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ABSTRACT 

 High salinity brine management is an essential and costly activity for several activities, 

including oil and gas production, inland brackish water desalination, and geologic carbon 

storage. Currently most of these brines are managed with a disposal centric strategy, where the 

brines are minimally treated and directly disposed of via deep well injection. This common brine 

management strategy has several consequences including increased seismic activity and high 

transportation costs, energy use, and air emissions. An alternative to this brine management 

strategy is to dewater the brines to reduce the waste volume for transport and disposal. However, 

technologies that can dewater high salinity brines are generally considered prohibitively costly 

and energy intensive. This thesis seeks to determine the potential of brine dewatering 

technologies and strategies to decrease the overall cost and environmental impact of high salinity 

brine management. 

 In this thesis, the efforts to assess brine dewatering technologies and management 

strategies are organized across three objectives that span different scales. The first objective is to 

develop module-scale models for membrane-based technologies to accurately assess their 

dewatering performance for high salinity brines. The second objective is to develop process-

scale cost optimization models that determine the technoeconomic feasibility of emerging 

membrane-based brine dewatering technologies. The third objective is to develop network-scale 

supply chain optimization models and spatially resolved analyses that identify low cost and 

environmental impact brine management strategies across the U.S. 

 A recurring theme in this thesis is that optimization modeling is a powerful tool for 

assessing the cost and performance of emerging dewatering technologies and strategies. 
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Specifically, when optimization methods are paired with detailed process modeling and 

sensitivity analyses, it is easier to overcome common barriers of performing a technoeconomic 

assessment. These barriers include: accurately modeling the separation performance at full-scale 

deployment, specifying the design and operation of a technology or strategy without experience 

or heuristics, and handling high levels of uncertainty in process and financial parameters. 

Throughout this thesis, detailed cost optimization models are developed to comprehensively 

assess the cost and performance of two emerging membrane-based brine dewatering 

technologies (osmotically assisted reverse osmosis and membrane distillation) and several brine 

management strategies for two high salinity brine applications (wastewater from shale gas 

production and extracted brine from geologic carbon storage).   
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1.0 INTRODUCTION 

1.1 Context 

 Recent trends, including the growing wastewater production from the oil and gas 

industry,1 the increasing demand for potable water from inland brackish water desalination,2 and 

the rising potential for regulations that require zero liquid wastewater discharge and geologic 

carbon storage,3-4 contribute to the critical need to manage high salinity brines (>75 g/L TDS) at 

low cost and low environmental impact. Currently, the oil and gas industry is the largest source 

of high salinity brines, and the industry predominantly manages the wastewater with minimal 

treatment and direct disposal via injection wells or reuse.5 This disposal-centric brine 

management strategy has been linked to increased seismic activity due to brine subsurface 

injection and high transportation costs, energy use, and air emissions.6-8 These consequences are 

reduced with brine reuse practices which are becoming increasingly common for the oil and gas 

industry in some regions of the U.S.1, 9 However, reuse will have limited opportunities for the 

other sources of high salinity brines, such as the concentrated waste from inland brackish water 

desalination and extracted brines from geologic carbon storage. Further, even in the oil and gas 

industry, the extent of reuse is limited by the water use for drilling and hydraulic fracturing and 

inevitably there will be times when wastewater production exceeds the demand for reuse. 

The components of brine production and management are shown in Figure 1.1. If high 

salinity brines are treated and dewatered, the brine volume that is transported and disposed of is 

reduced and a high-quality product water is produced. Generally, this strategy has not been 

preferred because the pretreatment and dewatering of the brines is costly.10 However, there have 

been recent developments and plans for commercial scale facilities for high salinity brine 
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dewatering.11 This thesis seeks to assess the potential of brine dewatering strategies by 

addressing two questions: 1) What dewatering technologies are most cost effective across a 

broad range of brine salinities and water recoveries? and 2) What impact would dewatering 

strategies have on the overall cost and environmental impact of high salinity brine management? 

 

Figure 1.1. Overview of management activities for high salinity brines (>75 g/L TDS) 

 

Review of current and emerging brine dewatering technologies 

The two major categories of dewatering technologies are evaporative and non-

evaporative. Evaporative dewatering technologies can achieve high water recoveries from high 

salinity brines, but they are generally considered to have high energy consumption and costs. The 

mature evaporative technologies are multi-stage flash distillation (MSF), multi-effect distillation 

(MED), and mechanical vapor compression (MVC).12-13  



 

3 

 

 Non-evaporative technologies are generally less costly and energy intensive than 

evaporative technologies, but they have limited or no effectiveness for high salinity brines. The 

mature non-evaporative technologies are reverse osmosis (RO) and electrodialysis (ED).2, 14-15 

While RO is the predominant seawater desalination technology due to its relatively low cost and 

energy consumption, the process is physically limited by the membrane burst pressure and 

typical RO operation does not concentrate brines above 70-75 g/L TDS.16 ED is generally used at 

low salinities (<10 g/L TDS) and is not cost competitive at higher salinities due to parasitic 

energy loss and cost of ion-exchange membranes.17  

This thesis investigates two emerging membrane-based technologies that have the 

potential to lower the energy consumption and cost of high salinity brine dewatering, membrane 

distillation (MD) and osmotically assisted reverse osmosis (OARO). MD is an evaporative 

process that may reduce costs because it can be operated at a temperature lower than the boiling 

point.18 OARO is a non-evaporative process that can effectively dewater high salinity brines at a 

lower energy consumption than evaporative processes.19-20 Both emerging membrane 

technologies have not been deployed at the commercial scale because of remaining questions 

about their technoeconomic feasibility. Specifically, it is not known if the technologies would be 

cost competitive and perform reliably at scale. 

Barriers to assessing the technoeconomic feasibility of emerging high salinity brine dewatering 

technologies and management strategies 

There are a few critical barriers to estimating the performance and cost of emerging 

dewatering technologies and management strategies. These barriers include: 1) creating models 

that accurately predict performance at full-scale deployment, 2) specifying the design and 

operation of the technology or strategy without experience or heuristics, 3) handling the high 
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uncertainty that is inherent in emerging technologies and strategies for both process and financial 

parameters. 

 The first barrier of developing accurate models is challenging because of the need to 

balance simplicity with complexity. Simple models are more computationally efficient and easier 

to interpret, while complex models may be more accurate. In general, technoeconomic 

assessments for membrane-based technologies use one dimensional models that explicitly 

calculate the state and process variables along the module.21-24 These models are popular because 

they account for the decreasing driving force along the module. Some models in the literature 

simplify the process even further by estimating the separation performance by averaging the state 

and process variables.25-26 While inlet-outlet modeling provides less detail and is likely less 

accurate, the models have reduced computational demand. Similarly, researchers use common 

process and solution property simplifications to reduce computational demand, such as no salt 

flux, no pressure drop, ideal solution, constant solution properties (e.g. density, diffusivity, 

viscosity, specific heat), and constant heat and mass transfer coefficients. Despite their common 

use, the literature lacks a quantitative discussion of the errors introduced by these simplifications. 

Further, the rationale for using these common simplifications has been greatly reduced due to 

advances in computational processing speed and the efficiency of algorithms (e.g. the solver 

CONOPT).27 

 The second barrier of specifying the design and operation of the emerging technologies is 

challenging because they are characterized by large decision spaces with complex tradeoffs. 

Traditionally, technoeconomic assessments vary one to three design and operating variables to 

assess the effect on the outcome metrics (e.g. energy consumption, levelized cost of water 

production). This approach requires the decision space to be reduced to a few variables and 
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assumes they are decoupled, which greatly limits the relevance of the results. Optimization 

modeling can more appropriately address a large decision space because it does not require the 

design and operating variables to be set in advance. Instead, optimization approaches determine 

the optimal design and operation and balance complex tradeoffs associated with capital and 

operating costs which greatly enhances the relevance of the technoeconomic assessment. This 

type of approach has been applied to several dewatering technologies; examples include: RO,25-

26, 28 MVC,29 MED30, and direct contact MD.31 However, there is a need to assess other high 

salinity membrane-based dewatering technologies like OARO and other types of MD. While 

optimization approaches have also been used extensively to assess oil and gas wastewater 

management strategies,9, 32-35 they have been generally limited to crude dewatering modeling 

with fixed water recovery and do not consider human health impacts associated with the water 

management activities. 

 The third barrier of handling the uncertainty in parameters for emerging high salinity 

dewatering technologies and strategies is challenging because the relatively high uncertainty can 

span a wide range of results and conclusions. The uncertainty for these emerging processes can 

be high because there is little to no available data on their performance in the field. The most 

appropriate ways to address this uncertainty for a technoeconomic assessment are parametric 

sensitivity analyses to describe the trends associated with the parameter and stochastic simulation 

(e.g. Monte Carlo) that can develop distributions of the results. These types of analyses can more 

appropriately give ranges for the technoeconomic results and identify the key parameters that 

need to be further investigated. 

1.2 Overview of work 
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The main goal of this thesis is to quantify the costs, benefits, and tradeoffs of using 

dewatering technologies for high salinity brine management. This thesis is composed of three 

objectives that cover different scales of high salinity brine dewatering and management.  The 

first objective is to develop module-scale models for membrane-based technologies that 

accurately predict the separation performance for high salinity brines. The second objective is to 

develop process-scale cost optimization models that determine the technoeconomic feasibility of 

emerging membrane-based brine dewatering processes. The third objective is to develop 

network-scale supply chain optimization models and spatially resolved analyses that identify low 

cost and environmental impact brine management strategies across the U.S. 

Chapter 2 addresses the first objective by developing detailed module-scale models for 

hydraulic and osmotic pressure driven membrane technologies. These models avoid using 

common simplifications found in the literature, including approximations for the process (i.e. no 

salt flux, no pressure drop) and for the solution properties (i.e. ideal solution, and constant 

density, viscosity, and diffusivity). We then leverage these models to quantify the errors 

introduced by these simplifications. We find that some of these common approximations in the 

literature can under or overestimate the average water flux across the module by up to 50% at 

typical operating conditions. Additionally, this chapter assesses the accuracy of less detailed 

inlet-outlet models and proposes novel formulations that can have greater accuracy when 

describing non-linear water flux profiles. 

Chapter 3 addresses the second objective by developing a process-scale model for 

osmotically assisted reverse osmosis (OARO). This chapter is the first work that describes and 

models the OARO process, which is a novel membrane-base technology for dewatering high 

salinity brines. Our model determines the technical feasibility of the OARO process by 
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determining the water recovery and energy consumption for a range of feed salinities. We find 

that the OARO process can dewater high salinity brines (up to 150 g/L TDS) with 35-50% water 

recovery at a lower energy consumption than mechanical vapor compression, the leading high 

salinity brine dewatering technology. 

Chapter 4 expands beyond the work in chapter 3 by developing a cost optimization model 

for OARO. The model synthesizes the complex decision space of the novel technology and 

minimizes the levelized cost of water across a wide range of feed salinities and water recoveries. 

We find that the OARO process could cost between $3 and $15 per m3 and could be 

economically feasible for some high salinity brine dewatering applications. We also develop 

generalizable guidelines for low cost design and operation and estimate the value of process 

improvements, such as increasing the membrane water permeability or the burst pressure.  

Chapter 5 also addresses the second objective by developing a process-scale cost 

optimization model for membrane distillation. As in chapter 4, we use the model to 

comprehensively assess the technoeconomic feasibility of the process for a broad range of 

potential dewatering applications. We estimate that gap membrane distillation can dewater high 

salinity brines with costs ranging from $6 to $10 per m3 of product water. Besides extracting 

generalizable guidelines for low cost design and operation and assessing the sensitivity of 

parameters, this work also emphasizes the strong effect salinity has on MD process performance 

and costs, which is often understated in MD literature. 

Chapter 6 addresses the third objective at the network-scale by leveraging a 

multiobjective optimization model to assess the tradeoffs between cost and environmental impact 

for various brine management strategies. The model expands beyond the previous chapters that 

investigated dewatering processes by accounting for additional brine management activities, 
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such as, freshwater acquisition, wastewater production, transport, storage, and scheduling. This 

model is the first optimization model for oil and gas wastewater management that includes the 

human health impacts of air emissions from the brine management activities. In the chapter, we 

demonstrate the usefulness of the model by applying it to a case study of shale gas extraction in 

the Marcellus play and quantify the effects of various potential regulations on the financial and 

human health and environmental costs. 

Chapter 7 also addresses the third objective at the network-scale by analyzing several 

brine management strategies for geologic carbon storage (GCS) across the U.S. This work 

estimates the energy and emission penalties of GCS brine management by spatially integrating 

data sources on CO2 emission sources, CO2 storage reservoirs, and brine salinity and using 

stochastic simulation. We find that the median energy penalty ranges from 4.4 to 35 kWh/tonne 

of CO2 stored across three brine management strategies with different extents of dewatering. 

These estimates suggest that brine management dominates the energy consumption of post-

capture CO2 storage and that brine management should be a top consideration when designing a 

CO2 storage system. 

Chapter 8 summarizes the key findings and conclusions of the presented work, as well as 

providing recommendations for future research. 
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2.0 COMPUTATIONAL FRAMEWORK FOR MODELING MEMBRANE 

PROCESSES WITHOUT PROCESS AND SOLUTION PROPERTY 

SIMPLIFICATIONS 

 

2.1 Abstract 

Accurately modeling membrane processes is critical to evaluating novel process 

configurations, designing scalable membrane systems, informing process cost estimates, and 

directing future research.  Most membrane process models trade accuracy for computational 

efficiency by employing simplified approximations of the process (i.e. no salt flux, no pressure 

drop) and solution properties (i.e. ideal solution, and constant density, viscosity, and diffusivity).  

This work presents a detailed one-dimensional finite difference model for evaluating membrane 

processes that avoids these common simplifications.  We apply this model to quantify the error 

introduced by these simplifications for case studies of reverse osmosis, osmotically assisted 

reverse osmosis, forward osmosis, and pressure retarded osmosis.  While the magnitude of error 

introduced by these simplifications is dependent on the case study parameters and specifications, 

we find that existing model formulations can underestimate or overestimate average water flux 

by nearly 50% for some membrane processes operating under standard conditions.  Finally, we 

investigate the error introduced by simplified inlet-outlet models that do not solve the governing 

system of differential equations, and we assess the accuracy of novel inlet-outlet formulations 

that use a log and geometric mean, instead of the typical arithmetic mean, to represent non-linear 

water flux profiles. 

2.2 Introduction 

Computational models are essential to describing and predicting the performance of 

pressure and osmotically driven membrane based processes, but the modeling framework and 
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embedded assumptions used to describe these membrane processes vary widely.  For example, 

some models provide simple point estimates of water flux,1 while others use two and three 

dimensional computational fluid dynamics models to estimate membrane performance.2-3 As a 

result, there is often significant deviation in performance estimates between process models, and 

few models exhibit high experimental fidelity across a range of process conditions.  

Shortcomings in these performance models can obscure high impact research needs for 

technology development, inhibit direct comparisons between processes or process 

configurations, impede technology scale up from the lab and facilitate sustained research in non-

competitive technologies.   

Detailed one-dimensional process models relate the design, operating, state, and process 

variables of a membrane stage using a system of differential equations.  When these models are 

solved for a given design and operating condition, the solution describes the profiles of variables 

along the membrane stage (e.g. solute concentration, flow rate, water flux, etc.) and provides 

estimates of the overall process performance (e.g. water recovery, average water flux, pressure 

drop, salt passage, etc.).  These stage-level process models can also be integrated into systems-

scale models to estimate and optimize other key metrics like net energy consumption and cost.4 

These detailed process models of reverse osmosis (RO) assume that the permeate side of 

the membrane has a negligible impact on the driving force and solve this system of differential 

equations using traditional ordinary differential equation solvers (e.g. Runge-Kutta method and 

its modified forms).5 For counterflow membrane processes, such as osmotically assisted reverse 

osmosis (OARO),4, 6-7 forward osmosis (FO),8-9 and pressure retarded osmosis (PRO),10 the 

system of differential equations is implicit and cannot be solved with traditional differential 

equation solvers.  Instead this system of differential equations is commonly approximated using 
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a finite difference approach and solved using numerical methods (e.g. Newton’s method and 

trust-region methods).10 The accuracy of the finite difference approximation is dependent on the 

number of finite nodes, which are typically increased until there is little change between the nth 

and nth plus one solutions. 

In contrast to detailed process models that solve for the profiles of variables along the 

length of the module, simplified inlet-outlet models estimate the overall process performance by 

averaging the inlet and outlet values of the variables.11-12 For instance, an arithmetic mean of the 

inlet and outlet of a variable could be used to precisely represent the average value of a variable 

with a linear profile.  This formulation preserves the key decision variables and reduces the 

number of variables and equations, making it attractive for use in optimization models.   

The accuracy of the arithmetic mean inlet-outlet model solution breaks down, however, if 

there is low fidelity between the actual and assumed linear profile of the variables along the 

length of the module.  For example, many membrane processes exhibit non-linear water flux 

profiles.  The average of these non-linear profiles may be more accurately represented with a log 

or geometric mean, where the average is more heavily weighted to the lower values.  This 

weighting reflects the common shape of non-linear water flux profiles in membrane processes, 

but we are unaware of previous work applying these means to inlet-outlet modeling formulations 

for membrane systems. 

In addition to assumptions embedded in the modeling structure, most detailed process 

models and simplified inlet-outlet models make several additional simplifying assumptions about 

the process and solution properties.  Common simplifications include no salt flux across the 

membrane, no pressure drop across the length of the stage, ideal solution properties, and constant 

density, viscosity, and solute diffusion coefficient (diffusivity).  While these simplifications 
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reduce the computational demand of the models, most studies do not perform a sensitivity 

analysis or quantitatively assess the error introduced by these simplifications.  Further, even 

though a more accurate representation without the common simplifications may not be essential 

for clarifying a specific phenomenon in membrane separation processes, accurate water fluxes 

are important when assessing the techno-economic feasibility of membrane technologies. 

The present work formulates detailed process models and simplified inlet-outlet models 

for RO, OARO, FO, and PRO membrane processes that do not employ common simplifications 

for the process and solution properties described above.  We use these models to quantify the 

error associated with each simplification.  We also investigate the effect of assumptions 

embedded in modeling structure by assessing the impact of the number of nodes on the accuracy 

of the finite difference approximation method.  Finally, we propose and assess the accuracy of 

novel simplified inlet-outlet models that use either a log or a geometric mean, as opposed to the 

traditional arithmetic mean, to determine the average water flux.  

2.3 Theory  

Water and salt flux 

Water and salt transport in pressure driven membrane processes are generally described 

by Eq. 2.1 and 2.2. 

𝐽𝑤 = 𝐴(∆𝑃 − ∆𝜋)        (2.1) 

𝐽𝑠 = 𝐵 ∆𝐶          (2,2) 

Where 𝐽𝑤 is the water flux [m3/m2-h], 𝐴 is the water permeability coefficient [m/bar-h], ∆𝑃 (𝑃𝑓-

𝑃𝑝) is the hydraulic pressure difference [bar], Δ𝜋 (𝜋𝑓-𝜋𝑝) is the osmotic pressure difference 

[bar], 𝐽𝑠 is the salt flux [kg/m2-h], 𝐵 is the salt permeability coefficient [m/h], and Δ𝐶 (𝐶𝑓-𝐶𝑝) is 
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the salt concentration difference [kg/m3 or g/L].  The direction of the water and salt flux is 

defined as from the feed (𝑓) to the permeate (𝑝) side. For the specified flux direction, the salt 

flux is positive for RO and OARO and is negative for FO and PRO.  These water and salt flux 

equations assume the effect of the reflection coefficient in the Spiegler-Kedem model is 

negligible (i.e. a value of 1),13 which is typical for membranes with high salt rejection and low 

salt permeability.14-15 If the reflection coefficient is substantially less than 1, as is common in 

nanofiltration membranes or solutions with poorly rejected solutes, then our model will 

underestimate the water flux for hydraulically driven processes (RO, OARO) and overestimate 

the water flux osmotically (FO, PRO) driven processes.14, 16 

Solution properties 

 The osmotic pressure is a function of the salt concentration, as shown in Eq. 2.3a. 

𝜋 = 𝑖 𝜙 𝐶
1

𝑀𝑊
 𝑅 𝑇        (2.3a) 

Where 𝜋 is the osmotic pressure [bar], 𝑖 is the number of dissociating ions [-], 𝜙 is the osmotic 

coefficient [-], 𝐶 is the salt concentration [g/L], 𝑀𝑊 is the molecular weight [g/mol], 𝑅 is the 

gas constant [8.314E-2 L-bar/mol-K], and 𝑇 is the temperature [K]. When the solution is 

assumed to be ideal, the osmotic coefficient (𝜙) is 1. In this work, we assume the solute is NaCl 

and the temperature is 25°C and we account for non-ideal behavior by modeling the osmotic 

coefficient as a function of concentration.17 We determine the osmotic coefficient function from 

a quadratic fit of experimental results, observing close agreement (less than 1% or 0.1 bar) to a 

more detailed osmotic coefficient relationship presented in Mistry and Lienhard 2013.17-19 The 

osmotic pressure of a NaCl solution as a function of only concentration is presented in Eq. 2.3b. 

𝜋 = 𝐾 𝜙(𝐶) 𝐶 = 0.848 (3.14𝐸6 C2  + 2.13𝐸4 C + 0.917) 𝐶  (2.3b) 
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Where 𝐾 is the lumped constants in Eq. 2.3a (i.e. 𝑖 𝑅 𝑇/𝑀𝑊) and 𝜙(𝐶) is the osmotic 

coefficient as a function of concentration.  

  In addition to osmotic pressure, other key solution properties are a function of salt 

concentration or mass fraction, including: density, viscosity, and diffusivity, as shown in Eq. 2.4-

2.6. We determine these relationships from polynomial fits of NaCl solution property tables.18, 20-

21 Additional details on the osmotic pressure, density, viscosity, and diffusivity are included in SI 

Section S1. 

𝜌 = 756 𝑋 + 995         (2.4) 

𝜇 = 2.15𝐸3 𝑋 + 9.80𝐸4        (2.5) 

𝐷 = 153 𝑋4 − 122 𝑋3 + 30.1 𝑋2 − 2.00 𝑋 + 1.51    (2.6) 

Where 𝜌 is the density [kg/m3 or g/L], 𝜇 is the viscosity [Pa-s], 𝐷 is the diffusivity [1E-9 m2/s], 

and 𝑋 is the salt mass fraction [kg of solute/kg of solution]. The salt concentration is related to 

the density and salt mass fraction as shown in Eq. 2.7. 

𝐶 = 𝜌 𝑋 = 756 𝑋2 + 995 𝑋       (2.7) 

Concentration polarization 

The concentration and osmotic pressure difference in Eq. 2.1 and 2.2 are evaluated at the 

membrane interface. The qualitative relationship between the concentration at the membrane 

interface and bulk concentration for RO, OARO, FO, and PRO on both the feed and permeate 

side are shown in Figure 2.1. When internal and external concentration polarization are 

accounted for with steady state film theory, the quantitative relationship between the feed and 

permeate side concentration at the membrane interface and bulk concentration are determined in 
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Eq. 2.8 and 2.9. For all membrane processes, we assume the porous support is on the side with 

low pressure (i.e. permeate side for RO, OARO, and FO and feed side for PRO).  

𝐶𝑚𝑓 = 𝐶𝑏𝑓 exp (
𝐽𝑤

𝑘𝑓
) −

𝐽𝑠

𝐽𝑤
(exp (

𝐽𝑤

𝑘𝑓
) − 1)      (2.8a) 

𝐶𝑚𝑓 = 𝐶𝑏𝑓 exp (𝐽𝑤 [
1

𝑘𝑓
+

𝑆

𝐷
]) −

𝐽𝑠

𝐽𝑤
(exp (𝐽𝑤 [

1

𝑘𝑓
+

𝑆

𝐷
]) − 1)   (2.8b) 

𝐶𝑚𝑝 = 𝐶𝑏𝑝 exp (−𝐽𝑤 [
𝑆

𝐷
+

1

𝑘𝑝
]) +

𝐽𝑠

𝐽𝑤
(1 − exp (−𝐽𝑤 [

𝑆

𝐷
+

1

𝑘𝑝
]))  (2.9a) 

𝐶𝑚𝑝 = 𝐶𝑏𝑝 exp (−
𝐽𝑤

𝑘𝑝
) +

𝐽𝑠

𝐽𝑤
(1 − exp (−

𝐽𝑤

𝑘𝑝
))     (2.9b) 

Where Eq. 2.8a and 2.9a are valid for processes with the porous support on the permeate side 

(i.e. RO, OARO, and FO) and Eq. 2.8b and 2.9b are valid for processes with the porous support 

on the feed side (i.e. PRO). The concentrations are subscripted for the side, feed (𝑓) and 

permeate (𝑝), and location, membrane interface (𝑚) and bulk (𝑏). The external concentration 

polarization on each side is modeled with the mass transfer coefficient, 𝑘, [m/h]. We assume that 

internal and external concentration polarization on the permeate side is negligible for RO. The 

internal concentration polarization is modeled with the structural parameter, 𝑆, [m] and diffusion 

coefficient of the solute, 𝐷, [m2/s]. These concentration polarization relationships are similar to 

other work on the individual processes.4, 22-24 However, differences may arise due to the specified 

direction of the salt flux. The derivations of these relationships are included in SI section S.2. 
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Figure 2.1. Schematic of process configuration and concentration polarization for A) RO, B) 

OARO, C) PRO/FO. The relationship between the feed and permeate-side concentration (𝐶𝑓, 

𝐶𝑝) in the bulk (𝑏) and at the membrane interface (𝑚) is noted within the boundary layer (dotted 

line). An inequality indicates whether the feed or permeate-side hydraulic pressure (𝑃𝑓, 𝑃𝑝) is 

greater. We assume that the membrane porous support is on the side with the lower hydraulic 

pressure and on the draw-side for FO. 

 

 The mass transfer coefficient, 𝑘, is determined by Eq. 2.10. 

𝑘 =
𝐷 𝑆ℎ

𝑑ℎ
          (2.10) 

Where 𝑆ℎ is the Sherwood number [-] and 𝑑ℎ is the hydraulic diameter [m]. The Sherwood 

number is a dimensionless number that is a function of the Reynolds (𝑅𝑒) and Schmidt (𝑆𝑐) 

number. We estimate the Sherwood number with Eq. 2.11, which was developed from 

computational fluid dynamic simulations of mesh filled rectangular channels.25 The definition of 

the hydraulic diameter is shown in Eq. 2.12 and is determined based on channel dimensions and 

mesh configuration as described further in SI Section S3.  
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𝑆ℎ =  0.46(𝑅𝑒 𝑆𝑐)0.36        (2.11) 

𝑑ℎ =
4 (𝑓𝑙𝑜𝑤 𝑎𝑟𝑒𝑎)

(𝑤𝑒𝑡𝑡𝑒𝑑 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟)
        (2.12) 

Pressure drop 

In addition to the water and salt flux, another key phenomenon is the pressure drop across 

the membrane stage. The pressure loss per unit length can be determined by Eq. 2.13.  

𝑃𝐿 =
𝐹 𝜌 𝑣2

2 𝑑ℎ
 [

1 𝑏𝑎𝑟

1𝐸5 𝑃𝑎
]         (2.13) 

Where 𝑃𝐿 is the pressure loss per unit length [bar/m], 𝐹 is the friction factor [-], 𝜌 is the fluid 

density [kg/m3], 𝑣 is the fluid velocity [m/s]. For both the pressure drop and Reynolds number 

calculations, the fluid velocity is the average axial velocity determined from the fluid flowrate, 

channel cross-sectional area, and mesh void space.  𝐹 is approximated in Eq. 2.14 by a 

correlation developed for a simulated mesh filled channel.25 The presented 𝛼 and 𝛽 parameters 

are for a filament with a circular cross section and effective cross-section of 25% (diameter of 

filament/height of channel).  

𝐹 = 𝛼 +
𝛽

𝑅𝑒
= 0.42 +

189.3

𝑅𝑒
        (2.14) 

Governing system of equations  

The governing system of differential equations for a one-dimensional model is composed 

of mass transfer and pressure drop equations shown in Eq. 2.15-2.20. 

𝑑𝑀𝑓

𝑑𝑧
= (𝐽𝑤 𝜌𝑤 + 𝐽𝑠) 𝑊       (2.15) 

𝑑(𝑀𝑓 𝑋𝑓)

𝑑𝑧
= 𝐽𝑠 𝑊        (2.16) 
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𝑑𝑀𝑝

𝑑𝑧
= (𝐽𝑤 𝜌𝑤 + 𝐽𝑠) 𝑊       (2.17) 

𝑑(𝑀𝑝 𝑋𝑝)

𝑑𝑧
= 𝐽𝑠 𝑊        (2.18) 

𝑑𝑃𝑓

𝑑𝑧
= 𝑃𝐿𝑓          (2.19) 

𝑑𝑃𝑝

𝑑𝑧
= 𝑃𝐿𝑝         (2.20) 

Where 𝑀, 𝑋, and 𝑃 are the state variables: mass flow rate [kg/h], salt mass fraction [-], and 

hydraulic pressure [bar], respectively, for the feed (𝑓) and permeate (𝑝) side; 𝐽𝑤, 𝐽𝑠, and 𝑃𝐿 are 

the process variables: water flux [m3/m2-h or LMH], salt flux [kg/m2-h], and pressure loss 

[bar/m], respectively; z is the dimension along the length of membrane [m]; and 𝜌𝑤 is the 

density of water [kg/m3]. 𝑧 is defined such that z=0 at the inlet (e.g. 𝑀𝑓(0) = 𝑀𝑓𝑖𝑛
, 𝑀𝑝(0) =

𝑀𝑝,𝑖𝑛) and z=𝐿, the stage length, at the outlet (e.g. 𝑀𝑓(𝐿) = 𝑀𝑓,𝑜𝑢𝑡, 𝑀𝑝(𝐿) = 𝑀𝑝,𝑜𝑢𝑡). Note that 

the process variables (i.e. 𝐽𝑤, 𝐽𝑠, 𝑃𝐿) are functions of the state variables as described in the 

preceding section. The initial conditions of this system of differential equations are the specified 

inlet values for the state variables. The solution of the system of differential equations provides 

the profiles of the state and process variables along the stage, which can be used to extract key 

metrics, including: average water and salt flux, water recovery, salt passage, and feed and 

permeate side outlet flow rate, concentration, and pressure drop. 

2.4 Model development 

Detailed process model 

We develop a detailed process model based on the finite difference approximation of the 

governing system of equations (Eq. 2.15-2.20). This finite difference approach discretizes the 
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membrane stage into a series of nodes (Fig. 2.2). At each node, the state variables (i.e. flow rate, 

concentration, and pressure) and process variables (i.e. water flux, salt flux, and pressure drop) 

are evaluated. The process model spans the level of detail presented in section 2.3, where 

solution properties are a function of concentration and mass transfer coefficients and friction 

factors are determined from dimensionless numbers (i.e. Reynolds, Schmidt) that vary along the 

stage. The solution of this model provides the key performance metrics (i.e. average water flux, 

water recovery, and pressure drop) and the one-dimensional profiles of the state and process 

variables along the stage for a specified case. 

We formulated and specified the detailed process model with the following specifications 

and assumptions. First, we formulate the model on a mass basis instead of a volumetric basis. 

The volumetric basis is the most common approach for membrane models that assume constant 

density. However, when density is modeled as a function of concentration, the volumetric 

balance does not satisfy conservation of mass. Second, we make several assumptions that are 

consistent with our previous work regarding the design and operation of the membrane process.4 

Specifically, we assume:  

• The solute is NaCl and the non-ideal solution osmotic pressure matches experimental 

results.17 

• The membrane units have a flat plate geometry with counter-current flow and are 

composed of an asymmetric membrane with the porous support on the low hydraulic 

pressure-side. 

• The mass transfer coefficient and pressure drop are adequately estimated by Sherwood 

number and friction factor correlations that were developed by Guillen and Hoek (2009) 

from simulations on channels with a mesh spacer.25 Despite the limitations of this study, 
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including assumptions of constant solution properties, isolated filaments, and a Reynolds 

number between 10-400, these are currently the best available correlations relevant to 

membrane channels with a mesh. 

• The continuous membrane dimensions, length and width, adequately represent a 

membrane stage that may be comprised of multiple modules in series and parallel. 

• The outlet hydraulic pressure is 1 bar for the non-pressurized streams. 

 

 

Figure 2.2. A) Finite difference model for hydraulic and osmotically driven membrane-based 

processes with five nodes. 𝛳 are inlet and outlet stage variables that include: mass flowrate, 

mass fraction, and hydraulic pressure. 𝛷 are inter-node variables that include: mass flowrate, 

mass fraction, and pressure loss. 𝜔 are nodal variables that include: bulk concentration, 

concentration at the membrane interface, hydraulic and osmotic pressure, and water and salt 

flux. B) Water flux profiles for a different number of nodes. Water flux values are representative 

of the RO case study for a feed of 35 g/L TDS with 50% water recovery.  Additional details are 

provided in Section 2.4. 
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The finite difference approximations of the governing mass transfer equations (Eq. 2.15-

2.18) are shown in Eq. 2.21-2.32. 

𝑀𝑓,𝑘 = 𝑀𝑓,𝑘−1 −
𝐴𝑚𝑒𝑚

𝑁
  (𝐽𝑤𝑘 𝜌𝑤 + 𝐽𝑠𝑘)     ∀𝑘, 𝑘 ≠ 𝑘1   (2.21) 

𝑀𝑓,𝑘𝑋𝑓,𝑘 = 𝑀𝑓,𝑘−1𝑋𝑓,𝑘−1 −
𝐴𝑚𝑒𝑚

𝑁
 𝐽𝑠𝑘   ∀𝑘, 𝑘 ≠ 𝑘1    (2.22) 

𝑀𝑓,𝑘1 = 𝑀𝑓,𝑖𝑛 −
𝐴𝑚𝑒𝑚

𝑁
( 𝐽𝑤𝑘1 𝜌𝑤 + 𝐽𝑠𝑘1)     (2.23) 

𝑀𝑓,𝑘1𝑀𝑓,𝑘1 = 𝑀𝑓,𝑖𝑛𝑋𝑓,𝑖𝑛 −
𝐴𝑚𝑒𝑚

𝑁
 𝐽𝑠𝑘1     (2.24) 

𝑀𝑓,𝑜𝑢𝑡 = 𝑀𝑓,𝑘𝑁        (2.25) 

𝑋𝑓,𝑜𝑢𝑡 = 𝑋𝑓,𝑘𝑁         (2.26) 

𝑀𝑝,𝑘 = 𝑀𝑝,𝑘+1 +
𝐴𝑚𝑒𝑚

𝑁
  (𝐽𝑤𝑘 𝜌𝑤 + 𝐽𝑠𝑘)   ∀𝑘, 𝑘 ≠ 𝑘𝑁   (2.27) 

𝑀𝑝,𝑘𝑋𝑝,𝑘 = 𝑀𝑝,𝑘+1𝑋𝑝,𝑘+1 +
𝐴𝑚𝑒𝑚

𝑁
 𝐽𝑠𝑘   ∀𝑘, 𝑘 ≠ 𝑘𝑁    (2.28) 

𝑀𝑝,𝑘𝑁 = 𝑀𝑝,𝑖𝑛 +
𝐴𝑚𝑒𝑚

𝑁
 (𝐽𝑤𝑘𝑁 𝜌𝑤 + 𝐽𝑠𝑘𝑁)     (2.29) 

𝑀𝑝,𝑘𝑁𝑋𝑝,𝑘𝑁 = 𝑀𝑝,𝑖𝑛𝑋𝑝,𝑖𝑛 +
𝐴𝑚𝑒𝑚

𝑁
 𝐽𝑠𝑘𝑁     (2.30) 

𝑀𝑝,𝑜𝑢𝑡 = 𝑀𝑝,𝑘1        (2.31) 

𝑋𝑝,𝑜𝑢𝑡 = 𝑋𝑝,𝑘1         (2.32) 

Where 𝐴𝑚𝑒𝑚 is the total stage membrane area and the state and process variables are either 

indexed by the node (𝑘), stage inlet (𝑖𝑛), or stage outlet (𝑜𝑢𝑡). The set of nodes, 𝐾, has 𝑁 
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number of nodes and is enumerated from 𝑘1 to 𝑘𝑁, starting at the feed side inlet (permeate side 

outlet) and ending at the feed side outlet (permeate side inlet).  

The finite difference approximations of the governing pressure drop equations (Eq. 2.19 

and 2.20) are shown in Eq. 2.33-2.38. The slight difference between the mass transfer and 

pressure drop approximations (e.g. 1/𝑁 term in Eq. 2.23 compared to 1/2𝑁 term in Eq. 2.34) 

arises because hydraulic pressure is a nodal variable (𝑤 in Fig. 2.2) and mass flow rate and mass 

fraction are inter-node variables (𝜙 in Fig. 2.2). 

𝑃𝑓,𝑘 = 𝑃𝑓,𝑘−1 − 𝑃𝐿𝑓,𝑘−1
𝐿

𝑁
   ∀𝑘, 𝑘 ≠ 𝑘1     (2.33) 

𝑃𝑓,𝑘1 = 𝑃𝑓,𝑖𝑛 − 𝑃𝐿𝑓,𝑖𝑛
𝐿

2𝑁
       (2.34) 

𝑃𝑓,𝑜𝑢𝑡 = 𝑃𝑓.𝑘𝑁 − 𝑃𝐿𝑓,𝑘𝑁
𝐿

2𝑁
       (2.35) 

𝑃𝑝,𝑘 = 𝑃𝑝,𝑘+1 − 𝑃𝐿𝑝,𝑘+1  
𝐿

𝑁
   ∀𝑘, 𝑘 ≠ 𝑘𝑁     (2.36) 

𝑃𝑝,𝑘𝑁 = 𝑃𝑝,𝑖𝑛 − 𝑃𝐿𝑝,𝑖𝑛
𝐿

2𝑁
       (2.37) 

𝑃𝑝,𝑜𝑢𝑡 = 𝑃𝑝,𝑘1 − 𝑃𝐿𝑝,𝑘1
𝐿

2𝑁
       (2.38) 

In the following model description, we frequently use functions (𝑓∗) that relate the 

specified variable to other variables (e.g. the osmotic pressure as a function of concentration is 

represented by 𝑓𝜋(𝐶)). Previously described functions include: 𝑓𝜋(𝐶) as Eq. 2.3, 𝑓𝜌(𝑋) as Eq. 

2.4, 𝑓𝜇(𝑋) as Eq. 2.5, 𝑓𝐷(𝑋) as Eq. 2.6, 𝑓𝐶(𝑋) as Eq. 2.7, 𝑓𝐶𝑚𝑓
(𝐶𝑏𝑓 , 𝐽𝑤, 𝐽𝑠, 𝑘𝑓 , 𝐷) as Eq. 2.8, and 

𝑓𝐶𝑚𝑝
(𝐶𝑏𝑝, 𝐽𝑤, 𝐽𝑠, 𝑘𝑝, 𝐷) as Eq. 2.9. Additionally, functions for the mass transfer coefficient (𝑓𝑘), 
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pressure loss per unit length (𝑓𝑃𝐿), and Reynolds number (𝑓𝑅𝑒) are formulated for the variables 

considered in our model, as shown in Eq. 2.39-2.41.  

𝑓𝑘(𝑋, 𝑅𝑒, 𝑆𝑐) =
𝑓𝐷(𝑋)

𝑑ℎ
 0.46(𝑅𝑒 𝑆𝑐)0.36      (2.39) 

𝑓𝑃𝐿(𝑀, 𝑋, 𝑅𝑒, 𝑊) =
(0.42+

189.3

𝑅𝑒
)𝑀2

2 𝑑ℎ  𝑓𝜌(𝑋) 𝐻2 𝑊2  𝜀2  [
1 ℎ

3600 𝑠
]

2

[
1 𝑏𝑎𝑟

1𝐸5 𝑃𝑎
]    (2.40) 

𝑓𝑅𝑒(𝑀, 𝑋, 𝑊) =
𝑀 𝑑ℎ

𝑓𝜇(𝑋) 𝐻 𝑊 𝜀
[

1 ℎ

3600 𝑠
]      (2.41) 

Where 𝜀 is the void space of the mesh filled channel (assumed to be 97% for consistency with 

the Sherwood number and friction factor assumptions).  

The nodal variables (𝜔 in Fig. 2.2): water flux, salt flux, osmotic pressure, concentration 

at the membrane interface, bulk concentration, mass transfer coefficient, and diffusivity are 

determined with Eq. 2.42-2.57. 

𝐽𝑤𝑘 = 𝐴 ((𝑃𝑓,𝑘 − 𝑃𝑝,𝑘) − (𝜋𝑓,𝑘 − 𝜋𝑝,𝑘))   ∀𝑘     (2.42) 

𝐽𝑠𝑘 = 𝐵(𝐶𝑚𝑓,𝑘 − 𝐶𝑚𝑝,𝑘)   ∀𝑘      (2.43) 

π𝑠,𝑘 = 𝑓𝜋(𝐶𝑚𝑠,𝑘)   ∀𝑠 ∈ (𝑓, 𝑝), ∀𝑘      (2.44) 

𝐶𝑚𝑠,𝑘 = 𝑓𝐶𝑚𝑠
(𝐶𝑏𝑠,𝑘, 𝐽𝑤𝑘, 𝐽𝑠𝑘, 𝑘𝑠,𝑘, 𝐷𝑠,𝑘)   ∀𝑠 ∈ (𝑓, 𝑝), ∀𝑘    (2.45) 

𝐶𝑏𝑓,𝑘 =
𝑓𝐶(𝑋𝑓,𝑘)+𝑓𝐶(𝑋𝑓,𝑘−1)

2
   ∀𝑘, 𝑘 ≠ 𝑘1     (2.46) 

𝐶𝑏𝑓,𝑘1 =
𝑓𝐶(𝑋𝑓,𝑖𝑛)+𝑓𝐶(𝑋𝑓,𝑘1)

2
       (2.47) 

𝐶𝑏𝑝,𝑘 =
𝑓𝐶(𝑋𝑝,𝑘)+𝑓𝐶(𝑋𝑝,𝑘+1)

2
   ∀𝑘, 𝑘 ≠ 𝑘𝑁     (2.48) 
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𝐶𝑏𝑝,𝑘𝑁 =
𝑓𝐶(𝑋𝑝,𝑖𝑛)+𝑓𝐶(𝑋𝑝,𝑘𝑁)

2
       (2.49) 

𝑘𝑓,𝑘 =
𝑓𝑘(𝑋𝑓,𝑘,𝑅𝑒𝑓,𝑘,𝑆𝑐𝑓,𝑘)+𝑓𝑘(𝑋𝑓,𝑘−1𝑅𝑒𝑓𝑘−1,𝑆𝑐𝑓𝑘−1)

2
   ∀𝑘, 𝑘 ≠ 𝑘1   (2.50) 

𝑘𝑓,𝑘1 =
𝑓𝑘(𝑋𝑓,𝑖𝑛,𝑅𝑒𝑓,𝑖𝑛,𝑆𝑐𝑓,𝑖𝑛)+𝑓𝑘(𝑋𝑓,𝑘,𝑅𝑒𝑓,𝑘,𝑆𝑐𝑓,𝑘)

2
     (2.51) 

𝑘𝑝,𝑘 =
𝑓𝑘(𝑋𝑝,𝑘,𝑅𝑒𝑝,𝑘,𝑆𝑐𝑝,𝑘)+𝑓𝑘(𝑋𝑝,𝑘+1,𝑅𝑒𝑝,𝑘+1,𝑆𝑐𝑝,𝑘+1)

2
   ∀𝑘, 𝑘 ≠ 𝑘𝑁  (2.52) 

𝑘𝑝,𝑘𝑁 =
𝑓𝑘(𝑋𝑝,𝑖𝑛,𝑅𝑒𝑝,𝑖𝑛,𝑆𝑐𝑝,𝑖𝑛)+𝑓𝑘(𝑋𝑝,𝑘𝑁,𝑅𝑒𝑝,𝑘𝑁,𝑆𝑐𝑝,𝑘𝑁)

2
    (2.53) 

𝐷𝑓,𝑘 =
𝑓𝐷(𝑋𝑓,𝑘)+𝑓𝐷(𝑋𝑓,𝑘−1)

2
   ∀𝑘, 𝑘 ≠ 𝑘1     (2.54) 

𝐷𝑓,𝑘1 =
𝑓𝐷(𝑋𝑓,𝑖𝑛)+𝑓𝐷(𝑋𝑓,𝑘1)

2
       (2.55) 

𝐷𝑝,𝑘 =
𝑓𝐷(𝑋𝑝,𝑘)+𝑓𝐷(𝑋𝑝,𝑘+1)

2
   ∀𝑘, 𝑘 ≠ 𝑘𝑁     (2.56) 

𝐷𝑝,𝑘𝑁 =
𝑓𝐷(𝑋𝑝,𝑖𝑛)+𝑓𝐷(𝑋𝑝,𝑘𝑁)

2
       (2.57) 

Where the subscript s denotes either the feed (𝑓) or sweep (𝑠) side. Note that the bulk 

concentration, the mass transfer coefficient, and the solute diffusion coefficient (nodal variables) 

are determined from the average of their functions evaluated at the adjacent inter-node variables.  

 The inter-node variables (𝜙 in Fig. 2.2) - pressure loss per unit length, Reynolds number, 

and Schmidt number - are determined with Eq. 2.58-2.60.  

𝑃𝐿𝑠,𝑢 = 𝑓𝑃𝐿(𝑀𝑠,𝑢, 𝑋𝑠,𝑢, 𝑅𝑒𝑠,𝑢, 𝑊)   ∀𝑠 ∈ (𝑓, 𝑝), ∀𝑢 ∈ (𝐾, 𝑖𝑛)  (2.58) 

𝑅𝑒𝑠,𝑢 = 𝑓𝑅𝑒(𝑀𝑓𝑢 , 𝑋𝑓𝑢, 𝑊)   ∀𝑠 ∈ (𝑓, 𝑝), ∀𝑢 ∈ (𝐾, 𝑖𝑛)   (2.59) 
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𝑆𝑐𝑠,𝑢 =
𝑓𝜇(𝑋𝑠,𝑢)

𝑓𝜌(𝑋𝑠,𝑢) 𝑓𝐷(𝑋𝑠,𝑢)
   ∀𝑠 ∈ (𝑓, 𝑝), ∀𝑢 ∈ (𝐾, 𝑖𝑛)    (2.60) 

 Previously described stage level variables - membrane area, length, and width - are 

related by Eq. 2.61. Other stage level variables include: average water flux (𝐽𝑤𝑎𝑣𝑔), average salt 

flux (𝐽𝑠𝑎𝑣𝑔), water recovery (𝑅𝑤), salt passage (𝑅𝑠), and pressure drop on the feed and permeate 

side (Δ𝑃𝑓, Δ𝑃𝑝). These variables are determined in Eq. 2.62-2.66. 

𝐴𝑚𝑒𝑚 = 𝑊 𝐿           (2.61) 

𝐽𝑤𝑎𝑣𝑔 =
1

𝑁
 ∑ 𝐽𝑤𝑘𝑘           (2.62) 

𝐽𝑠𝑎𝑣𝑔 =
1

𝑁
 ∑ 𝐽𝑠𝑘𝑘           (2.63) 

𝑅𝑤 =
𝐽𝑤𝑎𝑣𝑔 𝐴𝑚𝑒𝑚

𝑀𝑓,𝑖𝑛 (1−𝑋𝑓,𝑖𝑛)
          (2.64) 

𝑅𝑠 =
𝐽𝑠𝑎𝑣𝑔 𝐴𝑚𝑒𝑚

𝑀𝑓,𝑖𝑛 𝑋𝑓,𝑖𝑛
        (2.65a) 

𝑅𝑠 =
−𝐽𝑠𝑎𝑣𝑔  𝐴𝑚𝑒𝑚

𝑀𝑝,𝑖𝑛 𝑋𝑝,𝑖𝑛
        (2.65b) 

∆𝑃𝑠 = 𝑃𝑠,𝑖𝑛 − 𝑃𝑠,𝑜𝑢𝑡   ∀𝑠 ∈ (𝑓, 𝑝)        (2.66) 

Where Eq. 2.65a is valid for processes with positive salt flux (i.e. RO and OARO) and Eq. 2.65b 

is valid for processes with negative salt flux (i.e. FO and PRO). Note that water recovery is 

defined as the fraction of permeated water mass flow rate over the feed inlet water mass flow 

rate, as opposed to the inlet feed volume reduction, which is commonly used in the literature. An 

issue with the volumetric reduction definition of water recovery is that it determines the solution 

recovery rather than the water recovery. The deviation between the mass and volumetric-based 
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water recovery is small when the initial feed concentration is dilute, but they deviate at higher 

salinities that are common for OARO and FO.   

Simplified inlet-outlet model 

 The detailed process model can be simplified to an inlet-outlet model. This approach 

reduces the dimension of the model from one to zero by disregarding the governing system of 

differential equations. Instead, the inlet-outlet model estimates the overall performance of the 

membrane process by averaging variables at the inlet and outlet of the stage. The inlet-outlet 

model is computationally leaner because it has significantly fewer variables and constraints; 

however, its solutions are less detailed and accurate (i.e. no profiles of variables along the 

membrane stage). 

 In this work, we consider three inlet-outlet model formulations that estimate the average 

with: 1) the arithmetic mean, 2) the log mean, and 3) the geometric mean. These means are 

specified in Eq. 2.67a, 2.67b, and 2.67c, respectively. We approximate the log mean with an 

approximation developed by Chen 1987 because the log mean can be undefined over the domain 

of feasible variables.26-27  

𝑓𝑎𝑣𝑔(𝑌1, 𝑌2) =
(𝑌1+𝑌2)

2
        (2.67a) 

𝑓𝑎𝑣𝑔(𝑌1, 𝑌2) =
𝑌1−𝑌2

ln(
𝑌1
𝑌2

)
≈ (𝑌1 𝑌2

(𝑌1+ 𝑌2)

2
)

1

3
     (2.67b) 

𝑓𝑎𝑣𝑔(𝑌1, 𝑌2) = (𝑌1 𝑌2)
1

2       (2.67c) 

 The mass balance and pressure drop equations around the membrane stage are shown in 

Eq. 2.68-2.72. 

𝑀𝑓,𝑜𝑢𝑡 = 𝑀𝑓,𝑖𝑛 − 𝐴𝑚𝑒𝑚(𝐽𝑤𝑎𝑣𝑔 𝜌𝑤 + 𝐽𝑠𝑎𝑣𝑔)    (2.68) 
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𝑀𝑓,𝑜𝑢𝑡 𝑋𝑓,𝑜𝑢𝑡 = 𝑀𝑓,𝑖𝑛 𝑋𝑓,𝑖𝑛 − 𝐴𝑚𝑒𝑚 𝐽𝑠𝑎𝑣𝑔     (2.69) 

𝑀𝑝,𝑜𝑢𝑡 = 𝑀𝑝,𝑖𝑛 + 𝐴𝑚𝑒𝑚(𝐽𝑤𝑎𝑣𝑔 𝜌𝑤 + 𝐽𝑠𝑎𝑣𝑔)    (2.70) 

𝑀𝑝,𝑜𝑢𝑡 𝑋𝑝,𝑜𝑢𝑡 = 𝑀𝑝,𝑖𝑛 𝑋𝑝,𝑖𝑛 + 𝐴𝑚𝑒𝑚 𝐽𝑠𝑎𝑣𝑔     (2.71) 

𝑃𝑠,𝑜𝑢𝑡 = 𝑃𝑠,𝑖𝑛 + 𝑃𝐿𝑠,𝑎𝑣𝑔 𝐿   ∀𝑠 ∈ (𝑓, 𝑝)     (2.72) 

The averaged process variables 𝐽𝑤𝑎𝑣𝑔, 𝐽𝑠𝑎𝑣𝑔, and 𝑃𝐿𝑠,𝑎𝑣𝑔 are determined in Eq. 2.73-

2.75. 

𝐽𝑤𝑎𝑣𝑔 = 𝑓𝑎𝑣𝑔(𝐽𝑤1, 𝐽𝑤2)       (2.73) 

𝐽𝑠𝑎𝑣𝑔 =
𝐽𝑠1+𝐽𝑠2

2
        (2.74) 

𝑃𝐿𝑠,𝑎𝑣𝑔 = 𝑓𝑎𝑣𝑔(𝑃𝐿𝑠,𝑖𝑛, 𝑃𝐿𝑠,𝑜𝑢𝑡)      (2.75) 

Where 𝑓𝑎𝑣𝑔 is Eq. 2.67a, 2.67b, or 2.67c depending on the mean formulation, the numbered 

subscript denotes the membrane stage end: 1 for feed side inlet and permeate side outlet, and 2 

for feed side outlet and permeate side inlet. We determine the average salt flux using the 

arithmetic mean for all inlet-outlet models since we observe nearly constant or linear salt flux 

profiles from our detailed one-dimensional model. 

 The water flux, salt flux, and pressure loss are determined at each end of the membrane 

stage with Eq. 2.76-2.80. 

𝐽𝑤1 = 𝐴 ((𝑃𝑓,𝑖𝑛 − 𝑃𝑝,𝑜𝑢𝑡) − (𝜋𝑓,𝑖𝑛 − 𝜋𝑝,𝑜𝑢𝑡))    (2.76) 

𝐽𝑤2 = 𝐴 ((𝑃𝑓,𝑜𝑢𝑡 − 𝑃𝑝,𝑖𝑛) − (𝜋𝑓,𝑜𝑢𝑡 − 𝜋𝑝,𝑖𝑛))    (2.77) 
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𝐽𝑠1 = 𝐵(𝐶𝑚𝑓,𝑖𝑛 − 𝐶𝑚𝑝,𝑜𝑢𝑡)       (2.78) 

𝐽𝑠2 = 𝐵(𝐶𝑚𝑓,𝑜𝑢𝑡 − 𝐶𝑚𝑝,𝑖𝑛)       (2.79) 

𝑃𝐿𝑠,𝑢 = 𝑓𝑃𝐿(𝑀𝑠,𝑢, 𝑋𝑠,𝑢, 𝑅𝑒𝑠,𝑢, 𝑊)   ∀𝑠 ∈ (𝑓, 𝑝), ∀𝑢 ∈ (𝑖𝑛, 𝑜𝑢𝑡)  (2.80) 

 All other variables, including osmotic pressure, concentration at the membrane interface, 

bulk concentration, mass transfer coefficient, Reynolds number, and Schmidt number, are 

determined in Eq. 2.81-2.89. 

𝜋𝑠,𝑢 = 𝑓𝜋(𝐶𝑚𝑠,𝑢)   ∀𝑠 ∈ (𝑓, 𝑝), ∀𝑢 ∈ (𝑖𝑛, 𝑜𝑢𝑡)    (2.81) 

𝐶𝑚𝑓,𝑖𝑛 = 𝑓𝐶𝑚𝑓
(𝐶𝑏𝑓,𝑖𝑛, 𝐽𝑤1, 𝑘𝑓,𝑖𝑛, 𝐷𝑓,𝑖𝑛)     (2.82) 

𝐶𝑚𝑓,𝑜𝑢𝑡 = 𝑓𝐶𝑚𝑓
(𝐶𝑏𝑓,𝑜𝑢𝑡, 𝐽𝑤2, 𝑘𝑓,𝑜𝑢𝑡, 𝐷𝑓,𝑜𝑢𝑡)     (2.83) 

𝐶𝑚𝑝,𝑖𝑛 = 𝑓𝐶𝑚𝑝
(𝐶𝑏𝑝,𝑖𝑛, 𝐽𝑤2, 𝑘𝑝,𝑖𝑛, 𝐷𝑝,𝑖𝑛)     (2.84) 

𝐶𝑚𝑝,𝑜𝑢𝑡 = 𝑓𝐶𝑚𝑝
(𝐶𝑏𝑝,𝑜𝑢𝑡, 𝐽𝑤1, 𝑘𝑝,𝑜𝑢𝑡, 𝐷𝑝,𝑜𝑢𝑡)    (2.85) 

𝐶𝑏𝑠,𝑢 = 𝑓𝐶(𝑋𝑠,𝑢)   ∀𝑠 ∈ (𝑓, 𝑝), ∀𝑢 ∈ (𝑖𝑛, 𝑜𝑢𝑡)    (2.86) 

𝐷𝑠,𝑢 = 𝑓𝐷(𝑋𝑠,𝑢)   ∀𝑠 ∈ (𝑓, 𝑝), ∀𝑢 ∈ (𝑖𝑛, 𝑜𝑢𝑡)    (2.87) 

𝑅𝑒𝑠,𝑢 = 𝑓𝑅𝑒(𝑀𝑓𝑢 , 𝑋𝑓𝑢, 𝑊)   ∀𝑠 ∈ (𝑓, 𝑝), ∀𝑢 ∈ (𝑖𝑛, 𝑜𝑢𝑡)   (2.88) 

𝑆𝑐𝑠,𝑢 =
𝑓𝜇(𝑋𝑠,𝑢)

𝑓𝜌(𝑋𝑠,𝑢)𝐷𝑠,𝑢
   ∀𝑠 ∈ (𝑓, 𝑝), ∀𝑢 ∈ (𝑖𝑛, 𝑜𝑢𝑡)    (2.89) 

 The inlet-outlet model uses the same equations as the detailed process model (Eq. 2.61 

and 2.64-2.66) for the stage level variables. 
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Case studies 

We apply our detailed process model and inlet-outlet models to case studies for RO, 

OARO, FO, and PRO membrane technologies. The membrane properties (Table 2.1) were 

estimated from the literature.12, 28-30 The case study specifications (Table 2.1) were selected for 

representativeness and ease of comparison with similar process modeling exercises.4, 8, 10, 12 In 

addition to the values defined by the case studies, we also perform a Monte Carlo analysis to 

assess the sensitivity of our results to the specified parameters.  In the Monte Carlo simulations, 

we develop a set of 100 cases that are created by randomly sampling the parameters between +/-

5% of the specified case study value. 
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Table 2.1. Case study parameter specifications. Not applicable (NA) and not specified (NS) 

variables are noted. We assume a basis of 1000 kg/h of feed side inlet mass flowrate. The 

permeate side inlet mass flowrate is determined with its mass flowrate fraction defined as 

𝑀𝑝𝑖𝑛/(𝑀𝑝𝑖𝑛 + 𝑀𝑓𝑖𝑛). Specifications that are varied in the Monte Carlo analysis are noted with 

±5%.  

  RO OARO FO PRO 

Membrane and module properties     

Water permeability coefficient [1E-12 m Pa-1 s-1] 4.2 ±5% [12] 1.0 ±5% [28] 3.2 ±5% [29] 6.9 ±5% [30] 

Salt permeability coefficient [1E-8 m s-1] 3.5 ±5% [12] 7.7 ±5% [28] 13 ±5% [29] 11 ±5% [30] 

Structural parameter [μm] NA 1200 ±5% [4] 500 ±5% [29] 560 ±5% [30] 

Inlet specifications     

Feed side inlet mass flowrate [kg h-1] 1000 1000 1000 1000 

Feed side inlet concentration [g L-1] 35 ±5% 75 ±5% 35 ±5% 2.9 ±5% 

Feed side inlet pressure [bar] 70 ±5% 65 ±5% NS NS 

Permeate side inlet mass flowrate fraction [-] 0 0.33 ±5% 0.33 ±5% 0.5 ±5% 

Permeate side inlet concentration [g L-1] 0 100 ±5% 175 ±5% 35 ±5% 

Permeate side inlet pressure [bar] NS NS NS 13 ±5% 

Outlet specifications     

Feed side outlet pressure [bar] NS NS 1 1 

Permeate side outlet pressure [bar] 1 1 1 NS 

Additional specifications     

Water recovery [%] 50 ±5% 50 ±5% 50 ±5% 50 ±5% 

Feed side inlet Reynolds number [-] 400 ±5% 400 ±5% 400 ±5% 300 ±5% 

Channel height [mm] 1 ±5% 2 ±5% 2 ±5% 2 ±5% 

 

Solving the models 

The size of the detailed process model is dependent on the number of nodes (N): 24N+27 

variables, and 24N + 19 equality constraints. The simplified inlet-outlet model has 53 variables 

and 45 equality constraints. Both models have 8 degrees of freedom, which are reduced to zero 

with the case study specifications in Table 2.1. We create the models in Python using the open 

source software package Pyomo and solve for the single feasible solution using GAMS 
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24.5.6/CONOPT3. Additional details on bounding and initializing the variables is provided in SI 

Section S4. 

2.5 Results and Discussion 

This work systematically evaluates the accuracy implications of common simplifications 

adopted in RO, OARO, FO, and PRO membrane process models.  We begin by assessing the 

effect of the number of nodes on the results of the finite difference approximation for water flux.  

We then evaluate the effect of common simplifications used in describing the process and 

solution properties by quantifying the difference in average water flux with and without 

implementation of these simplifications.  Finally, we quantify the average water flux error that 

originates from the use of simplified inlet-outlet modeling and evaluate the performance of novel 

inlet-outlet model formulations that use the log and geometric means to estimate the average 

water flux and pressure loss. 

 Detailed process model results 

The detailed process model with 100 nodes (2427 variables) is solved in less than 2 seconds 

when using an Intel i7 CPU 2.6 GHz processor with 8 GB of memory for each of the four 

membrane processes.  While we obtain short solution times with the solver CONOPT, the largest 

benefit of the commercial solver is that the solution is tractable with crude variable bounds and 

initialization (SI Section S4).  This solver performance contrasts with the Matlab nonlinear 

systems of equations solver, fsolve, which was unable to converge on a solution for the same 

bounds and initialization.  

Table 2.2 presents the solutions to the optimal process specifications and performance 

metrics, including average water and salt flux; salt recovery; membrane area; and feed and 

permeate side pressure drop, outlet concentration, average Reynolds number, and average mass 
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transfer coefficient.  We observe that our process model results are consistent with expected 

modeling results for the outlet concentrations, average water flux, and pressure drop.4, 8, 10, 12 

 

Table 2.2. Detailed process model results for the RO, OARO, FO, and PRO case studies.  

Key variables and performance metrics RO OARO FO PRO 

Average water flux [L m-2 h-1] 25.6 3.0 6.1 4.5 

Average salt flux [g m-2 h-1] 8.1 17.4 -3.1 -6.6 

Salt passage [%] 0.5 4.0 0.3 2.2 

Feed side pressure drop [bar] 1.5 1.9 0.9 0.5 

Permeate side pressure drop [bar] NA 1.7 0.9 1.0 

Feed side outlet concentration [g L-1] 69 131.5 69.8 7.3 

Permeate side outlet concentration [g L-1] 0.3 52.9 84.1 22.7 

Membrane area [m2] 19 155 80 112 

Membrane width [m] 1.2 1.1 1.2 1.7 

Membrane length [m] 16 141 68 67 

Feed side average Reynolds number 272 273 297 226 

Permeate side average Reynolds number NA 274 261 359 

Feed side average mass trans. coef. [mm h-1] 113 58 58 52 

Permeate side average mass trans. coef. [mm h-1] NA 57 58 62 

  

The detailed process model also provides the profile of each variable along the length of the 

membrane. Profiles for feed concentration, permeate concentration, and water flux are plotted in 

Figure 2.3.  In RO and OARO, we observe the characteristically steep water flux decline along 

the membrane length that results from the pressure drop and the increasing feed side 
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concentration, and in OARO, from the dilution of the sweep.  In contrast, we observe a modest 

water flux increase from the feed inlet to the feed outlet for FO and PRO.   

 

Figure 2.3. Bulk concentration (black) and water flux (blue) profiles along the stage for the 100 

node finite difference model case studies: A) RO, B) OARO, C) FO, and D) PRO. The feed side 

(solid) and permeate side (dotted) concentrations are noted with line style and the flowrate 

directions for the streams are noted with arrows. The case study specifications and parameters 

are described in Section 2.4 and Table 2.1. Note that the RO water flux has a different scale than 

the other processes.  

A
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The fidelity between the detailed process model outputs and experimental measurements will 

depend upon the accuracy of the underlying assumptions. As noted above, the model assumes 

that the membranes are configured in a flat plate geometry, modules are operated in counter-

current flow, friction factors and mass transfer coefficients can be described with correlations 

from a simulated computational fluid dynamics model, and the membrane parameters (e.g. A, B, 

and S) are independent of operating variables (e.g. feed and sweep side pressure and 

concentration).  Thus, this model will not accurately describe membrane modules with different 

geometries (e.g. spiral wound or hollow fiber), cross flow operation, and large dead zones.  We 

expect that our assumed flat plate geometry with only one membrane active layer bordering the 

flow will have longer modules than spiral wound (2 layers) or hollow fiber modules and that our 

assumed counter-current flow operation will have a higher average permeate-side concentration 

compared to the more common cross flow operation for RO processes.  Finally, our model does 

not reflect the greater pressure drop that is expected on the low hydraulic pressure side of OARO 

and PRO processes due to the lack of experimental data and friction factor correlations for those 

conditions. 

 Accuracy implications of decreasing the number of nodes in the finite difference approximation.   

We assess the accuracy implications of decreasing the computational intensity of the finite 

difference model by decreasing the number of model nodes.  In Figure 2.4, we plot the average 

difference in water flux between the n node approximation and the 100 node approximation.  For 

each approximation, we use a Monte Carlo simulation that perturbs the specified inlet variables 

by ±5%, as described in Section 2.4, to assess the sensitivity of the average water flux error to 

the specified conditions.  
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We observe that the 1 node approximation deviates from the 100 node approximation of 

average water flux by less than 11% for each membrane process.  As the number of nodes 

increases, the deviation decreases to less than 1% and 0.1% for 5 and 10 nodes, respectively.  

Deeming 0.1% accuracy sufficient for our current work, we use the 10 node approximation for 

all subsequent simulations.   

Generally, deviations tend to increase with decreasing driving force and increasing 

membrane area, as low node approximations are less accurate at representing the profile of long 

modules. Whether the average water flux is over or underestimated is highly dependent on the 

case study parameters, and we observe that even the relatively small perturbation of ±5% can 

result in either an over or underestimate for RO and PRO. 
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Figure 2.4. Accuracy of the n-node finite difference model relative to the 100 node model for A) 

RO, B) OARO, C) FO, and D) PRO. The water flux solution for the 100 node model is assumed 

to be the true value because there is an undetectable change (less than 0.001%) associated with 

a further increase in the number of nodes. The distribution of average water flux errors was 

developed using a Monte Carlo simulation that varied the specified parameters by ±5%, as noted 

in Table 2.1. 
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Effect of process and solution property simplifications on model accuracy 

We determine the average water flux percent error for common modeling simplifications, 

including: no salt flux, no pressure drop, ideal solution, and constant density, viscosity, and 

diffusivity for the 10 node case (Figure 2.5). We find that the simplifications result in water flux 

errors in our case studies of up to 20% for RO, 30% for OARO, 10% for FO, and 40% for PRO. 

The no salt flux simplification can result in large errors (>30%) for osmotically driven 

membrane processes. In these processes, salt flux has a large effect on the interfacial solute 

concentration and therefore on the osmotic driving force.  In RO and OARO, the no salt flux 

simplification artificially increases the interfacial solute concentration on the feed side and 

decreases the concentration on the permeate side, decreasing the overall driving force and 

leading to an underestimation of average water flux.  The inverse is true for both FO and PRO 

processes, which exhibit negative salt flux.  Note that the no salt flux simplification results in 

significantly smaller errors in FO than in PRO because 1) the FO case study resulted in a lower 

average salt flux (Table 2.1), and 2) the orientation of the porous support on the permeate side in 

the FO case study reduces the feed side concentration polarization, which dampens the effect of 

assuming no salt flux.  

The no pressure drop simplification results in large errors (up to 30%) for PRO and small 

errors (<10%) for the other membrane processes.  We observe a large error for the PRO case 

study because neglecting the pressure drop decreases the overall driving force.  When pressure 

drop is included, the inlet feed side pressure is greater than 1 bar and the outlet permeate side 

pressure is less than the specified permeate side inlet pressure.  The pressure drop therefore 

increases the driving force at the end of the membrane stage with the feed inlet.   
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In contrast, when pressure drop is included for RO and OARO, the driving force decreases 

along the membrane length. If RO and OARO are operated at higher Reynolds numbers than 

those specified in our case study, the associated error with neglecting pressure drop would 

increase. We observe the smallest error from the no pressure drop simplification for FO because, 

while including the pressure drop increases the driving force at the feed inlet, it also decreases 

the driving force at the feed outlet and mitigates the change in average driving force along the 

stage.  While this work only assesses the error on the average water flux, neglecting the pressure 

drop could result in large errors in the estimated energy consumption (or production, in the case 

of PRO) of the membrane processes. 

The ideal solution simplification results in larger errors (>10%) for RO and PRO modeling 

and small errors (<5%) for RO and FO. OARO and FO are less impacted by the ideal solution 

assumption because the error in the osmotic pressure calculation occurs on both the feed and 

permeate side, effectively mitigating the net error.  In contrast, the error in RO and PRO is large 

because only one side has a significant amount of osmotic pressure.  This finding is especially 

significant because low concentration feeds are often used to justify the use of the ideal solution 

simplification in RO and PRO models.  

The constant density assumption results in moderate errors (5-10%) for RO, OARO, FO, and 

PRO. Even though the density does not change by more than 5% between the inlet and outlet of 

each stream in the case studies, the constant density assumption results in moderate errors 

because assuming constant density leads to underestimates of the change in concentration.  The 

magnitude of this error is directly related to the concentrations of the feed and permeate streams, 

with OARO and FO having the highest concentrations and the highest errors. 
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The constant viscosity assumption results in negligible errors (<2%) for all processes, despite 

the large viscosity change of over 50% across the solubility of NaCl.  While viscosity has a 

proportional effect on the Reynolds number, it does not significantly affect the overall driving 

force when operating the membrane system at typical flow velocities. 

The constant diffusivity assumption results in negligible errors (<0.1%) for all processes.  

This finding is unsurprising given that diffusivity has a limited effect on the average water flux 

and only varies by 10% across the solubility of NaCl at 25 °C.  For processes with depressed, 

elevated, or non-constant temperatures, the constant diffusivity assumption may contribute to 

higher average water flux errors.  

The cumulative error of these simplifications depends upon the process and the case study 

specifications.  For RO and OARO, the cumulative error is less than the maximum error from a 

single simplification because some simplifications result in an overestimation of flux, while 

others result in underestimation.  In contrast, the cumulative error is largest for FO and PRO. We 

observe that the cumulative errors are less than 15%, 10%, 10%, and 50% for the RO, OARO, 

FO, and PRO cases, respectively.  While these errors may be significant for some cases, we find 

that adopting these simplifications reduces the solution time of the detailed model by roughly a 

factor of 3. 
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Figure 2.5. Effect of common simplifications on the accuracy of water flux estimates for the four 

membrane process case studies: A) RO, B) OARO, C) FO, and D) PRO. All water flux errors are 

relative to the 10 node finite difference model without employing common simplifications. “All 

simplifications” includes the no salt flux, no pressure drop, ideal solution, and constant density, 

viscosity, and diffusivity assumptions.  The right-hand side of the dotted line reports the accuracy 
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of the simplified inlet-outlet (I-O) model formulated with an arithmetic, log, and geometric 

means.   

Effect of inlet-outlet formulation on model accuracy 

In contrast to the process model described above, inlet-outlet models do not directly estimate 

the profiles of variables along the membrane stage. Instead, they estimate the process 

performance by averaging the inlet and outlet variables. These models are frequently used 

because they have reduced computational complexity and are readily incorporated into system-

scale optimization models that have higher degrees of freedom. In our work, we find that the 

inlet-outlet model solves 10 times faster than the detailed model. 

We determine the water flux percent error relative to the 10 node finite difference model of 

the three inlet-outlet modeling formulations. We observe that the arithmetic mean formulation 

results in large errors (>10%) for the RO and OARO case studies and small errors (<5%) for FO 

and PRO case studies (Fig. 2.5).  Generally, the arithmetic mean overestimates the average water 

flux for the membrane processes with non-linear water flux profiles. 

The log and geometric mean formulations will yield lower average water flux compared to 

the arithmetic mean.  We find that these means underestimate the water flux by up to 40% in the 

RO case study.  In contrast, for the OARO case, the log mean has significantly lower average 

water flux errors than the geometric or arithmetic means.  Finally, in the FO and PRO cases, we 

find that there is little difference between the means because both cases have relatively flat water 

flux profiles.  When we modify the specifications in the case studies to produce steeper water 

flux profiles, we find that there is no consistent formulation that results in the lowest error for FO 

and PRO (Fig. S6).  FO and PRO do not have a most accurate formulation because they can be 

operated with a variety of water flux profiles (e.g. linear or non-linear, increasing or decreasing 
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along the stage), whereas the shape of the water flux profile in RO and OARO is more 

consistent.  Further discussion of the additional FO and PRO case studies are provided in SI 

section S.5.   

One drawback of the log and geometric mean models is that they can incorrectly predict 

some process configurations as infeasible, meaning that while the target water recovery can be 

achieved with specified parameters for the detailed one-dimensional model, the water recovery 

cannot be achieved for the inlet-outlet models.  We observe this behavior in 4% and 2% of the 

Monte Carlo simulations from the RO case study for the log and geometric mean formulations, 

respectively.  The simulations are infeasible for these formulations because they significantly 

underestimate the average water flux and, thus, overestimate the total membrane area (including 

membrane length) and total pressure drop.  These inflated pressure drops cause the specified 

water recovery and operating conditions to be infeasible.  We do not observe this diverging 

behavior for the other membrane processes (i.e. OARO, FO, and PRO) because the difference 

between the water flux at both ends of the membrane stage is significantly smaller. 

Collectively, these results suggest that the arithmetic and log mean formulations are the most 

accurate approaches for inlet-outlet modeling of RO and OARO, respectively.  While inlet-outlet 

modeling can be applied to accurately represent FO and PRO, it is important to begin by using a 

one-dimensional model to predict the shape of the water flux profile prior to selecting an 

appropriate mean for estimating the average.   

 

2.6 Conclusions 
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While all membrane models are approximations of the process conditions observed in real-

world membrane systems, accurate models are critical for developing and predicting the 

performance of novel membrane technologies. Fully understanding the limitations of existing 

models and the tradeoffs between model simplicity and model accuracy will further improve our 

ability to use these models to assess and design novel membrane processes.   

This work quantified the errors introduced by common simplifications for the membrane 

process, solution properties, and modeling. We demonstrated that the finite difference 

approximation with 10 nodes is sufficient to accurately describe the average water flux to within 

0.1%. We also demonstrated that the no salt flux, ideal solution, and constant density 

simplifications result in the largest water flux errors.  Finally, we demonstrated the value of 

replacing arithmetic mean approximations with a log mean approximation in inlet-outlet models 

for OARO and FO processes where the water flux is significantly affected by solution conditions 

on both side of the membrane.   

This work has several implications for modeling membrane processes.  The first is that the 

presented finite difference model can be solved efficiently without making common 

simplifications that are typically rationalized as a means of lowering the computational intensity 

of the model.  Second, both low node approximations and process and solution property 

simplifications can result in significant errors in predicted water flux.  While these 

simplifications are specific to the case study parameters, we observe water flux errors as large a 

50% for some membrane processes operating under standard conditions.  Finally, for 

applications where simplified inlet-outlet modeling is preferred (e.g. system-scale optimization 

problems), we have explored the accuracy implications of using different means for all four 
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membrane processes and found that a novel log mean formulation more accurately represents the 

non-linear water flux in the OARO process. 

Supporting Information 

The additional supporting information for this chapter is included in Appendix A. 
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2.8 Nomenclature 

Roman symbols 

𝐴 – Water permeability coefficient [m/bar-h] 

𝐴𝑚𝑒𝑚 – Stage membrane area [m2] 

𝐵 – Salt permeability coefficient [m/h] 

𝐶 – Concentration [g/L] 

𝐶𝑏 – bulk concentration [g/L] 

𝐶𝑚 – concentration at the membrane interface [g/L] 
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𝐷 – diffusion coefficient of the solute [m2/s] 

𝑑ℎ – Hydraulic diameter [m] 

𝐹 – Friction factor [-] 

𝐻 – Channel height [m] 

𝐽𝑠 – Salt flux [kg/h] 

𝐽𝑤 – Water flux [m3/m2-h] 

𝑘 – mass transfer coefficient [m/h] 

𝐿 – Membrane stage length [m] 

𝑀 – mass flowrate [kg/h] 

𝑀𝑊 – Molecular weight [g/mole] 

𝑁 – number of nodes 

𝑃 – Hydraulic pressure [bar] 

𝑃𝐿 – Pressure loss per unit length [bar/m] 

𝑅𝑒 – Reynolds number [-] 

𝑅𝑠 – salt passage [%] 

𝑅𝑤 – water recovery [%] 

𝑆 – structural parameter [m]  

𝑆𝑐 – Schmidt number [-] 
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𝑆ℎ – Sherwood number [-] 

𝑇 – Temperature [K] 

𝑊 – Membrane stage width [m] 

𝑋 – mass fraction [kg of solute/kg of solution] 

 

Greek symbols 

𝜀 – Void space of mesh 

𝜃 – Inlet and outlet stage variables 

𝜇 – Viscosity [Pa-s] 

𝜋 – Osmotic pressure [bar] 

𝜌 – Density [kg/m3] 

𝜌𝑤 – Pure water density [kg/m3] 

𝜙 – Inter-node variables 

𝜔 – Nodal variables 

 

Subscript 

𝑎𝑣𝑔 – average 

𝑓 – feed-side 
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𝑝 – permeate-side 

𝑖𝑛 – inlet 

𝑜𝑢𝑡 – outlet  

𝑘 – node in set 𝐾 (𝑘1, 𝑘2, … , 𝑘𝑁) 

 

Miscellaneous 

𝑓𝑦(𝑥) – function that determines 𝑦 from variables 𝑥 

 

Abbreviations 

FO – Forward osmosis 

OARO – Osmotically assisted reverse osmosis 

PRO – Pressure retarded osmosis 

RO – Reverse osmosis 
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3.0 OSMOTICALLY ASSISTED REVERSE OSMOSIS FOR HIGH SALINITY 

BRINE TREATMENT 

 
3.1 Abstract 

This work evaluates a novel osmotically assisted reverse osmosis (OARO) process for 

dewatering high salinity brines using readily available membranes and equipment.  While 

traditional reverse osmosis processes are limited to treating brines with osmotic pressures below 

the membrane burst pressure, in OARO, the osmotic pressure difference across a membrane is 

reduced with a permeate side saline sweep.  A series of OARO stages can be used to sequentially 

reduce the concentration of the feed until a traditional RO process can obtain fully desalinated 

water.  This paper develops an OARO model to identify feasible operating conditions for this 

process and to estimate the water recovery and energy consumption across a range of brine feed 

concentrations.  For a feed of 100-140 g/L sodium chloride, we estimate that the OARO process 

is capable of a 35-50% water recovery with an energy consumption of 6-19 kWh per m3 of 

product water.  The results suggest that an OARO dewatering process improves upon the 

recovery of reverse osmosis for high salinity brines and has a comparable or lower energy 

consumption than mechanical vapor recompression.  

3.2 Introduction 

There is growing demand from the oil and gas, electric power, and industrial sectors for 

processes to desalinate high salinity brines with 50-350 g/L of total dissolved solids (TDS).1-3 

Current brine dewatering techniques are expensive, energy intensive, or limited to low water 

recovery.  There is an urgent need for new, scalable methods for concentrating brine prior to 

crystallization or disposal.  
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Current technologies for brine dewatering include both evaporative and non-evaporative 

approaches.  The most common evaporative technologies include multi-stage flash distillation 

(MSF), multi-effect distillation (MED), membrane distillation (MD), and mechanical vapor 

compression (MVC).4,5 MSF, MED, and MD processes use thermal energy, commonly steam, 

which limits the practicality of these processes on field-deployable skids.1,4  In contrast, the 

MVC process uses only electricity and is now widely adopted for dewatering high salinity brines 

in the oil and gas industry.1 As an evaporative process, the energy consumption of MVC ranges 

from 11-25 kWh per m3 of produced water, which is significantly greater than the theoretical 

minimum work of approximately 1 - 5 kWh per m3 to dewater a brine with TDS of 35 - 150 g/L 

at 50% recovery.6  

By avoiding a phase change, non-evaporative membrane based technologies may reduce the 

energy intensity of desalination and brine dewatering processes.  Reverse osmosis (RO), forward 

osmosis (FO), and pressure assisted forward osmosis (PAFO) offer several pathways for brine 

dewatering across a semi-permeable membrane.7-10 Figure 3.1A presents the set driving and 

retarding forces in membrane-based separation processes where positive water flux is defined as 

flow against the osmotic pressure difference from the feed side (f) to the permeate side (p) of the 

membrane.  A positive hydraulic pressure difference (Pf – Pp, ΔP) drives water transport, while a 

negative ΔP retards water transport.  In contrast, a positive osmotic pressure difference (πf – πp, 

Δπ) retards water transport, while a negative Δπ drives water transport.   

In RO, a positive hydraulic pressure difference (+ΔP) drives water transport against the 

retarding force of a positive osmotic pressure difference (+Δπ).  In FO, there is a negligible 

hydraulic pressure difference (ΔP≈0) and a highly concentrated draw solution establishes a 

negative osmotic pressure difference (–Δπ) to drive water flux from the feed to the draw.  In 



59 

 

PAFO, a positive hydraulic pressure gradient is used to augment the negative osmotic gradient of 

FO (+ΔP, –Δπ).  While not a separation process, pressure retarded osmosis (PRO) processes 

utilize the hydraulic pressure as a retarding force (–ΔP) and the osmotic pressure as the driving 

force (–Δπ).  Of these membrane processes, only RO directly dewaters brines.  FO and PAFO 

require a second process, most commonly a RO or thermal draw solute regeneration step, to 

produce a pure water permeate.  

 

Figure 3.1. A) Driving and retarding forces for reverse osmosis (RO), osmotically assisted 

reverse osmosis (OARO), forward osmosis (FO), pressure assisted forward osmosis (PAFO), 

and pressure retarded osmosis (PRO) membrane processes.  We define the feed side (𝑓) and 

permeate side (𝑝) of the processes by the direction of the water flux (feed to permeate).  

Hydraulic pressure difference (Pf – Pp, ΔP) is a driving force when positive and is a retarding 

force when negative.  Osmotic pressure difference (πf – πp, Δπ) is a retarding force when positive 

and is a driving force when negative.  The white region is where the driving force is smaller than 

the retarding force, thereby changing the direction of water transport and inverting the 

definition of the feed side and permeate side.  B) RO (dark blue line, πp=0) and OARO process 

region (blue) for two potential sweep concentrations (white dotted lines, πp=πs,1, πp=πs,2) at a 
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constant applied hydraulic pressure difference (ΔP).  The net driving force (ΔP – Δπ) of OARO 

is greater than the net driving force of RO with the same πf.  The grey region represents the 

infeasible case of πp being negative.    

 

While non-evaporative membrane-based processes more closely approach the 

thermodynamic minimum of separation for seawater desalination, they are limited in their 

effectiveness for treating high salinity brines.11 RO water recovery is limited for high salinity 

brines (> 50 g/L) because the hydraulic pressure cannot exceed the membrane burst pressure 

(membrane dependent, but typically about 70-80 bar).7 While ongoing research is focused on 

increasing this burst pressure, operating at ultra-high pressures may lead to severe compression 

of the polymer active layer and greater irreversible fouling.  FO processes simply perform a salt 

exchange across a membrane, and thus do not dewater brines in the traditional sense without a 

second membrane, thermal, or solvent induced separations step.   

Osmotically assisted reverse osmosis (OARO) is a non-evaporative, membrane-based 

process for high recovery, energy efficient desalination of high salinity brines.3,12-14  OARO, like 

RO, uses hydraulic pressure to transport water across a semi-permeable membrane against the 

osmotic pressure difference between the feed and permeate (+ΔP, -Δπ).  Unlike RO, where the 

permeate TDS approaches zero, OARO has a permeate-side saline sweep to reduce the osmotic 

pressure difference across the membrane and enable water transport even when the osmotic 

pressure of the feed exceeds the burst pressure of the membrane.  Therefore, OARO expands the 

maximum TDS from which water can be recovered from hydraulic pressure driven membrane 

processes (Figure 3.1B).  When multiple OARO stages are linked in series, this process enables 

the recovery of freshwater from high salinity brines. 
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The present work explores the theoretical limits of OARO processes and quantifies key 

performance metrics.  We develop a discrete model that includes concentration polarization 

effects, and we apply this model to estimate the water recovery and energy consumption of the 

OARO process.  We also explore the decision space of the OARO process by varying inlet feed 

and sweep concentrations, the feed pressure, the number of OARO stages, and the membrane 

area.  Additionally, we compare the performance of OARO to other electricity driven 

desalination technologies, MVC and RO.  Finally, we discuss the limitations of our model and 

identify the critical research steps necessary to fully assess the technical and economic feasibility 

of the OARO process.  

3.3 Multi-staged osmotically assisted reverse osmosis process for water recovery 

OARO is a novel process for realizing moderate water recoveries from high salinity 

brines at ambient temperatures via a membrane-based separation process.  Figure 3.2 presents a 

schematic diagram of the proposed OARO process requiring multiple stages to produce 

desalinated water.  Here, a high salinity feed is fed into an OARO module at a high hydraulic 

pressure.  On the permeate-side of the module, a low-pressure sweep with a lower salinity flows 

counter-current to the feed.  The high-pressure feed and low-pressure sweep establishes a 

hydraulic pressure difference that is greater than the osmotic pressure difference across the 

membrane.  The resulting water flux concentrates the feed and dilutes the sweep.  The 

concentrated feed is the reject from the OARO process and may be crystallized or otherwise 

disposed.   

If the diluted sweep concentration is relatively high and the target recovery is not 

achievable via RO, then the diluted sweep can be pressurized and fed into a second OARO 

module.  Since the diluted sweep has a lower concentration than the original feed, an equivalent 
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permeate volume can be realized with a lower sweep concentration.  This second OARO module 

re-concentrates the diluted first sweep and dilutes the second sweep.  The re-concentrated first 

sweep can be reused as the sweep inlet for the first OARO module and the diluted second sweep 

may require another OARO stage.  The sweep concentrations successively decrease over a series 

of OARO stages until the sweep concentration is sufficiently low for RO.  Ultimately, the OARO 

process will involve a feed inlet, a concentrated waste outlet, closed cycles of saline sweeps, and 

a product water outlet.  

 

Figure 3.2. Process diagram of the OARO process. The first two stages are OARO, while the 

final stage is RO.   

 

Energy consumption of the OARO process 

The primary energy demand of the OARO process is the electricity required to power the 

pumps to pressurize the feed.  A pressure exchanger, represented as a box linking the feed and 

the permeate streams in Figure 3.2, lowers the energy demand by transferring energy from the 

high pressure waste stream to the low pressure feed before the feed is pumped to the designed 

pressure.7 In OARO, not only can the pressure exchanger be used for the feed, it can also be used 
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for each sweep cycle, as shown in Figure 3.2.  An effective use of multiple pressure exchangers 

will lower the energy consumption of the OARO process.   

OARO water flux and concentration polarization 

Water flux in OARO processes depends upon the hydraulic and osmotic pressure 

difference across the membrane (Equation 3.1).   

𝐽𝑤 = 𝐴[(𝑃𝑓 − 𝑃𝑠) − (𝜋𝑓,𝑚 − 𝜋𝑠,𝑚)]                  (3.1) 

Here, 𝐽𝑤 is the water flux from the feed to the sweep, 𝐴 is the pure water permeability 

coefficient, 𝑃𝑓 and 𝑃𝑠 are the hydraulic pressures for the feed and sweep, and 𝜋𝑓,𝑚 and 𝜋𝑠,𝑚 are 

the osmotic pressure at the membrane surface for the feed and sweep. The osmotic pressure of a 

solution can be estimated as a function of solute concentration (Equation 3.2). 

𝜋(𝐶) = 𝑖𝜙𝐶𝑅𝑇           (3.2) 

Here, 𝑖 is the number of dissociating ions, 𝜙 is the osmotic coefficient, C is the solute 

concentration, 𝑅 is the gas constant, and 𝑇 is the temperature.  Oftentimes, the solution is 

assumed to be ideal, 𝜙 = 1.  However, solutions with high solute concentrations significantly 

deviate from ideal behavior.  To account for non-ideal behavior, we model the osmotic 

coefficient as a function of solute concentration based on experimental results.   

 The osmotic pressure at the membrane surface is determined by adjusting the bulk solute 

concentration for concentration polarization effects.15  In concentration polarization, water flux 

increases solute concentration at the membrane on the feed side and decreases solute 

concentration at the membrane on the sweep side relative to the bulk concentration, as shown in 

Figure 3.3.  The solute concentration at the membrane surface for the feed and sweep can be 

calculated from equations 3.3 and 3.4.16   

𝐶𝑓,𝑚 = 𝐶𝑓,𝑏 exp (
𝐽𝑤

𝑘
)          (3.3) 
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𝐶𝑠,𝑚 = 𝐶𝑠,𝑏 exp(−𝐽𝑤𝐾)                  (3.4) 

Where, 𝐶𝑓,𝑚 and 𝐶𝑠,𝑚 are the solute concentrations at the membrane surface for the feed and 

sweep, 𝐶𝑓,𝑏 and 𝐶𝑠,𝑏 are the respective bulk solute concentrations of the feed and sweep, 𝑘 is the 

feed mass transfer coefficient, and 𝐾 is the solute resistivity for diffusion in the sweep side 

porous support; refer to McCutcheon and Elimelech for further direction in determining these 

parameters.16 

 

Figure 3.3. Schematic diagram of an OARO module and the effects of concentration polarization 

on the solute concentration at the membrane surface (𝐶∗,𝑚) relative to the bulk concentration 

(𝐶∗,𝑚) of the feed (𝑓) and sweep (𝑠).  
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We model the OARO module as a flat plate with counter-current flow.  The model uses a 

discrete element approach and an iterative method to solve the implicit flux and counter-current 

operation.  Additional details on the mass balance equations and solution methods are provided 

in SI Section 2.  The model input variables include: the module dimensions, and inlet flow rates, 

concentrations, and hydraulic pressures for the feed and sweep.  The model output variables 

include: water recovery, and outlet flow rates, concentrations, and hydraulic pressures of the feed 

and sweep.  For simplicity, we assume that the solute for the feed and sweep is sodium chloride, 

though any solute with low reverse flux, high osmotic pressure, and high diffusivity could be 

used in principle.17 We source membrane specific parameters from the literature and use 

regressions of literature sources and databases to determine the concentration dependent solution 

properties: osmotic coefficient, diffusivity, and density.18-20 

Salt rejection 

The amount of salt flux will vary for each OARO module and will lead to salt 

accumulation or depletion within the sweep cycles.  We assume there is no salt flux (100% salt 

rejection) to simplify the model and assess steady state operation.  We consider salt flux and 

assess the expected salt rejection in SI Section 5.  

Transitional flow regime 

We assume a Reynolds number of 1000 for the feed and sweep flow. This transitional 

flow regime is typical of RO and FO processes in which spacers are utilized to promote 

mixing.21-24 The effect of different spacer shapes is outside the scope of this work.  

Pressure drop  

Pressure drop is dependent on a multitude of factors: module design, spacers, flow 

regime, and membrane roughness. We assume a 5 kPa pressure drop per meter of membrane 
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length, which aligns with a combination of previous modeling and experimental work, as well as 

a friction based analytical calculation.25,26 The sensitivity of the pressure drop on the 

performance of the OARO process is presented in SI Section 6.  

Determining the number of modules and estimating the energy consumption 

The OARO process is a system of modules that successively decreases the sweep 

concentration until a RO unit can be used to dewater a brine without exceeding the burst pressure 

of the membrane.  To model this process, we require the OARO process to operate at steady state 

such that the permeate volume is equivalent across the multiple modules.  Therefore, after the 

first OARO module is specified, successive OARO module design is deterministic.   

We determine the operating parameters for successive modules by fixing design variables 

and adjusting the sweep concentration.  We hold the module dimensions, inlet pressure, and 

sweep flow constant across all stages.  We then adjust the sweep concentration for each OARO 

module to obtain the same permeate volume as the first module.  Eventually, the last module will 

require a sweep TDS of zero; therefore, a RO module is used instead.  Since there is no sweep 

for the RO module, we adjust the feed pressure to obtain the same permeate volume as the first 

module.  Once the entire OARO process is specified, we can determine the total number of 

modules and estimate the energy consumption of the high-pressure pumps.  In calculating the 

energy consumption, we assume the pumps have an 80% isentropic efficiency and the pressure 

exchangers are 96% efficient.7  

 

Base case  

 We define a base-case scenario to provide a thorough example of the OARO process and 

establish a basis from which to compare other operating conditions.  Our base case achieves the 
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goal of greater than 30% freshwater recovery for a 125 g/L sodium chloride brine.  Table 3.1 

provides the user specified variables of the base-case scenario.  We use a common RO operating 

pressure of 65 bar, which is below the assumed membrane burst pressure of 70 bar.  The module 

dimensions are arbitrary and are proportionally related to the feed flow rate.  We assume the 

sweep inlet flowrate is half of the feed inlet flowrate, so that the diluted sweep outlet would have 

a similar flowrate and fluid flow regime as the feed inlet.  We assume the membrane specific 

parameters are 1.0x10-12 m/(s-Pa) for the water permeability coefficient and 1000 µm for the 

structural parameter, which is representative of a commercial, asymmetric, cellulose triacetate 

membrane.19 We assume a temperature of 298 K for both the feed and sweep solutions. 

Table 3.1. User specified variables for the OARO base-case scenario. 

Parameter Symbol Value Units 

Module length L 10 m 

Module width W 1 m 

Module height H 1 mm 

Feed inlet flowrate Qf 1.0E-05 m3/s 

Sweep inlet flowrate Qs 5.0E-06 m3/s 

Feed inlet pressure Pf 65 bar 

Feed TDS 𝐶𝑓 125 g/L 

Sweep inlet pressure Ps 2 bar 

First sweep TDS 𝐶𝑠 175 g/L 

 

3.5 Results and Discussion 

 The OARO process expands the use of membrane-based separation processes for high 

salinity brine dewatering.  OARO can increase water recovery at hydraulic pressures below the 

membrane burst pressure by utilizing a saline sweep to reduce the osmotic pressure difference 

across the membrane.  The sweep concentration is reduced in successive stages until the diluted 

sweep can be effectively treated using a traditional RO process.  The OARO process has several 

key design considerations, such as: freshwater recovery, inlet feed and sweep concentration, 
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hydraulic pressure of the feed, number of stages, and membrane area.  We assess these design 

variables by systematically varying the parameters around the base-case scenario established in 

Table 3.1.  

Systematic analysis of OARO performance as a function of key design parameters 

The purpose of the OARO process is to obtain higher water recoveries than RO by 

utilizing saline sweeps to reduce the osmotic pressure difference across the membrane.  Figure 

3.4A provides the simulated recovery for an OARO module with the base case module 

dimensions and a feed pressure of 65 bar across a range of inlet feed and sweep concentrations. 

The sweep with zero TDS has a recovery of 54% for a feed TDS of 35 g/L, which matches the 

expected performance of RO processes.  As the feed concentration increases, the recovery rate 

from the RO process drops sharply to only 4% for a feed TDS of 75 g/L.  This sharp decrease in 

recovery at higher feed concentrations demonstrates the value of the OARO process for 

enhancing recovery of high salinity brines.  Using saline sweeps increases the recovery for a 

given feed concentration, and recoveries greater than 30% are obtained for feed TDS up to 145 

g/L with sweep TDS up to 200 g/L.  

 

A B
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Figure 3.4. OARO module recovery with base case module dimensions. A) OARO module 

recovery for a constant feed pressure of 65 bar and variable feed and sweep concentration.  

Cases with high sweep concentration and low feed concentrations operate as PAFO and are 

omitted from this graph.  B) OARO module recovery for a feed with a TDS of 125 g/L sodium 

chloride and variable feed pressure and sweep concentration.  The shaded region represents 

infeasible operating pressures based on the assumed membrane burst pressure of 70 bar (dotted 

line).  Cases with high sweep concentrations and low feed pressure operate as PAFO and are 

omitted from this graph.   

 

Figure 3.4B provides the simulated recovery for an OARO module with an inlet feed 

TDS of 125 g/L across a range of feed pressures and sweep inlet concentrations.  For this high 

salinity feed, RO processes (sweep TDS of 0 g/L) are not capable of recovering any freshwater 

using membranes with a burst pressure of 70 bar.  Therefore, it is necessary to use a saline sweep 

to obtain operating conditions with higher recoveries and feasible operating pressures.  

Recoveries above 30% at feasible operating pressures occur only for sweep TDS above 150 g/L. 

In these instances, the inlet sweep TDS is greater than the inlet feed TDS of 125 g/L. However, 

the feed concentration is greater than the sweep concentration along the membrane because the 

module operates in counter-current flow.  SI Section 4 provides a detailed description of the 

modeled concentration profile along the OARO module for the base-case scenario.  

The OARO process has a set of physical, process, and operator imposed constraints that 

define a window of feasible OARO operating conditions.  As discussed above, the feed pressure 

must be below the membrane burst pressure and the concentration of the sweep outlet must be 

less than that of the feed inlet to realize a series of successively decreasing sweep concentrations.  
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This second constraint is violated at low feed concentrations and high sweep concentrations for 

some set of feed pressures (Figure 3.4A).  It is also violated at low feed pressures and high sweep 

concentrations for some set of feed concentrations (Figure 3.4B).  In both cases, the water 

permeate volume is not sufficient to dilute the sweep below the feed inlet concentration, causing 

the module to operate in a PAFO regime (Figure 3.1).  Figure 3.4 plots only OARO processes, 

and excludes the PAFO conditions.   

In addition to the above physical and process constraints, a minimum target recovery is 

typically set to achieve water treatment goals.  With these three constraints, a defined range for 

feasible OARO operation can be determined.  Given a feed TDS of 125 g/L sodium chloride, 

minimum recovery of 30%, base-case module dimensions, and membrane burst pressure of 70 

bar, the range of feasible inlet sweep TDS is 150 - 250 g/L and the maximum recovery is ~47%.  

For much higher feed TDS, the solubility of the solute may be an upper limit of sweep TDS, 

which for sodium chloride is 357 g/L at ambient tempeartures.27   

 While a high sweep concentration in the first module enhances water recovery, it also has 

a profound effect on the multi-module configuration and energy consumption of the process.  

Here, the multi-module configuration is determined from the first OARO module by requiring 

successive modules to operate at steady state and assuming all module and operating variables 

are constant, except for the sweep concentration, as described in Section 3.4.  Once the entire 

OARO process is specified, we estimate the energy consumption of the high-pressure pumps.  

Figure 3.5 provides the freshwater recovery, number of modules, and energy consumption of the 

OARO process with the base case module dimensions, feed inlet pressure of 65 bar, and a feed 

TDS of 125 g/L sodium chloride.   
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As the first sweep TDS ranges from 100 to 225 g/L, the recovery, the number of 

modules, and the energy consumption increase from 17 to 42%, 3 to 7 modules, and 5.7 to 14 

kWh per m3 of produced water, respectively (Figure 3.5).  Freshwater recovery increases because 

a higher sweep concentration decreases the osmotic pressure difference across the membrane and 

increases water flux.  The number of modules increases because a higher first sweep 

concentration directly increases the concentration of the first diluted sweep and requires 

additional stages to lower the concentration to the point at which an RO module can be used.  

The energy consumption increases with a higher first sweep concentration for two reasons.  First, 

an increase in the number of modules increases the mechanical energy loss for the system from 

the pressure drop along the additional modules and inefficiencies of the additional high pressure 

pumps and pressure exchangers.  Second, in instances where the number of modules stays 

constant, a higher first sweep concentration will result in a higher diluted sweep concentration 

into the RO module.  Recovering freshwater will thus require higher RO operating pressures and 

increased energy consumption.  The trade-offs associated with the first sweep concentration on 

recovery, number of modules, and energy consumption will be key design considerations.  While 

higher freshwater recovery will be beneficial, increasing the number of modules and energy 

consumption will also increase the capital and operating costs of the OARO system. 
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Figure 3.5. Recovery (A), number of modules (B), and energy consumption (C) as a function of 

first inlet sweep concentration for the base-case module dimensions, feed pressure of 65 bar, and 

inlet feed TDS of 125 g/L sodium chloride. 

 

 In addition to the process configurations, the type and dimensions of the module will 

influence the OARO process.  In principle, the OARO module could adopt any configuration 

with a permeate side sweep.  An ideal OARO module configuration will have counter-current 

feed and sweep flow, relatively high turbulence, and relatively low pressure drop.  Counter-

current feed and sweep flow minimizes the osmotic pressure difference across the membrane.  

As in RO, a relatively high turbulence is preferred to reduce concentration polarization effects 

and a relatively low hydraulic pressure drop across the module will increase water flux and 

pressure recovery.  However, turbulence and pressure drop increase together, so the trade-off 

between increasing the turbulence and lowering the pressure drop will be a key design 

consideration.  Another design consideration is the membrane area for each module.  While 

increasing membrane area will increase the freshwater recovery, it also increases the pressure 

drop, salt permeate, and capital and operating costs of the OARO module.  Varying the 
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membrane area adds another dimension to the OARO operating decision space, and this 

dimension is investigated further in SI Section 6.3 when the recovery of the process is set. 

In addition to the design considerations already noted, the OARO process is also 

dependent upon membrane properties.  An ideal OARO membrane would have high water 

permeability, high water selectivity, high membrane burst pressure, and a low structural 

parameter.  Meanwhile, RO membranes are designed for only three of the four ideal properties: 

high water permeability, high water selectivity, and high membrane burst pressure.28 RO 

membrane design has not prioritized reducing the structural parameter of the membrane support 

layer because RO does not experience permeate-side concentration polarization.  In contrast, FO 

membranes are designed with low structural parameters, but they are not typically designed for 

high membrane burst pressures.28 Ultimately, ideal OARO membranes most closely resemble 

ideal PRO and PAFO membranes, with high membrane burst pressures and low structural 

parameters.29,30 Thus, we base the membrane properties on a commercially available cellulose 

triacetate asymmetric membrane commonly used in FO, PRO, and PAFO experiments.19 

This section has detailed the general operating conditions for OARO processes over the 

range of feedwater salinities and recovery rates attractive for brine treatment associated with 

common industrial processes.  In the subsequent sections, we detail the process variables and 

separation performance for the base case established in Table 3.1, providing detailed information 

about the process configuration, the concentration of each sweep, and the process performance as 

a function of membrane area and feed pressure.  

 

Detailed process conditions in base case 
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The base case requires four modules, as shown in Figure 3.6, and has an average water 

flux of 1.3 L/(m2 h), a recovery of 34%, and energy consumption of 8.6 kWh per m3 of produced 

water.  Figure 3.7 provides the corresponding concentration profiles of the feed and sweep 

cycles.  The three OARO modules decrease the sweep TDS to 37 g/L (stream 8 in Figure 3.6), 

which is sufficiently low for the final RO module to achieve the same permeate volume as the 

upstream OARO modules.  The detailed process configuration and variables of the base case 

demonstrates that the OARO treatment process can treat a high salinity feed (125 g/L TDS) 

through successively decreasing the concentration of the sweeps, but that the flux for this OARO 

example lies significantly below that which is typical for RO.  

 

 

Figure 3.6. The multi-module OARO process for the base-case scenario. The first three modules 

are OARO and the last module is RO.  The streams are numbered (1)-(9). There are four pumps 

(P1-P4) and four pressure exchangers for the feed and sweep cycles (not shown).  
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Figure 3.7. Concentration profile of the feed and sweep cycles for the base case. The streams 

(1)-(9) are labeled in Figure 3.6. The dotted line represents the typical TDS upper limit (40 g/L) 

of economically viable reverse osmosis. 

 

Effect of membrane area on energy consumption for a set recovery 

 To evaluate the effect of membrane area on OARO process performance, we set the 

freshwater recovery at 35 and 40% and assess how increasing the module membrane area (10 m2 

in the base-case scenario) influences the energy consumption of the OARO process.  We adjust 

the first sweep inlet concentration to maintain a constant recovery for the variable membrane 

area per module.  Increasing the membrane area per module from 9 to 13 m2 decreases the first 

stage sweep TDS from 185 to 165 g/L and 215 to 190 g/L, the number of modules from 5 to 4 

and 7 to 5, and energy consumption from 9.7 to 7.8 and 14.4 to 9.3 kWh per m3 of produced 

water for a recovery of 35 and 40%, respectively (Figure 3.8).  As membrane area increases, the 
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water flux can be lower to obtain the same desired recovery, thereby allowing a lower first sweep 

concentration.  As discussed previously, a lower first sweep concentration results in either fewer 

modules or a lower concentration of the diluted sweep into the final RO module.  Ultimately, 

fewer modules or a lower operating pressure requirement on the RO unit decreases energy 

consumption. 

Although larger membrane area per module decreases energy consumption, continued 

increases in membrane area are limited economically.  Larger membrane areas will have greater 

capital and operating costs so the trade-off between the marginal performance improvement with 

increased cost will be a critical design consideration.  In instances where a small increase in 

membrane area per module decreases the number of modules, the total membrane area of the 

OARO process decreased.  For example, when the area per module increased from 9 to 10 m2 for 

a 35% recovery, the total membrane area decreased from 45 m2 (5 modules at 9 m2 each) to 40 

m2 (4 modules at 10 m2 each).  In these cases, not only did increasing the membrane area per 

module decrease the energy consumption but it also decreased the total amount of membrane 

area and likely the associated membrane costs.  This finding suggests that for a given recovery it 

is better to have fewer large OARO modules rather than more numerous small modules to 

decrease energy consumption and membrane costs. 

 



77 

 

 

Figure 3.8. First sweep concentration (A), number of modules (B), and energy consumption (C) 

versus membrane area for set recoveries of 35% and 40% (circle and asterisk, respectively). The 

inlet feed TDS is 125 g/L and feed pressure is 65 bar.   

 

Effect of hydraulic pressure on energy consumption for a set recovery 

We assess the effect of feed pressure on OARO energy consumption, for a set freshwater 

recovery at 35 and 40%.  We maintain a constant recovery for the variable feed pressure by 

adjusting the first sweep concentration.  Increasing the feed pressure from 55 to 75 bar decreases 

the first sweep TDS from 195 to 160 g/L and 220 to 190 g/L, the number of modules from 6 to 3 

and 8 to 4, and energy consumption from 11.1 to 7.8 and 14.7 to 9.6 kWh per m3 of produced 

water for a recovery of 35 and 40%, respectively (Figure 3.9).  The feed pressure relationship to 

the first sweep concentration, number of modules, and energy consumption is similar to the 

membrane area per module for the same reasons.  Feed pressure increases the driving force for 

water flux, thereby allowing a lower first sweep concentration to obtain the target recovery.  The 

lower first sweep concentration results in lower energy consumption through either fewer 

modules or a lower pressure demand in the final RO module.  While higher feed pressures 

A B C



78 

 

decrease the number of modules and energy consumption, further increases in feed pressure are 

physically limited by the membrane burst pressure.   

 

Figure 3.9. First sweep concentration (A), number of modules (B), and energy consumption (C) 

versus feed pressure for set recoveries of 35% and 40% (circle and asterisk, respectively). The 

inlet feed TDS is 125 g/L sodium chloride and membrane area per module is 10 m2.  The shaded 

region represents infeasible operating pressures based on our assumed membrane burst 

pressure of 70 bar (dotted line). 

 

Comparison of OARO energy consumption to other brine treatment processes  

The energy consumption is a key metric for assessing the effectiveness and economic 

feasibility of the OARO process relative to state of the art evaporative processes, such as MVC.  

Figure 3.10 provides literature-reported energy consumption values for RO and MVC, as well as 

our OARO simulations at a feed pressure of 65 bar and a membrane area per module of 10 and 

20 m2 for recoveries of 35 and 50%, respectively.  RO energy consumption ranges from 1 to 2 

kWh per m3 of produced water for brackish (~5 g/L TDS) and seawater (35 g/L TDS) at a 50% 

recovery.7  MVC energy consumption ranges from 11 to 25 kWh per m3 of produced water for 

seawater (35 g/L TDS) to high salinity brines (150 g/L TDS) at recoveries of 35 to 50%.1,6,31 The 
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OARO energy consumption is estimated as 2.9 to 3.7 kWh per m3 of produced water for feed 

TDS of 60 g/L at 35 and 50% recovery, respectively.  At a higher feed TDS of 140 g/L, these 

values increase to 12.4 and 19.3 kWh per m3 of produced water for recoveries of 35 and 50%, 

respectively.  These estimates of OARO energy consumption account for losses associated with 

pressure drop across the module, losses in the pressure exchangers, and the isentropic efficiency 

of the high pressure pump.  Figure 3.10 also presents the theoretical minimum work to dewater 

the brines, which was calculated as the difference between Gibbs free energy of the inlet feed 

and the two products (freshwater and concentrated brine).3 The Electrolyte NRTL method in 

AspenPlus is used to determine the Gibbs free energy of the solutions.  The dewatering 

efficiency, defined as the ratio of the minimum theoretical work to the energy consumption, 

ranges from 30-55% for the membrane processes (RO and OARO) and 10-20% for MVC. 

As anticipated, the energy consumption of treatment processes increases significantly 

with increasing feed concentration and freshwater recovery.  For all investigated salinities, the 

membrane-based processes (RO and OARO) have lower energy consumption than MVC.  The 

membrane-based process becomes less efficient at increasing salinities, while MVC has the 

opposite relationship and becomes more efficient.  MVC can obtain recoveries as high as 90% 

for brines, which is well above the OARO recoveries from the base case examined in this 

study.32 However, in instances where a recovery of 30-50% is desirable, such as volume 

reduction of wastewater before transport to disposal or further treatment, the OARO process may 

provide a lower energy consumption alternative to MVC.  Additionally, it is possible to increase 

the recovery of the OARO process by increasing the total membrane area, the sweep 

concentrations, and number of modules.  These changes to increase recovery would increase the 

energy consumption and the costs of the OARO process.   
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Figure 3.10. Energy consumption of RO, MVC, OARO processes and theoretical minimum work 

with respect to feed concentration and recovery (35% dark blue, 50% light blue). The RO energy 

consumption is for the desalination of brackish and seawater at a recovery of 50%.7 The MVC 

energy consumption spans seawater and higher salinity brines from the oil and gas industry at 

recoveries of 35-50%.1,6,31 The OARO simulation uses a feed pressure of 65 bar and a membrane 

area per module of 10 and 20 m2 for a recovery of 35 and 50%, respectively. The theoretical 

minimum work is based on the difference in Gibbs free energy from the inlet feed and outlet 

products.3 

 

OARO model limitations 

This work presents a first order model to estimate key performance metrics of the OARO 

process.  Though the model estimates reasonable recovery rates and energy consumption, there 

35% Recovery

50% Recovery
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are several other factors including capital costs and pretreatment requirements that will 

contribute to determining the technical and economic viability of OARO process.  

This work does not assess the economics of the OARO process.  Without an economic 

analysis, we cannot determine whether our base case module assumptions and results are 

feasible.  We recognize that many of the critical design variables, such as the membrane area and 

the number of modules, are solely constrained by costs.  In general, the OARO process is 

expected to have high capital costs due to using multiple membrane modules, high pressure 

pumps, and pressure exchangers.  While multiple modules suggest a high total membrane area, it 

is expected that the bulk of the capital costs will stem from the physical modules, pumps, and 

pressure exchangers.  This realization suggests that a cost optimal OARO process will likely 

have a small number of stages, e.g. 2 to 3 large modules.  While the maintenance of the 

membrane and equipment contributes to the operating costs, it is expected that energy 

consumption will dominate.  

In addition, this work does not address pretreatment processes that are essential for 

reducing membrane fouling.  Pretreatment is especially pertinent for high salinity brines sourced 

from the oil and gas industry that include many contaminants.1 Further work to provide cost 

estimates and energy consumption of pretreatment will be critical to fully assess the feasibility of 

the OARO process. 

 Finally, we make several simplifying assumptions in our analysis that require further 

investigation.  First, we simplify the OARO model by assuming 100% salt rejection.  In reality, 

salt will diffuse across the membrane and the salt flux will vary for each module in the OARO 

process .  The resulting non-steady state conditions will lead to salt accumulation or depletion 

within the sweep cycles and will require the addition of a purge stream and/or input of a saline 
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solution for sweep TDS and volume adjustment.  Other non-steady state processes, e.g. variable 

feed quality and membrane scaling and fouling, were also not assessed.  Finally, we assume that 

the membrane properties from experiments with relatively low concentrations and applied 

hydraulic pressure are applicable for the OARO process.19 There is significant need for 

experimental work on the performance of membranes in the high salinity and high pressure 

operating conditions associated with the OARO process to complement the modeling work 

performed in this study.  Preliminary experimental work for OARO conditions has recently been 

reported by Arena et. al.33   

3.6 Conclusions 

The dewatering of high salinity brines is costly due to the high energy demand or low 

recovery of existing treatment technologies.  In this work, we introduce the OARO process and 

provide first order estimates of physically feasible operating conditions and performance metrics, 

such as recovery and energy consumption.  We observe that the OARO process can obtain 

reasonable recoveries for reduced or comparable energy consumption as the MVC process, the 

dominant high salinity brine treatment technology.  Future work to determine the feasibility of 

the OARO process will need to address the implications of our simplifying assumptions, 

consider the pretreatment requirements for long-term operation, and estimate the cost-

competitiveness of this technology.  

Supporting Information 

The additional supporting information for this chapter is included in Appendix B. The 

supporting information includes further elaboration on: 1) osmotic pressure calculation, 2) 

discrete element model for a single OARO module, 3) multi-module model for the OARO 

process, 4) base case concentration profile, 5) salt rejection, 6) pressure drop. 
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3.8 Nomenclature 

Treatment technology  

 

RO - Reverse osmosis 

 

MD - Membrane distillation 

MED - Multi-effect distillation 

 

MSF - Multi-stage flash distillation 

MVC - Mechanical vapor compression 

 

FO - Forward osmosis 

 

PAFO - Pressure assisted forward osmosis 

 

PRO - Pressure retarded osmosis 

TDS - Total dissolved solids 

 

Variables 

𝑃 – Hydraulic pressure  

ΔP - Hydraulic pressure difference across the membrane  

π – Osmotic pressure 
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∆π – Osmotic pressure difference across the membrane 

𝐴 – Water permeability coefficient 

𝐽𝑤 – Water flux  

𝑖 – Number of dissociating ions  

𝜙 – Osmotic coefficient  

𝐶 – Solute concentration  

𝑅 – Gas constant  

𝑇 – Temperature  

𝑘 – Mass transfer coefficient 

𝐾 – Solute resistivity for diffusion in the porous support  

 

Subscripts 

 

𝑓 – Feed side 

𝑝 – Permeate side 

𝑠 – Sweep side 

𝑏 – bulk  

𝑚 – Membrane surface 
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4.0 COST OPTIMIZATION OF OSMOTICALLY ASSISTED REVERSE 

OSMOSIS 

 
4.1 Abstract 

We develop a nonlinear optimization model to identify minimum cost designs for 

osmotically assisted reverse osmosis (OARO), a multi-staged membrane-based process for 

desalinating high salinity brines.  The optimization model enables comprehensive evaluation of a 

complex process configuration and operational decision space that includes nonlinear process 

performance and implicit relationships between membrane stages, saline sweep cycles, and 

make-up, purge, and recycle streams.  The objective function minimizes cost, rather than energy 

or capital expenditures, to accurately account for the tradeoffs in capital and operational 

expenses inherent in multi-staged membrane processes.  Generally, we find that cost-optimal 

OARO processes minimize the number of stages, eliminate the use of saline make-up streams, 

purge from the first sweep cycle, and successively decrease stage membrane area and sweep 

flowrates.  The optimal OARO configuration for treating feed salinities of 50-125 g/L total 

dissolved solids with water recoveries between 30-70% results in process costs less than or equal 

to $6 per m3 of product water.  Sensitivity analysis suggests that future research to minimize 

OARO costs should focus on minimizing the membrane structural parameter while maximizing 

the membrane burst pressure and reducing the membrane unit cost. 

4.2 Introduction 

Safe and cost effective management of saline brines is a critical enabler of inland 

brackish water desalination,1 produced water treatment,2 geothermal energy production,3 and 

CO2 sequestration.4-5 Current best practices for managing the vast majority of these brines is 

direct disposal via deep well injection or minimal treatment followed by discharge to the 
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environment.6-7 The financial and environmental consequences of this disposal-centric 

management strategy are significant, including high capital and operational costs of transporting 

water,8 environmental costs associated with brine transport and discharge,9 and increased seismic 

risks associated with high volume brine injection.10 These risks are driving the design of brine 

management networks that couple increased direct water reuse with desalination technologies 

that reduce brine disposal volume and produce high quality water for beneficial secondary 

applications.11-15   

Unfortunately, there are few cost-effective technologies for managing high salinity 

brines.  Membrane-based desalination technologies, such as reverse osmosis (RO), are designed 

to concentrate brines to approximately 75 g/L.  Evaporative desalination technologies, such as 

mechanical vapor compression, can concentrate brines to near saturation (310 g/L TDS for pure 

NaCl solutions), but they are energy intensive2, 16 and expensive (Figure 4.1).   

 

 

Figure 4.1. Unit water costs for reverse osmosis (RO), osmotically assisted reverse osmosis 

(OARO), and mechanical vapor compression (MVC).  Each arrow represents one case study for 
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concentrating an inlet feed from an initial (circle) to final (arrow head) salinity.  Life-cycle RO 

and MVC costs were obtained from literature,7,17-21 while life-cycle OARO costs were estimated 

in this work.  All cost estimates exclude pretreatment and post-treatment. 

 

In our previous work,22 we introduced osmotically assisted reverse osmosis (OARO), a non-

evaporative membrane-based desalination process capable of concentrating high salinity brines. 

OARO modifies RO by adding a saline sweep to decrease the osmotic pressure difference across 

the membrane and increase water flux; further details on the OARO process are provided 

elsewhere.22-25 We used a numeric modeling approach to demonstrate the feasibility of 

combining multiple OARO stages with a single RO stage to form an OARO brine concentration 

system (Figure 4.2).  We estimated that an OARO process could produce a desalinated outlet 

stream from 50-140 g/L TDS brines with a water recovery of 35-50% and an energy 

consumption of 3-16 kWh/m3 of product water.22 This energy consumption of the OARO process 

is 30-60% lower than the state-of-the-art evaporative MVC process.16 However, these energy 

benefits are greatest when the number of OARO stages are infinite and each stage has low water 

and high membrane areas.  Given the high capital costs of OARO components, energy optimal 

configurations are not economically optimal.  Evaluating the window of economic viability for 

OARO processes requires a full life-cycle cost estimate that captures the unique complexities of 

OARO performance.   

Designing a cost-optimal OARO system is challenging due to the large and complex decision 

space for both process design and operation.  The design space includes: water recovery; the 

number of stages; the use and flowrates of make-up, purge, and recycle streams; and the 

operating pressure, membrane area, sweep concentration, and sweep flowrate for each stage.  
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These numerous variables affect the OARO process performance and cost and interact in 

competing ways, thereby increasing the complexity of determining optimal system designs. 

While past work has evaluated the costs and energy intensity of specified OARO process 

configurations, the present work makes significant advances by evaluating the full process 

design and operational decision space.22, 24, 26-27  

We address this large decision space by developing a cost optimization model for OARO 

processes that synthesizes the complex relationships between variables and identifies cost-

optimal process design and operation.  Cost-based process optimization has been used to assess 

the design of several desalination technologies including: RO,28-30 MVC,13 and multi-effect 

distillation.17 The optimization model for an OARO process is inherently more complex than a 

RO process due to the presence of counter-current sweeps, multiple stages, and make-up, 

recycle, and purge streams.  Additionally, the simplifying assumptions commonly used in RO 

modeling, including ideal solution, no salt flux across the membrane, no pressure drop across the 

module, and constant solution density, can introduce substantial errors in OARO processes.31 

Finally, the OARO process is more significantly affected by external and internal concentration 

polarization than RO, leading to a decrease in the effective driving force that must be accounted 

for in the optimization model.  

This work presents the first comprehensive assessment of the optimal process configurations 

of the OARO process, the economic feasibility of the OARO process, and the value of improved 

membrane and process operating parameters in reducing OARO process costs.  We use a 

nonlinear optimization model to identify cost-optimal OARO process designs and operating 

parameters.  Cost optimality is a more relevant metric than energy optimality for processes with 

high capital costs.  We apply this model to explore the performance and economic viability of 
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OARO processes over a range of inlet feed salinities and water recoveries, while providing 

additional details for three diverse case studies on environmentally relevant brines.  Finally, we 

leverage the model to extract generalizable guidelines for low cost design and operation of the 

OARO process, assess the sensitivity of cost to key process parameters, and provide direction for 

future research on OARO processes. 

 

 

Figure 4.2. Process diagram of A) a reverse osmosis system and B) an osmotically assisted 

reverse osmosis (OARO) system.  The energy recovery device (ERD) is a pressure exchanger 

that reduces the demand on the high-pressure feed pumps by recovering energy from the 

concentrated feed outlets from each stage.  The make-up, purge, and recycle streams are 

necessary for operating the system at steady state because the rate of salt permeation is not 

equal for each stage.   

4.3 Methods 

Modeling osmotically assisted reverse osmosis 

Conventional models for membrane based processes describe water flux as a function of 

the combined hydraulic and osmotic pressure differences across a semi-permeable membrane 
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(Eq. 4.1), while salt flux is described by the solute concentration difference across the membrane 

(Eq. 4.2). 

𝐽𝑤 = 𝐴 (𝛥𝑃 −  𝛥𝜋)           (4.1) 

𝐽𝑠 = 𝐵 ∆𝐶            (4.2) 

Here, 𝐽𝑤 is the water flux [m3/m2-s], 𝐴 is the water permeability coefficient [m/Pa-s], 𝛥𝑃 = 

(𝑃𝑓 − 𝑃𝑠) is the hydraulic pressure difference [Pa], 𝛥𝜋 = (𝜋𝑓 −  𝜋𝑠) is the osmotic pressure 

difference [Pa], 𝐽𝑠 is the salt flux [kg/m2-s], 𝐵 is the salt permeability coefficient [m/s], and 

𝛥𝐶𝑚 = (𝐶𝑓 − 𝐶𝑠) is the concentration difference across the membrane [g/L].  The osmotic 

pressure is a function of the solute concentration and is detailed in Supplementary Information 

(SI) Section S.1. 

In both Equation 1 and 2, the osmotic pressure and solute concentration differences are 

evaluated at the membrane interface.  The concentration at the membrane interface can be 

approximated by correcting the bulk concentration of the feed or sweep streams to account for 

internal and external concentration polarization (Eq. 4.3 and 4.4).   

𝐶𝑚𝑓 = 𝐶𝑏𝑓 exp (
𝐽𝑤

𝑘𝑓
) −

𝐽𝑠

𝐽𝑤
[exp (

𝐽𝑤

𝑘𝑓
) − 1]        (4.3) 

𝐶𝑚𝑠 = 𝐶𝑏𝑠 exp (−𝐽𝑤 [
𝑆

𝐷
+

1

𝑘𝑠
]) +

𝐽𝑠

𝐽𝑤
[1 − exp (−𝐽𝑤 [

𝑆

𝐷
+

1

𝑘𝑠
])]     (4.4) 

Where 𝐶𝑚𝑓 and 𝐶𝑚𝑠 are the concentrations at the membrane interface [g/L], 𝐶𝑏𝑓 and 𝐶𝑏𝑠 are 

the concentrations in the bulk fluid [g/L], 𝑘𝑓 is the feed-side mass transfer coefficient [m/s], 𝑆 is 

the membrane structural parameter [m], 𝐷 is the solute diffusion coefficient [m/s2], and 𝑘𝑠 is the 

sweep-side mass transfer coefficient [m/s].  The derivations of Equation 3 and 4 are provided in 

Supplementary Information (SI) Section S.2 and are similar to the PRO and FO formulations 

previously described in the literature.31-33 
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OARO cost optimization model 

We develop a non-linear optimization model to minimize the cost of the OARO process. 

This model accounts for all key design and operating variables, including the flowrate of the 

make-up, purge, and recycle streams and the membrane area (including length and width 

dimensions), inlet and outlet hydraulic pressure, and inlet and outlet flowrates and concentrations 

for the feed and sweep of each stage.  These variables are optimized subject to mass balance and 

process performance constraints, which are provided in SI Section S.3.  As in our other work,31 

we model each stage with a finite difference approach in which the state variables (flowrate, 

concentration in the bulk fluid and at the membrane interface, hydraulic pressure, osmotic 

pressure, water flux, and salt flux) are calculated at nodes along the membrane stage (SI Figure 

S3).  

We formulate the optimization model on a mass basis (i.e. mass flowrate and mass 

fraction), rather than a volumetric basis (i.e. volumetric flowrate and concentration), to reduce 

the number of bilinear terms.  For example, the overall mass balance equation at each node is 

linear on a mass basis but would include bilinear terms on a volumetric basis (i.e. volumetric 

flowrate times density).  Further details relating mass fraction, concentration, and fluid properties 

(i.e. density, viscosity, and osmotic pressure) are presented in SI Section S.1.  In addition, our 

optimization model implements the following assumptions to formulate and specify the OARO 

process: 

• The solute is NaCl and the non-ideal solution osmotic pressure matches 

experimental results.34  
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• The OARO membrane is asymmetric with the porous support on the sweep-side. 

• The length and width dimensions for each membrane stage represent the 

configuration of the multiple membrane modules (i.e. number in parallel and 

series) that comprise the stage. 

• The feed and sweep-side friction factor and Sherwood number can be estimated 

from correlations developed from simulated channels with mesh spacers.35 These 

parameters are used to determine the pressure drop across the stage and the mass 

transfer coefficients as shown in SI Section S.3. 

• The properties of the OARO and RO membrane (i.e. A, B, S), membrane module 

(i.e. channel height), fluid (i.e. diffusion coefficient), and equipment performance 

(i.e. pump efficiency and pressure exchanger efficiency) are specified parameters 

and are not dependent on operating conditions such as applied hydraulic pressure, 

salt concentration, and flowrate. 

• The outlet diluted sweep is at atmospheric pressure (1 bar) and the outlet 

reconcentrated sweep is reduced to atmospheric pressure in the pressure 

exchanger.  

• For the RO stage, the permeate side has no pressure drop (constant pressure of 1 

bar along the stage) and negligible concentration polarization.  

• Recycling only occurs from a sweep cycle to the preceding cycle, as shown in 

Figure 4.2B (i.e. a recycle stream occurs from sweep cycle 2 to sweep cycle 1). 

 

Process and financial parameters 
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The process and financial parameters are presented in Table 4.1.  The parameters were 

sourced from the peer-reviewed literature, with the following adaptations: 1) the OARO 

membrane water and salt permeability coefficient are assumed to be similar to those for a CTA 

membrane tested in PRO conditions rather than in RO conditions,36 2) the OARO structural 

parameter is conservatively assumed to be twice the value for the same CTA membrane,36 3) the 

OARO membrane unit cost (including the membrane element and module) is conservatively 

estimated at $50/m2.  We use water and salt permeability coefficients from PRO because the 

process configuration more closely mimics OARO processes.  However, we double the 

membrane structural parameter for OARO membranes because the OARO process operates at a 

higher hydraulic pressure and will thus require additional structural support.  Finally, we assume 

that the OARO membrane module cost is significantly greater than RO because of the 

requirements imposed by counter flow operation.  As a result, we estimate that OARO 

membrane unit costs will be more similar to those for pressure retarded osmosis (PRO) and 

forward osmosis (FO). We present the sensitivity of the OARO process costs to each of these 

parameters in the results section. 

 The OARO process costs are comprised of capital and operating costs.  We determine the 

capital costs of the equipment sized in the optimization model (i.e. membrane units, pumps, and 

pressure exchangers) and we multiply the equipment costs by a practical investment factor of 1.6 

to account for the indirect capital (e.g. piping, tanks, and control systems), siting, and installation 

costs.  We assume the practical investment factor for the OARO process is larger than the 1.4 

value for RO desalination plants because OARO is an emerging technology.37 We also assume 

the capitalization factor is 10% instead of 8% for RO desalination plants because OARO systems 

are likely to be deployed in small scale distributed systems.29, 37 We consider the following 
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operating costs: electricity, saline make-up, membrane replacement, maintenance, labor, and 

chemicals.  The electricity, saline make-up, and membrane replacement costs are based on the 

total energy demand from the pumps, saline make-up demand, and initial membrane area, while 

the maintenance, labor, and chemical costs are estimated with factors based on the initial capital 

investment, as reported in Table 4.1.  We exclude pretreatment costs because the OARO process 

is designed for high salinity brines that span a wide range of pretreatment needs.38 We use the 

annualized capital costs, annual operating costs, and annual water production to estimate the unit 

water costs ($/m3 of product water). 
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Table 4.1. Process and financial parameters for cost optimization model.  aThe structural 

parameter is double the value of the cited literature. bThe pressure exchanger cost is a non-

linear function presented in SI Section S.3.4. cThe practical investment factor is assumed to be 

1.6 rather than 1.4 in the cited literature for RO desalination because OARO is an emerging 

technology. dThe capitalization factor is assumed to be 10% rather than the 8% for RO 

desalination plants because OARO is likely to be deployed on a smaller scale.  These 

conservative assumptions increase the estimated cost of the OARO process. 

Process parameters Value Unit Source 

OARO water permeability 

coefficient 
1.0E-12 m/(Pa-s) [36] 

OARO salt permeability coefficient 8.0E-8 m/s [36] 

OARO maximum feed-side pressure 65 bar [assumed] 

OARO structural parameter 1200a μm [36] 

RO water permeability coefficient 4.2E-12 m/(Pa-s) [29] 

RO salt permeability coefficient 3.5E-8 m/s [29] 

RO maximum feed-side pressure 85 bar [29] 

Pump efficiency 0.75 - [29, 39] 

Pressure exchanger efficiency 0.90 - [29] 

Maximum product water 

concentration 
500 ppm [40] 

Financial parameters Value Unit Source 

OARO membrane unit cost 50 $/m2 [assumed] 

RO membrane unit cost 30 $/m2 [29] 

Pump cost 53 $/(m3bar/h) [37] 

Pressure exchanger cost 
non-linear 

functionb 
$/(m3/h) [29] 

Electricity cost 0.07 $/kWh [average of 29, 37] 

Saturated saline make-up cost 0.025 $/kg [estimated] 

Load factor 90 % [39] 

Practical investment factor 1.6c 
total investment/equipment 

cost 
[37] 

Capitalization factor 10d % of initial investment/year [29, 37] 

Membrane replacement factor 15 
% of initial membrane 

area/year 
[39] 

Maintenance & labor factor 2 % of initial investment/year 
[estimated from 30, 

39] 

Chemical factor 1 % of initial investment/year 
[estimated from 29-

30] 
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Case study specifications 

We perform a detailed analysis of the optimal OARO configurations for three case 

studies representing diverse OARO applications in RO brine concentration and oil and gas 

wastewater management where MVC is currently the state-of-the-art technology: 1) initial feed 

of 75 g/L TDS with 50% water recovery, 2) initial feed of 75 g/L TDS with 70% water recovery, 

and 3) initial feed of 125 g/L TDS with 40% water recovery.  For all three cases, the feed 

flowrate is assumed to be 19.5 m3/h, which is similar to the flowrate of several MVC systems 

deployed for oil and gas wastewater treatment.41 

Solving the optimization model 

We solve the optimization model given process and financial parameters (Table 4.1) and 

a specified initial feed concentration, water recovery, and number of stages.  The optimal number 

of stages for a given initial feed concentration and water recovery is determined by solving the 

model for a varying number of stages (up to 7).  We solve the cost optimization model using 

GAMS 24.5.6/CONOPT3.42 We observe that this local optimization solver sufficiently explores 

the decision space. Specifically, we observe that the solver identifies the same solution for a give 

scenario with multiple initial guesses and the trends in the optimal design and operation are 

smooth across a wide range of salinities and water recoveries. 

4.4 Results and Discussion 

We apply the OARO process optimization model to assess the cost-optimal OARO 

design configurations and operating conditions for three high salinity brine desalination cases 

relevant to environmental process streams.  OARO design configurations include the number of 

stages, the dimensions of each membrane stage, and the selection of make-up, purge, and recycle 

streams, while the OARO operating conditions include the make-up, purge, and recycle 
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flowrates, as well as the inlet and outlet flowrates, concentrations, and hydraulic pressures for the 

feed and sweep in each stage.  The model size varies based on the number of stages, M, but is 

approximately equal to 250xM variables and constraints.  This leads to average solution times of 

one and two seconds for the 3 and 5 stage configurations, respectively, when using an Intel i7 

CPU 2.6 GHz processor with 8 GB of memory.   

Optimal OARO process cost and design for the three case studies 

Figure 4.3A provides the cost estimates for the three high-salinity brine desalination 

cases. The unit water costs were $2.7, 5.7, and 6.6 per m3 of product water for case 1, 2, and 3, 

respectively. Figure 4.3B provides the normalized cost of 4 components: membrane cost (initial 

membrane unit capital cost and membrane replacement cost), other capital costs (pumps, energy 

recovery devices, and indirect capital costs), electricity cost, and other operating costs 

(maintenance, labor, and chemical costs).  

Membrane costs are the largest component of the total costs, accounting for 41-53% of 

total costs, while electricity costs account for 13-23% of the total costs.  The contribution of each 

component to the total cost for the OARO process contrasts with those for a typical RO process 

in which the electricity costs account for 30-40% of total costs and membrane costs account for 

only 15-25%.43 The relative contribution of the membrane costs are larger for the OARO process 

because: 1) there are multiple membrane stages, 2) OARO stages have water fluxes 4-10 times 

lower than typical RO stages (1-5 LMH vs 10-20 LMH), and 3) OARO membrane unit costs are 

expected to be significantly higher than current commercialized spiral wound RO modules.  

Quantifying the relative contributions of capital and operational costs provides insight into high 

impact opportunities for future cost reduction.  
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Figure 4.3. Cost-optimal unit water costs (A) and normalized component costs (B) for the three 

high salinity brine desalination cases: 1) 75 g/L TDS with 50% recovery, 2) 75 g/L TDS with 

70% recovery, and 3) 125 g/L with 40% recovery.  Component costs include: membrane costs 

(membrane capital and replacement costs); other capital expenses (capital costs of pumps, 

pressure exchanger, and indirect capital); electricity costs; and other operating expenses 

(chemicals, maintenance, and labor).  Comparisons to MVC and RO costs are presented in 

Figure 4.1. 

 

Figure 4.4 illustrates the cost-optimal operating conditions for the three OARO cases.  

The optimal number of stages were 3, 5, and 4 for Case 1, 2, and 3, respectively.  Figure 4.4A 

presents the cost-optimal OARO concentration and flowrate profile of the initial feed, 

concentrated waste, sweep cycles, and product water.  While the salinity of successive sweep 

streams in an OARO process will always decrease until RO can deliver the desired water 

recovery, there is a decrease in the difference between the sweep inlet and outlet for successive 

OARO stages.  Similarly, cost-optimal OARO operating conditions decrease the feed and sweep 

flow rates with each successive OARO stage (Figure 4.4B).  A lower inlet sweep flowrate 

A B
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enables a higher inlet sweep concentration, which increases the average net driving force and 

water flux in the stage.  This also has the effect of decreasing total membrane area in the stage, a 

significant driver of OARO system cost.  However, sequentially lowering the sweep flowrate 

between stages requires higher water recovery from the later OARO stages.  Optimal OARO 

operating conditions favor higher sweep flowrates in the initial stages of the OARO process, 

where the membranes are exposed to higher salinities and concentration polarization has a more 

negative effect on water recovery and process performance.   

For all three cases, we observe that the optimal inlet feed pressure for the OARO and RO 

stages is the maximum allowable pressure of 65 and 85 bar, respectively (Figure 4.4C).  We also 

observe that the optimal membrane area decreases by 25-45% for each successive OARO stage 

and that the RO stage has at least 85% less area than the first OARO stage (Figure 4.4D).  The 

membrane area can be reduced in later stages because lower salinities are less impacted by 

concentration polarization and, thus, exhibit higher water flux.  

In SI Section S.4, we present additional details on the case studies, including: the optimal 

make-up, recycle, purge flowrates; average water and salt flux for each stage; membrane stage 

dimensions (i.e. length and width); average feed-side and sweep-side Reynolds numbers and 

pressure drop for each stage.  For all three cases, we observe that cost-optimal operation does not 

use make-up streams and only purges from the first sweep cycle.  We further observe that for 

cost-optimal operation the average recycle rate between sweep cycles ranged from 8-14% of re-

concentrated sweep flowrate and that the overall purge rate ranged from 6-11% of first stage 

permeate flowrate (SI Figure S9).  The average feed-side and sweep-side Reynolds numbers 

ranged from 150-300 in OARO stages and 600-900 for the RO stage, while the feed-side and 

sweep-side pressure drop ranged from 0.5-2.6 bar for each stage (SI Figure S8). 
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Figure 4.4. Cost-optimal (A) concentration profile, (B) flowrate profile, (C) inlet feed pressure, 

and (D) membrane area for the three high-salinity brine desalination cases: 1) 75 g/L TDS with 

50% recovery, 75 g/L TDS with 70% recovery, and 125 g/L with 40% recovery.  The cost-

optimal number of stages are 3, 5, and 4 for the three cases, respectively (noted in C-D).  The 

concentration and flowrate profiles are denoted for the feed (F) and sweep cycles (SX), where X 

denotes the sweep cycle number.  The product water concentration is the final bar for each case. 

The flowrates are normalized by the inlet feed mass flowrate in the first stage (20.5, 20.5, and 
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DC
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21.1 Mg/h for each case, respectively.  These are based on the assumed volumetric flowrate of 

19.5 m3/h and the density of the feed). 

 

Effect of initial feed concentration and water recovery on optimal process design, cost, and 

energy consumption 

Figure 4.5 presents the optimal number of stages, cost, and energy consumption for initial 

feed concentrations ranging from 25 to 150 g/L TDS and water recoveries ranging from 30 to 

75%. At low initial feed concentrations (up to 50 g/L) and water recoveries up to 70%, a single 

RO stage can be used at a cost less than $1/m3.  While a single RO stage can achieve a water 

recovery up to 50% for a 50 g/L feed at a cost of ~$0.6/m3, the resulting product water exceeds 

the 500 ppm specification.  Because the present model formulation does not consider the 

possibility of a 2 RO stages in series, it identifies the cost-optimal configuration to be a single 

OARO stage followed by an RO stage for scenarios with an initial feed concentration of 50 g/L 

and water recoveries between 40-50%.  

As the initial feed concentration and water recovery increase, the number of stages, unit 

water costs, and energy consumption increase.  Generally, we observe that the cost-optimal 

number of OARO stages is the fewest number that can achieve the desired treatment 

specifications (Figure 4.5A). In some cases, the cost-optimal number of stages is the fewest 

number plus one.  In these cases, the additional stage increases the average water flux in the 

OARO stages by decreasing the necessary reduction in successive sweep concentration per stage.  

This higher water flux reduces the total membrane area and costs by enough to overcome the 

additional costs associated with another stage (i.e. additional pump and pressure exchanger and 

increased electricity consumption).  
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Like the number of stages, the cost of the OARO process increases with both the initial 

feed salinity and water recovery (Figure 4.5B).  Over the span of water treatment specifications, 

we observe a wide range of $1.2 to $15 per m3 of desalinated product water for the OARO 

process.  Literature-based cost estimates of the MVC process suggests that OARO will be cost 

competitive at less than $6 per m3 of product water (Figure 4.1). The OARO process meets or 

exceeds this target for initial feed salinities up to 125 g/L TDS and a range of water recoveries. 

OARO process energy consumption is primarily a function of the number of stages 

(Figure 4.5C).  The energy consumption is dependent on the number of stages because more than 

90% of the energy loss in the system is associated with the pressure drop along the membrane 

stage and the water permeate moving from high to low pressure across the membrane stage.  We 

observe that the OARO process energy consumption ranges from 5-20 kWh per m3 of product 

water.  This OARO process energy consumption range can be narrowed to 5-12 kWh per m3 for 

economically viable conditions, which is less than the MVC energy consumption range of 10-30 

kWh per m3 of product water.2, 16  

While the energy consumption of the OARO process could be reduced by decreasing the 

applied hydraulic pressure and the Reynolds number, these changes decrease the water flux and 

increase the unit water cost.  In SI Section S.5, we use a multi-objective optimization technique 

to develop the relationship between optimal cost and energy consumption (SI Figure S10).  We 

find that energy consumption reductions of 10-20% from the cost optimal solution will increase 

the costs by 12-15%.  SI Section S.5 also contains additional discussion on the limitations of an 

energy optimization approach, specifically, that the solutions are trivial because the optimized 

decision variables equal their arbitrarily established bounds. 
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Additional details and trends on optimal design variables (i.e. average membrane area 

decrease between successive stages, average flowrate decrease between successive stages, 

average recycle rate between sweep cycles, and overall purge rate) for all scenarios covering 

feed concentrations from 25 – 150 g/L and water recoveries of 30-75% are provided in SI 

Section S.6. 

 

Figure 4.5. Cost-optimal design configurations and associated performance metrics for 

OARO/RO membrane-based desalination processes: A) number of stages, B) unit water costs, C) 

energy use. The three high-salinity brine desalination cases are denoted with a red box.  

Instances in which there is only a single stage (1) indicate the performance of the RO process 

only.   

 

Cost sensitivity of OARO process designs 

The optimal OARO configurations and product water costs reported in the previous sections 

are dependent on the assumed cost parameters reported in Table 4.1.  The majority of OARO 

process components are identical to RO components (e.g. pumps, pressure exchangers, and 

piping), suggesting lower cost uncertainty and less potential for cost declines.  In contrast, the 

OARO process requires substantially different membrane properties and module geometries than 

A B C
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traditional RO systems.  While we accounted for these differences by using conservative cost 

estimates for membrane components, we did not account for any future cost savings on the 

membrane modules that might result from research and manufacturing experience with OARO.  

We assess the sensitivity of OARO process costs for four key membrane parameters: 

membrane water permeability coefficient, membrane structural parameter, maximum inlet feed 

pressure, and membrane unit price.  The cost sensitivity of OARO to other parameters, including 

salt permeability coefficient; channel height; mass transfer coefficient; friction factor; membrane 

replacement rate; capitalization factor; practical investment factor; maintenance, labor, and 

chemical cost factors; equipment capital costs; and electricity costs is provided in SI Section S.7. 

Increases in the water permeability coefficient, A, decrease the unit water costs for the 

OARO process by decreasing the required membrane area.  When A is doubled from 1E-12 to 

2E-12 m/(Pa-s), we observe a modest decrease of 6-9% in the unit water costs for the three cases 

(Figure 4.6A).  This suggests that, despite our earlier observation that membranes account for a 

significant fraction of OARO costs, designing membranes with improved permeability is 

unlikely to yield significant cost savings for OARO processes.  An increase in permeability has a 

small effect on the OARO process cost because the water flux in the OARO process is more 

strongly limited by concentration polarization than the bulk driving force.  This finding is 

consistent with other studies that report limited value in increasing membrane permeability.1, 44 

In contrast, decreasing the structural parameter, S, yields significant decreases in the unit 

water costs for OARO.  As S is halved from 1200 to 600 μm, we observe a decrease of 15-26% 

in the unit water costs for the three cases (Figure 4.6B).  This difference in the relative impact of 

A and S parameters on OARO costs highlights the degree to which internal concentration 
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polarization limits OARO performance and suggests that future research should prioritize 

lowering the membrane structural parameter over increasing the water permeability coefficient. 

Of course, a decreased structural parameter of the membrane support often comes at the 

expense of high membrane burst pressures, which would have negative effects for recovery in 

OARO stages.  When the maximum inlet feed pressure is decreased from 65 to 55 bar, for 

example, we observe a 22-38% increase in the unit water costs for the three cases (Figure 4.6C).  

Conversely, when the maximum inlet feed pressure is increased from 65 to 85 bar, we observe a 

35-38% decrease in the unit water costs.  While the structural parameter and maximum applied 

hydraulic pressure are likely to be correlated, we are unaware of studies that quantitatively 

describe this relationship across a range of membrane chemistries.  Thus, our current model 

varies these parameters independently.   

Finally, we consider the effects of potential reductions in OARO membrane costs associated 

with widespread deployment of OARO systems.  If the cost of the membrane decreases from $50 

to $30 per m2, the average RO membrane cost reported in the literature (Table 4.1), we observe a 

23-30% decrease in the unit water costs for the three cases (Figure 4.6D).   
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Figure 4.6. OARO cost sensitivity for A) water permeability coefficient, A; B) structural 

parameter, S; C) maximum inlet feed pressure, D) OARO membrane unit cost. The baseline 

value used in modeling each of the cases is marked with an asterisk.  
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4.5 Conclusions 

The OARO process may lower the cost and energy consumption of high salinity brine 

management for select feedwater concentrations and water recoveries.  This work is the first to 

comprehensively assess the costs of the OARO process and report cost-optimal design and 

operation.  We identify the inlet feed salinities (up to 125 g/L) and water recoveries (up to 70%) 

where the OARO process has the potential to be economically feasible given current membrane 

performance.   

In addition to reporting on the cost-competitiveness with respect to other technologies, 

we observe consistent trends in cost-optimal OARO design and operation.  Generally, cost-

optimal OARO processes should be configured with as few stages as possible, no saline make-up 

streams, purge from the first sweep cycle, and successively decreasing stage membrane area and 

sweep flowrate.  These processes should be operated as close as possible to the burst pressure of 

the membrane.  Future research to reduce OARO process costs should focus on reducing 

membrane unit costs while increasing membrane burst pressure and decreasing membrane 

structural parameter.  

 Finally, we demonstrate that energy optimality is an insufficient condition for evaluating 

membrane-based water treatment processes.  Energy optimal module configurations permit 

unrealistically large membrane areas that are unlikely to be cost effective as a treatment 

technology.  By evaluating cost-optimal design configurations and developing a Pareto frontier 

for cost and energy tradeoffs, we provide a more realistic assessment of the utility of the 

emerging OARO water treatment process.   
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Supporting Information 

The additional supporting information for this chapter is included in Appendix C. The 

supporting information contains details for 1) solution properties; 2) interfacial membrane 

concentration; 3) optimization model formulation; 4) additional details on the case studies, 5) 

tradeoffs between energy consumption and cost, 6) key design and operational variables for the 

OARO process, 7) additional sensitivity analyses. 
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5.0 COST OPTIMIZATION OF GAP MEMBRANE DISTILLATION 

 

5.1 Abstract 

 While membrane distillation (MD) is considered a promising technology for high salinity 

brine dewatering, there is great uncertainty in how this process would perform at scale. Some of 

this uncertainty stems from the difficulty of determining how the process should be designed and 

operated across a range of feed salinities and water recoveries. This work develops optimization 

models to determine the cost optimal design and operation of single stage gap membrane 

distillation. The presented models cover the key decision space of gap MD including the gap 

type (air, permeate, conductive), system configuration (pass-through or looping), equipment 

sizes (membrane, heater, chiller, and heat exchanger units), and operating conditions (flow rates, 

temperatures, and heating and cooling duties). We estimate that the levelized cost of water 

(LCOW) of gap MD ranges between $4 and 10 per m3 for feed salinity of 25 to 200 g/L and 

water recoveries of 30 to 75%, which may be cost competitive for dewatering high salinity brines 

in some applications. We find several generalizable trends and guidelines for system operation, 

including: the largest component of the LCOW is the heating cost; the LCOW is a strong 

function of brine salinity; and conductive gap designs minimize system costs. 

5.2 Introduction 

 Membrane distillation (MD) is a thermally driven separation process that drives water 

transport across a membrane through a temperature and vapor pressure gradient. This process 

can be used to desalinate or dewater brines to produce freshwater and concentrated waste. MD is 

considered to be a promising desalination technology because it has several advantages over the 

other common desalination technologies. MD can concentrate brines to near the saturation limit 
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(~310 g/L TDS or 26 weight % for a pure NaCl brine), whereas reverse osmosis (RO) can only 

concentrate brines up to 70-85 g/L TDS.1-2 MD also has advantages over evaporative processes 

like multi-effect distillation (MED) and multi-stage flash distillation (MSF) that can concentrate 

brines to a similar level. As a membrane-based process MD can be more modular and have a 

smaller footprint than MED and MSF.1 Additionally since MD can be operated at a temperature 

below the boiling point of water, it can be driven with lower quality or waste heat sources.1 

However, unlike RO, MED, and MSF, MD has not been deployed commercially.  

 MD has not been deployed at scale because the technoeconomic feasibility of the process 

is currently unknown. While numerous experimental studies have demonstrated the separation 

performance of MD at the bench-scale,3-4 there is relatively high uncertainty in how the MD 

process should be designed and operated to have practical water recoveries of greater than 30% 

at scale. The MD process can be designed with many kinds of modules including direct contact, 

gap, sweeping gas, and vacuum, as well as many system configurations including pass through, 

looping, and cascading multistage.1, 5 Across and within these different designs, the estimated 

performance and cost are highly variable and the levelized cost of water spans two orders of 

magnitude from $0.25 to 25 per m3.6-11 The objective of this work is to provide a comprehensive 

cost assessment of single stage gap MD through using a detailed cost optimization model.  

 Assessing the technoeconomic viability of single stage gap MD is challenging because it 

spans a complex decision space that includes a range of design and operating variables including 

the type of gap (i.e. air, permeate, or conductive), the system configuration (i.e. pass through, 

looping), the equipment sizes (i.e. membrane area, heat exchanger surface area), and the 

operating conditions (i.e. flowrates, temperatures, and heating and cooling duties). In 

conventional process-based technoeconomic assessments, these variables are specified in order 
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to determine the process performance and cost.7-10 The values of these design and operating 

variables are specified heuristically by the modeler, precluding explicit consideration of the 

complex tradeoffs between water recovery, energy efficiency, capital costs, and operating costs. 

 While reducing the decision space by explicitly specifying equipment size, water 

recovery, or recycle ratio does not substantially impact the energy consumption of MD 

processes,5, 12-16 these design decisions can have very large impacts on MD cost.  The MD 

decision space is highly dependent on both capital and operating costs,7-10 and accounting for 

these tradeoffs with multiple degrees of freedom is most appropriately handled with optimization 

modeling approaches.  

 Several studies have demonstrated the benefits of using cost optimization modeling to 

assess the performance and cost of dewatering technologies, including RO,17 osmotically assisted 

reverse osmosis,18 MED,19 mechanical vapor compression,20 and MD.11, 21 The most significant 

advantage of this approach is that it avoids the arbitrary specification of the process design and 

operating variables.  Instead, it determines the cost optimal values of a technology based only on 

the performance and economic parameters of various components (e.g., membrane permeability 

and cost). Further, this approach enables modelers to determine the LCOW over a full range of 

technology applications, in this case a range of feed salinities and water recoveries.17-18 

 This work presents a comprehensive assessment of the key membrane and system 

performance metrics of gap MD, including average water flux, thermal efficiency, GOR, and 

LCOW. In this work, we develop a cost optimization model that contains detailed relationships 

for mass and heat transfer in the membrane module and spans the other process units for system 

design and operation. We use this model to assess the economic viability of gap MD by 

determining the optimal LCOW across a range of feed salinities and water recoveries. We further 
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leverage the model to extract generalizable guidelines for low cost design and operation and 

assess the cost sensitivity of key parameters to prioritize future research. 

 

Figure 5.1. Schematic of single stage membrane distillation gap with multiple gap types (air, 

permeate, and conductive). In this configuration, the single heat exchanger heats up the hot-side 

stream and cools down the cold-side stream. 

5.3 Methods 

Modeling gap membrane distillation 

 The dewatering performance of membrane distillation is controlled by mass and heat 

transfer. At the stage-scale, the governing set of mass and energy balance equations are shown in 

5.1-5.7. 
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1

𝑊

𝑑[𝑀𝑐 �̂�𝑙(𝑋𝑐,𝑇𝑐)]

𝑑𝑧
= 𝑞𝑐     (5.7) 

Where 𝑀, 𝑋, and 𝑇 are the state variables mass flowrate [kg/s], salt mass fraction [unitless], and 

temperature [K] for the hot (ℎ), permeate (𝑝), and cold (𝑐) streams along the length of the stage. 

𝑧 is the dimension along the membrane stage [m] with the direction along the stream flow. In this 

work, we only consider counterflow operation, so 𝑧 is in opposing directions for the hot and cold 

streams. 𝑊 is the width of the membrane stage [m], 𝐽𝑤 is the mass-based water flux [kg/m2 s], 

and �̂�𝑙(𝑋, 𝑇) is the specific enthalpy of the liquid [kJ/kg] as a function of salt mass fraction and 

temperature that is assessed for the bulk hot, permeate, and cold stream, as well as the hot-side 

membrane interface (ℎ𝑚) and gap-side membrane interface (𝑚𝑔). The equations include several 

heat fluxes [kW/m2]: 𝑞ℎ is the heat flux from the hot bulk to the membrane, 𝑞𝑔1 is the heat flux 

from the membrane to the gap, 𝑞𝑑 is the heat flux through the distillate plate, and 𝑞𝑐 is the heat 

flux from the distillate plate to the cold bulk. Additional details on these variables and their 

relationships are included in SI Section S1-S3. 

 Water and heat flux in membrane distillation are generally described by equations 5.8-

5.9.  
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𝐽𝑤 =
𝐵

𝛿𝑚
 Δ𝑉𝑝      (5.8) 

𝑞𝑐𝑜𝑛𝑑 =
𝛼

𝛿
 Δ𝑇      (5.9) 

𝑞𝑐𝑜𝑛𝑣 = ℎ Δ𝑇      (5.10) 

Where 𝐵 is the water permeability coefficient [kg/m s Pa], 𝛿𝑚 is the thickness of the membrane 

[m], and Δ𝑉𝑝 is the vapor pressure difference across the membrane [Pa]. The conductive and 

convective heat flux are noted with 𝑐𝑜𝑛𝑑 and 𝑐𝑜𝑛𝑣, respectively, and are determined from the 

thermal conductivity [kW/m K], 𝛼, material thickness [m], 𝛿, and the convective heat transfer 

coefficient [kW/m2 K], ℎ. The conductive heat transfer occurs across the membrane, gap, and 

distillate plate, while the convective heat transfer occurs in the hot and cold channels. 

 The gained output ratio (GOR), energy recovery, and levelized cost of water (LCOW) are 

key performance metrics of the MD system and are determined in equations 5.11-5.13. While 

both the GOR and energy recovery metrics describe the energy efficiency of the MD process and 

are strongly related, they are distinct and cannot be directly calculated from one other. The GOR 

is the ratio of energy required for evaporating the product water to the heat energy input and is 

generally used as the energy consumption metric for thermal dewatering processes; the energy 

recovery quantifies the fraction of the energy that passes through the membrane that is reused. 

𝐺𝑂𝑅 =
𝑀𝑝 �̂�𝑣𝑎𝑝(𝑋𝑓,𝑇𝑓)

𝑄ℎ𝑡𝑟
    (5.11) 

𝐸𝑅 = 1 −
𝑄ℎ𝑡𝑟

Δ𝐸ℎ 
     (5.12) 

𝐿𝐶𝑂𝑊 =
𝐴𝑂𝐶

𝐴𝑊𝑃
     (5.13) 
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Where 𝐺𝑂𝑅 is the gained output ratio [unitless], 𝐸𝑅 is the energy recovery [unitless], and 𝐿𝐶𝑂𝑊 

is the levelized cost of water [$/m3]. �̂�𝑣𝑎𝑝 is the specific heat of vaporization as a function of the 

salt mass fraction and temperature [kJ/kg] and is assessed at the conditions of the feed (𝑓). 𝑄ℎ𝑡𝑟 

is the heat duty of the heater [kW], Δ𝐸ℎ is the decrease in energy for the hot stream from the inlet 

to the outlet of the membrane stage [kW], 𝐴𝑂𝐶 is the annual operating costs [$/year] (including 

annualized capital costs), and 𝐴𝑊𝑃 is the annual water production [m3/year]. 

 Additional modeling details such as solving the system of governing equations and 

relationships for solution properties, cost estimation, other process units, and concentration and 

temperature polarization in the membrane unit are provided in SI Section S2 and S3. 

Gap membrane distillation cost optimization model 

 We develop non-linear programming models to minimize the LCOW for different gap 

MD processes. Our models encompass the main decision variables, including the gap type (air, 

permeate, and conductive), the system configuration (pass through or looping), the equipment 

sizes (membrane area, heat exchanger surface area), and operating conditions (flow rates, 

temperatures, and heating and cooling duties). The discrete variables are assessed by comparing 

the solutions of models with different parameters and formulations. Specifically, the gap types 

have different thermal conductivities and location of condensation and the system configurations 

use different stream flows and process units (Figure 5.1). The continuous variables are optimized 

for each simulation, which must specify a feed salinity, a water recovery, and the process and 

financial parameters included in Table 5.1. 

 The optimization models are a system of equations that consist of mass and energy 

balances, process unit relationships, and financial calculations, the entirety of which are provided 
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in SI Section S3. We model the governing differential equations for the membrane unit with a 

finite difference approximation. In the membrane unit, we consider pressure drop, temperature 

polarization, and concentration polarization by determining local friction factors and heat and 

mass transfer coefficients. We model the NaCl solution properties (i.e. density, viscosity, solute 

diffusivity, thermal conductivity, enthalpy, heat of vaporization, and vapor pressure) as a 

function of temperature and salinity.22 We estimate the pressure drop in the membrane module to 

estimate the pumping electricity use. We determine the heat duty in the heat exchangers 

(including the heater and chiller) with a log mean temperature difference model and an assumed 

overall heat transfer coefficient (shown in Table 5.1). Lastly, we predict the LCOW by 

determining the capital and operating cost of the gap MD system. 

 We make the following assumptions to formulate and fully specify the optimization 

models for the gap MD system: 

• The MD system is well insulated and there is no heat loss to the surroundings 

• The MD system can operate at a maximum temperature of 90°C without significant 

degradation of materials 

• The configuration of multiple membrane modules in series and parallel can be 

represented by continuous length and width variables for the membrane stage 

• The gap fluid is relatively stagnant and has negligible convective heat transfer 

• The resistance to water flux in the air gap is negligible and ignored because the relative 

water vapor transport rate is two orders of magnitude higher in the air gap than the 

membrane (when considering typical membrane permeability, air-water diffusivity, and 

trans membrane and gap thickness and temperature difference) 
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• The vapor pressure of the saline solution can be estimated with the ideal solution 

assumption 

• Friction, mass, and heat transfer coefficients can be accurately represented with 

relationships derived from simulated channels with mesh spacers, as shown in SI Section 

S3.23 

• The cooling water temperature increases from 20 to 25°C across the chiller 

• The heating provided per unit mass of steam equals the heat of vaporization  

Process and financial parameters 

 The process and financial parameters for the gap MD system are presented in Table 5.1. 

The process parameters include membrane, module, and process unit properties and constants. 

Across all gap types, the module design is the same with a height of 2 mm for the hot and cold 

channels, a height of 1 mm for the gap channel, and a 0.1 mm thick membrane and distillate 

plate. The thermal conductivities of the membrane and titanium distillate plate are assumed to be 

0.05 and 20 [W/m K]. The thermal conductivities of the air, permeate, and conductive gap are 

0.2, 0.6, and 10 [W/m K], respectively. As described in Swaminathan et. al. 2018, the assumed 

thermal conductivity of the air gap accounts for the spacer that supports the channel.24 The 

auxiliary unit parameters include an assumed pump efficiency of 75% and overall heat transfer 

coefficients for the heater of 2 [kW/m2 K] (liquid to condensing gas heat exchanger) and 1 

[kW/m2 K] of the heat exchanger and chiller (liquid to liquid heat exchangers) as shown in Table 

5.1. 

 The financial parameters are used to estimate the capital, operating, and levelized cost of 

water for the MD system. We determine the total capital cost by directly estimating the 
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equipment cost of the membrane, heat exchanger, heater, and chiller units and multiplying these 

equipment costs by the total investment factor (assumed to be 2) to account for indirect capital, 

installation, and siting. We estimate the operating cost by directly accounting for membrane 

replacement, electricity demand for pumping, steam demand for heating, and cooling water 

demand for chilling and by indirectly estimating the maintenance, labor, and chemical cost with 

a factor. The assumed factors and costs of these components are provided in Table 5.1 and 

further details on the cost estimation are included in SI section S3.  

Table 5.1. Process and financial parameters for gap MD 

Process parameters Value Unit Source 

Membrane 

Water permeability 1.5e-10 kg/m s Pa assumed 

Thermal conductivity 0.05 W/m K assumed 

Thickness 100 μm assumed 

Gap 

Thermal conductivity - air 0.2 W/m K 24 

Thermal conductivity - permeate 0.6 W/m K 24 

Thermal conductivity - conductive 10 W/m K 24 

Height 1 mm 24 

Distillate plate 
Thermal conductivity 20 W/m K 25 

Thickness 100 μm assumed 

Channel 

Height 2 mm assumed 

Mesh void space 90 % assumed 

Hydraulic diameter 2.57 mm calculated 

Temperatures 

Maximum 90 °C assumed 

Heating source 100 °C assumed 

Cooling source 20 °C assumed 

Process units 

Heat exchanger overall heat transfer coeff. 1 kW/m2 K 26 

Heater overall heat transfer coeff. 2 kW/m2 K 26 

Chiller overall heat transfer coeff. 1 kW/m2 K 26 

Pump efficiency 75 % 18 

Financial parameters       

Capital costs 

Membrane 100 $/m2 7, 9 

Heat exchanger/heater/chiller 100 $/m2 11 

Total investment factor 2 unitless assumed 

Operating costs 

Electricity 0.07 $/kWh 9, 18 

Cooling water 12 $/kW-year 11 

Steam for heater 9 $/tonne 7, 27  
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Maint., labor, and chemical factor 3 %/year 18 

Membrane replacement rate 20 %/year 9 

Other 
Load factor 85 % 9, 18 

Capital annualization factor 10 %/year 9, 11, 18 

 

Case study parameters 

 We highlight a single case study that dewaters a 75 g/L feed salinity with 50% water 

recovery to provide additional details and compare the three investigated gap types. This case 

represents the dewatering of reverse osmosis concentrate, a common high salinity brine 

dewatering application.  

Implementing and solving the optimization models 

 We implement the optimization models in Python with the Pyomo software package. The 

pass-through and looping configurations have roughly 62 + 47N variables and constraints, where 

N is the number of nodes (fixed at 50 in this work ~ 2400 variables). We solve the models using 

GAMS 27.1.0/CONOPT 4 and, similarly to the work in chapter 4, we find that the local solver 

sufficiently explores the decision space.28 

5.4 Results and discussion 

 This work uses optimization models to assess the cost optimal performance of gap 

membrane distillation. We consider three different gap types (i.e. air, permeate, and conductive) 

and two different system configurations (pass-through and looping). The models identify the cost 

optimal design and operation including the equipment sizes, looping flow rates, and heating and 

chilling duties. We leverage the models to compare the optimal LCOW for a case study for the 

different gap types, estimate the LCOW across a wide range of feed salinities and water 



131 
 

recoveries, extract generalizable guidelines for low cost design and operation, and identify the 

most cost sensitive parameters. 

 The models are solved across all conditions in less than 2 s with an Intel i7 CPU 2.6 GHz 

processor with 8 GB of memory. Consistent with other literature, we find that the pass-through 

configuration cannot achieve water recoveries greater than 10%.1, 5 Since this low water recovery 

is not practically useful for dewatering applications, we only present results for the looping 

configuration with water recoveries of at least 30% in the body of this manuscript. Additional 

details on the results of the pass-through configuration at low recoveries are included in SI 

Section S5.  

Case study cost optimal design and operation for the three gap types 

 The cost optimal performance and financial metrics for the three gap types at the case 

study conditions (75 g/L TDS feed with 50% water recovery) are reported in Table 5.2. We find 

that gap types with lower thermal conductivities result in lower water flux and thermal 

efficiency, where the air, permeate, and conductive gap types have cost optimal average water 

flux of 3.3, 4.3, 6.9 kg/m2-h and average thermal efficiency of 53, 60, and 66%, respectively. 

This decrease in performance occurs because lower gap conductivities have reduced heat transfer 

across the gap and consequently a smaller temperature and vapor pressure difference across the 

membrane. Although a lower gap conductivity has the benefit of reducing the conductive heat 

loss, the thermal efficiency decreases because the water flux is reduced by a greater amount. SI 

Figure S4 shows the water flux and thermal efficiency as a function of the bulk temperature 

difference for the three gap types. 
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 We find that cost optimal operations of gap types with lower thermal conductivity have 

higher average bulk temperature differences. While a higher average bulk temperature difference 

increases the water flux and thermal efficiency for that gap type, it also increases the heating and 

cooling demand and reduces the amount of energy that can be recovered in the heat exchanger 

(i.e. decreases the temperature difference between the cold and hot side outlets). These energy 

penalties are reflected in the cost optimal GOR of 1.2, 1.5, and 2.4 and energy recovery of 60, 

65, and 76% for the air, permeate, and conductive gaps (Table 5.2). 

 Since gap types with lower thermal conductivities have lower water flux and energy 

efficiency, they also have higher financial costs. The optimal LCOW for the air, permeate, and 

conductive gap are $11.7, $9.6, and $6.2 per m3 of product water for the case study conditions 

(Table 5.2). The operating costs make up between 82-86% of the total LCOW for the three gap 

types. The operating costs include membrane replacement, electricity, steam, cooling water, 

maintenance, labor, and chemicals. Within these components, we find the steam cost contributes 

to more than 70% of the operating costs and 50% of the total LCOW. This dominant heating cost 

is consistent with other MD cost estimates.9-11 The capital costs make up less than 20% of the 

total LCOW and they include the equipment cost for the membrane, heater, chiller, and heat 

exchanger units, as well as the estimated indirect capital costs (e.g. auxiliary equipment, siting, 

installation). Table 5.2 provides further details on the components of the LCOW. 
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Table 5.2. Cost optimal performance and financial metrics for the three gap configurations at 

the case study condition of 75 g/L TDS feed and 50% water recovery. Note: the operating and 

capital cost sum up to the LCOW and all cost components (i.e. membrane, heater, chiller heat 

exchanger, recirculation, and other) sum up to the LCOW. These cost component include both 

the associated operating and capital cost. 

    Air Permeate Conductive 

Performance  

metrics 

Average water flux [kg/m2-h] 3.32 4.28 6.86 

Average thermal efficiency [%] 52.5 59.6 65.7 

Average bulk temperature difference [C] 17.9 16.7 11.6 

Gained output ratio [unitless] 1.18 1.49 2.39 

Energy recovery [%] 59.7 64.9 75.6 

Financial  

metrics 

Levelized cost of water [$/m3] 11.73 9.60 6.24 

Operating cost [$/m3] 10.05 8.09 5.13 

Capital cost [$/m3] 1.68 1.51 1.11 

Membrane [$/m3] 1.21 0.94 0.59 

Heater [$/m3] 7.70 6.13 3.82 

Chiller [$/m3] 0.89 0.74 0.45 

Heat exchanger [$/m3] 0.32 0.32 0.29 

Recirculation [$/m3] 0.26 0.26 0.21 

Other [$/m3] 1.34 1.21 0.89 

  

 The cost optimal design and operating variables for the three gap types at the case study 

conditions are reported in Table 5.3. Across all gap types, the cost optimal surface area for the 

membrane and heat exchanger are similar, while the chiller and heater have less area. The chiller 

has roughly 5 times greater area than the heater because the approach temperature and log mean 

temperature difference are significantly greater for the heater. The heater has a relatively high 

approach temperature of 10°C because the condensing steam has a temperature of 100°C and the 

maximum allowed temperature for the hot side is 90°C (all cost optimal solutions operate at this 

maximum temperature), whereas there is no similar constraint for the minimum temperature of 

the cold side. 



134 
 

 The optimal design and operation of the gap types further explain the performance and 

financial metrics presented in Table 5.2. Generally, the lower the thermal conductivity of the 

gap, the greater the cost optimal membrane area, looping flow rates, and heating and cooling 

duties (Table 5.3). Although, increasing looping flow rates and heating and cooling duties 

directly increases the average bulk temperature difference and the water flux, they also increase 

the energy use and decrease the potential energy recovery. These complex tradeoffs associated 

with water flux, energy use, and energy recovery involve all design and operating variables and 

necessitate the use of a cost optimization model to balance the capital and operating costs. 

 Figure 5.2A provides additional details on the cost optimal state variables (i.e. mass flow 

rate, salt mass fraction, and temperature) of conductive gap MD at the case study conditions. 

Figure 5.2B presents the temperature along the membrane stage. While the bulk temperature 

difference stays similar along the module, the water flux decreases significantly with the absolute 

temperature on the hot side because vapor pressure is a nonlinear function of temperature. 

Table 5.3. Cost optimal design and operating variables for the three gap configurations at the 

case study condition of 75 g/L TDS feed and 50% water recovery. 

   Air Permeate Conductive 

Design 

variables 

Membrane area [m2] 504 391 244 

Heater area [m2] 25 20 14 

Chiller area [m2] 116 130 73 

Heat exchanger area [m2] 399 400 360 

Operating 

variables 

Hot side looping flow rate [kg/s] 11.83 9.57 7.85 

Cold side looping flow rate [kg/s] 9.64 8.83 7.19 

Heater duty [kW] 894 711 443 

Chiller duty [kW] 831 662 405 

Heat exchanger duty [kW] 1116 1105 1139 

Heater approach temp. [C] 10.0 10.0 10.0 

Chiller approach temp. [C] 2.1 1.3 2.6 

Heat exchanger approach temp. [C] 1.4 2.7 3.0 
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Figure 5.2. Case study cost optimal state variables (mass flow rate, salt mass fraction, and 

temperature) for conductive gap MD (A) and temperature and water flux profile along the 

membrane stage (B). 

Effect of feed salinity and water recovery on cost optimal gap membrane distillation 

 Figure 5.3A presents the optimal LCOW of conductive gap MD for feed concentrations 

of 25 to 200 g/L and 30 to 75% water recovery. We observe that the LCOW increases with feed 

salinity and water recovery and ranges from $4 to 10 per m3. The LCOW is a strong function of 

feed salinity and water recovery because a higher salinity decreases the water vapor pressure of 

the solution and, consequently, the water flux and thermal efficiency of the membrane stage. 

 Although several studies describe the decreasing performance of MD with increasing 

salinity,10-11, 24, 29 many studies generally state that the process is insensitive to salinity.3, 30 This 

misconception arises from assuming that the reduction in MD performance will match the 

absolute vapor pressure decrease of roughly 10-25% for the high salinity cases. However, the 

vapor pressure difference across the membrane is the driving potential in MD, which is greatly 

impacted by the vapor pressure only being depressed on the hot side of the membrane and not on 
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the gap side of the membrane. Therefore, increases in salinity can retard the driving force of MD 

by more than 10-25% and greatly reduce the water flux and thermal efficiency of the membrane. 

SI Figure S4 shows the water flux and thermal efficiency of gap MD as a function of salinity and 

bulk temperature difference. 

 While the LCOW of gap MD presented in Figure 5.3A is not cost competitive with 

reverse osmosis at low salinities (< $1 per m3), they may be cost competitive for dewatering 

brines greater than 75 g/L TDS. Generally, literature-based LCOW for high salinity brine 

dewatering ranges from $4 to 12 per m3 and these MD estimates lie in that range.18-20 Notably, 

there are a limited number of cost estimates for high salinity brine dewatering, so the cost 

competitiveness of gap MD is uncertain. 

 Figure 5.3 also provides cost optimal design and operating conditions for conductive gap 

MD across the same broad range of feed salinities and water recoveries. We observe that optimal 

gap MD has higher average bulk temperature differences and looping flow rates for higher feed 

salinities and water recoveries (Figure 5.3B and 5.3C). Operating at these higher average bulk 

temperature differences and looping flow rates helps offset the expected decrease in water flux 

and thermal efficiency for the increasing salinity.  

 SI Figure S5 presents the average water flux (5.5-8 kg/m2h), average thermal efficiency 

(55-78%), GOR (1.2-4.7), and energy recovery (65-85%) across the same range of feed salinities 

and water recoveries. Expectedly, increasing the feed salinity and water recovery decreases the 

thermal efficiency, GOR, and energy recovery. Non-intuitively, cost optimal operation has 

higher average water flux with increasing feed salinity and water recovery. This finding suggests 

that the cost optimal increase in average bulk temperature difference more than offsets the vapor 

pressure depression of the higher salt content. While part of the cost reduction from increasing 
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the average bulk temperature difference and water flux is attributed to reduced membrane costs, 

the primary cost reduction is in boosting the thermal efficiency and reducing energy costs.  

 Figure 5.3D presents the optimal heat exchanger to membrane area ratio. This key design 

ratio increases with feed salinity and water recovery and ranges between 0.9 and 2.0 across all 

scenarios. Even though the high salinity cases have relatively large heat exchanger areas, they 

still have relatively low energy recoveries of 65-70% (SI Figure S5D). These low energy 

recoveries illustrate the limits of recovering energy and the diminishing returns of increasing 

heat exchanger areas and decreasing approach temperatures.  
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Figure 5.3. Optimal LCOW (A), average bulk temperature difference (B), normalized hot side 

looping flow rate (C), and heat exchanger to membrane area ratio (D) for conductive gap MD. 

The looping flow rate is normalized to the feed flow rate of 1 kg/s. 

Cost sensitivity of process and financial parameters 

 The results in the previous sections are based on the assumed process and financial 

parameters presented in Table 5.1. Figure 5.4 shows the LCOW sensitivity of four key 

parameters: the membrane permeability, the membrane thermal conductivity, the steam cost, and 

A B

C D
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the maximum temperature of the MD system. The cost sensitivity of gap MD with other 

parameters, including convective heat transfer coefficient, friction factor, membrane thickness, 

and membrane module cost is provided in SI Section S6. 

 Increasing the water permeability of the membrane decreases the cost by decreasing the 

required membrane area and increasing the thermal efficiency of the membrane. Our sensitivity 

covers the broad range of possible permeability values including the theoretical upper bound of 

2.5E-10 kg/m-s-Pa.31 We find that even if a membrane had this maximum permeability, the 

LCOW would only decrease by 10% from our base case (Figure 5.4A). Further, our selected 

permeability of 1.5E-10 kg/m-s-Pa is generally considered optimistic; if the permeability was 

three times lower at 0.5E-10 kg/m-s-Pa the LCOW would increase by 60%. 

 Decreasing the membrane thermal conductivity decreases the cost by decreasing the 

conductive heat transfer in the membrane and increasing the thermal efficiency of the membrane. 

As the membrane thermal conductivity decreases from 0.05 to 0.03 W/m-K, the LCOW 

decreases by 15% (Figure 5.4B). However, this low thermal conductivity of 0.03 W/m-K is 

likely unachievable for membrane materials because it is equivalent to the conductivity of 

polystyrene (Styrofoam) and only 20% greater than the conductivity of air.32 If the thermal 

conductivity of the membrane is increased to 0.07 W/m-K, the LCOW would increase by 20%. 

 Since the heating cost is the largest component of the LCOW, the most cost sensitive 

financial parameter is the cost of the steam. As the cost of steam decreases from $9 to $5 per 

tonne (45% decrease), the LCOW decreases by 30% (Figure 5.4C). While this LCOW decrease 

is significant, steam production is a mature process and unlikely to see substantial cost 

reductions. A commonly discussed way to reduce the cost of MD is to lower steam demand by 
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utilizing waste heat.1, 6, 9 However, the source of the waste heat and cost of utilizing it are not 

clear and out of the scope of this work. 

 MD is commonly referred to as a low temperature thermal process because it can dewater 

brines at a temperature less than the boiling point. This attribute is beneficial because it means 

lower quality energy sources, potentially waste heat, can be used to drive the water treatment. 

Notably, there is little quantitative discussion of the expected drop in performance and increase 

in cost when operating at lower temperatures. In our work, we found that cost optimal MD 

always operated at 90 °C, the maximum temperature allowed. As the maximum temperature 

allowed decreases from 90 to 75 °C, the LCOW increases 30% (Figure 5.4D). This significant 

increase in cost suggests that economically feasible MD may require high temperatures. 
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Figure 5.4. Cost sensitivity for membrane water permeability (A), membrane thermal 

conductivity (B), price of steam (C), maximum temperature allowed (D) for conductive gap MD. 

The asterisks denote the base case value assumed in Table 5.1. 

5.5 Conclusions 

 The cost estimates for MD presented in this work suggest it is not cost competitive for 

treating low salinity brines, but it may be cost competitive for dewatering brines with greater 

than 75 g/L TDS. While there are several studies that have developed MD optimization models, 

A B

C D
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none have included the level of detail of this work. Our models span two configurations (pass-

through and looping), three gap types, and several key decision variables (i.e. equipment sizes, 

flow rates, heating and cooling duties, approach temperatures). Additionally, our models include 

detailed modeling of solution properties as a function of salinity and temperature, local friction 

factors and mass and heat transfer coefficients, and direct and indirect cost estimates.  

 While the absolute performance and financial metrics presented in this work are 

dependent on the assumed parameters, we observe generalizable trends and guidelines for low 

cost design and operation of gap MD. These trends include: 1) operating and heating costs make 

up the majority of the LCOW and 2) increases in feed salinity and water recovery greatly 

increase the energy consumption and LCOW. Guidelines for low cost design and operation 

include: 1) design the gap with high thermal conductivity; 2) design the system with a relatively 

large heat exchanger (same order of magnitude as membrane area); 3) operate at the maximum 

allowable temperature; 4) operate the heat exchangers at relatively low approach temperatures of 

less than 5°C; and 5) operate at higher average bulk temperature differences and water flux for 

higher salinities. 

 We also provide estimates on how improvements to process and financial parameters 

could decrease the LCOW of gap MD. While membrane improvements such as increasing water 

permeability and thermal conductivity could modestly decrease the LCOW, deep reductions 

would necessitate a significantly cheaper heating source.  

 Finally, this work emphasizes the importance of using a cost optimization model to assess 

the technoeconomic feasibility of emerging technologies. An optimization model can address the 

complex tradeoffs between capital and operating costs without making arbitrary assumptions on 
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key design and operating variables and it can help expand the analysis beyond a single case study 

to the full dewatering space. 
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6.0 MULTI-OBJECTIVE OPTIMIZATION MODEL FOR MINIMIZING 

COST AND ENVIRONMENTAL IMPACT IN SHALE GAS WATER AND 

WASTEWATER MANAGEMENT 

 
6.1 Abstract 

Unconventional resource extraction from shale plays involves complex operations for 

water and wastewater management.  These water management operations are expensive for 

companies and emit significant quantities of criteria air pollutants and greenhouse gases that 

impact human health and the environment (HHE).  We present a multi-objective mixed integer 

linear programming (MILP) framework for assessing the tradeoffs between financial cost and 

HHE costs for shale gas water acquisition, transport, storage, and treatment under realistic 

scheduling, operational, and regulatory constraints.  We formulate objective functions to identify 

water management strategies that minimize financial cost, minimize HHE cost, and minimize 

combined financial and HHE costs.  The model was applied to a 14 wellpad case study that is 

representative of shale gas extraction in the Marcellus Play.  We observe significant variation in 

the financial and HHE costs under different objective functions and regulatory scenarios.   

6.2 Introduction 

Water and wastewater management at unconventional oil and gas sites is costly.  It is 

costly to firms responsible for acquiring, transporting, storing, treating, and disposing of water.  

It is costly to society when these activities contribute to environmental emissions,1 roadway 

wear,2 and vehicular accidents.3 And it is costly to the efficacy of and public trust in the 

regulatory system when water management-related externalities are not minimized.4,5 To date, 

operators and policy makers lack appropriate frameworks for assessing tradeoffs between the 

financial costs of shale gas water management and the associated human health and 
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environmental (HHE) impacts. This study assesses those tradeoffs through a multi-objective 

optimization model that investigates eight distinct water management strategies.  

A number of previous studies have quantified the financial costs of water management 

for shale gas producers.  Yang et al. developed mixed integer linear programming (MILP) and 

mixed integer nonlinear programming (MINLP) investment optimization and scheduling models 

for minimizing the financial costs of freshwater acquisition, water network optimization, and 

wastewater management.6-8 Gao et al. developed mixed integer linear fractional programing 

(MINFP) models with the objective of minimizing freshwater consumption per unit of profit, as 

well as a stochastic mixed-integer linear fractional programming (SMILFP) model to optimize 

the levelized cost of energy generated from shale gas.9,10 

Similarly, there has been considerable work on quantifying the HHE externalities of shale 

gas production.  While the majority of studies have focused on the lifecycle greenhouse gas 

emissions associated with the transition from coal to natural gas-based electricity generation,11,12 

there are a few studies focusing specifically on the greenhouse gas emissions of the well 

development process.13-15 One study quantifies the greenhouse gas emissions of water and 

wastewater management activities using an economic input-output life cycle assessment 

approach,16 while another quantified criteria air pollutants from shale gas development,17 and a 

third evaluated the life cycle impacts of specific wastewater treatment technologies.18  

One of the limitations with previous criteria air emission studies has been the inability to 

compare alternative water management scenarios and estimate their costs to shale gas operators.  

Additionally, most studies quantifying air emissions avoid expressing HHE impacts in terms of 

their end effects on morbidity, mortality, visibility, or agricultural production.  In not assessing 
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the marginal damages of air emissions, it is more difficult for companies and policy makers to 

assess tradeoffs implicit in cost-effective policy and decision-making.  

The present work extends this past work by presenting the first systematic analysis of the 

tradeoffs in costs and HHE impacts associated with various water management strategies.  We 

develop an MILP investment optimization model that includes scheduling constraints to quantify 

the private and public costs of various water management strategies.  We also assess the 

tradeoffs associated with potential regulatory or policy changes that might influence company 

decisions around water and wastewater management.  Finally, we present a case study for the 

Marcellus Play, and discuss limitations in data availability that constrains the extension of this 

analysis to other plays or case studies.  

6.3 Methods 

The problem of determining a bi-objective optimal shale gas water management scheme 

considering both the privately held costs of wastewater management and the publically borne 

costs of air emission damages can be addressed as a mixed-integer linear programming (MILP) 

model. The proposed model is an extension and modification of previously published work by 

Yang et al. (2015);7 the revised formulation allows for greater flexibility in freshwater and 

wastewater transportation and wastewater storage, and incorporates functionality to assess the 

HHE impacts for a set of midpoint indicators associated with water management activity.19 This 

model uses a two-step approach: first the hydraulic fracturing schedule is determined by 

maximizing profit; second a bi-objective model is used to develop a Pareto frontier for the set 

fracturing schedule.   
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The proposed model formulates this bi-objective optimization problem within a defined 

time horizon.  The model assumes the geospatial locations of freshwater sources, impoundments, 

wellpads, central treatment facilities, and disposal wells.  Freshwater demand, wastewater 

production, and gas production are model inputs. The main decision variables are the hydraulic 

fracturing schedule, the relative amount of freshwater and wastewater use, the mode of 

freshwater and wastewater transportation, the method of wastewater handling, and the volume 

and duration of fresh and wastewater storage.  

A long-term time horizon is considered and the schedule is formulated through a discrete-

time model. The subsequent case study presents a model with a time horizon of 3 years, 

discretized into 156 weeks. The weekly discretization was chosen because a week represents the 

time for a frac crew to transition between wellpads and to begin fracturing.  Considering a long-

term time horizon is essential for capturing the steep decline curves of both shale gas and 

wastewater production over the two to three years following well stimulation.  Additionally, 

overall gas and wastewater productivity can vary greatly between wellpads, and natural gas 

prices change seasonally.  Therefore, the fracturing schedule has an effect on the revenue of gas 

sales and costs of wastewater management. 

The proposed superstructure is shown in Figure 6.1A and includes: 1) a set of freshwater 

sources (o), 2) a set of impoundments (p), 3) a set of well pads (s), 4) a set of central treatment 

facilities (q), 5) a set of disposal wells (d), and 6) the permissible modes of water transport, 

including water pipelines, water trucking, or some combination of both. In addition to the 

activities shown in the superstructure, wastewater can be treated on each wellpad and stored in 

wastewater tanks on both the wellpads and the impoundment sites.  
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Figure 6.1. A) Simplified superstructure of shale gas freshwater (FW) and wastewater (WW) 

management. B) Case study supply chain network including 14 wellpads (s) and 2 impoundments 

(p) in two areas, a freshwater source (FWS), a central treatment facility (CWT), and a disposal 

well (DP). The potential fresh and wastewater pipelines are shown in the dotted lines. The 

numbers next to the pipes are their distances.  C) The buried (permanent) and overland 

(temporary, leased) pipelines for the cost-optimal water management scenario. 

The hydraulic fracturing process uses a blend of water, proppant, and chemicals, titled a 

“frac fluid”, to fracture sub-surface formations and stimulate hydrocarbon production.  The 

volume of frac fluid correlates to the subsurface geology, the type of fracture (e.g. slick-water, 

gel, crosslinked gel), and the length of the frac stage, among other variables.  Assuming these 

factors to be constant across wellpads in the model, we model the volume of frac fluid as a linear 

function of the number of frac stages.  We assume that both fresh and wastewater can be used to 

satisfy the frac fluid demand, so long as the total dissolved solids concentration of the blended 

solution is below 50,000 ppm Total Dissolved Solids (TDS).7 The proposed model assumes an 

equivalent formulation that sets the ratio of freshwater to wastewater blending to satisfy the TDS 

limits. 
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Freshwater can be acquired from interruptible and uninterruptible sources.  Interruptible 

sources include small ponds, lakes, and rivers whose allowable withdrawal rates vary by season.  

Uninterruptible sources include large rivers or bodies of freshwater that have no withdrawal rate 

limits.  The proposed model assumes all freshwater sources are uninterruptible; for a 

demonstration of a model with interruptible sources refer to Linlin et al. (2015).7 The freshwater 

can be transported either by pipeline or truck from the source to impoundments for storage and to 

wellpads for immediate use.  

After well stimulation, flowback and produced waters return to the surface as wastewater 

containing constituents traced to both the composition of the frac fluid and the pore water.  

Wastewater is transported and disposed of in Class II injection wells, treated onsite for reuse in 

subsequent well stimulations, or transported to a central treatment facility for recycle or 

discharge.  The balance of these water management options depends upon cost, including both 

transport and treatment or disposal costs, location, water quality, and the availability of fresh 

water.  The present model considers only cost, location, and water quality. 

Onsite treatment occurs on the wellpad and typically removes suspended solids, which 

allows the wastewater to be reused in frac fluid. Central treatment occurs at a central treatment 

facility, typically tens of miles away, and produces a purified water stream and concentrated 

wastewater stream. The purified water stream can be discharged to a river or recycled for 

additional hydraulic fracturing. The concentrated wastewater stream, the volume of which is 

determined by treatment technology and recovery rate, must be trucked to a Class II disposal 

well.  

In practice, the cost of water and wastewater management is often determined by the 

transportation costs to and from the wellpad.  Water may be transported via overland pipelines, 
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buried pipelines or trucks, while wastewater may be transported via buried pipelines or trucks.  

The proposed model allows overland pipeline to be leased in discrete time intervals that are 

longer than the weekly time discretization, e.g. yearly or quarterly.  The model also assumes 

separate pipelines for freshwater and wastewater and assumes that wastewater is treated onsite 

prior to piping.  Generally, buried pipelines are associated with high capital costs, low 

operational costs, low environmental emissions, and low operational versatility.  On the other 

hand, trucking is highly versatile, has low capital costs, but has high operational costs and air 

emissions per unit of water transport.   

Another significant fraction of the costs for water and wastewater management at shale 

gas sites is water storage.  This model assumes freshwater, frac fluid, and wastewater are stored 

in freshwater impoundments, frac tanks, and wastewater tanks, respectively.  The storage volume 

of freshwater impoundments is on the order of hundreds of thousands of barrels, while the 

storage volume of frac and wastewater tanks is typically on the order of hundreds of barrels.  The 

location of the freshwater impoundment is predetermined, while the storage volume is 

determined by the maximum weekly withdrawal from the impoundment over the course of the 

three year time horizon.  Frac tanks are located on wellpads and their storage volume is 

predetermined.  Wastewater storage tanks may be placed at either wellpads or impoundments, 

and the total wastewater storage volume fluctuates depending on demand.   

Water and wastewater management is a significant fraction of the cost of drilling a shale 

gas well.  The activities associated with water transport and treatment are also significant sources 

of atmospheric emissions of air pollutants, including NH3, NOx, PM2.5, SO2, volatile organic 

compounds (VOCs), and greenhouse gas emissions measured in CO2 equivalents (CO2e).  We 

estimate direct and indirect air emissions associated with each water management activity and 
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estimate the marginal HHE costs using the AP2 model.20 Direct emissions include emissions 

associated with a specific activity, such as the emissions from trucks transporting wastewater.  

Indirect emissions include the emissions due to material manufacture and transport, as well as 

demand created in other industries.  Direct emissions were estimated for trucking and central 

treatment activities, while the other direct and all indirect emissions are estimated using 

economic input-output life cycle analysis that estimates emissions based on the economic sector 

and cost of the activity (SI Section 2). 

 The main assumptions have been discussed and are as follows: 

1. The locations of the freshwater sources, impoundments, wellpads, central treatment facilities, 

and disposal and transportation paths are predetermined.  

2. The gas and wastewater production as a function of time of each well is known. 

3. All wells in each wellpad must be fractured and completed before the frac crew can move 

onto another wellpad. 

4. The frac crew maintains the same fracturing rate, independent of the specific wellpads. 

5. All freshwater sources are uninterruptible. 

6. Freshwater can be transported via truck and buried (purchased) and overland (leased) 

pipelines 

7. Freshwater is stored in centralized impoundments, and the minimum capacity of the 

impoundment is the largest weekly withdrawal from the impoundment over the time horizon 

8. Wastewater use in frac fluid is limited by the TDS, modeled as a ratio of freshwater to 

wastewater blending. 

9. Wastewater can be handled in three ways: onsite treatment, central treatment, disposal in 

Class II injection wells 
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10. Wastewater can be transported via truck or buried pipelines, and it must be treated onsite 

before it can be piped or stored. 

11. Wastewater can be stored in wastewater tanks on wellpads and freshwater impoundment 

locations 

12. Onsite treated wastewater can be reused for hydraulic fracturing. 

13. Centrally treated wastewater has a TDS of zero and can either be discharged or recycled for 

hydraulic fracturing. 

 

Model formulation 

The proposed water management MILP model is composed of scheduling constraints, 

mass balance constraints, capacity constraints, pipeline constraints, financial constraints, and 

HHE constraints. Refer to the SI Section 1 for the detailed model formulation. 

The objective is to either 1) maximize profit, 2) minimize the financial costs of water 

management, 3) minimize the HHE costs of water management, or 4) minimize the combined 

financial and HHE costs of water management under the following groups of constraints 

provided in SI Section 1. 

Scheduling constraints S1-S2 

Mass balance constraints S3-S14 

Capacity constraints S15-S18 

Pipeline constraints S19-S24 

Financial constraints S25-S37 

Human Health and Environmental constraints S38-S44 
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The scheduling constraints ensure that all of the wellpad stages are fracked, only one 

wellpad is fractured at a time, a wellpad is only fractured when available, and there is adequate 

time allowed for frac crews to transition to another wellpad. The mass balance constraints ensure 

that the frac fluid demand is met and describe the relationship of the inputs and outputs of fresh 

and wastewater throughout the supply chain network. The capacity constraints describe the limits 

on the transport and storage of fresh and wastewater. The pipeline constraints ensure a feasible 

pipeline setup. The financial constraints calculate the revenue from natural gas sales and the 

costs associated with the water management activities. The considered costs include freshwater 

withdrawal, storage, transportation, and wastewater treatment and disposal. The freshwater 

withdrawal costs were based on the amount of withdrawn water. Freshwater impoundments and 

frac tank costs were based on their capacity. Wastewater storage costs were based on the volume 

and storage time of the wastewater. The operating costs of trucking and piping were based on 

volume of water and transport distance. The capital costs of pipelines were based on the distance 

of the pipeline. The wastewater handling costs of onsite treatment, central treatment, and 

disposal are based on the amount of wastewater. The HHE constraints determine the HHE costs 

associated with water management activities and are further described in the following section. 

 

Human health and environmental impact assessment 

We estimate the direct and indirect air emissions of the criteria air pollutants, NH3, NOx, 

PM2.5, SO2, and VOC, and greenhouse gas emissions in units of CO2 equivalents for each water 

management activity: storage, onsite treatment, central treatment, disposal, piping, and trucking.  

Direct emissions include the emissions directly associated with the activity, while indirect 
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emissions include the emissions associated with the material manufacture, transport, and 

installation, and demand created in other industries.   

We estimate direct emissions for water trucking and central treatment processes.  Direct 

emission estimates from water trucking are adapted from Behrer and Mauter,21 and reflect the 

mean of MOVES, Simapro, and NREL estimates for emissions per mile.  Direct emissions from 

central treatment are estimated through the electricity use of mechanical vapor recompression 

(MVC)22 and the associated emissions from electricity production was estimated from the EIA 

and EPA eGRID and NEI databases.23-25 The paucity of direct emissions data precludes inclusion 

of direct emission estimates from other well development activities.   

For all activities, we estimate indirect emissions using economic input-output life cycle 

analysis that estimates industry average emissions based on the economic sector and cost of the 

activity.  Cost estimates are obtained from Yang et al.,7 or from sources documented in SI 

Section 3.  Additional information on calculating emission coefficients is provided in SI Section 

2.   

We estimate the HHE damages associated with additional air emissions using the AP2 

model.20 Briefly, AP2 combines atmospheric dispersion models with epidemiological models to 

estimate the additional morbidity, mortality, and environmental damages (e.g. visibility, timber 

production, agricultural productivity) associated with a marginal increase in air emissions in a 

given county.  We apply a value of a statistical life (VSL) of $8.5 million USD (2015 dollars) to 

estimate air emission damages.  This generic model assumes marginal damage estimates at the 

state level using a simple mean of marginal damage estimates across PA’s 67 counties.  More 

detailed spatial information on the locations of each activity would allow more accurate 

estimates of marginal damages.  The resulting HHE cost for NH3, NOx, PM2.5, SO2, and VOC are 
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$131, 5.5, 118, 44.5, 11.3 thousand ($2015) per metric ton (Table S6).  Additional details on 

input parameters for the AP2 model are provided in SI section 3.    

Environmental damages from unconventional water management activities affect air, 

water, and soil media.  The costs associated with the greenhouse gas emissions were estimated 

by the U.S. Government Interagency Working Group on Social Cost of Carbon as $41.0/metric 

ton, assuming a discount rate of 3% and $2015.26 Environmental risks associated with source 

water drawdown, habitat fragmentation, ecosystem impacts, chemical release, and soil erosion 

are not quantitatively modeled or monetized in the present study.27-29 

Scenarios 

We model several scenarios for financial cost optimization reflecting historical, current, 

or proposed water management practices. The eight scenarios include: no wastewater piping, no 

wastewater trucking between wellpads and impoundments, no wastewater storage, no freshwater 

piping, no freshwater trucking, no central treatment, no direct disposal, and no reuse as described 

further in Table 6.1.   
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Table 6.1. Descriptions of the eight regulatory scenarios. 

Scenario Label Details 

SC 1 no wastewater piping 
Prohibits wastewater from being piped, so it must be 

trucked 

SC 2 
no local wastewater 

trucking 

Prohibits wastewater from being trucking between 

impoundments and wellpads, wastewater may still be 

trucked to disposal 

SC 3 no wastewater storage 

Prohibits the use of wastewater tanks, forcing 

wastewater to be treated onsite and used within the 

week or sent to central treatment and disposal 

SC 4 no freshwater piping 
Prohibits freshwater from being piped, so it must be 

trucked 

SC 5 no freshwater trucking 
Prohibits freshwater from being trucked, so it must be 

piped 

SC 6 no central treatment 
Prohibits central treatment and requires all non-

reused wastewater to be trucked directly to disposal 

SC 7 no direct disposal 
Requires all wastewater to be reused onsite or sent to 

central treatment 

SC 8 no reuse Prohibits the use of wastewater in frac fluid 

 

Case study 

We test our model on a case study with time horizon of three years comprising 14 

wellpads (s1, s2,… s14) and two impoundments (p1, p2) split across two areas, a freshwater 

source (o1) that is 10 miles away from each impoundment, one central treatment facility (q1) 50 

miles from each wellpad area, and a disposal well (d1) that is 150 miles away from each wellpad 

area (Figure 6.1B).  The relatively far distances from the wellpads and impoundments to central 

treatment facilities and a disposal well, is typical for the Marcellus play, and allows the distances 

to be modeled as constant.30 The permitted fresh and wastewater pipeline connections are shown 

in Figure 6.1B, and there are two potential types of piping, buried (c1) and overland (c2, c3, … 

c13).  The overland piping is assumed to be leased quarterly and for modeling purposes the 12 

quarters each have their own index c.  Freshwater trucking is permitted between the sources, 

impoundments, wellpads, and central treatment facility (for purified stream recycle).  
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Wastewater trucking is permitted between wellpads, impoundments, the central treatment 

facility, and the disposal well. Frac fluid use, gas production, and wastewater production varies 

between the wellpads.  The frac fluid use of each wellpad is shown in Figure 6.2.  The non-

financial and financial parameters, wellpad availability, gas production, and wastewater 

production are provided in SI section 4.  

 

 

Figure 6.2. Frac fluid use for the 14 wellpads in the case study, including the financial cost 

optimal frac fluid blend of fresh (blue) and wastewater (yellow).   

 

6.4 Results and Discussion 

Current investment optimization models for shale gas water and wastewater management 

do not quantify the externalities of water management processes and lack insight into the 

tradeoffs between the publically and privately borne costs.  This model provides the first 

quantitative platform for assessing the tradeoffs between the financial and human health and 
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environmental (HHE) impacts.  This model uses a two-step approach, first the hydraulic 

fracturing schedule is determined by maximizing profit, second a bi-objective model is used to 

develop a Pareto frontier for the set fracturing schedule.  In models that do not adopt a two-step 

approach, the financial and HHE costs are minimized by extending the hydraulic fracturing 

schedule such that the HHE externalities are pushed beyond the set period of analysis. 

Optimization performance 

The case study MILP model consists of 48459 constraints, 210165 continuous variables, 

and 1748 binary variables. The profit maximization objective model is solved to an optimality 

gap of 0.1% using GAMS 24.5.6/CPLEX 12.6.2 on an Intel i7 CPU 2.93GHz processor with 

12GB memory in about 15 hours.  After the optimal schedule was determined and set, the MILP 

model was solved to the optimal solution (no optimality gap) in about 30 minutes for the 

following objectives: financial cost minimization, HHE cost minimization, and combined 

financial and HHE cost minimization. 

Case Study Results 

We apply this investment and HHE optimization model to the case study, and the output 

includes a well pad fracturing schedule that accommodates leasing constraints, an optimal water 

management plan, and a detailed assessment of financial and HHE costs.  As described above, 

we run the model in two phases.  First, we run the model to identify the optimal hydraulic 

fracturing schedule for maximizing profits (revenue minus financial water management costs).  

The resulting frac schedule suggests that wellpads should be fractured as quickly as possible in 

order to produce the highest revenue within the time horizon and is shown in SI section 4. The 

frac schedule does not change under different water management scenarios because the revenues 

of well development significantly exceed the costs of water management.  In the second phase, 
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this hydraulic fracturing schedule is fixed and transitioned to a minimization model for 

determining optimal water management strategies under financial, HHE, and combined financial 

and HHE costs.   

 

Financial Cost Minimization 

 The financial cost optimal water management case for the 14 wellpad case study 

provides total revenues of $1.2 billion, water and wastewater management costs of $36.4 million, 

and HHE costs of $10.9 million (Figure 6.1C and Table 6.2).  This financially optimal scenario 

was characterized by the following attributes: 1) freshwater was both piped and trucked from the 

source to the impoundments; 2) freshwater was both piped and trucked from impoundments to 

the wellpads; 3) all wastewater was transported by truck; 4) 94% of wastewater was treated 

onsite and reused; 5) the remaining 6% of the wastewater was sent to CWT facilities for eventual 

discharge and disposal; and 6) water is not recycled from CWT facilities.  In total, 25.6 million 

barrels of frac fluid was needed to fracture the wellpads, and the overall composition of the frac 

fluid was 82% freshwater and 18% wastewater.  Despite reuse of wastewater with TDS 

concentrations as high as 300,000 ppm, the salinity of the blended frac fluid never exceeded 

50,000 ppm TDS. The freshwater piping arrangement for the financial cost optimal solution is 

presented in Figure 6.1C and on a bbl-mile basis, 77% of the freshwater was transported via 

pipeline and 23% was transported via truck. The pipeline leasing periods and further details on 

the water management are provided in SI Section 5. 
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Table 6.2. Costs of water and wastewater management activities for the three investigated 

objectives: minimize financial costs, combined financial and HHE costs, and HHE costs. 

Cost Category 

Cost for each Objective (M) 

Financial 

optimal 

Financial + HHE 

optimal 

HHE 

optimal 

Revenue $1,181 $1,181 $1,181 

Freshwater withdrawal costs $4.2 $4.2 $4.2 

Fresh and wastewater storage costs $4.3 $5.1 $5.1 

Onsite wastewater treatment cost $13.9 $13.9 $14.0 

Central wastewater treatment costs $1.6 $1.6 $1.3 

Wastewater disposal costs $0.1 $0.1 $0.1 

Fresh and wastewater piping costs $6.9 $7.3 $11.1 

Fresh and wastewater trucking costs $5.5 $4.5 $2.2 

        

Total financial water management costs $36.4 $36.6 $38.0 

        

Total human health and environmental costs $10.9 $10.3 $9.9 

 

The HHE costs of the financial cost optimal water management scenario are estimated by 

first quantifying the air emissions associated with water management activities and then 

estimating the HHE costs associated with these emissions via the AP2 model and prevailing 

estimates for the social cost of carbon.  This case study does not quantify or monetize human 

health or environmental damages associated with freshwater drawdown, water emissions, 

chemical spills, soil erosion, habitat destruction, or any other non-air emission damages.  Net air 

emissions by water management activity and quantity of pollutant (Figure 6.3A) or associated 

HHE cost (Figure 6.3B) suggest that the externalized costs of water management are significant 

with respect to the financial costs incurred by the companies (Table 6.2).  More than 60% of the 

total cost of emissions is attributed to fresh and wastewater transportation, with trucking 

activities incurring higher HHE costs on both an absolute and per mile basis than piping.  The 

non-transport activities with the highest net HHE costs were onsite treatment and storage.  

Although CO2e emissions are associated with the largest damage estimates, criteria air pollutant 
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emissions NOx, PM2.5, SO2, and VOCs each contribute more than 10% to the total damage 

estimates.   

 

Figure 6.3. Financial cost optimal water management air emissions and associated human 

health and environmental (HHE) costs for each pollutant. The water management activity 

abbreviations are DP for disposal, CT for central treatment, OST for onsite treatment, and Sto 

for storage. 

Water Management Scenarios 

Previous work has documented the significant variation in water management strategies 

by company, as well as the variation in water management regulation across shale plays and 

political boundaries.5 The selected scenarios explore the decision space with respect to the 

minimum financial costs incurred by companies and the associated HHE damages experienced 

by downwind communities.  Across the eight scenarios, the financial costs of water and 

wastewater management ranged from $36.4 to 65.1 million and the HHE costs ranged from 

$10.9 to 27.2 million (Figure 6.4A).  We observe a positive correlation between financial costs 

and HHE costs across the eight scenarios, with the exception of the no freshwater trucking 
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scenario (SC 5).  The tradeoff between the financial cost optimal and the no freshwater trucking 

scenario is a financial cost increase of $2.1 million and a HHE cost decrease of $0.7 million.  

This finding demonstrates that further investment in freshwater pipelines in order to reduce 

trucking emissions may result in lower HHE costs. The no reuse scenario (SC 8) had drastically 

higher financial and HHE cost of all the scenarios, thereby emphasizing the importance of 

maximizing waster reuse to lower financial and HHE costs. Further details of the scenarios are 

included in the SI Section 5. 

 

Figure 6.4. A) Financial and HHE costs associated with air emissions for the financial cost-

optimal solution and the constrained scenarios.  Scenarios are labeled as follows: SC 1) No 

wastewater piping (equivalent to financial cost optimal solution), SC 2) No wastewater trucking 

between wellpads, SC 3) No wastewater storage, SC 4) No freshwater piping, SC 5) No 

freshwater trucking, SC 6) No central treatment, SC 7) No direct disposal to Class II injection 

wells (equivalent to financial cost optimal solution), and SC 8) No wastewater reuse. B) 

Financial and human health and environmental (HHE) costs associated with air emissions for 
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the financial cost optimal, HHE cost optimal, and combined financial and HHE cost optimal 

solutions.   

 

Human Health and Environmental Cost Minimization 

Optimal water management strategies that lower HHE costs can be identified by 

including the HHE costs in the objective function.  In addition to the financial cost minimization, 

two other objectives were investigated: the minimization of HHE costs and the minimization of 

combined financial and HHE costs.  The three investigated objectives can be viewed as private 

cost minimization, public cost minimization, and combined private and public cost minimization.  

The financial and HHE costs of each objective is shown in Table 6.2 and the resulting Pareto 

frontier is shown in Figure 6.4B.  Relative to the cost optimal solution, the HHE optimal water 

management solution increased financial costs by $1.6 million and reduced HHE costs by $1.0 

million through a 91% decrease in freshwater trucking, a 30% increase in freshwater piping, a 

40% increase in wastewater storage, and 1% more wastewater reuse.  The financial and HHE 

cost optimal water management solution increased financial costs by $0.2 million and reduced 

HHE costs by $0.6 million through a 29% decrease in freshwater trucking and a 8% increase in 

freshwater piping, with no other significant changes. For further detail on the differences in 

water management strategies refer to SI Section 5. 

 

6.5 Conclusions 

Unconventional natural gas extraction differs from conventional well development in the 

intensity of the extraction process and the comparatively short duration of the gas production.  

As such, it is often likened to on-demand manufacturing processes where cost competitiveness is 
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determined by process and scheduling optimality.  With short to mid-term projections for natural 

gas prices remaining at historic lows, companies are prioritizing cost-optimal well 

development.31 

Water and wastewater management is a significant contributor to the costs of 

unconventional well development.  Over the past five years, many companies have reduced the 

costs of freshwater acquisition and wastewater disposal by increasing the percentage of 

wastewater reused in subsequent well stimulations.30 On the other hand, minimizing operations 

costs may be associated with increased HHE costs.  Companies may avoid implementation of 

costly emissions control technologies, delay upgrades of capital intensive equipment, reduce the 

number of employees, or adopt lower cost treatment methods.  While regulations are typically 

designed to curb externalization of HHE costs in scenarios where there is an inverse relationship 

between operational and HHE costs, there is significant uncertainty around which water 

management practices minimize HHE damages. 

This work presents a framework for companies, regulators, and policy makers to evaluate 

alignment between financial and HHE cost minimization for common water management 

scenarios in unconventional well development.  For the Marcellus case study, we observe 

significant variation in the financial costs and HHE damages across water management 

scenarios, with the bulk of HHE costs embedded in water transport.  Financial costs and HHE 

costs are positively correlated for most cases, though this is partly a function of the large 

dependence on EIO-LCA impact assessment.  The notable exception is the scenario that limits 

freshwater trucking and forces companies to internalize the air emission externalities of water 

trucking.  More detailed, process-level assessment of the variation in costs and HHE damages 
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across companies and regions would further clarify the need for regulatory intervention to 

prevent externalization of operational costs.   

Finally, this work suggests that air emission externalities of criteria pollutants are 

significant with respect to both the financial costs of water management and the climate change 

externalities of CO2 emissions.  Previous work has focused almost exclusively on the greenhouse 

gas emissions of unconventional well development operations, but this work demonstrates that 

the other air pollutants account for a large portion of the total environmental damages. 

 

 

Supporting Information 

The additional supporting information for this chapter is included in Appendix E. 1) model 

formulation, 2) emission coefficient estimation, 3) description of the AP2 model, 4) case study 

details, 5) additional case study results. 
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7.0 ENERGY AND CO2 EMISSIONS PENALTIES OF GEOLOGIC CARBON 

STORAGE BRINE MANAGEMENT 
 

7.1 Abstract 

Safe and cost-effective geologic carbon storage will require active CO2 reservoir 

management, including brine extraction to minimize subsurface pressure accumulation.  While 

past simulation and experimental efforts have estimated brine extraction volumes, there has been 

very little work assessing the energy or emissions penalties of managing and disposing of this 

brine. We estimate energy and CO2 emission penalties of extracted brine management on a per 

tonne of CO2 stored basis by spatially integrating CO2 emissions from U.S. coal-fired electric 

generating units, CO2 storage reservoirs, and brine salinity datasets under several carbon and 

water management scenarios.  We estimate a median energy penalty of 4.4 - 35 kWh/tonne CO2 

stored, suggesting that brine management will be the largest post-capture and compression 

energy sink in the carbon storage process.  These estimates of energy demand for brine 

management are useful for evaluating end-uses for treated brine, assessing the cost of CO2 

storage at the reservoir level, and optimizing national CO2 transport and storage infrastructure.   

7.2 Introduction 

Limiting global temperature increase depends critically on developing realistic carbon 

budgets and designing cost-effective technology portfolios to support deep decarbonization.  

Most of these technology portfolios assign a large role for carbon capture and geologic storage 

from electric power generators and other stationary sources,1 but the techno-economic feasibility 

and risk profile of large scale geologic carbon storage (GCS) remains highly uncertain.  This 

uncertainty is both aleatory and epistemic, stemming from heterogeneity among and within the 

diverse saline reservoirs where carbon is likely to be stored, as well as from uncertainty about the 

relationships between reservoir capacity, the rate of carbon injection, subsurface pressure 
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accumulation, earthquake risk, and the effectiveness of active CO2 reservoir management 

(ACRM).2-4 While the extraction of brine from the saturated pore space of saline reservoirs in 

ACRM is expected to increase reservoir storage capacity and minimize earthquake risk, ACRM 

also imposes water management costs and energy penalties that will vary with brine 

composition.  Finally, there is uncertainty about the lifecycle cost and energy penalties of source-

to-sink carbon capture and geological storage.  

Clarifying the optimal role for GCS in decarbonization portfolios will require that we 

reduce this uncertainty through additional empirical research, as well as through incorporation of 

high resolution, site-specific data within systems-level integrated assessment models.  Past 

technical and economic assessments of GCS and ACRM have necessarily focused on case 

studies characterizing the physics of the subsurface5-7 and on developing generic process-based 

cost estimates.8-12 There has been substantially less work integrating reservoir characteristics 

within carbon and brine management models to develop probabilistic ranges for diverse 

management scenarios.  Doing so is critical to focusing future research and informing 

infrastructure investments.  

The present work characterizes the expected distribution of energy and CO2 emission 

penalties associated with GCS brine management at U.S. reservoirs as a function of carbon 

transport, reservoir management, and brine treatment decisions.  While two recent case studies 

have estimated the energy consumption of brine management and treatment in the Mt. Simon 

formation using a single treatment technology and brine composition,13-14 similarly detailed 

assessments have not been published for other reservoirs or brine compositions.  Furthermore, 

the only nationwide assessment of GCS brine management15 is restricted to assessing low 

salinity GCS brines (<40 g/L TDS) and associated treatment technologies.  Performing a 
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comprehensive nationwide assessment of brine management energy and emission penalties 

requires consideration of the spatial distribution of brine salinities within and between reservoirs, 

the treatment technologies relevant to managing brines of differing composition, the relative CO2 

injection rates and brine withdrawal volumes at each reservoir, and the tradeoffs between the 

energy intensity of brine treatment and water recovery.  As noted above, this nationwide 

assessment is critical to informing infrastructure investments for both carbon transport and brine 

management networks.  

Here, we estimate the energy and CO2 emission penalties of GCS brine management on a 

per tonne of CO2 stored basis by spatially integrating CO2 emission sources, CO2 storage 

reservoirs, and brine salinity datasets.  We use stochastic simulation to develop a distribution of 

energy and emission penalties that reflect the variability and uncertainty in extracted brine 

volume, salinity, treatment, and disposal across 77 U.S. saline reservoirs and three distinct brine 

management scenarios.  Our analysis covers eighty-five percent of U.S. saline reservoir GCS 

capacity, providing the type of reservoir specific information and national level coverage that 

will be critical to GCS assessment. 

7.2 Results and discussion   

Salinity of GCS brines 

Saline reservoirs are expected to provide 95% of total U.S. CO2 storage capacity.16 We 

obtained location data and storage capacity for all 178 saline onshore saline reservoirs in the 

lower 48 states from the National Carbon Sequestration Database and Geographical Information 

System (NATCARB) v1502.17 We then use the USGS produced water database v2.2 to estimate 

the brine salinity medians and distributions for the 105 NATCARB reservoirs with ten or more 

reported brine samples, which comprise 85% of estimated total U.S. GCS capacity.18 If the 
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median brine salinity of a reservoir is less than 10 g/L TDS, we exclude that reservoir from our 

analysis because it would be considered an underground source of drinking water by the U.S. 

Environmental Protection Agency and operators would be required to obtain a waiver for CO2 

injection.  Excluding the low salinity reservoirs reduces our analysis to 77 NATCARB reservoirs 

and 64% of the estimated total U.S. GCS capacity (Figure 7.1A, 7.1B). 

Saline brine composition is highly variable both between and within reservoirs.  The 

median average salinity for the 77 reservoirs is 72 g/L total dissolved solids (TDS), or roughly 

double the concentration of seawater, with more than half of U.S. CO2 storage capacity expected 

to be saturated with brines of greater than 110 g/L TDS (Figure 7.1B). Intra-reservoir salinity 

variability has a 35-120% coefficient of variation (10th and 90th percentile, Table 7.1) and is 

demonstrated for select reservoirs in Figure 7.1B.  This variability underscores the importance of 

treating brine salinity probabilistically during individual reservoir analysis and of utilizing 

reservoir-specific brine salinity distributions when assessing brine management strategies 

nationally. 

 

Table 7.1. Salinity statistics for U.S. saline reservoirs.  This study assesses reservoirs with a 

median salinity greater than 10 TDS g/L and 10 or more USGS produced water samples. The 

table provides the 10th, 50th, 90th percentile reservoir of the number of samples, average salinity, 

standard deviation, and coefficient of variation. 

Reservoir percentile 10th 50th 90th 

Number of samples  17 104 980 

Average salinity (TDS g/L) 17 72 166 

Coefficient of variation (%) 35 73 118 
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Even under aggressive scenarios for carbon capture and storage, GCS capacity far 

exceeds economically recoverable carbon emissions from stationary sources over the next 50 

years of anticipated U.S. fossil energy generation.17  Thus, the actual salinity of extracted brine 

will depend on the reservoirs selected for CO2 storage, their proximity to CO2 sources, and their 

sequestration costs.  In this work, we constrain our analysis to focus on the energy and emission 

penalties of brine treatment associated with storing carbon from coal fired electricity generation 

units (EGUs) because they are the largest point sources of CO2,
19 the most cost-effective targets 

for carbon capture,20 and, with the exception of CA, their geographic distribution is generally 

representative of CO2 point sources.17 We obtain location and CO2 emissions data for coal fired 

EGUs from the Emissions & Generation Resource Integrated Database (eGRID2012) (Figure 

7.1A).19   

The CO2 emissions from EGUs are assigned to CO2 storage reservoirs using three 

different reservoir selection cases.  In the first case, EGUs are assigned to the reservoir with the 

lowest median salinity within a 500 mile radius.  Case 1 (lowest salinity) prioritizes reducing 

brine management costs by targeting a lower salinity extracted brine.  In the second, the EGUs 

are assigned to the closest and shallowest reservoir.  Case 2 (closest) prioritizes reducing CO2 

sequestration costs by limiting CO2 transport distance and injection depth.  Finally, in the third 

case, EGUs distribute their CO2 to the capacity weighted average of all reservoirs within 500 

miles.  Case 3 (weighted) represents a future scenario in which CO2 sequestration is widespread 

and supported by interconnected pipeline infrastructure.   

For each case, we estimate the distribution of extracted brine salinity associated with 

storing the annual CO2 emissions from each coal-fired EGU using generation data from 2012.  
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We then sum these distributions to obtain the cumulative distribution of extracted brine salinity 

across all U.S. EGUs (Figure 7.1C).   

Reservoir selection has a significant impact on extracted brine salinity, with the lowest 

salinity reservoir selection case yielding extracted brine salinities that average 50 and 70 g/L 

TDS lower than for the closest and weighted cases.  This lowest salinity case is only realistic if 

brine treatment costs dominate the overall carbon storage costs, which is inconsistent with past 

estimates of GCS costs.12 We focus the subsequent analysis on Case 3 (weighted average of all 

reservoirs within 500 miles) because it represents widespread GCS adoption and does not rely on 

the balance of highly uncertain projected CO2 storage and brine management costs.  
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Figure 7.1. Geologic Carbon Storage Brine Characteristics of U.S. Saline Reservoirs A) U.S. 

saline reservoirs (dark and light blue) and coal fired EGUs (yellow). The location and storage 

capacity of these 198 saline reservoirs was obtained from the NATCARB.17 The dark blue 

reservoirs have at least 10 brine samples included in the USGS produced water database and a 

median salinity greater than 10 g/L TDS,18 whereas the light blue reservoirs have less than 10 

reported brine samples or a median salinity less than 10 g/L TDS and have been excluded from 

this analysis.  The location of the coal fired EGUs was obtained from the eGRID 2012 

database.19 B) Salinity of formation brine with cumulative U.S. CO2 storage capacity for U.S. 
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reservoirs with salinity data meeting our analysis criteria.  The points and error bars represent 

the median and 10th-90th percentile salinity distribution for select saline reservoirs: Arbuckle, 

Mt. Simon, St. Peter, Tuscaloosa, and Washita-Federicksburg (Wash.-Fred.). These saline 

reservoirs have been identified as high potential GCS reservoirs by the NATCARB regional 

partnerships because they have high permeability, high storage capacity, low estimated storage 

costs, and low risk of CO2 leakage.47-49 C) Salinity of displaced brine with cumulative annual 

CO2 emissions from coal fired EGUs for three reservoir selection cases: lowest median salinity 

reservoir within 500 miles of the EGU; closest and shallowest reservoir to the EGU; and storage 

capacity weighted average of all reservoirs within 500 miles of the EGU. 

 

Technologies for GCS brine concentration and disposal  

Environmental, geological, and technological factors constrain management and disposal 

options for high salinity GCS brines.  Even moderate levels of clean brine discharge to the 

environment are associated with significant declines in water quality, a loss of freshwater 

biodiversity, and the potential for disinfection byproduct formation in drinking water treatment 

plants downstream.21 As a result, most states mandate that inland brines be desalinated for 

beneficial reuse or disposed of via underground injection into high porosity geological 

formations.  Though deep well injection remains a low cost disposal option in many parts of the 

country, past reliance on high volume wastewater injection for oil and gas produced water 

disposal has been linked to increased earthquake frequency in the U.S. and has led to significant 

public backlash against injection in some regions.22-24 The annual production of GCS brines from 

coal fired EGUs alone would represent approximately one third of all U.S. oil and gas 

wastewater produced in 2012 (details in the methods section), but with significantly fewer 
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opportunities for on-site reuse of saline brines than in oil and gas.8, 25 These volumes suggest that 

deep well injection is likely to face feasibility constraints as a stand-alone brine management 

technology. 

An alternative approach is to desalinate extracted brines to yield a freshwater stream and 

a concentrated stream that is then crystallized or injected.  Treating higher salinity brines is 

costlier and more energy intensive; the thermodynamic minimum work required to double the 

concentration of a 20 g/L brine is roughly double that required for a 10 g/L brine.  There are also 

technological barriers to realizing energy efficient brine concentration.  State of the art reverse 

osmosis (RO) membrane separation processes have exceedingly low recovery rates, are 

economically uncompetitive for treating brines above 45 g/L TDS, and are completely 

ineffective above 75 g/L TDS.26 Instead, less efficient thermal separation processes, such as 

mechanical vapor recompression (MVC), are typically deployed to treat high salinity feeds and 

concentrate from RO.27  

We assess the energy intensity and CO2 emissions penalty of extracted GCS brine 

disposal under four brine management scenarios: 1)  no reuse, in which all extracted brine is 

injected in a disposal well; 2) low reuse, in which low salinity extracted brine (< 45 g/L) is 

treated with RO, while RO concentrate and high salinity brine is injected; 3) medium reuse, in 

which brines with < 250 g/L TDS are treated using a combination of RO and MVC, while the 

concentrate and any high salinity brine (> 250 g/L) is injected; and 4) maximum reuse, in which 

all extracted brine is treated with a combination of RO, MVC, and crystallization.  This fourth 

case eliminates injection entirely.  
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The total estimated energy consumption for each brine management scenario also 

incorporates energy consumption embedded in the brine extraction, pretreatment, transport, and 

wastewater disposal steps (Eq. 7.1).   

𝐸𝐶𝑘(𝑆) = �̂�𝑒 + ∑ (𝑉𝐹𝑖  �̂�𝑖 + 𝑦𝑖  �̂�𝑖,𝑝)𝑖 + �̂�𝑡 ∑ (𝑉𝐹𝑗  𝐷𝑗)𝑗 + 𝑉𝐹𝑑  �̂�𝑑  ∀𝑘     (7.1) 

Here, 𝐸𝐶 is the energy consumption [kWh/m3 of extracted brine] for each brine management 

case 𝑘 and is a function of salinity, S [TDS g/L];  �̂� is the specific energy consumption [kWh/m3 

of extracted or treated or disposed water or kWh/(m3-mile-of transported water)] for extraction 

(𝑒), treatment technology (𝑖), pretreatment (p), disposal (𝑑), and transportation (𝑡);  𝑉𝐹 is the 

volume fraction [m3 of treated, transported, or disposed water/m3 of extracted brine] for each 

treatment technology 𝑖 (i.e. reverse osmosis, MVC, and crystallization), transportation segment 

𝑗 (i.e. extraction to treatment, treatment to reuse, and treatment to disposal), and disposal 𝑑;  𝑦𝑖 is 

a binary variable noting whether the treatment technology is used; and 𝐷 is the transportation 

distance [miles] for each transportation segment.  The volume fractions are a function of salinity 

and are determined by the treatment specifications of each brine management case and the 

specific energy consumption for each activity is based on literature values as outlined in the 

methods section. 

For all cases, we observe higher energy penalties for brine management cases with 

decreased injection well disposal and higher beneficial reuse (Figure 7.2A).  The energy 

penalties associated with brine and concentrate treatment exceed the estimated energy benefits of 

reduced transport and disposal options, even for the low salinity brine cases.  Note that these 

estimates assume that beneficial reuse occurs in regions that are otherwise unconstrained by 

water supply.  If inland desalination of GCS brines were displacing inland desalination of other 

brackish water sources, the optimal brine management approach would be determined by 
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comparing the energy consumption per unit of treated water (Figure 7.2B) to locally available 

alternatives.   

 

Figure 7.2. Estimated Energy Consumption of Geologic Carbon Storage Brine Management 

Energy consumption of GCS brine management on an A) extracted volume and B) treated 

volume basis.  Energy consumption is estimated for the four management cases: 1) no reuse, 2) 

low reuse, 3) medium reuse, 4) maximum reuse and incorporates the energy embedded in 

transporting, treating, and disposing of the brine concentrate via deep well injection.  For each 
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case, we use the mid-point of the ranges for transport distance, treatment efficiency, and 

disposal wellhead pressure presented in the methods section.   

 

Brine management energy and emission penalty 

We estimate the energy penalty of managing GCS brine from U.S. reservoirs by 

integrating spatially resolved extracted brine salinity, brine management energy consumption, 

and CO2 sequestration parameters (Eq. 7.2).   

𝐸𝑃𝑘 = 𝐸𝐶𝑘(𝑆) ∗
𝐵𝐸

𝜌𝐶𝑂2

            (7.2) 

Here EP is the energy penalty [kWh/tonne of CO2 stored] for each brine management case (𝑘), 

𝐸𝐶(𝑆) is the energy consumption [kWh/m3 of extracted brine] as a function of salinity (Eq. 7.1), 

𝐵𝐸 is the brine extraction ratio [m3 of extracted brine/m3 of CO2 stored], and 𝜌𝐶𝑂2
 is the density 

of supercritical CO2 [tonne of CO2/m
3 of CO2] in the storage reservoir.  We convert the energy 

penalty to an emission penalty by multiplying by the 2016 national average carbon intensity of 

electricity [453 g CO2/kWh].28 While the national average may underestimate the current carbon 

intensity of electricity in regions with a high number of coal-fired EGUs, when carbon capture 

and sequestration is adopted the carbon intensity will decrease and converge toward this national 

average.  We also convert the energy penalty to a parasitic loss at the power plant by multiplying 

by a power plant carbon capture intensity of 0.001 tonne of captured CO2/net kWh generated as 

estimated by the Integrated Environmental Control Model (IECM).29  

We use the median salinity of the extracted brine salinity distribution for each coal-fired 

EGU to estimate the energy penalty deterministically (Figure 7.3A).  The median energy and 

emission penalties for the extracted brine management cases range from 4.3 - 37 kWh and 1.9 - 

17 kg of CO2 emitted per tonne of CO2 stored.  We observe less than a 5% difference between 
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the 25th and 75th percentile of brine management energy penalties for each case.  We attribute 

this narrow range to the low variation in the median salinity between each coal fired EGU for the 

weighted average CO2 reservoir selection case.  Note that this deterministic calculation does not 

account for intra-formation salinity variability or uncertainty in sequestration and brine 

management processes.   

To address these shortcomings, we augment our deterministic analysis with a Monte 

Carlo simulation (Figure 7.3B).  This approach allows us to stochastically estimate the energy 

and emission penalty for the extracted brine salinity distribution (Figure 7.1C, weighted) and the 

range of treatment technology energy demands, brine extraction ratios, and CO2 densities 

detailed in the methods section.  The median energy and emission penalties for the Monte Carlo 

simulation range from 4.4 to 35 kWh and 2.0 to 16 kg of CO2 emitted per tonne of CO2 stored, 

respectively.  These estimates suggest that brine management will impose the largest post-

capture and compression energy penalty on a per-tonne of CO2 basis, up to an order of 

magnitude greater than carbon transport.30  

As expected, brine management with higher reuse results in higher energy and emission 

penalties.  The average percentage of water reuse for the no, low, medium, and maximum reuse 

are: 0%, 20%, 63%, 93%, respectively.  The low reuse case has a similar energy penalty to the 

no reuse case because most extracted brine is above the treatment salinity threshold for this case 

and is injected for disposal.  Water reuse in the low reuse case is limited by the salinity limits for 

RO, which demonstrates the importance of the evaporative treatment technologies MVC and 

crystallization for realizing the high reuse cases.  The maximum reuse case does not obtain 100% 

water reuse because the crystallized solids contain an assumed 10% water content. 
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Figure 7.3. Brine management energy and emission penalties for four brine management cases: 

1) no reuse, 2) low reuse, 3) medium reuse, 4) maximum reuse. A) Deterministic energy and 

emission penalty for all U.S. coal-fired EGUs using median values for brine salinity and 
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management. The salinity for each reservoir is assumed to equal the median from the capacity 

weighted CO2 storage case. The deterministic values for the energy consumption parameters 

values are the bisection of the ranges presented in the methods section. B) Stochastic energy and 

emission penalty estimated from a Monte Carlo simulation that accounts for the distribution of 

brine salinity within reservoirs and the uncertainty in brine management parameters as 

described in the methods section. 

 

Implications of brine management energy intensity for GCS planning 

There is a narrowing window in which infrastructure investments can mitigate the most 

severe impacts of climate change.  Proposed responses include increasing energy efficiency, 

renewable electricity generation, low carbon fuels, and carbon capture and geologic disposal.31 

Regardless of whether this carbon capture occurs by retrofitting existing power plants,32 

combusting alternative fuels,33 building new facilities that utilize alternative power cycles,34 

capturing carbon at a distributed set of industrial sources,35 or performing direct air capture,36-37 

the post-capture management process is likely to share several common elements.  First, 

widespread deployment of CO2 capture suggests that the volume of captured carbon will exceed 

practical end use applications and will require transport and storage in geologic formations.  

Second, these transport and storage functions will impose cost and energy penalties above and 

beyond those cited for carbon capture processes.  And third, minimizing these cost and energy 

penalties will require spatially resolved accounting of the tradeoffs between transportation, 

storage, and produced brine treatment.  The present work quantifies the expected salinity 

distribution of brines from potential carbon storage reservoirs, delineates management options 

for these brines, and estimates the energy intensity of managing these brines.  In so doing, we 
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contribute the first spatially resolved assessment of energy and emissions tradeoffs between brine 

management strategies.   

While the carbon capture and compression processes are likely to incur energy penalties 

an order of magnitude greater than those of brine management, our study demonstrates the 

potential for wide variation in the energy intensity of brine management across different saline 

reservoirs, reservoir management protocols, and brine disposal practices.  For reference, post-

combustion carbon capture and compression at a conventional coal fired EGU is expected to 

decrease the net thermal efficiency from 30-45% to 25-35%, which is roughly equivalent to a 

30% parasitic loss for the EGU.20, 38 If electricity to manage and dispose of the brines generated 

via ACRM were sourced from a coal fired EGU, the electricity demand would be expected to 

impose an additional parasitic loss of 0.3-8%, assuming a brine management energy penalty of 3-

80 kWh per tonne of CO2 stored.   

7.3 Conclusions 

We find that GCS brine management will impose the largest post-capture and 

compression energy penalty on a per-tonne of CO2 basis, up to an order of magnitude greater 

than carbon transport.  This work suggests that the energy penalty of brine management can be 

reduced by prioritizing storage in low salinity reservoirs, minimizing the brine extraction ratio, 

and limiting the extent of brine recovery.  Unfortunately, each of these management strategies 

imposes their own tradeoffs.  Lower salinity reservoirs have limited storage capacity and their 

spatial distribution may impose higher transportation-related cost and energy penalties.  

Minimizing the brine extraction ratio will limit reservoir storage capacity and decrease the safe 

rate of CO2 injection.  Finally, restricting the use of evaporative technologies for brine 

concentration and freshwater recovery will also increase the volume of brine disposal via deep 
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well injection and will limit beneficial reuse.  Evaluating these tradeoffs within the context of a 

complete carbon capture utilization and storage infrastructure system will be critical to 

maximizing CO2 emission mitigation, minimizing financial costs, and limiting environmental 

externalities.  

7.4 Methods 

Saline reservoir location, capacity, and salinity 

 Saline reservoir location and capacity data were obtained from the NATCARB 

database.17 We down-selected the saline reservoirs to include only those within the 48 

contiguous states, yielding 178 unique reservoirs.  These reservoirs were matched with brine 

water quality samples from the USGS produced water database.18 We developed an empirical 

distribution of reservoir brine salinity using samples collected from a depth of greater than 2500 

feet and a salinity of greater than 10 g/L to ensure sufficient pressure for supercritical CO2 

storage and prevent disruption of potential brackish water drinking water sources.8 The names, 

capacity, and salinity statistics for each saline reservoir are included in Supplementary 

Information Section S1. 

CO2 storage cases 

We used ArcGIS 10.3 to construct the three reservoir selection cases that pair coal-fired 

EGU with saline storage reservoirs.  The first case identifies the single reservoir with the lowest 

median salinity within 500 miles of the EGU.  This 500 mile distance roughly represents the 

maximum transport distance in current large-scale CO2 pipeline networks.39 The second 

identifies the single reservoir that is closest and then shallowest to the coal-fired EGU.  For these 

two cases, the extracted brine salinity distribution for each coal-fired EGU is represented by the 
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empirical salinity distribution for the selected reservoir.  The third case weights the contribution 

of all saline reservoirs within 500 miles by their respective storage capacity.    

Comparison of extracted brine volumes from GCS to oil and gas wastewater 

The potential extracted brine volume from GCS depends on the stored CO2 volume and 

the brine extraction ratio.  Annual CO2 emissions for U.S. coal-fired EGUs was 1.5 billion metric 

tonnes in 2012.19 If these EGUs are retrofitted to capture 90% of CO2 without additional coal 

combustion to offset the energy consumption of carbon capture, then the annual stored CO2 

volume would be 1.35 billion metric tonnes.  If the stored CO2 density is 650 kg per m3 and the 

brine extraction ratio is 0.5 m3 of extracted brine per m3 of stored CO2, the annual volume of 

extracted brine would be 1 billion m3.  This potential annual volume of extracted brine represents 

approximately 30 to 40% of the 2.4 to 3.3 billion m3 wastewater produced by the oil and gas 

industry in 2012.25 

Brine management cases and energy consumption 

 We consider four brine management cases: no reuse, low reuse, medium reuse, and 

maximum reuse.  We estimate the energy consumption of brine management for each case by 

multiplying the energy intensity of extraction, pretreatment, treatment, transport, and disposal by 

the respective volume fractions for each specified brine management case (Eq. 7.1).   

The specific energy consumption of brine extraction, disposal, and transport is based on 

pump energy demand.  We assume a head loss of 100 m for extraction and injection.40 In 

addition to overcoming the head loss, the injection pump must increase the brine pressure to the 

wellhead gauge pressure.  We assume that the range of 0-2.8 MPa wellhead pressure for the 

Class II disposal wells in Oklahoma are representative for future GCS brine disposal.41 We also 

assume that the brine will be transported via pipeline, the head loss ranges from 5-50 m per 1000 
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m, and the transportation distances range from 0-10, 10-50, 0-50 miles for extraction to 

treatment, treatment to beneficial use, and treatment to disposal, respectively (further details in 

SI Section 3). For all pump energy calculations, we assume an isothermal pump efficiency of 

80% and a motor efficiency of 85%.42  

For the no reuse case, all extracted brine is transported to the disposal well (same distance 

as treatment to disposal) and injected without pretreatment. 

For each treatment case, we assume a fixed value of either 0.5 kWh/m3 for RO or 0.05 

kWh/m3 of extracted brine for MVC/crystallization, respectively.26, 43 Since pretreatment energy 

consumption is relatively low, we only consider a fixed value.  

For the low reuse case, extracted brine with salinity < 45 g/L is concentrated to 75 g/L via 

RO.  This concentrated waste and all other extracted brine > 45 g/L is disposed of via injection.  

The energy consumption of RO is estimated using the theoretical minimum work of separation 

and an assumed 40-50% second law efficiency (ratio of minimum work of separation to actual 

electrical energy input).44 We estimate the theoretical minimum work of separation with Gibbs 

free energy calculations obtained from the NRTL method in AspenPlus for a pure NaCl solution.  

A NaCl solution is an appropriate approximation of the extracted brine composition because, on 

average, NaCl comprises 90% of the TDS for the saline reservoirs studied in this work.  Refer to 

the SI section 1 for the median brine composition data for each saline reservoir. 

For the medium reuse case, extracted brine with salinity < 250 g/L is treated with RO 

(same specifications as the low reuse case) and/or MVC to 310 g/L (NaCl saturation). MVC 

consumes between 20-30 kWh per m3 of treated water when concentrating a NaCl brine to 

saturation.27  
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For the maximum reuse case, the extracted brine is treated with RO (same specifications 

as low reuse), MVC (same specifications as medium reuse), and crystallization.  We assume the 

crystallizer consumes between 50-65 kWh per m3 of treated water and generates desalinated 

water and solid waste that is 10% water by weight.45 

Energy and emission penalty 

The energy penalty was estimated as a function of brine salinity, stored CO2 density, 

brine extraction ratio, and brine management energy consumption.  The brine salinity was 

represented by the distribution of extracted brine salinity for the capacity weighted CO2 storage 

case (Figure 7.1C).  We considered a range of stored CO2 density and brine extraction ratio 

based on literature values.  The CO2 density ranged from 550 to 750 kg per m3 of CO2.
46 The 

brine extraction ratio ranged from 0.3 to 1 m3 of extracted brine per m3 of injected CO2.
4, 6 The 

brine management energy consumption as a function of salinity is presented in Figure 7.2 and the 

preceding methods section provides the specific energy consumption of the activities and the 

treatment specifications for the brine management cases.   

We deterministically estimated the energy penalty of GCS brine management for each 

coal-fired EGUs with the median value or midpoint of the ranges for the extracted brine salinity, 

CO2 density (650 kg/m3), brine extraction ratio (0.65), disposal wellhead pressure (1.4 MPa), 

transport distances (5, 30, and 25 miles), RO treatment efficiency (45%), MVC energy 

consumption (25 kWh/m3), and crystallization energy consumption (57.5 kWh/m3). To reflect 

the uncertainty in sequestration and brine management processes, we performed a Monte Carlo 

simulation to stochastically estimate the energy penalty.  The brine salinity distribution was 

developed in the CO2 storage case, while all other parameters, except for CO2 density, were 

modeled with a uniform distribution with the upper and lower bound defined by the stated range.  
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The CO2 density was modeled with a triangular distribution because the range was defined by 

extreme cases.46 The emission penalty and the parasitic loss at the power plant were estimated 

based on conversions with the national average carbon intensity of electricity and the power 

plant carbon capture intensity, as discussed in the brine management energy and emission section 

of the manuscript. 

Supporting Information 

The additional supporting information for this chapter is included in Appendix F. 
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8.0 SUMMARY AND CONCLUSIONS 

8.1 Overview 

 This thesis sought to provide insight into high salinity brine dewatering and management 

by addressing two questions: 1) What dewatering technologies are most cost effective across a 

broad range of brine salinities and water recoveries? and 2) What impact would dewatering 

strategies have on the overall cost and environmental impact of high salinity brine management? 

While developing a consensus on these questions will take a large collective research effort and 

will be context dependent, this thesis demonstrated that optimization modeling is a powerful tool 

to assess the technoeconomic feasibility of emerging dewatering technologies and brine 

management strategies. 

 This thesis was organized across three research objectives that span different scales of 

brine dewatering and management. The objectives were as follows: 

1. At the module-scale, develop models for membrane-based technologies that accurately 

predict the separation performance for high salinity brines 

2. At the process-scale, develop cost optimization models that determine the 

technoeconomic feasibility of emerging membrane-based brine dewatering processes 

3. At the network-scale, develop network-scale supply chain optimization models and 

spatially resolved analyses that identify low cost and environmental impact brine 

management strategies across the U.S. 

 Addressing high salinity brine dewatering and management at these three scales helped 

overcome the barriers associated with assessing the technoeconomic feasibility described in 

chapter 1, including: developing models that accurately predict performance, specifying the 
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design and operation without experience or heuristics, and handling the high uncertainty in 

parameters. 

 At the module-scale, this thesis developed highly detailed models for hydraulic (RO, 

OARO), osmotic (FO), and vapor pressure (MD) driven membrane-based technologies. These 

models were more detailed than previous models in the literature because they did not make 

several common process and solution property simplifications. Despite these additional details, 

the models were often solved in less than two seconds with highly efficient solvers (i.e. 

CONOPT). While this work at the module-scale was primarily emphasized in chapter 2, these 

models were the basis for modeling the separation performance for chapters 3 through 5. Some 

key findings of the module-scale work include quantifying the expected error of common 

simplifications for hydraulic and osmotic membrane processes in chapter 2 and demonstrating 

the strong effects salinity has on the performance of membrane distillation in chapter 5.  

 At the process-scale, this thesis used cost optimization models to determine the 

technoeconomic feasibility of OARO (chapter 4) and gap MD (chapter 5). Specifically, the 

models were used to determine the levelized cost of water across the full dewatering space 

(broad range of feed salinities and water recoveries), extract generalizable guidelines for low cost 

design and operation, and identify the most cost sensitive parameters to prioritize future research. 

Generally, this work found that OARO and gap MD may be cost competitive with mechanical 

vapor compression, the predominant high salinity brine dewatering technology. 

 At the network-scale, this thesis used a supply chain optimization model and spatially 

resolved data analysis to investigate brine management strategies for shale gas wastewater in 

chapter 6 and geologic carbon storage (GCS) in chapter 7. Generally, the results of this work 

emphasized that brine dewatering is a critical component of brine management. In chapter 6, the 
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financial cost optimal and human health and environmental cost optimal strategies preferred 

brine dewatering over transporting the wastewater far distances for disposal. In chapter 7, the 

chosen brine dewatering strategy (low, medium, and high reuse) dominated the energy 

consumption of brine management for GCS. Further, it was found that the energy consumption 

of brine management is likely an order of magnitude greater than the other carbon storage 

activities, suggesting that it should be the key consideration when designing and operating 

carbon storage networks.    

8.2 Recommendations for future work 

 There are three recommendations for future work on understanding high salinity brine 

dewatering and management. 

 The first recommendation for future work is to simulate the performance of dewatering 

technologies for brines with dissolved solids other than NaCl. Throughout this thesis all 

simulated brines were assumed to be only composed of NaCl. This simplification was made 

because the solution properties of NaCl brines are well established. However, most high salinity 

brine applications have waters with many other components (e.g. K+, Mg2+, Ca2+, Br-, SO4
2-). 

Many of these additional components can greatly affect the solution properties of the brine, most 

notably the water vapor pressure, and increase scale formation, which is a detrimental 

phenomenon for many dewatering technologies. Understanding the effects of these 

multicomponent brines on the performance of the dewatering technologies will be critical 

because they will need to treat these waters when deployed in the field.  

 The second recommendation is to assess the benefit of using multiple dewatering 

technologies to achieve a desired separation. For example, it may reduce the cost of 
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concentrating a brine to near saturation if a dewatering train uses OARO or MD to concentrate to 

200 g/L TDS and then uses MVC to concentrate to near saturation. An initial assessment of 

combining multiple dewatering technologies could be achieved by leveraging the simulated 

LCOW as a function of salinity and water recovery for each technology (e.g. Figure 4.5 for 

OARO and Figure 5.3 for gap MD). It would be beneficial to complete similar analyses for the 

other major high salinity dewatering technologies including: MSF, MED, MVC, and direct 

contact/vacuum/sweeping gas MD. Additionally, since some of these technologies could benefit 

from integration with other technologies (i.e. recycle loops, heat exchanger network), it would be 

worthwhile to expand the process-scale models to consider multiple technologies directly. 

 The third recommendation for future work is to incorporate more detailed modeling on 

dewatering processes with network-level brine management optimization models. Generally, 

these network-level models have only considered coarse modeling of dewatering processes, such 

as having a fixed water recovery and unit cost. These types of formulations provide no or little 

insight into the optimal extent of brine dewatering, which is a critical consideration for brine 

management. One way to address this shortcoming is to incorporate dewatering models that 

relate brine salinity, water recovery, and cost. While the detailed process models presented in 

chapter 4 and 5 will likely be too computationally demanding for a network-level optimization 

problem, tractable metamodels could be created from regressions on the simulated results of the 

detailed process models.  
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APPENDIX A: SUPPORTING INFORMATION FOR CHAPTER 2 -

COMPUTATIONAL FRAMEWORK FOR MODELING MEMBRANE 

PROCESSES WITHOUT PROCESS AND SOLUTION PROPERTY 

SIMPLIFICATIONS 

 

Supporting Information Summary:  

The supporting information contains details for 1) solution properties; 2) concentration 

polarization relationships; 3) hydraulic diameter calculation, 4) model scaling, bounding, and 

initializing, 5) additional FO and PRO cases. 

 

This supporting information is 17 pages long and contains 6 figures (Fig. S1-S6), 1 Table (Table 

S1), and 13 equations (Eq. S1-S18). 
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S.1) Solution properties 

The solution properties used in our model include: osmotic pressure, density, viscosity, 

and diffusivity of the solute. All four properties are a function of solution concentration and 

temperature. We model the properties solely as a function of concentration because we assume 

the temperature is constant at 25° C. In this section, we present the solution property 

relationships that were developed from regressions of tabulated solution properties. 

We calculate the osmotic pressure as a function of concentration with Eq. S1 (Eq. 3 in the 

main manuscript). Typically, the solution is assumed to be ideal by setting the osmotic 

coefficient (𝜙) to one. With the ideal solution assumption, the osmotic pressure calculation 

becomes linear with concentration. When we account for a non-ideal solution, the osmotic 

coefficient is a function of concentration and the osmotic pressure calculation becomes 

nonlinear. We determine the osmotic coefficient function by fitting a quadratic function to 

tabulated osmotic coefficient data from Scatchard et al. 1938 and Pitzer et al. 1984 as shown in 

Eq. S2 (R-squared greater than 0.99) and Fig S1A.1-2 Using this osmotic coefficient relationship 

(Eq. S2), we plot the osmotic pressure as a function of concentration in Fig S1B. 

𝜋 = 𝑓𝜋(𝐶) = 𝑖 𝑓𝜙(𝐶) 𝐶
1

𝑀𝑊
 𝑅 𝑇       (S1) 

𝜙 = 𝑓𝜙(𝐶) = 3.14𝐸6 C2  + 2.13𝐸4 C + 0.917      (S2) 

Where 𝜋 is the osmotic pressure [bar], 𝑖 is the number of dissociating ions [-], 𝑓𝜙 is the 

osmotic coefficient [-] as a function of solute concentration, 𝐶 is the solute concentration [g/L], 

𝑀𝑊 is the molecular weight [g/mol], 𝑅 is the gas constant [8.314E-2 L-bar/mol-K], and 𝑇 is the 

temperature [K]. 
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Figure S1. NaCl solution osmotic coefficient (A) and osmotic pressure (B). The dashed line is 

the quadratic fit for the osmotic coefficient (Eq. S2). 

In Figure S2, we present solution density, viscosity, and diffusivity data from Pitzer et al. 

1984, International critical tables, and Lobo 1983, respectively.2-4 The linear fit of the density 

and viscosity is shown in Eq. S3 and S4 (R-squared greater than 0.999). The fourth order fit of 

the diffusivity is shown in Eq. S5 (R-squared of 0.970). These relationships are based on mass 

fraction instead of concentration. The conversion between mass fraction and concentration is 

presented in the main manuscript with Eq. 7. 

𝜌 = 756 𝑋 + 995          (S3) 

𝜇 = 2.15𝐸3 𝑋 + 9.80𝐸4         (S4) 

𝐷 = 153 𝑋4 − 122 𝑋3 + 30.1 𝑋2 − 2.00 𝑋 + 1.51     (S5) 

Where 𝜌 is the density [g/L or kg/m3], 𝑋 is the solution NaCl mass fraction [%], 𝜇 is the 

dynamic viscosity [Pa-s], and 𝐷 is the diffusivity [1E-9 m2/s]. 
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Figure S2. NaCl solution density (A), viscosity (B), and diffusivity (C). The dashed line is the fit 

for each property (Eq S3-S5). 
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S.2) Concentration polarization relationships 

Concentration polarization relationships can be derived by accounting for diffusive and 

convective transport of the solute and using film theory and the steady state assumption. In 

Figure S3, we present a schematic of the membrane stage cross section that notes the direction of 

water and salt flux and the locations of boundary layers and porous support.  

 

Figure S3. Schematic of the membrane stage cross-section with the porous support on the 

permeate (A) and feed (B) side. In our work, we assume the porous support is on the permeate 

side for RO, OARO, and FO and vice versa for PRO. The defined direction of the water (𝐽𝑤) and 

salt (𝐽𝑠) flux are noted with arrows. Since the permeate side concentration is greater than the feed 

side for FO and PRO, the salt flux is negative (as described in the manuscript). The 𝑥 index 

denotes key regions in the membrane cross section. 
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The following derivation for the membrane processes closely follows the work by Yip et 

al. 2011, Bui et al. 2015, and Bartholomew et al. 2018.5-7 The governing equation that balances 

salt flux through the membrane and convective and diffusive transport is Eq. S6. 

𝐽𝑠 = 𝐷∗ 𝑑𝐶

𝑑𝑥
+ 𝐽𝑤 𝐶        (S6) 

Where 𝐽𝑠 and 𝐽𝑤 are the salt flux [kg/m2 s] and water flux [m3/m2 s], 𝐷∗ is the diffusion 

coefficient of the solute [m2/s], 𝐶 is the solute concentration [kg/m3], and x is the spatial 

dimension [m]. Note that the diffusion coefficient, 𝐷∗, varies based on the region. The effective 

diffusion coefficient in the porous support, 𝐷𝑠, is related to the diffusion coefficient of the solute 

by 𝐷𝑠 =
𝐷

𝜏
. Where 휀 is the porosity and 𝜏 is the tortuosity of the porous support. 

 

 To determine the feed side relationship, we separate the variables and integrate Eq. S6 

from the bulk to the membrane interface. For RO, OARO, and FO there is no feed side porous 

support and we obtain Eq. S7a. For PRO with a feed side porous support, we obtain Eq. S7b. The 

integration of Eq. S7a and S7b is shown in Eq. S8a and S8b. After solving for the feed side 

interfacial membrane concentration (𝐶𝑚𝑓) and substituting the feed side boundary layer 

thickness, 𝛿𝑓, for  𝑥1 − 𝑥0, and the porous support thickness, 𝑡, for 𝑥2 − 𝑥1, we obtain equation 

S9a and S9b. We further substitute the feed side mass transfer coefficient, 𝑘𝑓, for 𝐷/𝛿𝑓 and the 

structural parameter, 𝑆, for 𝑡 𝜏/𝜖 and obtain equation S10a and S10b, which are Eq. 8a and 8b in 

the main manuscript. 

 

∫
𝑑𝐶

𝐽𝑤 𝐶−𝐽𝑠

𝐶𝑚𝑓

𝐶𝑏𝑓
= ∫

1

𝐷
 𝑑𝑥

𝑥1

𝑥0
       (S7a) 

1

Jw
ln (

𝐽𝑤 𝐶𝑚𝑓−𝐽𝑠

𝐽𝑤 𝐶𝑏𝑓−𝐽𝑠
) =

(𝑥1−𝑥0)

𝐷
        (S8a) 
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𝐶𝑚𝑓 = 𝐶𝑏𝑓 exp (𝐽𝑤
𝛿𝑓

𝐷
) −

𝐽𝑠

𝐽𝑤
(exp (𝐽𝑤

𝛿𝑓

𝐷
) − 1)    (S9a) 

𝐶𝑚𝑓 = 𝐶𝑏𝑓 exp (
𝐽𝑤

𝑘𝑓
) −

𝐽𝑠

𝐽𝑤
(exp (

𝐽𝑤

𝑘𝑓
) − 1)     (S10a) 

 

∫
𝑑𝐶

𝐽𝑤 𝐶−𝐽𝑠

𝐶𝑚𝑓

𝐶𝑏𝑓
= ∫

1

𝐷
 𝑑𝑥

𝑥1

𝑥0
+ ∫

1

𝐷𝑠  𝑑𝑥
𝑥2

𝑥1
      (S7b) 

1

Jw
ln (

𝐽𝑤 𝐶𝑚𝑓−𝐽𝑠

𝐽𝑤 𝐶𝑏𝑓−𝐽𝑠
) =

(𝑥1−𝑥0)

𝐷
+

(𝑥2−𝑥1)

𝐷𝑠       (S8b) 

𝐶𝑚𝑓 = 𝐶𝑏𝑓 exp (𝐽𝑤 [
𝛿𝑓

𝐷
+

 𝑡

𝐷𝑠
]) −

𝐽𝑠

𝐽𝑤
(exp (𝐽𝑤 [

𝛿𝑓

𝐷
+

 𝑡

𝐷𝑠
]) − 1)  (S9b) 

𝐶𝑚𝑓 = 𝐶𝑏𝑓 exp (𝐽𝑤 [
1

𝑘𝑓
+

 𝑆

𝐷
]) −

𝐽𝑠

𝐽𝑤
(exp (𝐽𝑤 [

1

𝑘𝑓
+

 𝑆

𝐷
]) − 1)  (S10b) 

 

 We determine the permeate side relationship with the same method as the feed side. We 

separate the variables and integrate Eq. S6 from the membrane interface to the bulk (Eq. S11a 

and S11b). Note that Eq. S6 is integrated starting from the membrane interface, as opposed to the 

bulk, because the direction of dimension 𝑥 is the same as the water flux. After solving for the 

concentration at the membrane interface and making similar substitutions as the feed side, we 

obtain Eq. S14a and S14b, which are the same as Eq. 9a and 9b in the main manuscript. 

 

∫
𝑑𝐶

𝐽𝑤 𝐶−𝐽𝑠

𝐶𝑏𝑝

𝐶𝑚𝑝
= ∫

1

𝐷𝑠  𝑑𝑥
𝑥3

𝑥2
+ ∫

1

𝐷
 𝑑𝑥

𝑥4

𝑥3
      (S11a) 

1

Jw
ln (

𝐽𝑤 𝐶𝑏𝑝−𝐽𝑠

𝐽𝑤 𝐶𝑚𝑝−𝐽𝑠
) =

(𝑥3−𝑥2)

𝐷𝑠 +  
(𝑥4−𝑥3)

𝐷
      (S12a) 

𝐶𝑚𝑝 = 𝐶𝑏𝑝 exp (𝐽𝑤 (
 𝑡

𝐷𝑠
+

𝛿𝑠

𝐷
)) −

𝐽𝑠

𝐽𝑤
(exp (𝐽𝑤 (

 𝑡

𝐷𝑠
+

𝛿𝑠

𝐷
)) − 1)  (S13a) 

𝐶𝑚𝑝 = 𝐶𝑏𝑝 exp (𝐽𝑤 (
𝑆

𝐷
+

1

𝑘𝑝
)) +

𝐽𝑠

𝐽𝑤
(1 − exp (𝐽𝑤 (

𝑆

𝐷
+

1

𝑘𝑝
)))  (S14a) 
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∫
𝑑𝐶

𝐽𝑤 𝐶−𝐽𝑠

𝐶𝑏𝑝

𝐶𝑚𝑝
= ∫

1

𝐷𝑠  𝑑𝑥
𝑥4

𝑥3
       (S11b) 

1

Jw
ln (

𝐽𝑤 𝐶𝑏𝑝−𝐽𝑠

𝐽𝑤 𝐶𝑚𝑝−𝐽𝑠
) =

(𝑥4−𝑥3)

𝐷
       (S12b) 

𝐶𝑚𝑝 = 𝐶𝑏𝑝 exp (𝐽𝑤
𝛿𝑠

𝐷
) −

𝐽𝑠

𝐽𝑤
(exp (𝐽𝑤

𝛿𝑠

𝐷
) − 1)    (S13b) 

𝐶𝑚𝑝 = 𝐶𝑏𝑝 exp (
𝐽𝑤

𝑘𝑝
) +

𝐽𝑠

𝐽𝑤
(1 − exp (

𝐽𝑤

𝑘𝑝
))     (S14b) 
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S.3) Hydraulic diameter calculation 

The hydraulic diameter is an important parameter used in the Reynolds number, mass 

transfer coefficient, and pressure drop relationships. We determine the hydraulic diameter from 

the specified channel dimensions and mesh configuration.  

We use the same mesh configuration assumed in Guillen and Hoek 2009, which is the 

study that developed the Sherwood number and friction factor correlations used in our model.8 

Guillen and Hoek represented the mesh with isolated filaments that are separated by a specified 

distance and are perpendicular to the bulk flow, as shown in Figure S4. For this configuration, 

the hydraulic diameter is determined with Eq. S15.  

𝑑ℎ =
4 (𝑓𝑙𝑜𝑤 𝑎𝑟𝑒𝑎)

(𝑤𝑒𝑡𝑡𝑒𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒)
=

4(𝑙𝑓 ℎ𝑐 − 𝐴𝑓)

2 𝑙𝑓 + 𝑃𝑓
      (S15) 

Where 𝑑ℎ is the hydraulic diameter [m], 𝑙𝑓 is the center to center distance between filaments [m], 

ℎ𝑐 is the channel height [m], 𝐴𝑓 is the cross-sectional area of the filament [m2], and 𝑃𝑓 is the 

perimeter of the filament. 

 

Figure S4. Channel and mesh configuration. Key dimensions such as height of channel (ℎ𝑐), 

diameter of filament (𝑑𝑓), and center to center distance between filaments (𝑙𝑓) are noted. 
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To determine the hydraulic diameter, we need to make some assumptions regarding the 

mesh in the channel. We assume the filament shape is circular and channel height to diameter of 

filament ratio is 0.5 because those were the base case assumptions considered in Guillen and 

Hoek. We also fix the distance between filaments so that the void space of the mesh is 97%. We 

assume the void space is 97% because it is the average void space for the two center to center 

distance between filaments (𝑙𝑓) considered in Guillen and Hoek 2009. With these assumptions, 

the hydraulic diameter is determined with Eq. S16-S18 for a channel height of 1 mm (RO case) 

and 2 mm (OARO, FO, PRO cases) as 1.73 mm and 3.46 mm, respectively.  

𝑑𝑓 = 0.5 ℎ𝑐         (S16) 

𝑙𝑓 =
𝜋 𝑑𝑓

2

4 ℎ𝑐(1− )
         (S17) 

𝑑ℎ =
4(𝑙𝑓 ℎ𝑐− 

𝜋

4
 𝑑𝑓

2 )

2 𝑙𝑓 + 𝜋 𝑑𝑓 
        (S18) 

Where 𝑑𝑓 is the diameter of the filament [m] and 휀 is the void space of the mesh.   
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S.4) Model scaling, bounding, and initializing 

Scaling, bounding, and initializing variables allows the solver to reliably and efficiently find the 

single feasible solution. This section describes our assumptions regarding the variable scale, 

bounds, and initial values. 

We rescale some variables as follows: 

• Water (𝐽𝑤) and salt (𝐽𝑠) flux in units of LMH and g/m2-h, respectively 

• Pressure loss per unit length (𝑃𝐿) in units of Pa/m 

• Mass transfer coefficients (𝑘) in units of mm/h 

We assume the following bounds: 

• Average water flux, 𝐽𝑤𝑎𝑣𝑔, lower and upper bound are 0.1 and 20 LMH, respectively. 

Since RO has significantly higher water flux, we adjust the bounds for that process to 0.5 

and 50 LMH, respectively. Local water flux, 𝐽𝑤, lower and upper bound are determined 

from the average water flux by dividing by 5 and multiplying by 1.5 

• Average and local salt flux, 𝐽𝑠𝑎𝑣𝑔 and 𝐽𝑠, lower and upper bound are 0 and 50 g/m2-h 

• Reynolds number, 𝑅𝑒, lower and upper bound are 100 and 2000 

• Schmidt number, 𝑆𝑐, lower and upper bound are 600 and 1000 

• Pressure loss per unit length, 𝑃𝐿, lower and upper bound are 0 and 30 kPa/m 

• Salt recovery, 𝑆𝑅, lower and upper bound are 0 and 0.2 
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Other bounds can be estimated with mass balance or other relationships from the case study 

specifications (e.g. inlet concentration, flowrate, and water recovery for the state variables 

bounds) or previous bounds (e.g. Reynolds, Schmidt, and diffusion coefficient bounds for the 

mass transfer coefficient bounds). 

For the initial values, we found that we only need to supply an initial guess for the average water 

flux for CONOPT to converge to the feasible solution. Our initial guess for the average water 

flux was 30 LMH for RO and 2 LMH for OARO, FO, and PRO. We also applied this guess to 

the local water flux.  



218 
 

S.5) Additional FO and PRO Cases 

The FO and PRO case studies presented in the main manuscript have a nearly flat water 

flux profile, which results in a small difference between the two simplified inlet-outlet models. 

Here we adjust two specifications for each process to create steeper water flux profiles. For both 

processes, we adjust the permeate side flowrate fraction. We then also adjust the permeate side 

inlet concentration for FO and the permeate side inlet hydraulic pressure for PRO so that the 

average water flux is within 5% of the case presented in the main manuscript. The adjusted 

specifications for these cases are provided in Table S1.  

Table S1. Parameter specifications for two additional FO cases. 

  FO-2 FO-3 PRO-2 PRO-3 

Inlet specifications 

   

  

Permeate side mass flowrate fraction [-] 0.25 ± 5% 0.5 ± 5% 0.4 ± 5% 0.6 ± 5% 

Permeate side inlet concentration [g/L] 205 ± 5% 145 ± 5% 35 ± 5% 35 ± 5% 

Permeate side inlet pressure [bar] NS NS 11 ± 5% 15 ± 5% 

 

The water flux profile for the additional FO and PRO cases are presented in Fig. S5. 

While the local water flux varies across the membrane stage by more than 30% for the cases, the 

shape of the water flux profiles are substantially different. For case FO-2, the local water flux 

increases from the feed inlet to the feed outlet and is nonlinear. Conversely, for case FO-3, the 

local water flux decreases from the feed inlet to the feed outlet and is nearly linear. For case 

PRO-2, the local water flux increases from the feed inlet to the feed outlet and is nonlinear. For 

case PRO-3, the local water flux decreases from the feed inlet to the feed outlet and is more 

linear. The profiles are different because the case specifications affect where the lowest driving 
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force occurs. For example, in FO, a low inlet draw flowrate with a high concentration (case FO-

2), the lowest driving force occurs at the feed inlet, where for a high inlet draw flowrate with a 

low concentration (case FO-3), the lowest driving force occurs at the feed outlet. 

The average water flux for the additional FO and PRO cases are presented in Fig. S6. The 

mean formulations with the lowest average water flux error differ for each case for both 

processes. The arithmetic mean formulation has the lowest error for the cases with the more 

linear water flux profiles (FO-3 and PRO-3), where the log and geometric mean formulations 

have the lowest error for cases with the more non-linear water flux profiles (FO-2 and PRO-2). 

We observe less than a 5% absolute difference in the average water flux error between the 

different mean formulations for three of the cases (FO-2, FO-3, PRO-3) and a slightly larger 

spread up to 10% for case PRO-2. We also find that all three mean formulations overestimate the 

average water flux for case FO-2 by roughly 5%, which suggests other means that more heavily 

weight the lower water flux (e.g. harmonic mean) would have a smaller error for this specific 

case. 

The most accurate mean for FO and PRO inlet-outlet modeling can be selected if the 

shape of the water flux profile is predicted. However, the main benefit of inlet-outlet modeling is 

the reduced computational demand from not determining the profile of variables along the 

membrane stage. Therefore, practical application of inlet-outlet modeling for FO and PRO 

processes will have uncertain accuracy implications. 
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Figure S5. Water flux profiles for A) FO-2, B) FO-3, C) PRO-2, D) PRO-3 cases. Each profile is 

the solution of the 100 node finite difference model. The specifications for each case are noted in 

Table 1 in the main manuscript and Table S1. 
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Figure S6. Accuracy of the inlet-outlet model formulations relative to the 100 node model for A) 

FO-2, B) FO-3, C) PRO-2, and D) PRO-3. The distribution of the water flux errors was 

developed using a Monte Carlo simulation that varied the specified parameters by ±5%, as noted 

in Table 1 in the main manuscript and Table S1. 
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APPENDIX B: SUPPORTING INFORMATION FOR CHAPTER 3 - 

OSMOTICALLY ASSISTED REVERSE OSMOSIS MODEL FOR TREATING 

HIGH SALINITY BRINES 
 

 

 

Supporting Information Summary:  

The supporting information contains details for 1) osmotic pressure calculations; 2) discrete 

element single module model; 3) multi-module model; 4) base case concentration profile along 

the first OARO module; 5) determining salt rejection; 6) pressure drop effects. 

 

This supporting information is 19 pages long and contains 9 figures (Fig. S1-S9), and 14 

equations (Eq. S1-S13). 
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1. Osmotic pressure calculations 

The osmotic pressure was calculated by Eq. (1). 

𝜋 = 𝑖𝜙𝐶𝑅𝑇           (1) 

Where 𝜋 is the osmotic pressure, 𝑖 is the number of dissociating species (2 for sodium chloride), 

𝜙 is the osmotic coefficient, 𝐶 is the concentration of the solute, R is the gas constant, and 𝑇 is 

the temperature. 

In our model, we assumed the only solute within both the feed and sweep was sodium chloride 

(NaCl). We obtained the concentration dependent osmotic coefficient for NaCl from Scatchard et 

al.1 Since the dissociation of NaCl results in two ions the NaCl molar concentration was 

multiplied by two to obtain the solute concentration. For all simulations, we assumed that the 

solutions were at 298 K. Figure S1 presents the osmotic pressure spanning the range of NaCl 

concentrations investigated in this work. 
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Figure  S1. The osmotic pressure of a sodium chloride solution at 298K as calculated by the 

Morse equation and the osmotic coefficient from Scatchard et al.1 The dotted line is the assumed 

membrane burst pressure of 70 bar. 

 

 

  



 

226 
 

2. Discrete element single module model 

2.1 Discrete model mass balance and water transport 

We modeled the flat plate counter-current membrane module as a discrete set of 100 nodes. A 

visual representation of the nodes is presented in Figure S2. For each node, the inputs are the 

solution flowrate (𝑄) and NaCl concentration (𝐶) entering the node (either from a previous node 

or an initial condition) and an estimated water flux (𝐽𝑊) and salt flux (𝐽𝑆). The model then uses 

mass balance equations (2)-(5), to determine the flowrate and concentration of the solution 

leaving the node. Since the feed (𝑓) and sweep (𝑠) flows are counter-current, the index of the 

inlets and outlet of the nodes are different and is reflected in Figure S2 and in Eq. (2), Eq. (3), 

Eq. (4), and Eq. (5).  

Eq. (2) and Eq. (3) calculate the output flowrate and concentration of feed nodes.  

𝑄𝑓,𝑛 =
𝑄𝑓,𝑛−1𝜌𝑓,𝑛−1−(𝐽𝑊,𝑛+𝐽𝑆,𝑛)𝐴𝑚

𝜌𝑓,𝑛
        (2) 

𝐶𝑓,𝑛 =
𝑄𝑓,𝑛−1𝐶𝑓,𝑛−1−𝐽𝑆,𝑛𝐴𝑚

𝑄𝑓,𝑛
         (3) 

Where 𝑄𝑓,𝑛 is the feed flowrate (
𝑚3

𝑠
 ) out of node 𝑛, 𝑄𝑓,𝑛−1 is the feed flowrate (

𝑚3

𝑠
)  into node 

𝑛, 𝜌𝑓 is the feed density (
𝑘𝑔

𝑚3) of the respective nodes, 𝐽𝑊,𝑛 and 𝐽𝑆,𝑛 are the water and salt flux 

(
𝑘𝑔

𝑚2𝑠
), respectively, in node 𝑛, 𝐴𝑚 is the membrane area (𝑚2) of the node, and 𝐶𝑓,𝑛 is the feed 

NaCl concentration (
𝑘𝑔

𝑚3) out of node 𝑛. 

Eq. (4) and Eq. (5) calculate the output flowrate and concentration of sweep nodes. 
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𝑄𝑠,𝑛 =
𝑄𝑠,𝑛+1𝜌𝑠,𝑛+1+(𝐽𝑊,𝑛+𝐽𝑆,𝑛)𝐴𝑚

𝜌𝑠,𝑛
            (4) 

𝐶𝑠,𝑛 =
𝑄𝑠,𝑛+1𝐶𝑠,𝑛+1+𝐽𝑆,𝑛𝐴𝑚

𝑄𝑠,𝑛
             (5) 

Where 𝑄𝑠,𝑛 is the sweep flowrate out of node 𝑛, 𝑄𝑠,𝑛−1 is the sweep flowrate into node 𝑛, 𝜌𝑠 is 

the sweep density (
𝑘𝑔

𝑚3
). 

 

 

Figure S2. Discrete node, flow directions, and variables for the flat plate counter-current 

membrane module. The dots represent the center of each node and the surrounding box is the 

boundaries. A zoomed in subsection of node N is provided with the relevant flowrates (𝑄), 

concentrations (𝐶), water flux (𝐽𝑊), salt fulx (𝐽𝑆) labeled. 
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The water transport is calculated using equation (6).  

𝐽𝑤 = 𝐴[(𝑃𝑓 − 𝑃𝑠) − (𝜋𝑓,𝑚 − 𝜋𝑠,𝑚)]       (6) 

Here, 𝐽𝑤 is the water flux (
𝑚3

𝑚2 𝑠
) from the feed to the sweep, 𝐴 is the pure water permeability 

coefficient (
𝑚

𝑠 𝑃𝑎
),  𝑃𝑓 and 𝑃𝑠 are the hydraulic pressures (𝑃𝑎)  for the feed and sweep, and 𝜋𝑓,𝑚 

and 𝜋𝑠,𝑚 are the osmotic pressure (𝑃𝑎) at the membrane surface for the feed and sweep. The 

osmotic pressure of a solution is estimated as a function of solute concentration using equation (1). 

 The solute concentration at the membrane surface for the feed and sweep can be calculated from 

equation (7) and (8).{McCutcheon, 2006 #40}   

𝐶𝑓,𝑚 = 𝐶𝑓,𝑏 exp (
𝐽𝑤

𝑘
)         (7) 

𝐶𝑠,𝑚 = 𝐶𝑠,𝑏 exp(−𝐽𝑤𝐾)        (8) 

Where, 𝐶𝑓,𝑚 and 𝐶𝑠,𝑚 are the solute concentrations at the membrane surface for the feed and sweep, 

𝐶𝑓,𝑏 and 𝐶𝑠,𝑏 are the respective bulk solute concentrations of the feed and sweep, 𝑘 is the feed mass 

transfer coefficient (
𝑚

𝑠
), and 𝐾 is the solute resistivity for diffusion in the sweep side porous 

support (
𝑠 

𝑚
); refer to McCutcheon and Elimelech for further direction in determining these 

parameters.{McCutcheon, 2006 #40} Note that the equations in McCutcheon and Elimelech refer 

to osmotic pressure instead of concentration. That relationship is only valid with their assumption 

that the osmotic pressure is linearly proportional to the concentration, which is not the case for 

high salinity brines (Figure S1). 
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If equation (7) and (8) are substituted into equation 6 the water flux can be calculated from the 

hydraulic pressure and the bulk concentration at each node, as shown in equation (9) 

𝐽𝑤 = 𝐴 [(𝑃𝑓 − 𝑃𝑠) − (𝜋 (𝐶𝑓,𝑏 exp (
𝐽𝑤

𝑘
)) − 𝜋(𝐶𝑠,𝑏 exp(−𝐽𝑤𝐾)))]   (9) 

Where the osmotic pressure, 𝜋, is a function of the estimated concentration at the membrane 

surface and can be calculated with equation (1). 

The water flux can be calculated at node from the implicit equation (9) with a nonlinear root 

solver, e.g. fzero in MATLAB. In order to use the solver, intermediate variables such as 

hydraulic pressure, osmotic pressure, mass transfer coefficient, and solute resistivity for diffusion 

must be determined for each node. We determine the hydraulic pressure from its position along 

the membrane because we assume a constant pressure drop of 5 kPa per m of membrane length. 

The mass transfer coefficient and solute resistivity for diffusion changes along the membrane 

because the solution density, diffusivity, and viscosity are concentration dependent. The 

concentration dependent relationships are shown in SI section 2.2. 

For the results in the paper, we assume that there is no salt transport across the membrane. This 

assumption is relaxed in SI section 4 to assess salt rejection.  

2.2 Concentration dependent intermediate variables 

The NaCl solution density, diffusivity, and viscosity are concentration dependent. We 

determined the relationships from regressions of data from a literature source or databases.3,4 

Density: The NaCl solution density is based on data from the International Critical Tables.3 The 

data was linearly fit and presented in Figure S3. 
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Figure S3. NaCl solution density versus concentration. 

 

Diffusivity: The NaCl solution diffusivity is based on data from Lobo (1993).4 We use a linear fit 

at low concentrations and a 4th order polynomial fit at moderate and high concentration, which 

are presented in Figure S4. 

 

y = 0.0369 x + 1.0006 
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Figure S4. NaCl solution diffusivity versus concentration. 

 

Viscosity: The viscosity of NaCl solution is based on data from the international critical table.3 

We apply a linear fit, which is presented in Figure S5.  

 

 

C < 0.05 M, y = -1.528 x + 1.587 

C > 0.05 M, y = 0.0005 x4 – 0.0088 x3 

 + 0.0447 x2 – 0.045 x + 1.489 
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Figure S5. NaCl solution viscosity versus concentration. 

 

 

  

y = 0.0133 x2 + 0.0734 x + 1.003 
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2.3 Model solution method 

We use an iterative approach to solve the counter-current module. The solution steps are 

presented in Figure S3. The model is solved by guessing a water flux, determining the 

concentrations with the mass balance equations (2)-(5), calculating the water flux using the 

concentrations, and then updating the guessed water flux. These steps continue until the guessed 

and calculated flux is within 0.1% for each node. Since the density is concentration dependent 

the mass balance equations (2)-(5) become implicit. To avoid the more demanding implicit 

calculations for the mass balance, the density was assumed to be based on the concentrations of 

the previous iteration. This assumption has a negligible effect on the results as the density has 

less than a 0.1% difference between the final iterations. 

 

Initialization: the model is initiated by guessing there is no water flux, 𝐽𝑊𝐺,𝑛, setting the feed 

density, 𝜌𝑓,𝑛, based on the feed inlet concentration, setting the sweep density, 𝜌𝑆,𝑛, based on the 

sweep inlet concentration for all nodes (𝑛).  

 

Iteration: Given a guessed water flux, 𝐽𝑊𝐺,𝑛, and set density for the feed and sweep, 𝜌∗,𝑛, the 

mass balance calculations can be solved to determine the feed and sweep flowrate, 𝑄∗,𝑛, and 

concentration, 𝐶∗,𝑛 for all nodes (𝑛). Given the concentrations the water flux can be calculated, 

𝐽𝑊𝐶,𝑛. Then the relative error between the guessed water flux and calculated water flux is 

calculated. If the relative error in the water flux is less than 0.1% for each node, then the model is 

considered solved. If the relative error is greater than 0.1% for each node, then the guessed water 

flux is updated with equation (10). 

𝐽𝑊𝐺,𝑛
∗ = 𝛼𝐽𝑊𝐶,𝑛 + (1 − 𝛼)𝐽𝑊𝐺,𝑛       (10) 
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Where 𝐽𝑊𝐺,𝑛
∗ is the updated guessed water flux, 𝐽𝑊𝐶,𝑛 is the calculated water flux based on the 

concentrations, 𝐽𝑊𝐺,𝑛 is the previously guessed water flux, and 𝛼 is the step size (we use 0.3). 

 

 

 

Figure S6. Solution method for the a single OARO module. The method iterates until the guessed 

flux, 𝐽𝑊𝐺,𝑛, agrees within 0.1% with the calculated flux,  𝐽𝑊𝐶,𝑛. The flowrate, 𝑄∗,𝑛, concentration, 

𝐶∗,𝑛, and density, 𝜌∗,𝑛, are determined for the feed and sweep (both denoted as subscript ∗) for 

all nodes (𝑛). 
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3. Multi-module model 

The OARO process is typically comprised of multiple OARO modules and one RO module. 

Each of these modules must have the same water transport across their membranes in order to 

satisfy our assumption that the process is operating at steady state. Once we define the 

specifications of the first OARO module and determine its water permeate volume, we must 

determine what design variables result in the same permeate volume for the successive modules. 

 

The key design variables for the OARO module are: membrane area, module dimensions, feed 

and sweep inlet pressure, sweep flowrate, and sweep concentration. We assume that all of the 

design variables, except the sweep concentration, are constant throughout the OARO modules. 

This simplifying assumption allows there to be one free variable, the sweep concentration, so 

that the entire OARO process becomes deterministic based on the specifications of the first 

OARO module. For the final RO unit, the free variable becomes the feed inlet pressure since the 

RO module does not have a sweep. The method for determining the operation of the entire 

OARO process is presented in Figure S7. 
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Figure S7. Method for determining the steady state multi-module configuration of the OARO 

process. In order to enforce steady state operation, the water permeate volume across the 

membrane in each module, 𝑊𝑉, must be the same. 

We estimate the energy consumption of the OARO process through the energy demand of the 

high pressure pumps. A pressure exchanger is used for each module in order to recover pressure 

from the feed outlet to the feed inlet. The relationship between the change in pressure for the 

feed inlet and feed outlet is provide in equation (11a) and solved for the intermediate feed inlet 

pressure in equation (11b). 

𝑄𝑓,𝑖𝑛(𝑃𝑖𝑛𝑡 − 𝑃𝑠,𝑜𝑢𝑡) = 𝑄𝑓,𝑜𝑢𝑡(𝑃𝑓,𝑜𝑢𝑡 − 𝑃𝑠,𝑖𝑛)𝜂𝑒𝑥     (11a) 

𝑃𝑖𝑛𝑡 =
𝑄𝑓,𝑜𝑢𝑡(𝑃𝑓,𝑜𝑢𝑡−𝑃𝑠,𝑖𝑛)𝜂

𝑄𝑓,𝑖𝑛
         (11b) 
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Where 𝑃𝑖𝑛𝑡 is the intermediate feed inlet pressure before the high pressure pump, 𝑄∗,∗ and 𝑃∗,∗ are 

the inlet (𝑖𝑛) and outlet (𝑜𝑢𝑡) flowrate and pressure of the feed (𝑓) and sweep (𝑠), and 𝜂𝑒𝑥 is the 

pressure exchanger efficiency, which is assumed to be 96%. Figure S8 provides a diagram of 

theses variables. 

After the intermediate feed inlet pressure is determined, the power demand of the high pressure 

pump can be calculated with equation (12). 

𝑃𝑃 =
𝑄𝑓,𝑖𝑛(𝑃𝑓,𝑖𝑛−𝑃𝑓,𝑖𝑛𝑡)

𝜂𝑝𝑢𝑚𝑝
         (12) 

Where 𝑃𝑃 is the power demand of the high pressure pump and 𝜂𝑝𝑢𝑚𝑝 is the isentropic efficiency 

of the pump, which is assumed to be 80%. The power demand of the pump can be converted to 

an energy consumption per unit volume of product water by dividing by the volumetric flowrate 

of freshwater recovered. The summation of the energy demand for all the pumps is the estimated 

energy consumption of the OARO process. 
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Figure S8. Pressure and flowrate variables relevant for calculating the energy consumption of 

the high pressure pumps. 

4. Base case concentration profile along the first OARO module. 

The first module of the base case, defined in the paper, has a feed inlet TDS concentration of 125 

g/L and a sweep inlet TDS concentration of 175 g/L. The concentration profile across the 

membrane is presented in Figure S9. While the sweep inlet TDS concentration is greater than the 

feed inlet, due to the counter-current operation the feed TDS concentration is greater than the 

sweep along the membrane. Notice that the sweep outlet TDS concentration is 100 g/L, which is 

below the inlet feed concentration. This decrease in TDS concentration is essential for a series of 

OARO modules to eventually decrease the TDS concentration enough to effectively use a RO 

module and produce a freshwater product. If the sweep TDS concentration was greater than the 

feed TDS concentration, than the module operates like pressure assisted forward osmosis and 

would require a final separation step like a distillation column, instead of a RO unit. 
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Figure S9. Concentration profile of the feed and sweep for the first OARO module in the base-

case scenario. 

 

5. Determining salt rejection. 

For the results in the paper, we assume that there is no salt flux across the membrane. However, 

we used equation (13) for a preliminary estimate of salt flux.  

𝐽𝑆 = 𝐵[𝐶𝑓 − 𝐶𝑠]          (13) 

Where (𝐽𝑆) is the salt flux (
𝑘𝑔

𝑚2 𝑠
), 𝐵 is the salt permeability coefficient (

𝑚

𝑠
), and 𝐶 is the 

concentration, (
𝑘𝑔

𝑚3 
), of the feed (𝑓) and sweep (𝑠). The membrane that we based the water 

permeability and structural parameter has a salt permeability coefficient of 7.7𝑥10−8.5 

 

When the salt flux was included for the base case, defined in the paper, 1.7% of the mass of salt 

transported across the membrane. The small amount of salt mass transported across the 

membrane confirms that the salt rejection is high. Including the salt flux increased the estimated 
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water transport by about 2%. This small beneficial effect would result in a similar decrease in the 

energy consumption. However, the water and salt transport across the multiple modules would 

not be equal, and steady state operation would not be satisfied. The actions required to ensure 

steady state operation, such as purge streams or addition of saline solutions to the sweep cycles, 

would offset the benefits associated with increased water transport. The unsteady state operation 

associated with the salt flux is out of the scope of this preliminary analysis of the OARO process.  

 

6. Pressure drop effects. 

The sensitivity of the assumed pressure drop of 5 kPa per meter of module length was 

investigated. When the pressure drop was tripled to 15 kPa per meter, the base case total water 

transport changed by less than 0.1% and the energy consumption increased by less than 5%. 
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APPENDIX C: SUPPORTING INFORMATION FOR CHAPTER 4 -  

COST OPTIMIZATION OF OSMOTICALLY ASSISTED  

REVERSE OSMOSIS 
 

 

 

Supporting Information Summary: 

The supporting information contains details for 1) solution properties; 2) interfacial membrane 

concentration; 3) optimization model formulation; 4) additional details on the case studies; 5) 

tradeoffs between energy consumption and cost; 6) key design and operational variables for the 

OARO process; 7) additional sensitivity analyses. 

 

This supporting information is 46 pages long and contains 13 figures (Figures S1-S13) and 98 

equations (Equations S1-S98). 
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S.1) Solution properties 

The NaCl solution properties used in our model include: diffusivity of the solute, density, 

viscosity, and osmotic pressure. These solution properties vary based on solution temperature 

and NaCl concentration. For our work, we assume a constant temperature of 25° C. We also 

assume the diffusivity of NaCl is 1.5E-9 m2/s and not dependent on NaCl concentration.1 This 

simplification is common in literature because the diffusivity varies by less than 10% between 

dilute and saturated solutions.2  

Throughout this section we present the solution property relationships that were 

developed from regressions of tabulated data, a similar presentation is included in the 

supplementary information of our other work.3 

S.1.1) Density 

The solution density varies with NaCl mass fraction as shown in Figure S1. We fit 

density data from the USGS with a linear relationship, shown in equation S1.4 The resulting 

regression has an R2 value greater than 0.99. 

𝜌(𝑋) = 750.6 𝑋 + 995.1         (S1) 

Where 𝜌 is the density [g/L or kg/m3] and 𝑋 is the solution NaCl mass fraction [%]. 
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Figure S1. Density of NaCl solution at 25° C.4 The dotted line is the linear fit (equation S1). 

 

The density can be used to relate the NaCl concentration and the NaCl mass fraction as 

shown in equation S2 and S3.  

𝐶(𝑋) =  𝜌(𝑋) 𝑋 = 750.6 𝑋2 + 995.1 𝑋       (S2) 

𝑋(𝐶) =  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑜𝑜𝑡 𝑜𝑓 (750.6 𝑋2 + 995.1 𝑋 − 𝐶)    (S3) 

Where 𝐶 is the NaCl concentration [g/L or kg/m3] and 𝑋 is the NaCl mass fraction [%]. 

S.1.2) Viscosity 

 We model the viscosity as a function of NaCl mass fraction by fitting data from the 

international critical tables with a linear relationship, shown in Figure S2 and equation S4.5 

𝜇(𝑋) = 2.15𝐸5 𝑋 + 9.80𝐸4        (S4) 

Where 𝜇 is the dynamic viscosity [Pa-s] and the regression has an R-squared value of 0.99. 
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Figure S2. Dynamic viscosity of NaCl solution at 25° C.5 The dotted line is the linear fit 

(equation S4).  

S.1.3) Osmotic pressure 

 The osmotic pressure of a solution can be determined with equation S5.  

𝜋 = 𝑖 𝜙 𝐶𝑀 𝑅 𝑇          (S5) 

Where 𝜋 is the osmotic pressure [bar], 𝑖 is the number of dissociating ions (2 for NaCl), 𝜙 is the 

osmotic coefficient, 𝐶𝑀 is the mole-based concentration [moles/L], 𝑅 is the gas constant 

[8.314E-2 L bar mol-1 K-1], 𝑇 is the temperature [293.15 K].  

When the solution is assumed to be ideal, the osmotic coefficient is 1. We account for 

non-ideal behavior of NaCl solution by fitting experimental osmotic coefficient data from 

Scatchard et al. (1938).6 The osmotic coefficient data and the quadratic fit are shown in Figure 

S3 and equation S6. The resulting regression has an R-squared value greater than 0.99. Given 

this osmotic coefficient relationship, we determine the osmotic pressure of the solution with 

equation S7.  
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Figure S3. Osmotic coefficient as a function of NaCl concentration. The dotted line is the 

quadratic fit (equation S6). 

𝜙(𝐶) = 3.33𝐸6 C2  + 1.78𝐸4 C + 0.918       (S6) 

𝜋(𝐶) =
𝑖 𝑅 𝑇

𝑀𝑊
 (3.33𝐸6 C2  + 1.78𝐸4 C + 0.918 ) C    (S7) 

Where 𝜋 is the osmotic pressure [bar], 𝐶 is the NaCl concentration [g/L], and 𝑀𝑊 is the 

molecular weight of NaCl [58.44 g/mol]. 
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S.2) Interfacial membrane concentration 

The relationship between the bulk and interfacial membrane concentration can be derived 

from the convective and diffusive transport and the steady state assumption. The following 

derivation for OARO concentration polarization closely follows the steps demonstrated for PRO 

concentration polarization in Yip et al. 2011 and FO concentration polarization in Bui et al 

2015.3, 7-8 Figure S4 includes a depiction of the solute concentration profiles and key variables 

and regions for the derivation. 

 

Figure S4. Illustration of the solute concentration profiles for osmotically assisted reverse 

osmosis (OARO). The bulk and interfacial membrane concentrations are noted with 𝐶𝑏𝑓 and 

𝐶𝑚𝑓 for the feed and 𝐶𝑏𝑠 and 𝐶𝑚𝑠 for the sweep. The 𝑥 indices denote the key regions in the 

membrane cross-section. The arrows denote the direction and mode (convection and diffusion) 

of salt transport in the feed and sweep. The feed-side experiences external concentration 

polarization, while the sweep-side experiences internal concentration polarization (within the 

porous support) and external concentration polarization. 
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The feed-side external concentration polarization is governed by equation S8.  

𝐽𝑠 = −𝐷
𝑑𝐶

𝑑𝑥
+ 𝐽𝑤 𝐶         (S8) 

Where 𝐽𝑠 and 𝐽𝑤 are the salt flux [kg/m2 s] and water flux [m3/m2 s], 𝐷 is the diffusion 

coefficient of the solute [m2/s], 𝐶 is the solute concentration [kg/m3] that varies spatially with 

dimension 𝑥 [m] (direction noted in Fig. S4).  

 We separate the variables and integrate equation S8 across the feed-side boundary layer, 

where at the bulk-boundary layer interface, 𝑥 = 𝑥0 and 𝐶 = 𝐶𝑏𝑓 (the feed-side bulk 

concentration), and at the membrane interface, 𝑥 = 𝑥1 and 𝐶 = 𝐶𝑚𝑓 (the feed-side interfacial 

membrane concentration), as shown in equation S9. 

∫
𝑑𝐶

𝐽𝑤 𝐶−𝐽𝑠

𝐶𝑚𝑓

𝐶𝑏𝑓
= ∫

1

𝐷
 𝑑𝑥

𝑥1

𝑥0
         (S9) 

We integrate equation S9 and obtain equation S10.  

1

Jw
ln (

𝐽𝑤 𝐶𝑚𝑓𝐽𝑠

𝐽𝑤 𝐶𝑏𝑓−𝐽𝑠
) =

(𝑥1−𝑥0)

𝐷
         (S10) 

We solve equation S10 for 𝐶𝑚𝑓 and substitute 𝛿𝑓 (the feed-side boundary layer 

thickness) for 𝑥1 − 𝑥0 to obtain equation S11.  

𝐶𝑚𝑓 = 𝐶𝑏𝑓 exp (
𝐽𝑤 𝛿

𝐷
) −

𝐽𝑠

𝐽𝑤
(exp (

𝐽𝑤 𝛿

𝐷
) − 1)      (S11) 

We further substitute 𝑘𝑓 (the feed-side boundary layer mass transfer coefficient) for 
𝐷

𝛿
 to 

obtain equation S12. Equation S12 is the same as equation 3 in the main manuscript. 

𝐶𝑚𝑓 = 𝐶𝑏𝑓 exp (
𝐽𝑤

𝑘𝑓
) −

𝐽𝑠

𝐽𝑤
(exp (

𝐽𝑤

𝑘𝑓
) − 1)       (S12) 
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The sweep-side internal and external concentration polarization is governed by equation 

S12. Note that the diffusion coefficient, 𝐷∗, varies based on the region. In the porous support, 𝐷𝑠 

(the effective diffusion coefficient in the porous support) is related to the diffusion coefficient of 

the solute by 𝐷𝑠 =
𝐷

𝜏
. Where 휀 is the porosity and 𝜏 is the tortuosity of the porous support. 

𝐽𝑠 = −𝐷∗ 𝑑𝐶

𝑑𝑥
+ 𝐽𝑤 𝐶          (S13) 

Using the same approach as the feed-side, we separate the variables and integrate 

equation S13 across the porous support and the sweep-side boundary layer. At the sweep-side 

membrane interface, 𝑥 = 𝑥2 and 𝐶 = 𝐶𝑚𝑠 (the sweep-side interfacial membrane concentration), 

and at the sweep-side bulk-boundary layer, 𝑥 = 𝑥4 and 𝐶 = 𝐶𝑏𝑠 (the sweep-side bulk 

concentration), as shown in equation S14.  

∫
𝑑𝐶

𝐽𝑤 𝐶−𝐽𝑠

𝐶𝑏𝑠

𝐶𝑚𝑠
= ∫

1

𝐷𝑠  𝑑𝑥
𝑥3

𝑥2
+ ∫

1

𝐷
 𝑑𝑥

𝑥4

𝑥3
       (S14) 

After integrating equation S14, we obtain equation S15. 

1

Jw
ln (

𝐽𝑤 𝐶𝑏𝑠−𝐽𝑠

𝐽𝑤 𝐶𝑚𝑠−𝐽𝑠
) =

(𝑥3−𝑥2)

𝐷𝑠 +  
(𝑥4−𝑥3)

𝐷
       (S15) 

We solve equation S15 for 𝐶𝑚𝑠 and substitute 𝑡 (the thickness of the porous support) for 

𝑥3 − 𝑥2 and 𝛿𝑠 (the sweep-side boundary layer thickness) for 𝑥4 − 𝑥3 to obtain equation S16.  

𝐶𝑚𝑠 = 𝐶𝑏𝑠 exp (−𝐽𝑤 (
 𝑡

𝐷𝑠 +
𝛿𝑠

𝐷
)) −

𝐽𝑠

𝐽𝑤
(exp (−𝐽𝑤 (

 𝑡

𝐷𝑠 +
𝛿𝑠

𝐷
)) − 1)   (S16) 

We substitute 𝑆 (the structural parameter) for 
𝑡 𝜏

𝜖
 and 𝑘𝑠 (the sweep-side mass transfer 

coefficient) for 𝐷/𝛿𝑠 to obtain equation S17. Equation S17 is the same as equation 4 in the main 

manuscript. 
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𝐶𝑚𝑠 = 𝐶𝑏𝑠 exp (−𝐽𝑤 (
𝑆

𝐷
+

1

𝑘𝑠
)) +

𝐽𝑠

𝐽𝑤
(1 − exp (−𝐽𝑤 (

𝑆

𝐷
+

1

𝑘𝑠
)))   (S17) 
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S.3) Optimization model formulation 

We formulate the OARO process as a nonlinear programming (NLP) model with the 

objective to minimize the unit water costs. The model can be solved for a given feed flow rate, 

concentration, water recovery, and number of stages. We determine the optimal number of stages 

through inspection after solving the optimization model with different number of stages for the 

same specified feed concentration and water recovery.  

S.3.1) Modeling the membrane stages 

 We model the membrane stage with a detailed one-dimensional model that is also 

described in our other work.3 This model determines the state (e.g. mass flow rate, salt mass 

fraction, hydraulic pressure) and process (e.g. water and salt flux) variables across the length of 

the membrane stage. The model also accounts for concentration polarization, pressure loss from 

friction, and solution properties as a function of concentration. The model is based on a finite 

difference approximation of the one-dimensional governing system of differential equations 

shown in equations S18-S23. 

𝑑𝑀𝑓

𝑑𝑧
= (𝐽𝑤 𝜌𝑤 + 𝐽𝑠) 𝑊        (S18) 

𝑑(𝑀𝑓 𝑋𝑓)

𝑑𝑧
= 𝐽𝑠 𝑊         (S19) 

𝑑𝑀𝑠

𝑑𝑧
= (𝐽𝑤 𝜌𝑤 + 𝐽𝑠) 𝑊        (S20) 

𝑑(𝑀𝑠 𝑋𝑠)

𝑑𝑧
= 𝐽𝑠 𝑊         (S21) 

𝑑𝑃𝑓

𝑑𝑧
= 𝑃𝐿𝑓           (S22) 



 

252 
 

𝑑𝑃𝑠

𝑑𝑧
= 𝑃𝐿𝑠          (S23) 

Where 𝑧 is the dimension along the length of the membrane stage [m], 𝑀 is the mass flow rate 

[kg/h], X is the salt mass fraction [kg of salt/kg of solution], 𝑃 is the hydraulic pressure [bar], 𝑊 

is the width of the membrane stage [m], 𝐽𝑤 is the water flux [m3/m2-h], 𝐽𝑠 is the salt flux [kg/m2-

h], 𝜌𝑤 is the density of water [995 kg/m3], 𝑃𝐿 is the pressure loss per unit length [bar/m], and 

subscript 𝑓 and 𝑠 note the feed and sweep side. The direction of 𝑧 is from the inlet to the outlet 

on both sides (e.g. 𝑀𝑓 is 𝑀𝑓,𝑖𝑛 at z=0 and 𝑀𝑓,𝑜𝑢𝑡 at z=𝐿, the length of the membrane stage). 

 The process variables 𝐽𝑤, 𝐽𝑠, and 𝑃𝐿 are determined as functions of the state variables in 

equations S24-S26. Throughout the description of this model, functions are noted as 

𝑓𝑥(𝑦1, 𝑦2, … ), where 𝑥 is determined from variables 𝑦. 

𝐽𝑤 = 𝑓𝐽𝑤(𝑃𝑓 , 𝑃𝑠, 𝐶𝑚𝑓 , 𝐶𝑚𝑠) = 𝐴([𝑃𝑓 − 𝑃𝑠] − [𝑓𝜋(𝐶𝑚𝑓) − 𝑓𝜋(𝐶𝑚𝑠)])  (S24) 

𝐽𝑠 = 𝑓𝐽𝑠(𝐶𝑚𝑓 , 𝐶𝑚𝑠) = 𝐵 (𝐶𝑚𝑓 − 𝐶𝑚𝑠)      (S25) 

𝑃𝐿 = 𝑓𝑃𝐿(𝑀, 𝑋, 𝑅𝑒, 𝑊) =
𝑓𝐹(𝑅𝑒) 𝑀2

4 𝑓𝜌(𝑋) 𝐻3 𝑊2 2  [
1 ℎ

3600 𝑠
]

2

[
1 𝑏𝑎𝑟

1𝐸5 𝑃𝑎
]     (S26) 

Where 𝐴 is the water permeability coefficient [m/h-bar], 𝐵 is the salt permeability coefficient 

[m/h], 𝜋 is the osmotic pressure [bar] and is a function of the concentration at the membrane 

interface, 𝐶𝑚, (equation S7), 𝐹 is the friction factor and is a function of the Reynolds number 

(equation S27), 𝜌 is the solution density [kg/m3] and is a function of the salt mass fraction 

(equation S1), 𝐻 is the channel height [m], ε is the void space of the mesh spacer (assumed to be 

75%). 
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We estimate the friction factor with a correlation developed by Guillen and Hoek (2009) 

for a mesh filled channel in equation S27.9 The parameters for 𝐹 are based on a mesh with a 

circular cross section and an effective cross-sectional area of 25% (i.e. void space of 75%). 

𝐹 = 𝑓𝐹(𝑅𝑒) = 0.42 +
189.3

𝑅𝑒
         (S27) 

 The mass transfer coefficient, 𝑘, [m/h] is determined by equation S28.  

𝑘 =
𝐷 𝑆ℎ

𝑑ℎ
           (S28) 

Where 𝐷 is the diffusion coefficient [m2/h], 𝑆ℎ is the Sherwood number, and 𝑑ℎ is the hydraulic 

diameter. The Sherwood number is determined from a correlation developed by Guillen and 

Hoek (2009) in equation S29 and the hydraulic diameter is approximated in equation S30, when 

𝑊 ≫ 𝐻.9 

𝑆ℎ =  0.46(𝑅𝑒 𝑆𝑐)0.36         (S29) 

𝑑ℎ =
2 𝑊 𝐻

𝑊+𝐻
≈ 2𝐻          (S30) 

 We substitute equation S28 with equations S29 and S30 to model the mass transfer 

coefficient as a function of variables in our model, as shown in equation S31. 

𝑘 = 𝑓𝑘(𝑅𝑒, 𝑆𝑐) =
𝐷

2𝐻
 0.46(𝑅𝑒 𝑆𝑐)0.36       (S31) 

Finite difference model 

 We use the finite difference approximation to approximate the governing system of 

differential equations. This approach discretizes the membrane stage along the length into nodes, 
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where the state and process variables are evaluated. A schematic of the finite difference approach 

is shown in Figure S5.  

 

Figure S5. Finite difference approach to modeling a membrane stage. 𝜃 are inlet and outlet 

stage variables and 𝜙 are inter-node variables that include: mass flow rate, salt mass fraction, 

Reynolds number, Schmidt number, and pressure loss per unit length. 𝜔 are nodal variables that 

include: water flux, salt flux, hydraulic pressure, osmotic pressure, bulk concentration, 

concentration at the membrane interface, and mass transfer coefficient. The variables are 

indexed by the feed (𝑓) and sweep (𝑠), stage (𝑗), and node (𝑘). 

 

 The finite difference approximation of the governing mass balance (equations S18-S21) 

is shown in equations S32-S43. 

 𝑀𝑓,𝑗,𝑘 = 𝑀𝑓,𝑗,𝑘−1 −
𝐴𝑚𝑒𝑚

𝑁
  (𝐽𝑤𝑗,𝑘 𝜌𝑤 + 𝐽𝑠𝑗,𝑘)     ∀𝑗, ∀𝑘, 𝑘 ≠ 𝑘1   (S32) 
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𝑀𝑓,𝑗,𝑘𝑋𝑓,𝑗,𝑘 = 𝑀𝑓,𝑗,𝑘−1𝑋𝑓,𝑗,𝑘−1 −
𝐴𝑚𝑒𝑚

𝑁
 𝐽𝑠𝑗,𝑘   ∀𝑗, ∀𝑘, 𝑘 ≠ 𝑘1   (S33) 

𝑀𝑓,𝑗,𝑘1 = 𝑀𝑓,𝑗,𝑖𝑛 −
𝐴𝑚𝑒𝑚

𝑁
( 𝐽𝑤𝑗,𝑘1 𝜌𝑤 + 𝐽𝑠𝑗,𝑘1)   ∀𝑗     (S34) 

𝑀𝑓,𝑗,𝑘1𝑋𝑓,𝑗,𝑘1 = 𝑀𝑓,𝑗,𝑖𝑛𝑋𝑓,𝑗,𝑖𝑛 −
𝐴𝑚𝑒𝑚

𝑁
 𝐽𝑠𝑗,𝑘1   ∀𝑗     (S35) 

𝑀𝑓,𝑗,𝑜𝑢𝑡 = 𝑀𝑓,𝑗,𝑘𝑁   ∀𝑗         (S36) 

𝑋𝑓,𝑗,𝑜𝑢𝑡 = 𝑋𝑓,𝑗,𝑘𝑁   ∀𝑗         (S37) 

𝑀𝑠,𝑗,𝑘 = 𝑀𝑠,𝑗,𝑘+1 +
𝐴𝑚𝑒𝑚

𝑁
  (𝐽𝑤𝑗,𝑘 𝜌𝑤 + 𝐽𝑠𝑗,𝑘)   ∀𝑗, ∀𝑘, 𝑘 ≠ 𝑘𝑁   (S38) 

𝑀𝑠,𝑗,𝑘𝑋𝑠,𝑗,𝑘 = 𝑀𝑠,𝑗,𝑘+1𝑋𝑠,𝑗,𝑘+1 +
𝐴𝑚𝑒𝑚

𝑁
 𝐽𝑠𝑗,𝑘   ∀𝑗, ∀𝑘, 𝑘 ≠ 𝑘𝑁   (S39) 

𝑀𝑠,𝑗,𝑘𝑁 = 𝑀𝑠,𝑗,𝑖𝑛 +
𝐴𝑚𝑒𝑚

𝑁
 (𝐽𝑤𝑗,𝑘𝑁 𝜌𝑤 + 𝐽𝑠𝑗,𝑘𝑁)   ∀𝑗     (S40) 

𝑀𝑠,𝑗,𝑘𝑁𝑋𝑠,𝑗,𝑘𝑁 = 𝑀𝑠,𝑗,𝑖𝑛𝑋𝑠,𝑗,𝑖𝑛 +
𝐴𝑚𝑒𝑚

𝑁
 𝐽𝑠𝑗,𝑘𝑁   ∀𝑗     (S41) 

𝑀𝑠,𝑗,𝑜𝑢𝑡 = 𝑀𝑠,𝑗,𝑘1   ∀𝑗         (S42) 

𝑋𝑠,𝑗,𝑜𝑢𝑡 = 𝑋𝑠,𝑗,𝑘1   ∀𝑗         (S43) 

Where 𝐴𝑚𝑒𝑚 is the stage membrane area [m2], and the state and process variables are noted for 

stage 𝑗 in the set of stages 𝐽 (𝑗1, 𝑗2, … 𝑗𝑀, with 𝑀 being the number of stages), for node 𝑘 in the 

set of nodes 𝐾 (𝑘1, 𝑘2, … 𝑘𝑁, with 𝑁 being the number of nodes), and for stage inlet or outlet 

with 𝑖𝑛 and 𝑜𝑢𝑡, respectively. 

 The finite difference approximation of the governing pressure drop (equations S22 and 

S23) are shown in equations S44-S49. Note that since the hydraulic pressure is a nodal variable 

(𝜔 in figure S5) and the mass flow rate and salt mass fraction are inter-node variables (𝜙 in 
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figure S5), there is a small deviation in the finite difference formulation (e.g. 1/𝑁 in equation S34 

and 1/2𝑁 in equation S45). 

𝑃𝑓,𝑗,𝑘 = 𝑃𝑓,𝑗,𝑘−1 − 𝑃𝐿𝑓,𝑗,𝑘−1
𝐿

𝑁
   ∀𝑗, ∀𝑘, 𝑘 ≠ 𝑘1     (S44) 

𝑃𝑓,𝑗,𝑘1 = 𝑃𝑓,𝑗,𝑖𝑛 − 𝑃𝐿𝑓,𝑗,𝑖𝑛
𝐿

2𝑁
   ∀𝑗       (S45) 

𝑃𝑓,𝑗,𝑜𝑢𝑡 = 𝑃𝑓.𝑗,𝑘𝑁 − 𝑃𝐿𝑓,𝑗,𝑘𝑁
𝐿

2𝑁
   ∀𝑗       (S46) 

𝑃𝑠,𝑗,𝑘 = 𝑃𝑠,𝑗,𝑘+1 − 𝑃𝐿𝑠,𝑗,𝑘+1  
𝐿

𝑁
   ∀𝑗, ∀𝑘, 𝑘 ≠ 𝑘𝑁     (S47) 

𝑃𝑠,𝑗,𝑘𝑁 = 𝑃𝑠,𝑗,𝑖𝑛 − 𝑃𝐿𝑠,𝑗,𝑖𝑛
𝐿

2𝑁
   ∀𝑗       (S48) 

𝑃𝑠,𝑗,𝑜𝑢𝑡 = 𝑃𝑠,𝑗,𝑘1 − 𝑃𝐿𝑠,𝑗,𝑘1
𝐿

2𝑁
   ∀𝑗       (S49) 

 The nodal variables (𝜔 in Fig. S5), including: water flux, salt flux, osmotic pressure, bulk 

concentration, concentration at the membrane interface, and mass transfer coefficient are 

determined in equations S50-S63. As described in the main manuscript, we neglect concentration 

polarization on the sweep-side (permeate-side) for the RO stage as shown in equation S55. Since 

we neglect the sweep side concentration polarization for the RO stage, we do not evaluate the 

sweep mass transfer coefficient for that stage (noted by equations S62 and S63 for all 𝑗 except 

𝑗𝑀).  

𝐽𝑤𝑗,𝑘 = 𝐴 ((𝑃𝑓,𝑗,𝑘 − 𝑃𝑠,𝑗,𝑘) − (𝜋𝑓,𝑗,𝑘 − 𝜋𝑠,𝑗,𝑘))   ∀𝑗, ∀𝑘     (S50) 

𝐽𝑠𝑗,𝑘 = 𝐵(𝐶𝑚𝑓,𝑗,𝑘 − 𝐶𝑚𝑠,𝑗,𝑘)   ∀𝑗, ∀𝑘      (S51) 

π𝑢,𝑗,𝑘 = 𝑓𝜋(𝐶𝑚𝑢,𝑗,𝑘)   ∀𝑢 ∈ (𝑓, 𝑠), ∀𝑗, ∀𝑘      (S52) 
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𝐶𝑚𝑓,𝑗,𝑘 = 𝑓𝐶𝑚𝑓
(𝐶𝑏𝑓,𝑗,𝑘, 𝐽𝑤𝑗,𝑘, 𝑘𝑓,𝑗,𝑘)   ∀𝑗, ∀𝑘      (S53) 

𝐶𝑚𝑠,𝑗,𝑘 = 𝑓𝐶𝑚𝑠
(𝐶𝑏𝑠,𝑗,𝑘, 𝐽𝑤𝑗,𝑘, 𝑘𝑠,𝑗,𝑘)   ∀𝑗, 𝑗 ≠ 𝑗𝑀, ∀𝑘     (S54) 

𝐶𝑚𝑠,𝑗𝑀,𝑘 = 𝐶𝑏𝑠,𝑗𝑀,𝑘   ∀𝑘         (S55) 

𝐶𝑏𝑓,𝑗,𝑘 =
𝑓𝐶(𝑋𝑓,𝑗,𝑘)+𝑓𝐶(𝑋𝑓,𝑗,𝑘−1)

2
   ∀𝑗, ∀𝑘, 𝑘 ≠ 𝑘1     (S56) 

𝐶𝑏𝑓,𝑗,𝑘1 =
𝑓𝐶(𝑋𝑓,𝑗,𝑖𝑛)+𝑓𝐶(𝑋𝑓,𝑗,𝑘1)

2
   ∀𝑗       (S57) 

𝐶𝑏𝑠,𝑗,𝑘 =
𝑓𝐶(𝑋𝑠,𝑗,𝑘)+𝑓𝐶(𝑋𝑠,𝑗,𝑘+1)

2
   ∀𝑗, ∀𝑘, 𝑘 ≠ 𝑘𝑁     (S58) 

𝐶𝑏𝑠,𝑗,𝑘𝑁 =
𝑓𝐶(𝑋𝑠,𝑗,𝑖𝑛)+𝑓𝐶(𝑋𝑠,𝑗,𝑘𝑁)

2
   ∀𝑗       (S59) 

𝑘𝑓,𝑗,𝑘 =
𝑓𝑘(𝑅𝑒𝑓,𝑗,𝑘,𝑆𝑐𝑓,𝑗,𝑘)+𝑓𝑘(𝑅𝑒𝑓,𝑗,𝑘−1,𝑆𝑐𝑓,𝑗,𝑘−1)

2
   ∀𝑗, ∀𝑘, 𝑘 ≠ 𝑘1    (S60) 

𝑘𝑓,𝑗,𝑘1 =
𝑓𝑘(𝑅𝑒𝑓,𝑗,𝑖𝑛,𝑆𝑐𝑓,𝑗,𝑖𝑛)+𝑓𝑘(𝑅𝑒𝑓,𝑗,𝑘,𝑆𝑐𝑓,𝑗,𝑘)

2
   ∀𝑗     (S61) 

𝑘𝑠,𝑗,𝑘 =
𝑓𝑘(𝑅𝑒𝑠,𝑗,𝑘,𝑆𝑐𝑝,𝑘)+𝑓𝑘(𝑅𝑒𝑠,𝑗,𝑘+1,𝑆𝑐𝑠,𝑗,𝑘+1)

2
   ∀𝑗, 𝑗 ≠ 𝑗𝑀, ∀𝑘, 𝑘 ≠ 𝑘𝑁  (S62) 

𝑘𝑠,𝑗,𝑘𝑁 =
𝑓𝑘(𝑅𝑒𝑠,𝑗,𝑖𝑛,𝑆𝑐𝑠,𝑗,𝑖𝑛)+𝑓𝑘(𝑅𝑒𝑠,𝑗,𝑘𝑁,𝑆𝑐𝑠,𝑗,𝑘𝑁)

2
   ∀𝑗, 𝑗 ≠ 𝑗𝑀    (S63) 

Where the functions for osmotic pressure (𝑓𝜋) is equation S7, concentrations at the membrane 

interface (𝑓𝐶𝑚𝑓
 and 𝑓𝐶𝑚𝑠

) are equations S12 and S17, and concentration from mass fraction (𝑓𝐶) 

is equation S2. Note that the bulk concentration (𝐶𝑏) and mass transfer coefficient (𝑘) are based 

on the average of their functions evaluated at the adjacent inter-node variables.  

 The inter-node variables (𝜙 in Fig. S5), including: pressure loss per unit length, Reynolds 

number, and Schmidt number are determined in equations S64-S69. As described in the main 
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manuscript, we assume there is no sweep pressure drop for the RO stage (equation S66). 

Additionally, since we assume no sweep concentration polarization for the RO stage, we do not 

evaluate the Reynolds number for that stage (noted by equation S68 for all 𝑗 except 𝑗𝑀). 

𝑃𝐿𝑓,𝑗,𝑣 = 𝑓𝑃𝐿(𝑀𝑓,𝑗,𝑣, 𝑋𝑓,𝑗,𝑣, 𝑅𝑒𝑓,𝑗,𝑣, 𝑊)   ∀𝑗, ∀𝑣 ∈ (𝐾, 𝑖𝑛)    (S64) 

𝑃𝐿𝑠,𝑗,𝑣 = 𝑓𝑃𝐿(𝑀𝑠,𝑗,𝑣, 𝑋𝑠,𝑗,𝑣, 𝑅𝑒𝑠,𝑗,𝑣, 𝑊)   ∀𝑗, 𝑗 ≠ 𝑗𝑀, ∀𝑣 ∈ (𝐾, 𝑖𝑛)   (S65) 

𝑃𝐿𝑠,𝑗𝑀,𝑣 = 0   ∀𝑣 ∈ (𝐾, 𝑖𝑛)        (S66) 

𝑅𝑒𝑓,𝑗,𝑣 = 𝑓𝑅𝑒(𝑀𝑓,𝑗,𝑣, 𝑋𝑓,𝑗,𝑣, 𝑊)   ∀𝑗, ∀𝑣 ∈ (𝐾, 𝑖𝑛)     (S67) 

𝑅𝑒𝑠,𝑗,𝑣 = 𝑓𝑅𝑒(𝑀𝑠,𝑗,𝑣, 𝑋𝑠,𝑗,𝑣, 𝑊)   ∀𝑗, 𝑗 ≠ 𝑗𝑀, ∀𝑣 ∈ (𝐾, 𝑖𝑛)    (S68) 

𝑆𝑐𝑢,𝑗,𝑣 =
𝑓𝜇(𝑋𝑢,𝑗,𝑣)

𝑓𝜌(𝑋𝑢,𝑗,𝑣) 𝐷
   ∀𝑢 ∈ (𝑓, 𝑠), ∀𝑗, ∀𝑣 ∈ (𝐾, 𝑖𝑛)     (S69) 

Where the functions for viscosity (𝑓𝜇) and density (𝑓𝜌) are equations S4 and S1. 

 The membrane area of each stage is related to the width and length in equation S70. 

𝐴𝑚𝑒𝑚𝑗 = 𝑊𝑗  𝐿𝑗         (S70) 

 We also determine the average water and salt flux for each stage with equations S71 and 

S72. 

𝐽𝑤𝑎𝑣𝑔,𝑗 =
1

𝑁
 ∑ 𝐽𝑤𝑗,𝑘𝑘    ∀𝑗        (S71) 

𝐽𝑠𝑎𝑣𝑔,𝑗 =
1

𝑁
 ∑ 𝐽𝑠𝑗,𝑘𝑘    ∀𝑗        (S72) 
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S.3.2) Modeling the OARO process streams 

 The previous section describes how each membrane stage is modeled, in this section, we 

describe the relationships that link the stages together. As shown in Figure 2 in the main 

manuscript, the OARO process is composed of sweep cycles, purge, recycle, and make-up 

streams. This system is modeled by relating the outlet and inlet streams to each other as follows. 

 In the OARO process, the inlet feed for each stage is the outlet sweep of the previous 

stage (except for the first stage) as shown in equations S73 and S74. 

𝑀𝑓,𝑗,𝑖𝑛 = 𝑀𝑠,𝑗−1,𝑜𝑢𝑡   ∀𝑗, 𝑗 ≠ 𝑗1        (S73) 

𝑋𝑓,𝑗,𝑖𝑛 = 𝑋𝑠,𝑗−1,𝑜𝑢𝑡   ∀𝑗, 𝑗 ≠ 𝑗1        (S74) 

 Additionally, the outlet feed of each stage is disposed of or recycled to another stage, as 

shown in equation S75. 

𝑀𝑓,𝑗,𝑜𝑢𝑡 = 𝑀𝑑𝑗 + ∑ 𝑀𝑟𝑗,𝑗′𝑗′    ∀𝑗       (S75) 

Where 𝑀𝑑 is the mass flow rate [kg/h] sent to disposal from stage 𝑗 and 𝑀𝑟 is the mass flow rate 

for recycle from stage 𝑗 to stage 𝑗′. The recycle stream within a sweep cycle is represented with 

𝑗′=𝑗1. Note that since this stream is an inherent part of sweep cycle operation, it is not marked 

as recycle in Figure 2 in the main manuscript. The only other permitted recycle stream is from a 

sweep cycle to the preceding sweep cycle, which occurs when 𝑗′ = 𝑗 − 2. All other recycle 

streams are fixed to zero as shown in SI section S.3.6. 

 The inlet sweep out each stage is composed of recycle and make-up streams (with the 

exception of the last stage) as shown in equations S76 and S77. In the last stage (RO), the sweep 

inlet mass flow rate (𝑀𝑠,𝑗𝑀,𝑖𝑛) and salt mass fraction (𝑋𝑠,𝑗𝑀,𝑖𝑛) are fixed to zero. 
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𝑀𝑠,𝑗,𝑖𝑛 = 𝑀𝑎𝑗 + ∑ 𝑀𝑟𝑗′,𝑗𝑗′    ∀𝑗, 𝑗 ≠ 𝑗𝑀      (S76) 

𝑀𝑠,𝑗,𝑖𝑛 𝑋𝑠,𝑗,𝑖𝑛 = 𝑀𝑎𝑗  𝑋𝑎 + ∑ 𝑀𝑟𝑗′,𝑗𝑗′ 𝑋𝑓,𝑗′,𝑜𝑢𝑡   ∀𝑗, 𝑗 ≠ 𝑗𝑀     (S77) 

Where 𝑀𝑎 is the mass flow rate of make-up to stage 𝑗 and 𝑋𝑎 is the salt mass fraction of the 

make-up (assumed to be saturated solution of NaCl at 0.26). 

S.3.3) Modeling the system performance 

 In this section, we provide the relationships that determine the overall system 

performance. The annual water production rate, 𝐴𝑊𝑃, [m3/year] is determined in equation S78. 

𝐴𝑊𝑃 = (
𝑀𝑠,𝑗𝑀,𝑜𝑢𝑡

𝑓𝜌(𝑋𝑠,𝑗𝑀,𝑜𝑢𝑡)
 𝐿𝐹 [

8760 ℎ

𝑦𝑒𝑎𝑟
] )       (S78) 

Where 𝐿𝐹 is the load factor [time operated/time in year] (assumed to be 0.9). 

 The water recovery, 𝑅𝑤, is an important parameter specified for our model and it is 

related to the model variables by equation S79. 

𝑅𝑤 =
𝑀𝑠,𝑗𝑀,𝑜𝑢𝑡(1−𝑋𝑠𝑜𝑢𝑡,𝑗𝑀)

𝑀𝑓,𝑗1,𝑖𝑛(1−𝑋𝑓,𝑗1,𝑖𝑛)+∑ 𝑀𝑎𝑗(1−𝑋𝑎)𝑗
        (S79) 

Where equation S79 can be interpreted as the mass of the product water over the mass of water 

entering the process. Note that the water recovery is on a mass basis of water, rather than a 

volumetric basis of solution. 

 The overall purge rate is a key system variable and is defined as the fraction of disposal 

mass flow rate from the sweep cycles over the first stage permeate mass flow rate, as shown in 

equation S80. 

𝑃𝑅 =
∑ 𝑀𝑑𝑗𝑗≠𝑗1

𝑀𝑓,𝑗1,𝑖𝑛−𝑀𝑓,𝑗1,𝑜𝑢𝑡
         (S80) 
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  We estimate the energy consumption of the OARO process by accounting for the power 

demand of the pumps with equation S81. The pump power is determined in equations S82-S84.  

𝐸𝐶 =
𝑓𝜌(𝑋𝑠,𝑗𝑀,𝑜𝑢𝑡)

𝑀𝑠,𝑗𝑀,𝑜𝑢𝑡
∑ (𝑃𝑜𝑤𝑓,𝑗 + 𝑃𝑜𝑤𝑠,𝑗) [

1𝐸5 𝑃𝑎

𝑏𝑎𝑟
] [

1 𝑘𝐽

1000 𝐽
] [

1 ℎ

3600 𝑠
]𝑗     (S81) 

𝑃𝑜𝑤𝑓,𝑗 =

𝑀𝑓.𝑗.𝑖𝑛

𝑓𝜌(𝑋𝑓.𝑗.𝑖𝑛)
(𝑃𝑓,𝑗,𝑖𝑛−𝑃𝑠,𝑗−1,𝑜𝑢𝑡)−

𝑀𝑓,𝑗,𝑜𝑢𝑡

𝑓𝜌(𝑋𝑓.𝑗.𝑜𝑢𝑡) 
(𝑃𝑓,𝑗,𝑜𝑢𝑡−1) 𝜂𝑝𝑥

𝜂𝑝𝑚𝑝
   ∀𝑗, 𝑗 ≠ 𝑗1  (S82) 

𝑃𝑜𝑤𝑓,𝑗1 =

𝑀𝑓.𝑗1.𝑖𝑛

𝑓𝜌(𝑋𝑓.𝑗1.𝑖𝑛)
(𝑃𝑓,𝑗,𝑖𝑛−1)−

𝑀𝑓,𝑗1,𝑜𝑢𝑡

𝑓𝜌(𝑋𝑓.𝑗1.𝑜𝑢𝑡) 
(𝑃𝑓,𝑗1,𝑜𝑢𝑡−1) 𝜂𝑝𝑥

𝜂𝑝𝑚𝑝
    (S83) 

𝑃𝑜𝑤𝑠,𝑗 =
𝑀𝑠,𝑗,𝑖𝑛

𝜌𝑤
 
(𝑃𝑠,𝑗,𝑖𝑛−1)

𝜂𝑝𝑚𝑝
   ∀𝑗        (S84) 

Where 𝐸𝐶 is the energy consumption [kWh/m3 of product water], 𝑃𝑜𝑤 is the pump power for 

the feed and sweep at each stage [m3-bar/h], 𝜂 is the efficiency of the pump (𝑝𝑚𝑝) and pressure 

exchanger (𝑝𝑥). This power calculation for the feed pump does not explicitly model the split 

inlet feed flow rates and the two feed pumps that are required to operate the pressure exchanger; 

however, this formulation is common in literature and is equivalent for overall power demand, 

which is the basis of our cost calculations.10-11  

S.3.4) Modeling process constraints 

 Two key process constraints include: 1) the product water specification and 2) the 

maximum inlet feed pressure. Both constraints are shown in equations S85 and S86. 

𝑋𝑠,𝑗𝑀,𝑜𝑢𝑡 ≤
500

1𝐸6
          (S85) 

𝑃𝑓,𝑗,𝑖𝑛 ≤ 𝑃𝑚𝑎𝑥,𝑓,𝑗   ∀𝑗          (S86) 
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Where the product water mass fraction, 𝑋𝑠,𝑗𝑀,𝑜𝑢𝑡, must be less than or equal to 500 ppm and the 

inlet feed pressure for each stage must be below the maximum feed inlet pressure, 𝑃𝑚𝑎𝑥,𝑓,𝑗, for 

that stage (OARO stage: 65 bar in the base case, RO stage: 85 bar). 

S.3.4) Modeling OARO process costs 

As described in the main manuscript, we determine the unit water costs of the OARO 

process by estimating the capital investment and operating costs. To estimate the capital 

investment, we determine the direct cost of three components (membrane units, pumps, and 

pressure exchangers) and use factors to account for indirect capital, installation, siting, and 

engineering costs. We also directly estimate the electricity, saline make-up, and membrane 

replacement operating costs and indirectly estimate maintenance & labor and chemical operating 

costs. 

The capital costs of the membrane unit, feed and sweep pump, and pressure exchanger 

are determined in equations S87-S89. 

𝐶𝐶𝑚𝑒𝑚,𝑗 = 𝐶𝑃𝑚𝑒𝑚,𝑗𝐴𝑚𝑒𝑚𝑗    ∀𝑗       (S87) 

𝐶𝐶𝑝𝑚𝑝,𝑢,𝑗 = 𝐶𝑃𝑝𝑚𝑝,𝑢,𝑗𝑃𝑜𝑤𝑢,𝑗    ∀𝑗, ∀𝑢 ∈ (𝑓, 𝑠)      (S88) 

𝐶𝐶𝑝𝑥,𝑗 = 3134.7 (
𝑀𝑓,𝑗,𝑜𝑢𝑡

𝑓𝜌(𝑋𝑓,𝑗,𝑜𝑢𝑡)
)

0.58

   ∀𝑗       (S89) 

Where 𝐶𝐶 is the capital costs [$] for the membrane unit (𝑚𝑒𝑚), pump (𝑝𝑚𝑝), and pressure 

exchanger (𝑝𝑥) and 𝐶𝑃 is the associated cost parameters that are presented and cited in the main 

manuscript Table 1. 

 The total capital investment is a multiple of the total equipment costs, as shown in S90. 
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𝑇𝐶𝐼 = 𝐹𝑇𝐶𝐼 ∑ (𝐶𝐶𝑚𝑒𝑚,𝑗 + 𝐶𝐶𝑝𝑚𝑝,𝑓,𝑗 + 𝐶𝐶𝑝𝑚𝑝,𝑠,𝑗 + 𝐶𝐶𝑝𝑥,𝑗)𝑗     (S90) 

Where 𝑇𝐶𝐼 is the total capital investment [$] and 𝐹𝑇𝐶𝐼 is the practical investment factor [$ 

investment/$ equipment] (assumed to be 1.6 in the base case). 

 The annual operating costs from electricity, make-up streams, membrane replacement, 

maintenance & labor, and chemicals are determined in equations S91-S95. 

𝑂𝐶𝑒𝑙𝑒𝑐 = 𝐶𝑃𝑒𝑙𝑒𝑐 𝐸𝐶 𝐴𝑊𝑃        (S91) 

𝑂𝐶𝑠𝑎𝑙 = 𝐶𝑃𝑠𝑎𝑙  ∑ 𝑀𝑎𝑗𝑗 𝐿𝐹 [
8760 ℎ

𝑦𝑒𝑎𝑟
]        (S92) 

𝑂𝐶𝑚𝑒𝑚 = 𝑅𝑅𝑚𝑒𝑚 ∑ 𝐶𝐶𝑚𝑒𝑚,𝑗𝑗        (S93) 

𝑂𝐶𝑚&𝑙 =  𝐹𝑚&𝑙𝑇𝐶𝐼          (S94) 

𝑂𝐶𝑐ℎ𝑒𝑚 = 𝐹𝑐ℎ𝑒𝑚𝑇𝐶𝐼          (S95) 

Where 𝑂𝐶 is the annual operating cost for electricity (𝑒𝑙𝑒𝑐), make-up steams (𝑠𝑎𝑙), membrane 

replacement (𝑚𝑒𝑚), maintenance & labor (𝑚&𝑙), and chemicals (𝑐ℎ𝑒𝑚). The cost parameters 

(𝐶𝑃), cost factors (𝐹), and rate of membrane replacement (𝑅𝑅𝑚𝑒𝑚) are provided in Table 1 in the 

main manuscript.  

 The total annual costs and unit water costs are determined in equations S96 and S97. 

𝑇𝐴𝐶 = (𝑂𝐶𝑒𝑙𝑒𝑐 + 𝑂𝐶𝑠𝑎𝑙 + 𝑂𝐶𝑚𝑒𝑚 + 𝑂𝐶𝑚𝑙𝑐) + 𝐶𝐹 ∗ 𝑇𝐶𝐼     (S96) 

𝑈𝑊𝐶 =
𝑇𝐴𝐶

𝐴𝑊𝑃
           (S97) 

Where 𝑇𝐴𝐶 is the total annual costs [$/year], 𝐶𝐹 is the capitalization factor [$/$ total capital 

investment-year] (assumed to be 10% in the base case), 𝑈𝑊𝐶 is the unit water costs [$/m3]. 
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S.3.5) Objective function 

 The objective of our optimization model is to minimize the unit water costs as shown in 

equation S98. 

𝑚𝑖𝑛. 𝑜𝑏𝑗 = 𝑈𝑊𝐶         (S98) 

S.3.6) Fixing, scaling, initializing, and bounding variables  

 In this section, we describe the fixed variables in our model and how we scale, initialize, 

and bound the variables to assist the solver. 

Fixed variables 

We fix several variables that are defined in the OARO process: 

• The inlet feed mass flow rate and mass fraction, 𝑋𝑓,𝑗1,𝑖𝑛, for the first stage (𝑀𝑓,𝑗1,𝑖𝑛 and 

𝑋𝑓,𝑗1,𝑖𝑛) are specified by the case study 

• The inlet sweep mass flow rate and mass fraction for the RO stage (𝑀𝑠,𝑗𝑀,𝑖𝑛 and 𝑋𝑠,𝑗𝑀,𝑖𝑛) 

are 0 

• The inlet, outlet, and nodal sweep pressure for the RO stage (𝑃𝑠,𝑗𝑀,𝑖𝑛, 𝑃𝑠,𝑗𝑀,𝑜𝑢𝑡, 𝑃𝑠,𝑗𝑀,𝑘) 

are 1 bar 

• There is no make-up stream and no sweep pump for the RO stage (𝑀𝑎𝑗𝑀, 𝑃𝑜𝑤𝑠,𝑗𝑀)  

• The recycle mass flow rate, 𝑀𝑟𝑗,𝑗′ , is zero for all combinations of 𝑗 and 𝑗′, except when 

𝑗 = 𝑗′1 (regular sweep cycle flow) and 𝑗 = 𝑗′2 (inter-sweep cycle flow). 
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Scaled variables 

We rescale several variables, as follows: 

• Water (𝐽𝑤) and salt (𝐽𝑠) flux in units of LMH and g/m2-h, respectively 

• Pressure loss per unit length (𝑃𝐿) in units of Pa/m 

• Mass transfer coefficients (𝑘) in units of mm/h 

Initialized variables 

We initialize the following variables: 

• The inlet feed pressure (𝑃𝑓,𝑗,𝑖𝑛) to the maximum allowed pressure (𝑃𝑚𝑎𝑥,𝑓,𝑗) 

• The outlet product water mass fraction (𝑋𝑠,𝑗𝑀,𝑜𝑢𝑡) to the specified constraint (500 ppm) 

• The make-up stream mass flow rate (𝑀𝑎𝑗) to 0 

Bounded variables 

 The variable bounds are essential for the local solver to initialize and find a feasible 

solution. We assume the following bounds: 

Average water flux: 0.1 𝐿𝑀𝐻 ≤ 𝐽𝑤𝑎𝑣𝑔𝑗 ≤ 10 𝐿𝑀𝐻 ∀𝑗 ≠ 𝑗𝑀. We observe that these assumed 

average water flux bounds were inactive for all scenarios assessed in this work. Both bounds are 

multiplied by 4 for the RO stage (𝑗 = 𝑗𝑀). 

Water flux: The water flux at the node, 𝐽𝑤𝑗,𝑘, can be less than or greater than the average water 

flux bounds. Therefore, we decrease and increase the average water flux bounds by a factor of 5 

and 1.5, respectively, for the water flux at the node bounds. We observe that these bounds were 

inactive for all assessed scenarios. 
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Average salt flux: 0 ≤ 𝐽𝑠𝑎𝑣𝑔𝑗 ≤ 50
𝑔

𝑚2 ℎ
. We observe that this assumed average salt flux 

maximum is about 3 times greater than the highest optimal average salt flux for all assessed 

scenarios. 

Salt flux: The salt flux at the node has similar values to the average salt flux because, unlike the 

water flux, the driving force stays relatively constant across the membrane stage. Therefore, we 

use the same average salt flux bounds for the salt flux at the node.  

Reynolds number: 100 ≤ 𝑅𝑒 ≤ 2000. We set the minimum and maximum Reynolds number for 

both the feed and sweep side in the laminar regime. We find that the low flow rate streams (feed 

outlet and sweep inlet), typically, are operated at or near the minimum Reynolds number for the 

OARO stages. 

Purge rate: 0 ≤ 𝑃𝑅 ≤ 0.2. We observe that this assumed maximum purge rate is about twice the 

highest optimal purge rate for all assessed scenarios. 

First sweep to first feed inlet concentration ratio: We assume the minimum and maximum first 

inlet sweep concentration is within a factor of 3 of the first inlet feed concentration.  

RO stage feed inlet and outlet concentration: We assume that the minimum feed inlet and outlet 

concentration for the RO stage is 10 g/L. These lower bounds are about half the minimum 

optimal concentrations for all assessed scenarios. 

Sweep flow rate: We assume the inlet sweep flow rate is within 15 and 80% of the inlet feed 

flow rate for each stage. This assumption is a 10% relaxation from 1 minus the minimum and 

maximum water recovery (30 and 75%) assessed in this work. 1 minus the water recovery is a 

key metric to assess the sweep to feed mass flow rate ratio because when the ratio equals this 
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metric, the sweep outlet flow rate will equal the feed inlet flow rate (excluding the small effect of 

salt permeation). We observe that the lower bound is active in 2 stage processes (1 OARO and 1 

RO) at low feed salinities and water recoveries. 

Recycle rate: We assume that the maximum recycle rate between two sweep cycles is less than 

20% of the maximum sweep cycle flow rate. The maximum sweep cycle flow rate is determined 

based on the maximum permeate flow rate and the assumed maximum sweep to feed mass flow 

rate ratio. We observe that this bound is about an order of magnitude higher than any optimal 

recycle rates between two sweep cycles for all assessed scenarios. 

Given the above assumptions, the bounds for all other variables can be determined based 

on the specified inputs (feed flow rate, feed concentration, and water recovery), solution 

properties (maximum and minimum of density, viscosity, and osmotic pressure), mass balances 

(e.g. determining bounds for flow rates and concentrations based on the inlet flow rate and 

maximum and minimum permeate flows), and OARO operational constraints (e.g. sweep 

concentration decreases with successive stages).  
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S.3.7) Notation for optimization model 

Parameters: 

𝐴 – water permeability coefficient [m/h-bar] 

𝐵 – salt permeability coefficient [m/h] 

𝐶𝐹 – capitalization factor [$/$ total capital investment-year]  

𝐶𝑝 – cost parameters shown in Table 1 

𝐷 – diffusion coefficient [m2/h] 

𝑑ℎ - hydraulic diameter [m] 

𝐹𝑐ℎ𝑒𝑚 – factor for chemical costs, $ chemical costs/$ initial investment-year 

𝐹𝑚&𝑙 – factor for maintenance and labor costs, $ maintenance and labor costs/$ initial 

investment-year 

𝐹𝑇𝐶𝐼 – factor for total capital investment, % of direct capital costs 

H – height of channel [m] 

𝐿𝐹 – load factor [%]  

𝑅𝑅𝑚𝑒𝑚 – Rate of membrane replacement [%/year]  

𝑆 – structural parameter [m] 

𝑋𝑎 – make up stream mass fraction [kg salt/kg solution]  

휀 – void space of the mesh spacer [-]  

𝜂𝑝𝑚𝑝 – pump efficiency, % 

𝜂𝑝𝑥 – pressure exchanger efficiency, % 
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Sets: 

J – stages (j1, j2, … jM) 

K – nodes (k1, k2, … kN) 

 

Variables: 

𝐴𝑚𝑒𝑚 – membrane area [m2] 

𝐴𝑊𝑃 – annual water production rate [m3/year]  

𝐶𝑏 – bulk concentration [g/L or kg/m3] 

𝐶𝐶 – capital costs [$] 

𝐶𝑚 – concentration at the membrane interface [g/L or kg/m3] 

𝐸𝐶 – energy consumption [kWh/m3] 

𝐹 – friction factor [-] 

𝐿 – length of membrane stage [m] 

𝐽𝑠 – salt flux [kg/m2-h] 

𝐽𝑤 – water flux [m3/h] 

𝑘 – mass transfer coefficient [m/h] 

𝑀 – mass flow rate [kg/h] 

𝑀𝑑 – disposal mass flow rate [kg/h] 

𝑀𝑟 – recycle mass flow rate [kg/h]  

𝑀𝑎 – make-up mass flow rate [kg/h] 

𝑂𝐶 – annual operating cost [$/year] 

𝑃 – hydraulic pressure [bar] 

𝑃𝐿 – pressure loss per unit length [bar/m] 
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𝑃𝑜𝑤 – pump power [m3-bar/h] 

𝑃𝑅 – overall purge rate [purge mass flow rate/first stage permeate mass flow rate]  

𝑅𝑒 – Reynolds number [-] 

𝑅𝑤 – water recovery [water flow rate in product water/water flow rate in initial feed] 

𝑆𝑐 – Schmidt number [-] 

𝑇𝐴𝐶 – total annual costs [$/year]  

𝑇𝐶𝐼 – total capital investment [$] 

𝑈𝑊𝐶 – unit water costs [$/kWh] 

𝑊 – width of membrane stage [m] 

𝑋 – mass fraction [kg salt/kg of solution] 

𝜇 – viscosity [Pa-s] 

𝜌 – density [kg3/m3] 

𝜋 – osmotic pressure [bar] 

 

Function: 

𝑓𝑥(𝑦1, 𝑦2, … ) – function that determines variable 𝑥 from variables 𝑦 
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S.4) Additional details on optimal design and operation for the case studies 

The optimal make-up, recycle, purge flow rates for the three high salinity brine treatment 

cases are presented in figure S.6. For all case studies, we observe no makeup stream in the cost 

optimal solutions. Additionally, we observe that the only purge stream occurs from the first 

sweep cycle for the case studies. We also observe that the recycle mass flow rates decrease with 

successive stages. These three trends occur hold across all assessed scenarios (25-150 g/L feed 

concentration and 30-75% water recovery).  

 

Figure S6. Cost optimal make-up (A), purge (B), and recycle (C) flow rates for the three high-

salinity brine desalination cases: 1) 75 g/L TDS with 50% recovery, 75 g/L TDS with 70% 
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recovery, and 125 g/L with 40% recovery. The flow rates are normalized by the inlet feed mass 

flow rate in the first stage (20.5, 20.5, and 21.1 Mg/h for each case, respectively. These are 

based on the assumed volumetric flow rate of 19.5 m3/h and the density of the feed). Since 

recycle only occurs from one sweep cycle to the previous one, the first sweep cycle cannot 

recycle to another cycle (denoted with the asterisk). 

Additional details on membrane stage water and salt flux, dimensions (width and length), 

flow conditions, and stage pressure drop are shown in Figure S7 and S8. The average water flux 

increases with successive OARO stages and has a large increase in the RO stage. However, the 

average salt flux is roughly constant and results in a much greater salt permeation in the early 

stages due to the much larger membrane areas. This difference in salt permeation requires the 

purge from the first sweep cycle and dilution via recycle streams from subsequent sweep cycles 

in order to operate at steady state.  

Like the stage membrane area, the width and length of the membrane stage decrease with 

successive stages. We observe that the optimal membrane width corresponds to feed and sweep 

average Reynolds numbers below 300 in the OARO stages, while the average Reynolds number 

can reach as high as 1000 in the RO stages. Optimal Reynolds numbers are low in OARO stages 

to limit the pressure drop in the stage and obtain a higher net driving force at the end of the stage. 

This contrasts with RO stages, where the optimal Reynolds number are higher to reduce the feed-

side external concentration polarization. The OARO stages do not prioritize the reduction of the 

feed or sweep-side external concentration because their water flux is more affected by the sweep-

side internal concentration polarization that is independent of the flow conditions. 
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Figure S7. Cost-optimal water (A) and salt (B) flux for the three high salinity brine desalination 

cases. LMH stands for L/m2-h. 
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Figure S8. Cost optimal membrane stage width (A), length (B), average Reynolds number for 

feed-side (C) and sweep-side (D), and pressure drop for feed-side (E) and sweep-side (F) for the 
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three high salinity brine desalination cases. The asterisk denotes the Reynolds number is not 

determined for the sweep-side (permeate-side) of the RO stage.  
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S.5) Trade-offs between energy consumption and cost 

 Throughout our work, we have focused primarily on the unit water costs of the OARO 

process. While our cost optimization model provides insight into the design and operating 

conditions that minimize cost, it does not provide much insight into the tradeoffs between other 

key outcome metrics (e.g. energy consumption and product water quality). In this section, we 

demonstrate how multi-objective optimization techniques can be used to determine the tradeoffs 

between energy consumption and unit water costs for the OARO process.  

Figure S9 presents the Pareto frontier between energy consumption and unit water cost for 

the three cases. We developed this Pareto frontier by adding a constraint on the maximum energy 

consumption and successively decreasing the value. We find that reducing the energy 

consumption of the cost optimal solution by 10-20% results in a 12-15% increase in costs across 

the 3 cases. We also observe that further decreases in energy consumption may result in a large 

increase in cost (>50%).  
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Figure S9. OARO process cost and energy consumption tradeoffs for the three case studies. The 

graph provides the Pareto frontier developed by parametrically decreasing the energy 

consumption from the cost optimal solution (point on the far right). 

 

The cost of the OARO process can increase significantly for modest decreases in energy 

consumption because OARO designs and operations with lower energy consumption have much 

lower water flux and higher membrane area. Figure S10 presents the unit water cost, 

concentration profile, inlet feed pressure, and membrane area for case 1 Pareto frontier solutions. 

We observe that decreasing the energy consumption by 20% (8.66 to 7.0 kWh/m3), increases the 

unit water costs by 15% (2.69 to 3.08 $/m3) for case 1. The reduction in energy consumption was 

achieved by decreasing the inlet feed pressure in the 2nd and 3rd stage (Figure S10 C), which 

requires lower dilute sweep concentrations (Figure S10 B) and higher membrane areas (Figure 

S10 D) in stage 1 and 2.  
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Figure S10. Cost (A), concentration profile (B), inlet feed pressure (C), and membrane area 

(D) for case 1 Pareto frontier solutions. The cost optimal solution has an energy consumption of 

8.7 kWh/m3 (red) and the other solutions have a lower energy consumption of 8 kWh/m3 (blue), 

7.5 kWh/m3 (green), and 7 kWh/m3 (purple). 

 

While we can change our optimization model objective to minimize the energy consumption 

of the OARO process, this approach is not insightful because the solutions are trivial. When the 

model minimizes energy consumption, the expected variables approach their bounds. For 

example, the energy optimal solution would minimize the pressure drop in the stage by reducing 
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the Reynolds number to the lowest allowed (we assumed a lower bound of 100). This decrease in 

Reynolds number would increase the concentration polarization and decrease the water flux. 

Additionally, the energy optimal solution would minimize the inlet feed pressure for all stages, 

which would decrease the water flux to the lowest allowed (generally, the lowest allowed water 

flux was limited by the mostly unchanged salt flux and the product water quality constraint). 

Since we could have anticipated these operating conditions without the optimization model and 

these solutions are solely dependent on the arbitrary bounds, the energy optimal solutions are not 

valuable. This result is in stark contrast to and further emphasizes the value of the cost 

optimization approach, which balances complex tradeoffs in design and operating decisions. 
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S.6) Key design and operational variables for the OARO process 

Figure S11 presents the key design variables for cost optimal OARO process 

configurations, including: average membrane decrease with successive OARO stages, average 

dilute stream flow rate decrease with successive OARO stages, overall purge rate, and average 

recycle rate between sweep cycles.  

We observe that the overall purge rate generally increases with increasing feed 

concentration and decreasing water recovery. Conversely, we find that the average recycle rate 

between sweep cycles generally increases with decreasing feed concentration and increasing 

water recovery. While there are small local deviations in these trends due to the multitude of 

competing tradeoffs and the discrete number of stages, the trends describe the optimal design and 

operating conditions over the wide range of feed concentrations and water recoveries. However, 

there are two significant exceptions: 1) feed concentration of 75 g/L with 45% water recovery 

and 2) feed concentration of 100 g/L with 45% water recovery. Both exceptions have a higher 

overall purge rate and the second exception has a higher average recycle rate than the 

surrounding conditions. These exceptions deviate from the general trend because their optimal 

number of stages is near the switch over point for an additional stage. In both cases, their optimal 

number of stages have relatively low water fluxes of 2.0, 1.3 LMH in the first OARO stage.  

Since the water flux is low and the salt flux stays roughly constant, these cases have low 

selectivity in the first stage and require a greater overall purge rate and average recycle rate 

relative to the surrounding conditions. The average water flux in the first OARO stage for these 

cases is increased by 15% and 23% with an additional stage and results in a modest increase in 

the unit water costs of 12 and 5%, respectively. In the additional stage solutions, the overall 
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purge rate decreases to 6.2 and 7.7% and the average recycle rate decreases to 10.6%, which 

align with the general trends for those key design variables. 

We observe that both the average membrane area decrease and average dilute stream 

flow rate decrease in successive stages increase with lower feed concentrations and lower water 

recoveries. The average membrane area decrease in successive OARO stages is inversely 

correlated with the number of stages, while the average dilute stream flow rate decrease in 

successive stages is more dependent on the specified water recovery. 
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Figure S11. Key design variables for the cost optimal OARO process: A) overall purge rate, B) 

average recycle rate between sweep cycles, C) average membrane area decrease in successive 

OARO stages, D) average dilute stream flow rate decrease in successive stages. Note that each 

of these metrics require at least an OARO stage and the average membrane area decrease for 

successive OARO stages and the average recycle rate between sweep cycles require at least two 

OARO stages. 
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S.7) OARO cost sensitivity analysis 

The OARO cost sensitivity for select process and financial parameters are shown in Figure S12 

and S13. 

 

Figure S12. OARO cost sensitivity for process parameters: A) salt permeability coefficient, B; 

B) height of channel; C) mass transfer coefficient adjustment; D) friction factor adjustment. For 

both the mass transfer coefficient and friction factor adjustment, a factor was multiplied to the 

relationships obtained from literature (equation S63 and S69). Asterisk denotes base case. 
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Figure S13. OARO cost sensitivity for financial parameters: A) practical investment factor, B) 
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capitalization factor, C) membrane replacement rate, D) equipment cost adjustment, E) 

maintenance, labor, and chemical factor, and F) electricity cost. Asterisk denotes base case. 
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APPENDIX D: SUPPORTING INFORMATION FOR CHAPTER 5 – 

COST OPTIMIZATION OF GAP MEMBRANE DISTILLATION 
 

 

 

Supporting Information Summary:  

The supporting information contains details for 1) solution properties; 2) modeling theory; 3) 

optimization model; 4) effect of salinity on MD performance, 5) cost optimal outcome metrics 

for MD, 6) additional sensitivity analysis 

 

This supporting information is 30 pages long and contains 6 figures (Fig. S1-S6), and 137 

equations (Eq. S1-S137). 
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S.1) Solution properties 

 The NaCl solution properties including density, concentration, viscosity, vapor pressure, 

thermal conductivity, specific heat of vaporization, and specific enthalpy of liquid are modeled 

as functions of salt mass fraction and temperature. These functions are sourced from Sharqawy et 

al. 2010,1 where the authors compiled a list of functions and provided their applicable salinity 

and temperature ranges. The equations used in this work are provided in Table S1.  

 In addition to the previous properties, we consider two properties (i.e. solute diffusivity 

and specific enthalpy of the vapor) that are modeled as a function of only temperature. We use 

regression to develop a quadratic equation for NaCl solute diffusivity by fitting data from Fell et 

al. 1971.2 The data and the resulting fit are shown in Figure S1. We do not model the diffusivity 

as a function of salinity because the effect of salinity is orders of magnitude less than the effect 

of temperature and our previous work shows negligible errors when excluding the salinity effects 

for other membrane processes.3 We model the specific enthalpy of vapor as a function of only 

temperature as shown in Table S1 because there is no salt content in the water vapor. 
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Figure S1. NaCl diffusivity as a function of temperature. The dots are the average diffusivity for 

the four temperatures tested in Fell et al. 1971.2 The dotted line is the quadratic fit with an R-

squared value greater than 0.99 and is shown in Table 1. 

Table S1. Solution property function. 

Variable Function Units Source 

Density, 𝜌 𝑓𝜌(𝑋, 𝑇) kg m-3 Eq. 5 in [1] 

Concentration, 𝐶 𝑓𝐶(𝑋, 𝑇) = 𝜌 𝑋 kg m-3  

Viscosity, 𝜇 𝑓𝜇(𝑋, 𝑇) Pa s Eq. 22 in [1] 

Diffusivity, 𝐷 𝑓𝐷(𝑇) = 𝐴 𝑇2 + 𝐵 𝑇 + 𝐶 
𝐴 = 3.847𝑒4 , 𝐵 = −0.1984, 𝐶 = 26.54 

1E-9m2s-1 Regression from 

[2] 

Vapor pressure, 𝑉𝑝 𝑓𝑉𝑝(𝑋, 𝑇) Pa Antoine equation 

with ideal solution 

assumption 

Thermal 

conductivity, 𝛼 

𝑓𝛼(𝑋, 𝑇) W m-1 K-1 Eq. 13 in [1] 

Specific heat, 𝐶𝑝 𝑓𝐶𝑝(𝑋, 𝑇) kJ kg-1 K-1 Eq. 9 in [1] 

Specific heat of 

vaporization, �̂�𝑣𝑎𝑝 

𝑓�̂�𝑣𝑎𝑝
(𝑋, 𝑇) kJ kg-1 Eq. 54 in [1] and 

ideal solution 

assumption  

Specific enthalpy of 

liquid, �̂�𝑙 

𝑓�̂�𝑙
(𝑋, 𝑇) kJ kg-1 Eq. 42 and 55 in 

[1] 

Specific enthalpy of 

vapor, �̂�𝑣 

𝑓�̂�𝑣
(𝑇) = 𝑓�̂�𝑙

(0, 𝑇) + 𝑓�̂�𝑣𝑎𝑝
(0, 𝑇) kJ kg-1  
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S.2) Modeling theory 

 The main manuscript provides equations for the governing mass and energy balance, 

basic water and heat flux, and process metrics (i.e. GOR, energy recovery, and LCOW). In this 

section, we provide the full details for modeling the governing differential equations; module 

conditions; mass and heat transfer; pressure drop; membrane and system metrics; and the heat 

exchangers (i.e. heater, chiller, and heat exchanger). 

Governing differential equations 

 The governing mass and energy balance are shown in the main manuscript with equations 

1-7. Figure S2 provides labels for the points of interest (e.g. ℎ𝑏 for hot-side bulk, ℎ𝑚 for hot-side 

membrane interface) and the heat fluxes used in those equations. While most MD models do not 

consider the nonconstant heat flux across the membrane and gap, we account for it in our model 

to appropriately account for salinity effects and close energy balances. Additional details on 

estimating the heat flux is provided in the heat transfer section below. 

 This system of differential equations is approximated with a finite difference method 

shown in Figure S3. Using this method, the state variables (i.e. mass flowrate, salt mass fraction, 

temperature) and process variables (e.g. water flux, heat flux, pressure loss, etc.) are estimated at 

nodes a long the membrane stage. The implementation of the finite difference method is included 

in SI Section 3. 
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Figure S2. Labels for points of interest and heat fluxes. Points of interest include: hot-side bulk 

(hb), hot-side membrane interface (hm), gap-side membrane interface (mg), gap-side distillate 

plate interface (gd), cold-side distillate plate interface (dc), and cold-side bulk (cb).  

 

Figure S3. Finite difference model for the membrane stage. 𝜃 are state variables (i.e. mass 

flowrate, salt mass fraction, and temperature) in and out of the stage for the hot-side (h), cold-

side (c), and permeate (p). 𝜙 are internodal state variables and �̅� are nodal variables that 

include both state and process variables (e.g. water flux, heat flux, pressure loss, dimensionless 

numbers, etc.) 



 

293 
 

Module conditions  

 Many of the process relationships for MD depend on explicitly modeling the conditions 

in the membrane module. Specifically, the heat and mass transfer relationships are based on the 

following dimensionless numbers: Reynolds, Schmidt, Prandtl, Sherwood, and Nusselt. These 5 

dimensionless numbers are determined with equations S1-5. 

𝑅𝑒 =
𝜌 𝑣 𝑑ℎ

𝜇
       (S1) 

𝑆𝑐 =
𝜇

𝜌 𝐷
       (S2) 

𝑃𝑟 =
𝐶𝑝 𝜇

𝛼
        (S3) 

𝑆ℎ = 𝑎 𝑅𝑒𝑏 𝑆𝑐𝑐      (S4) 

𝑁𝑢 = 𝑎 𝑅𝑒𝑏 𝑃𝑟𝑐      (S5) 

Where 𝑅𝑒 is the Reynolds number, 𝑆𝑐 is the Schmidt number, 𝑃𝑟 is the Prandtl number, 𝑆ℎ is 

the Sherwood number, 𝑁𝑢 is the Nusselt number, 𝜌 is the density, 𝑣 is the velocity, 𝑑ℎ is the 

hydraulic diameter, 𝜇 is the dynamic viscosity, 𝐷 is the solute diffusivity, 𝐶𝑝 is the specific heat 

capacity, 𝛼 is the thermal conductivity, and 𝑎, 𝑏, and 𝑐 are parameters that estimate the 

Sherwood and Nusselt number. In our work, we use Sherwood and Nusselt number relationships 

developed by Guillen and Hoek 2009 for mesh filled channels,4 where 𝑎, 𝑏, and 𝑐 are 0.46, 0.36, 

and 0.36, respectively. The hydraulic diameter of a mesh filled channel with a height of 2 mm, a 

filament of 1 mm, and void space of 90% is determined to be 2.57 mm as shown in Table 1 of 

the main manuscript. The equations to calculate the hydraulic diameter are included in the 

supporting information of our previous work.3 
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Mass transfer 

 Besides the advective mass transfer in the bulk fluids, there are two other mass transfer 

phenomena in the MD module. The first is the water flux across the membrane as shown in the 

main manuscript with equation 8. The second is the salt concentration polarization that arises 

from the solution flux and rejection of the solute at the membrane interface. The relationship 

describing the concentration polarization is shown in equation S6. 

𝐶ℎ𝑚 = 𝐶ℎ𝑏 exp (
 𝐽𝑤 

𝜌𝑤 𝑘
)      (S6) 

 Where 𝐶 is the concentration at the hot-side membrane interface (ℎ𝑚) and hot-side bulk 

(ℎ𝑏), 𝐽𝑤 is the water flux, 𝜌𝑤 is the density of water, and 𝑘 is the mass transfer coefficient. The 

mass transfer coefficient, 𝑘, is determined from equation S7. 

𝑘 =
𝐷

𝑑ℎ
 𝑆ℎ       (S7) 

Heat transfer 

 The convective and conductive heat fluxes shown in Figure S2 are determined in 

equations S8-12. Additional relationships that connect the heat fluxes through energy balances at 

the interfaces are shown in equations S13-S18. This work considers nonconstant heat flux across 

the membrane (and the gap for air gap) that arises from the energy released as the water flux 

cools through the mediums as shown in equations S14 and S16b. Equations S15a, S16a, and 

S17a are for the gap types with condensation on the gap-side membrane interface (permeate and 

conductive gap) and equations S15b, S16b, and S17b are for the air gap with condensation on the 

gap-side distillate plate interface. 
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𝑞ℎ = ℎ𝑐𝑜𝑛𝑣,ℎ[𝑇ℎ𝑏 − 𝑇ℎ𝑚]     (S8) 

1

2
(𝑞𝑚1 + 𝑞𝑚2) =

𝛼𝑚

𝛿𝑚
[𝑇ℎ𝑚 − 𝑇𝑚𝑔]    (S9) 

1

2
(𝑞𝑔1 + 𝑞𝑔2) =

𝛼𝑔

𝛿𝑔
[𝑇𝑚𝑔 − 𝑇𝑔𝑑]    (S10) 

𝑞𝑑 =
𝛼𝑑

𝛿𝑑
[𝑇𝑔𝑑 − 𝑇𝑑𝑐]      (S11) 

𝑞𝑐 = ℎ𝑐𝑜𝑛𝑣,𝑐[𝑇𝑑𝑐 − 𝑇𝑐𝑏]     (S12) 

𝑞ℎ = 𝑞𝑚1 + 𝐽𝑤 𝑓�̂�𝑣𝑎𝑝
(𝑋ℎ𝑚, 𝑇ℎ𝑚)    (S13) 

𝑞𝑚1 + 𝐽𝑤 𝑓�̂�𝑣
(𝑇ℎ𝑚) = 𝑞𝑚2 + 𝐽𝑤 𝑓�̂�𝑣

(𝑇𝑚𝑔)    (S14) 

𝑞𝑚2 + 𝐽𝑤 𝑓�̂�𝑣
(𝑇𝑚𝑔) = 𝑞𝑔1 + 𝐽𝑤 𝑓�̂�𝑙

(0, 𝑇𝑚𝑔)  (S15a) 

𝑞𝑚2 = 𝑞𝑔1       (S15b) 

𝑞𝑔1 = 𝑞𝑔2       (S16a) 

𝑞𝑔1 + 𝐽𝑤 𝑓�̂�𝑣
(𝑇𝑚𝑔) = 𝑞𝑔2 + 𝐽𝑤 𝑓�̂�𝑣

(𝑇𝑔𝑑)    (S16b) 

𝑞𝑔2 = 𝑞𝑑       (S17a) 

𝑞𝑔2 + 𝐽𝑤 𝑓�̂�𝑣𝑎𝑝
(0, 𝑇𝑔𝑑) = 𝑞𝑑     (S17b) 

𝑞𝑑 = 𝑞𝑐       (S18) 

Where 𝑞 is the heat flux and 𝑇 is the temperature with their subscripts noted in Figure S2; ℎ𝑐𝑜𝑛𝑣 

is the convective heat transfer coefficient of the cold and hot-side; and 𝛼 is the thermal 

conductivity and 𝛿 is the thickness of the membrane (𝑚), gap (𝑔), and distillate plate (𝑑). 
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Pressure drop 

 We estimate the pressure drop across a membrane stage from friction with equation S19. 

𝑃𝐷 = 𝑃𝐿𝑎𝑣𝑔 𝐿       (S19) 

Where 𝑃𝐷 is the pressure drop, 𝑃𝐿𝑎𝑣𝑔 is the pressure loss per unit length, and 𝐿 is the length of 

the membrane stage. The local pressure loss per unit length, 𝑃𝐿, is determined in equation S20. 

𝑃𝐿 =
𝐹𝑓 𝜌 𝑣2

2 𝑑ℎ
       (S20) 

Where 𝐹𝑓 is the friction factor. We estimate the friction factor for the mesh filled channel using a 

relationship from Guillen and Hoek 2009,4 as shown in equation S21. 

𝐹𝑓 = 0.42 +
189.3

𝑅𝑒
      (S21) 

Membrane and system metrics 

 In this section, we provide details on the key membrane and system performance metrics 

provided in Table 2 in the main manuscript including the average water flux, average thermal 

efficiency, average bulk temperature difference, GOR, energy recovery, and LCOW.  

 The basic calculations for water flux, GOR, energy recovery, and LCOW are provided in 

equations 8 and 11-13 in the main manuscript. The decrease in energy for the hot stream from 

the inlet to the outlet of membrane stage, Δ𝐸ℎ, used to calculate the energy recovery, is 

determined with equations S22-24. 

Δ𝐸ℎ = 𝐸ℎ,𝑚𝑒𝑚,𝑖𝑛 − 𝐸ℎ,𝑚𝑒𝑚,𝑜𝑢𝑡    (S22) 

𝐸ℎ,𝑚𝑒𝑚,𝑖𝑛 = 𝑀ℎ,𝑚𝑒𝑚,𝑖𝑛 𝑓�̂�𝑙
(𝑋ℎ,𝑚𝑒𝑚,𝑖𝑛, 𝑇ℎ,𝑚𝑒𝑚,𝑖𝑛)  (S23) 
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𝐸ℎ,𝑚𝑒𝑚,𝑜𝑢𝑡 = 𝑀ℎ,𝑚𝑒𝑚,𝑜𝑢𝑡 𝑓�̂�𝑙
(𝑋ℎ,𝑚𝑒𝑚,𝑜𝑢𝑡, 𝑇ℎ,𝑚𝑒𝑚,𝑜𝑢𝑡) (S24) 

Where 𝐸ℎ is the energy content in the hot-side stream for the inlet (𝑖𝑛) and outlet (𝑜𝑢𝑡) in the 

membrane stage (𝑚𝑒𝑚). 

 The membrane thermal efficiency, 𝑇𝐸, and bulk temperature difference, 𝐵𝑇𝐷, are 

determined in equations S25 and S26. 

𝑇𝐸 =
𝐽𝑤 𝑓�̂�𝑣

(𝑇𝑚𝑔)

𝐽𝑤 𝑓�̂�𝑣
(𝑇𝑚𝑔)+𝑞𝑚2

      (S25) 

𝐵𝑇𝐷 = 𝑇ℎ𝑏 − 𝑇𝑐𝑏      (S26) 

 The water flux, thermal efficiency, and bulk temperature difference are local variables 

and are determined across membrane stage at each node in the finite difference modeling. Their 

averages are reported to summarize the membrane and system performance.  

 Additional details on determining the LCOW are included in the costing section of the 

optimization model (SI Section S3). 

Heat exchanger 

 As described in the main manuscript, the heat duties in the heat exchangers (including the 

heater and chiller) are determined with a log mean temperature difference model. The heat duty 

and log mean temperature difference are determined in equations S27-30. Where the log mean 

temperature difference is approximated with Chen’s approximation in order to avoid the 

discontinuities within the domain range of the temperature variables.5-6 

𝑄ℎ𝑥𝑟 = 𝑈ℎ𝑥𝑟 Δ𝑇𝐿𝑀 𝐴𝑟𝑒𝑎ℎ𝑥𝑟     (S27) 
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Δ𝑇𝐿𝑀 =
Δ𝑇2−Δ𝑇1

ln(
Δ𝑇2
Δ𝑇1

)
≈ (Δ𝑇1Δ𝑇2

(Δ𝑇1+Δ𝑇2)

2
)

1

3
    (S28) 

Δ𝑇1 = 𝑇ℎ,𝑖𝑛 − 𝑇𝑐,𝑜𝑢𝑡       (S29) 

Δ𝑇2 = 𝑇ℎ,𝑜𝑢𝑡 − 𝑇𝑐,𝑖𝑛      (S30) 

 Where 𝑄ℎ𝑥𝑟 is the heat exchanger duty, 𝑈ℎ𝑥𝑟 is the overall heat transfer coefficient, Δ𝑇𝐿𝑀 

is the log mean temperature difference, 𝐴𝑟𝑒𝑎ℎ𝑥𝑟 is the heat exchanger surface area, Δ𝑇1 is the 

temperature difference on the hot inlet and cold outlet, Δ𝑇2 is the temperature difference on the 

hot outlet and cold inlet. The approach temperature (𝐴𝑇) is the minimum of these two 

differences, as shown in equation S31. 

𝐴𝑇 = min(Δ𝑇1, Δ𝑇2)      (S31) 

S.3) Optimization model 

 We formulate nonlinear programming models to minimize the LCOW of gap MD. As 

described in the main manuscript, we form different models for the discrete choices such as gap 

type. The models have minor modifications between them, which are noted in the equations. The 

base model is permeate/conductive gap MD with a looping configuration, while the differing 

equations for air gap is noted with a “b”. 

System-scale 

System mass balance 

 The mass balance for the cold-side and hot-side mixer are provided in equations S32-S35. 

In our system configuration the feed combines with the cold-side loop in the cold-side mixer, and 

the pass-through stream combines with the hot-side loop in the hot-side mixer.  
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𝑀𝑐,𝑚𝑖𝑥,𝑖𝑛 + 𝑀𝑓 = 𝑀𝑐,𝑚𝑖𝑥,𝑜𝑢𝑡     (S32) 

𝑀𝑐,𝑚𝑖𝑥,𝑖𝑛𝑋𝑐,𝑚𝑖𝑥,𝑖𝑛 + 𝑀𝑓 𝑋𝑓 = 𝑀𝑐,𝑚𝑖𝑥,𝑜𝑢𝑡𝑋𝑐,𝑚𝑖𝑥,𝑜𝑢𝑡  (S33) 

𝑀ℎ,𝑚𝑖𝑥,𝑖𝑛 + 𝑀𝑝𝑎𝑠𝑠 = 𝑀ℎ,𝑚𝑖𝑥,𝑜𝑢𝑡    (S34) 

𝑀ℎ,𝑚𝑖𝑥,𝑖𝑛 𝑋ℎ,𝑚𝑖𝑥,𝑖𝑛 + 𝑀𝑝𝑎𝑠𝑠  𝑋𝑝𝑎𝑠𝑠 = 𝑀ℎ,𝑚𝑖𝑥,𝑜𝑢𝑡 𝑋ℎ,𝑚𝑖𝑥,𝑜𝑢𝑡 (S35) 

 Where 𝑀 is the mass flowrate [kg/s] and 𝑋 is the salt mass fraction [unitless] and are 

noted for the hot-side (ℎ), cold-side (𝑐), mixer (𝑚𝑖𝑥), feed (𝑓), pass-through (𝑝𝑎𝑠𝑠) and whether 

it is the inlet (𝑖𝑛) or outlet (𝑜𝑢𝑡) of the process unit. 

 The mass balance for the cold-side and hot-side splitter (𝑠𝑝𝑙) are shown in equations S36-

S41. Both splitters form the looping stream for their sides, as well as the pass-through stream for 

the cold-side and the disposal stream for the hot-side (𝑑). 

𝑀𝑐,𝑠𝑝𝑙,𝑖𝑛 = 𝑀𝑐,𝑠𝑝𝑙,𝑜𝑢𝑡 + 𝑀𝑝𝑎𝑠𝑠     (S36) 

𝑋𝑐,𝑠𝑝𝑙,𝑖𝑛 = 𝑋𝑐,𝑠𝑝𝑙,𝑜𝑢𝑡      (S37) 

𝑋𝑐,𝑠𝑝𝑙,𝑖𝑛 = 𝑋𝑝𝑎𝑠𝑠      (S38) 

𝑀ℎ,𝑠𝑝𝑙,𝑖𝑛 = 𝑀ℎ,𝑠𝑝𝑙,𝑜𝑢𝑡 + 𝑀𝑑     (S39) 

𝑋ℎ,𝑠𝑝𝑙,𝑖𝑛 = 𝑋ℎ,𝑠𝑝𝑙,𝑜𝑢𝑡      (S40) 

𝑋ℎ,𝑠𝑝𝑙,𝑖𝑛 = 𝑋𝑑       (S41) 

 The overall mass balance for the membrane unit is shown in equations S42-S45. In gap 

MD, all the mass loss in the hot-side forms the permeate stream (𝑝) and the cold-side does not 

gain or lose mass. We assume that no salt passes through the membrane. 
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𝑀𝑐,𝑚𝑒𝑚,𝑖𝑛 = 𝑀𝑐,𝑚𝑒𝑚,𝑜𝑢𝑡     (S42) 

𝑋𝑐,𝑚𝑒𝑚,𝑖𝑛 = 𝑋𝑐,𝑚𝑒𝑚,𝑜𝑢𝑡     (S43) 

𝑀ℎ,𝑚𝑒𝑚,𝑖𝑛 = 𝑀ℎ,𝑚𝑒𝑚,𝑜𝑢𝑡 + 𝑀𝑝    (S44) 

𝑀ℎ,𝑚𝑒𝑚,𝑖𝑛 𝑋ℎ,𝑚𝑒𝑚,𝑖𝑛 = 𝑀ℎ,𝑚𝑒𝑚,𝑜𝑢𝑡 𝑋ℎ,𝑚𝑒𝑚,𝑜𝑢𝑡  (S45)  

 There is no change in mass flowrate for the other process units, including the heat 

exchanger (ℎ𝑥𝑟), heater (ℎ𝑡𝑟), and chiller (𝑐ℎ𝑙) as shown in equations S46 and S47. 

𝑀𝑠,𝑢,𝑖𝑛 = 𝑀𝑠,𝑢,𝑜𝑢𝑡   ∀𝑠 ∈ (ℎ, 𝑐), ∀𝑢 ∈ (ℎ𝑥𝑟, ℎ𝑡𝑟, 𝑐ℎ𝑙) (S46) 

𝑋𝑠,𝑢,𝑖𝑛 = 𝑋𝑠,𝑢,𝑜𝑢𝑡   ∀𝑠 ∈ (ℎ, 𝑐), ∀𝑢 ∈ (ℎ𝑥𝑟, ℎ𝑡𝑟, 𝑐ℎ𝑙)  (S47) 

System energy balance 

 The energy balance for the cold and hot-side mixer are shown in equations S48 and S49. 

Where the specific enthalpy of the solution is determined as a function of salt mass fraction and 

temperature (𝑓�̂�𝑙
) with additional details provided in Table S1. 

𝑀𝑢 𝑓�̂�𝑙
(𝑋𝑢, 𝑇𝑢) + 𝑀𝑓 𝑓�̂�𝑙

(𝑋𝑓, 𝑇𝑓) = 𝑀𝑣 𝑓�̂�𝑙
(𝑋𝑣, 𝑇𝑣)     

𝑢 = (𝑐, 𝑚𝑖𝑥, 𝑖𝑛) , 𝑣 = (𝑐, 𝑚𝑖𝑥, 𝑜𝑢𝑡)  (S48) 

𝑀𝑢 𝑓�̂�𝑙
(𝑋𝑢, 𝑇𝑢) + 𝑀𝑝𝑎𝑠𝑠 𝑓�̂�𝑙

(𝑋𝑝𝑎𝑠𝑠, 𝑇𝑝𝑎𝑠𝑠) = 𝑀𝑣 𝑓�̂�𝑙
(𝑋𝑣, 𝑇𝑣)       

𝑢 = (ℎ, 𝑚𝑖𝑥, 𝑖𝑛) , 𝑣 = (ℎ, 𝑚𝑖𝑥, 𝑜𝑢𝑡)  (S49) 

 The energy balance in the cold and hot-side splitter is shown in equations S50-S52. Since 

we assume there is no heat loss in the MD system, the splitter energy balance reduces to simply 

equating the temperatures of the inlet and outlet streams. 
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𝑇𝑠,𝑠𝑝𝑙,𝑖𝑛 = 𝑇𝑠,𝑠𝑝𝑙,𝑜𝑢𝑡   ∀𝑠 ∈ (ℎ, 𝑐)    (S50) 

𝑇𝑐,𝑠𝑝𝑙,𝑖𝑛 = 𝑇𝑝𝑎𝑠𝑠      (S51) 

𝑇ℎ,𝑠𝑝𝑙,𝑖𝑛 = 𝑇𝑑       (S52) 

 The energy balance for the membrane unit is provided in equation S53. Note that the 

subscripts 𝑢, 𝑣, 𝑤, and 𝑥 are noted in the following line. 

𝑀𝑢 𝑓�̂�𝑙
(𝑋𝑢, 𝑇𝑢) + 𝑀𝑣 𝑓�̂�𝑙

(𝑋𝑣, 𝑇𝑣) =      

𝑀𝑤 𝑓�̂�𝑙
(𝑋𝑤, 𝑇𝑤) + 𝑀𝑥 𝑓�̂�𝑙

(𝑋𝑥, 𝑇𝑥) + 𝑀𝑝 𝑓�̂�𝑙
(0, 𝑇𝑝) 

𝑢 = (𝑐, 𝑚𝑒𝑚, 𝑖𝑛) , 𝑣 = (ℎ, 𝑚𝑒𝑚, 𝑖𝑛), 𝑤 = (𝑐, 𝑚𝑒𝑚, 𝑜𝑢𝑡), 𝑥 = (ℎ, 𝑚𝑒𝑚, 𝑜𝑢𝑡) (S53) 

 The energy balance for the heat exchanger, heater, and chiller are provided in equations 

S54-S57. Where 𝑄 is the heating or cooling duty [kW]. 

𝑀𝑢 𝑓�̂�𝑙
(𝑋𝑢, 𝑇𝑢) − 𝑄ℎ𝑥𝑟 = 𝑀𝑣 𝑓�̂�𝑙

(𝑋𝑣, 𝑇𝑣)   𝑢 = (𝑐, ℎ𝑥𝑟, 𝑖𝑛), 𝑣 = (𝑐, ℎ𝑥𝑟, 𝑜𝑢𝑡) (S54) 

𝑀𝑢 𝑓�̂�𝑙
(𝑋𝑢, 𝑇𝑢) + 𝑄ℎ𝑥𝑟 = 𝑀𝑣 𝑓�̂�𝑙

(𝑋𝑣, 𝑇𝑣)   𝑢 = (ℎ, ℎ𝑥𝑟, 𝑖𝑛), 𝑣 = (ℎ, ℎ𝑥𝑟, 𝑜𝑢𝑡)  (S55) 

𝑀𝑢 𝑓�̂�𝑙
(𝑋𝑢, 𝑇𝑢) + 𝑄ℎ𝑡𝑟 = 𝑀𝑣 𝑓�̂�𝑙

(𝑋𝑣, 𝑇𝑣)   𝑢 = (ℎ, ℎ𝑡𝑟, 𝑖𝑛), 𝑣 = (ℎ, ℎ𝑡𝑟, 𝑜𝑢𝑡)  (S56) 

𝑀𝑢 𝑓�̂�𝑙
(𝑋𝑢, 𝑇𝑢) − 𝑄𝑐ℎ𝑙 = 𝑀𝑣 𝑓�̂�𝑙

(𝑋𝑣, 𝑇𝑣)   𝑢 = (𝑐, 𝑐ℎ𝑙, 𝑖𝑛), 𝑣 = (𝑐, 𝑐ℎ𝑙, 𝑜𝑢𝑡)  (S57) 

Heat duties 

 The heating or cooling duty of the heat exchanger, heater, and chiller are determined in 

equation S58. 

𝑄𝑢 = 𝑈𝑢 Δ𝑇𝐿𝑀,𝑢 𝐴𝑟𝑒𝑎𝑢   ∀𝑢 ∈ (ℎ𝑥𝑟, ℎ𝑡𝑟, 𝑐ℎ𝑙)   (S58) 
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Where 𝑈 is the overall heat transfer coefficient (provided in table 1 in the main manuscript), 

Δ𝑇𝐿𝑀 is the log mean temperature difference, 𝐴𝑟𝑒𝑎 is the surface area of the heat exchanger. 

Equations S59-S61 determine the log mean temperature difference for the three process units and 

use Chen’s approximation provided in equation S28.  

Δ𝑇𝐿𝑀,ℎ𝑥𝑟 = 𝑓ΔTLM
(𝑇𝑐,ℎ𝑥𝑟,𝑖𝑛 − 𝑇ℎ,ℎ𝑥𝑟,𝑜𝑢𝑡, 𝑇𝑐,ℎ𝑥𝑟,𝑜𝑢𝑡 − 𝑇ℎ,ℎ𝑥𝑟,𝑖𝑛) (S59) 

Δ𝑇𝐿𝑀,ℎ𝑡𝑟 = 𝑓ΔTLM
(𝑇𝑠 − 𝑇ℎ,ℎ𝑡𝑟,𝑜𝑢𝑡, 𝑇𝑠 − 𝑇ℎ,ℎ𝑡𝑟,𝑖𝑛)   (S60) 

Δ𝑇𝐿𝑀,𝑐ℎ𝑙 = 𝑓ΔTLM
(𝑇𝑐,𝑐ℎ𝑙,𝑖𝑛 − 𝑇𝑐𝑜𝑜𝑙,𝑜𝑢𝑡, 𝑇𝑐,𝑐ℎ𝑙,𝑜𝑢𝑡 − 𝑇𝑐𝑜𝑜𝑙,𝑖𝑛)  (S61) 

Where 𝑇𝑠 is the temperature of the steam assumed to be 100 °C (373 K), and 𝑇𝑐𝑜𝑜𝑙,𝑖𝑛 and 

𝑇𝑐𝑜𝑜𝑙,𝑜𝑢𝑡 is the temperature of the cooling water assumed to be 20 and 25 °C (293 and 298 K), 

respectively. 

 The mass flow rate of steam (𝑀𝑠) is determined in equation S62. We assume that all the 

steam condenses and that the heat of vaporization provides all of the energy for the heater. 

𝑄ℎ𝑡𝑟 = 𝑀𝑠 𝑓�̂�𝑣𝑎𝑝
(0,373)      (S62) 

System connections 

 The mass and energy balances described in the preceeding sections are around individual 

process units. This section connects the streams together to form the MD system. For the cold-

side the connections are as follows: mixer to chiller, chiller to membrane, membrane to splitter, 

splitter to mixer. For the hot-side the connections are: mixer to heater, heater to membrane, 

membrane to splitter, splitter to mixer. These connections are enforced for all three state 

variables (mass flowrate, salt mass fraction, and temperature) with equations S63-S68. 
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𝑌𝑐,𝑚𝑖𝑥,𝑜𝑢𝑡 = 𝑌𝑐,𝑐ℎ𝑙,𝑖𝑛   ∀𝑌 ∈ (𝑀, 𝑋, 𝑇)    (S63) 

𝑌𝑐,𝑐ℎ𝑙,𝑜𝑢𝑡 = 𝑌𝑐,𝑚𝑒𝑚,𝑖𝑛   ∀𝑌 ∈ (𝑀, 𝑋, 𝑇)    (S64) 

𝑌ℎ,𝑚𝑖𝑥,𝑜𝑢𝑡 = 𝑌ℎ,ℎ𝑡𝑟,𝑖𝑛   ∀𝑌 ∈ (𝑀, 𝑋, 𝑇)    (S65) 

𝑌ℎ,ℎ𝑡𝑟,𝑜𝑢𝑡 = 𝑌ℎ,𝑚𝑒𝑚,𝑖𝑛   ∀𝑌 ∈ (𝑀, 𝑋, 𝑇)    (S66) 

𝑌𝑠,𝑚𝑒𝑚,𝑜𝑢𝑡 = 𝑌𝑠,𝑠𝑝𝑙,𝑖𝑛   ∀𝑌 ∈ (𝑀, 𝑋, 𝑇), ∀𝑠 ∈ (ℎ, 𝑐)   (S67) 

𝑌𝑠,𝑠𝑝𝑙,𝑜𝑢𝑡 = 𝑌𝑠,𝑚𝑖𝑥,𝑖𝑛   ∀𝑌 ∈ (𝑀, 𝑋, 𝑇), ∀𝑠 ∈ (ℎ, 𝑐)   (S68) 

Membrane stage-scale 

 As described in SI Section 2, we model the governing equations of the membrane stage 

with the finite difference method. This method explicitly determines the local variables along the 

membrane stage at a series of nodes, including mass flowrate, salt mass fraction, temperature, 

water flux, heat fluxes, pressure loss per unit length, vapor pressure, concentration, and 

dimensionless numbers. This detailed one-dimensional model accounts for pressure drop, 

concentration and temperature polarization, and the salinity and temperature dependence of 

solution properties. 

Membrane stage connections 

 As shown in Figure S3, the finite difference model is based on internodal and nodal 

variables. There are N number of nodes and the node is noted with subscript 𝑖 (𝑖1, 𝑖2, … 𝑖𝑁). For 

inter-nodal variables, the subscript 𝑖 denotes the variable to the right of node 𝑖 and the variable to 

the left of the first node is noted with 𝑖0. These internodal and nodal variables are connected to 

the inlet and outlet variables for the membrane unit as shown in equations S69-S74.   
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𝑌ℎ,𝑖0 = 𝑌ℎ,𝑚𝑒𝑚,𝑖𝑛   ∀𝑌 ∈ (𝑀, 𝑋, 𝑇)     (S69) 

𝑌ℎ,𝑖𝑁 = 𝑌ℎ,𝑚𝑒𝑚,𝑜𝑢𝑡   ∀𝑌 ∈ (𝑀, 𝑋, 𝑇)     (S70) 

𝑌𝑝,𝑖0 = 0   ∀𝑌 ∈ (𝑀, 𝑋)      (S71) 

𝑌𝑝,𝑖𝑁 = 𝑌𝑝   ∀𝑌 ∈ (𝑀, 𝑋, 𝑇)      (S72) 

𝑌𝑐,𝑖𝑁 = 𝑌𝑐,𝑚𝑒𝑚,𝑖𝑛   ∀𝑌 ∈ (𝑀, 𝑋, 𝑇)     (S73) 

𝑌𝑐,𝑖0 = 𝑌𝑐,𝑚𝑒𝑚,𝑜𝑢𝑡   ∀𝑌 ∈ (𝑀, 𝑋, 𝑇)     (S74) 

Membrane stage mass balance 

 The finite difference approximation of the mass balance for the hot-side, permeate, and 

cold-side (governing equations 1-4 in the main manuscript) are shown in equations S75-S79. 

𝑀ℎ,𝑖−1 = 𝑀ℎ,𝑖 +
1

𝑁
𝐴𝑟𝑒𝑎𝑚𝑒𝑚 𝐽𝑤̅̅̅̅

𝑖   ∀𝑖, 𝑖 ≠ 𝑖0    (S75) 

𝑀ℎ,𝑖𝑋ℎ,𝑖 = 𝑀ℎ,𝑖−1𝑋ℎ,𝑖−1   ∀𝑖, 𝑖 ≠ 𝑖0    (S76) 

𝑀𝑝,𝑖−1 +
1

𝑁
𝐴𝑟𝑒𝑎𝑚𝑒𝑚 𝐽𝑤̅̅̅̅

𝑖 = 𝑀𝑝,𝑖   ∀𝑖, 𝑖 ≠ 𝑖0    (S77) 

𝑀𝑐,𝑖+1 = 𝑀𝑐,𝑖   ∀𝑖, 𝑖 ≠ 𝑖𝑁     (S78) 

𝑋𝑐,𝑖+1 = 𝑋𝑐,𝑖   ∀𝑖, 𝑖 ≠ 𝑖𝑁     (S79) 

Where 𝐴𝑟𝑒𝑎𝑚𝑒𝑚 is the membrane area, 𝐽𝑤 is the water flux, and 𝑁 is the number of nodes. The 

bar above 𝐽𝑤 denotes that the variable is a nodal variable. 

Membrane stage energy balance 
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 The finite difference approximation of the energy balance for the hot-side, permeate, and 

cold-side (governing equations 5-7 in the main manuscript) are shown in equations S80-S82. 

Where the difference in the condensation location for the air gap is corrected in equation S81b. 

𝑀ℎ,𝑖−1𝑓�̂�𝑙
(𝑋ℎ,𝑖−1, 𝑇ℎ,𝑖−1) = 𝑀ℎ,𝑖𝑓�̂�𝑙

(𝑋ℎ,𝑖, 𝑇ℎ,𝑖) +    

   
1

𝑁
𝐴𝑟𝑒𝑎𝑚𝑒𝑚 𝐽𝑤̅̅̅̅

𝑖 𝑓�̂�𝑙
(�̅�ℎ𝑚,𝑖, �̅�ℎ𝑚,𝑖) + �̅�ℎ,𝑖   ∀𝑖, 𝑖 ≠ 𝑖0  (S80) 

𝑀𝑝,𝑖−1𝑓�̂�𝑙
(0, 𝑇𝑝,𝑖−1) +

1

𝑁
𝐴𝑟𝑒𝑎𝑚𝑒𝑚 𝐽𝑤̅̅̅̅

𝑖  𝑓�̂�𝑙
(0, �̅�𝑚𝑔,𝑖) + �̅�𝑔1,𝑖 =   

     𝑀𝑝,𝑖𝑓�̂�𝑙
(0, 𝑇𝑝,𝑖) + �̅�𝑔2,𝑖   ∀𝑖, 𝑖 ≠ 𝑖0  (S81) 

𝑀𝑝,𝑖−1𝑓�̂�𝑙
(0, 𝑇𝑝,𝑖−1) +

1

𝑁
𝐴𝑟𝑒𝑎𝑚𝑒𝑚 𝐽𝑤̅̅̅̅

𝑖  𝑓�̂�𝑣
(0, �̅�𝑔𝑑,𝑖) + �̅�𝑔2,𝑖 =   

     𝑀𝑝,𝑖𝑓�̂�𝑙
(0, 𝑇𝑝,𝑖) + �̅�𝑑,𝑖   ∀𝑖, 𝑖 ≠ 𝑖0  (S81b) 

𝑀ℎ,𝑖+1𝑓�̂�𝑙
(𝑋ℎ,𝑖+1, 𝑇ℎ,𝑖+1) + �̅�𝑐,𝑖 = 𝑀ℎ,𝑖𝑓�̂�𝑙

(𝑋ℎ,𝑖, 𝑇ℎ,𝑖)   ∀𝑖, 𝑖 ≠ 𝑖𝑁   (S82) 

Membrane mass transfer 

 The water flux and resulting concentration polarization are enforced in equation S83 and 

S84. 

𝐽𝑤̅̅̅̅
𝑖 = 𝐵(𝑉𝑝̅̅̅̅

ℎ𝑚,𝑖 − 𝑉𝑝̅̅̅̅
𝑚𝑔,𝑖)   ∀𝑖, 𝑖 ≠ 𝑖0   (S83) 

𝐶ℎ̅𝑚,𝑖 = 𝐶ℎ̅𝑏,𝑖 exp (
 𝐽𝑤̅̅ ̅̅ 𝑖 

�̅�𝑖
)   ∀𝑖, 𝑖 ≠ 𝑖0    (S84) 

Where 𝑉𝑝 is the vapor pressure, and 𝐶 is the solute concentration at the hot-side membrane 

interface (ℎ𝑚) and bulk (ℎ𝑏) at node 𝑖. 

Membrane heat transfer 
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 The heat fluxes are determined with equations S85-S89. Where the notation is described 

in SI Section S2 and figure S2. The energy balance around the membrane and gap are provided 

in equation S90 and S91. Lastly, the energy balance at the interfaces are provided in equations 

S92-S95. In all of these relationships, the modifications for the air gap are noted with “b”. 

�̅�ℎ,𝑖 = ℎ̅ℎ,𝑖[�̅�ℎ𝑏,𝑖 − �̅�ℎ𝑚,𝑖]   ∀𝑖, 𝑖 ≠ 𝑖0     (S85) 

1

2
(�̅�𝑚1,𝑖 + �̅�𝑚2,𝑖) =

𝛼𝑚

𝛿𝑚
[�̅�ℎ𝑚,𝑖 − �̅�𝑚𝑔,𝑖]   ∀𝑖, 𝑖 ≠ 𝑖0   (S86) 

1

2
(�̅�𝑔1,𝑖 + �̅�𝑔2,𝑖) =

𝛼𝑔

𝛿𝑔
[�̅�𝑚𝑔,𝑖 − �̅�𝑔𝑑,𝑖]   ∀𝑖, 𝑖 ≠ 𝑖0   (S87) 

�̅�𝑑 =
𝛼𝑑

𝛿𝑑
[�̅�𝑔𝑑,𝑖 − �̅�𝑑𝑐,𝑖]   ∀𝑖, 𝑖 ≠ 𝑖0     (S88) 

�̅�𝑐 = ℎ̅𝑐,𝑖[�̅�𝑑𝑐,𝑖 − �̅�𝑐𝑏,𝑖]   ∀𝑖, 𝑖 ≠ 𝑖0     (S89) 

�̅�𝑚1,𝑖 + 𝐽𝑤̅̅̅̅
𝑖 𝑓�̂�𝑣

(�̅�ℎ𝑚,𝑖) = �̅�𝑚2,𝑖 + 𝐽𝑤̅̅̅̅
𝑖 𝑓�̂�𝑣

(�̅�𝑚𝑔,𝑖)   ∀𝑖, 𝑖 ≠ 𝑖0  (S90) 

�̅�𝑔1,𝑖 = �̅�𝑔2,𝑖   ∀𝑖, 𝑖 ≠ 𝑖0      (S91) 

�̅�𝑔1,𝑖 + 𝐽𝑤̅̅̅̅
𝑖 𝑓�̂�𝑣

(�̅�𝑚𝑔) = �̅�𝑔2,𝑖 + 𝐽𝑤̅̅̅̅
𝑖 𝑓�̂�𝑣

(�̅�𝑔𝑑)   ∀𝑖, 𝑖 ≠ 𝑖0  (S91b) 

�̅�ℎ,𝑖 = �̅�𝑚1,𝑖 + 𝐽𝑤̅̅̅̅
𝑖 𝑓�̂�𝑣𝑎𝑝

(�̅�ℎ𝑚,𝑖, �̅�ℎ𝑚,𝑖)   ∀𝑖, 𝑖 ≠ 𝑖0   (S92) 

�̅�𝑚2,𝑖 + 𝐽𝑤̅̅̅̅
𝑖 𝑓�̂�𝑣

(�̅�𝑚𝑔,𝑖) = �̅�𝑔1,𝑖 + 𝐽𝑤̅̅̅̅
𝑖 𝑓�̂�𝑙

(0, �̅�𝑚𝑔,𝑖)   ∀𝑖, 𝑖 ≠ 𝑖0  (S93) 

�̅�𝑚2,𝑖 = �̅�𝑔1,𝑖   ∀𝑖, 𝑖 ≠ 𝑖0      (S93b) 

�̅�𝑔2,𝑖 = �̅�𝑑,𝑖   ∀𝑖, 𝑖 ≠ 𝑖0      (S94) 

�̅�𝑔2,𝑖 + 𝐽𝑤̅̅̅̅
𝑖 𝑓�̂�𝑣𝑎𝑝

(0, �̅�𝑔𝑑,𝑖) = �̅�𝑑,𝑖   ∀𝑖, 𝑖 ≠ 𝑖0    (S94b) 
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�̅�𝑑,𝑖 = �̅�𝑐,𝑖   ∀𝑖, 𝑖 ≠ 𝑖0       (S95) 

Nodal variables 

 Several nodal variables are determined with equations S96-S107, including the mass flow 

rate (𝑀), bulk salt mass fraction (𝑋ℎ𝑏, 𝑋𝑐𝑏), bulk fluid temperature (𝑇ℎ𝑏 , 𝑇𝑐𝑏), membrane 

interface salt concentration (𝐶ℎ𝑚), membrane interface salt mass fraction (𝑋ℎ𝑚), bulk salt 

concentration (𝐶ℎ𝑏), vapor pressure (𝑉𝑝), density (𝜌), viscosity (𝜇), diffusivity (𝐷), thermal 

conductivitiy (𝛼), and specific heat (𝐶𝑝). Additional details on the functions used to calculate the 

solution properties are provided in Table S1. 

�̅�𝑠,𝑖 =
1

2
(𝑀𝑠,𝑖 + 𝑀𝑠,𝑖−1)   ∀𝑠 ∈ (ℎ, 𝑐), ∀𝑖, 𝑖 ≠ 𝑖0  (S96) 

�̅�𝑠𝑏,𝑖 =
1

2
(𝑋𝑠,𝑖 + 𝑋𝑠,𝑖−1)   ∀𝑠 ∈ (ℎ, 𝑐), ∀𝑖, 𝑖 ≠ 𝑖0  (S97) 

�̅�𝑠𝑏,𝑖 =
1

2
(𝑇𝑠,𝑖 + 𝑇𝑠,𝑖−1)   ∀𝑠 ∈ (ℎ, 𝑐), ∀𝑖, 𝑖 ≠ 𝑖0  (S98) 

𝐶ℎ̅𝑚,𝑖 = 𝑓𝐶(�̅�ℎ𝑚,𝑖)   ∀𝑖, 𝑖 ≠ 𝑖0     (S99) 

𝐶ℎ̅𝑏,𝑖 = 𝑓𝐶(�̅�ℎ𝑏,𝑖)   ∀𝑖, 𝑖 ≠ 𝑖0     (S100) 

𝑉𝑝̅̅̅̅
ℎ𝑚,𝑖 = 𝑓𝑉𝑝(�̅�ℎ𝑚,𝑖, �̅�ℎ𝑚,𝑖)   ∀𝑖, 𝑖 ≠ 𝑖0   (S101) 

𝑉𝑝̅̅̅̅
𝑚𝑔,𝑖 = 𝑓𝑉𝑝(0, �̅�𝑚𝑔,𝑖)   ∀𝑖, 𝑖 ≠ 𝑖0    (S102) 

�̅�𝑠,𝑖 = 𝑓𝜌(�̅�𝑠𝑏,𝑖, �̅�𝑠𝑏,𝑖)   ∀𝑠 ∈ (ℎ, 𝑐), ∀𝑖, 𝑖 ≠ 𝑖0   (S103) 

�̅�𝑠,𝑖 = 𝑓𝜇(�̅�𝑠𝑏,𝑖, �̅�𝑠𝑏,𝑖)   ∀𝑠 ∈ (ℎ, 𝑐), ∀𝑖, 𝑖 ≠ 𝑖0   (S104) 

�̅�𝑠,𝑖 = 𝑓𝐷(�̅�𝑠𝑏,𝑖, �̅�𝑠𝑏,𝑖)   ∀𝑠 ∈ (ℎ, 𝑐), ∀𝑖, 𝑖 ≠ 𝑖0  (S105) 
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�̅�𝑠,𝑖 = 𝑓𝛼(�̅�𝑠𝑏,𝑖, �̅�𝑠𝑏,𝑖)   ∀𝑠 ∈ (ℎ, 𝑐), ∀𝑖, 𝑖 ≠ 𝑖0   (S106) 

𝐶𝑝̅̅̅̅
𝑠,𝑖 = 𝑓𝐶𝑝(�̅�𝑠𝑏,𝑖, �̅�𝑠𝑏,𝑖)   ∀𝑠 ∈ (ℎ, 𝑐), ∀𝑖, 𝑖 ≠ 𝑖0  (S107) 

 The local dimensionless numbers are determined with equations S108-S112. Note the 

Reynolds number calculation has been rearranged for the variables considered in the model and 

the Sherwood and Nusselt number calculations are from Guillen and Hoek 2009.4 

𝑅𝑒̅̅̅̅
𝑠,𝑖 =

�̅�𝑠,𝑖 𝑑ℎ

�̅�𝑠,𝑖 𝐻 𝑊 
   ∀𝑠 ∈ (ℎ, 𝑐), ∀𝑖, 𝑖 ≠ 𝑖0   (S108) 

𝑆𝑐̅̅ ̅
𝑠,𝑖 =

�̅�𝑠,𝑖

�̅�𝑠,𝑖 �̅�𝑠,𝑖
   ∀𝑠 ∈ (ℎ, 𝑐), ∀𝑖, 𝑖 ≠ 𝑖0   (S109) 

𝑃𝑟̅̅
�̅�,𝑖 =

𝐶𝑝̅̅ ̅̅ 𝑠,𝑖 �̅�𝑠,𝑖

�̅�𝑠,𝑖
   ∀𝑠 ∈ (ℎ, 𝑐), ∀𝑖, 𝑖 ≠ 𝑖0   (S110) 

𝑆ℎ̅̅ ̅
𝑠,𝑖 = 0.46 𝑅𝑒̅̅̅̅

𝑠,𝑖
0.36

 𝑆𝑐̅̅ ̅
𝑠,𝑖

0.36
   ∀𝑠 ∈ (ℎ, 𝑐), ∀𝑖, 𝑖 ≠ 𝑖0 (S111) 

𝑁𝑢̅̅ ̅̅
𝑠,𝑖 = 0.46 𝑅𝑒̅̅̅̅

𝑠,𝑖
0.36

 𝑃𝑟̅̅
�̅�,𝑖

0.36
   ∀𝑠 ∈ (ℎ, 𝑐), ∀𝑖, 𝑖 ≠ 𝑖0 (S112) 

Where 𝐻 is the height of the channel (2 mm), 𝑑ℎ is the hydraulic diameter (calculated as 2.57 

mm), 휀 is the void space of the channel (assumed to be 90%), and 𝑊 is the width of the stage. 

 The mass transfer coefficient (𝑘), convective heat transfer coefficient (ℎ), and pressure 

loss per unit length (𝑃𝐿) are determined in equations S113-S115. Note that the pressure loss per 

unit length calculation has been rearranged for the variables considered in the model. 

�̅�𝑠,𝑖 =
�̅�𝑠,𝑖

𝑑ℎ
 𝑆ℎ̅̅ ̅

𝑠,𝑖       (S113) 

ℎ̅𝑠,𝑖 =
�̅�𝑠,𝑖

𝑑ℎ
 𝑁𝑢̅̅ ̅̅

𝑠,𝑖       (S114) 
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𝑃𝐿̅̅̅̅
𝑠,𝑖 =

𝑓𝐹(𝑅𝑒̅̅̅̅ 𝑠,𝑖)�̅�𝑠,𝑖 2

2 𝑑ℎ �̅�𝑠,𝑖 𝐻2 𝑊2 2     (S115) 

Membrane stage metrics 

 The metrics for the membrane stage including local thermal efficiency (𝑇𝐸), average 

thermal efficiency (𝑇𝐸𝑎𝑣𝑔), average water flux (𝐽𝑤𝑎𝑣𝑔), and pressure drop (𝑃𝐷) are calculated in 

equations S116-S119. 

𝑇𝐸̅̅ ̅̅
𝑖  =

𝐽𝑤̅̅ ̅̅ 𝑖 𝑓�̂�𝑣
(𝑇𝑚𝑔,𝑖)

𝐽𝑤̅̅ ̅̅ 𝑖 𝑓�̂�𝑣
(𝑇𝑚𝑔,𝑖)+𝑞𝑚2,𝑖

   ∀𝑖    (S116) 

𝑇𝐸𝑎𝑣𝑔 =
1

𝑁
∑ 𝑇𝐸̅̅ ̅̅

𝑖𝑖       (S117) 

𝐽𝑤𝑎𝑣𝑔 =
1

𝑁
∑ 𝐽𝑤̅̅̅̅

𝑖𝑖       (S118) 

𝑃𝐷𝑠 =
𝐿

𝑁
∑ 𝑃𝐿̅̅̅̅

𝑠,𝑖𝑖    ∀𝑠 ∈ (ℎ, 𝑐)    (S119) 

Where L is the length of the membrane stage. 

System metrics 

 The metrics for the MD system including annual water production (𝐴𝑊𝑃), gained output 

ratio (𝐺𝑂𝑅), energy recovery (𝐸𝑅), and power of the pump (𝑃𝑜𝑤𝑝𝑚𝑝) are determined in 

equations S120-S124. 

𝐴𝑊𝑃 = 𝑀𝑝 𝐿𝐹 [
3600 𝑠

ℎ
] [

8760 ℎ

𝑦
]    (S120) 

𝐺𝑂𝑅 =
𝑄ℎ𝑡𝑟

𝑀𝑝𝑓�̂�𝑣𝑎𝑝
(𝑋𝑓,𝑇𝑓)

      (S121) 

𝐸𝑅 = 1 −
𝑄ℎ𝑡𝑟

Δ𝐸ℎ 
       (S122) 
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Δ𝐸ℎ = 𝑀ℎ,𝑚𝑒𝑚,𝑖𝑛 𝑓�̂�𝑙
(𝑋ℎ,𝑚𝑒𝑚,𝑖𝑛, 𝑇ℎ,𝑚𝑒𝑚,𝑖𝑛) − 𝑀ℎ,𝑚𝑒𝑚,𝑜𝑢𝑡 𝑓�̂�𝑙

(𝑋ℎ,𝑚𝑒𝑚,𝑜𝑢𝑡, 𝑇ℎ,𝑚𝑒𝑚,𝑜𝑢𝑡) (S123) 

𝑃𝑜𝑤𝑝𝑚𝑝 =
1

𝜂𝑝𝑚𝑝

𝑀ℎ,𝑚𝑒𝑚,𝑖𝑛

𝑓𝜌(𝑋ℎ,𝑚𝑒𝑚,𝑖𝑛,𝑇ℎ,𝑚𝑒𝑚,𝑖𝑛)
∑ 𝑃𝐷𝑠𝑠    (S124) 

 Where 𝐿𝐹 is the load factor (assumed to be 85%), and 𝜂𝑝𝑚𝑝 is the pump efficiency 

(assumed to be 75%). 

System constraints 

 There are two constraints that are imposed on the overall system. The first is the water 

recovery (𝑅𝑤) is fixed to a user specified value as shown in equation S125. The second is the 

maximum temperature of the streams is fixed to a maximum value (90 °C/363 K in the base 

case), as shown in constraint S126. 

𝑅𝑤 =
𝑀𝑝

𝑀𝑓(1−𝑋𝑓)
      (S125) 

𝑇𝑠,𝑝,𝑢 ≤ 𝑇𝑚𝑎𝑥   ∀𝑠 ∈ (ℎ, 𝑠), ∀𝑝 ∈ (𝑚𝑖𝑥, 𝑚𝑒𝑚, ℎ𝑥𝑟, ℎ𝑡𝑟, 𝑐ℎ𝑙, 𝑠𝑝𝑙), ∀𝑢 ∈ (𝑖𝑛, 𝑜𝑢𝑡) (S126) 

Determining costs 

 As described in the main manuscript, we determine the costs of the MD system by 

estimating the capital investment and operating cost.  

 The equipment cost of the membrane, heat exchanger, heater, and chiller units are 

determined in equations S127 and S128. The total capital cost (includes indirect capital, 

installation, and siting) is estimated based on the total capital cost factor 𝐹𝑇𝐶𝐶 as shown in S129. 

The total capital cost factor is assumed to be 2 and is presented in Table 1 in the main 

manuscript. 

𝐶𝐶𝑚𝑒𝑚 = 𝑉𝐶𝑚𝑒𝑚 𝐴𝑟𝑒𝑎𝑚𝑒𝑚     (S127) 
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𝐶𝐶ℎ𝑥𝑟 = 𝑉𝐶ℎ𝑥𝑟(𝐴𝑟𝑒𝑎ℎ𝑥𝑟 + 𝐴𝑟𝑒𝑎ℎ𝑡𝑟 + 𝐴𝑟𝑒𝑎𝑐ℎ𝑙)  (S128) 

𝑇𝐶𝐶 = 𝐹𝑇𝐶𝐶(𝐶𝐶𝑚𝑒𝑚 + 𝐶𝐶ℎ𝑥𝑟)    (S129) 

 The operating cost for electricity, heating, and chilling demand are determined in 

equations S130-S132. Where the variable cost (𝑉𝐶) of each component is provided in Table 1 of 

the main manuscript. The operating cost for membrane replacement is determined in equation 

S133, where the membrane replacement rate (𝑅𝑅𝑚𝑒𝑚) is assumed to be 20% and is provided in 

Table 1 of the main manuscript. 

𝑂𝐶𝑒𝑙𝑒𝑐 = 𝑉𝐶𝑒𝑙𝑒𝑐𝑃𝑜𝑤𝑝𝑚𝑝 𝐿𝐹 [
3600 𝑠

ℎ
] [

8760 ℎ

𝑦
]   (S130) 

𝑂𝐶ℎ𝑡𝑟 = 𝑉𝐶ℎ𝑡𝑟 𝑀𝑠 𝐿𝐹 [
3600 𝑠

ℎ
] [

8760 ℎ

𝑦
]   (S131) 

𝑂𝐶𝑐ℎ𝑙 = 𝑉𝐶𝑐ℎ𝑙 𝑄𝑐ℎ𝑙 𝐿𝐹 [
3600 𝑠

ℎ
] [

8760 ℎ

𝑦
]   (S132) 

𝑂𝐶𝑚𝑒𝑚 = 𝑅𝑅𝑚𝑒𝑚 𝐶𝐶𝑚𝑒𝑚     (S133) 

 The operating cost for maintenance, labor, and chemicals is indirectly estimated from the 

total capital cost with a factor (𝐹𝑀𝐿𝐶), as shown in equation S134. The maintenance, labor, and 

chemical factor is assumed to be 3% as provided in Table 1 in the main manuscript. 

𝑂𝐶𝑀𝐿𝐶 = 𝐹𝑀𝐿𝐶  𝑇𝐶𝐶      (S134) 

 The total operating cost is the sum of the 5 considered operating costs, as shown in 

equation S135. 

𝑇𝑂𝐶 = 𝑂𝐶𝑒𝑙𝑒𝑐 + 𝑂𝐶𝑚𝑒𝑚 + 𝑂𝐶ℎ𝑡𝑟 + 𝑂𝐶𝑐ℎ𝑙 + 𝑂𝐶𝑀𝐿𝐶  (S135) 



 

312 
 

 The annualized operating cost (𝐴𝑂𝐶) of the MD system is determined in equation S136. 

Where 𝐹𝐶𝐹 is the capital annualization factor and is assumed to be 10% and provided in Table 1 

in the main manuscript. The levelized cost of water (𝐿𝐶𝑂𝑊) is determined in equation S137 and 

is the objective of the nonlinear programming model 

𝐴𝑂𝐶 = 𝑇𝑂𝐶 + 𝐹𝐶𝐹 𝑇𝐶𝐶     (S136) 

𝐿𝐶𝑂𝑊 =
𝐴𝑂𝐶

𝐴𝑊𝑃
       (S137) 
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S.4) Effect of salinity on membrane distillation performance 

 Figure S.4.1 presents the local water flux and thermal efficiency for membrane 

distillation as a function of salinity and bulk temperature difference for air, permeate, and 

conductive gap. The figure demonstrates the decrease in water flux and thermal efficiency with 

increasing salinity at the membrane interface.  

 While lower gap thermal conductivities generally have lower water flux and thermal 

efficiency for a given bulk temperature difference and salinity, the trend is not always true 

between the air and permeate gap. At low salinities, air gap has higher water flux and thermal 

efficiency than permeate gap, despite having a lower thermal conductivity. However, water flux 

and thermal efficiency have a significantly higher decline with increased salinity for the air gap. 

We observe this non-intuitive result because not only do the gaps have different thermal 

conductivities but also the location of the condensation changes (i.e. interface at the distillate 

plate for air gap and membrane for permeate gap). 
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Figure S4. Local water flux and thermal efficiency as a function of salinity and bulk temperature 

difference for air (A), permeate (B), and conductive gap (C). The temperature of the hot bulk is 

70 °C, the heat transfer coefficient for the hot and cold-side are 2 kW/m2-K, and the thermal 

conductivities of the air, permeate, and conductive gap are 0.2, 0.6, and 10 W/m-K. 
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S.5) Outcome metrics for simulated maps 

 Figure S5 provides the cost optimal outcome metrics for conductive gap MD across the 

same simulated feed concentrations and water recoveries as presented in the main manuscript. 

 

Figure S5. Cost optimal water flux (A), thermal efficiency (B), gained output ratio (C) and 

energy recovery (D) for conductive gap MD across a range of feed concentrations and water 

recoveries.  
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S.5) Additional sensitivity analysis 

 Figure S6 presents the cost sensitivity for the convective heat transfer coefficient, friction 

factor, membrane thickness, and module cost. 

 

Figure S6. Conductive gap MD cost sensitivity for convective heat transfer coefficient (A), 

friction factor (B), membrane thickness (C), and membrane module cost (D).  
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APPENDIX E: SUPPORTING INFORMATION FOR CHAPTER 6 -       

MULTI-OBJECTIVE OPTIMIZATION MODEL FOR MINIMIZING COST 

AND ENVIRONMENTAL IMPACT IN SHALE GAS WATER AND 

WASTEWATER MANAGEMENT 
 

 

 

Supporting Information Summary:  

The supporting information contains details for 1) model formulation; 2) emission coefficient 

estimation; 3) AP2 modeling parameters, 4) case study details; 5) additional case study results. 

 

This supporting information is 41 pages long and contains 7 figures (Fig. S1-S7), 6 Tables 

(Table S1- Table S6), and 55 equations (Eq. S1-S44). 
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1. Model Formulation 

The model is an extension from Yang et al (2015)  and uses similar notation and formulation.1 

The revised formulation changes the freshwater and wastewater transportation and wastewater 

storage and incorporates the HHE impacts associated with the water management activities. 

1.1 Hydraulic Fracturing Schedule. 

Wellpad s is fractured exactly once at a given date t, and is represented in constraint (1).  

∑ 𝑦𝑠𝑡𝑡 = 1   ∀𝑠          (1) 

where 𝑦𝑠𝑡 is a binary variable that indicates the fracturing starting date t for well pad 𝑠. 

Only one wellpad can be fractured at a time, and the backward aggregation constraint (2) ensures 

there is no over-lap between wellpad operations.  

∑  𝑠 ∑ 𝑦𝑠𝑡′
𝑡
𝑡′=𝑡−𝑆𝐹𝐿𝑠−𝑆𝑇𝐶+1 ≤ 1   ∀𝑡       (2) 

where 𝑆𝐹𝐿𝑠 is the duration of the hydraulic fracturing for wellpad s in weeks. 𝑆𝑇𝐶 is the 

transition time required to move the frac crew from wellpad s to the next wellpad. When 

considering wellpad availability,  𝑦𝑠𝑡 was fixed to zero for the unavailable times. 

1.2 Water use: 

The total weekly frac fluid requirement for wellpad 𝑠 is shown in the constraint (3).  

𝑓𝑠𝑡 = ∑ 𝑆𝐷𝑊𝑦𝑠𝑡′
𝑡
𝑡′=𝑡−𝑆𝐹𝐿𝑠+2 + ∑ 𝑆𝐿𝑊𝑠𝑦𝑠𝑡′𝑡′=𝑡−𝑆𝐹𝐿𝑠𝑘+1    ∀𝑠, ∀𝑡    (3) 

where 𝑓𝑠𝑡 is a continuous variable that defines the frac fluid use at each wellpad. It is assumed 

that the weekly number of stages and volume of frac fluid per stage is set, therefore each 

fracturing week has a constant frac fluid use, represented by 𝑆𝐷𝑊. In the last week of fracturing 
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a wellpad, the remaining stages for the wellpad may be less than the weekly number of stages, 

𝑆𝐿𝑊𝑠 is the water requirement for the remaining stages. 

The frac fluid can be composed of freshwater and wastewater as shown in constraint (4).  

𝑓𝑠𝑡 = 𝑓𝑠𝑡
𝐹𝑊 + 𝑓𝑠𝑡

𝑊𝑊   ∀𝑠, ∀𝑡         (4) 

where 𝑓𝑠𝑡
𝐹𝑊and 𝑓𝑠𝑡

𝑊𝑊are continuous variables for the freshwater and wastewater use at time 𝑡 and 

wellpad 𝑠, respectively. 

The wastewater is assumed to be limited by a percentage of frac fluid, represented by 𝜌𝑊𝑊, and 

is represented by constraint (5). 

𝜌𝑊𝑊𝑓𝑠𝑡  ≥  𝑓𝑠𝑡
𝑊𝑊   ∀𝑠, ∀𝑡         (5) 

1.3 Freshwater: 

Freshwater can be transported by either pipe or truck. The continuous variable 𝑓
𝑢𝑢′𝑐𝑡

𝐹𝑊,𝑃𝑖𝑝𝑒
 

represents the flow of freshwater transported using pipeline of type 𝑐 from location 𝑢 to 𝑢′ at 

time 𝑡. The set of u represents the locations of all wellpads, sources of freshwater, 

impoundments, treatment facilities, and disposal wells which are given by the indices 𝑠, 𝑜, 𝑝, 𝑞, 

and d, respectively. The allowable freshwater pipeline connections are known beforehand and is 

represented by set 𝐷𝐹𝑃𝑢𝑢′ .  The continuous variable 𝑓
𝑢𝑢′𝑡
𝐹𝑊,𝑇𝑟𝑘

 represents the flow of freshwater 

transport using trucks from location 𝑢 to 𝑢′ at time 𝑡. The allowable freshwater trucking is 

known beforehand and represented by set 𝐷𝐹𝑇𝑢𝑢′.  

The freshwater balance at each wellpad includes the freshwater piped in and out, trucked in and 

out, and used on the wellpad and is shown in constraint (6). 
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∑  𝑢∈𝐷𝐹𝑃𝑢𝑠
∑ 𝑓𝑢𝑠𝑐𝑡

𝐹𝑊,𝑃𝑖𝑝𝑒
𝑐 + ∑ 𝑓𝑢𝑠𝑡

𝐹𝑊,𝑇𝑟𝑘 𝑢∈𝐷𝐹𝑇𝑢𝑠
= 𝑓𝑠𝑡

𝐹𝑊 +  ∑  𝑢∈𝐷𝐹𝑃𝑠𝑢′
∑ 𝑓

𝑠𝑢′𝑐𝑡

𝐹𝑊,𝑃𝑖𝑝𝑒
𝑐 +

∑ 𝑓
𝑠𝑢′𝑡
𝐹𝑊,𝑇𝑟𝑘 𝑢∈𝐷𝐹𝑇𝑠𝑢′   ∀𝑠, ∀𝑡         (6) 

The freshwater balance at each impoundment includes the freshwater piped in and out, trucked in 

and out, and volume change at the impoundment and is shown in constraint (7).  

∑  𝑢∈𝐷𝐹𝑃𝑢𝑝
∑ 𝑓𝑢𝑝𝑐𝑡

𝐹𝑊,𝑃𝑖𝑝𝑒
𝑐 + ∑ 𝑓𝑢𝑝𝑡

𝐹𝑊,𝑇𝑟𝑘 𝑢∈𝐷𝐹𝑇𝑢𝑝
+ 𝑣𝑝𝑡−1

𝐼𝑃 =  ∑  𝑢∈𝐷𝐹𝑃𝑝𝑢′
∑ 𝑓

𝑝𝑢′𝑐𝑡

𝐹𝑊,𝑃𝑖𝑝𝑒
𝑐 +

∑ 𝑓
𝑝𝑢′𝑡
𝐹𝑊,𝑇𝑟𝑘 𝑢∈𝐷𝐹𝑇𝑝𝑢′

+  𝑣𝑝𝑡
𝐼𝑃   ∀𝑝, ∀𝑡         (7) 

where the volume stored at impoundments at any time 𝑡 is represented by the continuous 

variable 𝑣𝑝𝑡
𝐼𝑃. 

1.4 Wastewater production: 

The wastewater flow back for each wellpad is represented by the continuous variable 𝑓𝑠𝑡
𝐹𝐵 and is 

determined in constraint (8). 

𝑓𝑠𝑡
𝐹𝐵 = ∑ ∑ 𝑆𝐹𝑠𝑡′′

𝐹𝐵 𝑦𝑠𝑡′𝑡′  𝑡′′∈𝑡−𝑡′+1        (8) 

where 𝑆𝐹𝑠𝑡
𝐹𝐵 is a parameter that indicates flowback flow rate after fracture start date. 

1.5 Wastewater handling: 

Wastewater can be handled in three ways: onsite treatment, central treatment, or disposal. Onsite 

treated wastewater occurs on each wellpad, therefore does not require transportation. Centrally 

treated wastewater requires transportation via wastewater pipelines or trucks to the CWT. 

However, for wastewater to be piped it must be treated onsite first. Wastewater destined for 

disposal can only be trucked. Therefore there are three immediate options for wastewater: treated 
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onsite 𝑓𝑠𝑡
𝑂𝑇, trucked to central treatment, 𝑓𝑠𝑞𝑡

𝑊𝑊,𝑇𝑟𝑘
, and trucked to disposal 𝑓𝑠𝑑𝑡

𝑊𝑊,𝑇𝑟𝑘
. The 

wastewater handling is shown in constraint (9). 

𝑓𝑠𝑡
𝐹𝐵 =  𝑓𝑠𝑡

𝑂𝑇 + ∑ 𝑓𝑠𝑞𝑡
𝑊𝑊,𝑇𝑟𝑘

𝑞 + ∑ 𝑓𝑠𝑑𝑡
𝑊𝑊,𝑇𝑟𝑘

𝑑    ∀𝑠, ∀𝑡      (9) 

Onsite treated wastewater can be either stored, piped, or trucked. The storage and transport 

methods are directly linked with the wastewater balance on each wellpad shown in constraint 

(10).  

𝑓𝑠𝑡
𝑂𝑇 + ∑  

𝑢∈𝐷𝑊𝑃𝑢𝑠

∑ 𝑓𝑢𝑠𝑐𝑡
𝑊𝑊,𝑃𝑖𝑝𝑒

𝑐

+ ∑ 𝑓𝑢𝑠𝑡
𝑊𝑊,𝑇𝑟𝑘

𝑢∈𝐷𝑊𝑃𝑢𝑠

+  𝑣𝑠𝑡−1
𝑊𝑇

=  ∑  

𝑢∈𝐷𝑊𝑃𝑠𝑢′

∑ 𝑓
𝑠𝑢′𝑐𝑡

𝑊𝑊,𝑃𝑖𝑝𝑒

𝑐

+ ∑ 𝑓
𝑠𝑢′𝑡
𝑊𝑊,𝑇𝑟𝑘 

𝑢∈𝐷𝑊𝑇𝑠𝑢′

+ 𝑣𝑠𝑡
𝑊𝑇   ∀𝑠, ∀𝑡   (10) 

where 𝑓
𝑢𝑢′𝑐𝑡

𝑊𝑊,𝑃𝑖𝑝𝑒
 and 𝑓

𝑢𝑢′𝑡
𝑊𝑊,𝑇𝑟𝑘

 are the continuous variables for piping and trucking, respectively, 

with similar notation as the freshwater equivalents. 𝐷𝑊𝑃 and 𝐷𝑊𝑇 are the sets of allowable 

wastewater piping and trucking, respectively. The volume of the wastewater tank is represented 

by 𝑣𝑠𝑡
𝑊𝑇. 

Wastewater can be transported and stored at impoundments. The wastewater balance at each 

impoundment is shown in constraint (11).  

∑  

𝑢∈𝐷𝑊𝑃𝑢𝑝

∑ 𝑓𝑢𝑝𝑐𝑡
𝑊𝑊,𝑃𝑖𝑝𝑒

𝑐

+ ∑ 𝑓𝑢𝑝𝑡
𝑊𝑊,𝑇𝑟𝑘

𝑢∈𝐷𝑊𝑃𝑢𝑝

+  𝑣𝑝𝑡−1
𝑊𝑇  

= ∑  

𝑢∈𝐷𝑊𝑃𝑝𝑢′

∑ 𝑓
𝑝𝑢′𝑐𝑡

𝑊𝑊,𝑃𝑖𝑝𝑒

𝑐

+ ∑ 𝑓
𝑝𝑢′𝑡
𝑊𝑊,𝑇𝑟𝑘 

𝑢∈𝐷𝑊𝑇𝑝𝑢′

+  𝑣𝑝𝑡
𝑊𝑇   ∀𝑝, ∀𝑡   (11) 

where the volume of wastewater tank is represented by 𝑣𝑝𝑡
𝑊𝑇

. 
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The amount of wastewater that is centrally treated is represented by the continuous variable 𝑓𝑞𝑡
𝐶𝑇. 

Wastewater can be transported to central treatment by pipeline or truck to central treatment, and 

the aggregated flow is shown in constraint (11). 

𝑓𝑞𝑡
𝐶𝑇 = ∑ ∑ 𝑓𝑢𝑞𝑡

𝑊𝑊,𝑇𝑟𝑘
𝑐  𝑢∈𝐷𝑊𝑇𝑢𝑞

+ ∑ ∑ 𝑓𝑢𝑞𝑐𝑡
𝑊𝑊,𝑃𝑖𝑝𝑒

𝑐𝑢∈𝐷𝑊𝑃𝑢𝑞
  ∀𝑡, ∀𝑞    (11) 

Central treatment can produce desalinated water that can be recycled or discharged. 𝑓𝑞𝑡
𝑅𝐶𝑇 is a 

continuous variable indicating the amount of desalinated water that is recycled, and its use is 

limited by constraint (12).  

𝜂𝑞𝑓𝑞𝑡
𝐶𝑇 ≥ 𝑓𝑞𝑡

𝑅𝐶𝑇   ∀𝑡, ∀𝑞         (12) 

where parameter 𝜂𝑞 is the recovery of the central treatment. 

The recycled desalinated water can be transported by either pipeline or truck and is described by 

constraint (13). 

𝑓𝑞𝑡
𝑅𝐶𝑇 = ∑ ∑ 𝑓𝑞𝑢𝑐𝑡

𝐹𝑊,𝑃𝑖𝑝𝑒
𝑐  𝑢∈𝐷𝐹𝑃𝑞𝑢

+ ∑ 𝑓𝑞𝑢𝑡
𝐹𝑊,𝑇𝑟𝑘

𝑢∈𝐷𝐹𝑇𝑞𝑢
   ∀𝑡, ∀𝑞   (13) 

The final wastewater handling method is disposal and the amount of wastewater that is disposed 

of is represented by the continuous variable 𝑓𝑡
𝐷𝑃. There are two methods of wastewater disposal, 

it can be either trucked directly from the wellpad or from the central treatment concentrated 

waste stream as shown in constraint (14). 

𝑓𝑡
𝐷𝑃 = ∑ 𝑓𝑢𝑑𝑡

𝑊𝑊,𝑇𝑟𝑘
𝑢∈𝐷𝑊𝑇𝑢𝑑

+ ∑ (1 − 𝜂𝑞)𝑓𝑞𝑡
𝐶𝑇

𝑞    ∀𝑡      (14) 
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1.6 Capacity constraints 

The capacity constraint for the impoundments is shown in constraint (15).  

𝐶𝑃𝑝
𝑚𝑖𝑛,𝐼𝑃 ≤ 𝑙𝑝

𝐼𝑃 ≤  𝐶𝑃𝑝
𝑚𝑎𝑥,𝐼𝑃   ∀𝑝       (15) 

where the capacity of the impoundment is 𝑙𝑝
𝐼𝑃, and the lower and upper capacity limits are 

𝐶𝑃𝑝
𝑚𝑖𝑛,𝐼𝑃

 and 𝐶𝑃𝑝
𝑚𝑎𝑥,𝐼𝑃

, respectively. 

The volume of freshwater in an impoundment is constrained by the impoundment capacity, as 

shown in constraint (16). 

𝑣𝑝𝑡
𝐼𝑃 ≤ 𝑙𝑝

𝐼𝑃   ∀𝑝, ∀𝑡         (16) 

The capacity constraint for the frac tank on each wellpad is shown in constraint (17).  

𝑙𝑠
𝐹𝑇 ≥  𝐶𝑃𝑝

𝑚𝑖𝑛,𝐹𝑇   ∀𝑠, ∀𝑡        (17) 

where the capacity of the frac tank is 𝑙𝑠
𝐹𝑇, and the minimum capacity limit is 𝐶𝑃𝑝

𝑚𝑖𝑛,𝐹𝑇
. 

It was assumed that wastewater tanks on wellpads cannot be used until fracturing on the wellpad 

has started. Constraint (18) is a big M constraint to ensure that the volume in wastewater tanks is 

zero before the start of fracturing, and is relaxed after fracturing has started. 

𝑣𝑠𝑡
𝑊𝑊𝑇 ≤ 𝑀 ∑ 𝑦𝑠𝑡′

𝑡
𝑡′  ∀𝑠, ∀𝑡        (18) 

1.7 Pipeline constraints. 

Pipeline variables 𝑦
𝑢𝑢′𝑐

𝐹𝑊,𝑃𝑖𝑝𝑒
and 𝑦

𝑢𝑢′𝑐

𝑊𝑊,𝑃𝑖𝑝𝑒
 are binary variables that indicate whether pipeline of 

type c between 𝑢 and 𝑢′ is used. Constraints (19) and (20) ensure that the pipelines flow in both 

directions.  
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𝑦
𝑢𝑢′𝑐

𝐹𝑊,𝑃𝑖𝑝𝑒
= 𝑦

𝑢′𝑢𝑐

𝐹𝑊,𝑃𝑖𝑝𝑒
 ∀𝑢𝑢′ ∈ 𝐷𝐹𝑃𝑢𝑢′ , ∀𝑐      (19) 

𝑦
𝑢𝑢′𝑐

𝑊𝑊,𝑃𝑖𝑝𝑒
= 𝑦

𝑢′𝑢𝑐

𝑊𝑊,𝑃𝑖𝑝𝑒
 ∀𝑢𝑢′ ∈ 𝐷𝑊𝑃𝑢𝑢′ , ∀𝑐       (20) 

Constraints (21) and (22) ensure that only one type of pipeline is used.   

∑ 𝑦
𝑢𝑢′𝑐

𝐹𝑊,𝑃𝑖𝑝𝑒
𝑐 ≤ 1  ∀𝑢𝑢′ ∈ 𝐷𝐹𝑃𝑢𝑢′       (21) 

∑ 𝑦
𝑢𝑢′𝑐

𝑊𝑊,𝑃𝑖𝑝𝑒
𝑐 ≤ 1  ∀𝑢𝑢′ ∈ 𝐷𝑊𝑃𝑢𝑢′        (22) 

Constraints (23) and (24) ensure that the pipeline flow capacities are bounded by the upper flow, 

𝑈𝐹. 

𝑓
𝑢𝑢′𝑐𝑡

𝐹𝑊,𝑃𝑖𝑝𝑒
≤ 𝑦

𝑢𝑢′𝑐

𝐹𝑊,𝑃𝑖𝑝𝑒
𝑈𝐹   ∀𝑢𝑢′ ∈ 𝐷𝐹𝑃𝑢𝑢′ , ∀𝑐, ∀𝑡     (23) 

𝑓
𝑢𝑢′𝑐𝑡

𝑊𝑊,𝑃𝑖𝑝𝑒
≤ 𝑦

𝑢𝑢′𝑐

𝑊𝑊,𝑃𝑖𝑝𝑒
𝑈𝐹   ∀𝑢𝑢′ ∈ 𝐷𝑊𝑃𝑢𝑢′ , ∀𝑐, ∀𝑡     (24) 

 

1.8 Leased pipelines 

If one of the pipeline types may be leased then each discrete rental period is represented by a 

separately indexed 𝑐 and the associated set is represented by LPC. The t indices associated with 

the time period for each c of the leased pipelines is represented by set LPT. For example, in the 

case study there are two piping types: purchased buried pipelines (c1) and leased overland 

pipelines (c2… c13), where c2-c13 is set LPC. There are 12 c indexes associated with the leased 

pipeline because the pipeline may be leased quarterly over the 3 year time horizon for a total of 

12 time periods. The first quarter leased pipeline (c2) is associated with t indices t1-t13 and is a 
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part of the set LPT. Constraints (21b) and (22b) replace constraints (21) and (22) to allow for the 

leasing of a pipeline. 

∑ 𝑦
𝑢𝑢′𝑐′
𝐹𝑊,𝑃𝑖𝑝𝑒

𝑐′∉𝐿𝑃𝐶 + 𝑦
𝑢𝑢′𝑐

𝐹𝑊,𝑃𝑖𝑝𝑒
≤ 1   ∀𝑢𝑢′ ∈ 𝐷𝐹𝑃𝑢𝑢′ , ∀𝑐 ∈ 𝐿𝑃𝐶    (21𝑏) 

∑ 𝑦
𝑢𝑢′𝑐′
𝑊𝑊,𝑃𝑖𝑝𝑒

𝑐′∉𝐿𝑃𝐶 + 𝑦
𝑢𝑢′𝑐

𝑊𝑊,𝑃𝑖𝑝𝑒
≤ 1  ∀𝑢𝑢′ ∈ 𝐷𝑊𝑃𝑢𝑢′ , ∀𝑐 ∈ 𝐿𝑃𝐶    (22𝑏) 

Furthermore, a leased pipeline cannot be used during the time period it is not in use, as shown in 

the additional constraints (23b) and (24b). Note (23) and (24) are still necessary. 

𝑓
𝑢𝑢′𝑐𝑡

𝐹𝑊,𝑃𝑖𝑝𝑒
≤ 0   ∀𝑢𝑢′ ∈ 𝐷𝐹𝑃𝑢𝑢′ , ∀𝑐𝑡 ∉ 𝐿𝑃𝑇𝑐𝑡     (23𝑏) 

𝑓
𝑢𝑢′𝑐𝑡

𝑊𝑊,𝑃𝑖𝑝𝑒
≤ 0   ∀𝑢𝑢′ ∈ 𝐷𝑊𝑃𝑢𝑢′ , ∀𝑐𝑡 ∉ 𝐿𝑃𝑇𝑐𝑡      (24𝑏) 

 

1.9 Financial constraints 

Revenue is calculated by constraint (25).  

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = ∑ ∑ 𝑃𝑠𝑡𝑦𝑠𝑡𝑡𝑠          (25) 

where parameter 𝑃𝑠𝑡 is the revenue of natural gas over the three year time horizon if wellpad 𝑠 

was fractured at date 𝑡. This parameter can be calculated from the expected gas production of 

each wellpad and the sales price of natural gas, both of which are time dependent. 

Withdrawal costs include the cost of withdrawing water from the freshwater source and is shown 

in constraint (26).   

𝐶𝑜𝑠𝑡𝑊𝑑𝑙 = ∑ ∑ ∑ ∑ 𝑂𝐶𝑜
𝐹𝑊𝑓

𝑜𝑢′𝑐𝑡

𝐹𝑊,𝑃𝑖𝑝𝑒

𝑡

 

𝑐𝑢′∈𝐷𝐹𝑃𝑢𝑢′𝑜

+ ∑ ∑ ∑ 𝑂𝐶𝑜
𝐹𝑊𝑓

𝑜𝑢′𝑡
𝐹𝑊,𝑇𝑟𝑘

𝑡𝑢′∈𝐷𝐹𝑇𝑢𝑢′𝑜

(26) 
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where 𝑂𝐶𝑜
𝐹𝑊 is the cost of freshwater withdrawal per unit of freshwater. 

Freshwater transport includes the cost of pumping water, capital cost of pipelines, and costs of 

trucking and is shown in constraint (27) and (28). The pumping cost coefficient, 𝑂𝐶𝑃𝑖𝑝𝑒, is based 

on amount of pumped water, pipe capital cost coefficient, 𝐼𝐶𝑐
𝑃𝑖𝑝𝑒

, is based on pipe distance (note 

𝐼𝐶𝑐
𝑃𝑖𝑝𝑒

 can account for leased pipelines), and the trucking cost coefficient, 𝑂𝐶𝑇𝑟𝑘, is based on the 

amount and distance of the trucked water.  

𝐶𝑜𝑠𝑡𝐹𝑊,𝑃𝑖𝑝𝑒 = ∑ ∑ ∑ ∑ 𝑂𝐶𝑃𝑖𝑝𝑒𝑓
𝑢𝑢′𝑐𝑡

𝐹𝑊,𝑃𝑖𝑝𝑒
𝐷𝑖𝑠𝑡𝑢𝑢′𝑡  𝑐𝑢′∈𝐷𝐹𝑃𝑢𝑢′𝑢 +

∑ ∑ ∑  𝑐 𝐼𝐶𝑐
𝑃𝑖𝑝𝑒𝑦

𝑢𝑢′𝑐

𝐹𝑊,𝑃𝑖𝑝𝑒 1

2
 𝐷𝑖𝑠𝑡𝑢𝑢′𝑢′∈𝐷𝐹𝑃𝑢𝑢′𝑢        (27) 

𝐶𝑜𝑠𝑡𝐹𝑊,𝑇𝑟𝑘 = ∑ ∑ ∑ 𝑂𝐶𝑇𝑟𝑘𝑓
𝑢𝑢′𝑡
𝐹𝑊,𝑇𝑟𝑘

𝑡𝑢′∈𝐷𝐹𝑇𝑢𝑢′𝑢 𝐷𝑖𝑠𝑡𝑢𝑢′    (28) 

Wastewater transport includes the cost of pumping water, capital cost of pipelines, and costs of 

trucking and is shown in constraints (29) and (30). The pumping cost coefficient, 𝑂𝐶𝑃𝑖𝑝𝑒, is 

based on amount of pumped water, the pipe capital cost coefficient, 𝐼𝐶𝑐
𝑃𝑖𝑝𝑒

, is based on pipeline 

distance, and the trucking cost coefficient, 𝑂𝐶𝑇𝑟𝑘, is based on the amount and distance of trucked 

water.  

         𝐶𝑜𝑠𝑡𝑊𝑊,𝑃𝑖𝑝𝑒 = ∑ ∑ ∑ ∑ 𝑂𝐶𝑃𝑖𝑝𝑒𝑓
𝑢𝑢′𝑐𝑡

𝑊𝑊,𝑃𝑖𝑝𝑒
𝐷𝑖𝑠𝑡𝑢𝑢′

𝑡

 

𝑐𝑢′∈𝐷𝑊𝑃𝑢𝑢′𝑢

+ 

∑ ∑ ∑  𝑐 𝐼𝐶𝑃𝑖𝑝𝑒𝑦
𝑢𝑢′𝑐

𝐹𝑊,𝑃𝑖𝑝𝑒 1

2
 𝐷𝑖𝑠𝑡𝑢𝑢′𝑢′∈𝐷𝑊𝑃𝑢𝑢′𝑢      (29) 

        𝐶𝑜𝑠𝑡𝑊𝑊,𝑇𝑟𝑘 = ∑ ∑ ∑ 𝑂𝐶𝑇𝑟𝑘𝑓
𝑢𝑢′𝑡
𝑊𝑊,𝑇𝑟𝑘

𝑡𝑢′∈𝐷𝑊𝑇𝑢𝑢′𝑢

𝐷𝑖𝑠𝑡𝑢𝑢′ + 

∑ ∑ ∑ 𝑂𝐶𝑇𝑟𝑘𝑓𝑡𝑞
𝐶𝑇(1 − 𝜂𝑞)𝐷𝑖𝑠𝑞𝑑 𝑡𝑑𝑞        (30) 
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Impoundment costs, 𝐶𝑜𝑠𝑡𝐼𝑃, include a base capital cost, 𝐼𝐶𝐼𝑃,𝐵𝑎𝑠𝑒, and an incremental cost, 

𝐶𝐼𝑃,𝐼𝑛𝑐, based on capacity as shown in constraint (31). 

𝐶𝑜𝑠𝑡𝐼𝑃 = ∑ 𝐼𝐶𝐼𝑃,𝐵𝑎𝑠𝑒 + 𝐼𝐶𝐼𝑃,𝐼𝑛𝑐𝑙𝑝
𝐼𝑃

𝑝         (31) 

Frac tank costs, 𝐶𝑜𝑠𝑡𝐹𝑇, include costs of frac tanks on each wellpad, and is estimated by a frac 

tank cost coefficient, 𝐼𝐶𝐹𝑇 , based on frac tank capacity as shown in constraint (32). 

𝐶𝑜𝑠𝑡𝐹𝑇 = ∑ 𝐼𝐶𝐹𝑇𝑙𝑠
𝐹𝑇

𝑠          (32) 

Wastewater tanks costs, 𝐶𝑜𝑠𝑡𝑊𝑊𝑇, include costs for both wellpads and impoundments, and is 

estimated by a wastewater tank cost coefficient, 𝐼𝐶𝑊𝑊𝑇, based on wastewater volume and time 

stored as shown in constraint (33). 

𝐶𝑜𝑠𝑡𝑊𝑊𝑇 = ∑ ∑ 𝐼𝐶𝑊𝑊𝑇𝑣𝑠𝑡
𝑊𝑊𝑇

𝑡𝑠 + ∑ ∑ 𝐼𝐶𝑊𝑊𝑇𝑣𝑝𝑡
𝑊𝑊𝑇

𝑡𝑝     (33) 

Onsite treatment costs, 𝐶𝑜𝑠𝑡𝑂𝑇, are estimated by an onsite treatment cost coefficient, O𝐶𝑂𝑇, 

based on the amount of onsite treatment as shown in constraint (34).  

𝐶𝑜𝑠𝑡𝑂𝑇 = ∑ ∑ 𝑂𝐶𝑂𝑇𝑓𝑠𝑡
𝑂𝑇

𝑡𝑠         (34) 

Central treatment costs, 𝐶𝑜𝑠𝑡𝐶𝑇, are estimated by an central treatment cost coefficient, O𝐶𝐶𝑇, 

based on the amount of central treatment as shown in constraint (35).  

𝐶𝑜𝑠𝑡𝐶𝑇 = ∑ ∑ 𝑂𝐶𝑞
𝐶𝑇𝑓𝑞𝑡

𝐶𝑇
𝑡𝑞         (35) 

Disposal costs, 𝐶𝑜𝑠𝑡𝐷𝑃, are estimated by disposal cost coefficient, O𝐶𝐷𝑃, base on the amount of 

disposal as shown in constraint (36). 

𝐶𝑜𝑠𝑡𝐷𝑃 = ∑ 𝑂𝐶𝐷𝑃𝑓𝑡
𝐷𝑃

𝑡         (36) 



329 
 

The total cost, 𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙, is shown in constraint (37) 

𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 = (𝐶𝑜𝑠𝑡𝑊𝑑𝑙 +  𝐶𝑜𝑠𝑡𝐹𝑊,𝑃𝑖𝑝𝑒 +  𝐶𝑜𝑠𝑡𝐹𝑊,𝑇𝑟𝑘 + 𝐶𝑜𝑠𝑡𝑊𝑊,𝑃𝑖𝑝𝑒 +  𝐶𝑜𝑠𝑡𝑊𝑊,𝑇𝑟𝑘 +

 𝐶𝑜𝑠𝑡𝐼𝑃 +  𝐶𝑜𝑠𝑡𝑊𝑊𝑇 + 𝐶𝑜𝑠𝑡𝑂𝑇 + 𝐶𝑜𝑠𝑡𝐶𝑇)      (37) 

1.10 Environmental constraints 

The air emissions of NH3, NOx, PM2.5, SO2, VOC, CO2e were estimated for the modeled water 

management shale gas activities. Emission coefficients, 𝑚𝑒, where subscript e represents the set 

of pollutatnts, were used to relate the main decision variable of each activity to the associated air 

emissions and the calculations are shown below. Refer to SI section 2, for the emission 

coefficients used in the case study. 

The emissions from fresh and wastewater storage, 𝑀𝑒
𝑆𝑡𝑜, includes freshwater impoundments, frac 

tanks, and wastewater tanks on wellpads and impoundments as shown in constraint (38).  

𝑀𝑒
𝑆𝑡𝑜 = ∑ 𝑚𝑒

𝑆𝑡𝑜,𝐼𝑃
𝑝 𝑙𝑝

𝐼𝑃 + ∑ 𝑚𝑆𝑡𝑜,𝐹𝑇𝑙𝑠
𝐹𝑇

𝑠 + ∑ ∑ 𝑚𝑒
𝑆𝑡𝑜,𝑊𝑊𝑇

𝑡𝑠 𝑣𝑠
𝑊𝑊𝑇 + ∑ ∑ 𝑚𝑒

𝑆𝑡𝑜,𝑊𝑊𝑇
𝑡𝑝 𝑣𝑝

𝑊𝑊𝑇   ∀𝑒 (38) 

where the emission coefficient for freshwater impoundments, 𝑚𝑒
𝑆𝑡𝑜,𝐼𝑃, is based on capacity. The 

emission coefficient for frac tank storage, 𝑚𝑒
𝑆𝑡𝑜,𝐹𝑇 , is based on capacity. The emission coefficient 

for wastewater storage, 𝑚𝑒
𝑆𝑡𝑜,𝑊𝑊𝑇

, is based on volume and storage time. 

Constraint (38) relates the storage emissions to the main decision variables, which is the 

consistent format throughout the environmental constraint section. However, since all of the 

emission coefficients are estimated through EIO-LCA and the capacity of freshwater 

impoundments is not proportional to the costs, the impoundment emission coefficient, 𝑚𝑒
𝑆𝑡𝑜,𝐼𝑃

, 

cannot be determined. Therefore the application of constraint (38) takes on the form of (38b), 



330 
 

where the EIO emission coefficient, 𝑚𝑒
𝑆𝑡𝑜,𝐸𝐼𝑂

, relates the cost of the impoundments to the 

associated emissions. 

       𝑀𝑒
𝑆𝑡𝑜 = 𝑚𝑒

𝑆𝑡𝑜,𝐸𝐼𝑂𝐶𝑜𝑠𝑡𝐼𝑃 + ∑ 𝑚𝑆𝑡𝑜,𝐹𝑇𝑙𝑠
𝐹𝑇

𝑠 + ∑ ∑ 𝑚𝑒
𝑆𝑡𝑜,𝑊𝑊𝑇

𝑡𝑠 𝑣𝑠
𝑊𝑊𝑇 +  

∑ ∑ 𝑚𝑒
𝑆𝑡𝑜,𝑊𝑊𝑇

𝑡𝑝 𝑣𝑝
𝑊𝑊𝑇    ∀𝑒         (38𝑏) 

 

The emissions from fresh and wastewater piping, 𝑀𝑒
𝑃𝑖𝑝𝑒

, includes emissions due to building and 

operating the pipeline, as shown in constraint (39).  

        𝑀𝑒
𝑃𝑖𝑝𝑒 = + ∑ ∑ ∑  𝑚𝑒

𝑃𝑖𝑝𝑒𝐶
𝑐 (𝑦

𝑢𝑢′𝑐

𝐹𝑊,𝑃𝑖𝑝𝑒
+ 𝑦

𝑢𝑢′𝑐

𝑊𝑊,𝑃𝑖𝑝𝑒
)

1

2
 𝐷𝑖𝑠𝑡𝑢𝑢′𝑢′   𝑢 +   

∑ ∑ ∑ ∑ 𝑚𝑒
𝑃𝑖𝑝𝑒𝑂(𝑓

𝑢𝑢′𝑐𝑡

𝐹𝑊,𝑃𝑖𝑝𝑒
+ 𝑓

𝑢𝑢′𝑐𝑡

𝑊𝑊,𝑃𝑖𝑝𝑒
)𝐷𝑖𝑠𝑡𝑢𝑢′𝑡  𝑐𝑢′𝑢 ∀𝑒     (39) 

where the emission coefficient for building the pipeline, 𝑚𝑒
𝑃𝑖𝑝𝑒𝐶

, is based on pipeline distance. 

The emission coefficient for operating the pipeline, 𝑚𝑒
𝑃𝑖𝑝𝑒𝐶

, is based on the amount of water and 

the distance transported.  

The emissions from fresh and wastewater trucking, 𝑀𝑒
𝑇𝑟𝑘, are estimated by the trucking air 

emission coefficient, 𝑚𝑒
𝑇𝑟𝑘, based on the amount of water and distance transported as shown in 

constraint (40).  

𝑀𝑒
𝑇𝑟𝑘 = ∑ ∑ ∑ 𝑚𝑒

𝑇𝑟𝑘(𝑓𝑢𝑢′𝑡
𝐹𝑊,𝑇𝑟𝑘 + 𝑓𝑢𝑢′𝑡

𝑊𝑊,𝑇𝑟𝑘
𝑡𝑢′𝑢 )𝐷𝑖𝑠𝑢𝑢′ + ∑ ∑ ∑ 𝑚𝑒

𝑇𝑟𝑘𝑓𝑞𝑡
𝐶𝑇(1 − 𝜂)𝐷𝑖𝑠𝑞𝑑𝑡𝑞𝑑   ∀𝑒 (40) 

The emissions from onsite treatment, 𝑀𝑒
𝑂𝑇, are estimated by the onsite treatment air emission 

coefficient, 𝑚𝑒
𝑂𝑇, based on the amount of wastewater treated onsite as shown in constraint (41). 

𝑀𝑒
𝑂𝑇 = ∑ ∑ 𝑚𝑒

𝑂𝑇𝑓𝑠𝑡
𝑂𝑇

𝑡𝑠    ∀𝑒        (41) 
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The emissions from central treatment, 𝑀𝑒
𝐶𝑇, are estimated by the central treatment air emission 

coefficient, 𝑚𝑒
𝐶𝑇, based on the amount of wastewater treated centrally as shown in constraint 

(42). 

𝑀𝑒
𝐶𝑇 = ∑ ∑ 𝑚𝑒

𝐶𝑇𝑓𝑞𝑡
𝐶𝑇   ∀𝑒𝑡𝑞         (42) 

The emissions from disposal, 𝑀𝑒
𝐷𝑃, are estimated by the disposal air emission coefficient, 𝑚𝑒

𝐷𝑃, 

based on the amount of disposed water as shown in constraint (43). 

𝑀𝑒
𝐷𝑃 = ∑ 𝑚𝑒

𝐷𝑃𝑓𝑡
𝐷𝑃   ∀𝑒𝑡          (43) 

The human health and environmental (HHE) damages associated with the air emissions, 

𝐶𝑜𝑠𝑡𝐻𝐻𝐸 , are determined as shown in constraint (44). 

𝐶𝑜𝑠𝑡𝐻𝐻𝐸 = ∑ 𝐶𝐸𝑒(𝑒 𝑀𝑒
𝑠𝑡𝑜 + 𝑀𝑒

𝑃𝑖𝑝𝑒 + 𝑀𝑒
𝑇𝑟𝑘 + 𝑀𝑒

𝑂𝑇 + 𝑀𝑒
𝐶𝑇 + 𝑀𝑒

𝐷𝑃)  (44) 

where 𝐶𝐸𝑒 is the HHE damage coefficient for pollutant 𝑒, as shown in Table 1 in the article. 

1.11 Objective 

The scheduling problem objective was to maximize the difference between the revenue from gas 

sales and the water management costs. 

𝑚𝑎𝑥. 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =  𝑅𝑒𝑣𝑒𝑛𝑢𝑒 – 𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙  

Once the above schedule was determined and set, three other objectives were used. 

Financial Cost optimization:  𝑚𝑖𝑛. 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 

HHE cost optimization:   𝑚𝑖𝑛. 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝐶𝑜𝑠𝑡𝐻𝐻𝐸  

Financial and HHE cost optimization: 𝑚𝑖𝑛. 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝐶𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 + 𝐶𝑜𝑠𝑡𝐻𝐻𝐸   
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2.  Emission Coefficient Estimation 

The direct and indirect air emissions of NH3, NOx, PM2.5, SO2, VOC, CO2e were investigated for 

the modeled water management shale gas activities: storage, onsite treatment, central treatment, 

disposal, piping, and trucking. The direct emissions from trucking and central treatment were 

estimated. The other direct and all indirect emissions are estimated using economic input-output 

life cycle analysis that estimate emissions based on the economic sector and cost of the activity. 

In general, the economic sectors chosen for each activity was based on the work by Jiang et al.2  

2.1 Trucking 

The direct emissions associated with trucking, 𝑚𝑒
𝑇𝑟𝑘,𝐷𝑖𝑟

, were estimated using the U.S.  

Environmental Protection Agency’s Motor Vehicle Emissions Simulator (MOVES), the 

SIMAPRO LCA calculator, and NREL’s emission calculator. Beher and Mauter (2015) provided 

parameter inputs for all three tools in the article’s supplementary information and the results are 

summarized in the table T2.3 Both Simapro and NREL base estimates on the weight of the 

vehicle, so an empty and full tanker resulted in different emissions. A full tanker was assumed to 

hold 120 bbl of water. Additionally, it is assumed that the transport of fresh and wastewater 

requires a round trip with one leg being full and the other being empty. Therefore, the average of 

the empty and full truck load emission coefficient for Simapro and NREL was used. There are 

some gaps of pollutant estimates: all three tools did not estimate NH3, Simapro did not estimate 

VOCs, and NREL did not estimate PM2.5 and CO2e. In order to estimate these emissions, ratios 

from the EIO-LCA US 2002 model were used.4 For $1 million of activity in the “Truck 

Transportation” the sector’s emissions was 8.2, 0.023, 8.6, 0.43, 0.18, 0.92, 990 metric tons.4 

The NH3 emissions were estimated by taking the mean of the NH3 estimates from the ratios of 

the other emissions as shown in equation (1).  
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𝑚𝑏 =
1

𝑛
∑

𝑀𝑏
𝑒𝑖𝑜

𝑀𝑎
𝑒𝑖𝑜𝑎 𝑚𝑎         (1) 

where 𝑚𝑏 is the estimated emission coefficient for pollutant 𝑏. The subscript 𝑎 references the 

pollutants in which the emission coefficient, 𝑚𝑎, is already determined and 𝑛 is the number of 

pollutants in set 𝑎. 𝑀𝑏
𝑒𝑖𝑜 and 𝑀𝑎

𝑒𝑖𝑜 are the EIO-LCA emissions associated with the pollutant for 

$1 million in activity.  

Simapro’s VOC emission were also estimated by equation (1). NREL’s PM2.5 emissions were 

estimated by using the ratio between PM2.5 and PM10 emissions. NREL’s CH4 and CO2 

emission coefficients were converted into CO2e through using the 100 year global warming 

potential of 34 for CH4 and adding it to the estimated CO2 emission coefficient.5  

The three emission coefficients from the tools are in units of mass of pollutant per total distance 

traveled [
𝑔

𝑚𝑖𝑙𝑒
] and were converted to units of mass of pollutant per amount of water per distance 

traveled [
𝑔

𝑚𝑖𝑙𝑒−𝑏𝑏𝑙
] by dividing the tool’s emission coefficient by the 120 bbl capacity of the truck 

and multiplying by 2 to account for the round trip. The 𝑚𝑒
𝑇𝑟𝑘,𝐷𝑖𝑟

 for MOVES, Simapro, and 

NREL are shown in table S1, and the average of the three is determined to be direct emission 

estimate, 𝑚𝑒
𝑇𝑟𝑘,𝐷𝑖𝑟

. 

The indirect emissions associated with trucking, 𝑚𝑒
𝑇𝑟𝑘,𝐼𝑛𝑑, were estimated with EIO-LCA 

through equation (2) and (3). 

𝑚𝑒
𝑇𝑟𝑘,𝐼𝑛𝑑,𝐸𝐼𝑂 = 𝑚𝑒

𝑇𝑟𝑘,𝑇𝑜𝑡,𝐸𝐼𝑂 − 𝑚𝑒
𝑇𝑟𝑘,𝐷𝑖𝑟,𝐸𝐼𝑂

      (2) 

where 𝑚𝑒
𝑇𝑟𝑘,𝐼𝑛𝑑,𝐸𝐼𝑂

 is the indirect emission from the “Truck Transportation” sector in units of 

[
𝑇𝑜𝑛𝑛𝑒

$𝑀
]. The 𝑚𝑒

𝑇𝑟𝑘,𝑇𝑜𝑡,𝐸𝐼𝑂
 and 𝑚𝑒

𝐷𝑖𝑟,𝐸𝐼𝑂
 are the total and direct emission from the “Truck 



334 
 

transportation” sector in units of [
𝑇𝑜𝑛𝑛𝑒

$𝑀
], which are both readily available from the EIO-LCA 

tool.4 The indirect emissions for $1 million of activity was 0.023, 2.3, 0.12, 9.72, 0.53, and 410 

metric tons for NH3, NOx, PM2.5, SO2, VOC, CO2e, respectively.    

𝑚𝑒
𝐼𝑛𝑑 = 𝑚𝑒

𝐼𝑛𝑑,𝐸𝐼𝑂 ∗ 𝐶𝑜𝑠𝑡 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡      (3) 

where 𝑚𝑒
𝐼𝑛𝑑 is the trucking indirect emissions for in units of [

𝑔

𝑏𝑏𝑙−𝑚𝑖𝑙𝑒
] and is shown in Table S1. 

The trucking 𝐶𝑜𝑠𝑡 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 is 0.053 [
$

𝑏𝑏𝑙−𝑚𝑖𝑙𝑒
].  

Combining the indirect and the direct emissions results in the total emissions, 𝑚𝑒
𝑇𝑟𝑘, as shown in 

Table S1. 
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Table S1. Trucking emission coefficients. 

  units NH3 NOx PM2.5 SO2 VOC CO2e 

MOVES  
𝑔

𝑚𝑖𝑙𝑒
 no est 8.1E-03 3.7E-04 2.3E-05 3.7E-04 1.2E+00 

𝑚𝑒
𝑇𝑟𝑘,𝐷𝑖𝑟,𝑀𝑂𝑉𝐸𝑆

 
𝑔

𝑚𝑖𝑙𝑒 − 𝑏𝑏𝑙
 3.9E-04 2.2E-01 9.9E-03 6.2E-04 9.9E-03 3.2E+01 

NREL 
𝑔

𝑚𝑖𝑙𝑒
 no est 2.3E-01 7.0E-04 7.6E-03 1.1E-02 3.5E+01 

𝑚𝑒
𝑇𝑟𝑘,𝐷𝑖𝑟,𝑁𝑅𝐸𝐿

 
𝑔

𝑚𝑖𝑙𝑒 − 𝑏𝑏𝑙
 1.3E-02 6.2E+00 1.9E-02 2.0E-01 3.0E-01 9.3E+02 

SimaPro 
𝑔

𝑚𝑖𝑙𝑒
 no est 4.1E-05 6.4E-04 3.3E-03 no est 2.9E+00 

𝑚𝑒
𝑇𝑟𝑘,𝐷𝑖𝑟,𝑆𝑖𝑚𝑎𝑃𝑟𝑜

 
𝑔

𝑚𝑖𝑙𝑒 − 𝑏𝑏𝑙
 2.6E-03 1.1E-03 1.7E-02 8.9E-02 1.1E-01 7.8E+01 

𝑚𝑒
𝑇𝑟𝑘,𝐷𝑖𝑟

 
𝑔

𝑚𝑖𝑙𝑒 − 𝑏𝑏𝑙
 5.3E-03 2.1E+00 1.5E-02 9.8E-02 1.4E-01 3.5E+02 

𝑚𝑒
𝑇𝑟𝑘,𝐼𝑛𝑑

 
𝑔

𝑚𝑖𝑙𝑒 − 𝑏𝑏𝑙
 1.2E-03 1.2E-01 6.6E-03 3.8E-02 2.8E-02 2.2E+01 

𝑚𝑒
𝑇𝑟𝑘 

𝑔

𝑚𝑖𝑙𝑒 − 𝑏𝑏𝑙
 6.5E-03 2.3E+00 2.2E-02 1.4E-01 1.7E-01 3.7E+02 

 

2.2 Central treatment 

The direct emissions associated with central treatment, me
CT,Dir

, were estimated through the 

electrical energy consumption. It was assumed that central treatment technology was mechanical 

vapor recompression (MVC). Al-Karaghouli and Kazmerski estimated the energy demand of 

MVC to be 7-12 
𝑘𝑤ℎ

𝑚3
 and the average of 9.5 

𝑘𝑤ℎ

𝑚3
 was used for this study.6 The emission 

coefficients for electricity use was estimated using the data from the EIA for state electricity 
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production, EPA’s National Emissions Inventory (NEI) for criteria air pollutants, and EPA’s 

eGRID for greenhouse gas emissions. 7-9 The EIA provides estimates for the amount of 

electricity produced in the state of Pennsylvania in 2011 and 2012.The NEI provides NH3, NOx, 

PM2.5, SO2, and VOC emission estimates for the Pennsylvania electricity production in 2011. 

The EPA 2012 eGRID provides estimates for greenhouse gas emissions of CO2, CH4, and N2O 

for the state of Pennsylvania in 2012. The greenhouse gas emissions were converted to CO2e 

emission, by using the 100 year global warming potential of 34 and 298 for CH4 and N2O, 

respectively.5 The electricity emission coefficients were calculated using equation (4). 

𝑚𝑒
𝑒𝑙𝑒𝑐 =

𝑀𝑒
𝑒𝑙𝑒𝑐

𝐸𝑒
𝑒𝑙𝑒𝑐            (4) 

where 𝑚𝑒
𝑒𝑙𝑒𝑐 is the electricity emission coefficient in units of [

𝑔

𝑘𝑤ℎ
].  The 𝑀𝑒

𝑒𝑙𝑒𝑐 and 𝐸𝑒
𝑒𝑙𝑒𝑐 are the 

estimated mass of emissions and electricity production for the state of Pennsylvania. The 

calculated electricity emission coefficient is shown in Table S2.  

The direct emissions associated with the energy use of central treatment, 𝑚𝑒
𝐶𝑇,𝐷𝑖𝑟

, can be 

calculated by equation (5).  

𝑚𝑒
𝐶𝑇,𝐷𝑖𝑟 =  𝑚𝑒

𝑒𝑙𝑒𝑐𝑟𝐶𝑇          (5) 

where 𝑚𝑒
𝐶𝑇,𝐷𝑖𝑟

 is the direct emission coefficient for central treatment and 𝑟𝐶𝑇 is the energy use of 

central treatment, 9.5 
𝑘𝑤ℎ

𝑚3 . The calculated direct emission coefficient for central treatment is 

shown in Table S2.  

The indirect emissions associated with central treatment, 𝑚𝑒
𝐶𝑇,𝐼𝑛𝑑

, was estimated in the same way 

as trucking. However, the economic sector and cost coefficient was different. The “Water, 
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Sewage and other systems” sector was used, which resulted in the indirect emissions from $1 

million of activity was 0.041, 2.1, 0.82, 0.29, 2.84, 0.57, 1200 metric tons for NH3, NOx, PM2.5, 

SO2, VOC, CO2e, respectively.4 The 𝐶𝑜𝑠𝑡 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 of central treatment for the case study is 

5.5 
$

𝑏𝑏𝑙
. The calculated indirect emission coefficient is shown in Table S2. The sum of indirect 

and direct emission coefficient is the total emission coefficient, me
CT, as shown in table S2. 

Table S2. Central treatment emission coefficient  

  units NH3 NOx PM2.5 SO2 VOC CO2e 

NEI 
𝑔

𝑘𝑊ℎ
 0.002 0.58 0.05 1.3 0.003 no est 

eGRID2012 
𝑔

𝑘𝑊ℎ
 no est 0.54 no est 1.1 no est 484 

𝑚𝑒
𝑒𝑙𝑒𝑐 

𝑔

𝑘𝑊ℎ
 0.002 0.56 0.05 1.2 0.003 484 

𝑚𝑒
𝐶𝑇,𝐷𝑖𝑟

 
𝑔

𝑏𝑏𝑙
 0.01 3.09 0.25 6.73 0.02 2660 

𝑚𝑒
𝐶𝑇,𝐼𝑛𝑑

 
𝑔

𝑏𝑏𝑙
 0.23 11.6 1.6 15.6 3.1 6413 

𝑚𝑒
𝐶𝑇 

𝑔

𝑏𝑏𝑙
 0.24 14.7 1.8 22.3 3.2 9073 

 

2.3 Storage, Piping, On-Site Treatment, and Disposal 

The total emissions associated with storage, piping, on-site treatment, and disposal were 

estimated using EIO-LCA. The total emission coefficient can be calculated by equation (6). 

𝑚𝑒 = 𝑚𝑒
𝐸𝐼𝑂 ∗ 𝐶𝑜𝑠𝑡 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡        (6) 
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Where 𝑚𝑒 is the total emission coefficient, 𝑚𝑒
𝐸𝐼𝑂 is the total emissions from economic input 

output, and the 𝐶𝑜𝑠𝑡 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  relates the decision variables of an activity to the cost. The 

total emissions from economic input output for the associated economic sectors are shown in 

table S3. The 𝐶𝑜𝑠𝑡 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, economic sector, and total emission coefficient for storage, 

piping, onsite treatment and disposal are shown in Table S4 and S5. 

2.3.1 Storage: There are 3 costs for storage: freshwater impoundment, frac tanks, and wastewater 

storage. The associated emission coefficients for the frac tanks, 𝑚𝑒
𝐹𝑇, and wastewater storage, 

𝑚𝑒
𝑊𝑊𝑇,are shown in Table S5. Since the impoundment cost is not proportional to the capacity of 

the impoundment, the emission coefficient based on the decision variable could not be 

calculated. Instead the emissions from impoundments were estimated by using the EIO emission 

coefficient and the cost of the impoundment.   

2.3.2 Piping: There are 2 costs for piping: the capital costs of building a pipeline and the 

operating costs of pumping. The emission coefficient for the capital costs, 𝑚𝑒
𝑃𝑖𝑝𝑒𝐶

, depend on 

whether the pipeline is buried (c1) or overland (c2+) and is shown in Table S5. The emission 

coefficient for the operating costs of pumping,  𝑚𝑒
𝑃𝑖𝑝𝑒𝑂

, is shown in Table S5. 

2.3.3 Onsite treatment: There is one cost associated with onsite treatment and the emission 

coefficient, 𝑚𝑒
𝑂𝑇 , is shown in Table S5. 

2.3.4 Disposal: There is one cost associated with disposal and the emission coefficient, 𝑚𝑒
𝐷𝑃, is 

shown in Table S5. 
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Table S3. The economic input-output emission coefficient for the associated economic sectors. 

Sector/Cost Units NH3 

NO

x 

PM2.

5 

SO2 

VO

C 

CO2

e 

Oil and gas extraction (1) 
𝑡𝑜𝑛𝑛𝑒

$𝑀
 

0.02

3 

3.8

4 

0.14

5 

1.2

3 

4.38 1990 

Pipeline transportation (2) 
𝑡𝑜𝑛𝑛𝑒

$𝑀
 

0.03

9 

2.7 0.17 1.4 4.9 4400 

Support activities for oil and gas operations 

(3) 

𝑡𝑜𝑛𝑛𝑒

$𝑀
 

0.08

4 

6.3 0.58 1.9 1.3 649 
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Table S4. The cost coefficient and economic sector for activities estimated from EIO-LCA. Refer 

to table S3 for the numbering of the economic sectors. 

Activity 

Emission 

Coefficient 

Cost 

Coefficient 

Units Sector 

Storage 𝑚𝑒
𝐹𝑇 87 

$

𝑏𝑏𝑙
 1 

Storage 𝑚𝑒
𝑊𝑊𝑇 0.525 

$

𝑏𝑏𝑙 − 𝑤𝑒𝑒𝑘
 1 

Piping 𝑚𝑒
𝑃𝑖𝑝𝑒𝐶,𝑐1

 320 
$𝐾

𝑚𝑖𝑙𝑒
 2 

Piping 𝑚𝑒
𝑃𝑖𝑝𝑒𝐶,𝑐2−𝑐13

 71.5 
$𝐾

𝑚𝑖𝑙𝑒
 2 

Piping 𝑚𝑒
𝑃𝑖𝑝𝑒𝑂

 0.005 
$

𝑏𝑏𝑙 − 𝑚𝑖𝑙𝑒
 2 

Onsite 

Treatment 

𝑚𝑒
𝑂𝑇 3 

$

𝑏𝑏𝑙
 3 

Disposal 𝑚𝑒
𝐷𝑃 1.5 

$

𝑏𝑏𝑙
 3 
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Table S5. The cost coefficient and economic sector for activities estimated from EIO-LCA. Refer 

to table S3 for the numbering of the economic sectors. 

Activity 

Emission 

Coefficien

t 

Units CO NH3 NOx PM2.5 SO2 VOC CO2e 

Storage 𝑚𝑒
𝐹𝑇 

𝑔

𝑏𝑏𝑙
 

4.5E+

2 

2.0E+

0 

3.3E+

2 

1.3E+

1 

1.1E+

2 

3.8E+

2 

1.7E+0

5 

Storage 𝑚𝑒
𝑊𝑊𝑇 

𝑔

𝑏𝑏𝑙 − 𝑤𝑒𝑒𝑘
 

2.7E+

0 

1.2E-2 

2.0E+

0 

7.6E-2 6.5E-1 

2.3E+

0 

1.0E+0

3 

Piping 𝑚𝑒
𝑃𝑖𝑝𝑒𝐶,𝑐1

 
𝑔

𝑚𝑖𝑙𝑒
 

1.1E+

6 

1.2E+

4 

8.7E+

5 

5.5E+

4 

4.5E+

5 

1.6E+

6 

1.4E+0

9 

Piping 𝑚𝑒
𝑃𝑖𝑝𝑒𝐶,𝑐2−𝑐13

 
𝑔

𝑚𝑖𝑙𝑒
 

2.5E+

5 

2.8E+

3 

1.9E+

5 

1.2E+

4 

1.0E+

5 

3.5E+

5 

3.1E+0

8 

Piping 𝑚𝑒
𝑃𝑖𝑝𝑒𝑂

 
𝑔

𝑏𝑏𝑙 − 𝑚𝑖𝑙𝑒
 1.7E-2 2.0E-4 1.4E-2 8.6E-4 7.1E-3 2.4E-2 

2.2E+0

1 

Onsite 

Treatmen

t 

𝑚𝑒
𝑂𝑇 

𝑔

𝑏𝑏𝑙
 

2.5E+

1 

2.5E-1 

1.9E+

1 

1.7E+

0 

5.7E+

0 

3.8E+

0 

1.9E+0

3 

Disposal 𝑚𝑒
𝐷𝑃 

𝑔

𝑏𝑏𝑙
 

1.2E+

1 

1.3E-1 

9.5E+

0 

8.7E-1 

2.8E+

0 

1.9E+

0 

9.7E+0

2 
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3. AP2 Modeling Parameters 

The damages of air emissions associated with human health and environmental damages were 

estimated by using the AP2 model and value of a statistical life of $6.2 million in 2000 $ (8.5 

million in 2015 $, calculated from the Bureau of Labor Statistics 

[http://www.bls.gov/data/inflation_calculator.htm]). The model reports county-level damages for 

marginal emissions at ground-level sources, low-stack heights, medium stack heights, tall-stack 

heights, and very-tall-stack heights.10 Since all of the investigated activities emit at heights lower 

than the low-stack height, only the ground-level source data was used. The damages for the 

Pennsylvania counties were isolated and averaged to represent the damages across the state. The 

resulting HHE cost are shown in table S6. 

 

Table S6. Marginal air emission damages estimated from the AP2 model.  

Pollutant 

Cost  

($2015/metric ton) 

NH3 131,000 

NOx 5,540 

PM2.5 118,000 

SO2 44,500 

VOCs 11,300 
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4. Case Study Details 

The case study was adapted from Yang et al. (2015), which was based on the previous 

development of wellpads in the Utica play.1 Yang et al. provided information on the spatial 

distribution of the wellpads, impoundments, water sources, central treatment, and disposal wells 

and the availability, frac fluid demand, gas production, and wastewater production for each 

wellpad. The major changes from the case study presented in Yang et al. are as follows: 

1. The removal of the interruptible water sources and the addition of one uninterruptible source 

2. The placement of an impoundment in wellpad area 1 and removal of an impoundment in    

area 2 

3. The number of frac stages that could be fractured each week was kept constant at 30, instead 

of allowing it to be variable between 10-30 stages. This assumption is valid because without 

temporal variability in freshwater supply it is always more cost effective to fracture the 

wellpad as quickly as possible. 

4. Increasing the distance to central treatment (from 35 miles to 50 miles) and the class 2 

disposal wells (50 miles to 150 miles) to be more representative of the Marcellus play 

5. The wastewater production was doubled. In the case study presented by Yang et al. the 

wastewater production was only 9.6% of the used frac fluid used, which would be low for the 

Marcellus play. 

6. The gas production and wastewater production was allowed to start once a well was 

completed, instead of the production only starting after all of the wells on a wellpad were 

completed. 
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The wellpad availability dictates when hydraulic fracturing may start on a wellpad. Wellpads s1, 

s2, s7, and s8 were available immediately, while wellpads s3, s4, s9, s10, and s11 were available 

after week 18, and wellpads s5, s6, s12, s13, s14 were available after week 71, as presented in 

Yang et al. 

 

The non-financial and financial parameters for the case study are shown in Table S7 and S8. 
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Table S7. Non-financial parameters for the case study 

Parameter Units Value Description reference 

𝑆𝐷𝑊 𝑏𝑏𝑙 240,000 Frac fluid use for 30 stages each week [1]  

𝜌𝑊𝑊   𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠 0.3 

Maximum wastewater composition in frac 

fluid 

[user 

defined] 

𝜂𝑞1  𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠 0.85 Central treatment efficiency  [11] 

𝐶𝑃𝑝
𝑚𝑖𝑛,𝐼𝑃

 𝑏𝑏𝑙 200,000 Impoundment minimum capacity [12] 

𝐶𝑃𝑝
𝑚𝑎𝑥,𝐼𝑃

 𝑏𝑏𝑙 850,000 Impoundment maximum capacity [12] 

𝐶𝑃𝑝
𝑚𝑖𝑛,𝑊𝑊𝑇

 𝑏𝑏𝑙 1,000 Frac tank minimum capacity [13] 

𝐶𝑃𝑝
𝑚𝑎𝑥,𝑊𝑊𝑇

 𝑏𝑏𝑙 8,000 Frac tank maximum capacity [13] 

𝑈𝐹 
𝑏𝑏𝑙

𝑤𝑒𝑒𝑘
 

1,000,00

0 

upper flow for piping [1] 

𝐷𝑖𝑠𝑜 𝑚𝑖𝑙𝑒 10 Distance from freshwater source [14] 

𝐷𝑖𝑠𝐶𝑇 𝑚𝑖𝑙𝑒 50 

Distance from wellpads to central treatment 

facility 

[15] 

𝐷𝑖𝑠𝐷𝑃 𝑚𝑖𝑙𝑒 150 Distance from wellpads to disposal [16,15]  

𝐷𝑖𝑠𝐷𝑃2 𝑚𝑖𝑙𝑒 100 Distance from central treatment to disposal 

[user 

defined] 
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Table S8. Financial parameters for the case study 

Parameter Units Value Description reference 

𝑂𝐶𝑜1
𝐹𝑊 

$

𝑏𝑏𝑙
 0.2 Withdrawal cost from freshwater source [1] 

𝑂𝐶𝑃𝑖𝑝𝑒 
$

𝑏𝑏𝑙 − 𝑚𝑖𝑙𝑒
 0.005 Pumping cost [user defined] 

𝐼𝐶𝑐1
𝑃𝑖𝑝𝑒

 
$

𝑚𝑖𝑙𝑒
 320,000 Buried pipeline cost [1] 

𝐼𝐶𝑐2
𝑃𝑖𝑝𝑒

 
$

𝑚𝑖𝑙𝑒 − 𝑤𝑒𝑒𝑘
 5,500 Overland pipeline cost [1] 

𝑂𝐶𝑇𝑟𝑘 
$

𝑏𝑏𝑙 − 𝑚𝑖𝑙𝑒
 0.053 Trucking cost [1] 

𝐼𝐶𝐼𝑃,𝐵𝑎𝑠𝑒 $ 800000 Impoundment base capital cost [1] 

𝐼𝐶𝐼𝑃,𝐼𝑛𝑐 
$

𝑏𝑏𝑙
 1.2 Impoundment incremental cost [1] 

𝐼𝐶𝑊𝑊𝑇 
$

𝑏𝑏𝑙 − 𝑤𝑒𝑒𝑘
 0.525 Wastewater storage cost [12] 

𝐼𝐶𝐹𝑇 
$

𝑏𝑏𝑙
 85 Frac tank cost [1] 

𝑂𝐶𝑂𝑇 
$

𝑏𝑏𝑙
 3 Onsite treatment cost [15] 

𝑂𝐶𝑞1
𝐶𝑇 

$

𝑏𝑏𝑙
 5.5 Central treatment cost [12,15] 

𝑂𝐶𝐷𝑃 
$

𝑏𝑏𝑙
 1.5 Disposal costs [16]  
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The gas production for each wellpad after complete completion was presented in Yang et al. The 

data was adjusted so that the gas production could occur once wells were completed and not 

when the entire wellpad was completed. The gas production for each wellpad with respect to the 

start of hydraulic fracturing is shown in Figure S1. The gas production fluctuates as wells are 

being completed, but once all of the wells are completed the production steadily decreases. 

 

Figure S1. Gas production for each wellpad. 

 

Wastewater production is similar to gas production and the original data is shown in Yang et al. 

The wastewater production after the adjustment to the allow production once wells are 

completed is shown in Figure S2. Some of the wells take more than 30 stages to fracture, so even 

when a wellpad is being fractured, a new well does not start producing every week. When a well 

does not come online in a week it has a large effect on the wastewater production because the 

majority of wastewater comes back in the first weeks of operation. Therefore, the wastewater 

production has high fluctuations from week to week. 
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Figure S2. Wastewater production after each wellpad starts being fractured. 

5. Additional Case Study Results 

The optimal hydraulic fracturing schedule for maximizing profits (revenue minus financial water 

management costs) is shown in Figure S3. The wellpads are fractured as quickly as possible 

(only one transition week between wellpads) and the order of fracturing was 7, 1, 3, 4, 8, 9, 10, 

12, 13, 14, 6, 11, 2, and 5. The resulting schedule is fixed for all other optimization runs. 

 

 

Figure S3. Optimal hydraulic fracturing schedule over the 3 year, 156 week, time horizon. 
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Financial Cost Minimization: 

The freshwater piping arrangement for the cost optimal solution was presented in Figure 1C.  In 

area 1, freshwater is supplied to the impoundment via overland pipeline rented in the second and 

eighth quarter (weeks 14 to 26 and 92 to 104).  A buried pipeline carries freshwater from the 

source to the impoundment in Area 2, reflecting the high freshwater demand for the frac stages 

in this area (Figure S1).  Overland pipelines rented in the first, fourth, fifth, and seventh quarter 

(weeks 1 to 13, 40 to 65, and 79 to 91) deliver water from impoundment 2 to wellpads 7, 8, 9, 

12, 13, and 14.  On a bbl-mile basis, 77% of the freshwater was transported via pipeline and 23% 

was transported via truck.  

 

The financial cost optimal wastewater management solution maximized wastewater reuse, 

sending wastewater to central treatment only after all the wellpads were fractured.  A total of 

94% of the wastewater produced over the 3-year time horizon was reused in subsequent frac 

operations.  This translates to an average frac fluid composition of 18% wastewater.  In the 

financial cost optimal water management solution all of the wastewater was trucked because the 

high capital costs of wastewater pipelines could not be recovered by the relatively low volume of 

transported wastewater. 

 

The financial cost optimal water management case for the fourteen wellpad case study provides 

total revenues of $1.2 billion, water and wastewater management costs of $36.4 million, and 

HHE costs of $10.9 million (Table S9).  The financial costs and HHE costs were 3.1% and 0.9% 

of the revenue for the financial cost optimal water management scenario, which is substantially 

below the industry average.  These reduced costs are likely to reflect the clustered location of the 
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wells, the high reuse percentage of the flowback and produced water, and the existence of a 

central treatment facility within 50 miles of the well clusters. 

 

Water Management Scenarios: 

As discussed in the report, the financial costs of water and wastewater management ranged from 

$36.4 to 65.1 million and the HHE costs ranged from $10.9 to 27.2 million (Table S9).  

 

The scenarios can be described in three groups: low, moderate, and high financial and HHE 

costs. The low financial and HHE cost group included the optimal solution and scenarios 1, 5, 6, 

and 7: no wastewater piping (same as optimal), no freshwater trucking, no central treatment, and 

no direct disposal (same as optimal).  Of these scenarios the cost optimal solution had the lowest 

cost and scenario 5, no freshwater trucking, had the lowest environmental costs.  This finding 

demonstrates that further investment in freshwater pipelines in order to reduce trucking 

emissions may result in lower environmental costs.  The financial and HHE cost tradeoff 

between the two strategies is a financial cost increase of $2.1 million and a HHE cost decrease of 

$0.7 million.  

 

The moderate financial and HHE cost group included scenarios 2, 3, and 4: no wastewater 

trucking between wellpads, no wastewater storage, and no freshwater piping.  No wastewater 

trucking between wellpads led to additional pipeline water transport, which increased the 

financial and HHE costs.  This resulted in a reduction in the percentage of wastewater reuse to 

81% from 94% in the cost-optimal scenario, and ultimately to additional costs and HHE damages 

associated with freshwater transport, wastewater transport, and wastewater disposal at central 
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treatment facilities and Class II injection wells.  No wastewater storage decreased the amount of 

wastewater that was reused to 76%, similarly increasing the freshwater demand and transport of 

both fresh and wastewater.  No freshwater piping increased transport via truck and led to 

additional financial costs and HHE damages.   

 

The highest financial and HHE cost scenario was that of no wastewater reuse. When wastewater 

could not be reused, freshwater demand increased and all of the wastewater was transported to 

central treatment and disposal.  This result emphasizes the importance of maximizing wastewater 

reuse to lower financial and HHE costs. 

 

Further cost details of the scenarios are presented in Table S9. 
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Table S9. The revenue, costs, and environmental costs for the financial cost optimal water 

management solution and the scenarios: SC 1) No WW piping (same as Opt), SC 2) No WW 

trucking, SC 3) No WW storage, SC 4) No FW piping, SC 5) No FW trucking, SC 6) No central 

treatment, SC 7) No direct disposal (same as Opt), and SC 8) No wastewater reuse. 

Category Optimal SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 

Revenue 1,181 1,181 1,181 1,181 1,181 1,181 1,181 1,181 1,181 

FW withdrawal cost 4.2 4.2 4.3 4.4 4.2 4.2 4.2 4.2 5.1 

Storage cost 4.3 4.3 4.7 3.4 4.3 4.3 4.3 4.3 3.4 

On-site treatment cost 13.9 13.9 11.9 11.3 13.9 13.8 13.9 13.9 0.0 

Central treatment cost 1.6 1.6 5.2 6.3 1.6 1.6 0.0 1.6 27.0 

Disposal cost 0.06 0.06 0.21 0.26 0.06 0.07 0.43 0.06 1.10 

Piping cost 6.9 6.9 10.1 6.9 0.0 12.5 6.9 6.9 7.5 

Trucking cost 5.5 5.5 5.6 8.1 17.1 2.0 6.8 5.5 21.0 

Total cost 36.4 36.4 42.1 40.6 41.1 38.5 36.5 36.4 65.1 

Environmental cost 10.9 10.9 12.7 13.5 17.0 10.2 11.4 10.9 27.2 

 

Human Health and Environmental Cost Minimization: 

Further details on the water management difference between the financial cost minimization, 

HHE cost minimization, and the combined financial and HHE cost minimization are shown in 

the following Figures S4-S7. 

The amount of transport for each mode is shown in Figure S4. Compared to the financial cost 

optimal solution, the combined cost optimal solution and HHE cost optimal solution had: an 
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8.3% and 29.9% increase in piping transport, a 16.0% and 53.4% decrease in trucking transport, 

a 29.1% and 90.9% decrease in freshwater trucking, a 0.6% and 9.5% decrease in wastewater 

trucking, respectively. 

 

Figure S4. The amount in bbl-mile for each mode of transport for the financial cost 

minimization, HHE cost minimization, and combined financial and HHE costs (combined) 

minimization. FW and WW stand for freshwater and wastewater respectively. 

 

The breakdown of freshwater volume transport is shown in Figure S5. Compared to the financial 

cost optimal solution, the combined and HHE cost optimal solution had: an 0.0% and 0.2% 

decrease in total freshwater use, 6.7% and 12.6% increase in volume of water piped to 

impoundment, 54% and 171% increase in volume of water piped from impoundments to 

wellpads, 53% and 100% decrease in volume of water trucked to impoundments, and a 22% and 

84% decrease in volume of water trucked from impoundments to wellpads, respectively. 
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Figure S5. The amount of freshwater transported for the financial cost minimization, HHE cost 

minimization, and combined financial and HHE costs (combined) minimization. All of the 

acquired freshwater is either piped or trucked to the impoundments and then from the 

impoundments to the wellpads. 

 

The production, reuse, and amount of wastewater handling is shown in Figure S6 and S8. 

Compared to the financial cost optimal solution, the combined and HHE cost optimal solution 

had: the same wastewater production, 0.0% and 1.1% increase in wastewater reuse and on-site 

treatment, 1.0% and 17.4% decrease in central treatment and disposal, respectively. 
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Figure S6. The production, reuse, and amount of wastewater handling for the financial cost 

minimization, HHE cost minimization, and combined financial and HHE costs (combined) 

minimization. 

 

 

Figure S7. The amount of central treatment and disposal for the financial cost minimization, 

HHE cost minimization, and combined financial and HHE costs (combined) minimization.  
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APPENDIX F: SUPPORTING INFORMATION FOR CHAPTER 7 -       

ENERGY AND CO2 EMISSIONS PENALTIES OF GEOLOGIC CARBON 

STORAGE BRINE MANAGEMENT 
 

 

 

Supporting Information Summary: 

The supporting information contains descriptions of 1) data and summary statistics for U.S. 

saline reservoirs, 2) energy consumption for pumping. 

 

This supporting information is 8 pages long and contains 4 tables (Tables S1-S4). 
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S1) Data and summary statistics for U.S. saline reservoirs 

As described in the main manuscript, we identify the U.S. saline reservoirs suitable for 

geologic carbon storage and their location, storage capacity, and depth using the National Carbon 

Sequestration Database and Geographical Information System database v1502 (NATCARB 

database).1 We supplement the NATCARB database with empirical brine salinity distributions 

that we develop from brine samples in the U.S. Geological Survey national produced waters 

geochemical database v2.2 (USGS database).2 In this section, we provide the cleaned data and 

present the summary statistics.  

NATCARB database 

The NATCARB database includes geospatial information on carbon storage potential of 

saline reservoirs across the U.S. and parts of Canada. The data is generated by Regional Carbon 

Sequestration Partnerships and the database is managed by the U.S. Department of Energy 

(DOE) with the purpose of aiding initial assessments of geologic carbon storage.  

For our analysis, we modify the database in three ways. First, we geographically limit our 

analysis to data within the 48 contiguous states (excludes Canadian and offshore regions). By 

limiting the geographic area, we reduce the medium estimate of the total potential CO2 storage 

capacity from 8.4 to 5.6 trillion metric tonnes (33% decrease). Second, we collapse multiple 

labels for a single reservoir to a single label. For example, we relabel “Mt. Simon Sandstone” 

and “Basal Sands – Mt. Simon” to “Mt. Simon”. Third, we do not consider the reservoirs that 

were labeled “Unnamed”. In Table S.1, we present the 178 saline reservoirs identified from the 

NATCARB database. 
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Table S.1. Saline reservoirs considered from the NATCARB database. 

Table S1.xlsx

 

USGS database 

 The USGS database includes roughly 170K brine samples across the U.S. The database 

was created from the combination of multiple datasets spanning several decades. The collection, 

analysis, and record keeping methods for these datasets were not standardized and they cannot be 

independently verified. Additionally, the sampling was not planned to accurately represent any 

specific region or reservoir. Despite these limitations, we choose to use the USGS database 

because it is the best available dataset that contains many brine samples for most U.S. saline 

reservoirs. 

 In order to develop empirical brine salinity distributions for the U.S. saline reservoirs, we 

pair GCS relevant USGS samples to the U.S. saline reservoirs identified in Table S.1. As 

described in the main manuscript, we limit our analysis to brine samples below 2500 feet to 

ensure there is sufficient pressure for supercritical CO2 storage.3 If the sample depth was not 

recorded, we use the average of the reported upper and lower perforation depth. By limiting the 

analysis to depths below 2500 feet, we reduce the number of brine samples by nearly 50%. We 

match the remaining brine samples to U.S. saline reservoirs by the name of the formation. Since 

the USGS formation names were not standardized there are many spelling variations that we 

manually identified as being the same. Oftentimes, multiple saline reservoir names appeared in a 

USGS formation label and we assigned that sample to both saline reservoirs. Through this 

matching process, roughly 35K brine samples were paired with saline reservoirs. Table S.2. 
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includes the paired saline reservoir name, USGS ID, formation and basin name, depth, and total 

dissolved solids and NaCl concentration for the matched USGS samples. Table S.3. provides the 

summarized data for each U.S. saline reservoir identified in Table S.1., including: CO2 storage 

capacity, median depth, number of brine samples, 10th, 50th, and 90th percentile of TDS, and 

NaCl mass percentage of TDS. 

Table S.2. USGS brine sample data paired with U.S. saline reservoirs 

Table S2.xls

 

Table S.3. Summarized data for each U.S. saline reservoir 

Table S3.xlsx

 

S2) Energy consumption for pumping 

 We base the energy demand of extraction, transport, and injection on the energy 

consumption of the pump. We estimate the pump energy consumption with equation S1. 

𝐸𝐶𝑝𝑚𝑝 =
𝜌𝑔(∆𝐻+𝐻𝐿)

𝜂1𝜂2
 [

𝐽 𝑠2

𝑘𝑔 𝑚2
] [

𝑘𝑊ℎ

3.6𝐸6 𝐽
]       (𝑆1) 

Where 𝐸𝐶𝑝𝑚𝑝 is the pump energy consumption [kWh/m3], 𝜌 is density [kg/m3], g is gravity [9.8 

m/s2], ∆𝐻 is head difference [m], 𝐻𝐿 is the head loss [m], and 𝜂1 and 𝜂2 are the pump and motor 

efficiency. The head difference is determined with equation S2. 

∆𝐻 =  
𝑃2−𝑃1

𝜌𝑔
+ (ℎ2 − ℎ1) +

𝑣2
2−𝑣1

2

2𝑔
       (𝑆2) 
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Where 𝑃 is the hydraulic pressure [Pa], ℎ is the height from some reference [m], 𝑣 is the fluid 

velocity [m/s], and the fluid is pumped from subscript 1 to 2. In the applications we are 

considering, the kinetic head difference (last term with velocity) is negligible. 

Extraction and injection 

 To estimate the pump energy consumption for brine extraction and injection with 

equation S1, we must determine the head loss and head difference. As stated in the manuscript, 

we assume the head loss for extraction and injection is 100 m.4 

The head difference for brine extraction and injection will be dependent on the pressure 

and depth of the saline reservoir. While reservoir pressure and depth data can be obtained from 

the NATCARB database, we found that the vast majority (>90%) of the data points have no or 

negligible head difference between the surface and the reservoir. This result suggests that either 

saline reservoirs generally have neutral pressure (as opposed to over or underpressure) or that the 

pressure data is generated with a neutral pressure assumption. Instead of relying on the pressure 

and depth data in the NATCARB database, we use wellhead pressure data from wastewater 

disposal wells in the oil & gas industry to estimate the extent of overpressure for injection wells. 

The wellhead pressure of these injection wells ranged between 0-2.8 MPa for reservoirs in 

Oklahoma, which is equivalent to 0-285 m of head difference.5 Without similar experience for 

deep brine extraction wells, we assume the reservoirs have neutral pressure and the head 

difference is negligible. When these head differences are combined with the assumed head loss, 

we estimate that the energy consumption of extraction is 0.4 kWh/m3 and injection is between 

0.4 and 1.5 kWh/m3. 

Transportation 
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 The energy consumption of transporting the brine and product water can be determined 

by estimating the head difference and head loss. In our work, we assume there is no elevation 

change between the starting and final location, so the head difference is negligible. We estimate 

the transportation head loss per unit length of pipe with the Hazen-Williams equation shown in 

equation S3. 

𝐻𝐿

𝐿
=

10.67 𝑄1.852

𝐶1.852 𝑑4.8704         (𝑆3) 

 

Where 𝐻𝐿 is the head loss [m], 𝐿 is the length of the pipe [m], 𝑄 is the flow rate [m3/s], 𝐶 is the 

roughness coefficient, and d is the inside pipe diameter [m]. 

 We use a range of realistic operating conditions to develop a range of head loss per unit 

length. These conditions include: cross sectional fluid velocities between 3 and 6 feet/s (0.9-1.8 

m/s), pipe diameters between 6 and 12 inches (0.15-0.3 m), and a roughness coefficient of 120. 

The resulting head loss per unit length varies between 3 and 26 m/1000m. As suggested in 

Trautz et al., we roughly double this value to 5 and 50 m/1000m to account for bends, valves, 

and other features of pipelines.4 

 In order to estimate the total head loss across a pipeline, we need to estimate the pipeline 

length. However, there is great uncertainty in realistic transportation distances because there are 

no existing GCS brine management systems. Table S.7 provides the transportation distances 

assumed in this study and others. Using these distances and the head loss per unit length, we 

estimate that the energy consumption for extraction to treatment, concentrate to disposal, treated 

water to use range from 0-2.2, 0-11, 0.2-11 kWh/m3-mile. 
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Table S7. Distances for the three transportation activities in GCS brine management. NA means 

not they did not consider it. 

Transport activity This work Harto [6] Trautz et al. [4] Salih et al. [7] 

Extraction to treatment 0-10 10 NA NA 

Concentrate to disposal 0-50 10-100 NA 1 

Treated water to use 10-50 NA 15 NA 
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