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Abstract

A novel approach to meso/macroscale plasticity is proposed that does not involve postulating

constitutive assumptions beyond those embodied in Discrete Dislocation Dynamics (DD)

methodology and macroscopic elastic response. It involves forefront ideas in the mechanics of

solids (e.g. continuum mechanics of defects) and applied mathematics, e.g. Young measure

theory of averaging for nonlinear Ordinary Differential Equation (ode) systems and their

approximation by numerical techniques. This is achieved by a carefully designed coupling

of an exact, non-closed Partial Differential Equation (pde) based theory (Mesoscale Field

Dislocation Mechanics, MFDM) representing the evolution of averaged dislocation dynamics

with DD simulations, MFDM utilizes inputs obtained from space-time averaged response of

fast, local DD simulations. The rationale behind using this coupled pde-ode based approach

instead of a completely DD based approach is the vast separation in time scales between

plasticity applications that operate at quasi-static loading rate (ranging between 10−6 s−1 to

1 s−1), and the fundamental time scale of dislocation motion as embodied in DD on the order

of nanoseconds. Thus, it is impractical to use conventional DD to reach appreciable strain

rates using realistic loading rates. We discuss the method behind generating the required

constitutive inputs for MFDM from DD simulations using a rigorous mathematical theory

of averaging ode response, and its essential adaptation for practical implementation that we

have called Practical Time Averaging (PTA). In the final part, we derive statements for the

evolution of coarse variables that represent an averaged behavior of microscopic dislocation

dynamics. We show that the exact averaged evolution equations are extremely cumbersome

and non-closed and, more often than not, an infinite hierarchy, and therefore it is more

reasonable to close it at a low level using inputs obtained from averaged, stress-coupled,

interaction dynamics of dislocations. This acts as a further justification for our coupled

MFMD-DD approach.

v



Contents

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Motivation and Overview 1

2 Computing Singularly Perturbed Differential Equations 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 The goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 The limit dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Measurements and slow observables . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 The expected savings in computer time . . . . . . . . . . . . . . . . . . . . . 14

2.7 Computational Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Example I: Rotating planes . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9 Example II: Vibrating springs . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.9.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.9.2 Results - Case 1 :
(
k1

m1
6= k2

m2

)
. . . . . . . . . . . . . . . . . . . . . . 30

2.9.3 Results - Case 2:
(
k1

m1
= k2

m2

)
. . . . . . . . . . . . . . . . . . . . . . 32

2.10 Example III: Relaxation oscillations of oscillators . . . . . . . . . . . . . . . 36

vi



2.10.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.10.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 An approach to plasticity without phenomenology 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 PTA for DD simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Discrete Dislocation Dynamics . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Thermal activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.3 Application of PTA for coarse-graining DD simulation . . . . . . . . 49

3.2.4 Examples of Λ functions . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.5 Modification of PTA in application to DD . . . . . . . . . . . . . . . 53

3.3 Coarse graining DD simulations in time . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 DD simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 DD-continuum plasticity coupling . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.1 MFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 DD-MFDM coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5.1 Obtaining Lp, V at Gauss point of element . . . . . . . . . . . . . . 71

3.5.2 Ensuring non-negative dissipation . . . . . . . . . . . . . . . . . . . . 72

3.5.3 Key changes in DD-MFDM coupling . . . . . . . . . . . . . . . . . . 74

3.5.4 Modifications in algorithm for DD-MFDM coupling . . . . . . . . . . 76

3.5.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5.6 Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vii



4 A formal hierarchy of governing equations by averaging dislocation dy-

namics in real space and time 94

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Hierarchy of averaged equations for nonlinear microscopic equations: the basic

idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Models of MFDM with varying coarse descriptors . . . . . . . . . . . . . . . 102

4.3.1 Isotropic MFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.2 Crystal Plasticity MFDM . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.3 The coarse variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5 Conclusion 127

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A 129

A.1 Verlet Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A.2 Example II: Derivation of system of equations . . . . . . . . . . . . . . . . . 130

A.3 Example II: Case 1 - Validity of commonly used approximations . . . . . . . 132

A.4 Example II: Case 2 - Closed-form Solution . . . . . . . . . . . . . . . . . . . 136

B The orientation matrix 142

C Derivation of evolution equations 144

C.1 Total dislocation density, ρl . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

C.2 The characteristic function, χl . . . . . . . . . . . . . . . . . . . . . . . . . . 145

C.3 Dislocation density tensor corresponding to slip system l, al . . . . . . . . . 150

C.4 Total dislocation density corresponding to slip system l, ρl . . . . . . . . . . 152

Bibliography 153

viii



List of Figures

2.1 The curve in cyan shows the phase space diagram of x1, x2 and x3 obtained by

running the system (2.8.1) to t = 2 with ε = 10−7. Part (a) and Part(b) show

different views of the phase space diagram. The blue curve shows the portion

of the phase portrait obtained around time t1 while the red curve shows the

portion around a later time t2. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 The rapidly oscillating solution of the full equation of x1 is given by the plot

marked x1 which shows rapid oscillations around the fine and PTA values

(which is, as expected, equal to 0). The PTA and the fine results overlap. . 25

2.3 The rapidly oscillating solution of the full equation of w3 is given by the plot

marked w3. The drift in the fine and PTA values cannot be seen on the given

scale. But the drift is visible in Fig. 2.4. The PTA and the fine results overlap. 25

2.4 Evolution of wf3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Evolution of wf4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Example I - Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Example I - Compute time comparison for simulations spanning t = 0.01 to

t = 0.02. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8 Sketch of the mechanical system for problem II. . . . . . . . . . . . . . . . . 27

2.9 Example II Case 1: Compute time comparison for simulations spanning t =

0.25 to t = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.10 Case 2.2 - Comparison of KPTA, UPTA, Kcf and U cf . . . . . . . . . . . . . 33

ix



2.11 Case 2.2 - Error in KPTA and UPTA. . . . . . . . . . . . . . . . . . . . . . . 33

2.12 Case 2.4 - Comparison of KPTA, UPTA, Kcf and U cf . . . . . . . . . . . . . 34

2.13 Case 2.4 - Error in KPTA and UPTA. . . . . . . . . . . . . . . . . . . . . . 34

2.14 Case 2.1 to 2.4: Comparison of RPTA
2 and Rcf

2 . . . . . . . . . . . . . . . . . 35

2.15 Example II Case 2: Compute time comparison for simulations spanning t =

0.25 to t = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.16 Trajectory of (2.10.1). The vertical branches of the y vs x curve correspond

to very fast move on the fast time scale. The blue curve shows the portion of

the phase portrait of the z vs w trajectory obtained around time t1 while the

brown curve shows the portion around a later time t2. . . . . . . . . . . . . . 38

2.17 PTA result. The portion with the arrows correspond to very rapid evolution

on the slow time scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.18 Example III - Compute time comparison for simulations spanning t = 0.2 to

t = 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

x



2.19 This figure shows how PTA scheme predicts the correct values of slow observ-

ables when there is a discontinuity in the Young measure. Part (a) shows the

details for y vs x. The denotations of the different points mentioned here are

provided in Step 3 of Section 2.7. Curve 1 is the set of all points in support

of the measure at time t− h−∆. The point xcpt−h−∆ is given by point 1 in the

figure (we obtain Curve 1 and point 1 using the details mentioned in Step 3

of Section 2.7). Curve 1 reduces to a point near point 1, so it is not visible in

the figure. Curve 2 is the set of all points in support of the measure at time

t − ∆. The point xarbt−∆ is given by point 2 (we obtain Curve 2 and point 2

using the details mentioned in Step 3 of Section 2.7). Curve 2 reduces to a

point very close to point 2, so it is not visible. Point 3 is the initial guess for

time t + h −∆ which we calculate using the details in Step 3 of Section 2.7.

Curve 3 is the set of all points in support of the measure at time t + h −∆.

The slow observable value at time t+h−∆ obtained from the fine run is point

4. Point 5 is the slow observable value obtained from the PTA run using the

details in Step 4 of Section 2.7. Point 6 corresponds to slow observable values

obtained solely by using the coarse evolution equation without using the initial

guess at time t + h − ∆ (using Step 2 of Section 2.7). Part (b) shows the

corresponding details for z vsw. In this figure, we see that Curve 1 and Curve

2 do not reduce to a point. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Dislocation segment modeled as cylindrical tube . . . . . . . . . . . . . . 52

3.2 DD simulation box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Rotated Thompson tetrahedron of the crystal in tension, the primary and conjugate

slip systems are given by {b1,n1} and {b2,n2} respectively. The fixed laboratory

axes are marked with subscript l. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Evolution of ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Evolution of Lp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xi



3.6 Stress-strain profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Stress vs εp,22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 Tangent modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.9 Rotated Thompson tetrahedron of the crystal in shear, the primary and conjugate

slip systems are given by {b1,n1} and {b2,n2} respectively. The fixed laboratory

axes are marked with subscript l. . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.10 Evolution of ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.11 Evolution of Lp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.12 Stress-strain profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.13 Stress vs εp,12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.14 Tangent modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.15 This figure shows the decomposition of the domain of size 25 micron into 5×5

blocks. Each block contains a DD box. Each block also consists of a number

of elements (10× 10 in this figure). . . . . . . . . . . . . . . . . . . . . . . . 73

3.16 Boundary conditions for uniaxial tension . . . . . . . . . . . . . . . . . . . . . 79

3.17 Convergence in stress-strain response for 25 micron sample in tension for different

stress averaging sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.18 Stress-strain response for 400 micron sample in shear for different stress averaging

sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.19 Relative error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.20 |α| for 25 micron sample in uniaxial tension with 5× 5 blocks at 10.3% strain 81

3.21 J2 for 25 micron sample in uniaxial tension with 5× 5 blocks at 10.3% strain 81

3.22 |α| for 25 micron sample in simple shear with 5× 5 blocks at 8.39% strain . 82

3.23 J2 for 25 micron sample in simple shear with 5× 5 blocks at 8.39% strain . 82

3.24 Orientation effect: stress-strain response for 25 micron sample in uniaxial

tension (t22) and simple shear (t12) under load control . . . . . . . . . . . . 82

xii



3.25 Rate effect: stress-strain response for 25 micron sample in uniaxial tension

under load control at different rates . . . . . . . . . . . . . . . . . . . . . . 83

3.26 Stress-strain response for 25 micron sample in uniaxial tension with differ-

ent initial microstructure described by their mobile and sessile densities, their

average given by σ̄ and the upper and lower bounds given by σ̄ + std(σ) and

σ̄ − std(σ) respectively, where std(σ) is the standard deviation of the stress

across all the different initial microstructures. The units of ρm and ρs is m−2. 84

3.27 Stress-strain response for 25 micron sample in uniaxial tension under dis-

placement control at applied strain rate of s = 10−4/s. . . . . . . . . . . . . . 85

3.28 |α| for 25 micron sample in uniaxial tension with 5 × 5 processors at 4.98%

strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.29 J2 for 25 micron sample in uniaxial tension with 5 × 5 processors at 4.98%

strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.30 Orientation effect: stress-strain response for 25 micron sample in uniaxial

tension (t22) and simple shear (t12) under displacement control . . . . . . . 87

3.31 Rate effect: stress-strain response for 25 micron sample in uniaxial tension

under displacement control at different rates . . . . . . . . . . . . . . . . . . 88

3.32 Rate effect: stress-strain response for 25 micron sample in uniaxial tension

under displacement control at different rates. The strain rate s is in units of

s−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.33 Stress-strain response for 25 micron sample in uniaxial tension with differ-

ent initial microstructure described by their mobile and sessile densities, their

average given by σ̄ and the upper and lower bounds given by σ̄ + std(σ) and

σ̄ − std(σ), where std(σ) is the standard deviation of the stress across all the

different initial microstructures. . . . . . . . . . . . . . . . . . . . . . . . . 89

3.34 Stress strain response of a 25 micron sample in uniaxial tension at different

loading rates under load control for Case 1 (bs ·n 6= 0) and Case 2 (bs ·n = 0). 91

xiii



3.35 Stress strain response of a 25 micron sample in uniaxial tension at strain rate

of 10−3 s−1 under displacement control for Case 1 (bs · n 6= 0) and Case 2

(bs · n = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1 Dislocation loops in averaging box . . . . . . . . . . . . . . . . . . . . . . 105

4.2 Top view of a uniformly expanding loop of radius R and width ∆R. . . . . . 105

A.1 Kcf as a function of t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.2 P cf as a function of t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.3 Rcf
2 as a function of t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xiv



List of Tables

2.1 Simulation parameters for Example 2. . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Simulation parameters for the problem of coarse graining DD simulations in

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xv



Chapter 1

Motivation and Overview

The objective of this work is to develop and demonstrate a predictive computational tool

for microstructure-sensitive design of metallic components subjected to mechanical stress

and deformation. This is achieved by coupling of a mathematical coarse-graining technique

[CAA18, SA12] for nonlinear ode with a pde based model of meso-macroscopic disloca-

tion mediated crystal plasticity [AR06, Ach11a]. The main challenge is the computation of

the plastic strength and associated microstructure at the meso and macroscale at realistic

time scales, directly from the underlying motion of crystal defects. The pde based theory

(Mesoscale Field Dislocation Mechanics) contains well-defined place-holders for microscopic

dislocation dynamics based input. These inputs are prescribed by a carefully designed cou-

pling, on the ‘slow’ time-scale of meso-macro response, with time-averaged response of ‘fast’,

local (on the macroscopic scale) Discrete Dislocation dynamics (DD) simulations.

The rationale behind using a coupled approach instead of a completely DD based approach is

the vast separation in time-scales between plasticity applications that operate at quasi-static

loading rates and DD. Thus, it would be impractical to reach appreciable strains using DD

alone. Therefore, we aim to apply a modern theory for singularly perturbed ode systems to

generate inputs for MFDM from DD. The approach does not involve postulating constitutive

1



assumptions beyond those in DD methodology and macroscopic elastic response. Substantial

novel steps in this direction have been made in this thesis towards this challenging goal, and

the results of the effort are also critically evaluated.

This thesis is organized as follows. In Chapter 2, a computational tool for coarse-graining

singularly perturbed nonlinear odes (based on Young Measure theory of averaging on non-

linear ode systems) is discussed, in order to understand their behavior on a time scale that is

much slower than the time scales of the intrinsic dynamics. The tool is based on the works

in [SA12, CAA18]. The scheme that we use, which is a mixture of rigorous and heuristic

arguments, is called Practical Time Averaging (PTA). A literature review of previous work

related to the form of equations we consider in the present study is presented at the end of

Section 2.2. Three illustrative model examples are worked out that demonstrate the range of

capability of the method. The theory and framework was developed by Dr. Amit Acharya

and Dr. Zvi Artstein. The algorithm was designed by Dr. Amit Acharya and me. The

numerical implementation of the algorithm and the solution of the example problems were

done by me. Chapter 2 has been published as [CAA18].

In Chapter 3, the approach to couple MFDM with DD using PTA is discussed. A literature

review of previous work on continuum theory of discrete dislocations is presented. The

applicability of PTA to the coupling problem at hand, due to the vast scale of separation

between the time period of applied loading and the intrinsic time scale of DD, is explained.

The setup for running DD simulations is explained. The algorithm for coarse-graining DD

simulations in time is outlined and the results for two loading cases of uniaxial tension and

simple shear for a (1 µm)3 box, at realistic loading rates and with high speedup in compute

time, is presented. Then we explain the methodology for utilizing many such boxes as part

of a much larger domain in which we do regular plasticity calculations and solve equilibrium

equations (using MFDM), with the averaged DD response serving as local response. In this

way, the constitutive assumptions in MFDM are replaced with time averaged inputs from DD
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simulations. The modifications in the algorithm compared to Phenomenological Mesoscale

Field Dislocation Mechanics (PMFDM, [AR06]) is highlighted. Results are presented for

both load and displacement control for the loading cases of uniaxial tension and simple shear

at different (and small) loading rates and for different values of mobile and sessile density.

These results demonstrate rate and orientation effect and also how the ratio of mobile to

sessile segment density play a huge role in the results. We also point out the limitations in

our current approach: (i) the dislocation content that is allowed to be mobile should grow in

density and some of it should become sessile (in our methodology they will remain mobile but

with very small velocities); however, in our approach, the dislocation content that is allowed

to be mobile does not grow in density (ii) the excess/GND/polar dislocation velocity is almost

negligible. Both of these limitations are because we do not allow, in this first approximation,

increase in mobile density in DD boxes in tune with the GND magnitudes suggested from

MFDM. In reality, both the mobile dislocation density and the polar dislocation velocity

should evolve and be coupled to the evolution of the microstructure and results of MFDM

beyond the local stress (e.g. evolving polar density). The formulation of the scheme was

done in consultation with Dr. Amit Acharya. The computational tool involved coupling an

existing Finite Element based parallel code based on PETSc (developed chronologically by

Prof. Amit Acharya, Dr. Anish Roy and Dr. Saurabh Puri) for solving MFDM, with a

PTA routine based on the Dislocation Dynamics library MODEL. The modifications to the

MFDM code and the entire PTA coupling code was developed by me, with guidance, when

necessary, from Prof. Amit Acharya. Dr. Giacomo Po helped me with questions related to

the usage of MODEL. Additional ideas on setting up the code was provided by Dr. Xiaohan

Zhang (ex-student in Acharya group).

In Chapter 4, a formal derivation of the governing field equations of a detailed space-time

averaged behavior of microscopic dislocation dynamics is presented. We show that the

averaged evolution equations, although exact, are not closed, and may result in an infinite

hierarchy of equations. They become exceedingly cumbersome as we incorporate more detail
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into the description of the defined average variables, thereby providing justification for using

closure assumptions, at a low level in the hierarchy, generated from stress coupled DD

interaction dynamics, and their averaging at a low level to maintain tractability. This acts

as a motivation for the work presented in Chapter 3, where we use space-time averaged

inputs from DD to replace the constitutive assumptions in MFDM. The derivation of the

averaged evolution equations was done in consultation with Dr. Amit Acharya.
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Chapter 2

Computing Singularly Perturbed

Differential Equations

2.1 Introduction

We are concerned with a computational tool for understanding the behavior of systems of

evolution, governed by (nonlinear) ordinary differential equations, on a time scale that is

much slower than the time scales of the intrinsic dynamics. A paradigmatic example is a

molecular dynamic assembly under loads, where the characteristic time of the applied loading

is very much larger than the period of atomic vibrations. We examine appropriate theory

for such applications and devise a computational algorithm. The singular perturbation

problems we address contain a small parameter ε that reflects the ratio between the slow

and the fast time scales. In many cases, the solutions of the problem obtained by setting

the small parameter to zero matches solutions to the full problem with small ε, except

in a small region - a boundary/initial layer. But, there are situations, where the limit of

solutions of the original problem as ε tends to zero does not match the solution of the problem

obtained by setting the small parameter to zero. This chapter covers this aspect as well.
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In the next section we present the framework of the present study, and its sources. We

also display previous approaches to the computational challenge. It allows us to pinpoint

our contribution. Our algorithm is demonstrated through computational examples on three

model problems that have been specially designed to contain the complexities in temporal

dynamics expected in more realistic systems. The implementation is shown to perform

robustly in all cases. These cases include the averaging of fast oscillations as well as of

exponential decay, including problems where the evolution of slow variables can display

fast, almost-discontinuous, behavior in time. The problem set is designed to violate any

ergodic assumption, and the computational technique deals seamlessly with situations that

may or may not have a unique invariant measure for averaging fast response for fixed slow

variables. Thus, it is shown that initial conditions for the fast dynamics matter critically

in many instances, and our methodology allows for the modeling of such phenomena. The

method also deals successfully with conservative or dissipative systems. In fact, one example

on which we demonstrate the efficacy of our computational tool is a linear, spring-mass,

damped system that can display permanent oscillations depending upon delicate conditions

on masses and spring stiffnesses and initial conditions; we show that our methodology does

not require a-priori knowledge of such subtleties in producing the correct response.

2.2 The framework

A particular case of the differential equations we deal with is of the form

dx

dt
=

1

ε
F (x) +G(x), (2.2.1)

with ε > 0 a small real parameter, and x ∈ Rn. For reasons that will become clear in the

sequel we refer to the component G(x) as the drift component.

Notice that the dynamics in (2.2.1) does not exhibit a prescribed split into a fast and a slow

6



dynamics. We are interested in the case where such a split is either not tractable or does

not exist.

Another particular case where a split into a fast and slow dynamics can be identified, is also

of interest to us, as follows.

dx

dt
=

1

ε
F (x, l) (2.2.2)

dl

dt
= L(x, l),

with x ∈ Rn and l ∈ Rm. We think of the variable l as a load. Notice that the dynamics of

the load is determined by an external “slow” equation, that, in turn, may be affected by the

“fast” variable x.

The general case we study is a combination of the previous two cases, namely,

dx

dt
=

1

ε
F (x, l) +G(x, l) (2.2.3)

dl

dt
= L(x, l),

which accommodates both a drift and a load. In the theoretical discussion we address the

general case. We display the two particular cases, since there are many interesting examples

of the type (2.2.1) or (2.2.2).

An even more general setting would be the case where the right hand side of (2.2.3) is of

the form H(x, l, ε), namely, there is no a priori split of the right hand side of the equation

into fast component and a drift or a slow component. A challenge then would be to identify,

either analytically or numerically, such a split. We do not address this case here, but our

study reveals what could be promising directions of such a general study.

We recall that the parameter ε in the previous equation represents the ratio between the

slow (or ordinary) part in the equation and the fast one. In Appendix A.2 we examine one
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of our examples, and demonstrate how to derive the dimensionless equation with the small

parameter, from the raw mechanical equation. In real world situations, ε is small yet it is

not infinitesimal. Experience teaches us, however, that the limit behavior, as ε tends to 0,

of the solutions is quite helpful in understanding of the physical phenomenon and in the

computations. This is, indeed, demonstrated in the examples that follow.

References that carry out a study of equations of the form (2.2.1) are, for instance, Tao,

Owhadi and Marsden [TOM10], Artstein, Kevrekidis, Slemrod and Titi [AKST07], Ariel, En-

gquist and Tsai [AET09a, AET09b], Artstein, Gear, Kevrekidis, Slemrod and Titi [AGK+11],

Slemrod and Acharya [SA12]; conceptually similar questions implicitly arise in the work of

Kevrekidis et al. [KGH+03]. The form (2.2.2) coincides with the Tikhonov model, see, e.g.,

OḾalley [OJ14], Tikhonov, Vasileva and Sveshnikov [TVS85], Verhulst [Ver05], or Wasow

[Was65]. The literature concerning this case followed, mainly, the so called Tikhonov ap-

proach, namely, the assumption that the solutions of the x-equation in (2.2.2), for l fixed,

converge to a point x(l) that solves an algebraic equation, namely, the second equation

in (2.2.3) where the left hand side is equal to 0. The limit dynamics then is a trajectory

(x(t), l(t)), evolving on the manifold of stationary points x(l). We are interested, however,

in the case where the limit dynamics may not be determined by such a manifold, and may

exhibit infinitely rapid oscillations. A theory and applications alluding to such a case are

available, e.g., in Artstein and Vigodner [AV96], Artstein [Art02], Acharya [Ach07, Ach10],

Artstein, Linshiz and Titi [ALT07], Artstein and Slemrod [AS01].

2.3 The goal

A goal of our study is to suggest efficient computational tools that help revealing the limit

behavior of the system as ε gets very small, this on a prescribed, possibly long, interval.

The challenge in such computations stems from the fact that, for small ε, computing the
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ordinary differential equation takes a lot of computing time, to the extent that it becomes

not practical. Typically, we are interested in a numerical description of the full solution,

namely, the progress of the coupled slow/fast dynamics. At times, we may be satisfied with

partial information, say in the description of the progress of a slow variable, reflecting a

measurement of the underlying dynamics. To that end we first identify the mathematical

structure of the limit dynamics on the given interval. The computational algorithm will

reveal an approximation of this limit dynamics, that, in turn, is an approximation of the full

solution for arbitrarily small ε. If only a slow variable is of interest, it can be derived from

the established approximation.

2.4 The limit dynamics

In order to achieve the aforementioned goal, we display the limit structure, as ε→ 0, of the

dynamics of (2.2.3). To this end we identify the fast time equation

dx

dσ
= F (x, l), (2.4.1)

when l is held fixed (recall that l may not show up at all, as in (2.2.1)). The equation (2.4.1)

is the fast part of (2.2.3) (as mentioned, G(x) is the drift and the solution l(t) of the load

equation is the load).

Notice that when moving from (2.2.3) to (2.4.1), we have changed the time scale, with t = εσ.

We refer to σ as the fast time scale.

In order to describe the limit dynamics of (2.2.3) we need the notions of: Probability measures

and convergence of probability measures, Young measures and convergence in the Young

measures sense, invariant measures and limit occupational measures. In particular, we shall

make frequent use of the fact that when occupational measures of solutions of (2.4.1), on long

time intervals, converge, the limit is an invariant measure of (2.4.1). A concise explanation
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of these notions can be found, e.g., in [AV96, AKST07].

It was proved in [AV96] for (2.2.2) and in [AKST07] for (2.2.1), that under quite general

conditions, the dynamics converge, as ε → 0, to a Young measure, namely, a probability

measure-valued map, whose values are invariant measures of (2.4.1). These measures are

drifted in the case of (2.2.1) by the drift component of the equation, and in the case (2.2.2)

by the load. We display the result in the general case after stating the assumptions under

which the result holds.

dl

dt
=

∫
Rn
L(x, l)µ(t)dx. (2.4.2)

The previous general result has not been displayed in the literature, but the arguments in

[AKST07] in regard to (2.2.1) or the proof given in [AV96] for the case (2.2.2), apply to the

present setting as well.

2.5 Measurements and slow observables

A prime role in our approach is played by slow observables, whose dynamics can be followed.

The intuition behind the notion is that the observations which the observable reveals, is a

physical quantity on the macroscopic level, that can be detected. Here we identify some

candidates for such variables. The role they play in the computations is described in the

next section.

In most generality, an observable is a mapping that assigns to a probability measure µ(t)

arising as a value of the Young measure in the limit dynamics of (2.2.3), a real number,

or a vector, say in Rk. Since the values of the Young measure are obtained as limits of

occupational measures (that in fact we use in the computations), we also demand that the

observable be defined on these occupational measures, and be continuous when passing from
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the occupational measures to the value of the Young measure.

An observable v(.) is a slow observable if when applied to the Young measure µ(.) that

determines the limit dynamics in Theorems 4.2, the resulting vector valued map v(t) =

v(µ(t), l(t)) is continuous at points where the measure µ(.) is continuous.

An extrapolation rule for a slow observable v(.) determines an approximation of the value

v(t + h), based on the value v(t) and, possibly, information about the value of the Young

measure µ(t) and the load l(t), at the time t. A typical extrapolation rule would be generated

by the derivative, if available, of the slow observable. Then v(t+ h) = v(t) + hdv
dt

(t).

A trivial example of a slow observable of (2.2.3) with an extrapolation rule is the variable l(t)

itself. It is clearly slow, and the right hand side of the differential equation (2.4.2) determines

the extrapolation rule, namely :

l(t+ h) = l(t) + h
dl

dt
(t). (2.5.1)

An example of a slow observable possessing an extrapolation rule in the case of (2.2.1), is an

orthogonal observable, introduced in [AKST07]. It is based on a mapping m(x, l) : Rn → R

which is a first integral of the fast equation (2.4.1) (with l fixed), namely, it is constant along

solutions of (2.4.1). Then we define the observable v(µ) = m(x, l) with x any point in the

support of µ. But in fact, it will be enough to assume that the mapping m(x, l) is constant on

the supports of the invariant measures arising as values of a Young measure. The definition

of v(µ) = m(x, l) with x any point in the support of µ stays the same, that is, m(x, l) may

not stay constant on solutions away from the support of the limit invariant measure. It was

shown in [AKST07] for the case (2.2.1), that if m(.) is continuously differentiable, then v(t)

satisfies, almost everywhere, the differential equation

dv

dt
=

∫
Rn
∇m(x)G(x)µ(t)dx. (2.5.2)
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It is possible to verify that the result holds also when the observable satisfies the weaker

condition just described, namely, it is a first integral only on the invariant measures that

arise as values of the limit Young measure. The differential equation (2.5.2) is not in a closed

form, in particular, it is not an ordinary differential equation. Yet, if one knows µ(t) and v(t)

at time t, the differentiability expressed in (2.5.2) can be employed to get an extrapolation

of the form v(t+ h) = v(t) + hdv
dt

(t) at points of continuity of the Young measure, based on

the right hand side of (2.5.2). A drawback of an orthogonal observable for practical purposes

is that finding first integrals of the fast motion is, in general, a non-trivial matter.

A natural generalization of the orthogonal observable would be to consider a moment or

a generalized moment, of the measure µ(t). Namely, to drop the orthogonality from the

definition, allowing a general m : Rn → R be a measurement (that may depend, continuously

though, on l when l is present), and define

v(µ) =

∫
Rn
m(x)µ(dx). (2.5.3)

Thus, the observable is an average, with respect to the probability measure, of the bounded

continuous measurement m(.) of the state. If one can verify, for a specific problem, that µ(t)

is piecewise continuous, then the observable defined in (2.5.3) is indeed slow. The drawback

of such an observable is the lack of an apparent extrapolation rule. If, however, in a given

application, an extrapolation rule for the moment can be identified, it will become a useful

tool in the analysis of the equation.

A generalization of (2.5.3) was suggested in [AS06, AET09a] in the form of running time-

averages as slow variables, and was made rigorous in the context of delay equations in

[SA12]. Rather than considering the average of the bounded and continuous function m(x)

with respect µ(t), we suggest considering the average with respect to the values of the Young
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measure over an interval [t−∆, t], i.e,

v(t) =
1

∆

∫ t

t−∆

∫
Rn
m(x)µ(s)(dx)ds. (2.5.4)

Again, the measurement m may depend on the load. Now the observable (2.5.4) depends not

only on the value of the measure at t, but on the “history” of the Young measure, namely its

values on [t−∆, t]. The upside of the definition is that v(t) is a Lipschitz function of t (the

Lipschitz constant may be large when ∆ is small) and, in particular, is almost everywhere

differentiable. The almost everywhere derivative of the slow variable is expressed at the

points t where µ(.) is continuous at t and at t−∆, by

dv

dt
=

1

∆

(∫
Rn
m(x)µ(t)(dx)−

∫
Rn
m(x)µ(t−∆)(dx)

)
. (2.5.5)

This derivative induces an extrapolation rule.

For further reference we call an observable that depends on the values of the Young measure

over an interval prior to t, an H-observable (where the H stands for history).

An H-observable need not be an integral of generalized moments, i.e., of integrals. For

instance, for a given measure µ let

r(µ) = max{x · e1 : x ∈ supp(µ)}, (2.5.6)

where e1 is a prescribed unit vector and supp(µ) is the support of µ. Then, when supp(µ) is

continuous in µ, (and recall Assumption 4.1) the expression

v(t) =
1

∆

∫ t

t−∆

r(µ(τ))dτ, (2.5.7)
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is a slow observable, and

dv

dt
=

1

∆
(r(µ(t))− r(µ(t−∆))) (2.5.8)

determines its extrapolation rule.

The strategy we display in the next section applies whenever slow observables with valid

extrapolation rules are available. The advantage of the H-observables as slow variables is

that any smooth function m(.) generates a slow observable and an extrapolation rule. Plenty

of slow variables arise also in the case of generalized moments of the measure, but then it

may be difficult to identify extrapolation rules. The reverse situation occurs with orthogonal

observables. It may be difficult to identify first integrals of (2.4.1), but once such an integral

is available, its extrapolation rule is at hand.

Also note that in all the preceding examples the extrapolation rules are based on derivatives.

We do not exclude, however, cases where the extrapolation is based on a different argument.

For instance, on information of the progress of some given external parameter, for instance,

a control variable. All the examples computed in this chapter will use H-observables.

2.6 The expected savings in computer time

The motivation behind our scheme of computations is that the straightforward approach,

namely, running the entire equation (2.2.3) on the full interval, is not feasible if ε is very

small. To run (2.4.1) in order to compute the invariant measure at a single point t, or to

run (2.2.3) on a short interval [t−∆, t], with ∆ small, does not consume a lot of computing

time. Thus, our scheme replaces the massive computations with computing the values of the

Young measure at a discrete number of points, or short intervals, and the computation of the

extrapolation rules to get an estimate of the progress of the observables. The latter step does

not depend on ε, and should not consume much computing time. Thus, if h is large (and
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large relative to ∆ in the case of H-observables), we achieve a considerable saving.

These arguments are also behind the saving in the cited references, i.e., [VE03, FVE04,

ALT07, AGK+11]. In our algorithm there is an extra cost of computing time, namely, the

need to detect points in the basin of attraction of the respective invariant measures, i.e., Step

3 in our algorithm. The extra steps amount to, possibly, an addition of a discrete number

of computations that reveal the invariant measures. An additional computing time may be

accrued when facing a discontinuity in the Young measure. The cost is, again, a computation

of the full Young measure around the discontinuity. The possibility of discontinuity has not

been address in the cited references.

2.7 Computational Implementation

We are given the initial conditions of the fine and the slow variables, x(−∆) = x0 and

l(−∆) = l0. We aim to produce a good approximation, of the limit solution in the period

[0, T0]. Due to the lack of algorithmic specification for determining orthogonal observables,

we concentrate on H-observables in this chapter.

In the implementation that follows, we get to the specifics of how the calculations are carried

out. Recall that the H-observables are averages of the form

v(t) =
1

∆

∫ t

t−∆

∫
Rn
m(x)µ(s)(dx)ds. (2.7.1)

Namely, the H-observables are slow variables with a time-lag, i.e. the fine/microscopic

system needs to have run on an interval of length ∆ before the observable at time t can be

defined.

We will also refer to any component of the list of variables of the original dynamics (2.2.3)

as fine variables.
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We think of the calculations marching forward in the slow time-scale in discrete steps of size

h with T0 = nh. Thus the variable t below in the description of our algorithm takes values

of 0h, 1h, 2h, . . . , nh.

Step 1: Calculate the rate of change of slow variable

We calculate the rate of change of the slow variable at time t using the following:

dv

dt
(t) =

1

∆

(∫
Rn
m(x)µ(t)(dx)−

∫
Rn
m(x)µ(t−∆)(dx)

)
. (2.7.2)

Let us denote the term
∫
Rnm(x)µ(t)(dx) as Rm

t and the term
∫
Rnm(x)µ(t−∆)(dx) as Rm

t−∆.

The term Rm
t is computed as

Rm
t =

1

Nt

Nt∑
i=1

m(xε(σi), lε(σi)). (2.7.3)

The successive values (xε(σi),lε(σi)) are obtained by running the fine system

dxε
dσ

= F (xε, lε) + εG(xε, lε)

dlε
dσ

= εL(xε, lε),

(2.7.4)

with initial condition xguess(σ = t
ε
) and l(σ = t

ε
).

We discuss in Step 5 how we obtain xguess(σ). Here, Nt is the number of increments taken

for the value of Rm
t to converge upto a specified value of tolerance. Also, Nt is large enough

such that the effect of the initial transient does not affect the value of Rm
t .

Similarly, Rm
t−∆ is computed as:

Rm
t−∆ =

1

Nt−∆

Nt−∆∑
i=1

m (xε(σi), lε(σi)) , (2.7.5)
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where successive values xε(σi) are obtained by running the fine system (2.7.4) with initial

condition xguess(σ − ∆
ε
) and l(σ − ∆

ε
).

We discuss in Step 3 how we obtain xguess(σ − ∆
ε
). Here, Nt−∆ is the number of increments

taken for the value of Rm
t−∆ to converge upto a specified value of tolerance.

Step 2: Find the value of slow variable

We use the extrapolation rule to obtain the predicted value of the slow variable at the time

t+ h:

v(t+ h) = v(t) +
dv

dt
(t)h, (2.7.6)

where dv
dt

(t) is obtained from (2.7.2).

Step 3: Determine the closest point projection

We assume that the closest-point projection of any fixed point in the fine state space, on the

Young measure of the fine evolution, evolves slowly in any interval where the Young measure

is continuous. We use this idea to define a guess xguess(t + h − ∆), that is in the basin of

attraction of µ(t + h − ∆). The fixed point, denoted as xarbt−∆, is assumed to belong to the

set of points, xε(σi) for which the value of Rm
t−∆ in (2.7.5) converged. Specifically, we make

the choice of xarbt−∆ as xε(σNt−∆
) where xε(σi) is defined in (2.7.5) and Nt−∆ is defined in the

discussion following it. Next, we compute the closest point projection of this point (in the

Euclidean norm) on the support of the measure at t− h−∆. This is done as follows.

Define xconvt−h−∆ as the point xε(σNt−h−∆
), where xε(σi) is defined in the discussion surrounding

(2.7.5) with σ replaced by σ− h
ε
, and Nt−h−∆ is the number of increments taken for the value

of Rm
t−h−∆ to converge (the value of xconvt−h−∆ is typically stored in memory during calculations

for the time t− h−∆). The fine system (2.7.4) with σ replaced by σ − h
ε

is initiated from

xconvt−h−∆, and we calculate the distance of successive points on this trajectory with respect

to xarbt−∆ until a maximum number of increments have been executed. We set the maximum
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number of increments as 2Nt−h−∆. The point(s) on this finite time trajectory that records

the smallest distance from xarbt−∆ is defined as the closest point projection, xcpt−h−∆.

Finally, the guess, xguess(t+ h−∆) is given by

xguess(t+ h−∆) = 2 xarbt−∆ − xcpt−h−∆,

for t > 0. For t = 0, we set

xguess(h−∆) = xarb0 +
(xarb0 − xcp−∆)

∆
(h−∆),

where xarb. and xcp. are defined in the first and the second paragraph respectively in Step

3 above with the time given by the subscripts. This is because the computations start at

t = −∆ and we do not have a measure at t = −h−∆ and hence cannot compute xcp−h−∆ to

be able to use the above formula to obtain xguess(t+ h−∆).

Step 4: Accept the measure

We initiate the fine equation (2.7.4) at (xguess(t+h−∆), l(t+h−∆)) and run the equation

from σ + h
ε
− ∆

ε
to σ + h

ε
(recall σ = t

ε
). We say that there is a match in the value of a slow

variable if the following equality holds (approximately):

v(t+ h) =
1

N ′

N ′∑
i=1

m (xε(σi), lε(σi)) , (2.7.7)

where v(t+ h) refers to the predicted value of the slow variable obtained from the extrapo-

lation rule in Step 2 above. The successive values (xε(σi), lε(σi)) are obtained from system

(2.7.4). Here, N ′ = ∆
ε∆σ

where ∆σ is the fine time step.

If there is a match in the value of the slow variable, we accept the measure which is generated,

in principle, by running the fine equation (2.7.4) with the guess xguess(t+ h−∆) and move

on to the next coarse increment.
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If not, we check if there is a jump in the measure. We say that there is a jump in the

measure if the value of Rm
t+h is significantly different from the value of Rm

t . This can be

stated as:

∣∣∣∣Rm
t+h −Rm

t

Rm
t

∣∣∣∣� 1

N

∑
n

∣∣∣∣Rm
t−(n−1)h −Rm

t−nh

Rm
t−nh

∣∣∣∣ , (2.7.8)

where n is such that there is no jump in the measure between t− nh and t− (n− 1)h and

N is the maximal number of consecutive (integer) values of such n.

If there is no jump in the measure, we try different values of xguess(t + h − ∆) based on

different values of xarbt−∆ and repeat Steps 3 and 4.

If there is a jump in the measure, we declare v(t+h) to be the the right-hand-side of (2.7.7).

The rationale behind this decision is the assumption xguess(t + h − ∆) lies in the basin of

attraction of the measure at t+ h−∆.

Step 5: Obtain fine initial conditions for rate calculation

Step 1 required the definition of xguess(t). We obtain it as

xguess(t) = xarbt−∆ +

(
xarbt−∆ − xcpt−h

)
(h−∆)

∆,

for t > 0, and xarb. and xcp. are defined in the same way as in Step 3, but at different times

given by the subscripts. For t = 0, we obtain xguess(0), which is required to compute Rm
0 , by

running the fine equation (2.7.4) from σ = −∆
ε

to σ = 0. This is because the computations

start at t = −∆ and we do not have a measure at t = −h and hence cannot compute xcp−h to

be able to use the above formula to obtain xguess(t).

We continue in this manner until an approximation of slow observables is computed on the

entire time interval [0, T0].

Discussion The use of the guess for fine initial conditions to initiate the fine system to
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compute Rm
t+h and Rm

t+h−∆ is an integral part of this implementation. This allows us to sys-

tematically use the coarse evolution equation (2.7.2). This feature is a principal improvement

over previous work [TAD13, TAD14].

We will refer to this scheme, which is a mixture of rigorous and heuristic arguments, as

Practical Time Averaging (PTA) and we will refer to results from the scheme by the same

name. Results obtained solely by running the complete system will be referred to as fine

results, indicated by the superscript or subscript f when in a formula.

Thus, if v is a scalar slow variable, then we denote the slow variable value obtained using

PTA scheme as vPTA while the slow variable value obtained by running the fine system alone

is called vf .

The speedup, S(ε), in compute time between the fine and PTA calculations is presented

in the results that follow in subsequent sections. This is defined to be the ratio of the time

taken by the fine calculations to that by the PTA calculations for an entire simulation, say

consisting of n steps of size h on the slow time-scale.

Let T cpuf (ε) and T cpuPTA(ε) be the compute times to obtain the fine and PTA results per jump

on the slow time scale, respectively, for the specific value of ε. The compute time to obtain

the PTA results for n jumps in the slow time scale is nT cpuPTA(ε) which can be written as

nT cpuPTA(ε) = nT cpuPTA,1(ε) + T cpuPTA,2(ε),

where T cpuPTA,1(ε) is the compute time to perform the computations mentioned in Step 1 to

Step 5 for every jump in the slow time scale. Since we cannot use the formula for xguess(t)

mentioned in Step 5 to obtain xguess(0) and we have to run the fine equation (2.7.4) from

σ = −∆
ε

to σ = 0, an additional overhead is incurred in the compute time for the PTA
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computations which we denote as T cpuPTA,2(ε). Thus

S(ε) =
nT cpuf (ε)

nT cpuPTA(ε)
≈

T cpuf (ε)

T cpuPTA,1(ε)
.

for large n.

Error in the PTA result is defined as:

Error(%) =
vPTA − vf

vf
× 100. (2.7.9)

We obtain vf as follows:

Step 1: We run the fine system (2.7.4) from σ = −∆
ε

to σ = T0

ε
using initial conditions (x0,

l0) to obtain (xε(σi), lε(σi)) where σi = i∆σ and i ∈ Z+ and i ≤ T0+∆
ε∆σ

.

Step 2: We calculate vf (t) using:

vf (t) =
1

N ′

N0(t)+N ′∑
i=N0(t)

m (xε(σi), lε(σi)) , (2.7.10)

where N ′ = ∆
ε∆σ

and N0(t) = t+∆
ε∆σ

where ∆σ is the fine time step.

2.8 Example I: Rotating planes

Consider the following four-dimensional system, where we denote by x the vector x =

(x1, x2, x3, x4).

dx

dt
=
F (x)

ε
+G(x), (2.8.1)
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where:

F (x) = ((1− |x|)x+ γ(x)) (2.8.2)

with

γ(x) = (x3, x4,−x1,−x2). (2.8.3)

The drift may be determined by an arbitrary function G(x). For instance, if we let

G(x) = (−x2, x1, 0, 0), (2.8.4)

then we should expect nicely rotating two-dimensional planes. A more complex drift may

result in a more complex dynamics of the invariant measures, namely the two dimensional

limit cycles.

2.8.1 Discussion

The right hand side of the fast equation has two components. The first drives each point x

which is not the origin, toward the sphere of radius 1. The second, γ(x), is perpendicular to

x. It is easy to see that the sphere of radius 1 is invariant under the fast equation. For any

initial condition x0 on the sphere of radius 1, the fast time equation is

ẋ =



0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0


x . (2.8.5)
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It is possible to see that the solutions are periodic, each contained in a two dimensional

subspace. An explicit solution (which we did not used in the computations) is

x = cos (t)



x0,1

x0,2

x0,3

x0,4


+ sin (t)



x0,3

x0,4

−x0,1

−x0,2


. (2.8.6)

Thus, the solution at any point of time is a linear combination of x0 and γ(x0) and stays in

the plane defined by them. Together with the previous observation we conclude that the limit

occupational measure of the fast dynamics should exhibit oscillations in a two-dimensional

subspace of the four-dimensional space. The two dimensional subspace itself is drifted by

the drift G(x). The role of the computations is then to follow the evolution of the oscillatory

two dimensional limit dynamics.

2.8.2 Results

We chose the slow observables to be the averages over the limit cycles of the four rapidly

oscillating variables and their squares since we want to know how they progress. We define

the variables wi = x2
i for i = 1, 2, 3 and 4. The slow variables are xf1 , xf2 , xf3 , xf4 and wf1 , wf2

, wf3 , wf4 . The slow variable xf1 is given by (2.7.1) with m(x) = x1. The slow variables xf2 , xf3

and xf4 are defined similarly. The slow variable wf1 is given by (2.7.1) with m(x) = w1. The

slow variables wf2 , wf3 and wf4 are defined similarly (we use the superscript f , that indicates

the fine solution, since in order to compute these observables we need to solve the entire

equation, though on a small interval). We refer to the PTA variables as xPTA1 , xPTA2 , xPTA3 ,

xPTA4 and wPTA1 , wPTA2 , wPTA3 , wPTA4 . A close look at the solution (2.8.6) reveals that the

averages, on the limit cycles, of the fine variables, are all equal to zero, and we expect the

numerical outcome to reflect that. The average of the squares of the fine variables evolve
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slowly in time. In our algorithm, non-trivial evolution of the slow variable does not play a

role in tracking the evolution of the measure of the complete dynamics. Instead they are

used only to accept the slow variable (and therefore, the measure) at any given discrete time

as valid according to Step 4 of Section 2.7. It is the device of choosing the initial guess in

Step 3 and Step 5 of Section 2.7 that allows us to evolve the measure discretely in time.

t1

t2
t1<	t2

(a)

t1

t2

t1<t2

(b)

Figure 2.1: The curve in cyan shows the phase space diagram of x1, x2 and x3 obtained
by running the system (2.8.1) to t = 2 with ε = 10−7. Part (a) and Part(b) show different
views of the phase space diagram. The blue curve shows the portion of the phase portrait
obtained around time t1 while the red curve shows the portion around a later time t2.

Fig. 2.1 shows the phase space diagram of x1, x2 and x3.

Fig. 2.2 shows the rapid oscillations of the rapidly oscillating variable x1 and the evolution

of the slow variable xf1 . Fig. 2.3 shows the rapid oscillations of w3 and the evolution of

the slow variable wf3 . We find that x3 and x4 evolve exactly in a similar way as x1 and x2

respectively. We find from the results that xf3 , xf4 , wf3 and wf4 evolve exactly similarly as xf1 ,

xf2 , wf1 and wf2 respectively.

The comparison between the fine and the PTA results of the slow variables wf3 and wf4 are

shown in Fig. 2.4 and Fig. 2.5 (we have not shown the evolution of wf1 and wf2 since they
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Figure 2.2: The rapidly oscillating solu-
tion of the full equation of x1 is given by
the plot marked x1 which shows rapid os-
cillations around the fine and PTA values
(which is, as expected, equal to 0). The
PTA and the fine results overlap.

t
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-1.5
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-0.5
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0.5
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w3

-ne
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Figure 2.3: The rapidly oscillating so-
lution of the full equation of w3 is given
by the plot marked w3. The drift in the
fine and PTA values cannot be seen on
the given scale. But the drift is visible in
Fig. 2.4. The PTA and the fine results
overlap.
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Figure 2.4: Evolution of wf3 .

t
0 0.02 0.04 0.06 0.08 0.1
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-ne
PTA

Figure 2.5: Evolution of wf4 .

evolve exactly similarly to wf3 and wf4 respectively). The error in the PTA results are shown

in Fig. 2.6. Since the values of xf1 , xf2 , xf3 and xf4 are very close to 0, we have not provided

the error in PTA results for these slow variables.

Savings in computer time
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Figure 2.6: Example I - Error.
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Figure 2.7: Example I - Compute time comparison for simulations spanning t = 0.01 to
t = 0.02.

In Fig. 2.7, we see that as ε decreases, the compute time for the fine run increases very

quickly while the compute time for the PTA run increases relatively slowly. The compute

times correspond to simulations spanning t = 0.01 to t = 0.02 with ∆ = 0.001. The speedup

in compute time, S, obtained as a function of ε, is given by the following polynomial:

S(ε) = 73.57− 3.70× 109 ε+ 6.76× 1016 ε2 − 3.74× 1023 ε3. (2.8.7)

The function S(ε) is an interpolation of the computationally obtained data to a cubic poly-

nomial. A more efficient calculation yielding higher speedup is to calculate the slow variable

v using Simpson’s rule. In this problem, we took the datapoint of ε = 10−8 and obtained

S(10−8) = 43. This speedup corresponds to an accuracy of 0.7% error. However, as ε
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decreases and approaches zero, the asymptotic value of S becomes 74.

2.9 Example II: Vibrating springs

Consider the mass-spring system in Fig. 2.8. The system of equations posed in the slow

time scale is

ε
dx1

dt
= Tf y1

ε
dy1

dt
= −Tf

(
k1

m1

(x1 − w1)− η

m1

(y2 − y1)

)
ε
dx2

dt
= Tf y2

ε
dy2

dt
= −Tf

(
k2

m2

(x2 − w2) +
η

m2

(y2 − y1)

)
dw1

dt
= Ts L1(w1)

dw2

dt
= Ts L2(w2) . (2.9.1)

Figure 2.8: Sketch of the mechanical system for problem II.

The derivation of (2.9.1) from the system in dimensional time is given in Appendix A.2.

The small parameter ε arises from the ratio of the fast oscillation of the springs to the slow

application of the load.
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2.9.1 Discussion

• For a fixed value of the slow dynamics, that is, for fixed positions w1 and w2 of the

walls, the dynamics of the fine equation is as follow. If k1

m1
6= k2

m2
, then all the energy

is dissipated, and the trajectory converges to the origin. If the equality holds, only

part of the energy possessed by the initial conditions is dissipated, and the trajectory

converges to a periodic one (in rare cases it will be the origin), whose energy is deter-

mined by the initial condition. The computational challenge is when fast oscillations

persist. Then the limiting periodic solution determines an invariant measure for the

fast flow. When the walls move, slowly, the limit invariant measure moves as well. The

computations should detect this movement. However, if the walls move very slowly,

there is a possibility that in the limit the energy does not change at all as the walls

move.

Notice that the invariant measure is not determined by the position of the walls, and

additional slow observables should be incorporated. A possible candidate is the total

energy stored in the invariant measure. Since the total energy is constant on the limit

cycle, it forms an orthogonal observable as described in section 4. Its extrapolation

rule is given by (2.5.1). In order to apply (2.5.1) one has to derive the effect of the

movement of the walls on the observable, namely, on the total energy.

Two other observables could be the average kinetic energy and the average potential

energy on the invariant measure. In both cases, the form of H-observables should

be employed, as it is not clear how to come up with an extrapolation rules for these

observables.

• We define kinetic energy (K), potential energy (U) and reaction force on the right wall
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(R2) as:

K(σ) =
1

2

(
m1 y1,ε(σ)2 +m2 y2,ε(σ)2)

U(σ) =
1

2
k1(x1,ε(σ)− w1,ε(σ))2 +

1

2
k2(x2,ε(σ)− w2,ε(σ))2 (2.9.2)

R2(σ) = −k2 (x2,ε(σ)− w2,ε(σ)) .

• The H-observables that we obtained in this example are the average kinetic energy

(Kf ), average potential energy (U f ) and average reaction force on the right wall (Rf
2)

which are calculated as:

Kf (t) =
1

N ′

N ′∑
i=1

K(σi)

U f (t) =
1

N ′

N ′∑
i=1

U(σi) (2.9.3)

Rf
2(t) =

1

N ′

N ′∑
i=1

R2(σi),

where N ′ is defined in the discussion following (2.7.7) and successive values x1,ε(σi),

x2,ε(σi), y1,ε(σi) and y2,ε(σi) are obtained by solving the fine system associated with

(2.9.1). The computations are done when L1(w1) = 0 and L2(w2) = c2.

• As we will show in Section 2.9.2 (where we show results for the case corresponding

to the condition k1

m1
6= k2

m2
which we call Case 1) and Section 2.9.3 (where we show

results for the case corresponding to the condition k1

m1
= k2

m2
which we call Case 2)

respectively, in Case 1, the fine evolution converges to a singleton (in the case without

forcing) while in Case 2, the fine evolution generically converges to a limit set that

is not a singleton (which will be shown in Case 2.2 in Section 2.9.3), which shows

the distinction between the two cases. This has significant impact on the results of

average kinetic and potential energy. Our computational scheme requires no a-priori
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knowledge of these important distinctions and predicts the correct approximations of

the limit solution in all of the cases considered.

• The solutions to the system (2.9.1) corresponding to the Tikhonov framework [TVS85]

and the quasi-static assumption commonly made in solid mechanics for mechanical

systems forced at small loading rates are provided in Appendix A.3. It is shown that

the quasi-static assumption does not apply for this problem. The Tikhonov framework

applies in some situations and our computation results are consistent with these con-

clusions. As a cautionary note involving limit solutions (even when valid), we note

that evaluating nonlinear functions like potential and kinetic energy on the weak limit

solutions as a reflection of the limit of potential and kinetic energy along sequences of

solutions of (2.9.1) as ε→ 0 (or equivalently Ts →∞) does not make sense in general,

especially when oscillations persist in the limit. Indeed, we observe this for all results

in Case 2.

2.9.2 Results - Case 1 :
(

k1
m1
6= k2

m2

)
All simulation parameters are grouped in Table 2.1. The total physical time over which

the simulation runs is T0Ts, where T0 is the total simulation time in the slow time scale

(in all computed problems here, we have chosen T0 = 1. The PTA computations done

in this section are with the load fixed while calculating Rm
t and Rm

t−∆ using (2.7.3) and

(2.7.5) respectively (by setting dlε
dσ

= 0 in (2.7.4)). The slow variable value (v(t + h) in

(2.7.7)) is calculated using Simpson’s rule. The PTA results and the closed-form results

(denoted by “cf” in the superscript) match for all values of t (KPTA = 10−10 ≈ 0 = Kcf ,

UPTA = 10−10 ≈ 0 = U cf and RPTA
2 = 10−5 ≈ 0 = Rcf

2 - note that all the results presented

here are non-dimensionalized). In this case, the results from the Tikhonov framework match

with our computational approximations. This is because after the initial transient dies out,

the whole system displays slow behavior in this particular case. However, the solution under
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the quasi-static approximation does not match our computational results (even though the

loading rate is small).

Name Physical definition Values
k1 Stiffness of left spring 107 N /m
k2 Stiffness of right spring 107 N /m
m1 Left mass 1 kg
m2 Right mass 2 kg
η Damping coefficient of dashpot 5× 103 N s/m
c2 Velocity of right wall 10−6 = 0.01

104 m/s
h Jump size in slow time scale 0.25
∆ Parameter used in rate calculation 0.05

Table 2.1: Simulation parameters for Example 2.

Savings in Computer time
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Figure 2.9: Example II Case 1: Compute time comparison for simulations spanning t = 0.25
to t = 0.5.

Fig.2.9 shows the comparison between the time taken by the fine and the PTA runs for

simulations spanning t = 0.25 to t = 0.5 with ∆ = 0.05. The speedup in compute time is

given by the following polynomial:

S(ε) = 2.28× 103 − 1.29× 1010 ε+ 6.46× 1015 ε2 + 2.94× 1020 ε3. (2.9.4)
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The function S(ε) is an interpolation of the computationally obtained data to a cubic polyno-

mial. We used the datapoint of ε = 1.98× 10−7 and obtained S(1.98× 10−7) = 231. Results

obtained in this case have accuracy of 0.0000% error. As ε is decreased and approaches zero,

the asymptotic value of S is 2.28× 103.

2.9.3 Results - Case 2:
(

k1
m1

= k2
m2

)
In this case the quasi-static approach is not valid. The closed-form solution to this case

is displayed in Appendix A.4 (but it is not used in the computations). Recall that the

computations are carried out when L1(w1) = 0 and L2(w2) = c2. The PTA computations

done in this section are with the load fixed while calculating Rm
t and Rm

t−∆ using (2.7.3) and

(2.7.5) respectively (by setting dlε
dσ

= 0 in (2.7.4)). The slow variable value (v(t+h) in (2.7.7))

is calculated using Simpson’s rule. All results in this section are non-dimensionalized.

The following cases arise:

• Case 2.1 When c2 = 0 and the initial condition does not have a component on the

modes describing the dashpot being undeformed (x1 = x2 and y1 = y2), then the

solution will go to rest. For example, the initial conditions x1
0 = 1.0, x2

0 = −0.5 and

y1
0 = y2

0 = 0.0 makes the solution go to rest. The simulation results agree with the

closed-form results and go to zero.

• Case 2.2 When c2 = 0 and the initial condition has a component on the modes

describing the dashpot being undeformed, then in the fast time limit the solution

shows periodic oscillations whose energy is determined by the initial conditions. This

happens, of course, for almost all initial conditions. One such initial condition is

x1
0 = 0.5, x2

0 = −0.1 and y1
0 = y2

0 = 0. The simulation results agree with the

closed-form results.

This is in contrast with Case 1 where it is impossible to find initial conditions for which
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the solution shows periodic oscillations.
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Figure 2.10: Case 2.2 - Comparison of
KPTA, UPTA, Kcf and U cf .
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Figure 2.11: Case 2.2 - Error in KPTA

and UPTA.

In Fig. 2.10, we see that the PTA results are very close to the closed-form results. The

error in PTA results are presented in Fig. 2.11.

Oscillations persist in the limit and the potential and kinetic energies computed based

on the Tikhonov framework as well as the quasi-static solution (provided in Appendix

A.3) are not expected to, and do not, yield correct answers.

• Case 2.3 When c2 6= 0 and the initial condition does not have a component on the

modes describing the dashpot being undeformed, then the solution on the fast time

scale for large values of σ does not depend on the initial condition. One such initial

condition is x1
0 = 1.0, x2

0 = −0.5 and y1
0 = 0.0 and y2

0 = 10−4. The closed-form

average kinetic energy (Kcf ) and closed-form average potential energy (U cf ) do not

depend on the magnitude of the initial conditions in this case.

• Case 2.4 The initial condition has a component on the modes describing the dashpot

being undeformed. But when c2 6= 0, the dashpot gets deformed due to the translation

of the mass m2. The closed-form average kinetic energy (Kcf ) and closed-form average
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potential energy (U cf ) depend on the initial conditions.
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Figure 2.12: Case 2.4 - Comparison of
KPTA, UPTA, Kcf and U cf .
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Figure 2.13: Case 2.4 - Error in KPTA

and UPTA.

In Fig. 2.12, we see that the PTA results are very close to the closed-form results. The

errors in PTA results are presented in Fig. 2.13.

• The comparison between RPTA
2 and Rcf

2 for Case 2.1 to 2.4 is shown in Fig.2.14. The

closed-form result goes to zero and the PTA result becomes very small.

• Again, oscillations persist in the limit, and the Tikhonov framework and the quasi-

static approximation do not work in this case.

• The results do not change if we decrease the value of ε. However, the speedup changes

as will be shown in Savings in Computer time later in this section.

We used the same simulation parameters as in Case 1 ( shown in Table 2.1 ) but with

k2 = 2 × 107N/m so that k1

m1
= k2

m2
. Let us assume that the strain rate is 10−4s−1. Then

the slow time period, Ts = 1
˙̄ε

= 10000s. The fast time period is obtained as the period of

fast oscillations of the spring, given by, Tf = 2π
√

m1

k1
= 0.002s. Thus, we find ε =

Tf
Ts

=

1.98×10−7. While running the PTA code with ε = 0.002, we have seen that the PTA scheme

is not able to give accurate results and it breaks down.

Savings in Computer time
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It takes the PTA run around 62 seconds to compute the calculations that start at slow

time which is a multiple of h (steps 1 through 5 in section 2.7 ). It takes the fine theory

run around 8314 seconds to evolve the fine equation starting at slow time nh to slow time

(n+ 1)h, where n is a positive integer. Thus, we could achieve a speedup of 134. We expect

that the speedup will increase if we decrease the value of ε.
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Figure 2.15: Example II Case 2: Compute time comparison for simulations spanning t = 0.25
to t = 0.5.
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Fig.2.15 shows the comparison between the time taken by the fine and the PTA runs for

simulations spanning t = 0.25 to t = 0.5 with ∆ = 0.05.

The speedup in compute time is given by the following polynomial:

S(ε) = 164.34− 1.62× 108 ε+ 5.23× 1013 ε2 − 2.25× 1018ε3. (2.9.5)

The function S(ε) is an interpolation of the computationally obtained data to a cubic poly-

nomial. We used the datapoint of ε = 1.98× 10−7 and obtained S(1.98× 10−7) = 134. This

speedup corresponds to an accuracy of 0.026% error. As ε is decreased and approaches zero,

the asymptotic value of S is 164.

2.10 Example III: Relaxation oscillations of oscillators

This is a variation of the classical relaxation oscillation example(see, e.g., [Art02]). Consider

the four-dimensional system

dx

dt
= z

dy

dt
=

1

ε
(−x+ y − y3) (2.10.1)

dz

dt
=

1

ε
(w + (z − y)(

1

8
− w2 − (z − y)2))

dw

dt
=

1

ε
(−(z − y) + w(

1

8
− w2 − (z − y)2)).

Notice that the (z, w) coordinates oscillate around the point (y, 0) (in the (z, w)-space),

with oscillations that converge to a circular limit cycle of radius 1√
8
. The coordinates (x, y)

follow the classical relaxation oscillations pattern (for the fun of it, we replaced y in the

slow equation by z, whose average in the limit is y). In particular, the limit dynamics of

the y-coordinate moves slowly along the stable branches of the curve 0 = −x+ y − y3, with
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discontinuities at x = − 2
3
√

3
and x = 2

3
√

3
. In turn, these discontinuities carry with them

discontinuities of the oscillations in the (z, w) coordinates. The goal of the computation is

to follow the limit behaviour, including the discontinuities of the oscillations.

2.10.1 Discussion

The slow dynamics, or the load, in the example is the x-variable. Its value does not determine

the limit invariant measure in the fast dynamics, which comprises a point y and a limit circle

in the (z, w)-coordinates. A slow observable that will determine the limit invariant measure

is the y-coordinate. However, this observable does go through periodic discontinuities.

2.10.2 Results

We see in Fig. 2.16 that the y-coordinate moves slowly along the stable branches of the

curve 0 = −x+ y − y3 which is evident from the high density of points in these branches of

the curve as can be seen in Fig. 2.16. There are also two discontinuities at x = − 2
3
√

3
and

x = 2
3
√

3
. The pair (z, w) oscillates around (y, 0) in circular limit cycle of radius 1√

8
.

In Fig. 2.17, we see that the average of z and y which are given by the y-coordinate in the

plot, are the same which acts as a verification that our scheme works correctly. Also, average

of w is 0 as expected.

Since there is a jump in the evolution of the measure at the discontinuities (of the Young

measure), the observable value obtained using extrapolation rule is not able to follow this

jump. However, the observable values obtained using the guess for fine initial conditions at

the next jump could follow the discontinuity. This is the principal computational demon-

stration of this example.

Fig. 2.19 shows the working of the PTA scheme when there is a discontinuity in the Young

measure. We obtain the initial guess at time t + h − ∆ by extrapolating the closest point
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Figure 2.16: Trajectory of (2.10.1).
The vertical branches of the y vs x
curve correspond to very fast move
on the fast time scale. The blue curve
shows the portion of the phase por-
trait of the z vs w trajectory obtained
around time t1 while the brown curve
shows the portion around a later time
t2.

Figure 2.17: PTA result. The portion
with the arrows correspond to very rapid
evolution on the slow time scale.

0
10 -10 10 -9 10 -8 10 -7

C
P

U
 ti

m
e 

(s
ec

on
ds

)

10 1

10 2

10 3

10 4

10 5

PTA
-ne

Figure 2.18: Example III - Compute time comparison for simulations spanning t = 0.2 to
t = 0.4.

projection at time t − h − ∆ of a point on the measure at time t − ∆. The details of the

procedure are mentioned in Step 3 of section 2.7. When there is a discontinuity in the

Young measure, the results of the slow observables obtained using coarse evolution (Point 6)
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Figure 2.19: This figure shows how PTA scheme predicts the correct values of slow ob-
servables when there is a discontinuity in the Young measure. Part (a) shows the details
for y vs x. The denotations of the different points mentioned here are provided in Step 3 of
Section 2.7. Curve 1 is the set of all points in support of the measure at time t − h − ∆.
The point xcpt−h−∆ is given by point 1 in the figure (we obtain Curve 1 and point 1 using the
details mentioned in Step 3 of Section 2.7). Curve 1 reduces to a point near point 1, so it is
not visible in the figure. Curve 2 is the set of all points in support of the measure at time
t−∆. The point xarbt−∆ is given by point 2 (we obtain Curve 2 and point 2 using the details
mentioned in Step 3 of Section 2.7). Curve 2 reduces to a point very close to point 2, so it
is not visible. Point 3 is the initial guess for time t + h − ∆ which we calculate using the
details in Step 3 of Section 2.7. Curve 3 is the set of all points in support of the measure at
time t + h −∆. The slow observable value at time t + h −∆ obtained from the fine run is
point 4. Point 5 is the slow observable value obtained from the PTA run using the details in
Step 4 of Section 2.7. Point 6 corresponds to slow observable values obtained solely by using
the coarse evolution equation without using the initial guess at time t+ h−∆ (using Step 2
of Section 2.7). Part (b) shows the corresponding details for z vsw. In this figure, we see
that Curve 1 and Curve 2 do not reduce to a point.

is unable to follow the discontinuity. But when the fine run is initiated at the initial guess

at time t+ h−∆ which is given by Point 3 in the figure, the PTA scheme is able to follow

the jump in the measure and we obtain the correct slow observable values (Point 5) which

is very close to the slow observable value obtained from the fine run (Point 4).

Savings in computer time The speedup in compute time as a function of ε for ∆ = 0.01,
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is given by the following polynomial :

S(ε) = 1.29× 103 − 1.19× 1012 ε+ 1.17× 1020 ε2 − 1.05× 1027 ε3. (2.10.2)

The function S(ε) is an interpolation of the computationally obtained data to a cubic poly-

nomial. We used the datapoint of ε = 10−10 for this problem and obtained S(10−10) =

1.17× 103. This speedup corresponds to an accuracy of 4.33% error. As we futher decrease

ε and it approaches zero, the asymptotic value of S becomes 1.29× 103.

Remark As a practical matter, it seems advantageous to set ε = 0 in (2.7.4) for the compu-

tations of Rm
t−∆ in (2.7.5) and Rm

t in (2.7.3). Related to this, when the value of ε is decreased,

calculating the slow variable value (v(t+ h) in (2.7.7)) using Simpson’s rule as described in

Remark in Appendix A.4 reduces T cpuPTA considerably and improves the speedup S(ε).

2.11 Discussion

The focus of this chapter has been the precise definition and demonstration of a compu-

tational tool to probe slow time-scale behavior of rapidly evolving microscopic dynamics,

whether oscillatory or exponentially decaying to a manifold of slow variables, or containing

both behaviors. A prime novelty of our approach is in the introduction of a general family

of observables (H-observables) that is universally available, and a practical computational

scheme that covers cases where the invariant measures may not be uniquely determined by

the slow variables in play, and one that allows the tracking of slow dynamics even at points of

discontinuity of the Young measure. We have solved three model problems that nevertheless

contain most of the complications of averaging complex multiscale temporal dynamics. It

can be hoped that the developed tool is of substantial generality for attacking real-world

practical problems related to understanding and engineering complex microscopic dynamics

in relatively simpler terms.
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Chapter 3

An approach to plasticity without

phenomenology

3.1 Introduction

We aim to develop and demonstrate a predictive computational tool for microstructure-

sensitive design of metallic components subjected to mechanical stress and deformation.

This will be achieved by coupling of a coarse graining scheme for nonlinear ODE called

PTA, which has been described in detail in Chapter 2, with a PDE based model of meso-

macroscopic dislocation mediated crystal plasticity [AR06, Ach11a]. The challenge will be

the computation of the plastic strength and associated microstructure at the meso and

macroscale at realistic time scales, directly from the underlying motion of crystal defects,

without using constitutive assumptions. The PDE based theory (Mesoscale Field Dislocation

Mechanics) contains well-defined place-holders for microscopic dislocation dynamics based

input. These inputs will be prescribed by a carefully designed coupling, on the ‘slow’ time-

scale of meso-macro response, with time-averaged response of ‘fast’, local (on the macroscopic

scale) Discrete Dislocation dynamics (DD) simulations.
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The rationale behind using a coupled approach instead of a completely DD based approach is

the vast separation in time-scales between plasticity applications that operate at quasi-static

loading rates and DD. Thus, it would be impractical to reach appreciable strains using DD

alone. Therefore, we aim to apply a modern theory for singularly perturbed ODE systems to

generate inputs for MFDM from DD. The approach does not involve postulating constitutive

assumptions beyond those in DD methodology and macroscopic elastic response.

We will see that we have been able to obtain the stress-strain response of macroscopic

samples at realistic loading rates up to appreciable values of strain, without using any phe-

nomenlogical assumptions (except for thermal activation which is not part of the adopted

microscopic model, i.e. DD), and with significant speedup in compute time. This would

not be possible using conventional DD alone. However, the limitation of the work is that

the dislocation content that is allowed to be mobile does not grow in density. Ideally, the

mobile dislocations should grow in density and some of them should become sessile. More-

over, the excess/GND/polar dislocation velocity is almost negligible. These limitations are

caused because we do not allow, in this first approximation, increase in mobile density in

DD boxes in tune with the GND magnitudes suggested from MFDM. In reality, both the

mobile dislocation density and the polar dislocation velocity should evolve and be coupled

to the evolution of the microstructure and results of MFDM beyond the local stress (e.g.

evolving polar density).

3.1.1 Literature review

Plastic deformation of metals depends primarily on the motion and interaction of disloca-

tions. A main goal of crystal plasticity is to develop continuum constitutive relations from

the underlying dynamics of a system of discrete dislocations. A statistical approach for the

kinetic evolution of idealized dislocation systems on a single slip system in 2-d has been

developed. Groma [Gro97] derived a continuum description for a system of straight parallel
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dislocations from the equations of motion of individual dislocations. However, to get a closed

set of equations, short range dislocation-dislocation interaction was neglected in this work

and dislocation-dislocation interactions were only described by long-range terms. El-Azab

[EA00, EA06] developed a continuum description of the dynamics of a system of curved dis-

location in 3D using a different statistical mechanics framework. This work suffers from an

inadequate accounting, at the mesoscale, of the connectedness of dislocation lines. Groma,

Zaiser and Csikor [GCZ03] demonstrated the influence of short range dislocation-dislocation

correlations by a local flow stress which scales like the square root of dislocation density and a

plastic strain gradient term, introduced on an ad-hoc basis, motivated by spatial correlations

of 2-d straight discrete dislocation distributions at equilibrium.

Hochrainer et al. [HSZG14] developed Continuum Dislocation Dynamics (CDD) which con-

sists of solving a complicated set of evolution equations of internal variables for each slip

system. This system is derived, by averaging over the line direction variable, from a ki-

netic theory like description for line direction and curvature probability density functions

([HSZG14]). The evolution equations for these density functions, i.e. the microscopic dynam-

ics, are postulated, much like in the kinetic theory of gases, without being derived from discrete

dislocation dynamics ; thus such a model accounts for dislocation interactions in an approx-

imate manner, much like the restrictions posed by collision operator approximations in the

kinetic theory of gases, and such approximations taking into account dislocation interactions,

even in the most rudimentary ways, has not appeared in the so-called ‘kinematically-closed’

versions of CDD. CDD also does not include physics of dislocation interactions on different

slip systems and out of plane motion of dislocations.

Yasin, Zbib and Khaleed [YZK01] developed a numerical model coupling 3D discrete dislo-

cation dynamics with a continuum finite element model in which the plastic strain rate is

obtained from DD. However they do not develop the theoretical and computational infras-

tructure for averaging in time, so their coupled theory in effect operates at the time scale
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of DD. Using the superposition principle, dislocation-surface interactions are computed nu-

merically which are shown to have effects on the results. Zbib, Rubia and Bulatov [ZRB02]

used a similar hybrid continuum-discrete framework to investigate a wide range of small

scale plasticity phenomena such as formation of deformation bands and surface distortions

under dynamic loading conditions. Groh and Zbib [GZ09] reviewed the use of dislocation

dynamics to replace the constitutive equations in continuum plasticity models. They also

addressed issues related to image stresses when dislocations exist in in finite volumes.

Lemarchand [LDK01] proposed the Discrete-Continuum Model (DCM) which is similar to

the approach followed by Zbib et. al. ([YZK01], [ZRB02]) in the sense that it uses a coupled

DD-finite element approach in which DD is used as a substitute for the constitutive form

used in usual finite element frameworks, while the finite element code is used to test the

conditions of mechanical equilibrium. However, the difference in this approach from Zbib et.

al. ([YZK01], [ZRB02]) is that the stress at the Gauss points of the finite element mesh are

interpolated to the midpoint of the dislocation segments to solve for the motion of dislocation

segments. This is different from the approach in Zbib et. al. ([YZK01], [ZRB02]) in which

the dislocation-dislocation interaction is computed for all dislocations present in the same

element to obtain a homogenized internal stress, while the stress induced by dislocation

segments not present in the same element is obtained using a multipole expansion.

Acharya and Roy [AR06] proposed Phenomenological Mesoscale Field Dislocation Mechanics

(PMFDM) to study initial-boundary value problem of small-scale plasticity. It is obtained by

space-time averaging of the equations of Field Dislocation Mechanics (FDM). This involves

phenomenologically specifying some space-time averaged inputs from the finer scale model

(FDM), which includes a model of plastic strain rate due to dislocations which are averaged

out (statistically stored dislocations or SSDs). The resulting coarse model has only one

extra material parameter over and above macroscopic continuum plasticity. Finite-element

based computational predictions of this theory are presented in [AR06, PDA11, AA19],

44



where size effects, strong inhomogeneity in simple shear of plastically constrained grains and

non-locality in elastic straining leading to Bauschinger effect are demonstrated.

The problem of coupling dislocation-dynamics with a nonlinear continuum theory of plastic-

ity relies in determining the minimum physical set of variable averages (in space and time) to

be used in the continuum theory and still be able to correctly capture the micromechanics of

plastic deformation. In general, given a large volume V , we decompose it into sub-volumes

Vi where dislocation dynamics (DD) is solved in each sub-volume (in this case each dis-

location dynamics simulation represents a Gauss point in the large domain). Spatial and

time-averages hence need to be computed to couple DD simulations to continuum theory. A

simpler case to consider is when we assume that the large domain is composed of only one

sub-volume (in this case the DD simulation is considered to be the only Gauss point) and

we ignore the spatial-averaging. The steps of computing time-averages are further explained

in the next section. The main thing to understand is that we will generally be interested in

time-averages of nonlinear state functions and this is not the same thing as evaluating the

state functions on time-averages of the state itself.

3.2 PTA for DD simulation

The framework and implementation of a scheme called Practical Time Averaging (PTA)

which is used to coarse-grain nonlinear ordinary differential equations in time is discussed

in detail in Chapter 2. Here, we discuss why this scheme is relevant for coarse graining DD

simulations in time and then lay out the framework of its application. But before that, we

present a brief description of DD.
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3.2.1 Discrete Dislocation Dynamics

Discrete Dislocation Dynamics (DD) refers to the collective dynamics of dislocation ensem-

bles which is used to predict plastic properties of materials. The goal of DD is to evolve a

dislocation configuration based on the local stress. This includes self-stress of the loop, the

stress due to other loops and other sources of stress, including externally applied stress. The

Cauchy stress tensor due to a dislocation loop [Esh57] is given by

σij = Cijkl(uk,l − βPkl) = SijklR ∗ αkl,

where C is the fourth order, possibly anisotropic tensor of spatially constant linear elastic

moduli, u is the displacement field due to the dislocation loop, βP is the plastic distortion

tensor, S is a linear differential operator acting on the Euclidean distance R (given by R =

x−x′, where x is the point where the stress field is being calculated and x′ is a point on the

dislocation loop), α is the dislocation density tensor and the symbol ∗ indicates convolution

in three dimensional space. The force acting on a dislocation segment of infinitesimal length

d` due to the stress field is given by dfk = εkjmσjibid`m and is called the Peach-Köehler force

([PK50]).

The velocity field w is defined on the dislocation curves, and discretely on the nodes that

discretize the curves. It is obtained by the solution of the following:

∮
L

[
w̃iBijwj + λ̃2εijkwibj ξ̂k

]
d` =

∮
L

[
w̃i

(1

θ
εijkTjmbmξ̂k − λ2εijkbj ξ̂k

)]
d`, (3.2.1)

which must be satisfied for arbitrary variations w̃i and λ̃2 [PMC+14]. Here, T is the Cauchy

stress tensor, b is the Burgers vector of the dislocation loop, ξ is the unit tangent to the

dislocation line, B is a positive definite tensor subject to Onsager’s symmetry relations, ε

is the third order alternating tensor, λ2 is the chemical force preventing climb, L is the

closed line bounding any surface spanned by the dislocation loop during its motion, θ is the
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absolute temperature and d` is the length of infinitesimal segment of L.

The position of each node p is updated as

xp(t+ ∆t) = xp(t) +wp(t)∆t,

where t is the current time and ∆t is the DD time step.

3.2.2 Thermal activation

Discrete Dislocation Dynamics is described in Section 3.2.1. However, when we use DD, we

face a problem which is described next. The local plastic distortion rate Lpseg produced by

the motion of a dislocation segment is given by Lpseg = b
A
⊗ (̂l× V ), where b is the Burgers

vector, A is the core cross-section area, l̂ is the line direction and V is the velocity of the

segment. If a single straight dislocation running from one boundary to another of the DD

simulation box is considered and its motion is unimpeded and only driven by the applied

stress, then this stress determines the magnitude of V in the expression for Lpseg. The value

of |Lpseg| due to such a segment, at an applied stress of 10 MPa/s, is around 1011s−1, which

is extremely high.

In order to approach realistic magnitudes of strain rates under slow loading, let the DD

box be populated with many straight mobile and sessile dislocation segments running from

boundary to boundary of the box (as shown in Fig. 3.2). The setup and its justification

are provided later in Section 3.3.2. The mobile segments move and intersect with the sessile

segments and such an intersection is called a junction (to be precise, it should be called a

sessile junction because this type of junction does not move). The volume averaged plastic

distortion rate is given by Lpavg = 1
Bx

∑
Lp,iseg li Ai, where li and Ai are the length of the

segment and area of core cross section (see Fig. 3.1) of dislocation segment i respectively,

and Lp,iseg is the local plastic strain rate (defined as Lpseg above) produced by dislocation
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segment i. When the dislocations are moving freely, the volume averaging reduces the

magnitude of the volume averaged plastic distortion rate to around 103s−1. However, even

at very realistic, practical values of applied stress, the configuration gets stuck, i.e. there is

no dislocation motion and |Lpavg| is found to vanish. This is due to the high sessile density

and low mean spacing between obstacles, so that the applied stress necessary for the mobile

segments to break past barriers (the junctions formed at the intersection of mobile and sessile

segments) is much higher than the applied stress. So, |Lpavg| is 0 or 103s−1, and nothing in

between.

Therefore, we implement thermal activation of obstacles by breaking junctions (intersection

of mobile and sessile dislocation segments) randomly in time to reduce the time averaged

value of |Lpavg|. This is not a part of conventional DD explained in Section 3.2.1 but is

an important constitutive assumption in our approach, based in the modeling of reality.

A dislocation is an arrangement of an atomic configuration that is constantly jiggling and

when there is substantial temperature - i.e. kinetic energy of atomic motion - coordinated

motions can happen for a dislocation to break past barriers. This can be addressed more

fundamentally using Molecular Dynamics. Next, we discuss the implementation of thermal

activation in our work.

The breaking time, tb, of a junction is the elapsed time between its formation and its breaking.

In the absence of a fundamental characterization of thermal activation from MD, we adopt

a very simple functional form for tb:

tb = f a, (3.2.2)

where a is the maximum breaking time (in the results presented in Section 3.3.3 and Section

3.5.5, a was set as 10−3 s) and f is a fraction generated using a uniformly distributed floating

point random number generator. The corresponding attempt frequency of junction breaking

may be defined as 1
a
.
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With thermal activation enabled (with an attempt frequency of 103s−1), the time-averaged

value of |Lpavg| comes out as 10−2s−1. It is important to note that the timescale set by the

time-averaged value of |Lpavg| (i.e. 102 s−1) is not directly related to (and orders of magnitude

larger) than the timescale set by tb, and the achieved overall strain rates in the simulations

are a truly emergent feature of our work that allows us to simulate realistic slow loading rate

regimes of behavior.

3.2.3 Application of PTA for coarse-graining DD simulation

The framework of PTA is described in Section 2.2, where we state that PTA can be applied to

understand the behavior of equations of the form given by (2.2.2), which have a separation of

fast and slow dynamics governed by the small parameter ε (which is defined as the ratio of the

time period of the fast and the slow dynamics). The problem of studying the slow behavior

of DD also has a separation into fast and slow dynamics. The fast dynamics is the evolution

of the dislocation segments, whose characteristic time period Tf is set by the drag, which is

in the order of nanoseconds. The time period of slow dynamics is governed by the applied

loading, which typically ranges between 1 to 1000s. Hence there is a vast separation in time

scale of the fast and slow evolution (the parameter ε =
Tf
Ts
≈ 10−9

103 = 10−12), which justifies the

application of PTA to this problem in order to study the slow time scale behavior of the fast

dynamics (i.e.DD). The DD equations can be posed on the slow time-scale t (corresponding

to the time-scale of applied loading) as

ε
dX

dt
(t) = H(X; l)

dl

dt
= L(l),

(3.2.3)

where X is a n-dimensional vector of position of the segments/nodes. Here, n is assumed

to be fixed for now although, as we will discuss in Section 3.2.5, the number of degrees of

freedom (dofs) in DD is not fixed. H is a function of the state, L is the loading program

49



employed and l(t) represents the load (corresponding to the magnitude of the applied stress)

on the DD box. The evolution of a single dislocation loop is given by (3.2.1). The evolution

of a system of dislocation loops can be posed in the form of (3.2.3), where the function H

is composed of the forces experienced by the segments and is composed of the contributions

from the rhs of (3.2.1) corresponding to the segments comprising each dislocation loop in

the system.

Note that the slow time-scale is related to the fast time-scale σ through

t = ε σ, 0 < ε =
Tf
Ts
� 1.

The fast time equation, obtained by changing the time scale to σ = t
ε
, is

dX

dσ
(σ) = H(X; l). (3.2.4)

The general form of H-observables is defined by equation (2.5.4) of Section 2.5 in Chapter

2. Here, we define H-observables of the form

Λ(t) =

∫ t

t−∆

∫
RN

Λ(γ)µt,l(t),X0(dγ). (3.2.5)

The function Λ is a general state function of X, l is the applied load and the nondimensional

time interval ∆ is an interval in the slow time-scale t, and is defined as ∆ := ∆∗

Ts
, where ∆∗

is a fraction of the slow characteristic time, Ts. The choice of the state function is critical

in the initialization of the microstructure after each time step on the slow time-scale. The

Young measure µ(.) was introduced in Section 2.4 of Chapter 2. It is a probability measure-

valued map whose values are invariant measures of the fast time equation (3.2.4). In (3.2.5),

µt,l(t),X0 denotes Young measure at time t, with applied load l(t), starting from initial state

X0.
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The evolution of Λ is given by

dΛ

dt
=

1

∆

(∫
RN

Λ(γ)µt+∆,l(t+∆),X0(dγ)−
∫
RN

Λ(γ)µt,l(t),X0(dγ)

)
, (3.2.6)

where the Young measures are approximated as averages of M Dirac masses at M values of

X, i.e.,

µt,l(t),X0 ≈ 1

M

M∑
i=1

δ(X l(t),X0

(σi)). (3.2.7)

Here, σi are the discrete time instants in the fast run with the load l(t) fixed. M is chosen

to be large for the averages to converge. The reasoning for arriving at Eq. (3.2.6) is given

in Section 2.5 of Chapter 2 (in the discussion before (2.5.5)).

3.2.4 Examples of Λ functions

Here we discuss a few choices of state functions Λ specific to DD and their evolution.

1. Let Λ(X; l) = Xn, where n counts segments or nodes in the representation of disloca-

tions and X without an index means the whole array of positions of segments/nodes.

The initial state of X at any time t on the slow time-scale is given by X0(t), while

the load at time t is given by l(t). Some possible choices of X0(t + ∆) are the states

and average of states from previous run, at time t. Then:

Ẋn(t) =
1

∆

(∫
RN
Xn(γ)µt+∆,l(t+∆),X0(t+∆)(dγ)−

∫
RN
Xn(γ)µt,l(t),X0(t)(dγ)

)
,

2. Let Λ(X; l) = lx(X(σ), l(σ)) be the total line length per unit volume of the dislocations

present in the DD box at point x and at time σ, then:

˙lx(t) =
1

∆

(∫
RN
lx(γ)µt+∆,l(t+∆),X0(t+∆)(dγ)−

∫
RN
lx(γ)µt,l(t),X0(t)(dγ)

)
.
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Figure 3.1: Dislocation segment modeled as cylindrical tube

Here:

lx =
1

|Bx|

∫
Bx

α : α dBx =
1

|Bx|
∑
i

αi : αi liAi,

where dislocation segments are modeled as cylindrical tubes as shown in Fig. 3.1.

Here, αi is the dislocation density tensor, Bx is the cube centered around spatial point

x, and Ai is the core area of the segment i, mi is unit Burgers vector direction, ti is

the unit line direction, and αi is the contribution to the dislocation density tensor due

to segment i. Using the fact that αi = |bi|
Ai
mi ⊗ ti, the expression

1
|Bx|

∑
iαi : αi liAi = 1

|Bx|
∑

i
|bi|2
A2
i
liAi = 1

|Bx|
∑

i
|bi|2
|bi|4 li|bi|

2= 1
|Bx|

∑
i li, which shows that

lx is the total dislocation line length per unit volume, i.e. the total dislocation density.

3. The plastic strain rate of a microscopic dislocation segment is given by α × V (a

detailed explanation is provided in [Ach11b]). The average plastic strain rate, denoted

by Lp, gives the rate of the plastic slip distortion tensor U p:

U̇ p,x(t) = Lp,x(, t),

for a spatial point x. If τi is the resolved shear stress on segment i,

(α× V )x(X(σ), l(σ)) =
1

Bx

∑
i

τ i |bi|
B

mi ⊗ ni |bi|
Ai

liAi =
1

Bx

∑
i

τ i |bi|2 li
B

mi ⊗ ni

(3.2.8)
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˙Lp,x(t) =
˙

(α× V )x(t) =
1

∆

(∫
RN

(α× V )x(γ)µt+∆,l(t+∆),X0(t+∆)(dγ)

−
∫
RN

(α× V )x(γ)µt,l(t),X0(t)(dγ)

)
. (3.2.9)

4. Let V x(X(σ), l(σ)) be the volume-averaged dislocation velocity around x, defined as

V x =
1

|Bx|
∑
i

τi
B
{(Tmi)× ti}// liAi, (3.2.10)

where // represents projection to slip plane and one needs to adjust for cross-slipping

segments. Then:

˙V x(t) =
1

∆

(∫
RN
V x(γ)µt+∆,l(t+∆),X0(dγ)−

∫
RN
V x(γ)µt,l(t),X0(dγ)

)
. (3.2.11)

3.2.5 Modification of PTA in application to DD

Everything explained in the previous sections (Section 3.2.3 and 3.2.4) are for fixed number

of dofs. However, the number of dofs in DD is not fixed. PTA is applicable to ode systems

while DD is not an ode system (because of the non-fixed number of dofs). Thus, the notion

of a measure, as defined in Section 2.4 of Chapter 2 and which is used to define the coarse

variable in (2.5.4) in Section 2.5 of Chapter 2, does not apply directly in the case of DD.

However, the running time average, as defined in (2.7.3) in Section 2.7 of Chapter 2, survives

and can be determined.

The application of PTA to DD does not include every step in the PTA algorithm described

in Section 2.7 in Chapter 2. In particular, there are two main exclusions:

• The closest point projection of a fixed point in the state space with respect to the

measure at a previous time in the slow time-scale (as outlined in Step 3 of Section 2.7),

in order to obtain the fine initial conditions, is not determined. This is because the
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microstructure involved in the DD simulations has non-fixed number of dofs. Instead,

the final microstructure of the previous run (at time t− h′ + ∆) is used as the initial

condition for the current run (at time t).

• The criteria of accepting the measure as outlined in Step 4 in Section 2.7 is relaxed as

this constraint is too hard, especially for the coarse variable Lp. Instead, the value of

the coarse variable obtained from the extrapolation rule is accepted, unless there is a

jump (as per Step 4 above).

These exclusions significantly weaken the power of the coarse graining scheme we employ

in comparison to PTA, but, unfortunately, this is the price that has to be paid for the

application to DD.

3.3 Coarse graining DD simulations in time

In this section, we consider a single DD box and apply the algorithm to coarse-grain DD

simulations in time, in order to obtain the stress-strain response of the box at slow loading

rates. We describe the algorithm of applying PTA in this case, describe the setup and then

present results.

3.3.1 Algorithm

We define

Rm
t (t′) :=

1

t′

∫ t+t′

t

m(τ)dτ. (3.3.1)

where m is a state function. Some examples of m are the total dislocation density, ρ and

the volume-averaged plastic distortion rate, Lp. We denote the converged value of Rm
t (t′),

upto some specified tolerance value, as Rm
t,conv.
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Given at time t − h′: predicted density ρpred(t − h′), rate of change of density ρ̇(t − h′),

predicted plastic distortion rate Lppred(t−h′), rate of change of plastic distortion rate L̇p(t−

h′).

The evolution equation in the model is for L̇p ( as given by (3.2.9)). Usually, the evolution

equation is for plastic strain U p. However, in our case, only Lp can be defined as a state

variable but not U p.

We know the step size: h′ and the loading rate: L(t) = c1, where c1 is a constant. The initial

loading is l(0) = 0. ∆ is a fraction of the time period of the slow time-scale, Ts (which can

be obtained as 1
c1

).

Also given is the predicted density at time t:

ρpred(t) = ρpred(t− h′) + ρ̇(t− h′)h′,

and the predicted plastic distortion rate at time t:

Lppred(t) = Lppred(t− h′) + L̇p(t− h′)h′.

The tolerance for convergence of Rρ
t and Rρ

t+∆ is denoted as tolρ while the tolerance for

convergence of RL
p

t and RL
p

t+∆ is denoted as tolLp . The maximum allowed value of |L̇p| is

given by the threshold |L̇pmax|, and if |L̇p|> |L̇pmax|, a jump in Lp is said to have occurred at

time t.

We need to obtain: ρ̇(t), L̇p(t).

The steps are:

1. We use the microstructure obtained at the end of t− h′ + ∆ and apply stress l(t) and

run DD till Rρ
t (t
′) and RL

p

t (t′) converge (upto tolerance of tolρ and tolLp respectively)

and hence, we obtain Rρ
t,conv and RL

p

t,conv.
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2. With the same microstructure as at the end of Step 1 and with stress l(t+ ∆), we run

DD till we obtain Rρ
t+∆,conv and RL

p

t+∆,conv.

3. We obtain L̇p(t) from RL
p

t,conv and RL
p

t+∆,conv as L̇p(t) = 1
∆

(RL
p

t+∆,conv −RL
p

t,conv).

4. If |L̇p(t)|> |L̇pmax|, as mentioned above, a jump in Lp is said to have occurred at time

t. We take final state (of the dislocation system) at time t+ ∆ as the initial state and

go back to Step 1 and repeat all the steps.

5. If |RLpt,conv|> |RL
p

t+∆,conv|, we do not accept RL
p

t,conv as the converged value of RL
p

t . In

this case, we keep running the time-average RL
p

t , till |RLpt |≤ |RL
p

t+∆,conv|, in which case

we accept RL
p

t,conv = RL
p

t . If |RLpt |> |RL
p

t+∆,conv| after running the time-average RL
p

t

for a very long period of time (t′ in (3.3.1) is large enough so that there is essentially

negligible change in the value of RL
p

t with increasing t′, so that |RLpt |≤ |RL
p

t+∆,conv| is

unlikely to be true in this case), we accept RL
p

t,conv = RL
p

t .

6. The current time step h is subjected to the following time step control:

|Lp(t)|≤ 0.002

h

7. We store ρ̇(t) and L̇p(t). We repeat steps 1 to 4 but now at time t+ h.

3.3.2 DD simulation setup

Figure 3.2: DD simulation box
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We use the library MODEL (Mechanics of Defect Evolution Library) [PMC+14] to run the

DD simulations. We generate a microstructure with a specified value of mobile and sessile

density of dislocation segments. The mobile and sessile segments run from boundary to

boundary of the DD simulation box (a representative image of such a box is shown in Fig.

3.2). The mobile segments form junctions with the sessile segments, which act as pinning

points, around which they expand. The sessile segment density is much larger than the

mobile segment density and the sessile segments essentially act as obstacles to the motion of

the mobile segments.

The sessile segments are constructed as Lomer Cottrell (LC) locks, therefore their Burgers

vector do not lie in their glide plane. However, majority of sessile segments in FCC crystals

do not have this property (i.e. their Burgers vector lie in their slip plane). Therefore, a more

physically appropriate case is when the Burgers vector of the sessile segments lie in the slip

plane. We have presented results for that case as well, to show that such simulations can be

performed.

The preference for using LC locks in this thesis is not fundamental but is related to the

limitation of the version of MODEL that was used when this work was started.

3.3.2.1 Construction of initial microstructure

We populate the domain with mobile and sessile segments as follows: we assume a certain

target density of mobile and sessile segments denoted by ρm and ρs respectively (with ρs �

ρm). We insert the mobile density ρm in the ratio of the Schmid factor of the slip system i

(denoted as fs,i), i.e. the target mobile density of slip system i is ρm,i = ρm
|fs,i|

ΣNk=1|fs,k|
, where

N is the total number of slip systems in the crystal. The Schmid factor of slip system i is

calculated as

fs,i =
bi · (σeni)
|σe|

, (3.3.2)
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where σe is the externally applied stress and bi and ni are the Burgers vector and slip plane

normal of slip system i. The reason behind this kind of insertion is that segments in slip

systems with small Schmid factor are expected to move less compared to those belonging to

slip systems with higher Schmid factor, and hence their contribution to the coarse variables

Lp and V will be less.

To insert segment n (which lies in slip system i), we construct a candidate segment as follows.

We choose a random point P0,n in the domain and then construct a ray from this point along

a direction dn, which lies in the slip plane and is rotated at an angle θn from the Burgers

vector bi of its slip system, till it intersects the boundary at point P1,n. We also construct a

ray from P0,n in the opposite direction −dn till it intersects the boundary at point P2,n. In

this way, a candidate segment with end points on the boundary, given by P1,n and P2,n is

constructed. If the density of the candidate segment is very close to ρm,i (up to a specified

tolerance), it is inserted as segment n, otherwise the process of finding a candidate segment

is repeated until a suitable candidate is obtained.

We construct another segment n+ 1 from another random point P0,n+1 using the approach

mentioned above, which belongs to the same slip system and is on the same slip plane but has

opposite line direction. Thus, we have two segments which have the same density and belong

to the same slip system and are on the same slip plane but have opposite line directions.

This is to ensure that the net mobile dislocation density is very close to 0. Similarly, we

construct a pair of segments on the other slip systems.

After this, we construct a number of sessile segments of total density ρs distributed isotrop-

ically across all slip systems and with zero net dislocation density i.e. every segment con-

structed has a corresponding segment in the same slip system at a different position and

with same density but opposite line direction. Thus, the constructed microstructure is given

by the mobile and sessile target densities ρm and ρs and a set of pairs {sn, θn} describing

the mobile segments.
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3.3.2.2 Reinsertion of segments

As the system of dislocation segments evolves, some mobile segments exit the box, leading to

a reduction in the density of mobile segments. To compensate for this, there is a possibility of

reinsertion of segments. The reinsertion should be in tune with the GND density α suggested

by the MFDM-DD coupled strategy we are proposing and whose field equations are provided

in (4.3.2) and the averaged total dislocation density ρ (whose evolution equation is derived

in Chapter 4), where the microscopic total dislocation density is defined in Chapter 4 as

ρ := α : α; the field equation for ρ has to be solved as an additional evolution equation in

MFDM-DD coupling, thus augmenting its current structure. These descriptors will act as

feedback for the initialization of the DD microstructure at discrete time steps.

However, in the results that we present in the next sections, reinsertion of segments is not

done.

3.3.3 Results

We present the results of coarse graining DD simulations in time for two types of loading.

Please note that unlike the coupling problem of DD with MFDM, which can be performed

under both load and displacement control, as will be presented later in Section 3.5.5, the

problem of coarse-graining DD simulations over a box in time can only be performed un-

der load control, since only stress can be applied to the DD box using MODEL and not

displacement boundary conditions.

3.3.3.1 Uniaxial tension

We consider a cubic box and apply tensile loading (traction boundary condition) in the y-

direction (t22 loading). The orientation matrix represents the transformation rule between

components of any vector on the crystal basis and the global basis and its components are
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given by Aki = ek · êi, where {ei} and {êi} are the orthonormal global and crystal bases

respectively. Suppose we know a set of orthonormal crystallographic directions {Cj} that

coincide with the global basis vectors. Then, we can show that the orientation matrix has

as rows the components of the basis given by the crystallographic directions {Cj} expressed

in the crystal basis. We use the symmetric double slip orientation described in [Pie83] in

which the crystal is rotated such that the crystallographic direction 1√
2
[01̄1] is along the

global X axis and the crystalllographic direction 1√
6
[211] is along the global Y axis. Hence,

the orientation matrix comes out as

A =


0 − 1√

2
1√
2

2√
6

1√
6

1√
6

− 1√
3

1√
3

1√
3

 .

We choose ρm = 5 × 1012m−2 and ρs = 2 × 1014m−2. We insert mobile segments in two

slip systems, called the primary and the conjugate slip systems are [101](111̄) and [110](11̄1)

respectively (see Fig. 3.3).

1,0,0 $

0,1,0 $

%& = (1	1	1*)%, = (1	1*	1)

0,0,1 $

-& = [1	0	1]

-, = [1	1	0]

Figure 3.3: Rotated Thompson tetrahedron of the crystal in tension, the primary and conjugate

slip systems are given by {b1,n1} and {b2,n2} respectively. The fixed laboratory axes are marked

with subscript l.

All simulation parameters are provided in Table 3.1.
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Name Physical definition Values
E Young’s modulus 110 GPa
µ shear modulus 48 GPa
b Burgers vector 2.55× 10−10m
B Drag 2.32× 10−5Pa.s
A Box size 4000 b
∆∗ time interval in t∗ 0.1s
|e1| tolerance for convergence for ρx 10−2

|e2| tolerance for convergence for Lpx 3× 10−2

L loading rate 1 MPa/s
ρm Mobile density 5× 1012 m−2

ρs Sessile density 2× 1014 m−2

Table 3.1: Simulation parameters for the problem of coarse graining DD simulations in time.

The following are the results obtained in this setting:
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Figure 3.4: Evolution of ρ
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Figure 3.5: Evolution of Lp

Figure 3.4 shows how ρ evolves with increasing stress. It increases as the mobile segments

form junctions with the sessile segments around which they expand and grow in length.

Figure 3.5 shows that Lp is increased with increasing stress. The plastic strain norm εp is

obtained by integrating |Lp| in time, i.e. εp(t) =
∫ t

0
|Lp(t′)|dt′. The plastic strain components,

which are also called the directional plastic strain, are obtained as εp,ij =
∫ t

0
(Lp)symij (t′)dt′,

where (Lp)sym = 1
2
(Lp + (Lp)T ) is the symmetric part of Lp. The stress-strain profile is

shown in Figure 3.6. In Figure 3.7, the directional plastic strain εp,22 stays positive with

increasing stress as it should. This is not guaranteed to happen since we do not have a
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primary slip plane in this case. However, our algorithm can robustly predict the correct

direction of εp,22.
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Figure 3.6: Stress-strain profile
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Figure 3.7: Stress vs εp,22
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Figure 3.8: Tangent modulus

The total strain ε is determined as ε = σ
µ

+ εp, where σ
µ

is the elastic strain. The slope of the

stress versus total strain curve is shown in Figure 3.8 and it is approximately µ
200

, which is

the slope that we expect to see in Stage II hardening [KM03] (we expect Stage II hardening

behavior as we start with a high density of sessile segments). We see that we are able to

reach appreciable values of strain at realistic loading rates, at which experiments can be

performed on macroscopic samples to study their plastic response. Performing simulations

at these loading rates using DD simulations alone, for the given domain size and dislocation

density, is very expensive and practically impossible.
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The speedup in compute time, S, of conventional DD to PTA is obtained as follows. The

compute time tcpuDD to run DD up to a time tDD on the slow time-scale is determined. The

compute time tcpuPTA to run PTA up to a time tPTA, which is chosen to be the slow time

at εp = 10%, is also determined. Then, the speedup in compute time, S, is obtained as

S =
(
tcpuDD
tDD

)
÷
(
tcpuPTA
tPTA

)
. The value of S is around 5000 for this loading case.

3.3.3.2 Simple shear

We consider the same setting as in uniaxial tension but apply shear loading (traction bound-

ary condition) in t12 direction. We rotate the crystal such that the crystallographic direction

[11̄1] lies along the global Y axis and the slip direction [011] lies along the global X direc-

tion. Therefore, the orientation matrix (an explanation of how to construct it is provided in

Appendix B) is

A =


0 1√

2
1√
2

− 1√
3

1√
3
− 1√

3

− 2√
6
− 1√

6
1√
6

 .

In this case also, we insert segments on two slip systems and the primary and conjugate slip

systems are chosen as [011](11̄1) and [1̄01](11̄1) respectively. The former is the primary slip

system as after rotation, its normal is along the global Y axis and we shear along its slip

direction (global X axis). The rotated crystal is shown in Fig. 3.9.

The results are presented below:
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Figure 3.9: Rotated Thompson tetrahedron of the crystal in shear, the primary and conjugate slip

systems are given by {b1,n1} and {b2,n2} respectively. The fixed laboratory axes are marked with

subscript l.
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Figure 3.11: Evolution of Lp
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Figure 3.12: Stress-strain profile
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Figure 3.13: Stress vs εp,12

These results follow a similar trend as in the uniaxial loading case presented in Section
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3.3.3.1. We see in Figure 3.10 that dislocation density ρ increases with stress. The definition

of plastic strain norm εp, directional plastic strain εp,ij and the total strain ε are provided

in the previous section (Section 3.3.3.1). In Figure 3.13, we see that the directional plastic

strain strain εp,12 remains positive with increasing stress, as it is supposed to. In Figure

3.14, the slope of the stress-total strain curve (Figure 3.14) comes close to µ
200

, which is the

slope we observe in Stage II hardening. The speedup in compute time, S, defined in Section

3.3.3.1, is around 2000.
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Figure 3.14: Tangent modulus

3.4 DD-continuum plasticity coupling

All the discussions in the previous sections were for DD simulations in one box. Now we

think of many boxes being part of a larger domain in which we want to do regular plasticity

calculations and couple this with a larger plasticity calculation in the body, in which equilib-

rium equations are solved. The pde-based theory which represents time averaged Dislocation

Dynamics is MFDM (which stands for Mesoscale Field Dislocation Mechanics). However,

phenomenological constitutive assumptions will be replaced with time averaged inputs from

DD, which are obtained using the framework of PTA as outlined in Section 3.2.3 and Sec-

tion 3.2.4. Next, we describe MFDM , its algorithm and the changes we have made in the

current work in order to replace the constitutive assumptions with inputs from Dislocation
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Dynamics.

3.4.1 MFDM

The theory of MFDM ([AR06]) involves the evolution of the following system of pdes:

α̇ = −curl (α× V +Lp) (3.4.1)

curlχ = α

divχ = 0 (3.4.2)

div(grad ż) = div(α× V +Lp) (3.4.3)

T = C : (grad(u− z) + χ

divT = 0. (3.4.4)

The tensor α is the dislocation density tensor, V is the dislocation velocity vector, C is

the fourth-order, possibly anisotropic, tensor of linear elastic moduli, and u is the total

displacement vector, χ is the incompatible part of the elastic distortion tensor, u − z is a

vector field whose gradient is the compatible part of the elastic distortion tensor and T is

the symmetric stress tensor. The slipping distortion tensor S is α× V +Lp.

In the specific model of PMFDM (where P stands for Phenomenological), Lp and V are

specified using phenomenological constitutive assumptions as mentioned in [AR06].

3.4.1.1 Algorithm of PMFDM

We describe here the algorithm of (P)MFDM. Let BC and IC be the abbreviation for

Boundary Condition and Initial Condition respectively.

Step 1:
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BC : z constrained to prevent rigid body motion; χn = 0, where n is the outward unit

normal at the boundary surface,

IC : α0 is prescribed.

Solve for χ0. Solve for z and the initial state of stress due to α0.

Step 2 :

In case a problem of ECDD needs to be solved for the distribution α0 with applied displace-

ment and/or traction boundary conditions, impose displacement and traction BCs as per

the physical problem we are trying to solve. Superpose the initial state of stress due to α0

with the stress due to displacement and traction BCs. This is done by solving the MFDM

problem with V and Lp set to 0.

Step 3 : Now initialize the MFDM problem.

IC: u, z,α and χ to be retrieved from the previous step results.

BC: χn = 0 at the boundary, which implies that the incompatible part of U e is 0 if α = 0.

z is to be specified at one point to get a unique solution.

The BC onα can be specified in two ways, which are called the constrained and unconstrained

cases. In the constrained case, the body is plastically constrained on the boundaries and dis-

locations cannot exit the body, but can only move in a tangential direction at the boundary.

The BC for this case is (α×V +Lp)×n = 0 on the boundary. A less restrictive BC which

corresponds to the unconstrained case is the imposition of the dislocation flux α(V · n)

on the inflow points on the boundary (where V · n = 0), along with the specification of

Lp × n on the entire boundary. This condition allows the free exit of GNDs at the outflow

points.

The time step at the first increment is ∆t0 = ∆tstep, where ∆tstep is the prescribed time step

for Step 4. The total time of the simulation is Ts.

67



The steps are as follows. For every time increment k (while tk < Ts),

1. Set the current time as tk = tk−1 + ∆tk−1. Set the current time step as ∆tk = ∆tk−1.

2. Impose displacement and/or traction boundary condition.

For all Gauss points,

3. Calculate Lp,k and V k using T k using constitutive assumptions mentioned in

[AR06]. It is here that phenomenology enters MFDM.

4. Solve α equation (3.4.1) for αk+1: αk+1 = αk −∆tkcurl(αk+1 × V k +Lp,k).

5. Solve χ equation (3.4.2) for χk+1: αk+1 = curlχk+1 and divχk+1 = 0.

6. Solve z equation (3.4.3) for zk+1: div(grad żk) = div(αk+1 × V k +Lpk).

7. Solve u equations (3.4.4) for uk+1: divT k+1 = 0, T k+1 = C : U e(k+1) , ue(k+1) =

grad(uk+1−zk+1)+χk+1. Special algorithms are required to solve the MFDM equations

(steps 3 through 6 above). These algorithms can be found in [RA05].

8. Calculate Lp,k+1 and V k+1 using T k+1.

9. The numerical stability condition is given by:

∆tk ≤ mingp

( 0.002

|αk × V k|+γ̇k , f
d

|V |
)
, f ∼ 0.1 (3.4.5)

where gp is the set of all Gauss points in the sample and d is a minimum element

edge length. This reflects a conservative choice between a Courant condition and a

maximum bound of 0.2% on the plastic strain increment.

If ∆tk does not satisfy

∆tk <= mingp

(
0.002

|αk+1 × V k+1|+γ̇k+1
, f

d

|V k+1|

)
,
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then it is likely that the computed state at increment k+ 1 gives rise to a large plastic

strain rate and the increment from k to k+ 1 should be done with a smaller time step

to have better control on the evolution. Therefore, as a preemptive measure, set it as

∆tk = mingp

(
0.002

|αk+1 × V k+1|+γ̇k+1
, f

d

|V k+1|

)
.

Then reinitialize the increment k and go to Item 1 of Step 4. This process of rerunning

the increment is called cutback.

10. If it happens that ∆tk < ∆tstep and mingp

(
0.002

|αk×V k|+γ̇k , f
d
V

)
≥ ∆tk (where gp is the

set of all Gauss points in the sample) for two consectutive steps, then double ∆tk. This

increases the time step when plastic strain rate reduces.

3.5 DD-MFDM coupling

The constitutive equations to obtain Lp and V are mentioned in [AR06]. Here, we aim

to obtain them using PTA. The values of the plastic distortion rate, Lp and the polar

dislocation velocity, V at every Gauss point in FEM should be obtained using (3.2.9) and

(3.2.11) respectively using the value of the stress, T , at the Gauss point. We divide the

domain into n×n blocks. For example, in Fig. 3.15, the domain is divided into 5×5 blocks.

Each block is a collection of a number of FEM elements that are used in the solution of the

MFDM equations. Please note that the thickness of the block is the same as the thickness

of the sample, which implies a state of plane stress.

Every block contains a DD box of a fixed size in which DD simulations are performed. The

stress that is used as input to perform the DD simulation in each block is the volume average

of the stress obtained from the solution of the MFDM equations, over the block. The size of

the block, denoted by B, is therefore called the stress averaging size. Let the entire domain

be denoted by Ω and the set of all points that lie within block i be denoted as Ωi. The
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averaged stress for block r is denoted as 〈T 〉Br , and is given by

〈T 〉Br =

∫
Ωr
Tdv

|Ωr|
, (3.5.1)

where |Ωr|:= B ×B × a, where a is the thickness of the block/sample. The stress averaging

size B plays a crucial role in convergence of the solution. It will be shown later in section

3.5.5 that there is most likely a limiting in-plane stress averaging size of 5µm for a DD box

of size 1µm, for which there is a converged solution.

Since the size of the block remains fixed for the results in Section 3.5.5 (except for the

convergence studies in Section 3.5.5.1.1), the superscript B in 〈T 〉Br is dropped from here

onwards for notational convenience.

Finally, after running the DD simulations for block r using 〈T 〉r at time t and t+ ∆ (where

∆ is a fraction of time period of slow time-scale Ts), we obtain measures of the plastic strain

rate and dislocation velocity for that block, which we denote as Lpr and V r respectively.

The characteristic function of block i is given by

χi(x) =


1, if x ∈ Ωi

0, if x /∈ Ωi

Define L̃p(x) by

L̃p(x) =

NB∑
i=1

L
p

iχ
i(x), x ∈ Ω

where NB is the total number of blocks.
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3.5.1 Obtaining Lp, V at Gauss point of element

Let the characteristic function of block i is given by

χi(x) =


1, if x ∈ Ωi

0, if x /∈ Ωi

Define L̃p(x) by

L̃p(x) =

NB∑
i=1

Lpiχ
i(x), x ∈ Ω

where NB is the total number of blocks.

The field L̃p is discontinuous across blocks. To obtain a (C0) continuous field in Ω, we perform

the following operations. We obtain an L2 projection of L̃p on the finite dimensional space,

C0,B, formed by the linear span of globally continuous, piecewise smooth finite element

shape functions corresponding to a FE mesh for Ω, comprising the blocks of size B (the

MFDM calculations involve another finer FE mesh that further discretizes the blocks). This

projection, after discretization, gives the values of the plastic strain rate at the nodes of

the blocks. Each block, in turn, contains many elements for the MFDM calculations, and

we interpolate using the isoparametric shape functions for the blocks and for the elements

within them to obtain the value of Lp at the MFDM elemental Gauss points.

The above operations can be stated as follows. Define

L̂p := argmin
L∈C0,B(Ω)

∫
Ω

1

2
|L− L̃p|2dv.

To keep the debauch of indices to a minimum in what follows, we rename L̂p := A. The
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above definition translates to the following discrete statement:

N∑
R=1

N∑
Q=1

δARij

[ ∫
Ωi

NRδikδjlN
Qdv

]
AQkl =

N∑
R=1

δARij

∫
Ωi

NRδikδjlL̃
p
kldv.

(note that p is not an index). Here δAR is a test function andR andQ are indices representing

nodes of the n × n ‘block’ FE mesh with NR and NQ denote global shape functions of the

mesh. N denotes the total number of nodes of the block mesh. This results in a linear solve

for the nodal values of A on the block FE mesh.

With the nodal values of A determined so that it is a globally continuous function on the

domain, we now determine the values of this continuous function at the Gauss points of the

finite elements comprising the FEM mesh for the MFDM calculations (where A is needed

as an input). This is done as follows. Let M be a node of element e that is contained in

block r, whose isoparametric coordinate (with respect to the containing block r that is an

element of the block-FE solve) is denoted as ξre,M . Then A at node M of element e can be

obtained as Ae,M,r =
∑Nv

Q=1A
QNQ(ξre,M), where N v is the number of nodes on a block (e.g.

8 for a hexahedral brick element). Finally, Lp at Gauss point I of element e in block r can

be obtained as Lpe,I,r =
∑Nv

K=1Ae,K,rN
K(ξeI), where K is a node of element e (see Fig. 3.15)

and ξeI is the isoparametric coordinate of Gauss point I in element e (and we have made the

(non-essential) assumption that the each element of the block-mesh and MFDM-mesh have

the same number of nodes).

We obtain the polar dislocation velocity at the Gauss point I of element e, of block r, V e,I,r

in the same way.

3.5.2 Ensuring non-negative dissipation

Let the Lp and V (we revert here to dropping overhead bars) obtained at a Gauss point of an

element (for MFDM calculations) as described above be denoted as Lpgp and Vgp, respectively.
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Figure 3.15: This figure shows the decomposition of the domain of size 25 micron into 5× 5
blocks. Each block contains a DD box. Each block also consists of a number of elements
(10× 10 in this figure).

In order to ensure that the dissipation is non-negative , we redefine the Lp and V as

1. If T : Lpgp = d and d < 0, we take the component of Lpgp given by

Lp = Lpgp − d
T

|T |2
. (3.5.2)

2. If β = Vgp · (XTα) < 0, we take the component of Vgp given by

V = Vgp − β
XTα

|XTα|2
. (3.5.3)

Here, T and α are the stress and the dislocation density tensor at the Gauss point respec-

tively, while X is the third order alternating tensor. The dissipation resulting from the

components of Lp and V given by (3.5.2) and (3.5.3) is 0, which can be verified by taking

an inner product of (3.5.2) and (3.5.3) with T and XTα, respectively. These Lp and V are
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used to solve the MFDM equations which is described in detail in Section 3.5.4.

Next, we discuss the basic ideas behind the current work of coupling MFDM with DD and

the necessary modifications that we made to the PMFDM algorithm in order to enable

them.

3.5.3 Key changes in DD-MFDM coupling

In order to get a measure at a particular time t, the fast dynamics, which is DD in this case,

has to be run long enough (over a period t′ on the slow time-scale), till the running time

average of the state function converges, see (3.3.1)). During this period, many junctions will

be formed and broken. The period t′ should be much smaller than the interval ∆∗ (a fraction

of time period of slow time-scale Ts; the state functions of DD are averaged with respect

to the Young measure over the interval ∆ = ∆∗

Ts
to generate coarse variables, see (3.2.5)),

due to the vast separation in the time-scale of the fast and the slow dynamics. Therefore,

it is reasonable to say that a � t′ � ∆∗ and we fix ∆∗ as ∆∗ = n a, where n is a positive

integer.

Suppose the MFDM time step at increment k, given by ∆tk in Section 3.4.1.1, is denoted

as h∗, and given by h∗ = m ∆∗, where m is a positive integer (for the results presented in

Section 3.5.5, m was set as 10). This implies the condition ∆∗ � h∗, which is a necessary

constraint for the application of PTA (see Section 2.6 in Chapter 2).

The above discussion can be summarized as the following constraint:

a� ∆∗ � h∗. (3.5.4)

The MFDM system evolves in a stable way when the plastic strain increment is less than a
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threshold of 0.2% in a given time increment, which is stated as

h∗ ≤ 0.002

|α× V |+|Lp| . (3.5.5)

Equations (3.4.5) and (3.5.4) have to be always satisfied and form the constraints of the

DD-MFDM coupling problem. However, when |Lp| is high, such that

0.002

|α× V |+|Lp| ≤ ∆∗, (3.5.6)

for one or more blocks, (3.5.5) and (3.5.6), when combined together, may violate (3.5.4). For

instance, if ∆∗ = 0.01 s and |α×V |+|Lp|= 0.03 s−1, (3.5.6) is satisfied and h∗ ≤ 0.0067 < ∆∗

by (3.5.5). Thus, (3.5.4) is violated. In such situations, since h∗ is free to choose, we explicitly

set it as h∗ = ∆∗. When Lp is high, it is physically expected that the local flow stress either

stays fixed or decreases. Based on this, we assume that the local stress at time t and t+ ∆∗

are same, which implies L̇p = 0 and V̇ = 0 by (3.2.9). When such a plastic instability

happens at any point, we declare that the system has reached a limit load and do not allow

the external loading to increase, i.e., L = 0 in (3.2.3) (we consider that the simulation is

performed in a sophisticated loading apparatus).

However, if L̇p following (3.2.9) is such that it reduces |Lp| to a value such that (3.5.6) is

not true, Lp is allowed to evolve using L̇p for that block. If it happens at any time that none

of the blocks satisfy (3.5.6), then the system is no longer in the state of limit load. In that

case, the loading rate is set back to the prescribed non-zero value for the problem. Hence,

the system is allowed to get out of the limit load condition in a consistent manner.

We next discuss the modifications to the PMFDM algorithm in order to incorporate the

above changes.
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3.5.4 Modifications in algorithm for DD-MFDM coupling

Based on the discussion in the previous subsection, we have implemented the following

changes in DD-MFDM coupling. For every time increment k:

1. Instead of calculating Lp,k and V k from T k using constitutive assumptions in item 3

of step 4 of the PMFDM algorithm presented in Section 3.4.1.1, we obtain them as

follows:

(a) For each block r, obtain the averaged stress T
k

r . Next, we pass the stress T̂ k
r,t =

〈T 〉kr and T̂ k
r,t+∆ = 〈T 〉kr + ∆

∆tk−1 (〈T 〉kr −〈T 〉k−1
r ) to run PTA at block r. Here, t is

the time on the slow time-scale at the current increment k.

(b) If |T̂ k
r,t| and |T̂ k

r,t+∆| are close to each other (|T̂ k
r,t+∆− T̂ k

r,t| is less than a threshold,

which was found to be around 0.5 MPa), the numerator on the rhs of (3.2.9)

(which gives Lp) becomes very small and DD cannot resolve it, which is a limita-

tion of DD. In that case, since T̂ k
r,t+∆ is the only variable we are free to modify,

we change it, while keeping T̂ k
r,t fixed, such that the difference is 0.5 MPa. It is

obtained as: mag = 0.5

|T̂ kr,t+∆−T̂
k
r,t|

, if mag > 1, T̂ k
r,t+∆ = T̂ k

r,t +mag (T̂ k
r,t+∆ − T̂ k

r,t).

(c) Obtain L̇p,kr and V̇
k

r using PTA (using (3.2.9) and (3.2.11) respectively).

(d) If mag > 1, then scale L̇p,kr and V̇
k

r down by mag i.e. L̇p,kr = L̇p,kr
mag

and V̇
k

r = V̇
k
r

mag
.

This is because ideally L̇p,kr should be generated from T̂ k
r,t and T̂ k

r,t+∆ using PTA

as per Step 1c above. However, due to the restriction imposed by DD on the

minimum threshold of the difference |T̂ k
r,t+∆−T̂ k

r,t|, the value of T̂ k
r,t+∆ was modified

in order to scale up the difference to 0.5 MPa, as outlined in Step 1b. Thus, the

resulting L̇p,kr must be scaled down such that it corresponds to the original stress

difference between T̂ k
r,t+∆ and T̂ k

r,t.

(e) Obtain Lp,kgp and V k
gp at Gauss points of elements in block r from Lp,kr and V

k

r

using the procedure described in Section 3.5.1.
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(f) Modify Lp,k and V k using (3.5.2) and (3.5.3) respectively, to ensure non-negative

dissipation at every Gauss point.

2. We check if the limit load has been reached by checking if 0.002

|αk×V k|+|Lp,kr |
≤ ∆∗ (equation

(3.5.6)) at any block r. If yes, we set the loading rate L to 0, otherwise we keep it at

the prescribed value for the problem. We also set h∗ = ∆∗ and set L̇p,kr for block r.

The justification for these assignments is provided in Section 3.5.3. This also implies

that L̇p,kr = 0 and V̇
k

r = 0, following the argument surrounding (3.5.6).

However, if (3.5.6) is satisfied and 0.002

|αk+1×V k+1|+|Lp,kr +L̇p,kr ∆∗|
< ∆∗, the value of L̇p,kr and

V̇
k

r are used to evolve Lp,kr and V
k

r respectively.

If (3.5.6) is not satisfied for any block, the system is no more in the state of limit load

and we set the loading rate l back to the prescribed value for the problem.

3. The term γ̇k in the numerical stability constraint of PMFDM (3.4.5) is replaced by

|Lp,k| in the numerical stability constraint (3.5.5) of the DD-MFDM coupled problem.

4. An additional stress-based time step control is placed due to the introduction of DD

in the MFDM problem. It is implemented as follows. Compute |T̂ k+1
r,t − T̂ k

r,t|, if it is

greater than a threshold (assumed to be 3 MPa), then reduce ∆tk, calculated using

Point 2 above, by half, and rerun the current increment. If in this process, ∆tk comes

out less than ∆∗, then put ∆tk = ∆∗. Restricting the value of |T̂ k+1
r,t − T̂ k

r,t| to within

a threshold by reducing the time step has been found to make the evolution of the

DD-MFDM coupled problem more stable, as the DD microstructure is not subjected

to high variation in the applied stress that goes into the PTA calculation, between

consecutive time steps.

Remark. There is only stress-coupling between DD and MFDM in this first exercise. The

DD microstructure can also be coupled to other descriptors, like the GND density predicted

by MFDM. More importantly, an additional equation in MFDM for the averaged dislocation
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density, which is derived in Chapter 4, should be evolved and the density in the DD box

should be adjusted in tune with that prediction.

3.5.5 Results and discussion

In this section, we present results on the

• convergence

• orientation effect

• rate effect

• effect of initial DD microstructure

for the DD-MFDM coupled problem under load and displacement control.

Following the discussion in Section 3.3.2, there are two cases into which the results can be

categorized:

• Case 1 The sessile segments are constructed as Lomer Cottrell (LC) locks, with their

Burgers vector out of the slip plane.

• Case 2 The sessile segments are constructed such that their Burgers vector lie in the

slip plane.

Most of the results presented in this Section correspond to Case 1, while a few results for

Case 2 have also been presented. The justification for the preference of Case 1 in this thesis

has been provided in Section 3.3.2.

3.5.5.1 Case 1: Load Control

We apply two load cases of simple shear and uniaxial tension. The boundary conditions for

the two loading cases are as follows. Standard displacement boundary condition to prevent
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Figure 3.16: Boundary conditions for uniaxial tension

rigid body motion is applied. For uniaxial tension, we apply the traction t = t22e2 on the

top face and keep the bottom face fixed in the Y direction (x2 = 0), as shown in Fig. 3.16.

For the shear problem, we apply the traction t = t12e2 and t = t12e1 on the top and right

face respectively, and t = −t12e1 and t = −t12e2 on the left and bottom faces respectively.

The load (t12 for the shear problem and t22 for the tension problem) depends on the loading

rate l, which is set as 1MPa/s unless the limit load is reached, in which case it is set to 0.

All simulation details are mentioned in Table 3.1 in Section 3.3.3.

3.5.5.1.1 Convergence We choose a 25µm × 25µm × 1µm sample and divide it into

2500 elements each of size 0.5µm × 0.5µm × 1µm. As introduced and explained in Section

3.4, we divide the domain into 5 × 5, 7 × 7 and 10 × 10 blocks with stress averaging size

of 5µm, 3.5µm and 2.5µm respectively. We perform DD simulations in each such block (in

parallel).

The stress strain curves for the 25µm size in tension for stress averaging size of 5µm, 3.5µm

and 2.5µm are shown in Fig. 3.17. We also did a run with domain size of 400µm× 400µm×

1µm in tension with stress averaging sizes of 80µm and 40µm and the stress strain curves

are shown in Fig. 3.18. The relative error of the stress strain response is calculated as

e(ε) = |σ10×10(ε)−σ5×5(ε)|
|σ10×10(ε)| × 100, where σ10×10(ε) and σ5×5(ε) are the stresses corresponding to
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Figure 3.17: Convergence in stress-strain

response for 25 micron sample in tension for
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Figure 3.18: Stress-strain response for 400
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Figure 3.19: Relative error

strain ε, for runs with 10 × 10 and 5 × 5 blocks respectively, as shown in Fig. 3.17 and

Fig. 3.18. The relative error is shown in Fig. 3.19 and it decreases as the sample size

reduces (which is evident from the average relative error, ē) and in turn the stress averaging

size, with an stress averaging size of 5µm or less being very accurate, with ē of only 0.32%.

Based on these results, we think that stress averaging size of 5µm for a 1µm DD box shows

convergence.

3.5.5.1.2 Microstructure, rate and orientation effects The initial state of DD for

the simulation is refererred as the initial DD microstructure. The state of the sample obtained

from solving the MFDM system is simply called the microstructure. Here, we discuss about
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the details of the microstructure and various effects that we observe.

1. Microstructure We see the variation of the norm of the dislocation density tensor

(|α|/b) and the norm of the deviatoric stress, referred to as J2 here, across the domain

for a 25 micron size with 5×5 processors in uniaxial tension in Fig. 3.20 and Fig. 3.21

respectively. For the shear case, we see the dislocation density and stress in Fig. 3.22

and Fig. 3.23 respectively. We see that both the dislocation density and stress profiles

are heterogeneous at high levels of strain.
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Figure 3.20: |α| for 25 micron sample in
uniaxial tension with 5×5 blocks at 10.3%
strain
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Figure 3.21: J2 for 25 micron sample in
uniaxial tension with 5×5 blocks at 10.3%
strain

2. Orientation effects We see in Fig.3.24 that the stress-strain profile for the 25 µm

sample is harder for uniaxial tension as compared to simple shear. This is expected,

as in the shear case, we have dislocation segments in the primary plane which have

a higher Schmid factor, while in the tension case, we have segments in planes which

have smaller Schmid factor. The ratio of the sum of the Schmid factors of the active

slip systems (denoted as fs,i and defined in (3.3.2)) is 1.84. The ratio of the stress

response of the uniaxial tension and simple shear as shown in Fig. 3.24 lies between

1.99 and 2.31 with a mean of 2.13. Thus, the difference in the response between the

two orientations is in accord with the prediction of the Schmid factor. However, it is
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Figure 3.23: J2 for 25 micron sample in
simple shear with 5 × 5 blocks at 8.39%
strain

to be noted that this is an emergent behavior and there is no ad-hoc assumption made

here.
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Figure 3.24: Orientation effect: stress-strain response for 25 micron sample in uniaxial
tension (t22) and simple shear (t12) under load control

3. Rate effects With the reduction of loading rate, the stress-strain response becomes

softer in both tension and shear (as shown in Fig. 3.25 for a 25 micron sample),

as expected, because there is more time for plasticity to happen. The response is

appreciably rate dependent for the loading rate of 1 MPa/s and the nominal mobile

and sessile dislocation densities (of 1.51× 1012 m−2 and 1.63× 1014 m−2 respectively)

involved. Rate independence is explored later.
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Figure 3.25: Rate effect: stress-strain response for 25 micron sample in uniaxial tension
under load control at different rates

4. Effect of different initial DD microstructure We run a number of simulations

with different initial DD microstructures and then take the average of the stress-strain

response obtained from these runs. The results are presented in Fig. 3.26.

The response varies with the choice of the initial DD microstructure. In general, for

the same ρs, an increase in ρm leads to a softer stress strain response. This is expected

as more mobile density means more generation of plastic strain, and hence the curve

is supposed to be softer.

The layout (configuration of the dislocation segments) of the initial DD microstructure

also appears to be very important in determining the response of the sample. However,

in reality, for macroscopic samples of size greater than 100 µm, the layout of the initial

microstructure does not play such an important role. Thus, this is a limitation of our

strategy. One way to address this is to add macroscopic descriptors in MFDM, which

will act as sources of feedback, based on which the evolution of the DD microstructure

can be controlled.

3.5.5.2 Case 1: Displacement Control

We also perform the simulation for the 25 micron sample with displacement control. Stan-

dard displacement boundary condition to prevent rigid body motion is applied. However,
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Figure 3.26: Stress-strain response for 25 micron sample in uniaxial tension with different
initial microstructure described by their mobile and sessile densities, their average given by
σ̄ and the upper and lower bounds given by σ̄ + std(σ) and σ̄ − std(σ) respectively, where
std(σ) is the standard deviation of the stress across all the different initial microstructures.
The units of ρm and ρs is m−2.

instead of applying the traction t = t22e2 on the top face as shown in Fig. 3.16, we apply

displacement boundary condition on the top face corresponding to uniaxial tension x = x2e2

and the bottom face is kept fixed in the Y direction. The current load x2 depends on the

strain rate s unless it is set to 0 when the limit load is reached. However, one point of differ-

ence in the displacement control case from the load control case is that when the load is kept

fixed in the load control case, deformation still happens and we are supplying energy to the

system, which is not true when we keep the displacement fixed in the displacement control

case. The goal is to be able to run simulations for very slow loading rates upto appreciable

values of strain.

The stress-strain response depends on the ratio of mobile segment density (ρm) to sessile

segment density (ρs). In general, for a particular value of applied strain rate, there appears

to exist an approximate ratio r = ρs

ρm
, for which the simulations can be performed upto

large values of strain, without the occurrence of a collapse (vanishing of the reaction force)

in the stress-strain response. For example, we used two microstructures with ρm and ρs

mentioned in Fig. 3.27 ( ρm and ρs are in units of m−2 here and in the results mentioned
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later). The ratio r comes out to be 590.28 and 625 respectively for the two microstructures.

Using a ratio of this order for the initial microstructure, the simulations could be performed

with an applied strain rate of s = 10−4/s, without a collapse. The response corresponding

to ρm = 2.82 × 1011m−2 and ρs = 1.7 × 1014m−2 shows a drop in stress from a strain of

0.07% to a strain of 0.17%. The drop in stress at very small strains is a common feature

of responses for uniaxial tension using displacement control (see Fig. 3.30 and Fig. 3.31).

At small strains and high values of stress, there is increased motion of dislocations, leading

to a rise in the plastic strain rate, which causes the drop in stress. This follows with a rise

in stress till a strain of 0.63%, which is caused by the internal stress fields which affect the

Peach-Koehler forces acting on the segments and slows their motion.
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Figure 3.27: Stress-strain response for 25 micron sample in uniaxial tension under displace-
ment control at applied strain rate of s = 10−4/s.

Next, we discuss about the microstructure details, orientation and rate effect and the effect

of different initial DD microstructures under displacement control.

1. Microstructure We see the variation of the norm of dislocation density tensor (|α|/b)

and the stress (J2) across the domain for a 25 micron size with 5 × 5 processors in

uniaxial tension for an applied strain rate of s = 10−4/s in Fig. 3.28 and Fig. 3.29

respectively (the stress-strain curve for this run is shown in Fig. 3.27). We see that

both the dislocation density and stress profiles are very heterogeneous at high levels of

strain.
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Figure 3.29: J2 for 25 micron sample in
uniaxial tension with 5 × 5 processors at
4.98% strain

2. Orientation effects We see in Fig. 3.30 that the stress-strain profile for the 25 µm

sample is harder and has higher yield stress (the value of stress at which the slope

reduces significantly from the initial slope of the elastic response) for uniaxial tension

as compared to simple shear. This is expected, as in the shear case, we have dislocation

segments in the primary plane which have a higher Schmid factor, while in the tension

case, we have segments in planes which have smaller Schmid factor. The ratio of the

sum of the Schmid factors of the active slip systems (denoted as fs,i and defined by

(3.3.2)) is 1.84. The ratio of the stress strain response of the uniaxial tension and

simple shear, as shown in Fig. 3.30, lies between 2.87 and 3.49, for strain higher than 1

% (which is maximum value of strain at which the response for both the loading cases

show yielding).

3. Rate effects We see in Fig. 3.31 that with the reduction of loading rate, the stress-

strain response becomes softer and has a lower yield stress in uniaxial tension. This

is expected, as for lower strain rate, there is more time for plastic deformation to

happen. The response is rate dependent for a loading rate of 10−3/s and mobile and

sessile dislocation densities of 3.73× 1011 m−2 and 1.67× 1014 m−2 respectively.
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Figure 3.30: Orientation effect: stress-strain response for 25 micron sample in uniaxial
tension (t22) and simple shear (t12) under displacement control

The response is harder for s = 10−4/s (Fig. 3.32) compared to s = 2 × 10−5/s for

ρs = 1.7 × 1014 m−2. However, for ρs = 1015 m−2, the response is rate independent

for s = 10−4/s compared to s = 2 × 10−5/s, till a strain of 0.2%. For higher strains,

the response for s = 2 × 10−5/s is harder compared to that for s = 10−4/s. The

response for s = 2 × 10−5/s shows Stage I hardening till a strain of 0.2 %. Then it

rises steeply till a strain of 0.35 %, which is characteristic of Stage II hardening. The

average slope of the stress-strain curve in this part is 17.71 GPa, which is much higher

than µ
200

= 0.24 GPa (where µ is the shear modulus, whose value has been provided in

Table 3.1), which is the slope observed in Stage II hardening in macroscopic samples.

This follows with a decrease in the slope (Stage III hardening). It is observed that

ρm does not appreciably increase (while ρs is fixed), so the hardening is not caused

by an increase in the density of dislocation segments. This strongly implies that the

internal stress field affects the Peach-Koehler force acting on the segments and causes

the hardening.

4. Effect of different initial microstructure We run a number of simulations with

different initial microstructures and then take the average of the stress-strain response

obtained from these runs.

The results are presented in Fig. 3.33. We see that there the response varies with the
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Figure 3.31: Rate effect: stress-strain response for 25 micron sample in uniaxial tension
under displacement control at different rates
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Figure 3.32: Rate effect: stress-strain response for 25 micron sample in uniaxial tension
under displacement control at different rates. The strain rate s is in units of s−1.

choice of the initial DD microstructure. In general, for the same ρs, higher the ρm,

the softer the stress strain response is. This is expected as more mobile density means

more generation of plastic strain, and hence the curve is supposed to be softer.

Remark It has been demonstrated in many experiments that at the micron and sub-

micron scales, the sample size dramatically affects the strength, as seen in uniaxial

tension experiments on a wide range of single-crystal nano and micro pillars (for review,

see [USD09, KGMW10]). The stress-strain curves for Ni microcompression samples

having diameters in the 20 µm to 40 µm range are similar to those for bulk samples,

while samples less than 20 µm show distinct variations in the stress-strain curves

[UDFN04]. [KGDP08] reported size effects in Cu single crystals of size less than 8 µm
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Figure 3.33: Stress-strain response for 25 micron sample in uniaxial tension with different
initial microstructure described by their mobile and sessile densities, their average given by
σ̄ and the upper and lower bounds given by σ̄ + std(σ) and σ̄ − std(σ), where std(σ) is the
standard deviation of the stress across all the different initial microstructures.

in tension, while [JBG10] showed strong size effect in Cu nanopillars in compression.

Some other crystalline materials whose size effect for samples less than 10 µm in

diameter have been reported are Au [GON05] and Al [NN08]. [HS04] reported size

effect in stress-strain curves of nanoscale Al and Au films with microelectromechanical

systems (MEMS) based uniaxial tensile testing technique.

Our results for sample size of 25 µm also show high variation in the stress-strain re-

sponse, which depends on the initial microstructure (see Fig. 3.33). Whether such

variation ceases to exist in our simulations for bulk samples needs to be further ex-

plored.

5. Initial yield In Fig. 3.30, the intial yield stress (the value of stress at which the

response deviates from being elastic) of the response corresponding to uniaxial tension

is approximately 35 MPa while that for simple shear is approximately 10 MPa. Thus,

the ratio between the yield stresses for the two cases is around 3.5. The ratio of the

Schmid factors corresponding to the primary planes of the orientations for these two

loading cases (as described in Section 3.3.3.1 and 3.3.3.2 respectively) is 2.45. This is

a prediction of the coupled DD-MFDM strategy, without any ad-hoc assumption put
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in by hand.

3.5.5.3 Case 2

In this case, the Burgers vector of the sessile segments lie in the slip plane. Thus, this

is a more physically appropriate case. We present some results for this case to show

how it compares with Case 1.

The stress strain response of a 25 µm sample in uniaxial tension, under load control,

at loading rates of 1 MPa/s and 0.1 MPa/s is shown in Fig. 3.34. Case 1 is represented

as bs · n 6= 0. Case 2 is represented as bs · n = 0.

The stress strain response of a 25 µm sample in uniaxial tension, under displacement

control, at a strain rate of 10−3 s−1 is shown in Fig. 3.35.

This important physical idealization appears to suggest (as evident in Fig. 3.34 and

Fig. 3.35) that the response is harder when the Burgers vector of the sessile segments

lie in the slip plane, when compared to the case where they lie outside the slip plane.

The Burgers vector distribution of the sessile segments affect the Peach-Koehler force

driving the motion of each segment, thus affecting the overall plasticity in the block.

These preliminary results suggest that, even after averaging, this is a significant effect.

3.5.6 Speedup

The speedup in compute time for a single Gauss point case, for a 1µm DD box, as mentioned

in Section 3.3.3, is around 1000. So, for a 25 µm sample, the speedup is around

25

1
× 25

1
× 1000 = 6.25× 105.
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Figure 3.34: Stress strain response of a 25 micron
sample in uniaxial tension at different loading rates
under load control for Case 1 (bs ·n 6= 0) and Case
2 (bs · n = 0).
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Figure 3.35: Stress strain response of
a 25 micron sample in uniaxial ten-
sion at strain rate of 10−3 s−1 un-
der displacement control for Case 1
(bs · n 6= 0) and Case 2 (bs · n = 0).

This is a very conservative estimate since we are not considering the interactions that would

exist between these 1 µm boxes throughout the sample of 25 µm. But even for such a

conservative estimate, the speedup is very high when compared to conventional DD, which

shows the advantage of our DD-MFDM coupling strategy.

3.6 Discussion

A novel concurrent, multiscale approach to meso/macroscale plasticity has been implemented

using a carefully designed coupling of MFDM with space-time averaged inputs from DD

simulations. We have been able to obtain the stress strain response at realistic slow loading

rates for large sample sizes and with significant speedup in compute time (around 105 using

a conservative estimate), which shows the advantage of our coupled approach compared to

conventional DD.

We have been able to show the strong dependence of the results on: (i) the orientation of

the microstructure (for the two loading cases of simple shear and uniaxial tension) (ii) the

loading rate (iii) the ratio of mobile to sessile segment density. We have been able to show
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these effects for both load and displacement controlled simulations. We have also suggested

that there is a limiting stress averaging size of 5 µm for which we get converged results

for a DD box of 1 µm. Moreover, we are able to demonstrate the collective behavior of

dislocations under the action of internal stress. The effect of internal stresses, which control

the Peach-Köehler forces acting on the segments and affect their motion, is visible in the

stress-strain responses that we presented.

The only constitutive assumption used in this coupled strategy is a simplified adaptation of

the thermal activation of dislocation motion past obstacles [KM03], which is described in

Section 3.2.2. However, the order of the timescale set by the plastic strain rate obtained in

our simulations is very different from the timescale set by the junction breaking time.

We point out the (current) limitations of our approach. These are

• The dislocation content that is allowed to be mobile does not grow in density to the

extent that is observed in reality. In a well annealed crystal, the total dislocation

density grows by around 8 orders of magnitude and a large fraction of the mobile

segments becomes sessile. Our simulations are currently incapable of representing such

growth of the dislocation density. To account for this deficiency, we adopt the physical

picture of [KM03]) and work with an a-priori assumption of a sessile distribution of

dislocations in each DD box and a separate mobile population, the latter being allowed

to evolve and grow (or diminish), with full interaction within itself as well as with the

sessile population.

• The polar dislocation velocity is negligible.

• The response is highly dependent on the configuration of the segments in the initial

DD microstructure. In reality, for macroscopic samples, it is generally observed that

the response does not vary so much based on the state of the initial microstructure.

Whether our simulations bear out this expectation for larger sample sizes needs to be

explored. A difficulty associated with performing our simulations for large sample sizes
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is the computational expense. However, this is not a fundamental difficulty but a prac-

tical one, which can be addressed with more sophisticated parallelization algorithms

and implementation than this first effort.

Immediate partial remedial measures for these limitations are expected to be the accounting

of the mobile density in DD boxes in accord with the averaged dislocation density ρ (whose

evolution is derived in Chapter 4) and the GND density α suggested by MFDM, in the

coupled DD-MFDM strategy. These descriptors will act as feedback for the initialization of

the DD microstructure at discrete time steps.
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Chapter 4

A formal hierarchy of governing

equations by averaging dislocation

dynamics in real space and time

4.1 Introduction

This section is concerned with the formal derivation of governing field equations of increas-

ingly detailed space-time averaged behavior of microscopic dislocation dynamics. The micro-

scopic dislocation dynamics is posed as a system of pde, capable of representing the dynamics

of a collection of possibly tangled smooth curves representing dislocation core cylinders, each

core cylinder movable by a combination of glide and climb due to the action of a vectorial

velocity field. The velocity field is determined, following well-accepted notions, purely from

the dislocation density field (with the possibly tangled web of core cylinders viewed simply as

appropriate smooth localizations in space of the dislocation density field), and the (nonlinear

crystal elastic) stress field in the body; even when linear elasticity is used, the point-wise

Burgers vector direction and line direction (information built into the dislocation density
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field) are adequate to describe the motion of edge segments, and the motion of screws are

restricted to within a geometrically defined set of planes. In any case a resolution into slip

system dislocation densities is not essential (cf. [ZCA13]). This pde system is adequate

for representing the plasticity of the constituent material when atomic length scales are re-

solved - we refer to this system as Field Dislocation Mechanics (FDM). We are interested

in obtaining the implications of this model when the resolved length (and time) scales are

much coarser, i.e. we are interested in obtaining some information on the nature of the

governing evolution equations for increasingly detailed descriptions of averaged behavior of

this microscopic system, appropriate for coarser-length and time scales. We emphasize that

the derived averaged equations represent exact, but non-closed, statements of evolution of

the defined average variables, without any compromise on the inherent kinematic constraints

of the microscopic system(e.g. the connectedness of the dislocation lines represented by the

solenoidal property of the microscopic dislocation density field).

The above line of inquiry was initiated in [AR06, AC12]; as will be shown in this chapter,

the exact equations of evolution become exceedingly complex and cumbersome and it was

suggested in [AR06] that closure assumptions be made at a relatively lower level to main-

tain tractability (while allowing for the inclusion of all that is known in the physics-based

phenomenological modeling of plastic deformation and strength, e.g. [KAA75]) and refining

the description as required for greater fidelity. We will refer to this approach as the MFDM

(Mesoscale Field Dislocation Mechanics) approach to plasticity.

In the Continuum Dislocation Dynamics (CDD) framework of Hochrainer and collaborators

[HZG07, Hoc16, MZ18], models are developed based on a kinetic theory-like framework,

starting from the assumption that a fundamental statement for the evolution of a number

density function on the space of dislocation segment positions and orientations is available at

the microscopic level. This microscopic governing equation is non-closed even if one knows

completely the rules of physical evolution of individual dislocations segments of connected
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lines; one would need to study the behavior of an ensemble of dislocation dynamics evolutions

to define, and then also only in principle, the evolution of such a number density function (cf.

[HZG07, Sec 3.1, 5]) - this detail is built into the state-space velocity function introduced in

[HZG07], which cannot be simply defined by a well-accepted statement like the Peach-Köhler

force for a segment of a real-space description of a dislocation line. Furthermore, Equations

(7) and (11) of [HZG07], the fundamental statement of evolution governing the number den-

sity function (a ‘collective’ quantity), are postulated without fundamental justification. This

is in contrast to FDM where the fundamental justification for the statement of microscopic

dynamics is the integral statement of conservation of Burgers vector, a physically observed

fact (which does not imply a conservation of the ‘number’ of dislocations, whether loops

or otherwise, as stated in [HZG07, Sec. 4], and as demonstrated in exercises related to

annihilation and nucleation [GAM15]); then, the equations of MFDM follow strictly from

FDM on averaging, without any further assumptions. Returning to CDD, on making var-

ious assumptions for tractability, the theory produces (non-closed) statements of evolution

for the averaged dislocation density (akin to the mesoscale Nye tensor field), the total dis-

location density (similar to an appropriate sum of the averaged Nye tensor density) and,

these densities being defined as physical scalars, and an associated curvature density field.

Closure assumptions are made to cut off infinite hierarchies, which is standard for averaging

based on nonlinear ‘microscopic equations’, and further closure assumptions for constitutive

statements are made based on standard thermodynamic arguments [Hoc16].

The model in [XEA15] belongs to the same mathematical class as MFDM but with more

complicated constitutive structure related to multiple-slip behavior [DAS16]. It assumes

geometrically linear kinematics for the total deformation coupled to a system of stress-

dependent, nonlinear transport equations for vector-valued slip-system dislocation densities.

These slip system density transport equations involve complicated, phenomenological con-

stitutive assumptions related to cross-slip, and the authors of [XEA15] promote the point of

view that dislocation patterning is related to the modeling of slip system dislocation densities
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and cross-slip. An attempt to understand emergence of microstructure in 1-d setting was

made in [DAS16], and in 3-d and finite deformation setting was made in [AA19]. They con-

cluded that in all likelihood, such complexity is not essential for the emergence of dislocation

microstructure in this family of models.

Despite postulating fundamental microscopic statements, making closure assumptions of their

own, and making ad-hoc choices of cutting off the infinite hierarchy of their equations, the

CDD authors have criticized the MFDM approach as inadequate for describing the plasticity

of metals [HZG07, Hoc16, MZ18]. The authors of [XEA15] have criticized MFDM for using a

phenomenological approach and for the lack of resolution into slip systems in order to model

cross slip. One goal of this chapter is to show that the criticisms leveled against the MFDM

approach in [SHZG11, XEA15, MZ18] are unfounded.

The MFDM approach starts from a well-accepted fundamental microscopic dynamical state-

ment (unlike CDD), and produces an exact hierarchy of equations for any desired level of

detail in the coarse description as an implication of this fundamental microscopic dynamics.

Extending the work in [AC12], this paper explicitly shows that while the MFDM approach

can easily accommodate descriptors like slip system dislocation densities and define precise

hierarchies of evolution equations for them, such an enterprise comes at a significant cost

in complexity and tractability of the resulting model, and shows the exact nature of phe-

nomenology and gross approximation that would necessarily be inherent in any proposed

formalism for coarse-grained dislocation dynamics (e.g., [SHZG11, XEA15]) that does not

consider head-on the question of averaging the stress-coupled interaction-related dynamics

of dislocations.

This chapter is organized as follows. In Section 4.2, we apply the averaging procedure utilized

in [Bab97] to generate an infinite hierarchy of nonlinear coarse equations corresponding

to a fine dynamics, which (essentially) cannot be solved. In Section 4.3, we apply the

averaging procedure to derive the coarse evolution of averaged total dislocation density and
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demonstrate, using a simple example, that the averaged dislocation density of an expanding

circular loop increases. In Section 4.3.2, we present a refined description of the variables with

respect to individual slip systems, reflective of a crystal plasticity description and present

the coarse evolution of these variables, namely the averaged dislocation density tensor and

the averaged total dislocation density. In order to do so, we define a characteristic function,

which indicates whether any given position has a dislocation of a particular slip system. We

show how the coarse evolution of these variables are very cumbersome and hence, why it is

reasonable to close the infinite hierarchy of non-closed system of equations at a low level.

It is also important to generate lower level closure assumptions that account for the stress

coupled dynamics of dislocations. Such work is currently in progress ([CPZ+]).

4.2 Hierarchy of averaged equations for nonlinear mi-

croscopic equations: the basic idea

In this section, we will utilize an averaging procedure used in the literature for multiphase

flows (see [Bab97]). For a microscopic field f given as a function of space and time, the

mesoscopic space-time-averaged field f̄ [AR06, AC12] is given as

f̄(x, t) =
1∫

I(t)

∫
Ω(x)

w(x− x′, t− t′)dx′dt′
∫
=

∫
B

w(x− x′, t− t′)f(x′, t′)dx′dt′, (4.2.1)

where B is the body and I a sufficiently large interval of time. In the above, Ω(x) is a

bounded region within the body around the point x with linear dimension of the order of

the spatial resolution of the macroscopic model we seek, and I(t) is a bounded interval in

I containing t. The weighting function w is non-dimensional, assumed to be smooth in

the variables x, x′, t, t′ and, for fixed x and t, have support (i.e. to be non-zero) only in

Ω(x)× I(t) when viewed as a function of (x′, t′).
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The one-dimensional analogue of (4.2.1) is

∂t′f = F (f, ∂x′f), (4.2.2)

where x′ is the spatial coordinate and t′ is time and f is a function of x′ and t′. We call the

system given by equation (4.2.2) as the fine scale system.

We aim to understand the macroscopic evolution of the fine dynamics (4.2.2) in terms of

averaged (coarse) variables. To do so, the averaging operator (4.2.1) is applied to both sides

of (4.2.2), which results in the following:

∂

∂t
f(x, t) = F (f, ∂x′f)(x, t). (4.2.3)

We denote A0 := f and A01 := ∂tA0 = F . The fluctuation of function f is defined as:

Σf (x′, t′, x, t) := f(x′, t′)− f(x, t). (4.2.4)

The average of the product (p) of two variables f and g is given by

f(p)g ={f̄ + (f − f̄)}(p){ḡ + (g − ḡ)}

=f̄(p)ḡ + f̄(p)(g − ḡ) + (f − f̄)(p)ḡ + (f − f̄)(p)(g − ḡ)

=f(p)g + f̄(p)Σg + ḡ(p)Σf + Σf (p)Σg

=f(p)g + Σf (p)Σg, (4.2.5)

so that

f(p)g − f̄(p)ḡ = f(p)g − f̄(p)ḡ = Σf (p)Σg.

Here, f and g can be scalar, vector or tensor valued. Some examples of the product (p) are
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scalar multiplication, vector inner product, tensor inner product, cross product of a tensor

with a vector etc. For example, if f and g are scalar and (p) is the scalar multiplication

operator,

fg = f g + ΣfΣg. (4.2.6)

Using (4.2.5), we obtain the average of product of three variables as

f(p)g(p)h =f(p)g(p)h+ Σf (p)Σg(p)h = f(p){g(p)h+ Σg(p)Σh}+ Σf (p)Σg(p)h

=f(p)g(p)h+ f(p)Σg(p)Σh + Σf (p)Σg(p)h. (4.2.7)

Similarly, for f , g and h scalars and (p) the scalar multiplication operator,

fgh = f g h+ f Σg Σh + Σf Σg h. (4.2.8)

Equations (4.2.6), (4.2.7) and (4.2.8) show that the averages of products of two or more

variables are not the products of their averages.

It can be shown using (4.2.2), (4.2.3) and (4.2.4) that

∂ttA0 = ∂tA01 = ∂2F∂1F∂xA0 + ∂2F∂2F∂xxA0 + A011 + Σ(∂2F∂1F )Σ(∂x′f) + Σ(∂2F∂2F )Σ(∂x′x′f),

(4.2.9)

where A011 := ∂1FF .

Thus, in the coarse evolution of F̄ , new terms (e.g. ∂2F∂1F ) emerge and therefore, it is

necessary to augment (4.2.9) with coarse evolution equations of the new terms (that appear
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on the rhs of (4.2.9)), namely the following:

∂t
(
∂2F∂1F

)
= G1

∂t
(
∂2F∂2F

)
= G2

∂t

(
Σ(∂2F∂1F )Σ(∂x′f)

)
= G3

∂t

(
Σ(∂2F∂2F )Σ(∂x′x′f)

)
= G4, (4.2.10)

where Gi (i = 1 to 4) are functionals of the state. In general, these functionals cannot be

expressed as functionals of the independent fields of the averaged model, such relations being

referred to as ‘closure’ relations.

The functionals Gi can be generated by applying the averaging operator (4.2.1) to the fine

scale equations and decomposing the average of product of functions in the fine scale into

product of their averages and their associated fluctuation terms. For example, the coarse

evolution of ∂2F∂1F (which is given by G1 above) is

∂t
(
∂2F∂1F

)
= ∂′t (∂2F∂1F ) = ∂′t (∂2F ) ∂1F + ∂2F∂′t (∂1F )

= H(∂1F ) + (∂2F )M = H∂1F +M∂2F + ΣHΣ∂1F + ΣMΣ∂2F ,

where H = ∂′t (∂2F ) and M = ∂′t (∂1F ). Thus, new terms appear in the coarse evolution

of the term ∂2F∂1F , and similarly for the other terms in (4.2.10). In this manner, we

can generate an infinite hierarchy of nonlinear coarse equations corresponding to the fine

dynamics (4.2.2). Solution of such an infinite system is not possible.

It is therefore necessary to close the equations at a desired level, which means to use physics

based assumptions for the necessary terms instead of solving their exact evolution equation

(for example, in equation (4.2.10) above, we might use closure assumptions for the functionals

Gi on the rhs). Morever, even if the system was finite but large and could be solved (in

principle), approximating solutions to nonlinear systems of pde is by no means a trivial
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task, so that it is definitely better to shift the focus from generating large formal hierarchies

of nonlinear pde to generating controlled, with respect to accuracy, closure assumptions to

maintain tractability.

4.3 Models of MFDM with varying coarse descriptors

The model of FDM [Ach01, Ach03, Ach04] represents the dynamics of a collection of dislo-

cation lines at the atomic length scale. The field equations of FDM are as follows:

α̇ = −curl(α× V )

curlχ = α

divχ = 0

div(gradż) = div(α× V +Lp)

div(C : {gradu− z + χ}) = 0. (4.3.1)

The tensor α is the dislocation density tensor, V is the dislocation velocity vector, C is the

fourth-order, possibly anisotropic, tensor of linear elastic moduli, u is the total displacement

vector, χ is the incompatible part of the elastic distortion tensor, and u− z is a vector field

whose gradient is the compatible part of the elastic distortion tensor. Upon application of

the averaging operator (4.2.1) defined in Section 4.2 to both sides of (4.3.1), we have the

following system of averaged equations

α̇ = −curl(α× V +Lp)

curlχ = α

divχ = 0

div(gradż) = div(α× V +Lp)
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div(C : {grad(u− z) + χ}) = 0 (4.3.2)

[AR06]. The system (4.3.2) is called Mesoscale Field Dislocation Mechanics. Here, Lp is

defined as

Lp := α× V −α× V , (4.3.3)

and it represents the strain rate produced by ‘statistically stored dislocations’. It follows from

(4.2.5) that Lp is the average of the cross product of the fluctuation of α and V ( which

means Lp = Σα × ΣV ). Consider a uniformly expanding square loop. Since α = b ⊗ l̂,

where b is the Burgers vector density per unit area and l̂ is the line direction at each point

of the loop and b remains uniform along the loop, and both l̂ and V change sign going from

one side of the square loop to the opposite side, both α = 0 and V = 0. However, α × V

is identical for opposite sides of the loop and does not cancel out and hence, Lp 6= 0.

4.3.1 Isotropic MFDM

We consider as descriptors of the system the averaged total dislocation density ρ and the

plastic distortion rate Lp, which are commonly used in the literature (also see [AC12]).

• The evolution equation for averaged total dislocation density, ρl. The total dislo-

cation density is defined as

ρ := α : α. (4.3.4)

Suppose we have many dislocation segments in a box of volume V . We see that∫
V ρdv

V
=

∑
iαi:αi liAi

V
, where αi, li and Ai (which is assumed to be |bi|2 up to a con-

stant) are the dislocation density tensor, line length and cross section area of segment
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i respectively. We also have that αi = |bi|mi⊗ti
Ai

, where bi, mi and ti are the Burg-

ers vector, Burgers vector direction and the line direction of segment i. Therefore,∑
iαi:αi liAi

V
= 1

V

∑
i
|bi|2
A2
i
liAi = 1

V

∑
i
|bi|2
|bi|4 li|bi|

2= 1
V

∑
i li, which is the averaged disloca-

tion density in the box. Since ρ is the microscopic total dislocation density,
∫
V ρdv

V
is ρ

averaged over V , which gives the averaged dislocation density of the box. This acts as

a verification that ρ is indeed the total dislocation density.

The space-time averaged total dislocation density ρ is given by

ρ = α : α+ Σα : Σα. (4.3.5)

This follows from (4.2.5) and shows that the average of the total dislocation density

contains average terms as well as averages of fluctuations. We can interpret this using

Fig. 4.1 in which we see that the averaging box has many loops which are inside the

box and there are some loops which are not entirely contained inside the box. Since the

Burgers vector is uniform over a loop, the average dislocation density (b⊗ l̂) due to the

loops which are contained in the box is 0 since the average of the line direction l̂ over

the loop cancels out. The only contribution to the first term on the rhs of (4.3.5) is

from the loops which are not entirely contained in the averaging box. If our averaging

box has a very large length scale, then most loops will be contained inside the box and

as such, α ≈ 0 and the main contribution to the averaged total dislocation density

will come from the average of the fluctuation term given by the second term on the

rhs of (4.3.5). The evolution of such fluctuation terms, as discussed in Section 4.2, will

be given by other pde, which will themselves be non-closed, as they will contain other

fluctuation terms. This will generate an infinite hierarchy of non-closed cumbersome

pde, as will be shown next.
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Figure 4.1: Dislocation loops in averaging box

The evolution of ρ is given by

ρ̇ =− grad ρ · V − 2 ρ divV + 2 α : (divα⊗ V ) + 2 α : {α gradV } − Σgradρ · ΣV

− 2ΣρΣdivV + 2 α : (Σdivα ⊗ ΣV ) + 2Σα : Σdivα⊗V + 2 α : Σα ΣgradV

+ 2 Σα : Σα gradV . (4.3.6)

The derivation of (4.3.6) is given in Appendix C.1. As the averaging length scale

becomes large, the RHS of (4.3.6) is dominated by the averages of the fluctuation

terms.

Example: Circular dislocation loop

!
"!
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Figure 4.2: Top view of a uniformly expanding loop of radius R and width ∆R.
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The evolution equation for ρ (as derived in Appendix C.1 and given by (C.1.2)) is

ρ̇ = −gradρ · V − 2ρ(divV ) + 2α : (divα⊗ V ) + 2α : {α gradV }

Application of the averaging operator (4.2.1) to the above results in the following:

ρ̇ = −gradρ · V − 2ρ(divV ) + 2α : (divα⊗ V ) + 2α : {α gradV }. (4.3.7)

We aim to understand the evolution of ρ for the case of a circular dislocation loop of

inner radius R, width ∆R (see Fig. 4.2) and thickness t. The area of cross section

of the loop is A = ∆R. t, which is assumed to be b2, where b is the magnitude of the

Burgers vector b. The radial unit vector is er = cosθex + sinθey, while the tangential

unit vector is eθ = −sinθex + cosθey. Let us assume that its velocity has the same

magnitude for all points (r, θ, z) of the loop (where z is the spatial coordinate along the

thickness) and points radially outwards. Hence, the velocity is given by V = v(r) er,

where v(r) = ṽH(r−R)− ṽH(r− (R+ ∆R)). Let the averaging domain be a circular

plate of radius L and thickness H, where L� R and H � t.

We have

V =
1

πL2H

∫ θ=2π

θ=0

∫ r=L

r=0

∫ t
2

z=− t
2

v(r)errdrdθdz

=
t

πL2H

∫ θ=2π

θ=0

∫ r=L

r=0

{ṽH(r −R)− ṽH(r − (R + ∆R))}{cosθex + sinθey}rdrdθ

=
ṽt

πL2H

[ ∫ R+∆R

R

r dr
][( ∫ θ=2π

θ=0

cosθ
)
ex +

(∫ θ=2π

θ=0

sinθ
)
ey

]
=

ṽt

πL2H

[
r2

2

]R+∆R

R

[
{sin2π − sin0}ex + {cos2π − cos0}ey

]
=

ṽt

πL2H
∆R (2R + ∆R) 0 = 0

(4.3.8)
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Also,

α =
1

πL2H

∫ θ=2π

θ=0

∫ r=L

r=0

∫ t
2

z=− t
2

b

A
⊗ l̂rdrdθdz =

t

πL2Hb2

∫ θ=2π

θ=0

∫ r=L

r=0

b⊗ eθrdrdθ

=
t

πL2Hb2

∫ θ=2π

θ=0

∫ r=L

r=0

b⊗ {−sinθex + cosθey}rdrdθ

=
t

πL2Hb2
b⊗

[ ∫ R+∆R

R

r dr
][( ∫ θ=2π

θ=0

−sinθ
)
ex +

(∫ θ=2π

θ=0

cosθ
)
ey

]
=

t

πL2Hb2
b⊗

[
r2

2

]R+∆R

R

[
{cos2π − cos0}ex − {sin2π − sin0}ey

]
=

t

πL2Hb2
b⊗ {∆R.(2R + ∆R).0} =

2R + ∆R

πL2H
b⊗ 0 = 0.

(4.3.9)

Moreover,

gradV =
∂Vr
∂r
er ⊗ er +

Vr
r
eθ ⊗ eθ

=⇒ divV = gradV : I =
∂v(r)

∂r
+
v(r)

r

= ṽδ(r −R)− ṽ δ(r − (R + ∆R)) +
ṽ [H(r −R)−H(r − (R + ∆r))]

r

Hence,

div(V ) =
1

πL2

∫ θ=2π

θ=0

∫ r=L

r=0

∫ t
2

z=− t
2

grad(V )rdrdθdz

=
ṽt

πL2H

∫ θ=2π

θ=0

∫ r=L

r=0

{
ṽ δ(r −R)− ṽ.δ(r − (R + ∆R))

+
ṽ [H(r −R)−H(r − (R + ∆r))]

r

}
rdrdθ

=
ṽt

πL2H
[R− (R + ∆R)].(2π) +

ṽt

πL2H

{∫ R+∆R

R

dr
}
.(2π)

= − ṽt

πL2H
.∆R.(2π) +

ṽt

πL2H
.∆R.(2π) = 0

(4.3.10)
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We also note that divV = divV = div0 = 0 . We also have

ρ =α : α =
b

A
⊗ l̂ :

b

A
⊗ l̂ =

1

A2
(b · b)(̂l · l̂) =

b2

b2.b2
.(1) =

1

b2

=⇒ gradρ =
∂ρ

∂r
er +

1

r

∂ρ

∂θ
êθ = 0 + 0 = 0. (4.3.11)

We have that

divα =
∂α

∂r
er +

1

r

∂α

∂θ
eθ

=
∂( b

A
⊗ l̂)
∂r

er +
1

r

∂( b
A
⊗ l̂)
∂θ

eθ

=
1

b2
b⊗ ∂ l̂

∂r
er +

1

rb2
b⊗ ∂ l̂

∂θ
eθ

Noting that l̂ = eθ and hence, ∂ l̂
∂r

= 0 and ∂ l̂
∂θ

= −er, we have

divα =
1

b2
b⊗ (0.er)−

1

rb2
(b⊗ er)eθ = 0− b

rb2
er · eθ = 0 + 0 = 0. (4.3.12)

Also,

α : [α gradV ] =
b

A
⊗ l̂ : [(

b

A
⊗ l̂) gradV ] =

1

A2
(b⊗ l̂) :

[
b⊗ [gradV ]T l̂

]
=

1

b4
(b · b) (̂l · [gradV ]T l̂)

Since l̂ = eθ,

α : [α gradV ] =
1

b4
(b · b)

[
eθ ·

(∂Vr
∂r
er ⊗ er +

Vr
r
eθ ⊗ eθ

)
eθ

]
=
b2

b4

[
eθ ·

v(r)

r
eθ

]
=

1

b2

v(r)

r
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Therefore,

α : [α gradV ] =
1

πL2H

∫ θ=2π

θ=0

∫ r=L

r=0

∫ t
2

z=− t
2

1

b2

v

r
rdrdθdz

=
t

πL2H.b2

∫ θ=2π

θ=0

∫ r=L

r=0

ṽ{H(r −R)− ṽH(r − (R + ∆r))}drdθ

=
t

πL2Hb2

{∫ r=R+∆R

r=R

ṽdr
}

2π =
ṽt

πL2Hb2
.∆R.(2π)

=
2ṽ

L2H
(4.3.13)

Substituting the results from (4.3.8), (4.3.10), (4.3.11), (4.3.12) and (4.3.13) in (4.3.7),

we get

ρ̇ =− 0 · V − 2

b2
divV + 2α : (0⊗ V ) +

2ṽ

L2H
= 0 + 0 + 0 +

2ṽ

L2H

=
2ṽ

L2H
. (4.3.14)

Since ṽ > 0 for an expanding loop, this shows that ρ̇ > 0. This is justified because as

shown before, ρ̄ give the averaged line length and therefore it has to increase for an

expanding loop.

• The evolution equation for plastic distortion rate, Lp

There are many quantities whose evolution are governed by the average of the fluctu-

ation terms. For example, the evolution of Lp defined by (4.3.3) and obtained using

(4.2.5) is

L̇p = ˙α× V − α̇× V −α× V̇

= α̇× V +α× V̇ + Σα̇ × ΣV + Σα × ΣV̇ − α̇× V −α× V̇

= Σ−curl(α×V ) × ΣV + Σα × ΣV̇ .

(4.3.15)

This shows that the evolution of Lp is governed by the sum of the averages of the
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fluctuation terms.

For the example of an expanding circular loop, using the results from (4.3.20) and

(4.3.8) and the fact that l̂ = eθ,

Lp =α× V −α× V = (
b

A
⊗ l̂)× V − 0× 0

=
v

b2
b⊗ (eθ × er) = − v

b2
b⊗ ez

=
1

πL2H

∫ θ=2π

θ=0

∫ r=L

r=0

∫ t
2

z=− t
2

− v
b2
b⊗ ezrdrdθdz

=− t

πL2H.b2
b⊗ ez

∫ θ=2π

θ=0

∫ r=L

r=0

vrdrdθ

=− t

πL2H.b2
b⊗ ez

∫ θ=2π

θ=0

∫ r=L

r=0

ṽ{H(r −R)− ṽH(r − (R + ∆r))}rdrdθ

=− t

πL2H.b2
b⊗ ez

{∫ r=R+∆R

r=R

ṽrdr
}

2π

=− ṽt

πL2H.b2
b⊗ ez

[
r2

2

]R+∆R

R

.2π = −2ṽt{∆R.(2R + ∆R)}
πL2H.b2

b⊗ ez

=⇒ |Lp|=− 2ṽt.∆R.(2R + ∆R)

L2H.b2
.b = −2ṽ.(2R + ∆R).b

L2H
, (4.3.16)

where ez = er × eθ. From (4.3.14) and (4.3.16), we observe that both ρ̇ and |Lp|, for

the case of a uniformly expanding circular loop, are proportional to ṽ, and hence, ρ̇

is proportional to |Lp|. This observation is in agreement with classical theory which

states that ˙̄ρ (where the averaged line length ρ is a measure of the strength of the

material) is proportional to |Lp|. However, in classical theory, strength of a material

cannot decrease whereas ρ̄ can decrease in our case.

4.3.2 Crystal Plasticity MFDM

Conventional crystal plasticity involves resolution of the system of evolution equations into

individual slip systems and superposing the effect of plastic strain on different slip systems.

Motivated by the work in [AC12] to evaluate what is involved in working with the evolution
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of slip-system level coarse variables (as proposed in [SHZG11, XEA15], but using ad-hoc

equations of mesoscopic evolution as discussed in Section 4.1), we consider a refined descrip-

tion, in which we define state variables with respect to individual slip system and derive

their evolution. The state variables that describe this model are:

• α

• al := χlα (4.3.17a)

• ρl := χl α : α (4.3.17b)

Here, α is the dislocation density tensor, χl(x, t) is the characteristic function of dislocations

of slip system l (with normal nl and slip direction bl) at position x and al and ρl are the

dislocation density tensor and total dislocation density respectively, corresponding to slip

system l.

The characteristic function χl(x, t) indicates whether the point x at time t is occupied by a

dislocation of slip system l. We denote the exponential operator as e(.). The characteristic

function can be approximated as

χl(x, t) ≈ e

(
−
( |αnl|

c1

)m)
e

(
−
(
||b̃l.α̃α̃T .b̃l|−1|

c2

)n)
, (4.3.18)

where

b̃l =
b

|b|

α̃ =
α

|α| (4.3.19)

and c1 and c2 are very small positive constants and m and n are very large positive constants.

For a dislocation to belong to slip system l, it must satisfy α ·nl = 0 (as α ·nl = (b⊗ l̂) ·nl =

(̂l ·nl)b = 0.b = 0, where b and l̂ are the Burgers vector and line direction of the dislocation
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respectively). In that case, the first term on the rhs of (4.3.18), e
(
−
(
|αnl|
c1

)m)
, is 1 as

|αnl|
c1

= 0. Otherwise (when α · nl 6= 0), the first term e
(
−
(
|αnl|
c1

)m)
is approximately 0,

since c1 is a small positive constant and m is a very large positive constant. Moreover, if the

Burgers vector b of the dislocation coincides with bl, the term |b̃l.α̃α̃T .b̃l|= 1. Hence, in that

case, the second term on the rhs of (4.3.18) is 1, since
(
||b̃l.α̃α̃T .b̃l|−1|

c2

)
= 0. Otherwise, it is

approximately 0, since c2 is a small positive constant and n is a very large positive constant.

Thus, the first term decides whether the dislocation is in the slip plane of the slip system,

while the second term decides whether it has the same Burgers vector as the slip system.

Only when both of these are true, we have χl = 1. Otherwise, we have χl ≈ 0.

An implied assumption in the definition of the characteristic function and the slip system

variables is that a particular spatial location is occupied at any instant by a dislocation of

a single slip system, which excludes the proper accounting of junctions in the definition of

the slip system variables, even though the microscopic dynamics does not involve any such

exclusion.

4.3.3 The coarse variables

We are interested in understanding the plastic behavior of metals at a length scale which is

much coarser than the atomic length scale and at a time scale comparable to real life load

applications (which is much larger compared to the time scale of the motion of dislocations,

set by the drag). Therefore, we are interested in the averaged theory of the microscopic

dynamics, which involves the evolution of the coarse variables corresponding to the variables

defined in (4.3.17), which are α, al and ρl. In order to do so, we also need to know the

evolution of the averaged characteristic function χl, since χl appears on the rhs of their

evolution equations (4.3.17). In this Section, we derive the evolution of these coarse variables.

Corresponding brackets have been marked with the same color to make the equations look

more readable. The primary averaged variables have been marked in blue, to show how
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much of the rhs is known in terms of them. We also define the following variables to make

the equations look more readable and compact:

P :=
|αnl|
c1

Q :=
||b̃l.α̃α̃T .b̃l|−1|

c2

p := |b̃l.α̃α̃T .b̃l|−1.

4.3.3.1 The evolution equation for averaged dislocation density, α

The evolution of α (following [AR06]) is given by

α̇ = −curl(α× V +Lp). (4.3.20)

4.3.3.2 The evolution equation for the averaged characteristic function, χl, for

slip system l

χl is obtained by applying the averaging operator (4.2.1) to (4.3.18). Its evolution equation

is

˙
χl =

m

c2

e(−Pm) e(−Qn) Pm−1
[
−αnl · {curl(α× V +Lp)nl}

]
− n

c2

e(−Pm) e(−Qn) Qn−1 sgn(|p|−1) sgn(p)

b̃l ·
{(
−curl(α× V +Lp)

( 1

α

)
−α : curl(α× V +Lp)

(
1

|α|3
))

α̃T

+ α̃

(
(−curl(α× V +Lp))T

( 1

α

)
−α : curl(α× V +Lp)

( 1

|α|3
))}

· b̃l

−m
{
e(−Pm) e(−Qn) Pm−1

(
Σαnl · Σ−curl(α×V )nl

(
1

|αnl|

)
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+ Σ−(αnl)·(curl(α×V )nl) Σ
1

|αnl|

)

+ Σe(−Pm) e(−Qn) Pm−1

(
− 1

c1

(
αnl · {curl(α× V +Lp)nl}

+ Σαnl · Σ−curl(α×V )nl
)( 1

|αnl|

)
+ Σ−(αnl)·(curl(α×V )nl) Σ

1

|αnl|

)

+ Σe(−Pm) e(−Qn) ΣPm−1

(
− 1

c1

(
αnl · {curl(α× V +Lp)nl}

+ Σαnl · Σ−curl(α×V )nl
)( 1

|αnl|

)
+ Σ−(αnl)·(curl(α×V )nl) Σ

1

|αnl|

)}

− n

c2

[
e(−Pm) e(−Qn) Qn−1

sgn(|p|−1) sgn(p) b̃l ·
{(

Σ−curl(α×V )Σ
1
|α|

+
[{(

Σα : Σ−curl(α×V )
)( 1

|α|3
)

+ Σ−α:curl(α×V )Σ
1
|α|3
}
α+ Σ

−α:curl(α×V )

|α|3 Σα
])

α̃T

+ α̃

(
Σ−(curl(α×V ))TΣ

1
|α|

+
[{(

Σα : Σ−(curl(α×V ))T
)( 1

|α|3
)

+ Σ−α:(curl(α×V ))Σ
1
|α|3
}
αT + Σ

−α:(curl(α×V ))

|α|3 ΣαT
])}

b̃l

+ sgn(|p|−1)

(
Σsgn(p)Σ

b̃l·
[
(− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α)α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)

+ Σsgn(|p|−1)

(
Σ
sgn(p) b̃l·

[(
− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α

)
α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)
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+ Σe(−Pm) e(−Qn) Qn−1

sgn(|p|−1) sgn(p) b̃l ·
{({

−curl(α× V +Lp)
( 1

α

)
+ Σ−curl(α×V )Σ

1
|α|

}
+
[{(
−α : curl(α× V +Lp) + Σα : Σ−curl(α×V )

)( 1

|α|3
)

+ Σ−α:curl(α×V )Σ
1
|α|3
}
α+ Σ

−α:curl(α×V )

|α|3 Σα
])

α̃T

+ α̃

({
(−curl(α× V +Lp))T

( 1

α

)
+ Σ−(curl(α×V ))TΣ

1
|α|

}
+
[{(
−α : (curl(α× V +Lp)) + ΣαT : Σ−(curl(α×V )T )

)( 1

|α|3
)

+ Σ−α:(curl(α×V ))Σ
1
|α|3
}
αT + Σ

−α:(curl(α×V ))

|α|3 ΣαT
])}

b̃l

+ sgn(|p|−1)

(
Σsgn(p)Σ

b̃l·
[
(− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α)α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)

+ Σsgn(|p|−1)

(
Σ
sgn(p) b̃l·

[(
− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α

)
α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)

+ Σe(−Pm) e(−Qn) ΣQn−1

sgn(|p|−1) sgn(p) b̃l ·
{({

−curl(α× V +Lp)
( 1

α

)
+ Σ−curl(α×V )Σ

1
|α|

}
+
[{(
−α : curl(α× V +Lp) + Σα : Σ−curl(α×V )

)( 1

|α|3
)

+ Σ−α:curl(α×V )Σ
1
|α|3
}
α+ Σ

−α:curl(α×V )

|α|3 Σα
])

α̃T

+ α̃

({
(−curl(α× V +Lp))T

( 1

α

)
+ Σ−(curl(α×V ))TΣ

1
|α|

}
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+
[{(
−α : (curl(α× V +Lp)) + ΣαT : Σ−(curl(α×V )T )

)( 1

|α|3
)

+ Σ−α:(curl(α×V ))Σ
1
|α|3
}
αT + Σ

−α:(curl(α×V ))

|α|3 ΣαT
])}

b̃l

+ sgn(|p|−1)

(
Σsgn(p)Σ

b̃l·
[
(− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α)α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)

+ Σsgn(|p|−1)

(
Σ
sgn(p) b̃l·

[(
− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α

)
α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)]

−m Σe(−Pm) e(−Qn) Pm−1 Σ

(
(αnl)·(−curl(α×V )T )nl

c1|αnl|

)

− n
(

Σe(−Pm) e(−Qn) Qn−1

Σ
1
c2
sgn(p) b̃l·

[{
− curl(α×V )

|α| +(α:curl(α×V )

|α|3 ) α
}
α̃T+α̃

{
− {curl(α×V )}T

|α| +(α:{curl(α×V )}
|α|3 ) αT

}]
b̃l
)
.

(4.3.21)

The derivation of (4.3.21) is given in Appendix C.2.

4.3.3.3 The evolution equation for the averaged dislocation density tensor, al,

for slip system l

al is obtained by applying the averaging operator (4.2.1) to (4.3.17a). Its evolution equation

is

˙
al =

m

c2

α e(−Pm) e(−Qn) Pm−1
[
−αnl · {curl(α× V +Lp)nl}

]
− n

c2

α e(−Pm) e(−Qn) Qn−1 sgn(|p|−1) sgn(p)
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b̃l ·
{(
−curl(α× V +Lp)

( 1

α

)
−α : curl(α× V +Lp)

(
1

|α|3
))

α̃T

+ α̃

(
(−curl(α× V +Lp))T

( 1

α

)
−α : curl(α× V +Lp)

( 1

|α|3
))}

· b̃l

− curl{al × (χl V )}+ 2 χl (α× V )[X(gradχl)]

−mα
{
e(−Pm) e(−Qn) Pm−1

(
Σαnl · Σ−curl(α×V )nl

(
1

|αnl|

)

+ Σ−(αnl)·(curl(α×V )nl) Σ
1

|αnl|

)

+ Σe(−Pm) e(−Qn) Pm−1

(
− 1

c1

(
αnl · {curl(α× V +Lp)nl}

+ Σαnl · Σ−curl(α×V )nl
)( 1

|αnl|

)
+ Σ−(αnl)·(curl(α×V )nl) Σ

1

|αnl|

)

+ Σe(−Pm) e(−Qn) ΣPm−1

(
− 1

c1

(
αnl · {curl(α× V +Lp)nl}

+ Σαnl · Σ−curl(α×V )nl
)( 1

|αnl|

)
+ Σ−(αnl)·(curl(α×V )nl) Σ

1

|αnl|

)}

− n

c2

α

[
e(−Pm) e(−Qn) Qn−1

sgn(|p|−1) sgn(p) b̃l ·
{(

Σ−curl(α×V )Σ
1
|α|

+
[{(

Σα : Σ−curl(α×V )
)( 1

|α|3
)

+ Σ−α:curl(α×V )Σ
1
|α|3
}
α+ Σ

−α:curl(α×V )

|α|3 Σα
])

α̃T

+ α̃

(
Σ−(curl(α×V ))TΣ

1
|α|

+
[{(

Σα : Σ−(curl(α×V ))T
)( 1

|α|3
)

+ Σ−α:(curl(α×V ))Σ
1
|α|3
}
αT + Σ

−α:(curl(α×V ))

|α|3 ΣαT
])}

b̃l
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+ sgn(|p|−1)

(
Σsgn(p)Σ

b̃l·
[
(− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α)α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)

+ Σsgn(|p|−1)

(
Σ
sgn(p) b̃l·

[(
− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α

)
α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)

+ Σe(−Pm) e(−Qn) Qn−1

sgn(|p|−1) sgn(p) b̃l ·
{({

−curl(α× V +Lp)
( 1

α

)
+ Σ−curl(α×V )Σ

1
|α|

}
+
[{(
−α : curl(α× V +Lp) + Σα : Σ−curl(α×V )

)( 1

|α|3
)

+ Σ−α:curl(α×V )Σ
1
|α|3
}
α+ Σ

−α:curl(α×V )

|α|3 Σα
])

α̃T

+ α̃

({
(−curl(α× V +Lp))T

( 1

α

)
+ Σ−(curl(α×V ))TΣ

1
|α|

}
+
[{(
−α : (curl(α× V +Lp)) + ΣαT : Σ−(curl(α×V )T )

)( 1

|α|3
)

+ Σ−α:(curl(α×V ))Σ
1
|α|3
}
αT + Σ

−α:(curl(α×V ))

|α|3 ΣαT
])}

b̃l

+ sgn(|p|−1)

(
Σsgn(p)Σ

b̃l·
[
(− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α)α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)

+ Σsgn(|p|−1)

(
Σ
sgn(p) b̃l·

[(
− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α

)
α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)

+ Σe(−Pm) e(−Qn) ΣQn−1
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sgn(|p|−1) sgn(p) b̃l ·
{({

−curl(α× V +Lp)
( 1

α

)
+ Σ−curl(α×V )Σ

1
|α|

}
+
[{(
−α : curl(α× V +Lp) + Σα : Σ−curl(α×V )

)( 1

|α|3
)

+ Σ−α:curl(α×V )Σ
1
|α|3
}
α+ Σ

−α:curl(α×V )

|α|3 Σα
])

α̃T

+ α̃

({
(−curl(α× V +Lp))T

( 1

α

)
+ Σ−(curl(α×V ))TΣ

1
|α|

}
+
[{(
−α : (curl(α× V +Lp)) + ΣαT : Σ−(curl(α×V )T )

)( 1

|α|3
)

+ Σ−α:(curl(α×V ))Σ
1
|α|3
}
αT + Σ

−α:(curl(α×V ))

|α|3 ΣαT
])}

b̃l

+ sgn(|p|−1)

(
Σsgn(p)Σ

b̃l·
[
(− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α)α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)

+ Σsgn(|p|−1)

(
Σ
sgn(p) b̃l·

[(
− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α

)
α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)]

−mα Σe(−Pm) e(−Qn) Pm−1 Σ

(
(αnl)·(−curl(α×V )T )nl

c1|αnl|

)

− nα
(

Σe(−Pm) e(−Qn) Qn−1

Σ
1
c2
sgn(p) b̃l·

[{
− curl(α×V )

|α| +(α:curl(α×V )

|α|3 ) α
}
α̃T+α̃

{
− {curl(α×V )}T

|α| +(α:{curl(α×V )}
|α|3 ) αT

}]
b̃l
)]

−m Σe(−Pm) e(−Qn) Pm−1 Σ

(
(αnl)·(−curl(α×V )T )nl

c1|αnl|

)

− n
(

Σe(−Pm) e(−Qn) Qn−1
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Σ
1
c2
sgn(p) b̃l·

[{
− curl(α×V )

|α| +(α:curl(α×V )

|α|3 ) α
}
α̃T+α̃

{
− {curl(α×V )}T

|α| +(α:{curl(α×V )}
|α|3 ) αT

}]
b̃l
)

+ Σ

−m e(−Pm)e(−Qn)Pm−1

(
(αnl)·(−curl(α×V )T )nl

c1|αnl|

)
− n
c2

e(−Pm)e(−Qn)Qn−1·

sgn(p) b̃l·
[{
− curl(α×V )

|α| +(α:curl(α×V )

|α|3 ) α
}
α̃T+α̃

{
− {curl(α×V )}T

|α| +(α:{curl(α×V )}
|α|3 ) αT

}]
b̃l



Σα

− curl
(

Σal × Σ(χl V )
)

+ 2 χl Σα × ΣV [X(gradχl)] + 2 Σχl Σα×V [X(gradχl)]

+ 2 Σχl(α×V ) ΣX(gradx′χ
l) − curl(al × Σχl ΣV ), (4.3.22)

where P ,Q and p are defined in Section 4.3.3. The derivation of (4.3.22) is given in Appendix

C.3. The merit of (4.3.22) is that it shows what the exact evolution equation of al should be

(cf. [XEA15]). It is cumbersome, to say the least and, moreover, contains fluctuation terms

whose evolution are given by other pde, resulting in an ‘unsolvable’ infinite hierarchy.

4.3.3.4 The evolution equation for the averaged total dislocation density, ρl, for

slip system l

ρl is obtained by applying the averaging operator (4.2.1) to (4.3.17b). Its evolution is given

by

˙
ρl =2

m

c2

ρ e(−Pm) e(−Qn) Pm−1
[
−αnl · {curl(α× V +Lp)nl}

]
− 2

n

c2

ρ e(−Pm) e(−Qn) Qn−1 sgn(|p|−1) sgn(p)

b̃l ·
{(
−curl(α× V +Lp)

( 1

α

)
−α : curl(α× V +Lp)

(
1

|α|3
))

α̃T

+ α̃

(
(−curl(α× V +Lp))T

( 1

α

)
−α : curl(α× V +Lp)

( 1

|α|3
))}

· b̃l

+ χl

[
− grad ρ · V − 2 ρ divV + 2 α : (divα⊗ V ) + 2 α : {α gradV }

]
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− 2mρ

{
e(−Pm) e(−Qn) Pm−1

(
Σαnl · Σ−curl(α×V )nl

(
1

|αnl|

)

+ Σ−(αnl)·(curl(α×V )nl) Σ
1

|αnl|

)

+ Σe(−Pm) e(−Qn) Pm−1

(
− 1

c1

(
αnl · {curl(α× V +Lp)nl}

+ Σαnl · Σ−curl(α×V )nl
)( 1

|αnl|

)
+ Σ−(αnl)·(curl(α×V )nl) Σ

1

|αnl|

)

+ Σe(−Pm) e(−Qn) ΣPm−1

(
− 1

c1

(
αnl · {curl(α× V +Lp)nl}

+ Σαnl · Σ−curl(α×V )nl
)( 1

|αnl|

)
+ Σ−(αnl)·(curl(α×V )nl) Σ

1

|αnl|

)}

− 2
n

c2

ρ

[
e(−Pm) e(−Qn) Qn−1

sgn(|p|−1) sgn(p) b̃l ·
{(

Σ−curl(α×V )Σ
1
|α|

+
[{(

Σα : Σ−curl(α×V )
)( 1

|α|3
)

+ Σ−α:curl(α×V )Σ
1
|α|3
}
α+ Σ

−α:curl(α×V )

|α|3 Σα
])

α̃T

+ α̃

(
Σ−(curl(α×V ))TΣ

1
|α|

+
[{(

Σα : Σ−(curl(α×V ))T
)( 1

|α|3
)

+ Σ−α:(curl(α×V ))Σ
1
|α|3
}
αT + Σ

−α:(curl(α×V ))

|α|3 ΣαT
])}

b̃l

+ sgn(|p|−1)

(
Σsgn(p)Σ

b̃l·
[
(− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α)α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)

+ Σsgn(|p|−1)

(
Σ
sgn(p) b̃l·

[(
− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α

)
α̃T

121



+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)

+ Σe(−Pm) e(−Qn) Qn−1

sgn(|p|−1) sgn(p) b̃l ·
{({

−curl(α× V +Lp)
( 1

α

)
+ Σ−curl(α×V )Σ

1
|α|

}
+
[{(
−α : curl(α× V +Lp) + Σα : Σ−curl(α×V )

)( 1

|α|3
)

+ Σ−α:curl(α×V )Σ
1
|α|3
}
α+ Σ

−α:curl(α×V )

|α|3 Σα
])

α̃T

+ α̃

({
(−curl(α× V +Lp))T

( 1

α

)
+ Σ−(curl(α×V ))TΣ

1
|α|

}
+
[{(
−α : (curl(α× V +Lp)) + ΣαT : Σ−(curl(α×V )T )

)( 1

|α|3
)

+ Σ−α:(curl(α×V ))Σ
1
|α|3
}
αT + Σ

−α:(curl(α×V ))

|α|3 ΣαT
])}

b̃l

+ sgn(|p|−1)

(
Σsgn(p)Σ

b̃l·
[
(− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α)α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)

+ Σsgn(|p|−1)

(
Σ
sgn(p) b̃l·

[(
− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α

)
α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)

+ Σe(−Pm) e(−Qn) ΣQn−1

sgn(|p|−1) sgn(p) b̃l ·
{({

−curl(α× V +Lp)
( 1

α

)
+ Σ−curl(α×V )Σ

1
|α|

}
+
[{(
−α : curl(α× V +Lp) + Σα : Σ−curl(α×V )

)( 1

|α|3
)

+ Σ−α:curl(α×V )Σ
1
|α|3
}
α+ Σ

−α:curl(α×V )

|α|3 Σα
])

α̃T
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+ α̃

({
(−curl(α× V +Lp))T

( 1

α

)
+ Σ−(curl(α×V ))TΣ

1
|α|

}
+
[{(
−α : (curl(α× V +Lp)) + ΣαT : Σ−(curl(α×V )T )

)( 1

|α|3
)

+ Σ−α:(curl(α×V ))Σ
1
|α|3
}
αT + Σ

−α:(curl(α×V ))

|α|3 ΣαT
])}

b̃l

+ sgn(|p|−1)

(
Σsgn(p)Σ

b̃l·
[
(− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α)α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)

+ Σsgn(|p|−1)

(
Σ
sgn(p) b̃l·

[(
− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α

)
α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
)]

− 2mρ Σe(−Pm) e(−Qn) Pm−1 Σ

(
(αnl)·(−curl(α×V )T )nl

c1|αnl|

)

− 2nρ

(
Σe(−Pm) e(−Qn) Qn−1

Σ
1
c2
sgn(p) b̃l·

[{
− curl(α×V )

|α| +(α:curl(α×V )

|α|3 ) α
}
α̃T+α̃

{
− {curl(α×V )}T

|α| +(α:{curl(α×V )}
|α|3 ) αT

}]
b̃l
)

−m Σe(−Pm) e(−Qn) Pm−1 Σ

(
(αnl)·(−curl(α×V )T )nl

c1|αnl|

)

− n
(

Σe(−Pm) e(−Qn) Qn−1

Σ
1
c2
sgn(p) b̃l·

[{
− curl(α×V )

|α| +(α:curl(α×V )

|α|3 ) α
}
α̃T+α̃

{
− {curl(α×V )}T

|α| +(α:{curl(α×V )}
|α|3 ) αT

}]
b̃l
)

+ 2 Σ

−m e(−Pm)e(−Qn)Pm−1

(
(αnl)·(−curl(α×V )T )nl

c1|αnl|

)
− n
c2

e(−Pm)e(−Qn)Qn−1·

sgn(p) b̃l·
[{
− curl(α×V )

|α| +(α:curl(α×V )

|α|3 ) α
}
α̃T+α̃

{
− {curl(α×V )}T

|α| +(α:{curl(α×V )}
|α|3 ) αT

}]
b̃l



Σρ
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− χl
[

Σgradρ · ΣV − 2ΣρΣdivV + 2 α : (Σdivα ⊗ ΣV )

+ 2Σα : Σdivα⊗V + 2 α : Σα ΣgradV + 2 Σα : Σα gradV

]

+ ΣχlΣ

[
−gradρ·V −2ρ(divV )+2α:(divα⊗V )+2α:{α gradV }

]
, (4.3.23)

where P ,Q and p are defined in Section 4.3.3. The derivation of (4.3.23) is given in Appendix

C.4. The equation (4.3.23) is the exact evolution equation of ρl. The same remarks as to

the practicality of this exact equation as in Section 4.3.3.3 applies.

Remark In the evolution equations for ᾱ (4.3.20), āl (4.3.22) and ρ̄l (4.3.23), the plastic

distortion rate Lp appears. It is defined in (4.3.3) and is a fluctuation term (Lp = Σα × ΣV ).

As shown in Section 4.2, the hierarchy can involve equations of evolution for the fluctuations.

We derived the evolution equation for Lp in (4.3.15) which is as follows:

L̇p = Σ−curl(α×V ) × ΣV + Σα × ΣV̇ .

The Lp for a uniformly expanding circular loop was obtained in Section 4.3.1 and is given

by (4.3.16). However, this was possible due to the drastic assumption of uniform velocity (of

same magnitude pointing radially outward) at all points of the loop. In reality, the value of

the local velocity is difficult to obtain without consideration of the microscopic DD problem,

as it depends on the Peach-Koehler force acting on the dislocation segments, which is a

function of the internal stresses. This makes it essentially impossible to define an evolution

equation for Lp in realistic situations without some sort of ‘on-the-fly’ coupling to local

DD calculations. The coupled DD-MFDM strategy that is described and implemented in

Chapter 3 defines evolution equations for Lp using appropriate time averaging of Discrete

Dislocation Dynamics is a first demonstration towards achieving exactly this goal for realistic

applied loading rates.
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4.4 Conclusion

We stated some descriptors of the microscopic dynamics and obtained the evolution of the

coarse variables generated from such descriptors. The coarse variables give an idea of the

averaged behavior of the system at a much coarser length and time scale. We see that the

evolution of the total dislocation density (4.3.6) contains the averages of fluctuations, and

hence is exact but not closed. We considered a refined description in which we resolved

the dynamics into slip systems. We see that the evolution of the dislocation density tensor

(4.3.22) and the total dislocation density (4.3.23) of any particular slipsystem is extremely

cumbersome, which shows the limitations of such a refined description. The evolution equa-

tions of the coarse variables involve many average terms, average of fluctuation terms and

their partial derivatives, all of which have their own evolution given by other pdes. Thus,

we get an infinite hierarchy of non-linear non-closed coarse evolution pdes, which cannot

be solved for all practical purposes. The CDD framework [HZG07, Hoc16, SZ15] postulates

fundamental microscopic statements and uses closure assumptions of their own to cut off

the infinite hierarchy of equations. In contrast, MFDM (4.3.2), which follows by averaging

the equations of FDM (4.3.1) in space and time, is based on the fundamental statement of

the conservation of Burgers vector (which is a physically observed fact). While cumbersome,

one could try to work with these exact equations if they were known in full detail. If this

is not the case, the justifications for using such infinite hierarchies is scarce. It is much

more reasonable, and important to focus on closure assumptions generated from constitu-

tive, stress coupled interation dynamics and their averaging at a lower level, about which

such ‘kinematic’ infinite hierarchies say nothing. In previous works [AR06], the system is

closed using physics-based phenomenological modeling at the lowest level of the hierarchy

as a trade-off with practicality. Currently, work is in progress [CPZ+] to replace the consti-

tutive phenomenological assumptions in MFDM with inputs obtained by appropriate time

averaging of a fine-scale model (Discrete Dislocation Dynamics). The details of the work has
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been presented in Chapter 3.
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Chapter 5

Conclusion

A novel approach to meso/macroscale plasticity has been implemented using a carefully

designed coupling of MFDM with space-time averaged inputs from DD simulations. It does

not involve postulating constitutive assumptions beyond those embodied in DD methodology.

In order to achieve this, we used a rigorous mathematic theory involving Young Measures for

averaging of nonlinear ODE response and its practical implementation which we call Practical

Time Averaging (PTA). The first part of the thesis demonstrates the application of PTA

using three illustrative examples to probe the slow time scale behavior of rapidly evolving

microscopic dynamics, including both oscillatory and exponentially decaying behavior. Our

scheme is also able to cover cases where there is a discontinuity in the Young measure,

thereby demonstrating its robustness.

In the second part, we used PTA to couple MFDM with DD. The coupled approach is

implemented using a hybrid computational tool that utilizes both MPI and OpenMP par-

allelizations. We have been able to show the strong dependence of the results on: (i) the

orientation of the microstructure (for the two loading cases of simple shear and uniaxial

tension) (ii) the loading rate (iii) the ratio of mobile to sessile segment density. We have

been able to show these effects for both load and displacement controlled simulations. The
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simulations have been performed at slow, realistic loading rates for large sample sizes and

with huge speedup in compute time (around 105 using a conservative estimate), which shows

the advantage of our coupled approach compared to conventional DD. However, a limitation

of the work is that the dislocation density does not grow. In a well annealed crystal, the

total dislocation density grows by around 8 orders of magnitude and our simulations are

incapable of representing such growth of the dislocation density. The polar dislocation ve-

locity is almost negligible, when both of these quantities should be coupled to the evolution

of the microstructure. The strategies for addressing these limitations have been provided in

Section 3.6 of Chapter 3.
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Appendix A

A.1 Verlet Integration

The implementation of Verlet scheme that we used in Example II to integrate the fine

equation (A.2.3) is as follows [San16]:

x1(σ + ∆σ) = x1(σ) + ∆σ y1(σ) +
1

2
∆σ2 dy1

dσ

x2(σ + ∆σ) = x2(σ) + ∆σ y2(σ) +
1

2
∆σ2 dy2

dσ

ŷ1(σ + ∆σ) = y1(σ) +
1

2
∆σ

(
dy1

dσ
+ a1

{
x1(σ + ∆σ), y1(σ) + ∆σ

dy1

dσ
, y2(σ) + ∆σ

dy2

dσ
, w1(σ)

})
ŷ2(σ + ∆σ) = y2(σ) +

1

2
∆σ

(
dy2

dσ
+ a2

{
x2(σ + ∆σ), y1(σ) + ∆σ

dy1

dσ
, y2(σ) + ∆σ

dy2

dσ
, w2(σ)

})
y1(σ + ∆σ) = y1(σ) +

1

2
∆σ

(
dy1

dσ
+ a1 {x1(σ + ∆σ), ŷ1(σ + ∆σ), ŷ2(σ + ∆σ), w1(σ)}

)
y2(σ + ∆σ) = y2(σ) +

1

2
∆σ

(
dy2

dσ
+ a2 {x2(σ + ∆σ), ŷ1(σ + ∆σ), ŷ2(σ + ∆σ), w2(σ)}

)
.

(A.1.1)

Here a1(x1, y1, y2, w1) = dy1

dσ
and a2(x2, y1, y2, w2) = dy2

dσ
where dy1

dσ
and dy2

dσ
are given by

(A.2.3).
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A.2 Example II: Derivation of system of equations

Two massless springs and masses m1 and m2 are connected through a dashpot damper, and

each is attached to two bars, or walls, that may move very slowly, compared to possible

oscillations of the springs. The system is described in Fig. 2.8 of Section 2.9.

Let the springs constants be k1 and k2 respectively, and let η be the dashpot constant.

Denote by x1 and x2, and by w1 and w2, the displacements from equilibrium positions of

the masses of the springs and the positions of the two walls. We agree here that all positive

displacements are toward the right. We think of the movement of the two walls as being

external to the system, determined by a “slow” differential equation. The movement of the

springs, however, will be “fast”, which we model as singularly perturbed. Let mw1 and mw2

be the masses of the left and the right walls respectively. The displacements x1, x2, w1

and w2 have physical dimensions of length. The spring constants k1 and k2 have physical

dimensions of force per unit length while m1 and m2 have physical dimensions of mass. In

view of the assumptions just made, a general form of the dynamics of the system is given by

following set of equations:

m1
d2x1

dt∗2
= −k1(x1 − w1) + η

(
dx2

dt∗
− dx1

dt∗

)
m2

d2x2

dt∗2
= −k2(x2 − w2)− η

(
dx2

dt∗
− dx1

dt∗

)
(A.2.1)

mw1

d2w1

dt∗2
= k1(x1 − w1) +R1

mw2

d2w2

dt∗2
= k2(x2 − w2) +R2,

where R1 and R2 incorporate the reaction forces on the left and right walls respectively

due to their prescribed motion. We agree that forces acting toward the right are being

considered positive. We make the assumption that mw1 = mw2 = 0. The time scale t∗ is

a time scale with physical dimensions of time. In our calculations, however, we address a
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simplified version, of first order equations, that can be obtained from the previous set by

appropriately specifying what the forces on the system are:

dx1

dt∗
= y1

dy1

dt∗
= − k1

m1

(x1 − w1) +
η

m1

(y2 − y1)

dx2

dt∗
= y2 (A.2.2)

dy2

dt∗
= − k2

m2

(x2 − w2)− η

m2

(y2 − y1)

dw1

dt∗
= L1(w1)

dw2

dt∗
= L2(w2).

The motion of the walls are determined by the functions L1(w1) and L2(w2). In the deriva-

tions that follow, we use the form L1(w1) = c1 and L2(w2) = c2, with c1 = 0 and c2 being a

constant. The terms c1 and c2 have physical dimensions of velocity.

We define a coarse time period, Ts, in terms of the applied loading rate as Ts = const
L2

. Hence,

Tsc2 is a constant which is independent of the value of Ts. The fine time period, Tf , is

defined as the smaller of the periods of the two spring mass systems. We then define the

non-dimensional slow and fast time scales as t = t∗

Ts
and σ = t∗

Tf
, respectively. The parameter

ε is given by ε =
Tf
Ts

. Then the dynamics on the slow time-scale is given by (2.9.1) in Section

2.9. The dynamics on the fast time-scale is written as:

dx1

dσ
= Tf y1

dy1

dσ
= −Tf

(
k1

m1

(x1 − w1)− η

m1

(y2 − y1)

)
dx2

dσ
= Tf y2
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dy2

dσ
= −Tf

(
k2

m2

(x2 − w2) +
η

m2

(y2 − y1)

)
dw1

dσ
= ε Ts L1(w1)

dw2

dσ
= ε Ts L2(w2). (A.2.3)

Remark A special case of (2.9.1) is when c1 = 0 and c2 = 0. This represents the unforced

system i.e. the walls remain fixed. Then (2.9.1) is modified to:

ẋ = Bx, (A.2.4)

where x = (x1, y1, x2, y2)T . The overhead dot represent time derivatives w.r.t. t. The matrix

B is given by

B = Ts



0 1 0 0

− k1

m1
− η
m1

0 η
m1

0 0 0 1

0 η
m2

− k2

m2
− η
m2


.

A.3 Example II: Case 1 - Validity of commonly used

approximations

The mechanical system (2.9.1) can be written in the form

(
Ti
Ts

)2

A1
d2x

dt2
+

(
Tν
Ts

)
A2

dx

dt
+ A3x =

F

k
(A.3.1)

dw

dt
= L(w),

where t = t∗

Ts
where t∗ is dimensional time and Ts is a time-scale of loading defined below,

Ti
2 = m

k
, Tν = D

k
(the mass m, damping D and stiffness k have physical dimensions of

mass, Force×time
length

and Force
Length

respectively), x and w are displacements with physical units
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of length, L is a function, independent of Ts, with physical units of length , and A1, A2

and A3 are non-dimensional matrices. In this notation, Ti
Ts

= ε. In the examples considered,

L = c̃ = Tsc, where c has physical dimensions of velocity and is assumed given in the form

c = c̃
Ts

thus serving to define Ts; c̃ has dimensions of length.

Necessary conditions for the application of the Tikhonov framework are that Ti
Ts
→ 0, Tν

Ts
→ 0

as Ts →∞. Those for the quasi-static assumption, commonly used in solid mechanics when

loading rates are small, are that Ti
Ts
→ 0 and Tν

Ts
≈ 1 as Ts →∞.

In our example, we have m = 1kg,k = 2 × 107N/m, D = 5 × 103Ns/m and Ts = 100s.

Hence Ti
Ts

= 2.24× 10−6 and Tν
Ts

= 2.5× 10−6, and the damping is not envisaged as variable

as Ts →∞, which shows that the quasi-static approximation is not applicable.

Nevertheless, due to the common use of the quasi-assumption under slow loading in solid

mechanics (which amounts to setting εdy1

dt
= 0, εdy2

dt
= 0 in (2.9.1)), we record the quasi-static

solution as well.

The Tikhonov framework It is easy to see that under the conditions in Case 1, when the

walls do not move, all solutions tend to an equilibrium (that may depend on the position

of the walls). Indeed, the only way the energy will not be dissipated is when y1(t) = y2(t)

along time intervals, a not sustainable situation. Thus, we are in the classical Tikhonov

framework, and, as we already noted toward the end of the introduction of Chapter 2, the

limit solution will be of the form of steady-state equilibrium of the springs, moving on the

manifold of equilibria determined by the load, namely the walls. Computing the equilibria

in (2.9.1) (equivalently (A.2.2)) is straightforward. Indeed, for fixed (w1,w2) we get

x1 = w1, x2 = w2

y1 = 0, y2 = 0. (A.3.2)
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Under the assumption that L1 = 0 and L2 = c2 we get

w1(t) = 0

w2(t) = c2Tst. (A.3.3)

Plugging the dynamics (A.3.3) in (A.3.2) yields the limit dynamics of the springs. The real

world approximation for ε small would be a fast movement toward the equilibrium set (i.e.,

a boundary layer which has damped oscillations), then an approximation of (A.3.2)-(A.3.3).

Our computations in Section 2.9.2 corroborate this claim.

Solutions to (2.9.1) seem to suggest that this is one example where the limit solution (A.3.2)-

(A.3.3) is attained by a sequence of solutions of (2.9.1) as ε → 0 or Ts → ∞ in a ‘strong’

sense (i.e. not in the ‘weak’ sense of averages); e.g. for small ε > 0, y2 takes the value c2

in the numerical calculations and this, when measured in units of slow time-scale Ts (note

that y has physical dimensions of velocity), yields Tsc2 which equals the value of the (non-

dimensional) time rates of w2 and x2 corresponding to the limit solution (A.3.2)-(A.3.3);

of course, c2 → 0 as Ts → ∞, by definition, and therefore y2 → 0 as well. Thus, the

kinetic energy and potential energy evaluated from the limit solution (A.3.2)-(A.3.3), i.e. 0

respectively, are a good approximation of the corresponding values from the actual solution

for a specific value of small ε > 0, as given in Sec. 2.9.2.

The quasi-static assumption We solve the system of equations:

−k1(x1 − w1) + η(y2 − y1) = 0

−k2(x2 − w2)− η(y2 − y1) = 0

y1 =
1

Ts

dx1

dt

y2 =
1

Ts

dx2

dt
. (A.3.4)
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We assume the left wall to be fixed and the right wall to be moving at a constant velocity

of magnitude c2, so that w1 = 0 and w2 = c2 Ts t. This results in

dx1

dt
+

k1Ts

η(1 + k1

k2
)
x1 =

c2Ts

1 + k1

k2

. (A.3.5)

Solving for x1 and using (A.3.4), we get the following solution

x1 =
c2η

k1

+ α e−βTst, y1 = −αβe−βTst,

x2 = c2Tst−
c2η

k2

− k1

k2

αe−βTst, y2 = c2 −
k1

k2

αβe−βTst, (A.3.6)

where α is a constant of integration and β = k1

η(1+
k1
k2

)
.

Remark. The solution of the unforced system given by (A.2.4) in Appendix A.2 is of the

form

x(t) =
4∑
i=1

Qie
λitVi, (A.3.7)

where λi and Vi are the eigenvalues and eigenvectors of B respectively. Using the values

provided in Table 2.1 to construct B, we find that λi and Vi are complex. The general

real-valued solution to the system can be written as
∑4

i=1 ψie
γitMi(t) where

ξ = 2.58× 105 j = 1 j = 2 j = 3 j = 4
γj −6.17× 105 −1.22× 105 −5.63× 103 −5.63× 103

M1,j(t) 0.0001 −0.8732 −0.0001 0.4873
M2,j(t) 0.0006 −0.7486 −0.0005 0.6630
M3,j(t) −0.0001 cos(ξt)− 0.0003 sin(ξt) −0.6812 cos(ξt) + 0.1818 sin(ξt) −0.0003 sin(ξt) −0.7092 cos(ξt)
M4,j(t) 0.0003 cos(ξt)− 0.0001 sin(ξt) −0.1818 cos(ξt) + 0.6812 sin(ξt) 0.0003 cos(ξt) −0.7092 sin(ξt)

We see that all the real (time-dependent) modes Mi(t) are decaying. Moreover, none of the

modes describe the dashpot as being undeformed i.e. Mi,1(t) = Mi,3(t) and Mi,2(t) = Mi,4(t)

(where Mi,j(t) is the jth row of the mode Mi(t)). Therefore, solution x(t) goes to rest when

t becomes large and the initial transient dies.
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A.4 Example II: Case 2 - Closed-form Solution

We can convert (2.9.1) to the following:

ẍ1

ẍ2

+ αTs
2

x1

x2

+ Ts

 η
m1

− η
m1

− η
m2

η
m2


ẋ1

ẋ2

 =

αw1

αw2

 , (A.4.1)

where α = k1

m1
= k2

m2
and w1 and w2 are defined as :

w1(t) = 0

w2(t) = c2 Ts t. (A.4.2)

The overhead dots represent time derivatives w.r.t. t. The above equation is of the form:

ẍ + αTs
2 x + TsAẋ = g(t), (A.4.3)

with the general solution

x1 = C1cos(
√
αTst) + C2sin(

√
αTst)−

m2

m1

C3e
−p1Tst − m2

m1

C4e
−p2Tst +

ηc2

k1

, (A.4.4a)

x2 = C1cos(
√
αTst) + C2sin(

√
αTst) + C3e

−p1Tst + C4e
−p2Tst + c2 Ts t−

ηc2

k2

, (A.4.4b)

where p1 =
η(m1+m2)+

√
η2(m1+m2)2−4αm2

1m
2
2

2m1m2
and p2 =

η(m1+m2)−
√
η2(m1+m2)2−4αm2

1m
2
2

2m1m2
. In the

computational results in Section 2.9.2 and 2.9.3, we found that p1, p2 > 0.

Imposing initial conditions x1
0 and x2

0 on displacement and v1
0 and v2

0 on velocity of the

two masses m1 and m2 respectively, we obtain
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C1
m1x1

0+m2x2
0

m1+m2

C2
m1v1

0+m2v2
0−c2m2√

α(m1+m2)

C3
c2ηm1p2+c2ηm2p2−αc2m1m2−αm1m2p2x1

0+αm1m2p2x2
0

αm2(m1+m2)(p1−p2)

C4
c2ηm1p1+c2ηm2p1−αc2m1m2−αm1m2p1x1

0+αm1m2p1x2
0

αm2(m1+m2)(p1−p2)

The closed-form average kinetic energy (Kcf ), closed-form average potential energy (P cf )and

closed-form average reaction force (Rcf
2 ) are

Kcf (t) =
1

∆

∫ t

t−∆

(
1

2
m1y1(s)2 +

1

2
m2y2(s)2

)
ds

P cf (t) =
1

∆

∫ t

t−∆

(
1

2
k1x1(s)2 +

1

2
k2 (x2(s)− w2(s))2

)
ds (A.4.5)

Rcf
2 (t) =

1

∆

∫ t

t−∆

(−k2 ((x2(s)− w2(s))) ds,

where x1(s) and x2(s) can be substituted from (A.4.4) and y1(s) = 1
Ts

dx1

ds
and y2(s) =

1
s
dx2

ds
.

Non-dimensionalization Let us denote

mmax = max
i

m(xε(σi), lε(σi)),

where m(xε(σi), lε(σi)) is given in (2.7.3) and (2.7.5). Please note that i is chosen such that

there is no effect of the initial transient. Using (2.9.2) and computational results in Case 2.4

in Section 2.9.3, we find that

Kmax =
1

2
C2

1(k1 + k2), Pmax =
1

2
C2

1(k1 + k2), R2,max = C1k2.
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We introduce the following non-dimensional variables:

K̃cf =
Kcf

Kmax

, P̃ cf =
P cf

Pmax
, R̃2

cf =
Rcf

2

R2,max

. (A.4.6)

Henceforth, while referring to the dimensionless variables, we drop the overhead tilde for

simplicity.

t
0 0.2 0.4 0.6 0.8 1

K
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0.4995

0.5

0.5005

0.501

0.5015

0.502

0.5025

0.503

0.5035

0.504

0.5045
0 = 1:98# 10!5

0 = 1:98# 10!6

0 = 1:98# 10!7

Figure A.1: Kcf as a function of t.

t
0 0.2 0.4 0.6 0.8 1

P
cf

0.4998

0.5

0.5002

0.5004

0.5006

0.5008

0.501

0.5012

0.5014
0 = 1:98# 10!5

0 = 1:98# 10!6

0 = 1:98# 10!7

Figure A.2: P cf as a function of t.

We evaluated (A.4.5) numerically (since the analytical expressions become lengthy) with

2× 106 integration points over the interval [t−∆, t] using Simpson’s rule and we used 2000

discrete points for t. We substituted the values provided in Table 2.1. We repeated the

calculations with 4 × 106 integration points over the interval [t − ∆, t] and 4000 discrete

points for t, and found the results to be the same. We see in Fig. A.1 and Fig.A.2 that Kcf

and P cf oscillate around 0.5 with very small amplitude for different values of ε (recall that

ε =
Tf
Ts

and we think of Tf being fixed with Ts →∞ to effect ε→ 0). However, as we decrease

ε, the amplitude of oscillations of Rcf
2 decreases and it goes to zero for ε = 1.98 × 10−7 as

we see in Fig. A.3. We use these ‘closed-form’ results to compare with the PTA results in

Section 2.9.2 and Section 2.9.3.
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Figure A.3: Rcf
2 as a function of t.

Remark The criteria for convergence of Rm
t (as mentioned in the discussion following (2.7.4)

in Section 2.7) is discussed as follows. Let us denote

mI,t =
1

I

I∑
i=1

m(xε(σi), lε(σi)),

where xε(σi), lε(σi) is defined in (2.7.4), I ∈ Z+ and m(xε(σi), lε(σi)) is non-dimensionalized

∀i ∈ [1, I]. Then, we say that mI,t has converged if

|mI−jk,t − mI−pk,t

mI−pk,t
|≤ tolm1 , (A.4.7)

∀j ∈ [0, p] where p, k ∈ Z+ and p, k < I and tolm1 is a specified value of tolerance (which is a

small value generally around 10−2). We declare Nt = I (where Nt is defined in the discussion

following (2.7.4)) and Rm
t = mI,t. In situations where mI−pk,t becomes very small so that

the convergence criteria in (A.4.7) cannot be practically implemented, we say that mI,t has
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converged if

|mI−jk,t|≤ tolm2 , (A.4.8)

∀j ∈ [0, p] and tolm2 is a specified value of tolerance (generally around 10−5).

Remark We used the Simpson’s rule of numerical integration to obtain the value of the

slow variable instead of using (2.7.7) to obtain the results in Section 2.9.2 and 2.9.3. The

Simpson’s rule of numerical integration for any function f(t) over the interval [a, b] where

a, b ∈ R is

∫ b

a

f(t)dt ≈ ∆t

n
[f(t0) + 4f(t1) + 2f(t2) + ...+ 2f(tn−2) + 4f(tn−1) + f(tn)],

where ∆t = b−a
n

, n ∈ Z+, n is even and ti = t0 + i∆t for i ∈ Z and i ≤ n. All the function

evaluations at points with odd subscripts are multiplied by 4 and all the function evaluations

at points with even subscripts (except for the first and last) are multiplied by 2. Since we

are calculating the value of the slow variable v given by (2.7.1), the function f(t) is given

by Rm
t which is defined in (2.7.3), with ε = 0 in (2.7.4). We chose n = 2 and calculated

the values of Rm
t−∆+ i

n
∆

using (2.7.3) for i = 0, 1, 2. We obtained the fine initial conditions

xguess(t−∆ + i
n
∆) as

xguess(t−∆ +
i

n
∆) = xarbt−∆ +

(
xarbt−∆ − xcpt−h

)
(h−∆)

i∆

n
,

where xarb. and xcp. are defined in Step 3 in Section 2.7.

Please note that we also used Simpson’s rule to evaluate (A.4.5) with n = 2 × 106 and

the details of the calculation are mentioned in Non-dimensionalization in this Appendix

above.

Remark To see the effect of the initial condition on the solution, we solve (A.2.4) in a
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particular case using the values provided in Table 2.1 but with k2 = 2 × 107N/m and

c2 = 0. The general real-valued solution to the system can be written as
∑4

i=1 ψie
γitMi(t)

where

ω = 3.16× 105 j = 1 j = 2 j = 3 j = 4
γj −5.76× 105 −1.73× 105 0 0

M1,j(t) 0.0002 −0.8944 −0.0001 0.4472
M2,j(t) 0.0005 −0.8944 −0.0003 0.4421
M3,j(t) 0.0002 sin(ωt) −0.7071 cos(ωt) 0.0002 sin(ωt) 0.7071 cos(ωt)
M4,j(t) −0.0002 cos(ωt) 0.7071 sin(ωt) −0.0002 cos(ωt) 0.7071 sin(ωt)

We see that while M1(t) and M2(t) are decaying real (time-dependent) modes, M3(t) and

M4(t) are the non-decaying real (time-dependent) modes. Moreover, both M3(t) and M4(t)

describe the dashpot as being undeformed i.e. Mi,1(t) = Mi,3(t) and Mi,2(t) = Mi,4(t)

(where Mi,j(t) is the jth row of the mode Mi(t)). The solution x(t) described in (A.3.7) of

Appendix A.3 can be written as

x(t) =
4∑
i=1

κiMi(t), (A.4.9)

where the coefficients κi are obtained from the initial condition x0 using

κi = x0 ·Md
i (0)

where Md
i (t) are the dual basis of Mi(t).
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Appendix B

The orientation matrix

The orientation matrix represents the transformation rule between components of any vector

on the cyrstal basis and the global basis. Let the crystal basis be {êi} and the global basis

be {ei}. Let both the crystal and global bases be orthonormal. Let v = ci êi = gi ei. Then

gk = (ek · êi) ci. Then the orientation matrix A is given by Aki = ek · êi.

However, suppose we do not know the crystal basis vectors in the global basis. Instead,

suppose we know a set of orthonormal crystallographic directions {Cj} (where Cj = Cij êi

and Cij are known by hypothesis), that coincide with the global basis vectors, i.e. Cj = ej.

Let gkjek = ej which implies that gkj = δkj. Then, we have

Cj = ej =⇒ gkjek = Cij êi

=⇒ gkjek · em = Cij(êi · em)

=⇒ gmj = (em · êi)Cij

=⇒ gmj = AmiCij

=⇒ gmjC
−1
jp = Amp.

But gmj = δmj which implies that Amp = C−1
mp. But the matrix C has for columns the
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components of an orthonormal basis expressed on the basis {̂ii}. Thus, C is an orthogonal

matrix and its transpose is its inverse. Then, A has as rows the components of the basis

{Cj} expressed in the crystal basis {êi}.
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Appendix C

Derivation of evolution equations

C.1 Total dislocation density, ρl

From (4.3.4), we have

ρ = α : α (C.1.1)

We differentiate (C.1.1) in time to get

ρ̇ = 2 α : α̇ = −2 α : curl(α× V ) = −2αij[curl(α× V )]ij

= −2αijejmn(α× V )in,m = −2αijejmnenpq(αipVq),m

= −2(δjpδmq − δjqδmp)[αijαip,mVq + αijαipVq,m]

= −2[αijαij,mVm + αijαijVm,m − αijαim,mVj − αijαimVj,m]

= −2 [
1

2
grad(α : α) · V +α : α(divV )−α : (divα⊗ V )−α : {α gradV }]

= −2 [
1

2
gradρ · V + ρ(divV )−α : (divα⊗ V )−α : {α gradV }]

= −gradρ · V − 2ρ(divV ) + 2α : (divα⊗ V ) + 2α : {α gradV } (C.1.2)
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We apply the averaging operator (4.2.1) to both sides of (C.1.2) and use (4.2.4) to get

ρ̇ = −grad ρ · V − 2 ρ divV − Σgradρ · ΣV − ΣρΣdivV + 2 α : (divα⊗ V ) + 2 α : {α gradV }.

(C.1.3)

Using (C.1.3) and the facts that

α : {α gradV } = α : {α gradV }+α : Σα ΣgradV + Σα : Σα gradV

α : (divα⊗ V ) = α : (divα⊗ V ) +α : (Σdivα ⊗ ΣV ) + Σα : Σdivα⊗V ,

we get the evolution of ρ as (4.3.6) in section 4.3.

C.2 The characteristic function, χl

We will use the following results in the derivation:

• If f is a vector, then

˙|f | = f · ḟ
|f | , (C.2.1)

which gives,

˙|f | = f · ḟ
|f | = f · ḟ . 1

|f | + Σf ·ḟΣ
1
|f | =

(
f · ḟ + Σf · Σḟ

)
.

1

|f | + Σf ·ḟΣ
1
|f | . (C.2.2)

• If q is a scalar,

˙|q| = sgn(q)q̇, (C.2.3)
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which gives,

˙|q| = sgn(q) q̇ = sgn(q) q̇ + Σsgn(q)Σq̇. (C.2.4)

From (4.3.18), we have

χl = e(−Pm) e(−Qn), (C.2.5)

where P = |αnl|
c1

and Q = ||b̃l.α̃α̃T .b̃l|−1|
c2

. Taking time derivative of (C.2.5) and using (C.2.1)

and (C.2.3), we have,

χ̇l =−m e(−Pm)e(−Qn)Pm−1Ṗ − ne(−Pm)e(−Qn)Qn−1Q̇

=−m e(−Pm)e(−Qn)Pm−1

(
(αnl) · (−curl(α× V )T )nl

c1|αnl|

)
− n

c2

e(−Pm)e(−Qn)Qn−1

[
sgn(p) b̃l ·

[{
− curl(α× V )

|α| + (
α : curl(α× V )

|α|3 ) α
}
α̃T

+ α̃
{
− {curl(α× V )}T

|α| + (
α : {curl(α× V )}

|α|3 ) αT
}]
b̃l

]
(C.2.6)

From (C.2.6), we have,

˙
χl =−m ePm eQn Pm−1 Ṗ −mΣePm eQn Pm−1 ΣṖ − n ePm eQn Qn−1 Q̇− nΣePm eQn Qn−1 ΣQ̇

=−m ePm eQn Pm−1 Ṗ − n ePm eQn Qn−1 Q̇−mΣePm eQn Pm−1 ΣṖ − nΣePm eQn Qn−1 ΣQ̇

=−m
(
ePm eQn Pm−1 + ΣePm eQn ΣPm−1

)
Ṗ − n

(
ePm eQn Qn−1 + ΣePm eQn ΣQn−1

)
Q̇

−mΣePm eQn Pm−1 ΣṖ − nΣePm eQn Qn−1 ΣQ̇

=−m
(

(ePm eQn + ΣePm eQm) Pm−1 + ΣePm eQn ΣPm−1

)
Ṗ

− n
(

(ePm eQn + ΣePm eQm) Qn−1 + ΣePm eQn ΣQn−1

)
Q̇

−mΣePm eQn Pm−1 ΣṖ − nΣePm eQn Qn−1 ΣQ̇

146



=−m
(
ePm eQn Pm−1 Ṗ + ΣePm eQm Pm−1 Ṗ + ΣePm eQn ΣPm−1 Ṗ

)
− n

(
ePm eQn Qn−1 Q̇+ ΣePm eQm Qn−1 Q̇+ ΣePm eQn ΣQn−1 Q̇

)
−m ΣePm eQn Pm−1 ΣṖ − n ΣePm eQn Qn−1 ΣQ̇ (C.2.7)

From the definition of P in the discussion following (C.2.5) and using (C.2.1),

Ṗ =
P · Ṗ
|P | =

1

c1

(α nl) · (α̇ nl)
|α nl| = − 1

c1

(α nl) · {curl(α× V ) nl}
|α nl| (C.2.8)

Using (C.2.2),

Ṗ =
1

c1

(
αnl · ˙

αnl + Σαnl · Σα̇nl
)( 1

|αnl|

)
+ Σ(αnl)·(α̇nl) Σ

1

|αnl|

=
1

c1

(
(αnl) · (α̇nl) + Σαnl · Σα̇nl

)( 1

|αnl|

)
+ Σ(αnl)·(α̇nl) Σ

1

|αnl|

=− 1

c1

[(
(αnl) · (curl(α× V +Lp)nl) + Σαnl · Σα̇nl

)( 1

|αnl|

)
+ Σ−(αnl)·(curl(α×V )nl) Σ

1

|αnl|

]
. (C.2.9)

From the definition of Q in the discussion following (C.2.5) and using (C.2.3) and denoting

p = b̃l · α̃α̃T b̃l,

Q̇ =
1

c2

sgn(|p|−1) sgn(p) ṗ =
1

c2

sgn(|p|−1) sgn(p) b̃l · ( ˙̃αα̃T + α̃ ˙̃αT )b̃l (C.2.10)

Now,

˙̃α =
α̇

|α| +

(
α : α̇

|α|3
)
α = −curl(α× V )

|α| −
(
α : curl(α× V )

|α|3
)
α

˙̃αT = −{curl(α× V )}T
|α| −

(
α : {curl(α× V )}

|α|3
)
αT . (C.2.11)
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Hence,

Q̇ =sgn(|p|−1) sgn(p) b̃l ·
[{
− curl(α× V )

|α| + (
α : curl(α× V )

|α|3 ) α
}
α̃T

+ α̃
{
− {curl(α× V )}T

|α| + (
α : {curl(α× V )}

|α|3 ) αT
}]
b̃l. (C.2.12)

Using (C.2.12),

Q̇ =
1

c2

sgn(|p|−1) sgn(p) ṗ =
1

c2

(sgn(|p|−1) sgn(p) ṗ+ Σsgn(|p|−1)Σsgn(p) ṗ)

=
1

c2

(sgn(|p|−1) sgn(p) ṗ+ sgn(|p|−1) Σsgn(p) Σṗ + Σsgn(|p|−1)Σsgn(p) ṗ). (C.2.13)

Using the definition of p in the discussion around (C.2.10) ,

ṗ =b̃l · ( ˙̃αα̃T + α̃ ˙̃αT )b̃l

=⇒ ṗ =b̃l · ( ˙̃α α̃T + α̃
˙̃
αT )b̃l (C.2.14)

From [AR06], we have

α̇ = −curl(α× V +Lp)

So,

˙̃α =

(
α̇

1

|α| + Σα̇Σ
1
|α|

)
+

{(
α : α̇

|α|3
)
α+ Σ

α:α̇
|α|3 Σα

}
=

(
α̇

1

|α| + Σα̇Σ
1
|α|

)
+

{(
α : α̇

|α|3
)
α+ Σ

α:α̇
|α|3 Σα

}
=

(
α̇

1

|α| + Σα̇Σ
1
|α|

)
+

[{(
α : α̇+ Σα : Σα̇

) 1

|α|3 + Σα:α̇Σ
1
|α|3

}
α+ Σ

α:α̇
|α|3 Σα

]
=
(
−curl(α× V +Lp)

1

|α| + Σ−curl(α×V )Σ
1
|α|

)
+

[{(
−α : curl(α× V +Lp)

148



+ Σα : Σ−curl(α×V )
) 1

|α|3 + Σα:−curl(α×V )Σ
1
|α|3
}
α+ Σ

−α:curl(α×V )

|α|3 Σα

]
. (C.2.15)

Similarly, we can obtain
˙̃
αT = αT

|α| by replacing α, α̇, α and α̇ above with their respective

transpose and obtain

˙̃
αT =

(
(−curl(α× V +Lp))T

1

|α| + Σ−(curl(α×V ))TΣ
1
|α|

)
+

[{(
−α : (curl(α× V +Lp))

+ ΣαT : Σ−(curl(α×V ))T
) 1

|α|3 + Σ−α:(curl(α×V ))Σ
1
|α|3

}
αT + Σ

−α:(curl(α×V ))

|α|3 ΣαT
]
.

(C.2.16)

Using (C.2.13), (C.2.14), (C.2.15) and (C.2.16), we get

Q̇ =
1

c2

[
sgn(|p|−1) sgn(p) b̃l ·

{{{
−curl(α× V +Lp)

( 1

α

)
+ Σ−curl(α×V )Σ

1
|α|

}
[{(
−α : curl(α× V +Lp) + Σα : Σ−curl(α×V )

)( 1

|α|3
)}

α̃T

+ α̃
{{

(−curl(α× V +Lp))T
( 1

α

)
+ Σ−(curl(α×V ))TΣ

1
|α|

}
[{(
−α : (curl(α× V +Lp)) + ΣαT : Σ−(curl(α×V )T )

)( 1

|α|3
)}}

b̃l

+ sgn(|p|−1) Σsgn(p)Σ
b̃l·
[(
− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α

)
α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l

+ Σsgn(|p|−1)Σ
sgn(p) b̃l·

[(
− curl(α×V )

|α| −
(
α:curl(α×V )

|α|3

)
α

)
α̃T

+α̃

(
− {curl(α×V )}T

|α| −
(
α:{curl(α×V )}

|α|3

)
αT

)]
b̃l
]

(C.2.17)

Using (C.2.6), (C.2.9), (C.2.10), (C.2.14), (C.2.15) and (C.2.16), we get the evolution of χl
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given by (4.3.21) in section 4.3.

C.3 Dislocation density tensor corresponding to slip

system l, al

Following (4.3.17), the dislocation density corresponding to slip system l is defined as

al := χlα. (C.3.1)

We take time derivative of (C.3.1) to obtain

ȧl = χ̇lα+ χlα̇

= χ̇lα− χlcurl(α× V ).

(C.3.2)

Using the fact that χl ≈ (χl)2, since χl can (approximately) take either of the values 0 or 1,

the second term on the right hand side above can be written as

χlcurl(α× V ) =χl{curl(α× V )}im ≈ (χl)2emjk{α× V }ik,j

=emjk{χlα× χlV }ik,j − emjk{α× V }ik
∂χl

2

∂χj′

={curl(χlα× χlV)}im − 2{α× V }ikemjkχl
∂χl

∂χj′

={curl(al × V l)}im − 2 χl {α× V }ik[X(gradx′χ
l)]km

⇒ χlcurl(α× V ) =curl(al × V l)− 2 χl(α× V )[X(gradx′χ
l)], (C.3.3)

where emjk is a component of the third-order alternating tensor X and its action on a tensor
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A is given by {X(A)}i = eijkAjk, while its action on a vector N is given by {X(N )}ij =

eijkNk.

Using (C.3.2) and (C.3.3) above, we have

ȧl = χ̇lα− curl(al × V l) + 2 χl(α× V )[X(gradx′χ
l)]. (C.3.4)

We apply the averaging operator (4.2.1) to both sides of (C.3.4) to get

˙
al =

˙
χl α+ Σχ̇ Σα − curl(al × V l)− curl

(
Σal × ΣV l

)
+ 2χl(α× V )[X(gradx′χl)]

(C.3.5)

We have

2χl(α× V )[X(gradx′χl)] = 2 χl(α× V ) [X(gradχl)] + 2 Σχl(α×V ) ΣX(gradx′χ
l)

= 2
(
χl α× V + Σχl Σα×V

)
[X(gradχl)] + 2 Σχl(α×V ) ΣX(gradx′χ

l)

= 2 χl (α× V )[X(gradχl)] + 2 χl Σα × ΣV [X(gradχl)] + 2 Σχl Σα×V [X(gradχl)]

+ 2 Σχl(α×V ) ΣX(gradx′χ
l)

Hence, using (C.3.5), we have

˙
al =

˙
χl α+ Σχ̇ Σα − curl(al × V l)− curl

(
Σal × ΣV l

)
+ 2 χl (α× V )[X(gradχl)] + 2 χl Σα × ΣV [X(gradχl)] + 2 Σχl Σα×V [X(gradχl)]

+ 2 Σχl(α×V ) ΣX(gradx′χ
l) (C.3.6)

Finally, we use (C.2.6) and (4.3.21) to obtain the evolution of al as (4.3.22) in section

4.3.
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C.4 Total dislocation density corresponding to slip sys-

tem l, ρl

The total dislocation density corresponding to slip system l is defined in (4.3.17) and is given

by

ρl := χl α : α ≈ (χl)2 α : α. (C.4.1)

We differentiate (C.4.1) with respect to time to get

ρ̇l = 2χl χ̇l α : α+ 2 (χl)2 α : α̇ (C.4.2)

= 2χ̇lρl + χl[2α : α̇] = 2χ̇lρl + χlρ̇ (C.4.3)

We apply the averaging operator (4.2.1) to both sides of (C.4.2) and use (4.2.4) to get the

evolution of ρl as

˙
ρl = 2

˙
χlρ+ 2Σχ̇lΣρ + ρlρ̇+ ΣχlΣρ̇ (C.4.4)

Finally, using (C.2.6) and (4.3.21), we have the evolution equation for ρl as (4.3.23) in section

4.3.
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