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Abstract

Networks are ubiquitous for many real-world problems such as modeling infor-

mation diffusion over social networks, transportation systems, understanding protein-

protein interactions, human mobility, computational sustainability, among many oth-

ers. Recently, due to the ongoing Big Data revolution, the fields of machine learning

and Artificial Intelligence (AI) have also become extremely important, with AI mostly

being dominated by representation learning techniques such as deep learning. How-

ever, research at the intersection of network science, machine learning and AI has been

mostly unexplored. Specifically, most of the prior research focuses on how machine

learning techniques can be used to solve “network” problems such as predicting infor-

mation diffusion on social networks or classifying blogger interests in a blog network,

etc. On the contrary, in this thesis, we answer the following key question: How can

we exploit network science to improve machine learning and representation learning

models when addressing general problems?

To answer the above question, we address several problems at the intersection

of network science, machine learning, and AI. Specifically, we address four funda-

mental research challenges: (i) Network Science for Traditional Machine Learning,

(ii) Representation Learning for Small-Sample Datasets, (iii) Network Science-Based

Deep Learning Model Compression, and (iv) Network Science for Neural Architec-

ture Space Exploration. In other words, we show that many problems are governed

by latent network dynamics which must be incorporated into the machine learning or

representation learning models.

To this end, we first demonstrate how network science can be used for tradi-

tional machine learning problems such as spatiotemporal timeseries prediction and

application-specific feature extraction. More precisely, we propose a new framework

called Network-of-Dynamic Bayesian Networks (NDBN) to address a complex prob-

abilistic learning problem over networks with known but rapidly changing structure.



We also propose a new domain-specific network inference approach when the network

structure is unknown and only the high-dimensional data is available. We further in-

troduce a new network science-based, application-specific feature extraction method

called K-Hop Learning. As concrete case studies, we show that both NDBN frame-

work and K-Hop Learning significantly outperform traditional machine learning tech-

niques for computational sustainability problems such as short-term solar energy and

river flow prediction, respectively.

We then discuss how network science can be used to address general representa-

tion learning problems with high-dimensional and small-sample datasets. Here, we

propose a new network community-based dimensionality reduction framework called

FeatureNet. Our approach is based on a new correlations-based network construction

technique that explicitly discovers hidden communities in high-dimensional raw data.

We show the effectiveness of FeatureNet on many diverse small-sample problems as

deep learning typically overfits for such problems. We demonstrate that our technique

achieves significantly higher accuracy than ten state-of-the-art dimensionality reduc-

tion methods (up to 40% improvement) for the small-sample problems.

Since a simple correlations-based network alone cannot capture meaningful fea-

tures for problems like image classification, we focus on deep learning models like

Convolutional Neural Networks (CNN). Indeed, in the era of Internet-of-Things (IoT),

computational costs of deep networks have become a critical challenge for deploying

such models on resource-constrained edge devices. Towards this, model compres-

sion has emerged as an important area of research. However, when a computationally

expensive CNN (or even a compressed model) cannot fit within the memory-budget

of a single IoT-device, it must be distributed across multiple devices which leads to

significant inter-device communication.

To alleviate the above problem, we propose a new model compression framework

called the Network-of-Neural Networks (NoNN) which first exploits network science

to partition a large “teacher” model’s knowledge into disjoint groups and then trains

individual “student” models for each group. This results in a set of student modules

which satisfy the strict resource-constraints of individual IoT-devices. Extensive ex-
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periments on five well-known image classification tasks show that NoNN achieves

similar accuracy as the teacher model and significantly outperforms the prior art. We

also deploy our proposed framework on real hardware such as Raspberry Pi’s and

Odroids to demonstrate that NoNN results in up to 12× reduction in latency, and up to

14× reduction in energy per device with negligible loss of accuracy.

Finally, since deep networks are essentially a network of (artificial) neurons, net-

work science is a perfect candidate to study their architectural characteristics. Hence,

we model deep networks from a network science perspective to identify which architecture-

level characteristics enable models with different number of parameters and layers to

achieve comparable accuracy. To this end, we propose new metrics called NN-Mass

and NN-Density to study the architecture design space of deep networks. We further

theoretically demonstrate that (i) For a given depth and width, CNN architectures with

higher NN-Mass achieve lower generalization error, and (ii) Irrespective of number of

parameters and layers (but same width), models with similar NN-Mass yield similar

test accuracy. We then present extensive empirical evidence towards the above two

theoretical insights by conducting experiments on real image classification tasks such

as CIFAR-10 and CIFAR-100. Lastly, we exploit the latter insight to directly design

efficient architectures which achieve comparable accuracy to large models (∼ 97%

on CIFAR-10 dataset) with up to 3× reduction in total parameters. This ultimately

reveals how model sizes can be reduced directly from the architecture perspective.

In summary, in this thesis, we address several problems at the intersection of net-

work science, machine learning, and representation learning. Our research compre-

hensively demonstrates that network science can not only play a significant role but

also lead to excellent results in both machine learning and representation learning.
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Chapter 1

Introduction

Networks have become ubiquitous to many applications such as social or biological networks,

world wide web, urban systems, migration, among others. A major source of this rapid adoption

of network science is the availability of enormous amounts of data for many different applications.

However, the very same availability of data has also given rise to the recent big data revolution in

the fields of machine learning and Artificial Intelligence (AI). Alas, the intersection between these

three fields – network science, machine learning, and AI – remains sparse.

Many real-world systems are characterized by complex network dynamics [88]. For instance,

information propagation among online users depends on their social network, the spread of epi-

demics can be modeled via how people interact, etc. Similarly, machine learning problems such

as predicting short-term timeseries of, say, a river flowrate, can be better represented as a network

of rivers, which can in turn improve our prediction accuracy. Hence, many systems often have

an inherent or a latent network component which can be exploited to achieve highly accurate ma-

chine learning or AI models. Such problems do not consider a network science-based approach.

However, we argue that since the behavior of these systems depends on latent interactions within

their subsystems, a network science-based approach is imperative for more accurately capturing

the system dynamics.

To this end, many machine learning problems traditionally have not even envisioned a network

science perspective. For instance, we show that if we consider a network-based approach, we

can predict cancer in patients from high-dimensional data with significantly higher accuracy than

approaches which do not consider a network. Moreover, although AI is getting increasingly dom-

inated by representation learning techniques such as deep neural networks, network science has

surprisingly been absent from the deep learning literature. Therefore, we also show that network
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science is effective at solving various deep learning problems. Hence, we exploit the major advan-

tages of network science for addressing important machine learning and representation learning

problems throughout this thesis, thereby demonstrating how network science can be used beyond

traditional “network” problems such as social or biological networks.

Next, we give a brief overview of network science, machine learning and representation learn-

ing, and introduce the problems addressed in this thesis.

1.1 Network Science

Network science studies complex systems in which various subsystems or actors interact with

each other. Key examples of such networks include social and biological networks, transportation

networks, world wide web, internet, etc. The core idea of network science is to represent cer-

tain complex phenomena as networks and then create models that can be used to understand and

predict the desired phenomena. A wide range of real-world phenomena have been modeled us-

ing networks, e.g., problems such as information diffusion over social networks, modeling disease

outbreaks, etc. Mathematically, the actors in the networks are represented as nodes or vertices V ,

while links or edges E represent the interactions among the various actors (e.g., people connected

in a social network).

Real-world networks are characterized by a number of important characteristics. For instance,

majority of users on a typical social network like Twitter are not very popular. However, most of

these users follow a small number of very popular users (e.g., sports figures, celebrities, politicians,

etc.). This results in most users connected to a handful of popular users. Hence, social networks

have a highly non-uniform degree distribution, where degree of a user refers to number of connec-

tions he/she has in the network. In turn, such connectivity patterns result in extremely complex

dynamics of, say, information or opinion propagation. To model such dynamics, a number of

concepts have been developed in network science such as scale-free networks [7], or community

structure [86]. Fig 1.1(a) shows scale-free networks which are characterized by many low-degree

nodes, and a few high-degree nodes. Similarly, often networks are organized into groups of tightly

connected nodes called community structure (see Fig. 1.1(b)). Finally, other real-world systems

can have fractal structure. Fig. 1.1(c) clearly illustrates the fractal structure of river networks.
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Figure 1.1: Network science (a) A scale-free network is characterized by presence of hubs (i.e., high-degree nodes).

(b) Real-world networks often contain community structure, i.e., groups of tightly connected nodes. (c) Many complex

systems such as River Networks exhibit fractal network structures.

Throughout this thesis, we argue that network characteristics such as communities can be ex-

ploited to solve many learning problems. Next, we discuss the problems in machine learning and

representation learning that can particularly benefit from network science.

1.2 Machine Learning and Representation Learning

Two major categories of machine learning are described below:

1. Supervised learning problems have a labeled dataset. For instance, given a dataset contain-

ing both images of certain objects, as well as their explicit labels, the problem of “classifying

the object in a given image” is an example of supervised learning.

2. Unsupervised learning problems have an unlabeled dataset. For instance, the problem of

“clustering a set of observations into various groups” (when the label is not available) is an

example of unsupervised learning.

There are several other machine learning problems such as reinforcement learning [17, 78] where

the idea is to reward a learning agent based on correct actions (e.g., a robot navigating through

space towards some target). However, in this thesis, we will mainly focus on supervised learning.

There can be many kinds of supervised machine learning problems and the most notable

are: (i) Regression problems aim to predict the value of a given target variable, given some fea-

3



TROUGHS

PEAKS  

 

 

 

 

 

 

          

      

     

     

                                                               

                            

           

         

          

       

       

Eliminate bad models

Search for good 
architectures

Initial population
Reduce the computation of 
pretrained models

a. Timeseries prediction problems b. Convolutional Neural Network (CNN)

c. Model compression of deep networks d. Neural Architecture Search (NAS)
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Networks (CNN) for image classification. (c) Model compression aims to reduce the computational requirements of

pretrained deep neural networks. (d) Neural Architecture Search (NAS) aims to automatically learn the architecture

of deep learning models.

tures, (ii) Classification problems use the input features to classify them into multiple categories,

(iii) Timeseries prediction problems specifically predict the value of the given variable at the next

time step or next few time steps (see Fig. 1.2(a)). Timeseries prediction problems can further utilize

additional features (on top of the given variable whose timeseries we are trying to predict).

Conventionally, designing a machine learning system first involves manually designing the

features for the problem at hand, a process called feature selection/engineering. This is followed by

model selection, where we select a linear or non-linear model (e.g., linear regression, decision trees,

artificial neural networks, etc. [17, 78]) which operates on the selected features. The performance

of the machine learning system depends on both the quality of the features, and the selected model.

As mentioned above, traditional machine learning relies on designing hand-tailored application-

specific features. However, in many other problems with high-dimensional, small-sample datasets

like cancer prediction, digit-recognition, computational sustainability, etc., extracting a set of use-

ful, low-dimensional features from the given dataset is a challenging task, and is often critical for
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achieving high accuracy. Moreover, for several “big data” problems such as identifying objects

in natural images, deep learning techniques such as Convolutional Neural Networks (CNN) have

achieved state-of-the-art results (see Fig. 1.2(b)) [41, 48, 58, 108]. Hence, this has resulted in the

era of representation learning where the objective is to learn features automatically from the data.

At present, representation learning techniques can be largely categorized into three classes:

(i) Conventional dimensionality reduction for small-sample datasets (since deep learning-based

techniques do not work well for small-sample problems) [46, 69], (ii) Deep Learning techniques

for big data problems in vision, speech and natural language processing [41, 48, 108], and (iii) Net-

work Representation Learning, where the idea is to learn representations for nodes in a network

directly from its topological structure [35, 96, 116]. Of note, many exciting research problems

in the field of deep learning have emerged recently. Notable problems include Model Compres-

sion for computationally expensive deep networks to deploy such models on hardware-constrained

edge devices (see Fig. 1.2(c)) [43, 51, 63], and Neural Architecture Search (NAS), where the

goal is to design learning models that can automatically create new deep learning models (see

Fig. 1.2(d)) [100, 141, 142].

Both model compression and NAS research have seen enormous amount of success recently.

For instance, model compression techniques such as pruning reduce the computational costs of the

deep network by removing redundant and useless weights without sacrificing accuracy [63, 132].

Other techniques such as quantization try to maintain accuracy while reducing the number of bits

used to represent weights/activations of the deep network [51]. Another class of techniques ex-

ploit a teacher-student learning paradigm called Knowledge Distillation, where we teach a signifi-

cantly smaller “student” network to mimic a large “teacher” deep network [4, 43]. Similarly, mod-

els designed by recent NAS techniques have outperformed state-of-the-art human-designed deep

networks for image classification and speech datasets [66, 97, 100, 141, 142]. NAS techniques

are based on reinforcement learning [141, 142], evolutionary algorithms [100, 128], or gradient-

based techniques [66]. While reinforcement learning-based techniques are computationally pro-

hibitive (sometimes taking up to thousands of GPU-days and hundreds of GPUs [141, 142]), recent

gradient-based techniques have drastically reduced the architecture search cost (e.g., to a few GPU

days or to even a few GPU hours [66]).
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As we shall see shortly, many machine learning and representation learning problems described

above can have an inherent or a latent network component. Hence, in this thesis, we address the

following problems from a network science perspective: (i) Traditional machine learning prob-

lems such as application-specific feature extraction for timeseries prediction, (ii) Dimensionality

reduction for small-sample problems, (iii) Model compression for big data image classification

problems, and (iv) Neural Architecture Space Exploration via Network Science. But first, we

must describe the existing research at the intersection of network science, machine learning, and

representation learning, and must answer how our proposed research differs from the prior art.

1.3 Network Science vis-à-vis Machine Learning and Repre-

sentation Learning

Most of the prior art has traditionally been on how machine learning or representation learning

can be used to solve network problems in, say, social or biological networks. For instance, as

illustrated in Fig. 1.3, Graphical Lasso [29] aims to infer network structure from data. Other

problems include learning and optimization over the social networks [62]. Moreover, the network

representation learning techniques [35] learn features for nodes in the network. These features are

then used for network classification problems such as classifying user interests in a social network.

Finally, other representation learning techniques such as deep neural networks do not exploit ideas

from network science.

As evident, all of the above directions have one aspect in common: They focus on how machine

learning, representation/deep learning, and big data (e.g., social network data) can solve network

problems (e.g., inferring network structure, automatically extracting the features for nodes in the

network, optimization over networks or network classification problems). These prior directions

are shown as green arrows in Fig. 1.3. In contrast, in this thesis, we ask the opposite question: How

can network science help with general problems considered in machine or deep learning such as

handwritten digit recognition, natural language processing (NLP), cancer prediction, sustainabil-

ity problems, or image classification? Can generic machine/deep learning models used for above

problems benefit from the fundamental principles of network science? If so, what new models
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learning (AI) problems (violet arrows).

can be proposed to best integrate information from networks into machine/deep learning models?

These questions remain unexplored and, hence, are a major focus of our work.

Given this significant interest in network science, machine learning and deep learning research,

in this thesis, we explore how exactly network science concepts can be exploited to create effective

solutions for various machine learning and deep learning problems. Specifically, since all systems

involve some form of network dynamics, we believe that exploiting network science can truly ame-

liorate some of the challenges faced by machine/deep learning problems today. For example, in

traditional machine learning problems, similarity between samples can be more accurately char-

acterized by network science and, thus, lead to better machine learning problems. On the other

hand, deep networks are essentially a network of filters or neurons. Hence, dynamics of informa-

tion propagation within deep networks can be modeled via network science. Starting from these
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overarching ideas, we describe the concrete research challenges addressed in this thesis below.

1.4 Research Challenges

We address four fundamental research challenges encompassing the following key questions:

1. Network Science for Traditional Machine Learning: Can network science be used to cre-

ate effective spatiotemporal timeseries prediction models? How can we use network science

to extract application-specific features for a given machine learning problem?

2. Representation Learning on Small-Sample Problems: How can we exploit network sci-

ence ideas to automatically learn features for general problems with small datasets (100-1500

samples)? Are there any small-sample problems in the deep learning space?

3. Network Science-Based Distributed Deep Learning Model Compression: For big data

problems such as image classification, how can we use network science to compress the

size and computation of complex deep networks in order to deploy them on a network of

resource-constrained IoT-devices?

4. Network Science for Neural Architecture Space Exploration: Finally, since deep net-

works are afterall networks of neurons or filters, what structural property of these networks

results in models with high accuracy? Can we use network science to identify architecture-

level characteristics that indicate which family of models (despite having different number

of layers and parameters) achieve comparable accuracy? Understanding such characteristics

can directly allow us to create compressed models with minimal loss of accuracy over the

large deep networks.

Answering the above questions led to the new research directions shown as violet arrows in

Fig. 1.3. Clearly, these directions run completely opposite to the existing research. We next de-

scribe each research challenge in detail.

1.4.1 Network Science for Traditional Machine Learning

We start with the traditional machine learning problems such as spatiotemporal timeseries predic-

tion and application-specific feature extraction. This scenario occurs for problems in which some
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kind of traffic or fluid is flowing through space, and we need to predict short-term timeseries at

each location. Typically, when a traffic (or fluid) flows through the space, its dynamics can be

described as a complex network and, hence, enable a network science-based prediction model.

However, most existing machine learning-based timeseries prediction models do not consider the

network dynamics. Here, we show that creating new learning models that take the underlying net-

work dynamics into account lead to better prediction compared to the models which do not account

for the networks.

To this end, we address two complex spatiotemporal timeseries prediction problems using net-

work science: (i) Predicting short-term timeseries at multiple locations when the underlying net-

work structure is known but rapidly changing (perhaps known from prior knowledge or available

data), and (ii) Predicting short-term timeseries at multiple locations when the underlying network

structure is unknown but fixed.

We model the first problem above as a Bayesian network whose structure is known but is dy-

namically and rapidly changing. Since the network structure is known, we propose a new model to

learn parameters on such dynamically changing networks and use them for the underlying predic-

tion tasks. To demonstrate a concrete example of a situation where this kind of learning problems

can arise, we provide a case study on a computational sustainability task, i.e., predicting the short-

term solar energy and quantifying the solar energy interdependence across large regions.

Next, for many other real-world problems, the predefined network structure governing the dy-

namics is not known for the problem at hand, and only some raw high-dimensional timeseries data

is available. Therefore, for such problems, we need to infer the network structure by exploiting the

correlations in the given high-dimensional raw data. This leads to the second problem above, where

we first infer the network structure from the raw data and then utilize this network structure for

application-specific feature extraction. Again, we demonstrate this problem by considering a con-

crete case study on another computational sustainability problem, i.e., use the high-dimensional

timeseries river flowrate data to first infer the river network, and then predict short-term river

flowrate at several locations in the given river-basin.

Both of the above problems are characterized by complex characteristics such as non-stationary

data, changing or unknown underlying network dynamics, etc. Of note, the problems considered in

this section are application-specific and, hence, different network-based machine learning models
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are required to address different problems. However, many real-world problems can also benefit

from general principles in network science. We discuss this important case below, where we use

network science for representation learning on many general problems with high-dimensional raw

data and small number of samples.

1.4.2 Representation Learning on Small-Sample Problems

A major goal in Artificial Intelligence (AI) is not to manually engineer application-specific fea-

tures but rather to enable machines to learn them automatically for any general problem. Conse-

quently, the domain of representation learning aims to automatically learn useful low-dimensional

features from the data. Towards this low-dimensional feature learning, many dimensionality re-

duction techniques have been proposed in literature. For instance, dimensionality reduction can be

performed via linear techniques such as Principal Component Analysis (PCA), or via non-linear

neighborhood graph-based techniques such as Isomap, Stochastic Neighbor Embedding (SNE),

t-SNE, among many others [1, 42, 69, 118]). Other techniques exploit deep neural networks such

as Autoencoders [44].

In the real-world, networks constructed from raw data are often characterized by complex

network characteristics (e.g., groups of tightly connected nodes known as the community struc-

ture [84]). Existing dimensionality reduction techniques, however, do not take such network

characteristics into account. Moreover, it has been theoretically established in [30, 52, 54, 99]

that to obtain good classification performance in high-dimensional spaces, the number of sam-

ples must also be very large (e.g., ∼ 105 samples as in big data problems addressed by deep

learning). Hence, for problems with relatively few samples (e.g., 100-1500 samples), extract-

ing useful low-dimensional features from the high-dimensional data is a very challenging prob-

lem [131]. Therefore, we propose FeatureNet [12], a new network science-based dimensionality

reduction framework targeting the small-sample, high-dimensional problems. We demonstrate that

our network-based approach outperforms traditional dimensionality reduction techniques on sev-

eral, diverse applications like handwritten digit recognition, biology, physical sciences, NLP, and

computational sustainability (sizes mostly between 100 and 1500 samples for each problem).

The small-sample problems have been addressed by conventional dimensionality reduction

techniques since the deep learning-based solutions are known to overfit due to lack of sufficient
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training data. Then, a natural question to ask is: Are there any small-sample problems in deep

learning space? The answer to this question is yes! As mentioned earlier, with the growth of deep

learning, model compression has emerged as a critical bottleneck for adoption of deep learning

at the resource-constrained edge devices. However, we still need access to the original (large)

training dataset for most model compression techniques. This data may not always be available

due to privacy or regulatory concerns (e.g., medical images, speech data, etc. can have significant

privacy concerns). Hence, this leads to a new kind of small-sample problem in the deep learning

space, where we need to compress a deep learning model without access to any real or original

data (since collecting a new dataset can be expensive or infeasible). We call this new class of

problems as Data-Independent Model Compression [16]. Towards this, we propose a new model

compression technique which reduces the size and computation of a given deep learning model

in absence of any real data, without compromising the accuracy of the compressed model. Such

data-independent model compression techniques can play a major role in accelerating the adoption

of AI on edge devices.

To summarize, in this section, we address representation learning for small-sample problems

for both traditional dimensionality reduction, as well as for scenarios in which deep learning prob-

lems suffer from lack of data. We further demonstrate how using network science can improve the

quality of features learned from small datasets. Beyond the small data problems, big data problems

such as image classification are addressed by deep learning models such as Convolutional Neural

Networks (CNN). Therefore, we next address how network science can play an important role

in model compression of CNNs. In the following sections, we assume that the big data used for

training the large deep network (which we want to compress) is available for model compression.

1.4.3 Distributed Deep Learning Model Compression via Network Science

For big data problems like image classification, deep learning models such as CNNs have achieved

state-of-the-art results. Such models, however, not only require enormous training datasets, but

also often utilize millions of parameters to work well. Due to this immense computational com-

plexity, there is a fundamental need for highly efficient deep learning model architectures which

can enable faster and computationally inexpensive training, as well as inference (i.e., determin-

ing the class of an object in a new image after the training phase). This is particularly important
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for mobile applications where the computational resources and memory are limited for image,

speech, and natural language applications. As mentioned earlier, many techniques such as prun-

ing [39, 132], quantization [51, 60], and Knowledge Distillation (KD) [4, 43, 135] have been

proposed for deep learning model compression.

The prior approaches above cannot be used for extremely memory-constrained IoT scenarios

(e.g., microcontrollers with 500KB memory). Still, many smart home/cities applications have sev-

eral such well-connected, but resource-constrained sensors. To achieve higher accuracy, pruning-

or KD-based compressed models often grow in size due to which such models cannot fit on an

individual IoT-device and, hence, must be distributed across multiple devices; this distribution of

computation on multiple devices generates significant overhead in communication.

To alleviate this, we propose Network-of-Neural Networks (NoNN) [15], a new paradigm for

compressing a given pretrained deep network into multiple disjoint modules which require minimal

inter-device communication. Each module of NoNN satisfies strict memory- and computation-

constraints (as measured by number of parameters and FLOPS per module). For instance, if a given

module has 500K parameters, it can fit within a memory-budget of 500KB when quantized to 8-

bits. Since our proposed NoNN is based on KD-like teacher-student learning, the pretrained deep

network which we want to compress becomes our teacher, and each of the compressed modules

serves as a disjoint student. Each of these student modules can then be deployed on a separate

resource-constrained device, such that there is a minimal communication among devices. This

results in a new kind of model compression, which we call as a communication-aware model

compression problem. Of note, to the best of our knowledge, we are the first to address this

problem.

As NoNN consists of a network of neural networks, this problem can naturally be viewed from

a network science angle. Recall that KD aims to transfer knowledge from a teacher model to a

student model. Since our objective is to distribute the knowledge from a single teacher network

to multiple student models, we exploit network science for this knowledge partitioning problem.

Specifically, we mine latent patterns of activation at teacher’s final convolution layer to create a

filter activation network. Then, we use network science techniques such as community detec-

tion [84] to partition this network into disjoint subsets, each of which is used to distill part of

teacher’s knowledge to a distinct student module. Finally, all students join together in the network
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to make the final prediction. We demonstrate that our network science-based framework achieves

higher accuracy than existing baselines for a given parameter/FLOP budget for many well-known

image classification benchmarks. We further demonstrate the savings in latency and energy by

deploying our models on real edge devices.

To summarize, we show how network science can play a fundamental role in the modeling of

knowledge partitioning problem which results in effective model compression. We also deploy

our models on real edge devices to demonstrate that there is good agreement between theory (i.e.,

theoretical reduction in FLOPS) vs. practice (i.e., energy reduction achieved on real devices).

Next, since deep networks are ultimately a network of neurons and channels, we go even deeper

into deep learning and see how network science can play an effective role in architecture design

space exploration.

1.4.4 Network Science for Neural Architecture Space Exploration

So far, efficient deep networks have been designed using model compression techniques such as

(i) Pruning [63, 132], (ii) Quantization [51, 60], (iii) Knowledge Distillation (KD) [15, 43, 135],

or via (iv) Manually designed efficient networks and convolutions such as depth-wise separable

convolutions [47, 103, 137], and (v) Efficient models resulting from automatic Neural Architecture

Search (NAS) methods [66, 97, 100, 128, 141, 142]. All of the above directions do not answer

a fundamental research question: Are there any characteristics of a CNN architecture that can

indicate which family of models (with different number of parameters and layers) can achieve

similar accuracy? Indeed, such characteristics can enable a new form of model compression in

which we can directly design a novel architecture to reduce the number of parameters and layers

without losing significant accuracy.

To address the above question, we first model deep CNNs as a network of channels and then

propose two new network science-based metrics: (i) NN-Density quantifies how densely the chan-

nels within a deep network are connected, and (ii) NN-Mass captures the representational capacity

of a given model. We merge, for the first time, the well-known Probably-Approximately-Correct

(PAC)-Bayes theory [74, 75] for model generalization with theory of small-world networks [79, 87]

in network science. We then prove that (i) The generalization error of models decreases as the NN-

Mass increases, and (ii) Irrespective of number of parameters and layers, models with similar
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NN-Mass achieve similar test accuracy. We then perform a large number of experiments on real

image classification tasks such as CIFAR-10 and CIFAR-100 to empirically demonstrate the above

relationship between NN-Mass and generalization of CNN architectures. Specifically, we found

that models with similar NN-Mass indeed achieve comparable accuracy even if their number of

parameters and depth are vastly different.

Finally, using the above theoretical/empirical results, NN-Mass can be exploited for model

compression. Specifically, we directly design new models with significantly less parameters and

layers but with mass comparable to (or higher than) that of a large CNN. We show that our newly

designed models achieve very high accuracy (e.g., up to 97% on CIFAR-10 dataset), while us-

ing 3× fewer parameters than the large models. Hence, network science helps uncover latent

architecture-level characteristics that enable us to build efficient deep networks.

1.5 Thesis Contributions

Overall, we make the following core contributions in this thesis:

1. Network Science for Traditional Machine Learning. We propose a new probabilistic

learning framework called Network of Dynamic Bayesian Networks (NDBN) for problems

with known but dynamically changing networks. This framework is proposed for spatiotem-

poral timeseries prediction. As a case study, we use our proposed model to handle a compu-

tational sustainability problem of solar energy prediction over large areas and also conduct

knowledge discovery in this domain. To address problems with high-dimensional data but

now unknown network structure, we propose a new correlations-based network inference

method and an application-specific feature extraction technique called K-Hop Learning. As

another case study, we show the effectiveness of our network-based feature extraction ap-

proach on a river flow prediction task.

2. Representation Learning on Small-Sample Problems. We further exploit complex net-

work characteristics to address automatic feature learning, i.e. representation learning, and

dimensionality reduction on many diverse small-sample problems (since deep learning typ-

ically overfits for this problem space). Specifically, we propose a new community-based

dimensionality reduction framework called FeatureNet and show that our method outper-
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forms ten state-of-the-art methods for the small-sample problems. Moreover, we show that

lack of real data can pose significant challenges for deep network model compression. To-

wards this, we propose a new technique called Dream Distillation to perform deep learning

model compression in limited-data setting.

3. Model compression for Memory- and Communication-Aware Distributed Deep Learn-

ing Inference. Next, since a simple correlations network-based representation learning ap-

proach alone cannot suffice for problems like image classification, we focus on Convolu-

tional Neural Networks (CNN). When a computationally-expensive CNN (or even a com-

pressed model) does not fit within the memory-budget of a single resource-constrained IoT-

device, it must be distributed across multiple such devices, thus, generating significant com-

munication among devices. Therefore, we propose a new model compression framework

called the Network-of-Neural Networks (NoNN) which first exploits network science to par-

tition teacher’s knowledge into disjoint groups and then trains individual students for each

group. This leads to a set of student modules which satisfy the strict memory-constraints

of individual devices. We then deploy our proposed framework on real hardware such as

Raspberry Pi’s to demonstrate that NoNN results in up to 12× reduction in latency, and up

to 14× reduction in energy per device.

4. Network Science-Based Neural Architecture Space Exploration. Finally, we model deep

networks from a network science perspective to identify architecture-level characteristics

that enable models with different number of parameters and layers to achieve comparable

accuracy. To this end, we propose new metrics called NN-Mass and NN-Density to study

the architecture design space of deep networks. We merge, for the first time, the PAC-Bayes

theory with the theory of small-world networks to demonstrate provable relationship between

NN-Mass and generalization of CNN architectures. Specifically, we show that (i) Higher

the NN-Mass, the lower the generalization error, and (ii) Models with similar NN-Mass

achieve similar generalization error. We present extensive empirical evidence towards the

above theoretical insights. We further demonstrate that NN-Mass can be used to directly

design efficient architectures which achieve comparable accuracy to large models (∼ 97%

on CIFAR-10) with up to 3× reduction in total parameters. This ultimately reveals a new
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form of model compression which reduces the model size directly from the architecture

perspective.

Despite the diversity of problems considered, they all revolve around the central theme of how

learning can benefit from network science. Next, we describe the organization of this thesis.

1.6 Organization of Thesis

This thesis is organized in seven chapters. Chapter 2 briefly describes background on machine

learning, representation learning, and network science. Next, in Chapter 3, we demonstrate how

network science can be used for traditional machine learning problems such as timeseries predic-

tion. Towards this, we address a complex problem of parameter learning over a network whose

structure is known but is rapidly changing. For problems with high-dimensional data but no known

network structure, we propose new network inference models and also formulate a network-based,

application-specific feature extraction method to improve the performance of machine learning

models.

Having demonstrated the importance of our proposed network science-based feature extraction

for specific problems, we next move to automatic feature learning for any general problem (i.e.,

representation learning) in Chapter 4. Here, we propose a new network communities-based di-

mensionality reduction framework and show its effectiveness for several small-sample datasets for

which deep learning-based models typically overfit. In terms of small-sample problems for deep

learning, we further demonstrate how to perform deep learning model compression in absence of

real data.

Next, we address significantly more complex representation learning problems such as image

classification, where correlations-based approaches are not sufficient. For such problems, com-

putationally expensive deep learning models such as CNNs are used. In Chapter 5, we propose

NoNN, a network science-based model compression framework for distributed deep learning in-

ference on a network of IoT-devices. Chapter 5 presents the algorithmic details of NoNN as well

as its complete validation on real resource-constrained hardware.

Following the distributed model compression, we model deep neural networks from a network

science perspective to identify what architectural characteristics lead to highly accurate models.
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Hence, in Chapter 6, we first propose new architectural characteristics and then theoretically prove

their relationship with generalization of deep networks. We also exploit the newly proposes metrics

to explore the architecture space of CNNs. We ultimately use the theoretical and empirical insights

to directly design compressed models. Finally, we conclude the thesis in Chapter 7 with remarks

on future work.
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Chapter 2

Background

This chapter reviews the background on various topics in machine learning, representation learning

and network science. To this end, we first discuss topics from machine learning such as regression,

timeseries prediction, and classification problems. This is followed by background in representa-

tion learning techniques such as dimensionality reduction and deep convolutional neural networks

(CNNs). Note that, the machine learning part focuses on traditional application-specific feature en-

gineering, while the representation learning aims to automatically learn features from the available

data. Following the discussion on CNNs, we then describe the background on model compression

of deep networks and Neural Architecture Search (NAS). Finally, we will explain relevant topics

from network science.

2.1 Machine Learning

As discussed in Chapter 1, there are mainly two categories of traditional machine learning (i)

Supervised Learning, and (ii) Unsupervised Learning. Supervised learning consists of problems

where two sets of variables are given: (a) Target (or response) variables are the ones that we

are trying to predict for the problem-at-hand, and (b) Explanatory variables (or features) are the

ones that influence the target. An example of supervised learning problem is to predict the stock

price (i.e., our target variable) using a set of variables such as quarterly revenues, etc., as our

features. The idea here is to learn the function between the features and the target, and then use

this learned function to predict the target variable for new test data points. In contrast, unsupervised

learning does not require target labels to be the part of the given dataset. A well-known example of

unsupervised learning is the clustering problem, where we are given only the features for several
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samples, and the task is to find clusters of samples with similar features. This can be very useful

for understanding or analyzing the given dataset.

In this thesis, we will mostly focus on supervised learning problems. Specifically, supervised

learning can be seen as a function approximation problem: Let y be the target variable, and X ∈

Rn×m denote the given data matrix with n samples andm features. Then, the problem is to find the

function f such that ŷ = f(X) predicts the value of the target y. The precise form of the function

f depends on our hypothesis. For instance, y can be a linear function ofX , or it can be a non-linear

function of X . For linear dependence between y and X , our function to be learned f must belong

to the linear hypothesis; similar discussion holds for non-linear hypotheses.

Supervised learning can either be a regression problem or a classification problem. Regression

also includes timeseries prediction problems in which at least one feature is the previous value of

the target variable itself. Fig. 2.1 illustrates the regression, timeseries, and classification problems.

With the help of well-known machine learning techniques in traditional supervised learning, we

discuss these important categories below.

2.1.1 Regression and Timeseries Prediction Problems

Regression problems have a continuous target variable, whereas its features can be either contin-

uous or categorical. That is, the function f : Rn → R must map the features to continuous target

values. As mentioned in Chapter 1, once the features are manually engineered for the problem-

at-hand (i.e., feature selection or engineering), the next step in any traditional supervised learning

is to select an appropriate model (i.e., model selection). Towards this, many linear and non-linear

hypotheses for the function f can be used (again, this depends on the specific problem). Most com-

mon regression models include linear regression (ordinary least squares), lasso regression (which is

linear regression with a regularizer term), k-nearest neighbor regression, support vector regression,

and random forests [17, 78]. To understand how a typical machine learning problem is formulated,

we next discuss the linear regression method. For other machine learning regression methods,

please refer to [17, 78].

20



Figure 2.1: Supervised Learning problems: (a) Regression, (b) Timeseries Prediction, and (c) Classification. All

supervised learning problems have a labeled dataset.

Linear Regression

To illustrate, a linear regression problem with one dimensional feature space is shown in Fig. 2.1(a).

However, in general, we are given a dataset {X, y} with n training samples, and m features, and a

single target variable y for each of the training sample. Additionally, features for ntest samples (i.e.,

Xtest) are given (but not their true label). Then, in any supervised learning problem, the objective is

to learn the function f on the training set, and use this function to predict ŷtest = f(Xtest), thereby

obtaining predictions for unlabeled test samples.

For linear regression, the function f takes the following form: For a sample x(i) ∈ X , f(x(i)) =

w0 + w1 · x(i)
1 + w2 · x(i)

2 + . . . ,+wn · x(i)
n . In matrix form, this can be expressed as f(X) = Xw.

Since f must fit the training set well, the linear regression problem can be expressed as follows:

min
w
||y −Xw||22 (2.1)

Intuitively, problem (2.1) minimizes the error between y and ŷ = Xw. The loss function above

can be minimized via stochastic gradient descent. Hence, the above procedure can be summarized

as follows (i) manually engineer the features, (ii) come up with a hypothesis (e.g., linear or non-

linear models) for how the target variable depends on the features, and (iii) propose an appropriate

loss function to minimize the error between the observed training data and the model’s prediction.

This general flow holds for many traditional machine learning problems.
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Bias-Variance Tradeoff for Supervised Learning Problems

The complexity of a model’s hypothesis should be decided based on the bias-variance tradeoff :

• Bias refers to the amount of error that occurs due to incorrect assumptions in our hypothe-

sis. For instance, if the true underlying function (between the target and the features) to be

learned is quadratic but our model’s hypothesis is linear, then clearly, our hypothesis will

miss the complete relationship between features and the target. This is called underfitting.

• Variance quantifies the error that occurs when our model fits even the smallest fluctuations

in the training data; that is, it learns the random noise in the training data instead of the true

function. For instance, if the true function is quadratic, a highly non-linear polynomial-based

regression model can fit each and every training sample (even the random fluctuations); this

can lead to lower generalization accuracy and is called overfitting.

Hence, a tradeoff between Bias and Variance must be achieved for effective learning. For a more

concrete discussion on Bias-Variance, please refer to [17, 78]. Next, we consider the case of

timeseries prediction problems in which there are no additional features other than the previous

observed values of the target variable itself.

Timeseries Prediction

Training and prediction for timeseries problems is shown in Fig. 2.1(b). Specifically, at least one

of the features for these problems is the timeseries of the target variable. When the timeseries of

the target variable is the only feature available, the model is called Autoregression (AR). That is,

the hypothesis for AR models is given as:

yt =

p∑
i=1

wiyt−i + εt (2.2)

where, εt is Gaussian white noise ((εt ∼ Niid(0, σ2)), and p is the order of autoregressive model.

Typically, the parameters of the AR are found by ordinary least squares method above.

Finally, in many cases, some exogenous features are also available in addition to the time-

series. In such cases, AR model can be extended to Autoregression-with-exogenous inputs (ARX)

model [24]. Again, the parameters for ARX model are learned similar to those in linear regres-
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sion. This completes our discussion of regression problems. Next, we describe the classification

problems in detail.

2.1.2 Classification Problems

Classification problems have a discrete target variable and, similar to regression problems, can have

continuous or categorical features. For simplicity, we explain below the most commonly used

model, namely, the logistic regression for binary classification. Logistic regression is useful for

classifying linearly-separable classes since the decision boundary generated by logistic regression

is linear.

Note that, since binary classification problems have y ∈ {0, 1}, we can no longer use the same

hypothesis that we used for linear regression (i.e., ŷ = Xw). Therefore, in logistic regression, the

hypothesis is given by the sigmoid function, ŷ = σw(x) = 1

1+e−wT x
(i) , where x is a feature vector

for the sample i, and w refers to the model weights.

From a probabilistic point-of-view, since ŷ ∈ [0, 1], the following equations hold:

P (y = 1|x;w) = σw(x)

P (y = 0|x;w) = 1− σw(x)
(2.3)

The above two probabilities can be directly combined as:

P (y|x;w) = (σw(x))y(1− σw(x))1−y (2.4)

To compute the parameters that best explain the observed data (X, y = {x(i), y(i)|i = 1, 2, . . . , n}),

we must maximize the log-likelihood (i.e., find the parameters that make the observed data most

likely):

l(w) = log(P (y|X;w))

=
n∏
i=1

log(P (y(i)|x(i);w))

=
n∏
i=1

log((σw(x(i)))y
(i)

(1− σw(x(i)))1−y(i))

=
n∑
i=1

y(i)log(σw(x(i))) + (1− y(i))log(1− σw(x(i)))

(2.5)
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Maximizing the log-likelihood given in Eq. (2.5) via Stochastic Gradient Ascent generates the

linear decision boundary for classification via logistic regression. We use logistic regression for

binary or multiclass classification throughout this thesis. Multiclass classification can be con-

ducted by using a one-vs.-rest logistic regression. For other classification methods (e.g., non-linear

classifiers such as Support Vector Machines with kernel trick), please refer to [17, 78].

So far, we have discussed the traditional machine learning, i.e., Given the data for problem-at-

hand, we first manually engineer the features, then select a hypothesis (e.g., what model will best

describe the relationship between the features and the target variable) and, finally, based on the

above, we select an appropriate loss function to optimize. However, one of the main goals of AI is

to allow machines to learn features automatically for the given problem. This leads us to the field

of representation learning, largely dominated by deep neural networks, as described next.

2.2 Representation Learning

Representation learning is a sub-field in AI that refers to a broad set of models which engineer

features automatically from the given data irrespective of the problem-at-hand. The hand-tailored

feature engineering in traditional machine learning can indeed be time or labor intensive. Hence,

via representation learning, we can learn the useful features automatically from the data without the

manual, application-specific hand-tailoring. Towards this, we discuss two kinds of representation

learning techniques: (i) Dimensionality Reduction which can learn features from small-sample and

high-dimensional datasets, and (ii) Deep Neural Networks which are some of the most important

representation learning methods and have achieved state-of-the-art results for many vision, speech

and natural language processing tasks.

2.2.1 Dimensionality Reduction

In this section, we address the traditional dimensionality reduction problems that learn features

from high-dimensional data and are particularly important for small-sample datasets in which deep

learning-based methods lead to overfitting. We will discuss the two categories of dimensionality

reduction: (i) Linear techniques such as Principal Component Analysis (PCA), and (ii) Non-linear

nearest-neighbor graph-based techniques such as Isomap (see Fig. 2.2 for both methods).
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Figure 2.2: Dimensionality Reduction problems: (a) Linear Techniques – Principal Component Analysis (PCA): Find

orthogonal principal components of the data and project the current dataset onto the subset of principal components

(PCs). PCA reveals axes that do not contribute significantly to the overall variance of the data. (b) Non-linear tech-

niques – Isomap: Euclidean distance in high-dimensional space may not accurately capture the true geodesic distance

on the underlying manifold. (c) Isomap exploits the shortest distance on the k-nearest-neighbor graph as an approxi-

mation for true geodesic-distance to create low-dimensional representations. Illustrations (b,c) are adapted from [118].

Linear methods

Linear dimensionality reduction methods mainly consist of techniques such as Principal Com-

ponent Analysis (PCA), Canonical Correlations Analysis (CCA), Linear Discriminant Analysis

(LDA), Multi-Dimensional Scaling (MDS), etc. [23]. We next explain the linear models with the

help of PCA.

In many problems, the features in the given dataset can be heavily correlated. Such correlated

features are not useful for learning and exacerbate the learning problem due to the curse of di-

mensionality (i.e., the more the dimensions, the bigger is the feature-space and, hence, we require

exponentially higher number of samples to obtain higher classification accuracy) [30, 54, 99, 106].

Since these features do not contribute to the machine learning model, we must remove them be-

fore training a classification or a regression model. To this end, as illustrated in Fig. 2.2(a), PCA

automatically finds a set of orthogonal axes along which the given data can be projected to obtain

lower-dimensional embedding.

To understand the importance of PCA, consider the following example: Fig. 2.2(a) shows an

example dataset where, say, the weight for a sample of population is measured using two separate
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devices: Device 1 measures the weight in kilograms (kg), whereas Device 2 measures the weight

in pounds (lbs). Since the devices can suffer from noise, as seen in Fig. 2.2(a), there can be small

fluctuations between the measurement of two devices. As evident, the first principal component

(PC) determined by PCA accounts for most of the variation in the dataset, whereas the second PC

mostly accounts for noise (because the weights for each person must be a single true value on the

line y = x). Hence, PCA can be used to remove the additional noise from the dataset which can

otherwise confuse the learning algorithm. For detailed mathematical formulation of PCA, please

refer to [46].

Non-linear graph-based methods

The underlying data may not always lie on a linear manifold (e.g., see Fig. 2.2(b)). Therefore,

for such problems, we need non-linear dimensionality reduction techniques that can take into ac-

count the (unknown) shape of the manifold while learning the low-dimensional representation. To

account for this non-linear manifold, many techniques such as Stochastic Neighbor Embedding

(SNE) [42], t-Distributed SNE (tSNE) [69], Isomap [118], etc., follow a nearest neighbor graph-

based approach. Below we explain this process with the help of Isomap.

The crux of dimensionality reduction is that if two points are close to each other in high-

dimensional space, they must also be close together in the low-dimensional space. However, as

shown in Fig. 2.2(b), euclidean distances in high-dimensional spaces are often not able to cap-

ture the true similarity between samples due to the non-linear manifold. Therefore, in Isomap,

the true geodesic distance is approximated by the shortest path on a k-nearest neighbor graph.

Clearly, as evident from Fig. 2.2(c), the network distance much better represents the true geodesic

distance than the euclidean distance. Hence, the network distances are used to derive the final

low-dimensional representations.

This ends our discussion of traditional dimensionality reduction which is particularly important

for small-sample, high-dimensional datasets. For a thorough review of dimensionality reduction

techniques, please refer to [70]. Next, we describe deep neural network-based representation learn-

ing including background on some of the recent problems in deep learning.

26



2.2.2 Deep Learning

To explain the key concepts in deep learning, we first discuss the building blocks of neural net-

works, namely, the multilayer perceptrons (MLP) and how to optimize them. Then, we move

onto more complex Convolutional Neural Networks (CNNs) which have achieved state-of-the-

art results in computer vision problems such as image classification, object detection, etc. Since

the main focus of this thesis is also on deep learning for image classification problems, we later

describe some of the latest challenges in deep learning, e.g., model compression and neural archi-

tecture search (NAS) for vision tasks. Model compression and NAS for other applications such as

speech recognition are out of scope of our work.

Multilayer Perceptron (MLP)

MLPs are the most fundamental deep learning models. As shown in Fig. 2.3(a), MLP consists

of multiple “neurons” hierarchically organized into multiple layers. The idea behind MLPs is to

somewhat mimic how neurons in the brain are organized layer-by-layer which learn hierarchical

features.

The output of each hidden layer in MLP is a combination of two operations:

1. A linear model that operates on the output of previous layer. For instance, the output of the

first hidden layer in Fig. 2.3(a) is given by:

hlinear = W T
h X + bh

where, Wh is the weight matrix of hidden layer h, and bh is the bias term.

2. A non-linear activation function σ that is applied on hlinear. Therefore, the output of the

hidden layer is obtained as:

h = σ(W T
h X + bh) (2.6)

Popular activation functions include sigmoid function (1/(1 + e−x)) and Rectified Linear

Unit (ReLU): ReLU(x) = max(0, x).

The output of the next hidden layer can be computed in a similar fashion. We repeat this process

until we reach the output of the network. Finally, a softmax function can be used if we are perform-
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Figure 2.3: Deep Learning techniques. (a) Multilayer Perceptron (MLP): A neural network with two hidden layers

At each hidden layer, the previous layer’s output is weighted and is passed through a non-linear activation function.

(b) Single neuron with sigmoid function as non-linear activation.

ing multiclass classification to convert unnormalized output of MLP (called logits) into prediction

probabilities: softmax(xi) = exi∑
j e
xj .

We have described above the key elements in MLP and the process to go from initial input

to output; this process is called forward pass. However, to train the neural network, we need to

propagate the gradients through the network for stochastic gradient descent. This process, called

backward pass, is described next.

Training Deep Networks via Backpropagation Algorithm (Backprop)

While training deep networks, Backprop algorthm exploits the chain rule for deriving efficient

gradient updates for neural network parameters. Note that, the basic idea behind Backprop (i.e.,
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Figure 2.4: Convolutional Neural Networks (CNN): After an image passes through several convolutional layers, an

activation map is obtained at the final layer. This activation map is averaged (average-pool layer) and passed through

one or more fully-connected layers to generate logits (which are essentially unnormalized probabilities). The final

prediction probability is obtained by passing the logits through the softmax layer.

the chain rule) holds not only for MLPs but also holds for CNNs and other kinds of deep networks.

We explain Backprop with the help of an example given below.

Consider a single unit with sigmoid activation as shown in Fig. 2.3(b). Now let yd, hd, and xdi

be the target output, output of the neural network, and the i-th feature for training example d ∈ D

(D is the entire training set), respectively. Also, suppose that wi’s are the model weights. Then,

the error E is given as follows:

E =
1

2

∑
d∈D

(yd − hd)2 (2.7)

To compute the gradients to minimize E, we must derive the partial derivatives of E w.r.t. the

parameters of the neural network:

∂E

∂wi
=

∂

∂wi

1

2

∑
d∈D

(yd − hd)2

= −
∑
d∈D

(yd − hd)
∂hd
∂wi

= −
∑
d∈D

(yd − hd)
∂hd

∂hlinear,d

∂hlinear,d
∂wi

(2.8)

However, since hd is a sigmoid function of hlinear,d,
∂σ(x)
∂x

= σ(x)(1− σ(x)). Therefore,

∂E

∂wi
= −

∑
d∈D

(yd − hd) · hd · (1− hd) · xdi (2.9)

Note how the chain rule is used in Eq. (2.8) to derive gradients efficiently. This is especially

critical for deeper networks. This process is called Backprop since the error is propagated back-
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wards through the network. Backprop is an important tool for optimizing the modern deep net-

works, and is used in state-of-the-art deep learning models.

This completes the fundamental neural network concepts. Next, we briefly discuss Convolu-

tional Neural Networks which have established state-of-the-art results in complex computer vision

problems.

Convolutional Neural Networks (CNN)

Many problems such as image classification, the data has a certain structure which can be exploited

for better representation learning. This is why, CNNs have emerged for computer vision problem

which aim to exploit the 3-D structure of images (e.g., height, width, and RGB channels). Conse-

quently, layers in a CNN are also arranged in a 3-D pattern shown in Fig. 2.4, where the neurons

are organized into filters. Each filter has same number of channels as the layer’s input and focuses

on a certain region of the image called the receptive field. CNNs are very parameter-efficient since

the receptive fields of filters are typically small (say, 3×3 or 5×5). To obtain the output of a given

filter i, each channel of this filter traverses the entire corresponding input channel, and results from

all input channels are added together to get the output channel i (corresponding to filter i).

Hence, each layer in a CNN consists of several 3-D filters and the number of such filters

determines the number of output channels of the layer. The output of each filter is also called a

feature activation map. Typically, the number of channels per layer are increased gradually, and

to reduce the computation, the sizes of feature activation maps are reduced (using bigger strides

in convolutions or things like max-pooling, i.e., taking the maximum in a certain neighborhood).

Finally, as shown in Fig. 2.4, a CNN consists of many such layers, followed by an average-pool

layer, and a fully-connected layer. The main idea behind multiple layers of CNN is that initial

layers capture some basic building block features (e.g., edges, angles, etc.), and later layers detect

more fine-grained features (e.g., shapes, patterns, etc.). An average-pool layer simply takes the

average of the feature maps from the final convolutional layer, and the fully-connected layer is

simply a linear function of the average-pooled outputs. The results of fully-connected layer are

called logits which are passed through a softmax layer to obtain the prediction probabilities of the

network.

The above is a brief description of the CNNs. More details can be found in [34]. Next, we
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move on to recent deep learning problems such as Model Compression and Neural Architecture

Search (NAS).

2.3 Model Compression in Deep Neural Networks

Power- and memory-constrained hardware of IoT-devices continues to be the biggest challenge for

rapid adoption of AI at the edge. Towards this, the field of model compression has received a lot

of attention to make deep learning models more suitable for edge devices [43, 60, 132]. Besides

model compression, another venue of active research is hardware accelerators and codesign of

models and hardware architectures for efficient deep learning inference. However, we mainly

focus on model compression in this thesis.

Model compression refers to a class of techniques that reduce the size (i.e., number of param-

eters) and computations (i.e., Floating Point Operations, FLOPS) of deep networks without losing

accuracy. Most of the prior art in model compression literature focuses only on the computational

aspects such as power, latency, memory, and energy consumption. Specifically, as summarized in

Fig. 2.5, there are three main directions for model compression:

• Pruning: In this kind of model compression technique, the redundant or useless weights or

even channels are completely removed [132] (see Fig. 2.5(a)). Moreover, pruning does not

reduce the number of layers in the original model.

• Quantization: Conventionally, the deep networks are trained with 32-bit floating point

weights and activations. Quantization techniques reduce the number of bits used for rep-

resenting weights and activations, thereby reducing the memory footprint of models (see

Fig. 2.5(b)) [60].

• Knowledge Distillation (KD): KD trains a significantly smaller student network to mimic

a large teacher model (which we want to compress). KD allows us to directly reduce the

number of layers compared to the teacher model [43] (see Fig. 2.5(c)). Of note, KD has also

been shown to work with unlabeled datasets [4].

Since we focus heavily on KD in this thesis, we next discuss it in more detail.
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Figure 2.5: Key model compression techniques include (a) Pruning [132], (b) Quantization [60], and (c) Knowledge

Distillation (KD) based teacher-student concepts [43].

Knowledge Distillation KD, as shown in Fig. 2.5(c), consists of two deep networks: (i) Teacher

is the large deep network which we want to compress, and (ii) Student is a significantly smaller

neural network which is trained to mimic the output of the teacher network. To mimic the teacher,

the simplest way is to directly train a student model on teacher’s logits (see Fig. 2.5(c)) – the

unnormalized outputs of the teacher model before the softmax – instead of training on true labels

from the dataset [4]. The basic idea here is that while training the student model, using logits

instead of direct classification probabilities can transfer more information about the teacher to the

student. Hinton et al. [43] argued that we must not only train the student model on the correct

predictions made by the teacher, but must also quantify how wrong the teacher was about the

incorrect classes. Hence, Hinton et al. introduced KD [43] which uses both the hard-label loss

(based on true labels from the dataset), as well as the soft-label loss (based on logits) to train a

significantly smaller student model.

Mathematically, let lT and lS be the logits of teacher and student respectively, and τ is a tem-

perature parameter (see [43]), y be the true labels, and P τ
T and P τ

S respectively denote the softmax

over relaxed logits lT/τ and lS/τ . Then, the KD loss (Lkd) is given by:

Lkd(θS) = (1− α)H(y, PS) + αH(P τ
T , P

τ
S ) (2.10)

where, H is the standard cross-entropy loss, θS denotes the parameters of the student network, and

α controls the weight of hard-label loss vs. soft-label loss. The temperature parameter in the second

term of Eq. (5.1) improves knowledge transfer from the teacher to the student. Other variants

of KD like Attention Transfer-based KD (ATKD) further use intermediate outputs of teacher’s
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convolution layers while training the student [135].

Model compression can indeed have major implication for deploying deep learning models at

the edge. Other model compression techniques propose new types of efficient convolutions such

as depth-wise separable convolutions [47, 103, 137], etc. Next, we describe the background on

Neural Architecture Search, one of the newest problems in deep learning which aims to learn the

architecture of the deep learning models and not just the model-weights.

2.4 Neural Architecture Search (NAS)

Designing highly-accurate deep networks has been largely driven by either trial-and-error [41,

47, 50, 58, 108], or via recently proposed NAS algorithms [66, 97, 100, 128, 141, 142]. Indeed,

the manually-designed deep networks led to major improvements in architecture design practices

which resulted in a carefully selected search space for NAS research. There are essentially three

types of NAS: (i) Reinforcement learning with RNN controllers [97, 115, 141, 142], (ii) Evolution-

based NAS [100, 128], and (iii) Gradient-based methods [20, 66, 111].

Fig. 2.6 summarizes the key NAS techniques. The reinforcement learning-based methods rely

on a controller to sample architectures. The validation accuracy of the trained architectures is used

as a reward function for the reinforcement learning-based controller (see Fig. 2.6(a)). Next, the

evolution-based NAS techniques randomly select initial seed architectures and randomly train a

subset of such models. Then, the worst models (in terms of validation accuracy) are eliminated

and the remaining models become parents. The parents are then copied and mutated to become

child networks. This mutation process is repeated until high-accuracy models are discovered (see

Fig. 2.6(b)).

Both reinforcement learning- and evolution-based NAS techniques require a huge amount of

computational power (e.g., 800 GPUs were used in [141], and 500 GPUs were used in [142], 250

workers were used in [100]). Hence, a new gradient-based NAS approach has emerged recently,

which is significantly more computationally-efficient than reinforcement learning or evolution-

based NAS. As shown in Fig. 2.6(c), Differentiable Architecture Search (DARTS) [66] relaxes the

continuous search space into a set of decisions that need to be made within each cell. To learn the

probability distribution over architectures, DARTS first creates a super-network which trains both
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Figure 2.6: Major Neural Architecture Search (NAS) techniques (a) Reinforcement learning-based methods [97, 115,

141, 142]: The RNN-based controller samples architectures which are then trained. The validation accuracy of the

trained model is used as a reward R for the controller so that models expected to obtain higher validation accuracy

are more likely to be sampled. (b) Evolution-based NAS [100, 128]: Starting from an initial population, bad models

are eliminated and good models are mutated and trained further (similar to an evolutionary process). Eventually, a

highly accurate architecture gets discovered. (c) Gradient-based NAS [20, 66, 111]: Each edge is an operation (e.g.,

separable convolution, skip connection, etc.) that connects two feature maps together. Gradient descent is used learn

probabilities of high-accuracy architectures.

weights and architecture-decision-probabilities in a bi-level optimization framework. The final

architecture is then sampled from the learned probabilities for all decisions in a cell (in Fig. 2.6(c),

each color represents an operation such as depth-wise separable convolution or dilated convolution,

etc., and thickness of arrow indicates how likely that decision is). This approach results in orders

of magnitude faster search for good architectures.

Recently, many NAS techniques focus on finding efficient models for mobile applications.

These techniques aim to optimize multiple objectives such as accuracy of the model, and la-

tency constraints for a given edge device. Popular models include MNAS-Net [115], single-path

NAS [111], Proxyless NAS [20], etc. Finally, despite the recent progress, a lot of open problems

remain w.r.t NAS research. For instance, it has been shown that random search is competitive

to NAS techniques [64, 66]; this has been attributed to the carefully designed search space for

NAS such as depth-wise separable convolutions, dilated convolutions, etc [66]. Moreover, neither

manually designed models nor NAS methods explore what architecture-level characteristics result

in models with high accuracy. Therefore, such challenges present many new opportunities for
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research in NAS.

This completes our discussion of representation learning topics. Next, we describe some back-

ground on Network Science.

2.5 Network Science

The field of network science has been used in a wide range of real-world problems such as infor-

mation diffusion over social networks, modeling disease outbreaks, protein-protein interactions,

transportation systems, power-grid, etc. Essentially, any problem in which different entities inter-

act with each other can be represented as a network. Mathematically, the networks consist of nodes

or vertices V , and links or edges E , where the different nodes are connected by links (e.g., people

connected with each other in a social network). This system can be represented by an adjacency

matrix A, where Aij = w if there is link of weight w between nodes i and j. There are a number

of interesting properties of networks such as degree distribution, community structure, centrality,

etc. Below, we first discuss degree distribution and community structure. Then, we will explain

network representation learning, a recent topic of interest which aims to learn features of nodes in

a network directly from its structure.

2.5.1 Node Degree/Hubs

Given an undirected network G with nodes V , links E , and the adjacency matrix A = {Aij}

describing link weights between any two nodes i, j ∈ V . Then, degree ki of a node i refers to total

number of links connected to node i. A network can have a scale-free structure where some nodes

have many connections but most nodes have low degree [85]; such nodes with many connections

in scale-free networks act as hubs of information. To illustrate, Fig. 5.5 shows nodes A, B, and C

as examples of hubs in a network. As evident, these nodes are characterized by more connections

than other nodes in the network. For example, in a social network, an important person with many

connections will act as an information hub (i.e., information disseminated by this user will very

quickly reach a large audience).
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Figure 2.7: Network science concepts like degree distribution and community structure: Communities refer to groups

of tightly connected nodes (shown in red, blue and green ovals), while degree refers to number of connections that a

given node has. Nodes with a large number of connections are called hubs.

2.5.2 Community Structure

Many real world networks are organized into groups of tightly connected nodes known as the

community structure [86]. For instance, in a social network, a community can refer to a group

of users with common interests like sports or politics. Formally, a community can be defined as

a group of nodes for which the number of connections within the group is significantly higher

than what one would expect at random. Fig. 5.5 shows the community structure in a network. In

contrast to older graph partitioning techniques, community detection automatically partitions the

network into its natural groupings without requiring us to specify predefined parameters such as

number/size of communities. Size and number of communities in a network instead depend on a

user-specified resolution parameter γ.

As explained in the network science literature, communities are detected by maximizing a

modularity function as follows [86]:

max
g={g0,g1,...,gl−1}

1

2m

∑
ij

[
Aij −

1

γ
· kikj

2m

]
δ(gi, gj), (2.11)

where, m is the total number of edges, ki refers to the degree (number of connections) of node
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i, resolution γ controls the size/number of communities, and δ is Kronecker delta. The idea is

to find groups of tightly connected nodes, g = {g0, g1, . . . , gl−1}, which map the nodes V to l

communities.

This completes the discussion of core network science concepts. As explained next, with the

rise of machine learning and representation learning, a new problem space called Network Repre-

sentation Learning has emerged in network science.

2.5.3 Network Representation Learning

Many problems in network science often consist of millions of nodes and billions of edges (e.g.,

information diffusion on social networks). Such large-scale problems give rise to a new set of

learning problems. For instance, how can we automatically classify the interests of a blogger

based on their social network? Since the size of the network is huge, it is imperative that we au-

tomatically (and not manually) learn features of the nodes to perform such a classification. Hence,

network representation learning techniques such as node2vec [35], LINE [116], DeepWalk [96],

etc., aim to learn features by exploiting the network structure. Specifically, since the real-world

networks are often characterized by community structure and structural equivalence (e.g., nodes

which are at structurally similar locations must share similar features), node2vec [35] learns the

features while accounting for such network characteristics.

Note that, the above techniques exploit machine learning or representation learning for solv-

ing network problems (e.g., classifying interests of a blogger in a social network). Hence, these

techniques require the network structure as a starting point. In contrast, throughout this thesis, we

exploit network science concepts for solving general machine learning and representation learning

problems (e.g., timeseries prediction, cancer prediction, digit recognition, learning from small data,

model compression of deep networks, and neural architecture space exploration) without relying

on network structure explicitly. The network for most of our problems is, in fact, unknown.

This ends the relevant background. In the next chapter, we propose new network science-based

techniques for traditional machine learning problems such as timeseries prediction and application-

specific feature extraction.
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Chapter 3

Network Science for Spatiotemporal Time-

series Prediction and Feature Extraction

In this chapter, we exploit network science to address the conventional machine learning prob-

lems involving spatiotemporal timeseries prediction. Such problems arise in the scenario where

some kind of traffic or fluid is flowing through space, and our objective is to predict short-term

timeseries at each of the locations. The dynamics of traffic or fluid flowing through the space can

be captured by a complex network. We argue that such dynamics should be a fundamental part

of prediction models and, hence, the network must be taken into account while building machine

learning models. In contrast, the existing machine learning models for timeseries prediction do not

consider the network dynamics.

To this end, we demonstrate that new learning models that account for the underlying net-

works lead to better prediction compared to the models which do not consider such networks.

Specifically, we address two spatiotemporal timeseries prediction problems from a network sci-

ence perspective: (i) Learning over networks with known but rapidly changing structure for short-

term timeseries prediction, and (ii) Application-specific feature extraction for predicting short-term

timeseries when the underlying network structure is unknown but fixed. Of note, we will discuss

the above two problems with concrete case studies from computational sustainability domain.

3.1 Learning over networks with known but dynamic structure

We start with a complex probabilistic learning problem in which the Bayesian network structure is

known but is dynamically and rapidly changing. The class of dynamic Bayesian networks in which
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the network structure changes rapidly are known as Non-stationary Dynamic Bayesian Networks.

Towards this, we propose a new model to learn parameters on such dynamically changing networks

and use them for the underlying prediction tasks. To give a concrete example of a situation where

this kind of learning problems can arise, we provide a case study on a computational sustainability

task, i.e., to predict short-term solar energy and to quantify solar energy interdependence across a

large river basin.

3.1.1 Non-Stationary Dynamic Bayesian Networks

Probabilistic graphical models such as Dynamic Bayesian Networks (DBN) have proven extremely

useful for modeling cause-effect relationships, knowledge discovery, and short-term forecasting.

Of particular importance are the non-stationary Dynamic Bayesian Networks (nsDBN) [101] in

which the underlying network structure dynamically changes over time. Applications of nsDBN

range from changing neural pathways in human brain, transcriptional regulatory networks during

early development, all the way to traffic networks and sustainability/climate systems.

Like for any Bayesian network, there are two types of problems in nsDBN – parameter learning

and structure learning. Prior art in nsDBN concentrates on structure learning on either piecewise

stationary DBN [130] or on DBN with sparse structure changes [122]. However, dynamic Bayesian

Networks with rapidly changing structures (e.g., networks in which 50% of the structure changes

within the next time step) have not been addressed. Therefore, in this chapter, we address a new

problem in which the rapidly changing structure of Bayesian networks is known, but the parameters

are unknown. Hence, the problem is to learn the parameters on Dynamic Bayesian Networks with

rapidly changing structures. We propose a Network of Dynamic Bayesian Networks (NDBN)

framework [11] to learn the parameters in such settings. The learned parameters can then be used

for the underlying prediction problem.

This scenario, where the structure of DBN is known but rapidly changing can occur in a variety

of problems with the most common case being the forecasting problems. For instance, suppose that

there is a traffic (or some kind of fluid) flowing through a given space in known trajectories which

are rapidly changing (perhaps known from the prior information or the available data). Then, the

problem is to forecast the availability of this traffic/fluid at each node at the next time step (as

illustrated in Fig. 3.1(a)). To give a more concrete example, we also consider a case study of
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Figure 3.1: Applications of non-stationary dynamic Bayesian networks. (a) Schematic of any traffic/fluid flow problem

in which flow trajectories are known but are rapidly changing over time. (b) Real-world example of wind and cloud

movement over large regions. (c) Cloud movement can be shown as multilayer networks as shown in the schematic

(a). Cloud and wind movement networks change rapidly (e.g., up to 50% links change at every time step.

short-term solar energy prediction across a large river basin. As shown in Fig. 3.1(b) and (c), wind

networks change rapidly with up to 50% links changing at every time step. Fig. 3.1(c) also shows

how cloud movement can be represented as multilayer networks similar to Fig. 3.1(a). Towards

this, we will use our proposed NDBN framework for scientific knowledge discovery, short-term

solar energy forecasting, as well as quantifying solar energy interdependence (i.e., who affects

solar energy of whom) across large regions.

3.1.2 Problem Formulation

We now formulate the proposed parameter learning model for multilayer networks (Fig. 3.1(a)).

Learning over Multilayer Networks

Our model is based on nsDBN since the structure of our network is rapidly changing. Let the

node attributes and link data at each of the n nodes for m + 1 time steps be respectively given by

X(t) = {X(t)
1 , X

(t)
2 , . . . , X

(t)
n } and W(t) = {W (t)

1 ,W
(t)
2 , . . . ,W

(t)
n }, t = 1, 2, . . . ,m + 1. While
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the link data W(t) essentially characterizes the direction of flow of the traffic/fluid at each node,

the node attributes X(t) represent the amount of traffic/fluid at each node at time t.

Fig. 3.2 shows the complete flow of our approach. First, using the above data, we construct

the underlying network structures of our non-stationary DBN which are equivalent to network

layers shown in Fig 3.1(a). These are schematically represented as flow patterns P1, . . . , Pm in

Fig. 3.2(a). We denote the network structure of flow pattern Pt as G(t)
X . Hence, given this rapidly

changing Bayesian Network structure, the problem is to (i) learn its unknown set of parameters

Θ, and (ii) use the learned parameters to predict the node attributes at time m + 2: X(m + 2) =

{X(m+2)
1 , X

(m+2)
2 , . . . , X

(m+2)
n }1. Note that, Fig. 3.2(a) again looks like a multilayer network with

each layer being a DBN. Therefore, following the nomenclature in [9, 32, 57], we call it a Network-

of-Dynamic Bayesian Networks (NDBN) framework. Next, we discuss expansion-compression of

node attributes as given below.

Expansion-Compression of Node Attributes We use the flow patterns and the node attribute

data to observe three types of traffic/fluid movement: traffic/fluids moving “as they are”, or “ex-

panding” (i.e., fluid amount increases as it moves from source to destination) or “compressing”

(i.e., the fluid decreases as it move from source to destination nodes). These source and destination

pairs come from different links in the flow patterns as shown in Fig. 3.2(a)). Fig. 3.2(b) top panel

illustrates expansion and compression cases of fluid movement. To take this into account, we intro-

duce two additional nodes into the network: Expansion node (E) and Compression node (C). Next,

we deduce the amount of expansion or compression occurring at each transition as illustrated in

Fig. 3.2(b). This process gives rise to some additional nodes and links in the network (Fig. 3.2(b)

lower panel). Finally, these Expansion and Compression nodes and links are deduced for all such

source and destination pairs (given by each flow pattern Pt in Fig. 3.2(a)) and are appended to Pt to

get a modified pattern matrix Dt (see Fig. 3.2(c)). Also, we assume that Expansion node has an in-

finite amount of traffic/fluids to supply. Of note, we use the terms “expansion” and “compression”

as an analogy for how the clouds expand and compress as they move.

Main steps of our approach are summarized in Fig. 3.2. So far, we have discussed the steps (a),

1Note that, network structures {P1, . . . , Pm} (Fig. 3.2(a)) use the data {X(1), . . . ,X(m + 1)} and

{W(1), . . . ,W(m+ 1)}. Therefore, the prediction is carried out for X(m+ 2).
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          Modified                Modified                   Modified

          Pattern D1            Pattern D2               Pattern Dm

Figure 3.2: Complete flow of the proposed approach. (a) Traffic/fluid flow network structures at different times based

on link data W(t). Pattern matrices at time t (Pt) capture the dynamics of the network, i.e., appearing and disappearing

links. (b) Expansion (left) and compression (right) of the node attributes (e.g., fluid amount) as they flow through the

space. Expansion nodes supplies the residual fluid amount to the destination, while the compression node acts as a

sink for excess fluid amount from source node. (c) Additional expansion and compression nodes are inferred and

appended to the initial pattern matrices Pt to obtain modified pattern matrices (Dt). Parameter learning is performed

on modified pattern matrices.

(b), and part of step (c) (i.e., up to modified pattern matrices Dt’s in Fig. 3.2(c)). These Dt’s form

the training set on which our machine learning model will be trained: D = {D1,D2, . . . ,Dm}.

Parameter Learning for Non-Stationary Dynamic Bayesian Networks

Let us now describe the model parameters and the NDBN parameter learning framework. For all

pairs of sources (S) and destinations (D), we define:

θSD = P (XD = d|Pa(XD) = s),

θED = P (XD = d|Pa(XD) = e),

θSC = P (XD = c|Pa(XD) = s)

(3.1)

where, XD is the node attribute variable of the destination node toward which the traffic/fluids

are moving, Pa(XD) is total traffic/fluids at the set of parents of destination node and d, s, e, c are

respectively the node attributes at destination, source, amount of expansion and compression. Intu-

itively, θSD represents the probability of traffic moving without expansion or compression, whereas
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θED (θSC) represents the probability of expansion (compression) while moving from source node

S to destination node D.

Since the Bayesian Network is completely observable, all the nodes are independent of their

non-descendant nodes (given their parents). Therefore, the joint probability distribution for a single

modified wind pattern matrix Dt is defined as:

P (Dt) =
∏
{S,D}

P (X
(t)
D = d′|Pa(X

(t)
D ) = s′) =

∏
{S,D}

θ
(t)
SD · θ

(t)
ED · θ

(t)
SC (3.2)

where, t = 1, 2, . . . ,m, {S,D} ∈ G(t)
X and θ(t)

SD, θ(t)
ED and θ(t)

SC are model parameters at time t.

The observed graph structures (G(t)
X ) are changing over time, giving rise to non-stationary DBN

(nsDBN). We propose a Network of Dynamic Bayesian Networks (NDBN) framework to cap-

ture these changing structures. NDBN basically computes the maximum likelihood estimate of

model parameters on time-varying Source- Destination pairs2. The proposed approach is shown in

Fig. 3.2(c). We define three Global Parameters {ΘX ,ΘE ,ΘC} which are complete sets of corre-

sponding model parameters learned across different pattern matrices {D1,D2, . . . ,Dm}:

ΘX = {θSD}, ΘE = {θED}, ΘC = {θSC} ∀ {S,D} (3.3)

Now let NSD be the amount of traffic/fluids moving as they are from Source to Destination

across time (t = 1 to t = m),NED be the amount of expansion andNSC the amount of compression.

For brevity, we define the following: Θ = {ΘX ,ΘE ,ΘC}. Then, the log-likelihood is given as:

l(Θ|D) = log

 ∏
{S,D}

θNSDSD · θ
NED
ED · θ

NSC
SC

 (3.4)

Next, we learn the model parameters for a given training set by maximizing the log-likelihood:

maximize
θSD,θED,θSC∀D

l(Θ|D)

subject to
∑
D

(θSD + θSC) = 1

∑
D

θED = 1

(3.5)

2The model parameters are defined in terms of Sources and Destinations and imply if the traffic/fluids move as they

are or if they expand or compress. Therefore, using Maximum Likelihood Estimate (MLE) for parameter learning in

this scenario basically computes MLE on time-varying Source and Destination combinations (determined by changing

links in modified pattern matrices Dt for time t = 1, 2, . . . ,m) and hence takes changing structures into account.
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The constraints in our problem (Eq. 3.5) come from the way Expansion and Compression nodes

are defined. They basically indicate that the total traffic/fluid amount is conserved in the space.

Solving the above problem by computing a Lagrangian gives the following Maximum Likelihood

Estimates:

θ̂SD =
NSD∑

DNSD +NSC
, θ̂SC =

NSC∑
DNSD +NSC

, θ̂ED =
NED∑
DNED

(3.6)

In short, Eq. 3.6 suggests that the parameters {θ̂SD, θ̂SC, θ̂ED} are given by the amount of traf-

fic/fluid passing without change or compressing or expanding divided by the total amount at the

source. Note that, MLE is used here for parameter learning since we do not know anything about

the prior, making the use of Maximum a posteriori (MAP) unsuitable. Next, we discuss how to

predict node attributes from learned parameters.

Prediction of Node Attributes from Learned Parameters

To predict the node attributes at all nodes for the next time step, it suffices to know which traf-

fic/fluids move as the are from source to destination, which traffic/fluids expand, which compress,

and the amount of expansion/compression occurring at each link. Fortunately, we are given link

data W(m+1), i.e., the information about the direction towards which the traffic/fluid was moving

at the last time step. This can be used to construct the network structure at time m + 1: G(m+1)
X .

This network structure shows in which direction the traffic/fluids will move but does not give any

information on which they will expand or compress as they move from source to destination.

Note that, we need both X(t) and X(t+1) to deduce the additional Expansion and Compression

links (Fig. 3.2(b)). Since we are given the node attribute data X(m+1) but not X(m+2) (which we

want to predict), we cannot deduce Expansion/Compression links and, therefore, cannot generate

the modified pattern Dm+1. In order to find these Expansion/Compression links, we incrementally

maximize the logarithm of estimate of joint probability:

P̂r(Dm+1) =
∏
{S,D}

θ̂SD · θ̂ED · θ̂SC (3.7)

where, θ̂SD, θ̂SC and θ̂ED are the parameters learned on the training dataset and {S,D} ∈ G(m+1)
X .

Maximizing Eq. 3.7 basically finds the most likely links from Expansion to Destination nodes (E →

D) and those from Source to Compression nodes (S → C). These links tell us which traffic/fluids
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will expand/compress while moving from source to destination. Furthermore, while training the

model on D = D1, . . . ,Dm, we also compute Expected Expansion and Expected Compression

for each Source-Destination pair. This quantifies the amount of expansion/compression taking

place. Therefore, once we know which traffic/fluids will expand/compress and how much they

will expand/compress, prediction simply follows from the observed X(m + 1) data. We call this

algorithm as Expansion-Compression prediction. For more details, please refer to [11].

This concludes the learning over multilayer networks. Next, we present a concrete case study

on a computational sustainability problem which uses our proposed NDBN model. Specifically,

since cloud movement across large regions results in rapidly and dynamically changing multilayer

networks (see Fig. 3.1(c)), we use the proposed model to (i) quantify solar energy interdependence

due to cloud movement (via NDBN parameter learning), and at the same time (ii) generate pre-

dictions at a large number of locations simultaneously (using the prediction procedure described

above). To generate the global response towards sustainable energy production, both of these tasks

are essential components and can help globally coordinate the actions of power-grid operators.

3.1.3 Case Study: Spatiotemporal Solar Irradiance Prediction Problem

Let us now use the proposed NDBN model for parameter learning and short-term prediction on

a real-world computational sustainability problem: Given spatiotemporal cloud and wind data,

predict the solar irradiance simultaneously at all locations.

Experimental Setup and Description of Data Sources

We use hourly wind and cloud cover data obtained from National Center for Atmospheric Research

(NCAR) CISL Research Data Archive (CISL-RDA) [120]. The data is available on a regular

grid (0.3125◦ latitude/longitude resolution) as shown in Fig. 3.1(b) (left). The zoomed-in portion

towards the right shows a snapshot of wind movement from one location to other.

The amount of cloud at each grid-cell is given by cloud cover data (also called cloud fraction).

Cloud fraction at a grid-cell is defined as percentage of area covered by clouds (varies from 0 −

100%). A sample of cloud fraction data is given in Table 3.1. Each location (given as latitude

and longitude in the table) represents a grid-cell shown in Fig. 3.1(b). We have 3417 such grid-
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Table 3.1: Cloud fraction data sample for the year 1997

Latitude Longitude Cloud fraction (in %) at time

(North) (West) 1h 2h . . . 8759h 8760h

45.7415 −80.3125 93 95 . . . 95 91

45.7415 −80 87 86 . . . 84 77

45.7415 −79.6875 82 79 . . . 75 67

cells in and around the Ohio Basin region (bounds: [30◦N, 46◦N] and [−94◦W,−73◦W]) of more

than 204, 000 sq. miles. The cloud fraction data that we use is for entire years 1997 and 2009

containing data for all 24× 365 = 8760 hours3 (as shown in Table 3.1). For our problem, the wind

data serves as the link information W(t), whereas the cloud fraction data serves as node attributes

X(t). Multilayer cloud networks (e.g., Fig. 3.1(c)) are created using the wind data as the cloud

movement is guided by the winds (for more details, please refer to [11]). A thorough analysis of

cloud networks reveals that our problem is multivariate, has non-stationary data (with Detrended

Fluctuation Analysis parameter α > 1), and dynamically and rapidly changing network structure

(around 50% edges change at every time step).

The prediction procedure described above yields one step forecasts at each of the n nodes in

the network simultaneously. Therefore, the prediction can be carried out for 1-hour, 2-hours or

3-hours ahead of time by appropriately selecting the size of prediction time step (∆t) as 1, 2 or 3

hours, respectively. We call this step size (∆t) as time resolution. We conduct several experiments

at varying number of nodes, training set sizes, and time resolutions to obtain 1, 2 and 3-hour

predictions. Specifically, we run experiments on 400, 800, 1200, 2000 and 3417 nodes around the

Ohio River Basin. Also, since the problem is non-stationary, the learned parameters keep changing

with the training set.

Knowledge Discovery – Power Laws and Kolmogorov-Smirnov Tests

We now analyze the statistical properties of learned parameters for all Source-Destination pairs.

Fig. 3.3 shows complementary cumulative distribution plots for ΘX and ΘC .

3We express times as hour numbers (varying from 1 to 8760), e.g., t = 1h stands for Jan 1, 1997, 00:00:00 UTC.

Similarly, t = 1001h would stand for Feb 11, 1997, 16:00:00 UTC timezone.
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Figure 3.3: Complementary Cumulative Distribution functions (CCDF) for (a) ΘX , and (b) ΘC parameters. The xmin

and xmax limits are shown to mark the scaling region for both the parameters. Using a 2-sample KS test we prove that

the linear region in the plots above is much more likely to be a power law than an exponential distribution.

Solar Energy Interdependence Like many natural (e.g. river systems etc.) and man-made

(e.g. social networks) systems, the cloud movement patterns over time likely follow a power law

distribution. Also, the density plot for ΘE (not shown) is approximately Gaussian [11]. This may

be due to the assumption that the Expansion node has infinite clouds to supply to its destinations.

Note that, these learned parameters are basically the probabilities of cloud movement between

various source and destination nodes in the network. Hence, these parameters can be seen as

quantifying the spatiotemporal solar energy interdependence across the region considered (i.e.,

how much solar energy harnessed at two locations will be affected by cloud movement between

the locations).

Kolmogorov-Smirnov Hypothesis Tests We follow the methods given in [22] to prove that the

linear region in the Fig. 3.3 is more likely to follow a power law than an exponential distribution.

As shown in Fig. 3.3(a) and (b), we estimate the scaling parameter α for ΘX and ΘC parameters

to be 2.4691 and 2.0515, respectively; both are typical values for power law type of behavior. The

method in [22] also computes the value xmin where the scaling region begins. We obtain the xmin

for ΘX and ΘC as 0.0530 and 0.0410 respectively. Further, in our case, clearly the cutoff region is

not a power law. It is not exponential either, it is somewhat arbitrary (probably since our parameters

are constrained to be in between 0 and 1). Therefore, using Fig. 3.3, we put a xmax cutoff at 0.45

for both ΘX and ΘC to remove the cutoff region.
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Figure 3.4: Cloud fraction prediction for 1h, 2h and 3h time resolutions for the 3417 node network that corresponds

to the region in and around Ohio river basin. Prediction for ∆t = 1 is at the 501 hour, for ∆t = 2 is at the 1001

hour and for ∆t = 3 is at the 1501 hour. (a) Observation of historic data, and (b) Forecast with our approach at time

tpred = 501 hour, (c) Observation, and (d) Forecast at time tpred = 1001 hour, (e) Observation, and (f) Forecast at

time tpred = 1501 hour. Red (blue) stands for high (low) value of cloud fraction.

Next, we run the 2-sample Kolmogorov-Smirnov (KS) Test in the linear region for both power

law and exponential hypothesis with (significance level, α = 0.001 for each individual KS Test)

2500 times. We find that about 78% of the tests were positive for power law for ΘX . On the other

hand, for ΘC , only about 25% of the tests were positive for power law. For the same settings, how-

ever, 0% of the tests came out positive for exponential distribution for both ΘX and ΘC parameters.

This experiment, at the very least, suggests that in the linear region, both of these parameters show

some evidence in favor of power law distribution and no evidence in favor of exponential distri-

bution. Based on this experiment, therefore, we conclude that in the linear region, both of these

parameters are more likely to follow a power law distribution than an exponential distribution.

Global Scale Predictions and Comparison with Null Models

Fig. 3.4 shows the cloud fraction prediction results of the proposed framework in the region cover-

ing the Ohio River Basin and beyond. Fig. 3.4(a), (c) and (e) are the actual observations of cloud

fraction at 3417 different locations, while Fig. 3.4(b), (d) and (f) are the cloud fraction predictions

produced by the model. As evident, the model predictions are fairly accurate.

Similar experiments for ∆t = 1, 2, 3 were conducted for different training sets, prediction
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Figure 3.5: Comparison of the proposed model with two null modes: (i) Autoregressive with 8 exogenous inputs as

the neighbors of a node (ARX), and (ii) Moving Average (MA) null model. The RMSE results show that our model

performs better than both null models for all three time resolutions, (a) ∆t = 1 hour, (b) ∆t = 2 hours, and (c) ∆t = 3

hours.

times and different network sizes. The results are summarized in the subsection below.

Comparison with null models We now compare our model against two null models to show

that our results are good simply not because of good spatial correlations in data (i.e., correlations

between a node and its neighbors) and that learning over a network is important for better perfor-

mance.

The two null models we consider are: (i) Moving Average Model (a standard null model), and

(ii) Autoregression model with exogenous inputs as 8 nearest neighbors of a node (ARX). Null

model (ii) is similar to the approach used by Dambreville et al. in [24] and it explicitly accounts

for spatial correlation between a node and its neighbors. While Dambreville et al. apply their

model only at a single location, we ran the model at all locations in the region considered (i.e., this

model does not consider a cloud network like in our approach).

Fig. 3.5 summarizes the results for (a) ∆t = 1 hour, (b) ∆t = 2 hours, and (c) ∆t = 3 hours

ahead predictions. Clearly, our results indicate that the proposed model performs better than both

of these null models in all the cases. This proves that our model’s performance is high not only

because of spatial correlations in data since otherwise the null model (ii) would have done better

than the proposed model. Next, we discuss how to estimate solar irradiance from cloud fraction.
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From Cloud Fraction to Solar Irradiance We estimate the solar irradiance (= solar power/area)

from cloud fraction values and Sun’s position. The following formula is used to convert the cloud

fraction to approximate solar irradiance [83]:

R = R0sin(φ− 30)(1− 0.75× (cf/100)3.4) (3.8)

where, R0 is clear sky insolation (990 Watt/m2), φ is mean of solar elevation angles at current and

previous hour, and cf is cloud fraction (in %) at a certain location.

We conduct an experiment on the 3417 node network for tpred = 2301h, ∆t = 1h. Fig. 3.6(a)

and (b) show the results for cloud fraction prediction, while Fig. 3.6(c) and (d) show the results for

solar irradiance prediction. The RMSE for cloud forecast is 15.50% and that for solar irradiance

is 41.34 Watt/m2. Evidently, the prediction is quite accurate at most locations with only a few

inaccurate forecasts. Of note, our model predicts solar irradiance at all locations simultaneously

(which can be used to estimate solar supply at all locations). Combining this prediction information

with knowledge obtained from parameter learning (i.e., who impacts whom due to moving clouds)

can allow policy-makers/engineers to optimally utilize the solar resources.

Discussion on Computational Sustainability Application Our model is the first step towards

solving a global problem (i.e., controlling the global availability of solar resources based on the

dynamics of cloud movement across large regions) and this problem cannot be solved without

a network that explicitly captures the spatiotemporal dependencies due to clouds moving across

various locations. This is unlike many existing approaches [19, 21, 24, 25, 37, 73, 107] which

aim to predict solar power only at a single location. On the other hand, our focus in this chapter

is not to improve the accuracy of state-of-the-art solar prediction at a single location but rather to

bring the global energy interdependencies into the picture. This interdependence information can

promote power-grid operators to help out each other in case of energy deficit/excess at different

locations and we capture these interdependencies using the proposed probabilistic framework for

nsDBN.

So far, we have focused on learning problems for which the network structure is known and

rapidly changing. Next, we will discuss learning on problems for which the network structure is

not known. We will further demonstrate how network science can enable an effective application-

specific feature extraction for highly accurate timeseries prediction.
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Figure 3.6: (a) Cloud fraction observation and, (b) prediction. (c) Solar irradiance observation and, (d) prediction.

Red (blue) means high (low) cloud fraction and solar irradiance. Solar irradiance is derived from Eq. 5.

3.2 Exploiting Network Science for Application-Specific Fea-

ture Extraction

For many real-world machine learning problems, the underlying network structure that guides the

dynamics is not known, and only raw high-dimensional timeseries data is available. Therefore, for

such problems, we need to infer the network structure from the given high-dimensional raw data.

Once the network is inferred, we can exploit it to reveal features that can improve the performance

of the learning model. Hence, we must first infer the network structure from the raw data, and then

use the network for application-specific feature extraction.

As discussed next, we demonstrate the above problem by considering a concrete case study on

another computational sustainability problem for spatiotemporal river flow prediction.
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3.2.1 Spatiotemporal River Flowrate Prediction

The timeseries data for river flowrates is hard to predict as it exhibits non-stationary behavior

which, in turn, results in sudden peaks and troughs. An example of such hard-to-predict timeseries

is shown in Fig. 3.7(a). These characteristics result from a complex river network which, as shown

in Fig. 3.7(b), clearly consists of a fractal structure. Hence, the network structure must be taken

into account while creating machine learning models for river flowrate prediction. Note that, only

the raw timeseries data is available across a region and, hence, the network structure is unknown.

Therefore, the problem is to first infer the river network from the high-dimensional timeseries data,

and then use the network to extract features for short-term river flowrate prediction at several

locations.

a. Complex characteristics of river flow 
timeseries prediction problem

b. Fractal River Networks

TROUGHS

PEAKS

Figure 3.7: River flowrate and network characteristics: (a) The timeseries data for river flowrate exhibits non-

stationarity which results in sudden peaks and troughs. (b) The river network clearly demonstrates its complex network

characteristics such as fractal structure. Hence, the network must be taken into account while designing the machine

learning models.

To this end, we first present the dataset sources for our problem, and our proposed approach for

network inference. We will then propose the K-Hop Learning framework [10, 14] for application-

specific feature extraction. Following this, we will demonstrate the effectiveness of features learned

via K-Hop Learning for short-term river flow prediction.
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Table 3.2: River Flowrate data sample for the year 1997

Node Latitude Longitude River Flowrate (in m3/s) at time

No. (North) (West) 1h 2h . . . 8760h

3029 40.3125 −79.8125 404.97 404.34 . . . 269.95

3185 40.5625 −79.8125 715.60 714.60 . . . 431.63

3107 40.4375 −79.8125 1131.3 1130.1 . . . 707.93

Data Sources In this work, we use two major datasets: (i) daily river flowrate [81] and (ii)

daily precipitation [82] for the Ohio River Basin, USA (total area: 204, 000 sq. miles). The

spatial resolution of both datasets is 0.125◦ latitude by 0.125◦ longitude. At this scale, Ohio River

Basin contains a total of 3681 locations. Table 3.2 shows a sample of flowrate data for 1997

(24h × 365 = 8760h). Here, each node number refers to a location with the given latitude and

longitude. For the purpose of our experiments, we have used data for the years 1992-1997. Of

note, we generate daily timeseries from the original hourly data. Next, we use this timeseries data

to infer the river network.

3.2.2 Proposed Correlations-Based Network Inference

Let us now infer the approximate river network from the historic data. Suppose this network is

represented by an adjacency matrix R and its nodes by Node IDs {1, 2, . . . , 3681} (see Table 3.2).

Also, let ri(t) be the flowrate of a river at node i. The following two observations are critical to

our approach: (i) Rivers combine to form larger rivers, and (ii) Average flowrate increases from

smaller rivers towards larger rivers. The first observation above implies that, for a given node i,

the sum of flowrates of its neighboring nodes (denoted N (i)) must be highly correlated with the

flowrate at node i. Here, N (i) consists of eight nearest neighbors of node i in the grid. Then, the

directions in the river network can be obtained using the second observation.

Based on these observations and assuming that no more than 3 rivers meet at a single place,

we infer the river network by maximizing the correlation between flowrate at node i and sum of
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flowrates at its immediate neighbors. For each node i, therefore, the problem is to:

maximize
R(i,j)

corr

ri(t), ∑
j∈N (i)

rj(t) ·R(i, j)


subject to ravgi >

∑
j∈N (i)

ravgj ·R(i, j)

∑
∀j

R(i, j) ≤ 3, R(i, j) ∈ {0, 1},∀i, j

(3.9)

where, ravgi refers to the average flowrate at node i. The final river network is obtained by solving

Eq. 3.9 for all nodes. Once the network is obtained, we validated the river network by plotting a

directed path from Pittsburgh in Google Earth. We found that the path not only ended at Cairo, IL,

where the Ohio river meets the Mississippi river, but also follows the exact same trajectory as Ohio

River. This verifies that the resulting network structure learned is correct.

3.2.3 Application-Specific Feature Extraction via K-Hop Learning

We now leverage the river network to reveal the features necessary for predicting the upcoming

flowrate peaks 24-hours ahead. The schematic of river network is shown in Fig. 3.8(a), where

nodes are locations, links show the rivers flowing between locations, and we have river flowrate

data for each node. Then, the problem is to predict the river flowrate 24-hours ahead at node i as

shown in Fig. 3.8(a).

Imagine the flowrates at each of these nodes as a signal flowing through the river network.

Next, we consider the pair of orange and green nodes shown in Fig. 3.8(a). As the flowrate signal

travels from the orange node (i.e., the source) towards the green node (i.e., the destination), there

will be a delay as it moves from the source to the destination. Therefore, as the signal travels

through the network, at every hop, it will experience and accumulate some delay. This delay is a

function of physical features of various rivers such as elevation and topographical or geographical

features. Consequently, the delay will be different not only for different nodes, but also for different

rivers. Since the topography, geography and elevations of rivers do not change very quickly, we

can easily learn such delays for all nodes using historic data. Hence, for every node i, we can learn

the optimal number of hops, K, such that the total delay along those K hops is approximately 24

hours. In other words, as illustrated in Fig. 3.8(a), if the flowrate at node i (ri(t)) peaks at times
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Figure 3.8: K-Hop Learning: (a) River network schematic. Upper panel (right): ri(t) plot shows the flowrate at node i

with two peaks at times t1 and t2. Upper panel (left): the sum of K-Hop parents’ flowrates plot – corresponding peaks

appear almost 24 hours earlier. (b) Real data shows that the sum of K-Hop parents’ flowrates detects peaks 24-hours

ahead.

t1 and t2, we can detect these peaks 24 hours ahead using the sum of flowrates of its parent nodes,

some K-Hops upstream in the network.

The above ideas can be formulated as an optimization problem. Let P iK be the K-Hop parents

of a given node i. Then, the optimal K for each node can be found by maximizing the cross-

correlation between flowrate at node i and sum of flowrates of its K-Hop Parents:

maximize
K

xcorr

ri(t), ∑
j∈PiK

rj(t)


subject to 21 ≤ τmaxxcorr ≤ 25

3 ≤ K ≤ 12

(3.10)

where, τmaxxcorr is the lag which maximizes the cross-correlation function. Intuitively, τmaxxcorr corre-

sponds to the total delay along the K hops between node i and its K-Hop parents. Therefore,

the first constraint in Eq. 3.10 ensures that the K-Hop parents can detect the upcoming river flow

peaks at node i, 24-hours earlier. Moreover, since we can predict such peaks only approximately,

the above constraint aims to keep τmaxxcorr between 23±2 hours. The second constraint restricts K to

be between 3 and 12 for efficiency purposes. Also, many very small rivers (average flowrate < 25

m3/s) did not have parents more than 12 hops upstream in the network. Therefore, we do not focus

on predictions for these rivers. The smallest rivers we consider have a flowrate of ≈ 150 m3/s.

The above optimization problem is solved for all nodes in the river network for five different
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years (1992-1996). Note that, the value of K for each node is almost the same for various years.

Still, we take this small variation into account by averaging theK obtained for each node across the

five years. Hence, we obtain a mean K for 844 nodes which correspond to significant rivers with

flowrates ≥ 150 m3/s. The rest 2837 nodes are very small rivers and are, therefore, insignificant.

Finding K-Hop parents for every node in the network can be implemented faster than a Depth

First Search, since for each node, K ∈ {3, 4, . . . , 12} reduces the river network to a small tree

with number of nodes n << N , the total number of nodes. Therefore, finding K-Hop parents

takes O(N · n). Next, computing cross-correlations for each node takes O(N · p) (where, p is the

length of timeseries). Therefore, the overall complexity of the problem isO(N · (n+p)) and since

n << p, this is ≈ O(N · p). Practically, it takes about 15 seconds per year in MATLAB with 8

parallel workers to solve this problem for all nodes in the network. The code to find K-Hop away

parents in the river network (for a specific K) can be implemented in a recursive fashion like a

Depth First Search (see Algorithm 1).

Algorithm 1 Compute KHop Parents

1: Input: River Network R, Node i, parentsSet, HopCount, K

2: Output: parentsSet

3: ImmediateParents← find(R(:, i) == 1) // Find immediate parents of node in river network

i

4: if HopCount == K then

5: parentsSet← parentsSet ∪ ImmediateParents

6: return

7: else

8: for all j in ImmediateParents do

9: HopCountTemp = HopCount+ 1

10: parentsSet← Compute KHop Parents(R, j, parentsSet,HopCountTemp,K)

11: end for

12: end if

Finally, we demonstrate the power of K-Hop Learning in detecting river flow peaks 24-hours

ahead of time. As an example, we analyze the effectiveness of K-Hop parents for detecting
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flowrate peaks of node 3187. Fig. 3.8(b) shows the flowrate of node 3187 (thick blue line) and

sum of flowrates of its K-Hop parents (thick red line, K = 6). Note that, the river hierarchically

flows from node 3255 to node 3184 to 3185, all the way to 3187. Looking closely at the river

flow plots for each of the locations reveals that there is some delay between the peaks for each

successive hop. Hence, going sufficiently upstream in the network (e.g., K = 6 here) can enable

us to detect the peaks at 3187 24-hours earlier. As evident, the peaks at node 3187 can be detected

24-hours ahead by looking at its K-hop parents (node 3255 shown in Fig. 3.8(b) is only one of the

K-Hop parents). Therefore, K-Hop Learning can significantly improve the prediction accuracy.

Short-term Prediction Model and Experimental Setup

We now use the above K-Hop parents-based features in a machine learning model to predict the

short-term flowrates for various rivers. Specifically, to predict the flowrate 24-hours (i.e., 1-day)

ahead at each node i, we use a simple linear model consisting of two features: (i) Cumulative

24-hours precipitation at node i, and (ii) Sum of daily flowrates of its K-Hop parents. To compare

our model with other timeseries-based machine learning models, we replace the second feature

above by timeseries of daily flowrate at node i itself; we refer to these models as timeseries-based

machine learning models.

We account for non-stationarity in flowrate data using rolling window. In a rolling window

method, the training period of a model is ’rolled’ or moved forward, as soon as the next observation

becomes available. Therefore, we train our model for 20 days, test on the next day, then move the

training set forward by one day, test on the day after that, and so on. Also, we show the flowrate

prediction experiments for four different sized rivers in Ohio River Basin, USA − small (average

flowrate ∼ 150 m3/s), intermediate (∼ 400 m3/s), large (> 1000 m3/s), and very large (∼ 104

m3/s).

3.2.4 River Flowrate Prediction Results

We now present the flowrate prediction results using K-Hop Learning and compare them to four

timeseries-based machine learning models: (i) Autoregression (AR), (ii) Random Forests (RF),

(iii) SVM Regression (SVM-R), and (iv) K-Nearest Neighbors Regression (KNN-R).
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Figure 3.9: River flowrate prediction: (a,d) Large rivers (average flowrates > 1000 m3/s), (b,e) Intermediate sized

rivers (average flowrates ≈ 400 m3/s), and (c,f) Small rivers (average flowrates ≈ 150 m3/s). Predictions based on the

proposed K-Hop feature learning outperform the best timeseries-based model − SVM-R.

Fig. 3.9 shows the flowrate prediction results for six different locations (two large (a,d), two

intermediate (b,e), and two small (c,f) rivers) in Ohio River Basin. Each figure shows: (i) observed

flowrate (blue), (ii) predicted flowrate using K-Hop features (red), and (iii) predicted flowrate

using timeseries-based SVM-R (green) as it performs the best among prior models. Clearly, the

prediction based on our proposed K-Hop Learning outperforms the timeseries-based SVM-R and,

therefore, all other methods for all six rivers (see Fig. 3.9(a-f)).

Further, our model predicts the river flowrate peaks much more accurately than timeseries-

based SVM-R. The peaks predicted by SVM-R and other models are generally one or two days

after they actually occur. Our K-Hop Learning method, however, predicts these peaks on the

correct day. Accurate prediction of these river flow peaks is critical for flood planning and run-

of-river (ROR) hydropower management and, therefore, K-Hop Learning can play a fundamental

role in this problem space.

For instance, consider 24-hours ahead flowrate prediction for a very large river (flowrates∼ 104

m3/s) at node 1297. Fig. 3.10(a) illustrates the prediction results with K-Hop learning and SVM-

R. The inset in Fig. 3.10(a) shows a zoomed-in portion of the results (between 112th-116th days)

which reveals that the flowrates predicted by K-Hop learning (red) are very close to the observed

flowrates (blue), while SVM-R (green) still predicts the peaks and troughs one day late. This

can have a significant impact on run-of-river hydropower management. For instance, consider the
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Figure 3.10: (a) River flowrate prediction for a very large river with flowrates of the order of 104 m3/s. Inset: Observed

and predicted flowrates zoomed-in between 112th-116th days. Clearly, the trough predicted on 115th day by K-Hop

Learning is much more accurate than the one predicted by SVM-R (with error of 21m3/s for K-Hop Learning vs.

460m3/s for SVM-R). (b) K-Hop Learning outperforms all other models for varying training set size for Ohio River

at node 3187.

observed and predicted flowrates for the 115th day (see {X, Y } measurements shown as blue, red

and green rectangles in Fig. 3.10(a) inset). Clearly, SVM-R overestimates the flowrate by 460

m3/s while K-Hop Learning predicts only 21 m3/s below the true value. As a result, if we were to

depend on SVM-R for 1-day ahead predictions, we would not be able to prepare for this sudden

hydropower deficit observed on 115th day. Hence, K-Hop Learning can enable a significantly

more effective ROR hydropower management.

Table 3.3: River Flowrate Prediction RMSE

Node & RMSE (in m3/s) %

Size∗ AR RF SVM-R KNN-R K-Hop Gain

1750-S 33.28 39.69 33.27 39.49 14.09 57.64

3357-S 55.44 60.18 50.71 56.59 9.00 82.25

3029-M 57.65 61.21 48.20 60.86 14.78 69.33

1050-M 55.16 85.21 51.85 76.36 8.17 84.21

3187-L 95.80 132.88 85.61 117.9 14.95 82.53

16-L 88.71 180.24 86.48 143.70 32.71 62.17

1297-V L 341.95 1335.79 373.65 929.26 86.16 74.80∗∗

∗S− Small, M−Medium or Intermediate, L− Large, V L− Very Large River.

∗∗ % Gain reported with respect to AR since AR performs the best.

Next, Table 3.3 reports the Root Mean Square Error (RMSE) results for all flowrate prediction
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experiments described above. The table clearly demonstrates that K-Hop Learning significantly

reduces the RMSE for rivers of all sizes, with a net reduction of 57− 84% (e.g., still 75% for very

large river), i.e., our model’s performance does not degrade with increasing river sizes unlike all

other models.

Finally, in Fig. 3.10(b), we analyze how the performance of various models varies with different

training set sizes. As evident, among the timeseries-based machine learning models, SVM-R per-

forms the best (magenta line in Fig. 3.10(b)). However, K-Hop Learning not only significantly re-

duces the RMSE but is also robust to varying training set sizes. Moreover, here we have compared

a linear model using K-Hop features with advanced machine learning models using timeseries

data at a given node, thereby showing the power of K-Hop feature learning and network-based

features.

3.3 Summary

In this chapter, we have shown that certain machine learning problems such as spatiotemporal

timeseries prediction are characterized by complex network dynamics. We have demonstrated that

machine learning models must account for this underlying network dynamics in order to achieve

higher accuracy.

To this end, we have first addressed a complex parameter learning problem over networks with

known but dynamically changing structure. Specifically, our framework falls under non-stationary

Bayesian learning. We have proposed a new model to learn parameters on such rapidly chang-

ing networks which can then be used for the underlying classification/prediction problems. As a

concrete case study for this kind of learning scenarios, we have considered a computational sus-

tainability task, i.e., to predict short-term solar energy and to quantify solar energy interdependence

across a large river basin. For this case study, our proposed model achieves 8-18% RMSE for one-

hour cloud fraction predictions and outperforms standard models. Also, the spatiotemporal solar

energy interdependence is explicitly quantified using the learned parameters.

Next, we have proposed a correlations-based network inference technique, and a new method

called K-Hop Learning for feature extraction which improves the performance of machine learn-

ing models. Towards this direction, we have addressed another case study in the computational
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sustainability domain: River network inference and highly accurate, short-term river flowrate pre-

diction by exploiting network science-based features. Our proposed network-based feature extrac-

tion has resulted in significant improvements (57%-82%) in short-term flowrate predictions over

the traditional models.

So far, we have demonstrated the importance of network science for spatiotemporal timeseries

prediction and feature extraction, a traditional machine learning problem. However, for the river

problem, our feature extraction method was largely application-specific. In the next chapter, we

will demonstrate that network science concepts can also be used for automatic feature learning,

i.e., representation learning, for many general problems.
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Chapter 4

Representation Learning for High-Dimensional

and Small-Sample Problems

In the last chapter, we demonstrated how to use network science for spatiotemporal timeseries pre-

diction and how network-based, application-specific feature extraction can result in significantly

improved machine learning models. The feature extraction in the last chapter was indeed hand-

tailored for a single application. However, a major goal in Artificial Intelligence (AI) and Machine

Learning (ML) is not to engineer these features manually but rather to enable machines to learn

them automatically for any general problem. This brings us to the domain of representation learn-

ing in which the low-dimensional features are learned automatically from the data.

Conventionally, representation learning has relied on Big Data to automatically learn features

for any application [35, 58]. However, representation learning for small-sample datasets poses

significant challenges due to curse of dimensionality [106]. Therefore, in this chapter, we first

demonstrate how network science can be used for representation learning on many general, small-

sample problems. We also show that deep learning problems such as model compression can suffer

from lack of data. To alleviate this problem, we propose a new technique for model compression

in absence of data.

4.1 Towards Representation Learning for Small Data

Due to curse of dimensionality [106], learning low-dimensional features from high-dimensional

raw data is particularly challenging when the number of samples is small. Also, as seen in the

last chapter, many machine learning problems have an underlying network which governs the
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dynamics of the observed data. However, existing dimensionality reduction methods do not ac-

count for complex network characteristics (e.g., community structure [86]) hidden within the raw

data. Therefore, in this chapter, we propose a new community-based dimensionality reduction

framework called FeatureNet which targets precisely the small-sample problems for learning low-

dimensional features in many general problems such as digit recognition, Natural Language Pro-

cessing (NLP), cancer prediction, computational sustainability, etc. Our proposed framework first

creates a network from raw data to explicitly reveal complex network characteristics and then

exploits network representation learning techniques to learn low-dimensional embedding.

The small-sample problems are not limited to merely the dimensionality reduction domain, and

other well-known representation learning problems such as deep network model compression can

also suffer from lack of data. Specifically, existing model compression techniques rely on access to

the original or some alternate dataset [43, 51, 63, 132, 135]. However, for many applications, the

original data may not be available (due to privacy or regulatory concerns, e.g., speech data, medical

images/data, etc.). Therefore, towards the end of this chapter, we address the model compression

problem when no real data is available; we call this a data-independent model compression prob-

lem. To this end, we propose Dream Distillation framework, which first generates synthetic images

from a small amount of metadata, and then uses them for model compression. However, we first

explain the network science-based dimensionality reduction framework in the section given below.

4.2 Community-Based Dimensionality Reduction

As theoretically established in [30, 52, 54, 99], to obtain good classification performance in high-

dimensional spaces, the number of samples must be very large (e.g., ∼ 105 samples). Hence, for

problems with low number of samples (say, 100-1500 samples), extracting a set of useful features

from the high-dimensional data is a very challenging task [131]. Towards this, many excellent

dimensionality reduction techniques have been proposed in literature. For instance, there exist

linear techniques such as Principal Component Analysis (PCA), Linear Discriminant Analysis

(LDA), or non-linear neighborhood graph-based techniques such as Isomap, Stochastic Neighbor

Embedding (SNE), t-SNE, among many others [1, 42, 44, 69, 118]. The neighborhood graph-based

techniques largely rely on nearest-neighbor approach, where the size of the neighborhood is fixed
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for all samples.

In real world, networks constructed from raw data often possess complex characteristics such

as communities (i.e., groups of tightly connected nodes) and structural equivalence (i.e., nodes

with similar roles in network, e.g., hubs) [13, 14, 36, 112]. Therefore, such network characteristics

must be accounted for while computing network neighborhoods for dimensionality reduction as

they can lead to more accurate feature learning. Specifically, the neighborhood of a given node

must depend on the community it belongs to. By contrast, prior techniques like Isomap [118]

assume a rigid (fixed) neighborhood for all nodes in the network. Similarly, graph-based methods

such as SNE [42]/t-SNE [69] use a fixed parameter called perplexity which measures effective

number of neighbors. Hence, complex communities hidden within the raw data have not been

explicitly taken into account in prior methods.

Recently, representation learning has been proposed in the context of learning features on net-

works while accounting for community structure, e.g., node2vec [35], DeepWalk [96], community

preserving embedding [121], LINE [116], etc. We refer to this problem space as “Representation

Learning on Networks” throughout the chapter. However, the networks considered in this prior

art do not come from high-dimensional raw data, but rather from social networks (e.g., blogs,

Youtube, Flickr), authorship networks or Wikipedia webpage networks. Hence, the prior repre-

sentation learning on networks research does not directly address the problem of dimensionality

reduction. However, by capturing communities and structural equivalence, ideas from “representa-

tion learning on networks” domain can have significant implications for dimensionality reduction.

Therefore, in this chapter, we address the following key questions: Can representation learning

on networks have implications for dimensionality reduction by leveraging hidden communities in

raw data? If so, how can we best construct a network from high-dimensional data to optimally

capture its latent communities for dimensionality reduction?

To answer these questions, we propose FeatureNet, a new community-based dimensionality

reduction framework. We achieve this by contributing a new method that constructs a network

directly from the raw data while explicitly revealing its hidden communities; this enables us to

employ network representation learning ideas to learn low-dimensional community- and structural

equivalence-based features from this network, thereby reducing the dimensions of the dataset.

We demonstrate the effectiveness of our proposed framework on several small-sample problems
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from diverse applications like handwritten digit recognition, biology, physical sciences, NLP, and

computational sustainability (sizes mostly between 100 and 1500 samples).

4.3 Related Work

In this section, we discuss related work for FeatureNet. We first analyze the existing approaches

from two perspectives: (i) Network Representation Learning techniques, and (ii) Dimensional-

ity reduction methods. We then emphasize the key differences between our work and the prior

research.

4.3.1 Network Representation Learning Perspective

Recently, representation learning on networks has focused on community-based feature learning.

Our proposed FeatureNet differs in the following fundamental ways: (i) Prior techniques such as

node2vec, DeepWalk, community-preserving embedding, LINE, etc. explicitly require a network

as an input [35, 96, 116, 121]. (ii) The networks considered in this prior art are based on social

networks (e.g., Youtube, Flickr, blogs), or Wikipedia webpage networks which do not come from

high-dimensional raw data. In contrast, we start with high-dimensional (raw) data that does not

exist in such predefined network forms and learn the network structure directly from the raw data to

explicitly reveal its latent communities. Hence, given high-dimensional raw data but no predefined

network structure, none of these prior techniques can be used for dimensionality reduction.

For example, consider Arcene, a high-dimensional cancer benchmark dataset, where each sam-

ple comes from a patient and features specify the abundance of certain proteins1. This dataset does

not have a predefined network structure like in social networks. To perform dimensionality reduc-

tion on such a dataset, methods like node2vec, LINE, etc. are not a natural choice simply because

the initial dataset does not exist in a network form. This is where our key contribution lies – in rep-

resenting any kind of dataset as a network which reveals hidden communities in raw data; we then

use this network for dimensionality reduction using ideas from community-based feature learning.

To summarize, prior work in representation learning on networks constrains the community-

based feature learning only to social networks or Wikipedia networks and performs only the

1https://archive.ics.uci.edu/ml/datasets/Arcene
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network-based classification tasks (e.g., classify interests of a blogger based on communities/homophily

in a blog network). Our work, however, truly generalizes this “representation learning on net-

works” problem space to any classification problem which has high-dimensional data and does not

restrict it only to network classification tasks.

4.3.2 Dimensionality Reduction Perspective

Neighborhood graphs created from initial dataset have been common in dimensionality reduction,

e.g., K-nearest neighbor graphs in Isomap [118], or fixed perplexity in t-SNE [69]. However, to

the best of our knowledge, existing dimensionality reduction methods do not learn community-

based features. Further, unlike prior methods, our proposed FeatureNet does not define a rigid

neighborhood for each sample. Rather, the network neighborhood is automatically determined by

the community structure. This way, communities hidden within the raw data can be exploited for

dimensionality reduction. Of note, our newly proposed network construction approach is rooted

in the field of network science, where correlation-based networks have been used for knowledge

discovery [36, 112].

This completes the related work for FeatureNet. We next explain our proposed approach.

4.4 Proposed FeatureNet

Given a classification problem {X, y}, let X ∈ Rn×p denote the original dataset with n samples

and p features, while y ∈ Rn×1 denotes the labels. Also, let x(i) ∈ Rp×1 be the i-th sample in X .

Then, dimensionality reduction is a function f : Rn×p → Rn×d, where d is the number of features

in the reduced space (d << p).

Let X be the low-dimensional mapping of X , and X(i) ∈ Rd×1 be the i-th sample of X (i.e.,

the reduced representation of initial x(i)). Then, the problem is to find X which accounts for the

latent community structure and structural equivalences hidden within the raw data. Hence, unlike

established techniques such as Isomap, the network neighborhood for each sample in our approach

is not rigid, but rather takes communities and structural equivalences into account. To find such

a mapping, therefore, we maximize the probability of observing a certain neighborhood N of

sample x(i), conditional on its low-dimensional representation, as well as on its latent communities
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Figure 4.1: Complete flow of FeatureNet: (a) First, construct a network of samples using the proposed correlations-

based method to explicitly reveal hidden communities in raw data (Section 4.3.1). (b) Next, use representation learning

on this network to find the community-based low-dimensional features (Section 4.3.2).

and structural equivalences:

max
X={X(i)|i=1:n}

∑
x(i)∈X

log Pr(N (x(i))|X(i), C(x(i)),S(x(i))) (4.1)

where, C(x(i)) and S(x(i)) are latent variables containing information about communities and struc-

tural equivalence of sample x(i) hidden within the raw data.

To solve problem (4.1), we propose FeatureNet which: (i) transforms the raw data into a net-

work space to explicitly reveal data’s inherent communities, and (ii) performs representation learn-

ing on this network. Both of these steps are summarized in Fig. 5.4. Next, we present our proposed

network construction technique to reveal hidden communities naturally.

4.4.1 Network Construction using Raw Data: Proposed K-τ Method

To construct a network directly from raw data, we again follow a two step process: (i) construct a

correlation-based network (τ -step), and (ii) improve the density of network communities (K-step).

For the τ -step, we transform the initial high-dimensional data into a correlation-based network of

samples (i.e., each sample now becomes a node). This first step is a mapping l : Rn×p → Rn×n,

which yields G = l(X). Here, G ∈ Rn×n is the adjacency matrix of the network of samples:

Gij =

c(x
(i), x(j)) if c(x(i), x(j)) ≥ τ

0 if c(x(i), x(j)) < τ or i = j

(4.2)

where, c(·, ·) is a correlation function based on which the links are created, and τ is a threshold

used on c(·, ·) to remove weakly correlated links from the network.
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Figure 4.2: Adjacency Matrix for MNIST dataset network. (a) Threshold τ = 0.7 removes noise from the network

and reveals a clear community structure (i.e., the diagonal clusters). (b) Introducing a density parameter K fixes the

problem of sparse communities without adding significant noise and yields reliable low-dimensional representations.

Threshold (τ -step): Setting a higher τ removes the noise from the network by encouraging con-

nections only among samples of the same class (intra-class links) and not among samples of differ-

ent classes (inter-class links). To further elaborate, we consider MNIST handwritten digit dataset

where each sample has 784 features. Since our focus is on relatively small datasets, we randomly

select 1000 samples (100 images for each digit 0-9) from the MNIST database.

Next, we create a correlation-based network of samples from this 1000 × 784 dataset using

Eq. 4.2 and a threshold τ = 0.7. Fig. 4.2(a) illustrates the adjacency matrix of this network.

Clearly, the ten diagonal clusters in Fig. 4.2(a) represent the intra-class links, thus revealing the

hidden community structure of each digit. Moreover, using a high threshold of 0.7, most of the

noisy links in the network (i.e., the inter-class links) are removed. However, a too high threshold

can also result in some samples getting completely disconnected from the network and very sparse

communities (see digits 2 and 5 in Fig. 4.2(a) zoomed inset). To overcome this problem, we

introduce a network density parameter, K.

Network Density (K-step): To connect the disconnected nodes and increase the density of net-

work communities, we next connect each sample to its corresponding K highest correlated sam-

ples; i.e., after the thresholding step, if a sample x(i) has less thanK links, we connect it to samples

x(j)’s until it has K links. Here, samples x(j)’s are selected based on the K-highest correlations.

This step is a variant of the K-nearest neighbor approach to handle correlations rather than eu-

clidean distances (i.e., instead of K neighbors with minimum distances, we use K neighbors with
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maximum correlations). As shown in Fig. 4.2(b), introducing a network density parameter of

K = 7, (i) connects all disconnected nodes, and (ii) increases the density of diagonal clusters sig-

nificantly without too much additional noise (see the zoomed-in inset of Fig. 4.2(b)). Hence, the

threshold and density steps yield a K-τ method-based network of samples, G.

To summarize, our proposed approach creates a network from raw data using two parame-

ters: Threshold τ and Density K, which provide a tradeoff between the noise and the density of

communities. Best K and τ can be selected via cross-validation and a simple grid search which

generates an optimal neighborhood for each sample. Hence, in our approach, the neighborhood of

each sample is not rigid, rather is determined automatically by its community structure. Explicitly

revealing these hidden communities in raw data, therefore, enables the use of community-based

representation learning methods in dimensionality reduction.

4.4.2 Community-Based Representation Learning

The network of samples, G, often possesses many characteristics such as communities and struc-

tural equivalence. Once in the network space, therefore, the problem (4.1) reduces to:

max
X={X(i)|i=1:n}

∑
v∈V(G)

log Pr(NR
G (v)|X(i)) (4.3)

where, V(G) denotes the set of nodes in network G, and sample x(i) is now represented by a node

v in the network of samples. Finding the neighborhood of x(i),N (x(i)), now becomes the problem

of finding the network neighborhood NR
G (v) of node v in G. This network neighborhood can

be found using a strategy R, which can account for the latent community structure C(x(i)) and

structural equivalence S(x(i)). However, note that, this is precisely the skip-gram objective which

the recent research on network representation learning aims to optimize [35, 77, 96]. Therefore,

once the high-dimensional raw data is transformed into a network which explicitly reveals the

community structure, the final low-dimensional representation can be learned using techniques

such as node2vec [35]. Specifically, node2vec acts as a mapping h : Rn×n → Rn×d, which

yields X = h(G). The n × d matrix X contains the final low-dimensional features based on

hidden communities in raw data. Algorithm 2 shows these two stages of FeatureNet. Please refer

to [35, 77] for more information on the classic word2vec skip-gram objective and node2vec search.
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Algorithm 2 FeatureNet(X, τ,K)
1: Input: Raw Data X ∈ Rn×p, τ , K

2: Output: Low-dimensional representation X ∈ Rn×d

———K-τ method to reveal communities ———

3: A← corr(X ′) /* Pairwise correlations b/w samples */

4: G ← A

5: G(G < τ)← 0 /* Remove links below threshold */

6: NODES← V(G)

7: for all i in NODES do

8: a(i) ← A(i, :) /* ith row of A */

9: g(i) ← G(i, :) /* ith row of G */

10: while ||g(i)||0 < K do /* # links for node i < K */

11: {m, j} ← max(a(i))

12: Gij ← m

13: g(i) ← G(i, :)

14: aij ← φ /* Remove max element from a(i) */

15: end while

16: end for

——————————————————————

17: X ← h(G) /* Learn low-dimensional representation by solving problem (4.3). Use node2vec

search strategy to explicitly account for communities revealed by G */

4.5 Experimental Setup and Results

In this section, we present our setup and results in detail.

4.5.1 Experimental Setup

We use one-vs-rest logistic regression with L2 regularization for multiclass classification. Node2vec

parameters (return parameter p, and in-out parameter q) which control a trade-off between commu-

nities and structural equivalence, are optimized via a grid search on p, q ∈ {0.25, 0.75, 0.9, 1.5, 2, 4}.
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Table 4.1: Characteristics of the datasets

Area Dataset X (n× p) #classes Area Dataset X (n× p) #classes

Cancer (Bio.) Arcene 100× 10000 2 Comp. Sust. CE-GDP 1980 1015× 1095 17

Phys. Sci. Musk1 476× 166 2 Comp. Sust. CE-GDP 1990 1420× 1095 16

Hand Digits MNIST 1000× 784 10 Comp. Sust. CE-GDP 2000 1448× 1095 11

NLP CNAE-9 1079× 856 9 NLP Reuters (subset) 5946× 18933 65

Finally, FeatureNet parameters are also optimized using a grid search. τ is varied in steps of 0.05

from 0.6 to 0.95 while K is varied from 1 to 9. Best parameter values are given by 10-fold cross-

validation (CV).

To show the effectiveness of FeatureNet for any general problem, we conduct experiments on

eight datasets coming from five very different application areas as summarized in Table 4.1. Since

our focus in this chapter is on dimensionality reduction for relatively small datasets, the sample

sizes are mostly between 100 and 1500 in Table 4.1. Reuters subset data is used for analyzing

scalability of our approach. Table 4.1 contains five benchmarks from UCI ML repository2.

Table 4.1 also shows three datasets from the computational sustainability domain. Here, we

make a twofold contribution: First, we propose the following new computational sustainability

problem: “Given multiple years of daily carbon emissions (CE) data across the world, can we

correctly classify the GDP growth of different regions?”. Second, we contribute three new datasets

to further benchmark dimensionality reduction problems. The datasets are compiled using the

same carbon emissions database from Chapter 3 [2] and the world bank [119] data. The above

CE-GDP problem is solved for three years – 1980, 1990, and 2000. For instance, for 1980, we use

3 years (1978-1980) of daily CE data (p = 3 × 365 = 1095) and 1015 locations with available

1980 GDP growth data. GDP growth is categorized as follows: <-20% is class 0, -20% to -18% is

class 1, -18% to -16% is class 2, etc.

Finally, we compare our approach against ten3 well-established dimensionality reduction tech-

niques: (1) PCA, (2) PPCA, (3) Polynomial Kernel PCA (KPCA - Poly.), (4) KPCA – Gaussian

kernel, (5) Linear Discriminant Analysis (LDA), (6) SPE, (7) Deep Autoencoders, (8) SNE, (9)

t-SNE, and (10) Isomap. We used a dimensionality reduction toolbox [70] for these techniques.

2http://archive.ics.uci.edu/ml/index.php
3For the ease of presentation, we will report only the top six performers.
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Table 4.2: 10-fold CV F1-Macro and F1-Micro (Accuracy) for UCI benchmarks (d = 16): Best six prior methods

shown.

Dimension Arcene Musk1 MNIST Dimension CNAE-9

Reduction F1-Macro F1-Micro F1-Macro F1-Micro F1-Macro F1-Micro Reduction F1-Macro F1-Micro

PCA 0.7596 0.76 0.7502 0.7563 0.8069 0.808 PCA 0.855 0.852

PPCA 0.7681 0.7699 0.7502 0.7563 0.805 0.806 PPCA 0.855 0.8535

KPCA (Poly.) 0.7493 0.75 0.7034 0.7037 0.6655 0.679 SNE 0.8728 0.8721

SPE 0.6124 0.62 0.7354 0.7436 0.7872 0.789 SPE 0.8527 0.8535

t-SNE 0.7312 0.7399 0.709 0.7142 0.8837 0.884 t-SNE 0.8068 0.81

Isomap 0.6386 0.64 0.726 0.7331 0.8338 0.8349 Isomap 0.8317 0.8331

FeatureNet 0.8164 0.82 0.829 0.834 0.9128 0.913 FeatureNet 0.9229 0.923

4.5.2 Results

Below we present the results to demonstrate the effectiveness of our approach.

UCI Machine Learning Repository Benchmarks

In our experiments, we reduce the dimensions of each dataset from initial p features to d = 16

features. We then conduct logistic regression on the reduced features and report its 10-fold CV F1-

Macro and F1-Micro scores. Note that, F1-Micro scores have the same interpretation as classifica-

tion accuracy for multiclass classification problems. Table 4.2 presents these results for FeatureNet

and the best six traditional techniques for all UCI datasets. As shown, our proposed FeatureNet

significantly outperforms all six (and, hence, all ten!) prior dimensionality reduction methods.

For Arcene, FeatureNet achieves a F1-Micro of 0.82 improving over the best performing PPCA

method by 6.5%. Arcene is a challenging dataset because 3000 out of its 10000 features are

‘probes’ with no predictive power. This shows that our proposed FeatureNet is able to handle such

noisy datasets. Next, for Musk1, we achieve an improvement of 10.27% in F1-Micro scores over

the best traditional methods – PCA and PPCA. Similarly, for MNIST, we observe an improvement

of 3.28% in F1-Micro over the best performing t-SNE technique. Recall that, we are only using

1000 samples for MNIST and not all 60,000 images for training. In fact, all datasets used in the

present work are “relatively small” with samples mostly between 100 and 1500. This is why, deep

learning-based techniques such as autoencoders do not perform very well and, as expected, overfit
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the data.

Finally, for CNAE-9 dataset (NLP), we improve the F1-Micro by 5.83% over the best per-

forming SNE method. CNAE-9 is a business description text data for certain companies classified

according to economic sectors. Each document is processed using standard NLP techniques (e.g.,

stop-word removal, stemming, etc.) and is converted to a term frequency vector. This results in a

very sparse dataset wherein 99.22% of the raw data is all zeros.

In summary, we demonstrate that FeatureNet can handle diverse dimensionality reduction prob-

lems and significantly outperforms prior methods. Similar improvements are observed for F1-

Macro scores.

Empirical Evaluation of FeatureNet in theK-τ Parameter Space

Fig. 4.3 shows the impact of varying density K (y-axis) and threshold τ (x-axis) for each UCI

dataset. As shown, FeatureNet outperforms the traditional methods for several different combina-

tions of K and τ (see orange/red portions in Fig. 4.3). For instance, especially for Musk1, MNIST

and CNAE-9 (Fig. 4.3(b-d)), almost any combination of parameters gives a high classification ac-

curacy. Indeed, for Arcene (Fig. 4.3(a)), we observe that only a few parameter combinations give

high performance (e.g., for τ = 0.95 and all K values). A possible reason for FeatureNet’s behav-

ior for Arcene could be due to the additional noise in this dataset. We leave the theoretical analysis

of stability of FeatureNet as a future work (e.g., theoretically analyzing impact of addition of noise,

etc.).

Why we achieve performance gain?

As mentioned before, the parameters τ and K control the tradeoff between noise in the network

and density of communities. Consider the case τ = 0.85 and varying K’s for MNIST (i.e., the

rightmost column of Fig. 4.3(c)). For a high threshold of 0.85, the diagonal communities are even

more sparse than those shown in Fig. 4.2 where the threshold used was only 0.7. Now, if we

increase the density K, the F1-Micro score increases from 0.873 for K = 2, to 0.904 for K = 5, to

0.902 for K = 9 (probably too much noise for K = 9 case which reduces the performance). This

clearly demonstrates the tradeoff between the noise and density, and how it can affect the model

performance. Therefore, our K-τ method successfully captures the best tradeoff and thus yields a
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Figure 4.3: F1-Micro for varying K and τ : (a) Arcene, (b) Musk1, (c) MNIST, and (d) CNAE-9. Red (blue) indicates

higher (lower) accuracy. For all datasets, FeatureNet outperforms prior methods for many combinations of K and τ .

high classification accuracy.

Computational sustainability – A case study and new AI datasets

Table 4.3 shows F1-Micro for the competitive methods across the three years for the CE-GDP

datasets. As evident, FeatureNet significantly outperforms the best PPCA method by 40.13%,

22.51%, and 27.26% for 1980, 1990, and 2000, respectively. We also observed results like Fig. 4.3

for the CE-GDP datasets and also conducted experiments for varying the number of target dimen-

sions from d = 16 to 32. Again, FeatureNet outperforms other techniques (the top three methods

for CE-GDP, i.e., PPCA, Isomap and PCA) for all d. Therefore, we propose that our CE-GDP

datasets can also be used by the AI community to further benchmark dimensionality reduction

problems.

Finally, K-τ network shown in Fig. 4.4(a) for CE-GDP 2000 dataset demonstrates that Fea-

tureNet models the hidden communities with significantly different sizes very accurately, thus

explaining the excellent performance of FeatureNet. Hence, fixed neighborhood size or perplexity
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Table 4.3: 10-fold CV F1-Micro (Accuracy) for CE-GDP Problems (d = 16): Best six prior methods are shown.

Years PCA PPCA KPCA (Poly.) KPCA (Gauss.) t-SNE Isomap FeatureNet

1980 0.5123 0.6137 0.4108 0.4059 0.398 0.5241 0.86

1990 0.6098 0.6661 0.483 0.4845 0.5366 0.6443 0.8161

2000 0.625 0.6609 0.4544 0.4171 0.4682 0.6153 0.8411
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Figure 4.4: (a) K-τ network for CE-GDP 2000 shows communities with very different sizes that are accurately

modeled by FeatureNet. (b) Varying fixed neighborhood size in Isomap and other methods cannot capture such

variable size communities (d = 32).

methods (e.g., Isomap, t-SNE) cannot capture such massive heterogeneity in raw data’s community

structure. To show this, we vary the fixed neighborhood size for Isomap in Fig. 4.4(b). As shown,

FeatureNet is far superior to Isomap for all neighborhood sizes (FeatureNet’s F1-Micro approaches

0.9 for d = 32).

Note on scalability

To analyze the scalability of FeatureNet, we consider a subset of Reuters-21578 dataset in which

documents with multiple category labels were removed. This yielded 8293 documents from 65

classes with 18933 distinct terms4. Of the total 8293 documents, we focus on the given training

4See details at http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html.
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Table 4.4: Network characteristics

Case Dataset, #nodes #links

Parameters

(a) MNIST, 1000 6669

τ = 0.7, K = 7

(b) Reuters, 5946 719, 080

τ = 0.7, K = 30

(c) Reuters, 5946 > 2.1

τ = 0.5, K = 50 million

dataset of 5946 documents and report 10-fold CV classification F1-Micro after reducing its dimen-

sions from 18933 to 16. We compare FeatureNet with the top performers from above experiments

– SPE, PCA, and t-SNE as these were amongst the only few techniques that were able to finish

execution in a reasonable time (e.g., about 2-4 hours) using reasonable computational resources

(e.g., an 8-core Intel i7 desktop computer).

Table 4.4 shows the number of links for networks created using K-τ method for MNIST (Ta-

ble 4.4(a)) and two different cases for Reuters dataset (Table 4.4(b,c)). As shown, for relatively

small datasets, the number of links is not very big. However, for larger datasets, depending on the

hidden community structure for that dataset, the number of links can increase rapidly. Indeed, the

diagonal communities of the Reuters τ = 0.7 and K = 30 case (≈ 700, 000 links in Table 4.4(b))

are significantly more sparse than those of the τ = 0.5 and K = 50 case (> 2.1 million links in

Table 4.4(c)). Consequently, our proposed FeatureNet successfully reduced the dimensions and

finished executing for the former but not for the latter. In terms of the classification accuracy,

F1-Micro for SPE, PCA, and t-SNE were 0.725, 0.82 and 0.823 respectively, whereas FeatureNet

again significantly outperformed these techniques with a F1-Micro score of 0.867 (5.34% improve-

ment).

These results demonstrate that currently FeatureNet can indeed scale up to large datasets pro-

vided their networks contain several hundreds of thousands of links. However, optimizing Fea-

tureNet to handle datasets which result in several million links, provides an excellent venue for

future research.

So far, we have discussed the representation learning scenario for generic small-sample prob-
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lems using our proposed network science-based dimensionality reduction framework. Other well-

known representation learning techniques such as deep convolutional neural networks (CNNs)

have traditionally been used for Big Data problems (e.g., image classification) [58]. However,

the small-sample problems can still exist in deep learning space. For instance, model compres-

sion of deep networks, which usually relies on the original dataset, can suffer from lack of data.

We next discuss this important problem in detail and propose a new technique to perform model

compression in absence of data.

4.6 Data-Independent Model Compression

Complex deep neural networks with millions of parameters have achieved breakthrough results for

many vision, and speech recognition applications. In the IoT-era, however, the edge devices are

heavily hardware-constrained. Therefore, model compression of deep networks has now emerged

as an important problem. Towards this end, many state-of-the-art model compression techniques

such as pruning [132], quantization [68] and Knowledge Distillation (KD) [43, 135] have been

proposed. Pruning aims at removing redundant or useless weights from deep networks, while

quantization reduces the number of bits used to represent weights and activations. On the other

hand, KD trains a significantly smaller student model to mimic the outputs of a large pretrained

teacher model.

The existing model compression techniques above rely on access to the original training data

or some unlabeled dataset. Hence, most model compression research implicitly assumes access to

the original dataset. However, for many applications, the original data may not be available due to

privacy or regulatory reasons (e.g., private medical images, speech data, etc.). Consequently, the

industries deploying large deep learning models at the edge must compress them without access to

any original, private, or alternate datasets5 [67]. Therefore, in this chapter, we address the following

key question: How can we perform model compression when the original or unlabeled data for

an application is not available? We call this problem as data-independent model compression.

To answer this question, we propose a new framework called Dream Distillation [16]. Our

5Collecting alternate datasets for model compression may not always be possible, or can be very expensive/time-

consuming and, hence, infeasible.
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framework uses ideas from the field of deep network interpretability [94] to distill the relevant

knowledge from the teacher to the student, in absence of access to the original training data. Specif-

ically, our approach consists of two steps: (i) We first exploit a small amount of metadata and the

pretrained teacher model to generate a dataset of synthetic images, and (ii) We then use these syn-

thetic images for KD. To this end, our key goal is to generate synthetic data while preserving the

features from the original dataset such that the teacher can transfer the knowledge about these fea-

tures to the student. This effective transfer of knowledge via synthetic data can make the student

model learn characteristics about original classification problem without actually training on any

real data! By allowing users to deploy a model on IoT-devices without access to the private third-

party datasets, data-independent model compression techniques can truly accelerate the adoption

of AI on edge devices.

4.6.1 Preliminaries

We first briefly review Knowledge Distillation (KD) and feature visualization, both of which are

necessary for Dream Distillation.

Knowledge Distillation

KD refers to the teacher-student paradigm, where the teacher model is a large deep network we

want to compress [43, 135]. In KD, we train a significantly smaller student neural network to

mimic this large teacher model (see Fig. 4.5). KD has also been shown to work with unlabeled

datasets [59]. Of note, since the term “model compression” usually refers to pruning and quantiza-

tion, we assume KD to be a part of model compression, as it also leads to significantly compressed

models. For more details on KD, please refer to Section 2.3.

Feature Visualization

Feature visualization domain aims to visualize and understand which patterns activate various

neurons in deep networks [94]. Towards this, tools such as DeepDream [80] and Tensorflow Lu-

cid [105] can generate an image that maximizes a given objective. For example, Tensorflow Lucid

can be used to generate an image that maximally activates a given hidden unit (say, a neuron or a
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Figure 4.5: Knowledge Distillation (KD): A significantly smaller student model mimics the outputs of a large teacher

network, thereby compressing the model without losing significant accuracy.

channel). These generated synthetic images are called as the Dreams of a neural network. Since

our work is inspired by KD and feature visualization, we call our approach Dream Distillation.

Prior Art on Data-Independent Model Compression

Despite its significance, the literature on model compression in absence of real data is very sparse.

A relevant prior work is [67] where the authors propose a Data-Free KD (DFKD) framework.

However, there are major differences between DFKD and the present work:

1. DFKD requires significantly more metadata than our approach. Specifically, [67] argue that

using metadata from only the final layer under-constrains the image generation problem, and

results in very poor student accuracy. Consequently, DFKD assumes access to metadata at

all layers. In contrast, Dream Distillation assumes that metadata is available only at one layer

of the teacher network. Hence, in this chapter, we precisely demonstrate that metadata from

a single layer is sufficient to achieve high student accuracy, something that DFKD failed to

accomplish.

2. When using metadata from only one layer, DFKD achieves only 68-77% accuracy on MNIST

dataset [67]; this means the accuracy of DFKD will be even lower for significantly more

complex, natural image classification datasets like CIFAR-10. On the other hand, we demon-

strate 81-88% accuracy on CIFAR-10 dataset without training on any real data.

3. DFKD also proposes a spectral method-based metadata for synthetic image generation.
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However, both spectral methods and all-layer metadata can be computationally very expen-

sive and do not scale for larger networks. Compared to these, we follow a clustering-based

approach which helps generate diverse images while using significantly less computation.

Finally, [110] focus on data-free finetuning for pruning, and show the effectiveness of their

approach for fully-connected layers. In comparison, our work is much more general, as we do not

focus on just the finetuning of a compressed model, but rather on training a compressed student

model from scratch.

4.6.2 Proposed Dream Distillation

We propose Dream Distillation to address the following research question: In absence of the origi-

nal training dataset (or any alternate unlabeled datasets), how can we perform model compression

without compromising on accuracy? Specifically, for KD with teacher model trained on CIFAR-

10, datasets such as CIFAR-100 and tinyImagenet have been shown to be effective alternatives for

distilling relevant knowledge [59]. However, since alternate datasets may not always be available,

our focus here is to generate a synthetic dataset which can be just as effective at distilling knowl-

edge as these alternate data. Hence, we assume that the alternate/original data is not available;

rather, a small amount of metadata is given for model compression.

Metadata

We will use CIFAR-10 dataset throughout this chapter. To generate our metadata, we start with the

activation vectors generated by passing 10% real CIFAR-10 images through the given pretrained

teacher model. The activation vectors are simply the output of average-pool layer of the teacher

model (i.e., average output of final convolution layer; see Fig. 4.5). Then, we cluster these vectors

via k-means clustering. Finally, we use the cluster-centroids and the orthogonal principal compo-

nents (PCs) of clusters as our metadata. Fig. 4.6(a) illustrates our metadata for the airplane class

for CIFAR-10 dataset and 2-D visualization6 of activation vector clusters. By definition, centroids

refer to mean activations of clusters. Hence, using centroids reduces the privacy-concerns since

we do not use activations (or any other identifying information) directly from real images.

6Two-Dimensional Visualization via tSNE: https://bit.ly/2FUmCzj
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Figure 4.6: Dream Distillation: A data-independent knowledge distillation framework. (a) Metadata used by our

method consists of cluster centroids and principal components, and (b) tSNE visualization [69] of real data activations

and the generated target activations demonstrates that they belong to the same data distribution.

For WRN40-4 teacher model, our metadata merely amounts to 0.58MB which is about 100×

smaller than the size of even 10% real CIFAR-10 images (around 58MB). We next use this meta-

data (centroids and PCs) and teacher model to generate synthetic images. Of note, image genera-

tion techniques such as Generative Adversarial Networks (GANs) cannot be used for our problem

since GANs also rely on availability of real data [33].

Dream Generation and Distillation

Let ck be the centroid for cluster k, and pkj , j ∈ {1, . . . ,m} denote its m PCs. We first create

objectives from metadata, and then optimize them to generate images. Specifically, we add a

small noise to the centroids in the direction of PCs to generate new target activations: ti = ck +∑
j εjp

k
j , i ∈ {1, . . . , n}. Here, n is the number of images to be generated, and εj is Gaussian noise

for jth PC. To compute εj , explained variance of jth PC is used as the variance in the Gaussian

noise. Adding noise proportional to the explained variance of corresponding PCs makes our target

activations mimic the real activations.

Therefore, by adding small noise to mean activations (i.e., cluster-centroids), the target activa-
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tions emulate the behavior of real samples at teacher’s average-pool layer. In Fig. 4.6(b), we show

a two-dimensional visualization of target activations (blue triangles) and real data activations (red

circles) at the average pool layer of the teacher network. As evident, since the target activations

and real data activations overlap, their distributions are quite similar. Hence, the generated tar-

get activations can be reliably used for generating synthetic images. As a result, to generate the

images, we must find an image Xi whose average-pool activations are as close as possible to ti.

Therefore, we generate the synthetic images Xi as follows:

min
Xi
||g(Xi)− ti||22 i ∈ {1, . . . , n} (4.4)

where, the function g refers to the average-pool output of the teacher network. We used about

m = 50 PCs per cluster and generated a total of n = 50, 000 synthetic images for CIFAR-10

classes. To generate the synthetic images, we minimize the objective in (4.4) by using Adam

optimizer with a learning rate of 0.05, β1 = 0.9, and β2 = 0.999. We optimize the image Xi for

500 iterations. Finally, these synthetic images are used to train the student via KD.

The main advantage of our clustering-based approach is that it enables more diversity among

the generated synthetic images and, hence, achieves high accuracy. To summarize, the idea is to

generate synthetic images, and then use them to distill knowledge about real data to the student.

4.6.3 Experimental Results

For the CIFAR-10 dataset, our teacher is a large Wide Resnet (WRN) [135] WRN40-4 (8.9M

parameters, 95% accuracy) model, and our student model is WRN16-1 (100K parameters). Train-

ing the WRN16-1 student via Attention Transfer KD [135] on WRN40-4 teacher results in 91%

accuracy and 89× fewer parameters than the teacher.

Fig. 4.7(a) shows samples generated by our approach for different CIFAR-10 classes. As evi-

dent, for classes such as car, truck, deer, etc., key features like distorted-animal-faces/wheels are

visible. On the other hand, images from classes such as cat, frog, ship are hard to interpret. For

instance, to generate cat samples, the teacher network generally creates a striped pattern which

may not be the most distinguishing feature of a cat (although many cats do have a striped pattern!).

Therefore, the generated images do contain key features learned by the teacher network for vari-

ous classes (e.g., stripes for cats, etc.) even though the images look far from real. Hence, these
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Figure 4.7: (a) Generated synthetic data for CIFAR-10 classes, and (b) Accuracy of student models trained on random,

synthetic, alternate CIFAR-100, and real CIFAR-10 images.

synthetic images can transfer relevant knowledge about the real data.

Next, in Fig. 4.7(b), we compare student models trained via KD on four datasets: (i) random

noise images, (ii) images generated via Dream Distillation, (iii) CIFAR-100 as the alternate data,

and (iv) CIFAR-10 training set. The accuracy is reported for CIFAR-10 test set. The solid blue

line shows how the accuracy of Dream Distillation varies with the number of synthetic images

used for training (e.g., 10% data means 5000 synthetic images since we generated total 50, 000

images). Fig. 4.7(b) demonstrates that the accuracy of Dream Distillation is comparable to that of

CIFAR-100 (around 80%), both being around 10% lower accuracy than the student trained on real

CIFAR-10 data. Further, we demonstrate that the WRN40-4 student model (which is the same as

the teacher) trained via Dream Distillation achieves 88.5% accuracy on CIFAR-10 test set without

training on any real data! Again, for metadata available only at one layer, the prior DFKD model

achieves merely 68-77% accuracy even for MNIST dataset [67]. Hence, it would achieve much
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lower accuracy for CIFAR-10.

If the above generated sythetic images are used to train a model without the teacher, WRN40-4

model achieves only 44% accuracy, whereas the same model achieves 2× better accuracy with

the pretrained teacher model (88.5%). This shows that the generated images can very effectively

transfer knowledge from the teacher to the student. Hence, the images generated via Dream Distil-

lation can transfer significant knowledge about the real data without accessing any real or alternate

datasets.

Finally, we vary the student model from WRN16-1 (100K parameters) to WRN40-2 (2.2M

parameters) to WRN40-4 (9M parameters) and see how the accuracy changes as the model size

increases. The results are shown in Fig. 4.8. Clearly, for the images generated via Dream Distil-

lation, the accuracy of the compressed models gradually increases from 79% for 100K parameters

to about 86% for WRN40-2 model, all the way to 88.5% for WRN40-4 model. In all three cases,

the accuracy of Dream Distillation is comparable to that of alternate real data.

This completes Dream Distillation. Overall, we have demonstrated that data-independent

model compression techniques can greatly increase the scale of deep learning at the edge since

industries can quickly deploy compressed models without the need for proprietary datasets.

85



4.7 Summary

In this chapter, we have addressed representation learning for Small Data problems. We have first

shown that network science concepts such as community structure can be exploited to learn useful

low-dimensional features for many general problems. Specifically, such network characteristics

are hidden within the raw data and can be used for dimensionality reduction. Next, we have shown

that deep learning problems such as model compression can also suffer from lack of data.

To this end, we have first proposed FeatureNet, a new community-based dimensionality re-

duction framework for small sample problems. We have proposed a new technique to construct

a network from any general raw data while revealing its hidden communities. Community-based

low-dimensional features are then learned using a representation learning framework. We have

demonstrated the effectiveness of FeatureNet across five very different application domains rang-

ing from handwritten digit recognition, biology, physical science, NLP, to computational sustain-

ability. We have further shown that FeatureNet significantly outperforms many well-known di-

mensionality reduction techniques such as PCA, PPCA, deep autoencoders, t-SNE and Isomap.

This ultimately shows how network science ideas can have huge implications for dimensionality

reduction.

Finally, we have proposed Dream Distillation, a new approach to address model compression in

absence of real data. Towards this, we have used a small amount of metadata to generate synthetic

images, and then used those images for model compression. Our experiments have shown that

models trained via Dream Distillation can achieve up to 88.5% accuracy on the CIFAR-10 test set

without ever training on any real data!

In the next chapter, as a natural extension of our current theme of model compression and

network science for representation learning, we will explicitly address how network science can

lead to new research directions in model compression.
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Chapter 5

Network-of-Neural Networks: Memory- and

Communication-Aware Model Compression

In the last chapter, we addressed general representation learning and correlations-based networks

for small datasets for which deep learning is not suitable due to overfitting (e.g., for many problems

in biological systems, sustainability, etc.). We further showed how model compression problems

can suffer from lack of data. However, we did not explicitly explore the advantages of network

science for deep network model compression. As we know, for problems such as image classifica-

tion, deep learning methods such as Convolutional Neural Networks (CNN) are used to accurately

classify the image data. Such models, however, not only require enormous training datasets, but

also often utilize millions of parameters to correctly work.

Motivated by this immense computational complexity, there is a fundamental need for highly

efficient deep learning model architectures which can enable faster and computationally inexpen-

sive training, as well as inference. Towards this end, many model compression techniques exist

such as pruning [63, 132], quantization [51, 60], and Knowledge Distillation (KD) [43, 135]. Most

of this prior art aims to compress the given deep networks in order to fit them on a single device.

However, since Internet-of-Things (IoT) naturally implies a network of connected devices, an im-

portant question is why restrict the intelligence to a single device, when a network of connected

devices is available instead? Therefore, in this chapter, we propose new directions in model com-

pression for an efficient inference across a network of edge devices. Indeed, since a network is

involved in our problem, memory and communication pose critical constraints. Hence, we demon-

strate how network science can enable an effective memory- and communication-aware model

compression.
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5.1 Memory- and Communication-Aware Model Compression

Even though deep learning has gained significant importance, it is challenging to implement these

models on resource-constrained devices. Such devices are commonly used in the ever-growing

Internet-of-Things (IoT) domain. For instance, microcontrollers such as Arm Cortex-M which is

used in many IoT applications such as Smart Healthcare, Keyword Spotting, etc., has only 500KB

available memory [138]. For such devices, prominent deep networks like AlexNet/Resnets that use

up to 60M parameters are unsuitable. Therefore, there is a fundamental need for highly-efficient

compressed deep learning models to enable fast and computationally inexpensive inference on the

resource-constrained IoT-devices.

To this end, several deep learning model compression techniques exist in the literature. The

most common approaches are pruning [39, 132], quantization [51, 60], and Knowledge Distillation

(KD) [4, 43] and its variants such as Attention Transfer (AT) [135]. Since deep models can learn

a large number of redundant or useless weights/channels, pruning aims to remove such parameters

without sacrificing accuracy [39, 132]. Moreover, quantization reduces the number of bits required

to represent weights and/or activations in deep networks [51, 60]. Also, KD-based approaches rely

on teacher-student training, where a teacher model is a large deep network we want to compress.

KD trains a significantly smaller student model with far fewer layers/width, to mimic the teacher

network (see Fig. 5.1a). Further, most prior art on model compression refers to pruning and quan-

tization. However, since KD can lead to significantly compressed models, we assume that KD is

also a model compression technique throughout this chapter. Of note, the present work consid-

ers model compression and distributed inference for Convolutional Neural Networks (CNNs) used

in image classification problems. However, distributed inference for other deep learning models

such as Recurrent Neural Networks (RNNs) for speech/natural language applications can also be

explored in future work.

The existing approaches mentioned above cannot be used for extremely memory-constrained

IoT scenarios (e.g., microcontrollers with a total memory of 500KB [113, 138]). Yet, a lot of smart

home/cities applications can have several such connected but resource-limited sensors. To achieve

higher accuracy, pruning- or KD-based student models often grow in size due to which such mod-

els cannot fit on an individual IoT-device and must be distributed across multiple devices; this
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Figure 5.1: (a) Prior art: Distributing large student models that do not fit on a single memory-limited IoT device leads

to heavy communication at each layer. (b) Proposed NoNN results in several disjoint students that can fit on individual

IoT-devices: No communication until the very final layer.

distribution of computation on multiple devices generates significant overhead in communication.

For example, Fig. 5.1a illustrates KD with a teacher model containing around 9 million parameters,

and a large student model containing about 2 million parameters. Also, suppose that we are trying

to deploy the student model (which will require 2MB memory after quantization) on IoT-devices

with only 500KB memory budget. Distributing this student model on multiple such IoT-devices

will incur heavy communication at each of its intermediate layers. Consequently, in addition to

the computation cost, a major (and largely ignored) impediment for widespread deployment of

deep learning on IoT is this communication cost during distributed inference, which occurs due to

extremely limited memory in IoT environments.

Starting from the above ideas, we aim to answer the following key question: How can we com-

press a given deep learning model into multiple separate modules that: (i) fit within the memory

and performance budgets per device, (ii) minimize the communication latency when distributed

across a network of edge devices, and (iii) achieve high accuracy?

To address this question, we propose Network of Neural Networks (NoNN), a paradigm to

derive low memory-, computation-, as well as communication-cost student architectures from a

single (powerful) but much larger teacher model. As shown in Fig. 5.1b, a NoNN consists of mul-

tiple, memory-limited student networks which individually learn only a specific part of teacher’s
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function. Indeed, training an individual student to mimic only a part of teacher’s function is a

significantly simpler problem than mimicking its entire function. Since this highly-parallel archi-

tecture of NoNN allows us to effectively increase the overall model-size, we obtain higher accuracy

without significantly increasing the communication costs among the disjoint students. These indi-

vidual students can then be deployed on separate resource-constrained IoT-devices to perform the

distributed inference (see Fig. 5.1b).

Finally, to distribute knowledge from a teacher to multiple students, we propose a new ap-

proach based on network science [85, 86]. Specifically, as our objective is to obtain individual

student models below certain memory-constraints, network science allows for significant flexibil-

ity in terms of how the knowledge from the teacher is distributed across multiple students. For

instance, with our proposed network-theoretic approach, we uniformly distribute knowledge from

the teacher across the students to achieve high accuracy.

Overall, we make the following key contributions:

1. Since there has been limited research on performing efficient distibuted inference on highly

memory-constrained IoT devices, we propose a new NoNN paradigm to compress a large

teacher into a set of independent and highly-parallel student networks. In prior works, stu-

dent models that cannot fit on a single device can lead to significant communication at all

layers, whereas NoNN communicates only at the last layer. This makes NoNN an ideal can-

didate for distributed deep learning. To the best of our knowledge, we are the first to intro-

duce a communication-aware model compression for distributed inference on IoT-devices.

2. We are also the first to formulate the model compression problem from a network science

angle. By building a network of filter activation patterns, we exploit principles from net-

work science such as community detection [86] to model how to split teacher’s knowledge

into multiple disjoint partitions which, in turn, results in disjoint and compressed student

modules.

3. Extensive experiments on five well-known image classification tasks demonstrate that NoNN

achieves significantly lower memory (2.5×-24× reduction w.r.t. teacher) and computation

(2×-15× fewer FLOPS w.r.t. teacher), with minimal communication costs and similar accu-

racy as the teacher model. Also, NoNN achieves higher accuracy than prior art.
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Table 5.1: Comparison to Prior Art

Area Model Communication- Distributed Complements

Compression Aware Inference our work

Quantization [51, 60] X × × X

Pruning [38, 53, 63, 132] X × × X

Separable convolutions [31, 103, 137] X × × X

KD [4, 43, 135] X × × ×

SplitNet [55] × X X ×

MoDNN, DeepThings [71, 140] × X X X

Proposed NoNN X X X X

4. We further deploy the proposed models for CIFAR-10 dataset on Raspberry Pi, and more

powerful Odroid devices to evaluate several scenarios with homogeneous and heterogeneous

devices. We demonstrate 6.22×-12.22× gain in performance and 12.99×-14.36× gain in

per node energy w.r.t. teacher. Moreover, for distributed inference on multiple edge devices,

NoNN results in up to 33× speedup in total latency w.r.t. a prior model compression baseline.

We also show that the proposed approach is robust and achieves high accuracy even with a

reduced number of devices.

In the next section, we discuss the existing literature and show how our problem is different

from the prior art. We also review key concepts that will be used throughout this chapter.

5.2 Related Work

We first discuss prior art on model compression and distributed inference. We then briefly review

Knowledge Distillation (KD), and network science later in this section.

5.2.1 Model Compression/Distributed Inference

Table 5.1 summarizes the key differences between the present work and the existing literature

from model compression and distributed inference. Specifically, existing approaches for model

compression such as quantization [51, 60], pruning [38, 63, 132], KD [4, 43, 135], and separa-

ble convolutions [31, 103, 137] are not communication-aware and do not address the distributed
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inference problem. For instance, although pruning is effective at reducing parameters/FLOPS,

it does not result in highly-parallel model architectures. Clearly, pruned models that cannot fit

on a single IoT-device will need to be distributed across multiple devices which will incur heavy

communication costs (see Section 5.3).

On the other hand, existing distributed inference techniques such as SplitNet [55], MoDNN [71],

and DeepThings [140] do not exploit ideas from model compression (e.g., pruning/distillation, or

memory-constraints). Specifically, SplitNet [55] splits the network into disjoint parts during train-

ing without any constraints on individual network partitions. This unconstrained splitting can

result in large partitions which may not conform to memory-budgets of individual IoT devices.

Hence, taking specific memory budgets into account is more effective (and necessary) in order

to meet hard memory-constraints of IoT-devices; such constraints are not considered by Split-

Net [55]. Moreover, by partitioning the feature activation maps of convolutions, MoDNN [71] and

DeepThings [140] successfully reduce the FLOPS and the feature activation map memory during

distributed inference. However, both of these works assume that the mobile device is big enough

to fit the entire deep learning model, which is a strong assumption and, hence, they do not address

the memory due to model weights. In contrast, we take the distributed inference one step further to

an even more constrained IoT environment (e.g., 500KB memory) where the physical IoT-devices

cannot fit a single model. In such cases, the model itself must be split in non-intuitive ways which

can result in heavy communication cost at every layer. Therefore, in this chapter, our proposed

NoNN compresses the model (to reduce the memory and computation costs such that individual

modules fit on the devices) while accounting for communication among the student nodes.

Note that, most of the prior techniques mentioned above are complementary to our work so

they can be used synergistically on top of our approach. For instance, another recent work called

MeDNN [72] extends MoDNN with a pruning technique to reduce the per-node computation.

Since pruning can still be performed on top of our proposed NoNN and because both MeDNN

and MoDNN partition the feature maps (and not the weights), our work is complementary to

MeDNN [72]. We also show that we can achieve higher accuracy than several KD baselines and

SplitNet in our experiments, i.e., the only two techniques in Table 5.1 that do not complement our

work.
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5.2.2 Knowledge Distillation

Recall that KD [43] consists of two deep networks: (i) Teacher is the large deep network which

we want to compress, and (ii) Student is a significantly smaller neural network which is trained to

mimic the output of the teacher network. This is illustrated in Fig. 5.2(a). KD uses both the hard-

label loss (based on true labels from the dataset), as well as the soft-label loss (based on logits) to

train a significantly smaller student model. Mathematically, let lT and lS be the logits of teacher

and student respectively, and τ is a temperature parameter (see [43] for more details), y be the true

labels, and P τ
T and P τ

S respectively denote the softmax over relaxed logits lT/τ and lS/τ . Then,

the KD loss (Lkd) is given by:

Lkd(θS) = (1− α)H(y, PS) + αH(P τ
T , P

τ
S ) (5.1)

where, H is the standard cross-entropy loss, θS denotes the parameters of the student network,

and α controls the weight of hard-label loss vs. soft-label loss. The temperature parameter in the

second term of Eq. (5.1) improves knowledge transfer from the teacher to the student. Finally,

variants of KD like Attention Transfer-based KD (ATKD) additionally use intermediate outputs

of teacher’s convolution layers while training the student [135]. Of note, KD-based techniques

have also been proposed for RNNs [56, 117]. However, our focus in this chapter is on KD-based

distributed inference for CNNs.

This completes our review of KD. More details on KD are given in Section 2.3. We next briefly

describe the network science concepts used in this work.
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5.2.3 Network Science Concepts for Model Compression

To our knowledge, we are the first to utilize network science concepts for model compression.

Below, we review the core ideas from network theory used in this chapter.

Node degree and hubs in a network Node degree refers to total number of connections for a

given node in the network. Specifically, for an undirected network G with nodes V , links E , and the

adjacency matrix F = {Fij} describing link weights between any two nodes i, j ∈ V , degree ki of

a node i refers to total number of links connected to node i. Moreover, a network can have a scale-

free structure where some nodes have many connections but most nodes have low degree [85];

these nodes with a large number of connections in scale-free networks act as hubs of information.

Fig. 5.2(b) shows nodes A, B, and C as examples of hubs in a network. As evident, these nodes

have significantly higher number of connections than other nodes in the network.

Community Structure Recall that many real world networks are characterized by groups of

tightly connected nodes known as the community structure [86] of a network. For example, social

networks have several communities of users, where a community can refer to a group of users with

common interests like sports or politics. Formally, a community can be defined as a group of nodes

for which the number of connections within the group is significantly higher than what one would

expect at random. Fig. 5.2(b) shows the community structure in a network.

We will use the concept of hubs and communities in the context of deep networks throughout

our approach. Next, we provide concrete evidence towards why memory- and communication-

aware model compression is needed.

5.3 Motivation

We now discuss the impact of horizontally splitting a Convolutional Neural Network (CNN) on

distributed inference performance. When a CNN does not fit on a single memory-constrained

device, it must be split horizontally for parallel execution on multiple devices (for better utilization

of all resources). However, as mentioned in Section 5.1, this can lead to heavy communication
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Figure 5.3: Splitting a deep network horizontally leads to huge communication cost at every step since the next layer

convolutions require access to all the input channels. Original computation is equally divided between the two devices.

when each split is deployed on a separate device. To verify this assumption, we conduct the

following experiment.

We start with a large Wide Resnet1 (WRN40-4) teacher model with 8.9 million parameters,

trained on CIFAR-10 dataset [134]. This model takes about 86ms for inference on a single power-

ful x86 machine. Next, we split the WRN40-4 model horizontally (e.g., if a layer has 32 channels,

we split it into two parts with 16 channels each). We then deploy the individual horizontal splits on

two powerful x86 machines connected via a wired point-to-point connection. As shown in Fig. 5.3,

since each successive convolution layer requires input from all the output channels from the pre-

vious layer, we need to make the output from all devices available to all other devices. Clearly,

this results in significant communication overhead. This is why, even though the computation hap-

pens on two powerful x86 machines, the inference time increases from 86ms to 1006ms (> 10×

increase in latency). Hence, this experiment shows that, when a deep network does not fit on an

IoT-device, splitting it directly is not an option. Obviously, the problem gets exacerbated for edge

devices which often operate on low frequencies and, hence, take even longer for computation.

As a result, a new memory- and communication-aware model compression technique is imper-

ative for distributed inference on IoT-devices. Therefore, we next describe our proposed approach.

1The base WRN architecture consists of three groups: G0, G1, and G2 with width (i.e., #channels) in each group

as [16, 32, 64] respectively. Width multiplier is used to increase the number of channels per group [134]; WRN40-4

implies 40 layers, and a width multiplier of 4 which results in [64, 128, 256] channels per group (see Fig. 5.5a).

95



....

S

O

F

T

M

A

X

CLASS:

CAT

LOGITS

INPUT

IMAGE

Convolution (conv) Layer Fully-Connected (fc) Layer Softmax Layer

a.    TEACHER NETWORK

1000

FINAL Conv Layer

c.    NoNN STUDENT NETWORK

Activation patterns

at final conv layer

. . . .

S

O

F

T

M

A

X

CLASS: CAT

LOGITS

INPUT

IMAGE

1000

Depth dT

Depth dS dS<< dT

Each student learns only a part of teacher's 

function. Overall, NoNN learns same logits 

as teacher with a common fc

TRUE

LABELS

Average 

Pool

Average Pool 

and

Concatenate

b.    TEACHER'S KNOWLEDGE PARTITIONING

Community detection on network of filters 

can generate disjoint parts of teacher's function

TRAIN THE CORRESPONDING STUDENTS (ACTIVATION TRANSFER LOSS)

Partition 1
Partition k

d.    FILTER ACTIVATION NETWORK

CO-ACTIVATION ACTIVATION HUBS

Semantically similar partitioning
Equal importance partitioning 

(high activation filters are hubs!)

Important filters from same class

will always be within the same partition

Important filters from same class

will tend to be in separate partitions

Partition 0:

Disconnected

Filters

artition 2
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5.4 Proposed Approach

We first formulate our problem (Section 5.4.1), followed by our proposed solution which consists

of two stages: (1) Network science-based knowledge partitioning of the teacher: We find disjoint

partitions of teacher’s knowledge which lead to independent students with minimal communication

costs (Section 5.4.2, Fig. 5.4b). (2) Proposed NoNN architecture and the training process: We

first select an efficient model architecture for each student that reduces its memory and FLOPS,

and then jointly train individual NoNN students on disjoint partitions from teacher (Section 5.4.3;

Fig. 5.4c).

5.4.1 Problem Formulation

In this section, we formulate teacher’s knowledge partitioning subject to the resource-constraints

of individual students.
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As shown in Fig. 5.4a, the output of final convolution (fconv) layer of teacher (Tfconv) gets

average-pooled and passes through the fully-connected (fc) layer to yield logits. The logits then

pass through the softmax layer to generate probabilities. Since our goal is to break teacher’s

learned function into multiple disjoint parts, we focus on teacher network’s fconv. Specifically, we

partition the teacher’s fconv layer by looking at the patterns of activation of filters as validation

images pass through the teacher (see Section 5.4.2).

Partitioning a teacher’s fconv often uncovers a partition P0 which does not contribute to teacher’s

validation accuracy. Therefore, we should find and remove the largest set of filters P0 ⊂ Tfconv that

does not contribute to teacher’s accuracy since such filters only transfer noise to the students dur-

ing distillation (Section 5.4.2). Moreover, the sizes of partitions of Tfconv should be almost equal

so that the resulting student networks fit within a memory budget Bmem, while their computation

costs fit a FLOP budget BFLOP . Let h : R→ R compute the memory of student i depending on its

partition size |Pi|, and f : R→ R compute the resulting FLOPS. Then, the knowledge-partitioning

problem is mathematically expressed as follows:

min
P={P0,P1,...,Pk}

|∆val| − |P0|

subject to |P1| ≈ |P2| . . . ≈ |Pk|, Pi ∼ Rule R, Pi ⊂ Tfconv

∀i ∈ {0, . . . , k}

|∆val| < ε

max(h(|P1|), h(|P2|), . . . , h(|Pk|)) < Bmem

max(f(|P1|), f(|P2|), . . . , f(|Pk|)) < BFLOPS

(5.2)

where, |∆val| denotes the absolute value of change in validation accuracy due to removal of P0

filters. Also, |Pi| does not denote the absolute value but rather the number of elements in the set

Pi (i.e., the cardinality of Pi). The first constraint in (5.2) aims to keep the sizes of all partitions

(except P0) almost equal since the sizes of student models must be below the fixed memory bud-

get Bmem. The objective function and the second constraint aim to minimize change in teacher’s

validation accuracy while removing as many useless filters from Tfconv as possible. The last two

constraints in problem (5.2) specify the per-device memory- and FLOP-budgets that must be sat-

isfied by each student (which will be deployed on individual devices). Note that, while it is always

possible to satisfy memory- and FLOP-constraints, there will be a tradeoff between model-size or
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computation and the NoNN accuracy. For instance, for fixed number of students, larger individ-

ual student modules can lead to higher overall accuracy. Finally, the rule R to determine how the

partitions are formed is described below.

5.4.2 Network Science-Based Knowledge Partitioning via the Proposed Fil-

ter Activation Network

We propose a network science-based solution to the knowledge partitioning problem. The idea is

to uniformly distribute knowledge from teacher’s fconv using network science in order to jointly

train individual students in the NoNN.

To partition teacher’s fconv, we first build a network F = {Fij} of filter activation patterns,

where i and j are two filters. Now, let ai denote the average activity of a filter i for a given

image in the validation set (val). Average activity of a filter i is defined as the averaged output

of the corresponding output channel of teacher’s fconv. For instance, suppose a teacher network’s

fconv has 256 output channels, and height and width of its activation map is 8 × 8 pixels. Then,

to obtain average activity of filter i, we average the value of its 8 × 8 output channel activation

map. Essentially, we use this average activity metric as a measure of importance of a filter for a

given class of images; that is, the higher the average activity of a filter, the more important it is for

classification for some class of images. In Fig. 5.4d, each circle depicts a filter at teacher’s fconv,

and filters shown in same color activate for similar classes. Also, the bigger the size of the circle,

the more important is the filter for the corresponding class (i.e., it has higher average activity).

To create the filter activation network, there exist multiple strategies (i.e., rule R’s) in which

the filters can be connected. Fig. 5.4d illustrates two such strategies: (i) Activation Hubs (AH):

Encourage connections between very important and less important filters (i.e., less number of high-

importance filters get surrounded by many low-importance filters and thus act as hubs), and (ii) Co-

Activation (CA): Filters that activate together for similar classes get connected. The former rule

encourages partitions of roughly equal importance (since each partition will have a few important

filters). The latter partitions the filters into semantically similar parts. Formally,

Fij =


∑

val aiaj|ai − aj| AH Rule∑
val

aiaj
|ai−aj |+1

CA Rule
(5.3)
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Let us analyze what happens during the AH case. If i and j are two filters with average ac-

tivities ai and aj , respectively, the Fij link weight for AH case will be high if, for a given image,

either ai is high and aj is low, or vice versa. Note that, if either ai or aj is close to zero, that link

is not created. Further, when ai and aj are both very high for the same image (i.e., both filters are

important for same class), then that link will also not be encouraged (since the link weight will be

low due to the |ai − aj| part). Therefore, important filters from the same class will be discouraged

from connecting together. Consequently, for AH Rule, highly important filters (with high ai) will

be encouraged to connect with not-so-important filters (from same or other classes). Important

filters from same classes will be forced to occupy separate communities; hence, the knowledge is

distributed uniformly across the students. Similar discussion holds for CA Rule where the com-

munities represent semantically-similar features. Of note, this flexibility in partitioning teacher’s

fconv comes from network science ideas.

Of course, there can be other ways filters may be connected. Indeed, if the dataset contains too

many semantically similar classes, CA can lead to heterogeneous student models (because many

filters from Tfconv will go into a few partitions). Hence, to obtain student models of similar sizes,

we only explore AH in this chapter. In matrix form, adjacency matrix of AH network can be

written as:

FAH =
∑
n∈val

ana
T
n � |Dn −DT

n |, (5.4)

where, an is the vector of average filter activities (ai’s) for each image n ∈ val, matrix Dn contains

all columns as an, and � denotes element-wise multiplication. To partition this AH network, we

need to detect communities by maximizing a modularity function as explained in the network

science literature [86]:

max
g={g0,g1,...,gl−1}

1

2m

∑
ij

[
FAH
ij −

1

γ
· kikj

2m

]
δ(gi, gj), (5.5)

where, m is #edges, ki is degree (number of connections) of node i, resolution γ controls the

size/number of communities, and δ is Kronecker delta. The idea is to find groups of tightly

connected nodes, g = {g0, g1, . . . , gl−1}, which map the nodes V to l communities. Finally,

these l communities are converted to k partitions Pi by combining the communities such that

the partition sizes are almost equal (so that resulting students stay within the budget). This par-

titioning P is then used to train individual student networks. Of note, removing community g0

99



(which consists of all disconnected nodes in the filter network) often has very little impact on

teacher’s accuracy. Hence, partition P0 = g0 is obtained directly by community detection. Con-

sequently, we solve problem (5.2) by detecting and removing the largest community g0 that does

not change teacher’s validation accuracy, and then combine the rest of the communities to form

the remaining partitions. For instance, say we have four remaining communities after remov-

ing g0: {|g1| = 12, |g2| = 14, |g3| = 25, |g4| = 30} (|x| indicates size of group x), and we

want to combine them into two partitions of nearly equal sizes. Then, we can combine them as

P = {|P1| = |g2 ∪ g3| = 39, |P2| = |g1 ∪ g4| = 42}. Hence, we obtain the required k almost equal

partitions from l communities.

5.4.3 Network of Neural Networks (NoNN)

Once we have partitioned the teacher’s fconv, we jointly train our student networks on individual

partitions from Tfconv as shown in Fig. 5.4c. However, we must first make the following design

decisions: (i) Select the deep network architecture for individual students, and (ii) Select how

students are connected together in NoNN.

Student Architecture Selection

Similar to prior art in KD [43, 135], we select our individual student networks to be significantly

reduced versions of the teacher (i.e., far fewer layers and lower width). Specifically, we pick our

individual student models based on user-defined memory- and FLOP-constraints for IoT-devices.

For instance, for CIFAR-10 dataset, our teacher is Wide Resnet model WRN40-4 with 40 layers

and width multiplier of 4. That is, as shown in Fig. 5.5a (left), it has 64 channels in first group,

128 in second group, and 256 in third group. Also, suppose that our each individual student must

have less than 500K parameters. Then, we select our individual student (see Fig. 5.5a (right))

with 16 layers and channel-width appropriately adjusted so that each student has less than 500K

parameters. Note that, student networks are not exactly the same as they mimic different partitions.

Therefore, we need an additional 1 × 1 convolution layer to make the dimensions equal between

the teacher’s knowledge partition and individual student’s output layer. Next, we describe the

architecture of NoNN containing multiple such students, and the training process.
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Figure 5.5: (a) Selecting an individual NoNN student architecture: Reduce depth and channel-width so that it fits

within the desired budgets. (b) Overall, NoNN trains a tree-shaped network (where possible) with some initial layers

common (denoted asG0). At inference time, replicate the common groupG0 and put individual students on separate

devices.

NoNN Architecture

A NoNN consisting of two students is shown in Fig. 5.5b. As evident, wherever possible, we make

the initial few layers from the students common (since the knowledge learned at initial few layers

will be common for all students). Moreover, at inference time, the common layers between all

students can be simply replicated across multiple devices without significant increase in memory

per student (since the common group is not too big). Once the common group is replicated, the

individual students are completely independent and do not communicate until the final fc layer

(see Fig. 5.5b). Hence, we obtain a final NoNN architecture which consists of multiple disjoint

students. The output from all students is concatenated and passed through a fc to yield logits.

Training Loss

To train the overall NoNN, we use the KD loss (see Eq. (5.1)) and, as given below, we additionally

propose a new loss function called activation-transfer for transferring partitioned knowledge from

the teacher to individual students. The main motivation behind the activation-transfer loss function

is that each individual student must mimic the corresponding partition of teacher’s knowledge.
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Specifically, for each partition of teacher’s knowledge, we want to minimize the error between

activations of the teacher’s filters (that belong to the given partition) and activations of filters in the

corresponding student. We define the activation-transfer loss function as given below:

LAct(θS) =
∑
p∈P

∥∥∥ vFT (p)

||vFT (p)||
− vFS (p)

||vFS (p)||

∥∥∥2

2
(5.6)

where, vFZ (p) = vec(AFZ(p)), Z ∈ {T, S} is the vectorized fconv activations for partition p ∈ P of

teacher or for individual student network in NoNN, and the ||vFZ (p)||, Z ∈ {T, S} terms denote the

partition-wise normalization. Hence, the total loss is given by L = Lkd(θS) + βLAct(θS) which

can be minimized via stochastic gradient descent.

This completes our proposed NoNN. We next present detailed experimental evaluation for

NoNN.

5.5 Experimental Setup and Results

In this section, we first present our experimental setup and then results for different datasets and

NoNN architectures.

5.5.1 Experimental Setup

We compress various deep networks for five well-known image classification tasks: CIFAR-10,

CIFAR-100, Scene [98], Caltech-UCSD-Birds (CUB) [125], and Imagenet. Scene and CUB

datasets belong to the transfer learning domain where a pretrained model is finetuned on a different

problem. For comparison, we consider strong teacher-student baselines like KD [43], Attention-

transfer with KD (ATKD) [135]. For KD and ATKD, we use models from WRN family [134] as

single, large students. Also, total parameters in NoNN (i.e., parameters in all students combined)

are comparable to the parameters in KD/ATKD baseline models. We also show that we outperform

prior models like Splitnet [55]. Further, we show experiments with up to 8 student networks for

CIFAR-10/100. With these experiments, we thoroughly demonstrate that NoNN compresses the

teacher model into disjoint subsets which do not communicate until the fc layer.

We first train the teacher model on 90% of training dataset while saving 10% for validation.

This validation set is used for building the filter activation network to partition the teacher’s knowl-
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Figure 5.6: Teacher, baseline student, and NoNN models for various datasets. (a) WRN-40-4 teacher, WRN-16-2

baseline, and 2-student NoNN for CIFAR-10. (b) A larger 2-student NoNN (NoNN-2S-XL) can be distributed on

three separate devices to keep FLOPS under a budget. (c, d) 4-student and 8-student NoNNs. (e) CIFAR-100 models,

(f) Transfer learning models. After replicating the common groups (if any), the individual students in our proposed

NoNN will communicate only at fc layer.

edge. Then, we use the Activation Transfer loss given in Eq. (5.6) and KD-loss to train the com-

pressed NoNN model. Moreover, all the accuracies reported in the chapter are on test set for the

respective datasets. We set the number of partitions, k = 2. To build more than two students,

since our objective is to keep the individual student architectures as similar as possible, we simply

shuffle the filters in these two partitions while transferring knowledge to rest of the students. This

ensures that the size of students is not too diverse and limits the possible factors that can con-

tribute to the improvement in accuracy of our model. Also, we set α = 0.9 and selected the best
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β = {101, 102, . . . , 104} for both ATKD [135] and NoNN. For training NoNN, we set the initial

learning rate as 0.1 and used a momentum of 0.9. Finally, our entire framework is implemented in

Pytorch which is run on NVIDIA GTX 1080-Ti and Titan Xp GPUs.

5.5.2 Results

We first show results on CIFAR-10/100 and transfer learning datasets (Scene, CUB), and then our

preliminary results for Imagenet.

CIFAR-10

Fig. 5.6a depicts our teacher model for CIFAR-10 as WRN40-4 and our baseline student for KD

and ATKD as WRN16-2. As evident, knowledge from partitions of only 34 and 46 filters from

teacher’s fconv is transferred to student-0 and student-1, respectively (via 1×1 convolutions). The

rest 176 out of 256 filters at teacher’s fconv do not contribute to teacher’s accuracy and, hence,

form partition P0 (or community g0) in FAH ; this partition is not used for transferring knowledge

to NoNN students. We set BFLOPS ≈ 200M which is close to baseline FLOPS used by WRN16-2

model. Further, based on our initial motivation w.r.t. Arm Cortex-M, Bmem = 0.5M parameters

(since for models quantized to 8-bits, parameters < 0.5M means less than 500KB of memory).

As shown in Table 5.2, our NoNN-2S model (Fig. 5.6a) achieves higher accuracy than the base-

line student model. Note that, each student in NoNN utilizes fewer FLOPS (i.e., 167M FLOPS)

than the allowed budget. Moreover, although each student has 0.43M parameters, due to common

G0, total parameters for NoNN-2S in Fig. 5.6a is 0.82M (comparable to 0.7M in WRN16-2). Fur-

ther, after replicating G0, student-0 and student-1 will not communicate with each other until the

final fc layer. Clearly, when quantized, our individual student models of 430K parameters can fit on

a device with 500KB memory (430K parameters are after replicating G0). Indeed, if a device can-

not fit more than 500K parameters, prior models such as WRN16-2 (with 700K parameters) will

need to be distributed across multiple devices which will lead to communication at every layer;

that is, when distributed, the baseline WRN16-2 will communicate at all 16 layers, whereas NoNN

communicates only at the final layer.

This situation gets exacerbated by higher accuracy baseline student models (e.g., 40-layer
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Table 5.2: CIFAR-10 Teacher-Student Results∗

Model #parameters #FLOPS Accuracy

(largest student) (largest student)

Teacher WRN40-4 8.9M 2.6G 95.49%

KD WRN16-2 [43] 0.7M 202M 93.79± 0.15%

ATKD WRN16-2 [135] 0.7M 202M 93.83± 0.08%

NoNN-2S 0.43M∗∗ 167M 94.32± 0.17%

KD: NoNN-2S-XL 0.46M 245M 93.96± 0.09%

NoNN-2S-XL 0.46M∗∗ 245M∗∗∗ 94.53± 0.19%

∗For statistical significance, results are reported as mean ± standard deviation of five experiments.

∗∗All NoNN #parameters/FLOPS are reported for one student only. Complete NoNN has very similar #parameters as baselines for fair

comparison. Our contribution is to show that NoNN can be broken down into disjoint parts that stay below certain budgets and do not

communicate.

∗∗∗NoNN-2S-XL can be distributed onto three devices as shown in Fig. 5.6b.

WRN40-2) for which communication costs at every layer grow rapidly. In contrast, as we shall

see shortly, our student models can be very flexible: we can have larger students (see Fig. 5.6b), or

many disjoint students without significantly increasing the communication costs (e.g., see NoNN-

4S and NoNN-8S in Fig. 5.6(c, d)). Concrete energy and latency for CIFAR-10 experiments are

reported in the hardware deployment described in Section 5.6.

For an even higher per-device FLOP budget (say, 250M), a NoNN-2S-XL student architecture

can be distributed on three devices (see Fig. 5.6b). Although the larger student in this case has

0.46M parameters (G0 → G1b → G2b), due to a bigger common G0 group, total parameters for

NoNN-2S-XL is 0.77M (again, comparable to 0.7M in WRN16-2). Also, each individual student

in this model has higher FLOPS because the common group G0 is wider and has 245M FLOPS.

Since it is impractical to replicate this group, as shown in Fig. 5.6b, we can assign a completely

new device (device-0) to this group and put G1a → G2a (G1b → G2b) on device-1 (device-2).

Table 5.2 demonstrates that our NoNN-2S-XL achieves even better accuracy (¡1% away from

the teacher). Moreover, this increase in accuracy is not only due to an increased FLOP budget. To

demonstrate, we show that filter network community-based knowledge transfer from teacher plays

a more significant role in accuracy improvement. If we simply train our NoNN-2S-XL student
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Table 5.3: CIFAR-100 Teacher-Student Results∗

Model #para (largest #FLOPS (largest Accuracy

student) student)

Teacher WRN28-10 36.5M 10.48G 79.28%

KD WRN16-3 [43] 1.5M 446M 73.99± 0.26%

ATKD WRN16-3 [135] 1.5M 446M 74.90± 0.17%

NoNN-2S 0.85M 345M 75.74± 0.31%

∗For statistical significance, results are reported as mean ± standard deviation of five experiments.

model via KD, i.e., without the LAct loss defined in Eq. (5.6), the accuracy increases only slightly

over the baseline WRN16-2 (e.g., 93.96% vs. 93.79%). Therefore, community-based knowledge

partitioning is extremely important for successfully training our proposed NoNN.

Next, we show that NoNN is scalable to many datasets and many model sizes for different

memory and FLOP budgets.

CIFAR-100 and Comparison with SplitNet

Table 5.3 shows results for CIFAR-100. Here, the teacher is a WRN28-10 model with 36.5M pa-

rameters and our baseline student is WRN16-3 model containing 1.5M parameters (see Fig. 5.6e).

Therefore, we create a NoNN with overall 1.5M parameters as shown in Fig. 5.6e; this NoNN can

be split into two students where the larger student has 0.85M parameters (after replicating G0).

Also, the FLOPS for our larger student are lower than the WRN16-3 baseline. Again, NoNN-2S

model is found to be more accurate than KD and ATKD, while creating disjoint students that can

fit within some memory budget (say, 1MB). Once our disjoint students fit within the 1MB bud-

get, techniques like MoDNN [71] can further distribute our model’s computation on more devices

with similar memory-constraints to reduce the FLOPS. MoDNN assumes that the model fits on the

device, and our work makes it possible to meet the memory-constraints.

We next compare our model to SplitNet [55] that splits a deep network into multiple disjoint

parts (albeit without any model compression ideas such as resource-constraints). Kim et al. ob-

tained two CIFAR-100 models via SplitNet: (i) A 7.42M parameter WRN model with 2 sub-groups

which achieves 76.04% accuracy, and (ii) A 4.12M parameter model with 4 sub-groups which

achieves 75.2% accuracy. For fair comparison with SplitNet, we create two corresponding models:
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First with 2-students (7.42M parameters), and the second with 4-students (4.13M parameters), re-

spectively. While keeping the experimental setup same as SplitNet (e.g., same validation set size,

etc.), we achieve 79.07% accuracy for the 7.42M parameter model, and 77.42% accuracy for

the 4.13M parameter model. Therefore, the proposed NoNN significantly outperforms SplitNet for

similar model-sizes. Moreover, the NoNN-2S model shown in Table 5.3 which has merely 1.5M

total parameters (i.e., 0.85M parameters per student) achieves higher accuracy than the 4.13M

parameter SplitNet model.

Varying Number of Students

Now, we vary students from two to eight for CIFAR datasets. As evident from Table 5.4, NoNN

models achieve close to teacher’s accuracy while reducing memory/FLOPS by orders of magni-

tude (i.e., 2.5×-24× reduction in #parameters and 2×-15× reduction in FLOPS w.r.t. teacher).

Specifically, the NoNN-8S model in Fig. 5.6d achieves 95.02% accuracy (i.e., less than 0.5% away

from teacher) while using eight separate students (after G0 is replicated), each of which can fit

within 167M FLOPS and 430K parameters (i.e., < 500KB when quantized to 8-bits), and do not

communicate until the final fc layer. Overall, this results in 2600/(167 × 8) ≈ 2× reduction in

FLOPS, and 8.9/(0.43× 8) ≈ 2.5× reduction in parameters over the teacher.

Finally, to compare NoNN-8S for CIFAR-10, we also experimented with a larger WRN40-2

student (40 layers, 2.2M parameters, and 655M FLOPS) with ATKD [135]. Although, this model

achieves similar accuracy of 95.03%, it clearly does not result in an architecture that can be dis-

tributed on multiple devices (since it will require 2.2MB storage when quantized to 8-bits). As a

result, distributing this single model on multiple devices will lead to heavy inter-device communi-

cation at each of the 40 layers (see Section 5.3), whereas our model will communicate only at the

final layer. This clearly highlights the significance of our proposed NoNN.

Transfer Learning Datasets

We now demonstrate the effectiveness of NoNN for transfer learning tasks where the idea is to

finetune a model pretrained on Imagenet w.r.t. a new dataset. Table 5.5 shows results for two

such datasets: (i) Indoor Scene Classification, (ii) Caltech-UCSD Birds. For both datasets, we

used Resnet-152 as teacher model, Resnet-34 as baseline student, and our NoNN consists of two
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Table 5.4: Accuracy for more students∗

#S CIFAR-10 CIFAR-100

NoNN ∆M∗∗ ∆F∗∗ NoNN-XL ∆M ∆F NoNN ∆M ∆F

2 94.32± 0.17% 10× 7.7× 94.53± 0.19% 11× 5× 75.74± 0.31% 24× 15×

4 94.64± 0.16% 5.1× 3.9× 94.87± 0.14% 6.3× 3.3× 77.07± 0.18% 12× 7.6×

6 94.90± 0.06% 3.5× 2.6× 95.02± 0.10% 3.9× 1.7× 77.25± 0.24% 7.7× 5×

8 95.02± 0.08% 2.5× 2× 95.28± 0.07% 2.9× 1.3× 77.03± 0.17% 5.7× 3.8×

T 95.49% 1× 1× 95.49% 1× 1× 79.28% 1× 1×

∗For statistical significance, results are reported as mean ± standard deviation of five experiments.

∗∗∆M (∆F) shows compression rate, i.e., ∆Memory (∆FLOPS) for complete NoNN (i.e., parameters of all students combined) w.r.t. teacher.

Table 5.5: Transfer Learning Results∗

Model #para (1 #FLOPS (1 Accuracy ∆M∗∗ ∆F∗∗

student) student) Scene CUB

Teacher Resnet-152 58M 11G 79.44% 80.94% 1× 1×

KD Resnet-34 [43] 22M 4G 76.92± 0.39% 78.59± 0.22% 2.5× 2.8×

ATKD Resnet-34 [135] 22M 4G 77.63± 0.94% 79.10± 0.56% 2.5× 2.8×

NoNN-2S 11M 2G 77.48± 0.76% 79.81± 0.33% 2.5× 2.8×

∗For statistical significance, results are reported as mean ± standard deviation of five experiments.

∗∗∆M (∆F) shows compression rate, i.e., ∆Memory (∆FLOPS) for complete NoNN (i.e., parameters of all students combined) w.r.t. teacher.

separate Resnet-18 models with a common fc layer (see Fig. 5.6f). As evident from Table 5.5 and

Fig. 5.6f, our NoNN-2S model (total 23M parameters) consists of disjoint parts of 11M parameters

each, which do not communicate until the last layer. Also, for Scene dataset, NoNN-2S achieves

slightly lower (but still comparable) accuracy than ATKD on Resnet-34. However, NoNN-2S

achieves much higher accuracy than prior approaches for CUB.

Preliminary Imagenet Results

We used the fastai setup [49] to obtain imagenet results in a fast and inexpensive way. Our teacher

model is Resnet-34 with 73% top-1 and 91% top-5 accuracy. We used Resnet-18 model (11.68M

parameters) as a baseline ATKD student which achieved 69.98% top-1 and 89.50% top-5 accuracy.

Our NoNN consists of two students (each with around 6M parameters; total 11.69M parameters).

For training our NoNN, we use attention transfer losses [135] on each student since activation
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transfer loss led to some underflow problems2. Even with this setup, our NoNN achieved compa-

rable accuracies, i.e., 69.82% top-1, and 89.61% top-5 while ensuring that the two students do not

communicate until the last layer. With availability of more resources, we should be able to improve

these results even further.

So far, we have shown that NoNN achieves higher accuracy than several baselines, and minimal

communication among students. We have also demonstrated that NoNN achieves close to teacher’s

accuracy with 2.5×-24× lower memory, and 2×-15× fewer FLOPS than the teacher model. Next,

we deploy our models on real edge devices and show significant gain in performance and energy.

5.6 Case Study: Hardware Deployment

In this section, as a case study, we deploy our NoNN models on two hardware-constrained devices

to quantify their effectiveness in terms of latency and energy on real hardware.

5.6.1 Hardware Setup

We implement NoNN on edge devices such as Raspberry Pi (RPi) and Odroid-XU4S. We demon-

strate an extensive exploration of two scenarios that can benefit from our approach: (i) Homoge-

neous case in which all devices are identical, and (ii) Heterogeneous case, where devices have dif-

ferent resources and computing power. We perform detailed evaluation of accuracy, performance,

and energy for each scenario. We show these results for our teacher (WRN40-4), NoNN-2S, and

NoNN-8S models trained on the CIFAR-10 dataset.

We use eight Raspberry Pi-3 Model-B and eight Odroid-XU4S boards. Each RPi has an Arm

Cortex-A53 quad-core processor with nominal frequency of 1.2GHz and 1GB of RAM. We scaled

the frequency of RPi’s down to 400MHz as the RPi’s running at maximum frequency demonstrated

unstable behavior and would often crash due to high temperature. The XU4S boards have a Sam-

sung Exynos5422 SoC, which has an Arm big.LITTLE architecture with 4 big Cortex-A15 and 4

little Cortex-A7 cores, and 2GB of RAM. The Odroid is executed at the nominal frequency: 2GHz

2Fastai uses a floating point-16 (fp16) format for computation on 8 NVIDIA Volta GPUs. Due to an underflow

problem on fp16 (which is well-known to happen with fp16 format), we couldn’t use activation transfer LAct losses

for training our NoNN.
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for the big cores and 1.4GHz for the little cores. To maximize performance, we run the inference

on the big cores in the Odroids.

In order to measure voltage, current, and power, we use the Odroid Smart Power 2 for the

Odroid-XU4S and AVHzY USB Power Meter for the RPi’s. In addition, we use an x86 machine

(Core i7), further referred as server, to send the images to the devices, concatenate the results, and

apply the fc layer. Of note, the fc is small and could also be placed in another edge/mobile device.

We perform all of our experiments with a point-to-point wired local network connecting all devices

together.

Since the NoNN models were built with PyTorch, we use TVM3, a deep learning compiler that

optimizes NN models for several hardware architectures, to deploy the trained model into the RPi’s

and Odroid boards. To achieve this, the PyTorch models are converted into an intermediate repre-

sentation with Open Neural Network Exchange (ONNX) [27]. Then the ONNX representation is

used by TVM to generate the binary that is deployed in the target device. In addition, we integrate

these binaries into a TCP-wrapper so that each student can be distributed to separate devices and

the communication is performed through the TCP protocol.

5.6.2 Hardware Results

We first show the results for NoNN when all devices are identical (i.e., the homogeneous case).

Then, we address the heterogeneous scenario, where one device is more powerful than the rest. We

also discuss the case when some devices are unavailable for inference.

Homogeneous Devices

Table 5.6 and Table 5.7 present the evaluation of NoNN-2S, NoNN-8S, and teacher models for

RPi’s and Odroids respectively. In these experiments, each student is deployed on a different

device, so in the 8-student case we have eight separate devices (either RPi or Odroid). From the

experiment in Section 5.3, since splitting the teacher model horizontally leads to more than 10×

increment in latency (even on powerful x86 machines), we executed the teacher on a single edge

device, as otherwise it would take even longer.

3TVM Compiler: https://tvm.ai/
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Table 5.6: Accuracy, Performance, and Energy Results for CIFAR-10 on both Raspberry Pi

Raspberry Pi

Teacher 2S 8S
Improvement

2S 8S

Accuracy 95.49% 94.32% 95.02% -1.17% -0.47%

Latency (ms) 1405 115 150 12.22× 9.37×

Energy per node (mJ) 3430.67∗ 238.98 249.15 14.36× 13.77×

Theoretical FLOPS per student 2.6G∗ 167M 167M 15.56× 15.56×

∗Teacher model is executed on a single node since splitting the teacher model onto multiple devices incurs heavy communication latency (see

Section 5.3). NoNN energy and FLOP numbers are reported per student because we are mostly concerned with per node budgets for memory and

FLOPS.

Table 5.7: Accuracy, Performance, and Energy Results for CIFAR-10 on both Odroid-XU4S

Odroid-XU4S

Teacher 2S 8S
Improvement

2S 8S

Accuracy 95.49% 94.32% 95.02% -1.17% -0.47%

Latency (ms) 224 25 36 8.96× 6.22×

Energy per node (mJ) 3084.08∗ 219.07 237.45 14.08× 12.99×

Theoretical FLOPS per student 2.6G∗ 167M 167M 15.56× 15.56×

∗Teacher model is executed on a single node since splitting the teacher model onto multiple devices incurs heavy communication latency (see

Section 5.3). NoNN energy and FLOP numbers are reported per student because we are mostly concerned with per node budgets for memory and

FLOPS.

On the RPi’s, NoNN-2S improves the performance and energy per node by 12.22× and 14.36×

w.r.t. teacher. Also, since NoNN-8S synchronizes eight devices, it achieves 9.37× better latency

and 13.77× better energy per node. The same trend is observed for the Odroid boards, having

8.96× and 14.08× improvement for NoNN-2S in performance and energy per node, respectively,

and 6.22× and 12.99× for NoNN-8S. Note that, the reduction in theoretical FLOPS for NoNN

w.r.t. the teacher is about 15×, while energy per node reduction for both RPi’s and Odroids is

13-14×. This shows very good agreement between theory and practice. Further, the latency and

energy per node do not increase significantly between NoNN-2S and NoNN-8S for both devices.

Therefore, our proposed NoNN leads to significant gains in performance and per node energy,
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Table 5.8: Average Latency Breakdown Per Inference

Latency (ms)
Raspberry Pi Odroid-XU4S x86

2S 8S 2S 8S 2-Split Teacher

Computation 101.91 106.24 19.01 20.60 86

Communication 13.10 43.76 6.00 15.40 920

while maintaining accuracy within 0.5%-1.17% compared to the teacher.

Table 5.8 presents the average latency breakdown for computation and communication per im-

age, considering the 2S and 8S cases. The computation time for one image increases by merely 4%

and 8% for RPi and Odroid, respectively, when going from 2S to 8S, because each device operates

in parallel. But when communication is considered, the overhead of sending and receiving data

for 8S increases the average latency by 3.34× for RPi’s, and 2.57× for Odroid boards (compared

to the 2S-case). Again, this communication cost is very small compared to the cost incurred from

directly splitting the single, large models. For instance, we have 43ms communication latency for

distributing NoNN-8S on RPi’s. In contrast, splitting the teacher on x86 incurs 1006−86 = 920ms

communication latency (see Section 5.3), which is 21× higher than NoNN-8S.

Comparison of Latency for Distributed Inference w.r.t. a Model Compression Baseline

Next, we present a concrete, side-by-side comparison between the distributed inference latency

incurred by our proposed NoNN and ATKD [135], a traditional model compression baseline. Note

that, we compare the latency of NoNN against ATKD [135] as it achieves the best baseline ac-

curacy results. Consequently, for this experiment, we use the ATKD model WRN40-2 (2.2M pa-

rameters, 95.03% accuracy on CIFAR-10 dataset) distilled from the same teacher model as above

(i.e., WRN40-4, 8.9M parameters, 95.49% accuracy). To achieve higher accuracy, the size of the

model compressed via ATKD grows significantly and, therefore, it must be distributed across mul-

tiple resource-constrained devices as it may not fit within the given per-device memory budget

(henceforth known as the split-ATKD experiment); similar to the split-teacher experiment above

(see Section 5.3 and Table 5.8), ATKD baseline incurs communication at each intermediate layer.

Since TVM generates a single binary file for the entire deep network, models compiled in TVM

cannot be used to perform such split-teacher or split-ATKD experiments on RPi’s (as we need to
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Table 5.9: NoNN and Split-ATKD Latency on RPi’s (Pytorch)

Split-ATKD (WRN40-2) NoNN-8S

4 RPi’s 8 RPi’s 8 RPi’s

Accuracy 95.03% 95.03% 95.02%

Parameters per device 550K 275K 430K

FLOPS per device 163M 82M 167M

Total latency per inference (s) 23 28.5 0.85

Speedup with NoNN 27× 33× −

extract the intermediate outputs at each layer and communicate them across devices). Hence, for

the following split-ATKD experiments, we install Pytorch 0.4.1 on all eight RPi’s to run distributed

inference for both split-ATKD and NoNN-8S.

Table 5.9 shows the accuracy, parameters per device, FLOPS executed per device, and total la-

tency for NoNN-8S and split-ATKD models in pytorch on RPi’s. We distribute the ATKD baseline

in two different ways:

1. ATKD split on four RPi’s (split-ATKD-4S): Each RPi for this case stores about 550K

(2.2M/4) parameters and executes about 163M (655M/4) FLOPS. This experiment simulates

the scenario where each device has, say, close to 500K-parameter memory-budget (similar

to the 430K parameter-budget considered in NoNN for the CIFAR-10 dataset).

2. ATKD split on eight RPi’s (split-ATKD-8S): Each RPi for this case stores around 275K

(2.2M/8) parameters and executes merely 82M (655M/8) FLOPS. Similar to NoNN-8S, this

case compares the performance of split-ATKD on eight separate devices.

Note that, the split-ATKD-4S case has slightly more parameters than the single NoNN-8S student

(550K vs. 430K) but executes slightly fewer FLOPS than NoNN-8S (163M vs. 167M). On the

other hand, the split-ATKD-8S case executes far fewer FLOPS than a single NoNN-8S student

(82M vs. 167M) and also stores fewer parameters than NoNN-8S (275K vs. 430K). As evident

from Table 5.9, despite the lower computation involved in both the split-ATKD cases, the heavy

communication at each layer incurred by split-ATKD-4S (split-ATKD-8S) results in a total latency

of 23s (28.5s). In contrast, NoNN-8S takes only 0.85s (in pytorch) to perform the distributed

inference4, which is 27× (33×) better than the split-ATKD-4S (split-ATKD-8S) baseline, while

4The total latency for distributed inference via NoNN-8S increases from 150ms in TVM (see Table 5.6) to 850ms in
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achieving nearly the same accuracy. Hence, this result emphasizes the importance of our proposed

NoNN for distributed deep learning inference on a network of IoT-devices.

Heterogeneous Devices

To demonstrate NoNN’s flexibility, we perform the following experiment: we start with a homo-

geneous scenario for the RPi’s, then, gradually move each student to an Odroid board, depicting an

environment where we have several small devices (RPi’s) and one slightly more powerful device

(Odroid), the latter running on the big cores to maximize performance. Each small device (RPi)

executes only one student, while the more powerful device (Odroid) executes multiple students.

Fig. 5.7a breaks down the latency into three parts: latency of RPi’s, the single Odroid, and

the total latency including the server. The total latency represents the execution time, starting

when the server transmits the first image and ending when fc layer is applied (after receiving and

concatenating results from all students). The RPi performance represents the latency (i.e., both

computation and communication time) for the slowest device.

As the Odroids are considerably faster than the RPi’s in the current setup, a single Odroid

is able to execute four students in the same amount of time a RPi takes to compute one student

(Fig. 5.7a). As the number of students in the Odroid increases even further, its latency becomes

a bottleneck and the total latency increases. The difference between the total latency and the

slowest device is the communication time between the server and the devices, which is 30.65ms

on average. The server (x86 machine) takes 0.1ms to concatenate and apply the fc layer, which

is negligible. Note that, until four students are deployed in Odroid, the total latency in Fig. 5.7a

keeps on reducing since the server can process the Odroid results while the RPi’s are still running

the individual students. Hence, performing this task in parallel reduces the critical path.

Fig. 5.7b depicts the energy consumption for all RPi devices and the single Odroid device. As

evident, we have a trade-off among performance, energy, and number of devices. For instance,

when the Odroid runs just one student, the total energy gets minimized because Odroid is more

energy-efficient than the RPi for the one student case. However, as we increase the workload

for the Odroid (i.e., number of students), the total energy increases even though the number of

pytorch. This shows that the device-level optimizations performed by TVM are important for deep learning inference

on edge devices.
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(a) Performance per Inference

(b) Energy Consumption per Inference

Figure 5.7: Performance and energy as the number of Raspberry devices is reduced and the workload for the Odroid

board is increased, always executing a total of eight students.

devices (RPi’s) decreases. In the current setup, inference on eight separate RPi’s consumes the

same amount of energy as using six RPi’s plus two students on the Odroid. Comparing the two

extreme cases (eight students in eight RPi’s, or all eight students in a single Odroid), the Odroid

consumes 25% more energy.

Therefore, this evaluation demonstrates three important aspects: (i) NoNN approach demon-

strates good performance in both homogeneous and heterogeneous environments, (ii) In terms of

energy, distributing the students on several devices instead of using a single more powerful device

can reduce the total energy consumption for inference. (iii) Finally, to maximize the energy savings

for the entire system, deploying NoNN on a combination of several devices can trade-off between

energy dissipation and number of devices.
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Figure 5.8: Accuracy as some devices become unavailable due to device failures (e.g., due to processor or network

failures, and battery depletion). NoNN achieves more than 91% accuracy, on average, when only three devices are

available. When four devices are available, NoNN achieves more than 93% accuracy.

Robustness of NoNN

We now evaluate a scenario where some devices may become unavailable due to a variety of

reasons such as power depletion or network failure. We evaluate all possible cases in which such

devices may fail. For instance, for six active devices, any two devices may fail, resulting in 28

possible scenarios, and so on for the remaining cases.

Fig. 5.8 shows the accuracy drop as we remove some devices. On an average, NoNN is still

able to achieve more than 91% accuracy when only three devices are available. Moreover, if a

minimum of four devices are available, the average accuracy is more than 93%. As more devices

become unavailable, the difference between the minimum and the maximum accuracy increases

since the final decision depends on output from all devices. When only a few devices are available,

the final result depends on the characteristics of each student, some being able to deliver higher

accuracy than others. For instance, one of the students is able to achieve 82.82% accuracy alone

(i.e., the maximum point when only one student is active in Fig. 5.8). Therefore, deploying this

student on the primary device (which will always be available) will guarantee at least 82.82%

accuracy. Other devices can then be used to further improve the accuracy of the system. Hence,

NoNN is robust to random device failures. Of note, robustness can also be formulated as part of

the partitioning problem itself; this, however, is left as a future work.
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5.7 Summary

In this chapter, we have proposed a new NoNN paradigm to compress a large teacher model into

multiple highly-compressed student modules that can be distributed across a network of edge

devices with minimal communication overhead. To this end, we have first proposed a network

science-based partitioning of teacher’s knowledge, and then trained individual students on the cor-

responding partitions. With extensive experiments, we have demonstrated that NoNN achieves

close to teacher’s accuracy with significantly lower memory (2.5×-24× gain w.r.t. teacher) and

computation (2×-15× fewer FLOPS w.r.t. teacher), while guaranteeing that individual modules

of NoNN fit within some given memory/FLOP budget. We have also shown that NoNN achieves

higher accuracy than several baselines with no communication among students until the last layer.

Finally, we have deployed the proposed models for CIFAR-10 dataset on Raspberry Pi and Odroid,

and have demonstrated 6.22×-12.22× improvement in performance and 12.99×-14.36× in energy

per node w.r.t. teacher. We have further shown that NoNN model results in up to 33× reduction in

total latency for distributed inference on multiple edge devices w.r.t. a state-of-the-art model com-

pression baseline. Hence, the proposed communication-aware model compression can ultimately

lead to effective deployment of deep networks on multiple memory-constrained IoT-devices.

This completes our proposed network science-based model compression. We demonstrated that

network science can be used to target new directions in model compression by actually targeting a

network of devices (instead of model compression for a single device like in the prior art). In the

current work, the individual compressed student architectures were selected such that they satisfy

certain resource-constraints. An important question then is what characteristics result in efficient

yet highly accurate architectures? We exploit network science to address this critical question in

the next chapter.
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Chapter 6

Network Science for Neural Architecture Space

Exploration: Theory and Practice

Given a large Convolutional Neural Network (CNN) which achieves high accuracy, can we di-

rectly design a significantly compressed model with minimal loss of accuracy over the initial

model? We believe the above question is one of the most critical problems to address in the

modern deep learning research. So far, deep networks have been compressed using model com-

pression techniques such as (i) Pruning [63, 132], (ii) Quantization [51, 60], (iii) Knowledge

Distillation (KD) [15, 43, 135], or via (iv) Manually designed efficient networks and convolu-

tions [47, 103, 137], and (v) Efficient models resulting from automatic Neural Architecture Search

(NAS) methods [66, 97, 100, 128, 141, 142]. However, all of the above directions do not answer

the following fundamental research question: Are there any characteristics of a CNN architecture

that can indicate a priori (i.e., without training) which family of models (with different number

of parameters and layers) achieve similar accuracy? Indeed, answering this question can enable

new model compression methods where we can directly design novel architectures to reduce the

number of parameters without losing significant accuracy.

In this chapter, we propose an architecture-level metric called NN-Mass to model deep learning

architectures from a complex networks perspective. We first demonstrate a theoretical relationship

between NN-Mass and generalization of CNN architectures. Then, we conduct extensive em-

pirical validation of our ideas by exploiting the proposed metrics for Neural Architecture Space

Exploration. These new insights enable us to directly design compressed models which reduce

parameters by up to 3×, while losing minimal accuracy compared to the initial, large CNN (e.g.,

the compressed model reaches 96.82% test accuracy vs. ∼ 97% for large CNN on CIFAR-10).
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6.1 Towards Neural Architecture Space Exploration

Are there any characteristics of a CNN architecture that can indicate a priori (i.e., without training)

which family of models achieve similar (test) accuracy, despite having vastly different number

of parameters or layers? Even though, there has been significant progress in architecture design

practices (both manual [41, 47, 50] as well as automated via Neural Architecture Search (NAS) [66,

100, 142]), the above question remains unanswered, thereby making it one of the most fundamental

problems in modern deep learning research. Clearly, answering this question can help us directly

design efficient CNN architectures. The above question is related to three important areas:

Neural Architecture Search (NAS). Search for efficient architectures that result in high accu-

racy [66, 100, 142]. The models designed by recent NAS algorithms usually surpass manually

designed architectures [41, 47, 50]).

Model Compression. Reduce the computational costs of existing deep networks without losing

significant accuracy. Towards this, the existing model compression techniques mainly focus on

Pruning, Quantization, and Knowledge Distillation (KD) [15, 43, 51, 60, 63, 132, 135].

Generalization of deep networks. Traditional wisdom suggests that if a model has high-enough

capacity (e.g., when the number of parameters is much larger than the number of samples in the

dataset, which happens in practice), it would lead to overfitting (i.e., very low training error and

high test error). However, deep networks achieve low generalization error despite having a large

number of parameters. Hence, generalization aims to theoretically understand why deep networks

work well in practice by exploring properties of weight-norms/initializations, stability of deep

networks to noise, optimization characteristics such as sharpness of the minima, etc. [3, 8, 89, 90,

91, 136].

Although there has been extensive research in the above three areas separately, to our knowl-

edge, there is no research at the intersection of all three directions. Specifically, while NAS has

been used to generate efficient architectures for mobile applications [20, 115, 127], existing NAS

research does not theoretically explain why the discovered architecture performs better than other

models containing similar number of parameters. Conversely, NAS also does not theoretically

explain why architectures with significantly different number of parameters sometimes achieve

similar accuracy. Similarly, a few generalization studies (e.g., [3]) exploit compression to prove
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generalization error bounds. However, none of the generalization studies provide any theory that

can explicitly guide efficient architecture design.

In view of the above, in this chapter, we propose a new, theoretically-grounded, architecture-

level metric called NN-Mass. We first model a CNN as a complex network and then derive NN-

Mass from a network science perspective. Specifically, since a CNN is a set of channels connected

via filters at each convolutional layer, we can express any CNN as a network of channels (see

Fig. 6.1(a)). Then, we define NN-Density to quantify how densely the channels of a CNN are

connected to each other. Next, we exploit NN-Density to define our proposed NN-Mass metric

that quantifies the link between CNN architectures and their generalization capabilities. We use

our proposed metrics for Neural Architecture Space Exploration (NASE). NASE is defined as the

process of studying the design space of deep networks via theoretically-grounded metrics such as

NN-Mass.

To this end, we combine, for the very first time, Probably Approximately Correct (PAC)-Bayes

theory of generalization [74, 75] with network science [79, 87, 123] to theoretically prove that

architectures with higher NN-Mass achieve lower generalization error. We further theoretically

demonstrate that models with similar NN-Mass lead to similar test accuracy. Then, we provide ex-

tensive empirical evidence towards these theoretical insights. Towards this, we empirically demon-

strate that models with similar NN-Mass indeed achieve comparable accuracy despite having vastly

different number of parameters and layers (see Fig. 6.1(b)). Finally, given a large, highly accurate

CNN, we demonstrate how NN-Mass can be used to directly design efficient models without sacri-

ficing significant accuracy. Hence, our proposed metric can be used to directly discover a family of

efficient models without training individual models (see Fig. 6.1(c)). Of note, given the complex-

ity of deep learning systems such as CNNs, an alternative, system-level approach is imperative for

understanding the architectural properties of enormous deep networks. This is why we systemati-

cally model deep networks from a network science perspective. Our complete approach is shown

in Fig. 6.1.

Overall, we make the following key contributions in both theory and practice:

1. Modeling CNNs as complex networks and Neural Architecture Space Exploration. To

our knowledge, we are the first to exploit network science for theoretically studying the

properties of the architecture design space. Next, we exploit network science to build novel

121



 

 

 

 

 

 

 

          

      

     

     

                                                               

                            

           

         

          

       

       

…

…

…… … …

…

…

…

i j

αij

Short-range 
links

Long-range 
links

×
× ×

×o
o

o o

NN-Density

A
cc

u
ra

cy

NN-Mass

A
cc

u
ra

cy

×

o

×

o
×o

×o

o Deeper models with 
more parameters

× Shallower models 
with less parameters

Smaller models with comparable 
or higher NN-Mass can achieve 
comparable accuracies to larger CNNs

NN-Mass

A
cc

u
ra

cy

×

o

×

o
×o

×o

Use NN-Mass to directly design 
new compressed models with far 
fewer parameters and layers 
without significant loss of accuracy

a. Model CNNs as a 
network of channels

b. Neural Architecture Space Exploration via 
the proposed network science-based metrics

c. Directly design compressed
models using NN-Mass

Figure 6.1: Complete flow of our approach: (a) First model a given CNN as a network of channels. Each layer can get

contributions from the last layer (short-range links), as well as from all other previous layers (long-range links). (b)

Next, we exploit network science to propose NN-Mass and NN-Density, where NN-Mass is a theoretically-grounded

metric that can indicate generalization capability. (c) Since NN-Mass can indicate which smaller models can obtain

comparable accuracy to large CNNs, we can exploit it to directly design significantly compressed models.

and intuitive metrics for NASE. Specifically, we define NN-Mass to quantify the link between

various architectures and their generalization capabilities.

2. Theory for Modeling Architectural Aspects of Generalization. We merge, for the very

first time, the PAC-Bayes theory with the network theory to demonstrate provable relation-

ship between NN-Mass and generalization of CNN architectures. We show two key proper-

ties of NN-Mass: (i) For a given depth and width, a CNN with higher mass results in lower

generalization error, and (ii) Irrespective of total number of parameters and depth but same

width, models with similar NN-Mass yield similar generalization performance.

3. Validation on real world image classification tasks. We further provide extensive empir-

ical evidence for the above theoretical insights. Towards this, we conduct experiments with

CNNs of different depths, parameters, and long-range links for CIFAR-10/100 datasets. We

found that models with fewer layers and fewer parameters often achieve comparable accu-
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racy to deeper networks with more number of parameters. We also observed that models

with similar NN-Mass often achieve similar test accuracy even though the number of param-

eters are vastly different. To quantify the relationship between NN-Mass and generalization,

we fit a linear model and demonstrate that the goodness-of-fit parameter R2 achieves high

values (e.g., between 0.74-0.90). We also show that NN-Mass can be used to predict the test

accuracy of the models which were never trained before.

4. Model Compression via NN-Mass Finally, we demonstrate that we can design a highly-

compressed model with minimal loss of accuracy over a large CNN. Specifically, given a

large CNN which achieves high accuracy (e.g., ∼ 97% on CIFAR-10), we directly use our

proposed NN-Mass metric to design new models with significantly fewer parameters and

layers, but with NN-Mass close to that of the large model. We show that the accuracy of this

newly designed model reaches close to that of the large model (e.g., 96.82% on CIFAR-10

test set) while reducing the total parameters and FLOPS by more than 3×. Of note, since we

do not use pruning, quantization or KD to reduce the model-size, NN-Mass can be seen as a

new way of model compression, directly from the architecture standpoint.

The rest of the chapter is organized as follows: Section 6.2 covers related work on model

compression, NAS and generalization, while Section 6.3 describes our proposed network science-

based NASE approach including the theoretical relationship between CNN architectures and their

generalization performance. Next, Section 6.4 presents extensive experimental results and their

analysis. Finally, the chapter is concluded in Section 6.5.

6.2 Related Work

We now discuss the related work on model compression, NAS, and generalization of deep net-

works. We also discuss prior work on long-range links in deep learning and network science.

6.2.1 Model Compression

As explained earlier, model compression techniques can be broadly classified into pruning [63,

132], quantization [51, 60], and KD [15, 43, 135]. Pruning aims to remove redundant and/or
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useless weights from a trained deep network, whereas quantization reduces the number of bits

required to represent weights and activations. On the other hand, KD aims to train a significantly

compressed student model to mimic a large teacher network (which we want to compress).

Although all of these techniques are effective at reducing parameters and computation without

losing significant accuracy, most of the prior art does not address what architectural character-

istics make the compressed models nearly as accurate as the original, large model. For instance,

quantization does not talk about architecture since it does not lead to a different architecture. More-

over, although student models in KD can result in significantly different architecture (with different

layers and width), designing such compressed students is usually a manual process. Hence, KD

also does not shed any light on which student models might lead to better accuracy. Further, even

though pruning can also result in novel architectures, the pruning techniques do not completely

remove entire layers and, therefore, do not result in compressed models with significantly fewer

layers. Finally, unlike our proposed work, existing model compression literature does not give

architecture-level metrics that can allow direct identification of highly-accurate models.

Note that, a few works attempt to understand the relationship between training hyper-parameters

of deep networks and the architecture. For instance, Frankle et al. analyze the impact of initializa-

tion on pruned networks in their lottery ticket hypothesis [28]. Similarly, Park et al. empirically

understand the relationship between batch size, learning rate and network width [95]. However,

to the best of our knowledge, complex network characteristics have not been exploited to model

deep networks explicitly. Moreover, architecture-level metrics – that relate number of parameters,

depth, width and long-range links – are not addressed in prior art to indicate the generalization

power of CNNs.

6.2.2 Neural Architecture Search (NAS)

The process of designing deep networks that perform very well in practice has been largely driven

by trial-and-error [41, 47, 50, 58, 108] or via recently proposed NAS algorithms [66, 97, 100,

128, 141, 142]. More recently, standard network-generation models such as Barabasi-Albert (BA)

model [6] or Watts-Strogatz (WS) model [123] were exploited for NAS [129]. Moreover, a frame-

work to discover dynamic network wiring has also been proposed [126]. However, like the rest

of the NAS research, [126, 129] did not explore what specific theoretical characteristics of the
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architecture make different models (with different number of parameters) achieve similar general-

ization performance. Hence, to our knowledge, no theoretical attempt has been made to better un-

derstand the link between architecture design and generalization. On the other hand, our objective

is twofold: (i) Theoretically understand architectural aspects of generalization, and (ii) Practically

design efficient architectures without searching for them (e.g., by directly exploiting our proposed

metric).

It has been further shown that random search is competitive to NAS [64]; this has been at-

tributed to the carefully designed search space for NAS such as depth-wise separable convolu-

tions, dilated convolutions, etc [66]. In contrast, our work only uses the standard convolutions and

concatenation-type long-range links and none of the specialized convolutions which are known to

reduce parameters and improve accuracy. Therefore, we demonstrate that our designed architec-

tures achieve state-of-the-art accuracy without any carefully selected search space, and that regular

convolutions can be just as effective. This highlights the importance of efficient architectures that

can lead to high accuracy with less parameters.

6.2.3 Generalization of deep networks

The field of generalization has recently gained attention to understand why deep learning works

well in practice [3, 8, 18, 65, 89, 90, 91, 92, 104]. However, these generalization studies either look

at the loss landscapes of deep networks and properties of Stochastic Gradient Descent algorithm,

or analyze the norms and spectral properties of model weights. Specifically, existing generalization

studies explore why deep networks generalize well on real data despite having sufficient capacity

to overfit.

Traditional machine learning theory indicates that if the complexity of a model is high, it can

lead to overfitting (i.e., the model can fit perfectly on training data but cannot generalize well on

the testing data). To test this traditional theory, Zhang et al. conducted several kinds of exper-

iments [136] such as (i) Randomizing labels, (ii) Randomizing pixels. The idea is to fit a deep

network to such randomized datasets. Many other variants of such experiments have been con-

ducted (e.g., taking the negative of images, adding noise to weights, activations, inputs, etc. [3]).

The objective in these experiments is to demonstrate that deep networks easily fit such randomized

datasets, thus, showing that the networks have enough capacity to overfit (since test error on cor-
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rect labels would clearly be very low in such scenarios). Consequently, the generalization papers

attempt to understand why deep networks generalize on real datasets (even though they can overfit

on random data). Hence, generalization does not explicitly study what characteristics make good

deep network architectures.

In contrast, the main objective of our work is to specifically identify what architectural char-

acteristics of deep CNNs lead to better generalization and how we can use those characteristics to

directly design efficient models. By integrating the PAC-Bayes theory with the theory of small-

world networks for the first time, we further present a new way of modeling generalization of

complex CNN architectures. Hence, our contributions are completely orthogonal to the existing

research: Prior art seeks answers about overfitting, whereas we seek answers about the contribution

of the architecture itself towards generalization.

6.2.4 Long-range links in CNNs and Network Science

Many recent innovations in deep learning architecture design have resulted in state-of-the-art deep

networks that achieve excellent prediction accuracy on complex vision and natural language ap-

plications. One of the most important innovations is the concept of shortcut connections in deep

networks which enable complex architectures and have pushed the accuracy far beyond the tra-

ditional CNNs. For instance, Resnets [41] introduced residual blocks which add feature maps at

alternate convolution layers. Similarly Densenets [50] have dense blocks that contain all-to-all

connections. In contrast to Resnets, Densenets do not add feature maps but instead concatenate

them together. The core idea in both of these models is to improve the information flow through

the deep networks with the help of such shortcut connections between various layers.

Indeed, shortcut connections have long been a subject of study in the field of network sci-

ence, e.g., small world networks [124] that specifically deal with networks with long-range and

short-range links (e.g., in social, biological, transportation networks [85], and even multicore net-

works [93]). In this chapter, we view the shortcut connections in deep networks as being analogous

to the long-range links in generic networks such as social and transportation networks. Hence,

network science can be a good choice for studying the dynamics of long-range links in deep net-

works. Since Densenets have been shown to achieve higher accuracy than Resnets [50], we focus

on concatenation-type long-range links.
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This completes the related work. Next, we model CNNs from a network science perspective

and also define our proposed NN-Mass and NN-Density metrics.

6.3 Proposed Approach

In this section, we first explain how CNNs can be modeled via network science. Then, we math-

ematically derive the proposed NN-Mass and NN-Density metrics that are needed for architecture

design space exploration. Next, we demonstrate the theoretical relationship between NN-Mass

and generalization of CNN architectures. Finally, we describe how NN-Mass can be exploited for

model compression.

6.3.1 Modeling CNNs via Network Science

In the present work, we assume that CNN consists of multiple cells, with each cell consisting

of a fixed number of convolutional layers (similar to existing works such as Densenets [50],

Resnets [41], Wide-Resnets [134]). As shown in Fig. 6.2(a), each cell can have a different width

(i.e., the number of channels per layer). Following the standard practice [41, 50, 108, 134], the

width is increased by a factor of two at each cell as the feature map is reduced to half (see

Fig. 6.2(a)). After the convolutions, the final feature map is average-pooled and passed through a

fully-connected layer to generate logits.

We now illustrate a single convolution layer of our proposed model in Fig. 6.2(b). Note that,

in a standard CNN, a convolutional layer with n input channels and m output channel consists of

m filters, each with [k × k × n] dimensions. That is, as shown in Fig. 6.2(b), red kernel in the

filter convolves with red input channel, green filter convolves with green input channel, and so

on. The output of all such channel-wise convolutions are added together to obtain a single output

channel (e.g., violet output channel in Fig. 6.2(b)). However, this implicitly assumes that all input

channels contribute equally to all output channels. Clearly, this assumption is counter-intuitive

since our overall objective in an image classification problem is to separate out the identifying

features of various classes at the final convolution layer (i.e., output channels at the final layer

must activate for different features). Therefore, adding the outputs of channel-wise convolutions at

each intermediate layer can make the training process of CNN inherently hard.
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filters of size [k × k × n], where m (n) is the number of output (input) channels. Each input channel contributes to

a given output channel with a probability α. In a traditional CNNs, all input channels contribute equally to all output

channels, i.e., α = 1 for all input-output channel pairs. (c) Each cell contains dc layers with wc channels per layer.

Output channels at each layer get contributions from output channels of last layer and additional long-range links from

previous layers (via concatenation of feature maps). For simplicity, not all links are shown. Contribution of an input

channel i towards an output channel j is given by probability αij . These probabilities are used to define the weighted

adjacency matrix of the CNN.

To alleviate the above problem, we explicitly assign different contributions from each input

channel i to each output channel j as probabilities αij . Specifically, for each output channel,

we create a vector qj = {q1j, q2j, . . . , qnj} with Kaiming-normal initialization [40], where each

element qij of this vector denotes an unnormalized contribution from an input channel i to the given

output channel j. Then, to generate the probabilities αij , we simply compute the softmax of qj .

The probabilities thus obtained are used as contributions from input channels to this output channel

(e.g., {αR, αG, αB} in Fig. 6.2(b)). We call the unnormalized weight vector qj as contribution-

weights, and the probabilities αij’s as contribution-probabilities throughout this chapter. Hence, in

contrast to a standard convolution where individual channel-wise convolutions are directly added
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to obtain one output channel (i.e., in a traditional CNN, αij = 1 for all connections), the final

convolution in our proposed model is computed as a weighted sum of channel-wise convolutions

(where, weights are given by αij). Of note, throughout the training as well as inference, we keep

these probabilities fixed.

Next, we define the structure of individual cells in our proposed model. Fig. 6.2(c) shows a

cell with dc convolution layers, and wc channels per layer. Output channels at each layer i receive

contribution from all output channels of layer i − 1; we call these contributions short-range links

since they connect consecutive layers (see red links in Fig. 6.2(c))1. In addition to short-range

links, output channels at layer i can also receive long-range contributions from tc channels present

at layers l ∈ {0, 1, . . . , i−2} within the given cell. By definition, a link is long-range if it connects

channels across two or more layers. In practice, to create long-range links, the feature maps from

previous layers are concatenated at the current convolution layer (similar to Densenets [50]). Of

note, in our current setup, long-range links are confined only within the cell and do not extend

between different cells.

To create long-range links at each layer i within a given cell, we randomly select min{wc(i −

1), tc} previous channels (out of all channels until layer i− 2). As it has been established in recent

NAS research [64], our rationale behind selecting random links is that random architectures are

often competitive to carefully designed models. Hence, throughout the chapter, we look only at ar-

chitectures with randomly chosen long-range links (after fixing the random seed). Our experiments

further reinforce the observation that random architectures are quite competitive to state-of-the-art

models.

Note that, all channel contributions (both long-range and short-range) are quantified by prob-

abilities αij’s. Specifically, instead of defining the contribution-weight vectors (qi) for each out-

put channel, we can directly initialize a contribution-weight matrix Q = [qT1 , q
T
2 , . . . , q

T
n] for all

channels in a cell. Then, the contribution-probabilities αij’s are obtained by taking column-wise

softmax of Q. Therefore, the contribution-probabilities and the cell structure can be directly used

to define an adjacency matrix of a CNN: Aij = αij , i, j ∈ {0, 1, 2, . . . , wc · dc}. Hence, we can

1Not all links are shown in Fig. 6.2(c) for simplicity. In fact, all output channels at layer i will receive short-range

contributions from all channels at layer (i− 1), and all output channels at layer i will receive long-range contributions

from min{wc(i− 1), tc} channels.
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now represent a CNN as a network of channels connected via convolutions. Next, we exploit ideas

from network science to propose two new metrics for architecture space exploration, i.e., the mass

and density of CNNs.

6.3.2 Neural Architecture Space Exploration: Mass and Density of CNNs

We now exploit the above network formulation to systematically study the architecture space for

deep networks. Specifically, our problem has following objectives:

1. Theoretically quantify the architectural aspects of the generalization problem.

2. Exploit the above theory to directly design efficient architectures in practice.

To address the above goals, we propose two new network science-based metrics called NN-Mass

and NN-Density, as defined below.

Definition 1 (Density of Deep Networks). Density of a CNN quantifies how densely a given neural

network is connected in terms of long-range links. Formally, for a given cell c, density ρc is

expressed as follows:

ρc =
Number of long-range links in cell c

Total possible long-range links in cell c
=
lc
L

(6.1)

Note that, the maximum number of channels contributing long-range links at each layer in cell

c is given by tc. Also, for a layer i, possible candidates for long-range links = all channels up to

layer (i−2) =wc(i−1) (see Fig. 6.2(c)). Indeed, if tc is sufficiently large, initial few layers may not

have tc channels that can supply long-range links. For these layers, we use all available channels

for long-range links. Therefore, for a given layer i, number of long-range links (li) is given by:

li =

wc(i− 1)× wc if tc > wc(i− 1)

tc × wc otherwise
(6.2)

where, both cases have been multiplied by wc because once the channels are selected to supply

long-range links, they supply long-range links to all wc channels at the current layer i. Hence, for

an entire cell, total number of channels contributing long-range links (lc) is as follows:

lc = wc

dc−1∑
i=2

min{wc(i− 1), tc} (6.3)
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On the other hand, total number of possible long-range links within a cell (L) is simply the sum of

possible candidates at each layer:

L =
dc−1∑
i=2

wc(i− 1)× wc

= w2
c

dc−1∑
i=2

(i− 1)

= w2
c [1 + 2 + . . .+ (dc − 2)]

=
w2
c (dc − 1)(dc − 2)

2

(6.4)

Using Eq. (6.3) and Eq. (6.4), we can rewrite Eq. (6.1) as:

ρc =
2
∑dc−1

i=2 min{wc(i− 1), tc}
wc(dc − 1)(dc − 2)

(6.5)

Finally, we use the density for individual cells to define the average density of a CNN (ρavg). Say,

we have Nc cells in the complete CNN. Then, average density ρavg is given as follows:

ρavg =
1

Nc

Nc∑
c=1

ρc =
1

Nc

Nc∑
c=1

2
∑dc−1

i=2 min{wc(i− 1), tc}
wc(dc − 1)(dc − 2)

(6.6)

This completes the derivation for average density of a CNN. We will use the term NN-Density

to denote average density throughout this chapter. Next, we derive the NN-Mass. Both of these

metrics will be used to explore the architecture space of a CNN.

Definition 2 (Mass of Deep Networks). We define NN-Mass to reflect the representational capacity

of a CNN. Intuitively, for a given width, models with same NN-Mass but different depth, long-range

links and number of parameters should achieve similar accuracy.

Now, recall that density is basically mass divided by volume. Analogously, we can derive NN-

Mass of a CNN by multiplying the density with total number of channels in each cell. Hence, the

NN-Mass (m) is given by:

m =
Nc∑
c=1

wcdcρc

=
Nc∑
c=1

wcdc
2
∑dc−1

i=2 min{wc(i− 1), tc}
wc(dc − 1)(dc − 2)

=
Nc∑
c=1

2dc
∑dc−1

i=2 min{wc(i− 1), tc}
(dc − 1)(dc − 2)

(6.7)
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Figure 6.3: An example CNN to calculate NN-Density and NN-Mass. Not all links are shown in the main figure for

simplicity. The inset shows the contribution from all long-range and short-range links: The feature maps for randomly

selected channels are concatenated at the current layer (similar to Densenets [50]). At each layer in a given cell, the

maximum number of channels that can contribute long-range links is given by tc.

Both NN-Density and NN-Mass relate network width, depth, and number of long-range links.

Now that we have derived both of these metrics, we next present a concrete example to illustrate

how NN-Mass and NN-Density can be calculated for a given architecture.

Example 1. Given a CNN architecture shown in Fig. 6.3, we now calculate its NN-Density and

NN-Mass. This CNN consists of three cells, each containing dc = 4 convolutional layers. The three

cells have a width, (i.e., the number of channels per layer) of 2, 3, and 4, respectively. We denote

the network width as wc = [2, 3, 4]. Finally, the maximum number of channels that can supply

long-range links is given by tc = [3, 4, 5]. That is, first cell can have a maximum of three long-

range links per layer, second cell can have a maximum of four long-range links per layer, and so on.

Note that, the contribution-probabilities (αij’s) are computed using the procedure in Section 6.3.1

(i.e., we first generate contribution-weights via Kaiming initialization, and then take the softmax

to get probabilities). Moreover, as mentioned before, we randomly choose min{wc(i − 1), tc}

channels for long-range links at each layer. The inset of Fig. 6.3 shows how long-range links are

created by concatenating the feature maps from previous layers.

132



Hence, using dc = 4, wc = [2, 3, 4], and tc = [3, 4, 5] for each cell c, we can directly use

Eq. (6.6) and Eq. (6.7) to compute the NN-Density and NN-Mass values. Putting the values in the

equations, we obtain ρavg = 0.78 and m = 28.

Both NN-Density and NN-Mass relate network width, depth, and number of long-range links.

For a fixed number of cells, a CNN architecture can be completely specified by {depth per cell,

width per cell, maximum long-range link candidates per cell} = {dc, wc, tc}. Hence, to explore

the architecture space of the CNNs (henceforth called the Neural Architecture Space Exploration

or NASE), we vary {dc, wc, tc} to obtain random architectures with varying NN-Density and NN-

Mass values. We next show the theoretical link between NN-Mass (i.e., a property of CNN archi-

tectures) and generalization.

6.3.3 Provable Relationship between NN-Mass and Generalization

In this section, we theoretically prove the relationship between generalization and our proposed

NN-Mass metric, a property of CNN architectures. We further show that models with similar NN-

Mass values achieve similar test accuracy. To this end, we start with the PAC-Bayes theory which

is used to bound generalization error of a given (not necessarily a neural network-based) classifier.

We will also integrate the network theory with PAC-Bayes theory to derive our results.

Theorem 1 (McAllester Bound for Generalization Error [61, 74, 75]). Given any data generating

distribution D, any hypothesis class of predictors H, any prior distribution P over the predictors,

and any δ ∈ (0, 1], with probability at least 1−δ and for all distributions Q overH for a randomly

drawn training set S of N examples, the generalization bound is given by:

ED(L(fQ)) ≤ ES(L̂(fQ)) +

√
KL(Q||P ) + log 2

√
N
δ

2N
,

where, fQ is a classifier drawn from Q, ED(L(fQ)) denotes the expected error, ES(L̂(fQ)) is

the empirical error over the training set S, and KL(Q||P ) denotes the Kullback-Leibler (KL)

divergence between the distributions P and Q.

The above PAC-Bayes theorem bounds the generalization error of any classifier. Next, we

prove generalization bounds for CNN architectures with long-range links in terms of NN-Mass.

For simplicity, we will assume for the rest of this section that the CNN architecture consists of a
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single cell containing dc convolutional layers, each containing wc channels (i.e., the width of the

CNN is wc).

Theorem 2 (Generalization Bound for CNN Architectures in terms of NN-Mass). Consider single-

cell CNN models with dc layers and wc channels per layer. Also, let tc be the number of channels

contributing long-range links. If Q denotes a probability distribution over CNNs with long-range

links and an architecture fQ ∼ Q has a NN-Mass of m, then, with probability at least 1 − δ the

generalization error for this architecture is bounded as follows:

ED(L(fQ)) ≤ ES(L̂(fQ)) +

√
1

2σ
( 1

6m
− 1

2
log(πem)) + log 2

√
N
δ

2N
,

where, σ is the maximum number of connections a channel can have in a given CNN architecture.

Proof. Note that, to prove the above theorem, it only suffices to express the KL-divergence term in

Theorem 1 as a function of m. Consequently, we must model the distributions Q and P for various

CNNs. Since we are dealing with the hypothesis class of CNN architectures, network science can

be used to explicitly model the distributions of the CNN topology. Hence, in order to study the

distributions over CNN architectural topology (i.e., how various channels are connected together),

network science concepts such as random networks, small-world networks, etc., can provide valu-

able insights. Towards this, the problem of computing distributions over CNN architectures can

be equivalently seen as the problem of modeling connectivity in various network topologies. The

connectivity of a network can be quantified using its degree distribution (recall that degree of a

node in a network is given by total number of links connected to it). Hence, degree distribution

can be used for modeling the topology of CNN architectures.

Starting from the above ideas, we assume a priori that our CNN architecture does not have

any long-range links. In other words, our prior distribution P for CNN architecture consists only

of models with short-range links and no shortcut connections2. Therefore, any architecture drawn

from prior distribution P will look like a lattice network G with wc × dc total channels, and each

channel at layer i is connected to wc channels from the previous layer. Let this prior distribution P

2Note that, choosing a prior without any long-range links makes sense even from an “evolution of CNN architec-

tures” perspective since, initially, CNN architectures such as AlexNet [58] and VGG-16 [108] were developed (which

do not have any shortcut connections), and complex architectures with long-range connections such as NASNET [142],

DenseNets [50], etc. were proposed only later.
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be given by a distribution P (G) over lattice networks G.

Next, we model the distribution Q for the proposed CNN architectures with long-range links.

Note that, the CNNs considered in our work have both short-range and long-range links (see

Fig. 6.2(c) and Fig. 6.3(inset)). This kind of topology typically falls into the category of small-

world networks which can be represented as a lattice network G (containing short-range links)

superimposed with a random network R (to account for long-range links) [79, 87]. Hence, the

distribution over connectivities c in the small-world network can be written as:

Q ∼ P (G,R) = P (G) · P (R|G) (6.8)

Since P (R|G) represents the random long-range links created on top of the lattice network G,

the connectivity of long-range links due to R|G follows a Poisson Distribution. This is because

the degree distribution of random networks has been shown to be Poisson Distribution [5]. The λ

parameter (i.e., the mean) of this Poisson Distribution is given by the average degree of the random

network. Therefore, the average degree forR superimposed on G is given by:

λ = k̄R|G =
Number of long-range links added byR

Number of nodes

=
wc
∑dc−1

i=2 min{wc(i− 1), tc}
wcdc

=
m(dc − 1)(dc − 2)

2d2
c

(using Eq. (6.7) for one cell)

≈ m

2
(when dc >> 2, e.g., for deep CNNs)

(6.9)

Then, the probability Q(c) = P (G) · P (R|G)) of observing connectivity c in the small-world

network can be written as follows:

Q(c) = P (G) · λ
ce−λ

c!

= P (G) ·
(k̄R|G)

ce−k̄R|G

c!
,

(6.10)

where, c ≥ k̄G , the average degree of the lattice network G. Since average degree is given by total

number of links divided by number of nodes, k̄G = (w2
c (dc − 1))/(wcdc) = (wc(dc − 1))/dc ≈ wc

when dc >> 2 (and implicitly dc >> 1). Now, let σ be the upper bound on the connectivity c.

Also, we assume that the prior distribution P of drawing a lattice network is a uniform distribution
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for support c ∈ {k̄G − σ + 1, k̄G − σ + 2, . . . , k̄G + σ}. Then, the probability of observing a lattice

network G with connectivity c is given by:

P (G) =


1

2σ
if c ∈ {k̄G − σ + 1, k̄G − σ + 2, . . . , k̄G + σ}

0 otherwise
(6.11)

Note that, since our proposed CNN architecture (drawn from distribution Q) is also based on a

lattice network, the probability of drawing a lattice P (G) is same between P (i.e., the prior) and Q

(i.e., our hypothesis).

We next use the above equations to simplify the KL-divergence term in Theorem 1. For deep

CNNs with dc >> 2, we have

KL(Q||P ) = −
σ∑

c=k̄G

Q(c) log

(
P (c)

Q(c)

)

= −
σ∑

c=k̄G

P (G) · P (R|G) log

(
P (G)

P (G) · P (R|G)

)

=
σ∑

c=k̄G

P (G) · P (R|G) log(P (R|G))

=
σ∑

c=k̄G

1

2σ
· P (R|G) log(P (R|G))

=
1

2σ

σ∑
c=k̄G

P (R|G) log(P (R|G))

=
1

2σ
(−HPoisson(k̄R|G)),

(6.12)

where, HPoisson(k̄R|G)) is the Entropy ofR|G which follows a Poisson Distribution (Eq. 6.10). For a

large λ, the Entropy of a Poisson Distribution can be approximated as [26]:

HPoisson(λ) =
1

2
log(2πeλ)− 1

12λ
+O(

1

λ2
) (6.13)

From Eq. (6.9), Eq. (6.13), and Eq (6.12) and by ignoring the higher order terms of λ (since it is

large), we get the following expression:

KL(Q||P ) =
1

2σ

(
1

6m
− 1

2
log(πem)

)
(6.14)

Putting the above expression into the bound in Theorem 1, we immediately get the generalization

bound in terms of NN-Mass as shown in Theorem 2.
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Remark 1. Note that, the KL-divergence term (Eq. (6.14)) is a decreasing function of m. Hence,

for a given family of models with depth dc and width wc, Theorem 2 indicates that the test error

should reduce as NN-Mass increases. We show extensive empirical results for this observation.

We next present another result which follows as a natural consequence of Theorem 2. The

next corollary shows that, for two CNNs with a given width but different depths, models with

similar NN-Mass values are expected to achieve similar generalization performance, even if the

two models have vastly different number of parameters and layers!

Corollary 1 (Models with Similar Mass Achieve Similar Generalization Performance). Given two

models of same width wc, let fLQ be a deeper model with NN-Mass mL, and let fSQ be a shallower

model with NN-Mass mS such that mL ≤ mS . Then, the difference in expected test error of the

two models is bounded with probability at least 1− δ as follows:

ED(L(fLQ))− ED(L(fSQ)) ≤ ES(L̂(fLQ))− ES(L̂(fSQ)) +

√√√√ 1
2σ

[
mS−mL
6mLmS

− 1
2

log mL
mS

]
+ log 4N

δ2

2N

In other words, irrespective of number of parameters, as the NN-Mass for the two models becomes

similar, their test error is also expected to become similar.

Proof. The corollary follows directly from the KL-divergence term in Theorem 2 (see Eq. (6.14)).

To obtain the closed form bound above, we first compute the difference between the expected test

errors for the deeper model fLQ and the shallower model fSQ. Then, according to Theorem 1, we

have:

ED(L(fLQ))− ED(L(fSQ)) ≤ ES(L̂(fLQ))− ES(L̂(fSQ))

+

√
KL(QL||P ) + log 2

√
N
δ

2N
−

√
KL(QS||P ) + log 2

√
N
δ

2N
(6.15)

To simplify the difference of square roots, we exploit the following useful lemma.

Lemma 1 (Two Related Triangles [45]). If three non-negative numbers a, b, and c satisfy the

triangle inequality (i.e., a+ b ≥ c, b+ c ≥ a, and a+ c ≥ b), then the following also holds:

|
√
b−
√
c| ≤

√
a ≤
√
b+
√
c

Proof for this lemma is given in [45].
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Let b =
KL(QL||P )+log 2

√
N
δ

2N
, and let c =

KL(QS ||P )+log 2
√
N
δ

2N
. Then, all we need to do is to find

a such that the triangle inequality between a, b, and c is satisfied. Once we find such an a, the

difference of square roots in (6.15) can be bounded by
√
a. Towards this, we begin by finding a

lower bound for b+ c:

b+ c =
1

2N
(KL(QL||P ) +KL(QS||P )) +

1

2N
log

4N

δ2

≥ 1

2N
|KL(QL||P )−KL(QS||P )|+ 1

2N
log

4N

δ2

=
1

2N
(KL(QL||P )−KL(QS||P )) +

1

2N
log

4N

δ2
= a,

(6.16)

where, the first inequality follows from the fact that the sum of two non-negative real numbers

will always be greater than or equal to the absolute value of their difference. The second equality

follows from Eq. (6.14). Specifically, since KL-divergence is a decreasing function of NN-Mass,

and since mL ≤ mS , it follows that KL(QL||P ) ≥ KL(QS||P ).

Now that we have a lower bound on b+ c, we use this value as a. In order to use Lemma 1, we

only need to make sure that the chosen values for a, b, and c satisfy the triangle inequality. Note

that, by construction, b + c ≥ a. So, we only need to prove that a + c ≥ b and a + b ≥ c. For the

former, it is easy to see that a+c = b+ 1
2N

log 4N
δ2

=⇒ a+c ≥ b (since 1
2N

log 4N
δ2

is non-negative

as the size of training set N is a large number and δ ∈ (0, 1]). For the latter, we have:

a+ b =
1

2N
KL(QL||P )− 1

2N
KL(QS||P ) +

1

2N
log

4N

δ2
+

1

2N
KL(QL||P ) +

1

2N
log

2
√
N

δ

=
2

2N
KL(QL||P )− 1

2N
KL(QS||P ) (add and subtract KL(QS||P )/2N)

− 1

2N
KL(QS||P ) +

1

2N
KL(QS||P ) +

1

2N
log

2
√
N

δ︸ ︷︷ ︸
c

+
1

2N
log

4N

δ2

= c+
2

2N
(KL(QL||P )−KL(QS||P ))︸ ︷︷ ︸

≥0 since mL≤mS =⇒ KL(QL||P )≥KL(QS ||P )

+
1

2N
log

4N

δ2︸ ︷︷ ︸
≥0

≥ c

(6.17)

Hence, a, b, and c satisfy the triangle inequality. Therefore, we can use Lemma 1 to bound the

difference of square roots in (6.15). Putting KL-divergence from Eq. (6.14) into a in (6.16), we get

the following expression:

a =

1
2σ

[
mS−mL
6mLmS

− 1
2

log mL
mS

]
+ log 4N

δ2

2N
(6.18)
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Finally, using Lemma 1 on (6.15) with the above a, we get the corollary statement. Clearly, the

difference in expected error for the two models reduces as their NN-Mass values become similar.

Therefore, irrespective of the number of parameters, if two models have similar NN-Mass, they are

expected to yield similar test accuracies. We will present extensive empirical evidence to verify

this corollary.

This completes the theoretical analysis of our proposed NN-Mass metric. Next, we briefly

discuss how NN-Mass can be used for model compression.

6.3.4 NN-Mass for directly designing compressed architectures

From the above theoretical insights, NN-Mass is a reliable indicator for models which achieve sim-

ilar accuracy despite having different number of layers and parameters. Therefore, this observation

can be used for model compression as follows:

• First, train a reference big CNN (with a large number of parameters and layers) which

achieves very high accuracy on the target dataset. Calculate its NN-Mass (denoted mL).

• Next, create a completely new and significantly compressed model using far fewer parameters

and layers, but with a NN-Mass comparable to or higher than the large CNN. This process

is very fast as the new model is created without any a priori training. For instance, to design

a compressed CNN of width wc and depth per cell dc and NN-Mass mS ≈ mL, we only

need to find how many long-range links to add in each cell. Since, NN-Mass has a closed

form equation, a simple search over the number of long-range links can directly determine

NN-Mass of various architectures. Then, we select the architecture with the NN-Mass close

to that of the reference CNN. Unlike current manual or NAS-based methods, our approach

does not require training of individual architectures during the search.

• Since NN-Mass of the compressed model is similar to that of the reference CNN, Corollary 1

suggests that the newly generated model will lose only a small amount of accuracy, while

significantly reducing the model size. To validate this, we train the newly compressed model

and compare its test accuracy against that of the original large CNN.

Note that, our work is agnostic to what dataset is used since we rely on the properties of the

CNN architecture. That is, if we train the large CNN on a different dataset, our compressed model
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should still give accuracy close to that of the large CNN on the new dataset. Of course, the range of

accuracy of different models will vary when the dataset is changed, but different architectures with

similar NN-Mass should still yield a similar test accuracy. We explicitly show this observation

for CIFAR-10 and CIFAR-100 datasets in experiments. Next, we present detailed experimental

evidence towards our theoretical insights.

6.4 Experimental Setup and Results

In this section, we first describe our experimental setup, followed by results.

6.4.1 Experimental Setup

We conduct numerous experiments to validate our theory (Theorem 2 and Corollary 1). Towards

this, we systematically analyze the impact of NN-Mass and NN-Density on the test accuracy of

CNN architectures. Specifically, we perform NASE by varying {dc, wc, tc} to generate random ar-

chitectures with different NN-Mass and NN-Density values. We perform experiments for CIFAR-

10 and CIFAR-100 datasets.

We conduct the following kinds of experiments for NASE: (i) We show that NN-Density is not

a useful metric to answer our core question: What characteristics of a CNN architecture indicate

that different models (with different number of parameters and layers) will achieve similar test ac-

curacy? (ii) We next show that NN-Mass can indeed answer this question by providing extensive

empirical evidence towards Theorem 2 and Corollary 1. (iii) We further show that our findings

hold across models with different widths. (iv) We then quantitatively demonstrate that our metric

is better for predicting generalization performance than parameter counting, a regularly used indi-

cator of model generalization. (v) We predict test accuracy of completely unknown architectures.

(vi) We also show that our findings hold for CIFAR-100 dataset which is significantly more com-

plex than the CIFAR-10 dataset. All experiments are repeated three times with different random

seeds. Complete details of various tc values for different networks is given in Table. 6.1.

Finally, to demonstrate the practical implications of our work, we exploit NN-Mass for model

compression: We show that NN-Mass can enable us to directly create efficient CNNs which

achieve accuracy comparable to larger networks with similar NN-Mass. The learning rate for all
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Table 6.1: Details of Experiments for varying αij’s and Average Densities

Experiment

Type

Number

of Cells

Long-Range

Links (tc)
αij’s Depth Width Multiplier

Impact of αij’s

1 200 Constant(1/N) 46 2

1 200 Ones (Traditional CNN) 46 2

1 200 Random Probabilities 46 2

Impact of

Average Density
3

[10,35,50]

[20,45,75]

[30,50,100]

[40,60,120]

[50,70,145]

Random Probabilities 31 2

Impact of

Average Density
3

[20,40,70]

[30,50,100]

[40,80,125]

[50,105,150]

[60,130,170]

Random Probabilities 40 2

Impact of

Average Density
3

[25,50,90]

[35,80,125]

[50,105,150]

[70,130,170]

[90,150,210]

Random Probabilities 49 2

Impact of

Average Density
3

[30,80,117]

[50,110,150]

[70,140,200]

[90,175,250]

[110,215,300]

Random Probabilities 64 2
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models is initialized to 0.05 and follows a cosine-annealing schedule at each epoch. The minimum

learning rate is 0.0. Similar to setup in NAS prior works, cutout is used for data augmentation. All

models are trained in Pytorch on NVIDIA 1080-Ti, Titan Xp, and 2080-Ti GPUs. This completes

the experimental setup. Next, we describe our results for the above classes of experiments.

6.4.2 Results

We begin by evaluating the impact of random probabilities on CNN accuracy. We then perform

NASE by varying NN-Density, NN-Mass, and model-width to thoroughly validate Theorem 2 and

Corollary 1. Unless stated otherwise, the results are for CIFAR-10 dataset. Towards the end of this

section, the main results are also corroborated for CIFAR-100 dataset.

Impact of Input-to-Output Contributions

To evaluate the impact of various αij’s on CNN generalization, we train three separate models (see

Table 6.1(top) for details of the architecture): (a) For the first model, we initialize the contribution-

weights for each layer to zeros and then take the softmax. Therefore, in this case, all contribution

probabilities (αij’s) are constant (1/N, N being the number of input channels per layer). (b) In the

next model, we directly initialize αij’s to all ones, which is the traditional CNN case where all

channel-wise convolutions are directly added to obtain each output channel. The above two cases

are equal-contribution cases. (c) Finally, to account for the proposed unequal-contribution case,

we follow the process described in Section 6.3.1 by fixing the contribution-weights to Kaiming

initialization [40] and then take the softmax. As evident from Table 6.1, all models have 46-layers,

tc = 200, and width-multiplier of 2, which amounts to about 8M parameters. The models are

trained for 350 epochs.

Fig. 6.4 demonstrates the training and test accuracy for the three models. As shown, the model

with proposed unequal contributions (via random probabilities) achieves about 96.6% accuracy,

which is about 1% higher than the corresponding equal-contributions cases. This is a significant

result because achieving accuracy beyond 96% is very hard for CIFAR-10 models [50, 66, 134,

141]. Hence, this clearly demonstrates that not all input channels should contribute equally to

all output channels, and that even fixing the contributions to random probabilities significantly
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Figure 6.4: Not all input channels contribute equally to all output channels. (a) Training accuracy for three cases:

(i) Set αij’s to constant probabilities by initializing the input-to-output contribution-weights to zero at every layer and

then taking the softmax. This results in constant probabilities as contributions from input to output channel at each

layer (N is the number of input channels). (ii) A traditional CNN case where all channel-wise convolutions are directly

added (i.e., contributions from all inputs to all outputs (αij’s) are all ones). (iii) Channel-wise contributions are fixed to

random probabilities, i.e., αij’s are random. (b) Test accuracy for the above three cases demonstrates that the unequal

contributions from input-to-output channels achieves significantly higher accuracy.

improves the generalization and convergence of the model. Note that, the αij contributions do not

come at any additional cost in terms of number of parameters since these values are fixed and can

be directly incorporated into convolution weights by element-wise multiplication. Therefore, this

simple observation can be used to improve the accuracy of CNNs without any overhead in terms

of number of parameters.

Neural Architecture Space Exploration and NN-Mass as an Indicator of Generalization

Impact of Varying NN-Density In this section, we first fix the width of the model and vary the

average density for CNNs with different depths. In Fig. 6.5, we analyze the relationship between

NN-Mass and NN-Density for various deep networks. As evident, NN-Mass grows faster for

deeper networks than shallower networks as the NN-Density increases (see Fig. 6.5(a)). We next

analyze the relationship between the NN-Mass and total number of model parameters. The results

are shown in Fig. 6.5(b). We observe that, as the number of parameters grows, the NN-Mass

increases at a faster rate for shallower networks than the deeper networks. Therefore, shallower

networks can attain NN-Mass comparable to deeper networks with significantly lower number of
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Figure 6.5: (a) NN-Mass vs. NN-Density for networks of different depth (and, hence, parameters): NN-Mass increases

more rapidly for deeper networks with higher NN-Density. (b) NN-Mass vs. Number of parameters: NN-Mass

increases rapidly (gradually) for shallower (deeper) networks. (c) Accuracy as a function of density for networks of

different depths. As density increases, the accuracy generally increases. The accuracy eventually saturates for different

networks. Shallower models with higher density can reach comparable accuracy to deeper models with lower density.

Results are reported as mean of three runs. Width multiplier is fixed to 2 for all experiments.

parameters.

Next, we train different deep networks with varying NN-Density and record their test accuracy.

Fig. 6.5(c) shows that shallower models with higher density can reach accuracy comparable to

deeper models with lower density. Note that, this observation may be argued as being obvious.

For instance, one might say that, for a fixed width, if a shallower model is more densely connected

than a deeper model, it might lead to accuracy comparable to that of the deeper CNN. However,

this insight does not help us with our original question: What characteristics help us identify

family of models that yields similar generalization despite having significantly different number

of parameters/layers? Specifically, while we can say that for a given width, a shallower model

might outperform a deeper model provided it is connected densely-enough, NN-Density does not

tell us how densely the shallower model must be connected. Moreover, the NN-Density value

(that determines when two models of different depths perform comparably) changes for different

depths (e.g., although a 31-layer model with ρavg = 0.3 performs close to 64-layer model with

ρavg = 0.1, a 49-layer model with ρavg = 0.2 already outperforms the test accuracy of the above 64-

layer model). Therefore, NN-Density cannot be used to identify which architectural characteristics

result in CNNs with similar generalization performance. Hence, we next move to NN-Mass and

analyze its relationship with generalization.
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Figure 6.6: CIFAR-10 Neural Architecture Space Exploration for Width Multiplierwm = 2: (a) Accuracy vs. Number

of parameters: Shallower models with less parameters achieve comparable accuracy to deeper models with more

parameters. (b) Models achieving similar accuracy often have similar NN-Mass. Width multiplier is fixed to 2 for all

experiments. Results are reported as mean of three runs.

Impact of Varying NN-Mass on Generalization In this section, we present concrete empirical

evidence towards Theorem 2 and Corollary 1. To this end, we first analyze the architecture space

from the perspective of total number of parameters and the proposed network science-based NN-

Mass metric. Fig. 6.6(a) shows the test accuracy of the trained models vs. total parameters. As

evident, some of the 40-layer models with about 5M parameters perform comparably to several

64-layer models with more than 8M parameters. Hence, smaller models (with both lower depth

and fewer parameters!) can achieve accuracy close to larger models.

To explain the above phenomenon, Fig. 6.6(b) shows test accuracy vs. NN-Mass. Two obser-

vations are worth noting:

1. The higher the NN-Mass, the higher the test accuracy. This observation reinforces Re-

mark 1 and Theorem 2 that higher NN-Mass should result in lower generalization error.

2. Irrespective of number of layers or parameters, models with similar NN-Mass achieve

similar accuracy. This gives empirically evidence towards our Corollary 1. Specifically,

we observe that 40-layer models with around 5M parameters have similar NN-Mass as 8M-

parameter, 64-layer models and, therefore, achieve comparable accuracy. Moreover, all mod-

els shown within the box W in Fig. 6.6(a) in fact cluster into bucket Z shown in Fig. 6.6(b).
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Same argument holds for the models with similar NN-Mass within buckets X and Y which

obtain similar test accuracy.

The above observations clearly emphasize the importance of the proposed NN-Mass metric as an

indicator of generalization performance and to identify family of models that obtain similar test

accuracy.

The above results are for a width multiplier of 2 and vary NN-Mass indirectly by changing

the NN-Densities. Since it is clear that NN-Mass is highly correlated with generalization, we now

directly vary NN-Mass for models with different depths. Further, we vary the width multiplier

(wm ∈ {1, 3}) in order to ensure that the above observations hold true for CNNs with different

widths. More specifically, in Fig. 6.7(a), we plot test accuracy vs. number of parameters for wm =

1 and observe that models in boxes U and V have significantly different number of parameters

and, yet, they achieve very similar test accuracy. Again, when plotted against NN-Mass (see

Fig. 6.7(b)), models within the boxes U and V in Fig. 6.7(a) concentrate into buckets W and Z,

respectively (see also other clusters).

Note that, for wm = 1, the 31-layer model does not fall within the buckets. We hypothesize

that this could be because of the tradeoff between the two terms in Corollary 1. Specifically, since

Corollary 1 states that the difference in test errors is bounded by the sum of (i) the difference in

training errors, and (ii) the difference between NN-Mass values, the former term might dominate

for low-capacity models (and, thus, the difference in test errors would increase). For instance,

the training accuracy of 31-layer models is found to be much (e.g., 0.66-0.9%) lower than that of

64-layer models. In contrast, 40-layer models have only 0.27-0.4% lower training error than the

64-layer CNNs. Hence, this suggests that a tradeoff between training accuracy difference and NN-

Mass values should affect the difference in test accuracies of various architectures. We next show

that as the width multiplier increases further, the shallower models perform much more similar to

deeper models.

Fig. 6.8(a) shows the test accuracy vs. number of parameters for four different depths. As

evident, models with 6-7M parameters achieve comparable test accuracy as models with up to

16M parameters (e.g., bucket Y in Fig. 6.8(b) contains models ranging from {31 layers, 6.7M

parameters}, all the way to {64 layers, 16.7M parameters}). Further, 31-layer models consistently

perform comparable to deeper models. In general, we observe that as the width increases, the
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Figure 6.7: CIFAR-10 Neural Architecture Space Exploration for Width Multiplier wm = 1:(a) Accuracy vs. Number

of parameters: Shallower models with less parameters achieve comparable accuracy to deeper models with more

parameters. (b) Models achieving similar accuracy often have similar NN-Mass. Width multiplier is fixed to 1 for all

experiments. Results are reported as mean of three runs.

capacity of the CNNs increases and, hence, the curves on Accuracy vs. NN-Mass plot come closer

to each other. We next quantify the above observation by fitting a linear model to predict Accuracy

(target variable) using log(NN-Mass) (explanatory variable). The results for wm = 1, 2, 3 are

shown in Fig. 6.9(a,b,c), respectively. As evident, the goodness-of-fitR2 value increases from 0.74

to 0.84 to 0.90, as the width multiplier increases. This clearly demonstrates that as the width of the

CNN increases, NN-Mass becomes better indicator of generalization performance.

Comparison between NN-Mass and Parameter Counting Naive parameter counting is often

used as an indicator of generalization [3]. Here, we quantitatively demonstrate that while parameter

counting can be a useful indicator of generalization for models with low width (but still not as good

as NN-Mass), as the width increases, parameter counting cannot predict generalization. In con-

trast, we show that NN-Mass consistently predicts generalization performance with high accuracy.

Specifically, in Fig. 6.10(a), we fit a linear model between test accuracy and log(#parameters) and

found that the R2 for this model is 0.76 which is slightly lower than that obtained for NN-Mass

(see Fig. 6.10(b)). When the width multiplier of CNNs increases to three, parameter counting com-

pletely fails to fit the test accuracies of the models (R2 = 0.14). In contrast, NN-Mass significantly

outperforms parameter counting for wm = 3 as it achieves an R2 = 0.90. This demonstrates that
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Figure 6.9: Impact of varying width on accuracy vs. log(NN-Mass) relationship. (a) Width multiplier, wm = 1,

(b) wm = 2, and (c) wm = 3. As width increases, capacity of small (shallower) models increases and, therefore, the

accuracy-gap between models of different depths reduces. Hence, the R2 for linear fit increases as width of the CNNs

increases.

NN-Mass is indeed a significantly stronger indicator of generalization than parameter counting for

models with long-range links.

We note that our work cannot be compared against generalization indicators presented in [3,

8, 89, 90, 91], etc., because these works do not consider architectural aspects of the generalization

problem and do not deal explicitly with CNN architectures. The objective of this prior art is to

understand how optimization properties (e.g., sharpness of minima), noise-stability, weight-norms,

etc affect generalization. Hence, the prior research does not explicitly provide any insights into the
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Figure 6.10: NN-Mass as an indicator of generalization performance compared to parameter counting. (a) For wm =

2, log(#parameters) fits the test accuracy with an R2 = 0.76. (b) For the same wm = 2 case, log(NN-Mass) fits the

test accuracy with a higher R2 = 0.84. For lower width, parameter counting is a decent indicator of generalization

performance. (c) For higher width (wm = 3), parameter counting completely fails to fit the test accuracy of various

models (R2 = 0.14). (d) In contrast, NN-Mass still fits the accuracies with a high R2 = 0.9.

architecture itself. On the other hand, our problem is to explicitly understand the impact of CNN

architecture on generalization.

Exploiting NN-Mass to Predict Test Accuracy on Unknown Architectures Next, we demon-

strate that NN-Mass can be used to predict the test accuracy of unknown architectures that have not

been trained before. Towards this, we create a testing set of new architectures by training 20 differ-

ent models with wm = 2, and {28, 43, 52, 58} layers. For these models, we vary the NN-Density

between {0.125, 0.175, 0.225, 0.275, 0.325} which is different from the initial architecture space

exploration setting (i.e., {0.10, 0.15, 0.20, 0.25, 0.30}). We use the linear model trained on the test

accuracy of models shown in Table 6.1 (see Fig. 6.9(b) for the linear fit). Note that, our testing

set consists of models with both different number of layers and different densities compared to the
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Figure 6.11: Linear modeled trained in Fig. 6.9(b) is used to predict the test accuracy of completely new archi-

tectures. The resulting R2 = 0.79 is still high and is comparable to the training R2 = 0.84. The linear model

was trained on the test accuracies and NN-Mass of models with {31, 40, 49, 64} layers, and densities varying as

{0.10, 0.15, 0.20, 0.25, 0.30}. To create the testing set, we trained completely new models with {28, 43, 52, 58} lay-

ers, and densities varying as {0.125, 0.175, 0.225, 0.275, 0.325}.

training set.

Fig. 6.11 shows that the testing R2 = 0.79 (i.e., the R2 obtained by predicting the accuracy

of models in the testing set) which is close to the training R2 = 0.84 (see Fig. 6.9(b)). Hence,

NN-Mass can be used to predict test accuracy of models which were never trained before.

Results for CIFAR-100 Dataset We now corroborate our main findings on CIFAR-100 dataset

which is significantly more complex than the CIFAR-10 dataset. To this end, we retrain the models

shown in Table 6.1 on CIFAR-100. Fig. 6.12(a) shows the test accuracy of various models as a

function of number of parameters. As evident, several models achieve similar accuracy despite

having highly different number of parameters (e.g., see models within box W in Fig. 6.12(a)).

Again, these models get clustered together when plotted against NN-Mass. Specifically, models

within box W in Fig. 6.12(a) fall into buckets Y and Z in Fig. 6.12(b). Hence, models that got

clustered together for CIFAR-10 dataset, also get clustered for CIFAR-100.

To quantify the above results, we fit a linear model between test accuracy and log(NN-Mass)

and, again, obtain a high R2 = 0.84. Therefore, our observations for NN-Mass hold true across

multiple image classification datasets.

This completes the NASE with NN-Density and NN-Mass metrics. We learned that (i) NN-

Mass is a reliable indicator for generalization performance: For a given width, as NN-Mass in-
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Figure 6.12: Similar results are obtained for the CIFAR-100 dataset. (a) Accuracy vs. Number of parameters: Shal-

lower models with less parameters achieve comparable accuracy to deeper models with more parameters. (b) Models

achieving similar accuracy often have similar NN-Mass. Width multiplier is fixed to 2 for all experiments. Results are

reported as mean of three runs.

creases, the test error of CNNs reduces (Theorem 2, Remark 1), and (ii) NN-Mass can be used to

identify family of models which yield similar test accuracy without any a priori training (Corol-

lary 1). We next exploit the latter insight to directly design highly compressed architectures which

achieve as high accuracy as large, overparameterized models.

Directly Designing Compressed Models with NN-Mass

In this section, we directly exploit the NN-Mass to design significantly compressed models with

minimal loss of accuracy compared to a large CNN. We demonstrate that NN-Mass can enable a

new form of model compression from the architecture standpoint. Specifically, given a large CNN,

we can now directly create new models with far fewer layers and parameters but with comparable

(or slightly higher) NN-Mass as the large CNN. Hence, such models should achieve high accuracy,

while reducing the number of parameters and layers. The amount of accuracy loss generally de-

pends on depth of the compressed models: for a fixed width, shallower models tend to lose more

accuracy than the deeper models. We next present the results for this new form of model com-

pression. Following the setup in recent NAS works like DARTS [66], we train our models for 600

epochs and report their test accuracy.
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Figure 6.13: Test accuracy vs. log(NN-Mass) for the CIFAR-100 dataset. The R2 value for fitting a linear regression

model is 0.84 which shows that NN-Mass is a good predictor of test accuracy. All results are reported as a mean of

three runs.

Table 6.2 summarizes the number of parameters and test accuracy of various models. We first

train two large CNN models of about 8M and 12M parameters with a NN-Mass of 622 and 1126,

respectively; both of these models achieve around 97% accuracy as shown in Table 6.2. Next, we

train three compressed models: (i) A 5M parameter model with 40 layers and a NN-Mass of 755

(this model is the same as the highest density, 40-layer model shown in Fig. 6.5(c)), (ii) A 4.6M

parameter model with 37 layers and a NN-Mass of 813, and (iii) A 31-layer, 3.82M parameter

model with a NN-Mass of 856. Note that, unlike the 5M parameter model (which we partially

explored in the previous section by training it for 200 epochs), we never trained the second and

third compressed models before for Neural Architecture Space Exploration. In fact, we never

trained any 37-layer models at all throughout this work. Hence, these models are completely new

and we designed them directly based on the NN-Mass!

As evident from Table 6.2, our 5.02M parameter model reaches a test accuracy of 97.00%,

while the 4.6M (3.82M) parameter model obtains 96.93% (96.82%) accuracy on the CIFAR-10

test set. Clearly, all these accuracies are either comparable to, or slightly lower (∼ 0.2%) than

the large baseline models, while reducing total parameters by up to 3× compared to the 11.89M

parameter baseline CNN. Moreover, the improvement in number of FLOPS is also up to 3×. Of

note, since we accomplish model compression without any pruning [63, 132], quantization [51,

60], or knowledge distillation [43, 135], our proposed NN-Mass metric allows for a novel model

compression technique which operates directly at the architecture-level.
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Table 6.2: Exploiting NN-Mass for Model Compression on CIFAR-10 Dataset. All of our experiments are reported as

mean± standard deviation of three runs. DARTS results are reported from [66] which uses a similar setup for training.

Model
Architecture design

method

#Parameters/

#FLOPS

Number of layers/

cells/long-range

links (tc)

Specialized

search space?
NN-Mass

Test

Accuracy

DARTS (first order) [66] NAS 3.3M/– –/20 cells/– Yes – 97.00± 0.14%

DARTS (second order) [66] NAS 3.3M/– –/20 cells/– Yes – 97.24± 0.09%

Train large models

to be compressed

Manual 11.89M/3.63G
64/3 cells/

[90, 170, 300]
No 1126 97.02± 0.06%

Manual 8.15M/2.54G
64/3 cells/

[50,100,150]
No 622 96.99± 0.07%

Proposed Directly via NN-Mass 5.02M/1.59G
40/3 cells/

[60,130,170]
No 755 97.00± 0.06%

Proposed Directly via NN-Mass 4.69M/1.51G
37/3 cells/

[70,140,180]
No 813 96.93± 0.10%

Proposed Directly via NN-Mass 3.82M/1.2G
31/3 cells/

[70,140,200]
No 856 96.82± 0.05%

Finally, Table 6.2 shows CIFAR-10 results for DARTS [66], a competitive NAS baseline which

first searches for a model and then trains the searched model for 600 epochs. As shown, with

slightly lower 3.3M parameters, the first order DARTS achieves comparable accuracy to our pro-

posed NN-Mass-based compressed models. Moreover, DARTS second order achieves slightly

higher accuracy (∼ 0.2% higher). However, it should be noted that the search space of DARTS

(like all other NAS techniques) is very specialized and utilizes many state-of-the-art innovations

such as depth-wise separable convolutions [47], dialated convolutions [133], etc., to reduce the

number of parameters while obtaining high accuracy. In contrast, we use the regular convolutions

with only concatenation-type long-range links in our work. This clearly demonstrates that NN-

Mass can help us directly discover novel architectures with low number of parameters that achieve

high accuracy; that is, it is not just the specialized convolutions that result in models that attain high

accuracy with less parameters, but also certain CNN architectures are inherently more accurate.

Therefore, the proposed characteristics such as NN-Mass can be used to design computationally-

efficient architectures that achieve high accuracy even when the search space is limited to regular

convolutions.

In future, NN-Mass and NN-Density can be extended to cover more architectures which have
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say, branches of convolutions (similar to GoogleNet or Inception [114] etc.), or that explicitly have

depth-wise separable convolutions (e.g., MobileNets [47, 103], DARTS [66]). Hence, improved

NN-Mass and NN-Density metrics that directly give us insights on which family of models (in the

extended search space including separable convolutions or branches) performs better than others

can be used to significantly reduce the search space of future NAS techniques.

6.5 Summary

In this chapter, we have proposed new architecture-level metrics called NN-Mass and NN-Density

by modeling deep learning architectures from a complex network perspective. By merging PAC-

Bayes theory with the theory of small-world networks (for the very first time), we have also the-

oretically proved two key properties of NN-Mass: (i) For a given depth and width, higher the

NN-Mass, the lower the generalization error, and (ii) Irrespective of total number of parameters,

models with similar NN-Mass yield similar test accuracy.

We have further presented extensive empirical evidence for the above theoretical insights.

Specifically, we have used the proposed NN-Mass and NN-Density for Neural Architecture Space

Exploration of deep networks. We found that for a given depth and width, models higher NN-

Density achieve higher accuracy. With experiments on real datasets such as CIFAR-10/100, we

have demonstrated that CNNs with similar NN-Mass indeed achieve comparable test accuracy,

despite having significantly different number of parameters and layers. Finally, we have exploited

these new insights to directly design compressed models which reduce parameters by up to 3×,

while losing minimal accuracy compared to the large CNN (e.g., the compressed model reaches

96.82% test accuracy vs. ∼ 97% for large CNN on CIFAR-10 dataset).

The present work provides new directions in deep network generalization with implications for

architecture search and model compression. As a future work, we plan to extend, both in theory as

well as in practice, NN-Mass for networks with branches and depth-wise separable convolutions.

We further plan to bridge the theory between architectural aspects of generalization presented in

this work vs. the generalization ideas discussed in prior art (e.g., we can quantify the role of

architecture in overfitting by conducting experiments with randomized labels, noise-added inputs,

activations, etc.).
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Chapter 7

Conclusion and Future Work

In this chapter, we summarize the key contributions of this thesis. To this end, we present the

major takeaways from the four research challenges addressed in our work: (i) Network Science for

Traditional Machine Learning (Feature Extraction), (ii) Representation Learning on Small-Sample

Problems, (iii) Network Science-Based Deep Network Model Compression, and (iv) Network Sci-

ence for Neural Architecture Space Exploration. Finally, since our work breaks new ground in

many different topics, we will describe novel future research directions towards the end of this

chapter.

7.1 Conclusion

In this thesis, we have addressed several problems at the intersection of network science, machine

learning, and Artificial Intelligence. We next briefly summarize the key contributions in each of

the research challenges described above.

7.1.1 Network Science for Traditional Machine Learning

Towards the first research direction, we have answered the following questions:

1. How can we exploit network science to achieve effective spatiotemporal timeseries predic-

tion, a traditional machine learning problem?

2. Can we use network science for application-specific feature extraction?

To answer these questions, we have shown that certain spatiotemporal timeseries prediction prob-

lems are characterized by complex network dynamics. Therefore, to achieve higher accuracy, ma-

chine learning models must account for this underlying network dynamics. Consequently, we have

155



proposed Network-of-Dynamic Bayesian Networks (NDBN) [11], a new probabilistic framework

for learning over networks with known but rapidly changing structure. The fundamental research

problem here was to learn parameters on rapidly changing networks which can then be used for

the underlying classification/prediction problems. To demonstrate a scenario where such a learning

problem can occur, we have considered a concrete case study from the computational sustainability

domain, i.e., to predict short-term solar energy and to quantify solar energy interdependence across

a large river basin. We have shown that our proposed model achieves 8-18% RMSE for one-hour

cloud fraction predictions and outperforms standard models.

The above learning problem assumed that even though the network is changing rapidly, we

still know its structure. Next, we have addressed learning and prediction on a problem where the

network structure is unknown and only high-dimensional raw data is available. Towards this, we

have proposed a correlations-based network inference technique and a new method called K-Hop

Learning [10, 14] for application-specific feature extraction. We have demonstrated the impor-

tance of our feature extraction technique on another case study in the computational sustainability

domain: River network inference and highly accurate, short-term river flowrate prediction by ex-

ploiting network science-based features. Our results have shown that the proposed network-based

feature extraction leads to significant improvements (57%-82%) in short-term flowrate predictions

over the traditional models.

Having demonstrated the importance of network science for traditional machine learning prob-

lems such as application-specific feature extraction, we have next targeted automatic feature learn-

ing for general problems with small number of samples. Specifically, we have shown that network

science concepts can also be quite useful for representation learning on many problems.

7.1.2 Representation Learning on Small-Sample Problems

Here, we have addressed representation learning for Small Data problems. Specifically, we have

targeted the following questions:

1. Can network science concepts be used to automatically learn features for problems with

high-dimensions and small number of samples (say, 100-1500 samples)?

2. How does lack of data impact deep learning model compression?
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We have answered the above questions by first showing that general network science concepts such

as community structure can be exploited to learn useful low-dimensional features for many general

problems. More specifically, these network characteristics are hidden within the high-dimensional

raw data and, hence, can be used reducing the dimensions of the initial dataset. Next, since many

existing model compression techniques rely on the original training dataset, we have proposed a

new technique to perform model compression in absence of real data.

In view of the above, we have first proposed FeatureNet [12], a new community-based dimen-

sionality reduction framework for small sample problems. We have also proposed a new technique

to construct a network from any general high-dimensional raw data to reveal its hidden commu-

nities. Final low-dimensional features are then learned using a representation learning framework

that can account for community structure. We have demonstrated the effectiveness of FeatureNet

across five, diverse application domains such as handwritten digit recognition, biology, physical

science, NLP, and computational sustainability. Our experiments have shown that FeatureNet sig-

nificantly outperforms many well-known dimensionality reduction techniques such as PCA, t-SNE,

Isomap, etc.

Next, we have proposed Dream Distillation [16], a new approach to address deep learning

model compression when the original training data is not available. We have called this problem

space as data-independent model compression. To this end, we have used a small amount of

metadata to generate synthetic images (which capture key features learned by the teacher), and

then used those images for distilling knowledge to the compressed student. We have shown that

models trained via Dream Distillation can achieve up to 88.5% accuracy on the CIFAR-10 without

ever seeing any real data!

Overall, we have shown the importance of network science for representation learning on Small

Data problems. We have next addressed network science for new directions in model compression.

7.1.3 Distributed Deep Learning Model Compression via Network Science

Towards model compression, we have focused on an important research problem – Compress a

large Convolutional Neural Network (CNN) into multiple separate modules such that:

1. Compressed modules fit within the per-device memory/performance budgets.
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2. Communication latency is minimized when the individual modules are distributed across a

network of edge devices.

3. Loss of accuracy is minimal compared to the large CNN model.

To accomplish the above objectives, we have proposed a new paradigm called Network-of-

Neural Networks [15] which compresses a large teacher model into multiple, disjoint student mod-

ules that can be distributed across a network of edge devices with minimal inter-device communi-

cation and accuracy loss over the teacher model. Towards this, we have first partitioned teacher’s

knowledge by proposing a network science-based technique. Then, we have used these parti-

tions to train individual students. Extensive experiments on five well-known image classification

tasks have demonstrated that NoNN achieves close to teacher’s accuracy with significantly lower

memory (2.5×-24× gain w.r.t. teacher) and computation (2×-15× fewer FLOPS w.r.t. teacher),

while guaranteeing that individual modules of NoNN fit within some given memory/FLOP bud-

get. Further, we have shown that NoNN achieves higher accuracy than several baselines. For

a complete validation of our proposed approach on real hardware, we have also deployed our

NoNN models for CIFAR-10 dataset on Raspberry Pi and Odroid devices. We have demonstrated

6.22×-12.22× improvement in performance and 12.99×-14.36× in energy per node w.r.t. teacher.

Finally, for distributed inference on multiple edge devices, we have shown that NoNN outper-

forms a state-of-the-art model compression baseline by up to 33× in total latency for distributed

inference; this highlights the importance of communication costs when existing compressed mod-

els are distributed across multiple devices to meet memory-constraints. Ultimately, our proposed

communication-aware model compression can lead to effective deployment of deep networks on

multiple memory-constrained IoT-devices connected together.

This concludes our proposed network science-based model compression, where we demon-

strated that network science can be used to target new directions in model compression, namely,

the communication aspects involved when memory-constrained IoT-devices are connected together

in a network. So far, designing the individual compressed student architectures has been largely

dependent on the resource-constraints of edge devices (e.g., how many layers, width, parameters

to choose for individual student modules). However, many deep learning architectures yield com-

parable accuracies despite having different number parameters and layers. We have next addressed

how network science can be exploited to identify characteristics that can lead to efficient model
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architectures.

7.1.4 Network Science for Neural Architecture Space Exploration

In the final research challenge, we have addressed the following key questions:

1. What structural property of CNNs results in models with high accuracy?

2. Can we use network science to reveal architectural characteristics that indicate which family

of models (with different number of layers and parameters) achieve comparable accuracy?

Indeed, such characteristics can directly allow us to design compressed models with minimal loss

of accuracy over the large deep networks. Therefore, we have proposed new architecture-level

metrics called NN-Mass and NN-Density by modeling deep learning architectures from a complex

network perspective. Specifically, NN-Density quantifies how densely the channels in a CNN are

connected to each other. On the other hand, NN-Mass quantifies the representational capacity of

CNNs. We have then merged PAC-Bayes theory with the theory for small-world networks to prov-

ably show that (i) The higher the NN-Mass, the lower the generalization error, and (ii) Irrespective

of the number of parameters and layers, models with similar NN-Mass yield similar generalization

performance.

Next, we have provided extensive empirical evidence towards the above theoretical results.

Specifically, we have used the proposed NN-Mass and NN-Density metrics for Neural Architecture

Space Exploration. More precisely, we found that for a given depth and width, models higher NN-

Density achieve higher accuracy. Moreover, as theoretically suggested above, models with similar

NN-Mass indeed achieve comparable accuracies irrespective of number of layers and parameters.

Finally, we have exploited these new network science-based insights to directly design compressed

models which reduce parameters by up to 3×, while losing minimal accuracy compared to the

large CNN. For instance, our directly designed compressed model reaches 96.82% test accuracy

on CIFAR-10 dataset which is close to ∼ 97% accuracy achieved by a large CNN.

As evident from our contributions, our work revolves around a central theme of how learning

can benefit from network science principles. This ultimately opens up new directions of research

at the intersection of representation learning and network science.
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7.2 Future Work

The current work opens up several new research directions. We first discuss short-term plans

followed by long-term research directions.

7.2.1 Short-Term Plans

The contributions made in this thesis can naturally be extended to address many more applications.

We describe some of these ideas below.

First, our network science for traditional machine learning can target other applications such as

traffic prediction. For instance, our current technique in network science-based feature extraction

focuses only on river networks, which are tree-shaped. Indeed, we can extend this technique

to networks with more complex topologies, e.g., traffic networks; this can potentially improve

the prediction of traffic flowing through a city. Similar extensions can be thought for NDBN

framework.

Next, in data-independent model compression, we can validate our Dream Distillation ap-

proach on applications with medical, bio-metric, or speech data, where the data may be more

privacy-sensitive. Note that, for such datasets, representations for different classes may not be

fully-separable. We can also conduct more ablation studies to analyze the impact of using more

real data to generate metadata (e.g., instead of 10% data, what if we use 20% data, etc.). Further,

an in-depth theoretical analysis of FeatureNet can be done to analyze its stability w.r.t. the network

construction parameters.

For communication-aware model compression, we plan to address problems like how to accu-

rately map deep network partitions to heterogeneous devices. Specifically, when the edge devices

have highly variable computational budgets, what is the optimal way to distribute teacher net-

work’s knowledge across multiple students. Moreover, we can also make robustness as a primary

objective of NoNN. We can further explore NoNN for other types of deep learning models such as

Recurrent Neural Networks (RNNs), which can ultimately extend NoNN to other applications in

speech and language domains.

Finally, for network science-based Neural Architecture Space Exploration, NN-Mass and NN-
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Density can be directly extended for CNNs with branches and depth-wise separable convolutions.

Similar to NoNN, we can also potentially explore NN-Mass and NN-Density for RNNs.

7.2.2 Long-Term Plans

Since this thesis introduced many novel problems, our contributions can also have long-lasting

impact on the research community. We next describe how our work on data-independent model

compression, communication-aware model compression, and network science-based Neural Ar-

chitecture Space Exploration can be used for long-term research.

Federated Learning Federated learning is one of the most exciting new learning paradigms

where the idea is to train machine learning models locally on each device (with their local data) [76,

102, 109]. Clearly, this approach has advantages related to privacy. One of the fundamental prob-

lems in Federated Learning is that the data is not independent and identically distributed (non-

IID) [139]. Specifically, since the local data on each device may be skewed towards certain classes,

locally training a copy of the model can result in same set of weights updating in different direc-

tions.

Currently, NoNN works only for distributed inference on edge devices. However, since NoNN

involves partitioning the knowledge from a deep network, it can be easily modified to work in the

federated learning setting. Specifically, if we can find a way to constrain which parts of the model

get updated for which classes, this could clearly alleviate the non-IID issue. Also, an approach

similar to Dream Distillation’s synthetic image generation could be used to generate data from

various classes to make the distribution more IID. Hence, these two ideas can be future research

directions.

Neural Architecture Search In this thesis, we concluded the Neural Architecture Space Explo-

ration problem by demonstrating how the proposed NN-Mass metric can be used to identify family

of models with similar accuracy (even though they have different number of parameters and lay-

ers). We also demonstrated how, given a large CNN, NN-Mass can be used for directly designing

an efficient model with minimal loss of accuracy. Once NN-Mass is extended to comprehen-

sively cover other state-of-the-art convolutions (e.g., depth-wise separable convolutions), it can
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have many more applications in Neural Architecture Search (NAS) techniques [66, 100, 141, 142].

For instance, based on previous models searched, NN-Mass could potentially be used to directly

identify that a given candidate model may not achieve high accuracy. Therefore, such “bad candi-

dates” can be removed from the pool of searched models without the need to train them. Clearly,

such an approach can significantly accelerate the process of architecture search.

This concludes this thesis. Overall, we have demonstrated several new problems where learn-

ing is significantly improved by using network science. We hope this comprehensive work further

encourages more collaboration between network science, machine learning, and Artificial Intelli-

gence in the future.
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