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Abstract

Networks are ubiquitous for many real-world problems such as modeling infor-
mation diffusion over social networks, transportation systems, understanding protein-
protein interactions, human mobility, computational sustainability, among many oth-
ers. Recently, due to the ongoing Big Data revolution, the fields of machine learning
and Artificial Intelligence (AI) have also become extremely important, with AI mostly
being dominated by representation learning techniques such as deep learning. How-
ever, research at the intersection of network science, machine learning and Al has been
mostly unexplored. Specifically, most of the prior research focuses on how machine
learning techniques can be used to solve “network’ problems such as predicting infor-
mation diffusion on social networks or classifying blogger interests in a blog network,
etc. On the contrary, in this thesis, we answer the following key question: How can
we exploit network science to improve machine learning and representation learning
models when addressing general problems?

To answer the above question, we address several problems at the intersection
of network science, machine learning, and Al. Specifically, we address four funda-
mental research challenges: (i) Network Science for Traditional Machine Learning,
(ii) Representation Learning for Small-Sample Datasets, (iii) Network Science-Based
Deep Learning Model Compression, and (iv) Network Science for Neural Architec-
ture Space Exploration. In other words, we show that many problems are governed
by latent network dynamics which must be incorporated into the machine learning or
representation learning models.

To this end, we first demonstrate how network science can be used for tradi-
tional machine learning problems such as spatiotemporal timeseries prediction and
application-specific feature extraction. More precisely, we propose a new framework
called Network-of-Dynamic Bayesian Networks (NDBN) to address a complex prob-

abilistic learning problem over networks with known but rapidly changing structure.



We also propose a new domain-specific network inference approach when the network
structure is unknown and only the high-dimensional data is available. We further in-
troduce a new network science-based, application-specific feature extraction method
called K-Hop Learning. As concrete case studies, we show that both NDBN frame-
work and K-Hop Learning significantly outperform traditional machine learning tech-
niques for computational sustainability problems such as short-term solar energy and

river flow prediction, respectively.

We then discuss how network science can be used to address general representa-
tion learning problems with high-dimensional and small-sample datasets. Here, we
propose a new network community-based dimensionality reduction framework called
FeatureNet. Our approach is based on a new correlations-based network construction
technique that explicitly discovers hidden communities in high-dimensional raw data.
We show the effectiveness of FeatureNet on many diverse small-sample problems as
deep learning typically overfits for such problems. We demonstrate that our technique
achieves significantly higher accuracy than ten state-of-the-art dimensionality reduc-

tion methods (up to 40% improvement) for the small-sample problems.

Since a simple correlations-based network alone cannot capture meaningful fea-
tures for problems like image classification, we focus on deep learning models like
Convolutional Neural Networks (CNN). Indeed, in the era of Internet-of-Things (IoT),
computational costs of deep networks have become a critical challenge for deploying
such models on resource-constrained edge devices. Towards this, model compres-
sion has emerged as an important area of research. However, when a computationally
expensive CNN (or even a compressed model) cannot fit within the memory-budget
of a single loT-device, it must be distributed across multiple devices which leads to
significant inter-device communication.

To alleviate the above problem, we propose a new model compression framework
called the Network-of-Neural Networks (NoNN) which first exploits network science
to partition a large “teacher” model’s knowledge into disjoint groups and then trains
individual “student” models for each group. This results in a set of student modules

which satisfy the strict resource-constraints of individual IoT-devices. Extensive ex-
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periments on five well-known image classification tasks show that NoNN achieves
similar accuracy as the teacher model and significantly outperforms the prior art. We
also deploy our proposed framework on real hardware such as Raspberry Pi’s and
Odroids to demonstrate that NoNN results in up to 12x reduction in latency, and up to
14 x reduction in energy per device with negligible loss of accuracy.

Finally, since deep networks are essentially a network of (artificial) neurons, net-
work science is a perfect candidate to study their architectural characteristics. Hence,
we model deep networks from a network science perspective to identify which architecture-
level characteristics enable models with different number of parameters and layers to
achieve comparable accuracy. To this end, we propose new metrics called NN-Mass
and NN-Density to study the architecture design space of deep networks. We further
theoretically demonstrate that (7) For a given depth and width, CNN architectures with
higher NN-Mass achieve lower generalization error, and (i) Irrespective of number of
parameters and layers (but same width), models with similar NN-Mass yield similar
test accuracy. We then present extensive empirical evidence towards the above two
theoretical insights by conducting experiments on real image classification tasks such
as CIFAR-10 and CIFAR-100. Lastly, we exploit the latter insight to directly design
efficient architectures which achieve comparable accuracy to large models (~ 97%
on CIFAR-10 dataset) with up to 3x reduction in total parameters. This ultimately
reveals how model sizes can be reduced directly from the architecture perspective.

In summary, in this thesis, we address several problems at the intersection of net-
work science, machine learning, and representation learning. Our research compre-
hensively demonstrates that network science can not only play a significant role but

also lead to excellent results in both machine learning and representation learning.
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Chapter 1

Introduction

Networks have become ubiquitous to many applications such as social or biological networks,
world wide web, urban systems, migration, among others. A major source of this rapid adoption
of network science is the availability of enormous amounts of data for many different applications.
However, the very same availability of data has also given rise to the recent big data revolution in
the fields of machine learning and Artificial Intelligence (Al). Alas, the intersection between these

three fields — network science, machine learning, and Al — remains sparse.

Many real-world systems are characterized by complex network dynamics [88]. For instance,
information propagation among online users depends on their social network, the spread of epi-
demics can be modeled via how people interact, etc. Similarly, machine learning problems such
as predicting short-term timeseries of, say, a river flowrate, can be better represented as a network
of rivers, which can in turn improve our prediction accuracy. Hence, many systems often have
an inherent or a latent network component which can be exploited to achieve highly accurate ma-
chine learning or AI models. Such problems do not consider a network science-based approach.
However, we argue that since the behavior of these systems depends on latent interactions within
their subsystems, a network science-based approach is imperative for more accurately capturing

the system dynamics.

To this end, many machine learning problems traditionally have not even envisioned a network
science perspective. For instance, we show that if we consider a network-based approach, we
can predict cancer in patients from high-dimensional data with significantly higher accuracy than
approaches which do not consider a network. Moreover, although Al is getting increasingly dom-
inated by representation learning techniques such as deep neural networks, network science has

surprisingly been absent from the deep learning literature. Therefore, we also show that network



science is effective at solving various deep learning problems. Hence, we exploit the major advan-
tages of network science for addressing important machine learning and representation learning
problems throughout this thesis, thereby demonstrating how network science can be used beyond
traditional “network™ problems such as social or biological networks.

Next, we give a brief overview of network science, machine learning and representation learn-

ing, and introduce the problems addressed in this thesis.

1.1 Network Science

Network science studies complex systems in which various subsystems or acfors interact with
each other. Key examples of such networks include social and biological networks, transportation
networks, world wide web, internet, efc. The core idea of network science is to represent cer-
tain complex phenomena as networks and then create models that can be used to understand and
predict the desired phenomena. A wide range of real-world phenomena have been modeled us-
ing networks, e.g., problems such as information diffusion over social networks, modeling disease
outbreaks, efc. Mathematically, the actors in the networks are represented as nodes or vertices V),
while links or edges & represent the interactions among the various actors (e.g., people connected
in a social network).

Real-world networks are characterized by a number of important characteristics. For instance,
majority of users on a typical social network like Twitter are not very popular. However, most of
these users follow a small number of very popular users (e.g., sports figures, celebrities, politicians,
etc.). This results in most users connected to a handful of popular users. Hence, social networks
have a highly non-uniform degree distribution, where degree of a user refers to number of connec-
tions he/she has in the network. In turn, such connectivity patterns result in extremely complex
dynamics of, say, information or opinion propagation. To model such dynamics, a number of
concepts have been developed in network science such as scale-free networks [7], or community
structure [86]. Fig 1.1(a) shows scale-free networks which are characterized by many low-degree
nodes, and a few high-degree nodes. Similarly, often networks are organized into groups of tightly
connected nodes called community structure (see Fig. 1.1(b)). Finally, other real-world systems

can have fractal structure. Fig. 1.1(c) clearly illustrates the fractal structure of river networks.
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Figure 1.1: Network science (a) A scale-free network is characterized by presence of hubs (i.e., high-degree nodes).
(b) Real-world networks often contain community structure, i.e., groups of tightly connected nodes. (c) Many complex

systems such as River Networks exhibit fractal network structures.

Throughout this thesis, we argue that network characteristics such as communities can be ex-
ploited to solve many learning problems. Next, we discuss the problems in machine learning and

representation learning that can particularly benefit from network science.

1.2 Machine Learning and Representation Learning

Two major categories of machine learning are described below:
1. Supervised learning problems have a labeled dataset. For instance, given a dataset contain-
ing both images of certain objects, as well as their explicit labels, the problem of “classifying

the object in a given image” is an example of supervised learning.

2. Unsupervised learning problems have an unlabeled dataset. For instance, the problem of
“clustering a set of observations into various groups” (when the label is not available) is an
example of unsupervised learning.

There are several other machine learning problems such as reinforcement learning [17, 78] where
the idea is to reward a learning agent based on correct actions (e.g., a robot navigating through
space towards some target). However, in this thesis, we will mainly focus on supervised learning.

There can be many kinds of supervised machine learning problems and the most notable

are: (i) Regression problems aim to predict the value of a given target variable, given some fea-
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Figure 1.2: Machine Learning and Representation Learning: (a) Example of a traditional machine learning prob-
lem: River flow timeseries prediction — timeseries can contain sudden peaks and troughs. (b) Convolutional Neural
Networks (CNN) for image classification. (c) Model compression aims to reduce the computational requirements of
pretrained deep neural networks. (d) Neural Architecture Search (NAS) aims to automatically learn the architecture

of deep learning models.

tures, (ii) Classification problems use the input features to classify them into multiple categories,
(iii) Timeseries prediction problems specifically predict the value of the given variable at the next
time step or next few time steps (see Fig. 1.2(a)). Timeseries prediction problems can further utilize
additional features (on top of the given variable whose timeseries we are trying to predict).
Conventionally, designing a machine learning system first involves manually designing the
features for the problem at hand, a process called feature selection/engineering. This is followed by
model selection, where we select a linear or non-linear model (e.g., linear regression, decision trees,
artificial neural networks, efc. [17, 78]) which operates on the selected features. The performance

of the machine learning system depends on both the quality of the features, and the selected model.

As mentioned above, traditional machine learning relies on designing hand-tailored application-
specific features. However, in many other problems with high-dimensional, small-sample datasets
like cancer prediction, digit-recognition, computational sustainability, efc., extracting a set of use-

ful, low-dimensional features from the given dataset is a challenging task, and is often critical for
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achieving high accuracy. Moreover, for several “big data” problems such as identifying objects
in natural images, deep learning techniques such as Convolutional Neural Networks (CNN) have
achieved state-of-the-art results (see Fig. 1.2(b)) [41, 48, 58, 108]. Hence, this has resulted in the

era of representation learning where the objective is to learn features automatically from the data.

At present, representation learning techniques can be largely categorized into three classes:
(i) Conventional dimensionality reduction for small-sample datasets (since deep learning-based
techniques do not work well for small-sample problems) [46, 69], (ii) Deep Learning techniques
for big data problems in vision, speech and natural language processing [41, 48, 108], and (7ii) Net-
work Representation Learning, where the idea is to learn representations for nodes in a network
directly from its topological structure [35, 96, 116]. Of note, many exciting research problems
in the field of deep learning have emerged recently. Notable problems include Model Compres-
sion for computationally expensive deep networks to deploy such models on hardware-constrained
edge devices (see Fig. 1.2(c)) [43, 51, 63], and Neural Architecture Search (NAS), where the
goal is to design learning models that can automatically create new deep learning models (see

Fig. 1.2(d)) [100, 141, 142].

Both model compression and NAS research have seen enormous amount of success recently.
For instance, model compression techniques such as pruning reduce the computational costs of the
deep network by removing redundant and useless weights without sacrificing accuracy [63, 132].
Other techniques such as quantization try to maintain accuracy while reducing the number of bits
used to represent weights/activations of the deep network [51]. Another class of techniques ex-
ploit a teacher-student learning paradigm called Knowledge Distillation, where we teach a signifi-
cantly smaller “student” network to mimic a large “teacher” deep network [4, 43]. Similarly, mod-
els designed by recent NAS techniques have outperformed state-of-the-art human-designed deep
networks for image classification and speech datasets [66, 97, 100, 141, 142]. NAS techniques
are based on reinforcement learning [141, 142], evolutionary algorithms [100, 128], or gradient-
based techniques [66]. While reinforcement learning-based techniques are computationally pro-
hibitive (sometimes taking up to thousands of GPU-days and hundreds of GPUs [141, 142]), recent
gradient-based techniques have drastically reduced the architecture search cost (e.g., to a few GPU

days or to even a few GPU hours [66]).



As we shall see shortly, many machine learning and representation learning problems described
above can have an inherent or a latent network component. Hence, in this thesis, we address the
following problems from a network science perspective: (i) Traditional machine learning prob-
lems such as application-specific feature extraction for timeseries prediction, (if) Dimensionality
reduction for small-sample problems, (iii) Model compression for big data image classification
problems, and (iv) Neural Architecture Space Exploration via Network Science. But first, we
must describe the existing research at the intersection of network science, machine learning, and

representation learning, and must answer how our proposed research differs from the prior art.

1.3 Network Science vis-a-vis Machine Learning and Repre-

sentation Learning

Most of the prior art has traditionally been on how machine learning or representation learning
can be used to solve network problems in, say, social or biological networks. For instance, as
illustrated in Fig. 1.3, Graphical Lasso [29] aims to infer network structure from data. Other
problems include learning and optimization over the social networks [62]. Moreover, the network
representation learning techniques [35] learn features for nodes in the network. These features are
then used for network classification problems such as classifying user interests in a social network.
Finally, other representation learning techniques such as deep neural networks do not exploit ideas

from network science.

As evident, all of the above directions have one aspect in common: They focus on how machine
learning, representation/deep learning, and big data (e.g., social network data) can solve network
problems (e.g., inferring network structure, automatically extracting the features for nodes in the
network, optimization over networks or network classification problems). These prior directions
are shown as green arrows in Fig. 1.3. In contrast, in this thesis, we ask the opposite question: How
can network science help with general problems considered in machine or deep learning such as
handwritten digit recognition, natural language processing (NLP), cancer prediction, sustainabil-
ity problems, or image classification? Can generic machine/deep learning models used for above

problems benefit from the fundamental principles of network science? If so, what new models
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Figure 1.3: Big picture of the proposed research: Prior art (green arrows) focuses on how machine learning, repre-
sentation learning and Big Data can be used to solve “network” problems in social and biological networks. On the
other hand, we target a new network science perspective towards complex machine learning and representation/deep

learning (AI) problems (violet arrows).

can be proposed to best integrate information from networks into machine/deep learning models?

These questions remain unexplored and, hence, are a major focus of our work.

Given this significant interest in network science, machine learning and deep learning research,
in this thesis, we explore how exactly network science concepts can be exploited to create effective
solutions for various machine learning and deep learning problems. Specifically, since all systems
involve some form of network dynamics, we believe that exploiting network science can truly ame-
liorate some of the challenges faced by machine/deep learning problems today. For example, in
traditional machine learning problems, similarity between samples can be more accurately char-
acterized by network science and, thus, lead to better machine learning problems. On the other
hand, deep networks are essentially a network of filters or neurons. Hence, dynamics of informa-

tion propagation within deep networks can be modeled via network science. Starting from these
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overarching ideas, we describe the concrete research challenges addressed in this thesis below.

1.4 Research Challenges

We address four fundamental research challenges encompassing the following key questions:
1. Network Science for Traditional Machine Learning: Can network science be used to cre-
ate effective spatiotemporal timeseries prediction models? How can we use network science

to extract application-specific features for a given machine learning problem?

2. Representation Learning on Small-Sample Problems: How can we exploit network sci-
ence ideas to automatically learn features for general problems with small datasets (100-1500

samples)? Are there any small-sample problems in the deep learning space?

3. Network Science-Based Distributed Deep Learning Model Compression: For big data
problems such as image classification, how can we use network science to compress the
size and computation of complex deep networks in order to deploy them on a network of

resource-constrained IoT-devices?

4. Network Science for Neural Architecture Space Exploration: Finally, since deep net-
works are afterall networks of neurons or filters, what structural property of these networks
results in models with high accuracy? Can we use network science to identify architecture-
level characteristics that indicate which family of models (despite having different number
of layers and parameters) achieve comparable accuracy? Understanding such characteristics
can directly allow us to create compressed models with minimal loss of accuracy over the
large deep networks.

Answering the above questions led to the new research directions shown as violet arrows in
Fig. 1.3. Clearly, these directions run completely opposite to the existing research. We next de-

scribe each research challenge in detail.

1.4.1 Network Science for Traditional Machine Learning

We start with the traditional machine learning problems such as spatiotemporal timeseries predic-

tion and application-specific feature extraction. This scenario occurs for problems in which some
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kind of traffic or fluid is flowing through space, and we need to predict short-term timeseries at
each location. Typically, when a traffic (or fluid) flows through the space, its dynamics can be
described as a complex network and, hence, enable a network science-based prediction model.
However, most existing machine learning-based timeseries prediction models do not consider the
network dynamics. Here, we show that creating new learning models that take the underlying net-
work dynamics into account lead to better prediction compared to the models which do not account

for the networks.

To this end, we address two complex spatiotemporal timeseries prediction problems using net-
work science: (i) Predicting short-term timeseries at multiple locations when the underlying net-
work structure is known but rapidly changing (perhaps known from prior knowledge or available
data), and (if) Predicting short-term timeseries at multiple locations when the underlying network

structure is unknown but fixed.

We model the first problem above as a Bayesian network whose structure is known but is dy-
namically and rapidly changing. Since the network structure is known, we propose a new model to
learn parameters on such dynamically changing networks and use them for the underlying predic-
tion tasks. To demonstrate a concrete example of a situation where this kind of learning problems
can arise, we provide a case study on a computational sustainability task, i.e., predicting the short-

term solar energy and quantifying the solar energy interdependence across large regions.

Next, for many other real-world problems, the predefined network structure governing the dy-
namics is not known for the problem at hand, and only some raw high-dimensional timeseries data
is available. Therefore, for such problems, we need to infer the network structure by exploiting the
correlations in the given high-dimensional raw data. This leads to the second problem above, where
we first infer the network structure from the raw data and then utilize this network structure for
application-specific feature extraction. Again, we demonstrate this problem by considering a con-
crete case study on another computational sustainability problem, i.e., use the high-dimensional
timeseries river flowrate data to first infer the river network, and then predict short-term river

flowrate at several locations in the given river-basin.

Both of the above problems are characterized by complex characteristics such as non-stationary
data, changing or unknown underlying network dynamics, efc. Of note, the problems considered in

this section are application-specific and, hence, different network-based machine learning models
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are required to address different problems. However, many real-world problems can also benefit
from general principles in network science. We discuss this important case below, where we use
network science for representation learning on many general problems with high-dimensional raw

data and small number of samples.

1.4.2 Representation Learning on Small-Sample Problems

A major goal in Artificial Intelligence (AI) is not to manually engineer application-specific fea-
tures but rather to enable machines to learn them automatically for any general problem. Conse-
quently, the domain of representation learning aims to automatically learn useful low-dimensional
features from the data. Towards this low-dimensional feature learning, many dimensionality re-
duction techniques have been proposed in literature. For instance, dimensionality reduction can be
performed via linear techniques such as Principal Component Analysis (PCA), or via non-linear
neighborhood graph-based techniques such as Isomap, Stochastic Neighbor Embedding (SNE),
t-SNE, among many others [1, 42, 69, 118]). Other techniques exploit deep neural networks such
as Autoencoders [44].

In the real-world, networks constructed from raw data are often characterized by complex
network characteristics (e.g., groups of tightly connected nodes known as the community struc-
ture [84]). Existing dimensionality reduction techniques, however, do not take such network
characteristics into account. Moreover, it has been theoretically established in [30, 52, 54, 99]
that to obtain good classification performance in high-dimensional spaces, the number of sam-
ples must also be very large (e.g., ~ 10° samples as in big data pro