experimental study, 

the objective function may be improved to not only take sensible cooling loads but also take latent 

cooling loads into consideration.  

6.6 Conclusions  

This chapter has conducted an optimized framework to maximize the energy efficiency and 

thermal comfort with the local fan-induced air-conditioning system by updating the cooling set-

point. In order to evaluate energy performances with the proposed optimization framework, a co-

simulation of a typical office building was conducted with Energyplus. In order to simulate the 



	

	 99	

fact that different people have different thermal preferences in Energyplus, synthetic thermal 

preference distributions were generated with kernel density estimation in each cluster based on 

GMM clustering of the thermal environment given in the comfort database. The results have shown 

that with the proposed framework, the proposed framework has achieved 5%, 5.3% and 5.6% 

demand power reduction compared to baseline models with 90% of occupants are comfortable 

when the number of occupants are 15, 20 and 25, respectively. In future, more work could be done 

to optimize the energy performances in the simulation by updating other parameters such as 

relative humidity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

	 100	

 

 

 

 

 

 

Chapter 7 Conclusions and future work 
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This dissertation has proposed and evaluated a new integrative task-ambient cooling control 

system featuring personal thermal comfort models with non-intrusive sensing techniques for open-

plan office spaces with two comfort databases, two experimental studies, one field study, one CFD 

simulation study and one energy simulation study. All of these studies have proved the main 

hypothesis as well as sub-hypotheses. Moreover, some future work was proposed so as to enhance 

the performances of the interactive task-ambient conditioning system controlled with personal 

comfort models with the non-intrusive sensing systems in real open-plan office buildings.  

7.1 Contributions 
This dissertation has mainly three contributions. One of the major contributions is the 

introduction to an interactive and automatic task-ambient cooling system consisting of task 

conditioning system and an ambient conditioning system. The task conditioning system is 

controlled with the personal thermal comfort model for each individual. Moreover, the ambient 

conditioning is controlled with the optimization of the sensible cooling loads under the constraints 

of multiple fan statuses as well as individual thermal comfort predictions. With the task 

conditioning system, each occupant has access to adjusting their own local thermal environment 

without interrupting others’. The second contribution is the development of the non-intrusive 

sensing system for personal thermal comfort inference, including the infrared temperature sensor 

called AMG8833 and the indoor air temperature and relative humidity sensor called DHT22. 

Compared to existing products in the market such as infrared cameras and wrist bands, the 

proposed sensing system is much more cost-effective while still maintaining the merits of non-

intrusiveness and high accuracy. Another major contribution is to implement various machine 

learning algorithms into the real system and the simulation, including adaptive and personal 

thermal comfort models and Q-learning based temperature set-point control. Compared to baseline 

such as PMV, the proposed system has higher prediction performances on the same dataset and 

can adapt individual thermal preferences better than the conventional prediction model. 

Meanwhile, the proposed adaptive and personal thermal comfort models can be applied into 

different simulation tools, including data-driven simulator, CFD simulator, Energyplus simulator, 

etc. These three major contributions have been dedicated to thermal comfort research and provided 

insights into future work on adaptive and personal thermal comfort-based HVAC system control 

in the real open-plan office environments.  
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7.2 Summary of findings 
This dissertation has mainly demonstrated a newly data-driven task-ambient cooling system 

with adaptive and personal thermal comfort models and non-intrusive sensing techniques in an 

open-plan office. The findings here are summarized into five categories which corresponding to 

each chapter. These findings are useful for future study on similar topics. 

Chapter 2 has conducted a data-driven simulation of comfort-based temperature set-point 

control system with tabular Q-learning has been conducted. In addition, the thermal comfort model 

is a classification model with machine learning methods of KNN, SVM and RF to predict thermal 

sensation and indicate thermal comfort. Compared to baseline of PMV, the recall of the thermal 

comfort model with the tree algorithms has increased 6.3%, 5.4% and 5.4%, respectively. Besides 

the statistical thermal comfort models, the reinforcement learning-based controller with tabular Q-

learning control can reach the optimal comfort state after training with 100 episodes and generate 

the optimal policy from whatever start state in terms of indoor thermal environment.  

Chapter 3 has conducted a non-intrusive sensing technique, which consists of temperature, 

humidity sensor called DHT22, and an infrared camera named FLIR B8400. Two statistical 

thermal comfort models for female subject and male subject were developed with SVM and RF 

based on a 6-day experimental study conducted in Shanghai, respectively. As a result, the models 

trained with the feature set consisting of indoor air temperature, indoor relative humidity, side face 

skin temperature and clothing surface temperature, and with linear kernel SVM have achieved the 

best performances. The precision, recall and f1 scores of the best model was 100% on test data of 

female subjects and 97.5%, 96.1%, 95% on that of male subjects, respectively. 

Chapter 4 has conducted a field study to evaluate an integrative TAC system featuring non-

intrusive sensing technique and automatic control with adaptive thermal models developed with 

SVM in an open-plan office room. The temperature set-point of ambient system was then 

maximized with constraints of individual thermal sensations and the number of operated fans. As 

a result, the recall scores of the thermal sensation model and satisfaction model with the data from 

all female subjects are 84.7% and 76.5%, respectively. Meanwhile, the recall scores of the thermal 

sensation and satisfaction models with the data from all male subjects are 87% and 82.5%, 

respectively. However, the performances of individual thermal models vary among different 

individuals. Moreover, five 3-hour sessions have shown that the proposed system could achieve 

9.6% of HVAC energy savings on average compared with the baseline.  
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Chapter 5 has conducted a six-day empirical study in an open-plan office in Shanghai. 

Additionally, the machine learning algorithms of SVM and RF were used for the development of 

adaptive thermal preference models with the comfort database II and the field data. Moreover, the 

models were applied into a CFD simulation for performance benchmark on thermal preference 

distribution in the occupied zone with or without the fan operation. As a result, with the feature set 

of indoor air temperature, indoor relative humidity and skin temperature, the precision, recall and 

F1 score of the prediction models for the female subject are 81%, 90% and 85.3%, respectively. 

Meanwhile, the precision, recall and F1 score of the prediction models for the female subject are 

94.2%, 97% and 95.6%, respectively. In addition, based on CFD simulation results, since the fan 

helps induce the supply air into the occupied zone when the supply temperature set-point is no 

more than 28℃, the proportion of the area in the occupied zone where the thermal preference 

prediction is “no change” with fan operation is larger than that without fan operation, which 

demonstrates the potential to reduce energy by increasing the cooling set-point. 

Chapter 6 has conducted an optimized framework to maximize the energy efficiency and 

thermal comfort with the local fan-induced air-conditioning system by updating the cooling set-

point. In order to evaluate energy performances with the proposed framework, a co-simulation of 

a typical office building was conducted. Meanwhile, the synthetic thermal preference prediction 

distributions were generated with kernel density estimation based on GMM clustering of given the 

thermal environment given in the comfort database II. The results have shown that with the 

proposed framework, the average HVAC electric demand power decreases by 5.3% compared to 

the baseline while at least 90% of occupants feel comfortable without cooling set-point change. 

7.3 Hypotheses revisit 
Main hypothesis: An interactive task and ambient cooling system will provide higher energy 

savings than a conventional air-conditioning (ambient only) system, while maintaining thermal 

comfort in open-plan office buildings. 

•  Sub-hypothesis 1: Task conditioning system can be operated automatically based on the 

personal thermal comfort models. 

•  Sub-hypothesis 2: Personal thermal comfort model can be continuously improved by 

collecting occupant override actions. 

•  Sub-hypothesis 3: An interactive task-ambient cooling system can be optimized by 

minimizing sensible cooling loads with the constraints of personal thermal comfort.  
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 The main hypothesis has been tested to be true with the field study in the test office room in 

Shanghai as well as energy co-simulations. The results have illustrated that HVAC energy savings 

could achieve 9.6% on average in the field study and 5.3% on average in the simulations with the 

proposed task-ambient controls. In addition, since one of the constraints for the ambient 

conditioning system optimization ensures that at least 80% and 90% of occupants feel thermally 

comfortable with the operation of the personalized fans in the field study and co-simulations, 

respectively. In addition, the sub-hypothesis 1 has been tested with the field study and identified 

that it is possible to provide task conditioning automatically to individual occupants with the initial 

personal comfort models and wireless task conditioning system, which consists of the non-

intrusive sensing system as well as the WIFI plug. Moreover, in terms of sub-hypothesis 2, it has 

been proved true based on the phase 2 of the field study where participants who provided override 

actions saw better improvements in their correspondent personal comfort models. Last but not least, 

as mentioned in the discussion on main hypothesis, sub-hypothesis 3 have both been tested to be 

true with the experimental study as well as the energy simulation.  

Besides the findings to support hypotheses, another interesting finding is that the majority 

votes for thermal sensation and thermal preference are neutral and no change in the typical open-

plan office buildings, respectively. This illustrates that the thermal comfort difference between 

different people is limited and only a few occupants are not neutral or satisfied in the open-plan 

office buildings. Therefore, in order to improve fine-tuned thermal comfort management, the 

personalized/task heating and cooling system is of great significance to be developed. 

7.4 Limitations and future work 
This research contributes to innovations in adaptive and personal thermal comfort research to 

realize higher energy savings and thermal comfort improvements. Even if the findings have proved 

the advantages of the proposed task-ambient cooling system, some limitations have also pointed 

to the future research directions: 

• Deployment in a large-scale office buildings with multiple thermal zones  

In the field study, only one thermal zone equipped with a simple split air-conditioner has 

been tested with the proposed system. Therefore, the proposed task-ambient cooling system 

shall be implemented in a multi-zone open-plan office area with more complex centralized air-

conditioning systems such as VAV system. Moreover, since personal thermal comfort is 

affected by other factors such as radiation and air velocity, it could be more comprehensive if 
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the field study was conducted in different conditions with different scenarios so as to evaluate 

the performances of the interactive task-ambient cooling system. In addition, the analysis of 

cost benefit shall be conducted to evaluate the savings in a large-scale open office building.  

• Implementation with a more complex optimization control algorithm 

In this study, only one constrained single objective function was implemented in the 

optimization of the ambient conditioning system both in the field study and the energy 

simulations. However, since the current optimization function only contains sensible cooling 

loads, the performances of energy savings and thermal comfort improvements may not be 

optimal. Future work should be conducted to develop a constraint-free multi-objective 

optimization or reinforcement learning control with a reward function based on both energy 

savings and thermal comfort. Moreover, in the field study, it was assumed that only more than 

80% of fans were turned on, the ambient temperature cooling set-point needs decreasing. 

However, the threshold of the percentage needs more experiments for fine-tuning and it could 

be better if occupants are provided with feedback access so that they could give more detailed 

thermal comfort responses.  

• Continuous collection of new data to improve performances of personal comfort models 

In the field study, performance benchmark between the initial thermal comfort models and 

the updated thermal comfort models were limited with only 2-day comparison for 5 subjects. 

In order to evaluate the performances of the updating mechanism, more data from override 

actions shall be collected. Therefore, continuous collection shall be conducted for a longer 

period. Moreover, the current updating mechanism is rule-based since the override action with 

a personalized fan is only on/off. Such rule-based updating mechanism could be improved with 

more override options besides on/off (i.e. change of fan speed).  
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Appendices 
Appendix A: Codes & Metadata 

o Chapter 2 : https://github.com/lusiliang93/thermal_model_rp884.git 
o Chapter 3 : https://github.com/lusiliang93/personalized-cooling-fan.git 
o Chapter 4 : https://github.com/lusiliang93/bae_personal_comfort.git 
o Chapter 5 : https://github.com/lusiliang93/cfd_task-ambient _cooling.git 
o Chapter 6 : https://github.com/lusiliang93/energyplus_task-ambient _cooling.git 
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Appendix B: Experimental data for chapter 3 and 5 
 

Chapter 3: Thermal comfort data from male subject 
temperature humidity skin clothing comfort sensation 

17.4 37.9 28.2 21.7 0 0 
17.3 40.2 28.9 22.4 0 0 
23.5 35.2 31.8 26.9 -1 1 
26.8 33.1 33 27.8 -1 1 
26.9 31.4 33.7 28.4 -2 2 
27.8 32.1 33.7 28.7 -2 2 
28.7 30.4 34.3 29.7 -3 3 
29.3 29.6 35.3 30.7 -3 3 
28.1 30.8 33.9 29.2 -2 2 
25.3 33.1 34.8 28.2 -1 1 

24 34.4 33.4 26.5 0 0 
22.6 32.7 32.8 25.1 0 0 
22.2 27.6 31.9 25 -1 1 
22.5 26.8 31.9 24.7 0 0 
22.4 27.2 31.9 25.3 0 0 
22.5 28.3 31.8 25.6 0 0 
22.7 30 32.3 26.1 0 0 
26.6 28.3 33.4 28.6 -1 1 
29.6 26.3 33.6 30.4 -3 3 

28 26.9 33.6 29 -1 1 
26.9 28.1 33.8 28.8 1 0 
26.5 28.6 33.5 28.5 -1 1 
26.2 29 33.8 28.4 -1 1 

26 25 33.8 28.2 0 0 
25.2 24 33.6 26.9 1 0 

25 22.4 33.8 26.9 1 0 
24.6 25 33.8 26.6 1 0 
24.3 26.1 33.4 25.9 1 0 
19.3 34.5 30.9 23.1 1 0 
19.2 34.9 30.9 22.9 1 0 
19.1 35.3 31.2 22.5 0 0 
19.9 35.1 31.2 24 0 0 
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21.5 34.2 31.9 25 -1 1 
23.1 32.3 33.3 26.5 -1 1 
23.7 31.7 32.4 25.9 -1 1 
25.2 30.8 32.8 26.9 -1 1 
26.1 29.9 33.6 27.1 -2 2 
27.5 29 34.6 29.3 -2 2 
27.6 29.1 34.1 29.6 -3 3 
28.2 29.5 34.1 29.8 -3 3 
26.1 30.4 33.9 28.8 -2 2 
24.9 32.3 33.8 28.7 -2 2 
22.5 32.4 32.8 25.6 0 0 
20.9 32.2 32.5 25 1 0 
17.7 40.5 28.4 22.4 -1 -1 
19.6 39.5 29.2 23.1 0 0 
20.6 38.6 30.1 24.3 -1 1 
23.8 34.4 31.9 27.2 -1 1 
26.4 31.5 32.6 28.2 -2 2 
27.8 30.2 33.7 29.1 -3 3 
28.9 29.5 34.4 30.4 -3 3 
27.6 30 34.1 29 -2 2 
20.7 36.1 31.7 23.8 1 0 

22 36.5 31.9 25.2 0 0 
23.6 34.7 32.4 25.8 -1 1 
27.1 30.7 33.3 28.3 -2 2 

28 30.6 33.6 29.2 -2 2 
28.4 30 34 29.7 -3 3 

25 32.6 33.5 27.5 -1 1 
24.4 31.4 34.4 28.5 0 1 
19.2 51.3 29.9 24.2 0 0 
19.4 51.3 30.2 23.5 0 0 
20.2 49.6 30.6 24.9 1 0 
21.9 45 32.1 26 1 0 
22.3 44.3 32.1 26 0 0 
23.4 43 32.5 26.4 -1 1 
25.3 39.5 33.9 28.6 -1 1 
26.7 39.1 33.6 29.1 -1 1 
27.4 36.9 33.6 30 -2 2 
28.3 35.9 34.1 29.4 -2 2 
28.9 36 34.4 30.5 -2 2 
27.5 37.1 34.1 28.9 -1 1 
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26.1 38.8 33.6 27.3 0 0 
24.7 41 33.3 26.3 1 0 
29.6 34 33.9 30.7 -3 3 
25.9 38.7 34.5 30.3 0 0 
25.6 39.5 33.1 28.9 -1 1 

24 38.6 32.6 27.6 -1 -1 
24.6 42.1 32.7 28.1 0 0 
24.7 39.3 32.7 27.4 0 0 

21 35.1 31.3 24.7 -2 -2 
19.8 35.9 31.3 23.4 -3 -3 
18.7 36.1 30.6 23.6 -3 -3 
25.2 35.3 32.8 27.6 1 0 

25 35.8 33.4 28.2 1 0 
27 34.1 33.9 29.3 -1 1 

28.1 34.5 33.8 29.4 -1 1 
28.5 33.1 34.4 30.1 -1 1 
26.5 35 34 28.6 0 0 
25.1 37.3 33.7 28 1 0 
24.3 38.9 33.5 27 1 0 
21.4 51.2 31.1 24.2 1 0 
21.2 52 31.8 24.7 1 0 
22.2 48.7 31.9 25 0 0 
22.9 47.1 32.6 27 -1 1 
24.6 43.2 32.7 27 -1 1 
25.6 41.2 33.3 27.5 -2 2 
27.8 39 33.6 29.9 -3 3 
28.5 37.6 34.3 30.1 -3 3 
25.4 42 34 28.2 -1 1 

24 45.1 33.7 27.1 0 0 
23 47.3 32.7 26.4 1 0 

22.1 51 32.6 26.9 1 0 
22 50.6 32.6 25.8 1 0 

20.9 49.6 31.5 23.9 -1 -1 
18.7 54.3 31.1 23.7 -1 -1 

20 58 31.1 24.6 -1 -1 
20.4 57.6 32.1 24.8 0 0 

21 61.2 30.4 24.5 1 0 
21.3 59.7 30.4 26.1 1 0 
24.7 54.1 32.5 27.3 0 0 
26.8 49.8 33.4 28.8 -1 1 
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28.4 46.9 33.4 29.9 -1 1 
29.2 44.7 33.8 30.5 -1 1 

30 42.4 34.2 31.6 -2 2 
30.6 40.5 34.1 31.4 -2 2 
29.9 41.1 33.8 31 -1 1 
27.9 43.7 33.7 29.3 0 0 
27.1 45.3 33.9 29.2 0 0 
26.5 45.7 34.7 29.4 1 0 
17.3 43.4 28.5 20.8 -2 -2 
16.6 41.6 28 20.5 -3 -3 
15.7 41.1 27.5 19.9 -3 -3 
17.9 48.6 29 23.1 -2 -2 

19 51.7 29.3 23.5 -1 -1 
19 54.8 29.4 24.1 -1 -1 

19.8 54.5 29.8 24.2 -1 -1 
20.1 54.1 29.3 24.6 0 0 
20.4 54.2 30.1 26.3 0 0 
20.5 54.5 29.5 24 0 0 
20.5 53.8 30.5 25.2 0 0 

21 53.5 30.5 24.9 1 0 
22.3 50.6 31.2 26.2 1 0 
23.5 48 31.5 26.8 1 0 
25.7 45 33.3 29 0 0 
27.1 42.3 32.6 27.6 -1 1 

28 41.8 32.8 29.2 -1 1 
28.7 40.3 33.1 30.5 -1 1 
29.1 40 33.4 30.9 -1 1 
28.2 40.6 33.5 30 -1 1 
26.7 43.4 33.4 29.2 -1 1 
25.7 45 33 28.4 0 0 
22.7 63.3 31.6 27.8 0 0 
26.5 55 32.7 29.2 0 0 
28.9 52 33.7 30.6 -1 1 
29.8 48.8 34.5 31.5 -2 2 
30.3 47.1 34.6 32 -2 2 
28.6 50.3 34.1 31 -2 2 
27.7 52 35.1 30.8 -2 2 
27.2 52.5 34 29.3 -1 1 
25.4 55.6 34 28.6 0 0 
24.4 57.4 33.7 28.2 1 0 
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23.7 55.9 32.4 25.2 1 0 
20.9 58.6 32.4 25.5 0 0 
18.5 52.3 30 22 -2 -2 
18.7 53.8 29.7 22.8 -2 -2 
19.6 71.6 30.8 24.5 1 0 
19.9 71.3 30.8 24.6 1 0 
22.3 63.2 31.5 26.7 0 0 
23.8 59.2 32.2 27 0 0 
24.5 57.5 32.9 28.5 0 0 
26.1 54.8 34 29.4 -1 1 
26.8 53.8 32.7 29.2 -1 1 
28.8 49.8 34.3 31.4 -2 2 
29.5 48 33.7 31 -2 2 
28.3 51.4 33.8 30.3 -2 2 
26.7 52 34.6 29.7 -1 1 
24.9 55.9 32.6 27.2 0 0 
21.5 62 31.9 26.3 1 0 
21.6 62 31.1 26.1 1 0 

23 59.2 32.3 27.1 1 0 
24.8 56.7 32.3 27.4 0 0 
27.2 51.7 33.6 29.8 -1 1 
29.5 48.2 33.9 31.7 -1 1 
29.4 48.5 34.4 31.1 -2 2 
28.7 50 34 30.6 -2 2 
27.4 52 34.2 30 -2 2 

26 53.6 33.5 28.5 -1 1 
25 55.5 33.8 27.6 0 0 

22.6 57.1 31.9 26 1 0 
22.5 64.9 32.2 25.8 1 0 
20.6 56.1 30.5 22.3 -1 -1 
18.7 52.5 29.6 24 -2 -2 
16.1 47.1 28.2 23.2 0 0 
15.7 50.8 28.3 23.5 0 0 
14.4 53.4 26.9 21.7 -1 -1 

15 54.6 27.1 23.6 -1 -1 
15.6 55.7 27.8 24.6 -1 -1 
16.1 54.1 28.5 24.2 -1 -1 
16.5 53.2 28.9 23.6 0 0 
16.6 52 29.3 24 0 0 
21.3 47.7 30.6 25.8 0 0 
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22.5 45.1 32.1 27.1 0 0 
23 40.9 32.8 28.8 -1 1 

24.5 40.1 33.4 28.7 -1 1 
26.2 36.2 33.7 29.1 -2 2 
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Chapter 3: Thermal comfort data from female subject 
temperature humidity skin clothing sensation comfort 

17.4 37.9 28.5 21.7 -1 0 
17.3 39.5   -1 0 
17.3 40.2 29.2 22.4 -1 0 
18.5 39   0 0 
23.5 35.2 31 26.9 1 -1 
26.4 32.1   2 -2 
26.8 33.1 32.8 27.8 2 -2 
26.7 31.4   2 -2 
26.9 31.4 32.3 28.4 2 -2 
27.2 33.7   2 -2 
27.8 32.1 33.6 28.7 2 -2 

28 31.6   2 -2 
28.7 30.4 34 29.7 2 -2 
29.1 30   2 -2 
29.3 29.6 34.8 30.7 2 -2 
28.9 30.1   1 -1 
28.1 30.8 33.7 29.2 0 0 
26.5 31.2   0 0 
25.3 33.1 34 28.2 0 1 
24.4 33.7   0 1 

24 34.4 32.7 26.5 0 1 
23.5 33.3   0 1 
22.6 32.7 32.2 25.1 0 1 
22.3 32.6   0 1 
22.2 27.6 32 25 0 0 
22.3 27.2   0 0 
22.5 26.8 32.2 24.7 0 0 
22.4 26.6   0 0 
22.4 27.2 32.1 25.3 0 0 
22.4 27.8   0 1 
22.5 28.3 32.4 25.6 0 1 
22.7 28.7   0 1 
22.7 30 32 26.1 0 1 
22.8 22.9   0 1 
26.6 28.3 33.6 28.6 1 -1 
28.4 26.9   2 -2 
29.6 26.3 34.1 30.4 3 -3 

29 26.5   2 -2 
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28 26.9 34 29 2 -2 
27.2 28.2   1 -1 
26.9 28.1 34.2 28.8 1 -1 
26.7 28.4   1 -1 
26.5 28.6 33.6 28.5 1 -1 
26.4 28.6   1 -1 
26.2 29 34 28.4 1 -1 
26.2 29   1 -1 

26 25 33.5 28.2 0 0 
25.6 24.1   0 0 
25.2 24 33.6 26.9 0 0 
25.1 23.3   0 0 

25 22.4 33.4 26.9 0 0 
24.8 23.8   0 0 
24.6 25 33.4 26.6 0 0 
24.4 26   0 0 
24.3 26.1 32.8 25.9 0 0 
19.3 34.7   0 1 
19.3 34.4   0 1 
19.3 34.5 30.8 23.1 0 1 
19.2 34.7   0 1 
19.2 34.9 31.2 22.9 0 1 
19.1 35   0 1 
19.1 35.3 30 22.5 0 1 
19.2 35.7   0 1 
19.9 35.1 30.4 24 0 1 
20.4 35.1   0 0 
21.5 34.2 31.4 25 0 0 
22.5 33   0 0 
23.1 32.3 33 26.5 0 0 
23.4 32.2   0 0 
23.7 31.7 32 25.9 1 -1 
24.1 32.1   1 -1 
25.2 30.8 32.5 26.9 1 -1 
25.7 30.1   1 -1 
26.1 29.9 32.7 27.1 1 -2 
26.5 29.4   2 -2 
27.3 29.2   2 -2 
27.5 29 34.3 29.3 2 -2 
27.3 29.2   2 -3 
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27.6 29.1 34.1 29.6 3 -3 
28.5 29.1   3 -3 
28.2 29.5 34.1 29.8 3 -3 
27.6 29.5   3 -3 
26.1 30.4 33 28.8 2 -2 
25.3 31.4   2 -2 
24.9 32.3 34.1 28.7 1 -1 
24.1 32.3   1 -1 
22.5 32.4 32 25.6 1 -1 
21.7 32.7   0 0 
20.9 32.2 31.4 25 0 0 
17.7 40.3   0 0 
17.7 40.5 28.8 24.1 0 0 
17.8 40.7   0 0 
19.6 39.5 29.8 23.8 0 1 
20.2 38.9   0 1 
20.6 38.6 30.2 23.9 0 1 
21.9 36.2   0 0 
23.8 34.4 31.7 26.5 0 0 
25.6 32.3   0 0 
26.4 31.5 32.5 27.7 0 0 
27.2 31   1 -1 
27.8 30.2 33.3 28.5 1 -1 
28.4 29.7   1 -1 
28.9 29.5 33.6 28.8 2 -2 
29.5 29.1   2 -2 
27.6 30 33.4 27.1 1 -1 
25.3 32.6   0 0 
21.2 35.1   0 1 

21 35.2   0 1 
20.8 35.7   0 1 
20.7 36.1 30.5 25.1 0 1 
20.8 36.6   0 1 

22 36.5 31.5 26 0 0 
23 35.6   0 0 

23.6 34.7 32.2 27.3 0 0 
24.5 33.7   1 -1 
26.6 31.4 33.3 28.9 1 -1 
27.1 30.7   1 -1 
27.7 30.7 33.9 29.8 2 -2 
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28 30.6   2 -2 
28.1 30 33.8 30 2 -2 
28.4 30   2 -2 
25.5 31.7   0 0 

25 32.6 33.9 28.2 0 0 
24.6 32.2   0 0 
24.4 31.4 34.5 29 0 0 

19 52.5   0 1 
19.2 51.3 29.8 23.9 0 1 
19.3 51.3   0 1 
19.4 51.3 30.1 24.2 0 1 
20.2 49.6 30.7 24.2 0 1 
20.8 49.1   0 1 
21.9 45 31.6 25.4 0 1 
22.3 44.5   0 1 
22.3 44.3 32 25.8 0 1 
22.8 43.3   0 0 
23.4 43 32.7 26 0 0 
24.5 40.9   0 0 
25.3 39.5 32.4 28.2 0 0 
26.1 38.4   0 0 
26.7 39.1 33.7 29.3 1 -1 
27.1 37.2   1 -1 
27.4 36.9 33.8 29.1 1 -1 
27.9 36.1   2 -2 
28.3 35.9 34.3 30 2 -2 
28.7 35.3   2 -2 
28.9 36 34.2 29.9 2 -2 
28.2 36.9   1 -1 
27.5 37.1 33.7 29.7 1 -1 

27 37.9   0 0 
26.1 38.8 33.5 28 0 0 
25.2 39.4   0 0 
24.7 41 32.7 27.2 0 0 
24.5 41   0 0 
24.1 41.3   0 0 
29.9 33.3   3 -3 
29.6 34 33.8 30 1 -1 
27.5 35.9   0 0 
26.5 38.1   0 0 
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25.9 38.7 34.6 29.6 0 0 
25.6 39.5   0 0 
25.6 39.5 32.9 29.8 0 0 
25.5 40.2   0 1 

24 38.6 32.8 28.4 0 0 
24 42.4   0 0 

24.6 42.1 32.8 29.3 0 0 
25 41.8   0 1 

24.7 39.3 33 28.3 0 0 
23.2 37.7   -1 -1 
22.4 36.5   -1 -1 
21.5 35.5   -2 -2 

21 35.1 31.5 25.4 -2 -2 
21.3 34.8   -2 -2 
19.8 35.9 32 26.5 -2 -2 

19 37   -3 -3 
18.7 36.1 31.2 26 -3 -3 
18.5 36.1   -3 -3 
20.8 63   0 0 

21 61.2 31.2 24.5 0 0 
21.1 60.7   0 0 
21.3 59.8   0 0 
21.3 59.7 32 26.5 0 0 
21.7 59.2   0 0 
23.5 56.4   0 0 
24.7 54.1 33.1 27.1 0 0 
25.3 52.9   0 0 
25.8 51.9   0 0 
26.8 49.8 34.3 28.4 1 -1 
27.9 48.1   1 -1 
28.4 46.9 34.5 30.2 1 -1 
28.7 45.8   1 -1 
29.2 44.7 34.6 29.7 1 -1 
29.6 43.4   2 -2 

30 42.4 34.9 31.2 2 -2 
30.3 41.2   2 -2 
30.6 40.5 35.1 31.1 2 -2 
30.7 39.6   2 -2 
29.9 41.1 34.7 30.1 1 -1 

29 42.6   1 -1 
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27.9 43.7 34.3 29.7 0 0 
27.1 45.3 34 28.3 0 0 
26.7 46.1   0 0 
26.5 45.7 35 28.7 0 0 
17.3 43.4 29.3 22.3 -2 -2 

17 42.1   -2 -2 
16.6 41.6 29 21.7 -2 -2 
16.3 41.4   -2 -2 
15.7 41.1 28.2 20 -2 -2 
16.6 44.4   -2 -2 
17.9 48.6 30.4 24.9 -1 -1 
18.6 52   -1 -1 

19 51.7 29.7 23.7 -1 -1 
18.2 55.2   -1 -1 

19 54.8 29.6 24.4 -1 -1 
19.5 54.6   -1 -1 
19.8 54.5 31 25 0 0 
19.9 54.3   0 0 
20.1 54.1 30.7 26.4 0 0 
20.2 54.8   0 0 
20.4 54.2 30.5 24.4 0 0 
20.4 54.3   0 0 
20.5 54.5 30.9 26.3 0 0 
20.5 53.9   0 1 
20.5 53.8 31.1 23.5 0 1 
20.5 53.8   0 1 

21 53.5 32 25.1 0 1 
21.8 52.4   0 1 
22.3 50.6 32.3 27.1 0 0 
22.7 49.8   0 0 
23.5 48 32.8 27.1 0 0 
24.4 46.7   0 0 

25 46 33 27.5 1 -1 
25.5 45.7   1 -1 
25.7 45 34.3 29.6 1 -1 
26.5 43.1   1 -1 
27.1 42.3 34 30 2 -2 
27.6 42.2   2 -2 

28 41.8 34.6 30.6 2 -2 
28.4 40.8   2 -2 
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28.7 40.3 34.5 29.9 2 -2 
29 40.4   2 -2 

29.1 40 34.8 30.5 3 -3 
29.3 40.2   3 -3 
28.2 40.6 33.4 30.2 2 -2 
27.2 42.5   1 -1 
26.7 43.4 34.3 29.9 1 -1 
26.5 43.9   1 -1 
25.7 45 33.4 28.7 1 -1 

25 46.7   1 -1 
24.5 48.4   1 -1 
24.2 49.1   1 -1 
23.8 51.6   1 -1 
20.9 67.5   0 0 
22.7 63.3 32.6 28 0 -1 
25.4 56.6   0 -1 
26.5 55 33.5 30.1 1 -1 
27.6 52.6   1 -1 
28.3 51   1 -1 
28.9 52 33.9 29.4 1 -2 
29.5 49.4   1 -2 
29.8 48.8 34.9 31.6 2 -2 
30.3 47.1 34.7 31.9 2 -3 
29.3 49.4   2 -3 
28.6 50.3 34.1 30.9 3 -2 

28 51.5   3 -2 
27.7 52 34.9 30.7 2 -2 
27.6 52.8   2 -2 
27.2 52.5 34.2 29.8 2 -1 
26.4 54   2 -1 
25.4 55.6 33.2 29.1 1 0 

25 56.1   1 0 
24.4 57.4 33.2 28.6 0 0 
24.2 57.6   0 1 
23.7 55.9 31.9 26.1 0 0 
21.2 54.2   0 0 
20.9 58.6 30.4 25.8 0 0 
21.5 60.9   0 0 
21.2 58   0 0 
19.4 54.7   -1 -1 



	

	 126	

18.5 52.3 29.6 23.1 -1 -1 
18.7 55.6   -2 -2 
18.7 53.8 29.6 24.2 -2 -2 
19.5 71.9   -1 -1 
19.6 71.9   -1 -1 
19.6 71.6 29.8 25.4 -1 -1 
19.8 70.9   -1 -1 
19.9 71.3 30 25.6 -1 -1 
20.9 67.7   -1 -1 
22.3 63.2 31.4 27 -1 -1 
23.2 61.8   0 0 
23.8 59.2 32.1 28 0 1 
24.1 58.3   0 0 
24.5 57.5 32.7 28.8 0 0 
25.1 56.6   1 -1 
26.1 54.8 33.7 30.1 1 -1 
26.4 54.1   1 -1 
26.8 53.8 33.1 29.2 2 -2 
27.7 51.9   2 -2 
28.8 49.8 33.6 31.7 2 -2 
29.3 48.5   2 -2 
29.5 48 34.2 31.2 2 -2 
29.2 49.4   1 -1 
28.3 51.4 34 30.3 1 -1 
28.2 50.6   1 -1 
26.7 52 35.1 30.2 1 -1 
25.5 54.7   0 0 
24.9 55.9 32.8 27.9 0 0 

24 57.8   0 0 
21.5 63.3   0 1 
21.5 62 31.1 26.5 0 1 
21.7 61.9   0 1 
21.6 62 31.1 26.5 0 1 
22.2 61.8   0 0 

23 59.2 31.7 27 0 0 
23.8 59.1   0 0 
24.8 56.7 32.4 27.8 0 0 
25.5 55.5   0 0 
25.9 54.2   0 0 
26.5 52.9   1 -1 
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27.2 51.7 33.6 29.4 1 -1 
27.7 51   1 -1 
28.2 50.2   2 -2 
28.7 49.5   2 -2 
29.5 48.2 34.4 31.2 3 -3 

30 47.4   3 -3 
29.4 48.5 34.9 31.7 3 -3 
28.8 50.5   3 -3 
28.7 50 34.8 31.1 3 -3 

28 50.4   2 -3 
27.4 52 34.3 30.1 2 -2 

27 52.3   1 -1 
26 53.6 34.4 29.4 1 -1 

25.4 54.6   1 -1 
25 55.5 33.9 27.7 1 -1 

24.5 57.8   0 0 
22.6 57.1 31.8 26.3 0 1 
22.3 63.1   0 1 
22.4 64   0 1 
22.5 64.9 32.5 26.9 0 1 

22 60.5   0 0 
20.6 56.1 31.2 25.2 -1 -1 
19.3 53.5   -1 -1 
18.7 52.5 30.1 25 -1 -1 
18.1 50.6   -1 -1 
16.1 47.1 27.5 18.3 0 0 
15.7 50.8 28.3 19.3 -1 -1 
14.4 53.4 27.1 18.8 -2 -2 

15 54.6 27.8 20.8 -2 -2 
15.6 55.7 26.1 20.5 -2 -2 
16.1 54.1 28.4 22.1 -2 -2 
16.5 53.2 27.8 21.6 -1 -1 
16.6 52 28.5 22.4 -1 -1 
18.4 51.2   -1 -1 

19 50   -1 -1 
20 47.5   0 -1 

20.6 47.8   0 -1 
21.3 47.7 31 24.1 0 -1 
22.5 45.1 32.1 26.1 0 0 

23 40.9 32.9 6.2 0 0 
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24.5 40.1 33.5 26.7 0 0 
25 36.8   1 -1 

25.6 36.5   1 -1 
26.2 36.2 33.6 27.4 2 -2 
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Chapter 5: Thermal comfort data for male subject 

time temperature humidity skin sensation 
2018-08-21 11:55:04 UTC 25.6 52.7 27.86 -1 
2018-08-21 12:00:15 UTC 25.9 57.9 28.64 -1 
2018-08-21 12:05:14 UTC 24.4 65.4 30.69 -1 
2018-08-21 12:10:07 UTC 24.7 62.1 27.61 -1 
2018-08-21 12:15:14 UTC 24.7 69.5 30.97 -1 
2018-08-21 12:20:01 UTC 23.9 64.2 29.36 -1 
2018-08-21 12:25:15 UTC 25.7 71.3 31.78 -1 
2018-08-21 12:30:04 UTC 25.2 64.1 28.92 -1 
2018-08-21 12:35:09 UTC 26 69 30.67 -1 
2018-08-21 12:40:15 UTC 25.9 74.4 30.36 -2 
2018-08-21 12:45:17 UTC 25.9 72.2 31.06 -2 
2018-08-21 12:50:11 UTC 26.7 74.5 31.11 -1 
2018-08-21 12:55:11 UTC 26.9 77.4 30.69 -1 
2018-08-21 13:00:06 UTC 27.5 77.1 32.14 0 
2018-08-21 13:05:13 UTC 27.8 77.3 31.19 0 
2018-08-21 13:10:07 UTC 28 78.5 31.28 0 
2018-08-21 13:15:16 UTC 28.2 77.7 31.33 0 
2018-08-21 13:20:09 UTC 28.4 77.7 31.64 0 
2018-08-21 13:25:00 UTC 28.6 77.5 30.92 0 
2018-08-21 13:30:09 UTC 28.7 78 31.36 0 
2018-08-21 13:35:00 UTC 29 76.2 31.56 0 
2018-08-21 13:40:14 UTC 29 76.2 31.67 0 
2018-08-21 13:45:11 UTC 29.3 75.4 31.81 0 
2018-08-21 13:50:02 UTC 29.5 74.8 31.47 0 
2018-08-21 13:55:08 UTC 29.4 74.5 31.11 0 
2018-08-21 14:00:15 UTC 29.4 74.8 31.47 0 
2018-08-23 11:35:15 UTC 24.3 58.8 29.47 -1 
2018-08-23 11:40:09 UTC 23.9 56.9 29.61 -1 
2018-08-23 11:45:04 UTC 23.5 56.7 29.81 -1 
2018-08-23 11:50:13 UTC 25.6 64.2 31.83 0 
2018-08-23 11:55:04 UTC 25.4 65.7 32.42 0 
2018-08-23 12:00:14 UTC 25 66 31.69 0 
2018-08-23 12:05:07 UTC 26.6 68.9 32.08 1 
2018-08-23 12:10:13 UTC 26.2 64.4 28.75 0 
2018-08-23 12:15:11 UTC 26.7 72.3 31.56 0 
2018-08-23 12:20:06 UTC 26.2 66.2 29.17 0 
2018-08-23 12:25:14 UTC 26.8 72.8 30.92 0 
2018-08-23 12:30:06 UTC 27.3 73.4 31.11 0 
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2018-08-23 12:35:14 UTC 27.8 73.4 31.5 0 
2018-08-23 12:40:04 UTC 28.2 73.1 31.5 0 
2018-08-23 12:45:17 UTC 27 74.3 30.19 -1 
2018-08-23 12:50:11 UTC 27.7 75.8 30.97 -1 
2018-08-23 12:55:06 UTC 28.3 74.3 31.53 0 
2018-08-23 13:00:15 UTC 28.8 72.7 31.56 0 
2018-08-23 13:05:12 UTC 29.1 72 31.31 0 
2018-08-23 13:10:09 UTC 29.3 71.4 31.72 0 
2018-08-23 13:15:00 UTC 29.3 71.8 31.42 0 
2018-08-23 13:20:10 UTC 29.4 71.8 31.58 0 
2018-08-23 13:25:03 UTC 29.7 71.3 30.39 0 
2018-08-23 13:30:11 UTC 29.9 69.9 31.81 0 
2018-08-23 13:35:14 UTC 30.8 65.5 31.44 0 
2018-08-23 13:40:03 UTC 30 68.2 31.44 0 
2018-08-23 13:45:13 UTC 29.7 68.5 32.14 0 
2018-08-23 13:50:03 UTC 29.7 69.1 32.44 0 
2018-08-23 13:55:10 UTC 30 68.7 33.36 0 
2018-08-24 11:45:11 UTC 24.8 59.5 31.83 -1 
2018-08-24 11:50:08 UTC 25 58.5 28.67 -1 
2018-08-24 11:55:09 UTC 25 61.9 28.86 -1 
2018-08-24 12:00:00 UTC 25.1 66.6 31.47 -1 
2018-08-24 12:05:12 UTC 26 69 31.17 -1 
2018-08-24 12:10:04 UTC 25.2 69.1 30.06 -1 
2018-08-24 12:15:19 UTC 26.2 70.3 31.94 -1 
2018-08-24 12:20:11 UTC 26.7 71.7 31.5 -1 
2018-08-24 12:25:15 UTC 27 71.9 31.56 0 
2018-08-24 12:30:06 UTC 27.4 71.2 31.36 0 
2018-08-24 12:35:00 UTC 27.6 70.7 32.36 0 
2018-08-24 12:40:18 UTC 27.8 70.6 30.97 0 
2018-08-24 12:45:16 UTC 27.9 70.5 30.92 0 
2018-08-24 12:50:12 UTC 28 70.4 31.31 0 
2018-08-24 12:55:03 UTC 28.1 69.9 30.97 0 
2018-08-24 13:00:14 UTC 28.2 69.9 31.03 0 
2018-08-24 13:05:09 UTC 28.2 69.8 31.64 0 
2018-08-24 13:10:02 UTC 28.4 69.4 31.31 0 
2018-08-24 13:15:14 UTC 28.6 69.2 31.36 0 
2018-08-24 13:20:06 UTC 28.7 69.5 30.44 0 
2018-08-24 13:25:16 UTC 28.7 68.8 30.97 0 
2018-08-24 13:30:12 UTC 28.7 68.8 31.06 0 
2018-08-24 13:35:05 UTC 28.8 68.8 31.14 0 
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2018-08-24 13:40:12 UTC 28.8 68.8 31.44 1 
2018-08-24 13:45:03 UTC 28.9 68.5 31.86 1 
2018-08-24 13:50:14 UTC 28.9 68.7 31.5 1 
2018-08-24 13:55:10 UTC 28.9 68.8 31.58 1 
2018-08-24 14:00:00 UTC 28.9 69 31.06 1 
2018-08-25 11:05:06 UTC 24.9 68.9 29.08 -2 
2018-08-25 11:10:16 UTC 24.7 73.2 29.97 -2 
2018-08-25 11:15:08 UTC 24.2 73 30.36 -1 
2018-08-25 11:20:16 UTC 25.4 75.4 30.69 -1 
2018-08-25 11:25:09 UTC 25.7 72.5 29.28 -1 
2018-08-25 11:30:02 UTC 25.5 78 29.86 0 
2018-08-25 11:35:09 UTC 26.1 78.1 32.06 0 
2018-08-25 11:40:17 UTC 26.6 78.6 31.44 0 
2018-08-25 11:45:28 UTC 26.9 79.5 31.08 0 
2018-08-25 11:50:02 UTC 27.1 78.9 31.14 0 
2018-08-25 11:55:15 UTC 27.4 78.5 30.92 0 
2018-08-25 12:00:08 UTC 27.6 78.5 30.97 0 
2018-08-25 12:05:16 UTC 27.7 78.6 31.67 0 
2018-08-25 12:10:07 UTC 27.8 78.5 31.94 0 
2018-08-25 12:15:00 UTC 27.9 78.1 31.31 0 
2018-08-25 12:20:08 UTC 28.2 77.1 31.58 0 
2018-08-25 12:25:15 UTC 28.4 76.4 31.17 0 
2018-08-25 12:30:09 UTC 28.6 76 31.36 0 
2018-08-25 12:35:02 UTC 28.4 76.7 30.97 0 
2018-08-25 12:40:10 UTC 28.4 76.6 30.69 0 
2018-08-25 12:45:04 UTC 28.3 77 30.28 0 
2018-08-25 12:50:13 UTC 28.4 77.1 30.78 0 
2018-08-25 12:55:05 UTC 28.7 76.4 30.89 0 
2018-08-25 13:00:16 UTC 28.9 75.7 31.28 0 
2018-08-25 13:05:06 UTC 28.8 76 31.44 0 
2018-08-25 13:10:12 UTC 28.7 76.3 31.06 0 
2018-08-25 13:15:06 UTC 28.7 76.3 31.33 0 
2018-08-25 13:20:14 UTC 28.6 76.7 31.03 0 
2018-08-25 13:25:05 UTC 28.6 77 31.44 1 
2018-08-25 13:30:12 UTC 28.7 77.1 30.97 1 
2018-08-25 13:35:06 UTC 29 76 31.78 1 
2018-08-25 13:40:13 UTC 29.1 75.8 31.5 1 
2018-08-25 13:45:08 UTC 29 76.1 31.36 1 
2018-08-25 13:50:17 UTC 29 76.2 30.92 1 
2018-08-25 13:55:10 UTC 28.8 76.8 30.64 1 
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2018-08-25 14:00:03 UTC 28.8 77.3 31.36 1 
2018-08-26 12:15:03 UTC 24.1 69 30.53 -1 
2018-08-26 12:20:11 UTC 24.7 69.2 29.61 -1 
2018-08-26 12:25:02 UTC 25.1 75.9 30.67 -1 
2018-08-26 12:30:12 UTC 25 76.9 31.64 0 
2018-08-26 12:35:04 UTC 25.8 78.3 30.97 0 
2018-08-26 12:40:14 UTC 26.3 80.2 31.31 0 
2018-08-26 12:45:06 UTC 26.4 79 30.17 0 
2018-08-26 12:50:14 UTC 25.9 79 31.03 0 
2018-08-26 12:55:04 UTC 26.5 80.1 31.14 0 
2018-08-26 13:00:12 UTC 26.9 80.3 31.47 0 
2018-08-26 13:05:08 UTC 26.1 78.8 31.39 0 
2018-08-26 13:10:02 UTC 26.7 79.8 31.58 1 
2018-08-26 13:15:11 UTC 27 81.1 31.25 1 
2018-08-26 13:20:03 UTC 27.2 82 31.11 1 
2018-08-26 13:25:13 UTC 27.4 82.1 31.69 1 
2018-08-26 13:30:09 UTC 27.4 82.3 31.56 1 
2018-08-26 13:35:01 UTC 27.8 81.5 31.64 1 
2018-08-26 13:40:11 UTC 27.9 80.6 31.33 1 
2018-08-26 13:45:05 UTC 27.8 81.2 30.94 1 
2018-08-26 13:50:14 UTC 27.8 81.6 30.72 1 
2018-08-26 13:55:05 UTC 27.8 81.8 30.56 1 
2018-08-26 14:00:14 UTC 27.9 81.6 30.92 1 
2018-08-27 10:40:02 UTC 26.3 59 31.44 -1 
2018-08-27 10:45:29 UTC 26.2 56.3 29.94 -1 
2018-08-27 10:50:05 UTC 26.1 55.4 31.78 -1 
2018-08-27 10:55:15 UTC 25.9 54.3 30.72 -1 
2018-08-27 11:00:12 UTC 26.4 59.9 30.78 -1 
2018-08-27 11:05:01 UTC 26.1 55.7 30.42 -1 
2018-08-27 11:10:10 UTC 25.9 54.5 30.5 -1 
2018-08-27 11:15:03 UTC 26.3 60.1 31.28 0 
2018-08-27 11:20:00 UTC 26.6 59.1 31.08 0 
2018-08-27 11:25:01 UTC 26.9 62.9 30.53 0 
2018-08-27 11:30:11 UTC 27.1 67.1 31.72 0 
2018-08-27 11:35:06 UTC 27.4 70.8 31.53 0 
2018-08-27 11:40:18 UTC 27.5 67.5 30.31 0 
2018-08-27 11:45:10 UTC 27.6 73 31.72 0 
2018-08-27 11:50:22 UTC 27.8 74.6 31.92 1 
2018-08-27 11:55:29 UTC 28.1 75 31.86 1 
2018-08-27 12:00:01 UTC 28.4 75.3 32.33 1 
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2018-08-27 12:05:12 UTC 28.3 76.8 31.19 1 
2018-08-27 12:10:05 UTC 28.3 76.9 30.64 1 
2018-08-27 12:15:13 UTC 28.5 76.6 31.03 1 
2018-08-27 12:20:07 UTC 28.5 77.8 31.03 1 
2018-08-27 12:25:02 UTC 28.5 77.1 31.25 1 
2018-08-27 12:30:11 UTC 28.6 77.2 31.19 1 
2018-08-27 12:35:06 UTC 28.8 76.8 31.11 1 
2018-08-27 12:40:00 UTC 28.7 77.1 31.28 1 
2018-08-27 12:45:09 UTC 28.8 77.4 31.06 1 
2018-08-27 12:50:35 UTC 28.7 77.8 31.14 1 
2018-08-27 12:55:11 UTC 28.7 77.8 30.58 1 
2018-08-27 13:00:02 UTC 28.7 77.8 31.19 1 
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Chapter 5: Thermal comfort data for female subject 

time temperature humidity skin sensation 
2018-08-21 11:45:15 UTC 24.3 57.8 25.58 0 
2018-08-21 11:50:15 UTC 23.1 59 28.53 1 
2018-08-21 11:55:02 UTC 23.8 58.6 30.89 0 
2018-08-21 12:10:02 UTC 25.6 61 29.06 0 
2018-08-21 12:15:16 UTC 25.9 63.3 31.61 1 
2018-08-21 12:20:09 UTC 25.5 58.7 30.42 1 
2018-08-21 12:25:00 UTC 26 67.5 31.72 0 
2018-08-21 12:30:08 UTC 26.1 62.9 31.28 1 
2018-08-21 12:35:15 UTC 26.4 67 31.39 0 
2018-08-21 12:40:09 UTC 26.4 69.6 32.64 0 
2018-08-21 12:45:05 UTC 26.5 67.3 32.61 1 
2018-08-21 12:50:10 UTC 26.9 71.9 32.47 0 
2018-08-21 13:15:07 UTC 28.1 77.2 31.08 1 
2018-08-21 13:20:16 UTC 28.2 76.6 31.72 1 
2018-08-21 13:25:09 UTC 28.3 76.5 32.39 0 
2018-08-21 13:30:17 UTC 28.5 76.5 31.83 1 
2018-08-21 13:35:07 UTC 28.6 75.9 31.92 1 
2018-08-21 13:40:04 UTC 28.7 75.8 32.03 2 
2018-08-21 13:45:14 UTC 28.6 75.7 31.83 2 
2018-08-21 13:50:05 UTC 28.6 75.7 32.31 2 
2018-08-21 13:55:13 UTC 28.6 75.4 31.94 2 
2018-08-21 14:00:04 UTC 28.7 75.5 31.69 2 
2018-08-23 11:35:17 UTC 27.6 53.4 31.36 0 
2018-08-23 11:40:09 UTC 27.5 50.1 31.06 0 
2018-08-23 11:45:02 UTC 27.3 49.3 31.58 0 
2018-08-23 11:50:29 UTC 27.3 56.4 31.97 1 
2018-08-23 11:55:05 UTC 27.5 55.7 31.86 0 
2018-08-23 12:00:16 UTC 27.5 55.9 32.11 0 
2018-08-23 12:05:08 UTC 27.7 61.6 32.61 0 
2018-08-23 12:30:00 UTC 28.2 67.5 31.75 1 
2018-08-23 12:35:14 UTC 28.4 69.2 31.53 0 
2018-08-23 12:40:07 UTC 28.5 70.1 31.42 0 
2018-08-23 12:45:03 UTC 28.4 65.5 31.42 1 
2018-08-23 12:50:12 UTC 28.5 70.4 31.39 0 
2018-08-23 12:55:04 UTC 28.7 70.9 31.42 0 
2018-08-23 13:00:19 UTC 28.9 70.6 31.92 0 
2018-08-23 13:10:08 UTC 29.2 70.9 32 1 
2018-08-23 13:15:00 UTC 29.2 71 32.03 1 
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2018-08-23 13:20:10 UTC 29.3 71.3 31.81 1 
2018-08-23 13:25:04 UTC 29.4 71.2 32.47 0 
2018-08-23 13:30:14 UTC 29.4 70.1 31.72 1 
2018-08-23 13:35:08 UTC 29.4 69.6 31.94 1 
2018-08-23 13:40:03 UTC 29.4 69.8 31.67 2 
2018-08-23 13:45:13 UTC 29.4 69.4 31.86 2 
2018-08-23 13:50:08 UTC 29.4 69.6 32.11 2 
2018-08-23 13:55:05 UTC 29.5 69.3 31.86 2 
2018-08-23 14:00:40 UTC 29.5 68.4 31.19 2 
2018-08-24 12:25:04 UTC 27.4 69.4 32.58 0 
2018-08-24 12:30:13 UTC 27.5 68.2 32.31 0 
2018-08-24 12:35:09 UTC 27.7 68.7 32.33 0 
2018-08-24 12:40:19 UTC 27.7 68.3 31.36 0 
2018-08-24 12:45:15 UTC 27.7 69.5 31.64 0 
2018-08-24 12:50:08 UTC 27.8 68.9 31.64 0 
2018-08-24 12:55:02 UTC 27.8 68.7 31.64 0 
2018-08-24 13:00:15 UTC 27.9 69 31.47 0 
2018-08-24 13:05:08 UTC 28 68.9 31.67 0 
2018-08-24 13:10:03 UTC 28 68.8 31.33 0 
2018-08-24 13:15:15 UTC 28.1 68.8 31.69 0 
2018-08-24 13:20:06 UTC 28.2 68.8 31.97 0 
2018-08-24 13:25:01 UTC 28.2 68.8 32.14 0 
2018-08-24 13:30:12 UTC 28.2 68.8 31.75 0 
2018-08-24 13:35:05 UTC 28.3 69.1 31.89 0 
2018-08-24 13:40:16 UTC 28.3 69.1 32.08 -1 
2018-08-24 13:45:07 UTC 28.3 69.1 31.64 -1 
2018-08-24 13:50:16 UTC 28.3 69.1 31.94 -1 
2018-08-24 13:55:08 UTC 28.4 69.2 31.92 -1 
2018-08-24 14:00:00 UTC 28.4 69.2 31.58 -1 
2018-08-25 11:00:14 UTC 26.2 62.8 31.17 0 
2018-08-25 11:15:15 UTC 26.7 63.5 32.33 0 
2018-08-25 11:20:06 UTC 26.8 68.1 32.81 0 
2018-08-25 11:25:16 UTC 27.2 69.3 32.67 0 
2018-08-25 11:30:08 UTC 27.1 69 32.56 0 
2018-08-25 11:35:16 UTC 27.2 71.3 32.53 0 
2018-08-25 11:40:07 UTC 27.4 73.5 32.89 0 
2018-08-25 11:45:16 UTC 27.6 75.3 32.97 0 
2018-08-25 11:50:06 UTC 27.8 74.6 33.19 0 
2018-08-25 11:55:16 UTC 27.9 74.6 33.33 0 
2018-08-25 12:00:08 UTC 27.8 75 33.28 0 
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2018-08-25 12:05:00 UTC 28 76.5 33.53 0 
2018-08-25 12:10:08 UTC 28.2 75.6 33.5 0 
2018-08-25 12:15:01 UTC 28.2 75.6 32.36 0 
2018-08-25 12:20:09 UTC 28.3 75.8 31.69 0 
2018-08-25 12:25:00 UTC 28.4 75.3 31.92 0 
2018-08-25 12:30:09 UTC 28.5 75.4 32.58 0 
2018-08-25 12:35:03 UTC 28.5 74.9 32.53 0 
2018-08-25 12:40:11 UTC 28.6 75.2 32.72 0 
2018-08-25 12:45:04 UTC 28.3 75.7 31.42 0 
2018-08-25 12:50:13 UTC 28.3 76.1 32.33 0 
2018-08-25 12:55:05 UTC 28.3 76.1 32.14 0 
2018-08-25 13:00:13 UTC 28.5 75.7 32.92 0 
2018-08-25 13:05:06 UTC 28.6 75.6 31.69 0 
2018-08-25 13:10:15 UTC 28.6 75.6 32.39 0 
2018-08-25 13:15:06 UTC 28.7 75.4 32.61 0 
2018-08-25 13:20:14 UTC 28.6 75.8 32.72 0 
2018-08-25 13:25:07 UTC 28.6 75.9 32.47 0 
2018-08-25 13:30:16 UTC 28.8 75.8 32.64 0 
2018-08-25 13:35:07 UTC 28.8 75.9 32.56 0 
2018-08-25 13:40:16 UTC 28.8 75.8 32.42 1 
2018-08-25 13:45:09 UTC 28.8 76.2 32.61 1 
2018-08-25 13:50:01 UTC 28.9 76 32.06 1 
2018-08-25 13:55:10 UTC 28.9 76 32.33 1 
2018-08-25 14:00:41 UTC 28.9 75.5 32.5 1 
2018-08-26 12:00:12 UTC 25.5 81.1 29.64 0 
2018-08-26 12:05:04 UTC 25.3 71.9 29.22 0 
2018-08-26 12:10:12 UTC 25.3 71.9 29.47 0 
2018-08-26 12:15:03 UTC 25.6 67.1 31.81 0 
2018-08-26 12:20:14 UTC 25.9 66.9 31.89 0 
2018-08-26 12:25:05 UTC 26 70 32.53 0 
2018-08-26 12:30:13 UTC 26.1 69.1 32.83 0 
2018-08-26 12:35:06 UTC 26.3 73 33.06 0 
2018-08-26 12:40:16 UTC 26.4 77 32.69 0 
2018-08-26 12:45:08 UTC 26.5 78.3 32.11 0 
2018-08-26 12:50:16 UTC 26.6 74.8 33.06 0 
2018-08-26 12:55:07 UTC 26.7 77.2 32.64 0 
2018-08-26 13:00:15 UTC 26.8 78.7 32.89 0 
2018-08-26 13:05:08 UTC 26.8 72.3 31.61 0 
2018-08-26 13:10:02 UTC 26.9 77.1 33.11 0 
2018-08-26 13:25:15 UTC 27.1 81.2 33.08 0 
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2018-08-26 13:30:10 UTC 27.3 81.3 33.25 0 
2018-08-26 13:35:02 UTC 27.5 81 32.81 0 
2018-08-26 13:40:11 UTC 27.7 80.4 32.83 0 
2018-08-26 13:45:06 UTC 27.6 80.8 32.42 0 
2018-08-26 13:50:15 UTC 27.6 80.8 32.78 0 
2018-08-26 13:55:05 UTC 27.7 80.8 32.78 0 
2018-08-26 14:00:14 UTC 27.8 81 32.08 0 
2018-08-27 11:00:11 UTC 25.3 62.6 31.86 0 
2018-08-27 11:05:07 UTC 24.5 60.7 30.33 -1 
2018-08-27 11:10:16 UTC 23.9 59.9 31 -1 
2018-08-27 11:15:07 UTC 25.3 67.5 33.17 0 
2018-08-27 11:20:00 UTC 25.1 64.1 31.92 -1 
2018-08-27 11:25:04 UTC 25.6 67.5 31.58 -1 
2018-08-27 11:30:16 UTC 26.2 74 32.83 0 
2018-08-27 11:35:08 UTC 26.8 76.6 32.94 0 
2018-08-27 11:40:00 UTC 26.5 71 30.97 -1 
2018-08-27 11:45:11 UTC 27 77 33.14 0 
2018-08-27 11:50:06 UTC 27.6 78 32.56 0 
2018-08-27 11:55:14 UTC 27.9 79 33.36 0 
2018-08-27 12:00:05 UTC 28.2 79 33.39 0 
2018-08-27 12:05:15 UTC 28.2 79 32.33 0 
2018-08-27 12:10:07 UTC 28.3 79 32.25 0 
2018-08-27 12:15:15 UTC 28.4 78.8 31.94 0 
2018-08-27 12:20:08 UTC 28.5 78.9 32.56 0 
2018-08-27 12:25:02 UTC 28.7 78.6 32.64 0 
2018-08-27 12:35:06 UTC 28.8 78.2 32.83 1 
2018-08-27 12:40:00 UTC 28.9 78.2 32.67 1 
2018-08-27 12:45:09 UTC 29 78.1 32.86 1 
2018-08-27 12:50:01 UTC 29 78 33.28 1 
2018-08-27 12:55:13 UTC 29 77.9 33.28 1 
2018-08-27 13:00:05 UTC 29.2 77.5 33.94 1 
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Appendix C: Checklist for all devices 


