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Abstract

Optical Coherence Tomography (OCT) and Ultrasound (US) are non-ionizing and non-

invasive imaging modalities that are clinically used to visualize anatomical structures in the

body. OCT has been widely adopted in clinical ophthalmology due to its micron-scale reso-

lution to visualize in-vivo structures of the eye. Ultra-High Frequency Ultrasound (UHFUS)

captures images of tissue at a depth of ∼1cm with 30 micron resolution.

One key application area for OCT is assessing the stem cell distribution residing inside

the Palisades of Vogt (POV) in the limbus. The limbus is located at the intersection of the

clear cornea and the white sclera in the eye. Another application area is identifying corneal

tissue interfaces for surgical procedures, such as Laser In-Situ Keratomileusis (LASIK). As

for UHFUS, the key application in this thesis is vascular measurements, including monitor-

ing for possible chronic rejection of hand transplants.

Achieving higher resolutions with OCT and UHFUS increases the speckle noise during

imaging due to smaller resolution cells. In addition to the speckle noise present at every

pixel, other localized imaging artifacts, such as shadowing and specular saturation arti-

facts, substantially diminish the visibility of tissue interface boundaries. These boundaries

and edges are crucial for diagnosing particular pathological conditions or diseases, and for

developing a pre-operative surgical plan. Moreover, abrupt tissue motion obfuscates the

analysis of image sequences, including volumetric sweeps. An ideal approach to circum-

venting these issues would be validated across multiple devices and acquisition parameters,

produce measurements that are clinically/surgically relevant, and be amenable to real-time

implementation.

The main contribution of this thesis is in developing classical computer vision-based

and deep learning-based approaches to address the problems faced in these clinical appli-

cation areas. We have also developed a hybrid framework that removes OCT speckle noise

from the air gap using a learning-based method, thereby dramatically improving the per-

formance of classical approaches in situations where they previously failed. The presented

classical and learned approaches all utilize consumer Graphics Processor Units (GPUs) for

high-speed parallel computation to advance the clinical capabilities of OCT and UHFUS.

In this thesis, we have enabled visualizing changes in tissue structures over time and

have begun quantifying some of these changes as well. Our improved OCT volumetric re-
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constructions allow us to extract cross-sectional images of the Palisades of Vogt (POV) from

OCT sequences acquired by different OCT scanners with different scan settings to quantify

the POV structural changes over time. We have designed state-of-the-art deep learning-

based methods for scanner-agnostic segmentation of multiple corneal tissue interfaces. We

have developed the first artificial intelligence system for measuring the intimal vessel wall

thickness in human subjects imaged using UHFUS. Our methods have identified salient re-

gions of image sequences for additional analysis of application-specific features and quan-

titative metrics.
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ture maps from previous layers. The light blue block at the bottom of the ”U”
(on the right end of the rectangle) does not perform upsampling, but as with
the other blue blocks it functions as a bottleneck for the layer and generates
feature maps of the same dimensions as the output feature maps from the
previous layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.17 Original B-scans and segmented interfaces from different datasets: (a)-(b)
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4.19 Our proposed approach contains two frameworks: a cascaded framework
(purple) and a hybrid framework (orange). First, a conditional Generative
Adversarial Network (cGAN) takes an input OCT image, and produces an
intermediate pre-segmentation image. In the pre-segmentation, pixels just
prior to the shallowest tissue interface are set to 0 (black), while others are
retained. In the cascaded framework, the pre-segmentation, along with the
input image, are passed to a Tissue Interface Segmentation Network (TISN).
The TISN predicts the location of shallowest interface by generating a binary
segmentation mask (overlaid on the original image with a false color overlay;
red - foreground, turquoise - background). In the hybrid framework, the pre-
segmentation can be utilized by other segmentation algorithms. Ultimately,
both frameworks fit a curve to the interface to produce the final segmentation. 90

4.20 The CorNet model is the base architecture used for training both the cGAN
and TISN. The input to the cGAN is a two-channel image, the input OCT im-
age and binary mask w (see Sec. 4.3.4), and the output is a pre-segmented
OCT image (orange box). The TISN gets a two-channel input (magenta and
orange boxes), and the output is a binary mask (yellow box). The dark green
blocks in the contracting path represent downsampling operations, while the
blue blocks constitute upsampling computations. This model uses residual
and dense connections to efficiently pre-segment the OCT image, and pre-
dict the location of the shallowest interface in the final output. The light blue
block at the bottom of the ”U” (on the right end of the rectangle) does not
perform upsampling, but as with the other blue blocks it functions as a bot-
tleneck for the layer and generates feature maps of the same dimensions as
the output feature maps from the previous layer. . . . . . . . . . . . . . . . . 93

4.21 Comparing generated pre-segmentations between the U-Net architecture used
in the original cGAN implementation [124] against those generated by the
CorNet architecture [5]. (a) Original B-scan for a corneal dataset. (b) Gener-
ated pre-segmentation for the cGAN U-Net. (c) Generated pre-segmentation
for the CorNet. Note that in (b), the U-Net did not remove the speckle pat-
terns above the shallow tissue interface, while also encroaching upon the
tissue boundaries without preserving them accurately. (d) Heat map of the
difference between the original and pre-segmented OCT B-scans by CorNet. 95

4.22 (a) Expert annotation of an original B-scan in a 6×6mm OCT volume ac-
quired by Device 3, (b) Gold standard pre-segmentation image for training,
(c) Binary mask w used in Eq. (4.10) for training the cGAN, (d) Label map
detailing the process of generating w (see Sec. 4.3.4). . . . . . . . . . . . . . . 98

4.23 Corneal interface segmentation results for datasets acquired using Devices
1 and 2. Columns from left to right: (a) Original B-scans in corneal OCT
datasets, (b) Pre-segmented OCT images from the cGAN with the specular
artifact and speckle noise patterns removed just prior to the shallowest tissue
interface, (c) Binary segmentation from the TISN overlaid in false color (red
- foreground, turquoise - background) on the original B-scan, (d) Curve fit to
the shallowest interface (red contour). . . . . . . . . . . . . . . . . . . . . . . 101
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4.24 (a)-(c) HD error and (d)-(f) MADLBP error comparison for the corneal datasets
acquired with Devices 1 and 2 respectively. In the boxplots, the segmentation
results obtained for each algorithmic approach are contrasted against expert
grader (blue) and trained grader (red) annotations, while the Inter-Grader
(IG) variability is shown in yellow. . . . . . . . . . . . . . . . . . . . . . . . . 105

4.25 Quantitative estimation of the benefit of pre-segmenting the corneal OCT im-
age. The algorithmic approaches were grouped into two categories: Tradi-
tional Comparison (TC; TWOPS vs TWPS), and Deep Learning Comparison
(DLC; DLWOPS vs DLWPS). The first column corresponds to the former, and
the second column corresponds to the latter. For each corneal test dataset,
the image with the maximum HD error was found over all images in the se-
quence, and the image location in the sequence was stored. This was done
only for the TWOPS and DLWOPS approaches respectively. The stored loca-
tion indicies were then used to retrieve the corresponding HD errors from the
TWPS and DLWPS algorithmic approaches respectively. This procedure was
repeated for each grader and plotted. G1 : without pre-segmentation (purple
curve), with pre-segmentation (black curve). G2 : without pre-segmentation
(yellow curve), with pre-segmentation (gray curve). . . . . . . . . . . . . . . 106

5.1 (a) shows the 1st B-scan imaging the limbal area in a SD-OCT volume, and
the expertly annotated tissue interface is shown in (b). . . . . . . . . . . . . . 110

5.2 (a) shows the 195th B-scan in a volume; (b) the down-sampled image in (a);
(c) shows the result of percentile filtering the downsampled B-scan; (d) show
the result of further bilateral filtering applied to the percentile-filtered B-scan. 111

5.3 (a) shows the 195th B-scan in a volume (same image in Fig. 5.2(a)); (b) shows
the bilateral filtered image; (c) shows the odd magnitude component foc of
the monogenic signal (scaled for visualization here). . . . . . . . . . . . . . . 113

5.4 (a) shows the 195th B-scan in a volume (same image in Fig. 5.2; (b) shows the
odd magnitude component foc of the monogenic signal (scaled for visualiza-
tion here); (c) shows segmentation result after selecting a suitable threshold
threshM ; (d) shows the final result after detecting the shallowest surface and
fitting a 3rd order curve to the detected edge points. Note the true tissue
surface detected in (d) even in the presence of noise artifacts. . . . . . . . . . 114

5.5 Registration procedure followed by our algorithm. (a)-(b) the 100th (refer-
ence) and 195th (target) B-scans in a volume; (c)-(d) the “flattening” of the
images using the segmentation derived by our algorithm; (e)-(f) the “unflat-
tened” images obtained after rigid registration of the flattened images in (c)
and (d); (g) a side view profile of the reconstructed volume and meshed outer
surface following the registration. Note the clear visualization of the limbal
region, and the associated connective tissues appearing white and vessels
seen as black ducts in the left volumetric rendering of (g). . . . . . . . . . . . 116

5.6 (a)-(d) show cross-sectional visualizations of the unique POV structural con-
figuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.7 (a) Mean (red circle) and standard deviation error (black error bars) between
automated segmentation and manual annotation. (b) SSIM values of cross-
section comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
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5.8 (a) Pathological SD-OCT image of a patient acquired with a Bioptigen SD-
OCT scanner [133]. (b) The limbal tissue interface (red curve) and the Basal
Cell Layer (BCL) where the POV (yellow) are present is highlighted. The
images were manually annotated by an expert. Notice the lack of clear and
visible structure of the BCL and the POV in (a) as they appear wavy and are
difficult to pinpoint on the left corner inside the tissue in (b). Also notice
the pathological changes in the tissue structure on the left side of the image
signifying a degradation of the tissue structure. . . . . . . . . . . . . . . . . . 121

5.9 (a) Example SD-OCT image acquired by the Bioptigen system [133]. (b) Ex-
ample SD-OCT image acquired by the hsUHROCT system [34]. In contrast to
(b), note the increased intensity of the tissue structure and imaging artifacts
in the image in (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.10 Our network architecture comprises of contracting and expanding branches.
The dark green and blue blocks represent downsampling and upsampling
computations respectively. Our network makes efficient use of residual and
dense connections to generate the limbal interface segmentation in the final
image, where each pixel is assigned the label of the tissue it belongs to. The
input image is split width-wise into a set of slices of dimensions 256×1024
pixels, the network predicts an output for each slice, and the slices are aligned
to recreate the original input dimension. Dense connections concatenate fea-
ture maps from previous layers. The light blue block at the bottom of the ”U”
(on the right end of the rectangle) does not perform upsampling, but as with
the other blue blocks it functions as a bottleneck for the layer and generates
feature maps of the same dimensions as the output feature maps from the
previous layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.11 The U-Net network architecture proposed in [82]. Figure used with permis-
sion - Springer LNCS, Elsevier, license 4337120750575 [82]. . . . . . . . . . . 125

5.12 (a) and (c) show the tissue interface boundary predicted (green) by the Cor-
Net. (b) and (d) show the result of fitting curves (red) to the predicted tissue
interface boundary using the approach in [104]. . . . . . . . . . . . . . . . . 128

5.13 (a)-(b) show cross-sectional visualizations of the unique POV structural con-
figuration. Notice the ridge- or finger-like cavities in the image, which rep-
resent the POV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.14 Side view of the reconstructed 3D volume of the limbal region. The volume
was created by segmenting the visible tissue interface in every B-scan in the
volume and aligning them, with the segmented interfaces being shown as
the green surface on the right side of the rendering. . . . . . . . . . . . . . . 129

5.15 U-Net based segmentation and registration accuracy results. (a) Mean (red
circle) and standard deviation error (black error bars) of the MAD error be-
tween automated segmentation and manual annotation; (b) Mean (red circle)
and standard deviation error (black error bars) of the Hausdorff Distance er-
ror between automated segmentation and manual annotation; (c) Mean (red
circle) and standard deviation error (black error bars) of the Chamfer Dis-
tance error between automated segmentation and manual annotation; (d)
SSIM values of cross-section comparison. . . . . . . . . . . . . . . . . . . . . 133
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5.16 CorNet based segmentation and registration accuracy results. (a) Mean (red
circle) and standard deviation error (black error bars) of the MAD error be-
tween automated segmentation and manual annotation; (b) Mean (red circle)
and standard deviation error (black error bars) of the Hausdorff Distance er-
ror between automated segmentation and manual annotation; (c) Mean (red
circle) and standard deviation error (black error bars) of the Chamfer Dis-
tance error between automated segmentation and manual annotation; (d)
SSIM values of cross-section comparison. . . . . . . . . . . . . . . . . . . . . 134

5.17 (a) shows the prediction (green) of the U-Net on the 58th B-scan in a volume
where the intensity of the tissue interface is significantly lower than a regular
SD-OCT image of the limbal region; (b) shows the curve (red) fitted to the U-
Net predicted output; (c) shows the prediction (green) of the CorNet on the
same 58th B-scan; (d) shows the curve (red) fitted to the CorNet predicted
output. Notice the lack of a continuous predicted output in (a) as opposed
to the predicted output in (c). In the absence of a prediction at the left side
of the image in (a), the fitted curve in (b) is incorrect. A correctly predicted
output (c) leads to a better curve fit (d), and thereby, accurate C-mode slice
extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.18 (a) shows the network activation at the first input block of the U-Net. (b)
shows the network activation at the first input block of the CorNet. The
number of feature maps at the output of each layer was 128, and the im-
ages have been resized to match the original input image dimensions. The
CorNet clearly seems to be learning tissue structure better. Even though the
object boundary was not captured in the left side of the image, in the later
layers of the CorNet, this object boundary was accurately examined. . . . . 139

5.19 (a) shows the network activation at the last output block of the U-Net. (b)
shows the network activation at the last output block of the CorNet. The
number of feature maps at the output of each layer was 128, and the images
have been resized to match the original input image dimensions. The CorNet
has accurately determined the position of the limbal tissue interface. . . . . 140

5.20 (a) shows the network activation at the lowest downsampled output block of
the U-Net with the number of feature maps being 1024. Each feature map
has dimensions of 64×16 pixels. (b) shows the network activation at the low-
est downsampled output block of the CorNet with the number of feature
maps being 64 ([672, 64] block). Each feature map has dimensions of 32×8
pixels. The images have been resized to match the original input image di-
mensions. (c) and (d) show the final activations of the U-Net and the CorNet.
The CorNet has clearly learned to represent the desired tissue interface more
accurately. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
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5.21 Our proposed approach contains two frameworks: a cascaded framework
(purple) and a hybrid framework (orange). First, a conditional Generative
Adversarial Network (cGAN) takes an input OCT image, and produces an
intermediate pre-segmentation image. In the pre-segmentation, pixels just
prior to the shallowest tissue interface are set to 0 (black), while others are
retained. In the cascaded framework, the pre-segmentation, along with the
input image, are passed to a Tissue Interface Segmentation Network (TISN).
The TISN predicts the location of shallowest interface by generating a binary
segmentation mask (overlaid on the original image with a false color overlay;
red - foreground, turquoise - background). In the hybrid framework, the pre-
segmentation can be utilized by other segmentation algorithms. Ultimately,
both frameworks fit a curve to the interface to produce the final segmentation.143

5.22 The CorNet model is the base architecture used for training both the cGAN
and TISN. The input to the cGAN is a two-channel image, the input OCT im-
age and binary mask w (see Sec. 4.3.4), and the output is a pre-segmented
OCT image (orange box). The TISN gets a two-channel input (magenta and
orange boxes), and the output is a binary mask (yellow box). The dark green
blocks in the contracting path represent downsampling operations, while the
blue blocks constitute upsampling computations. This model uses residual
and dense connections to efficiently pre-segment the OCT image, and pre-
dict the location of the shallowest interface in the final output. The light blue
block at the bottom of the ”U” (on the right end of the rectangle) does not
perform upsampling, but as with the other blue blocks it functions as a bot-
tleneck for the layer and generates feature maps of the same dimensions as
the output feature maps from the previous layer. . . . . . . . . . . . . . . . . 145

5.23 Limbal interface segmentation results for datasets acquired using Devices 2
and 3. Columns from left to right: (a) Original B-scans in the limbal OCT
datasets, (b) Pre-segmented OCT images from the cGAN with the specular
artifact and speckle noise patterns removed above the shallowest tissue in-
terface, (c) Binary segmentation from the TISN overlaid in false color (red -
foreground, turquoise - background) on the original B-scan, (d) Curve fit to
the shallowest interface (red contour). . . . . . . . . . . . . . . . . . . . . . . 148

5.24 (a)-(b) HD error and (c)-(d) MADLBP error comparison for the limbal datasets
acquired with Devices 2 and 3 respectively. For the limbal datasets, the seg-
mentation results obtained for each algorithmic approach were contrasted
exclusively against the expert annotations (G1). This graph plots the errors
across all limbal datasets, including the failure cases. In contrast to Fig. 5.26,
note the increased segmentation error in the DLWPS approach due to impre-
cise pre-segmentations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
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5.25 Quantitative estimation of the benefit of pre-segmenting the corneal OCT
image. All the approaches were grouped into two categories: TC (TWOPS
vs TWPS), and DLC (DLWOPS vs DLWPS). The first column corresponds to
the former, and the second column corresponds to the latter. For each test
dataset, the image with the maximum HD error was found over all images
in the sequence, and the image location in the sequence was stored. This was
done only for the TWOPS and DLWOPS approaches respectively. The stored
location indicies were then used to retrieve the corresponding HD errors
from the TWPS and DLWPS approaches respectively. This procedure was
done for only the expert grader and plotted. G1 : without pre-segmentation
(purple curve), with pre-segmentation (black curve). Errors shown after red
vertical line correspond to the failure cases of our approach. . . . . . . . . . 153

5.26 (a)-(b) HD error and (c)-(d) MADLBP error comparison for the limbal datasets
acquired with Devices 2 and 3 respectively. For the limbal datasets, the seg-
mentation results obtained for each algorithmic approach were contrasted
exclusively against the expert annotations (G1). These graphs plot errors for
the successful segmentation results on 15 limbal test datasets. . . . . . . . . 154

5.27 Failure cases of our cascaded framework on three challenging limbal OCT
datasets. Columns from left to right: (a) Original B-scans in the limbal OCT
volumes, (b) cGAN pre-segmentation results that imprecisely removed speckle
noise patterns and specular artifacts above the shallowest tissue interface, (c)
The binary segmentation masks from the TISN overlaid in false color (red -
foreground, turquoise - background) on the original B-scans, (d) Curve fit to
the shallowest interface (red contour). . . . . . . . . . . . . . . . . . . . . . . 156

5.28 Segmenting the shallowest tissue interface in OCT datasets, wherein the OCT
scanner commenced imaging from the limbus and crossed over into the cornea,
thereby encompassing the limbal junction. (a),(b) B-scans #1 and #300 in an
OCT dataset corresponding to the limbus and the cornea respectively. (c),(d)
B-scans #1 and #220 in a different OCT dataset corresponding to the limbus
and the cornea respectively. (e),(f),(g),(h) Segmentation (red curve) of the
shallowest tissue interface in images shown in (a),(b),(c) and (d) respectively.
Note the partial overlap of the limbal (left) and corneal (right) region in the
B-scan in (d), and the correct identification of the shallowest interface in (h). 158

5.29 In this figure, cross-sections of the POV are shown for the 12 o’clock hour.
C-mode cross-sections were extracted from the associated 3D limbal recon-
structions for each eye across three days, and were visually compared for
similarity. Next, two regions corresponding to the POV structures were man-
ually annotated as shown by the red and purple contours in each image. Fi-
nally, the area of each contour was computed, and the contour with the max-
imum area was compared across each day and for each eye. In general, there
is a trend of a decrease in the POV area over each day. We postulate that this
may be due to the degradation of the tissue structure over time. . . . . . . . 161
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5.30 In this figure, cross-sections of the POV are shown for the 6 o’clock hour.
C-mode cross-sections were extracted from the associated 3D limbal recon-
structions for each eye across three days, and were visually compared for
similarity. Next, two regions corresponding to the POV structures were man-
ually annotated as shown by the red and purple contours in each image. Fi-
nally, the area of each contour was computed, and the contour with the max-
imum area was compared across each day and for each eye. In general, there
is a trend of a decrease in the POV area over each day. We postulate that this
may be due to the degradation of the tissue structure over time. . . . . . . . 162
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6.3 (a) Downsampling the original ultrasound image, shown in Fig. 6.2(a), by a
factor of 4 in each dimension. (b) Filtering the downsampled image with a
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6.4 (a) Result of clustering pixels in IB into patches in IC based on the method
presented in [152]; (b) With a kernel of size 3 × 3 pixels, the pixels in IB are
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6.7 (a) LSF evolution (closed yellow contour) at 5th iteration; (b) LSF evolution
at 10th iteration; (c) LSF evolution at 15th iteration; (d) LSF evolution at 20th
iteration; (e) LSF evolution at 25th iteration; (f) Refinement of LSF at the end
of the 25th iteration for another 10 iterations yields the final LSF position. . 171
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6.9 Tracking under large motion - (a) In frame 87, st+1
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st+1
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6.11 Quantitative segmentation and tracking accuracy metrics for 5 HFUS sequences.
The black * in each box plot represents the mean value of the metric. The
terms ’G1vG2’ and ’G2vG1’ in Figs. 6.11(c) and 6.11(d) represent the inter-
grader annotation variability when grader 1 annotation was considered the
ground truth, and vice versa. . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.12 (a) Still frame capturing a pulsating vessel acquired using UHFUS; (b) Seg-
mentation (yellow contour) from a level set method bleeds into the tissue
region due to poor boundary contrast; (c) Final segmentation from the pro-
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Chapter 1

Introduction

1.1 Motivation

Various non-invasive imaging modalities are used by clinicians to determine the existence

of pathological conditions and diseases. Aside from cameras (which image surfaces) and

X-rays/fluoroscopes (which integrate projections through tissue), most medical imaging

modalities are able to image at multiple distinct depths within tissue. These tomographic

imaging modalities include Computed Tomography (CT), Magnetic Resonance Imaging

(MRI), Positron Emission Tomography (PET), Optical Coherence Tomography (OCT), and

Ultrasound (US). However, only MRI, OCT and US are considered safe and non-ionizing.

Compared to MRI, OCT and US imaging systems are substantially smaller, cheaper, and

capable of more rapid image acquisition, including video-rate imaging. Thus, OCT and

US are uniquely suited for widespread tomographic imaging for both diagnosis and for

real-time feedback in surgical guidance.

The key motivation of this thesis work is to advance the clinical capabilities of OCT and
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ultrasound. We have identified key application areas for each modality, which are amenable

to the approaches that have been developed in this thesis. We provide a brief description

of these applications below:

1. Application 1: Identifying corneal interfaces to enhance corneal surgical procedures

using OCT

• Corneal interfaces need to be identified for the measurement of clinical parame-

ters, such as corneal refractive power/index.

• These measurements are needed for corneal surgical procedures, such as Laser

In-Situ Keratomileusis (LASIK) and Deep Anterior Lamellar Keratoplasty (DALK).

2. Application 2: Assessing stem cell deficiency using OCT

• Stem cells reside in a region of the limbus, which is the intersection of the clear

cornea and white sclera of the eye, called the Palisades of Vogt (POV).

• Surgical procedures and/or certain types of diseases cause the stem cell popu-

lation in these POV regions to change over time.

• Quantifying the morphological changes in the POV over time aids in the assess-

ment of limbal stem cell deficiency.

3. Application 3: Monitoring and tracking vessels using ultrasound

• Measurement of vessel-based clinical parameters is an important indicator of risk

in different applications, such as hand-transplant chronic rejection and cardio-

vascular risk. Segmentation and 3D visualization of the vessel contours enables

the quantifiable and repeatable measurement of vascular parameters.
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• Vessel-based measures, such as lumen diameter, intima-media thickness and in-

timal wall thickness, are crucial to determination of vessel wall hardening (chronic

rejection), vascular blockage, and potential for future aneurysms.

• Automatic identification and tracking of vessels also enables future automated

and semi-automated robotic approaches to inserting catheters for vascular ac-

cess.
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1.2 Contributions

The key contributions in this thesis are as follows:

1. Segmentation and 3D visualization of multiple corneal tissue interfaces from OCT video se-

quences.

• Classical approach: A real-time image analysis algorithm has been developed

to segment four corneal tissue interfaces in OCT sequences, using a classical (not

automatically learned) approach.

• Deep learning approach: A Convolutional Neural Network (CNN) titled CorNet

has been designed for the segmentation of three corneal tissue interfaces in OCT

sequences obtained from different OCT machines with different scan settings.

• Hybrid approach: The deep learning framework provides an intermediate out-

put, wherein the air-gap’s speckle noise and specular artifacts are removed prior

to the shallowest corneal interface. The intermediate output is utilized by the

classical approach for segmentation of the shallowest corneal interface.

2. Segmentation of the shallowest limbal interface and 3D visualization of limbal structures from

OCT video sequences.

• Classical approach: A real-time algorithm (incorporating local phase analysis)

segments the shallowest limbal interface in each image of an OCT sequence. Sub-

sequently, the segmented interfaces are aligned to reconstruct a 3D view of the

limbal region.

• Deep learning approach: The CorNet CNN architecture was extended to seg-

ment the shallowest limbal interface in OCT sequences, and 3D reconstructed
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views of the limbus were generated.

• Hybrid approach: The deep learning framework generates an intermediate out-

put with the air-gap’s speckle noise and specular artifacts removed just above to

the shallowest limbal interface. This intermediate output is used by the classical

algorithm in order to segment the shallowest limbal interface.

3. Segmentation of vessel contours from ultrasound video sequences.

• Classical approach: A real-time algorithm (incorporating local phase analysis

and a level-set) delineates vessel contours, and tracks them using an Extended

Kalman Filter (EKF).

• Deep learning approach: A Convolutional Long Short Term Memory (ConvL-

STM) neural network robustly identifies the vessel contours in US video sequences

acquired from different US machines with different scan settings.
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1.3 Publications and Patents

We list the publications that have resulted as part of this thesis, some of which have led to

invention disclosures and the possibility of one or more patents being filed by CMU.

1. MICCAI AECAI 2014 [1] - Corneal surface segmentation (classical method) in OCT

images.

2. Methods 2017 [2] - Review of registration algorithms commonly employed in ultra-

sound.

3. ARVO 2017 (poster) - Limbal surface segmentation (classical method) in OCT images

for POV cross-section visualization.

4. ISBI 2018 [3] - Limbal interface segmentation (classical method) in OCT images for

POV cross-section visualization.

5. MICCAI 2018 [4] - Vessel contour segmentation and tracking (classical method) in

ultrasound sequences.

6. ISBI 2019 [5] - Segmentation of corneal interfaces (deep learning method) in OCT se-

quences.

7. Biomedical Optics Express 2019 (submitted) [6] - Speckle noise pattern and specular

artifact removal (deep learning method) in OCT sequences.

8. MICCAI 2019 (submitted) - Segmentation of vessel contours (deep learning method)

in ultrasound sequences.

• Invention disclosures have been filed for all 2019 work as well as MICCAI 2018. CMU

is seeking to file patent(s).
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1.4 Organization

In this section, the organization of the thesis is described as follows:

1. In Section 2.1, we identify relevant clinical applications with open research problems

that require new solutions.

2. In Section 2.2, we provide brief introductions to OCT and US, which are the two

modalities utilized for imaging in these application areas.

3. In Section 2.3, we describe the unique problems encountered specifically within each

application that require innovative solutions to solve them.

4. Following the introduction, in Chapter 3, prior work that has been undertaken to solve

the challenging problems in the clinical application areas is described.

5. Finally, in Chapters 4, 5 and 6, we describe the classical and learning-based approaches

that have been developed in this thesis to address the open research problems in each

application area.

6. In Chapter 7, we provide a discussion of the future work that can be undertaken to

further the ideas proposed in this thesis.
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Chapter 2

Clinical Background

2.1 Clinical Background and Applications

2.1.1 Identification of Corneal Tissue Interfaces

The anterior segment of the eye is comprised of different structures, such as the cornea,

sclera (white region of the eye), lens, iris, cilliary body, etc. There are many micro-structures

that are inherently present inside these regions, which regulate and maintain the function

of the eye. One of the major components of the eye that contributes to and sustains human

vision is the cornea. As shown in Figs. 2.1 and 2.2, the cornea is the part of the eye that

is transparent, and covers the lens, iris, pupil, and other anterior structures. It works in

conjunction with the lens in the eye to refract light and focus it onto the retina. The cornea

accounts for 65-75 % of the eye’s total optical power [7].

The configuration of the cornea includes five different entities: the corneal epithelium,

Bowman’s layer, Stromal interface, Descemet’s Membrane, and the corneal endothelium.

These five layers are shown in Fig. 2.2. The refractive power of the cornea is facilitated by
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Figure 2.1: Cross-section of the eye. Figure by Mikael Haggstrom, used with permission.

two internal structures in the cornea: the epithelium and the endothelium. The shape of

the corneal epithelium is the most significant contributing element to the optical power of

the eye; it refracts the light entering the eye. The endothelium’s shape plays a supporting

role in focusing the refracted light through the lens onto the retina, where it is converted

into electrical impulses that are sent to the brain to be processed [7].

However, the function of the cornea can deteriorate over time due to age, congenital

conditions, infection, or due to injury etc. Changes in the curvature of the cornea can affect

the refractive power of the cornea [8], and can lead to loss of visual acuity. The refractive

power of the cornea can be measured using a technique called Keratometry. To accurately

calculate the refractive power, the radii of curvature of the anterior (epithelium) and pos-

terior (endothelium) surfaces of the cornea need to be estimated. The refractive power can

then be quantified in Diopters, which is the inverse of the focal length of the cornea when

the focal length is measured in meters.

The only way to measure the radii of curvature and corneal refractive power, before
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Figure 2.2: Corneal cross-section. Used with permission from the National Eye Institute
(NEI), USA.

non-invasive imaging modalities were invented, was through corneal topography. Corneal

topographers are now currently sold by many vendors (for example: Atlas 9000, Carl Zeiss),

but they can only measure the radius of curvature of the anterior surface (epithelium) of

the eye. To characterize the optical properties of the entire cornea, assumptions were made

regarding the radius of curvature of the posterior surface (endothelium), and its contribu-

tion to corneal refractive power [8–10]. Utilizing the radius of curvature of the epithelium

was satisfactory for the clinical outcomes of patients with normal corneas, who were un-

dergoing surgery to restructure the cornea.

A particular method to compute the corneal refractive index is to use the thick lens

equation to describe the refractive power of both the epithelium and endothelium:
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ΦEFL =
ηc − ηair
rant

+
ηaq − ηc
rpost

− CCT (ηc − ηair)(ηaq − ηc)
ηcrantrpost

(2.1)

ηc = 1.376, ηair = 1.000, and ηaq = 1.336 are the refractive indicies for the cornea, air,

the aqueous humor in the eye respectively. CCT is the central corneal thickness, and rant

and rpost are the radii of curvature of the anterior (epithelium) and posterior (endothelium)

surfaces of the cornea respectively. The refractive index values are the Gullstrand values

found in literature [11]. With the placido-disc corneal topography systems, only the anterior

corneal surface is measured, with an assumption on a constant ratio that exists between the

anterior and posterior corneal surfaces [8]:

rpost = kcrant (2.2)

Utilizing the Gullstrand model of the eye [8,11], the radius of curvature of the epithelium

rant is 7.7mm, while the radius of curvature of the endothelium rpost is 6.8mm [8]. Thus,

the constant kc is 0.883. Gullstrand also provides a value of 0.5mm for the central corneal

thickness (CCT ) [8]. Substituting Eq. (2.2) into Eq. (2.1), we obtain:

ΦEFL =
1

rant

(
0.376− 0.0453 +

0.00000618

rant

)
(2.3)

As the central corneal thickness (CCT ) value is small in relation to the corneal refractive

power, a final assumption of 7.7mm for the epithelial radius of curvature is applied [8]:
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ΦEFL =
1

rant
(0.3307 + 0.0008) (2.4)

ΦEFL =
0.3315

rant
(2.5)

ΦEFL =
1.3315− 1.0000

rant
(2.6)

=⇒ ΦEFL =
ηk − ηair
rant

(2.7)

The calculated values for the Keratometric refractive index ηk = 1.3315 (and ηair =

1.0000) are based on a specific set of assumptions, the Gullstrand model of the eye, and

the thick lens equation [8]. However, there are many vendors in the market who utilize

different values for the Keratometric refractive index ηk, and at present, the ANSI standard

specifies an ηk = 1.3375 [12]. This value was obtained by using the formula to calculate the

back focal length of a lens model [13]:

ΦBFL =
ηcrantΦEFL

(ηcrant)− CCT (ηc − ηair)
(2.8)

After substituting the values for ΦEFL in Eq. (2.5), the rant = 7.7mm from the Gull-

strand eye model, and the CCT value of 0.5 into Eq. (2.8), we end up with:

ΦBFL =
0.3375

rant
(2.9)

ΦBFL =
1.3375− 1.0000

rant
(2.10)

=⇒ ΦBFL = ΦK =
ηk − ηair
rant

(2.11)
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From Eq. (2.11), we obtain the ANSI specified Keratometric Refractive Index (KRI) of ηk

= 1.3375, and the corneal refractive power ΦK . Utilizing KRI and the radius of curvature

of the anterior surface (epithelium), the corneal refractive power can be measured, and this

is the current standard of care clinically. This measurement was satisfactory for the clinical

outcomes of patients with normal corneas, who were undergoing surgery to restructure the

cornea. But, this model did not hold for patients who have already had corneal restructur-

ing surgical procedures, such as those who have undergone Laser Refractive Surgery (LRS).

For these patients who underwent LRS first, then underwent additional surgery, such as

cataract surgery, the outcome of the surgery was erroneous and undesired [14].

Desired Clinical Measurements

There is an urgent need to develop tomographic imaging modalities that can measure both the anterior

and posterior surface curvatures without a relationship between the two.

LRS is a surgical procedure that is used to help patients reduce the need for corrective

eyewear, and it is one of the most common forms of outpatient surgeries. 7 million people

in the United States have already undergone some form of LRS, such as Laser In-Situ Ker-

atomileusis (LASIK), Photo-Refractive Keratectomy (PRK) etc [15], and at least 700,000 pa-

tients will undergo LASIK to reduce their dependence on glasses. It is typically performed

on adults between the ages of 20-40 years old, and they typically have 20/20 uncorrected

vision on average after LRS [16–18].

Even after these patients have undergone LRS, deterioration of vision with age will re-

sult in the lens of the eye becoming cloudy, and cataract surgery will be necessitated. From

a longitudinal study from 1995 to 2002 [19], it was estimated that the annual rate of cataract

surgery for individuals older than 62 years of age was 5.3%. Thus, there will be nearly
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370,000 patients every year who will have cataracts in atleast one eye.

Cataract surgery is the surgical procedure where the natural aging lens in the human

eye is replaced by an artificial Intra-Ocular Lens (IOL). The IOL rectifies the refractive power

which was lost from the removal of the natural aging lens (cataract). The accuracy in pre-

dicting the lost refractive power, and compensating for it using the IOL allows a patient to

be less dependent on eye wear, such as corrective glasses. This accuracy of the predicted

refractive power is dependent on accurate estimates of the corneal refractive power ΦK . For

patients who have already undergone LRS or other types of corneal restructuring surgeries,

the previous method of estimating the Keratometric Refractive Index does not hold. This

is because altering the corneal structure through surgery, such as LRS, violates Eq. (2.2),

where there exists an assumption of a constant ratio between the radii of curvatures of the

anterior (epithelium) and posterior (endothelium) surfaces. In such cases, measurement of

both the corneal surfaces is needed.

To recapitulate, the corneal refractive power (paraxial corneal power) for normal corneas

is computed using the thick lens equation as shown in Eq. (2.1). However, current corneal

topography systems use the posterior vertex behind the cornea (inside the eye) as a refer-

ence for the rear focal point instead of the rear principal plane used in the computation of

the paraxial corneal power [13]. This means that in order to convert corneal refractive power

(paraxial) from a tomographic imaging modality, such as OCT, to a value that is in the range

of corneal biometry measurement devices, such as corneal topographers, it is necessary to

have a ”Keratometric Equivalent Power” [20] formula that performs this conversion. We

have defined this formula in Eq. (2.8) as:

ΦKEP = ΦBFL =
ηcrantΦEFL

(ηcrant)− CCT (ηc − ηair)
(2.12)
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Once the position of both the corneal surfaces have been determined in an image ob-

tained by a tomographic imaging modality, such as OCT, the radii of curvature (r) and as-

phericity (k) of the anterior and posterior surfaces of the cornea can be measured through

least squares fitting of optically-corrected [20–22] three-dimensional corneal surfaces to a

formula for the conicoid of revolution of a sphere [20, 23–26]:

(z − zo) =
c
(

(x− xo)2
+ (y − yo)2

)2

1 +

√
1− kc2

(
(x− xo)2

+ (y − yo)2
)2

(2.13)

where (x, y, z) are the positions of the surface points, (xo, yo, zo) is the posterior vertex

behind the cornea as a reference for the focal point, and c is the reciprocal of the radius of

curvature r.

Summary of Clinical Significance:

• There is a need to develop a method to measure the radii of curvatures of both the

anterior (corneal epithelium) and posterior (corneal endothelium) surfaces without a

relationship between the two.

• The measurement of the corneal refractive index and the corneal refractive power is

contingent upon the identification of the epithelium, endothelium, and other tissue

interfaces in the cornea of the eye.
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2.1.2 Visualizing the Palisades of Vogt (POV)

In the cornea, epithelial stem cells reside in between ridge-like structures called the Pal-

isades of Vogt (POV). As shown in Fig. 2.3, the POV are present 50-100 µm below the surface

of the eye and are located at the intersection of the clear region (cornea) and white region

(sclera) of the eye, with this intersection being called the limbus. The POV have unique

finger-like configurations in each individual (akin to fingerprints), and they change over

time and in response to congenital conditions, injury, surgery etc. The POV were first ob-

served in 1866, and described in 1921 [27]. Recent attention to the POV has shown that it is

the location of the stem cells that are needed for maintaining corneal homeostasis, clarity

of vision, and regeneration of the corneal epithelium [28–34].

Clinically, there is a need for the quantification of progression of diseases affecting the

cornea, such as corneal neoplasia (corneal cancer), lupus vulgaris, limbal stem cell defi-

ciency (LSCD) [34,36], and injury. These conditions cause the depletion of stem cells resid-

ing in the POV [36]. The stem cells are crucial to the renewal of damaged tissue, and there

is a compelling need to determine the total number and distribution of the cells residing

within the POV [37, 38], and assess the changes over time. Unfortunately, it is enormously

challenging to reliably and consistently determine the stem cell distribution in the POV

across images obtained from the same or different OCT imaging systems [34, 36–40]. By

improving visualization of the POV and analysis of the depletion of the stem cells resid-

ing in the POV over time, stem cell deficiency and corneal disease progression can be better

quantified [34,36–40]. Improving quantification beyond the current ad-hoc approaches will

advance the development of new stem cell therapies to assist in the treatment of stem cell

deficiency [34, 36–40].

The POV are difficult to visualize due to their location and varying configurations in
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Figure 2.3: Slit lamp images of the cornea. A. Outside view of the corneo-scleral junction
in a patient whose limbus is not pigmented. The inferior limbus is imaged, and the POV
are not pigmented. B. Zoomed view of the same patient’s eye at the inferior limbus, with
the arrows showing the POV as linear structures in the limbus. C. In a different patient,
the same region of the inferior limbus and POV are hyper-pigmented. D. A zoomed view
of the POV in the same patient’s eye; the arrows show the clearly visibile hyper-pigmented
POV, with the arrow heads showing the projection of the POV to the corneal side. Figure
used with permission, British Medical Journal, license 4324901418118 [35].

each individual [34, 36, 39]. Conventional imaging methods, such as slit lamps and in-

vivo confocal microscopy, provide some details about the structures in some patients, but

they are inconsistent and in some cases require direct contact with the eye [34, 36, 39]. The

premise in previously published approaches has been to show inter-modality agreement in

imaging and visualizing the same POV configuration, by comparing OCT cross-sections of

the POV against histological slices [36, 37, 39], or confocal microscopy images [34, 38, 40].

Recently, Optical Coherence Tomography (OCT), a non-invasive imaging modality with

a micrometer scale resolution, has been shown to be capable of visualizing the POV [3, 34,

36–40]. Using OCT, 3D volumes of the limbal region can be obtained, where a volume con-
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sists of sequentially acquired images (B-scans). From the reconstructed 3D volumes of the

limbal region, cross-sections (C-mode images) of the tissue can be extracted. These cross-

sections will show the ridge-like structures of the POV, from which the Palisade Density

(PD) [37] can be measured:

PD =
1000

∇PR +∇ERP
(2.14)

where ∇PR is the mean palisade ridge width (measured in µm) and ∇ERP is the mean

interpalisade epithelial rete peg width (measured in µm) [37]. The epithelial rete pegs are

the cavities at the peripheral intersection of the cornea and sclera; the corneal epithelial

cells at the periphery of the cornea extend into the stromal region, and form a cavity/basin

like region. The numerator value of 1000 corresponds to the standardized 1000 A-scans

(columns) in a single OCT B-scan corresponding to a 6mm scanning range over the cornea.

Summary of Clinical Significance:

• There is a need to visualize a 3D reconstruction of the imaged limbal area.

• Cross-sections of the limbal region showing the POV need to be extracted from vol-

umes.

• The extracted cross-sections will need to be compared across volumes acquired by

different imaging systems, specifically OCT imaging scanners.

• From the extracted cross-sections, the Palisade Density can be estimated using Eq.

(2.14).
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2.1.3 Monitoring Hand Transplant Rejection

Composite Tissue Allotransplantation (CTA), such as hand or face transplants, is the surgi-

cal procedure wherein multiple inter-connected tissues, such as skin, muscles, bone, nerves,

vessels etc., are transplanted from a donor to a recipient. In contrast, traditional organ trans-

plantation deals with a single (separate) organ as a whole. CTA improves the quality of life

of a patient by restoring the anatomic, functional, and cosmetic integrity of the transplanted

tissue. Hand transplantation is a form of CTA, wherein the hand from a cadaveric donor

is transplanted to the forearm of a recipient, who is typically an amputee. There have been

many successful hand transplant surgical procedures that have occurred all over the world,

and the outcomes after surgery are typically encouraging. The extended focus of the clin-

ical trials happening today are focused on improving the safety, reliability, and efficacy of

these reconstructive surgeries. However, monitoring the transplant post surgery is one of

the most challenging aspects of CTA that surgeons and clinicians face today.

Transplanting a hand from a donor to a recipient is difficult as the different tissues in

the hand transplant all produce immune responses from the recipient’s body to the newly

transplanted graft [41]. The various tissues include skin, subcutaneous tissue, muscle, bone,

nerve, and blood vessels [42]. It has been experimentally verified that skin produces an

acute immune response once transplanted from a donor to a recipient.

As our bodies typically have immune systems that protect us from germs, they identify

and remember the proteins that are present on the surface of germs, called antigens. When

foreign germs (antigens) enter the human body, an immune response is triggered to attack

these germs. As a transplant recipient receives a graft from a donor, it is almost impossible

to have an exact match of the cells in the transplanted graft to the cells in the recipient. In

response to the foreign antigens of the graft, the body produces an immediate response to
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attack the graft, which can lead to transplant rejection.

To avoid such problematic scenarios, it is common for surgeons and clinicians to thor-

oughly match the tissue type of the donor and recipient as much as possible before trans-

plantation has occurred. Even after transplanting the graft onto the recipient, the patient

is provided with immuno-suppressant drugs to reduce or mitigate the response to the for-

eign graft. The goal in such scenarios is to minimize the immune response of the recipient

to reject the graft, especially when the graft does not closely match. Without these immuno-

suppressants, the recipient’s immune system will almost certainly reject the transplant [41].

Even with an immuno-suppressive drug load, the recipient will face some rejection of

the graft. Acute Rejection (AR) of the transplant can occur anywhere between a week after

transplantation to three months after transplantation [41]. On the other hand, Chronic Re-

jection (CR) can occur over many years, and slowly damages the grafted tissue by launching

an immune response against the new transplant [41]. A typical rash due to AR seen on the

skin of the transplanted graft in the recipient is shown in Fig. 2.4.

Clinicians currently use a whole host of methods to monitor hand transplant rejection

including clinical and functional examinations, skin biopsies, donor specific antibody mea-

surments (DSA), and standard vascular imaging [41]. Vascular imaging is a way to monitor

chronic hand transplant rejection by measuring the changes in the thickness of the arterial

wall and the patency of the lumen (open cross-section) of the vessel. In normal subjects (no

transplant), the arteries and veins retain normal function and patency. Usually, the physio-

logic function of an artery in a normal subject is to deliver oxygenated blood to tissues, and

as shown in Fig. 2.5, its structure is made up of three major components: the inner vessel

wall (intima), the outer vessel wall (adventitia), and the smooth muscle region between the

two (media). The vessel lumen is the part of the vessel through which the blood flows.

20



Figure 2.4: A rash seen on the skin of the recipient. It is limited to the line where sutures
were made during transplantation. Figure used with permission - Hand Clinics, Elsevier,
license 4325111357417 [41].

Figure 2.5: Artery in a normal human subject. Figure used with permission - Journal of the
American College of Cardiology, Elsevier, license 4325400758996 [43].
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However, with AR and CR, it is common to see changes in the micro-vasculature of the

transplant recipient. Over time, the immune response of the recipient to the donor graft

will cause the transplant to experience a reduction in the vessel wall compliance, changes

in the intimal wall thickness, and in other cases variations in atherosclerotic plaque buildup.

Presently, the most accurate modality to confirm AR and CR is through histopathology [41]

(see Fig. 2.6). This means that a biopsy of the tissue sample is taken from deep inside the

vascular structure of the recipient, and the micro-structures are analyzed by a pathologist

for the markers and different manifestations of rejection of the hand transplant.

In patients who have had hand transplants, the changes in the vessel wall progress over

time. When the hand transplant is completely rejected, it has been reported that it was due

to a condition called Intimal Hyperplasia (IH) [41]. Hyperplasia is the condition where

there is an excess in the reproduction of the cells in the tissue, and specifically in the case of

hand transplants, the intimal cells are reproducing quickly. This abnormal reproduction of

intimal cells leads to thickening of the intimal vessel wall, and reduction in the area of the

vessel lumen. When histopathology was conducted, Intimal Hyperplasia was confirmed as

the cause of the rejection of a hand transplant in at least one known case [41].

There was concern in 2011 that conventional methods were unable to monitor and di-

agnose Intimal Hyperplasia as the primary indicator of chronic rejection of the hand trans-

plant [41]. But, it has been shown that CR could be successfully monitored using high-

resolution ultrasound imaging [44]. High resolution ultrasound can be used to measure

the thickness of the intimal wall, and the patency of the vessel lumen. It has been postu-

lated that measuring the intimal wall thickness over time will provide a way to monitor the

hand transplant, and allow clinicians to change immuno-suppressive drugs to prevent the

hand transplant from being rejected eventually.
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Figure 2.6: Histopathological staining of the arterial wall post biopsy showing intimal hy-
perplasia. There is a narrowing in the opening of the vessel (yellow stain) due to thick inti-
mal vessel wall (light pink) encroachment into the vessel lumen. The media (light brown)
and the adventitia (darker pink) show some signs of inflammation. Figure used with per-
mission - Hand Clinics, Elsevier, license 4325111357417 [41].

Summary of Clinical Significance:

• Chronic rejection of the hand transplant is correlated with and may be caused by

Intimal Hyperplasia, where the intimal wall thickens and encroaches into the vessel

lumen, thereby causing it to become narrow and reduce blood flow.

• Clinicans presently need a way to measure the intimal vessel wall thickness, and mon-

itor its changes over time.

• Segmenting the boundaries of the vessels in ultrasound images will help clinicians

monitor a hand transplant.

• Measuring the intimal wall thickness and vessel lumen patency will enable clinicians

to monitor hand transplant rejection, and change the course of immuno-suppressive

drugs for a recipient to mitigate transplant rejection.
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2.2 Real-Time Imaging Modalities

2.2.1 Optical Coherence Tomography (OCT)

Optical coherence tomography (OCT) was first introduced in the early 1990’s as a non-

ionizing and non-invasive imaging modality [45]. It was shown to be useful in imaging

retinal tissues and vessels at the scale of microns [45]. Light waves are used in OCT to

probe tissue structures, and a light source emits a beam of light to image the sample. Be-

fore the beam is detected at the receiver, the light waves are scattered, reflected, and re-

fracted in multiple directions inside the tissue. OCT uses low-coherence interferometry to

filter out most scattered light by selecting the optical path length or the time delay between

the transmission and reception of the light beam, thereby allowing OCT to reconstruct a

depth-profile of the tissue sample [45,46]. Two- or three-dimensional scans can be obtained

by shifting the beam such that it scans laterally across the tissue sample.

Since its inception, three main categories of OCT imaging have been developed: Time

Domain OCT (TD-OCT), Spectral Domain OCT (SD-OCT), and Swept Source OCT (SS-

OCT). Basic introductions to these categories in OCT imaging are presented next, which

will help the reader have an understanding of the principles of OCT-based imaging and the

challenges facing OCT image analysis.

Time Domain Optical Coherence Tomography (TD-OCT)

First-generation OCT systems were based on time-domain OCT with different configura-

tions for imaging. Research grade systems were the first to be built with TDOCT as the basic

optical configuration, which was shown to be useful for bio-medical applications, such as

imaging the anterior and posterior segment of the eye. TDOCT was also commercialized
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by Carl Zeiss Meditec Inc. The working mechanism of TDOCT is illustrated in Fig. 2.7.

Figure 2.7: Optical configuration in TDOCT (reproduced from Dr. David Sampson’s illus-
tration - OBEL laboratory).

The broadband light source produces a beam of light, spanning a large range of opti-

cal wavelengths, which is then split by a Michelson interferometer (beam splitter) into two

paths: a reference arm and a sample arm. The light following the reference arm path is

reflected by a mirror at the end of the arm, which is can be translated in the axial direction.

The light following the sample arm interrogates the tissue sample at a specific point, un-

dergoing backscattering, before being focused back into the interferometer. The two light

paths then undergo superposition in the interferometer and are recorded; the light in the

sample arm (after backscattering) and reference arm (after reflection) destructively inter-

fere, through superposition, producing a pattern called an interferogram. The interference

signal is only strongly detected if the light in both the arms have traveled the same distance

in each arm (optical path length). This means that significant measurable constructive in-

terference is only observed when the difference in the path lengths between the two arms
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is less than the coherence length of the broadband light source.

By axially translating the mirror in the reference arm, the desired optical path length of

the backscattered light can be controlled, thus providing information on the optical prop-

erties of the tissue sample at different depths. Moving the mirror in the reference arm has

the effect of slicing (or sectioning) through the tissue structure, layer by layer, thereby pro-

viding a measurement of the optical reflectivity of the tissue sample at each layer at that

depth. The optical reflectivity versus depth profile is acquired through a specific transverse

point on the tissue sample, and this profile is referred to as an axial scan (A-scan). As a

single A-scan does not provide much information, a series of such A-scans are acquired by

transversely scanning a tissue sample using the mirror(s) attached to galvanometer(s) in the

sample arm, thereby providing 2D and 3D information of the tissue structure.

Spectral Domain Optical Coherence Tomography (SD-OCT)

Spectral Domain OCT systems are identical to TDOCT systems in many ways. However,

the key exception in SDOCT systems is that the mirror in the reference arm remains fixed

during scanning as shown in Fig. 2.8. The depth information in SDOCT is not obtained

by axially translating the mirror in the reference arm. Rather, the output light signal from

the interferometer is passed to a spectrometer for analysis of the interferogram. The spec-

trometer uses a diffraction grating to split the received light into its spectral components.

A lens focuses the light onto a linear detector array (a line scan camera), which measures

the spectrum, and a Fourier Transform applied to the measured spectrum yields the op-

tical reflectance properties of the tissue sample against the depth. The optical reflectivity

versus depth information has been shown to be the same as the information obtained with

TDOCT, except that with TDOCT, the reference arm mirror is translated axially, while a
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spectrometer analyzes the interferometer output in SDOCT.

Figure 2.8: Optical configuration in SDOCT (reproduced from Dr. David Sampson’s illus-
tration - OBEL laboratory).

SDOCT captures and processes all the pixels in an A-scan in parallel, with a dramatic

improvement in the signal-to-noise ratio (SNR) of up to 15-20 dB [47–49]. The SNR improve-

ment allows deeper interrogation of tissue samples, acquisition of higher resolution images,

and faster imaging [47]. However, the spectrometer has finite spectral resolution, and the

fringe interference pattern decreases exponentially with depth [50]. Specifically, the depth

at which there is a 6 dB decrease in the SNR can be defined in terms of the wavelength λ or

the wavenumber k [50]:

z6dB =
2ln(2)

δrk
=
ln(2)λ2

o

πδrλ
(2.15)

where λo is the center frequency, and δrλ is the Full Width at Half Maximum (FWHM)

spectral resoltuion [49–51]. As such, there is a limit to the depth of imaging for a selected

configuration of the source and detector. The maximum depth is limited by the Nyquist
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criterion [50]. At the detector, the interferometer output is sampled with finite spectral

resolution due to the pixel binning of the line scan camera. This sampling pattern is linear in

the wavenumber k, which separates the interferogram into M channels [50]. This translates

to a sampling interval of δsk for each of the M channels. Therefore, the total wavenumber

range is ∆k = Mδsk. This, in turn, sets the sampling interval in depth as δsz = 2π/(2∆k)

[50]. Using the above values, the Nyquist criterion provides us with the maximum imaging

depth in wavelengths and wavenumbers as:

zmax =
π

2δsk
=

λ2
o

4δsλ
(2.16)

In this thesis, we mainly concentrate on the 2D B-scans and 3D volumes that have been

obtained from SD-OCT scanning systems.

Swept Source Optical Coherence Tomography (SS-OCT)

In SS-OCT, a laser that is narrow band and wavelength-tunable is used to sweep across a

broad range of wavelengths. Instead of a diffraction grating, a photodiode is used as the

detector, and the reference arm is fixed in SS-OCT as shown in Fig. 2.9. The spectrum of

the interferometer output is recorded for each of these wavelengths sequentially in time

using a single detector, thus allowing the spectrum to be recorded as a function of time.

The spectral pattern encodes in its frequency content the depth-resolved structure of the

imaged tissue sample at the waist of the light beam.
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Figure 2.9: Optical configuration in SS-OCT (reproduced from Dr. Marinko Sarunic’s illus-
tration - BORG laboratory).
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2.2.2 Ultrasound (US)

Ultrasound is a non-invasive and non-ionizing imaging modality that uses ultrasonic acous-

tic signals to acquire cross-sectional images of internal anatomy, such as the liver, kidney,

vessels etc. The mechanism for imaging involves piezo-electric transducers housed in a

plastic casing, which are excited by electric signals to produce acoustic waves at particu-

lar ultrasonic frequencies. These acoustic signals are focused, either using a lens arrange-

ment or a phased array setup (beamforming technique), on the sample. Similar to OCT,

these acoustic signals travel through the anatomic structure, wherein they undergo back-

scattering and reflection by the different tissue layers.

Some part of the back-scattered acoustic signal is detected by the same transducers that

produced the acoustic signal. The received signal, called the echo, is converted by the trans-

ducers into electric signals. These electric signals are then amplified, processed, and ana-

lyzed to produce cross-sectional ultrasound images of the internal anatomy. Ultrasound

image formation depends on two factors: the intensity of the received echo signal (pixel

intensity), and the time delay between the propagation of the acoustic waves and reception

after back-scattering (pixel location).

The intensity of the pixel at a location in the ultrasound image depends on the ampli-

tude of the echo signal, which in turn depends on the change in the acoustical impedance

of the material through which the acoustic waves are propagating. For example, if air is en-

countered in the path of the focused acoustic signal, then a large difference in the acoustic

impedance is witnessed. This large impedance mis-match causes all the acoustic waves to

be immediately reflected back to the detector. Accordingly, the ultrasound transducer must

always be in contact with tissue sample being imaged. Furthermore, as ultrasound signals

travel relatively easily in liquids, a viscous gel-based medium is typically introduced dur-
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ing conventional imaging to ensure that the acoustic impedance is minimized between the

transducer and outer tissue surface.

Traditionally, ultrasound transducers have operating frequencies in the range of 1 - 20

MHz. This frequency is inversely proportional to the spatial resolution, which is the dis-

tance between two scatterers at which the scatterers can be resolved and visually differen-

tiated. This means that as the frequency is increased, the axial resolution of the ultrasound

transducer improves, with the resolvable distance between to scatterers becoming smaller.

Furthermore, as the ultrasound beam travels through the imaged tissue sample, attenua-

tion will be encountered. Attenuation is strongly dependent on the frequency, and it has

been shown that the relationship between the attenuation coefficient and frequency is ap-

proximately linear [52].

For soft tissue, the attenuation coefficient is 1 dB cm−1MHz−1. Thus, a trade-off be-

tween the depth of penetration and frequency exists; lower penetration is seen with higher

frequency ultrasound transducers. Therefore, low frequency ultrasound transducers are

used to image organs and structures that lie deep inside the body, such as liver and kidney,

whereas higher frequency ultrasound is used to image fine details in superficial structures,

such as muscles and breasts. Ultrasound machines that operate at frequencies higher than

20 MHz are categorized into two classes: High Frequency Ultrasound (HFUS), and Ultra-

High Frequency Ultrasound (UHFUS).

As mentioned before, HFUS is used to image to image superficial structures. They have

a frequency range of 15-30 MHz, and a penetration depth of 5-10 cm inside the tissue. The

UHFUS designation becomes appropriate at frequencies higher than 30 MHz, and a re-

cently FDA-approved ultrasound scanner (VisualSonics Vevo MD, Fujifilm Inc.) can oper-

ate at frequencies of 50-70 MHz. The Vevo MD ultrasound machine can acquire ultrasound
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(a) (b)

Figure 2.10: (a) Example UHFUS image of the proper palmar digital artery in the hand.
Image obtained with a 50 MHz ultrasound probe (b) Example HFUS image of the same
vessel obtained with a 22 MHz ultrasound probe. In contrast to the HFUS image, note the
higher resolution and increased speckle noise in the UHFUS image.

images at 30 microns resolution, with an imaging depth of ∼1 cm, making it useful for

imaging nerves, vessels, and skin. For example, individual vessels can be imaged with

greater resolution in UHFUS as compared to HFUS as seen in Fig. 2.10. UHFUS can also

be used to measure several vascular substructures including Intimal Thickness (IT), Intima-

Media Thickness (IMT), the Lumen Diameter (LD), and vessel lumen patency etc. Vessel

based measurements was extensively reported in [53] as shown in Fig. 2.11, and a clinician

(Dr. Vijay Gorantla, Wake Forest Health/UPMC) marked the measurements in an UHFUS

image as shown in Fig. 2.12. These measurements have been shown to be possible using

the Vevo 2100 ultrasound machine [44], the experimental ultrasound machine that was the

precursor to the Vevo MD ultrasound machine. Evidence has suggested that both arteries

and veins are primary targets of chronic hand transplant rejection [41], making these vessel

measures potentially valuable for detecting Chronic Rejection (CR) of a hand transplant.
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Figure 2.11: Vessel measurements first reported by [53]. Figure used with permission -
Clinical Physiology and Functional Imaging, John Wiley and Sons, license 4336130506730
[53].

Figure 2.12: UHFUS image of an artery acquired by the Vevo 2100 ultrasound scanner. Mea-
surements shown are the Intimal Thickness (IT), Intima-Media Thickness (IMT), and the
Lumen Diameter (LD)
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2.2.3 Modes of Imaging in OCT and Ultrasound

There are many different types of imaging modes in ultrasound and OCT. However, the

following basic imaging modes are common among both modalities:

• A-Mode: The Amplitude (A) mode, also commonly referred as A-scan, is a one-dimensional

scan, where the amplitude of the backscattered wave (acoustic or light) is displayed

against the tissue depth.

• B-mode: The Brightness (B) mode, also commonly referred to as a B-scan, generates

a two-dimensional image. Each column in this 2D image is an A-scan with the am-

plitude of the backscattered acoustic or light wave plotted as the brightness for each

pixel in the image.

• C-mode: The cross-sectional (C) mode scans the tissue sample in a plane that is per-

pendicular to the B-mode image. To create a C-mode image, a gate is used to select a

particular depth at which to receive the echoes from. Next, these echoes in the plane

at that particular depth, which is at a constant distance from the transducer, are only

received and recorded. This recorded signal is converted into an image, which repre-

sents a cross-section of the tissue sample imaged at a selected depth.

• M-mode: The Motion (M) mode allows for a video sequence of B-mode images to be

acquired from imaging the tissue sample. This involves the acquisition of a series of

B-mode images, where each column in the B-mode image represents a specific A-scan

displayed vertically. For example, in ultrasound, the probe can either held stationary

at a fixed position, or it can be swept horizontally. When the probe is stationary, the

underlying tissue structure undergoes motion and ultrasound captures this motion.

When the probe is swept horizontally, B-scans are sequentially acquired, resulting in
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a video sequence. The M-mode is used to analyze the motion of internal organs; the

time-varying displacement of the internal organs allows the estimation of the velocity

of the moving organs.

• Doppler mode: In the Doppler mode, moving objects allow the Doppler effect to mea-

sure the velocity of these objects. The most popular use of the Doppler mode is to mea-

sure the velocity of blood flow. For example, when the blood flow through a vessel is

imaged, the Doppler effect color codes the velocity of the blood flow, and overlays it

on the B-mode image.

3D ultrasound is also an important diagnostic tool as it provides additional information

over conventional 2D ultrasound. 3D anatomical views in ultrasound of the tissue sample

provide detailed structure of the tissue, from which 2D images can be generated by arbi-

trarily slicing through the 3D volume. It is also easy to estimate quantitative values relating

to the imaged sample using the 3D dataset. Presently, there are two different types of 3D

probes used to acquire 3D ultrasound volumes:

• Probes containing a 2D matrix array to capture the 3D structure of the tissue sample.

These probes have lower SNR.

• Probes containing a smaller 2D probe that is mechanically swept along the third-

dimension. However, these 3D probes can only scan a small region at any given time.

The following imaging modes are reserved specifically for OCT:

• Raster Scanning Mode: In the OCT raster scanning mode, a galvanometer in the sam-

ple arm controls the pattern of scanning, which is roughly a saw-tooth pattern. The

light beam is first swept horizontally, from left to right, before blanking, and rapidly
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moving back to the left (see Fig. 2.13). This sweep along the horizontal direction is

very fast, and this axis is dubbed the ”fast scanning axis”. A series of A-scans are

obtained by sweeping along the fast axis, thus constituting a B-scan image. During

this time, the vertical position of the scan is also changing (increasing or decreasing),

depending on the desired direction along the tissue sample. The vertical scanning

position increment is slower, and this axis is called the ”slow scanning axis”. As the

tissue sample along the slow axis is scanned, a sequence of B-scans are obtained.

• Radial Scanning Mode: A radial scan mode is typically used to to generate a pachymetry

map for measuring the thickness of the cornea. It usually consists of a scan pattern

of radial lines, centered on the apex of the cornea, as shown in Fig. 2.14. These radial

lines are equally spaced, and they provide a meridional cross-sectional B-scan of the

cornea [54].

(a) (b)

Figure 2.13: (a) White lines represent the raster scan pattern. (b) The corresponding cross-
sectional B-scan of the cornea along one horizontal line. At each white line in (a), a B-scan
image (b) is obtained.
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(a) (b)

Figure 2.14: (a) Radial scan pattern. Figure used with permission - Journal of Cataract
and Refractive Surgery, Elsevier, license 4325451407563 [54]. (b) The corresponding cross-
sectional B-scan of the cornea along one radial line. At each white radial line in (a), a B-scan
image (b) is obtained.
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2.3 Challenges in Imaging and Image Analysis

Non-ionizing imaging modalities such as OCT and Ultrasound lend themselves to safe real-

time imaging and subsequent image analysis. When used at (or below) the established

clinically safe power levels, they have no known long-term side effects, making them the

ideal modalities for repeated longitudinal imaging a particular section of anatomy. These

modalities are relatively inexpensive compared to other modalities, such as MRI and CT,

making them more readily accessible for many different clinical applications.

While OCT and Ultrasound are similar in many ways, each modality has particular dif-

ficulties associated with imaging tissue samples. Furthermore, there are additional chal-

lenges in the analysis of the resulting images. Although, ultrasound uses sound waves

for imaging and OCT uses light waves, they are both subject to similar imaging artifacts

that affect the quality of the reconstructed images. For example, images acquired by both

modalities exhibit shadows, attenuation, and specular artifacts.

Ultrasound

There are three sources of image corruption in ultrasound imaging [52]. The first source

of noise is from the electronics of the ultrasound system. The second source is termed

”speckle” noise, which arises from the interference pattern originating from within a single

resolution cell when different back-scattered signals from sub-resolution structures within

that cell arrive at the detector with random phases and amplitudes. These back-scattered

signals undergo superposition, and produce an interferogram, where the range of the speckle

noise produced extends between a minimum of zero to a maximum value that is dependent

on whether the interference is constructive or destructive. As seen in Fig. 2.15, speckle noise

causes the acquired image to appear granular and noisy, even though the underlying tissue
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is mostly homogeneous. The third type of image corruption that arises in imaging with

ultrasound is artifacts, such as shadowing, mirroring, posterior enhancement, refraction,

side lobes, grating lobes, and reverberation. For a detailed study of the different artifacts

affecting ultrasound, the reader is referred to [55].

(a) (b)

Figure 2.15: (a) Vessel imaged by a UHFUS machine. (b) Vessel imaged by a HFUS machine.
Note the increased granularity of the speckle noise inside the vessel lumen in (a), as opposed
to the relatively homogeneous lumen in (b).

In the case of UHFUS images, tissue structures are axially well resolved, as seen in Fig.

2.16. But, the lateral resolution of tissue is poor. While imaging vessels, the intimal and the

adventitial wall are sometimes resolved axially, however both the vessel walls are mostly in-

visible in the lateral direction (see Fig. 2.16). Due to this inherent nature of UHFUS imaging,

it is enormously challenging to estimate the position of the vessel wall boundaries laterally.

Since the vessel boundaries in the lateral direction cannot be reliably estimated, it is difficult

to determine clinical measurements such as Intimal Thickness (IT) (see Fig. 2.12) accurately.

In addition to the above mentioned challenges, skilled operators, who have had train-

ing with imaging using ultrasound and who are also equipped with the knowledge of the

human anatomy, are typically needed in order to acquire ultrasound images of a reason-

able quality that are useful for analysis. It is also very difficult to maintain contact with
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the patient when imaging with a linear probe in anatomical regions of high curvature. As

ultrasound does not pass through bones, the location and orientation of the probe during

imaging behind tissues, such as bones, is critical. Crucially however, once a sequence of ul-

trasound images of the hand for monitoring hand transplant rejection have been obtained,

the exact location that they were acquired from needs to be logged, or they are lost and

thus generating the same image during a follow-up imaging session will be difficult. The

location of the scan needs to be registered to a 3D coordinate system, otherwise the vascular

data cannot provide information on the progression of Intimal Hyperplasia over time.

(a) (b)

Figure 2.16: (a) and (b) show vessels imaged by a UHFUS machine.

Thus, it is necessary to segment the vessel wall boundaries to calculate the vessel-based measure-

ments, such as lumen diameter and intimal thickness. Furthermore, in order to allow for comparisons

of these measurements across time, the vessel boundary needs to be segmented and tracked over time

in sequential images acquired by the ultrasound machine.

OCT

With anterior-segment SD-OCT, there are many different artifacts that corrupt the recon-

structed SD-OCT image. The most common artifacts that occur are missing sections in the
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B-scan and the edges of the B-scan being cut off [56]. As seen in Fig. 2.17, this results in a

part of the B-scan appearing black with missing tissue structure definition, or the signal-

to-noise ratio at these areas slowly fading away. These are usually caused by changes in

curvature of the tissue, opaque intervening tissue structure etc.

Other types of artifacts include patient motion [56] during the scan. It is typically very

hard for a patient to be still during imaging. As SD-OCT scans a small region (usually

3×3, 4×4, or 6×6), micro-movements, such as movement of the patient’s eye (saccades),

heartbeat, respiration etc., can result in jittery B-scan images as seen in Fig. 2.18.

(a) (b)

Figure 2.17: (a) Eyelashes of a subject cast a shadow on the tissue structure during imaging,
thereby rendering the left side of the image without structure. (b) Low intensity of the
tissue structure to the right of the image makes it difficult to delineate the tissue boundaries
correctly.

The most confounding artifacts that affect the analysis of SD-OCT images are the hori-

zontal and central artifacts [57]. The central artifact occurs when the line scan camera (de-

tector) is saturated by the back-scattered SD-OCT light beam, which undergoes scattering

and reflections at the corneal apex, and the low line-scan camera exposure time (sensitiv-

ity) [57]. Since the Fourier transform is used to reconstruct the image from the SD-OCT
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(a) (b)

Figure 2.18: Compared to frame 129 of a volume (a), the tissue structure in frame 130 (b) in
the same volume undergoes significant motion in both the axial and lateral directions.

Figure 2.19: The gold arrows represent the horizontal artifacts, while the magenta arrow
represents the central artifact.

signal, these saturated regions appear as periodic sinc functions in the B-scans. The hori-

zontal artifacts are an indirect result of the DC subtraction algorithm applied by different

vendors (Bioptigen, Carl Zeiss, Heidelberg) in their software to reduce the strong central

artifact [57]. As shown in Fig. 2.19, both the aforementioned artifacts affect the delineation
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of the corneal tissue interfaces in the image, and hence affect the segmentation of corneal

interfaces. Any abnormality in the curvature of the tissue structure, which is usually seen

in pathological eyes, also causes the light to be reflected straight back to the detector, satu-

rating it, and creating these horizontal and central artifacts.

Acquiring pathological data is quite challenging, and there are a variety of scenarios

that need to be considered. Usually, pathological datasets obtained with SD-OCT are very

sparse datasets with poor image quality. Tissue structures in these patients are quite subtle,

and can be very hard to visualize. They may only appear in a few images and disappear, or

not be present at all in other images of a dataset. Furthermore, if the images where pathol-

ogy is present are of low resolution, then they will be insufficient to model that particular

condition. In such cases, finer detail of the underlying condition is needed, which is typi-

cally hard to acquire. For example, the position of the Palisades is quite ambiguous in many

images of a dataset; they will only be present in 50-100 images in a 400 image dataset. More-

over, it is also very difficult to establish general a-priori models for pathological cases, as

there are numerous known clinical cases that would need to be modeled. It is also hard to

model the optical physics that would result from each specific type of disease and patho-

logical symptom.
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Chapter 3

Technical Background

3.1 Segmentation of Corneal Tissue Interfaces

Initial approaches towards segmenting the corneal tissue interfaces largely followed the

work of [58], where the Epithelium, Bowman’s layer, and Endothelium were segmented

in 830nm and 1310nm SD-OCT images. Other approaches for retinal layer segmentation

[59–61] were also used as the basis for segmentation of the corneal tissue interfaces. How-

ever, to date, graph-based segmentation approaches [57,62,63] have been the most popular

methods to segment the corneal tissue interfaces. Other types of segmentation algorithms,

such as those that use active contours [58,64,65], Hough Transforms [66], or Gaussian Mix-

ture Models (GMM) [67,68], have also been proposed. Most of the approaches [57,58,63–67]

are also restricted to only 2D image based segmentation of the corneal tissue interfaces.

Some of these approaches also segment only a few layers, and/or segment each layer in-

dividually. The approach in [62], although only implemented on corneal OCT images of

mice, simultaneously segments the corneal tissue interfaces in 3D OCT volumes. However,
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all of these approaches are implemented to only segment corneal interfaces in OCT images

acquired from a single OCT scanner.

The approaches in [58, 64, 65] used an active contour as the basis for segmenting the

various layers in the OCT image. However, active contours are very sensitive to the initial

location from which the level set is allowed to evolve, and incorrectly choosing this ini-

tialization position can lead to incorrect results. The method proposed in [66] utilized a

training set of manually labeled images to generate an initial quadratic curve shape model

of the cornea. This curve model was then optimized based on filtering the input OCT im-

age with a Prewitt edge detector, and the Hough Transform was used to find the different

corneal layers. However, the optimization of the curve shape model would immediately fail

when there are large specular artifacts (central and horizontal) present in the OCT images.

The approach presented in [57] made ad-hoc assumptions on the position of the central

artifact, and relied on pre-processing of the input OCT images before being fed to a Djik-

stra’s algorithm-based segmentation approach to estimate the location of the corneal tissue

interfaces. It is not guaranteed however that the central artifact would always be present in

the central section of the OCT scan, and an estimation of the total thickness of the cornea

does not necessarily extend to pathological cases. Furthermore, this approach was vali-

dated on only small datasets, and would not reliably perform well on datasets acquired by

different OCT systems.

The approach in [69] was the first to transfer a consistent methodology to volumes and

images acquired from three different OCT systems. However, the pre-processing steps that

were followed were the same as those steps in [57,67,68]. These pre-processing steps are ad-

hoc, for example, estimating the position of the central artifact by computing the difference

in average intensities of pairs of columns in the image, and locating the central artifact if the
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difference was larger than 6 [68]. These approaches [57, 67–69] do not transfer to different

datasets where the characteristics of the artifacts are different. For example, we applied the

first pre-processing step in [57,69] to remove the horizontal artifact in images acquired by a

Ultra High Resolution OCT (UHR-OCT) system [70] and a Bioptigen SD-OCT system [71].

This involved computing the mean intensity of each row in the image, and subtracting this

mean value from each pixel in the corresponding row. As seen in the UHR-OCT images in

Figs. 3.1(c) and 3.1(d), the amplitude of corneal tissue interfaces was drastically reduced in

the left and right sides of the image. This SNR drop was significant when compared against

the preprocessed result of the Bioptigen system acquired SD-OCT image in Figs. 3.1(a) and

3.1(b), where the tissue interfaces were still visible. Any previous algorithm would fail to

segment the boundary in these images due to the lack of structural information.

In [67,68], a Gaussian Mixture Model (GMM) was used to localize the Epithelial and En-

dothelial boundaries. Next, the OCT image was contrast enhanced, and the gradient of the

contrast enhanced image was computed in order to estimate the location of the Bowman’s

layer. The methodology involved in this work, which is quite complicated, incorporated a

GMM, a normalized cut graph segmentation algorithm, and a level set to refine the results.

Furthermore, it was only tested on datasets acquired from a single SD-OCT system.

The algorithm published in [63, 65] used graph cuts, which incorporated regional and

shape terms, to segment the corneal tissue interfaces. They pre-processed the OCT images

to remove the central artifact and the Iris of the eye, followed by generating a plausible

ellipsoidal region for segmentation using a graph cut through the use of an Entropy filter.

As mentioned before, this approach was only proposed for datasets that were acquired by

a single OCT system. The approach in [62] proposed a graph based segmentation approach

to segment corneal tissue interfaces in OCT images of mice. Although this approach is the
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(a)

(b)

(c)

(d)

Figure 3.1: (a) and (c) show the original OCT images acquired by a Bioptigen SDOCT system
[71] and a hsUHR-OCT system [70] respectively. (b) and (d) show the result of the pre-
processing step in [57, 69] after subtracting the mean value of each row in the image from
the pixel values in those rows. Notice the drastic drop in intensity of the tissue structure in
(d) on the left and right sides of the image, with no boundaries clearly visible.

first to directly segment the Epithelium, Bowman’s layer, and Endothelium in the cornea

in 3D, it only focuses on segmenting the corneal interfaces in the middle of the radially

acquired OCT images. Furthermore, it does not deal with datasets with large amounts of

noise and visible artifacts. Moreover, prior algorithms do not segment the interfaces in

images acquired by different OCT scanners with different settings.

While it would be useful to incorporate 3D information into an algorithmic approach
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to segmentation, often times, patient motion can prohibit the utilization of such spatio-

temporal cues. For example, if a Kalman filter is initialized with its state vector consisting

of a parameterized curve representing a corneal tissue interface for an image at time t, and

if large motion occurs at time step t+1, then the Kalman filter will incorrectly predict, track

and segment the same corneal tissue at time step t+1. In such scenarios, it will be useful

to know when large motion has occurred, ignore temporal cues, and focus on the spatially

available information for segmenting the corneal tissue interfaces. Ultimately, it is vital

that reliable and consistent segmentations of the corneal tissue interfaces be obtained for

images across different OCT machines in order to measure the corneal thickness, corneal

power, and other biometry measurements.

To date, there have been limited deep learning based approaches to segment the corneal

tissue interfaces in OCT images of the eye. There have been two independent and concur-

rently published deep learning-based corneal interface segmentation approaches [5, 72].

One of these approaches [72] acquired data from a single OCT scanner, and focused only

on the region centered around the corneal apex in these OCT sequences as the drop in SNR

was greater when moving away from this region. The other approach is our recent publi-

cation [5], where we utilized the entire OCT sequence from multiple scanners containing

strong specular artifacts and low SNR regions, and successfully segmented three tissue in-

terfaces.
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3.2 Visualizing the Palisades of Vogt

The premise in previously published approaches has been to show inter-modality agree-

ment in imaging and visualizing the same POV configuration, meaning that OCT cross-

sections of the POV were compared against histological slices [36, 37, 39] or confocal mi-

croscopy images [34, 38, 40, 73]. The main purposes of these previous approaches was to

establish a correlation between the features seen by In-Vivo Confocal Microscopy (IVCM)

or from histological slices, and the features visualized using SD-OCT. These approaches

typically extracted C-mode cross-sections in the coronal plane (after the reconstruction of a

volume of OCT images, which were acquired in the transverse plane), and compared them

against images obtained using IVCM or with histological slices. The C-mode slices were

typically automatically extracted by the SD-OCT system that was used for scanning the tis-

sue in the first place. For example, in [73], the Avanti RTVue-XR SD-OCT system (Optovue

Inc.) was used to image the limbal area, and extract C-mode cross-sectional images.

Typically, C-mode images were automatically pulled out of the volume by two bound-

aries, which were set to be parallel, in the coronal plane, to the ocular surface. The distance

between these two boundaries corresponded to the number of slices that would be aver-

aged to generate a C-mode image [73]. Depending on the SD-OCT system that was used,

the default value of this thickness was different; for example, the Avanti RTVue-XR SD-OCT

system had a default thickness value of 31 µm. These two boundaries were manually ad-

justed to acquire C-mode images at different depths. Images were acquired ∼70 µm below

the corneal/conjunctival surface, as it could be compared against prior work [35, 39, 73].

These prior approaches allowed easy visualization of the POV with SD-OCT, and cross-

correlation with IVCM or histological slices. From these clinical approaches, observations

were made such as: the POV were most predominantly visualized in the inferior and su-
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perior quadrants of the eye [38, 73]; higher visibility of the POV was seen in subjects of

younger ages, with hyper-pigmentation of the limbal area, over older patients; very low

POV visibility in severe dry eye patients when compared against patients with moderate

dry eye disease or normal subjects [73]; the anatomical status of the limbal region could be

assessed to follow-up on the diseases/conditions that affect the limbal area, such as dry eye

disease, contact lens wear, or ocular surface surgery [34, 36, 39, 73].

Currently, IVCM is the gold standard method to obtain information on vascular changes

or cell size, inflammatory infiltrates, and morphological characteristics in the limbal region

of the eye [34, 36, 73]. IVCM can be used to study the cellular integrity of the POV, the

morphology of cells and smaller structures such as focal stromal projections. These cellular

characteristics of the POV are presently unable to be studied by SD-OCT, as it can only

provide an idea of its presence and density, but not the “quality” of the structures [73].

However, no work has been done before in comparing POV cross-sections extracted from

volumes acquired by different OCT imaging systems. Doing so will reinforce the correlation

between POV cross-sections extracted using the same imaging modality, namely OCT, and

demonstrate the ability of OCT to reveal consistent structures in the limbus. Moreover, for

an approach to be clinically useful, fast and consistent visualization of the POV imaged

using SD-OCT is needed, which is currently unavailable.

Off-the-shelf built-in algorithms in SD-OCT scanners such as the Optovue Avanti scan-

ner, to extract C-mode slices are not easily available for comparison due to patents on these

algorithms. To date, there are no publicly available approaches to extract C-mode slices

from SD-OCT volumes that image the ocular limbus and the POV. In general, visualiza-

tion of the POV requires the extraction of cross-sections from registered volumes, which

entails individual B-scan alignment [34]. While advances in POV visualization exist in lit-
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erature [34, 36, 39], they employ highly laborious approaches. In [34], stacks of OCT vol-

umes had to be aligned manually, and cross-sections were then extracted to visualize the

Palisades. In [36], an automated algorithm and manual alignment was used to create 3D

volumetric views of the POV in the limbal area; however, no details were provided on the

registration algorithm adopted in their paper. To date, the only prior published alignment

protocol [34] is not fully automatic, does not include a training protocol, and requires sub-

stantial subjective human judgement. Pure image-based registration approaches can also

be used for the alignment of B-scans in a volume, such as the multi-resolution registra-

tion approach in [74] (available as the StackReg plugin in ImageJ), and the multi-resolution

mutual information based registration approach in [75, 76]. However, both image-based

approaches show some mis-registration in the B-scans (see Figs. 6.12(c) and 6.12(d)), and

subsequent cross-sections extracted from volumes generated by these methods would be

inaccurate. Through these approaches, neither the structures inside the limbus, nor the

actual visible boundaries, were aligned consistently.

(a) (b) (c) (d)

Figure 3.2: (a)-(b) The 1st (target) and 150th (reference) B-scans in a volume; (c) a false color
overlay of the StackReg [74] registration result; (d) the mutual information-based [75] reg-
istration result. Note the lack of consistent alignment between (a) and (b) - neither the
structures inside are aligned, nor the shallowest visible limbal tissue interface.
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To date, there have been no deep learning based approaches to segment the outermost

limbal tissue interface or the Palisades of Vogt in SD-OCT images of the eye. A lot of re-

search has been devoted to segmenting multiple retinal layers and quantify the morpholog-

ical changes the retinal layers undergo in patients with diseases such as diabetes [77], Age-

related Macular Degeneration (AMD) [78, 79], Polypoidal Choroidal Vasculopathy (PCV)

[80], and macular edema [81]. Most of these approaches [77,79,81] utilize an artifical neural

network that is similar to [82], which uses a convolutional neural network (CNN) architec-

ture called the U-Net. Other approaches [80] are based on the fully convolutional neural

network (FCN) [83], while some are based on the LeNet [84]. In our experiments, the LeNet

and U-Net do not have the discriminative power to segment corneal tissue interfaces.

To this end, we proposed the first rapid and fully automated method to visualize the

POV imaged using SD-OCT [3]. The limbal interface was first segmented in each B-scan of

a volume, and it was used to guide the registration of each B-scan to a reference B-scan. Do-

ing so allowed a registered 3D volume to be obtained, from which POV cross-sections could

be extracted. This preliminary work also incorporated the first fully validated protocol [3]

to assess the similarity between POV cross-sections extracted automatically from OCT vol-

umes, and POV cross-sections that were extracted after manual alignment of B-scans in

the OCT volumes. This preliminary work was limited to volumes acquired from a single

OCT imaging system; other OCT imaging systems exhibit different properties while imag-

ing tissue, such as intensity changes, increased speckle noise, and specular reflection. This

preliminary approach would not work well when the amplitude of the artifacts were high

in the OCT images. Furthermore, a full en-face view of the POV around the entire limbus

was not generated, nor has it been accomplished by anyone to the best of our knowledge.
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3.3 Vessel Segmentation and Tracking

There have been several approaches to segmenting the boundaries of vessels in 2D ultra-

sound images [85–88]. However, most of these approaches are only suited to single 2D ultra-

sound images. For our purposes, it is necessary to segment and track the vessel boundary

as it evolves in a video sequence that is usually acquired during an imaging session. To this

end, traditional ultrasound based vessel segmentation and tracking has been researched be-

fore [89–93]. However, when tested on UHFUS images, these gradient-based edge detection

approaches failed to detect and track the vessel boundaries in the presence of higher speckle

noise. Furthermore, precise delineation of the deforming vessel is required for vessel-based

measurements, whereas prior approaches [89–93] modeled the vessel as an ellipse without

accounting for the deforming vessel contour.

A recent approach in [93] was designed for a specific imaging setting of 55% maximum

gain, but when applied to UHFUS sequences, it failed to track vessels (wrong location with

0% overlap) regardless of gain settings as shown in Fig. 3.3. Furthermore, this approach

was validated on limited data.

Figure 3.3: Failed vessel detection result (red ellipse) of algorithm in [93] on an UHFUS
image. The actual vessel is present in the upper left corner.

Many approaches have been published in literature regarding the segmentation of ves-
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sels from ultrasound sequences using level-set active contour frameworks [85–87, 94–97].

However, these frameworks are difficult to implement in real-time, and they are not robust

to initialization problems. Initialization of a level set substantially constrains the range of

possible solutions. The choice of a level set framework determines the complexity and asso-

ciated runtime of the algorithm. For example, a recent image entropy based level-set based

approach [88] designed for HFUS images ran slowly at 0.5 seconds per image on modern

CPU hardware.

Learning-based vessel segmentation algorithms have also been proposed that take ad-

vantage of deep neural networks [98–101]. However, these methods make underlying as-

sumptions about the methodology. For example, in [100], although the approach is sound,

datasets were acquired from only one ultrasound machine, which had significantly lower

speckle noise corrupting the vessel boundaries. Moreover, only longitudinal scans in the

sagittal plane were considered in the estimation of the carotid intima-media thickness, and

transverse cross-sections were not acquired and analyzed. In [98], candidate locations pos-

sibly containing vessels in ultrasound images, determined using their approach published

in [93], were classified by a deep neural network as containing the vessel or not. However,

as mentioned before, the approach in [93] only worked when the gain setting on the ultra-

sound machine was 55% of the maximum gain, and as it is the underlying basis approach

for the method in [98], it would most likely fail for other settings or on datasets acquired

from different machines. On the other hand, the methodology proposed in [101] centered

the vessel candidate region before feeding the image into a neural network for detection of

the vessel boundaries. It did not automatically take the entire image, and provide segmen-

tation results for the vessel present in the image. Furthermore, both these approaches are

significantly slower than the real-time vessel segmentation and tracking methods [89–93].
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Chapter 4

Segmentation of Corneal Tissue

Interfaces

4.1 Classical Approach

4.1.1 Problem Statement

For an anterior segment SD-OCT image I containing four corneal tissue interfaces in a

volume of images, the problem can be considered as assigning every pixel in the image

a specific label L = 1 . . .K. As shown in Fig. 4.1, we can define the segmentation task

as assigning every pixel in the image I a label belonging to a particular tissue interface

with K = 5. This includes the four corneal tissue interfaces (Epithelium, Bowman’s layer,

Bowman-Stroma interface, and Endothelium) and the background. Similar to Sec. 5.1.1

and 5.2.1, each B-scan is acquired independently in a SD-OCT volume, with no external

tracking mechanism or a guaranteed global alignment available. Segmenting the corneal
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tissue interfaces should allow corneal biometry measurements, such as corneal refractive

power, to be estimated.

Figure 4.1: An expertly annotated anterior-segment SD-OCT B-scan showing the four dif-
ferent interfaces: Epithelium (red curve), Bowman’s Layer (green curve), Bowman-Stroma
Interface (yellow curve), and Endothelium (orange curve).

4.1.2 Data Acquisition

We obtained ten deidentified volumes consisting of 50 B-scans each from our clinical col-

laborators, and each B-scan’s dimension was 1000×1024 pixels. The volumes contained

B-scans from both eyes of human subjects. The volumes were acquired by a custom-built

Bioptigen system [71] with a 100 nm bandwidth light source centered on 870 nm, yielding

a theoretical axial resolution of 3.5µm, and scanning 6×6 mm areas of the cornea.
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4.1.3 Noise Reduction

Gaussian Blurring: We applied Gaussian blurring to the original B-scan using a small ker-

nel size of 3×3 pixels with σx=1.5 in the X-dimension and a small σy=0.1 in the Y-dimension.

Small values were applied to only smooth out the noise along the X-dimension, while main-

taining edge definition along the Y-dimension (see Fig. 4.2). A large value for σx removes

a lot of structural detail in the X-dimension, and a large value for σy reduces the intensity

of the corneal tissue interfaces, and thereby affects the detection of the interfaces after blur-

ring. There is no noticeable difference in Gaussian blurring over median filtering for small

kernel sizes as shown in Fig. 4.2. However, for large kernel sizes, median filtering signifi-

cantly reduced the corneal tissue edge intensities. In our algorithm, we utilized Gaussian

blurring as it is amenable to parallelization using GPU kernel convolutions.

Horizontal Artifact Reduction: We reduced the effect of the horizontal striations visual-

ized in the B-scans, while trying to preserve the foreground tissue intensity by following

the approach proposed in [57]. First, we computed the mean pixel intensity value of each

row in the SDOCT image. Then, we subtracted the estimated mean of each row from all

the pixel intensities of that row. Finally, after subtraction, we clamped all values below zero

to the grayscale range of 0 to 255. All the pixels in the rows saturated by horizontal arti-

facts contained similar pixel intensities that were closer to the brighter end of the grayscale

spectrum. In contrast, the rows not affected by the horizontal artifacts had lower mean in-

tensity values as the pixel values in those rows would range the entire grayscale spectrum.

This meant that the subtraction of the row mean from all pixels in each corresponding row

significantly reduced the pixel intensities in rows affected by the horizontal artifact, while

slightly lowering the pixel values of other rows, thereby preserving structural detail of the

corneal tissue. Thus, the adoption of this approach resulted in efficient noise and horizontal
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Figure 4.2: a) The original SDOCT B-scan. b) The Gaussian blurred image smoothed using
a 3×3 pixel kernel with σx=1.5 and σy=0.1. c) The median filtered image smoothed with a
3×3 pixel kernel. The colored and dashed boxes show the zoomed regions in each image.
There is no noticeable difference in the filtering done by a median filter over a Gaussian
filter. However, the filtering effect is more profound in the median filtered image when the
kernel size becomes larger.
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artifact reduction as shown in Fig. 4.3(b) and 4.3(d).

Vertical Artifact Removal: The vertical artifact severely affects a few of the B-scans in a

volume. This is due to the scanning pattern of the OCT light beam as it scans closer to the

corneal apex, resulting in greater back-reflection from the structures beneath the cornea. We

mitigated the effects of the vertical artifacts in the filtered image obtained from the previous

step by adopting a variation of the approach put forth in [57]. First, we computed the mean

pixel intensity of each A-scan (column) in the image. Next, we estimated the average of the

mean values of all the A-scans in the image. Finally, we removed the vertical artifacts by

setting to zero all the pixels in the columns whose mean values were greater than twice the

average of means. The result of vertical artifact removal is shown in Fig. 4.4.

The A-scan means represented the columnar mean distribution across the image. Columns

unaffected by the vertical artifact would have smaller mean values, in contrast to the columns

affected by vertical artifacts, which would have mean values close to the higher intensity

ranges of the grayscale spectrum. So, the value arising from the estimation of the aver-

age of the columnar means will be biased towards the columns that are not affected by the

vertical artifact. By using this value, we can selectively detect columns in images affected

by vertical artifacts whose means are higher than average of the means, and remove them

as they do not contribute to the detection of the corneal tissue interfaces. Therefore, the

vertical artifacts are robustly isolated and removed from the image, as seen in Fig. 4.4.

4.1.4 Gradient Computation

We computed the gradient of the filtered image after the horizontal artifacts are reduced

and the vertical artifacts are removed. In particular, we use the method of central differences

(see Eq. (4.1) below) to compute the gradient of the filtered image in the vertical direction
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Figure 4.3: Reduction of the horizontal artifacts in the SDOCT image. The original SDOCT
images are shown in a) and c), while the horizontal artifact reduced image is shown in b)
and d). The zoomed regions inside the red boxes show the effect of the horizontal artifact
reduction.

by convolving the image with a vertical kernel such as [-1; 0; 1]. Given the filtered image F

of dimension W×H, the value at a pixel [i,j] in the gradient image is estimated by:

Gi,j =
Fi,j+1 − Fi,j−1

2
, i ∈Wandj ∈ H (4.1)

We use the vertical gradient of the filtered B-scan (see Fig. 4.5) to detect two of the four

corneal tissue interfaces. That is, of the four interfaces that we detected, the Epithelium

and the Endothelium were detected using two segmentations of the filtered B-scan, specifi-
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Figure 4.4: Removal of the vertical artifacts in the SDOCT image. The horizontal artifact
reduced SDOCT images are shown in a) and c), while the vertical artifact removed images
are shown in b) and d). Note that in a) and b), there are no vertical artifacts present in the
horizontal artifact reduced image. Hence, the vertical artifact removed image is the same
as the horizontal artifact reduced image.
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Figure 4.5: The filtered images are shown in (a) and (c), while the gradient of the filtered
images are shown in (b) and (d).

cally an over-segmentation and an under-segmentation. However, Bowman’s layer and the

Bowman-Stroma interface were detected using the gradient of the filtered image. Hence-

forth, we represent a pixel at a location [i, j] in an image with subscripts, as either Ii,j , Fi,j ,

or Gi,j .

4.1.5 Image Segmentation

We begin by computing two segmentations of the filtered image - an over-segmentation

and an under-segmentation. To this end, we needed an estimate of the foreground’s lower

intensity range, and this was computed by using the vertical gradient of the filtered image.

The vertical gradient of each A-scan in the filtered image will provide a distribution of inten-

sity differences as we proceed axially along each A-scan. Specifically, as we proceed axially

along an A-scan, many regions that may potentially represent a tissue interface boundary

in the filtered image will transition from a lower pixel intensity to a higher pixel intensity.

In the ideal case, at the exact location of an interface, there will be a corresponding high
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gradient value. However, as tissue interfaces are often fuzzy in SDOCT images, a band of

pixels in an A-scan (and indeed, across the image) in the filtered image will have higher

pixel intensities and represent an interface. As these banded regions are encountered in

each A-scan, they will have corresponding positive gradient values. So, when the maxi-

mum vertical gradient value for each A-scan in the image is extracted, the list of maximum

values will represent the pixel intensity range of the foreground of the image. In this case,

the foreground represents the tissue structure. Thereafter, we estimated the mean value

of this range as it captures the mean of the distribution of the foreground pixel intensities.

This mean value can be calculated as follows:

threshG =
1

W

W∑
w=1

max
h∈H

(Gw,h) (4.2)

where W and H represent the B-scan’s width (number of A-scans) and height (pixels

per A-scan). After we estimated threshG, the over-segmentation was generated by uti-

lizing threshG directly to segment the filtered B-scan. The under-segmentation was ob-

tained by applying 50% of threshG to the filtered image. The empirically determined under-

segmentation percentile translated well across all volumes we were provided with.

threshover = threshG (4.3)

threshunder = 0.50× threshG (4.4)

Outlier Removal: The two binary segmentations were then filtered to remove outliers as

they affected the segmentation of the Epithelium and Endothelium. We removed outliers

by considering the 3×3 neighborhood around each foreground pixel, and determining the

number of pixels that were also part of the foreground in that neighborhood. We rejected
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those detected pixel locations for which the potential member count was less than a spe-

cific number of segmented pixels. We applied this outlier removal method once for both

segmented images, and the potential member count in a neighborhood was emperically set

to 5, which worked robustly across all the volumes we used for validation.

Figure 4.6: The over-segmentations of the filtered SDOCT image are shown in (a) and (c).
After outlier removal, the binary image is dilated with a 5 × 11 kernel, and the dilated
images are shown in (b) and (d).

Dilation: After outlier rejection, we dilated the filtered segmentations to fill in the discon-

nected regions. The segmentations were dilated in order to join regions that were originally

detached, but belonged to the same region of tissue. Both binary segmentations were di-

lated with a 5 ×11 pixels kernel as we wanted to link regions that were disconnected by

bridging across the columns of the image with a large kernel width. The results of segmen-

tation, outlier removal, and dilation are shown in Figs. 4.6 and 4.7.
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Figure 4.7: The under-segmentations of the filtered SDOCT image are shown in (a) and
(c). After outlier removal, the binary image is dilated with a 5×11 kernel, and the dilated
images are shown in (b) and (d).

4.1.6 Segmenting Corneal Tissue Interfaces

We use our fast A-scan based approach [1] to search for each tissue interface in the corre-

sponding binary segmentation or gradient image. The Epithelium was detected using the

dilation of the over-segmented image, while the Endothelium was detected using the di-

lation of the under-segmented image. Bowman’s layer and the Bowman-Stroma interface

were directly estimated from the vertical gradient of the filtered B-scan.

Epithelium

The Epithelium was detected by employing a top-to-bottom search in the dilated image of

the over-segmentation. We employed a 7 × 7 kernel window, which was anchored at the

center pixel in the first row of the kernel window. We iterated through all the pixels in each

column in the dilated binary image, examined the 7 × 7 neighborhood around each pixel,
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and found the location of the first bright pixel in each column that satisfiedFi,j ≥ threshover

for all its neighbors. A 7×7 kernel is an adequate choice over a 3×3 or 5×5 kernel to detect

this interface. This is because even after outlier removal, the over-segmented image is still

affected by a small amount of noise. In addition, the 3× 3 or 5× 5 kernel sizes are smaller

than the 5 × 11 kernel used to dilate the over-segmented image. So, the layer detection is

disrupted when a 3 × 3 or 5 × 5 kernel is used. However, the 7 × 7 kernel is insensitive to

this noise, and accurately detects the Epithelium.

Bowman’s Layer

Bowman’s layer lies underneath the Epithelium. We restricted our top-to-bottom search for

this interface in the vertical gradient image to 40 µm - 65 µm below the Epithelium [102,103],

and ignored all the pixels above the previously detected Epithelial interface. This heuristic

was driven by the anatomical configuration, which was estimated by [102, 103]. As elabo-

rated in the previous sections on image gradient and image segmentation, we searched for

a gradual dark-to-bright transition in pixel intensity between the background region and

the foreground across all A-scans in the filtered image. This transition represents the Bow-

man’s layer, and it is demarcated in the gradient image by the locations of pixels where the

sum of pixel intensities in a small 3× 3 neighborhood around each pixel is the highest. The

pixel intensities in the region exactly at the location of Bowman’s layer in the filtered image

will be large, and the gradient values in the neighborhood of the pixels that delineate this

interface will consist of positive values. Thus, the sum of the gradients in the neighborhood

of pixels that demarcate this interface will have a large positive values. At regions that are

not close to the boundary, the sum of gradient values will be close to or lesser than zero as

they are not indicative of a clear boundary presence. The 3×3 kernel is anchored at the cen-

66



ter pixel in the top row of the kernel, and we looked for the first pixel below the Epithelium

that met the criterion of having the greatest sum of gradient values.

Bowman-Stroma Interface

This layer lies below the previously detected interfaces, and we again use the gradient image

to detect it. The interface that separates Bowman’s layer from the Stroma is very faintly

visible in the filtered B-scan, and at times, it is very difficult to determine in the original B-

scan even for a human observer. We continued with our top-to-bottom search for a gradual

dark-to-bright transition in pixel intensity in the filtered B-scan. Again, we restricted our

search region for this interface to the region 10 µm - 20 µm below Bowman’s layer [102,

103]. As explained in the detection of Bowman’s layer, this transition in the filtered image

is represented in the gradient image by the locations of pixels where the sum of gradient

pixel intensities in a small 3× 3 neighborhood is the highest. The 3× 3 kernel is anchored

at the center pixel in the top row of the kernel, and we searched for the first pixel below the

two previous interfaces that met the criterion of having the greatest sum of gradient values.

Endothelium

This tissue interface is the bottom-most interface in the filtered B-scan, and it is the most

difficult tissue interface to detect as the SNR at the location of the Endothelium is very low.

We used the dilated image of the under-segmentation as it provided the greatest structural

detail of the Endothelium (see Fig. 4.7). We executed a top-to-bottom search of all A-scans in

the dilated binary image that corresponded to a dark-to-bright transition in pixel intensity

in the filtered image. We concentrated our search for this interface in the region 450 µm -

750 µm below the Epithelium [57, 102, 103]. We utilized a kernel of size 11 × 11, anchored
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at the center pixel in the bottom row of the kernel. Through our empirical experiments,

we were able to determine that the 11 × 11 kernel was an appropriate choice for detecting

the Endothelium. This was because dilating the under-segmented binary image with a

5× 11 kernel caused the region near the Endothelium to grow. As more pixel regions were

connected together, we needed a larger kernel in order to identify this interface. Thus, we

searched through each column to find the last pixel in that column whose neighbors all

satisfied Fi,j ≥ threshunder.

Curve Fitting

Once the boundaries of the corneal tissue interfaces have been identified, they are fitted

with a second or third order polynomial, as seen in Figs. 4.8 and 4.9, following the same

curve fitting [104] approach in Sec. 5.1.4.
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Figure 4.8: Detected corneal tissue interfaces overlaid on the corresponding original images.
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Figure 4.9: Detected corneal tissue interfaces overlaid on the images that have varying de-
grees of SNR and artifacts.
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4.1.7 Results

Comparison of Automatic Versus Manual Segmentation

We validated our algorithm’s performance by comparing the automated segmentations

against manual annotations of two graders. Two experts selected a subset of 20 images

from each of the four datasets, and manually annotated them. We also evaluated the inter-

grader annotation variability, where we compared the annotations done by the two expert

graders. The 20 B-scans were chosen from each dataset in such a way that they contained

images that were severely affected by the horizontal and vertical artifacts. Similar to the

human corneal SD-OCT images seen in [57], we believe these artifacts are detrimental to

visualizing clear structures. Our quantitative metrics are shown in Tables 4.1, 4.2, and 4.3.

Table 4.1: Grader 1 - Mean and standard deviation differences in pixel locations of corneal
interface segmentations between manual annotations done by the first grader against the
automatic segmentation results (in pixels)

Mean Standard Deviation
Epithelium 1.14 0.35

Bowman’s Layer 0.69 0.19
Bowman-Stroma Interface 1.07 0.31

Endothelium 1.36 0.33

Table 4.2: Grader 2 - Mean and standard deviation differences in pixel locations of corneal
interface segmentations between manual annotations done by the second grader against
the automatic segmentation results (in pixels)

Mean Standard Deviation
Epithelium 0.87 0.47

Bowman’s Layer 0.61 0.31
Bowman-Stroma Interface 2.94 1.33

Endothelium 1.91 0.81

From Table 4.3, we can see that the two graders were very nearly in agreement with each

other on the location of the Epithelium and Bowman’s layer. However, the graders agreed
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Table 4.3: Inter-Grader Variability - Mean and standard deviation difference (in pixels) be-
tween manual annotations done by two different graders

Mean Standard Deviation
Epithelium 0.89 0.34

Bowman’s Layer 0.62 0.26
Bowman-Stroma Interface 1.95 1.04

Endothelium 1.44 0.59

less with each other on the location of the Bowman-Stroma Interface and Endothelium, as

evidenced by the high mean and standard deviation differences for these two interfaces.

This is can be attributed to the poor visibility of the boundary of these interfaces. As the

annotations performed by the two human graders were reasonable representations of the

true locations of each interface in the cornea, we expect that these annotations represent a

reasonable target for any real-time or non real-time automated algorithm. Our real-time

algorithm was able to achieve this goal.

Similar to [57,68], our real-time algorithm produced automated segmentations of corneal

interfaces, which when compared against the manual annotations of each grader, provided

mean and standard deviation differences that were close to the manual annotations as well

as the inter-grader differences. The tissue interfaces of the cornea were detected correctly

by our algorithm for all the validation images, and indeed for all images in all datasets we

were provided with. Our algorithm did very well in estimating the corneal structure at

regions in images where the tissue interfaces were simply not visible or were affected by

artifacts as seen in Figs. 4.8 and 4.9.

Analysis, GPU Performance Metrics, and Run-time

We analyzed the performance of the algorithm on our NVIDIA Quadro K6000 GPU that

was integrated in our desktop (Intel (R) Xeon (R) CPU, 3.10 GHz, 64 GB RAM, 64-bit Win-
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dows 7 OS). We used NVIDIA’s Visual Profiler v4.2 and NVIDIA’s Nsight Visual Studio

Edition v3.2 to measure timing statistics. Since a CUDA-enabled GPU is efficient for par-

allel programming and optimization, we allocated dedicated threads for each pixel in the

SDOCT image, and each thread was allowed to process that pixel and its corresponding

elements.

We define the real-time performance of an algorithm to be the capability of an algorithm

to process ≥30 frames per second. We ran our algorithm 10 times to measure the runtime

range of the program, and it was 3.801±0.5 seconds on a volume consisting of 50 B-scans.

The timing range in which all four tissue interfaces were detected for a SDOCT image in

the 50 B-scan volume was ∼24.97±4.32 milliseconds. Normally, our algorithm would al-

low real-time execution at ≥40 B-scans per second. At its best, our algorithm would allow

real-time operation at≥48 B-scans per second. If our algorithm takes longer to process each

B-scan, then it would allow frame rates of≥34 high-resolution (1000×1024) B-scans per sec-

ond. The runtime ranges incorporate the time taken to allocate memory on the CPU and

the GPU, read images from the hard drive of our desktop, complete memory transfers to

the GPU, process each B-scan, overlay the fit curves on the images, and release the previ-

ously allocated memory space on the CPU and GPU. We also implemented an optimized

CPU-based version of the same algorithm, and the duration of execution of the CPU-based

algorithm was 37 seconds. By utilizing the GPU, we achieve an ≥9.6× speedup in perfor-

mance.

Discussion

We have presented an algorithm that can segment four corneal tissue interfaces on a per-

image basis. We detected four tissue interfaces in an 1000×1024 SD-OCT B-scan in ∼ 24.97
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± 4.32 milliseconds, and processed a volume consisting of 50 such B-scans in 3.801± 0.5 sec-

onds. We achieved faster processing times with our algorithm in contrast to the approaches

published in [57] and [68], wherein a single B-scan in a volume was processed in 1.13 sec-

onds and 7.99 seconds respectively. In addition, it is not known if the timing measurements

in [57] and [68] incorporate the memory allocation/deallocation times. Assuming that they

do incorporate memory transfers, this means that the graph-based approach in [57] takes

56.5 seconds to segment three corneal layers in a dataset consisting of 50 B-scans with di-

mensions 1000×1024, while the fastest method published in [68] takes 399.5 seconds to seg-

ment three corneal layers in a volume consisting of 50 B-scans. The size of the B-scans in a

volume of 40 B-scans was not mentioned in [68]. This means that for a volume consisting of

50 B-scans, we segmented four corneal interfaces, and achieved a speedup of≥ 14.6× over

the graph-based method in [57]. From the results in [68], our algorithm provides a speedup

of≥ 103.7× over their fastest approach for a volume consisting of 50 B-scans. Moreover, we

have achieved a ≥ 9.6 × speedup over an optimized CPU-based version of our algorithm.

These statistics are shown in Fig. 4.10. Furthermore, the results of our validation are simi-

lar to the results obtained by the previously published methods. In our algorithm, we were

loading each B-scan from the hard drive of the desktop to the GPU we were working with.

In the case of off-the-shelf commercial SDOCT systems that employ GPU’s for processing,

the individual B-scans after Fourier reconstruction are already present on the GPU. Since

the B-scans are already present in GPU memory, it will be straightforward to make efficient

use of the GPU bandwidth in order to transfer data between different locations on the GPU,

process each B-scan, and achieve greater throughput.

We have not utilized the information from adjacent B-scans in the volume in order to seg-

ment the corneal interfaces. This is because we were only provided with ten de-identified
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Figure 4.10: The bar graph shows the timing statistics of our algorithm compared against
previously published methods.

SDOCT volumes of human subjects, and we did not have the opportunity to acquire multi-

ple volumes at the same imaging location in the same imaging session. Typically, in clinical

imaging, the subject’s eye will move and cause jitter in the B-scans, thus requiring motion

compensation in software. In Figs. 4.11, we show the results of our approach to mitigate

the effects of motion in an example SDOCT volume that we were provided with. We reg-

istered the Epithelial tissue interface in each B-scan in the volume to the Epithelial tissue

interface of the first B-scan in the volume (as seen in Fig. 4.11). Fig 4.12 shows the dif-

ference in the position of the corneal apex in a select number of B-scans before and after

registration. By following this approach, we were able to align the B-scans in the volume

better, and this is shown in Fig. 4.13. We also show the tissue interfaces, before and after

alignment, rendered as volumes in Figs. 4.11 and 4.13. We implemented an Iterative Clos-

est Point (ICP)-based [105] registration algorithm in MATLAB (Mathworks 2017a), and the

Epithelial tissue interfaces detected from each B-scan in the volume were registered in ∼

8.2 seconds.
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Figure 4.11: In each of the four images above, the detected tissue interfaces in an example
volume containing 50 B-scans have been rendered. In (a) and (b), the detected corneal tissue
interfaces from each B-scan are rendered together without registration. Note that in (a) and
(b), due to the movement of the subject’s eye, the tissue interfaces in the rendered volume
are completely out of alignment. This is especially visible in (b), which shows that the B-
scans in the volume are not registered with each other, with the motion of the subject’s eye
not being compensated for. In (c) and (d), we show example renderings of aligned tissue
interfaces. The tissue interfaces were aligned by registering the Epithelial interface in all
B-scans to the Epithelial interface in the first B-scan of the example volume. From (d), it is
clearly seen that the tissue interfaces are better aligned than in (b).

Even a fast and simple ICP-based registration algorithm (which cannot preserve out-

of-plane curvature (see Fig. 4.12), making the corneal surfaces appear cylindrical rather

than spherical) still takes ∼ 8.2 seconds to register the 50 B-scans of a single volume. Al-

though the results from our registration approach are promising, it is not amenable to our
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Figure 4.12: In each bar graph above, the location of the corneal apex in a set of five B-scans
in the volume is shown; the five B-scans were from B-scans 16 through 20. The corneal apex
was adjudged to be the shallowest pixel location in the image among all pixels representing
the Epithelium. In the bar graph on the left, the location of the corneal apex in each B-
scan was rising with the scanning pattern of the SDOCT system and the movement of the
subject’s eye. So, the corresponding row number in image that they were detected in is
decreasing, as shown in the bar graph on the left. The red line represents the location of
the corneal apex in the first B-scan in the volume. In order to compensate for the motion of
the subject’s eye, the Epithelial tissue interface detected in each B-scan of the volume was
registered to the Epithelial tissue interface in the first B-scan of the volume. In the bar graph
on the right, we see the effect of registration of Epithelial tissue interfaces. Here, the pixel
location of the Epithelium in B-scans 16 through 20 is within one pixel of the location of the
Epithelium in the first B-scan of the volume.

real-time approach currently. Accurate motion-compensation registration algorithms are

not yet ready for real-time operation. Active research [106] [107] into motion compensa-

tion has put forward numerous registration approaches, with varying degrees of human

interaction required for good results. An efficient method towards registration of B-scans

in OCT volumes has been proposed in [106], but it requires multiple volumes to be acquired

in the same imaging session. Other approaches, such as eye tracking [107] for motion com-

pensation, require significant hardware and software modifications in terms of applying

tracking signals for eye motion compensation along with signals that drive the OCT galvo

mirrors. These approaches cannot be easily modified and integrated into our algorithm,

77



Figure 4.13: In each of the four images above, the detected tissue interfaces are overlaid onto
the original B-scans in the volume, and then rendered as 3D volumes. In (a) and (b), we can
see that the B-scans are not registered with each other, and the overlaid tissue interfaces
are out of alignment. This is easily visible in (b). However, in (c) and (d), the B-scans are
aligned by registering the Epithelial tissue interface of all B-scans to the Epithelial interface
from the first B-scan in the volume. From (d), it is clearly seen that the tissue interfaces are
aligned better than in (b).

and therefore, they are beyond the scope of this work.

The Endothelial curve in Fig. 4.13 is arched slightly, which is due to the registration

process. Since we are only registering the Epithelial tissue interface across B-scans, the

registration of other detected interfaces is unconstrained. Additionally, in the case of the

Endothelium, the SNR decreases with depth, and thus makes registration a difficult task.
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As achieving motion compensation through advanced registration techniques is not the

core aim of this work, so we leave this for future experiments. In the future, we plan to

exploit the positional information of the corneal interfaces in adjacent B-scans. By doing

so, we can explore quick and efficient approaches towards registration of B-scans in SD-

OCT volumes, such that the shape of the cornea after motion compensation is preserved.

In addition, we also plan to build an optimal system that would stream all the B-scans to the

GPU in such a way that while a B-scan is currently being processed, the previous and next

B-scans in the volume would have been transferred through memory. This would allow our

fast frame rates to be achieved.
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4.2 Deep Learning Approach

Given a corneal OCT image I, the task is to find a functionF : I → L that maps every pixel

in I to a label L ∈ {0, 1, 2, 3}. Similar to [57,108], the corneal interfaces to be segmented are:

(1) Epithelium, (2) Bowman’s Layer, and (3) Endothelium, with 0 being the background.

Figure 4.14: Our framework takes as input an OCT image, predicts the location of corneal
interfaces using the CorNet architecture, and fits curves to the detected interfaces.

4.2.1 Data Acquisition

De-identified datasets that had been previously acquired for an existing research database

were used [3]. 48 volumes from both eyes of 8 subjects were acquired with different scan

sizes using two OCT scanners; a Bioptigen SD-OCT scanner (Device 1) [109], and a high-

speed ultra-high resolution OCT (hsUHR-OCT) scanner (Device 2) [70]. Device 1 had a

3.4µm axial and 6µm lateral spacing when scanning a 6×6mm area, generating volumes of

dimensions 1000×1024×50 (W×H×B-scans) pixels. Device 2 had a 1.3µm axial and a 15µm

lateral spacing when scanning a 6×6mm area, and a 7.5µm lateral spacing when scanning a

3×3mm area respectively, yielding volumes of size 400×1024×50 pixels. Each dataset was

annotated by an expert grader (Grader 1) and a trained grader (Grader 2).
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4.2.2 Corneal Interface Segmentation Network (CorNet)

Fully convolutional networks, such as the UNET [77, 82] and BRUNET [79], are the state-

of-the-art in retinal OCT segmentation. Such networks comprise of contracting and ex-

panding branches, providing a dense output where each pixel is assigned the tissue class

that it belongs to. The BRUNET architecture [79] overcame problems of the UNET, such

as holes in the segmentation, by modifying the UNET architecture. First, dilated convo-

lutions [110–112] were used in Inception-like blocks [112] to increase the receptive field of

each layer. Next, batch normalization [113], residual [114] and bottleneck connections [112],

and a feature map growth rate governed by a Fibonnaci sequence were incorporated. Fi-

nally, the input image was appropriately downsampled and connected to each layer. These

changes greatly improved segmentation accuracy [79] over the UNET.

(a) (b) (c) (d) (e)

Figure 4.15: (a)-(b) Original B-scans from a 3×3mm UHR-OCT and 6×6mm SD-OCT vol-
ume; (c) Failed Epithelium segmentation result (cyan) from algorithms in [57,69,108]; (d)-(e)
Our segmentation results for Epithelium (red), Bowman’s layer (green), and Endothelium
(orange) for images in (a) and (b).

However, when applied to corneal OCT images, the BRUNET under-segmented poorly

defined corneal interfaces, which are very common in anterior segment OCT imaging. As

seen in Figs. 4.15 and 5.21, these boundaries are corrupted by speckle noise, and have low

signal-to-noise ratio (SNR). We empirically observed higher false positives in the final seg-

81



mentation; one explanation is that discriminative features related to these boundaries being

learned in earlier layers are lost through the network, and residual connections are unable

to recover this information.

One way to combine both coarse and fine image details is through the use of dense con-

nections, which have been used to improve segmentation accuracy by encouraging heavy

feature reuse through deep supervision [115–117]. With dense connections, each layer is

connected to all its preceding layers by feature map concatenation, allowing discernible fea-

tures of faint boundaries to be retrieved across multiple scales. But, this comes at a cost of

increased computation [117,118], and we empirically determined that a densely connected

network at a depth of 6 levels provides a good balance between segmentation accuracy and

computational efficiency [79, 118]. Additionally, max pooling was better at maintaining

features of interest through the network over average pooling and convolutions of stride

2 [118]. Furthermore, nearest neighbor interpolation based upsampling followed by 3×3

convolution [119] performed better than bilinear interpolation based upsampling, bilinear

interpolation + 3×3 convolution [119], unpooling [77, 120], and fractionally-strided convo-

lutions [83].

In our experiments, we adopted the BRUNET architecture [79] as the base, and mod-

ified it based on our observations as shown in Fig. 6.13. Similar to [79], the number of

output feature maps in each layer increased according to a capped Fibonacci sequence

{32,64,96,160,256,416}, and limit the bottleneck feature map output to 32 to prevent feature

map explosion.

Key modifications to the architecture, which we incorporated were: 1) Dense connections

were used to improve gradient information flow and prevent over-fitting; 2) Max pooling

was used to pick the most discriminative features at the end of each downsampling layer;
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3) Nearest neighbor interpolation + 3×3 convolution was used to upsample feature maps in

the expanding branch of the network. We name our corneal tissue interface segmentation

architecture as CorNet.

Figure 4.16: Our network architecture comprises of contracting and expanding branches.
The dark green and blue blocks represent downsampling and upsampling computations
respectively. Our network makes efficient use of residual and dense connections to gener-
ate the corneal interface segmentation in the final image, where each pixel is assigned the
label of the tissue it belongs to. The input image is split width-wise into a set of slices of
dimensions 256×1024 pixels, the network predicts an output for each slice, and the slices
are aligned to recreate the original input dimension. Dense connections concatenate feature
maps from previous layers. The light blue block at the bottom of the ”U” (on the right end
of the rectangle) does not perform upsampling, but as with the other blue blocks it func-
tions as a bottleneck for the layer and generates feature maps of the same dimensions as the
output feature maps from the previous layer.
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4.2.3 Experiments

Setup

Of the 48 datasets, 18 datasets were chosen for training, such that it contained a balanced

number of datasets from both devices, i.e., six 6×6mm datasets each from Device 1 and 2,

and six 3×3mm datasets from Device 2. The testing dataset comprised of 30 datasets; ten

6×6mm datasets each from Device 1 and 2, and ten 3×3mm datasets from Device 2. 5-fold

cross-validation was conducted, and the model from the fold with the lowest validation

loss was chosen for testing.

Training

Training a CorNet model with full-width OCT images is limited by available RAM on the

GPU and by the varying image sizes obtained from OCT scanners. To address these issues,

the input images were sliced width-wise [77] into a set of images of dimensions 256×1024

pixels, thereby preserving the OCT image resolution. Data augmentation [121] is done

through horizontal flips, gamma adjustment, Gaussian noise addition, Gaussian blurring,

Median blurring, Bilateral blurring, cropping, affine transformations, and elastic deforma-

tions. Similar to [79], the loss function used was Mean Squared Error (MSE), and the net-

work was trained using the ADAM optimizer [122]. The batch size was set to 2. The learning

rate was set to 10−3, and it was decreased by a factor of 2 if the loss did not improve for 5

epochs. Validation data comprised of 10% of the training data, and the network was trained

until the loss did not improve for 10 epochs, at which point we executed early stopping. The

network with the lowest validation loss among all the folds was chosen for evaluation on

the testing set. The prediction for each interface was then fitted with a curve [3,57,108,123]

(see Fig. 4.17).
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Baseline Comparisons

We extensively validated the performance of our CorNet architecture; first, we compared

our results against those from the UNET [77, 82] and BRUNET [79] architectures as shown

in Fig 4.18. Next, we compared our results against those obtained from [57, 108] in Table

4.4; only 6×6mm datasets from Device 1 were used as [57,108] solely considered datasets of

this dimension. Finally, in Tables 4.5 and 4.6, we compared our results against each grader,

and also computed the inter-grader variability measures to quantify our deviation from the

agreement in ground truth between graders.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.17: Original B-scans and segmented interfaces from different datasets: (a)-(b)
3×3mm UHR-OCT, (c)-(d) 6×6mm UHR-OCT, and (e)-(h) 6×6mm SD-OCT.

4.2.4 Results

Metrics

We computed the following metrics: 1) Mean Absolute Difference in Layer Boundary Posi-

tion (MADLBP) and 2) Hausdorff Distance (HD) between the fitted curves. For consistency
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in comparison, we computed MADLBP as it was the metric (in pixels) of choice in [57,108].

However, MADLBP (Eq. 6.1) does not accurately quantify the distance error in microns

between a particular pair of interfaces, which the Hausdorff distance (Eq. 4.6) captures in-

stead. Dice similarity did not provide error in microns, and thus was not computed in this

work. Metrics were computed for the Epithelium (EP), Bowman’s Layer (BL), and Endothe-

lium (EN). In Eqs. 6.1 and 4.6, G and S are the set of points in the ground truth annota-

tion and segmentation (fitted with curves) respectively. yG(w) is the mean Y-coordinate

(rounded down) of the points in G whose X-coordinate is w, and similarly for yS(w). dS(x)

is the distance of a point x in G to the closest point in S, and similarly for dG(x).

MADLBP =
1

W

W−1∑
w=0

|yG(w)− yS(w)| (4.5)

HD = max

(
max
x∈G

dS(x), max
x∈S

dG(x)

)
(4.6)

From Fig. 4.18 and Table 4.4, our network outperformed the current deep learning

[77, 79, 82] and traditional approaches [57, 108] respectively. Paired t-tests conducted be-

tween our approach and every baseline established that for each metric our results were

statistically significant (p < 0.05).

The MADLBP error (in pixels) and mean Hausdorff distance (in microns) across 6×6mm

datasets from Device 1 (Tables 4.5 and 4.6, top halves) for the expert grader is slightly lower

when contrasted against the trained grader. We attribute this to the diffuse appearance of

corneal interfaces [20,57,77] and lower axial resolution of Device 1 (3.4µm), thereby causing

an expected deviation between the grader annotations, which is reflected in the inter-grader

MADLBP error. Similar measures on the MADLBP error (in pixels) and mean Hausdorff
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distance (in microns) across 3×3mm and 6×6mm datasets from Device 2 (Tables 4.5 and 4.6,

bottom halves) were observed. Overall, we closely matched the inter-grader error across all

datasets for the EP and BL interfaces, and in some cases, perform better than the agreement

between graders.

(a) (b)

Figure 4.18: Error comparison between expert annotation and automated segmentation (fit-
ted with curves) obtained from different deep learning based methods across all 30 testing
datasets.

Table 4.4: Comparison of Mean Absolute Difference in Layer Boundary Position (MADLBP)
error between traditional methods against the proposed deep learning based approach on
ten 6×6mm volumes from Device 1. Only expert annotations were used for comparison.
Errors are in pixels.

Approach EP BL EN

LaRocca et al. [57] 0.84 ± 0.31 1.12 ± 0.4 1.97 ± 2.26
Zhang et al. [108] 0.69 ± 0.24 0.91 ± 0.35 1.73 ± 1.98

Proposed 0.33 ± 0.21 0.42 ± 0.13 0.79 ± 0.19

With respect to the EN, our errors were worse than the inter-grader agreement on the

interface location. We attribute this to the low SNR in many corneal images, particularly

at the left and right edges of the EN where the signal dropoff is substantial [57]. In these

regions, the graders mentally extrapolated their annotations for this interface with poorly

defined boundaries, which were usually obfuscated by speckle noise. When a curve is fitted
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Table 4.5: Mean Absolute Difference in Layer Boundary Position (MADLBP) error across
6×6mm datasets from Device 1 (top half), and 3×3mm and 6×6mm datasets from Device
2 (bottom half). Errors are in pixels.

Layer Grader 1 Grader 2 Inter-Grader

EP 0.33 ± 0.21 0.41 ± 0.14 0.49 ± 0.07
BL 0.42 ± 0.13 0.68 ± 0.17 0.51 ± 0.06
EN 0.79 ± 0.19 0.84 ± 0.34 0.56 ± 0.22

EP 0.32 ± 0.09 0.49 ± 0.13 0.49 ± 0.09
BL 0.41 ± 0.13 0.61 ± 0.15 0.5 ± 0.09
EN 0.93 ± 0.19 1.45 ± 0.39 0.61 ± 0.29

Table 4.6: Mean Hausdorff Distance (HD) error across 6×6mm datasets from Device 1 (top
half), and 3×3mm and 6×6mm datasets from Device 2 (bottom half). Errors are in microns.

Layer Grader 1 Grader 2 Inter-Grader

EP 3.17 ± 1.04 4.46 ± 1.23 3.21 ± 0.52
BL 3.52 ± 1.39 4.15 ± 1.05 3.22 ± 0.5
EN 5.55 ± 2.24 6.7 ± 3.78 4.05 ± 1.2

EP 1.52 ± 0.42 1.63 ± 0.42 1.21 ± 0.21
BL 1.89 ± 0.62 1.95 ± 0.68 1.23 ± 0.22
EN 3.05 ± 1.08 4.03 ± 1.34 1.76 ± 0.62

to both the annotation and prediction, there is a small degree of error during the compar-

ison, which is unavoidable. This behavior has also been observed in [57, 108]. However,

our EN errors were considerably better than the measured MADLBP and HD errors for the

state-of-the-art image analysis-based and deep learning based approaches.

Major Observations

We made the following observations: 1) The proposed CorNet architecture consistently

outperforms the state-of-the-art image analysis-based and deep learning-based approaches

for the task of corneal tissue interface segmentation. 2) Maxpooling is optimal for feature

selection across the common downsampling choices. 3) Nearest neighbor interpolation

based feature map upsampling followed by 3×3 convolution improved segmentation over

other upsampling operations. 4) Dense connections increased segmentation accuracy due
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to greater gradient information flow through the network.

Performance

The CorNet took∼15.1 s (Python) to segment an entire volume of 50 images of dimensions

1000×1024 pixels, at∼302 ms per image. This is in contrast to 56.5 s for [57] (Matlab),∼26.1 s

for [108] (Matlab), ∼6.25 s for BRUNET (Python), and∼10.75 s for UNET (Python); CorNet

is slower than UNET or BRUNET due to dense connections. The results were calculated

on a desktop using a 3.10 GHz Intel Xeon processor, 64 GB RAM, and a NVIDIA Titan Xp

GPU. More advanced GPU architectures should be able to achieve real-time operation (a

10x speedup would be sufficient for 30 fps).
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4.3 Hybrid and Cascaded Approaches

4.3.1 Problem Statement

Given a corneal OCT image I, the task of a conditional Generative Adversarial Network

(cGAN) is to find a function FG : {I, z} → P that maps a pixel in I using a random noise

vector z to a pre-segmented output imageP . The pixels inP just prior to the tissue interface

are mapped to 0 (black), while those at and below the interface are retained.

Figure 4.19: Our proposed approach contains two frameworks: a cascaded framework (pur-
ple) and a hybrid framework (orange). First, a conditional Generative Adversarial Network
(cGAN) takes an input OCT image, and produces an intermediate pre-segmentation im-
age. In the pre-segmentation, pixels just prior to the shallowest tissue interface are set to 0
(black), while others are retained. In the cascaded framework, the pre-segmentation, along
with the input image, are passed to a Tissue Interface Segmentation Network (TISN). The
TISN predicts the location of shallowest interface by generating a binary segmentation mask
(overlaid on the original image with a false color overlay; red - foreground, turquoise - back-
ground). In the hybrid framework, the pre-segmentation can be utilized by other segmen-
tation algorithms. Ultimately, both frameworks fit a curve to the interface to produce the
final segmentation.
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Next, the task of the Tissue Interface Segmentation Network (TISN) is to determine a

mapping FO : {I,P} → S , wherein every corresponding pixel in I and P is assigned a

label L ∈ {0, 1} in the final segmentation S. In this work, we only segment the shallowest

tissue interface in the corneal OCT image, and thus assign pixels in S as: (0) pixels just

above the tissue interface, (1) pixels at and below the tissue interface. P can then be used in

a hybrid framework by any other segmentation algorithm. Our frameworks are pictorially

shown in Fig. 5.21.

4.3.2 Data Acquisition

25 corneal datasets were randomly selected from an existing research database [5]. These

datasets were acquired using different scan protocols from two different OCT scanners: a

custom Bioptigen Spectral Domain OCT (SD-OCT) scanner (Device 1) that has been de-

scribed before [109], and a high-speed ultra-high resolution OCT (hsUHR-OCT) scanner

(Device 2) [70]. Device 1 had a 3.4µm axial and 6µm lateral spacing, and it was used to scan

an area of size 6×6mm on the cornea. Device 2 was used to scan two areas of sizes 6×6mm

and 3×3mm respectively. This system had a 1.3µm axial and a 15µm lateral spacing while

interrogating the 6×6mm tissue area. It had the same axial spacing, but a different lateral

spacing of 7.5µm while imaging the 3×3mm area. Devices 1 and 2 were solely used to scan

the cornea, with the former producing datasets of dimensions 1024×1000×50 pixels, and

the latter generating datasets of dimensions 400×1024×50 pixels.

4.3.3 Adversarial Network Architecture

We first describe the neural network architecture that was used as the base for both the

cGAN (generator), and the TISN. In this work, images of the anterior segment of the eye ac-
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quired using OCT contain low SNR, strong specular artifacts, and faintly discernable inter-

faces that are corrupted by speckle noise patterns. In our previous work [5], we have shown

that the CorNet architecture captures faintly visible features across multiple scales. It pro-

duced state-of-the-art results on corneal datasets acquired using different OCT systems and

using different scan protocols. The errors were 2× lower than non-proprietary state-of-the-

art segmentation algorithms, including traditional image analysis-based [57,108] and deep

learning-based approaches [77, 79, 82].

The CorNet architecture was built upon the BRUNET [79] model, and enhanced the

reuse of features generated in the network through residual connections [114], dense con-

nections [116], and dilated convolutions [110–112]. It alleviated the vanishing gradient

problem, and prevented holes in the segmentation generated by current deep learning-

based approaches [77, 79, 82]. It could accurately extract poorly defined corneal interfaces,

such as the Endothelium, which is very common in anterior segment OCT imaging [5].

As shown in Fig. 5.22, the CorNet architecture comprised of contracting and expanding

branches; each branch consisted of a building block, which was inspired by the Inception

block [112], followed by a bottleneck block. The building block extracted features related

to edges and boundaries at different resolutions. The bottleneck block compactly repre-

sented the salient attributes, and these properties (even from earlier layers) were encour-

aged to be reused throughout the network. Thereby, faint tissue boundaries essential to

our segmentation task were distinguished from speckle noise patterns, and pixels corre-

sponding to the tissue interface and those below it were correctly predicted. In addition,

extensive experiments were conducted in [5] to determine the right feature selection mech-

anisms [77,83,118–120] for segmentation, such as max-pooling [118] for downsampling and

nearest neighbor interpolation + 3×3 convolution [119] for upsampling.
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Figure 4.20: The CorNet model is the base architecture used for training both the cGAN
and TISN. The input to the cGAN is a two-channel image, the input OCT image and binary
mask w (see Sec. 4.3.4), and the output is a pre-segmented OCT image (orange box). The
TISN gets a two-channel input (magenta and orange boxes), and the output is a binary
mask (yellow box). The dark green blocks in the contracting path represent downsampling
operations, while the blue blocks constitute upsampling computations. This model uses
residual and dense connections to efficiently pre-segment the OCT image, and predict the
location of the shallowest interface in the final output. The light blue block at the bottom of
the ”U” (on the right end of the rectangle) does not perform upsampling, but as with the
other blue blocks it functions as a bottleneck for the layer and generates feature maps of the
same dimensions as the output feature maps from the previous layer.

Conditional Generative Adversarial Network (cGAN)

Original cGAN

Conditional Generative Adversarial Networks [124] are currently popular choices for image-

to-image translation tasks, such as image super-resolution and painting style transfer. In

these tasks, the cGAN learns to generate an output by being introduced to (conditioned on)
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an input image. The cGAN framework consists of two entities: a Generator (G) and a Dis-

criminator (D). The generator G takes an input image x and a random noise vector z, and

generates a prediction yf that is similar to the desired gold standard output yt. Next, the

input x is paired with yt and yf , thereby creating two pairs of images respectively; the true

gold standard pair (x, yt) and the predicted pair (x, yf ). Then, the discriminator D attempts

to recognize which pair is the gold-standard pair. These two entities are trained in conjunc-

tion, such that they compete with each other; G tries to fool D by producing an output that

closely resembles the gold standard, while D tries improve its ability to distinguish the two

pairs of images.

Initially, G generates a prediction yf that poorly resembles yt. It learns to produce more

realistic predictions by minimizing an objective function shown in Eq. (4.7). On the other

hand, D tries to maximize this objective by accurately distinguishing the generated pre-

diction yf from the true gold standard yt. The objective function comprises of two losses:

LcGAN in Eq. (4.8), and L1 in Eq. (4.9), with λ being a hyper-parameter. The L1 loss pe-

nalizes regions in the generated output that differ from the ground truth image provided,

thereby making the loss a “structured” loss [124]. It forces the output of the generator to be

close to the ground truth in the L1 sense. This loss resulted in less blurry outputs than the

original GAN formulation [125], which utilized an L2 loss. The PatchGAN [124] discrimi-

nator was employed to output the probability of a pair of images being real or fake.

G∗ = arg min
G

max
D

LcGAN (G,D) + λL1(G) (4.7)

LcGAN (G,D) = Ex,yt

[
log D(x, yt)

]
+ Ex,z

[
log(1−D(x,G(x, z))

]
(4.8)

L1 = Ex,yt,z

[
‖yt −G(x, z)‖1

]
(4.9)
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Directly transferring the full cGAN implementation with the cGAN loss in Eq. (4.7)

to our OCT datasets resulted in checkerboard artifacts [119] in the generated predictions.

Moreover, as shown in Fig. 4.21, parts of the tissue boundary that needed to be preserved

were removed instead. From our experiments, we made two empirical observations: 1) The

U-Net generator architecture [82] that was utilized in the cGAN paper [124] created checker-

board artifacts in the generated pre-segmentation and did not preserve tissue boundaries

correctly; it has been shown in prior work [5,79,119] that the original U-Net implementation

is not the optimal choice; 2) The L1 loss in Eq. (4.9) penalizes all pixels in the image equally.

(a) (b) (c) (d)

Figure 4.21: Comparing generated pre-segmentations between the U-Net architecture used
in the original cGAN implementation [124] against those generated by the CorNet architec-
ture [5]. (a) Original B-scan for a corneal dataset. (b) Generated pre-segmentation for the
cGAN U-Net. (c) Generated pre-segmentation for the CorNet. Note that in (b), the U-Net
did not remove the speckle patterns above the shallow tissue interface, while also encroach-
ing upon the tissue boundaries without preserving them accurately. (d) Heat map of the
difference between the original and pre-segmented OCT B-scans by CorNet.

Modified cGAN with Weighted Loss

The required output of the cGAN is a pre-segmented OCT image, wherein the air-gap back-

ground pixels just prior to the shallowest tissue interface are to be eliminated, and the re-

gion at and below the interface is to be preserved. As mentioned before, the L1 loss in Eq.

(4.9) equally penalized all pixels in the image without imparting a higher penalty to the

background pixels, which contains specular artifacts and speckle noise patterns hindering
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segmentation, above the shallowest tissue interface. To mitigate this problem, a novel task-

specific weighted L1 loss, defined in Eq. (4.10), is proposed in this paper. In Eq. (4.10), ◦

denotes the pixel-wise product, and α is the hyper-parameter that imparts higher weight to

the background pixels over the foreground pixels.

Lw1 = Ex,y,z

[
αw ◦ ‖yt −G(x, z)‖1 + (1− w) ◦ ‖yt −G(x, z)‖1

]
(4.10)

As the preservation of pixels at and below the interface is paramount, our loss function

incorporated a binary mask w, which imparted different weights to the foreground and

background pixels. This mask was generated from the gold standard annotation of an ex-

pert grader for each image in the training dataset, and its design is further described in Sec.

4.3.4. We replaced the L1 loss in Eq. (4.7) with our weighted L1 loss in Eq. (4.10), and it

eliminated the speckle patterns and specular artifacts just prior to the shallowest interface.

Tissue Interface Segmentation Network (TISN)

As mentioned in Sec. 4.3.3, the CorNet architecture was used as the base model in order

to segment the shallowest tissue interface. The intermediate pre-segmented OCT image

from the cGAN, along with the original OCT image, is passed to the TISN to delineate

the shallowest tissue interface. The output of the TISN is a binary mask, wherein pixels

corresponding to the tissue interface and those below it were labeled as the foreground (1)

and those above the interface were labeled as the background (0). As shown in Figs. 5.21

and 5.22, the shallowest interface was extracted from this binary mask [1] and fitted with a

curve [123].
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4.3.4 Experiments

Data Preparation

From the 25 datasets, we had a total of 1250 corneal images images, and 7 datasets were

randomly chosen for training the cGAN, and the remaining 18 were used for testing. These

datasets were chosen such that they came from both eyes; the number of patients that were

imaged could not be ascertained as the database contained deidentified datasets. From the

total set, we chose the training set to comprise of a balanced number of corneal datasets

(7 each) that exhibited different magnitudes of specular artifacts, shadowing, and speckle.

The training set contained 350 corneal images, and the remaining were set aside in the

testing set. Considering the varying dimensions of the OCT images acquired from two OCT

systems that were used in this work, along with the limited GPU RAM available for training,

it was challenging to train a framework using full-width images while preserving the pixel

resolution. Similar to previous approaches [5,77], we sliced the input images width-wise to

produce a set of images of dimensions 256×1024 pixels, and in this way, we preserved the

OCT image resolution. We used the same datasets that were selected in the training set for

training both the cGAN and the TISN.

An example annotation by an expert grader is shown in Fig. 4.22(a). To generate the

gold standard pre-segmentation images for training, we eliminated the speckle noise and

specular artifacts by setting the region just above the annotated surface to 0 (black), and kept

the same pixel intensities corresponding to the tissue structure at the annotation contour

and for all pixels below it - see Fig. 4.22(b). The binary maskw that was used in the Eq. (4.10)

is shown in Fig. 4.22(c). Using the image in Fig. 4.22(d) as reference, we detail the process of

obtaining w. In Fig. 4.22(d), the original annotation of the tissue interface boundary by the

grader is shown in red, and this red annotated contour was shifted down by 50 pixels to the
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position of the magenta contour. The magenta contour, along with the blue region below the

contour, was considered the foreground, while all pixels above the magenta contour belong

to the background. The background in the binary mask was set to 1 and the foreground

was set to 0, with the background being weighted α times higher than the foreground.

In order to understand the effect of the proposed mask design, let us consider an al-

ternate binary mask design w∗. Let w∗ represent the mask of the expert annotation in Fig.

4.22(a), wherein the pixels above the annotation (without shifting it down/up) are the back-

ground and those at and below the annotation are the foreground, with the background

weighted α times higher than the foreground. When the cGAN used this mask w∗, it mis-

takenly eroded the tissue interface and regions below it similar to the image in Fig. 4.21(b).

In such a scenario, there is no large penalty applied to the erosion of pixels as detailed in

Eq. (4.10). In order to correct this mistake, it would be necessary to impart a higher penalty

to the region that was eroded. To do so, we measured the maximum extent of structural

erosion (at the tissue interface and/or pixels below it) from the shallowest interface in the

UNET pre-segmentation outputs. Using this value (rounded up to a nearest multiple of 10),

we shifted expert annotation down (by 50 pixels) in our binary mask w, and conferred the

same weight α to the regions (green + red + gray) to avoid the erosion of the tissue interface.

(a) (b) (c) (d)

Figure 4.22: (a) Expert annotation of an original B-scan in a 6×6mm OCT volume acquired
by Device 3, (b) Gold standard pre-segmentation image for training, (c) Binary maskw used
in Eq. (4.10) for training the cGAN, (d) Label map detailing the process of generatingw (see
Sec. 4.3.4).
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Data Augmentation

As our training datasets were smaller in number in contrast to those from datasets typi-

cally available in computer vision tasks, such as image recognition [126], we augmented

our datasets to increase the variety of the images that were seen during the training. These

augmentations [121] included horizontal flips, gamma adjustment, elastic deformations,

Gaussian blurring, median blurring, bilateral blurring, Gaussian noise addition, cropping,

and affine transformations. The full set of augmented images was used to train the TISN

as it required substantially larger amounts of data to generalize to new test inputs. On the

other hand, the cGAN can be trained with smaller quantities of input training data as it has

been shown to perform well on small training datasets [124]. For the cGAN, augmentation

was done by simply flipping each input slice horizontally along the X-axis.

cGAN Training

Training of the cGAN commenced from scratch using the architecture shown in Fig. 5.22.

The input to the generator was a two-channel image; the first channel corresponds to the

input OCT image, and the second channel corresponds to the binary mask w. We used λ =

100, and α = 10 in final objective function, and optimized the network parameters using the

ADAM optimizer [122]. We used 90% of the input data for training, and the remaining 10%

for validation. We trained the network for 100 epochs with the learning rate set to 2× 10−3.

In order to prevent the network from over-fitting to the training data, early stopping was

applied when the validation loss did not decrease for 10 epochs. At the last layer of the

generator, a convolution operation, followed by a TanH activation, was used to convert the

final feature maps into the desired output pre-segmentation with pixel values mapped to

the range of [−1, 1]. A NVIDIA Tesla V100 16GB GPU was used for training the cGAN
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with a batch size of 4. During test time, the input OCT image is replicated to produce a

two-channel input to the cGAN.

TISN Training

The same datasets from cGAN training were used for training the TISN from scratch. The

input to the TISN is a two-channel image; the first channel corresponds to the original input

image, and the second channel corresponds to the predicted pre-segmentation obtained

from the cGAN. The two-channel input allowed the TISN to focus on the high frequency

regions, corresponding to the interface, in the image. The Mean Squared Error (MSE) loss,

along with the ADAM optimizer [122], was used for training. In this work, we used MSE loss

to be consistent with the original CorNet implementation [5], but the MSE loss can easily

be substituted for the cross entropy loss [82] or the dice loss [127]. The batch size used for

training was set to 2 slices as we fully wanted to utilize memory on a NVIDIA Titan Xp

GPU. Validation data comprised of 10% of the training data. We trained the network for

a total of 150 epochs with the learning rate set to 10−3. When the validation loss did not

improve for 5 epochs, the learning rate was decreased by a factor of 2. Finally, in order to

prevent over-fitting, the training of the TISN was halted through early stopping when the

validation loss did not improve for 10 consecutive epochs.

The feature maps in the final layer of the network are activated using the softmax func-

tion to produce a two-channel output. Once the network was trained, it was used to segment

the shallowest interface in our testing datasets. At test time, the TISN yielded a two-channel

output; the first channel corresponded to the foreground tissue segmentation (the bound-

ary of the interface and those pixels below it), and the second channel corresponded to the

background pixel segmentation (above the tissue interface). The predicted segmentation
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does not provide a contour of the shallowest interface. Instead, it highlights the area of the

pixels at the shallowest interface and those below it as belonging to the foreground. Fi-

nally, the predicted segmentation was fitted with a curve [123] after the tissue interface was

identified using a fast GPU-based method [1]. We show our final results in Fig. 4.23.

(a) (b) (c) (d)

Figure 4.23: Corneal interface segmentation results for datasets acquired using Devices 1
and 2. Columns from left to right: (a) Original B-scans in corneal OCT datasets, (b) Pre-
segmented OCT images from the cGAN with the specular artifact and speckle noise pat-
terns removed just prior to the shallowest tissue interface, (c) Binary segmentation from
the TISN overlaid in false color (red - foreground, turquoise - background) on the original
B-scan, (d) Curve fit to the shallowest interface (red contour).
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Comparison Against Other Algorithmic Approaches

Extensive evaluation of the performance of our approach was conducted across all the test-

ing datasets. First, we wanted to investigate the accuracy of a traditional image analysis-

based algorithm [3] that directly segmented the interface in our test datasets. Briefly, this

algorithm filtered the OCT image to reduce speckle noise and artifacts, extracted the mono-

genic signal [128], and segmented the tissue interface. We denote this approach in the rest

of the paper by the acronym: Traditional WithOut Pre-Segmentation (TWOPS).

Second, we designed a hybrid framework, where the pre-segmented OCT image from

the cGAN is used by the traditional image analysis-based algorithm [3] to segment the shal-

lowest interface. We wanted to determine the improvement in segmentation accuracy when

the traditional algorithm used the pre-segmentation instead of the original OCT image. Go-

ing forward, we denote our algorithmic approach by the acronym: Traditional With Pre-

Segmentation (TWPS).

Third, we trained a CorNet architecture [5] to directly segment the foreground in the in-

put OCT image, without including the cGAN pre-segmentation as an additional input chan-

nel. We compared the direct segmentation result against our cascaded framework. Hence-

forth, in the remainder of the paper, we refer to the direct deep learning-based segmentation

approach by the acronym: Deep Learning WithOut Pre-Segmentation (DLWOPS). Finally,

we call our cascaded framework as: Deep Learning With Pre-Segmentation (DLWPS).

To summarize, the following combinations of algorithmic approaches were considered

for performance evaluation:

1. TWOPS - A traditional image analysis-based algorithm [3] that directly segmented

the tissue interface.
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2. TWPS - The hybrid framework.

3. DLWOPS - A deep learning-based approach [5] that directly segmented the tissue

interface.

4. DLWPS - The cascaded framework.

Annotation

Each corneal dataset was annotated by an expert grader (G1; Grader 1) and a trained grader

(G2; Grader 2). The graders were asked to annotate the shallowest interface in all test

datasets. For each dataset, the graders annotated the interface using a 5-pixel width band

with an admissible annotation error of 3 pixels. All the annotations were fitted with a curve

for comparison with the different algorithmic approaches. We also estimated the inter-

grader annotation variability for the corneal datasets, and refer to it in the rest of the paper

by the acronym: IG.

4.3.5 Results

Metrics

In order to compare the segmentation accuracy across the different algorithmic approaches,

we calculated the two following metrics: 1) Mean Absolute Difference in Layer Boundary

Position (MADLBP) and 2) Hausdorff Distance (HD) between the fitted curves. These met-

ric values were determined over all testing datasets, and only for the shallowest interface.

In Eqs. (5.4) and (5.5), the sets of points that represent the gold standard annotation and

the segmentation to which it is compared (each fitted with curves) are denoted by G and

S respectively. We denote by yG(x) the Y-coordinate (rounded down after curve fitting) of
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the point in G whose X-coordinate is x, and yS(x) is the Y-coordinate (rounded down) of

the point in S. dS(p) is the Euclidean distance of a point p inG to the closest point in S, and

similarly for dG(p).

We chose MADLBP in Eq. (5.4) as one of our error metrics since it was used in [3], and

we desired a direct comparison with prior work for the segmentation accuracy between

the automatic segmentations and grader annotations. Although MADLBP quantifies error

in pixels, it did not measure the Euclidean distance error; instead, it simply measured the

positional distance between the detected boundary location and the annotation along the

same A-scan. On the other hand, the Hausdorff distance in Eq. (5.5) captured the greatest of

all Euclidean distances between the points in the segmentation and annotation. Therefore,

it quantitatively describes the worst segmentation error in microns, which may be more

clinically relevant (e.g. to detect structural changes over time). In this work, we did not

compute Dice similarity as it did not provide segmentation error in microns.

MADLBP =
1

X

X−1∑
x=0

|yG(w)− yS(w)| (4.11)

HD = max

(
max
p∈G

dS(p), max
p∈S

dG(p)

)
(4.12)

In Fig. 4.24, the HD error and the MADLBP error across all algorithmic approaches

for the corneal datasets acquired from devices 1 and 2 were compared. In Fig. 4.25, the

benefit of pre-segmenting the OCT image was verified by first grouping the approaches

into two categories - Traditional Comparison (TC; TWOPS vs TWPS) and Deep Learning

Comparison (DLC; DLWOPS vs DLWPS) - and then contrasting the maximum HD error

per dataset for each category and for each grader.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.24: (a)-(c) HD error and (d)-(f) MADLBP error comparison for the corneal datasets
acquired with Devices 1 and 2 respectively. In the boxplots, the segmentation results ob-
tained for each algorithmic approach are contrasted against expert grader (blue) and trained
grader (red) annotations, while the Inter-Grader (IG) variability is shown in yellow.

Discussion - Segmentation Accuracy of Corneal Interface

From the HD and MADLBP errors in Figs. 4.24, the error is worse for the TWOPS ap-

proach, where the traditional algorithm [3] used the original OCT image (without the pre-
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 4.25: Quantitative estimation of the benefit of pre-segmenting the corneal OCT im-
age. The algorithmic approaches were grouped into two categories: Traditional Compari-
son (TC; TWOPS vs TWPS), and Deep Learning Comparison (DLC; DLWOPS vs DLWPS).
The first column corresponds to the former, and the second column corresponds to the lat-
ter. For each corneal test dataset, the image with the maximum HD error was found over all
images in the sequence, and the image location in the sequence was stored. This was done
only for the TWOPS and DLWOPS approaches respectively. The stored location indicies
were then used to retrieve the corresponding HD errors from the TWPS and DLWPS algo-
rithmic approaches respectively. This procedure was repeated for each grader and plotted.
G1 : without pre-segmentation (purple curve), with pre-segmentation (black curve). G2 :
without pre-segmentation (yellow curve), with pre-segmentation (gray curve).
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segmentation) to directly segment the interface. The hand-crafted features in this algorithm

failed to handle severe specular artifacts and noise patterns as seen in Fig. 4.15. In contrast,

the TWPS approach (hybrid framework), which uses the pre-segmented image instead of

the original OCT image, produced a lower segmentation error. To quantify these observa-

tions, a paired t-test between the TWOPS and TWPS algorithmic approaches was computed

for each error metric, and we estimated that the results were statistically significant (pHD =

4.2747e-05, pMADLBP = 1.2859e-05). From these results, we concluded that the traditional algo-

rithm fared better in the hybrid framework when the pre-segmented OCT image was used

to segment the corneal tissue interface.

The DLWOPS approach in Fig. 4.24 had lower HD and MADLBP errors than the TWPS

approach for the expert grader annotations. However, the errors were higher for the trained

grader especially on the 3×3mm datasets from Device 2, as seen in Figs. 4.24(c) and 4.24(f),

due to the large inter-grader variability. On the other hand, our DLWPS approach, which

used the pre-segmented image, fared better in contrast to the other three approaches. Again,

we computed paired t-tests between the DLWPS approach and all other approaches to de-

termine the improvement in segmentation accuracy for each error metric. From the p-values

in Table. 4.7 and Fig. 4.24, the cascaded framework generated results that were an improve-

ment upon the other approaches, and indicated statistically significant results across all

corneal datasets (p < 0.05).

Table 4.7: Statistical significance between our cascaded framework (DLWPS) against each
approach for all the corneal datasets from Devices 1 and 2.

TWOPS TWPS DLWOPS

pHD 5.1929e-06 2.2079e-04 5.1454e-04
pMADLBP 2.6848e-06 1.9264e-04 2.0734e-04

To determine the improvement in segmentation accuracy on an per-image basis in each
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of the corneal test datasets, we first grouped the algorithmic approaches into two cate-

gories: only traditional image analysis-based approaches (TWOPS vs. TWPS), and only

deep learning-based approaches (DLWOPS vs. DLWPS). Next, we searched for the image

in each corneal dataset that had the maximum HD error over all images in that dataset,

and noted its index in the sequence. This was done only for the TWOPS and DLWOPS ap-

proaches respectively, and we plotted these maximum HD errors for each grader in Fig. 4.25

(purple and yellow colored curves). Then, we queried the errors for the same images (using

the image indicies) in the TWPS and DLWPS approaches respectively, and plotted the corre-

sponding HD errors for each grader in Fig. 4.25 (black and gray curves). From Fig. 4.25, we

noted that the algorithmic approaches incorporating the pre-segemented OCT image per-

formed better than one that did not include the pre-segmentation. The pre-segmentation

always improved the segmentation performance of the traditional image-analysis based

approach when incorporated into a hybrid framework, and also improved the accuracy of

a deep learning-based approach in a majority of corneal datasets when used in the cas-

caded framework. This quantitatively demonstrates the potential benefit of utilizing the

pre-segmented OCT image as part of a segmentation framework.
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Chapter 5

Visualizing The Palisades of Vogt

5.1 Classical Approach

5.1.1 Problem Statement

Given a SD-OCT image I in a volume, the problem can be defined as finding the set of pixels

F that lie on the boundary of the limbal tissue interface. Every pixel in F takes a specific

label L = 1 if it lies on the tissue interface boundary, or it takes a label L = 0 if it does not lie

on the boundary (see Fig. 5.1). The segmented limbal tissue interface should then be used

to guide the registration of all the images in a volume to a reference image in the volume.

The reference image is usually an image in the middle of the volume. Registration should

lead to the generation of an aligned 3D volume, which can be reconstructed to visualize the

imaged limbal region.
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(a) (b)

Figure 5.1: (a) shows the 1st B-scan imaging the limbal area in a SD-OCT volume, and the
expertly annotated tissue interface is shown in (b).

5.1.2 Data Acquisition

Previously acquired data from an existing research database was de-identified for this pilot

work. 16 raster scanned volumes from both eyes of five subjects were scanned with a high-

speed ultra-high resolution OCT (hsUHR-OCT) scanning system [70]. With the hsUHR-

OCT system, two regions of different sizes were scanned: a 4×4mm region, and a 3×3mm

region. The 4×4mm region was scanned to yield volumes, which contained 300 B-scans

of dimensions 1024×300 pixels each. The 3×3mm region was scanned to yield volumes,

which contained 250 B-scans of dimensions 1024×250 pixels each. These volumes were

cropped or padded to 1024×256 pixels (H×W), where the POV was seen prominently, with

the resulting volumes consisting of a variable number of B-scans per volume (150-300) after

padding/cropping. The axial pixel pitch and resolution of 1.3µm was maintained.
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5.1.3 Noise Reduction

In this section, properties of the noise affecting the limbal surface segmentation are dis-

cussed, and our noise suppression approach is presented. In addition to speckle noise, two

types of artifacts affect the segmentation; horizontal and vertical artifacts (see Fig. 5.2(a)).

These artifacts are due to specular reflection and system noise during imaging [57]. To min-

imize these effects, the B-scans were first downsampled by a factor of 4 in each dimension,

and then upsampled by a factor of 2 in each dimension (see Fig. 5.2(b)). It was then filtered

with a 20th Percentile filter [1] of size 5×5 pixels to preserve edges while reducing the noise

in the image (see Fig. 5.2(c)).

(a) (b) (c) (d)

Figure 5.2: (a) shows the 195th B-scan in a volume; (b) the down-sampled image in (a);
(c) shows the result of percentile filtering the downsampled B-scan; (d) show the result of
further bilateral filtering applied to the percentile-filtered B-scan.

Following percentile filtering, small amplitude residual noise was left in the image. It

was empirically observed that applying the percentile filter to the image a second time di-

minished their presence, but did not conserve the edges with low intensity. These poorly

visible boundaries are crucial elements of our segmentation, and need to be retained. To
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that end, a bilateral filter [129] of size 5× 5 pixels was used to preserve the edges in the im-

age while smoothing the small amplitude noise regions further (see Fig. 5.2(d)). As seen in

Figs. 5.2(a) and 5.2(d), the key objective was to retain visible tissue structure, while dimin-

ishing the speckle and artifact noise. Although our approach did not remove the artifacts

entirely, their effects were mitigated before segmentation.

5.1.4 Segmentation

In this section, a multi-scale edge detection scheme highlights and segments the limbal

surface in the bilateral filtered image.

Edge Detection

Similar to Sec. 6.1.4, the Cauchy filter was used for edge detection. The parameter val-

ues used were wo = [5, 10, 15], a = 1, and s = 1/wo. The image B was filtered with the

Cauchy filter at three different scales, and the two odd components of the monogenic sig-

nal [130,131], [fo1, fo2], were obtained for each scale. Next, the two odd parts were combined

to produce the magnitude for each scale as defined in Eq. (5.1). Finally, the magnitudes es-

timated for each scale were averaged together using Eq. (5.2) (see Fig. 5.3(c)).

fo =
√
f2
o1 + f2

o2
(5.1)

foc =
f5
o + f10

o + f15
o

3
(5.2)
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(a) (b) (c)

Figure 5.3: (a) shows the 195th B-scan in a volume (same image in Fig. 5.2(a)); (b) shows
the bilateral filtered image; (c) shows the odd magnitude component foc of the monogenic
signal (scaled for visualization here).

Surface Segmentation

At this point, the edges are highlighted in foc, but they have not yet been segmented. To

this end, an estimate of the foreground intensity along each A-scan is needed. It can be

obtained from the range of the intensity differences as we proceed axially along each A-

scan in the image. This range was estimated from the vertical gradient G of foc, which was

obtained by convolving foc with a kernel such as [−1, 0, 1]T . Next, the maximum value of

the gradients for each A-scan was calculated, yielding a set of gradient values across all

A-scans. Finally, the mean value of this range was computed, and the threshold threshM

for segmenting foc was set to be half the mean value as defined in Eq. (5.3). Intuitively, the

list of maximum values across all A-scans represents the gradient values at the transition

point from dark-to-bright regions, which in the ideal case, would correspond to the exact

location of a shallow tissue surface. However, as tissue interfaces are often fuzzy in OCT

images, a band of pixels in an A-scan (and indeed, across the image) in foc will represent a
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boundary. For this reason, 50% of the mean value of this range captures most of the tissue

boundary as shown in Fig. 5.4(c).

threshM =
1

2W

W∑
w=1

max
h∈H

(Gw,h) (5.3)

The edge points corresponding to the limbal surface were extracted from the binary

segmentation map using the fast A-scan based approach that was published in [1]. Briefly,

the approach in [1] used a fast parallel GPU-based search to accurately localize the tissue

structure in each A-scan of the image. Once, the edge points were detected, a second-,

third-, or fourth-order polynomial curve was fit [104] to the detected points as shown in

Fig. 5.4(d).

(a) (b) (c) (d)

Figure 5.4: (a) shows the 195th B-scan in a volume (same image in Fig. 5.2; (b) shows the
odd magnitude component foc of the monogenic signal (scaled for visualization here); (c)
shows segmentation result after selecting a suitable threshold threshM ; (d) shows the final
result after detecting the shallowest surface and fitting a 3rd order curve to the detected edge
points. Note the true tissue surface detected in (d) even in the presence of noise artifacts.
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5.1.5 Registration

In this section, the shallowest segmented surface in each B-scan was registered to the sur-

face segmented in a reference B-scan. First, a B-scan was “flattened” [57] by finding the

shallowest A-scan position on the segmented curve. Relative to this position, the offset in

position of the segmented curve in all other A-scans was computed. Based on the estimated

offsets, A-scans were circularly shifted up to match the shallowest position (Figs. 5.5(c) and

5.5(d)). This process was done for all B-scans in a volume. Next, a rigid transformation

was computed between the flattened landmarks of a reference B-scan (usually the middle

of the volume), and the flattened landmarks of each individual B-scan. By following this

approach, individual B-scans were aligned, resulting in a flattened volume.

At this point, horizontal cross-sections at different depths were extracted from the flat-

tened volume, as seen in Fig. 5.6, by incrementing the flattened and registered segmenta-

tion points for each B-scan by a constant value. Finally, each registered B-scan was “unflat-

tened” [57] by circularly shifting rows down to match the detected curvature of the reference

B-scan. This approach aligned the shallowest surface detected in each B-scan with the sur-

face detected in the reference B-scan (see Figs. 5.5(e) and 5.5(f)), and a registered volume

was reconstructed as shown in Fig. 5.5(g).

5.1.6 Results

In this section, the segmentation accuracy and registration accuracy (as a function of cross-

section extraction) were evaluated. Segmentation accuracy was measured by comparing

the automatically segmented results against an experts’ manual annotations. Images in all

datasets that were used were manually annotated by the expert. The expert manual anno-

tations were aligned using the same procedure described in Sec. 5.1.5, and cross-sections
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(a) (b) (c) (d)

(e) (f) (g)

Figure 5.5: Registration procedure followed by our algorithm. (a)-(b) the 100th (reference)
and 195th (target) B-scans in a volume; (c)-(d) the “flattening” of the images using the seg-
mentation derived by our algorithm; (e)-(f) the “unflattened” images obtained after rigid
registration of the flattened images in (c) and (d); (g) a side view profile of the reconstructed
volume and meshed outer surface following the registration. Note the clear visualization of
the limbal region, and the associated connective tissues appearing white and vessels seen
as black ducts in the left volumetric rendering of (g).

were extracted. The Structural Similarity (SSIM) image metric [132] was used to determine

the correlation between cross-sections that are automatically extracted and cross-sections

that were extracted after the alignment of the expert manual annotations. Registration ef-

fectiveness was assessed by the cross-sectional SSIM value. The validation protocol in [57]
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(a) (b)

(c) (d)

Figure 5.6: (a)-(d) show cross-sectional visualizations of the unique POV structural config-
uration.

was followed. For fair comparison, the expert annotation was fitted with a curve, and com-

pared against the automatic segmentations. The following metrics were calculated: 1) Mean

Absolute Distance (MAD) - the mean residual distance in boundary position between the an-

notations (fitted with a curve) and the automatic segmentation (see Eq. (6.22)), and 2) SSIM

between cross-sections [132]. Fig. 5.7 and Table 5.1 summarize the segmentation accuracy

and registration accuracy, respectively, over all datasets.

From Fig. 5.7(a), the surface segmentation error is minimal when MAD values are close

to 0. Associated higher SSIM values (which can take a maximum value of 1) in Fig. 5.7(b)

indicate a similarity between the extracted cross-sections. From Table 5.1 and Fig. 5.7(a),
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(a) (b)

Figure 5.7: (a) Mean (red circle) and standard deviation error (black error bars) between
automated segmentation and manual annotation. (b) SSIM values of cross-section compar-
ison.

Table 5.1: Average quantitative error metrics across all 16 datasets. The pixel resolution in
an A-scan is 1.3µm.

Grader 1
MAD 0.19 ± 0.30 µm
SSIM 0.89

on average, the MAD error plus standard deviation was less than 0.5µm. From the graphs,

only dataset #2 had a high MAD error and a corresponding lower SSIM value. Upon closer

examination of the MAD error, it was due to lower signal-to-noise ratios at the tissue inter-

faces near the edges of the image, especially when they were corrupted by speckle noise.

While the expert mentally extrapolated the missing regions in the image during annotation,

the algorithm was slightly unconstrained at these poorly defined boundaries, and it had to

extrapolate the curve to fit this area. Furthermore, fitting a curve to the manual annotations

induces a small degree of error, which is unavoidable, during comparison. Nevertheless,

the maximum error obtained in our work was less than 3µm (or ∼ 2 pixels), which is ac-

ceptable error for the purposes of visualization of the Palisades of Vogt. The per-frame
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runtime of the algorithm was ∼ 351 milliseconds on a NVIDIA Quadro K6000 GPU with

C++, CUDA, OpenCV, and VTK.

Through the consistency between the automatic and manual alignment results, we have

demonstrated that our adopted methodology removes the subjectivity of manual segmen-

tation. Since it is also faster than manual alignment, we have shown that it constitutes

transferable knowledge to the OCT imaging community. However, the registration algo-

rithm proposed in this work - rigid registration guided by limbal surface segmentation -

fails to account for out-of-plane tissue motion. This is a challenging registration problem to

analyze without constraints, and our future work is directed towards utilizing deep neural

networks to segment the limbal interface and intelligently determine the tissue structure

motion from one frame to another.
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5.2 Learning-Based Approach

5.2.1 Problem Statement

For an anterior segment SD-OCT image I of the limbal region of the eye in a volume of

images, the problem can be considered as assigning every pixel in the image a specific label

L. As shown in Fig. 5.8, we can consider the segmentation task as assigning every pixel

in the image I as being on the boundary of the limbal tissue interface (L = 1) or not (L =

0). Since each B-scan is acquired independently in a SD-OCT volume, an external tracking

mechanism is unavailable, and a guaranteed global alignment is not available as well. The

segmented limbal tissue interface will then be used to create an aligned 3D volume by guid-

ing the registration of all the images in a volume to a reference image in the volume. The

reference image is usually an image in the middle of the volume. The registered 3D volume

should be reconstructed to visualize the limbal region.

5.2.2 Data Acquisition

Similar to Sec. 5.1.2, data from an existing research database was de-identified. 36 raster

scanned volumes from both eyes of many subjects were scanned with multiple SD-OCT

scanning systems. In addition to the datasets in Sec. 5.1.2, volumes from a different SD-OCT

system (Bioptigen SD-OCT scanner [133]) were acquired as shown in Fig. 5.9. Together,

these volumes comprised the 36 volumes, for which manual annotations were available

for all images in all 36 volumes. The volumes included images showing severe artifacts,

pathology, and excess corneal surface degradation. Some of the datasets in this pool of

36 volumes were used to train the network. We elaborate on how the available data was

split into training, validation, and testing phases in the next section. The expert grader
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(a) (b)

Figure 5.8: (a) Pathological SD-OCT image of a patient acquired with a Bioptigen SD-OCT
scanner [133]. (b) The limbal tissue interface (red curve) and the Basal Cell Layer (BCL)
where the POV (yellow) are present is highlighted. The images were manually annotated
by an expert. Notice the lack of clear and visible structure of the BCL and the POV in (a)
as they appear wavy and are difficult to pinpoint on the left corner inside the tissue in (b).
Also notice the pathological changes in the tissue structure on the left side of the image
signifying a degradation of the tissue structure.

was allowed to annotate the images using a 3-pixel band. They were asked to stay within

1 pixel of the true tissue boundary location. This was mostly done in order to provide a

slight leeway in annotations as tissue boundaries can appear diffuse and make it difficult

to annotate.

The dimensions of the volumes varied; the minimum dimensions of images in the vol-

umes were 1024×250 pixels, while the maximum dimensions were 1024×1000 pixels. The

total number of images per volume varied in the range of 150-320. The dimensions of the

images fed into the network was 1024×256 pixels (H×W). All images in the volumes were

padded to 1024×256 pixels if the column count was lower than the required input size. If

they were larger than the required network dimensions, then the images in volumes were

sliced width-wise to produce an input to the network of size 1024×256 pixels. There was
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overlap in the images that were sliced and fed to the network if the dimensions were not

a multiple of 256. The predicted output from the network for each slice was then used to

recreate the original dimension of the full sized image.

(a) (b)

Figure 5.9: (a) Example SD-OCT image acquired by the Bioptigen system [133]. (b) Exam-
ple SD-OCT image acquired by the hsUHROCT system [34]. In contrast to (b), note the
increased intensity of the tissue structure and imaging artifacts in the image in (a).

5.2.3 CorNet Architecture

The architecture of the convolutional neural network (CNN) used in this work was the Cor-

Net, previously described in Sec. 4.2.2, and is shown in Fig. 5.10. The CorNet architecture

was originally designed to segment multiple corneal tissue interfaces. Since the morphol-

ogy of the limbal region is similar to the cornea, we extended our work to segment the

shallowest limbal tissue interface. The CorNet architecture closely resembles the model

proposed in [79]. In this network design, the input image is convolved and downsampled

from one layer to another with the number of filters used to detect objects in the image

exponentially increasing until a predefined depth is reached. This contracting path [82] is
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called the descending branch. Following the contracting path, the downsampled images

are subsequently upsampled and convolved to reach the original dimensions of the image.

This expanding path [82] is called the ascending branch. Skip connections [134] allow the

high resolution features from the descending/contracting path to be combined with the

corresponding layer in the ascending branch to allow the localization of tissue structures

and allow successive layers to learn precise positions of the tissue interface based on this

additional information.

The U-Net architecture [82] is shown in Fig. 5.11. In a conventional U-Net architecture

[82], there are several issues that occur when segmenting the tissue boundary of interest.

As the largest possible object in an image that can be segmented depends on the receptive

field of the network, we have observed:

• With the U-Net, a 3×3 pixels kernel that is used for a network depth of 5 layers exhibits

holes [79] when segmenting tissue objects containing a large discontinuity, such as

when there is shadowing or pathology, that is greater than 3 ∗ 25 = 96 pixels. This

has been experimentally observed in our experiments, and [79] have seen this in their

experiments as well.

• As the network grows in depth, the convergence rate of the network decreases, and

this is due to the vanishing gradient problem [135]. The gradients of the network out-

put with respect to the parameters (weights) in each layer that are computed using

back-propagation in a CNN become smaller and smaller. The shrinking value of the

gradients occurs as the gradients pass through a deep network, with the effect de-

pendent upon the choice of an activation function, such as tanh or sigmoid activation

functions. Even though the U-Net uses a ReLU activation function, it still undergoes

the problem of vanishing gradients due to the depth of the network architecture.
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Figure 5.10: Our network architecture comprises of contracting and expanding branches.
The dark green and blue blocks represent downsampling and upsampling computations
respectively. Our network makes efficient use of residual and dense connections to generate
the limbal interface segmentation in the final image, where each pixel is assigned the label of
the tissue it belongs to. The input image is split width-wise into a set of slices of dimensions
256×1024 pixels, the network predicts an output for each slice, and the slices are aligned to
recreate the original input dimension. Dense connections concatenate feature maps from
previous layers. The light blue block at the bottom of the ”U” (on the right end of the
rectangle) does not perform upsampling, but as with the other blue blocks it functions as a
bottleneck for the layer and generates feature maps of the same dimensions as the output
feature maps from the previous layer.

• A deep network architecture with 5 layers [82] or 7 layers [79] utilized lots of param-

eters (44- and 176- million parameters), exhausting the computation power available

in typical research settings.

To tackle the above issues, we propose the following, which is similar to [79]:

1. Our CorNet architecture is modular as we have a building block that consists of di-
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Figure 5.11: The U-Net network architecture proposed in [82]. Figure used with permission
- Springer LNCS, Elsevier, license 4337120750575 [82].

lated convolutions with dilation rates of {1,3,5}. This building block is shown in ma-

genta titled ’Block’ in Fig. 5.10. The dilated convolutions increase the receptive field

of the network, allowing each layer to see a larger context of the original input image.

It also has the added benefit of not increasing the number of trainable parameters.

2. Each modular block in Fig. 5.10 is enhanced through the employment of residual

connections [114, 136] and batch normalization [113]. With residual connections, the

input of a layer is summed with the output of a layer, with no transformation being

applied on the input. It enables a layer to learn new representations that are differ-

ent from the input that was passed to it. Batch normalization allows a hidden layer

in the network to be more robust to changes in the underlying distribution of the in-
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put images that are passed to the network by normalizing the input batch of images

to contain zero mean and a variance of a defined value. By reducing this internal

covariate shift [113], it also allows for faster training, and higher accuracy.

3. The number of feature maps at the output of each modular block follows a Fibonnaci

sequence. It was shown that this achieves a good trade-off between segmentation

performance, network depth, and trainable parameters [79].

4. Bottleneck connections [112, 137, 138] are added between the modular blocks so that

the total number of parameters that need to be trained is lower.

5. Appropriately downsampled input images are concatenated with the output of each

modular block in both the descending and ascending paths.

Crucially, we have modified the network architecture in [79] to not only include the ap-

propriately downsampled input image to a layer (the branch residual), but to also concate-

nate the output of each modular block to successive blocks (the deep residual). This im-

portant modification is shown in the main architecture of Fig. 5.10. Similar to the Residual

Network [114], the incorporation of the branch and deep residual from previous layers as

the input to new layers was done in order to force the network to encode information that is

different from something that it has already learned. This is particularly useful in dealing

with shadowing and large drops in SNR along the tissue boundary. This modification also

allows the CorNet to learn to encode subtle changes in the tissue structure.

Throughout the architecture of the CorNet, we employed a 3×3 pixel convolutional ker-

nel with n feature maps with n increasing according to a Fibonacci sequence defined by

{64,96,160,256,416}. The network depth was limited to 416 feature maps. This prohibits

the number of trainable parameters from reaching the level in traditional U-Net type archi-
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tectures. The total number of parameters in the U-Net that was trained was ∼44 million

parameters, while the number of trainable parameters was ∼29 million in the CorNet, in

spite of the extra connections. This combination of hyper-parameters for training the Cor-

Net allowed for an increase in segmentation accuracy and a reduction in the number of

trainable parameters.

5.2.4 Curve Fitting and Registration

The output of the network is a prediction for each B-scan in the input OCT sequence. The

sliced output prediction was used to recreate the original input dimensions as shown in Fig.

5.12. Next, the predicted boundaries are fitted with a second or third order polynomial, as

seen in Figs. 5.12(b) and 5.12(d), following the same curve fitting [104] approach in Sec.

5.1.4. Due to the presence of severe pathology, it can be quite challenging even for a human

annotator to accurately determine the tissue interface position. As expert detection of a

pathological boundary is difficult, an automated algorithm would not be expected to beat

the expert especially when the position of the boundary is ambiguous. To this end, we fit

curves to both the expert annotations and to the automated segmentations, and then extract

C-mode sections as shown in Fig. 5.14 following the same approach in Sec. 5.1.5.

5.2.5 Experiments

Training

The output of the CorNet is an image of the same dimensions as the input image, namely

1024×256 pixels. Every pixel in the output image took a value in the range [0,1], which

corresponds to the value of the limbal tissue interface. The loss function used in this net-

work architecture was the Mean Squared Error (MSE) loss. This loss function minimizes
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(a)

(b)

(c)

(d)

Figure 5.12: (a) and (c) show the tissue interface boundary predicted (green) by the CorNet.
(b) and (d) show the result of fitting curves (red) to the predicted tissue interface boundary
using the approach in [104].
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(a) (b)

Figure 5.13: (a)-(b) show cross-sectional visualizations of the unique POV structural config-
uration. Notice the ridge- or finger-like cavities in the image, which represent the POV.

(a)

Figure 5.14: Side view of the reconstructed 3D volume of the limbal region. The volume
was created by segmenting the visible tissue interface in every B-scan in the volume and
aligning them, with the segmented interfaces being shown as the green surface on the right
side of the rendering.
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the pixel-wise error in the MSE between the predicted output and the ground truth anno-

tation. The network parameters are updated using back-propagation and the Adam opti-

mizer [139]. Out of the 36 annotated volumes that were available, 24 volumes were used

as a training set to train the network for 150 epochs. The entire training dataset, without

augmentation of data, comprised of 7612 images. The images were then augmented [121]

by the addition of gaussian noise, gaussian filtering, flipping, bilateral filtering, and gamma

adjustment with values 0.9, 1.2 and 1.5. The total augmented training dataset comprised of

60896 images, an∼ 8× increase in the original number of images. Among the remaining 12

datasets, a dedicated validation set of 4 volumes, that is distinct from the training dataset,

was used compute the validation loss, and trigger early stopping if the validation loss did

not improve.

An initial learning rate of 10−3 was used to commence training. This learning rate was

reduced by a factor of 2 when the validation loss did not improve for 2 consecutive epochs.

The lowest the learning rate can drop down to is 10−12. The training of the network was

also stopped early if the validation loss did not improve for 5 consecutive epochs. The

training ends when the validation loss does not improve, and the network weights at the

stage with the lowest validation loss are saved. The testing dataset comprised of 8 held-out

volumes that were not seen during training or validation. During testing, the images were

either padded or sliced width-wise to match the input dimensions of the network (1024×256

pixels), and are put back together to match the original image size after prediction.

5.2.6 Results

The segmentation accuracy and registration accuracy (as a function of cross-section extrac-

tion) were evaluated. Segmentation accuracy was measured by comparing the predicted re-

130



sult from the network after curve fitting against the experts’ manual annotations. Images in

all the 8 testing datasets that were used were manually annotated by the expert. The manual

annotations were registered using the procedure described in Sec. 5.1.5, and cross-sections

were extracted. The Structural Similarity (SSIM) image metric [132] was used to determine

the correlation between cross-sections that are automatically extracted and cross-sections

that were extracted after the alignment of the expert manual annotations. Registration ef-

fectiveness was assessed by the cross-sectional SSIM value. The validation protocol in [57]

was followed, and the expert annotation was fitted with a curve, and compared against the

curve fitted results. The following metrics were calculated: 1) Chamfer Distance [140], 2)

Hausdorff Distance [141], 3) Mean Absolute Distance (MAD) [93], and 4) SSIM between cross-

sections [132]. These metrics were chosen since traditional metrics, such as MAD, that rely

on pixel based distances do not convey the sharp changes in the convexity/concavity of the

curved surface, and are not well suited to validation. As the CorNet is not restricted to only

convex shapes, the Chamfer and Hausdorff distance measures convey the changes in cur-

vature to the ground truth annotation (fitted with a curve). For comparison, we also trained

a U-Net and estimated the segmentation and registration accuracy results. The results for

the U-Net are shown in Fig. 5.15 and Table 5.2, while the results for the CorNet are shown

in Fig. 5.16 and Table 5.3. The surface segmentation error is minimal when error values are

close to 0. As the segmentation error is closer to 0, SSIM values (which can take a maximum

value of 1) are higher indicating a similarity between the extracted cross-sections.

At first glance, the CorNet seems to be performing only marginally better than the U-

Net. However, this does not indicate the inferiority of the underlying predictions of the U-

Net in several failure cases that the CorNet is able to handle. As some of the additional and

most challenging test datasets that we have tested our algorithm on have not been annotated
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by an expert, there are no metrics available yet in these cases to quantitatively measure the

predictive power of the CorNet over the U-Net. Instead, we rely on the output images of

the CorNet and U-Net to describe the improvement in performance shown by the CorNet

over the U-Net. Below, we first detail the results for datasets that have been annotated, and

compare the U-Net results against the CorNet results. Then, we elaborate on the failure

cases when the U-Net performs worse than the CorNet, and explain its utility that allowed

it to fare significantly better than U-Net. We provide output images from the intermediate

stages of the CorNet that attest to the performance gains that are seen.

Table 5.2: U-Net - average quantitative error metrics across all 8 datasets. The pixel resolu-
tion in an A-scan is 1.3µm.

Grader 1
Chamfer Distance 6.56 ± 0.51 pixels

Hausdorff Distance 4.8 ± 1.45 µm
MAD 0.59 ± 0.27 µm
SSIM 0.84

Table 5.3: CorNet - average quantitative error metrics across all 8 datasets. The pixel reso-
lution in an A-scan is 1.3µm.

Grader 1
Chamfer Distance 6.47 ± 0.51 pixels

Hausdorff Distance 4.58 ± 1.31 µm
MAD 0.55 ± 0.25 µm
SSIM 0.86

In Table 5.3 and Fig. 5.16(a), the MAD error, plus standard deviation, of the predicted

output of the CorNet (fitted with a curve) is 0.80µm. This value is 7.5% better than the

MAD error, plus standard deviation, of the predicted output of the U-Net (fitted with a

curve), which was 0.86µm as seen in Table 5.2. This error is also lower than the hsUHR-

OCT system pixel resolution. However, this error does not provide much information as it

does not quantify the distance of the ground truth annotation (fitted with a curve) from the
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(a) (b)

(c) (d)

Figure 5.15: U-Net based segmentation and registration accuracy results. (a) Mean (red
circle) and standard deviation error (black error bars) of the MAD error between automated
segmentation and manual annotation; (b) Mean (red circle) and standard deviation error
(black error bars) of the Hausdorff Distance error between automated segmentation and
manual annotation; (c) Mean (red circle) and standard deviation error (black error bars) of
the Chamfer Distance error between automated segmentation and manual annotation; (d)
SSIM values of cross-section comparison.

prediction (fitted with a curve), nor does it show the changes in the ground truth annotation

(fitted with a curve) that affects the predicted curves’ distance to the annotation curve.

To this end, we computed the Hausdorff error and the Chamfer error. From Table 5.3 and

Fig. 5.16(b), the average Hausdorff distance error, plus standard deviation, was less than

5.89µm or ∼4.53 pixels. This value was lower than the average Hausdorff distance error,

plus standard deviation, of the U-Net, which was 6.25µm or∼4.8 pixels as seen in Table 5.2.
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(a) (b)

(c) (d)

Figure 5.16: CorNet based segmentation and registration accuracy results. (a) Mean (red
circle) and standard deviation error (black error bars) of the MAD error between automated
segmentation and manual annotation; (b) Mean (red circle) and standard deviation error
(black error bars) of the Hausdorff Distance error between automated segmentation and
manual annotation; (c) Mean (red circle) and standard deviation error (black error bars) of
the Chamfer Distance error between automated segmentation and manual annotation; (d)
SSIM values of cross-section comparison.

The maximum distance between any point of the annotated curve to the predicted curve

is defined by this value, thereby showing that the CorNet prediction (fitted with a curve)

is closer to the ground truth annotation (fitted with a curve). It justifies the sensitivity to

the position of each curve, and details the increase in segmentation error in microns of the

U-Net prediction (fitted with a curve).

Similarly, the Chamfer error, plus standard deviation, of the predicted output of the Cor-
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Net (fitted with a curve) was less than 6.98 pixels as described in Table 5.3 and Fig. 5.16(c).

This value is also lower than the corresponding Chamfer error for the U-Net prediction

(fitted with a curve), which was 7.07 pixels as shown in Table 5.2. This means that the dis-

tance from the ground truth annotation (fitted with a curve) to the CorNet predicted output

(fitted with a curve) only differs by ∼7 pixels.

From the graphs, only datasets # 1, 4 and 5 had a higher MAD errors. Dataset #8 has a

smaller MAD error, but the Hausdorff distance and Chamfer distance errors show a higher

standard deviation. This is seen in the Chamfer and Hausdorff distances in Figs. 5.16(b)-

(c) and Figs. 5.15(b)-(c). Corresponding lower SSIM values are also seen in Fig. 5.16(d).

Closer examination of the errors revealed that slight changes in the numerical values of

the estimated polynomial coefficients contributed to slight changes in the position of each

curve, and thereby the error values were higher. We postulate that fitting a curve to the

manual annotations induces a small degree of error, which is unavoidable. Nevertheless,

the maximum error is acceptable as the similarity of the C-mode cross-sections that were

extracted is higher than 0.86, and on average, this is the case as Table 5.3 shows that the

average SSIM value is 0.86.

The network took ∼ 0.125 milliseconds to generate the predictions for a single image,

and the fitting algorithm took ∼ 193 milliseconds per image to fit a curve and extract the

C-mode cross-section. The network was trained on a NVIDIA Titan Xp GPU with Tensor-

flow and Keras, while the curve fitting and registration algorithm was implemented using

C++, CUDA, OpenCV, and VTK. Consistent with our previous work in [3], we have shown

that through deep learning and the results obtained from the network, it is possible to gen-

erate reproducible metrics that are consistent with expert annotations. As in our previous

work [3], we have again demonstrated that our new methodology removes the subjectivity
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of manual segmentation. Most importantly, it is generalizable to datasets that have been ac-

quired with different SD-OCT systems, and this is a crucial drawback in [3]. Furthermore,

the automated approach is also faster than manual alignment, and it constitutes transfer-

able knowledge to the OCT imaging community. However, similar to the work in [3], the

proposed deep learning based segmentation and registration algorithm does not take into

account the out-of-plane tissue motion. Future work is directed towards using the segmen-

tation and registration results to further infer the deformation field that is necessary to align

the structures that are present in the B-scan to a reference B-scan.

Experimental Observations

As mentioned before, the error statistics for the CorNet and the U-Net are nearly similar.

However, results were only computed on 8 annotated volumes. When tested on other unan-

notated datasets, there were significant differences in the prediction accuracy between the

two networks. One significant difference was visualized when dealing with very low inten-

sity SD-OCT images in volumes with the underlying tissue having undergone significant

morphological changes in tissue structure due to pathology/disease as seen in Fig. 5.17. In

Fig. 5.17, there are significant changes in the tissue structure directly underneath the shal-

lowest tissue interface. If this tissue interface is not detected correctly, then the underlying

pathology cannot be examined appropriately. Furthermore, it is quite difficult to accurately

pinpoint the tissue boundary on the left side of the image in Fig. 5.17(a).

In the U-Net, the lack of appropriate context from the first few layers, as shown in Fig.

5.18(a), does not adequately inform the later layers in the network of the true tissue interface

position. This localized information is lost in the deeper layers of the U-Net. On the other

hand, the CorNet utilizes the contextual information from the first few layers, as shown

136



in Fig. 5.18(b), and is aided in localizing the tissue interface using through the use of the

residual formulation [114, 136]. It is postulated that OCT image segmentation would ben-

efit from an increased number of feature maps in the first layer of the network. It helps

enhance the subtle tissue boundaries that may sometimes be lost due to corruption of the

tissue boundary through speckle noise. In contrast to the U-Net, the last output layer of the

CorNet architecture has accuratly defined and localized the tissue boundary as seen in Fig.

5.19. We attribute this to the skip connections that helps in training deeper models, while

providing features from the encoder blocks to the decoder blocks for improved segmenta-

tion accuracy. The residual connections help the network learn to encode a different repre-

sentation from the ones that have already been learned by the earlier layers of the network.

This can be plainly seen in Fig. 5.19(b) when contrasted with the U-Net representation in

Fig. 5.19(a).

At the lowest downsampling level in the contracting path of both the U-Net and the Cor-

Net, lots of contextual information from the higher levels has been encoded. At this level,

only gross depiction of the tissue boundary and surrounding structures are seen, while sub-

tle changes in the features, such as edges, are not visualized. At the bottom of descending

path in both architectures, the CorNet has learned to represent the desired tissue boundary

better than the U-Net as shown in Fig. 5.20.
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(a) (b)

(c) (d)

Figure 5.17: (a) shows the prediction (green) of the U-Net on the 58th B-scan in a volume
where the intensity of the tissue interface is significantly lower than a regular SD-OCT im-
age of the limbal region; (b) shows the curve (red) fitted to the U-Net predicted output; (c)
shows the prediction (green) of the CorNet on the same 58th B-scan; (d) shows the curve
(red) fitted to the CorNet predicted output. Notice the lack of a continuous predicted out-
put in (a) as opposed to the predicted output in (c). In the absence of a prediction at the left
side of the image in (a), the fitted curve in (b) is incorrect. A correctly predicted output (c)
leads to a better curve fit (d), and thereby, accurate C-mode slice extraction.
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(a) (b)

Figure 5.18: (a) shows the network activation at the first input block of the U-Net. (b) shows
the network activation at the first input block of the CorNet. The number of feature maps
at the output of each layer was 128, and the images have been resized to match the original
input image dimensions. The CorNet clearly seems to be learning tissue structure better.
Even though the object boundary was not captured in the left side of the image, in the later
layers of the CorNet, this object boundary was accurately examined.
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(a) (b)

Figure 5.19: (a) shows the network activation at the last output block of the U-Net. (b) shows
the network activation at the last output block of the CorNet. The number of feature maps
at the output of each layer was 128, and the images have been resized to match the original
input image dimensions. The CorNet has accurately determined the position of the limbal
tissue interface.
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(a) (b)

(c) (d)

Figure 5.20: (a) shows the network activation at the lowest downsampled output block of
the U-Net with the number of feature maps being 1024. Each feature map has dimensions
of 64×16 pixels. (b) shows the network activation at the lowest downsampled output block
of the CorNet with the number of feature maps being 64 ([672, 64] block). Each feature map
has dimensions of 32×8 pixels. The images have been resized to match the original input
image dimensions. (c) and (d) show the final activations of the U-Net and the CorNet. The
CorNet has clearly learned to represent the desired tissue interface more accurately.
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5.3 Hybrid and Cascaded Approaches

5.3.1 Problem Statement

The problem statement for this work is the same as that provided in Sec. 4.3.1. In addition to

generating accurate segmentations on corneal OCT images, we would like to also generate

accuarate segmentations on limbal OCT images. The shallowest limbal interface in OCT

image sequences are segmented using a cascaded approach and a hybrid approach. Our

frameworks are pictorially shown in Fig. 5.21. We refer the reader to Sec. 4.3.1 for a brief

overview of a similar problem statement applied to corneal images.

5.3.2 Data Acquisition

In addition to the corneal datasets chosen from the research database [5] in Sec. 4.3.2, limbal

datasets were also added; 25 corneal datasets and 25 limbal datasets, totaling 50 datasets,

were randomly selected from an existing research database [5]. These datasets were ac-

quired using different scan protocols from three different OCT scanners: a custom Bioptigen

Spectral Domain OCT (SD-OCT) scanner (Device 1) that has been described before [109], a

high-speed ultra-high resolution OCT (hsUHR-OCT) scanner (Device 2) [70], and a Leica

(formerly Bioptigen) Envisu C2300 SD-OCT system (Device 3) [142]. Device 1 had a 3.4µm

axial and 6µm lateral spacing, and it was used to scan an area of size 6×6mm on the cornea.

Device 2 was used to scan two areas of sizes 6×6mm and 3×3mm respectively. This system

had a 1.3µm axial and a 15µm lateral spacing while interrogating the 6×6mm tissue area.

It had the same axial spacing, but a different lateral spacing of 7.5µm while imaging the

3×3mm area. Device 3 had a ∼2.44µm axial and 12µm lateral spacing when fitted with the

18mm anterior imaging lens.
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Figure 5.21: Our proposed approach contains two frameworks: a cascaded framework (pur-
ple) and a hybrid framework (orange). First, a conditional Generative Adversarial Network
(cGAN) takes an input OCT image, and produces an intermediate pre-segmentation im-
age. In the pre-segmentation, pixels just prior to the shallowest tissue interface are set to 0
(black), while others are retained. In the cascaded framework, the pre-segmentation, along
with the input image, are passed to a Tissue Interface Segmentation Network (TISN). The
TISN predicts the location of shallowest interface by generating a binary segmentation mask
(overlaid on the original image with a false color overlay; red - foreground, turquoise - back-
ground). In the hybrid framework, the pre-segmentation can be utilized by other segmen-
tation algorithms. Ultimately, both frameworks fit a curve to the interface to produce the
final segmentation.

Devices 1 and 2 were solely used to scan the cornea, with the former producing datasets

of dimensions 1024×1000×50 pixels, and the latter generating datasets of dimensions 400×1024×50

pixels. Devices 2 and 3 were used to scan the limbus, resulting in volumes that had varying

dimensions; the number of A-scans across all limbal datasets varied between 256 and 1024,

with a constant 1024 pixels axial resolution, and the number of B-scans across all datasets

varied between 25 and 375.
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5.3.3 Adversarial Network Architecture

As described in Sec. 4.3.3, we utilized the same CorNet architecture design Sec. 4.2.2 in

order to generate pre-segmentations of the limbal OCT images. The pre-segmentations

were obtained from the conditional Generative Adversarial Network (cGAN) detailed in

Sec. 4.3.3. Once the pre-segmentations are generated, they are utilized in a hybrid or cas-

caded framework by two distinct approachs. The cascaded framework uses the cGAN and

the Tissue Interface Segmentation Network (TISN), which was described in Sec. 4.3.3, to

segment the shallowest limbal interface in the limbal OCT sequence. The hybrid approach

can utilize any prior segmentation algorithm [3,20,57,65,67–69,77,78,81,108,143–150] in or-

der to estimate the limbal interface. In this work, we chose to use our previously described

approach in Sec. 5.1 to segment the shallowest limbal tissue interface. We have described

this approach in [3].

5.3.4 Experiments

Data Preparation

From the 50 datasets, we had a total of 1250 corneal images and 4437 limbal images respec-

tively. Of the 50 corneal and limbal datasets, 14 datasets were randomly chosen for training

the cGAN, and the remaining were used for testing. These datasets were chosen such that

they came from both eyes; the number of patients that were imaged could not be ascer-

tained as the database contained deidentified datasets. From the total set, we chose the

training set to comprise of a balanced number of limbal and corneal datasets (7 each) that

exhibited different magnitudes of specular artifacts, shadowing, and speckle. The training

set contained 350 corneal and 1382 limbal images respectively, and the remaining were set

aside in the testing set.
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Figure 5.22: The CorNet model is the base architecture used for training both the cGAN
and TISN. The input to the cGAN is a two-channel image, the input OCT image and binary
mask w (see Sec. 4.3.4), and the output is a pre-segmented OCT image (orange box). The
TISN gets a two-channel input (magenta and orange boxes), and the output is a binary
mask (yellow box). The dark green blocks in the contracting path represent downsampling
operations, while the blue blocks constitute upsampling computations. This model uses
residual and dense connections to efficiently pre-segment the OCT image, and predict the
location of the shallowest interface in the final output. The light blue block at the bottom of
the ”U” (on the right end of the rectangle) does not perform upsampling, but as with the
other blue blocks it functions as a bottleneck for the layer and generates feature maps of the
same dimensions as the output feature maps from the previous layer.

Considering the varying dimensions of the OCT images acquired from three OCT sys-

tems that were used in this work, along with the limited GPU RAM available for training,

it was challenging to train a framework using full-width images while preserving the pixel

resolution. Similar to previous approaches [5, 77], we sliced the input images width-wise

to produce a set of images of dimensions 256×1024 pixels, and in this way, we preserved

the OCT image resolution. We used the same datasets that were selected in the training set
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for training both the cGAN and the TISN. We also refer the reader to Sec. 4.3.4 for related

information regarding data preparation.

Data Augmentation

As our training datasets were smaller in number in contrast to those from datasets typi-

cally available in computer vision tasks, such as image recognition [126], we augmented

our datasets to increase the variety of the images that were seen during the training. These

augmentations [121] included horizontal flips, gamma adjustment, elastic deformations,

Gaussian blurring, median blurring, bilateral blurring, Gaussian noise addition, cropping,

and affine transformations. The full set of augmented images was used to train the TISN

as it required substantially larger amounts of data to generalize to new test inputs. On the

other hand, the cGAN can be trained with smaller quantities of input training data as it has

been shown to perform well on small training datasets [124]. For the cGAN, augmentation

was done by simply flipping each input slice horizontally along the X-axis.

cGAN and TISN Training

Similar to Secs. 4.3.3 and 4.3.3, training of the cGAN and the TISN commenced from scratch

using the architecture shown in Fig. 5.22. The input to the generator was a two-channel

image; the first channel corresponds to the input OCT image, and the second channel cor-

responds to the binary mask w. During test time, the input OCT image is replicated to pro-

duce a two-channel input to the cGAN. The same datasets from cGAN training were used

for training the TISN from scratch. The input to the TISN is a two-channel image; the first

channel corresponds to the original input image, and the second channel corresponds to the

predicted pre-segmentation obtained from the cGAN. The feature maps in the final layer
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of the network are activated using the softmax function to produce a two-channel output.

At test time, the TISN yielded a two-channel output; the first channel corresponded to the

foreground tissue segmentation, and the second channel corresponded to the background

pixel segmentation (above the tissue interface). The foreground pixels corresponded to

the boundary of the interface and those pixels below it, while the pixels above the tissue

boundary denoted the background. Finally, the predicted segmentation was fitted with a

curve [123] after the tissue interface was identified using a fast GPU-based method [1]. We

show our final results in Fig. 5.23.

Comparison Against Other Algorithmic Approaches

Extensive evaluation of the performance of our approach was conducted across all the test-

ing datasets. First, we wanted to investigate the accuracy of a traditional image analysis-

based algorithm [3] that directly segmented the interface in our test datasets. Briefly, this

algorithm filtered the OCT image to reduce speckle noise and artifacts, extracted the mono-

genic signal [128], and segmented the tissue interface. We denote this approach in the rest

of the paper by the acronym: Traditional WithOut Pre-Segmentation (TWOPS).

Second, we designed a hybrid framework, where the pre-segmented OCT image from

the cGAN is used by the traditional image analysis-based algorithm [3] to segment the shal-

lowest interface. We wanted to determine the improvement in segmentation accuracy when

the traditional algorithm used the pre-segmentation instead of the original OCT image. Go-

ing forward, we denote this algorithmic approach by the acronym: Traditional With Pre-

Segmentation (TWPS).

Third, we trained a CorNet architecture [5] to directly segment the foreground in the in-

put OCT image, without including the cGAN pre-segmentation as an additional input chan-
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(a) (b) (c) (d)

Figure 5.23: Limbal interface segmentation results for datasets acquired using Devices 2
and 3. Columns from left to right: (a) Original B-scans in the limbal OCT datasets, (b)
Pre-segmented OCT images from the cGAN with the specular artifact and speckle noise
patterns removed above the shallowest tissue interface, (c) Binary segmentation from the
TISN overlaid in false color (red - foreground, turquoise - background) on the original B-
scan, (d) Curve fit to the shallowest interface (red contour).
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nel. We compared the direct segmentation result against our cascaded framework. Hence-

forth, in the remainder of the paper, we refer to the direct deep learning-based segmentation

approach by the acronym: Deep Learning WithOut Pre-Segmentation (DLWOPS). Finally,

we call our cascaded framework as: Deep Learning With Pre-Segmentation (DLWPS).

To summarize, the following algorithmic approaches were considered for performance

evaluation:

1. TWOPS - A traditional image analysis-based algorithm [3] that directly segmented

the tissue interface.

2. TWPS - The hybrid framework.

3. DLWOPS - A deep learning-based approach [5] that directly segmented the tissue

interface.

4. DLWPS - The cascaded framework.

Annotation

Each limbal dataset was annotated by an expert grader (G1; Grader 1). The grader was

asked to annotate the shallowest interface in all test datasets. For each dataset, the grader

annotated the interface using a 5-pixel width band with an admissible annotation error of

3 pixels. All the annotations were fitted with a curve for comparison with the different

approaches.
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5.3.5 Results

Metrics

In order to compare the segmentation accuracy across the different algorithmic approaches,

we calculated the following metrics: 1) Mean Absolute Difference in Layer Boundary Po-

sition (MADLBP) and 2) Hausdorff Distance (HD) between the fitted curves. These metric

values were determined over all testing datasets, and only for the shallowest interface. In

Eqs. (5.4) and (5.5), the sets of points that represent the gold standard annotation and the

segmentation to which it is compared (each fitted with curves) are denoted by G and S re-

spectively. We denote by yG(x) the Y-coordinate (rounded down after curve fitting) of the

point in G whose X-coordinate is x, and yS(x) is the Y-coordinate (rounded down) of the

point in S. dS(p) is the Euclidean distance of a point p in G to the closest point in S, and

similarly for dG(p).

We chose MADLBP in Eq. (5.4) as one of our error metrics since it was used in [3] to

compare the segmentation accuracy between the automatic segmentations and grader an-

notations. Although MADLBP quantifies error in pixels, it did not measure the Euclidean

distance error; instead, it simply measured the positional distance between the detected

boundary location and the annotation along the same A-scan. On the other hand, the Haus-

dorff distance in Eq. (5.5) captured the greatest of all distances between the points in the

segmentation and annotation. Therefore, it quantitatively describes the worst segmentation

error in microns as it is more clinically relevant (e.g. to detect structural changes over time).

In this work, we did not compute Dice similarity as it did not provide segmentation error

in microns.
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MADLBP =
1

X

X−1∑
x=0

|yG(w)− yS(w)| (5.4)

HD = max

(
max
p∈G

dS(p), max
p∈S

dG(p)

)
(5.5)

We also determined the HD and MADLBP error across the limbal datasets in Figs. 5.24

and 5.26. Again in Fig. 5.25, we estimated the benefit of pre-segmenting limbal datasets

by grouping methodologies into two categories- Traditional Comparison (TC; TWOPS vs

TWPS) and Deep Learning Comparison (DLC; DLWOPS vs DLWPS) - and comparing max-

imum HD error per dataset for each category. Moreover, we found a few instances where

our cascaded framework failed to correctly segment the tissue interface as seen in Fig. 5.25

(results after the red vertical line).

Discussion - Segmentation Accuracy of Limbal Interface

We plotted the segmentation error for the algorithmic approaches executed on limbal datasets

in Figs. 5.24, 5.25 and 5.26. In Fig. 5.24, we plotted the errors across all limbal test datasets,

including the instances when the cascaded and hybrid frameworks failed to accurately seg-

ment the shallowest interface. In Fig. 5.26, we plot the errors only for the successful in-

stances of interface segmentation. From Figs. 5.24 and 5.26, the error for the TWOPS ap-

proach is the worst amongst all methodologies as it failed to handle strong specular artifacts

and severe speckle noise. On the other hand, the TWPS approach fared better with lower

errors than the TWOPS approach. We also assessed the improvement in segmentation ac-

curacy on a per-image basis for each of the 18 limbal datasets. We plotted these errors in Fig.

5.25. From the errors (after the red vertical dashed line) in Figs. 5.25(a) and 5.25(c), the hy-
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(a)

(b)

(c)

(d)

Figure 5.24: (a)-(b) HD error and (c)-(d) MADLBP error comparison for the limbal datasets
acquired with Devices 2 and 3 respectively. For the limbal datasets, the segmentation re-
sults obtained for each algorithmic approach were contrasted exclusively against the expert
annotations (G1). This graph plots the errors across all limbal datasets, including the fail-
ure cases. In contrast to Fig. 5.26, note the increased segmentation error in the DLWPS
approach due to imprecise pre-segmentations.

brid framework (TWPS approach) was able to reduce the segmentation error even with an

incorrect OCT image pre-segmentation. Therefore, the incorporation of the pre-segmented

OCT image in the hybrid framework lead to lower errors for the traditional image analysis-

based approach.

The DLWOPS approach had lower errors as shown in Figs. 5.24 and 5.26 as compared

to the TWOPS and TWPS approaches. But, at an image level, it sometimes yielded higher

segmentation errors as seen in Figs. 5.25(b) and 5.25(d). On the other hand, the DLWPS ap-

proach (cascaded framework) improved the segmentation error in a majority of the datasets,
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with the exception of three datasets, which are our failure cases. As shown in Fig. 5.27, two

datasets presented with saturated tissue regions, which were washed out by specular ar-

tifacts. Another dataset contained regions where the interface was barely visible due to

being obfuscated by speckle noise of the same amplitude. Due to these reasons, the in-

correct pre-segmented OCT image degraded the segmentation performance of the TISN.

(a)

(c)

(b)

(d)

Figure 5.25: Quantitative estimation of the benefit of pre-segmenting the corneal OCT im-
age. All the approaches were grouped into two categories: TC (TWOPS vs TWPS), and
DLC (DLWOPS vs DLWPS). The first column corresponds to the former, and the second
column corresponds to the latter. For each test dataset, the image with the maximum HD
error was found over all images in the sequence, and the image location in the sequence
was stored. This was done only for the TWOPS and DLWOPS approaches respectively. The
stored location indicies were then used to retrieve the corresponding HD errors from the
TWPS and DLWPS approaches respectively. This procedure was done for only the expert
grader and plotted. G1 : without pre-segmentation (purple curve), with pre-segmentation
(black curve). Errors shown after red vertical line correspond to the failure cases of our
approach.
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(a)

(b)

(c)

(d)

Figure 5.26: (a)-(b) HD error and (c)-(d) MADLBP error comparison for the limbal datasets
acquired with Devices 2 and 3 respectively. For the limbal datasets, the segmentation re-
sults obtained for each algorithmic approach were contrasted exclusively against the expert
annotations (G1). These graphs plot errors for the successful segmentation results on 15
limbal test datasets.

Consequently, the segmentation error of the TWPS (hybrid framework) and DLWPS (cas-

caded framework) approaches was increased. As seen in Fig. 5.25 (after the red vertical

dashed line), the DLWOPS approach performed the best among all other approaches for

these datasets.

We expound on the aforementioned reasons for segmentation failure. First, the contex-

tual information available to the cGAN to remove the speckle noise patterns and specular

artifacts is hindered when the pixel intensities on the tissue interface are either washed

out due to saturation of the line scan camera [3, 5, 57] as shown in Fig. 5.27(a) (top two

rows), or blend in with the background and specular artifacts of the same amplitude [57]
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as seen in Fig. 5.27(a) (bottom). In such outlier cases, the boundary becomes difficult to

delineate across multiple scales through downsampling and upsampling operations in the

encoder and decoder blocks, such that even the dilated convolutions and dense connections

employed in the network are insufficient to recover context from surrounding boundary re-

gions when localizing the interface.

Second, the TISN over-relied on the pre-segmentation in order to generate the final seg-

menation. During training of the TISN, the original image was coupled with the gold stan-

dard pre-segmentation output (see Fig. 4.22) into a two-channel input. The TISN learned

that the tissue boundary in the gold standard pre-segmentation was the location of the

start of the true boundary. However, the TISN was not trained with gold standard pre-

segmented images that were artificially induced to be corrupted and noisy, such as the

images shown in Fig. 5.27(b). Hence, the performance of the TISN on such incorrectly

pre-segmented OCT images is poor.

One way to address this issue is to re-train the framework with gold standard pre-

segmentations that have corrupted boundaries. In this pilot work, we did not introduce

any corruption to the gold standard pre-segmentation used during training as we wanted

to directly measure the performance of the TISN when provided with a pre-segmentation

from the cGAN (without regard to any imprecise pre-segmentation). Another option is to

exploit the temporal correlation between B-scans in the dataset through recurrent neural

networks, which retain long-term information in memory in order to deal with such chal-

lenging datasets. We intend to pursue these ideas in our future work.

In this work, we set aside these three challenging failure cases, and estimated the im-

provement in segmentation accuracy across the remaining 15 limbus datasets. We con-

ducted a paired t-test between the TWOPS and TWPS methodologies for each error metric,
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and determined that our errors were statistically significant (pHD = 0.0471, pMADLBP = 0.0313).

We also calculated paired t-tests between the DLWPS approach and all other approaches to

determine the statistical significance of our results for each error metric. As seen in Table.

5.4, our DLWPS cascaded framework generated statistically significant results (p < 0.05).

Table 5.4: Statistical significance between our cascaded framework (DLWPS) against each
approach for 15 (out of 18) limbal datasets acquired from Devices 2 and 3.

TWOPS TWPS DLWOPS

pHD 0.0240 0.0014 1.0335e-04
pMADLBP 0.0126 0.0012 0.0344

(a) (b) (c) (d)

Figure 5.27: Failure cases of our cascaded framework on three challenging limbal OCT
datasets. Columns from left to right: (a) Original B-scans in the limbal OCT volumes, (b)
cGAN pre-segmentation results that imprecisely removed speckle noise patterns and spec-
ular artifacts above the shallowest tissue interface, (c) The binary segmentation masks from
the TISN overlaid in false color (red - foreground, turquoise - background) on the original
B-scans, (d) Curve fit to the shallowest interface (red contour).
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5.3.6 Interface Segmentation at Limbal Junction

During imaging of the limbal region, it is very common to acquire B-scans of the cornea

and the limbus in the same dataset. This is because the scan pattern of the OCT scanner

that is used to acquire the dataset will sometimes encompass sections of the limbus and the

cornea. Bulk tissue motion between B-scans in a dataset is also customary during image

acquisition. Therefore, it is crucial to capture the shallowest tissue interface of the limbus

and the cornea as it enables distinguishing between these two distinct regions. By correctly

locating these interfaces, a registration algorithm can be used to potentially align regions at

and below these interfaces, while compensating for bulk tissue motion. To the best of our

knowledge, we believe our approach is the first to accurately detect the shallowest corneal

and limbal interface in OCT images acquired at the limbal junction even in the presence

of severe speckle noise patterns and specular artifacts. Results of our approach are shown

in Fig. 5.28, wherein the shallowest interface is identified in B-scans that partially overlap

both the cornea and the limbus.
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(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Figure 5.28: Segmenting the shallowest tissue interface in OCT datasets, wherein the OCT
scanner commenced imaging from the limbus and crossed over into the cornea, thereby en-
compassing the limbal junction. (a),(b) B-scans #1 and #300 in an OCT dataset correspond-
ing to the limbus and the cornea respectively. (c),(d) B-scans #1 and #220 in a different OCT
dataset corresponding to the limbus and the cornea respectively. (e),(f),(g),(h) Segmentation
(red curve) of the shallowest tissue interface in images shown in (a),(b),(c) and (d) respec-
tively. Note the partial overlap of the limbal (left) and corneal (right) region in the B-scan
in (d), and the correct identification of the shallowest interface in (h).
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5.4 Longitudinal Study of Morphological Changes in the Pal-

isades of Vogt

5.4.1 Problem Statement

A longitudinal study was conducted to determine the changes in structure of the Palisades

of Vogt (POV). The goal is to extract C-Mode cross sections of the POV from 3D recon-

structions of the limbal regions, and quantify the morphological changes in the POV by

examining the cross-sections across each of the three days.

5.4.2 Data Acquisition

The cornea-scleral rims (intersection of the cornea and the sclera) of two cadaveric eyes (left

and right eyes) were imaged using using an SD-OCT scanner [142]. We named this OCT

scanner “Device 3”. It had a ∼2.44µm axial and 12µm lateral spacing when fitted with the

18mm anterior imaging lens. The corneal rim containing the limbus can be divided into

twelve (12) equal parts, similar to the hours shown on a clock. Datasets were obtained for

each clock hour and the imaging was conducted for a total of 12 days.

However, the POV are most visible in the superior and anterior corneal rim section of

the eye between the following clock hours: superior (10 o’clock - 2 o’clock) and inferior (4

o’clock - 8 o’clock). We only utilized the datasets in the superior and inferior corneal rim

regions between the following clock hours: superior (11 o’clock - 1 o’clock) and inferior (5

o’clock - 7 o’clock). This corresponded to 3 datasets per region with 6 datasets per eye. Both

eyes were imaged for 3 days, resulting in 12 datasets per day and 36 datasets in total. Due

to manual positioning of the OCT scanner, the clock-hour locations were only approximate

and are not consistent from day to day.
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We compared the datasets across 3 days because the changes in the POV were not quan-

tifiable by our approach after the 4th day since the tissue had degraded to the point where

curve fitting no longer captured the right regions of interest. Subsequent cross-sectional

slices that were extracted were incorrect as there was misalignment between B-scans in the

3D reconstruction.

5.4.3 Approach

The shallowest limbal interface was identified from each OCT dataset as described in Secs.

5.2.3 and 5.2.4. Once these C-mode cross-sections were extracted from the registered lim-

bal volumes, we manually compensated for day-to-day clock-hour misalignment by visu-

ally finding 2D correspondences between days. We matched visually similar POV regions

across multiple days for each of the clock hours. Then, these corresponding POV structures

were manually annotated by an expert and the area of the annotations was computed, allow-

ing comparison of POV area across each day. If multiple annotated areas of correspondence

were obtained from the expert, then the similarities across the largest annotated area was

compared. An example of this process is shown in Figs. 5.29 and 5.30.

5.4.4 Results

The results of estimating the morphological change over each of the three days are shown in

Table. 5.5. From our results, there is a trend of decreasing area measures for the annotated

POV regions. This means that the size of the POV is diminishing across each day, and across

each eye. The structure of the POV regions certainly appears to be stable across the first

two days as shown in Figs. 5.29 and 5.30. However, there appears to be deterioration in the

general shape of the annotated POV regions on the third day - see (c) and (f) in Figs. 5.29
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.29: In this figure, cross-sections of the POV are shown for the 12 o’clock hour.
C-mode cross-sections were extracted from the associated 3D limbal reconstructions for
each eye across three days, and were visually compared for similarity. Next, two regions
corresponding to the POV structures were manually annotated as shown by the red and
purple contours in each image. Finally, the area of each contour was computed, and the
contour with the maximum area was compared across each day and for each eye. In general,
there is a trend of a decrease in the POV area over each day. We postulate that this may be
due to the degradation of the tissue structure over time.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.30: In this figure, cross-sections of the POV are shown for the 6 o’clock hour. C-
mode cross-sections were extracted from the associated 3D limbal reconstructions for each
eye across three days, and were visually compared for similarity. Next, two regions corre-
sponding to the POV structures were manually annotated as shown by the red and purple
contours in each image. Finally, the area of each contour was computed, and the contour
with the maximum area was compared across each day and for each eye. In general, there
is a trend of a decrease in the POV area over each day. We postulate that this may be due to
the degradation of the tissue structure over time.
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and 5.30. Furthermore, the scleral and limbal structures around the POV regions appear

to degrade as well. Based on our empirical observations, we believe that this structural

degradation will become worse past the point of the third day.

The cross-sections presented in this thesis, along with the visualization of the structural

changes and quantification of certain annotated POV regions, are more representative of

geometric changes in individual palisades as opposed to previous work [37]. In prior work,

the Palisade Density (PD) and the Epithelial Rete Peg (ERP) [37] were calculated from a

small region in a averaged B-scan obtained after OCT imaging of the limbal region. This B-

scan is similar to the cross-sectional B-scan views presented in Figs. 5.8 and 5.9(a). However

in this work, we provide longitudinal cross-sections (en-face) of the POV regions, which are

enabled by our automated methods, and yield a better characterization of the length and ex-

tent of the POV at the corneo-scleral intersection. These reconstructed en-face views could

enable new clinical practices for eye transplantation, including new donor-eye screening

procedures, new time lines for presumed tissue viability, new monitoring of viability after

transplant, and new science for future drugs to extend longevity of the corneal or limbal

transplant before and after transplantation.

Table 5.5: Area of specific regions of the Palisades of Vogt (POV) that were identified and
tracked in cross-sectional images across three days. Area measures are in pixels.

Day #
11 o’clock 12 o’clock 1 o’clock 5 o’clock 6 o’clock 7 o’clock

OS OD OS OD OS OD OS OD OS OD OS OD

1 1044 2094 861 2764 1445 2767 889 2125 1291 2569 842 1410

2 1001 1707 788 2755 1408 2687 871 2010 1200 2557 826 1259

3 949 1170 707 2499 1392 2300 844 1922 900 2541 780 1203
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Chapter 6

Vessel Contour Segmentation in

UHFUS and HFUS Sequences

6.1 Classical Approach

6.1.1 Problem Statement

Given an image It at time t in a UHFUS/HFUS image sequence and the initial vessel posi-

tion in the sequence st=0 at time t = 0, the problem can be formulated as finding the set of

pixels D that lie on the boundary of the vessel. As shown in Fig. 6.1, every pixel in D takes

a specific label L = 1 if it lies on the boundary, or it takes a label L = 0 if it does not lie

on the boundary. Furthermore, the vessel location st should also be tracked as the vessel

undergoes deformation from one image to another in the image sequence.
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(a) (b)

Figure 6.1: (a) shows the 30th B-scan in an UHFUS image sequence, and the expertly anno-
tated vessel boundary is shown in (b).

6.1.2 Data Acquisition

The Visualsonics Vevo 2100 UHFUS machine (Fujifilm, Canada) and a 50 MHz transducer

(bandwidth extendable to 70 MHz) was used to acquire freehand ultrasound volumes. This

UHFUS system has a physical resolution of 30µm, and the pixel pitch is 11.6µm between

pixel centers. Validation was performed on 35 deidentified UHFUS sequences. The se-

quences were acquired over a wide range of gain values (40-70 dB), with the maximum

gain value setting being 70 dB. The sequences contained a wide range of motions with the

probe, such as longitudinal scanning, out-of-plane tissue deformation, beating vessel visu-

alization, etc. Fig. 6.2(a) shows an example ultrasound image of the proper palmar digital

artery acquired with the UHFUS system. Each sequence consisted of 100 2D B-scans with

dimensions of 832×512 pixels.

To show the generality of our approach, 5 additional sequences were acquired from a

traditional HFUS machine (Diasus, Dynamic Imaging, UK) using a 10-22 MHz transducer.

The pixel resolution for the HFUS machine was 92.5µm, and each sequence consisted of 250

2D B-scans of dimensions 280×534 pixels.
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6.1.3 Noise Reduction and Clustering

Noise Reduction

In contrast to traditional HFUS, speckle noise is greater in UHFUS as seen in Figs. 6.2. To

mitigate the effects of speckle during segmentation, the UHFUS B-scans were first down-

sampled [151] by a factor of 4 in each dimension as shown in Fig. 6.3(a). Next, a bilateral

filter [129] of size 5×5 pixels was applied to the downsampled image to smooth the small

amplitude noise as shown in Fig. 6.3(b), while preserving vessel boundaries that are crucial

to our segmentation. The bilateral filtered image is represented by IB.

(a)

(c)

(b)

(d)

Figure 6.2: Left columns show vessels imaged by UHFUS, while the right columns show
vessels imaged by HFUS.
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(a) (b)

Figure 6.3: (a) Downsampling the original ultrasound image, shown in Fig. 6.2(a), by a
factor of 4 in each dimension. (b) Filtering the downsampled image with a bilateral filter of
size 5×5 pixels.

Clustering

The approach published in [152], which has also shown applicability to MRI images, was

used to produce an image IC, where the pixels in IB were clustered into homogeneous

patches. The result of this clustering process is shown in Fig. 6.4. Each pixel in IC can

be represented by two elements: the mean intensity of the patch that it belongs to, and the

associated cluster/patch center (root) to which it belongs. For each pixel in IB, the mean

intensity and variance is found in a circular neighborhood, whose size varies depending on

the size of the vessel. For small vessels in UHFUS images (≤70 pixel diameter or 0.81mm),

the neighborhood size was 3×3 pixels, while it was 7×7 pixels for larger vessels (>70 pix-

els). Each patch root in IC has the lowest local variance amongst all the members of the

same patch [152]. Roots in IC were used solely as seeds to track vessels over B-scans in an

ultrasound sequence. As seen in Figs. 6.4(b) and 6.4(c), increasing the neighborhood size

reduces the number of roots that can be tracked, which can cause tracking failure when

large motion occurs. This phenomenon influenced the choice of the neighborhood size.
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(a) (b) (c)

Figure 6.4: (a) Result of clustering pixels in IB into patches in IC based on the method pre-
sented in [152]; (b) With a kernel of size 3 × 3 pixels, the pixels in IB are clustered into
homogeneous patches in IC, each with its own cluster center (root) (orange points); (c) IC
generated with a 7× 7 pixels kernel. Notice the lower number of cluster centers as the size
of the clustering neighborhood is increased.

6.1.4 Local Phase Analysis

Vessel boundaries in IB were highlighted using a Cauchy filter, which has been shown to be

better than a Log-Gabor filter at detecting edges in ultrasound [153]. We denote the spatial

intensity value at a location x=[x y]T in the image IB by IB(x). After applying a 2D Fourier

transform, the corresponding 2D frequency domain value is F (w), where w = [w1 w2]T .

The Cauchy filter C(w) applied to F (w) is represented as:

C(w) = ‖w‖u2 exp (−wo‖w‖2) , u ≥ 1 (6.1)

where u is a scaling parameter, and wo is the center frequency. We chose the same optimal

parameter values suggested in [153]: wo=10, and u=1. Filtering F (w) with C(w) yielded

the monogenic signal [130,131], from which the feature asymmetry map (IFA) [130,131,153]

was obtained (see Fig. 6.5). Pixel values in IFA range between [0, 1]. The reader is referred to

[154] for an excellent summary of the well-known mathematical theory behind local phase

analysis.
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Figure 6.5: Feature Asymmetry map (IFA) for image in Fig. 6.3(b).

6.1.5 Vessel Segmentation and Tracking

Initialization

As in [91,92], we manually initialize our system by clicking a point inside the vessel lumen

in the first B-scan of a sequence. This pixel location is stored as a seed, denoted by s0 at

time t=0, to segment the vessel boundary in the first B-scan, and initialize the vessel lumen

tracking in subsequent B-scans.

Initial Boundary Segmentation

N = 360 radial lines of maximum search length M = 100, which corresponds to the largest

observed vessel diameter, stem out from the seed location s0 to find the vessel boundaries in

IFA. The first local maximum on each radial line is included in a set I as an initial boundary

point as shown in Fig. 6.6(b).

Segmentation Refinement

A rough estimate of the semi-major and semi-minor vessel axes was determined by fit-

ting an ellipse [155] to the initial boundary locations in I. Next, the estimated values were
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shrunk by 75%, and used to initialize an elliptical binary level set function (LSF) φo defined

by Eq. (6.2), as seen in Fig. 6.6(c), in a narrowband distance regularized level set evolution

(DRLSE) [156] framework.

φo(x) =


−co, if x ≥ Ro

co, otherwise

(6.2)

(a) (b) (c)

Figure 6.6: (a) Feature Asymmetry map (IFA); (b) Initial boundary locations (green points)
estimated from IFA using the tracked point st (magenta). (c) Ellipse (green) fitted to green
points in (i), and then shrunk by 75% (brown ellipse) to initialize the level set evolution.

As the LSF initialization is close to the true boundaries, the DRLSE formulation allows

quick propagation of LSF to the desired vessel locationsD (see Fig. 6.7) with a large timestep

∆τ [156]. For a LSF φ : Ω → R, defined on a domain Ω, the DRLSE framework minimizes

an energy functional E(φ) [156] written in Eq. (6.3):

E(φ) = µRp(φ) + Eext(φ) (6.3)

Rp(φ) is the level set regularization term [156] defined below:

Rp(φ) =

∫
Ω

p(|∇φ|)dx (6.4)

where p is the double-well potential function:
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(a)

(d)

(b)

(e)

(c)

(f)

Figure 6.7: (a) LSF evolution (closed yellow contour) at 5th iteration; (b) LSF evolution at
10th iteration; (c) LSF evolution at 15th iteration; (d) LSF evolution at 20th iteration; (e) LSF
evolution at 25th iteration; (f) Refinement of LSF at the end of the 25th iteration for another
10 iterations yields the final LSF position.

p2(s) =


1

(2π2) (1− cos(2πs)), if s ≤ 1

1
2 (s− 1)

2
, if s ≥ 1

(6.5)

Eext(φ) is the external energy term for the level set that depends on the external data,

such as the image to be segmented. The Eext(φ) term can be written as the sum of an area

term and an edge term:

Eext(φ) = λ

∫
Ω

gδε(φ)|∇φ|dx + α

∫
Ω

gHε(−φ)dx (6.6)

µ, λ, ε, and α are constants. g is an edge indicator function, which is defined as follows:

g =
1

1 + |∇Gσ ∗ I|
(6.7)
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Gσ is a Gaussian kernel with a standard deviation σ, and it is used to blur the image I

to reduce the noise. This function g has smaller values at the boundaries of the object, and

higher values everywhere else. Hε and δε, defined in Eqs. (6.8) and (6.9), are the Heaviside

function and first order derivative of the Heaviside function respectively:

Hε(x) =



1
2

(
1 + x

ε + 1
π sin(πxε )

)
, |x| ≤ ε

1, x > ε

0, x < −ε

(6.8)

δε(x) =


1
2ε

[
1 + cos(πxε )

]
, |x| ≤ ε

0, |x| > ε

(6.9)

The energy function in Eq. (6.3) can now be minimized using the gradient in Eq. (6.10):

∂φ

∂τ
= µdiv(dp(|∇φ|)∇φ) + λδε(φ)div

(
g
∇φ
|∇φ|

)
+ αgδε(φ) (6.10)

where dp is derived from the first derivative p′2(s), written in Eq. (6.12), of the double-

well potential p2(s) in Eq. (6.5). dp is written below as:

dp(s) ,
p′2(s)

s
(6.11)

p′2(s) =


1

(2π2) (1− cos(2πs)), if s ≤ 1

1
2 (s− 1)

2
, if s ≥ 1

(6.12)
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(a) (a)

Figure 6.8: Segmentation result in the HFUS image.

Vessel Tracking

To update the vessel lumen position st at time t to st+1 at time t+1, two new potential seeds

are found, from which one is chosen. The first seed is found using an EKF [93, 157], and

the second seed, which is found using IC, is needed in case the EKF fails to track the vessel

lumen due to abrupt motion. The EKF tracks a state vector defined by: xt = [ctx, c
t
y, a

t, bt],

where stekf=[ctx, c
t
y] is the EKF-tracked vessel lumen location and [at, bt] are the tracked semi-

major and semi-minor vessel axes respectively. Instead of tracking all locations in D, it is

computationally efficient to track xt, whose elements are estimated by fitting an ellipse once

again to the locations in D as shown in Fig. 6.9(a).

The EKF projects the current state xt at time t to the next state xt+1 at time t+1 using the

motion model in [93], which uses two state transition matrices A1, A2, the covariance error

matrix P , and the process-noise covariance matrix Q. These matrices are initialized in Eqs.

(6.13)-(6.16). Consistent with [93], the velocity of xt+1 was damped by 0.5 to avoid abrupt

motion as the vessel can suddenly deform.
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A1 = diag([1.5, 1.5, 1.5, 1.5]) (6.13)

A2 = diag([−0.5,−0.5,−0.5,−0.5]) (6.14)

P = diag([1000, 1000, 1000, 1000]) (6.15)

Q = diag([0.001, 0.001, 0.001, 0.001]) (6.16)

The second seed was found using the clustering result. At the location of the previous

seed st in the clustering result It+1
C at time t+1, the EKF tracked ellipse axes [at+1, bt+1] were

used to find the neighboring roots of st in an elliptical region of size [1.5at+1, bt+1] pixels.

Amongst these roots, the root st+1
c , which has the lowest mean pixel intensity representing

a patch in the vessel lumen, is chosen as shown in Fig. 6.9(b). The elliptical region is robust

to vessel compression, which enlarges the vessel horizontally.

(a) (b)

Figure 6.9: Tracking under large motion - (a) In frame 87, st+1
ekf (blue point) chosen over

st+1
c (orange point) to segment vessel (yellow contour), which is then fitted with an ellipse

(green); (b) In frame 88, EKF prediction (red) from its previous location (blue) is ignored
as Eq. (6.17) is not satisfied. Instead, st+1

c (magenta point) is chosen as it falls under the
elliptical neighborhood (brown) of stc (orange).
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The EKF prediction is sufficient for tracking during slow longitudinal scanning or still

imaging as st+1
ekf and st+1

c lie close to each other. However, when large motion was encoun-

tered, the EKF incorrectly predicted the vessel location (see Fig 6.9(b)) as it corrected abrupt

vessel motion, thereby leading to tracking failure. To mitigate tracking failure during large

vessel motion, st+1
ekf was ignored, and st+1

c was updated as the new tracking seed according

to the proposed rule in Eq. (6.17):

st+1 =


st+1

c if ‖st+1
ekf − st+1

c ‖2 > at+1

st+1
ekf otherwise

(6.17)

6.1.6 Results

Metrics

Segmentation accuracy of the proposed approach was evaluated by comparing the contour

segmentations against the annotations of two graders. All images in all datasets were an-

notated by two graders. Tracking was deemed successful if the vessel was segmented in

all B-scans of a sequence. Considering the set of ground truth contour points as G and the

segmented contour points as S, the following metrics were calculated: 1) Dice Similarity

Coefficient (DSC) [158] in Eq. (6.18), 2) Hausdorff Distance (HD) [141] in millimeters in Eq.

(6.19), 3) Definite False Positive Distance (DFPD), and Definite False Negative Distance (DFND)

in Eqs. (6.20) and (6.21). The latter represent weighted distances of false positives and neg-

atives to the true annotation.

Let IG and IS be binary images containing 1 on and inside the area covered by G and S

respectively, and 0 elsewhere. The Euclidean Distance Transform (EDT) is computed for IG
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and its inverse I Inv
G [159]. DFPD and DFND are estimated from the element-wise product of

IS with EDT(IG) and EDT(I Inv
G ) respectively ad defined in Eqs. (6.20) and (6.21). d(i, G, S)

is the distance from contour point i in G to the closest point in S. Inter-grader annotation

variability was also measured. To compare against the results in [88] for HFUS sequences,

the Mean Absolute Deviation (MAD) error defined in Eq. (6.22) was also computed.

DSC =
2|G ∩ S|
|G|+ |S|

(6.18)

HD = max
(

max
i∈[1,|G|]

d(i, G, S), max
i∈[1,|S|]

d(j, S,G)
)

(6.19)

DFPD = log
(
‖EDT(IG) ◦ IS‖1

)
(6.20)

DFND = log
(
‖EDT(I Inv

G ) ◦ IS‖1
)

(6.21)

MAD =
1

2

( 1

|G|

|G|∑
i=1

d(i, G, S) +
1

|S|

|S|∑
i=1

d(i, S,G)
)

(6.22)

UHFUS Results

We ran our algorithm on 35 UHFUS sequences (100 images each), and the corresponding

results are shown in Figs. 6.10. The two graders varied in their estimation of the vessel

boundary locations in UHFUS images due to the speckle noise obscuring the precise loca-

tion of the vessel edges, as shown in the inter-grader Dice score in Fig. 6.10(a), inter-grader

Hausdorff distance in Fig. 6.10(b), and inter-grader variation in Figs. 6.10(c) and 6.10(d).

Grader 2 tended to under-segment the vessel (G1vG2, low DFPD and high DFND scores),

while grader 1 tended to over-segment (G2vG1, high DFPD and low DFND scores). As

desired, our segmentation tended to be within the region of uncertainty between the two

graders (see Figs. 6.10(c) and 6.10(d)). Accordingly, the mean Dice score and mean Haus-
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dorff distance of our algorithm against grader 1 (0.917±0.019, 0.097±0.019mm) and grader

2 (0.905±0.018, 0.091±0.019mm) were better than the inter-grader scores of (0.892±0.019,

0.105±0.02mm). The largest observed Hausdorff distance error of 0.135mm is 6 times smaller than

the smallest observed vessel diameter of 0.81mm. Similarly, the mean Hausdorff distance error of

0.094±0.019mm is ∼7 times smaller than smallest observed vessel diameter. This satisfies our goal

of sub-mm vessel contour localization. Tracking was successful as the vessel contours in all

images in all sequences were segmented.

(a) (b)

(c) (d)

Figure 6.10: Quantitative segmentation and tracking accuracy metrics for 35 UHFUS se-
quences. The black * in each box plot represents the mean value of the metric. The terms
’G1vG2’ and ’G2vG1’ in Figs. 6.10(c) and 6.10(d) represent the inter-grader annotation vari-
ability when grader 1 annotation was considered the ground truth, and vice versa.
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HFUS Results

To show the generality of our approach to HFUS, we ran our algorithm on 5 HFUS se-

quences (250 images each), and the corresponding results are shown in Fig. 6.8(b) and Figs.

6.11. As opposed to UHFUS, lower DFPD and DFND scores were seen with HFUS, meaning

a greater consensus in annotation amongst the graders (see Figs. 6.11(c) and 6.11(d)). No-

tably, our algorithm still demonstrated the desirable property of final segmentations that lay

in the uncertain region of annotation between the two graders. This is supported by com-

paring the mean Dice score and mean Hausdorff distance of our algorithm against grader 1

(0.915±0.008, 0.292±0.023mm) and grader 2 (0.912±0.021, 0.281±0.065mm), with the inter-

grader scores (0.915±0.02, 0.273±0.04mm).

To compare against the 0.1mm Mean Absolute Deviation (MAD) error in [88], we also

computed the MAD error for HFUS sequences (not shown in Fig. 6.11). The MAD error of

our algorithm against grader 1 was 0.059±0.021mm, 0.057±0.024mm against grader 2, and

0.011±0.003mm between the graders. Despite the lower pixel resolution (92.5µm) of the HFUS

machine used in this work, our MAD errors were ∼2× lower than the 0.1mm MAD error in [88].

Performance

The average run-time of our algorithm on a desktop with an Intel i7 processor, 16GB RAM,

and an entry-level NVIDIA GeForce GTX 760 GPU was 19.15 millisecond per B-scan and

1.915 seconds per sequence, thus achieving a potential real-time frame rate of 52 frames per

second. The proposed approach is significantly faster than the real-time approaches pro-

posed in [91–93]. Efficient utilization of the GPU unified memory was made to implement

the DRLSE and EKF algorithms in parallel.
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(a) (b)

(c) (d)

Figure 6.11: Quantitative segmentation and tracking accuracy metrics for 5 HFUS se-
quences. The black * in each box plot represents the mean value of the metric. The terms
’G1vG2’ and ’G2vG1’ in Figs. 6.11(c) and 6.11(d) represent the inter-grader annotation vari-
ability when grader 1 annotation was considered the ground truth, and vice versa.

Parameter Selection and Optimization

For all UHFUS datasets, the parameters used in all datasets were: ∆τ = 10, µ = 0.2, λ =

1, α = −1, ε = 1 for a total of 15 iterations. Only minor changes in the parameters of

the algorithm were required to transfer the methodology to HFUS sequences; namely, the

bilateral filter size was 3×3 pixels, wo=5, and ∆τ=8. No other changes were made to the

level set parameters.
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6.2 Deep Learning Approach

6.2.1 Problem Statement

Given an UHFUS/HFUS image I, the task is to find a function F : I → L that maps every

pixel in I to a labelL ∈ {0, 1}. We would like to divide the ultrasound image into segmented

regions which are: (1) Foreground vessel (filled) contour, and (0) being the background.

(a)

(f)

(b)

(g)

(c)

(h)

(d)

(i)

(e)

(j)

Figure 6.12: (a) Still frame capturing a pulsating vessel acquired using UHFUS; (b) Seg-
mentation (yellow contour) from a level set method bleeds into the tissue region due to poor
boundary contrast; (c) Final segmentation from the proposed USVS-Net; (d) Frame acquired
using HFUS (zoomed), and (e) its associated final vessel segmentation; Activations of the
network for the vessel imaged in (a) at different network depths: (f) downsampling level 1;
(g) downsampling level 3; (h) downsampling level 5; (i) upsampling level 3; (j) upsampling
level 1.

6.2.2 Data Acquisition

Previously acquired (free-hand) deidentified video sequences from an existing research

database [4, 41] were used in this work, and they came from two scanners: a Visualson-

ics Vevo 2100 UHFUS machine (Fujifilm, Canada), and a Diasus HFUS scanner (Dynamic

Imaging, UK). The UHFUS scanner provided a 50 MHz transducer with physical resolution

of 30µm and a pixel spacing of 11.6µm. 58 UHFUS sequences were used, each containing

100 2D B-scans with dimensions of 832×512 pixels. The HFUS scanner had a 10-22 MHz
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transducer with a pixel spacing of 92.5µm. 26 HFUS sequences were used, each contain-

ing a variable number of 2D B-scans (50-250) with dimensions of 280×534 pixels. All the

sequences contained arteries of the hand (eg. superficial palmar arch) with a wide range

of adjustable gain settings (40-70 dB). Extensive probe motions were also acquired, such

as longitudinal scanning, beating vessels, out-of-plane vessel deformation etc. An expert

grader annotated all the 84 UHFUS and HFUS sequences.

6.2.3 Ultrasound Vessel Segmentation Neural Network (USVS-Net)

In this work, we propose to utilize a Convolutional Long Short Term Memory (LSTM)

model to segment vessel cross-sections in UHFUS and HFUS video sequences. LSTM net-

works [160–165] intelligently combine multi-scale features by retaining relevant features

over video time steps, and only update the features when required. Some of these ap-

proaches have shown applicability to different tasks [160, 161]; we tested the performance

of these popular ConvLSTM methods on the challenging task of segmenting highly de-

formable and pulsating vessel contours in UHFUS and HFUS sequences. But, these ap-

proaches did not accurately segment vessel cross-sections, which inspired the development

of our novel ConvLSTM-based architecture for vessel segmentation called the USVS-Net.

This network was influenced by methods designed for different anatomies (retina [79],

cornea [5], microscopy [160], X-Ray [161]). Validation of our method was conducted on

38 UHFUS and 6 HFUS sequences respectively. We also show the general applicability of

our method to the Montgomery County Chest X-Ray dataset [166] with comparable results

to the state-of-the-art.

As seen in Fig. 6.13, the proposed USVS-Net [167] is a Convolutional LSTM-based vessel

segmentation architecture comprised of encoder and decoder sections. From prior work
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[160–165], the memory mechanism in such network designs enables the retention of vessel

appearance over multiple scales for dense pixel-wise output predictions.
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Figure 6.13: The USVS-Net architecture contains encoding (purple) and decoding (green)
sections. The encoder uses of residual connections and dilated convolutions to extract fea-
tures, while the decoder uses structured ConvLSTM blocks to retain vessel shape attributes
and segment the vessel.

Encoder

The encoder structure is inspired by the approaches in [5, 79], which have shown applica-

bility to retina and cornea tissue interface segmentation. The blocks in the encoder section

pull out meaningful representations of the vessel appearance over multiple scales using di-

lated convolutions [110] and residual connections [114]. These blocks can discern faintly

defined boundaries better [5], thereby avoiding holes in the final segmentation. As shown

in Fig. 6.12, the feature maps characterized at the first few layers of the encoder depict finely

defined properties (edges, corners etc.), which are low-level attributes, and are limited due

to their smaller receptive field. At the deeper layers of the network, coarse, but complex

182



attributes are seen with poorly defined contours. At this level, more of the image is seen

on a global scale due to the larger receptive field. Yet, this hierarchical representation is

not enough on its own to model the dynamics of vessel movement in a video sequence. By

forwarding the feature maps extracted at different scales to the convolutional LSTM cells,

which can retain relevant features of interest in memory, they can be integrated to produce

segmentations of better quality and precision [160,161].

Decoder

Every encoder block forwards its output feature maps to a LSTM unit in the decoder section.

In this work, we incorporate the structured LSTM proposed in [162]. These LSTM cells

consider the output of each encoder blockXt as a single time step, and implement a memory

mechanism wherein the features extracted at multiple scales are integrated in a coarse-to-

fine manner. This is done by gating structures that regulate the removal or addition of

new information to the cell state Ct. In this manner, global contextual information from

the deepest encoder layer is observed by the LSTM unit first, and as the receptive fields are

reduced, finer details about the vessel contour are added.

From Fig. 6.13, each LSTM unit uses three feature sets (input, hidden, and cell), and

outputs information using three gates: forget, input, and output. As seen in Eq. (6.23), the

forget gate ft removes information from the cell state. The current input Xt to the cell and

the hidden state Ht is convolved and passed through a sigmoid function, which outputs a

value in the range [0,1] for every element in the cell state Ct. 1 represents that a cell state

value is kept entirely, while 0 represents that it is forgotten. Wf and bf represent the weights

and biases for the forget gate.
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ft = σ
(
Wf · [Xt, Ht] + bf

)
(6.23)

The input gate determines the new information that will be incorporated into the cell

state. In this step as written in Eq. (6.24), Xt and Ht are convolved and passed through a

sigmoid function to determine the values to be updated. Then, a set of potential values that

could be added to the cell state are obtained by passing the convolved output through a

ReLu activation function as shown in Eq. (6.25). The next step is to update the current state

Ct of the LSTM cell as in Eq. (6.26) to incorporate the new inputs, and convert it to a new

cell state Ct+1. This is done by first multiplying the old state Ct with ft to forget certain

specific elements, and then adding it with it · C̃t to replace the elements removed with new

values of interest.

it = σ
(
Wi · [Xt, Ht] + bi

)
(6.24)

C̃t = ReLU
(
WC̃ · [Xt, Ht] + bC̃

)
(6.25)

Ct+1 = ft ∗ Ct + it ∗ C̃t (6.26)

Finally, the output of the LSTM unit Ht+1 is regulated by the output gate. It is based on

the new cell state Ct+1 of the LSTM unit. The covolved output of Xt and Ht is first passed

through a sigmoid layer to determine the values ot that need to be output. Then, the new

cell state Ct+1 is passed through a ReLu function, and multiplied with ot to estimate the

final hidden state output Ht+1 that needs to be obtained from the LSTM module.
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ot = σ
(
Wo · [Xt, Ht] + bo

)
(6.27)

Ht+1 = ot ∗ReLU
(
Ct+1

)
(6.28)

Contrary to [162], bi-directional LSTMs were not used in this work as our video se-

quences can be of arbitrary length with non-smooth vessel motion between consecutive

frames, c.f. Fig. 6.14, making their implementation impractical. We employed convolution

in the structured LSTM unit, and replaced the tanh operation with a ReLU as we empiri-

cally observed an improved segmentation accuracy. Similar to [161], the initial hidden and

cell states were set to zero, and the hidden and cell states of the other LSTM units were

upsampled from the LSTM unit below (see Fig. 6.13).

(a)

(f)

(b)

(g)

(c)

(h)

(d)

(i)

(e)

(j)

Figure 6.14: (a) Frame 152 in a UHFUS sequence showing a completely contracted vessel,
and (b) its associated segmentation; (c) Next frame 153 in the same sequence showing a
patent vessel, and (d) its segmentation; (e) Zoomed view of a HFUS B-scan (gain set to
maximum); (f) Segmentation by the CFCM34 [161] and (g) our segmentation result; (h)
Ground truth lung segmentation from the CXR dataset; (i) Result from CFCM34, and (j)
our result (note the improved segmentation due to better contextual information).
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6.2.4 Experiments

Setup

Of the 58 UHFUS sequences, 20 were chosen for training and the remaining 38 were used

for testing. Similarly, from the 26 HFUS sequences, 20 were chosen for training and the

remaining 6 were used for testing. We ran a 3-fold cross-validation for the vessel segmen-

tation task. To simulate a clinical application, an ensemble of the two best models with the

lowest validation loss (from a single fold) were used for testing. Similar to [161], we also

ran a 3-fold cross validation for the lung segmentation task in the CXR dataset.

Training

Our sequences contained variable image sizes and training a ConvLSTM with full-sized

images is limited by GPU RAM. We trained our USVS-Net by scaling each B-scan to 256×256

pixels. Data augmentation (elastic deformation, blurring etc.) was done to increase the

training set to ∼120,000 images. To compare against [161], we used the generalized dice

coefficient [161] loss with the ADAM optimizer [122], and set the batch size to 16 with a

learning rate of 0.00001 for 30 epochs. The final pixel level probabilities were classified using

the softmax function, and the connected component in the foreground class was considered

the segmentation. For the DecLSTM [160], we used RMSProp optimizer [160], weighted

cross-entropy loss [82], and a learning rate of 0.0001 for 30 epochs.

Baseline Comparisons

For the vessel segmentation task, we compared our errors against those from a level set-

based method [4], and two LSTM-based segmentation approaches: DecLSTM [160] and

CFCM34 [161]. For the lung segmentation task, we compared our results against the CFCM34
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model [161].

6.2.5 Results

Metrics

We compared the results of each approach against the expert annotations. The follow-

ing metrics were calculated to quantify errors: 1) Dice Similarity Coefficient (DSC) [4], 2)

Hausdorff Distance (HD) in millimeters [4], 3) Mean Absolute Deviation (MAD) in millime-

ters [161], 4) Definite False Positive and Negative Distances (DFPD, DFND) [4], 5) Precision

(Prec.) and 6) Recall (Rec.) [161].

UHFUS Results

From Table 6.1 (top), the traditional level set approach only succeeded in segmenting vessels

in 33 of 38 sequences, while the LSTM-based methods successfully segmented vessels in

all sequences. The proposed USVS-Net matched the expert annotations with the highest

DSC, and lowest HD and MAD errors among all baselines. We estimated the statistical

significance of our results using paired t-tests for every baseline, and determined that our

results were statistically significant (p < 0.05) for all metrics except DFPD. Our largest HD

error of 0.14mm was ∼15× lower than the largest observed vessel diameter of 2.17mm.

Similarly, the average HD error was∼10× lower than the smallest observed vessel diameter

of 1.1mm. Although our method slightly over-segmented the boundaries (outer adventitia)

as evidenced by the highest DFPD score, the low clinically relevant measures of HD and

MAD were acceptable. Our primary intention for the USVS-Net was to segment vessels

in UHFUS sequences, and through our results, we satisfactorily hit our target of sub-mm

vessel localization in UHFUS sequences presenting with increased speckle, and large vessel
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motion and deformation.

Table 6.1: Segmentation error comparison for the UHFUS (top) and HFUS (bottom) se-
quences. (∗ 33/38 sequences successful)

Method DSC HD (mm) MAD (mm) DFPD DFND Prec Rec
UHFUS Results (Traditional scores exclude failure cases)

Traditional∗ [4] 81.13 ± 3.72 0.21 ± 0.05 0.06 ± 0.02 3.08 ± 1.68 8.71 ± 0.55 96.44 ± 2.56 72.03 ± 4.9
DecLSTM [160] 88.83 ± 3.74 0.15 ± 0.06 0.04 ± 0.03 6.76 ± 1.05 5.35 ± 1.4 87.54 ± 4.45 92.46 ± 3.93
CFCM34 [161] 88.45 ± 3.97 0.15 ± 0.07 0.04 ± 0.04 6.41 ± 1.21 5.51 ± 1.39 88.07 ± 4.83 91.31 ± 3.87

USVS-Net 92.15 ± 2.29 0.11 ± 0.03 0.03 ± 0.01 6.83 ± 1.13 6.33 ± 1.36 91.76 ± 3.78 93.2 ± 3.34
HFUS Results

Traditional [4] 83.6 ± 5.47 0.47 ± 0.13 0.08 ± 0.04 2.08 ± 2.01 6.02 ± 0.51 95.13 ± 4.8 75.42 ± 7.49
DecLSTM [160] 88.34 ± 5.21 0.39 ± 0.1 0.05 ± 0.3 4.23 ± 0.97 5.61 ± 0.78 87.21 ± 3.15 83.94 ± 7.61
CFCM34 [161] 89.44 ± 3.34 0.36 ± 0.09 0.05 ± 0.02 3.74 ± 1.04 5.23 ± 0.62 94.21 ± 3.48 85.74 ± 5.51

USVS-Net 89.74 ± 3.05 0.36 ± 0.08 0.04 ± 0.02 4.98 ± 0.86 4.53 ± 1.03 88.63 ± 0.05 91.52 ± 0.05

HFUS Results

As seen in Table 6.1 (bottom), the performance of the CFCM34 and the USVS-Net is com-

parable. The USVS-Net edges out the CFCM34 with a higher DSC score, along with lower

HD, MAD, and DFND errors, and a higher recall rate. We postulate that this is due to lower

speckle and clearer contrast along the vessel boundaries. Again, we conducted paired t-tests

to assess the statistical significance of our results, and report that the results were statisti-

cally significant (p < 0.05) for all metrics except DFPD and Precision. The largest HD error

of 0.45mm was ∼9.5× smaller than the largest observed vessel diameter of 4.35mm, while

the average HD error was ∼8× lower in contrast to the smallest vessel diameter of 2.9mm.

We note that the CFCM34 can be a useful alternative for clinical use in HFUS images, for

which CFCM34 and USVS-Net could both be run (and results compared) for improved seg-

mentation.
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Chest X-Ray Results

To show the generalizability of our approach, we took our network designed for UHFUS

vessel segmentation, retrained, and validated it on CXR images. As seen in Table 6.2, the

errors between the CFCM34 and the USVS-Net are comparable. CFCM34 has a higher DSC,

lower DFND, and a higher recall rate, while we achieve slightly lower HD and MAD errors,

lower DFPD and higher precision. As seen in Fig. 6.14, the dilated convolutions in the

USVS-Net provide the utility of incorporating regions excluded by the CFCM34 in the final

segmentation. The increased contextual information available at the deepest layers of the

network allowed it to segment the lung regions better.

Table 6.2: Segmentation error comparison (pixels) for the Montgomery County Chest X-Ray
dataset.

Method DSC HD MAD DFPD DFND Prec Rec
CFCM34 [161] 97.01 ± 1.82 11.05 ± 10.78 0.13 ± 0.31 6.67 ± 0.97 6.39 ± 0.98 96.93 ± 2.42 97.25 ± 2.67

USVS-Net 96.89 ± 1.80 10.29 ± 8.26 0.10 ± 0.19 6.64 ± 0.89 6.73 ± 1.04 97.15 ± 1.65 96.57 ± 2.97

Performance

The network training and testing was performed using Tensorflow on a desktop using a 3.5

GHz Intel i7 processor, 16 GB DDR3 RAM, and a NVIDIA Titan Xp GPU. The DecLSTM had

32.65 million parameters and a runtime of 5.83s (58.3ms per B-scan in 100 B-scan sequence).

The CFCM34 had 49.16 million parameters and a runtime of 8.45s (84.5ms per B-scan in

100 B-scan sequence). The USVS-Net had 64.34 million parameters and a runtime of 9.95s

(99.5ms per B-scan in 100 B-scan sequence). The level set method had a runtime of 2.03s

(20.31ms per B-scan in 100 B-scan sequence), but yielded less accurate segmentations in

contrast to the deep learning approaches. Testing was done with an ensemble of two models

with the lowest validation loss.
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6.3 Vessel-Based Measurements

6.3.1 Problem Statement

An image I displaying a transverse cross-section of a vessel imaged using UHFUS is shown

in Fig. 6.15(a). Once the vessel contour has been delineated by either the classical or deep

learning-based approach, vessel-based measurements can be calculated. The predicted ves-

sel contour by the proposed deep learning approach is shown in yellow in Fig. 6.15(b).

These measurements include the Intimal Wall Thickness (IWT), Media Thickness (MT),

and Intima-Medial Thickness (IMT). As shown in Fig. 6.15(c), we want to find the set of

Y-coordinates that correspond to the inner (green lines) and outer edges (orange lines) of

the intimal wall, and the inner side of the adventitia (magenta lines). With these locations,

we can find the intimal wall thickness (pixels between the orange and green lines), me-

dia thickness (pixels between orange and magenta lines), and the intima-media thickness

(pixels between magenta and green lines).

6.3.2 Algorithm

In this work, we have developed an automated algorithm that can determine these mea-

surements once the vessel contour has been delineated in an UHFUS/HFUS image. Let C

represent the vessel contour containing a set of points pi where i = 1, . . . , N with N being

the number of points in the contour. The automated algorithm first determines the geomet-

ric centroid c of the vessel contour. As the pixels on the contour represent the foreground

values of the vessel boundary, the mean pixel intensity of the vessel contourm is calculated

as seen in Eq. (6.29). Next, S radial spokes emanate from the centroid c in the upward

and downward directions within a 45◦ zone. The length of each spoke L is bounded by the

190



(a) (b) (c) (d)

Figure 6.15: (a) Example transverse cross-section of a vessel imaged using UHFUS; note
the resolution with which the vessel walls at the top and bottom are identified. (b) Seg-
mentation (yellow contour) of the adventitial wall from our deep learning approach. The
centroid of the vessel is shown in white. The magenta lines correspond to the 45◦ sectors
that represent the search for the vessel walls at the top and bottom. (c) The inner (green
line) and outer (orange line) edges of the intimal wall, and the inner edge (magenta line) of
the adventitial wall is depicted. (d) The final vessel-based measurements provided by the
automated algorithm. The lumen diameter (cyan vertical line), the intimal wall thickness
(red bars), and the medial thickness (green bars). The intima-media thickness is the sum of
the red and green bars. Thicknesses are measured in terms of pixels, and are converted to
microns after multiplication with the pixel resolution.

distance to the nearest point on the contour along that spoke.

m =
1

N

N∑
i=1

I
(
pi
)

(6.29)

Theoretically, there can be spokes emanating from the centroid in all 360◦. However

as shown in Fig. 6.15(b), the intimal wall is most clearly seen at the top and bottom of

the vessel due to higher axial resolution in ultrasound. There is also greater reflection of

acoustic waves at interfaces that lie perpendicular to its direction of travel, which explains

the increased brightness of the intimal walls. But, the intimal walls are poorly delineated in

the lateral direction because the lateral resolution is not as high in ultrasound. Moreover,

the walls are parallel to the direction of travel of the acoustic waves, thereby offering little

in terms of acoustic reflection, and are poorly illuminated. Thus, in the upward direction,
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the set of constituent angles were limited to a 45◦ sector (magenta lines) within the range

of s◦ ∈ [250◦, 290◦]. Similarly, the set of constituent angles in the downward direction were

limited to a 45◦ sector in the range of s◦ ∈ [70◦, 110◦]. Within these sectors, we would like

to find the Y-coordinates of the intima edges (inner and outer) and inner adventitial side.

We denote by ps the set of points on the spoke at angle s◦. The set of Y-coordinates of

the inner i and outer o edges of the intimal wall at the top t and bottom b of the vessel are

given by the following equations:

Y tis = min{y : (x, y) ∈ ps and I(x, y) ≥ m} (6.30)

Y tos = max{y : (x, y) ∈ ps and I(x, y) ≥ m} (6.31)

Y bis = min{y : (x, y) ∈ ps and I(x, y) ≥ m} (6.32)

Y bos = max{y : (x, y) ∈ ps and I(x, y) ≥ m} (6.33)

Once the set of Y-coordinates have been found, then the mean Y-coordinate of the inner

and outer edges of the top and bottom of the intimal wall (IW) are computed as follows:

IW ti
y =

1

45

∑
Y tis (6.34)

IW to
y =

1

45

∑
Y tos (6.35)

IW bi
y =

1

45

∑
Y bis (6.36)

IW bo
y =

1

45

∑
Y bos (6.37)

In similar fashion, the set of Y-coordinates of the inner edge of the adventitial wall for
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the top and bottom of the vessel can be ascertained using the following equations:

AY tis = min{y : (x, y) ∈ ps and (x, y) ∈ C} (6.38)

AY bis = min{y : (x, y) ∈ ps and (x, y) ∈ C} (6.39)

The mean Y-coordinate of the inner edge of the adventitial wall at the top and bottom

of the vessel can be found using the following equations:

AW ti
y =

1

45

∑
AY tis (6.40)

AW bi
y =

1

45

∑
AY bis (6.41)

Finally, the Medial Thickness (MT), the Intimal Wall Thickness (IWT), and the Intima-

Media Thickness (IMT) at the top and bottom of the vessel can be measured as follows:

IWT t = abs
(
IW to

y − IW
ti
y

)
(6.42)

IWT b = abs
(
IW bo

y − IW
bi
y

)
(6.43)

MT t = abs
(
IW to

y −AW
ti
y

)
(6.44)

MT b = abs
(
AW bi

y − IW
bo
y

)
(6.45)

IMT t = IWT t +MT t (6.46)

IMT b = IWT b +MT b (6.47)
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These measurements are depicted pictorially on a example image of a transverse vessel

cross-section as seen in Fig. 6.15(d). In this figure, the white square represents the centroid

of the vessel. The vertical line in cyan represents the vessel lumen diameter. The red bars

represent the thickness of the IWT, and the green bars represent the medial thickness. The

IMT is the sum of the thicknesses of the red and green bars. The yellow contour is the

predicted vessel boundary.

6.3.3 Results

We ran this algorithm on UHFUS sequences acquired at the radial artery in the hand from

6 different subjects and show the variation in the measurements over 100 images in each

sequences in Table. 6.3. We note that the measurements are consistent with those mea-

surements seen [168, 169]. Most of the measurments were acquired on subjects who were

healthy, and therefore there may not be representative estimates on subjects who have un-

dergone hand transplants or have other associated cardiovascular risks.

Table 6.3: Mean and Standard Deviation of the thickness measures of the radial artery for
various subjects. Intimal Wall Thickness (IWT), Media Thickness (MT), and Intima-Media
Thickness (IMT). These measurements are in millimeters.

Subject #
IWT MT IMT

Top Bottom Top Bottom Top Bottom

1 0.06 ± 0.009 0.06 ± 0.007 0.17 ± 0.015 0.14 ± 0.014 0.23 ± 0.013 0.2 ± 0.013

2 0.09 ± 0.038 0.07 ± 0.013 0.13 ± 0.034 0.11 ± 0.016 0.21 ± 0.025 0.18 ± 0.013

3 0.08 ± 0.026 0.06 ± 0.029 0.14 ± 0.029 0.1 ± 0.023 0.21 ± 0.018 0.15 ± 0.016

4 0.07 ± 0.015 0.06 ± 0.01 0.14 ± 0.018 0.13 ± 0.014 0.21 ± 0.008 0.18 ± 0.012

5 0.07 ± 0.028 0.07 ± 0.016 0.14 ± 0.031 0.13 ± 0.02 0.20 ± 0.02 0.2 ± 0.009

6 0.07 ± 0.012 0.07 ± 0.008 0.14 ± 0.018 0.13 ± 0.016 0.21 ± 0.014 0.19 ± 0.013
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Chapter 7

Future Work

7.1 Exploiting Segmentations for Accurate Registration

In this thesis, we have proposed the following approaches for corneal interface segmenta-

tion: classical approach in Sec. 4.1, deep learning-based approach in Sec. 4.2, and a hy-

brid/cascaded approach in Sec. 4.3. All these approaches consider each OCT image in the

sequence to be independent of each other. However, this is not the case as there is a lot of

correlation across space and time between the OCT B-scans. It can be difficult to exploit

this correlation without aligning the OCT B-scans first. But, if a set of B-scans are passed to

the neural network architectures instead, then the corneal interface can be segmented with

greater accuracy in scenarios when the SNR drop is quite large. Similarly, we believe that

the above naturally extends to limbal interface segmentation as well.

Once the interfaces have been accurately segmented, it is possible to train a neural net-

work architecture that can directly estimate the spatial transformation [170] between B-

scans. In this way, B-scans in a sequence can be aligned to recreate the corneal or limbal
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region in a 3D reconstruction. Furthermore, it will also enable the accurate measurement

of corneal biometric parameters, such as corneal refractive index, and further enhance the

quantification of morphological changes in the POV.

7.2 Uncertainty in Segmentation

It would be useful to know the level of trust to be placed in the output of a segmentation

framework. This is especially true in one of our application areas: visualizing the POV. As

mentioned in this thesis, datasets for the longitudinal study in Sec. 5.4 were only considered

for the first three days of the study. Datasets from days 4 through 12 were not considered

as the degradation in the tissue structure is significant, and it can be particularly difficult to

determine the true location of the shallowest limbal interface. Furthermore, in order to be

of clinical use, it is necessary to know the depletion in stem cells in the POV. This will help

determine if corneas from donor eyes are truly viable for transplant into recipients.

Recently, there have been methods [171–174] proposed to determine the uncertainty of

a neural network during the task of segmentation. These Bayesian uncertainty estimation

methods [171–174] are highly useful to assess the performance of a framework designed for

segmentation as it can provide a metric for the trust to be placed in the output of the frame-

work. In the future, we plan to integrate these methods into our frameworks to provide

confidence measures in our segmentation predictions.

7.3 ProbeSight

We plan to integrate our vessel segmentation and tracking approaches into an existing

project in our lab called ProbeSight [175]. ProbeSight is a system designed to guide ul-
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trasound transducers (along with other clinical tools) using one or more video camera(s)

mounted directly on the probe (or tool) to a specified target position on the exterior of the

patient. In this system, a prior high-resolution surface map of the patient’s exterior (e.g.

patient’s arm) is correlated with the real-time video images of the patientâĂŹs exterior.

This has direct utility in tracking anatomical changes, with particular interest in monitor-

ing hand transplant rejection, as it is presumed necessary to precisely revisit the position,

orientation, and compression of a previously acquired ultrasound image in order to monitor

subtle changes in tissue structure and health.

Along with the real-time images of the patient’s exterior, real-time images of the vas-

cular structures can be obtained using ultrasound. The methods developed in this thesis -

tracking of the vessels, segmenting their contours, and understanding the changes in vessel-

based parameters (e.g. intima-medial thickness) - can be directly integrated with the design

of ProbeSight in order to further enhance measurements of clinical markers of hand trans-

plant rejection.
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